xref: /freebsd/sys/dev/bge/if_bge.c (revision 78cd75393ec79565c63927bf200f06f839a1dc05)
1 /*-
2  * SPDX-License-Identifier: BSD-4-Clause
3  *
4  * Copyright (c) 2001 Wind River Systems
5  * Copyright (c) 1997, 1998, 1999, 2001
6  *	Bill Paul <wpaul@windriver.com>.  All rights reserved.
7  *
8  * Redistribution and use in source and binary forms, with or without
9  * modification, are permitted provided that the following conditions
10  * are met:
11  * 1. Redistributions of source code must retain the above copyright
12  *    notice, this list of conditions and the following disclaimer.
13  * 2. Redistributions in binary form must reproduce the above copyright
14  *    notice, this list of conditions and the following disclaimer in the
15  *    documentation and/or other materials provided with the distribution.
16  * 3. All advertising materials mentioning features or use of this software
17  *    must display the following acknowledgement:
18  *	This product includes software developed by Bill Paul.
19  * 4. Neither the name of the author nor the names of any co-contributors
20  *    may be used to endorse or promote products derived from this software
21  *    without specific prior written permission.
22  *
23  * THIS SOFTWARE IS PROVIDED BY Bill Paul AND CONTRIBUTORS ``AS IS'' AND
24  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
25  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
26  * ARE DISCLAIMED.  IN NO EVENT SHALL Bill Paul OR THE VOICES IN HIS HEAD
27  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
28  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
29  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
30  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
31  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
32  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF
33  * THE POSSIBILITY OF SUCH DAMAGE.
34  */
35 
36 #include <sys/cdefs.h>
37 /*
38  * Broadcom BCM57xx(x)/BCM590x NetXtreme and NetLink family Ethernet driver
39  *
40  * The Broadcom BCM5700 is based on technology originally developed by
41  * Alteon Networks as part of the Tigon I and Tigon II Gigabit Ethernet
42  * MAC chips. The BCM5700, sometimes referred to as the Tigon III, has
43  * two on-board MIPS R4000 CPUs and can have as much as 16MB of external
44  * SSRAM. The BCM5700 supports TCP, UDP and IP checksum offload, jumbo
45  * frames, highly configurable RX filtering, and 16 RX and TX queues
46  * (which, along with RX filter rules, can be used for QOS applications).
47  * Other features, such as TCP segmentation, may be available as part
48  * of value-added firmware updates. Unlike the Tigon I and Tigon II,
49  * firmware images can be stored in hardware and need not be compiled
50  * into the driver.
51  *
52  * The BCM5700 supports the PCI v2.2 and PCI-X v1.0 standards, and will
53  * function in a 32-bit/64-bit 33/66Mhz bus, or a 64-bit/133Mhz bus.
54  *
55  * The BCM5701 is a single-chip solution incorporating both the BCM5700
56  * MAC and a BCM5401 10/100/1000 PHY. Unlike the BCM5700, the BCM5701
57  * does not support external SSRAM.
58  *
59  * Broadcom also produces a variation of the BCM5700 under the "Altima"
60  * brand name, which is functionally similar but lacks PCI-X support.
61  *
62  * Without external SSRAM, you can only have at most 4 TX rings,
63  * and the use of the mini RX ring is disabled. This seems to imply
64  * that these features are simply not available on the BCM5701. As a
65  * result, this driver does not implement any support for the mini RX
66  * ring.
67  */
68 
69 #ifdef HAVE_KERNEL_OPTION_HEADERS
70 #include "opt_device_polling.h"
71 #endif
72 
73 #include <sys/param.h>
74 #include <sys/endian.h>
75 #include <sys/systm.h>
76 #include <sys/sockio.h>
77 #include <sys/mbuf.h>
78 #include <sys/malloc.h>
79 #include <sys/kernel.h>
80 #include <sys/module.h>
81 #include <sys/socket.h>
82 #include <sys/sysctl.h>
83 #include <sys/taskqueue.h>
84 
85 #include <net/debugnet.h>
86 #include <net/if.h>
87 #include <net/if_var.h>
88 #include <net/if_arp.h>
89 #include <net/ethernet.h>
90 #include <net/if_dl.h>
91 #include <net/if_media.h>
92 
93 #include <net/bpf.h>
94 
95 #include <net/if_types.h>
96 #include <net/if_vlan_var.h>
97 
98 #include <netinet/in_systm.h>
99 #include <netinet/in.h>
100 #include <netinet/ip.h>
101 #include <netinet/tcp.h>
102 
103 #include <machine/bus.h>
104 #include <machine/resource.h>
105 #include <sys/bus.h>
106 #include <sys/rman.h>
107 
108 #include <dev/mii/mii.h>
109 #include <dev/mii/miivar.h>
110 #include "miidevs.h"
111 #include <dev/mii/brgphyreg.h>
112 
113 #include <dev/pci/pcireg.h>
114 #include <dev/pci/pcivar.h>
115 
116 #include <dev/bge/if_bgereg.h>
117 
118 #define	BGE_CSUM_FEATURES	(CSUM_IP | CSUM_TCP)
119 #define	ETHER_MIN_NOPAD		(ETHER_MIN_LEN - ETHER_CRC_LEN) /* i.e., 60 */
120 
121 MODULE_DEPEND(bge, pci, 1, 1, 1);
122 MODULE_DEPEND(bge, ether, 1, 1, 1);
123 MODULE_DEPEND(bge, miibus, 1, 1, 1);
124 
125 /* "device miibus" required.  See GENERIC if you get errors here. */
126 #include "miibus_if.h"
127 
128 /*
129  * Various supported device vendors/types and their names. Note: the
130  * spec seems to indicate that the hardware still has Alteon's vendor
131  * ID burned into it, though it will always be overridden by the vendor
132  * ID in the EEPROM. Just to be safe, we cover all possibilities.
133  */
134 static const struct bge_type {
135 	uint16_t	bge_vid;
136 	uint16_t	bge_did;
137 } bge_devs[] = {
138 	{ ALTEON_VENDORID,	ALTEON_DEVICEID_BCM5700 },
139 	{ ALTEON_VENDORID,	ALTEON_DEVICEID_BCM5701 },
140 
141 	{ ALTIMA_VENDORID,	ALTIMA_DEVICE_AC1000 },
142 	{ ALTIMA_VENDORID,	ALTIMA_DEVICE_AC1002 },
143 	{ ALTIMA_VENDORID,	ALTIMA_DEVICE_AC9100 },
144 
145 	{ APPLE_VENDORID,	APPLE_DEVICE_BCM5701 },
146 
147 	{ BCOM_VENDORID,	BCOM_DEVICEID_BCM5700 },
148 	{ BCOM_VENDORID,	BCOM_DEVICEID_BCM5701 },
149 	{ BCOM_VENDORID,	BCOM_DEVICEID_BCM5702 },
150 	{ BCOM_VENDORID,	BCOM_DEVICEID_BCM5702_ALT },
151 	{ BCOM_VENDORID,	BCOM_DEVICEID_BCM5702X },
152 	{ BCOM_VENDORID,	BCOM_DEVICEID_BCM5703 },
153 	{ BCOM_VENDORID,	BCOM_DEVICEID_BCM5703_ALT },
154 	{ BCOM_VENDORID,	BCOM_DEVICEID_BCM5703X },
155 	{ BCOM_VENDORID,	BCOM_DEVICEID_BCM5704C },
156 	{ BCOM_VENDORID,	BCOM_DEVICEID_BCM5704S },
157 	{ BCOM_VENDORID,	BCOM_DEVICEID_BCM5704S_ALT },
158 	{ BCOM_VENDORID,	BCOM_DEVICEID_BCM5705 },
159 	{ BCOM_VENDORID,	BCOM_DEVICEID_BCM5705F },
160 	{ BCOM_VENDORID,	BCOM_DEVICEID_BCM5705K },
161 	{ BCOM_VENDORID,	BCOM_DEVICEID_BCM5705M },
162 	{ BCOM_VENDORID,	BCOM_DEVICEID_BCM5705M_ALT },
163 	{ BCOM_VENDORID,	BCOM_DEVICEID_BCM5714C },
164 	{ BCOM_VENDORID,	BCOM_DEVICEID_BCM5714S },
165 	{ BCOM_VENDORID,	BCOM_DEVICEID_BCM5715 },
166 	{ BCOM_VENDORID,	BCOM_DEVICEID_BCM5715S },
167 	{ BCOM_VENDORID,	BCOM_DEVICEID_BCM5717 },
168 	{ BCOM_VENDORID,	BCOM_DEVICEID_BCM5717C },
169 	{ BCOM_VENDORID,	BCOM_DEVICEID_BCM5718 },
170 	{ BCOM_VENDORID,	BCOM_DEVICEID_BCM5719 },
171 	{ BCOM_VENDORID,	BCOM_DEVICEID_BCM5720 },
172 	{ BCOM_VENDORID,	BCOM_DEVICEID_BCM5721 },
173 	{ BCOM_VENDORID,	BCOM_DEVICEID_BCM5722 },
174 	{ BCOM_VENDORID,	BCOM_DEVICEID_BCM5723 },
175 	{ BCOM_VENDORID,	BCOM_DEVICEID_BCM5725 },
176 	{ BCOM_VENDORID,	BCOM_DEVICEID_BCM5727 },
177 	{ BCOM_VENDORID,	BCOM_DEVICEID_BCM5750 },
178 	{ BCOM_VENDORID,	BCOM_DEVICEID_BCM5750M },
179 	{ BCOM_VENDORID,	BCOM_DEVICEID_BCM5751 },
180 	{ BCOM_VENDORID,	BCOM_DEVICEID_BCM5751F },
181 	{ BCOM_VENDORID,	BCOM_DEVICEID_BCM5751M },
182 	{ BCOM_VENDORID,	BCOM_DEVICEID_BCM5752 },
183 	{ BCOM_VENDORID,	BCOM_DEVICEID_BCM5752M },
184 	{ BCOM_VENDORID,	BCOM_DEVICEID_BCM5753 },
185 	{ BCOM_VENDORID,	BCOM_DEVICEID_BCM5753F },
186 	{ BCOM_VENDORID,	BCOM_DEVICEID_BCM5753M },
187 	{ BCOM_VENDORID,	BCOM_DEVICEID_BCM5754 },
188 	{ BCOM_VENDORID,	BCOM_DEVICEID_BCM5754M },
189 	{ BCOM_VENDORID,	BCOM_DEVICEID_BCM5755 },
190 	{ BCOM_VENDORID,	BCOM_DEVICEID_BCM5755M },
191 	{ BCOM_VENDORID,	BCOM_DEVICEID_BCM5756 },
192 	{ BCOM_VENDORID,	BCOM_DEVICEID_BCM5761 },
193 	{ BCOM_VENDORID,	BCOM_DEVICEID_BCM5761E },
194 	{ BCOM_VENDORID,	BCOM_DEVICEID_BCM5761S },
195 	{ BCOM_VENDORID,	BCOM_DEVICEID_BCM5761SE },
196 	{ BCOM_VENDORID,	BCOM_DEVICEID_BCM5762 },
197 	{ BCOM_VENDORID,	BCOM_DEVICEID_BCM5764 },
198 	{ BCOM_VENDORID,	BCOM_DEVICEID_BCM5780 },
199 	{ BCOM_VENDORID,	BCOM_DEVICEID_BCM5780S },
200 	{ BCOM_VENDORID,	BCOM_DEVICEID_BCM5781 },
201 	{ BCOM_VENDORID,	BCOM_DEVICEID_BCM5782 },
202 	{ BCOM_VENDORID,	BCOM_DEVICEID_BCM5784 },
203 	{ BCOM_VENDORID,	BCOM_DEVICEID_BCM5785F },
204 	{ BCOM_VENDORID,	BCOM_DEVICEID_BCM5785G },
205 	{ BCOM_VENDORID,	BCOM_DEVICEID_BCM5786 },
206 	{ BCOM_VENDORID,	BCOM_DEVICEID_BCM5787 },
207 	{ BCOM_VENDORID,	BCOM_DEVICEID_BCM5787F },
208 	{ BCOM_VENDORID,	BCOM_DEVICEID_BCM5787M },
209 	{ BCOM_VENDORID,	BCOM_DEVICEID_BCM5788 },
210 	{ BCOM_VENDORID,	BCOM_DEVICEID_BCM5789 },
211 	{ BCOM_VENDORID,	BCOM_DEVICEID_BCM5901 },
212 	{ BCOM_VENDORID,	BCOM_DEVICEID_BCM5901A2 },
213 	{ BCOM_VENDORID,	BCOM_DEVICEID_BCM5903M },
214 	{ BCOM_VENDORID,	BCOM_DEVICEID_BCM5906 },
215 	{ BCOM_VENDORID,	BCOM_DEVICEID_BCM5906M },
216 	{ BCOM_VENDORID,	BCOM_DEVICEID_BCM57760 },
217 	{ BCOM_VENDORID,	BCOM_DEVICEID_BCM57761 },
218 	{ BCOM_VENDORID,	BCOM_DEVICEID_BCM57762 },
219 	{ BCOM_VENDORID,	BCOM_DEVICEID_BCM57764 },
220 	{ BCOM_VENDORID,	BCOM_DEVICEID_BCM57765 },
221 	{ BCOM_VENDORID,	BCOM_DEVICEID_BCM57766 },
222 	{ BCOM_VENDORID,	BCOM_DEVICEID_BCM57767 },
223 	{ BCOM_VENDORID,	BCOM_DEVICEID_BCM57780 },
224 	{ BCOM_VENDORID,	BCOM_DEVICEID_BCM57781 },
225 	{ BCOM_VENDORID,	BCOM_DEVICEID_BCM57782 },
226 	{ BCOM_VENDORID,	BCOM_DEVICEID_BCM57785 },
227 	{ BCOM_VENDORID,	BCOM_DEVICEID_BCM57786 },
228 	{ BCOM_VENDORID,	BCOM_DEVICEID_BCM57787 },
229 	{ BCOM_VENDORID,	BCOM_DEVICEID_BCM57788 },
230 	{ BCOM_VENDORID,	BCOM_DEVICEID_BCM57790 },
231 	{ BCOM_VENDORID,	BCOM_DEVICEID_BCM57791 },
232 	{ BCOM_VENDORID,	BCOM_DEVICEID_BCM57795 },
233 
234 	{ SK_VENDORID,		SK_DEVICEID_ALTIMA },
235 
236 	{ TC_VENDORID,		TC_DEVICEID_3C996 },
237 
238 	{ FJTSU_VENDORID,	FJTSU_DEVICEID_PW008GE4 },
239 	{ FJTSU_VENDORID,	FJTSU_DEVICEID_PW008GE5 },
240 	{ 0, 0 }
241 };
242 
243 static const struct bge_vendor {
244 	uint16_t	v_id;
245 	const char	*v_name;
246 } bge_vendors[] = {
247 	{ ALTEON_VENDORID,	"Alteon" },
248 	{ ALTIMA_VENDORID,	"Altima" },
249 	{ APPLE_VENDORID,	"Apple" },
250 	{ BCOM_VENDORID,	"Broadcom" },
251 	{ SK_VENDORID,		"SysKonnect" },
252 	{ TC_VENDORID,		"3Com" },
253 	{ FJTSU_VENDORID,	"Fujitsu" },
254 	{ 0, NULL }
255 };
256 
257 static const struct bge_revision {
258 	uint32_t	br_chipid;
259 	const char	*br_name;
260 } bge_revisions[] = {
261 	{ BGE_CHIPID_BCM5700_A0,	"BCM5700 A0" },
262 	{ BGE_CHIPID_BCM5700_A1,	"BCM5700 A1" },
263 	{ BGE_CHIPID_BCM5700_B0,	"BCM5700 B0" },
264 	{ BGE_CHIPID_BCM5700_B1,	"BCM5700 B1" },
265 	{ BGE_CHIPID_BCM5700_B2,	"BCM5700 B2" },
266 	{ BGE_CHIPID_BCM5700_B3,	"BCM5700 B3" },
267 	{ BGE_CHIPID_BCM5700_ALTIMA,	"BCM5700 Altima" },
268 	{ BGE_CHIPID_BCM5700_C0,	"BCM5700 C0" },
269 	{ BGE_CHIPID_BCM5701_A0,	"BCM5701 A0" },
270 	{ BGE_CHIPID_BCM5701_B0,	"BCM5701 B0" },
271 	{ BGE_CHIPID_BCM5701_B2,	"BCM5701 B2" },
272 	{ BGE_CHIPID_BCM5701_B5,	"BCM5701 B5" },
273 	{ BGE_CHIPID_BCM5703_A0,	"BCM5703 A0" },
274 	{ BGE_CHIPID_BCM5703_A1,	"BCM5703 A1" },
275 	{ BGE_CHIPID_BCM5703_A2,	"BCM5703 A2" },
276 	{ BGE_CHIPID_BCM5703_A3,	"BCM5703 A3" },
277 	{ BGE_CHIPID_BCM5703_B0,	"BCM5703 B0" },
278 	{ BGE_CHIPID_BCM5704_A0,	"BCM5704 A0" },
279 	{ BGE_CHIPID_BCM5704_A1,	"BCM5704 A1" },
280 	{ BGE_CHIPID_BCM5704_A2,	"BCM5704 A2" },
281 	{ BGE_CHIPID_BCM5704_A3,	"BCM5704 A3" },
282 	{ BGE_CHIPID_BCM5704_B0,	"BCM5704 B0" },
283 	{ BGE_CHIPID_BCM5705_A0,	"BCM5705 A0" },
284 	{ BGE_CHIPID_BCM5705_A1,	"BCM5705 A1" },
285 	{ BGE_CHIPID_BCM5705_A2,	"BCM5705 A2" },
286 	{ BGE_CHIPID_BCM5705_A3,	"BCM5705 A3" },
287 	{ BGE_CHIPID_BCM5750_A0,	"BCM5750 A0" },
288 	{ BGE_CHIPID_BCM5750_A1,	"BCM5750 A1" },
289 	{ BGE_CHIPID_BCM5750_A3,	"BCM5750 A3" },
290 	{ BGE_CHIPID_BCM5750_B0,	"BCM5750 B0" },
291 	{ BGE_CHIPID_BCM5750_B1,	"BCM5750 B1" },
292 	{ BGE_CHIPID_BCM5750_C0,	"BCM5750 C0" },
293 	{ BGE_CHIPID_BCM5750_C1,	"BCM5750 C1" },
294 	{ BGE_CHIPID_BCM5750_C2,	"BCM5750 C2" },
295 	{ BGE_CHIPID_BCM5714_A0,	"BCM5714 A0" },
296 	{ BGE_CHIPID_BCM5752_A0,	"BCM5752 A0" },
297 	{ BGE_CHIPID_BCM5752_A1,	"BCM5752 A1" },
298 	{ BGE_CHIPID_BCM5752_A2,	"BCM5752 A2" },
299 	{ BGE_CHIPID_BCM5714_B0,	"BCM5714 B0" },
300 	{ BGE_CHIPID_BCM5714_B3,	"BCM5714 B3" },
301 	{ BGE_CHIPID_BCM5715_A0,	"BCM5715 A0" },
302 	{ BGE_CHIPID_BCM5715_A1,	"BCM5715 A1" },
303 	{ BGE_CHIPID_BCM5715_A3,	"BCM5715 A3" },
304 	{ BGE_CHIPID_BCM5717_A0,	"BCM5717 A0" },
305 	{ BGE_CHIPID_BCM5717_B0,	"BCM5717 B0" },
306 	{ BGE_CHIPID_BCM5717_C0,	"BCM5717 C0" },
307 	{ BGE_CHIPID_BCM5719_A0,	"BCM5719 A0" },
308 	{ BGE_CHIPID_BCM5720_A0,	"BCM5720 A0" },
309 	{ BGE_CHIPID_BCM5755_A0,	"BCM5755 A0" },
310 	{ BGE_CHIPID_BCM5755_A1,	"BCM5755 A1" },
311 	{ BGE_CHIPID_BCM5755_A2,	"BCM5755 A2" },
312 	{ BGE_CHIPID_BCM5722_A0,	"BCM5722 A0" },
313 	{ BGE_CHIPID_BCM5761_A0,	"BCM5761 A0" },
314 	{ BGE_CHIPID_BCM5761_A1,	"BCM5761 A1" },
315 	{ BGE_CHIPID_BCM5762_A0,	"BCM5762 A0" },
316 	{ BGE_CHIPID_BCM5784_A0,	"BCM5784 A0" },
317 	{ BGE_CHIPID_BCM5784_A1,	"BCM5784 A1" },
318 	/* 5754 and 5787 share the same ASIC ID */
319 	{ BGE_CHIPID_BCM5787_A0,	"BCM5754/5787 A0" },
320 	{ BGE_CHIPID_BCM5787_A1,	"BCM5754/5787 A1" },
321 	{ BGE_CHIPID_BCM5787_A2,	"BCM5754/5787 A2" },
322 	{ BGE_CHIPID_BCM5906_A1,	"BCM5906 A1" },
323 	{ BGE_CHIPID_BCM5906_A2,	"BCM5906 A2" },
324 	{ BGE_CHIPID_BCM57765_A0,	"BCM57765 A0" },
325 	{ BGE_CHIPID_BCM57765_B0,	"BCM57765 B0" },
326 	{ BGE_CHIPID_BCM57780_A0,	"BCM57780 A0" },
327 	{ BGE_CHIPID_BCM57780_A1,	"BCM57780 A1" },
328 	{ 0, NULL }
329 };
330 
331 /*
332  * Some defaults for major revisions, so that newer steppings
333  * that we don't know about have a shot at working.
334  */
335 static const struct bge_revision bge_majorrevs[] = {
336 	{ BGE_ASICREV_BCM5700,		"unknown BCM5700" },
337 	{ BGE_ASICREV_BCM5701,		"unknown BCM5701" },
338 	{ BGE_ASICREV_BCM5703,		"unknown BCM5703" },
339 	{ BGE_ASICREV_BCM5704,		"unknown BCM5704" },
340 	{ BGE_ASICREV_BCM5705,		"unknown BCM5705" },
341 	{ BGE_ASICREV_BCM5750,		"unknown BCM5750" },
342 	{ BGE_ASICREV_BCM5714_A0,	"unknown BCM5714" },
343 	{ BGE_ASICREV_BCM5752,		"unknown BCM5752" },
344 	{ BGE_ASICREV_BCM5780,		"unknown BCM5780" },
345 	{ BGE_ASICREV_BCM5714,		"unknown BCM5714" },
346 	{ BGE_ASICREV_BCM5755,		"unknown BCM5755" },
347 	{ BGE_ASICREV_BCM5761,		"unknown BCM5761" },
348 	{ BGE_ASICREV_BCM5784,		"unknown BCM5784" },
349 	{ BGE_ASICREV_BCM5785,		"unknown BCM5785" },
350 	/* 5754 and 5787 share the same ASIC ID */
351 	{ BGE_ASICREV_BCM5787,		"unknown BCM5754/5787" },
352 	{ BGE_ASICREV_BCM5906,		"unknown BCM5906" },
353 	{ BGE_ASICREV_BCM57765,		"unknown BCM57765" },
354 	{ BGE_ASICREV_BCM57766,		"unknown BCM57766" },
355 	{ BGE_ASICREV_BCM57780,		"unknown BCM57780" },
356 	{ BGE_ASICREV_BCM5717,		"unknown BCM5717" },
357 	{ BGE_ASICREV_BCM5719,		"unknown BCM5719" },
358 	{ BGE_ASICREV_BCM5720,		"unknown BCM5720" },
359 	{ BGE_ASICREV_BCM5762,		"unknown BCM5762" },
360 	{ 0, NULL }
361 };
362 
363 #define	BGE_IS_JUMBO_CAPABLE(sc)	((sc)->bge_flags & BGE_FLAG_JUMBO)
364 #define	BGE_IS_5700_FAMILY(sc)		((sc)->bge_flags & BGE_FLAG_5700_FAMILY)
365 #define	BGE_IS_5705_PLUS(sc)		((sc)->bge_flags & BGE_FLAG_5705_PLUS)
366 #define	BGE_IS_5714_FAMILY(sc)		((sc)->bge_flags & BGE_FLAG_5714_FAMILY)
367 #define	BGE_IS_575X_PLUS(sc)		((sc)->bge_flags & BGE_FLAG_575X_PLUS)
368 #define	BGE_IS_5755_PLUS(sc)		((sc)->bge_flags & BGE_FLAG_5755_PLUS)
369 #define	BGE_IS_5717_PLUS(sc)		((sc)->bge_flags & BGE_FLAG_5717_PLUS)
370 #define	BGE_IS_57765_PLUS(sc)		((sc)->bge_flags & BGE_FLAG_57765_PLUS)
371 
372 static uint32_t bge_chipid(device_t);
373 static const struct bge_vendor * bge_lookup_vendor(uint16_t);
374 static const struct bge_revision * bge_lookup_rev(uint32_t);
375 
376 typedef int	(*bge_eaddr_fcn_t)(struct bge_softc *, uint8_t[]);
377 
378 static int bge_probe(device_t);
379 static int bge_attach(device_t);
380 static int bge_detach(device_t);
381 static int bge_suspend(device_t);
382 static int bge_resume(device_t);
383 static void bge_release_resources(struct bge_softc *);
384 static void bge_dma_map_addr(void *, bus_dma_segment_t *, int, int);
385 static int bge_dma_alloc(struct bge_softc *);
386 static void bge_dma_free(struct bge_softc *);
387 static int bge_dma_ring_alloc(struct bge_softc *, bus_size_t, bus_size_t,
388     bus_dma_tag_t *, uint8_t **, bus_dmamap_t *, bus_addr_t *, const char *);
389 
390 static void bge_devinfo(struct bge_softc *);
391 static int bge_mbox_reorder(struct bge_softc *);
392 
393 static int bge_get_eaddr_fw(struct bge_softc *sc, uint8_t ether_addr[]);
394 static int bge_get_eaddr_mem(struct bge_softc *, uint8_t[]);
395 static int bge_get_eaddr_nvram(struct bge_softc *, uint8_t[]);
396 static int bge_get_eaddr_eeprom(struct bge_softc *, uint8_t[]);
397 static int bge_get_eaddr(struct bge_softc *, uint8_t[]);
398 
399 static void bge_txeof(struct bge_softc *, uint16_t);
400 static void bge_rxcsum(struct bge_softc *, struct bge_rx_bd *, struct mbuf *);
401 static int bge_rxeof(struct bge_softc *, uint16_t, int);
402 
403 static void bge_asf_driver_up (struct bge_softc *);
404 static void bge_tick(void *);
405 static void bge_stats_clear_regs(struct bge_softc *);
406 static void bge_stats_update(struct bge_softc *);
407 static void bge_stats_update_regs(struct bge_softc *);
408 static struct mbuf *bge_check_short_dma(struct mbuf *);
409 static struct mbuf *bge_setup_tso(struct bge_softc *, struct mbuf *,
410     uint16_t *, uint16_t *);
411 static int bge_encap(struct bge_softc *, struct mbuf **, uint32_t *);
412 
413 static void bge_intr(void *);
414 static int bge_msi_intr(void *);
415 static void bge_intr_task(void *, int);
416 static void bge_start(if_t);
417 static void bge_start_locked(if_t);
418 static void bge_start_tx(struct bge_softc *, uint32_t);
419 static int bge_ioctl(if_t, u_long, caddr_t);
420 static void bge_init_locked(struct bge_softc *);
421 static void bge_init(void *);
422 static void bge_stop_block(struct bge_softc *, bus_size_t, uint32_t);
423 static void bge_stop(struct bge_softc *);
424 static void bge_watchdog(struct bge_softc *);
425 static int bge_shutdown(device_t);
426 static int bge_ifmedia_upd_locked(if_t);
427 static int bge_ifmedia_upd(if_t);
428 static void bge_ifmedia_sts(if_t, struct ifmediareq *);
429 static uint64_t bge_get_counter(if_t, ift_counter);
430 
431 static uint8_t bge_nvram_getbyte(struct bge_softc *, int, uint8_t *);
432 static int bge_read_nvram(struct bge_softc *, caddr_t, int, int);
433 
434 static uint8_t bge_eeprom_getbyte(struct bge_softc *, int, uint8_t *);
435 static int bge_read_eeprom(struct bge_softc *, caddr_t, int, int);
436 
437 static void bge_setpromisc(struct bge_softc *);
438 static void bge_setmulti(struct bge_softc *);
439 static void bge_setvlan(struct bge_softc *);
440 
441 static __inline void bge_rxreuse_std(struct bge_softc *, int);
442 static __inline void bge_rxreuse_jumbo(struct bge_softc *, int);
443 static int bge_newbuf_std(struct bge_softc *, int);
444 static int bge_newbuf_jumbo(struct bge_softc *, int);
445 static int bge_init_rx_ring_std(struct bge_softc *);
446 static void bge_free_rx_ring_std(struct bge_softc *);
447 static int bge_init_rx_ring_jumbo(struct bge_softc *);
448 static void bge_free_rx_ring_jumbo(struct bge_softc *);
449 static void bge_free_tx_ring(struct bge_softc *);
450 static int bge_init_tx_ring(struct bge_softc *);
451 
452 static int bge_chipinit(struct bge_softc *);
453 static int bge_blockinit(struct bge_softc *);
454 static uint32_t bge_dma_swap_options(struct bge_softc *);
455 
456 static int bge_has_eaddr(struct bge_softc *);
457 static uint32_t bge_readmem_ind(struct bge_softc *, int);
458 static void bge_writemem_ind(struct bge_softc *, int, int);
459 static void bge_writembx(struct bge_softc *, int, int);
460 #ifdef notdef
461 static uint32_t bge_readreg_ind(struct bge_softc *, int);
462 #endif
463 static void bge_writemem_direct(struct bge_softc *, int, int);
464 static void bge_writereg_ind(struct bge_softc *, int, int);
465 
466 static int bge_miibus_readreg(device_t, int, int);
467 static int bge_miibus_writereg(device_t, int, int, int);
468 static void bge_miibus_statchg(device_t);
469 #ifdef DEVICE_POLLING
470 static int bge_poll(if_t ifp, enum poll_cmd cmd, int count);
471 #endif
472 
473 #define	BGE_RESET_SHUTDOWN	0
474 #define	BGE_RESET_START		1
475 #define	BGE_RESET_SUSPEND	2
476 static void bge_sig_post_reset(struct bge_softc *, int);
477 static void bge_sig_legacy(struct bge_softc *, int);
478 static void bge_sig_pre_reset(struct bge_softc *, int);
479 static void bge_stop_fw(struct bge_softc *);
480 static int bge_reset(struct bge_softc *);
481 static void bge_link_upd(struct bge_softc *);
482 
483 static void bge_ape_lock_init(struct bge_softc *);
484 static void bge_ape_read_fw_ver(struct bge_softc *);
485 static int bge_ape_lock(struct bge_softc *, int);
486 static void bge_ape_unlock(struct bge_softc *, int);
487 static void bge_ape_send_event(struct bge_softc *, uint32_t);
488 static void bge_ape_driver_state_change(struct bge_softc *, int);
489 
490 /*
491  * The BGE_REGISTER_DEBUG option is only for low-level debugging.  It may
492  * leak information to untrusted users.  It is also known to cause alignment
493  * traps on certain architectures.
494  */
495 #ifdef BGE_REGISTER_DEBUG
496 static int bge_sysctl_debug_info(SYSCTL_HANDLER_ARGS);
497 static int bge_sysctl_reg_read(SYSCTL_HANDLER_ARGS);
498 static int bge_sysctl_ape_read(SYSCTL_HANDLER_ARGS);
499 static int bge_sysctl_mem_read(SYSCTL_HANDLER_ARGS);
500 #endif
501 static void bge_add_sysctls(struct bge_softc *);
502 static void bge_add_sysctl_stats_regs(struct bge_softc *,
503     struct sysctl_ctx_list *, struct sysctl_oid_list *);
504 static void bge_add_sysctl_stats(struct bge_softc *, struct sysctl_ctx_list *,
505     struct sysctl_oid_list *);
506 static int bge_sysctl_stats(SYSCTL_HANDLER_ARGS);
507 
508 DEBUGNET_DEFINE(bge);
509 
510 static device_method_t bge_methods[] = {
511 	/* Device interface */
512 	DEVMETHOD(device_probe,		bge_probe),
513 	DEVMETHOD(device_attach,	bge_attach),
514 	DEVMETHOD(device_detach,	bge_detach),
515 	DEVMETHOD(device_shutdown,	bge_shutdown),
516 	DEVMETHOD(device_suspend,	bge_suspend),
517 	DEVMETHOD(device_resume,	bge_resume),
518 
519 	/* MII interface */
520 	DEVMETHOD(miibus_readreg,	bge_miibus_readreg),
521 	DEVMETHOD(miibus_writereg,	bge_miibus_writereg),
522 	DEVMETHOD(miibus_statchg,	bge_miibus_statchg),
523 
524 	DEVMETHOD_END
525 };
526 
527 static driver_t bge_driver = {
528 	"bge",
529 	bge_methods,
530 	sizeof(struct bge_softc)
531 };
532 
533 DRIVER_MODULE(bge, pci, bge_driver, 0, 0);
534 MODULE_PNP_INFO("U16:vendor;U16:device", pci, bge, bge_devs,
535     nitems(bge_devs) - 1);
536 DRIVER_MODULE(miibus, bge, miibus_driver, 0, 0);
537 
538 static int bge_allow_asf = 1;
539 
540 static SYSCTL_NODE(_hw, OID_AUTO, bge, CTLFLAG_RD | CTLFLAG_MPSAFE, 0,
541     "BGE driver parameters");
542 SYSCTL_INT(_hw_bge, OID_AUTO, allow_asf, CTLFLAG_RDTUN, &bge_allow_asf, 0,
543 	"Allow ASF mode if available");
544 
545 static int
546 bge_has_eaddr(struct bge_softc *sc)
547 {
548 	return (1);
549 }
550 
551 static uint32_t
552 bge_readmem_ind(struct bge_softc *sc, int off)
553 {
554 	device_t dev;
555 	uint32_t val;
556 
557 	if (sc->bge_asicrev == BGE_ASICREV_BCM5906 &&
558 	    off >= BGE_STATS_BLOCK && off < BGE_SEND_RING_1_TO_4)
559 		return (0);
560 
561 	dev = sc->bge_dev;
562 
563 	pci_write_config(dev, BGE_PCI_MEMWIN_BASEADDR, off, 4);
564 	val = pci_read_config(dev, BGE_PCI_MEMWIN_DATA, 4);
565 	pci_write_config(dev, BGE_PCI_MEMWIN_BASEADDR, 0, 4);
566 	return (val);
567 }
568 
569 static void
570 bge_writemem_ind(struct bge_softc *sc, int off, int val)
571 {
572 	device_t dev;
573 
574 	if (sc->bge_asicrev == BGE_ASICREV_BCM5906 &&
575 	    off >= BGE_STATS_BLOCK && off < BGE_SEND_RING_1_TO_4)
576 		return;
577 
578 	dev = sc->bge_dev;
579 
580 	pci_write_config(dev, BGE_PCI_MEMWIN_BASEADDR, off, 4);
581 	pci_write_config(dev, BGE_PCI_MEMWIN_DATA, val, 4);
582 	pci_write_config(dev, BGE_PCI_MEMWIN_BASEADDR, 0, 4);
583 }
584 
585 #ifdef notdef
586 static uint32_t
587 bge_readreg_ind(struct bge_softc *sc, int off)
588 {
589 	device_t dev;
590 
591 	dev = sc->bge_dev;
592 
593 	pci_write_config(dev, BGE_PCI_REG_BASEADDR, off, 4);
594 	return (pci_read_config(dev, BGE_PCI_REG_DATA, 4));
595 }
596 #endif
597 
598 static void
599 bge_writereg_ind(struct bge_softc *sc, int off, int val)
600 {
601 	device_t dev;
602 
603 	dev = sc->bge_dev;
604 
605 	pci_write_config(dev, BGE_PCI_REG_BASEADDR, off, 4);
606 	pci_write_config(dev, BGE_PCI_REG_DATA, val, 4);
607 }
608 
609 static void
610 bge_writemem_direct(struct bge_softc *sc, int off, int val)
611 {
612 	CSR_WRITE_4(sc, off, val);
613 }
614 
615 static void
616 bge_writembx(struct bge_softc *sc, int off, int val)
617 {
618 	if (sc->bge_asicrev == BGE_ASICREV_BCM5906)
619 		off += BGE_LPMBX_IRQ0_HI - BGE_MBX_IRQ0_HI;
620 
621 	CSR_WRITE_4(sc, off, val);
622 	if ((sc->bge_flags & BGE_FLAG_MBOX_REORDER) != 0)
623 		CSR_READ_4(sc, off);
624 }
625 
626 /*
627  * Clear all stale locks and select the lock for this driver instance.
628  */
629 static void
630 bge_ape_lock_init(struct bge_softc *sc)
631 {
632 	uint32_t bit, regbase;
633 	int i;
634 
635 	if (sc->bge_asicrev == BGE_ASICREV_BCM5761)
636 		regbase = BGE_APE_LOCK_GRANT;
637 	else
638 		regbase = BGE_APE_PER_LOCK_GRANT;
639 
640 	/* Clear any stale locks. */
641 	for (i = BGE_APE_LOCK_PHY0; i <= BGE_APE_LOCK_GPIO; i++) {
642 		switch (i) {
643 		case BGE_APE_LOCK_PHY0:
644 		case BGE_APE_LOCK_PHY1:
645 		case BGE_APE_LOCK_PHY2:
646 		case BGE_APE_LOCK_PHY3:
647 			bit = BGE_APE_LOCK_GRANT_DRIVER0;
648 			break;
649 		default:
650 			if (sc->bge_func_addr == 0)
651 				bit = BGE_APE_LOCK_GRANT_DRIVER0;
652 			else
653 				bit = (1 << sc->bge_func_addr);
654 		}
655 		APE_WRITE_4(sc, regbase + 4 * i, bit);
656 	}
657 
658 	/* Select the PHY lock based on the device's function number. */
659 	switch (sc->bge_func_addr) {
660 	case 0:
661 		sc->bge_phy_ape_lock = BGE_APE_LOCK_PHY0;
662 		break;
663 	case 1:
664 		sc->bge_phy_ape_lock = BGE_APE_LOCK_PHY1;
665 		break;
666 	case 2:
667 		sc->bge_phy_ape_lock = BGE_APE_LOCK_PHY2;
668 		break;
669 	case 3:
670 		sc->bge_phy_ape_lock = BGE_APE_LOCK_PHY3;
671 		break;
672 	default:
673 		device_printf(sc->bge_dev,
674 		    "PHY lock not supported on this function\n");
675 	}
676 }
677 
678 /*
679  * Check for APE firmware, set flags, and print version info.
680  */
681 static void
682 bge_ape_read_fw_ver(struct bge_softc *sc)
683 {
684 	const char *fwtype;
685 	uint32_t apedata, features;
686 
687 	/* Check for a valid APE signature in shared memory. */
688 	apedata = APE_READ_4(sc, BGE_APE_SEG_SIG);
689 	if (apedata != BGE_APE_SEG_SIG_MAGIC) {
690 		sc->bge_mfw_flags &= ~ BGE_MFW_ON_APE;
691 		return;
692 	}
693 
694 	/* Check if APE firmware is running. */
695 	apedata = APE_READ_4(sc, BGE_APE_FW_STATUS);
696 	if ((apedata & BGE_APE_FW_STATUS_READY) == 0) {
697 		device_printf(sc->bge_dev, "APE signature found "
698 		    "but FW status not ready! 0x%08x\n", apedata);
699 		return;
700 	}
701 
702 	sc->bge_mfw_flags |= BGE_MFW_ON_APE;
703 
704 	/* Fetch the APE firwmare type and version. */
705 	apedata = APE_READ_4(sc, BGE_APE_FW_VERSION);
706 	features = APE_READ_4(sc, BGE_APE_FW_FEATURES);
707 	if ((features & BGE_APE_FW_FEATURE_NCSI) != 0) {
708 		sc->bge_mfw_flags |= BGE_MFW_TYPE_NCSI;
709 		fwtype = "NCSI";
710 	} else if ((features & BGE_APE_FW_FEATURE_DASH) != 0) {
711 		sc->bge_mfw_flags |= BGE_MFW_TYPE_DASH;
712 		fwtype = "DASH";
713 	} else
714 		fwtype = "UNKN";
715 
716 	/* Print the APE firmware version. */
717 	device_printf(sc->bge_dev, "APE FW version: %s v%d.%d.%d.%d\n",
718 	    fwtype,
719 	    (apedata & BGE_APE_FW_VERSION_MAJMSK) >> BGE_APE_FW_VERSION_MAJSFT,
720 	    (apedata & BGE_APE_FW_VERSION_MINMSK) >> BGE_APE_FW_VERSION_MINSFT,
721 	    (apedata & BGE_APE_FW_VERSION_REVMSK) >> BGE_APE_FW_VERSION_REVSFT,
722 	    (apedata & BGE_APE_FW_VERSION_BLDMSK));
723 }
724 
725 static int
726 bge_ape_lock(struct bge_softc *sc, int locknum)
727 {
728 	uint32_t bit, gnt, req, status;
729 	int i, off;
730 
731 	if ((sc->bge_mfw_flags & BGE_MFW_ON_APE) == 0)
732 		return (0);
733 
734 	/* Lock request/grant registers have different bases. */
735 	if (sc->bge_asicrev == BGE_ASICREV_BCM5761) {
736 		req = BGE_APE_LOCK_REQ;
737 		gnt = BGE_APE_LOCK_GRANT;
738 	} else {
739 		req = BGE_APE_PER_LOCK_REQ;
740 		gnt = BGE_APE_PER_LOCK_GRANT;
741 	}
742 
743 	off = 4 * locknum;
744 
745 	switch (locknum) {
746 	case BGE_APE_LOCK_GPIO:
747 		/* Lock required when using GPIO. */
748 		if (sc->bge_asicrev == BGE_ASICREV_BCM5761)
749 			return (0);
750 		if (sc->bge_func_addr == 0)
751 			bit = BGE_APE_LOCK_REQ_DRIVER0;
752 		else
753 			bit = (1 << sc->bge_func_addr);
754 		break;
755 	case BGE_APE_LOCK_GRC:
756 		/* Lock required to reset the device. */
757 		if (sc->bge_func_addr == 0)
758 			bit = BGE_APE_LOCK_REQ_DRIVER0;
759 		else
760 			bit = (1 << sc->bge_func_addr);
761 		break;
762 	case BGE_APE_LOCK_MEM:
763 		/* Lock required when accessing certain APE memory. */
764 		if (sc->bge_func_addr == 0)
765 			bit = BGE_APE_LOCK_REQ_DRIVER0;
766 		else
767 			bit = (1 << sc->bge_func_addr);
768 		break;
769 	case BGE_APE_LOCK_PHY0:
770 	case BGE_APE_LOCK_PHY1:
771 	case BGE_APE_LOCK_PHY2:
772 	case BGE_APE_LOCK_PHY3:
773 		/* Lock required when accessing PHYs. */
774 		bit = BGE_APE_LOCK_REQ_DRIVER0;
775 		break;
776 	default:
777 		return (EINVAL);
778 	}
779 
780 	/* Request a lock. */
781 	APE_WRITE_4(sc, req + off, bit);
782 
783 	/* Wait up to 1 second to acquire lock. */
784 	for (i = 0; i < 20000; i++) {
785 		status = APE_READ_4(sc, gnt + off);
786 		if (status == bit)
787 			break;
788 		DELAY(50);
789 	}
790 
791 	/* Handle any errors. */
792 	if (status != bit) {
793 		device_printf(sc->bge_dev, "APE lock %d request failed! "
794 		    "request = 0x%04x[0x%04x], status = 0x%04x[0x%04x]\n",
795 		    locknum, req + off, bit & 0xFFFF, gnt + off,
796 		    status & 0xFFFF);
797 		/* Revoke the lock request. */
798 		APE_WRITE_4(sc, gnt + off, bit);
799 		return (EBUSY);
800 	}
801 
802 	return (0);
803 }
804 
805 static void
806 bge_ape_unlock(struct bge_softc *sc, int locknum)
807 {
808 	uint32_t bit, gnt;
809 	int off;
810 
811 	if ((sc->bge_mfw_flags & BGE_MFW_ON_APE) == 0)
812 		return;
813 
814 	if (sc->bge_asicrev == BGE_ASICREV_BCM5761)
815 		gnt = BGE_APE_LOCK_GRANT;
816 	else
817 		gnt = BGE_APE_PER_LOCK_GRANT;
818 
819 	off = 4 * locknum;
820 
821 	switch (locknum) {
822 	case BGE_APE_LOCK_GPIO:
823 		if (sc->bge_asicrev == BGE_ASICREV_BCM5761)
824 			return;
825 		if (sc->bge_func_addr == 0)
826 			bit = BGE_APE_LOCK_GRANT_DRIVER0;
827 		else
828 			bit = (1 << sc->bge_func_addr);
829 		break;
830 	case BGE_APE_LOCK_GRC:
831 		if (sc->bge_func_addr == 0)
832 			bit = BGE_APE_LOCK_GRANT_DRIVER0;
833 		else
834 			bit = (1 << sc->bge_func_addr);
835 		break;
836 	case BGE_APE_LOCK_MEM:
837 		if (sc->bge_func_addr == 0)
838 			bit = BGE_APE_LOCK_GRANT_DRIVER0;
839 		else
840 			bit = (1 << sc->bge_func_addr);
841 		break;
842 	case BGE_APE_LOCK_PHY0:
843 	case BGE_APE_LOCK_PHY1:
844 	case BGE_APE_LOCK_PHY2:
845 	case BGE_APE_LOCK_PHY3:
846 		bit = BGE_APE_LOCK_GRANT_DRIVER0;
847 		break;
848 	default:
849 		return;
850 	}
851 
852 	APE_WRITE_4(sc, gnt + off, bit);
853 }
854 
855 /*
856  * Send an event to the APE firmware.
857  */
858 static void
859 bge_ape_send_event(struct bge_softc *sc, uint32_t event)
860 {
861 	uint32_t apedata;
862 	int i;
863 
864 	/* NCSI does not support APE events. */
865 	if ((sc->bge_mfw_flags & BGE_MFW_ON_APE) == 0)
866 		return;
867 
868 	/* Wait up to 1ms for APE to service previous event. */
869 	for (i = 10; i > 0; i--) {
870 		if (bge_ape_lock(sc, BGE_APE_LOCK_MEM) != 0)
871 			break;
872 		apedata = APE_READ_4(sc, BGE_APE_EVENT_STATUS);
873 		if ((apedata & BGE_APE_EVENT_STATUS_EVENT_PENDING) == 0) {
874 			APE_WRITE_4(sc, BGE_APE_EVENT_STATUS, event |
875 			    BGE_APE_EVENT_STATUS_EVENT_PENDING);
876 			bge_ape_unlock(sc, BGE_APE_LOCK_MEM);
877 			APE_WRITE_4(sc, BGE_APE_EVENT, BGE_APE_EVENT_1);
878 			break;
879 		}
880 		bge_ape_unlock(sc, BGE_APE_LOCK_MEM);
881 		DELAY(100);
882 	}
883 	if (i == 0)
884 		device_printf(sc->bge_dev, "APE event 0x%08x send timed out\n",
885 		    event);
886 }
887 
888 static void
889 bge_ape_driver_state_change(struct bge_softc *sc, int kind)
890 {
891 	uint32_t apedata, event;
892 
893 	if ((sc->bge_mfw_flags & BGE_MFW_ON_APE) == 0)
894 		return;
895 
896 	switch (kind) {
897 	case BGE_RESET_START:
898 		/* If this is the first load, clear the load counter. */
899 		apedata = APE_READ_4(sc, BGE_APE_HOST_SEG_SIG);
900 		if (apedata != BGE_APE_HOST_SEG_SIG_MAGIC)
901 			APE_WRITE_4(sc, BGE_APE_HOST_INIT_COUNT, 0);
902 		else {
903 			apedata = APE_READ_4(sc, BGE_APE_HOST_INIT_COUNT);
904 			APE_WRITE_4(sc, BGE_APE_HOST_INIT_COUNT, ++apedata);
905 		}
906 		APE_WRITE_4(sc, BGE_APE_HOST_SEG_SIG,
907 		    BGE_APE_HOST_SEG_SIG_MAGIC);
908 		APE_WRITE_4(sc, BGE_APE_HOST_SEG_LEN,
909 		    BGE_APE_HOST_SEG_LEN_MAGIC);
910 
911 		/* Add some version info if bge(4) supports it. */
912 		APE_WRITE_4(sc, BGE_APE_HOST_DRIVER_ID,
913 		    BGE_APE_HOST_DRIVER_ID_MAGIC(1, 0));
914 		APE_WRITE_4(sc, BGE_APE_HOST_BEHAVIOR,
915 		    BGE_APE_HOST_BEHAV_NO_PHYLOCK);
916 		APE_WRITE_4(sc, BGE_APE_HOST_HEARTBEAT_INT_MS,
917 		    BGE_APE_HOST_HEARTBEAT_INT_DISABLE);
918 		APE_WRITE_4(sc, BGE_APE_HOST_DRVR_STATE,
919 		    BGE_APE_HOST_DRVR_STATE_START);
920 		event = BGE_APE_EVENT_STATUS_STATE_START;
921 		break;
922 	case BGE_RESET_SHUTDOWN:
923 		APE_WRITE_4(sc, BGE_APE_HOST_DRVR_STATE,
924 		    BGE_APE_HOST_DRVR_STATE_UNLOAD);
925 		event = BGE_APE_EVENT_STATUS_STATE_UNLOAD;
926 		break;
927 	case BGE_RESET_SUSPEND:
928 		event = BGE_APE_EVENT_STATUS_STATE_SUSPEND;
929 		break;
930 	default:
931 		return;
932 	}
933 
934 	bge_ape_send_event(sc, event | BGE_APE_EVENT_STATUS_DRIVER_EVNT |
935 	    BGE_APE_EVENT_STATUS_STATE_CHNGE);
936 }
937 
938 /*
939  * Map a single buffer address.
940  */
941 
942 static void
943 bge_dma_map_addr(void *arg, bus_dma_segment_t *segs, int nseg, int error)
944 {
945 	struct bge_dmamap_arg *ctx;
946 
947 	if (error)
948 		return;
949 
950 	KASSERT(nseg == 1, ("%s: %d segments returned!", __func__, nseg));
951 
952 	ctx = arg;
953 	ctx->bge_busaddr = segs->ds_addr;
954 }
955 
956 static uint8_t
957 bge_nvram_getbyte(struct bge_softc *sc, int addr, uint8_t *dest)
958 {
959 	uint32_t access, byte = 0;
960 	int i;
961 
962 	/* Lock. */
963 	CSR_WRITE_4(sc, BGE_NVRAM_SWARB, BGE_NVRAMSWARB_SET1);
964 	for (i = 0; i < 8000; i++) {
965 		if (CSR_READ_4(sc, BGE_NVRAM_SWARB) & BGE_NVRAMSWARB_GNT1)
966 			break;
967 		DELAY(20);
968 	}
969 	if (i == 8000)
970 		return (1);
971 
972 	/* Enable access. */
973 	access = CSR_READ_4(sc, BGE_NVRAM_ACCESS);
974 	CSR_WRITE_4(sc, BGE_NVRAM_ACCESS, access | BGE_NVRAMACC_ENABLE);
975 
976 	CSR_WRITE_4(sc, BGE_NVRAM_ADDR, addr & 0xfffffffc);
977 	CSR_WRITE_4(sc, BGE_NVRAM_CMD, BGE_NVRAM_READCMD);
978 	for (i = 0; i < BGE_TIMEOUT * 10; i++) {
979 		DELAY(10);
980 		if (CSR_READ_4(sc, BGE_NVRAM_CMD) & BGE_NVRAMCMD_DONE) {
981 			DELAY(10);
982 			break;
983 		}
984 	}
985 
986 	if (i == BGE_TIMEOUT * 10) {
987 		if_printf(sc->bge_ifp, "nvram read timed out\n");
988 		return (1);
989 	}
990 
991 	/* Get result. */
992 	byte = CSR_READ_4(sc, BGE_NVRAM_RDDATA);
993 
994 	*dest = (bswap32(byte) >> ((addr % 4) * 8)) & 0xFF;
995 
996 	/* Disable access. */
997 	CSR_WRITE_4(sc, BGE_NVRAM_ACCESS, access);
998 
999 	/* Unlock. */
1000 	CSR_WRITE_4(sc, BGE_NVRAM_SWARB, BGE_NVRAMSWARB_CLR1);
1001 	CSR_READ_4(sc, BGE_NVRAM_SWARB);
1002 
1003 	return (0);
1004 }
1005 
1006 /*
1007  * Read a sequence of bytes from NVRAM.
1008  */
1009 static int
1010 bge_read_nvram(struct bge_softc *sc, caddr_t dest, int off, int cnt)
1011 {
1012 	int err = 0, i;
1013 	uint8_t byte = 0;
1014 
1015 	if (sc->bge_asicrev != BGE_ASICREV_BCM5906)
1016 		return (1);
1017 
1018 	for (i = 0; i < cnt; i++) {
1019 		err = bge_nvram_getbyte(sc, off + i, &byte);
1020 		if (err)
1021 			break;
1022 		*(dest + i) = byte;
1023 	}
1024 
1025 	return (err ? 1 : 0);
1026 }
1027 
1028 /*
1029  * Read a byte of data stored in the EEPROM at address 'addr.' The
1030  * BCM570x supports both the traditional bitbang interface and an
1031  * auto access interface for reading the EEPROM. We use the auto
1032  * access method.
1033  */
1034 static uint8_t
1035 bge_eeprom_getbyte(struct bge_softc *sc, int addr, uint8_t *dest)
1036 {
1037 	int i;
1038 	uint32_t byte = 0;
1039 
1040 	/*
1041 	 * Enable use of auto EEPROM access so we can avoid
1042 	 * having to use the bitbang method.
1043 	 */
1044 	BGE_SETBIT(sc, BGE_MISC_LOCAL_CTL, BGE_MLC_AUTO_EEPROM);
1045 
1046 	/* Reset the EEPROM, load the clock period. */
1047 	CSR_WRITE_4(sc, BGE_EE_ADDR,
1048 	    BGE_EEADDR_RESET | BGE_EEHALFCLK(BGE_HALFCLK_384SCL));
1049 	DELAY(20);
1050 
1051 	/* Issue the read EEPROM command. */
1052 	CSR_WRITE_4(sc, BGE_EE_ADDR, BGE_EE_READCMD | addr);
1053 
1054 	/* Wait for completion */
1055 	for(i = 0; i < BGE_TIMEOUT * 10; i++) {
1056 		DELAY(10);
1057 		if (CSR_READ_4(sc, BGE_EE_ADDR) & BGE_EEADDR_DONE)
1058 			break;
1059 	}
1060 
1061 	if (i == BGE_TIMEOUT * 10) {
1062 		device_printf(sc->bge_dev, "EEPROM read timed out\n");
1063 		return (1);
1064 	}
1065 
1066 	/* Get result. */
1067 	byte = CSR_READ_4(sc, BGE_EE_DATA);
1068 
1069 	*dest = (byte >> ((addr % 4) * 8)) & 0xFF;
1070 
1071 	return (0);
1072 }
1073 
1074 /*
1075  * Read a sequence of bytes from the EEPROM.
1076  */
1077 static int
1078 bge_read_eeprom(struct bge_softc *sc, caddr_t dest, int off, int cnt)
1079 {
1080 	int i, error = 0;
1081 	uint8_t byte = 0;
1082 
1083 	for (i = 0; i < cnt; i++) {
1084 		error = bge_eeprom_getbyte(sc, off + i, &byte);
1085 		if (error)
1086 			break;
1087 		*(dest + i) = byte;
1088 	}
1089 
1090 	return (error ? 1 : 0);
1091 }
1092 
1093 static int
1094 bge_miibus_readreg(device_t dev, int phy, int reg)
1095 {
1096 	struct bge_softc *sc;
1097 	uint32_t val;
1098 	int i;
1099 
1100 	sc = device_get_softc(dev);
1101 
1102 	if (bge_ape_lock(sc, sc->bge_phy_ape_lock) != 0)
1103 		return (0);
1104 
1105 	/* Clear the autopoll bit if set, otherwise may trigger PCI errors. */
1106 	if ((sc->bge_mi_mode & BGE_MIMODE_AUTOPOLL) != 0) {
1107 		CSR_WRITE_4(sc, BGE_MI_MODE,
1108 		    sc->bge_mi_mode & ~BGE_MIMODE_AUTOPOLL);
1109 		DELAY(80);
1110 	}
1111 
1112 	CSR_WRITE_4(sc, BGE_MI_COMM, BGE_MICMD_READ | BGE_MICOMM_BUSY |
1113 	    BGE_MIPHY(phy) | BGE_MIREG(reg));
1114 
1115 	/* Poll for the PHY register access to complete. */
1116 	for (i = 0; i < BGE_TIMEOUT; i++) {
1117 		DELAY(10);
1118 		val = CSR_READ_4(sc, BGE_MI_COMM);
1119 		if ((val & BGE_MICOMM_BUSY) == 0) {
1120 			DELAY(5);
1121 			val = CSR_READ_4(sc, BGE_MI_COMM);
1122 			break;
1123 		}
1124 	}
1125 
1126 	if (i == BGE_TIMEOUT) {
1127 		device_printf(sc->bge_dev,
1128 		    "PHY read timed out (phy %d, reg %d, val 0x%08x)\n",
1129 		    phy, reg, val);
1130 		val = 0;
1131 	}
1132 
1133 	/* Restore the autopoll bit if necessary. */
1134 	if ((sc->bge_mi_mode & BGE_MIMODE_AUTOPOLL) != 0) {
1135 		CSR_WRITE_4(sc, BGE_MI_MODE, sc->bge_mi_mode);
1136 		DELAY(80);
1137 	}
1138 
1139 	bge_ape_unlock(sc, sc->bge_phy_ape_lock);
1140 
1141 	if (val & BGE_MICOMM_READFAIL)
1142 		return (0);
1143 
1144 	return (val & 0xFFFF);
1145 }
1146 
1147 static int
1148 bge_miibus_writereg(device_t dev, int phy, int reg, int val)
1149 {
1150 	struct bge_softc *sc;
1151 	int i;
1152 
1153 	sc = device_get_softc(dev);
1154 
1155 	if (sc->bge_asicrev == BGE_ASICREV_BCM5906 &&
1156 	    (reg == BRGPHY_MII_1000CTL || reg == BRGPHY_MII_AUXCTL))
1157 		return (0);
1158 
1159 	if (bge_ape_lock(sc, sc->bge_phy_ape_lock) != 0)
1160 		return (0);
1161 
1162 	/* Clear the autopoll bit if set, otherwise may trigger PCI errors. */
1163 	if ((sc->bge_mi_mode & BGE_MIMODE_AUTOPOLL) != 0) {
1164 		CSR_WRITE_4(sc, BGE_MI_MODE,
1165 		    sc->bge_mi_mode & ~BGE_MIMODE_AUTOPOLL);
1166 		DELAY(80);
1167 	}
1168 
1169 	CSR_WRITE_4(sc, BGE_MI_COMM, BGE_MICMD_WRITE | BGE_MICOMM_BUSY |
1170 	    BGE_MIPHY(phy) | BGE_MIREG(reg) | val);
1171 
1172 	for (i = 0; i < BGE_TIMEOUT; i++) {
1173 		DELAY(10);
1174 		if (!(CSR_READ_4(sc, BGE_MI_COMM) & BGE_MICOMM_BUSY)) {
1175 			DELAY(5);
1176 			CSR_READ_4(sc, BGE_MI_COMM); /* dummy read */
1177 			break;
1178 		}
1179 	}
1180 
1181 	/* Restore the autopoll bit if necessary. */
1182 	if ((sc->bge_mi_mode & BGE_MIMODE_AUTOPOLL) != 0) {
1183 		CSR_WRITE_4(sc, BGE_MI_MODE, sc->bge_mi_mode);
1184 		DELAY(80);
1185 	}
1186 
1187 	bge_ape_unlock(sc, sc->bge_phy_ape_lock);
1188 
1189 	if (i == BGE_TIMEOUT)
1190 		device_printf(sc->bge_dev,
1191 		    "PHY write timed out (phy %d, reg %d, val 0x%04x)\n",
1192 		    phy, reg, val);
1193 
1194 	return (0);
1195 }
1196 
1197 static void
1198 bge_miibus_statchg(device_t dev)
1199 {
1200 	struct bge_softc *sc;
1201 	struct mii_data *mii;
1202 	uint32_t mac_mode, rx_mode, tx_mode;
1203 
1204 	sc = device_get_softc(dev);
1205 	if ((if_getdrvflags(sc->bge_ifp) & IFF_DRV_RUNNING) == 0)
1206 		return;
1207 	mii = device_get_softc(sc->bge_miibus);
1208 
1209 	if ((mii->mii_media_status & (IFM_ACTIVE | IFM_AVALID)) ==
1210 	    (IFM_ACTIVE | IFM_AVALID)) {
1211 		switch (IFM_SUBTYPE(mii->mii_media_active)) {
1212 		case IFM_10_T:
1213 		case IFM_100_TX:
1214 			sc->bge_link = 1;
1215 			break;
1216 		case IFM_1000_T:
1217 		case IFM_1000_SX:
1218 		case IFM_2500_SX:
1219 			if (sc->bge_asicrev != BGE_ASICREV_BCM5906)
1220 				sc->bge_link = 1;
1221 			else
1222 				sc->bge_link = 0;
1223 			break;
1224 		default:
1225 			sc->bge_link = 0;
1226 			break;
1227 		}
1228 	} else
1229 		sc->bge_link = 0;
1230 	if (sc->bge_link == 0)
1231 		return;
1232 
1233 	/*
1234 	 * APE firmware touches these registers to keep the MAC
1235 	 * connected to the outside world.  Try to keep the
1236 	 * accesses atomic.
1237 	 */
1238 
1239 	/* Set the port mode (MII/GMII) to match the link speed. */
1240 	mac_mode = CSR_READ_4(sc, BGE_MAC_MODE) &
1241 	    ~(BGE_MACMODE_PORTMODE | BGE_MACMODE_HALF_DUPLEX);
1242 	tx_mode = CSR_READ_4(sc, BGE_TX_MODE);
1243 	rx_mode = CSR_READ_4(sc, BGE_RX_MODE);
1244 
1245 	if (IFM_SUBTYPE(mii->mii_media_active) == IFM_1000_T ||
1246 	    IFM_SUBTYPE(mii->mii_media_active) == IFM_1000_SX)
1247 		mac_mode |= BGE_PORTMODE_GMII;
1248 	else
1249 		mac_mode |= BGE_PORTMODE_MII;
1250 
1251 	/* Set MAC flow control behavior to match link flow control settings. */
1252 	tx_mode &= ~BGE_TXMODE_FLOWCTL_ENABLE;
1253 	rx_mode &= ~BGE_RXMODE_FLOWCTL_ENABLE;
1254 	if ((IFM_OPTIONS(mii->mii_media_active) & IFM_FDX) != 0) {
1255 		if ((IFM_OPTIONS(mii->mii_media_active) & IFM_ETH_TXPAUSE) != 0)
1256 			tx_mode |= BGE_TXMODE_FLOWCTL_ENABLE;
1257 		if ((IFM_OPTIONS(mii->mii_media_active) & IFM_ETH_RXPAUSE) != 0)
1258 			rx_mode |= BGE_RXMODE_FLOWCTL_ENABLE;
1259 	} else
1260 		mac_mode |= BGE_MACMODE_HALF_DUPLEX;
1261 
1262 	CSR_WRITE_4(sc, BGE_MAC_MODE, mac_mode);
1263 	DELAY(40);
1264 	CSR_WRITE_4(sc, BGE_TX_MODE, tx_mode);
1265 	CSR_WRITE_4(sc, BGE_RX_MODE, rx_mode);
1266 }
1267 
1268 /*
1269  * Intialize a standard receive ring descriptor.
1270  */
1271 static int
1272 bge_newbuf_std(struct bge_softc *sc, int i)
1273 {
1274 	struct mbuf *m;
1275 	struct bge_rx_bd *r;
1276 	bus_dma_segment_t segs[1];
1277 	bus_dmamap_t map;
1278 	int error, nsegs;
1279 
1280 	if (sc->bge_flags & BGE_FLAG_JUMBO_STD &&
1281 	    (if_getmtu(sc->bge_ifp) + ETHER_HDR_LEN + ETHER_CRC_LEN +
1282 	    ETHER_VLAN_ENCAP_LEN > (MCLBYTES - ETHER_ALIGN))) {
1283 		m = m_getjcl(M_NOWAIT, MT_DATA, M_PKTHDR, MJUM9BYTES);
1284 		if (m == NULL)
1285 			return (ENOBUFS);
1286 		m->m_len = m->m_pkthdr.len = MJUM9BYTES;
1287 	} else {
1288 		m = m_getcl(M_NOWAIT, MT_DATA, M_PKTHDR);
1289 		if (m == NULL)
1290 			return (ENOBUFS);
1291 		m->m_len = m->m_pkthdr.len = MCLBYTES;
1292 	}
1293 	if ((sc->bge_flags & BGE_FLAG_RX_ALIGNBUG) == 0)
1294 		m_adj(m, ETHER_ALIGN);
1295 
1296 	error = bus_dmamap_load_mbuf_sg(sc->bge_cdata.bge_rx_mtag,
1297 	    sc->bge_cdata.bge_rx_std_sparemap, m, segs, &nsegs, 0);
1298 	if (error != 0) {
1299 		m_freem(m);
1300 		return (error);
1301 	}
1302 	if (sc->bge_cdata.bge_rx_std_chain[i] != NULL) {
1303 		bus_dmamap_sync(sc->bge_cdata.bge_rx_mtag,
1304 		    sc->bge_cdata.bge_rx_std_dmamap[i], BUS_DMASYNC_POSTREAD);
1305 		bus_dmamap_unload(sc->bge_cdata.bge_rx_mtag,
1306 		    sc->bge_cdata.bge_rx_std_dmamap[i]);
1307 	}
1308 	map = sc->bge_cdata.bge_rx_std_dmamap[i];
1309 	sc->bge_cdata.bge_rx_std_dmamap[i] = sc->bge_cdata.bge_rx_std_sparemap;
1310 	sc->bge_cdata.bge_rx_std_sparemap = map;
1311 	sc->bge_cdata.bge_rx_std_chain[i] = m;
1312 	sc->bge_cdata.bge_rx_std_seglen[i] = segs[0].ds_len;
1313 	r = &sc->bge_ldata.bge_rx_std_ring[sc->bge_std];
1314 	r->bge_addr.bge_addr_lo = BGE_ADDR_LO(segs[0].ds_addr);
1315 	r->bge_addr.bge_addr_hi = BGE_ADDR_HI(segs[0].ds_addr);
1316 	r->bge_flags = BGE_RXBDFLAG_END;
1317 	r->bge_len = segs[0].ds_len;
1318 	r->bge_idx = i;
1319 
1320 	bus_dmamap_sync(sc->bge_cdata.bge_rx_mtag,
1321 	    sc->bge_cdata.bge_rx_std_dmamap[i], BUS_DMASYNC_PREREAD);
1322 
1323 	return (0);
1324 }
1325 
1326 /*
1327  * Initialize a jumbo receive ring descriptor. This allocates
1328  * a jumbo buffer from the pool managed internally by the driver.
1329  */
1330 static int
1331 bge_newbuf_jumbo(struct bge_softc *sc, int i)
1332 {
1333 	bus_dma_segment_t segs[BGE_NSEG_JUMBO];
1334 	bus_dmamap_t map;
1335 	struct bge_extrx_bd *r;
1336 	struct mbuf *m;
1337 	int error, nsegs;
1338 
1339 	MGETHDR(m, M_NOWAIT, MT_DATA);
1340 	if (m == NULL)
1341 		return (ENOBUFS);
1342 
1343 	if (m_cljget(m, M_NOWAIT, MJUM9BYTES) == NULL) {
1344 		m_freem(m);
1345 		return (ENOBUFS);
1346 	}
1347 	m->m_len = m->m_pkthdr.len = MJUM9BYTES;
1348 	if ((sc->bge_flags & BGE_FLAG_RX_ALIGNBUG) == 0)
1349 		m_adj(m, ETHER_ALIGN);
1350 
1351 	error = bus_dmamap_load_mbuf_sg(sc->bge_cdata.bge_mtag_jumbo,
1352 	    sc->bge_cdata.bge_rx_jumbo_sparemap, m, segs, &nsegs, 0);
1353 	if (error != 0) {
1354 		m_freem(m);
1355 		return (error);
1356 	}
1357 
1358 	if (sc->bge_cdata.bge_rx_jumbo_chain[i] != NULL) {
1359 		bus_dmamap_sync(sc->bge_cdata.bge_mtag_jumbo,
1360 		    sc->bge_cdata.bge_rx_jumbo_dmamap[i], BUS_DMASYNC_POSTREAD);
1361 		bus_dmamap_unload(sc->bge_cdata.bge_mtag_jumbo,
1362 		    sc->bge_cdata.bge_rx_jumbo_dmamap[i]);
1363 	}
1364 	map = sc->bge_cdata.bge_rx_jumbo_dmamap[i];
1365 	sc->bge_cdata.bge_rx_jumbo_dmamap[i] =
1366 	    sc->bge_cdata.bge_rx_jumbo_sparemap;
1367 	sc->bge_cdata.bge_rx_jumbo_sparemap = map;
1368 	sc->bge_cdata.bge_rx_jumbo_chain[i] = m;
1369 	sc->bge_cdata.bge_rx_jumbo_seglen[i][0] = 0;
1370 	sc->bge_cdata.bge_rx_jumbo_seglen[i][1] = 0;
1371 	sc->bge_cdata.bge_rx_jumbo_seglen[i][2] = 0;
1372 	sc->bge_cdata.bge_rx_jumbo_seglen[i][3] = 0;
1373 
1374 	/*
1375 	 * Fill in the extended RX buffer descriptor.
1376 	 */
1377 	r = &sc->bge_ldata.bge_rx_jumbo_ring[sc->bge_jumbo];
1378 	r->bge_flags = BGE_RXBDFLAG_JUMBO_RING | BGE_RXBDFLAG_END;
1379 	r->bge_idx = i;
1380 	r->bge_len3 = r->bge_len2 = r->bge_len1 = 0;
1381 	switch (nsegs) {
1382 	case 4:
1383 		r->bge_addr3.bge_addr_lo = BGE_ADDR_LO(segs[3].ds_addr);
1384 		r->bge_addr3.bge_addr_hi = BGE_ADDR_HI(segs[3].ds_addr);
1385 		r->bge_len3 = segs[3].ds_len;
1386 		sc->bge_cdata.bge_rx_jumbo_seglen[i][3] = segs[3].ds_len;
1387 	case 3:
1388 		r->bge_addr2.bge_addr_lo = BGE_ADDR_LO(segs[2].ds_addr);
1389 		r->bge_addr2.bge_addr_hi = BGE_ADDR_HI(segs[2].ds_addr);
1390 		r->bge_len2 = segs[2].ds_len;
1391 		sc->bge_cdata.bge_rx_jumbo_seglen[i][2] = segs[2].ds_len;
1392 	case 2:
1393 		r->bge_addr1.bge_addr_lo = BGE_ADDR_LO(segs[1].ds_addr);
1394 		r->bge_addr1.bge_addr_hi = BGE_ADDR_HI(segs[1].ds_addr);
1395 		r->bge_len1 = segs[1].ds_len;
1396 		sc->bge_cdata.bge_rx_jumbo_seglen[i][1] = segs[1].ds_len;
1397 	case 1:
1398 		r->bge_addr0.bge_addr_lo = BGE_ADDR_LO(segs[0].ds_addr);
1399 		r->bge_addr0.bge_addr_hi = BGE_ADDR_HI(segs[0].ds_addr);
1400 		r->bge_len0 = segs[0].ds_len;
1401 		sc->bge_cdata.bge_rx_jumbo_seglen[i][0] = segs[0].ds_len;
1402 		break;
1403 	default:
1404 		panic("%s: %d segments\n", __func__, nsegs);
1405 	}
1406 
1407 	bus_dmamap_sync(sc->bge_cdata.bge_mtag_jumbo,
1408 	    sc->bge_cdata.bge_rx_jumbo_dmamap[i], BUS_DMASYNC_PREREAD);
1409 
1410 	return (0);
1411 }
1412 
1413 static int
1414 bge_init_rx_ring_std(struct bge_softc *sc)
1415 {
1416 	int error, i;
1417 
1418 	bzero(sc->bge_ldata.bge_rx_std_ring, BGE_STD_RX_RING_SZ);
1419 	sc->bge_std = 0;
1420 	for (i = 0; i < BGE_STD_RX_RING_CNT; i++) {
1421 		if ((error = bge_newbuf_std(sc, i)) != 0)
1422 			return (error);
1423 		BGE_INC(sc->bge_std, BGE_STD_RX_RING_CNT);
1424 	}
1425 
1426 	bus_dmamap_sync(sc->bge_cdata.bge_rx_std_ring_tag,
1427 	    sc->bge_cdata.bge_rx_std_ring_map, BUS_DMASYNC_PREWRITE);
1428 
1429 	sc->bge_std = 0;
1430 	bge_writembx(sc, BGE_MBX_RX_STD_PROD_LO, BGE_STD_RX_RING_CNT - 1);
1431 
1432 	return (0);
1433 }
1434 
1435 static void
1436 bge_free_rx_ring_std(struct bge_softc *sc)
1437 {
1438 	int i;
1439 
1440 	for (i = 0; i < BGE_STD_RX_RING_CNT; i++) {
1441 		if (sc->bge_cdata.bge_rx_std_chain[i] != NULL) {
1442 			bus_dmamap_sync(sc->bge_cdata.bge_rx_mtag,
1443 			    sc->bge_cdata.bge_rx_std_dmamap[i],
1444 			    BUS_DMASYNC_POSTREAD);
1445 			bus_dmamap_unload(sc->bge_cdata.bge_rx_mtag,
1446 			    sc->bge_cdata.bge_rx_std_dmamap[i]);
1447 			m_freem(sc->bge_cdata.bge_rx_std_chain[i]);
1448 			sc->bge_cdata.bge_rx_std_chain[i] = NULL;
1449 		}
1450 		bzero((char *)&sc->bge_ldata.bge_rx_std_ring[i],
1451 		    sizeof(struct bge_rx_bd));
1452 	}
1453 }
1454 
1455 static int
1456 bge_init_rx_ring_jumbo(struct bge_softc *sc)
1457 {
1458 	struct bge_rcb *rcb;
1459 	int error, i;
1460 
1461 	bzero(sc->bge_ldata.bge_rx_jumbo_ring, BGE_JUMBO_RX_RING_SZ);
1462 	sc->bge_jumbo = 0;
1463 	for (i = 0; i < BGE_JUMBO_RX_RING_CNT; i++) {
1464 		if ((error = bge_newbuf_jumbo(sc, i)) != 0)
1465 			return (error);
1466 		BGE_INC(sc->bge_jumbo, BGE_JUMBO_RX_RING_CNT);
1467 	}
1468 
1469 	bus_dmamap_sync(sc->bge_cdata.bge_rx_jumbo_ring_tag,
1470 	    sc->bge_cdata.bge_rx_jumbo_ring_map, BUS_DMASYNC_PREWRITE);
1471 
1472 	sc->bge_jumbo = 0;
1473 
1474 	/* Enable the jumbo receive producer ring. */
1475 	rcb = &sc->bge_ldata.bge_info.bge_jumbo_rx_rcb;
1476 	rcb->bge_maxlen_flags =
1477 	    BGE_RCB_MAXLEN_FLAGS(0, BGE_RCB_FLAG_USE_EXT_RX_BD);
1478 	CSR_WRITE_4(sc, BGE_RX_JUMBO_RCB_MAXLEN_FLAGS, rcb->bge_maxlen_flags);
1479 
1480 	bge_writembx(sc, BGE_MBX_RX_JUMBO_PROD_LO, BGE_JUMBO_RX_RING_CNT - 1);
1481 
1482 	return (0);
1483 }
1484 
1485 static void
1486 bge_free_rx_ring_jumbo(struct bge_softc *sc)
1487 {
1488 	int i;
1489 
1490 	for (i = 0; i < BGE_JUMBO_RX_RING_CNT; i++) {
1491 		if (sc->bge_cdata.bge_rx_jumbo_chain[i] != NULL) {
1492 			bus_dmamap_sync(sc->bge_cdata.bge_mtag_jumbo,
1493 			    sc->bge_cdata.bge_rx_jumbo_dmamap[i],
1494 			    BUS_DMASYNC_POSTREAD);
1495 			bus_dmamap_unload(sc->bge_cdata.bge_mtag_jumbo,
1496 			    sc->bge_cdata.bge_rx_jumbo_dmamap[i]);
1497 			m_freem(sc->bge_cdata.bge_rx_jumbo_chain[i]);
1498 			sc->bge_cdata.bge_rx_jumbo_chain[i] = NULL;
1499 		}
1500 		bzero((char *)&sc->bge_ldata.bge_rx_jumbo_ring[i],
1501 		    sizeof(struct bge_extrx_bd));
1502 	}
1503 }
1504 
1505 static void
1506 bge_free_tx_ring(struct bge_softc *sc)
1507 {
1508 	int i;
1509 
1510 	if (sc->bge_ldata.bge_tx_ring == NULL)
1511 		return;
1512 
1513 	for (i = 0; i < BGE_TX_RING_CNT; i++) {
1514 		if (sc->bge_cdata.bge_tx_chain[i] != NULL) {
1515 			bus_dmamap_sync(sc->bge_cdata.bge_tx_mtag,
1516 			    sc->bge_cdata.bge_tx_dmamap[i],
1517 			    BUS_DMASYNC_POSTWRITE);
1518 			bus_dmamap_unload(sc->bge_cdata.bge_tx_mtag,
1519 			    sc->bge_cdata.bge_tx_dmamap[i]);
1520 			m_freem(sc->bge_cdata.bge_tx_chain[i]);
1521 			sc->bge_cdata.bge_tx_chain[i] = NULL;
1522 		}
1523 		bzero((char *)&sc->bge_ldata.bge_tx_ring[i],
1524 		    sizeof(struct bge_tx_bd));
1525 	}
1526 }
1527 
1528 static int
1529 bge_init_tx_ring(struct bge_softc *sc)
1530 {
1531 	sc->bge_txcnt = 0;
1532 	sc->bge_tx_saved_considx = 0;
1533 
1534 	bzero(sc->bge_ldata.bge_tx_ring, BGE_TX_RING_SZ);
1535 	bus_dmamap_sync(sc->bge_cdata.bge_tx_ring_tag,
1536 	    sc->bge_cdata.bge_tx_ring_map, BUS_DMASYNC_PREWRITE);
1537 
1538 	/* Initialize transmit producer index for host-memory send ring. */
1539 	sc->bge_tx_prodidx = 0;
1540 	bge_writembx(sc, BGE_MBX_TX_HOST_PROD0_LO, sc->bge_tx_prodidx);
1541 
1542 	/* 5700 b2 errata */
1543 	if (sc->bge_chiprev == BGE_CHIPREV_5700_BX)
1544 		bge_writembx(sc, BGE_MBX_TX_HOST_PROD0_LO, sc->bge_tx_prodidx);
1545 
1546 	/* NIC-memory send ring not used; initialize to zero. */
1547 	bge_writembx(sc, BGE_MBX_TX_NIC_PROD0_LO, 0);
1548 	/* 5700 b2 errata */
1549 	if (sc->bge_chiprev == BGE_CHIPREV_5700_BX)
1550 		bge_writembx(sc, BGE_MBX_TX_NIC_PROD0_LO, 0);
1551 
1552 	return (0);
1553 }
1554 
1555 static void
1556 bge_setpromisc(struct bge_softc *sc)
1557 {
1558 	if_t ifp;
1559 
1560 	BGE_LOCK_ASSERT(sc);
1561 
1562 	ifp = sc->bge_ifp;
1563 
1564 	/* Enable or disable promiscuous mode as needed. */
1565 	if (if_getflags(ifp) & IFF_PROMISC)
1566 		BGE_SETBIT(sc, BGE_RX_MODE, BGE_RXMODE_RX_PROMISC);
1567 	else
1568 		BGE_CLRBIT(sc, BGE_RX_MODE, BGE_RXMODE_RX_PROMISC);
1569 }
1570 
1571 static u_int
1572 bge_hash_maddr(void *arg, struct sockaddr_dl *sdl, u_int cnt)
1573 {
1574 	uint32_t *hashes = arg;
1575 	int h;
1576 
1577 	h = ether_crc32_le(LLADDR(sdl), ETHER_ADDR_LEN) & 0x7F;
1578 	hashes[(h & 0x60) >> 5] |= 1 << (h & 0x1F);
1579 
1580 	return (1);
1581 }
1582 
1583 static void
1584 bge_setmulti(struct bge_softc *sc)
1585 {
1586 	if_t ifp;
1587 	uint32_t hashes[4] = { 0, 0, 0, 0 };
1588 	int i;
1589 
1590 	BGE_LOCK_ASSERT(sc);
1591 
1592 	ifp = sc->bge_ifp;
1593 
1594 	if (if_getflags(ifp) & IFF_ALLMULTI || if_getflags(ifp) & IFF_PROMISC) {
1595 		for (i = 0; i < 4; i++)
1596 			CSR_WRITE_4(sc, BGE_MAR0 + (i * 4), 0xFFFFFFFF);
1597 		return;
1598 	}
1599 
1600 	/* First, zot all the existing filters. */
1601 	for (i = 0; i < 4; i++)
1602 		CSR_WRITE_4(sc, BGE_MAR0 + (i * 4), 0);
1603 
1604 	if_foreach_llmaddr(ifp, bge_hash_maddr, hashes);
1605 
1606 	for (i = 0; i < 4; i++)
1607 		CSR_WRITE_4(sc, BGE_MAR0 + (i * 4), hashes[i]);
1608 }
1609 
1610 static void
1611 bge_setvlan(struct bge_softc *sc)
1612 {
1613 	if_t ifp;
1614 
1615 	BGE_LOCK_ASSERT(sc);
1616 
1617 	ifp = sc->bge_ifp;
1618 
1619 	/* Enable or disable VLAN tag stripping as needed. */
1620 	if (if_getcapenable(ifp) & IFCAP_VLAN_HWTAGGING)
1621 		BGE_CLRBIT(sc, BGE_RX_MODE, BGE_RXMODE_RX_KEEP_VLAN_DIAG);
1622 	else
1623 		BGE_SETBIT(sc, BGE_RX_MODE, BGE_RXMODE_RX_KEEP_VLAN_DIAG);
1624 }
1625 
1626 static void
1627 bge_sig_pre_reset(struct bge_softc *sc, int type)
1628 {
1629 
1630 	/*
1631 	 * Some chips don't like this so only do this if ASF is enabled
1632 	 */
1633 	if (sc->bge_asf_mode)
1634 		bge_writemem_ind(sc, BGE_SRAM_FW_MB, BGE_SRAM_FW_MB_MAGIC);
1635 
1636 	if (sc->bge_asf_mode & ASF_NEW_HANDSHAKE) {
1637 		switch (type) {
1638 		case BGE_RESET_START:
1639 			bge_writemem_ind(sc, BGE_SRAM_FW_DRV_STATE_MB,
1640 			    BGE_FW_DRV_STATE_START);
1641 			break;
1642 		case BGE_RESET_SHUTDOWN:
1643 			bge_writemem_ind(sc, BGE_SRAM_FW_DRV_STATE_MB,
1644 			    BGE_FW_DRV_STATE_UNLOAD);
1645 			break;
1646 		case BGE_RESET_SUSPEND:
1647 			bge_writemem_ind(sc, BGE_SRAM_FW_DRV_STATE_MB,
1648 			    BGE_FW_DRV_STATE_SUSPEND);
1649 			break;
1650 		}
1651 	}
1652 
1653 	if (type == BGE_RESET_START || type == BGE_RESET_SUSPEND)
1654 		bge_ape_driver_state_change(sc, type);
1655 }
1656 
1657 static void
1658 bge_sig_post_reset(struct bge_softc *sc, int type)
1659 {
1660 
1661 	if (sc->bge_asf_mode & ASF_NEW_HANDSHAKE) {
1662 		switch (type) {
1663 		case BGE_RESET_START:
1664 			bge_writemem_ind(sc, BGE_SRAM_FW_DRV_STATE_MB,
1665 			    BGE_FW_DRV_STATE_START_DONE);
1666 			/* START DONE */
1667 			break;
1668 		case BGE_RESET_SHUTDOWN:
1669 			bge_writemem_ind(sc, BGE_SRAM_FW_DRV_STATE_MB,
1670 			    BGE_FW_DRV_STATE_UNLOAD_DONE);
1671 			break;
1672 		}
1673 	}
1674 	if (type == BGE_RESET_SHUTDOWN)
1675 		bge_ape_driver_state_change(sc, type);
1676 }
1677 
1678 static void
1679 bge_sig_legacy(struct bge_softc *sc, int type)
1680 {
1681 
1682 	if (sc->bge_asf_mode) {
1683 		switch (type) {
1684 		case BGE_RESET_START:
1685 			bge_writemem_ind(sc, BGE_SRAM_FW_DRV_STATE_MB,
1686 			    BGE_FW_DRV_STATE_START);
1687 			break;
1688 		case BGE_RESET_SHUTDOWN:
1689 			bge_writemem_ind(sc, BGE_SRAM_FW_DRV_STATE_MB,
1690 			    BGE_FW_DRV_STATE_UNLOAD);
1691 			break;
1692 		}
1693 	}
1694 }
1695 
1696 static void
1697 bge_stop_fw(struct bge_softc *sc)
1698 {
1699 	int i;
1700 
1701 	if (sc->bge_asf_mode) {
1702 		bge_writemem_ind(sc, BGE_SRAM_FW_CMD_MB, BGE_FW_CMD_PAUSE);
1703 		CSR_WRITE_4(sc, BGE_RX_CPU_EVENT,
1704 		    CSR_READ_4(sc, BGE_RX_CPU_EVENT) | BGE_RX_CPU_DRV_EVENT);
1705 
1706 		for (i = 0; i < 100; i++ ) {
1707 			if (!(CSR_READ_4(sc, BGE_RX_CPU_EVENT) &
1708 			    BGE_RX_CPU_DRV_EVENT))
1709 				break;
1710 			DELAY(10);
1711 		}
1712 	}
1713 }
1714 
1715 static uint32_t
1716 bge_dma_swap_options(struct bge_softc *sc)
1717 {
1718 	uint32_t dma_options;
1719 
1720 	dma_options = BGE_MODECTL_WORDSWAP_NONFRAME |
1721 	    BGE_MODECTL_BYTESWAP_DATA | BGE_MODECTL_WORDSWAP_DATA;
1722 #if BYTE_ORDER == BIG_ENDIAN
1723 	dma_options |= BGE_MODECTL_BYTESWAP_NONFRAME;
1724 #endif
1725 	return (dma_options);
1726 }
1727 
1728 /*
1729  * Do endian, PCI and DMA initialization.
1730  */
1731 static int
1732 bge_chipinit(struct bge_softc *sc)
1733 {
1734 	uint32_t dma_rw_ctl, misc_ctl, mode_ctl;
1735 	uint16_t val;
1736 	int i;
1737 
1738 	/* Set endianness before we access any non-PCI registers. */
1739 	misc_ctl = BGE_INIT;
1740 	if (sc->bge_flags & BGE_FLAG_TAGGED_STATUS)
1741 		misc_ctl |= BGE_PCIMISCCTL_TAGGED_STATUS;
1742 	pci_write_config(sc->bge_dev, BGE_PCI_MISC_CTL, misc_ctl, 4);
1743 
1744 	/*
1745 	 * Clear the MAC statistics block in the NIC's
1746 	 * internal memory.
1747 	 */
1748 	for (i = BGE_STATS_BLOCK;
1749 	    i < BGE_STATS_BLOCK_END + 1; i += sizeof(uint32_t))
1750 		BGE_MEMWIN_WRITE(sc, i, 0);
1751 
1752 	for (i = BGE_STATUS_BLOCK;
1753 	    i < BGE_STATUS_BLOCK_END + 1; i += sizeof(uint32_t))
1754 		BGE_MEMWIN_WRITE(sc, i, 0);
1755 
1756 	if (sc->bge_chiprev == BGE_CHIPREV_5704_BX) {
1757 		/*
1758 		 *  Fix data corruption caused by non-qword write with WB.
1759 		 *  Fix master abort in PCI mode.
1760 		 *  Fix PCI latency timer.
1761 		 */
1762 		val = pci_read_config(sc->bge_dev, BGE_PCI_MSI_DATA + 2, 2);
1763 		val |= (1 << 10) | (1 << 12) | (1 << 13);
1764 		pci_write_config(sc->bge_dev, BGE_PCI_MSI_DATA + 2, val, 2);
1765 	}
1766 
1767 	if (sc->bge_asicrev == BGE_ASICREV_BCM57765 ||
1768 	    sc->bge_asicrev == BGE_ASICREV_BCM57766) {
1769 		/*
1770 		 * For the 57766 and non Ax versions of 57765, bootcode
1771 		 * needs to setup the PCIE Fast Training Sequence (FTS)
1772 		 * value to prevent transmit hangs.
1773 		 */
1774 		if (sc->bge_chiprev != BGE_CHIPREV_57765_AX) {
1775 			CSR_WRITE_4(sc, BGE_CPMU_PADRNG_CTL,
1776 			    CSR_READ_4(sc, BGE_CPMU_PADRNG_CTL) |
1777 			    BGE_CPMU_PADRNG_CTL_RDIV2);
1778 		}
1779 	}
1780 
1781 	/*
1782 	 * Set up the PCI DMA control register.
1783 	 */
1784 	dma_rw_ctl = BGE_PCIDMARWCTL_RD_CMD_SHIFT(6) |
1785 	    BGE_PCIDMARWCTL_WR_CMD_SHIFT(7);
1786 	if (sc->bge_flags & BGE_FLAG_PCIE) {
1787 		if (sc->bge_mps >= 256)
1788 			dma_rw_ctl |= BGE_PCIDMARWCTL_WR_WAT_SHIFT(7);
1789 		else
1790 			dma_rw_ctl |= BGE_PCIDMARWCTL_WR_WAT_SHIFT(3);
1791 	} else if (sc->bge_flags & BGE_FLAG_PCIX) {
1792 		if (BGE_IS_5714_FAMILY(sc)) {
1793 			/* 256 bytes for read and write. */
1794 			dma_rw_ctl |= BGE_PCIDMARWCTL_RD_WAT_SHIFT(2) |
1795 			    BGE_PCIDMARWCTL_WR_WAT_SHIFT(2);
1796 			dma_rw_ctl |= (sc->bge_asicrev == BGE_ASICREV_BCM5780) ?
1797 			    BGE_PCIDMARWCTL_ONEDMA_ATONCE_GLOBAL :
1798 			    BGE_PCIDMARWCTL_ONEDMA_ATONCE_LOCAL;
1799 		} else if (sc->bge_asicrev == BGE_ASICREV_BCM5703) {
1800 			/*
1801 			 * In the BCM5703, the DMA read watermark should
1802 			 * be set to less than or equal to the maximum
1803 			 * memory read byte count of the PCI-X command
1804 			 * register.
1805 			 */
1806 			dma_rw_ctl |= BGE_PCIDMARWCTL_RD_WAT_SHIFT(4) |
1807 			    BGE_PCIDMARWCTL_WR_WAT_SHIFT(3);
1808 		} else if (sc->bge_asicrev == BGE_ASICREV_BCM5704) {
1809 			/* 1536 bytes for read, 384 bytes for write. */
1810 			dma_rw_ctl |= BGE_PCIDMARWCTL_RD_WAT_SHIFT(7) |
1811 			    BGE_PCIDMARWCTL_WR_WAT_SHIFT(3);
1812 		} else {
1813 			/* 384 bytes for read and write. */
1814 			dma_rw_ctl |= BGE_PCIDMARWCTL_RD_WAT_SHIFT(3) |
1815 			    BGE_PCIDMARWCTL_WR_WAT_SHIFT(3) |
1816 			    0x0F;
1817 		}
1818 		if (sc->bge_asicrev == BGE_ASICREV_BCM5703 ||
1819 		    sc->bge_asicrev == BGE_ASICREV_BCM5704) {
1820 			uint32_t tmp;
1821 
1822 			/* Set ONE_DMA_AT_ONCE for hardware workaround. */
1823 			tmp = CSR_READ_4(sc, BGE_PCI_CLKCTL) & 0x1F;
1824 			if (tmp == 6 || tmp == 7)
1825 				dma_rw_ctl |=
1826 				    BGE_PCIDMARWCTL_ONEDMA_ATONCE_GLOBAL;
1827 
1828 			/* Set PCI-X DMA write workaround. */
1829 			dma_rw_ctl |= BGE_PCIDMARWCTL_ASRT_ALL_BE;
1830 		}
1831 	} else {
1832 		/* Conventional PCI bus: 256 bytes for read and write. */
1833 		dma_rw_ctl |= BGE_PCIDMARWCTL_RD_WAT_SHIFT(7) |
1834 		    BGE_PCIDMARWCTL_WR_WAT_SHIFT(7);
1835 
1836 		if (sc->bge_asicrev != BGE_ASICREV_BCM5705 &&
1837 		    sc->bge_asicrev != BGE_ASICREV_BCM5750)
1838 			dma_rw_ctl |= 0x0F;
1839 	}
1840 	if (sc->bge_asicrev == BGE_ASICREV_BCM5700 ||
1841 	    sc->bge_asicrev == BGE_ASICREV_BCM5701)
1842 		dma_rw_ctl |= BGE_PCIDMARWCTL_USE_MRM |
1843 		    BGE_PCIDMARWCTL_ASRT_ALL_BE;
1844 	if (sc->bge_asicrev == BGE_ASICREV_BCM5703 ||
1845 	    sc->bge_asicrev == BGE_ASICREV_BCM5704)
1846 		dma_rw_ctl &= ~BGE_PCIDMARWCTL_MINDMA;
1847 	if (BGE_IS_5717_PLUS(sc)) {
1848 		dma_rw_ctl &= ~BGE_PCIDMARWCTL_DIS_CACHE_ALIGNMENT;
1849 		if (sc->bge_chipid == BGE_CHIPID_BCM57765_A0)
1850 			dma_rw_ctl &= ~BGE_PCIDMARWCTL_CRDRDR_RDMA_MRRS_MSK;
1851 		/*
1852 		 * Enable HW workaround for controllers that misinterpret
1853 		 * a status tag update and leave interrupts permanently
1854 		 * disabled.
1855 		 */
1856 		if (!BGE_IS_57765_PLUS(sc) &&
1857 		    sc->bge_asicrev != BGE_ASICREV_BCM5717 &&
1858 		    sc->bge_asicrev != BGE_ASICREV_BCM5762)
1859 			dma_rw_ctl |= BGE_PCIDMARWCTL_TAGGED_STATUS_WA;
1860 	}
1861 	pci_write_config(sc->bge_dev, BGE_PCI_DMA_RW_CTL, dma_rw_ctl, 4);
1862 
1863 	/*
1864 	 * Set up general mode register.
1865 	 */
1866 	mode_ctl = bge_dma_swap_options(sc);
1867 	if (sc->bge_asicrev == BGE_ASICREV_BCM5720 ||
1868 	    sc->bge_asicrev == BGE_ASICREV_BCM5762) {
1869 		/* Retain Host-2-BMC settings written by APE firmware. */
1870 		mode_ctl |= CSR_READ_4(sc, BGE_MODE_CTL) &
1871 		    (BGE_MODECTL_BYTESWAP_B2HRX_DATA |
1872 		    BGE_MODECTL_WORDSWAP_B2HRX_DATA |
1873 		    BGE_MODECTL_B2HRX_ENABLE | BGE_MODECTL_HTX2B_ENABLE);
1874 	}
1875 	mode_ctl |= BGE_MODECTL_MAC_ATTN_INTR | BGE_MODECTL_HOST_SEND_BDS |
1876 	    BGE_MODECTL_TX_NO_PHDR_CSUM;
1877 
1878 	/*
1879 	 * BCM5701 B5 have a bug causing data corruption when using
1880 	 * 64-bit DMA reads, which can be terminated early and then
1881 	 * completed later as 32-bit accesses, in combination with
1882 	 * certain bridges.
1883 	 */
1884 	if (sc->bge_asicrev == BGE_ASICREV_BCM5701 &&
1885 	    sc->bge_chipid == BGE_CHIPID_BCM5701_B5)
1886 		mode_ctl |= BGE_MODECTL_FORCE_PCI32;
1887 
1888 	/*
1889 	 * Tell the firmware the driver is running
1890 	 */
1891 	if (sc->bge_asf_mode & ASF_STACKUP)
1892 		mode_ctl |= BGE_MODECTL_STACKUP;
1893 
1894 	CSR_WRITE_4(sc, BGE_MODE_CTL, mode_ctl);
1895 
1896 	/*
1897 	 * Disable memory write invalidate.  Apparently it is not supported
1898 	 * properly by these devices.
1899 	 */
1900 	PCI_CLRBIT(sc->bge_dev, BGE_PCI_CMD, PCIM_CMD_MWIEN, 4);
1901 
1902 	/* Set the timer prescaler (always 66 MHz). */
1903 	CSR_WRITE_4(sc, BGE_MISC_CFG, BGE_32BITTIME_66MHZ);
1904 
1905 	/* XXX: The Linux tg3 driver does this at the start of brgphy_reset. */
1906 	if (sc->bge_asicrev == BGE_ASICREV_BCM5906) {
1907 		DELAY(40);	/* XXX */
1908 
1909 		/* Put PHY into ready state */
1910 		BGE_CLRBIT(sc, BGE_MISC_CFG, BGE_MISCCFG_EPHY_IDDQ);
1911 		CSR_READ_4(sc, BGE_MISC_CFG); /* Flush */
1912 		DELAY(40);
1913 	}
1914 
1915 	return (0);
1916 }
1917 
1918 static int
1919 bge_blockinit(struct bge_softc *sc)
1920 {
1921 	struct bge_rcb *rcb;
1922 	bus_size_t vrcb;
1923 	caddr_t	lladdr;
1924 	bge_hostaddr taddr;
1925 	uint32_t dmactl, rdmareg, val;
1926 	int i, limit;
1927 
1928 	/*
1929 	 * Initialize the memory window pointer register so that
1930 	 * we can access the first 32K of internal NIC RAM. This will
1931 	 * allow us to set up the TX send ring RCBs and the RX return
1932 	 * ring RCBs, plus other things which live in NIC memory.
1933 	 */
1934 	CSR_WRITE_4(sc, BGE_PCI_MEMWIN_BASEADDR, 0);
1935 
1936 	/* Note: the BCM5704 has a smaller mbuf space than other chips. */
1937 
1938 	if (!(BGE_IS_5705_PLUS(sc))) {
1939 		/* Configure mbuf memory pool */
1940 		CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_BASEADDR, BGE_BUFFPOOL_1);
1941 		if (sc->bge_asicrev == BGE_ASICREV_BCM5704)
1942 			CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_LEN, 0x10000);
1943 		else
1944 			CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_LEN, 0x18000);
1945 
1946 		/* Configure DMA resource pool */
1947 		CSR_WRITE_4(sc, BGE_BMAN_DMA_DESCPOOL_BASEADDR,
1948 		    BGE_DMA_DESCRIPTORS);
1949 		CSR_WRITE_4(sc, BGE_BMAN_DMA_DESCPOOL_LEN, 0x2000);
1950 	}
1951 
1952 	/* Configure mbuf pool watermarks */
1953 	if (BGE_IS_5717_PLUS(sc)) {
1954 		CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_READDMA_LOWAT, 0x0);
1955 		if (if_getmtu(sc->bge_ifp) > ETHERMTU) {
1956 			CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_MACRX_LOWAT, 0x7e);
1957 			CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_HIWAT, 0xea);
1958 		} else {
1959 			CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_MACRX_LOWAT, 0x2a);
1960 			CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_HIWAT, 0xa0);
1961 		}
1962 	} else if (!BGE_IS_5705_PLUS(sc)) {
1963 		CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_READDMA_LOWAT, 0x50);
1964 		CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_MACRX_LOWAT, 0x20);
1965 		CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_HIWAT, 0x60);
1966 	} else if (sc->bge_asicrev == BGE_ASICREV_BCM5906) {
1967 		CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_READDMA_LOWAT, 0x0);
1968 		CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_MACRX_LOWAT, 0x04);
1969 		CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_HIWAT, 0x10);
1970 	} else {
1971 		CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_READDMA_LOWAT, 0x0);
1972 		CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_MACRX_LOWAT, 0x10);
1973 		CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_HIWAT, 0x60);
1974 	}
1975 
1976 	/* Configure DMA resource watermarks */
1977 	CSR_WRITE_4(sc, BGE_BMAN_DMA_DESCPOOL_LOWAT, 5);
1978 	CSR_WRITE_4(sc, BGE_BMAN_DMA_DESCPOOL_HIWAT, 10);
1979 
1980 	/* Enable buffer manager */
1981 	val = BGE_BMANMODE_ENABLE | BGE_BMANMODE_LOMBUF_ATTN;
1982 	/*
1983 	 * Change the arbitration algorithm of TXMBUF read request to
1984 	 * round-robin instead of priority based for BCM5719.  When
1985 	 * TXFIFO is almost empty, RDMA will hold its request until
1986 	 * TXFIFO is not almost empty.
1987 	 */
1988 	if (sc->bge_asicrev == BGE_ASICREV_BCM5719)
1989 		val |= BGE_BMANMODE_NO_TX_UNDERRUN;
1990 	CSR_WRITE_4(sc, BGE_BMAN_MODE, val);
1991 
1992 	/* Poll for buffer manager start indication */
1993 	for (i = 0; i < BGE_TIMEOUT; i++) {
1994 		DELAY(10);
1995 		if (CSR_READ_4(sc, BGE_BMAN_MODE) & BGE_BMANMODE_ENABLE)
1996 			break;
1997 	}
1998 
1999 	if (i == BGE_TIMEOUT) {
2000 		device_printf(sc->bge_dev, "buffer manager failed to start\n");
2001 		return (ENXIO);
2002 	}
2003 
2004 	/* Enable flow-through queues */
2005 	CSR_WRITE_4(sc, BGE_FTQ_RESET, 0xFFFFFFFF);
2006 	CSR_WRITE_4(sc, BGE_FTQ_RESET, 0);
2007 
2008 	/* Wait until queue initialization is complete */
2009 	for (i = 0; i < BGE_TIMEOUT; i++) {
2010 		DELAY(10);
2011 		if (CSR_READ_4(sc, BGE_FTQ_RESET) == 0)
2012 			break;
2013 	}
2014 
2015 	if (i == BGE_TIMEOUT) {
2016 		device_printf(sc->bge_dev, "flow-through queue init failed\n");
2017 		return (ENXIO);
2018 	}
2019 
2020 	/*
2021 	 * Summary of rings supported by the controller:
2022 	 *
2023 	 * Standard Receive Producer Ring
2024 	 * - This ring is used to feed receive buffers for "standard"
2025 	 *   sized frames (typically 1536 bytes) to the controller.
2026 	 *
2027 	 * Jumbo Receive Producer Ring
2028 	 * - This ring is used to feed receive buffers for jumbo sized
2029 	 *   frames (i.e. anything bigger than the "standard" frames)
2030 	 *   to the controller.
2031 	 *
2032 	 * Mini Receive Producer Ring
2033 	 * - This ring is used to feed receive buffers for "mini"
2034 	 *   sized frames to the controller.
2035 	 * - This feature required external memory for the controller
2036 	 *   but was never used in a production system.  Should always
2037 	 *   be disabled.
2038 	 *
2039 	 * Receive Return Ring
2040 	 * - After the controller has placed an incoming frame into a
2041 	 *   receive buffer that buffer is moved into a receive return
2042 	 *   ring.  The driver is then responsible to passing the
2043 	 *   buffer up to the stack.  Many versions of the controller
2044 	 *   support multiple RR rings.
2045 	 *
2046 	 * Send Ring
2047 	 * - This ring is used for outgoing frames.  Many versions of
2048 	 *   the controller support multiple send rings.
2049 	 */
2050 
2051 	/* Initialize the standard receive producer ring control block. */
2052 	rcb = &sc->bge_ldata.bge_info.bge_std_rx_rcb;
2053 	rcb->bge_hostaddr.bge_addr_lo =
2054 	    BGE_ADDR_LO(sc->bge_ldata.bge_rx_std_ring_paddr);
2055 	rcb->bge_hostaddr.bge_addr_hi =
2056 	    BGE_ADDR_HI(sc->bge_ldata.bge_rx_std_ring_paddr);
2057 	bus_dmamap_sync(sc->bge_cdata.bge_rx_std_ring_tag,
2058 	    sc->bge_cdata.bge_rx_std_ring_map, BUS_DMASYNC_PREREAD);
2059 	if (BGE_IS_5717_PLUS(sc)) {
2060 		/*
2061 		 * Bits 31-16: Programmable ring size (2048, 1024, 512, .., 32)
2062 		 * Bits 15-2 : Maximum RX frame size
2063 		 * Bit 1     : 1 = Ring Disabled, 0 = Ring ENabled
2064 		 * Bit 0     : Reserved
2065 		 */
2066 		rcb->bge_maxlen_flags =
2067 		    BGE_RCB_MAXLEN_FLAGS(512, BGE_MAX_FRAMELEN << 2);
2068 	} else if (BGE_IS_5705_PLUS(sc)) {
2069 		/*
2070 		 * Bits 31-16: Programmable ring size (512, 256, 128, 64, 32)
2071 		 * Bits 15-2 : Reserved (should be 0)
2072 		 * Bit 1     : 1 = Ring Disabled, 0 = Ring Enabled
2073 		 * Bit 0     : Reserved
2074 		 */
2075 		rcb->bge_maxlen_flags = BGE_RCB_MAXLEN_FLAGS(512, 0);
2076 	} else {
2077 		/*
2078 		 * Ring size is always XXX entries
2079 		 * Bits 31-16: Maximum RX frame size
2080 		 * Bits 15-2 : Reserved (should be 0)
2081 		 * Bit 1     : 1 = Ring Disabled, 0 = Ring Enabled
2082 		 * Bit 0     : Reserved
2083 		 */
2084 		rcb->bge_maxlen_flags =
2085 		    BGE_RCB_MAXLEN_FLAGS(BGE_MAX_FRAMELEN, 0);
2086 	}
2087 	if (sc->bge_asicrev == BGE_ASICREV_BCM5717 ||
2088 	    sc->bge_asicrev == BGE_ASICREV_BCM5719 ||
2089 	    sc->bge_asicrev == BGE_ASICREV_BCM5720)
2090 		rcb->bge_nicaddr = BGE_STD_RX_RINGS_5717;
2091 	else
2092 		rcb->bge_nicaddr = BGE_STD_RX_RINGS;
2093 	/* Write the standard receive producer ring control block. */
2094 	CSR_WRITE_4(sc, BGE_RX_STD_RCB_HADDR_HI, rcb->bge_hostaddr.bge_addr_hi);
2095 	CSR_WRITE_4(sc, BGE_RX_STD_RCB_HADDR_LO, rcb->bge_hostaddr.bge_addr_lo);
2096 	CSR_WRITE_4(sc, BGE_RX_STD_RCB_MAXLEN_FLAGS, rcb->bge_maxlen_flags);
2097 	CSR_WRITE_4(sc, BGE_RX_STD_RCB_NICADDR, rcb->bge_nicaddr);
2098 
2099 	/* Reset the standard receive producer ring producer index. */
2100 	bge_writembx(sc, BGE_MBX_RX_STD_PROD_LO, 0);
2101 
2102 	/*
2103 	 * Initialize the jumbo RX producer ring control
2104 	 * block.  We set the 'ring disabled' bit in the
2105 	 * flags field until we're actually ready to start
2106 	 * using this ring (i.e. once we set the MTU
2107 	 * high enough to require it).
2108 	 */
2109 	if (BGE_IS_JUMBO_CAPABLE(sc)) {
2110 		rcb = &sc->bge_ldata.bge_info.bge_jumbo_rx_rcb;
2111 		/* Get the jumbo receive producer ring RCB parameters. */
2112 		rcb->bge_hostaddr.bge_addr_lo =
2113 		    BGE_ADDR_LO(sc->bge_ldata.bge_rx_jumbo_ring_paddr);
2114 		rcb->bge_hostaddr.bge_addr_hi =
2115 		    BGE_ADDR_HI(sc->bge_ldata.bge_rx_jumbo_ring_paddr);
2116 		bus_dmamap_sync(sc->bge_cdata.bge_rx_jumbo_ring_tag,
2117 		    sc->bge_cdata.bge_rx_jumbo_ring_map,
2118 		    BUS_DMASYNC_PREREAD);
2119 		rcb->bge_maxlen_flags = BGE_RCB_MAXLEN_FLAGS(0,
2120 		    BGE_RCB_FLAG_USE_EXT_RX_BD | BGE_RCB_FLAG_RING_DISABLED);
2121 		if (sc->bge_asicrev == BGE_ASICREV_BCM5717 ||
2122 		    sc->bge_asicrev == BGE_ASICREV_BCM5719 ||
2123 		    sc->bge_asicrev == BGE_ASICREV_BCM5720)
2124 			rcb->bge_nicaddr = BGE_JUMBO_RX_RINGS_5717;
2125 		else
2126 			rcb->bge_nicaddr = BGE_JUMBO_RX_RINGS;
2127 		CSR_WRITE_4(sc, BGE_RX_JUMBO_RCB_HADDR_HI,
2128 		    rcb->bge_hostaddr.bge_addr_hi);
2129 		CSR_WRITE_4(sc, BGE_RX_JUMBO_RCB_HADDR_LO,
2130 		    rcb->bge_hostaddr.bge_addr_lo);
2131 		/* Program the jumbo receive producer ring RCB parameters. */
2132 		CSR_WRITE_4(sc, BGE_RX_JUMBO_RCB_MAXLEN_FLAGS,
2133 		    rcb->bge_maxlen_flags);
2134 		CSR_WRITE_4(sc, BGE_RX_JUMBO_RCB_NICADDR, rcb->bge_nicaddr);
2135 		/* Reset the jumbo receive producer ring producer index. */
2136 		bge_writembx(sc, BGE_MBX_RX_JUMBO_PROD_LO, 0);
2137 	}
2138 
2139 	/* Disable the mini receive producer ring RCB. */
2140 	if (BGE_IS_5700_FAMILY(sc)) {
2141 		rcb = &sc->bge_ldata.bge_info.bge_mini_rx_rcb;
2142 		rcb->bge_maxlen_flags =
2143 		    BGE_RCB_MAXLEN_FLAGS(0, BGE_RCB_FLAG_RING_DISABLED);
2144 		CSR_WRITE_4(sc, BGE_RX_MINI_RCB_MAXLEN_FLAGS,
2145 		    rcb->bge_maxlen_flags);
2146 		/* Reset the mini receive producer ring producer index. */
2147 		bge_writembx(sc, BGE_MBX_RX_MINI_PROD_LO, 0);
2148 	}
2149 
2150 	/* Choose de-pipeline mode for BCM5906 A0, A1 and A2. */
2151 	if (sc->bge_asicrev == BGE_ASICREV_BCM5906) {
2152 		if (sc->bge_chipid == BGE_CHIPID_BCM5906_A0 ||
2153 		    sc->bge_chipid == BGE_CHIPID_BCM5906_A1 ||
2154 		    sc->bge_chipid == BGE_CHIPID_BCM5906_A2)
2155 			CSR_WRITE_4(sc, BGE_ISO_PKT_TX,
2156 			    (CSR_READ_4(sc, BGE_ISO_PKT_TX) & ~3) | 2);
2157 	}
2158 	/*
2159 	 * The BD ring replenish thresholds control how often the
2160 	 * hardware fetches new BD's from the producer rings in host
2161 	 * memory.  Setting the value too low on a busy system can
2162 	 * starve the hardware and recue the throughpout.
2163 	 *
2164 	 * Set the BD ring replentish thresholds. The recommended
2165 	 * values are 1/8th the number of descriptors allocated to
2166 	 * each ring.
2167 	 * XXX The 5754 requires a lower threshold, so it might be a
2168 	 * requirement of all 575x family chips.  The Linux driver sets
2169 	 * the lower threshold for all 5705 family chips as well, but there
2170 	 * are reports that it might not need to be so strict.
2171 	 *
2172 	 * XXX Linux does some extra fiddling here for the 5906 parts as
2173 	 * well.
2174 	 */
2175 	if (BGE_IS_5705_PLUS(sc))
2176 		val = 8;
2177 	else
2178 		val = BGE_STD_RX_RING_CNT / 8;
2179 	CSR_WRITE_4(sc, BGE_RBDI_STD_REPL_THRESH, val);
2180 	if (BGE_IS_JUMBO_CAPABLE(sc))
2181 		CSR_WRITE_4(sc, BGE_RBDI_JUMBO_REPL_THRESH,
2182 		    BGE_JUMBO_RX_RING_CNT/8);
2183 	if (BGE_IS_5717_PLUS(sc)) {
2184 		CSR_WRITE_4(sc, BGE_STD_REPLENISH_LWM, 32);
2185 		CSR_WRITE_4(sc, BGE_JMB_REPLENISH_LWM, 16);
2186 	}
2187 
2188 	/*
2189 	 * Disable all send rings by setting the 'ring disabled' bit
2190 	 * in the flags field of all the TX send ring control blocks,
2191 	 * located in NIC memory.
2192 	 */
2193 	if (!BGE_IS_5705_PLUS(sc))
2194 		/* 5700 to 5704 had 16 send rings. */
2195 		limit = BGE_TX_RINGS_EXTSSRAM_MAX;
2196 	else if (BGE_IS_57765_PLUS(sc) ||
2197 	    sc->bge_asicrev == BGE_ASICREV_BCM5762)
2198 		limit = 2;
2199 	else if (BGE_IS_5717_PLUS(sc))
2200 		limit = 4;
2201 	else
2202 		limit = 1;
2203 	vrcb = BGE_MEMWIN_START + BGE_SEND_RING_RCB;
2204 	for (i = 0; i < limit; i++) {
2205 		RCB_WRITE_4(sc, vrcb, bge_maxlen_flags,
2206 		    BGE_RCB_MAXLEN_FLAGS(0, BGE_RCB_FLAG_RING_DISABLED));
2207 		RCB_WRITE_4(sc, vrcb, bge_nicaddr, 0);
2208 		vrcb += sizeof(struct bge_rcb);
2209 	}
2210 
2211 	/* Configure send ring RCB 0 (we use only the first ring) */
2212 	vrcb = BGE_MEMWIN_START + BGE_SEND_RING_RCB;
2213 	BGE_HOSTADDR(taddr, sc->bge_ldata.bge_tx_ring_paddr);
2214 	RCB_WRITE_4(sc, vrcb, bge_hostaddr.bge_addr_hi, taddr.bge_addr_hi);
2215 	RCB_WRITE_4(sc, vrcb, bge_hostaddr.bge_addr_lo, taddr.bge_addr_lo);
2216 	if (sc->bge_asicrev == BGE_ASICREV_BCM5717 ||
2217 	    sc->bge_asicrev == BGE_ASICREV_BCM5719 ||
2218 	    sc->bge_asicrev == BGE_ASICREV_BCM5720)
2219 		RCB_WRITE_4(sc, vrcb, bge_nicaddr, BGE_SEND_RING_5717);
2220 	else
2221 		RCB_WRITE_4(sc, vrcb, bge_nicaddr,
2222 		    BGE_NIC_TXRING_ADDR(0, BGE_TX_RING_CNT));
2223 	RCB_WRITE_4(sc, vrcb, bge_maxlen_flags,
2224 	    BGE_RCB_MAXLEN_FLAGS(BGE_TX_RING_CNT, 0));
2225 
2226 	/*
2227 	 * Disable all receive return rings by setting the
2228 	 * 'ring diabled' bit in the flags field of all the receive
2229 	 * return ring control blocks, located in NIC memory.
2230 	 */
2231 	if (sc->bge_asicrev == BGE_ASICREV_BCM5717 ||
2232 	    sc->bge_asicrev == BGE_ASICREV_BCM5719 ||
2233 	    sc->bge_asicrev == BGE_ASICREV_BCM5720) {
2234 		/* Should be 17, use 16 until we get an SRAM map. */
2235 		limit = 16;
2236 	} else if (!BGE_IS_5705_PLUS(sc))
2237 		limit = BGE_RX_RINGS_MAX;
2238 	else if (sc->bge_asicrev == BGE_ASICREV_BCM5755 ||
2239 	    sc->bge_asicrev == BGE_ASICREV_BCM5762 ||
2240 	    BGE_IS_57765_PLUS(sc))
2241 		limit = 4;
2242 	else
2243 		limit = 1;
2244 	/* Disable all receive return rings. */
2245 	vrcb = BGE_MEMWIN_START + BGE_RX_RETURN_RING_RCB;
2246 	for (i = 0; i < limit; i++) {
2247 		RCB_WRITE_4(sc, vrcb, bge_hostaddr.bge_addr_hi, 0);
2248 		RCB_WRITE_4(sc, vrcb, bge_hostaddr.bge_addr_lo, 0);
2249 		RCB_WRITE_4(sc, vrcb, bge_maxlen_flags,
2250 		    BGE_RCB_FLAG_RING_DISABLED);
2251 		RCB_WRITE_4(sc, vrcb, bge_nicaddr, 0);
2252 		bge_writembx(sc, BGE_MBX_RX_CONS0_LO +
2253 		    (i * (sizeof(uint64_t))), 0);
2254 		vrcb += sizeof(struct bge_rcb);
2255 	}
2256 
2257 	/*
2258 	 * Set up receive return ring 0.  Note that the NIC address
2259 	 * for RX return rings is 0x0.  The return rings live entirely
2260 	 * within the host, so the nicaddr field in the RCB isn't used.
2261 	 */
2262 	vrcb = BGE_MEMWIN_START + BGE_RX_RETURN_RING_RCB;
2263 	BGE_HOSTADDR(taddr, sc->bge_ldata.bge_rx_return_ring_paddr);
2264 	RCB_WRITE_4(sc, vrcb, bge_hostaddr.bge_addr_hi, taddr.bge_addr_hi);
2265 	RCB_WRITE_4(sc, vrcb, bge_hostaddr.bge_addr_lo, taddr.bge_addr_lo);
2266 	RCB_WRITE_4(sc, vrcb, bge_nicaddr, 0);
2267 	RCB_WRITE_4(sc, vrcb, bge_maxlen_flags,
2268 	    BGE_RCB_MAXLEN_FLAGS(sc->bge_return_ring_cnt, 0));
2269 
2270 	lladdr = if_getlladdr(sc->bge_ifp);
2271 	/* Set random backoff seed for TX */
2272 	CSR_WRITE_4(sc, BGE_TX_RANDOM_BACKOFF,
2273 	    (lladdr[0] + lladdr[1] +
2274 	    lladdr[2] + lladdr[3] +
2275 	    lladdr[4] + lladdr[5]) &
2276 	    BGE_TX_BACKOFF_SEED_MASK);
2277 
2278 	/* Set inter-packet gap */
2279 	val = 0x2620;
2280 	if (sc->bge_asicrev == BGE_ASICREV_BCM5720 ||
2281 	    sc->bge_asicrev == BGE_ASICREV_BCM5762)
2282 		val |= CSR_READ_4(sc, BGE_TX_LENGTHS) &
2283 		    (BGE_TXLEN_JMB_FRM_LEN_MSK | BGE_TXLEN_CNT_DN_VAL_MSK);
2284 	CSR_WRITE_4(sc, BGE_TX_LENGTHS, val);
2285 
2286 	/*
2287 	 * Specify which ring to use for packets that don't match
2288 	 * any RX rules.
2289 	 */
2290 	CSR_WRITE_4(sc, BGE_RX_RULES_CFG, 0x08);
2291 
2292 	/*
2293 	 * Configure number of RX lists. One interrupt distribution
2294 	 * list, sixteen active lists, one bad frames class.
2295 	 */
2296 	CSR_WRITE_4(sc, BGE_RXLP_CFG, 0x181);
2297 
2298 	/* Inialize RX list placement stats mask. */
2299 	CSR_WRITE_4(sc, BGE_RXLP_STATS_ENABLE_MASK, 0x007FFFFF);
2300 	CSR_WRITE_4(sc, BGE_RXLP_STATS_CTL, 0x1);
2301 
2302 	/* Disable host coalescing until we get it set up */
2303 	CSR_WRITE_4(sc, BGE_HCC_MODE, 0x00000000);
2304 
2305 	/* Poll to make sure it's shut down. */
2306 	for (i = 0; i < BGE_TIMEOUT; i++) {
2307 		DELAY(10);
2308 		if (!(CSR_READ_4(sc, BGE_HCC_MODE) & BGE_HCCMODE_ENABLE))
2309 			break;
2310 	}
2311 
2312 	if (i == BGE_TIMEOUT) {
2313 		device_printf(sc->bge_dev,
2314 		    "host coalescing engine failed to idle\n");
2315 		return (ENXIO);
2316 	}
2317 
2318 	/* Set up host coalescing defaults */
2319 	CSR_WRITE_4(sc, BGE_HCC_RX_COAL_TICKS, sc->bge_rx_coal_ticks);
2320 	CSR_WRITE_4(sc, BGE_HCC_TX_COAL_TICKS, sc->bge_tx_coal_ticks);
2321 	CSR_WRITE_4(sc, BGE_HCC_RX_MAX_COAL_BDS, sc->bge_rx_max_coal_bds);
2322 	CSR_WRITE_4(sc, BGE_HCC_TX_MAX_COAL_BDS, sc->bge_tx_max_coal_bds);
2323 	if (!(BGE_IS_5705_PLUS(sc))) {
2324 		CSR_WRITE_4(sc, BGE_HCC_RX_COAL_TICKS_INT, 0);
2325 		CSR_WRITE_4(sc, BGE_HCC_TX_COAL_TICKS_INT, 0);
2326 	}
2327 	CSR_WRITE_4(sc, BGE_HCC_RX_MAX_COAL_BDS_INT, 1);
2328 	CSR_WRITE_4(sc, BGE_HCC_TX_MAX_COAL_BDS_INT, 1);
2329 
2330 	/* Set up address of statistics block */
2331 	if (!(BGE_IS_5705_PLUS(sc))) {
2332 		CSR_WRITE_4(sc, BGE_HCC_STATS_ADDR_HI,
2333 		    BGE_ADDR_HI(sc->bge_ldata.bge_stats_paddr));
2334 		CSR_WRITE_4(sc, BGE_HCC_STATS_ADDR_LO,
2335 		    BGE_ADDR_LO(sc->bge_ldata.bge_stats_paddr));
2336 		CSR_WRITE_4(sc, BGE_HCC_STATS_BASEADDR, BGE_STATS_BLOCK);
2337 		CSR_WRITE_4(sc, BGE_HCC_STATUSBLK_BASEADDR, BGE_STATUS_BLOCK);
2338 		CSR_WRITE_4(sc, BGE_HCC_STATS_TICKS, sc->bge_stat_ticks);
2339 	}
2340 
2341 	/* Set up address of status block */
2342 	CSR_WRITE_4(sc, BGE_HCC_STATUSBLK_ADDR_HI,
2343 	    BGE_ADDR_HI(sc->bge_ldata.bge_status_block_paddr));
2344 	CSR_WRITE_4(sc, BGE_HCC_STATUSBLK_ADDR_LO,
2345 	    BGE_ADDR_LO(sc->bge_ldata.bge_status_block_paddr));
2346 
2347 	/* Set up status block size. */
2348 	if (sc->bge_asicrev == BGE_ASICREV_BCM5700 &&
2349 	    sc->bge_chipid != BGE_CHIPID_BCM5700_C0) {
2350 		val = BGE_STATBLKSZ_FULL;
2351 		bzero(sc->bge_ldata.bge_status_block, BGE_STATUS_BLK_SZ);
2352 	} else {
2353 		val = BGE_STATBLKSZ_32BYTE;
2354 		bzero(sc->bge_ldata.bge_status_block, 32);
2355 	}
2356 	bus_dmamap_sync(sc->bge_cdata.bge_status_tag,
2357 	    sc->bge_cdata.bge_status_map,
2358 	    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
2359 
2360 	/* Turn on host coalescing state machine */
2361 	CSR_WRITE_4(sc, BGE_HCC_MODE, val | BGE_HCCMODE_ENABLE);
2362 
2363 	/* Turn on RX BD completion state machine and enable attentions */
2364 	CSR_WRITE_4(sc, BGE_RBDC_MODE,
2365 	    BGE_RBDCMODE_ENABLE | BGE_RBDCMODE_ATTN);
2366 
2367 	/* Turn on RX list placement state machine */
2368 	CSR_WRITE_4(sc, BGE_RXLP_MODE, BGE_RXLPMODE_ENABLE);
2369 
2370 	/* Turn on RX list selector state machine. */
2371 	if (!(BGE_IS_5705_PLUS(sc)))
2372 		CSR_WRITE_4(sc, BGE_RXLS_MODE, BGE_RXLSMODE_ENABLE);
2373 
2374 	/* Turn on DMA, clear stats. */
2375 	val = BGE_MACMODE_TXDMA_ENB | BGE_MACMODE_RXDMA_ENB |
2376 	    BGE_MACMODE_RX_STATS_CLEAR | BGE_MACMODE_TX_STATS_CLEAR |
2377 	    BGE_MACMODE_RX_STATS_ENB | BGE_MACMODE_TX_STATS_ENB |
2378 	    BGE_MACMODE_FRMHDR_DMA_ENB;
2379 
2380 	if (sc->bge_flags & BGE_FLAG_TBI)
2381 		val |= BGE_PORTMODE_TBI;
2382 	else if (sc->bge_flags & BGE_FLAG_MII_SERDES)
2383 		val |= BGE_PORTMODE_GMII;
2384 	else
2385 		val |= BGE_PORTMODE_MII;
2386 
2387 	/* Allow APE to send/receive frames. */
2388 	if ((sc->bge_mfw_flags & BGE_MFW_ON_APE) != 0)
2389 		val |= BGE_MACMODE_APE_RX_EN | BGE_MACMODE_APE_TX_EN;
2390 
2391 	CSR_WRITE_4(sc, BGE_MAC_MODE, val);
2392 	DELAY(40);
2393 
2394 	/* Set misc. local control, enable interrupts on attentions */
2395 	BGE_SETBIT(sc, BGE_MISC_LOCAL_CTL, BGE_MLC_INTR_ONATTN);
2396 
2397 #ifdef notdef
2398 	/* Assert GPIO pins for PHY reset */
2399 	BGE_SETBIT(sc, BGE_MISC_LOCAL_CTL, BGE_MLC_MISCIO_OUT0 |
2400 	    BGE_MLC_MISCIO_OUT1 | BGE_MLC_MISCIO_OUT2);
2401 	BGE_SETBIT(sc, BGE_MISC_LOCAL_CTL, BGE_MLC_MISCIO_OUTEN0 |
2402 	    BGE_MLC_MISCIO_OUTEN1 | BGE_MLC_MISCIO_OUTEN2);
2403 #endif
2404 
2405 	/* Turn on DMA completion state machine */
2406 	if (!(BGE_IS_5705_PLUS(sc)))
2407 		CSR_WRITE_4(sc, BGE_DMAC_MODE, BGE_DMACMODE_ENABLE);
2408 
2409 	val = BGE_WDMAMODE_ENABLE | BGE_WDMAMODE_ALL_ATTNS;
2410 
2411 	/* Enable host coalescing bug fix. */
2412 	if (BGE_IS_5755_PLUS(sc))
2413 		val |= BGE_WDMAMODE_STATUS_TAG_FIX;
2414 
2415 	/* Request larger DMA burst size to get better performance. */
2416 	if (sc->bge_asicrev == BGE_ASICREV_BCM5785)
2417 		val |= BGE_WDMAMODE_BURST_ALL_DATA;
2418 
2419 	/* Turn on write DMA state machine */
2420 	CSR_WRITE_4(sc, BGE_WDMA_MODE, val);
2421 	DELAY(40);
2422 
2423 	/* Turn on read DMA state machine */
2424 	val = BGE_RDMAMODE_ENABLE | BGE_RDMAMODE_ALL_ATTNS;
2425 
2426 	if (sc->bge_asicrev == BGE_ASICREV_BCM5717)
2427 		val |= BGE_RDMAMODE_MULT_DMA_RD_DIS;
2428 
2429 	if (sc->bge_asicrev == BGE_ASICREV_BCM5784 ||
2430 	    sc->bge_asicrev == BGE_ASICREV_BCM5785 ||
2431 	    sc->bge_asicrev == BGE_ASICREV_BCM57780)
2432 		val |= BGE_RDMAMODE_BD_SBD_CRPT_ATTN |
2433 		    BGE_RDMAMODE_MBUF_RBD_CRPT_ATTN |
2434 		    BGE_RDMAMODE_MBUF_SBD_CRPT_ATTN;
2435 	if (sc->bge_flags & BGE_FLAG_PCIE)
2436 		val |= BGE_RDMAMODE_FIFO_LONG_BURST;
2437 	if (sc->bge_flags & (BGE_FLAG_TSO | BGE_FLAG_TSO3)) {
2438 		val |= BGE_RDMAMODE_TSO4_ENABLE;
2439 		if (sc->bge_flags & BGE_FLAG_TSO3 ||
2440 		    sc->bge_asicrev == BGE_ASICREV_BCM5785 ||
2441 		    sc->bge_asicrev == BGE_ASICREV_BCM57780)
2442 			val |= BGE_RDMAMODE_TSO6_ENABLE;
2443 	}
2444 
2445 	if (sc->bge_asicrev == BGE_ASICREV_BCM5720 ||
2446 	    sc->bge_asicrev == BGE_ASICREV_BCM5762) {
2447 		val |= CSR_READ_4(sc, BGE_RDMA_MODE) &
2448 			BGE_RDMAMODE_H2BNC_VLAN_DET;
2449 		/*
2450 		 * Allow multiple outstanding read requests from
2451 		 * non-LSO read DMA engine.
2452 		 */
2453 		val &= ~BGE_RDMAMODE_MULT_DMA_RD_DIS;
2454 	}
2455 
2456 	if (sc->bge_asicrev == BGE_ASICREV_BCM5761 ||
2457 	    sc->bge_asicrev == BGE_ASICREV_BCM5784 ||
2458 	    sc->bge_asicrev == BGE_ASICREV_BCM5785 ||
2459 	    sc->bge_asicrev == BGE_ASICREV_BCM57780 ||
2460 	    BGE_IS_5717_PLUS(sc) || BGE_IS_57765_PLUS(sc)) {
2461 		if (sc->bge_asicrev == BGE_ASICREV_BCM5762)
2462 			rdmareg = BGE_RDMA_RSRVCTRL_REG2;
2463 		else
2464 			rdmareg = BGE_RDMA_RSRVCTRL;
2465 		dmactl = CSR_READ_4(sc, rdmareg);
2466 		/*
2467 		 * Adjust tx margin to prevent TX data corruption and
2468 		 * fix internal FIFO overflow.
2469 		 */
2470 		if (sc->bge_chipid == BGE_CHIPID_BCM5719_A0 ||
2471 		    sc->bge_asicrev == BGE_ASICREV_BCM5762) {
2472 			dmactl &= ~(BGE_RDMA_RSRVCTRL_FIFO_LWM_MASK |
2473 			    BGE_RDMA_RSRVCTRL_FIFO_HWM_MASK |
2474 			    BGE_RDMA_RSRVCTRL_TXMRGN_MASK);
2475 			dmactl |= BGE_RDMA_RSRVCTRL_FIFO_LWM_1_5K |
2476 			    BGE_RDMA_RSRVCTRL_FIFO_HWM_1_5K |
2477 			    BGE_RDMA_RSRVCTRL_TXMRGN_320B;
2478 		}
2479 		/*
2480 		 * Enable fix for read DMA FIFO overruns.
2481 		 * The fix is to limit the number of RX BDs
2482 		 * the hardware would fetch at a fime.
2483 		 */
2484 		CSR_WRITE_4(sc, rdmareg, dmactl |
2485 		    BGE_RDMA_RSRVCTRL_FIFO_OFLW_FIX);
2486 	}
2487 
2488 	if (sc->bge_asicrev == BGE_ASICREV_BCM5719) {
2489 		CSR_WRITE_4(sc, BGE_RDMA_LSO_CRPTEN_CTRL,
2490 		    CSR_READ_4(sc, BGE_RDMA_LSO_CRPTEN_CTRL) |
2491 		    BGE_RDMA_LSO_CRPTEN_CTRL_BLEN_BD_4K |
2492 		    BGE_RDMA_LSO_CRPTEN_CTRL_BLEN_LSO_4K);
2493 	} else if (sc->bge_asicrev == BGE_ASICREV_BCM5720) {
2494 		/*
2495 		 * Allow 4KB burst length reads for non-LSO frames.
2496 		 * Enable 512B burst length reads for buffer descriptors.
2497 		 */
2498 		CSR_WRITE_4(sc, BGE_RDMA_LSO_CRPTEN_CTRL,
2499 		    CSR_READ_4(sc, BGE_RDMA_LSO_CRPTEN_CTRL) |
2500 		    BGE_RDMA_LSO_CRPTEN_CTRL_BLEN_BD_512 |
2501 		    BGE_RDMA_LSO_CRPTEN_CTRL_BLEN_LSO_4K);
2502 	} else if (sc->bge_asicrev == BGE_ASICREV_BCM5762) {
2503 		CSR_WRITE_4(sc, BGE_RDMA_LSO_CRPTEN_CTRL_REG2,
2504 		    CSR_READ_4(sc, BGE_RDMA_LSO_CRPTEN_CTRL_REG2) |
2505 		    BGE_RDMA_LSO_CRPTEN_CTRL_BLEN_BD_4K |
2506 		    BGE_RDMA_LSO_CRPTEN_CTRL_BLEN_LSO_4K);
2507 	}
2508 
2509 	CSR_WRITE_4(sc, BGE_RDMA_MODE, val);
2510 	DELAY(40);
2511 
2512 	if (sc->bge_flags & BGE_FLAG_RDMA_BUG) {
2513 		for (i = 0; i < BGE_NUM_RDMA_CHANNELS / 2; i++) {
2514 			val = CSR_READ_4(sc, BGE_RDMA_LENGTH + i * 4);
2515 			if ((val & 0xFFFF) > BGE_FRAMELEN)
2516 				break;
2517 			if (((val >> 16) & 0xFFFF) > BGE_FRAMELEN)
2518 				break;
2519 		}
2520 		if (i != BGE_NUM_RDMA_CHANNELS / 2) {
2521 			val = CSR_READ_4(sc, BGE_RDMA_LSO_CRPTEN_CTRL);
2522 			if (sc->bge_asicrev == BGE_ASICREV_BCM5719)
2523 				val |= BGE_RDMA_TX_LENGTH_WA_5719;
2524 			else
2525 				val |= BGE_RDMA_TX_LENGTH_WA_5720;
2526 			CSR_WRITE_4(sc, BGE_RDMA_LSO_CRPTEN_CTRL, val);
2527 		}
2528 	}
2529 
2530 	/* Turn on RX data completion state machine */
2531 	CSR_WRITE_4(sc, BGE_RDC_MODE, BGE_RDCMODE_ENABLE);
2532 
2533 	/* Turn on RX BD initiator state machine */
2534 	CSR_WRITE_4(sc, BGE_RBDI_MODE, BGE_RBDIMODE_ENABLE);
2535 
2536 	/* Turn on RX data and RX BD initiator state machine */
2537 	CSR_WRITE_4(sc, BGE_RDBDI_MODE, BGE_RDBDIMODE_ENABLE);
2538 
2539 	/* Turn on Mbuf cluster free state machine */
2540 	if (!(BGE_IS_5705_PLUS(sc)))
2541 		CSR_WRITE_4(sc, BGE_MBCF_MODE, BGE_MBCFMODE_ENABLE);
2542 
2543 	/* Turn on send BD completion state machine */
2544 	CSR_WRITE_4(sc, BGE_SBDC_MODE, BGE_SBDCMODE_ENABLE);
2545 
2546 	/* Turn on send data completion state machine */
2547 	val = BGE_SDCMODE_ENABLE;
2548 	if (sc->bge_asicrev == BGE_ASICREV_BCM5761)
2549 		val |= BGE_SDCMODE_CDELAY;
2550 	CSR_WRITE_4(sc, BGE_SDC_MODE, val);
2551 
2552 	/* Turn on send data initiator state machine */
2553 	if (sc->bge_flags & (BGE_FLAG_TSO | BGE_FLAG_TSO3))
2554 		CSR_WRITE_4(sc, BGE_SDI_MODE, BGE_SDIMODE_ENABLE |
2555 		    BGE_SDIMODE_HW_LSO_PRE_DMA);
2556 	else
2557 		CSR_WRITE_4(sc, BGE_SDI_MODE, BGE_SDIMODE_ENABLE);
2558 
2559 	/* Turn on send BD initiator state machine */
2560 	CSR_WRITE_4(sc, BGE_SBDI_MODE, BGE_SBDIMODE_ENABLE);
2561 
2562 	/* Turn on send BD selector state machine */
2563 	CSR_WRITE_4(sc, BGE_SRS_MODE, BGE_SRSMODE_ENABLE);
2564 
2565 	CSR_WRITE_4(sc, BGE_SDI_STATS_ENABLE_MASK, 0x007FFFFF);
2566 	CSR_WRITE_4(sc, BGE_SDI_STATS_CTL,
2567 	    BGE_SDISTATSCTL_ENABLE | BGE_SDISTATSCTL_FASTER);
2568 
2569 	/* ack/clear link change events */
2570 	CSR_WRITE_4(sc, BGE_MAC_STS, BGE_MACSTAT_SYNC_CHANGED |
2571 	    BGE_MACSTAT_CFG_CHANGED | BGE_MACSTAT_MI_COMPLETE |
2572 	    BGE_MACSTAT_LINK_CHANGED);
2573 	CSR_WRITE_4(sc, BGE_MI_STS, 0);
2574 
2575 	/*
2576 	 * Enable attention when the link has changed state for
2577 	 * devices that use auto polling.
2578 	 */
2579 	if (sc->bge_flags & BGE_FLAG_TBI) {
2580 		CSR_WRITE_4(sc, BGE_MI_STS, BGE_MISTS_LINK);
2581 	} else {
2582 		if (sc->bge_mi_mode & BGE_MIMODE_AUTOPOLL) {
2583 			CSR_WRITE_4(sc, BGE_MI_MODE, sc->bge_mi_mode);
2584 			DELAY(80);
2585 		}
2586 		if (sc->bge_asicrev == BGE_ASICREV_BCM5700 &&
2587 		    sc->bge_chipid != BGE_CHIPID_BCM5700_B2)
2588 			CSR_WRITE_4(sc, BGE_MAC_EVT_ENB,
2589 			    BGE_EVTENB_MI_INTERRUPT);
2590 	}
2591 
2592 	/*
2593 	 * Clear any pending link state attention.
2594 	 * Otherwise some link state change events may be lost until attention
2595 	 * is cleared by bge_intr() -> bge_link_upd() sequence.
2596 	 * It's not necessary on newer BCM chips - perhaps enabling link
2597 	 * state change attentions implies clearing pending attention.
2598 	 */
2599 	CSR_WRITE_4(sc, BGE_MAC_STS, BGE_MACSTAT_SYNC_CHANGED |
2600 	    BGE_MACSTAT_CFG_CHANGED | BGE_MACSTAT_MI_COMPLETE |
2601 	    BGE_MACSTAT_LINK_CHANGED);
2602 
2603 	/* Enable link state change attentions. */
2604 	BGE_SETBIT(sc, BGE_MAC_EVT_ENB, BGE_EVTENB_LINK_CHANGED);
2605 
2606 	return (0);
2607 }
2608 
2609 static const struct bge_revision *
2610 bge_lookup_rev(uint32_t chipid)
2611 {
2612 	const struct bge_revision *br;
2613 
2614 	for (br = bge_revisions; br->br_name != NULL; br++) {
2615 		if (br->br_chipid == chipid)
2616 			return (br);
2617 	}
2618 
2619 	for (br = bge_majorrevs; br->br_name != NULL; br++) {
2620 		if (br->br_chipid == BGE_ASICREV(chipid))
2621 			return (br);
2622 	}
2623 
2624 	return (NULL);
2625 }
2626 
2627 static const struct bge_vendor *
2628 bge_lookup_vendor(uint16_t vid)
2629 {
2630 	const struct bge_vendor *v;
2631 
2632 	for (v = bge_vendors; v->v_name != NULL; v++)
2633 		if (v->v_id == vid)
2634 			return (v);
2635 
2636 	return (NULL);
2637 }
2638 
2639 static uint32_t
2640 bge_chipid(device_t dev)
2641 {
2642 	uint32_t id;
2643 
2644 	id = pci_read_config(dev, BGE_PCI_MISC_CTL, 4) >>
2645 	    BGE_PCIMISCCTL_ASICREV_SHIFT;
2646 	if (BGE_ASICREV(id) == BGE_ASICREV_USE_PRODID_REG) {
2647 		/*
2648 		 * Find the ASCI revision.  Different chips use different
2649 		 * registers.
2650 		 */
2651 		switch (pci_get_device(dev)) {
2652 		case BCOM_DEVICEID_BCM5717C:
2653 			/* 5717 C0 seems to belong to 5720 line. */
2654 			id = BGE_CHIPID_BCM5720_A0;
2655 			break;
2656 		case BCOM_DEVICEID_BCM5717:
2657 		case BCOM_DEVICEID_BCM5718:
2658 		case BCOM_DEVICEID_BCM5719:
2659 		case BCOM_DEVICEID_BCM5720:
2660 		case BCOM_DEVICEID_BCM5725:
2661 		case BCOM_DEVICEID_BCM5727:
2662 		case BCOM_DEVICEID_BCM5762:
2663 		case BCOM_DEVICEID_BCM57764:
2664 		case BCOM_DEVICEID_BCM57767:
2665 		case BCOM_DEVICEID_BCM57787:
2666 			id = pci_read_config(dev,
2667 			    BGE_PCI_GEN2_PRODID_ASICREV, 4);
2668 			break;
2669 		case BCOM_DEVICEID_BCM57761:
2670 		case BCOM_DEVICEID_BCM57762:
2671 		case BCOM_DEVICEID_BCM57765:
2672 		case BCOM_DEVICEID_BCM57766:
2673 		case BCOM_DEVICEID_BCM57781:
2674 		case BCOM_DEVICEID_BCM57782:
2675 		case BCOM_DEVICEID_BCM57785:
2676 		case BCOM_DEVICEID_BCM57786:
2677 		case BCOM_DEVICEID_BCM57791:
2678 		case BCOM_DEVICEID_BCM57795:
2679 			id = pci_read_config(dev,
2680 			    BGE_PCI_GEN15_PRODID_ASICREV, 4);
2681 			break;
2682 		default:
2683 			id = pci_read_config(dev, BGE_PCI_PRODID_ASICREV, 4);
2684 		}
2685 	}
2686 	return (id);
2687 }
2688 
2689 /*
2690  * Probe for a Broadcom chip. Check the PCI vendor and device IDs
2691  * against our list and return its name if we find a match.
2692  *
2693  * Note that since the Broadcom controller contains VPD support, we
2694  * try to get the device name string from the controller itself instead
2695  * of the compiled-in string. It guarantees we'll always announce the
2696  * right product name. We fall back to the compiled-in string when
2697  * VPD is unavailable or corrupt.
2698  */
2699 static int
2700 bge_probe(device_t dev)
2701 {
2702 	char buf[96];
2703 	char model[64];
2704 	const struct bge_revision *br;
2705 	const char *pname;
2706 	struct bge_softc *sc;
2707 	const struct bge_type *t = bge_devs;
2708 	const struct bge_vendor *v;
2709 	uint32_t id;
2710 	uint16_t did, vid;
2711 
2712 	sc = device_get_softc(dev);
2713 	sc->bge_dev = dev;
2714 	vid = pci_get_vendor(dev);
2715 	did = pci_get_device(dev);
2716 	while(t->bge_vid != 0) {
2717 		if ((vid == t->bge_vid) && (did == t->bge_did)) {
2718 			id = bge_chipid(dev);
2719 			br = bge_lookup_rev(id);
2720 			if (bge_has_eaddr(sc) &&
2721 			    pci_get_vpd_ident(dev, &pname) == 0)
2722 				snprintf(model, sizeof(model), "%s", pname);
2723 			else {
2724 				v = bge_lookup_vendor(vid);
2725 				snprintf(model, sizeof(model), "%s %s",
2726 				    v != NULL ? v->v_name : "Unknown",
2727 				    br != NULL ? br->br_name :
2728 				    "NetXtreme/NetLink Ethernet Controller");
2729 			}
2730 			snprintf(buf, sizeof(buf), "%s, %sASIC rev. %#08x",
2731 			    model, br != NULL ? "" : "unknown ", id);
2732 			device_set_desc_copy(dev, buf);
2733 			return (BUS_PROBE_DEFAULT);
2734 		}
2735 		t++;
2736 	}
2737 
2738 	return (ENXIO);
2739 }
2740 
2741 static void
2742 bge_dma_free(struct bge_softc *sc)
2743 {
2744 	int i;
2745 
2746 	/* Destroy DMA maps for RX buffers. */
2747 	for (i = 0; i < BGE_STD_RX_RING_CNT; i++) {
2748 		if (sc->bge_cdata.bge_rx_std_dmamap[i])
2749 			bus_dmamap_destroy(sc->bge_cdata.bge_rx_mtag,
2750 			    sc->bge_cdata.bge_rx_std_dmamap[i]);
2751 	}
2752 	if (sc->bge_cdata.bge_rx_std_sparemap)
2753 		bus_dmamap_destroy(sc->bge_cdata.bge_rx_mtag,
2754 		    sc->bge_cdata.bge_rx_std_sparemap);
2755 
2756 	/* Destroy DMA maps for jumbo RX buffers. */
2757 	for (i = 0; i < BGE_JUMBO_RX_RING_CNT; i++) {
2758 		if (sc->bge_cdata.bge_rx_jumbo_dmamap[i])
2759 			bus_dmamap_destroy(sc->bge_cdata.bge_mtag_jumbo,
2760 			    sc->bge_cdata.bge_rx_jumbo_dmamap[i]);
2761 	}
2762 	if (sc->bge_cdata.bge_rx_jumbo_sparemap)
2763 		bus_dmamap_destroy(sc->bge_cdata.bge_mtag_jumbo,
2764 		    sc->bge_cdata.bge_rx_jumbo_sparemap);
2765 
2766 	/* Destroy DMA maps for TX buffers. */
2767 	for (i = 0; i < BGE_TX_RING_CNT; i++) {
2768 		if (sc->bge_cdata.bge_tx_dmamap[i])
2769 			bus_dmamap_destroy(sc->bge_cdata.bge_tx_mtag,
2770 			    sc->bge_cdata.bge_tx_dmamap[i]);
2771 	}
2772 
2773 	if (sc->bge_cdata.bge_rx_mtag)
2774 		bus_dma_tag_destroy(sc->bge_cdata.bge_rx_mtag);
2775 	if (sc->bge_cdata.bge_mtag_jumbo)
2776 		bus_dma_tag_destroy(sc->bge_cdata.bge_mtag_jumbo);
2777 	if (sc->bge_cdata.bge_tx_mtag)
2778 		bus_dma_tag_destroy(sc->bge_cdata.bge_tx_mtag);
2779 
2780 	/* Destroy standard RX ring. */
2781 	if (sc->bge_ldata.bge_rx_std_ring_paddr)
2782 		bus_dmamap_unload(sc->bge_cdata.bge_rx_std_ring_tag,
2783 		    sc->bge_cdata.bge_rx_std_ring_map);
2784 	if (sc->bge_ldata.bge_rx_std_ring)
2785 		bus_dmamem_free(sc->bge_cdata.bge_rx_std_ring_tag,
2786 		    sc->bge_ldata.bge_rx_std_ring,
2787 		    sc->bge_cdata.bge_rx_std_ring_map);
2788 
2789 	if (sc->bge_cdata.bge_rx_std_ring_tag)
2790 		bus_dma_tag_destroy(sc->bge_cdata.bge_rx_std_ring_tag);
2791 
2792 	/* Destroy jumbo RX ring. */
2793 	if (sc->bge_ldata.bge_rx_jumbo_ring_paddr)
2794 		bus_dmamap_unload(sc->bge_cdata.bge_rx_jumbo_ring_tag,
2795 		    sc->bge_cdata.bge_rx_jumbo_ring_map);
2796 
2797 	if (sc->bge_ldata.bge_rx_jumbo_ring)
2798 		bus_dmamem_free(sc->bge_cdata.bge_rx_jumbo_ring_tag,
2799 		    sc->bge_ldata.bge_rx_jumbo_ring,
2800 		    sc->bge_cdata.bge_rx_jumbo_ring_map);
2801 
2802 	if (sc->bge_cdata.bge_rx_jumbo_ring_tag)
2803 		bus_dma_tag_destroy(sc->bge_cdata.bge_rx_jumbo_ring_tag);
2804 
2805 	/* Destroy RX return ring. */
2806 	if (sc->bge_ldata.bge_rx_return_ring_paddr)
2807 		bus_dmamap_unload(sc->bge_cdata.bge_rx_return_ring_tag,
2808 		    sc->bge_cdata.bge_rx_return_ring_map);
2809 
2810 	if (sc->bge_ldata.bge_rx_return_ring)
2811 		bus_dmamem_free(sc->bge_cdata.bge_rx_return_ring_tag,
2812 		    sc->bge_ldata.bge_rx_return_ring,
2813 		    sc->bge_cdata.bge_rx_return_ring_map);
2814 
2815 	if (sc->bge_cdata.bge_rx_return_ring_tag)
2816 		bus_dma_tag_destroy(sc->bge_cdata.bge_rx_return_ring_tag);
2817 
2818 	/* Destroy TX ring. */
2819 	if (sc->bge_ldata.bge_tx_ring_paddr)
2820 		bus_dmamap_unload(sc->bge_cdata.bge_tx_ring_tag,
2821 		    sc->bge_cdata.bge_tx_ring_map);
2822 
2823 	if (sc->bge_ldata.bge_tx_ring)
2824 		bus_dmamem_free(sc->bge_cdata.bge_tx_ring_tag,
2825 		    sc->bge_ldata.bge_tx_ring,
2826 		    sc->bge_cdata.bge_tx_ring_map);
2827 
2828 	if (sc->bge_cdata.bge_tx_ring_tag)
2829 		bus_dma_tag_destroy(sc->bge_cdata.bge_tx_ring_tag);
2830 
2831 	/* Destroy status block. */
2832 	if (sc->bge_ldata.bge_status_block_paddr)
2833 		bus_dmamap_unload(sc->bge_cdata.bge_status_tag,
2834 		    sc->bge_cdata.bge_status_map);
2835 
2836 	if (sc->bge_ldata.bge_status_block)
2837 		bus_dmamem_free(sc->bge_cdata.bge_status_tag,
2838 		    sc->bge_ldata.bge_status_block,
2839 		    sc->bge_cdata.bge_status_map);
2840 
2841 	if (sc->bge_cdata.bge_status_tag)
2842 		bus_dma_tag_destroy(sc->bge_cdata.bge_status_tag);
2843 
2844 	/* Destroy statistics block. */
2845 	if (sc->bge_ldata.bge_stats_paddr)
2846 		bus_dmamap_unload(sc->bge_cdata.bge_stats_tag,
2847 		    sc->bge_cdata.bge_stats_map);
2848 
2849 	if (sc->bge_ldata.bge_stats)
2850 		bus_dmamem_free(sc->bge_cdata.bge_stats_tag,
2851 		    sc->bge_ldata.bge_stats,
2852 		    sc->bge_cdata.bge_stats_map);
2853 
2854 	if (sc->bge_cdata.bge_stats_tag)
2855 		bus_dma_tag_destroy(sc->bge_cdata.bge_stats_tag);
2856 
2857 	if (sc->bge_cdata.bge_buffer_tag)
2858 		bus_dma_tag_destroy(sc->bge_cdata.bge_buffer_tag);
2859 
2860 	/* Destroy the parent tag. */
2861 	if (sc->bge_cdata.bge_parent_tag)
2862 		bus_dma_tag_destroy(sc->bge_cdata.bge_parent_tag);
2863 }
2864 
2865 static int
2866 bge_dma_ring_alloc(struct bge_softc *sc, bus_size_t alignment,
2867     bus_size_t maxsize, bus_dma_tag_t *tag, uint8_t **ring, bus_dmamap_t *map,
2868     bus_addr_t *paddr, const char *msg)
2869 {
2870 	struct bge_dmamap_arg ctx;
2871 	bus_addr_t lowaddr;
2872 	bus_size_t ring_end;
2873 	int error;
2874 
2875 	lowaddr = BUS_SPACE_MAXADDR;
2876 again:
2877 	error = bus_dma_tag_create(sc->bge_cdata.bge_parent_tag,
2878 	    alignment, 0, lowaddr, BUS_SPACE_MAXADDR, NULL,
2879 	    NULL, maxsize, 1, maxsize, 0, NULL, NULL, tag);
2880 	if (error != 0) {
2881 		device_printf(sc->bge_dev,
2882 		    "could not create %s dma tag\n", msg);
2883 		return (ENOMEM);
2884 	}
2885 	/* Allocate DMA'able memory for ring. */
2886 	error = bus_dmamem_alloc(*tag, (void **)ring,
2887 	    BUS_DMA_NOWAIT | BUS_DMA_ZERO | BUS_DMA_COHERENT, map);
2888 	if (error != 0) {
2889 		device_printf(sc->bge_dev,
2890 		    "could not allocate DMA'able memory for %s\n", msg);
2891 		return (ENOMEM);
2892 	}
2893 	/* Load the address of the ring. */
2894 	ctx.bge_busaddr = 0;
2895 	error = bus_dmamap_load(*tag, *map, *ring, maxsize, bge_dma_map_addr,
2896 	    &ctx, BUS_DMA_NOWAIT);
2897 	if (error != 0) {
2898 		device_printf(sc->bge_dev,
2899 		    "could not load DMA'able memory for %s\n", msg);
2900 		return (ENOMEM);
2901 	}
2902 	*paddr = ctx.bge_busaddr;
2903 	ring_end = *paddr + maxsize;
2904 	if ((sc->bge_flags & BGE_FLAG_4G_BNDRY_BUG) != 0 &&
2905 	    BGE_ADDR_HI(*paddr) != BGE_ADDR_HI(ring_end)) {
2906 		/*
2907 		 * 4GB boundary crossed.  Limit maximum allowable DMA
2908 		 * address space to 32bit and try again.
2909 		 */
2910 		bus_dmamap_unload(*tag, *map);
2911 		bus_dmamem_free(*tag, *ring, *map);
2912 		bus_dma_tag_destroy(*tag);
2913 		if (bootverbose)
2914 			device_printf(sc->bge_dev, "4GB boundary crossed, "
2915 			    "limit DMA address space to 32bit for %s\n", msg);
2916 		*ring = NULL;
2917 		*tag = NULL;
2918 		*map = NULL;
2919 		lowaddr = BUS_SPACE_MAXADDR_32BIT;
2920 		goto again;
2921 	}
2922 	return (0);
2923 }
2924 
2925 static int
2926 bge_dma_alloc(struct bge_softc *sc)
2927 {
2928 	bus_addr_t lowaddr;
2929 	bus_size_t boundary, sbsz, rxmaxsegsz, txsegsz, txmaxsegsz;
2930 	int i, error;
2931 
2932 	lowaddr = BUS_SPACE_MAXADDR;
2933 	if ((sc->bge_flags & BGE_FLAG_40BIT_BUG) != 0)
2934 		lowaddr = BGE_DMA_MAXADDR;
2935 	/*
2936 	 * Allocate the parent bus DMA tag appropriate for PCI.
2937 	 */
2938 	error = bus_dma_tag_create(bus_get_dma_tag(sc->bge_dev),
2939 	    1, 0, lowaddr, BUS_SPACE_MAXADDR, NULL,
2940 	    NULL, BUS_SPACE_MAXSIZE_32BIT, 0, BUS_SPACE_MAXSIZE_32BIT,
2941 	    0, NULL, NULL, &sc->bge_cdata.bge_parent_tag);
2942 	if (error != 0) {
2943 		device_printf(sc->bge_dev,
2944 		    "could not allocate parent dma tag\n");
2945 		return (ENOMEM);
2946 	}
2947 
2948 	/* Create tag for standard RX ring. */
2949 	error = bge_dma_ring_alloc(sc, PAGE_SIZE, BGE_STD_RX_RING_SZ,
2950 	    &sc->bge_cdata.bge_rx_std_ring_tag,
2951 	    (uint8_t **)&sc->bge_ldata.bge_rx_std_ring,
2952 	    &sc->bge_cdata.bge_rx_std_ring_map,
2953 	    &sc->bge_ldata.bge_rx_std_ring_paddr, "RX ring");
2954 	if (error)
2955 		return (error);
2956 
2957 	/* Create tag for RX return ring. */
2958 	error = bge_dma_ring_alloc(sc, PAGE_SIZE, BGE_RX_RTN_RING_SZ(sc),
2959 	    &sc->bge_cdata.bge_rx_return_ring_tag,
2960 	    (uint8_t **)&sc->bge_ldata.bge_rx_return_ring,
2961 	    &sc->bge_cdata.bge_rx_return_ring_map,
2962 	    &sc->bge_ldata.bge_rx_return_ring_paddr, "RX return ring");
2963 	if (error)
2964 		return (error);
2965 
2966 	/* Create tag for TX ring. */
2967 	error = bge_dma_ring_alloc(sc, PAGE_SIZE, BGE_TX_RING_SZ,
2968 	    &sc->bge_cdata.bge_tx_ring_tag,
2969 	    (uint8_t **)&sc->bge_ldata.bge_tx_ring,
2970 	    &sc->bge_cdata.bge_tx_ring_map,
2971 	    &sc->bge_ldata.bge_tx_ring_paddr, "TX ring");
2972 	if (error)
2973 		return (error);
2974 
2975 	/*
2976 	 * Create tag for status block.
2977 	 * Because we only use single Tx/Rx/Rx return ring, use
2978 	 * minimum status block size except BCM5700 AX/BX which
2979 	 * seems to want to see full status block size regardless
2980 	 * of configured number of ring.
2981 	 */
2982 	if (sc->bge_asicrev == BGE_ASICREV_BCM5700 &&
2983 	    sc->bge_chipid != BGE_CHIPID_BCM5700_C0)
2984 		sbsz = BGE_STATUS_BLK_SZ;
2985 	else
2986 		sbsz = 32;
2987 	error = bge_dma_ring_alloc(sc, PAGE_SIZE, sbsz,
2988 	    &sc->bge_cdata.bge_status_tag,
2989 	    (uint8_t **)&sc->bge_ldata.bge_status_block,
2990 	    &sc->bge_cdata.bge_status_map,
2991 	    &sc->bge_ldata.bge_status_block_paddr, "status block");
2992 	if (error)
2993 		return (error);
2994 
2995 	/* Create tag for statistics block. */
2996 	error = bge_dma_ring_alloc(sc, PAGE_SIZE, BGE_STATS_SZ,
2997 	    &sc->bge_cdata.bge_stats_tag,
2998 	    (uint8_t **)&sc->bge_ldata.bge_stats,
2999 	    &sc->bge_cdata.bge_stats_map,
3000 	    &sc->bge_ldata.bge_stats_paddr, "statistics block");
3001 	if (error)
3002 		return (error);
3003 
3004 	/* Create tag for jumbo RX ring. */
3005 	if (BGE_IS_JUMBO_CAPABLE(sc)) {
3006 		error = bge_dma_ring_alloc(sc, PAGE_SIZE, BGE_JUMBO_RX_RING_SZ,
3007 		    &sc->bge_cdata.bge_rx_jumbo_ring_tag,
3008 		    (uint8_t **)&sc->bge_ldata.bge_rx_jumbo_ring,
3009 		    &sc->bge_cdata.bge_rx_jumbo_ring_map,
3010 		    &sc->bge_ldata.bge_rx_jumbo_ring_paddr, "jumbo RX ring");
3011 		if (error)
3012 			return (error);
3013 	}
3014 
3015 	/* Create parent tag for buffers. */
3016 	boundary = 0;
3017 	if ((sc->bge_flags & BGE_FLAG_4G_BNDRY_BUG) != 0) {
3018 		boundary = BGE_DMA_BNDRY;
3019 		/*
3020 		 * XXX
3021 		 * watchdog timeout issue was observed on BCM5704 which
3022 		 * lives behind PCI-X bridge(e.g AMD 8131 PCI-X bridge).
3023 		 * Both limiting DMA address space to 32bits and flushing
3024 		 * mailbox write seem to address the issue.
3025 		 */
3026 		if (sc->bge_pcixcap != 0)
3027 			lowaddr = BUS_SPACE_MAXADDR_32BIT;
3028 	}
3029 	error = bus_dma_tag_create(bus_get_dma_tag(sc->bge_dev),
3030 	    1, boundary, lowaddr, BUS_SPACE_MAXADDR, NULL,
3031 	    NULL, BUS_SPACE_MAXSIZE_32BIT, 0, BUS_SPACE_MAXSIZE_32BIT,
3032 	    0, NULL, NULL, &sc->bge_cdata.bge_buffer_tag);
3033 	if (error != 0) {
3034 		device_printf(sc->bge_dev,
3035 		    "could not allocate buffer dma tag\n");
3036 		return (ENOMEM);
3037 	}
3038 	/* Create tag for Tx mbufs. */
3039 	if (sc->bge_flags & (BGE_FLAG_TSO | BGE_FLAG_TSO3)) {
3040 		txsegsz = BGE_TSOSEG_SZ;
3041 		txmaxsegsz = 65535 + sizeof(struct ether_vlan_header);
3042 	} else {
3043 		txsegsz = MCLBYTES;
3044 		txmaxsegsz = MCLBYTES * BGE_NSEG_NEW;
3045 	}
3046 	error = bus_dma_tag_create(sc->bge_cdata.bge_buffer_tag, 1,
3047 	    0, BUS_SPACE_MAXADDR, BUS_SPACE_MAXADDR, NULL, NULL,
3048 	    txmaxsegsz, BGE_NSEG_NEW, txsegsz, 0, NULL, NULL,
3049 	    &sc->bge_cdata.bge_tx_mtag);
3050 
3051 	if (error) {
3052 		device_printf(sc->bge_dev, "could not allocate TX dma tag\n");
3053 		return (ENOMEM);
3054 	}
3055 
3056 	/* Create tag for Rx mbufs. */
3057 	if (sc->bge_flags & BGE_FLAG_JUMBO_STD)
3058 		rxmaxsegsz = MJUM9BYTES;
3059 	else
3060 		rxmaxsegsz = MCLBYTES;
3061 	error = bus_dma_tag_create(sc->bge_cdata.bge_buffer_tag, 1, 0,
3062 	    BUS_SPACE_MAXADDR, BUS_SPACE_MAXADDR, NULL, NULL, rxmaxsegsz, 1,
3063 	    rxmaxsegsz, 0, NULL, NULL, &sc->bge_cdata.bge_rx_mtag);
3064 
3065 	if (error) {
3066 		device_printf(sc->bge_dev, "could not allocate RX dma tag\n");
3067 		return (ENOMEM);
3068 	}
3069 
3070 	/* Create DMA maps for RX buffers. */
3071 	error = bus_dmamap_create(sc->bge_cdata.bge_rx_mtag, 0,
3072 	    &sc->bge_cdata.bge_rx_std_sparemap);
3073 	if (error) {
3074 		device_printf(sc->bge_dev,
3075 		    "can't create spare DMA map for RX\n");
3076 		return (ENOMEM);
3077 	}
3078 	for (i = 0; i < BGE_STD_RX_RING_CNT; i++) {
3079 		error = bus_dmamap_create(sc->bge_cdata.bge_rx_mtag, 0,
3080 			    &sc->bge_cdata.bge_rx_std_dmamap[i]);
3081 		if (error) {
3082 			device_printf(sc->bge_dev,
3083 			    "can't create DMA map for RX\n");
3084 			return (ENOMEM);
3085 		}
3086 	}
3087 
3088 	/* Create DMA maps for TX buffers. */
3089 	for (i = 0; i < BGE_TX_RING_CNT; i++) {
3090 		error = bus_dmamap_create(sc->bge_cdata.bge_tx_mtag, 0,
3091 			    &sc->bge_cdata.bge_tx_dmamap[i]);
3092 		if (error) {
3093 			device_printf(sc->bge_dev,
3094 			    "can't create DMA map for TX\n");
3095 			return (ENOMEM);
3096 		}
3097 	}
3098 
3099 	/* Create tags for jumbo RX buffers. */
3100 	if (BGE_IS_JUMBO_CAPABLE(sc)) {
3101 		error = bus_dma_tag_create(sc->bge_cdata.bge_buffer_tag,
3102 		    1, 0, BUS_SPACE_MAXADDR, BUS_SPACE_MAXADDR, NULL,
3103 		    NULL, MJUM9BYTES, BGE_NSEG_JUMBO, PAGE_SIZE,
3104 		    0, NULL, NULL, &sc->bge_cdata.bge_mtag_jumbo);
3105 		if (error) {
3106 			device_printf(sc->bge_dev,
3107 			    "could not allocate jumbo dma tag\n");
3108 			return (ENOMEM);
3109 		}
3110 		/* Create DMA maps for jumbo RX buffers. */
3111 		error = bus_dmamap_create(sc->bge_cdata.bge_mtag_jumbo,
3112 		    0, &sc->bge_cdata.bge_rx_jumbo_sparemap);
3113 		if (error) {
3114 			device_printf(sc->bge_dev,
3115 			    "can't create spare DMA map for jumbo RX\n");
3116 			return (ENOMEM);
3117 		}
3118 		for (i = 0; i < BGE_JUMBO_RX_RING_CNT; i++) {
3119 			error = bus_dmamap_create(sc->bge_cdata.bge_mtag_jumbo,
3120 				    0, &sc->bge_cdata.bge_rx_jumbo_dmamap[i]);
3121 			if (error) {
3122 				device_printf(sc->bge_dev,
3123 				    "can't create DMA map for jumbo RX\n");
3124 				return (ENOMEM);
3125 			}
3126 		}
3127 	}
3128 
3129 	return (0);
3130 }
3131 
3132 /*
3133  * Return true if this device has more than one port.
3134  */
3135 static int
3136 bge_has_multiple_ports(struct bge_softc *sc)
3137 {
3138 	device_t dev = sc->bge_dev;
3139 	u_int b, d, f, fscan, s;
3140 
3141 	d = pci_get_domain(dev);
3142 	b = pci_get_bus(dev);
3143 	s = pci_get_slot(dev);
3144 	f = pci_get_function(dev);
3145 	for (fscan = 0; fscan <= PCI_FUNCMAX; fscan++)
3146 		if (fscan != f && pci_find_dbsf(d, b, s, fscan) != NULL)
3147 			return (1);
3148 	return (0);
3149 }
3150 
3151 /*
3152  * Return true if MSI can be used with this device.
3153  */
3154 static int
3155 bge_can_use_msi(struct bge_softc *sc)
3156 {
3157 	int can_use_msi = 0;
3158 
3159 	if (sc->bge_msi == 0)
3160 		return (0);
3161 
3162 	/* Disable MSI for polling(4). */
3163 #ifdef DEVICE_POLLING
3164 	return (0);
3165 #endif
3166 	switch (sc->bge_asicrev) {
3167 	case BGE_ASICREV_BCM5714_A0:
3168 	case BGE_ASICREV_BCM5714:
3169 		/*
3170 		 * Apparently, MSI doesn't work when these chips are
3171 		 * configured in single-port mode.
3172 		 */
3173 		if (bge_has_multiple_ports(sc))
3174 			can_use_msi = 1;
3175 		break;
3176 	case BGE_ASICREV_BCM5750:
3177 		if (sc->bge_chiprev != BGE_CHIPREV_5750_AX &&
3178 		    sc->bge_chiprev != BGE_CHIPREV_5750_BX)
3179 			can_use_msi = 1;
3180 		break;
3181 	case BGE_ASICREV_BCM5784:
3182 		/*
3183 		 * Prevent infinite "watchdog timeout" errors
3184 		 * in some MacBook Pro and make it work out-of-the-box.
3185 		 */
3186 		if (sc->bge_chiprev == BGE_CHIPREV_5784_AX)
3187 			break;
3188 		/* FALLTHROUGH */
3189 	default:
3190 		if (BGE_IS_575X_PLUS(sc))
3191 			can_use_msi = 1;
3192 	}
3193 	return (can_use_msi);
3194 }
3195 
3196 static int
3197 bge_mbox_reorder(struct bge_softc *sc)
3198 {
3199 	/* Lists of PCI bridges that are known to reorder mailbox writes. */
3200 	static const struct mbox_reorder {
3201 		const uint16_t vendor;
3202 		const uint16_t device;
3203 		const char *desc;
3204 	} mbox_reorder_lists[] = {
3205 		{ 0x1022, 0x7450, "AMD-8131 PCI-X Bridge" },
3206 	};
3207 	devclass_t pci, pcib;
3208 	device_t bus, dev;
3209 	int i;
3210 
3211 	pci = devclass_find("pci");
3212 	pcib = devclass_find("pcib");
3213 	dev = sc->bge_dev;
3214 	bus = device_get_parent(dev);
3215 	for (;;) {
3216 		dev = device_get_parent(bus);
3217 		bus = device_get_parent(dev);
3218 		if (device_get_devclass(dev) != pcib)
3219 			break;
3220 		if (device_get_devclass(bus) != pci)
3221 			break;
3222 		for (i = 0; i < nitems(mbox_reorder_lists); i++) {
3223 			if (pci_get_vendor(dev) ==
3224 			    mbox_reorder_lists[i].vendor &&
3225 			    pci_get_device(dev) ==
3226 			    mbox_reorder_lists[i].device) {
3227 				device_printf(sc->bge_dev,
3228 				    "enabling MBOX workaround for %s\n",
3229 				    mbox_reorder_lists[i].desc);
3230 				return (1);
3231 			}
3232 		}
3233 	}
3234 	return (0);
3235 }
3236 
3237 static void
3238 bge_devinfo(struct bge_softc *sc)
3239 {
3240 	uint32_t cfg, clk;
3241 
3242 	device_printf(sc->bge_dev,
3243 	    "CHIP ID 0x%08x; ASIC REV 0x%02x; CHIP REV 0x%02x; ",
3244 	    sc->bge_chipid, sc->bge_asicrev, sc->bge_chiprev);
3245 	if (sc->bge_flags & BGE_FLAG_PCIE)
3246 		printf("PCI-E\n");
3247 	else if (sc->bge_flags & BGE_FLAG_PCIX) {
3248 		printf("PCI-X ");
3249 		cfg = CSR_READ_4(sc, BGE_MISC_CFG) & BGE_MISCCFG_BOARD_ID_MASK;
3250 		if (cfg == BGE_MISCCFG_BOARD_ID_5704CIOBE)
3251 			clk = 133;
3252 		else {
3253 			clk = CSR_READ_4(sc, BGE_PCI_CLKCTL) & 0x1F;
3254 			switch (clk) {
3255 			case 0:
3256 				clk = 33;
3257 				break;
3258 			case 2:
3259 				clk = 50;
3260 				break;
3261 			case 4:
3262 				clk = 66;
3263 				break;
3264 			case 6:
3265 				clk = 100;
3266 				break;
3267 			case 7:
3268 				clk = 133;
3269 				break;
3270 			}
3271 		}
3272 		printf("%u MHz\n", clk);
3273 	} else {
3274 		if (sc->bge_pcixcap != 0)
3275 			printf("PCI on PCI-X ");
3276 		else
3277 			printf("PCI ");
3278 		cfg = pci_read_config(sc->bge_dev, BGE_PCI_PCISTATE, 4);
3279 		if (cfg & BGE_PCISTATE_PCI_BUSSPEED)
3280 			clk = 66;
3281 		else
3282 			clk = 33;
3283 		if (cfg & BGE_PCISTATE_32BIT_BUS)
3284 			printf("%u MHz; 32bit\n", clk);
3285 		else
3286 			printf("%u MHz; 64bit\n", clk);
3287 	}
3288 }
3289 
3290 static int
3291 bge_attach(device_t dev)
3292 {
3293 	if_t ifp;
3294 	struct bge_softc *sc;
3295 	uint32_t hwcfg = 0, misccfg, pcistate;
3296 	u_char eaddr[ETHER_ADDR_LEN];
3297 	int capmask, error, reg, rid, trys;
3298 
3299 	sc = device_get_softc(dev);
3300 	sc->bge_dev = dev;
3301 
3302 	BGE_LOCK_INIT(sc, device_get_nameunit(dev));
3303 	NET_TASK_INIT(&sc->bge_intr_task, 0, bge_intr_task, sc);
3304 	callout_init_mtx(&sc->bge_stat_ch, &sc->bge_mtx, 0);
3305 
3306 	pci_enable_busmaster(dev);
3307 
3308 	/*
3309 	 * Allocate control/status registers.
3310 	 */
3311 	rid = PCIR_BAR(0);
3312 	sc->bge_res = bus_alloc_resource_any(dev, SYS_RES_MEMORY, &rid,
3313 	    RF_ACTIVE);
3314 
3315 	if (sc->bge_res == NULL) {
3316 		device_printf (sc->bge_dev, "couldn't map BAR0 memory\n");
3317 		error = ENXIO;
3318 		goto fail;
3319 	}
3320 
3321 	/* Save various chip information. */
3322 	sc->bge_func_addr = pci_get_function(dev);
3323 	sc->bge_chipid = bge_chipid(dev);
3324 	sc->bge_asicrev = BGE_ASICREV(sc->bge_chipid);
3325 	sc->bge_chiprev = BGE_CHIPREV(sc->bge_chipid);
3326 
3327 	/* Set default PHY address. */
3328 	sc->bge_phy_addr = 1;
3329 	 /*
3330 	  * PHY address mapping for various devices.
3331 	  *
3332 	  *          | F0 Cu | F0 Sr | F1 Cu | F1 Sr |
3333 	  * ---------+-------+-------+-------+-------+
3334 	  * BCM57XX  |   1   |   X   |   X   |   X   |
3335 	  * BCM5704  |   1   |   X   |   1   |   X   |
3336 	  * BCM5717  |   1   |   8   |   2   |   9   |
3337 	  * BCM5719  |   1   |   8   |   2   |   9   |
3338 	  * BCM5720  |   1   |   8   |   2   |   9   |
3339 	  *
3340 	  *          | F2 Cu | F2 Sr | F3 Cu | F3 Sr |
3341 	  * ---------+-------+-------+-------+-------+
3342 	  * BCM57XX  |   X   |   X   |   X   |   X   |
3343 	  * BCM5704  |   X   |   X   |   X   |   X   |
3344 	  * BCM5717  |   X   |   X   |   X   |   X   |
3345 	  * BCM5719  |   3   |   10  |   4   |   11  |
3346 	  * BCM5720  |   X   |   X   |   X   |   X   |
3347 	  *
3348 	  * Other addresses may respond but they are not
3349 	  * IEEE compliant PHYs and should be ignored.
3350 	  */
3351 	if (sc->bge_asicrev == BGE_ASICREV_BCM5717 ||
3352 	    sc->bge_asicrev == BGE_ASICREV_BCM5719 ||
3353 	    sc->bge_asicrev == BGE_ASICREV_BCM5720) {
3354 		if (sc->bge_chipid != BGE_CHIPID_BCM5717_A0) {
3355 			if (CSR_READ_4(sc, BGE_SGDIG_STS) &
3356 			    BGE_SGDIGSTS_IS_SERDES)
3357 				sc->bge_phy_addr = sc->bge_func_addr + 8;
3358 			else
3359 				sc->bge_phy_addr = sc->bge_func_addr + 1;
3360 		} else {
3361 			if (CSR_READ_4(sc, BGE_CPMU_PHY_STRAP) &
3362 			    BGE_CPMU_PHY_STRAP_IS_SERDES)
3363 				sc->bge_phy_addr = sc->bge_func_addr + 8;
3364 			else
3365 				sc->bge_phy_addr = sc->bge_func_addr + 1;
3366 		}
3367 	}
3368 
3369 	if (bge_has_eaddr(sc))
3370 		sc->bge_flags |= BGE_FLAG_EADDR;
3371 
3372 	/* Save chipset family. */
3373 	switch (sc->bge_asicrev) {
3374 	case BGE_ASICREV_BCM5762:
3375 	case BGE_ASICREV_BCM57765:
3376 	case BGE_ASICREV_BCM57766:
3377 		sc->bge_flags |= BGE_FLAG_57765_PLUS;
3378 		/* FALLTHROUGH */
3379 	case BGE_ASICREV_BCM5717:
3380 	case BGE_ASICREV_BCM5719:
3381 	case BGE_ASICREV_BCM5720:
3382 		sc->bge_flags |= BGE_FLAG_5717_PLUS | BGE_FLAG_5755_PLUS |
3383 		    BGE_FLAG_575X_PLUS | BGE_FLAG_5705_PLUS | BGE_FLAG_JUMBO |
3384 		    BGE_FLAG_JUMBO_FRAME;
3385 		if (sc->bge_asicrev == BGE_ASICREV_BCM5719 ||
3386 		    sc->bge_asicrev == BGE_ASICREV_BCM5720) {
3387 			/*
3388 			 * Enable work around for DMA engine miscalculation
3389 			 * of TXMBUF available space.
3390 			 */
3391 			sc->bge_flags |= BGE_FLAG_RDMA_BUG;
3392 			if (sc->bge_asicrev == BGE_ASICREV_BCM5719 &&
3393 			    sc->bge_chipid == BGE_CHIPID_BCM5719_A0) {
3394 				/* Jumbo frame on BCM5719 A0 does not work. */
3395 				sc->bge_flags &= ~BGE_FLAG_JUMBO;
3396 			}
3397 		}
3398 		break;
3399 	case BGE_ASICREV_BCM5755:
3400 	case BGE_ASICREV_BCM5761:
3401 	case BGE_ASICREV_BCM5784:
3402 	case BGE_ASICREV_BCM5785:
3403 	case BGE_ASICREV_BCM5787:
3404 	case BGE_ASICREV_BCM57780:
3405 		sc->bge_flags |= BGE_FLAG_5755_PLUS | BGE_FLAG_575X_PLUS |
3406 		    BGE_FLAG_5705_PLUS;
3407 		break;
3408 	case BGE_ASICREV_BCM5700:
3409 	case BGE_ASICREV_BCM5701:
3410 	case BGE_ASICREV_BCM5703:
3411 	case BGE_ASICREV_BCM5704:
3412 		sc->bge_flags |= BGE_FLAG_5700_FAMILY | BGE_FLAG_JUMBO;
3413 		break;
3414 	case BGE_ASICREV_BCM5714_A0:
3415 	case BGE_ASICREV_BCM5780:
3416 	case BGE_ASICREV_BCM5714:
3417 		sc->bge_flags |= BGE_FLAG_5714_FAMILY | BGE_FLAG_JUMBO_STD;
3418 		/* FALLTHROUGH */
3419 	case BGE_ASICREV_BCM5750:
3420 	case BGE_ASICREV_BCM5752:
3421 	case BGE_ASICREV_BCM5906:
3422 		sc->bge_flags |= BGE_FLAG_575X_PLUS;
3423 		/* FALLTHROUGH */
3424 	case BGE_ASICREV_BCM5705:
3425 		sc->bge_flags |= BGE_FLAG_5705_PLUS;
3426 		break;
3427 	}
3428 
3429 	/* Identify chips with APE processor. */
3430 	switch (sc->bge_asicrev) {
3431 	case BGE_ASICREV_BCM5717:
3432 	case BGE_ASICREV_BCM5719:
3433 	case BGE_ASICREV_BCM5720:
3434 	case BGE_ASICREV_BCM5761:
3435 	case BGE_ASICREV_BCM5762:
3436 		sc->bge_flags |= BGE_FLAG_APE;
3437 		break;
3438 	}
3439 
3440 	/* Chips with APE need BAR2 access for APE registers/memory. */
3441 	if ((sc->bge_flags & BGE_FLAG_APE) != 0) {
3442 		rid = PCIR_BAR(2);
3443 		sc->bge_res2 = bus_alloc_resource_any(dev, SYS_RES_MEMORY, &rid,
3444 		    RF_ACTIVE);
3445 		if (sc->bge_res2 == NULL) {
3446 			device_printf (sc->bge_dev,
3447 			    "couldn't map BAR2 memory\n");
3448 			error = ENXIO;
3449 			goto fail;
3450 		}
3451 
3452 		/* Enable APE register/memory access by host driver. */
3453 		pcistate = pci_read_config(dev, BGE_PCI_PCISTATE, 4);
3454 		pcistate |= BGE_PCISTATE_ALLOW_APE_CTLSPC_WR |
3455 		    BGE_PCISTATE_ALLOW_APE_SHMEM_WR |
3456 		    BGE_PCISTATE_ALLOW_APE_PSPACE_WR;
3457 		pci_write_config(dev, BGE_PCI_PCISTATE, pcistate, 4);
3458 
3459 		bge_ape_lock_init(sc);
3460 		bge_ape_read_fw_ver(sc);
3461 	}
3462 
3463 	/* Add SYSCTLs, requires the chipset family to be set. */
3464 	bge_add_sysctls(sc);
3465 
3466 	/* Identify the chips that use an CPMU. */
3467 	if (BGE_IS_5717_PLUS(sc) ||
3468 	    sc->bge_asicrev == BGE_ASICREV_BCM5784 ||
3469 	    sc->bge_asicrev == BGE_ASICREV_BCM5761 ||
3470 	    sc->bge_asicrev == BGE_ASICREV_BCM5785 ||
3471 	    sc->bge_asicrev == BGE_ASICREV_BCM57780)
3472 		sc->bge_flags |= BGE_FLAG_CPMU_PRESENT;
3473 	if ((sc->bge_flags & BGE_FLAG_CPMU_PRESENT) != 0)
3474 		sc->bge_mi_mode = BGE_MIMODE_500KHZ_CONST;
3475 	else
3476 		sc->bge_mi_mode = BGE_MIMODE_BASE;
3477 	/* Enable auto polling for BCM570[0-5]. */
3478 	if (BGE_IS_5700_FAMILY(sc) || sc->bge_asicrev == BGE_ASICREV_BCM5705)
3479 		sc->bge_mi_mode |= BGE_MIMODE_AUTOPOLL;
3480 
3481 	/*
3482 	 * All Broadcom controllers have 4GB boundary DMA bug.
3483 	 * Whenever an address crosses a multiple of the 4GB boundary
3484 	 * (including 4GB, 8Gb, 12Gb, etc.) and makes the transition
3485 	 * from 0xX_FFFF_FFFF to 0x(X+1)_0000_0000 an internal DMA
3486 	 * state machine will lockup and cause the device to hang.
3487 	 */
3488 	sc->bge_flags |= BGE_FLAG_4G_BNDRY_BUG;
3489 
3490 	/* BCM5755 or higher and BCM5906 have short DMA bug. */
3491 	if (BGE_IS_5755_PLUS(sc) || sc->bge_asicrev == BGE_ASICREV_BCM5906)
3492 		sc->bge_flags |= BGE_FLAG_SHORT_DMA_BUG;
3493 
3494 	/*
3495 	 * BCM5719 cannot handle DMA requests for DMA segments that
3496 	 * have larger than 4KB in size.  However the maximum DMA
3497 	 * segment size created in DMA tag is 4KB for TSO, so we
3498 	 * wouldn't encounter the issue here.
3499 	 */
3500 	if (sc->bge_asicrev == BGE_ASICREV_BCM5719)
3501 		sc->bge_flags |= BGE_FLAG_4K_RDMA_BUG;
3502 
3503 	misccfg = CSR_READ_4(sc, BGE_MISC_CFG) & BGE_MISCCFG_BOARD_ID_MASK;
3504 	if (sc->bge_asicrev == BGE_ASICREV_BCM5705) {
3505 		if (misccfg == BGE_MISCCFG_BOARD_ID_5788 ||
3506 		    misccfg == BGE_MISCCFG_BOARD_ID_5788M)
3507 			sc->bge_flags |= BGE_FLAG_5788;
3508 	}
3509 
3510 	capmask = BMSR_DEFCAPMASK;
3511 	if ((sc->bge_asicrev == BGE_ASICREV_BCM5703 &&
3512 	    (misccfg == 0x4000 || misccfg == 0x8000)) ||
3513 	    (sc->bge_asicrev == BGE_ASICREV_BCM5705 &&
3514 	    pci_get_vendor(dev) == BCOM_VENDORID &&
3515 	    (pci_get_device(dev) == BCOM_DEVICEID_BCM5901 ||
3516 	    pci_get_device(dev) == BCOM_DEVICEID_BCM5901A2 ||
3517 	    pci_get_device(dev) == BCOM_DEVICEID_BCM5705F)) ||
3518 	    (pci_get_vendor(dev) == BCOM_VENDORID &&
3519 	    (pci_get_device(dev) == BCOM_DEVICEID_BCM5751F ||
3520 	    pci_get_device(dev) == BCOM_DEVICEID_BCM5753F ||
3521 	    pci_get_device(dev) == BCOM_DEVICEID_BCM5787F)) ||
3522 	    pci_get_device(dev) == BCOM_DEVICEID_BCM57790 ||
3523 	    pci_get_device(dev) == BCOM_DEVICEID_BCM57791 ||
3524 	    pci_get_device(dev) == BCOM_DEVICEID_BCM57795 ||
3525 	    sc->bge_asicrev == BGE_ASICREV_BCM5906) {
3526 		/* These chips are 10/100 only. */
3527 		capmask &= ~BMSR_EXTSTAT;
3528 		sc->bge_phy_flags |= BGE_PHY_NO_WIRESPEED;
3529 	}
3530 
3531 	/*
3532 	 * Some controllers seem to require a special firmware to use
3533 	 * TSO. But the firmware is not available to FreeBSD and Linux
3534 	 * claims that the TSO performed by the firmware is slower than
3535 	 * hardware based TSO. Moreover the firmware based TSO has one
3536 	 * known bug which can't handle TSO if Ethernet header + IP/TCP
3537 	 * header is greater than 80 bytes. A workaround for the TSO
3538 	 * bug exist but it seems it's too expensive than not using
3539 	 * TSO at all. Some hardwares also have the TSO bug so limit
3540 	 * the TSO to the controllers that are not affected TSO issues
3541 	 * (e.g. 5755 or higher).
3542 	 */
3543 	if (BGE_IS_5717_PLUS(sc)) {
3544 		/* BCM5717 requires different TSO configuration. */
3545 		sc->bge_flags |= BGE_FLAG_TSO3;
3546 		if (sc->bge_asicrev == BGE_ASICREV_BCM5719 &&
3547 		    sc->bge_chipid == BGE_CHIPID_BCM5719_A0) {
3548 			/* TSO on BCM5719 A0 does not work. */
3549 			sc->bge_flags &= ~BGE_FLAG_TSO3;
3550 		}
3551 	} else if (BGE_IS_5755_PLUS(sc)) {
3552 		/*
3553 		 * BCM5754 and BCM5787 shares the same ASIC id so
3554 		 * explicit device id check is required.
3555 		 * Due to unknown reason TSO does not work on BCM5755M.
3556 		 */
3557 		if (pci_get_device(dev) != BCOM_DEVICEID_BCM5754 &&
3558 		    pci_get_device(dev) != BCOM_DEVICEID_BCM5754M &&
3559 		    pci_get_device(dev) != BCOM_DEVICEID_BCM5755M)
3560 			sc->bge_flags |= BGE_FLAG_TSO;
3561 	}
3562 
3563 	/*
3564 	 * Check if this is a PCI-X or PCI Express device.
3565 	 */
3566 	if (pci_find_cap(dev, PCIY_EXPRESS, &reg) == 0) {
3567 		/*
3568 		 * Found a PCI Express capabilities register, this
3569 		 * must be a PCI Express device.
3570 		 */
3571 		sc->bge_flags |= BGE_FLAG_PCIE;
3572 		sc->bge_expcap = reg;
3573 		/* Extract supported maximum payload size. */
3574 		sc->bge_mps = pci_read_config(dev, sc->bge_expcap +
3575 		    PCIER_DEVICE_CAP, 2);
3576 		sc->bge_mps = 128 << (sc->bge_mps & PCIEM_CAP_MAX_PAYLOAD);
3577 		if (sc->bge_asicrev == BGE_ASICREV_BCM5719 ||
3578 		    sc->bge_asicrev == BGE_ASICREV_BCM5720)
3579 			sc->bge_expmrq = 2048;
3580 		else
3581 			sc->bge_expmrq = 4096;
3582 		pci_set_max_read_req(dev, sc->bge_expmrq);
3583 	} else {
3584 		/*
3585 		 * Check if the device is in PCI-X Mode.
3586 		 * (This bit is not valid on PCI Express controllers.)
3587 		 */
3588 		if (pci_find_cap(dev, PCIY_PCIX, &reg) == 0)
3589 			sc->bge_pcixcap = reg;
3590 		if ((pci_read_config(dev, BGE_PCI_PCISTATE, 4) &
3591 		    BGE_PCISTATE_PCI_BUSMODE) == 0)
3592 			sc->bge_flags |= BGE_FLAG_PCIX;
3593 	}
3594 
3595 	/*
3596 	 * The 40bit DMA bug applies to the 5714/5715 controllers and is
3597 	 * not actually a MAC controller bug but an issue with the embedded
3598 	 * PCIe to PCI-X bridge in the device. Use 40bit DMA workaround.
3599 	 */
3600 	if (BGE_IS_5714_FAMILY(sc) && (sc->bge_flags & BGE_FLAG_PCIX))
3601 		sc->bge_flags |= BGE_FLAG_40BIT_BUG;
3602 	/*
3603 	 * Some PCI-X bridges are known to trigger write reordering to
3604 	 * the mailbox registers. Typical phenomena is watchdog timeouts
3605 	 * caused by out-of-order TX completions.  Enable workaround for
3606 	 * PCI-X devices that live behind these bridges.
3607 	 * Note, PCI-X controllers can run in PCI mode so we can't use
3608 	 * BGE_FLAG_PCIX flag to detect PCI-X controllers.
3609 	 */
3610 	if (sc->bge_pcixcap != 0 && bge_mbox_reorder(sc) != 0)
3611 		sc->bge_flags |= BGE_FLAG_MBOX_REORDER;
3612 	/*
3613 	 * Allocate the interrupt, using MSI if possible.  These devices
3614 	 * support 8 MSI messages, but only the first one is used in
3615 	 * normal operation.
3616 	 */
3617 	rid = 0;
3618 	if (pci_find_cap(sc->bge_dev, PCIY_MSI, &reg) == 0) {
3619 		sc->bge_msicap = reg;
3620 		reg = 1;
3621 		if (bge_can_use_msi(sc) && pci_alloc_msi(dev, &reg) == 0) {
3622 			rid = 1;
3623 			sc->bge_flags |= BGE_FLAG_MSI;
3624 		}
3625 	}
3626 
3627 	/*
3628 	 * All controllers except BCM5700 supports tagged status but
3629 	 * we use tagged status only for MSI case on BCM5717. Otherwise
3630 	 * MSI on BCM5717 does not work.
3631 	 */
3632 #ifndef DEVICE_POLLING
3633 	if (sc->bge_flags & BGE_FLAG_MSI && BGE_IS_5717_PLUS(sc))
3634 		sc->bge_flags |= BGE_FLAG_TAGGED_STATUS;
3635 #endif
3636 
3637 	sc->bge_irq = bus_alloc_resource_any(dev, SYS_RES_IRQ, &rid,
3638 	    RF_ACTIVE | (rid != 0 ? 0 : RF_SHAREABLE));
3639 
3640 	if (sc->bge_irq == NULL) {
3641 		device_printf(sc->bge_dev, "couldn't map interrupt\n");
3642 		error = ENXIO;
3643 		goto fail;
3644 	}
3645 
3646 	bge_devinfo(sc);
3647 
3648 	sc->bge_asf_mode = 0;
3649 	/* No ASF if APE present. */
3650 	if ((sc->bge_flags & BGE_FLAG_APE) == 0) {
3651 		if (bge_allow_asf && (bge_readmem_ind(sc, BGE_SRAM_DATA_SIG) ==
3652 		    BGE_SRAM_DATA_SIG_MAGIC)) {
3653 			if (bge_readmem_ind(sc, BGE_SRAM_DATA_CFG) &
3654 			    BGE_HWCFG_ASF) {
3655 				sc->bge_asf_mode |= ASF_ENABLE;
3656 				sc->bge_asf_mode |= ASF_STACKUP;
3657 				if (BGE_IS_575X_PLUS(sc))
3658 					sc->bge_asf_mode |= ASF_NEW_HANDSHAKE;
3659 			}
3660 		}
3661 	}
3662 
3663 	bge_stop_fw(sc);
3664 	bge_sig_pre_reset(sc, BGE_RESET_SHUTDOWN);
3665 	if (bge_reset(sc)) {
3666 		device_printf(sc->bge_dev, "chip reset failed\n");
3667 		error = ENXIO;
3668 		goto fail;
3669 	}
3670 
3671 	bge_sig_legacy(sc, BGE_RESET_SHUTDOWN);
3672 	bge_sig_post_reset(sc, BGE_RESET_SHUTDOWN);
3673 
3674 	if (bge_chipinit(sc)) {
3675 		device_printf(sc->bge_dev, "chip initialization failed\n");
3676 		error = ENXIO;
3677 		goto fail;
3678 	}
3679 
3680 	error = bge_get_eaddr(sc, eaddr);
3681 	if (error) {
3682 		device_printf(sc->bge_dev,
3683 		    "failed to read station address\n");
3684 		error = ENXIO;
3685 		goto fail;
3686 	}
3687 
3688 	/* 5705 limits RX return ring to 512 entries. */
3689 	if (BGE_IS_5717_PLUS(sc))
3690 		sc->bge_return_ring_cnt = BGE_RETURN_RING_CNT;
3691 	else if (BGE_IS_5705_PLUS(sc))
3692 		sc->bge_return_ring_cnt = BGE_RETURN_RING_CNT_5705;
3693 	else
3694 		sc->bge_return_ring_cnt = BGE_RETURN_RING_CNT;
3695 
3696 	if (bge_dma_alloc(sc)) {
3697 		device_printf(sc->bge_dev,
3698 		    "failed to allocate DMA resources\n");
3699 		error = ENXIO;
3700 		goto fail;
3701 	}
3702 
3703 	/* Set default tuneable values. */
3704 	sc->bge_stat_ticks = BGE_TICKS_PER_SEC;
3705 	sc->bge_rx_coal_ticks = 150;
3706 	sc->bge_tx_coal_ticks = 150;
3707 	sc->bge_rx_max_coal_bds = 10;
3708 	sc->bge_tx_max_coal_bds = 10;
3709 
3710 	/* Initialize checksum features to use. */
3711 	sc->bge_csum_features = BGE_CSUM_FEATURES;
3712 	if (sc->bge_forced_udpcsum != 0)
3713 		sc->bge_csum_features |= CSUM_UDP;
3714 
3715 	/* Set up ifnet structure */
3716 	ifp = sc->bge_ifp = if_alloc(IFT_ETHER);
3717 	if (ifp == NULL) {
3718 		device_printf(sc->bge_dev, "failed to if_alloc()\n");
3719 		error = ENXIO;
3720 		goto fail;
3721 	}
3722 	if_setsoftc(ifp, sc);
3723 	if_initname(ifp, device_get_name(dev), device_get_unit(dev));
3724 	if_setflags(ifp, IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST);
3725 	if_setioctlfn(ifp, bge_ioctl);
3726 	if_setstartfn(ifp, bge_start);
3727 	if_setinitfn(ifp, bge_init);
3728 	if_setgetcounterfn(ifp, bge_get_counter);
3729 	if_setsendqlen(ifp, BGE_TX_RING_CNT - 1);
3730 	if_setsendqready(ifp);
3731 	if_sethwassist(ifp, sc->bge_csum_features);
3732 	if_setcapabilities(ifp, IFCAP_HWCSUM | IFCAP_VLAN_HWTAGGING |
3733 	    IFCAP_VLAN_MTU);
3734 	if ((sc->bge_flags & (BGE_FLAG_TSO | BGE_FLAG_TSO3)) != 0) {
3735 		if_sethwassistbits(ifp, CSUM_TSO, 0);
3736 		if_setcapabilitiesbit(ifp, IFCAP_TSO4 | IFCAP_VLAN_HWTSO, 0);
3737 	}
3738 #ifdef IFCAP_VLAN_HWCSUM
3739 	if_setcapabilitiesbit(ifp, IFCAP_VLAN_HWCSUM, 0);
3740 #endif
3741 	if_setcapenable(ifp, if_getcapabilities(ifp));
3742 #ifdef DEVICE_POLLING
3743 	if_setcapabilitiesbit(ifp, IFCAP_POLLING, 0);
3744 #endif
3745 
3746 	/*
3747 	 * 5700 B0 chips do not support checksumming correctly due
3748 	 * to hardware bugs.
3749 	 */
3750 	if (sc->bge_chipid == BGE_CHIPID_BCM5700_B0) {
3751 		if_setcapabilitiesbit(ifp, 0, IFCAP_HWCSUM);
3752 		if_setcapenablebit(ifp, 0, IFCAP_HWCSUM);
3753 		if_sethwassist(ifp, 0);
3754 	}
3755 
3756 	/*
3757 	 * Figure out what sort of media we have by checking the
3758 	 * hardware config word in the first 32k of NIC internal memory,
3759 	 * or fall back to examining the EEPROM if necessary.
3760 	 * Note: on some BCM5700 cards, this value appears to be unset.
3761 	 * If that's the case, we have to rely on identifying the NIC
3762 	 * by its PCI subsystem ID, as we do below for the SysKonnect
3763 	 * SK-9D41.
3764 	 */
3765 	if (bge_readmem_ind(sc, BGE_SRAM_DATA_SIG) == BGE_SRAM_DATA_SIG_MAGIC)
3766 		hwcfg = bge_readmem_ind(sc, BGE_SRAM_DATA_CFG);
3767 	else if ((sc->bge_flags & BGE_FLAG_EADDR) &&
3768 	    (sc->bge_asicrev != BGE_ASICREV_BCM5906)) {
3769 		if (bge_read_eeprom(sc, (caddr_t)&hwcfg, BGE_EE_HWCFG_OFFSET,
3770 		    sizeof(hwcfg))) {
3771 			device_printf(sc->bge_dev, "failed to read EEPROM\n");
3772 			error = ENXIO;
3773 			goto fail;
3774 		}
3775 		hwcfg = ntohl(hwcfg);
3776 	}
3777 
3778 	/* The SysKonnect SK-9D41 is a 1000baseSX card. */
3779 	if ((pci_read_config(dev, BGE_PCI_SUBSYS, 4) >> 16) ==
3780 	    SK_SUBSYSID_9D41 || (hwcfg & BGE_HWCFG_MEDIA) == BGE_MEDIA_FIBER) {
3781 		if (BGE_IS_5705_PLUS(sc)) {
3782 			sc->bge_flags |= BGE_FLAG_MII_SERDES;
3783 			sc->bge_phy_flags |= BGE_PHY_NO_WIRESPEED;
3784 		} else
3785 			sc->bge_flags |= BGE_FLAG_TBI;
3786 	}
3787 
3788 	/* Set various PHY bug flags. */
3789 	if (sc->bge_chipid == BGE_CHIPID_BCM5701_A0 ||
3790 	    sc->bge_chipid == BGE_CHIPID_BCM5701_B0)
3791 		sc->bge_phy_flags |= BGE_PHY_CRC_BUG;
3792 	if (sc->bge_chiprev == BGE_CHIPREV_5703_AX ||
3793 	    sc->bge_chiprev == BGE_CHIPREV_5704_AX)
3794 		sc->bge_phy_flags |= BGE_PHY_ADC_BUG;
3795 	if (sc->bge_chipid == BGE_CHIPID_BCM5704_A0)
3796 		sc->bge_phy_flags |= BGE_PHY_5704_A0_BUG;
3797 	if (pci_get_subvendor(dev) == DELL_VENDORID)
3798 		sc->bge_phy_flags |= BGE_PHY_NO_3LED;
3799 	if ((BGE_IS_5705_PLUS(sc)) &&
3800 	    sc->bge_asicrev != BGE_ASICREV_BCM5906 &&
3801 	    sc->bge_asicrev != BGE_ASICREV_BCM5785 &&
3802 	    sc->bge_asicrev != BGE_ASICREV_BCM57780 &&
3803 	    !BGE_IS_5717_PLUS(sc)) {
3804 		if (sc->bge_asicrev == BGE_ASICREV_BCM5755 ||
3805 		    sc->bge_asicrev == BGE_ASICREV_BCM5761 ||
3806 		    sc->bge_asicrev == BGE_ASICREV_BCM5784 ||
3807 		    sc->bge_asicrev == BGE_ASICREV_BCM5787) {
3808 			if (pci_get_device(dev) != BCOM_DEVICEID_BCM5722 &&
3809 			    pci_get_device(dev) != BCOM_DEVICEID_BCM5756)
3810 				sc->bge_phy_flags |= BGE_PHY_JITTER_BUG;
3811 			if (pci_get_device(dev) == BCOM_DEVICEID_BCM5755M)
3812 				sc->bge_phy_flags |= BGE_PHY_ADJUST_TRIM;
3813 		} else
3814 			sc->bge_phy_flags |= BGE_PHY_BER_BUG;
3815 	}
3816 
3817 	/*
3818 	 * Don't enable Ethernet@WireSpeed for the 5700 or the
3819 	 * 5705 A0 and A1 chips.
3820 	 */
3821 	if (sc->bge_asicrev == BGE_ASICREV_BCM5700 ||
3822 	    (sc->bge_asicrev == BGE_ASICREV_BCM5705 &&
3823 	    (sc->bge_chipid != BGE_CHIPID_BCM5705_A0 &&
3824 	    sc->bge_chipid != BGE_CHIPID_BCM5705_A1)))
3825 		sc->bge_phy_flags |= BGE_PHY_NO_WIRESPEED;
3826 
3827 	if (sc->bge_flags & BGE_FLAG_TBI) {
3828 		ifmedia_init(&sc->bge_ifmedia, IFM_IMASK, bge_ifmedia_upd,
3829 		    bge_ifmedia_sts);
3830 		ifmedia_add(&sc->bge_ifmedia, IFM_ETHER | IFM_1000_SX, 0, NULL);
3831 		ifmedia_add(&sc->bge_ifmedia, IFM_ETHER | IFM_1000_SX | IFM_FDX,
3832 		    0, NULL);
3833 		ifmedia_add(&sc->bge_ifmedia, IFM_ETHER | IFM_AUTO, 0, NULL);
3834 		ifmedia_set(&sc->bge_ifmedia, IFM_ETHER | IFM_AUTO);
3835 		sc->bge_ifmedia.ifm_media = sc->bge_ifmedia.ifm_cur->ifm_media;
3836 	} else {
3837 		/*
3838 		 * Do transceiver setup and tell the firmware the
3839 		 * driver is down so we can try to get access the
3840 		 * probe if ASF is running.  Retry a couple of times
3841 		 * if we get a conflict with the ASF firmware accessing
3842 		 * the PHY.
3843 		 */
3844 		trys = 0;
3845 		BGE_CLRBIT(sc, BGE_MODE_CTL, BGE_MODECTL_STACKUP);
3846 again:
3847 		bge_asf_driver_up(sc);
3848 
3849 		error = mii_attach(dev, &sc->bge_miibus, ifp,
3850 		    (ifm_change_cb_t)bge_ifmedia_upd,
3851 		    (ifm_stat_cb_t)bge_ifmedia_sts, capmask, sc->bge_phy_addr,
3852 		    MII_OFFSET_ANY, MIIF_DOPAUSE);
3853 		if (error != 0) {
3854 			if (trys++ < 4) {
3855 				device_printf(sc->bge_dev, "Try again\n");
3856 				bge_miibus_writereg(sc->bge_dev,
3857 				    sc->bge_phy_addr, MII_BMCR, BMCR_RESET);
3858 				goto again;
3859 			}
3860 			device_printf(sc->bge_dev, "attaching PHYs failed\n");
3861 			goto fail;
3862 		}
3863 
3864 		/*
3865 		 * Now tell the firmware we are going up after probing the PHY
3866 		 */
3867 		if (sc->bge_asf_mode & ASF_STACKUP)
3868 			BGE_SETBIT(sc, BGE_MODE_CTL, BGE_MODECTL_STACKUP);
3869 	}
3870 
3871 	/*
3872 	 * When using the BCM5701 in PCI-X mode, data corruption has
3873 	 * been observed in the first few bytes of some received packets.
3874 	 * Aligning the packet buffer in memory eliminates the corruption.
3875 	 * Unfortunately, this misaligns the packet payloads.  On platforms
3876 	 * which do not support unaligned accesses, we will realign the
3877 	 * payloads by copying the received packets.
3878 	 */
3879 	if (sc->bge_asicrev == BGE_ASICREV_BCM5701 &&
3880 	    sc->bge_flags & BGE_FLAG_PCIX)
3881                 sc->bge_flags |= BGE_FLAG_RX_ALIGNBUG;
3882 
3883 	/*
3884 	 * Call MI attach routine.
3885 	 */
3886 	ether_ifattach(ifp, eaddr);
3887 
3888 	/* Tell upper layer we support long frames. */
3889 	if_setifheaderlen(ifp, sizeof(struct ether_vlan_header));
3890 
3891 	/*
3892 	 * Hookup IRQ last.
3893 	 */
3894 	if (BGE_IS_5755_PLUS(sc) && sc->bge_flags & BGE_FLAG_MSI) {
3895 		/* Take advantage of single-shot MSI. */
3896 		CSR_WRITE_4(sc, BGE_MSI_MODE, CSR_READ_4(sc, BGE_MSI_MODE) &
3897 		    ~BGE_MSIMODE_ONE_SHOT_DISABLE);
3898 		sc->bge_tq = taskqueue_create_fast("bge_taskq", M_WAITOK,
3899 		    taskqueue_thread_enqueue, &sc->bge_tq);
3900 		if (sc->bge_tq == NULL) {
3901 			device_printf(dev, "could not create taskqueue.\n");
3902 			ether_ifdetach(ifp);
3903 			error = ENOMEM;
3904 			goto fail;
3905 		}
3906 		error = taskqueue_start_threads(&sc->bge_tq, 1, PI_NET,
3907 		    "%s taskq", device_get_nameunit(sc->bge_dev));
3908 		if (error != 0) {
3909 			device_printf(dev, "could not start threads.\n");
3910 			ether_ifdetach(ifp);
3911 			goto fail;
3912 		}
3913 		error = bus_setup_intr(dev, sc->bge_irq,
3914 		    INTR_TYPE_NET | INTR_MPSAFE, bge_msi_intr, NULL, sc,
3915 		    &sc->bge_intrhand);
3916 	} else
3917 		error = bus_setup_intr(dev, sc->bge_irq,
3918 		    INTR_TYPE_NET | INTR_MPSAFE, NULL, bge_intr, sc,
3919 		    &sc->bge_intrhand);
3920 
3921 	if (error) {
3922 		ether_ifdetach(ifp);
3923 		device_printf(sc->bge_dev, "couldn't set up irq\n");
3924 		goto fail;
3925 	}
3926 
3927 	/* Attach driver debugnet methods. */
3928 	DEBUGNET_SET(ifp, bge);
3929 
3930 fail:
3931 	if (error)
3932 		bge_detach(dev);
3933 	return (error);
3934 }
3935 
3936 static int
3937 bge_detach(device_t dev)
3938 {
3939 	struct bge_softc *sc;
3940 	if_t ifp;
3941 
3942 	sc = device_get_softc(dev);
3943 	ifp = sc->bge_ifp;
3944 
3945 #ifdef DEVICE_POLLING
3946 	if (if_getcapenable(ifp) & IFCAP_POLLING)
3947 		ether_poll_deregister(ifp);
3948 #endif
3949 
3950 	if (device_is_attached(dev)) {
3951 		ether_ifdetach(ifp);
3952 		BGE_LOCK(sc);
3953 		bge_stop(sc);
3954 		BGE_UNLOCK(sc);
3955 		callout_drain(&sc->bge_stat_ch);
3956 	}
3957 
3958 	if (sc->bge_tq)
3959 		taskqueue_drain(sc->bge_tq, &sc->bge_intr_task);
3960 
3961 	if (sc->bge_flags & BGE_FLAG_TBI)
3962 		ifmedia_removeall(&sc->bge_ifmedia);
3963 	else if (sc->bge_miibus != NULL) {
3964 		bus_generic_detach(dev);
3965 		device_delete_child(dev, sc->bge_miibus);
3966 	}
3967 
3968 	bge_release_resources(sc);
3969 
3970 	return (0);
3971 }
3972 
3973 static void
3974 bge_release_resources(struct bge_softc *sc)
3975 {
3976 	device_t dev;
3977 
3978 	dev = sc->bge_dev;
3979 
3980 	if (sc->bge_tq != NULL)
3981 		taskqueue_free(sc->bge_tq);
3982 
3983 	if (sc->bge_intrhand != NULL)
3984 		bus_teardown_intr(dev, sc->bge_irq, sc->bge_intrhand);
3985 
3986 	if (sc->bge_irq != NULL) {
3987 		bus_release_resource(dev, SYS_RES_IRQ,
3988 		    rman_get_rid(sc->bge_irq), sc->bge_irq);
3989 		pci_release_msi(dev);
3990 	}
3991 
3992 	if (sc->bge_res != NULL)
3993 		bus_release_resource(dev, SYS_RES_MEMORY,
3994 		    rman_get_rid(sc->bge_res), sc->bge_res);
3995 
3996 	if (sc->bge_res2 != NULL)
3997 		bus_release_resource(dev, SYS_RES_MEMORY,
3998 		    rman_get_rid(sc->bge_res2), sc->bge_res2);
3999 
4000 	if (sc->bge_ifp != NULL)
4001 		if_free(sc->bge_ifp);
4002 
4003 	bge_dma_free(sc);
4004 
4005 	if (mtx_initialized(&sc->bge_mtx))	/* XXX */
4006 		BGE_LOCK_DESTROY(sc);
4007 }
4008 
4009 static int
4010 bge_reset(struct bge_softc *sc)
4011 {
4012 	device_t dev;
4013 	uint32_t cachesize, command, mac_mode, mac_mode_mask, reset, val;
4014 	void (*write_op)(struct bge_softc *, int, int);
4015 	uint16_t devctl;
4016 	int i;
4017 
4018 	dev = sc->bge_dev;
4019 
4020 	mac_mode_mask = BGE_MACMODE_HALF_DUPLEX | BGE_MACMODE_PORTMODE;
4021 	if ((sc->bge_mfw_flags & BGE_MFW_ON_APE) != 0)
4022 		mac_mode_mask |= BGE_MACMODE_APE_RX_EN | BGE_MACMODE_APE_TX_EN;
4023 	mac_mode = CSR_READ_4(sc, BGE_MAC_MODE) & mac_mode_mask;
4024 
4025 	if (BGE_IS_575X_PLUS(sc) && !BGE_IS_5714_FAMILY(sc) &&
4026 	    (sc->bge_asicrev != BGE_ASICREV_BCM5906)) {
4027 		if (sc->bge_flags & BGE_FLAG_PCIE)
4028 			write_op = bge_writemem_direct;
4029 		else
4030 			write_op = bge_writemem_ind;
4031 	} else
4032 		write_op = bge_writereg_ind;
4033 
4034 	if (sc->bge_asicrev != BGE_ASICREV_BCM5700 &&
4035 	    sc->bge_asicrev != BGE_ASICREV_BCM5701) {
4036 		CSR_WRITE_4(sc, BGE_NVRAM_SWARB, BGE_NVRAMSWARB_SET1);
4037 		for (i = 0; i < 8000; i++) {
4038 			if (CSR_READ_4(sc, BGE_NVRAM_SWARB) &
4039 			    BGE_NVRAMSWARB_GNT1)
4040 				break;
4041 			DELAY(20);
4042 		}
4043 		if (i == 8000) {
4044 			if (bootverbose)
4045 				device_printf(dev, "NVRAM lock timedout!\n");
4046 		}
4047 	}
4048 	/* Take APE lock when performing reset. */
4049 	bge_ape_lock(sc, BGE_APE_LOCK_GRC);
4050 
4051 	/* Save some important PCI state. */
4052 	cachesize = pci_read_config(dev, BGE_PCI_CACHESZ, 4);
4053 	command = pci_read_config(dev, BGE_PCI_CMD, 4);
4054 
4055 	pci_write_config(dev, BGE_PCI_MISC_CTL,
4056 	    BGE_PCIMISCCTL_INDIRECT_ACCESS | BGE_PCIMISCCTL_MASK_PCI_INTR |
4057 	    BGE_HIF_SWAP_OPTIONS | BGE_PCIMISCCTL_PCISTATE_RW, 4);
4058 
4059 	/* Disable fastboot on controllers that support it. */
4060 	if (sc->bge_asicrev == BGE_ASICREV_BCM5752 ||
4061 	    BGE_IS_5755_PLUS(sc)) {
4062 		if (bootverbose)
4063 			device_printf(dev, "Disabling fastboot\n");
4064 		CSR_WRITE_4(sc, BGE_FASTBOOT_PC, 0x0);
4065 	}
4066 
4067 	/*
4068 	 * Write the magic number to SRAM at offset 0xB50.
4069 	 * When firmware finishes its initialization it will
4070 	 * write ~BGE_SRAM_FW_MB_MAGIC to the same location.
4071 	 */
4072 	bge_writemem_ind(sc, BGE_SRAM_FW_MB, BGE_SRAM_FW_MB_MAGIC);
4073 
4074 	reset = BGE_MISCCFG_RESET_CORE_CLOCKS | BGE_32BITTIME_66MHZ;
4075 
4076 	/* XXX: Broadcom Linux driver. */
4077 	if (sc->bge_flags & BGE_FLAG_PCIE) {
4078 		if (sc->bge_asicrev != BGE_ASICREV_BCM5785 &&
4079 		    (sc->bge_flags & BGE_FLAG_5717_PLUS) == 0) {
4080 			if (CSR_READ_4(sc, 0x7E2C) == 0x60)	/* PCIE 1.0 */
4081 				CSR_WRITE_4(sc, 0x7E2C, 0x20);
4082 		}
4083 		if (sc->bge_chipid != BGE_CHIPID_BCM5750_A0) {
4084 			/* Prevent PCIE link training during global reset */
4085 			CSR_WRITE_4(sc, BGE_MISC_CFG, 1 << 29);
4086 			reset |= 1 << 29;
4087 		}
4088 	}
4089 
4090 	if (sc->bge_asicrev == BGE_ASICREV_BCM5906) {
4091 		val = CSR_READ_4(sc, BGE_VCPU_STATUS);
4092 		CSR_WRITE_4(sc, BGE_VCPU_STATUS,
4093 		    val | BGE_VCPU_STATUS_DRV_RESET);
4094 		val = CSR_READ_4(sc, BGE_VCPU_EXT_CTRL);
4095 		CSR_WRITE_4(sc, BGE_VCPU_EXT_CTRL,
4096 		    val & ~BGE_VCPU_EXT_CTRL_HALT_CPU);
4097 	}
4098 
4099 	/*
4100 	 * Set GPHY Power Down Override to leave GPHY
4101 	 * powered up in D0 uninitialized.
4102 	 */
4103 	if (BGE_IS_5705_PLUS(sc) &&
4104 	    (sc->bge_flags & BGE_FLAG_CPMU_PRESENT) == 0)
4105 		reset |= BGE_MISCCFG_GPHY_PD_OVERRIDE;
4106 
4107 	/* Issue global reset */
4108 	write_op(sc, BGE_MISC_CFG, reset);
4109 
4110 	if (sc->bge_flags & BGE_FLAG_PCIE)
4111 		DELAY(100 * 1000);
4112 	else
4113 		DELAY(1000);
4114 
4115 	/* XXX: Broadcom Linux driver. */
4116 	if (sc->bge_flags & BGE_FLAG_PCIE) {
4117 		if (sc->bge_chipid == BGE_CHIPID_BCM5750_A0) {
4118 			DELAY(500000); /* wait for link training to complete */
4119 			val = pci_read_config(dev, 0xC4, 4);
4120 			pci_write_config(dev, 0xC4, val | (1 << 15), 4);
4121 		}
4122 		devctl = pci_read_config(dev,
4123 		    sc->bge_expcap + PCIER_DEVICE_CTL, 2);
4124 		/* Clear enable no snoop and disable relaxed ordering. */
4125 		devctl &= ~(PCIEM_CTL_RELAXED_ORD_ENABLE |
4126 		    PCIEM_CTL_NOSNOOP_ENABLE);
4127 		pci_write_config(dev, sc->bge_expcap + PCIER_DEVICE_CTL,
4128 		    devctl, 2);
4129 		pci_set_max_read_req(dev, sc->bge_expmrq);
4130 		/* Clear error status. */
4131 		pci_write_config(dev, sc->bge_expcap + PCIER_DEVICE_STA,
4132 		    PCIEM_STA_CORRECTABLE_ERROR |
4133 		    PCIEM_STA_NON_FATAL_ERROR | PCIEM_STA_FATAL_ERROR |
4134 		    PCIEM_STA_UNSUPPORTED_REQ, 2);
4135 	}
4136 
4137 	/* Reset some of the PCI state that got zapped by reset. */
4138 	pci_write_config(dev, BGE_PCI_MISC_CTL,
4139 	    BGE_PCIMISCCTL_INDIRECT_ACCESS | BGE_PCIMISCCTL_MASK_PCI_INTR |
4140 	    BGE_HIF_SWAP_OPTIONS | BGE_PCIMISCCTL_PCISTATE_RW, 4);
4141 	val = BGE_PCISTATE_ROM_ENABLE | BGE_PCISTATE_ROM_RETRY_ENABLE;
4142 	if (sc->bge_chipid == BGE_CHIPID_BCM5704_A0 &&
4143 	    (sc->bge_flags & BGE_FLAG_PCIX) != 0)
4144 		val |= BGE_PCISTATE_RETRY_SAME_DMA;
4145 	if ((sc->bge_mfw_flags & BGE_MFW_ON_APE) != 0)
4146 		val |= BGE_PCISTATE_ALLOW_APE_CTLSPC_WR |
4147 		    BGE_PCISTATE_ALLOW_APE_SHMEM_WR |
4148 		    BGE_PCISTATE_ALLOW_APE_PSPACE_WR;
4149 	pci_write_config(dev, BGE_PCI_PCISTATE, val, 4);
4150 	pci_write_config(dev, BGE_PCI_CACHESZ, cachesize, 4);
4151 	pci_write_config(dev, BGE_PCI_CMD, command, 4);
4152 	/*
4153 	 * Disable PCI-X relaxed ordering to ensure status block update
4154 	 * comes first then packet buffer DMA. Otherwise driver may
4155 	 * read stale status block.
4156 	 */
4157 	if (sc->bge_flags & BGE_FLAG_PCIX) {
4158 		devctl = pci_read_config(dev,
4159 		    sc->bge_pcixcap + PCIXR_COMMAND, 2);
4160 		devctl &= ~PCIXM_COMMAND_ERO;
4161 		if (sc->bge_asicrev == BGE_ASICREV_BCM5703) {
4162 			devctl &= ~PCIXM_COMMAND_MAX_READ;
4163 			devctl |= PCIXM_COMMAND_MAX_READ_2048;
4164 		} else if (sc->bge_asicrev == BGE_ASICREV_BCM5704) {
4165 			devctl &= ~(PCIXM_COMMAND_MAX_SPLITS |
4166 			    PCIXM_COMMAND_MAX_READ);
4167 			devctl |= PCIXM_COMMAND_MAX_READ_2048;
4168 		}
4169 		pci_write_config(dev, sc->bge_pcixcap + PCIXR_COMMAND,
4170 		    devctl, 2);
4171 	}
4172 	/* Re-enable MSI, if necessary, and enable the memory arbiter. */
4173 	if (BGE_IS_5714_FAMILY(sc)) {
4174 		/* This chip disables MSI on reset. */
4175 		if (sc->bge_flags & BGE_FLAG_MSI) {
4176 			val = pci_read_config(dev,
4177 			    sc->bge_msicap + PCIR_MSI_CTRL, 2);
4178 			pci_write_config(dev,
4179 			    sc->bge_msicap + PCIR_MSI_CTRL,
4180 			    val | PCIM_MSICTRL_MSI_ENABLE, 2);
4181 			val = CSR_READ_4(sc, BGE_MSI_MODE);
4182 			CSR_WRITE_4(sc, BGE_MSI_MODE,
4183 			    val | BGE_MSIMODE_ENABLE);
4184 		}
4185 		val = CSR_READ_4(sc, BGE_MARB_MODE);
4186 		CSR_WRITE_4(sc, BGE_MARB_MODE, BGE_MARBMODE_ENABLE | val);
4187 	} else
4188 		CSR_WRITE_4(sc, BGE_MARB_MODE, BGE_MARBMODE_ENABLE);
4189 
4190 	/* Fix up byte swapping. */
4191 	CSR_WRITE_4(sc, BGE_MODE_CTL, bge_dma_swap_options(sc));
4192 
4193 	val = CSR_READ_4(sc, BGE_MAC_MODE);
4194 	val = (val & ~mac_mode_mask) | mac_mode;
4195 	CSR_WRITE_4(sc, BGE_MAC_MODE, val);
4196 	DELAY(40);
4197 
4198 	bge_ape_unlock(sc, BGE_APE_LOCK_GRC);
4199 
4200 	if (sc->bge_asicrev == BGE_ASICREV_BCM5906) {
4201 		for (i = 0; i < BGE_TIMEOUT; i++) {
4202 			val = CSR_READ_4(sc, BGE_VCPU_STATUS);
4203 			if (val & BGE_VCPU_STATUS_INIT_DONE)
4204 				break;
4205 			DELAY(100);
4206 		}
4207 		if (i == BGE_TIMEOUT) {
4208 			device_printf(dev, "reset timed out\n");
4209 			return (1);
4210 		}
4211 	} else {
4212 		/*
4213 		 * Poll until we see the 1's complement of the magic number.
4214 		 * This indicates that the firmware initialization is complete.
4215 		 * We expect this to fail if no chip containing the Ethernet
4216 		 * address is fitted though.
4217 		 */
4218 		for (i = 0; i < BGE_TIMEOUT; i++) {
4219 			DELAY(10);
4220 			val = bge_readmem_ind(sc, BGE_SRAM_FW_MB);
4221 			if (val == ~BGE_SRAM_FW_MB_MAGIC)
4222 				break;
4223 		}
4224 
4225 		if ((sc->bge_flags & BGE_FLAG_EADDR) && i == BGE_TIMEOUT)
4226 			device_printf(dev,
4227 			    "firmware handshake timed out, found 0x%08x\n",
4228 			    val);
4229 		/* BCM57765 A0 needs additional time before accessing. */
4230 		if (sc->bge_chipid == BGE_CHIPID_BCM57765_A0)
4231 			DELAY(10 * 1000);	/* XXX */
4232 	}
4233 
4234 	/*
4235 	 * The 5704 in TBI mode apparently needs some special
4236 	 * adjustment to insure the SERDES drive level is set
4237 	 * to 1.2V.
4238 	 */
4239 	if (sc->bge_asicrev == BGE_ASICREV_BCM5704 &&
4240 	    sc->bge_flags & BGE_FLAG_TBI) {
4241 		val = CSR_READ_4(sc, BGE_SERDES_CFG);
4242 		val = (val & ~0xFFF) | 0x880;
4243 		CSR_WRITE_4(sc, BGE_SERDES_CFG, val);
4244 	}
4245 
4246 	/* XXX: Broadcom Linux driver. */
4247 	if (sc->bge_flags & BGE_FLAG_PCIE &&
4248 	    !BGE_IS_5717_PLUS(sc) &&
4249 	    sc->bge_chipid != BGE_CHIPID_BCM5750_A0 &&
4250 	    sc->bge_asicrev != BGE_ASICREV_BCM5785) {
4251 		/* Enable Data FIFO protection. */
4252 		val = CSR_READ_4(sc, 0x7C00);
4253 		CSR_WRITE_4(sc, 0x7C00, val | (1 << 25));
4254 	}
4255 
4256 	if (sc->bge_asicrev == BGE_ASICREV_BCM5720)
4257 		BGE_CLRBIT(sc, BGE_CPMU_CLCK_ORIDE,
4258 		    CPMU_CLCK_ORIDE_MAC_ORIDE_EN);
4259 
4260 	return (0);
4261 }
4262 
4263 static __inline void
4264 bge_rxreuse_std(struct bge_softc *sc, int i)
4265 {
4266 	struct bge_rx_bd *r;
4267 
4268 	r = &sc->bge_ldata.bge_rx_std_ring[sc->bge_std];
4269 	r->bge_flags = BGE_RXBDFLAG_END;
4270 	r->bge_len = sc->bge_cdata.bge_rx_std_seglen[i];
4271 	r->bge_idx = i;
4272 	BGE_INC(sc->bge_std, BGE_STD_RX_RING_CNT);
4273 }
4274 
4275 static __inline void
4276 bge_rxreuse_jumbo(struct bge_softc *sc, int i)
4277 {
4278 	struct bge_extrx_bd *r;
4279 
4280 	r = &sc->bge_ldata.bge_rx_jumbo_ring[sc->bge_jumbo];
4281 	r->bge_flags = BGE_RXBDFLAG_JUMBO_RING | BGE_RXBDFLAG_END;
4282 	r->bge_len0 = sc->bge_cdata.bge_rx_jumbo_seglen[i][0];
4283 	r->bge_len1 = sc->bge_cdata.bge_rx_jumbo_seglen[i][1];
4284 	r->bge_len2 = sc->bge_cdata.bge_rx_jumbo_seglen[i][2];
4285 	r->bge_len3 = sc->bge_cdata.bge_rx_jumbo_seglen[i][3];
4286 	r->bge_idx = i;
4287 	BGE_INC(sc->bge_jumbo, BGE_JUMBO_RX_RING_CNT);
4288 }
4289 
4290 /*
4291  * Frame reception handling. This is called if there's a frame
4292  * on the receive return list.
4293  *
4294  * Note: we have to be able to handle two possibilities here:
4295  * 1) the frame is from the jumbo receive ring
4296  * 2) the frame is from the standard receive ring
4297  */
4298 
4299 static int
4300 bge_rxeof(struct bge_softc *sc, uint16_t rx_prod, int holdlck)
4301 {
4302 	if_t ifp;
4303 	int rx_npkts = 0, stdcnt = 0, jumbocnt = 0;
4304 	uint16_t rx_cons;
4305 
4306 	rx_cons = sc->bge_rx_saved_considx;
4307 
4308 	/* Nothing to do. */
4309 	if (rx_cons == rx_prod)
4310 		return (rx_npkts);
4311 
4312 	ifp = sc->bge_ifp;
4313 
4314 	bus_dmamap_sync(sc->bge_cdata.bge_rx_return_ring_tag,
4315 	    sc->bge_cdata.bge_rx_return_ring_map, BUS_DMASYNC_POSTREAD);
4316 	bus_dmamap_sync(sc->bge_cdata.bge_rx_std_ring_tag,
4317 	    sc->bge_cdata.bge_rx_std_ring_map, BUS_DMASYNC_POSTWRITE);
4318 	if (BGE_IS_JUMBO_CAPABLE(sc) &&
4319 	    if_getmtu(ifp) + ETHER_HDR_LEN + ETHER_CRC_LEN +
4320 	    ETHER_VLAN_ENCAP_LEN > (MCLBYTES - ETHER_ALIGN))
4321 		bus_dmamap_sync(sc->bge_cdata.bge_rx_jumbo_ring_tag,
4322 		    sc->bge_cdata.bge_rx_jumbo_ring_map, BUS_DMASYNC_POSTWRITE);
4323 
4324 	while (rx_cons != rx_prod) {
4325 		struct bge_rx_bd	*cur_rx;
4326 		uint32_t		rxidx;
4327 		struct mbuf		*m = NULL;
4328 		uint16_t		vlan_tag = 0;
4329 		int			have_tag = 0;
4330 
4331 #ifdef DEVICE_POLLING
4332 		if (if_getcapenable(ifp) & IFCAP_POLLING) {
4333 			if (sc->rxcycles <= 0)
4334 				break;
4335 			sc->rxcycles--;
4336 		}
4337 #endif
4338 
4339 		cur_rx = &sc->bge_ldata.bge_rx_return_ring[rx_cons];
4340 
4341 		rxidx = cur_rx->bge_idx;
4342 		BGE_INC(rx_cons, sc->bge_return_ring_cnt);
4343 
4344 		if (if_getcapenable(ifp) & IFCAP_VLAN_HWTAGGING &&
4345 		    cur_rx->bge_flags & BGE_RXBDFLAG_VLAN_TAG) {
4346 			have_tag = 1;
4347 			vlan_tag = cur_rx->bge_vlan_tag;
4348 		}
4349 
4350 		if (cur_rx->bge_flags & BGE_RXBDFLAG_JUMBO_RING) {
4351 			jumbocnt++;
4352 			m = sc->bge_cdata.bge_rx_jumbo_chain[rxidx];
4353 			if (cur_rx->bge_flags & BGE_RXBDFLAG_ERROR) {
4354 				bge_rxreuse_jumbo(sc, rxidx);
4355 				continue;
4356 			}
4357 			if (bge_newbuf_jumbo(sc, rxidx) != 0) {
4358 				bge_rxreuse_jumbo(sc, rxidx);
4359 				if_inc_counter(ifp, IFCOUNTER_IQDROPS, 1);
4360 				continue;
4361 			}
4362 			BGE_INC(sc->bge_jumbo, BGE_JUMBO_RX_RING_CNT);
4363 		} else {
4364 			stdcnt++;
4365 			m = sc->bge_cdata.bge_rx_std_chain[rxidx];
4366 			if (cur_rx->bge_flags & BGE_RXBDFLAG_ERROR) {
4367 				bge_rxreuse_std(sc, rxidx);
4368 				continue;
4369 			}
4370 			if (bge_newbuf_std(sc, rxidx) != 0) {
4371 				bge_rxreuse_std(sc, rxidx);
4372 				if_inc_counter(ifp, IFCOUNTER_IQDROPS, 1);
4373 				continue;
4374 			}
4375 			BGE_INC(sc->bge_std, BGE_STD_RX_RING_CNT);
4376 		}
4377 
4378 		if_inc_counter(ifp, IFCOUNTER_IPACKETS, 1);
4379 #ifndef __NO_STRICT_ALIGNMENT
4380 		/*
4381 		 * For architectures with strict alignment we must make sure
4382 		 * the payload is aligned.
4383 		 */
4384 		if (sc->bge_flags & BGE_FLAG_RX_ALIGNBUG) {
4385 			bcopy(m->m_data, m->m_data + ETHER_ALIGN,
4386 			    cur_rx->bge_len);
4387 			m->m_data += ETHER_ALIGN;
4388 		}
4389 #endif
4390 		m->m_pkthdr.len = m->m_len = cur_rx->bge_len - ETHER_CRC_LEN;
4391 		m->m_pkthdr.rcvif = ifp;
4392 
4393 		if (if_getcapenable(ifp) & IFCAP_RXCSUM)
4394 			bge_rxcsum(sc, cur_rx, m);
4395 
4396 		/*
4397 		 * If we received a packet with a vlan tag,
4398 		 * attach that information to the packet.
4399 		 */
4400 		if (have_tag) {
4401 			m->m_pkthdr.ether_vtag = vlan_tag;
4402 			m->m_flags |= M_VLANTAG;
4403 		}
4404 
4405 		if (holdlck != 0) {
4406 			BGE_UNLOCK(sc);
4407 			if_input(ifp, m);
4408 			BGE_LOCK(sc);
4409 		} else
4410 			if_input(ifp, m);
4411 		rx_npkts++;
4412 
4413 		if (!(if_getdrvflags(ifp) & IFF_DRV_RUNNING))
4414 			return (rx_npkts);
4415 	}
4416 
4417 	bus_dmamap_sync(sc->bge_cdata.bge_rx_return_ring_tag,
4418 	    sc->bge_cdata.bge_rx_return_ring_map, BUS_DMASYNC_PREREAD);
4419 	if (stdcnt > 0)
4420 		bus_dmamap_sync(sc->bge_cdata.bge_rx_std_ring_tag,
4421 		    sc->bge_cdata.bge_rx_std_ring_map, BUS_DMASYNC_PREWRITE);
4422 
4423 	if (jumbocnt > 0)
4424 		bus_dmamap_sync(sc->bge_cdata.bge_rx_jumbo_ring_tag,
4425 		    sc->bge_cdata.bge_rx_jumbo_ring_map, BUS_DMASYNC_PREWRITE);
4426 
4427 	sc->bge_rx_saved_considx = rx_cons;
4428 	bge_writembx(sc, BGE_MBX_RX_CONS0_LO, sc->bge_rx_saved_considx);
4429 	if (stdcnt)
4430 		bge_writembx(sc, BGE_MBX_RX_STD_PROD_LO, (sc->bge_std +
4431 		    BGE_STD_RX_RING_CNT - 1) % BGE_STD_RX_RING_CNT);
4432 	if (jumbocnt)
4433 		bge_writembx(sc, BGE_MBX_RX_JUMBO_PROD_LO, (sc->bge_jumbo +
4434 		    BGE_JUMBO_RX_RING_CNT - 1) % BGE_JUMBO_RX_RING_CNT);
4435 #ifdef notyet
4436 	/*
4437 	 * This register wraps very quickly under heavy packet drops.
4438 	 * If you need correct statistics, you can enable this check.
4439 	 */
4440 	if (BGE_IS_5705_PLUS(sc))
4441 		if_incierrors(ifp, CSR_READ_4(sc, BGE_RXLP_LOCSTAT_IFIN_DROPS));
4442 #endif
4443 	return (rx_npkts);
4444 }
4445 
4446 static void
4447 bge_rxcsum(struct bge_softc *sc, struct bge_rx_bd *cur_rx, struct mbuf *m)
4448 {
4449 
4450 	if (BGE_IS_5717_PLUS(sc)) {
4451 		if ((cur_rx->bge_flags & BGE_RXBDFLAG_IPV6) == 0) {
4452 			if (cur_rx->bge_flags & BGE_RXBDFLAG_IP_CSUM) {
4453 				m->m_pkthdr.csum_flags |= CSUM_IP_CHECKED;
4454 				if ((cur_rx->bge_error_flag &
4455 				    BGE_RXERRFLAG_IP_CSUM_NOK) == 0)
4456 					m->m_pkthdr.csum_flags |= CSUM_IP_VALID;
4457 			}
4458 			if (cur_rx->bge_flags & BGE_RXBDFLAG_TCP_UDP_CSUM) {
4459 				m->m_pkthdr.csum_data =
4460 				    cur_rx->bge_tcp_udp_csum;
4461 				m->m_pkthdr.csum_flags |= CSUM_DATA_VALID |
4462 				    CSUM_PSEUDO_HDR;
4463 			}
4464 		}
4465 	} else {
4466 		if (cur_rx->bge_flags & BGE_RXBDFLAG_IP_CSUM) {
4467 			m->m_pkthdr.csum_flags |= CSUM_IP_CHECKED;
4468 			if ((cur_rx->bge_ip_csum ^ 0xFFFF) == 0)
4469 				m->m_pkthdr.csum_flags |= CSUM_IP_VALID;
4470 		}
4471 		if (cur_rx->bge_flags & BGE_RXBDFLAG_TCP_UDP_CSUM &&
4472 		    m->m_pkthdr.len >= ETHER_MIN_NOPAD) {
4473 			m->m_pkthdr.csum_data =
4474 			    cur_rx->bge_tcp_udp_csum;
4475 			m->m_pkthdr.csum_flags |= CSUM_DATA_VALID |
4476 			    CSUM_PSEUDO_HDR;
4477 		}
4478 	}
4479 }
4480 
4481 static void
4482 bge_txeof(struct bge_softc *sc, uint16_t tx_cons)
4483 {
4484 	struct bge_tx_bd *cur_tx;
4485 	if_t ifp;
4486 
4487 	BGE_LOCK_ASSERT(sc);
4488 
4489 	/* Nothing to do. */
4490 	if (sc->bge_tx_saved_considx == tx_cons)
4491 		return;
4492 
4493 	ifp = sc->bge_ifp;
4494 
4495 	bus_dmamap_sync(sc->bge_cdata.bge_tx_ring_tag,
4496 	    sc->bge_cdata.bge_tx_ring_map, BUS_DMASYNC_POSTWRITE);
4497 	/*
4498 	 * Go through our tx ring and free mbufs for those
4499 	 * frames that have been sent.
4500 	 */
4501 	while (sc->bge_tx_saved_considx != tx_cons) {
4502 		uint32_t		idx;
4503 
4504 		idx = sc->bge_tx_saved_considx;
4505 		cur_tx = &sc->bge_ldata.bge_tx_ring[idx];
4506 		if (cur_tx->bge_flags & BGE_TXBDFLAG_END)
4507 			if_inc_counter(ifp, IFCOUNTER_OPACKETS, 1);
4508 		if (sc->bge_cdata.bge_tx_chain[idx] != NULL) {
4509 			bus_dmamap_sync(sc->bge_cdata.bge_tx_mtag,
4510 			    sc->bge_cdata.bge_tx_dmamap[idx],
4511 			    BUS_DMASYNC_POSTWRITE);
4512 			bus_dmamap_unload(sc->bge_cdata.bge_tx_mtag,
4513 			    sc->bge_cdata.bge_tx_dmamap[idx]);
4514 			m_freem(sc->bge_cdata.bge_tx_chain[idx]);
4515 			sc->bge_cdata.bge_tx_chain[idx] = NULL;
4516 		}
4517 		sc->bge_txcnt--;
4518 		BGE_INC(sc->bge_tx_saved_considx, BGE_TX_RING_CNT);
4519 	}
4520 
4521 	if_setdrvflagbits(ifp, 0, IFF_DRV_OACTIVE);
4522 	if (sc->bge_txcnt == 0)
4523 		sc->bge_timer = 0;
4524 }
4525 
4526 #ifdef DEVICE_POLLING
4527 static int
4528 bge_poll(if_t ifp, enum poll_cmd cmd, int count)
4529 {
4530 	struct bge_softc *sc = if_getsoftc(ifp);
4531 	uint16_t rx_prod, tx_cons;
4532 	uint32_t statusword;
4533 	int rx_npkts = 0;
4534 
4535 	BGE_LOCK(sc);
4536 	if (!(if_getdrvflags(ifp) & IFF_DRV_RUNNING)) {
4537 		BGE_UNLOCK(sc);
4538 		return (rx_npkts);
4539 	}
4540 
4541 	bus_dmamap_sync(sc->bge_cdata.bge_status_tag,
4542 	    sc->bge_cdata.bge_status_map,
4543 	    BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE);
4544 	/* Fetch updates from the status block. */
4545 	rx_prod = sc->bge_ldata.bge_status_block->bge_idx[0].bge_rx_prod_idx;
4546 	tx_cons = sc->bge_ldata.bge_status_block->bge_idx[0].bge_tx_cons_idx;
4547 
4548 	statusword = sc->bge_ldata.bge_status_block->bge_status;
4549 	/* Clear the status so the next pass only sees the changes. */
4550 	sc->bge_ldata.bge_status_block->bge_status = 0;
4551 
4552 	bus_dmamap_sync(sc->bge_cdata.bge_status_tag,
4553 	    sc->bge_cdata.bge_status_map,
4554 	    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
4555 
4556 	/* Note link event. It will be processed by POLL_AND_CHECK_STATUS. */
4557 	if (statusword & BGE_STATFLAG_LINKSTATE_CHANGED)
4558 		sc->bge_link_evt++;
4559 
4560 	if (cmd == POLL_AND_CHECK_STATUS)
4561 		if ((sc->bge_asicrev == BGE_ASICREV_BCM5700 &&
4562 		    sc->bge_chipid != BGE_CHIPID_BCM5700_B2) ||
4563 		    sc->bge_link_evt || (sc->bge_flags & BGE_FLAG_TBI))
4564 			bge_link_upd(sc);
4565 
4566 	sc->rxcycles = count;
4567 	rx_npkts = bge_rxeof(sc, rx_prod, 1);
4568 	if (!(if_getdrvflags(ifp) & IFF_DRV_RUNNING)) {
4569 		BGE_UNLOCK(sc);
4570 		return (rx_npkts);
4571 	}
4572 	bge_txeof(sc, tx_cons);
4573 	if (!if_sendq_empty(ifp))
4574 		bge_start_locked(ifp);
4575 
4576 	BGE_UNLOCK(sc);
4577 	return (rx_npkts);
4578 }
4579 #endif /* DEVICE_POLLING */
4580 
4581 static int
4582 bge_msi_intr(void *arg)
4583 {
4584 	struct bge_softc *sc;
4585 
4586 	sc = (struct bge_softc *)arg;
4587 	/*
4588 	 * This interrupt is not shared and controller already
4589 	 * disabled further interrupt.
4590 	 */
4591 	taskqueue_enqueue(sc->bge_tq, &sc->bge_intr_task);
4592 	return (FILTER_HANDLED);
4593 }
4594 
4595 static void
4596 bge_intr_task(void *arg, int pending)
4597 {
4598 	struct bge_softc *sc;
4599 	if_t ifp;
4600 	uint32_t status, status_tag;
4601 	uint16_t rx_prod, tx_cons;
4602 
4603 	sc = (struct bge_softc *)arg;
4604 	ifp = sc->bge_ifp;
4605 
4606 	BGE_LOCK(sc);
4607 	if ((if_getdrvflags(ifp) & IFF_DRV_RUNNING) == 0) {
4608 		BGE_UNLOCK(sc);
4609 		return;
4610 	}
4611 
4612 	/* Get updated status block. */
4613 	bus_dmamap_sync(sc->bge_cdata.bge_status_tag,
4614 	    sc->bge_cdata.bge_status_map,
4615 	    BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE);
4616 
4617 	/* Save producer/consumer indices. */
4618 	rx_prod = sc->bge_ldata.bge_status_block->bge_idx[0].bge_rx_prod_idx;
4619 	tx_cons = sc->bge_ldata.bge_status_block->bge_idx[0].bge_tx_cons_idx;
4620 	status = sc->bge_ldata.bge_status_block->bge_status;
4621 	status_tag = sc->bge_ldata.bge_status_block->bge_status_tag << 24;
4622 	/* Dirty the status flag. */
4623 	sc->bge_ldata.bge_status_block->bge_status = 0;
4624 	bus_dmamap_sync(sc->bge_cdata.bge_status_tag,
4625 	    sc->bge_cdata.bge_status_map,
4626 	    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
4627 	if ((sc->bge_flags & BGE_FLAG_TAGGED_STATUS) == 0)
4628 		status_tag = 0;
4629 
4630 	if ((status & BGE_STATFLAG_LINKSTATE_CHANGED) != 0)
4631 		bge_link_upd(sc);
4632 
4633 	/* Let controller work. */
4634 	bge_writembx(sc, BGE_MBX_IRQ0_LO, status_tag);
4635 
4636 	if (if_getdrvflags(ifp) & IFF_DRV_RUNNING &&
4637 	    sc->bge_rx_saved_considx != rx_prod) {
4638 		/* Check RX return ring producer/consumer. */
4639 		BGE_UNLOCK(sc);
4640 		bge_rxeof(sc, rx_prod, 0);
4641 		BGE_LOCK(sc);
4642 	}
4643 	if (if_getdrvflags(ifp) & IFF_DRV_RUNNING) {
4644 		/* Check TX ring producer/consumer. */
4645 		bge_txeof(sc, tx_cons);
4646 		if (!if_sendq_empty(ifp))
4647 			bge_start_locked(ifp);
4648 	}
4649 	BGE_UNLOCK(sc);
4650 }
4651 
4652 static void
4653 bge_intr(void *xsc)
4654 {
4655 	struct bge_softc *sc;
4656 	if_t ifp;
4657 	uint32_t statusword;
4658 	uint16_t rx_prod, tx_cons;
4659 
4660 	sc = xsc;
4661 
4662 	BGE_LOCK(sc);
4663 
4664 	ifp = sc->bge_ifp;
4665 
4666 #ifdef DEVICE_POLLING
4667 	if (if_getcapenable(ifp) & IFCAP_POLLING) {
4668 		BGE_UNLOCK(sc);
4669 		return;
4670 	}
4671 #endif
4672 
4673 	/*
4674 	 * Ack the interrupt by writing something to BGE_MBX_IRQ0_LO.  Don't
4675 	 * disable interrupts by writing nonzero like we used to, since with
4676 	 * our current organization this just gives complications and
4677 	 * pessimizations for re-enabling interrupts.  We used to have races
4678 	 * instead of the necessary complications.  Disabling interrupts
4679 	 * would just reduce the chance of a status update while we are
4680 	 * running (by switching to the interrupt-mode coalescence
4681 	 * parameters), but this chance is already very low so it is more
4682 	 * efficient to get another interrupt than prevent it.
4683 	 *
4684 	 * We do the ack first to ensure another interrupt if there is a
4685 	 * status update after the ack.  We don't check for the status
4686 	 * changing later because it is more efficient to get another
4687 	 * interrupt than prevent it, not quite as above (not checking is
4688 	 * a smaller optimization than not toggling the interrupt enable,
4689 	 * since checking doesn't involve PCI accesses and toggling require
4690 	 * the status check).  So toggling would probably be a pessimization
4691 	 * even with MSI.  It would only be needed for using a task queue.
4692 	 */
4693 	bge_writembx(sc, BGE_MBX_IRQ0_LO, 0);
4694 
4695 	/*
4696 	 * Do the mandatory PCI flush as well as get the link status.
4697 	 */
4698 	statusword = CSR_READ_4(sc, BGE_MAC_STS) & BGE_MACSTAT_LINK_CHANGED;
4699 
4700 	/* Make sure the descriptor ring indexes are coherent. */
4701 	bus_dmamap_sync(sc->bge_cdata.bge_status_tag,
4702 	    sc->bge_cdata.bge_status_map,
4703 	    BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE);
4704 	rx_prod = sc->bge_ldata.bge_status_block->bge_idx[0].bge_rx_prod_idx;
4705 	tx_cons = sc->bge_ldata.bge_status_block->bge_idx[0].bge_tx_cons_idx;
4706 	sc->bge_ldata.bge_status_block->bge_status = 0;
4707 	bus_dmamap_sync(sc->bge_cdata.bge_status_tag,
4708 	    sc->bge_cdata.bge_status_map,
4709 	    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
4710 
4711 	if ((sc->bge_asicrev == BGE_ASICREV_BCM5700 &&
4712 	    sc->bge_chipid != BGE_CHIPID_BCM5700_B2) ||
4713 	    statusword || sc->bge_link_evt)
4714 		bge_link_upd(sc);
4715 
4716 	if (if_getdrvflags(ifp) & IFF_DRV_RUNNING) {
4717 		/* Check RX return ring producer/consumer. */
4718 		bge_rxeof(sc, rx_prod, 1);
4719 	}
4720 
4721 	if (if_getdrvflags(ifp) & IFF_DRV_RUNNING) {
4722 		/* Check TX ring producer/consumer. */
4723 		bge_txeof(sc, tx_cons);
4724 	}
4725 
4726 	if (if_getdrvflags(ifp) & IFF_DRV_RUNNING &&
4727 	    !if_sendq_empty(ifp))
4728 		bge_start_locked(ifp);
4729 
4730 	BGE_UNLOCK(sc);
4731 }
4732 
4733 static void
4734 bge_asf_driver_up(struct bge_softc *sc)
4735 {
4736 	if (sc->bge_asf_mode & ASF_STACKUP) {
4737 		/* Send ASF heartbeat aprox. every 2s */
4738 		if (sc->bge_asf_count)
4739 			sc->bge_asf_count --;
4740 		else {
4741 			sc->bge_asf_count = 2;
4742 			bge_writemem_ind(sc, BGE_SRAM_FW_CMD_MB,
4743 			    BGE_FW_CMD_DRV_ALIVE);
4744 			bge_writemem_ind(sc, BGE_SRAM_FW_CMD_LEN_MB, 4);
4745 			bge_writemem_ind(sc, BGE_SRAM_FW_CMD_DATA_MB,
4746 			    BGE_FW_HB_TIMEOUT_SEC);
4747 			CSR_WRITE_4(sc, BGE_RX_CPU_EVENT,
4748 			    CSR_READ_4(sc, BGE_RX_CPU_EVENT) |
4749 			    BGE_RX_CPU_DRV_EVENT);
4750 		}
4751 	}
4752 }
4753 
4754 static void
4755 bge_tick(void *xsc)
4756 {
4757 	struct bge_softc *sc = xsc;
4758 	struct mii_data *mii = NULL;
4759 
4760 	BGE_LOCK_ASSERT(sc);
4761 
4762 	/* Synchronize with possible callout reset/stop. */
4763 	if (callout_pending(&sc->bge_stat_ch) ||
4764 	    !callout_active(&sc->bge_stat_ch))
4765 		return;
4766 
4767 	if (BGE_IS_5705_PLUS(sc))
4768 		bge_stats_update_regs(sc);
4769 	else
4770 		bge_stats_update(sc);
4771 
4772 	/* XXX Add APE heartbeat check here? */
4773 
4774 	if ((sc->bge_flags & BGE_FLAG_TBI) == 0) {
4775 		mii = device_get_softc(sc->bge_miibus);
4776 		/*
4777 		 * Do not touch PHY if we have link up. This could break
4778 		 * IPMI/ASF mode or produce extra input errors
4779 		 * (extra errors was reported for bcm5701 & bcm5704).
4780 		 */
4781 		if (!sc->bge_link)
4782 			mii_tick(mii);
4783 	} else {
4784 		/*
4785 		 * Since in TBI mode auto-polling can't be used we should poll
4786 		 * link status manually. Here we register pending link event
4787 		 * and trigger interrupt.
4788 		 */
4789 #ifdef DEVICE_POLLING
4790 		/* In polling mode we poll link state in bge_poll(). */
4791 		if (!(if_getcapenable(sc->bge_ifp) & IFCAP_POLLING))
4792 #endif
4793 		{
4794 		sc->bge_link_evt++;
4795 		if (sc->bge_asicrev == BGE_ASICREV_BCM5700 ||
4796 		    sc->bge_flags & BGE_FLAG_5788)
4797 			BGE_SETBIT(sc, BGE_MISC_LOCAL_CTL, BGE_MLC_INTR_SET);
4798 		else
4799 			BGE_SETBIT(sc, BGE_HCC_MODE, BGE_HCCMODE_COAL_NOW);
4800 		}
4801 	}
4802 
4803 	bge_asf_driver_up(sc);
4804 	bge_watchdog(sc);
4805 
4806 	callout_reset(&sc->bge_stat_ch, hz, bge_tick, sc);
4807 }
4808 
4809 static void
4810 bge_stats_update_regs(struct bge_softc *sc)
4811 {
4812 	struct bge_mac_stats *stats;
4813 	uint32_t val;
4814 
4815 	stats = &sc->bge_mac_stats;
4816 
4817 	stats->ifHCOutOctets +=
4818 	    CSR_READ_4(sc, BGE_TX_MAC_STATS_OCTETS);
4819 	stats->etherStatsCollisions +=
4820 	    CSR_READ_4(sc, BGE_TX_MAC_STATS_COLLS);
4821 	stats->outXonSent +=
4822 	    CSR_READ_4(sc, BGE_TX_MAC_STATS_XON_SENT);
4823 	stats->outXoffSent +=
4824 	    CSR_READ_4(sc, BGE_TX_MAC_STATS_XOFF_SENT);
4825 	stats->dot3StatsInternalMacTransmitErrors +=
4826 	    CSR_READ_4(sc, BGE_TX_MAC_STATS_ERRORS);
4827 	stats->dot3StatsSingleCollisionFrames +=
4828 	    CSR_READ_4(sc, BGE_TX_MAC_STATS_SINGLE_COLL);
4829 	stats->dot3StatsMultipleCollisionFrames +=
4830 	    CSR_READ_4(sc, BGE_TX_MAC_STATS_MULTI_COLL);
4831 	stats->dot3StatsDeferredTransmissions +=
4832 	    CSR_READ_4(sc, BGE_TX_MAC_STATS_DEFERRED);
4833 	stats->dot3StatsExcessiveCollisions +=
4834 	    CSR_READ_4(sc, BGE_TX_MAC_STATS_EXCESS_COLL);
4835 	stats->dot3StatsLateCollisions +=
4836 	    CSR_READ_4(sc, BGE_TX_MAC_STATS_LATE_COLL);
4837 	stats->ifHCOutUcastPkts +=
4838 	    CSR_READ_4(sc, BGE_TX_MAC_STATS_UCAST);
4839 	stats->ifHCOutMulticastPkts +=
4840 	    CSR_READ_4(sc, BGE_TX_MAC_STATS_MCAST);
4841 	stats->ifHCOutBroadcastPkts +=
4842 	    CSR_READ_4(sc, BGE_TX_MAC_STATS_BCAST);
4843 
4844 	stats->ifHCInOctets +=
4845 	    CSR_READ_4(sc, BGE_RX_MAC_STATS_OCTESTS);
4846 	stats->etherStatsFragments +=
4847 	    CSR_READ_4(sc, BGE_RX_MAC_STATS_FRAGMENTS);
4848 	stats->ifHCInUcastPkts +=
4849 	    CSR_READ_4(sc, BGE_RX_MAC_STATS_UCAST);
4850 	stats->ifHCInMulticastPkts +=
4851 	    CSR_READ_4(sc, BGE_RX_MAC_STATS_MCAST);
4852 	stats->ifHCInBroadcastPkts +=
4853 	    CSR_READ_4(sc, BGE_RX_MAC_STATS_BCAST);
4854 	stats->dot3StatsFCSErrors +=
4855 	    CSR_READ_4(sc, BGE_RX_MAC_STATS_FCS_ERRORS);
4856 	stats->dot3StatsAlignmentErrors +=
4857 	    CSR_READ_4(sc, BGE_RX_MAC_STATS_ALGIN_ERRORS);
4858 	stats->xonPauseFramesReceived +=
4859 	    CSR_READ_4(sc, BGE_RX_MAC_STATS_XON_RCVD);
4860 	stats->xoffPauseFramesReceived +=
4861 	    CSR_READ_4(sc, BGE_RX_MAC_STATS_XOFF_RCVD);
4862 	stats->macControlFramesReceived +=
4863 	    CSR_READ_4(sc, BGE_RX_MAC_STATS_CTRL_RCVD);
4864 	stats->xoffStateEntered +=
4865 	    CSR_READ_4(sc, BGE_RX_MAC_STATS_XOFF_ENTERED);
4866 	stats->dot3StatsFramesTooLong +=
4867 	    CSR_READ_4(sc, BGE_RX_MAC_STATS_FRAME_TOO_LONG);
4868 	stats->etherStatsJabbers +=
4869 	    CSR_READ_4(sc, BGE_RX_MAC_STATS_JABBERS);
4870 	stats->etherStatsUndersizePkts +=
4871 	    CSR_READ_4(sc, BGE_RX_MAC_STATS_UNDERSIZE);
4872 
4873 	stats->FramesDroppedDueToFilters +=
4874 	    CSR_READ_4(sc, BGE_RXLP_LOCSTAT_FILTDROP);
4875 	stats->DmaWriteQueueFull +=
4876 	    CSR_READ_4(sc, BGE_RXLP_LOCSTAT_DMA_WRQ_FULL);
4877 	stats->DmaWriteHighPriQueueFull +=
4878 	    CSR_READ_4(sc, BGE_RXLP_LOCSTAT_DMA_HPWRQ_FULL);
4879 	stats->NoMoreRxBDs +=
4880 	    CSR_READ_4(sc, BGE_RXLP_LOCSTAT_OUT_OF_BDS);
4881 	/*
4882 	 * XXX
4883 	 * Unlike other controllers, BGE_RXLP_LOCSTAT_IFIN_DROPS
4884 	 * counter of BCM5717, BCM5718, BCM5719 A0 and BCM5720 A0
4885 	 * includes number of unwanted multicast frames.  This comes
4886 	 * from silicon bug and known workaround to get rough(not
4887 	 * exact) counter is to enable interrupt on MBUF low water
4888 	 * attention.  This can be accomplished by setting
4889 	 * BGE_HCCMODE_ATTN bit of BGE_HCC_MODE,
4890 	 * BGE_BMANMODE_LOMBUF_ATTN bit of BGE_BMAN_MODE and
4891 	 * BGE_MODECTL_FLOWCTL_ATTN_INTR bit of BGE_MODE_CTL.
4892 	 * However that change would generate more interrupts and
4893 	 * there are still possibilities of losing multiple frames
4894 	 * during BGE_MODECTL_FLOWCTL_ATTN_INTR interrupt handling.
4895 	 * Given that the workaround still would not get correct
4896 	 * counter I don't think it's worth to implement it.  So
4897 	 * ignore reading the counter on controllers that have the
4898 	 * silicon bug.
4899 	 */
4900 	if (sc->bge_asicrev != BGE_ASICREV_BCM5717 &&
4901 	    sc->bge_chipid != BGE_CHIPID_BCM5719_A0 &&
4902 	    sc->bge_chipid != BGE_CHIPID_BCM5720_A0)
4903 		stats->InputDiscards +=
4904 		    CSR_READ_4(sc, BGE_RXLP_LOCSTAT_IFIN_DROPS);
4905 	stats->InputErrors +=
4906 	    CSR_READ_4(sc, BGE_RXLP_LOCSTAT_IFIN_ERRORS);
4907 	stats->RecvThresholdHit +=
4908 	    CSR_READ_4(sc, BGE_RXLP_LOCSTAT_RXTHRESH_HIT);
4909 
4910 	if (sc->bge_flags & BGE_FLAG_RDMA_BUG) {
4911 		/*
4912 		 * If controller transmitted more than BGE_NUM_RDMA_CHANNELS
4913 		 * frames, it's safe to disable workaround for DMA engine's
4914 		 * miscalculation of TXMBUF space.
4915 		 */
4916 		if (stats->ifHCOutUcastPkts + stats->ifHCOutMulticastPkts +
4917 		    stats->ifHCOutBroadcastPkts > BGE_NUM_RDMA_CHANNELS) {
4918 			val = CSR_READ_4(sc, BGE_RDMA_LSO_CRPTEN_CTRL);
4919 			if (sc->bge_asicrev == BGE_ASICREV_BCM5719)
4920 				val &= ~BGE_RDMA_TX_LENGTH_WA_5719;
4921 			else
4922 				val &= ~BGE_RDMA_TX_LENGTH_WA_5720;
4923 			CSR_WRITE_4(sc, BGE_RDMA_LSO_CRPTEN_CTRL, val);
4924 			sc->bge_flags &= ~BGE_FLAG_RDMA_BUG;
4925 		}
4926 	}
4927 }
4928 
4929 static void
4930 bge_stats_clear_regs(struct bge_softc *sc)
4931 {
4932 
4933 	CSR_READ_4(sc, BGE_TX_MAC_STATS_OCTETS);
4934 	CSR_READ_4(sc, BGE_TX_MAC_STATS_COLLS);
4935 	CSR_READ_4(sc, BGE_TX_MAC_STATS_XON_SENT);
4936 	CSR_READ_4(sc, BGE_TX_MAC_STATS_XOFF_SENT);
4937 	CSR_READ_4(sc, BGE_TX_MAC_STATS_ERRORS);
4938 	CSR_READ_4(sc, BGE_TX_MAC_STATS_SINGLE_COLL);
4939 	CSR_READ_4(sc, BGE_TX_MAC_STATS_MULTI_COLL);
4940 	CSR_READ_4(sc, BGE_TX_MAC_STATS_DEFERRED);
4941 	CSR_READ_4(sc, BGE_TX_MAC_STATS_EXCESS_COLL);
4942 	CSR_READ_4(sc, BGE_TX_MAC_STATS_LATE_COLL);
4943 	CSR_READ_4(sc, BGE_TX_MAC_STATS_UCAST);
4944 	CSR_READ_4(sc, BGE_TX_MAC_STATS_MCAST);
4945 	CSR_READ_4(sc, BGE_TX_MAC_STATS_BCAST);
4946 
4947 	CSR_READ_4(sc, BGE_RX_MAC_STATS_OCTESTS);
4948 	CSR_READ_4(sc, BGE_RX_MAC_STATS_FRAGMENTS);
4949 	CSR_READ_4(sc, BGE_RX_MAC_STATS_UCAST);
4950 	CSR_READ_4(sc, BGE_RX_MAC_STATS_MCAST);
4951 	CSR_READ_4(sc, BGE_RX_MAC_STATS_BCAST);
4952 	CSR_READ_4(sc, BGE_RX_MAC_STATS_FCS_ERRORS);
4953 	CSR_READ_4(sc, BGE_RX_MAC_STATS_ALGIN_ERRORS);
4954 	CSR_READ_4(sc, BGE_RX_MAC_STATS_XON_RCVD);
4955 	CSR_READ_4(sc, BGE_RX_MAC_STATS_XOFF_RCVD);
4956 	CSR_READ_4(sc, BGE_RX_MAC_STATS_CTRL_RCVD);
4957 	CSR_READ_4(sc, BGE_RX_MAC_STATS_XOFF_ENTERED);
4958 	CSR_READ_4(sc, BGE_RX_MAC_STATS_FRAME_TOO_LONG);
4959 	CSR_READ_4(sc, BGE_RX_MAC_STATS_JABBERS);
4960 	CSR_READ_4(sc, BGE_RX_MAC_STATS_UNDERSIZE);
4961 
4962 	CSR_READ_4(sc, BGE_RXLP_LOCSTAT_FILTDROP);
4963 	CSR_READ_4(sc, BGE_RXLP_LOCSTAT_DMA_WRQ_FULL);
4964 	CSR_READ_4(sc, BGE_RXLP_LOCSTAT_DMA_HPWRQ_FULL);
4965 	CSR_READ_4(sc, BGE_RXLP_LOCSTAT_OUT_OF_BDS);
4966 	CSR_READ_4(sc, BGE_RXLP_LOCSTAT_IFIN_DROPS);
4967 	CSR_READ_4(sc, BGE_RXLP_LOCSTAT_IFIN_ERRORS);
4968 	CSR_READ_4(sc, BGE_RXLP_LOCSTAT_RXTHRESH_HIT);
4969 }
4970 
4971 static void
4972 bge_stats_update(struct bge_softc *sc)
4973 {
4974 	if_t ifp;
4975 	bus_size_t stats;
4976 	uint32_t cnt;	/* current register value */
4977 
4978 	ifp = sc->bge_ifp;
4979 
4980 	stats = BGE_MEMWIN_START + BGE_STATS_BLOCK;
4981 
4982 #define	READ_STAT(sc, stats, stat) \
4983 	CSR_READ_4(sc, stats + offsetof(struct bge_stats, stat))
4984 
4985 	cnt = READ_STAT(sc, stats, txstats.etherStatsCollisions.bge_addr_lo);
4986 	if_inc_counter(ifp, IFCOUNTER_COLLISIONS, cnt - sc->bge_tx_collisions);
4987 	sc->bge_tx_collisions = cnt;
4988 
4989 	cnt = READ_STAT(sc, stats, nicNoMoreRxBDs.bge_addr_lo);
4990 	if_inc_counter(ifp, IFCOUNTER_IERRORS, cnt - sc->bge_rx_nobds);
4991 	sc->bge_rx_nobds = cnt;
4992 	cnt = READ_STAT(sc, stats, ifInErrors.bge_addr_lo);
4993 	if_inc_counter(ifp, IFCOUNTER_IERRORS, cnt - sc->bge_rx_inerrs);
4994 	sc->bge_rx_inerrs = cnt;
4995 	cnt = READ_STAT(sc, stats, ifInDiscards.bge_addr_lo);
4996 	if_inc_counter(ifp, IFCOUNTER_IERRORS, cnt - sc->bge_rx_discards);
4997 	sc->bge_rx_discards = cnt;
4998 
4999 	cnt = READ_STAT(sc, stats, txstats.ifOutDiscards.bge_addr_lo);
5000 	if_inc_counter(ifp, IFCOUNTER_OERRORS, cnt - sc->bge_tx_discards);
5001 	sc->bge_tx_discards = cnt;
5002 
5003 #undef	READ_STAT
5004 }
5005 
5006 /*
5007  * Pad outbound frame to ETHER_MIN_NOPAD for an unusual reason.
5008  * The bge hardware will pad out Tx runts to ETHER_MIN_NOPAD,
5009  * but when such padded frames employ the bge IP/TCP checksum offload,
5010  * the hardware checksum assist gives incorrect results (possibly
5011  * from incorporating its own padding into the UDP/TCP checksum; who knows).
5012  * If we pad such runts with zeros, the onboard checksum comes out correct.
5013  */
5014 static __inline int
5015 bge_cksum_pad(struct mbuf *m)
5016 {
5017 	int padlen = ETHER_MIN_NOPAD - m->m_pkthdr.len;
5018 	struct mbuf *last;
5019 
5020 	/* If there's only the packet-header and we can pad there, use it. */
5021 	if (m->m_pkthdr.len == m->m_len && M_WRITABLE(m) &&
5022 	    M_TRAILINGSPACE(m) >= padlen) {
5023 		last = m;
5024 	} else {
5025 		/*
5026 		 * Walk packet chain to find last mbuf. We will either
5027 		 * pad there, or append a new mbuf and pad it.
5028 		 */
5029 		for (last = m; last->m_next != NULL; last = last->m_next);
5030 		if (!(M_WRITABLE(last) && M_TRAILINGSPACE(last) >= padlen)) {
5031 			/* Allocate new empty mbuf, pad it. Compact later. */
5032 			struct mbuf *n;
5033 
5034 			MGET(n, M_NOWAIT, MT_DATA);
5035 			if (n == NULL)
5036 				return (ENOBUFS);
5037 			n->m_len = 0;
5038 			last->m_next = n;
5039 			last = n;
5040 		}
5041 	}
5042 
5043 	/* Now zero the pad area, to avoid the bge cksum-assist bug. */
5044 	memset(mtod(last, caddr_t) + last->m_len, 0, padlen);
5045 	last->m_len += padlen;
5046 	m->m_pkthdr.len += padlen;
5047 
5048 	return (0);
5049 }
5050 
5051 static struct mbuf *
5052 bge_check_short_dma(struct mbuf *m)
5053 {
5054 	struct mbuf *n;
5055 	int found;
5056 
5057 	/*
5058 	 * If device receive two back-to-back send BDs with less than
5059 	 * or equal to 8 total bytes then the device may hang.  The two
5060 	 * back-to-back send BDs must in the same frame for this failure
5061 	 * to occur.  Scan mbuf chains and see whether two back-to-back
5062 	 * send BDs are there. If this is the case, allocate new mbuf
5063 	 * and copy the frame to workaround the silicon bug.
5064 	 */
5065 	for (n = m, found = 0; n != NULL; n = n->m_next) {
5066 		if (n->m_len < 8) {
5067 			found++;
5068 			if (found > 1)
5069 				break;
5070 			continue;
5071 		}
5072 		found = 0;
5073 	}
5074 
5075 	if (found > 1) {
5076 		n = m_defrag(m, M_NOWAIT);
5077 		if (n == NULL)
5078 			m_freem(m);
5079 	} else
5080 		n = m;
5081 	return (n);
5082 }
5083 
5084 static struct mbuf *
5085 bge_setup_tso(struct bge_softc *sc, struct mbuf *m, uint16_t *mss,
5086     uint16_t *flags)
5087 {
5088 	struct ip *ip;
5089 	struct tcphdr *tcp;
5090 	struct mbuf *n;
5091 	uint16_t hlen;
5092 	uint32_t poff;
5093 
5094 	if (M_WRITABLE(m) == 0) {
5095 		/* Get a writable copy. */
5096 		n = m_dup(m, M_NOWAIT);
5097 		m_freem(m);
5098 		if (n == NULL)
5099 			return (NULL);
5100 		m = n;
5101 	}
5102 	m = m_pullup(m, sizeof(struct ether_header) + sizeof(struct ip));
5103 	if (m == NULL)
5104 		return (NULL);
5105 	ip = (struct ip *)(mtod(m, char *) + sizeof(struct ether_header));
5106 	poff = sizeof(struct ether_header) + (ip->ip_hl << 2);
5107 	m = m_pullup(m, poff + sizeof(struct tcphdr));
5108 	if (m == NULL)
5109 		return (NULL);
5110 	tcp = (struct tcphdr *)(mtod(m, char *) + poff);
5111 	m = m_pullup(m, poff + (tcp->th_off << 2));
5112 	if (m == NULL)
5113 		return (NULL);
5114 	/*
5115 	 * It seems controller doesn't modify IP length and TCP pseudo
5116 	 * checksum. These checksum computed by upper stack should be 0.
5117 	 */
5118 	*mss = m->m_pkthdr.tso_segsz;
5119 	ip = (struct ip *)(mtod(m, char *) + sizeof(struct ether_header));
5120 	ip->ip_sum = 0;
5121 	ip->ip_len = htons(*mss + (ip->ip_hl << 2) + (tcp->th_off << 2));
5122 	/* Clear pseudo checksum computed by TCP stack. */
5123 	tcp = (struct tcphdr *)(mtod(m, char *) + poff);
5124 	tcp->th_sum = 0;
5125 	/*
5126 	 * Broadcom controllers uses different descriptor format for
5127 	 * TSO depending on ASIC revision. Due to TSO-capable firmware
5128 	 * license issue and lower performance of firmware based TSO
5129 	 * we only support hardware based TSO.
5130 	 */
5131 	/* Calculate header length, incl. TCP/IP options, in 32 bit units. */
5132 	hlen = ((ip->ip_hl << 2) + (tcp->th_off << 2)) >> 2;
5133 	if (sc->bge_flags & BGE_FLAG_TSO3) {
5134 		/*
5135 		 * For BCM5717 and newer controllers, hardware based TSO
5136 		 * uses the 14 lower bits of the bge_mss field to store the
5137 		 * MSS and the upper 2 bits to store the lowest 2 bits of
5138 		 * the IP/TCP header length.  The upper 6 bits of the header
5139 		 * length are stored in the bge_flags[14:10,4] field.  Jumbo
5140 		 * frames are supported.
5141 		 */
5142 		*mss |= ((hlen & 0x3) << 14);
5143 		*flags |= ((hlen & 0xF8) << 7) | ((hlen & 0x4) << 2);
5144 	} else {
5145 		/*
5146 		 * For BCM5755 and newer controllers, hardware based TSO uses
5147 		 * the lower 11	bits to store the MSS and the upper 5 bits to
5148 		 * store the IP/TCP header length. Jumbo frames are not
5149 		 * supported.
5150 		 */
5151 		*mss |= (hlen << 11);
5152 	}
5153 	return (m);
5154 }
5155 
5156 /*
5157  * Encapsulate an mbuf chain in the tx ring  by coupling the mbuf data
5158  * pointers to descriptors.
5159  */
5160 static int
5161 bge_encap(struct bge_softc *sc, struct mbuf **m_head, uint32_t *txidx)
5162 {
5163 	bus_dma_segment_t	segs[BGE_NSEG_NEW];
5164 	bus_dmamap_t		map;
5165 	struct bge_tx_bd	*d;
5166 	struct mbuf		*m = *m_head;
5167 	uint32_t		idx = *txidx;
5168 	uint16_t		csum_flags, mss, vlan_tag;
5169 	int			nsegs, i, error;
5170 
5171 	csum_flags = 0;
5172 	mss = 0;
5173 	vlan_tag = 0;
5174 	if ((sc->bge_flags & BGE_FLAG_SHORT_DMA_BUG) != 0 &&
5175 	    m->m_next != NULL) {
5176 		*m_head = bge_check_short_dma(m);
5177 		if (*m_head == NULL)
5178 			return (ENOBUFS);
5179 		m = *m_head;
5180 	}
5181 	if ((m->m_pkthdr.csum_flags & CSUM_TSO) != 0) {
5182 		*m_head = m = bge_setup_tso(sc, m, &mss, &csum_flags);
5183 		if (*m_head == NULL)
5184 			return (ENOBUFS);
5185 		csum_flags |= BGE_TXBDFLAG_CPU_PRE_DMA |
5186 		    BGE_TXBDFLAG_CPU_POST_DMA;
5187 	} else if ((m->m_pkthdr.csum_flags & sc->bge_csum_features) != 0) {
5188 		if (m->m_pkthdr.csum_flags & CSUM_IP)
5189 			csum_flags |= BGE_TXBDFLAG_IP_CSUM;
5190 		if (m->m_pkthdr.csum_flags & (CSUM_TCP | CSUM_UDP)) {
5191 			csum_flags |= BGE_TXBDFLAG_TCP_UDP_CSUM;
5192 			if (m->m_pkthdr.len < ETHER_MIN_NOPAD &&
5193 			    (error = bge_cksum_pad(m)) != 0) {
5194 				m_freem(m);
5195 				*m_head = NULL;
5196 				return (error);
5197 			}
5198 		}
5199 	}
5200 
5201 	if ((m->m_pkthdr.csum_flags & CSUM_TSO) == 0) {
5202 		if (sc->bge_flags & BGE_FLAG_JUMBO_FRAME &&
5203 		    m->m_pkthdr.len > ETHER_MAX_LEN)
5204 			csum_flags |= BGE_TXBDFLAG_JUMBO_FRAME;
5205 		if (sc->bge_forced_collapse > 0 &&
5206 		    (sc->bge_flags & BGE_FLAG_PCIE) != 0 && m->m_next != NULL) {
5207 			/*
5208 			 * Forcedly collapse mbuf chains to overcome hardware
5209 			 * limitation which only support a single outstanding
5210 			 * DMA read operation.
5211 			 */
5212 			if (sc->bge_forced_collapse == 1)
5213 				m = m_defrag(m, M_NOWAIT);
5214 			else
5215 				m = m_collapse(m, M_NOWAIT,
5216 				    sc->bge_forced_collapse);
5217 			if (m == NULL)
5218 				m = *m_head;
5219 			*m_head = m;
5220 		}
5221 	}
5222 
5223 	map = sc->bge_cdata.bge_tx_dmamap[idx];
5224 	error = bus_dmamap_load_mbuf_sg(sc->bge_cdata.bge_tx_mtag, map, m, segs,
5225 	    &nsegs, BUS_DMA_NOWAIT);
5226 	if (error == EFBIG) {
5227 		m = m_collapse(m, M_NOWAIT, BGE_NSEG_NEW);
5228 		if (m == NULL) {
5229 			m_freem(*m_head);
5230 			*m_head = NULL;
5231 			return (ENOBUFS);
5232 		}
5233 		*m_head = m;
5234 		error = bus_dmamap_load_mbuf_sg(sc->bge_cdata.bge_tx_mtag, map,
5235 		    m, segs, &nsegs, BUS_DMA_NOWAIT);
5236 		if (error) {
5237 			m_freem(m);
5238 			*m_head = NULL;
5239 			return (error);
5240 		}
5241 	} else if (error != 0)
5242 		return (error);
5243 
5244 	/* Check if we have enough free send BDs. */
5245 	if (sc->bge_txcnt + nsegs >= BGE_TX_RING_CNT) {
5246 		bus_dmamap_unload(sc->bge_cdata.bge_tx_mtag, map);
5247 		return (ENOBUFS);
5248 	}
5249 
5250 	bus_dmamap_sync(sc->bge_cdata.bge_tx_mtag, map, BUS_DMASYNC_PREWRITE);
5251 
5252 	if (m->m_flags & M_VLANTAG) {
5253 		csum_flags |= BGE_TXBDFLAG_VLAN_TAG;
5254 		vlan_tag = m->m_pkthdr.ether_vtag;
5255 	}
5256 
5257 	if (sc->bge_asicrev == BGE_ASICREV_BCM5762 &&
5258 	    (m->m_pkthdr.csum_flags & CSUM_TSO) != 0) {
5259 		/*
5260 		 * 5725 family of devices corrupts TSO packets when TSO DMA
5261 		 * buffers cross into regions which are within MSS bytes of
5262 		 * a 4GB boundary.  If we encounter the condition, drop the
5263 		 * packet.
5264 		 */
5265 		for (i = 0; ; i++) {
5266 			d = &sc->bge_ldata.bge_tx_ring[idx];
5267 			d->bge_addr.bge_addr_lo = BGE_ADDR_LO(segs[i].ds_addr);
5268 			d->bge_addr.bge_addr_hi = BGE_ADDR_HI(segs[i].ds_addr);
5269 			d->bge_len = segs[i].ds_len;
5270 			if (d->bge_addr.bge_addr_lo + segs[i].ds_len + mss <
5271 			    d->bge_addr.bge_addr_lo)
5272 				break;
5273 			d->bge_flags = csum_flags;
5274 			d->bge_vlan_tag = vlan_tag;
5275 			d->bge_mss = mss;
5276 			if (i == nsegs - 1)
5277 				break;
5278 			BGE_INC(idx, BGE_TX_RING_CNT);
5279 		}
5280 		if (i != nsegs - 1) {
5281 			bus_dmamap_sync(sc->bge_cdata.bge_tx_mtag, map,
5282 			    BUS_DMASYNC_POSTWRITE);
5283 			bus_dmamap_unload(sc->bge_cdata.bge_tx_mtag, map);
5284 			m_freem(*m_head);
5285 			*m_head = NULL;
5286 			return (EIO);
5287 		}
5288 	} else {
5289 		for (i = 0; ; i++) {
5290 			d = &sc->bge_ldata.bge_tx_ring[idx];
5291 			d->bge_addr.bge_addr_lo = BGE_ADDR_LO(segs[i].ds_addr);
5292 			d->bge_addr.bge_addr_hi = BGE_ADDR_HI(segs[i].ds_addr);
5293 			d->bge_len = segs[i].ds_len;
5294 			d->bge_flags = csum_flags;
5295 			d->bge_vlan_tag = vlan_tag;
5296 			d->bge_mss = mss;
5297 			if (i == nsegs - 1)
5298 				break;
5299 			BGE_INC(idx, BGE_TX_RING_CNT);
5300 		}
5301 	}
5302 
5303 	/* Mark the last segment as end of packet... */
5304 	d->bge_flags |= BGE_TXBDFLAG_END;
5305 
5306 	/*
5307 	 * Insure that the map for this transmission
5308 	 * is placed at the array index of the last descriptor
5309 	 * in this chain.
5310 	 */
5311 	sc->bge_cdata.bge_tx_dmamap[*txidx] = sc->bge_cdata.bge_tx_dmamap[idx];
5312 	sc->bge_cdata.bge_tx_dmamap[idx] = map;
5313 	sc->bge_cdata.bge_tx_chain[idx] = m;
5314 	sc->bge_txcnt += nsegs;
5315 
5316 	BGE_INC(idx, BGE_TX_RING_CNT);
5317 	*txidx = idx;
5318 
5319 	return (0);
5320 }
5321 
5322 /*
5323  * Main transmit routine. To avoid having to do mbuf copies, we put pointers
5324  * to the mbuf data regions directly in the transmit descriptors.
5325  */
5326 static void
5327 bge_start_locked(if_t ifp)
5328 {
5329 	struct bge_softc *sc;
5330 	struct mbuf *m_head;
5331 	uint32_t prodidx;
5332 	int count;
5333 
5334 	sc = if_getsoftc(ifp);
5335 	BGE_LOCK_ASSERT(sc);
5336 
5337 	if (!sc->bge_link ||
5338 	    (if_getdrvflags(ifp) & (IFF_DRV_RUNNING | IFF_DRV_OACTIVE)) !=
5339 	    IFF_DRV_RUNNING)
5340 		return;
5341 
5342 	prodidx = sc->bge_tx_prodidx;
5343 
5344 	for (count = 0; !if_sendq_empty(ifp);) {
5345 		if (sc->bge_txcnt > BGE_TX_RING_CNT - 16) {
5346 			if_setdrvflagbits(ifp, IFF_DRV_OACTIVE, 0);
5347 			break;
5348 		}
5349 		m_head = if_dequeue(ifp);
5350 		if (m_head == NULL)
5351 			break;
5352 
5353 		/*
5354 		 * Pack the data into the transmit ring. If we
5355 		 * don't have room, set the OACTIVE flag and wait
5356 		 * for the NIC to drain the ring.
5357 		 */
5358 		if (bge_encap(sc, &m_head, &prodidx)) {
5359 			if (m_head == NULL)
5360 				break;
5361 			if_sendq_prepend(ifp, m_head);
5362 			if_setdrvflagbits(ifp, IFF_DRV_OACTIVE, 0);
5363 			break;
5364 		}
5365 		++count;
5366 
5367 		/*
5368 		 * If there's a BPF listener, bounce a copy of this frame
5369 		 * to him.
5370 		 */
5371 		bpf_mtap_if(ifp, m_head);
5372 	}
5373 
5374 	if (count > 0)
5375 		bge_start_tx(sc, prodidx);
5376 }
5377 
5378 static void
5379 bge_start_tx(struct bge_softc *sc, uint32_t prodidx)
5380 {
5381 
5382 	bus_dmamap_sync(sc->bge_cdata.bge_tx_ring_tag,
5383 	    sc->bge_cdata.bge_tx_ring_map, BUS_DMASYNC_PREWRITE);
5384 	/* Transmit. */
5385 	bge_writembx(sc, BGE_MBX_TX_HOST_PROD0_LO, prodidx);
5386 	/* 5700 b2 errata */
5387 	if (sc->bge_chiprev == BGE_CHIPREV_5700_BX)
5388 		bge_writembx(sc, BGE_MBX_TX_HOST_PROD0_LO, prodidx);
5389 
5390 	sc->bge_tx_prodidx = prodidx;
5391 
5392 	/* Set a timeout in case the chip goes out to lunch. */
5393 	sc->bge_timer = BGE_TX_TIMEOUT;
5394 }
5395 
5396 /*
5397  * Main transmit routine. To avoid having to do mbuf copies, we put pointers
5398  * to the mbuf data regions directly in the transmit descriptors.
5399  */
5400 static void
5401 bge_start(if_t ifp)
5402 {
5403 	struct bge_softc *sc;
5404 
5405 	sc = if_getsoftc(ifp);
5406 	BGE_LOCK(sc);
5407 	bge_start_locked(ifp);
5408 	BGE_UNLOCK(sc);
5409 }
5410 
5411 static void
5412 bge_init_locked(struct bge_softc *sc)
5413 {
5414 	if_t ifp;
5415 	uint16_t *m;
5416 	uint32_t mode;
5417 
5418 	BGE_LOCK_ASSERT(sc);
5419 
5420 	ifp = sc->bge_ifp;
5421 
5422 	if (if_getdrvflags(ifp) & IFF_DRV_RUNNING)
5423 		return;
5424 
5425 	/* Cancel pending I/O and flush buffers. */
5426 	bge_stop(sc);
5427 
5428 	bge_stop_fw(sc);
5429 	bge_sig_pre_reset(sc, BGE_RESET_START);
5430 	bge_reset(sc);
5431 	bge_sig_legacy(sc, BGE_RESET_START);
5432 	bge_sig_post_reset(sc, BGE_RESET_START);
5433 
5434 	bge_chipinit(sc);
5435 
5436 	/*
5437 	 * Init the various state machines, ring
5438 	 * control blocks and firmware.
5439 	 */
5440 	if (bge_blockinit(sc)) {
5441 		device_printf(sc->bge_dev, "initialization failure\n");
5442 		return;
5443 	}
5444 
5445 	ifp = sc->bge_ifp;
5446 
5447 	/* Specify MTU. */
5448 	CSR_WRITE_4(sc, BGE_RX_MTU, if_getmtu(ifp) +
5449 	    ETHER_HDR_LEN + ETHER_CRC_LEN +
5450 	    (if_getcapenable(ifp) & IFCAP_VLAN_MTU ? ETHER_VLAN_ENCAP_LEN : 0));
5451 
5452 	/* Load our MAC address. */
5453 	m = (uint16_t *)if_getlladdr(sc->bge_ifp);
5454 	CSR_WRITE_4(sc, BGE_MAC_ADDR1_LO, htons(m[0]));
5455 	CSR_WRITE_4(sc, BGE_MAC_ADDR1_HI, (htons(m[1]) << 16) | htons(m[2]));
5456 
5457 	/* Program promiscuous mode. */
5458 	bge_setpromisc(sc);
5459 
5460 	/* Program multicast filter. */
5461 	bge_setmulti(sc);
5462 
5463 	/* Program VLAN tag stripping. */
5464 	bge_setvlan(sc);
5465 
5466 	/* Override UDP checksum offloading. */
5467 	if (sc->bge_forced_udpcsum == 0)
5468 		sc->bge_csum_features &= ~CSUM_UDP;
5469 	else
5470 		sc->bge_csum_features |= CSUM_UDP;
5471 	if (if_getcapabilities(ifp) & IFCAP_TXCSUM &&
5472 	    if_getcapenable(ifp) & IFCAP_TXCSUM) {
5473 		if_sethwassistbits(ifp, 0, (BGE_CSUM_FEATURES | CSUM_UDP));
5474 		if_sethwassistbits(ifp, sc->bge_csum_features, 0);
5475 	}
5476 
5477 	/* Init RX ring. */
5478 	if (bge_init_rx_ring_std(sc) != 0) {
5479 		device_printf(sc->bge_dev, "no memory for std Rx buffers.\n");
5480 		bge_stop(sc);
5481 		return;
5482 	}
5483 
5484 	/*
5485 	 * Workaround for a bug in 5705 ASIC rev A0. Poll the NIC's
5486 	 * memory to insure that the chip has in fact read the first
5487 	 * entry of the ring.
5488 	 */
5489 	if (sc->bge_chipid == BGE_CHIPID_BCM5705_A0) {
5490 		uint32_t		v, i;
5491 		for (i = 0; i < 10; i++) {
5492 			DELAY(20);
5493 			v = bge_readmem_ind(sc, BGE_STD_RX_RINGS + 8);
5494 			if (v == (MCLBYTES - ETHER_ALIGN))
5495 				break;
5496 		}
5497 		if (i == 10)
5498 			device_printf (sc->bge_dev,
5499 			    "5705 A0 chip failed to load RX ring\n");
5500 	}
5501 
5502 	/* Init jumbo RX ring. */
5503 	if (BGE_IS_JUMBO_CAPABLE(sc) &&
5504 	    if_getmtu(ifp) + ETHER_HDR_LEN + ETHER_CRC_LEN +
5505      	    ETHER_VLAN_ENCAP_LEN > (MCLBYTES - ETHER_ALIGN)) {
5506 		if (bge_init_rx_ring_jumbo(sc) != 0) {
5507 			device_printf(sc->bge_dev,
5508 			    "no memory for jumbo Rx buffers.\n");
5509 			bge_stop(sc);
5510 			return;
5511 		}
5512 	}
5513 
5514 	/* Init our RX return ring index. */
5515 	sc->bge_rx_saved_considx = 0;
5516 
5517 	/* Init our RX/TX stat counters. */
5518 	sc->bge_rx_discards = sc->bge_tx_discards = sc->bge_tx_collisions = 0;
5519 
5520 	/* Init TX ring. */
5521 	bge_init_tx_ring(sc);
5522 
5523 	/* Enable TX MAC state machine lockup fix. */
5524 	mode = CSR_READ_4(sc, BGE_TX_MODE);
5525 	if (BGE_IS_5755_PLUS(sc) || sc->bge_asicrev == BGE_ASICREV_BCM5906)
5526 		mode |= BGE_TXMODE_MBUF_LOCKUP_FIX;
5527 	if (sc->bge_asicrev == BGE_ASICREV_BCM5720 ||
5528 	    sc->bge_asicrev == BGE_ASICREV_BCM5762) {
5529 		mode &= ~(BGE_TXMODE_JMB_FRM_LEN | BGE_TXMODE_CNT_DN_MODE);
5530 		mode |= CSR_READ_4(sc, BGE_TX_MODE) &
5531 		    (BGE_TXMODE_JMB_FRM_LEN | BGE_TXMODE_CNT_DN_MODE);
5532 	}
5533 	/* Turn on transmitter. */
5534 	CSR_WRITE_4(sc, BGE_TX_MODE, mode | BGE_TXMODE_ENABLE);
5535 	DELAY(100);
5536 
5537 	/* Turn on receiver. */
5538 	mode = CSR_READ_4(sc, BGE_RX_MODE);
5539 	if (BGE_IS_5755_PLUS(sc))
5540 		mode |= BGE_RXMODE_IPV6_ENABLE;
5541 	if (sc->bge_asicrev == BGE_ASICREV_BCM5762)
5542 		mode |= BGE_RXMODE_IPV4_FRAG_FIX;
5543 	CSR_WRITE_4(sc,BGE_RX_MODE, mode | BGE_RXMODE_ENABLE);
5544 	DELAY(10);
5545 
5546 	/*
5547 	 * Set the number of good frames to receive after RX MBUF
5548 	 * Low Watermark has been reached. After the RX MAC receives
5549 	 * this number of frames, it will drop subsequent incoming
5550 	 * frames until the MBUF High Watermark is reached.
5551 	 */
5552 	if (BGE_IS_57765_PLUS(sc))
5553 		CSR_WRITE_4(sc, BGE_MAX_RX_FRAME_LOWAT, 1);
5554 	else
5555 		CSR_WRITE_4(sc, BGE_MAX_RX_FRAME_LOWAT, 2);
5556 
5557 	/* Clear MAC statistics. */
5558 	if (BGE_IS_5705_PLUS(sc))
5559 		bge_stats_clear_regs(sc);
5560 
5561 	/* Tell firmware we're alive. */
5562 	BGE_SETBIT(sc, BGE_MODE_CTL, BGE_MODECTL_STACKUP);
5563 
5564 #ifdef DEVICE_POLLING
5565 	/* Disable interrupts if we are polling. */
5566 	if (if_getcapenable(ifp) & IFCAP_POLLING) {
5567 		BGE_SETBIT(sc, BGE_PCI_MISC_CTL,
5568 		    BGE_PCIMISCCTL_MASK_PCI_INTR);
5569 		bge_writembx(sc, BGE_MBX_IRQ0_LO, 1);
5570 	} else
5571 #endif
5572 
5573 	/* Enable host interrupts. */
5574 	{
5575 	BGE_SETBIT(sc, BGE_PCI_MISC_CTL, BGE_PCIMISCCTL_CLEAR_INTA);
5576 	BGE_CLRBIT(sc, BGE_PCI_MISC_CTL, BGE_PCIMISCCTL_MASK_PCI_INTR);
5577 	bge_writembx(sc, BGE_MBX_IRQ0_LO, 0);
5578 	}
5579 
5580 	if_setdrvflagbits(ifp, IFF_DRV_RUNNING, 0);
5581 	if_setdrvflagbits(ifp, 0, IFF_DRV_OACTIVE);
5582 
5583 	bge_ifmedia_upd_locked(ifp);
5584 
5585 	callout_reset(&sc->bge_stat_ch, hz, bge_tick, sc);
5586 }
5587 
5588 static void
5589 bge_init(void *xsc)
5590 {
5591 	struct bge_softc *sc = xsc;
5592 
5593 	BGE_LOCK(sc);
5594 	bge_init_locked(sc);
5595 	BGE_UNLOCK(sc);
5596 }
5597 
5598 /*
5599  * Set media options.
5600  */
5601 static int
5602 bge_ifmedia_upd(if_t ifp)
5603 {
5604 	struct bge_softc *sc = if_getsoftc(ifp);
5605 	int res;
5606 
5607 	BGE_LOCK(sc);
5608 	res = bge_ifmedia_upd_locked(ifp);
5609 	BGE_UNLOCK(sc);
5610 
5611 	return (res);
5612 }
5613 
5614 static int
5615 bge_ifmedia_upd_locked(if_t ifp)
5616 {
5617 	struct bge_softc *sc = if_getsoftc(ifp);
5618 	struct mii_data *mii;
5619 	struct mii_softc *miisc;
5620 	struct ifmedia *ifm;
5621 
5622 	BGE_LOCK_ASSERT(sc);
5623 
5624 	ifm = &sc->bge_ifmedia;
5625 
5626 	/* If this is a 1000baseX NIC, enable the TBI port. */
5627 	if (sc->bge_flags & BGE_FLAG_TBI) {
5628 		if (IFM_TYPE(ifm->ifm_media) != IFM_ETHER)
5629 			return (EINVAL);
5630 		switch(IFM_SUBTYPE(ifm->ifm_media)) {
5631 		case IFM_AUTO:
5632 			/*
5633 			 * The BCM5704 ASIC appears to have a special
5634 			 * mechanism for programming the autoneg
5635 			 * advertisement registers in TBI mode.
5636 			 */
5637 			if (sc->bge_asicrev == BGE_ASICREV_BCM5704) {
5638 				uint32_t sgdig;
5639 				sgdig = CSR_READ_4(sc, BGE_SGDIG_STS);
5640 				if (sgdig & BGE_SGDIGSTS_DONE) {
5641 					CSR_WRITE_4(sc, BGE_TX_TBI_AUTONEG, 0);
5642 					sgdig = CSR_READ_4(sc, BGE_SGDIG_CFG);
5643 					sgdig |= BGE_SGDIGCFG_AUTO |
5644 					    BGE_SGDIGCFG_PAUSE_CAP |
5645 					    BGE_SGDIGCFG_ASYM_PAUSE;
5646 					CSR_WRITE_4(sc, BGE_SGDIG_CFG,
5647 					    sgdig | BGE_SGDIGCFG_SEND);
5648 					DELAY(5);
5649 					CSR_WRITE_4(sc, BGE_SGDIG_CFG, sgdig);
5650 				}
5651 			}
5652 			break;
5653 		case IFM_1000_SX:
5654 			if ((ifm->ifm_media & IFM_GMASK) == IFM_FDX) {
5655 				BGE_CLRBIT(sc, BGE_MAC_MODE,
5656 				    BGE_MACMODE_HALF_DUPLEX);
5657 			} else {
5658 				BGE_SETBIT(sc, BGE_MAC_MODE,
5659 				    BGE_MACMODE_HALF_DUPLEX);
5660 			}
5661 			DELAY(40);
5662 			break;
5663 		default:
5664 			return (EINVAL);
5665 		}
5666 		return (0);
5667 	}
5668 
5669 	sc->bge_link_evt++;
5670 	mii = device_get_softc(sc->bge_miibus);
5671 	LIST_FOREACH(miisc, &mii->mii_phys, mii_list)
5672 		PHY_RESET(miisc);
5673 	mii_mediachg(mii);
5674 
5675 	/*
5676 	 * Force an interrupt so that we will call bge_link_upd
5677 	 * if needed and clear any pending link state attention.
5678 	 * Without this we are not getting any further interrupts
5679 	 * for link state changes and thus will not UP the link and
5680 	 * not be able to send in bge_start_locked. The only
5681 	 * way to get things working was to receive a packet and
5682 	 * get an RX intr.
5683 	 * bge_tick should help for fiber cards and we might not
5684 	 * need to do this here if BGE_FLAG_TBI is set but as
5685 	 * we poll for fiber anyway it should not harm.
5686 	 */
5687 	if (sc->bge_asicrev == BGE_ASICREV_BCM5700 ||
5688 	    sc->bge_flags & BGE_FLAG_5788)
5689 		BGE_SETBIT(sc, BGE_MISC_LOCAL_CTL, BGE_MLC_INTR_SET);
5690 	else
5691 		BGE_SETBIT(sc, BGE_HCC_MODE, BGE_HCCMODE_COAL_NOW);
5692 
5693 	return (0);
5694 }
5695 
5696 /*
5697  * Report current media status.
5698  */
5699 static void
5700 bge_ifmedia_sts(if_t ifp, struct ifmediareq *ifmr)
5701 {
5702 	struct bge_softc *sc = if_getsoftc(ifp);
5703 	struct mii_data *mii;
5704 
5705 	BGE_LOCK(sc);
5706 
5707 	if ((if_getflags(ifp) & IFF_UP) == 0) {
5708 		BGE_UNLOCK(sc);
5709 		return;
5710 	}
5711 	if (sc->bge_flags & BGE_FLAG_TBI) {
5712 		ifmr->ifm_status = IFM_AVALID;
5713 		ifmr->ifm_active = IFM_ETHER;
5714 		if (CSR_READ_4(sc, BGE_MAC_STS) &
5715 		    BGE_MACSTAT_TBI_PCS_SYNCHED)
5716 			ifmr->ifm_status |= IFM_ACTIVE;
5717 		else {
5718 			ifmr->ifm_active |= IFM_NONE;
5719 			BGE_UNLOCK(sc);
5720 			return;
5721 		}
5722 		ifmr->ifm_active |= IFM_1000_SX;
5723 		if (CSR_READ_4(sc, BGE_MAC_MODE) & BGE_MACMODE_HALF_DUPLEX)
5724 			ifmr->ifm_active |= IFM_HDX;
5725 		else
5726 			ifmr->ifm_active |= IFM_FDX;
5727 		BGE_UNLOCK(sc);
5728 		return;
5729 	}
5730 
5731 	mii = device_get_softc(sc->bge_miibus);
5732 	mii_pollstat(mii);
5733 	ifmr->ifm_active = mii->mii_media_active;
5734 	ifmr->ifm_status = mii->mii_media_status;
5735 
5736 	BGE_UNLOCK(sc);
5737 }
5738 
5739 static int
5740 bge_ioctl(if_t ifp, u_long command, caddr_t data)
5741 {
5742 	struct bge_softc *sc = if_getsoftc(ifp);
5743 	struct ifreq *ifr = (struct ifreq *) data;
5744 	struct mii_data *mii;
5745 	int flags, mask, error = 0;
5746 
5747 	switch (command) {
5748 	case SIOCSIFMTU:
5749 		if (BGE_IS_JUMBO_CAPABLE(sc) ||
5750 		    (sc->bge_flags & BGE_FLAG_JUMBO_STD)) {
5751 			if (ifr->ifr_mtu < ETHERMIN ||
5752 			    ifr->ifr_mtu > BGE_JUMBO_MTU) {
5753 				error = EINVAL;
5754 				break;
5755 			}
5756 		} else if (ifr->ifr_mtu < ETHERMIN || ifr->ifr_mtu > ETHERMTU) {
5757 			error = EINVAL;
5758 			break;
5759 		}
5760 		BGE_LOCK(sc);
5761 		if (if_getmtu(ifp) != ifr->ifr_mtu) {
5762 			if_setmtu(ifp, ifr->ifr_mtu);
5763 			if (if_getdrvflags(ifp) & IFF_DRV_RUNNING) {
5764 				if_setdrvflagbits(ifp, 0, IFF_DRV_RUNNING);
5765 				bge_init_locked(sc);
5766 			}
5767 		}
5768 		BGE_UNLOCK(sc);
5769 		break;
5770 	case SIOCSIFFLAGS:
5771 		BGE_LOCK(sc);
5772 		if (if_getflags(ifp) & IFF_UP) {
5773 			/*
5774 			 * If only the state of the PROMISC flag changed,
5775 			 * then just use the 'set promisc mode' command
5776 			 * instead of reinitializing the entire NIC. Doing
5777 			 * a full re-init means reloading the firmware and
5778 			 * waiting for it to start up, which may take a
5779 			 * second or two.  Similarly for ALLMULTI.
5780 			 */
5781 			if (if_getdrvflags(ifp) & IFF_DRV_RUNNING) {
5782 				flags = if_getflags(ifp) ^ sc->bge_if_flags;
5783 				if (flags & IFF_PROMISC)
5784 					bge_setpromisc(sc);
5785 				if (flags & IFF_ALLMULTI)
5786 					bge_setmulti(sc);
5787 			} else
5788 				bge_init_locked(sc);
5789 		} else {
5790 			if (if_getdrvflags(ifp) & IFF_DRV_RUNNING) {
5791 				bge_stop(sc);
5792 			}
5793 		}
5794 		sc->bge_if_flags = if_getflags(ifp);
5795 		BGE_UNLOCK(sc);
5796 		error = 0;
5797 		break;
5798 	case SIOCADDMULTI:
5799 	case SIOCDELMULTI:
5800 		if (if_getdrvflags(ifp) & IFF_DRV_RUNNING) {
5801 			BGE_LOCK(sc);
5802 			bge_setmulti(sc);
5803 			BGE_UNLOCK(sc);
5804 			error = 0;
5805 		}
5806 		break;
5807 	case SIOCSIFMEDIA:
5808 	case SIOCGIFMEDIA:
5809 		if (sc->bge_flags & BGE_FLAG_TBI) {
5810 			error = ifmedia_ioctl(ifp, ifr,
5811 			    &sc->bge_ifmedia, command);
5812 		} else {
5813 			mii = device_get_softc(sc->bge_miibus);
5814 			error = ifmedia_ioctl(ifp, ifr,
5815 			    &mii->mii_media, command);
5816 		}
5817 		break;
5818 	case SIOCSIFCAP:
5819 		mask = ifr->ifr_reqcap ^ if_getcapenable(ifp);
5820 #ifdef DEVICE_POLLING
5821 		if (mask & IFCAP_POLLING) {
5822 			if (ifr->ifr_reqcap & IFCAP_POLLING) {
5823 				error = ether_poll_register(bge_poll, ifp);
5824 				if (error)
5825 					return (error);
5826 				BGE_LOCK(sc);
5827 				BGE_SETBIT(sc, BGE_PCI_MISC_CTL,
5828 				    BGE_PCIMISCCTL_MASK_PCI_INTR);
5829 				bge_writembx(sc, BGE_MBX_IRQ0_LO, 1);
5830 				if_setcapenablebit(ifp, IFCAP_POLLING, 0);
5831 				BGE_UNLOCK(sc);
5832 			} else {
5833 				error = ether_poll_deregister(ifp);
5834 				/* Enable interrupt even in error case */
5835 				BGE_LOCK(sc);
5836 				BGE_CLRBIT(sc, BGE_PCI_MISC_CTL,
5837 				    BGE_PCIMISCCTL_MASK_PCI_INTR);
5838 				bge_writembx(sc, BGE_MBX_IRQ0_LO, 0);
5839 				if_setcapenablebit(ifp, 0, IFCAP_POLLING);
5840 				BGE_UNLOCK(sc);
5841 			}
5842 		}
5843 #endif
5844 		if ((mask & IFCAP_TXCSUM) != 0 &&
5845 		    (if_getcapabilities(ifp) & IFCAP_TXCSUM) != 0) {
5846 			if_togglecapenable(ifp, IFCAP_TXCSUM);
5847 			if ((if_getcapenable(ifp) & IFCAP_TXCSUM) != 0)
5848 				if_sethwassistbits(ifp,
5849 				    sc->bge_csum_features, 0);
5850 			else
5851 				if_sethwassistbits(ifp, 0,
5852 				    sc->bge_csum_features);
5853 		}
5854 
5855 		if ((mask & IFCAP_RXCSUM) != 0 &&
5856 		    (if_getcapabilities(ifp) & IFCAP_RXCSUM) != 0)
5857 			if_togglecapenable(ifp, IFCAP_RXCSUM);
5858 
5859 		if ((mask & IFCAP_TSO4) != 0 &&
5860 		    (if_getcapabilities(ifp) & IFCAP_TSO4) != 0) {
5861 			if_togglecapenable(ifp, IFCAP_TSO4);
5862 			if ((if_getcapenable(ifp) & IFCAP_TSO4) != 0)
5863 				if_sethwassistbits(ifp, CSUM_TSO, 0);
5864 			else
5865 				if_sethwassistbits(ifp, 0, CSUM_TSO);
5866 		}
5867 
5868 		if (mask & IFCAP_VLAN_MTU) {
5869 			if_togglecapenable(ifp, IFCAP_VLAN_MTU);
5870 			if_setdrvflagbits(ifp, 0, IFF_DRV_RUNNING);
5871 			bge_init(sc);
5872 		}
5873 
5874 		if ((mask & IFCAP_VLAN_HWTSO) != 0 &&
5875 		    (if_getcapabilities(ifp) & IFCAP_VLAN_HWTSO) != 0)
5876 			if_togglecapenable(ifp, IFCAP_VLAN_HWTSO);
5877 		if ((mask & IFCAP_VLAN_HWTAGGING) != 0 &&
5878 		    (if_getcapabilities(ifp) & IFCAP_VLAN_HWTAGGING) != 0) {
5879 			if_togglecapenable(ifp, IFCAP_VLAN_HWTAGGING);
5880 			if ((if_getcapenable(ifp) & IFCAP_VLAN_HWTAGGING) == 0)
5881 				if_setcapenablebit(ifp, 0, IFCAP_VLAN_HWTSO);
5882 			BGE_LOCK(sc);
5883 			bge_setvlan(sc);
5884 			BGE_UNLOCK(sc);
5885 		}
5886 #ifdef VLAN_CAPABILITIES
5887 		if_vlancap(ifp);
5888 #endif
5889 		break;
5890 	default:
5891 		error = ether_ioctl(ifp, command, data);
5892 		break;
5893 	}
5894 
5895 	return (error);
5896 }
5897 
5898 static void
5899 bge_watchdog(struct bge_softc *sc)
5900 {
5901 	if_t ifp;
5902 	uint32_t status;
5903 
5904 	BGE_LOCK_ASSERT(sc);
5905 
5906 	if (sc->bge_timer == 0 || --sc->bge_timer)
5907 		return;
5908 
5909 	/* If pause frames are active then don't reset the hardware. */
5910 	if ((CSR_READ_4(sc, BGE_RX_MODE) & BGE_RXMODE_FLOWCTL_ENABLE) != 0) {
5911 		status = CSR_READ_4(sc, BGE_RX_STS);
5912 		if ((status & BGE_RXSTAT_REMOTE_XOFFED) != 0) {
5913 			/*
5914 			 * If link partner has us in XOFF state then wait for
5915 			 * the condition to clear.
5916 			 */
5917 			CSR_WRITE_4(sc, BGE_RX_STS, status);
5918 			sc->bge_timer = BGE_TX_TIMEOUT;
5919 			return;
5920 		} else if ((status & BGE_RXSTAT_RCVD_XOFF) != 0 &&
5921 		    (status & BGE_RXSTAT_RCVD_XON) != 0) {
5922 			/*
5923 			 * If link partner has us in XOFF state then wait for
5924 			 * the condition to clear.
5925 			 */
5926 			CSR_WRITE_4(sc, BGE_RX_STS, status);
5927 			sc->bge_timer = BGE_TX_TIMEOUT;
5928 			return;
5929 		}
5930 		/*
5931 		 * Any other condition is unexpected and the controller
5932 		 * should be reset.
5933 		 */
5934 	}
5935 
5936 	ifp = sc->bge_ifp;
5937 
5938 	if_printf(ifp, "watchdog timeout -- resetting\n");
5939 
5940 	if_setdrvflagbits(ifp, 0, IFF_DRV_RUNNING);
5941 	bge_init_locked(sc);
5942 
5943 	if_inc_counter(ifp, IFCOUNTER_OERRORS, 1);
5944 }
5945 
5946 static void
5947 bge_stop_block(struct bge_softc *sc, bus_size_t reg, uint32_t bit)
5948 {
5949 	int i;
5950 
5951 	BGE_CLRBIT(sc, reg, bit);
5952 
5953 	for (i = 0; i < BGE_TIMEOUT; i++) {
5954 		if ((CSR_READ_4(sc, reg) & bit) == 0)
5955 			return;
5956 		DELAY(100);
5957         }
5958 }
5959 
5960 /*
5961  * Stop the adapter and free any mbufs allocated to the
5962  * RX and TX lists.
5963  */
5964 static void
5965 bge_stop(struct bge_softc *sc)
5966 {
5967 	if_t ifp;
5968 
5969 	BGE_LOCK_ASSERT(sc);
5970 
5971 	ifp = sc->bge_ifp;
5972 
5973 	callout_stop(&sc->bge_stat_ch);
5974 
5975 	/* Disable host interrupts. */
5976 	BGE_SETBIT(sc, BGE_PCI_MISC_CTL, BGE_PCIMISCCTL_MASK_PCI_INTR);
5977 	bge_writembx(sc, BGE_MBX_IRQ0_LO, 1);
5978 
5979 	/*
5980 	 * Tell firmware we're shutting down.
5981 	 */
5982 	bge_stop_fw(sc);
5983 	bge_sig_pre_reset(sc, BGE_RESET_SHUTDOWN);
5984 
5985 	/*
5986 	 * Disable all of the receiver blocks.
5987 	 */
5988 	bge_stop_block(sc, BGE_RX_MODE, BGE_RXMODE_ENABLE);
5989 	bge_stop_block(sc, BGE_RBDI_MODE, BGE_RBDIMODE_ENABLE);
5990 	bge_stop_block(sc, BGE_RXLP_MODE, BGE_RXLPMODE_ENABLE);
5991 	if (BGE_IS_5700_FAMILY(sc))
5992 		bge_stop_block(sc, BGE_RXLS_MODE, BGE_RXLSMODE_ENABLE);
5993 	bge_stop_block(sc, BGE_RDBDI_MODE, BGE_RBDIMODE_ENABLE);
5994 	bge_stop_block(sc, BGE_RDC_MODE, BGE_RDCMODE_ENABLE);
5995 	bge_stop_block(sc, BGE_RBDC_MODE, BGE_RBDCMODE_ENABLE);
5996 
5997 	/*
5998 	 * Disable all of the transmit blocks.
5999 	 */
6000 	bge_stop_block(sc, BGE_SRS_MODE, BGE_SRSMODE_ENABLE);
6001 	bge_stop_block(sc, BGE_SBDI_MODE, BGE_SBDIMODE_ENABLE);
6002 	bge_stop_block(sc, BGE_SDI_MODE, BGE_SDIMODE_ENABLE);
6003 	bge_stop_block(sc, BGE_RDMA_MODE, BGE_RDMAMODE_ENABLE);
6004 	bge_stop_block(sc, BGE_SDC_MODE, BGE_SDCMODE_ENABLE);
6005 	if (BGE_IS_5700_FAMILY(sc))
6006 		bge_stop_block(sc, BGE_DMAC_MODE, BGE_DMACMODE_ENABLE);
6007 	bge_stop_block(sc, BGE_SBDC_MODE, BGE_SBDCMODE_ENABLE);
6008 
6009 	/*
6010 	 * Shut down all of the memory managers and related
6011 	 * state machines.
6012 	 */
6013 	bge_stop_block(sc, BGE_HCC_MODE, BGE_HCCMODE_ENABLE);
6014 	bge_stop_block(sc, BGE_WDMA_MODE, BGE_WDMAMODE_ENABLE);
6015 	if (BGE_IS_5700_FAMILY(sc))
6016 		bge_stop_block(sc, BGE_MBCF_MODE, BGE_MBCFMODE_ENABLE);
6017 
6018 	CSR_WRITE_4(sc, BGE_FTQ_RESET, 0xFFFFFFFF);
6019 	CSR_WRITE_4(sc, BGE_FTQ_RESET, 0);
6020 	if (!(BGE_IS_5705_PLUS(sc))) {
6021 		BGE_CLRBIT(sc, BGE_BMAN_MODE, BGE_BMANMODE_ENABLE);
6022 		BGE_CLRBIT(sc, BGE_MARB_MODE, BGE_MARBMODE_ENABLE);
6023 	}
6024 	/* Update MAC statistics. */
6025 	if (BGE_IS_5705_PLUS(sc))
6026 		bge_stats_update_regs(sc);
6027 
6028 	bge_reset(sc);
6029 	bge_sig_legacy(sc, BGE_RESET_SHUTDOWN);
6030 	bge_sig_post_reset(sc, BGE_RESET_SHUTDOWN);
6031 
6032 	/*
6033 	 * Keep the ASF firmware running if up.
6034 	 */
6035 	if (sc->bge_asf_mode & ASF_STACKUP)
6036 		BGE_SETBIT(sc, BGE_MODE_CTL, BGE_MODECTL_STACKUP);
6037 	else
6038 		BGE_CLRBIT(sc, BGE_MODE_CTL, BGE_MODECTL_STACKUP);
6039 
6040 	/* Free the RX lists. */
6041 	bge_free_rx_ring_std(sc);
6042 
6043 	/* Free jumbo RX list. */
6044 	if (BGE_IS_JUMBO_CAPABLE(sc))
6045 		bge_free_rx_ring_jumbo(sc);
6046 
6047 	/* Free TX buffers. */
6048 	bge_free_tx_ring(sc);
6049 
6050 	sc->bge_tx_saved_considx = BGE_TXCONS_UNSET;
6051 
6052 	/* Clear MAC's link state (PHY may still have link UP). */
6053 	if (bootverbose && sc->bge_link)
6054 		if_printf(sc->bge_ifp, "link DOWN\n");
6055 	sc->bge_link = 0;
6056 
6057 	if_setdrvflagbits(ifp, 0, (IFF_DRV_RUNNING | IFF_DRV_OACTIVE));
6058 }
6059 
6060 /*
6061  * Stop all chip I/O so that the kernel's probe routines don't
6062  * get confused by errant DMAs when rebooting.
6063  */
6064 static int
6065 bge_shutdown(device_t dev)
6066 {
6067 	struct bge_softc *sc;
6068 
6069 	sc = device_get_softc(dev);
6070 	BGE_LOCK(sc);
6071 	bge_stop(sc);
6072 	BGE_UNLOCK(sc);
6073 
6074 	return (0);
6075 }
6076 
6077 static int
6078 bge_suspend(device_t dev)
6079 {
6080 	struct bge_softc *sc;
6081 
6082 	sc = device_get_softc(dev);
6083 	BGE_LOCK(sc);
6084 	bge_stop(sc);
6085 	BGE_UNLOCK(sc);
6086 
6087 	return (0);
6088 }
6089 
6090 static int
6091 bge_resume(device_t dev)
6092 {
6093 	struct bge_softc *sc;
6094 	if_t ifp;
6095 
6096 	sc = device_get_softc(dev);
6097 	BGE_LOCK(sc);
6098 	ifp = sc->bge_ifp;
6099 	if (if_getflags(ifp) & IFF_UP) {
6100 		bge_init_locked(sc);
6101 		if (if_getdrvflags(ifp) & IFF_DRV_RUNNING)
6102 			bge_start_locked(ifp);
6103 	}
6104 	BGE_UNLOCK(sc);
6105 
6106 	return (0);
6107 }
6108 
6109 static void
6110 bge_link_upd(struct bge_softc *sc)
6111 {
6112 	struct mii_data *mii;
6113 	uint32_t link, status;
6114 
6115 	BGE_LOCK_ASSERT(sc);
6116 
6117 	/* Clear 'pending link event' flag. */
6118 	sc->bge_link_evt = 0;
6119 
6120 	/*
6121 	 * Process link state changes.
6122 	 * Grrr. The link status word in the status block does
6123 	 * not work correctly on the BCM5700 rev AX and BX chips,
6124 	 * according to all available information. Hence, we have
6125 	 * to enable MII interrupts in order to properly obtain
6126 	 * async link changes. Unfortunately, this also means that
6127 	 * we have to read the MAC status register to detect link
6128 	 * changes, thereby adding an additional register access to
6129 	 * the interrupt handler.
6130 	 *
6131 	 * XXX: perhaps link state detection procedure used for
6132 	 * BGE_CHIPID_BCM5700_B2 can be used for others BCM5700 revisions.
6133 	 */
6134 
6135 	if (sc->bge_asicrev == BGE_ASICREV_BCM5700 &&
6136 	    sc->bge_chipid != BGE_CHIPID_BCM5700_B2) {
6137 		status = CSR_READ_4(sc, BGE_MAC_STS);
6138 		if (status & BGE_MACSTAT_MI_INTERRUPT) {
6139 			mii = device_get_softc(sc->bge_miibus);
6140 			mii_pollstat(mii);
6141 			if (!sc->bge_link &&
6142 			    mii->mii_media_status & IFM_ACTIVE &&
6143 			    IFM_SUBTYPE(mii->mii_media_active) != IFM_NONE) {
6144 				sc->bge_link++;
6145 				if (bootverbose)
6146 					if_printf(sc->bge_ifp, "link UP\n");
6147 			} else if (sc->bge_link &&
6148 			    (!(mii->mii_media_status & IFM_ACTIVE) ||
6149 			    IFM_SUBTYPE(mii->mii_media_active) == IFM_NONE)) {
6150 				sc->bge_link = 0;
6151 				if (bootverbose)
6152 					if_printf(sc->bge_ifp, "link DOWN\n");
6153 			}
6154 
6155 			/* Clear the interrupt. */
6156 			CSR_WRITE_4(sc, BGE_MAC_EVT_ENB,
6157 			    BGE_EVTENB_MI_INTERRUPT);
6158 			bge_miibus_readreg(sc->bge_dev, sc->bge_phy_addr,
6159 			    BRGPHY_MII_ISR);
6160 			bge_miibus_writereg(sc->bge_dev, sc->bge_phy_addr,
6161 			    BRGPHY_MII_IMR, BRGPHY_INTRS);
6162 		}
6163 		return;
6164 	}
6165 
6166 	if (sc->bge_flags & BGE_FLAG_TBI) {
6167 		status = CSR_READ_4(sc, BGE_MAC_STS);
6168 		if (status & BGE_MACSTAT_TBI_PCS_SYNCHED) {
6169 			if (!sc->bge_link) {
6170 				sc->bge_link++;
6171 				if (sc->bge_asicrev == BGE_ASICREV_BCM5704) {
6172 					BGE_CLRBIT(sc, BGE_MAC_MODE,
6173 					    BGE_MACMODE_TBI_SEND_CFGS);
6174 					DELAY(40);
6175 				}
6176 				CSR_WRITE_4(sc, BGE_MAC_STS, 0xFFFFFFFF);
6177 				if (bootverbose)
6178 					if_printf(sc->bge_ifp, "link UP\n");
6179 				if_link_state_change(sc->bge_ifp,
6180 				    LINK_STATE_UP);
6181 			}
6182 		} else if (sc->bge_link) {
6183 			sc->bge_link = 0;
6184 			if (bootverbose)
6185 				if_printf(sc->bge_ifp, "link DOWN\n");
6186 			if_link_state_change(sc->bge_ifp, LINK_STATE_DOWN);
6187 		}
6188 	} else if ((sc->bge_mi_mode & BGE_MIMODE_AUTOPOLL) != 0) {
6189 		/*
6190 		 * Some broken BCM chips have BGE_STATFLAG_LINKSTATE_CHANGED bit
6191 		 * in status word always set. Workaround this bug by reading
6192 		 * PHY link status directly.
6193 		 */
6194 		link = (CSR_READ_4(sc, BGE_MI_STS) & BGE_MISTS_LINK) ? 1 : 0;
6195 
6196 		if (link != sc->bge_link ||
6197 		    sc->bge_asicrev == BGE_ASICREV_BCM5700) {
6198 			mii = device_get_softc(sc->bge_miibus);
6199 			mii_pollstat(mii);
6200 			if (!sc->bge_link &&
6201 			    mii->mii_media_status & IFM_ACTIVE &&
6202 			    IFM_SUBTYPE(mii->mii_media_active) != IFM_NONE) {
6203 				sc->bge_link++;
6204 				if (bootverbose)
6205 					if_printf(sc->bge_ifp, "link UP\n");
6206 			} else if (sc->bge_link &&
6207 			    (!(mii->mii_media_status & IFM_ACTIVE) ||
6208 			    IFM_SUBTYPE(mii->mii_media_active) == IFM_NONE)) {
6209 				sc->bge_link = 0;
6210 				if (bootverbose)
6211 					if_printf(sc->bge_ifp, "link DOWN\n");
6212 			}
6213 		}
6214 	} else {
6215 		/*
6216 		 * For controllers that call mii_tick, we have to poll
6217 		 * link status.
6218 		 */
6219 		mii = device_get_softc(sc->bge_miibus);
6220 		mii_pollstat(mii);
6221 		bge_miibus_statchg(sc->bge_dev);
6222 	}
6223 
6224 	/* Disable MAC attention when link is up. */
6225 	CSR_WRITE_4(sc, BGE_MAC_STS, BGE_MACSTAT_SYNC_CHANGED |
6226 	    BGE_MACSTAT_CFG_CHANGED | BGE_MACSTAT_MI_COMPLETE |
6227 	    BGE_MACSTAT_LINK_CHANGED);
6228 }
6229 
6230 static void
6231 bge_add_sysctls(struct bge_softc *sc)
6232 {
6233 	struct sysctl_ctx_list *ctx;
6234 	struct sysctl_oid_list *children;
6235 
6236 	ctx = device_get_sysctl_ctx(sc->bge_dev);
6237 	children = SYSCTL_CHILDREN(device_get_sysctl_tree(sc->bge_dev));
6238 
6239 #ifdef BGE_REGISTER_DEBUG
6240 	SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "debug_info",
6241 	    CTLTYPE_INT | CTLFLAG_RW | CTLFLAG_NEEDGIANT, sc, 0,
6242 	    bge_sysctl_debug_info, "I", "Debug Information");
6243 
6244 	SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "reg_read",
6245 	    CTLTYPE_INT | CTLFLAG_RW | CTLFLAG_NEEDGIANT, sc, 0,
6246 	    bge_sysctl_reg_read, "I", "MAC Register Read");
6247 
6248 	SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "ape_read",
6249 	    CTLTYPE_INT | CTLFLAG_RW | CTLFLAG_NEEDGIANT, sc, 0,
6250 	    bge_sysctl_ape_read, "I", "APE Register Read");
6251 
6252 	SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "mem_read",
6253 	    CTLTYPE_INT | CTLFLAG_RW | CTLFLAG_NEEDGIANT, sc, 0,
6254 	    bge_sysctl_mem_read, "I", "Memory Read");
6255 
6256 #endif
6257 
6258 	/*
6259 	 * A common design characteristic for many Broadcom client controllers
6260 	 * is that they only support a single outstanding DMA read operation
6261 	 * on the PCIe bus. This means that it will take twice as long to fetch
6262 	 * a TX frame that is split into header and payload buffers as it does
6263 	 * to fetch a single, contiguous TX frame (2 reads vs. 1 read). For
6264 	 * these controllers, coalescing buffers to reduce the number of memory
6265 	 * reads is effective way to get maximum performance(about 940Mbps).
6266 	 * Without collapsing TX buffers the maximum TCP bulk transfer
6267 	 * performance is about 850Mbps. However forcing coalescing mbufs
6268 	 * consumes a lot of CPU cycles, so leave it off by default.
6269 	 */
6270 	sc->bge_forced_collapse = 0;
6271 	SYSCTL_ADD_INT(ctx, children, OID_AUTO, "forced_collapse",
6272 	    CTLFLAG_RWTUN, &sc->bge_forced_collapse, 0,
6273 	    "Number of fragmented TX buffers of a frame allowed before "
6274 	    "forced collapsing");
6275 
6276 	sc->bge_msi = 1;
6277 	SYSCTL_ADD_INT(ctx, children, OID_AUTO, "msi",
6278 	    CTLFLAG_RDTUN, &sc->bge_msi, 0, "Enable MSI");
6279 
6280 	/*
6281 	 * It seems all Broadcom controllers have a bug that can generate UDP
6282 	 * datagrams with checksum value 0 when TX UDP checksum offloading is
6283 	 * enabled.  Generating UDP checksum value 0 is RFC 768 violation.
6284 	 * Even though the probability of generating such UDP datagrams is
6285 	 * low, I don't want to see FreeBSD boxes to inject such datagrams
6286 	 * into network so disable UDP checksum offloading by default.  Users
6287 	 * still override this behavior by setting a sysctl variable,
6288 	 * dev.bge.0.forced_udpcsum.
6289 	 */
6290 	sc->bge_forced_udpcsum = 0;
6291 	SYSCTL_ADD_INT(ctx, children, OID_AUTO, "forced_udpcsum",
6292 	    CTLFLAG_RWTUN, &sc->bge_forced_udpcsum, 0,
6293 	    "Enable UDP checksum offloading even if controller can "
6294 	    "generate UDP checksum value 0");
6295 
6296 	if (BGE_IS_5705_PLUS(sc))
6297 		bge_add_sysctl_stats_regs(sc, ctx, children);
6298 	else
6299 		bge_add_sysctl_stats(sc, ctx, children);
6300 }
6301 
6302 #define BGE_SYSCTL_STAT(sc, ctx, desc, parent, node, oid) \
6303     SYSCTL_ADD_PROC(ctx, parent, OID_AUTO, oid, \
6304         CTLTYPE_UINT | CTLFLAG_RD | CTLFLAG_NEEDGIANT, sc, \
6305 	offsetof(struct bge_stats, node), bge_sysctl_stats, "IU", desc)
6306 
6307 static void
6308 bge_add_sysctl_stats(struct bge_softc *sc, struct sysctl_ctx_list *ctx,
6309     struct sysctl_oid_list *parent)
6310 {
6311 	struct sysctl_oid *tree;
6312 	struct sysctl_oid_list *children, *schildren;
6313 
6314 	tree = SYSCTL_ADD_NODE(ctx, parent, OID_AUTO, "stats",
6315 	    CTLFLAG_RD | CTLFLAG_MPSAFE, NULL, "BGE Statistics");
6316 	schildren = children = SYSCTL_CHILDREN(tree);
6317 	BGE_SYSCTL_STAT(sc, ctx, "Frames Dropped Due To Filters",
6318 	    children, COSFramesDroppedDueToFilters,
6319 	    "FramesDroppedDueToFilters");
6320 	BGE_SYSCTL_STAT(sc, ctx, "NIC DMA Write Queue Full",
6321 	    children, nicDmaWriteQueueFull, "DmaWriteQueueFull");
6322 	BGE_SYSCTL_STAT(sc, ctx, "NIC DMA Write High Priority Queue Full",
6323 	    children, nicDmaWriteHighPriQueueFull, "DmaWriteHighPriQueueFull");
6324 	BGE_SYSCTL_STAT(sc, ctx, "NIC No More RX Buffer Descriptors",
6325 	    children, nicNoMoreRxBDs, "NoMoreRxBDs");
6326 	BGE_SYSCTL_STAT(sc, ctx, "Discarded Input Frames",
6327 	    children, ifInDiscards, "InputDiscards");
6328 	BGE_SYSCTL_STAT(sc, ctx, "Input Errors",
6329 	    children, ifInErrors, "InputErrors");
6330 	BGE_SYSCTL_STAT(sc, ctx, "NIC Recv Threshold Hit",
6331 	    children, nicRecvThresholdHit, "RecvThresholdHit");
6332 	BGE_SYSCTL_STAT(sc, ctx, "NIC DMA Read Queue Full",
6333 	    children, nicDmaReadQueueFull, "DmaReadQueueFull");
6334 	BGE_SYSCTL_STAT(sc, ctx, "NIC DMA Read High Priority Queue Full",
6335 	    children, nicDmaReadHighPriQueueFull, "DmaReadHighPriQueueFull");
6336 	BGE_SYSCTL_STAT(sc, ctx, "NIC Send Data Complete Queue Full",
6337 	    children, nicSendDataCompQueueFull, "SendDataCompQueueFull");
6338 	BGE_SYSCTL_STAT(sc, ctx, "NIC Ring Set Send Producer Index",
6339 	    children, nicRingSetSendProdIndex, "RingSetSendProdIndex");
6340 	BGE_SYSCTL_STAT(sc, ctx, "NIC Ring Status Update",
6341 	    children, nicRingStatusUpdate, "RingStatusUpdate");
6342 	BGE_SYSCTL_STAT(sc, ctx, "NIC Interrupts",
6343 	    children, nicInterrupts, "Interrupts");
6344 	BGE_SYSCTL_STAT(sc, ctx, "NIC Avoided Interrupts",
6345 	    children, nicAvoidedInterrupts, "AvoidedInterrupts");
6346 	BGE_SYSCTL_STAT(sc, ctx, "NIC Send Threshold Hit",
6347 	    children, nicSendThresholdHit, "SendThresholdHit");
6348 
6349 	tree = SYSCTL_ADD_NODE(ctx, schildren, OID_AUTO, "rx",
6350 	    CTLFLAG_RD | CTLFLAG_MPSAFE, NULL, "BGE RX Statistics");
6351 	children = SYSCTL_CHILDREN(tree);
6352 	BGE_SYSCTL_STAT(sc, ctx, "Inbound Octets",
6353 	    children, rxstats.ifHCInOctets, "ifHCInOctets");
6354 	BGE_SYSCTL_STAT(sc, ctx, "Fragments",
6355 	    children, rxstats.etherStatsFragments, "Fragments");
6356 	BGE_SYSCTL_STAT(sc, ctx, "Inbound Unicast Packets",
6357 	    children, rxstats.ifHCInUcastPkts, "UnicastPkts");
6358 	BGE_SYSCTL_STAT(sc, ctx, "Inbound Multicast Packets",
6359 	    children, rxstats.ifHCInMulticastPkts, "MulticastPkts");
6360 	BGE_SYSCTL_STAT(sc, ctx, "FCS Errors",
6361 	    children, rxstats.dot3StatsFCSErrors, "FCSErrors");
6362 	BGE_SYSCTL_STAT(sc, ctx, "Alignment Errors",
6363 	    children, rxstats.dot3StatsAlignmentErrors, "AlignmentErrors");
6364 	BGE_SYSCTL_STAT(sc, ctx, "XON Pause Frames Received",
6365 	    children, rxstats.xonPauseFramesReceived, "xonPauseFramesReceived");
6366 	BGE_SYSCTL_STAT(sc, ctx, "XOFF Pause Frames Received",
6367 	    children, rxstats.xoffPauseFramesReceived,
6368 	    "xoffPauseFramesReceived");
6369 	BGE_SYSCTL_STAT(sc, ctx, "MAC Control Frames Received",
6370 	    children, rxstats.macControlFramesReceived,
6371 	    "ControlFramesReceived");
6372 	BGE_SYSCTL_STAT(sc, ctx, "XOFF State Entered",
6373 	    children, rxstats.xoffStateEntered, "xoffStateEntered");
6374 	BGE_SYSCTL_STAT(sc, ctx, "Frames Too Long",
6375 	    children, rxstats.dot3StatsFramesTooLong, "FramesTooLong");
6376 	BGE_SYSCTL_STAT(sc, ctx, "Jabbers",
6377 	    children, rxstats.etherStatsJabbers, "Jabbers");
6378 	BGE_SYSCTL_STAT(sc, ctx, "Undersized Packets",
6379 	    children, rxstats.etherStatsUndersizePkts, "UndersizePkts");
6380 	BGE_SYSCTL_STAT(sc, ctx, "Inbound Range Length Errors",
6381 	    children, rxstats.inRangeLengthError, "inRangeLengthError");
6382 	BGE_SYSCTL_STAT(sc, ctx, "Outbound Range Length Errors",
6383 	    children, rxstats.outRangeLengthError, "outRangeLengthError");
6384 
6385 	tree = SYSCTL_ADD_NODE(ctx, schildren, OID_AUTO, "tx",
6386 	    CTLFLAG_RD | CTLFLAG_MPSAFE, NULL, "BGE TX Statistics");
6387 	children = SYSCTL_CHILDREN(tree);
6388 	BGE_SYSCTL_STAT(sc, ctx, "Outbound Octets",
6389 	    children, txstats.ifHCOutOctets, "ifHCOutOctets");
6390 	BGE_SYSCTL_STAT(sc, ctx, "TX Collisions",
6391 	    children, txstats.etherStatsCollisions, "Collisions");
6392 	BGE_SYSCTL_STAT(sc, ctx, "XON Sent",
6393 	    children, txstats.outXonSent, "XonSent");
6394 	BGE_SYSCTL_STAT(sc, ctx, "XOFF Sent",
6395 	    children, txstats.outXoffSent, "XoffSent");
6396 	BGE_SYSCTL_STAT(sc, ctx, "Flow Control Done",
6397 	    children, txstats.flowControlDone, "flowControlDone");
6398 	BGE_SYSCTL_STAT(sc, ctx, "Internal MAC TX errors",
6399 	    children, txstats.dot3StatsInternalMacTransmitErrors,
6400 	    "InternalMacTransmitErrors");
6401 	BGE_SYSCTL_STAT(sc, ctx, "Single Collision Frames",
6402 	    children, txstats.dot3StatsSingleCollisionFrames,
6403 	    "SingleCollisionFrames");
6404 	BGE_SYSCTL_STAT(sc, ctx, "Multiple Collision Frames",
6405 	    children, txstats.dot3StatsMultipleCollisionFrames,
6406 	    "MultipleCollisionFrames");
6407 	BGE_SYSCTL_STAT(sc, ctx, "Deferred Transmissions",
6408 	    children, txstats.dot3StatsDeferredTransmissions,
6409 	    "DeferredTransmissions");
6410 	BGE_SYSCTL_STAT(sc, ctx, "Excessive Collisions",
6411 	    children, txstats.dot3StatsExcessiveCollisions,
6412 	    "ExcessiveCollisions");
6413 	BGE_SYSCTL_STAT(sc, ctx, "Late Collisions",
6414 	    children, txstats.dot3StatsLateCollisions,
6415 	    "LateCollisions");
6416 	BGE_SYSCTL_STAT(sc, ctx, "Outbound Unicast Packets",
6417 	    children, txstats.ifHCOutUcastPkts, "UnicastPkts");
6418 	BGE_SYSCTL_STAT(sc, ctx, "Outbound Multicast Packets",
6419 	    children, txstats.ifHCOutMulticastPkts, "MulticastPkts");
6420 	BGE_SYSCTL_STAT(sc, ctx, "Outbound Broadcast Packets",
6421 	    children, txstats.ifHCOutBroadcastPkts, "BroadcastPkts");
6422 	BGE_SYSCTL_STAT(sc, ctx, "Carrier Sense Errors",
6423 	    children, txstats.dot3StatsCarrierSenseErrors,
6424 	    "CarrierSenseErrors");
6425 	BGE_SYSCTL_STAT(sc, ctx, "Outbound Discards",
6426 	    children, txstats.ifOutDiscards, "Discards");
6427 	BGE_SYSCTL_STAT(sc, ctx, "Outbound Errors",
6428 	    children, txstats.ifOutErrors, "Errors");
6429 }
6430 
6431 #undef BGE_SYSCTL_STAT
6432 
6433 #define	BGE_SYSCTL_STAT_ADD64(c, h, n, p, d)	\
6434 	    SYSCTL_ADD_UQUAD(c, h, OID_AUTO, n, CTLFLAG_RD, p, d)
6435 
6436 static void
6437 bge_add_sysctl_stats_regs(struct bge_softc *sc, struct sysctl_ctx_list *ctx,
6438     struct sysctl_oid_list *parent)
6439 {
6440 	struct sysctl_oid *tree;
6441 	struct sysctl_oid_list *child, *schild;
6442 	struct bge_mac_stats *stats;
6443 
6444 	stats = &sc->bge_mac_stats;
6445 	tree = SYSCTL_ADD_NODE(ctx, parent, OID_AUTO, "stats",
6446 	    CTLFLAG_RD | CTLFLAG_MPSAFE, NULL, "BGE Statistics");
6447 	schild = child = SYSCTL_CHILDREN(tree);
6448 	BGE_SYSCTL_STAT_ADD64(ctx, child, "FramesDroppedDueToFilters",
6449 	    &stats->FramesDroppedDueToFilters, "Frames Dropped Due to Filters");
6450 	BGE_SYSCTL_STAT_ADD64(ctx, child, "DmaWriteQueueFull",
6451 	    &stats->DmaWriteQueueFull, "NIC DMA Write Queue Full");
6452 	BGE_SYSCTL_STAT_ADD64(ctx, child, "DmaWriteHighPriQueueFull",
6453 	    &stats->DmaWriteHighPriQueueFull,
6454 	    "NIC DMA Write High Priority Queue Full");
6455 	BGE_SYSCTL_STAT_ADD64(ctx, child, "NoMoreRxBDs",
6456 	    &stats->NoMoreRxBDs, "NIC No More RX Buffer Descriptors");
6457 	BGE_SYSCTL_STAT_ADD64(ctx, child, "InputDiscards",
6458 	    &stats->InputDiscards, "Discarded Input Frames");
6459 	BGE_SYSCTL_STAT_ADD64(ctx, child, "InputErrors",
6460 	    &stats->InputErrors, "Input Errors");
6461 	BGE_SYSCTL_STAT_ADD64(ctx, child, "RecvThresholdHit",
6462 	    &stats->RecvThresholdHit, "NIC Recv Threshold Hit");
6463 
6464 	tree = SYSCTL_ADD_NODE(ctx, schild, OID_AUTO, "rx",
6465 	    CTLFLAG_RD | CTLFLAG_MPSAFE, NULL, "BGE RX Statistics");
6466 	child = SYSCTL_CHILDREN(tree);
6467 	BGE_SYSCTL_STAT_ADD64(ctx, child, "ifHCInOctets",
6468 	    &stats->ifHCInOctets, "Inbound Octets");
6469 	BGE_SYSCTL_STAT_ADD64(ctx, child, "Fragments",
6470 	    &stats->etherStatsFragments, "Fragments");
6471 	BGE_SYSCTL_STAT_ADD64(ctx, child, "UnicastPkts",
6472 	    &stats->ifHCInUcastPkts, "Inbound Unicast Packets");
6473 	BGE_SYSCTL_STAT_ADD64(ctx, child, "MulticastPkts",
6474 	    &stats->ifHCInMulticastPkts, "Inbound Multicast Packets");
6475 	BGE_SYSCTL_STAT_ADD64(ctx, child, "BroadcastPkts",
6476 	    &stats->ifHCInBroadcastPkts, "Inbound Broadcast Packets");
6477 	BGE_SYSCTL_STAT_ADD64(ctx, child, "FCSErrors",
6478 	    &stats->dot3StatsFCSErrors, "FCS Errors");
6479 	BGE_SYSCTL_STAT_ADD64(ctx, child, "AlignmentErrors",
6480 	    &stats->dot3StatsAlignmentErrors, "Alignment Errors");
6481 	BGE_SYSCTL_STAT_ADD64(ctx, child, "xonPauseFramesReceived",
6482 	    &stats->xonPauseFramesReceived, "XON Pause Frames Received");
6483 	BGE_SYSCTL_STAT_ADD64(ctx, child, "xoffPauseFramesReceived",
6484 	    &stats->xoffPauseFramesReceived, "XOFF Pause Frames Received");
6485 	BGE_SYSCTL_STAT_ADD64(ctx, child, "ControlFramesReceived",
6486 	    &stats->macControlFramesReceived, "MAC Control Frames Received");
6487 	BGE_SYSCTL_STAT_ADD64(ctx, child, "xoffStateEntered",
6488 	    &stats->xoffStateEntered, "XOFF State Entered");
6489 	BGE_SYSCTL_STAT_ADD64(ctx, child, "FramesTooLong",
6490 	    &stats->dot3StatsFramesTooLong, "Frames Too Long");
6491 	BGE_SYSCTL_STAT_ADD64(ctx, child, "Jabbers",
6492 	    &stats->etherStatsJabbers, "Jabbers");
6493 	BGE_SYSCTL_STAT_ADD64(ctx, child, "UndersizePkts",
6494 	    &stats->etherStatsUndersizePkts, "Undersized Packets");
6495 
6496 	tree = SYSCTL_ADD_NODE(ctx, schild, OID_AUTO, "tx",
6497 	    CTLFLAG_RD | CTLFLAG_MPSAFE, NULL, "BGE TX Statistics");
6498 	child = SYSCTL_CHILDREN(tree);
6499 	BGE_SYSCTL_STAT_ADD64(ctx, child, "ifHCOutOctets",
6500 	    &stats->ifHCOutOctets, "Outbound Octets");
6501 	BGE_SYSCTL_STAT_ADD64(ctx, child, "Collisions",
6502 	    &stats->etherStatsCollisions, "TX Collisions");
6503 	BGE_SYSCTL_STAT_ADD64(ctx, child, "XonSent",
6504 	    &stats->outXonSent, "XON Sent");
6505 	BGE_SYSCTL_STAT_ADD64(ctx, child, "XoffSent",
6506 	    &stats->outXoffSent, "XOFF Sent");
6507 	BGE_SYSCTL_STAT_ADD64(ctx, child, "InternalMacTransmitErrors",
6508 	    &stats->dot3StatsInternalMacTransmitErrors,
6509 	    "Internal MAC TX Errors");
6510 	BGE_SYSCTL_STAT_ADD64(ctx, child, "SingleCollisionFrames",
6511 	    &stats->dot3StatsSingleCollisionFrames, "Single Collision Frames");
6512 	BGE_SYSCTL_STAT_ADD64(ctx, child, "MultipleCollisionFrames",
6513 	    &stats->dot3StatsMultipleCollisionFrames,
6514 	    "Multiple Collision Frames");
6515 	BGE_SYSCTL_STAT_ADD64(ctx, child, "DeferredTransmissions",
6516 	    &stats->dot3StatsDeferredTransmissions, "Deferred Transmissions");
6517 	BGE_SYSCTL_STAT_ADD64(ctx, child, "ExcessiveCollisions",
6518 	    &stats->dot3StatsExcessiveCollisions, "Excessive Collisions");
6519 	BGE_SYSCTL_STAT_ADD64(ctx, child, "LateCollisions",
6520 	    &stats->dot3StatsLateCollisions, "Late Collisions");
6521 	BGE_SYSCTL_STAT_ADD64(ctx, child, "UnicastPkts",
6522 	    &stats->ifHCOutUcastPkts, "Outbound Unicast Packets");
6523 	BGE_SYSCTL_STAT_ADD64(ctx, child, "MulticastPkts",
6524 	    &stats->ifHCOutMulticastPkts, "Outbound Multicast Packets");
6525 	BGE_SYSCTL_STAT_ADD64(ctx, child, "BroadcastPkts",
6526 	    &stats->ifHCOutBroadcastPkts, "Outbound Broadcast Packets");
6527 }
6528 
6529 #undef	BGE_SYSCTL_STAT_ADD64
6530 
6531 static int
6532 bge_sysctl_stats(SYSCTL_HANDLER_ARGS)
6533 {
6534 	struct bge_softc *sc;
6535 	uint32_t result;
6536 	int offset;
6537 
6538 	sc = (struct bge_softc *)arg1;
6539 	offset = arg2;
6540 	result = CSR_READ_4(sc, BGE_MEMWIN_START + BGE_STATS_BLOCK + offset +
6541 	    offsetof(bge_hostaddr, bge_addr_lo));
6542 	return (sysctl_handle_int(oidp, &result, 0, req));
6543 }
6544 
6545 #ifdef BGE_REGISTER_DEBUG
6546 static int
6547 bge_sysctl_debug_info(SYSCTL_HANDLER_ARGS)
6548 {
6549 	struct bge_softc *sc;
6550 	uint16_t *sbdata;
6551 	int error, result, sbsz;
6552 	int i, j;
6553 
6554 	result = -1;
6555 	error = sysctl_handle_int(oidp, &result, 0, req);
6556 	if (error || (req->newptr == NULL))
6557 		return (error);
6558 
6559 	if (result == 1) {
6560 		sc = (struct bge_softc *)arg1;
6561 
6562 		if (sc->bge_asicrev == BGE_ASICREV_BCM5700 &&
6563 		    sc->bge_chipid != BGE_CHIPID_BCM5700_C0)
6564 			sbsz = BGE_STATUS_BLK_SZ;
6565 		else
6566 			sbsz = 32;
6567 		sbdata = (uint16_t *)sc->bge_ldata.bge_status_block;
6568 		printf("Status Block:\n");
6569 		BGE_LOCK(sc);
6570 		bus_dmamap_sync(sc->bge_cdata.bge_status_tag,
6571 		    sc->bge_cdata.bge_status_map,
6572 		    BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE);
6573 		for (i = 0x0; i < sbsz / sizeof(uint16_t); ) {
6574 			printf("%06x:", i);
6575 			for (j = 0; j < 8; j++)
6576 				printf(" %04x", sbdata[i++]);
6577 			printf("\n");
6578 		}
6579 
6580 		printf("Registers:\n");
6581 		for (i = 0x800; i < 0xA00; ) {
6582 			printf("%06x:", i);
6583 			for (j = 0; j < 8; j++) {
6584 				printf(" %08x", CSR_READ_4(sc, i));
6585 				i += 4;
6586 			}
6587 			printf("\n");
6588 		}
6589 		BGE_UNLOCK(sc);
6590 
6591 		printf("Hardware Flags:\n");
6592 		if (BGE_IS_5717_PLUS(sc))
6593 			printf(" - 5717 Plus\n");
6594 		if (BGE_IS_5755_PLUS(sc))
6595 			printf(" - 5755 Plus\n");
6596 		if (BGE_IS_575X_PLUS(sc))
6597 			printf(" - 575X Plus\n");
6598 		if (BGE_IS_5705_PLUS(sc))
6599 			printf(" - 5705 Plus\n");
6600 		if (BGE_IS_5714_FAMILY(sc))
6601 			printf(" - 5714 Family\n");
6602 		if (BGE_IS_5700_FAMILY(sc))
6603 			printf(" - 5700 Family\n");
6604 		if (sc->bge_flags & BGE_FLAG_JUMBO)
6605 			printf(" - Supports Jumbo Frames\n");
6606 		if (sc->bge_flags & BGE_FLAG_PCIX)
6607 			printf(" - PCI-X Bus\n");
6608 		if (sc->bge_flags & BGE_FLAG_PCIE)
6609 			printf(" - PCI Express Bus\n");
6610 		if (sc->bge_phy_flags & BGE_PHY_NO_3LED)
6611 			printf(" - No 3 LEDs\n");
6612 		if (sc->bge_flags & BGE_FLAG_RX_ALIGNBUG)
6613 			printf(" - RX Alignment Bug\n");
6614 	}
6615 
6616 	return (error);
6617 }
6618 
6619 static int
6620 bge_sysctl_reg_read(SYSCTL_HANDLER_ARGS)
6621 {
6622 	struct bge_softc *sc;
6623 	int error;
6624 	uint16_t result;
6625 	uint32_t val;
6626 
6627 	result = -1;
6628 	error = sysctl_handle_int(oidp, &result, 0, req);
6629 	if (error || (req->newptr == NULL))
6630 		return (error);
6631 
6632 	if (result < 0x8000) {
6633 		sc = (struct bge_softc *)arg1;
6634 		val = CSR_READ_4(sc, result);
6635 		printf("reg 0x%06X = 0x%08X\n", result, val);
6636 	}
6637 
6638 	return (error);
6639 }
6640 
6641 static int
6642 bge_sysctl_ape_read(SYSCTL_HANDLER_ARGS)
6643 {
6644 	struct bge_softc *sc;
6645 	int error;
6646 	uint16_t result;
6647 	uint32_t val;
6648 
6649 	result = -1;
6650 	error = sysctl_handle_int(oidp, &result, 0, req);
6651 	if (error || (req->newptr == NULL))
6652 		return (error);
6653 
6654 	if (result < 0x8000) {
6655 		sc = (struct bge_softc *)arg1;
6656 		val = APE_READ_4(sc, result);
6657 		printf("reg 0x%06X = 0x%08X\n", result, val);
6658 	}
6659 
6660 	return (error);
6661 }
6662 
6663 static int
6664 bge_sysctl_mem_read(SYSCTL_HANDLER_ARGS)
6665 {
6666 	struct bge_softc *sc;
6667 	int error;
6668 	uint16_t result;
6669 	uint32_t val;
6670 
6671 	result = -1;
6672 	error = sysctl_handle_int(oidp, &result, 0, req);
6673 	if (error || (req->newptr == NULL))
6674 		return (error);
6675 
6676 	if (result < 0x8000) {
6677 		sc = (struct bge_softc *)arg1;
6678 		val = bge_readmem_ind(sc, result);
6679 		printf("mem 0x%06X = 0x%08X\n", result, val);
6680 	}
6681 
6682 	return (error);
6683 }
6684 #endif
6685 
6686 static int
6687 bge_get_eaddr_fw(struct bge_softc *sc, uint8_t ether_addr[])
6688 {
6689 	return (1);
6690 }
6691 
6692 static int
6693 bge_get_eaddr_mem(struct bge_softc *sc, uint8_t ether_addr[])
6694 {
6695 	uint32_t mac_addr;
6696 
6697 	mac_addr = bge_readmem_ind(sc, BGE_SRAM_MAC_ADDR_HIGH_MB);
6698 	if ((mac_addr >> 16) == 0x484b) {
6699 		ether_addr[0] = (uint8_t)(mac_addr >> 8);
6700 		ether_addr[1] = (uint8_t)mac_addr;
6701 		mac_addr = bge_readmem_ind(sc, BGE_SRAM_MAC_ADDR_LOW_MB);
6702 		ether_addr[2] = (uint8_t)(mac_addr >> 24);
6703 		ether_addr[3] = (uint8_t)(mac_addr >> 16);
6704 		ether_addr[4] = (uint8_t)(mac_addr >> 8);
6705 		ether_addr[5] = (uint8_t)mac_addr;
6706 		return (0);
6707 	}
6708 	return (1);
6709 }
6710 
6711 static int
6712 bge_get_eaddr_nvram(struct bge_softc *sc, uint8_t ether_addr[])
6713 {
6714 	int mac_offset = BGE_EE_MAC_OFFSET;
6715 
6716 	if (sc->bge_asicrev == BGE_ASICREV_BCM5906)
6717 		mac_offset = BGE_EE_MAC_OFFSET_5906;
6718 
6719 	return (bge_read_nvram(sc, ether_addr, mac_offset + 2,
6720 	    ETHER_ADDR_LEN));
6721 }
6722 
6723 static int
6724 bge_get_eaddr_eeprom(struct bge_softc *sc, uint8_t ether_addr[])
6725 {
6726 
6727 	if (sc->bge_asicrev == BGE_ASICREV_BCM5906)
6728 		return (1);
6729 
6730 	return (bge_read_eeprom(sc, ether_addr, BGE_EE_MAC_OFFSET + 2,
6731 	   ETHER_ADDR_LEN));
6732 }
6733 
6734 static int
6735 bge_get_eaddr(struct bge_softc *sc, uint8_t eaddr[])
6736 {
6737 	static const bge_eaddr_fcn_t bge_eaddr_funcs[] = {
6738 		/* NOTE: Order is critical */
6739 		bge_get_eaddr_fw,
6740 		bge_get_eaddr_mem,
6741 		bge_get_eaddr_nvram,
6742 		bge_get_eaddr_eeprom,
6743 		NULL
6744 	};
6745 	const bge_eaddr_fcn_t *func;
6746 
6747 	for (func = bge_eaddr_funcs; *func != NULL; ++func) {
6748 		if ((*func)(sc, eaddr) == 0)
6749 			break;
6750 	}
6751 	return (*func == NULL ? ENXIO : 0);
6752 }
6753 
6754 static uint64_t
6755 bge_get_counter(if_t ifp, ift_counter cnt)
6756 {
6757 	struct bge_softc *sc;
6758 	struct bge_mac_stats *stats;
6759 
6760 	sc = if_getsoftc(ifp);
6761 	if (!BGE_IS_5705_PLUS(sc))
6762 		return (if_get_counter_default(ifp, cnt));
6763 	stats = &sc->bge_mac_stats;
6764 
6765 	switch (cnt) {
6766 	case IFCOUNTER_IERRORS:
6767 		return (stats->NoMoreRxBDs + stats->InputDiscards +
6768 		    stats->InputErrors);
6769 	case IFCOUNTER_COLLISIONS:
6770 		return (stats->etherStatsCollisions);
6771 	default:
6772 		return (if_get_counter_default(ifp, cnt));
6773 	}
6774 }
6775 
6776 #ifdef DEBUGNET
6777 static void
6778 bge_debugnet_init(if_t ifp, int *nrxr, int *ncl, int *clsize)
6779 {
6780 	struct bge_softc *sc;
6781 
6782 	sc = if_getsoftc(ifp);
6783 	BGE_LOCK(sc);
6784 	/*
6785 	 * There is only one logical receive ring, but it is backed
6786 	 * by two actual rings, for cluster- and jumbo-sized mbufs.
6787 	 * Debugnet expects only one size, so if jumbo is in use,
6788 	 * this says we have two rings of jumbo mbufs, but that's
6789 	 * only a little wasteful.
6790 	 */
6791 	*nrxr = 2;
6792 	*ncl = DEBUGNET_MAX_IN_FLIGHT;
6793 	if ((sc->bge_flags & BGE_FLAG_JUMBO_STD) != 0 &&
6794 	    (if_getmtu(sc->bge_ifp) + ETHER_HDR_LEN + ETHER_CRC_LEN +
6795 	    ETHER_VLAN_ENCAP_LEN > (MCLBYTES - ETHER_ALIGN)))
6796 		*clsize = MJUM9BYTES;
6797 	else
6798 		*clsize = MCLBYTES;
6799 	BGE_UNLOCK(sc);
6800 }
6801 
6802 static void
6803 bge_debugnet_event(if_t ifp __unused, enum debugnet_ev event __unused)
6804 {
6805 }
6806 
6807 static int
6808 bge_debugnet_transmit(if_t ifp, struct mbuf *m)
6809 {
6810 	struct bge_softc *sc;
6811 	uint32_t prodidx;
6812 	int error;
6813 
6814 	sc = if_getsoftc(ifp);
6815 	if ((if_getdrvflags(ifp) & (IFF_DRV_RUNNING | IFF_DRV_OACTIVE)) !=
6816 	    IFF_DRV_RUNNING)
6817 		return (1);
6818 
6819 	prodidx = sc->bge_tx_prodidx;
6820 	error = bge_encap(sc, &m, &prodidx);
6821 	if (error == 0)
6822 		bge_start_tx(sc, prodidx);
6823 	return (error);
6824 }
6825 
6826 static int
6827 bge_debugnet_poll(if_t ifp, int count)
6828 {
6829 	struct bge_softc *sc;
6830 	uint32_t rx_prod, tx_cons;
6831 
6832 	sc = if_getsoftc(ifp);
6833 	if ((if_getdrvflags(ifp) & (IFF_DRV_RUNNING | IFF_DRV_OACTIVE)) !=
6834 	    IFF_DRV_RUNNING)
6835 		return (1);
6836 
6837 	bus_dmamap_sync(sc->bge_cdata.bge_status_tag,
6838 	    sc->bge_cdata.bge_status_map,
6839 	    BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE);
6840 
6841 	rx_prod = sc->bge_ldata.bge_status_block->bge_idx[0].bge_rx_prod_idx;
6842 	tx_cons = sc->bge_ldata.bge_status_block->bge_idx[0].bge_tx_cons_idx;
6843 
6844 	bus_dmamap_sync(sc->bge_cdata.bge_status_tag,
6845 	    sc->bge_cdata.bge_status_map,
6846 	    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
6847 
6848 	(void)bge_rxeof(sc, rx_prod, 0);
6849 	bge_txeof(sc, tx_cons);
6850 	return (0);
6851 }
6852 #endif /* DEBUGNET */
6853