1 /*- 2 * SPDX-License-Identifier: BSD-4-Clause 3 * 4 * Copyright (c) 2001 Wind River Systems 5 * Copyright (c) 1997, 1998, 1999, 2001 6 * Bill Paul <wpaul@windriver.com>. All rights reserved. 7 * 8 * Redistribution and use in source and binary forms, with or without 9 * modification, are permitted provided that the following conditions 10 * are met: 11 * 1. Redistributions of source code must retain the above copyright 12 * notice, this list of conditions and the following disclaimer. 13 * 2. Redistributions in binary form must reproduce the above copyright 14 * notice, this list of conditions and the following disclaimer in the 15 * documentation and/or other materials provided with the distribution. 16 * 3. All advertising materials mentioning features or use of this software 17 * must display the following acknowledgement: 18 * This product includes software developed by Bill Paul. 19 * 4. Neither the name of the author nor the names of any co-contributors 20 * may be used to endorse or promote products derived from this software 21 * without specific prior written permission. 22 * 23 * THIS SOFTWARE IS PROVIDED BY Bill Paul AND CONTRIBUTORS ``AS IS'' AND 24 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 25 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 26 * ARE DISCLAIMED. IN NO EVENT SHALL Bill Paul OR THE VOICES IN HIS HEAD 27 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR 28 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF 29 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS 30 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN 31 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) 32 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF 33 * THE POSSIBILITY OF SUCH DAMAGE. 34 */ 35 36 #include <sys/cdefs.h> 37 __FBSDID("$FreeBSD$"); 38 39 /* 40 * Broadcom BCM57xx(x)/BCM590x NetXtreme and NetLink family Ethernet driver 41 * 42 * The Broadcom BCM5700 is based on technology originally developed by 43 * Alteon Networks as part of the Tigon I and Tigon II Gigabit Ethernet 44 * MAC chips. The BCM5700, sometimes referred to as the Tigon III, has 45 * two on-board MIPS R4000 CPUs and can have as much as 16MB of external 46 * SSRAM. The BCM5700 supports TCP, UDP and IP checksum offload, jumbo 47 * frames, highly configurable RX filtering, and 16 RX and TX queues 48 * (which, along with RX filter rules, can be used for QOS applications). 49 * Other features, such as TCP segmentation, may be available as part 50 * of value-added firmware updates. Unlike the Tigon I and Tigon II, 51 * firmware images can be stored in hardware and need not be compiled 52 * into the driver. 53 * 54 * The BCM5700 supports the PCI v2.2 and PCI-X v1.0 standards, and will 55 * function in a 32-bit/64-bit 33/66Mhz bus, or a 64-bit/133Mhz bus. 56 * 57 * The BCM5701 is a single-chip solution incorporating both the BCM5700 58 * MAC and a BCM5401 10/100/1000 PHY. Unlike the BCM5700, the BCM5701 59 * does not support external SSRAM. 60 * 61 * Broadcom also produces a variation of the BCM5700 under the "Altima" 62 * brand name, which is functionally similar but lacks PCI-X support. 63 * 64 * Without external SSRAM, you can only have at most 4 TX rings, 65 * and the use of the mini RX ring is disabled. This seems to imply 66 * that these features are simply not available on the BCM5701. As a 67 * result, this driver does not implement any support for the mini RX 68 * ring. 69 */ 70 71 #ifdef HAVE_KERNEL_OPTION_HEADERS 72 #include "opt_device_polling.h" 73 #endif 74 75 #include <sys/param.h> 76 #include <sys/endian.h> 77 #include <sys/systm.h> 78 #include <sys/sockio.h> 79 #include <sys/mbuf.h> 80 #include <sys/malloc.h> 81 #include <sys/kernel.h> 82 #include <sys/module.h> 83 #include <sys/socket.h> 84 #include <sys/sysctl.h> 85 #include <sys/taskqueue.h> 86 87 #include <net/if.h> 88 #include <net/if_var.h> 89 #include <net/if_arp.h> 90 #include <net/ethernet.h> 91 #include <net/if_dl.h> 92 #include <net/if_media.h> 93 94 #include <net/bpf.h> 95 96 #include <net/if_types.h> 97 #include <net/if_vlan_var.h> 98 99 #include <netinet/in_systm.h> 100 #include <netinet/in.h> 101 #include <netinet/ip.h> 102 #include <netinet/tcp.h> 103 #include <netinet/netdump/netdump.h> 104 105 #include <machine/bus.h> 106 #include <machine/resource.h> 107 #include <sys/bus.h> 108 #include <sys/rman.h> 109 110 #include <dev/mii/mii.h> 111 #include <dev/mii/miivar.h> 112 #include "miidevs.h" 113 #include <dev/mii/brgphyreg.h> 114 115 #ifdef __sparc64__ 116 #include <dev/ofw/ofw_bus.h> 117 #include <dev/ofw/openfirm.h> 118 #include <machine/ofw_machdep.h> 119 #include <machine/ver.h> 120 #endif 121 122 #include <dev/pci/pcireg.h> 123 #include <dev/pci/pcivar.h> 124 125 #include <dev/bge/if_bgereg.h> 126 127 #define BGE_CSUM_FEATURES (CSUM_IP | CSUM_TCP) 128 #define ETHER_MIN_NOPAD (ETHER_MIN_LEN - ETHER_CRC_LEN) /* i.e., 60 */ 129 130 MODULE_DEPEND(bge, pci, 1, 1, 1); 131 MODULE_DEPEND(bge, ether, 1, 1, 1); 132 MODULE_DEPEND(bge, miibus, 1, 1, 1); 133 134 /* "device miibus" required. See GENERIC if you get errors here. */ 135 #include "miibus_if.h" 136 137 /* 138 * Various supported device vendors/types and their names. Note: the 139 * spec seems to indicate that the hardware still has Alteon's vendor 140 * ID burned into it, though it will always be overriden by the vendor 141 * ID in the EEPROM. Just to be safe, we cover all possibilities. 142 */ 143 static const struct bge_type { 144 uint16_t bge_vid; 145 uint16_t bge_did; 146 } bge_devs[] = { 147 { ALTEON_VENDORID, ALTEON_DEVICEID_BCM5700 }, 148 { ALTEON_VENDORID, ALTEON_DEVICEID_BCM5701 }, 149 150 { ALTIMA_VENDORID, ALTIMA_DEVICE_AC1000 }, 151 { ALTIMA_VENDORID, ALTIMA_DEVICE_AC1002 }, 152 { ALTIMA_VENDORID, ALTIMA_DEVICE_AC9100 }, 153 154 { APPLE_VENDORID, APPLE_DEVICE_BCM5701 }, 155 156 { BCOM_VENDORID, BCOM_DEVICEID_BCM5700 }, 157 { BCOM_VENDORID, BCOM_DEVICEID_BCM5701 }, 158 { BCOM_VENDORID, BCOM_DEVICEID_BCM5702 }, 159 { BCOM_VENDORID, BCOM_DEVICEID_BCM5702_ALT }, 160 { BCOM_VENDORID, BCOM_DEVICEID_BCM5702X }, 161 { BCOM_VENDORID, BCOM_DEVICEID_BCM5703 }, 162 { BCOM_VENDORID, BCOM_DEVICEID_BCM5703_ALT }, 163 { BCOM_VENDORID, BCOM_DEVICEID_BCM5703X }, 164 { BCOM_VENDORID, BCOM_DEVICEID_BCM5704C }, 165 { BCOM_VENDORID, BCOM_DEVICEID_BCM5704S }, 166 { BCOM_VENDORID, BCOM_DEVICEID_BCM5704S_ALT }, 167 { BCOM_VENDORID, BCOM_DEVICEID_BCM5705 }, 168 { BCOM_VENDORID, BCOM_DEVICEID_BCM5705F }, 169 { BCOM_VENDORID, BCOM_DEVICEID_BCM5705K }, 170 { BCOM_VENDORID, BCOM_DEVICEID_BCM5705M }, 171 { BCOM_VENDORID, BCOM_DEVICEID_BCM5705M_ALT }, 172 { BCOM_VENDORID, BCOM_DEVICEID_BCM5714C }, 173 { BCOM_VENDORID, BCOM_DEVICEID_BCM5714S }, 174 { BCOM_VENDORID, BCOM_DEVICEID_BCM5715 }, 175 { BCOM_VENDORID, BCOM_DEVICEID_BCM5715S }, 176 { BCOM_VENDORID, BCOM_DEVICEID_BCM5717 }, 177 { BCOM_VENDORID, BCOM_DEVICEID_BCM5717C }, 178 { BCOM_VENDORID, BCOM_DEVICEID_BCM5718 }, 179 { BCOM_VENDORID, BCOM_DEVICEID_BCM5719 }, 180 { BCOM_VENDORID, BCOM_DEVICEID_BCM5720 }, 181 { BCOM_VENDORID, BCOM_DEVICEID_BCM5721 }, 182 { BCOM_VENDORID, BCOM_DEVICEID_BCM5722 }, 183 { BCOM_VENDORID, BCOM_DEVICEID_BCM5723 }, 184 { BCOM_VENDORID, BCOM_DEVICEID_BCM5725 }, 185 { BCOM_VENDORID, BCOM_DEVICEID_BCM5727 }, 186 { BCOM_VENDORID, BCOM_DEVICEID_BCM5750 }, 187 { BCOM_VENDORID, BCOM_DEVICEID_BCM5750M }, 188 { BCOM_VENDORID, BCOM_DEVICEID_BCM5751 }, 189 { BCOM_VENDORID, BCOM_DEVICEID_BCM5751F }, 190 { BCOM_VENDORID, BCOM_DEVICEID_BCM5751M }, 191 { BCOM_VENDORID, BCOM_DEVICEID_BCM5752 }, 192 { BCOM_VENDORID, BCOM_DEVICEID_BCM5752M }, 193 { BCOM_VENDORID, BCOM_DEVICEID_BCM5753 }, 194 { BCOM_VENDORID, BCOM_DEVICEID_BCM5753F }, 195 { BCOM_VENDORID, BCOM_DEVICEID_BCM5753M }, 196 { BCOM_VENDORID, BCOM_DEVICEID_BCM5754 }, 197 { BCOM_VENDORID, BCOM_DEVICEID_BCM5754M }, 198 { BCOM_VENDORID, BCOM_DEVICEID_BCM5755 }, 199 { BCOM_VENDORID, BCOM_DEVICEID_BCM5755M }, 200 { BCOM_VENDORID, BCOM_DEVICEID_BCM5756 }, 201 { BCOM_VENDORID, BCOM_DEVICEID_BCM5761 }, 202 { BCOM_VENDORID, BCOM_DEVICEID_BCM5761E }, 203 { BCOM_VENDORID, BCOM_DEVICEID_BCM5761S }, 204 { BCOM_VENDORID, BCOM_DEVICEID_BCM5761SE }, 205 { BCOM_VENDORID, BCOM_DEVICEID_BCM5762 }, 206 { BCOM_VENDORID, BCOM_DEVICEID_BCM5764 }, 207 { BCOM_VENDORID, BCOM_DEVICEID_BCM5780 }, 208 { BCOM_VENDORID, BCOM_DEVICEID_BCM5780S }, 209 { BCOM_VENDORID, BCOM_DEVICEID_BCM5781 }, 210 { BCOM_VENDORID, BCOM_DEVICEID_BCM5782 }, 211 { BCOM_VENDORID, BCOM_DEVICEID_BCM5784 }, 212 { BCOM_VENDORID, BCOM_DEVICEID_BCM5785F }, 213 { BCOM_VENDORID, BCOM_DEVICEID_BCM5785G }, 214 { BCOM_VENDORID, BCOM_DEVICEID_BCM5786 }, 215 { BCOM_VENDORID, BCOM_DEVICEID_BCM5787 }, 216 { BCOM_VENDORID, BCOM_DEVICEID_BCM5787F }, 217 { BCOM_VENDORID, BCOM_DEVICEID_BCM5787M }, 218 { BCOM_VENDORID, BCOM_DEVICEID_BCM5788 }, 219 { BCOM_VENDORID, BCOM_DEVICEID_BCM5789 }, 220 { BCOM_VENDORID, BCOM_DEVICEID_BCM5901 }, 221 { BCOM_VENDORID, BCOM_DEVICEID_BCM5901A2 }, 222 { BCOM_VENDORID, BCOM_DEVICEID_BCM5903M }, 223 { BCOM_VENDORID, BCOM_DEVICEID_BCM5906 }, 224 { BCOM_VENDORID, BCOM_DEVICEID_BCM5906M }, 225 { BCOM_VENDORID, BCOM_DEVICEID_BCM57760 }, 226 { BCOM_VENDORID, BCOM_DEVICEID_BCM57761 }, 227 { BCOM_VENDORID, BCOM_DEVICEID_BCM57762 }, 228 { BCOM_VENDORID, BCOM_DEVICEID_BCM57764 }, 229 { BCOM_VENDORID, BCOM_DEVICEID_BCM57765 }, 230 { BCOM_VENDORID, BCOM_DEVICEID_BCM57766 }, 231 { BCOM_VENDORID, BCOM_DEVICEID_BCM57767 }, 232 { BCOM_VENDORID, BCOM_DEVICEID_BCM57780 }, 233 { BCOM_VENDORID, BCOM_DEVICEID_BCM57781 }, 234 { BCOM_VENDORID, BCOM_DEVICEID_BCM57782 }, 235 { BCOM_VENDORID, BCOM_DEVICEID_BCM57785 }, 236 { BCOM_VENDORID, BCOM_DEVICEID_BCM57786 }, 237 { BCOM_VENDORID, BCOM_DEVICEID_BCM57787 }, 238 { BCOM_VENDORID, BCOM_DEVICEID_BCM57788 }, 239 { BCOM_VENDORID, BCOM_DEVICEID_BCM57790 }, 240 { BCOM_VENDORID, BCOM_DEVICEID_BCM57791 }, 241 { BCOM_VENDORID, BCOM_DEVICEID_BCM57795 }, 242 243 { SK_VENDORID, SK_DEVICEID_ALTIMA }, 244 245 { TC_VENDORID, TC_DEVICEID_3C996 }, 246 247 { FJTSU_VENDORID, FJTSU_DEVICEID_PW008GE4 }, 248 { FJTSU_VENDORID, FJTSU_DEVICEID_PW008GE5 }, 249 { FJTSU_VENDORID, FJTSU_DEVICEID_PP250450 }, 250 251 { 0, 0 } 252 }; 253 254 static const struct bge_vendor { 255 uint16_t v_id; 256 const char *v_name; 257 } bge_vendors[] = { 258 { ALTEON_VENDORID, "Alteon" }, 259 { ALTIMA_VENDORID, "Altima" }, 260 { APPLE_VENDORID, "Apple" }, 261 { BCOM_VENDORID, "Broadcom" }, 262 { SK_VENDORID, "SysKonnect" }, 263 { TC_VENDORID, "3Com" }, 264 { FJTSU_VENDORID, "Fujitsu" }, 265 266 { 0, NULL } 267 }; 268 269 static const struct bge_revision { 270 uint32_t br_chipid; 271 const char *br_name; 272 } bge_revisions[] = { 273 { BGE_CHIPID_BCM5700_A0, "BCM5700 A0" }, 274 { BGE_CHIPID_BCM5700_A1, "BCM5700 A1" }, 275 { BGE_CHIPID_BCM5700_B0, "BCM5700 B0" }, 276 { BGE_CHIPID_BCM5700_B1, "BCM5700 B1" }, 277 { BGE_CHIPID_BCM5700_B2, "BCM5700 B2" }, 278 { BGE_CHIPID_BCM5700_B3, "BCM5700 B3" }, 279 { BGE_CHIPID_BCM5700_ALTIMA, "BCM5700 Altima" }, 280 { BGE_CHIPID_BCM5700_C0, "BCM5700 C0" }, 281 { BGE_CHIPID_BCM5701_A0, "BCM5701 A0" }, 282 { BGE_CHIPID_BCM5701_B0, "BCM5701 B0" }, 283 { BGE_CHIPID_BCM5701_B2, "BCM5701 B2" }, 284 { BGE_CHIPID_BCM5701_B5, "BCM5701 B5" }, 285 { BGE_CHIPID_BCM5703_A0, "BCM5703 A0" }, 286 { BGE_CHIPID_BCM5703_A1, "BCM5703 A1" }, 287 { BGE_CHIPID_BCM5703_A2, "BCM5703 A2" }, 288 { BGE_CHIPID_BCM5703_A3, "BCM5703 A3" }, 289 { BGE_CHIPID_BCM5703_B0, "BCM5703 B0" }, 290 { BGE_CHIPID_BCM5704_A0, "BCM5704 A0" }, 291 { BGE_CHIPID_BCM5704_A1, "BCM5704 A1" }, 292 { BGE_CHIPID_BCM5704_A2, "BCM5704 A2" }, 293 { BGE_CHIPID_BCM5704_A3, "BCM5704 A3" }, 294 { BGE_CHIPID_BCM5704_B0, "BCM5704 B0" }, 295 { BGE_CHIPID_BCM5705_A0, "BCM5705 A0" }, 296 { BGE_CHIPID_BCM5705_A1, "BCM5705 A1" }, 297 { BGE_CHIPID_BCM5705_A2, "BCM5705 A2" }, 298 { BGE_CHIPID_BCM5705_A3, "BCM5705 A3" }, 299 { BGE_CHIPID_BCM5750_A0, "BCM5750 A0" }, 300 { BGE_CHIPID_BCM5750_A1, "BCM5750 A1" }, 301 { BGE_CHIPID_BCM5750_A3, "BCM5750 A3" }, 302 { BGE_CHIPID_BCM5750_B0, "BCM5750 B0" }, 303 { BGE_CHIPID_BCM5750_B1, "BCM5750 B1" }, 304 { BGE_CHIPID_BCM5750_C0, "BCM5750 C0" }, 305 { BGE_CHIPID_BCM5750_C1, "BCM5750 C1" }, 306 { BGE_CHIPID_BCM5750_C2, "BCM5750 C2" }, 307 { BGE_CHIPID_BCM5714_A0, "BCM5714 A0" }, 308 { BGE_CHIPID_BCM5752_A0, "BCM5752 A0" }, 309 { BGE_CHIPID_BCM5752_A1, "BCM5752 A1" }, 310 { BGE_CHIPID_BCM5752_A2, "BCM5752 A2" }, 311 { BGE_CHIPID_BCM5714_B0, "BCM5714 B0" }, 312 { BGE_CHIPID_BCM5714_B3, "BCM5714 B3" }, 313 { BGE_CHIPID_BCM5715_A0, "BCM5715 A0" }, 314 { BGE_CHIPID_BCM5715_A1, "BCM5715 A1" }, 315 { BGE_CHIPID_BCM5715_A3, "BCM5715 A3" }, 316 { BGE_CHIPID_BCM5717_A0, "BCM5717 A0" }, 317 { BGE_CHIPID_BCM5717_B0, "BCM5717 B0" }, 318 { BGE_CHIPID_BCM5717_C0, "BCM5717 C0" }, 319 { BGE_CHIPID_BCM5719_A0, "BCM5719 A0" }, 320 { BGE_CHIPID_BCM5720_A0, "BCM5720 A0" }, 321 { BGE_CHIPID_BCM5755_A0, "BCM5755 A0" }, 322 { BGE_CHIPID_BCM5755_A1, "BCM5755 A1" }, 323 { BGE_CHIPID_BCM5755_A2, "BCM5755 A2" }, 324 { BGE_CHIPID_BCM5722_A0, "BCM5722 A0" }, 325 { BGE_CHIPID_BCM5761_A0, "BCM5761 A0" }, 326 { BGE_CHIPID_BCM5761_A1, "BCM5761 A1" }, 327 { BGE_CHIPID_BCM5762_A0, "BCM5762 A0" }, 328 { BGE_CHIPID_BCM5784_A0, "BCM5784 A0" }, 329 { BGE_CHIPID_BCM5784_A1, "BCM5784 A1" }, 330 /* 5754 and 5787 share the same ASIC ID */ 331 { BGE_CHIPID_BCM5787_A0, "BCM5754/5787 A0" }, 332 { BGE_CHIPID_BCM5787_A1, "BCM5754/5787 A1" }, 333 { BGE_CHIPID_BCM5787_A2, "BCM5754/5787 A2" }, 334 { BGE_CHIPID_BCM5906_A1, "BCM5906 A1" }, 335 { BGE_CHIPID_BCM5906_A2, "BCM5906 A2" }, 336 { BGE_CHIPID_BCM57765_A0, "BCM57765 A0" }, 337 { BGE_CHIPID_BCM57765_B0, "BCM57765 B0" }, 338 { BGE_CHIPID_BCM57780_A0, "BCM57780 A0" }, 339 { BGE_CHIPID_BCM57780_A1, "BCM57780 A1" }, 340 341 { 0, NULL } 342 }; 343 344 /* 345 * Some defaults for major revisions, so that newer steppings 346 * that we don't know about have a shot at working. 347 */ 348 static const struct bge_revision bge_majorrevs[] = { 349 { BGE_ASICREV_BCM5700, "unknown BCM5700" }, 350 { BGE_ASICREV_BCM5701, "unknown BCM5701" }, 351 { BGE_ASICREV_BCM5703, "unknown BCM5703" }, 352 { BGE_ASICREV_BCM5704, "unknown BCM5704" }, 353 { BGE_ASICREV_BCM5705, "unknown BCM5705" }, 354 { BGE_ASICREV_BCM5750, "unknown BCM5750" }, 355 { BGE_ASICREV_BCM5714_A0, "unknown BCM5714" }, 356 { BGE_ASICREV_BCM5752, "unknown BCM5752" }, 357 { BGE_ASICREV_BCM5780, "unknown BCM5780" }, 358 { BGE_ASICREV_BCM5714, "unknown BCM5714" }, 359 { BGE_ASICREV_BCM5755, "unknown BCM5755" }, 360 { BGE_ASICREV_BCM5761, "unknown BCM5761" }, 361 { BGE_ASICREV_BCM5784, "unknown BCM5784" }, 362 { BGE_ASICREV_BCM5785, "unknown BCM5785" }, 363 /* 5754 and 5787 share the same ASIC ID */ 364 { BGE_ASICREV_BCM5787, "unknown BCM5754/5787" }, 365 { BGE_ASICREV_BCM5906, "unknown BCM5906" }, 366 { BGE_ASICREV_BCM57765, "unknown BCM57765" }, 367 { BGE_ASICREV_BCM57766, "unknown BCM57766" }, 368 { BGE_ASICREV_BCM57780, "unknown BCM57780" }, 369 { BGE_ASICREV_BCM5717, "unknown BCM5717" }, 370 { BGE_ASICREV_BCM5719, "unknown BCM5719" }, 371 { BGE_ASICREV_BCM5720, "unknown BCM5720" }, 372 { BGE_ASICREV_BCM5762, "unknown BCM5762" }, 373 374 { 0, NULL } 375 }; 376 377 #define BGE_IS_JUMBO_CAPABLE(sc) ((sc)->bge_flags & BGE_FLAG_JUMBO) 378 #define BGE_IS_5700_FAMILY(sc) ((sc)->bge_flags & BGE_FLAG_5700_FAMILY) 379 #define BGE_IS_5705_PLUS(sc) ((sc)->bge_flags & BGE_FLAG_5705_PLUS) 380 #define BGE_IS_5714_FAMILY(sc) ((sc)->bge_flags & BGE_FLAG_5714_FAMILY) 381 #define BGE_IS_575X_PLUS(sc) ((sc)->bge_flags & BGE_FLAG_575X_PLUS) 382 #define BGE_IS_5755_PLUS(sc) ((sc)->bge_flags & BGE_FLAG_5755_PLUS) 383 #define BGE_IS_5717_PLUS(sc) ((sc)->bge_flags & BGE_FLAG_5717_PLUS) 384 #define BGE_IS_57765_PLUS(sc) ((sc)->bge_flags & BGE_FLAG_57765_PLUS) 385 386 static uint32_t bge_chipid(device_t); 387 static const struct bge_vendor * bge_lookup_vendor(uint16_t); 388 static const struct bge_revision * bge_lookup_rev(uint32_t); 389 390 typedef int (*bge_eaddr_fcn_t)(struct bge_softc *, uint8_t[]); 391 392 static int bge_probe(device_t); 393 static int bge_attach(device_t); 394 static int bge_detach(device_t); 395 static int bge_suspend(device_t); 396 static int bge_resume(device_t); 397 static void bge_release_resources(struct bge_softc *); 398 static void bge_dma_map_addr(void *, bus_dma_segment_t *, int, int); 399 static int bge_dma_alloc(struct bge_softc *); 400 static void bge_dma_free(struct bge_softc *); 401 static int bge_dma_ring_alloc(struct bge_softc *, bus_size_t, bus_size_t, 402 bus_dma_tag_t *, uint8_t **, bus_dmamap_t *, bus_addr_t *, const char *); 403 404 static void bge_devinfo(struct bge_softc *); 405 static int bge_mbox_reorder(struct bge_softc *); 406 407 static int bge_get_eaddr_fw(struct bge_softc *sc, uint8_t ether_addr[]); 408 static int bge_get_eaddr_mem(struct bge_softc *, uint8_t[]); 409 static int bge_get_eaddr_nvram(struct bge_softc *, uint8_t[]); 410 static int bge_get_eaddr_eeprom(struct bge_softc *, uint8_t[]); 411 static int bge_get_eaddr(struct bge_softc *, uint8_t[]); 412 413 static void bge_txeof(struct bge_softc *, uint16_t); 414 static void bge_rxcsum(struct bge_softc *, struct bge_rx_bd *, struct mbuf *); 415 static int bge_rxeof(struct bge_softc *, uint16_t, int); 416 417 static void bge_asf_driver_up (struct bge_softc *); 418 static void bge_tick(void *); 419 static void bge_stats_clear_regs(struct bge_softc *); 420 static void bge_stats_update(struct bge_softc *); 421 static void bge_stats_update_regs(struct bge_softc *); 422 static struct mbuf *bge_check_short_dma(struct mbuf *); 423 static struct mbuf *bge_setup_tso(struct bge_softc *, struct mbuf *, 424 uint16_t *, uint16_t *); 425 static int bge_encap(struct bge_softc *, struct mbuf **, uint32_t *); 426 427 static void bge_intr(void *); 428 static int bge_msi_intr(void *); 429 static void bge_intr_task(void *, int); 430 static void bge_start(if_t); 431 static void bge_start_locked(if_t); 432 static void bge_start_tx(struct bge_softc *, uint32_t); 433 static int bge_ioctl(if_t, u_long, caddr_t); 434 static void bge_init_locked(struct bge_softc *); 435 static void bge_init(void *); 436 static void bge_stop_block(struct bge_softc *, bus_size_t, uint32_t); 437 static void bge_stop(struct bge_softc *); 438 static void bge_watchdog(struct bge_softc *); 439 static int bge_shutdown(device_t); 440 static int bge_ifmedia_upd_locked(if_t); 441 static int bge_ifmedia_upd(if_t); 442 static void bge_ifmedia_sts(if_t, struct ifmediareq *); 443 static uint64_t bge_get_counter(if_t, ift_counter); 444 445 static uint8_t bge_nvram_getbyte(struct bge_softc *, int, uint8_t *); 446 static int bge_read_nvram(struct bge_softc *, caddr_t, int, int); 447 448 static uint8_t bge_eeprom_getbyte(struct bge_softc *, int, uint8_t *); 449 static int bge_read_eeprom(struct bge_softc *, caddr_t, int, int); 450 451 static void bge_setpromisc(struct bge_softc *); 452 static void bge_setmulti(struct bge_softc *); 453 static void bge_setvlan(struct bge_softc *); 454 455 static __inline void bge_rxreuse_std(struct bge_softc *, int); 456 static __inline void bge_rxreuse_jumbo(struct bge_softc *, int); 457 static int bge_newbuf_std(struct bge_softc *, int); 458 static int bge_newbuf_jumbo(struct bge_softc *, int); 459 static int bge_init_rx_ring_std(struct bge_softc *); 460 static void bge_free_rx_ring_std(struct bge_softc *); 461 static int bge_init_rx_ring_jumbo(struct bge_softc *); 462 static void bge_free_rx_ring_jumbo(struct bge_softc *); 463 static void bge_free_tx_ring(struct bge_softc *); 464 static int bge_init_tx_ring(struct bge_softc *); 465 466 static int bge_chipinit(struct bge_softc *); 467 static int bge_blockinit(struct bge_softc *); 468 static uint32_t bge_dma_swap_options(struct bge_softc *); 469 470 static int bge_has_eaddr(struct bge_softc *); 471 static uint32_t bge_readmem_ind(struct bge_softc *, int); 472 static void bge_writemem_ind(struct bge_softc *, int, int); 473 static void bge_writembx(struct bge_softc *, int, int); 474 #ifdef notdef 475 static uint32_t bge_readreg_ind(struct bge_softc *, int); 476 #endif 477 static void bge_writemem_direct(struct bge_softc *, int, int); 478 static void bge_writereg_ind(struct bge_softc *, int, int); 479 480 static int bge_miibus_readreg(device_t, int, int); 481 static int bge_miibus_writereg(device_t, int, int, int); 482 static void bge_miibus_statchg(device_t); 483 #ifdef DEVICE_POLLING 484 static int bge_poll(if_t ifp, enum poll_cmd cmd, int count); 485 #endif 486 487 #define BGE_RESET_SHUTDOWN 0 488 #define BGE_RESET_START 1 489 #define BGE_RESET_SUSPEND 2 490 static void bge_sig_post_reset(struct bge_softc *, int); 491 static void bge_sig_legacy(struct bge_softc *, int); 492 static void bge_sig_pre_reset(struct bge_softc *, int); 493 static void bge_stop_fw(struct bge_softc *); 494 static int bge_reset(struct bge_softc *); 495 static void bge_link_upd(struct bge_softc *); 496 497 static void bge_ape_lock_init(struct bge_softc *); 498 static void bge_ape_read_fw_ver(struct bge_softc *); 499 static int bge_ape_lock(struct bge_softc *, int); 500 static void bge_ape_unlock(struct bge_softc *, int); 501 static void bge_ape_send_event(struct bge_softc *, uint32_t); 502 static void bge_ape_driver_state_change(struct bge_softc *, int); 503 504 /* 505 * The BGE_REGISTER_DEBUG option is only for low-level debugging. It may 506 * leak information to untrusted users. It is also known to cause alignment 507 * traps on certain architectures. 508 */ 509 #ifdef BGE_REGISTER_DEBUG 510 static int bge_sysctl_debug_info(SYSCTL_HANDLER_ARGS); 511 static int bge_sysctl_reg_read(SYSCTL_HANDLER_ARGS); 512 static int bge_sysctl_ape_read(SYSCTL_HANDLER_ARGS); 513 static int bge_sysctl_mem_read(SYSCTL_HANDLER_ARGS); 514 #endif 515 static void bge_add_sysctls(struct bge_softc *); 516 static void bge_add_sysctl_stats_regs(struct bge_softc *, 517 struct sysctl_ctx_list *, struct sysctl_oid_list *); 518 static void bge_add_sysctl_stats(struct bge_softc *, struct sysctl_ctx_list *, 519 struct sysctl_oid_list *); 520 static int bge_sysctl_stats(SYSCTL_HANDLER_ARGS); 521 522 NETDUMP_DEFINE(bge); 523 524 static device_method_t bge_methods[] = { 525 /* Device interface */ 526 DEVMETHOD(device_probe, bge_probe), 527 DEVMETHOD(device_attach, bge_attach), 528 DEVMETHOD(device_detach, bge_detach), 529 DEVMETHOD(device_shutdown, bge_shutdown), 530 DEVMETHOD(device_suspend, bge_suspend), 531 DEVMETHOD(device_resume, bge_resume), 532 533 /* MII interface */ 534 DEVMETHOD(miibus_readreg, bge_miibus_readreg), 535 DEVMETHOD(miibus_writereg, bge_miibus_writereg), 536 DEVMETHOD(miibus_statchg, bge_miibus_statchg), 537 538 DEVMETHOD_END 539 }; 540 541 static driver_t bge_driver = { 542 "bge", 543 bge_methods, 544 sizeof(struct bge_softc) 545 }; 546 547 static devclass_t bge_devclass; 548 549 DRIVER_MODULE(bge, pci, bge_driver, bge_devclass, 0, 0); 550 MODULE_PNP_INFO("U16:vendor;U16:device", pci, bge, bge_devs, 551 sizeof(bge_devs), nitems(bge_devs) - 1); 552 DRIVER_MODULE(miibus, bge, miibus_driver, miibus_devclass, 0, 0); 553 554 static int bge_allow_asf = 1; 555 556 static SYSCTL_NODE(_hw, OID_AUTO, bge, CTLFLAG_RD, 0, "BGE driver parameters"); 557 SYSCTL_INT(_hw_bge, OID_AUTO, allow_asf, CTLFLAG_RDTUN, &bge_allow_asf, 0, 558 "Allow ASF mode if available"); 559 560 #define SPARC64_BLADE_1500_MODEL "SUNW,Sun-Blade-1500" 561 #define SPARC64_BLADE_1500_PATH_BGE "/pci@1f,700000/network@2" 562 #define SPARC64_BLADE_2500_MODEL "SUNW,Sun-Blade-2500" 563 #define SPARC64_BLADE_2500_PATH_BGE "/pci@1c,600000/network@3" 564 #define SPARC64_OFW_SUBVENDOR "subsystem-vendor-id" 565 566 static int 567 bge_has_eaddr(struct bge_softc *sc) 568 { 569 #ifdef __sparc64__ 570 char buf[sizeof(SPARC64_BLADE_1500_PATH_BGE)]; 571 device_t dev; 572 uint32_t subvendor; 573 574 dev = sc->bge_dev; 575 576 /* 577 * The on-board BGEs found in sun4u machines aren't fitted with 578 * an EEPROM which means that we have to obtain the MAC address 579 * via OFW and that some tests will always fail. We distinguish 580 * such BGEs by the subvendor ID, which also has to be obtained 581 * from OFW instead of the PCI configuration space as the latter 582 * indicates Broadcom as the subvendor of the netboot interface. 583 * For early Blade 1500 and 2500 we even have to check the OFW 584 * device path as the subvendor ID always defaults to Broadcom 585 * there. 586 */ 587 if (OF_getprop(ofw_bus_get_node(dev), SPARC64_OFW_SUBVENDOR, 588 &subvendor, sizeof(subvendor)) == sizeof(subvendor) && 589 (subvendor == FJTSU_VENDORID || subvendor == SUN_VENDORID)) 590 return (0); 591 memset(buf, 0, sizeof(buf)); 592 if (OF_package_to_path(ofw_bus_get_node(dev), buf, sizeof(buf)) > 0) { 593 if (strcmp(sparc64_model, SPARC64_BLADE_1500_MODEL) == 0 && 594 strcmp(buf, SPARC64_BLADE_1500_PATH_BGE) == 0) 595 return (0); 596 if (strcmp(sparc64_model, SPARC64_BLADE_2500_MODEL) == 0 && 597 strcmp(buf, SPARC64_BLADE_2500_PATH_BGE) == 0) 598 return (0); 599 } 600 #endif 601 return (1); 602 } 603 604 static uint32_t 605 bge_readmem_ind(struct bge_softc *sc, int off) 606 { 607 device_t dev; 608 uint32_t val; 609 610 if (sc->bge_asicrev == BGE_ASICREV_BCM5906 && 611 off >= BGE_STATS_BLOCK && off < BGE_SEND_RING_1_TO_4) 612 return (0); 613 614 dev = sc->bge_dev; 615 616 pci_write_config(dev, BGE_PCI_MEMWIN_BASEADDR, off, 4); 617 val = pci_read_config(dev, BGE_PCI_MEMWIN_DATA, 4); 618 pci_write_config(dev, BGE_PCI_MEMWIN_BASEADDR, 0, 4); 619 return (val); 620 } 621 622 static void 623 bge_writemem_ind(struct bge_softc *sc, int off, int val) 624 { 625 device_t dev; 626 627 if (sc->bge_asicrev == BGE_ASICREV_BCM5906 && 628 off >= BGE_STATS_BLOCK && off < BGE_SEND_RING_1_TO_4) 629 return; 630 631 dev = sc->bge_dev; 632 633 pci_write_config(dev, BGE_PCI_MEMWIN_BASEADDR, off, 4); 634 pci_write_config(dev, BGE_PCI_MEMWIN_DATA, val, 4); 635 pci_write_config(dev, BGE_PCI_MEMWIN_BASEADDR, 0, 4); 636 } 637 638 #ifdef notdef 639 static uint32_t 640 bge_readreg_ind(struct bge_softc *sc, int off) 641 { 642 device_t dev; 643 644 dev = sc->bge_dev; 645 646 pci_write_config(dev, BGE_PCI_REG_BASEADDR, off, 4); 647 return (pci_read_config(dev, BGE_PCI_REG_DATA, 4)); 648 } 649 #endif 650 651 static void 652 bge_writereg_ind(struct bge_softc *sc, int off, int val) 653 { 654 device_t dev; 655 656 dev = sc->bge_dev; 657 658 pci_write_config(dev, BGE_PCI_REG_BASEADDR, off, 4); 659 pci_write_config(dev, BGE_PCI_REG_DATA, val, 4); 660 } 661 662 static void 663 bge_writemem_direct(struct bge_softc *sc, int off, int val) 664 { 665 CSR_WRITE_4(sc, off, val); 666 } 667 668 static void 669 bge_writembx(struct bge_softc *sc, int off, int val) 670 { 671 if (sc->bge_asicrev == BGE_ASICREV_BCM5906) 672 off += BGE_LPMBX_IRQ0_HI - BGE_MBX_IRQ0_HI; 673 674 CSR_WRITE_4(sc, off, val); 675 if ((sc->bge_flags & BGE_FLAG_MBOX_REORDER) != 0) 676 CSR_READ_4(sc, off); 677 } 678 679 /* 680 * Clear all stale locks and select the lock for this driver instance. 681 */ 682 static void 683 bge_ape_lock_init(struct bge_softc *sc) 684 { 685 uint32_t bit, regbase; 686 int i; 687 688 if (sc->bge_asicrev == BGE_ASICREV_BCM5761) 689 regbase = BGE_APE_LOCK_GRANT; 690 else 691 regbase = BGE_APE_PER_LOCK_GRANT; 692 693 /* Clear any stale locks. */ 694 for (i = BGE_APE_LOCK_PHY0; i <= BGE_APE_LOCK_GPIO; i++) { 695 switch (i) { 696 case BGE_APE_LOCK_PHY0: 697 case BGE_APE_LOCK_PHY1: 698 case BGE_APE_LOCK_PHY2: 699 case BGE_APE_LOCK_PHY3: 700 bit = BGE_APE_LOCK_GRANT_DRIVER0; 701 break; 702 default: 703 if (sc->bge_func_addr == 0) 704 bit = BGE_APE_LOCK_GRANT_DRIVER0; 705 else 706 bit = (1 << sc->bge_func_addr); 707 } 708 APE_WRITE_4(sc, regbase + 4 * i, bit); 709 } 710 711 /* Select the PHY lock based on the device's function number. */ 712 switch (sc->bge_func_addr) { 713 case 0: 714 sc->bge_phy_ape_lock = BGE_APE_LOCK_PHY0; 715 break; 716 case 1: 717 sc->bge_phy_ape_lock = BGE_APE_LOCK_PHY1; 718 break; 719 case 2: 720 sc->bge_phy_ape_lock = BGE_APE_LOCK_PHY2; 721 break; 722 case 3: 723 sc->bge_phy_ape_lock = BGE_APE_LOCK_PHY3; 724 break; 725 default: 726 device_printf(sc->bge_dev, 727 "PHY lock not supported on this function\n"); 728 } 729 } 730 731 /* 732 * Check for APE firmware, set flags, and print version info. 733 */ 734 static void 735 bge_ape_read_fw_ver(struct bge_softc *sc) 736 { 737 const char *fwtype; 738 uint32_t apedata, features; 739 740 /* Check for a valid APE signature in shared memory. */ 741 apedata = APE_READ_4(sc, BGE_APE_SEG_SIG); 742 if (apedata != BGE_APE_SEG_SIG_MAGIC) { 743 sc->bge_mfw_flags &= ~ BGE_MFW_ON_APE; 744 return; 745 } 746 747 /* Check if APE firmware is running. */ 748 apedata = APE_READ_4(sc, BGE_APE_FW_STATUS); 749 if ((apedata & BGE_APE_FW_STATUS_READY) == 0) { 750 device_printf(sc->bge_dev, "APE signature found " 751 "but FW status not ready! 0x%08x\n", apedata); 752 return; 753 } 754 755 sc->bge_mfw_flags |= BGE_MFW_ON_APE; 756 757 /* Fetch the APE firwmare type and version. */ 758 apedata = APE_READ_4(sc, BGE_APE_FW_VERSION); 759 features = APE_READ_4(sc, BGE_APE_FW_FEATURES); 760 if ((features & BGE_APE_FW_FEATURE_NCSI) != 0) { 761 sc->bge_mfw_flags |= BGE_MFW_TYPE_NCSI; 762 fwtype = "NCSI"; 763 } else if ((features & BGE_APE_FW_FEATURE_DASH) != 0) { 764 sc->bge_mfw_flags |= BGE_MFW_TYPE_DASH; 765 fwtype = "DASH"; 766 } else 767 fwtype = "UNKN"; 768 769 /* Print the APE firmware version. */ 770 device_printf(sc->bge_dev, "APE FW version: %s v%d.%d.%d.%d\n", 771 fwtype, 772 (apedata & BGE_APE_FW_VERSION_MAJMSK) >> BGE_APE_FW_VERSION_MAJSFT, 773 (apedata & BGE_APE_FW_VERSION_MINMSK) >> BGE_APE_FW_VERSION_MINSFT, 774 (apedata & BGE_APE_FW_VERSION_REVMSK) >> BGE_APE_FW_VERSION_REVSFT, 775 (apedata & BGE_APE_FW_VERSION_BLDMSK)); 776 } 777 778 static int 779 bge_ape_lock(struct bge_softc *sc, int locknum) 780 { 781 uint32_t bit, gnt, req, status; 782 int i, off; 783 784 if ((sc->bge_mfw_flags & BGE_MFW_ON_APE) == 0) 785 return (0); 786 787 /* Lock request/grant registers have different bases. */ 788 if (sc->bge_asicrev == BGE_ASICREV_BCM5761) { 789 req = BGE_APE_LOCK_REQ; 790 gnt = BGE_APE_LOCK_GRANT; 791 } else { 792 req = BGE_APE_PER_LOCK_REQ; 793 gnt = BGE_APE_PER_LOCK_GRANT; 794 } 795 796 off = 4 * locknum; 797 798 switch (locknum) { 799 case BGE_APE_LOCK_GPIO: 800 /* Lock required when using GPIO. */ 801 if (sc->bge_asicrev == BGE_ASICREV_BCM5761) 802 return (0); 803 if (sc->bge_func_addr == 0) 804 bit = BGE_APE_LOCK_REQ_DRIVER0; 805 else 806 bit = (1 << sc->bge_func_addr); 807 break; 808 case BGE_APE_LOCK_GRC: 809 /* Lock required to reset the device. */ 810 if (sc->bge_func_addr == 0) 811 bit = BGE_APE_LOCK_REQ_DRIVER0; 812 else 813 bit = (1 << sc->bge_func_addr); 814 break; 815 case BGE_APE_LOCK_MEM: 816 /* Lock required when accessing certain APE memory. */ 817 if (sc->bge_func_addr == 0) 818 bit = BGE_APE_LOCK_REQ_DRIVER0; 819 else 820 bit = (1 << sc->bge_func_addr); 821 break; 822 case BGE_APE_LOCK_PHY0: 823 case BGE_APE_LOCK_PHY1: 824 case BGE_APE_LOCK_PHY2: 825 case BGE_APE_LOCK_PHY3: 826 /* Lock required when accessing PHYs. */ 827 bit = BGE_APE_LOCK_REQ_DRIVER0; 828 break; 829 default: 830 return (EINVAL); 831 } 832 833 /* Request a lock. */ 834 APE_WRITE_4(sc, req + off, bit); 835 836 /* Wait up to 1 second to acquire lock. */ 837 for (i = 0; i < 20000; i++) { 838 status = APE_READ_4(sc, gnt + off); 839 if (status == bit) 840 break; 841 DELAY(50); 842 } 843 844 /* Handle any errors. */ 845 if (status != bit) { 846 device_printf(sc->bge_dev, "APE lock %d request failed! " 847 "request = 0x%04x[0x%04x], status = 0x%04x[0x%04x]\n", 848 locknum, req + off, bit & 0xFFFF, gnt + off, 849 status & 0xFFFF); 850 /* Revoke the lock request. */ 851 APE_WRITE_4(sc, gnt + off, bit); 852 return (EBUSY); 853 } 854 855 return (0); 856 } 857 858 static void 859 bge_ape_unlock(struct bge_softc *sc, int locknum) 860 { 861 uint32_t bit, gnt; 862 int off; 863 864 if ((sc->bge_mfw_flags & BGE_MFW_ON_APE) == 0) 865 return; 866 867 if (sc->bge_asicrev == BGE_ASICREV_BCM5761) 868 gnt = BGE_APE_LOCK_GRANT; 869 else 870 gnt = BGE_APE_PER_LOCK_GRANT; 871 872 off = 4 * locknum; 873 874 switch (locknum) { 875 case BGE_APE_LOCK_GPIO: 876 if (sc->bge_asicrev == BGE_ASICREV_BCM5761) 877 return; 878 if (sc->bge_func_addr == 0) 879 bit = BGE_APE_LOCK_GRANT_DRIVER0; 880 else 881 bit = (1 << sc->bge_func_addr); 882 break; 883 case BGE_APE_LOCK_GRC: 884 if (sc->bge_func_addr == 0) 885 bit = BGE_APE_LOCK_GRANT_DRIVER0; 886 else 887 bit = (1 << sc->bge_func_addr); 888 break; 889 case BGE_APE_LOCK_MEM: 890 if (sc->bge_func_addr == 0) 891 bit = BGE_APE_LOCK_GRANT_DRIVER0; 892 else 893 bit = (1 << sc->bge_func_addr); 894 break; 895 case BGE_APE_LOCK_PHY0: 896 case BGE_APE_LOCK_PHY1: 897 case BGE_APE_LOCK_PHY2: 898 case BGE_APE_LOCK_PHY3: 899 bit = BGE_APE_LOCK_GRANT_DRIVER0; 900 break; 901 default: 902 return; 903 } 904 905 APE_WRITE_4(sc, gnt + off, bit); 906 } 907 908 /* 909 * Send an event to the APE firmware. 910 */ 911 static void 912 bge_ape_send_event(struct bge_softc *sc, uint32_t event) 913 { 914 uint32_t apedata; 915 int i; 916 917 /* NCSI does not support APE events. */ 918 if ((sc->bge_mfw_flags & BGE_MFW_ON_APE) == 0) 919 return; 920 921 /* Wait up to 1ms for APE to service previous event. */ 922 for (i = 10; i > 0; i--) { 923 if (bge_ape_lock(sc, BGE_APE_LOCK_MEM) != 0) 924 break; 925 apedata = APE_READ_4(sc, BGE_APE_EVENT_STATUS); 926 if ((apedata & BGE_APE_EVENT_STATUS_EVENT_PENDING) == 0) { 927 APE_WRITE_4(sc, BGE_APE_EVENT_STATUS, event | 928 BGE_APE_EVENT_STATUS_EVENT_PENDING); 929 bge_ape_unlock(sc, BGE_APE_LOCK_MEM); 930 APE_WRITE_4(sc, BGE_APE_EVENT, BGE_APE_EVENT_1); 931 break; 932 } 933 bge_ape_unlock(sc, BGE_APE_LOCK_MEM); 934 DELAY(100); 935 } 936 if (i == 0) 937 device_printf(sc->bge_dev, "APE event 0x%08x send timed out\n", 938 event); 939 } 940 941 static void 942 bge_ape_driver_state_change(struct bge_softc *sc, int kind) 943 { 944 uint32_t apedata, event; 945 946 if ((sc->bge_mfw_flags & BGE_MFW_ON_APE) == 0) 947 return; 948 949 switch (kind) { 950 case BGE_RESET_START: 951 /* If this is the first load, clear the load counter. */ 952 apedata = APE_READ_4(sc, BGE_APE_HOST_SEG_SIG); 953 if (apedata != BGE_APE_HOST_SEG_SIG_MAGIC) 954 APE_WRITE_4(sc, BGE_APE_HOST_INIT_COUNT, 0); 955 else { 956 apedata = APE_READ_4(sc, BGE_APE_HOST_INIT_COUNT); 957 APE_WRITE_4(sc, BGE_APE_HOST_INIT_COUNT, ++apedata); 958 } 959 APE_WRITE_4(sc, BGE_APE_HOST_SEG_SIG, 960 BGE_APE_HOST_SEG_SIG_MAGIC); 961 APE_WRITE_4(sc, BGE_APE_HOST_SEG_LEN, 962 BGE_APE_HOST_SEG_LEN_MAGIC); 963 964 /* Add some version info if bge(4) supports it. */ 965 APE_WRITE_4(sc, BGE_APE_HOST_DRIVER_ID, 966 BGE_APE_HOST_DRIVER_ID_MAGIC(1, 0)); 967 APE_WRITE_4(sc, BGE_APE_HOST_BEHAVIOR, 968 BGE_APE_HOST_BEHAV_NO_PHYLOCK); 969 APE_WRITE_4(sc, BGE_APE_HOST_HEARTBEAT_INT_MS, 970 BGE_APE_HOST_HEARTBEAT_INT_DISABLE); 971 APE_WRITE_4(sc, BGE_APE_HOST_DRVR_STATE, 972 BGE_APE_HOST_DRVR_STATE_START); 973 event = BGE_APE_EVENT_STATUS_STATE_START; 974 break; 975 case BGE_RESET_SHUTDOWN: 976 APE_WRITE_4(sc, BGE_APE_HOST_DRVR_STATE, 977 BGE_APE_HOST_DRVR_STATE_UNLOAD); 978 event = BGE_APE_EVENT_STATUS_STATE_UNLOAD; 979 break; 980 case BGE_RESET_SUSPEND: 981 event = BGE_APE_EVENT_STATUS_STATE_SUSPEND; 982 break; 983 default: 984 return; 985 } 986 987 bge_ape_send_event(sc, event | BGE_APE_EVENT_STATUS_DRIVER_EVNT | 988 BGE_APE_EVENT_STATUS_STATE_CHNGE); 989 } 990 991 /* 992 * Map a single buffer address. 993 */ 994 995 static void 996 bge_dma_map_addr(void *arg, bus_dma_segment_t *segs, int nseg, int error) 997 { 998 struct bge_dmamap_arg *ctx; 999 1000 if (error) 1001 return; 1002 1003 KASSERT(nseg == 1, ("%s: %d segments returned!", __func__, nseg)); 1004 1005 ctx = arg; 1006 ctx->bge_busaddr = segs->ds_addr; 1007 } 1008 1009 static uint8_t 1010 bge_nvram_getbyte(struct bge_softc *sc, int addr, uint8_t *dest) 1011 { 1012 uint32_t access, byte = 0; 1013 int i; 1014 1015 /* Lock. */ 1016 CSR_WRITE_4(sc, BGE_NVRAM_SWARB, BGE_NVRAMSWARB_SET1); 1017 for (i = 0; i < 8000; i++) { 1018 if (CSR_READ_4(sc, BGE_NVRAM_SWARB) & BGE_NVRAMSWARB_GNT1) 1019 break; 1020 DELAY(20); 1021 } 1022 if (i == 8000) 1023 return (1); 1024 1025 /* Enable access. */ 1026 access = CSR_READ_4(sc, BGE_NVRAM_ACCESS); 1027 CSR_WRITE_4(sc, BGE_NVRAM_ACCESS, access | BGE_NVRAMACC_ENABLE); 1028 1029 CSR_WRITE_4(sc, BGE_NVRAM_ADDR, addr & 0xfffffffc); 1030 CSR_WRITE_4(sc, BGE_NVRAM_CMD, BGE_NVRAM_READCMD); 1031 for (i = 0; i < BGE_TIMEOUT * 10; i++) { 1032 DELAY(10); 1033 if (CSR_READ_4(sc, BGE_NVRAM_CMD) & BGE_NVRAMCMD_DONE) { 1034 DELAY(10); 1035 break; 1036 } 1037 } 1038 1039 if (i == BGE_TIMEOUT * 10) { 1040 if_printf(sc->bge_ifp, "nvram read timed out\n"); 1041 return (1); 1042 } 1043 1044 /* Get result. */ 1045 byte = CSR_READ_4(sc, BGE_NVRAM_RDDATA); 1046 1047 *dest = (bswap32(byte) >> ((addr % 4) * 8)) & 0xFF; 1048 1049 /* Disable access. */ 1050 CSR_WRITE_4(sc, BGE_NVRAM_ACCESS, access); 1051 1052 /* Unlock. */ 1053 CSR_WRITE_4(sc, BGE_NVRAM_SWARB, BGE_NVRAMSWARB_CLR1); 1054 CSR_READ_4(sc, BGE_NVRAM_SWARB); 1055 1056 return (0); 1057 } 1058 1059 /* 1060 * Read a sequence of bytes from NVRAM. 1061 */ 1062 static int 1063 bge_read_nvram(struct bge_softc *sc, caddr_t dest, int off, int cnt) 1064 { 1065 int err = 0, i; 1066 uint8_t byte = 0; 1067 1068 if (sc->bge_asicrev != BGE_ASICREV_BCM5906) 1069 return (1); 1070 1071 for (i = 0; i < cnt; i++) { 1072 err = bge_nvram_getbyte(sc, off + i, &byte); 1073 if (err) 1074 break; 1075 *(dest + i) = byte; 1076 } 1077 1078 return (err ? 1 : 0); 1079 } 1080 1081 /* 1082 * Read a byte of data stored in the EEPROM at address 'addr.' The 1083 * BCM570x supports both the traditional bitbang interface and an 1084 * auto access interface for reading the EEPROM. We use the auto 1085 * access method. 1086 */ 1087 static uint8_t 1088 bge_eeprom_getbyte(struct bge_softc *sc, int addr, uint8_t *dest) 1089 { 1090 int i; 1091 uint32_t byte = 0; 1092 1093 /* 1094 * Enable use of auto EEPROM access so we can avoid 1095 * having to use the bitbang method. 1096 */ 1097 BGE_SETBIT(sc, BGE_MISC_LOCAL_CTL, BGE_MLC_AUTO_EEPROM); 1098 1099 /* Reset the EEPROM, load the clock period. */ 1100 CSR_WRITE_4(sc, BGE_EE_ADDR, 1101 BGE_EEADDR_RESET | BGE_EEHALFCLK(BGE_HALFCLK_384SCL)); 1102 DELAY(20); 1103 1104 /* Issue the read EEPROM command. */ 1105 CSR_WRITE_4(sc, BGE_EE_ADDR, BGE_EE_READCMD | addr); 1106 1107 /* Wait for completion */ 1108 for(i = 0; i < BGE_TIMEOUT * 10; i++) { 1109 DELAY(10); 1110 if (CSR_READ_4(sc, BGE_EE_ADDR) & BGE_EEADDR_DONE) 1111 break; 1112 } 1113 1114 if (i == BGE_TIMEOUT * 10) { 1115 device_printf(sc->bge_dev, "EEPROM read timed out\n"); 1116 return (1); 1117 } 1118 1119 /* Get result. */ 1120 byte = CSR_READ_4(sc, BGE_EE_DATA); 1121 1122 *dest = (byte >> ((addr % 4) * 8)) & 0xFF; 1123 1124 return (0); 1125 } 1126 1127 /* 1128 * Read a sequence of bytes from the EEPROM. 1129 */ 1130 static int 1131 bge_read_eeprom(struct bge_softc *sc, caddr_t dest, int off, int cnt) 1132 { 1133 int i, error = 0; 1134 uint8_t byte = 0; 1135 1136 for (i = 0; i < cnt; i++) { 1137 error = bge_eeprom_getbyte(sc, off + i, &byte); 1138 if (error) 1139 break; 1140 *(dest + i) = byte; 1141 } 1142 1143 return (error ? 1 : 0); 1144 } 1145 1146 static int 1147 bge_miibus_readreg(device_t dev, int phy, int reg) 1148 { 1149 struct bge_softc *sc; 1150 uint32_t val; 1151 int i; 1152 1153 sc = device_get_softc(dev); 1154 1155 if (bge_ape_lock(sc, sc->bge_phy_ape_lock) != 0) 1156 return (0); 1157 1158 /* Clear the autopoll bit if set, otherwise may trigger PCI errors. */ 1159 if ((sc->bge_mi_mode & BGE_MIMODE_AUTOPOLL) != 0) { 1160 CSR_WRITE_4(sc, BGE_MI_MODE, 1161 sc->bge_mi_mode & ~BGE_MIMODE_AUTOPOLL); 1162 DELAY(80); 1163 } 1164 1165 CSR_WRITE_4(sc, BGE_MI_COMM, BGE_MICMD_READ | BGE_MICOMM_BUSY | 1166 BGE_MIPHY(phy) | BGE_MIREG(reg)); 1167 1168 /* Poll for the PHY register access to complete. */ 1169 for (i = 0; i < BGE_TIMEOUT; i++) { 1170 DELAY(10); 1171 val = CSR_READ_4(sc, BGE_MI_COMM); 1172 if ((val & BGE_MICOMM_BUSY) == 0) { 1173 DELAY(5); 1174 val = CSR_READ_4(sc, BGE_MI_COMM); 1175 break; 1176 } 1177 } 1178 1179 if (i == BGE_TIMEOUT) { 1180 device_printf(sc->bge_dev, 1181 "PHY read timed out (phy %d, reg %d, val 0x%08x)\n", 1182 phy, reg, val); 1183 val = 0; 1184 } 1185 1186 /* Restore the autopoll bit if necessary. */ 1187 if ((sc->bge_mi_mode & BGE_MIMODE_AUTOPOLL) != 0) { 1188 CSR_WRITE_4(sc, BGE_MI_MODE, sc->bge_mi_mode); 1189 DELAY(80); 1190 } 1191 1192 bge_ape_unlock(sc, sc->bge_phy_ape_lock); 1193 1194 if (val & BGE_MICOMM_READFAIL) 1195 return (0); 1196 1197 return (val & 0xFFFF); 1198 } 1199 1200 static int 1201 bge_miibus_writereg(device_t dev, int phy, int reg, int val) 1202 { 1203 struct bge_softc *sc; 1204 int i; 1205 1206 sc = device_get_softc(dev); 1207 1208 if (sc->bge_asicrev == BGE_ASICREV_BCM5906 && 1209 (reg == BRGPHY_MII_1000CTL || reg == BRGPHY_MII_AUXCTL)) 1210 return (0); 1211 1212 if (bge_ape_lock(sc, sc->bge_phy_ape_lock) != 0) 1213 return (0); 1214 1215 /* Clear the autopoll bit if set, otherwise may trigger PCI errors. */ 1216 if ((sc->bge_mi_mode & BGE_MIMODE_AUTOPOLL) != 0) { 1217 CSR_WRITE_4(sc, BGE_MI_MODE, 1218 sc->bge_mi_mode & ~BGE_MIMODE_AUTOPOLL); 1219 DELAY(80); 1220 } 1221 1222 CSR_WRITE_4(sc, BGE_MI_COMM, BGE_MICMD_WRITE | BGE_MICOMM_BUSY | 1223 BGE_MIPHY(phy) | BGE_MIREG(reg) | val); 1224 1225 for (i = 0; i < BGE_TIMEOUT; i++) { 1226 DELAY(10); 1227 if (!(CSR_READ_4(sc, BGE_MI_COMM) & BGE_MICOMM_BUSY)) { 1228 DELAY(5); 1229 CSR_READ_4(sc, BGE_MI_COMM); /* dummy read */ 1230 break; 1231 } 1232 } 1233 1234 /* Restore the autopoll bit if necessary. */ 1235 if ((sc->bge_mi_mode & BGE_MIMODE_AUTOPOLL) != 0) { 1236 CSR_WRITE_4(sc, BGE_MI_MODE, sc->bge_mi_mode); 1237 DELAY(80); 1238 } 1239 1240 bge_ape_unlock(sc, sc->bge_phy_ape_lock); 1241 1242 if (i == BGE_TIMEOUT) 1243 device_printf(sc->bge_dev, 1244 "PHY write timed out (phy %d, reg %d, val 0x%04x)\n", 1245 phy, reg, val); 1246 1247 return (0); 1248 } 1249 1250 static void 1251 bge_miibus_statchg(device_t dev) 1252 { 1253 struct bge_softc *sc; 1254 struct mii_data *mii; 1255 uint32_t mac_mode, rx_mode, tx_mode; 1256 1257 sc = device_get_softc(dev); 1258 if ((if_getdrvflags(sc->bge_ifp) & IFF_DRV_RUNNING) == 0) 1259 return; 1260 mii = device_get_softc(sc->bge_miibus); 1261 1262 if ((mii->mii_media_status & (IFM_ACTIVE | IFM_AVALID)) == 1263 (IFM_ACTIVE | IFM_AVALID)) { 1264 switch (IFM_SUBTYPE(mii->mii_media_active)) { 1265 case IFM_10_T: 1266 case IFM_100_TX: 1267 sc->bge_link = 1; 1268 break; 1269 case IFM_1000_T: 1270 case IFM_1000_SX: 1271 case IFM_2500_SX: 1272 if (sc->bge_asicrev != BGE_ASICREV_BCM5906) 1273 sc->bge_link = 1; 1274 else 1275 sc->bge_link = 0; 1276 break; 1277 default: 1278 sc->bge_link = 0; 1279 break; 1280 } 1281 } else 1282 sc->bge_link = 0; 1283 if (sc->bge_link == 0) 1284 return; 1285 1286 /* 1287 * APE firmware touches these registers to keep the MAC 1288 * connected to the outside world. Try to keep the 1289 * accesses atomic. 1290 */ 1291 1292 /* Set the port mode (MII/GMII) to match the link speed. */ 1293 mac_mode = CSR_READ_4(sc, BGE_MAC_MODE) & 1294 ~(BGE_MACMODE_PORTMODE | BGE_MACMODE_HALF_DUPLEX); 1295 tx_mode = CSR_READ_4(sc, BGE_TX_MODE); 1296 rx_mode = CSR_READ_4(sc, BGE_RX_MODE); 1297 1298 if (IFM_SUBTYPE(mii->mii_media_active) == IFM_1000_T || 1299 IFM_SUBTYPE(mii->mii_media_active) == IFM_1000_SX) 1300 mac_mode |= BGE_PORTMODE_GMII; 1301 else 1302 mac_mode |= BGE_PORTMODE_MII; 1303 1304 /* Set MAC flow control behavior to match link flow control settings. */ 1305 tx_mode &= ~BGE_TXMODE_FLOWCTL_ENABLE; 1306 rx_mode &= ~BGE_RXMODE_FLOWCTL_ENABLE; 1307 if ((IFM_OPTIONS(mii->mii_media_active) & IFM_FDX) != 0) { 1308 if ((IFM_OPTIONS(mii->mii_media_active) & IFM_ETH_TXPAUSE) != 0) 1309 tx_mode |= BGE_TXMODE_FLOWCTL_ENABLE; 1310 if ((IFM_OPTIONS(mii->mii_media_active) & IFM_ETH_RXPAUSE) != 0) 1311 rx_mode |= BGE_RXMODE_FLOWCTL_ENABLE; 1312 } else 1313 mac_mode |= BGE_MACMODE_HALF_DUPLEX; 1314 1315 CSR_WRITE_4(sc, BGE_MAC_MODE, mac_mode); 1316 DELAY(40); 1317 CSR_WRITE_4(sc, BGE_TX_MODE, tx_mode); 1318 CSR_WRITE_4(sc, BGE_RX_MODE, rx_mode); 1319 } 1320 1321 /* 1322 * Intialize a standard receive ring descriptor. 1323 */ 1324 static int 1325 bge_newbuf_std(struct bge_softc *sc, int i) 1326 { 1327 struct mbuf *m; 1328 struct bge_rx_bd *r; 1329 bus_dma_segment_t segs[1]; 1330 bus_dmamap_t map; 1331 int error, nsegs; 1332 1333 if (sc->bge_flags & BGE_FLAG_JUMBO_STD && 1334 (if_getmtu(sc->bge_ifp) + ETHER_HDR_LEN + ETHER_CRC_LEN + 1335 ETHER_VLAN_ENCAP_LEN > (MCLBYTES - ETHER_ALIGN))) { 1336 m = m_getjcl(M_NOWAIT, MT_DATA, M_PKTHDR, MJUM9BYTES); 1337 if (m == NULL) 1338 return (ENOBUFS); 1339 m->m_len = m->m_pkthdr.len = MJUM9BYTES; 1340 } else { 1341 m = m_getcl(M_NOWAIT, MT_DATA, M_PKTHDR); 1342 if (m == NULL) 1343 return (ENOBUFS); 1344 m->m_len = m->m_pkthdr.len = MCLBYTES; 1345 } 1346 if ((sc->bge_flags & BGE_FLAG_RX_ALIGNBUG) == 0) 1347 m_adj(m, ETHER_ALIGN); 1348 1349 error = bus_dmamap_load_mbuf_sg(sc->bge_cdata.bge_rx_mtag, 1350 sc->bge_cdata.bge_rx_std_sparemap, m, segs, &nsegs, 0); 1351 if (error != 0) { 1352 m_freem(m); 1353 return (error); 1354 } 1355 if (sc->bge_cdata.bge_rx_std_chain[i] != NULL) { 1356 bus_dmamap_sync(sc->bge_cdata.bge_rx_mtag, 1357 sc->bge_cdata.bge_rx_std_dmamap[i], BUS_DMASYNC_POSTREAD); 1358 bus_dmamap_unload(sc->bge_cdata.bge_rx_mtag, 1359 sc->bge_cdata.bge_rx_std_dmamap[i]); 1360 } 1361 map = sc->bge_cdata.bge_rx_std_dmamap[i]; 1362 sc->bge_cdata.bge_rx_std_dmamap[i] = sc->bge_cdata.bge_rx_std_sparemap; 1363 sc->bge_cdata.bge_rx_std_sparemap = map; 1364 sc->bge_cdata.bge_rx_std_chain[i] = m; 1365 sc->bge_cdata.bge_rx_std_seglen[i] = segs[0].ds_len; 1366 r = &sc->bge_ldata.bge_rx_std_ring[sc->bge_std]; 1367 r->bge_addr.bge_addr_lo = BGE_ADDR_LO(segs[0].ds_addr); 1368 r->bge_addr.bge_addr_hi = BGE_ADDR_HI(segs[0].ds_addr); 1369 r->bge_flags = BGE_RXBDFLAG_END; 1370 r->bge_len = segs[0].ds_len; 1371 r->bge_idx = i; 1372 1373 bus_dmamap_sync(sc->bge_cdata.bge_rx_mtag, 1374 sc->bge_cdata.bge_rx_std_dmamap[i], BUS_DMASYNC_PREREAD); 1375 1376 return (0); 1377 } 1378 1379 /* 1380 * Initialize a jumbo receive ring descriptor. This allocates 1381 * a jumbo buffer from the pool managed internally by the driver. 1382 */ 1383 static int 1384 bge_newbuf_jumbo(struct bge_softc *sc, int i) 1385 { 1386 bus_dma_segment_t segs[BGE_NSEG_JUMBO]; 1387 bus_dmamap_t map; 1388 struct bge_extrx_bd *r; 1389 struct mbuf *m; 1390 int error, nsegs; 1391 1392 MGETHDR(m, M_NOWAIT, MT_DATA); 1393 if (m == NULL) 1394 return (ENOBUFS); 1395 1396 if (m_cljget(m, M_NOWAIT, MJUM9BYTES) == NULL) { 1397 m_freem(m); 1398 return (ENOBUFS); 1399 } 1400 m->m_len = m->m_pkthdr.len = MJUM9BYTES; 1401 if ((sc->bge_flags & BGE_FLAG_RX_ALIGNBUG) == 0) 1402 m_adj(m, ETHER_ALIGN); 1403 1404 error = bus_dmamap_load_mbuf_sg(sc->bge_cdata.bge_mtag_jumbo, 1405 sc->bge_cdata.bge_rx_jumbo_sparemap, m, segs, &nsegs, 0); 1406 if (error != 0) { 1407 m_freem(m); 1408 return (error); 1409 } 1410 1411 if (sc->bge_cdata.bge_rx_jumbo_chain[i] != NULL) { 1412 bus_dmamap_sync(sc->bge_cdata.bge_mtag_jumbo, 1413 sc->bge_cdata.bge_rx_jumbo_dmamap[i], BUS_DMASYNC_POSTREAD); 1414 bus_dmamap_unload(sc->bge_cdata.bge_mtag_jumbo, 1415 sc->bge_cdata.bge_rx_jumbo_dmamap[i]); 1416 } 1417 map = sc->bge_cdata.bge_rx_jumbo_dmamap[i]; 1418 sc->bge_cdata.bge_rx_jumbo_dmamap[i] = 1419 sc->bge_cdata.bge_rx_jumbo_sparemap; 1420 sc->bge_cdata.bge_rx_jumbo_sparemap = map; 1421 sc->bge_cdata.bge_rx_jumbo_chain[i] = m; 1422 sc->bge_cdata.bge_rx_jumbo_seglen[i][0] = 0; 1423 sc->bge_cdata.bge_rx_jumbo_seglen[i][1] = 0; 1424 sc->bge_cdata.bge_rx_jumbo_seglen[i][2] = 0; 1425 sc->bge_cdata.bge_rx_jumbo_seglen[i][3] = 0; 1426 1427 /* 1428 * Fill in the extended RX buffer descriptor. 1429 */ 1430 r = &sc->bge_ldata.bge_rx_jumbo_ring[sc->bge_jumbo]; 1431 r->bge_flags = BGE_RXBDFLAG_JUMBO_RING | BGE_RXBDFLAG_END; 1432 r->bge_idx = i; 1433 r->bge_len3 = r->bge_len2 = r->bge_len1 = 0; 1434 switch (nsegs) { 1435 case 4: 1436 r->bge_addr3.bge_addr_lo = BGE_ADDR_LO(segs[3].ds_addr); 1437 r->bge_addr3.bge_addr_hi = BGE_ADDR_HI(segs[3].ds_addr); 1438 r->bge_len3 = segs[3].ds_len; 1439 sc->bge_cdata.bge_rx_jumbo_seglen[i][3] = segs[3].ds_len; 1440 case 3: 1441 r->bge_addr2.bge_addr_lo = BGE_ADDR_LO(segs[2].ds_addr); 1442 r->bge_addr2.bge_addr_hi = BGE_ADDR_HI(segs[2].ds_addr); 1443 r->bge_len2 = segs[2].ds_len; 1444 sc->bge_cdata.bge_rx_jumbo_seglen[i][2] = segs[2].ds_len; 1445 case 2: 1446 r->bge_addr1.bge_addr_lo = BGE_ADDR_LO(segs[1].ds_addr); 1447 r->bge_addr1.bge_addr_hi = BGE_ADDR_HI(segs[1].ds_addr); 1448 r->bge_len1 = segs[1].ds_len; 1449 sc->bge_cdata.bge_rx_jumbo_seglen[i][1] = segs[1].ds_len; 1450 case 1: 1451 r->bge_addr0.bge_addr_lo = BGE_ADDR_LO(segs[0].ds_addr); 1452 r->bge_addr0.bge_addr_hi = BGE_ADDR_HI(segs[0].ds_addr); 1453 r->bge_len0 = segs[0].ds_len; 1454 sc->bge_cdata.bge_rx_jumbo_seglen[i][0] = segs[0].ds_len; 1455 break; 1456 default: 1457 panic("%s: %d segments\n", __func__, nsegs); 1458 } 1459 1460 bus_dmamap_sync(sc->bge_cdata.bge_mtag_jumbo, 1461 sc->bge_cdata.bge_rx_jumbo_dmamap[i], BUS_DMASYNC_PREREAD); 1462 1463 return (0); 1464 } 1465 1466 static int 1467 bge_init_rx_ring_std(struct bge_softc *sc) 1468 { 1469 int error, i; 1470 1471 bzero(sc->bge_ldata.bge_rx_std_ring, BGE_STD_RX_RING_SZ); 1472 sc->bge_std = 0; 1473 for (i = 0; i < BGE_STD_RX_RING_CNT; i++) { 1474 if ((error = bge_newbuf_std(sc, i)) != 0) 1475 return (error); 1476 BGE_INC(sc->bge_std, BGE_STD_RX_RING_CNT); 1477 } 1478 1479 bus_dmamap_sync(sc->bge_cdata.bge_rx_std_ring_tag, 1480 sc->bge_cdata.bge_rx_std_ring_map, BUS_DMASYNC_PREWRITE); 1481 1482 sc->bge_std = 0; 1483 bge_writembx(sc, BGE_MBX_RX_STD_PROD_LO, BGE_STD_RX_RING_CNT - 1); 1484 1485 return (0); 1486 } 1487 1488 static void 1489 bge_free_rx_ring_std(struct bge_softc *sc) 1490 { 1491 int i; 1492 1493 for (i = 0; i < BGE_STD_RX_RING_CNT; i++) { 1494 if (sc->bge_cdata.bge_rx_std_chain[i] != NULL) { 1495 bus_dmamap_sync(sc->bge_cdata.bge_rx_mtag, 1496 sc->bge_cdata.bge_rx_std_dmamap[i], 1497 BUS_DMASYNC_POSTREAD); 1498 bus_dmamap_unload(sc->bge_cdata.bge_rx_mtag, 1499 sc->bge_cdata.bge_rx_std_dmamap[i]); 1500 m_freem(sc->bge_cdata.bge_rx_std_chain[i]); 1501 sc->bge_cdata.bge_rx_std_chain[i] = NULL; 1502 } 1503 bzero((char *)&sc->bge_ldata.bge_rx_std_ring[i], 1504 sizeof(struct bge_rx_bd)); 1505 } 1506 } 1507 1508 static int 1509 bge_init_rx_ring_jumbo(struct bge_softc *sc) 1510 { 1511 struct bge_rcb *rcb; 1512 int error, i; 1513 1514 bzero(sc->bge_ldata.bge_rx_jumbo_ring, BGE_JUMBO_RX_RING_SZ); 1515 sc->bge_jumbo = 0; 1516 for (i = 0; i < BGE_JUMBO_RX_RING_CNT; i++) { 1517 if ((error = bge_newbuf_jumbo(sc, i)) != 0) 1518 return (error); 1519 BGE_INC(sc->bge_jumbo, BGE_JUMBO_RX_RING_CNT); 1520 } 1521 1522 bus_dmamap_sync(sc->bge_cdata.bge_rx_jumbo_ring_tag, 1523 sc->bge_cdata.bge_rx_jumbo_ring_map, BUS_DMASYNC_PREWRITE); 1524 1525 sc->bge_jumbo = 0; 1526 1527 /* Enable the jumbo receive producer ring. */ 1528 rcb = &sc->bge_ldata.bge_info.bge_jumbo_rx_rcb; 1529 rcb->bge_maxlen_flags = 1530 BGE_RCB_MAXLEN_FLAGS(0, BGE_RCB_FLAG_USE_EXT_RX_BD); 1531 CSR_WRITE_4(sc, BGE_RX_JUMBO_RCB_MAXLEN_FLAGS, rcb->bge_maxlen_flags); 1532 1533 bge_writembx(sc, BGE_MBX_RX_JUMBO_PROD_LO, BGE_JUMBO_RX_RING_CNT - 1); 1534 1535 return (0); 1536 } 1537 1538 static void 1539 bge_free_rx_ring_jumbo(struct bge_softc *sc) 1540 { 1541 int i; 1542 1543 for (i = 0; i < BGE_JUMBO_RX_RING_CNT; i++) { 1544 if (sc->bge_cdata.bge_rx_jumbo_chain[i] != NULL) { 1545 bus_dmamap_sync(sc->bge_cdata.bge_mtag_jumbo, 1546 sc->bge_cdata.bge_rx_jumbo_dmamap[i], 1547 BUS_DMASYNC_POSTREAD); 1548 bus_dmamap_unload(sc->bge_cdata.bge_mtag_jumbo, 1549 sc->bge_cdata.bge_rx_jumbo_dmamap[i]); 1550 m_freem(sc->bge_cdata.bge_rx_jumbo_chain[i]); 1551 sc->bge_cdata.bge_rx_jumbo_chain[i] = NULL; 1552 } 1553 bzero((char *)&sc->bge_ldata.bge_rx_jumbo_ring[i], 1554 sizeof(struct bge_extrx_bd)); 1555 } 1556 } 1557 1558 static void 1559 bge_free_tx_ring(struct bge_softc *sc) 1560 { 1561 int i; 1562 1563 if (sc->bge_ldata.bge_tx_ring == NULL) 1564 return; 1565 1566 for (i = 0; i < BGE_TX_RING_CNT; i++) { 1567 if (sc->bge_cdata.bge_tx_chain[i] != NULL) { 1568 bus_dmamap_sync(sc->bge_cdata.bge_tx_mtag, 1569 sc->bge_cdata.bge_tx_dmamap[i], 1570 BUS_DMASYNC_POSTWRITE); 1571 bus_dmamap_unload(sc->bge_cdata.bge_tx_mtag, 1572 sc->bge_cdata.bge_tx_dmamap[i]); 1573 m_freem(sc->bge_cdata.bge_tx_chain[i]); 1574 sc->bge_cdata.bge_tx_chain[i] = NULL; 1575 } 1576 bzero((char *)&sc->bge_ldata.bge_tx_ring[i], 1577 sizeof(struct bge_tx_bd)); 1578 } 1579 } 1580 1581 static int 1582 bge_init_tx_ring(struct bge_softc *sc) 1583 { 1584 sc->bge_txcnt = 0; 1585 sc->bge_tx_saved_considx = 0; 1586 1587 bzero(sc->bge_ldata.bge_tx_ring, BGE_TX_RING_SZ); 1588 bus_dmamap_sync(sc->bge_cdata.bge_tx_ring_tag, 1589 sc->bge_cdata.bge_tx_ring_map, BUS_DMASYNC_PREWRITE); 1590 1591 /* Initialize transmit producer index for host-memory send ring. */ 1592 sc->bge_tx_prodidx = 0; 1593 bge_writembx(sc, BGE_MBX_TX_HOST_PROD0_LO, sc->bge_tx_prodidx); 1594 1595 /* 5700 b2 errata */ 1596 if (sc->bge_chiprev == BGE_CHIPREV_5700_BX) 1597 bge_writembx(sc, BGE_MBX_TX_HOST_PROD0_LO, sc->bge_tx_prodidx); 1598 1599 /* NIC-memory send ring not used; initialize to zero. */ 1600 bge_writembx(sc, BGE_MBX_TX_NIC_PROD0_LO, 0); 1601 /* 5700 b2 errata */ 1602 if (sc->bge_chiprev == BGE_CHIPREV_5700_BX) 1603 bge_writembx(sc, BGE_MBX_TX_NIC_PROD0_LO, 0); 1604 1605 return (0); 1606 } 1607 1608 static void 1609 bge_setpromisc(struct bge_softc *sc) 1610 { 1611 if_t ifp; 1612 1613 BGE_LOCK_ASSERT(sc); 1614 1615 ifp = sc->bge_ifp; 1616 1617 /* Enable or disable promiscuous mode as needed. */ 1618 if (if_getflags(ifp) & IFF_PROMISC) 1619 BGE_SETBIT(sc, BGE_RX_MODE, BGE_RXMODE_RX_PROMISC); 1620 else 1621 BGE_CLRBIT(sc, BGE_RX_MODE, BGE_RXMODE_RX_PROMISC); 1622 } 1623 1624 static void 1625 bge_setmulti(struct bge_softc *sc) 1626 { 1627 if_t ifp; 1628 int mc_count = 0; 1629 uint32_t hashes[4] = { 0, 0, 0, 0 }; 1630 int h, i, mcnt; 1631 unsigned char *mta; 1632 1633 BGE_LOCK_ASSERT(sc); 1634 1635 ifp = sc->bge_ifp; 1636 1637 mc_count = if_multiaddr_count(ifp, -1); 1638 mta = malloc(sizeof(unsigned char) * ETHER_ADDR_LEN * 1639 mc_count, M_DEVBUF, M_NOWAIT); 1640 1641 if(mta == NULL) { 1642 device_printf(sc->bge_dev, 1643 "Failed to allocated temp mcast list\n"); 1644 return; 1645 } 1646 1647 if (if_getflags(ifp) & IFF_ALLMULTI || if_getflags(ifp) & IFF_PROMISC) { 1648 for (i = 0; i < 4; i++) 1649 CSR_WRITE_4(sc, BGE_MAR0 + (i * 4), 0xFFFFFFFF); 1650 free(mta, M_DEVBUF); 1651 return; 1652 } 1653 1654 /* First, zot all the existing filters. */ 1655 for (i = 0; i < 4; i++) 1656 CSR_WRITE_4(sc, BGE_MAR0 + (i * 4), 0); 1657 1658 if_multiaddr_array(ifp, mta, &mcnt, mc_count); 1659 for(i = 0; i < mcnt; i++) { 1660 h = ether_crc32_le(mta + (i * ETHER_ADDR_LEN), 1661 ETHER_ADDR_LEN) & 0x7F; 1662 hashes[(h & 0x60) >> 5] |= 1 << (h & 0x1F); 1663 } 1664 1665 for (i = 0; i < 4; i++) 1666 CSR_WRITE_4(sc, BGE_MAR0 + (i * 4), hashes[i]); 1667 1668 free(mta, M_DEVBUF); 1669 } 1670 1671 static void 1672 bge_setvlan(struct bge_softc *sc) 1673 { 1674 if_t ifp; 1675 1676 BGE_LOCK_ASSERT(sc); 1677 1678 ifp = sc->bge_ifp; 1679 1680 /* Enable or disable VLAN tag stripping as needed. */ 1681 if (if_getcapenable(ifp) & IFCAP_VLAN_HWTAGGING) 1682 BGE_CLRBIT(sc, BGE_RX_MODE, BGE_RXMODE_RX_KEEP_VLAN_DIAG); 1683 else 1684 BGE_SETBIT(sc, BGE_RX_MODE, BGE_RXMODE_RX_KEEP_VLAN_DIAG); 1685 } 1686 1687 static void 1688 bge_sig_pre_reset(struct bge_softc *sc, int type) 1689 { 1690 1691 /* 1692 * Some chips don't like this so only do this if ASF is enabled 1693 */ 1694 if (sc->bge_asf_mode) 1695 bge_writemem_ind(sc, BGE_SRAM_FW_MB, BGE_SRAM_FW_MB_MAGIC); 1696 1697 if (sc->bge_asf_mode & ASF_NEW_HANDSHAKE) { 1698 switch (type) { 1699 case BGE_RESET_START: 1700 bge_writemem_ind(sc, BGE_SRAM_FW_DRV_STATE_MB, 1701 BGE_FW_DRV_STATE_START); 1702 break; 1703 case BGE_RESET_SHUTDOWN: 1704 bge_writemem_ind(sc, BGE_SRAM_FW_DRV_STATE_MB, 1705 BGE_FW_DRV_STATE_UNLOAD); 1706 break; 1707 case BGE_RESET_SUSPEND: 1708 bge_writemem_ind(sc, BGE_SRAM_FW_DRV_STATE_MB, 1709 BGE_FW_DRV_STATE_SUSPEND); 1710 break; 1711 } 1712 } 1713 1714 if (type == BGE_RESET_START || type == BGE_RESET_SUSPEND) 1715 bge_ape_driver_state_change(sc, type); 1716 } 1717 1718 static void 1719 bge_sig_post_reset(struct bge_softc *sc, int type) 1720 { 1721 1722 if (sc->bge_asf_mode & ASF_NEW_HANDSHAKE) { 1723 switch (type) { 1724 case BGE_RESET_START: 1725 bge_writemem_ind(sc, BGE_SRAM_FW_DRV_STATE_MB, 1726 BGE_FW_DRV_STATE_START_DONE); 1727 /* START DONE */ 1728 break; 1729 case BGE_RESET_SHUTDOWN: 1730 bge_writemem_ind(sc, BGE_SRAM_FW_DRV_STATE_MB, 1731 BGE_FW_DRV_STATE_UNLOAD_DONE); 1732 break; 1733 } 1734 } 1735 if (type == BGE_RESET_SHUTDOWN) 1736 bge_ape_driver_state_change(sc, type); 1737 } 1738 1739 static void 1740 bge_sig_legacy(struct bge_softc *sc, int type) 1741 { 1742 1743 if (sc->bge_asf_mode) { 1744 switch (type) { 1745 case BGE_RESET_START: 1746 bge_writemem_ind(sc, BGE_SRAM_FW_DRV_STATE_MB, 1747 BGE_FW_DRV_STATE_START); 1748 break; 1749 case BGE_RESET_SHUTDOWN: 1750 bge_writemem_ind(sc, BGE_SRAM_FW_DRV_STATE_MB, 1751 BGE_FW_DRV_STATE_UNLOAD); 1752 break; 1753 } 1754 } 1755 } 1756 1757 static void 1758 bge_stop_fw(struct bge_softc *sc) 1759 { 1760 int i; 1761 1762 if (sc->bge_asf_mode) { 1763 bge_writemem_ind(sc, BGE_SRAM_FW_CMD_MB, BGE_FW_CMD_PAUSE); 1764 CSR_WRITE_4(sc, BGE_RX_CPU_EVENT, 1765 CSR_READ_4(sc, BGE_RX_CPU_EVENT) | BGE_RX_CPU_DRV_EVENT); 1766 1767 for (i = 0; i < 100; i++ ) { 1768 if (!(CSR_READ_4(sc, BGE_RX_CPU_EVENT) & 1769 BGE_RX_CPU_DRV_EVENT)) 1770 break; 1771 DELAY(10); 1772 } 1773 } 1774 } 1775 1776 static uint32_t 1777 bge_dma_swap_options(struct bge_softc *sc) 1778 { 1779 uint32_t dma_options; 1780 1781 dma_options = BGE_MODECTL_WORDSWAP_NONFRAME | 1782 BGE_MODECTL_BYTESWAP_DATA | BGE_MODECTL_WORDSWAP_DATA; 1783 #if BYTE_ORDER == BIG_ENDIAN 1784 dma_options |= BGE_MODECTL_BYTESWAP_NONFRAME; 1785 #endif 1786 return (dma_options); 1787 } 1788 1789 /* 1790 * Do endian, PCI and DMA initialization. 1791 */ 1792 static int 1793 bge_chipinit(struct bge_softc *sc) 1794 { 1795 uint32_t dma_rw_ctl, misc_ctl, mode_ctl; 1796 uint16_t val; 1797 int i; 1798 1799 /* Set endianness before we access any non-PCI registers. */ 1800 misc_ctl = BGE_INIT; 1801 if (sc->bge_flags & BGE_FLAG_TAGGED_STATUS) 1802 misc_ctl |= BGE_PCIMISCCTL_TAGGED_STATUS; 1803 pci_write_config(sc->bge_dev, BGE_PCI_MISC_CTL, misc_ctl, 4); 1804 1805 /* 1806 * Clear the MAC statistics block in the NIC's 1807 * internal memory. 1808 */ 1809 for (i = BGE_STATS_BLOCK; 1810 i < BGE_STATS_BLOCK_END + 1; i += sizeof(uint32_t)) 1811 BGE_MEMWIN_WRITE(sc, i, 0); 1812 1813 for (i = BGE_STATUS_BLOCK; 1814 i < BGE_STATUS_BLOCK_END + 1; i += sizeof(uint32_t)) 1815 BGE_MEMWIN_WRITE(sc, i, 0); 1816 1817 if (sc->bge_chiprev == BGE_CHIPREV_5704_BX) { 1818 /* 1819 * Fix data corruption caused by non-qword write with WB. 1820 * Fix master abort in PCI mode. 1821 * Fix PCI latency timer. 1822 */ 1823 val = pci_read_config(sc->bge_dev, BGE_PCI_MSI_DATA + 2, 2); 1824 val |= (1 << 10) | (1 << 12) | (1 << 13); 1825 pci_write_config(sc->bge_dev, BGE_PCI_MSI_DATA + 2, val, 2); 1826 } 1827 1828 if (sc->bge_asicrev == BGE_ASICREV_BCM57765 || 1829 sc->bge_asicrev == BGE_ASICREV_BCM57766) { 1830 /* 1831 * For the 57766 and non Ax versions of 57765, bootcode 1832 * needs to setup the PCIE Fast Training Sequence (FTS) 1833 * value to prevent transmit hangs. 1834 */ 1835 if (sc->bge_chiprev != BGE_CHIPREV_57765_AX) { 1836 CSR_WRITE_4(sc, BGE_CPMU_PADRNG_CTL, 1837 CSR_READ_4(sc, BGE_CPMU_PADRNG_CTL) | 1838 BGE_CPMU_PADRNG_CTL_RDIV2); 1839 } 1840 } 1841 1842 /* 1843 * Set up the PCI DMA control register. 1844 */ 1845 dma_rw_ctl = BGE_PCIDMARWCTL_RD_CMD_SHIFT(6) | 1846 BGE_PCIDMARWCTL_WR_CMD_SHIFT(7); 1847 if (sc->bge_flags & BGE_FLAG_PCIE) { 1848 if (sc->bge_mps >= 256) 1849 dma_rw_ctl |= BGE_PCIDMARWCTL_WR_WAT_SHIFT(7); 1850 else 1851 dma_rw_ctl |= BGE_PCIDMARWCTL_WR_WAT_SHIFT(3); 1852 } else if (sc->bge_flags & BGE_FLAG_PCIX) { 1853 if (BGE_IS_5714_FAMILY(sc)) { 1854 /* 256 bytes for read and write. */ 1855 dma_rw_ctl |= BGE_PCIDMARWCTL_RD_WAT_SHIFT(2) | 1856 BGE_PCIDMARWCTL_WR_WAT_SHIFT(2); 1857 dma_rw_ctl |= (sc->bge_asicrev == BGE_ASICREV_BCM5780) ? 1858 BGE_PCIDMARWCTL_ONEDMA_ATONCE_GLOBAL : 1859 BGE_PCIDMARWCTL_ONEDMA_ATONCE_LOCAL; 1860 } else if (sc->bge_asicrev == BGE_ASICREV_BCM5703) { 1861 /* 1862 * In the BCM5703, the DMA read watermark should 1863 * be set to less than or equal to the maximum 1864 * memory read byte count of the PCI-X command 1865 * register. 1866 */ 1867 dma_rw_ctl |= BGE_PCIDMARWCTL_RD_WAT_SHIFT(4) | 1868 BGE_PCIDMARWCTL_WR_WAT_SHIFT(3); 1869 } else if (sc->bge_asicrev == BGE_ASICREV_BCM5704) { 1870 /* 1536 bytes for read, 384 bytes for write. */ 1871 dma_rw_ctl |= BGE_PCIDMARWCTL_RD_WAT_SHIFT(7) | 1872 BGE_PCIDMARWCTL_WR_WAT_SHIFT(3); 1873 } else { 1874 /* 384 bytes for read and write. */ 1875 dma_rw_ctl |= BGE_PCIDMARWCTL_RD_WAT_SHIFT(3) | 1876 BGE_PCIDMARWCTL_WR_WAT_SHIFT(3) | 1877 0x0F; 1878 } 1879 if (sc->bge_asicrev == BGE_ASICREV_BCM5703 || 1880 sc->bge_asicrev == BGE_ASICREV_BCM5704) { 1881 uint32_t tmp; 1882 1883 /* Set ONE_DMA_AT_ONCE for hardware workaround. */ 1884 tmp = CSR_READ_4(sc, BGE_PCI_CLKCTL) & 0x1F; 1885 if (tmp == 6 || tmp == 7) 1886 dma_rw_ctl |= 1887 BGE_PCIDMARWCTL_ONEDMA_ATONCE_GLOBAL; 1888 1889 /* Set PCI-X DMA write workaround. */ 1890 dma_rw_ctl |= BGE_PCIDMARWCTL_ASRT_ALL_BE; 1891 } 1892 } else { 1893 /* Conventional PCI bus: 256 bytes for read and write. */ 1894 dma_rw_ctl |= BGE_PCIDMARWCTL_RD_WAT_SHIFT(7) | 1895 BGE_PCIDMARWCTL_WR_WAT_SHIFT(7); 1896 1897 if (sc->bge_asicrev != BGE_ASICREV_BCM5705 && 1898 sc->bge_asicrev != BGE_ASICREV_BCM5750) 1899 dma_rw_ctl |= 0x0F; 1900 } 1901 if (sc->bge_asicrev == BGE_ASICREV_BCM5700 || 1902 sc->bge_asicrev == BGE_ASICREV_BCM5701) 1903 dma_rw_ctl |= BGE_PCIDMARWCTL_USE_MRM | 1904 BGE_PCIDMARWCTL_ASRT_ALL_BE; 1905 if (sc->bge_asicrev == BGE_ASICREV_BCM5703 || 1906 sc->bge_asicrev == BGE_ASICREV_BCM5704) 1907 dma_rw_ctl &= ~BGE_PCIDMARWCTL_MINDMA; 1908 if (BGE_IS_5717_PLUS(sc)) { 1909 dma_rw_ctl &= ~BGE_PCIDMARWCTL_DIS_CACHE_ALIGNMENT; 1910 if (sc->bge_chipid == BGE_CHIPID_BCM57765_A0) 1911 dma_rw_ctl &= ~BGE_PCIDMARWCTL_CRDRDR_RDMA_MRRS_MSK; 1912 /* 1913 * Enable HW workaround for controllers that misinterpret 1914 * a status tag update and leave interrupts permanently 1915 * disabled. 1916 */ 1917 if (!BGE_IS_57765_PLUS(sc) && 1918 sc->bge_asicrev != BGE_ASICREV_BCM5717 && 1919 sc->bge_asicrev != BGE_ASICREV_BCM5762) 1920 dma_rw_ctl |= BGE_PCIDMARWCTL_TAGGED_STATUS_WA; 1921 } 1922 pci_write_config(sc->bge_dev, BGE_PCI_DMA_RW_CTL, dma_rw_ctl, 4); 1923 1924 /* 1925 * Set up general mode register. 1926 */ 1927 mode_ctl = bge_dma_swap_options(sc); 1928 if (sc->bge_asicrev == BGE_ASICREV_BCM5720 || 1929 sc->bge_asicrev == BGE_ASICREV_BCM5762) { 1930 /* Retain Host-2-BMC settings written by APE firmware. */ 1931 mode_ctl |= CSR_READ_4(sc, BGE_MODE_CTL) & 1932 (BGE_MODECTL_BYTESWAP_B2HRX_DATA | 1933 BGE_MODECTL_WORDSWAP_B2HRX_DATA | 1934 BGE_MODECTL_B2HRX_ENABLE | BGE_MODECTL_HTX2B_ENABLE); 1935 } 1936 mode_ctl |= BGE_MODECTL_MAC_ATTN_INTR | BGE_MODECTL_HOST_SEND_BDS | 1937 BGE_MODECTL_TX_NO_PHDR_CSUM; 1938 1939 /* 1940 * BCM5701 B5 have a bug causing data corruption when using 1941 * 64-bit DMA reads, which can be terminated early and then 1942 * completed later as 32-bit accesses, in combination with 1943 * certain bridges. 1944 */ 1945 if (sc->bge_asicrev == BGE_ASICREV_BCM5701 && 1946 sc->bge_chipid == BGE_CHIPID_BCM5701_B5) 1947 mode_ctl |= BGE_MODECTL_FORCE_PCI32; 1948 1949 /* 1950 * Tell the firmware the driver is running 1951 */ 1952 if (sc->bge_asf_mode & ASF_STACKUP) 1953 mode_ctl |= BGE_MODECTL_STACKUP; 1954 1955 CSR_WRITE_4(sc, BGE_MODE_CTL, mode_ctl); 1956 1957 /* 1958 * Disable memory write invalidate. Apparently it is not supported 1959 * properly by these devices. 1960 */ 1961 PCI_CLRBIT(sc->bge_dev, BGE_PCI_CMD, PCIM_CMD_MWIEN, 4); 1962 1963 /* Set the timer prescaler (always 66 MHz). */ 1964 CSR_WRITE_4(sc, BGE_MISC_CFG, BGE_32BITTIME_66MHZ); 1965 1966 /* XXX: The Linux tg3 driver does this at the start of brgphy_reset. */ 1967 if (sc->bge_asicrev == BGE_ASICREV_BCM5906) { 1968 DELAY(40); /* XXX */ 1969 1970 /* Put PHY into ready state */ 1971 BGE_CLRBIT(sc, BGE_MISC_CFG, BGE_MISCCFG_EPHY_IDDQ); 1972 CSR_READ_4(sc, BGE_MISC_CFG); /* Flush */ 1973 DELAY(40); 1974 } 1975 1976 return (0); 1977 } 1978 1979 static int 1980 bge_blockinit(struct bge_softc *sc) 1981 { 1982 struct bge_rcb *rcb; 1983 bus_size_t vrcb; 1984 bge_hostaddr taddr; 1985 uint32_t dmactl, rdmareg, val; 1986 int i, limit; 1987 1988 /* 1989 * Initialize the memory window pointer register so that 1990 * we can access the first 32K of internal NIC RAM. This will 1991 * allow us to set up the TX send ring RCBs and the RX return 1992 * ring RCBs, plus other things which live in NIC memory. 1993 */ 1994 CSR_WRITE_4(sc, BGE_PCI_MEMWIN_BASEADDR, 0); 1995 1996 /* Note: the BCM5704 has a smaller mbuf space than other chips. */ 1997 1998 if (!(BGE_IS_5705_PLUS(sc))) { 1999 /* Configure mbuf memory pool */ 2000 CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_BASEADDR, BGE_BUFFPOOL_1); 2001 if (sc->bge_asicrev == BGE_ASICREV_BCM5704) 2002 CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_LEN, 0x10000); 2003 else 2004 CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_LEN, 0x18000); 2005 2006 /* Configure DMA resource pool */ 2007 CSR_WRITE_4(sc, BGE_BMAN_DMA_DESCPOOL_BASEADDR, 2008 BGE_DMA_DESCRIPTORS); 2009 CSR_WRITE_4(sc, BGE_BMAN_DMA_DESCPOOL_LEN, 0x2000); 2010 } 2011 2012 /* Configure mbuf pool watermarks */ 2013 if (BGE_IS_5717_PLUS(sc)) { 2014 CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_READDMA_LOWAT, 0x0); 2015 if (if_getmtu(sc->bge_ifp) > ETHERMTU) { 2016 CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_MACRX_LOWAT, 0x7e); 2017 CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_HIWAT, 0xea); 2018 } else { 2019 CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_MACRX_LOWAT, 0x2a); 2020 CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_HIWAT, 0xa0); 2021 } 2022 } else if (!BGE_IS_5705_PLUS(sc)) { 2023 CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_READDMA_LOWAT, 0x50); 2024 CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_MACRX_LOWAT, 0x20); 2025 CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_HIWAT, 0x60); 2026 } else if (sc->bge_asicrev == BGE_ASICREV_BCM5906) { 2027 CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_READDMA_LOWAT, 0x0); 2028 CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_MACRX_LOWAT, 0x04); 2029 CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_HIWAT, 0x10); 2030 } else { 2031 CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_READDMA_LOWAT, 0x0); 2032 CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_MACRX_LOWAT, 0x10); 2033 CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_HIWAT, 0x60); 2034 } 2035 2036 /* Configure DMA resource watermarks */ 2037 CSR_WRITE_4(sc, BGE_BMAN_DMA_DESCPOOL_LOWAT, 5); 2038 CSR_WRITE_4(sc, BGE_BMAN_DMA_DESCPOOL_HIWAT, 10); 2039 2040 /* Enable buffer manager */ 2041 val = BGE_BMANMODE_ENABLE | BGE_BMANMODE_LOMBUF_ATTN; 2042 /* 2043 * Change the arbitration algorithm of TXMBUF read request to 2044 * round-robin instead of priority based for BCM5719. When 2045 * TXFIFO is almost empty, RDMA will hold its request until 2046 * TXFIFO is not almost empty. 2047 */ 2048 if (sc->bge_asicrev == BGE_ASICREV_BCM5719) 2049 val |= BGE_BMANMODE_NO_TX_UNDERRUN; 2050 CSR_WRITE_4(sc, BGE_BMAN_MODE, val); 2051 2052 /* Poll for buffer manager start indication */ 2053 for (i = 0; i < BGE_TIMEOUT; i++) { 2054 DELAY(10); 2055 if (CSR_READ_4(sc, BGE_BMAN_MODE) & BGE_BMANMODE_ENABLE) 2056 break; 2057 } 2058 2059 if (i == BGE_TIMEOUT) { 2060 device_printf(sc->bge_dev, "buffer manager failed to start\n"); 2061 return (ENXIO); 2062 } 2063 2064 /* Enable flow-through queues */ 2065 CSR_WRITE_4(sc, BGE_FTQ_RESET, 0xFFFFFFFF); 2066 CSR_WRITE_4(sc, BGE_FTQ_RESET, 0); 2067 2068 /* Wait until queue initialization is complete */ 2069 for (i = 0; i < BGE_TIMEOUT; i++) { 2070 DELAY(10); 2071 if (CSR_READ_4(sc, BGE_FTQ_RESET) == 0) 2072 break; 2073 } 2074 2075 if (i == BGE_TIMEOUT) { 2076 device_printf(sc->bge_dev, "flow-through queue init failed\n"); 2077 return (ENXIO); 2078 } 2079 2080 /* 2081 * Summary of rings supported by the controller: 2082 * 2083 * Standard Receive Producer Ring 2084 * - This ring is used to feed receive buffers for "standard" 2085 * sized frames (typically 1536 bytes) to the controller. 2086 * 2087 * Jumbo Receive Producer Ring 2088 * - This ring is used to feed receive buffers for jumbo sized 2089 * frames (i.e. anything bigger than the "standard" frames) 2090 * to the controller. 2091 * 2092 * Mini Receive Producer Ring 2093 * - This ring is used to feed receive buffers for "mini" 2094 * sized frames to the controller. 2095 * - This feature required external memory for the controller 2096 * but was never used in a production system. Should always 2097 * be disabled. 2098 * 2099 * Receive Return Ring 2100 * - After the controller has placed an incoming frame into a 2101 * receive buffer that buffer is moved into a receive return 2102 * ring. The driver is then responsible to passing the 2103 * buffer up to the stack. Many versions of the controller 2104 * support multiple RR rings. 2105 * 2106 * Send Ring 2107 * - This ring is used for outgoing frames. Many versions of 2108 * the controller support multiple send rings. 2109 */ 2110 2111 /* Initialize the standard receive producer ring control block. */ 2112 rcb = &sc->bge_ldata.bge_info.bge_std_rx_rcb; 2113 rcb->bge_hostaddr.bge_addr_lo = 2114 BGE_ADDR_LO(sc->bge_ldata.bge_rx_std_ring_paddr); 2115 rcb->bge_hostaddr.bge_addr_hi = 2116 BGE_ADDR_HI(sc->bge_ldata.bge_rx_std_ring_paddr); 2117 bus_dmamap_sync(sc->bge_cdata.bge_rx_std_ring_tag, 2118 sc->bge_cdata.bge_rx_std_ring_map, BUS_DMASYNC_PREREAD); 2119 if (BGE_IS_5717_PLUS(sc)) { 2120 /* 2121 * Bits 31-16: Programmable ring size (2048, 1024, 512, .., 32) 2122 * Bits 15-2 : Maximum RX frame size 2123 * Bit 1 : 1 = Ring Disabled, 0 = Ring ENabled 2124 * Bit 0 : Reserved 2125 */ 2126 rcb->bge_maxlen_flags = 2127 BGE_RCB_MAXLEN_FLAGS(512, BGE_MAX_FRAMELEN << 2); 2128 } else if (BGE_IS_5705_PLUS(sc)) { 2129 /* 2130 * Bits 31-16: Programmable ring size (512, 256, 128, 64, 32) 2131 * Bits 15-2 : Reserved (should be 0) 2132 * Bit 1 : 1 = Ring Disabled, 0 = Ring Enabled 2133 * Bit 0 : Reserved 2134 */ 2135 rcb->bge_maxlen_flags = BGE_RCB_MAXLEN_FLAGS(512, 0); 2136 } else { 2137 /* 2138 * Ring size is always XXX entries 2139 * Bits 31-16: Maximum RX frame size 2140 * Bits 15-2 : Reserved (should be 0) 2141 * Bit 1 : 1 = Ring Disabled, 0 = Ring Enabled 2142 * Bit 0 : Reserved 2143 */ 2144 rcb->bge_maxlen_flags = 2145 BGE_RCB_MAXLEN_FLAGS(BGE_MAX_FRAMELEN, 0); 2146 } 2147 if (sc->bge_asicrev == BGE_ASICREV_BCM5717 || 2148 sc->bge_asicrev == BGE_ASICREV_BCM5719 || 2149 sc->bge_asicrev == BGE_ASICREV_BCM5720) 2150 rcb->bge_nicaddr = BGE_STD_RX_RINGS_5717; 2151 else 2152 rcb->bge_nicaddr = BGE_STD_RX_RINGS; 2153 /* Write the standard receive producer ring control block. */ 2154 CSR_WRITE_4(sc, BGE_RX_STD_RCB_HADDR_HI, rcb->bge_hostaddr.bge_addr_hi); 2155 CSR_WRITE_4(sc, BGE_RX_STD_RCB_HADDR_LO, rcb->bge_hostaddr.bge_addr_lo); 2156 CSR_WRITE_4(sc, BGE_RX_STD_RCB_MAXLEN_FLAGS, rcb->bge_maxlen_flags); 2157 CSR_WRITE_4(sc, BGE_RX_STD_RCB_NICADDR, rcb->bge_nicaddr); 2158 2159 /* Reset the standard receive producer ring producer index. */ 2160 bge_writembx(sc, BGE_MBX_RX_STD_PROD_LO, 0); 2161 2162 /* 2163 * Initialize the jumbo RX producer ring control 2164 * block. We set the 'ring disabled' bit in the 2165 * flags field until we're actually ready to start 2166 * using this ring (i.e. once we set the MTU 2167 * high enough to require it). 2168 */ 2169 if (BGE_IS_JUMBO_CAPABLE(sc)) { 2170 rcb = &sc->bge_ldata.bge_info.bge_jumbo_rx_rcb; 2171 /* Get the jumbo receive producer ring RCB parameters. */ 2172 rcb->bge_hostaddr.bge_addr_lo = 2173 BGE_ADDR_LO(sc->bge_ldata.bge_rx_jumbo_ring_paddr); 2174 rcb->bge_hostaddr.bge_addr_hi = 2175 BGE_ADDR_HI(sc->bge_ldata.bge_rx_jumbo_ring_paddr); 2176 bus_dmamap_sync(sc->bge_cdata.bge_rx_jumbo_ring_tag, 2177 sc->bge_cdata.bge_rx_jumbo_ring_map, 2178 BUS_DMASYNC_PREREAD); 2179 rcb->bge_maxlen_flags = BGE_RCB_MAXLEN_FLAGS(0, 2180 BGE_RCB_FLAG_USE_EXT_RX_BD | BGE_RCB_FLAG_RING_DISABLED); 2181 if (sc->bge_asicrev == BGE_ASICREV_BCM5717 || 2182 sc->bge_asicrev == BGE_ASICREV_BCM5719 || 2183 sc->bge_asicrev == BGE_ASICREV_BCM5720) 2184 rcb->bge_nicaddr = BGE_JUMBO_RX_RINGS_5717; 2185 else 2186 rcb->bge_nicaddr = BGE_JUMBO_RX_RINGS; 2187 CSR_WRITE_4(sc, BGE_RX_JUMBO_RCB_HADDR_HI, 2188 rcb->bge_hostaddr.bge_addr_hi); 2189 CSR_WRITE_4(sc, BGE_RX_JUMBO_RCB_HADDR_LO, 2190 rcb->bge_hostaddr.bge_addr_lo); 2191 /* Program the jumbo receive producer ring RCB parameters. */ 2192 CSR_WRITE_4(sc, BGE_RX_JUMBO_RCB_MAXLEN_FLAGS, 2193 rcb->bge_maxlen_flags); 2194 CSR_WRITE_4(sc, BGE_RX_JUMBO_RCB_NICADDR, rcb->bge_nicaddr); 2195 /* Reset the jumbo receive producer ring producer index. */ 2196 bge_writembx(sc, BGE_MBX_RX_JUMBO_PROD_LO, 0); 2197 } 2198 2199 /* Disable the mini receive producer ring RCB. */ 2200 if (BGE_IS_5700_FAMILY(sc)) { 2201 rcb = &sc->bge_ldata.bge_info.bge_mini_rx_rcb; 2202 rcb->bge_maxlen_flags = 2203 BGE_RCB_MAXLEN_FLAGS(0, BGE_RCB_FLAG_RING_DISABLED); 2204 CSR_WRITE_4(sc, BGE_RX_MINI_RCB_MAXLEN_FLAGS, 2205 rcb->bge_maxlen_flags); 2206 /* Reset the mini receive producer ring producer index. */ 2207 bge_writembx(sc, BGE_MBX_RX_MINI_PROD_LO, 0); 2208 } 2209 2210 /* Choose de-pipeline mode for BCM5906 A0, A1 and A2. */ 2211 if (sc->bge_asicrev == BGE_ASICREV_BCM5906) { 2212 if (sc->bge_chipid == BGE_CHIPID_BCM5906_A0 || 2213 sc->bge_chipid == BGE_CHIPID_BCM5906_A1 || 2214 sc->bge_chipid == BGE_CHIPID_BCM5906_A2) 2215 CSR_WRITE_4(sc, BGE_ISO_PKT_TX, 2216 (CSR_READ_4(sc, BGE_ISO_PKT_TX) & ~3) | 2); 2217 } 2218 /* 2219 * The BD ring replenish thresholds control how often the 2220 * hardware fetches new BD's from the producer rings in host 2221 * memory. Setting the value too low on a busy system can 2222 * starve the hardware and recue the throughpout. 2223 * 2224 * Set the BD ring replentish thresholds. The recommended 2225 * values are 1/8th the number of descriptors allocated to 2226 * each ring. 2227 * XXX The 5754 requires a lower threshold, so it might be a 2228 * requirement of all 575x family chips. The Linux driver sets 2229 * the lower threshold for all 5705 family chips as well, but there 2230 * are reports that it might not need to be so strict. 2231 * 2232 * XXX Linux does some extra fiddling here for the 5906 parts as 2233 * well. 2234 */ 2235 if (BGE_IS_5705_PLUS(sc)) 2236 val = 8; 2237 else 2238 val = BGE_STD_RX_RING_CNT / 8; 2239 CSR_WRITE_4(sc, BGE_RBDI_STD_REPL_THRESH, val); 2240 if (BGE_IS_JUMBO_CAPABLE(sc)) 2241 CSR_WRITE_4(sc, BGE_RBDI_JUMBO_REPL_THRESH, 2242 BGE_JUMBO_RX_RING_CNT/8); 2243 if (BGE_IS_5717_PLUS(sc)) { 2244 CSR_WRITE_4(sc, BGE_STD_REPLENISH_LWM, 32); 2245 CSR_WRITE_4(sc, BGE_JMB_REPLENISH_LWM, 16); 2246 } 2247 2248 /* 2249 * Disable all send rings by setting the 'ring disabled' bit 2250 * in the flags field of all the TX send ring control blocks, 2251 * located in NIC memory. 2252 */ 2253 if (!BGE_IS_5705_PLUS(sc)) 2254 /* 5700 to 5704 had 16 send rings. */ 2255 limit = BGE_TX_RINGS_EXTSSRAM_MAX; 2256 else if (BGE_IS_57765_PLUS(sc) || 2257 sc->bge_asicrev == BGE_ASICREV_BCM5762) 2258 limit = 2; 2259 else if (BGE_IS_5717_PLUS(sc)) 2260 limit = 4; 2261 else 2262 limit = 1; 2263 vrcb = BGE_MEMWIN_START + BGE_SEND_RING_RCB; 2264 for (i = 0; i < limit; i++) { 2265 RCB_WRITE_4(sc, vrcb, bge_maxlen_flags, 2266 BGE_RCB_MAXLEN_FLAGS(0, BGE_RCB_FLAG_RING_DISABLED)); 2267 RCB_WRITE_4(sc, vrcb, bge_nicaddr, 0); 2268 vrcb += sizeof(struct bge_rcb); 2269 } 2270 2271 /* Configure send ring RCB 0 (we use only the first ring) */ 2272 vrcb = BGE_MEMWIN_START + BGE_SEND_RING_RCB; 2273 BGE_HOSTADDR(taddr, sc->bge_ldata.bge_tx_ring_paddr); 2274 RCB_WRITE_4(sc, vrcb, bge_hostaddr.bge_addr_hi, taddr.bge_addr_hi); 2275 RCB_WRITE_4(sc, vrcb, bge_hostaddr.bge_addr_lo, taddr.bge_addr_lo); 2276 if (sc->bge_asicrev == BGE_ASICREV_BCM5717 || 2277 sc->bge_asicrev == BGE_ASICREV_BCM5719 || 2278 sc->bge_asicrev == BGE_ASICREV_BCM5720) 2279 RCB_WRITE_4(sc, vrcb, bge_nicaddr, BGE_SEND_RING_5717); 2280 else 2281 RCB_WRITE_4(sc, vrcb, bge_nicaddr, 2282 BGE_NIC_TXRING_ADDR(0, BGE_TX_RING_CNT)); 2283 RCB_WRITE_4(sc, vrcb, bge_maxlen_flags, 2284 BGE_RCB_MAXLEN_FLAGS(BGE_TX_RING_CNT, 0)); 2285 2286 /* 2287 * Disable all receive return rings by setting the 2288 * 'ring diabled' bit in the flags field of all the receive 2289 * return ring control blocks, located in NIC memory. 2290 */ 2291 if (sc->bge_asicrev == BGE_ASICREV_BCM5717 || 2292 sc->bge_asicrev == BGE_ASICREV_BCM5719 || 2293 sc->bge_asicrev == BGE_ASICREV_BCM5720) { 2294 /* Should be 17, use 16 until we get an SRAM map. */ 2295 limit = 16; 2296 } else if (!BGE_IS_5705_PLUS(sc)) 2297 limit = BGE_RX_RINGS_MAX; 2298 else if (sc->bge_asicrev == BGE_ASICREV_BCM5755 || 2299 sc->bge_asicrev == BGE_ASICREV_BCM5762 || 2300 BGE_IS_57765_PLUS(sc)) 2301 limit = 4; 2302 else 2303 limit = 1; 2304 /* Disable all receive return rings. */ 2305 vrcb = BGE_MEMWIN_START + BGE_RX_RETURN_RING_RCB; 2306 for (i = 0; i < limit; i++) { 2307 RCB_WRITE_4(sc, vrcb, bge_hostaddr.bge_addr_hi, 0); 2308 RCB_WRITE_4(sc, vrcb, bge_hostaddr.bge_addr_lo, 0); 2309 RCB_WRITE_4(sc, vrcb, bge_maxlen_flags, 2310 BGE_RCB_FLAG_RING_DISABLED); 2311 RCB_WRITE_4(sc, vrcb, bge_nicaddr, 0); 2312 bge_writembx(sc, BGE_MBX_RX_CONS0_LO + 2313 (i * (sizeof(uint64_t))), 0); 2314 vrcb += sizeof(struct bge_rcb); 2315 } 2316 2317 /* 2318 * Set up receive return ring 0. Note that the NIC address 2319 * for RX return rings is 0x0. The return rings live entirely 2320 * within the host, so the nicaddr field in the RCB isn't used. 2321 */ 2322 vrcb = BGE_MEMWIN_START + BGE_RX_RETURN_RING_RCB; 2323 BGE_HOSTADDR(taddr, sc->bge_ldata.bge_rx_return_ring_paddr); 2324 RCB_WRITE_4(sc, vrcb, bge_hostaddr.bge_addr_hi, taddr.bge_addr_hi); 2325 RCB_WRITE_4(sc, vrcb, bge_hostaddr.bge_addr_lo, taddr.bge_addr_lo); 2326 RCB_WRITE_4(sc, vrcb, bge_nicaddr, 0); 2327 RCB_WRITE_4(sc, vrcb, bge_maxlen_flags, 2328 BGE_RCB_MAXLEN_FLAGS(sc->bge_return_ring_cnt, 0)); 2329 2330 /* Set random backoff seed for TX */ 2331 CSR_WRITE_4(sc, BGE_TX_RANDOM_BACKOFF, 2332 (IF_LLADDR(sc->bge_ifp)[0] + IF_LLADDR(sc->bge_ifp)[1] + 2333 IF_LLADDR(sc->bge_ifp)[2] + IF_LLADDR(sc->bge_ifp)[3] + 2334 IF_LLADDR(sc->bge_ifp)[4] + IF_LLADDR(sc->bge_ifp)[5]) & 2335 BGE_TX_BACKOFF_SEED_MASK); 2336 2337 /* Set inter-packet gap */ 2338 val = 0x2620; 2339 if (sc->bge_asicrev == BGE_ASICREV_BCM5720 || 2340 sc->bge_asicrev == BGE_ASICREV_BCM5762) 2341 val |= CSR_READ_4(sc, BGE_TX_LENGTHS) & 2342 (BGE_TXLEN_JMB_FRM_LEN_MSK | BGE_TXLEN_CNT_DN_VAL_MSK); 2343 CSR_WRITE_4(sc, BGE_TX_LENGTHS, val); 2344 2345 /* 2346 * Specify which ring to use for packets that don't match 2347 * any RX rules. 2348 */ 2349 CSR_WRITE_4(sc, BGE_RX_RULES_CFG, 0x08); 2350 2351 /* 2352 * Configure number of RX lists. One interrupt distribution 2353 * list, sixteen active lists, one bad frames class. 2354 */ 2355 CSR_WRITE_4(sc, BGE_RXLP_CFG, 0x181); 2356 2357 /* Inialize RX list placement stats mask. */ 2358 CSR_WRITE_4(sc, BGE_RXLP_STATS_ENABLE_MASK, 0x007FFFFF); 2359 CSR_WRITE_4(sc, BGE_RXLP_STATS_CTL, 0x1); 2360 2361 /* Disable host coalescing until we get it set up */ 2362 CSR_WRITE_4(sc, BGE_HCC_MODE, 0x00000000); 2363 2364 /* Poll to make sure it's shut down. */ 2365 for (i = 0; i < BGE_TIMEOUT; i++) { 2366 DELAY(10); 2367 if (!(CSR_READ_4(sc, BGE_HCC_MODE) & BGE_HCCMODE_ENABLE)) 2368 break; 2369 } 2370 2371 if (i == BGE_TIMEOUT) { 2372 device_printf(sc->bge_dev, 2373 "host coalescing engine failed to idle\n"); 2374 return (ENXIO); 2375 } 2376 2377 /* Set up host coalescing defaults */ 2378 CSR_WRITE_4(sc, BGE_HCC_RX_COAL_TICKS, sc->bge_rx_coal_ticks); 2379 CSR_WRITE_4(sc, BGE_HCC_TX_COAL_TICKS, sc->bge_tx_coal_ticks); 2380 CSR_WRITE_4(sc, BGE_HCC_RX_MAX_COAL_BDS, sc->bge_rx_max_coal_bds); 2381 CSR_WRITE_4(sc, BGE_HCC_TX_MAX_COAL_BDS, sc->bge_tx_max_coal_bds); 2382 if (!(BGE_IS_5705_PLUS(sc))) { 2383 CSR_WRITE_4(sc, BGE_HCC_RX_COAL_TICKS_INT, 0); 2384 CSR_WRITE_4(sc, BGE_HCC_TX_COAL_TICKS_INT, 0); 2385 } 2386 CSR_WRITE_4(sc, BGE_HCC_RX_MAX_COAL_BDS_INT, 1); 2387 CSR_WRITE_4(sc, BGE_HCC_TX_MAX_COAL_BDS_INT, 1); 2388 2389 /* Set up address of statistics block */ 2390 if (!(BGE_IS_5705_PLUS(sc))) { 2391 CSR_WRITE_4(sc, BGE_HCC_STATS_ADDR_HI, 2392 BGE_ADDR_HI(sc->bge_ldata.bge_stats_paddr)); 2393 CSR_WRITE_4(sc, BGE_HCC_STATS_ADDR_LO, 2394 BGE_ADDR_LO(sc->bge_ldata.bge_stats_paddr)); 2395 CSR_WRITE_4(sc, BGE_HCC_STATS_BASEADDR, BGE_STATS_BLOCK); 2396 CSR_WRITE_4(sc, BGE_HCC_STATUSBLK_BASEADDR, BGE_STATUS_BLOCK); 2397 CSR_WRITE_4(sc, BGE_HCC_STATS_TICKS, sc->bge_stat_ticks); 2398 } 2399 2400 /* Set up address of status block */ 2401 CSR_WRITE_4(sc, BGE_HCC_STATUSBLK_ADDR_HI, 2402 BGE_ADDR_HI(sc->bge_ldata.bge_status_block_paddr)); 2403 CSR_WRITE_4(sc, BGE_HCC_STATUSBLK_ADDR_LO, 2404 BGE_ADDR_LO(sc->bge_ldata.bge_status_block_paddr)); 2405 2406 /* Set up status block size. */ 2407 if (sc->bge_asicrev == BGE_ASICREV_BCM5700 && 2408 sc->bge_chipid != BGE_CHIPID_BCM5700_C0) { 2409 val = BGE_STATBLKSZ_FULL; 2410 bzero(sc->bge_ldata.bge_status_block, BGE_STATUS_BLK_SZ); 2411 } else { 2412 val = BGE_STATBLKSZ_32BYTE; 2413 bzero(sc->bge_ldata.bge_status_block, 32); 2414 } 2415 bus_dmamap_sync(sc->bge_cdata.bge_status_tag, 2416 sc->bge_cdata.bge_status_map, 2417 BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE); 2418 2419 /* Turn on host coalescing state machine */ 2420 CSR_WRITE_4(sc, BGE_HCC_MODE, val | BGE_HCCMODE_ENABLE); 2421 2422 /* Turn on RX BD completion state machine and enable attentions */ 2423 CSR_WRITE_4(sc, BGE_RBDC_MODE, 2424 BGE_RBDCMODE_ENABLE | BGE_RBDCMODE_ATTN); 2425 2426 /* Turn on RX list placement state machine */ 2427 CSR_WRITE_4(sc, BGE_RXLP_MODE, BGE_RXLPMODE_ENABLE); 2428 2429 /* Turn on RX list selector state machine. */ 2430 if (!(BGE_IS_5705_PLUS(sc))) 2431 CSR_WRITE_4(sc, BGE_RXLS_MODE, BGE_RXLSMODE_ENABLE); 2432 2433 /* Turn on DMA, clear stats. */ 2434 val = BGE_MACMODE_TXDMA_ENB | BGE_MACMODE_RXDMA_ENB | 2435 BGE_MACMODE_RX_STATS_CLEAR | BGE_MACMODE_TX_STATS_CLEAR | 2436 BGE_MACMODE_RX_STATS_ENB | BGE_MACMODE_TX_STATS_ENB | 2437 BGE_MACMODE_FRMHDR_DMA_ENB; 2438 2439 if (sc->bge_flags & BGE_FLAG_TBI) 2440 val |= BGE_PORTMODE_TBI; 2441 else if (sc->bge_flags & BGE_FLAG_MII_SERDES) 2442 val |= BGE_PORTMODE_GMII; 2443 else 2444 val |= BGE_PORTMODE_MII; 2445 2446 /* Allow APE to send/receive frames. */ 2447 if ((sc->bge_mfw_flags & BGE_MFW_ON_APE) != 0) 2448 val |= BGE_MACMODE_APE_RX_EN | BGE_MACMODE_APE_TX_EN; 2449 2450 CSR_WRITE_4(sc, BGE_MAC_MODE, val); 2451 DELAY(40); 2452 2453 /* Set misc. local control, enable interrupts on attentions */ 2454 BGE_SETBIT(sc, BGE_MISC_LOCAL_CTL, BGE_MLC_INTR_ONATTN); 2455 2456 #ifdef notdef 2457 /* Assert GPIO pins for PHY reset */ 2458 BGE_SETBIT(sc, BGE_MISC_LOCAL_CTL, BGE_MLC_MISCIO_OUT0 | 2459 BGE_MLC_MISCIO_OUT1 | BGE_MLC_MISCIO_OUT2); 2460 BGE_SETBIT(sc, BGE_MISC_LOCAL_CTL, BGE_MLC_MISCIO_OUTEN0 | 2461 BGE_MLC_MISCIO_OUTEN1 | BGE_MLC_MISCIO_OUTEN2); 2462 #endif 2463 2464 /* Turn on DMA completion state machine */ 2465 if (!(BGE_IS_5705_PLUS(sc))) 2466 CSR_WRITE_4(sc, BGE_DMAC_MODE, BGE_DMACMODE_ENABLE); 2467 2468 val = BGE_WDMAMODE_ENABLE | BGE_WDMAMODE_ALL_ATTNS; 2469 2470 /* Enable host coalescing bug fix. */ 2471 if (BGE_IS_5755_PLUS(sc)) 2472 val |= BGE_WDMAMODE_STATUS_TAG_FIX; 2473 2474 /* Request larger DMA burst size to get better performance. */ 2475 if (sc->bge_asicrev == BGE_ASICREV_BCM5785) 2476 val |= BGE_WDMAMODE_BURST_ALL_DATA; 2477 2478 /* Turn on write DMA state machine */ 2479 CSR_WRITE_4(sc, BGE_WDMA_MODE, val); 2480 DELAY(40); 2481 2482 /* Turn on read DMA state machine */ 2483 val = BGE_RDMAMODE_ENABLE | BGE_RDMAMODE_ALL_ATTNS; 2484 2485 if (sc->bge_asicrev == BGE_ASICREV_BCM5717) 2486 val |= BGE_RDMAMODE_MULT_DMA_RD_DIS; 2487 2488 if (sc->bge_asicrev == BGE_ASICREV_BCM5784 || 2489 sc->bge_asicrev == BGE_ASICREV_BCM5785 || 2490 sc->bge_asicrev == BGE_ASICREV_BCM57780) 2491 val |= BGE_RDMAMODE_BD_SBD_CRPT_ATTN | 2492 BGE_RDMAMODE_MBUF_RBD_CRPT_ATTN | 2493 BGE_RDMAMODE_MBUF_SBD_CRPT_ATTN; 2494 if (sc->bge_flags & BGE_FLAG_PCIE) 2495 val |= BGE_RDMAMODE_FIFO_LONG_BURST; 2496 if (sc->bge_flags & (BGE_FLAG_TSO | BGE_FLAG_TSO3)) { 2497 val |= BGE_RDMAMODE_TSO4_ENABLE; 2498 if (sc->bge_flags & BGE_FLAG_TSO3 || 2499 sc->bge_asicrev == BGE_ASICREV_BCM5785 || 2500 sc->bge_asicrev == BGE_ASICREV_BCM57780) 2501 val |= BGE_RDMAMODE_TSO6_ENABLE; 2502 } 2503 2504 if (sc->bge_asicrev == BGE_ASICREV_BCM5720 || 2505 sc->bge_asicrev == BGE_ASICREV_BCM5762) { 2506 val |= CSR_READ_4(sc, BGE_RDMA_MODE) & 2507 BGE_RDMAMODE_H2BNC_VLAN_DET; 2508 /* 2509 * Allow multiple outstanding read requests from 2510 * non-LSO read DMA engine. 2511 */ 2512 val &= ~BGE_RDMAMODE_MULT_DMA_RD_DIS; 2513 } 2514 2515 if (sc->bge_asicrev == BGE_ASICREV_BCM5761 || 2516 sc->bge_asicrev == BGE_ASICREV_BCM5784 || 2517 sc->bge_asicrev == BGE_ASICREV_BCM5785 || 2518 sc->bge_asicrev == BGE_ASICREV_BCM57780 || 2519 BGE_IS_5717_PLUS(sc) || BGE_IS_57765_PLUS(sc)) { 2520 if (sc->bge_asicrev == BGE_ASICREV_BCM5762) 2521 rdmareg = BGE_RDMA_RSRVCTRL_REG2; 2522 else 2523 rdmareg = BGE_RDMA_RSRVCTRL; 2524 dmactl = CSR_READ_4(sc, rdmareg); 2525 /* 2526 * Adjust tx margin to prevent TX data corruption and 2527 * fix internal FIFO overflow. 2528 */ 2529 if (sc->bge_chipid == BGE_CHIPID_BCM5719_A0 || 2530 sc->bge_asicrev == BGE_ASICREV_BCM5762) { 2531 dmactl &= ~(BGE_RDMA_RSRVCTRL_FIFO_LWM_MASK | 2532 BGE_RDMA_RSRVCTRL_FIFO_HWM_MASK | 2533 BGE_RDMA_RSRVCTRL_TXMRGN_MASK); 2534 dmactl |= BGE_RDMA_RSRVCTRL_FIFO_LWM_1_5K | 2535 BGE_RDMA_RSRVCTRL_FIFO_HWM_1_5K | 2536 BGE_RDMA_RSRVCTRL_TXMRGN_320B; 2537 } 2538 /* 2539 * Enable fix for read DMA FIFO overruns. 2540 * The fix is to limit the number of RX BDs 2541 * the hardware would fetch at a fime. 2542 */ 2543 CSR_WRITE_4(sc, rdmareg, dmactl | 2544 BGE_RDMA_RSRVCTRL_FIFO_OFLW_FIX); 2545 } 2546 2547 if (sc->bge_asicrev == BGE_ASICREV_BCM5719) { 2548 CSR_WRITE_4(sc, BGE_RDMA_LSO_CRPTEN_CTRL, 2549 CSR_READ_4(sc, BGE_RDMA_LSO_CRPTEN_CTRL) | 2550 BGE_RDMA_LSO_CRPTEN_CTRL_BLEN_BD_4K | 2551 BGE_RDMA_LSO_CRPTEN_CTRL_BLEN_LSO_4K); 2552 } else if (sc->bge_asicrev == BGE_ASICREV_BCM5720) { 2553 /* 2554 * Allow 4KB burst length reads for non-LSO frames. 2555 * Enable 512B burst length reads for buffer descriptors. 2556 */ 2557 CSR_WRITE_4(sc, BGE_RDMA_LSO_CRPTEN_CTRL, 2558 CSR_READ_4(sc, BGE_RDMA_LSO_CRPTEN_CTRL) | 2559 BGE_RDMA_LSO_CRPTEN_CTRL_BLEN_BD_512 | 2560 BGE_RDMA_LSO_CRPTEN_CTRL_BLEN_LSO_4K); 2561 } else if (sc->bge_asicrev == BGE_ASICREV_BCM5762) { 2562 CSR_WRITE_4(sc, BGE_RDMA_LSO_CRPTEN_CTRL_REG2, 2563 CSR_READ_4(sc, BGE_RDMA_LSO_CRPTEN_CTRL_REG2) | 2564 BGE_RDMA_LSO_CRPTEN_CTRL_BLEN_BD_4K | 2565 BGE_RDMA_LSO_CRPTEN_CTRL_BLEN_LSO_4K); 2566 } 2567 2568 CSR_WRITE_4(sc, BGE_RDMA_MODE, val); 2569 DELAY(40); 2570 2571 if (sc->bge_flags & BGE_FLAG_RDMA_BUG) { 2572 for (i = 0; i < BGE_NUM_RDMA_CHANNELS / 2; i++) { 2573 val = CSR_READ_4(sc, BGE_RDMA_LENGTH + i * 4); 2574 if ((val & 0xFFFF) > BGE_FRAMELEN) 2575 break; 2576 if (((val >> 16) & 0xFFFF) > BGE_FRAMELEN) 2577 break; 2578 } 2579 if (i != BGE_NUM_RDMA_CHANNELS / 2) { 2580 val = CSR_READ_4(sc, BGE_RDMA_LSO_CRPTEN_CTRL); 2581 if (sc->bge_asicrev == BGE_ASICREV_BCM5719) 2582 val |= BGE_RDMA_TX_LENGTH_WA_5719; 2583 else 2584 val |= BGE_RDMA_TX_LENGTH_WA_5720; 2585 CSR_WRITE_4(sc, BGE_RDMA_LSO_CRPTEN_CTRL, val); 2586 } 2587 } 2588 2589 /* Turn on RX data completion state machine */ 2590 CSR_WRITE_4(sc, BGE_RDC_MODE, BGE_RDCMODE_ENABLE); 2591 2592 /* Turn on RX BD initiator state machine */ 2593 CSR_WRITE_4(sc, BGE_RBDI_MODE, BGE_RBDIMODE_ENABLE); 2594 2595 /* Turn on RX data and RX BD initiator state machine */ 2596 CSR_WRITE_4(sc, BGE_RDBDI_MODE, BGE_RDBDIMODE_ENABLE); 2597 2598 /* Turn on Mbuf cluster free state machine */ 2599 if (!(BGE_IS_5705_PLUS(sc))) 2600 CSR_WRITE_4(sc, BGE_MBCF_MODE, BGE_MBCFMODE_ENABLE); 2601 2602 /* Turn on send BD completion state machine */ 2603 CSR_WRITE_4(sc, BGE_SBDC_MODE, BGE_SBDCMODE_ENABLE); 2604 2605 /* Turn on send data completion state machine */ 2606 val = BGE_SDCMODE_ENABLE; 2607 if (sc->bge_asicrev == BGE_ASICREV_BCM5761) 2608 val |= BGE_SDCMODE_CDELAY; 2609 CSR_WRITE_4(sc, BGE_SDC_MODE, val); 2610 2611 /* Turn on send data initiator state machine */ 2612 if (sc->bge_flags & (BGE_FLAG_TSO | BGE_FLAG_TSO3)) 2613 CSR_WRITE_4(sc, BGE_SDI_MODE, BGE_SDIMODE_ENABLE | 2614 BGE_SDIMODE_HW_LSO_PRE_DMA); 2615 else 2616 CSR_WRITE_4(sc, BGE_SDI_MODE, BGE_SDIMODE_ENABLE); 2617 2618 /* Turn on send BD initiator state machine */ 2619 CSR_WRITE_4(sc, BGE_SBDI_MODE, BGE_SBDIMODE_ENABLE); 2620 2621 /* Turn on send BD selector state machine */ 2622 CSR_WRITE_4(sc, BGE_SRS_MODE, BGE_SRSMODE_ENABLE); 2623 2624 CSR_WRITE_4(sc, BGE_SDI_STATS_ENABLE_MASK, 0x007FFFFF); 2625 CSR_WRITE_4(sc, BGE_SDI_STATS_CTL, 2626 BGE_SDISTATSCTL_ENABLE | BGE_SDISTATSCTL_FASTER); 2627 2628 /* ack/clear link change events */ 2629 CSR_WRITE_4(sc, BGE_MAC_STS, BGE_MACSTAT_SYNC_CHANGED | 2630 BGE_MACSTAT_CFG_CHANGED | BGE_MACSTAT_MI_COMPLETE | 2631 BGE_MACSTAT_LINK_CHANGED); 2632 CSR_WRITE_4(sc, BGE_MI_STS, 0); 2633 2634 /* 2635 * Enable attention when the link has changed state for 2636 * devices that use auto polling. 2637 */ 2638 if (sc->bge_flags & BGE_FLAG_TBI) { 2639 CSR_WRITE_4(sc, BGE_MI_STS, BGE_MISTS_LINK); 2640 } else { 2641 if (sc->bge_mi_mode & BGE_MIMODE_AUTOPOLL) { 2642 CSR_WRITE_4(sc, BGE_MI_MODE, sc->bge_mi_mode); 2643 DELAY(80); 2644 } 2645 if (sc->bge_asicrev == BGE_ASICREV_BCM5700 && 2646 sc->bge_chipid != BGE_CHIPID_BCM5700_B2) 2647 CSR_WRITE_4(sc, BGE_MAC_EVT_ENB, 2648 BGE_EVTENB_MI_INTERRUPT); 2649 } 2650 2651 /* 2652 * Clear any pending link state attention. 2653 * Otherwise some link state change events may be lost until attention 2654 * is cleared by bge_intr() -> bge_link_upd() sequence. 2655 * It's not necessary on newer BCM chips - perhaps enabling link 2656 * state change attentions implies clearing pending attention. 2657 */ 2658 CSR_WRITE_4(sc, BGE_MAC_STS, BGE_MACSTAT_SYNC_CHANGED | 2659 BGE_MACSTAT_CFG_CHANGED | BGE_MACSTAT_MI_COMPLETE | 2660 BGE_MACSTAT_LINK_CHANGED); 2661 2662 /* Enable link state change attentions. */ 2663 BGE_SETBIT(sc, BGE_MAC_EVT_ENB, BGE_EVTENB_LINK_CHANGED); 2664 2665 return (0); 2666 } 2667 2668 static const struct bge_revision * 2669 bge_lookup_rev(uint32_t chipid) 2670 { 2671 const struct bge_revision *br; 2672 2673 for (br = bge_revisions; br->br_name != NULL; br++) { 2674 if (br->br_chipid == chipid) 2675 return (br); 2676 } 2677 2678 for (br = bge_majorrevs; br->br_name != NULL; br++) { 2679 if (br->br_chipid == BGE_ASICREV(chipid)) 2680 return (br); 2681 } 2682 2683 return (NULL); 2684 } 2685 2686 static const struct bge_vendor * 2687 bge_lookup_vendor(uint16_t vid) 2688 { 2689 const struct bge_vendor *v; 2690 2691 for (v = bge_vendors; v->v_name != NULL; v++) 2692 if (v->v_id == vid) 2693 return (v); 2694 2695 return (NULL); 2696 } 2697 2698 static uint32_t 2699 bge_chipid(device_t dev) 2700 { 2701 uint32_t id; 2702 2703 id = pci_read_config(dev, BGE_PCI_MISC_CTL, 4) >> 2704 BGE_PCIMISCCTL_ASICREV_SHIFT; 2705 if (BGE_ASICREV(id) == BGE_ASICREV_USE_PRODID_REG) { 2706 /* 2707 * Find the ASCI revision. Different chips use different 2708 * registers. 2709 */ 2710 switch (pci_get_device(dev)) { 2711 case BCOM_DEVICEID_BCM5717C: 2712 /* 5717 C0 seems to belong to 5720 line. */ 2713 id = BGE_CHIPID_BCM5720_A0; 2714 break; 2715 case BCOM_DEVICEID_BCM5717: 2716 case BCOM_DEVICEID_BCM5718: 2717 case BCOM_DEVICEID_BCM5719: 2718 case BCOM_DEVICEID_BCM5720: 2719 case BCOM_DEVICEID_BCM5725: 2720 case BCOM_DEVICEID_BCM5727: 2721 case BCOM_DEVICEID_BCM5762: 2722 case BCOM_DEVICEID_BCM57764: 2723 case BCOM_DEVICEID_BCM57767: 2724 case BCOM_DEVICEID_BCM57787: 2725 id = pci_read_config(dev, 2726 BGE_PCI_GEN2_PRODID_ASICREV, 4); 2727 break; 2728 case BCOM_DEVICEID_BCM57761: 2729 case BCOM_DEVICEID_BCM57762: 2730 case BCOM_DEVICEID_BCM57765: 2731 case BCOM_DEVICEID_BCM57766: 2732 case BCOM_DEVICEID_BCM57781: 2733 case BCOM_DEVICEID_BCM57782: 2734 case BCOM_DEVICEID_BCM57785: 2735 case BCOM_DEVICEID_BCM57786: 2736 case BCOM_DEVICEID_BCM57791: 2737 case BCOM_DEVICEID_BCM57795: 2738 id = pci_read_config(dev, 2739 BGE_PCI_GEN15_PRODID_ASICREV, 4); 2740 break; 2741 default: 2742 id = pci_read_config(dev, BGE_PCI_PRODID_ASICREV, 4); 2743 } 2744 } 2745 return (id); 2746 } 2747 2748 /* 2749 * Probe for a Broadcom chip. Check the PCI vendor and device IDs 2750 * against our list and return its name if we find a match. 2751 * 2752 * Note that since the Broadcom controller contains VPD support, we 2753 * try to get the device name string from the controller itself instead 2754 * of the compiled-in string. It guarantees we'll always announce the 2755 * right product name. We fall back to the compiled-in string when 2756 * VPD is unavailable or corrupt. 2757 */ 2758 static int 2759 bge_probe(device_t dev) 2760 { 2761 char buf[96]; 2762 char model[64]; 2763 const struct bge_revision *br; 2764 const char *pname; 2765 struct bge_softc *sc; 2766 const struct bge_type *t = bge_devs; 2767 const struct bge_vendor *v; 2768 uint32_t id; 2769 uint16_t did, vid; 2770 2771 sc = device_get_softc(dev); 2772 sc->bge_dev = dev; 2773 vid = pci_get_vendor(dev); 2774 did = pci_get_device(dev); 2775 while(t->bge_vid != 0) { 2776 if ((vid == t->bge_vid) && (did == t->bge_did)) { 2777 id = bge_chipid(dev); 2778 br = bge_lookup_rev(id); 2779 if (bge_has_eaddr(sc) && 2780 pci_get_vpd_ident(dev, &pname) == 0) 2781 snprintf(model, sizeof(model), "%s", pname); 2782 else { 2783 v = bge_lookup_vendor(vid); 2784 snprintf(model, sizeof(model), "%s %s", 2785 v != NULL ? v->v_name : "Unknown", 2786 br != NULL ? br->br_name : 2787 "NetXtreme/NetLink Ethernet Controller"); 2788 } 2789 snprintf(buf, sizeof(buf), "%s, %sASIC rev. %#08x", 2790 model, br != NULL ? "" : "unknown ", id); 2791 device_set_desc_copy(dev, buf); 2792 return (BUS_PROBE_DEFAULT); 2793 } 2794 t++; 2795 } 2796 2797 return (ENXIO); 2798 } 2799 2800 static void 2801 bge_dma_free(struct bge_softc *sc) 2802 { 2803 int i; 2804 2805 /* Destroy DMA maps for RX buffers. */ 2806 for (i = 0; i < BGE_STD_RX_RING_CNT; i++) { 2807 if (sc->bge_cdata.bge_rx_std_dmamap[i]) 2808 bus_dmamap_destroy(sc->bge_cdata.bge_rx_mtag, 2809 sc->bge_cdata.bge_rx_std_dmamap[i]); 2810 } 2811 if (sc->bge_cdata.bge_rx_std_sparemap) 2812 bus_dmamap_destroy(sc->bge_cdata.bge_rx_mtag, 2813 sc->bge_cdata.bge_rx_std_sparemap); 2814 2815 /* Destroy DMA maps for jumbo RX buffers. */ 2816 for (i = 0; i < BGE_JUMBO_RX_RING_CNT; i++) { 2817 if (sc->bge_cdata.bge_rx_jumbo_dmamap[i]) 2818 bus_dmamap_destroy(sc->bge_cdata.bge_mtag_jumbo, 2819 sc->bge_cdata.bge_rx_jumbo_dmamap[i]); 2820 } 2821 if (sc->bge_cdata.bge_rx_jumbo_sparemap) 2822 bus_dmamap_destroy(sc->bge_cdata.bge_mtag_jumbo, 2823 sc->bge_cdata.bge_rx_jumbo_sparemap); 2824 2825 /* Destroy DMA maps for TX buffers. */ 2826 for (i = 0; i < BGE_TX_RING_CNT; i++) { 2827 if (sc->bge_cdata.bge_tx_dmamap[i]) 2828 bus_dmamap_destroy(sc->bge_cdata.bge_tx_mtag, 2829 sc->bge_cdata.bge_tx_dmamap[i]); 2830 } 2831 2832 if (sc->bge_cdata.bge_rx_mtag) 2833 bus_dma_tag_destroy(sc->bge_cdata.bge_rx_mtag); 2834 if (sc->bge_cdata.bge_mtag_jumbo) 2835 bus_dma_tag_destroy(sc->bge_cdata.bge_mtag_jumbo); 2836 if (sc->bge_cdata.bge_tx_mtag) 2837 bus_dma_tag_destroy(sc->bge_cdata.bge_tx_mtag); 2838 2839 /* Destroy standard RX ring. */ 2840 if (sc->bge_ldata.bge_rx_std_ring_paddr) 2841 bus_dmamap_unload(sc->bge_cdata.bge_rx_std_ring_tag, 2842 sc->bge_cdata.bge_rx_std_ring_map); 2843 if (sc->bge_ldata.bge_rx_std_ring) 2844 bus_dmamem_free(sc->bge_cdata.bge_rx_std_ring_tag, 2845 sc->bge_ldata.bge_rx_std_ring, 2846 sc->bge_cdata.bge_rx_std_ring_map); 2847 2848 if (sc->bge_cdata.bge_rx_std_ring_tag) 2849 bus_dma_tag_destroy(sc->bge_cdata.bge_rx_std_ring_tag); 2850 2851 /* Destroy jumbo RX ring. */ 2852 if (sc->bge_ldata.bge_rx_jumbo_ring_paddr) 2853 bus_dmamap_unload(sc->bge_cdata.bge_rx_jumbo_ring_tag, 2854 sc->bge_cdata.bge_rx_jumbo_ring_map); 2855 2856 if (sc->bge_ldata.bge_rx_jumbo_ring) 2857 bus_dmamem_free(sc->bge_cdata.bge_rx_jumbo_ring_tag, 2858 sc->bge_ldata.bge_rx_jumbo_ring, 2859 sc->bge_cdata.bge_rx_jumbo_ring_map); 2860 2861 if (sc->bge_cdata.bge_rx_jumbo_ring_tag) 2862 bus_dma_tag_destroy(sc->bge_cdata.bge_rx_jumbo_ring_tag); 2863 2864 /* Destroy RX return ring. */ 2865 if (sc->bge_ldata.bge_rx_return_ring_paddr) 2866 bus_dmamap_unload(sc->bge_cdata.bge_rx_return_ring_tag, 2867 sc->bge_cdata.bge_rx_return_ring_map); 2868 2869 if (sc->bge_ldata.bge_rx_return_ring) 2870 bus_dmamem_free(sc->bge_cdata.bge_rx_return_ring_tag, 2871 sc->bge_ldata.bge_rx_return_ring, 2872 sc->bge_cdata.bge_rx_return_ring_map); 2873 2874 if (sc->bge_cdata.bge_rx_return_ring_tag) 2875 bus_dma_tag_destroy(sc->bge_cdata.bge_rx_return_ring_tag); 2876 2877 /* Destroy TX ring. */ 2878 if (sc->bge_ldata.bge_tx_ring_paddr) 2879 bus_dmamap_unload(sc->bge_cdata.bge_tx_ring_tag, 2880 sc->bge_cdata.bge_tx_ring_map); 2881 2882 if (sc->bge_ldata.bge_tx_ring) 2883 bus_dmamem_free(sc->bge_cdata.bge_tx_ring_tag, 2884 sc->bge_ldata.bge_tx_ring, 2885 sc->bge_cdata.bge_tx_ring_map); 2886 2887 if (sc->bge_cdata.bge_tx_ring_tag) 2888 bus_dma_tag_destroy(sc->bge_cdata.bge_tx_ring_tag); 2889 2890 /* Destroy status block. */ 2891 if (sc->bge_ldata.bge_status_block_paddr) 2892 bus_dmamap_unload(sc->bge_cdata.bge_status_tag, 2893 sc->bge_cdata.bge_status_map); 2894 2895 if (sc->bge_ldata.bge_status_block) 2896 bus_dmamem_free(sc->bge_cdata.bge_status_tag, 2897 sc->bge_ldata.bge_status_block, 2898 sc->bge_cdata.bge_status_map); 2899 2900 if (sc->bge_cdata.bge_status_tag) 2901 bus_dma_tag_destroy(sc->bge_cdata.bge_status_tag); 2902 2903 /* Destroy statistics block. */ 2904 if (sc->bge_ldata.bge_stats_paddr) 2905 bus_dmamap_unload(sc->bge_cdata.bge_stats_tag, 2906 sc->bge_cdata.bge_stats_map); 2907 2908 if (sc->bge_ldata.bge_stats) 2909 bus_dmamem_free(sc->bge_cdata.bge_stats_tag, 2910 sc->bge_ldata.bge_stats, 2911 sc->bge_cdata.bge_stats_map); 2912 2913 if (sc->bge_cdata.bge_stats_tag) 2914 bus_dma_tag_destroy(sc->bge_cdata.bge_stats_tag); 2915 2916 if (sc->bge_cdata.bge_buffer_tag) 2917 bus_dma_tag_destroy(sc->bge_cdata.bge_buffer_tag); 2918 2919 /* Destroy the parent tag. */ 2920 if (sc->bge_cdata.bge_parent_tag) 2921 bus_dma_tag_destroy(sc->bge_cdata.bge_parent_tag); 2922 } 2923 2924 static int 2925 bge_dma_ring_alloc(struct bge_softc *sc, bus_size_t alignment, 2926 bus_size_t maxsize, bus_dma_tag_t *tag, uint8_t **ring, bus_dmamap_t *map, 2927 bus_addr_t *paddr, const char *msg) 2928 { 2929 struct bge_dmamap_arg ctx; 2930 int error; 2931 2932 error = bus_dma_tag_create(sc->bge_cdata.bge_parent_tag, 2933 alignment, 0, BUS_SPACE_MAXADDR, BUS_SPACE_MAXADDR, NULL, 2934 NULL, maxsize, 1, maxsize, 0, NULL, NULL, tag); 2935 if (error != 0) { 2936 device_printf(sc->bge_dev, 2937 "could not create %s dma tag\n", msg); 2938 return (ENOMEM); 2939 } 2940 /* Allocate DMA'able memory for ring. */ 2941 error = bus_dmamem_alloc(*tag, (void **)ring, 2942 BUS_DMA_NOWAIT | BUS_DMA_ZERO | BUS_DMA_COHERENT, map); 2943 if (error != 0) { 2944 device_printf(sc->bge_dev, 2945 "could not allocate DMA'able memory for %s\n", msg); 2946 return (ENOMEM); 2947 } 2948 /* Load the address of the ring. */ 2949 ctx.bge_busaddr = 0; 2950 error = bus_dmamap_load(*tag, *map, *ring, maxsize, bge_dma_map_addr, 2951 &ctx, BUS_DMA_NOWAIT); 2952 if (error != 0) { 2953 device_printf(sc->bge_dev, 2954 "could not load DMA'able memory for %s\n", msg); 2955 return (ENOMEM); 2956 } 2957 *paddr = ctx.bge_busaddr; 2958 return (0); 2959 } 2960 2961 static int 2962 bge_dma_alloc(struct bge_softc *sc) 2963 { 2964 bus_addr_t lowaddr; 2965 bus_size_t rxmaxsegsz, sbsz, txsegsz, txmaxsegsz; 2966 int i, error; 2967 2968 lowaddr = BUS_SPACE_MAXADDR; 2969 if ((sc->bge_flags & BGE_FLAG_40BIT_BUG) != 0) 2970 lowaddr = BGE_DMA_MAXADDR; 2971 /* 2972 * Allocate the parent bus DMA tag appropriate for PCI. 2973 */ 2974 error = bus_dma_tag_create(bus_get_dma_tag(sc->bge_dev), 2975 1, 0, lowaddr, BUS_SPACE_MAXADDR, NULL, 2976 NULL, BUS_SPACE_MAXSIZE_32BIT, 0, BUS_SPACE_MAXSIZE_32BIT, 2977 0, NULL, NULL, &sc->bge_cdata.bge_parent_tag); 2978 if (error != 0) { 2979 device_printf(sc->bge_dev, 2980 "could not allocate parent dma tag\n"); 2981 return (ENOMEM); 2982 } 2983 2984 /* Create tag for standard RX ring. */ 2985 error = bge_dma_ring_alloc(sc, PAGE_SIZE, BGE_STD_RX_RING_SZ, 2986 &sc->bge_cdata.bge_rx_std_ring_tag, 2987 (uint8_t **)&sc->bge_ldata.bge_rx_std_ring, 2988 &sc->bge_cdata.bge_rx_std_ring_map, 2989 &sc->bge_ldata.bge_rx_std_ring_paddr, "RX ring"); 2990 if (error) 2991 return (error); 2992 2993 /* Create tag for RX return ring. */ 2994 error = bge_dma_ring_alloc(sc, PAGE_SIZE, BGE_RX_RTN_RING_SZ(sc), 2995 &sc->bge_cdata.bge_rx_return_ring_tag, 2996 (uint8_t **)&sc->bge_ldata.bge_rx_return_ring, 2997 &sc->bge_cdata.bge_rx_return_ring_map, 2998 &sc->bge_ldata.bge_rx_return_ring_paddr, "RX return ring"); 2999 if (error) 3000 return (error); 3001 3002 /* Create tag for TX ring. */ 3003 error = bge_dma_ring_alloc(sc, PAGE_SIZE, BGE_TX_RING_SZ, 3004 &sc->bge_cdata.bge_tx_ring_tag, 3005 (uint8_t **)&sc->bge_ldata.bge_tx_ring, 3006 &sc->bge_cdata.bge_tx_ring_map, 3007 &sc->bge_ldata.bge_tx_ring_paddr, "TX ring"); 3008 if (error) 3009 return (error); 3010 3011 /* 3012 * Create tag for status block. 3013 * Because we only use single Tx/Rx/Rx return ring, use 3014 * minimum status block size except BCM5700 AX/BX which 3015 * seems to want to see full status block size regardless 3016 * of configured number of ring. 3017 */ 3018 if (sc->bge_asicrev == BGE_ASICREV_BCM5700 && 3019 sc->bge_chipid != BGE_CHIPID_BCM5700_C0) 3020 sbsz = BGE_STATUS_BLK_SZ; 3021 else 3022 sbsz = 32; 3023 error = bge_dma_ring_alloc(sc, PAGE_SIZE, sbsz, 3024 &sc->bge_cdata.bge_status_tag, 3025 (uint8_t **)&sc->bge_ldata.bge_status_block, 3026 &sc->bge_cdata.bge_status_map, 3027 &sc->bge_ldata.bge_status_block_paddr, "status block"); 3028 if (error) 3029 return (error); 3030 3031 /* Create tag for statistics block. */ 3032 error = bge_dma_ring_alloc(sc, PAGE_SIZE, BGE_STATS_SZ, 3033 &sc->bge_cdata.bge_stats_tag, 3034 (uint8_t **)&sc->bge_ldata.bge_stats, 3035 &sc->bge_cdata.bge_stats_map, 3036 &sc->bge_ldata.bge_stats_paddr, "statistics block"); 3037 if (error) 3038 return (error); 3039 3040 /* Create tag for jumbo RX ring. */ 3041 if (BGE_IS_JUMBO_CAPABLE(sc)) { 3042 error = bge_dma_ring_alloc(sc, PAGE_SIZE, BGE_JUMBO_RX_RING_SZ, 3043 &sc->bge_cdata.bge_rx_jumbo_ring_tag, 3044 (uint8_t **)&sc->bge_ldata.bge_rx_jumbo_ring, 3045 &sc->bge_cdata.bge_rx_jumbo_ring_map, 3046 &sc->bge_ldata.bge_rx_jumbo_ring_paddr, "jumbo RX ring"); 3047 if (error) 3048 return (error); 3049 } 3050 3051 /* Create parent tag for buffers. */ 3052 if ((sc->bge_flags & BGE_FLAG_4G_BNDRY_BUG) != 0) { 3053 /* 3054 * XXX 3055 * watchdog timeout issue was observed on BCM5704 which 3056 * lives behind PCI-X bridge(e.g AMD 8131 PCI-X bridge). 3057 * Both limiting DMA address space to 32bits and flushing 3058 * mailbox write seem to address the issue. 3059 */ 3060 if (sc->bge_pcixcap != 0) 3061 lowaddr = BUS_SPACE_MAXADDR_32BIT; 3062 } 3063 error = bus_dma_tag_create(bus_get_dma_tag(sc->bge_dev), 1, 0, lowaddr, 3064 BUS_SPACE_MAXADDR, NULL, NULL, BUS_SPACE_MAXSIZE_32BIT, 0, 3065 BUS_SPACE_MAXSIZE_32BIT, 0, NULL, NULL, 3066 &sc->bge_cdata.bge_buffer_tag); 3067 if (error != 0) { 3068 device_printf(sc->bge_dev, 3069 "could not allocate buffer dma tag\n"); 3070 return (ENOMEM); 3071 } 3072 /* Create tag for Tx mbufs. */ 3073 if (sc->bge_flags & (BGE_FLAG_TSO | BGE_FLAG_TSO3)) { 3074 txsegsz = BGE_TSOSEG_SZ; 3075 txmaxsegsz = 65535 + sizeof(struct ether_vlan_header); 3076 } else { 3077 txsegsz = MCLBYTES; 3078 txmaxsegsz = MCLBYTES * BGE_NSEG_NEW; 3079 } 3080 error = bus_dma_tag_create(sc->bge_cdata.bge_buffer_tag, 1, 3081 0, BUS_SPACE_MAXADDR, BUS_SPACE_MAXADDR, NULL, NULL, 3082 txmaxsegsz, BGE_NSEG_NEW, txsegsz, 0, NULL, NULL, 3083 &sc->bge_cdata.bge_tx_mtag); 3084 3085 if (error) { 3086 device_printf(sc->bge_dev, "could not allocate TX dma tag\n"); 3087 return (ENOMEM); 3088 } 3089 3090 /* Create tag for Rx mbufs. */ 3091 if (sc->bge_flags & BGE_FLAG_JUMBO_STD) 3092 rxmaxsegsz = MJUM9BYTES; 3093 else 3094 rxmaxsegsz = MCLBYTES; 3095 error = bus_dma_tag_create(sc->bge_cdata.bge_buffer_tag, 1, 0, 3096 BUS_SPACE_MAXADDR, BUS_SPACE_MAXADDR, NULL, NULL, rxmaxsegsz, 1, 3097 rxmaxsegsz, 0, NULL, NULL, &sc->bge_cdata.bge_rx_mtag); 3098 3099 if (error) { 3100 device_printf(sc->bge_dev, "could not allocate RX dma tag\n"); 3101 return (ENOMEM); 3102 } 3103 3104 /* Create DMA maps for RX buffers. */ 3105 error = bus_dmamap_create(sc->bge_cdata.bge_rx_mtag, 0, 3106 &sc->bge_cdata.bge_rx_std_sparemap); 3107 if (error) { 3108 device_printf(sc->bge_dev, 3109 "can't create spare DMA map for RX\n"); 3110 return (ENOMEM); 3111 } 3112 for (i = 0; i < BGE_STD_RX_RING_CNT; i++) { 3113 error = bus_dmamap_create(sc->bge_cdata.bge_rx_mtag, 0, 3114 &sc->bge_cdata.bge_rx_std_dmamap[i]); 3115 if (error) { 3116 device_printf(sc->bge_dev, 3117 "can't create DMA map for RX\n"); 3118 return (ENOMEM); 3119 } 3120 } 3121 3122 /* Create DMA maps for TX buffers. */ 3123 for (i = 0; i < BGE_TX_RING_CNT; i++) { 3124 error = bus_dmamap_create(sc->bge_cdata.bge_tx_mtag, 0, 3125 &sc->bge_cdata.bge_tx_dmamap[i]); 3126 if (error) { 3127 device_printf(sc->bge_dev, 3128 "can't create DMA map for TX\n"); 3129 return (ENOMEM); 3130 } 3131 } 3132 3133 /* Create tags for jumbo RX buffers. */ 3134 if (BGE_IS_JUMBO_CAPABLE(sc)) { 3135 error = bus_dma_tag_create(sc->bge_cdata.bge_buffer_tag, 3136 1, 0, BUS_SPACE_MAXADDR, BUS_SPACE_MAXADDR, NULL, 3137 NULL, MJUM9BYTES, BGE_NSEG_JUMBO, PAGE_SIZE, 3138 0, NULL, NULL, &sc->bge_cdata.bge_mtag_jumbo); 3139 if (error) { 3140 device_printf(sc->bge_dev, 3141 "could not allocate jumbo dma tag\n"); 3142 return (ENOMEM); 3143 } 3144 /* Create DMA maps for jumbo RX buffers. */ 3145 error = bus_dmamap_create(sc->bge_cdata.bge_mtag_jumbo, 3146 0, &sc->bge_cdata.bge_rx_jumbo_sparemap); 3147 if (error) { 3148 device_printf(sc->bge_dev, 3149 "can't create spare DMA map for jumbo RX\n"); 3150 return (ENOMEM); 3151 } 3152 for (i = 0; i < BGE_JUMBO_RX_RING_CNT; i++) { 3153 error = bus_dmamap_create(sc->bge_cdata.bge_mtag_jumbo, 3154 0, &sc->bge_cdata.bge_rx_jumbo_dmamap[i]); 3155 if (error) { 3156 device_printf(sc->bge_dev, 3157 "can't create DMA map for jumbo RX\n"); 3158 return (ENOMEM); 3159 } 3160 } 3161 } 3162 3163 return (0); 3164 } 3165 3166 /* 3167 * Return true if this device has more than one port. 3168 */ 3169 static int 3170 bge_has_multiple_ports(struct bge_softc *sc) 3171 { 3172 device_t dev = sc->bge_dev; 3173 u_int b, d, f, fscan, s; 3174 3175 d = pci_get_domain(dev); 3176 b = pci_get_bus(dev); 3177 s = pci_get_slot(dev); 3178 f = pci_get_function(dev); 3179 for (fscan = 0; fscan <= PCI_FUNCMAX; fscan++) 3180 if (fscan != f && pci_find_dbsf(d, b, s, fscan) != NULL) 3181 return (1); 3182 return (0); 3183 } 3184 3185 /* 3186 * Return true if MSI can be used with this device. 3187 */ 3188 static int 3189 bge_can_use_msi(struct bge_softc *sc) 3190 { 3191 int can_use_msi = 0; 3192 3193 if (sc->bge_msi == 0) 3194 return (0); 3195 3196 /* Disable MSI for polling(4). */ 3197 #ifdef DEVICE_POLLING 3198 return (0); 3199 #endif 3200 switch (sc->bge_asicrev) { 3201 case BGE_ASICREV_BCM5714_A0: 3202 case BGE_ASICREV_BCM5714: 3203 /* 3204 * Apparently, MSI doesn't work when these chips are 3205 * configured in single-port mode. 3206 */ 3207 if (bge_has_multiple_ports(sc)) 3208 can_use_msi = 1; 3209 break; 3210 case BGE_ASICREV_BCM5750: 3211 if (sc->bge_chiprev != BGE_CHIPREV_5750_AX && 3212 sc->bge_chiprev != BGE_CHIPREV_5750_BX) 3213 can_use_msi = 1; 3214 break; 3215 default: 3216 if (BGE_IS_575X_PLUS(sc)) 3217 can_use_msi = 1; 3218 } 3219 return (can_use_msi); 3220 } 3221 3222 static int 3223 bge_mbox_reorder(struct bge_softc *sc) 3224 { 3225 /* Lists of PCI bridges that are known to reorder mailbox writes. */ 3226 static const struct mbox_reorder { 3227 const uint16_t vendor; 3228 const uint16_t device; 3229 const char *desc; 3230 } mbox_reorder_lists[] = { 3231 { 0x1022, 0x7450, "AMD-8131 PCI-X Bridge" }, 3232 }; 3233 devclass_t pci, pcib; 3234 device_t bus, dev; 3235 int i; 3236 3237 pci = devclass_find("pci"); 3238 pcib = devclass_find("pcib"); 3239 dev = sc->bge_dev; 3240 bus = device_get_parent(dev); 3241 for (;;) { 3242 dev = device_get_parent(bus); 3243 bus = device_get_parent(dev); 3244 if (device_get_devclass(dev) != pcib) 3245 break; 3246 for (i = 0; i < nitems(mbox_reorder_lists); i++) { 3247 if (pci_get_vendor(dev) == 3248 mbox_reorder_lists[i].vendor && 3249 pci_get_device(dev) == 3250 mbox_reorder_lists[i].device) { 3251 device_printf(sc->bge_dev, 3252 "enabling MBOX workaround for %s\n", 3253 mbox_reorder_lists[i].desc); 3254 return (1); 3255 } 3256 } 3257 if (device_get_devclass(bus) != pci) 3258 break; 3259 } 3260 return (0); 3261 } 3262 3263 static void 3264 bge_devinfo(struct bge_softc *sc) 3265 { 3266 uint32_t cfg, clk; 3267 3268 device_printf(sc->bge_dev, 3269 "CHIP ID 0x%08x; ASIC REV 0x%02x; CHIP REV 0x%02x; ", 3270 sc->bge_chipid, sc->bge_asicrev, sc->bge_chiprev); 3271 if (sc->bge_flags & BGE_FLAG_PCIE) 3272 printf("PCI-E\n"); 3273 else if (sc->bge_flags & BGE_FLAG_PCIX) { 3274 printf("PCI-X "); 3275 cfg = CSR_READ_4(sc, BGE_MISC_CFG) & BGE_MISCCFG_BOARD_ID_MASK; 3276 if (cfg == BGE_MISCCFG_BOARD_ID_5704CIOBE) 3277 clk = 133; 3278 else { 3279 clk = CSR_READ_4(sc, BGE_PCI_CLKCTL) & 0x1F; 3280 switch (clk) { 3281 case 0: 3282 clk = 33; 3283 break; 3284 case 2: 3285 clk = 50; 3286 break; 3287 case 4: 3288 clk = 66; 3289 break; 3290 case 6: 3291 clk = 100; 3292 break; 3293 case 7: 3294 clk = 133; 3295 break; 3296 } 3297 } 3298 printf("%u MHz\n", clk); 3299 } else { 3300 if (sc->bge_pcixcap != 0) 3301 printf("PCI on PCI-X "); 3302 else 3303 printf("PCI "); 3304 cfg = pci_read_config(sc->bge_dev, BGE_PCI_PCISTATE, 4); 3305 if (cfg & BGE_PCISTATE_PCI_BUSSPEED) 3306 clk = 66; 3307 else 3308 clk = 33; 3309 if (cfg & BGE_PCISTATE_32BIT_BUS) 3310 printf("%u MHz; 32bit\n", clk); 3311 else 3312 printf("%u MHz; 64bit\n", clk); 3313 } 3314 } 3315 3316 static int 3317 bge_attach(device_t dev) 3318 { 3319 if_t ifp; 3320 struct bge_softc *sc; 3321 uint32_t hwcfg = 0, misccfg, pcistate; 3322 u_char eaddr[ETHER_ADDR_LEN]; 3323 int capmask, error, reg, rid, trys; 3324 3325 sc = device_get_softc(dev); 3326 sc->bge_dev = dev; 3327 3328 BGE_LOCK_INIT(sc, device_get_nameunit(dev)); 3329 TASK_INIT(&sc->bge_intr_task, 0, bge_intr_task, sc); 3330 callout_init_mtx(&sc->bge_stat_ch, &sc->bge_mtx, 0); 3331 3332 pci_enable_busmaster(dev); 3333 3334 /* 3335 * Allocate control/status registers. 3336 */ 3337 rid = PCIR_BAR(0); 3338 sc->bge_res = bus_alloc_resource_any(dev, SYS_RES_MEMORY, &rid, 3339 RF_ACTIVE); 3340 3341 if (sc->bge_res == NULL) { 3342 device_printf (sc->bge_dev, "couldn't map BAR0 memory\n"); 3343 error = ENXIO; 3344 goto fail; 3345 } 3346 3347 /* Save various chip information. */ 3348 sc->bge_func_addr = pci_get_function(dev); 3349 sc->bge_chipid = bge_chipid(dev); 3350 sc->bge_asicrev = BGE_ASICREV(sc->bge_chipid); 3351 sc->bge_chiprev = BGE_CHIPREV(sc->bge_chipid); 3352 3353 /* Set default PHY address. */ 3354 sc->bge_phy_addr = 1; 3355 /* 3356 * PHY address mapping for various devices. 3357 * 3358 * | F0 Cu | F0 Sr | F1 Cu | F1 Sr | 3359 * ---------+-------+-------+-------+-------+ 3360 * BCM57XX | 1 | X | X | X | 3361 * BCM5704 | 1 | X | 1 | X | 3362 * BCM5717 | 1 | 8 | 2 | 9 | 3363 * BCM5719 | 1 | 8 | 2 | 9 | 3364 * BCM5720 | 1 | 8 | 2 | 9 | 3365 * 3366 * | F2 Cu | F2 Sr | F3 Cu | F3 Sr | 3367 * ---------+-------+-------+-------+-------+ 3368 * BCM57XX | X | X | X | X | 3369 * BCM5704 | X | X | X | X | 3370 * BCM5717 | X | X | X | X | 3371 * BCM5719 | 3 | 10 | 4 | 11 | 3372 * BCM5720 | X | X | X | X | 3373 * 3374 * Other addresses may respond but they are not 3375 * IEEE compliant PHYs and should be ignored. 3376 */ 3377 if (sc->bge_asicrev == BGE_ASICREV_BCM5717 || 3378 sc->bge_asicrev == BGE_ASICREV_BCM5719 || 3379 sc->bge_asicrev == BGE_ASICREV_BCM5720) { 3380 if (sc->bge_chipid != BGE_CHIPID_BCM5717_A0) { 3381 if (CSR_READ_4(sc, BGE_SGDIG_STS) & 3382 BGE_SGDIGSTS_IS_SERDES) 3383 sc->bge_phy_addr = sc->bge_func_addr + 8; 3384 else 3385 sc->bge_phy_addr = sc->bge_func_addr + 1; 3386 } else { 3387 if (CSR_READ_4(sc, BGE_CPMU_PHY_STRAP) & 3388 BGE_CPMU_PHY_STRAP_IS_SERDES) 3389 sc->bge_phy_addr = sc->bge_func_addr + 8; 3390 else 3391 sc->bge_phy_addr = sc->bge_func_addr + 1; 3392 } 3393 } 3394 3395 if (bge_has_eaddr(sc)) 3396 sc->bge_flags |= BGE_FLAG_EADDR; 3397 3398 /* Save chipset family. */ 3399 switch (sc->bge_asicrev) { 3400 case BGE_ASICREV_BCM5762: 3401 case BGE_ASICREV_BCM57765: 3402 case BGE_ASICREV_BCM57766: 3403 sc->bge_flags |= BGE_FLAG_57765_PLUS; 3404 /* FALLTHROUGH */ 3405 case BGE_ASICREV_BCM5717: 3406 case BGE_ASICREV_BCM5719: 3407 case BGE_ASICREV_BCM5720: 3408 sc->bge_flags |= BGE_FLAG_5717_PLUS | BGE_FLAG_5755_PLUS | 3409 BGE_FLAG_575X_PLUS | BGE_FLAG_5705_PLUS | BGE_FLAG_JUMBO | 3410 BGE_FLAG_JUMBO_FRAME; 3411 if (sc->bge_asicrev == BGE_ASICREV_BCM5719 || 3412 sc->bge_asicrev == BGE_ASICREV_BCM5720) { 3413 /* 3414 * Enable work around for DMA engine miscalculation 3415 * of TXMBUF available space. 3416 */ 3417 sc->bge_flags |= BGE_FLAG_RDMA_BUG; 3418 if (sc->bge_asicrev == BGE_ASICREV_BCM5719 && 3419 sc->bge_chipid == BGE_CHIPID_BCM5719_A0) { 3420 /* Jumbo frame on BCM5719 A0 does not work. */ 3421 sc->bge_flags &= ~BGE_FLAG_JUMBO; 3422 } 3423 } 3424 break; 3425 case BGE_ASICREV_BCM5755: 3426 case BGE_ASICREV_BCM5761: 3427 case BGE_ASICREV_BCM5784: 3428 case BGE_ASICREV_BCM5785: 3429 case BGE_ASICREV_BCM5787: 3430 case BGE_ASICREV_BCM57780: 3431 sc->bge_flags |= BGE_FLAG_5755_PLUS | BGE_FLAG_575X_PLUS | 3432 BGE_FLAG_5705_PLUS; 3433 break; 3434 case BGE_ASICREV_BCM5700: 3435 case BGE_ASICREV_BCM5701: 3436 case BGE_ASICREV_BCM5703: 3437 case BGE_ASICREV_BCM5704: 3438 sc->bge_flags |= BGE_FLAG_5700_FAMILY | BGE_FLAG_JUMBO; 3439 break; 3440 case BGE_ASICREV_BCM5714_A0: 3441 case BGE_ASICREV_BCM5780: 3442 case BGE_ASICREV_BCM5714: 3443 sc->bge_flags |= BGE_FLAG_5714_FAMILY | BGE_FLAG_JUMBO_STD; 3444 /* FALLTHROUGH */ 3445 case BGE_ASICREV_BCM5750: 3446 case BGE_ASICREV_BCM5752: 3447 case BGE_ASICREV_BCM5906: 3448 sc->bge_flags |= BGE_FLAG_575X_PLUS; 3449 /* FALLTHROUGH */ 3450 case BGE_ASICREV_BCM5705: 3451 sc->bge_flags |= BGE_FLAG_5705_PLUS; 3452 break; 3453 } 3454 3455 /* Identify chips with APE processor. */ 3456 switch (sc->bge_asicrev) { 3457 case BGE_ASICREV_BCM5717: 3458 case BGE_ASICREV_BCM5719: 3459 case BGE_ASICREV_BCM5720: 3460 case BGE_ASICREV_BCM5761: 3461 case BGE_ASICREV_BCM5762: 3462 sc->bge_flags |= BGE_FLAG_APE; 3463 break; 3464 } 3465 3466 /* Chips with APE need BAR2 access for APE registers/memory. */ 3467 if ((sc->bge_flags & BGE_FLAG_APE) != 0) { 3468 rid = PCIR_BAR(2); 3469 sc->bge_res2 = bus_alloc_resource_any(dev, SYS_RES_MEMORY, &rid, 3470 RF_ACTIVE); 3471 if (sc->bge_res2 == NULL) { 3472 device_printf (sc->bge_dev, 3473 "couldn't map BAR2 memory\n"); 3474 error = ENXIO; 3475 goto fail; 3476 } 3477 3478 /* Enable APE register/memory access by host driver. */ 3479 pcistate = pci_read_config(dev, BGE_PCI_PCISTATE, 4); 3480 pcistate |= BGE_PCISTATE_ALLOW_APE_CTLSPC_WR | 3481 BGE_PCISTATE_ALLOW_APE_SHMEM_WR | 3482 BGE_PCISTATE_ALLOW_APE_PSPACE_WR; 3483 pci_write_config(dev, BGE_PCI_PCISTATE, pcistate, 4); 3484 3485 bge_ape_lock_init(sc); 3486 bge_ape_read_fw_ver(sc); 3487 } 3488 3489 /* Add SYSCTLs, requires the chipset family to be set. */ 3490 bge_add_sysctls(sc); 3491 3492 /* Identify the chips that use an CPMU. */ 3493 if (BGE_IS_5717_PLUS(sc) || 3494 sc->bge_asicrev == BGE_ASICREV_BCM5784 || 3495 sc->bge_asicrev == BGE_ASICREV_BCM5761 || 3496 sc->bge_asicrev == BGE_ASICREV_BCM5785 || 3497 sc->bge_asicrev == BGE_ASICREV_BCM57780) 3498 sc->bge_flags |= BGE_FLAG_CPMU_PRESENT; 3499 if ((sc->bge_flags & BGE_FLAG_CPMU_PRESENT) != 0) 3500 sc->bge_mi_mode = BGE_MIMODE_500KHZ_CONST; 3501 else 3502 sc->bge_mi_mode = BGE_MIMODE_BASE; 3503 /* Enable auto polling for BCM570[0-5]. */ 3504 if (BGE_IS_5700_FAMILY(sc) || sc->bge_asicrev == BGE_ASICREV_BCM5705) 3505 sc->bge_mi_mode |= BGE_MIMODE_AUTOPOLL; 3506 3507 /* 3508 * All Broadcom controllers have 4GB boundary DMA bug. 3509 * Whenever an address crosses a multiple of the 4GB boundary 3510 * (including 4GB, 8Gb, 12Gb, etc.) and makes the transition 3511 * from 0xX_FFFF_FFFF to 0x(X+1)_0000_0000 an internal DMA 3512 * state machine will lockup and cause the device to hang. 3513 */ 3514 sc->bge_flags |= BGE_FLAG_4G_BNDRY_BUG; 3515 3516 /* BCM5755 or higher and BCM5906 have short DMA bug. */ 3517 if (BGE_IS_5755_PLUS(sc) || sc->bge_asicrev == BGE_ASICREV_BCM5906) 3518 sc->bge_flags |= BGE_FLAG_SHORT_DMA_BUG; 3519 3520 /* 3521 * BCM5719 cannot handle DMA requests for DMA segments that 3522 * have larger than 4KB in size. However the maximum DMA 3523 * segment size created in DMA tag is 4KB for TSO, so we 3524 * wouldn't encounter the issue here. 3525 */ 3526 if (sc->bge_asicrev == BGE_ASICREV_BCM5719) 3527 sc->bge_flags |= BGE_FLAG_4K_RDMA_BUG; 3528 3529 misccfg = CSR_READ_4(sc, BGE_MISC_CFG) & BGE_MISCCFG_BOARD_ID_MASK; 3530 if (sc->bge_asicrev == BGE_ASICREV_BCM5705) { 3531 if (misccfg == BGE_MISCCFG_BOARD_ID_5788 || 3532 misccfg == BGE_MISCCFG_BOARD_ID_5788M) 3533 sc->bge_flags |= BGE_FLAG_5788; 3534 } 3535 3536 capmask = BMSR_DEFCAPMASK; 3537 if ((sc->bge_asicrev == BGE_ASICREV_BCM5703 && 3538 (misccfg == 0x4000 || misccfg == 0x8000)) || 3539 (sc->bge_asicrev == BGE_ASICREV_BCM5705 && 3540 pci_get_vendor(dev) == BCOM_VENDORID && 3541 (pci_get_device(dev) == BCOM_DEVICEID_BCM5901 || 3542 pci_get_device(dev) == BCOM_DEVICEID_BCM5901A2 || 3543 pci_get_device(dev) == BCOM_DEVICEID_BCM5705F)) || 3544 (pci_get_vendor(dev) == BCOM_VENDORID && 3545 (pci_get_device(dev) == BCOM_DEVICEID_BCM5751F || 3546 pci_get_device(dev) == BCOM_DEVICEID_BCM5753F || 3547 pci_get_device(dev) == BCOM_DEVICEID_BCM5787F)) || 3548 pci_get_device(dev) == BCOM_DEVICEID_BCM57790 || 3549 pci_get_device(dev) == BCOM_DEVICEID_BCM57791 || 3550 pci_get_device(dev) == BCOM_DEVICEID_BCM57795 || 3551 sc->bge_asicrev == BGE_ASICREV_BCM5906) { 3552 /* These chips are 10/100 only. */ 3553 capmask &= ~BMSR_EXTSTAT; 3554 sc->bge_phy_flags |= BGE_PHY_NO_WIRESPEED; 3555 } 3556 3557 /* 3558 * Some controllers seem to require a special firmware to use 3559 * TSO. But the firmware is not available to FreeBSD and Linux 3560 * claims that the TSO performed by the firmware is slower than 3561 * hardware based TSO. Moreover the firmware based TSO has one 3562 * known bug which can't handle TSO if Ethernet header + IP/TCP 3563 * header is greater than 80 bytes. A workaround for the TSO 3564 * bug exist but it seems it's too expensive than not using 3565 * TSO at all. Some hardwares also have the TSO bug so limit 3566 * the TSO to the controllers that are not affected TSO issues 3567 * (e.g. 5755 or higher). 3568 */ 3569 if (BGE_IS_5717_PLUS(sc)) { 3570 /* BCM5717 requires different TSO configuration. */ 3571 sc->bge_flags |= BGE_FLAG_TSO3; 3572 if (sc->bge_asicrev == BGE_ASICREV_BCM5719 && 3573 sc->bge_chipid == BGE_CHIPID_BCM5719_A0) { 3574 /* TSO on BCM5719 A0 does not work. */ 3575 sc->bge_flags &= ~BGE_FLAG_TSO3; 3576 } 3577 } else if (BGE_IS_5755_PLUS(sc)) { 3578 /* 3579 * BCM5754 and BCM5787 shares the same ASIC id so 3580 * explicit device id check is required. 3581 * Due to unknown reason TSO does not work on BCM5755M. 3582 */ 3583 if (pci_get_device(dev) != BCOM_DEVICEID_BCM5754 && 3584 pci_get_device(dev) != BCOM_DEVICEID_BCM5754M && 3585 pci_get_device(dev) != BCOM_DEVICEID_BCM5755M) 3586 sc->bge_flags |= BGE_FLAG_TSO; 3587 } 3588 3589 /* 3590 * Check if this is a PCI-X or PCI Express device. 3591 */ 3592 if (pci_find_cap(dev, PCIY_EXPRESS, ®) == 0) { 3593 /* 3594 * Found a PCI Express capabilities register, this 3595 * must be a PCI Express device. 3596 */ 3597 sc->bge_flags |= BGE_FLAG_PCIE; 3598 sc->bge_expcap = reg; 3599 /* Extract supported maximum payload size. */ 3600 sc->bge_mps = pci_read_config(dev, sc->bge_expcap + 3601 PCIER_DEVICE_CAP, 2); 3602 sc->bge_mps = 128 << (sc->bge_mps & PCIEM_CAP_MAX_PAYLOAD); 3603 if (sc->bge_asicrev == BGE_ASICREV_BCM5719 || 3604 sc->bge_asicrev == BGE_ASICREV_BCM5720) 3605 sc->bge_expmrq = 2048; 3606 else 3607 sc->bge_expmrq = 4096; 3608 pci_set_max_read_req(dev, sc->bge_expmrq); 3609 } else { 3610 /* 3611 * Check if the device is in PCI-X Mode. 3612 * (This bit is not valid on PCI Express controllers.) 3613 */ 3614 if (pci_find_cap(dev, PCIY_PCIX, ®) == 0) 3615 sc->bge_pcixcap = reg; 3616 if ((pci_read_config(dev, BGE_PCI_PCISTATE, 4) & 3617 BGE_PCISTATE_PCI_BUSMODE) == 0) 3618 sc->bge_flags |= BGE_FLAG_PCIX; 3619 } 3620 3621 /* 3622 * The 40bit DMA bug applies to the 5714/5715 controllers and is 3623 * not actually a MAC controller bug but an issue with the embedded 3624 * PCIe to PCI-X bridge in the device. Use 40bit DMA workaround. 3625 */ 3626 if (BGE_IS_5714_FAMILY(sc) && (sc->bge_flags & BGE_FLAG_PCIX)) 3627 sc->bge_flags |= BGE_FLAG_40BIT_BUG; 3628 /* 3629 * Some PCI-X bridges are known to trigger write reordering to 3630 * the mailbox registers. Typical phenomena is watchdog timeouts 3631 * caused by out-of-order TX completions. Enable workaround for 3632 * PCI-X devices that live behind these bridges. 3633 * Note, PCI-X controllers can run in PCI mode so we can't use 3634 * BGE_FLAG_PCIX flag to detect PCI-X controllers. 3635 */ 3636 if (sc->bge_pcixcap != 0 && bge_mbox_reorder(sc) != 0) 3637 sc->bge_flags |= BGE_FLAG_MBOX_REORDER; 3638 /* 3639 * Allocate the interrupt, using MSI if possible. These devices 3640 * support 8 MSI messages, but only the first one is used in 3641 * normal operation. 3642 */ 3643 rid = 0; 3644 if (pci_find_cap(sc->bge_dev, PCIY_MSI, ®) == 0) { 3645 sc->bge_msicap = reg; 3646 reg = 1; 3647 if (bge_can_use_msi(sc) && pci_alloc_msi(dev, ®) == 0) { 3648 rid = 1; 3649 sc->bge_flags |= BGE_FLAG_MSI; 3650 } 3651 } 3652 3653 /* 3654 * All controllers except BCM5700 supports tagged status but 3655 * we use tagged status only for MSI case on BCM5717. Otherwise 3656 * MSI on BCM5717 does not work. 3657 */ 3658 #ifndef DEVICE_POLLING 3659 if (sc->bge_flags & BGE_FLAG_MSI && BGE_IS_5717_PLUS(sc)) 3660 sc->bge_flags |= BGE_FLAG_TAGGED_STATUS; 3661 #endif 3662 3663 sc->bge_irq = bus_alloc_resource_any(dev, SYS_RES_IRQ, &rid, 3664 RF_ACTIVE | (rid != 0 ? 0 : RF_SHAREABLE)); 3665 3666 if (sc->bge_irq == NULL) { 3667 device_printf(sc->bge_dev, "couldn't map interrupt\n"); 3668 error = ENXIO; 3669 goto fail; 3670 } 3671 3672 bge_devinfo(sc); 3673 3674 sc->bge_asf_mode = 0; 3675 /* No ASF if APE present. */ 3676 if ((sc->bge_flags & BGE_FLAG_APE) == 0) { 3677 if (bge_allow_asf && (bge_readmem_ind(sc, BGE_SRAM_DATA_SIG) == 3678 BGE_SRAM_DATA_SIG_MAGIC)) { 3679 if (bge_readmem_ind(sc, BGE_SRAM_DATA_CFG) & 3680 BGE_HWCFG_ASF) { 3681 sc->bge_asf_mode |= ASF_ENABLE; 3682 sc->bge_asf_mode |= ASF_STACKUP; 3683 if (BGE_IS_575X_PLUS(sc)) 3684 sc->bge_asf_mode |= ASF_NEW_HANDSHAKE; 3685 } 3686 } 3687 } 3688 3689 bge_stop_fw(sc); 3690 bge_sig_pre_reset(sc, BGE_RESET_SHUTDOWN); 3691 if (bge_reset(sc)) { 3692 device_printf(sc->bge_dev, "chip reset failed\n"); 3693 error = ENXIO; 3694 goto fail; 3695 } 3696 3697 bge_sig_legacy(sc, BGE_RESET_SHUTDOWN); 3698 bge_sig_post_reset(sc, BGE_RESET_SHUTDOWN); 3699 3700 if (bge_chipinit(sc)) { 3701 device_printf(sc->bge_dev, "chip initialization failed\n"); 3702 error = ENXIO; 3703 goto fail; 3704 } 3705 3706 error = bge_get_eaddr(sc, eaddr); 3707 if (error) { 3708 device_printf(sc->bge_dev, 3709 "failed to read station address\n"); 3710 error = ENXIO; 3711 goto fail; 3712 } 3713 3714 /* 5705 limits RX return ring to 512 entries. */ 3715 if (BGE_IS_5717_PLUS(sc)) 3716 sc->bge_return_ring_cnt = BGE_RETURN_RING_CNT; 3717 else if (BGE_IS_5705_PLUS(sc)) 3718 sc->bge_return_ring_cnt = BGE_RETURN_RING_CNT_5705; 3719 else 3720 sc->bge_return_ring_cnt = BGE_RETURN_RING_CNT; 3721 3722 if (bge_dma_alloc(sc)) { 3723 device_printf(sc->bge_dev, 3724 "failed to allocate DMA resources\n"); 3725 error = ENXIO; 3726 goto fail; 3727 } 3728 3729 /* Set default tuneable values. */ 3730 sc->bge_stat_ticks = BGE_TICKS_PER_SEC; 3731 sc->bge_rx_coal_ticks = 150; 3732 sc->bge_tx_coal_ticks = 150; 3733 sc->bge_rx_max_coal_bds = 10; 3734 sc->bge_tx_max_coal_bds = 10; 3735 3736 /* Initialize checksum features to use. */ 3737 sc->bge_csum_features = BGE_CSUM_FEATURES; 3738 if (sc->bge_forced_udpcsum != 0) 3739 sc->bge_csum_features |= CSUM_UDP; 3740 3741 /* Set up ifnet structure */ 3742 ifp = sc->bge_ifp = if_alloc(IFT_ETHER); 3743 if (ifp == NULL) { 3744 device_printf(sc->bge_dev, "failed to if_alloc()\n"); 3745 error = ENXIO; 3746 goto fail; 3747 } 3748 if_setsoftc(ifp, sc); 3749 if_initname(ifp, device_get_name(dev), device_get_unit(dev)); 3750 if_setflags(ifp, IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST); 3751 if_setioctlfn(ifp, bge_ioctl); 3752 if_setstartfn(ifp, bge_start); 3753 if_setinitfn(ifp, bge_init); 3754 if_setgetcounterfn(ifp, bge_get_counter); 3755 if_setsendqlen(ifp, BGE_TX_RING_CNT - 1); 3756 if_setsendqready(ifp); 3757 if_sethwassist(ifp, sc->bge_csum_features); 3758 if_setcapabilities(ifp, IFCAP_HWCSUM | IFCAP_VLAN_HWTAGGING | 3759 IFCAP_VLAN_MTU); 3760 if ((sc->bge_flags & (BGE_FLAG_TSO | BGE_FLAG_TSO3)) != 0) { 3761 if_sethwassistbits(ifp, CSUM_TSO, 0); 3762 if_setcapabilitiesbit(ifp, IFCAP_TSO4 | IFCAP_VLAN_HWTSO, 0); 3763 } 3764 #ifdef IFCAP_VLAN_HWCSUM 3765 if_setcapabilitiesbit(ifp, IFCAP_VLAN_HWCSUM, 0); 3766 #endif 3767 if_setcapenable(ifp, if_getcapabilities(ifp)); 3768 #ifdef DEVICE_POLLING 3769 if_setcapabilitiesbit(ifp, IFCAP_POLLING, 0); 3770 #endif 3771 3772 /* 3773 * 5700 B0 chips do not support checksumming correctly due 3774 * to hardware bugs. 3775 */ 3776 if (sc->bge_chipid == BGE_CHIPID_BCM5700_B0) { 3777 if_setcapabilitiesbit(ifp, 0, IFCAP_HWCSUM); 3778 if_setcapenablebit(ifp, 0, IFCAP_HWCSUM); 3779 if_sethwassist(ifp, 0); 3780 } 3781 3782 /* 3783 * Figure out what sort of media we have by checking the 3784 * hardware config word in the first 32k of NIC internal memory, 3785 * or fall back to examining the EEPROM if necessary. 3786 * Note: on some BCM5700 cards, this value appears to be unset. 3787 * If that's the case, we have to rely on identifying the NIC 3788 * by its PCI subsystem ID, as we do below for the SysKonnect 3789 * SK-9D41. 3790 */ 3791 if (bge_readmem_ind(sc, BGE_SRAM_DATA_SIG) == BGE_SRAM_DATA_SIG_MAGIC) 3792 hwcfg = bge_readmem_ind(sc, BGE_SRAM_DATA_CFG); 3793 else if ((sc->bge_flags & BGE_FLAG_EADDR) && 3794 (sc->bge_asicrev != BGE_ASICREV_BCM5906)) { 3795 if (bge_read_eeprom(sc, (caddr_t)&hwcfg, BGE_EE_HWCFG_OFFSET, 3796 sizeof(hwcfg))) { 3797 device_printf(sc->bge_dev, "failed to read EEPROM\n"); 3798 error = ENXIO; 3799 goto fail; 3800 } 3801 hwcfg = ntohl(hwcfg); 3802 } 3803 3804 /* The SysKonnect SK-9D41 is a 1000baseSX card. */ 3805 if ((pci_read_config(dev, BGE_PCI_SUBSYS, 4) >> 16) == 3806 SK_SUBSYSID_9D41 || (hwcfg & BGE_HWCFG_MEDIA) == BGE_MEDIA_FIBER) { 3807 if (BGE_IS_5705_PLUS(sc)) { 3808 sc->bge_flags |= BGE_FLAG_MII_SERDES; 3809 sc->bge_phy_flags |= BGE_PHY_NO_WIRESPEED; 3810 } else 3811 sc->bge_flags |= BGE_FLAG_TBI; 3812 } 3813 3814 /* Set various PHY bug flags. */ 3815 if (sc->bge_chipid == BGE_CHIPID_BCM5701_A0 || 3816 sc->bge_chipid == BGE_CHIPID_BCM5701_B0) 3817 sc->bge_phy_flags |= BGE_PHY_CRC_BUG; 3818 if (sc->bge_chiprev == BGE_CHIPREV_5703_AX || 3819 sc->bge_chiprev == BGE_CHIPREV_5704_AX) 3820 sc->bge_phy_flags |= BGE_PHY_ADC_BUG; 3821 if (sc->bge_chipid == BGE_CHIPID_BCM5704_A0) 3822 sc->bge_phy_flags |= BGE_PHY_5704_A0_BUG; 3823 if (pci_get_subvendor(dev) == DELL_VENDORID) 3824 sc->bge_phy_flags |= BGE_PHY_NO_3LED; 3825 if ((BGE_IS_5705_PLUS(sc)) && 3826 sc->bge_asicrev != BGE_ASICREV_BCM5906 && 3827 sc->bge_asicrev != BGE_ASICREV_BCM5785 && 3828 sc->bge_asicrev != BGE_ASICREV_BCM57780 && 3829 !BGE_IS_5717_PLUS(sc)) { 3830 if (sc->bge_asicrev == BGE_ASICREV_BCM5755 || 3831 sc->bge_asicrev == BGE_ASICREV_BCM5761 || 3832 sc->bge_asicrev == BGE_ASICREV_BCM5784 || 3833 sc->bge_asicrev == BGE_ASICREV_BCM5787) { 3834 if (pci_get_device(dev) != BCOM_DEVICEID_BCM5722 && 3835 pci_get_device(dev) != BCOM_DEVICEID_BCM5756) 3836 sc->bge_phy_flags |= BGE_PHY_JITTER_BUG; 3837 if (pci_get_device(dev) == BCOM_DEVICEID_BCM5755M) 3838 sc->bge_phy_flags |= BGE_PHY_ADJUST_TRIM; 3839 } else 3840 sc->bge_phy_flags |= BGE_PHY_BER_BUG; 3841 } 3842 3843 /* 3844 * Don't enable Ethernet@WireSpeed for the 5700 or the 3845 * 5705 A0 and A1 chips. 3846 */ 3847 if (sc->bge_asicrev == BGE_ASICREV_BCM5700 || 3848 (sc->bge_asicrev == BGE_ASICREV_BCM5705 && 3849 (sc->bge_chipid != BGE_CHIPID_BCM5705_A0 && 3850 sc->bge_chipid != BGE_CHIPID_BCM5705_A1))) 3851 sc->bge_phy_flags |= BGE_PHY_NO_WIRESPEED; 3852 3853 if (sc->bge_flags & BGE_FLAG_TBI) { 3854 ifmedia_init(&sc->bge_ifmedia, IFM_IMASK, bge_ifmedia_upd, 3855 bge_ifmedia_sts); 3856 ifmedia_add(&sc->bge_ifmedia, IFM_ETHER | IFM_1000_SX, 0, NULL); 3857 ifmedia_add(&sc->bge_ifmedia, IFM_ETHER | IFM_1000_SX | IFM_FDX, 3858 0, NULL); 3859 ifmedia_add(&sc->bge_ifmedia, IFM_ETHER | IFM_AUTO, 0, NULL); 3860 ifmedia_set(&sc->bge_ifmedia, IFM_ETHER | IFM_AUTO); 3861 sc->bge_ifmedia.ifm_media = sc->bge_ifmedia.ifm_cur->ifm_media; 3862 } else { 3863 /* 3864 * Do transceiver setup and tell the firmware the 3865 * driver is down so we can try to get access the 3866 * probe if ASF is running. Retry a couple of times 3867 * if we get a conflict with the ASF firmware accessing 3868 * the PHY. 3869 */ 3870 trys = 0; 3871 BGE_CLRBIT(sc, BGE_MODE_CTL, BGE_MODECTL_STACKUP); 3872 again: 3873 bge_asf_driver_up(sc); 3874 3875 error = mii_attach(dev, &sc->bge_miibus, ifp, 3876 (ifm_change_cb_t)bge_ifmedia_upd, 3877 (ifm_stat_cb_t)bge_ifmedia_sts, capmask, sc->bge_phy_addr, 3878 MII_OFFSET_ANY, MIIF_DOPAUSE); 3879 if (error != 0) { 3880 if (trys++ < 4) { 3881 device_printf(sc->bge_dev, "Try again\n"); 3882 bge_miibus_writereg(sc->bge_dev, 3883 sc->bge_phy_addr, MII_BMCR, BMCR_RESET); 3884 goto again; 3885 } 3886 device_printf(sc->bge_dev, "attaching PHYs failed\n"); 3887 goto fail; 3888 } 3889 3890 /* 3891 * Now tell the firmware we are going up after probing the PHY 3892 */ 3893 if (sc->bge_asf_mode & ASF_STACKUP) 3894 BGE_SETBIT(sc, BGE_MODE_CTL, BGE_MODECTL_STACKUP); 3895 } 3896 3897 /* 3898 * When using the BCM5701 in PCI-X mode, data corruption has 3899 * been observed in the first few bytes of some received packets. 3900 * Aligning the packet buffer in memory eliminates the corruption. 3901 * Unfortunately, this misaligns the packet payloads. On platforms 3902 * which do not support unaligned accesses, we will realign the 3903 * payloads by copying the received packets. 3904 */ 3905 if (sc->bge_asicrev == BGE_ASICREV_BCM5701 && 3906 sc->bge_flags & BGE_FLAG_PCIX) 3907 sc->bge_flags |= BGE_FLAG_RX_ALIGNBUG; 3908 3909 /* 3910 * Call MI attach routine. 3911 */ 3912 ether_ifattach(ifp, eaddr); 3913 3914 /* Tell upper layer we support long frames. */ 3915 if_setifheaderlen(ifp, sizeof(struct ether_vlan_header)); 3916 3917 /* 3918 * Hookup IRQ last. 3919 */ 3920 if (BGE_IS_5755_PLUS(sc) && sc->bge_flags & BGE_FLAG_MSI) { 3921 /* Take advantage of single-shot MSI. */ 3922 CSR_WRITE_4(sc, BGE_MSI_MODE, CSR_READ_4(sc, BGE_MSI_MODE) & 3923 ~BGE_MSIMODE_ONE_SHOT_DISABLE); 3924 sc->bge_tq = taskqueue_create_fast("bge_taskq", M_WAITOK, 3925 taskqueue_thread_enqueue, &sc->bge_tq); 3926 if (sc->bge_tq == NULL) { 3927 device_printf(dev, "could not create taskqueue.\n"); 3928 ether_ifdetach(ifp); 3929 error = ENOMEM; 3930 goto fail; 3931 } 3932 error = taskqueue_start_threads(&sc->bge_tq, 1, PI_NET, 3933 "%s taskq", device_get_nameunit(sc->bge_dev)); 3934 if (error != 0) { 3935 device_printf(dev, "could not start threads.\n"); 3936 ether_ifdetach(ifp); 3937 goto fail; 3938 } 3939 error = bus_setup_intr(dev, sc->bge_irq, 3940 INTR_TYPE_NET | INTR_MPSAFE, bge_msi_intr, NULL, sc, 3941 &sc->bge_intrhand); 3942 } else 3943 error = bus_setup_intr(dev, sc->bge_irq, 3944 INTR_TYPE_NET | INTR_MPSAFE, NULL, bge_intr, sc, 3945 &sc->bge_intrhand); 3946 3947 if (error) { 3948 ether_ifdetach(ifp); 3949 device_printf(sc->bge_dev, "couldn't set up irq\n"); 3950 goto fail; 3951 } 3952 3953 /* Attach driver netdump methods. */ 3954 NETDUMP_SET(ifp, bge); 3955 3956 fail: 3957 if (error) 3958 bge_detach(dev); 3959 return (error); 3960 } 3961 3962 static int 3963 bge_detach(device_t dev) 3964 { 3965 struct bge_softc *sc; 3966 if_t ifp; 3967 3968 sc = device_get_softc(dev); 3969 ifp = sc->bge_ifp; 3970 3971 #ifdef DEVICE_POLLING 3972 if (if_getcapenable(ifp) & IFCAP_POLLING) 3973 ether_poll_deregister(ifp); 3974 #endif 3975 3976 if (device_is_attached(dev)) { 3977 ether_ifdetach(ifp); 3978 BGE_LOCK(sc); 3979 bge_stop(sc); 3980 BGE_UNLOCK(sc); 3981 callout_drain(&sc->bge_stat_ch); 3982 } 3983 3984 if (sc->bge_tq) 3985 taskqueue_drain(sc->bge_tq, &sc->bge_intr_task); 3986 3987 if (sc->bge_flags & BGE_FLAG_TBI) 3988 ifmedia_removeall(&sc->bge_ifmedia); 3989 else if (sc->bge_miibus != NULL) { 3990 bus_generic_detach(dev); 3991 device_delete_child(dev, sc->bge_miibus); 3992 } 3993 3994 bge_release_resources(sc); 3995 3996 return (0); 3997 } 3998 3999 static void 4000 bge_release_resources(struct bge_softc *sc) 4001 { 4002 device_t dev; 4003 4004 dev = sc->bge_dev; 4005 4006 if (sc->bge_tq != NULL) 4007 taskqueue_free(sc->bge_tq); 4008 4009 if (sc->bge_intrhand != NULL) 4010 bus_teardown_intr(dev, sc->bge_irq, sc->bge_intrhand); 4011 4012 if (sc->bge_irq != NULL) { 4013 bus_release_resource(dev, SYS_RES_IRQ, 4014 rman_get_rid(sc->bge_irq), sc->bge_irq); 4015 pci_release_msi(dev); 4016 } 4017 4018 if (sc->bge_res != NULL) 4019 bus_release_resource(dev, SYS_RES_MEMORY, 4020 rman_get_rid(sc->bge_res), sc->bge_res); 4021 4022 if (sc->bge_res2 != NULL) 4023 bus_release_resource(dev, SYS_RES_MEMORY, 4024 rman_get_rid(sc->bge_res2), sc->bge_res2); 4025 4026 if (sc->bge_ifp != NULL) 4027 if_free(sc->bge_ifp); 4028 4029 bge_dma_free(sc); 4030 4031 if (mtx_initialized(&sc->bge_mtx)) /* XXX */ 4032 BGE_LOCK_DESTROY(sc); 4033 } 4034 4035 static int 4036 bge_reset(struct bge_softc *sc) 4037 { 4038 device_t dev; 4039 uint32_t cachesize, command, mac_mode, mac_mode_mask, reset, val; 4040 void (*write_op)(struct bge_softc *, int, int); 4041 uint16_t devctl; 4042 int i; 4043 4044 dev = sc->bge_dev; 4045 4046 mac_mode_mask = BGE_MACMODE_HALF_DUPLEX | BGE_MACMODE_PORTMODE; 4047 if ((sc->bge_mfw_flags & BGE_MFW_ON_APE) != 0) 4048 mac_mode_mask |= BGE_MACMODE_APE_RX_EN | BGE_MACMODE_APE_TX_EN; 4049 mac_mode = CSR_READ_4(sc, BGE_MAC_MODE) & mac_mode_mask; 4050 4051 if (BGE_IS_575X_PLUS(sc) && !BGE_IS_5714_FAMILY(sc) && 4052 (sc->bge_asicrev != BGE_ASICREV_BCM5906)) { 4053 if (sc->bge_flags & BGE_FLAG_PCIE) 4054 write_op = bge_writemem_direct; 4055 else 4056 write_op = bge_writemem_ind; 4057 } else 4058 write_op = bge_writereg_ind; 4059 4060 if (sc->bge_asicrev != BGE_ASICREV_BCM5700 && 4061 sc->bge_asicrev != BGE_ASICREV_BCM5701) { 4062 CSR_WRITE_4(sc, BGE_NVRAM_SWARB, BGE_NVRAMSWARB_SET1); 4063 for (i = 0; i < 8000; i++) { 4064 if (CSR_READ_4(sc, BGE_NVRAM_SWARB) & 4065 BGE_NVRAMSWARB_GNT1) 4066 break; 4067 DELAY(20); 4068 } 4069 if (i == 8000) { 4070 if (bootverbose) 4071 device_printf(dev, "NVRAM lock timedout!\n"); 4072 } 4073 } 4074 /* Take APE lock when performing reset. */ 4075 bge_ape_lock(sc, BGE_APE_LOCK_GRC); 4076 4077 /* Save some important PCI state. */ 4078 cachesize = pci_read_config(dev, BGE_PCI_CACHESZ, 4); 4079 command = pci_read_config(dev, BGE_PCI_CMD, 4); 4080 4081 pci_write_config(dev, BGE_PCI_MISC_CTL, 4082 BGE_PCIMISCCTL_INDIRECT_ACCESS | BGE_PCIMISCCTL_MASK_PCI_INTR | 4083 BGE_HIF_SWAP_OPTIONS | BGE_PCIMISCCTL_PCISTATE_RW, 4); 4084 4085 /* Disable fastboot on controllers that support it. */ 4086 if (sc->bge_asicrev == BGE_ASICREV_BCM5752 || 4087 BGE_IS_5755_PLUS(sc)) { 4088 if (bootverbose) 4089 device_printf(dev, "Disabling fastboot\n"); 4090 CSR_WRITE_4(sc, BGE_FASTBOOT_PC, 0x0); 4091 } 4092 4093 /* 4094 * Write the magic number to SRAM at offset 0xB50. 4095 * When firmware finishes its initialization it will 4096 * write ~BGE_SRAM_FW_MB_MAGIC to the same location. 4097 */ 4098 bge_writemem_ind(sc, BGE_SRAM_FW_MB, BGE_SRAM_FW_MB_MAGIC); 4099 4100 reset = BGE_MISCCFG_RESET_CORE_CLOCKS | BGE_32BITTIME_66MHZ; 4101 4102 /* XXX: Broadcom Linux driver. */ 4103 if (sc->bge_flags & BGE_FLAG_PCIE) { 4104 if (sc->bge_asicrev != BGE_ASICREV_BCM5785 && 4105 (sc->bge_flags & BGE_FLAG_5717_PLUS) == 0) { 4106 if (CSR_READ_4(sc, 0x7E2C) == 0x60) /* PCIE 1.0 */ 4107 CSR_WRITE_4(sc, 0x7E2C, 0x20); 4108 } 4109 if (sc->bge_chipid != BGE_CHIPID_BCM5750_A0) { 4110 /* Prevent PCIE link training during global reset */ 4111 CSR_WRITE_4(sc, BGE_MISC_CFG, 1 << 29); 4112 reset |= 1 << 29; 4113 } 4114 } 4115 4116 if (sc->bge_asicrev == BGE_ASICREV_BCM5906) { 4117 val = CSR_READ_4(sc, BGE_VCPU_STATUS); 4118 CSR_WRITE_4(sc, BGE_VCPU_STATUS, 4119 val | BGE_VCPU_STATUS_DRV_RESET); 4120 val = CSR_READ_4(sc, BGE_VCPU_EXT_CTRL); 4121 CSR_WRITE_4(sc, BGE_VCPU_EXT_CTRL, 4122 val & ~BGE_VCPU_EXT_CTRL_HALT_CPU); 4123 } 4124 4125 /* 4126 * Set GPHY Power Down Override to leave GPHY 4127 * powered up in D0 uninitialized. 4128 */ 4129 if (BGE_IS_5705_PLUS(sc) && 4130 (sc->bge_flags & BGE_FLAG_CPMU_PRESENT) == 0) 4131 reset |= BGE_MISCCFG_GPHY_PD_OVERRIDE; 4132 4133 /* Issue global reset */ 4134 write_op(sc, BGE_MISC_CFG, reset); 4135 4136 if (sc->bge_flags & BGE_FLAG_PCIE) 4137 DELAY(100 * 1000); 4138 else 4139 DELAY(1000); 4140 4141 /* XXX: Broadcom Linux driver. */ 4142 if (sc->bge_flags & BGE_FLAG_PCIE) { 4143 if (sc->bge_chipid == BGE_CHIPID_BCM5750_A0) { 4144 DELAY(500000); /* wait for link training to complete */ 4145 val = pci_read_config(dev, 0xC4, 4); 4146 pci_write_config(dev, 0xC4, val | (1 << 15), 4); 4147 } 4148 devctl = pci_read_config(dev, 4149 sc->bge_expcap + PCIER_DEVICE_CTL, 2); 4150 /* Clear enable no snoop and disable relaxed ordering. */ 4151 devctl &= ~(PCIEM_CTL_RELAXED_ORD_ENABLE | 4152 PCIEM_CTL_NOSNOOP_ENABLE); 4153 pci_write_config(dev, sc->bge_expcap + PCIER_DEVICE_CTL, 4154 devctl, 2); 4155 pci_set_max_read_req(dev, sc->bge_expmrq); 4156 /* Clear error status. */ 4157 pci_write_config(dev, sc->bge_expcap + PCIER_DEVICE_STA, 4158 PCIEM_STA_CORRECTABLE_ERROR | 4159 PCIEM_STA_NON_FATAL_ERROR | PCIEM_STA_FATAL_ERROR | 4160 PCIEM_STA_UNSUPPORTED_REQ, 2); 4161 } 4162 4163 /* Reset some of the PCI state that got zapped by reset. */ 4164 pci_write_config(dev, BGE_PCI_MISC_CTL, 4165 BGE_PCIMISCCTL_INDIRECT_ACCESS | BGE_PCIMISCCTL_MASK_PCI_INTR | 4166 BGE_HIF_SWAP_OPTIONS | BGE_PCIMISCCTL_PCISTATE_RW, 4); 4167 val = BGE_PCISTATE_ROM_ENABLE | BGE_PCISTATE_ROM_RETRY_ENABLE; 4168 if (sc->bge_chipid == BGE_CHIPID_BCM5704_A0 && 4169 (sc->bge_flags & BGE_FLAG_PCIX) != 0) 4170 val |= BGE_PCISTATE_RETRY_SAME_DMA; 4171 if ((sc->bge_mfw_flags & BGE_MFW_ON_APE) != 0) 4172 val |= BGE_PCISTATE_ALLOW_APE_CTLSPC_WR | 4173 BGE_PCISTATE_ALLOW_APE_SHMEM_WR | 4174 BGE_PCISTATE_ALLOW_APE_PSPACE_WR; 4175 pci_write_config(dev, BGE_PCI_PCISTATE, val, 4); 4176 pci_write_config(dev, BGE_PCI_CACHESZ, cachesize, 4); 4177 pci_write_config(dev, BGE_PCI_CMD, command, 4); 4178 /* 4179 * Disable PCI-X relaxed ordering to ensure status block update 4180 * comes first then packet buffer DMA. Otherwise driver may 4181 * read stale status block. 4182 */ 4183 if (sc->bge_flags & BGE_FLAG_PCIX) { 4184 devctl = pci_read_config(dev, 4185 sc->bge_pcixcap + PCIXR_COMMAND, 2); 4186 devctl &= ~PCIXM_COMMAND_ERO; 4187 if (sc->bge_asicrev == BGE_ASICREV_BCM5703) { 4188 devctl &= ~PCIXM_COMMAND_MAX_READ; 4189 devctl |= PCIXM_COMMAND_MAX_READ_2048; 4190 } else if (sc->bge_asicrev == BGE_ASICREV_BCM5704) { 4191 devctl &= ~(PCIXM_COMMAND_MAX_SPLITS | 4192 PCIXM_COMMAND_MAX_READ); 4193 devctl |= PCIXM_COMMAND_MAX_READ_2048; 4194 } 4195 pci_write_config(dev, sc->bge_pcixcap + PCIXR_COMMAND, 4196 devctl, 2); 4197 } 4198 /* Re-enable MSI, if necessary, and enable the memory arbiter. */ 4199 if (BGE_IS_5714_FAMILY(sc)) { 4200 /* This chip disables MSI on reset. */ 4201 if (sc->bge_flags & BGE_FLAG_MSI) { 4202 val = pci_read_config(dev, 4203 sc->bge_msicap + PCIR_MSI_CTRL, 2); 4204 pci_write_config(dev, 4205 sc->bge_msicap + PCIR_MSI_CTRL, 4206 val | PCIM_MSICTRL_MSI_ENABLE, 2); 4207 val = CSR_READ_4(sc, BGE_MSI_MODE); 4208 CSR_WRITE_4(sc, BGE_MSI_MODE, 4209 val | BGE_MSIMODE_ENABLE); 4210 } 4211 val = CSR_READ_4(sc, BGE_MARB_MODE); 4212 CSR_WRITE_4(sc, BGE_MARB_MODE, BGE_MARBMODE_ENABLE | val); 4213 } else 4214 CSR_WRITE_4(sc, BGE_MARB_MODE, BGE_MARBMODE_ENABLE); 4215 4216 /* Fix up byte swapping. */ 4217 CSR_WRITE_4(sc, BGE_MODE_CTL, bge_dma_swap_options(sc)); 4218 4219 val = CSR_READ_4(sc, BGE_MAC_MODE); 4220 val = (val & ~mac_mode_mask) | mac_mode; 4221 CSR_WRITE_4(sc, BGE_MAC_MODE, val); 4222 DELAY(40); 4223 4224 bge_ape_unlock(sc, BGE_APE_LOCK_GRC); 4225 4226 if (sc->bge_asicrev == BGE_ASICREV_BCM5906) { 4227 for (i = 0; i < BGE_TIMEOUT; i++) { 4228 val = CSR_READ_4(sc, BGE_VCPU_STATUS); 4229 if (val & BGE_VCPU_STATUS_INIT_DONE) 4230 break; 4231 DELAY(100); 4232 } 4233 if (i == BGE_TIMEOUT) { 4234 device_printf(dev, "reset timed out\n"); 4235 return (1); 4236 } 4237 } else { 4238 /* 4239 * Poll until we see the 1's complement of the magic number. 4240 * This indicates that the firmware initialization is complete. 4241 * We expect this to fail if no chip containing the Ethernet 4242 * address is fitted though. 4243 */ 4244 for (i = 0; i < BGE_TIMEOUT; i++) { 4245 DELAY(10); 4246 val = bge_readmem_ind(sc, BGE_SRAM_FW_MB); 4247 if (val == ~BGE_SRAM_FW_MB_MAGIC) 4248 break; 4249 } 4250 4251 if ((sc->bge_flags & BGE_FLAG_EADDR) && i == BGE_TIMEOUT) 4252 device_printf(dev, 4253 "firmware handshake timed out, found 0x%08x\n", 4254 val); 4255 /* BCM57765 A0 needs additional time before accessing. */ 4256 if (sc->bge_chipid == BGE_CHIPID_BCM57765_A0) 4257 DELAY(10 * 1000); /* XXX */ 4258 } 4259 4260 /* 4261 * The 5704 in TBI mode apparently needs some special 4262 * adjustment to insure the SERDES drive level is set 4263 * to 1.2V. 4264 */ 4265 if (sc->bge_asicrev == BGE_ASICREV_BCM5704 && 4266 sc->bge_flags & BGE_FLAG_TBI) { 4267 val = CSR_READ_4(sc, BGE_SERDES_CFG); 4268 val = (val & ~0xFFF) | 0x880; 4269 CSR_WRITE_4(sc, BGE_SERDES_CFG, val); 4270 } 4271 4272 /* XXX: Broadcom Linux driver. */ 4273 if (sc->bge_flags & BGE_FLAG_PCIE && 4274 !BGE_IS_5717_PLUS(sc) && 4275 sc->bge_chipid != BGE_CHIPID_BCM5750_A0 && 4276 sc->bge_asicrev != BGE_ASICREV_BCM5785) { 4277 /* Enable Data FIFO protection. */ 4278 val = CSR_READ_4(sc, 0x7C00); 4279 CSR_WRITE_4(sc, 0x7C00, val | (1 << 25)); 4280 } 4281 4282 if (sc->bge_asicrev == BGE_ASICREV_BCM5720) 4283 BGE_CLRBIT(sc, BGE_CPMU_CLCK_ORIDE, 4284 CPMU_CLCK_ORIDE_MAC_ORIDE_EN); 4285 4286 return (0); 4287 } 4288 4289 static __inline void 4290 bge_rxreuse_std(struct bge_softc *sc, int i) 4291 { 4292 struct bge_rx_bd *r; 4293 4294 r = &sc->bge_ldata.bge_rx_std_ring[sc->bge_std]; 4295 r->bge_flags = BGE_RXBDFLAG_END; 4296 r->bge_len = sc->bge_cdata.bge_rx_std_seglen[i]; 4297 r->bge_idx = i; 4298 BGE_INC(sc->bge_std, BGE_STD_RX_RING_CNT); 4299 } 4300 4301 static __inline void 4302 bge_rxreuse_jumbo(struct bge_softc *sc, int i) 4303 { 4304 struct bge_extrx_bd *r; 4305 4306 r = &sc->bge_ldata.bge_rx_jumbo_ring[sc->bge_jumbo]; 4307 r->bge_flags = BGE_RXBDFLAG_JUMBO_RING | BGE_RXBDFLAG_END; 4308 r->bge_len0 = sc->bge_cdata.bge_rx_jumbo_seglen[i][0]; 4309 r->bge_len1 = sc->bge_cdata.bge_rx_jumbo_seglen[i][1]; 4310 r->bge_len2 = sc->bge_cdata.bge_rx_jumbo_seglen[i][2]; 4311 r->bge_len3 = sc->bge_cdata.bge_rx_jumbo_seglen[i][3]; 4312 r->bge_idx = i; 4313 BGE_INC(sc->bge_jumbo, BGE_JUMBO_RX_RING_CNT); 4314 } 4315 4316 /* 4317 * Frame reception handling. This is called if there's a frame 4318 * on the receive return list. 4319 * 4320 * Note: we have to be able to handle two possibilities here: 4321 * 1) the frame is from the jumbo receive ring 4322 * 2) the frame is from the standard receive ring 4323 */ 4324 4325 static int 4326 bge_rxeof(struct bge_softc *sc, uint16_t rx_prod, int holdlck) 4327 { 4328 if_t ifp; 4329 int rx_npkts = 0, stdcnt = 0, jumbocnt = 0; 4330 uint16_t rx_cons; 4331 4332 rx_cons = sc->bge_rx_saved_considx; 4333 4334 /* Nothing to do. */ 4335 if (rx_cons == rx_prod) 4336 return (rx_npkts); 4337 4338 ifp = sc->bge_ifp; 4339 4340 bus_dmamap_sync(sc->bge_cdata.bge_rx_return_ring_tag, 4341 sc->bge_cdata.bge_rx_return_ring_map, BUS_DMASYNC_POSTREAD); 4342 bus_dmamap_sync(sc->bge_cdata.bge_rx_std_ring_tag, 4343 sc->bge_cdata.bge_rx_std_ring_map, BUS_DMASYNC_POSTWRITE); 4344 if (BGE_IS_JUMBO_CAPABLE(sc) && 4345 if_getmtu(ifp) + ETHER_HDR_LEN + ETHER_CRC_LEN + 4346 ETHER_VLAN_ENCAP_LEN > (MCLBYTES - ETHER_ALIGN)) 4347 bus_dmamap_sync(sc->bge_cdata.bge_rx_jumbo_ring_tag, 4348 sc->bge_cdata.bge_rx_jumbo_ring_map, BUS_DMASYNC_POSTWRITE); 4349 4350 while (rx_cons != rx_prod) { 4351 struct bge_rx_bd *cur_rx; 4352 uint32_t rxidx; 4353 struct mbuf *m = NULL; 4354 uint16_t vlan_tag = 0; 4355 int have_tag = 0; 4356 4357 #ifdef DEVICE_POLLING 4358 if (if_getcapenable(ifp) & IFCAP_POLLING) { 4359 if (sc->rxcycles <= 0) 4360 break; 4361 sc->rxcycles--; 4362 } 4363 #endif 4364 4365 cur_rx = &sc->bge_ldata.bge_rx_return_ring[rx_cons]; 4366 4367 rxidx = cur_rx->bge_idx; 4368 BGE_INC(rx_cons, sc->bge_return_ring_cnt); 4369 4370 if (if_getcapenable(ifp) & IFCAP_VLAN_HWTAGGING && 4371 cur_rx->bge_flags & BGE_RXBDFLAG_VLAN_TAG) { 4372 have_tag = 1; 4373 vlan_tag = cur_rx->bge_vlan_tag; 4374 } 4375 4376 if (cur_rx->bge_flags & BGE_RXBDFLAG_JUMBO_RING) { 4377 jumbocnt++; 4378 m = sc->bge_cdata.bge_rx_jumbo_chain[rxidx]; 4379 if (cur_rx->bge_flags & BGE_RXBDFLAG_ERROR) { 4380 bge_rxreuse_jumbo(sc, rxidx); 4381 continue; 4382 } 4383 if (bge_newbuf_jumbo(sc, rxidx) != 0) { 4384 bge_rxreuse_jumbo(sc, rxidx); 4385 if_inc_counter(ifp, IFCOUNTER_IQDROPS, 1); 4386 continue; 4387 } 4388 BGE_INC(sc->bge_jumbo, BGE_JUMBO_RX_RING_CNT); 4389 } else { 4390 stdcnt++; 4391 m = sc->bge_cdata.bge_rx_std_chain[rxidx]; 4392 if (cur_rx->bge_flags & BGE_RXBDFLAG_ERROR) { 4393 bge_rxreuse_std(sc, rxidx); 4394 continue; 4395 } 4396 if (bge_newbuf_std(sc, rxidx) != 0) { 4397 bge_rxreuse_std(sc, rxidx); 4398 if_inc_counter(ifp, IFCOUNTER_IQDROPS, 1); 4399 continue; 4400 } 4401 BGE_INC(sc->bge_std, BGE_STD_RX_RING_CNT); 4402 } 4403 4404 if_inc_counter(ifp, IFCOUNTER_IPACKETS, 1); 4405 #ifndef __NO_STRICT_ALIGNMENT 4406 /* 4407 * For architectures with strict alignment we must make sure 4408 * the payload is aligned. 4409 */ 4410 if (sc->bge_flags & BGE_FLAG_RX_ALIGNBUG) { 4411 bcopy(m->m_data, m->m_data + ETHER_ALIGN, 4412 cur_rx->bge_len); 4413 m->m_data += ETHER_ALIGN; 4414 } 4415 #endif 4416 m->m_pkthdr.len = m->m_len = cur_rx->bge_len - ETHER_CRC_LEN; 4417 m->m_pkthdr.rcvif = ifp; 4418 4419 if (if_getcapenable(ifp) & IFCAP_RXCSUM) 4420 bge_rxcsum(sc, cur_rx, m); 4421 4422 /* 4423 * If we received a packet with a vlan tag, 4424 * attach that information to the packet. 4425 */ 4426 if (have_tag) { 4427 m->m_pkthdr.ether_vtag = vlan_tag; 4428 m->m_flags |= M_VLANTAG; 4429 } 4430 4431 if (holdlck != 0) { 4432 BGE_UNLOCK(sc); 4433 if_input(ifp, m); 4434 BGE_LOCK(sc); 4435 } else 4436 if_input(ifp, m); 4437 rx_npkts++; 4438 4439 if (!(if_getdrvflags(ifp) & IFF_DRV_RUNNING)) 4440 return (rx_npkts); 4441 } 4442 4443 bus_dmamap_sync(sc->bge_cdata.bge_rx_return_ring_tag, 4444 sc->bge_cdata.bge_rx_return_ring_map, BUS_DMASYNC_PREREAD); 4445 if (stdcnt > 0) 4446 bus_dmamap_sync(sc->bge_cdata.bge_rx_std_ring_tag, 4447 sc->bge_cdata.bge_rx_std_ring_map, BUS_DMASYNC_PREWRITE); 4448 4449 if (jumbocnt > 0) 4450 bus_dmamap_sync(sc->bge_cdata.bge_rx_jumbo_ring_tag, 4451 sc->bge_cdata.bge_rx_jumbo_ring_map, BUS_DMASYNC_PREWRITE); 4452 4453 sc->bge_rx_saved_considx = rx_cons; 4454 bge_writembx(sc, BGE_MBX_RX_CONS0_LO, sc->bge_rx_saved_considx); 4455 if (stdcnt) 4456 bge_writembx(sc, BGE_MBX_RX_STD_PROD_LO, (sc->bge_std + 4457 BGE_STD_RX_RING_CNT - 1) % BGE_STD_RX_RING_CNT); 4458 if (jumbocnt) 4459 bge_writembx(sc, BGE_MBX_RX_JUMBO_PROD_LO, (sc->bge_jumbo + 4460 BGE_JUMBO_RX_RING_CNT - 1) % BGE_JUMBO_RX_RING_CNT); 4461 #ifdef notyet 4462 /* 4463 * This register wraps very quickly under heavy packet drops. 4464 * If you need correct statistics, you can enable this check. 4465 */ 4466 if (BGE_IS_5705_PLUS(sc)) 4467 if_incierrors(ifp, CSR_READ_4(sc, BGE_RXLP_LOCSTAT_IFIN_DROPS)); 4468 #endif 4469 return (rx_npkts); 4470 } 4471 4472 static void 4473 bge_rxcsum(struct bge_softc *sc, struct bge_rx_bd *cur_rx, struct mbuf *m) 4474 { 4475 4476 if (BGE_IS_5717_PLUS(sc)) { 4477 if ((cur_rx->bge_flags & BGE_RXBDFLAG_IPV6) == 0) { 4478 if (cur_rx->bge_flags & BGE_RXBDFLAG_IP_CSUM) { 4479 m->m_pkthdr.csum_flags |= CSUM_IP_CHECKED; 4480 if ((cur_rx->bge_error_flag & 4481 BGE_RXERRFLAG_IP_CSUM_NOK) == 0) 4482 m->m_pkthdr.csum_flags |= CSUM_IP_VALID; 4483 } 4484 if (cur_rx->bge_flags & BGE_RXBDFLAG_TCP_UDP_CSUM) { 4485 m->m_pkthdr.csum_data = 4486 cur_rx->bge_tcp_udp_csum; 4487 m->m_pkthdr.csum_flags |= CSUM_DATA_VALID | 4488 CSUM_PSEUDO_HDR; 4489 } 4490 } 4491 } else { 4492 if (cur_rx->bge_flags & BGE_RXBDFLAG_IP_CSUM) { 4493 m->m_pkthdr.csum_flags |= CSUM_IP_CHECKED; 4494 if ((cur_rx->bge_ip_csum ^ 0xFFFF) == 0) 4495 m->m_pkthdr.csum_flags |= CSUM_IP_VALID; 4496 } 4497 if (cur_rx->bge_flags & BGE_RXBDFLAG_TCP_UDP_CSUM && 4498 m->m_pkthdr.len >= ETHER_MIN_NOPAD) { 4499 m->m_pkthdr.csum_data = 4500 cur_rx->bge_tcp_udp_csum; 4501 m->m_pkthdr.csum_flags |= CSUM_DATA_VALID | 4502 CSUM_PSEUDO_HDR; 4503 } 4504 } 4505 } 4506 4507 static void 4508 bge_txeof(struct bge_softc *sc, uint16_t tx_cons) 4509 { 4510 struct bge_tx_bd *cur_tx; 4511 if_t ifp; 4512 4513 BGE_LOCK_ASSERT(sc); 4514 4515 /* Nothing to do. */ 4516 if (sc->bge_tx_saved_considx == tx_cons) 4517 return; 4518 4519 ifp = sc->bge_ifp; 4520 4521 bus_dmamap_sync(sc->bge_cdata.bge_tx_ring_tag, 4522 sc->bge_cdata.bge_tx_ring_map, BUS_DMASYNC_POSTWRITE); 4523 /* 4524 * Go through our tx ring and free mbufs for those 4525 * frames that have been sent. 4526 */ 4527 while (sc->bge_tx_saved_considx != tx_cons) { 4528 uint32_t idx; 4529 4530 idx = sc->bge_tx_saved_considx; 4531 cur_tx = &sc->bge_ldata.bge_tx_ring[idx]; 4532 if (cur_tx->bge_flags & BGE_TXBDFLAG_END) 4533 if_inc_counter(ifp, IFCOUNTER_OPACKETS, 1); 4534 if (sc->bge_cdata.bge_tx_chain[idx] != NULL) { 4535 bus_dmamap_sync(sc->bge_cdata.bge_tx_mtag, 4536 sc->bge_cdata.bge_tx_dmamap[idx], 4537 BUS_DMASYNC_POSTWRITE); 4538 bus_dmamap_unload(sc->bge_cdata.bge_tx_mtag, 4539 sc->bge_cdata.bge_tx_dmamap[idx]); 4540 m_freem(sc->bge_cdata.bge_tx_chain[idx]); 4541 sc->bge_cdata.bge_tx_chain[idx] = NULL; 4542 } 4543 sc->bge_txcnt--; 4544 BGE_INC(sc->bge_tx_saved_considx, BGE_TX_RING_CNT); 4545 } 4546 4547 if_setdrvflagbits(ifp, 0, IFF_DRV_OACTIVE); 4548 if (sc->bge_txcnt == 0) 4549 sc->bge_timer = 0; 4550 } 4551 4552 #ifdef DEVICE_POLLING 4553 static int 4554 bge_poll(if_t ifp, enum poll_cmd cmd, int count) 4555 { 4556 struct bge_softc *sc = if_getsoftc(ifp); 4557 uint16_t rx_prod, tx_cons; 4558 uint32_t statusword; 4559 int rx_npkts = 0; 4560 4561 BGE_LOCK(sc); 4562 if (!(if_getdrvflags(ifp) & IFF_DRV_RUNNING)) { 4563 BGE_UNLOCK(sc); 4564 return (rx_npkts); 4565 } 4566 4567 bus_dmamap_sync(sc->bge_cdata.bge_status_tag, 4568 sc->bge_cdata.bge_status_map, 4569 BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE); 4570 /* Fetch updates from the status block. */ 4571 rx_prod = sc->bge_ldata.bge_status_block->bge_idx[0].bge_rx_prod_idx; 4572 tx_cons = sc->bge_ldata.bge_status_block->bge_idx[0].bge_tx_cons_idx; 4573 4574 statusword = sc->bge_ldata.bge_status_block->bge_status; 4575 /* Clear the status so the next pass only sees the changes. */ 4576 sc->bge_ldata.bge_status_block->bge_status = 0; 4577 4578 bus_dmamap_sync(sc->bge_cdata.bge_status_tag, 4579 sc->bge_cdata.bge_status_map, 4580 BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE); 4581 4582 /* Note link event. It will be processed by POLL_AND_CHECK_STATUS. */ 4583 if (statusword & BGE_STATFLAG_LINKSTATE_CHANGED) 4584 sc->bge_link_evt++; 4585 4586 if (cmd == POLL_AND_CHECK_STATUS) 4587 if ((sc->bge_asicrev == BGE_ASICREV_BCM5700 && 4588 sc->bge_chipid != BGE_CHIPID_BCM5700_B2) || 4589 sc->bge_link_evt || (sc->bge_flags & BGE_FLAG_TBI)) 4590 bge_link_upd(sc); 4591 4592 sc->rxcycles = count; 4593 rx_npkts = bge_rxeof(sc, rx_prod, 1); 4594 if (!(if_getdrvflags(ifp) & IFF_DRV_RUNNING)) { 4595 BGE_UNLOCK(sc); 4596 return (rx_npkts); 4597 } 4598 bge_txeof(sc, tx_cons); 4599 if (!if_sendq_empty(ifp)) 4600 bge_start_locked(ifp); 4601 4602 BGE_UNLOCK(sc); 4603 return (rx_npkts); 4604 } 4605 #endif /* DEVICE_POLLING */ 4606 4607 static int 4608 bge_msi_intr(void *arg) 4609 { 4610 struct bge_softc *sc; 4611 4612 sc = (struct bge_softc *)arg; 4613 /* 4614 * This interrupt is not shared and controller already 4615 * disabled further interrupt. 4616 */ 4617 taskqueue_enqueue(sc->bge_tq, &sc->bge_intr_task); 4618 return (FILTER_HANDLED); 4619 } 4620 4621 static void 4622 bge_intr_task(void *arg, int pending) 4623 { 4624 struct bge_softc *sc; 4625 if_t ifp; 4626 uint32_t status, status_tag; 4627 uint16_t rx_prod, tx_cons; 4628 4629 sc = (struct bge_softc *)arg; 4630 ifp = sc->bge_ifp; 4631 4632 BGE_LOCK(sc); 4633 if ((if_getdrvflags(ifp) & IFF_DRV_RUNNING) == 0) { 4634 BGE_UNLOCK(sc); 4635 return; 4636 } 4637 4638 /* Get updated status block. */ 4639 bus_dmamap_sync(sc->bge_cdata.bge_status_tag, 4640 sc->bge_cdata.bge_status_map, 4641 BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE); 4642 4643 /* Save producer/consumer indices. */ 4644 rx_prod = sc->bge_ldata.bge_status_block->bge_idx[0].bge_rx_prod_idx; 4645 tx_cons = sc->bge_ldata.bge_status_block->bge_idx[0].bge_tx_cons_idx; 4646 status = sc->bge_ldata.bge_status_block->bge_status; 4647 status_tag = sc->bge_ldata.bge_status_block->bge_status_tag << 24; 4648 /* Dirty the status flag. */ 4649 sc->bge_ldata.bge_status_block->bge_status = 0; 4650 bus_dmamap_sync(sc->bge_cdata.bge_status_tag, 4651 sc->bge_cdata.bge_status_map, 4652 BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE); 4653 if ((sc->bge_flags & BGE_FLAG_TAGGED_STATUS) == 0) 4654 status_tag = 0; 4655 4656 if ((status & BGE_STATFLAG_LINKSTATE_CHANGED) != 0) 4657 bge_link_upd(sc); 4658 4659 /* Let controller work. */ 4660 bge_writembx(sc, BGE_MBX_IRQ0_LO, status_tag); 4661 4662 if (if_getdrvflags(ifp) & IFF_DRV_RUNNING && 4663 sc->bge_rx_saved_considx != rx_prod) { 4664 /* Check RX return ring producer/consumer. */ 4665 BGE_UNLOCK(sc); 4666 bge_rxeof(sc, rx_prod, 0); 4667 BGE_LOCK(sc); 4668 } 4669 if (if_getdrvflags(ifp) & IFF_DRV_RUNNING) { 4670 /* Check TX ring producer/consumer. */ 4671 bge_txeof(sc, tx_cons); 4672 if (!if_sendq_empty(ifp)) 4673 bge_start_locked(ifp); 4674 } 4675 BGE_UNLOCK(sc); 4676 } 4677 4678 static void 4679 bge_intr(void *xsc) 4680 { 4681 struct bge_softc *sc; 4682 if_t ifp; 4683 uint32_t statusword; 4684 uint16_t rx_prod, tx_cons; 4685 4686 sc = xsc; 4687 4688 BGE_LOCK(sc); 4689 4690 ifp = sc->bge_ifp; 4691 4692 #ifdef DEVICE_POLLING 4693 if (if_getcapenable(ifp) & IFCAP_POLLING) { 4694 BGE_UNLOCK(sc); 4695 return; 4696 } 4697 #endif 4698 4699 /* 4700 * Ack the interrupt by writing something to BGE_MBX_IRQ0_LO. Don't 4701 * disable interrupts by writing nonzero like we used to, since with 4702 * our current organization this just gives complications and 4703 * pessimizations for re-enabling interrupts. We used to have races 4704 * instead of the necessary complications. Disabling interrupts 4705 * would just reduce the chance of a status update while we are 4706 * running (by switching to the interrupt-mode coalescence 4707 * parameters), but this chance is already very low so it is more 4708 * efficient to get another interrupt than prevent it. 4709 * 4710 * We do the ack first to ensure another interrupt if there is a 4711 * status update after the ack. We don't check for the status 4712 * changing later because it is more efficient to get another 4713 * interrupt than prevent it, not quite as above (not checking is 4714 * a smaller optimization than not toggling the interrupt enable, 4715 * since checking doesn't involve PCI accesses and toggling require 4716 * the status check). So toggling would probably be a pessimization 4717 * even with MSI. It would only be needed for using a task queue. 4718 */ 4719 bge_writembx(sc, BGE_MBX_IRQ0_LO, 0); 4720 4721 /* 4722 * Do the mandatory PCI flush as well as get the link status. 4723 */ 4724 statusword = CSR_READ_4(sc, BGE_MAC_STS) & BGE_MACSTAT_LINK_CHANGED; 4725 4726 /* Make sure the descriptor ring indexes are coherent. */ 4727 bus_dmamap_sync(sc->bge_cdata.bge_status_tag, 4728 sc->bge_cdata.bge_status_map, 4729 BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE); 4730 rx_prod = sc->bge_ldata.bge_status_block->bge_idx[0].bge_rx_prod_idx; 4731 tx_cons = sc->bge_ldata.bge_status_block->bge_idx[0].bge_tx_cons_idx; 4732 sc->bge_ldata.bge_status_block->bge_status = 0; 4733 bus_dmamap_sync(sc->bge_cdata.bge_status_tag, 4734 sc->bge_cdata.bge_status_map, 4735 BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE); 4736 4737 if ((sc->bge_asicrev == BGE_ASICREV_BCM5700 && 4738 sc->bge_chipid != BGE_CHIPID_BCM5700_B2) || 4739 statusword || sc->bge_link_evt) 4740 bge_link_upd(sc); 4741 4742 if (if_getdrvflags(ifp) & IFF_DRV_RUNNING) { 4743 /* Check RX return ring producer/consumer. */ 4744 bge_rxeof(sc, rx_prod, 1); 4745 } 4746 4747 if (if_getdrvflags(ifp) & IFF_DRV_RUNNING) { 4748 /* Check TX ring producer/consumer. */ 4749 bge_txeof(sc, tx_cons); 4750 } 4751 4752 if (if_getdrvflags(ifp) & IFF_DRV_RUNNING && 4753 !if_sendq_empty(ifp)) 4754 bge_start_locked(ifp); 4755 4756 BGE_UNLOCK(sc); 4757 } 4758 4759 static void 4760 bge_asf_driver_up(struct bge_softc *sc) 4761 { 4762 if (sc->bge_asf_mode & ASF_STACKUP) { 4763 /* Send ASF heartbeat aprox. every 2s */ 4764 if (sc->bge_asf_count) 4765 sc->bge_asf_count --; 4766 else { 4767 sc->bge_asf_count = 2; 4768 bge_writemem_ind(sc, BGE_SRAM_FW_CMD_MB, 4769 BGE_FW_CMD_DRV_ALIVE); 4770 bge_writemem_ind(sc, BGE_SRAM_FW_CMD_LEN_MB, 4); 4771 bge_writemem_ind(sc, BGE_SRAM_FW_CMD_DATA_MB, 4772 BGE_FW_HB_TIMEOUT_SEC); 4773 CSR_WRITE_4(sc, BGE_RX_CPU_EVENT, 4774 CSR_READ_4(sc, BGE_RX_CPU_EVENT) | 4775 BGE_RX_CPU_DRV_EVENT); 4776 } 4777 } 4778 } 4779 4780 static void 4781 bge_tick(void *xsc) 4782 { 4783 struct bge_softc *sc = xsc; 4784 struct mii_data *mii = NULL; 4785 4786 BGE_LOCK_ASSERT(sc); 4787 4788 /* Synchronize with possible callout reset/stop. */ 4789 if (callout_pending(&sc->bge_stat_ch) || 4790 !callout_active(&sc->bge_stat_ch)) 4791 return; 4792 4793 if (BGE_IS_5705_PLUS(sc)) 4794 bge_stats_update_regs(sc); 4795 else 4796 bge_stats_update(sc); 4797 4798 /* XXX Add APE heartbeat check here? */ 4799 4800 if ((sc->bge_flags & BGE_FLAG_TBI) == 0) { 4801 mii = device_get_softc(sc->bge_miibus); 4802 /* 4803 * Do not touch PHY if we have link up. This could break 4804 * IPMI/ASF mode or produce extra input errors 4805 * (extra errors was reported for bcm5701 & bcm5704). 4806 */ 4807 if (!sc->bge_link) 4808 mii_tick(mii); 4809 } else { 4810 /* 4811 * Since in TBI mode auto-polling can't be used we should poll 4812 * link status manually. Here we register pending link event 4813 * and trigger interrupt. 4814 */ 4815 #ifdef DEVICE_POLLING 4816 /* In polling mode we poll link state in bge_poll(). */ 4817 if (!(if_getcapenable(sc->bge_ifp) & IFCAP_POLLING)) 4818 #endif 4819 { 4820 sc->bge_link_evt++; 4821 if (sc->bge_asicrev == BGE_ASICREV_BCM5700 || 4822 sc->bge_flags & BGE_FLAG_5788) 4823 BGE_SETBIT(sc, BGE_MISC_LOCAL_CTL, BGE_MLC_INTR_SET); 4824 else 4825 BGE_SETBIT(sc, BGE_HCC_MODE, BGE_HCCMODE_COAL_NOW); 4826 } 4827 } 4828 4829 bge_asf_driver_up(sc); 4830 bge_watchdog(sc); 4831 4832 callout_reset(&sc->bge_stat_ch, hz, bge_tick, sc); 4833 } 4834 4835 static void 4836 bge_stats_update_regs(struct bge_softc *sc) 4837 { 4838 if_t ifp; 4839 struct bge_mac_stats *stats; 4840 uint32_t val; 4841 4842 ifp = sc->bge_ifp; 4843 stats = &sc->bge_mac_stats; 4844 4845 stats->ifHCOutOctets += 4846 CSR_READ_4(sc, BGE_TX_MAC_STATS_OCTETS); 4847 stats->etherStatsCollisions += 4848 CSR_READ_4(sc, BGE_TX_MAC_STATS_COLLS); 4849 stats->outXonSent += 4850 CSR_READ_4(sc, BGE_TX_MAC_STATS_XON_SENT); 4851 stats->outXoffSent += 4852 CSR_READ_4(sc, BGE_TX_MAC_STATS_XOFF_SENT); 4853 stats->dot3StatsInternalMacTransmitErrors += 4854 CSR_READ_4(sc, BGE_TX_MAC_STATS_ERRORS); 4855 stats->dot3StatsSingleCollisionFrames += 4856 CSR_READ_4(sc, BGE_TX_MAC_STATS_SINGLE_COLL); 4857 stats->dot3StatsMultipleCollisionFrames += 4858 CSR_READ_4(sc, BGE_TX_MAC_STATS_MULTI_COLL); 4859 stats->dot3StatsDeferredTransmissions += 4860 CSR_READ_4(sc, BGE_TX_MAC_STATS_DEFERRED); 4861 stats->dot3StatsExcessiveCollisions += 4862 CSR_READ_4(sc, BGE_TX_MAC_STATS_EXCESS_COLL); 4863 stats->dot3StatsLateCollisions += 4864 CSR_READ_4(sc, BGE_TX_MAC_STATS_LATE_COLL); 4865 stats->ifHCOutUcastPkts += 4866 CSR_READ_4(sc, BGE_TX_MAC_STATS_UCAST); 4867 stats->ifHCOutMulticastPkts += 4868 CSR_READ_4(sc, BGE_TX_MAC_STATS_MCAST); 4869 stats->ifHCOutBroadcastPkts += 4870 CSR_READ_4(sc, BGE_TX_MAC_STATS_BCAST); 4871 4872 stats->ifHCInOctets += 4873 CSR_READ_4(sc, BGE_RX_MAC_STATS_OCTESTS); 4874 stats->etherStatsFragments += 4875 CSR_READ_4(sc, BGE_RX_MAC_STATS_FRAGMENTS); 4876 stats->ifHCInUcastPkts += 4877 CSR_READ_4(sc, BGE_RX_MAC_STATS_UCAST); 4878 stats->ifHCInMulticastPkts += 4879 CSR_READ_4(sc, BGE_RX_MAC_STATS_MCAST); 4880 stats->ifHCInBroadcastPkts += 4881 CSR_READ_4(sc, BGE_RX_MAC_STATS_BCAST); 4882 stats->dot3StatsFCSErrors += 4883 CSR_READ_4(sc, BGE_RX_MAC_STATS_FCS_ERRORS); 4884 stats->dot3StatsAlignmentErrors += 4885 CSR_READ_4(sc, BGE_RX_MAC_STATS_ALGIN_ERRORS); 4886 stats->xonPauseFramesReceived += 4887 CSR_READ_4(sc, BGE_RX_MAC_STATS_XON_RCVD); 4888 stats->xoffPauseFramesReceived += 4889 CSR_READ_4(sc, BGE_RX_MAC_STATS_XOFF_RCVD); 4890 stats->macControlFramesReceived += 4891 CSR_READ_4(sc, BGE_RX_MAC_STATS_CTRL_RCVD); 4892 stats->xoffStateEntered += 4893 CSR_READ_4(sc, BGE_RX_MAC_STATS_XOFF_ENTERED); 4894 stats->dot3StatsFramesTooLong += 4895 CSR_READ_4(sc, BGE_RX_MAC_STATS_FRAME_TOO_LONG); 4896 stats->etherStatsJabbers += 4897 CSR_READ_4(sc, BGE_RX_MAC_STATS_JABBERS); 4898 stats->etherStatsUndersizePkts += 4899 CSR_READ_4(sc, BGE_RX_MAC_STATS_UNDERSIZE); 4900 4901 stats->FramesDroppedDueToFilters += 4902 CSR_READ_4(sc, BGE_RXLP_LOCSTAT_FILTDROP); 4903 stats->DmaWriteQueueFull += 4904 CSR_READ_4(sc, BGE_RXLP_LOCSTAT_DMA_WRQ_FULL); 4905 stats->DmaWriteHighPriQueueFull += 4906 CSR_READ_4(sc, BGE_RXLP_LOCSTAT_DMA_HPWRQ_FULL); 4907 stats->NoMoreRxBDs += 4908 CSR_READ_4(sc, BGE_RXLP_LOCSTAT_OUT_OF_BDS); 4909 /* 4910 * XXX 4911 * Unlike other controllers, BGE_RXLP_LOCSTAT_IFIN_DROPS 4912 * counter of BCM5717, BCM5718, BCM5719 A0 and BCM5720 A0 4913 * includes number of unwanted multicast frames. This comes 4914 * from silicon bug and known workaround to get rough(not 4915 * exact) counter is to enable interrupt on MBUF low water 4916 * attention. This can be accomplished by setting 4917 * BGE_HCCMODE_ATTN bit of BGE_HCC_MODE, 4918 * BGE_BMANMODE_LOMBUF_ATTN bit of BGE_BMAN_MODE and 4919 * BGE_MODECTL_FLOWCTL_ATTN_INTR bit of BGE_MODE_CTL. 4920 * However that change would generate more interrupts and 4921 * there are still possibilities of losing multiple frames 4922 * during BGE_MODECTL_FLOWCTL_ATTN_INTR interrupt handling. 4923 * Given that the workaround still would not get correct 4924 * counter I don't think it's worth to implement it. So 4925 * ignore reading the counter on controllers that have the 4926 * silicon bug. 4927 */ 4928 if (sc->bge_asicrev != BGE_ASICREV_BCM5717 && 4929 sc->bge_chipid != BGE_CHIPID_BCM5719_A0 && 4930 sc->bge_chipid != BGE_CHIPID_BCM5720_A0) 4931 stats->InputDiscards += 4932 CSR_READ_4(sc, BGE_RXLP_LOCSTAT_IFIN_DROPS); 4933 stats->InputErrors += 4934 CSR_READ_4(sc, BGE_RXLP_LOCSTAT_IFIN_ERRORS); 4935 stats->RecvThresholdHit += 4936 CSR_READ_4(sc, BGE_RXLP_LOCSTAT_RXTHRESH_HIT); 4937 4938 if (sc->bge_flags & BGE_FLAG_RDMA_BUG) { 4939 /* 4940 * If controller transmitted more than BGE_NUM_RDMA_CHANNELS 4941 * frames, it's safe to disable workaround for DMA engine's 4942 * miscalculation of TXMBUF space. 4943 */ 4944 if (stats->ifHCOutUcastPkts + stats->ifHCOutMulticastPkts + 4945 stats->ifHCOutBroadcastPkts > BGE_NUM_RDMA_CHANNELS) { 4946 val = CSR_READ_4(sc, BGE_RDMA_LSO_CRPTEN_CTRL); 4947 if (sc->bge_asicrev == BGE_ASICREV_BCM5719) 4948 val &= ~BGE_RDMA_TX_LENGTH_WA_5719; 4949 else 4950 val &= ~BGE_RDMA_TX_LENGTH_WA_5720; 4951 CSR_WRITE_4(sc, BGE_RDMA_LSO_CRPTEN_CTRL, val); 4952 sc->bge_flags &= ~BGE_FLAG_RDMA_BUG; 4953 } 4954 } 4955 } 4956 4957 static void 4958 bge_stats_clear_regs(struct bge_softc *sc) 4959 { 4960 4961 CSR_READ_4(sc, BGE_TX_MAC_STATS_OCTETS); 4962 CSR_READ_4(sc, BGE_TX_MAC_STATS_COLLS); 4963 CSR_READ_4(sc, BGE_TX_MAC_STATS_XON_SENT); 4964 CSR_READ_4(sc, BGE_TX_MAC_STATS_XOFF_SENT); 4965 CSR_READ_4(sc, BGE_TX_MAC_STATS_ERRORS); 4966 CSR_READ_4(sc, BGE_TX_MAC_STATS_SINGLE_COLL); 4967 CSR_READ_4(sc, BGE_TX_MAC_STATS_MULTI_COLL); 4968 CSR_READ_4(sc, BGE_TX_MAC_STATS_DEFERRED); 4969 CSR_READ_4(sc, BGE_TX_MAC_STATS_EXCESS_COLL); 4970 CSR_READ_4(sc, BGE_TX_MAC_STATS_LATE_COLL); 4971 CSR_READ_4(sc, BGE_TX_MAC_STATS_UCAST); 4972 CSR_READ_4(sc, BGE_TX_MAC_STATS_MCAST); 4973 CSR_READ_4(sc, BGE_TX_MAC_STATS_BCAST); 4974 4975 CSR_READ_4(sc, BGE_RX_MAC_STATS_OCTESTS); 4976 CSR_READ_4(sc, BGE_RX_MAC_STATS_FRAGMENTS); 4977 CSR_READ_4(sc, BGE_RX_MAC_STATS_UCAST); 4978 CSR_READ_4(sc, BGE_RX_MAC_STATS_MCAST); 4979 CSR_READ_4(sc, BGE_RX_MAC_STATS_BCAST); 4980 CSR_READ_4(sc, BGE_RX_MAC_STATS_FCS_ERRORS); 4981 CSR_READ_4(sc, BGE_RX_MAC_STATS_ALGIN_ERRORS); 4982 CSR_READ_4(sc, BGE_RX_MAC_STATS_XON_RCVD); 4983 CSR_READ_4(sc, BGE_RX_MAC_STATS_XOFF_RCVD); 4984 CSR_READ_4(sc, BGE_RX_MAC_STATS_CTRL_RCVD); 4985 CSR_READ_4(sc, BGE_RX_MAC_STATS_XOFF_ENTERED); 4986 CSR_READ_4(sc, BGE_RX_MAC_STATS_FRAME_TOO_LONG); 4987 CSR_READ_4(sc, BGE_RX_MAC_STATS_JABBERS); 4988 CSR_READ_4(sc, BGE_RX_MAC_STATS_UNDERSIZE); 4989 4990 CSR_READ_4(sc, BGE_RXLP_LOCSTAT_FILTDROP); 4991 CSR_READ_4(sc, BGE_RXLP_LOCSTAT_DMA_WRQ_FULL); 4992 CSR_READ_4(sc, BGE_RXLP_LOCSTAT_DMA_HPWRQ_FULL); 4993 CSR_READ_4(sc, BGE_RXLP_LOCSTAT_OUT_OF_BDS); 4994 CSR_READ_4(sc, BGE_RXLP_LOCSTAT_IFIN_DROPS); 4995 CSR_READ_4(sc, BGE_RXLP_LOCSTAT_IFIN_ERRORS); 4996 CSR_READ_4(sc, BGE_RXLP_LOCSTAT_RXTHRESH_HIT); 4997 } 4998 4999 static void 5000 bge_stats_update(struct bge_softc *sc) 5001 { 5002 if_t ifp; 5003 bus_size_t stats; 5004 uint32_t cnt; /* current register value */ 5005 5006 ifp = sc->bge_ifp; 5007 5008 stats = BGE_MEMWIN_START + BGE_STATS_BLOCK; 5009 5010 #define READ_STAT(sc, stats, stat) \ 5011 CSR_READ_4(sc, stats + offsetof(struct bge_stats, stat)) 5012 5013 cnt = READ_STAT(sc, stats, txstats.etherStatsCollisions.bge_addr_lo); 5014 if_inc_counter(ifp, IFCOUNTER_COLLISIONS, cnt - sc->bge_tx_collisions); 5015 sc->bge_tx_collisions = cnt; 5016 5017 cnt = READ_STAT(sc, stats, nicNoMoreRxBDs.bge_addr_lo); 5018 if_inc_counter(ifp, IFCOUNTER_IERRORS, cnt - sc->bge_rx_nobds); 5019 sc->bge_rx_nobds = cnt; 5020 cnt = READ_STAT(sc, stats, ifInErrors.bge_addr_lo); 5021 if_inc_counter(ifp, IFCOUNTER_IERRORS, cnt - sc->bge_rx_inerrs); 5022 sc->bge_rx_inerrs = cnt; 5023 cnt = READ_STAT(sc, stats, ifInDiscards.bge_addr_lo); 5024 if_inc_counter(ifp, IFCOUNTER_IERRORS, cnt - sc->bge_rx_discards); 5025 sc->bge_rx_discards = cnt; 5026 5027 cnt = READ_STAT(sc, stats, txstats.ifOutDiscards.bge_addr_lo); 5028 if_inc_counter(ifp, IFCOUNTER_OERRORS, cnt - sc->bge_tx_discards); 5029 sc->bge_tx_discards = cnt; 5030 5031 #undef READ_STAT 5032 } 5033 5034 /* 5035 * Pad outbound frame to ETHER_MIN_NOPAD for an unusual reason. 5036 * The bge hardware will pad out Tx runts to ETHER_MIN_NOPAD, 5037 * but when such padded frames employ the bge IP/TCP checksum offload, 5038 * the hardware checksum assist gives incorrect results (possibly 5039 * from incorporating its own padding into the UDP/TCP checksum; who knows). 5040 * If we pad such runts with zeros, the onboard checksum comes out correct. 5041 */ 5042 static __inline int 5043 bge_cksum_pad(struct mbuf *m) 5044 { 5045 int padlen = ETHER_MIN_NOPAD - m->m_pkthdr.len; 5046 struct mbuf *last; 5047 5048 /* If there's only the packet-header and we can pad there, use it. */ 5049 if (m->m_pkthdr.len == m->m_len && M_WRITABLE(m) && 5050 M_TRAILINGSPACE(m) >= padlen) { 5051 last = m; 5052 } else { 5053 /* 5054 * Walk packet chain to find last mbuf. We will either 5055 * pad there, or append a new mbuf and pad it. 5056 */ 5057 for (last = m; last->m_next != NULL; last = last->m_next); 5058 if (!(M_WRITABLE(last) && M_TRAILINGSPACE(last) >= padlen)) { 5059 /* Allocate new empty mbuf, pad it. Compact later. */ 5060 struct mbuf *n; 5061 5062 MGET(n, M_NOWAIT, MT_DATA); 5063 if (n == NULL) 5064 return (ENOBUFS); 5065 n->m_len = 0; 5066 last->m_next = n; 5067 last = n; 5068 } 5069 } 5070 5071 /* Now zero the pad area, to avoid the bge cksum-assist bug. */ 5072 memset(mtod(last, caddr_t) + last->m_len, 0, padlen); 5073 last->m_len += padlen; 5074 m->m_pkthdr.len += padlen; 5075 5076 return (0); 5077 } 5078 5079 static struct mbuf * 5080 bge_check_short_dma(struct mbuf *m) 5081 { 5082 struct mbuf *n; 5083 int found; 5084 5085 /* 5086 * If device receive two back-to-back send BDs with less than 5087 * or equal to 8 total bytes then the device may hang. The two 5088 * back-to-back send BDs must in the same frame for this failure 5089 * to occur. Scan mbuf chains and see whether two back-to-back 5090 * send BDs are there. If this is the case, allocate new mbuf 5091 * and copy the frame to workaround the silicon bug. 5092 */ 5093 for (n = m, found = 0; n != NULL; n = n->m_next) { 5094 if (n->m_len < 8) { 5095 found++; 5096 if (found > 1) 5097 break; 5098 continue; 5099 } 5100 found = 0; 5101 } 5102 5103 if (found > 1) { 5104 n = m_defrag(m, M_NOWAIT); 5105 if (n == NULL) 5106 m_freem(m); 5107 } else 5108 n = m; 5109 return (n); 5110 } 5111 5112 static struct mbuf * 5113 bge_setup_tso(struct bge_softc *sc, struct mbuf *m, uint16_t *mss, 5114 uint16_t *flags) 5115 { 5116 struct ip *ip; 5117 struct tcphdr *tcp; 5118 struct mbuf *n; 5119 uint16_t hlen; 5120 uint32_t poff; 5121 5122 if (M_WRITABLE(m) == 0) { 5123 /* Get a writable copy. */ 5124 n = m_dup(m, M_NOWAIT); 5125 m_freem(m); 5126 if (n == NULL) 5127 return (NULL); 5128 m = n; 5129 } 5130 m = m_pullup(m, sizeof(struct ether_header) + sizeof(struct ip)); 5131 if (m == NULL) 5132 return (NULL); 5133 ip = (struct ip *)(mtod(m, char *) + sizeof(struct ether_header)); 5134 poff = sizeof(struct ether_header) + (ip->ip_hl << 2); 5135 m = m_pullup(m, poff + sizeof(struct tcphdr)); 5136 if (m == NULL) 5137 return (NULL); 5138 tcp = (struct tcphdr *)(mtod(m, char *) + poff); 5139 m = m_pullup(m, poff + (tcp->th_off << 2)); 5140 if (m == NULL) 5141 return (NULL); 5142 /* 5143 * It seems controller doesn't modify IP length and TCP pseudo 5144 * checksum. These checksum computed by upper stack should be 0. 5145 */ 5146 *mss = m->m_pkthdr.tso_segsz; 5147 ip = (struct ip *)(mtod(m, char *) + sizeof(struct ether_header)); 5148 ip->ip_sum = 0; 5149 ip->ip_len = htons(*mss + (ip->ip_hl << 2) + (tcp->th_off << 2)); 5150 /* Clear pseudo checksum computed by TCP stack. */ 5151 tcp = (struct tcphdr *)(mtod(m, char *) + poff); 5152 tcp->th_sum = 0; 5153 /* 5154 * Broadcom controllers uses different descriptor format for 5155 * TSO depending on ASIC revision. Due to TSO-capable firmware 5156 * license issue and lower performance of firmware based TSO 5157 * we only support hardware based TSO. 5158 */ 5159 /* Calculate header length, incl. TCP/IP options, in 32 bit units. */ 5160 hlen = ((ip->ip_hl << 2) + (tcp->th_off << 2)) >> 2; 5161 if (sc->bge_flags & BGE_FLAG_TSO3) { 5162 /* 5163 * For BCM5717 and newer controllers, hardware based TSO 5164 * uses the 14 lower bits of the bge_mss field to store the 5165 * MSS and the upper 2 bits to store the lowest 2 bits of 5166 * the IP/TCP header length. The upper 6 bits of the header 5167 * length are stored in the bge_flags[14:10,4] field. Jumbo 5168 * frames are supported. 5169 */ 5170 *mss |= ((hlen & 0x3) << 14); 5171 *flags |= ((hlen & 0xF8) << 7) | ((hlen & 0x4) << 2); 5172 } else { 5173 /* 5174 * For BCM5755 and newer controllers, hardware based TSO uses 5175 * the lower 11 bits to store the MSS and the upper 5 bits to 5176 * store the IP/TCP header length. Jumbo frames are not 5177 * supported. 5178 */ 5179 *mss |= (hlen << 11); 5180 } 5181 return (m); 5182 } 5183 5184 /* 5185 * Encapsulate an mbuf chain in the tx ring by coupling the mbuf data 5186 * pointers to descriptors. 5187 */ 5188 static int 5189 bge_encap(struct bge_softc *sc, struct mbuf **m_head, uint32_t *txidx) 5190 { 5191 bus_dma_segment_t segs[BGE_NSEG_NEW]; 5192 bus_dmamap_t map; 5193 struct bge_tx_bd *d; 5194 struct mbuf *m = *m_head; 5195 uint32_t idx = *txidx; 5196 uint16_t csum_flags, mss, vlan_tag; 5197 int nsegs, i, error; 5198 5199 csum_flags = 0; 5200 mss = 0; 5201 vlan_tag = 0; 5202 if ((sc->bge_flags & BGE_FLAG_SHORT_DMA_BUG) != 0 && 5203 m->m_next != NULL) { 5204 *m_head = bge_check_short_dma(m); 5205 if (*m_head == NULL) 5206 return (ENOBUFS); 5207 m = *m_head; 5208 } 5209 if ((m->m_pkthdr.csum_flags & CSUM_TSO) != 0) { 5210 *m_head = m = bge_setup_tso(sc, m, &mss, &csum_flags); 5211 if (*m_head == NULL) 5212 return (ENOBUFS); 5213 csum_flags |= BGE_TXBDFLAG_CPU_PRE_DMA | 5214 BGE_TXBDFLAG_CPU_POST_DMA; 5215 } else if ((m->m_pkthdr.csum_flags & sc->bge_csum_features) != 0) { 5216 if (m->m_pkthdr.csum_flags & CSUM_IP) 5217 csum_flags |= BGE_TXBDFLAG_IP_CSUM; 5218 if (m->m_pkthdr.csum_flags & (CSUM_TCP | CSUM_UDP)) { 5219 csum_flags |= BGE_TXBDFLAG_TCP_UDP_CSUM; 5220 if (m->m_pkthdr.len < ETHER_MIN_NOPAD && 5221 (error = bge_cksum_pad(m)) != 0) { 5222 m_freem(m); 5223 *m_head = NULL; 5224 return (error); 5225 } 5226 } 5227 } 5228 5229 if ((m->m_pkthdr.csum_flags & CSUM_TSO) == 0) { 5230 if (sc->bge_flags & BGE_FLAG_JUMBO_FRAME && 5231 m->m_pkthdr.len > ETHER_MAX_LEN) 5232 csum_flags |= BGE_TXBDFLAG_JUMBO_FRAME; 5233 if (sc->bge_forced_collapse > 0 && 5234 (sc->bge_flags & BGE_FLAG_PCIE) != 0 && m->m_next != NULL) { 5235 /* 5236 * Forcedly collapse mbuf chains to overcome hardware 5237 * limitation which only support a single outstanding 5238 * DMA read operation. 5239 */ 5240 if (sc->bge_forced_collapse == 1) 5241 m = m_defrag(m, M_NOWAIT); 5242 else 5243 m = m_collapse(m, M_NOWAIT, 5244 sc->bge_forced_collapse); 5245 if (m == NULL) 5246 m = *m_head; 5247 *m_head = m; 5248 } 5249 } 5250 5251 map = sc->bge_cdata.bge_tx_dmamap[idx]; 5252 error = bus_dmamap_load_mbuf_sg(sc->bge_cdata.bge_tx_mtag, map, m, segs, 5253 &nsegs, BUS_DMA_NOWAIT); 5254 if (error == EFBIG) { 5255 m = m_collapse(m, M_NOWAIT, BGE_NSEG_NEW); 5256 if (m == NULL) { 5257 m_freem(*m_head); 5258 *m_head = NULL; 5259 return (ENOBUFS); 5260 } 5261 *m_head = m; 5262 error = bus_dmamap_load_mbuf_sg(sc->bge_cdata.bge_tx_mtag, map, 5263 m, segs, &nsegs, BUS_DMA_NOWAIT); 5264 if (error) { 5265 m_freem(m); 5266 *m_head = NULL; 5267 return (error); 5268 } 5269 } else if (error != 0) 5270 return (error); 5271 5272 /* Check if we have enough free send BDs. */ 5273 if (sc->bge_txcnt + nsegs >= BGE_TX_RING_CNT) { 5274 bus_dmamap_unload(sc->bge_cdata.bge_tx_mtag, map); 5275 return (ENOBUFS); 5276 } 5277 5278 bus_dmamap_sync(sc->bge_cdata.bge_tx_mtag, map, BUS_DMASYNC_PREWRITE); 5279 5280 if (m->m_flags & M_VLANTAG) { 5281 csum_flags |= BGE_TXBDFLAG_VLAN_TAG; 5282 vlan_tag = m->m_pkthdr.ether_vtag; 5283 } 5284 5285 if (sc->bge_asicrev == BGE_ASICREV_BCM5762 && 5286 (m->m_pkthdr.csum_flags & CSUM_TSO) != 0) { 5287 /* 5288 * 5725 family of devices corrupts TSO packets when TSO DMA 5289 * buffers cross into regions which are within MSS bytes of 5290 * a 4GB boundary. If we encounter the condition, drop the 5291 * packet. 5292 */ 5293 for (i = 0; ; i++) { 5294 d = &sc->bge_ldata.bge_tx_ring[idx]; 5295 d->bge_addr.bge_addr_lo = BGE_ADDR_LO(segs[i].ds_addr); 5296 d->bge_addr.bge_addr_hi = BGE_ADDR_HI(segs[i].ds_addr); 5297 d->bge_len = segs[i].ds_len; 5298 if (d->bge_addr.bge_addr_lo + segs[i].ds_len + mss < 5299 d->bge_addr.bge_addr_lo) 5300 break; 5301 d->bge_flags = csum_flags; 5302 d->bge_vlan_tag = vlan_tag; 5303 d->bge_mss = mss; 5304 if (i == nsegs - 1) 5305 break; 5306 BGE_INC(idx, BGE_TX_RING_CNT); 5307 } 5308 if (i != nsegs - 1) { 5309 bus_dmamap_sync(sc->bge_cdata.bge_tx_mtag, map, 5310 BUS_DMASYNC_POSTWRITE); 5311 bus_dmamap_unload(sc->bge_cdata.bge_tx_mtag, map); 5312 m_freem(*m_head); 5313 *m_head = NULL; 5314 return (EIO); 5315 } 5316 } else { 5317 for (i = 0; ; i++) { 5318 d = &sc->bge_ldata.bge_tx_ring[idx]; 5319 d->bge_addr.bge_addr_lo = BGE_ADDR_LO(segs[i].ds_addr); 5320 d->bge_addr.bge_addr_hi = BGE_ADDR_HI(segs[i].ds_addr); 5321 d->bge_len = segs[i].ds_len; 5322 d->bge_flags = csum_flags; 5323 d->bge_vlan_tag = vlan_tag; 5324 d->bge_mss = mss; 5325 if (i == nsegs - 1) 5326 break; 5327 BGE_INC(idx, BGE_TX_RING_CNT); 5328 } 5329 } 5330 5331 /* Mark the last segment as end of packet... */ 5332 d->bge_flags |= BGE_TXBDFLAG_END; 5333 5334 /* 5335 * Insure that the map for this transmission 5336 * is placed at the array index of the last descriptor 5337 * in this chain. 5338 */ 5339 sc->bge_cdata.bge_tx_dmamap[*txidx] = sc->bge_cdata.bge_tx_dmamap[idx]; 5340 sc->bge_cdata.bge_tx_dmamap[idx] = map; 5341 sc->bge_cdata.bge_tx_chain[idx] = m; 5342 sc->bge_txcnt += nsegs; 5343 5344 BGE_INC(idx, BGE_TX_RING_CNT); 5345 *txidx = idx; 5346 5347 return (0); 5348 } 5349 5350 /* 5351 * Main transmit routine. To avoid having to do mbuf copies, we put pointers 5352 * to the mbuf data regions directly in the transmit descriptors. 5353 */ 5354 static void 5355 bge_start_locked(if_t ifp) 5356 { 5357 struct bge_softc *sc; 5358 struct mbuf *m_head; 5359 uint32_t prodidx; 5360 int count; 5361 5362 sc = if_getsoftc(ifp); 5363 BGE_LOCK_ASSERT(sc); 5364 5365 if (!sc->bge_link || 5366 (if_getdrvflags(ifp) & (IFF_DRV_RUNNING | IFF_DRV_OACTIVE)) != 5367 IFF_DRV_RUNNING) 5368 return; 5369 5370 prodidx = sc->bge_tx_prodidx; 5371 5372 for (count = 0; !if_sendq_empty(ifp);) { 5373 if (sc->bge_txcnt > BGE_TX_RING_CNT - 16) { 5374 if_setdrvflagbits(ifp, IFF_DRV_OACTIVE, 0); 5375 break; 5376 } 5377 m_head = if_dequeue(ifp); 5378 if (m_head == NULL) 5379 break; 5380 5381 /* 5382 * Pack the data into the transmit ring. If we 5383 * don't have room, set the OACTIVE flag and wait 5384 * for the NIC to drain the ring. 5385 */ 5386 if (bge_encap(sc, &m_head, &prodidx)) { 5387 if (m_head == NULL) 5388 break; 5389 if_sendq_prepend(ifp, m_head); 5390 if_setdrvflagbits(ifp, IFF_DRV_OACTIVE, 0); 5391 break; 5392 } 5393 ++count; 5394 5395 /* 5396 * If there's a BPF listener, bounce a copy of this frame 5397 * to him. 5398 */ 5399 if_bpfmtap(ifp, m_head); 5400 } 5401 5402 if (count > 0) 5403 bge_start_tx(sc, prodidx); 5404 } 5405 5406 static void 5407 bge_start_tx(struct bge_softc *sc, uint32_t prodidx) 5408 { 5409 5410 bus_dmamap_sync(sc->bge_cdata.bge_tx_ring_tag, 5411 sc->bge_cdata.bge_tx_ring_map, BUS_DMASYNC_PREWRITE); 5412 /* Transmit. */ 5413 bge_writembx(sc, BGE_MBX_TX_HOST_PROD0_LO, prodidx); 5414 /* 5700 b2 errata */ 5415 if (sc->bge_chiprev == BGE_CHIPREV_5700_BX) 5416 bge_writembx(sc, BGE_MBX_TX_HOST_PROD0_LO, prodidx); 5417 5418 sc->bge_tx_prodidx = prodidx; 5419 5420 /* Set a timeout in case the chip goes out to lunch. */ 5421 sc->bge_timer = BGE_TX_TIMEOUT; 5422 } 5423 5424 /* 5425 * Main transmit routine. To avoid having to do mbuf copies, we put pointers 5426 * to the mbuf data regions directly in the transmit descriptors. 5427 */ 5428 static void 5429 bge_start(if_t ifp) 5430 { 5431 struct bge_softc *sc; 5432 5433 sc = if_getsoftc(ifp); 5434 BGE_LOCK(sc); 5435 bge_start_locked(ifp); 5436 BGE_UNLOCK(sc); 5437 } 5438 5439 static void 5440 bge_init_locked(struct bge_softc *sc) 5441 { 5442 if_t ifp; 5443 uint16_t *m; 5444 uint32_t mode; 5445 5446 BGE_LOCK_ASSERT(sc); 5447 5448 ifp = sc->bge_ifp; 5449 5450 if (if_getdrvflags(ifp) & IFF_DRV_RUNNING) 5451 return; 5452 5453 /* Cancel pending I/O and flush buffers. */ 5454 bge_stop(sc); 5455 5456 bge_stop_fw(sc); 5457 bge_sig_pre_reset(sc, BGE_RESET_START); 5458 bge_reset(sc); 5459 bge_sig_legacy(sc, BGE_RESET_START); 5460 bge_sig_post_reset(sc, BGE_RESET_START); 5461 5462 bge_chipinit(sc); 5463 5464 /* 5465 * Init the various state machines, ring 5466 * control blocks and firmware. 5467 */ 5468 if (bge_blockinit(sc)) { 5469 device_printf(sc->bge_dev, "initialization failure\n"); 5470 return; 5471 } 5472 5473 ifp = sc->bge_ifp; 5474 5475 /* Specify MTU. */ 5476 CSR_WRITE_4(sc, BGE_RX_MTU, if_getmtu(ifp) + 5477 ETHER_HDR_LEN + ETHER_CRC_LEN + 5478 (if_getcapenable(ifp) & IFCAP_VLAN_MTU ? ETHER_VLAN_ENCAP_LEN : 0)); 5479 5480 /* Load our MAC address. */ 5481 m = (uint16_t *)IF_LLADDR(sc->bge_ifp); 5482 CSR_WRITE_4(sc, BGE_MAC_ADDR1_LO, htons(m[0])); 5483 CSR_WRITE_4(sc, BGE_MAC_ADDR1_HI, (htons(m[1]) << 16) | htons(m[2])); 5484 5485 /* Program promiscuous mode. */ 5486 bge_setpromisc(sc); 5487 5488 /* Program multicast filter. */ 5489 bge_setmulti(sc); 5490 5491 /* Program VLAN tag stripping. */ 5492 bge_setvlan(sc); 5493 5494 /* Override UDP checksum offloading. */ 5495 if (sc->bge_forced_udpcsum == 0) 5496 sc->bge_csum_features &= ~CSUM_UDP; 5497 else 5498 sc->bge_csum_features |= CSUM_UDP; 5499 if (if_getcapabilities(ifp) & IFCAP_TXCSUM && 5500 if_getcapenable(ifp) & IFCAP_TXCSUM) { 5501 if_sethwassistbits(ifp, 0, (BGE_CSUM_FEATURES | CSUM_UDP)); 5502 if_sethwassistbits(ifp, sc->bge_csum_features, 0); 5503 } 5504 5505 /* Init RX ring. */ 5506 if (bge_init_rx_ring_std(sc) != 0) { 5507 device_printf(sc->bge_dev, "no memory for std Rx buffers.\n"); 5508 bge_stop(sc); 5509 return; 5510 } 5511 5512 /* 5513 * Workaround for a bug in 5705 ASIC rev A0. Poll the NIC's 5514 * memory to insure that the chip has in fact read the first 5515 * entry of the ring. 5516 */ 5517 if (sc->bge_chipid == BGE_CHIPID_BCM5705_A0) { 5518 uint32_t v, i; 5519 for (i = 0; i < 10; i++) { 5520 DELAY(20); 5521 v = bge_readmem_ind(sc, BGE_STD_RX_RINGS + 8); 5522 if (v == (MCLBYTES - ETHER_ALIGN)) 5523 break; 5524 } 5525 if (i == 10) 5526 device_printf (sc->bge_dev, 5527 "5705 A0 chip failed to load RX ring\n"); 5528 } 5529 5530 /* Init jumbo RX ring. */ 5531 if (BGE_IS_JUMBO_CAPABLE(sc) && 5532 if_getmtu(ifp) + ETHER_HDR_LEN + ETHER_CRC_LEN + 5533 ETHER_VLAN_ENCAP_LEN > (MCLBYTES - ETHER_ALIGN)) { 5534 if (bge_init_rx_ring_jumbo(sc) != 0) { 5535 device_printf(sc->bge_dev, 5536 "no memory for jumbo Rx buffers.\n"); 5537 bge_stop(sc); 5538 return; 5539 } 5540 } 5541 5542 /* Init our RX return ring index. */ 5543 sc->bge_rx_saved_considx = 0; 5544 5545 /* Init our RX/TX stat counters. */ 5546 sc->bge_rx_discards = sc->bge_tx_discards = sc->bge_tx_collisions = 0; 5547 5548 /* Init TX ring. */ 5549 bge_init_tx_ring(sc); 5550 5551 /* Enable TX MAC state machine lockup fix. */ 5552 mode = CSR_READ_4(sc, BGE_TX_MODE); 5553 if (BGE_IS_5755_PLUS(sc) || sc->bge_asicrev == BGE_ASICREV_BCM5906) 5554 mode |= BGE_TXMODE_MBUF_LOCKUP_FIX; 5555 if (sc->bge_asicrev == BGE_ASICREV_BCM5720 || 5556 sc->bge_asicrev == BGE_ASICREV_BCM5762) { 5557 mode &= ~(BGE_TXMODE_JMB_FRM_LEN | BGE_TXMODE_CNT_DN_MODE); 5558 mode |= CSR_READ_4(sc, BGE_TX_MODE) & 5559 (BGE_TXMODE_JMB_FRM_LEN | BGE_TXMODE_CNT_DN_MODE); 5560 } 5561 /* Turn on transmitter. */ 5562 CSR_WRITE_4(sc, BGE_TX_MODE, mode | BGE_TXMODE_ENABLE); 5563 DELAY(100); 5564 5565 /* Turn on receiver. */ 5566 mode = CSR_READ_4(sc, BGE_RX_MODE); 5567 if (BGE_IS_5755_PLUS(sc)) 5568 mode |= BGE_RXMODE_IPV6_ENABLE; 5569 if (sc->bge_asicrev == BGE_ASICREV_BCM5762) 5570 mode |= BGE_RXMODE_IPV4_FRAG_FIX; 5571 CSR_WRITE_4(sc,BGE_RX_MODE, mode | BGE_RXMODE_ENABLE); 5572 DELAY(10); 5573 5574 /* 5575 * Set the number of good frames to receive after RX MBUF 5576 * Low Watermark has been reached. After the RX MAC receives 5577 * this number of frames, it will drop subsequent incoming 5578 * frames until the MBUF High Watermark is reached. 5579 */ 5580 if (BGE_IS_57765_PLUS(sc)) 5581 CSR_WRITE_4(sc, BGE_MAX_RX_FRAME_LOWAT, 1); 5582 else 5583 CSR_WRITE_4(sc, BGE_MAX_RX_FRAME_LOWAT, 2); 5584 5585 /* Clear MAC statistics. */ 5586 if (BGE_IS_5705_PLUS(sc)) 5587 bge_stats_clear_regs(sc); 5588 5589 /* Tell firmware we're alive. */ 5590 BGE_SETBIT(sc, BGE_MODE_CTL, BGE_MODECTL_STACKUP); 5591 5592 #ifdef DEVICE_POLLING 5593 /* Disable interrupts if we are polling. */ 5594 if (if_getcapenable(ifp) & IFCAP_POLLING) { 5595 BGE_SETBIT(sc, BGE_PCI_MISC_CTL, 5596 BGE_PCIMISCCTL_MASK_PCI_INTR); 5597 bge_writembx(sc, BGE_MBX_IRQ0_LO, 1); 5598 } else 5599 #endif 5600 5601 /* Enable host interrupts. */ 5602 { 5603 BGE_SETBIT(sc, BGE_PCI_MISC_CTL, BGE_PCIMISCCTL_CLEAR_INTA); 5604 BGE_CLRBIT(sc, BGE_PCI_MISC_CTL, BGE_PCIMISCCTL_MASK_PCI_INTR); 5605 bge_writembx(sc, BGE_MBX_IRQ0_LO, 0); 5606 } 5607 5608 if_setdrvflagbits(ifp, IFF_DRV_RUNNING, 0); 5609 if_setdrvflagbits(ifp, 0, IFF_DRV_OACTIVE); 5610 5611 bge_ifmedia_upd_locked(ifp); 5612 5613 callout_reset(&sc->bge_stat_ch, hz, bge_tick, sc); 5614 } 5615 5616 static void 5617 bge_init(void *xsc) 5618 { 5619 struct bge_softc *sc = xsc; 5620 5621 BGE_LOCK(sc); 5622 bge_init_locked(sc); 5623 BGE_UNLOCK(sc); 5624 } 5625 5626 /* 5627 * Set media options. 5628 */ 5629 static int 5630 bge_ifmedia_upd(if_t ifp) 5631 { 5632 struct bge_softc *sc = if_getsoftc(ifp); 5633 int res; 5634 5635 BGE_LOCK(sc); 5636 res = bge_ifmedia_upd_locked(ifp); 5637 BGE_UNLOCK(sc); 5638 5639 return (res); 5640 } 5641 5642 static int 5643 bge_ifmedia_upd_locked(if_t ifp) 5644 { 5645 struct bge_softc *sc = if_getsoftc(ifp); 5646 struct mii_data *mii; 5647 struct mii_softc *miisc; 5648 struct ifmedia *ifm; 5649 5650 BGE_LOCK_ASSERT(sc); 5651 5652 ifm = &sc->bge_ifmedia; 5653 5654 /* If this is a 1000baseX NIC, enable the TBI port. */ 5655 if (sc->bge_flags & BGE_FLAG_TBI) { 5656 if (IFM_TYPE(ifm->ifm_media) != IFM_ETHER) 5657 return (EINVAL); 5658 switch(IFM_SUBTYPE(ifm->ifm_media)) { 5659 case IFM_AUTO: 5660 /* 5661 * The BCM5704 ASIC appears to have a special 5662 * mechanism for programming the autoneg 5663 * advertisement registers in TBI mode. 5664 */ 5665 if (sc->bge_asicrev == BGE_ASICREV_BCM5704) { 5666 uint32_t sgdig; 5667 sgdig = CSR_READ_4(sc, BGE_SGDIG_STS); 5668 if (sgdig & BGE_SGDIGSTS_DONE) { 5669 CSR_WRITE_4(sc, BGE_TX_TBI_AUTONEG, 0); 5670 sgdig = CSR_READ_4(sc, BGE_SGDIG_CFG); 5671 sgdig |= BGE_SGDIGCFG_AUTO | 5672 BGE_SGDIGCFG_PAUSE_CAP | 5673 BGE_SGDIGCFG_ASYM_PAUSE; 5674 CSR_WRITE_4(sc, BGE_SGDIG_CFG, 5675 sgdig | BGE_SGDIGCFG_SEND); 5676 DELAY(5); 5677 CSR_WRITE_4(sc, BGE_SGDIG_CFG, sgdig); 5678 } 5679 } 5680 break; 5681 case IFM_1000_SX: 5682 if ((ifm->ifm_media & IFM_GMASK) == IFM_FDX) { 5683 BGE_CLRBIT(sc, BGE_MAC_MODE, 5684 BGE_MACMODE_HALF_DUPLEX); 5685 } else { 5686 BGE_SETBIT(sc, BGE_MAC_MODE, 5687 BGE_MACMODE_HALF_DUPLEX); 5688 } 5689 DELAY(40); 5690 break; 5691 default: 5692 return (EINVAL); 5693 } 5694 return (0); 5695 } 5696 5697 sc->bge_link_evt++; 5698 mii = device_get_softc(sc->bge_miibus); 5699 LIST_FOREACH(miisc, &mii->mii_phys, mii_list) 5700 PHY_RESET(miisc); 5701 mii_mediachg(mii); 5702 5703 /* 5704 * Force an interrupt so that we will call bge_link_upd 5705 * if needed and clear any pending link state attention. 5706 * Without this we are not getting any further interrupts 5707 * for link state changes and thus will not UP the link and 5708 * not be able to send in bge_start_locked. The only 5709 * way to get things working was to receive a packet and 5710 * get an RX intr. 5711 * bge_tick should help for fiber cards and we might not 5712 * need to do this here if BGE_FLAG_TBI is set but as 5713 * we poll for fiber anyway it should not harm. 5714 */ 5715 if (sc->bge_asicrev == BGE_ASICREV_BCM5700 || 5716 sc->bge_flags & BGE_FLAG_5788) 5717 BGE_SETBIT(sc, BGE_MISC_LOCAL_CTL, BGE_MLC_INTR_SET); 5718 else 5719 BGE_SETBIT(sc, BGE_HCC_MODE, BGE_HCCMODE_COAL_NOW); 5720 5721 return (0); 5722 } 5723 5724 /* 5725 * Report current media status. 5726 */ 5727 static void 5728 bge_ifmedia_sts(if_t ifp, struct ifmediareq *ifmr) 5729 { 5730 struct bge_softc *sc = if_getsoftc(ifp); 5731 struct mii_data *mii; 5732 5733 BGE_LOCK(sc); 5734 5735 if ((if_getflags(ifp) & IFF_UP) == 0) { 5736 BGE_UNLOCK(sc); 5737 return; 5738 } 5739 if (sc->bge_flags & BGE_FLAG_TBI) { 5740 ifmr->ifm_status = IFM_AVALID; 5741 ifmr->ifm_active = IFM_ETHER; 5742 if (CSR_READ_4(sc, BGE_MAC_STS) & 5743 BGE_MACSTAT_TBI_PCS_SYNCHED) 5744 ifmr->ifm_status |= IFM_ACTIVE; 5745 else { 5746 ifmr->ifm_active |= IFM_NONE; 5747 BGE_UNLOCK(sc); 5748 return; 5749 } 5750 ifmr->ifm_active |= IFM_1000_SX; 5751 if (CSR_READ_4(sc, BGE_MAC_MODE) & BGE_MACMODE_HALF_DUPLEX) 5752 ifmr->ifm_active |= IFM_HDX; 5753 else 5754 ifmr->ifm_active |= IFM_FDX; 5755 BGE_UNLOCK(sc); 5756 return; 5757 } 5758 5759 mii = device_get_softc(sc->bge_miibus); 5760 mii_pollstat(mii); 5761 ifmr->ifm_active = mii->mii_media_active; 5762 ifmr->ifm_status = mii->mii_media_status; 5763 5764 BGE_UNLOCK(sc); 5765 } 5766 5767 static int 5768 bge_ioctl(if_t ifp, u_long command, caddr_t data) 5769 { 5770 struct bge_softc *sc = if_getsoftc(ifp); 5771 struct ifreq *ifr = (struct ifreq *) data; 5772 struct mii_data *mii; 5773 int flags, mask, error = 0; 5774 5775 switch (command) { 5776 case SIOCSIFMTU: 5777 if (BGE_IS_JUMBO_CAPABLE(sc) || 5778 (sc->bge_flags & BGE_FLAG_JUMBO_STD)) { 5779 if (ifr->ifr_mtu < ETHERMIN || 5780 ifr->ifr_mtu > BGE_JUMBO_MTU) { 5781 error = EINVAL; 5782 break; 5783 } 5784 } else if (ifr->ifr_mtu < ETHERMIN || ifr->ifr_mtu > ETHERMTU) { 5785 error = EINVAL; 5786 break; 5787 } 5788 BGE_LOCK(sc); 5789 if (if_getmtu(ifp) != ifr->ifr_mtu) { 5790 if_setmtu(ifp, ifr->ifr_mtu); 5791 if (if_getdrvflags(ifp) & IFF_DRV_RUNNING) { 5792 if_setdrvflagbits(ifp, 0, IFF_DRV_RUNNING); 5793 bge_init_locked(sc); 5794 } 5795 } 5796 BGE_UNLOCK(sc); 5797 break; 5798 case SIOCSIFFLAGS: 5799 BGE_LOCK(sc); 5800 if (if_getflags(ifp) & IFF_UP) { 5801 /* 5802 * If only the state of the PROMISC flag changed, 5803 * then just use the 'set promisc mode' command 5804 * instead of reinitializing the entire NIC. Doing 5805 * a full re-init means reloading the firmware and 5806 * waiting for it to start up, which may take a 5807 * second or two. Similarly for ALLMULTI. 5808 */ 5809 if (if_getdrvflags(ifp) & IFF_DRV_RUNNING) { 5810 flags = if_getflags(ifp) ^ sc->bge_if_flags; 5811 if (flags & IFF_PROMISC) 5812 bge_setpromisc(sc); 5813 if (flags & IFF_ALLMULTI) 5814 bge_setmulti(sc); 5815 } else 5816 bge_init_locked(sc); 5817 } else { 5818 if (if_getdrvflags(ifp) & IFF_DRV_RUNNING) { 5819 bge_stop(sc); 5820 } 5821 } 5822 sc->bge_if_flags = if_getflags(ifp); 5823 BGE_UNLOCK(sc); 5824 error = 0; 5825 break; 5826 case SIOCADDMULTI: 5827 case SIOCDELMULTI: 5828 if (if_getdrvflags(ifp) & IFF_DRV_RUNNING) { 5829 BGE_LOCK(sc); 5830 bge_setmulti(sc); 5831 BGE_UNLOCK(sc); 5832 error = 0; 5833 } 5834 break; 5835 case SIOCSIFMEDIA: 5836 case SIOCGIFMEDIA: 5837 if (sc->bge_flags & BGE_FLAG_TBI) { 5838 error = ifmedia_ioctl(ifp, ifr, 5839 &sc->bge_ifmedia, command); 5840 } else { 5841 mii = device_get_softc(sc->bge_miibus); 5842 error = ifmedia_ioctl(ifp, ifr, 5843 &mii->mii_media, command); 5844 } 5845 break; 5846 case SIOCSIFCAP: 5847 mask = ifr->ifr_reqcap ^ if_getcapenable(ifp); 5848 #ifdef DEVICE_POLLING 5849 if (mask & IFCAP_POLLING) { 5850 if (ifr->ifr_reqcap & IFCAP_POLLING) { 5851 error = ether_poll_register(bge_poll, ifp); 5852 if (error) 5853 return (error); 5854 BGE_LOCK(sc); 5855 BGE_SETBIT(sc, BGE_PCI_MISC_CTL, 5856 BGE_PCIMISCCTL_MASK_PCI_INTR); 5857 bge_writembx(sc, BGE_MBX_IRQ0_LO, 1); 5858 if_setcapenablebit(ifp, IFCAP_POLLING, 0); 5859 BGE_UNLOCK(sc); 5860 } else { 5861 error = ether_poll_deregister(ifp); 5862 /* Enable interrupt even in error case */ 5863 BGE_LOCK(sc); 5864 BGE_CLRBIT(sc, BGE_PCI_MISC_CTL, 5865 BGE_PCIMISCCTL_MASK_PCI_INTR); 5866 bge_writembx(sc, BGE_MBX_IRQ0_LO, 0); 5867 if_setcapenablebit(ifp, 0, IFCAP_POLLING); 5868 BGE_UNLOCK(sc); 5869 } 5870 } 5871 #endif 5872 if ((mask & IFCAP_TXCSUM) != 0 && 5873 (if_getcapabilities(ifp) & IFCAP_TXCSUM) != 0) { 5874 if_togglecapenable(ifp, IFCAP_TXCSUM); 5875 if ((if_getcapenable(ifp) & IFCAP_TXCSUM) != 0) 5876 if_sethwassistbits(ifp, 5877 sc->bge_csum_features, 0); 5878 else 5879 if_sethwassistbits(ifp, 0, 5880 sc->bge_csum_features); 5881 } 5882 5883 if ((mask & IFCAP_RXCSUM) != 0 && 5884 (if_getcapabilities(ifp) & IFCAP_RXCSUM) != 0) 5885 if_togglecapenable(ifp, IFCAP_RXCSUM); 5886 5887 if ((mask & IFCAP_TSO4) != 0 && 5888 (if_getcapabilities(ifp) & IFCAP_TSO4) != 0) { 5889 if_togglecapenable(ifp, IFCAP_TSO4); 5890 if ((if_getcapenable(ifp) & IFCAP_TSO4) != 0) 5891 if_sethwassistbits(ifp, CSUM_TSO, 0); 5892 else 5893 if_sethwassistbits(ifp, 0, CSUM_TSO); 5894 } 5895 5896 if (mask & IFCAP_VLAN_MTU) { 5897 if_togglecapenable(ifp, IFCAP_VLAN_MTU); 5898 if_setdrvflagbits(ifp, 0, IFF_DRV_RUNNING); 5899 bge_init(sc); 5900 } 5901 5902 if ((mask & IFCAP_VLAN_HWTSO) != 0 && 5903 (if_getcapabilities(ifp) & IFCAP_VLAN_HWTSO) != 0) 5904 if_togglecapenable(ifp, IFCAP_VLAN_HWTSO); 5905 if ((mask & IFCAP_VLAN_HWTAGGING) != 0 && 5906 (if_getcapabilities(ifp) & IFCAP_VLAN_HWTAGGING) != 0) { 5907 if_togglecapenable(ifp, IFCAP_VLAN_HWTAGGING); 5908 if ((if_getcapenable(ifp) & IFCAP_VLAN_HWTAGGING) == 0) 5909 if_setcapenablebit(ifp, 0, IFCAP_VLAN_HWTSO); 5910 BGE_LOCK(sc); 5911 bge_setvlan(sc); 5912 BGE_UNLOCK(sc); 5913 } 5914 #ifdef VLAN_CAPABILITIES 5915 if_vlancap(ifp); 5916 #endif 5917 break; 5918 default: 5919 error = ether_ioctl(ifp, command, data); 5920 break; 5921 } 5922 5923 return (error); 5924 } 5925 5926 static void 5927 bge_watchdog(struct bge_softc *sc) 5928 { 5929 if_t ifp; 5930 uint32_t status; 5931 5932 BGE_LOCK_ASSERT(sc); 5933 5934 if (sc->bge_timer == 0 || --sc->bge_timer) 5935 return; 5936 5937 /* If pause frames are active then don't reset the hardware. */ 5938 if ((CSR_READ_4(sc, BGE_RX_MODE) & BGE_RXMODE_FLOWCTL_ENABLE) != 0) { 5939 status = CSR_READ_4(sc, BGE_RX_STS); 5940 if ((status & BGE_RXSTAT_REMOTE_XOFFED) != 0) { 5941 /* 5942 * If link partner has us in XOFF state then wait for 5943 * the condition to clear. 5944 */ 5945 CSR_WRITE_4(sc, BGE_RX_STS, status); 5946 sc->bge_timer = BGE_TX_TIMEOUT; 5947 return; 5948 } else if ((status & BGE_RXSTAT_RCVD_XOFF) != 0 && 5949 (status & BGE_RXSTAT_RCVD_XON) != 0) { 5950 /* 5951 * If link partner has us in XOFF state then wait for 5952 * the condition to clear. 5953 */ 5954 CSR_WRITE_4(sc, BGE_RX_STS, status); 5955 sc->bge_timer = BGE_TX_TIMEOUT; 5956 return; 5957 } 5958 /* 5959 * Any other condition is unexpected and the controller 5960 * should be reset. 5961 */ 5962 } 5963 5964 ifp = sc->bge_ifp; 5965 5966 if_printf(ifp, "watchdog timeout -- resetting\n"); 5967 5968 if_setdrvflagbits(ifp, 0, IFF_DRV_RUNNING); 5969 bge_init_locked(sc); 5970 5971 if_inc_counter(ifp, IFCOUNTER_OERRORS, 1); 5972 } 5973 5974 static void 5975 bge_stop_block(struct bge_softc *sc, bus_size_t reg, uint32_t bit) 5976 { 5977 int i; 5978 5979 BGE_CLRBIT(sc, reg, bit); 5980 5981 for (i = 0; i < BGE_TIMEOUT; i++) { 5982 if ((CSR_READ_4(sc, reg) & bit) == 0) 5983 return; 5984 DELAY(100); 5985 } 5986 } 5987 5988 /* 5989 * Stop the adapter and free any mbufs allocated to the 5990 * RX and TX lists. 5991 */ 5992 static void 5993 bge_stop(struct bge_softc *sc) 5994 { 5995 if_t ifp; 5996 5997 BGE_LOCK_ASSERT(sc); 5998 5999 ifp = sc->bge_ifp; 6000 6001 callout_stop(&sc->bge_stat_ch); 6002 6003 /* Disable host interrupts. */ 6004 BGE_SETBIT(sc, BGE_PCI_MISC_CTL, BGE_PCIMISCCTL_MASK_PCI_INTR); 6005 bge_writembx(sc, BGE_MBX_IRQ0_LO, 1); 6006 6007 /* 6008 * Tell firmware we're shutting down. 6009 */ 6010 bge_stop_fw(sc); 6011 bge_sig_pre_reset(sc, BGE_RESET_SHUTDOWN); 6012 6013 /* 6014 * Disable all of the receiver blocks. 6015 */ 6016 bge_stop_block(sc, BGE_RX_MODE, BGE_RXMODE_ENABLE); 6017 bge_stop_block(sc, BGE_RBDI_MODE, BGE_RBDIMODE_ENABLE); 6018 bge_stop_block(sc, BGE_RXLP_MODE, BGE_RXLPMODE_ENABLE); 6019 if (BGE_IS_5700_FAMILY(sc)) 6020 bge_stop_block(sc, BGE_RXLS_MODE, BGE_RXLSMODE_ENABLE); 6021 bge_stop_block(sc, BGE_RDBDI_MODE, BGE_RBDIMODE_ENABLE); 6022 bge_stop_block(sc, BGE_RDC_MODE, BGE_RDCMODE_ENABLE); 6023 bge_stop_block(sc, BGE_RBDC_MODE, BGE_RBDCMODE_ENABLE); 6024 6025 /* 6026 * Disable all of the transmit blocks. 6027 */ 6028 bge_stop_block(sc, BGE_SRS_MODE, BGE_SRSMODE_ENABLE); 6029 bge_stop_block(sc, BGE_SBDI_MODE, BGE_SBDIMODE_ENABLE); 6030 bge_stop_block(sc, BGE_SDI_MODE, BGE_SDIMODE_ENABLE); 6031 bge_stop_block(sc, BGE_RDMA_MODE, BGE_RDMAMODE_ENABLE); 6032 bge_stop_block(sc, BGE_SDC_MODE, BGE_SDCMODE_ENABLE); 6033 if (BGE_IS_5700_FAMILY(sc)) 6034 bge_stop_block(sc, BGE_DMAC_MODE, BGE_DMACMODE_ENABLE); 6035 bge_stop_block(sc, BGE_SBDC_MODE, BGE_SBDCMODE_ENABLE); 6036 6037 /* 6038 * Shut down all of the memory managers and related 6039 * state machines. 6040 */ 6041 bge_stop_block(sc, BGE_HCC_MODE, BGE_HCCMODE_ENABLE); 6042 bge_stop_block(sc, BGE_WDMA_MODE, BGE_WDMAMODE_ENABLE); 6043 if (BGE_IS_5700_FAMILY(sc)) 6044 bge_stop_block(sc, BGE_MBCF_MODE, BGE_MBCFMODE_ENABLE); 6045 6046 CSR_WRITE_4(sc, BGE_FTQ_RESET, 0xFFFFFFFF); 6047 CSR_WRITE_4(sc, BGE_FTQ_RESET, 0); 6048 if (!(BGE_IS_5705_PLUS(sc))) { 6049 BGE_CLRBIT(sc, BGE_BMAN_MODE, BGE_BMANMODE_ENABLE); 6050 BGE_CLRBIT(sc, BGE_MARB_MODE, BGE_MARBMODE_ENABLE); 6051 } 6052 /* Update MAC statistics. */ 6053 if (BGE_IS_5705_PLUS(sc)) 6054 bge_stats_update_regs(sc); 6055 6056 bge_reset(sc); 6057 bge_sig_legacy(sc, BGE_RESET_SHUTDOWN); 6058 bge_sig_post_reset(sc, BGE_RESET_SHUTDOWN); 6059 6060 /* 6061 * Keep the ASF firmware running if up. 6062 */ 6063 if (sc->bge_asf_mode & ASF_STACKUP) 6064 BGE_SETBIT(sc, BGE_MODE_CTL, BGE_MODECTL_STACKUP); 6065 else 6066 BGE_CLRBIT(sc, BGE_MODE_CTL, BGE_MODECTL_STACKUP); 6067 6068 /* Free the RX lists. */ 6069 bge_free_rx_ring_std(sc); 6070 6071 /* Free jumbo RX list. */ 6072 if (BGE_IS_JUMBO_CAPABLE(sc)) 6073 bge_free_rx_ring_jumbo(sc); 6074 6075 /* Free TX buffers. */ 6076 bge_free_tx_ring(sc); 6077 6078 sc->bge_tx_saved_considx = BGE_TXCONS_UNSET; 6079 6080 /* Clear MAC's link state (PHY may still have link UP). */ 6081 if (bootverbose && sc->bge_link) 6082 if_printf(sc->bge_ifp, "link DOWN\n"); 6083 sc->bge_link = 0; 6084 6085 if_setdrvflagbits(ifp, 0, (IFF_DRV_RUNNING | IFF_DRV_OACTIVE)); 6086 } 6087 6088 /* 6089 * Stop all chip I/O so that the kernel's probe routines don't 6090 * get confused by errant DMAs when rebooting. 6091 */ 6092 static int 6093 bge_shutdown(device_t dev) 6094 { 6095 struct bge_softc *sc; 6096 6097 sc = device_get_softc(dev); 6098 BGE_LOCK(sc); 6099 bge_stop(sc); 6100 BGE_UNLOCK(sc); 6101 6102 return (0); 6103 } 6104 6105 static int 6106 bge_suspend(device_t dev) 6107 { 6108 struct bge_softc *sc; 6109 6110 sc = device_get_softc(dev); 6111 BGE_LOCK(sc); 6112 bge_stop(sc); 6113 BGE_UNLOCK(sc); 6114 6115 return (0); 6116 } 6117 6118 static int 6119 bge_resume(device_t dev) 6120 { 6121 struct bge_softc *sc; 6122 if_t ifp; 6123 6124 sc = device_get_softc(dev); 6125 BGE_LOCK(sc); 6126 ifp = sc->bge_ifp; 6127 if (if_getflags(ifp) & IFF_UP) { 6128 bge_init_locked(sc); 6129 if (if_getdrvflags(ifp) & IFF_DRV_RUNNING) 6130 bge_start_locked(ifp); 6131 } 6132 BGE_UNLOCK(sc); 6133 6134 return (0); 6135 } 6136 6137 static void 6138 bge_link_upd(struct bge_softc *sc) 6139 { 6140 struct mii_data *mii; 6141 uint32_t link, status; 6142 6143 BGE_LOCK_ASSERT(sc); 6144 6145 /* Clear 'pending link event' flag. */ 6146 sc->bge_link_evt = 0; 6147 6148 /* 6149 * Process link state changes. 6150 * Grrr. The link status word in the status block does 6151 * not work correctly on the BCM5700 rev AX and BX chips, 6152 * according to all available information. Hence, we have 6153 * to enable MII interrupts in order to properly obtain 6154 * async link changes. Unfortunately, this also means that 6155 * we have to read the MAC status register to detect link 6156 * changes, thereby adding an additional register access to 6157 * the interrupt handler. 6158 * 6159 * XXX: perhaps link state detection procedure used for 6160 * BGE_CHIPID_BCM5700_B2 can be used for others BCM5700 revisions. 6161 */ 6162 6163 if (sc->bge_asicrev == BGE_ASICREV_BCM5700 && 6164 sc->bge_chipid != BGE_CHIPID_BCM5700_B2) { 6165 status = CSR_READ_4(sc, BGE_MAC_STS); 6166 if (status & BGE_MACSTAT_MI_INTERRUPT) { 6167 mii = device_get_softc(sc->bge_miibus); 6168 mii_pollstat(mii); 6169 if (!sc->bge_link && 6170 mii->mii_media_status & IFM_ACTIVE && 6171 IFM_SUBTYPE(mii->mii_media_active) != IFM_NONE) { 6172 sc->bge_link++; 6173 if (bootverbose) 6174 if_printf(sc->bge_ifp, "link UP\n"); 6175 } else if (sc->bge_link && 6176 (!(mii->mii_media_status & IFM_ACTIVE) || 6177 IFM_SUBTYPE(mii->mii_media_active) == IFM_NONE)) { 6178 sc->bge_link = 0; 6179 if (bootverbose) 6180 if_printf(sc->bge_ifp, "link DOWN\n"); 6181 } 6182 6183 /* Clear the interrupt. */ 6184 CSR_WRITE_4(sc, BGE_MAC_EVT_ENB, 6185 BGE_EVTENB_MI_INTERRUPT); 6186 bge_miibus_readreg(sc->bge_dev, sc->bge_phy_addr, 6187 BRGPHY_MII_ISR); 6188 bge_miibus_writereg(sc->bge_dev, sc->bge_phy_addr, 6189 BRGPHY_MII_IMR, BRGPHY_INTRS); 6190 } 6191 return; 6192 } 6193 6194 if (sc->bge_flags & BGE_FLAG_TBI) { 6195 status = CSR_READ_4(sc, BGE_MAC_STS); 6196 if (status & BGE_MACSTAT_TBI_PCS_SYNCHED) { 6197 if (!sc->bge_link) { 6198 sc->bge_link++; 6199 if (sc->bge_asicrev == BGE_ASICREV_BCM5704) { 6200 BGE_CLRBIT(sc, BGE_MAC_MODE, 6201 BGE_MACMODE_TBI_SEND_CFGS); 6202 DELAY(40); 6203 } 6204 CSR_WRITE_4(sc, BGE_MAC_STS, 0xFFFFFFFF); 6205 if (bootverbose) 6206 if_printf(sc->bge_ifp, "link UP\n"); 6207 if_link_state_change(sc->bge_ifp, 6208 LINK_STATE_UP); 6209 } 6210 } else if (sc->bge_link) { 6211 sc->bge_link = 0; 6212 if (bootverbose) 6213 if_printf(sc->bge_ifp, "link DOWN\n"); 6214 if_link_state_change(sc->bge_ifp, LINK_STATE_DOWN); 6215 } 6216 } else if ((sc->bge_mi_mode & BGE_MIMODE_AUTOPOLL) != 0) { 6217 /* 6218 * Some broken BCM chips have BGE_STATFLAG_LINKSTATE_CHANGED bit 6219 * in status word always set. Workaround this bug by reading 6220 * PHY link status directly. 6221 */ 6222 link = (CSR_READ_4(sc, BGE_MI_STS) & BGE_MISTS_LINK) ? 1 : 0; 6223 6224 if (link != sc->bge_link || 6225 sc->bge_asicrev == BGE_ASICREV_BCM5700) { 6226 mii = device_get_softc(sc->bge_miibus); 6227 mii_pollstat(mii); 6228 if (!sc->bge_link && 6229 mii->mii_media_status & IFM_ACTIVE && 6230 IFM_SUBTYPE(mii->mii_media_active) != IFM_NONE) { 6231 sc->bge_link++; 6232 if (bootverbose) 6233 if_printf(sc->bge_ifp, "link UP\n"); 6234 } else if (sc->bge_link && 6235 (!(mii->mii_media_status & IFM_ACTIVE) || 6236 IFM_SUBTYPE(mii->mii_media_active) == IFM_NONE)) { 6237 sc->bge_link = 0; 6238 if (bootverbose) 6239 if_printf(sc->bge_ifp, "link DOWN\n"); 6240 } 6241 } 6242 } else { 6243 /* 6244 * For controllers that call mii_tick, we have to poll 6245 * link status. 6246 */ 6247 mii = device_get_softc(sc->bge_miibus); 6248 mii_pollstat(mii); 6249 bge_miibus_statchg(sc->bge_dev); 6250 } 6251 6252 /* Disable MAC attention when link is up. */ 6253 CSR_WRITE_4(sc, BGE_MAC_STS, BGE_MACSTAT_SYNC_CHANGED | 6254 BGE_MACSTAT_CFG_CHANGED | BGE_MACSTAT_MI_COMPLETE | 6255 BGE_MACSTAT_LINK_CHANGED); 6256 } 6257 6258 static void 6259 bge_add_sysctls(struct bge_softc *sc) 6260 { 6261 struct sysctl_ctx_list *ctx; 6262 struct sysctl_oid_list *children; 6263 int unit; 6264 6265 ctx = device_get_sysctl_ctx(sc->bge_dev); 6266 children = SYSCTL_CHILDREN(device_get_sysctl_tree(sc->bge_dev)); 6267 6268 #ifdef BGE_REGISTER_DEBUG 6269 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "debug_info", 6270 CTLTYPE_INT | CTLFLAG_RW, sc, 0, bge_sysctl_debug_info, "I", 6271 "Debug Information"); 6272 6273 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "reg_read", 6274 CTLTYPE_INT | CTLFLAG_RW, sc, 0, bge_sysctl_reg_read, "I", 6275 "MAC Register Read"); 6276 6277 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "ape_read", 6278 CTLTYPE_INT | CTLFLAG_RW, sc, 0, bge_sysctl_ape_read, "I", 6279 "APE Register Read"); 6280 6281 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "mem_read", 6282 CTLTYPE_INT | CTLFLAG_RW, sc, 0, bge_sysctl_mem_read, "I", 6283 "Memory Read"); 6284 6285 #endif 6286 6287 unit = device_get_unit(sc->bge_dev); 6288 /* 6289 * A common design characteristic for many Broadcom client controllers 6290 * is that they only support a single outstanding DMA read operation 6291 * on the PCIe bus. This means that it will take twice as long to fetch 6292 * a TX frame that is split into header and payload buffers as it does 6293 * to fetch a single, contiguous TX frame (2 reads vs. 1 read). For 6294 * these controllers, coalescing buffers to reduce the number of memory 6295 * reads is effective way to get maximum performance(about 940Mbps). 6296 * Without collapsing TX buffers the maximum TCP bulk transfer 6297 * performance is about 850Mbps. However forcing coalescing mbufs 6298 * consumes a lot of CPU cycles, so leave it off by default. 6299 */ 6300 sc->bge_forced_collapse = 0; 6301 SYSCTL_ADD_INT(ctx, children, OID_AUTO, "forced_collapse", 6302 CTLFLAG_RWTUN, &sc->bge_forced_collapse, 0, 6303 "Number of fragmented TX buffers of a frame allowed before " 6304 "forced collapsing"); 6305 6306 sc->bge_msi = 1; 6307 SYSCTL_ADD_INT(ctx, children, OID_AUTO, "msi", 6308 CTLFLAG_RDTUN, &sc->bge_msi, 0, "Enable MSI"); 6309 6310 /* 6311 * It seems all Broadcom controllers have a bug that can generate UDP 6312 * datagrams with checksum value 0 when TX UDP checksum offloading is 6313 * enabled. Generating UDP checksum value 0 is RFC 768 violation. 6314 * Even though the probability of generating such UDP datagrams is 6315 * low, I don't want to see FreeBSD boxes to inject such datagrams 6316 * into network so disable UDP checksum offloading by default. Users 6317 * still override this behavior by setting a sysctl variable, 6318 * dev.bge.0.forced_udpcsum. 6319 */ 6320 sc->bge_forced_udpcsum = 0; 6321 SYSCTL_ADD_INT(ctx, children, OID_AUTO, "forced_udpcsum", 6322 CTLFLAG_RWTUN, &sc->bge_forced_udpcsum, 0, 6323 "Enable UDP checksum offloading even if controller can " 6324 "generate UDP checksum value 0"); 6325 6326 if (BGE_IS_5705_PLUS(sc)) 6327 bge_add_sysctl_stats_regs(sc, ctx, children); 6328 else 6329 bge_add_sysctl_stats(sc, ctx, children); 6330 } 6331 6332 #define BGE_SYSCTL_STAT(sc, ctx, desc, parent, node, oid) \ 6333 SYSCTL_ADD_PROC(ctx, parent, OID_AUTO, oid, CTLTYPE_UINT|CTLFLAG_RD, \ 6334 sc, offsetof(struct bge_stats, node), bge_sysctl_stats, "IU", \ 6335 desc) 6336 6337 static void 6338 bge_add_sysctl_stats(struct bge_softc *sc, struct sysctl_ctx_list *ctx, 6339 struct sysctl_oid_list *parent) 6340 { 6341 struct sysctl_oid *tree; 6342 struct sysctl_oid_list *children, *schildren; 6343 6344 tree = SYSCTL_ADD_NODE(ctx, parent, OID_AUTO, "stats", CTLFLAG_RD, 6345 NULL, "BGE Statistics"); 6346 schildren = children = SYSCTL_CHILDREN(tree); 6347 BGE_SYSCTL_STAT(sc, ctx, "Frames Dropped Due To Filters", 6348 children, COSFramesDroppedDueToFilters, 6349 "FramesDroppedDueToFilters"); 6350 BGE_SYSCTL_STAT(sc, ctx, "NIC DMA Write Queue Full", 6351 children, nicDmaWriteQueueFull, "DmaWriteQueueFull"); 6352 BGE_SYSCTL_STAT(sc, ctx, "NIC DMA Write High Priority Queue Full", 6353 children, nicDmaWriteHighPriQueueFull, "DmaWriteHighPriQueueFull"); 6354 BGE_SYSCTL_STAT(sc, ctx, "NIC No More RX Buffer Descriptors", 6355 children, nicNoMoreRxBDs, "NoMoreRxBDs"); 6356 BGE_SYSCTL_STAT(sc, ctx, "Discarded Input Frames", 6357 children, ifInDiscards, "InputDiscards"); 6358 BGE_SYSCTL_STAT(sc, ctx, "Input Errors", 6359 children, ifInErrors, "InputErrors"); 6360 BGE_SYSCTL_STAT(sc, ctx, "NIC Recv Threshold Hit", 6361 children, nicRecvThresholdHit, "RecvThresholdHit"); 6362 BGE_SYSCTL_STAT(sc, ctx, "NIC DMA Read Queue Full", 6363 children, nicDmaReadQueueFull, "DmaReadQueueFull"); 6364 BGE_SYSCTL_STAT(sc, ctx, "NIC DMA Read High Priority Queue Full", 6365 children, nicDmaReadHighPriQueueFull, "DmaReadHighPriQueueFull"); 6366 BGE_SYSCTL_STAT(sc, ctx, "NIC Send Data Complete Queue Full", 6367 children, nicSendDataCompQueueFull, "SendDataCompQueueFull"); 6368 BGE_SYSCTL_STAT(sc, ctx, "NIC Ring Set Send Producer Index", 6369 children, nicRingSetSendProdIndex, "RingSetSendProdIndex"); 6370 BGE_SYSCTL_STAT(sc, ctx, "NIC Ring Status Update", 6371 children, nicRingStatusUpdate, "RingStatusUpdate"); 6372 BGE_SYSCTL_STAT(sc, ctx, "NIC Interrupts", 6373 children, nicInterrupts, "Interrupts"); 6374 BGE_SYSCTL_STAT(sc, ctx, "NIC Avoided Interrupts", 6375 children, nicAvoidedInterrupts, "AvoidedInterrupts"); 6376 BGE_SYSCTL_STAT(sc, ctx, "NIC Send Threshold Hit", 6377 children, nicSendThresholdHit, "SendThresholdHit"); 6378 6379 tree = SYSCTL_ADD_NODE(ctx, schildren, OID_AUTO, "rx", CTLFLAG_RD, 6380 NULL, "BGE RX Statistics"); 6381 children = SYSCTL_CHILDREN(tree); 6382 BGE_SYSCTL_STAT(sc, ctx, "Inbound Octets", 6383 children, rxstats.ifHCInOctets, "ifHCInOctets"); 6384 BGE_SYSCTL_STAT(sc, ctx, "Fragments", 6385 children, rxstats.etherStatsFragments, "Fragments"); 6386 BGE_SYSCTL_STAT(sc, ctx, "Inbound Unicast Packets", 6387 children, rxstats.ifHCInUcastPkts, "UnicastPkts"); 6388 BGE_SYSCTL_STAT(sc, ctx, "Inbound Multicast Packets", 6389 children, rxstats.ifHCInMulticastPkts, "MulticastPkts"); 6390 BGE_SYSCTL_STAT(sc, ctx, "FCS Errors", 6391 children, rxstats.dot3StatsFCSErrors, "FCSErrors"); 6392 BGE_SYSCTL_STAT(sc, ctx, "Alignment Errors", 6393 children, rxstats.dot3StatsAlignmentErrors, "AlignmentErrors"); 6394 BGE_SYSCTL_STAT(sc, ctx, "XON Pause Frames Received", 6395 children, rxstats.xonPauseFramesReceived, "xonPauseFramesReceived"); 6396 BGE_SYSCTL_STAT(sc, ctx, "XOFF Pause Frames Received", 6397 children, rxstats.xoffPauseFramesReceived, 6398 "xoffPauseFramesReceived"); 6399 BGE_SYSCTL_STAT(sc, ctx, "MAC Control Frames Received", 6400 children, rxstats.macControlFramesReceived, 6401 "ControlFramesReceived"); 6402 BGE_SYSCTL_STAT(sc, ctx, "XOFF State Entered", 6403 children, rxstats.xoffStateEntered, "xoffStateEntered"); 6404 BGE_SYSCTL_STAT(sc, ctx, "Frames Too Long", 6405 children, rxstats.dot3StatsFramesTooLong, "FramesTooLong"); 6406 BGE_SYSCTL_STAT(sc, ctx, "Jabbers", 6407 children, rxstats.etherStatsJabbers, "Jabbers"); 6408 BGE_SYSCTL_STAT(sc, ctx, "Undersized Packets", 6409 children, rxstats.etherStatsUndersizePkts, "UndersizePkts"); 6410 BGE_SYSCTL_STAT(sc, ctx, "Inbound Range Length Errors", 6411 children, rxstats.inRangeLengthError, "inRangeLengthError"); 6412 BGE_SYSCTL_STAT(sc, ctx, "Outbound Range Length Errors", 6413 children, rxstats.outRangeLengthError, "outRangeLengthError"); 6414 6415 tree = SYSCTL_ADD_NODE(ctx, schildren, OID_AUTO, "tx", CTLFLAG_RD, 6416 NULL, "BGE TX Statistics"); 6417 children = SYSCTL_CHILDREN(tree); 6418 BGE_SYSCTL_STAT(sc, ctx, "Outbound Octets", 6419 children, txstats.ifHCOutOctets, "ifHCOutOctets"); 6420 BGE_SYSCTL_STAT(sc, ctx, "TX Collisions", 6421 children, txstats.etherStatsCollisions, "Collisions"); 6422 BGE_SYSCTL_STAT(sc, ctx, "XON Sent", 6423 children, txstats.outXonSent, "XonSent"); 6424 BGE_SYSCTL_STAT(sc, ctx, "XOFF Sent", 6425 children, txstats.outXoffSent, "XoffSent"); 6426 BGE_SYSCTL_STAT(sc, ctx, "Flow Control Done", 6427 children, txstats.flowControlDone, "flowControlDone"); 6428 BGE_SYSCTL_STAT(sc, ctx, "Internal MAC TX errors", 6429 children, txstats.dot3StatsInternalMacTransmitErrors, 6430 "InternalMacTransmitErrors"); 6431 BGE_SYSCTL_STAT(sc, ctx, "Single Collision Frames", 6432 children, txstats.dot3StatsSingleCollisionFrames, 6433 "SingleCollisionFrames"); 6434 BGE_SYSCTL_STAT(sc, ctx, "Multiple Collision Frames", 6435 children, txstats.dot3StatsMultipleCollisionFrames, 6436 "MultipleCollisionFrames"); 6437 BGE_SYSCTL_STAT(sc, ctx, "Deferred Transmissions", 6438 children, txstats.dot3StatsDeferredTransmissions, 6439 "DeferredTransmissions"); 6440 BGE_SYSCTL_STAT(sc, ctx, "Excessive Collisions", 6441 children, txstats.dot3StatsExcessiveCollisions, 6442 "ExcessiveCollisions"); 6443 BGE_SYSCTL_STAT(sc, ctx, "Late Collisions", 6444 children, txstats.dot3StatsLateCollisions, 6445 "LateCollisions"); 6446 BGE_SYSCTL_STAT(sc, ctx, "Outbound Unicast Packets", 6447 children, txstats.ifHCOutUcastPkts, "UnicastPkts"); 6448 BGE_SYSCTL_STAT(sc, ctx, "Outbound Multicast Packets", 6449 children, txstats.ifHCOutMulticastPkts, "MulticastPkts"); 6450 BGE_SYSCTL_STAT(sc, ctx, "Outbound Broadcast Packets", 6451 children, txstats.ifHCOutBroadcastPkts, "BroadcastPkts"); 6452 BGE_SYSCTL_STAT(sc, ctx, "Carrier Sense Errors", 6453 children, txstats.dot3StatsCarrierSenseErrors, 6454 "CarrierSenseErrors"); 6455 BGE_SYSCTL_STAT(sc, ctx, "Outbound Discards", 6456 children, txstats.ifOutDiscards, "Discards"); 6457 BGE_SYSCTL_STAT(sc, ctx, "Outbound Errors", 6458 children, txstats.ifOutErrors, "Errors"); 6459 } 6460 6461 #undef BGE_SYSCTL_STAT 6462 6463 #define BGE_SYSCTL_STAT_ADD64(c, h, n, p, d) \ 6464 SYSCTL_ADD_UQUAD(c, h, OID_AUTO, n, CTLFLAG_RD, p, d) 6465 6466 static void 6467 bge_add_sysctl_stats_regs(struct bge_softc *sc, struct sysctl_ctx_list *ctx, 6468 struct sysctl_oid_list *parent) 6469 { 6470 struct sysctl_oid *tree; 6471 struct sysctl_oid_list *child, *schild; 6472 struct bge_mac_stats *stats; 6473 6474 stats = &sc->bge_mac_stats; 6475 tree = SYSCTL_ADD_NODE(ctx, parent, OID_AUTO, "stats", CTLFLAG_RD, 6476 NULL, "BGE Statistics"); 6477 schild = child = SYSCTL_CHILDREN(tree); 6478 BGE_SYSCTL_STAT_ADD64(ctx, child, "FramesDroppedDueToFilters", 6479 &stats->FramesDroppedDueToFilters, "Frames Dropped Due to Filters"); 6480 BGE_SYSCTL_STAT_ADD64(ctx, child, "DmaWriteQueueFull", 6481 &stats->DmaWriteQueueFull, "NIC DMA Write Queue Full"); 6482 BGE_SYSCTL_STAT_ADD64(ctx, child, "DmaWriteHighPriQueueFull", 6483 &stats->DmaWriteHighPriQueueFull, 6484 "NIC DMA Write High Priority Queue Full"); 6485 BGE_SYSCTL_STAT_ADD64(ctx, child, "NoMoreRxBDs", 6486 &stats->NoMoreRxBDs, "NIC No More RX Buffer Descriptors"); 6487 BGE_SYSCTL_STAT_ADD64(ctx, child, "InputDiscards", 6488 &stats->InputDiscards, "Discarded Input Frames"); 6489 BGE_SYSCTL_STAT_ADD64(ctx, child, "InputErrors", 6490 &stats->InputErrors, "Input Errors"); 6491 BGE_SYSCTL_STAT_ADD64(ctx, child, "RecvThresholdHit", 6492 &stats->RecvThresholdHit, "NIC Recv Threshold Hit"); 6493 6494 tree = SYSCTL_ADD_NODE(ctx, schild, OID_AUTO, "rx", CTLFLAG_RD, 6495 NULL, "BGE RX Statistics"); 6496 child = SYSCTL_CHILDREN(tree); 6497 BGE_SYSCTL_STAT_ADD64(ctx, child, "ifHCInOctets", 6498 &stats->ifHCInOctets, "Inbound Octets"); 6499 BGE_SYSCTL_STAT_ADD64(ctx, child, "Fragments", 6500 &stats->etherStatsFragments, "Fragments"); 6501 BGE_SYSCTL_STAT_ADD64(ctx, child, "UnicastPkts", 6502 &stats->ifHCInUcastPkts, "Inbound Unicast Packets"); 6503 BGE_SYSCTL_STAT_ADD64(ctx, child, "MulticastPkts", 6504 &stats->ifHCInMulticastPkts, "Inbound Multicast Packets"); 6505 BGE_SYSCTL_STAT_ADD64(ctx, child, "BroadcastPkts", 6506 &stats->ifHCInBroadcastPkts, "Inbound Broadcast Packets"); 6507 BGE_SYSCTL_STAT_ADD64(ctx, child, "FCSErrors", 6508 &stats->dot3StatsFCSErrors, "FCS Errors"); 6509 BGE_SYSCTL_STAT_ADD64(ctx, child, "AlignmentErrors", 6510 &stats->dot3StatsAlignmentErrors, "Alignment Errors"); 6511 BGE_SYSCTL_STAT_ADD64(ctx, child, "xonPauseFramesReceived", 6512 &stats->xonPauseFramesReceived, "XON Pause Frames Received"); 6513 BGE_SYSCTL_STAT_ADD64(ctx, child, "xoffPauseFramesReceived", 6514 &stats->xoffPauseFramesReceived, "XOFF Pause Frames Received"); 6515 BGE_SYSCTL_STAT_ADD64(ctx, child, "ControlFramesReceived", 6516 &stats->macControlFramesReceived, "MAC Control Frames Received"); 6517 BGE_SYSCTL_STAT_ADD64(ctx, child, "xoffStateEntered", 6518 &stats->xoffStateEntered, "XOFF State Entered"); 6519 BGE_SYSCTL_STAT_ADD64(ctx, child, "FramesTooLong", 6520 &stats->dot3StatsFramesTooLong, "Frames Too Long"); 6521 BGE_SYSCTL_STAT_ADD64(ctx, child, "Jabbers", 6522 &stats->etherStatsJabbers, "Jabbers"); 6523 BGE_SYSCTL_STAT_ADD64(ctx, child, "UndersizePkts", 6524 &stats->etherStatsUndersizePkts, "Undersized Packets"); 6525 6526 tree = SYSCTL_ADD_NODE(ctx, schild, OID_AUTO, "tx", CTLFLAG_RD, 6527 NULL, "BGE TX Statistics"); 6528 child = SYSCTL_CHILDREN(tree); 6529 BGE_SYSCTL_STAT_ADD64(ctx, child, "ifHCOutOctets", 6530 &stats->ifHCOutOctets, "Outbound Octets"); 6531 BGE_SYSCTL_STAT_ADD64(ctx, child, "Collisions", 6532 &stats->etherStatsCollisions, "TX Collisions"); 6533 BGE_SYSCTL_STAT_ADD64(ctx, child, "XonSent", 6534 &stats->outXonSent, "XON Sent"); 6535 BGE_SYSCTL_STAT_ADD64(ctx, child, "XoffSent", 6536 &stats->outXoffSent, "XOFF Sent"); 6537 BGE_SYSCTL_STAT_ADD64(ctx, child, "InternalMacTransmitErrors", 6538 &stats->dot3StatsInternalMacTransmitErrors, 6539 "Internal MAC TX Errors"); 6540 BGE_SYSCTL_STAT_ADD64(ctx, child, "SingleCollisionFrames", 6541 &stats->dot3StatsSingleCollisionFrames, "Single Collision Frames"); 6542 BGE_SYSCTL_STAT_ADD64(ctx, child, "MultipleCollisionFrames", 6543 &stats->dot3StatsMultipleCollisionFrames, 6544 "Multiple Collision Frames"); 6545 BGE_SYSCTL_STAT_ADD64(ctx, child, "DeferredTransmissions", 6546 &stats->dot3StatsDeferredTransmissions, "Deferred Transmissions"); 6547 BGE_SYSCTL_STAT_ADD64(ctx, child, "ExcessiveCollisions", 6548 &stats->dot3StatsExcessiveCollisions, "Excessive Collisions"); 6549 BGE_SYSCTL_STAT_ADD64(ctx, child, "LateCollisions", 6550 &stats->dot3StatsLateCollisions, "Late Collisions"); 6551 BGE_SYSCTL_STAT_ADD64(ctx, child, "UnicastPkts", 6552 &stats->ifHCOutUcastPkts, "Outbound Unicast Packets"); 6553 BGE_SYSCTL_STAT_ADD64(ctx, child, "MulticastPkts", 6554 &stats->ifHCOutMulticastPkts, "Outbound Multicast Packets"); 6555 BGE_SYSCTL_STAT_ADD64(ctx, child, "BroadcastPkts", 6556 &stats->ifHCOutBroadcastPkts, "Outbound Broadcast Packets"); 6557 } 6558 6559 #undef BGE_SYSCTL_STAT_ADD64 6560 6561 static int 6562 bge_sysctl_stats(SYSCTL_HANDLER_ARGS) 6563 { 6564 struct bge_softc *sc; 6565 uint32_t result; 6566 int offset; 6567 6568 sc = (struct bge_softc *)arg1; 6569 offset = arg2; 6570 result = CSR_READ_4(sc, BGE_MEMWIN_START + BGE_STATS_BLOCK + offset + 6571 offsetof(bge_hostaddr, bge_addr_lo)); 6572 return (sysctl_handle_int(oidp, &result, 0, req)); 6573 } 6574 6575 #ifdef BGE_REGISTER_DEBUG 6576 static int 6577 bge_sysctl_debug_info(SYSCTL_HANDLER_ARGS) 6578 { 6579 struct bge_softc *sc; 6580 uint16_t *sbdata; 6581 int error, result, sbsz; 6582 int i, j; 6583 6584 result = -1; 6585 error = sysctl_handle_int(oidp, &result, 0, req); 6586 if (error || (req->newptr == NULL)) 6587 return (error); 6588 6589 if (result == 1) { 6590 sc = (struct bge_softc *)arg1; 6591 6592 if (sc->bge_asicrev == BGE_ASICREV_BCM5700 && 6593 sc->bge_chipid != BGE_CHIPID_BCM5700_C0) 6594 sbsz = BGE_STATUS_BLK_SZ; 6595 else 6596 sbsz = 32; 6597 sbdata = (uint16_t *)sc->bge_ldata.bge_status_block; 6598 printf("Status Block:\n"); 6599 BGE_LOCK(sc); 6600 bus_dmamap_sync(sc->bge_cdata.bge_status_tag, 6601 sc->bge_cdata.bge_status_map, 6602 BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE); 6603 for (i = 0x0; i < sbsz / sizeof(uint16_t); ) { 6604 printf("%06x:", i); 6605 for (j = 0; j < 8; j++) 6606 printf(" %04x", sbdata[i++]); 6607 printf("\n"); 6608 } 6609 6610 printf("Registers:\n"); 6611 for (i = 0x800; i < 0xA00; ) { 6612 printf("%06x:", i); 6613 for (j = 0; j < 8; j++) { 6614 printf(" %08x", CSR_READ_4(sc, i)); 6615 i += 4; 6616 } 6617 printf("\n"); 6618 } 6619 BGE_UNLOCK(sc); 6620 6621 printf("Hardware Flags:\n"); 6622 if (BGE_IS_5717_PLUS(sc)) 6623 printf(" - 5717 Plus\n"); 6624 if (BGE_IS_5755_PLUS(sc)) 6625 printf(" - 5755 Plus\n"); 6626 if (BGE_IS_575X_PLUS(sc)) 6627 printf(" - 575X Plus\n"); 6628 if (BGE_IS_5705_PLUS(sc)) 6629 printf(" - 5705 Plus\n"); 6630 if (BGE_IS_5714_FAMILY(sc)) 6631 printf(" - 5714 Family\n"); 6632 if (BGE_IS_5700_FAMILY(sc)) 6633 printf(" - 5700 Family\n"); 6634 if (sc->bge_flags & BGE_FLAG_JUMBO) 6635 printf(" - Supports Jumbo Frames\n"); 6636 if (sc->bge_flags & BGE_FLAG_PCIX) 6637 printf(" - PCI-X Bus\n"); 6638 if (sc->bge_flags & BGE_FLAG_PCIE) 6639 printf(" - PCI Express Bus\n"); 6640 if (sc->bge_phy_flags & BGE_PHY_NO_3LED) 6641 printf(" - No 3 LEDs\n"); 6642 if (sc->bge_flags & BGE_FLAG_RX_ALIGNBUG) 6643 printf(" - RX Alignment Bug\n"); 6644 } 6645 6646 return (error); 6647 } 6648 6649 static int 6650 bge_sysctl_reg_read(SYSCTL_HANDLER_ARGS) 6651 { 6652 struct bge_softc *sc; 6653 int error; 6654 uint16_t result; 6655 uint32_t val; 6656 6657 result = -1; 6658 error = sysctl_handle_int(oidp, &result, 0, req); 6659 if (error || (req->newptr == NULL)) 6660 return (error); 6661 6662 if (result < 0x8000) { 6663 sc = (struct bge_softc *)arg1; 6664 val = CSR_READ_4(sc, result); 6665 printf("reg 0x%06X = 0x%08X\n", result, val); 6666 } 6667 6668 return (error); 6669 } 6670 6671 static int 6672 bge_sysctl_ape_read(SYSCTL_HANDLER_ARGS) 6673 { 6674 struct bge_softc *sc; 6675 int error; 6676 uint16_t result; 6677 uint32_t val; 6678 6679 result = -1; 6680 error = sysctl_handle_int(oidp, &result, 0, req); 6681 if (error || (req->newptr == NULL)) 6682 return (error); 6683 6684 if (result < 0x8000) { 6685 sc = (struct bge_softc *)arg1; 6686 val = APE_READ_4(sc, result); 6687 printf("reg 0x%06X = 0x%08X\n", result, val); 6688 } 6689 6690 return (error); 6691 } 6692 6693 static int 6694 bge_sysctl_mem_read(SYSCTL_HANDLER_ARGS) 6695 { 6696 struct bge_softc *sc; 6697 int error; 6698 uint16_t result; 6699 uint32_t val; 6700 6701 result = -1; 6702 error = sysctl_handle_int(oidp, &result, 0, req); 6703 if (error || (req->newptr == NULL)) 6704 return (error); 6705 6706 if (result < 0x8000) { 6707 sc = (struct bge_softc *)arg1; 6708 val = bge_readmem_ind(sc, result); 6709 printf("mem 0x%06X = 0x%08X\n", result, val); 6710 } 6711 6712 return (error); 6713 } 6714 #endif 6715 6716 static int 6717 bge_get_eaddr_fw(struct bge_softc *sc, uint8_t ether_addr[]) 6718 { 6719 6720 if (sc->bge_flags & BGE_FLAG_EADDR) 6721 return (1); 6722 6723 #ifdef __sparc64__ 6724 OF_getetheraddr(sc->bge_dev, ether_addr); 6725 return (0); 6726 #endif 6727 return (1); 6728 } 6729 6730 static int 6731 bge_get_eaddr_mem(struct bge_softc *sc, uint8_t ether_addr[]) 6732 { 6733 uint32_t mac_addr; 6734 6735 mac_addr = bge_readmem_ind(sc, BGE_SRAM_MAC_ADDR_HIGH_MB); 6736 if ((mac_addr >> 16) == 0x484b) { 6737 ether_addr[0] = (uint8_t)(mac_addr >> 8); 6738 ether_addr[1] = (uint8_t)mac_addr; 6739 mac_addr = bge_readmem_ind(sc, BGE_SRAM_MAC_ADDR_LOW_MB); 6740 ether_addr[2] = (uint8_t)(mac_addr >> 24); 6741 ether_addr[3] = (uint8_t)(mac_addr >> 16); 6742 ether_addr[4] = (uint8_t)(mac_addr >> 8); 6743 ether_addr[5] = (uint8_t)mac_addr; 6744 return (0); 6745 } 6746 return (1); 6747 } 6748 6749 static int 6750 bge_get_eaddr_nvram(struct bge_softc *sc, uint8_t ether_addr[]) 6751 { 6752 int mac_offset = BGE_EE_MAC_OFFSET; 6753 6754 if (sc->bge_asicrev == BGE_ASICREV_BCM5906) 6755 mac_offset = BGE_EE_MAC_OFFSET_5906; 6756 6757 return (bge_read_nvram(sc, ether_addr, mac_offset + 2, 6758 ETHER_ADDR_LEN)); 6759 } 6760 6761 static int 6762 bge_get_eaddr_eeprom(struct bge_softc *sc, uint8_t ether_addr[]) 6763 { 6764 6765 if (sc->bge_asicrev == BGE_ASICREV_BCM5906) 6766 return (1); 6767 6768 return (bge_read_eeprom(sc, ether_addr, BGE_EE_MAC_OFFSET + 2, 6769 ETHER_ADDR_LEN)); 6770 } 6771 6772 static int 6773 bge_get_eaddr(struct bge_softc *sc, uint8_t eaddr[]) 6774 { 6775 static const bge_eaddr_fcn_t bge_eaddr_funcs[] = { 6776 /* NOTE: Order is critical */ 6777 bge_get_eaddr_fw, 6778 bge_get_eaddr_mem, 6779 bge_get_eaddr_nvram, 6780 bge_get_eaddr_eeprom, 6781 NULL 6782 }; 6783 const bge_eaddr_fcn_t *func; 6784 6785 for (func = bge_eaddr_funcs; *func != NULL; ++func) { 6786 if ((*func)(sc, eaddr) == 0) 6787 break; 6788 } 6789 return (*func == NULL ? ENXIO : 0); 6790 } 6791 6792 static uint64_t 6793 bge_get_counter(if_t ifp, ift_counter cnt) 6794 { 6795 struct bge_softc *sc; 6796 struct bge_mac_stats *stats; 6797 6798 sc = if_getsoftc(ifp); 6799 if (!BGE_IS_5705_PLUS(sc)) 6800 return (if_get_counter_default(ifp, cnt)); 6801 stats = &sc->bge_mac_stats; 6802 6803 switch (cnt) { 6804 case IFCOUNTER_IERRORS: 6805 return (stats->NoMoreRxBDs + stats->InputDiscards + 6806 stats->InputErrors); 6807 case IFCOUNTER_COLLISIONS: 6808 return (stats->etherStatsCollisions); 6809 default: 6810 return (if_get_counter_default(ifp, cnt)); 6811 } 6812 } 6813 6814 #ifdef NETDUMP 6815 static void 6816 bge_netdump_init(if_t ifp, int *nrxr, int *ncl, int *clsize) 6817 { 6818 struct bge_softc *sc; 6819 6820 sc = if_getsoftc(ifp); 6821 BGE_LOCK(sc); 6822 *nrxr = sc->bge_return_ring_cnt; 6823 *ncl = NETDUMP_MAX_IN_FLIGHT; 6824 if ((sc->bge_flags & BGE_FLAG_JUMBO_STD) != 0 && 6825 (if_getmtu(sc->bge_ifp) + ETHER_HDR_LEN + ETHER_CRC_LEN + 6826 ETHER_VLAN_ENCAP_LEN > (MCLBYTES - ETHER_ALIGN))) 6827 *clsize = MJUM9BYTES; 6828 else 6829 *clsize = MCLBYTES; 6830 BGE_UNLOCK(sc); 6831 } 6832 6833 static void 6834 bge_netdump_event(if_t ifp __unused, enum netdump_ev event __unused) 6835 { 6836 } 6837 6838 static int 6839 bge_netdump_transmit(if_t ifp, struct mbuf *m) 6840 { 6841 struct bge_softc *sc; 6842 uint32_t prodidx; 6843 int error; 6844 6845 sc = if_getsoftc(ifp); 6846 if ((if_getdrvflags(ifp) & (IFF_DRV_RUNNING | IFF_DRV_OACTIVE)) != 6847 IFF_DRV_RUNNING) 6848 return (1); 6849 6850 prodidx = sc->bge_tx_prodidx; 6851 error = bge_encap(sc, &m, &prodidx); 6852 if (error == 0) 6853 bge_start_tx(sc, prodidx); 6854 return (error); 6855 } 6856 6857 static int 6858 bge_netdump_poll(if_t ifp, int count) 6859 { 6860 struct bge_softc *sc; 6861 uint32_t rx_prod, tx_cons; 6862 6863 sc = if_getsoftc(ifp); 6864 if ((if_getdrvflags(ifp) & (IFF_DRV_RUNNING | IFF_DRV_OACTIVE)) != 6865 IFF_DRV_RUNNING) 6866 return (1); 6867 6868 bus_dmamap_sync(sc->bge_cdata.bge_status_tag, 6869 sc->bge_cdata.bge_status_map, 6870 BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE); 6871 6872 rx_prod = sc->bge_ldata.bge_status_block->bge_idx[0].bge_rx_prod_idx; 6873 tx_cons = sc->bge_ldata.bge_status_block->bge_idx[0].bge_tx_cons_idx; 6874 6875 bus_dmamap_sync(sc->bge_cdata.bge_status_tag, 6876 sc->bge_cdata.bge_status_map, 6877 BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE); 6878 6879 (void)bge_rxeof(sc, rx_prod, 0); 6880 bge_txeof(sc, tx_cons); 6881 return (0); 6882 } 6883 #endif /* NETDUMP */ 6884