xref: /freebsd/sys/dev/bge/if_bge.c (revision 780fb4a2fa9a9aee5ac48a60b790f567c0dc13e9)
1 /*-
2  * SPDX-License-Identifier: BSD-4-Clause
3  *
4  * Copyright (c) 2001 Wind River Systems
5  * Copyright (c) 1997, 1998, 1999, 2001
6  *	Bill Paul <wpaul@windriver.com>.  All rights reserved.
7  *
8  * Redistribution and use in source and binary forms, with or without
9  * modification, are permitted provided that the following conditions
10  * are met:
11  * 1. Redistributions of source code must retain the above copyright
12  *    notice, this list of conditions and the following disclaimer.
13  * 2. Redistributions in binary form must reproduce the above copyright
14  *    notice, this list of conditions and the following disclaimer in the
15  *    documentation and/or other materials provided with the distribution.
16  * 3. All advertising materials mentioning features or use of this software
17  *    must display the following acknowledgement:
18  *	This product includes software developed by Bill Paul.
19  * 4. Neither the name of the author nor the names of any co-contributors
20  *    may be used to endorse or promote products derived from this software
21  *    without specific prior written permission.
22  *
23  * THIS SOFTWARE IS PROVIDED BY Bill Paul AND CONTRIBUTORS ``AS IS'' AND
24  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
25  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
26  * ARE DISCLAIMED.  IN NO EVENT SHALL Bill Paul OR THE VOICES IN HIS HEAD
27  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
28  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
29  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
30  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
31  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
32  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF
33  * THE POSSIBILITY OF SUCH DAMAGE.
34  */
35 
36 #include <sys/cdefs.h>
37 __FBSDID("$FreeBSD$");
38 
39 /*
40  * Broadcom BCM57xx(x)/BCM590x NetXtreme and NetLink family Ethernet driver
41  *
42  * The Broadcom BCM5700 is based on technology originally developed by
43  * Alteon Networks as part of the Tigon I and Tigon II Gigabit Ethernet
44  * MAC chips. The BCM5700, sometimes referred to as the Tigon III, has
45  * two on-board MIPS R4000 CPUs and can have as much as 16MB of external
46  * SSRAM. The BCM5700 supports TCP, UDP and IP checksum offload, jumbo
47  * frames, highly configurable RX filtering, and 16 RX and TX queues
48  * (which, along with RX filter rules, can be used for QOS applications).
49  * Other features, such as TCP segmentation, may be available as part
50  * of value-added firmware updates. Unlike the Tigon I and Tigon II,
51  * firmware images can be stored in hardware and need not be compiled
52  * into the driver.
53  *
54  * The BCM5700 supports the PCI v2.2 and PCI-X v1.0 standards, and will
55  * function in a 32-bit/64-bit 33/66Mhz bus, or a 64-bit/133Mhz bus.
56  *
57  * The BCM5701 is a single-chip solution incorporating both the BCM5700
58  * MAC and a BCM5401 10/100/1000 PHY. Unlike the BCM5700, the BCM5701
59  * does not support external SSRAM.
60  *
61  * Broadcom also produces a variation of the BCM5700 under the "Altima"
62  * brand name, which is functionally similar but lacks PCI-X support.
63  *
64  * Without external SSRAM, you can only have at most 4 TX rings,
65  * and the use of the mini RX ring is disabled. This seems to imply
66  * that these features are simply not available on the BCM5701. As a
67  * result, this driver does not implement any support for the mini RX
68  * ring.
69  */
70 
71 #ifdef HAVE_KERNEL_OPTION_HEADERS
72 #include "opt_device_polling.h"
73 #endif
74 
75 #include <sys/param.h>
76 #include <sys/endian.h>
77 #include <sys/systm.h>
78 #include <sys/sockio.h>
79 #include <sys/mbuf.h>
80 #include <sys/malloc.h>
81 #include <sys/kernel.h>
82 #include <sys/module.h>
83 #include <sys/socket.h>
84 #include <sys/sysctl.h>
85 #include <sys/taskqueue.h>
86 
87 #include <net/if.h>
88 #include <net/if_var.h>
89 #include <net/if_arp.h>
90 #include <net/ethernet.h>
91 #include <net/if_dl.h>
92 #include <net/if_media.h>
93 
94 #include <net/bpf.h>
95 
96 #include <net/if_types.h>
97 #include <net/if_vlan_var.h>
98 
99 #include <netinet/in_systm.h>
100 #include <netinet/in.h>
101 #include <netinet/ip.h>
102 #include <netinet/tcp.h>
103 #include <netinet/netdump/netdump.h>
104 
105 #include <machine/bus.h>
106 #include <machine/resource.h>
107 #include <sys/bus.h>
108 #include <sys/rman.h>
109 
110 #include <dev/mii/mii.h>
111 #include <dev/mii/miivar.h>
112 #include "miidevs.h"
113 #include <dev/mii/brgphyreg.h>
114 
115 #ifdef __sparc64__
116 #include <dev/ofw/ofw_bus.h>
117 #include <dev/ofw/openfirm.h>
118 #include <machine/ofw_machdep.h>
119 #include <machine/ver.h>
120 #endif
121 
122 #include <dev/pci/pcireg.h>
123 #include <dev/pci/pcivar.h>
124 
125 #include <dev/bge/if_bgereg.h>
126 
127 #define	BGE_CSUM_FEATURES	(CSUM_IP | CSUM_TCP)
128 #define	ETHER_MIN_NOPAD		(ETHER_MIN_LEN - ETHER_CRC_LEN) /* i.e., 60 */
129 
130 MODULE_DEPEND(bge, pci, 1, 1, 1);
131 MODULE_DEPEND(bge, ether, 1, 1, 1);
132 MODULE_DEPEND(bge, miibus, 1, 1, 1);
133 
134 /* "device miibus" required.  See GENERIC if you get errors here. */
135 #include "miibus_if.h"
136 
137 /*
138  * Various supported device vendors/types and their names. Note: the
139  * spec seems to indicate that the hardware still has Alteon's vendor
140  * ID burned into it, though it will always be overriden by the vendor
141  * ID in the EEPROM. Just to be safe, we cover all possibilities.
142  */
143 static const struct bge_type {
144 	uint16_t	bge_vid;
145 	uint16_t	bge_did;
146 } bge_devs[] = {
147 	{ ALTEON_VENDORID,	ALTEON_DEVICEID_BCM5700 },
148 	{ ALTEON_VENDORID,	ALTEON_DEVICEID_BCM5701 },
149 
150 	{ ALTIMA_VENDORID,	ALTIMA_DEVICE_AC1000 },
151 	{ ALTIMA_VENDORID,	ALTIMA_DEVICE_AC1002 },
152 	{ ALTIMA_VENDORID,	ALTIMA_DEVICE_AC9100 },
153 
154 	{ APPLE_VENDORID,	APPLE_DEVICE_BCM5701 },
155 
156 	{ BCOM_VENDORID,	BCOM_DEVICEID_BCM5700 },
157 	{ BCOM_VENDORID,	BCOM_DEVICEID_BCM5701 },
158 	{ BCOM_VENDORID,	BCOM_DEVICEID_BCM5702 },
159 	{ BCOM_VENDORID,	BCOM_DEVICEID_BCM5702_ALT },
160 	{ BCOM_VENDORID,	BCOM_DEVICEID_BCM5702X },
161 	{ BCOM_VENDORID,	BCOM_DEVICEID_BCM5703 },
162 	{ BCOM_VENDORID,	BCOM_DEVICEID_BCM5703_ALT },
163 	{ BCOM_VENDORID,	BCOM_DEVICEID_BCM5703X },
164 	{ BCOM_VENDORID,	BCOM_DEVICEID_BCM5704C },
165 	{ BCOM_VENDORID,	BCOM_DEVICEID_BCM5704S },
166 	{ BCOM_VENDORID,	BCOM_DEVICEID_BCM5704S_ALT },
167 	{ BCOM_VENDORID,	BCOM_DEVICEID_BCM5705 },
168 	{ BCOM_VENDORID,	BCOM_DEVICEID_BCM5705F },
169 	{ BCOM_VENDORID,	BCOM_DEVICEID_BCM5705K },
170 	{ BCOM_VENDORID,	BCOM_DEVICEID_BCM5705M },
171 	{ BCOM_VENDORID,	BCOM_DEVICEID_BCM5705M_ALT },
172 	{ BCOM_VENDORID,	BCOM_DEVICEID_BCM5714C },
173 	{ BCOM_VENDORID,	BCOM_DEVICEID_BCM5714S },
174 	{ BCOM_VENDORID,	BCOM_DEVICEID_BCM5715 },
175 	{ BCOM_VENDORID,	BCOM_DEVICEID_BCM5715S },
176 	{ BCOM_VENDORID,	BCOM_DEVICEID_BCM5717 },
177 	{ BCOM_VENDORID,	BCOM_DEVICEID_BCM5717C },
178 	{ BCOM_VENDORID,	BCOM_DEVICEID_BCM5718 },
179 	{ BCOM_VENDORID,	BCOM_DEVICEID_BCM5719 },
180 	{ BCOM_VENDORID,	BCOM_DEVICEID_BCM5720 },
181 	{ BCOM_VENDORID,	BCOM_DEVICEID_BCM5721 },
182 	{ BCOM_VENDORID,	BCOM_DEVICEID_BCM5722 },
183 	{ BCOM_VENDORID,	BCOM_DEVICEID_BCM5723 },
184 	{ BCOM_VENDORID,	BCOM_DEVICEID_BCM5725 },
185 	{ BCOM_VENDORID,	BCOM_DEVICEID_BCM5727 },
186 	{ BCOM_VENDORID,	BCOM_DEVICEID_BCM5750 },
187 	{ BCOM_VENDORID,	BCOM_DEVICEID_BCM5750M },
188 	{ BCOM_VENDORID,	BCOM_DEVICEID_BCM5751 },
189 	{ BCOM_VENDORID,	BCOM_DEVICEID_BCM5751F },
190 	{ BCOM_VENDORID,	BCOM_DEVICEID_BCM5751M },
191 	{ BCOM_VENDORID,	BCOM_DEVICEID_BCM5752 },
192 	{ BCOM_VENDORID,	BCOM_DEVICEID_BCM5752M },
193 	{ BCOM_VENDORID,	BCOM_DEVICEID_BCM5753 },
194 	{ BCOM_VENDORID,	BCOM_DEVICEID_BCM5753F },
195 	{ BCOM_VENDORID,	BCOM_DEVICEID_BCM5753M },
196 	{ BCOM_VENDORID,	BCOM_DEVICEID_BCM5754 },
197 	{ BCOM_VENDORID,	BCOM_DEVICEID_BCM5754M },
198 	{ BCOM_VENDORID,	BCOM_DEVICEID_BCM5755 },
199 	{ BCOM_VENDORID,	BCOM_DEVICEID_BCM5755M },
200 	{ BCOM_VENDORID,	BCOM_DEVICEID_BCM5756 },
201 	{ BCOM_VENDORID,	BCOM_DEVICEID_BCM5761 },
202 	{ BCOM_VENDORID,	BCOM_DEVICEID_BCM5761E },
203 	{ BCOM_VENDORID,	BCOM_DEVICEID_BCM5761S },
204 	{ BCOM_VENDORID,	BCOM_DEVICEID_BCM5761SE },
205 	{ BCOM_VENDORID,	BCOM_DEVICEID_BCM5762 },
206 	{ BCOM_VENDORID,	BCOM_DEVICEID_BCM5764 },
207 	{ BCOM_VENDORID,	BCOM_DEVICEID_BCM5780 },
208 	{ BCOM_VENDORID,	BCOM_DEVICEID_BCM5780S },
209 	{ BCOM_VENDORID,	BCOM_DEVICEID_BCM5781 },
210 	{ BCOM_VENDORID,	BCOM_DEVICEID_BCM5782 },
211 	{ BCOM_VENDORID,	BCOM_DEVICEID_BCM5784 },
212 	{ BCOM_VENDORID,	BCOM_DEVICEID_BCM5785F },
213 	{ BCOM_VENDORID,	BCOM_DEVICEID_BCM5785G },
214 	{ BCOM_VENDORID,	BCOM_DEVICEID_BCM5786 },
215 	{ BCOM_VENDORID,	BCOM_DEVICEID_BCM5787 },
216 	{ BCOM_VENDORID,	BCOM_DEVICEID_BCM5787F },
217 	{ BCOM_VENDORID,	BCOM_DEVICEID_BCM5787M },
218 	{ BCOM_VENDORID,	BCOM_DEVICEID_BCM5788 },
219 	{ BCOM_VENDORID,	BCOM_DEVICEID_BCM5789 },
220 	{ BCOM_VENDORID,	BCOM_DEVICEID_BCM5901 },
221 	{ BCOM_VENDORID,	BCOM_DEVICEID_BCM5901A2 },
222 	{ BCOM_VENDORID,	BCOM_DEVICEID_BCM5903M },
223 	{ BCOM_VENDORID,	BCOM_DEVICEID_BCM5906 },
224 	{ BCOM_VENDORID,	BCOM_DEVICEID_BCM5906M },
225 	{ BCOM_VENDORID,	BCOM_DEVICEID_BCM57760 },
226 	{ BCOM_VENDORID,	BCOM_DEVICEID_BCM57761 },
227 	{ BCOM_VENDORID,	BCOM_DEVICEID_BCM57762 },
228 	{ BCOM_VENDORID,	BCOM_DEVICEID_BCM57764 },
229 	{ BCOM_VENDORID,	BCOM_DEVICEID_BCM57765 },
230 	{ BCOM_VENDORID,	BCOM_DEVICEID_BCM57766 },
231 	{ BCOM_VENDORID,	BCOM_DEVICEID_BCM57767 },
232 	{ BCOM_VENDORID,	BCOM_DEVICEID_BCM57780 },
233 	{ BCOM_VENDORID,	BCOM_DEVICEID_BCM57781 },
234 	{ BCOM_VENDORID,	BCOM_DEVICEID_BCM57782 },
235 	{ BCOM_VENDORID,	BCOM_DEVICEID_BCM57785 },
236 	{ BCOM_VENDORID,	BCOM_DEVICEID_BCM57786 },
237 	{ BCOM_VENDORID,	BCOM_DEVICEID_BCM57787 },
238 	{ BCOM_VENDORID,	BCOM_DEVICEID_BCM57788 },
239 	{ BCOM_VENDORID,	BCOM_DEVICEID_BCM57790 },
240 	{ BCOM_VENDORID,	BCOM_DEVICEID_BCM57791 },
241 	{ BCOM_VENDORID,	BCOM_DEVICEID_BCM57795 },
242 
243 	{ SK_VENDORID,		SK_DEVICEID_ALTIMA },
244 
245 	{ TC_VENDORID,		TC_DEVICEID_3C996 },
246 
247 	{ FJTSU_VENDORID,	FJTSU_DEVICEID_PW008GE4 },
248 	{ FJTSU_VENDORID,	FJTSU_DEVICEID_PW008GE5 },
249 	{ FJTSU_VENDORID,	FJTSU_DEVICEID_PP250450 },
250 
251 	{ 0, 0 }
252 };
253 
254 static const struct bge_vendor {
255 	uint16_t	v_id;
256 	const char	*v_name;
257 } bge_vendors[] = {
258 	{ ALTEON_VENDORID,	"Alteon" },
259 	{ ALTIMA_VENDORID,	"Altima" },
260 	{ APPLE_VENDORID,	"Apple" },
261 	{ BCOM_VENDORID,	"Broadcom" },
262 	{ SK_VENDORID,		"SysKonnect" },
263 	{ TC_VENDORID,		"3Com" },
264 	{ FJTSU_VENDORID,	"Fujitsu" },
265 
266 	{ 0, NULL }
267 };
268 
269 static const struct bge_revision {
270 	uint32_t	br_chipid;
271 	const char	*br_name;
272 } bge_revisions[] = {
273 	{ BGE_CHIPID_BCM5700_A0,	"BCM5700 A0" },
274 	{ BGE_CHIPID_BCM5700_A1,	"BCM5700 A1" },
275 	{ BGE_CHIPID_BCM5700_B0,	"BCM5700 B0" },
276 	{ BGE_CHIPID_BCM5700_B1,	"BCM5700 B1" },
277 	{ BGE_CHIPID_BCM5700_B2,	"BCM5700 B2" },
278 	{ BGE_CHIPID_BCM5700_B3,	"BCM5700 B3" },
279 	{ BGE_CHIPID_BCM5700_ALTIMA,	"BCM5700 Altima" },
280 	{ BGE_CHIPID_BCM5700_C0,	"BCM5700 C0" },
281 	{ BGE_CHIPID_BCM5701_A0,	"BCM5701 A0" },
282 	{ BGE_CHIPID_BCM5701_B0,	"BCM5701 B0" },
283 	{ BGE_CHIPID_BCM5701_B2,	"BCM5701 B2" },
284 	{ BGE_CHIPID_BCM5701_B5,	"BCM5701 B5" },
285 	{ BGE_CHIPID_BCM5703_A0,	"BCM5703 A0" },
286 	{ BGE_CHIPID_BCM5703_A1,	"BCM5703 A1" },
287 	{ BGE_CHIPID_BCM5703_A2,	"BCM5703 A2" },
288 	{ BGE_CHIPID_BCM5703_A3,	"BCM5703 A3" },
289 	{ BGE_CHIPID_BCM5703_B0,	"BCM5703 B0" },
290 	{ BGE_CHIPID_BCM5704_A0,	"BCM5704 A0" },
291 	{ BGE_CHIPID_BCM5704_A1,	"BCM5704 A1" },
292 	{ BGE_CHIPID_BCM5704_A2,	"BCM5704 A2" },
293 	{ BGE_CHIPID_BCM5704_A3,	"BCM5704 A3" },
294 	{ BGE_CHIPID_BCM5704_B0,	"BCM5704 B0" },
295 	{ BGE_CHIPID_BCM5705_A0,	"BCM5705 A0" },
296 	{ BGE_CHIPID_BCM5705_A1,	"BCM5705 A1" },
297 	{ BGE_CHIPID_BCM5705_A2,	"BCM5705 A2" },
298 	{ BGE_CHIPID_BCM5705_A3,	"BCM5705 A3" },
299 	{ BGE_CHIPID_BCM5750_A0,	"BCM5750 A0" },
300 	{ BGE_CHIPID_BCM5750_A1,	"BCM5750 A1" },
301 	{ BGE_CHIPID_BCM5750_A3,	"BCM5750 A3" },
302 	{ BGE_CHIPID_BCM5750_B0,	"BCM5750 B0" },
303 	{ BGE_CHIPID_BCM5750_B1,	"BCM5750 B1" },
304 	{ BGE_CHIPID_BCM5750_C0,	"BCM5750 C0" },
305 	{ BGE_CHIPID_BCM5750_C1,	"BCM5750 C1" },
306 	{ BGE_CHIPID_BCM5750_C2,	"BCM5750 C2" },
307 	{ BGE_CHIPID_BCM5714_A0,	"BCM5714 A0" },
308 	{ BGE_CHIPID_BCM5752_A0,	"BCM5752 A0" },
309 	{ BGE_CHIPID_BCM5752_A1,	"BCM5752 A1" },
310 	{ BGE_CHIPID_BCM5752_A2,	"BCM5752 A2" },
311 	{ BGE_CHIPID_BCM5714_B0,	"BCM5714 B0" },
312 	{ BGE_CHIPID_BCM5714_B3,	"BCM5714 B3" },
313 	{ BGE_CHIPID_BCM5715_A0,	"BCM5715 A0" },
314 	{ BGE_CHIPID_BCM5715_A1,	"BCM5715 A1" },
315 	{ BGE_CHIPID_BCM5715_A3,	"BCM5715 A3" },
316 	{ BGE_CHIPID_BCM5717_A0,	"BCM5717 A0" },
317 	{ BGE_CHIPID_BCM5717_B0,	"BCM5717 B0" },
318 	{ BGE_CHIPID_BCM5717_C0,	"BCM5717 C0" },
319 	{ BGE_CHIPID_BCM5719_A0,	"BCM5719 A0" },
320 	{ BGE_CHIPID_BCM5720_A0,	"BCM5720 A0" },
321 	{ BGE_CHIPID_BCM5755_A0,	"BCM5755 A0" },
322 	{ BGE_CHIPID_BCM5755_A1,	"BCM5755 A1" },
323 	{ BGE_CHIPID_BCM5755_A2,	"BCM5755 A2" },
324 	{ BGE_CHIPID_BCM5722_A0,	"BCM5722 A0" },
325 	{ BGE_CHIPID_BCM5761_A0,	"BCM5761 A0" },
326 	{ BGE_CHIPID_BCM5761_A1,	"BCM5761 A1" },
327 	{ BGE_CHIPID_BCM5762_A0,	"BCM5762 A0" },
328 	{ BGE_CHIPID_BCM5784_A0,	"BCM5784 A0" },
329 	{ BGE_CHIPID_BCM5784_A1,	"BCM5784 A1" },
330 	/* 5754 and 5787 share the same ASIC ID */
331 	{ BGE_CHIPID_BCM5787_A0,	"BCM5754/5787 A0" },
332 	{ BGE_CHIPID_BCM5787_A1,	"BCM5754/5787 A1" },
333 	{ BGE_CHIPID_BCM5787_A2,	"BCM5754/5787 A2" },
334 	{ BGE_CHIPID_BCM5906_A1,	"BCM5906 A1" },
335 	{ BGE_CHIPID_BCM5906_A2,	"BCM5906 A2" },
336 	{ BGE_CHIPID_BCM57765_A0,	"BCM57765 A0" },
337 	{ BGE_CHIPID_BCM57765_B0,	"BCM57765 B0" },
338 	{ BGE_CHIPID_BCM57780_A0,	"BCM57780 A0" },
339 	{ BGE_CHIPID_BCM57780_A1,	"BCM57780 A1" },
340 
341 	{ 0, NULL }
342 };
343 
344 /*
345  * Some defaults for major revisions, so that newer steppings
346  * that we don't know about have a shot at working.
347  */
348 static const struct bge_revision bge_majorrevs[] = {
349 	{ BGE_ASICREV_BCM5700,		"unknown BCM5700" },
350 	{ BGE_ASICREV_BCM5701,		"unknown BCM5701" },
351 	{ BGE_ASICREV_BCM5703,		"unknown BCM5703" },
352 	{ BGE_ASICREV_BCM5704,		"unknown BCM5704" },
353 	{ BGE_ASICREV_BCM5705,		"unknown BCM5705" },
354 	{ BGE_ASICREV_BCM5750,		"unknown BCM5750" },
355 	{ BGE_ASICREV_BCM5714_A0,	"unknown BCM5714" },
356 	{ BGE_ASICREV_BCM5752,		"unknown BCM5752" },
357 	{ BGE_ASICREV_BCM5780,		"unknown BCM5780" },
358 	{ BGE_ASICREV_BCM5714,		"unknown BCM5714" },
359 	{ BGE_ASICREV_BCM5755,		"unknown BCM5755" },
360 	{ BGE_ASICREV_BCM5761,		"unknown BCM5761" },
361 	{ BGE_ASICREV_BCM5784,		"unknown BCM5784" },
362 	{ BGE_ASICREV_BCM5785,		"unknown BCM5785" },
363 	/* 5754 and 5787 share the same ASIC ID */
364 	{ BGE_ASICREV_BCM5787,		"unknown BCM5754/5787" },
365 	{ BGE_ASICREV_BCM5906,		"unknown BCM5906" },
366 	{ BGE_ASICREV_BCM57765,		"unknown BCM57765" },
367 	{ BGE_ASICREV_BCM57766,		"unknown BCM57766" },
368 	{ BGE_ASICREV_BCM57780,		"unknown BCM57780" },
369 	{ BGE_ASICREV_BCM5717,		"unknown BCM5717" },
370 	{ BGE_ASICREV_BCM5719,		"unknown BCM5719" },
371 	{ BGE_ASICREV_BCM5720,		"unknown BCM5720" },
372 	{ BGE_ASICREV_BCM5762,		"unknown BCM5762" },
373 
374 	{ 0, NULL }
375 };
376 
377 #define	BGE_IS_JUMBO_CAPABLE(sc)	((sc)->bge_flags & BGE_FLAG_JUMBO)
378 #define	BGE_IS_5700_FAMILY(sc)		((sc)->bge_flags & BGE_FLAG_5700_FAMILY)
379 #define	BGE_IS_5705_PLUS(sc)		((sc)->bge_flags & BGE_FLAG_5705_PLUS)
380 #define	BGE_IS_5714_FAMILY(sc)		((sc)->bge_flags & BGE_FLAG_5714_FAMILY)
381 #define	BGE_IS_575X_PLUS(sc)		((sc)->bge_flags & BGE_FLAG_575X_PLUS)
382 #define	BGE_IS_5755_PLUS(sc)		((sc)->bge_flags & BGE_FLAG_5755_PLUS)
383 #define	BGE_IS_5717_PLUS(sc)		((sc)->bge_flags & BGE_FLAG_5717_PLUS)
384 #define	BGE_IS_57765_PLUS(sc)		((sc)->bge_flags & BGE_FLAG_57765_PLUS)
385 
386 static uint32_t bge_chipid(device_t);
387 static const struct bge_vendor * bge_lookup_vendor(uint16_t);
388 static const struct bge_revision * bge_lookup_rev(uint32_t);
389 
390 typedef int	(*bge_eaddr_fcn_t)(struct bge_softc *, uint8_t[]);
391 
392 static int bge_probe(device_t);
393 static int bge_attach(device_t);
394 static int bge_detach(device_t);
395 static int bge_suspend(device_t);
396 static int bge_resume(device_t);
397 static void bge_release_resources(struct bge_softc *);
398 static void bge_dma_map_addr(void *, bus_dma_segment_t *, int, int);
399 static int bge_dma_alloc(struct bge_softc *);
400 static void bge_dma_free(struct bge_softc *);
401 static int bge_dma_ring_alloc(struct bge_softc *, bus_size_t, bus_size_t,
402     bus_dma_tag_t *, uint8_t **, bus_dmamap_t *, bus_addr_t *, const char *);
403 
404 static void bge_devinfo(struct bge_softc *);
405 static int bge_mbox_reorder(struct bge_softc *);
406 
407 static int bge_get_eaddr_fw(struct bge_softc *sc, uint8_t ether_addr[]);
408 static int bge_get_eaddr_mem(struct bge_softc *, uint8_t[]);
409 static int bge_get_eaddr_nvram(struct bge_softc *, uint8_t[]);
410 static int bge_get_eaddr_eeprom(struct bge_softc *, uint8_t[]);
411 static int bge_get_eaddr(struct bge_softc *, uint8_t[]);
412 
413 static void bge_txeof(struct bge_softc *, uint16_t);
414 static void bge_rxcsum(struct bge_softc *, struct bge_rx_bd *, struct mbuf *);
415 static int bge_rxeof(struct bge_softc *, uint16_t, int);
416 
417 static void bge_asf_driver_up (struct bge_softc *);
418 static void bge_tick(void *);
419 static void bge_stats_clear_regs(struct bge_softc *);
420 static void bge_stats_update(struct bge_softc *);
421 static void bge_stats_update_regs(struct bge_softc *);
422 static struct mbuf *bge_check_short_dma(struct mbuf *);
423 static struct mbuf *bge_setup_tso(struct bge_softc *, struct mbuf *,
424     uint16_t *, uint16_t *);
425 static int bge_encap(struct bge_softc *, struct mbuf **, uint32_t *);
426 
427 static void bge_intr(void *);
428 static int bge_msi_intr(void *);
429 static void bge_intr_task(void *, int);
430 static void bge_start(if_t);
431 static void bge_start_locked(if_t);
432 static void bge_start_tx(struct bge_softc *, uint32_t);
433 static int bge_ioctl(if_t, u_long, caddr_t);
434 static void bge_init_locked(struct bge_softc *);
435 static void bge_init(void *);
436 static void bge_stop_block(struct bge_softc *, bus_size_t, uint32_t);
437 static void bge_stop(struct bge_softc *);
438 static void bge_watchdog(struct bge_softc *);
439 static int bge_shutdown(device_t);
440 static int bge_ifmedia_upd_locked(if_t);
441 static int bge_ifmedia_upd(if_t);
442 static void bge_ifmedia_sts(if_t, struct ifmediareq *);
443 static uint64_t bge_get_counter(if_t, ift_counter);
444 
445 static uint8_t bge_nvram_getbyte(struct bge_softc *, int, uint8_t *);
446 static int bge_read_nvram(struct bge_softc *, caddr_t, int, int);
447 
448 static uint8_t bge_eeprom_getbyte(struct bge_softc *, int, uint8_t *);
449 static int bge_read_eeprom(struct bge_softc *, caddr_t, int, int);
450 
451 static void bge_setpromisc(struct bge_softc *);
452 static void bge_setmulti(struct bge_softc *);
453 static void bge_setvlan(struct bge_softc *);
454 
455 static __inline void bge_rxreuse_std(struct bge_softc *, int);
456 static __inline void bge_rxreuse_jumbo(struct bge_softc *, int);
457 static int bge_newbuf_std(struct bge_softc *, int);
458 static int bge_newbuf_jumbo(struct bge_softc *, int);
459 static int bge_init_rx_ring_std(struct bge_softc *);
460 static void bge_free_rx_ring_std(struct bge_softc *);
461 static int bge_init_rx_ring_jumbo(struct bge_softc *);
462 static void bge_free_rx_ring_jumbo(struct bge_softc *);
463 static void bge_free_tx_ring(struct bge_softc *);
464 static int bge_init_tx_ring(struct bge_softc *);
465 
466 static int bge_chipinit(struct bge_softc *);
467 static int bge_blockinit(struct bge_softc *);
468 static uint32_t bge_dma_swap_options(struct bge_softc *);
469 
470 static int bge_has_eaddr(struct bge_softc *);
471 static uint32_t bge_readmem_ind(struct bge_softc *, int);
472 static void bge_writemem_ind(struct bge_softc *, int, int);
473 static void bge_writembx(struct bge_softc *, int, int);
474 #ifdef notdef
475 static uint32_t bge_readreg_ind(struct bge_softc *, int);
476 #endif
477 static void bge_writemem_direct(struct bge_softc *, int, int);
478 static void bge_writereg_ind(struct bge_softc *, int, int);
479 
480 static int bge_miibus_readreg(device_t, int, int);
481 static int bge_miibus_writereg(device_t, int, int, int);
482 static void bge_miibus_statchg(device_t);
483 #ifdef DEVICE_POLLING
484 static int bge_poll(if_t ifp, enum poll_cmd cmd, int count);
485 #endif
486 
487 #define	BGE_RESET_SHUTDOWN	0
488 #define	BGE_RESET_START		1
489 #define	BGE_RESET_SUSPEND	2
490 static void bge_sig_post_reset(struct bge_softc *, int);
491 static void bge_sig_legacy(struct bge_softc *, int);
492 static void bge_sig_pre_reset(struct bge_softc *, int);
493 static void bge_stop_fw(struct bge_softc *);
494 static int bge_reset(struct bge_softc *);
495 static void bge_link_upd(struct bge_softc *);
496 
497 static void bge_ape_lock_init(struct bge_softc *);
498 static void bge_ape_read_fw_ver(struct bge_softc *);
499 static int bge_ape_lock(struct bge_softc *, int);
500 static void bge_ape_unlock(struct bge_softc *, int);
501 static void bge_ape_send_event(struct bge_softc *, uint32_t);
502 static void bge_ape_driver_state_change(struct bge_softc *, int);
503 
504 /*
505  * The BGE_REGISTER_DEBUG option is only for low-level debugging.  It may
506  * leak information to untrusted users.  It is also known to cause alignment
507  * traps on certain architectures.
508  */
509 #ifdef BGE_REGISTER_DEBUG
510 static int bge_sysctl_debug_info(SYSCTL_HANDLER_ARGS);
511 static int bge_sysctl_reg_read(SYSCTL_HANDLER_ARGS);
512 static int bge_sysctl_ape_read(SYSCTL_HANDLER_ARGS);
513 static int bge_sysctl_mem_read(SYSCTL_HANDLER_ARGS);
514 #endif
515 static void bge_add_sysctls(struct bge_softc *);
516 static void bge_add_sysctl_stats_regs(struct bge_softc *,
517     struct sysctl_ctx_list *, struct sysctl_oid_list *);
518 static void bge_add_sysctl_stats(struct bge_softc *, struct sysctl_ctx_list *,
519     struct sysctl_oid_list *);
520 static int bge_sysctl_stats(SYSCTL_HANDLER_ARGS);
521 
522 NETDUMP_DEFINE(bge);
523 
524 static device_method_t bge_methods[] = {
525 	/* Device interface */
526 	DEVMETHOD(device_probe,		bge_probe),
527 	DEVMETHOD(device_attach,	bge_attach),
528 	DEVMETHOD(device_detach,	bge_detach),
529 	DEVMETHOD(device_shutdown,	bge_shutdown),
530 	DEVMETHOD(device_suspend,	bge_suspend),
531 	DEVMETHOD(device_resume,	bge_resume),
532 
533 	/* MII interface */
534 	DEVMETHOD(miibus_readreg,	bge_miibus_readreg),
535 	DEVMETHOD(miibus_writereg,	bge_miibus_writereg),
536 	DEVMETHOD(miibus_statchg,	bge_miibus_statchg),
537 
538 	DEVMETHOD_END
539 };
540 
541 static driver_t bge_driver = {
542 	"bge",
543 	bge_methods,
544 	sizeof(struct bge_softc)
545 };
546 
547 static devclass_t bge_devclass;
548 
549 DRIVER_MODULE(bge, pci, bge_driver, bge_devclass, 0, 0);
550 MODULE_PNP_INFO("U16:vendor;U16:device", pci, bge, bge_devs,
551     sizeof(bge_devs), nitems(bge_devs) - 1);
552 DRIVER_MODULE(miibus, bge, miibus_driver, miibus_devclass, 0, 0);
553 
554 static int bge_allow_asf = 1;
555 
556 static SYSCTL_NODE(_hw, OID_AUTO, bge, CTLFLAG_RD, 0, "BGE driver parameters");
557 SYSCTL_INT(_hw_bge, OID_AUTO, allow_asf, CTLFLAG_RDTUN, &bge_allow_asf, 0,
558 	"Allow ASF mode if available");
559 
560 #define	SPARC64_BLADE_1500_MODEL	"SUNW,Sun-Blade-1500"
561 #define	SPARC64_BLADE_1500_PATH_BGE	"/pci@1f,700000/network@2"
562 #define	SPARC64_BLADE_2500_MODEL	"SUNW,Sun-Blade-2500"
563 #define	SPARC64_BLADE_2500_PATH_BGE	"/pci@1c,600000/network@3"
564 #define	SPARC64_OFW_SUBVENDOR		"subsystem-vendor-id"
565 
566 static int
567 bge_has_eaddr(struct bge_softc *sc)
568 {
569 #ifdef __sparc64__
570 	char buf[sizeof(SPARC64_BLADE_1500_PATH_BGE)];
571 	device_t dev;
572 	uint32_t subvendor;
573 
574 	dev = sc->bge_dev;
575 
576 	/*
577 	 * The on-board BGEs found in sun4u machines aren't fitted with
578 	 * an EEPROM which means that we have to obtain the MAC address
579 	 * via OFW and that some tests will always fail.  We distinguish
580 	 * such BGEs by the subvendor ID, which also has to be obtained
581 	 * from OFW instead of the PCI configuration space as the latter
582 	 * indicates Broadcom as the subvendor of the netboot interface.
583 	 * For early Blade 1500 and 2500 we even have to check the OFW
584 	 * device path as the subvendor ID always defaults to Broadcom
585 	 * there.
586 	 */
587 	if (OF_getprop(ofw_bus_get_node(dev), SPARC64_OFW_SUBVENDOR,
588 	    &subvendor, sizeof(subvendor)) == sizeof(subvendor) &&
589 	    (subvendor == FJTSU_VENDORID || subvendor == SUN_VENDORID))
590 		return (0);
591 	memset(buf, 0, sizeof(buf));
592 	if (OF_package_to_path(ofw_bus_get_node(dev), buf, sizeof(buf)) > 0) {
593 		if (strcmp(sparc64_model, SPARC64_BLADE_1500_MODEL) == 0 &&
594 		    strcmp(buf, SPARC64_BLADE_1500_PATH_BGE) == 0)
595 			return (0);
596 		if (strcmp(sparc64_model, SPARC64_BLADE_2500_MODEL) == 0 &&
597 		    strcmp(buf, SPARC64_BLADE_2500_PATH_BGE) == 0)
598 			return (0);
599 	}
600 #endif
601 	return (1);
602 }
603 
604 static uint32_t
605 bge_readmem_ind(struct bge_softc *sc, int off)
606 {
607 	device_t dev;
608 	uint32_t val;
609 
610 	if (sc->bge_asicrev == BGE_ASICREV_BCM5906 &&
611 	    off >= BGE_STATS_BLOCK && off < BGE_SEND_RING_1_TO_4)
612 		return (0);
613 
614 	dev = sc->bge_dev;
615 
616 	pci_write_config(dev, BGE_PCI_MEMWIN_BASEADDR, off, 4);
617 	val = pci_read_config(dev, BGE_PCI_MEMWIN_DATA, 4);
618 	pci_write_config(dev, BGE_PCI_MEMWIN_BASEADDR, 0, 4);
619 	return (val);
620 }
621 
622 static void
623 bge_writemem_ind(struct bge_softc *sc, int off, int val)
624 {
625 	device_t dev;
626 
627 	if (sc->bge_asicrev == BGE_ASICREV_BCM5906 &&
628 	    off >= BGE_STATS_BLOCK && off < BGE_SEND_RING_1_TO_4)
629 		return;
630 
631 	dev = sc->bge_dev;
632 
633 	pci_write_config(dev, BGE_PCI_MEMWIN_BASEADDR, off, 4);
634 	pci_write_config(dev, BGE_PCI_MEMWIN_DATA, val, 4);
635 	pci_write_config(dev, BGE_PCI_MEMWIN_BASEADDR, 0, 4);
636 }
637 
638 #ifdef notdef
639 static uint32_t
640 bge_readreg_ind(struct bge_softc *sc, int off)
641 {
642 	device_t dev;
643 
644 	dev = sc->bge_dev;
645 
646 	pci_write_config(dev, BGE_PCI_REG_BASEADDR, off, 4);
647 	return (pci_read_config(dev, BGE_PCI_REG_DATA, 4));
648 }
649 #endif
650 
651 static void
652 bge_writereg_ind(struct bge_softc *sc, int off, int val)
653 {
654 	device_t dev;
655 
656 	dev = sc->bge_dev;
657 
658 	pci_write_config(dev, BGE_PCI_REG_BASEADDR, off, 4);
659 	pci_write_config(dev, BGE_PCI_REG_DATA, val, 4);
660 }
661 
662 static void
663 bge_writemem_direct(struct bge_softc *sc, int off, int val)
664 {
665 	CSR_WRITE_4(sc, off, val);
666 }
667 
668 static void
669 bge_writembx(struct bge_softc *sc, int off, int val)
670 {
671 	if (sc->bge_asicrev == BGE_ASICREV_BCM5906)
672 		off += BGE_LPMBX_IRQ0_HI - BGE_MBX_IRQ0_HI;
673 
674 	CSR_WRITE_4(sc, off, val);
675 	if ((sc->bge_flags & BGE_FLAG_MBOX_REORDER) != 0)
676 		CSR_READ_4(sc, off);
677 }
678 
679 /*
680  * Clear all stale locks and select the lock for this driver instance.
681  */
682 static void
683 bge_ape_lock_init(struct bge_softc *sc)
684 {
685 	uint32_t bit, regbase;
686 	int i;
687 
688 	if (sc->bge_asicrev == BGE_ASICREV_BCM5761)
689 		regbase = BGE_APE_LOCK_GRANT;
690 	else
691 		regbase = BGE_APE_PER_LOCK_GRANT;
692 
693 	/* Clear any stale locks. */
694 	for (i = BGE_APE_LOCK_PHY0; i <= BGE_APE_LOCK_GPIO; i++) {
695 		switch (i) {
696 		case BGE_APE_LOCK_PHY0:
697 		case BGE_APE_LOCK_PHY1:
698 		case BGE_APE_LOCK_PHY2:
699 		case BGE_APE_LOCK_PHY3:
700 			bit = BGE_APE_LOCK_GRANT_DRIVER0;
701 			break;
702 		default:
703 			if (sc->bge_func_addr == 0)
704 				bit = BGE_APE_LOCK_GRANT_DRIVER0;
705 			else
706 				bit = (1 << sc->bge_func_addr);
707 		}
708 		APE_WRITE_4(sc, regbase + 4 * i, bit);
709 	}
710 
711 	/* Select the PHY lock based on the device's function number. */
712 	switch (sc->bge_func_addr) {
713 	case 0:
714 		sc->bge_phy_ape_lock = BGE_APE_LOCK_PHY0;
715 		break;
716 	case 1:
717 		sc->bge_phy_ape_lock = BGE_APE_LOCK_PHY1;
718 		break;
719 	case 2:
720 		sc->bge_phy_ape_lock = BGE_APE_LOCK_PHY2;
721 		break;
722 	case 3:
723 		sc->bge_phy_ape_lock = BGE_APE_LOCK_PHY3;
724 		break;
725 	default:
726 		device_printf(sc->bge_dev,
727 		    "PHY lock not supported on this function\n");
728 	}
729 }
730 
731 /*
732  * Check for APE firmware, set flags, and print version info.
733  */
734 static void
735 bge_ape_read_fw_ver(struct bge_softc *sc)
736 {
737 	const char *fwtype;
738 	uint32_t apedata, features;
739 
740 	/* Check for a valid APE signature in shared memory. */
741 	apedata = APE_READ_4(sc, BGE_APE_SEG_SIG);
742 	if (apedata != BGE_APE_SEG_SIG_MAGIC) {
743 		sc->bge_mfw_flags &= ~ BGE_MFW_ON_APE;
744 		return;
745 	}
746 
747 	/* Check if APE firmware is running. */
748 	apedata = APE_READ_4(sc, BGE_APE_FW_STATUS);
749 	if ((apedata & BGE_APE_FW_STATUS_READY) == 0) {
750 		device_printf(sc->bge_dev, "APE signature found "
751 		    "but FW status not ready! 0x%08x\n", apedata);
752 		return;
753 	}
754 
755 	sc->bge_mfw_flags |= BGE_MFW_ON_APE;
756 
757 	/* Fetch the APE firwmare type and version. */
758 	apedata = APE_READ_4(sc, BGE_APE_FW_VERSION);
759 	features = APE_READ_4(sc, BGE_APE_FW_FEATURES);
760 	if ((features & BGE_APE_FW_FEATURE_NCSI) != 0) {
761 		sc->bge_mfw_flags |= BGE_MFW_TYPE_NCSI;
762 		fwtype = "NCSI";
763 	} else if ((features & BGE_APE_FW_FEATURE_DASH) != 0) {
764 		sc->bge_mfw_flags |= BGE_MFW_TYPE_DASH;
765 		fwtype = "DASH";
766 	} else
767 		fwtype = "UNKN";
768 
769 	/* Print the APE firmware version. */
770 	device_printf(sc->bge_dev, "APE FW version: %s v%d.%d.%d.%d\n",
771 	    fwtype,
772 	    (apedata & BGE_APE_FW_VERSION_MAJMSK) >> BGE_APE_FW_VERSION_MAJSFT,
773 	    (apedata & BGE_APE_FW_VERSION_MINMSK) >> BGE_APE_FW_VERSION_MINSFT,
774 	    (apedata & BGE_APE_FW_VERSION_REVMSK) >> BGE_APE_FW_VERSION_REVSFT,
775 	    (apedata & BGE_APE_FW_VERSION_BLDMSK));
776 }
777 
778 static int
779 bge_ape_lock(struct bge_softc *sc, int locknum)
780 {
781 	uint32_t bit, gnt, req, status;
782 	int i, off;
783 
784 	if ((sc->bge_mfw_flags & BGE_MFW_ON_APE) == 0)
785 		return (0);
786 
787 	/* Lock request/grant registers have different bases. */
788 	if (sc->bge_asicrev == BGE_ASICREV_BCM5761) {
789 		req = BGE_APE_LOCK_REQ;
790 		gnt = BGE_APE_LOCK_GRANT;
791 	} else {
792 		req = BGE_APE_PER_LOCK_REQ;
793 		gnt = BGE_APE_PER_LOCK_GRANT;
794 	}
795 
796 	off = 4 * locknum;
797 
798 	switch (locknum) {
799 	case BGE_APE_LOCK_GPIO:
800 		/* Lock required when using GPIO. */
801 		if (sc->bge_asicrev == BGE_ASICREV_BCM5761)
802 			return (0);
803 		if (sc->bge_func_addr == 0)
804 			bit = BGE_APE_LOCK_REQ_DRIVER0;
805 		else
806 			bit = (1 << sc->bge_func_addr);
807 		break;
808 	case BGE_APE_LOCK_GRC:
809 		/* Lock required to reset the device. */
810 		if (sc->bge_func_addr == 0)
811 			bit = BGE_APE_LOCK_REQ_DRIVER0;
812 		else
813 			bit = (1 << sc->bge_func_addr);
814 		break;
815 	case BGE_APE_LOCK_MEM:
816 		/* Lock required when accessing certain APE memory. */
817 		if (sc->bge_func_addr == 0)
818 			bit = BGE_APE_LOCK_REQ_DRIVER0;
819 		else
820 			bit = (1 << sc->bge_func_addr);
821 		break;
822 	case BGE_APE_LOCK_PHY0:
823 	case BGE_APE_LOCK_PHY1:
824 	case BGE_APE_LOCK_PHY2:
825 	case BGE_APE_LOCK_PHY3:
826 		/* Lock required when accessing PHYs. */
827 		bit = BGE_APE_LOCK_REQ_DRIVER0;
828 		break;
829 	default:
830 		return (EINVAL);
831 	}
832 
833 	/* Request a lock. */
834 	APE_WRITE_4(sc, req + off, bit);
835 
836 	/* Wait up to 1 second to acquire lock. */
837 	for (i = 0; i < 20000; i++) {
838 		status = APE_READ_4(sc, gnt + off);
839 		if (status == bit)
840 			break;
841 		DELAY(50);
842 	}
843 
844 	/* Handle any errors. */
845 	if (status != bit) {
846 		device_printf(sc->bge_dev, "APE lock %d request failed! "
847 		    "request = 0x%04x[0x%04x], status = 0x%04x[0x%04x]\n",
848 		    locknum, req + off, bit & 0xFFFF, gnt + off,
849 		    status & 0xFFFF);
850 		/* Revoke the lock request. */
851 		APE_WRITE_4(sc, gnt + off, bit);
852 		return (EBUSY);
853 	}
854 
855 	return (0);
856 }
857 
858 static void
859 bge_ape_unlock(struct bge_softc *sc, int locknum)
860 {
861 	uint32_t bit, gnt;
862 	int off;
863 
864 	if ((sc->bge_mfw_flags & BGE_MFW_ON_APE) == 0)
865 		return;
866 
867 	if (sc->bge_asicrev == BGE_ASICREV_BCM5761)
868 		gnt = BGE_APE_LOCK_GRANT;
869 	else
870 		gnt = BGE_APE_PER_LOCK_GRANT;
871 
872 	off = 4 * locknum;
873 
874 	switch (locknum) {
875 	case BGE_APE_LOCK_GPIO:
876 		if (sc->bge_asicrev == BGE_ASICREV_BCM5761)
877 			return;
878 		if (sc->bge_func_addr == 0)
879 			bit = BGE_APE_LOCK_GRANT_DRIVER0;
880 		else
881 			bit = (1 << sc->bge_func_addr);
882 		break;
883 	case BGE_APE_LOCK_GRC:
884 		if (sc->bge_func_addr == 0)
885 			bit = BGE_APE_LOCK_GRANT_DRIVER0;
886 		else
887 			bit = (1 << sc->bge_func_addr);
888 		break;
889 	case BGE_APE_LOCK_MEM:
890 		if (sc->bge_func_addr == 0)
891 			bit = BGE_APE_LOCK_GRANT_DRIVER0;
892 		else
893 			bit = (1 << sc->bge_func_addr);
894 		break;
895 	case BGE_APE_LOCK_PHY0:
896 	case BGE_APE_LOCK_PHY1:
897 	case BGE_APE_LOCK_PHY2:
898 	case BGE_APE_LOCK_PHY3:
899 		bit = BGE_APE_LOCK_GRANT_DRIVER0;
900 		break;
901 	default:
902 		return;
903 	}
904 
905 	APE_WRITE_4(sc, gnt + off, bit);
906 }
907 
908 /*
909  * Send an event to the APE firmware.
910  */
911 static void
912 bge_ape_send_event(struct bge_softc *sc, uint32_t event)
913 {
914 	uint32_t apedata;
915 	int i;
916 
917 	/* NCSI does not support APE events. */
918 	if ((sc->bge_mfw_flags & BGE_MFW_ON_APE) == 0)
919 		return;
920 
921 	/* Wait up to 1ms for APE to service previous event. */
922 	for (i = 10; i > 0; i--) {
923 		if (bge_ape_lock(sc, BGE_APE_LOCK_MEM) != 0)
924 			break;
925 		apedata = APE_READ_4(sc, BGE_APE_EVENT_STATUS);
926 		if ((apedata & BGE_APE_EVENT_STATUS_EVENT_PENDING) == 0) {
927 			APE_WRITE_4(sc, BGE_APE_EVENT_STATUS, event |
928 			    BGE_APE_EVENT_STATUS_EVENT_PENDING);
929 			bge_ape_unlock(sc, BGE_APE_LOCK_MEM);
930 			APE_WRITE_4(sc, BGE_APE_EVENT, BGE_APE_EVENT_1);
931 			break;
932 		}
933 		bge_ape_unlock(sc, BGE_APE_LOCK_MEM);
934 		DELAY(100);
935 	}
936 	if (i == 0)
937 		device_printf(sc->bge_dev, "APE event 0x%08x send timed out\n",
938 		    event);
939 }
940 
941 static void
942 bge_ape_driver_state_change(struct bge_softc *sc, int kind)
943 {
944 	uint32_t apedata, event;
945 
946 	if ((sc->bge_mfw_flags & BGE_MFW_ON_APE) == 0)
947 		return;
948 
949 	switch (kind) {
950 	case BGE_RESET_START:
951 		/* If this is the first load, clear the load counter. */
952 		apedata = APE_READ_4(sc, BGE_APE_HOST_SEG_SIG);
953 		if (apedata != BGE_APE_HOST_SEG_SIG_MAGIC)
954 			APE_WRITE_4(sc, BGE_APE_HOST_INIT_COUNT, 0);
955 		else {
956 			apedata = APE_READ_4(sc, BGE_APE_HOST_INIT_COUNT);
957 			APE_WRITE_4(sc, BGE_APE_HOST_INIT_COUNT, ++apedata);
958 		}
959 		APE_WRITE_4(sc, BGE_APE_HOST_SEG_SIG,
960 		    BGE_APE_HOST_SEG_SIG_MAGIC);
961 		APE_WRITE_4(sc, BGE_APE_HOST_SEG_LEN,
962 		    BGE_APE_HOST_SEG_LEN_MAGIC);
963 
964 		/* Add some version info if bge(4) supports it. */
965 		APE_WRITE_4(sc, BGE_APE_HOST_DRIVER_ID,
966 		    BGE_APE_HOST_DRIVER_ID_MAGIC(1, 0));
967 		APE_WRITE_4(sc, BGE_APE_HOST_BEHAVIOR,
968 		    BGE_APE_HOST_BEHAV_NO_PHYLOCK);
969 		APE_WRITE_4(sc, BGE_APE_HOST_HEARTBEAT_INT_MS,
970 		    BGE_APE_HOST_HEARTBEAT_INT_DISABLE);
971 		APE_WRITE_4(sc, BGE_APE_HOST_DRVR_STATE,
972 		    BGE_APE_HOST_DRVR_STATE_START);
973 		event = BGE_APE_EVENT_STATUS_STATE_START;
974 		break;
975 	case BGE_RESET_SHUTDOWN:
976 		APE_WRITE_4(sc, BGE_APE_HOST_DRVR_STATE,
977 		    BGE_APE_HOST_DRVR_STATE_UNLOAD);
978 		event = BGE_APE_EVENT_STATUS_STATE_UNLOAD;
979 		break;
980 	case BGE_RESET_SUSPEND:
981 		event = BGE_APE_EVENT_STATUS_STATE_SUSPEND;
982 		break;
983 	default:
984 		return;
985 	}
986 
987 	bge_ape_send_event(sc, event | BGE_APE_EVENT_STATUS_DRIVER_EVNT |
988 	    BGE_APE_EVENT_STATUS_STATE_CHNGE);
989 }
990 
991 /*
992  * Map a single buffer address.
993  */
994 
995 static void
996 bge_dma_map_addr(void *arg, bus_dma_segment_t *segs, int nseg, int error)
997 {
998 	struct bge_dmamap_arg *ctx;
999 
1000 	if (error)
1001 		return;
1002 
1003 	KASSERT(nseg == 1, ("%s: %d segments returned!", __func__, nseg));
1004 
1005 	ctx = arg;
1006 	ctx->bge_busaddr = segs->ds_addr;
1007 }
1008 
1009 static uint8_t
1010 bge_nvram_getbyte(struct bge_softc *sc, int addr, uint8_t *dest)
1011 {
1012 	uint32_t access, byte = 0;
1013 	int i;
1014 
1015 	/* Lock. */
1016 	CSR_WRITE_4(sc, BGE_NVRAM_SWARB, BGE_NVRAMSWARB_SET1);
1017 	for (i = 0; i < 8000; i++) {
1018 		if (CSR_READ_4(sc, BGE_NVRAM_SWARB) & BGE_NVRAMSWARB_GNT1)
1019 			break;
1020 		DELAY(20);
1021 	}
1022 	if (i == 8000)
1023 		return (1);
1024 
1025 	/* Enable access. */
1026 	access = CSR_READ_4(sc, BGE_NVRAM_ACCESS);
1027 	CSR_WRITE_4(sc, BGE_NVRAM_ACCESS, access | BGE_NVRAMACC_ENABLE);
1028 
1029 	CSR_WRITE_4(sc, BGE_NVRAM_ADDR, addr & 0xfffffffc);
1030 	CSR_WRITE_4(sc, BGE_NVRAM_CMD, BGE_NVRAM_READCMD);
1031 	for (i = 0; i < BGE_TIMEOUT * 10; i++) {
1032 		DELAY(10);
1033 		if (CSR_READ_4(sc, BGE_NVRAM_CMD) & BGE_NVRAMCMD_DONE) {
1034 			DELAY(10);
1035 			break;
1036 		}
1037 	}
1038 
1039 	if (i == BGE_TIMEOUT * 10) {
1040 		if_printf(sc->bge_ifp, "nvram read timed out\n");
1041 		return (1);
1042 	}
1043 
1044 	/* Get result. */
1045 	byte = CSR_READ_4(sc, BGE_NVRAM_RDDATA);
1046 
1047 	*dest = (bswap32(byte) >> ((addr % 4) * 8)) & 0xFF;
1048 
1049 	/* Disable access. */
1050 	CSR_WRITE_4(sc, BGE_NVRAM_ACCESS, access);
1051 
1052 	/* Unlock. */
1053 	CSR_WRITE_4(sc, BGE_NVRAM_SWARB, BGE_NVRAMSWARB_CLR1);
1054 	CSR_READ_4(sc, BGE_NVRAM_SWARB);
1055 
1056 	return (0);
1057 }
1058 
1059 /*
1060  * Read a sequence of bytes from NVRAM.
1061  */
1062 static int
1063 bge_read_nvram(struct bge_softc *sc, caddr_t dest, int off, int cnt)
1064 {
1065 	int err = 0, i;
1066 	uint8_t byte = 0;
1067 
1068 	if (sc->bge_asicrev != BGE_ASICREV_BCM5906)
1069 		return (1);
1070 
1071 	for (i = 0; i < cnt; i++) {
1072 		err = bge_nvram_getbyte(sc, off + i, &byte);
1073 		if (err)
1074 			break;
1075 		*(dest + i) = byte;
1076 	}
1077 
1078 	return (err ? 1 : 0);
1079 }
1080 
1081 /*
1082  * Read a byte of data stored in the EEPROM at address 'addr.' The
1083  * BCM570x supports both the traditional bitbang interface and an
1084  * auto access interface for reading the EEPROM. We use the auto
1085  * access method.
1086  */
1087 static uint8_t
1088 bge_eeprom_getbyte(struct bge_softc *sc, int addr, uint8_t *dest)
1089 {
1090 	int i;
1091 	uint32_t byte = 0;
1092 
1093 	/*
1094 	 * Enable use of auto EEPROM access so we can avoid
1095 	 * having to use the bitbang method.
1096 	 */
1097 	BGE_SETBIT(sc, BGE_MISC_LOCAL_CTL, BGE_MLC_AUTO_EEPROM);
1098 
1099 	/* Reset the EEPROM, load the clock period. */
1100 	CSR_WRITE_4(sc, BGE_EE_ADDR,
1101 	    BGE_EEADDR_RESET | BGE_EEHALFCLK(BGE_HALFCLK_384SCL));
1102 	DELAY(20);
1103 
1104 	/* Issue the read EEPROM command. */
1105 	CSR_WRITE_4(sc, BGE_EE_ADDR, BGE_EE_READCMD | addr);
1106 
1107 	/* Wait for completion */
1108 	for(i = 0; i < BGE_TIMEOUT * 10; i++) {
1109 		DELAY(10);
1110 		if (CSR_READ_4(sc, BGE_EE_ADDR) & BGE_EEADDR_DONE)
1111 			break;
1112 	}
1113 
1114 	if (i == BGE_TIMEOUT * 10) {
1115 		device_printf(sc->bge_dev, "EEPROM read timed out\n");
1116 		return (1);
1117 	}
1118 
1119 	/* Get result. */
1120 	byte = CSR_READ_4(sc, BGE_EE_DATA);
1121 
1122 	*dest = (byte >> ((addr % 4) * 8)) & 0xFF;
1123 
1124 	return (0);
1125 }
1126 
1127 /*
1128  * Read a sequence of bytes from the EEPROM.
1129  */
1130 static int
1131 bge_read_eeprom(struct bge_softc *sc, caddr_t dest, int off, int cnt)
1132 {
1133 	int i, error = 0;
1134 	uint8_t byte = 0;
1135 
1136 	for (i = 0; i < cnt; i++) {
1137 		error = bge_eeprom_getbyte(sc, off + i, &byte);
1138 		if (error)
1139 			break;
1140 		*(dest + i) = byte;
1141 	}
1142 
1143 	return (error ? 1 : 0);
1144 }
1145 
1146 static int
1147 bge_miibus_readreg(device_t dev, int phy, int reg)
1148 {
1149 	struct bge_softc *sc;
1150 	uint32_t val;
1151 	int i;
1152 
1153 	sc = device_get_softc(dev);
1154 
1155 	if (bge_ape_lock(sc, sc->bge_phy_ape_lock) != 0)
1156 		return (0);
1157 
1158 	/* Clear the autopoll bit if set, otherwise may trigger PCI errors. */
1159 	if ((sc->bge_mi_mode & BGE_MIMODE_AUTOPOLL) != 0) {
1160 		CSR_WRITE_4(sc, BGE_MI_MODE,
1161 		    sc->bge_mi_mode & ~BGE_MIMODE_AUTOPOLL);
1162 		DELAY(80);
1163 	}
1164 
1165 	CSR_WRITE_4(sc, BGE_MI_COMM, BGE_MICMD_READ | BGE_MICOMM_BUSY |
1166 	    BGE_MIPHY(phy) | BGE_MIREG(reg));
1167 
1168 	/* Poll for the PHY register access to complete. */
1169 	for (i = 0; i < BGE_TIMEOUT; i++) {
1170 		DELAY(10);
1171 		val = CSR_READ_4(sc, BGE_MI_COMM);
1172 		if ((val & BGE_MICOMM_BUSY) == 0) {
1173 			DELAY(5);
1174 			val = CSR_READ_4(sc, BGE_MI_COMM);
1175 			break;
1176 		}
1177 	}
1178 
1179 	if (i == BGE_TIMEOUT) {
1180 		device_printf(sc->bge_dev,
1181 		    "PHY read timed out (phy %d, reg %d, val 0x%08x)\n",
1182 		    phy, reg, val);
1183 		val = 0;
1184 	}
1185 
1186 	/* Restore the autopoll bit if necessary. */
1187 	if ((sc->bge_mi_mode & BGE_MIMODE_AUTOPOLL) != 0) {
1188 		CSR_WRITE_4(sc, BGE_MI_MODE, sc->bge_mi_mode);
1189 		DELAY(80);
1190 	}
1191 
1192 	bge_ape_unlock(sc, sc->bge_phy_ape_lock);
1193 
1194 	if (val & BGE_MICOMM_READFAIL)
1195 		return (0);
1196 
1197 	return (val & 0xFFFF);
1198 }
1199 
1200 static int
1201 bge_miibus_writereg(device_t dev, int phy, int reg, int val)
1202 {
1203 	struct bge_softc *sc;
1204 	int i;
1205 
1206 	sc = device_get_softc(dev);
1207 
1208 	if (sc->bge_asicrev == BGE_ASICREV_BCM5906 &&
1209 	    (reg == BRGPHY_MII_1000CTL || reg == BRGPHY_MII_AUXCTL))
1210 		return (0);
1211 
1212 	if (bge_ape_lock(sc, sc->bge_phy_ape_lock) != 0)
1213 		return (0);
1214 
1215 	/* Clear the autopoll bit if set, otherwise may trigger PCI errors. */
1216 	if ((sc->bge_mi_mode & BGE_MIMODE_AUTOPOLL) != 0) {
1217 		CSR_WRITE_4(sc, BGE_MI_MODE,
1218 		    sc->bge_mi_mode & ~BGE_MIMODE_AUTOPOLL);
1219 		DELAY(80);
1220 	}
1221 
1222 	CSR_WRITE_4(sc, BGE_MI_COMM, BGE_MICMD_WRITE | BGE_MICOMM_BUSY |
1223 	    BGE_MIPHY(phy) | BGE_MIREG(reg) | val);
1224 
1225 	for (i = 0; i < BGE_TIMEOUT; i++) {
1226 		DELAY(10);
1227 		if (!(CSR_READ_4(sc, BGE_MI_COMM) & BGE_MICOMM_BUSY)) {
1228 			DELAY(5);
1229 			CSR_READ_4(sc, BGE_MI_COMM); /* dummy read */
1230 			break;
1231 		}
1232 	}
1233 
1234 	/* Restore the autopoll bit if necessary. */
1235 	if ((sc->bge_mi_mode & BGE_MIMODE_AUTOPOLL) != 0) {
1236 		CSR_WRITE_4(sc, BGE_MI_MODE, sc->bge_mi_mode);
1237 		DELAY(80);
1238 	}
1239 
1240 	bge_ape_unlock(sc, sc->bge_phy_ape_lock);
1241 
1242 	if (i == BGE_TIMEOUT)
1243 		device_printf(sc->bge_dev,
1244 		    "PHY write timed out (phy %d, reg %d, val 0x%04x)\n",
1245 		    phy, reg, val);
1246 
1247 	return (0);
1248 }
1249 
1250 static void
1251 bge_miibus_statchg(device_t dev)
1252 {
1253 	struct bge_softc *sc;
1254 	struct mii_data *mii;
1255 	uint32_t mac_mode, rx_mode, tx_mode;
1256 
1257 	sc = device_get_softc(dev);
1258 	if ((if_getdrvflags(sc->bge_ifp) & IFF_DRV_RUNNING) == 0)
1259 		return;
1260 	mii = device_get_softc(sc->bge_miibus);
1261 
1262 	if ((mii->mii_media_status & (IFM_ACTIVE | IFM_AVALID)) ==
1263 	    (IFM_ACTIVE | IFM_AVALID)) {
1264 		switch (IFM_SUBTYPE(mii->mii_media_active)) {
1265 		case IFM_10_T:
1266 		case IFM_100_TX:
1267 			sc->bge_link = 1;
1268 			break;
1269 		case IFM_1000_T:
1270 		case IFM_1000_SX:
1271 		case IFM_2500_SX:
1272 			if (sc->bge_asicrev != BGE_ASICREV_BCM5906)
1273 				sc->bge_link = 1;
1274 			else
1275 				sc->bge_link = 0;
1276 			break;
1277 		default:
1278 			sc->bge_link = 0;
1279 			break;
1280 		}
1281 	} else
1282 		sc->bge_link = 0;
1283 	if (sc->bge_link == 0)
1284 		return;
1285 
1286 	/*
1287 	 * APE firmware touches these registers to keep the MAC
1288 	 * connected to the outside world.  Try to keep the
1289 	 * accesses atomic.
1290 	 */
1291 
1292 	/* Set the port mode (MII/GMII) to match the link speed. */
1293 	mac_mode = CSR_READ_4(sc, BGE_MAC_MODE) &
1294 	    ~(BGE_MACMODE_PORTMODE | BGE_MACMODE_HALF_DUPLEX);
1295 	tx_mode = CSR_READ_4(sc, BGE_TX_MODE);
1296 	rx_mode = CSR_READ_4(sc, BGE_RX_MODE);
1297 
1298 	if (IFM_SUBTYPE(mii->mii_media_active) == IFM_1000_T ||
1299 	    IFM_SUBTYPE(mii->mii_media_active) == IFM_1000_SX)
1300 		mac_mode |= BGE_PORTMODE_GMII;
1301 	else
1302 		mac_mode |= BGE_PORTMODE_MII;
1303 
1304 	/* Set MAC flow control behavior to match link flow control settings. */
1305 	tx_mode &= ~BGE_TXMODE_FLOWCTL_ENABLE;
1306 	rx_mode &= ~BGE_RXMODE_FLOWCTL_ENABLE;
1307 	if ((IFM_OPTIONS(mii->mii_media_active) & IFM_FDX) != 0) {
1308 		if ((IFM_OPTIONS(mii->mii_media_active) & IFM_ETH_TXPAUSE) != 0)
1309 			tx_mode |= BGE_TXMODE_FLOWCTL_ENABLE;
1310 		if ((IFM_OPTIONS(mii->mii_media_active) & IFM_ETH_RXPAUSE) != 0)
1311 			rx_mode |= BGE_RXMODE_FLOWCTL_ENABLE;
1312 	} else
1313 		mac_mode |= BGE_MACMODE_HALF_DUPLEX;
1314 
1315 	CSR_WRITE_4(sc, BGE_MAC_MODE, mac_mode);
1316 	DELAY(40);
1317 	CSR_WRITE_4(sc, BGE_TX_MODE, tx_mode);
1318 	CSR_WRITE_4(sc, BGE_RX_MODE, rx_mode);
1319 }
1320 
1321 /*
1322  * Intialize a standard receive ring descriptor.
1323  */
1324 static int
1325 bge_newbuf_std(struct bge_softc *sc, int i)
1326 {
1327 	struct mbuf *m;
1328 	struct bge_rx_bd *r;
1329 	bus_dma_segment_t segs[1];
1330 	bus_dmamap_t map;
1331 	int error, nsegs;
1332 
1333 	if (sc->bge_flags & BGE_FLAG_JUMBO_STD &&
1334 	    (if_getmtu(sc->bge_ifp) + ETHER_HDR_LEN + ETHER_CRC_LEN +
1335 	    ETHER_VLAN_ENCAP_LEN > (MCLBYTES - ETHER_ALIGN))) {
1336 		m = m_getjcl(M_NOWAIT, MT_DATA, M_PKTHDR, MJUM9BYTES);
1337 		if (m == NULL)
1338 			return (ENOBUFS);
1339 		m->m_len = m->m_pkthdr.len = MJUM9BYTES;
1340 	} else {
1341 		m = m_getcl(M_NOWAIT, MT_DATA, M_PKTHDR);
1342 		if (m == NULL)
1343 			return (ENOBUFS);
1344 		m->m_len = m->m_pkthdr.len = MCLBYTES;
1345 	}
1346 	if ((sc->bge_flags & BGE_FLAG_RX_ALIGNBUG) == 0)
1347 		m_adj(m, ETHER_ALIGN);
1348 
1349 	error = bus_dmamap_load_mbuf_sg(sc->bge_cdata.bge_rx_mtag,
1350 	    sc->bge_cdata.bge_rx_std_sparemap, m, segs, &nsegs, 0);
1351 	if (error != 0) {
1352 		m_freem(m);
1353 		return (error);
1354 	}
1355 	if (sc->bge_cdata.bge_rx_std_chain[i] != NULL) {
1356 		bus_dmamap_sync(sc->bge_cdata.bge_rx_mtag,
1357 		    sc->bge_cdata.bge_rx_std_dmamap[i], BUS_DMASYNC_POSTREAD);
1358 		bus_dmamap_unload(sc->bge_cdata.bge_rx_mtag,
1359 		    sc->bge_cdata.bge_rx_std_dmamap[i]);
1360 	}
1361 	map = sc->bge_cdata.bge_rx_std_dmamap[i];
1362 	sc->bge_cdata.bge_rx_std_dmamap[i] = sc->bge_cdata.bge_rx_std_sparemap;
1363 	sc->bge_cdata.bge_rx_std_sparemap = map;
1364 	sc->bge_cdata.bge_rx_std_chain[i] = m;
1365 	sc->bge_cdata.bge_rx_std_seglen[i] = segs[0].ds_len;
1366 	r = &sc->bge_ldata.bge_rx_std_ring[sc->bge_std];
1367 	r->bge_addr.bge_addr_lo = BGE_ADDR_LO(segs[0].ds_addr);
1368 	r->bge_addr.bge_addr_hi = BGE_ADDR_HI(segs[0].ds_addr);
1369 	r->bge_flags = BGE_RXBDFLAG_END;
1370 	r->bge_len = segs[0].ds_len;
1371 	r->bge_idx = i;
1372 
1373 	bus_dmamap_sync(sc->bge_cdata.bge_rx_mtag,
1374 	    sc->bge_cdata.bge_rx_std_dmamap[i], BUS_DMASYNC_PREREAD);
1375 
1376 	return (0);
1377 }
1378 
1379 /*
1380  * Initialize a jumbo receive ring descriptor. This allocates
1381  * a jumbo buffer from the pool managed internally by the driver.
1382  */
1383 static int
1384 bge_newbuf_jumbo(struct bge_softc *sc, int i)
1385 {
1386 	bus_dma_segment_t segs[BGE_NSEG_JUMBO];
1387 	bus_dmamap_t map;
1388 	struct bge_extrx_bd *r;
1389 	struct mbuf *m;
1390 	int error, nsegs;
1391 
1392 	MGETHDR(m, M_NOWAIT, MT_DATA);
1393 	if (m == NULL)
1394 		return (ENOBUFS);
1395 
1396 	if (m_cljget(m, M_NOWAIT, MJUM9BYTES) == NULL) {
1397 		m_freem(m);
1398 		return (ENOBUFS);
1399 	}
1400 	m->m_len = m->m_pkthdr.len = MJUM9BYTES;
1401 	if ((sc->bge_flags & BGE_FLAG_RX_ALIGNBUG) == 0)
1402 		m_adj(m, ETHER_ALIGN);
1403 
1404 	error = bus_dmamap_load_mbuf_sg(sc->bge_cdata.bge_mtag_jumbo,
1405 	    sc->bge_cdata.bge_rx_jumbo_sparemap, m, segs, &nsegs, 0);
1406 	if (error != 0) {
1407 		m_freem(m);
1408 		return (error);
1409 	}
1410 
1411 	if (sc->bge_cdata.bge_rx_jumbo_chain[i] != NULL) {
1412 		bus_dmamap_sync(sc->bge_cdata.bge_mtag_jumbo,
1413 		    sc->bge_cdata.bge_rx_jumbo_dmamap[i], BUS_DMASYNC_POSTREAD);
1414 		bus_dmamap_unload(sc->bge_cdata.bge_mtag_jumbo,
1415 		    sc->bge_cdata.bge_rx_jumbo_dmamap[i]);
1416 	}
1417 	map = sc->bge_cdata.bge_rx_jumbo_dmamap[i];
1418 	sc->bge_cdata.bge_rx_jumbo_dmamap[i] =
1419 	    sc->bge_cdata.bge_rx_jumbo_sparemap;
1420 	sc->bge_cdata.bge_rx_jumbo_sparemap = map;
1421 	sc->bge_cdata.bge_rx_jumbo_chain[i] = m;
1422 	sc->bge_cdata.bge_rx_jumbo_seglen[i][0] = 0;
1423 	sc->bge_cdata.bge_rx_jumbo_seglen[i][1] = 0;
1424 	sc->bge_cdata.bge_rx_jumbo_seglen[i][2] = 0;
1425 	sc->bge_cdata.bge_rx_jumbo_seglen[i][3] = 0;
1426 
1427 	/*
1428 	 * Fill in the extended RX buffer descriptor.
1429 	 */
1430 	r = &sc->bge_ldata.bge_rx_jumbo_ring[sc->bge_jumbo];
1431 	r->bge_flags = BGE_RXBDFLAG_JUMBO_RING | BGE_RXBDFLAG_END;
1432 	r->bge_idx = i;
1433 	r->bge_len3 = r->bge_len2 = r->bge_len1 = 0;
1434 	switch (nsegs) {
1435 	case 4:
1436 		r->bge_addr3.bge_addr_lo = BGE_ADDR_LO(segs[3].ds_addr);
1437 		r->bge_addr3.bge_addr_hi = BGE_ADDR_HI(segs[3].ds_addr);
1438 		r->bge_len3 = segs[3].ds_len;
1439 		sc->bge_cdata.bge_rx_jumbo_seglen[i][3] = segs[3].ds_len;
1440 	case 3:
1441 		r->bge_addr2.bge_addr_lo = BGE_ADDR_LO(segs[2].ds_addr);
1442 		r->bge_addr2.bge_addr_hi = BGE_ADDR_HI(segs[2].ds_addr);
1443 		r->bge_len2 = segs[2].ds_len;
1444 		sc->bge_cdata.bge_rx_jumbo_seglen[i][2] = segs[2].ds_len;
1445 	case 2:
1446 		r->bge_addr1.bge_addr_lo = BGE_ADDR_LO(segs[1].ds_addr);
1447 		r->bge_addr1.bge_addr_hi = BGE_ADDR_HI(segs[1].ds_addr);
1448 		r->bge_len1 = segs[1].ds_len;
1449 		sc->bge_cdata.bge_rx_jumbo_seglen[i][1] = segs[1].ds_len;
1450 	case 1:
1451 		r->bge_addr0.bge_addr_lo = BGE_ADDR_LO(segs[0].ds_addr);
1452 		r->bge_addr0.bge_addr_hi = BGE_ADDR_HI(segs[0].ds_addr);
1453 		r->bge_len0 = segs[0].ds_len;
1454 		sc->bge_cdata.bge_rx_jumbo_seglen[i][0] = segs[0].ds_len;
1455 		break;
1456 	default:
1457 		panic("%s: %d segments\n", __func__, nsegs);
1458 	}
1459 
1460 	bus_dmamap_sync(sc->bge_cdata.bge_mtag_jumbo,
1461 	    sc->bge_cdata.bge_rx_jumbo_dmamap[i], BUS_DMASYNC_PREREAD);
1462 
1463 	return (0);
1464 }
1465 
1466 static int
1467 bge_init_rx_ring_std(struct bge_softc *sc)
1468 {
1469 	int error, i;
1470 
1471 	bzero(sc->bge_ldata.bge_rx_std_ring, BGE_STD_RX_RING_SZ);
1472 	sc->bge_std = 0;
1473 	for (i = 0; i < BGE_STD_RX_RING_CNT; i++) {
1474 		if ((error = bge_newbuf_std(sc, i)) != 0)
1475 			return (error);
1476 		BGE_INC(sc->bge_std, BGE_STD_RX_RING_CNT);
1477 	}
1478 
1479 	bus_dmamap_sync(sc->bge_cdata.bge_rx_std_ring_tag,
1480 	    sc->bge_cdata.bge_rx_std_ring_map, BUS_DMASYNC_PREWRITE);
1481 
1482 	sc->bge_std = 0;
1483 	bge_writembx(sc, BGE_MBX_RX_STD_PROD_LO, BGE_STD_RX_RING_CNT - 1);
1484 
1485 	return (0);
1486 }
1487 
1488 static void
1489 bge_free_rx_ring_std(struct bge_softc *sc)
1490 {
1491 	int i;
1492 
1493 	for (i = 0; i < BGE_STD_RX_RING_CNT; i++) {
1494 		if (sc->bge_cdata.bge_rx_std_chain[i] != NULL) {
1495 			bus_dmamap_sync(sc->bge_cdata.bge_rx_mtag,
1496 			    sc->bge_cdata.bge_rx_std_dmamap[i],
1497 			    BUS_DMASYNC_POSTREAD);
1498 			bus_dmamap_unload(sc->bge_cdata.bge_rx_mtag,
1499 			    sc->bge_cdata.bge_rx_std_dmamap[i]);
1500 			m_freem(sc->bge_cdata.bge_rx_std_chain[i]);
1501 			sc->bge_cdata.bge_rx_std_chain[i] = NULL;
1502 		}
1503 		bzero((char *)&sc->bge_ldata.bge_rx_std_ring[i],
1504 		    sizeof(struct bge_rx_bd));
1505 	}
1506 }
1507 
1508 static int
1509 bge_init_rx_ring_jumbo(struct bge_softc *sc)
1510 {
1511 	struct bge_rcb *rcb;
1512 	int error, i;
1513 
1514 	bzero(sc->bge_ldata.bge_rx_jumbo_ring, BGE_JUMBO_RX_RING_SZ);
1515 	sc->bge_jumbo = 0;
1516 	for (i = 0; i < BGE_JUMBO_RX_RING_CNT; i++) {
1517 		if ((error = bge_newbuf_jumbo(sc, i)) != 0)
1518 			return (error);
1519 		BGE_INC(sc->bge_jumbo, BGE_JUMBO_RX_RING_CNT);
1520 	}
1521 
1522 	bus_dmamap_sync(sc->bge_cdata.bge_rx_jumbo_ring_tag,
1523 	    sc->bge_cdata.bge_rx_jumbo_ring_map, BUS_DMASYNC_PREWRITE);
1524 
1525 	sc->bge_jumbo = 0;
1526 
1527 	/* Enable the jumbo receive producer ring. */
1528 	rcb = &sc->bge_ldata.bge_info.bge_jumbo_rx_rcb;
1529 	rcb->bge_maxlen_flags =
1530 	    BGE_RCB_MAXLEN_FLAGS(0, BGE_RCB_FLAG_USE_EXT_RX_BD);
1531 	CSR_WRITE_4(sc, BGE_RX_JUMBO_RCB_MAXLEN_FLAGS, rcb->bge_maxlen_flags);
1532 
1533 	bge_writembx(sc, BGE_MBX_RX_JUMBO_PROD_LO, BGE_JUMBO_RX_RING_CNT - 1);
1534 
1535 	return (0);
1536 }
1537 
1538 static void
1539 bge_free_rx_ring_jumbo(struct bge_softc *sc)
1540 {
1541 	int i;
1542 
1543 	for (i = 0; i < BGE_JUMBO_RX_RING_CNT; i++) {
1544 		if (sc->bge_cdata.bge_rx_jumbo_chain[i] != NULL) {
1545 			bus_dmamap_sync(sc->bge_cdata.bge_mtag_jumbo,
1546 			    sc->bge_cdata.bge_rx_jumbo_dmamap[i],
1547 			    BUS_DMASYNC_POSTREAD);
1548 			bus_dmamap_unload(sc->bge_cdata.bge_mtag_jumbo,
1549 			    sc->bge_cdata.bge_rx_jumbo_dmamap[i]);
1550 			m_freem(sc->bge_cdata.bge_rx_jumbo_chain[i]);
1551 			sc->bge_cdata.bge_rx_jumbo_chain[i] = NULL;
1552 		}
1553 		bzero((char *)&sc->bge_ldata.bge_rx_jumbo_ring[i],
1554 		    sizeof(struct bge_extrx_bd));
1555 	}
1556 }
1557 
1558 static void
1559 bge_free_tx_ring(struct bge_softc *sc)
1560 {
1561 	int i;
1562 
1563 	if (sc->bge_ldata.bge_tx_ring == NULL)
1564 		return;
1565 
1566 	for (i = 0; i < BGE_TX_RING_CNT; i++) {
1567 		if (sc->bge_cdata.bge_tx_chain[i] != NULL) {
1568 			bus_dmamap_sync(sc->bge_cdata.bge_tx_mtag,
1569 			    sc->bge_cdata.bge_tx_dmamap[i],
1570 			    BUS_DMASYNC_POSTWRITE);
1571 			bus_dmamap_unload(sc->bge_cdata.bge_tx_mtag,
1572 			    sc->bge_cdata.bge_tx_dmamap[i]);
1573 			m_freem(sc->bge_cdata.bge_tx_chain[i]);
1574 			sc->bge_cdata.bge_tx_chain[i] = NULL;
1575 		}
1576 		bzero((char *)&sc->bge_ldata.bge_tx_ring[i],
1577 		    sizeof(struct bge_tx_bd));
1578 	}
1579 }
1580 
1581 static int
1582 bge_init_tx_ring(struct bge_softc *sc)
1583 {
1584 	sc->bge_txcnt = 0;
1585 	sc->bge_tx_saved_considx = 0;
1586 
1587 	bzero(sc->bge_ldata.bge_tx_ring, BGE_TX_RING_SZ);
1588 	bus_dmamap_sync(sc->bge_cdata.bge_tx_ring_tag,
1589 	    sc->bge_cdata.bge_tx_ring_map, BUS_DMASYNC_PREWRITE);
1590 
1591 	/* Initialize transmit producer index for host-memory send ring. */
1592 	sc->bge_tx_prodidx = 0;
1593 	bge_writembx(sc, BGE_MBX_TX_HOST_PROD0_LO, sc->bge_tx_prodidx);
1594 
1595 	/* 5700 b2 errata */
1596 	if (sc->bge_chiprev == BGE_CHIPREV_5700_BX)
1597 		bge_writembx(sc, BGE_MBX_TX_HOST_PROD0_LO, sc->bge_tx_prodidx);
1598 
1599 	/* NIC-memory send ring not used; initialize to zero. */
1600 	bge_writembx(sc, BGE_MBX_TX_NIC_PROD0_LO, 0);
1601 	/* 5700 b2 errata */
1602 	if (sc->bge_chiprev == BGE_CHIPREV_5700_BX)
1603 		bge_writembx(sc, BGE_MBX_TX_NIC_PROD0_LO, 0);
1604 
1605 	return (0);
1606 }
1607 
1608 static void
1609 bge_setpromisc(struct bge_softc *sc)
1610 {
1611 	if_t ifp;
1612 
1613 	BGE_LOCK_ASSERT(sc);
1614 
1615 	ifp = sc->bge_ifp;
1616 
1617 	/* Enable or disable promiscuous mode as needed. */
1618 	if (if_getflags(ifp) & IFF_PROMISC)
1619 		BGE_SETBIT(sc, BGE_RX_MODE, BGE_RXMODE_RX_PROMISC);
1620 	else
1621 		BGE_CLRBIT(sc, BGE_RX_MODE, BGE_RXMODE_RX_PROMISC);
1622 }
1623 
1624 static void
1625 bge_setmulti(struct bge_softc *sc)
1626 {
1627 	if_t ifp;
1628 	int mc_count = 0;
1629 	uint32_t hashes[4] = { 0, 0, 0, 0 };
1630 	int h, i, mcnt;
1631 	unsigned char *mta;
1632 
1633 	BGE_LOCK_ASSERT(sc);
1634 
1635 	ifp = sc->bge_ifp;
1636 
1637 	mc_count = if_multiaddr_count(ifp, -1);
1638 	mta = malloc(sizeof(unsigned char) *  ETHER_ADDR_LEN *
1639 	    mc_count, M_DEVBUF, M_NOWAIT);
1640 
1641 	if(mta == NULL) {
1642 		device_printf(sc->bge_dev,
1643 		    "Failed to allocated temp mcast list\n");
1644 		return;
1645 	}
1646 
1647 	if (if_getflags(ifp) & IFF_ALLMULTI || if_getflags(ifp) & IFF_PROMISC) {
1648 		for (i = 0; i < 4; i++)
1649 			CSR_WRITE_4(sc, BGE_MAR0 + (i * 4), 0xFFFFFFFF);
1650 		free(mta, M_DEVBUF);
1651 		return;
1652 	}
1653 
1654 	/* First, zot all the existing filters. */
1655 	for (i = 0; i < 4; i++)
1656 		CSR_WRITE_4(sc, BGE_MAR0 + (i * 4), 0);
1657 
1658 	if_multiaddr_array(ifp, mta, &mcnt, mc_count);
1659 	for(i = 0; i < mcnt; i++) {
1660 		h = ether_crc32_le(mta + (i * ETHER_ADDR_LEN),
1661 		    ETHER_ADDR_LEN) & 0x7F;
1662 		hashes[(h & 0x60) >> 5] |= 1 << (h & 0x1F);
1663 	}
1664 
1665 	for (i = 0; i < 4; i++)
1666 		CSR_WRITE_4(sc, BGE_MAR0 + (i * 4), hashes[i]);
1667 
1668 	free(mta, M_DEVBUF);
1669 }
1670 
1671 static void
1672 bge_setvlan(struct bge_softc *sc)
1673 {
1674 	if_t ifp;
1675 
1676 	BGE_LOCK_ASSERT(sc);
1677 
1678 	ifp = sc->bge_ifp;
1679 
1680 	/* Enable or disable VLAN tag stripping as needed. */
1681 	if (if_getcapenable(ifp) & IFCAP_VLAN_HWTAGGING)
1682 		BGE_CLRBIT(sc, BGE_RX_MODE, BGE_RXMODE_RX_KEEP_VLAN_DIAG);
1683 	else
1684 		BGE_SETBIT(sc, BGE_RX_MODE, BGE_RXMODE_RX_KEEP_VLAN_DIAG);
1685 }
1686 
1687 static void
1688 bge_sig_pre_reset(struct bge_softc *sc, int type)
1689 {
1690 
1691 	/*
1692 	 * Some chips don't like this so only do this if ASF is enabled
1693 	 */
1694 	if (sc->bge_asf_mode)
1695 		bge_writemem_ind(sc, BGE_SRAM_FW_MB, BGE_SRAM_FW_MB_MAGIC);
1696 
1697 	if (sc->bge_asf_mode & ASF_NEW_HANDSHAKE) {
1698 		switch (type) {
1699 		case BGE_RESET_START:
1700 			bge_writemem_ind(sc, BGE_SRAM_FW_DRV_STATE_MB,
1701 			    BGE_FW_DRV_STATE_START);
1702 			break;
1703 		case BGE_RESET_SHUTDOWN:
1704 			bge_writemem_ind(sc, BGE_SRAM_FW_DRV_STATE_MB,
1705 			    BGE_FW_DRV_STATE_UNLOAD);
1706 			break;
1707 		case BGE_RESET_SUSPEND:
1708 			bge_writemem_ind(sc, BGE_SRAM_FW_DRV_STATE_MB,
1709 			    BGE_FW_DRV_STATE_SUSPEND);
1710 			break;
1711 		}
1712 	}
1713 
1714 	if (type == BGE_RESET_START || type == BGE_RESET_SUSPEND)
1715 		bge_ape_driver_state_change(sc, type);
1716 }
1717 
1718 static void
1719 bge_sig_post_reset(struct bge_softc *sc, int type)
1720 {
1721 
1722 	if (sc->bge_asf_mode & ASF_NEW_HANDSHAKE) {
1723 		switch (type) {
1724 		case BGE_RESET_START:
1725 			bge_writemem_ind(sc, BGE_SRAM_FW_DRV_STATE_MB,
1726 			    BGE_FW_DRV_STATE_START_DONE);
1727 			/* START DONE */
1728 			break;
1729 		case BGE_RESET_SHUTDOWN:
1730 			bge_writemem_ind(sc, BGE_SRAM_FW_DRV_STATE_MB,
1731 			    BGE_FW_DRV_STATE_UNLOAD_DONE);
1732 			break;
1733 		}
1734 	}
1735 	if (type == BGE_RESET_SHUTDOWN)
1736 		bge_ape_driver_state_change(sc, type);
1737 }
1738 
1739 static void
1740 bge_sig_legacy(struct bge_softc *sc, int type)
1741 {
1742 
1743 	if (sc->bge_asf_mode) {
1744 		switch (type) {
1745 		case BGE_RESET_START:
1746 			bge_writemem_ind(sc, BGE_SRAM_FW_DRV_STATE_MB,
1747 			    BGE_FW_DRV_STATE_START);
1748 			break;
1749 		case BGE_RESET_SHUTDOWN:
1750 			bge_writemem_ind(sc, BGE_SRAM_FW_DRV_STATE_MB,
1751 			    BGE_FW_DRV_STATE_UNLOAD);
1752 			break;
1753 		}
1754 	}
1755 }
1756 
1757 static void
1758 bge_stop_fw(struct bge_softc *sc)
1759 {
1760 	int i;
1761 
1762 	if (sc->bge_asf_mode) {
1763 		bge_writemem_ind(sc, BGE_SRAM_FW_CMD_MB, BGE_FW_CMD_PAUSE);
1764 		CSR_WRITE_4(sc, BGE_RX_CPU_EVENT,
1765 		    CSR_READ_4(sc, BGE_RX_CPU_EVENT) | BGE_RX_CPU_DRV_EVENT);
1766 
1767 		for (i = 0; i < 100; i++ ) {
1768 			if (!(CSR_READ_4(sc, BGE_RX_CPU_EVENT) &
1769 			    BGE_RX_CPU_DRV_EVENT))
1770 				break;
1771 			DELAY(10);
1772 		}
1773 	}
1774 }
1775 
1776 static uint32_t
1777 bge_dma_swap_options(struct bge_softc *sc)
1778 {
1779 	uint32_t dma_options;
1780 
1781 	dma_options = BGE_MODECTL_WORDSWAP_NONFRAME |
1782 	    BGE_MODECTL_BYTESWAP_DATA | BGE_MODECTL_WORDSWAP_DATA;
1783 #if BYTE_ORDER == BIG_ENDIAN
1784 	dma_options |= BGE_MODECTL_BYTESWAP_NONFRAME;
1785 #endif
1786 	return (dma_options);
1787 }
1788 
1789 /*
1790  * Do endian, PCI and DMA initialization.
1791  */
1792 static int
1793 bge_chipinit(struct bge_softc *sc)
1794 {
1795 	uint32_t dma_rw_ctl, misc_ctl, mode_ctl;
1796 	uint16_t val;
1797 	int i;
1798 
1799 	/* Set endianness before we access any non-PCI registers. */
1800 	misc_ctl = BGE_INIT;
1801 	if (sc->bge_flags & BGE_FLAG_TAGGED_STATUS)
1802 		misc_ctl |= BGE_PCIMISCCTL_TAGGED_STATUS;
1803 	pci_write_config(sc->bge_dev, BGE_PCI_MISC_CTL, misc_ctl, 4);
1804 
1805 	/*
1806 	 * Clear the MAC statistics block in the NIC's
1807 	 * internal memory.
1808 	 */
1809 	for (i = BGE_STATS_BLOCK;
1810 	    i < BGE_STATS_BLOCK_END + 1; i += sizeof(uint32_t))
1811 		BGE_MEMWIN_WRITE(sc, i, 0);
1812 
1813 	for (i = BGE_STATUS_BLOCK;
1814 	    i < BGE_STATUS_BLOCK_END + 1; i += sizeof(uint32_t))
1815 		BGE_MEMWIN_WRITE(sc, i, 0);
1816 
1817 	if (sc->bge_chiprev == BGE_CHIPREV_5704_BX) {
1818 		/*
1819 		 *  Fix data corruption caused by non-qword write with WB.
1820 		 *  Fix master abort in PCI mode.
1821 		 *  Fix PCI latency timer.
1822 		 */
1823 		val = pci_read_config(sc->bge_dev, BGE_PCI_MSI_DATA + 2, 2);
1824 		val |= (1 << 10) | (1 << 12) | (1 << 13);
1825 		pci_write_config(sc->bge_dev, BGE_PCI_MSI_DATA + 2, val, 2);
1826 	}
1827 
1828 	if (sc->bge_asicrev == BGE_ASICREV_BCM57765 ||
1829 	    sc->bge_asicrev == BGE_ASICREV_BCM57766) {
1830 		/*
1831 		 * For the 57766 and non Ax versions of 57765, bootcode
1832 		 * needs to setup the PCIE Fast Training Sequence (FTS)
1833 		 * value to prevent transmit hangs.
1834 		 */
1835 		if (sc->bge_chiprev != BGE_CHIPREV_57765_AX) {
1836 			CSR_WRITE_4(sc, BGE_CPMU_PADRNG_CTL,
1837 			    CSR_READ_4(sc, BGE_CPMU_PADRNG_CTL) |
1838 			    BGE_CPMU_PADRNG_CTL_RDIV2);
1839 		}
1840 	}
1841 
1842 	/*
1843 	 * Set up the PCI DMA control register.
1844 	 */
1845 	dma_rw_ctl = BGE_PCIDMARWCTL_RD_CMD_SHIFT(6) |
1846 	    BGE_PCIDMARWCTL_WR_CMD_SHIFT(7);
1847 	if (sc->bge_flags & BGE_FLAG_PCIE) {
1848 		if (sc->bge_mps >= 256)
1849 			dma_rw_ctl |= BGE_PCIDMARWCTL_WR_WAT_SHIFT(7);
1850 		else
1851 			dma_rw_ctl |= BGE_PCIDMARWCTL_WR_WAT_SHIFT(3);
1852 	} else if (sc->bge_flags & BGE_FLAG_PCIX) {
1853 		if (BGE_IS_5714_FAMILY(sc)) {
1854 			/* 256 bytes for read and write. */
1855 			dma_rw_ctl |= BGE_PCIDMARWCTL_RD_WAT_SHIFT(2) |
1856 			    BGE_PCIDMARWCTL_WR_WAT_SHIFT(2);
1857 			dma_rw_ctl |= (sc->bge_asicrev == BGE_ASICREV_BCM5780) ?
1858 			    BGE_PCIDMARWCTL_ONEDMA_ATONCE_GLOBAL :
1859 			    BGE_PCIDMARWCTL_ONEDMA_ATONCE_LOCAL;
1860 		} else if (sc->bge_asicrev == BGE_ASICREV_BCM5703) {
1861 			/*
1862 			 * In the BCM5703, the DMA read watermark should
1863 			 * be set to less than or equal to the maximum
1864 			 * memory read byte count of the PCI-X command
1865 			 * register.
1866 			 */
1867 			dma_rw_ctl |= BGE_PCIDMARWCTL_RD_WAT_SHIFT(4) |
1868 			    BGE_PCIDMARWCTL_WR_WAT_SHIFT(3);
1869 		} else if (sc->bge_asicrev == BGE_ASICREV_BCM5704) {
1870 			/* 1536 bytes for read, 384 bytes for write. */
1871 			dma_rw_ctl |= BGE_PCIDMARWCTL_RD_WAT_SHIFT(7) |
1872 			    BGE_PCIDMARWCTL_WR_WAT_SHIFT(3);
1873 		} else {
1874 			/* 384 bytes for read and write. */
1875 			dma_rw_ctl |= BGE_PCIDMARWCTL_RD_WAT_SHIFT(3) |
1876 			    BGE_PCIDMARWCTL_WR_WAT_SHIFT(3) |
1877 			    0x0F;
1878 		}
1879 		if (sc->bge_asicrev == BGE_ASICREV_BCM5703 ||
1880 		    sc->bge_asicrev == BGE_ASICREV_BCM5704) {
1881 			uint32_t tmp;
1882 
1883 			/* Set ONE_DMA_AT_ONCE for hardware workaround. */
1884 			tmp = CSR_READ_4(sc, BGE_PCI_CLKCTL) & 0x1F;
1885 			if (tmp == 6 || tmp == 7)
1886 				dma_rw_ctl |=
1887 				    BGE_PCIDMARWCTL_ONEDMA_ATONCE_GLOBAL;
1888 
1889 			/* Set PCI-X DMA write workaround. */
1890 			dma_rw_ctl |= BGE_PCIDMARWCTL_ASRT_ALL_BE;
1891 		}
1892 	} else {
1893 		/* Conventional PCI bus: 256 bytes for read and write. */
1894 		dma_rw_ctl |= BGE_PCIDMARWCTL_RD_WAT_SHIFT(7) |
1895 		    BGE_PCIDMARWCTL_WR_WAT_SHIFT(7);
1896 
1897 		if (sc->bge_asicrev != BGE_ASICREV_BCM5705 &&
1898 		    sc->bge_asicrev != BGE_ASICREV_BCM5750)
1899 			dma_rw_ctl |= 0x0F;
1900 	}
1901 	if (sc->bge_asicrev == BGE_ASICREV_BCM5700 ||
1902 	    sc->bge_asicrev == BGE_ASICREV_BCM5701)
1903 		dma_rw_ctl |= BGE_PCIDMARWCTL_USE_MRM |
1904 		    BGE_PCIDMARWCTL_ASRT_ALL_BE;
1905 	if (sc->bge_asicrev == BGE_ASICREV_BCM5703 ||
1906 	    sc->bge_asicrev == BGE_ASICREV_BCM5704)
1907 		dma_rw_ctl &= ~BGE_PCIDMARWCTL_MINDMA;
1908 	if (BGE_IS_5717_PLUS(sc)) {
1909 		dma_rw_ctl &= ~BGE_PCIDMARWCTL_DIS_CACHE_ALIGNMENT;
1910 		if (sc->bge_chipid == BGE_CHIPID_BCM57765_A0)
1911 			dma_rw_ctl &= ~BGE_PCIDMARWCTL_CRDRDR_RDMA_MRRS_MSK;
1912 		/*
1913 		 * Enable HW workaround for controllers that misinterpret
1914 		 * a status tag update and leave interrupts permanently
1915 		 * disabled.
1916 		 */
1917 		if (!BGE_IS_57765_PLUS(sc) &&
1918 		    sc->bge_asicrev != BGE_ASICREV_BCM5717 &&
1919 		    sc->bge_asicrev != BGE_ASICREV_BCM5762)
1920 			dma_rw_ctl |= BGE_PCIDMARWCTL_TAGGED_STATUS_WA;
1921 	}
1922 	pci_write_config(sc->bge_dev, BGE_PCI_DMA_RW_CTL, dma_rw_ctl, 4);
1923 
1924 	/*
1925 	 * Set up general mode register.
1926 	 */
1927 	mode_ctl = bge_dma_swap_options(sc);
1928 	if (sc->bge_asicrev == BGE_ASICREV_BCM5720 ||
1929 	    sc->bge_asicrev == BGE_ASICREV_BCM5762) {
1930 		/* Retain Host-2-BMC settings written by APE firmware. */
1931 		mode_ctl |= CSR_READ_4(sc, BGE_MODE_CTL) &
1932 		    (BGE_MODECTL_BYTESWAP_B2HRX_DATA |
1933 		    BGE_MODECTL_WORDSWAP_B2HRX_DATA |
1934 		    BGE_MODECTL_B2HRX_ENABLE | BGE_MODECTL_HTX2B_ENABLE);
1935 	}
1936 	mode_ctl |= BGE_MODECTL_MAC_ATTN_INTR | BGE_MODECTL_HOST_SEND_BDS |
1937 	    BGE_MODECTL_TX_NO_PHDR_CSUM;
1938 
1939 	/*
1940 	 * BCM5701 B5 have a bug causing data corruption when using
1941 	 * 64-bit DMA reads, which can be terminated early and then
1942 	 * completed later as 32-bit accesses, in combination with
1943 	 * certain bridges.
1944 	 */
1945 	if (sc->bge_asicrev == BGE_ASICREV_BCM5701 &&
1946 	    sc->bge_chipid == BGE_CHIPID_BCM5701_B5)
1947 		mode_ctl |= BGE_MODECTL_FORCE_PCI32;
1948 
1949 	/*
1950 	 * Tell the firmware the driver is running
1951 	 */
1952 	if (sc->bge_asf_mode & ASF_STACKUP)
1953 		mode_ctl |= BGE_MODECTL_STACKUP;
1954 
1955 	CSR_WRITE_4(sc, BGE_MODE_CTL, mode_ctl);
1956 
1957 	/*
1958 	 * Disable memory write invalidate.  Apparently it is not supported
1959 	 * properly by these devices.
1960 	 */
1961 	PCI_CLRBIT(sc->bge_dev, BGE_PCI_CMD, PCIM_CMD_MWIEN, 4);
1962 
1963 	/* Set the timer prescaler (always 66 MHz). */
1964 	CSR_WRITE_4(sc, BGE_MISC_CFG, BGE_32BITTIME_66MHZ);
1965 
1966 	/* XXX: The Linux tg3 driver does this at the start of brgphy_reset. */
1967 	if (sc->bge_asicrev == BGE_ASICREV_BCM5906) {
1968 		DELAY(40);	/* XXX */
1969 
1970 		/* Put PHY into ready state */
1971 		BGE_CLRBIT(sc, BGE_MISC_CFG, BGE_MISCCFG_EPHY_IDDQ);
1972 		CSR_READ_4(sc, BGE_MISC_CFG); /* Flush */
1973 		DELAY(40);
1974 	}
1975 
1976 	return (0);
1977 }
1978 
1979 static int
1980 bge_blockinit(struct bge_softc *sc)
1981 {
1982 	struct bge_rcb *rcb;
1983 	bus_size_t vrcb;
1984 	bge_hostaddr taddr;
1985 	uint32_t dmactl, rdmareg, val;
1986 	int i, limit;
1987 
1988 	/*
1989 	 * Initialize the memory window pointer register so that
1990 	 * we can access the first 32K of internal NIC RAM. This will
1991 	 * allow us to set up the TX send ring RCBs and the RX return
1992 	 * ring RCBs, plus other things which live in NIC memory.
1993 	 */
1994 	CSR_WRITE_4(sc, BGE_PCI_MEMWIN_BASEADDR, 0);
1995 
1996 	/* Note: the BCM5704 has a smaller mbuf space than other chips. */
1997 
1998 	if (!(BGE_IS_5705_PLUS(sc))) {
1999 		/* Configure mbuf memory pool */
2000 		CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_BASEADDR, BGE_BUFFPOOL_1);
2001 		if (sc->bge_asicrev == BGE_ASICREV_BCM5704)
2002 			CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_LEN, 0x10000);
2003 		else
2004 			CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_LEN, 0x18000);
2005 
2006 		/* Configure DMA resource pool */
2007 		CSR_WRITE_4(sc, BGE_BMAN_DMA_DESCPOOL_BASEADDR,
2008 		    BGE_DMA_DESCRIPTORS);
2009 		CSR_WRITE_4(sc, BGE_BMAN_DMA_DESCPOOL_LEN, 0x2000);
2010 	}
2011 
2012 	/* Configure mbuf pool watermarks */
2013 	if (BGE_IS_5717_PLUS(sc)) {
2014 		CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_READDMA_LOWAT, 0x0);
2015 		if (if_getmtu(sc->bge_ifp) > ETHERMTU) {
2016 			CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_MACRX_LOWAT, 0x7e);
2017 			CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_HIWAT, 0xea);
2018 		} else {
2019 			CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_MACRX_LOWAT, 0x2a);
2020 			CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_HIWAT, 0xa0);
2021 		}
2022 	} else if (!BGE_IS_5705_PLUS(sc)) {
2023 		CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_READDMA_LOWAT, 0x50);
2024 		CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_MACRX_LOWAT, 0x20);
2025 		CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_HIWAT, 0x60);
2026 	} else if (sc->bge_asicrev == BGE_ASICREV_BCM5906) {
2027 		CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_READDMA_LOWAT, 0x0);
2028 		CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_MACRX_LOWAT, 0x04);
2029 		CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_HIWAT, 0x10);
2030 	} else {
2031 		CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_READDMA_LOWAT, 0x0);
2032 		CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_MACRX_LOWAT, 0x10);
2033 		CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_HIWAT, 0x60);
2034 	}
2035 
2036 	/* Configure DMA resource watermarks */
2037 	CSR_WRITE_4(sc, BGE_BMAN_DMA_DESCPOOL_LOWAT, 5);
2038 	CSR_WRITE_4(sc, BGE_BMAN_DMA_DESCPOOL_HIWAT, 10);
2039 
2040 	/* Enable buffer manager */
2041 	val = BGE_BMANMODE_ENABLE | BGE_BMANMODE_LOMBUF_ATTN;
2042 	/*
2043 	 * Change the arbitration algorithm of TXMBUF read request to
2044 	 * round-robin instead of priority based for BCM5719.  When
2045 	 * TXFIFO is almost empty, RDMA will hold its request until
2046 	 * TXFIFO is not almost empty.
2047 	 */
2048 	if (sc->bge_asicrev == BGE_ASICREV_BCM5719)
2049 		val |= BGE_BMANMODE_NO_TX_UNDERRUN;
2050 	CSR_WRITE_4(sc, BGE_BMAN_MODE, val);
2051 
2052 	/* Poll for buffer manager start indication */
2053 	for (i = 0; i < BGE_TIMEOUT; i++) {
2054 		DELAY(10);
2055 		if (CSR_READ_4(sc, BGE_BMAN_MODE) & BGE_BMANMODE_ENABLE)
2056 			break;
2057 	}
2058 
2059 	if (i == BGE_TIMEOUT) {
2060 		device_printf(sc->bge_dev, "buffer manager failed to start\n");
2061 		return (ENXIO);
2062 	}
2063 
2064 	/* Enable flow-through queues */
2065 	CSR_WRITE_4(sc, BGE_FTQ_RESET, 0xFFFFFFFF);
2066 	CSR_WRITE_4(sc, BGE_FTQ_RESET, 0);
2067 
2068 	/* Wait until queue initialization is complete */
2069 	for (i = 0; i < BGE_TIMEOUT; i++) {
2070 		DELAY(10);
2071 		if (CSR_READ_4(sc, BGE_FTQ_RESET) == 0)
2072 			break;
2073 	}
2074 
2075 	if (i == BGE_TIMEOUT) {
2076 		device_printf(sc->bge_dev, "flow-through queue init failed\n");
2077 		return (ENXIO);
2078 	}
2079 
2080 	/*
2081 	 * Summary of rings supported by the controller:
2082 	 *
2083 	 * Standard Receive Producer Ring
2084 	 * - This ring is used to feed receive buffers for "standard"
2085 	 *   sized frames (typically 1536 bytes) to the controller.
2086 	 *
2087 	 * Jumbo Receive Producer Ring
2088 	 * - This ring is used to feed receive buffers for jumbo sized
2089 	 *   frames (i.e. anything bigger than the "standard" frames)
2090 	 *   to the controller.
2091 	 *
2092 	 * Mini Receive Producer Ring
2093 	 * - This ring is used to feed receive buffers for "mini"
2094 	 *   sized frames to the controller.
2095 	 * - This feature required external memory for the controller
2096 	 *   but was never used in a production system.  Should always
2097 	 *   be disabled.
2098 	 *
2099 	 * Receive Return Ring
2100 	 * - After the controller has placed an incoming frame into a
2101 	 *   receive buffer that buffer is moved into a receive return
2102 	 *   ring.  The driver is then responsible to passing the
2103 	 *   buffer up to the stack.  Many versions of the controller
2104 	 *   support multiple RR rings.
2105 	 *
2106 	 * Send Ring
2107 	 * - This ring is used for outgoing frames.  Many versions of
2108 	 *   the controller support multiple send rings.
2109 	 */
2110 
2111 	/* Initialize the standard receive producer ring control block. */
2112 	rcb = &sc->bge_ldata.bge_info.bge_std_rx_rcb;
2113 	rcb->bge_hostaddr.bge_addr_lo =
2114 	    BGE_ADDR_LO(sc->bge_ldata.bge_rx_std_ring_paddr);
2115 	rcb->bge_hostaddr.bge_addr_hi =
2116 	    BGE_ADDR_HI(sc->bge_ldata.bge_rx_std_ring_paddr);
2117 	bus_dmamap_sync(sc->bge_cdata.bge_rx_std_ring_tag,
2118 	    sc->bge_cdata.bge_rx_std_ring_map, BUS_DMASYNC_PREREAD);
2119 	if (BGE_IS_5717_PLUS(sc)) {
2120 		/*
2121 		 * Bits 31-16: Programmable ring size (2048, 1024, 512, .., 32)
2122 		 * Bits 15-2 : Maximum RX frame size
2123 		 * Bit 1     : 1 = Ring Disabled, 0 = Ring ENabled
2124 		 * Bit 0     : Reserved
2125 		 */
2126 		rcb->bge_maxlen_flags =
2127 		    BGE_RCB_MAXLEN_FLAGS(512, BGE_MAX_FRAMELEN << 2);
2128 	} else if (BGE_IS_5705_PLUS(sc)) {
2129 		/*
2130 		 * Bits 31-16: Programmable ring size (512, 256, 128, 64, 32)
2131 		 * Bits 15-2 : Reserved (should be 0)
2132 		 * Bit 1     : 1 = Ring Disabled, 0 = Ring Enabled
2133 		 * Bit 0     : Reserved
2134 		 */
2135 		rcb->bge_maxlen_flags = BGE_RCB_MAXLEN_FLAGS(512, 0);
2136 	} else {
2137 		/*
2138 		 * Ring size is always XXX entries
2139 		 * Bits 31-16: Maximum RX frame size
2140 		 * Bits 15-2 : Reserved (should be 0)
2141 		 * Bit 1     : 1 = Ring Disabled, 0 = Ring Enabled
2142 		 * Bit 0     : Reserved
2143 		 */
2144 		rcb->bge_maxlen_flags =
2145 		    BGE_RCB_MAXLEN_FLAGS(BGE_MAX_FRAMELEN, 0);
2146 	}
2147 	if (sc->bge_asicrev == BGE_ASICREV_BCM5717 ||
2148 	    sc->bge_asicrev == BGE_ASICREV_BCM5719 ||
2149 	    sc->bge_asicrev == BGE_ASICREV_BCM5720)
2150 		rcb->bge_nicaddr = BGE_STD_RX_RINGS_5717;
2151 	else
2152 		rcb->bge_nicaddr = BGE_STD_RX_RINGS;
2153 	/* Write the standard receive producer ring control block. */
2154 	CSR_WRITE_4(sc, BGE_RX_STD_RCB_HADDR_HI, rcb->bge_hostaddr.bge_addr_hi);
2155 	CSR_WRITE_4(sc, BGE_RX_STD_RCB_HADDR_LO, rcb->bge_hostaddr.bge_addr_lo);
2156 	CSR_WRITE_4(sc, BGE_RX_STD_RCB_MAXLEN_FLAGS, rcb->bge_maxlen_flags);
2157 	CSR_WRITE_4(sc, BGE_RX_STD_RCB_NICADDR, rcb->bge_nicaddr);
2158 
2159 	/* Reset the standard receive producer ring producer index. */
2160 	bge_writembx(sc, BGE_MBX_RX_STD_PROD_LO, 0);
2161 
2162 	/*
2163 	 * Initialize the jumbo RX producer ring control
2164 	 * block.  We set the 'ring disabled' bit in the
2165 	 * flags field until we're actually ready to start
2166 	 * using this ring (i.e. once we set the MTU
2167 	 * high enough to require it).
2168 	 */
2169 	if (BGE_IS_JUMBO_CAPABLE(sc)) {
2170 		rcb = &sc->bge_ldata.bge_info.bge_jumbo_rx_rcb;
2171 		/* Get the jumbo receive producer ring RCB parameters. */
2172 		rcb->bge_hostaddr.bge_addr_lo =
2173 		    BGE_ADDR_LO(sc->bge_ldata.bge_rx_jumbo_ring_paddr);
2174 		rcb->bge_hostaddr.bge_addr_hi =
2175 		    BGE_ADDR_HI(sc->bge_ldata.bge_rx_jumbo_ring_paddr);
2176 		bus_dmamap_sync(sc->bge_cdata.bge_rx_jumbo_ring_tag,
2177 		    sc->bge_cdata.bge_rx_jumbo_ring_map,
2178 		    BUS_DMASYNC_PREREAD);
2179 		rcb->bge_maxlen_flags = BGE_RCB_MAXLEN_FLAGS(0,
2180 		    BGE_RCB_FLAG_USE_EXT_RX_BD | BGE_RCB_FLAG_RING_DISABLED);
2181 		if (sc->bge_asicrev == BGE_ASICREV_BCM5717 ||
2182 		    sc->bge_asicrev == BGE_ASICREV_BCM5719 ||
2183 		    sc->bge_asicrev == BGE_ASICREV_BCM5720)
2184 			rcb->bge_nicaddr = BGE_JUMBO_RX_RINGS_5717;
2185 		else
2186 			rcb->bge_nicaddr = BGE_JUMBO_RX_RINGS;
2187 		CSR_WRITE_4(sc, BGE_RX_JUMBO_RCB_HADDR_HI,
2188 		    rcb->bge_hostaddr.bge_addr_hi);
2189 		CSR_WRITE_4(sc, BGE_RX_JUMBO_RCB_HADDR_LO,
2190 		    rcb->bge_hostaddr.bge_addr_lo);
2191 		/* Program the jumbo receive producer ring RCB parameters. */
2192 		CSR_WRITE_4(sc, BGE_RX_JUMBO_RCB_MAXLEN_FLAGS,
2193 		    rcb->bge_maxlen_flags);
2194 		CSR_WRITE_4(sc, BGE_RX_JUMBO_RCB_NICADDR, rcb->bge_nicaddr);
2195 		/* Reset the jumbo receive producer ring producer index. */
2196 		bge_writembx(sc, BGE_MBX_RX_JUMBO_PROD_LO, 0);
2197 	}
2198 
2199 	/* Disable the mini receive producer ring RCB. */
2200 	if (BGE_IS_5700_FAMILY(sc)) {
2201 		rcb = &sc->bge_ldata.bge_info.bge_mini_rx_rcb;
2202 		rcb->bge_maxlen_flags =
2203 		    BGE_RCB_MAXLEN_FLAGS(0, BGE_RCB_FLAG_RING_DISABLED);
2204 		CSR_WRITE_4(sc, BGE_RX_MINI_RCB_MAXLEN_FLAGS,
2205 		    rcb->bge_maxlen_flags);
2206 		/* Reset the mini receive producer ring producer index. */
2207 		bge_writembx(sc, BGE_MBX_RX_MINI_PROD_LO, 0);
2208 	}
2209 
2210 	/* Choose de-pipeline mode for BCM5906 A0, A1 and A2. */
2211 	if (sc->bge_asicrev == BGE_ASICREV_BCM5906) {
2212 		if (sc->bge_chipid == BGE_CHIPID_BCM5906_A0 ||
2213 		    sc->bge_chipid == BGE_CHIPID_BCM5906_A1 ||
2214 		    sc->bge_chipid == BGE_CHIPID_BCM5906_A2)
2215 			CSR_WRITE_4(sc, BGE_ISO_PKT_TX,
2216 			    (CSR_READ_4(sc, BGE_ISO_PKT_TX) & ~3) | 2);
2217 	}
2218 	/*
2219 	 * The BD ring replenish thresholds control how often the
2220 	 * hardware fetches new BD's from the producer rings in host
2221 	 * memory.  Setting the value too low on a busy system can
2222 	 * starve the hardware and recue the throughpout.
2223 	 *
2224 	 * Set the BD ring replentish thresholds. The recommended
2225 	 * values are 1/8th the number of descriptors allocated to
2226 	 * each ring.
2227 	 * XXX The 5754 requires a lower threshold, so it might be a
2228 	 * requirement of all 575x family chips.  The Linux driver sets
2229 	 * the lower threshold for all 5705 family chips as well, but there
2230 	 * are reports that it might not need to be so strict.
2231 	 *
2232 	 * XXX Linux does some extra fiddling here for the 5906 parts as
2233 	 * well.
2234 	 */
2235 	if (BGE_IS_5705_PLUS(sc))
2236 		val = 8;
2237 	else
2238 		val = BGE_STD_RX_RING_CNT / 8;
2239 	CSR_WRITE_4(sc, BGE_RBDI_STD_REPL_THRESH, val);
2240 	if (BGE_IS_JUMBO_CAPABLE(sc))
2241 		CSR_WRITE_4(sc, BGE_RBDI_JUMBO_REPL_THRESH,
2242 		    BGE_JUMBO_RX_RING_CNT/8);
2243 	if (BGE_IS_5717_PLUS(sc)) {
2244 		CSR_WRITE_4(sc, BGE_STD_REPLENISH_LWM, 32);
2245 		CSR_WRITE_4(sc, BGE_JMB_REPLENISH_LWM, 16);
2246 	}
2247 
2248 	/*
2249 	 * Disable all send rings by setting the 'ring disabled' bit
2250 	 * in the flags field of all the TX send ring control blocks,
2251 	 * located in NIC memory.
2252 	 */
2253 	if (!BGE_IS_5705_PLUS(sc))
2254 		/* 5700 to 5704 had 16 send rings. */
2255 		limit = BGE_TX_RINGS_EXTSSRAM_MAX;
2256 	else if (BGE_IS_57765_PLUS(sc) ||
2257 	    sc->bge_asicrev == BGE_ASICREV_BCM5762)
2258 		limit = 2;
2259 	else if (BGE_IS_5717_PLUS(sc))
2260 		limit = 4;
2261 	else
2262 		limit = 1;
2263 	vrcb = BGE_MEMWIN_START + BGE_SEND_RING_RCB;
2264 	for (i = 0; i < limit; i++) {
2265 		RCB_WRITE_4(sc, vrcb, bge_maxlen_flags,
2266 		    BGE_RCB_MAXLEN_FLAGS(0, BGE_RCB_FLAG_RING_DISABLED));
2267 		RCB_WRITE_4(sc, vrcb, bge_nicaddr, 0);
2268 		vrcb += sizeof(struct bge_rcb);
2269 	}
2270 
2271 	/* Configure send ring RCB 0 (we use only the first ring) */
2272 	vrcb = BGE_MEMWIN_START + BGE_SEND_RING_RCB;
2273 	BGE_HOSTADDR(taddr, sc->bge_ldata.bge_tx_ring_paddr);
2274 	RCB_WRITE_4(sc, vrcb, bge_hostaddr.bge_addr_hi, taddr.bge_addr_hi);
2275 	RCB_WRITE_4(sc, vrcb, bge_hostaddr.bge_addr_lo, taddr.bge_addr_lo);
2276 	if (sc->bge_asicrev == BGE_ASICREV_BCM5717 ||
2277 	    sc->bge_asicrev == BGE_ASICREV_BCM5719 ||
2278 	    sc->bge_asicrev == BGE_ASICREV_BCM5720)
2279 		RCB_WRITE_4(sc, vrcb, bge_nicaddr, BGE_SEND_RING_5717);
2280 	else
2281 		RCB_WRITE_4(sc, vrcb, bge_nicaddr,
2282 		    BGE_NIC_TXRING_ADDR(0, BGE_TX_RING_CNT));
2283 	RCB_WRITE_4(sc, vrcb, bge_maxlen_flags,
2284 	    BGE_RCB_MAXLEN_FLAGS(BGE_TX_RING_CNT, 0));
2285 
2286 	/*
2287 	 * Disable all receive return rings by setting the
2288 	 * 'ring diabled' bit in the flags field of all the receive
2289 	 * return ring control blocks, located in NIC memory.
2290 	 */
2291 	if (sc->bge_asicrev == BGE_ASICREV_BCM5717 ||
2292 	    sc->bge_asicrev == BGE_ASICREV_BCM5719 ||
2293 	    sc->bge_asicrev == BGE_ASICREV_BCM5720) {
2294 		/* Should be 17, use 16 until we get an SRAM map. */
2295 		limit = 16;
2296 	} else if (!BGE_IS_5705_PLUS(sc))
2297 		limit = BGE_RX_RINGS_MAX;
2298 	else if (sc->bge_asicrev == BGE_ASICREV_BCM5755 ||
2299 	    sc->bge_asicrev == BGE_ASICREV_BCM5762 ||
2300 	    BGE_IS_57765_PLUS(sc))
2301 		limit = 4;
2302 	else
2303 		limit = 1;
2304 	/* Disable all receive return rings. */
2305 	vrcb = BGE_MEMWIN_START + BGE_RX_RETURN_RING_RCB;
2306 	for (i = 0; i < limit; i++) {
2307 		RCB_WRITE_4(sc, vrcb, bge_hostaddr.bge_addr_hi, 0);
2308 		RCB_WRITE_4(sc, vrcb, bge_hostaddr.bge_addr_lo, 0);
2309 		RCB_WRITE_4(sc, vrcb, bge_maxlen_flags,
2310 		    BGE_RCB_FLAG_RING_DISABLED);
2311 		RCB_WRITE_4(sc, vrcb, bge_nicaddr, 0);
2312 		bge_writembx(sc, BGE_MBX_RX_CONS0_LO +
2313 		    (i * (sizeof(uint64_t))), 0);
2314 		vrcb += sizeof(struct bge_rcb);
2315 	}
2316 
2317 	/*
2318 	 * Set up receive return ring 0.  Note that the NIC address
2319 	 * for RX return rings is 0x0.  The return rings live entirely
2320 	 * within the host, so the nicaddr field in the RCB isn't used.
2321 	 */
2322 	vrcb = BGE_MEMWIN_START + BGE_RX_RETURN_RING_RCB;
2323 	BGE_HOSTADDR(taddr, sc->bge_ldata.bge_rx_return_ring_paddr);
2324 	RCB_WRITE_4(sc, vrcb, bge_hostaddr.bge_addr_hi, taddr.bge_addr_hi);
2325 	RCB_WRITE_4(sc, vrcb, bge_hostaddr.bge_addr_lo, taddr.bge_addr_lo);
2326 	RCB_WRITE_4(sc, vrcb, bge_nicaddr, 0);
2327 	RCB_WRITE_4(sc, vrcb, bge_maxlen_flags,
2328 	    BGE_RCB_MAXLEN_FLAGS(sc->bge_return_ring_cnt, 0));
2329 
2330 	/* Set random backoff seed for TX */
2331 	CSR_WRITE_4(sc, BGE_TX_RANDOM_BACKOFF,
2332 	    (IF_LLADDR(sc->bge_ifp)[0] + IF_LLADDR(sc->bge_ifp)[1] +
2333 	    IF_LLADDR(sc->bge_ifp)[2] + IF_LLADDR(sc->bge_ifp)[3] +
2334 	    IF_LLADDR(sc->bge_ifp)[4] + IF_LLADDR(sc->bge_ifp)[5]) &
2335 	    BGE_TX_BACKOFF_SEED_MASK);
2336 
2337 	/* Set inter-packet gap */
2338 	val = 0x2620;
2339 	if (sc->bge_asicrev == BGE_ASICREV_BCM5720 ||
2340 	    sc->bge_asicrev == BGE_ASICREV_BCM5762)
2341 		val |= CSR_READ_4(sc, BGE_TX_LENGTHS) &
2342 		    (BGE_TXLEN_JMB_FRM_LEN_MSK | BGE_TXLEN_CNT_DN_VAL_MSK);
2343 	CSR_WRITE_4(sc, BGE_TX_LENGTHS, val);
2344 
2345 	/*
2346 	 * Specify which ring to use for packets that don't match
2347 	 * any RX rules.
2348 	 */
2349 	CSR_WRITE_4(sc, BGE_RX_RULES_CFG, 0x08);
2350 
2351 	/*
2352 	 * Configure number of RX lists. One interrupt distribution
2353 	 * list, sixteen active lists, one bad frames class.
2354 	 */
2355 	CSR_WRITE_4(sc, BGE_RXLP_CFG, 0x181);
2356 
2357 	/* Inialize RX list placement stats mask. */
2358 	CSR_WRITE_4(sc, BGE_RXLP_STATS_ENABLE_MASK, 0x007FFFFF);
2359 	CSR_WRITE_4(sc, BGE_RXLP_STATS_CTL, 0x1);
2360 
2361 	/* Disable host coalescing until we get it set up */
2362 	CSR_WRITE_4(sc, BGE_HCC_MODE, 0x00000000);
2363 
2364 	/* Poll to make sure it's shut down. */
2365 	for (i = 0; i < BGE_TIMEOUT; i++) {
2366 		DELAY(10);
2367 		if (!(CSR_READ_4(sc, BGE_HCC_MODE) & BGE_HCCMODE_ENABLE))
2368 			break;
2369 	}
2370 
2371 	if (i == BGE_TIMEOUT) {
2372 		device_printf(sc->bge_dev,
2373 		    "host coalescing engine failed to idle\n");
2374 		return (ENXIO);
2375 	}
2376 
2377 	/* Set up host coalescing defaults */
2378 	CSR_WRITE_4(sc, BGE_HCC_RX_COAL_TICKS, sc->bge_rx_coal_ticks);
2379 	CSR_WRITE_4(sc, BGE_HCC_TX_COAL_TICKS, sc->bge_tx_coal_ticks);
2380 	CSR_WRITE_4(sc, BGE_HCC_RX_MAX_COAL_BDS, sc->bge_rx_max_coal_bds);
2381 	CSR_WRITE_4(sc, BGE_HCC_TX_MAX_COAL_BDS, sc->bge_tx_max_coal_bds);
2382 	if (!(BGE_IS_5705_PLUS(sc))) {
2383 		CSR_WRITE_4(sc, BGE_HCC_RX_COAL_TICKS_INT, 0);
2384 		CSR_WRITE_4(sc, BGE_HCC_TX_COAL_TICKS_INT, 0);
2385 	}
2386 	CSR_WRITE_4(sc, BGE_HCC_RX_MAX_COAL_BDS_INT, 1);
2387 	CSR_WRITE_4(sc, BGE_HCC_TX_MAX_COAL_BDS_INT, 1);
2388 
2389 	/* Set up address of statistics block */
2390 	if (!(BGE_IS_5705_PLUS(sc))) {
2391 		CSR_WRITE_4(sc, BGE_HCC_STATS_ADDR_HI,
2392 		    BGE_ADDR_HI(sc->bge_ldata.bge_stats_paddr));
2393 		CSR_WRITE_4(sc, BGE_HCC_STATS_ADDR_LO,
2394 		    BGE_ADDR_LO(sc->bge_ldata.bge_stats_paddr));
2395 		CSR_WRITE_4(sc, BGE_HCC_STATS_BASEADDR, BGE_STATS_BLOCK);
2396 		CSR_WRITE_4(sc, BGE_HCC_STATUSBLK_BASEADDR, BGE_STATUS_BLOCK);
2397 		CSR_WRITE_4(sc, BGE_HCC_STATS_TICKS, sc->bge_stat_ticks);
2398 	}
2399 
2400 	/* Set up address of status block */
2401 	CSR_WRITE_4(sc, BGE_HCC_STATUSBLK_ADDR_HI,
2402 	    BGE_ADDR_HI(sc->bge_ldata.bge_status_block_paddr));
2403 	CSR_WRITE_4(sc, BGE_HCC_STATUSBLK_ADDR_LO,
2404 	    BGE_ADDR_LO(sc->bge_ldata.bge_status_block_paddr));
2405 
2406 	/* Set up status block size. */
2407 	if (sc->bge_asicrev == BGE_ASICREV_BCM5700 &&
2408 	    sc->bge_chipid != BGE_CHIPID_BCM5700_C0) {
2409 		val = BGE_STATBLKSZ_FULL;
2410 		bzero(sc->bge_ldata.bge_status_block, BGE_STATUS_BLK_SZ);
2411 	} else {
2412 		val = BGE_STATBLKSZ_32BYTE;
2413 		bzero(sc->bge_ldata.bge_status_block, 32);
2414 	}
2415 	bus_dmamap_sync(sc->bge_cdata.bge_status_tag,
2416 	    sc->bge_cdata.bge_status_map,
2417 	    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
2418 
2419 	/* Turn on host coalescing state machine */
2420 	CSR_WRITE_4(sc, BGE_HCC_MODE, val | BGE_HCCMODE_ENABLE);
2421 
2422 	/* Turn on RX BD completion state machine and enable attentions */
2423 	CSR_WRITE_4(sc, BGE_RBDC_MODE,
2424 	    BGE_RBDCMODE_ENABLE | BGE_RBDCMODE_ATTN);
2425 
2426 	/* Turn on RX list placement state machine */
2427 	CSR_WRITE_4(sc, BGE_RXLP_MODE, BGE_RXLPMODE_ENABLE);
2428 
2429 	/* Turn on RX list selector state machine. */
2430 	if (!(BGE_IS_5705_PLUS(sc)))
2431 		CSR_WRITE_4(sc, BGE_RXLS_MODE, BGE_RXLSMODE_ENABLE);
2432 
2433 	/* Turn on DMA, clear stats. */
2434 	val = BGE_MACMODE_TXDMA_ENB | BGE_MACMODE_RXDMA_ENB |
2435 	    BGE_MACMODE_RX_STATS_CLEAR | BGE_MACMODE_TX_STATS_CLEAR |
2436 	    BGE_MACMODE_RX_STATS_ENB | BGE_MACMODE_TX_STATS_ENB |
2437 	    BGE_MACMODE_FRMHDR_DMA_ENB;
2438 
2439 	if (sc->bge_flags & BGE_FLAG_TBI)
2440 		val |= BGE_PORTMODE_TBI;
2441 	else if (sc->bge_flags & BGE_FLAG_MII_SERDES)
2442 		val |= BGE_PORTMODE_GMII;
2443 	else
2444 		val |= BGE_PORTMODE_MII;
2445 
2446 	/* Allow APE to send/receive frames. */
2447 	if ((sc->bge_mfw_flags & BGE_MFW_ON_APE) != 0)
2448 		val |= BGE_MACMODE_APE_RX_EN | BGE_MACMODE_APE_TX_EN;
2449 
2450 	CSR_WRITE_4(sc, BGE_MAC_MODE, val);
2451 	DELAY(40);
2452 
2453 	/* Set misc. local control, enable interrupts on attentions */
2454 	BGE_SETBIT(sc, BGE_MISC_LOCAL_CTL, BGE_MLC_INTR_ONATTN);
2455 
2456 #ifdef notdef
2457 	/* Assert GPIO pins for PHY reset */
2458 	BGE_SETBIT(sc, BGE_MISC_LOCAL_CTL, BGE_MLC_MISCIO_OUT0 |
2459 	    BGE_MLC_MISCIO_OUT1 | BGE_MLC_MISCIO_OUT2);
2460 	BGE_SETBIT(sc, BGE_MISC_LOCAL_CTL, BGE_MLC_MISCIO_OUTEN0 |
2461 	    BGE_MLC_MISCIO_OUTEN1 | BGE_MLC_MISCIO_OUTEN2);
2462 #endif
2463 
2464 	/* Turn on DMA completion state machine */
2465 	if (!(BGE_IS_5705_PLUS(sc)))
2466 		CSR_WRITE_4(sc, BGE_DMAC_MODE, BGE_DMACMODE_ENABLE);
2467 
2468 	val = BGE_WDMAMODE_ENABLE | BGE_WDMAMODE_ALL_ATTNS;
2469 
2470 	/* Enable host coalescing bug fix. */
2471 	if (BGE_IS_5755_PLUS(sc))
2472 		val |= BGE_WDMAMODE_STATUS_TAG_FIX;
2473 
2474 	/* Request larger DMA burst size to get better performance. */
2475 	if (sc->bge_asicrev == BGE_ASICREV_BCM5785)
2476 		val |= BGE_WDMAMODE_BURST_ALL_DATA;
2477 
2478 	/* Turn on write DMA state machine */
2479 	CSR_WRITE_4(sc, BGE_WDMA_MODE, val);
2480 	DELAY(40);
2481 
2482 	/* Turn on read DMA state machine */
2483 	val = BGE_RDMAMODE_ENABLE | BGE_RDMAMODE_ALL_ATTNS;
2484 
2485 	if (sc->bge_asicrev == BGE_ASICREV_BCM5717)
2486 		val |= BGE_RDMAMODE_MULT_DMA_RD_DIS;
2487 
2488 	if (sc->bge_asicrev == BGE_ASICREV_BCM5784 ||
2489 	    sc->bge_asicrev == BGE_ASICREV_BCM5785 ||
2490 	    sc->bge_asicrev == BGE_ASICREV_BCM57780)
2491 		val |= BGE_RDMAMODE_BD_SBD_CRPT_ATTN |
2492 		    BGE_RDMAMODE_MBUF_RBD_CRPT_ATTN |
2493 		    BGE_RDMAMODE_MBUF_SBD_CRPT_ATTN;
2494 	if (sc->bge_flags & BGE_FLAG_PCIE)
2495 		val |= BGE_RDMAMODE_FIFO_LONG_BURST;
2496 	if (sc->bge_flags & (BGE_FLAG_TSO | BGE_FLAG_TSO3)) {
2497 		val |= BGE_RDMAMODE_TSO4_ENABLE;
2498 		if (sc->bge_flags & BGE_FLAG_TSO3 ||
2499 		    sc->bge_asicrev == BGE_ASICREV_BCM5785 ||
2500 		    sc->bge_asicrev == BGE_ASICREV_BCM57780)
2501 			val |= BGE_RDMAMODE_TSO6_ENABLE;
2502 	}
2503 
2504 	if (sc->bge_asicrev == BGE_ASICREV_BCM5720 ||
2505 	    sc->bge_asicrev == BGE_ASICREV_BCM5762) {
2506 		val |= CSR_READ_4(sc, BGE_RDMA_MODE) &
2507 			BGE_RDMAMODE_H2BNC_VLAN_DET;
2508 		/*
2509 		 * Allow multiple outstanding read requests from
2510 		 * non-LSO read DMA engine.
2511 		 */
2512 		val &= ~BGE_RDMAMODE_MULT_DMA_RD_DIS;
2513 	}
2514 
2515 	if (sc->bge_asicrev == BGE_ASICREV_BCM5761 ||
2516 	    sc->bge_asicrev == BGE_ASICREV_BCM5784 ||
2517 	    sc->bge_asicrev == BGE_ASICREV_BCM5785 ||
2518 	    sc->bge_asicrev == BGE_ASICREV_BCM57780 ||
2519 	    BGE_IS_5717_PLUS(sc) || BGE_IS_57765_PLUS(sc)) {
2520 		if (sc->bge_asicrev == BGE_ASICREV_BCM5762)
2521 			rdmareg = BGE_RDMA_RSRVCTRL_REG2;
2522 		else
2523 			rdmareg = BGE_RDMA_RSRVCTRL;
2524 		dmactl = CSR_READ_4(sc, rdmareg);
2525 		/*
2526 		 * Adjust tx margin to prevent TX data corruption and
2527 		 * fix internal FIFO overflow.
2528 		 */
2529 		if (sc->bge_chipid == BGE_CHIPID_BCM5719_A0 ||
2530 		    sc->bge_asicrev == BGE_ASICREV_BCM5762) {
2531 			dmactl &= ~(BGE_RDMA_RSRVCTRL_FIFO_LWM_MASK |
2532 			    BGE_RDMA_RSRVCTRL_FIFO_HWM_MASK |
2533 			    BGE_RDMA_RSRVCTRL_TXMRGN_MASK);
2534 			dmactl |= BGE_RDMA_RSRVCTRL_FIFO_LWM_1_5K |
2535 			    BGE_RDMA_RSRVCTRL_FIFO_HWM_1_5K |
2536 			    BGE_RDMA_RSRVCTRL_TXMRGN_320B;
2537 		}
2538 		/*
2539 		 * Enable fix for read DMA FIFO overruns.
2540 		 * The fix is to limit the number of RX BDs
2541 		 * the hardware would fetch at a fime.
2542 		 */
2543 		CSR_WRITE_4(sc, rdmareg, dmactl |
2544 		    BGE_RDMA_RSRVCTRL_FIFO_OFLW_FIX);
2545 	}
2546 
2547 	if (sc->bge_asicrev == BGE_ASICREV_BCM5719) {
2548 		CSR_WRITE_4(sc, BGE_RDMA_LSO_CRPTEN_CTRL,
2549 		    CSR_READ_4(sc, BGE_RDMA_LSO_CRPTEN_CTRL) |
2550 		    BGE_RDMA_LSO_CRPTEN_CTRL_BLEN_BD_4K |
2551 		    BGE_RDMA_LSO_CRPTEN_CTRL_BLEN_LSO_4K);
2552 	} else if (sc->bge_asicrev == BGE_ASICREV_BCM5720) {
2553 		/*
2554 		 * Allow 4KB burst length reads for non-LSO frames.
2555 		 * Enable 512B burst length reads for buffer descriptors.
2556 		 */
2557 		CSR_WRITE_4(sc, BGE_RDMA_LSO_CRPTEN_CTRL,
2558 		    CSR_READ_4(sc, BGE_RDMA_LSO_CRPTEN_CTRL) |
2559 		    BGE_RDMA_LSO_CRPTEN_CTRL_BLEN_BD_512 |
2560 		    BGE_RDMA_LSO_CRPTEN_CTRL_BLEN_LSO_4K);
2561 	} else if (sc->bge_asicrev == BGE_ASICREV_BCM5762) {
2562 		CSR_WRITE_4(sc, BGE_RDMA_LSO_CRPTEN_CTRL_REG2,
2563 		    CSR_READ_4(sc, BGE_RDMA_LSO_CRPTEN_CTRL_REG2) |
2564 		    BGE_RDMA_LSO_CRPTEN_CTRL_BLEN_BD_4K |
2565 		    BGE_RDMA_LSO_CRPTEN_CTRL_BLEN_LSO_4K);
2566 	}
2567 
2568 	CSR_WRITE_4(sc, BGE_RDMA_MODE, val);
2569 	DELAY(40);
2570 
2571 	if (sc->bge_flags & BGE_FLAG_RDMA_BUG) {
2572 		for (i = 0; i < BGE_NUM_RDMA_CHANNELS / 2; i++) {
2573 			val = CSR_READ_4(sc, BGE_RDMA_LENGTH + i * 4);
2574 			if ((val & 0xFFFF) > BGE_FRAMELEN)
2575 				break;
2576 			if (((val >> 16) & 0xFFFF) > BGE_FRAMELEN)
2577 				break;
2578 		}
2579 		if (i != BGE_NUM_RDMA_CHANNELS / 2) {
2580 			val = CSR_READ_4(sc, BGE_RDMA_LSO_CRPTEN_CTRL);
2581 			if (sc->bge_asicrev == BGE_ASICREV_BCM5719)
2582 				val |= BGE_RDMA_TX_LENGTH_WA_5719;
2583 			else
2584 				val |= BGE_RDMA_TX_LENGTH_WA_5720;
2585 			CSR_WRITE_4(sc, BGE_RDMA_LSO_CRPTEN_CTRL, val);
2586 		}
2587 	}
2588 
2589 	/* Turn on RX data completion state machine */
2590 	CSR_WRITE_4(sc, BGE_RDC_MODE, BGE_RDCMODE_ENABLE);
2591 
2592 	/* Turn on RX BD initiator state machine */
2593 	CSR_WRITE_4(sc, BGE_RBDI_MODE, BGE_RBDIMODE_ENABLE);
2594 
2595 	/* Turn on RX data and RX BD initiator state machine */
2596 	CSR_WRITE_4(sc, BGE_RDBDI_MODE, BGE_RDBDIMODE_ENABLE);
2597 
2598 	/* Turn on Mbuf cluster free state machine */
2599 	if (!(BGE_IS_5705_PLUS(sc)))
2600 		CSR_WRITE_4(sc, BGE_MBCF_MODE, BGE_MBCFMODE_ENABLE);
2601 
2602 	/* Turn on send BD completion state machine */
2603 	CSR_WRITE_4(sc, BGE_SBDC_MODE, BGE_SBDCMODE_ENABLE);
2604 
2605 	/* Turn on send data completion state machine */
2606 	val = BGE_SDCMODE_ENABLE;
2607 	if (sc->bge_asicrev == BGE_ASICREV_BCM5761)
2608 		val |= BGE_SDCMODE_CDELAY;
2609 	CSR_WRITE_4(sc, BGE_SDC_MODE, val);
2610 
2611 	/* Turn on send data initiator state machine */
2612 	if (sc->bge_flags & (BGE_FLAG_TSO | BGE_FLAG_TSO3))
2613 		CSR_WRITE_4(sc, BGE_SDI_MODE, BGE_SDIMODE_ENABLE |
2614 		    BGE_SDIMODE_HW_LSO_PRE_DMA);
2615 	else
2616 		CSR_WRITE_4(sc, BGE_SDI_MODE, BGE_SDIMODE_ENABLE);
2617 
2618 	/* Turn on send BD initiator state machine */
2619 	CSR_WRITE_4(sc, BGE_SBDI_MODE, BGE_SBDIMODE_ENABLE);
2620 
2621 	/* Turn on send BD selector state machine */
2622 	CSR_WRITE_4(sc, BGE_SRS_MODE, BGE_SRSMODE_ENABLE);
2623 
2624 	CSR_WRITE_4(sc, BGE_SDI_STATS_ENABLE_MASK, 0x007FFFFF);
2625 	CSR_WRITE_4(sc, BGE_SDI_STATS_CTL,
2626 	    BGE_SDISTATSCTL_ENABLE | BGE_SDISTATSCTL_FASTER);
2627 
2628 	/* ack/clear link change events */
2629 	CSR_WRITE_4(sc, BGE_MAC_STS, BGE_MACSTAT_SYNC_CHANGED |
2630 	    BGE_MACSTAT_CFG_CHANGED | BGE_MACSTAT_MI_COMPLETE |
2631 	    BGE_MACSTAT_LINK_CHANGED);
2632 	CSR_WRITE_4(sc, BGE_MI_STS, 0);
2633 
2634 	/*
2635 	 * Enable attention when the link has changed state for
2636 	 * devices that use auto polling.
2637 	 */
2638 	if (sc->bge_flags & BGE_FLAG_TBI) {
2639 		CSR_WRITE_4(sc, BGE_MI_STS, BGE_MISTS_LINK);
2640 	} else {
2641 		if (sc->bge_mi_mode & BGE_MIMODE_AUTOPOLL) {
2642 			CSR_WRITE_4(sc, BGE_MI_MODE, sc->bge_mi_mode);
2643 			DELAY(80);
2644 		}
2645 		if (sc->bge_asicrev == BGE_ASICREV_BCM5700 &&
2646 		    sc->bge_chipid != BGE_CHIPID_BCM5700_B2)
2647 			CSR_WRITE_4(sc, BGE_MAC_EVT_ENB,
2648 			    BGE_EVTENB_MI_INTERRUPT);
2649 	}
2650 
2651 	/*
2652 	 * Clear any pending link state attention.
2653 	 * Otherwise some link state change events may be lost until attention
2654 	 * is cleared by bge_intr() -> bge_link_upd() sequence.
2655 	 * It's not necessary on newer BCM chips - perhaps enabling link
2656 	 * state change attentions implies clearing pending attention.
2657 	 */
2658 	CSR_WRITE_4(sc, BGE_MAC_STS, BGE_MACSTAT_SYNC_CHANGED |
2659 	    BGE_MACSTAT_CFG_CHANGED | BGE_MACSTAT_MI_COMPLETE |
2660 	    BGE_MACSTAT_LINK_CHANGED);
2661 
2662 	/* Enable link state change attentions. */
2663 	BGE_SETBIT(sc, BGE_MAC_EVT_ENB, BGE_EVTENB_LINK_CHANGED);
2664 
2665 	return (0);
2666 }
2667 
2668 static const struct bge_revision *
2669 bge_lookup_rev(uint32_t chipid)
2670 {
2671 	const struct bge_revision *br;
2672 
2673 	for (br = bge_revisions; br->br_name != NULL; br++) {
2674 		if (br->br_chipid == chipid)
2675 			return (br);
2676 	}
2677 
2678 	for (br = bge_majorrevs; br->br_name != NULL; br++) {
2679 		if (br->br_chipid == BGE_ASICREV(chipid))
2680 			return (br);
2681 	}
2682 
2683 	return (NULL);
2684 }
2685 
2686 static const struct bge_vendor *
2687 bge_lookup_vendor(uint16_t vid)
2688 {
2689 	const struct bge_vendor *v;
2690 
2691 	for (v = bge_vendors; v->v_name != NULL; v++)
2692 		if (v->v_id == vid)
2693 			return (v);
2694 
2695 	return (NULL);
2696 }
2697 
2698 static uint32_t
2699 bge_chipid(device_t dev)
2700 {
2701 	uint32_t id;
2702 
2703 	id = pci_read_config(dev, BGE_PCI_MISC_CTL, 4) >>
2704 	    BGE_PCIMISCCTL_ASICREV_SHIFT;
2705 	if (BGE_ASICREV(id) == BGE_ASICREV_USE_PRODID_REG) {
2706 		/*
2707 		 * Find the ASCI revision.  Different chips use different
2708 		 * registers.
2709 		 */
2710 		switch (pci_get_device(dev)) {
2711 		case BCOM_DEVICEID_BCM5717C:
2712 			/* 5717 C0 seems to belong to 5720 line. */
2713 			id = BGE_CHIPID_BCM5720_A0;
2714 			break;
2715 		case BCOM_DEVICEID_BCM5717:
2716 		case BCOM_DEVICEID_BCM5718:
2717 		case BCOM_DEVICEID_BCM5719:
2718 		case BCOM_DEVICEID_BCM5720:
2719 		case BCOM_DEVICEID_BCM5725:
2720 		case BCOM_DEVICEID_BCM5727:
2721 		case BCOM_DEVICEID_BCM5762:
2722 		case BCOM_DEVICEID_BCM57764:
2723 		case BCOM_DEVICEID_BCM57767:
2724 		case BCOM_DEVICEID_BCM57787:
2725 			id = pci_read_config(dev,
2726 			    BGE_PCI_GEN2_PRODID_ASICREV, 4);
2727 			break;
2728 		case BCOM_DEVICEID_BCM57761:
2729 		case BCOM_DEVICEID_BCM57762:
2730 		case BCOM_DEVICEID_BCM57765:
2731 		case BCOM_DEVICEID_BCM57766:
2732 		case BCOM_DEVICEID_BCM57781:
2733 		case BCOM_DEVICEID_BCM57782:
2734 		case BCOM_DEVICEID_BCM57785:
2735 		case BCOM_DEVICEID_BCM57786:
2736 		case BCOM_DEVICEID_BCM57791:
2737 		case BCOM_DEVICEID_BCM57795:
2738 			id = pci_read_config(dev,
2739 			    BGE_PCI_GEN15_PRODID_ASICREV, 4);
2740 			break;
2741 		default:
2742 			id = pci_read_config(dev, BGE_PCI_PRODID_ASICREV, 4);
2743 		}
2744 	}
2745 	return (id);
2746 }
2747 
2748 /*
2749  * Probe for a Broadcom chip. Check the PCI vendor and device IDs
2750  * against our list and return its name if we find a match.
2751  *
2752  * Note that since the Broadcom controller contains VPD support, we
2753  * try to get the device name string from the controller itself instead
2754  * of the compiled-in string. It guarantees we'll always announce the
2755  * right product name. We fall back to the compiled-in string when
2756  * VPD is unavailable or corrupt.
2757  */
2758 static int
2759 bge_probe(device_t dev)
2760 {
2761 	char buf[96];
2762 	char model[64];
2763 	const struct bge_revision *br;
2764 	const char *pname;
2765 	struct bge_softc *sc;
2766 	const struct bge_type *t = bge_devs;
2767 	const struct bge_vendor *v;
2768 	uint32_t id;
2769 	uint16_t did, vid;
2770 
2771 	sc = device_get_softc(dev);
2772 	sc->bge_dev = dev;
2773 	vid = pci_get_vendor(dev);
2774 	did = pci_get_device(dev);
2775 	while(t->bge_vid != 0) {
2776 		if ((vid == t->bge_vid) && (did == t->bge_did)) {
2777 			id = bge_chipid(dev);
2778 			br = bge_lookup_rev(id);
2779 			if (bge_has_eaddr(sc) &&
2780 			    pci_get_vpd_ident(dev, &pname) == 0)
2781 				snprintf(model, sizeof(model), "%s", pname);
2782 			else {
2783 				v = bge_lookup_vendor(vid);
2784 				snprintf(model, sizeof(model), "%s %s",
2785 				    v != NULL ? v->v_name : "Unknown",
2786 				    br != NULL ? br->br_name :
2787 				    "NetXtreme/NetLink Ethernet Controller");
2788 			}
2789 			snprintf(buf, sizeof(buf), "%s, %sASIC rev. %#08x",
2790 			    model, br != NULL ? "" : "unknown ", id);
2791 			device_set_desc_copy(dev, buf);
2792 			return (BUS_PROBE_DEFAULT);
2793 		}
2794 		t++;
2795 	}
2796 
2797 	return (ENXIO);
2798 }
2799 
2800 static void
2801 bge_dma_free(struct bge_softc *sc)
2802 {
2803 	int i;
2804 
2805 	/* Destroy DMA maps for RX buffers. */
2806 	for (i = 0; i < BGE_STD_RX_RING_CNT; i++) {
2807 		if (sc->bge_cdata.bge_rx_std_dmamap[i])
2808 			bus_dmamap_destroy(sc->bge_cdata.bge_rx_mtag,
2809 			    sc->bge_cdata.bge_rx_std_dmamap[i]);
2810 	}
2811 	if (sc->bge_cdata.bge_rx_std_sparemap)
2812 		bus_dmamap_destroy(sc->bge_cdata.bge_rx_mtag,
2813 		    sc->bge_cdata.bge_rx_std_sparemap);
2814 
2815 	/* Destroy DMA maps for jumbo RX buffers. */
2816 	for (i = 0; i < BGE_JUMBO_RX_RING_CNT; i++) {
2817 		if (sc->bge_cdata.bge_rx_jumbo_dmamap[i])
2818 			bus_dmamap_destroy(sc->bge_cdata.bge_mtag_jumbo,
2819 			    sc->bge_cdata.bge_rx_jumbo_dmamap[i]);
2820 	}
2821 	if (sc->bge_cdata.bge_rx_jumbo_sparemap)
2822 		bus_dmamap_destroy(sc->bge_cdata.bge_mtag_jumbo,
2823 		    sc->bge_cdata.bge_rx_jumbo_sparemap);
2824 
2825 	/* Destroy DMA maps for TX buffers. */
2826 	for (i = 0; i < BGE_TX_RING_CNT; i++) {
2827 		if (sc->bge_cdata.bge_tx_dmamap[i])
2828 			bus_dmamap_destroy(sc->bge_cdata.bge_tx_mtag,
2829 			    sc->bge_cdata.bge_tx_dmamap[i]);
2830 	}
2831 
2832 	if (sc->bge_cdata.bge_rx_mtag)
2833 		bus_dma_tag_destroy(sc->bge_cdata.bge_rx_mtag);
2834 	if (sc->bge_cdata.bge_mtag_jumbo)
2835 		bus_dma_tag_destroy(sc->bge_cdata.bge_mtag_jumbo);
2836 	if (sc->bge_cdata.bge_tx_mtag)
2837 		bus_dma_tag_destroy(sc->bge_cdata.bge_tx_mtag);
2838 
2839 	/* Destroy standard RX ring. */
2840 	if (sc->bge_ldata.bge_rx_std_ring_paddr)
2841 		bus_dmamap_unload(sc->bge_cdata.bge_rx_std_ring_tag,
2842 		    sc->bge_cdata.bge_rx_std_ring_map);
2843 	if (sc->bge_ldata.bge_rx_std_ring)
2844 		bus_dmamem_free(sc->bge_cdata.bge_rx_std_ring_tag,
2845 		    sc->bge_ldata.bge_rx_std_ring,
2846 		    sc->bge_cdata.bge_rx_std_ring_map);
2847 
2848 	if (sc->bge_cdata.bge_rx_std_ring_tag)
2849 		bus_dma_tag_destroy(sc->bge_cdata.bge_rx_std_ring_tag);
2850 
2851 	/* Destroy jumbo RX ring. */
2852 	if (sc->bge_ldata.bge_rx_jumbo_ring_paddr)
2853 		bus_dmamap_unload(sc->bge_cdata.bge_rx_jumbo_ring_tag,
2854 		    sc->bge_cdata.bge_rx_jumbo_ring_map);
2855 
2856 	if (sc->bge_ldata.bge_rx_jumbo_ring)
2857 		bus_dmamem_free(sc->bge_cdata.bge_rx_jumbo_ring_tag,
2858 		    sc->bge_ldata.bge_rx_jumbo_ring,
2859 		    sc->bge_cdata.bge_rx_jumbo_ring_map);
2860 
2861 	if (sc->bge_cdata.bge_rx_jumbo_ring_tag)
2862 		bus_dma_tag_destroy(sc->bge_cdata.bge_rx_jumbo_ring_tag);
2863 
2864 	/* Destroy RX return ring. */
2865 	if (sc->bge_ldata.bge_rx_return_ring_paddr)
2866 		bus_dmamap_unload(sc->bge_cdata.bge_rx_return_ring_tag,
2867 		    sc->bge_cdata.bge_rx_return_ring_map);
2868 
2869 	if (sc->bge_ldata.bge_rx_return_ring)
2870 		bus_dmamem_free(sc->bge_cdata.bge_rx_return_ring_tag,
2871 		    sc->bge_ldata.bge_rx_return_ring,
2872 		    sc->bge_cdata.bge_rx_return_ring_map);
2873 
2874 	if (sc->bge_cdata.bge_rx_return_ring_tag)
2875 		bus_dma_tag_destroy(sc->bge_cdata.bge_rx_return_ring_tag);
2876 
2877 	/* Destroy TX ring. */
2878 	if (sc->bge_ldata.bge_tx_ring_paddr)
2879 		bus_dmamap_unload(sc->bge_cdata.bge_tx_ring_tag,
2880 		    sc->bge_cdata.bge_tx_ring_map);
2881 
2882 	if (sc->bge_ldata.bge_tx_ring)
2883 		bus_dmamem_free(sc->bge_cdata.bge_tx_ring_tag,
2884 		    sc->bge_ldata.bge_tx_ring,
2885 		    sc->bge_cdata.bge_tx_ring_map);
2886 
2887 	if (sc->bge_cdata.bge_tx_ring_tag)
2888 		bus_dma_tag_destroy(sc->bge_cdata.bge_tx_ring_tag);
2889 
2890 	/* Destroy status block. */
2891 	if (sc->bge_ldata.bge_status_block_paddr)
2892 		bus_dmamap_unload(sc->bge_cdata.bge_status_tag,
2893 		    sc->bge_cdata.bge_status_map);
2894 
2895 	if (sc->bge_ldata.bge_status_block)
2896 		bus_dmamem_free(sc->bge_cdata.bge_status_tag,
2897 		    sc->bge_ldata.bge_status_block,
2898 		    sc->bge_cdata.bge_status_map);
2899 
2900 	if (sc->bge_cdata.bge_status_tag)
2901 		bus_dma_tag_destroy(sc->bge_cdata.bge_status_tag);
2902 
2903 	/* Destroy statistics block. */
2904 	if (sc->bge_ldata.bge_stats_paddr)
2905 		bus_dmamap_unload(sc->bge_cdata.bge_stats_tag,
2906 		    sc->bge_cdata.bge_stats_map);
2907 
2908 	if (sc->bge_ldata.bge_stats)
2909 		bus_dmamem_free(sc->bge_cdata.bge_stats_tag,
2910 		    sc->bge_ldata.bge_stats,
2911 		    sc->bge_cdata.bge_stats_map);
2912 
2913 	if (sc->bge_cdata.bge_stats_tag)
2914 		bus_dma_tag_destroy(sc->bge_cdata.bge_stats_tag);
2915 
2916 	if (sc->bge_cdata.bge_buffer_tag)
2917 		bus_dma_tag_destroy(sc->bge_cdata.bge_buffer_tag);
2918 
2919 	/* Destroy the parent tag. */
2920 	if (sc->bge_cdata.bge_parent_tag)
2921 		bus_dma_tag_destroy(sc->bge_cdata.bge_parent_tag);
2922 }
2923 
2924 static int
2925 bge_dma_ring_alloc(struct bge_softc *sc, bus_size_t alignment,
2926     bus_size_t maxsize, bus_dma_tag_t *tag, uint8_t **ring, bus_dmamap_t *map,
2927     bus_addr_t *paddr, const char *msg)
2928 {
2929 	struct bge_dmamap_arg ctx;
2930 	int error;
2931 
2932 	error = bus_dma_tag_create(sc->bge_cdata.bge_parent_tag,
2933 	    alignment, 0, BUS_SPACE_MAXADDR, BUS_SPACE_MAXADDR, NULL,
2934 	    NULL, maxsize, 1, maxsize, 0, NULL, NULL, tag);
2935 	if (error != 0) {
2936 		device_printf(sc->bge_dev,
2937 		    "could not create %s dma tag\n", msg);
2938 		return (ENOMEM);
2939 	}
2940 	/* Allocate DMA'able memory for ring. */
2941 	error = bus_dmamem_alloc(*tag, (void **)ring,
2942 	    BUS_DMA_NOWAIT | BUS_DMA_ZERO | BUS_DMA_COHERENT, map);
2943 	if (error != 0) {
2944 		device_printf(sc->bge_dev,
2945 		    "could not allocate DMA'able memory for %s\n", msg);
2946 		return (ENOMEM);
2947 	}
2948 	/* Load the address of the ring. */
2949 	ctx.bge_busaddr = 0;
2950 	error = bus_dmamap_load(*tag, *map, *ring, maxsize, bge_dma_map_addr,
2951 	    &ctx, BUS_DMA_NOWAIT);
2952 	if (error != 0) {
2953 		device_printf(sc->bge_dev,
2954 		    "could not load DMA'able memory for %s\n", msg);
2955 		return (ENOMEM);
2956 	}
2957 	*paddr = ctx.bge_busaddr;
2958 	return (0);
2959 }
2960 
2961 static int
2962 bge_dma_alloc(struct bge_softc *sc)
2963 {
2964 	bus_addr_t lowaddr;
2965 	bus_size_t rxmaxsegsz, sbsz, txsegsz, txmaxsegsz;
2966 	int i, error;
2967 
2968 	lowaddr = BUS_SPACE_MAXADDR;
2969 	if ((sc->bge_flags & BGE_FLAG_40BIT_BUG) != 0)
2970 		lowaddr = BGE_DMA_MAXADDR;
2971 	/*
2972 	 * Allocate the parent bus DMA tag appropriate for PCI.
2973 	 */
2974 	error = bus_dma_tag_create(bus_get_dma_tag(sc->bge_dev),
2975 	    1, 0, lowaddr, BUS_SPACE_MAXADDR, NULL,
2976 	    NULL, BUS_SPACE_MAXSIZE_32BIT, 0, BUS_SPACE_MAXSIZE_32BIT,
2977 	    0, NULL, NULL, &sc->bge_cdata.bge_parent_tag);
2978 	if (error != 0) {
2979 		device_printf(sc->bge_dev,
2980 		    "could not allocate parent dma tag\n");
2981 		return (ENOMEM);
2982 	}
2983 
2984 	/* Create tag for standard RX ring. */
2985 	error = bge_dma_ring_alloc(sc, PAGE_SIZE, BGE_STD_RX_RING_SZ,
2986 	    &sc->bge_cdata.bge_rx_std_ring_tag,
2987 	    (uint8_t **)&sc->bge_ldata.bge_rx_std_ring,
2988 	    &sc->bge_cdata.bge_rx_std_ring_map,
2989 	    &sc->bge_ldata.bge_rx_std_ring_paddr, "RX ring");
2990 	if (error)
2991 		return (error);
2992 
2993 	/* Create tag for RX return ring. */
2994 	error = bge_dma_ring_alloc(sc, PAGE_SIZE, BGE_RX_RTN_RING_SZ(sc),
2995 	    &sc->bge_cdata.bge_rx_return_ring_tag,
2996 	    (uint8_t **)&sc->bge_ldata.bge_rx_return_ring,
2997 	    &sc->bge_cdata.bge_rx_return_ring_map,
2998 	    &sc->bge_ldata.bge_rx_return_ring_paddr, "RX return ring");
2999 	if (error)
3000 		return (error);
3001 
3002 	/* Create tag for TX ring. */
3003 	error = bge_dma_ring_alloc(sc, PAGE_SIZE, BGE_TX_RING_SZ,
3004 	    &sc->bge_cdata.bge_tx_ring_tag,
3005 	    (uint8_t **)&sc->bge_ldata.bge_tx_ring,
3006 	    &sc->bge_cdata.bge_tx_ring_map,
3007 	    &sc->bge_ldata.bge_tx_ring_paddr, "TX ring");
3008 	if (error)
3009 		return (error);
3010 
3011 	/*
3012 	 * Create tag for status block.
3013 	 * Because we only use single Tx/Rx/Rx return ring, use
3014 	 * minimum status block size except BCM5700 AX/BX which
3015 	 * seems to want to see full status block size regardless
3016 	 * of configured number of ring.
3017 	 */
3018 	if (sc->bge_asicrev == BGE_ASICREV_BCM5700 &&
3019 	    sc->bge_chipid != BGE_CHIPID_BCM5700_C0)
3020 		sbsz = BGE_STATUS_BLK_SZ;
3021 	else
3022 		sbsz = 32;
3023 	error = bge_dma_ring_alloc(sc, PAGE_SIZE, sbsz,
3024 	    &sc->bge_cdata.bge_status_tag,
3025 	    (uint8_t **)&sc->bge_ldata.bge_status_block,
3026 	    &sc->bge_cdata.bge_status_map,
3027 	    &sc->bge_ldata.bge_status_block_paddr, "status block");
3028 	if (error)
3029 		return (error);
3030 
3031 	/* Create tag for statistics block. */
3032 	error = bge_dma_ring_alloc(sc, PAGE_SIZE, BGE_STATS_SZ,
3033 	    &sc->bge_cdata.bge_stats_tag,
3034 	    (uint8_t **)&sc->bge_ldata.bge_stats,
3035 	    &sc->bge_cdata.bge_stats_map,
3036 	    &sc->bge_ldata.bge_stats_paddr, "statistics block");
3037 	if (error)
3038 		return (error);
3039 
3040 	/* Create tag for jumbo RX ring. */
3041 	if (BGE_IS_JUMBO_CAPABLE(sc)) {
3042 		error = bge_dma_ring_alloc(sc, PAGE_SIZE, BGE_JUMBO_RX_RING_SZ,
3043 		    &sc->bge_cdata.bge_rx_jumbo_ring_tag,
3044 		    (uint8_t **)&sc->bge_ldata.bge_rx_jumbo_ring,
3045 		    &sc->bge_cdata.bge_rx_jumbo_ring_map,
3046 		    &sc->bge_ldata.bge_rx_jumbo_ring_paddr, "jumbo RX ring");
3047 		if (error)
3048 			return (error);
3049 	}
3050 
3051 	/* Create parent tag for buffers. */
3052 	if ((sc->bge_flags & BGE_FLAG_4G_BNDRY_BUG) != 0) {
3053 		/*
3054 		 * XXX
3055 		 * watchdog timeout issue was observed on BCM5704 which
3056 		 * lives behind PCI-X bridge(e.g AMD 8131 PCI-X bridge).
3057 		 * Both limiting DMA address space to 32bits and flushing
3058 		 * mailbox write seem to address the issue.
3059 		 */
3060 		if (sc->bge_pcixcap != 0)
3061 			lowaddr = BUS_SPACE_MAXADDR_32BIT;
3062 	}
3063 	error = bus_dma_tag_create(bus_get_dma_tag(sc->bge_dev), 1, 0, lowaddr,
3064 	    BUS_SPACE_MAXADDR, NULL, NULL, BUS_SPACE_MAXSIZE_32BIT, 0,
3065 	    BUS_SPACE_MAXSIZE_32BIT, 0, NULL, NULL,
3066 	    &sc->bge_cdata.bge_buffer_tag);
3067 	if (error != 0) {
3068 		device_printf(sc->bge_dev,
3069 		    "could not allocate buffer dma tag\n");
3070 		return (ENOMEM);
3071 	}
3072 	/* Create tag for Tx mbufs. */
3073 	if (sc->bge_flags & (BGE_FLAG_TSO | BGE_FLAG_TSO3)) {
3074 		txsegsz = BGE_TSOSEG_SZ;
3075 		txmaxsegsz = 65535 + sizeof(struct ether_vlan_header);
3076 	} else {
3077 		txsegsz = MCLBYTES;
3078 		txmaxsegsz = MCLBYTES * BGE_NSEG_NEW;
3079 	}
3080 	error = bus_dma_tag_create(sc->bge_cdata.bge_buffer_tag, 1,
3081 	    0, BUS_SPACE_MAXADDR, BUS_SPACE_MAXADDR, NULL, NULL,
3082 	    txmaxsegsz, BGE_NSEG_NEW, txsegsz, 0, NULL, NULL,
3083 	    &sc->bge_cdata.bge_tx_mtag);
3084 
3085 	if (error) {
3086 		device_printf(sc->bge_dev, "could not allocate TX dma tag\n");
3087 		return (ENOMEM);
3088 	}
3089 
3090 	/* Create tag for Rx mbufs. */
3091 	if (sc->bge_flags & BGE_FLAG_JUMBO_STD)
3092 		rxmaxsegsz = MJUM9BYTES;
3093 	else
3094 		rxmaxsegsz = MCLBYTES;
3095 	error = bus_dma_tag_create(sc->bge_cdata.bge_buffer_tag, 1, 0,
3096 	    BUS_SPACE_MAXADDR, BUS_SPACE_MAXADDR, NULL, NULL, rxmaxsegsz, 1,
3097 	    rxmaxsegsz, 0, NULL, NULL, &sc->bge_cdata.bge_rx_mtag);
3098 
3099 	if (error) {
3100 		device_printf(sc->bge_dev, "could not allocate RX dma tag\n");
3101 		return (ENOMEM);
3102 	}
3103 
3104 	/* Create DMA maps for RX buffers. */
3105 	error = bus_dmamap_create(sc->bge_cdata.bge_rx_mtag, 0,
3106 	    &sc->bge_cdata.bge_rx_std_sparemap);
3107 	if (error) {
3108 		device_printf(sc->bge_dev,
3109 		    "can't create spare DMA map for RX\n");
3110 		return (ENOMEM);
3111 	}
3112 	for (i = 0; i < BGE_STD_RX_RING_CNT; i++) {
3113 		error = bus_dmamap_create(sc->bge_cdata.bge_rx_mtag, 0,
3114 			    &sc->bge_cdata.bge_rx_std_dmamap[i]);
3115 		if (error) {
3116 			device_printf(sc->bge_dev,
3117 			    "can't create DMA map for RX\n");
3118 			return (ENOMEM);
3119 		}
3120 	}
3121 
3122 	/* Create DMA maps for TX buffers. */
3123 	for (i = 0; i < BGE_TX_RING_CNT; i++) {
3124 		error = bus_dmamap_create(sc->bge_cdata.bge_tx_mtag, 0,
3125 			    &sc->bge_cdata.bge_tx_dmamap[i]);
3126 		if (error) {
3127 			device_printf(sc->bge_dev,
3128 			    "can't create DMA map for TX\n");
3129 			return (ENOMEM);
3130 		}
3131 	}
3132 
3133 	/* Create tags for jumbo RX buffers. */
3134 	if (BGE_IS_JUMBO_CAPABLE(sc)) {
3135 		error = bus_dma_tag_create(sc->bge_cdata.bge_buffer_tag,
3136 		    1, 0, BUS_SPACE_MAXADDR, BUS_SPACE_MAXADDR, NULL,
3137 		    NULL, MJUM9BYTES, BGE_NSEG_JUMBO, PAGE_SIZE,
3138 		    0, NULL, NULL, &sc->bge_cdata.bge_mtag_jumbo);
3139 		if (error) {
3140 			device_printf(sc->bge_dev,
3141 			    "could not allocate jumbo dma tag\n");
3142 			return (ENOMEM);
3143 		}
3144 		/* Create DMA maps for jumbo RX buffers. */
3145 		error = bus_dmamap_create(sc->bge_cdata.bge_mtag_jumbo,
3146 		    0, &sc->bge_cdata.bge_rx_jumbo_sparemap);
3147 		if (error) {
3148 			device_printf(sc->bge_dev,
3149 			    "can't create spare DMA map for jumbo RX\n");
3150 			return (ENOMEM);
3151 		}
3152 		for (i = 0; i < BGE_JUMBO_RX_RING_CNT; i++) {
3153 			error = bus_dmamap_create(sc->bge_cdata.bge_mtag_jumbo,
3154 				    0, &sc->bge_cdata.bge_rx_jumbo_dmamap[i]);
3155 			if (error) {
3156 				device_printf(sc->bge_dev,
3157 				    "can't create DMA map for jumbo RX\n");
3158 				return (ENOMEM);
3159 			}
3160 		}
3161 	}
3162 
3163 	return (0);
3164 }
3165 
3166 /*
3167  * Return true if this device has more than one port.
3168  */
3169 static int
3170 bge_has_multiple_ports(struct bge_softc *sc)
3171 {
3172 	device_t dev = sc->bge_dev;
3173 	u_int b, d, f, fscan, s;
3174 
3175 	d = pci_get_domain(dev);
3176 	b = pci_get_bus(dev);
3177 	s = pci_get_slot(dev);
3178 	f = pci_get_function(dev);
3179 	for (fscan = 0; fscan <= PCI_FUNCMAX; fscan++)
3180 		if (fscan != f && pci_find_dbsf(d, b, s, fscan) != NULL)
3181 			return (1);
3182 	return (0);
3183 }
3184 
3185 /*
3186  * Return true if MSI can be used with this device.
3187  */
3188 static int
3189 bge_can_use_msi(struct bge_softc *sc)
3190 {
3191 	int can_use_msi = 0;
3192 
3193 	if (sc->bge_msi == 0)
3194 		return (0);
3195 
3196 	/* Disable MSI for polling(4). */
3197 #ifdef DEVICE_POLLING
3198 	return (0);
3199 #endif
3200 	switch (sc->bge_asicrev) {
3201 	case BGE_ASICREV_BCM5714_A0:
3202 	case BGE_ASICREV_BCM5714:
3203 		/*
3204 		 * Apparently, MSI doesn't work when these chips are
3205 		 * configured in single-port mode.
3206 		 */
3207 		if (bge_has_multiple_ports(sc))
3208 			can_use_msi = 1;
3209 		break;
3210 	case BGE_ASICREV_BCM5750:
3211 		if (sc->bge_chiprev != BGE_CHIPREV_5750_AX &&
3212 		    sc->bge_chiprev != BGE_CHIPREV_5750_BX)
3213 			can_use_msi = 1;
3214 		break;
3215 	default:
3216 		if (BGE_IS_575X_PLUS(sc))
3217 			can_use_msi = 1;
3218 	}
3219 	return (can_use_msi);
3220 }
3221 
3222 static int
3223 bge_mbox_reorder(struct bge_softc *sc)
3224 {
3225 	/* Lists of PCI bridges that are known to reorder mailbox writes. */
3226 	static const struct mbox_reorder {
3227 		const uint16_t vendor;
3228 		const uint16_t device;
3229 		const char *desc;
3230 	} mbox_reorder_lists[] = {
3231 		{ 0x1022, 0x7450, "AMD-8131 PCI-X Bridge" },
3232 	};
3233 	devclass_t pci, pcib;
3234 	device_t bus, dev;
3235 	int i;
3236 
3237 	pci = devclass_find("pci");
3238 	pcib = devclass_find("pcib");
3239 	dev = sc->bge_dev;
3240 	bus = device_get_parent(dev);
3241 	for (;;) {
3242 		dev = device_get_parent(bus);
3243 		bus = device_get_parent(dev);
3244 		if (device_get_devclass(dev) != pcib)
3245 			break;
3246 		for (i = 0; i < nitems(mbox_reorder_lists); i++) {
3247 			if (pci_get_vendor(dev) ==
3248 			    mbox_reorder_lists[i].vendor &&
3249 			    pci_get_device(dev) ==
3250 			    mbox_reorder_lists[i].device) {
3251 				device_printf(sc->bge_dev,
3252 				    "enabling MBOX workaround for %s\n",
3253 				    mbox_reorder_lists[i].desc);
3254 				return (1);
3255 			}
3256 		}
3257 		if (device_get_devclass(bus) != pci)
3258 			break;
3259 	}
3260 	return (0);
3261 }
3262 
3263 static void
3264 bge_devinfo(struct bge_softc *sc)
3265 {
3266 	uint32_t cfg, clk;
3267 
3268 	device_printf(sc->bge_dev,
3269 	    "CHIP ID 0x%08x; ASIC REV 0x%02x; CHIP REV 0x%02x; ",
3270 	    sc->bge_chipid, sc->bge_asicrev, sc->bge_chiprev);
3271 	if (sc->bge_flags & BGE_FLAG_PCIE)
3272 		printf("PCI-E\n");
3273 	else if (sc->bge_flags & BGE_FLAG_PCIX) {
3274 		printf("PCI-X ");
3275 		cfg = CSR_READ_4(sc, BGE_MISC_CFG) & BGE_MISCCFG_BOARD_ID_MASK;
3276 		if (cfg == BGE_MISCCFG_BOARD_ID_5704CIOBE)
3277 			clk = 133;
3278 		else {
3279 			clk = CSR_READ_4(sc, BGE_PCI_CLKCTL) & 0x1F;
3280 			switch (clk) {
3281 			case 0:
3282 				clk = 33;
3283 				break;
3284 			case 2:
3285 				clk = 50;
3286 				break;
3287 			case 4:
3288 				clk = 66;
3289 				break;
3290 			case 6:
3291 				clk = 100;
3292 				break;
3293 			case 7:
3294 				clk = 133;
3295 				break;
3296 			}
3297 		}
3298 		printf("%u MHz\n", clk);
3299 	} else {
3300 		if (sc->bge_pcixcap != 0)
3301 			printf("PCI on PCI-X ");
3302 		else
3303 			printf("PCI ");
3304 		cfg = pci_read_config(sc->bge_dev, BGE_PCI_PCISTATE, 4);
3305 		if (cfg & BGE_PCISTATE_PCI_BUSSPEED)
3306 			clk = 66;
3307 		else
3308 			clk = 33;
3309 		if (cfg & BGE_PCISTATE_32BIT_BUS)
3310 			printf("%u MHz; 32bit\n", clk);
3311 		else
3312 			printf("%u MHz; 64bit\n", clk);
3313 	}
3314 }
3315 
3316 static int
3317 bge_attach(device_t dev)
3318 {
3319 	if_t ifp;
3320 	struct bge_softc *sc;
3321 	uint32_t hwcfg = 0, misccfg, pcistate;
3322 	u_char eaddr[ETHER_ADDR_LEN];
3323 	int capmask, error, reg, rid, trys;
3324 
3325 	sc = device_get_softc(dev);
3326 	sc->bge_dev = dev;
3327 
3328 	BGE_LOCK_INIT(sc, device_get_nameunit(dev));
3329 	TASK_INIT(&sc->bge_intr_task, 0, bge_intr_task, sc);
3330 	callout_init_mtx(&sc->bge_stat_ch, &sc->bge_mtx, 0);
3331 
3332 	pci_enable_busmaster(dev);
3333 
3334 	/*
3335 	 * Allocate control/status registers.
3336 	 */
3337 	rid = PCIR_BAR(0);
3338 	sc->bge_res = bus_alloc_resource_any(dev, SYS_RES_MEMORY, &rid,
3339 	    RF_ACTIVE);
3340 
3341 	if (sc->bge_res == NULL) {
3342 		device_printf (sc->bge_dev, "couldn't map BAR0 memory\n");
3343 		error = ENXIO;
3344 		goto fail;
3345 	}
3346 
3347 	/* Save various chip information. */
3348 	sc->bge_func_addr = pci_get_function(dev);
3349 	sc->bge_chipid = bge_chipid(dev);
3350 	sc->bge_asicrev = BGE_ASICREV(sc->bge_chipid);
3351 	sc->bge_chiprev = BGE_CHIPREV(sc->bge_chipid);
3352 
3353 	/* Set default PHY address. */
3354 	sc->bge_phy_addr = 1;
3355 	 /*
3356 	  * PHY address mapping for various devices.
3357 	  *
3358 	  *          | F0 Cu | F0 Sr | F1 Cu | F1 Sr |
3359 	  * ---------+-------+-------+-------+-------+
3360 	  * BCM57XX  |   1   |   X   |   X   |   X   |
3361 	  * BCM5704  |   1   |   X   |   1   |   X   |
3362 	  * BCM5717  |   1   |   8   |   2   |   9   |
3363 	  * BCM5719  |   1   |   8   |   2   |   9   |
3364 	  * BCM5720  |   1   |   8   |   2   |   9   |
3365 	  *
3366 	  *          | F2 Cu | F2 Sr | F3 Cu | F3 Sr |
3367 	  * ---------+-------+-------+-------+-------+
3368 	  * BCM57XX  |   X   |   X   |   X   |   X   |
3369 	  * BCM5704  |   X   |   X   |   X   |   X   |
3370 	  * BCM5717  |   X   |   X   |   X   |   X   |
3371 	  * BCM5719  |   3   |   10  |   4   |   11  |
3372 	  * BCM5720  |   X   |   X   |   X   |   X   |
3373 	  *
3374 	  * Other addresses may respond but they are not
3375 	  * IEEE compliant PHYs and should be ignored.
3376 	  */
3377 	if (sc->bge_asicrev == BGE_ASICREV_BCM5717 ||
3378 	    sc->bge_asicrev == BGE_ASICREV_BCM5719 ||
3379 	    sc->bge_asicrev == BGE_ASICREV_BCM5720) {
3380 		if (sc->bge_chipid != BGE_CHIPID_BCM5717_A0) {
3381 			if (CSR_READ_4(sc, BGE_SGDIG_STS) &
3382 			    BGE_SGDIGSTS_IS_SERDES)
3383 				sc->bge_phy_addr = sc->bge_func_addr + 8;
3384 			else
3385 				sc->bge_phy_addr = sc->bge_func_addr + 1;
3386 		} else {
3387 			if (CSR_READ_4(sc, BGE_CPMU_PHY_STRAP) &
3388 			    BGE_CPMU_PHY_STRAP_IS_SERDES)
3389 				sc->bge_phy_addr = sc->bge_func_addr + 8;
3390 			else
3391 				sc->bge_phy_addr = sc->bge_func_addr + 1;
3392 		}
3393 	}
3394 
3395 	if (bge_has_eaddr(sc))
3396 		sc->bge_flags |= BGE_FLAG_EADDR;
3397 
3398 	/* Save chipset family. */
3399 	switch (sc->bge_asicrev) {
3400 	case BGE_ASICREV_BCM5762:
3401 	case BGE_ASICREV_BCM57765:
3402 	case BGE_ASICREV_BCM57766:
3403 		sc->bge_flags |= BGE_FLAG_57765_PLUS;
3404 		/* FALLTHROUGH */
3405 	case BGE_ASICREV_BCM5717:
3406 	case BGE_ASICREV_BCM5719:
3407 	case BGE_ASICREV_BCM5720:
3408 		sc->bge_flags |= BGE_FLAG_5717_PLUS | BGE_FLAG_5755_PLUS |
3409 		    BGE_FLAG_575X_PLUS | BGE_FLAG_5705_PLUS | BGE_FLAG_JUMBO |
3410 		    BGE_FLAG_JUMBO_FRAME;
3411 		if (sc->bge_asicrev == BGE_ASICREV_BCM5719 ||
3412 		    sc->bge_asicrev == BGE_ASICREV_BCM5720) {
3413 			/*
3414 			 * Enable work around for DMA engine miscalculation
3415 			 * of TXMBUF available space.
3416 			 */
3417 			sc->bge_flags |= BGE_FLAG_RDMA_BUG;
3418 			if (sc->bge_asicrev == BGE_ASICREV_BCM5719 &&
3419 			    sc->bge_chipid == BGE_CHIPID_BCM5719_A0) {
3420 				/* Jumbo frame on BCM5719 A0 does not work. */
3421 				sc->bge_flags &= ~BGE_FLAG_JUMBO;
3422 			}
3423 		}
3424 		break;
3425 	case BGE_ASICREV_BCM5755:
3426 	case BGE_ASICREV_BCM5761:
3427 	case BGE_ASICREV_BCM5784:
3428 	case BGE_ASICREV_BCM5785:
3429 	case BGE_ASICREV_BCM5787:
3430 	case BGE_ASICREV_BCM57780:
3431 		sc->bge_flags |= BGE_FLAG_5755_PLUS | BGE_FLAG_575X_PLUS |
3432 		    BGE_FLAG_5705_PLUS;
3433 		break;
3434 	case BGE_ASICREV_BCM5700:
3435 	case BGE_ASICREV_BCM5701:
3436 	case BGE_ASICREV_BCM5703:
3437 	case BGE_ASICREV_BCM5704:
3438 		sc->bge_flags |= BGE_FLAG_5700_FAMILY | BGE_FLAG_JUMBO;
3439 		break;
3440 	case BGE_ASICREV_BCM5714_A0:
3441 	case BGE_ASICREV_BCM5780:
3442 	case BGE_ASICREV_BCM5714:
3443 		sc->bge_flags |= BGE_FLAG_5714_FAMILY | BGE_FLAG_JUMBO_STD;
3444 		/* FALLTHROUGH */
3445 	case BGE_ASICREV_BCM5750:
3446 	case BGE_ASICREV_BCM5752:
3447 	case BGE_ASICREV_BCM5906:
3448 		sc->bge_flags |= BGE_FLAG_575X_PLUS;
3449 		/* FALLTHROUGH */
3450 	case BGE_ASICREV_BCM5705:
3451 		sc->bge_flags |= BGE_FLAG_5705_PLUS;
3452 		break;
3453 	}
3454 
3455 	/* Identify chips with APE processor. */
3456 	switch (sc->bge_asicrev) {
3457 	case BGE_ASICREV_BCM5717:
3458 	case BGE_ASICREV_BCM5719:
3459 	case BGE_ASICREV_BCM5720:
3460 	case BGE_ASICREV_BCM5761:
3461 	case BGE_ASICREV_BCM5762:
3462 		sc->bge_flags |= BGE_FLAG_APE;
3463 		break;
3464 	}
3465 
3466 	/* Chips with APE need BAR2 access for APE registers/memory. */
3467 	if ((sc->bge_flags & BGE_FLAG_APE) != 0) {
3468 		rid = PCIR_BAR(2);
3469 		sc->bge_res2 = bus_alloc_resource_any(dev, SYS_RES_MEMORY, &rid,
3470 		    RF_ACTIVE);
3471 		if (sc->bge_res2 == NULL) {
3472 			device_printf (sc->bge_dev,
3473 			    "couldn't map BAR2 memory\n");
3474 			error = ENXIO;
3475 			goto fail;
3476 		}
3477 
3478 		/* Enable APE register/memory access by host driver. */
3479 		pcistate = pci_read_config(dev, BGE_PCI_PCISTATE, 4);
3480 		pcistate |= BGE_PCISTATE_ALLOW_APE_CTLSPC_WR |
3481 		    BGE_PCISTATE_ALLOW_APE_SHMEM_WR |
3482 		    BGE_PCISTATE_ALLOW_APE_PSPACE_WR;
3483 		pci_write_config(dev, BGE_PCI_PCISTATE, pcistate, 4);
3484 
3485 		bge_ape_lock_init(sc);
3486 		bge_ape_read_fw_ver(sc);
3487 	}
3488 
3489 	/* Add SYSCTLs, requires the chipset family to be set. */
3490 	bge_add_sysctls(sc);
3491 
3492 	/* Identify the chips that use an CPMU. */
3493 	if (BGE_IS_5717_PLUS(sc) ||
3494 	    sc->bge_asicrev == BGE_ASICREV_BCM5784 ||
3495 	    sc->bge_asicrev == BGE_ASICREV_BCM5761 ||
3496 	    sc->bge_asicrev == BGE_ASICREV_BCM5785 ||
3497 	    sc->bge_asicrev == BGE_ASICREV_BCM57780)
3498 		sc->bge_flags |= BGE_FLAG_CPMU_PRESENT;
3499 	if ((sc->bge_flags & BGE_FLAG_CPMU_PRESENT) != 0)
3500 		sc->bge_mi_mode = BGE_MIMODE_500KHZ_CONST;
3501 	else
3502 		sc->bge_mi_mode = BGE_MIMODE_BASE;
3503 	/* Enable auto polling for BCM570[0-5]. */
3504 	if (BGE_IS_5700_FAMILY(sc) || sc->bge_asicrev == BGE_ASICREV_BCM5705)
3505 		sc->bge_mi_mode |= BGE_MIMODE_AUTOPOLL;
3506 
3507 	/*
3508 	 * All Broadcom controllers have 4GB boundary DMA bug.
3509 	 * Whenever an address crosses a multiple of the 4GB boundary
3510 	 * (including 4GB, 8Gb, 12Gb, etc.) and makes the transition
3511 	 * from 0xX_FFFF_FFFF to 0x(X+1)_0000_0000 an internal DMA
3512 	 * state machine will lockup and cause the device to hang.
3513 	 */
3514 	sc->bge_flags |= BGE_FLAG_4G_BNDRY_BUG;
3515 
3516 	/* BCM5755 or higher and BCM5906 have short DMA bug. */
3517 	if (BGE_IS_5755_PLUS(sc) || sc->bge_asicrev == BGE_ASICREV_BCM5906)
3518 		sc->bge_flags |= BGE_FLAG_SHORT_DMA_BUG;
3519 
3520 	/*
3521 	 * BCM5719 cannot handle DMA requests for DMA segments that
3522 	 * have larger than 4KB in size.  However the maximum DMA
3523 	 * segment size created in DMA tag is 4KB for TSO, so we
3524 	 * wouldn't encounter the issue here.
3525 	 */
3526 	if (sc->bge_asicrev == BGE_ASICREV_BCM5719)
3527 		sc->bge_flags |= BGE_FLAG_4K_RDMA_BUG;
3528 
3529 	misccfg = CSR_READ_4(sc, BGE_MISC_CFG) & BGE_MISCCFG_BOARD_ID_MASK;
3530 	if (sc->bge_asicrev == BGE_ASICREV_BCM5705) {
3531 		if (misccfg == BGE_MISCCFG_BOARD_ID_5788 ||
3532 		    misccfg == BGE_MISCCFG_BOARD_ID_5788M)
3533 			sc->bge_flags |= BGE_FLAG_5788;
3534 	}
3535 
3536 	capmask = BMSR_DEFCAPMASK;
3537 	if ((sc->bge_asicrev == BGE_ASICREV_BCM5703 &&
3538 	    (misccfg == 0x4000 || misccfg == 0x8000)) ||
3539 	    (sc->bge_asicrev == BGE_ASICREV_BCM5705 &&
3540 	    pci_get_vendor(dev) == BCOM_VENDORID &&
3541 	    (pci_get_device(dev) == BCOM_DEVICEID_BCM5901 ||
3542 	    pci_get_device(dev) == BCOM_DEVICEID_BCM5901A2 ||
3543 	    pci_get_device(dev) == BCOM_DEVICEID_BCM5705F)) ||
3544 	    (pci_get_vendor(dev) == BCOM_VENDORID &&
3545 	    (pci_get_device(dev) == BCOM_DEVICEID_BCM5751F ||
3546 	    pci_get_device(dev) == BCOM_DEVICEID_BCM5753F ||
3547 	    pci_get_device(dev) == BCOM_DEVICEID_BCM5787F)) ||
3548 	    pci_get_device(dev) == BCOM_DEVICEID_BCM57790 ||
3549 	    pci_get_device(dev) == BCOM_DEVICEID_BCM57791 ||
3550 	    pci_get_device(dev) == BCOM_DEVICEID_BCM57795 ||
3551 	    sc->bge_asicrev == BGE_ASICREV_BCM5906) {
3552 		/* These chips are 10/100 only. */
3553 		capmask &= ~BMSR_EXTSTAT;
3554 		sc->bge_phy_flags |= BGE_PHY_NO_WIRESPEED;
3555 	}
3556 
3557 	/*
3558 	 * Some controllers seem to require a special firmware to use
3559 	 * TSO. But the firmware is not available to FreeBSD and Linux
3560 	 * claims that the TSO performed by the firmware is slower than
3561 	 * hardware based TSO. Moreover the firmware based TSO has one
3562 	 * known bug which can't handle TSO if Ethernet header + IP/TCP
3563 	 * header is greater than 80 bytes. A workaround for the TSO
3564 	 * bug exist but it seems it's too expensive than not using
3565 	 * TSO at all. Some hardwares also have the TSO bug so limit
3566 	 * the TSO to the controllers that are not affected TSO issues
3567 	 * (e.g. 5755 or higher).
3568 	 */
3569 	if (BGE_IS_5717_PLUS(sc)) {
3570 		/* BCM5717 requires different TSO configuration. */
3571 		sc->bge_flags |= BGE_FLAG_TSO3;
3572 		if (sc->bge_asicrev == BGE_ASICREV_BCM5719 &&
3573 		    sc->bge_chipid == BGE_CHIPID_BCM5719_A0) {
3574 			/* TSO on BCM5719 A0 does not work. */
3575 			sc->bge_flags &= ~BGE_FLAG_TSO3;
3576 		}
3577 	} else if (BGE_IS_5755_PLUS(sc)) {
3578 		/*
3579 		 * BCM5754 and BCM5787 shares the same ASIC id so
3580 		 * explicit device id check is required.
3581 		 * Due to unknown reason TSO does not work on BCM5755M.
3582 		 */
3583 		if (pci_get_device(dev) != BCOM_DEVICEID_BCM5754 &&
3584 		    pci_get_device(dev) != BCOM_DEVICEID_BCM5754M &&
3585 		    pci_get_device(dev) != BCOM_DEVICEID_BCM5755M)
3586 			sc->bge_flags |= BGE_FLAG_TSO;
3587 	}
3588 
3589 	/*
3590 	 * Check if this is a PCI-X or PCI Express device.
3591 	 */
3592 	if (pci_find_cap(dev, PCIY_EXPRESS, &reg) == 0) {
3593 		/*
3594 		 * Found a PCI Express capabilities register, this
3595 		 * must be a PCI Express device.
3596 		 */
3597 		sc->bge_flags |= BGE_FLAG_PCIE;
3598 		sc->bge_expcap = reg;
3599 		/* Extract supported maximum payload size. */
3600 		sc->bge_mps = pci_read_config(dev, sc->bge_expcap +
3601 		    PCIER_DEVICE_CAP, 2);
3602 		sc->bge_mps = 128 << (sc->bge_mps & PCIEM_CAP_MAX_PAYLOAD);
3603 		if (sc->bge_asicrev == BGE_ASICREV_BCM5719 ||
3604 		    sc->bge_asicrev == BGE_ASICREV_BCM5720)
3605 			sc->bge_expmrq = 2048;
3606 		else
3607 			sc->bge_expmrq = 4096;
3608 		pci_set_max_read_req(dev, sc->bge_expmrq);
3609 	} else {
3610 		/*
3611 		 * Check if the device is in PCI-X Mode.
3612 		 * (This bit is not valid on PCI Express controllers.)
3613 		 */
3614 		if (pci_find_cap(dev, PCIY_PCIX, &reg) == 0)
3615 			sc->bge_pcixcap = reg;
3616 		if ((pci_read_config(dev, BGE_PCI_PCISTATE, 4) &
3617 		    BGE_PCISTATE_PCI_BUSMODE) == 0)
3618 			sc->bge_flags |= BGE_FLAG_PCIX;
3619 	}
3620 
3621 	/*
3622 	 * The 40bit DMA bug applies to the 5714/5715 controllers and is
3623 	 * not actually a MAC controller bug but an issue with the embedded
3624 	 * PCIe to PCI-X bridge in the device. Use 40bit DMA workaround.
3625 	 */
3626 	if (BGE_IS_5714_FAMILY(sc) && (sc->bge_flags & BGE_FLAG_PCIX))
3627 		sc->bge_flags |= BGE_FLAG_40BIT_BUG;
3628 	/*
3629 	 * Some PCI-X bridges are known to trigger write reordering to
3630 	 * the mailbox registers. Typical phenomena is watchdog timeouts
3631 	 * caused by out-of-order TX completions.  Enable workaround for
3632 	 * PCI-X devices that live behind these bridges.
3633 	 * Note, PCI-X controllers can run in PCI mode so we can't use
3634 	 * BGE_FLAG_PCIX flag to detect PCI-X controllers.
3635 	 */
3636 	if (sc->bge_pcixcap != 0 && bge_mbox_reorder(sc) != 0)
3637 		sc->bge_flags |= BGE_FLAG_MBOX_REORDER;
3638 	/*
3639 	 * Allocate the interrupt, using MSI if possible.  These devices
3640 	 * support 8 MSI messages, but only the first one is used in
3641 	 * normal operation.
3642 	 */
3643 	rid = 0;
3644 	if (pci_find_cap(sc->bge_dev, PCIY_MSI, &reg) == 0) {
3645 		sc->bge_msicap = reg;
3646 		reg = 1;
3647 		if (bge_can_use_msi(sc) && pci_alloc_msi(dev, &reg) == 0) {
3648 			rid = 1;
3649 			sc->bge_flags |= BGE_FLAG_MSI;
3650 		}
3651 	}
3652 
3653 	/*
3654 	 * All controllers except BCM5700 supports tagged status but
3655 	 * we use tagged status only for MSI case on BCM5717. Otherwise
3656 	 * MSI on BCM5717 does not work.
3657 	 */
3658 #ifndef DEVICE_POLLING
3659 	if (sc->bge_flags & BGE_FLAG_MSI && BGE_IS_5717_PLUS(sc))
3660 		sc->bge_flags |= BGE_FLAG_TAGGED_STATUS;
3661 #endif
3662 
3663 	sc->bge_irq = bus_alloc_resource_any(dev, SYS_RES_IRQ, &rid,
3664 	    RF_ACTIVE | (rid != 0 ? 0 : RF_SHAREABLE));
3665 
3666 	if (sc->bge_irq == NULL) {
3667 		device_printf(sc->bge_dev, "couldn't map interrupt\n");
3668 		error = ENXIO;
3669 		goto fail;
3670 	}
3671 
3672 	bge_devinfo(sc);
3673 
3674 	sc->bge_asf_mode = 0;
3675 	/* No ASF if APE present. */
3676 	if ((sc->bge_flags & BGE_FLAG_APE) == 0) {
3677 		if (bge_allow_asf && (bge_readmem_ind(sc, BGE_SRAM_DATA_SIG) ==
3678 		    BGE_SRAM_DATA_SIG_MAGIC)) {
3679 			if (bge_readmem_ind(sc, BGE_SRAM_DATA_CFG) &
3680 			    BGE_HWCFG_ASF) {
3681 				sc->bge_asf_mode |= ASF_ENABLE;
3682 				sc->bge_asf_mode |= ASF_STACKUP;
3683 				if (BGE_IS_575X_PLUS(sc))
3684 					sc->bge_asf_mode |= ASF_NEW_HANDSHAKE;
3685 			}
3686 		}
3687 	}
3688 
3689 	bge_stop_fw(sc);
3690 	bge_sig_pre_reset(sc, BGE_RESET_SHUTDOWN);
3691 	if (bge_reset(sc)) {
3692 		device_printf(sc->bge_dev, "chip reset failed\n");
3693 		error = ENXIO;
3694 		goto fail;
3695 	}
3696 
3697 	bge_sig_legacy(sc, BGE_RESET_SHUTDOWN);
3698 	bge_sig_post_reset(sc, BGE_RESET_SHUTDOWN);
3699 
3700 	if (bge_chipinit(sc)) {
3701 		device_printf(sc->bge_dev, "chip initialization failed\n");
3702 		error = ENXIO;
3703 		goto fail;
3704 	}
3705 
3706 	error = bge_get_eaddr(sc, eaddr);
3707 	if (error) {
3708 		device_printf(sc->bge_dev,
3709 		    "failed to read station address\n");
3710 		error = ENXIO;
3711 		goto fail;
3712 	}
3713 
3714 	/* 5705 limits RX return ring to 512 entries. */
3715 	if (BGE_IS_5717_PLUS(sc))
3716 		sc->bge_return_ring_cnt = BGE_RETURN_RING_CNT;
3717 	else if (BGE_IS_5705_PLUS(sc))
3718 		sc->bge_return_ring_cnt = BGE_RETURN_RING_CNT_5705;
3719 	else
3720 		sc->bge_return_ring_cnt = BGE_RETURN_RING_CNT;
3721 
3722 	if (bge_dma_alloc(sc)) {
3723 		device_printf(sc->bge_dev,
3724 		    "failed to allocate DMA resources\n");
3725 		error = ENXIO;
3726 		goto fail;
3727 	}
3728 
3729 	/* Set default tuneable values. */
3730 	sc->bge_stat_ticks = BGE_TICKS_PER_SEC;
3731 	sc->bge_rx_coal_ticks = 150;
3732 	sc->bge_tx_coal_ticks = 150;
3733 	sc->bge_rx_max_coal_bds = 10;
3734 	sc->bge_tx_max_coal_bds = 10;
3735 
3736 	/* Initialize checksum features to use. */
3737 	sc->bge_csum_features = BGE_CSUM_FEATURES;
3738 	if (sc->bge_forced_udpcsum != 0)
3739 		sc->bge_csum_features |= CSUM_UDP;
3740 
3741 	/* Set up ifnet structure */
3742 	ifp = sc->bge_ifp = if_alloc(IFT_ETHER);
3743 	if (ifp == NULL) {
3744 		device_printf(sc->bge_dev, "failed to if_alloc()\n");
3745 		error = ENXIO;
3746 		goto fail;
3747 	}
3748 	if_setsoftc(ifp, sc);
3749 	if_initname(ifp, device_get_name(dev), device_get_unit(dev));
3750 	if_setflags(ifp, IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST);
3751 	if_setioctlfn(ifp, bge_ioctl);
3752 	if_setstartfn(ifp, bge_start);
3753 	if_setinitfn(ifp, bge_init);
3754 	if_setgetcounterfn(ifp, bge_get_counter);
3755 	if_setsendqlen(ifp, BGE_TX_RING_CNT - 1);
3756 	if_setsendqready(ifp);
3757 	if_sethwassist(ifp, sc->bge_csum_features);
3758 	if_setcapabilities(ifp, IFCAP_HWCSUM | IFCAP_VLAN_HWTAGGING |
3759 	    IFCAP_VLAN_MTU);
3760 	if ((sc->bge_flags & (BGE_FLAG_TSO | BGE_FLAG_TSO3)) != 0) {
3761 		if_sethwassistbits(ifp, CSUM_TSO, 0);
3762 		if_setcapabilitiesbit(ifp, IFCAP_TSO4 | IFCAP_VLAN_HWTSO, 0);
3763 	}
3764 #ifdef IFCAP_VLAN_HWCSUM
3765 	if_setcapabilitiesbit(ifp, IFCAP_VLAN_HWCSUM, 0);
3766 #endif
3767 	if_setcapenable(ifp, if_getcapabilities(ifp));
3768 #ifdef DEVICE_POLLING
3769 	if_setcapabilitiesbit(ifp, IFCAP_POLLING, 0);
3770 #endif
3771 
3772 	/*
3773 	 * 5700 B0 chips do not support checksumming correctly due
3774 	 * to hardware bugs.
3775 	 */
3776 	if (sc->bge_chipid == BGE_CHIPID_BCM5700_B0) {
3777 		if_setcapabilitiesbit(ifp, 0, IFCAP_HWCSUM);
3778 		if_setcapenablebit(ifp, 0, IFCAP_HWCSUM);
3779 		if_sethwassist(ifp, 0);
3780 	}
3781 
3782 	/*
3783 	 * Figure out what sort of media we have by checking the
3784 	 * hardware config word in the first 32k of NIC internal memory,
3785 	 * or fall back to examining the EEPROM if necessary.
3786 	 * Note: on some BCM5700 cards, this value appears to be unset.
3787 	 * If that's the case, we have to rely on identifying the NIC
3788 	 * by its PCI subsystem ID, as we do below for the SysKonnect
3789 	 * SK-9D41.
3790 	 */
3791 	if (bge_readmem_ind(sc, BGE_SRAM_DATA_SIG) == BGE_SRAM_DATA_SIG_MAGIC)
3792 		hwcfg = bge_readmem_ind(sc, BGE_SRAM_DATA_CFG);
3793 	else if ((sc->bge_flags & BGE_FLAG_EADDR) &&
3794 	    (sc->bge_asicrev != BGE_ASICREV_BCM5906)) {
3795 		if (bge_read_eeprom(sc, (caddr_t)&hwcfg, BGE_EE_HWCFG_OFFSET,
3796 		    sizeof(hwcfg))) {
3797 			device_printf(sc->bge_dev, "failed to read EEPROM\n");
3798 			error = ENXIO;
3799 			goto fail;
3800 		}
3801 		hwcfg = ntohl(hwcfg);
3802 	}
3803 
3804 	/* The SysKonnect SK-9D41 is a 1000baseSX card. */
3805 	if ((pci_read_config(dev, BGE_PCI_SUBSYS, 4) >> 16) ==
3806 	    SK_SUBSYSID_9D41 || (hwcfg & BGE_HWCFG_MEDIA) == BGE_MEDIA_FIBER) {
3807 		if (BGE_IS_5705_PLUS(sc)) {
3808 			sc->bge_flags |= BGE_FLAG_MII_SERDES;
3809 			sc->bge_phy_flags |= BGE_PHY_NO_WIRESPEED;
3810 		} else
3811 			sc->bge_flags |= BGE_FLAG_TBI;
3812 	}
3813 
3814 	/* Set various PHY bug flags. */
3815 	if (sc->bge_chipid == BGE_CHIPID_BCM5701_A0 ||
3816 	    sc->bge_chipid == BGE_CHIPID_BCM5701_B0)
3817 		sc->bge_phy_flags |= BGE_PHY_CRC_BUG;
3818 	if (sc->bge_chiprev == BGE_CHIPREV_5703_AX ||
3819 	    sc->bge_chiprev == BGE_CHIPREV_5704_AX)
3820 		sc->bge_phy_flags |= BGE_PHY_ADC_BUG;
3821 	if (sc->bge_chipid == BGE_CHIPID_BCM5704_A0)
3822 		sc->bge_phy_flags |= BGE_PHY_5704_A0_BUG;
3823 	if (pci_get_subvendor(dev) == DELL_VENDORID)
3824 		sc->bge_phy_flags |= BGE_PHY_NO_3LED;
3825 	if ((BGE_IS_5705_PLUS(sc)) &&
3826 	    sc->bge_asicrev != BGE_ASICREV_BCM5906 &&
3827 	    sc->bge_asicrev != BGE_ASICREV_BCM5785 &&
3828 	    sc->bge_asicrev != BGE_ASICREV_BCM57780 &&
3829 	    !BGE_IS_5717_PLUS(sc)) {
3830 		if (sc->bge_asicrev == BGE_ASICREV_BCM5755 ||
3831 		    sc->bge_asicrev == BGE_ASICREV_BCM5761 ||
3832 		    sc->bge_asicrev == BGE_ASICREV_BCM5784 ||
3833 		    sc->bge_asicrev == BGE_ASICREV_BCM5787) {
3834 			if (pci_get_device(dev) != BCOM_DEVICEID_BCM5722 &&
3835 			    pci_get_device(dev) != BCOM_DEVICEID_BCM5756)
3836 				sc->bge_phy_flags |= BGE_PHY_JITTER_BUG;
3837 			if (pci_get_device(dev) == BCOM_DEVICEID_BCM5755M)
3838 				sc->bge_phy_flags |= BGE_PHY_ADJUST_TRIM;
3839 		} else
3840 			sc->bge_phy_flags |= BGE_PHY_BER_BUG;
3841 	}
3842 
3843 	/*
3844 	 * Don't enable Ethernet@WireSpeed for the 5700 or the
3845 	 * 5705 A0 and A1 chips.
3846 	 */
3847 	if (sc->bge_asicrev == BGE_ASICREV_BCM5700 ||
3848 	    (sc->bge_asicrev == BGE_ASICREV_BCM5705 &&
3849 	    (sc->bge_chipid != BGE_CHIPID_BCM5705_A0 &&
3850 	    sc->bge_chipid != BGE_CHIPID_BCM5705_A1)))
3851 		sc->bge_phy_flags |= BGE_PHY_NO_WIRESPEED;
3852 
3853 	if (sc->bge_flags & BGE_FLAG_TBI) {
3854 		ifmedia_init(&sc->bge_ifmedia, IFM_IMASK, bge_ifmedia_upd,
3855 		    bge_ifmedia_sts);
3856 		ifmedia_add(&sc->bge_ifmedia, IFM_ETHER | IFM_1000_SX, 0, NULL);
3857 		ifmedia_add(&sc->bge_ifmedia, IFM_ETHER | IFM_1000_SX | IFM_FDX,
3858 		    0, NULL);
3859 		ifmedia_add(&sc->bge_ifmedia, IFM_ETHER | IFM_AUTO, 0, NULL);
3860 		ifmedia_set(&sc->bge_ifmedia, IFM_ETHER | IFM_AUTO);
3861 		sc->bge_ifmedia.ifm_media = sc->bge_ifmedia.ifm_cur->ifm_media;
3862 	} else {
3863 		/*
3864 		 * Do transceiver setup and tell the firmware the
3865 		 * driver is down so we can try to get access the
3866 		 * probe if ASF is running.  Retry a couple of times
3867 		 * if we get a conflict with the ASF firmware accessing
3868 		 * the PHY.
3869 		 */
3870 		trys = 0;
3871 		BGE_CLRBIT(sc, BGE_MODE_CTL, BGE_MODECTL_STACKUP);
3872 again:
3873 		bge_asf_driver_up(sc);
3874 
3875 		error = mii_attach(dev, &sc->bge_miibus, ifp,
3876 		    (ifm_change_cb_t)bge_ifmedia_upd,
3877 		    (ifm_stat_cb_t)bge_ifmedia_sts, capmask, sc->bge_phy_addr,
3878 		    MII_OFFSET_ANY, MIIF_DOPAUSE);
3879 		if (error != 0) {
3880 			if (trys++ < 4) {
3881 				device_printf(sc->bge_dev, "Try again\n");
3882 				bge_miibus_writereg(sc->bge_dev,
3883 				    sc->bge_phy_addr, MII_BMCR, BMCR_RESET);
3884 				goto again;
3885 			}
3886 			device_printf(sc->bge_dev, "attaching PHYs failed\n");
3887 			goto fail;
3888 		}
3889 
3890 		/*
3891 		 * Now tell the firmware we are going up after probing the PHY
3892 		 */
3893 		if (sc->bge_asf_mode & ASF_STACKUP)
3894 			BGE_SETBIT(sc, BGE_MODE_CTL, BGE_MODECTL_STACKUP);
3895 	}
3896 
3897 	/*
3898 	 * When using the BCM5701 in PCI-X mode, data corruption has
3899 	 * been observed in the first few bytes of some received packets.
3900 	 * Aligning the packet buffer in memory eliminates the corruption.
3901 	 * Unfortunately, this misaligns the packet payloads.  On platforms
3902 	 * which do not support unaligned accesses, we will realign the
3903 	 * payloads by copying the received packets.
3904 	 */
3905 	if (sc->bge_asicrev == BGE_ASICREV_BCM5701 &&
3906 	    sc->bge_flags & BGE_FLAG_PCIX)
3907                 sc->bge_flags |= BGE_FLAG_RX_ALIGNBUG;
3908 
3909 	/*
3910 	 * Call MI attach routine.
3911 	 */
3912 	ether_ifattach(ifp, eaddr);
3913 
3914 	/* Tell upper layer we support long frames. */
3915 	if_setifheaderlen(ifp, sizeof(struct ether_vlan_header));
3916 
3917 	/*
3918 	 * Hookup IRQ last.
3919 	 */
3920 	if (BGE_IS_5755_PLUS(sc) && sc->bge_flags & BGE_FLAG_MSI) {
3921 		/* Take advantage of single-shot MSI. */
3922 		CSR_WRITE_4(sc, BGE_MSI_MODE, CSR_READ_4(sc, BGE_MSI_MODE) &
3923 		    ~BGE_MSIMODE_ONE_SHOT_DISABLE);
3924 		sc->bge_tq = taskqueue_create_fast("bge_taskq", M_WAITOK,
3925 		    taskqueue_thread_enqueue, &sc->bge_tq);
3926 		if (sc->bge_tq == NULL) {
3927 			device_printf(dev, "could not create taskqueue.\n");
3928 			ether_ifdetach(ifp);
3929 			error = ENOMEM;
3930 			goto fail;
3931 		}
3932 		error = taskqueue_start_threads(&sc->bge_tq, 1, PI_NET,
3933 		    "%s taskq", device_get_nameunit(sc->bge_dev));
3934 		if (error != 0) {
3935 			device_printf(dev, "could not start threads.\n");
3936 			ether_ifdetach(ifp);
3937 			goto fail;
3938 		}
3939 		error = bus_setup_intr(dev, sc->bge_irq,
3940 		    INTR_TYPE_NET | INTR_MPSAFE, bge_msi_intr, NULL, sc,
3941 		    &sc->bge_intrhand);
3942 	} else
3943 		error = bus_setup_intr(dev, sc->bge_irq,
3944 		    INTR_TYPE_NET | INTR_MPSAFE, NULL, bge_intr, sc,
3945 		    &sc->bge_intrhand);
3946 
3947 	if (error) {
3948 		ether_ifdetach(ifp);
3949 		device_printf(sc->bge_dev, "couldn't set up irq\n");
3950 		goto fail;
3951 	}
3952 
3953 	/* Attach driver netdump methods. */
3954 	NETDUMP_SET(ifp, bge);
3955 
3956 fail:
3957 	if (error)
3958 		bge_detach(dev);
3959 	return (error);
3960 }
3961 
3962 static int
3963 bge_detach(device_t dev)
3964 {
3965 	struct bge_softc *sc;
3966 	if_t ifp;
3967 
3968 	sc = device_get_softc(dev);
3969 	ifp = sc->bge_ifp;
3970 
3971 #ifdef DEVICE_POLLING
3972 	if (if_getcapenable(ifp) & IFCAP_POLLING)
3973 		ether_poll_deregister(ifp);
3974 #endif
3975 
3976 	if (device_is_attached(dev)) {
3977 		ether_ifdetach(ifp);
3978 		BGE_LOCK(sc);
3979 		bge_stop(sc);
3980 		BGE_UNLOCK(sc);
3981 		callout_drain(&sc->bge_stat_ch);
3982 	}
3983 
3984 	if (sc->bge_tq)
3985 		taskqueue_drain(sc->bge_tq, &sc->bge_intr_task);
3986 
3987 	if (sc->bge_flags & BGE_FLAG_TBI)
3988 		ifmedia_removeall(&sc->bge_ifmedia);
3989 	else if (sc->bge_miibus != NULL) {
3990 		bus_generic_detach(dev);
3991 		device_delete_child(dev, sc->bge_miibus);
3992 	}
3993 
3994 	bge_release_resources(sc);
3995 
3996 	return (0);
3997 }
3998 
3999 static void
4000 bge_release_resources(struct bge_softc *sc)
4001 {
4002 	device_t dev;
4003 
4004 	dev = sc->bge_dev;
4005 
4006 	if (sc->bge_tq != NULL)
4007 		taskqueue_free(sc->bge_tq);
4008 
4009 	if (sc->bge_intrhand != NULL)
4010 		bus_teardown_intr(dev, sc->bge_irq, sc->bge_intrhand);
4011 
4012 	if (sc->bge_irq != NULL) {
4013 		bus_release_resource(dev, SYS_RES_IRQ,
4014 		    rman_get_rid(sc->bge_irq), sc->bge_irq);
4015 		pci_release_msi(dev);
4016 	}
4017 
4018 	if (sc->bge_res != NULL)
4019 		bus_release_resource(dev, SYS_RES_MEMORY,
4020 		    rman_get_rid(sc->bge_res), sc->bge_res);
4021 
4022 	if (sc->bge_res2 != NULL)
4023 		bus_release_resource(dev, SYS_RES_MEMORY,
4024 		    rman_get_rid(sc->bge_res2), sc->bge_res2);
4025 
4026 	if (sc->bge_ifp != NULL)
4027 		if_free(sc->bge_ifp);
4028 
4029 	bge_dma_free(sc);
4030 
4031 	if (mtx_initialized(&sc->bge_mtx))	/* XXX */
4032 		BGE_LOCK_DESTROY(sc);
4033 }
4034 
4035 static int
4036 bge_reset(struct bge_softc *sc)
4037 {
4038 	device_t dev;
4039 	uint32_t cachesize, command, mac_mode, mac_mode_mask, reset, val;
4040 	void (*write_op)(struct bge_softc *, int, int);
4041 	uint16_t devctl;
4042 	int i;
4043 
4044 	dev = sc->bge_dev;
4045 
4046 	mac_mode_mask = BGE_MACMODE_HALF_DUPLEX | BGE_MACMODE_PORTMODE;
4047 	if ((sc->bge_mfw_flags & BGE_MFW_ON_APE) != 0)
4048 		mac_mode_mask |= BGE_MACMODE_APE_RX_EN | BGE_MACMODE_APE_TX_EN;
4049 	mac_mode = CSR_READ_4(sc, BGE_MAC_MODE) & mac_mode_mask;
4050 
4051 	if (BGE_IS_575X_PLUS(sc) && !BGE_IS_5714_FAMILY(sc) &&
4052 	    (sc->bge_asicrev != BGE_ASICREV_BCM5906)) {
4053 		if (sc->bge_flags & BGE_FLAG_PCIE)
4054 			write_op = bge_writemem_direct;
4055 		else
4056 			write_op = bge_writemem_ind;
4057 	} else
4058 		write_op = bge_writereg_ind;
4059 
4060 	if (sc->bge_asicrev != BGE_ASICREV_BCM5700 &&
4061 	    sc->bge_asicrev != BGE_ASICREV_BCM5701) {
4062 		CSR_WRITE_4(sc, BGE_NVRAM_SWARB, BGE_NVRAMSWARB_SET1);
4063 		for (i = 0; i < 8000; i++) {
4064 			if (CSR_READ_4(sc, BGE_NVRAM_SWARB) &
4065 			    BGE_NVRAMSWARB_GNT1)
4066 				break;
4067 			DELAY(20);
4068 		}
4069 		if (i == 8000) {
4070 			if (bootverbose)
4071 				device_printf(dev, "NVRAM lock timedout!\n");
4072 		}
4073 	}
4074 	/* Take APE lock when performing reset. */
4075 	bge_ape_lock(sc, BGE_APE_LOCK_GRC);
4076 
4077 	/* Save some important PCI state. */
4078 	cachesize = pci_read_config(dev, BGE_PCI_CACHESZ, 4);
4079 	command = pci_read_config(dev, BGE_PCI_CMD, 4);
4080 
4081 	pci_write_config(dev, BGE_PCI_MISC_CTL,
4082 	    BGE_PCIMISCCTL_INDIRECT_ACCESS | BGE_PCIMISCCTL_MASK_PCI_INTR |
4083 	    BGE_HIF_SWAP_OPTIONS | BGE_PCIMISCCTL_PCISTATE_RW, 4);
4084 
4085 	/* Disable fastboot on controllers that support it. */
4086 	if (sc->bge_asicrev == BGE_ASICREV_BCM5752 ||
4087 	    BGE_IS_5755_PLUS(sc)) {
4088 		if (bootverbose)
4089 			device_printf(dev, "Disabling fastboot\n");
4090 		CSR_WRITE_4(sc, BGE_FASTBOOT_PC, 0x0);
4091 	}
4092 
4093 	/*
4094 	 * Write the magic number to SRAM at offset 0xB50.
4095 	 * When firmware finishes its initialization it will
4096 	 * write ~BGE_SRAM_FW_MB_MAGIC to the same location.
4097 	 */
4098 	bge_writemem_ind(sc, BGE_SRAM_FW_MB, BGE_SRAM_FW_MB_MAGIC);
4099 
4100 	reset = BGE_MISCCFG_RESET_CORE_CLOCKS | BGE_32BITTIME_66MHZ;
4101 
4102 	/* XXX: Broadcom Linux driver. */
4103 	if (sc->bge_flags & BGE_FLAG_PCIE) {
4104 		if (sc->bge_asicrev != BGE_ASICREV_BCM5785 &&
4105 		    (sc->bge_flags & BGE_FLAG_5717_PLUS) == 0) {
4106 			if (CSR_READ_4(sc, 0x7E2C) == 0x60)	/* PCIE 1.0 */
4107 				CSR_WRITE_4(sc, 0x7E2C, 0x20);
4108 		}
4109 		if (sc->bge_chipid != BGE_CHIPID_BCM5750_A0) {
4110 			/* Prevent PCIE link training during global reset */
4111 			CSR_WRITE_4(sc, BGE_MISC_CFG, 1 << 29);
4112 			reset |= 1 << 29;
4113 		}
4114 	}
4115 
4116 	if (sc->bge_asicrev == BGE_ASICREV_BCM5906) {
4117 		val = CSR_READ_4(sc, BGE_VCPU_STATUS);
4118 		CSR_WRITE_4(sc, BGE_VCPU_STATUS,
4119 		    val | BGE_VCPU_STATUS_DRV_RESET);
4120 		val = CSR_READ_4(sc, BGE_VCPU_EXT_CTRL);
4121 		CSR_WRITE_4(sc, BGE_VCPU_EXT_CTRL,
4122 		    val & ~BGE_VCPU_EXT_CTRL_HALT_CPU);
4123 	}
4124 
4125 	/*
4126 	 * Set GPHY Power Down Override to leave GPHY
4127 	 * powered up in D0 uninitialized.
4128 	 */
4129 	if (BGE_IS_5705_PLUS(sc) &&
4130 	    (sc->bge_flags & BGE_FLAG_CPMU_PRESENT) == 0)
4131 		reset |= BGE_MISCCFG_GPHY_PD_OVERRIDE;
4132 
4133 	/* Issue global reset */
4134 	write_op(sc, BGE_MISC_CFG, reset);
4135 
4136 	if (sc->bge_flags & BGE_FLAG_PCIE)
4137 		DELAY(100 * 1000);
4138 	else
4139 		DELAY(1000);
4140 
4141 	/* XXX: Broadcom Linux driver. */
4142 	if (sc->bge_flags & BGE_FLAG_PCIE) {
4143 		if (sc->bge_chipid == BGE_CHIPID_BCM5750_A0) {
4144 			DELAY(500000); /* wait for link training to complete */
4145 			val = pci_read_config(dev, 0xC4, 4);
4146 			pci_write_config(dev, 0xC4, val | (1 << 15), 4);
4147 		}
4148 		devctl = pci_read_config(dev,
4149 		    sc->bge_expcap + PCIER_DEVICE_CTL, 2);
4150 		/* Clear enable no snoop and disable relaxed ordering. */
4151 		devctl &= ~(PCIEM_CTL_RELAXED_ORD_ENABLE |
4152 		    PCIEM_CTL_NOSNOOP_ENABLE);
4153 		pci_write_config(dev, sc->bge_expcap + PCIER_DEVICE_CTL,
4154 		    devctl, 2);
4155 		pci_set_max_read_req(dev, sc->bge_expmrq);
4156 		/* Clear error status. */
4157 		pci_write_config(dev, sc->bge_expcap + PCIER_DEVICE_STA,
4158 		    PCIEM_STA_CORRECTABLE_ERROR |
4159 		    PCIEM_STA_NON_FATAL_ERROR | PCIEM_STA_FATAL_ERROR |
4160 		    PCIEM_STA_UNSUPPORTED_REQ, 2);
4161 	}
4162 
4163 	/* Reset some of the PCI state that got zapped by reset. */
4164 	pci_write_config(dev, BGE_PCI_MISC_CTL,
4165 	    BGE_PCIMISCCTL_INDIRECT_ACCESS | BGE_PCIMISCCTL_MASK_PCI_INTR |
4166 	    BGE_HIF_SWAP_OPTIONS | BGE_PCIMISCCTL_PCISTATE_RW, 4);
4167 	val = BGE_PCISTATE_ROM_ENABLE | BGE_PCISTATE_ROM_RETRY_ENABLE;
4168 	if (sc->bge_chipid == BGE_CHIPID_BCM5704_A0 &&
4169 	    (sc->bge_flags & BGE_FLAG_PCIX) != 0)
4170 		val |= BGE_PCISTATE_RETRY_SAME_DMA;
4171 	if ((sc->bge_mfw_flags & BGE_MFW_ON_APE) != 0)
4172 		val |= BGE_PCISTATE_ALLOW_APE_CTLSPC_WR |
4173 		    BGE_PCISTATE_ALLOW_APE_SHMEM_WR |
4174 		    BGE_PCISTATE_ALLOW_APE_PSPACE_WR;
4175 	pci_write_config(dev, BGE_PCI_PCISTATE, val, 4);
4176 	pci_write_config(dev, BGE_PCI_CACHESZ, cachesize, 4);
4177 	pci_write_config(dev, BGE_PCI_CMD, command, 4);
4178 	/*
4179 	 * Disable PCI-X relaxed ordering to ensure status block update
4180 	 * comes first then packet buffer DMA. Otherwise driver may
4181 	 * read stale status block.
4182 	 */
4183 	if (sc->bge_flags & BGE_FLAG_PCIX) {
4184 		devctl = pci_read_config(dev,
4185 		    sc->bge_pcixcap + PCIXR_COMMAND, 2);
4186 		devctl &= ~PCIXM_COMMAND_ERO;
4187 		if (sc->bge_asicrev == BGE_ASICREV_BCM5703) {
4188 			devctl &= ~PCIXM_COMMAND_MAX_READ;
4189 			devctl |= PCIXM_COMMAND_MAX_READ_2048;
4190 		} else if (sc->bge_asicrev == BGE_ASICREV_BCM5704) {
4191 			devctl &= ~(PCIXM_COMMAND_MAX_SPLITS |
4192 			    PCIXM_COMMAND_MAX_READ);
4193 			devctl |= PCIXM_COMMAND_MAX_READ_2048;
4194 		}
4195 		pci_write_config(dev, sc->bge_pcixcap + PCIXR_COMMAND,
4196 		    devctl, 2);
4197 	}
4198 	/* Re-enable MSI, if necessary, and enable the memory arbiter. */
4199 	if (BGE_IS_5714_FAMILY(sc)) {
4200 		/* This chip disables MSI on reset. */
4201 		if (sc->bge_flags & BGE_FLAG_MSI) {
4202 			val = pci_read_config(dev,
4203 			    sc->bge_msicap + PCIR_MSI_CTRL, 2);
4204 			pci_write_config(dev,
4205 			    sc->bge_msicap + PCIR_MSI_CTRL,
4206 			    val | PCIM_MSICTRL_MSI_ENABLE, 2);
4207 			val = CSR_READ_4(sc, BGE_MSI_MODE);
4208 			CSR_WRITE_4(sc, BGE_MSI_MODE,
4209 			    val | BGE_MSIMODE_ENABLE);
4210 		}
4211 		val = CSR_READ_4(sc, BGE_MARB_MODE);
4212 		CSR_WRITE_4(sc, BGE_MARB_MODE, BGE_MARBMODE_ENABLE | val);
4213 	} else
4214 		CSR_WRITE_4(sc, BGE_MARB_MODE, BGE_MARBMODE_ENABLE);
4215 
4216 	/* Fix up byte swapping. */
4217 	CSR_WRITE_4(sc, BGE_MODE_CTL, bge_dma_swap_options(sc));
4218 
4219 	val = CSR_READ_4(sc, BGE_MAC_MODE);
4220 	val = (val & ~mac_mode_mask) | mac_mode;
4221 	CSR_WRITE_4(sc, BGE_MAC_MODE, val);
4222 	DELAY(40);
4223 
4224 	bge_ape_unlock(sc, BGE_APE_LOCK_GRC);
4225 
4226 	if (sc->bge_asicrev == BGE_ASICREV_BCM5906) {
4227 		for (i = 0; i < BGE_TIMEOUT; i++) {
4228 			val = CSR_READ_4(sc, BGE_VCPU_STATUS);
4229 			if (val & BGE_VCPU_STATUS_INIT_DONE)
4230 				break;
4231 			DELAY(100);
4232 		}
4233 		if (i == BGE_TIMEOUT) {
4234 			device_printf(dev, "reset timed out\n");
4235 			return (1);
4236 		}
4237 	} else {
4238 		/*
4239 		 * Poll until we see the 1's complement of the magic number.
4240 		 * This indicates that the firmware initialization is complete.
4241 		 * We expect this to fail if no chip containing the Ethernet
4242 		 * address is fitted though.
4243 		 */
4244 		for (i = 0; i < BGE_TIMEOUT; i++) {
4245 			DELAY(10);
4246 			val = bge_readmem_ind(sc, BGE_SRAM_FW_MB);
4247 			if (val == ~BGE_SRAM_FW_MB_MAGIC)
4248 				break;
4249 		}
4250 
4251 		if ((sc->bge_flags & BGE_FLAG_EADDR) && i == BGE_TIMEOUT)
4252 			device_printf(dev,
4253 			    "firmware handshake timed out, found 0x%08x\n",
4254 			    val);
4255 		/* BCM57765 A0 needs additional time before accessing. */
4256 		if (sc->bge_chipid == BGE_CHIPID_BCM57765_A0)
4257 			DELAY(10 * 1000);	/* XXX */
4258 	}
4259 
4260 	/*
4261 	 * The 5704 in TBI mode apparently needs some special
4262 	 * adjustment to insure the SERDES drive level is set
4263 	 * to 1.2V.
4264 	 */
4265 	if (sc->bge_asicrev == BGE_ASICREV_BCM5704 &&
4266 	    sc->bge_flags & BGE_FLAG_TBI) {
4267 		val = CSR_READ_4(sc, BGE_SERDES_CFG);
4268 		val = (val & ~0xFFF) | 0x880;
4269 		CSR_WRITE_4(sc, BGE_SERDES_CFG, val);
4270 	}
4271 
4272 	/* XXX: Broadcom Linux driver. */
4273 	if (sc->bge_flags & BGE_FLAG_PCIE &&
4274 	    !BGE_IS_5717_PLUS(sc) &&
4275 	    sc->bge_chipid != BGE_CHIPID_BCM5750_A0 &&
4276 	    sc->bge_asicrev != BGE_ASICREV_BCM5785) {
4277 		/* Enable Data FIFO protection. */
4278 		val = CSR_READ_4(sc, 0x7C00);
4279 		CSR_WRITE_4(sc, 0x7C00, val | (1 << 25));
4280 	}
4281 
4282 	if (sc->bge_asicrev == BGE_ASICREV_BCM5720)
4283 		BGE_CLRBIT(sc, BGE_CPMU_CLCK_ORIDE,
4284 		    CPMU_CLCK_ORIDE_MAC_ORIDE_EN);
4285 
4286 	return (0);
4287 }
4288 
4289 static __inline void
4290 bge_rxreuse_std(struct bge_softc *sc, int i)
4291 {
4292 	struct bge_rx_bd *r;
4293 
4294 	r = &sc->bge_ldata.bge_rx_std_ring[sc->bge_std];
4295 	r->bge_flags = BGE_RXBDFLAG_END;
4296 	r->bge_len = sc->bge_cdata.bge_rx_std_seglen[i];
4297 	r->bge_idx = i;
4298 	BGE_INC(sc->bge_std, BGE_STD_RX_RING_CNT);
4299 }
4300 
4301 static __inline void
4302 bge_rxreuse_jumbo(struct bge_softc *sc, int i)
4303 {
4304 	struct bge_extrx_bd *r;
4305 
4306 	r = &sc->bge_ldata.bge_rx_jumbo_ring[sc->bge_jumbo];
4307 	r->bge_flags = BGE_RXBDFLAG_JUMBO_RING | BGE_RXBDFLAG_END;
4308 	r->bge_len0 = sc->bge_cdata.bge_rx_jumbo_seglen[i][0];
4309 	r->bge_len1 = sc->bge_cdata.bge_rx_jumbo_seglen[i][1];
4310 	r->bge_len2 = sc->bge_cdata.bge_rx_jumbo_seglen[i][2];
4311 	r->bge_len3 = sc->bge_cdata.bge_rx_jumbo_seglen[i][3];
4312 	r->bge_idx = i;
4313 	BGE_INC(sc->bge_jumbo, BGE_JUMBO_RX_RING_CNT);
4314 }
4315 
4316 /*
4317  * Frame reception handling. This is called if there's a frame
4318  * on the receive return list.
4319  *
4320  * Note: we have to be able to handle two possibilities here:
4321  * 1) the frame is from the jumbo receive ring
4322  * 2) the frame is from the standard receive ring
4323  */
4324 
4325 static int
4326 bge_rxeof(struct bge_softc *sc, uint16_t rx_prod, int holdlck)
4327 {
4328 	if_t ifp;
4329 	int rx_npkts = 0, stdcnt = 0, jumbocnt = 0;
4330 	uint16_t rx_cons;
4331 
4332 	rx_cons = sc->bge_rx_saved_considx;
4333 
4334 	/* Nothing to do. */
4335 	if (rx_cons == rx_prod)
4336 		return (rx_npkts);
4337 
4338 	ifp = sc->bge_ifp;
4339 
4340 	bus_dmamap_sync(sc->bge_cdata.bge_rx_return_ring_tag,
4341 	    sc->bge_cdata.bge_rx_return_ring_map, BUS_DMASYNC_POSTREAD);
4342 	bus_dmamap_sync(sc->bge_cdata.bge_rx_std_ring_tag,
4343 	    sc->bge_cdata.bge_rx_std_ring_map, BUS_DMASYNC_POSTWRITE);
4344 	if (BGE_IS_JUMBO_CAPABLE(sc) &&
4345 	    if_getmtu(ifp) + ETHER_HDR_LEN + ETHER_CRC_LEN +
4346 	    ETHER_VLAN_ENCAP_LEN > (MCLBYTES - ETHER_ALIGN))
4347 		bus_dmamap_sync(sc->bge_cdata.bge_rx_jumbo_ring_tag,
4348 		    sc->bge_cdata.bge_rx_jumbo_ring_map, BUS_DMASYNC_POSTWRITE);
4349 
4350 	while (rx_cons != rx_prod) {
4351 		struct bge_rx_bd	*cur_rx;
4352 		uint32_t		rxidx;
4353 		struct mbuf		*m = NULL;
4354 		uint16_t		vlan_tag = 0;
4355 		int			have_tag = 0;
4356 
4357 #ifdef DEVICE_POLLING
4358 		if (if_getcapenable(ifp) & IFCAP_POLLING) {
4359 			if (sc->rxcycles <= 0)
4360 				break;
4361 			sc->rxcycles--;
4362 		}
4363 #endif
4364 
4365 		cur_rx = &sc->bge_ldata.bge_rx_return_ring[rx_cons];
4366 
4367 		rxidx = cur_rx->bge_idx;
4368 		BGE_INC(rx_cons, sc->bge_return_ring_cnt);
4369 
4370 		if (if_getcapenable(ifp) & IFCAP_VLAN_HWTAGGING &&
4371 		    cur_rx->bge_flags & BGE_RXBDFLAG_VLAN_TAG) {
4372 			have_tag = 1;
4373 			vlan_tag = cur_rx->bge_vlan_tag;
4374 		}
4375 
4376 		if (cur_rx->bge_flags & BGE_RXBDFLAG_JUMBO_RING) {
4377 			jumbocnt++;
4378 			m = sc->bge_cdata.bge_rx_jumbo_chain[rxidx];
4379 			if (cur_rx->bge_flags & BGE_RXBDFLAG_ERROR) {
4380 				bge_rxreuse_jumbo(sc, rxidx);
4381 				continue;
4382 			}
4383 			if (bge_newbuf_jumbo(sc, rxidx) != 0) {
4384 				bge_rxreuse_jumbo(sc, rxidx);
4385 				if_inc_counter(ifp, IFCOUNTER_IQDROPS, 1);
4386 				continue;
4387 			}
4388 			BGE_INC(sc->bge_jumbo, BGE_JUMBO_RX_RING_CNT);
4389 		} else {
4390 			stdcnt++;
4391 			m = sc->bge_cdata.bge_rx_std_chain[rxidx];
4392 			if (cur_rx->bge_flags & BGE_RXBDFLAG_ERROR) {
4393 				bge_rxreuse_std(sc, rxidx);
4394 				continue;
4395 			}
4396 			if (bge_newbuf_std(sc, rxidx) != 0) {
4397 				bge_rxreuse_std(sc, rxidx);
4398 				if_inc_counter(ifp, IFCOUNTER_IQDROPS, 1);
4399 				continue;
4400 			}
4401 			BGE_INC(sc->bge_std, BGE_STD_RX_RING_CNT);
4402 		}
4403 
4404 		if_inc_counter(ifp, IFCOUNTER_IPACKETS, 1);
4405 #ifndef __NO_STRICT_ALIGNMENT
4406 		/*
4407 		 * For architectures with strict alignment we must make sure
4408 		 * the payload is aligned.
4409 		 */
4410 		if (sc->bge_flags & BGE_FLAG_RX_ALIGNBUG) {
4411 			bcopy(m->m_data, m->m_data + ETHER_ALIGN,
4412 			    cur_rx->bge_len);
4413 			m->m_data += ETHER_ALIGN;
4414 		}
4415 #endif
4416 		m->m_pkthdr.len = m->m_len = cur_rx->bge_len - ETHER_CRC_LEN;
4417 		m->m_pkthdr.rcvif = ifp;
4418 
4419 		if (if_getcapenable(ifp) & IFCAP_RXCSUM)
4420 			bge_rxcsum(sc, cur_rx, m);
4421 
4422 		/*
4423 		 * If we received a packet with a vlan tag,
4424 		 * attach that information to the packet.
4425 		 */
4426 		if (have_tag) {
4427 			m->m_pkthdr.ether_vtag = vlan_tag;
4428 			m->m_flags |= M_VLANTAG;
4429 		}
4430 
4431 		if (holdlck != 0) {
4432 			BGE_UNLOCK(sc);
4433 			if_input(ifp, m);
4434 			BGE_LOCK(sc);
4435 		} else
4436 			if_input(ifp, m);
4437 		rx_npkts++;
4438 
4439 		if (!(if_getdrvflags(ifp) & IFF_DRV_RUNNING))
4440 			return (rx_npkts);
4441 	}
4442 
4443 	bus_dmamap_sync(sc->bge_cdata.bge_rx_return_ring_tag,
4444 	    sc->bge_cdata.bge_rx_return_ring_map, BUS_DMASYNC_PREREAD);
4445 	if (stdcnt > 0)
4446 		bus_dmamap_sync(sc->bge_cdata.bge_rx_std_ring_tag,
4447 		    sc->bge_cdata.bge_rx_std_ring_map, BUS_DMASYNC_PREWRITE);
4448 
4449 	if (jumbocnt > 0)
4450 		bus_dmamap_sync(sc->bge_cdata.bge_rx_jumbo_ring_tag,
4451 		    sc->bge_cdata.bge_rx_jumbo_ring_map, BUS_DMASYNC_PREWRITE);
4452 
4453 	sc->bge_rx_saved_considx = rx_cons;
4454 	bge_writembx(sc, BGE_MBX_RX_CONS0_LO, sc->bge_rx_saved_considx);
4455 	if (stdcnt)
4456 		bge_writembx(sc, BGE_MBX_RX_STD_PROD_LO, (sc->bge_std +
4457 		    BGE_STD_RX_RING_CNT - 1) % BGE_STD_RX_RING_CNT);
4458 	if (jumbocnt)
4459 		bge_writembx(sc, BGE_MBX_RX_JUMBO_PROD_LO, (sc->bge_jumbo +
4460 		    BGE_JUMBO_RX_RING_CNT - 1) % BGE_JUMBO_RX_RING_CNT);
4461 #ifdef notyet
4462 	/*
4463 	 * This register wraps very quickly under heavy packet drops.
4464 	 * If you need correct statistics, you can enable this check.
4465 	 */
4466 	if (BGE_IS_5705_PLUS(sc))
4467 		if_incierrors(ifp, CSR_READ_4(sc, BGE_RXLP_LOCSTAT_IFIN_DROPS));
4468 #endif
4469 	return (rx_npkts);
4470 }
4471 
4472 static void
4473 bge_rxcsum(struct bge_softc *sc, struct bge_rx_bd *cur_rx, struct mbuf *m)
4474 {
4475 
4476 	if (BGE_IS_5717_PLUS(sc)) {
4477 		if ((cur_rx->bge_flags & BGE_RXBDFLAG_IPV6) == 0) {
4478 			if (cur_rx->bge_flags & BGE_RXBDFLAG_IP_CSUM) {
4479 				m->m_pkthdr.csum_flags |= CSUM_IP_CHECKED;
4480 				if ((cur_rx->bge_error_flag &
4481 				    BGE_RXERRFLAG_IP_CSUM_NOK) == 0)
4482 					m->m_pkthdr.csum_flags |= CSUM_IP_VALID;
4483 			}
4484 			if (cur_rx->bge_flags & BGE_RXBDFLAG_TCP_UDP_CSUM) {
4485 				m->m_pkthdr.csum_data =
4486 				    cur_rx->bge_tcp_udp_csum;
4487 				m->m_pkthdr.csum_flags |= CSUM_DATA_VALID |
4488 				    CSUM_PSEUDO_HDR;
4489 			}
4490 		}
4491 	} else {
4492 		if (cur_rx->bge_flags & BGE_RXBDFLAG_IP_CSUM) {
4493 			m->m_pkthdr.csum_flags |= CSUM_IP_CHECKED;
4494 			if ((cur_rx->bge_ip_csum ^ 0xFFFF) == 0)
4495 				m->m_pkthdr.csum_flags |= CSUM_IP_VALID;
4496 		}
4497 		if (cur_rx->bge_flags & BGE_RXBDFLAG_TCP_UDP_CSUM &&
4498 		    m->m_pkthdr.len >= ETHER_MIN_NOPAD) {
4499 			m->m_pkthdr.csum_data =
4500 			    cur_rx->bge_tcp_udp_csum;
4501 			m->m_pkthdr.csum_flags |= CSUM_DATA_VALID |
4502 			    CSUM_PSEUDO_HDR;
4503 		}
4504 	}
4505 }
4506 
4507 static void
4508 bge_txeof(struct bge_softc *sc, uint16_t tx_cons)
4509 {
4510 	struct bge_tx_bd *cur_tx;
4511 	if_t ifp;
4512 
4513 	BGE_LOCK_ASSERT(sc);
4514 
4515 	/* Nothing to do. */
4516 	if (sc->bge_tx_saved_considx == tx_cons)
4517 		return;
4518 
4519 	ifp = sc->bge_ifp;
4520 
4521 	bus_dmamap_sync(sc->bge_cdata.bge_tx_ring_tag,
4522 	    sc->bge_cdata.bge_tx_ring_map, BUS_DMASYNC_POSTWRITE);
4523 	/*
4524 	 * Go through our tx ring and free mbufs for those
4525 	 * frames that have been sent.
4526 	 */
4527 	while (sc->bge_tx_saved_considx != tx_cons) {
4528 		uint32_t		idx;
4529 
4530 		idx = sc->bge_tx_saved_considx;
4531 		cur_tx = &sc->bge_ldata.bge_tx_ring[idx];
4532 		if (cur_tx->bge_flags & BGE_TXBDFLAG_END)
4533 			if_inc_counter(ifp, IFCOUNTER_OPACKETS, 1);
4534 		if (sc->bge_cdata.bge_tx_chain[idx] != NULL) {
4535 			bus_dmamap_sync(sc->bge_cdata.bge_tx_mtag,
4536 			    sc->bge_cdata.bge_tx_dmamap[idx],
4537 			    BUS_DMASYNC_POSTWRITE);
4538 			bus_dmamap_unload(sc->bge_cdata.bge_tx_mtag,
4539 			    sc->bge_cdata.bge_tx_dmamap[idx]);
4540 			m_freem(sc->bge_cdata.bge_tx_chain[idx]);
4541 			sc->bge_cdata.bge_tx_chain[idx] = NULL;
4542 		}
4543 		sc->bge_txcnt--;
4544 		BGE_INC(sc->bge_tx_saved_considx, BGE_TX_RING_CNT);
4545 	}
4546 
4547 	if_setdrvflagbits(ifp, 0, IFF_DRV_OACTIVE);
4548 	if (sc->bge_txcnt == 0)
4549 		sc->bge_timer = 0;
4550 }
4551 
4552 #ifdef DEVICE_POLLING
4553 static int
4554 bge_poll(if_t ifp, enum poll_cmd cmd, int count)
4555 {
4556 	struct bge_softc *sc = if_getsoftc(ifp);
4557 	uint16_t rx_prod, tx_cons;
4558 	uint32_t statusword;
4559 	int rx_npkts = 0;
4560 
4561 	BGE_LOCK(sc);
4562 	if (!(if_getdrvflags(ifp) & IFF_DRV_RUNNING)) {
4563 		BGE_UNLOCK(sc);
4564 		return (rx_npkts);
4565 	}
4566 
4567 	bus_dmamap_sync(sc->bge_cdata.bge_status_tag,
4568 	    sc->bge_cdata.bge_status_map,
4569 	    BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE);
4570 	/* Fetch updates from the status block. */
4571 	rx_prod = sc->bge_ldata.bge_status_block->bge_idx[0].bge_rx_prod_idx;
4572 	tx_cons = sc->bge_ldata.bge_status_block->bge_idx[0].bge_tx_cons_idx;
4573 
4574 	statusword = sc->bge_ldata.bge_status_block->bge_status;
4575 	/* Clear the status so the next pass only sees the changes. */
4576 	sc->bge_ldata.bge_status_block->bge_status = 0;
4577 
4578 	bus_dmamap_sync(sc->bge_cdata.bge_status_tag,
4579 	    sc->bge_cdata.bge_status_map,
4580 	    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
4581 
4582 	/* Note link event. It will be processed by POLL_AND_CHECK_STATUS. */
4583 	if (statusword & BGE_STATFLAG_LINKSTATE_CHANGED)
4584 		sc->bge_link_evt++;
4585 
4586 	if (cmd == POLL_AND_CHECK_STATUS)
4587 		if ((sc->bge_asicrev == BGE_ASICREV_BCM5700 &&
4588 		    sc->bge_chipid != BGE_CHIPID_BCM5700_B2) ||
4589 		    sc->bge_link_evt || (sc->bge_flags & BGE_FLAG_TBI))
4590 			bge_link_upd(sc);
4591 
4592 	sc->rxcycles = count;
4593 	rx_npkts = bge_rxeof(sc, rx_prod, 1);
4594 	if (!(if_getdrvflags(ifp) & IFF_DRV_RUNNING)) {
4595 		BGE_UNLOCK(sc);
4596 		return (rx_npkts);
4597 	}
4598 	bge_txeof(sc, tx_cons);
4599 	if (!if_sendq_empty(ifp))
4600 		bge_start_locked(ifp);
4601 
4602 	BGE_UNLOCK(sc);
4603 	return (rx_npkts);
4604 }
4605 #endif /* DEVICE_POLLING */
4606 
4607 static int
4608 bge_msi_intr(void *arg)
4609 {
4610 	struct bge_softc *sc;
4611 
4612 	sc = (struct bge_softc *)arg;
4613 	/*
4614 	 * This interrupt is not shared and controller already
4615 	 * disabled further interrupt.
4616 	 */
4617 	taskqueue_enqueue(sc->bge_tq, &sc->bge_intr_task);
4618 	return (FILTER_HANDLED);
4619 }
4620 
4621 static void
4622 bge_intr_task(void *arg, int pending)
4623 {
4624 	struct bge_softc *sc;
4625 	if_t ifp;
4626 	uint32_t status, status_tag;
4627 	uint16_t rx_prod, tx_cons;
4628 
4629 	sc = (struct bge_softc *)arg;
4630 	ifp = sc->bge_ifp;
4631 
4632 	BGE_LOCK(sc);
4633 	if ((if_getdrvflags(ifp) & IFF_DRV_RUNNING) == 0) {
4634 		BGE_UNLOCK(sc);
4635 		return;
4636 	}
4637 
4638 	/* Get updated status block. */
4639 	bus_dmamap_sync(sc->bge_cdata.bge_status_tag,
4640 	    sc->bge_cdata.bge_status_map,
4641 	    BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE);
4642 
4643 	/* Save producer/consumer indices. */
4644 	rx_prod = sc->bge_ldata.bge_status_block->bge_idx[0].bge_rx_prod_idx;
4645 	tx_cons = sc->bge_ldata.bge_status_block->bge_idx[0].bge_tx_cons_idx;
4646 	status = sc->bge_ldata.bge_status_block->bge_status;
4647 	status_tag = sc->bge_ldata.bge_status_block->bge_status_tag << 24;
4648 	/* Dirty the status flag. */
4649 	sc->bge_ldata.bge_status_block->bge_status = 0;
4650 	bus_dmamap_sync(sc->bge_cdata.bge_status_tag,
4651 	    sc->bge_cdata.bge_status_map,
4652 	    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
4653 	if ((sc->bge_flags & BGE_FLAG_TAGGED_STATUS) == 0)
4654 		status_tag = 0;
4655 
4656 	if ((status & BGE_STATFLAG_LINKSTATE_CHANGED) != 0)
4657 		bge_link_upd(sc);
4658 
4659 	/* Let controller work. */
4660 	bge_writembx(sc, BGE_MBX_IRQ0_LO, status_tag);
4661 
4662 	if (if_getdrvflags(ifp) & IFF_DRV_RUNNING &&
4663 	    sc->bge_rx_saved_considx != rx_prod) {
4664 		/* Check RX return ring producer/consumer. */
4665 		BGE_UNLOCK(sc);
4666 		bge_rxeof(sc, rx_prod, 0);
4667 		BGE_LOCK(sc);
4668 	}
4669 	if (if_getdrvflags(ifp) & IFF_DRV_RUNNING) {
4670 		/* Check TX ring producer/consumer. */
4671 		bge_txeof(sc, tx_cons);
4672 		if (!if_sendq_empty(ifp))
4673 			bge_start_locked(ifp);
4674 	}
4675 	BGE_UNLOCK(sc);
4676 }
4677 
4678 static void
4679 bge_intr(void *xsc)
4680 {
4681 	struct bge_softc *sc;
4682 	if_t ifp;
4683 	uint32_t statusword;
4684 	uint16_t rx_prod, tx_cons;
4685 
4686 	sc = xsc;
4687 
4688 	BGE_LOCK(sc);
4689 
4690 	ifp = sc->bge_ifp;
4691 
4692 #ifdef DEVICE_POLLING
4693 	if (if_getcapenable(ifp) & IFCAP_POLLING) {
4694 		BGE_UNLOCK(sc);
4695 		return;
4696 	}
4697 #endif
4698 
4699 	/*
4700 	 * Ack the interrupt by writing something to BGE_MBX_IRQ0_LO.  Don't
4701 	 * disable interrupts by writing nonzero like we used to, since with
4702 	 * our current organization this just gives complications and
4703 	 * pessimizations for re-enabling interrupts.  We used to have races
4704 	 * instead of the necessary complications.  Disabling interrupts
4705 	 * would just reduce the chance of a status update while we are
4706 	 * running (by switching to the interrupt-mode coalescence
4707 	 * parameters), but this chance is already very low so it is more
4708 	 * efficient to get another interrupt than prevent it.
4709 	 *
4710 	 * We do the ack first to ensure another interrupt if there is a
4711 	 * status update after the ack.  We don't check for the status
4712 	 * changing later because it is more efficient to get another
4713 	 * interrupt than prevent it, not quite as above (not checking is
4714 	 * a smaller optimization than not toggling the interrupt enable,
4715 	 * since checking doesn't involve PCI accesses and toggling require
4716 	 * the status check).  So toggling would probably be a pessimization
4717 	 * even with MSI.  It would only be needed for using a task queue.
4718 	 */
4719 	bge_writembx(sc, BGE_MBX_IRQ0_LO, 0);
4720 
4721 	/*
4722 	 * Do the mandatory PCI flush as well as get the link status.
4723 	 */
4724 	statusword = CSR_READ_4(sc, BGE_MAC_STS) & BGE_MACSTAT_LINK_CHANGED;
4725 
4726 	/* Make sure the descriptor ring indexes are coherent. */
4727 	bus_dmamap_sync(sc->bge_cdata.bge_status_tag,
4728 	    sc->bge_cdata.bge_status_map,
4729 	    BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE);
4730 	rx_prod = sc->bge_ldata.bge_status_block->bge_idx[0].bge_rx_prod_idx;
4731 	tx_cons = sc->bge_ldata.bge_status_block->bge_idx[0].bge_tx_cons_idx;
4732 	sc->bge_ldata.bge_status_block->bge_status = 0;
4733 	bus_dmamap_sync(sc->bge_cdata.bge_status_tag,
4734 	    sc->bge_cdata.bge_status_map,
4735 	    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
4736 
4737 	if ((sc->bge_asicrev == BGE_ASICREV_BCM5700 &&
4738 	    sc->bge_chipid != BGE_CHIPID_BCM5700_B2) ||
4739 	    statusword || sc->bge_link_evt)
4740 		bge_link_upd(sc);
4741 
4742 	if (if_getdrvflags(ifp) & IFF_DRV_RUNNING) {
4743 		/* Check RX return ring producer/consumer. */
4744 		bge_rxeof(sc, rx_prod, 1);
4745 	}
4746 
4747 	if (if_getdrvflags(ifp) & IFF_DRV_RUNNING) {
4748 		/* Check TX ring producer/consumer. */
4749 		bge_txeof(sc, tx_cons);
4750 	}
4751 
4752 	if (if_getdrvflags(ifp) & IFF_DRV_RUNNING &&
4753 	    !if_sendq_empty(ifp))
4754 		bge_start_locked(ifp);
4755 
4756 	BGE_UNLOCK(sc);
4757 }
4758 
4759 static void
4760 bge_asf_driver_up(struct bge_softc *sc)
4761 {
4762 	if (sc->bge_asf_mode & ASF_STACKUP) {
4763 		/* Send ASF heartbeat aprox. every 2s */
4764 		if (sc->bge_asf_count)
4765 			sc->bge_asf_count --;
4766 		else {
4767 			sc->bge_asf_count = 2;
4768 			bge_writemem_ind(sc, BGE_SRAM_FW_CMD_MB,
4769 			    BGE_FW_CMD_DRV_ALIVE);
4770 			bge_writemem_ind(sc, BGE_SRAM_FW_CMD_LEN_MB, 4);
4771 			bge_writemem_ind(sc, BGE_SRAM_FW_CMD_DATA_MB,
4772 			    BGE_FW_HB_TIMEOUT_SEC);
4773 			CSR_WRITE_4(sc, BGE_RX_CPU_EVENT,
4774 			    CSR_READ_4(sc, BGE_RX_CPU_EVENT) |
4775 			    BGE_RX_CPU_DRV_EVENT);
4776 		}
4777 	}
4778 }
4779 
4780 static void
4781 bge_tick(void *xsc)
4782 {
4783 	struct bge_softc *sc = xsc;
4784 	struct mii_data *mii = NULL;
4785 
4786 	BGE_LOCK_ASSERT(sc);
4787 
4788 	/* Synchronize with possible callout reset/stop. */
4789 	if (callout_pending(&sc->bge_stat_ch) ||
4790 	    !callout_active(&sc->bge_stat_ch))
4791 		return;
4792 
4793 	if (BGE_IS_5705_PLUS(sc))
4794 		bge_stats_update_regs(sc);
4795 	else
4796 		bge_stats_update(sc);
4797 
4798 	/* XXX Add APE heartbeat check here? */
4799 
4800 	if ((sc->bge_flags & BGE_FLAG_TBI) == 0) {
4801 		mii = device_get_softc(sc->bge_miibus);
4802 		/*
4803 		 * Do not touch PHY if we have link up. This could break
4804 		 * IPMI/ASF mode or produce extra input errors
4805 		 * (extra errors was reported for bcm5701 & bcm5704).
4806 		 */
4807 		if (!sc->bge_link)
4808 			mii_tick(mii);
4809 	} else {
4810 		/*
4811 		 * Since in TBI mode auto-polling can't be used we should poll
4812 		 * link status manually. Here we register pending link event
4813 		 * and trigger interrupt.
4814 		 */
4815 #ifdef DEVICE_POLLING
4816 		/* In polling mode we poll link state in bge_poll(). */
4817 		if (!(if_getcapenable(sc->bge_ifp) & IFCAP_POLLING))
4818 #endif
4819 		{
4820 		sc->bge_link_evt++;
4821 		if (sc->bge_asicrev == BGE_ASICREV_BCM5700 ||
4822 		    sc->bge_flags & BGE_FLAG_5788)
4823 			BGE_SETBIT(sc, BGE_MISC_LOCAL_CTL, BGE_MLC_INTR_SET);
4824 		else
4825 			BGE_SETBIT(sc, BGE_HCC_MODE, BGE_HCCMODE_COAL_NOW);
4826 		}
4827 	}
4828 
4829 	bge_asf_driver_up(sc);
4830 	bge_watchdog(sc);
4831 
4832 	callout_reset(&sc->bge_stat_ch, hz, bge_tick, sc);
4833 }
4834 
4835 static void
4836 bge_stats_update_regs(struct bge_softc *sc)
4837 {
4838 	if_t ifp;
4839 	struct bge_mac_stats *stats;
4840 	uint32_t val;
4841 
4842 	ifp = sc->bge_ifp;
4843 	stats = &sc->bge_mac_stats;
4844 
4845 	stats->ifHCOutOctets +=
4846 	    CSR_READ_4(sc, BGE_TX_MAC_STATS_OCTETS);
4847 	stats->etherStatsCollisions +=
4848 	    CSR_READ_4(sc, BGE_TX_MAC_STATS_COLLS);
4849 	stats->outXonSent +=
4850 	    CSR_READ_4(sc, BGE_TX_MAC_STATS_XON_SENT);
4851 	stats->outXoffSent +=
4852 	    CSR_READ_4(sc, BGE_TX_MAC_STATS_XOFF_SENT);
4853 	stats->dot3StatsInternalMacTransmitErrors +=
4854 	    CSR_READ_4(sc, BGE_TX_MAC_STATS_ERRORS);
4855 	stats->dot3StatsSingleCollisionFrames +=
4856 	    CSR_READ_4(sc, BGE_TX_MAC_STATS_SINGLE_COLL);
4857 	stats->dot3StatsMultipleCollisionFrames +=
4858 	    CSR_READ_4(sc, BGE_TX_MAC_STATS_MULTI_COLL);
4859 	stats->dot3StatsDeferredTransmissions +=
4860 	    CSR_READ_4(sc, BGE_TX_MAC_STATS_DEFERRED);
4861 	stats->dot3StatsExcessiveCollisions +=
4862 	    CSR_READ_4(sc, BGE_TX_MAC_STATS_EXCESS_COLL);
4863 	stats->dot3StatsLateCollisions +=
4864 	    CSR_READ_4(sc, BGE_TX_MAC_STATS_LATE_COLL);
4865 	stats->ifHCOutUcastPkts +=
4866 	    CSR_READ_4(sc, BGE_TX_MAC_STATS_UCAST);
4867 	stats->ifHCOutMulticastPkts +=
4868 	    CSR_READ_4(sc, BGE_TX_MAC_STATS_MCAST);
4869 	stats->ifHCOutBroadcastPkts +=
4870 	    CSR_READ_4(sc, BGE_TX_MAC_STATS_BCAST);
4871 
4872 	stats->ifHCInOctets +=
4873 	    CSR_READ_4(sc, BGE_RX_MAC_STATS_OCTESTS);
4874 	stats->etherStatsFragments +=
4875 	    CSR_READ_4(sc, BGE_RX_MAC_STATS_FRAGMENTS);
4876 	stats->ifHCInUcastPkts +=
4877 	    CSR_READ_4(sc, BGE_RX_MAC_STATS_UCAST);
4878 	stats->ifHCInMulticastPkts +=
4879 	    CSR_READ_4(sc, BGE_RX_MAC_STATS_MCAST);
4880 	stats->ifHCInBroadcastPkts +=
4881 	    CSR_READ_4(sc, BGE_RX_MAC_STATS_BCAST);
4882 	stats->dot3StatsFCSErrors +=
4883 	    CSR_READ_4(sc, BGE_RX_MAC_STATS_FCS_ERRORS);
4884 	stats->dot3StatsAlignmentErrors +=
4885 	    CSR_READ_4(sc, BGE_RX_MAC_STATS_ALGIN_ERRORS);
4886 	stats->xonPauseFramesReceived +=
4887 	    CSR_READ_4(sc, BGE_RX_MAC_STATS_XON_RCVD);
4888 	stats->xoffPauseFramesReceived +=
4889 	    CSR_READ_4(sc, BGE_RX_MAC_STATS_XOFF_RCVD);
4890 	stats->macControlFramesReceived +=
4891 	    CSR_READ_4(sc, BGE_RX_MAC_STATS_CTRL_RCVD);
4892 	stats->xoffStateEntered +=
4893 	    CSR_READ_4(sc, BGE_RX_MAC_STATS_XOFF_ENTERED);
4894 	stats->dot3StatsFramesTooLong +=
4895 	    CSR_READ_4(sc, BGE_RX_MAC_STATS_FRAME_TOO_LONG);
4896 	stats->etherStatsJabbers +=
4897 	    CSR_READ_4(sc, BGE_RX_MAC_STATS_JABBERS);
4898 	stats->etherStatsUndersizePkts +=
4899 	    CSR_READ_4(sc, BGE_RX_MAC_STATS_UNDERSIZE);
4900 
4901 	stats->FramesDroppedDueToFilters +=
4902 	    CSR_READ_4(sc, BGE_RXLP_LOCSTAT_FILTDROP);
4903 	stats->DmaWriteQueueFull +=
4904 	    CSR_READ_4(sc, BGE_RXLP_LOCSTAT_DMA_WRQ_FULL);
4905 	stats->DmaWriteHighPriQueueFull +=
4906 	    CSR_READ_4(sc, BGE_RXLP_LOCSTAT_DMA_HPWRQ_FULL);
4907 	stats->NoMoreRxBDs +=
4908 	    CSR_READ_4(sc, BGE_RXLP_LOCSTAT_OUT_OF_BDS);
4909 	/*
4910 	 * XXX
4911 	 * Unlike other controllers, BGE_RXLP_LOCSTAT_IFIN_DROPS
4912 	 * counter of BCM5717, BCM5718, BCM5719 A0 and BCM5720 A0
4913 	 * includes number of unwanted multicast frames.  This comes
4914 	 * from silicon bug and known workaround to get rough(not
4915 	 * exact) counter is to enable interrupt on MBUF low water
4916 	 * attention.  This can be accomplished by setting
4917 	 * BGE_HCCMODE_ATTN bit of BGE_HCC_MODE,
4918 	 * BGE_BMANMODE_LOMBUF_ATTN bit of BGE_BMAN_MODE and
4919 	 * BGE_MODECTL_FLOWCTL_ATTN_INTR bit of BGE_MODE_CTL.
4920 	 * However that change would generate more interrupts and
4921 	 * there are still possibilities of losing multiple frames
4922 	 * during BGE_MODECTL_FLOWCTL_ATTN_INTR interrupt handling.
4923 	 * Given that the workaround still would not get correct
4924 	 * counter I don't think it's worth to implement it.  So
4925 	 * ignore reading the counter on controllers that have the
4926 	 * silicon bug.
4927 	 */
4928 	if (sc->bge_asicrev != BGE_ASICREV_BCM5717 &&
4929 	    sc->bge_chipid != BGE_CHIPID_BCM5719_A0 &&
4930 	    sc->bge_chipid != BGE_CHIPID_BCM5720_A0)
4931 		stats->InputDiscards +=
4932 		    CSR_READ_4(sc, BGE_RXLP_LOCSTAT_IFIN_DROPS);
4933 	stats->InputErrors +=
4934 	    CSR_READ_4(sc, BGE_RXLP_LOCSTAT_IFIN_ERRORS);
4935 	stats->RecvThresholdHit +=
4936 	    CSR_READ_4(sc, BGE_RXLP_LOCSTAT_RXTHRESH_HIT);
4937 
4938 	if (sc->bge_flags & BGE_FLAG_RDMA_BUG) {
4939 		/*
4940 		 * If controller transmitted more than BGE_NUM_RDMA_CHANNELS
4941 		 * frames, it's safe to disable workaround for DMA engine's
4942 		 * miscalculation of TXMBUF space.
4943 		 */
4944 		if (stats->ifHCOutUcastPkts + stats->ifHCOutMulticastPkts +
4945 		    stats->ifHCOutBroadcastPkts > BGE_NUM_RDMA_CHANNELS) {
4946 			val = CSR_READ_4(sc, BGE_RDMA_LSO_CRPTEN_CTRL);
4947 			if (sc->bge_asicrev == BGE_ASICREV_BCM5719)
4948 				val &= ~BGE_RDMA_TX_LENGTH_WA_5719;
4949 			else
4950 				val &= ~BGE_RDMA_TX_LENGTH_WA_5720;
4951 			CSR_WRITE_4(sc, BGE_RDMA_LSO_CRPTEN_CTRL, val);
4952 			sc->bge_flags &= ~BGE_FLAG_RDMA_BUG;
4953 		}
4954 	}
4955 }
4956 
4957 static void
4958 bge_stats_clear_regs(struct bge_softc *sc)
4959 {
4960 
4961 	CSR_READ_4(sc, BGE_TX_MAC_STATS_OCTETS);
4962 	CSR_READ_4(sc, BGE_TX_MAC_STATS_COLLS);
4963 	CSR_READ_4(sc, BGE_TX_MAC_STATS_XON_SENT);
4964 	CSR_READ_4(sc, BGE_TX_MAC_STATS_XOFF_SENT);
4965 	CSR_READ_4(sc, BGE_TX_MAC_STATS_ERRORS);
4966 	CSR_READ_4(sc, BGE_TX_MAC_STATS_SINGLE_COLL);
4967 	CSR_READ_4(sc, BGE_TX_MAC_STATS_MULTI_COLL);
4968 	CSR_READ_4(sc, BGE_TX_MAC_STATS_DEFERRED);
4969 	CSR_READ_4(sc, BGE_TX_MAC_STATS_EXCESS_COLL);
4970 	CSR_READ_4(sc, BGE_TX_MAC_STATS_LATE_COLL);
4971 	CSR_READ_4(sc, BGE_TX_MAC_STATS_UCAST);
4972 	CSR_READ_4(sc, BGE_TX_MAC_STATS_MCAST);
4973 	CSR_READ_4(sc, BGE_TX_MAC_STATS_BCAST);
4974 
4975 	CSR_READ_4(sc, BGE_RX_MAC_STATS_OCTESTS);
4976 	CSR_READ_4(sc, BGE_RX_MAC_STATS_FRAGMENTS);
4977 	CSR_READ_4(sc, BGE_RX_MAC_STATS_UCAST);
4978 	CSR_READ_4(sc, BGE_RX_MAC_STATS_MCAST);
4979 	CSR_READ_4(sc, BGE_RX_MAC_STATS_BCAST);
4980 	CSR_READ_4(sc, BGE_RX_MAC_STATS_FCS_ERRORS);
4981 	CSR_READ_4(sc, BGE_RX_MAC_STATS_ALGIN_ERRORS);
4982 	CSR_READ_4(sc, BGE_RX_MAC_STATS_XON_RCVD);
4983 	CSR_READ_4(sc, BGE_RX_MAC_STATS_XOFF_RCVD);
4984 	CSR_READ_4(sc, BGE_RX_MAC_STATS_CTRL_RCVD);
4985 	CSR_READ_4(sc, BGE_RX_MAC_STATS_XOFF_ENTERED);
4986 	CSR_READ_4(sc, BGE_RX_MAC_STATS_FRAME_TOO_LONG);
4987 	CSR_READ_4(sc, BGE_RX_MAC_STATS_JABBERS);
4988 	CSR_READ_4(sc, BGE_RX_MAC_STATS_UNDERSIZE);
4989 
4990 	CSR_READ_4(sc, BGE_RXLP_LOCSTAT_FILTDROP);
4991 	CSR_READ_4(sc, BGE_RXLP_LOCSTAT_DMA_WRQ_FULL);
4992 	CSR_READ_4(sc, BGE_RXLP_LOCSTAT_DMA_HPWRQ_FULL);
4993 	CSR_READ_4(sc, BGE_RXLP_LOCSTAT_OUT_OF_BDS);
4994 	CSR_READ_4(sc, BGE_RXLP_LOCSTAT_IFIN_DROPS);
4995 	CSR_READ_4(sc, BGE_RXLP_LOCSTAT_IFIN_ERRORS);
4996 	CSR_READ_4(sc, BGE_RXLP_LOCSTAT_RXTHRESH_HIT);
4997 }
4998 
4999 static void
5000 bge_stats_update(struct bge_softc *sc)
5001 {
5002 	if_t ifp;
5003 	bus_size_t stats;
5004 	uint32_t cnt;	/* current register value */
5005 
5006 	ifp = sc->bge_ifp;
5007 
5008 	stats = BGE_MEMWIN_START + BGE_STATS_BLOCK;
5009 
5010 #define	READ_STAT(sc, stats, stat) \
5011 	CSR_READ_4(sc, stats + offsetof(struct bge_stats, stat))
5012 
5013 	cnt = READ_STAT(sc, stats, txstats.etherStatsCollisions.bge_addr_lo);
5014 	if_inc_counter(ifp, IFCOUNTER_COLLISIONS, cnt - sc->bge_tx_collisions);
5015 	sc->bge_tx_collisions = cnt;
5016 
5017 	cnt = READ_STAT(sc, stats, nicNoMoreRxBDs.bge_addr_lo);
5018 	if_inc_counter(ifp, IFCOUNTER_IERRORS, cnt - sc->bge_rx_nobds);
5019 	sc->bge_rx_nobds = cnt;
5020 	cnt = READ_STAT(sc, stats, ifInErrors.bge_addr_lo);
5021 	if_inc_counter(ifp, IFCOUNTER_IERRORS, cnt - sc->bge_rx_inerrs);
5022 	sc->bge_rx_inerrs = cnt;
5023 	cnt = READ_STAT(sc, stats, ifInDiscards.bge_addr_lo);
5024 	if_inc_counter(ifp, IFCOUNTER_IERRORS, cnt - sc->bge_rx_discards);
5025 	sc->bge_rx_discards = cnt;
5026 
5027 	cnt = READ_STAT(sc, stats, txstats.ifOutDiscards.bge_addr_lo);
5028 	if_inc_counter(ifp, IFCOUNTER_OERRORS, cnt - sc->bge_tx_discards);
5029 	sc->bge_tx_discards = cnt;
5030 
5031 #undef	READ_STAT
5032 }
5033 
5034 /*
5035  * Pad outbound frame to ETHER_MIN_NOPAD for an unusual reason.
5036  * The bge hardware will pad out Tx runts to ETHER_MIN_NOPAD,
5037  * but when such padded frames employ the bge IP/TCP checksum offload,
5038  * the hardware checksum assist gives incorrect results (possibly
5039  * from incorporating its own padding into the UDP/TCP checksum; who knows).
5040  * If we pad such runts with zeros, the onboard checksum comes out correct.
5041  */
5042 static __inline int
5043 bge_cksum_pad(struct mbuf *m)
5044 {
5045 	int padlen = ETHER_MIN_NOPAD - m->m_pkthdr.len;
5046 	struct mbuf *last;
5047 
5048 	/* If there's only the packet-header and we can pad there, use it. */
5049 	if (m->m_pkthdr.len == m->m_len && M_WRITABLE(m) &&
5050 	    M_TRAILINGSPACE(m) >= padlen) {
5051 		last = m;
5052 	} else {
5053 		/*
5054 		 * Walk packet chain to find last mbuf. We will either
5055 		 * pad there, or append a new mbuf and pad it.
5056 		 */
5057 		for (last = m; last->m_next != NULL; last = last->m_next);
5058 		if (!(M_WRITABLE(last) && M_TRAILINGSPACE(last) >= padlen)) {
5059 			/* Allocate new empty mbuf, pad it. Compact later. */
5060 			struct mbuf *n;
5061 
5062 			MGET(n, M_NOWAIT, MT_DATA);
5063 			if (n == NULL)
5064 				return (ENOBUFS);
5065 			n->m_len = 0;
5066 			last->m_next = n;
5067 			last = n;
5068 		}
5069 	}
5070 
5071 	/* Now zero the pad area, to avoid the bge cksum-assist bug. */
5072 	memset(mtod(last, caddr_t) + last->m_len, 0, padlen);
5073 	last->m_len += padlen;
5074 	m->m_pkthdr.len += padlen;
5075 
5076 	return (0);
5077 }
5078 
5079 static struct mbuf *
5080 bge_check_short_dma(struct mbuf *m)
5081 {
5082 	struct mbuf *n;
5083 	int found;
5084 
5085 	/*
5086 	 * If device receive two back-to-back send BDs with less than
5087 	 * or equal to 8 total bytes then the device may hang.  The two
5088 	 * back-to-back send BDs must in the same frame for this failure
5089 	 * to occur.  Scan mbuf chains and see whether two back-to-back
5090 	 * send BDs are there. If this is the case, allocate new mbuf
5091 	 * and copy the frame to workaround the silicon bug.
5092 	 */
5093 	for (n = m, found = 0; n != NULL; n = n->m_next) {
5094 		if (n->m_len < 8) {
5095 			found++;
5096 			if (found > 1)
5097 				break;
5098 			continue;
5099 		}
5100 		found = 0;
5101 	}
5102 
5103 	if (found > 1) {
5104 		n = m_defrag(m, M_NOWAIT);
5105 		if (n == NULL)
5106 			m_freem(m);
5107 	} else
5108 		n = m;
5109 	return (n);
5110 }
5111 
5112 static struct mbuf *
5113 bge_setup_tso(struct bge_softc *sc, struct mbuf *m, uint16_t *mss,
5114     uint16_t *flags)
5115 {
5116 	struct ip *ip;
5117 	struct tcphdr *tcp;
5118 	struct mbuf *n;
5119 	uint16_t hlen;
5120 	uint32_t poff;
5121 
5122 	if (M_WRITABLE(m) == 0) {
5123 		/* Get a writable copy. */
5124 		n = m_dup(m, M_NOWAIT);
5125 		m_freem(m);
5126 		if (n == NULL)
5127 			return (NULL);
5128 		m = n;
5129 	}
5130 	m = m_pullup(m, sizeof(struct ether_header) + sizeof(struct ip));
5131 	if (m == NULL)
5132 		return (NULL);
5133 	ip = (struct ip *)(mtod(m, char *) + sizeof(struct ether_header));
5134 	poff = sizeof(struct ether_header) + (ip->ip_hl << 2);
5135 	m = m_pullup(m, poff + sizeof(struct tcphdr));
5136 	if (m == NULL)
5137 		return (NULL);
5138 	tcp = (struct tcphdr *)(mtod(m, char *) + poff);
5139 	m = m_pullup(m, poff + (tcp->th_off << 2));
5140 	if (m == NULL)
5141 		return (NULL);
5142 	/*
5143 	 * It seems controller doesn't modify IP length and TCP pseudo
5144 	 * checksum. These checksum computed by upper stack should be 0.
5145 	 */
5146 	*mss = m->m_pkthdr.tso_segsz;
5147 	ip = (struct ip *)(mtod(m, char *) + sizeof(struct ether_header));
5148 	ip->ip_sum = 0;
5149 	ip->ip_len = htons(*mss + (ip->ip_hl << 2) + (tcp->th_off << 2));
5150 	/* Clear pseudo checksum computed by TCP stack. */
5151 	tcp = (struct tcphdr *)(mtod(m, char *) + poff);
5152 	tcp->th_sum = 0;
5153 	/*
5154 	 * Broadcom controllers uses different descriptor format for
5155 	 * TSO depending on ASIC revision. Due to TSO-capable firmware
5156 	 * license issue and lower performance of firmware based TSO
5157 	 * we only support hardware based TSO.
5158 	 */
5159 	/* Calculate header length, incl. TCP/IP options, in 32 bit units. */
5160 	hlen = ((ip->ip_hl << 2) + (tcp->th_off << 2)) >> 2;
5161 	if (sc->bge_flags & BGE_FLAG_TSO3) {
5162 		/*
5163 		 * For BCM5717 and newer controllers, hardware based TSO
5164 		 * uses the 14 lower bits of the bge_mss field to store the
5165 		 * MSS and the upper 2 bits to store the lowest 2 bits of
5166 		 * the IP/TCP header length.  The upper 6 bits of the header
5167 		 * length are stored in the bge_flags[14:10,4] field.  Jumbo
5168 		 * frames are supported.
5169 		 */
5170 		*mss |= ((hlen & 0x3) << 14);
5171 		*flags |= ((hlen & 0xF8) << 7) | ((hlen & 0x4) << 2);
5172 	} else {
5173 		/*
5174 		 * For BCM5755 and newer controllers, hardware based TSO uses
5175 		 * the lower 11	bits to store the MSS and the upper 5 bits to
5176 		 * store the IP/TCP header length. Jumbo frames are not
5177 		 * supported.
5178 		 */
5179 		*mss |= (hlen << 11);
5180 	}
5181 	return (m);
5182 }
5183 
5184 /*
5185  * Encapsulate an mbuf chain in the tx ring  by coupling the mbuf data
5186  * pointers to descriptors.
5187  */
5188 static int
5189 bge_encap(struct bge_softc *sc, struct mbuf **m_head, uint32_t *txidx)
5190 {
5191 	bus_dma_segment_t	segs[BGE_NSEG_NEW];
5192 	bus_dmamap_t		map;
5193 	struct bge_tx_bd	*d;
5194 	struct mbuf		*m = *m_head;
5195 	uint32_t		idx = *txidx;
5196 	uint16_t		csum_flags, mss, vlan_tag;
5197 	int			nsegs, i, error;
5198 
5199 	csum_flags = 0;
5200 	mss = 0;
5201 	vlan_tag = 0;
5202 	if ((sc->bge_flags & BGE_FLAG_SHORT_DMA_BUG) != 0 &&
5203 	    m->m_next != NULL) {
5204 		*m_head = bge_check_short_dma(m);
5205 		if (*m_head == NULL)
5206 			return (ENOBUFS);
5207 		m = *m_head;
5208 	}
5209 	if ((m->m_pkthdr.csum_flags & CSUM_TSO) != 0) {
5210 		*m_head = m = bge_setup_tso(sc, m, &mss, &csum_flags);
5211 		if (*m_head == NULL)
5212 			return (ENOBUFS);
5213 		csum_flags |= BGE_TXBDFLAG_CPU_PRE_DMA |
5214 		    BGE_TXBDFLAG_CPU_POST_DMA;
5215 	} else if ((m->m_pkthdr.csum_flags & sc->bge_csum_features) != 0) {
5216 		if (m->m_pkthdr.csum_flags & CSUM_IP)
5217 			csum_flags |= BGE_TXBDFLAG_IP_CSUM;
5218 		if (m->m_pkthdr.csum_flags & (CSUM_TCP | CSUM_UDP)) {
5219 			csum_flags |= BGE_TXBDFLAG_TCP_UDP_CSUM;
5220 			if (m->m_pkthdr.len < ETHER_MIN_NOPAD &&
5221 			    (error = bge_cksum_pad(m)) != 0) {
5222 				m_freem(m);
5223 				*m_head = NULL;
5224 				return (error);
5225 			}
5226 		}
5227 	}
5228 
5229 	if ((m->m_pkthdr.csum_flags & CSUM_TSO) == 0) {
5230 		if (sc->bge_flags & BGE_FLAG_JUMBO_FRAME &&
5231 		    m->m_pkthdr.len > ETHER_MAX_LEN)
5232 			csum_flags |= BGE_TXBDFLAG_JUMBO_FRAME;
5233 		if (sc->bge_forced_collapse > 0 &&
5234 		    (sc->bge_flags & BGE_FLAG_PCIE) != 0 && m->m_next != NULL) {
5235 			/*
5236 			 * Forcedly collapse mbuf chains to overcome hardware
5237 			 * limitation which only support a single outstanding
5238 			 * DMA read operation.
5239 			 */
5240 			if (sc->bge_forced_collapse == 1)
5241 				m = m_defrag(m, M_NOWAIT);
5242 			else
5243 				m = m_collapse(m, M_NOWAIT,
5244 				    sc->bge_forced_collapse);
5245 			if (m == NULL)
5246 				m = *m_head;
5247 			*m_head = m;
5248 		}
5249 	}
5250 
5251 	map = sc->bge_cdata.bge_tx_dmamap[idx];
5252 	error = bus_dmamap_load_mbuf_sg(sc->bge_cdata.bge_tx_mtag, map, m, segs,
5253 	    &nsegs, BUS_DMA_NOWAIT);
5254 	if (error == EFBIG) {
5255 		m = m_collapse(m, M_NOWAIT, BGE_NSEG_NEW);
5256 		if (m == NULL) {
5257 			m_freem(*m_head);
5258 			*m_head = NULL;
5259 			return (ENOBUFS);
5260 		}
5261 		*m_head = m;
5262 		error = bus_dmamap_load_mbuf_sg(sc->bge_cdata.bge_tx_mtag, map,
5263 		    m, segs, &nsegs, BUS_DMA_NOWAIT);
5264 		if (error) {
5265 			m_freem(m);
5266 			*m_head = NULL;
5267 			return (error);
5268 		}
5269 	} else if (error != 0)
5270 		return (error);
5271 
5272 	/* Check if we have enough free send BDs. */
5273 	if (sc->bge_txcnt + nsegs >= BGE_TX_RING_CNT) {
5274 		bus_dmamap_unload(sc->bge_cdata.bge_tx_mtag, map);
5275 		return (ENOBUFS);
5276 	}
5277 
5278 	bus_dmamap_sync(sc->bge_cdata.bge_tx_mtag, map, BUS_DMASYNC_PREWRITE);
5279 
5280 	if (m->m_flags & M_VLANTAG) {
5281 		csum_flags |= BGE_TXBDFLAG_VLAN_TAG;
5282 		vlan_tag = m->m_pkthdr.ether_vtag;
5283 	}
5284 
5285 	if (sc->bge_asicrev == BGE_ASICREV_BCM5762 &&
5286 	    (m->m_pkthdr.csum_flags & CSUM_TSO) != 0) {
5287 		/*
5288 		 * 5725 family of devices corrupts TSO packets when TSO DMA
5289 		 * buffers cross into regions which are within MSS bytes of
5290 		 * a 4GB boundary.  If we encounter the condition, drop the
5291 		 * packet.
5292 		 */
5293 		for (i = 0; ; i++) {
5294 			d = &sc->bge_ldata.bge_tx_ring[idx];
5295 			d->bge_addr.bge_addr_lo = BGE_ADDR_LO(segs[i].ds_addr);
5296 			d->bge_addr.bge_addr_hi = BGE_ADDR_HI(segs[i].ds_addr);
5297 			d->bge_len = segs[i].ds_len;
5298 			if (d->bge_addr.bge_addr_lo + segs[i].ds_len + mss <
5299 			    d->bge_addr.bge_addr_lo)
5300 				break;
5301 			d->bge_flags = csum_flags;
5302 			d->bge_vlan_tag = vlan_tag;
5303 			d->bge_mss = mss;
5304 			if (i == nsegs - 1)
5305 				break;
5306 			BGE_INC(idx, BGE_TX_RING_CNT);
5307 		}
5308 		if (i != nsegs - 1) {
5309 			bus_dmamap_sync(sc->bge_cdata.bge_tx_mtag, map,
5310 			    BUS_DMASYNC_POSTWRITE);
5311 			bus_dmamap_unload(sc->bge_cdata.bge_tx_mtag, map);
5312 			m_freem(*m_head);
5313 			*m_head = NULL;
5314 			return (EIO);
5315 		}
5316 	} else {
5317 		for (i = 0; ; i++) {
5318 			d = &sc->bge_ldata.bge_tx_ring[idx];
5319 			d->bge_addr.bge_addr_lo = BGE_ADDR_LO(segs[i].ds_addr);
5320 			d->bge_addr.bge_addr_hi = BGE_ADDR_HI(segs[i].ds_addr);
5321 			d->bge_len = segs[i].ds_len;
5322 			d->bge_flags = csum_flags;
5323 			d->bge_vlan_tag = vlan_tag;
5324 			d->bge_mss = mss;
5325 			if (i == nsegs - 1)
5326 				break;
5327 			BGE_INC(idx, BGE_TX_RING_CNT);
5328 		}
5329 	}
5330 
5331 	/* Mark the last segment as end of packet... */
5332 	d->bge_flags |= BGE_TXBDFLAG_END;
5333 
5334 	/*
5335 	 * Insure that the map for this transmission
5336 	 * is placed at the array index of the last descriptor
5337 	 * in this chain.
5338 	 */
5339 	sc->bge_cdata.bge_tx_dmamap[*txidx] = sc->bge_cdata.bge_tx_dmamap[idx];
5340 	sc->bge_cdata.bge_tx_dmamap[idx] = map;
5341 	sc->bge_cdata.bge_tx_chain[idx] = m;
5342 	sc->bge_txcnt += nsegs;
5343 
5344 	BGE_INC(idx, BGE_TX_RING_CNT);
5345 	*txidx = idx;
5346 
5347 	return (0);
5348 }
5349 
5350 /*
5351  * Main transmit routine. To avoid having to do mbuf copies, we put pointers
5352  * to the mbuf data regions directly in the transmit descriptors.
5353  */
5354 static void
5355 bge_start_locked(if_t ifp)
5356 {
5357 	struct bge_softc *sc;
5358 	struct mbuf *m_head;
5359 	uint32_t prodidx;
5360 	int count;
5361 
5362 	sc = if_getsoftc(ifp);
5363 	BGE_LOCK_ASSERT(sc);
5364 
5365 	if (!sc->bge_link ||
5366 	    (if_getdrvflags(ifp) & (IFF_DRV_RUNNING | IFF_DRV_OACTIVE)) !=
5367 	    IFF_DRV_RUNNING)
5368 		return;
5369 
5370 	prodidx = sc->bge_tx_prodidx;
5371 
5372 	for (count = 0; !if_sendq_empty(ifp);) {
5373 		if (sc->bge_txcnt > BGE_TX_RING_CNT - 16) {
5374 			if_setdrvflagbits(ifp, IFF_DRV_OACTIVE, 0);
5375 			break;
5376 		}
5377 		m_head = if_dequeue(ifp);
5378 		if (m_head == NULL)
5379 			break;
5380 
5381 		/*
5382 		 * Pack the data into the transmit ring. If we
5383 		 * don't have room, set the OACTIVE flag and wait
5384 		 * for the NIC to drain the ring.
5385 		 */
5386 		if (bge_encap(sc, &m_head, &prodidx)) {
5387 			if (m_head == NULL)
5388 				break;
5389 			if_sendq_prepend(ifp, m_head);
5390 			if_setdrvflagbits(ifp, IFF_DRV_OACTIVE, 0);
5391 			break;
5392 		}
5393 		++count;
5394 
5395 		/*
5396 		 * If there's a BPF listener, bounce a copy of this frame
5397 		 * to him.
5398 		 */
5399 		if_bpfmtap(ifp, m_head);
5400 	}
5401 
5402 	if (count > 0)
5403 		bge_start_tx(sc, prodidx);
5404 }
5405 
5406 static void
5407 bge_start_tx(struct bge_softc *sc, uint32_t prodidx)
5408 {
5409 
5410 	bus_dmamap_sync(sc->bge_cdata.bge_tx_ring_tag,
5411 	    sc->bge_cdata.bge_tx_ring_map, BUS_DMASYNC_PREWRITE);
5412 	/* Transmit. */
5413 	bge_writembx(sc, BGE_MBX_TX_HOST_PROD0_LO, prodidx);
5414 	/* 5700 b2 errata */
5415 	if (sc->bge_chiprev == BGE_CHIPREV_5700_BX)
5416 		bge_writembx(sc, BGE_MBX_TX_HOST_PROD0_LO, prodidx);
5417 
5418 	sc->bge_tx_prodidx = prodidx;
5419 
5420 	/* Set a timeout in case the chip goes out to lunch. */
5421 	sc->bge_timer = BGE_TX_TIMEOUT;
5422 }
5423 
5424 /*
5425  * Main transmit routine. To avoid having to do mbuf copies, we put pointers
5426  * to the mbuf data regions directly in the transmit descriptors.
5427  */
5428 static void
5429 bge_start(if_t ifp)
5430 {
5431 	struct bge_softc *sc;
5432 
5433 	sc = if_getsoftc(ifp);
5434 	BGE_LOCK(sc);
5435 	bge_start_locked(ifp);
5436 	BGE_UNLOCK(sc);
5437 }
5438 
5439 static void
5440 bge_init_locked(struct bge_softc *sc)
5441 {
5442 	if_t ifp;
5443 	uint16_t *m;
5444 	uint32_t mode;
5445 
5446 	BGE_LOCK_ASSERT(sc);
5447 
5448 	ifp = sc->bge_ifp;
5449 
5450 	if (if_getdrvflags(ifp) & IFF_DRV_RUNNING)
5451 		return;
5452 
5453 	/* Cancel pending I/O and flush buffers. */
5454 	bge_stop(sc);
5455 
5456 	bge_stop_fw(sc);
5457 	bge_sig_pre_reset(sc, BGE_RESET_START);
5458 	bge_reset(sc);
5459 	bge_sig_legacy(sc, BGE_RESET_START);
5460 	bge_sig_post_reset(sc, BGE_RESET_START);
5461 
5462 	bge_chipinit(sc);
5463 
5464 	/*
5465 	 * Init the various state machines, ring
5466 	 * control blocks and firmware.
5467 	 */
5468 	if (bge_blockinit(sc)) {
5469 		device_printf(sc->bge_dev, "initialization failure\n");
5470 		return;
5471 	}
5472 
5473 	ifp = sc->bge_ifp;
5474 
5475 	/* Specify MTU. */
5476 	CSR_WRITE_4(sc, BGE_RX_MTU, if_getmtu(ifp) +
5477 	    ETHER_HDR_LEN + ETHER_CRC_LEN +
5478 	    (if_getcapenable(ifp) & IFCAP_VLAN_MTU ? ETHER_VLAN_ENCAP_LEN : 0));
5479 
5480 	/* Load our MAC address. */
5481 	m = (uint16_t *)IF_LLADDR(sc->bge_ifp);
5482 	CSR_WRITE_4(sc, BGE_MAC_ADDR1_LO, htons(m[0]));
5483 	CSR_WRITE_4(sc, BGE_MAC_ADDR1_HI, (htons(m[1]) << 16) | htons(m[2]));
5484 
5485 	/* Program promiscuous mode. */
5486 	bge_setpromisc(sc);
5487 
5488 	/* Program multicast filter. */
5489 	bge_setmulti(sc);
5490 
5491 	/* Program VLAN tag stripping. */
5492 	bge_setvlan(sc);
5493 
5494 	/* Override UDP checksum offloading. */
5495 	if (sc->bge_forced_udpcsum == 0)
5496 		sc->bge_csum_features &= ~CSUM_UDP;
5497 	else
5498 		sc->bge_csum_features |= CSUM_UDP;
5499 	if (if_getcapabilities(ifp) & IFCAP_TXCSUM &&
5500 	    if_getcapenable(ifp) & IFCAP_TXCSUM) {
5501 		if_sethwassistbits(ifp, 0, (BGE_CSUM_FEATURES | CSUM_UDP));
5502 		if_sethwassistbits(ifp, sc->bge_csum_features, 0);
5503 	}
5504 
5505 	/* Init RX ring. */
5506 	if (bge_init_rx_ring_std(sc) != 0) {
5507 		device_printf(sc->bge_dev, "no memory for std Rx buffers.\n");
5508 		bge_stop(sc);
5509 		return;
5510 	}
5511 
5512 	/*
5513 	 * Workaround for a bug in 5705 ASIC rev A0. Poll the NIC's
5514 	 * memory to insure that the chip has in fact read the first
5515 	 * entry of the ring.
5516 	 */
5517 	if (sc->bge_chipid == BGE_CHIPID_BCM5705_A0) {
5518 		uint32_t		v, i;
5519 		for (i = 0; i < 10; i++) {
5520 			DELAY(20);
5521 			v = bge_readmem_ind(sc, BGE_STD_RX_RINGS + 8);
5522 			if (v == (MCLBYTES - ETHER_ALIGN))
5523 				break;
5524 		}
5525 		if (i == 10)
5526 			device_printf (sc->bge_dev,
5527 			    "5705 A0 chip failed to load RX ring\n");
5528 	}
5529 
5530 	/* Init jumbo RX ring. */
5531 	if (BGE_IS_JUMBO_CAPABLE(sc) &&
5532 	    if_getmtu(ifp) + ETHER_HDR_LEN + ETHER_CRC_LEN +
5533      	    ETHER_VLAN_ENCAP_LEN > (MCLBYTES - ETHER_ALIGN)) {
5534 		if (bge_init_rx_ring_jumbo(sc) != 0) {
5535 			device_printf(sc->bge_dev,
5536 			    "no memory for jumbo Rx buffers.\n");
5537 			bge_stop(sc);
5538 			return;
5539 		}
5540 	}
5541 
5542 	/* Init our RX return ring index. */
5543 	sc->bge_rx_saved_considx = 0;
5544 
5545 	/* Init our RX/TX stat counters. */
5546 	sc->bge_rx_discards = sc->bge_tx_discards = sc->bge_tx_collisions = 0;
5547 
5548 	/* Init TX ring. */
5549 	bge_init_tx_ring(sc);
5550 
5551 	/* Enable TX MAC state machine lockup fix. */
5552 	mode = CSR_READ_4(sc, BGE_TX_MODE);
5553 	if (BGE_IS_5755_PLUS(sc) || sc->bge_asicrev == BGE_ASICREV_BCM5906)
5554 		mode |= BGE_TXMODE_MBUF_LOCKUP_FIX;
5555 	if (sc->bge_asicrev == BGE_ASICREV_BCM5720 ||
5556 	    sc->bge_asicrev == BGE_ASICREV_BCM5762) {
5557 		mode &= ~(BGE_TXMODE_JMB_FRM_LEN | BGE_TXMODE_CNT_DN_MODE);
5558 		mode |= CSR_READ_4(sc, BGE_TX_MODE) &
5559 		    (BGE_TXMODE_JMB_FRM_LEN | BGE_TXMODE_CNT_DN_MODE);
5560 	}
5561 	/* Turn on transmitter. */
5562 	CSR_WRITE_4(sc, BGE_TX_MODE, mode | BGE_TXMODE_ENABLE);
5563 	DELAY(100);
5564 
5565 	/* Turn on receiver. */
5566 	mode = CSR_READ_4(sc, BGE_RX_MODE);
5567 	if (BGE_IS_5755_PLUS(sc))
5568 		mode |= BGE_RXMODE_IPV6_ENABLE;
5569 	if (sc->bge_asicrev == BGE_ASICREV_BCM5762)
5570 		mode |= BGE_RXMODE_IPV4_FRAG_FIX;
5571 	CSR_WRITE_4(sc,BGE_RX_MODE, mode | BGE_RXMODE_ENABLE);
5572 	DELAY(10);
5573 
5574 	/*
5575 	 * Set the number of good frames to receive after RX MBUF
5576 	 * Low Watermark has been reached. After the RX MAC receives
5577 	 * this number of frames, it will drop subsequent incoming
5578 	 * frames until the MBUF High Watermark is reached.
5579 	 */
5580 	if (BGE_IS_57765_PLUS(sc))
5581 		CSR_WRITE_4(sc, BGE_MAX_RX_FRAME_LOWAT, 1);
5582 	else
5583 		CSR_WRITE_4(sc, BGE_MAX_RX_FRAME_LOWAT, 2);
5584 
5585 	/* Clear MAC statistics. */
5586 	if (BGE_IS_5705_PLUS(sc))
5587 		bge_stats_clear_regs(sc);
5588 
5589 	/* Tell firmware we're alive. */
5590 	BGE_SETBIT(sc, BGE_MODE_CTL, BGE_MODECTL_STACKUP);
5591 
5592 #ifdef DEVICE_POLLING
5593 	/* Disable interrupts if we are polling. */
5594 	if (if_getcapenable(ifp) & IFCAP_POLLING) {
5595 		BGE_SETBIT(sc, BGE_PCI_MISC_CTL,
5596 		    BGE_PCIMISCCTL_MASK_PCI_INTR);
5597 		bge_writembx(sc, BGE_MBX_IRQ0_LO, 1);
5598 	} else
5599 #endif
5600 
5601 	/* Enable host interrupts. */
5602 	{
5603 	BGE_SETBIT(sc, BGE_PCI_MISC_CTL, BGE_PCIMISCCTL_CLEAR_INTA);
5604 	BGE_CLRBIT(sc, BGE_PCI_MISC_CTL, BGE_PCIMISCCTL_MASK_PCI_INTR);
5605 	bge_writembx(sc, BGE_MBX_IRQ0_LO, 0);
5606 	}
5607 
5608 	if_setdrvflagbits(ifp, IFF_DRV_RUNNING, 0);
5609 	if_setdrvflagbits(ifp, 0, IFF_DRV_OACTIVE);
5610 
5611 	bge_ifmedia_upd_locked(ifp);
5612 
5613 	callout_reset(&sc->bge_stat_ch, hz, bge_tick, sc);
5614 }
5615 
5616 static void
5617 bge_init(void *xsc)
5618 {
5619 	struct bge_softc *sc = xsc;
5620 
5621 	BGE_LOCK(sc);
5622 	bge_init_locked(sc);
5623 	BGE_UNLOCK(sc);
5624 }
5625 
5626 /*
5627  * Set media options.
5628  */
5629 static int
5630 bge_ifmedia_upd(if_t ifp)
5631 {
5632 	struct bge_softc *sc = if_getsoftc(ifp);
5633 	int res;
5634 
5635 	BGE_LOCK(sc);
5636 	res = bge_ifmedia_upd_locked(ifp);
5637 	BGE_UNLOCK(sc);
5638 
5639 	return (res);
5640 }
5641 
5642 static int
5643 bge_ifmedia_upd_locked(if_t ifp)
5644 {
5645 	struct bge_softc *sc = if_getsoftc(ifp);
5646 	struct mii_data *mii;
5647 	struct mii_softc *miisc;
5648 	struct ifmedia *ifm;
5649 
5650 	BGE_LOCK_ASSERT(sc);
5651 
5652 	ifm = &sc->bge_ifmedia;
5653 
5654 	/* If this is a 1000baseX NIC, enable the TBI port. */
5655 	if (sc->bge_flags & BGE_FLAG_TBI) {
5656 		if (IFM_TYPE(ifm->ifm_media) != IFM_ETHER)
5657 			return (EINVAL);
5658 		switch(IFM_SUBTYPE(ifm->ifm_media)) {
5659 		case IFM_AUTO:
5660 			/*
5661 			 * The BCM5704 ASIC appears to have a special
5662 			 * mechanism for programming the autoneg
5663 			 * advertisement registers in TBI mode.
5664 			 */
5665 			if (sc->bge_asicrev == BGE_ASICREV_BCM5704) {
5666 				uint32_t sgdig;
5667 				sgdig = CSR_READ_4(sc, BGE_SGDIG_STS);
5668 				if (sgdig & BGE_SGDIGSTS_DONE) {
5669 					CSR_WRITE_4(sc, BGE_TX_TBI_AUTONEG, 0);
5670 					sgdig = CSR_READ_4(sc, BGE_SGDIG_CFG);
5671 					sgdig |= BGE_SGDIGCFG_AUTO |
5672 					    BGE_SGDIGCFG_PAUSE_CAP |
5673 					    BGE_SGDIGCFG_ASYM_PAUSE;
5674 					CSR_WRITE_4(sc, BGE_SGDIG_CFG,
5675 					    sgdig | BGE_SGDIGCFG_SEND);
5676 					DELAY(5);
5677 					CSR_WRITE_4(sc, BGE_SGDIG_CFG, sgdig);
5678 				}
5679 			}
5680 			break;
5681 		case IFM_1000_SX:
5682 			if ((ifm->ifm_media & IFM_GMASK) == IFM_FDX) {
5683 				BGE_CLRBIT(sc, BGE_MAC_MODE,
5684 				    BGE_MACMODE_HALF_DUPLEX);
5685 			} else {
5686 				BGE_SETBIT(sc, BGE_MAC_MODE,
5687 				    BGE_MACMODE_HALF_DUPLEX);
5688 			}
5689 			DELAY(40);
5690 			break;
5691 		default:
5692 			return (EINVAL);
5693 		}
5694 		return (0);
5695 	}
5696 
5697 	sc->bge_link_evt++;
5698 	mii = device_get_softc(sc->bge_miibus);
5699 	LIST_FOREACH(miisc, &mii->mii_phys, mii_list)
5700 		PHY_RESET(miisc);
5701 	mii_mediachg(mii);
5702 
5703 	/*
5704 	 * Force an interrupt so that we will call bge_link_upd
5705 	 * if needed and clear any pending link state attention.
5706 	 * Without this we are not getting any further interrupts
5707 	 * for link state changes and thus will not UP the link and
5708 	 * not be able to send in bge_start_locked. The only
5709 	 * way to get things working was to receive a packet and
5710 	 * get an RX intr.
5711 	 * bge_tick should help for fiber cards and we might not
5712 	 * need to do this here if BGE_FLAG_TBI is set but as
5713 	 * we poll for fiber anyway it should not harm.
5714 	 */
5715 	if (sc->bge_asicrev == BGE_ASICREV_BCM5700 ||
5716 	    sc->bge_flags & BGE_FLAG_5788)
5717 		BGE_SETBIT(sc, BGE_MISC_LOCAL_CTL, BGE_MLC_INTR_SET);
5718 	else
5719 		BGE_SETBIT(sc, BGE_HCC_MODE, BGE_HCCMODE_COAL_NOW);
5720 
5721 	return (0);
5722 }
5723 
5724 /*
5725  * Report current media status.
5726  */
5727 static void
5728 bge_ifmedia_sts(if_t ifp, struct ifmediareq *ifmr)
5729 {
5730 	struct bge_softc *sc = if_getsoftc(ifp);
5731 	struct mii_data *mii;
5732 
5733 	BGE_LOCK(sc);
5734 
5735 	if ((if_getflags(ifp) & IFF_UP) == 0) {
5736 		BGE_UNLOCK(sc);
5737 		return;
5738 	}
5739 	if (sc->bge_flags & BGE_FLAG_TBI) {
5740 		ifmr->ifm_status = IFM_AVALID;
5741 		ifmr->ifm_active = IFM_ETHER;
5742 		if (CSR_READ_4(sc, BGE_MAC_STS) &
5743 		    BGE_MACSTAT_TBI_PCS_SYNCHED)
5744 			ifmr->ifm_status |= IFM_ACTIVE;
5745 		else {
5746 			ifmr->ifm_active |= IFM_NONE;
5747 			BGE_UNLOCK(sc);
5748 			return;
5749 		}
5750 		ifmr->ifm_active |= IFM_1000_SX;
5751 		if (CSR_READ_4(sc, BGE_MAC_MODE) & BGE_MACMODE_HALF_DUPLEX)
5752 			ifmr->ifm_active |= IFM_HDX;
5753 		else
5754 			ifmr->ifm_active |= IFM_FDX;
5755 		BGE_UNLOCK(sc);
5756 		return;
5757 	}
5758 
5759 	mii = device_get_softc(sc->bge_miibus);
5760 	mii_pollstat(mii);
5761 	ifmr->ifm_active = mii->mii_media_active;
5762 	ifmr->ifm_status = mii->mii_media_status;
5763 
5764 	BGE_UNLOCK(sc);
5765 }
5766 
5767 static int
5768 bge_ioctl(if_t ifp, u_long command, caddr_t data)
5769 {
5770 	struct bge_softc *sc = if_getsoftc(ifp);
5771 	struct ifreq *ifr = (struct ifreq *) data;
5772 	struct mii_data *mii;
5773 	int flags, mask, error = 0;
5774 
5775 	switch (command) {
5776 	case SIOCSIFMTU:
5777 		if (BGE_IS_JUMBO_CAPABLE(sc) ||
5778 		    (sc->bge_flags & BGE_FLAG_JUMBO_STD)) {
5779 			if (ifr->ifr_mtu < ETHERMIN ||
5780 			    ifr->ifr_mtu > BGE_JUMBO_MTU) {
5781 				error = EINVAL;
5782 				break;
5783 			}
5784 		} else if (ifr->ifr_mtu < ETHERMIN || ifr->ifr_mtu > ETHERMTU) {
5785 			error = EINVAL;
5786 			break;
5787 		}
5788 		BGE_LOCK(sc);
5789 		if (if_getmtu(ifp) != ifr->ifr_mtu) {
5790 			if_setmtu(ifp, ifr->ifr_mtu);
5791 			if (if_getdrvflags(ifp) & IFF_DRV_RUNNING) {
5792 				if_setdrvflagbits(ifp, 0, IFF_DRV_RUNNING);
5793 				bge_init_locked(sc);
5794 			}
5795 		}
5796 		BGE_UNLOCK(sc);
5797 		break;
5798 	case SIOCSIFFLAGS:
5799 		BGE_LOCK(sc);
5800 		if (if_getflags(ifp) & IFF_UP) {
5801 			/*
5802 			 * If only the state of the PROMISC flag changed,
5803 			 * then just use the 'set promisc mode' command
5804 			 * instead of reinitializing the entire NIC. Doing
5805 			 * a full re-init means reloading the firmware and
5806 			 * waiting for it to start up, which may take a
5807 			 * second or two.  Similarly for ALLMULTI.
5808 			 */
5809 			if (if_getdrvflags(ifp) & IFF_DRV_RUNNING) {
5810 				flags = if_getflags(ifp) ^ sc->bge_if_flags;
5811 				if (flags & IFF_PROMISC)
5812 					bge_setpromisc(sc);
5813 				if (flags & IFF_ALLMULTI)
5814 					bge_setmulti(sc);
5815 			} else
5816 				bge_init_locked(sc);
5817 		} else {
5818 			if (if_getdrvflags(ifp) & IFF_DRV_RUNNING) {
5819 				bge_stop(sc);
5820 			}
5821 		}
5822 		sc->bge_if_flags = if_getflags(ifp);
5823 		BGE_UNLOCK(sc);
5824 		error = 0;
5825 		break;
5826 	case SIOCADDMULTI:
5827 	case SIOCDELMULTI:
5828 		if (if_getdrvflags(ifp) & IFF_DRV_RUNNING) {
5829 			BGE_LOCK(sc);
5830 			bge_setmulti(sc);
5831 			BGE_UNLOCK(sc);
5832 			error = 0;
5833 		}
5834 		break;
5835 	case SIOCSIFMEDIA:
5836 	case SIOCGIFMEDIA:
5837 		if (sc->bge_flags & BGE_FLAG_TBI) {
5838 			error = ifmedia_ioctl(ifp, ifr,
5839 			    &sc->bge_ifmedia, command);
5840 		} else {
5841 			mii = device_get_softc(sc->bge_miibus);
5842 			error = ifmedia_ioctl(ifp, ifr,
5843 			    &mii->mii_media, command);
5844 		}
5845 		break;
5846 	case SIOCSIFCAP:
5847 		mask = ifr->ifr_reqcap ^ if_getcapenable(ifp);
5848 #ifdef DEVICE_POLLING
5849 		if (mask & IFCAP_POLLING) {
5850 			if (ifr->ifr_reqcap & IFCAP_POLLING) {
5851 				error = ether_poll_register(bge_poll, ifp);
5852 				if (error)
5853 					return (error);
5854 				BGE_LOCK(sc);
5855 				BGE_SETBIT(sc, BGE_PCI_MISC_CTL,
5856 				    BGE_PCIMISCCTL_MASK_PCI_INTR);
5857 				bge_writembx(sc, BGE_MBX_IRQ0_LO, 1);
5858 				if_setcapenablebit(ifp, IFCAP_POLLING, 0);
5859 				BGE_UNLOCK(sc);
5860 			} else {
5861 				error = ether_poll_deregister(ifp);
5862 				/* Enable interrupt even in error case */
5863 				BGE_LOCK(sc);
5864 				BGE_CLRBIT(sc, BGE_PCI_MISC_CTL,
5865 				    BGE_PCIMISCCTL_MASK_PCI_INTR);
5866 				bge_writembx(sc, BGE_MBX_IRQ0_LO, 0);
5867 				if_setcapenablebit(ifp, 0, IFCAP_POLLING);
5868 				BGE_UNLOCK(sc);
5869 			}
5870 		}
5871 #endif
5872 		if ((mask & IFCAP_TXCSUM) != 0 &&
5873 		    (if_getcapabilities(ifp) & IFCAP_TXCSUM) != 0) {
5874 			if_togglecapenable(ifp, IFCAP_TXCSUM);
5875 			if ((if_getcapenable(ifp) & IFCAP_TXCSUM) != 0)
5876 				if_sethwassistbits(ifp,
5877 				    sc->bge_csum_features, 0);
5878 			else
5879 				if_sethwassistbits(ifp, 0,
5880 				    sc->bge_csum_features);
5881 		}
5882 
5883 		if ((mask & IFCAP_RXCSUM) != 0 &&
5884 		    (if_getcapabilities(ifp) & IFCAP_RXCSUM) != 0)
5885 			if_togglecapenable(ifp, IFCAP_RXCSUM);
5886 
5887 		if ((mask & IFCAP_TSO4) != 0 &&
5888 		    (if_getcapabilities(ifp) & IFCAP_TSO4) != 0) {
5889 			if_togglecapenable(ifp, IFCAP_TSO4);
5890 			if ((if_getcapenable(ifp) & IFCAP_TSO4) != 0)
5891 				if_sethwassistbits(ifp, CSUM_TSO, 0);
5892 			else
5893 				if_sethwassistbits(ifp, 0, CSUM_TSO);
5894 		}
5895 
5896 		if (mask & IFCAP_VLAN_MTU) {
5897 			if_togglecapenable(ifp, IFCAP_VLAN_MTU);
5898 			if_setdrvflagbits(ifp, 0, IFF_DRV_RUNNING);
5899 			bge_init(sc);
5900 		}
5901 
5902 		if ((mask & IFCAP_VLAN_HWTSO) != 0 &&
5903 		    (if_getcapabilities(ifp) & IFCAP_VLAN_HWTSO) != 0)
5904 			if_togglecapenable(ifp, IFCAP_VLAN_HWTSO);
5905 		if ((mask & IFCAP_VLAN_HWTAGGING) != 0 &&
5906 		    (if_getcapabilities(ifp) & IFCAP_VLAN_HWTAGGING) != 0) {
5907 			if_togglecapenable(ifp, IFCAP_VLAN_HWTAGGING);
5908 			if ((if_getcapenable(ifp) & IFCAP_VLAN_HWTAGGING) == 0)
5909 				if_setcapenablebit(ifp, 0, IFCAP_VLAN_HWTSO);
5910 			BGE_LOCK(sc);
5911 			bge_setvlan(sc);
5912 			BGE_UNLOCK(sc);
5913 		}
5914 #ifdef VLAN_CAPABILITIES
5915 		if_vlancap(ifp);
5916 #endif
5917 		break;
5918 	default:
5919 		error = ether_ioctl(ifp, command, data);
5920 		break;
5921 	}
5922 
5923 	return (error);
5924 }
5925 
5926 static void
5927 bge_watchdog(struct bge_softc *sc)
5928 {
5929 	if_t ifp;
5930 	uint32_t status;
5931 
5932 	BGE_LOCK_ASSERT(sc);
5933 
5934 	if (sc->bge_timer == 0 || --sc->bge_timer)
5935 		return;
5936 
5937 	/* If pause frames are active then don't reset the hardware. */
5938 	if ((CSR_READ_4(sc, BGE_RX_MODE) & BGE_RXMODE_FLOWCTL_ENABLE) != 0) {
5939 		status = CSR_READ_4(sc, BGE_RX_STS);
5940 		if ((status & BGE_RXSTAT_REMOTE_XOFFED) != 0) {
5941 			/*
5942 			 * If link partner has us in XOFF state then wait for
5943 			 * the condition to clear.
5944 			 */
5945 			CSR_WRITE_4(sc, BGE_RX_STS, status);
5946 			sc->bge_timer = BGE_TX_TIMEOUT;
5947 			return;
5948 		} else if ((status & BGE_RXSTAT_RCVD_XOFF) != 0 &&
5949 		    (status & BGE_RXSTAT_RCVD_XON) != 0) {
5950 			/*
5951 			 * If link partner has us in XOFF state then wait for
5952 			 * the condition to clear.
5953 			 */
5954 			CSR_WRITE_4(sc, BGE_RX_STS, status);
5955 			sc->bge_timer = BGE_TX_TIMEOUT;
5956 			return;
5957 		}
5958 		/*
5959 		 * Any other condition is unexpected and the controller
5960 		 * should be reset.
5961 		 */
5962 	}
5963 
5964 	ifp = sc->bge_ifp;
5965 
5966 	if_printf(ifp, "watchdog timeout -- resetting\n");
5967 
5968 	if_setdrvflagbits(ifp, 0, IFF_DRV_RUNNING);
5969 	bge_init_locked(sc);
5970 
5971 	if_inc_counter(ifp, IFCOUNTER_OERRORS, 1);
5972 }
5973 
5974 static void
5975 bge_stop_block(struct bge_softc *sc, bus_size_t reg, uint32_t bit)
5976 {
5977 	int i;
5978 
5979 	BGE_CLRBIT(sc, reg, bit);
5980 
5981 	for (i = 0; i < BGE_TIMEOUT; i++) {
5982 		if ((CSR_READ_4(sc, reg) & bit) == 0)
5983 			return;
5984 		DELAY(100);
5985         }
5986 }
5987 
5988 /*
5989  * Stop the adapter and free any mbufs allocated to the
5990  * RX and TX lists.
5991  */
5992 static void
5993 bge_stop(struct bge_softc *sc)
5994 {
5995 	if_t ifp;
5996 
5997 	BGE_LOCK_ASSERT(sc);
5998 
5999 	ifp = sc->bge_ifp;
6000 
6001 	callout_stop(&sc->bge_stat_ch);
6002 
6003 	/* Disable host interrupts. */
6004 	BGE_SETBIT(sc, BGE_PCI_MISC_CTL, BGE_PCIMISCCTL_MASK_PCI_INTR);
6005 	bge_writembx(sc, BGE_MBX_IRQ0_LO, 1);
6006 
6007 	/*
6008 	 * Tell firmware we're shutting down.
6009 	 */
6010 	bge_stop_fw(sc);
6011 	bge_sig_pre_reset(sc, BGE_RESET_SHUTDOWN);
6012 
6013 	/*
6014 	 * Disable all of the receiver blocks.
6015 	 */
6016 	bge_stop_block(sc, BGE_RX_MODE, BGE_RXMODE_ENABLE);
6017 	bge_stop_block(sc, BGE_RBDI_MODE, BGE_RBDIMODE_ENABLE);
6018 	bge_stop_block(sc, BGE_RXLP_MODE, BGE_RXLPMODE_ENABLE);
6019 	if (BGE_IS_5700_FAMILY(sc))
6020 		bge_stop_block(sc, BGE_RXLS_MODE, BGE_RXLSMODE_ENABLE);
6021 	bge_stop_block(sc, BGE_RDBDI_MODE, BGE_RBDIMODE_ENABLE);
6022 	bge_stop_block(sc, BGE_RDC_MODE, BGE_RDCMODE_ENABLE);
6023 	bge_stop_block(sc, BGE_RBDC_MODE, BGE_RBDCMODE_ENABLE);
6024 
6025 	/*
6026 	 * Disable all of the transmit blocks.
6027 	 */
6028 	bge_stop_block(sc, BGE_SRS_MODE, BGE_SRSMODE_ENABLE);
6029 	bge_stop_block(sc, BGE_SBDI_MODE, BGE_SBDIMODE_ENABLE);
6030 	bge_stop_block(sc, BGE_SDI_MODE, BGE_SDIMODE_ENABLE);
6031 	bge_stop_block(sc, BGE_RDMA_MODE, BGE_RDMAMODE_ENABLE);
6032 	bge_stop_block(sc, BGE_SDC_MODE, BGE_SDCMODE_ENABLE);
6033 	if (BGE_IS_5700_FAMILY(sc))
6034 		bge_stop_block(sc, BGE_DMAC_MODE, BGE_DMACMODE_ENABLE);
6035 	bge_stop_block(sc, BGE_SBDC_MODE, BGE_SBDCMODE_ENABLE);
6036 
6037 	/*
6038 	 * Shut down all of the memory managers and related
6039 	 * state machines.
6040 	 */
6041 	bge_stop_block(sc, BGE_HCC_MODE, BGE_HCCMODE_ENABLE);
6042 	bge_stop_block(sc, BGE_WDMA_MODE, BGE_WDMAMODE_ENABLE);
6043 	if (BGE_IS_5700_FAMILY(sc))
6044 		bge_stop_block(sc, BGE_MBCF_MODE, BGE_MBCFMODE_ENABLE);
6045 
6046 	CSR_WRITE_4(sc, BGE_FTQ_RESET, 0xFFFFFFFF);
6047 	CSR_WRITE_4(sc, BGE_FTQ_RESET, 0);
6048 	if (!(BGE_IS_5705_PLUS(sc))) {
6049 		BGE_CLRBIT(sc, BGE_BMAN_MODE, BGE_BMANMODE_ENABLE);
6050 		BGE_CLRBIT(sc, BGE_MARB_MODE, BGE_MARBMODE_ENABLE);
6051 	}
6052 	/* Update MAC statistics. */
6053 	if (BGE_IS_5705_PLUS(sc))
6054 		bge_stats_update_regs(sc);
6055 
6056 	bge_reset(sc);
6057 	bge_sig_legacy(sc, BGE_RESET_SHUTDOWN);
6058 	bge_sig_post_reset(sc, BGE_RESET_SHUTDOWN);
6059 
6060 	/*
6061 	 * Keep the ASF firmware running if up.
6062 	 */
6063 	if (sc->bge_asf_mode & ASF_STACKUP)
6064 		BGE_SETBIT(sc, BGE_MODE_CTL, BGE_MODECTL_STACKUP);
6065 	else
6066 		BGE_CLRBIT(sc, BGE_MODE_CTL, BGE_MODECTL_STACKUP);
6067 
6068 	/* Free the RX lists. */
6069 	bge_free_rx_ring_std(sc);
6070 
6071 	/* Free jumbo RX list. */
6072 	if (BGE_IS_JUMBO_CAPABLE(sc))
6073 		bge_free_rx_ring_jumbo(sc);
6074 
6075 	/* Free TX buffers. */
6076 	bge_free_tx_ring(sc);
6077 
6078 	sc->bge_tx_saved_considx = BGE_TXCONS_UNSET;
6079 
6080 	/* Clear MAC's link state (PHY may still have link UP). */
6081 	if (bootverbose && sc->bge_link)
6082 		if_printf(sc->bge_ifp, "link DOWN\n");
6083 	sc->bge_link = 0;
6084 
6085 	if_setdrvflagbits(ifp, 0, (IFF_DRV_RUNNING | IFF_DRV_OACTIVE));
6086 }
6087 
6088 /*
6089  * Stop all chip I/O so that the kernel's probe routines don't
6090  * get confused by errant DMAs when rebooting.
6091  */
6092 static int
6093 bge_shutdown(device_t dev)
6094 {
6095 	struct bge_softc *sc;
6096 
6097 	sc = device_get_softc(dev);
6098 	BGE_LOCK(sc);
6099 	bge_stop(sc);
6100 	BGE_UNLOCK(sc);
6101 
6102 	return (0);
6103 }
6104 
6105 static int
6106 bge_suspend(device_t dev)
6107 {
6108 	struct bge_softc *sc;
6109 
6110 	sc = device_get_softc(dev);
6111 	BGE_LOCK(sc);
6112 	bge_stop(sc);
6113 	BGE_UNLOCK(sc);
6114 
6115 	return (0);
6116 }
6117 
6118 static int
6119 bge_resume(device_t dev)
6120 {
6121 	struct bge_softc *sc;
6122 	if_t ifp;
6123 
6124 	sc = device_get_softc(dev);
6125 	BGE_LOCK(sc);
6126 	ifp = sc->bge_ifp;
6127 	if (if_getflags(ifp) & IFF_UP) {
6128 		bge_init_locked(sc);
6129 		if (if_getdrvflags(ifp) & IFF_DRV_RUNNING)
6130 			bge_start_locked(ifp);
6131 	}
6132 	BGE_UNLOCK(sc);
6133 
6134 	return (0);
6135 }
6136 
6137 static void
6138 bge_link_upd(struct bge_softc *sc)
6139 {
6140 	struct mii_data *mii;
6141 	uint32_t link, status;
6142 
6143 	BGE_LOCK_ASSERT(sc);
6144 
6145 	/* Clear 'pending link event' flag. */
6146 	sc->bge_link_evt = 0;
6147 
6148 	/*
6149 	 * Process link state changes.
6150 	 * Grrr. The link status word in the status block does
6151 	 * not work correctly on the BCM5700 rev AX and BX chips,
6152 	 * according to all available information. Hence, we have
6153 	 * to enable MII interrupts in order to properly obtain
6154 	 * async link changes. Unfortunately, this also means that
6155 	 * we have to read the MAC status register to detect link
6156 	 * changes, thereby adding an additional register access to
6157 	 * the interrupt handler.
6158 	 *
6159 	 * XXX: perhaps link state detection procedure used for
6160 	 * BGE_CHIPID_BCM5700_B2 can be used for others BCM5700 revisions.
6161 	 */
6162 
6163 	if (sc->bge_asicrev == BGE_ASICREV_BCM5700 &&
6164 	    sc->bge_chipid != BGE_CHIPID_BCM5700_B2) {
6165 		status = CSR_READ_4(sc, BGE_MAC_STS);
6166 		if (status & BGE_MACSTAT_MI_INTERRUPT) {
6167 			mii = device_get_softc(sc->bge_miibus);
6168 			mii_pollstat(mii);
6169 			if (!sc->bge_link &&
6170 			    mii->mii_media_status & IFM_ACTIVE &&
6171 			    IFM_SUBTYPE(mii->mii_media_active) != IFM_NONE) {
6172 				sc->bge_link++;
6173 				if (bootverbose)
6174 					if_printf(sc->bge_ifp, "link UP\n");
6175 			} else if (sc->bge_link &&
6176 			    (!(mii->mii_media_status & IFM_ACTIVE) ||
6177 			    IFM_SUBTYPE(mii->mii_media_active) == IFM_NONE)) {
6178 				sc->bge_link = 0;
6179 				if (bootverbose)
6180 					if_printf(sc->bge_ifp, "link DOWN\n");
6181 			}
6182 
6183 			/* Clear the interrupt. */
6184 			CSR_WRITE_4(sc, BGE_MAC_EVT_ENB,
6185 			    BGE_EVTENB_MI_INTERRUPT);
6186 			bge_miibus_readreg(sc->bge_dev, sc->bge_phy_addr,
6187 			    BRGPHY_MII_ISR);
6188 			bge_miibus_writereg(sc->bge_dev, sc->bge_phy_addr,
6189 			    BRGPHY_MII_IMR, BRGPHY_INTRS);
6190 		}
6191 		return;
6192 	}
6193 
6194 	if (sc->bge_flags & BGE_FLAG_TBI) {
6195 		status = CSR_READ_4(sc, BGE_MAC_STS);
6196 		if (status & BGE_MACSTAT_TBI_PCS_SYNCHED) {
6197 			if (!sc->bge_link) {
6198 				sc->bge_link++;
6199 				if (sc->bge_asicrev == BGE_ASICREV_BCM5704) {
6200 					BGE_CLRBIT(sc, BGE_MAC_MODE,
6201 					    BGE_MACMODE_TBI_SEND_CFGS);
6202 					DELAY(40);
6203 				}
6204 				CSR_WRITE_4(sc, BGE_MAC_STS, 0xFFFFFFFF);
6205 				if (bootverbose)
6206 					if_printf(sc->bge_ifp, "link UP\n");
6207 				if_link_state_change(sc->bge_ifp,
6208 				    LINK_STATE_UP);
6209 			}
6210 		} else if (sc->bge_link) {
6211 			sc->bge_link = 0;
6212 			if (bootverbose)
6213 				if_printf(sc->bge_ifp, "link DOWN\n");
6214 			if_link_state_change(sc->bge_ifp, LINK_STATE_DOWN);
6215 		}
6216 	} else if ((sc->bge_mi_mode & BGE_MIMODE_AUTOPOLL) != 0) {
6217 		/*
6218 		 * Some broken BCM chips have BGE_STATFLAG_LINKSTATE_CHANGED bit
6219 		 * in status word always set. Workaround this bug by reading
6220 		 * PHY link status directly.
6221 		 */
6222 		link = (CSR_READ_4(sc, BGE_MI_STS) & BGE_MISTS_LINK) ? 1 : 0;
6223 
6224 		if (link != sc->bge_link ||
6225 		    sc->bge_asicrev == BGE_ASICREV_BCM5700) {
6226 			mii = device_get_softc(sc->bge_miibus);
6227 			mii_pollstat(mii);
6228 			if (!sc->bge_link &&
6229 			    mii->mii_media_status & IFM_ACTIVE &&
6230 			    IFM_SUBTYPE(mii->mii_media_active) != IFM_NONE) {
6231 				sc->bge_link++;
6232 				if (bootverbose)
6233 					if_printf(sc->bge_ifp, "link UP\n");
6234 			} else if (sc->bge_link &&
6235 			    (!(mii->mii_media_status & IFM_ACTIVE) ||
6236 			    IFM_SUBTYPE(mii->mii_media_active) == IFM_NONE)) {
6237 				sc->bge_link = 0;
6238 				if (bootverbose)
6239 					if_printf(sc->bge_ifp, "link DOWN\n");
6240 			}
6241 		}
6242 	} else {
6243 		/*
6244 		 * For controllers that call mii_tick, we have to poll
6245 		 * link status.
6246 		 */
6247 		mii = device_get_softc(sc->bge_miibus);
6248 		mii_pollstat(mii);
6249 		bge_miibus_statchg(sc->bge_dev);
6250 	}
6251 
6252 	/* Disable MAC attention when link is up. */
6253 	CSR_WRITE_4(sc, BGE_MAC_STS, BGE_MACSTAT_SYNC_CHANGED |
6254 	    BGE_MACSTAT_CFG_CHANGED | BGE_MACSTAT_MI_COMPLETE |
6255 	    BGE_MACSTAT_LINK_CHANGED);
6256 }
6257 
6258 static void
6259 bge_add_sysctls(struct bge_softc *sc)
6260 {
6261 	struct sysctl_ctx_list *ctx;
6262 	struct sysctl_oid_list *children;
6263 	int unit;
6264 
6265 	ctx = device_get_sysctl_ctx(sc->bge_dev);
6266 	children = SYSCTL_CHILDREN(device_get_sysctl_tree(sc->bge_dev));
6267 
6268 #ifdef BGE_REGISTER_DEBUG
6269 	SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "debug_info",
6270 	    CTLTYPE_INT | CTLFLAG_RW, sc, 0, bge_sysctl_debug_info, "I",
6271 	    "Debug Information");
6272 
6273 	SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "reg_read",
6274 	    CTLTYPE_INT | CTLFLAG_RW, sc, 0, bge_sysctl_reg_read, "I",
6275 	    "MAC Register Read");
6276 
6277 	SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "ape_read",
6278 	    CTLTYPE_INT | CTLFLAG_RW, sc, 0, bge_sysctl_ape_read, "I",
6279 	    "APE Register Read");
6280 
6281 	SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "mem_read",
6282 	    CTLTYPE_INT | CTLFLAG_RW, sc, 0, bge_sysctl_mem_read, "I",
6283 	    "Memory Read");
6284 
6285 #endif
6286 
6287 	unit = device_get_unit(sc->bge_dev);
6288 	/*
6289 	 * A common design characteristic for many Broadcom client controllers
6290 	 * is that they only support a single outstanding DMA read operation
6291 	 * on the PCIe bus. This means that it will take twice as long to fetch
6292 	 * a TX frame that is split into header and payload buffers as it does
6293 	 * to fetch a single, contiguous TX frame (2 reads vs. 1 read). For
6294 	 * these controllers, coalescing buffers to reduce the number of memory
6295 	 * reads is effective way to get maximum performance(about 940Mbps).
6296 	 * Without collapsing TX buffers the maximum TCP bulk transfer
6297 	 * performance is about 850Mbps. However forcing coalescing mbufs
6298 	 * consumes a lot of CPU cycles, so leave it off by default.
6299 	 */
6300 	sc->bge_forced_collapse = 0;
6301 	SYSCTL_ADD_INT(ctx, children, OID_AUTO, "forced_collapse",
6302 	    CTLFLAG_RWTUN, &sc->bge_forced_collapse, 0,
6303 	    "Number of fragmented TX buffers of a frame allowed before "
6304 	    "forced collapsing");
6305 
6306 	sc->bge_msi = 1;
6307 	SYSCTL_ADD_INT(ctx, children, OID_AUTO, "msi",
6308 	    CTLFLAG_RDTUN, &sc->bge_msi, 0, "Enable MSI");
6309 
6310 	/*
6311 	 * It seems all Broadcom controllers have a bug that can generate UDP
6312 	 * datagrams with checksum value 0 when TX UDP checksum offloading is
6313 	 * enabled.  Generating UDP checksum value 0 is RFC 768 violation.
6314 	 * Even though the probability of generating such UDP datagrams is
6315 	 * low, I don't want to see FreeBSD boxes to inject such datagrams
6316 	 * into network so disable UDP checksum offloading by default.  Users
6317 	 * still override this behavior by setting a sysctl variable,
6318 	 * dev.bge.0.forced_udpcsum.
6319 	 */
6320 	sc->bge_forced_udpcsum = 0;
6321 	SYSCTL_ADD_INT(ctx, children, OID_AUTO, "forced_udpcsum",
6322 	    CTLFLAG_RWTUN, &sc->bge_forced_udpcsum, 0,
6323 	    "Enable UDP checksum offloading even if controller can "
6324 	    "generate UDP checksum value 0");
6325 
6326 	if (BGE_IS_5705_PLUS(sc))
6327 		bge_add_sysctl_stats_regs(sc, ctx, children);
6328 	else
6329 		bge_add_sysctl_stats(sc, ctx, children);
6330 }
6331 
6332 #define BGE_SYSCTL_STAT(sc, ctx, desc, parent, node, oid) \
6333 	SYSCTL_ADD_PROC(ctx, parent, OID_AUTO, oid, CTLTYPE_UINT|CTLFLAG_RD, \
6334 	    sc, offsetof(struct bge_stats, node), bge_sysctl_stats, "IU", \
6335 	    desc)
6336 
6337 static void
6338 bge_add_sysctl_stats(struct bge_softc *sc, struct sysctl_ctx_list *ctx,
6339     struct sysctl_oid_list *parent)
6340 {
6341 	struct sysctl_oid *tree;
6342 	struct sysctl_oid_list *children, *schildren;
6343 
6344 	tree = SYSCTL_ADD_NODE(ctx, parent, OID_AUTO, "stats", CTLFLAG_RD,
6345 	    NULL, "BGE Statistics");
6346 	schildren = children = SYSCTL_CHILDREN(tree);
6347 	BGE_SYSCTL_STAT(sc, ctx, "Frames Dropped Due To Filters",
6348 	    children, COSFramesDroppedDueToFilters,
6349 	    "FramesDroppedDueToFilters");
6350 	BGE_SYSCTL_STAT(sc, ctx, "NIC DMA Write Queue Full",
6351 	    children, nicDmaWriteQueueFull, "DmaWriteQueueFull");
6352 	BGE_SYSCTL_STAT(sc, ctx, "NIC DMA Write High Priority Queue Full",
6353 	    children, nicDmaWriteHighPriQueueFull, "DmaWriteHighPriQueueFull");
6354 	BGE_SYSCTL_STAT(sc, ctx, "NIC No More RX Buffer Descriptors",
6355 	    children, nicNoMoreRxBDs, "NoMoreRxBDs");
6356 	BGE_SYSCTL_STAT(sc, ctx, "Discarded Input Frames",
6357 	    children, ifInDiscards, "InputDiscards");
6358 	BGE_SYSCTL_STAT(sc, ctx, "Input Errors",
6359 	    children, ifInErrors, "InputErrors");
6360 	BGE_SYSCTL_STAT(sc, ctx, "NIC Recv Threshold Hit",
6361 	    children, nicRecvThresholdHit, "RecvThresholdHit");
6362 	BGE_SYSCTL_STAT(sc, ctx, "NIC DMA Read Queue Full",
6363 	    children, nicDmaReadQueueFull, "DmaReadQueueFull");
6364 	BGE_SYSCTL_STAT(sc, ctx, "NIC DMA Read High Priority Queue Full",
6365 	    children, nicDmaReadHighPriQueueFull, "DmaReadHighPriQueueFull");
6366 	BGE_SYSCTL_STAT(sc, ctx, "NIC Send Data Complete Queue Full",
6367 	    children, nicSendDataCompQueueFull, "SendDataCompQueueFull");
6368 	BGE_SYSCTL_STAT(sc, ctx, "NIC Ring Set Send Producer Index",
6369 	    children, nicRingSetSendProdIndex, "RingSetSendProdIndex");
6370 	BGE_SYSCTL_STAT(sc, ctx, "NIC Ring Status Update",
6371 	    children, nicRingStatusUpdate, "RingStatusUpdate");
6372 	BGE_SYSCTL_STAT(sc, ctx, "NIC Interrupts",
6373 	    children, nicInterrupts, "Interrupts");
6374 	BGE_SYSCTL_STAT(sc, ctx, "NIC Avoided Interrupts",
6375 	    children, nicAvoidedInterrupts, "AvoidedInterrupts");
6376 	BGE_SYSCTL_STAT(sc, ctx, "NIC Send Threshold Hit",
6377 	    children, nicSendThresholdHit, "SendThresholdHit");
6378 
6379 	tree = SYSCTL_ADD_NODE(ctx, schildren, OID_AUTO, "rx", CTLFLAG_RD,
6380 	    NULL, "BGE RX Statistics");
6381 	children = SYSCTL_CHILDREN(tree);
6382 	BGE_SYSCTL_STAT(sc, ctx, "Inbound Octets",
6383 	    children, rxstats.ifHCInOctets, "ifHCInOctets");
6384 	BGE_SYSCTL_STAT(sc, ctx, "Fragments",
6385 	    children, rxstats.etherStatsFragments, "Fragments");
6386 	BGE_SYSCTL_STAT(sc, ctx, "Inbound Unicast Packets",
6387 	    children, rxstats.ifHCInUcastPkts, "UnicastPkts");
6388 	BGE_SYSCTL_STAT(sc, ctx, "Inbound Multicast Packets",
6389 	    children, rxstats.ifHCInMulticastPkts, "MulticastPkts");
6390 	BGE_SYSCTL_STAT(sc, ctx, "FCS Errors",
6391 	    children, rxstats.dot3StatsFCSErrors, "FCSErrors");
6392 	BGE_SYSCTL_STAT(sc, ctx, "Alignment Errors",
6393 	    children, rxstats.dot3StatsAlignmentErrors, "AlignmentErrors");
6394 	BGE_SYSCTL_STAT(sc, ctx, "XON Pause Frames Received",
6395 	    children, rxstats.xonPauseFramesReceived, "xonPauseFramesReceived");
6396 	BGE_SYSCTL_STAT(sc, ctx, "XOFF Pause Frames Received",
6397 	    children, rxstats.xoffPauseFramesReceived,
6398 	    "xoffPauseFramesReceived");
6399 	BGE_SYSCTL_STAT(sc, ctx, "MAC Control Frames Received",
6400 	    children, rxstats.macControlFramesReceived,
6401 	    "ControlFramesReceived");
6402 	BGE_SYSCTL_STAT(sc, ctx, "XOFF State Entered",
6403 	    children, rxstats.xoffStateEntered, "xoffStateEntered");
6404 	BGE_SYSCTL_STAT(sc, ctx, "Frames Too Long",
6405 	    children, rxstats.dot3StatsFramesTooLong, "FramesTooLong");
6406 	BGE_SYSCTL_STAT(sc, ctx, "Jabbers",
6407 	    children, rxstats.etherStatsJabbers, "Jabbers");
6408 	BGE_SYSCTL_STAT(sc, ctx, "Undersized Packets",
6409 	    children, rxstats.etherStatsUndersizePkts, "UndersizePkts");
6410 	BGE_SYSCTL_STAT(sc, ctx, "Inbound Range Length Errors",
6411 	    children, rxstats.inRangeLengthError, "inRangeLengthError");
6412 	BGE_SYSCTL_STAT(sc, ctx, "Outbound Range Length Errors",
6413 	    children, rxstats.outRangeLengthError, "outRangeLengthError");
6414 
6415 	tree = SYSCTL_ADD_NODE(ctx, schildren, OID_AUTO, "tx", CTLFLAG_RD,
6416 	    NULL, "BGE TX Statistics");
6417 	children = SYSCTL_CHILDREN(tree);
6418 	BGE_SYSCTL_STAT(sc, ctx, "Outbound Octets",
6419 	    children, txstats.ifHCOutOctets, "ifHCOutOctets");
6420 	BGE_SYSCTL_STAT(sc, ctx, "TX Collisions",
6421 	    children, txstats.etherStatsCollisions, "Collisions");
6422 	BGE_SYSCTL_STAT(sc, ctx, "XON Sent",
6423 	    children, txstats.outXonSent, "XonSent");
6424 	BGE_SYSCTL_STAT(sc, ctx, "XOFF Sent",
6425 	    children, txstats.outXoffSent, "XoffSent");
6426 	BGE_SYSCTL_STAT(sc, ctx, "Flow Control Done",
6427 	    children, txstats.flowControlDone, "flowControlDone");
6428 	BGE_SYSCTL_STAT(sc, ctx, "Internal MAC TX errors",
6429 	    children, txstats.dot3StatsInternalMacTransmitErrors,
6430 	    "InternalMacTransmitErrors");
6431 	BGE_SYSCTL_STAT(sc, ctx, "Single Collision Frames",
6432 	    children, txstats.dot3StatsSingleCollisionFrames,
6433 	    "SingleCollisionFrames");
6434 	BGE_SYSCTL_STAT(sc, ctx, "Multiple Collision Frames",
6435 	    children, txstats.dot3StatsMultipleCollisionFrames,
6436 	    "MultipleCollisionFrames");
6437 	BGE_SYSCTL_STAT(sc, ctx, "Deferred Transmissions",
6438 	    children, txstats.dot3StatsDeferredTransmissions,
6439 	    "DeferredTransmissions");
6440 	BGE_SYSCTL_STAT(sc, ctx, "Excessive Collisions",
6441 	    children, txstats.dot3StatsExcessiveCollisions,
6442 	    "ExcessiveCollisions");
6443 	BGE_SYSCTL_STAT(sc, ctx, "Late Collisions",
6444 	    children, txstats.dot3StatsLateCollisions,
6445 	    "LateCollisions");
6446 	BGE_SYSCTL_STAT(sc, ctx, "Outbound Unicast Packets",
6447 	    children, txstats.ifHCOutUcastPkts, "UnicastPkts");
6448 	BGE_SYSCTL_STAT(sc, ctx, "Outbound Multicast Packets",
6449 	    children, txstats.ifHCOutMulticastPkts, "MulticastPkts");
6450 	BGE_SYSCTL_STAT(sc, ctx, "Outbound Broadcast Packets",
6451 	    children, txstats.ifHCOutBroadcastPkts, "BroadcastPkts");
6452 	BGE_SYSCTL_STAT(sc, ctx, "Carrier Sense Errors",
6453 	    children, txstats.dot3StatsCarrierSenseErrors,
6454 	    "CarrierSenseErrors");
6455 	BGE_SYSCTL_STAT(sc, ctx, "Outbound Discards",
6456 	    children, txstats.ifOutDiscards, "Discards");
6457 	BGE_SYSCTL_STAT(sc, ctx, "Outbound Errors",
6458 	    children, txstats.ifOutErrors, "Errors");
6459 }
6460 
6461 #undef BGE_SYSCTL_STAT
6462 
6463 #define	BGE_SYSCTL_STAT_ADD64(c, h, n, p, d)	\
6464 	    SYSCTL_ADD_UQUAD(c, h, OID_AUTO, n, CTLFLAG_RD, p, d)
6465 
6466 static void
6467 bge_add_sysctl_stats_regs(struct bge_softc *sc, struct sysctl_ctx_list *ctx,
6468     struct sysctl_oid_list *parent)
6469 {
6470 	struct sysctl_oid *tree;
6471 	struct sysctl_oid_list *child, *schild;
6472 	struct bge_mac_stats *stats;
6473 
6474 	stats = &sc->bge_mac_stats;
6475 	tree = SYSCTL_ADD_NODE(ctx, parent, OID_AUTO, "stats", CTLFLAG_RD,
6476 	    NULL, "BGE Statistics");
6477 	schild = child = SYSCTL_CHILDREN(tree);
6478 	BGE_SYSCTL_STAT_ADD64(ctx, child, "FramesDroppedDueToFilters",
6479 	    &stats->FramesDroppedDueToFilters, "Frames Dropped Due to Filters");
6480 	BGE_SYSCTL_STAT_ADD64(ctx, child, "DmaWriteQueueFull",
6481 	    &stats->DmaWriteQueueFull, "NIC DMA Write Queue Full");
6482 	BGE_SYSCTL_STAT_ADD64(ctx, child, "DmaWriteHighPriQueueFull",
6483 	    &stats->DmaWriteHighPriQueueFull,
6484 	    "NIC DMA Write High Priority Queue Full");
6485 	BGE_SYSCTL_STAT_ADD64(ctx, child, "NoMoreRxBDs",
6486 	    &stats->NoMoreRxBDs, "NIC No More RX Buffer Descriptors");
6487 	BGE_SYSCTL_STAT_ADD64(ctx, child, "InputDiscards",
6488 	    &stats->InputDiscards, "Discarded Input Frames");
6489 	BGE_SYSCTL_STAT_ADD64(ctx, child, "InputErrors",
6490 	    &stats->InputErrors, "Input Errors");
6491 	BGE_SYSCTL_STAT_ADD64(ctx, child, "RecvThresholdHit",
6492 	    &stats->RecvThresholdHit, "NIC Recv Threshold Hit");
6493 
6494 	tree = SYSCTL_ADD_NODE(ctx, schild, OID_AUTO, "rx", CTLFLAG_RD,
6495 	    NULL, "BGE RX Statistics");
6496 	child = SYSCTL_CHILDREN(tree);
6497 	BGE_SYSCTL_STAT_ADD64(ctx, child, "ifHCInOctets",
6498 	    &stats->ifHCInOctets, "Inbound Octets");
6499 	BGE_SYSCTL_STAT_ADD64(ctx, child, "Fragments",
6500 	    &stats->etherStatsFragments, "Fragments");
6501 	BGE_SYSCTL_STAT_ADD64(ctx, child, "UnicastPkts",
6502 	    &stats->ifHCInUcastPkts, "Inbound Unicast Packets");
6503 	BGE_SYSCTL_STAT_ADD64(ctx, child, "MulticastPkts",
6504 	    &stats->ifHCInMulticastPkts, "Inbound Multicast Packets");
6505 	BGE_SYSCTL_STAT_ADD64(ctx, child, "BroadcastPkts",
6506 	    &stats->ifHCInBroadcastPkts, "Inbound Broadcast Packets");
6507 	BGE_SYSCTL_STAT_ADD64(ctx, child, "FCSErrors",
6508 	    &stats->dot3StatsFCSErrors, "FCS Errors");
6509 	BGE_SYSCTL_STAT_ADD64(ctx, child, "AlignmentErrors",
6510 	    &stats->dot3StatsAlignmentErrors, "Alignment Errors");
6511 	BGE_SYSCTL_STAT_ADD64(ctx, child, "xonPauseFramesReceived",
6512 	    &stats->xonPauseFramesReceived, "XON Pause Frames Received");
6513 	BGE_SYSCTL_STAT_ADD64(ctx, child, "xoffPauseFramesReceived",
6514 	    &stats->xoffPauseFramesReceived, "XOFF Pause Frames Received");
6515 	BGE_SYSCTL_STAT_ADD64(ctx, child, "ControlFramesReceived",
6516 	    &stats->macControlFramesReceived, "MAC Control Frames Received");
6517 	BGE_SYSCTL_STAT_ADD64(ctx, child, "xoffStateEntered",
6518 	    &stats->xoffStateEntered, "XOFF State Entered");
6519 	BGE_SYSCTL_STAT_ADD64(ctx, child, "FramesTooLong",
6520 	    &stats->dot3StatsFramesTooLong, "Frames Too Long");
6521 	BGE_SYSCTL_STAT_ADD64(ctx, child, "Jabbers",
6522 	    &stats->etherStatsJabbers, "Jabbers");
6523 	BGE_SYSCTL_STAT_ADD64(ctx, child, "UndersizePkts",
6524 	    &stats->etherStatsUndersizePkts, "Undersized Packets");
6525 
6526 	tree = SYSCTL_ADD_NODE(ctx, schild, OID_AUTO, "tx", CTLFLAG_RD,
6527 	    NULL, "BGE TX Statistics");
6528 	child = SYSCTL_CHILDREN(tree);
6529 	BGE_SYSCTL_STAT_ADD64(ctx, child, "ifHCOutOctets",
6530 	    &stats->ifHCOutOctets, "Outbound Octets");
6531 	BGE_SYSCTL_STAT_ADD64(ctx, child, "Collisions",
6532 	    &stats->etherStatsCollisions, "TX Collisions");
6533 	BGE_SYSCTL_STAT_ADD64(ctx, child, "XonSent",
6534 	    &stats->outXonSent, "XON Sent");
6535 	BGE_SYSCTL_STAT_ADD64(ctx, child, "XoffSent",
6536 	    &stats->outXoffSent, "XOFF Sent");
6537 	BGE_SYSCTL_STAT_ADD64(ctx, child, "InternalMacTransmitErrors",
6538 	    &stats->dot3StatsInternalMacTransmitErrors,
6539 	    "Internal MAC TX Errors");
6540 	BGE_SYSCTL_STAT_ADD64(ctx, child, "SingleCollisionFrames",
6541 	    &stats->dot3StatsSingleCollisionFrames, "Single Collision Frames");
6542 	BGE_SYSCTL_STAT_ADD64(ctx, child, "MultipleCollisionFrames",
6543 	    &stats->dot3StatsMultipleCollisionFrames,
6544 	    "Multiple Collision Frames");
6545 	BGE_SYSCTL_STAT_ADD64(ctx, child, "DeferredTransmissions",
6546 	    &stats->dot3StatsDeferredTransmissions, "Deferred Transmissions");
6547 	BGE_SYSCTL_STAT_ADD64(ctx, child, "ExcessiveCollisions",
6548 	    &stats->dot3StatsExcessiveCollisions, "Excessive Collisions");
6549 	BGE_SYSCTL_STAT_ADD64(ctx, child, "LateCollisions",
6550 	    &stats->dot3StatsLateCollisions, "Late Collisions");
6551 	BGE_SYSCTL_STAT_ADD64(ctx, child, "UnicastPkts",
6552 	    &stats->ifHCOutUcastPkts, "Outbound Unicast Packets");
6553 	BGE_SYSCTL_STAT_ADD64(ctx, child, "MulticastPkts",
6554 	    &stats->ifHCOutMulticastPkts, "Outbound Multicast Packets");
6555 	BGE_SYSCTL_STAT_ADD64(ctx, child, "BroadcastPkts",
6556 	    &stats->ifHCOutBroadcastPkts, "Outbound Broadcast Packets");
6557 }
6558 
6559 #undef	BGE_SYSCTL_STAT_ADD64
6560 
6561 static int
6562 bge_sysctl_stats(SYSCTL_HANDLER_ARGS)
6563 {
6564 	struct bge_softc *sc;
6565 	uint32_t result;
6566 	int offset;
6567 
6568 	sc = (struct bge_softc *)arg1;
6569 	offset = arg2;
6570 	result = CSR_READ_4(sc, BGE_MEMWIN_START + BGE_STATS_BLOCK + offset +
6571 	    offsetof(bge_hostaddr, bge_addr_lo));
6572 	return (sysctl_handle_int(oidp, &result, 0, req));
6573 }
6574 
6575 #ifdef BGE_REGISTER_DEBUG
6576 static int
6577 bge_sysctl_debug_info(SYSCTL_HANDLER_ARGS)
6578 {
6579 	struct bge_softc *sc;
6580 	uint16_t *sbdata;
6581 	int error, result, sbsz;
6582 	int i, j;
6583 
6584 	result = -1;
6585 	error = sysctl_handle_int(oidp, &result, 0, req);
6586 	if (error || (req->newptr == NULL))
6587 		return (error);
6588 
6589 	if (result == 1) {
6590 		sc = (struct bge_softc *)arg1;
6591 
6592 		if (sc->bge_asicrev == BGE_ASICREV_BCM5700 &&
6593 		    sc->bge_chipid != BGE_CHIPID_BCM5700_C0)
6594 			sbsz = BGE_STATUS_BLK_SZ;
6595 		else
6596 			sbsz = 32;
6597 		sbdata = (uint16_t *)sc->bge_ldata.bge_status_block;
6598 		printf("Status Block:\n");
6599 		BGE_LOCK(sc);
6600 		bus_dmamap_sync(sc->bge_cdata.bge_status_tag,
6601 		    sc->bge_cdata.bge_status_map,
6602 		    BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE);
6603 		for (i = 0x0; i < sbsz / sizeof(uint16_t); ) {
6604 			printf("%06x:", i);
6605 			for (j = 0; j < 8; j++)
6606 				printf(" %04x", sbdata[i++]);
6607 			printf("\n");
6608 		}
6609 
6610 		printf("Registers:\n");
6611 		for (i = 0x800; i < 0xA00; ) {
6612 			printf("%06x:", i);
6613 			for (j = 0; j < 8; j++) {
6614 				printf(" %08x", CSR_READ_4(sc, i));
6615 				i += 4;
6616 			}
6617 			printf("\n");
6618 		}
6619 		BGE_UNLOCK(sc);
6620 
6621 		printf("Hardware Flags:\n");
6622 		if (BGE_IS_5717_PLUS(sc))
6623 			printf(" - 5717 Plus\n");
6624 		if (BGE_IS_5755_PLUS(sc))
6625 			printf(" - 5755 Plus\n");
6626 		if (BGE_IS_575X_PLUS(sc))
6627 			printf(" - 575X Plus\n");
6628 		if (BGE_IS_5705_PLUS(sc))
6629 			printf(" - 5705 Plus\n");
6630 		if (BGE_IS_5714_FAMILY(sc))
6631 			printf(" - 5714 Family\n");
6632 		if (BGE_IS_5700_FAMILY(sc))
6633 			printf(" - 5700 Family\n");
6634 		if (sc->bge_flags & BGE_FLAG_JUMBO)
6635 			printf(" - Supports Jumbo Frames\n");
6636 		if (sc->bge_flags & BGE_FLAG_PCIX)
6637 			printf(" - PCI-X Bus\n");
6638 		if (sc->bge_flags & BGE_FLAG_PCIE)
6639 			printf(" - PCI Express Bus\n");
6640 		if (sc->bge_phy_flags & BGE_PHY_NO_3LED)
6641 			printf(" - No 3 LEDs\n");
6642 		if (sc->bge_flags & BGE_FLAG_RX_ALIGNBUG)
6643 			printf(" - RX Alignment Bug\n");
6644 	}
6645 
6646 	return (error);
6647 }
6648 
6649 static int
6650 bge_sysctl_reg_read(SYSCTL_HANDLER_ARGS)
6651 {
6652 	struct bge_softc *sc;
6653 	int error;
6654 	uint16_t result;
6655 	uint32_t val;
6656 
6657 	result = -1;
6658 	error = sysctl_handle_int(oidp, &result, 0, req);
6659 	if (error || (req->newptr == NULL))
6660 		return (error);
6661 
6662 	if (result < 0x8000) {
6663 		sc = (struct bge_softc *)arg1;
6664 		val = CSR_READ_4(sc, result);
6665 		printf("reg 0x%06X = 0x%08X\n", result, val);
6666 	}
6667 
6668 	return (error);
6669 }
6670 
6671 static int
6672 bge_sysctl_ape_read(SYSCTL_HANDLER_ARGS)
6673 {
6674 	struct bge_softc *sc;
6675 	int error;
6676 	uint16_t result;
6677 	uint32_t val;
6678 
6679 	result = -1;
6680 	error = sysctl_handle_int(oidp, &result, 0, req);
6681 	if (error || (req->newptr == NULL))
6682 		return (error);
6683 
6684 	if (result < 0x8000) {
6685 		sc = (struct bge_softc *)arg1;
6686 		val = APE_READ_4(sc, result);
6687 		printf("reg 0x%06X = 0x%08X\n", result, val);
6688 	}
6689 
6690 	return (error);
6691 }
6692 
6693 static int
6694 bge_sysctl_mem_read(SYSCTL_HANDLER_ARGS)
6695 {
6696 	struct bge_softc *sc;
6697 	int error;
6698 	uint16_t result;
6699 	uint32_t val;
6700 
6701 	result = -1;
6702 	error = sysctl_handle_int(oidp, &result, 0, req);
6703 	if (error || (req->newptr == NULL))
6704 		return (error);
6705 
6706 	if (result < 0x8000) {
6707 		sc = (struct bge_softc *)arg1;
6708 		val = bge_readmem_ind(sc, result);
6709 		printf("mem 0x%06X = 0x%08X\n", result, val);
6710 	}
6711 
6712 	return (error);
6713 }
6714 #endif
6715 
6716 static int
6717 bge_get_eaddr_fw(struct bge_softc *sc, uint8_t ether_addr[])
6718 {
6719 
6720 	if (sc->bge_flags & BGE_FLAG_EADDR)
6721 		return (1);
6722 
6723 #ifdef __sparc64__
6724 	OF_getetheraddr(sc->bge_dev, ether_addr);
6725 	return (0);
6726 #endif
6727 	return (1);
6728 }
6729 
6730 static int
6731 bge_get_eaddr_mem(struct bge_softc *sc, uint8_t ether_addr[])
6732 {
6733 	uint32_t mac_addr;
6734 
6735 	mac_addr = bge_readmem_ind(sc, BGE_SRAM_MAC_ADDR_HIGH_MB);
6736 	if ((mac_addr >> 16) == 0x484b) {
6737 		ether_addr[0] = (uint8_t)(mac_addr >> 8);
6738 		ether_addr[1] = (uint8_t)mac_addr;
6739 		mac_addr = bge_readmem_ind(sc, BGE_SRAM_MAC_ADDR_LOW_MB);
6740 		ether_addr[2] = (uint8_t)(mac_addr >> 24);
6741 		ether_addr[3] = (uint8_t)(mac_addr >> 16);
6742 		ether_addr[4] = (uint8_t)(mac_addr >> 8);
6743 		ether_addr[5] = (uint8_t)mac_addr;
6744 		return (0);
6745 	}
6746 	return (1);
6747 }
6748 
6749 static int
6750 bge_get_eaddr_nvram(struct bge_softc *sc, uint8_t ether_addr[])
6751 {
6752 	int mac_offset = BGE_EE_MAC_OFFSET;
6753 
6754 	if (sc->bge_asicrev == BGE_ASICREV_BCM5906)
6755 		mac_offset = BGE_EE_MAC_OFFSET_5906;
6756 
6757 	return (bge_read_nvram(sc, ether_addr, mac_offset + 2,
6758 	    ETHER_ADDR_LEN));
6759 }
6760 
6761 static int
6762 bge_get_eaddr_eeprom(struct bge_softc *sc, uint8_t ether_addr[])
6763 {
6764 
6765 	if (sc->bge_asicrev == BGE_ASICREV_BCM5906)
6766 		return (1);
6767 
6768 	return (bge_read_eeprom(sc, ether_addr, BGE_EE_MAC_OFFSET + 2,
6769 	   ETHER_ADDR_LEN));
6770 }
6771 
6772 static int
6773 bge_get_eaddr(struct bge_softc *sc, uint8_t eaddr[])
6774 {
6775 	static const bge_eaddr_fcn_t bge_eaddr_funcs[] = {
6776 		/* NOTE: Order is critical */
6777 		bge_get_eaddr_fw,
6778 		bge_get_eaddr_mem,
6779 		bge_get_eaddr_nvram,
6780 		bge_get_eaddr_eeprom,
6781 		NULL
6782 	};
6783 	const bge_eaddr_fcn_t *func;
6784 
6785 	for (func = bge_eaddr_funcs; *func != NULL; ++func) {
6786 		if ((*func)(sc, eaddr) == 0)
6787 			break;
6788 	}
6789 	return (*func == NULL ? ENXIO : 0);
6790 }
6791 
6792 static uint64_t
6793 bge_get_counter(if_t ifp, ift_counter cnt)
6794 {
6795 	struct bge_softc *sc;
6796 	struct bge_mac_stats *stats;
6797 
6798 	sc = if_getsoftc(ifp);
6799 	if (!BGE_IS_5705_PLUS(sc))
6800 		return (if_get_counter_default(ifp, cnt));
6801 	stats = &sc->bge_mac_stats;
6802 
6803 	switch (cnt) {
6804 	case IFCOUNTER_IERRORS:
6805 		return (stats->NoMoreRxBDs + stats->InputDiscards +
6806 		    stats->InputErrors);
6807 	case IFCOUNTER_COLLISIONS:
6808 		return (stats->etherStatsCollisions);
6809 	default:
6810 		return (if_get_counter_default(ifp, cnt));
6811 	}
6812 }
6813 
6814 #ifdef NETDUMP
6815 static void
6816 bge_netdump_init(if_t ifp, int *nrxr, int *ncl, int *clsize)
6817 {
6818 	struct bge_softc *sc;
6819 
6820 	sc = if_getsoftc(ifp);
6821 	BGE_LOCK(sc);
6822 	*nrxr = sc->bge_return_ring_cnt;
6823 	*ncl = NETDUMP_MAX_IN_FLIGHT;
6824 	if ((sc->bge_flags & BGE_FLAG_JUMBO_STD) != 0 &&
6825 	    (if_getmtu(sc->bge_ifp) + ETHER_HDR_LEN + ETHER_CRC_LEN +
6826 	    ETHER_VLAN_ENCAP_LEN > (MCLBYTES - ETHER_ALIGN)))
6827 		*clsize = MJUM9BYTES;
6828 	else
6829 		*clsize = MCLBYTES;
6830 	BGE_UNLOCK(sc);
6831 }
6832 
6833 static void
6834 bge_netdump_event(if_t ifp __unused, enum netdump_ev event __unused)
6835 {
6836 }
6837 
6838 static int
6839 bge_netdump_transmit(if_t ifp, struct mbuf *m)
6840 {
6841 	struct bge_softc *sc;
6842 	uint32_t prodidx;
6843 	int error;
6844 
6845 	sc = if_getsoftc(ifp);
6846 	if ((if_getdrvflags(ifp) & (IFF_DRV_RUNNING | IFF_DRV_OACTIVE)) !=
6847 	    IFF_DRV_RUNNING)
6848 		return (1);
6849 
6850 	prodidx = sc->bge_tx_prodidx;
6851 	error = bge_encap(sc, &m, &prodidx);
6852 	if (error == 0)
6853 		bge_start_tx(sc, prodidx);
6854 	return (error);
6855 }
6856 
6857 static int
6858 bge_netdump_poll(if_t ifp, int count)
6859 {
6860 	struct bge_softc *sc;
6861 	uint32_t rx_prod, tx_cons;
6862 
6863 	sc = if_getsoftc(ifp);
6864 	if ((if_getdrvflags(ifp) & (IFF_DRV_RUNNING | IFF_DRV_OACTIVE)) !=
6865 	    IFF_DRV_RUNNING)
6866 		return (1);
6867 
6868 	bus_dmamap_sync(sc->bge_cdata.bge_status_tag,
6869 	    sc->bge_cdata.bge_status_map,
6870 	    BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE);
6871 
6872 	rx_prod = sc->bge_ldata.bge_status_block->bge_idx[0].bge_rx_prod_idx;
6873 	tx_cons = sc->bge_ldata.bge_status_block->bge_idx[0].bge_tx_cons_idx;
6874 
6875 	bus_dmamap_sync(sc->bge_cdata.bge_status_tag,
6876 	    sc->bge_cdata.bge_status_map,
6877 	    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
6878 
6879 	(void)bge_rxeof(sc, rx_prod, 0);
6880 	bge_txeof(sc, tx_cons);
6881 	return (0);
6882 }
6883 #endif /* NETDUMP */
6884