xref: /freebsd/sys/dev/bge/if_bge.c (revision 77b7cdf1999ee965ad494fddd184b18f532ac91a)
1 /*
2  * Copyright (c) 2001 Wind River Systems
3  * Copyright (c) 1997, 1998, 1999, 2001
4  *	Bill Paul <wpaul@windriver.com>.  All rights reserved.
5  *
6  * Redistribution and use in source and binary forms, with or without
7  * modification, are permitted provided that the following conditions
8  * are met:
9  * 1. Redistributions of source code must retain the above copyright
10  *    notice, this list of conditions and the following disclaimer.
11  * 2. Redistributions in binary form must reproduce the above copyright
12  *    notice, this list of conditions and the following disclaimer in the
13  *    documentation and/or other materials provided with the distribution.
14  * 3. All advertising materials mentioning features or use of this software
15  *    must display the following acknowledgement:
16  *	This product includes software developed by Bill Paul.
17  * 4. Neither the name of the author nor the names of any co-contributors
18  *    may be used to endorse or promote products derived from this software
19  *    without specific prior written permission.
20  *
21  * THIS SOFTWARE IS PROVIDED BY Bill Paul AND CONTRIBUTORS ``AS IS'' AND
22  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
23  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
24  * ARE DISCLAIMED.  IN NO EVENT SHALL Bill Paul OR THE VOICES IN HIS HEAD
25  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
26  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
27  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
28  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
29  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
30  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF
31  * THE POSSIBILITY OF SUCH DAMAGE.
32  */
33 
34 /*
35  * Broadcom BCM570x family gigabit ethernet driver for FreeBSD.
36  *
37  * The Broadcom BCM5700 is based on technology originally developed by
38  * Alteon Networks as part of the Tigon I and Tigon II gigabit ethernet
39  * MAC chips. The BCM5700, sometimes refered to as the Tigon III, has
40  * two on-board MIPS R4000 CPUs and can have as much as 16MB of external
41  * SSRAM. The BCM5700 supports TCP, UDP and IP checksum offload, jumbo
42  * frames, highly configurable RX filtering, and 16 RX and TX queues
43  * (which, along with RX filter rules, can be used for QOS applications).
44  * Other features, such as TCP segmentation, may be available as part
45  * of value-added firmware updates. Unlike the Tigon I and Tigon II,
46  * firmware images can be stored in hardware and need not be compiled
47  * into the driver.
48  *
49  * The BCM5700 supports the PCI v2.2 and PCI-X v1.0 standards, and will
50  * function in a 32-bit/64-bit 33/66Mhz bus, or a 64-bit/133Mhz bus.
51  *
52  * The BCM5701 is a single-chip solution incorporating both the BCM5700
53  * MAC and a BCM5401 10/100/1000 PHY. Unlike the BCM5700, the BCM5701
54  * does not support external SSRAM.
55  *
56  * Broadcom also produces a variation of the BCM5700 under the "Altima"
57  * brand name, which is functionally similar but lacks PCI-X support.
58  *
59  * Without external SSRAM, you can only have at most 4 TX rings,
60  * and the use of the mini RX ring is disabled. This seems to imply
61  * that these features are simply not available on the BCM5701. As a
62  * result, this driver does not implement any support for the mini RX
63  * ring.
64  */
65 
66 #include <sys/cdefs.h>
67 __FBSDID("$FreeBSD$");
68 
69 #include <sys/param.h>
70 #include <sys/systm.h>
71 #include <sys/sockio.h>
72 #include <sys/mbuf.h>
73 #include <sys/malloc.h>
74 #include <sys/kernel.h>
75 #include <sys/socket.h>
76 #include <sys/queue.h>
77 
78 #include <net/if.h>
79 #include <net/if_arp.h>
80 #include <net/ethernet.h>
81 #include <net/if_dl.h>
82 #include <net/if_media.h>
83 
84 #include <net/bpf.h>
85 
86 #include <net/if_types.h>
87 #include <net/if_vlan_var.h>
88 
89 #include <netinet/in_systm.h>
90 #include <netinet/in.h>
91 #include <netinet/ip.h>
92 
93 #include <vm/vm.h>              /* for vtophys */
94 #include <vm/pmap.h>            /* for vtophys */
95 #include <machine/clock.h>      /* for DELAY */
96 #include <machine/bus_memio.h>
97 #include <machine/bus.h>
98 #include <machine/resource.h>
99 #include <sys/bus.h>
100 #include <sys/rman.h>
101 
102 #include <dev/mii/mii.h>
103 #include <dev/mii/miivar.h>
104 #include "miidevs.h"
105 #include <dev/mii/brgphyreg.h>
106 
107 #include <pci/pcireg.h>
108 #include <pci/pcivar.h>
109 
110 #include <dev/bge/if_bgereg.h>
111 
112 #define BGE_CSUM_FEATURES	(CSUM_IP | CSUM_TCP | CSUM_UDP)
113 
114 MODULE_DEPEND(bge, pci, 1, 1, 1);
115 MODULE_DEPEND(bge, ether, 1, 1, 1);
116 MODULE_DEPEND(bge, miibus, 1, 1, 1);
117 
118 /* "controller miibus0" required.  See GENERIC if you get errors here. */
119 #include "miibus_if.h"
120 
121 /*
122  * Various supported device vendors/types and their names. Note: the
123  * spec seems to indicate that the hardware still has Alteon's vendor
124  * ID burned into it, though it will always be overriden by the vendor
125  * ID in the EEPROM. Just to be safe, we cover all possibilities.
126  */
127 #define BGE_DEVDESC_MAX		64	/* Maximum device description length */
128 
129 static struct bge_type bge_devs[] = {
130 	{ ALT_VENDORID,	ALT_DEVICEID_BCM5700,
131 		"Broadcom BCM5700 Gigabit Ethernet" },
132 	{ ALT_VENDORID,	ALT_DEVICEID_BCM5701,
133 		"Broadcom BCM5701 Gigabit Ethernet" },
134 	{ BCOM_VENDORID, BCOM_DEVICEID_BCM5700,
135 		"Broadcom BCM5700 Gigabit Ethernet" },
136 	{ BCOM_VENDORID, BCOM_DEVICEID_BCM5701,
137 		"Broadcom BCM5701 Gigabit Ethernet" },
138 	{ BCOM_VENDORID, BCOM_DEVICEID_BCM5702X,
139 		"Broadcom BCM5702X Gigabit Ethernet" },
140 	{ BCOM_VENDORID, BCOM_DEVICEID_BCM5703X,
141 		"Broadcom BCM5703X Gigabit Ethernet" },
142 	{ BCOM_VENDORID, BCOM_DEVICEID_BCM5704C,
143 		"Broadcom BCM5704C Dual Gigabit Ethernet" },
144 	{ BCOM_VENDORID, BCOM_DEVICEID_BCM5704S,
145 		"Broadcom BCM5704S Dual Gigabit Ethernet" },
146 	{ SK_VENDORID, SK_DEVICEID_ALTIMA,
147 		"SysKonnect Gigabit Ethernet" },
148 	{ ALTIMA_VENDORID, ALTIMA_DEVICE_AC1000,
149 		"Altima AC1000 Gigabit Ethernet" },
150 	{ ALTIMA_VENDORID, ALTIMA_DEVICE_AC9100,
151 		"Altima AC9100 Gigabit Ethernet" },
152 	{ 0, 0, NULL }
153 };
154 
155 static int bge_probe		(device_t);
156 static int bge_attach		(device_t);
157 static int bge_detach		(device_t);
158 static void bge_release_resources
159 				(struct bge_softc *);
160 static void bge_txeof		(struct bge_softc *);
161 static void bge_rxeof		(struct bge_softc *);
162 
163 static void bge_tick		(void *);
164 static void bge_stats_update	(struct bge_softc *);
165 static int bge_encap		(struct bge_softc *, struct mbuf *,
166 					u_int32_t *);
167 
168 static void bge_intr		(void *);
169 static void bge_start		(struct ifnet *);
170 static int bge_ioctl		(struct ifnet *, u_long, caddr_t);
171 static void bge_init		(void *);
172 static void bge_stop		(struct bge_softc *);
173 static void bge_watchdog		(struct ifnet *);
174 static void bge_shutdown		(device_t);
175 static int bge_ifmedia_upd	(struct ifnet *);
176 static void bge_ifmedia_sts	(struct ifnet *, struct ifmediareq *);
177 
178 static u_int8_t	bge_eeprom_getbyte	(struct bge_softc *, int, u_int8_t *);
179 static int bge_read_eeprom	(struct bge_softc *, caddr_t, int, int);
180 
181 static u_int32_t bge_crc	(caddr_t);
182 static void bge_setmulti	(struct bge_softc *);
183 
184 static void bge_handle_events	(struct bge_softc *);
185 static int bge_alloc_jumbo_mem	(struct bge_softc *);
186 static void bge_free_jumbo_mem	(struct bge_softc *);
187 static void *bge_jalloc		(struct bge_softc *);
188 static void bge_jfree		(void *, void *);
189 static int bge_newbuf_std	(struct bge_softc *, int, struct mbuf *);
190 static int bge_newbuf_jumbo	(struct bge_softc *, int, struct mbuf *);
191 static int bge_init_rx_ring_std	(struct bge_softc *);
192 static void bge_free_rx_ring_std	(struct bge_softc *);
193 static int bge_init_rx_ring_jumbo	(struct bge_softc *);
194 static void bge_free_rx_ring_jumbo	(struct bge_softc *);
195 static void bge_free_tx_ring	(struct bge_softc *);
196 static int bge_init_tx_ring	(struct bge_softc *);
197 
198 static int bge_chipinit		(struct bge_softc *);
199 static int bge_blockinit	(struct bge_softc *);
200 
201 #ifdef notdef
202 static u_int8_t bge_vpd_readbyte(struct bge_softc *, int);
203 static void bge_vpd_read_res	(struct bge_softc *, struct vpd_res *, int);
204 static void bge_vpd_read	(struct bge_softc *);
205 #endif
206 
207 static u_int32_t bge_readmem_ind
208 				(struct bge_softc *, int);
209 static void bge_writemem_ind	(struct bge_softc *, int, int);
210 #ifdef notdef
211 static u_int32_t bge_readreg_ind
212 				(struct bge_softc *, int);
213 #endif
214 static void bge_writereg_ind	(struct bge_softc *, int, int);
215 
216 static int bge_miibus_readreg	(device_t, int, int);
217 static int bge_miibus_writereg	(device_t, int, int, int);
218 static void bge_miibus_statchg	(device_t);
219 
220 static void bge_reset		(struct bge_softc *);
221 
222 static device_method_t bge_methods[] = {
223 	/* Device interface */
224 	DEVMETHOD(device_probe,		bge_probe),
225 	DEVMETHOD(device_attach,	bge_attach),
226 	DEVMETHOD(device_detach,	bge_detach),
227 	DEVMETHOD(device_shutdown,	bge_shutdown),
228 
229 	/* bus interface */
230 	DEVMETHOD(bus_print_child,	bus_generic_print_child),
231 	DEVMETHOD(bus_driver_added,	bus_generic_driver_added),
232 
233 	/* MII interface */
234 	DEVMETHOD(miibus_readreg,	bge_miibus_readreg),
235 	DEVMETHOD(miibus_writereg,	bge_miibus_writereg),
236 	DEVMETHOD(miibus_statchg,	bge_miibus_statchg),
237 
238 	{ 0, 0 }
239 };
240 
241 static driver_t bge_driver = {
242 	"bge",
243 	bge_methods,
244 	sizeof(struct bge_softc)
245 };
246 
247 static devclass_t bge_devclass;
248 
249 DRIVER_MODULE(bge, pci, bge_driver, bge_devclass, 0, 0);
250 DRIVER_MODULE(miibus, bge, miibus_driver, miibus_devclass, 0, 0);
251 
252 static u_int32_t
253 bge_readmem_ind(sc, off)
254 	struct bge_softc *sc;
255 	int off;
256 {
257 	device_t dev;
258 
259 	dev = sc->bge_dev;
260 
261 	pci_write_config(dev, BGE_PCI_MEMWIN_BASEADDR, off, 4);
262 	return(pci_read_config(dev, BGE_PCI_MEMWIN_DATA, 4));
263 }
264 
265 static void
266 bge_writemem_ind(sc, off, val)
267 	struct bge_softc *sc;
268 	int off, val;
269 {
270 	device_t dev;
271 
272 	dev = sc->bge_dev;
273 
274 	pci_write_config(dev, BGE_PCI_MEMWIN_BASEADDR, off, 4);
275 	pci_write_config(dev, BGE_PCI_MEMWIN_DATA, val, 4);
276 
277 	return;
278 }
279 
280 #ifdef notdef
281 static u_int32_t
282 bge_readreg_ind(sc, off)
283 	struct bge_softc *sc;
284 	int off;
285 {
286 	device_t dev;
287 
288 	dev = sc->bge_dev;
289 
290 	pci_write_config(dev, BGE_PCI_REG_BASEADDR, off, 4);
291 	return(pci_read_config(dev, BGE_PCI_REG_DATA, 4));
292 }
293 #endif
294 
295 static void
296 bge_writereg_ind(sc, off, val)
297 	struct bge_softc *sc;
298 	int off, val;
299 {
300 	device_t dev;
301 
302 	dev = sc->bge_dev;
303 
304 	pci_write_config(dev, BGE_PCI_REG_BASEADDR, off, 4);
305 	pci_write_config(dev, BGE_PCI_REG_DATA, val, 4);
306 
307 	return;
308 }
309 
310 #ifdef notdef
311 static u_int8_t
312 bge_vpd_readbyte(sc, addr)
313 	struct bge_softc *sc;
314 	int addr;
315 {
316 	int i;
317 	device_t dev;
318 	u_int32_t val;
319 
320 	dev = sc->bge_dev;
321 	pci_write_config(dev, BGE_PCI_VPD_ADDR, addr, 2);
322 	for (i = 0; i < BGE_TIMEOUT * 10; i++) {
323 		DELAY(10);
324 		if (pci_read_config(dev, BGE_PCI_VPD_ADDR, 2) & BGE_VPD_FLAG)
325 			break;
326 	}
327 
328 	if (i == BGE_TIMEOUT) {
329 		printf("bge%d: VPD read timed out\n", sc->bge_unit);
330 		return(0);
331 	}
332 
333 	val = pci_read_config(dev, BGE_PCI_VPD_DATA, 4);
334 
335 	return((val >> ((addr % 4) * 8)) & 0xFF);
336 }
337 
338 static void
339 bge_vpd_read_res(sc, res, addr)
340 	struct bge_softc *sc;
341 	struct vpd_res *res;
342 	int addr;
343 {
344 	int i;
345 	u_int8_t *ptr;
346 
347 	ptr = (u_int8_t *)res;
348 	for (i = 0; i < sizeof(struct vpd_res); i++)
349 		ptr[i] = bge_vpd_readbyte(sc, i + addr);
350 
351 	return;
352 }
353 
354 static void
355 bge_vpd_read(sc)
356 	struct bge_softc *sc;
357 {
358 	int pos = 0, i;
359 	struct vpd_res res;
360 
361 	if (sc->bge_vpd_prodname != NULL)
362 		free(sc->bge_vpd_prodname, M_DEVBUF);
363 	if (sc->bge_vpd_readonly != NULL)
364 		free(sc->bge_vpd_readonly, M_DEVBUF);
365 	sc->bge_vpd_prodname = NULL;
366 	sc->bge_vpd_readonly = NULL;
367 
368 	bge_vpd_read_res(sc, &res, pos);
369 
370 	if (res.vr_id != VPD_RES_ID) {
371 		printf("bge%d: bad VPD resource id: expected %x got %x\n",
372 			sc->bge_unit, VPD_RES_ID, res.vr_id);
373                 return;
374         }
375 
376 	pos += sizeof(res);
377 	sc->bge_vpd_prodname = malloc(res.vr_len + 1, M_DEVBUF, M_NOWAIT);
378 	for (i = 0; i < res.vr_len; i++)
379 		sc->bge_vpd_prodname[i] = bge_vpd_readbyte(sc, i + pos);
380 	sc->bge_vpd_prodname[i] = '\0';
381 	pos += i;
382 
383 	bge_vpd_read_res(sc, &res, pos);
384 
385 	if (res.vr_id != VPD_RES_READ) {
386 		printf("bge%d: bad VPD resource id: expected %x got %x\n",
387 		    sc->bge_unit, VPD_RES_READ, res.vr_id);
388 		return;
389 	}
390 
391 	pos += sizeof(res);
392 	sc->bge_vpd_readonly = malloc(res.vr_len, M_DEVBUF, M_NOWAIT);
393 	for (i = 0; i < res.vr_len + 1; i++)
394 		sc->bge_vpd_readonly[i] = bge_vpd_readbyte(sc, i + pos);
395 
396 	return;
397 }
398 #endif
399 
400 /*
401  * Read a byte of data stored in the EEPROM at address 'addr.' The
402  * BCM570x supports both the traditional bitbang interface and an
403  * auto access interface for reading the EEPROM. We use the auto
404  * access method.
405  */
406 static u_int8_t
407 bge_eeprom_getbyte(sc, addr, dest)
408 	struct bge_softc *sc;
409 	int addr;
410 	u_int8_t *dest;
411 {
412 	int i;
413 	u_int32_t byte = 0;
414 
415 	/*
416 	 * Enable use of auto EEPROM access so we can avoid
417 	 * having to use the bitbang method.
418 	 */
419 	BGE_SETBIT(sc, BGE_MISC_LOCAL_CTL, BGE_MLC_AUTO_EEPROM);
420 
421 	/* Reset the EEPROM, load the clock period. */
422 	CSR_WRITE_4(sc, BGE_EE_ADDR,
423 	    BGE_EEADDR_RESET|BGE_EEHALFCLK(BGE_HALFCLK_384SCL));
424 	DELAY(20);
425 
426 	/* Issue the read EEPROM command. */
427 	CSR_WRITE_4(sc, BGE_EE_ADDR, BGE_EE_READCMD | addr);
428 
429 	/* Wait for completion */
430 	for(i = 0; i < BGE_TIMEOUT * 10; i++) {
431 		DELAY(10);
432 		if (CSR_READ_4(sc, BGE_EE_ADDR) & BGE_EEADDR_DONE)
433 			break;
434 	}
435 
436 	if (i == BGE_TIMEOUT) {
437 		printf("bge%d: eeprom read timed out\n", sc->bge_unit);
438 		return(0);
439 	}
440 
441 	/* Get result. */
442 	byte = CSR_READ_4(sc, BGE_EE_DATA);
443 
444         *dest = (byte >> ((addr % 4) * 8)) & 0xFF;
445 
446 	return(0);
447 }
448 
449 /*
450  * Read a sequence of bytes from the EEPROM.
451  */
452 static int
453 bge_read_eeprom(sc, dest, off, cnt)
454 	struct bge_softc *sc;
455 	caddr_t dest;
456 	int off;
457 	int cnt;
458 {
459 	int err = 0, i;
460 	u_int8_t byte = 0;
461 
462 	for (i = 0; i < cnt; i++) {
463 		err = bge_eeprom_getbyte(sc, off + i, &byte);
464 		if (err)
465 			break;
466 		*(dest + i) = byte;
467 	}
468 
469 	return(err ? 1 : 0);
470 }
471 
472 static int
473 bge_miibus_readreg(dev, phy, reg)
474 	device_t dev;
475 	int phy, reg;
476 {
477 	struct bge_softc *sc;
478 	struct ifnet *ifp;
479 	u_int32_t val, autopoll;
480 	int i;
481 
482 	sc = device_get_softc(dev);
483 	ifp = &sc->arpcom.ac_if;
484 
485 	if (phy != 1)
486 		switch(sc->bge_asicrev) {
487 		case BGE_ASICREV_BCM5701_B5:
488 		case BGE_ASICREV_BCM5703_A2:
489 		case BGE_ASICREV_BCM5704_A0:
490 			return(0);
491 		}
492 
493 	/* Reading with autopolling on may trigger PCI errors */
494 	autopoll = CSR_READ_4(sc, BGE_MI_MODE);
495 	if (autopoll & BGE_MIMODE_AUTOPOLL) {
496 		BGE_CLRBIT(sc, BGE_MI_MODE, BGE_MIMODE_AUTOPOLL);
497 		DELAY(40);
498 	}
499 
500 	CSR_WRITE_4(sc, BGE_MI_COMM, BGE_MICMD_READ|BGE_MICOMM_BUSY|
501 	    BGE_MIPHY(phy)|BGE_MIREG(reg));
502 
503 	for (i = 0; i < BGE_TIMEOUT; i++) {
504 		val = CSR_READ_4(sc, BGE_MI_COMM);
505 		if (!(val & BGE_MICOMM_BUSY))
506 			break;
507 	}
508 
509 	if (i == BGE_TIMEOUT) {
510 		printf("bge%d: PHY read timed out\n", sc->bge_unit);
511 		val = 0;
512 		goto done;
513 	}
514 
515 	val = CSR_READ_4(sc, BGE_MI_COMM);
516 
517 done:
518 	if (autopoll & BGE_MIMODE_AUTOPOLL) {
519 		BGE_SETBIT(sc, BGE_MI_MODE, BGE_MIMODE_AUTOPOLL);
520 		DELAY(40);
521 	}
522 
523 	if (val & BGE_MICOMM_READFAIL)
524 		return(0);
525 
526 	return(val & 0xFFFF);
527 }
528 
529 static int
530 bge_miibus_writereg(dev, phy, reg, val)
531 	device_t dev;
532 	int phy, reg, val;
533 {
534 	struct bge_softc *sc;
535 	u_int32_t autopoll;
536 	int i;
537 
538 	sc = device_get_softc(dev);
539 
540 	/* Reading with autopolling on may trigger PCI errors */
541 	autopoll = CSR_READ_4(sc, BGE_MI_MODE);
542 	if (autopoll & BGE_MIMODE_AUTOPOLL) {
543 		BGE_CLRBIT(sc, BGE_MI_MODE, BGE_MIMODE_AUTOPOLL);
544 		DELAY(40);
545 	}
546 
547 	CSR_WRITE_4(sc, BGE_MI_COMM, BGE_MICMD_WRITE|BGE_MICOMM_BUSY|
548 	    BGE_MIPHY(phy)|BGE_MIREG(reg)|val);
549 
550 	for (i = 0; i < BGE_TIMEOUT; i++) {
551 		if (!(CSR_READ_4(sc, BGE_MI_COMM) & BGE_MICOMM_BUSY))
552 			break;
553 	}
554 
555 	if (autopoll & BGE_MIMODE_AUTOPOLL) {
556 		BGE_SETBIT(sc, BGE_MI_MODE, BGE_MIMODE_AUTOPOLL);
557 		DELAY(40);
558 	}
559 
560 	if (i == BGE_TIMEOUT) {
561 		printf("bge%d: PHY read timed out\n", sc->bge_unit);
562 		return(0);
563 	}
564 
565 	return(0);
566 }
567 
568 static void
569 bge_miibus_statchg(dev)
570 	device_t dev;
571 {
572 	struct bge_softc *sc;
573 	struct mii_data *mii;
574 
575 	sc = device_get_softc(dev);
576 	mii = device_get_softc(sc->bge_miibus);
577 
578 	BGE_CLRBIT(sc, BGE_MAC_MODE, BGE_MACMODE_PORTMODE);
579 	if (IFM_SUBTYPE(mii->mii_media_active) == IFM_1000_T) {
580 		BGE_SETBIT(sc, BGE_MAC_MODE, BGE_PORTMODE_GMII);
581 	} else {
582 		BGE_SETBIT(sc, BGE_MAC_MODE, BGE_PORTMODE_MII);
583 	}
584 
585 	if ((mii->mii_media_active & IFM_GMASK) == IFM_FDX) {
586 		BGE_CLRBIT(sc, BGE_MAC_MODE, BGE_MACMODE_HALF_DUPLEX);
587 	} else {
588 		BGE_SETBIT(sc, BGE_MAC_MODE, BGE_MACMODE_HALF_DUPLEX);
589 	}
590 
591 	return;
592 }
593 
594 /*
595  * Handle events that have triggered interrupts.
596  */
597 static void
598 bge_handle_events(sc)
599 	struct bge_softc		*sc;
600 {
601 
602 	return;
603 }
604 
605 /*
606  * Memory management for jumbo frames.
607  */
608 
609 static int
610 bge_alloc_jumbo_mem(sc)
611 	struct bge_softc		*sc;
612 {
613 	caddr_t			ptr;
614 	register int		i;
615 	struct bge_jpool_entry   *entry;
616 
617 	/* Grab a big chunk o' storage. */
618 	sc->bge_cdata.bge_jumbo_buf = contigmalloc(BGE_JMEM, M_DEVBUF,
619 		M_NOWAIT, 0, 0xffffffff, PAGE_SIZE, 0);
620 
621 	if (sc->bge_cdata.bge_jumbo_buf == NULL) {
622 		printf("bge%d: no memory for jumbo buffers!\n", sc->bge_unit);
623 		return(ENOBUFS);
624 	}
625 
626 	SLIST_INIT(&sc->bge_jfree_listhead);
627 	SLIST_INIT(&sc->bge_jinuse_listhead);
628 
629 	/*
630 	 * Now divide it up into 9K pieces and save the addresses
631 	 * in an array.
632 	 */
633 	ptr = sc->bge_cdata.bge_jumbo_buf;
634 	for (i = 0; i < BGE_JSLOTS; i++) {
635 		sc->bge_cdata.bge_jslots[i] = ptr;
636 		ptr += BGE_JLEN;
637 		entry = malloc(sizeof(struct bge_jpool_entry),
638 		    M_DEVBUF, M_NOWAIT);
639 		if (entry == NULL) {
640 			contigfree(sc->bge_cdata.bge_jumbo_buf,
641 			    BGE_JMEM, M_DEVBUF);
642 			sc->bge_cdata.bge_jumbo_buf = NULL;
643 			printf("bge%d: no memory for jumbo "
644 			    "buffer queue!\n", sc->bge_unit);
645 			return(ENOBUFS);
646 		}
647 		entry->slot = i;
648 		SLIST_INSERT_HEAD(&sc->bge_jfree_listhead,
649 		    entry, jpool_entries);
650 	}
651 
652 	return(0);
653 }
654 
655 static void
656 bge_free_jumbo_mem(sc)
657         struct bge_softc *sc;
658 {
659         int i;
660         struct bge_jpool_entry *entry;
661 
662 	for (i = 0; i < BGE_JSLOTS; i++) {
663 		entry = SLIST_FIRST(&sc->bge_jfree_listhead);
664 		SLIST_REMOVE_HEAD(&sc->bge_jfree_listhead, jpool_entries);
665 		free(entry, M_DEVBUF);
666 	}
667 
668 	contigfree(sc->bge_cdata.bge_jumbo_buf, BGE_JMEM, M_DEVBUF);
669 
670         return;
671 }
672 
673 /*
674  * Allocate a jumbo buffer.
675  */
676 static void *
677 bge_jalloc(sc)
678 	struct bge_softc		*sc;
679 {
680 	struct bge_jpool_entry   *entry;
681 
682 	entry = SLIST_FIRST(&sc->bge_jfree_listhead);
683 
684 	if (entry == NULL) {
685 		printf("bge%d: no free jumbo buffers\n", sc->bge_unit);
686 		return(NULL);
687 	}
688 
689 	SLIST_REMOVE_HEAD(&sc->bge_jfree_listhead, jpool_entries);
690 	SLIST_INSERT_HEAD(&sc->bge_jinuse_listhead, entry, jpool_entries);
691 	return(sc->bge_cdata.bge_jslots[entry->slot]);
692 }
693 
694 /*
695  * Release a jumbo buffer.
696  */
697 static void
698 bge_jfree(buf, args)
699 	void *buf;
700 	void *args;
701 {
702 	struct bge_jpool_entry *entry;
703 	struct bge_softc *sc;
704 	int i;
705 
706 	/* Extract the softc struct pointer. */
707 	sc = (struct bge_softc *)args;
708 
709 	if (sc == NULL)
710 		panic("bge_jfree: can't find softc pointer!");
711 
712 	/* calculate the slot this buffer belongs to */
713 
714 	i = ((vm_offset_t)buf
715 	     - (vm_offset_t)sc->bge_cdata.bge_jumbo_buf) / BGE_JLEN;
716 
717 	if ((i < 0) || (i >= BGE_JSLOTS))
718 		panic("bge_jfree: asked to free buffer that we don't manage!");
719 
720 	entry = SLIST_FIRST(&sc->bge_jinuse_listhead);
721 	if (entry == NULL)
722 		panic("bge_jfree: buffer not in use!");
723 	entry->slot = i;
724 	SLIST_REMOVE_HEAD(&sc->bge_jinuse_listhead, jpool_entries);
725 	SLIST_INSERT_HEAD(&sc->bge_jfree_listhead, entry, jpool_entries);
726 
727 	return;
728 }
729 
730 
731 /*
732  * Intialize a standard receive ring descriptor.
733  */
734 static int
735 bge_newbuf_std(sc, i, m)
736 	struct bge_softc	*sc;
737 	int			i;
738 	struct mbuf		*m;
739 {
740 	struct mbuf		*m_new = NULL;
741 	struct bge_rx_bd	*r;
742 
743 	if (m == NULL) {
744 		MGETHDR(m_new, M_DONTWAIT, MT_DATA);
745 		if (m_new == NULL) {
746 			return(ENOBUFS);
747 		}
748 
749 		MCLGET(m_new, M_DONTWAIT);
750 		if (!(m_new->m_flags & M_EXT)) {
751 			m_freem(m_new);
752 			return(ENOBUFS);
753 		}
754 		m_new->m_len = m_new->m_pkthdr.len = MCLBYTES;
755 	} else {
756 		m_new = m;
757 		m_new->m_len = m_new->m_pkthdr.len = MCLBYTES;
758 		m_new->m_data = m_new->m_ext.ext_buf;
759 	}
760 
761 	if (!sc->bge_rx_alignment_bug)
762 		m_adj(m_new, ETHER_ALIGN);
763 	sc->bge_cdata.bge_rx_std_chain[i] = m_new;
764 	r = &sc->bge_rdata->bge_rx_std_ring[i];
765 	BGE_HOSTADDR(r->bge_addr) = vtophys(mtod(m_new, caddr_t));
766 	r->bge_flags = BGE_RXBDFLAG_END;
767 	r->bge_len = m_new->m_len;
768 	r->bge_idx = i;
769 
770 	return(0);
771 }
772 
773 /*
774  * Initialize a jumbo receive ring descriptor. This allocates
775  * a jumbo buffer from the pool managed internally by the driver.
776  */
777 static int
778 bge_newbuf_jumbo(sc, i, m)
779 	struct bge_softc *sc;
780 	int i;
781 	struct mbuf *m;
782 {
783 	struct mbuf *m_new = NULL;
784 	struct bge_rx_bd *r;
785 
786 	if (m == NULL) {
787 		caddr_t			*buf = NULL;
788 
789 		/* Allocate the mbuf. */
790 		MGETHDR(m_new, M_DONTWAIT, MT_DATA);
791 		if (m_new == NULL) {
792 			return(ENOBUFS);
793 		}
794 
795 		/* Allocate the jumbo buffer */
796 		buf = bge_jalloc(sc);
797 		if (buf == NULL) {
798 			m_freem(m_new);
799 			printf("bge%d: jumbo allocation failed "
800 			    "-- packet dropped!\n", sc->bge_unit);
801 			return(ENOBUFS);
802 		}
803 
804 		/* Attach the buffer to the mbuf. */
805 		m_new->m_data = (void *) buf;
806 		m_new->m_len = m_new->m_pkthdr.len = BGE_JUMBO_FRAMELEN;
807 		MEXTADD(m_new, buf, BGE_JUMBO_FRAMELEN, bge_jfree,
808 		    (struct bge_softc *)sc, 0, EXT_NET_DRV);
809 	} else {
810 		m_new = m;
811 		m_new->m_data = m_new->m_ext.ext_buf;
812 		m_new->m_ext.ext_size = BGE_JUMBO_FRAMELEN;
813 	}
814 
815 	if (!sc->bge_rx_alignment_bug)
816 		m_adj(m_new, ETHER_ALIGN);
817 	/* Set up the descriptor. */
818 	r = &sc->bge_rdata->bge_rx_jumbo_ring[i];
819 	sc->bge_cdata.bge_rx_jumbo_chain[i] = m_new;
820 	BGE_HOSTADDR(r->bge_addr) = vtophys(mtod(m_new, caddr_t));
821 	r->bge_flags = BGE_RXBDFLAG_END|BGE_RXBDFLAG_JUMBO_RING;
822 	r->bge_len = m_new->m_len;
823 	r->bge_idx = i;
824 
825 	return(0);
826 }
827 
828 /*
829  * The standard receive ring has 512 entries in it. At 2K per mbuf cluster,
830  * that's 1MB or memory, which is a lot. For now, we fill only the first
831  * 256 ring entries and hope that our CPU is fast enough to keep up with
832  * the NIC.
833  */
834 static int
835 bge_init_rx_ring_std(sc)
836 	struct bge_softc *sc;
837 {
838 	int i;
839 
840 	for (i = 0; i < BGE_SSLOTS; i++) {
841 		if (bge_newbuf_std(sc, i, NULL) == ENOBUFS)
842 			return(ENOBUFS);
843 	};
844 
845 	sc->bge_std = i - 1;
846 	CSR_WRITE_4(sc, BGE_MBX_RX_STD_PROD_LO, sc->bge_std);
847 
848 	return(0);
849 }
850 
851 static void
852 bge_free_rx_ring_std(sc)
853 	struct bge_softc *sc;
854 {
855 	int i;
856 
857 	for (i = 0; i < BGE_STD_RX_RING_CNT; i++) {
858 		if (sc->bge_cdata.bge_rx_std_chain[i] != NULL) {
859 			m_freem(sc->bge_cdata.bge_rx_std_chain[i]);
860 			sc->bge_cdata.bge_rx_std_chain[i] = NULL;
861 		}
862 		bzero((char *)&sc->bge_rdata->bge_rx_std_ring[i],
863 		    sizeof(struct bge_rx_bd));
864 	}
865 
866 	return;
867 }
868 
869 static int
870 bge_init_rx_ring_jumbo(sc)
871 	struct bge_softc *sc;
872 {
873 	int i;
874 	struct bge_rcb *rcb;
875 
876 	for (i = 0; i < BGE_JUMBO_RX_RING_CNT; i++) {
877 		if (bge_newbuf_jumbo(sc, i, NULL) == ENOBUFS)
878 			return(ENOBUFS);
879 	};
880 
881 	sc->bge_jumbo = i - 1;
882 
883 	rcb = &sc->bge_rdata->bge_info.bge_jumbo_rx_rcb;
884 	rcb->bge_maxlen_flags = BGE_RCB_MAXLEN_FLAGS(0, 0);
885 	CSR_WRITE_4(sc, BGE_RX_JUMBO_RCB_MAXLEN_FLAGS, rcb->bge_maxlen_flags);
886 
887 	CSR_WRITE_4(sc, BGE_MBX_RX_JUMBO_PROD_LO, sc->bge_jumbo);
888 
889 	return(0);
890 }
891 
892 static void
893 bge_free_rx_ring_jumbo(sc)
894 	struct bge_softc *sc;
895 {
896 	int i;
897 
898 	for (i = 0; i < BGE_JUMBO_RX_RING_CNT; i++) {
899 		if (sc->bge_cdata.bge_rx_jumbo_chain[i] != NULL) {
900 			m_freem(sc->bge_cdata.bge_rx_jumbo_chain[i]);
901 			sc->bge_cdata.bge_rx_jumbo_chain[i] = NULL;
902 		}
903 		bzero((char *)&sc->bge_rdata->bge_rx_jumbo_ring[i],
904 		    sizeof(struct bge_rx_bd));
905 	}
906 
907 	return;
908 }
909 
910 static void
911 bge_free_tx_ring(sc)
912 	struct bge_softc *sc;
913 {
914 	int i;
915 
916 	if (sc->bge_rdata->bge_tx_ring == NULL)
917 		return;
918 
919 	for (i = 0; i < BGE_TX_RING_CNT; i++) {
920 		if (sc->bge_cdata.bge_tx_chain[i] != NULL) {
921 			m_freem(sc->bge_cdata.bge_tx_chain[i]);
922 			sc->bge_cdata.bge_tx_chain[i] = NULL;
923 		}
924 		bzero((char *)&sc->bge_rdata->bge_tx_ring[i],
925 		    sizeof(struct bge_tx_bd));
926 	}
927 
928 	return;
929 }
930 
931 static int
932 bge_init_tx_ring(sc)
933 	struct bge_softc *sc;
934 {
935 	sc->bge_txcnt = 0;
936 	sc->bge_tx_saved_considx = 0;
937 
938 	CSR_WRITE_4(sc, BGE_MBX_TX_HOST_PROD0_LO, 0);
939 	/* 5700 b2 errata */
940 	if (BGE_ASICREV(sc->bge_asicrev) == BGE_ASICREV_BCM5700)
941 		CSR_WRITE_4(sc, BGE_MBX_TX_HOST_PROD0_LO, 0);
942 
943 	CSR_WRITE_4(sc, BGE_MBX_TX_NIC_PROD0_LO, 0);
944 	/* 5700 b2 errata */
945 	if (BGE_ASICREV(sc->bge_asicrev) == BGE_ASICREV_BCM5700)
946 		CSR_WRITE_4(sc, BGE_MBX_TX_NIC_PROD0_LO, 0);
947 
948 	return(0);
949 }
950 
951 #define BGE_POLY	0xEDB88320
952 
953 static u_int32_t
954 bge_crc(addr)
955 	caddr_t addr;
956 {
957 	u_int32_t idx, bit, data, crc;
958 
959 	/* Compute CRC for the address value. */
960 	crc = 0xFFFFFFFF; /* initial value */
961 
962 	for (idx = 0; idx < 6; idx++) {
963 		for (data = *addr++, bit = 0; bit < 8; bit++, data >>= 1)
964 			crc = (crc >> 1) ^ (((crc ^ data) & 1) ? BGE_POLY : 0);
965 	}
966 
967 	return(crc & 0x7F);
968 }
969 
970 static void
971 bge_setmulti(sc)
972 	struct bge_softc *sc;
973 {
974 	struct ifnet *ifp;
975 	struct ifmultiaddr *ifma;
976 	u_int32_t hashes[4] = { 0, 0, 0, 0 };
977 	int h, i;
978 
979 	ifp = &sc->arpcom.ac_if;
980 
981 	if (ifp->if_flags & IFF_ALLMULTI || ifp->if_flags & IFF_PROMISC) {
982 		for (i = 0; i < 4; i++)
983 			CSR_WRITE_4(sc, BGE_MAR0 + (i * 4), 0xFFFFFFFF);
984 		return;
985 	}
986 
987 	/* First, zot all the existing filters. */
988 	for (i = 0; i < 4; i++)
989 		CSR_WRITE_4(sc, BGE_MAR0 + (i * 4), 0);
990 
991 	/* Now program new ones. */
992 	TAILQ_FOREACH(ifma, &ifp->if_multiaddrs, ifma_link) {
993 		if (ifma->ifma_addr->sa_family != AF_LINK)
994 			continue;
995 		h = bge_crc(LLADDR((struct sockaddr_dl *)ifma->ifma_addr));
996 		hashes[(h & 0x60) >> 5] |= 1 << (h & 0x1F);
997 	}
998 
999 	for (i = 0; i < 4; i++)
1000 		CSR_WRITE_4(sc, BGE_MAR0 + (i * 4), hashes[i]);
1001 
1002 	return;
1003 }
1004 
1005 /*
1006  * Do endian, PCI and DMA initialization. Also check the on-board ROM
1007  * self-test results.
1008  */
1009 static int
1010 bge_chipinit(sc)
1011 	struct bge_softc *sc;
1012 {
1013 	int			i;
1014 	u_int32_t		dma_rw_ctl;
1015 
1016 	/* Set endianness before we access any non-PCI registers. */
1017 #if BYTE_ORDER == BIG_ENDIAN
1018 	pci_write_config(sc->bge_dev, BGE_PCI_MISC_CTL,
1019 	    BGE_BIGENDIAN_INIT, 4);
1020 #else
1021 	pci_write_config(sc->bge_dev, BGE_PCI_MISC_CTL,
1022 	    BGE_LITTLEENDIAN_INIT, 4);
1023 #endif
1024 
1025 	/*
1026 	 * Check the 'ROM failed' bit on the RX CPU to see if
1027 	 * self-tests passed.
1028 	 */
1029 	if (CSR_READ_4(sc, BGE_RXCPU_MODE) & BGE_RXCPUMODE_ROMFAIL) {
1030 		printf("bge%d: RX CPU self-diagnostics failed!\n",
1031 		    sc->bge_unit);
1032 		return(ENODEV);
1033 	}
1034 
1035 	/* Clear the MAC control register */
1036 	CSR_WRITE_4(sc, BGE_MAC_MODE, 0);
1037 
1038 	/*
1039 	 * Clear the MAC statistics block in the NIC's
1040 	 * internal memory.
1041 	 */
1042 	for (i = BGE_STATS_BLOCK;
1043 	    i < BGE_STATS_BLOCK_END + 1; i += sizeof(u_int32_t))
1044 		BGE_MEMWIN_WRITE(sc, i, 0);
1045 
1046 	for (i = BGE_STATUS_BLOCK;
1047 	    i < BGE_STATUS_BLOCK_END + 1; i += sizeof(u_int32_t))
1048 		BGE_MEMWIN_WRITE(sc, i, 0);
1049 
1050 	/* Set up the PCI DMA control register. */
1051 	if (pci_read_config(sc->bge_dev, BGE_PCI_PCISTATE, 4) &
1052 	    BGE_PCISTATE_PCI_BUSMODE) {
1053 		/* Conventional PCI bus */
1054 		dma_rw_ctl = BGE_PCI_READ_CMD|BGE_PCI_WRITE_CMD |
1055 		    (0x7 << BGE_PCIDMARWCTL_RD_WAT_SHIFT) |
1056 		    (0x7 << BGE_PCIDMARWCTL_WR_WAT_SHIFT) |
1057 		    (0x0F);
1058 	} else {
1059 		/* PCI-X bus */
1060 		/*
1061 		 * The 5704 uses a different encoding of read/write
1062 		 * watermarks.
1063 		 */
1064 		if (BGE_ASICREV(sc->bge_asicrev) == BGE_ASICREV_BCM5704)
1065 			dma_rw_ctl = BGE_PCI_READ_CMD|BGE_PCI_WRITE_CMD |
1066 			    (0x7 << BGE_PCIDMARWCTL_RD_WAT_SHIFT) |
1067 			    (0x3 << BGE_PCIDMARWCTL_WR_WAT_SHIFT);
1068 		else
1069 			dma_rw_ctl = BGE_PCI_READ_CMD|BGE_PCI_WRITE_CMD |
1070 			    (0x3 << BGE_PCIDMARWCTL_RD_WAT_SHIFT) |
1071 			    (0x3 << BGE_PCIDMARWCTL_WR_WAT_SHIFT) |
1072 			    (0x0F);
1073 
1074 		/*
1075 		 * 5703 and 5704 need ONEDMA_AT_ONCE as a workaround
1076 		 * for hardware bugs.
1077 		 */
1078 		if (BGE_ASICREV(sc->bge_asicrev) == BGE_ASICREV_BCM5703 ||
1079 		    BGE_ASICREV(sc->bge_asicrev) == BGE_ASICREV_BCM5704) {
1080 			u_int32_t tmp;
1081 
1082 			tmp = CSR_READ_4(sc, BGE_PCI_CLKCTL) & 0x1f;
1083 			if (tmp == 0x6 || tmp == 0x7)
1084 				dma_rw_ctl |= BGE_PCIDMARWCTL_ONEDMA_ATONCE;
1085 		}
1086 	}
1087 
1088 	if (BGE_ASICREV(sc->bge_asicrev) == BGE_ASICREV_BCM5703 ||
1089 	    BGE_ASICREV(sc->bge_asicrev) == BGE_ASICREV_BCM5704)
1090 		dma_rw_ctl &= ~BGE_PCIDMARWCTL_MINDMA;
1091 	pci_write_config(sc->bge_dev, BGE_PCI_DMA_RW_CTL, dma_rw_ctl, 4);
1092 
1093 	/*
1094 	 * Set up general mode register.
1095 	 */
1096 	CSR_WRITE_4(sc, BGE_MODE_CTL, BGE_MODECTL_WORDSWAP_NONFRAME|
1097 	    BGE_MODECTL_BYTESWAP_DATA|BGE_MODECTL_WORDSWAP_DATA|
1098 	    BGE_MODECTL_MAC_ATTN_INTR|BGE_MODECTL_HOST_SEND_BDS|
1099 	    BGE_MODECTL_NO_RX_CRC|BGE_MODECTL_TX_NO_PHDR_CSUM|
1100 	    BGE_MODECTL_RX_NO_PHDR_CSUM);
1101 
1102 	/*
1103 	 * Disable memory write invalidate.  Apparently it is not supported
1104 	 * properly by these devices.
1105 	 */
1106 	PCI_CLRBIT(sc->bge_dev, BGE_PCI_CMD, PCIM_CMD_MWIEN, 4);
1107 
1108 #ifdef __brokenalpha__
1109 	/*
1110 	 * Must insure that we do not cross an 8K (bytes) boundary
1111 	 * for DMA reads.  Our highest limit is 1K bytes.  This is a
1112 	 * restriction on some ALPHA platforms with early revision
1113 	 * 21174 PCI chipsets, such as the AlphaPC 164lx
1114 	 */
1115 	PCI_SETBIT(sc->bge_dev, BGE_PCI_DMA_RW_CTL,
1116 	    BGE_PCI_READ_BNDRY_1024BYTES, 4);
1117 #endif
1118 
1119 	/* Set the timer prescaler (always 66Mhz) */
1120 	CSR_WRITE_4(sc, BGE_MISC_CFG, 65 << 1/*BGE_32BITTIME_66MHZ*/);
1121 
1122 	return(0);
1123 }
1124 
1125 static int
1126 bge_blockinit(sc)
1127 	struct bge_softc *sc;
1128 {
1129 	struct bge_rcb *rcb;
1130 	volatile struct bge_rcb *vrcb;
1131 	int i;
1132 
1133 	/*
1134 	 * Initialize the memory window pointer register so that
1135 	 * we can access the first 32K of internal NIC RAM. This will
1136 	 * allow us to set up the TX send ring RCBs and the RX return
1137 	 * ring RCBs, plus other things which live in NIC memory.
1138 	 */
1139 	CSR_WRITE_4(sc, BGE_PCI_MEMWIN_BASEADDR, 0);
1140 
1141 	/* Configure mbuf memory pool */
1142 	if (sc->bge_extram) {
1143 		CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_BASEADDR, BGE_EXT_SSRAM);
1144 		CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_LEN, 0x18000);
1145 	} else {
1146 		CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_BASEADDR, BGE_BUFFPOOL_1);
1147 		CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_LEN, 0x18000);
1148 	}
1149 
1150 	/* Configure DMA resource pool */
1151 	CSR_WRITE_4(sc, BGE_BMAN_DMA_DESCPOOL_BASEADDR, BGE_DMA_DESCRIPTORS);
1152 	CSR_WRITE_4(sc, BGE_BMAN_DMA_DESCPOOL_LEN, 0x2000);
1153 
1154 	/* Configure mbuf pool watermarks */
1155 	CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_READDMA_LOWAT, 0x50);
1156 	CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_MACRX_LOWAT, 0x20);
1157 	CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_HIWAT, 0x60);
1158 
1159 	/* Configure DMA resource watermarks */
1160 	CSR_WRITE_4(sc, BGE_BMAN_DMA_DESCPOOL_LOWAT, 5);
1161 	CSR_WRITE_4(sc, BGE_BMAN_DMA_DESCPOOL_HIWAT, 10);
1162 
1163 	/* Enable buffer manager */
1164 	CSR_WRITE_4(sc, BGE_BMAN_MODE,
1165 	    BGE_BMANMODE_ENABLE|BGE_BMANMODE_LOMBUF_ATTN);
1166 
1167 	/* Poll for buffer manager start indication */
1168 	for (i = 0; i < BGE_TIMEOUT; i++) {
1169 		if (CSR_READ_4(sc, BGE_BMAN_MODE) & BGE_BMANMODE_ENABLE)
1170 			break;
1171 		DELAY(10);
1172 	}
1173 
1174 	if (i == BGE_TIMEOUT) {
1175 		printf("bge%d: buffer manager failed to start\n",
1176 		    sc->bge_unit);
1177 		return(ENXIO);
1178 	}
1179 
1180 	/* Enable flow-through queues */
1181 	CSR_WRITE_4(sc, BGE_FTQ_RESET, 0xFFFFFFFF);
1182 	CSR_WRITE_4(sc, BGE_FTQ_RESET, 0);
1183 
1184 	/* Wait until queue initialization is complete */
1185 	for (i = 0; i < BGE_TIMEOUT; i++) {
1186 		if (CSR_READ_4(sc, BGE_FTQ_RESET) == 0)
1187 			break;
1188 		DELAY(10);
1189 	}
1190 
1191 	if (i == BGE_TIMEOUT) {
1192 		printf("bge%d: flow-through queue init failed\n",
1193 		    sc->bge_unit);
1194 		return(ENXIO);
1195 	}
1196 
1197 	/* Initialize the standard RX ring control block */
1198 	rcb = &sc->bge_rdata->bge_info.bge_std_rx_rcb;
1199 	BGE_HOSTADDR(rcb->bge_hostaddr) =
1200 	    vtophys(&sc->bge_rdata->bge_rx_std_ring);
1201 	rcb->bge_maxlen_flags = BGE_RCB_MAXLEN_FLAGS(BGE_MAX_FRAMELEN, 0);
1202 	if (sc->bge_extram)
1203 		rcb->bge_nicaddr = BGE_EXT_STD_RX_RINGS;
1204 	else
1205 		rcb->bge_nicaddr = BGE_STD_RX_RINGS;
1206 	CSR_WRITE_4(sc, BGE_RX_STD_RCB_HADDR_HI, rcb->bge_hostaddr.bge_addr_hi);
1207 	CSR_WRITE_4(sc, BGE_RX_STD_RCB_HADDR_LO, rcb->bge_hostaddr.bge_addr_lo);
1208 	CSR_WRITE_4(sc, BGE_RX_STD_RCB_MAXLEN_FLAGS, rcb->bge_maxlen_flags);
1209 	CSR_WRITE_4(sc, BGE_RX_STD_RCB_NICADDR, rcb->bge_nicaddr);
1210 
1211 	/*
1212 	 * Initialize the jumbo RX ring control block
1213 	 * We set the 'ring disabled' bit in the flags
1214 	 * field until we're actually ready to start
1215 	 * using this ring (i.e. once we set the MTU
1216 	 * high enough to require it).
1217 	 */
1218 	rcb = &sc->bge_rdata->bge_info.bge_jumbo_rx_rcb;
1219 	BGE_HOSTADDR(rcb->bge_hostaddr) =
1220 	    vtophys(&sc->bge_rdata->bge_rx_jumbo_ring);
1221 	rcb->bge_maxlen_flags =
1222 	    BGE_RCB_MAXLEN_FLAGS(BGE_MAX_FRAMELEN, BGE_RCB_FLAG_RING_DISABLED);
1223 	if (sc->bge_extram)
1224 		rcb->bge_nicaddr = BGE_EXT_JUMBO_RX_RINGS;
1225 	else
1226 		rcb->bge_nicaddr = BGE_JUMBO_RX_RINGS;
1227 	CSR_WRITE_4(sc, BGE_RX_JUMBO_RCB_HADDR_HI,
1228 	    rcb->bge_hostaddr.bge_addr_hi);
1229 	CSR_WRITE_4(sc, BGE_RX_JUMBO_RCB_HADDR_LO,
1230 	    rcb->bge_hostaddr.bge_addr_lo);
1231 	CSR_WRITE_4(sc, BGE_RX_JUMBO_RCB_MAXLEN_FLAGS, rcb->bge_maxlen_flags);
1232 	CSR_WRITE_4(sc, BGE_RX_JUMBO_RCB_NICADDR, rcb->bge_nicaddr);
1233 
1234 	/* Set up dummy disabled mini ring RCB */
1235 	rcb = &sc->bge_rdata->bge_info.bge_mini_rx_rcb;
1236 	rcb->bge_maxlen_flags =
1237 	    BGE_RCB_MAXLEN_FLAGS(0, BGE_RCB_FLAG_RING_DISABLED);
1238 	CSR_WRITE_4(sc, BGE_RX_MINI_RCB_MAXLEN_FLAGS, rcb->bge_maxlen_flags);
1239 
1240 	/*
1241 	 * Set the BD ring replentish thresholds. The recommended
1242 	 * values are 1/8th the number of descriptors allocated to
1243 	 * each ring.
1244 	 */
1245 	CSR_WRITE_4(sc, BGE_RBDI_STD_REPL_THRESH, BGE_STD_RX_RING_CNT/8);
1246 	CSR_WRITE_4(sc, BGE_RBDI_JUMBO_REPL_THRESH, BGE_JUMBO_RX_RING_CNT/8);
1247 
1248 	/*
1249 	 * Disable all unused send rings by setting the 'ring disabled'
1250 	 * bit in the flags field of all the TX send ring control blocks.
1251 	 * These are located in NIC memory.
1252 	 */
1253 	vrcb = (volatile struct bge_rcb *)(sc->bge_vhandle + BGE_MEMWIN_START +
1254 	    BGE_SEND_RING_RCB);
1255 	for (i = 0; i < BGE_TX_RINGS_EXTSSRAM_MAX; i++) {
1256 		vrcb->bge_maxlen_flags =
1257 		    BGE_RCB_MAXLEN_FLAGS(0, BGE_RCB_FLAG_RING_DISABLED);
1258 		vrcb->bge_nicaddr = 0;
1259 		vrcb++;
1260 	}
1261 
1262 	/* Configure TX RCB 0 (we use only the first ring) */
1263 	vrcb = (volatile struct bge_rcb *)(sc->bge_vhandle + BGE_MEMWIN_START +
1264 	    BGE_SEND_RING_RCB);
1265 	vrcb->bge_hostaddr.bge_addr_hi = 0;
1266 	BGE_HOSTADDR(vrcb->bge_hostaddr) =
1267 	    vtophys(&sc->bge_rdata->bge_tx_ring);
1268 	vrcb->bge_nicaddr = BGE_NIC_TXRING_ADDR(0, BGE_TX_RING_CNT);
1269 	vrcb->bge_maxlen_flags = BGE_RCB_MAXLEN_FLAGS(BGE_TX_RING_CNT, 0);
1270 
1271 	/* Disable all unused RX return rings */
1272 	vrcb = (volatile struct bge_rcb *)(sc->bge_vhandle + BGE_MEMWIN_START +
1273 	    BGE_RX_RETURN_RING_RCB);
1274 	for (i = 0; i < BGE_RX_RINGS_MAX; i++) {
1275 		vrcb->bge_hostaddr.bge_addr_hi = 0;
1276 		vrcb->bge_hostaddr.bge_addr_lo = 0;
1277 		vrcb->bge_maxlen_flags =
1278 		    BGE_RCB_MAXLEN_FLAGS(BGE_RETURN_RING_CNT,
1279 		    BGE_RCB_FLAG_RING_DISABLED);
1280 		vrcb->bge_nicaddr = 0;
1281 		CSR_WRITE_4(sc, BGE_MBX_RX_CONS0_LO +
1282 		    (i * (sizeof(u_int64_t))), 0);
1283 		vrcb++;
1284 	}
1285 
1286 	/* Initialize RX ring indexes */
1287 	CSR_WRITE_4(sc, BGE_MBX_RX_STD_PROD_LO, 0);
1288 	CSR_WRITE_4(sc, BGE_MBX_RX_JUMBO_PROD_LO, 0);
1289 	CSR_WRITE_4(sc, BGE_MBX_RX_MINI_PROD_LO, 0);
1290 
1291 	/*
1292 	 * Set up RX return ring 0
1293 	 * Note that the NIC address for RX return rings is 0x00000000.
1294 	 * The return rings live entirely within the host, so the
1295 	 * nicaddr field in the RCB isn't used.
1296 	 */
1297 	vrcb = (volatile struct bge_rcb *)(sc->bge_vhandle + BGE_MEMWIN_START +
1298 	    BGE_RX_RETURN_RING_RCB);
1299 	vrcb->bge_hostaddr.bge_addr_hi = 0;
1300 	BGE_HOSTADDR(vrcb->bge_hostaddr) =
1301 	    vtophys(&sc->bge_rdata->bge_rx_return_ring);
1302 	vrcb->bge_nicaddr = 0x00000000;
1303 	vrcb->bge_maxlen_flags = BGE_RCB_MAXLEN_FLAGS(BGE_RETURN_RING_CNT, 0);
1304 
1305 	/* Set random backoff seed for TX */
1306 	CSR_WRITE_4(sc, BGE_TX_RANDOM_BACKOFF,
1307 	    sc->arpcom.ac_enaddr[0] + sc->arpcom.ac_enaddr[1] +
1308 	    sc->arpcom.ac_enaddr[2] + sc->arpcom.ac_enaddr[3] +
1309 	    sc->arpcom.ac_enaddr[4] + sc->arpcom.ac_enaddr[5] +
1310 	    BGE_TX_BACKOFF_SEED_MASK);
1311 
1312 	/* Set inter-packet gap */
1313 	CSR_WRITE_4(sc, BGE_TX_LENGTHS, 0x2620);
1314 
1315 	/*
1316 	 * Specify which ring to use for packets that don't match
1317 	 * any RX rules.
1318 	 */
1319 	CSR_WRITE_4(sc, BGE_RX_RULES_CFG, 0x08);
1320 
1321 	/*
1322 	 * Configure number of RX lists. One interrupt distribution
1323 	 * list, sixteen active lists, one bad frames class.
1324 	 */
1325 	CSR_WRITE_4(sc, BGE_RXLP_CFG, 0x181);
1326 
1327 	/* Inialize RX list placement stats mask. */
1328 	CSR_WRITE_4(sc, BGE_RXLP_STATS_ENABLE_MASK, 0x007FFFFF);
1329 	CSR_WRITE_4(sc, BGE_RXLP_STATS_CTL, 0x1);
1330 
1331 	/* Disable host coalescing until we get it set up */
1332 	CSR_WRITE_4(sc, BGE_HCC_MODE, 0x00000000);
1333 
1334 	/* Poll to make sure it's shut down. */
1335 	for (i = 0; i < BGE_TIMEOUT; i++) {
1336 		if (!(CSR_READ_4(sc, BGE_HCC_MODE) & BGE_HCCMODE_ENABLE))
1337 			break;
1338 		DELAY(10);
1339 	}
1340 
1341 	if (i == BGE_TIMEOUT) {
1342 		printf("bge%d: host coalescing engine failed to idle\n",
1343 		    sc->bge_unit);
1344 		return(ENXIO);
1345 	}
1346 
1347 	/* Set up host coalescing defaults */
1348 	CSR_WRITE_4(sc, BGE_HCC_RX_COAL_TICKS, sc->bge_rx_coal_ticks);
1349 	CSR_WRITE_4(sc, BGE_HCC_TX_COAL_TICKS, sc->bge_tx_coal_ticks);
1350 	CSR_WRITE_4(sc, BGE_HCC_RX_MAX_COAL_BDS, sc->bge_rx_max_coal_bds);
1351 	CSR_WRITE_4(sc, BGE_HCC_TX_MAX_COAL_BDS, sc->bge_tx_max_coal_bds);
1352 	CSR_WRITE_4(sc, BGE_HCC_RX_COAL_TICKS_INT, 0);
1353 	CSR_WRITE_4(sc, BGE_HCC_TX_COAL_TICKS_INT, 0);
1354 	CSR_WRITE_4(sc, BGE_HCC_RX_MAX_COAL_BDS_INT, 0);
1355 	CSR_WRITE_4(sc, BGE_HCC_TX_MAX_COAL_BDS_INT, 0);
1356 	CSR_WRITE_4(sc, BGE_HCC_STATS_TICKS, sc->bge_stat_ticks);
1357 
1358 	/* Set up address of statistics block */
1359 	CSR_WRITE_4(sc, BGE_HCC_STATS_BASEADDR, BGE_STATS_BLOCK);
1360 	CSR_WRITE_4(sc, BGE_HCC_STATS_ADDR_HI, 0);
1361 	CSR_WRITE_4(sc, BGE_HCC_STATS_ADDR_LO,
1362 	    vtophys(&sc->bge_rdata->bge_info.bge_stats));
1363 
1364 	/* Set up address of status block */
1365 	CSR_WRITE_4(sc, BGE_HCC_STATUSBLK_BASEADDR, BGE_STATUS_BLOCK);
1366 	CSR_WRITE_4(sc, BGE_HCC_STATUSBLK_ADDR_HI, 0);
1367 	CSR_WRITE_4(sc, BGE_HCC_STATUSBLK_ADDR_LO,
1368 	    vtophys(&sc->bge_rdata->bge_status_block));
1369 	sc->bge_rdata->bge_status_block.bge_idx[0].bge_rx_prod_idx = 0;
1370 	sc->bge_rdata->bge_status_block.bge_idx[0].bge_tx_cons_idx = 0;
1371 
1372 	/* Turn on host coalescing state machine */
1373 	CSR_WRITE_4(sc, BGE_HCC_MODE, BGE_HCCMODE_ENABLE);
1374 
1375 	/* Turn on RX BD completion state machine and enable attentions */
1376 	CSR_WRITE_4(sc, BGE_RBDC_MODE,
1377 	    BGE_RBDCMODE_ENABLE|BGE_RBDCMODE_ATTN);
1378 
1379 	/* Turn on RX list placement state machine */
1380 	CSR_WRITE_4(sc, BGE_RXLP_MODE, BGE_RXLPMODE_ENABLE);
1381 
1382 	/* Turn on RX list selector state machine. */
1383 	CSR_WRITE_4(sc, BGE_RXLS_MODE, BGE_RXLSMODE_ENABLE);
1384 
1385 	/* Turn on DMA, clear stats */
1386 	CSR_WRITE_4(sc, BGE_MAC_MODE, BGE_MACMODE_TXDMA_ENB|
1387 	    BGE_MACMODE_RXDMA_ENB|BGE_MACMODE_RX_STATS_CLEAR|
1388 	    BGE_MACMODE_TX_STATS_CLEAR|BGE_MACMODE_RX_STATS_ENB|
1389 	    BGE_MACMODE_TX_STATS_ENB|BGE_MACMODE_FRMHDR_DMA_ENB|
1390 	    (sc->bge_tbi ? BGE_PORTMODE_TBI : BGE_PORTMODE_MII));
1391 
1392 	/* Set misc. local control, enable interrupts on attentions */
1393 	CSR_WRITE_4(sc, BGE_MISC_LOCAL_CTL, BGE_MLC_INTR_ONATTN);
1394 
1395 #ifdef notdef
1396 	/* Assert GPIO pins for PHY reset */
1397 	BGE_SETBIT(sc, BGE_MISC_LOCAL_CTL, BGE_MLC_MISCIO_OUT0|
1398 	    BGE_MLC_MISCIO_OUT1|BGE_MLC_MISCIO_OUT2);
1399 	BGE_SETBIT(sc, BGE_MISC_LOCAL_CTL, BGE_MLC_MISCIO_OUTEN0|
1400 	    BGE_MLC_MISCIO_OUTEN1|BGE_MLC_MISCIO_OUTEN2);
1401 #endif
1402 
1403 	/* Turn on DMA completion state machine */
1404 	CSR_WRITE_4(sc, BGE_DMAC_MODE, BGE_DMACMODE_ENABLE);
1405 
1406 	/* Turn on write DMA state machine */
1407 	CSR_WRITE_4(sc, BGE_WDMA_MODE,
1408 	    BGE_WDMAMODE_ENABLE|BGE_WDMAMODE_ALL_ATTNS);
1409 
1410 	/* Turn on read DMA state machine */
1411 	CSR_WRITE_4(sc, BGE_RDMA_MODE,
1412 	    BGE_RDMAMODE_ENABLE|BGE_RDMAMODE_ALL_ATTNS);
1413 
1414 	/* Turn on RX data completion state machine */
1415 	CSR_WRITE_4(sc, BGE_RDC_MODE, BGE_RDCMODE_ENABLE);
1416 
1417 	/* Turn on RX BD initiator state machine */
1418 	CSR_WRITE_4(sc, BGE_RBDI_MODE, BGE_RBDIMODE_ENABLE);
1419 
1420 	/* Turn on RX data and RX BD initiator state machine */
1421 	CSR_WRITE_4(sc, BGE_RDBDI_MODE, BGE_RDBDIMODE_ENABLE);
1422 
1423 	/* Turn on Mbuf cluster free state machine */
1424 	CSR_WRITE_4(sc, BGE_MBCF_MODE, BGE_MBCFMODE_ENABLE);
1425 
1426 	/* Turn on send BD completion state machine */
1427 	CSR_WRITE_4(sc, BGE_SBDC_MODE, BGE_SBDCMODE_ENABLE);
1428 
1429 	/* Turn on send data completion state machine */
1430 	CSR_WRITE_4(sc, BGE_SDC_MODE, BGE_SDCMODE_ENABLE);
1431 
1432 	/* Turn on send data initiator state machine */
1433 	CSR_WRITE_4(sc, BGE_SDI_MODE, BGE_SDIMODE_ENABLE);
1434 
1435 	/* Turn on send BD initiator state machine */
1436 	CSR_WRITE_4(sc, BGE_SBDI_MODE, BGE_SBDIMODE_ENABLE);
1437 
1438 	/* Turn on send BD selector state machine */
1439 	CSR_WRITE_4(sc, BGE_SRS_MODE, BGE_SRSMODE_ENABLE);
1440 
1441 	CSR_WRITE_4(sc, BGE_SDI_STATS_ENABLE_MASK, 0x007FFFFF);
1442 	CSR_WRITE_4(sc, BGE_SDI_STATS_CTL,
1443 	    BGE_SDISTATSCTL_ENABLE|BGE_SDISTATSCTL_FASTER);
1444 
1445 	/* init LED register */
1446 	CSR_WRITE_4(sc, BGE_MAC_LED_CTL, 0x00000000);
1447 
1448 	/* ack/clear link change events */
1449 	CSR_WRITE_4(sc, BGE_MAC_STS, BGE_MACSTAT_SYNC_CHANGED|
1450 	    BGE_MACSTAT_CFG_CHANGED);
1451 	CSR_WRITE_4(sc, BGE_MI_STS, 0);
1452 
1453 	/* Enable PHY auto polling (for MII/GMII only) */
1454 	if (sc->bge_tbi) {
1455 		CSR_WRITE_4(sc, BGE_MI_STS, BGE_MISTS_LINK);
1456  	} else {
1457 		BGE_SETBIT(sc, BGE_MI_MODE, BGE_MIMODE_AUTOPOLL|10<<16);
1458 		if (BGE_ASICREV(sc->bge_asicrev) == BGE_ASICREV_BCM5700)
1459 			CSR_WRITE_4(sc, BGE_MAC_EVT_ENB,
1460 			    BGE_EVTENB_MI_INTERRUPT);
1461 	}
1462 
1463 	/* Enable link state change attentions. */
1464 	BGE_SETBIT(sc, BGE_MAC_EVT_ENB, BGE_EVTENB_LINK_CHANGED);
1465 
1466 	return(0);
1467 }
1468 
1469 /*
1470  * Probe for a Broadcom chip. Check the PCI vendor and device IDs
1471  * against our list and return its name if we find a match. Note
1472  * that since the Broadcom controller contains VPD support, we
1473  * can get the device name string from the controller itself instead
1474  * of the compiled-in string. This is a little slow, but it guarantees
1475  * we'll always announce the right product name.
1476  */
1477 static int
1478 bge_probe(dev)
1479 	device_t dev;
1480 {
1481 	struct bge_type *t;
1482 	struct bge_softc *sc;
1483 	char *descbuf;
1484 
1485 	t = bge_devs;
1486 
1487 	sc = device_get_softc(dev);
1488 	bzero(sc, sizeof(struct bge_softc));
1489 	sc->bge_unit = device_get_unit(dev);
1490 	sc->bge_dev = dev;
1491 
1492 	while(t->bge_name != NULL) {
1493 		if ((pci_get_vendor(dev) == t->bge_vid) &&
1494 		    (pci_get_device(dev) == t->bge_did)) {
1495 #ifdef notdef
1496 			bge_vpd_read(sc);
1497 			device_set_desc(dev, sc->bge_vpd_prodname);
1498 #endif
1499 			descbuf = malloc(BGE_DEVDESC_MAX, M_TEMP, M_NOWAIT);
1500 			if (descbuf == NULL)
1501 				return(ENOMEM);
1502 			snprintf(descbuf, BGE_DEVDESC_MAX,
1503 			    "%s, ASIC rev. %#04x", t->bge_name,
1504 			    pci_read_config(dev, BGE_PCI_MISC_CTL, 4) >> 16);
1505 			device_set_desc_copy(dev, descbuf);
1506 			free(descbuf, M_TEMP);
1507 			return(0);
1508 		}
1509 		t++;
1510 	}
1511 
1512 	return(ENXIO);
1513 }
1514 
1515 static int
1516 bge_attach(dev)
1517 	device_t dev;
1518 {
1519 	int s;
1520 	struct ifnet *ifp;
1521 	struct bge_softc *sc;
1522 	u_int32_t hwcfg = 0;
1523 	u_int32_t mac_addr = 0;
1524 	int unit, error = 0, rid;
1525 
1526 	s = splimp();
1527 
1528 	sc = device_get_softc(dev);
1529 	unit = device_get_unit(dev);
1530 	sc->bge_dev = dev;
1531 	sc->bge_unit = unit;
1532 
1533 	/*
1534 	 * Map control/status registers.
1535 	 */
1536 	pci_enable_busmaster(dev);
1537 
1538 	rid = BGE_PCI_BAR0;
1539 	sc->bge_res = bus_alloc_resource(dev, SYS_RES_MEMORY, &rid,
1540 	    0, ~0, 1, RF_ACTIVE|PCI_RF_DENSE);
1541 
1542 	if (sc->bge_res == NULL) {
1543 		printf ("bge%d: couldn't map memory\n", unit);
1544 		error = ENXIO;
1545 		goto fail;
1546 	}
1547 
1548 	sc->bge_btag = rman_get_bustag(sc->bge_res);
1549 	sc->bge_bhandle = rman_get_bushandle(sc->bge_res);
1550 	sc->bge_vhandle = (vm_offset_t)rman_get_virtual(sc->bge_res);
1551 
1552 	/* Allocate interrupt */
1553 	rid = 0;
1554 
1555 	sc->bge_irq = bus_alloc_resource(dev, SYS_RES_IRQ, &rid, 0, ~0, 1,
1556 	    RF_SHAREABLE | RF_ACTIVE);
1557 
1558 	if (sc->bge_irq == NULL) {
1559 		printf("bge%d: couldn't map interrupt\n", unit);
1560 		error = ENXIO;
1561 		goto fail;
1562 	}
1563 
1564 	error = bus_setup_intr(dev, sc->bge_irq, INTR_TYPE_NET,
1565 	   bge_intr, sc, &sc->bge_intrhand);
1566 
1567 	if (error) {
1568 		bge_release_resources(sc);
1569 		printf("bge%d: couldn't set up irq\n", unit);
1570 		goto fail;
1571 	}
1572 
1573 	sc->bge_unit = unit;
1574 
1575 	/* Try to reset the chip. */
1576 	bge_reset(sc);
1577 
1578 	if (bge_chipinit(sc)) {
1579 		printf("bge%d: chip initialization failed\n", sc->bge_unit);
1580 		bge_release_resources(sc);
1581 		error = ENXIO;
1582 		goto fail;
1583 	}
1584 
1585 	/*
1586 	 * Get station address from the EEPROM.
1587 	 */
1588 	mac_addr = bge_readmem_ind(sc, 0x0c14);
1589 	if ((mac_addr >> 16) == 0x484b) {
1590 		sc->arpcom.ac_enaddr[0] = (u_char)(mac_addr >> 8);
1591 		sc->arpcom.ac_enaddr[1] = (u_char)mac_addr;
1592 		mac_addr = bge_readmem_ind(sc, 0x0c18);
1593 		sc->arpcom.ac_enaddr[2] = (u_char)(mac_addr >> 24);
1594 		sc->arpcom.ac_enaddr[3] = (u_char)(mac_addr >> 16);
1595 		sc->arpcom.ac_enaddr[4] = (u_char)(mac_addr >> 8);
1596 		sc->arpcom.ac_enaddr[5] = (u_char)mac_addr;
1597 	} else if (bge_read_eeprom(sc, (caddr_t)&sc->arpcom.ac_enaddr,
1598 	    BGE_EE_MAC_OFFSET + 2, ETHER_ADDR_LEN)) {
1599 		printf("bge%d: failed to read station address\n", unit);
1600 		bge_release_resources(sc);
1601 		error = ENXIO;
1602 		goto fail;
1603 	}
1604 
1605 	/*
1606 	 * A Broadcom chip was detected. Inform the world.
1607 	 */
1608 	printf("bge%d: Ethernet address: %6D\n", unit,
1609 	    sc->arpcom.ac_enaddr, ":");
1610 
1611 	/* Allocate the general information block and ring buffers. */
1612 	sc->bge_rdata = contigmalloc(sizeof(struct bge_ring_data), M_DEVBUF,
1613 	    M_NOWAIT, 0, 0xffffffff, PAGE_SIZE, 0);
1614 
1615 	if (sc->bge_rdata == NULL) {
1616 		bge_release_resources(sc);
1617 		error = ENXIO;
1618 		printf("bge%d: no memory for list buffers!\n", sc->bge_unit);
1619 		goto fail;
1620 	}
1621 
1622 	bzero(sc->bge_rdata, sizeof(struct bge_ring_data));
1623 
1624 	/* Try to allocate memory for jumbo buffers. */
1625 	if (bge_alloc_jumbo_mem(sc)) {
1626 		printf("bge%d: jumbo buffer allocation "
1627 		    "failed\n", sc->bge_unit);
1628 		bge_release_resources(sc);
1629 		error = ENXIO;
1630 		goto fail;
1631 	}
1632 
1633 	/* Set default tuneable values. */
1634 	sc->bge_stat_ticks = BGE_TICKS_PER_SEC;
1635 	sc->bge_rx_coal_ticks = 150;
1636 	sc->bge_tx_coal_ticks = 150;
1637 	sc->bge_rx_max_coal_bds = 64;
1638 	sc->bge_tx_max_coal_bds = 128;
1639 
1640 	/* Set up ifnet structure */
1641 	ifp = &sc->arpcom.ac_if;
1642 	ifp->if_softc = sc;
1643 	ifp->if_unit = sc->bge_unit;
1644 	ifp->if_name = "bge";
1645 	ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
1646 	ifp->if_ioctl = bge_ioctl;
1647 	ifp->if_output = ether_output;
1648 	ifp->if_start = bge_start;
1649 	ifp->if_watchdog = bge_watchdog;
1650 	ifp->if_init = bge_init;
1651 	ifp->if_mtu = ETHERMTU;
1652 	ifp->if_snd.ifq_maxlen = BGE_TX_RING_CNT - 1;
1653 	ifp->if_hwassist = BGE_CSUM_FEATURES;
1654 	ifp->if_capabilities = IFCAP_HWCSUM | IFCAP_VLAN_HWTAGGING | IFCAP_VLAN_MTU;
1655 	ifp->if_capenable = ifp->if_capabilities;
1656 
1657 	/* Save ASIC rev. */
1658 
1659 	sc->bge_asicrev =
1660 	    pci_read_config(dev, BGE_PCI_MISC_CTL, 4) &
1661 	    BGE_PCIMISCCTL_ASICREV;
1662 
1663 	/*
1664 	 * Figure out what sort of media we have by checking the
1665 	 * hardware config word in the first 32k of NIC internal memory,
1666 	 * or fall back to examining the EEPROM if necessary.
1667 	 * Note: on some BCM5700 cards, this value appears to be unset.
1668 	 * If that's the case, we have to rely on identifying the NIC
1669 	 * by its PCI subsystem ID, as we do below for the SysKonnect
1670 	 * SK-9D41.
1671 	 */
1672 	if (bge_readmem_ind(sc, BGE_SOFTWARE_GENCOMM_SIG) == BGE_MAGIC_NUMBER)
1673 		hwcfg = bge_readmem_ind(sc, BGE_SOFTWARE_GENCOMM_NICCFG);
1674 	else {
1675 		bge_read_eeprom(sc, (caddr_t)&hwcfg,
1676 				BGE_EE_HWCFG_OFFSET, sizeof(hwcfg));
1677 		hwcfg = ntohl(hwcfg);
1678 	}
1679 
1680 	if ((hwcfg & BGE_HWCFG_MEDIA) == BGE_MEDIA_FIBER)
1681 		sc->bge_tbi = 1;
1682 
1683 	/* The SysKonnect SK-9D41 is a 1000baseSX card. */
1684 	if ((pci_read_config(dev, BGE_PCI_SUBSYS, 4) >> 16) == SK_SUBSYSID_9D41)
1685 		sc->bge_tbi = 1;
1686 
1687 	if (sc->bge_tbi) {
1688 		ifmedia_init(&sc->bge_ifmedia, IFM_IMASK,
1689 		    bge_ifmedia_upd, bge_ifmedia_sts);
1690 		ifmedia_add(&sc->bge_ifmedia, IFM_ETHER|IFM_1000_SX, 0, NULL);
1691 		ifmedia_add(&sc->bge_ifmedia,
1692 		    IFM_ETHER|IFM_1000_SX|IFM_FDX, 0, NULL);
1693 		ifmedia_add(&sc->bge_ifmedia, IFM_ETHER|IFM_AUTO, 0, NULL);
1694 		ifmedia_set(&sc->bge_ifmedia, IFM_ETHER|IFM_AUTO);
1695 	} else {
1696 		/*
1697 		 * Do transceiver setup.
1698 		 */
1699 		if (mii_phy_probe(dev, &sc->bge_miibus,
1700 		    bge_ifmedia_upd, bge_ifmedia_sts)) {
1701 			printf("bge%d: MII without any PHY!\n", sc->bge_unit);
1702 			bge_release_resources(sc);
1703 			bge_free_jumbo_mem(sc);
1704 			error = ENXIO;
1705 			goto fail;
1706 		}
1707 	}
1708 
1709 	/*
1710 	 * When using the BCM5701 in PCI-X mode, data corruption has
1711 	 * been observed in the first few bytes of some received packets.
1712 	 * Aligning the packet buffer in memory eliminates the corruption.
1713 	 * Unfortunately, this misaligns the packet payloads.  On platforms
1714 	 * which do not support unaligned accesses, we will realign the
1715 	 * payloads by copying the received packets.
1716 	 */
1717 	switch (sc->bge_asicrev) {
1718 	case BGE_ASICREV_BCM5701_A0:
1719 	case BGE_ASICREV_BCM5701_B0:
1720 	case BGE_ASICREV_BCM5701_B2:
1721 	case BGE_ASICREV_BCM5701_B5:
1722 		/* If in PCI-X mode, work around the alignment bug. */
1723 		if ((pci_read_config(dev, BGE_PCI_PCISTATE, 4) &
1724 		    (BGE_PCISTATE_PCI_BUSMODE | BGE_PCISTATE_PCI_BUSSPEED)) ==
1725 		    BGE_PCISTATE_PCI_BUSSPEED)
1726 			sc->bge_rx_alignment_bug = 1;
1727 		break;
1728 	}
1729 
1730 	/*
1731 	 * Call MI attach routine.
1732 	 */
1733 	ether_ifattach(ifp, sc->arpcom.ac_enaddr);
1734 	callout_handle_init(&sc->bge_stat_ch);
1735 
1736 fail:
1737 	splx(s);
1738 
1739 	return(error);
1740 }
1741 
1742 static int
1743 bge_detach(dev)
1744 	device_t dev;
1745 {
1746 	struct bge_softc *sc;
1747 	struct ifnet *ifp;
1748 	int s;
1749 
1750 	s = splimp();
1751 
1752 	sc = device_get_softc(dev);
1753 	ifp = &sc->arpcom.ac_if;
1754 
1755 	ether_ifdetach(ifp);
1756 	bge_stop(sc);
1757 	bge_reset(sc);
1758 
1759 	if (sc->bge_tbi) {
1760 		ifmedia_removeall(&sc->bge_ifmedia);
1761 	} else {
1762 		bus_generic_detach(dev);
1763 		device_delete_child(dev, sc->bge_miibus);
1764 	}
1765 
1766 	bge_release_resources(sc);
1767 	bge_free_jumbo_mem(sc);
1768 
1769 	splx(s);
1770 
1771 	return(0);
1772 }
1773 
1774 static void
1775 bge_release_resources(sc)
1776 	struct bge_softc *sc;
1777 {
1778         device_t dev;
1779 
1780         dev = sc->bge_dev;
1781 
1782 	if (sc->bge_vpd_prodname != NULL)
1783 		free(sc->bge_vpd_prodname, M_DEVBUF);
1784 
1785 	if (sc->bge_vpd_readonly != NULL)
1786 		free(sc->bge_vpd_readonly, M_DEVBUF);
1787 
1788         if (sc->bge_intrhand != NULL)
1789                 bus_teardown_intr(dev, sc->bge_irq, sc->bge_intrhand);
1790 
1791         if (sc->bge_irq != NULL)
1792 		bus_release_resource(dev, SYS_RES_IRQ, 0, sc->bge_irq);
1793 
1794         if (sc->bge_res != NULL)
1795 		bus_release_resource(dev, SYS_RES_MEMORY,
1796 		    BGE_PCI_BAR0, sc->bge_res);
1797 
1798         if (sc->bge_rdata != NULL)
1799 		contigfree(sc->bge_rdata,
1800 		    sizeof(struct bge_ring_data), M_DEVBUF);
1801 
1802         return;
1803 }
1804 
1805 static void
1806 bge_reset(sc)
1807 	struct bge_softc *sc;
1808 {
1809 	device_t dev;
1810 	u_int32_t cachesize, command, pcistate;
1811 	int i, val = 0;
1812 
1813 	dev = sc->bge_dev;
1814 
1815 	/* Save some important PCI state. */
1816 	cachesize = pci_read_config(dev, BGE_PCI_CACHESZ, 4);
1817 	command = pci_read_config(dev, BGE_PCI_CMD, 4);
1818 	pcistate = pci_read_config(dev, BGE_PCI_PCISTATE, 4);
1819 
1820 	pci_write_config(dev, BGE_PCI_MISC_CTL,
1821 	    BGE_PCIMISCCTL_INDIRECT_ACCESS|BGE_PCIMISCCTL_MASK_PCI_INTR|
1822 	    BGE_PCIMISCCTL_ENDIAN_WORDSWAP|BGE_PCIMISCCTL_PCISTATE_RW, 4);
1823 
1824 	/* Issue global reset */
1825 	bge_writereg_ind(sc, BGE_MISC_CFG,
1826 	    BGE_MISCCFG_RESET_CORE_CLOCKS|(65<<1));
1827 
1828 	DELAY(1000);
1829 
1830 	/* Reset some of the PCI state that got zapped by reset */
1831 	pci_write_config(dev, BGE_PCI_MISC_CTL,
1832 	    BGE_PCIMISCCTL_INDIRECT_ACCESS|BGE_PCIMISCCTL_MASK_PCI_INTR|
1833 	    BGE_PCIMISCCTL_ENDIAN_WORDSWAP|BGE_PCIMISCCTL_PCISTATE_RW, 4);
1834 	pci_write_config(dev, BGE_PCI_CACHESZ, cachesize, 4);
1835 	pci_write_config(dev, BGE_PCI_CMD, command, 4);
1836 	bge_writereg_ind(sc, BGE_MISC_CFG, (65 << 1));
1837 
1838 	/*
1839 	 * Prevent PXE restart: write a magic number to the
1840 	 * general communications memory at 0xB50.
1841 	 */
1842 	bge_writemem_ind(sc, BGE_SOFTWARE_GENCOMM, BGE_MAGIC_NUMBER);
1843 	/*
1844 	 * Poll the value location we just wrote until
1845 	 * we see the 1's complement of the magic number.
1846 	 * This indicates that the firmware initialization
1847 	 * is complete.
1848 	 */
1849 	for (i = 0; i < BGE_TIMEOUT; i++) {
1850 		val = bge_readmem_ind(sc, BGE_SOFTWARE_GENCOMM);
1851 		if (val == ~BGE_MAGIC_NUMBER)
1852 			break;
1853 		DELAY(10);
1854 	}
1855 
1856 	if (i == BGE_TIMEOUT) {
1857 		printf("bge%d: firmware handshake timed out\n", sc->bge_unit);
1858 		return;
1859 	}
1860 
1861 	/*
1862 	 * XXX Wait for the value of the PCISTATE register to
1863 	 * return to its original pre-reset state. This is a
1864 	 * fairly good indicator of reset completion. If we don't
1865 	 * wait for the reset to fully complete, trying to read
1866 	 * from the device's non-PCI registers may yield garbage
1867 	 * results.
1868 	 */
1869 	for (i = 0; i < BGE_TIMEOUT; i++) {
1870 		if (pci_read_config(dev, BGE_PCI_PCISTATE, 4) == pcistate)
1871 			break;
1872 		DELAY(10);
1873 	}
1874 
1875 	/* Enable memory arbiter. */
1876 	CSR_WRITE_4(sc, BGE_MARB_MODE, BGE_MARBMODE_ENABLE);
1877 
1878 	/* Fix up byte swapping */
1879 	CSR_WRITE_4(sc, BGE_MODE_CTL, BGE_MODECTL_BYTESWAP_NONFRAME|
1880 	    BGE_MODECTL_BYTESWAP_DATA);
1881 
1882 	CSR_WRITE_4(sc, BGE_MAC_MODE, 0);
1883 
1884 	DELAY(10000);
1885 
1886 	return;
1887 }
1888 
1889 /*
1890  * Frame reception handling. This is called if there's a frame
1891  * on the receive return list.
1892  *
1893  * Note: we have to be able to handle two possibilities here:
1894  * 1) the frame is from the jumbo recieve ring
1895  * 2) the frame is from the standard receive ring
1896  */
1897 
1898 static void
1899 bge_rxeof(sc)
1900 	struct bge_softc *sc;
1901 {
1902 	struct ifnet *ifp;
1903 	int stdcnt = 0, jumbocnt = 0;
1904 
1905 	ifp = &sc->arpcom.ac_if;
1906 
1907 	while(sc->bge_rx_saved_considx !=
1908 	    sc->bge_rdata->bge_status_block.bge_idx[0].bge_rx_prod_idx) {
1909 		struct bge_rx_bd	*cur_rx;
1910 		u_int32_t		rxidx;
1911 		struct ether_header	*eh;
1912 		struct mbuf		*m = NULL;
1913 		u_int16_t		vlan_tag = 0;
1914 		int			have_tag = 0;
1915 
1916 		cur_rx =
1917 	    &sc->bge_rdata->bge_rx_return_ring[sc->bge_rx_saved_considx];
1918 
1919 		rxidx = cur_rx->bge_idx;
1920 		BGE_INC(sc->bge_rx_saved_considx, BGE_RETURN_RING_CNT);
1921 
1922 		if (cur_rx->bge_flags & BGE_RXBDFLAG_VLAN_TAG) {
1923 			have_tag = 1;
1924 			vlan_tag = cur_rx->bge_vlan_tag;
1925 		}
1926 
1927 		if (cur_rx->bge_flags & BGE_RXBDFLAG_JUMBO_RING) {
1928 			BGE_INC(sc->bge_jumbo, BGE_JUMBO_RX_RING_CNT);
1929 			m = sc->bge_cdata.bge_rx_jumbo_chain[rxidx];
1930 			sc->bge_cdata.bge_rx_jumbo_chain[rxidx] = NULL;
1931 			jumbocnt++;
1932 			if (cur_rx->bge_flags & BGE_RXBDFLAG_ERROR) {
1933 				ifp->if_ierrors++;
1934 				bge_newbuf_jumbo(sc, sc->bge_jumbo, m);
1935 				continue;
1936 			}
1937 			if (bge_newbuf_jumbo(sc,
1938 			    sc->bge_jumbo, NULL) == ENOBUFS) {
1939 				ifp->if_ierrors++;
1940 				bge_newbuf_jumbo(sc, sc->bge_jumbo, m);
1941 				continue;
1942 			}
1943 		} else {
1944 			BGE_INC(sc->bge_std, BGE_STD_RX_RING_CNT);
1945 			m = sc->bge_cdata.bge_rx_std_chain[rxidx];
1946 			sc->bge_cdata.bge_rx_std_chain[rxidx] = NULL;
1947 			stdcnt++;
1948 			if (cur_rx->bge_flags & BGE_RXBDFLAG_ERROR) {
1949 				ifp->if_ierrors++;
1950 				bge_newbuf_std(sc, sc->bge_std, m);
1951 				continue;
1952 			}
1953 			if (bge_newbuf_std(sc, sc->bge_std,
1954 			    NULL) == ENOBUFS) {
1955 				ifp->if_ierrors++;
1956 				bge_newbuf_std(sc, sc->bge_std, m);
1957 				continue;
1958 			}
1959 		}
1960 
1961 		ifp->if_ipackets++;
1962 #ifndef __i386__
1963 		/*
1964 		 * The i386 allows unaligned accesses, but for other
1965 		 * platforms we must make sure the payload is aligned.
1966 		 */
1967 		if (sc->bge_rx_alignment_bug) {
1968 			bcopy(m->m_data, m->m_data + ETHER_ALIGN,
1969 			    cur_rx->bge_len);
1970 			m->m_data += ETHER_ALIGN;
1971 		}
1972 #endif
1973 		eh = mtod(m, struct ether_header *);
1974 		m->m_pkthdr.len = m->m_len = cur_rx->bge_len;
1975 		m->m_pkthdr.rcvif = ifp;
1976 
1977 #if 0 /* currently broken for some packets, possibly related to TCP options */
1978 		if (ifp->if_hwassist) {
1979 			m->m_pkthdr.csum_flags |= CSUM_IP_CHECKED;
1980 			if ((cur_rx->bge_ip_csum ^ 0xffff) == 0)
1981 				m->m_pkthdr.csum_flags |= CSUM_IP_VALID;
1982 			if (cur_rx->bge_flags & BGE_RXBDFLAG_TCP_UDP_CSUM) {
1983 				m->m_pkthdr.csum_data =
1984 				    cur_rx->bge_tcp_udp_csum;
1985 				m->m_pkthdr.csum_flags |= CSUM_DATA_VALID;
1986 			}
1987 		}
1988 #endif
1989 
1990 		/*
1991 		 * If we received a packet with a vlan tag,
1992 		 * attach that information to the packet.
1993 		 */
1994 		if (have_tag)
1995 			VLAN_INPUT_TAG(ifp, m, vlan_tag, continue);
1996 
1997 		(*ifp->if_input)(ifp, m);
1998 	}
1999 
2000 	CSR_WRITE_4(sc, BGE_MBX_RX_CONS0_LO, sc->bge_rx_saved_considx);
2001 	if (stdcnt)
2002 		CSR_WRITE_4(sc, BGE_MBX_RX_STD_PROD_LO, sc->bge_std);
2003 	if (jumbocnt)
2004 		CSR_WRITE_4(sc, BGE_MBX_RX_JUMBO_PROD_LO, sc->bge_jumbo);
2005 
2006 	return;
2007 }
2008 
2009 static void
2010 bge_txeof(sc)
2011 	struct bge_softc *sc;
2012 {
2013 	struct bge_tx_bd *cur_tx = NULL;
2014 	struct ifnet *ifp;
2015 
2016 	ifp = &sc->arpcom.ac_if;
2017 
2018 	/*
2019 	 * Go through our tx ring and free mbufs for those
2020 	 * frames that have been sent.
2021 	 */
2022 	while (sc->bge_tx_saved_considx !=
2023 	    sc->bge_rdata->bge_status_block.bge_idx[0].bge_tx_cons_idx) {
2024 		u_int32_t		idx = 0;
2025 
2026 		idx = sc->bge_tx_saved_considx;
2027 		cur_tx = &sc->bge_rdata->bge_tx_ring[idx];
2028 		if (cur_tx->bge_flags & BGE_TXBDFLAG_END)
2029 			ifp->if_opackets++;
2030 		if (sc->bge_cdata.bge_tx_chain[idx] != NULL) {
2031 			m_freem(sc->bge_cdata.bge_tx_chain[idx]);
2032 			sc->bge_cdata.bge_tx_chain[idx] = NULL;
2033 		}
2034 		sc->bge_txcnt--;
2035 		BGE_INC(sc->bge_tx_saved_considx, BGE_TX_RING_CNT);
2036 		ifp->if_timer = 0;
2037 	}
2038 
2039 	if (cur_tx != NULL)
2040 		ifp->if_flags &= ~IFF_OACTIVE;
2041 
2042 	return;
2043 }
2044 
2045 static void
2046 bge_intr(xsc)
2047 	void *xsc;
2048 {
2049 	struct bge_softc *sc;
2050 	struct ifnet *ifp;
2051 
2052 	sc = xsc;
2053 	ifp = &sc->arpcom.ac_if;
2054 
2055 #ifdef notdef
2056 	/* Avoid this for now -- checking this register is expensive. */
2057 	/* Make sure this is really our interrupt. */
2058 	if (!(CSR_READ_4(sc, BGE_MISC_LOCAL_CTL) & BGE_MLC_INTR_STATE))
2059 		return;
2060 #endif
2061 	/* Ack interrupt and stop others from occuring. */
2062 	CSR_WRITE_4(sc, BGE_MBX_IRQ0_LO, 1);
2063 
2064 	/*
2065 	 * Process link state changes.
2066 	 * Grrr. The link status word in the status block does
2067 	 * not work correctly on the BCM5700 rev AX and BX chips,
2068 	 * according to all avaibable information. Hence, we have
2069 	 * to enable MII interrupts in order to properly obtain
2070 	 * async link changes. Unfortunately, this also means that
2071 	 * we have to read the MAC status register to detect link
2072 	 * changes, thereby adding an additional register access to
2073 	 * the interrupt handler.
2074 	 */
2075 
2076 	if (BGE_ASICREV(sc->bge_asicrev) == BGE_ASICREV_BCM5700) {
2077 		u_int32_t		status;
2078 
2079 		status = CSR_READ_4(sc, BGE_MAC_STS);
2080 		if (status & BGE_MACSTAT_MI_INTERRUPT) {
2081 			sc->bge_link = 0;
2082 			untimeout(bge_tick, sc, sc->bge_stat_ch);
2083 			bge_tick(sc);
2084 			/* Clear the interrupt */
2085 			CSR_WRITE_4(sc, BGE_MAC_EVT_ENB,
2086 			    BGE_EVTENB_MI_INTERRUPT);
2087 			bge_miibus_readreg(sc->bge_dev, 1, BRGPHY_MII_ISR);
2088 			bge_miibus_writereg(sc->bge_dev, 1, BRGPHY_MII_IMR,
2089 			    BRGPHY_INTRS);
2090 		}
2091 	} else {
2092 		if ((sc->bge_rdata->bge_status_block.bge_status &
2093 		    BGE_STATFLAG_UPDATED) &&
2094 		    (sc->bge_rdata->bge_status_block.bge_status &
2095 		    BGE_STATFLAG_LINKSTATE_CHANGED)) {
2096 			sc->bge_rdata->bge_status_block.bge_status &= ~(BGE_STATFLAG_UPDATED|BGE_STATFLAG_LINKSTATE_CHANGED);
2097 			sc->bge_link = 0;
2098 			untimeout(bge_tick, sc, sc->bge_stat_ch);
2099 			bge_tick(sc);
2100 			/* Clear the interrupt */
2101 			CSR_WRITE_4(sc, BGE_MAC_STS, BGE_MACSTAT_SYNC_CHANGED|
2102 			    BGE_MACSTAT_CFG_CHANGED);
2103 
2104 			/* Force flush the status block cached by PCI bridge */
2105 			CSR_READ_4(sc, BGE_MBX_IRQ0_LO);
2106 		}
2107 	}
2108 
2109 	if (ifp->if_flags & IFF_RUNNING) {
2110 		/* Check RX return ring producer/consumer */
2111 		bge_rxeof(sc);
2112 
2113 		/* Check TX ring producer/consumer */
2114 		bge_txeof(sc);
2115 	}
2116 
2117 	bge_handle_events(sc);
2118 
2119 	/* Re-enable interrupts. */
2120 	CSR_WRITE_4(sc, BGE_MBX_IRQ0_LO, 0);
2121 
2122 	if (ifp->if_flags & IFF_RUNNING && ifp->if_snd.ifq_head != NULL)
2123 		bge_start(ifp);
2124 
2125 	return;
2126 }
2127 
2128 static void
2129 bge_tick(xsc)
2130 	void *xsc;
2131 {
2132 	struct bge_softc *sc;
2133 	struct mii_data *mii = NULL;
2134 	struct ifmedia *ifm = NULL;
2135 	struct ifnet *ifp;
2136 	int s;
2137 
2138 	sc = xsc;
2139 	ifp = &sc->arpcom.ac_if;
2140 
2141 	s = splimp();
2142 
2143 	bge_stats_update(sc);
2144 	sc->bge_stat_ch = timeout(bge_tick, sc, hz);
2145 	if (sc->bge_link) {
2146 		splx(s);
2147 		return;
2148 	}
2149 
2150 	if (sc->bge_tbi) {
2151 		ifm = &sc->bge_ifmedia;
2152 		if (CSR_READ_4(sc, BGE_MAC_STS) &
2153 		    BGE_MACSTAT_TBI_PCS_SYNCHED) {
2154 			sc->bge_link++;
2155 			CSR_WRITE_4(sc, BGE_MAC_STS, 0xFFFFFFFF);
2156 			printf("bge%d: gigabit link up\n", sc->bge_unit);
2157 			if (ifp->if_snd.ifq_head != NULL)
2158 				bge_start(ifp);
2159 		}
2160 		splx(s);
2161 		return;
2162 	}
2163 
2164 	mii = device_get_softc(sc->bge_miibus);
2165 	mii_tick(mii);
2166 
2167 	if (!sc->bge_link && mii->mii_media_status & IFM_ACTIVE &&
2168 	    IFM_SUBTYPE(mii->mii_media_active) != IFM_NONE) {
2169 		sc->bge_link++;
2170 		if (IFM_SUBTYPE(mii->mii_media_active) == IFM_1000_T ||
2171 		    IFM_SUBTYPE(mii->mii_media_active) == IFM_1000_SX)
2172 			printf("bge%d: gigabit link up\n",
2173 			   sc->bge_unit);
2174 		if (ifp->if_snd.ifq_head != NULL)
2175 			bge_start(ifp);
2176 	}
2177 
2178 	splx(s);
2179 
2180 	return;
2181 }
2182 
2183 static void
2184 bge_stats_update(sc)
2185 	struct bge_softc *sc;
2186 {
2187 	struct ifnet *ifp;
2188 	struct bge_stats *stats;
2189 
2190 	ifp = &sc->arpcom.ac_if;
2191 
2192 	stats = (struct bge_stats *)(sc->bge_vhandle +
2193 	    BGE_MEMWIN_START + BGE_STATS_BLOCK);
2194 
2195 	ifp->if_collisions +=
2196 	   (stats->dot3StatsSingleCollisionFrames.bge_addr_lo +
2197 	   stats->dot3StatsMultipleCollisionFrames.bge_addr_lo +
2198 	   stats->dot3StatsExcessiveCollisions.bge_addr_lo +
2199 	   stats->dot3StatsLateCollisions.bge_addr_lo) -
2200 	   ifp->if_collisions;
2201 
2202 #ifdef notdef
2203 	ifp->if_collisions +=
2204 	   (sc->bge_rdata->bge_info.bge_stats.dot3StatsSingleCollisionFrames +
2205 	   sc->bge_rdata->bge_info.bge_stats.dot3StatsMultipleCollisionFrames +
2206 	   sc->bge_rdata->bge_info.bge_stats.dot3StatsExcessiveCollisions +
2207 	   sc->bge_rdata->bge_info.bge_stats.dot3StatsLateCollisions) -
2208 	   ifp->if_collisions;
2209 #endif
2210 
2211 	return;
2212 }
2213 
2214 /*
2215  * Encapsulate an mbuf chain in the tx ring  by coupling the mbuf data
2216  * pointers to descriptors.
2217  */
2218 static int
2219 bge_encap(sc, m_head, txidx)
2220 	struct bge_softc *sc;
2221 	struct mbuf *m_head;
2222 	u_int32_t *txidx;
2223 {
2224 	struct bge_tx_bd	*f = NULL;
2225 	struct mbuf		*m;
2226 	u_int32_t		frag, cur, cnt = 0;
2227 	u_int16_t		csum_flags = 0;
2228 	struct m_tag		*mtag;
2229 
2230 	m = m_head;
2231 	cur = frag = *txidx;
2232 
2233 	if (m_head->m_pkthdr.csum_flags) {
2234 		if (m_head->m_pkthdr.csum_flags & CSUM_IP)
2235 			csum_flags |= BGE_TXBDFLAG_IP_CSUM;
2236 		if (m_head->m_pkthdr.csum_flags & (CSUM_TCP | CSUM_UDP))
2237 			csum_flags |= BGE_TXBDFLAG_TCP_UDP_CSUM;
2238 		if (m_head->m_flags & M_LASTFRAG)
2239 			csum_flags |= BGE_TXBDFLAG_IP_FRAG_END;
2240 		else if (m_head->m_flags & M_FRAG)
2241 			csum_flags |= BGE_TXBDFLAG_IP_FRAG;
2242 	}
2243 
2244 	mtag = VLAN_OUTPUT_TAG(&sc->arpcom.ac_if, m);
2245 
2246 	/*
2247  	 * Start packing the mbufs in this chain into
2248 	 * the fragment pointers. Stop when we run out
2249  	 * of fragments or hit the end of the mbuf chain.
2250 	 */
2251 	for (m = m_head; m != NULL; m = m->m_next) {
2252 		if (m->m_len != 0) {
2253 			f = &sc->bge_rdata->bge_tx_ring[frag];
2254 			if (sc->bge_cdata.bge_tx_chain[frag] != NULL)
2255 				break;
2256 			BGE_HOSTADDR(f->bge_addr) =
2257 			   vtophys(mtod(m, vm_offset_t));
2258 			f->bge_len = m->m_len;
2259 			f->bge_flags = csum_flags;
2260 			if (mtag != NULL) {
2261 				f->bge_flags |= BGE_TXBDFLAG_VLAN_TAG;
2262 				f->bge_vlan_tag = VLAN_TAG_VALUE(mtag);
2263 			} else {
2264 				f->bge_vlan_tag = 0;
2265 			}
2266 			/*
2267 			 * Sanity check: avoid coming within 16 descriptors
2268 			 * of the end of the ring.
2269 			 */
2270 			if ((BGE_TX_RING_CNT - (sc->bge_txcnt + cnt)) < 16)
2271 				return(ENOBUFS);
2272 			cur = frag;
2273 			BGE_INC(frag, BGE_TX_RING_CNT);
2274 			cnt++;
2275 		}
2276 	}
2277 
2278 	if (m != NULL)
2279 		return(ENOBUFS);
2280 
2281 	if (frag == sc->bge_tx_saved_considx)
2282 		return(ENOBUFS);
2283 
2284 	sc->bge_rdata->bge_tx_ring[cur].bge_flags |= BGE_TXBDFLAG_END;
2285 	sc->bge_cdata.bge_tx_chain[cur] = m_head;
2286 	sc->bge_txcnt += cnt;
2287 
2288 	*txidx = frag;
2289 
2290 	return(0);
2291 }
2292 
2293 /*
2294  * Main transmit routine. To avoid having to do mbuf copies, we put pointers
2295  * to the mbuf data regions directly in the transmit descriptors.
2296  */
2297 static void
2298 bge_start(ifp)
2299 	struct ifnet *ifp;
2300 {
2301 	struct bge_softc *sc;
2302 	struct mbuf *m_head = NULL;
2303 	u_int32_t prodidx = 0;
2304 
2305 	sc = ifp->if_softc;
2306 
2307 	if (!sc->bge_link && ifp->if_snd.ifq_len < 10)
2308 		return;
2309 
2310 	prodidx = CSR_READ_4(sc, BGE_MBX_TX_HOST_PROD0_LO);
2311 
2312 	while(sc->bge_cdata.bge_tx_chain[prodidx] == NULL) {
2313 		IF_DEQUEUE(&ifp->if_snd, m_head);
2314 		if (m_head == NULL)
2315 			break;
2316 
2317 		/*
2318 		 * XXX
2319 		 * safety overkill.  If this is a fragmented packet chain
2320 		 * with delayed TCP/UDP checksums, then only encapsulate
2321 		 * it if we have enough descriptors to handle the entire
2322 		 * chain at once.
2323 		 * (paranoia -- may not actually be needed)
2324 		 */
2325 		if (m_head->m_flags & M_FIRSTFRAG &&
2326 		    m_head->m_pkthdr.csum_flags & (CSUM_DELAY_DATA)) {
2327 			if ((BGE_TX_RING_CNT - sc->bge_txcnt) <
2328 			    m_head->m_pkthdr.csum_data + 16) {
2329 				IF_PREPEND(&ifp->if_snd, m_head);
2330 				ifp->if_flags |= IFF_OACTIVE;
2331 				break;
2332 			}
2333 		}
2334 
2335 		/*
2336 		 * Pack the data into the transmit ring. If we
2337 		 * don't have room, set the OACTIVE flag and wait
2338 		 * for the NIC to drain the ring.
2339 		 */
2340 		if (bge_encap(sc, m_head, &prodidx)) {
2341 			IF_PREPEND(&ifp->if_snd, m_head);
2342 			ifp->if_flags |= IFF_OACTIVE;
2343 			break;
2344 		}
2345 
2346 		/*
2347 		 * If there's a BPF listener, bounce a copy of this frame
2348 		 * to him.
2349 		 */
2350 		BPF_MTAP(ifp, m_head);
2351 	}
2352 
2353 	/* Transmit */
2354 	CSR_WRITE_4(sc, BGE_MBX_TX_HOST_PROD0_LO, prodidx);
2355 	/* 5700 b2 errata */
2356 	if (BGE_ASICREV(sc->bge_asicrev) == BGE_ASICREV_BCM5700)
2357 		CSR_WRITE_4(sc, BGE_MBX_TX_HOST_PROD0_LO, prodidx);
2358 
2359 	/*
2360 	 * Set a timeout in case the chip goes out to lunch.
2361 	 */
2362 	ifp->if_timer = 5;
2363 
2364 	return;
2365 }
2366 
2367 static void
2368 bge_init(xsc)
2369 	void *xsc;
2370 {
2371 	struct bge_softc *sc = xsc;
2372 	struct ifnet *ifp;
2373 	u_int16_t *m;
2374         int s;
2375 
2376 	s = splimp();
2377 
2378 	ifp = &sc->arpcom.ac_if;
2379 
2380 	if (ifp->if_flags & IFF_RUNNING) {
2381 		splx(s);
2382 		return;
2383 	}
2384 
2385 	/* Cancel pending I/O and flush buffers. */
2386 	bge_stop(sc);
2387 	bge_reset(sc);
2388 	bge_chipinit(sc);
2389 
2390 	/*
2391 	 * Init the various state machines, ring
2392 	 * control blocks and firmware.
2393 	 */
2394 	if (bge_blockinit(sc)) {
2395 		printf("bge%d: initialization failure\n", sc->bge_unit);
2396 		splx(s);
2397 		return;
2398 	}
2399 
2400 	ifp = &sc->arpcom.ac_if;
2401 
2402 	/* Specify MTU. */
2403 	CSR_WRITE_4(sc, BGE_RX_MTU, ifp->if_mtu +
2404 	    ETHER_HDR_LEN + ETHER_CRC_LEN);
2405 
2406 	/* Load our MAC address. */
2407 	m = (u_int16_t *)&sc->arpcom.ac_enaddr[0];
2408 	CSR_WRITE_4(sc, BGE_MAC_ADDR1_LO, htons(m[0]));
2409 	CSR_WRITE_4(sc, BGE_MAC_ADDR1_HI, (htons(m[1]) << 16) | htons(m[2]));
2410 
2411 	/* Enable or disable promiscuous mode as needed. */
2412 	if (ifp->if_flags & IFF_PROMISC) {
2413 		BGE_SETBIT(sc, BGE_RX_MODE, BGE_RXMODE_RX_PROMISC);
2414 	} else {
2415 		BGE_CLRBIT(sc, BGE_RX_MODE, BGE_RXMODE_RX_PROMISC);
2416 	}
2417 
2418 	/* Program multicast filter. */
2419 	bge_setmulti(sc);
2420 
2421 	/* Init RX ring. */
2422 	bge_init_rx_ring_std(sc);
2423 
2424 	/* Init jumbo RX ring. */
2425 	if (ifp->if_mtu > (ETHERMTU + ETHER_HDR_LEN + ETHER_CRC_LEN))
2426 		bge_init_rx_ring_jumbo(sc);
2427 
2428 	/* Init our RX return ring index */
2429 	sc->bge_rx_saved_considx = 0;
2430 
2431 	/* Init TX ring. */
2432 	bge_init_tx_ring(sc);
2433 
2434 	/* Turn on transmitter */
2435 	BGE_SETBIT(sc, BGE_TX_MODE, BGE_TXMODE_ENABLE);
2436 
2437 	/* Turn on receiver */
2438 	BGE_SETBIT(sc, BGE_RX_MODE, BGE_RXMODE_ENABLE);
2439 
2440 	/* Tell firmware we're alive. */
2441 	BGE_SETBIT(sc, BGE_MODE_CTL, BGE_MODECTL_STACKUP);
2442 
2443 	/* Enable host interrupts. */
2444 	BGE_SETBIT(sc, BGE_PCI_MISC_CTL, BGE_PCIMISCCTL_CLEAR_INTA);
2445 	BGE_CLRBIT(sc, BGE_PCI_MISC_CTL, BGE_PCIMISCCTL_MASK_PCI_INTR);
2446 	CSR_WRITE_4(sc, BGE_MBX_IRQ0_LO, 0);
2447 
2448 	bge_ifmedia_upd(ifp);
2449 
2450 	ifp->if_flags |= IFF_RUNNING;
2451 	ifp->if_flags &= ~IFF_OACTIVE;
2452 
2453 	splx(s);
2454 
2455 	sc->bge_stat_ch = timeout(bge_tick, sc, hz);
2456 
2457 	return;
2458 }
2459 
2460 /*
2461  * Set media options.
2462  */
2463 static int
2464 bge_ifmedia_upd(ifp)
2465 	struct ifnet *ifp;
2466 {
2467 	struct bge_softc *sc;
2468 	struct mii_data *mii;
2469 	struct ifmedia *ifm;
2470 
2471 	sc = ifp->if_softc;
2472 	ifm = &sc->bge_ifmedia;
2473 
2474 	/* If this is a 1000baseX NIC, enable the TBI port. */
2475 	if (sc->bge_tbi) {
2476 		if (IFM_TYPE(ifm->ifm_media) != IFM_ETHER)
2477 			return(EINVAL);
2478 		switch(IFM_SUBTYPE(ifm->ifm_media)) {
2479 		case IFM_AUTO:
2480 			break;
2481 		case IFM_1000_SX:
2482 			if ((ifm->ifm_media & IFM_GMASK) == IFM_FDX) {
2483 				BGE_CLRBIT(sc, BGE_MAC_MODE,
2484 				    BGE_MACMODE_HALF_DUPLEX);
2485 			} else {
2486 				BGE_SETBIT(sc, BGE_MAC_MODE,
2487 				    BGE_MACMODE_HALF_DUPLEX);
2488 			}
2489 			break;
2490 		default:
2491 			return(EINVAL);
2492 		}
2493 		return(0);
2494 	}
2495 
2496 	mii = device_get_softc(sc->bge_miibus);
2497 	sc->bge_link = 0;
2498 	if (mii->mii_instance) {
2499 		struct mii_softc *miisc;
2500 		for (miisc = LIST_FIRST(&mii->mii_phys); miisc != NULL;
2501 		    miisc = LIST_NEXT(miisc, mii_list))
2502 			mii_phy_reset(miisc);
2503 	}
2504 	mii_mediachg(mii);
2505 
2506 	return(0);
2507 }
2508 
2509 /*
2510  * Report current media status.
2511  */
2512 static void
2513 bge_ifmedia_sts(ifp, ifmr)
2514 	struct ifnet *ifp;
2515 	struct ifmediareq *ifmr;
2516 {
2517 	struct bge_softc *sc;
2518 	struct mii_data *mii;
2519 
2520 	sc = ifp->if_softc;
2521 
2522 	if (sc->bge_tbi) {
2523 		ifmr->ifm_status = IFM_AVALID;
2524 		ifmr->ifm_active = IFM_ETHER;
2525 		if (CSR_READ_4(sc, BGE_MAC_STS) &
2526 		    BGE_MACSTAT_TBI_PCS_SYNCHED)
2527 			ifmr->ifm_status |= IFM_ACTIVE;
2528 		ifmr->ifm_active |= IFM_1000_SX;
2529 		if (CSR_READ_4(sc, BGE_MAC_MODE) & BGE_MACMODE_HALF_DUPLEX)
2530 			ifmr->ifm_active |= IFM_HDX;
2531 		else
2532 			ifmr->ifm_active |= IFM_FDX;
2533 		return;
2534 	}
2535 
2536 	mii = device_get_softc(sc->bge_miibus);
2537 	mii_pollstat(mii);
2538 	ifmr->ifm_active = mii->mii_media_active;
2539 	ifmr->ifm_status = mii->mii_media_status;
2540 
2541 	return;
2542 }
2543 
2544 static int
2545 bge_ioctl(ifp, command, data)
2546 	struct ifnet *ifp;
2547 	u_long command;
2548 	caddr_t data;
2549 {
2550 	struct bge_softc *sc = ifp->if_softc;
2551 	struct ifreq *ifr = (struct ifreq *) data;
2552 	int s, mask, error = 0;
2553 	struct mii_data *mii;
2554 
2555 	s = splimp();
2556 
2557 	switch(command) {
2558 	case SIOCSIFMTU:
2559 		if (ifr->ifr_mtu > BGE_JUMBO_MTU)
2560 			error = EINVAL;
2561 		else {
2562 			ifp->if_mtu = ifr->ifr_mtu;
2563 			ifp->if_flags &= ~IFF_RUNNING;
2564 			bge_init(sc);
2565 		}
2566 		break;
2567 	case SIOCSIFFLAGS:
2568 		if (ifp->if_flags & IFF_UP) {
2569 			/*
2570 			 * If only the state of the PROMISC flag changed,
2571 			 * then just use the 'set promisc mode' command
2572 			 * instead of reinitializing the entire NIC. Doing
2573 			 * a full re-init means reloading the firmware and
2574 			 * waiting for it to start up, which may take a
2575 			 * second or two.
2576 			 */
2577 			if (ifp->if_flags & IFF_RUNNING &&
2578 			    ifp->if_flags & IFF_PROMISC &&
2579 			    !(sc->bge_if_flags & IFF_PROMISC)) {
2580 				BGE_SETBIT(sc, BGE_RX_MODE,
2581 				    BGE_RXMODE_RX_PROMISC);
2582 			} else if (ifp->if_flags & IFF_RUNNING &&
2583 			    !(ifp->if_flags & IFF_PROMISC) &&
2584 			    sc->bge_if_flags & IFF_PROMISC) {
2585 				BGE_CLRBIT(sc, BGE_RX_MODE,
2586 				    BGE_RXMODE_RX_PROMISC);
2587 			} else
2588 				bge_init(sc);
2589 		} else {
2590 			if (ifp->if_flags & IFF_RUNNING) {
2591 				bge_stop(sc);
2592 			}
2593 		}
2594 		sc->bge_if_flags = ifp->if_flags;
2595 		error = 0;
2596 		break;
2597 	case SIOCADDMULTI:
2598 	case SIOCDELMULTI:
2599 		if (ifp->if_flags & IFF_RUNNING) {
2600 			bge_setmulti(sc);
2601 			error = 0;
2602 		}
2603 		break;
2604 	case SIOCSIFMEDIA:
2605 	case SIOCGIFMEDIA:
2606 		if (sc->bge_tbi) {
2607 			error = ifmedia_ioctl(ifp, ifr,
2608 			    &sc->bge_ifmedia, command);
2609 		} else {
2610 			mii = device_get_softc(sc->bge_miibus);
2611 			error = ifmedia_ioctl(ifp, ifr,
2612 			    &mii->mii_media, command);
2613 		}
2614 		break;
2615         case SIOCSIFCAP:
2616 		mask = ifr->ifr_reqcap ^ ifp->if_capenable;
2617 		if (mask & IFCAP_HWCSUM) {
2618 			if (IFCAP_HWCSUM & ifp->if_capenable)
2619 				ifp->if_capenable &= ~IFCAP_HWCSUM;
2620 			else
2621 				ifp->if_capenable |= IFCAP_HWCSUM;
2622 		}
2623 		error = 0;
2624 		break;
2625 	default:
2626 		error = ether_ioctl(ifp, command, data);
2627 		break;
2628 	}
2629 
2630 	(void)splx(s);
2631 
2632 	return(error);
2633 }
2634 
2635 static void
2636 bge_watchdog(ifp)
2637 	struct ifnet *ifp;
2638 {
2639 	struct bge_softc *sc;
2640 
2641 	sc = ifp->if_softc;
2642 
2643 	printf("bge%d: watchdog timeout -- resetting\n", sc->bge_unit);
2644 
2645 	ifp->if_flags &= ~IFF_RUNNING;
2646 	bge_init(sc);
2647 
2648 	ifp->if_oerrors++;
2649 
2650 	return;
2651 }
2652 
2653 /*
2654  * Stop the adapter and free any mbufs allocated to the
2655  * RX and TX lists.
2656  */
2657 static void
2658 bge_stop(sc)
2659 	struct bge_softc *sc;
2660 {
2661 	struct ifnet *ifp;
2662 	struct ifmedia_entry *ifm;
2663 	struct mii_data *mii = NULL;
2664 	int mtmp, itmp;
2665 
2666 	ifp = &sc->arpcom.ac_if;
2667 
2668 	if (!sc->bge_tbi)
2669 		mii = device_get_softc(sc->bge_miibus);
2670 
2671 	untimeout(bge_tick, sc, sc->bge_stat_ch);
2672 
2673 	/*
2674 	 * Disable all of the receiver blocks
2675 	 */
2676 	BGE_CLRBIT(sc, BGE_RX_MODE, BGE_RXMODE_ENABLE);
2677 	BGE_CLRBIT(sc, BGE_RBDI_MODE, BGE_RBDIMODE_ENABLE);
2678 	BGE_CLRBIT(sc, BGE_RXLP_MODE, BGE_RXLPMODE_ENABLE);
2679 	BGE_CLRBIT(sc, BGE_RXLS_MODE, BGE_RXLSMODE_ENABLE);
2680 	BGE_CLRBIT(sc, BGE_RDBDI_MODE, BGE_RBDIMODE_ENABLE);
2681 	BGE_CLRBIT(sc, BGE_RDC_MODE, BGE_RDCMODE_ENABLE);
2682 	BGE_CLRBIT(sc, BGE_RBDC_MODE, BGE_RBDCMODE_ENABLE);
2683 
2684 	/*
2685 	 * Disable all of the transmit blocks
2686 	 */
2687 	BGE_CLRBIT(sc, BGE_SRS_MODE, BGE_SRSMODE_ENABLE);
2688 	BGE_CLRBIT(sc, BGE_SBDI_MODE, BGE_SBDIMODE_ENABLE);
2689 	BGE_CLRBIT(sc, BGE_SDI_MODE, BGE_SDIMODE_ENABLE);
2690 	BGE_CLRBIT(sc, BGE_RDMA_MODE, BGE_RDMAMODE_ENABLE);
2691 	BGE_CLRBIT(sc, BGE_SDC_MODE, BGE_SDCMODE_ENABLE);
2692 	BGE_CLRBIT(sc, BGE_DMAC_MODE, BGE_DMACMODE_ENABLE);
2693 	BGE_CLRBIT(sc, BGE_SBDC_MODE, BGE_SBDCMODE_ENABLE);
2694 
2695 	/*
2696 	 * Shut down all of the memory managers and related
2697 	 * state machines.
2698 	 */
2699 	BGE_CLRBIT(sc, BGE_HCC_MODE, BGE_HCCMODE_ENABLE);
2700 	BGE_CLRBIT(sc, BGE_WDMA_MODE, BGE_WDMAMODE_ENABLE);
2701 	BGE_CLRBIT(sc, BGE_MBCF_MODE, BGE_MBCFMODE_ENABLE);
2702 	CSR_WRITE_4(sc, BGE_FTQ_RESET, 0xFFFFFFFF);
2703 	CSR_WRITE_4(sc, BGE_FTQ_RESET, 0);
2704 	BGE_CLRBIT(sc, BGE_BMAN_MODE, BGE_BMANMODE_ENABLE);
2705 	BGE_CLRBIT(sc, BGE_MARB_MODE, BGE_MARBMODE_ENABLE);
2706 
2707 	/* Disable host interrupts. */
2708 	BGE_SETBIT(sc, BGE_PCI_MISC_CTL, BGE_PCIMISCCTL_MASK_PCI_INTR);
2709 	CSR_WRITE_4(sc, BGE_MBX_IRQ0_LO, 1);
2710 
2711 	/*
2712 	 * Tell firmware we're shutting down.
2713 	 */
2714 	BGE_CLRBIT(sc, BGE_MODE_CTL, BGE_MODECTL_STACKUP);
2715 
2716 	/* Free the RX lists. */
2717 	bge_free_rx_ring_std(sc);
2718 
2719 	/* Free jumbo RX list. */
2720 	bge_free_rx_ring_jumbo(sc);
2721 
2722 	/* Free TX buffers. */
2723 	bge_free_tx_ring(sc);
2724 
2725 	/*
2726 	 * Isolate/power down the PHY, but leave the media selection
2727 	 * unchanged so that things will be put back to normal when
2728 	 * we bring the interface back up.
2729 	 */
2730 	if (!sc->bge_tbi) {
2731 		itmp = ifp->if_flags;
2732 		ifp->if_flags |= IFF_UP;
2733 		ifm = mii->mii_media.ifm_cur;
2734 		mtmp = ifm->ifm_media;
2735 		ifm->ifm_media = IFM_ETHER|IFM_NONE;
2736 		mii_mediachg(mii);
2737 		ifm->ifm_media = mtmp;
2738 		ifp->if_flags = itmp;
2739 	}
2740 
2741 	sc->bge_link = 0;
2742 
2743 	sc->bge_tx_saved_considx = BGE_TXCONS_UNSET;
2744 
2745 	ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE);
2746 
2747 	return;
2748 }
2749 
2750 /*
2751  * Stop all chip I/O so that the kernel's probe routines don't
2752  * get confused by errant DMAs when rebooting.
2753  */
2754 static void
2755 bge_shutdown(dev)
2756 	device_t dev;
2757 {
2758 	struct bge_softc *sc;
2759 
2760 	sc = device_get_softc(dev);
2761 
2762 	bge_stop(sc);
2763 	bge_reset(sc);
2764 
2765 	return;
2766 }
2767