1 /* 2 * Copyright (c) 2001 Wind River Systems 3 * Copyright (c) 1997, 1998, 1999, 2001 4 * Bill Paul <wpaul@windriver.com>. All rights reserved. 5 * 6 * Redistribution and use in source and binary forms, with or without 7 * modification, are permitted provided that the following conditions 8 * are met: 9 * 1. Redistributions of source code must retain the above copyright 10 * notice, this list of conditions and the following disclaimer. 11 * 2. Redistributions in binary form must reproduce the above copyright 12 * notice, this list of conditions and the following disclaimer in the 13 * documentation and/or other materials provided with the distribution. 14 * 3. All advertising materials mentioning features or use of this software 15 * must display the following acknowledgement: 16 * This product includes software developed by Bill Paul. 17 * 4. Neither the name of the author nor the names of any co-contributors 18 * may be used to endorse or promote products derived from this software 19 * without specific prior written permission. 20 * 21 * THIS SOFTWARE IS PROVIDED BY Bill Paul AND CONTRIBUTORS ``AS IS'' AND 22 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 23 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 24 * ARE DISCLAIMED. IN NO EVENT SHALL Bill Paul OR THE VOICES IN HIS HEAD 25 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR 26 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF 27 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS 28 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN 29 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) 30 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF 31 * THE POSSIBILITY OF SUCH DAMAGE. 32 */ 33 34 /* 35 * Broadcom BCM570x family gigabit ethernet driver for FreeBSD. 36 * 37 * The Broadcom BCM5700 is based on technology originally developed by 38 * Alteon Networks as part of the Tigon I and Tigon II gigabit ethernet 39 * MAC chips. The BCM5700, sometimes refered to as the Tigon III, has 40 * two on-board MIPS R4000 CPUs and can have as much as 16MB of external 41 * SSRAM. The BCM5700 supports TCP, UDP and IP checksum offload, jumbo 42 * frames, highly configurable RX filtering, and 16 RX and TX queues 43 * (which, along with RX filter rules, can be used for QOS applications). 44 * Other features, such as TCP segmentation, may be available as part 45 * of value-added firmware updates. Unlike the Tigon I and Tigon II, 46 * firmware images can be stored in hardware and need not be compiled 47 * into the driver. 48 * 49 * The BCM5700 supports the PCI v2.2 and PCI-X v1.0 standards, and will 50 * function in a 32-bit/64-bit 33/66Mhz bus, or a 64-bit/133Mhz bus. 51 * 52 * The BCM5701 is a single-chip solution incorporating both the BCM5700 53 * MAC and a BCM5401 10/100/1000 PHY. Unlike the BCM5700, the BCM5701 54 * does not support external SSRAM. 55 * 56 * Broadcom also produces a variation of the BCM5700 under the "Altima" 57 * brand name, which is functionally similar but lacks PCI-X support. 58 * 59 * Without external SSRAM, you can only have at most 4 TX rings, 60 * and the use of the mini RX ring is disabled. This seems to imply 61 * that these features are simply not available on the BCM5701. As a 62 * result, this driver does not implement any support for the mini RX 63 * ring. 64 */ 65 66 #include <sys/cdefs.h> 67 __FBSDID("$FreeBSD$"); 68 69 #include <sys/param.h> 70 #include <sys/systm.h> 71 #include <sys/sockio.h> 72 #include <sys/mbuf.h> 73 #include <sys/malloc.h> 74 #include <sys/kernel.h> 75 #include <sys/socket.h> 76 #include <sys/queue.h> 77 78 #include <net/if.h> 79 #include <net/if_arp.h> 80 #include <net/ethernet.h> 81 #include <net/if_dl.h> 82 #include <net/if_media.h> 83 84 #include <net/bpf.h> 85 86 #include <net/if_types.h> 87 #include <net/if_vlan_var.h> 88 89 #include <netinet/in_systm.h> 90 #include <netinet/in.h> 91 #include <netinet/ip.h> 92 93 #include <vm/vm.h> /* for vtophys */ 94 #include <vm/pmap.h> /* for vtophys */ 95 #include <machine/clock.h> /* for DELAY */ 96 #include <machine/bus_memio.h> 97 #include <machine/bus.h> 98 #include <machine/resource.h> 99 #include <sys/bus.h> 100 #include <sys/rman.h> 101 102 #include <dev/mii/mii.h> 103 #include <dev/mii/miivar.h> 104 #include "miidevs.h" 105 #include <dev/mii/brgphyreg.h> 106 107 #include <pci/pcireg.h> 108 #include <pci/pcivar.h> 109 110 #include <dev/bge/if_bgereg.h> 111 112 #define BGE_CSUM_FEATURES (CSUM_IP | CSUM_TCP | CSUM_UDP) 113 114 MODULE_DEPEND(bge, pci, 1, 1, 1); 115 MODULE_DEPEND(bge, ether, 1, 1, 1); 116 MODULE_DEPEND(bge, miibus, 1, 1, 1); 117 118 /* "controller miibus0" required. See GENERIC if you get errors here. */ 119 #include "miibus_if.h" 120 121 /* 122 * Various supported device vendors/types and their names. Note: the 123 * spec seems to indicate that the hardware still has Alteon's vendor 124 * ID burned into it, though it will always be overriden by the vendor 125 * ID in the EEPROM. Just to be safe, we cover all possibilities. 126 */ 127 #define BGE_DEVDESC_MAX 64 /* Maximum device description length */ 128 129 static struct bge_type bge_devs[] = { 130 { ALT_VENDORID, ALT_DEVICEID_BCM5700, 131 "Broadcom BCM5700 Gigabit Ethernet" }, 132 { ALT_VENDORID, ALT_DEVICEID_BCM5701, 133 "Broadcom BCM5701 Gigabit Ethernet" }, 134 { BCOM_VENDORID, BCOM_DEVICEID_BCM5700, 135 "Broadcom BCM5700 Gigabit Ethernet" }, 136 { BCOM_VENDORID, BCOM_DEVICEID_BCM5701, 137 "Broadcom BCM5701 Gigabit Ethernet" }, 138 { BCOM_VENDORID, BCOM_DEVICEID_BCM5702X, 139 "Broadcom BCM5702X Gigabit Ethernet" }, 140 { BCOM_VENDORID, BCOM_DEVICEID_BCM5703X, 141 "Broadcom BCM5703X Gigabit Ethernet" }, 142 { BCOM_VENDORID, BCOM_DEVICEID_BCM5704C, 143 "Broadcom BCM5704C Dual Gigabit Ethernet" }, 144 { BCOM_VENDORID, BCOM_DEVICEID_BCM5704S, 145 "Broadcom BCM5704S Dual Gigabit Ethernet" }, 146 { SK_VENDORID, SK_DEVICEID_ALTIMA, 147 "SysKonnect Gigabit Ethernet" }, 148 { ALTIMA_VENDORID, ALTIMA_DEVICE_AC1000, 149 "Altima AC1000 Gigabit Ethernet" }, 150 { ALTIMA_VENDORID, ALTIMA_DEVICE_AC9100, 151 "Altima AC9100 Gigabit Ethernet" }, 152 { 0, 0, NULL } 153 }; 154 155 static int bge_probe (device_t); 156 static int bge_attach (device_t); 157 static int bge_detach (device_t); 158 static void bge_release_resources 159 (struct bge_softc *); 160 static void bge_txeof (struct bge_softc *); 161 static void bge_rxeof (struct bge_softc *); 162 163 static void bge_tick (void *); 164 static void bge_stats_update (struct bge_softc *); 165 static int bge_encap (struct bge_softc *, struct mbuf *, 166 u_int32_t *); 167 168 static void bge_intr (void *); 169 static void bge_start (struct ifnet *); 170 static int bge_ioctl (struct ifnet *, u_long, caddr_t); 171 static void bge_init (void *); 172 static void bge_stop (struct bge_softc *); 173 static void bge_watchdog (struct ifnet *); 174 static void bge_shutdown (device_t); 175 static int bge_ifmedia_upd (struct ifnet *); 176 static void bge_ifmedia_sts (struct ifnet *, struct ifmediareq *); 177 178 static u_int8_t bge_eeprom_getbyte (struct bge_softc *, int, u_int8_t *); 179 static int bge_read_eeprom (struct bge_softc *, caddr_t, int, int); 180 181 static u_int32_t bge_crc (caddr_t); 182 static void bge_setmulti (struct bge_softc *); 183 184 static void bge_handle_events (struct bge_softc *); 185 static int bge_alloc_jumbo_mem (struct bge_softc *); 186 static void bge_free_jumbo_mem (struct bge_softc *); 187 static void *bge_jalloc (struct bge_softc *); 188 static void bge_jfree (void *, void *); 189 static int bge_newbuf_std (struct bge_softc *, int, struct mbuf *); 190 static int bge_newbuf_jumbo (struct bge_softc *, int, struct mbuf *); 191 static int bge_init_rx_ring_std (struct bge_softc *); 192 static void bge_free_rx_ring_std (struct bge_softc *); 193 static int bge_init_rx_ring_jumbo (struct bge_softc *); 194 static void bge_free_rx_ring_jumbo (struct bge_softc *); 195 static void bge_free_tx_ring (struct bge_softc *); 196 static int bge_init_tx_ring (struct bge_softc *); 197 198 static int bge_chipinit (struct bge_softc *); 199 static int bge_blockinit (struct bge_softc *); 200 201 #ifdef notdef 202 static u_int8_t bge_vpd_readbyte(struct bge_softc *, int); 203 static void bge_vpd_read_res (struct bge_softc *, struct vpd_res *, int); 204 static void bge_vpd_read (struct bge_softc *); 205 #endif 206 207 static u_int32_t bge_readmem_ind 208 (struct bge_softc *, int); 209 static void bge_writemem_ind (struct bge_softc *, int, int); 210 #ifdef notdef 211 static u_int32_t bge_readreg_ind 212 (struct bge_softc *, int); 213 #endif 214 static void bge_writereg_ind (struct bge_softc *, int, int); 215 216 static int bge_miibus_readreg (device_t, int, int); 217 static int bge_miibus_writereg (device_t, int, int, int); 218 static void bge_miibus_statchg (device_t); 219 220 static void bge_reset (struct bge_softc *); 221 222 static device_method_t bge_methods[] = { 223 /* Device interface */ 224 DEVMETHOD(device_probe, bge_probe), 225 DEVMETHOD(device_attach, bge_attach), 226 DEVMETHOD(device_detach, bge_detach), 227 DEVMETHOD(device_shutdown, bge_shutdown), 228 229 /* bus interface */ 230 DEVMETHOD(bus_print_child, bus_generic_print_child), 231 DEVMETHOD(bus_driver_added, bus_generic_driver_added), 232 233 /* MII interface */ 234 DEVMETHOD(miibus_readreg, bge_miibus_readreg), 235 DEVMETHOD(miibus_writereg, bge_miibus_writereg), 236 DEVMETHOD(miibus_statchg, bge_miibus_statchg), 237 238 { 0, 0 } 239 }; 240 241 static driver_t bge_driver = { 242 "bge", 243 bge_methods, 244 sizeof(struct bge_softc) 245 }; 246 247 static devclass_t bge_devclass; 248 249 DRIVER_MODULE(bge, pci, bge_driver, bge_devclass, 0, 0); 250 DRIVER_MODULE(miibus, bge, miibus_driver, miibus_devclass, 0, 0); 251 252 static u_int32_t 253 bge_readmem_ind(sc, off) 254 struct bge_softc *sc; 255 int off; 256 { 257 device_t dev; 258 259 dev = sc->bge_dev; 260 261 pci_write_config(dev, BGE_PCI_MEMWIN_BASEADDR, off, 4); 262 return(pci_read_config(dev, BGE_PCI_MEMWIN_DATA, 4)); 263 } 264 265 static void 266 bge_writemem_ind(sc, off, val) 267 struct bge_softc *sc; 268 int off, val; 269 { 270 device_t dev; 271 272 dev = sc->bge_dev; 273 274 pci_write_config(dev, BGE_PCI_MEMWIN_BASEADDR, off, 4); 275 pci_write_config(dev, BGE_PCI_MEMWIN_DATA, val, 4); 276 277 return; 278 } 279 280 #ifdef notdef 281 static u_int32_t 282 bge_readreg_ind(sc, off) 283 struct bge_softc *sc; 284 int off; 285 { 286 device_t dev; 287 288 dev = sc->bge_dev; 289 290 pci_write_config(dev, BGE_PCI_REG_BASEADDR, off, 4); 291 return(pci_read_config(dev, BGE_PCI_REG_DATA, 4)); 292 } 293 #endif 294 295 static void 296 bge_writereg_ind(sc, off, val) 297 struct bge_softc *sc; 298 int off, val; 299 { 300 device_t dev; 301 302 dev = sc->bge_dev; 303 304 pci_write_config(dev, BGE_PCI_REG_BASEADDR, off, 4); 305 pci_write_config(dev, BGE_PCI_REG_DATA, val, 4); 306 307 return; 308 } 309 310 #ifdef notdef 311 static u_int8_t 312 bge_vpd_readbyte(sc, addr) 313 struct bge_softc *sc; 314 int addr; 315 { 316 int i; 317 device_t dev; 318 u_int32_t val; 319 320 dev = sc->bge_dev; 321 pci_write_config(dev, BGE_PCI_VPD_ADDR, addr, 2); 322 for (i = 0; i < BGE_TIMEOUT * 10; i++) { 323 DELAY(10); 324 if (pci_read_config(dev, BGE_PCI_VPD_ADDR, 2) & BGE_VPD_FLAG) 325 break; 326 } 327 328 if (i == BGE_TIMEOUT) { 329 printf("bge%d: VPD read timed out\n", sc->bge_unit); 330 return(0); 331 } 332 333 val = pci_read_config(dev, BGE_PCI_VPD_DATA, 4); 334 335 return((val >> ((addr % 4) * 8)) & 0xFF); 336 } 337 338 static void 339 bge_vpd_read_res(sc, res, addr) 340 struct bge_softc *sc; 341 struct vpd_res *res; 342 int addr; 343 { 344 int i; 345 u_int8_t *ptr; 346 347 ptr = (u_int8_t *)res; 348 for (i = 0; i < sizeof(struct vpd_res); i++) 349 ptr[i] = bge_vpd_readbyte(sc, i + addr); 350 351 return; 352 } 353 354 static void 355 bge_vpd_read(sc) 356 struct bge_softc *sc; 357 { 358 int pos = 0, i; 359 struct vpd_res res; 360 361 if (sc->bge_vpd_prodname != NULL) 362 free(sc->bge_vpd_prodname, M_DEVBUF); 363 if (sc->bge_vpd_readonly != NULL) 364 free(sc->bge_vpd_readonly, M_DEVBUF); 365 sc->bge_vpd_prodname = NULL; 366 sc->bge_vpd_readonly = NULL; 367 368 bge_vpd_read_res(sc, &res, pos); 369 370 if (res.vr_id != VPD_RES_ID) { 371 printf("bge%d: bad VPD resource id: expected %x got %x\n", 372 sc->bge_unit, VPD_RES_ID, res.vr_id); 373 return; 374 } 375 376 pos += sizeof(res); 377 sc->bge_vpd_prodname = malloc(res.vr_len + 1, M_DEVBUF, M_NOWAIT); 378 for (i = 0; i < res.vr_len; i++) 379 sc->bge_vpd_prodname[i] = bge_vpd_readbyte(sc, i + pos); 380 sc->bge_vpd_prodname[i] = '\0'; 381 pos += i; 382 383 bge_vpd_read_res(sc, &res, pos); 384 385 if (res.vr_id != VPD_RES_READ) { 386 printf("bge%d: bad VPD resource id: expected %x got %x\n", 387 sc->bge_unit, VPD_RES_READ, res.vr_id); 388 return; 389 } 390 391 pos += sizeof(res); 392 sc->bge_vpd_readonly = malloc(res.vr_len, M_DEVBUF, M_NOWAIT); 393 for (i = 0; i < res.vr_len + 1; i++) 394 sc->bge_vpd_readonly[i] = bge_vpd_readbyte(sc, i + pos); 395 396 return; 397 } 398 #endif 399 400 /* 401 * Read a byte of data stored in the EEPROM at address 'addr.' The 402 * BCM570x supports both the traditional bitbang interface and an 403 * auto access interface for reading the EEPROM. We use the auto 404 * access method. 405 */ 406 static u_int8_t 407 bge_eeprom_getbyte(sc, addr, dest) 408 struct bge_softc *sc; 409 int addr; 410 u_int8_t *dest; 411 { 412 int i; 413 u_int32_t byte = 0; 414 415 /* 416 * Enable use of auto EEPROM access so we can avoid 417 * having to use the bitbang method. 418 */ 419 BGE_SETBIT(sc, BGE_MISC_LOCAL_CTL, BGE_MLC_AUTO_EEPROM); 420 421 /* Reset the EEPROM, load the clock period. */ 422 CSR_WRITE_4(sc, BGE_EE_ADDR, 423 BGE_EEADDR_RESET|BGE_EEHALFCLK(BGE_HALFCLK_384SCL)); 424 DELAY(20); 425 426 /* Issue the read EEPROM command. */ 427 CSR_WRITE_4(sc, BGE_EE_ADDR, BGE_EE_READCMD | addr); 428 429 /* Wait for completion */ 430 for(i = 0; i < BGE_TIMEOUT * 10; i++) { 431 DELAY(10); 432 if (CSR_READ_4(sc, BGE_EE_ADDR) & BGE_EEADDR_DONE) 433 break; 434 } 435 436 if (i == BGE_TIMEOUT) { 437 printf("bge%d: eeprom read timed out\n", sc->bge_unit); 438 return(0); 439 } 440 441 /* Get result. */ 442 byte = CSR_READ_4(sc, BGE_EE_DATA); 443 444 *dest = (byte >> ((addr % 4) * 8)) & 0xFF; 445 446 return(0); 447 } 448 449 /* 450 * Read a sequence of bytes from the EEPROM. 451 */ 452 static int 453 bge_read_eeprom(sc, dest, off, cnt) 454 struct bge_softc *sc; 455 caddr_t dest; 456 int off; 457 int cnt; 458 { 459 int err = 0, i; 460 u_int8_t byte = 0; 461 462 for (i = 0; i < cnt; i++) { 463 err = bge_eeprom_getbyte(sc, off + i, &byte); 464 if (err) 465 break; 466 *(dest + i) = byte; 467 } 468 469 return(err ? 1 : 0); 470 } 471 472 static int 473 bge_miibus_readreg(dev, phy, reg) 474 device_t dev; 475 int phy, reg; 476 { 477 struct bge_softc *sc; 478 struct ifnet *ifp; 479 u_int32_t val, autopoll; 480 int i; 481 482 sc = device_get_softc(dev); 483 ifp = &sc->arpcom.ac_if; 484 485 if (phy != 1) 486 switch(sc->bge_asicrev) { 487 case BGE_ASICREV_BCM5701_B5: 488 case BGE_ASICREV_BCM5703_A2: 489 case BGE_ASICREV_BCM5704_A0: 490 return(0); 491 } 492 493 /* Reading with autopolling on may trigger PCI errors */ 494 autopoll = CSR_READ_4(sc, BGE_MI_MODE); 495 if (autopoll & BGE_MIMODE_AUTOPOLL) { 496 BGE_CLRBIT(sc, BGE_MI_MODE, BGE_MIMODE_AUTOPOLL); 497 DELAY(40); 498 } 499 500 CSR_WRITE_4(sc, BGE_MI_COMM, BGE_MICMD_READ|BGE_MICOMM_BUSY| 501 BGE_MIPHY(phy)|BGE_MIREG(reg)); 502 503 for (i = 0; i < BGE_TIMEOUT; i++) { 504 val = CSR_READ_4(sc, BGE_MI_COMM); 505 if (!(val & BGE_MICOMM_BUSY)) 506 break; 507 } 508 509 if (i == BGE_TIMEOUT) { 510 printf("bge%d: PHY read timed out\n", sc->bge_unit); 511 val = 0; 512 goto done; 513 } 514 515 val = CSR_READ_4(sc, BGE_MI_COMM); 516 517 done: 518 if (autopoll & BGE_MIMODE_AUTOPOLL) { 519 BGE_SETBIT(sc, BGE_MI_MODE, BGE_MIMODE_AUTOPOLL); 520 DELAY(40); 521 } 522 523 if (val & BGE_MICOMM_READFAIL) 524 return(0); 525 526 return(val & 0xFFFF); 527 } 528 529 static int 530 bge_miibus_writereg(dev, phy, reg, val) 531 device_t dev; 532 int phy, reg, val; 533 { 534 struct bge_softc *sc; 535 u_int32_t autopoll; 536 int i; 537 538 sc = device_get_softc(dev); 539 540 /* Reading with autopolling on may trigger PCI errors */ 541 autopoll = CSR_READ_4(sc, BGE_MI_MODE); 542 if (autopoll & BGE_MIMODE_AUTOPOLL) { 543 BGE_CLRBIT(sc, BGE_MI_MODE, BGE_MIMODE_AUTOPOLL); 544 DELAY(40); 545 } 546 547 CSR_WRITE_4(sc, BGE_MI_COMM, BGE_MICMD_WRITE|BGE_MICOMM_BUSY| 548 BGE_MIPHY(phy)|BGE_MIREG(reg)|val); 549 550 for (i = 0; i < BGE_TIMEOUT; i++) { 551 if (!(CSR_READ_4(sc, BGE_MI_COMM) & BGE_MICOMM_BUSY)) 552 break; 553 } 554 555 if (autopoll & BGE_MIMODE_AUTOPOLL) { 556 BGE_SETBIT(sc, BGE_MI_MODE, BGE_MIMODE_AUTOPOLL); 557 DELAY(40); 558 } 559 560 if (i == BGE_TIMEOUT) { 561 printf("bge%d: PHY read timed out\n", sc->bge_unit); 562 return(0); 563 } 564 565 return(0); 566 } 567 568 static void 569 bge_miibus_statchg(dev) 570 device_t dev; 571 { 572 struct bge_softc *sc; 573 struct mii_data *mii; 574 575 sc = device_get_softc(dev); 576 mii = device_get_softc(sc->bge_miibus); 577 578 BGE_CLRBIT(sc, BGE_MAC_MODE, BGE_MACMODE_PORTMODE); 579 if (IFM_SUBTYPE(mii->mii_media_active) == IFM_1000_T) { 580 BGE_SETBIT(sc, BGE_MAC_MODE, BGE_PORTMODE_GMII); 581 } else { 582 BGE_SETBIT(sc, BGE_MAC_MODE, BGE_PORTMODE_MII); 583 } 584 585 if ((mii->mii_media_active & IFM_GMASK) == IFM_FDX) { 586 BGE_CLRBIT(sc, BGE_MAC_MODE, BGE_MACMODE_HALF_DUPLEX); 587 } else { 588 BGE_SETBIT(sc, BGE_MAC_MODE, BGE_MACMODE_HALF_DUPLEX); 589 } 590 591 return; 592 } 593 594 /* 595 * Handle events that have triggered interrupts. 596 */ 597 static void 598 bge_handle_events(sc) 599 struct bge_softc *sc; 600 { 601 602 return; 603 } 604 605 /* 606 * Memory management for jumbo frames. 607 */ 608 609 static int 610 bge_alloc_jumbo_mem(sc) 611 struct bge_softc *sc; 612 { 613 caddr_t ptr; 614 register int i; 615 struct bge_jpool_entry *entry; 616 617 /* Grab a big chunk o' storage. */ 618 sc->bge_cdata.bge_jumbo_buf = contigmalloc(BGE_JMEM, M_DEVBUF, 619 M_NOWAIT, 0, 0xffffffff, PAGE_SIZE, 0); 620 621 if (sc->bge_cdata.bge_jumbo_buf == NULL) { 622 printf("bge%d: no memory for jumbo buffers!\n", sc->bge_unit); 623 return(ENOBUFS); 624 } 625 626 SLIST_INIT(&sc->bge_jfree_listhead); 627 SLIST_INIT(&sc->bge_jinuse_listhead); 628 629 /* 630 * Now divide it up into 9K pieces and save the addresses 631 * in an array. 632 */ 633 ptr = sc->bge_cdata.bge_jumbo_buf; 634 for (i = 0; i < BGE_JSLOTS; i++) { 635 sc->bge_cdata.bge_jslots[i] = ptr; 636 ptr += BGE_JLEN; 637 entry = malloc(sizeof(struct bge_jpool_entry), 638 M_DEVBUF, M_NOWAIT); 639 if (entry == NULL) { 640 contigfree(sc->bge_cdata.bge_jumbo_buf, 641 BGE_JMEM, M_DEVBUF); 642 sc->bge_cdata.bge_jumbo_buf = NULL; 643 printf("bge%d: no memory for jumbo " 644 "buffer queue!\n", sc->bge_unit); 645 return(ENOBUFS); 646 } 647 entry->slot = i; 648 SLIST_INSERT_HEAD(&sc->bge_jfree_listhead, 649 entry, jpool_entries); 650 } 651 652 return(0); 653 } 654 655 static void 656 bge_free_jumbo_mem(sc) 657 struct bge_softc *sc; 658 { 659 int i; 660 struct bge_jpool_entry *entry; 661 662 for (i = 0; i < BGE_JSLOTS; i++) { 663 entry = SLIST_FIRST(&sc->bge_jfree_listhead); 664 SLIST_REMOVE_HEAD(&sc->bge_jfree_listhead, jpool_entries); 665 free(entry, M_DEVBUF); 666 } 667 668 contigfree(sc->bge_cdata.bge_jumbo_buf, BGE_JMEM, M_DEVBUF); 669 670 return; 671 } 672 673 /* 674 * Allocate a jumbo buffer. 675 */ 676 static void * 677 bge_jalloc(sc) 678 struct bge_softc *sc; 679 { 680 struct bge_jpool_entry *entry; 681 682 entry = SLIST_FIRST(&sc->bge_jfree_listhead); 683 684 if (entry == NULL) { 685 printf("bge%d: no free jumbo buffers\n", sc->bge_unit); 686 return(NULL); 687 } 688 689 SLIST_REMOVE_HEAD(&sc->bge_jfree_listhead, jpool_entries); 690 SLIST_INSERT_HEAD(&sc->bge_jinuse_listhead, entry, jpool_entries); 691 return(sc->bge_cdata.bge_jslots[entry->slot]); 692 } 693 694 /* 695 * Release a jumbo buffer. 696 */ 697 static void 698 bge_jfree(buf, args) 699 void *buf; 700 void *args; 701 { 702 struct bge_jpool_entry *entry; 703 struct bge_softc *sc; 704 int i; 705 706 /* Extract the softc struct pointer. */ 707 sc = (struct bge_softc *)args; 708 709 if (sc == NULL) 710 panic("bge_jfree: can't find softc pointer!"); 711 712 /* calculate the slot this buffer belongs to */ 713 714 i = ((vm_offset_t)buf 715 - (vm_offset_t)sc->bge_cdata.bge_jumbo_buf) / BGE_JLEN; 716 717 if ((i < 0) || (i >= BGE_JSLOTS)) 718 panic("bge_jfree: asked to free buffer that we don't manage!"); 719 720 entry = SLIST_FIRST(&sc->bge_jinuse_listhead); 721 if (entry == NULL) 722 panic("bge_jfree: buffer not in use!"); 723 entry->slot = i; 724 SLIST_REMOVE_HEAD(&sc->bge_jinuse_listhead, jpool_entries); 725 SLIST_INSERT_HEAD(&sc->bge_jfree_listhead, entry, jpool_entries); 726 727 return; 728 } 729 730 731 /* 732 * Intialize a standard receive ring descriptor. 733 */ 734 static int 735 bge_newbuf_std(sc, i, m) 736 struct bge_softc *sc; 737 int i; 738 struct mbuf *m; 739 { 740 struct mbuf *m_new = NULL; 741 struct bge_rx_bd *r; 742 743 if (m == NULL) { 744 MGETHDR(m_new, M_DONTWAIT, MT_DATA); 745 if (m_new == NULL) { 746 return(ENOBUFS); 747 } 748 749 MCLGET(m_new, M_DONTWAIT); 750 if (!(m_new->m_flags & M_EXT)) { 751 m_freem(m_new); 752 return(ENOBUFS); 753 } 754 m_new->m_len = m_new->m_pkthdr.len = MCLBYTES; 755 } else { 756 m_new = m; 757 m_new->m_len = m_new->m_pkthdr.len = MCLBYTES; 758 m_new->m_data = m_new->m_ext.ext_buf; 759 } 760 761 if (!sc->bge_rx_alignment_bug) 762 m_adj(m_new, ETHER_ALIGN); 763 sc->bge_cdata.bge_rx_std_chain[i] = m_new; 764 r = &sc->bge_rdata->bge_rx_std_ring[i]; 765 BGE_HOSTADDR(r->bge_addr) = vtophys(mtod(m_new, caddr_t)); 766 r->bge_flags = BGE_RXBDFLAG_END; 767 r->bge_len = m_new->m_len; 768 r->bge_idx = i; 769 770 return(0); 771 } 772 773 /* 774 * Initialize a jumbo receive ring descriptor. This allocates 775 * a jumbo buffer from the pool managed internally by the driver. 776 */ 777 static int 778 bge_newbuf_jumbo(sc, i, m) 779 struct bge_softc *sc; 780 int i; 781 struct mbuf *m; 782 { 783 struct mbuf *m_new = NULL; 784 struct bge_rx_bd *r; 785 786 if (m == NULL) { 787 caddr_t *buf = NULL; 788 789 /* Allocate the mbuf. */ 790 MGETHDR(m_new, M_DONTWAIT, MT_DATA); 791 if (m_new == NULL) { 792 return(ENOBUFS); 793 } 794 795 /* Allocate the jumbo buffer */ 796 buf = bge_jalloc(sc); 797 if (buf == NULL) { 798 m_freem(m_new); 799 printf("bge%d: jumbo allocation failed " 800 "-- packet dropped!\n", sc->bge_unit); 801 return(ENOBUFS); 802 } 803 804 /* Attach the buffer to the mbuf. */ 805 m_new->m_data = (void *) buf; 806 m_new->m_len = m_new->m_pkthdr.len = BGE_JUMBO_FRAMELEN; 807 MEXTADD(m_new, buf, BGE_JUMBO_FRAMELEN, bge_jfree, 808 (struct bge_softc *)sc, 0, EXT_NET_DRV); 809 } else { 810 m_new = m; 811 m_new->m_data = m_new->m_ext.ext_buf; 812 m_new->m_ext.ext_size = BGE_JUMBO_FRAMELEN; 813 } 814 815 if (!sc->bge_rx_alignment_bug) 816 m_adj(m_new, ETHER_ALIGN); 817 /* Set up the descriptor. */ 818 r = &sc->bge_rdata->bge_rx_jumbo_ring[i]; 819 sc->bge_cdata.bge_rx_jumbo_chain[i] = m_new; 820 BGE_HOSTADDR(r->bge_addr) = vtophys(mtod(m_new, caddr_t)); 821 r->bge_flags = BGE_RXBDFLAG_END|BGE_RXBDFLAG_JUMBO_RING; 822 r->bge_len = m_new->m_len; 823 r->bge_idx = i; 824 825 return(0); 826 } 827 828 /* 829 * The standard receive ring has 512 entries in it. At 2K per mbuf cluster, 830 * that's 1MB or memory, which is a lot. For now, we fill only the first 831 * 256 ring entries and hope that our CPU is fast enough to keep up with 832 * the NIC. 833 */ 834 static int 835 bge_init_rx_ring_std(sc) 836 struct bge_softc *sc; 837 { 838 int i; 839 840 for (i = 0; i < BGE_SSLOTS; i++) { 841 if (bge_newbuf_std(sc, i, NULL) == ENOBUFS) 842 return(ENOBUFS); 843 }; 844 845 sc->bge_std = i - 1; 846 CSR_WRITE_4(sc, BGE_MBX_RX_STD_PROD_LO, sc->bge_std); 847 848 return(0); 849 } 850 851 static void 852 bge_free_rx_ring_std(sc) 853 struct bge_softc *sc; 854 { 855 int i; 856 857 for (i = 0; i < BGE_STD_RX_RING_CNT; i++) { 858 if (sc->bge_cdata.bge_rx_std_chain[i] != NULL) { 859 m_freem(sc->bge_cdata.bge_rx_std_chain[i]); 860 sc->bge_cdata.bge_rx_std_chain[i] = NULL; 861 } 862 bzero((char *)&sc->bge_rdata->bge_rx_std_ring[i], 863 sizeof(struct bge_rx_bd)); 864 } 865 866 return; 867 } 868 869 static int 870 bge_init_rx_ring_jumbo(sc) 871 struct bge_softc *sc; 872 { 873 int i; 874 struct bge_rcb *rcb; 875 876 for (i = 0; i < BGE_JUMBO_RX_RING_CNT; i++) { 877 if (bge_newbuf_jumbo(sc, i, NULL) == ENOBUFS) 878 return(ENOBUFS); 879 }; 880 881 sc->bge_jumbo = i - 1; 882 883 rcb = &sc->bge_rdata->bge_info.bge_jumbo_rx_rcb; 884 rcb->bge_maxlen_flags = BGE_RCB_MAXLEN_FLAGS(0, 0); 885 CSR_WRITE_4(sc, BGE_RX_JUMBO_RCB_MAXLEN_FLAGS, rcb->bge_maxlen_flags); 886 887 CSR_WRITE_4(sc, BGE_MBX_RX_JUMBO_PROD_LO, sc->bge_jumbo); 888 889 return(0); 890 } 891 892 static void 893 bge_free_rx_ring_jumbo(sc) 894 struct bge_softc *sc; 895 { 896 int i; 897 898 for (i = 0; i < BGE_JUMBO_RX_RING_CNT; i++) { 899 if (sc->bge_cdata.bge_rx_jumbo_chain[i] != NULL) { 900 m_freem(sc->bge_cdata.bge_rx_jumbo_chain[i]); 901 sc->bge_cdata.bge_rx_jumbo_chain[i] = NULL; 902 } 903 bzero((char *)&sc->bge_rdata->bge_rx_jumbo_ring[i], 904 sizeof(struct bge_rx_bd)); 905 } 906 907 return; 908 } 909 910 static void 911 bge_free_tx_ring(sc) 912 struct bge_softc *sc; 913 { 914 int i; 915 916 if (sc->bge_rdata->bge_tx_ring == NULL) 917 return; 918 919 for (i = 0; i < BGE_TX_RING_CNT; i++) { 920 if (sc->bge_cdata.bge_tx_chain[i] != NULL) { 921 m_freem(sc->bge_cdata.bge_tx_chain[i]); 922 sc->bge_cdata.bge_tx_chain[i] = NULL; 923 } 924 bzero((char *)&sc->bge_rdata->bge_tx_ring[i], 925 sizeof(struct bge_tx_bd)); 926 } 927 928 return; 929 } 930 931 static int 932 bge_init_tx_ring(sc) 933 struct bge_softc *sc; 934 { 935 sc->bge_txcnt = 0; 936 sc->bge_tx_saved_considx = 0; 937 938 CSR_WRITE_4(sc, BGE_MBX_TX_HOST_PROD0_LO, 0); 939 /* 5700 b2 errata */ 940 if (BGE_ASICREV(sc->bge_asicrev) == BGE_ASICREV_BCM5700) 941 CSR_WRITE_4(sc, BGE_MBX_TX_HOST_PROD0_LO, 0); 942 943 CSR_WRITE_4(sc, BGE_MBX_TX_NIC_PROD0_LO, 0); 944 /* 5700 b2 errata */ 945 if (BGE_ASICREV(sc->bge_asicrev) == BGE_ASICREV_BCM5700) 946 CSR_WRITE_4(sc, BGE_MBX_TX_NIC_PROD0_LO, 0); 947 948 return(0); 949 } 950 951 #define BGE_POLY 0xEDB88320 952 953 static u_int32_t 954 bge_crc(addr) 955 caddr_t addr; 956 { 957 u_int32_t idx, bit, data, crc; 958 959 /* Compute CRC for the address value. */ 960 crc = 0xFFFFFFFF; /* initial value */ 961 962 for (idx = 0; idx < 6; idx++) { 963 for (data = *addr++, bit = 0; bit < 8; bit++, data >>= 1) 964 crc = (crc >> 1) ^ (((crc ^ data) & 1) ? BGE_POLY : 0); 965 } 966 967 return(crc & 0x7F); 968 } 969 970 static void 971 bge_setmulti(sc) 972 struct bge_softc *sc; 973 { 974 struct ifnet *ifp; 975 struct ifmultiaddr *ifma; 976 u_int32_t hashes[4] = { 0, 0, 0, 0 }; 977 int h, i; 978 979 ifp = &sc->arpcom.ac_if; 980 981 if (ifp->if_flags & IFF_ALLMULTI || ifp->if_flags & IFF_PROMISC) { 982 for (i = 0; i < 4; i++) 983 CSR_WRITE_4(sc, BGE_MAR0 + (i * 4), 0xFFFFFFFF); 984 return; 985 } 986 987 /* First, zot all the existing filters. */ 988 for (i = 0; i < 4; i++) 989 CSR_WRITE_4(sc, BGE_MAR0 + (i * 4), 0); 990 991 /* Now program new ones. */ 992 TAILQ_FOREACH(ifma, &ifp->if_multiaddrs, ifma_link) { 993 if (ifma->ifma_addr->sa_family != AF_LINK) 994 continue; 995 h = bge_crc(LLADDR((struct sockaddr_dl *)ifma->ifma_addr)); 996 hashes[(h & 0x60) >> 5] |= 1 << (h & 0x1F); 997 } 998 999 for (i = 0; i < 4; i++) 1000 CSR_WRITE_4(sc, BGE_MAR0 + (i * 4), hashes[i]); 1001 1002 return; 1003 } 1004 1005 /* 1006 * Do endian, PCI and DMA initialization. Also check the on-board ROM 1007 * self-test results. 1008 */ 1009 static int 1010 bge_chipinit(sc) 1011 struct bge_softc *sc; 1012 { 1013 int i; 1014 u_int32_t dma_rw_ctl; 1015 1016 /* Set endianness before we access any non-PCI registers. */ 1017 #if BYTE_ORDER == BIG_ENDIAN 1018 pci_write_config(sc->bge_dev, BGE_PCI_MISC_CTL, 1019 BGE_BIGENDIAN_INIT, 4); 1020 #else 1021 pci_write_config(sc->bge_dev, BGE_PCI_MISC_CTL, 1022 BGE_LITTLEENDIAN_INIT, 4); 1023 #endif 1024 1025 /* 1026 * Check the 'ROM failed' bit on the RX CPU to see if 1027 * self-tests passed. 1028 */ 1029 if (CSR_READ_4(sc, BGE_RXCPU_MODE) & BGE_RXCPUMODE_ROMFAIL) { 1030 printf("bge%d: RX CPU self-diagnostics failed!\n", 1031 sc->bge_unit); 1032 return(ENODEV); 1033 } 1034 1035 /* Clear the MAC control register */ 1036 CSR_WRITE_4(sc, BGE_MAC_MODE, 0); 1037 1038 /* 1039 * Clear the MAC statistics block in the NIC's 1040 * internal memory. 1041 */ 1042 for (i = BGE_STATS_BLOCK; 1043 i < BGE_STATS_BLOCK_END + 1; i += sizeof(u_int32_t)) 1044 BGE_MEMWIN_WRITE(sc, i, 0); 1045 1046 for (i = BGE_STATUS_BLOCK; 1047 i < BGE_STATUS_BLOCK_END + 1; i += sizeof(u_int32_t)) 1048 BGE_MEMWIN_WRITE(sc, i, 0); 1049 1050 /* Set up the PCI DMA control register. */ 1051 if (pci_read_config(sc->bge_dev, BGE_PCI_PCISTATE, 4) & 1052 BGE_PCISTATE_PCI_BUSMODE) { 1053 /* Conventional PCI bus */ 1054 dma_rw_ctl = BGE_PCI_READ_CMD|BGE_PCI_WRITE_CMD | 1055 (0x7 << BGE_PCIDMARWCTL_RD_WAT_SHIFT) | 1056 (0x7 << BGE_PCIDMARWCTL_WR_WAT_SHIFT) | 1057 (0x0F); 1058 } else { 1059 /* PCI-X bus */ 1060 /* 1061 * The 5704 uses a different encoding of read/write 1062 * watermarks. 1063 */ 1064 if (BGE_ASICREV(sc->bge_asicrev) == BGE_ASICREV_BCM5704) 1065 dma_rw_ctl = BGE_PCI_READ_CMD|BGE_PCI_WRITE_CMD | 1066 (0x7 << BGE_PCIDMARWCTL_RD_WAT_SHIFT) | 1067 (0x3 << BGE_PCIDMARWCTL_WR_WAT_SHIFT); 1068 else 1069 dma_rw_ctl = BGE_PCI_READ_CMD|BGE_PCI_WRITE_CMD | 1070 (0x3 << BGE_PCIDMARWCTL_RD_WAT_SHIFT) | 1071 (0x3 << BGE_PCIDMARWCTL_WR_WAT_SHIFT) | 1072 (0x0F); 1073 1074 /* 1075 * 5703 and 5704 need ONEDMA_AT_ONCE as a workaround 1076 * for hardware bugs. 1077 */ 1078 if (BGE_ASICREV(sc->bge_asicrev) == BGE_ASICREV_BCM5703 || 1079 BGE_ASICREV(sc->bge_asicrev) == BGE_ASICREV_BCM5704) { 1080 u_int32_t tmp; 1081 1082 tmp = CSR_READ_4(sc, BGE_PCI_CLKCTL) & 0x1f; 1083 if (tmp == 0x6 || tmp == 0x7) 1084 dma_rw_ctl |= BGE_PCIDMARWCTL_ONEDMA_ATONCE; 1085 } 1086 } 1087 1088 if (BGE_ASICREV(sc->bge_asicrev) == BGE_ASICREV_BCM5703 || 1089 BGE_ASICREV(sc->bge_asicrev) == BGE_ASICREV_BCM5704) 1090 dma_rw_ctl &= ~BGE_PCIDMARWCTL_MINDMA; 1091 pci_write_config(sc->bge_dev, BGE_PCI_DMA_RW_CTL, dma_rw_ctl, 4); 1092 1093 /* 1094 * Set up general mode register. 1095 */ 1096 CSR_WRITE_4(sc, BGE_MODE_CTL, BGE_MODECTL_WORDSWAP_NONFRAME| 1097 BGE_MODECTL_BYTESWAP_DATA|BGE_MODECTL_WORDSWAP_DATA| 1098 BGE_MODECTL_MAC_ATTN_INTR|BGE_MODECTL_HOST_SEND_BDS| 1099 BGE_MODECTL_NO_RX_CRC|BGE_MODECTL_TX_NO_PHDR_CSUM| 1100 BGE_MODECTL_RX_NO_PHDR_CSUM); 1101 1102 /* 1103 * Disable memory write invalidate. Apparently it is not supported 1104 * properly by these devices. 1105 */ 1106 PCI_CLRBIT(sc->bge_dev, BGE_PCI_CMD, PCIM_CMD_MWIEN, 4); 1107 1108 #ifdef __brokenalpha__ 1109 /* 1110 * Must insure that we do not cross an 8K (bytes) boundary 1111 * for DMA reads. Our highest limit is 1K bytes. This is a 1112 * restriction on some ALPHA platforms with early revision 1113 * 21174 PCI chipsets, such as the AlphaPC 164lx 1114 */ 1115 PCI_SETBIT(sc->bge_dev, BGE_PCI_DMA_RW_CTL, 1116 BGE_PCI_READ_BNDRY_1024BYTES, 4); 1117 #endif 1118 1119 /* Set the timer prescaler (always 66Mhz) */ 1120 CSR_WRITE_4(sc, BGE_MISC_CFG, 65 << 1/*BGE_32BITTIME_66MHZ*/); 1121 1122 return(0); 1123 } 1124 1125 static int 1126 bge_blockinit(sc) 1127 struct bge_softc *sc; 1128 { 1129 struct bge_rcb *rcb; 1130 volatile struct bge_rcb *vrcb; 1131 int i; 1132 1133 /* 1134 * Initialize the memory window pointer register so that 1135 * we can access the first 32K of internal NIC RAM. This will 1136 * allow us to set up the TX send ring RCBs and the RX return 1137 * ring RCBs, plus other things which live in NIC memory. 1138 */ 1139 CSR_WRITE_4(sc, BGE_PCI_MEMWIN_BASEADDR, 0); 1140 1141 /* Configure mbuf memory pool */ 1142 if (sc->bge_extram) { 1143 CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_BASEADDR, BGE_EXT_SSRAM); 1144 CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_LEN, 0x18000); 1145 } else { 1146 CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_BASEADDR, BGE_BUFFPOOL_1); 1147 CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_LEN, 0x18000); 1148 } 1149 1150 /* Configure DMA resource pool */ 1151 CSR_WRITE_4(sc, BGE_BMAN_DMA_DESCPOOL_BASEADDR, BGE_DMA_DESCRIPTORS); 1152 CSR_WRITE_4(sc, BGE_BMAN_DMA_DESCPOOL_LEN, 0x2000); 1153 1154 /* Configure mbuf pool watermarks */ 1155 CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_READDMA_LOWAT, 0x50); 1156 CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_MACRX_LOWAT, 0x20); 1157 CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_HIWAT, 0x60); 1158 1159 /* Configure DMA resource watermarks */ 1160 CSR_WRITE_4(sc, BGE_BMAN_DMA_DESCPOOL_LOWAT, 5); 1161 CSR_WRITE_4(sc, BGE_BMAN_DMA_DESCPOOL_HIWAT, 10); 1162 1163 /* Enable buffer manager */ 1164 CSR_WRITE_4(sc, BGE_BMAN_MODE, 1165 BGE_BMANMODE_ENABLE|BGE_BMANMODE_LOMBUF_ATTN); 1166 1167 /* Poll for buffer manager start indication */ 1168 for (i = 0; i < BGE_TIMEOUT; i++) { 1169 if (CSR_READ_4(sc, BGE_BMAN_MODE) & BGE_BMANMODE_ENABLE) 1170 break; 1171 DELAY(10); 1172 } 1173 1174 if (i == BGE_TIMEOUT) { 1175 printf("bge%d: buffer manager failed to start\n", 1176 sc->bge_unit); 1177 return(ENXIO); 1178 } 1179 1180 /* Enable flow-through queues */ 1181 CSR_WRITE_4(sc, BGE_FTQ_RESET, 0xFFFFFFFF); 1182 CSR_WRITE_4(sc, BGE_FTQ_RESET, 0); 1183 1184 /* Wait until queue initialization is complete */ 1185 for (i = 0; i < BGE_TIMEOUT; i++) { 1186 if (CSR_READ_4(sc, BGE_FTQ_RESET) == 0) 1187 break; 1188 DELAY(10); 1189 } 1190 1191 if (i == BGE_TIMEOUT) { 1192 printf("bge%d: flow-through queue init failed\n", 1193 sc->bge_unit); 1194 return(ENXIO); 1195 } 1196 1197 /* Initialize the standard RX ring control block */ 1198 rcb = &sc->bge_rdata->bge_info.bge_std_rx_rcb; 1199 BGE_HOSTADDR(rcb->bge_hostaddr) = 1200 vtophys(&sc->bge_rdata->bge_rx_std_ring); 1201 rcb->bge_maxlen_flags = BGE_RCB_MAXLEN_FLAGS(BGE_MAX_FRAMELEN, 0); 1202 if (sc->bge_extram) 1203 rcb->bge_nicaddr = BGE_EXT_STD_RX_RINGS; 1204 else 1205 rcb->bge_nicaddr = BGE_STD_RX_RINGS; 1206 CSR_WRITE_4(sc, BGE_RX_STD_RCB_HADDR_HI, rcb->bge_hostaddr.bge_addr_hi); 1207 CSR_WRITE_4(sc, BGE_RX_STD_RCB_HADDR_LO, rcb->bge_hostaddr.bge_addr_lo); 1208 CSR_WRITE_4(sc, BGE_RX_STD_RCB_MAXLEN_FLAGS, rcb->bge_maxlen_flags); 1209 CSR_WRITE_4(sc, BGE_RX_STD_RCB_NICADDR, rcb->bge_nicaddr); 1210 1211 /* 1212 * Initialize the jumbo RX ring control block 1213 * We set the 'ring disabled' bit in the flags 1214 * field until we're actually ready to start 1215 * using this ring (i.e. once we set the MTU 1216 * high enough to require it). 1217 */ 1218 rcb = &sc->bge_rdata->bge_info.bge_jumbo_rx_rcb; 1219 BGE_HOSTADDR(rcb->bge_hostaddr) = 1220 vtophys(&sc->bge_rdata->bge_rx_jumbo_ring); 1221 rcb->bge_maxlen_flags = 1222 BGE_RCB_MAXLEN_FLAGS(BGE_MAX_FRAMELEN, BGE_RCB_FLAG_RING_DISABLED); 1223 if (sc->bge_extram) 1224 rcb->bge_nicaddr = BGE_EXT_JUMBO_RX_RINGS; 1225 else 1226 rcb->bge_nicaddr = BGE_JUMBO_RX_RINGS; 1227 CSR_WRITE_4(sc, BGE_RX_JUMBO_RCB_HADDR_HI, 1228 rcb->bge_hostaddr.bge_addr_hi); 1229 CSR_WRITE_4(sc, BGE_RX_JUMBO_RCB_HADDR_LO, 1230 rcb->bge_hostaddr.bge_addr_lo); 1231 CSR_WRITE_4(sc, BGE_RX_JUMBO_RCB_MAXLEN_FLAGS, rcb->bge_maxlen_flags); 1232 CSR_WRITE_4(sc, BGE_RX_JUMBO_RCB_NICADDR, rcb->bge_nicaddr); 1233 1234 /* Set up dummy disabled mini ring RCB */ 1235 rcb = &sc->bge_rdata->bge_info.bge_mini_rx_rcb; 1236 rcb->bge_maxlen_flags = 1237 BGE_RCB_MAXLEN_FLAGS(0, BGE_RCB_FLAG_RING_DISABLED); 1238 CSR_WRITE_4(sc, BGE_RX_MINI_RCB_MAXLEN_FLAGS, rcb->bge_maxlen_flags); 1239 1240 /* 1241 * Set the BD ring replentish thresholds. The recommended 1242 * values are 1/8th the number of descriptors allocated to 1243 * each ring. 1244 */ 1245 CSR_WRITE_4(sc, BGE_RBDI_STD_REPL_THRESH, BGE_STD_RX_RING_CNT/8); 1246 CSR_WRITE_4(sc, BGE_RBDI_JUMBO_REPL_THRESH, BGE_JUMBO_RX_RING_CNT/8); 1247 1248 /* 1249 * Disable all unused send rings by setting the 'ring disabled' 1250 * bit in the flags field of all the TX send ring control blocks. 1251 * These are located in NIC memory. 1252 */ 1253 vrcb = (volatile struct bge_rcb *)(sc->bge_vhandle + BGE_MEMWIN_START + 1254 BGE_SEND_RING_RCB); 1255 for (i = 0; i < BGE_TX_RINGS_EXTSSRAM_MAX; i++) { 1256 vrcb->bge_maxlen_flags = 1257 BGE_RCB_MAXLEN_FLAGS(0, BGE_RCB_FLAG_RING_DISABLED); 1258 vrcb->bge_nicaddr = 0; 1259 vrcb++; 1260 } 1261 1262 /* Configure TX RCB 0 (we use only the first ring) */ 1263 vrcb = (volatile struct bge_rcb *)(sc->bge_vhandle + BGE_MEMWIN_START + 1264 BGE_SEND_RING_RCB); 1265 vrcb->bge_hostaddr.bge_addr_hi = 0; 1266 BGE_HOSTADDR(vrcb->bge_hostaddr) = 1267 vtophys(&sc->bge_rdata->bge_tx_ring); 1268 vrcb->bge_nicaddr = BGE_NIC_TXRING_ADDR(0, BGE_TX_RING_CNT); 1269 vrcb->bge_maxlen_flags = BGE_RCB_MAXLEN_FLAGS(BGE_TX_RING_CNT, 0); 1270 1271 /* Disable all unused RX return rings */ 1272 vrcb = (volatile struct bge_rcb *)(sc->bge_vhandle + BGE_MEMWIN_START + 1273 BGE_RX_RETURN_RING_RCB); 1274 for (i = 0; i < BGE_RX_RINGS_MAX; i++) { 1275 vrcb->bge_hostaddr.bge_addr_hi = 0; 1276 vrcb->bge_hostaddr.bge_addr_lo = 0; 1277 vrcb->bge_maxlen_flags = 1278 BGE_RCB_MAXLEN_FLAGS(BGE_RETURN_RING_CNT, 1279 BGE_RCB_FLAG_RING_DISABLED); 1280 vrcb->bge_nicaddr = 0; 1281 CSR_WRITE_4(sc, BGE_MBX_RX_CONS0_LO + 1282 (i * (sizeof(u_int64_t))), 0); 1283 vrcb++; 1284 } 1285 1286 /* Initialize RX ring indexes */ 1287 CSR_WRITE_4(sc, BGE_MBX_RX_STD_PROD_LO, 0); 1288 CSR_WRITE_4(sc, BGE_MBX_RX_JUMBO_PROD_LO, 0); 1289 CSR_WRITE_4(sc, BGE_MBX_RX_MINI_PROD_LO, 0); 1290 1291 /* 1292 * Set up RX return ring 0 1293 * Note that the NIC address for RX return rings is 0x00000000. 1294 * The return rings live entirely within the host, so the 1295 * nicaddr field in the RCB isn't used. 1296 */ 1297 vrcb = (volatile struct bge_rcb *)(sc->bge_vhandle + BGE_MEMWIN_START + 1298 BGE_RX_RETURN_RING_RCB); 1299 vrcb->bge_hostaddr.bge_addr_hi = 0; 1300 BGE_HOSTADDR(vrcb->bge_hostaddr) = 1301 vtophys(&sc->bge_rdata->bge_rx_return_ring); 1302 vrcb->bge_nicaddr = 0x00000000; 1303 vrcb->bge_maxlen_flags = BGE_RCB_MAXLEN_FLAGS(BGE_RETURN_RING_CNT, 0); 1304 1305 /* Set random backoff seed for TX */ 1306 CSR_WRITE_4(sc, BGE_TX_RANDOM_BACKOFF, 1307 sc->arpcom.ac_enaddr[0] + sc->arpcom.ac_enaddr[1] + 1308 sc->arpcom.ac_enaddr[2] + sc->arpcom.ac_enaddr[3] + 1309 sc->arpcom.ac_enaddr[4] + sc->arpcom.ac_enaddr[5] + 1310 BGE_TX_BACKOFF_SEED_MASK); 1311 1312 /* Set inter-packet gap */ 1313 CSR_WRITE_4(sc, BGE_TX_LENGTHS, 0x2620); 1314 1315 /* 1316 * Specify which ring to use for packets that don't match 1317 * any RX rules. 1318 */ 1319 CSR_WRITE_4(sc, BGE_RX_RULES_CFG, 0x08); 1320 1321 /* 1322 * Configure number of RX lists. One interrupt distribution 1323 * list, sixteen active lists, one bad frames class. 1324 */ 1325 CSR_WRITE_4(sc, BGE_RXLP_CFG, 0x181); 1326 1327 /* Inialize RX list placement stats mask. */ 1328 CSR_WRITE_4(sc, BGE_RXLP_STATS_ENABLE_MASK, 0x007FFFFF); 1329 CSR_WRITE_4(sc, BGE_RXLP_STATS_CTL, 0x1); 1330 1331 /* Disable host coalescing until we get it set up */ 1332 CSR_WRITE_4(sc, BGE_HCC_MODE, 0x00000000); 1333 1334 /* Poll to make sure it's shut down. */ 1335 for (i = 0; i < BGE_TIMEOUT; i++) { 1336 if (!(CSR_READ_4(sc, BGE_HCC_MODE) & BGE_HCCMODE_ENABLE)) 1337 break; 1338 DELAY(10); 1339 } 1340 1341 if (i == BGE_TIMEOUT) { 1342 printf("bge%d: host coalescing engine failed to idle\n", 1343 sc->bge_unit); 1344 return(ENXIO); 1345 } 1346 1347 /* Set up host coalescing defaults */ 1348 CSR_WRITE_4(sc, BGE_HCC_RX_COAL_TICKS, sc->bge_rx_coal_ticks); 1349 CSR_WRITE_4(sc, BGE_HCC_TX_COAL_TICKS, sc->bge_tx_coal_ticks); 1350 CSR_WRITE_4(sc, BGE_HCC_RX_MAX_COAL_BDS, sc->bge_rx_max_coal_bds); 1351 CSR_WRITE_4(sc, BGE_HCC_TX_MAX_COAL_BDS, sc->bge_tx_max_coal_bds); 1352 CSR_WRITE_4(sc, BGE_HCC_RX_COAL_TICKS_INT, 0); 1353 CSR_WRITE_4(sc, BGE_HCC_TX_COAL_TICKS_INT, 0); 1354 CSR_WRITE_4(sc, BGE_HCC_RX_MAX_COAL_BDS_INT, 0); 1355 CSR_WRITE_4(sc, BGE_HCC_TX_MAX_COAL_BDS_INT, 0); 1356 CSR_WRITE_4(sc, BGE_HCC_STATS_TICKS, sc->bge_stat_ticks); 1357 1358 /* Set up address of statistics block */ 1359 CSR_WRITE_4(sc, BGE_HCC_STATS_BASEADDR, BGE_STATS_BLOCK); 1360 CSR_WRITE_4(sc, BGE_HCC_STATS_ADDR_HI, 0); 1361 CSR_WRITE_4(sc, BGE_HCC_STATS_ADDR_LO, 1362 vtophys(&sc->bge_rdata->bge_info.bge_stats)); 1363 1364 /* Set up address of status block */ 1365 CSR_WRITE_4(sc, BGE_HCC_STATUSBLK_BASEADDR, BGE_STATUS_BLOCK); 1366 CSR_WRITE_4(sc, BGE_HCC_STATUSBLK_ADDR_HI, 0); 1367 CSR_WRITE_4(sc, BGE_HCC_STATUSBLK_ADDR_LO, 1368 vtophys(&sc->bge_rdata->bge_status_block)); 1369 sc->bge_rdata->bge_status_block.bge_idx[0].bge_rx_prod_idx = 0; 1370 sc->bge_rdata->bge_status_block.bge_idx[0].bge_tx_cons_idx = 0; 1371 1372 /* Turn on host coalescing state machine */ 1373 CSR_WRITE_4(sc, BGE_HCC_MODE, BGE_HCCMODE_ENABLE); 1374 1375 /* Turn on RX BD completion state machine and enable attentions */ 1376 CSR_WRITE_4(sc, BGE_RBDC_MODE, 1377 BGE_RBDCMODE_ENABLE|BGE_RBDCMODE_ATTN); 1378 1379 /* Turn on RX list placement state machine */ 1380 CSR_WRITE_4(sc, BGE_RXLP_MODE, BGE_RXLPMODE_ENABLE); 1381 1382 /* Turn on RX list selector state machine. */ 1383 CSR_WRITE_4(sc, BGE_RXLS_MODE, BGE_RXLSMODE_ENABLE); 1384 1385 /* Turn on DMA, clear stats */ 1386 CSR_WRITE_4(sc, BGE_MAC_MODE, BGE_MACMODE_TXDMA_ENB| 1387 BGE_MACMODE_RXDMA_ENB|BGE_MACMODE_RX_STATS_CLEAR| 1388 BGE_MACMODE_TX_STATS_CLEAR|BGE_MACMODE_RX_STATS_ENB| 1389 BGE_MACMODE_TX_STATS_ENB|BGE_MACMODE_FRMHDR_DMA_ENB| 1390 (sc->bge_tbi ? BGE_PORTMODE_TBI : BGE_PORTMODE_MII)); 1391 1392 /* Set misc. local control, enable interrupts on attentions */ 1393 CSR_WRITE_4(sc, BGE_MISC_LOCAL_CTL, BGE_MLC_INTR_ONATTN); 1394 1395 #ifdef notdef 1396 /* Assert GPIO pins for PHY reset */ 1397 BGE_SETBIT(sc, BGE_MISC_LOCAL_CTL, BGE_MLC_MISCIO_OUT0| 1398 BGE_MLC_MISCIO_OUT1|BGE_MLC_MISCIO_OUT2); 1399 BGE_SETBIT(sc, BGE_MISC_LOCAL_CTL, BGE_MLC_MISCIO_OUTEN0| 1400 BGE_MLC_MISCIO_OUTEN1|BGE_MLC_MISCIO_OUTEN2); 1401 #endif 1402 1403 /* Turn on DMA completion state machine */ 1404 CSR_WRITE_4(sc, BGE_DMAC_MODE, BGE_DMACMODE_ENABLE); 1405 1406 /* Turn on write DMA state machine */ 1407 CSR_WRITE_4(sc, BGE_WDMA_MODE, 1408 BGE_WDMAMODE_ENABLE|BGE_WDMAMODE_ALL_ATTNS); 1409 1410 /* Turn on read DMA state machine */ 1411 CSR_WRITE_4(sc, BGE_RDMA_MODE, 1412 BGE_RDMAMODE_ENABLE|BGE_RDMAMODE_ALL_ATTNS); 1413 1414 /* Turn on RX data completion state machine */ 1415 CSR_WRITE_4(sc, BGE_RDC_MODE, BGE_RDCMODE_ENABLE); 1416 1417 /* Turn on RX BD initiator state machine */ 1418 CSR_WRITE_4(sc, BGE_RBDI_MODE, BGE_RBDIMODE_ENABLE); 1419 1420 /* Turn on RX data and RX BD initiator state machine */ 1421 CSR_WRITE_4(sc, BGE_RDBDI_MODE, BGE_RDBDIMODE_ENABLE); 1422 1423 /* Turn on Mbuf cluster free state machine */ 1424 CSR_WRITE_4(sc, BGE_MBCF_MODE, BGE_MBCFMODE_ENABLE); 1425 1426 /* Turn on send BD completion state machine */ 1427 CSR_WRITE_4(sc, BGE_SBDC_MODE, BGE_SBDCMODE_ENABLE); 1428 1429 /* Turn on send data completion state machine */ 1430 CSR_WRITE_4(sc, BGE_SDC_MODE, BGE_SDCMODE_ENABLE); 1431 1432 /* Turn on send data initiator state machine */ 1433 CSR_WRITE_4(sc, BGE_SDI_MODE, BGE_SDIMODE_ENABLE); 1434 1435 /* Turn on send BD initiator state machine */ 1436 CSR_WRITE_4(sc, BGE_SBDI_MODE, BGE_SBDIMODE_ENABLE); 1437 1438 /* Turn on send BD selector state machine */ 1439 CSR_WRITE_4(sc, BGE_SRS_MODE, BGE_SRSMODE_ENABLE); 1440 1441 CSR_WRITE_4(sc, BGE_SDI_STATS_ENABLE_MASK, 0x007FFFFF); 1442 CSR_WRITE_4(sc, BGE_SDI_STATS_CTL, 1443 BGE_SDISTATSCTL_ENABLE|BGE_SDISTATSCTL_FASTER); 1444 1445 /* init LED register */ 1446 CSR_WRITE_4(sc, BGE_MAC_LED_CTL, 0x00000000); 1447 1448 /* ack/clear link change events */ 1449 CSR_WRITE_4(sc, BGE_MAC_STS, BGE_MACSTAT_SYNC_CHANGED| 1450 BGE_MACSTAT_CFG_CHANGED); 1451 CSR_WRITE_4(sc, BGE_MI_STS, 0); 1452 1453 /* Enable PHY auto polling (for MII/GMII only) */ 1454 if (sc->bge_tbi) { 1455 CSR_WRITE_4(sc, BGE_MI_STS, BGE_MISTS_LINK); 1456 } else { 1457 BGE_SETBIT(sc, BGE_MI_MODE, BGE_MIMODE_AUTOPOLL|10<<16); 1458 if (BGE_ASICREV(sc->bge_asicrev) == BGE_ASICREV_BCM5700) 1459 CSR_WRITE_4(sc, BGE_MAC_EVT_ENB, 1460 BGE_EVTENB_MI_INTERRUPT); 1461 } 1462 1463 /* Enable link state change attentions. */ 1464 BGE_SETBIT(sc, BGE_MAC_EVT_ENB, BGE_EVTENB_LINK_CHANGED); 1465 1466 return(0); 1467 } 1468 1469 /* 1470 * Probe for a Broadcom chip. Check the PCI vendor and device IDs 1471 * against our list and return its name if we find a match. Note 1472 * that since the Broadcom controller contains VPD support, we 1473 * can get the device name string from the controller itself instead 1474 * of the compiled-in string. This is a little slow, but it guarantees 1475 * we'll always announce the right product name. 1476 */ 1477 static int 1478 bge_probe(dev) 1479 device_t dev; 1480 { 1481 struct bge_type *t; 1482 struct bge_softc *sc; 1483 char *descbuf; 1484 1485 t = bge_devs; 1486 1487 sc = device_get_softc(dev); 1488 bzero(sc, sizeof(struct bge_softc)); 1489 sc->bge_unit = device_get_unit(dev); 1490 sc->bge_dev = dev; 1491 1492 while(t->bge_name != NULL) { 1493 if ((pci_get_vendor(dev) == t->bge_vid) && 1494 (pci_get_device(dev) == t->bge_did)) { 1495 #ifdef notdef 1496 bge_vpd_read(sc); 1497 device_set_desc(dev, sc->bge_vpd_prodname); 1498 #endif 1499 descbuf = malloc(BGE_DEVDESC_MAX, M_TEMP, M_NOWAIT); 1500 if (descbuf == NULL) 1501 return(ENOMEM); 1502 snprintf(descbuf, BGE_DEVDESC_MAX, 1503 "%s, ASIC rev. %#04x", t->bge_name, 1504 pci_read_config(dev, BGE_PCI_MISC_CTL, 4) >> 16); 1505 device_set_desc_copy(dev, descbuf); 1506 free(descbuf, M_TEMP); 1507 return(0); 1508 } 1509 t++; 1510 } 1511 1512 return(ENXIO); 1513 } 1514 1515 static int 1516 bge_attach(dev) 1517 device_t dev; 1518 { 1519 int s; 1520 struct ifnet *ifp; 1521 struct bge_softc *sc; 1522 u_int32_t hwcfg = 0; 1523 u_int32_t mac_addr = 0; 1524 int unit, error = 0, rid; 1525 1526 s = splimp(); 1527 1528 sc = device_get_softc(dev); 1529 unit = device_get_unit(dev); 1530 sc->bge_dev = dev; 1531 sc->bge_unit = unit; 1532 1533 /* 1534 * Map control/status registers. 1535 */ 1536 pci_enable_busmaster(dev); 1537 1538 rid = BGE_PCI_BAR0; 1539 sc->bge_res = bus_alloc_resource(dev, SYS_RES_MEMORY, &rid, 1540 0, ~0, 1, RF_ACTIVE|PCI_RF_DENSE); 1541 1542 if (sc->bge_res == NULL) { 1543 printf ("bge%d: couldn't map memory\n", unit); 1544 error = ENXIO; 1545 goto fail; 1546 } 1547 1548 sc->bge_btag = rman_get_bustag(sc->bge_res); 1549 sc->bge_bhandle = rman_get_bushandle(sc->bge_res); 1550 sc->bge_vhandle = (vm_offset_t)rman_get_virtual(sc->bge_res); 1551 1552 /* Allocate interrupt */ 1553 rid = 0; 1554 1555 sc->bge_irq = bus_alloc_resource(dev, SYS_RES_IRQ, &rid, 0, ~0, 1, 1556 RF_SHAREABLE | RF_ACTIVE); 1557 1558 if (sc->bge_irq == NULL) { 1559 printf("bge%d: couldn't map interrupt\n", unit); 1560 error = ENXIO; 1561 goto fail; 1562 } 1563 1564 error = bus_setup_intr(dev, sc->bge_irq, INTR_TYPE_NET, 1565 bge_intr, sc, &sc->bge_intrhand); 1566 1567 if (error) { 1568 bge_release_resources(sc); 1569 printf("bge%d: couldn't set up irq\n", unit); 1570 goto fail; 1571 } 1572 1573 sc->bge_unit = unit; 1574 1575 /* Try to reset the chip. */ 1576 bge_reset(sc); 1577 1578 if (bge_chipinit(sc)) { 1579 printf("bge%d: chip initialization failed\n", sc->bge_unit); 1580 bge_release_resources(sc); 1581 error = ENXIO; 1582 goto fail; 1583 } 1584 1585 /* 1586 * Get station address from the EEPROM. 1587 */ 1588 mac_addr = bge_readmem_ind(sc, 0x0c14); 1589 if ((mac_addr >> 16) == 0x484b) { 1590 sc->arpcom.ac_enaddr[0] = (u_char)(mac_addr >> 8); 1591 sc->arpcom.ac_enaddr[1] = (u_char)mac_addr; 1592 mac_addr = bge_readmem_ind(sc, 0x0c18); 1593 sc->arpcom.ac_enaddr[2] = (u_char)(mac_addr >> 24); 1594 sc->arpcom.ac_enaddr[3] = (u_char)(mac_addr >> 16); 1595 sc->arpcom.ac_enaddr[4] = (u_char)(mac_addr >> 8); 1596 sc->arpcom.ac_enaddr[5] = (u_char)mac_addr; 1597 } else if (bge_read_eeprom(sc, (caddr_t)&sc->arpcom.ac_enaddr, 1598 BGE_EE_MAC_OFFSET + 2, ETHER_ADDR_LEN)) { 1599 printf("bge%d: failed to read station address\n", unit); 1600 bge_release_resources(sc); 1601 error = ENXIO; 1602 goto fail; 1603 } 1604 1605 /* 1606 * A Broadcom chip was detected. Inform the world. 1607 */ 1608 printf("bge%d: Ethernet address: %6D\n", unit, 1609 sc->arpcom.ac_enaddr, ":"); 1610 1611 /* Allocate the general information block and ring buffers. */ 1612 sc->bge_rdata = contigmalloc(sizeof(struct bge_ring_data), M_DEVBUF, 1613 M_NOWAIT, 0, 0xffffffff, PAGE_SIZE, 0); 1614 1615 if (sc->bge_rdata == NULL) { 1616 bge_release_resources(sc); 1617 error = ENXIO; 1618 printf("bge%d: no memory for list buffers!\n", sc->bge_unit); 1619 goto fail; 1620 } 1621 1622 bzero(sc->bge_rdata, sizeof(struct bge_ring_data)); 1623 1624 /* Try to allocate memory for jumbo buffers. */ 1625 if (bge_alloc_jumbo_mem(sc)) { 1626 printf("bge%d: jumbo buffer allocation " 1627 "failed\n", sc->bge_unit); 1628 bge_release_resources(sc); 1629 error = ENXIO; 1630 goto fail; 1631 } 1632 1633 /* Set default tuneable values. */ 1634 sc->bge_stat_ticks = BGE_TICKS_PER_SEC; 1635 sc->bge_rx_coal_ticks = 150; 1636 sc->bge_tx_coal_ticks = 150; 1637 sc->bge_rx_max_coal_bds = 64; 1638 sc->bge_tx_max_coal_bds = 128; 1639 1640 /* Set up ifnet structure */ 1641 ifp = &sc->arpcom.ac_if; 1642 ifp->if_softc = sc; 1643 ifp->if_unit = sc->bge_unit; 1644 ifp->if_name = "bge"; 1645 ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST; 1646 ifp->if_ioctl = bge_ioctl; 1647 ifp->if_output = ether_output; 1648 ifp->if_start = bge_start; 1649 ifp->if_watchdog = bge_watchdog; 1650 ifp->if_init = bge_init; 1651 ifp->if_mtu = ETHERMTU; 1652 ifp->if_snd.ifq_maxlen = BGE_TX_RING_CNT - 1; 1653 ifp->if_hwassist = BGE_CSUM_FEATURES; 1654 ifp->if_capabilities = IFCAP_HWCSUM | IFCAP_VLAN_HWTAGGING | IFCAP_VLAN_MTU; 1655 ifp->if_capenable = ifp->if_capabilities; 1656 1657 /* Save ASIC rev. */ 1658 1659 sc->bge_asicrev = 1660 pci_read_config(dev, BGE_PCI_MISC_CTL, 4) & 1661 BGE_PCIMISCCTL_ASICREV; 1662 1663 /* 1664 * Figure out what sort of media we have by checking the 1665 * hardware config word in the first 32k of NIC internal memory, 1666 * or fall back to examining the EEPROM if necessary. 1667 * Note: on some BCM5700 cards, this value appears to be unset. 1668 * If that's the case, we have to rely on identifying the NIC 1669 * by its PCI subsystem ID, as we do below for the SysKonnect 1670 * SK-9D41. 1671 */ 1672 if (bge_readmem_ind(sc, BGE_SOFTWARE_GENCOMM_SIG) == BGE_MAGIC_NUMBER) 1673 hwcfg = bge_readmem_ind(sc, BGE_SOFTWARE_GENCOMM_NICCFG); 1674 else { 1675 bge_read_eeprom(sc, (caddr_t)&hwcfg, 1676 BGE_EE_HWCFG_OFFSET, sizeof(hwcfg)); 1677 hwcfg = ntohl(hwcfg); 1678 } 1679 1680 if ((hwcfg & BGE_HWCFG_MEDIA) == BGE_MEDIA_FIBER) 1681 sc->bge_tbi = 1; 1682 1683 /* The SysKonnect SK-9D41 is a 1000baseSX card. */ 1684 if ((pci_read_config(dev, BGE_PCI_SUBSYS, 4) >> 16) == SK_SUBSYSID_9D41) 1685 sc->bge_tbi = 1; 1686 1687 if (sc->bge_tbi) { 1688 ifmedia_init(&sc->bge_ifmedia, IFM_IMASK, 1689 bge_ifmedia_upd, bge_ifmedia_sts); 1690 ifmedia_add(&sc->bge_ifmedia, IFM_ETHER|IFM_1000_SX, 0, NULL); 1691 ifmedia_add(&sc->bge_ifmedia, 1692 IFM_ETHER|IFM_1000_SX|IFM_FDX, 0, NULL); 1693 ifmedia_add(&sc->bge_ifmedia, IFM_ETHER|IFM_AUTO, 0, NULL); 1694 ifmedia_set(&sc->bge_ifmedia, IFM_ETHER|IFM_AUTO); 1695 } else { 1696 /* 1697 * Do transceiver setup. 1698 */ 1699 if (mii_phy_probe(dev, &sc->bge_miibus, 1700 bge_ifmedia_upd, bge_ifmedia_sts)) { 1701 printf("bge%d: MII without any PHY!\n", sc->bge_unit); 1702 bge_release_resources(sc); 1703 bge_free_jumbo_mem(sc); 1704 error = ENXIO; 1705 goto fail; 1706 } 1707 } 1708 1709 /* 1710 * When using the BCM5701 in PCI-X mode, data corruption has 1711 * been observed in the first few bytes of some received packets. 1712 * Aligning the packet buffer in memory eliminates the corruption. 1713 * Unfortunately, this misaligns the packet payloads. On platforms 1714 * which do not support unaligned accesses, we will realign the 1715 * payloads by copying the received packets. 1716 */ 1717 switch (sc->bge_asicrev) { 1718 case BGE_ASICREV_BCM5701_A0: 1719 case BGE_ASICREV_BCM5701_B0: 1720 case BGE_ASICREV_BCM5701_B2: 1721 case BGE_ASICREV_BCM5701_B5: 1722 /* If in PCI-X mode, work around the alignment bug. */ 1723 if ((pci_read_config(dev, BGE_PCI_PCISTATE, 4) & 1724 (BGE_PCISTATE_PCI_BUSMODE | BGE_PCISTATE_PCI_BUSSPEED)) == 1725 BGE_PCISTATE_PCI_BUSSPEED) 1726 sc->bge_rx_alignment_bug = 1; 1727 break; 1728 } 1729 1730 /* 1731 * Call MI attach routine. 1732 */ 1733 ether_ifattach(ifp, sc->arpcom.ac_enaddr); 1734 callout_handle_init(&sc->bge_stat_ch); 1735 1736 fail: 1737 splx(s); 1738 1739 return(error); 1740 } 1741 1742 static int 1743 bge_detach(dev) 1744 device_t dev; 1745 { 1746 struct bge_softc *sc; 1747 struct ifnet *ifp; 1748 int s; 1749 1750 s = splimp(); 1751 1752 sc = device_get_softc(dev); 1753 ifp = &sc->arpcom.ac_if; 1754 1755 ether_ifdetach(ifp); 1756 bge_stop(sc); 1757 bge_reset(sc); 1758 1759 if (sc->bge_tbi) { 1760 ifmedia_removeall(&sc->bge_ifmedia); 1761 } else { 1762 bus_generic_detach(dev); 1763 device_delete_child(dev, sc->bge_miibus); 1764 } 1765 1766 bge_release_resources(sc); 1767 bge_free_jumbo_mem(sc); 1768 1769 splx(s); 1770 1771 return(0); 1772 } 1773 1774 static void 1775 bge_release_resources(sc) 1776 struct bge_softc *sc; 1777 { 1778 device_t dev; 1779 1780 dev = sc->bge_dev; 1781 1782 if (sc->bge_vpd_prodname != NULL) 1783 free(sc->bge_vpd_prodname, M_DEVBUF); 1784 1785 if (sc->bge_vpd_readonly != NULL) 1786 free(sc->bge_vpd_readonly, M_DEVBUF); 1787 1788 if (sc->bge_intrhand != NULL) 1789 bus_teardown_intr(dev, sc->bge_irq, sc->bge_intrhand); 1790 1791 if (sc->bge_irq != NULL) 1792 bus_release_resource(dev, SYS_RES_IRQ, 0, sc->bge_irq); 1793 1794 if (sc->bge_res != NULL) 1795 bus_release_resource(dev, SYS_RES_MEMORY, 1796 BGE_PCI_BAR0, sc->bge_res); 1797 1798 if (sc->bge_rdata != NULL) 1799 contigfree(sc->bge_rdata, 1800 sizeof(struct bge_ring_data), M_DEVBUF); 1801 1802 return; 1803 } 1804 1805 static void 1806 bge_reset(sc) 1807 struct bge_softc *sc; 1808 { 1809 device_t dev; 1810 u_int32_t cachesize, command, pcistate; 1811 int i, val = 0; 1812 1813 dev = sc->bge_dev; 1814 1815 /* Save some important PCI state. */ 1816 cachesize = pci_read_config(dev, BGE_PCI_CACHESZ, 4); 1817 command = pci_read_config(dev, BGE_PCI_CMD, 4); 1818 pcistate = pci_read_config(dev, BGE_PCI_PCISTATE, 4); 1819 1820 pci_write_config(dev, BGE_PCI_MISC_CTL, 1821 BGE_PCIMISCCTL_INDIRECT_ACCESS|BGE_PCIMISCCTL_MASK_PCI_INTR| 1822 BGE_PCIMISCCTL_ENDIAN_WORDSWAP|BGE_PCIMISCCTL_PCISTATE_RW, 4); 1823 1824 /* Issue global reset */ 1825 bge_writereg_ind(sc, BGE_MISC_CFG, 1826 BGE_MISCCFG_RESET_CORE_CLOCKS|(65<<1)); 1827 1828 DELAY(1000); 1829 1830 /* Reset some of the PCI state that got zapped by reset */ 1831 pci_write_config(dev, BGE_PCI_MISC_CTL, 1832 BGE_PCIMISCCTL_INDIRECT_ACCESS|BGE_PCIMISCCTL_MASK_PCI_INTR| 1833 BGE_PCIMISCCTL_ENDIAN_WORDSWAP|BGE_PCIMISCCTL_PCISTATE_RW, 4); 1834 pci_write_config(dev, BGE_PCI_CACHESZ, cachesize, 4); 1835 pci_write_config(dev, BGE_PCI_CMD, command, 4); 1836 bge_writereg_ind(sc, BGE_MISC_CFG, (65 << 1)); 1837 1838 /* 1839 * Prevent PXE restart: write a magic number to the 1840 * general communications memory at 0xB50. 1841 */ 1842 bge_writemem_ind(sc, BGE_SOFTWARE_GENCOMM, BGE_MAGIC_NUMBER); 1843 /* 1844 * Poll the value location we just wrote until 1845 * we see the 1's complement of the magic number. 1846 * This indicates that the firmware initialization 1847 * is complete. 1848 */ 1849 for (i = 0; i < BGE_TIMEOUT; i++) { 1850 val = bge_readmem_ind(sc, BGE_SOFTWARE_GENCOMM); 1851 if (val == ~BGE_MAGIC_NUMBER) 1852 break; 1853 DELAY(10); 1854 } 1855 1856 if (i == BGE_TIMEOUT) { 1857 printf("bge%d: firmware handshake timed out\n", sc->bge_unit); 1858 return; 1859 } 1860 1861 /* 1862 * XXX Wait for the value of the PCISTATE register to 1863 * return to its original pre-reset state. This is a 1864 * fairly good indicator of reset completion. If we don't 1865 * wait for the reset to fully complete, trying to read 1866 * from the device's non-PCI registers may yield garbage 1867 * results. 1868 */ 1869 for (i = 0; i < BGE_TIMEOUT; i++) { 1870 if (pci_read_config(dev, BGE_PCI_PCISTATE, 4) == pcistate) 1871 break; 1872 DELAY(10); 1873 } 1874 1875 /* Enable memory arbiter. */ 1876 CSR_WRITE_4(sc, BGE_MARB_MODE, BGE_MARBMODE_ENABLE); 1877 1878 /* Fix up byte swapping */ 1879 CSR_WRITE_4(sc, BGE_MODE_CTL, BGE_MODECTL_BYTESWAP_NONFRAME| 1880 BGE_MODECTL_BYTESWAP_DATA); 1881 1882 CSR_WRITE_4(sc, BGE_MAC_MODE, 0); 1883 1884 DELAY(10000); 1885 1886 return; 1887 } 1888 1889 /* 1890 * Frame reception handling. This is called if there's a frame 1891 * on the receive return list. 1892 * 1893 * Note: we have to be able to handle two possibilities here: 1894 * 1) the frame is from the jumbo recieve ring 1895 * 2) the frame is from the standard receive ring 1896 */ 1897 1898 static void 1899 bge_rxeof(sc) 1900 struct bge_softc *sc; 1901 { 1902 struct ifnet *ifp; 1903 int stdcnt = 0, jumbocnt = 0; 1904 1905 ifp = &sc->arpcom.ac_if; 1906 1907 while(sc->bge_rx_saved_considx != 1908 sc->bge_rdata->bge_status_block.bge_idx[0].bge_rx_prod_idx) { 1909 struct bge_rx_bd *cur_rx; 1910 u_int32_t rxidx; 1911 struct ether_header *eh; 1912 struct mbuf *m = NULL; 1913 u_int16_t vlan_tag = 0; 1914 int have_tag = 0; 1915 1916 cur_rx = 1917 &sc->bge_rdata->bge_rx_return_ring[sc->bge_rx_saved_considx]; 1918 1919 rxidx = cur_rx->bge_idx; 1920 BGE_INC(sc->bge_rx_saved_considx, BGE_RETURN_RING_CNT); 1921 1922 if (cur_rx->bge_flags & BGE_RXBDFLAG_VLAN_TAG) { 1923 have_tag = 1; 1924 vlan_tag = cur_rx->bge_vlan_tag; 1925 } 1926 1927 if (cur_rx->bge_flags & BGE_RXBDFLAG_JUMBO_RING) { 1928 BGE_INC(sc->bge_jumbo, BGE_JUMBO_RX_RING_CNT); 1929 m = sc->bge_cdata.bge_rx_jumbo_chain[rxidx]; 1930 sc->bge_cdata.bge_rx_jumbo_chain[rxidx] = NULL; 1931 jumbocnt++; 1932 if (cur_rx->bge_flags & BGE_RXBDFLAG_ERROR) { 1933 ifp->if_ierrors++; 1934 bge_newbuf_jumbo(sc, sc->bge_jumbo, m); 1935 continue; 1936 } 1937 if (bge_newbuf_jumbo(sc, 1938 sc->bge_jumbo, NULL) == ENOBUFS) { 1939 ifp->if_ierrors++; 1940 bge_newbuf_jumbo(sc, sc->bge_jumbo, m); 1941 continue; 1942 } 1943 } else { 1944 BGE_INC(sc->bge_std, BGE_STD_RX_RING_CNT); 1945 m = sc->bge_cdata.bge_rx_std_chain[rxidx]; 1946 sc->bge_cdata.bge_rx_std_chain[rxidx] = NULL; 1947 stdcnt++; 1948 if (cur_rx->bge_flags & BGE_RXBDFLAG_ERROR) { 1949 ifp->if_ierrors++; 1950 bge_newbuf_std(sc, sc->bge_std, m); 1951 continue; 1952 } 1953 if (bge_newbuf_std(sc, sc->bge_std, 1954 NULL) == ENOBUFS) { 1955 ifp->if_ierrors++; 1956 bge_newbuf_std(sc, sc->bge_std, m); 1957 continue; 1958 } 1959 } 1960 1961 ifp->if_ipackets++; 1962 #ifndef __i386__ 1963 /* 1964 * The i386 allows unaligned accesses, but for other 1965 * platforms we must make sure the payload is aligned. 1966 */ 1967 if (sc->bge_rx_alignment_bug) { 1968 bcopy(m->m_data, m->m_data + ETHER_ALIGN, 1969 cur_rx->bge_len); 1970 m->m_data += ETHER_ALIGN; 1971 } 1972 #endif 1973 eh = mtod(m, struct ether_header *); 1974 m->m_pkthdr.len = m->m_len = cur_rx->bge_len; 1975 m->m_pkthdr.rcvif = ifp; 1976 1977 #if 0 /* currently broken for some packets, possibly related to TCP options */ 1978 if (ifp->if_hwassist) { 1979 m->m_pkthdr.csum_flags |= CSUM_IP_CHECKED; 1980 if ((cur_rx->bge_ip_csum ^ 0xffff) == 0) 1981 m->m_pkthdr.csum_flags |= CSUM_IP_VALID; 1982 if (cur_rx->bge_flags & BGE_RXBDFLAG_TCP_UDP_CSUM) { 1983 m->m_pkthdr.csum_data = 1984 cur_rx->bge_tcp_udp_csum; 1985 m->m_pkthdr.csum_flags |= CSUM_DATA_VALID; 1986 } 1987 } 1988 #endif 1989 1990 /* 1991 * If we received a packet with a vlan tag, 1992 * attach that information to the packet. 1993 */ 1994 if (have_tag) 1995 VLAN_INPUT_TAG(ifp, m, vlan_tag, continue); 1996 1997 (*ifp->if_input)(ifp, m); 1998 } 1999 2000 CSR_WRITE_4(sc, BGE_MBX_RX_CONS0_LO, sc->bge_rx_saved_considx); 2001 if (stdcnt) 2002 CSR_WRITE_4(sc, BGE_MBX_RX_STD_PROD_LO, sc->bge_std); 2003 if (jumbocnt) 2004 CSR_WRITE_4(sc, BGE_MBX_RX_JUMBO_PROD_LO, sc->bge_jumbo); 2005 2006 return; 2007 } 2008 2009 static void 2010 bge_txeof(sc) 2011 struct bge_softc *sc; 2012 { 2013 struct bge_tx_bd *cur_tx = NULL; 2014 struct ifnet *ifp; 2015 2016 ifp = &sc->arpcom.ac_if; 2017 2018 /* 2019 * Go through our tx ring and free mbufs for those 2020 * frames that have been sent. 2021 */ 2022 while (sc->bge_tx_saved_considx != 2023 sc->bge_rdata->bge_status_block.bge_idx[0].bge_tx_cons_idx) { 2024 u_int32_t idx = 0; 2025 2026 idx = sc->bge_tx_saved_considx; 2027 cur_tx = &sc->bge_rdata->bge_tx_ring[idx]; 2028 if (cur_tx->bge_flags & BGE_TXBDFLAG_END) 2029 ifp->if_opackets++; 2030 if (sc->bge_cdata.bge_tx_chain[idx] != NULL) { 2031 m_freem(sc->bge_cdata.bge_tx_chain[idx]); 2032 sc->bge_cdata.bge_tx_chain[idx] = NULL; 2033 } 2034 sc->bge_txcnt--; 2035 BGE_INC(sc->bge_tx_saved_considx, BGE_TX_RING_CNT); 2036 ifp->if_timer = 0; 2037 } 2038 2039 if (cur_tx != NULL) 2040 ifp->if_flags &= ~IFF_OACTIVE; 2041 2042 return; 2043 } 2044 2045 static void 2046 bge_intr(xsc) 2047 void *xsc; 2048 { 2049 struct bge_softc *sc; 2050 struct ifnet *ifp; 2051 2052 sc = xsc; 2053 ifp = &sc->arpcom.ac_if; 2054 2055 #ifdef notdef 2056 /* Avoid this for now -- checking this register is expensive. */ 2057 /* Make sure this is really our interrupt. */ 2058 if (!(CSR_READ_4(sc, BGE_MISC_LOCAL_CTL) & BGE_MLC_INTR_STATE)) 2059 return; 2060 #endif 2061 /* Ack interrupt and stop others from occuring. */ 2062 CSR_WRITE_4(sc, BGE_MBX_IRQ0_LO, 1); 2063 2064 /* 2065 * Process link state changes. 2066 * Grrr. The link status word in the status block does 2067 * not work correctly on the BCM5700 rev AX and BX chips, 2068 * according to all avaibable information. Hence, we have 2069 * to enable MII interrupts in order to properly obtain 2070 * async link changes. Unfortunately, this also means that 2071 * we have to read the MAC status register to detect link 2072 * changes, thereby adding an additional register access to 2073 * the interrupt handler. 2074 */ 2075 2076 if (BGE_ASICREV(sc->bge_asicrev) == BGE_ASICREV_BCM5700) { 2077 u_int32_t status; 2078 2079 status = CSR_READ_4(sc, BGE_MAC_STS); 2080 if (status & BGE_MACSTAT_MI_INTERRUPT) { 2081 sc->bge_link = 0; 2082 untimeout(bge_tick, sc, sc->bge_stat_ch); 2083 bge_tick(sc); 2084 /* Clear the interrupt */ 2085 CSR_WRITE_4(sc, BGE_MAC_EVT_ENB, 2086 BGE_EVTENB_MI_INTERRUPT); 2087 bge_miibus_readreg(sc->bge_dev, 1, BRGPHY_MII_ISR); 2088 bge_miibus_writereg(sc->bge_dev, 1, BRGPHY_MII_IMR, 2089 BRGPHY_INTRS); 2090 } 2091 } else { 2092 if ((sc->bge_rdata->bge_status_block.bge_status & 2093 BGE_STATFLAG_UPDATED) && 2094 (sc->bge_rdata->bge_status_block.bge_status & 2095 BGE_STATFLAG_LINKSTATE_CHANGED)) { 2096 sc->bge_rdata->bge_status_block.bge_status &= ~(BGE_STATFLAG_UPDATED|BGE_STATFLAG_LINKSTATE_CHANGED); 2097 sc->bge_link = 0; 2098 untimeout(bge_tick, sc, sc->bge_stat_ch); 2099 bge_tick(sc); 2100 /* Clear the interrupt */ 2101 CSR_WRITE_4(sc, BGE_MAC_STS, BGE_MACSTAT_SYNC_CHANGED| 2102 BGE_MACSTAT_CFG_CHANGED); 2103 2104 /* Force flush the status block cached by PCI bridge */ 2105 CSR_READ_4(sc, BGE_MBX_IRQ0_LO); 2106 } 2107 } 2108 2109 if (ifp->if_flags & IFF_RUNNING) { 2110 /* Check RX return ring producer/consumer */ 2111 bge_rxeof(sc); 2112 2113 /* Check TX ring producer/consumer */ 2114 bge_txeof(sc); 2115 } 2116 2117 bge_handle_events(sc); 2118 2119 /* Re-enable interrupts. */ 2120 CSR_WRITE_4(sc, BGE_MBX_IRQ0_LO, 0); 2121 2122 if (ifp->if_flags & IFF_RUNNING && ifp->if_snd.ifq_head != NULL) 2123 bge_start(ifp); 2124 2125 return; 2126 } 2127 2128 static void 2129 bge_tick(xsc) 2130 void *xsc; 2131 { 2132 struct bge_softc *sc; 2133 struct mii_data *mii = NULL; 2134 struct ifmedia *ifm = NULL; 2135 struct ifnet *ifp; 2136 int s; 2137 2138 sc = xsc; 2139 ifp = &sc->arpcom.ac_if; 2140 2141 s = splimp(); 2142 2143 bge_stats_update(sc); 2144 sc->bge_stat_ch = timeout(bge_tick, sc, hz); 2145 if (sc->bge_link) { 2146 splx(s); 2147 return; 2148 } 2149 2150 if (sc->bge_tbi) { 2151 ifm = &sc->bge_ifmedia; 2152 if (CSR_READ_4(sc, BGE_MAC_STS) & 2153 BGE_MACSTAT_TBI_PCS_SYNCHED) { 2154 sc->bge_link++; 2155 CSR_WRITE_4(sc, BGE_MAC_STS, 0xFFFFFFFF); 2156 printf("bge%d: gigabit link up\n", sc->bge_unit); 2157 if (ifp->if_snd.ifq_head != NULL) 2158 bge_start(ifp); 2159 } 2160 splx(s); 2161 return; 2162 } 2163 2164 mii = device_get_softc(sc->bge_miibus); 2165 mii_tick(mii); 2166 2167 if (!sc->bge_link && mii->mii_media_status & IFM_ACTIVE && 2168 IFM_SUBTYPE(mii->mii_media_active) != IFM_NONE) { 2169 sc->bge_link++; 2170 if (IFM_SUBTYPE(mii->mii_media_active) == IFM_1000_T || 2171 IFM_SUBTYPE(mii->mii_media_active) == IFM_1000_SX) 2172 printf("bge%d: gigabit link up\n", 2173 sc->bge_unit); 2174 if (ifp->if_snd.ifq_head != NULL) 2175 bge_start(ifp); 2176 } 2177 2178 splx(s); 2179 2180 return; 2181 } 2182 2183 static void 2184 bge_stats_update(sc) 2185 struct bge_softc *sc; 2186 { 2187 struct ifnet *ifp; 2188 struct bge_stats *stats; 2189 2190 ifp = &sc->arpcom.ac_if; 2191 2192 stats = (struct bge_stats *)(sc->bge_vhandle + 2193 BGE_MEMWIN_START + BGE_STATS_BLOCK); 2194 2195 ifp->if_collisions += 2196 (stats->dot3StatsSingleCollisionFrames.bge_addr_lo + 2197 stats->dot3StatsMultipleCollisionFrames.bge_addr_lo + 2198 stats->dot3StatsExcessiveCollisions.bge_addr_lo + 2199 stats->dot3StatsLateCollisions.bge_addr_lo) - 2200 ifp->if_collisions; 2201 2202 #ifdef notdef 2203 ifp->if_collisions += 2204 (sc->bge_rdata->bge_info.bge_stats.dot3StatsSingleCollisionFrames + 2205 sc->bge_rdata->bge_info.bge_stats.dot3StatsMultipleCollisionFrames + 2206 sc->bge_rdata->bge_info.bge_stats.dot3StatsExcessiveCollisions + 2207 sc->bge_rdata->bge_info.bge_stats.dot3StatsLateCollisions) - 2208 ifp->if_collisions; 2209 #endif 2210 2211 return; 2212 } 2213 2214 /* 2215 * Encapsulate an mbuf chain in the tx ring by coupling the mbuf data 2216 * pointers to descriptors. 2217 */ 2218 static int 2219 bge_encap(sc, m_head, txidx) 2220 struct bge_softc *sc; 2221 struct mbuf *m_head; 2222 u_int32_t *txidx; 2223 { 2224 struct bge_tx_bd *f = NULL; 2225 struct mbuf *m; 2226 u_int32_t frag, cur, cnt = 0; 2227 u_int16_t csum_flags = 0; 2228 struct m_tag *mtag; 2229 2230 m = m_head; 2231 cur = frag = *txidx; 2232 2233 if (m_head->m_pkthdr.csum_flags) { 2234 if (m_head->m_pkthdr.csum_flags & CSUM_IP) 2235 csum_flags |= BGE_TXBDFLAG_IP_CSUM; 2236 if (m_head->m_pkthdr.csum_flags & (CSUM_TCP | CSUM_UDP)) 2237 csum_flags |= BGE_TXBDFLAG_TCP_UDP_CSUM; 2238 if (m_head->m_flags & M_LASTFRAG) 2239 csum_flags |= BGE_TXBDFLAG_IP_FRAG_END; 2240 else if (m_head->m_flags & M_FRAG) 2241 csum_flags |= BGE_TXBDFLAG_IP_FRAG; 2242 } 2243 2244 mtag = VLAN_OUTPUT_TAG(&sc->arpcom.ac_if, m); 2245 2246 /* 2247 * Start packing the mbufs in this chain into 2248 * the fragment pointers. Stop when we run out 2249 * of fragments or hit the end of the mbuf chain. 2250 */ 2251 for (m = m_head; m != NULL; m = m->m_next) { 2252 if (m->m_len != 0) { 2253 f = &sc->bge_rdata->bge_tx_ring[frag]; 2254 if (sc->bge_cdata.bge_tx_chain[frag] != NULL) 2255 break; 2256 BGE_HOSTADDR(f->bge_addr) = 2257 vtophys(mtod(m, vm_offset_t)); 2258 f->bge_len = m->m_len; 2259 f->bge_flags = csum_flags; 2260 if (mtag != NULL) { 2261 f->bge_flags |= BGE_TXBDFLAG_VLAN_TAG; 2262 f->bge_vlan_tag = VLAN_TAG_VALUE(mtag); 2263 } else { 2264 f->bge_vlan_tag = 0; 2265 } 2266 /* 2267 * Sanity check: avoid coming within 16 descriptors 2268 * of the end of the ring. 2269 */ 2270 if ((BGE_TX_RING_CNT - (sc->bge_txcnt + cnt)) < 16) 2271 return(ENOBUFS); 2272 cur = frag; 2273 BGE_INC(frag, BGE_TX_RING_CNT); 2274 cnt++; 2275 } 2276 } 2277 2278 if (m != NULL) 2279 return(ENOBUFS); 2280 2281 if (frag == sc->bge_tx_saved_considx) 2282 return(ENOBUFS); 2283 2284 sc->bge_rdata->bge_tx_ring[cur].bge_flags |= BGE_TXBDFLAG_END; 2285 sc->bge_cdata.bge_tx_chain[cur] = m_head; 2286 sc->bge_txcnt += cnt; 2287 2288 *txidx = frag; 2289 2290 return(0); 2291 } 2292 2293 /* 2294 * Main transmit routine. To avoid having to do mbuf copies, we put pointers 2295 * to the mbuf data regions directly in the transmit descriptors. 2296 */ 2297 static void 2298 bge_start(ifp) 2299 struct ifnet *ifp; 2300 { 2301 struct bge_softc *sc; 2302 struct mbuf *m_head = NULL; 2303 u_int32_t prodidx = 0; 2304 2305 sc = ifp->if_softc; 2306 2307 if (!sc->bge_link && ifp->if_snd.ifq_len < 10) 2308 return; 2309 2310 prodidx = CSR_READ_4(sc, BGE_MBX_TX_HOST_PROD0_LO); 2311 2312 while(sc->bge_cdata.bge_tx_chain[prodidx] == NULL) { 2313 IF_DEQUEUE(&ifp->if_snd, m_head); 2314 if (m_head == NULL) 2315 break; 2316 2317 /* 2318 * XXX 2319 * safety overkill. If this is a fragmented packet chain 2320 * with delayed TCP/UDP checksums, then only encapsulate 2321 * it if we have enough descriptors to handle the entire 2322 * chain at once. 2323 * (paranoia -- may not actually be needed) 2324 */ 2325 if (m_head->m_flags & M_FIRSTFRAG && 2326 m_head->m_pkthdr.csum_flags & (CSUM_DELAY_DATA)) { 2327 if ((BGE_TX_RING_CNT - sc->bge_txcnt) < 2328 m_head->m_pkthdr.csum_data + 16) { 2329 IF_PREPEND(&ifp->if_snd, m_head); 2330 ifp->if_flags |= IFF_OACTIVE; 2331 break; 2332 } 2333 } 2334 2335 /* 2336 * Pack the data into the transmit ring. If we 2337 * don't have room, set the OACTIVE flag and wait 2338 * for the NIC to drain the ring. 2339 */ 2340 if (bge_encap(sc, m_head, &prodidx)) { 2341 IF_PREPEND(&ifp->if_snd, m_head); 2342 ifp->if_flags |= IFF_OACTIVE; 2343 break; 2344 } 2345 2346 /* 2347 * If there's a BPF listener, bounce a copy of this frame 2348 * to him. 2349 */ 2350 BPF_MTAP(ifp, m_head); 2351 } 2352 2353 /* Transmit */ 2354 CSR_WRITE_4(sc, BGE_MBX_TX_HOST_PROD0_LO, prodidx); 2355 /* 5700 b2 errata */ 2356 if (BGE_ASICREV(sc->bge_asicrev) == BGE_ASICREV_BCM5700) 2357 CSR_WRITE_4(sc, BGE_MBX_TX_HOST_PROD0_LO, prodidx); 2358 2359 /* 2360 * Set a timeout in case the chip goes out to lunch. 2361 */ 2362 ifp->if_timer = 5; 2363 2364 return; 2365 } 2366 2367 static void 2368 bge_init(xsc) 2369 void *xsc; 2370 { 2371 struct bge_softc *sc = xsc; 2372 struct ifnet *ifp; 2373 u_int16_t *m; 2374 int s; 2375 2376 s = splimp(); 2377 2378 ifp = &sc->arpcom.ac_if; 2379 2380 if (ifp->if_flags & IFF_RUNNING) { 2381 splx(s); 2382 return; 2383 } 2384 2385 /* Cancel pending I/O and flush buffers. */ 2386 bge_stop(sc); 2387 bge_reset(sc); 2388 bge_chipinit(sc); 2389 2390 /* 2391 * Init the various state machines, ring 2392 * control blocks and firmware. 2393 */ 2394 if (bge_blockinit(sc)) { 2395 printf("bge%d: initialization failure\n", sc->bge_unit); 2396 splx(s); 2397 return; 2398 } 2399 2400 ifp = &sc->arpcom.ac_if; 2401 2402 /* Specify MTU. */ 2403 CSR_WRITE_4(sc, BGE_RX_MTU, ifp->if_mtu + 2404 ETHER_HDR_LEN + ETHER_CRC_LEN); 2405 2406 /* Load our MAC address. */ 2407 m = (u_int16_t *)&sc->arpcom.ac_enaddr[0]; 2408 CSR_WRITE_4(sc, BGE_MAC_ADDR1_LO, htons(m[0])); 2409 CSR_WRITE_4(sc, BGE_MAC_ADDR1_HI, (htons(m[1]) << 16) | htons(m[2])); 2410 2411 /* Enable or disable promiscuous mode as needed. */ 2412 if (ifp->if_flags & IFF_PROMISC) { 2413 BGE_SETBIT(sc, BGE_RX_MODE, BGE_RXMODE_RX_PROMISC); 2414 } else { 2415 BGE_CLRBIT(sc, BGE_RX_MODE, BGE_RXMODE_RX_PROMISC); 2416 } 2417 2418 /* Program multicast filter. */ 2419 bge_setmulti(sc); 2420 2421 /* Init RX ring. */ 2422 bge_init_rx_ring_std(sc); 2423 2424 /* Init jumbo RX ring. */ 2425 if (ifp->if_mtu > (ETHERMTU + ETHER_HDR_LEN + ETHER_CRC_LEN)) 2426 bge_init_rx_ring_jumbo(sc); 2427 2428 /* Init our RX return ring index */ 2429 sc->bge_rx_saved_considx = 0; 2430 2431 /* Init TX ring. */ 2432 bge_init_tx_ring(sc); 2433 2434 /* Turn on transmitter */ 2435 BGE_SETBIT(sc, BGE_TX_MODE, BGE_TXMODE_ENABLE); 2436 2437 /* Turn on receiver */ 2438 BGE_SETBIT(sc, BGE_RX_MODE, BGE_RXMODE_ENABLE); 2439 2440 /* Tell firmware we're alive. */ 2441 BGE_SETBIT(sc, BGE_MODE_CTL, BGE_MODECTL_STACKUP); 2442 2443 /* Enable host interrupts. */ 2444 BGE_SETBIT(sc, BGE_PCI_MISC_CTL, BGE_PCIMISCCTL_CLEAR_INTA); 2445 BGE_CLRBIT(sc, BGE_PCI_MISC_CTL, BGE_PCIMISCCTL_MASK_PCI_INTR); 2446 CSR_WRITE_4(sc, BGE_MBX_IRQ0_LO, 0); 2447 2448 bge_ifmedia_upd(ifp); 2449 2450 ifp->if_flags |= IFF_RUNNING; 2451 ifp->if_flags &= ~IFF_OACTIVE; 2452 2453 splx(s); 2454 2455 sc->bge_stat_ch = timeout(bge_tick, sc, hz); 2456 2457 return; 2458 } 2459 2460 /* 2461 * Set media options. 2462 */ 2463 static int 2464 bge_ifmedia_upd(ifp) 2465 struct ifnet *ifp; 2466 { 2467 struct bge_softc *sc; 2468 struct mii_data *mii; 2469 struct ifmedia *ifm; 2470 2471 sc = ifp->if_softc; 2472 ifm = &sc->bge_ifmedia; 2473 2474 /* If this is a 1000baseX NIC, enable the TBI port. */ 2475 if (sc->bge_tbi) { 2476 if (IFM_TYPE(ifm->ifm_media) != IFM_ETHER) 2477 return(EINVAL); 2478 switch(IFM_SUBTYPE(ifm->ifm_media)) { 2479 case IFM_AUTO: 2480 break; 2481 case IFM_1000_SX: 2482 if ((ifm->ifm_media & IFM_GMASK) == IFM_FDX) { 2483 BGE_CLRBIT(sc, BGE_MAC_MODE, 2484 BGE_MACMODE_HALF_DUPLEX); 2485 } else { 2486 BGE_SETBIT(sc, BGE_MAC_MODE, 2487 BGE_MACMODE_HALF_DUPLEX); 2488 } 2489 break; 2490 default: 2491 return(EINVAL); 2492 } 2493 return(0); 2494 } 2495 2496 mii = device_get_softc(sc->bge_miibus); 2497 sc->bge_link = 0; 2498 if (mii->mii_instance) { 2499 struct mii_softc *miisc; 2500 for (miisc = LIST_FIRST(&mii->mii_phys); miisc != NULL; 2501 miisc = LIST_NEXT(miisc, mii_list)) 2502 mii_phy_reset(miisc); 2503 } 2504 mii_mediachg(mii); 2505 2506 return(0); 2507 } 2508 2509 /* 2510 * Report current media status. 2511 */ 2512 static void 2513 bge_ifmedia_sts(ifp, ifmr) 2514 struct ifnet *ifp; 2515 struct ifmediareq *ifmr; 2516 { 2517 struct bge_softc *sc; 2518 struct mii_data *mii; 2519 2520 sc = ifp->if_softc; 2521 2522 if (sc->bge_tbi) { 2523 ifmr->ifm_status = IFM_AVALID; 2524 ifmr->ifm_active = IFM_ETHER; 2525 if (CSR_READ_4(sc, BGE_MAC_STS) & 2526 BGE_MACSTAT_TBI_PCS_SYNCHED) 2527 ifmr->ifm_status |= IFM_ACTIVE; 2528 ifmr->ifm_active |= IFM_1000_SX; 2529 if (CSR_READ_4(sc, BGE_MAC_MODE) & BGE_MACMODE_HALF_DUPLEX) 2530 ifmr->ifm_active |= IFM_HDX; 2531 else 2532 ifmr->ifm_active |= IFM_FDX; 2533 return; 2534 } 2535 2536 mii = device_get_softc(sc->bge_miibus); 2537 mii_pollstat(mii); 2538 ifmr->ifm_active = mii->mii_media_active; 2539 ifmr->ifm_status = mii->mii_media_status; 2540 2541 return; 2542 } 2543 2544 static int 2545 bge_ioctl(ifp, command, data) 2546 struct ifnet *ifp; 2547 u_long command; 2548 caddr_t data; 2549 { 2550 struct bge_softc *sc = ifp->if_softc; 2551 struct ifreq *ifr = (struct ifreq *) data; 2552 int s, mask, error = 0; 2553 struct mii_data *mii; 2554 2555 s = splimp(); 2556 2557 switch(command) { 2558 case SIOCSIFMTU: 2559 if (ifr->ifr_mtu > BGE_JUMBO_MTU) 2560 error = EINVAL; 2561 else { 2562 ifp->if_mtu = ifr->ifr_mtu; 2563 ifp->if_flags &= ~IFF_RUNNING; 2564 bge_init(sc); 2565 } 2566 break; 2567 case SIOCSIFFLAGS: 2568 if (ifp->if_flags & IFF_UP) { 2569 /* 2570 * If only the state of the PROMISC flag changed, 2571 * then just use the 'set promisc mode' command 2572 * instead of reinitializing the entire NIC. Doing 2573 * a full re-init means reloading the firmware and 2574 * waiting for it to start up, which may take a 2575 * second or two. 2576 */ 2577 if (ifp->if_flags & IFF_RUNNING && 2578 ifp->if_flags & IFF_PROMISC && 2579 !(sc->bge_if_flags & IFF_PROMISC)) { 2580 BGE_SETBIT(sc, BGE_RX_MODE, 2581 BGE_RXMODE_RX_PROMISC); 2582 } else if (ifp->if_flags & IFF_RUNNING && 2583 !(ifp->if_flags & IFF_PROMISC) && 2584 sc->bge_if_flags & IFF_PROMISC) { 2585 BGE_CLRBIT(sc, BGE_RX_MODE, 2586 BGE_RXMODE_RX_PROMISC); 2587 } else 2588 bge_init(sc); 2589 } else { 2590 if (ifp->if_flags & IFF_RUNNING) { 2591 bge_stop(sc); 2592 } 2593 } 2594 sc->bge_if_flags = ifp->if_flags; 2595 error = 0; 2596 break; 2597 case SIOCADDMULTI: 2598 case SIOCDELMULTI: 2599 if (ifp->if_flags & IFF_RUNNING) { 2600 bge_setmulti(sc); 2601 error = 0; 2602 } 2603 break; 2604 case SIOCSIFMEDIA: 2605 case SIOCGIFMEDIA: 2606 if (sc->bge_tbi) { 2607 error = ifmedia_ioctl(ifp, ifr, 2608 &sc->bge_ifmedia, command); 2609 } else { 2610 mii = device_get_softc(sc->bge_miibus); 2611 error = ifmedia_ioctl(ifp, ifr, 2612 &mii->mii_media, command); 2613 } 2614 break; 2615 case SIOCSIFCAP: 2616 mask = ifr->ifr_reqcap ^ ifp->if_capenable; 2617 if (mask & IFCAP_HWCSUM) { 2618 if (IFCAP_HWCSUM & ifp->if_capenable) 2619 ifp->if_capenable &= ~IFCAP_HWCSUM; 2620 else 2621 ifp->if_capenable |= IFCAP_HWCSUM; 2622 } 2623 error = 0; 2624 break; 2625 default: 2626 error = ether_ioctl(ifp, command, data); 2627 break; 2628 } 2629 2630 (void)splx(s); 2631 2632 return(error); 2633 } 2634 2635 static void 2636 bge_watchdog(ifp) 2637 struct ifnet *ifp; 2638 { 2639 struct bge_softc *sc; 2640 2641 sc = ifp->if_softc; 2642 2643 printf("bge%d: watchdog timeout -- resetting\n", sc->bge_unit); 2644 2645 ifp->if_flags &= ~IFF_RUNNING; 2646 bge_init(sc); 2647 2648 ifp->if_oerrors++; 2649 2650 return; 2651 } 2652 2653 /* 2654 * Stop the adapter and free any mbufs allocated to the 2655 * RX and TX lists. 2656 */ 2657 static void 2658 bge_stop(sc) 2659 struct bge_softc *sc; 2660 { 2661 struct ifnet *ifp; 2662 struct ifmedia_entry *ifm; 2663 struct mii_data *mii = NULL; 2664 int mtmp, itmp; 2665 2666 ifp = &sc->arpcom.ac_if; 2667 2668 if (!sc->bge_tbi) 2669 mii = device_get_softc(sc->bge_miibus); 2670 2671 untimeout(bge_tick, sc, sc->bge_stat_ch); 2672 2673 /* 2674 * Disable all of the receiver blocks 2675 */ 2676 BGE_CLRBIT(sc, BGE_RX_MODE, BGE_RXMODE_ENABLE); 2677 BGE_CLRBIT(sc, BGE_RBDI_MODE, BGE_RBDIMODE_ENABLE); 2678 BGE_CLRBIT(sc, BGE_RXLP_MODE, BGE_RXLPMODE_ENABLE); 2679 BGE_CLRBIT(sc, BGE_RXLS_MODE, BGE_RXLSMODE_ENABLE); 2680 BGE_CLRBIT(sc, BGE_RDBDI_MODE, BGE_RBDIMODE_ENABLE); 2681 BGE_CLRBIT(sc, BGE_RDC_MODE, BGE_RDCMODE_ENABLE); 2682 BGE_CLRBIT(sc, BGE_RBDC_MODE, BGE_RBDCMODE_ENABLE); 2683 2684 /* 2685 * Disable all of the transmit blocks 2686 */ 2687 BGE_CLRBIT(sc, BGE_SRS_MODE, BGE_SRSMODE_ENABLE); 2688 BGE_CLRBIT(sc, BGE_SBDI_MODE, BGE_SBDIMODE_ENABLE); 2689 BGE_CLRBIT(sc, BGE_SDI_MODE, BGE_SDIMODE_ENABLE); 2690 BGE_CLRBIT(sc, BGE_RDMA_MODE, BGE_RDMAMODE_ENABLE); 2691 BGE_CLRBIT(sc, BGE_SDC_MODE, BGE_SDCMODE_ENABLE); 2692 BGE_CLRBIT(sc, BGE_DMAC_MODE, BGE_DMACMODE_ENABLE); 2693 BGE_CLRBIT(sc, BGE_SBDC_MODE, BGE_SBDCMODE_ENABLE); 2694 2695 /* 2696 * Shut down all of the memory managers and related 2697 * state machines. 2698 */ 2699 BGE_CLRBIT(sc, BGE_HCC_MODE, BGE_HCCMODE_ENABLE); 2700 BGE_CLRBIT(sc, BGE_WDMA_MODE, BGE_WDMAMODE_ENABLE); 2701 BGE_CLRBIT(sc, BGE_MBCF_MODE, BGE_MBCFMODE_ENABLE); 2702 CSR_WRITE_4(sc, BGE_FTQ_RESET, 0xFFFFFFFF); 2703 CSR_WRITE_4(sc, BGE_FTQ_RESET, 0); 2704 BGE_CLRBIT(sc, BGE_BMAN_MODE, BGE_BMANMODE_ENABLE); 2705 BGE_CLRBIT(sc, BGE_MARB_MODE, BGE_MARBMODE_ENABLE); 2706 2707 /* Disable host interrupts. */ 2708 BGE_SETBIT(sc, BGE_PCI_MISC_CTL, BGE_PCIMISCCTL_MASK_PCI_INTR); 2709 CSR_WRITE_4(sc, BGE_MBX_IRQ0_LO, 1); 2710 2711 /* 2712 * Tell firmware we're shutting down. 2713 */ 2714 BGE_CLRBIT(sc, BGE_MODE_CTL, BGE_MODECTL_STACKUP); 2715 2716 /* Free the RX lists. */ 2717 bge_free_rx_ring_std(sc); 2718 2719 /* Free jumbo RX list. */ 2720 bge_free_rx_ring_jumbo(sc); 2721 2722 /* Free TX buffers. */ 2723 bge_free_tx_ring(sc); 2724 2725 /* 2726 * Isolate/power down the PHY, but leave the media selection 2727 * unchanged so that things will be put back to normal when 2728 * we bring the interface back up. 2729 */ 2730 if (!sc->bge_tbi) { 2731 itmp = ifp->if_flags; 2732 ifp->if_flags |= IFF_UP; 2733 ifm = mii->mii_media.ifm_cur; 2734 mtmp = ifm->ifm_media; 2735 ifm->ifm_media = IFM_ETHER|IFM_NONE; 2736 mii_mediachg(mii); 2737 ifm->ifm_media = mtmp; 2738 ifp->if_flags = itmp; 2739 } 2740 2741 sc->bge_link = 0; 2742 2743 sc->bge_tx_saved_considx = BGE_TXCONS_UNSET; 2744 2745 ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE); 2746 2747 return; 2748 } 2749 2750 /* 2751 * Stop all chip I/O so that the kernel's probe routines don't 2752 * get confused by errant DMAs when rebooting. 2753 */ 2754 static void 2755 bge_shutdown(dev) 2756 device_t dev; 2757 { 2758 struct bge_softc *sc; 2759 2760 sc = device_get_softc(dev); 2761 2762 bge_stop(sc); 2763 bge_reset(sc); 2764 2765 return; 2766 } 2767