xref: /freebsd/sys/dev/bge/if_bge.c (revision 6486b015fc84e96725fef22b0e3363351399ae83)
1 /*-
2  * Copyright (c) 2001 Wind River Systems
3  * Copyright (c) 1997, 1998, 1999, 2001
4  *	Bill Paul <wpaul@windriver.com>.  All rights reserved.
5  *
6  * Redistribution and use in source and binary forms, with or without
7  * modification, are permitted provided that the following conditions
8  * are met:
9  * 1. Redistributions of source code must retain the above copyright
10  *    notice, this list of conditions and the following disclaimer.
11  * 2. Redistributions in binary form must reproduce the above copyright
12  *    notice, this list of conditions and the following disclaimer in the
13  *    documentation and/or other materials provided with the distribution.
14  * 3. All advertising materials mentioning features or use of this software
15  *    must display the following acknowledgement:
16  *	This product includes software developed by Bill Paul.
17  * 4. Neither the name of the author nor the names of any co-contributors
18  *    may be used to endorse or promote products derived from this software
19  *    without specific prior written permission.
20  *
21  * THIS SOFTWARE IS PROVIDED BY Bill Paul AND CONTRIBUTORS ``AS IS'' AND
22  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
23  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
24  * ARE DISCLAIMED.  IN NO EVENT SHALL Bill Paul OR THE VOICES IN HIS HEAD
25  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
26  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
27  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
28  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
29  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
30  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF
31  * THE POSSIBILITY OF SUCH DAMAGE.
32  */
33 
34 #include <sys/cdefs.h>
35 __FBSDID("$FreeBSD$");
36 
37 /*
38  * Broadcom BCM570x family gigabit ethernet driver for FreeBSD.
39  *
40  * The Broadcom BCM5700 is based on technology originally developed by
41  * Alteon Networks as part of the Tigon I and Tigon II gigabit ethernet
42  * MAC chips. The BCM5700, sometimes referred to as the Tigon III, has
43  * two on-board MIPS R4000 CPUs and can have as much as 16MB of external
44  * SSRAM. The BCM5700 supports TCP, UDP and IP checksum offload, jumbo
45  * frames, highly configurable RX filtering, and 16 RX and TX queues
46  * (which, along with RX filter rules, can be used for QOS applications).
47  * Other features, such as TCP segmentation, may be available as part
48  * of value-added firmware updates. Unlike the Tigon I and Tigon II,
49  * firmware images can be stored in hardware and need not be compiled
50  * into the driver.
51  *
52  * The BCM5700 supports the PCI v2.2 and PCI-X v1.0 standards, and will
53  * function in a 32-bit/64-bit 33/66Mhz bus, or a 64-bit/133Mhz bus.
54  *
55  * The BCM5701 is a single-chip solution incorporating both the BCM5700
56  * MAC and a BCM5401 10/100/1000 PHY. Unlike the BCM5700, the BCM5701
57  * does not support external SSRAM.
58  *
59  * Broadcom also produces a variation of the BCM5700 under the "Altima"
60  * brand name, which is functionally similar but lacks PCI-X support.
61  *
62  * Without external SSRAM, you can only have at most 4 TX rings,
63  * and the use of the mini RX ring is disabled. This seems to imply
64  * that these features are simply not available on the BCM5701. As a
65  * result, this driver does not implement any support for the mini RX
66  * ring.
67  */
68 
69 #ifdef HAVE_KERNEL_OPTION_HEADERS
70 #include "opt_device_polling.h"
71 #endif
72 
73 #include <sys/param.h>
74 #include <sys/endian.h>
75 #include <sys/systm.h>
76 #include <sys/sockio.h>
77 #include <sys/mbuf.h>
78 #include <sys/malloc.h>
79 #include <sys/kernel.h>
80 #include <sys/module.h>
81 #include <sys/socket.h>
82 #include <sys/sysctl.h>
83 #include <sys/taskqueue.h>
84 
85 #include <net/if.h>
86 #include <net/if_arp.h>
87 #include <net/ethernet.h>
88 #include <net/if_dl.h>
89 #include <net/if_media.h>
90 
91 #include <net/bpf.h>
92 
93 #include <net/if_types.h>
94 #include <net/if_vlan_var.h>
95 
96 #include <netinet/in_systm.h>
97 #include <netinet/in.h>
98 #include <netinet/ip.h>
99 #include <netinet/tcp.h>
100 
101 #include <machine/bus.h>
102 #include <machine/resource.h>
103 #include <sys/bus.h>
104 #include <sys/rman.h>
105 
106 #include <dev/mii/mii.h>
107 #include <dev/mii/miivar.h>
108 #include "miidevs.h"
109 #include <dev/mii/brgphyreg.h>
110 
111 #ifdef __sparc64__
112 #include <dev/ofw/ofw_bus.h>
113 #include <dev/ofw/openfirm.h>
114 #include <machine/ofw_machdep.h>
115 #include <machine/ver.h>
116 #endif
117 
118 #include <dev/pci/pcireg.h>
119 #include <dev/pci/pcivar.h>
120 
121 #include <dev/bge/if_bgereg.h>
122 
123 #define	BGE_CSUM_FEATURES	(CSUM_IP | CSUM_TCP)
124 #define	ETHER_MIN_NOPAD		(ETHER_MIN_LEN - ETHER_CRC_LEN) /* i.e., 60 */
125 
126 MODULE_DEPEND(bge, pci, 1, 1, 1);
127 MODULE_DEPEND(bge, ether, 1, 1, 1);
128 MODULE_DEPEND(bge, miibus, 1, 1, 1);
129 
130 /* "device miibus" required.  See GENERIC if you get errors here. */
131 #include "miibus_if.h"
132 
133 /*
134  * Various supported device vendors/types and their names. Note: the
135  * spec seems to indicate that the hardware still has Alteon's vendor
136  * ID burned into it, though it will always be overriden by the vendor
137  * ID in the EEPROM. Just to be safe, we cover all possibilities.
138  */
139 static const struct bge_type {
140 	uint16_t	bge_vid;
141 	uint16_t	bge_did;
142 } const bge_devs[] = {
143 	{ ALTEON_VENDORID,	ALTEON_DEVICEID_BCM5700 },
144 	{ ALTEON_VENDORID,	ALTEON_DEVICEID_BCM5701 },
145 
146 	{ ALTIMA_VENDORID,	ALTIMA_DEVICE_AC1000 },
147 	{ ALTIMA_VENDORID,	ALTIMA_DEVICE_AC1002 },
148 	{ ALTIMA_VENDORID,	ALTIMA_DEVICE_AC9100 },
149 
150 	{ APPLE_VENDORID,	APPLE_DEVICE_BCM5701 },
151 
152 	{ BCOM_VENDORID,	BCOM_DEVICEID_BCM5700 },
153 	{ BCOM_VENDORID,	BCOM_DEVICEID_BCM5701 },
154 	{ BCOM_VENDORID,	BCOM_DEVICEID_BCM5702 },
155 	{ BCOM_VENDORID,	BCOM_DEVICEID_BCM5702_ALT },
156 	{ BCOM_VENDORID,	BCOM_DEVICEID_BCM5702X },
157 	{ BCOM_VENDORID,	BCOM_DEVICEID_BCM5703 },
158 	{ BCOM_VENDORID,	BCOM_DEVICEID_BCM5703_ALT },
159 	{ BCOM_VENDORID,	BCOM_DEVICEID_BCM5703X },
160 	{ BCOM_VENDORID,	BCOM_DEVICEID_BCM5704C },
161 	{ BCOM_VENDORID,	BCOM_DEVICEID_BCM5704S },
162 	{ BCOM_VENDORID,	BCOM_DEVICEID_BCM5704S_ALT },
163 	{ BCOM_VENDORID,	BCOM_DEVICEID_BCM5705 },
164 	{ BCOM_VENDORID,	BCOM_DEVICEID_BCM5705F },
165 	{ BCOM_VENDORID,	BCOM_DEVICEID_BCM5705K },
166 	{ BCOM_VENDORID,	BCOM_DEVICEID_BCM5705M },
167 	{ BCOM_VENDORID,	BCOM_DEVICEID_BCM5705M_ALT },
168 	{ BCOM_VENDORID,	BCOM_DEVICEID_BCM5714C },
169 	{ BCOM_VENDORID,	BCOM_DEVICEID_BCM5714S },
170 	{ BCOM_VENDORID,	BCOM_DEVICEID_BCM5715 },
171 	{ BCOM_VENDORID,	BCOM_DEVICEID_BCM5715S },
172 	{ BCOM_VENDORID,	BCOM_DEVICEID_BCM5717 },
173 	{ BCOM_VENDORID,	BCOM_DEVICEID_BCM5718 },
174 	{ BCOM_VENDORID,	BCOM_DEVICEID_BCM5719 },
175 	{ BCOM_VENDORID,	BCOM_DEVICEID_BCM5720 },
176 	{ BCOM_VENDORID,	BCOM_DEVICEID_BCM5721 },
177 	{ BCOM_VENDORID,	BCOM_DEVICEID_BCM5722 },
178 	{ BCOM_VENDORID,	BCOM_DEVICEID_BCM5723 },
179 	{ BCOM_VENDORID,	BCOM_DEVICEID_BCM5750 },
180 	{ BCOM_VENDORID,	BCOM_DEVICEID_BCM5750M },
181 	{ BCOM_VENDORID,	BCOM_DEVICEID_BCM5751 },
182 	{ BCOM_VENDORID,	BCOM_DEVICEID_BCM5751F },
183 	{ BCOM_VENDORID,	BCOM_DEVICEID_BCM5751M },
184 	{ BCOM_VENDORID,	BCOM_DEVICEID_BCM5752 },
185 	{ BCOM_VENDORID,	BCOM_DEVICEID_BCM5752M },
186 	{ BCOM_VENDORID,	BCOM_DEVICEID_BCM5753 },
187 	{ BCOM_VENDORID,	BCOM_DEVICEID_BCM5753F },
188 	{ BCOM_VENDORID,	BCOM_DEVICEID_BCM5753M },
189 	{ BCOM_VENDORID,	BCOM_DEVICEID_BCM5754 },
190 	{ BCOM_VENDORID,	BCOM_DEVICEID_BCM5754M },
191 	{ BCOM_VENDORID,	BCOM_DEVICEID_BCM5755 },
192 	{ BCOM_VENDORID,	BCOM_DEVICEID_BCM5755M },
193 	{ BCOM_VENDORID,	BCOM_DEVICEID_BCM5756 },
194 	{ BCOM_VENDORID,	BCOM_DEVICEID_BCM5761 },
195 	{ BCOM_VENDORID,	BCOM_DEVICEID_BCM5761E },
196 	{ BCOM_VENDORID,	BCOM_DEVICEID_BCM5761S },
197 	{ BCOM_VENDORID,	BCOM_DEVICEID_BCM5761SE },
198 	{ BCOM_VENDORID,	BCOM_DEVICEID_BCM5764 },
199 	{ BCOM_VENDORID,	BCOM_DEVICEID_BCM5780 },
200 	{ BCOM_VENDORID,	BCOM_DEVICEID_BCM5780S },
201 	{ BCOM_VENDORID,	BCOM_DEVICEID_BCM5781 },
202 	{ BCOM_VENDORID,	BCOM_DEVICEID_BCM5782 },
203 	{ BCOM_VENDORID,	BCOM_DEVICEID_BCM5784 },
204 	{ BCOM_VENDORID,	BCOM_DEVICEID_BCM5785F },
205 	{ BCOM_VENDORID,	BCOM_DEVICEID_BCM5785G },
206 	{ BCOM_VENDORID,	BCOM_DEVICEID_BCM5786 },
207 	{ BCOM_VENDORID,	BCOM_DEVICEID_BCM5787 },
208 	{ BCOM_VENDORID,	BCOM_DEVICEID_BCM5787F },
209 	{ BCOM_VENDORID,	BCOM_DEVICEID_BCM5787M },
210 	{ BCOM_VENDORID,	BCOM_DEVICEID_BCM5788 },
211 	{ BCOM_VENDORID,	BCOM_DEVICEID_BCM5789 },
212 	{ BCOM_VENDORID,	BCOM_DEVICEID_BCM5901 },
213 	{ BCOM_VENDORID,	BCOM_DEVICEID_BCM5901A2 },
214 	{ BCOM_VENDORID,	BCOM_DEVICEID_BCM5903M },
215 	{ BCOM_VENDORID,	BCOM_DEVICEID_BCM5906 },
216 	{ BCOM_VENDORID,	BCOM_DEVICEID_BCM5906M },
217 	{ BCOM_VENDORID,	BCOM_DEVICEID_BCM57760 },
218 	{ BCOM_VENDORID,	BCOM_DEVICEID_BCM57761 },
219 	{ BCOM_VENDORID,	BCOM_DEVICEID_BCM57765 },
220 	{ BCOM_VENDORID,	BCOM_DEVICEID_BCM57780 },
221 	{ BCOM_VENDORID,	BCOM_DEVICEID_BCM57781 },
222 	{ BCOM_VENDORID,	BCOM_DEVICEID_BCM57785 },
223 	{ BCOM_VENDORID,	BCOM_DEVICEID_BCM57788 },
224 	{ BCOM_VENDORID,	BCOM_DEVICEID_BCM57790 },
225 	{ BCOM_VENDORID,	BCOM_DEVICEID_BCM57791 },
226 	{ BCOM_VENDORID,	BCOM_DEVICEID_BCM57795 },
227 
228 	{ SK_VENDORID,		SK_DEVICEID_ALTIMA },
229 
230 	{ TC_VENDORID,		TC_DEVICEID_3C996 },
231 
232 	{ FJTSU_VENDORID,	FJTSU_DEVICEID_PW008GE4 },
233 	{ FJTSU_VENDORID,	FJTSU_DEVICEID_PW008GE5 },
234 	{ FJTSU_VENDORID,	FJTSU_DEVICEID_PP250450 },
235 
236 	{ 0, 0 }
237 };
238 
239 static const struct bge_vendor {
240 	uint16_t	v_id;
241 	const char	*v_name;
242 } const bge_vendors[] = {
243 	{ ALTEON_VENDORID,	"Alteon" },
244 	{ ALTIMA_VENDORID,	"Altima" },
245 	{ APPLE_VENDORID,	"Apple" },
246 	{ BCOM_VENDORID,	"Broadcom" },
247 	{ SK_VENDORID,		"SysKonnect" },
248 	{ TC_VENDORID,		"3Com" },
249 	{ FJTSU_VENDORID,	"Fujitsu" },
250 
251 	{ 0, NULL }
252 };
253 
254 static const struct bge_revision {
255 	uint32_t	br_chipid;
256 	const char	*br_name;
257 } const bge_revisions[] = {
258 	{ BGE_CHIPID_BCM5700_A0,	"BCM5700 A0" },
259 	{ BGE_CHIPID_BCM5700_A1,	"BCM5700 A1" },
260 	{ BGE_CHIPID_BCM5700_B0,	"BCM5700 B0" },
261 	{ BGE_CHIPID_BCM5700_B1,	"BCM5700 B1" },
262 	{ BGE_CHIPID_BCM5700_B2,	"BCM5700 B2" },
263 	{ BGE_CHIPID_BCM5700_B3,	"BCM5700 B3" },
264 	{ BGE_CHIPID_BCM5700_ALTIMA,	"BCM5700 Altima" },
265 	{ BGE_CHIPID_BCM5700_C0,	"BCM5700 C0" },
266 	{ BGE_CHIPID_BCM5701_A0,	"BCM5701 A0" },
267 	{ BGE_CHIPID_BCM5701_B0,	"BCM5701 B0" },
268 	{ BGE_CHIPID_BCM5701_B2,	"BCM5701 B2" },
269 	{ BGE_CHIPID_BCM5701_B5,	"BCM5701 B5" },
270 	{ BGE_CHIPID_BCM5703_A0,	"BCM5703 A0" },
271 	{ BGE_CHIPID_BCM5703_A1,	"BCM5703 A1" },
272 	{ BGE_CHIPID_BCM5703_A2,	"BCM5703 A2" },
273 	{ BGE_CHIPID_BCM5703_A3,	"BCM5703 A3" },
274 	{ BGE_CHIPID_BCM5703_B0,	"BCM5703 B0" },
275 	{ BGE_CHIPID_BCM5704_A0,	"BCM5704 A0" },
276 	{ BGE_CHIPID_BCM5704_A1,	"BCM5704 A1" },
277 	{ BGE_CHIPID_BCM5704_A2,	"BCM5704 A2" },
278 	{ BGE_CHIPID_BCM5704_A3,	"BCM5704 A3" },
279 	{ BGE_CHIPID_BCM5704_B0,	"BCM5704 B0" },
280 	{ BGE_CHIPID_BCM5705_A0,	"BCM5705 A0" },
281 	{ BGE_CHIPID_BCM5705_A1,	"BCM5705 A1" },
282 	{ BGE_CHIPID_BCM5705_A2,	"BCM5705 A2" },
283 	{ BGE_CHIPID_BCM5705_A3,	"BCM5705 A3" },
284 	{ BGE_CHIPID_BCM5750_A0,	"BCM5750 A0" },
285 	{ BGE_CHIPID_BCM5750_A1,	"BCM5750 A1" },
286 	{ BGE_CHIPID_BCM5750_A3,	"BCM5750 A3" },
287 	{ BGE_CHIPID_BCM5750_B0,	"BCM5750 B0" },
288 	{ BGE_CHIPID_BCM5750_B1,	"BCM5750 B1" },
289 	{ BGE_CHIPID_BCM5750_C0,	"BCM5750 C0" },
290 	{ BGE_CHIPID_BCM5750_C1,	"BCM5750 C1" },
291 	{ BGE_CHIPID_BCM5750_C2,	"BCM5750 C2" },
292 	{ BGE_CHIPID_BCM5714_A0,	"BCM5714 A0" },
293 	{ BGE_CHIPID_BCM5752_A0,	"BCM5752 A0" },
294 	{ BGE_CHIPID_BCM5752_A1,	"BCM5752 A1" },
295 	{ BGE_CHIPID_BCM5752_A2,	"BCM5752 A2" },
296 	{ BGE_CHIPID_BCM5714_B0,	"BCM5714 B0" },
297 	{ BGE_CHIPID_BCM5714_B3,	"BCM5714 B3" },
298 	{ BGE_CHIPID_BCM5715_A0,	"BCM5715 A0" },
299 	{ BGE_CHIPID_BCM5715_A1,	"BCM5715 A1" },
300 	{ BGE_CHIPID_BCM5715_A3,	"BCM5715 A3" },
301 	{ BGE_CHIPID_BCM5717_A0,	"BCM5717 A0" },
302 	{ BGE_CHIPID_BCM5717_B0,	"BCM5717 B0" },
303 	{ BGE_CHIPID_BCM5719_A0,	"BCM5719 A0" },
304 	{ BGE_CHIPID_BCM5720_A0,	"BCM5720 A0" },
305 	{ BGE_CHIPID_BCM5755_A0,	"BCM5755 A0" },
306 	{ BGE_CHIPID_BCM5755_A1,	"BCM5755 A1" },
307 	{ BGE_CHIPID_BCM5755_A2,	"BCM5755 A2" },
308 	{ BGE_CHIPID_BCM5722_A0,	"BCM5722 A0" },
309 	{ BGE_CHIPID_BCM5761_A0,	"BCM5761 A0" },
310 	{ BGE_CHIPID_BCM5761_A1,	"BCM5761 A1" },
311 	{ BGE_CHIPID_BCM5784_A0,	"BCM5784 A0" },
312 	{ BGE_CHIPID_BCM5784_A1,	"BCM5784 A1" },
313 	/* 5754 and 5787 share the same ASIC ID */
314 	{ BGE_CHIPID_BCM5787_A0,	"BCM5754/5787 A0" },
315 	{ BGE_CHIPID_BCM5787_A1,	"BCM5754/5787 A1" },
316 	{ BGE_CHIPID_BCM5787_A2,	"BCM5754/5787 A2" },
317 	{ BGE_CHIPID_BCM5906_A1,	"BCM5906 A1" },
318 	{ BGE_CHIPID_BCM5906_A2,	"BCM5906 A2" },
319 	{ BGE_CHIPID_BCM57765_A0,	"BCM57765 A0" },
320 	{ BGE_CHIPID_BCM57765_B0,	"BCM57765 B0" },
321 	{ BGE_CHIPID_BCM57780_A0,	"BCM57780 A0" },
322 	{ BGE_CHIPID_BCM57780_A1,	"BCM57780 A1" },
323 
324 	{ 0, NULL }
325 };
326 
327 /*
328  * Some defaults for major revisions, so that newer steppings
329  * that we don't know about have a shot at working.
330  */
331 static const struct bge_revision const bge_majorrevs[] = {
332 	{ BGE_ASICREV_BCM5700,		"unknown BCM5700" },
333 	{ BGE_ASICREV_BCM5701,		"unknown BCM5701" },
334 	{ BGE_ASICREV_BCM5703,		"unknown BCM5703" },
335 	{ BGE_ASICREV_BCM5704,		"unknown BCM5704" },
336 	{ BGE_ASICREV_BCM5705,		"unknown BCM5705" },
337 	{ BGE_ASICREV_BCM5750,		"unknown BCM5750" },
338 	{ BGE_ASICREV_BCM5714_A0,	"unknown BCM5714" },
339 	{ BGE_ASICREV_BCM5752,		"unknown BCM5752" },
340 	{ BGE_ASICREV_BCM5780,		"unknown BCM5780" },
341 	{ BGE_ASICREV_BCM5714,		"unknown BCM5714" },
342 	{ BGE_ASICREV_BCM5755,		"unknown BCM5755" },
343 	{ BGE_ASICREV_BCM5761,		"unknown BCM5761" },
344 	{ BGE_ASICREV_BCM5784,		"unknown BCM5784" },
345 	{ BGE_ASICREV_BCM5785,		"unknown BCM5785" },
346 	/* 5754 and 5787 share the same ASIC ID */
347 	{ BGE_ASICREV_BCM5787,		"unknown BCM5754/5787" },
348 	{ BGE_ASICREV_BCM5906,		"unknown BCM5906" },
349 	{ BGE_ASICREV_BCM57765,		"unknown BCM57765" },
350 	{ BGE_ASICREV_BCM57780,		"unknown BCM57780" },
351 	{ BGE_ASICREV_BCM5717,		"unknown BCM5717" },
352 	{ BGE_ASICREV_BCM5719,		"unknown BCM5719" },
353 	{ BGE_ASICREV_BCM5720,		"unknown BCM5720" },
354 
355 	{ 0, NULL }
356 };
357 
358 #define	BGE_IS_JUMBO_CAPABLE(sc)	((sc)->bge_flags & BGE_FLAG_JUMBO)
359 #define	BGE_IS_5700_FAMILY(sc)		((sc)->bge_flags & BGE_FLAG_5700_FAMILY)
360 #define	BGE_IS_5705_PLUS(sc)		((sc)->bge_flags & BGE_FLAG_5705_PLUS)
361 #define	BGE_IS_5714_FAMILY(sc)		((sc)->bge_flags & BGE_FLAG_5714_FAMILY)
362 #define	BGE_IS_575X_PLUS(sc)		((sc)->bge_flags & BGE_FLAG_575X_PLUS)
363 #define	BGE_IS_5755_PLUS(sc)		((sc)->bge_flags & BGE_FLAG_5755_PLUS)
364 #define	BGE_IS_5717_PLUS(sc)		((sc)->bge_flags & BGE_FLAG_5717_PLUS)
365 
366 const struct bge_revision * bge_lookup_rev(uint32_t);
367 const struct bge_vendor * bge_lookup_vendor(uint16_t);
368 
369 typedef int	(*bge_eaddr_fcn_t)(struct bge_softc *, uint8_t[]);
370 
371 static int bge_probe(device_t);
372 static int bge_attach(device_t);
373 static int bge_detach(device_t);
374 static int bge_suspend(device_t);
375 static int bge_resume(device_t);
376 static void bge_release_resources(struct bge_softc *);
377 static void bge_dma_map_addr(void *, bus_dma_segment_t *, int, int);
378 static int bge_dma_alloc(struct bge_softc *);
379 static void bge_dma_free(struct bge_softc *);
380 static int bge_dma_ring_alloc(struct bge_softc *, bus_size_t, bus_size_t,
381     bus_dma_tag_t *, uint8_t **, bus_dmamap_t *, bus_addr_t *, const char *);
382 
383 static void bge_devinfo(struct bge_softc *);
384 static int bge_mbox_reorder(struct bge_softc *);
385 
386 static int bge_get_eaddr_fw(struct bge_softc *sc, uint8_t ether_addr[]);
387 static int bge_get_eaddr_mem(struct bge_softc *, uint8_t[]);
388 static int bge_get_eaddr_nvram(struct bge_softc *, uint8_t[]);
389 static int bge_get_eaddr_eeprom(struct bge_softc *, uint8_t[]);
390 static int bge_get_eaddr(struct bge_softc *, uint8_t[]);
391 
392 static void bge_txeof(struct bge_softc *, uint16_t);
393 static void bge_rxcsum(struct bge_softc *, struct bge_rx_bd *, struct mbuf *);
394 static int bge_rxeof(struct bge_softc *, uint16_t, int);
395 
396 static void bge_asf_driver_up (struct bge_softc *);
397 static void bge_tick(void *);
398 static void bge_stats_clear_regs(struct bge_softc *);
399 static void bge_stats_update(struct bge_softc *);
400 static void bge_stats_update_regs(struct bge_softc *);
401 static struct mbuf *bge_check_short_dma(struct mbuf *);
402 static struct mbuf *bge_setup_tso(struct bge_softc *, struct mbuf *,
403     uint16_t *, uint16_t *);
404 static int bge_encap(struct bge_softc *, struct mbuf **, uint32_t *);
405 
406 static void bge_intr(void *);
407 static int bge_msi_intr(void *);
408 static void bge_intr_task(void *, int);
409 static void bge_start_locked(struct ifnet *);
410 static void bge_start(struct ifnet *);
411 static int bge_ioctl(struct ifnet *, u_long, caddr_t);
412 static void bge_init_locked(struct bge_softc *);
413 static void bge_init(void *);
414 static void bge_stop_block(struct bge_softc *, bus_size_t, uint32_t);
415 static void bge_stop(struct bge_softc *);
416 static void bge_watchdog(struct bge_softc *);
417 static int bge_shutdown(device_t);
418 static int bge_ifmedia_upd_locked(struct ifnet *);
419 static int bge_ifmedia_upd(struct ifnet *);
420 static void bge_ifmedia_sts(struct ifnet *, struct ifmediareq *);
421 
422 static uint8_t bge_nvram_getbyte(struct bge_softc *, int, uint8_t *);
423 static int bge_read_nvram(struct bge_softc *, caddr_t, int, int);
424 
425 static uint8_t bge_eeprom_getbyte(struct bge_softc *, int, uint8_t *);
426 static int bge_read_eeprom(struct bge_softc *, caddr_t, int, int);
427 
428 static void bge_setpromisc(struct bge_softc *);
429 static void bge_setmulti(struct bge_softc *);
430 static void bge_setvlan(struct bge_softc *);
431 
432 static __inline void bge_rxreuse_std(struct bge_softc *, int);
433 static __inline void bge_rxreuse_jumbo(struct bge_softc *, int);
434 static int bge_newbuf_std(struct bge_softc *, int);
435 static int bge_newbuf_jumbo(struct bge_softc *, int);
436 static int bge_init_rx_ring_std(struct bge_softc *);
437 static void bge_free_rx_ring_std(struct bge_softc *);
438 static int bge_init_rx_ring_jumbo(struct bge_softc *);
439 static void bge_free_rx_ring_jumbo(struct bge_softc *);
440 static void bge_free_tx_ring(struct bge_softc *);
441 static int bge_init_tx_ring(struct bge_softc *);
442 
443 static int bge_chipinit(struct bge_softc *);
444 static int bge_blockinit(struct bge_softc *);
445 static uint32_t bge_dma_swap_options(struct bge_softc *);
446 
447 static int bge_has_eaddr(struct bge_softc *);
448 static uint32_t bge_readmem_ind(struct bge_softc *, int);
449 static void bge_writemem_ind(struct bge_softc *, int, int);
450 static void bge_writembx(struct bge_softc *, int, int);
451 #ifdef notdef
452 static uint32_t bge_readreg_ind(struct bge_softc *, int);
453 #endif
454 static void bge_writemem_direct(struct bge_softc *, int, int);
455 static void bge_writereg_ind(struct bge_softc *, int, int);
456 
457 static int bge_miibus_readreg(device_t, int, int);
458 static int bge_miibus_writereg(device_t, int, int, int);
459 static void bge_miibus_statchg(device_t);
460 #ifdef DEVICE_POLLING
461 static int bge_poll(struct ifnet *ifp, enum poll_cmd cmd, int count);
462 #endif
463 
464 #define	BGE_RESET_START 1
465 #define	BGE_RESET_STOP  2
466 static void bge_sig_post_reset(struct bge_softc *, int);
467 static void bge_sig_legacy(struct bge_softc *, int);
468 static void bge_sig_pre_reset(struct bge_softc *, int);
469 static void bge_stop_fw(struct bge_softc *);
470 static int bge_reset(struct bge_softc *);
471 static void bge_link_upd(struct bge_softc *);
472 
473 /*
474  * The BGE_REGISTER_DEBUG option is only for low-level debugging.  It may
475  * leak information to untrusted users.  It is also known to cause alignment
476  * traps on certain architectures.
477  */
478 #ifdef BGE_REGISTER_DEBUG
479 static int bge_sysctl_debug_info(SYSCTL_HANDLER_ARGS);
480 static int bge_sysctl_reg_read(SYSCTL_HANDLER_ARGS);
481 static int bge_sysctl_mem_read(SYSCTL_HANDLER_ARGS);
482 #endif
483 static void bge_add_sysctls(struct bge_softc *);
484 static void bge_add_sysctl_stats_regs(struct bge_softc *,
485     struct sysctl_ctx_list *, struct sysctl_oid_list *);
486 static void bge_add_sysctl_stats(struct bge_softc *, struct sysctl_ctx_list *,
487     struct sysctl_oid_list *);
488 static int bge_sysctl_stats(SYSCTL_HANDLER_ARGS);
489 
490 static device_method_t bge_methods[] = {
491 	/* Device interface */
492 	DEVMETHOD(device_probe,		bge_probe),
493 	DEVMETHOD(device_attach,	bge_attach),
494 	DEVMETHOD(device_detach,	bge_detach),
495 	DEVMETHOD(device_shutdown,	bge_shutdown),
496 	DEVMETHOD(device_suspend,	bge_suspend),
497 	DEVMETHOD(device_resume,	bge_resume),
498 
499 	/* MII interface */
500 	DEVMETHOD(miibus_readreg,	bge_miibus_readreg),
501 	DEVMETHOD(miibus_writereg,	bge_miibus_writereg),
502 	DEVMETHOD(miibus_statchg,	bge_miibus_statchg),
503 
504 	DEVMETHOD_END
505 };
506 
507 static driver_t bge_driver = {
508 	"bge",
509 	bge_methods,
510 	sizeof(struct bge_softc)
511 };
512 
513 static devclass_t bge_devclass;
514 
515 DRIVER_MODULE(bge, pci, bge_driver, bge_devclass, 0, 0);
516 DRIVER_MODULE(miibus, bge, miibus_driver, miibus_devclass, 0, 0);
517 
518 static int bge_allow_asf = 1;
519 
520 TUNABLE_INT("hw.bge.allow_asf", &bge_allow_asf);
521 
522 static SYSCTL_NODE(_hw, OID_AUTO, bge, CTLFLAG_RD, 0, "BGE driver parameters");
523 SYSCTL_INT(_hw_bge, OID_AUTO, allow_asf, CTLFLAG_RD, &bge_allow_asf, 0,
524 	"Allow ASF mode if available");
525 
526 #define	SPARC64_BLADE_1500_MODEL	"SUNW,Sun-Blade-1500"
527 #define	SPARC64_BLADE_1500_PATH_BGE	"/pci@1f,700000/network@2"
528 #define	SPARC64_BLADE_2500_MODEL	"SUNW,Sun-Blade-2500"
529 #define	SPARC64_BLADE_2500_PATH_BGE	"/pci@1c,600000/network@3"
530 #define	SPARC64_OFW_SUBVENDOR		"subsystem-vendor-id"
531 
532 static int
533 bge_has_eaddr(struct bge_softc *sc)
534 {
535 #ifdef __sparc64__
536 	char buf[sizeof(SPARC64_BLADE_1500_PATH_BGE)];
537 	device_t dev;
538 	uint32_t subvendor;
539 
540 	dev = sc->bge_dev;
541 
542 	/*
543 	 * The on-board BGEs found in sun4u machines aren't fitted with
544 	 * an EEPROM which means that we have to obtain the MAC address
545 	 * via OFW and that some tests will always fail.  We distinguish
546 	 * such BGEs by the subvendor ID, which also has to be obtained
547 	 * from OFW instead of the PCI configuration space as the latter
548 	 * indicates Broadcom as the subvendor of the netboot interface.
549 	 * For early Blade 1500 and 2500 we even have to check the OFW
550 	 * device path as the subvendor ID always defaults to Broadcom
551 	 * there.
552 	 */
553 	if (OF_getprop(ofw_bus_get_node(dev), SPARC64_OFW_SUBVENDOR,
554 	    &subvendor, sizeof(subvendor)) == sizeof(subvendor) &&
555 	    (subvendor == FJTSU_VENDORID || subvendor == SUN_VENDORID))
556 		return (0);
557 	memset(buf, 0, sizeof(buf));
558 	if (OF_package_to_path(ofw_bus_get_node(dev), buf, sizeof(buf)) > 0) {
559 		if (strcmp(sparc64_model, SPARC64_BLADE_1500_MODEL) == 0 &&
560 		    strcmp(buf, SPARC64_BLADE_1500_PATH_BGE) == 0)
561 			return (0);
562 		if (strcmp(sparc64_model, SPARC64_BLADE_2500_MODEL) == 0 &&
563 		    strcmp(buf, SPARC64_BLADE_2500_PATH_BGE) == 0)
564 			return (0);
565 	}
566 #endif
567 	return (1);
568 }
569 
570 static uint32_t
571 bge_readmem_ind(struct bge_softc *sc, int off)
572 {
573 	device_t dev;
574 	uint32_t val;
575 
576 	if (sc->bge_asicrev == BGE_ASICREV_BCM5906 &&
577 	    off >= BGE_STATS_BLOCK && off < BGE_SEND_RING_1_TO_4)
578 		return (0);
579 
580 	dev = sc->bge_dev;
581 
582 	pci_write_config(dev, BGE_PCI_MEMWIN_BASEADDR, off, 4);
583 	val = pci_read_config(dev, BGE_PCI_MEMWIN_DATA, 4);
584 	pci_write_config(dev, BGE_PCI_MEMWIN_BASEADDR, 0, 4);
585 	return (val);
586 }
587 
588 static void
589 bge_writemem_ind(struct bge_softc *sc, int off, int val)
590 {
591 	device_t dev;
592 
593 	if (sc->bge_asicrev == BGE_ASICREV_BCM5906 &&
594 	    off >= BGE_STATS_BLOCK && off < BGE_SEND_RING_1_TO_4)
595 		return;
596 
597 	dev = sc->bge_dev;
598 
599 	pci_write_config(dev, BGE_PCI_MEMWIN_BASEADDR, off, 4);
600 	pci_write_config(dev, BGE_PCI_MEMWIN_DATA, val, 4);
601 	pci_write_config(dev, BGE_PCI_MEMWIN_BASEADDR, 0, 4);
602 }
603 
604 #ifdef notdef
605 static uint32_t
606 bge_readreg_ind(struct bge_softc *sc, int off)
607 {
608 	device_t dev;
609 
610 	dev = sc->bge_dev;
611 
612 	pci_write_config(dev, BGE_PCI_REG_BASEADDR, off, 4);
613 	return (pci_read_config(dev, BGE_PCI_REG_DATA, 4));
614 }
615 #endif
616 
617 static void
618 bge_writereg_ind(struct bge_softc *sc, int off, int val)
619 {
620 	device_t dev;
621 
622 	dev = sc->bge_dev;
623 
624 	pci_write_config(dev, BGE_PCI_REG_BASEADDR, off, 4);
625 	pci_write_config(dev, BGE_PCI_REG_DATA, val, 4);
626 }
627 
628 static void
629 bge_writemem_direct(struct bge_softc *sc, int off, int val)
630 {
631 	CSR_WRITE_4(sc, off, val);
632 }
633 
634 static void
635 bge_writembx(struct bge_softc *sc, int off, int val)
636 {
637 	if (sc->bge_asicrev == BGE_ASICREV_BCM5906)
638 		off += BGE_LPMBX_IRQ0_HI - BGE_MBX_IRQ0_HI;
639 
640 	CSR_WRITE_4(sc, off, val);
641 	if ((sc->bge_flags & BGE_FLAG_MBOX_REORDER) != 0)
642 		CSR_READ_4(sc, off);
643 }
644 
645 /*
646  * Map a single buffer address.
647  */
648 
649 static void
650 bge_dma_map_addr(void *arg, bus_dma_segment_t *segs, int nseg, int error)
651 {
652 	struct bge_dmamap_arg *ctx;
653 
654 	if (error)
655 		return;
656 
657 	KASSERT(nseg == 1, ("%s: %d segments returned!", __func__, nseg));
658 
659 	ctx = arg;
660 	ctx->bge_busaddr = segs->ds_addr;
661 }
662 
663 static uint8_t
664 bge_nvram_getbyte(struct bge_softc *sc, int addr, uint8_t *dest)
665 {
666 	uint32_t access, byte = 0;
667 	int i;
668 
669 	/* Lock. */
670 	CSR_WRITE_4(sc, BGE_NVRAM_SWARB, BGE_NVRAMSWARB_SET1);
671 	for (i = 0; i < 8000; i++) {
672 		if (CSR_READ_4(sc, BGE_NVRAM_SWARB) & BGE_NVRAMSWARB_GNT1)
673 			break;
674 		DELAY(20);
675 	}
676 	if (i == 8000)
677 		return (1);
678 
679 	/* Enable access. */
680 	access = CSR_READ_4(sc, BGE_NVRAM_ACCESS);
681 	CSR_WRITE_4(sc, BGE_NVRAM_ACCESS, access | BGE_NVRAMACC_ENABLE);
682 
683 	CSR_WRITE_4(sc, BGE_NVRAM_ADDR, addr & 0xfffffffc);
684 	CSR_WRITE_4(sc, BGE_NVRAM_CMD, BGE_NVRAM_READCMD);
685 	for (i = 0; i < BGE_TIMEOUT * 10; i++) {
686 		DELAY(10);
687 		if (CSR_READ_4(sc, BGE_NVRAM_CMD) & BGE_NVRAMCMD_DONE) {
688 			DELAY(10);
689 			break;
690 		}
691 	}
692 
693 	if (i == BGE_TIMEOUT * 10) {
694 		if_printf(sc->bge_ifp, "nvram read timed out\n");
695 		return (1);
696 	}
697 
698 	/* Get result. */
699 	byte = CSR_READ_4(sc, BGE_NVRAM_RDDATA);
700 
701 	*dest = (bswap32(byte) >> ((addr % 4) * 8)) & 0xFF;
702 
703 	/* Disable access. */
704 	CSR_WRITE_4(sc, BGE_NVRAM_ACCESS, access);
705 
706 	/* Unlock. */
707 	CSR_WRITE_4(sc, BGE_NVRAM_SWARB, BGE_NVRAMSWARB_CLR1);
708 	CSR_READ_4(sc, BGE_NVRAM_SWARB);
709 
710 	return (0);
711 }
712 
713 /*
714  * Read a sequence of bytes from NVRAM.
715  */
716 static int
717 bge_read_nvram(struct bge_softc *sc, caddr_t dest, int off, int cnt)
718 {
719 	int err = 0, i;
720 	uint8_t byte = 0;
721 
722 	if (sc->bge_asicrev != BGE_ASICREV_BCM5906)
723 		return (1);
724 
725 	for (i = 0; i < cnt; i++) {
726 		err = bge_nvram_getbyte(sc, off + i, &byte);
727 		if (err)
728 			break;
729 		*(dest + i) = byte;
730 	}
731 
732 	return (err ? 1 : 0);
733 }
734 
735 /*
736  * Read a byte of data stored in the EEPROM at address 'addr.' The
737  * BCM570x supports both the traditional bitbang interface and an
738  * auto access interface for reading the EEPROM. We use the auto
739  * access method.
740  */
741 static uint8_t
742 bge_eeprom_getbyte(struct bge_softc *sc, int addr, uint8_t *dest)
743 {
744 	int i;
745 	uint32_t byte = 0;
746 
747 	/*
748 	 * Enable use of auto EEPROM access so we can avoid
749 	 * having to use the bitbang method.
750 	 */
751 	BGE_SETBIT(sc, BGE_MISC_LOCAL_CTL, BGE_MLC_AUTO_EEPROM);
752 
753 	/* Reset the EEPROM, load the clock period. */
754 	CSR_WRITE_4(sc, BGE_EE_ADDR,
755 	    BGE_EEADDR_RESET | BGE_EEHALFCLK(BGE_HALFCLK_384SCL));
756 	DELAY(20);
757 
758 	/* Issue the read EEPROM command. */
759 	CSR_WRITE_4(sc, BGE_EE_ADDR, BGE_EE_READCMD | addr);
760 
761 	/* Wait for completion */
762 	for(i = 0; i < BGE_TIMEOUT * 10; i++) {
763 		DELAY(10);
764 		if (CSR_READ_4(sc, BGE_EE_ADDR) & BGE_EEADDR_DONE)
765 			break;
766 	}
767 
768 	if (i == BGE_TIMEOUT * 10) {
769 		device_printf(sc->bge_dev, "EEPROM read timed out\n");
770 		return (1);
771 	}
772 
773 	/* Get result. */
774 	byte = CSR_READ_4(sc, BGE_EE_DATA);
775 
776 	*dest = (byte >> ((addr % 4) * 8)) & 0xFF;
777 
778 	return (0);
779 }
780 
781 /*
782  * Read a sequence of bytes from the EEPROM.
783  */
784 static int
785 bge_read_eeprom(struct bge_softc *sc, caddr_t dest, int off, int cnt)
786 {
787 	int i, error = 0;
788 	uint8_t byte = 0;
789 
790 	for (i = 0; i < cnt; i++) {
791 		error = bge_eeprom_getbyte(sc, off + i, &byte);
792 		if (error)
793 			break;
794 		*(dest + i) = byte;
795 	}
796 
797 	return (error ? 1 : 0);
798 }
799 
800 static int
801 bge_miibus_readreg(device_t dev, int phy, int reg)
802 {
803 	struct bge_softc *sc;
804 	uint32_t val;
805 	int i;
806 
807 	sc = device_get_softc(dev);
808 
809 	/* Clear the autopoll bit if set, otherwise may trigger PCI errors. */
810 	if ((sc->bge_mi_mode & BGE_MIMODE_AUTOPOLL) != 0) {
811 		CSR_WRITE_4(sc, BGE_MI_MODE,
812 		    sc->bge_mi_mode & ~BGE_MIMODE_AUTOPOLL);
813 		DELAY(80);
814 	}
815 
816 	CSR_WRITE_4(sc, BGE_MI_COMM, BGE_MICMD_READ | BGE_MICOMM_BUSY |
817 	    BGE_MIPHY(phy) | BGE_MIREG(reg));
818 
819 	/* Poll for the PHY register access to complete. */
820 	for (i = 0; i < BGE_TIMEOUT; i++) {
821 		DELAY(10);
822 		val = CSR_READ_4(sc, BGE_MI_COMM);
823 		if ((val & BGE_MICOMM_BUSY) == 0) {
824 			DELAY(5);
825 			val = CSR_READ_4(sc, BGE_MI_COMM);
826 			break;
827 		}
828 	}
829 
830 	if (i == BGE_TIMEOUT) {
831 		device_printf(sc->bge_dev,
832 		    "PHY read timed out (phy %d, reg %d, val 0x%08x)\n",
833 		    phy, reg, val);
834 		val = 0;
835 	}
836 
837 	/* Restore the autopoll bit if necessary. */
838 	if ((sc->bge_mi_mode & BGE_MIMODE_AUTOPOLL) != 0) {
839 		CSR_WRITE_4(sc, BGE_MI_MODE, sc->bge_mi_mode);
840 		DELAY(80);
841 	}
842 
843 	if (val & BGE_MICOMM_READFAIL)
844 		return (0);
845 
846 	return (val & 0xFFFF);
847 }
848 
849 static int
850 bge_miibus_writereg(device_t dev, int phy, int reg, int val)
851 {
852 	struct bge_softc *sc;
853 	int i;
854 
855 	sc = device_get_softc(dev);
856 
857 	if (sc->bge_asicrev == BGE_ASICREV_BCM5906 &&
858 	    (reg == BRGPHY_MII_1000CTL || reg == BRGPHY_MII_AUXCTL))
859 		return (0);
860 
861 	/* Clear the autopoll bit if set, otherwise may trigger PCI errors. */
862 	if ((sc->bge_mi_mode & BGE_MIMODE_AUTOPOLL) != 0) {
863 		CSR_WRITE_4(sc, BGE_MI_MODE,
864 		    sc->bge_mi_mode & ~BGE_MIMODE_AUTOPOLL);
865 		DELAY(80);
866 	}
867 
868 	CSR_WRITE_4(sc, BGE_MI_COMM, BGE_MICMD_WRITE | BGE_MICOMM_BUSY |
869 	    BGE_MIPHY(phy) | BGE_MIREG(reg) | val);
870 
871 	for (i = 0; i < BGE_TIMEOUT; i++) {
872 		DELAY(10);
873 		if (!(CSR_READ_4(sc, BGE_MI_COMM) & BGE_MICOMM_BUSY)) {
874 			DELAY(5);
875 			CSR_READ_4(sc, BGE_MI_COMM); /* dummy read */
876 			break;
877 		}
878 	}
879 
880 	/* Restore the autopoll bit if necessary. */
881 	if ((sc->bge_mi_mode & BGE_MIMODE_AUTOPOLL) != 0) {
882 		CSR_WRITE_4(sc, BGE_MI_MODE, sc->bge_mi_mode);
883 		DELAY(80);
884 	}
885 
886 	if (i == BGE_TIMEOUT)
887 		device_printf(sc->bge_dev,
888 		    "PHY write timed out (phy %d, reg %d, val %d)\n",
889 		    phy, reg, val);
890 
891 	return (0);
892 }
893 
894 static void
895 bge_miibus_statchg(device_t dev)
896 {
897 	struct bge_softc *sc;
898 	struct mii_data *mii;
899 	sc = device_get_softc(dev);
900 	mii = device_get_softc(sc->bge_miibus);
901 
902 	if ((mii->mii_media_status & (IFM_ACTIVE | IFM_AVALID)) ==
903 	    (IFM_ACTIVE | IFM_AVALID)) {
904 		switch (IFM_SUBTYPE(mii->mii_media_active)) {
905 		case IFM_10_T:
906 		case IFM_100_TX:
907 			sc->bge_link = 1;
908 			break;
909 		case IFM_1000_T:
910 		case IFM_1000_SX:
911 		case IFM_2500_SX:
912 			if (sc->bge_asicrev != BGE_ASICREV_BCM5906)
913 				sc->bge_link = 1;
914 			else
915 				sc->bge_link = 0;
916 			break;
917 		default:
918 			sc->bge_link = 0;
919 			break;
920 		}
921 	} else
922 		sc->bge_link = 0;
923 	if (sc->bge_link == 0)
924 		return;
925 	BGE_CLRBIT(sc, BGE_MAC_MODE, BGE_MACMODE_PORTMODE);
926 	if (IFM_SUBTYPE(mii->mii_media_active) == IFM_1000_T ||
927 	    IFM_SUBTYPE(mii->mii_media_active) == IFM_1000_SX)
928 		BGE_SETBIT(sc, BGE_MAC_MODE, BGE_PORTMODE_GMII);
929 	else
930 		BGE_SETBIT(sc, BGE_MAC_MODE, BGE_PORTMODE_MII);
931 
932 	if (IFM_OPTIONS(mii->mii_media_active & IFM_FDX) != 0) {
933 		BGE_CLRBIT(sc, BGE_MAC_MODE, BGE_MACMODE_HALF_DUPLEX);
934 		if ((IFM_OPTIONS(mii->mii_media_active) &
935 		    IFM_ETH_TXPAUSE) != 0)
936 			BGE_SETBIT(sc, BGE_TX_MODE, BGE_TXMODE_FLOWCTL_ENABLE);
937 		else
938 			BGE_CLRBIT(sc, BGE_TX_MODE, BGE_TXMODE_FLOWCTL_ENABLE);
939 		if ((IFM_OPTIONS(mii->mii_media_active) &
940 		    IFM_ETH_RXPAUSE) != 0)
941 			BGE_SETBIT(sc, BGE_RX_MODE, BGE_RXMODE_FLOWCTL_ENABLE);
942 		else
943 			BGE_CLRBIT(sc, BGE_RX_MODE, BGE_RXMODE_FLOWCTL_ENABLE);
944 	} else {
945 		BGE_SETBIT(sc, BGE_MAC_MODE, BGE_MACMODE_HALF_DUPLEX);
946 		BGE_CLRBIT(sc, BGE_TX_MODE, BGE_TXMODE_FLOWCTL_ENABLE);
947 		BGE_CLRBIT(sc, BGE_RX_MODE, BGE_RXMODE_FLOWCTL_ENABLE);
948 	}
949 }
950 
951 /*
952  * Intialize a standard receive ring descriptor.
953  */
954 static int
955 bge_newbuf_std(struct bge_softc *sc, int i)
956 {
957 	struct mbuf *m;
958 	struct bge_rx_bd *r;
959 	bus_dma_segment_t segs[1];
960 	bus_dmamap_t map;
961 	int error, nsegs;
962 
963 	if (sc->bge_flags & BGE_FLAG_JUMBO_STD &&
964 	    (sc->bge_ifp->if_mtu + ETHER_HDR_LEN + ETHER_CRC_LEN +
965 	    ETHER_VLAN_ENCAP_LEN > (MCLBYTES - ETHER_ALIGN))) {
966 		m = m_getjcl(M_DONTWAIT, MT_DATA, M_PKTHDR, MJUM9BYTES);
967 		if (m == NULL)
968 			return (ENOBUFS);
969 		m->m_len = m->m_pkthdr.len = MJUM9BYTES;
970 	} else {
971 		m = m_getcl(M_DONTWAIT, MT_DATA, M_PKTHDR);
972 		if (m == NULL)
973 			return (ENOBUFS);
974 		m->m_len = m->m_pkthdr.len = MCLBYTES;
975 	}
976 	if ((sc->bge_flags & BGE_FLAG_RX_ALIGNBUG) == 0)
977 		m_adj(m, ETHER_ALIGN);
978 
979 	error = bus_dmamap_load_mbuf_sg(sc->bge_cdata.bge_rx_mtag,
980 	    sc->bge_cdata.bge_rx_std_sparemap, m, segs, &nsegs, 0);
981 	if (error != 0) {
982 		m_freem(m);
983 		return (error);
984 	}
985 	if (sc->bge_cdata.bge_rx_std_chain[i] != NULL) {
986 		bus_dmamap_sync(sc->bge_cdata.bge_rx_mtag,
987 		    sc->bge_cdata.bge_rx_std_dmamap[i], BUS_DMASYNC_POSTREAD);
988 		bus_dmamap_unload(sc->bge_cdata.bge_rx_mtag,
989 		    sc->bge_cdata.bge_rx_std_dmamap[i]);
990 	}
991 	map = sc->bge_cdata.bge_rx_std_dmamap[i];
992 	sc->bge_cdata.bge_rx_std_dmamap[i] = sc->bge_cdata.bge_rx_std_sparemap;
993 	sc->bge_cdata.bge_rx_std_sparemap = map;
994 	sc->bge_cdata.bge_rx_std_chain[i] = m;
995 	sc->bge_cdata.bge_rx_std_seglen[i] = segs[0].ds_len;
996 	r = &sc->bge_ldata.bge_rx_std_ring[sc->bge_std];
997 	r->bge_addr.bge_addr_lo = BGE_ADDR_LO(segs[0].ds_addr);
998 	r->bge_addr.bge_addr_hi = BGE_ADDR_HI(segs[0].ds_addr);
999 	r->bge_flags = BGE_RXBDFLAG_END;
1000 	r->bge_len = segs[0].ds_len;
1001 	r->bge_idx = i;
1002 
1003 	bus_dmamap_sync(sc->bge_cdata.bge_rx_mtag,
1004 	    sc->bge_cdata.bge_rx_std_dmamap[i], BUS_DMASYNC_PREREAD);
1005 
1006 	return (0);
1007 }
1008 
1009 /*
1010  * Initialize a jumbo receive ring descriptor. This allocates
1011  * a jumbo buffer from the pool managed internally by the driver.
1012  */
1013 static int
1014 bge_newbuf_jumbo(struct bge_softc *sc, int i)
1015 {
1016 	bus_dma_segment_t segs[BGE_NSEG_JUMBO];
1017 	bus_dmamap_t map;
1018 	struct bge_extrx_bd *r;
1019 	struct mbuf *m;
1020 	int error, nsegs;
1021 
1022 	MGETHDR(m, M_DONTWAIT, MT_DATA);
1023 	if (m == NULL)
1024 		return (ENOBUFS);
1025 
1026 	m_cljget(m, M_DONTWAIT, MJUM9BYTES);
1027 	if (!(m->m_flags & M_EXT)) {
1028 		m_freem(m);
1029 		return (ENOBUFS);
1030 	}
1031 	m->m_len = m->m_pkthdr.len = MJUM9BYTES;
1032 	if ((sc->bge_flags & BGE_FLAG_RX_ALIGNBUG) == 0)
1033 		m_adj(m, ETHER_ALIGN);
1034 
1035 	error = bus_dmamap_load_mbuf_sg(sc->bge_cdata.bge_mtag_jumbo,
1036 	    sc->bge_cdata.bge_rx_jumbo_sparemap, m, segs, &nsegs, 0);
1037 	if (error != 0) {
1038 		m_freem(m);
1039 		return (error);
1040 	}
1041 
1042 	if (sc->bge_cdata.bge_rx_jumbo_chain[i] != NULL) {
1043 		bus_dmamap_sync(sc->bge_cdata.bge_mtag_jumbo,
1044 		    sc->bge_cdata.bge_rx_jumbo_dmamap[i], BUS_DMASYNC_POSTREAD);
1045 		bus_dmamap_unload(sc->bge_cdata.bge_mtag_jumbo,
1046 		    sc->bge_cdata.bge_rx_jumbo_dmamap[i]);
1047 	}
1048 	map = sc->bge_cdata.bge_rx_jumbo_dmamap[i];
1049 	sc->bge_cdata.bge_rx_jumbo_dmamap[i] =
1050 	    sc->bge_cdata.bge_rx_jumbo_sparemap;
1051 	sc->bge_cdata.bge_rx_jumbo_sparemap = map;
1052 	sc->bge_cdata.bge_rx_jumbo_chain[i] = m;
1053 	sc->bge_cdata.bge_rx_jumbo_seglen[i][0] = 0;
1054 	sc->bge_cdata.bge_rx_jumbo_seglen[i][1] = 0;
1055 	sc->bge_cdata.bge_rx_jumbo_seglen[i][2] = 0;
1056 	sc->bge_cdata.bge_rx_jumbo_seglen[i][3] = 0;
1057 
1058 	/*
1059 	 * Fill in the extended RX buffer descriptor.
1060 	 */
1061 	r = &sc->bge_ldata.bge_rx_jumbo_ring[sc->bge_jumbo];
1062 	r->bge_flags = BGE_RXBDFLAG_JUMBO_RING | BGE_RXBDFLAG_END;
1063 	r->bge_idx = i;
1064 	r->bge_len3 = r->bge_len2 = r->bge_len1 = 0;
1065 	switch (nsegs) {
1066 	case 4:
1067 		r->bge_addr3.bge_addr_lo = BGE_ADDR_LO(segs[3].ds_addr);
1068 		r->bge_addr3.bge_addr_hi = BGE_ADDR_HI(segs[3].ds_addr);
1069 		r->bge_len3 = segs[3].ds_len;
1070 		sc->bge_cdata.bge_rx_jumbo_seglen[i][3] = segs[3].ds_len;
1071 	case 3:
1072 		r->bge_addr2.bge_addr_lo = BGE_ADDR_LO(segs[2].ds_addr);
1073 		r->bge_addr2.bge_addr_hi = BGE_ADDR_HI(segs[2].ds_addr);
1074 		r->bge_len2 = segs[2].ds_len;
1075 		sc->bge_cdata.bge_rx_jumbo_seglen[i][2] = segs[2].ds_len;
1076 	case 2:
1077 		r->bge_addr1.bge_addr_lo = BGE_ADDR_LO(segs[1].ds_addr);
1078 		r->bge_addr1.bge_addr_hi = BGE_ADDR_HI(segs[1].ds_addr);
1079 		r->bge_len1 = segs[1].ds_len;
1080 		sc->bge_cdata.bge_rx_jumbo_seglen[i][1] = segs[1].ds_len;
1081 	case 1:
1082 		r->bge_addr0.bge_addr_lo = BGE_ADDR_LO(segs[0].ds_addr);
1083 		r->bge_addr0.bge_addr_hi = BGE_ADDR_HI(segs[0].ds_addr);
1084 		r->bge_len0 = segs[0].ds_len;
1085 		sc->bge_cdata.bge_rx_jumbo_seglen[i][0] = segs[0].ds_len;
1086 		break;
1087 	default:
1088 		panic("%s: %d segments\n", __func__, nsegs);
1089 	}
1090 
1091 	bus_dmamap_sync(sc->bge_cdata.bge_mtag_jumbo,
1092 	    sc->bge_cdata.bge_rx_jumbo_dmamap[i], BUS_DMASYNC_PREREAD);
1093 
1094 	return (0);
1095 }
1096 
1097 static int
1098 bge_init_rx_ring_std(struct bge_softc *sc)
1099 {
1100 	int error, i;
1101 
1102 	bzero(sc->bge_ldata.bge_rx_std_ring, BGE_STD_RX_RING_SZ);
1103 	sc->bge_std = 0;
1104 	for (i = 0; i < BGE_STD_RX_RING_CNT; i++) {
1105 		if ((error = bge_newbuf_std(sc, i)) != 0)
1106 			return (error);
1107 		BGE_INC(sc->bge_std, BGE_STD_RX_RING_CNT);
1108 	}
1109 
1110 	bus_dmamap_sync(sc->bge_cdata.bge_rx_std_ring_tag,
1111 	    sc->bge_cdata.bge_rx_std_ring_map, BUS_DMASYNC_PREWRITE);
1112 
1113 	sc->bge_std = 0;
1114 	bge_writembx(sc, BGE_MBX_RX_STD_PROD_LO, BGE_STD_RX_RING_CNT - 1);
1115 
1116 	return (0);
1117 }
1118 
1119 static void
1120 bge_free_rx_ring_std(struct bge_softc *sc)
1121 {
1122 	int i;
1123 
1124 	for (i = 0; i < BGE_STD_RX_RING_CNT; i++) {
1125 		if (sc->bge_cdata.bge_rx_std_chain[i] != NULL) {
1126 			bus_dmamap_sync(sc->bge_cdata.bge_rx_mtag,
1127 			    sc->bge_cdata.bge_rx_std_dmamap[i],
1128 			    BUS_DMASYNC_POSTREAD);
1129 			bus_dmamap_unload(sc->bge_cdata.bge_rx_mtag,
1130 			    sc->bge_cdata.bge_rx_std_dmamap[i]);
1131 			m_freem(sc->bge_cdata.bge_rx_std_chain[i]);
1132 			sc->bge_cdata.bge_rx_std_chain[i] = NULL;
1133 		}
1134 		bzero((char *)&sc->bge_ldata.bge_rx_std_ring[i],
1135 		    sizeof(struct bge_rx_bd));
1136 	}
1137 }
1138 
1139 static int
1140 bge_init_rx_ring_jumbo(struct bge_softc *sc)
1141 {
1142 	struct bge_rcb *rcb;
1143 	int error, i;
1144 
1145 	bzero(sc->bge_ldata.bge_rx_jumbo_ring, BGE_JUMBO_RX_RING_SZ);
1146 	sc->bge_jumbo = 0;
1147 	for (i = 0; i < BGE_JUMBO_RX_RING_CNT; i++) {
1148 		if ((error = bge_newbuf_jumbo(sc, i)) != 0)
1149 			return (error);
1150 		BGE_INC(sc->bge_jumbo, BGE_JUMBO_RX_RING_CNT);
1151 	}
1152 
1153 	bus_dmamap_sync(sc->bge_cdata.bge_rx_jumbo_ring_tag,
1154 	    sc->bge_cdata.bge_rx_jumbo_ring_map, BUS_DMASYNC_PREWRITE);
1155 
1156 	sc->bge_jumbo = 0;
1157 
1158 	/* Enable the jumbo receive producer ring. */
1159 	rcb = &sc->bge_ldata.bge_info.bge_jumbo_rx_rcb;
1160 	rcb->bge_maxlen_flags =
1161 	    BGE_RCB_MAXLEN_FLAGS(0, BGE_RCB_FLAG_USE_EXT_RX_BD);
1162 	CSR_WRITE_4(sc, BGE_RX_JUMBO_RCB_MAXLEN_FLAGS, rcb->bge_maxlen_flags);
1163 
1164 	bge_writembx(sc, BGE_MBX_RX_JUMBO_PROD_LO, BGE_JUMBO_RX_RING_CNT - 1);
1165 
1166 	return (0);
1167 }
1168 
1169 static void
1170 bge_free_rx_ring_jumbo(struct bge_softc *sc)
1171 {
1172 	int i;
1173 
1174 	for (i = 0; i < BGE_JUMBO_RX_RING_CNT; i++) {
1175 		if (sc->bge_cdata.bge_rx_jumbo_chain[i] != NULL) {
1176 			bus_dmamap_sync(sc->bge_cdata.bge_mtag_jumbo,
1177 			    sc->bge_cdata.bge_rx_jumbo_dmamap[i],
1178 			    BUS_DMASYNC_POSTREAD);
1179 			bus_dmamap_unload(sc->bge_cdata.bge_mtag_jumbo,
1180 			    sc->bge_cdata.bge_rx_jumbo_dmamap[i]);
1181 			m_freem(sc->bge_cdata.bge_rx_jumbo_chain[i]);
1182 			sc->bge_cdata.bge_rx_jumbo_chain[i] = NULL;
1183 		}
1184 		bzero((char *)&sc->bge_ldata.bge_rx_jumbo_ring[i],
1185 		    sizeof(struct bge_extrx_bd));
1186 	}
1187 }
1188 
1189 static void
1190 bge_free_tx_ring(struct bge_softc *sc)
1191 {
1192 	int i;
1193 
1194 	if (sc->bge_ldata.bge_tx_ring == NULL)
1195 		return;
1196 
1197 	for (i = 0; i < BGE_TX_RING_CNT; i++) {
1198 		if (sc->bge_cdata.bge_tx_chain[i] != NULL) {
1199 			bus_dmamap_sync(sc->bge_cdata.bge_tx_mtag,
1200 			    sc->bge_cdata.bge_tx_dmamap[i],
1201 			    BUS_DMASYNC_POSTWRITE);
1202 			bus_dmamap_unload(sc->bge_cdata.bge_tx_mtag,
1203 			    sc->bge_cdata.bge_tx_dmamap[i]);
1204 			m_freem(sc->bge_cdata.bge_tx_chain[i]);
1205 			sc->bge_cdata.bge_tx_chain[i] = NULL;
1206 		}
1207 		bzero((char *)&sc->bge_ldata.bge_tx_ring[i],
1208 		    sizeof(struct bge_tx_bd));
1209 	}
1210 }
1211 
1212 static int
1213 bge_init_tx_ring(struct bge_softc *sc)
1214 {
1215 	sc->bge_txcnt = 0;
1216 	sc->bge_tx_saved_considx = 0;
1217 
1218 	bzero(sc->bge_ldata.bge_tx_ring, BGE_TX_RING_SZ);
1219 	bus_dmamap_sync(sc->bge_cdata.bge_tx_ring_tag,
1220 	    sc->bge_cdata.bge_tx_ring_map, BUS_DMASYNC_PREWRITE);
1221 
1222 	/* Initialize transmit producer index for host-memory send ring. */
1223 	sc->bge_tx_prodidx = 0;
1224 	bge_writembx(sc, BGE_MBX_TX_HOST_PROD0_LO, sc->bge_tx_prodidx);
1225 
1226 	/* 5700 b2 errata */
1227 	if (sc->bge_chiprev == BGE_CHIPREV_5700_BX)
1228 		bge_writembx(sc, BGE_MBX_TX_HOST_PROD0_LO, sc->bge_tx_prodidx);
1229 
1230 	/* NIC-memory send ring not used; initialize to zero. */
1231 	bge_writembx(sc, BGE_MBX_TX_NIC_PROD0_LO, 0);
1232 	/* 5700 b2 errata */
1233 	if (sc->bge_chiprev == BGE_CHIPREV_5700_BX)
1234 		bge_writembx(sc, BGE_MBX_TX_NIC_PROD0_LO, 0);
1235 
1236 	return (0);
1237 }
1238 
1239 static void
1240 bge_setpromisc(struct bge_softc *sc)
1241 {
1242 	struct ifnet *ifp;
1243 
1244 	BGE_LOCK_ASSERT(sc);
1245 
1246 	ifp = sc->bge_ifp;
1247 
1248 	/* Enable or disable promiscuous mode as needed. */
1249 	if (ifp->if_flags & IFF_PROMISC)
1250 		BGE_SETBIT(sc, BGE_RX_MODE, BGE_RXMODE_RX_PROMISC);
1251 	else
1252 		BGE_CLRBIT(sc, BGE_RX_MODE, BGE_RXMODE_RX_PROMISC);
1253 }
1254 
1255 static void
1256 bge_setmulti(struct bge_softc *sc)
1257 {
1258 	struct ifnet *ifp;
1259 	struct ifmultiaddr *ifma;
1260 	uint32_t hashes[4] = { 0, 0, 0, 0 };
1261 	int h, i;
1262 
1263 	BGE_LOCK_ASSERT(sc);
1264 
1265 	ifp = sc->bge_ifp;
1266 
1267 	if (ifp->if_flags & IFF_ALLMULTI || ifp->if_flags & IFF_PROMISC) {
1268 		for (i = 0; i < 4; i++)
1269 			CSR_WRITE_4(sc, BGE_MAR0 + (i * 4), 0xFFFFFFFF);
1270 		return;
1271 	}
1272 
1273 	/* First, zot all the existing filters. */
1274 	for (i = 0; i < 4; i++)
1275 		CSR_WRITE_4(sc, BGE_MAR0 + (i * 4), 0);
1276 
1277 	/* Now program new ones. */
1278 	if_maddr_rlock(ifp);
1279 	TAILQ_FOREACH(ifma, &ifp->if_multiaddrs, ifma_link) {
1280 		if (ifma->ifma_addr->sa_family != AF_LINK)
1281 			continue;
1282 		h = ether_crc32_le(LLADDR((struct sockaddr_dl *)
1283 		    ifma->ifma_addr), ETHER_ADDR_LEN) & 0x7F;
1284 		hashes[(h & 0x60) >> 5] |= 1 << (h & 0x1F);
1285 	}
1286 	if_maddr_runlock(ifp);
1287 
1288 	for (i = 0; i < 4; i++)
1289 		CSR_WRITE_4(sc, BGE_MAR0 + (i * 4), hashes[i]);
1290 }
1291 
1292 static void
1293 bge_setvlan(struct bge_softc *sc)
1294 {
1295 	struct ifnet *ifp;
1296 
1297 	BGE_LOCK_ASSERT(sc);
1298 
1299 	ifp = sc->bge_ifp;
1300 
1301 	/* Enable or disable VLAN tag stripping as needed. */
1302 	if (ifp->if_capenable & IFCAP_VLAN_HWTAGGING)
1303 		BGE_CLRBIT(sc, BGE_RX_MODE, BGE_RXMODE_RX_KEEP_VLAN_DIAG);
1304 	else
1305 		BGE_SETBIT(sc, BGE_RX_MODE, BGE_RXMODE_RX_KEEP_VLAN_DIAG);
1306 }
1307 
1308 static void
1309 bge_sig_pre_reset(struct bge_softc *sc, int type)
1310 {
1311 
1312 	/*
1313 	 * Some chips don't like this so only do this if ASF is enabled
1314 	 */
1315 	if (sc->bge_asf_mode)
1316 		bge_writemem_ind(sc, BGE_SRAM_FW_MB, BGE_SRAM_FW_MB_MAGIC);
1317 
1318 	if (sc->bge_asf_mode & ASF_NEW_HANDSHAKE) {
1319 		switch (type) {
1320 		case BGE_RESET_START:
1321 			bge_writemem_ind(sc, BGE_SRAM_FW_DRV_STATE_MB,
1322 			    BGE_FW_DRV_STATE_START);
1323 			break;
1324 		case BGE_RESET_STOP:
1325 			bge_writemem_ind(sc, BGE_SRAM_FW_DRV_STATE_MB,
1326 			    BGE_FW_DRV_STATE_UNLOAD);
1327 			break;
1328 		}
1329 	}
1330 }
1331 
1332 static void
1333 bge_sig_post_reset(struct bge_softc *sc, int type)
1334 {
1335 
1336 	if (sc->bge_asf_mode & ASF_NEW_HANDSHAKE) {
1337 		switch (type) {
1338 		case BGE_RESET_START:
1339 			bge_writemem_ind(sc, BGE_SRAM_FW_DRV_STATE_MB,
1340 			    BGE_FW_DRV_STATE_START_DONE);
1341 			/* START DONE */
1342 			break;
1343 		case BGE_RESET_STOP:
1344 			bge_writemem_ind(sc, BGE_SRAM_FW_DRV_STATE_MB,
1345 			    BGE_FW_DRV_STATE_UNLOAD_DONE);
1346 			break;
1347 		}
1348 	}
1349 }
1350 
1351 static void
1352 bge_sig_legacy(struct bge_softc *sc, int type)
1353 {
1354 
1355 	if (sc->bge_asf_mode) {
1356 		switch (type) {
1357 		case BGE_RESET_START:
1358 			bge_writemem_ind(sc, BGE_SRAM_FW_DRV_STATE_MB,
1359 			    BGE_FW_DRV_STATE_START);
1360 			break;
1361 		case BGE_RESET_STOP:
1362 			bge_writemem_ind(sc, BGE_SRAM_FW_DRV_STATE_MB,
1363 			    BGE_FW_DRV_STATE_UNLOAD);
1364 			break;
1365 		}
1366 	}
1367 }
1368 
1369 static void
1370 bge_stop_fw(struct bge_softc *sc)
1371 {
1372 	int i;
1373 
1374 	if (sc->bge_asf_mode) {
1375 		bge_writemem_ind(sc, BGE_SRAM_FW_CMD_MB, BGE_FW_CMD_PAUSE);
1376 		CSR_WRITE_4(sc, BGE_RX_CPU_EVENT,
1377 		    CSR_READ_4(sc, BGE_RX_CPU_EVENT) | BGE_RX_CPU_DRV_EVENT);
1378 
1379 		for (i = 0; i < 100; i++ ) {
1380 			if (!(CSR_READ_4(sc, BGE_RX_CPU_EVENT) &
1381 			    BGE_RX_CPU_DRV_EVENT))
1382 				break;
1383 			DELAY(10);
1384 		}
1385 	}
1386 }
1387 
1388 static uint32_t
1389 bge_dma_swap_options(struct bge_softc *sc)
1390 {
1391 	uint32_t dma_options;
1392 
1393 	dma_options = BGE_MODECTL_WORDSWAP_NONFRAME |
1394 	    BGE_MODECTL_BYTESWAP_DATA | BGE_MODECTL_WORDSWAP_DATA;
1395 #if BYTE_ORDER == BIG_ENDIAN
1396 	dma_options |= BGE_MODECTL_BYTESWAP_NONFRAME;
1397 #endif
1398 	if ((sc)->bge_asicrev == BGE_ASICREV_BCM5720)
1399 		dma_options |= BGE_MODECTL_BYTESWAP_B2HRX_DATA |
1400 		    BGE_MODECTL_WORDSWAP_B2HRX_DATA | BGE_MODECTL_B2HRX_ENABLE |
1401 		    BGE_MODECTL_HTX2B_ENABLE;
1402 
1403 	return (dma_options);
1404 }
1405 
1406 /*
1407  * Do endian, PCI and DMA initialization.
1408  */
1409 static int
1410 bge_chipinit(struct bge_softc *sc)
1411 {
1412 	uint32_t dma_rw_ctl, misc_ctl, mode_ctl;
1413 	uint16_t val;
1414 	int i;
1415 
1416 	/* Set endianness before we access any non-PCI registers. */
1417 	misc_ctl = BGE_INIT;
1418 	if (sc->bge_flags & BGE_FLAG_TAGGED_STATUS)
1419 		misc_ctl |= BGE_PCIMISCCTL_TAGGED_STATUS;
1420 	pci_write_config(sc->bge_dev, BGE_PCI_MISC_CTL, misc_ctl, 4);
1421 
1422 	/* Clear the MAC control register */
1423 	CSR_WRITE_4(sc, BGE_MAC_MODE, 0);
1424 
1425 	/*
1426 	 * Clear the MAC statistics block in the NIC's
1427 	 * internal memory.
1428 	 */
1429 	for (i = BGE_STATS_BLOCK;
1430 	    i < BGE_STATS_BLOCK_END + 1; i += sizeof(uint32_t))
1431 		BGE_MEMWIN_WRITE(sc, i, 0);
1432 
1433 	for (i = BGE_STATUS_BLOCK;
1434 	    i < BGE_STATUS_BLOCK_END + 1; i += sizeof(uint32_t))
1435 		BGE_MEMWIN_WRITE(sc, i, 0);
1436 
1437 	if (sc->bge_chiprev == BGE_CHIPREV_5704_BX) {
1438 		/*
1439 		 *  Fix data corruption caused by non-qword write with WB.
1440 		 *  Fix master abort in PCI mode.
1441 		 *  Fix PCI latency timer.
1442 		 */
1443 		val = pci_read_config(sc->bge_dev, BGE_PCI_MSI_DATA + 2, 2);
1444 		val |= (1 << 10) | (1 << 12) | (1 << 13);
1445 		pci_write_config(sc->bge_dev, BGE_PCI_MSI_DATA + 2, val, 2);
1446 	}
1447 
1448 	/*
1449 	 * Set up the PCI DMA control register.
1450 	 */
1451 	dma_rw_ctl = BGE_PCIDMARWCTL_RD_CMD_SHIFT(6) |
1452 	    BGE_PCIDMARWCTL_WR_CMD_SHIFT(7);
1453 	if (sc->bge_flags & BGE_FLAG_PCIE) {
1454 		/* Read watermark not used, 128 bytes for write. */
1455 		dma_rw_ctl |= BGE_PCIDMARWCTL_WR_WAT_SHIFT(3);
1456 	} else if (sc->bge_flags & BGE_FLAG_PCIX) {
1457 		if (BGE_IS_5714_FAMILY(sc)) {
1458 			/* 256 bytes for read and write. */
1459 			dma_rw_ctl |= BGE_PCIDMARWCTL_RD_WAT_SHIFT(2) |
1460 			    BGE_PCIDMARWCTL_WR_WAT_SHIFT(2);
1461 			dma_rw_ctl |= (sc->bge_asicrev == BGE_ASICREV_BCM5780) ?
1462 			    BGE_PCIDMARWCTL_ONEDMA_ATONCE_GLOBAL :
1463 			    BGE_PCIDMARWCTL_ONEDMA_ATONCE_LOCAL;
1464 		} else if (sc->bge_asicrev == BGE_ASICREV_BCM5703) {
1465 			/*
1466 			 * In the BCM5703, the DMA read watermark should
1467 			 * be set to less than or equal to the maximum
1468 			 * memory read byte count of the PCI-X command
1469 			 * register.
1470 			 */
1471 			dma_rw_ctl |= BGE_PCIDMARWCTL_RD_WAT_SHIFT(4) |
1472 			    BGE_PCIDMARWCTL_WR_WAT_SHIFT(3);
1473 		} else if (sc->bge_asicrev == BGE_ASICREV_BCM5704) {
1474 			/* 1536 bytes for read, 384 bytes for write. */
1475 			dma_rw_ctl |= BGE_PCIDMARWCTL_RD_WAT_SHIFT(7) |
1476 			    BGE_PCIDMARWCTL_WR_WAT_SHIFT(3);
1477 		} else {
1478 			/* 384 bytes for read and write. */
1479 			dma_rw_ctl |= BGE_PCIDMARWCTL_RD_WAT_SHIFT(3) |
1480 			    BGE_PCIDMARWCTL_WR_WAT_SHIFT(3) |
1481 			    0x0F;
1482 		}
1483 		if (sc->bge_asicrev == BGE_ASICREV_BCM5703 ||
1484 		    sc->bge_asicrev == BGE_ASICREV_BCM5704) {
1485 			uint32_t tmp;
1486 
1487 			/* Set ONE_DMA_AT_ONCE for hardware workaround. */
1488 			tmp = CSR_READ_4(sc, BGE_PCI_CLKCTL) & 0x1F;
1489 			if (tmp == 6 || tmp == 7)
1490 				dma_rw_ctl |=
1491 				    BGE_PCIDMARWCTL_ONEDMA_ATONCE_GLOBAL;
1492 
1493 			/* Set PCI-X DMA write workaround. */
1494 			dma_rw_ctl |= BGE_PCIDMARWCTL_ASRT_ALL_BE;
1495 		}
1496 	} else {
1497 		/* Conventional PCI bus: 256 bytes for read and write. */
1498 		dma_rw_ctl |= BGE_PCIDMARWCTL_RD_WAT_SHIFT(7) |
1499 		    BGE_PCIDMARWCTL_WR_WAT_SHIFT(7);
1500 
1501 		if (sc->bge_asicrev != BGE_ASICREV_BCM5705 &&
1502 		    sc->bge_asicrev != BGE_ASICREV_BCM5750)
1503 			dma_rw_ctl |= 0x0F;
1504 	}
1505 	if (sc->bge_asicrev == BGE_ASICREV_BCM5700 ||
1506 	    sc->bge_asicrev == BGE_ASICREV_BCM5701)
1507 		dma_rw_ctl |= BGE_PCIDMARWCTL_USE_MRM |
1508 		    BGE_PCIDMARWCTL_ASRT_ALL_BE;
1509 	if (sc->bge_asicrev == BGE_ASICREV_BCM5703 ||
1510 	    sc->bge_asicrev == BGE_ASICREV_BCM5704)
1511 		dma_rw_ctl &= ~BGE_PCIDMARWCTL_MINDMA;
1512 	if (BGE_IS_5717_PLUS(sc)) {
1513 		dma_rw_ctl &= ~BGE_PCIDMARWCTL_DIS_CACHE_ALIGNMENT;
1514 		if (sc->bge_chipid == BGE_CHIPID_BCM57765_A0)
1515 			dma_rw_ctl &= ~BGE_PCIDMARWCTL_CRDRDR_RDMA_MRRS_MSK;
1516 		/*
1517 		 * Enable HW workaround for controllers that misinterpret
1518 		 * a status tag update and leave interrupts permanently
1519 		 * disabled.
1520 		 */
1521 		if (sc->bge_asicrev != BGE_ASICREV_BCM5717 &&
1522 		    sc->bge_asicrev != BGE_ASICREV_BCM57765)
1523 			dma_rw_ctl |= BGE_PCIDMARWCTL_TAGGED_STATUS_WA;
1524 	}
1525 	pci_write_config(sc->bge_dev, BGE_PCI_DMA_RW_CTL, dma_rw_ctl, 4);
1526 
1527 	/*
1528 	 * Set up general mode register.
1529 	 */
1530 	mode_ctl = bge_dma_swap_options(sc) | BGE_MODECTL_MAC_ATTN_INTR |
1531 	    BGE_MODECTL_HOST_SEND_BDS | BGE_MODECTL_TX_NO_PHDR_CSUM;
1532 
1533 	/*
1534 	 * BCM5701 B5 have a bug causing data corruption when using
1535 	 * 64-bit DMA reads, which can be terminated early and then
1536 	 * completed later as 32-bit accesses, in combination with
1537 	 * certain bridges.
1538 	 */
1539 	if (sc->bge_asicrev == BGE_ASICREV_BCM5701 &&
1540 	    sc->bge_chipid == BGE_CHIPID_BCM5701_B5)
1541 		mode_ctl |= BGE_MODECTL_FORCE_PCI32;
1542 
1543 	/*
1544 	 * Tell the firmware the driver is running
1545 	 */
1546 	if (sc->bge_asf_mode & ASF_STACKUP)
1547 		mode_ctl |= BGE_MODECTL_STACKUP;
1548 
1549 	CSR_WRITE_4(sc, BGE_MODE_CTL, mode_ctl);
1550 
1551 	/*
1552 	 * Disable memory write invalidate.  Apparently it is not supported
1553 	 * properly by these devices.  Also ensure that INTx isn't disabled,
1554 	 * as these chips need it even when using MSI.
1555 	 */
1556 	PCI_CLRBIT(sc->bge_dev, BGE_PCI_CMD,
1557 	    PCIM_CMD_INTxDIS | PCIM_CMD_MWIEN, 4);
1558 
1559 	/* Set the timer prescaler (always 66Mhz) */
1560 	CSR_WRITE_4(sc, BGE_MISC_CFG, BGE_32BITTIME_66MHZ);
1561 
1562 	/* XXX: The Linux tg3 driver does this at the start of brgphy_reset. */
1563 	if (sc->bge_asicrev == BGE_ASICREV_BCM5906) {
1564 		DELAY(40);	/* XXX */
1565 
1566 		/* Put PHY into ready state */
1567 		BGE_CLRBIT(sc, BGE_MISC_CFG, BGE_MISCCFG_EPHY_IDDQ);
1568 		CSR_READ_4(sc, BGE_MISC_CFG); /* Flush */
1569 		DELAY(40);
1570 	}
1571 
1572 	return (0);
1573 }
1574 
1575 static int
1576 bge_blockinit(struct bge_softc *sc)
1577 {
1578 	struct bge_rcb *rcb;
1579 	bus_size_t vrcb;
1580 	bge_hostaddr taddr;
1581 	uint32_t dmactl, val;
1582 	int i, limit;
1583 
1584 	/*
1585 	 * Initialize the memory window pointer register so that
1586 	 * we can access the first 32K of internal NIC RAM. This will
1587 	 * allow us to set up the TX send ring RCBs and the RX return
1588 	 * ring RCBs, plus other things which live in NIC memory.
1589 	 */
1590 	CSR_WRITE_4(sc, BGE_PCI_MEMWIN_BASEADDR, 0);
1591 
1592 	/* Note: the BCM5704 has a smaller mbuf space than other chips. */
1593 
1594 	if (!(BGE_IS_5705_PLUS(sc))) {
1595 		/* Configure mbuf memory pool */
1596 		CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_BASEADDR, BGE_BUFFPOOL_1);
1597 		if (sc->bge_asicrev == BGE_ASICREV_BCM5704)
1598 			CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_LEN, 0x10000);
1599 		else
1600 			CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_LEN, 0x18000);
1601 
1602 		/* Configure DMA resource pool */
1603 		CSR_WRITE_4(sc, BGE_BMAN_DMA_DESCPOOL_BASEADDR,
1604 		    BGE_DMA_DESCRIPTORS);
1605 		CSR_WRITE_4(sc, BGE_BMAN_DMA_DESCPOOL_LEN, 0x2000);
1606 	}
1607 
1608 	/* Configure mbuf pool watermarks */
1609 	if (BGE_IS_5717_PLUS(sc)) {
1610 		CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_READDMA_LOWAT, 0x0);
1611 		if (sc->bge_ifp->if_mtu > ETHERMTU) {
1612 			CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_MACRX_LOWAT, 0x7e);
1613 			CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_HIWAT, 0xea);
1614 		} else {
1615 			CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_MACRX_LOWAT, 0x2a);
1616 			CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_HIWAT, 0xa0);
1617 		}
1618 	} else if (!BGE_IS_5705_PLUS(sc)) {
1619 		CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_READDMA_LOWAT, 0x50);
1620 		CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_MACRX_LOWAT, 0x20);
1621 		CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_HIWAT, 0x60);
1622 	} else if (sc->bge_asicrev == BGE_ASICREV_BCM5906) {
1623 		CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_READDMA_LOWAT, 0x0);
1624 		CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_MACRX_LOWAT, 0x04);
1625 		CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_HIWAT, 0x10);
1626 	} else {
1627 		CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_READDMA_LOWAT, 0x0);
1628 		CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_MACRX_LOWAT, 0x10);
1629 		CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_HIWAT, 0x60);
1630 	}
1631 
1632 	/* Configure DMA resource watermarks */
1633 	CSR_WRITE_4(sc, BGE_BMAN_DMA_DESCPOOL_LOWAT, 5);
1634 	CSR_WRITE_4(sc, BGE_BMAN_DMA_DESCPOOL_HIWAT, 10);
1635 
1636 	/* Enable buffer manager */
1637 	val = BGE_BMANMODE_ENABLE | BGE_BMANMODE_LOMBUF_ATTN;
1638 	/*
1639 	 * Change the arbitration algorithm of TXMBUF read request to
1640 	 * round-robin instead of priority based for BCM5719.  When
1641 	 * TXFIFO is almost empty, RDMA will hold its request until
1642 	 * TXFIFO is not almost empty.
1643 	 */
1644 	if (sc->bge_asicrev == BGE_ASICREV_BCM5719)
1645 		val |= BGE_BMANMODE_NO_TX_UNDERRUN;
1646 	CSR_WRITE_4(sc, BGE_BMAN_MODE, val);
1647 
1648 	/* Poll for buffer manager start indication */
1649 	for (i = 0; i < BGE_TIMEOUT; i++) {
1650 		DELAY(10);
1651 		if (CSR_READ_4(sc, BGE_BMAN_MODE) & BGE_BMANMODE_ENABLE)
1652 			break;
1653 	}
1654 
1655 	if (i == BGE_TIMEOUT) {
1656 		device_printf(sc->bge_dev, "buffer manager failed to start\n");
1657 		return (ENXIO);
1658 	}
1659 
1660 	/* Enable flow-through queues */
1661 	CSR_WRITE_4(sc, BGE_FTQ_RESET, 0xFFFFFFFF);
1662 	CSR_WRITE_4(sc, BGE_FTQ_RESET, 0);
1663 
1664 	/* Wait until queue initialization is complete */
1665 	for (i = 0; i < BGE_TIMEOUT; i++) {
1666 		DELAY(10);
1667 		if (CSR_READ_4(sc, BGE_FTQ_RESET) == 0)
1668 			break;
1669 	}
1670 
1671 	if (i == BGE_TIMEOUT) {
1672 		device_printf(sc->bge_dev, "flow-through queue init failed\n");
1673 		return (ENXIO);
1674 	}
1675 
1676 	/*
1677 	 * Summary of rings supported by the controller:
1678 	 *
1679 	 * Standard Receive Producer Ring
1680 	 * - This ring is used to feed receive buffers for "standard"
1681 	 *   sized frames (typically 1536 bytes) to the controller.
1682 	 *
1683 	 * Jumbo Receive Producer Ring
1684 	 * - This ring is used to feed receive buffers for jumbo sized
1685 	 *   frames (i.e. anything bigger than the "standard" frames)
1686 	 *   to the controller.
1687 	 *
1688 	 * Mini Receive Producer Ring
1689 	 * - This ring is used to feed receive buffers for "mini"
1690 	 *   sized frames to the controller.
1691 	 * - This feature required external memory for the controller
1692 	 *   but was never used in a production system.  Should always
1693 	 *   be disabled.
1694 	 *
1695 	 * Receive Return Ring
1696 	 * - After the controller has placed an incoming frame into a
1697 	 *   receive buffer that buffer is moved into a receive return
1698 	 *   ring.  The driver is then responsible to passing the
1699 	 *   buffer up to the stack.  Many versions of the controller
1700 	 *   support multiple RR rings.
1701 	 *
1702 	 * Send Ring
1703 	 * - This ring is used for outgoing frames.  Many versions of
1704 	 *   the controller support multiple send rings.
1705 	 */
1706 
1707 	/* Initialize the standard receive producer ring control block. */
1708 	rcb = &sc->bge_ldata.bge_info.bge_std_rx_rcb;
1709 	rcb->bge_hostaddr.bge_addr_lo =
1710 	    BGE_ADDR_LO(sc->bge_ldata.bge_rx_std_ring_paddr);
1711 	rcb->bge_hostaddr.bge_addr_hi =
1712 	    BGE_ADDR_HI(sc->bge_ldata.bge_rx_std_ring_paddr);
1713 	bus_dmamap_sync(sc->bge_cdata.bge_rx_std_ring_tag,
1714 	    sc->bge_cdata.bge_rx_std_ring_map, BUS_DMASYNC_PREREAD);
1715 	if (BGE_IS_5717_PLUS(sc)) {
1716 		/*
1717 		 * Bits 31-16: Programmable ring size (2048, 1024, 512, .., 32)
1718 		 * Bits 15-2 : Maximum RX frame size
1719 		 * Bit 1     : 1 = Ring Disabled, 0 = Ring ENabled
1720 		 * Bit 0     : Reserved
1721 		 */
1722 		rcb->bge_maxlen_flags =
1723 		    BGE_RCB_MAXLEN_FLAGS(512, BGE_MAX_FRAMELEN << 2);
1724 	} else if (BGE_IS_5705_PLUS(sc)) {
1725 		/*
1726 		 * Bits 31-16: Programmable ring size (512, 256, 128, 64, 32)
1727 		 * Bits 15-2 : Reserved (should be 0)
1728 		 * Bit 1     : 1 = Ring Disabled, 0 = Ring Enabled
1729 		 * Bit 0     : Reserved
1730 		 */
1731 		rcb->bge_maxlen_flags = BGE_RCB_MAXLEN_FLAGS(512, 0);
1732 	} else {
1733 		/*
1734 		 * Ring size is always XXX entries
1735 		 * Bits 31-16: Maximum RX frame size
1736 		 * Bits 15-2 : Reserved (should be 0)
1737 		 * Bit 1     : 1 = Ring Disabled, 0 = Ring Enabled
1738 		 * Bit 0     : Reserved
1739 		 */
1740 		rcb->bge_maxlen_flags =
1741 		    BGE_RCB_MAXLEN_FLAGS(BGE_MAX_FRAMELEN, 0);
1742 	}
1743 	if (sc->bge_asicrev == BGE_ASICREV_BCM5717 ||
1744 	    sc->bge_asicrev == BGE_ASICREV_BCM5719 ||
1745 	    sc->bge_asicrev == BGE_ASICREV_BCM5720)
1746 		rcb->bge_nicaddr = BGE_STD_RX_RINGS_5717;
1747 	else
1748 		rcb->bge_nicaddr = BGE_STD_RX_RINGS;
1749 	/* Write the standard receive producer ring control block. */
1750 	CSR_WRITE_4(sc, BGE_RX_STD_RCB_HADDR_HI, rcb->bge_hostaddr.bge_addr_hi);
1751 	CSR_WRITE_4(sc, BGE_RX_STD_RCB_HADDR_LO, rcb->bge_hostaddr.bge_addr_lo);
1752 	CSR_WRITE_4(sc, BGE_RX_STD_RCB_MAXLEN_FLAGS, rcb->bge_maxlen_flags);
1753 	CSR_WRITE_4(sc, BGE_RX_STD_RCB_NICADDR, rcb->bge_nicaddr);
1754 
1755 	/* Reset the standard receive producer ring producer index. */
1756 	bge_writembx(sc, BGE_MBX_RX_STD_PROD_LO, 0);
1757 
1758 	/*
1759 	 * Initialize the jumbo RX producer ring control
1760 	 * block.  We set the 'ring disabled' bit in the
1761 	 * flags field until we're actually ready to start
1762 	 * using this ring (i.e. once we set the MTU
1763 	 * high enough to require it).
1764 	 */
1765 	if (BGE_IS_JUMBO_CAPABLE(sc)) {
1766 		rcb = &sc->bge_ldata.bge_info.bge_jumbo_rx_rcb;
1767 		/* Get the jumbo receive producer ring RCB parameters. */
1768 		rcb->bge_hostaddr.bge_addr_lo =
1769 		    BGE_ADDR_LO(sc->bge_ldata.bge_rx_jumbo_ring_paddr);
1770 		rcb->bge_hostaddr.bge_addr_hi =
1771 		    BGE_ADDR_HI(sc->bge_ldata.bge_rx_jumbo_ring_paddr);
1772 		bus_dmamap_sync(sc->bge_cdata.bge_rx_jumbo_ring_tag,
1773 		    sc->bge_cdata.bge_rx_jumbo_ring_map,
1774 		    BUS_DMASYNC_PREREAD);
1775 		rcb->bge_maxlen_flags = BGE_RCB_MAXLEN_FLAGS(0,
1776 		    BGE_RCB_FLAG_USE_EXT_RX_BD | BGE_RCB_FLAG_RING_DISABLED);
1777 		if (sc->bge_asicrev == BGE_ASICREV_BCM5717 ||
1778 		    sc->bge_asicrev == BGE_ASICREV_BCM5719 ||
1779 		    sc->bge_asicrev == BGE_ASICREV_BCM5720)
1780 			rcb->bge_nicaddr = BGE_JUMBO_RX_RINGS_5717;
1781 		else
1782 			rcb->bge_nicaddr = BGE_JUMBO_RX_RINGS;
1783 		CSR_WRITE_4(sc, BGE_RX_JUMBO_RCB_HADDR_HI,
1784 		    rcb->bge_hostaddr.bge_addr_hi);
1785 		CSR_WRITE_4(sc, BGE_RX_JUMBO_RCB_HADDR_LO,
1786 		    rcb->bge_hostaddr.bge_addr_lo);
1787 		/* Program the jumbo receive producer ring RCB parameters. */
1788 		CSR_WRITE_4(sc, BGE_RX_JUMBO_RCB_MAXLEN_FLAGS,
1789 		    rcb->bge_maxlen_flags);
1790 		CSR_WRITE_4(sc, BGE_RX_JUMBO_RCB_NICADDR, rcb->bge_nicaddr);
1791 		/* Reset the jumbo receive producer ring producer index. */
1792 		bge_writembx(sc, BGE_MBX_RX_JUMBO_PROD_LO, 0);
1793 	}
1794 
1795 	/* Disable the mini receive producer ring RCB. */
1796 	if (BGE_IS_5700_FAMILY(sc)) {
1797 		rcb = &sc->bge_ldata.bge_info.bge_mini_rx_rcb;
1798 		rcb->bge_maxlen_flags =
1799 		    BGE_RCB_MAXLEN_FLAGS(0, BGE_RCB_FLAG_RING_DISABLED);
1800 		CSR_WRITE_4(sc, BGE_RX_MINI_RCB_MAXLEN_FLAGS,
1801 		    rcb->bge_maxlen_flags);
1802 		/* Reset the mini receive producer ring producer index. */
1803 		bge_writembx(sc, BGE_MBX_RX_MINI_PROD_LO, 0);
1804 	}
1805 
1806 	/* Choose de-pipeline mode for BCM5906 A0, A1 and A2. */
1807 	if (sc->bge_asicrev == BGE_ASICREV_BCM5906) {
1808 		if (sc->bge_chipid == BGE_CHIPID_BCM5906_A0 ||
1809 		    sc->bge_chipid == BGE_CHIPID_BCM5906_A1 ||
1810 		    sc->bge_chipid == BGE_CHIPID_BCM5906_A2)
1811 			CSR_WRITE_4(sc, BGE_ISO_PKT_TX,
1812 			    (CSR_READ_4(sc, BGE_ISO_PKT_TX) & ~3) | 2);
1813 	}
1814 	/*
1815 	 * The BD ring replenish thresholds control how often the
1816 	 * hardware fetches new BD's from the producer rings in host
1817 	 * memory.  Setting the value too low on a busy system can
1818 	 * starve the hardware and recue the throughpout.
1819 	 *
1820 	 * Set the BD ring replentish thresholds. The recommended
1821 	 * values are 1/8th the number of descriptors allocated to
1822 	 * each ring.
1823 	 * XXX The 5754 requires a lower threshold, so it might be a
1824 	 * requirement of all 575x family chips.  The Linux driver sets
1825 	 * the lower threshold for all 5705 family chips as well, but there
1826 	 * are reports that it might not need to be so strict.
1827 	 *
1828 	 * XXX Linux does some extra fiddling here for the 5906 parts as
1829 	 * well.
1830 	 */
1831 	if (BGE_IS_5705_PLUS(sc))
1832 		val = 8;
1833 	else
1834 		val = BGE_STD_RX_RING_CNT / 8;
1835 	CSR_WRITE_4(sc, BGE_RBDI_STD_REPL_THRESH, val);
1836 	if (BGE_IS_JUMBO_CAPABLE(sc))
1837 		CSR_WRITE_4(sc, BGE_RBDI_JUMBO_REPL_THRESH,
1838 		    BGE_JUMBO_RX_RING_CNT/8);
1839 	if (BGE_IS_5717_PLUS(sc)) {
1840 		CSR_WRITE_4(sc, BGE_STD_REPLENISH_LWM, 32);
1841 		CSR_WRITE_4(sc, BGE_JMB_REPLENISH_LWM, 16);
1842 	}
1843 
1844 	/*
1845 	 * Disable all send rings by setting the 'ring disabled' bit
1846 	 * in the flags field of all the TX send ring control blocks,
1847 	 * located in NIC memory.
1848 	 */
1849 	if (!BGE_IS_5705_PLUS(sc))
1850 		/* 5700 to 5704 had 16 send rings. */
1851 		limit = BGE_TX_RINGS_EXTSSRAM_MAX;
1852 	else
1853 		limit = 1;
1854 	vrcb = BGE_MEMWIN_START + BGE_SEND_RING_RCB;
1855 	for (i = 0; i < limit; i++) {
1856 		RCB_WRITE_4(sc, vrcb, bge_maxlen_flags,
1857 		    BGE_RCB_MAXLEN_FLAGS(0, BGE_RCB_FLAG_RING_DISABLED));
1858 		RCB_WRITE_4(sc, vrcb, bge_nicaddr, 0);
1859 		vrcb += sizeof(struct bge_rcb);
1860 	}
1861 
1862 	/* Configure send ring RCB 0 (we use only the first ring) */
1863 	vrcb = BGE_MEMWIN_START + BGE_SEND_RING_RCB;
1864 	BGE_HOSTADDR(taddr, sc->bge_ldata.bge_tx_ring_paddr);
1865 	RCB_WRITE_4(sc, vrcb, bge_hostaddr.bge_addr_hi, taddr.bge_addr_hi);
1866 	RCB_WRITE_4(sc, vrcb, bge_hostaddr.bge_addr_lo, taddr.bge_addr_lo);
1867 	if (sc->bge_asicrev == BGE_ASICREV_BCM5717 ||
1868 	    sc->bge_asicrev == BGE_ASICREV_BCM5719 ||
1869 	    sc->bge_asicrev == BGE_ASICREV_BCM5720)
1870 		RCB_WRITE_4(sc, vrcb, bge_nicaddr, BGE_SEND_RING_5717);
1871 	else
1872 		RCB_WRITE_4(sc, vrcb, bge_nicaddr,
1873 		    BGE_NIC_TXRING_ADDR(0, BGE_TX_RING_CNT));
1874 	RCB_WRITE_4(sc, vrcb, bge_maxlen_flags,
1875 	    BGE_RCB_MAXLEN_FLAGS(BGE_TX_RING_CNT, 0));
1876 
1877 	/*
1878 	 * Disable all receive return rings by setting the
1879 	 * 'ring diabled' bit in the flags field of all the receive
1880 	 * return ring control blocks, located in NIC memory.
1881 	 */
1882 	if (sc->bge_asicrev == BGE_ASICREV_BCM5717 ||
1883 	    sc->bge_asicrev == BGE_ASICREV_BCM5719 ||
1884 	    sc->bge_asicrev == BGE_ASICREV_BCM5720) {
1885 		/* Should be 17, use 16 until we get an SRAM map. */
1886 		limit = 16;
1887 	} else if (!BGE_IS_5705_PLUS(sc))
1888 		limit = BGE_RX_RINGS_MAX;
1889 	else if (sc->bge_asicrev == BGE_ASICREV_BCM5755 ||
1890 	    sc->bge_asicrev == BGE_ASICREV_BCM57765)
1891 		limit = 4;
1892 	else
1893 		limit = 1;
1894 	/* Disable all receive return rings. */
1895 	vrcb = BGE_MEMWIN_START + BGE_RX_RETURN_RING_RCB;
1896 	for (i = 0; i < limit; i++) {
1897 		RCB_WRITE_4(sc, vrcb, bge_hostaddr.bge_addr_hi, 0);
1898 		RCB_WRITE_4(sc, vrcb, bge_hostaddr.bge_addr_lo, 0);
1899 		RCB_WRITE_4(sc, vrcb, bge_maxlen_flags,
1900 		    BGE_RCB_FLAG_RING_DISABLED);
1901 		RCB_WRITE_4(sc, vrcb, bge_nicaddr, 0);
1902 		bge_writembx(sc, BGE_MBX_RX_CONS0_LO +
1903 		    (i * (sizeof(uint64_t))), 0);
1904 		vrcb += sizeof(struct bge_rcb);
1905 	}
1906 
1907 	/*
1908 	 * Set up receive return ring 0.  Note that the NIC address
1909 	 * for RX return rings is 0x0.  The return rings live entirely
1910 	 * within the host, so the nicaddr field in the RCB isn't used.
1911 	 */
1912 	vrcb = BGE_MEMWIN_START + BGE_RX_RETURN_RING_RCB;
1913 	BGE_HOSTADDR(taddr, sc->bge_ldata.bge_rx_return_ring_paddr);
1914 	RCB_WRITE_4(sc, vrcb, bge_hostaddr.bge_addr_hi, taddr.bge_addr_hi);
1915 	RCB_WRITE_4(sc, vrcb, bge_hostaddr.bge_addr_lo, taddr.bge_addr_lo);
1916 	RCB_WRITE_4(sc, vrcb, bge_nicaddr, 0);
1917 	RCB_WRITE_4(sc, vrcb, bge_maxlen_flags,
1918 	    BGE_RCB_MAXLEN_FLAGS(sc->bge_return_ring_cnt, 0));
1919 
1920 	/* Set random backoff seed for TX */
1921 	CSR_WRITE_4(sc, BGE_TX_RANDOM_BACKOFF,
1922 	    IF_LLADDR(sc->bge_ifp)[0] + IF_LLADDR(sc->bge_ifp)[1] +
1923 	    IF_LLADDR(sc->bge_ifp)[2] + IF_LLADDR(sc->bge_ifp)[3] +
1924 	    IF_LLADDR(sc->bge_ifp)[4] + IF_LLADDR(sc->bge_ifp)[5] +
1925 	    BGE_TX_BACKOFF_SEED_MASK);
1926 
1927 	/* Set inter-packet gap */
1928 	val = 0x2620;
1929 	if (sc->bge_asicrev == BGE_ASICREV_BCM5720)
1930 		val |= CSR_READ_4(sc, BGE_TX_LENGTHS) &
1931 		    (BGE_TXLEN_JMB_FRM_LEN_MSK | BGE_TXLEN_CNT_DN_VAL_MSK);
1932 	CSR_WRITE_4(sc, BGE_TX_LENGTHS, val);
1933 
1934 	/*
1935 	 * Specify which ring to use for packets that don't match
1936 	 * any RX rules.
1937 	 */
1938 	CSR_WRITE_4(sc, BGE_RX_RULES_CFG, 0x08);
1939 
1940 	/*
1941 	 * Configure number of RX lists. One interrupt distribution
1942 	 * list, sixteen active lists, one bad frames class.
1943 	 */
1944 	CSR_WRITE_4(sc, BGE_RXLP_CFG, 0x181);
1945 
1946 	/* Inialize RX list placement stats mask. */
1947 	CSR_WRITE_4(sc, BGE_RXLP_STATS_ENABLE_MASK, 0x007FFFFF);
1948 	CSR_WRITE_4(sc, BGE_RXLP_STATS_CTL, 0x1);
1949 
1950 	/* Disable host coalescing until we get it set up */
1951 	CSR_WRITE_4(sc, BGE_HCC_MODE, 0x00000000);
1952 
1953 	/* Poll to make sure it's shut down. */
1954 	for (i = 0; i < BGE_TIMEOUT; i++) {
1955 		DELAY(10);
1956 		if (!(CSR_READ_4(sc, BGE_HCC_MODE) & BGE_HCCMODE_ENABLE))
1957 			break;
1958 	}
1959 
1960 	if (i == BGE_TIMEOUT) {
1961 		device_printf(sc->bge_dev,
1962 		    "host coalescing engine failed to idle\n");
1963 		return (ENXIO);
1964 	}
1965 
1966 	/* Set up host coalescing defaults */
1967 	CSR_WRITE_4(sc, BGE_HCC_RX_COAL_TICKS, sc->bge_rx_coal_ticks);
1968 	CSR_WRITE_4(sc, BGE_HCC_TX_COAL_TICKS, sc->bge_tx_coal_ticks);
1969 	CSR_WRITE_4(sc, BGE_HCC_RX_MAX_COAL_BDS, sc->bge_rx_max_coal_bds);
1970 	CSR_WRITE_4(sc, BGE_HCC_TX_MAX_COAL_BDS, sc->bge_tx_max_coal_bds);
1971 	if (!(BGE_IS_5705_PLUS(sc))) {
1972 		CSR_WRITE_4(sc, BGE_HCC_RX_COAL_TICKS_INT, 0);
1973 		CSR_WRITE_4(sc, BGE_HCC_TX_COAL_TICKS_INT, 0);
1974 	}
1975 	CSR_WRITE_4(sc, BGE_HCC_RX_MAX_COAL_BDS_INT, 1);
1976 	CSR_WRITE_4(sc, BGE_HCC_TX_MAX_COAL_BDS_INT, 1);
1977 
1978 	/* Set up address of statistics block */
1979 	if (!(BGE_IS_5705_PLUS(sc))) {
1980 		CSR_WRITE_4(sc, BGE_HCC_STATS_ADDR_HI,
1981 		    BGE_ADDR_HI(sc->bge_ldata.bge_stats_paddr));
1982 		CSR_WRITE_4(sc, BGE_HCC_STATS_ADDR_LO,
1983 		    BGE_ADDR_LO(sc->bge_ldata.bge_stats_paddr));
1984 		CSR_WRITE_4(sc, BGE_HCC_STATS_BASEADDR, BGE_STATS_BLOCK);
1985 		CSR_WRITE_4(sc, BGE_HCC_STATUSBLK_BASEADDR, BGE_STATUS_BLOCK);
1986 		CSR_WRITE_4(sc, BGE_HCC_STATS_TICKS, sc->bge_stat_ticks);
1987 	}
1988 
1989 	/* Set up address of status block */
1990 	CSR_WRITE_4(sc, BGE_HCC_STATUSBLK_ADDR_HI,
1991 	    BGE_ADDR_HI(sc->bge_ldata.bge_status_block_paddr));
1992 	CSR_WRITE_4(sc, BGE_HCC_STATUSBLK_ADDR_LO,
1993 	    BGE_ADDR_LO(sc->bge_ldata.bge_status_block_paddr));
1994 
1995 	/* Set up status block size. */
1996 	if (sc->bge_asicrev == BGE_ASICREV_BCM5700 &&
1997 	    sc->bge_chipid != BGE_CHIPID_BCM5700_C0) {
1998 		val = BGE_STATBLKSZ_FULL;
1999 		bzero(sc->bge_ldata.bge_status_block, BGE_STATUS_BLK_SZ);
2000 	} else {
2001 		val = BGE_STATBLKSZ_32BYTE;
2002 		bzero(sc->bge_ldata.bge_status_block, 32);
2003 	}
2004 	bus_dmamap_sync(sc->bge_cdata.bge_status_tag,
2005 	    sc->bge_cdata.bge_status_map,
2006 	    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
2007 
2008 	/* Turn on host coalescing state machine */
2009 	CSR_WRITE_4(sc, BGE_HCC_MODE, val | BGE_HCCMODE_ENABLE);
2010 
2011 	/* Turn on RX BD completion state machine and enable attentions */
2012 	CSR_WRITE_4(sc, BGE_RBDC_MODE,
2013 	    BGE_RBDCMODE_ENABLE | BGE_RBDCMODE_ATTN);
2014 
2015 	/* Turn on RX list placement state machine */
2016 	CSR_WRITE_4(sc, BGE_RXLP_MODE, BGE_RXLPMODE_ENABLE);
2017 
2018 	/* Turn on RX list selector state machine. */
2019 	if (!(BGE_IS_5705_PLUS(sc)))
2020 		CSR_WRITE_4(sc, BGE_RXLS_MODE, BGE_RXLSMODE_ENABLE);
2021 
2022 	val = BGE_MACMODE_TXDMA_ENB | BGE_MACMODE_RXDMA_ENB |
2023 	    BGE_MACMODE_RX_STATS_CLEAR | BGE_MACMODE_TX_STATS_CLEAR |
2024 	    BGE_MACMODE_RX_STATS_ENB | BGE_MACMODE_TX_STATS_ENB |
2025 	    BGE_MACMODE_FRMHDR_DMA_ENB;
2026 
2027 	if (sc->bge_flags & BGE_FLAG_TBI)
2028 		val |= BGE_PORTMODE_TBI;
2029 	else if (sc->bge_flags & BGE_FLAG_MII_SERDES)
2030 		val |= BGE_PORTMODE_GMII;
2031 	else
2032 		val |= BGE_PORTMODE_MII;
2033 
2034 	/* Turn on DMA, clear stats */
2035 	CSR_WRITE_4(sc, BGE_MAC_MODE, val);
2036 
2037 	/* Set misc. local control, enable interrupts on attentions */
2038 	CSR_WRITE_4(sc, BGE_MISC_LOCAL_CTL, BGE_MLC_INTR_ONATTN);
2039 
2040 #ifdef notdef
2041 	/* Assert GPIO pins for PHY reset */
2042 	BGE_SETBIT(sc, BGE_MISC_LOCAL_CTL, BGE_MLC_MISCIO_OUT0 |
2043 	    BGE_MLC_MISCIO_OUT1 | BGE_MLC_MISCIO_OUT2);
2044 	BGE_SETBIT(sc, BGE_MISC_LOCAL_CTL, BGE_MLC_MISCIO_OUTEN0 |
2045 	    BGE_MLC_MISCIO_OUTEN1 | BGE_MLC_MISCIO_OUTEN2);
2046 #endif
2047 
2048 	/* Turn on DMA completion state machine */
2049 	if (!(BGE_IS_5705_PLUS(sc)))
2050 		CSR_WRITE_4(sc, BGE_DMAC_MODE, BGE_DMACMODE_ENABLE);
2051 
2052 	val = BGE_WDMAMODE_ENABLE | BGE_WDMAMODE_ALL_ATTNS;
2053 
2054 	/* Enable host coalescing bug fix. */
2055 	if (BGE_IS_5755_PLUS(sc))
2056 		val |= BGE_WDMAMODE_STATUS_TAG_FIX;
2057 
2058 	/* Request larger DMA burst size to get better performance. */
2059 	if (sc->bge_asicrev == BGE_ASICREV_BCM5785)
2060 		val |= BGE_WDMAMODE_BURST_ALL_DATA;
2061 
2062 	/* Turn on write DMA state machine */
2063 	CSR_WRITE_4(sc, BGE_WDMA_MODE, val);
2064 	DELAY(40);
2065 
2066 	/* Turn on read DMA state machine */
2067 	val = BGE_RDMAMODE_ENABLE | BGE_RDMAMODE_ALL_ATTNS;
2068 
2069 	if (sc->bge_asicrev == BGE_ASICREV_BCM5717)
2070 		val |= BGE_RDMAMODE_MULT_DMA_RD_DIS;
2071 
2072 	if (sc->bge_asicrev == BGE_ASICREV_BCM5784 ||
2073 	    sc->bge_asicrev == BGE_ASICREV_BCM5785 ||
2074 	    sc->bge_asicrev == BGE_ASICREV_BCM57780)
2075 		val |= BGE_RDMAMODE_BD_SBD_CRPT_ATTN |
2076 		    BGE_RDMAMODE_MBUF_RBD_CRPT_ATTN |
2077 		    BGE_RDMAMODE_MBUF_SBD_CRPT_ATTN;
2078 	if (sc->bge_flags & BGE_FLAG_PCIE)
2079 		val |= BGE_RDMAMODE_FIFO_LONG_BURST;
2080 	if (sc->bge_flags & (BGE_FLAG_TSO | BGE_FLAG_TSO3)) {
2081 		val |= BGE_RDMAMODE_TSO4_ENABLE;
2082 		if (sc->bge_flags & BGE_FLAG_TSO3 ||
2083 		    sc->bge_asicrev == BGE_ASICREV_BCM5785 ||
2084 		    sc->bge_asicrev == BGE_ASICREV_BCM57780)
2085 			val |= BGE_RDMAMODE_TSO6_ENABLE;
2086 	}
2087 
2088 	if (sc->bge_asicrev == BGE_ASICREV_BCM5720) {
2089 		val |= CSR_READ_4(sc, BGE_RDMA_MODE) &
2090 			BGE_RDMAMODE_H2BNC_VLAN_DET;
2091 		/*
2092 		 * Allow multiple outstanding read requests from
2093 		 * non-LSO read DMA engine.
2094 		 */
2095 		val &= ~BGE_RDMAMODE_MULT_DMA_RD_DIS;
2096 	}
2097 
2098 	if (sc->bge_asicrev == BGE_ASICREV_BCM5761 ||
2099 	    sc->bge_asicrev == BGE_ASICREV_BCM5784 ||
2100 	    sc->bge_asicrev == BGE_ASICREV_BCM5785 ||
2101 	    sc->bge_asicrev == BGE_ASICREV_BCM57780 ||
2102 	    BGE_IS_5717_PLUS(sc)) {
2103 		dmactl = CSR_READ_4(sc, BGE_RDMA_RSRVCTRL);
2104 		/*
2105 		 * Adjust tx margin to prevent TX data corruption and
2106 		 * fix internal FIFO overflow.
2107 		 */
2108 		if (sc->bge_asicrev == BGE_ASICREV_BCM5719 ||
2109 		    sc->bge_asicrev == BGE_ASICREV_BCM5720) {
2110 			dmactl &= ~(BGE_RDMA_RSRVCTRL_FIFO_LWM_MASK |
2111 			    BGE_RDMA_RSRVCTRL_FIFO_HWM_MASK |
2112 			    BGE_RDMA_RSRVCTRL_TXMRGN_MASK);
2113 			dmactl |= BGE_RDMA_RSRVCTRL_FIFO_LWM_1_5K |
2114 			    BGE_RDMA_RSRVCTRL_FIFO_HWM_1_5K |
2115 			    BGE_RDMA_RSRVCTRL_TXMRGN_320B;
2116 		}
2117 		/*
2118 		 * Enable fix for read DMA FIFO overruns.
2119 		 * The fix is to limit the number of RX BDs
2120 		 * the hardware would fetch at a fime.
2121 		 */
2122 		CSR_WRITE_4(sc, BGE_RDMA_RSRVCTRL, dmactl |
2123 		    BGE_RDMA_RSRVCTRL_FIFO_OFLW_FIX);
2124 	}
2125 
2126 	if (sc->bge_asicrev == BGE_ASICREV_BCM5719) {
2127 		CSR_WRITE_4(sc, BGE_RDMA_LSO_CRPTEN_CTRL,
2128 		    CSR_READ_4(sc, BGE_RDMA_LSO_CRPTEN_CTRL) |
2129 		    BGE_RDMA_LSO_CRPTEN_CTRL_BLEN_BD_4K |
2130 		    BGE_RDMA_LSO_CRPTEN_CTRL_BLEN_LSO_4K);
2131 	} else if (sc->bge_asicrev == BGE_ASICREV_BCM5720) {
2132 		/*
2133 		 * Allow 4KB burst length reads for non-LSO frames.
2134 		 * Enable 512B burst length reads for buffer descriptors.
2135 		 */
2136 		CSR_WRITE_4(sc, BGE_RDMA_LSO_CRPTEN_CTRL,
2137 		    CSR_READ_4(sc, BGE_RDMA_LSO_CRPTEN_CTRL) |
2138 		    BGE_RDMA_LSO_CRPTEN_CTRL_BLEN_BD_512 |
2139 		    BGE_RDMA_LSO_CRPTEN_CTRL_BLEN_LSO_4K);
2140 	}
2141 
2142 	CSR_WRITE_4(sc, BGE_RDMA_MODE, val);
2143 	DELAY(40);
2144 
2145 	/* Turn on RX data completion state machine */
2146 	CSR_WRITE_4(sc, BGE_RDC_MODE, BGE_RDCMODE_ENABLE);
2147 
2148 	/* Turn on RX BD initiator state machine */
2149 	CSR_WRITE_4(sc, BGE_RBDI_MODE, BGE_RBDIMODE_ENABLE);
2150 
2151 	/* Turn on RX data and RX BD initiator state machine */
2152 	CSR_WRITE_4(sc, BGE_RDBDI_MODE, BGE_RDBDIMODE_ENABLE);
2153 
2154 	/* Turn on Mbuf cluster free state machine */
2155 	if (!(BGE_IS_5705_PLUS(sc)))
2156 		CSR_WRITE_4(sc, BGE_MBCF_MODE, BGE_MBCFMODE_ENABLE);
2157 
2158 	/* Turn on send BD completion state machine */
2159 	CSR_WRITE_4(sc, BGE_SBDC_MODE, BGE_SBDCMODE_ENABLE);
2160 
2161 	/* Turn on send data completion state machine */
2162 	val = BGE_SDCMODE_ENABLE;
2163 	if (sc->bge_asicrev == BGE_ASICREV_BCM5761)
2164 		val |= BGE_SDCMODE_CDELAY;
2165 	CSR_WRITE_4(sc, BGE_SDC_MODE, val);
2166 
2167 	/* Turn on send data initiator state machine */
2168 	if (sc->bge_flags & (BGE_FLAG_TSO | BGE_FLAG_TSO3))
2169 		CSR_WRITE_4(sc, BGE_SDI_MODE, BGE_SDIMODE_ENABLE |
2170 		    BGE_SDIMODE_HW_LSO_PRE_DMA);
2171 	else
2172 		CSR_WRITE_4(sc, BGE_SDI_MODE, BGE_SDIMODE_ENABLE);
2173 
2174 	/* Turn on send BD initiator state machine */
2175 	CSR_WRITE_4(sc, BGE_SBDI_MODE, BGE_SBDIMODE_ENABLE);
2176 
2177 	/* Turn on send BD selector state machine */
2178 	CSR_WRITE_4(sc, BGE_SRS_MODE, BGE_SRSMODE_ENABLE);
2179 
2180 	CSR_WRITE_4(sc, BGE_SDI_STATS_ENABLE_MASK, 0x007FFFFF);
2181 	CSR_WRITE_4(sc, BGE_SDI_STATS_CTL,
2182 	    BGE_SDISTATSCTL_ENABLE | BGE_SDISTATSCTL_FASTER);
2183 
2184 	/* ack/clear link change events */
2185 	CSR_WRITE_4(sc, BGE_MAC_STS, BGE_MACSTAT_SYNC_CHANGED |
2186 	    BGE_MACSTAT_CFG_CHANGED | BGE_MACSTAT_MI_COMPLETE |
2187 	    BGE_MACSTAT_LINK_CHANGED);
2188 	CSR_WRITE_4(sc, BGE_MI_STS, 0);
2189 
2190 	/*
2191 	 * Enable attention when the link has changed state for
2192 	 * devices that use auto polling.
2193 	 */
2194 	if (sc->bge_flags & BGE_FLAG_TBI) {
2195 		CSR_WRITE_4(sc, BGE_MI_STS, BGE_MISTS_LINK);
2196 	} else {
2197 		if (sc->bge_mi_mode & BGE_MIMODE_AUTOPOLL) {
2198 			CSR_WRITE_4(sc, BGE_MI_MODE, sc->bge_mi_mode);
2199 			DELAY(80);
2200 		}
2201 		if (sc->bge_asicrev == BGE_ASICREV_BCM5700 &&
2202 		    sc->bge_chipid != BGE_CHIPID_BCM5700_B2)
2203 			CSR_WRITE_4(sc, BGE_MAC_EVT_ENB,
2204 			    BGE_EVTENB_MI_INTERRUPT);
2205 	}
2206 
2207 	/*
2208 	 * Clear any pending link state attention.
2209 	 * Otherwise some link state change events may be lost until attention
2210 	 * is cleared by bge_intr() -> bge_link_upd() sequence.
2211 	 * It's not necessary on newer BCM chips - perhaps enabling link
2212 	 * state change attentions implies clearing pending attention.
2213 	 */
2214 	CSR_WRITE_4(sc, BGE_MAC_STS, BGE_MACSTAT_SYNC_CHANGED |
2215 	    BGE_MACSTAT_CFG_CHANGED | BGE_MACSTAT_MI_COMPLETE |
2216 	    BGE_MACSTAT_LINK_CHANGED);
2217 
2218 	/* Enable link state change attentions. */
2219 	BGE_SETBIT(sc, BGE_MAC_EVT_ENB, BGE_EVTENB_LINK_CHANGED);
2220 
2221 	return (0);
2222 }
2223 
2224 const struct bge_revision *
2225 bge_lookup_rev(uint32_t chipid)
2226 {
2227 	const struct bge_revision *br;
2228 
2229 	for (br = bge_revisions; br->br_name != NULL; br++) {
2230 		if (br->br_chipid == chipid)
2231 			return (br);
2232 	}
2233 
2234 	for (br = bge_majorrevs; br->br_name != NULL; br++) {
2235 		if (br->br_chipid == BGE_ASICREV(chipid))
2236 			return (br);
2237 	}
2238 
2239 	return (NULL);
2240 }
2241 
2242 const struct bge_vendor *
2243 bge_lookup_vendor(uint16_t vid)
2244 {
2245 	const struct bge_vendor *v;
2246 
2247 	for (v = bge_vendors; v->v_name != NULL; v++)
2248 		if (v->v_id == vid)
2249 			return (v);
2250 
2251 	panic("%s: unknown vendor %d", __func__, vid);
2252 	return (NULL);
2253 }
2254 
2255 /*
2256  * Probe for a Broadcom chip. Check the PCI vendor and device IDs
2257  * against our list and return its name if we find a match.
2258  *
2259  * Note that since the Broadcom controller contains VPD support, we
2260  * try to get the device name string from the controller itself instead
2261  * of the compiled-in string. It guarantees we'll always announce the
2262  * right product name. We fall back to the compiled-in string when
2263  * VPD is unavailable or corrupt.
2264  */
2265 static int
2266 bge_probe(device_t dev)
2267 {
2268 	char buf[96];
2269 	char model[64];
2270 	const struct bge_revision *br;
2271 	const char *pname;
2272 	struct bge_softc *sc = device_get_softc(dev);
2273 	const struct bge_type *t = bge_devs;
2274 	const struct bge_vendor *v;
2275 	uint32_t id;
2276 	uint16_t did, vid;
2277 
2278 	sc->bge_dev = dev;
2279 	vid = pci_get_vendor(dev);
2280 	did = pci_get_device(dev);
2281 	while(t->bge_vid != 0) {
2282 		if ((vid == t->bge_vid) && (did == t->bge_did)) {
2283 			id = pci_read_config(dev, BGE_PCI_MISC_CTL, 4) >>
2284 			    BGE_PCIMISCCTL_ASICREV_SHIFT;
2285 			if (BGE_ASICREV(id) == BGE_ASICREV_USE_PRODID_REG) {
2286 				/*
2287 				 * Find the ASCI revision.  Different chips
2288 				 * use different registers.
2289 				 */
2290 				switch (pci_get_device(dev)) {
2291 				case BCOM_DEVICEID_BCM5717:
2292 				case BCOM_DEVICEID_BCM5718:
2293 				case BCOM_DEVICEID_BCM5719:
2294 				case BCOM_DEVICEID_BCM5720:
2295 					id = pci_read_config(dev,
2296 					    BGE_PCI_GEN2_PRODID_ASICREV, 4);
2297 					break;
2298 				case BCOM_DEVICEID_BCM57761:
2299 				case BCOM_DEVICEID_BCM57765:
2300 				case BCOM_DEVICEID_BCM57781:
2301 				case BCOM_DEVICEID_BCM57785:
2302 				case BCOM_DEVICEID_BCM57791:
2303 				case BCOM_DEVICEID_BCM57795:
2304 					id = pci_read_config(dev,
2305 					    BGE_PCI_GEN15_PRODID_ASICREV, 4);
2306 					break;
2307 				default:
2308 					id = pci_read_config(dev,
2309 					    BGE_PCI_PRODID_ASICREV, 4);
2310 				}
2311 			}
2312 			br = bge_lookup_rev(id);
2313 			v = bge_lookup_vendor(vid);
2314 			if (bge_has_eaddr(sc) &&
2315 			    pci_get_vpd_ident(dev, &pname) == 0)
2316 				snprintf(model, 64, "%s", pname);
2317 			else
2318 				snprintf(model, 64, "%s %s", v->v_name,
2319 				    br != NULL ? br->br_name :
2320 				    "NetXtreme Ethernet Controller");
2321 			snprintf(buf, 96, "%s, %sASIC rev. %#08x", model,
2322 			    br != NULL ? "" : "unknown ", id);
2323 			device_set_desc_copy(dev, buf);
2324 			return (0);
2325 		}
2326 		t++;
2327 	}
2328 
2329 	return (ENXIO);
2330 }
2331 
2332 static void
2333 bge_dma_free(struct bge_softc *sc)
2334 {
2335 	int i;
2336 
2337 	/* Destroy DMA maps for RX buffers. */
2338 	for (i = 0; i < BGE_STD_RX_RING_CNT; i++) {
2339 		if (sc->bge_cdata.bge_rx_std_dmamap[i])
2340 			bus_dmamap_destroy(sc->bge_cdata.bge_rx_mtag,
2341 			    sc->bge_cdata.bge_rx_std_dmamap[i]);
2342 	}
2343 	if (sc->bge_cdata.bge_rx_std_sparemap)
2344 		bus_dmamap_destroy(sc->bge_cdata.bge_rx_mtag,
2345 		    sc->bge_cdata.bge_rx_std_sparemap);
2346 
2347 	/* Destroy DMA maps for jumbo RX buffers. */
2348 	for (i = 0; i < BGE_JUMBO_RX_RING_CNT; i++) {
2349 		if (sc->bge_cdata.bge_rx_jumbo_dmamap[i])
2350 			bus_dmamap_destroy(sc->bge_cdata.bge_mtag_jumbo,
2351 			    sc->bge_cdata.bge_rx_jumbo_dmamap[i]);
2352 	}
2353 	if (sc->bge_cdata.bge_rx_jumbo_sparemap)
2354 		bus_dmamap_destroy(sc->bge_cdata.bge_mtag_jumbo,
2355 		    sc->bge_cdata.bge_rx_jumbo_sparemap);
2356 
2357 	/* Destroy DMA maps for TX buffers. */
2358 	for (i = 0; i < BGE_TX_RING_CNT; i++) {
2359 		if (sc->bge_cdata.bge_tx_dmamap[i])
2360 			bus_dmamap_destroy(sc->bge_cdata.bge_tx_mtag,
2361 			    sc->bge_cdata.bge_tx_dmamap[i]);
2362 	}
2363 
2364 	if (sc->bge_cdata.bge_rx_mtag)
2365 		bus_dma_tag_destroy(sc->bge_cdata.bge_rx_mtag);
2366 	if (sc->bge_cdata.bge_mtag_jumbo)
2367 		bus_dma_tag_destroy(sc->bge_cdata.bge_mtag_jumbo);
2368 	if (sc->bge_cdata.bge_tx_mtag)
2369 		bus_dma_tag_destroy(sc->bge_cdata.bge_tx_mtag);
2370 
2371 
2372 	/* Destroy standard RX ring. */
2373 	if (sc->bge_cdata.bge_rx_std_ring_map)
2374 		bus_dmamap_unload(sc->bge_cdata.bge_rx_std_ring_tag,
2375 		    sc->bge_cdata.bge_rx_std_ring_map);
2376 	if (sc->bge_cdata.bge_rx_std_ring_map && sc->bge_ldata.bge_rx_std_ring)
2377 		bus_dmamem_free(sc->bge_cdata.bge_rx_std_ring_tag,
2378 		    sc->bge_ldata.bge_rx_std_ring,
2379 		    sc->bge_cdata.bge_rx_std_ring_map);
2380 
2381 	if (sc->bge_cdata.bge_rx_std_ring_tag)
2382 		bus_dma_tag_destroy(sc->bge_cdata.bge_rx_std_ring_tag);
2383 
2384 	/* Destroy jumbo RX ring. */
2385 	if (sc->bge_cdata.bge_rx_jumbo_ring_map)
2386 		bus_dmamap_unload(sc->bge_cdata.bge_rx_jumbo_ring_tag,
2387 		    sc->bge_cdata.bge_rx_jumbo_ring_map);
2388 
2389 	if (sc->bge_cdata.bge_rx_jumbo_ring_map &&
2390 	    sc->bge_ldata.bge_rx_jumbo_ring)
2391 		bus_dmamem_free(sc->bge_cdata.bge_rx_jumbo_ring_tag,
2392 		    sc->bge_ldata.bge_rx_jumbo_ring,
2393 		    sc->bge_cdata.bge_rx_jumbo_ring_map);
2394 
2395 	if (sc->bge_cdata.bge_rx_jumbo_ring_tag)
2396 		bus_dma_tag_destroy(sc->bge_cdata.bge_rx_jumbo_ring_tag);
2397 
2398 	/* Destroy RX return ring. */
2399 	if (sc->bge_cdata.bge_rx_return_ring_map)
2400 		bus_dmamap_unload(sc->bge_cdata.bge_rx_return_ring_tag,
2401 		    sc->bge_cdata.bge_rx_return_ring_map);
2402 
2403 	if (sc->bge_cdata.bge_rx_return_ring_map &&
2404 	    sc->bge_ldata.bge_rx_return_ring)
2405 		bus_dmamem_free(sc->bge_cdata.bge_rx_return_ring_tag,
2406 		    sc->bge_ldata.bge_rx_return_ring,
2407 		    sc->bge_cdata.bge_rx_return_ring_map);
2408 
2409 	if (sc->bge_cdata.bge_rx_return_ring_tag)
2410 		bus_dma_tag_destroy(sc->bge_cdata.bge_rx_return_ring_tag);
2411 
2412 	/* Destroy TX ring. */
2413 	if (sc->bge_cdata.bge_tx_ring_map)
2414 		bus_dmamap_unload(sc->bge_cdata.bge_tx_ring_tag,
2415 		    sc->bge_cdata.bge_tx_ring_map);
2416 
2417 	if (sc->bge_cdata.bge_tx_ring_map && sc->bge_ldata.bge_tx_ring)
2418 		bus_dmamem_free(sc->bge_cdata.bge_tx_ring_tag,
2419 		    sc->bge_ldata.bge_tx_ring,
2420 		    sc->bge_cdata.bge_tx_ring_map);
2421 
2422 	if (sc->bge_cdata.bge_tx_ring_tag)
2423 		bus_dma_tag_destroy(sc->bge_cdata.bge_tx_ring_tag);
2424 
2425 	/* Destroy status block. */
2426 	if (sc->bge_cdata.bge_status_map)
2427 		bus_dmamap_unload(sc->bge_cdata.bge_status_tag,
2428 		    sc->bge_cdata.bge_status_map);
2429 
2430 	if (sc->bge_cdata.bge_status_map && sc->bge_ldata.bge_status_block)
2431 		bus_dmamem_free(sc->bge_cdata.bge_status_tag,
2432 		    sc->bge_ldata.bge_status_block,
2433 		    sc->bge_cdata.bge_status_map);
2434 
2435 	if (sc->bge_cdata.bge_status_tag)
2436 		bus_dma_tag_destroy(sc->bge_cdata.bge_status_tag);
2437 
2438 	/* Destroy statistics block. */
2439 	if (sc->bge_cdata.bge_stats_map)
2440 		bus_dmamap_unload(sc->bge_cdata.bge_stats_tag,
2441 		    sc->bge_cdata.bge_stats_map);
2442 
2443 	if (sc->bge_cdata.bge_stats_map && sc->bge_ldata.bge_stats)
2444 		bus_dmamem_free(sc->bge_cdata.bge_stats_tag,
2445 		    sc->bge_ldata.bge_stats,
2446 		    sc->bge_cdata.bge_stats_map);
2447 
2448 	if (sc->bge_cdata.bge_stats_tag)
2449 		bus_dma_tag_destroy(sc->bge_cdata.bge_stats_tag);
2450 
2451 	if (sc->bge_cdata.bge_buffer_tag)
2452 		bus_dma_tag_destroy(sc->bge_cdata.bge_buffer_tag);
2453 
2454 	/* Destroy the parent tag. */
2455 	if (sc->bge_cdata.bge_parent_tag)
2456 		bus_dma_tag_destroy(sc->bge_cdata.bge_parent_tag);
2457 }
2458 
2459 static int
2460 bge_dma_ring_alloc(struct bge_softc *sc, bus_size_t alignment,
2461     bus_size_t maxsize, bus_dma_tag_t *tag, uint8_t **ring, bus_dmamap_t *map,
2462     bus_addr_t *paddr, const char *msg)
2463 {
2464 	struct bge_dmamap_arg ctx;
2465 	int error;
2466 
2467 	error = bus_dma_tag_create(sc->bge_cdata.bge_parent_tag,
2468 	    alignment, 0, BUS_SPACE_MAXADDR, BUS_SPACE_MAXADDR, NULL,
2469 	    NULL, maxsize, 1, maxsize, 0, NULL, NULL, tag);
2470 	if (error != 0) {
2471 		device_printf(sc->bge_dev,
2472 		    "could not create %s dma tag\n", msg);
2473 		return (ENOMEM);
2474 	}
2475 	/* Allocate DMA'able memory for ring. */
2476 	error = bus_dmamem_alloc(*tag, (void **)ring,
2477 	    BUS_DMA_NOWAIT | BUS_DMA_ZERO | BUS_DMA_COHERENT, map);
2478 	if (error != 0) {
2479 		device_printf(sc->bge_dev,
2480 		    "could not allocate DMA'able memory for %s\n", msg);
2481 		return (ENOMEM);
2482 	}
2483 	/* Load the address of the ring. */
2484 	ctx.bge_busaddr = 0;
2485 	error = bus_dmamap_load(*tag, *map, *ring, maxsize, bge_dma_map_addr,
2486 	    &ctx, BUS_DMA_NOWAIT);
2487 	if (error != 0) {
2488 		device_printf(sc->bge_dev,
2489 		    "could not load DMA'able memory for %s\n", msg);
2490 		return (ENOMEM);
2491 	}
2492 	*paddr = ctx.bge_busaddr;
2493 	return (0);
2494 }
2495 
2496 static int
2497 bge_dma_alloc(struct bge_softc *sc)
2498 {
2499 	bus_addr_t lowaddr;
2500 	bus_size_t rxmaxsegsz, sbsz, txsegsz, txmaxsegsz;
2501 	int i, error;
2502 
2503 	lowaddr = BUS_SPACE_MAXADDR;
2504 	if ((sc->bge_flags & BGE_FLAG_40BIT_BUG) != 0)
2505 		lowaddr = BGE_DMA_MAXADDR;
2506 	/*
2507 	 * Allocate the parent bus DMA tag appropriate for PCI.
2508 	 */
2509 	error = bus_dma_tag_create(bus_get_dma_tag(sc->bge_dev),
2510 	    1, 0, lowaddr, BUS_SPACE_MAXADDR, NULL,
2511 	    NULL, BUS_SPACE_MAXSIZE_32BIT, 0, BUS_SPACE_MAXSIZE_32BIT,
2512 	    0, NULL, NULL, &sc->bge_cdata.bge_parent_tag);
2513 	if (error != 0) {
2514 		device_printf(sc->bge_dev,
2515 		    "could not allocate parent dma tag\n");
2516 		return (ENOMEM);
2517 	}
2518 
2519 	/* Create tag for standard RX ring. */
2520 	error = bge_dma_ring_alloc(sc, PAGE_SIZE, BGE_STD_RX_RING_SZ,
2521 	    &sc->bge_cdata.bge_rx_std_ring_tag,
2522 	    (uint8_t **)&sc->bge_ldata.bge_rx_std_ring,
2523 	    &sc->bge_cdata.bge_rx_std_ring_map,
2524 	    &sc->bge_ldata.bge_rx_std_ring_paddr, "RX ring");
2525 	if (error)
2526 		return (error);
2527 
2528 	/* Create tag for RX return ring. */
2529 	error = bge_dma_ring_alloc(sc, PAGE_SIZE, BGE_RX_RTN_RING_SZ(sc),
2530 	    &sc->bge_cdata.bge_rx_return_ring_tag,
2531 	    (uint8_t **)&sc->bge_ldata.bge_rx_return_ring,
2532 	    &sc->bge_cdata.bge_rx_return_ring_map,
2533 	    &sc->bge_ldata.bge_rx_return_ring_paddr, "RX return ring");
2534 	if (error)
2535 		return (error);
2536 
2537 	/* Create tag for TX ring. */
2538 	error = bge_dma_ring_alloc(sc, PAGE_SIZE, BGE_TX_RING_SZ,
2539 	    &sc->bge_cdata.bge_tx_ring_tag,
2540 	    (uint8_t **)&sc->bge_ldata.bge_tx_ring,
2541 	    &sc->bge_cdata.bge_tx_ring_map,
2542 	    &sc->bge_ldata.bge_tx_ring_paddr, "TX ring");
2543 	if (error)
2544 		return (error);
2545 
2546 	/*
2547 	 * Create tag for status block.
2548 	 * Because we only use single Tx/Rx/Rx return ring, use
2549 	 * minimum status block size except BCM5700 AX/BX which
2550 	 * seems to want to see full status block size regardless
2551 	 * of configured number of ring.
2552 	 */
2553 	if (sc->bge_asicrev == BGE_ASICREV_BCM5700 &&
2554 	    sc->bge_chipid != BGE_CHIPID_BCM5700_C0)
2555 		sbsz = BGE_STATUS_BLK_SZ;
2556 	else
2557 		sbsz = 32;
2558 	error = bge_dma_ring_alloc(sc, PAGE_SIZE, sbsz,
2559 	    &sc->bge_cdata.bge_status_tag,
2560 	    (uint8_t **)&sc->bge_ldata.bge_status_block,
2561 	    &sc->bge_cdata.bge_status_map,
2562 	    &sc->bge_ldata.bge_status_block_paddr, "status block");
2563 	if (error)
2564 		return (error);
2565 
2566 	/* Create tag for statistics block. */
2567 	error = bge_dma_ring_alloc(sc, PAGE_SIZE, BGE_STATS_SZ,
2568 	    &sc->bge_cdata.bge_stats_tag,
2569 	    (uint8_t **)&sc->bge_ldata.bge_stats,
2570 	    &sc->bge_cdata.bge_stats_map,
2571 	    &sc->bge_ldata.bge_stats_paddr, "statistics block");
2572 	if (error)
2573 		return (error);
2574 
2575 	/* Create tag for jumbo RX ring. */
2576 	if (BGE_IS_JUMBO_CAPABLE(sc)) {
2577 		error = bge_dma_ring_alloc(sc, PAGE_SIZE, BGE_JUMBO_RX_RING_SZ,
2578 		    &sc->bge_cdata.bge_rx_jumbo_ring_tag,
2579 		    (uint8_t **)&sc->bge_ldata.bge_rx_jumbo_ring,
2580 		    &sc->bge_cdata.bge_rx_jumbo_ring_map,
2581 		    &sc->bge_ldata.bge_rx_jumbo_ring_paddr, "jumbo RX ring");
2582 		if (error)
2583 			return (error);
2584 	}
2585 
2586 	/* Create parent tag for buffers. */
2587 	if ((sc->bge_flags & BGE_FLAG_4G_BNDRY_BUG) != 0) {
2588 		/*
2589 		 * XXX
2590 		 * watchdog timeout issue was observed on BCM5704 which
2591 		 * lives behind PCI-X bridge(e.g AMD 8131 PCI-X bridge).
2592 		 * Both limiting DMA address space to 32bits and flushing
2593 		 * mailbox write seem to address the issue.
2594 		 */
2595 		if (sc->bge_pcixcap != 0)
2596 			lowaddr = BUS_SPACE_MAXADDR_32BIT;
2597 	}
2598 	error = bus_dma_tag_create(bus_get_dma_tag(sc->bge_dev), 1, 0, lowaddr,
2599 	    BUS_SPACE_MAXADDR, NULL, NULL, BUS_SPACE_MAXSIZE_32BIT, 0,
2600 	    BUS_SPACE_MAXSIZE_32BIT, 0, NULL, NULL,
2601 	    &sc->bge_cdata.bge_buffer_tag);
2602 	if (error != 0) {
2603 		device_printf(sc->bge_dev,
2604 		    "could not allocate buffer dma tag\n");
2605 		return (ENOMEM);
2606 	}
2607 	/* Create tag for Tx mbufs. */
2608 	if (sc->bge_flags & (BGE_FLAG_TSO | BGE_FLAG_TSO3)) {
2609 		txsegsz = BGE_TSOSEG_SZ;
2610 		txmaxsegsz = 65535 + sizeof(struct ether_vlan_header);
2611 	} else {
2612 		txsegsz = MCLBYTES;
2613 		txmaxsegsz = MCLBYTES * BGE_NSEG_NEW;
2614 	}
2615 	error = bus_dma_tag_create(sc->bge_cdata.bge_buffer_tag, 1,
2616 	    0, BUS_SPACE_MAXADDR, BUS_SPACE_MAXADDR, NULL, NULL,
2617 	    txmaxsegsz, BGE_NSEG_NEW, txsegsz, 0, NULL, NULL,
2618 	    &sc->bge_cdata.bge_tx_mtag);
2619 
2620 	if (error) {
2621 		device_printf(sc->bge_dev, "could not allocate TX dma tag\n");
2622 		return (ENOMEM);
2623 	}
2624 
2625 	/* Create tag for Rx mbufs. */
2626 	if (sc->bge_flags & BGE_FLAG_JUMBO_STD)
2627 		rxmaxsegsz = MJUM9BYTES;
2628 	else
2629 		rxmaxsegsz = MCLBYTES;
2630 	error = bus_dma_tag_create(sc->bge_cdata.bge_buffer_tag, 1, 0,
2631 	    BUS_SPACE_MAXADDR, BUS_SPACE_MAXADDR, NULL, NULL, rxmaxsegsz, 1,
2632 	    rxmaxsegsz, 0, NULL, NULL, &sc->bge_cdata.bge_rx_mtag);
2633 
2634 	if (error) {
2635 		device_printf(sc->bge_dev, "could not allocate RX dma tag\n");
2636 		return (ENOMEM);
2637 	}
2638 
2639 	/* Create DMA maps for RX buffers. */
2640 	error = bus_dmamap_create(sc->bge_cdata.bge_rx_mtag, 0,
2641 	    &sc->bge_cdata.bge_rx_std_sparemap);
2642 	if (error) {
2643 		device_printf(sc->bge_dev,
2644 		    "can't create spare DMA map for RX\n");
2645 		return (ENOMEM);
2646 	}
2647 	for (i = 0; i < BGE_STD_RX_RING_CNT; i++) {
2648 		error = bus_dmamap_create(sc->bge_cdata.bge_rx_mtag, 0,
2649 			    &sc->bge_cdata.bge_rx_std_dmamap[i]);
2650 		if (error) {
2651 			device_printf(sc->bge_dev,
2652 			    "can't create DMA map for RX\n");
2653 			return (ENOMEM);
2654 		}
2655 	}
2656 
2657 	/* Create DMA maps for TX buffers. */
2658 	for (i = 0; i < BGE_TX_RING_CNT; i++) {
2659 		error = bus_dmamap_create(sc->bge_cdata.bge_tx_mtag, 0,
2660 			    &sc->bge_cdata.bge_tx_dmamap[i]);
2661 		if (error) {
2662 			device_printf(sc->bge_dev,
2663 			    "can't create DMA map for TX\n");
2664 			return (ENOMEM);
2665 		}
2666 	}
2667 
2668 	/* Create tags for jumbo RX buffers. */
2669 	if (BGE_IS_JUMBO_CAPABLE(sc)) {
2670 		error = bus_dma_tag_create(sc->bge_cdata.bge_buffer_tag,
2671 		    1, 0, BUS_SPACE_MAXADDR, BUS_SPACE_MAXADDR, NULL,
2672 		    NULL, MJUM9BYTES, BGE_NSEG_JUMBO, PAGE_SIZE,
2673 		    0, NULL, NULL, &sc->bge_cdata.bge_mtag_jumbo);
2674 		if (error) {
2675 			device_printf(sc->bge_dev,
2676 			    "could not allocate jumbo dma tag\n");
2677 			return (ENOMEM);
2678 		}
2679 		/* Create DMA maps for jumbo RX buffers. */
2680 		error = bus_dmamap_create(sc->bge_cdata.bge_mtag_jumbo,
2681 		    0, &sc->bge_cdata.bge_rx_jumbo_sparemap);
2682 		if (error) {
2683 			device_printf(sc->bge_dev,
2684 			    "can't create spare DMA map for jumbo RX\n");
2685 			return (ENOMEM);
2686 		}
2687 		for (i = 0; i < BGE_JUMBO_RX_RING_CNT; i++) {
2688 			error = bus_dmamap_create(sc->bge_cdata.bge_mtag_jumbo,
2689 				    0, &sc->bge_cdata.bge_rx_jumbo_dmamap[i]);
2690 			if (error) {
2691 				device_printf(sc->bge_dev,
2692 				    "can't create DMA map for jumbo RX\n");
2693 				return (ENOMEM);
2694 			}
2695 		}
2696 	}
2697 
2698 	return (0);
2699 }
2700 
2701 /*
2702  * Return true if this device has more than one port.
2703  */
2704 static int
2705 bge_has_multiple_ports(struct bge_softc *sc)
2706 {
2707 	device_t dev = sc->bge_dev;
2708 	u_int b, d, f, fscan, s;
2709 
2710 	d = pci_get_domain(dev);
2711 	b = pci_get_bus(dev);
2712 	s = pci_get_slot(dev);
2713 	f = pci_get_function(dev);
2714 	for (fscan = 0; fscan <= PCI_FUNCMAX; fscan++)
2715 		if (fscan != f && pci_find_dbsf(d, b, s, fscan) != NULL)
2716 			return (1);
2717 	return (0);
2718 }
2719 
2720 /*
2721  * Return true if MSI can be used with this device.
2722  */
2723 static int
2724 bge_can_use_msi(struct bge_softc *sc)
2725 {
2726 	int can_use_msi = 0;
2727 
2728 	if (sc->bge_msi == 0)
2729 		return (0);
2730 
2731 	/* Disable MSI for polling(4). */
2732 #ifdef DEVICE_POLLING
2733 	return (0);
2734 #endif
2735 	switch (sc->bge_asicrev) {
2736 	case BGE_ASICREV_BCM5714_A0:
2737 	case BGE_ASICREV_BCM5714:
2738 		/*
2739 		 * Apparently, MSI doesn't work when these chips are
2740 		 * configured in single-port mode.
2741 		 */
2742 		if (bge_has_multiple_ports(sc))
2743 			can_use_msi = 1;
2744 		break;
2745 	case BGE_ASICREV_BCM5750:
2746 		if (sc->bge_chiprev != BGE_CHIPREV_5750_AX &&
2747 		    sc->bge_chiprev != BGE_CHIPREV_5750_BX)
2748 			can_use_msi = 1;
2749 		break;
2750 	default:
2751 		if (BGE_IS_575X_PLUS(sc))
2752 			can_use_msi = 1;
2753 	}
2754 	return (can_use_msi);
2755 }
2756 
2757 static int
2758 bge_mbox_reorder(struct bge_softc *sc)
2759 {
2760 	/* Lists of PCI bridges that are known to reorder mailbox writes. */
2761 	static const struct mbox_reorder {
2762 		const uint16_t vendor;
2763 		const uint16_t device;
2764 		const char *desc;
2765 	} const mbox_reorder_lists[] = {
2766 		{ 0x1022, 0x7450, "AMD-8131 PCI-X Bridge" },
2767 	};
2768 	devclass_t pci, pcib;
2769 	device_t bus, dev;
2770 	int count, i;
2771 
2772 	count = sizeof(mbox_reorder_lists) / sizeof(mbox_reorder_lists[0]);
2773 	pci = devclass_find("pci");
2774 	pcib = devclass_find("pcib");
2775 	dev = sc->bge_dev;
2776 	bus = device_get_parent(dev);
2777 	for (;;) {
2778 		dev = device_get_parent(bus);
2779 		bus = device_get_parent(dev);
2780 		device_printf(sc->bge_dev, "dev : %s%d, bus : %s%d\n",
2781 		    device_get_name(dev), device_get_unit(dev),
2782 		    device_get_name(bus), device_get_unit(bus));
2783 		if (device_get_devclass(dev) != pcib)
2784 			break;
2785 		for (i = 0; i < count; i++) {
2786 			device_printf(sc->bge_dev,
2787 			    "probing dev : %s%d, vendor : 0x%04x "
2788 			    "device : 0x%04x\n",
2789 			    device_get_name(dev), device_get_unit(dev),
2790 			    pci_get_vendor(dev), pci_get_device(dev));
2791 			if (pci_get_vendor(dev) ==
2792 			    mbox_reorder_lists[i].vendor &&
2793 			    pci_get_device(dev) ==
2794 			    mbox_reorder_lists[i].device) {
2795 				device_printf(sc->bge_dev,
2796 				    "enabling MBOX workaround for %s\n",
2797 				    mbox_reorder_lists[i].desc);
2798 				return (1);
2799 			}
2800 		}
2801 		if (device_get_devclass(bus) != pci)
2802 			break;
2803 	}
2804 	return (0);
2805 }
2806 
2807 static void
2808 bge_devinfo(struct bge_softc *sc)
2809 {
2810 	uint32_t cfg, clk;
2811 
2812 	device_printf(sc->bge_dev,
2813 	    "CHIP ID 0x%08x; ASIC REV 0x%02x; CHIP REV 0x%02x; ",
2814 	    sc->bge_chipid, sc->bge_asicrev, sc->bge_chiprev);
2815 	if (sc->bge_flags & BGE_FLAG_PCIE)
2816 		printf("PCI-E\n");
2817 	else if (sc->bge_flags & BGE_FLAG_PCIX) {
2818 		printf("PCI-X ");
2819 		cfg = CSR_READ_4(sc, BGE_MISC_CFG) & BGE_MISCCFG_BOARD_ID_MASK;
2820 		if (cfg == BGE_MISCCFG_BOARD_ID_5704CIOBE)
2821 			clk = 133;
2822 		else {
2823 			clk = CSR_READ_4(sc, BGE_PCI_CLKCTL) & 0x1F;
2824 			switch (clk) {
2825 			case 0:
2826 				clk = 33;
2827 				break;
2828 			case 2:
2829 				clk = 50;
2830 				break;
2831 			case 4:
2832 				clk = 66;
2833 				break;
2834 			case 6:
2835 				clk = 100;
2836 				break;
2837 			case 7:
2838 				clk = 133;
2839 				break;
2840 			}
2841 		}
2842 		printf("%u MHz\n", clk);
2843 	} else {
2844 		if (sc->bge_pcixcap != 0)
2845 			printf("PCI on PCI-X ");
2846 		else
2847 			printf("PCI ");
2848 		cfg = pci_read_config(sc->bge_dev, BGE_PCI_PCISTATE, 4);
2849 		if (cfg & BGE_PCISTATE_PCI_BUSSPEED)
2850 			clk = 66;
2851 		else
2852 			clk = 33;
2853 		if (cfg & BGE_PCISTATE_32BIT_BUS)
2854 			printf("%u MHz; 32bit\n", clk);
2855 		else
2856 			printf("%u MHz; 64bit\n", clk);
2857 	}
2858 }
2859 
2860 static int
2861 bge_attach(device_t dev)
2862 {
2863 	struct ifnet *ifp;
2864 	struct bge_softc *sc;
2865 	uint32_t hwcfg = 0, misccfg;
2866 	u_char eaddr[ETHER_ADDR_LEN];
2867 	int capmask, error, f, msicount, phy_addr, reg, rid, trys;
2868 
2869 	sc = device_get_softc(dev);
2870 	sc->bge_dev = dev;
2871 
2872 	bge_add_sysctls(sc);
2873 
2874 	TASK_INIT(&sc->bge_intr_task, 0, bge_intr_task, sc);
2875 
2876 	/*
2877 	 * Map control/status registers.
2878 	 */
2879 	pci_enable_busmaster(dev);
2880 
2881 	rid = PCIR_BAR(0);
2882 	sc->bge_res = bus_alloc_resource_any(dev, SYS_RES_MEMORY, &rid,
2883 	    RF_ACTIVE);
2884 
2885 	if (sc->bge_res == NULL) {
2886 		device_printf (sc->bge_dev, "couldn't map memory\n");
2887 		error = ENXIO;
2888 		goto fail;
2889 	}
2890 
2891 	/* Save various chip information. */
2892 	sc->bge_chipid =
2893 	    pci_read_config(dev, BGE_PCI_MISC_CTL, 4) >>
2894 	    BGE_PCIMISCCTL_ASICREV_SHIFT;
2895 	if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_USE_PRODID_REG) {
2896 		/*
2897 		 * Find the ASCI revision.  Different chips use different
2898 		 * registers.
2899 		 */
2900 		switch (pci_get_device(dev)) {
2901 		case BCOM_DEVICEID_BCM5717:
2902 		case BCOM_DEVICEID_BCM5718:
2903 		case BCOM_DEVICEID_BCM5719:
2904 		case BCOM_DEVICEID_BCM5720:
2905 			sc->bge_chipid = pci_read_config(dev,
2906 			    BGE_PCI_GEN2_PRODID_ASICREV, 4);
2907 			break;
2908 		case BCOM_DEVICEID_BCM57761:
2909 		case BCOM_DEVICEID_BCM57765:
2910 		case BCOM_DEVICEID_BCM57781:
2911 		case BCOM_DEVICEID_BCM57785:
2912 		case BCOM_DEVICEID_BCM57791:
2913 		case BCOM_DEVICEID_BCM57795:
2914 			sc->bge_chipid = pci_read_config(dev,
2915 			    BGE_PCI_GEN15_PRODID_ASICREV, 4);
2916 			break;
2917 		default:
2918 			sc->bge_chipid = pci_read_config(dev,
2919 			    BGE_PCI_PRODID_ASICREV, 4);
2920 		}
2921 	}
2922 	sc->bge_asicrev = BGE_ASICREV(sc->bge_chipid);
2923 	sc->bge_chiprev = BGE_CHIPREV(sc->bge_chipid);
2924 
2925 	/* Set default PHY address. */
2926 	phy_addr = 1;
2927 	 /*
2928 	  * PHY address mapping for various devices.
2929 	  *
2930 	  *          | F0 Cu | F0 Sr | F1 Cu | F1 Sr |
2931 	  * ---------+-------+-------+-------+-------+
2932 	  * BCM57XX  |   1   |   X   |   X   |   X   |
2933 	  * BCM5704  |   1   |   X   |   1   |   X   |
2934 	  * BCM5717  |   1   |   8   |   2   |   9   |
2935 	  * BCM5719  |   1   |   8   |   2   |   9   |
2936 	  * BCM5720  |   1   |   8   |   2   |   9   |
2937 	  *
2938 	  * Other addresses may respond but they are not
2939 	  * IEEE compliant PHYs and should be ignored.
2940 	  */
2941 	if (sc->bge_asicrev == BGE_ASICREV_BCM5717 ||
2942 	    sc->bge_asicrev == BGE_ASICREV_BCM5719 ||
2943 	    sc->bge_asicrev == BGE_ASICREV_BCM5720) {
2944 		f = pci_get_function(dev);
2945 		if (sc->bge_chipid == BGE_CHIPID_BCM5717_A0) {
2946 			if (CSR_READ_4(sc, BGE_SGDIG_STS) &
2947 			    BGE_SGDIGSTS_IS_SERDES)
2948 				phy_addr = f + 8;
2949 			else
2950 				phy_addr = f + 1;
2951 		} else {
2952 			if (CSR_READ_4(sc, BGE_CPMU_PHY_STRAP) &
2953 			    BGE_CPMU_PHY_STRAP_IS_SERDES)
2954 				phy_addr = f + 8;
2955 			else
2956 				phy_addr = f + 1;
2957 		}
2958 	}
2959 
2960 	/*
2961 	 * Don't enable Ethernet@WireSpeed for the 5700, 5906, or the
2962 	 * 5705 A0 and A1 chips.
2963 	 */
2964 	if (sc->bge_asicrev == BGE_ASICREV_BCM5700 ||
2965 	    (sc->bge_asicrev == BGE_ASICREV_BCM5705 &&
2966 	    (sc->bge_chipid != BGE_CHIPID_BCM5705_A0 &&
2967 	    sc->bge_chipid != BGE_CHIPID_BCM5705_A1)) ||
2968 	    sc->bge_asicrev == BGE_ASICREV_BCM5906)
2969 		sc->bge_phy_flags |= BGE_PHY_NO_WIRESPEED;
2970 
2971 	if (bge_has_eaddr(sc))
2972 		sc->bge_flags |= BGE_FLAG_EADDR;
2973 
2974 	/* Save chipset family. */
2975 	switch (sc->bge_asicrev) {
2976 	case BGE_ASICREV_BCM5717:
2977 	case BGE_ASICREV_BCM5719:
2978 	case BGE_ASICREV_BCM5720:
2979 	case BGE_ASICREV_BCM57765:
2980 		sc->bge_flags |= BGE_FLAG_5717_PLUS | BGE_FLAG_5755_PLUS |
2981 		    BGE_FLAG_575X_PLUS | BGE_FLAG_5705_PLUS | BGE_FLAG_JUMBO |
2982 		    BGE_FLAG_JUMBO_FRAME;
2983 		if (sc->bge_asicrev == BGE_ASICREV_BCM5719 &&
2984 		    sc->bge_chipid == BGE_CHIPID_BCM5719_A0) {
2985 			/* Jumbo frame on BCM5719 A0 does not work. */
2986 			sc->bge_flags &= ~BGE_FLAG_JUMBO;
2987 		}
2988 		break;
2989 	case BGE_ASICREV_BCM5755:
2990 	case BGE_ASICREV_BCM5761:
2991 	case BGE_ASICREV_BCM5784:
2992 	case BGE_ASICREV_BCM5785:
2993 	case BGE_ASICREV_BCM5787:
2994 	case BGE_ASICREV_BCM57780:
2995 		sc->bge_flags |= BGE_FLAG_5755_PLUS | BGE_FLAG_575X_PLUS |
2996 		    BGE_FLAG_5705_PLUS;
2997 		break;
2998 	case BGE_ASICREV_BCM5700:
2999 	case BGE_ASICREV_BCM5701:
3000 	case BGE_ASICREV_BCM5703:
3001 	case BGE_ASICREV_BCM5704:
3002 		sc->bge_flags |= BGE_FLAG_5700_FAMILY | BGE_FLAG_JUMBO;
3003 		break;
3004 	case BGE_ASICREV_BCM5714_A0:
3005 	case BGE_ASICREV_BCM5780:
3006 	case BGE_ASICREV_BCM5714:
3007 		sc->bge_flags |= BGE_FLAG_5714_FAMILY | BGE_FLAG_JUMBO_STD;
3008 		/* FALLTHROUGH */
3009 	case BGE_ASICREV_BCM5750:
3010 	case BGE_ASICREV_BCM5752:
3011 	case BGE_ASICREV_BCM5906:
3012 		sc->bge_flags |= BGE_FLAG_575X_PLUS;
3013 		/* FALLTHROUGH */
3014 	case BGE_ASICREV_BCM5705:
3015 		sc->bge_flags |= BGE_FLAG_5705_PLUS;
3016 		break;
3017 	}
3018 
3019 	/* Set various PHY bug flags. */
3020 	if (sc->bge_chipid == BGE_CHIPID_BCM5701_A0 ||
3021 	    sc->bge_chipid == BGE_CHIPID_BCM5701_B0)
3022 		sc->bge_phy_flags |= BGE_PHY_CRC_BUG;
3023 	if (sc->bge_chiprev == BGE_CHIPREV_5703_AX ||
3024 	    sc->bge_chiprev == BGE_CHIPREV_5704_AX)
3025 		sc->bge_phy_flags |= BGE_PHY_ADC_BUG;
3026 	if (sc->bge_chipid == BGE_CHIPID_BCM5704_A0)
3027 		sc->bge_phy_flags |= BGE_PHY_5704_A0_BUG;
3028 	if (pci_get_subvendor(dev) == DELL_VENDORID)
3029 		sc->bge_phy_flags |= BGE_PHY_NO_3LED;
3030 	if ((BGE_IS_5705_PLUS(sc)) &&
3031 	    sc->bge_asicrev != BGE_ASICREV_BCM5906 &&
3032 	    sc->bge_asicrev != BGE_ASICREV_BCM5717 &&
3033 	    sc->bge_asicrev != BGE_ASICREV_BCM5719 &&
3034 	    sc->bge_asicrev != BGE_ASICREV_BCM5720 &&
3035 	    sc->bge_asicrev != BGE_ASICREV_BCM5785 &&
3036 	    sc->bge_asicrev != BGE_ASICREV_BCM57765 &&
3037 	    sc->bge_asicrev != BGE_ASICREV_BCM57780) {
3038 		if (sc->bge_asicrev == BGE_ASICREV_BCM5755 ||
3039 		    sc->bge_asicrev == BGE_ASICREV_BCM5761 ||
3040 		    sc->bge_asicrev == BGE_ASICREV_BCM5784 ||
3041 		    sc->bge_asicrev == BGE_ASICREV_BCM5787) {
3042 			if (pci_get_device(dev) != BCOM_DEVICEID_BCM5722 &&
3043 			    pci_get_device(dev) != BCOM_DEVICEID_BCM5756)
3044 				sc->bge_phy_flags |= BGE_PHY_JITTER_BUG;
3045 			if (pci_get_device(dev) == BCOM_DEVICEID_BCM5755M)
3046 				sc->bge_phy_flags |= BGE_PHY_ADJUST_TRIM;
3047 		} else
3048 			sc->bge_phy_flags |= BGE_PHY_BER_BUG;
3049 	}
3050 
3051 	/* Identify the chips that use an CPMU. */
3052 	if (BGE_IS_5717_PLUS(sc) ||
3053 	    sc->bge_asicrev == BGE_ASICREV_BCM5784 ||
3054 	    sc->bge_asicrev == BGE_ASICREV_BCM5761 ||
3055 	    sc->bge_asicrev == BGE_ASICREV_BCM5785 ||
3056 	    sc->bge_asicrev == BGE_ASICREV_BCM57780)
3057 		sc->bge_flags |= BGE_FLAG_CPMU_PRESENT;
3058 	if ((sc->bge_flags & BGE_FLAG_CPMU_PRESENT) != 0)
3059 		sc->bge_mi_mode = BGE_MIMODE_500KHZ_CONST;
3060 	else
3061 		sc->bge_mi_mode = BGE_MIMODE_BASE;
3062 	/* Enable auto polling for BCM570[0-5]. */
3063 	if (BGE_IS_5700_FAMILY(sc) || sc->bge_asicrev == BGE_ASICREV_BCM5705)
3064 		sc->bge_mi_mode |= BGE_MIMODE_AUTOPOLL;
3065 
3066 	/*
3067 	 * All Broadcom controllers have 4GB boundary DMA bug.
3068 	 * Whenever an address crosses a multiple of the 4GB boundary
3069 	 * (including 4GB, 8Gb, 12Gb, etc.) and makes the transition
3070 	 * from 0xX_FFFF_FFFF to 0x(X+1)_0000_0000 an internal DMA
3071 	 * state machine will lockup and cause the device to hang.
3072 	 */
3073 	sc->bge_flags |= BGE_FLAG_4G_BNDRY_BUG;
3074 
3075 	/* BCM5755 or higher and BCM5906 have short DMA bug. */
3076 	if (BGE_IS_5755_PLUS(sc) || sc->bge_asicrev == BGE_ASICREV_BCM5906)
3077 		sc->bge_flags |= BGE_FLAG_SHORT_DMA_BUG;
3078 
3079 	/*
3080 	 * BCM5719 cannot handle DMA requests for DMA segments that
3081 	 * have larger than 4KB in size.  However the maximum DMA
3082 	 * segment size created in DMA tag is 4KB for TSO, so we
3083 	 * wouldn't encounter the issue here.
3084 	 */
3085 	if (sc->bge_asicrev == BGE_ASICREV_BCM5719)
3086 		sc->bge_flags |= BGE_FLAG_4K_RDMA_BUG;
3087 
3088 	misccfg = CSR_READ_4(sc, BGE_MISC_CFG) & BGE_MISCCFG_BOARD_ID_MASK;
3089 	if (sc->bge_asicrev == BGE_ASICREV_BCM5705) {
3090 		if (misccfg == BGE_MISCCFG_BOARD_ID_5788 ||
3091 		    misccfg == BGE_MISCCFG_BOARD_ID_5788M)
3092 			sc->bge_flags |= BGE_FLAG_5788;
3093 	}
3094 
3095 	capmask = BMSR_DEFCAPMASK;
3096 	if ((sc->bge_asicrev == BGE_ASICREV_BCM5703 &&
3097 	    (misccfg == 0x4000 || misccfg == 0x8000)) ||
3098 	    (sc->bge_asicrev == BGE_ASICREV_BCM5705 &&
3099 	    pci_get_vendor(dev) == BCOM_VENDORID &&
3100 	    (pci_get_device(dev) == BCOM_DEVICEID_BCM5901 ||
3101 	    pci_get_device(dev) == BCOM_DEVICEID_BCM5901A2 ||
3102 	    pci_get_device(dev) == BCOM_DEVICEID_BCM5705F)) ||
3103 	    (pci_get_vendor(dev) == BCOM_VENDORID &&
3104 	    (pci_get_device(dev) == BCOM_DEVICEID_BCM5751F ||
3105 	    pci_get_device(dev) == BCOM_DEVICEID_BCM5753F ||
3106 	    pci_get_device(dev) == BCOM_DEVICEID_BCM5787F)) ||
3107 	    pci_get_device(dev) == BCOM_DEVICEID_BCM57790 ||
3108 	    sc->bge_asicrev == BGE_ASICREV_BCM5906) {
3109 		/* These chips are 10/100 only. */
3110 		capmask &= ~BMSR_EXTSTAT;
3111 	}
3112 
3113 	/*
3114 	 * Some controllers seem to require a special firmware to use
3115 	 * TSO. But the firmware is not available to FreeBSD and Linux
3116 	 * claims that the TSO performed by the firmware is slower than
3117 	 * hardware based TSO. Moreover the firmware based TSO has one
3118 	 * known bug which can't handle TSO if ethernet header + IP/TCP
3119 	 * header is greater than 80 bytes. The workaround for the TSO
3120 	 * bug exist but it seems it's too expensive than not using
3121 	 * TSO at all. Some hardwares also have the TSO bug so limit
3122 	 * the TSO to the controllers that are not affected TSO issues
3123 	 * (e.g. 5755 or higher).
3124 	 */
3125 	if (BGE_IS_5717_PLUS(sc)) {
3126 		/* BCM5717 requires different TSO configuration. */
3127 		sc->bge_flags |= BGE_FLAG_TSO3;
3128 		if (sc->bge_asicrev == BGE_ASICREV_BCM5719 &&
3129 		    sc->bge_chipid == BGE_CHIPID_BCM5719_A0) {
3130 			/* TSO on BCM5719 A0 does not work. */
3131 			sc->bge_flags &= ~BGE_FLAG_TSO3;
3132 		}
3133 	} else if (BGE_IS_5755_PLUS(sc)) {
3134 		/*
3135 		 * BCM5754 and BCM5787 shares the same ASIC id so
3136 		 * explicit device id check is required.
3137 		 * Due to unknown reason TSO does not work on BCM5755M.
3138 		 */
3139 		if (pci_get_device(dev) != BCOM_DEVICEID_BCM5754 &&
3140 		    pci_get_device(dev) != BCOM_DEVICEID_BCM5754M &&
3141 		    pci_get_device(dev) != BCOM_DEVICEID_BCM5755M)
3142 			sc->bge_flags |= BGE_FLAG_TSO;
3143 	}
3144 
3145 	/*
3146 	 * Check if this is a PCI-X or PCI Express device.
3147 	 */
3148 	if (pci_find_cap(dev, PCIY_EXPRESS, &reg) == 0) {
3149 		/*
3150 		 * Found a PCI Express capabilities register, this
3151 		 * must be a PCI Express device.
3152 		 */
3153 		sc->bge_flags |= BGE_FLAG_PCIE;
3154 		sc->bge_expcap = reg;
3155 		if (sc->bge_asicrev == BGE_ASICREV_BCM5719 ||
3156 		    sc->bge_asicrev == BGE_ASICREV_BCM5720)
3157 			pci_set_max_read_req(dev, 2048);
3158 		else if (pci_get_max_read_req(dev) != 4096)
3159 			pci_set_max_read_req(dev, 4096);
3160 	} else {
3161 		/*
3162 		 * Check if the device is in PCI-X Mode.
3163 		 * (This bit is not valid on PCI Express controllers.)
3164 		 */
3165 		if (pci_find_cap(dev, PCIY_PCIX, &reg) == 0)
3166 			sc->bge_pcixcap = reg;
3167 		if ((pci_read_config(dev, BGE_PCI_PCISTATE, 4) &
3168 		    BGE_PCISTATE_PCI_BUSMODE) == 0)
3169 			sc->bge_flags |= BGE_FLAG_PCIX;
3170 	}
3171 
3172 	/*
3173 	 * The 40bit DMA bug applies to the 5714/5715 controllers and is
3174 	 * not actually a MAC controller bug but an issue with the embedded
3175 	 * PCIe to PCI-X bridge in the device. Use 40bit DMA workaround.
3176 	 */
3177 	if (BGE_IS_5714_FAMILY(sc) && (sc->bge_flags & BGE_FLAG_PCIX))
3178 		sc->bge_flags |= BGE_FLAG_40BIT_BUG;
3179 	/*
3180 	 * Some PCI-X bridges are known to trigger write reordering to
3181 	 * the mailbox registers. Typical phenomena is watchdog timeouts
3182 	 * caused by out-of-order TX completions.  Enable workaround for
3183 	 * PCI-X devices that live behind these bridges.
3184 	 * Note, PCI-X controllers can run in PCI mode so we can't use
3185 	 * BGE_FLAG_PCIX flag to detect PCI-X controllers.
3186 	 */
3187 	if (sc->bge_pcixcap != 0 && bge_mbox_reorder(sc) != 0)
3188 		sc->bge_flags |= BGE_FLAG_MBOX_REORDER;
3189 	/*
3190 	 * Allocate the interrupt, using MSI if possible.  These devices
3191 	 * support 8 MSI messages, but only the first one is used in
3192 	 * normal operation.
3193 	 */
3194 	rid = 0;
3195 	if (pci_find_cap(sc->bge_dev, PCIY_MSI, &reg) == 0) {
3196 		sc->bge_msicap = reg;
3197 		if (bge_can_use_msi(sc)) {
3198 			msicount = pci_msi_count(dev);
3199 			if (msicount > 1)
3200 				msicount = 1;
3201 		} else
3202 			msicount = 0;
3203 		if (msicount == 1 && pci_alloc_msi(dev, &msicount) == 0) {
3204 			rid = 1;
3205 			sc->bge_flags |= BGE_FLAG_MSI;
3206 		}
3207 	}
3208 
3209 	/*
3210 	 * All controllers except BCM5700 supports tagged status but
3211 	 * we use tagged status only for MSI case on BCM5717. Otherwise
3212 	 * MSI on BCM5717 does not work.
3213 	 */
3214 #ifndef DEVICE_POLLING
3215 	if (sc->bge_flags & BGE_FLAG_MSI && BGE_IS_5717_PLUS(sc))
3216 		sc->bge_flags |= BGE_FLAG_TAGGED_STATUS;
3217 #endif
3218 
3219 	sc->bge_irq = bus_alloc_resource_any(dev, SYS_RES_IRQ, &rid,
3220 	    RF_SHAREABLE | RF_ACTIVE);
3221 
3222 	if (sc->bge_irq == NULL) {
3223 		device_printf(sc->bge_dev, "couldn't map interrupt\n");
3224 		error = ENXIO;
3225 		goto fail;
3226 	}
3227 
3228 	bge_devinfo(sc);
3229 
3230 	BGE_LOCK_INIT(sc, device_get_nameunit(dev));
3231 
3232 	/* Try to reset the chip. */
3233 	if (bge_reset(sc)) {
3234 		device_printf(sc->bge_dev, "chip reset failed\n");
3235 		error = ENXIO;
3236 		goto fail;
3237 	}
3238 
3239 	sc->bge_asf_mode = 0;
3240 	if (bge_allow_asf && (bge_readmem_ind(sc, BGE_SRAM_DATA_SIG) ==
3241 	    BGE_SRAM_DATA_SIG_MAGIC)) {
3242 		if (bge_readmem_ind(sc, BGE_SRAM_DATA_CFG)
3243 		    & BGE_HWCFG_ASF) {
3244 			sc->bge_asf_mode |= ASF_ENABLE;
3245 			sc->bge_asf_mode |= ASF_STACKUP;
3246 			if (BGE_IS_575X_PLUS(sc))
3247 				sc->bge_asf_mode |= ASF_NEW_HANDSHAKE;
3248 		}
3249 	}
3250 
3251 	/* Try to reset the chip again the nice way. */
3252 	bge_stop_fw(sc);
3253 	bge_sig_pre_reset(sc, BGE_RESET_STOP);
3254 	if (bge_reset(sc)) {
3255 		device_printf(sc->bge_dev, "chip reset failed\n");
3256 		error = ENXIO;
3257 		goto fail;
3258 	}
3259 
3260 	bge_sig_legacy(sc, BGE_RESET_STOP);
3261 	bge_sig_post_reset(sc, BGE_RESET_STOP);
3262 
3263 	if (bge_chipinit(sc)) {
3264 		device_printf(sc->bge_dev, "chip initialization failed\n");
3265 		error = ENXIO;
3266 		goto fail;
3267 	}
3268 
3269 	error = bge_get_eaddr(sc, eaddr);
3270 	if (error) {
3271 		device_printf(sc->bge_dev,
3272 		    "failed to read station address\n");
3273 		error = ENXIO;
3274 		goto fail;
3275 	}
3276 
3277 	/* 5705 limits RX return ring to 512 entries. */
3278 	if (BGE_IS_5717_PLUS(sc))
3279 		sc->bge_return_ring_cnt = BGE_RETURN_RING_CNT;
3280 	else if (BGE_IS_5705_PLUS(sc))
3281 		sc->bge_return_ring_cnt = BGE_RETURN_RING_CNT_5705;
3282 	else
3283 		sc->bge_return_ring_cnt = BGE_RETURN_RING_CNT;
3284 
3285 	if (bge_dma_alloc(sc)) {
3286 		device_printf(sc->bge_dev,
3287 		    "failed to allocate DMA resources\n");
3288 		error = ENXIO;
3289 		goto fail;
3290 	}
3291 
3292 	/* Set default tuneable values. */
3293 	sc->bge_stat_ticks = BGE_TICKS_PER_SEC;
3294 	sc->bge_rx_coal_ticks = 150;
3295 	sc->bge_tx_coal_ticks = 150;
3296 	sc->bge_rx_max_coal_bds = 10;
3297 	sc->bge_tx_max_coal_bds = 10;
3298 
3299 	/* Initialize checksum features to use. */
3300 	sc->bge_csum_features = BGE_CSUM_FEATURES;
3301 	if (sc->bge_forced_udpcsum != 0)
3302 		sc->bge_csum_features |= CSUM_UDP;
3303 
3304 	/* Set up ifnet structure */
3305 	ifp = sc->bge_ifp = if_alloc(IFT_ETHER);
3306 	if (ifp == NULL) {
3307 		device_printf(sc->bge_dev, "failed to if_alloc()\n");
3308 		error = ENXIO;
3309 		goto fail;
3310 	}
3311 	ifp->if_softc = sc;
3312 	if_initname(ifp, device_get_name(dev), device_get_unit(dev));
3313 	ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
3314 	ifp->if_ioctl = bge_ioctl;
3315 	ifp->if_start = bge_start;
3316 	ifp->if_init = bge_init;
3317 	ifp->if_snd.ifq_drv_maxlen = BGE_TX_RING_CNT - 1;
3318 	IFQ_SET_MAXLEN(&ifp->if_snd, ifp->if_snd.ifq_drv_maxlen);
3319 	IFQ_SET_READY(&ifp->if_snd);
3320 	ifp->if_hwassist = sc->bge_csum_features;
3321 	ifp->if_capabilities = IFCAP_HWCSUM | IFCAP_VLAN_HWTAGGING |
3322 	    IFCAP_VLAN_MTU;
3323 	if ((sc->bge_flags & (BGE_FLAG_TSO | BGE_FLAG_TSO3)) != 0) {
3324 		ifp->if_hwassist |= CSUM_TSO;
3325 		ifp->if_capabilities |= IFCAP_TSO4 | IFCAP_VLAN_HWTSO;
3326 	}
3327 #ifdef IFCAP_VLAN_HWCSUM
3328 	ifp->if_capabilities |= IFCAP_VLAN_HWCSUM;
3329 #endif
3330 	ifp->if_capenable = ifp->if_capabilities;
3331 #ifdef DEVICE_POLLING
3332 	ifp->if_capabilities |= IFCAP_POLLING;
3333 #endif
3334 
3335 	/*
3336 	 * 5700 B0 chips do not support checksumming correctly due
3337 	 * to hardware bugs.
3338 	 */
3339 	if (sc->bge_chipid == BGE_CHIPID_BCM5700_B0) {
3340 		ifp->if_capabilities &= ~IFCAP_HWCSUM;
3341 		ifp->if_capenable &= ~IFCAP_HWCSUM;
3342 		ifp->if_hwassist = 0;
3343 	}
3344 
3345 	/*
3346 	 * Figure out what sort of media we have by checking the
3347 	 * hardware config word in the first 32k of NIC internal memory,
3348 	 * or fall back to examining the EEPROM if necessary.
3349 	 * Note: on some BCM5700 cards, this value appears to be unset.
3350 	 * If that's the case, we have to rely on identifying the NIC
3351 	 * by its PCI subsystem ID, as we do below for the SysKonnect
3352 	 * SK-9D41.
3353 	 */
3354 	if (bge_readmem_ind(sc, BGE_SRAM_DATA_SIG) == BGE_SRAM_DATA_SIG_MAGIC)
3355 		hwcfg = bge_readmem_ind(sc, BGE_SRAM_DATA_CFG);
3356 	else if ((sc->bge_flags & BGE_FLAG_EADDR) &&
3357 	    (sc->bge_asicrev != BGE_ASICREV_BCM5906)) {
3358 		if (bge_read_eeprom(sc, (caddr_t)&hwcfg, BGE_EE_HWCFG_OFFSET,
3359 		    sizeof(hwcfg))) {
3360 			device_printf(sc->bge_dev, "failed to read EEPROM\n");
3361 			error = ENXIO;
3362 			goto fail;
3363 		}
3364 		hwcfg = ntohl(hwcfg);
3365 	}
3366 
3367 	/* The SysKonnect SK-9D41 is a 1000baseSX card. */
3368 	if ((pci_read_config(dev, BGE_PCI_SUBSYS, 4) >> 16) ==
3369 	    SK_SUBSYSID_9D41 || (hwcfg & BGE_HWCFG_MEDIA) == BGE_MEDIA_FIBER) {
3370 		if (BGE_IS_5714_FAMILY(sc))
3371 			sc->bge_flags |= BGE_FLAG_MII_SERDES;
3372 		else
3373 			sc->bge_flags |= BGE_FLAG_TBI;
3374 	}
3375 
3376 	if (sc->bge_flags & BGE_FLAG_TBI) {
3377 		ifmedia_init(&sc->bge_ifmedia, IFM_IMASK, bge_ifmedia_upd,
3378 		    bge_ifmedia_sts);
3379 		ifmedia_add(&sc->bge_ifmedia, IFM_ETHER | IFM_1000_SX, 0, NULL);
3380 		ifmedia_add(&sc->bge_ifmedia, IFM_ETHER | IFM_1000_SX | IFM_FDX,
3381 		    0, NULL);
3382 		ifmedia_add(&sc->bge_ifmedia, IFM_ETHER | IFM_AUTO, 0, NULL);
3383 		ifmedia_set(&sc->bge_ifmedia, IFM_ETHER | IFM_AUTO);
3384 		sc->bge_ifmedia.ifm_media = sc->bge_ifmedia.ifm_cur->ifm_media;
3385 	} else {
3386 		/*
3387 		 * Do transceiver setup and tell the firmware the
3388 		 * driver is down so we can try to get access the
3389 		 * probe if ASF is running.  Retry a couple of times
3390 		 * if we get a conflict with the ASF firmware accessing
3391 		 * the PHY.
3392 		 */
3393 		trys = 0;
3394 		BGE_CLRBIT(sc, BGE_MODE_CTL, BGE_MODECTL_STACKUP);
3395 again:
3396 		bge_asf_driver_up(sc);
3397 
3398 		error = mii_attach(dev, &sc->bge_miibus, ifp, bge_ifmedia_upd,
3399 		    bge_ifmedia_sts, capmask, phy_addr, MII_OFFSET_ANY,
3400 		    MIIF_DOPAUSE);
3401 		if (error != 0) {
3402 			if (trys++ < 4) {
3403 				device_printf(sc->bge_dev, "Try again\n");
3404 				bge_miibus_writereg(sc->bge_dev, 1, MII_BMCR,
3405 				    BMCR_RESET);
3406 				goto again;
3407 			}
3408 			device_printf(sc->bge_dev, "attaching PHYs failed\n");
3409 			goto fail;
3410 		}
3411 
3412 		/*
3413 		 * Now tell the firmware we are going up after probing the PHY
3414 		 */
3415 		if (sc->bge_asf_mode & ASF_STACKUP)
3416 			BGE_SETBIT(sc, BGE_MODE_CTL, BGE_MODECTL_STACKUP);
3417 	}
3418 
3419 	/*
3420 	 * When using the BCM5701 in PCI-X mode, data corruption has
3421 	 * been observed in the first few bytes of some received packets.
3422 	 * Aligning the packet buffer in memory eliminates the corruption.
3423 	 * Unfortunately, this misaligns the packet payloads.  On platforms
3424 	 * which do not support unaligned accesses, we will realign the
3425 	 * payloads by copying the received packets.
3426 	 */
3427 	if (sc->bge_asicrev == BGE_ASICREV_BCM5701 &&
3428 	    sc->bge_flags & BGE_FLAG_PCIX)
3429                 sc->bge_flags |= BGE_FLAG_RX_ALIGNBUG;
3430 
3431 	/*
3432 	 * Call MI attach routine.
3433 	 */
3434 	ether_ifattach(ifp, eaddr);
3435 	callout_init_mtx(&sc->bge_stat_ch, &sc->bge_mtx, 0);
3436 
3437 	/* Tell upper layer we support long frames. */
3438 	ifp->if_data.ifi_hdrlen = sizeof(struct ether_vlan_header);
3439 
3440 	/*
3441 	 * Hookup IRQ last.
3442 	 */
3443 	if (BGE_IS_5755_PLUS(sc) && sc->bge_flags & BGE_FLAG_MSI) {
3444 		/* Take advantage of single-shot MSI. */
3445 		CSR_WRITE_4(sc, BGE_MSI_MODE, CSR_READ_4(sc, BGE_MSI_MODE) &
3446 		    ~BGE_MSIMODE_ONE_SHOT_DISABLE);
3447 		sc->bge_tq = taskqueue_create_fast("bge_taskq", M_WAITOK,
3448 		    taskqueue_thread_enqueue, &sc->bge_tq);
3449 		if (sc->bge_tq == NULL) {
3450 			device_printf(dev, "could not create taskqueue.\n");
3451 			ether_ifdetach(ifp);
3452 			error = ENXIO;
3453 			goto fail;
3454 		}
3455 		taskqueue_start_threads(&sc->bge_tq, 1, PI_NET, "%s taskq",
3456 		    device_get_nameunit(sc->bge_dev));
3457 		error = bus_setup_intr(dev, sc->bge_irq,
3458 		    INTR_TYPE_NET | INTR_MPSAFE, bge_msi_intr, NULL, sc,
3459 		    &sc->bge_intrhand);
3460 		if (error)
3461 			ether_ifdetach(ifp);
3462 	} else
3463 		error = bus_setup_intr(dev, sc->bge_irq,
3464 		    INTR_TYPE_NET | INTR_MPSAFE, NULL, bge_intr, sc,
3465 		    &sc->bge_intrhand);
3466 
3467 	if (error) {
3468 		bge_detach(dev);
3469 		device_printf(sc->bge_dev, "couldn't set up irq\n");
3470 	}
3471 
3472 	return (0);
3473 
3474 fail:
3475 	bge_release_resources(sc);
3476 
3477 	return (error);
3478 }
3479 
3480 static int
3481 bge_detach(device_t dev)
3482 {
3483 	struct bge_softc *sc;
3484 	struct ifnet *ifp;
3485 
3486 	sc = device_get_softc(dev);
3487 	ifp = sc->bge_ifp;
3488 
3489 #ifdef DEVICE_POLLING
3490 	if (ifp->if_capenable & IFCAP_POLLING)
3491 		ether_poll_deregister(ifp);
3492 #endif
3493 
3494 	BGE_LOCK(sc);
3495 	bge_stop(sc);
3496 	bge_reset(sc);
3497 	BGE_UNLOCK(sc);
3498 
3499 	callout_drain(&sc->bge_stat_ch);
3500 
3501 	if (sc->bge_tq)
3502 		taskqueue_drain(sc->bge_tq, &sc->bge_intr_task);
3503 	ether_ifdetach(ifp);
3504 
3505 	if (sc->bge_flags & BGE_FLAG_TBI) {
3506 		ifmedia_removeall(&sc->bge_ifmedia);
3507 	} else {
3508 		bus_generic_detach(dev);
3509 		device_delete_child(dev, sc->bge_miibus);
3510 	}
3511 
3512 	bge_release_resources(sc);
3513 
3514 	return (0);
3515 }
3516 
3517 static void
3518 bge_release_resources(struct bge_softc *sc)
3519 {
3520 	device_t dev;
3521 
3522 	dev = sc->bge_dev;
3523 
3524 	if (sc->bge_tq != NULL)
3525 		taskqueue_free(sc->bge_tq);
3526 
3527 	if (sc->bge_intrhand != NULL)
3528 		bus_teardown_intr(dev, sc->bge_irq, sc->bge_intrhand);
3529 
3530 	if (sc->bge_irq != NULL)
3531 		bus_release_resource(dev, SYS_RES_IRQ,
3532 		    sc->bge_flags & BGE_FLAG_MSI ? 1 : 0, sc->bge_irq);
3533 
3534 	if (sc->bge_flags & BGE_FLAG_MSI)
3535 		pci_release_msi(dev);
3536 
3537 	if (sc->bge_res != NULL)
3538 		bus_release_resource(dev, SYS_RES_MEMORY,
3539 		    PCIR_BAR(0), sc->bge_res);
3540 
3541 	if (sc->bge_ifp != NULL)
3542 		if_free(sc->bge_ifp);
3543 
3544 	bge_dma_free(sc);
3545 
3546 	if (mtx_initialized(&sc->bge_mtx))	/* XXX */
3547 		BGE_LOCK_DESTROY(sc);
3548 }
3549 
3550 static int
3551 bge_reset(struct bge_softc *sc)
3552 {
3553 	device_t dev;
3554 	uint32_t cachesize, command, pcistate, reset, val;
3555 	void (*write_op)(struct bge_softc *, int, int);
3556 	uint16_t devctl;
3557 	int i;
3558 
3559 	dev = sc->bge_dev;
3560 
3561 	if (BGE_IS_575X_PLUS(sc) && !BGE_IS_5714_FAMILY(sc) &&
3562 	    (sc->bge_asicrev != BGE_ASICREV_BCM5906)) {
3563 		if (sc->bge_flags & BGE_FLAG_PCIE)
3564 			write_op = bge_writemem_direct;
3565 		else
3566 			write_op = bge_writemem_ind;
3567 	} else
3568 		write_op = bge_writereg_ind;
3569 
3570 	/* Save some important PCI state. */
3571 	cachesize = pci_read_config(dev, BGE_PCI_CACHESZ, 4);
3572 	command = pci_read_config(dev, BGE_PCI_CMD, 4);
3573 	pcistate = pci_read_config(dev, BGE_PCI_PCISTATE, 4);
3574 
3575 	pci_write_config(dev, BGE_PCI_MISC_CTL,
3576 	    BGE_PCIMISCCTL_INDIRECT_ACCESS | BGE_PCIMISCCTL_MASK_PCI_INTR |
3577 	    BGE_HIF_SWAP_OPTIONS | BGE_PCIMISCCTL_PCISTATE_RW, 4);
3578 
3579 	/* Disable fastboot on controllers that support it. */
3580 	if (sc->bge_asicrev == BGE_ASICREV_BCM5752 ||
3581 	    BGE_IS_5755_PLUS(sc)) {
3582 		if (bootverbose)
3583 			device_printf(dev, "Disabling fastboot\n");
3584 		CSR_WRITE_4(sc, BGE_FASTBOOT_PC, 0x0);
3585 	}
3586 
3587 	/*
3588 	 * Write the magic number to SRAM at offset 0xB50.
3589 	 * When firmware finishes its initialization it will
3590 	 * write ~BGE_SRAM_FW_MB_MAGIC to the same location.
3591 	 */
3592 	bge_writemem_ind(sc, BGE_SRAM_FW_MB, BGE_SRAM_FW_MB_MAGIC);
3593 
3594 	reset = BGE_MISCCFG_RESET_CORE_CLOCKS | BGE_32BITTIME_66MHZ;
3595 
3596 	/* XXX: Broadcom Linux driver. */
3597 	if (sc->bge_flags & BGE_FLAG_PCIE) {
3598 		if (CSR_READ_4(sc, 0x7E2C) == 0x60)	/* PCIE 1.0 */
3599 			CSR_WRITE_4(sc, 0x7E2C, 0x20);
3600 		if (sc->bge_chipid != BGE_CHIPID_BCM5750_A0) {
3601 			/* Prevent PCIE link training during global reset */
3602 			CSR_WRITE_4(sc, BGE_MISC_CFG, 1 << 29);
3603 			reset |= 1 << 29;
3604 		}
3605 	}
3606 
3607 	/*
3608 	 * Set GPHY Power Down Override to leave GPHY
3609 	 * powered up in D0 uninitialized.
3610 	 */
3611 	if (BGE_IS_5705_PLUS(sc) &&
3612 	    (sc->bge_flags & BGE_FLAG_CPMU_PRESENT) == 0)
3613 		reset |= BGE_MISCCFG_GPHY_PD_OVERRIDE;
3614 
3615 	/* Issue global reset */
3616 	write_op(sc, BGE_MISC_CFG, reset);
3617 
3618 	if (sc->bge_asicrev == BGE_ASICREV_BCM5906) {
3619 		val = CSR_READ_4(sc, BGE_VCPU_STATUS);
3620 		CSR_WRITE_4(sc, BGE_VCPU_STATUS,
3621 		    val | BGE_VCPU_STATUS_DRV_RESET);
3622 		val = CSR_READ_4(sc, BGE_VCPU_EXT_CTRL);
3623 		CSR_WRITE_4(sc, BGE_VCPU_EXT_CTRL,
3624 		    val & ~BGE_VCPU_EXT_CTRL_HALT_CPU);
3625 	}
3626 
3627 	DELAY(1000);
3628 
3629 	/* XXX: Broadcom Linux driver. */
3630 	if (sc->bge_flags & BGE_FLAG_PCIE) {
3631 		if (sc->bge_chipid == BGE_CHIPID_BCM5750_A0) {
3632 			DELAY(500000); /* wait for link training to complete */
3633 			val = pci_read_config(dev, 0xC4, 4);
3634 			pci_write_config(dev, 0xC4, val | (1 << 15), 4);
3635 		}
3636 		devctl = pci_read_config(dev,
3637 		    sc->bge_expcap + PCIR_EXPRESS_DEVICE_CTL, 2);
3638 		/* Clear enable no snoop and disable relaxed ordering. */
3639 		devctl &= ~(PCIM_EXP_CTL_RELAXED_ORD_ENABLE |
3640 		    PCIM_EXP_CTL_NOSNOOP_ENABLE);
3641 		/* Set PCIE max payload size to 128. */
3642 		devctl &= ~PCIM_EXP_CTL_MAX_PAYLOAD;
3643 		pci_write_config(dev, sc->bge_expcap + PCIR_EXPRESS_DEVICE_CTL,
3644 		    devctl, 2);
3645 		/* Clear error status. */
3646 		pci_write_config(dev, sc->bge_expcap + PCIR_EXPRESS_DEVICE_STA,
3647 		    PCIM_EXP_STA_CORRECTABLE_ERROR |
3648 		    PCIM_EXP_STA_NON_FATAL_ERROR | PCIM_EXP_STA_FATAL_ERROR |
3649 		    PCIM_EXP_STA_UNSUPPORTED_REQ, 2);
3650 	}
3651 
3652 	/* Reset some of the PCI state that got zapped by reset. */
3653 	pci_write_config(dev, BGE_PCI_MISC_CTL,
3654 	    BGE_PCIMISCCTL_INDIRECT_ACCESS | BGE_PCIMISCCTL_MASK_PCI_INTR |
3655 	    BGE_HIF_SWAP_OPTIONS | BGE_PCIMISCCTL_PCISTATE_RW, 4);
3656 	pci_write_config(dev, BGE_PCI_CACHESZ, cachesize, 4);
3657 	pci_write_config(dev, BGE_PCI_CMD, command, 4);
3658 	write_op(sc, BGE_MISC_CFG, BGE_32BITTIME_66MHZ);
3659 	/*
3660 	 * Disable PCI-X relaxed ordering to ensure status block update
3661 	 * comes first then packet buffer DMA. Otherwise driver may
3662 	 * read stale status block.
3663 	 */
3664 	if (sc->bge_flags & BGE_FLAG_PCIX) {
3665 		devctl = pci_read_config(dev,
3666 		    sc->bge_pcixcap + PCIXR_COMMAND, 2);
3667 		devctl &= ~PCIXM_COMMAND_ERO;
3668 		if (sc->bge_asicrev == BGE_ASICREV_BCM5703) {
3669 			devctl &= ~PCIXM_COMMAND_MAX_READ;
3670 			devctl |= PCIXM_COMMAND_MAX_READ_2048;
3671 		} else if (sc->bge_asicrev == BGE_ASICREV_BCM5704) {
3672 			devctl &= ~(PCIXM_COMMAND_MAX_SPLITS |
3673 			    PCIXM_COMMAND_MAX_READ);
3674 			devctl |= PCIXM_COMMAND_MAX_READ_2048;
3675 		}
3676 		pci_write_config(dev, sc->bge_pcixcap + PCIXR_COMMAND,
3677 		    devctl, 2);
3678 	}
3679 	/* Re-enable MSI, if necessary, and enable the memory arbiter. */
3680 	if (BGE_IS_5714_FAMILY(sc)) {
3681 		/* This chip disables MSI on reset. */
3682 		if (sc->bge_flags & BGE_FLAG_MSI) {
3683 			val = pci_read_config(dev,
3684 			    sc->bge_msicap + PCIR_MSI_CTRL, 2);
3685 			pci_write_config(dev,
3686 			    sc->bge_msicap + PCIR_MSI_CTRL,
3687 			    val | PCIM_MSICTRL_MSI_ENABLE, 2);
3688 			val = CSR_READ_4(sc, BGE_MSI_MODE);
3689 			CSR_WRITE_4(sc, BGE_MSI_MODE,
3690 			    val | BGE_MSIMODE_ENABLE);
3691 		}
3692 		val = CSR_READ_4(sc, BGE_MARB_MODE);
3693 		CSR_WRITE_4(sc, BGE_MARB_MODE, BGE_MARBMODE_ENABLE | val);
3694 	} else
3695 		CSR_WRITE_4(sc, BGE_MARB_MODE, BGE_MARBMODE_ENABLE);
3696 
3697 	if (sc->bge_asicrev == BGE_ASICREV_BCM5906) {
3698 		for (i = 0; i < BGE_TIMEOUT; i++) {
3699 			val = CSR_READ_4(sc, BGE_VCPU_STATUS);
3700 			if (val & BGE_VCPU_STATUS_INIT_DONE)
3701 				break;
3702 			DELAY(100);
3703 		}
3704 		if (i == BGE_TIMEOUT) {
3705 			device_printf(dev, "reset timed out\n");
3706 			return (1);
3707 		}
3708 	} else {
3709 		/*
3710 		 * Poll until we see the 1's complement of the magic number.
3711 		 * This indicates that the firmware initialization is complete.
3712 		 * We expect this to fail if no chip containing the Ethernet
3713 		 * address is fitted though.
3714 		 */
3715 		for (i = 0; i < BGE_TIMEOUT; i++) {
3716 			DELAY(10);
3717 			val = bge_readmem_ind(sc, BGE_SRAM_FW_MB);
3718 			if (val == ~BGE_SRAM_FW_MB_MAGIC)
3719 				break;
3720 		}
3721 
3722 		if ((sc->bge_flags & BGE_FLAG_EADDR) && i == BGE_TIMEOUT)
3723 			device_printf(dev,
3724 			    "firmware handshake timed out, found 0x%08x\n",
3725 			    val);
3726 		/* BCM57765 A0 needs additional time before accessing. */
3727 		if (sc->bge_chipid == BGE_CHIPID_BCM57765_A0)
3728 			DELAY(10 * 1000);	/* XXX */
3729 	}
3730 
3731 	/*
3732 	 * XXX Wait for the value of the PCISTATE register to
3733 	 * return to its original pre-reset state. This is a
3734 	 * fairly good indicator of reset completion. If we don't
3735 	 * wait for the reset to fully complete, trying to read
3736 	 * from the device's non-PCI registers may yield garbage
3737 	 * results.
3738 	 */
3739 	for (i = 0; i < BGE_TIMEOUT; i++) {
3740 		if (pci_read_config(dev, BGE_PCI_PCISTATE, 4) == pcistate)
3741 			break;
3742 		DELAY(10);
3743 	}
3744 
3745 	/* Fix up byte swapping. */
3746 	CSR_WRITE_4(sc, BGE_MODE_CTL, bge_dma_swap_options(sc));
3747 
3748 	/* Tell the ASF firmware we are up */
3749 	if (sc->bge_asf_mode & ASF_STACKUP)
3750 		BGE_SETBIT(sc, BGE_MODE_CTL, BGE_MODECTL_STACKUP);
3751 
3752 	CSR_WRITE_4(sc, BGE_MAC_MODE, 0);
3753 
3754 	/*
3755 	 * The 5704 in TBI mode apparently needs some special
3756 	 * adjustment to insure the SERDES drive level is set
3757 	 * to 1.2V.
3758 	 */
3759 	if (sc->bge_asicrev == BGE_ASICREV_BCM5704 &&
3760 	    sc->bge_flags & BGE_FLAG_TBI) {
3761 		val = CSR_READ_4(sc, BGE_SERDES_CFG);
3762 		val = (val & ~0xFFF) | 0x880;
3763 		CSR_WRITE_4(sc, BGE_SERDES_CFG, val);
3764 	}
3765 
3766 	/* XXX: Broadcom Linux driver. */
3767 	if (sc->bge_flags & BGE_FLAG_PCIE &&
3768 	    !BGE_IS_5717_PLUS(sc) &&
3769 	    sc->bge_chipid != BGE_CHIPID_BCM5750_A0 &&
3770 	    sc->bge_asicrev != BGE_ASICREV_BCM5785) {
3771 		/* Enable Data FIFO protection. */
3772 		val = CSR_READ_4(sc, 0x7C00);
3773 		CSR_WRITE_4(sc, 0x7C00, val | (1 << 25));
3774 	}
3775 	DELAY(10000);
3776 
3777 	if (sc->bge_asicrev == BGE_ASICREV_BCM5720)
3778 		BGE_CLRBIT(sc, BGE_CPMU_CLCK_ORIDE,
3779 		    CPMU_CLCK_ORIDE_MAC_ORIDE_EN);
3780 
3781 	return (0);
3782 }
3783 
3784 static __inline void
3785 bge_rxreuse_std(struct bge_softc *sc, int i)
3786 {
3787 	struct bge_rx_bd *r;
3788 
3789 	r = &sc->bge_ldata.bge_rx_std_ring[sc->bge_std];
3790 	r->bge_flags = BGE_RXBDFLAG_END;
3791 	r->bge_len = sc->bge_cdata.bge_rx_std_seglen[i];
3792 	r->bge_idx = i;
3793 	BGE_INC(sc->bge_std, BGE_STD_RX_RING_CNT);
3794 }
3795 
3796 static __inline void
3797 bge_rxreuse_jumbo(struct bge_softc *sc, int i)
3798 {
3799 	struct bge_extrx_bd *r;
3800 
3801 	r = &sc->bge_ldata.bge_rx_jumbo_ring[sc->bge_jumbo];
3802 	r->bge_flags = BGE_RXBDFLAG_JUMBO_RING | BGE_RXBDFLAG_END;
3803 	r->bge_len0 = sc->bge_cdata.bge_rx_jumbo_seglen[i][0];
3804 	r->bge_len1 = sc->bge_cdata.bge_rx_jumbo_seglen[i][1];
3805 	r->bge_len2 = sc->bge_cdata.bge_rx_jumbo_seglen[i][2];
3806 	r->bge_len3 = sc->bge_cdata.bge_rx_jumbo_seglen[i][3];
3807 	r->bge_idx = i;
3808 	BGE_INC(sc->bge_jumbo, BGE_JUMBO_RX_RING_CNT);
3809 }
3810 
3811 /*
3812  * Frame reception handling. This is called if there's a frame
3813  * on the receive return list.
3814  *
3815  * Note: we have to be able to handle two possibilities here:
3816  * 1) the frame is from the jumbo receive ring
3817  * 2) the frame is from the standard receive ring
3818  */
3819 
3820 static int
3821 bge_rxeof(struct bge_softc *sc, uint16_t rx_prod, int holdlck)
3822 {
3823 	struct ifnet *ifp;
3824 	int rx_npkts = 0, stdcnt = 0, jumbocnt = 0;
3825 	uint16_t rx_cons;
3826 
3827 	rx_cons = sc->bge_rx_saved_considx;
3828 
3829 	/* Nothing to do. */
3830 	if (rx_cons == rx_prod)
3831 		return (rx_npkts);
3832 
3833 	ifp = sc->bge_ifp;
3834 
3835 	bus_dmamap_sync(sc->bge_cdata.bge_rx_return_ring_tag,
3836 	    sc->bge_cdata.bge_rx_return_ring_map, BUS_DMASYNC_POSTREAD);
3837 	bus_dmamap_sync(sc->bge_cdata.bge_rx_std_ring_tag,
3838 	    sc->bge_cdata.bge_rx_std_ring_map, BUS_DMASYNC_POSTWRITE);
3839 	if (BGE_IS_JUMBO_CAPABLE(sc) &&
3840 	    ifp->if_mtu + ETHER_HDR_LEN + ETHER_CRC_LEN + ETHER_VLAN_ENCAP_LEN >
3841 	    (MCLBYTES - ETHER_ALIGN))
3842 		bus_dmamap_sync(sc->bge_cdata.bge_rx_jumbo_ring_tag,
3843 		    sc->bge_cdata.bge_rx_jumbo_ring_map, BUS_DMASYNC_POSTWRITE);
3844 
3845 	while (rx_cons != rx_prod) {
3846 		struct bge_rx_bd	*cur_rx;
3847 		uint32_t		rxidx;
3848 		struct mbuf		*m = NULL;
3849 		uint16_t		vlan_tag = 0;
3850 		int			have_tag = 0;
3851 
3852 #ifdef DEVICE_POLLING
3853 		if (ifp->if_capenable & IFCAP_POLLING) {
3854 			if (sc->rxcycles <= 0)
3855 				break;
3856 			sc->rxcycles--;
3857 		}
3858 #endif
3859 
3860 		cur_rx = &sc->bge_ldata.bge_rx_return_ring[rx_cons];
3861 
3862 		rxidx = cur_rx->bge_idx;
3863 		BGE_INC(rx_cons, sc->bge_return_ring_cnt);
3864 
3865 		if (ifp->if_capenable & IFCAP_VLAN_HWTAGGING &&
3866 		    cur_rx->bge_flags & BGE_RXBDFLAG_VLAN_TAG) {
3867 			have_tag = 1;
3868 			vlan_tag = cur_rx->bge_vlan_tag;
3869 		}
3870 
3871 		if (cur_rx->bge_flags & BGE_RXBDFLAG_JUMBO_RING) {
3872 			jumbocnt++;
3873 			m = sc->bge_cdata.bge_rx_jumbo_chain[rxidx];
3874 			if (cur_rx->bge_flags & BGE_RXBDFLAG_ERROR) {
3875 				bge_rxreuse_jumbo(sc, rxidx);
3876 				continue;
3877 			}
3878 			if (bge_newbuf_jumbo(sc, rxidx) != 0) {
3879 				bge_rxreuse_jumbo(sc, rxidx);
3880 				ifp->if_iqdrops++;
3881 				continue;
3882 			}
3883 			BGE_INC(sc->bge_jumbo, BGE_JUMBO_RX_RING_CNT);
3884 		} else {
3885 			stdcnt++;
3886 			m = sc->bge_cdata.bge_rx_std_chain[rxidx];
3887 			if (cur_rx->bge_flags & BGE_RXBDFLAG_ERROR) {
3888 				bge_rxreuse_std(sc, rxidx);
3889 				continue;
3890 			}
3891 			if (bge_newbuf_std(sc, rxidx) != 0) {
3892 				bge_rxreuse_std(sc, rxidx);
3893 				ifp->if_iqdrops++;
3894 				continue;
3895 			}
3896 			BGE_INC(sc->bge_std, BGE_STD_RX_RING_CNT);
3897 		}
3898 
3899 		ifp->if_ipackets++;
3900 #ifndef __NO_STRICT_ALIGNMENT
3901 		/*
3902 		 * For architectures with strict alignment we must make sure
3903 		 * the payload is aligned.
3904 		 */
3905 		if (sc->bge_flags & BGE_FLAG_RX_ALIGNBUG) {
3906 			bcopy(m->m_data, m->m_data + ETHER_ALIGN,
3907 			    cur_rx->bge_len);
3908 			m->m_data += ETHER_ALIGN;
3909 		}
3910 #endif
3911 		m->m_pkthdr.len = m->m_len = cur_rx->bge_len - ETHER_CRC_LEN;
3912 		m->m_pkthdr.rcvif = ifp;
3913 
3914 		if (ifp->if_capenable & IFCAP_RXCSUM)
3915 			bge_rxcsum(sc, cur_rx, m);
3916 
3917 		/*
3918 		 * If we received a packet with a vlan tag,
3919 		 * attach that information to the packet.
3920 		 */
3921 		if (have_tag) {
3922 			m->m_pkthdr.ether_vtag = vlan_tag;
3923 			m->m_flags |= M_VLANTAG;
3924 		}
3925 
3926 		if (holdlck != 0) {
3927 			BGE_UNLOCK(sc);
3928 			(*ifp->if_input)(ifp, m);
3929 			BGE_LOCK(sc);
3930 		} else
3931 			(*ifp->if_input)(ifp, m);
3932 		rx_npkts++;
3933 
3934 		if (!(ifp->if_drv_flags & IFF_DRV_RUNNING))
3935 			return (rx_npkts);
3936 	}
3937 
3938 	bus_dmamap_sync(sc->bge_cdata.bge_rx_return_ring_tag,
3939 	    sc->bge_cdata.bge_rx_return_ring_map, BUS_DMASYNC_PREREAD);
3940 	if (stdcnt > 0)
3941 		bus_dmamap_sync(sc->bge_cdata.bge_rx_std_ring_tag,
3942 		    sc->bge_cdata.bge_rx_std_ring_map, BUS_DMASYNC_PREWRITE);
3943 
3944 	if (jumbocnt > 0)
3945 		bus_dmamap_sync(sc->bge_cdata.bge_rx_jumbo_ring_tag,
3946 		    sc->bge_cdata.bge_rx_jumbo_ring_map, BUS_DMASYNC_PREWRITE);
3947 
3948 	sc->bge_rx_saved_considx = rx_cons;
3949 	bge_writembx(sc, BGE_MBX_RX_CONS0_LO, sc->bge_rx_saved_considx);
3950 	if (stdcnt)
3951 		bge_writembx(sc, BGE_MBX_RX_STD_PROD_LO, (sc->bge_std +
3952 		    BGE_STD_RX_RING_CNT - 1) % BGE_STD_RX_RING_CNT);
3953 	if (jumbocnt)
3954 		bge_writembx(sc, BGE_MBX_RX_JUMBO_PROD_LO, (sc->bge_jumbo +
3955 		    BGE_JUMBO_RX_RING_CNT - 1) % BGE_JUMBO_RX_RING_CNT);
3956 #ifdef notyet
3957 	/*
3958 	 * This register wraps very quickly under heavy packet drops.
3959 	 * If you need correct statistics, you can enable this check.
3960 	 */
3961 	if (BGE_IS_5705_PLUS(sc))
3962 		ifp->if_ierrors += CSR_READ_4(sc, BGE_RXLP_LOCSTAT_IFIN_DROPS);
3963 #endif
3964 	return (rx_npkts);
3965 }
3966 
3967 static void
3968 bge_rxcsum(struct bge_softc *sc, struct bge_rx_bd *cur_rx, struct mbuf *m)
3969 {
3970 
3971 	if (BGE_IS_5717_PLUS(sc)) {
3972 		if ((cur_rx->bge_flags & BGE_RXBDFLAG_IPV6) == 0) {
3973 			if (cur_rx->bge_flags & BGE_RXBDFLAG_IP_CSUM) {
3974 				m->m_pkthdr.csum_flags |= CSUM_IP_CHECKED;
3975 				if ((cur_rx->bge_error_flag &
3976 				    BGE_RXERRFLAG_IP_CSUM_NOK) == 0)
3977 					m->m_pkthdr.csum_flags |= CSUM_IP_VALID;
3978 			}
3979 			if (cur_rx->bge_flags & BGE_RXBDFLAG_TCP_UDP_CSUM) {
3980 				m->m_pkthdr.csum_data =
3981 				    cur_rx->bge_tcp_udp_csum;
3982 				m->m_pkthdr.csum_flags |= CSUM_DATA_VALID |
3983 				    CSUM_PSEUDO_HDR;
3984 			}
3985 		}
3986 	} else {
3987 		if (cur_rx->bge_flags & BGE_RXBDFLAG_IP_CSUM) {
3988 			m->m_pkthdr.csum_flags |= CSUM_IP_CHECKED;
3989 			if ((cur_rx->bge_ip_csum ^ 0xFFFF) == 0)
3990 				m->m_pkthdr.csum_flags |= CSUM_IP_VALID;
3991 		}
3992 		if (cur_rx->bge_flags & BGE_RXBDFLAG_TCP_UDP_CSUM &&
3993 		    m->m_pkthdr.len >= ETHER_MIN_NOPAD) {
3994 			m->m_pkthdr.csum_data =
3995 			    cur_rx->bge_tcp_udp_csum;
3996 			m->m_pkthdr.csum_flags |= CSUM_DATA_VALID |
3997 			    CSUM_PSEUDO_HDR;
3998 		}
3999 	}
4000 }
4001 
4002 static void
4003 bge_txeof(struct bge_softc *sc, uint16_t tx_cons)
4004 {
4005 	struct bge_tx_bd *cur_tx;
4006 	struct ifnet *ifp;
4007 
4008 	BGE_LOCK_ASSERT(sc);
4009 
4010 	/* Nothing to do. */
4011 	if (sc->bge_tx_saved_considx == tx_cons)
4012 		return;
4013 
4014 	ifp = sc->bge_ifp;
4015 
4016 	bus_dmamap_sync(sc->bge_cdata.bge_tx_ring_tag,
4017 	    sc->bge_cdata.bge_tx_ring_map, BUS_DMASYNC_POSTWRITE);
4018 	/*
4019 	 * Go through our tx ring and free mbufs for those
4020 	 * frames that have been sent.
4021 	 */
4022 	while (sc->bge_tx_saved_considx != tx_cons) {
4023 		uint32_t		idx;
4024 
4025 		idx = sc->bge_tx_saved_considx;
4026 		cur_tx = &sc->bge_ldata.bge_tx_ring[idx];
4027 		if (cur_tx->bge_flags & BGE_TXBDFLAG_END)
4028 			ifp->if_opackets++;
4029 		if (sc->bge_cdata.bge_tx_chain[idx] != NULL) {
4030 			bus_dmamap_sync(sc->bge_cdata.bge_tx_mtag,
4031 			    sc->bge_cdata.bge_tx_dmamap[idx],
4032 			    BUS_DMASYNC_POSTWRITE);
4033 			bus_dmamap_unload(sc->bge_cdata.bge_tx_mtag,
4034 			    sc->bge_cdata.bge_tx_dmamap[idx]);
4035 			m_freem(sc->bge_cdata.bge_tx_chain[idx]);
4036 			sc->bge_cdata.bge_tx_chain[idx] = NULL;
4037 		}
4038 		sc->bge_txcnt--;
4039 		BGE_INC(sc->bge_tx_saved_considx, BGE_TX_RING_CNT);
4040 	}
4041 
4042 	ifp->if_drv_flags &= ~IFF_DRV_OACTIVE;
4043 	if (sc->bge_txcnt == 0)
4044 		sc->bge_timer = 0;
4045 }
4046 
4047 #ifdef DEVICE_POLLING
4048 static int
4049 bge_poll(struct ifnet *ifp, enum poll_cmd cmd, int count)
4050 {
4051 	struct bge_softc *sc = ifp->if_softc;
4052 	uint16_t rx_prod, tx_cons;
4053 	uint32_t statusword;
4054 	int rx_npkts = 0;
4055 
4056 	BGE_LOCK(sc);
4057 	if (!(ifp->if_drv_flags & IFF_DRV_RUNNING)) {
4058 		BGE_UNLOCK(sc);
4059 		return (rx_npkts);
4060 	}
4061 
4062 	bus_dmamap_sync(sc->bge_cdata.bge_status_tag,
4063 	    sc->bge_cdata.bge_status_map,
4064 	    BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE);
4065 	rx_prod = sc->bge_ldata.bge_status_block->bge_idx[0].bge_rx_prod_idx;
4066 	tx_cons = sc->bge_ldata.bge_status_block->bge_idx[0].bge_tx_cons_idx;
4067 
4068 	statusword = sc->bge_ldata.bge_status_block->bge_status;
4069 	sc->bge_ldata.bge_status_block->bge_status = 0;
4070 
4071 	bus_dmamap_sync(sc->bge_cdata.bge_status_tag,
4072 	    sc->bge_cdata.bge_status_map,
4073 	    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
4074 
4075 	/* Note link event. It will be processed by POLL_AND_CHECK_STATUS. */
4076 	if (statusword & BGE_STATFLAG_LINKSTATE_CHANGED)
4077 		sc->bge_link_evt++;
4078 
4079 	if (cmd == POLL_AND_CHECK_STATUS)
4080 		if ((sc->bge_asicrev == BGE_ASICREV_BCM5700 &&
4081 		    sc->bge_chipid != BGE_CHIPID_BCM5700_B2) ||
4082 		    sc->bge_link_evt || (sc->bge_flags & BGE_FLAG_TBI))
4083 			bge_link_upd(sc);
4084 
4085 	sc->rxcycles = count;
4086 	rx_npkts = bge_rxeof(sc, rx_prod, 1);
4087 	if (!(ifp->if_drv_flags & IFF_DRV_RUNNING)) {
4088 		BGE_UNLOCK(sc);
4089 		return (rx_npkts);
4090 	}
4091 	bge_txeof(sc, tx_cons);
4092 	if (!IFQ_DRV_IS_EMPTY(&ifp->if_snd))
4093 		bge_start_locked(ifp);
4094 
4095 	BGE_UNLOCK(sc);
4096 	return (rx_npkts);
4097 }
4098 #endif /* DEVICE_POLLING */
4099 
4100 static int
4101 bge_msi_intr(void *arg)
4102 {
4103 	struct bge_softc *sc;
4104 
4105 	sc = (struct bge_softc *)arg;
4106 	/*
4107 	 * This interrupt is not shared and controller already
4108 	 * disabled further interrupt.
4109 	 */
4110 	taskqueue_enqueue(sc->bge_tq, &sc->bge_intr_task);
4111 	return (FILTER_HANDLED);
4112 }
4113 
4114 static void
4115 bge_intr_task(void *arg, int pending)
4116 {
4117 	struct bge_softc *sc;
4118 	struct ifnet *ifp;
4119 	uint32_t status, status_tag;
4120 	uint16_t rx_prod, tx_cons;
4121 
4122 	sc = (struct bge_softc *)arg;
4123 	ifp = sc->bge_ifp;
4124 
4125 	BGE_LOCK(sc);
4126 	if ((ifp->if_drv_flags & IFF_DRV_RUNNING) == 0) {
4127 		BGE_UNLOCK(sc);
4128 		return;
4129 	}
4130 
4131 	/* Get updated status block. */
4132 	bus_dmamap_sync(sc->bge_cdata.bge_status_tag,
4133 	    sc->bge_cdata.bge_status_map,
4134 	    BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE);
4135 
4136 	/* Save producer/consumer indexess. */
4137 	rx_prod = sc->bge_ldata.bge_status_block->bge_idx[0].bge_rx_prod_idx;
4138 	tx_cons = sc->bge_ldata.bge_status_block->bge_idx[0].bge_tx_cons_idx;
4139 	status = sc->bge_ldata.bge_status_block->bge_status;
4140 	status_tag = sc->bge_ldata.bge_status_block->bge_status_tag << 24;
4141 	sc->bge_ldata.bge_status_block->bge_status = 0;
4142 	bus_dmamap_sync(sc->bge_cdata.bge_status_tag,
4143 	    sc->bge_cdata.bge_status_map,
4144 	    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
4145 	if ((sc->bge_flags & BGE_FLAG_TAGGED_STATUS) == 0)
4146 		status_tag = 0;
4147 
4148 	if ((status & BGE_STATFLAG_LINKSTATE_CHANGED) != 0)
4149 		bge_link_upd(sc);
4150 
4151 	/* Let controller work. */
4152 	bge_writembx(sc, BGE_MBX_IRQ0_LO, status_tag);
4153 
4154 	if (ifp->if_drv_flags & IFF_DRV_RUNNING &&
4155 	    sc->bge_rx_saved_considx != rx_prod) {
4156 		/* Check RX return ring producer/consumer. */
4157 		BGE_UNLOCK(sc);
4158 		bge_rxeof(sc, rx_prod, 0);
4159 		BGE_LOCK(sc);
4160 	}
4161 	if (ifp->if_drv_flags & IFF_DRV_RUNNING) {
4162 		/* Check TX ring producer/consumer. */
4163 		bge_txeof(sc, tx_cons);
4164 		if (!IFQ_DRV_IS_EMPTY(&ifp->if_snd))
4165 			bge_start_locked(ifp);
4166 	}
4167 	BGE_UNLOCK(sc);
4168 }
4169 
4170 static void
4171 bge_intr(void *xsc)
4172 {
4173 	struct bge_softc *sc;
4174 	struct ifnet *ifp;
4175 	uint32_t statusword;
4176 	uint16_t rx_prod, tx_cons;
4177 
4178 	sc = xsc;
4179 
4180 	BGE_LOCK(sc);
4181 
4182 	ifp = sc->bge_ifp;
4183 
4184 #ifdef DEVICE_POLLING
4185 	if (ifp->if_capenable & IFCAP_POLLING) {
4186 		BGE_UNLOCK(sc);
4187 		return;
4188 	}
4189 #endif
4190 
4191 	/*
4192 	 * Ack the interrupt by writing something to BGE_MBX_IRQ0_LO.  Don't
4193 	 * disable interrupts by writing nonzero like we used to, since with
4194 	 * our current organization this just gives complications and
4195 	 * pessimizations for re-enabling interrupts.  We used to have races
4196 	 * instead of the necessary complications.  Disabling interrupts
4197 	 * would just reduce the chance of a status update while we are
4198 	 * running (by switching to the interrupt-mode coalescence
4199 	 * parameters), but this chance is already very low so it is more
4200 	 * efficient to get another interrupt than prevent it.
4201 	 *
4202 	 * We do the ack first to ensure another interrupt if there is a
4203 	 * status update after the ack.  We don't check for the status
4204 	 * changing later because it is more efficient to get another
4205 	 * interrupt than prevent it, not quite as above (not checking is
4206 	 * a smaller optimization than not toggling the interrupt enable,
4207 	 * since checking doesn't involve PCI accesses and toggling require
4208 	 * the status check).  So toggling would probably be a pessimization
4209 	 * even with MSI.  It would only be needed for using a task queue.
4210 	 */
4211 	bge_writembx(sc, BGE_MBX_IRQ0_LO, 0);
4212 
4213 	/*
4214 	 * Do the mandatory PCI flush as well as get the link status.
4215 	 */
4216 	statusword = CSR_READ_4(sc, BGE_MAC_STS) & BGE_MACSTAT_LINK_CHANGED;
4217 
4218 	/* Make sure the descriptor ring indexes are coherent. */
4219 	bus_dmamap_sync(sc->bge_cdata.bge_status_tag,
4220 	    sc->bge_cdata.bge_status_map,
4221 	    BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE);
4222 	rx_prod = sc->bge_ldata.bge_status_block->bge_idx[0].bge_rx_prod_idx;
4223 	tx_cons = sc->bge_ldata.bge_status_block->bge_idx[0].bge_tx_cons_idx;
4224 	sc->bge_ldata.bge_status_block->bge_status = 0;
4225 	bus_dmamap_sync(sc->bge_cdata.bge_status_tag,
4226 	    sc->bge_cdata.bge_status_map,
4227 	    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
4228 
4229 	if ((sc->bge_asicrev == BGE_ASICREV_BCM5700 &&
4230 	    sc->bge_chipid != BGE_CHIPID_BCM5700_B2) ||
4231 	    statusword || sc->bge_link_evt)
4232 		bge_link_upd(sc);
4233 
4234 	if (ifp->if_drv_flags & IFF_DRV_RUNNING) {
4235 		/* Check RX return ring producer/consumer. */
4236 		bge_rxeof(sc, rx_prod, 1);
4237 	}
4238 
4239 	if (ifp->if_drv_flags & IFF_DRV_RUNNING) {
4240 		/* Check TX ring producer/consumer. */
4241 		bge_txeof(sc, tx_cons);
4242 	}
4243 
4244 	if (ifp->if_drv_flags & IFF_DRV_RUNNING &&
4245 	    !IFQ_DRV_IS_EMPTY(&ifp->if_snd))
4246 		bge_start_locked(ifp);
4247 
4248 	BGE_UNLOCK(sc);
4249 }
4250 
4251 static void
4252 bge_asf_driver_up(struct bge_softc *sc)
4253 {
4254 	if (sc->bge_asf_mode & ASF_STACKUP) {
4255 		/* Send ASF heartbeat aprox. every 2s */
4256 		if (sc->bge_asf_count)
4257 			sc->bge_asf_count --;
4258 		else {
4259 			sc->bge_asf_count = 2;
4260 			bge_writemem_ind(sc, BGE_SRAM_FW_CMD_MB,
4261 			    BGE_FW_CMD_DRV_ALIVE);
4262 			bge_writemem_ind(sc, BGE_SRAM_FW_CMD_LEN_MB, 4);
4263 			bge_writemem_ind(sc, BGE_SRAM_FW_CMD_DATA_MB,
4264 			    BGE_FW_HB_TIMEOUT_SEC);
4265 			CSR_WRITE_4(sc, BGE_RX_CPU_EVENT,
4266 			    CSR_READ_4(sc, BGE_RX_CPU_EVENT) |
4267 			    BGE_RX_CPU_DRV_EVENT);
4268 		}
4269 	}
4270 }
4271 
4272 static void
4273 bge_tick(void *xsc)
4274 {
4275 	struct bge_softc *sc = xsc;
4276 	struct mii_data *mii = NULL;
4277 
4278 	BGE_LOCK_ASSERT(sc);
4279 
4280 	/* Synchronize with possible callout reset/stop. */
4281 	if (callout_pending(&sc->bge_stat_ch) ||
4282 	    !callout_active(&sc->bge_stat_ch))
4283 		return;
4284 
4285 	if (BGE_IS_5705_PLUS(sc))
4286 		bge_stats_update_regs(sc);
4287 	else
4288 		bge_stats_update(sc);
4289 
4290 	if ((sc->bge_flags & BGE_FLAG_TBI) == 0) {
4291 		mii = device_get_softc(sc->bge_miibus);
4292 		/*
4293 		 * Do not touch PHY if we have link up. This could break
4294 		 * IPMI/ASF mode or produce extra input errors
4295 		 * (extra errors was reported for bcm5701 & bcm5704).
4296 		 */
4297 		if (!sc->bge_link)
4298 			mii_tick(mii);
4299 	} else {
4300 		/*
4301 		 * Since in TBI mode auto-polling can't be used we should poll
4302 		 * link status manually. Here we register pending link event
4303 		 * and trigger interrupt.
4304 		 */
4305 #ifdef DEVICE_POLLING
4306 		/* In polling mode we poll link state in bge_poll(). */
4307 		if (!(sc->bge_ifp->if_capenable & IFCAP_POLLING))
4308 #endif
4309 		{
4310 		sc->bge_link_evt++;
4311 		if (sc->bge_asicrev == BGE_ASICREV_BCM5700 ||
4312 		    sc->bge_flags & BGE_FLAG_5788)
4313 			BGE_SETBIT(sc, BGE_MISC_LOCAL_CTL, BGE_MLC_INTR_SET);
4314 		else
4315 			BGE_SETBIT(sc, BGE_HCC_MODE, BGE_HCCMODE_COAL_NOW);
4316 		}
4317 	}
4318 
4319 	bge_asf_driver_up(sc);
4320 	bge_watchdog(sc);
4321 
4322 	callout_reset(&sc->bge_stat_ch, hz, bge_tick, sc);
4323 }
4324 
4325 static void
4326 bge_stats_update_regs(struct bge_softc *sc)
4327 {
4328 	struct ifnet *ifp;
4329 	struct bge_mac_stats *stats;
4330 
4331 	ifp = sc->bge_ifp;
4332 	stats = &sc->bge_mac_stats;
4333 
4334 	stats->ifHCOutOctets +=
4335 	    CSR_READ_4(sc, BGE_TX_MAC_STATS_OCTETS);
4336 	stats->etherStatsCollisions +=
4337 	    CSR_READ_4(sc, BGE_TX_MAC_STATS_COLLS);
4338 	stats->outXonSent +=
4339 	    CSR_READ_4(sc, BGE_TX_MAC_STATS_XON_SENT);
4340 	stats->outXoffSent +=
4341 	    CSR_READ_4(sc, BGE_TX_MAC_STATS_XOFF_SENT);
4342 	stats->dot3StatsInternalMacTransmitErrors +=
4343 	    CSR_READ_4(sc, BGE_TX_MAC_STATS_ERRORS);
4344 	stats->dot3StatsSingleCollisionFrames +=
4345 	    CSR_READ_4(sc, BGE_TX_MAC_STATS_SINGLE_COLL);
4346 	stats->dot3StatsMultipleCollisionFrames +=
4347 	    CSR_READ_4(sc, BGE_TX_MAC_STATS_MULTI_COLL);
4348 	stats->dot3StatsDeferredTransmissions +=
4349 	    CSR_READ_4(sc, BGE_TX_MAC_STATS_DEFERRED);
4350 	stats->dot3StatsExcessiveCollisions +=
4351 	    CSR_READ_4(sc, BGE_TX_MAC_STATS_EXCESS_COLL);
4352 	stats->dot3StatsLateCollisions +=
4353 	    CSR_READ_4(sc, BGE_TX_MAC_STATS_LATE_COLL);
4354 	stats->ifHCOutUcastPkts +=
4355 	    CSR_READ_4(sc, BGE_TX_MAC_STATS_UCAST);
4356 	stats->ifHCOutMulticastPkts +=
4357 	    CSR_READ_4(sc, BGE_TX_MAC_STATS_MCAST);
4358 	stats->ifHCOutBroadcastPkts +=
4359 	    CSR_READ_4(sc, BGE_TX_MAC_STATS_BCAST);
4360 
4361 	stats->ifHCInOctets +=
4362 	    CSR_READ_4(sc, BGE_RX_MAC_STATS_OCTESTS);
4363 	stats->etherStatsFragments +=
4364 	    CSR_READ_4(sc, BGE_RX_MAC_STATS_FRAGMENTS);
4365 	stats->ifHCInUcastPkts +=
4366 	    CSR_READ_4(sc, BGE_RX_MAC_STATS_UCAST);
4367 	stats->ifHCInMulticastPkts +=
4368 	    CSR_READ_4(sc, BGE_RX_MAC_STATS_MCAST);
4369 	stats->ifHCInBroadcastPkts +=
4370 	    CSR_READ_4(sc, BGE_RX_MAC_STATS_BCAST);
4371 	stats->dot3StatsFCSErrors +=
4372 	    CSR_READ_4(sc, BGE_RX_MAC_STATS_FCS_ERRORS);
4373 	stats->dot3StatsAlignmentErrors +=
4374 	    CSR_READ_4(sc, BGE_RX_MAC_STATS_ALGIN_ERRORS);
4375 	stats->xonPauseFramesReceived +=
4376 	    CSR_READ_4(sc, BGE_RX_MAC_STATS_XON_RCVD);
4377 	stats->xoffPauseFramesReceived +=
4378 	    CSR_READ_4(sc, BGE_RX_MAC_STATS_XOFF_RCVD);
4379 	stats->macControlFramesReceived +=
4380 	    CSR_READ_4(sc, BGE_RX_MAC_STATS_CTRL_RCVD);
4381 	stats->xoffStateEntered +=
4382 	    CSR_READ_4(sc, BGE_RX_MAC_STATS_XOFF_ENTERED);
4383 	stats->dot3StatsFramesTooLong +=
4384 	    CSR_READ_4(sc, BGE_RX_MAC_STATS_FRAME_TOO_LONG);
4385 	stats->etherStatsJabbers +=
4386 	    CSR_READ_4(sc, BGE_RX_MAC_STATS_JABBERS);
4387 	stats->etherStatsUndersizePkts +=
4388 	    CSR_READ_4(sc, BGE_RX_MAC_STATS_UNDERSIZE);
4389 
4390 	stats->FramesDroppedDueToFilters +=
4391 	    CSR_READ_4(sc, BGE_RXLP_LOCSTAT_FILTDROP);
4392 	stats->DmaWriteQueueFull +=
4393 	    CSR_READ_4(sc, BGE_RXLP_LOCSTAT_DMA_WRQ_FULL);
4394 	stats->DmaWriteHighPriQueueFull +=
4395 	    CSR_READ_4(sc, BGE_RXLP_LOCSTAT_DMA_HPWRQ_FULL);
4396 	stats->NoMoreRxBDs +=
4397 	    CSR_READ_4(sc, BGE_RXLP_LOCSTAT_OUT_OF_BDS);
4398 	/*
4399 	 * XXX
4400 	 * Unlike other controllers, BGE_RXLP_LOCSTAT_IFIN_DROPS
4401 	 * counter of BCM5717, BCM5718, BCM5719 A0 and BCM5720 A0
4402 	 * includes number of unwanted multicast frames.  This comes
4403 	 * from silicon bug and known workaround to get rough(not
4404 	 * exact) counter is to enable interrupt on MBUF low water
4405 	 * attention.  This can be accomplished by setting
4406 	 * BGE_HCCMODE_ATTN bit of BGE_HCC_MODE,
4407 	 * BGE_BMANMODE_LOMBUF_ATTN bit of BGE_BMAN_MODE and
4408 	 * BGE_MODECTL_FLOWCTL_ATTN_INTR bit of BGE_MODE_CTL.
4409 	 * However that change would generate more interrupts and
4410 	 * there are still possibilities of losing multiple frames
4411 	 * during BGE_MODECTL_FLOWCTL_ATTN_INTR interrupt handling.
4412 	 * Given that the workaround still would not get correct
4413 	 * counter I don't think it's worth to implement it.  So
4414 	 * ignore reading the counter on controllers that have the
4415 	 * silicon bug.
4416 	 */
4417 	if (sc->bge_asicrev != BGE_ASICREV_BCM5717 &&
4418 	    sc->bge_chipid != BGE_CHIPID_BCM5719_A0 &&
4419 	    sc->bge_chipid != BGE_CHIPID_BCM5720_A0)
4420 		stats->InputDiscards +=
4421 		    CSR_READ_4(sc, BGE_RXLP_LOCSTAT_IFIN_DROPS);
4422 	stats->InputErrors +=
4423 	    CSR_READ_4(sc, BGE_RXLP_LOCSTAT_IFIN_ERRORS);
4424 	stats->RecvThresholdHit +=
4425 	    CSR_READ_4(sc, BGE_RXLP_LOCSTAT_RXTHRESH_HIT);
4426 
4427 	ifp->if_collisions = (u_long)stats->etherStatsCollisions;
4428 	ifp->if_ierrors = (u_long)(stats->NoMoreRxBDs + stats->InputDiscards +
4429 	    stats->InputErrors);
4430 }
4431 
4432 static void
4433 bge_stats_clear_regs(struct bge_softc *sc)
4434 {
4435 
4436 	CSR_READ_4(sc, BGE_TX_MAC_STATS_OCTETS);
4437 	CSR_READ_4(sc, BGE_TX_MAC_STATS_COLLS);
4438 	CSR_READ_4(sc, BGE_TX_MAC_STATS_XON_SENT);
4439 	CSR_READ_4(sc, BGE_TX_MAC_STATS_XOFF_SENT);
4440 	CSR_READ_4(sc, BGE_TX_MAC_STATS_ERRORS);
4441 	CSR_READ_4(sc, BGE_TX_MAC_STATS_SINGLE_COLL);
4442 	CSR_READ_4(sc, BGE_TX_MAC_STATS_MULTI_COLL);
4443 	CSR_READ_4(sc, BGE_TX_MAC_STATS_DEFERRED);
4444 	CSR_READ_4(sc, BGE_TX_MAC_STATS_EXCESS_COLL);
4445 	CSR_READ_4(sc, BGE_TX_MAC_STATS_LATE_COLL);
4446 	CSR_READ_4(sc, BGE_TX_MAC_STATS_UCAST);
4447 	CSR_READ_4(sc, BGE_TX_MAC_STATS_MCAST);
4448 	CSR_READ_4(sc, BGE_TX_MAC_STATS_BCAST);
4449 
4450 	CSR_READ_4(sc, BGE_RX_MAC_STATS_OCTESTS);
4451 	CSR_READ_4(sc, BGE_RX_MAC_STATS_FRAGMENTS);
4452 	CSR_READ_4(sc, BGE_RX_MAC_STATS_UCAST);
4453 	CSR_READ_4(sc, BGE_RX_MAC_STATS_MCAST);
4454 	CSR_READ_4(sc, BGE_RX_MAC_STATS_BCAST);
4455 	CSR_READ_4(sc, BGE_RX_MAC_STATS_FCS_ERRORS);
4456 	CSR_READ_4(sc, BGE_RX_MAC_STATS_ALGIN_ERRORS);
4457 	CSR_READ_4(sc, BGE_RX_MAC_STATS_XON_RCVD);
4458 	CSR_READ_4(sc, BGE_RX_MAC_STATS_XOFF_RCVD);
4459 	CSR_READ_4(sc, BGE_RX_MAC_STATS_CTRL_RCVD);
4460 	CSR_READ_4(sc, BGE_RX_MAC_STATS_XOFF_ENTERED);
4461 	CSR_READ_4(sc, BGE_RX_MAC_STATS_FRAME_TOO_LONG);
4462 	CSR_READ_4(sc, BGE_RX_MAC_STATS_JABBERS);
4463 	CSR_READ_4(sc, BGE_RX_MAC_STATS_UNDERSIZE);
4464 
4465 	CSR_READ_4(sc, BGE_RXLP_LOCSTAT_FILTDROP);
4466 	CSR_READ_4(sc, BGE_RXLP_LOCSTAT_DMA_WRQ_FULL);
4467 	CSR_READ_4(sc, BGE_RXLP_LOCSTAT_DMA_HPWRQ_FULL);
4468 	CSR_READ_4(sc, BGE_RXLP_LOCSTAT_OUT_OF_BDS);
4469 	CSR_READ_4(sc, BGE_RXLP_LOCSTAT_IFIN_DROPS);
4470 	CSR_READ_4(sc, BGE_RXLP_LOCSTAT_IFIN_ERRORS);
4471 	CSR_READ_4(sc, BGE_RXLP_LOCSTAT_RXTHRESH_HIT);
4472 }
4473 
4474 static void
4475 bge_stats_update(struct bge_softc *sc)
4476 {
4477 	struct ifnet *ifp;
4478 	bus_size_t stats;
4479 	uint32_t cnt;	/* current register value */
4480 
4481 	ifp = sc->bge_ifp;
4482 
4483 	stats = BGE_MEMWIN_START + BGE_STATS_BLOCK;
4484 
4485 #define	READ_STAT(sc, stats, stat) \
4486 	CSR_READ_4(sc, stats + offsetof(struct bge_stats, stat))
4487 
4488 	cnt = READ_STAT(sc, stats, txstats.etherStatsCollisions.bge_addr_lo);
4489 	ifp->if_collisions += (uint32_t)(cnt - sc->bge_tx_collisions);
4490 	sc->bge_tx_collisions = cnt;
4491 
4492 	cnt = READ_STAT(sc, stats, nicNoMoreRxBDs.bge_addr_lo);
4493 	ifp->if_ierrors += (uint32_t)(cnt - sc->bge_rx_nobds);
4494 	sc->bge_rx_nobds = cnt;
4495 	cnt = READ_STAT(sc, stats, ifInErrors.bge_addr_lo);
4496 	ifp->if_ierrors += (uint32_t)(cnt - sc->bge_rx_inerrs);
4497 	sc->bge_rx_inerrs = cnt;
4498 	cnt = READ_STAT(sc, stats, ifInDiscards.bge_addr_lo);
4499 	ifp->if_ierrors += (uint32_t)(cnt - sc->bge_rx_discards);
4500 	sc->bge_rx_discards = cnt;
4501 
4502 	cnt = READ_STAT(sc, stats, txstats.ifOutDiscards.bge_addr_lo);
4503 	ifp->if_oerrors += (uint32_t)(cnt - sc->bge_tx_discards);
4504 	sc->bge_tx_discards = cnt;
4505 
4506 #undef	READ_STAT
4507 }
4508 
4509 /*
4510  * Pad outbound frame to ETHER_MIN_NOPAD for an unusual reason.
4511  * The bge hardware will pad out Tx runts to ETHER_MIN_NOPAD,
4512  * but when such padded frames employ the bge IP/TCP checksum offload,
4513  * the hardware checksum assist gives incorrect results (possibly
4514  * from incorporating its own padding into the UDP/TCP checksum; who knows).
4515  * If we pad such runts with zeros, the onboard checksum comes out correct.
4516  */
4517 static __inline int
4518 bge_cksum_pad(struct mbuf *m)
4519 {
4520 	int padlen = ETHER_MIN_NOPAD - m->m_pkthdr.len;
4521 	struct mbuf *last;
4522 
4523 	/* If there's only the packet-header and we can pad there, use it. */
4524 	if (m->m_pkthdr.len == m->m_len && M_WRITABLE(m) &&
4525 	    M_TRAILINGSPACE(m) >= padlen) {
4526 		last = m;
4527 	} else {
4528 		/*
4529 		 * Walk packet chain to find last mbuf. We will either
4530 		 * pad there, or append a new mbuf and pad it.
4531 		 */
4532 		for (last = m; last->m_next != NULL; last = last->m_next);
4533 		if (!(M_WRITABLE(last) && M_TRAILINGSPACE(last) >= padlen)) {
4534 			/* Allocate new empty mbuf, pad it. Compact later. */
4535 			struct mbuf *n;
4536 
4537 			MGET(n, M_DONTWAIT, MT_DATA);
4538 			if (n == NULL)
4539 				return (ENOBUFS);
4540 			n->m_len = 0;
4541 			last->m_next = n;
4542 			last = n;
4543 		}
4544 	}
4545 
4546 	/* Now zero the pad area, to avoid the bge cksum-assist bug. */
4547 	memset(mtod(last, caddr_t) + last->m_len, 0, padlen);
4548 	last->m_len += padlen;
4549 	m->m_pkthdr.len += padlen;
4550 
4551 	return (0);
4552 }
4553 
4554 static struct mbuf *
4555 bge_check_short_dma(struct mbuf *m)
4556 {
4557 	struct mbuf *n;
4558 	int found;
4559 
4560 	/*
4561 	 * If device receive two back-to-back send BDs with less than
4562 	 * or equal to 8 total bytes then the device may hang.  The two
4563 	 * back-to-back send BDs must in the same frame for this failure
4564 	 * to occur.  Scan mbuf chains and see whether two back-to-back
4565 	 * send BDs are there. If this is the case, allocate new mbuf
4566 	 * and copy the frame to workaround the silicon bug.
4567 	 */
4568 	for (n = m, found = 0; n != NULL; n = n->m_next) {
4569 		if (n->m_len < 8) {
4570 			found++;
4571 			if (found > 1)
4572 				break;
4573 			continue;
4574 		}
4575 		found = 0;
4576 	}
4577 
4578 	if (found > 1) {
4579 		n = m_defrag(m, M_DONTWAIT);
4580 		if (n == NULL)
4581 			m_freem(m);
4582 	} else
4583 		n = m;
4584 	return (n);
4585 }
4586 
4587 static struct mbuf *
4588 bge_setup_tso(struct bge_softc *sc, struct mbuf *m, uint16_t *mss,
4589     uint16_t *flags)
4590 {
4591 	struct ip *ip;
4592 	struct tcphdr *tcp;
4593 	struct mbuf *n;
4594 	uint16_t hlen;
4595 	uint32_t poff;
4596 
4597 	if (M_WRITABLE(m) == 0) {
4598 		/* Get a writable copy. */
4599 		n = m_dup(m, M_DONTWAIT);
4600 		m_freem(m);
4601 		if (n == NULL)
4602 			return (NULL);
4603 		m = n;
4604 	}
4605 	m = m_pullup(m, sizeof(struct ether_header) + sizeof(struct ip));
4606 	if (m == NULL)
4607 		return (NULL);
4608 	ip = (struct ip *)(mtod(m, char *) + sizeof(struct ether_header));
4609 	poff = sizeof(struct ether_header) + (ip->ip_hl << 2);
4610 	m = m_pullup(m, poff + sizeof(struct tcphdr));
4611 	if (m == NULL)
4612 		return (NULL);
4613 	tcp = (struct tcphdr *)(mtod(m, char *) + poff);
4614 	m = m_pullup(m, poff + (tcp->th_off << 2));
4615 	if (m == NULL)
4616 		return (NULL);
4617 	/*
4618 	 * It seems controller doesn't modify IP length and TCP pseudo
4619 	 * checksum. These checksum computed by upper stack should be 0.
4620 	 */
4621 	*mss = m->m_pkthdr.tso_segsz;
4622 	ip = (struct ip *)(mtod(m, char *) + sizeof(struct ether_header));
4623 	ip->ip_sum = 0;
4624 	ip->ip_len = htons(*mss + (ip->ip_hl << 2) + (tcp->th_off << 2));
4625 	/* Clear pseudo checksum computed by TCP stack. */
4626 	tcp = (struct tcphdr *)(mtod(m, char *) + poff);
4627 	tcp->th_sum = 0;
4628 	/*
4629 	 * Broadcom controllers uses different descriptor format for
4630 	 * TSO depending on ASIC revision. Due to TSO-capable firmware
4631 	 * license issue and lower performance of firmware based TSO
4632 	 * we only support hardware based TSO.
4633 	 */
4634 	/* Calculate header length, incl. TCP/IP options, in 32 bit units. */
4635 	hlen = ((ip->ip_hl << 2) + (tcp->th_off << 2)) >> 2;
4636 	if (sc->bge_flags & BGE_FLAG_TSO3) {
4637 		/*
4638 		 * For BCM5717 and newer controllers, hardware based TSO
4639 		 * uses the 14 lower bits of the bge_mss field to store the
4640 		 * MSS and the upper 2 bits to store the lowest 2 bits of
4641 		 * the IP/TCP header length.  The upper 6 bits of the header
4642 		 * length are stored in the bge_flags[14:10,4] field.  Jumbo
4643 		 * frames are supported.
4644 		 */
4645 		*mss |= ((hlen & 0x3) << 14);
4646 		*flags |= ((hlen & 0xF8) << 7) | ((hlen & 0x4) << 2);
4647 	} else {
4648 		/*
4649 		 * For BCM5755 and newer controllers, hardware based TSO uses
4650 		 * the lower 11	bits to store the MSS and the upper 5 bits to
4651 		 * store the IP/TCP header length. Jumbo frames are not
4652 		 * supported.
4653 		 */
4654 		*mss |= (hlen << 11);
4655 	}
4656 	return (m);
4657 }
4658 
4659 /*
4660  * Encapsulate an mbuf chain in the tx ring  by coupling the mbuf data
4661  * pointers to descriptors.
4662  */
4663 static int
4664 bge_encap(struct bge_softc *sc, struct mbuf **m_head, uint32_t *txidx)
4665 {
4666 	bus_dma_segment_t	segs[BGE_NSEG_NEW];
4667 	bus_dmamap_t		map;
4668 	struct bge_tx_bd	*d;
4669 	struct mbuf		*m = *m_head;
4670 	uint32_t		idx = *txidx;
4671 	uint16_t		csum_flags, mss, vlan_tag;
4672 	int			nsegs, i, error;
4673 
4674 	csum_flags = 0;
4675 	mss = 0;
4676 	vlan_tag = 0;
4677 	if ((sc->bge_flags & BGE_FLAG_SHORT_DMA_BUG) != 0 &&
4678 	    m->m_next != NULL) {
4679 		*m_head = bge_check_short_dma(m);
4680 		if (*m_head == NULL)
4681 			return (ENOBUFS);
4682 		m = *m_head;
4683 	}
4684 	if ((m->m_pkthdr.csum_flags & CSUM_TSO) != 0) {
4685 		*m_head = m = bge_setup_tso(sc, m, &mss, &csum_flags);
4686 		if (*m_head == NULL)
4687 			return (ENOBUFS);
4688 		csum_flags |= BGE_TXBDFLAG_CPU_PRE_DMA |
4689 		    BGE_TXBDFLAG_CPU_POST_DMA;
4690 	} else if ((m->m_pkthdr.csum_flags & sc->bge_csum_features) != 0) {
4691 		if (m->m_pkthdr.csum_flags & CSUM_IP)
4692 			csum_flags |= BGE_TXBDFLAG_IP_CSUM;
4693 		if (m->m_pkthdr.csum_flags & (CSUM_TCP | CSUM_UDP)) {
4694 			csum_flags |= BGE_TXBDFLAG_TCP_UDP_CSUM;
4695 			if (m->m_pkthdr.len < ETHER_MIN_NOPAD &&
4696 			    (error = bge_cksum_pad(m)) != 0) {
4697 				m_freem(m);
4698 				*m_head = NULL;
4699 				return (error);
4700 			}
4701 		}
4702 		if (m->m_flags & M_LASTFRAG)
4703 			csum_flags |= BGE_TXBDFLAG_IP_FRAG_END;
4704 		else if (m->m_flags & M_FRAG)
4705 			csum_flags |= BGE_TXBDFLAG_IP_FRAG;
4706 	}
4707 
4708 	if ((m->m_pkthdr.csum_flags & CSUM_TSO) == 0) {
4709 		if (sc->bge_flags & BGE_FLAG_JUMBO_FRAME &&
4710 		    m->m_pkthdr.len > ETHER_MAX_LEN)
4711 			csum_flags |= BGE_TXBDFLAG_JUMBO_FRAME;
4712 		if (sc->bge_forced_collapse > 0 &&
4713 		    (sc->bge_flags & BGE_FLAG_PCIE) != 0 && m->m_next != NULL) {
4714 			/*
4715 			 * Forcedly collapse mbuf chains to overcome hardware
4716 			 * limitation which only support a single outstanding
4717 			 * DMA read operation.
4718 			 */
4719 			if (sc->bge_forced_collapse == 1)
4720 				m = m_defrag(m, M_DONTWAIT);
4721 			else
4722 				m = m_collapse(m, M_DONTWAIT,
4723 				    sc->bge_forced_collapse);
4724 			if (m == NULL)
4725 				m = *m_head;
4726 			*m_head = m;
4727 		}
4728 	}
4729 
4730 	map = sc->bge_cdata.bge_tx_dmamap[idx];
4731 	error = bus_dmamap_load_mbuf_sg(sc->bge_cdata.bge_tx_mtag, map, m, segs,
4732 	    &nsegs, BUS_DMA_NOWAIT);
4733 	if (error == EFBIG) {
4734 		m = m_collapse(m, M_DONTWAIT, BGE_NSEG_NEW);
4735 		if (m == NULL) {
4736 			m_freem(*m_head);
4737 			*m_head = NULL;
4738 			return (ENOBUFS);
4739 		}
4740 		*m_head = m;
4741 		error = bus_dmamap_load_mbuf_sg(sc->bge_cdata.bge_tx_mtag, map,
4742 		    m, segs, &nsegs, BUS_DMA_NOWAIT);
4743 		if (error) {
4744 			m_freem(m);
4745 			*m_head = NULL;
4746 			return (error);
4747 		}
4748 	} else if (error != 0)
4749 		return (error);
4750 
4751 	/* Check if we have enough free send BDs. */
4752 	if (sc->bge_txcnt + nsegs >= BGE_TX_RING_CNT) {
4753 		bus_dmamap_unload(sc->bge_cdata.bge_tx_mtag, map);
4754 		return (ENOBUFS);
4755 	}
4756 
4757 	bus_dmamap_sync(sc->bge_cdata.bge_tx_mtag, map, BUS_DMASYNC_PREWRITE);
4758 
4759 	if (m->m_flags & M_VLANTAG) {
4760 		csum_flags |= BGE_TXBDFLAG_VLAN_TAG;
4761 		vlan_tag = m->m_pkthdr.ether_vtag;
4762 	}
4763 	for (i = 0; ; i++) {
4764 		d = &sc->bge_ldata.bge_tx_ring[idx];
4765 		d->bge_addr.bge_addr_lo = BGE_ADDR_LO(segs[i].ds_addr);
4766 		d->bge_addr.bge_addr_hi = BGE_ADDR_HI(segs[i].ds_addr);
4767 		d->bge_len = segs[i].ds_len;
4768 		d->bge_flags = csum_flags;
4769 		d->bge_vlan_tag = vlan_tag;
4770 		d->bge_mss = mss;
4771 		if (i == nsegs - 1)
4772 			break;
4773 		BGE_INC(idx, BGE_TX_RING_CNT);
4774 	}
4775 
4776 	/* Mark the last segment as end of packet... */
4777 	d->bge_flags |= BGE_TXBDFLAG_END;
4778 
4779 	/*
4780 	 * Insure that the map for this transmission
4781 	 * is placed at the array index of the last descriptor
4782 	 * in this chain.
4783 	 */
4784 	sc->bge_cdata.bge_tx_dmamap[*txidx] = sc->bge_cdata.bge_tx_dmamap[idx];
4785 	sc->bge_cdata.bge_tx_dmamap[idx] = map;
4786 	sc->bge_cdata.bge_tx_chain[idx] = m;
4787 	sc->bge_txcnt += nsegs;
4788 
4789 	BGE_INC(idx, BGE_TX_RING_CNT);
4790 	*txidx = idx;
4791 
4792 	return (0);
4793 }
4794 
4795 /*
4796  * Main transmit routine. To avoid having to do mbuf copies, we put pointers
4797  * to the mbuf data regions directly in the transmit descriptors.
4798  */
4799 static void
4800 bge_start_locked(struct ifnet *ifp)
4801 {
4802 	struct bge_softc *sc;
4803 	struct mbuf *m_head;
4804 	uint32_t prodidx;
4805 	int count;
4806 
4807 	sc = ifp->if_softc;
4808 	BGE_LOCK_ASSERT(sc);
4809 
4810 	if (!sc->bge_link ||
4811 	    (ifp->if_drv_flags & (IFF_DRV_RUNNING | IFF_DRV_OACTIVE)) !=
4812 	    IFF_DRV_RUNNING)
4813 		return;
4814 
4815 	prodidx = sc->bge_tx_prodidx;
4816 
4817 	for (count = 0; !IFQ_DRV_IS_EMPTY(&ifp->if_snd);) {
4818 		if (sc->bge_txcnt > BGE_TX_RING_CNT - 16) {
4819 			ifp->if_drv_flags |= IFF_DRV_OACTIVE;
4820 			break;
4821 		}
4822 		IFQ_DRV_DEQUEUE(&ifp->if_snd, m_head);
4823 		if (m_head == NULL)
4824 			break;
4825 
4826 		/*
4827 		 * XXX
4828 		 * The code inside the if() block is never reached since we
4829 		 * must mark CSUM_IP_FRAGS in our if_hwassist to start getting
4830 		 * requests to checksum TCP/UDP in a fragmented packet.
4831 		 *
4832 		 * XXX
4833 		 * safety overkill.  If this is a fragmented packet chain
4834 		 * with delayed TCP/UDP checksums, then only encapsulate
4835 		 * it if we have enough descriptors to handle the entire
4836 		 * chain at once.
4837 		 * (paranoia -- may not actually be needed)
4838 		 */
4839 		if (m_head->m_flags & M_FIRSTFRAG &&
4840 		    m_head->m_pkthdr.csum_flags & (CSUM_DELAY_DATA)) {
4841 			if ((BGE_TX_RING_CNT - sc->bge_txcnt) <
4842 			    m_head->m_pkthdr.csum_data + 16) {
4843 				IFQ_DRV_PREPEND(&ifp->if_snd, m_head);
4844 				ifp->if_drv_flags |= IFF_DRV_OACTIVE;
4845 				break;
4846 			}
4847 		}
4848 
4849 		/*
4850 		 * Pack the data into the transmit ring. If we
4851 		 * don't have room, set the OACTIVE flag and wait
4852 		 * for the NIC to drain the ring.
4853 		 */
4854 		if (bge_encap(sc, &m_head, &prodidx)) {
4855 			if (m_head == NULL)
4856 				break;
4857 			IFQ_DRV_PREPEND(&ifp->if_snd, m_head);
4858 			ifp->if_drv_flags |= IFF_DRV_OACTIVE;
4859 			break;
4860 		}
4861 		++count;
4862 
4863 		/*
4864 		 * If there's a BPF listener, bounce a copy of this frame
4865 		 * to him.
4866 		 */
4867 #ifdef ETHER_BPF_MTAP
4868 		ETHER_BPF_MTAP(ifp, m_head);
4869 #else
4870 		BPF_MTAP(ifp, m_head);
4871 #endif
4872 	}
4873 
4874 	if (count > 0) {
4875 		bus_dmamap_sync(sc->bge_cdata.bge_tx_ring_tag,
4876 		    sc->bge_cdata.bge_tx_ring_map, BUS_DMASYNC_PREWRITE);
4877 		/* Transmit. */
4878 		bge_writembx(sc, BGE_MBX_TX_HOST_PROD0_LO, prodidx);
4879 		/* 5700 b2 errata */
4880 		if (sc->bge_chiprev == BGE_CHIPREV_5700_BX)
4881 			bge_writembx(sc, BGE_MBX_TX_HOST_PROD0_LO, prodidx);
4882 
4883 		sc->bge_tx_prodidx = prodidx;
4884 
4885 		/*
4886 		 * Set a timeout in case the chip goes out to lunch.
4887 		 */
4888 		sc->bge_timer = 5;
4889 	}
4890 }
4891 
4892 /*
4893  * Main transmit routine. To avoid having to do mbuf copies, we put pointers
4894  * to the mbuf data regions directly in the transmit descriptors.
4895  */
4896 static void
4897 bge_start(struct ifnet *ifp)
4898 {
4899 	struct bge_softc *sc;
4900 
4901 	sc = ifp->if_softc;
4902 	BGE_LOCK(sc);
4903 	bge_start_locked(ifp);
4904 	BGE_UNLOCK(sc);
4905 }
4906 
4907 static void
4908 bge_init_locked(struct bge_softc *sc)
4909 {
4910 	struct ifnet *ifp;
4911 	uint16_t *m;
4912 	uint32_t mode;
4913 
4914 	BGE_LOCK_ASSERT(sc);
4915 
4916 	ifp = sc->bge_ifp;
4917 
4918 	if (ifp->if_drv_flags & IFF_DRV_RUNNING)
4919 		return;
4920 
4921 	/* Cancel pending I/O and flush buffers. */
4922 	bge_stop(sc);
4923 
4924 	bge_stop_fw(sc);
4925 	bge_sig_pre_reset(sc, BGE_RESET_START);
4926 	bge_reset(sc);
4927 	bge_sig_legacy(sc, BGE_RESET_START);
4928 	bge_sig_post_reset(sc, BGE_RESET_START);
4929 
4930 	bge_chipinit(sc);
4931 
4932 	/*
4933 	 * Init the various state machines, ring
4934 	 * control blocks and firmware.
4935 	 */
4936 	if (bge_blockinit(sc)) {
4937 		device_printf(sc->bge_dev, "initialization failure\n");
4938 		return;
4939 	}
4940 
4941 	ifp = sc->bge_ifp;
4942 
4943 	/* Specify MTU. */
4944 	CSR_WRITE_4(sc, BGE_RX_MTU, ifp->if_mtu +
4945 	    ETHER_HDR_LEN + ETHER_CRC_LEN +
4946 	    (ifp->if_capenable & IFCAP_VLAN_MTU ? ETHER_VLAN_ENCAP_LEN : 0));
4947 
4948 	/* Load our MAC address. */
4949 	m = (uint16_t *)IF_LLADDR(sc->bge_ifp);
4950 	CSR_WRITE_4(sc, BGE_MAC_ADDR1_LO, htons(m[0]));
4951 	CSR_WRITE_4(sc, BGE_MAC_ADDR1_HI, (htons(m[1]) << 16) | htons(m[2]));
4952 
4953 	/* Program promiscuous mode. */
4954 	bge_setpromisc(sc);
4955 
4956 	/* Program multicast filter. */
4957 	bge_setmulti(sc);
4958 
4959 	/* Program VLAN tag stripping. */
4960 	bge_setvlan(sc);
4961 
4962 	/* Override UDP checksum offloading. */
4963 	if (sc->bge_forced_udpcsum == 0)
4964 		sc->bge_csum_features &= ~CSUM_UDP;
4965 	else
4966 		sc->bge_csum_features |= CSUM_UDP;
4967 	if (ifp->if_capabilities & IFCAP_TXCSUM &&
4968 	    ifp->if_capenable & IFCAP_TXCSUM) {
4969 		ifp->if_hwassist &= ~(BGE_CSUM_FEATURES | CSUM_UDP);
4970 		ifp->if_hwassist |= sc->bge_csum_features;
4971 	}
4972 
4973 	/* Init RX ring. */
4974 	if (bge_init_rx_ring_std(sc) != 0) {
4975 		device_printf(sc->bge_dev, "no memory for std Rx buffers.\n");
4976 		bge_stop(sc);
4977 		return;
4978 	}
4979 
4980 	/*
4981 	 * Workaround for a bug in 5705 ASIC rev A0. Poll the NIC's
4982 	 * memory to insure that the chip has in fact read the first
4983 	 * entry of the ring.
4984 	 */
4985 	if (sc->bge_chipid == BGE_CHIPID_BCM5705_A0) {
4986 		uint32_t		v, i;
4987 		for (i = 0; i < 10; i++) {
4988 			DELAY(20);
4989 			v = bge_readmem_ind(sc, BGE_STD_RX_RINGS + 8);
4990 			if (v == (MCLBYTES - ETHER_ALIGN))
4991 				break;
4992 		}
4993 		if (i == 10)
4994 			device_printf (sc->bge_dev,
4995 			    "5705 A0 chip failed to load RX ring\n");
4996 	}
4997 
4998 	/* Init jumbo RX ring. */
4999 	if (BGE_IS_JUMBO_CAPABLE(sc) &&
5000 	    ifp->if_mtu + ETHER_HDR_LEN + ETHER_CRC_LEN + ETHER_VLAN_ENCAP_LEN >
5001 	    (MCLBYTES - ETHER_ALIGN)) {
5002 		if (bge_init_rx_ring_jumbo(sc) != 0) {
5003 			device_printf(sc->bge_dev,
5004 			    "no memory for jumbo Rx buffers.\n");
5005 			bge_stop(sc);
5006 			return;
5007 		}
5008 	}
5009 
5010 	/* Init our RX return ring index. */
5011 	sc->bge_rx_saved_considx = 0;
5012 
5013 	/* Init our RX/TX stat counters. */
5014 	sc->bge_rx_discards = sc->bge_tx_discards = sc->bge_tx_collisions = 0;
5015 
5016 	/* Init TX ring. */
5017 	bge_init_tx_ring(sc);
5018 
5019 	/* Enable TX MAC state machine lockup fix. */
5020 	mode = CSR_READ_4(sc, BGE_TX_MODE);
5021 	if (BGE_IS_5755_PLUS(sc) || sc->bge_asicrev == BGE_ASICREV_BCM5906)
5022 		mode |= BGE_TXMODE_MBUF_LOCKUP_FIX;
5023 	if (sc->bge_asicrev == BGE_ASICREV_BCM5720) {
5024 		mode &= ~(BGE_TXMODE_JMB_FRM_LEN | BGE_TXMODE_CNT_DN_MODE);
5025 		mode |= CSR_READ_4(sc, BGE_TX_MODE) &
5026 		    (BGE_TXMODE_JMB_FRM_LEN | BGE_TXMODE_CNT_DN_MODE);
5027 	}
5028 	/* Turn on transmitter. */
5029 	CSR_WRITE_4(sc, BGE_TX_MODE, mode | BGE_TXMODE_ENABLE);
5030 
5031 	/* Turn on receiver. */
5032 	BGE_SETBIT(sc, BGE_RX_MODE, BGE_RXMODE_ENABLE);
5033 
5034 	/*
5035 	 * Set the number of good frames to receive after RX MBUF
5036 	 * Low Watermark has been reached. After the RX MAC receives
5037 	 * this number of frames, it will drop subsequent incoming
5038 	 * frames until the MBUF High Watermark is reached.
5039 	 */
5040 	if (sc->bge_asicrev == BGE_ASICREV_BCM57765)
5041 		CSR_WRITE_4(sc, BGE_MAX_RX_FRAME_LOWAT, 1);
5042 	else
5043 		CSR_WRITE_4(sc, BGE_MAX_RX_FRAME_LOWAT, 2);
5044 
5045 	/* Clear MAC statistics. */
5046 	if (BGE_IS_5705_PLUS(sc))
5047 		bge_stats_clear_regs(sc);
5048 
5049 	/* Tell firmware we're alive. */
5050 	BGE_SETBIT(sc, BGE_MODE_CTL, BGE_MODECTL_STACKUP);
5051 
5052 #ifdef DEVICE_POLLING
5053 	/* Disable interrupts if we are polling. */
5054 	if (ifp->if_capenable & IFCAP_POLLING) {
5055 		BGE_SETBIT(sc, BGE_PCI_MISC_CTL,
5056 		    BGE_PCIMISCCTL_MASK_PCI_INTR);
5057 		bge_writembx(sc, BGE_MBX_IRQ0_LO, 1);
5058 	} else
5059 #endif
5060 
5061 	/* Enable host interrupts. */
5062 	{
5063 	BGE_SETBIT(sc, BGE_PCI_MISC_CTL, BGE_PCIMISCCTL_CLEAR_INTA);
5064 	BGE_CLRBIT(sc, BGE_PCI_MISC_CTL, BGE_PCIMISCCTL_MASK_PCI_INTR);
5065 	bge_writembx(sc, BGE_MBX_IRQ0_LO, 0);
5066 	}
5067 
5068 	bge_ifmedia_upd_locked(ifp);
5069 
5070 	ifp->if_drv_flags |= IFF_DRV_RUNNING;
5071 	ifp->if_drv_flags &= ~IFF_DRV_OACTIVE;
5072 
5073 	callout_reset(&sc->bge_stat_ch, hz, bge_tick, sc);
5074 }
5075 
5076 static void
5077 bge_init(void *xsc)
5078 {
5079 	struct bge_softc *sc = xsc;
5080 
5081 	BGE_LOCK(sc);
5082 	bge_init_locked(sc);
5083 	BGE_UNLOCK(sc);
5084 }
5085 
5086 /*
5087  * Set media options.
5088  */
5089 static int
5090 bge_ifmedia_upd(struct ifnet *ifp)
5091 {
5092 	struct bge_softc *sc = ifp->if_softc;
5093 	int res;
5094 
5095 	BGE_LOCK(sc);
5096 	res = bge_ifmedia_upd_locked(ifp);
5097 	BGE_UNLOCK(sc);
5098 
5099 	return (res);
5100 }
5101 
5102 static int
5103 bge_ifmedia_upd_locked(struct ifnet *ifp)
5104 {
5105 	struct bge_softc *sc = ifp->if_softc;
5106 	struct mii_data *mii;
5107 	struct mii_softc *miisc;
5108 	struct ifmedia *ifm;
5109 
5110 	BGE_LOCK_ASSERT(sc);
5111 
5112 	ifm = &sc->bge_ifmedia;
5113 
5114 	/* If this is a 1000baseX NIC, enable the TBI port. */
5115 	if (sc->bge_flags & BGE_FLAG_TBI) {
5116 		if (IFM_TYPE(ifm->ifm_media) != IFM_ETHER)
5117 			return (EINVAL);
5118 		switch(IFM_SUBTYPE(ifm->ifm_media)) {
5119 		case IFM_AUTO:
5120 			/*
5121 			 * The BCM5704 ASIC appears to have a special
5122 			 * mechanism for programming the autoneg
5123 			 * advertisement registers in TBI mode.
5124 			 */
5125 			if (sc->bge_asicrev == BGE_ASICREV_BCM5704) {
5126 				uint32_t sgdig;
5127 				sgdig = CSR_READ_4(sc, BGE_SGDIG_STS);
5128 				if (sgdig & BGE_SGDIGSTS_DONE) {
5129 					CSR_WRITE_4(sc, BGE_TX_TBI_AUTONEG, 0);
5130 					sgdig = CSR_READ_4(sc, BGE_SGDIG_CFG);
5131 					sgdig |= BGE_SGDIGCFG_AUTO |
5132 					    BGE_SGDIGCFG_PAUSE_CAP |
5133 					    BGE_SGDIGCFG_ASYM_PAUSE;
5134 					CSR_WRITE_4(sc, BGE_SGDIG_CFG,
5135 					    sgdig | BGE_SGDIGCFG_SEND);
5136 					DELAY(5);
5137 					CSR_WRITE_4(sc, BGE_SGDIG_CFG, sgdig);
5138 				}
5139 			}
5140 			break;
5141 		case IFM_1000_SX:
5142 			if ((ifm->ifm_media & IFM_GMASK) == IFM_FDX) {
5143 				BGE_CLRBIT(sc, BGE_MAC_MODE,
5144 				    BGE_MACMODE_HALF_DUPLEX);
5145 			} else {
5146 				BGE_SETBIT(sc, BGE_MAC_MODE,
5147 				    BGE_MACMODE_HALF_DUPLEX);
5148 			}
5149 			break;
5150 		default:
5151 			return (EINVAL);
5152 		}
5153 		return (0);
5154 	}
5155 
5156 	sc->bge_link_evt++;
5157 	mii = device_get_softc(sc->bge_miibus);
5158 	LIST_FOREACH(miisc, &mii->mii_phys, mii_list)
5159 		PHY_RESET(miisc);
5160 	mii_mediachg(mii);
5161 
5162 	/*
5163 	 * Force an interrupt so that we will call bge_link_upd
5164 	 * if needed and clear any pending link state attention.
5165 	 * Without this we are not getting any further interrupts
5166 	 * for link state changes and thus will not UP the link and
5167 	 * not be able to send in bge_start_locked. The only
5168 	 * way to get things working was to receive a packet and
5169 	 * get an RX intr.
5170 	 * bge_tick should help for fiber cards and we might not
5171 	 * need to do this here if BGE_FLAG_TBI is set but as
5172 	 * we poll for fiber anyway it should not harm.
5173 	 */
5174 	if (sc->bge_asicrev == BGE_ASICREV_BCM5700 ||
5175 	    sc->bge_flags & BGE_FLAG_5788)
5176 		BGE_SETBIT(sc, BGE_MISC_LOCAL_CTL, BGE_MLC_INTR_SET);
5177 	else
5178 		BGE_SETBIT(sc, BGE_HCC_MODE, BGE_HCCMODE_COAL_NOW);
5179 
5180 	return (0);
5181 }
5182 
5183 /*
5184  * Report current media status.
5185  */
5186 static void
5187 bge_ifmedia_sts(struct ifnet *ifp, struct ifmediareq *ifmr)
5188 {
5189 	struct bge_softc *sc = ifp->if_softc;
5190 	struct mii_data *mii;
5191 
5192 	BGE_LOCK(sc);
5193 
5194 	if (sc->bge_flags & BGE_FLAG_TBI) {
5195 		ifmr->ifm_status = IFM_AVALID;
5196 		ifmr->ifm_active = IFM_ETHER;
5197 		if (CSR_READ_4(sc, BGE_MAC_STS) &
5198 		    BGE_MACSTAT_TBI_PCS_SYNCHED)
5199 			ifmr->ifm_status |= IFM_ACTIVE;
5200 		else {
5201 			ifmr->ifm_active |= IFM_NONE;
5202 			BGE_UNLOCK(sc);
5203 			return;
5204 		}
5205 		ifmr->ifm_active |= IFM_1000_SX;
5206 		if (CSR_READ_4(sc, BGE_MAC_MODE) & BGE_MACMODE_HALF_DUPLEX)
5207 			ifmr->ifm_active |= IFM_HDX;
5208 		else
5209 			ifmr->ifm_active |= IFM_FDX;
5210 		BGE_UNLOCK(sc);
5211 		return;
5212 	}
5213 
5214 	mii = device_get_softc(sc->bge_miibus);
5215 	mii_pollstat(mii);
5216 	ifmr->ifm_active = mii->mii_media_active;
5217 	ifmr->ifm_status = mii->mii_media_status;
5218 
5219 	BGE_UNLOCK(sc);
5220 }
5221 
5222 static int
5223 bge_ioctl(struct ifnet *ifp, u_long command, caddr_t data)
5224 {
5225 	struct bge_softc *sc = ifp->if_softc;
5226 	struct ifreq *ifr = (struct ifreq *) data;
5227 	struct mii_data *mii;
5228 	int flags, mask, error = 0;
5229 
5230 	switch (command) {
5231 	case SIOCSIFMTU:
5232 		if (BGE_IS_JUMBO_CAPABLE(sc) ||
5233 		    (sc->bge_flags & BGE_FLAG_JUMBO_STD)) {
5234 			if (ifr->ifr_mtu < ETHERMIN ||
5235 			    ifr->ifr_mtu > BGE_JUMBO_MTU) {
5236 				error = EINVAL;
5237 				break;
5238 			}
5239 		} else if (ifr->ifr_mtu < ETHERMIN || ifr->ifr_mtu > ETHERMTU) {
5240 			error = EINVAL;
5241 			break;
5242 		}
5243 		BGE_LOCK(sc);
5244 		if (ifp->if_mtu != ifr->ifr_mtu) {
5245 			ifp->if_mtu = ifr->ifr_mtu;
5246 			if (ifp->if_drv_flags & IFF_DRV_RUNNING) {
5247 				ifp->if_drv_flags &= ~IFF_DRV_RUNNING;
5248 				bge_init_locked(sc);
5249 			}
5250 		}
5251 		BGE_UNLOCK(sc);
5252 		break;
5253 	case SIOCSIFFLAGS:
5254 		BGE_LOCK(sc);
5255 		if (ifp->if_flags & IFF_UP) {
5256 			/*
5257 			 * If only the state of the PROMISC flag changed,
5258 			 * then just use the 'set promisc mode' command
5259 			 * instead of reinitializing the entire NIC. Doing
5260 			 * a full re-init means reloading the firmware and
5261 			 * waiting for it to start up, which may take a
5262 			 * second or two.  Similarly for ALLMULTI.
5263 			 */
5264 			if (ifp->if_drv_flags & IFF_DRV_RUNNING) {
5265 				flags = ifp->if_flags ^ sc->bge_if_flags;
5266 				if (flags & IFF_PROMISC)
5267 					bge_setpromisc(sc);
5268 				if (flags & IFF_ALLMULTI)
5269 					bge_setmulti(sc);
5270 			} else
5271 				bge_init_locked(sc);
5272 		} else {
5273 			if (ifp->if_drv_flags & IFF_DRV_RUNNING) {
5274 				bge_stop(sc);
5275 			}
5276 		}
5277 		sc->bge_if_flags = ifp->if_flags;
5278 		BGE_UNLOCK(sc);
5279 		error = 0;
5280 		break;
5281 	case SIOCADDMULTI:
5282 	case SIOCDELMULTI:
5283 		if (ifp->if_drv_flags & IFF_DRV_RUNNING) {
5284 			BGE_LOCK(sc);
5285 			bge_setmulti(sc);
5286 			BGE_UNLOCK(sc);
5287 			error = 0;
5288 		}
5289 		break;
5290 	case SIOCSIFMEDIA:
5291 	case SIOCGIFMEDIA:
5292 		if (sc->bge_flags & BGE_FLAG_TBI) {
5293 			error = ifmedia_ioctl(ifp, ifr,
5294 			    &sc->bge_ifmedia, command);
5295 		} else {
5296 			mii = device_get_softc(sc->bge_miibus);
5297 			error = ifmedia_ioctl(ifp, ifr,
5298 			    &mii->mii_media, command);
5299 		}
5300 		break;
5301 	case SIOCSIFCAP:
5302 		mask = ifr->ifr_reqcap ^ ifp->if_capenable;
5303 #ifdef DEVICE_POLLING
5304 		if (mask & IFCAP_POLLING) {
5305 			if (ifr->ifr_reqcap & IFCAP_POLLING) {
5306 				error = ether_poll_register(bge_poll, ifp);
5307 				if (error)
5308 					return (error);
5309 				BGE_LOCK(sc);
5310 				BGE_SETBIT(sc, BGE_PCI_MISC_CTL,
5311 				    BGE_PCIMISCCTL_MASK_PCI_INTR);
5312 				bge_writembx(sc, BGE_MBX_IRQ0_LO, 1);
5313 				ifp->if_capenable |= IFCAP_POLLING;
5314 				BGE_UNLOCK(sc);
5315 			} else {
5316 				error = ether_poll_deregister(ifp);
5317 				/* Enable interrupt even in error case */
5318 				BGE_LOCK(sc);
5319 				BGE_CLRBIT(sc, BGE_PCI_MISC_CTL,
5320 				    BGE_PCIMISCCTL_MASK_PCI_INTR);
5321 				bge_writembx(sc, BGE_MBX_IRQ0_LO, 0);
5322 				ifp->if_capenable &= ~IFCAP_POLLING;
5323 				BGE_UNLOCK(sc);
5324 			}
5325 		}
5326 #endif
5327 		if ((mask & IFCAP_TXCSUM) != 0 &&
5328 		    (ifp->if_capabilities & IFCAP_TXCSUM) != 0) {
5329 			ifp->if_capenable ^= IFCAP_TXCSUM;
5330 			if ((ifp->if_capenable & IFCAP_TXCSUM) != 0)
5331 				ifp->if_hwassist |= sc->bge_csum_features;
5332 			else
5333 				ifp->if_hwassist &= ~sc->bge_csum_features;
5334 		}
5335 
5336 		if ((mask & IFCAP_RXCSUM) != 0 &&
5337 		    (ifp->if_capabilities & IFCAP_RXCSUM) != 0)
5338 			ifp->if_capenable ^= IFCAP_RXCSUM;
5339 
5340 		if ((mask & IFCAP_TSO4) != 0 &&
5341 		    (ifp->if_capabilities & IFCAP_TSO4) != 0) {
5342 			ifp->if_capenable ^= IFCAP_TSO4;
5343 			if ((ifp->if_capenable & IFCAP_TSO4) != 0)
5344 				ifp->if_hwassist |= CSUM_TSO;
5345 			else
5346 				ifp->if_hwassist &= ~CSUM_TSO;
5347 		}
5348 
5349 		if (mask & IFCAP_VLAN_MTU) {
5350 			ifp->if_capenable ^= IFCAP_VLAN_MTU;
5351 			ifp->if_drv_flags &= ~IFF_DRV_RUNNING;
5352 			bge_init(sc);
5353 		}
5354 
5355 		if ((mask & IFCAP_VLAN_HWTSO) != 0 &&
5356 		    (ifp->if_capabilities & IFCAP_VLAN_HWTSO) != 0)
5357 			ifp->if_capenable ^= IFCAP_VLAN_HWTSO;
5358 		if ((mask & IFCAP_VLAN_HWTAGGING) != 0 &&
5359 		    (ifp->if_capabilities & IFCAP_VLAN_HWTAGGING) != 0) {
5360 			ifp->if_capenable ^= IFCAP_VLAN_HWTAGGING;
5361 			if ((ifp->if_capenable & IFCAP_VLAN_HWTAGGING) == 0)
5362 				ifp->if_capenable &= ~IFCAP_VLAN_HWTSO;
5363 			BGE_LOCK(sc);
5364 			bge_setvlan(sc);
5365 			BGE_UNLOCK(sc);
5366 		}
5367 #ifdef VLAN_CAPABILITIES
5368 		VLAN_CAPABILITIES(ifp);
5369 #endif
5370 		break;
5371 	default:
5372 		error = ether_ioctl(ifp, command, data);
5373 		break;
5374 	}
5375 
5376 	return (error);
5377 }
5378 
5379 static void
5380 bge_watchdog(struct bge_softc *sc)
5381 {
5382 	struct ifnet *ifp;
5383 
5384 	BGE_LOCK_ASSERT(sc);
5385 
5386 	if (sc->bge_timer == 0 || --sc->bge_timer)
5387 		return;
5388 
5389 	ifp = sc->bge_ifp;
5390 
5391 	if_printf(ifp, "watchdog timeout -- resetting\n");
5392 
5393 	ifp->if_drv_flags &= ~IFF_DRV_RUNNING;
5394 	bge_init_locked(sc);
5395 
5396 	ifp->if_oerrors++;
5397 }
5398 
5399 static void
5400 bge_stop_block(struct bge_softc *sc, bus_size_t reg, uint32_t bit)
5401 {
5402 	int i;
5403 
5404 	BGE_CLRBIT(sc, reg, bit);
5405 
5406 	for (i = 0; i < BGE_TIMEOUT; i++) {
5407 		if ((CSR_READ_4(sc, reg) & bit) == 0)
5408 			return;
5409 		DELAY(100);
5410         }
5411 }
5412 
5413 /*
5414  * Stop the adapter and free any mbufs allocated to the
5415  * RX and TX lists.
5416  */
5417 static void
5418 bge_stop(struct bge_softc *sc)
5419 {
5420 	struct ifnet *ifp;
5421 
5422 	BGE_LOCK_ASSERT(sc);
5423 
5424 	ifp = sc->bge_ifp;
5425 
5426 	callout_stop(&sc->bge_stat_ch);
5427 
5428 	/* Disable host interrupts. */
5429 	BGE_SETBIT(sc, BGE_PCI_MISC_CTL, BGE_PCIMISCCTL_MASK_PCI_INTR);
5430 	bge_writembx(sc, BGE_MBX_IRQ0_LO, 1);
5431 
5432 	/*
5433 	 * Tell firmware we're shutting down.
5434 	 */
5435 	bge_stop_fw(sc);
5436 	bge_sig_pre_reset(sc, BGE_RESET_STOP);
5437 
5438 	/*
5439 	 * Disable all of the receiver blocks.
5440 	 */
5441 	bge_stop_block(sc, BGE_RX_MODE, BGE_RXMODE_ENABLE);
5442 	bge_stop_block(sc, BGE_RBDI_MODE, BGE_RBDIMODE_ENABLE);
5443 	bge_stop_block(sc, BGE_RXLP_MODE, BGE_RXLPMODE_ENABLE);
5444 	if (BGE_IS_5700_FAMILY(sc))
5445 		bge_stop_block(sc, BGE_RXLS_MODE, BGE_RXLSMODE_ENABLE);
5446 	bge_stop_block(sc, BGE_RDBDI_MODE, BGE_RBDIMODE_ENABLE);
5447 	bge_stop_block(sc, BGE_RDC_MODE, BGE_RDCMODE_ENABLE);
5448 	bge_stop_block(sc, BGE_RBDC_MODE, BGE_RBDCMODE_ENABLE);
5449 
5450 	/*
5451 	 * Disable all of the transmit blocks.
5452 	 */
5453 	bge_stop_block(sc, BGE_SRS_MODE, BGE_SRSMODE_ENABLE);
5454 	bge_stop_block(sc, BGE_SBDI_MODE, BGE_SBDIMODE_ENABLE);
5455 	bge_stop_block(sc, BGE_SDI_MODE, BGE_SDIMODE_ENABLE);
5456 	bge_stop_block(sc, BGE_RDMA_MODE, BGE_RDMAMODE_ENABLE);
5457 	bge_stop_block(sc, BGE_SDC_MODE, BGE_SDCMODE_ENABLE);
5458 	if (BGE_IS_5700_FAMILY(sc))
5459 		bge_stop_block(sc, BGE_DMAC_MODE, BGE_DMACMODE_ENABLE);
5460 	bge_stop_block(sc, BGE_SBDC_MODE, BGE_SBDCMODE_ENABLE);
5461 
5462 	/*
5463 	 * Shut down all of the memory managers and related
5464 	 * state machines.
5465 	 */
5466 	bge_stop_block(sc, BGE_HCC_MODE, BGE_HCCMODE_ENABLE);
5467 	bge_stop_block(sc, BGE_WDMA_MODE, BGE_WDMAMODE_ENABLE);
5468 	if (BGE_IS_5700_FAMILY(sc))
5469 		bge_stop_block(sc, BGE_MBCF_MODE, BGE_MBCFMODE_ENABLE);
5470 
5471 	CSR_WRITE_4(sc, BGE_FTQ_RESET, 0xFFFFFFFF);
5472 	CSR_WRITE_4(sc, BGE_FTQ_RESET, 0);
5473 	if (!(BGE_IS_5705_PLUS(sc))) {
5474 		BGE_CLRBIT(sc, BGE_BMAN_MODE, BGE_BMANMODE_ENABLE);
5475 		BGE_CLRBIT(sc, BGE_MARB_MODE, BGE_MARBMODE_ENABLE);
5476 	}
5477 	/* Update MAC statistics. */
5478 	if (BGE_IS_5705_PLUS(sc))
5479 		bge_stats_update_regs(sc);
5480 
5481 	bge_reset(sc);
5482 	bge_sig_legacy(sc, BGE_RESET_STOP);
5483 	bge_sig_post_reset(sc, BGE_RESET_STOP);
5484 
5485 	/*
5486 	 * Keep the ASF firmware running if up.
5487 	 */
5488 	if (sc->bge_asf_mode & ASF_STACKUP)
5489 		BGE_SETBIT(sc, BGE_MODE_CTL, BGE_MODECTL_STACKUP);
5490 	else
5491 		BGE_CLRBIT(sc, BGE_MODE_CTL, BGE_MODECTL_STACKUP);
5492 
5493 	/* Free the RX lists. */
5494 	bge_free_rx_ring_std(sc);
5495 
5496 	/* Free jumbo RX list. */
5497 	if (BGE_IS_JUMBO_CAPABLE(sc))
5498 		bge_free_rx_ring_jumbo(sc);
5499 
5500 	/* Free TX buffers. */
5501 	bge_free_tx_ring(sc);
5502 
5503 	sc->bge_tx_saved_considx = BGE_TXCONS_UNSET;
5504 
5505 	/* Clear MAC's link state (PHY may still have link UP). */
5506 	if (bootverbose && sc->bge_link)
5507 		if_printf(sc->bge_ifp, "link DOWN\n");
5508 	sc->bge_link = 0;
5509 
5510 	ifp->if_drv_flags &= ~(IFF_DRV_RUNNING | IFF_DRV_OACTIVE);
5511 }
5512 
5513 /*
5514  * Stop all chip I/O so that the kernel's probe routines don't
5515  * get confused by errant DMAs when rebooting.
5516  */
5517 static int
5518 bge_shutdown(device_t dev)
5519 {
5520 	struct bge_softc *sc;
5521 
5522 	sc = device_get_softc(dev);
5523 	BGE_LOCK(sc);
5524 	bge_stop(sc);
5525 	bge_reset(sc);
5526 	BGE_UNLOCK(sc);
5527 
5528 	return (0);
5529 }
5530 
5531 static int
5532 bge_suspend(device_t dev)
5533 {
5534 	struct bge_softc *sc;
5535 
5536 	sc = device_get_softc(dev);
5537 	BGE_LOCK(sc);
5538 	bge_stop(sc);
5539 	BGE_UNLOCK(sc);
5540 
5541 	return (0);
5542 }
5543 
5544 static int
5545 bge_resume(device_t dev)
5546 {
5547 	struct bge_softc *sc;
5548 	struct ifnet *ifp;
5549 
5550 	sc = device_get_softc(dev);
5551 	BGE_LOCK(sc);
5552 	ifp = sc->bge_ifp;
5553 	if (ifp->if_flags & IFF_UP) {
5554 		bge_init_locked(sc);
5555 		if (ifp->if_drv_flags & IFF_DRV_RUNNING)
5556 			bge_start_locked(ifp);
5557 	}
5558 	BGE_UNLOCK(sc);
5559 
5560 	return (0);
5561 }
5562 
5563 static void
5564 bge_link_upd(struct bge_softc *sc)
5565 {
5566 	struct mii_data *mii;
5567 	uint32_t link, status;
5568 
5569 	BGE_LOCK_ASSERT(sc);
5570 
5571 	/* Clear 'pending link event' flag. */
5572 	sc->bge_link_evt = 0;
5573 
5574 	/*
5575 	 * Process link state changes.
5576 	 * Grrr. The link status word in the status block does
5577 	 * not work correctly on the BCM5700 rev AX and BX chips,
5578 	 * according to all available information. Hence, we have
5579 	 * to enable MII interrupts in order to properly obtain
5580 	 * async link changes. Unfortunately, this also means that
5581 	 * we have to read the MAC status register to detect link
5582 	 * changes, thereby adding an additional register access to
5583 	 * the interrupt handler.
5584 	 *
5585 	 * XXX: perhaps link state detection procedure used for
5586 	 * BGE_CHIPID_BCM5700_B2 can be used for others BCM5700 revisions.
5587 	 */
5588 
5589 	if (sc->bge_asicrev == BGE_ASICREV_BCM5700 &&
5590 	    sc->bge_chipid != BGE_CHIPID_BCM5700_B2) {
5591 		status = CSR_READ_4(sc, BGE_MAC_STS);
5592 		if (status & BGE_MACSTAT_MI_INTERRUPT) {
5593 			mii = device_get_softc(sc->bge_miibus);
5594 			mii_pollstat(mii);
5595 			if (!sc->bge_link &&
5596 			    mii->mii_media_status & IFM_ACTIVE &&
5597 			    IFM_SUBTYPE(mii->mii_media_active) != IFM_NONE) {
5598 				sc->bge_link++;
5599 				if (bootverbose)
5600 					if_printf(sc->bge_ifp, "link UP\n");
5601 			} else if (sc->bge_link &&
5602 			    (!(mii->mii_media_status & IFM_ACTIVE) ||
5603 			    IFM_SUBTYPE(mii->mii_media_active) == IFM_NONE)) {
5604 				sc->bge_link = 0;
5605 				if (bootverbose)
5606 					if_printf(sc->bge_ifp, "link DOWN\n");
5607 			}
5608 
5609 			/* Clear the interrupt. */
5610 			CSR_WRITE_4(sc, BGE_MAC_EVT_ENB,
5611 			    BGE_EVTENB_MI_INTERRUPT);
5612 			bge_miibus_readreg(sc->bge_dev, 1, BRGPHY_MII_ISR);
5613 			bge_miibus_writereg(sc->bge_dev, 1, BRGPHY_MII_IMR,
5614 			    BRGPHY_INTRS);
5615 		}
5616 		return;
5617 	}
5618 
5619 	if (sc->bge_flags & BGE_FLAG_TBI) {
5620 		status = CSR_READ_4(sc, BGE_MAC_STS);
5621 		if (status & BGE_MACSTAT_TBI_PCS_SYNCHED) {
5622 			if (!sc->bge_link) {
5623 				sc->bge_link++;
5624 				if (sc->bge_asicrev == BGE_ASICREV_BCM5704)
5625 					BGE_CLRBIT(sc, BGE_MAC_MODE,
5626 					    BGE_MACMODE_TBI_SEND_CFGS);
5627 				CSR_WRITE_4(sc, BGE_MAC_STS, 0xFFFFFFFF);
5628 				if (bootverbose)
5629 					if_printf(sc->bge_ifp, "link UP\n");
5630 				if_link_state_change(sc->bge_ifp,
5631 				    LINK_STATE_UP);
5632 			}
5633 		} else if (sc->bge_link) {
5634 			sc->bge_link = 0;
5635 			if (bootverbose)
5636 				if_printf(sc->bge_ifp, "link DOWN\n");
5637 			if_link_state_change(sc->bge_ifp, LINK_STATE_DOWN);
5638 		}
5639 	} else if ((sc->bge_mi_mode & BGE_MIMODE_AUTOPOLL) != 0) {
5640 		/*
5641 		 * Some broken BCM chips have BGE_STATFLAG_LINKSTATE_CHANGED bit
5642 		 * in status word always set. Workaround this bug by reading
5643 		 * PHY link status directly.
5644 		 */
5645 		link = (CSR_READ_4(sc, BGE_MI_STS) & BGE_MISTS_LINK) ? 1 : 0;
5646 
5647 		if (link != sc->bge_link ||
5648 		    sc->bge_asicrev == BGE_ASICREV_BCM5700) {
5649 			mii = device_get_softc(sc->bge_miibus);
5650 			mii_pollstat(mii);
5651 			if (!sc->bge_link &&
5652 			    mii->mii_media_status & IFM_ACTIVE &&
5653 			    IFM_SUBTYPE(mii->mii_media_active) != IFM_NONE) {
5654 				sc->bge_link++;
5655 				if (bootverbose)
5656 					if_printf(sc->bge_ifp, "link UP\n");
5657 			} else if (sc->bge_link &&
5658 			    (!(mii->mii_media_status & IFM_ACTIVE) ||
5659 			    IFM_SUBTYPE(mii->mii_media_active) == IFM_NONE)) {
5660 				sc->bge_link = 0;
5661 				if (bootverbose)
5662 					if_printf(sc->bge_ifp, "link DOWN\n");
5663 			}
5664 		}
5665 	} else {
5666 		/*
5667 		 * For controllers that call mii_tick, we have to poll
5668 		 * link status.
5669 		 */
5670 		mii = device_get_softc(sc->bge_miibus);
5671 		mii_pollstat(mii);
5672 		bge_miibus_statchg(sc->bge_dev);
5673 	}
5674 
5675 	/* Clear the attention. */
5676 	CSR_WRITE_4(sc, BGE_MAC_STS, BGE_MACSTAT_SYNC_CHANGED |
5677 	    BGE_MACSTAT_CFG_CHANGED | BGE_MACSTAT_MI_COMPLETE |
5678 	    BGE_MACSTAT_LINK_CHANGED);
5679 }
5680 
5681 static void
5682 bge_add_sysctls(struct bge_softc *sc)
5683 {
5684 	struct sysctl_ctx_list *ctx;
5685 	struct sysctl_oid_list *children;
5686 	char tn[32];
5687 	int unit;
5688 
5689 	ctx = device_get_sysctl_ctx(sc->bge_dev);
5690 	children = SYSCTL_CHILDREN(device_get_sysctl_tree(sc->bge_dev));
5691 
5692 #ifdef BGE_REGISTER_DEBUG
5693 	SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "debug_info",
5694 	    CTLTYPE_INT | CTLFLAG_RW, sc, 0, bge_sysctl_debug_info, "I",
5695 	    "Debug Information");
5696 
5697 	SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "reg_read",
5698 	    CTLTYPE_INT | CTLFLAG_RW, sc, 0, bge_sysctl_reg_read, "I",
5699 	    "Register Read");
5700 
5701 	SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "mem_read",
5702 	    CTLTYPE_INT | CTLFLAG_RW, sc, 0, bge_sysctl_mem_read, "I",
5703 	    "Memory Read");
5704 
5705 #endif
5706 
5707 	unit = device_get_unit(sc->bge_dev);
5708 	/*
5709 	 * A common design characteristic for many Broadcom client controllers
5710 	 * is that they only support a single outstanding DMA read operation
5711 	 * on the PCIe bus. This means that it will take twice as long to fetch
5712 	 * a TX frame that is split into header and payload buffers as it does
5713 	 * to fetch a single, contiguous TX frame (2 reads vs. 1 read). For
5714 	 * these controllers, coalescing buffers to reduce the number of memory
5715 	 * reads is effective way to get maximum performance(about 940Mbps).
5716 	 * Without collapsing TX buffers the maximum TCP bulk transfer
5717 	 * performance is about 850Mbps. However forcing coalescing mbufs
5718 	 * consumes a lot of CPU cycles, so leave it off by default.
5719 	 */
5720 	sc->bge_forced_collapse = 0;
5721 	snprintf(tn, sizeof(tn), "dev.bge.%d.forced_collapse", unit);
5722 	TUNABLE_INT_FETCH(tn, &sc->bge_forced_collapse);
5723 	SYSCTL_ADD_INT(ctx, children, OID_AUTO, "forced_collapse",
5724 	    CTLFLAG_RW, &sc->bge_forced_collapse, 0,
5725 	    "Number of fragmented TX buffers of a frame allowed before "
5726 	    "forced collapsing");
5727 
5728 	sc->bge_msi = 1;
5729 	snprintf(tn, sizeof(tn), "dev.bge.%d.msi", unit);
5730 	TUNABLE_INT_FETCH(tn, &sc->bge_msi);
5731 	SYSCTL_ADD_INT(ctx, children, OID_AUTO, "msi",
5732 	    CTLFLAG_RD, &sc->bge_msi, 0, "Enable MSI");
5733 
5734 	/*
5735 	 * It seems all Broadcom controllers have a bug that can generate UDP
5736 	 * datagrams with checksum value 0 when TX UDP checksum offloading is
5737 	 * enabled.  Generating UDP checksum value 0 is RFC 768 violation.
5738 	 * Even though the probability of generating such UDP datagrams is
5739 	 * low, I don't want to see FreeBSD boxes to inject such datagrams
5740 	 * into network so disable UDP checksum offloading by default.  Users
5741 	 * still override this behavior by setting a sysctl variable,
5742 	 * dev.bge.0.forced_udpcsum.
5743 	 */
5744 	sc->bge_forced_udpcsum = 0;
5745 	snprintf(tn, sizeof(tn), "dev.bge.%d.bge_forced_udpcsum", unit);
5746 	TUNABLE_INT_FETCH(tn, &sc->bge_forced_udpcsum);
5747 	SYSCTL_ADD_INT(ctx, children, OID_AUTO, "forced_udpcsum",
5748 	    CTLFLAG_RW, &sc->bge_forced_udpcsum, 0,
5749 	    "Enable UDP checksum offloading even if controller can "
5750 	    "generate UDP checksum value 0");
5751 
5752 	if (BGE_IS_5705_PLUS(sc))
5753 		bge_add_sysctl_stats_regs(sc, ctx, children);
5754 	else
5755 		bge_add_sysctl_stats(sc, ctx, children);
5756 }
5757 
5758 #define BGE_SYSCTL_STAT(sc, ctx, desc, parent, node, oid) \
5759 	SYSCTL_ADD_PROC(ctx, parent, OID_AUTO, oid, CTLTYPE_UINT|CTLFLAG_RD, \
5760 	    sc, offsetof(struct bge_stats, node), bge_sysctl_stats, "IU", \
5761 	    desc)
5762 
5763 static void
5764 bge_add_sysctl_stats(struct bge_softc *sc, struct sysctl_ctx_list *ctx,
5765     struct sysctl_oid_list *parent)
5766 {
5767 	struct sysctl_oid *tree;
5768 	struct sysctl_oid_list *children, *schildren;
5769 
5770 	tree = SYSCTL_ADD_NODE(ctx, parent, OID_AUTO, "stats", CTLFLAG_RD,
5771 	    NULL, "BGE Statistics");
5772 	schildren = children = SYSCTL_CHILDREN(tree);
5773 	BGE_SYSCTL_STAT(sc, ctx, "Frames Dropped Due To Filters",
5774 	    children, COSFramesDroppedDueToFilters,
5775 	    "FramesDroppedDueToFilters");
5776 	BGE_SYSCTL_STAT(sc, ctx, "NIC DMA Write Queue Full",
5777 	    children, nicDmaWriteQueueFull, "DmaWriteQueueFull");
5778 	BGE_SYSCTL_STAT(sc, ctx, "NIC DMA Write High Priority Queue Full",
5779 	    children, nicDmaWriteHighPriQueueFull, "DmaWriteHighPriQueueFull");
5780 	BGE_SYSCTL_STAT(sc, ctx, "NIC No More RX Buffer Descriptors",
5781 	    children, nicNoMoreRxBDs, "NoMoreRxBDs");
5782 	BGE_SYSCTL_STAT(sc, ctx, "Discarded Input Frames",
5783 	    children, ifInDiscards, "InputDiscards");
5784 	BGE_SYSCTL_STAT(sc, ctx, "Input Errors",
5785 	    children, ifInErrors, "InputErrors");
5786 	BGE_SYSCTL_STAT(sc, ctx, "NIC Recv Threshold Hit",
5787 	    children, nicRecvThresholdHit, "RecvThresholdHit");
5788 	BGE_SYSCTL_STAT(sc, ctx, "NIC DMA Read Queue Full",
5789 	    children, nicDmaReadQueueFull, "DmaReadQueueFull");
5790 	BGE_SYSCTL_STAT(sc, ctx, "NIC DMA Read High Priority Queue Full",
5791 	    children, nicDmaReadHighPriQueueFull, "DmaReadHighPriQueueFull");
5792 	BGE_SYSCTL_STAT(sc, ctx, "NIC Send Data Complete Queue Full",
5793 	    children, nicSendDataCompQueueFull, "SendDataCompQueueFull");
5794 	BGE_SYSCTL_STAT(sc, ctx, "NIC Ring Set Send Producer Index",
5795 	    children, nicRingSetSendProdIndex, "RingSetSendProdIndex");
5796 	BGE_SYSCTL_STAT(sc, ctx, "NIC Ring Status Update",
5797 	    children, nicRingStatusUpdate, "RingStatusUpdate");
5798 	BGE_SYSCTL_STAT(sc, ctx, "NIC Interrupts",
5799 	    children, nicInterrupts, "Interrupts");
5800 	BGE_SYSCTL_STAT(sc, ctx, "NIC Avoided Interrupts",
5801 	    children, nicAvoidedInterrupts, "AvoidedInterrupts");
5802 	BGE_SYSCTL_STAT(sc, ctx, "NIC Send Threshold Hit",
5803 	    children, nicSendThresholdHit, "SendThresholdHit");
5804 
5805 	tree = SYSCTL_ADD_NODE(ctx, schildren, OID_AUTO, "rx", CTLFLAG_RD,
5806 	    NULL, "BGE RX Statistics");
5807 	children = SYSCTL_CHILDREN(tree);
5808 	BGE_SYSCTL_STAT(sc, ctx, "Inbound Octets",
5809 	    children, rxstats.ifHCInOctets, "ifHCInOctets");
5810 	BGE_SYSCTL_STAT(sc, ctx, "Fragments",
5811 	    children, rxstats.etherStatsFragments, "Fragments");
5812 	BGE_SYSCTL_STAT(sc, ctx, "Inbound Unicast Packets",
5813 	    children, rxstats.ifHCInUcastPkts, "UnicastPkts");
5814 	BGE_SYSCTL_STAT(sc, ctx, "Inbound Multicast Packets",
5815 	    children, rxstats.ifHCInMulticastPkts, "MulticastPkts");
5816 	BGE_SYSCTL_STAT(sc, ctx, "FCS Errors",
5817 	    children, rxstats.dot3StatsFCSErrors, "FCSErrors");
5818 	BGE_SYSCTL_STAT(sc, ctx, "Alignment Errors",
5819 	    children, rxstats.dot3StatsAlignmentErrors, "AlignmentErrors");
5820 	BGE_SYSCTL_STAT(sc, ctx, "XON Pause Frames Received",
5821 	    children, rxstats.xonPauseFramesReceived, "xonPauseFramesReceived");
5822 	BGE_SYSCTL_STAT(sc, ctx, "XOFF Pause Frames Received",
5823 	    children, rxstats.xoffPauseFramesReceived,
5824 	    "xoffPauseFramesReceived");
5825 	BGE_SYSCTL_STAT(sc, ctx, "MAC Control Frames Received",
5826 	    children, rxstats.macControlFramesReceived,
5827 	    "ControlFramesReceived");
5828 	BGE_SYSCTL_STAT(sc, ctx, "XOFF State Entered",
5829 	    children, rxstats.xoffStateEntered, "xoffStateEntered");
5830 	BGE_SYSCTL_STAT(sc, ctx, "Frames Too Long",
5831 	    children, rxstats.dot3StatsFramesTooLong, "FramesTooLong");
5832 	BGE_SYSCTL_STAT(sc, ctx, "Jabbers",
5833 	    children, rxstats.etherStatsJabbers, "Jabbers");
5834 	BGE_SYSCTL_STAT(sc, ctx, "Undersized Packets",
5835 	    children, rxstats.etherStatsUndersizePkts, "UndersizePkts");
5836 	BGE_SYSCTL_STAT(sc, ctx, "Inbound Range Length Errors",
5837 	    children, rxstats.inRangeLengthError, "inRangeLengthError");
5838 	BGE_SYSCTL_STAT(sc, ctx, "Outbound Range Length Errors",
5839 	    children, rxstats.outRangeLengthError, "outRangeLengthError");
5840 
5841 	tree = SYSCTL_ADD_NODE(ctx, schildren, OID_AUTO, "tx", CTLFLAG_RD,
5842 	    NULL, "BGE TX Statistics");
5843 	children = SYSCTL_CHILDREN(tree);
5844 	BGE_SYSCTL_STAT(sc, ctx, "Outbound Octets",
5845 	    children, txstats.ifHCOutOctets, "ifHCOutOctets");
5846 	BGE_SYSCTL_STAT(sc, ctx, "TX Collisions",
5847 	    children, txstats.etherStatsCollisions, "Collisions");
5848 	BGE_SYSCTL_STAT(sc, ctx, "XON Sent",
5849 	    children, txstats.outXonSent, "XonSent");
5850 	BGE_SYSCTL_STAT(sc, ctx, "XOFF Sent",
5851 	    children, txstats.outXoffSent, "XoffSent");
5852 	BGE_SYSCTL_STAT(sc, ctx, "Flow Control Done",
5853 	    children, txstats.flowControlDone, "flowControlDone");
5854 	BGE_SYSCTL_STAT(sc, ctx, "Internal MAC TX errors",
5855 	    children, txstats.dot3StatsInternalMacTransmitErrors,
5856 	    "InternalMacTransmitErrors");
5857 	BGE_SYSCTL_STAT(sc, ctx, "Single Collision Frames",
5858 	    children, txstats.dot3StatsSingleCollisionFrames,
5859 	    "SingleCollisionFrames");
5860 	BGE_SYSCTL_STAT(sc, ctx, "Multiple Collision Frames",
5861 	    children, txstats.dot3StatsMultipleCollisionFrames,
5862 	    "MultipleCollisionFrames");
5863 	BGE_SYSCTL_STAT(sc, ctx, "Deferred Transmissions",
5864 	    children, txstats.dot3StatsDeferredTransmissions,
5865 	    "DeferredTransmissions");
5866 	BGE_SYSCTL_STAT(sc, ctx, "Excessive Collisions",
5867 	    children, txstats.dot3StatsExcessiveCollisions,
5868 	    "ExcessiveCollisions");
5869 	BGE_SYSCTL_STAT(sc, ctx, "Late Collisions",
5870 	    children, txstats.dot3StatsLateCollisions,
5871 	    "LateCollisions");
5872 	BGE_SYSCTL_STAT(sc, ctx, "Outbound Unicast Packets",
5873 	    children, txstats.ifHCOutUcastPkts, "UnicastPkts");
5874 	BGE_SYSCTL_STAT(sc, ctx, "Outbound Multicast Packets",
5875 	    children, txstats.ifHCOutMulticastPkts, "MulticastPkts");
5876 	BGE_SYSCTL_STAT(sc, ctx, "Outbound Broadcast Packets",
5877 	    children, txstats.ifHCOutBroadcastPkts, "BroadcastPkts");
5878 	BGE_SYSCTL_STAT(sc, ctx, "Carrier Sense Errors",
5879 	    children, txstats.dot3StatsCarrierSenseErrors,
5880 	    "CarrierSenseErrors");
5881 	BGE_SYSCTL_STAT(sc, ctx, "Outbound Discards",
5882 	    children, txstats.ifOutDiscards, "Discards");
5883 	BGE_SYSCTL_STAT(sc, ctx, "Outbound Errors",
5884 	    children, txstats.ifOutErrors, "Errors");
5885 }
5886 
5887 #undef BGE_SYSCTL_STAT
5888 
5889 #define	BGE_SYSCTL_STAT_ADD64(c, h, n, p, d)	\
5890 	    SYSCTL_ADD_UQUAD(c, h, OID_AUTO, n, CTLFLAG_RD, p, d)
5891 
5892 static void
5893 bge_add_sysctl_stats_regs(struct bge_softc *sc, struct sysctl_ctx_list *ctx,
5894     struct sysctl_oid_list *parent)
5895 {
5896 	struct sysctl_oid *tree;
5897 	struct sysctl_oid_list *child, *schild;
5898 	struct bge_mac_stats *stats;
5899 
5900 	stats = &sc->bge_mac_stats;
5901 	tree = SYSCTL_ADD_NODE(ctx, parent, OID_AUTO, "stats", CTLFLAG_RD,
5902 	    NULL, "BGE Statistics");
5903 	schild = child = SYSCTL_CHILDREN(tree);
5904 	BGE_SYSCTL_STAT_ADD64(ctx, child, "FramesDroppedDueToFilters",
5905 	    &stats->FramesDroppedDueToFilters, "Frames Dropped Due to Filters");
5906 	BGE_SYSCTL_STAT_ADD64(ctx, child, "DmaWriteQueueFull",
5907 	    &stats->DmaWriteQueueFull, "NIC DMA Write Queue Full");
5908 	BGE_SYSCTL_STAT_ADD64(ctx, child, "DmaWriteHighPriQueueFull",
5909 	    &stats->DmaWriteHighPriQueueFull,
5910 	    "NIC DMA Write High Priority Queue Full");
5911 	BGE_SYSCTL_STAT_ADD64(ctx, child, "NoMoreRxBDs",
5912 	    &stats->NoMoreRxBDs, "NIC No More RX Buffer Descriptors");
5913 	BGE_SYSCTL_STAT_ADD64(ctx, child, "InputDiscards",
5914 	    &stats->InputDiscards, "Discarded Input Frames");
5915 	BGE_SYSCTL_STAT_ADD64(ctx, child, "InputErrors",
5916 	    &stats->InputErrors, "Input Errors");
5917 	BGE_SYSCTL_STAT_ADD64(ctx, child, "RecvThresholdHit",
5918 	    &stats->RecvThresholdHit, "NIC Recv Threshold Hit");
5919 
5920 	tree = SYSCTL_ADD_NODE(ctx, schild, OID_AUTO, "rx", CTLFLAG_RD,
5921 	    NULL, "BGE RX Statistics");
5922 	child = SYSCTL_CHILDREN(tree);
5923 	BGE_SYSCTL_STAT_ADD64(ctx, child, "ifHCInOctets",
5924 	    &stats->ifHCInOctets, "Inbound Octets");
5925 	BGE_SYSCTL_STAT_ADD64(ctx, child, "Fragments",
5926 	    &stats->etherStatsFragments, "Fragments");
5927 	BGE_SYSCTL_STAT_ADD64(ctx, child, "UnicastPkts",
5928 	    &stats->ifHCInUcastPkts, "Inbound Unicast Packets");
5929 	BGE_SYSCTL_STAT_ADD64(ctx, child, "MulticastPkts",
5930 	    &stats->ifHCInMulticastPkts, "Inbound Multicast Packets");
5931 	BGE_SYSCTL_STAT_ADD64(ctx, child, "BroadcastPkts",
5932 	    &stats->ifHCInBroadcastPkts, "Inbound Broadcast Packets");
5933 	BGE_SYSCTL_STAT_ADD64(ctx, child, "FCSErrors",
5934 	    &stats->dot3StatsFCSErrors, "FCS Errors");
5935 	BGE_SYSCTL_STAT_ADD64(ctx, child, "AlignmentErrors",
5936 	    &stats->dot3StatsAlignmentErrors, "Alignment Errors");
5937 	BGE_SYSCTL_STAT_ADD64(ctx, child, "xonPauseFramesReceived",
5938 	    &stats->xonPauseFramesReceived, "XON Pause Frames Received");
5939 	BGE_SYSCTL_STAT_ADD64(ctx, child, "xoffPauseFramesReceived",
5940 	    &stats->xoffPauseFramesReceived, "XOFF Pause Frames Received");
5941 	BGE_SYSCTL_STAT_ADD64(ctx, child, "ControlFramesReceived",
5942 	    &stats->macControlFramesReceived, "MAC Control Frames Received");
5943 	BGE_SYSCTL_STAT_ADD64(ctx, child, "xoffStateEntered",
5944 	    &stats->xoffStateEntered, "XOFF State Entered");
5945 	BGE_SYSCTL_STAT_ADD64(ctx, child, "FramesTooLong",
5946 	    &stats->dot3StatsFramesTooLong, "Frames Too Long");
5947 	BGE_SYSCTL_STAT_ADD64(ctx, child, "Jabbers",
5948 	    &stats->etherStatsJabbers, "Jabbers");
5949 	BGE_SYSCTL_STAT_ADD64(ctx, child, "UndersizePkts",
5950 	    &stats->etherStatsUndersizePkts, "Undersized Packets");
5951 
5952 	tree = SYSCTL_ADD_NODE(ctx, schild, OID_AUTO, "tx", CTLFLAG_RD,
5953 	    NULL, "BGE TX Statistics");
5954 	child = SYSCTL_CHILDREN(tree);
5955 	BGE_SYSCTL_STAT_ADD64(ctx, child, "ifHCOutOctets",
5956 	    &stats->ifHCOutOctets, "Outbound Octets");
5957 	BGE_SYSCTL_STAT_ADD64(ctx, child, "Collisions",
5958 	    &stats->etherStatsCollisions, "TX Collisions");
5959 	BGE_SYSCTL_STAT_ADD64(ctx, child, "XonSent",
5960 	    &stats->outXonSent, "XON Sent");
5961 	BGE_SYSCTL_STAT_ADD64(ctx, child, "XoffSent",
5962 	    &stats->outXoffSent, "XOFF Sent");
5963 	BGE_SYSCTL_STAT_ADD64(ctx, child, "InternalMacTransmitErrors",
5964 	    &stats->dot3StatsInternalMacTransmitErrors,
5965 	    "Internal MAC TX Errors");
5966 	BGE_SYSCTL_STAT_ADD64(ctx, child, "SingleCollisionFrames",
5967 	    &stats->dot3StatsSingleCollisionFrames, "Single Collision Frames");
5968 	BGE_SYSCTL_STAT_ADD64(ctx, child, "MultipleCollisionFrames",
5969 	    &stats->dot3StatsMultipleCollisionFrames,
5970 	    "Multiple Collision Frames");
5971 	BGE_SYSCTL_STAT_ADD64(ctx, child, "DeferredTransmissions",
5972 	    &stats->dot3StatsDeferredTransmissions, "Deferred Transmissions");
5973 	BGE_SYSCTL_STAT_ADD64(ctx, child, "ExcessiveCollisions",
5974 	    &stats->dot3StatsExcessiveCollisions, "Excessive Collisions");
5975 	BGE_SYSCTL_STAT_ADD64(ctx, child, "LateCollisions",
5976 	    &stats->dot3StatsLateCollisions, "Late Collisions");
5977 	BGE_SYSCTL_STAT_ADD64(ctx, child, "UnicastPkts",
5978 	    &stats->ifHCOutUcastPkts, "Outbound Unicast Packets");
5979 	BGE_SYSCTL_STAT_ADD64(ctx, child, "MulticastPkts",
5980 	    &stats->ifHCOutMulticastPkts, "Outbound Multicast Packets");
5981 	BGE_SYSCTL_STAT_ADD64(ctx, child, "BroadcastPkts",
5982 	    &stats->ifHCOutBroadcastPkts, "Outbound Broadcast Packets");
5983 }
5984 
5985 #undef	BGE_SYSCTL_STAT_ADD64
5986 
5987 static int
5988 bge_sysctl_stats(SYSCTL_HANDLER_ARGS)
5989 {
5990 	struct bge_softc *sc;
5991 	uint32_t result;
5992 	int offset;
5993 
5994 	sc = (struct bge_softc *)arg1;
5995 	offset = arg2;
5996 	result = CSR_READ_4(sc, BGE_MEMWIN_START + BGE_STATS_BLOCK + offset +
5997 	    offsetof(bge_hostaddr, bge_addr_lo));
5998 	return (sysctl_handle_int(oidp, &result, 0, req));
5999 }
6000 
6001 #ifdef BGE_REGISTER_DEBUG
6002 static int
6003 bge_sysctl_debug_info(SYSCTL_HANDLER_ARGS)
6004 {
6005 	struct bge_softc *sc;
6006 	uint16_t *sbdata;
6007 	int error, result, sbsz;
6008 	int i, j;
6009 
6010 	result = -1;
6011 	error = sysctl_handle_int(oidp, &result, 0, req);
6012 	if (error || (req->newptr == NULL))
6013 		return (error);
6014 
6015 	if (result == 1) {
6016 		sc = (struct bge_softc *)arg1;
6017 
6018 		if (sc->bge_asicrev == BGE_ASICREV_BCM5700 &&
6019 		    sc->bge_chipid != BGE_CHIPID_BCM5700_C0)
6020 			sbsz = BGE_STATUS_BLK_SZ;
6021 		else
6022 			sbsz = 32;
6023 		sbdata = (uint16_t *)sc->bge_ldata.bge_status_block;
6024 		printf("Status Block:\n");
6025 		BGE_LOCK(sc);
6026 		bus_dmamap_sync(sc->bge_cdata.bge_status_tag,
6027 		    sc->bge_cdata.bge_status_map,
6028 		    BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE);
6029 		for (i = 0x0; i < sbsz / sizeof(uint16_t); ) {
6030 			printf("%06x:", i);
6031 			for (j = 0; j < 8; j++)
6032 				printf(" %04x", sbdata[i++]);
6033 			printf("\n");
6034 		}
6035 
6036 		printf("Registers:\n");
6037 		for (i = 0x800; i < 0xA00; ) {
6038 			printf("%06x:", i);
6039 			for (j = 0; j < 8; j++) {
6040 				printf(" %08x", CSR_READ_4(sc, i));
6041 				i += 4;
6042 			}
6043 			printf("\n");
6044 		}
6045 		BGE_UNLOCK(sc);
6046 
6047 		printf("Hardware Flags:\n");
6048 		if (BGE_IS_5717_PLUS(sc))
6049 			printf(" - 5717 Plus\n");
6050 		if (BGE_IS_5755_PLUS(sc))
6051 			printf(" - 5755 Plus\n");
6052 		if (BGE_IS_575X_PLUS(sc))
6053 			printf(" - 575X Plus\n");
6054 		if (BGE_IS_5705_PLUS(sc))
6055 			printf(" - 5705 Plus\n");
6056 		if (BGE_IS_5714_FAMILY(sc))
6057 			printf(" - 5714 Family\n");
6058 		if (BGE_IS_5700_FAMILY(sc))
6059 			printf(" - 5700 Family\n");
6060 		if (sc->bge_flags & BGE_FLAG_JUMBO)
6061 			printf(" - Supports Jumbo Frames\n");
6062 		if (sc->bge_flags & BGE_FLAG_PCIX)
6063 			printf(" - PCI-X Bus\n");
6064 		if (sc->bge_flags & BGE_FLAG_PCIE)
6065 			printf(" - PCI Express Bus\n");
6066 		if (sc->bge_phy_flags & BGE_PHY_NO_3LED)
6067 			printf(" - No 3 LEDs\n");
6068 		if (sc->bge_flags & BGE_FLAG_RX_ALIGNBUG)
6069 			printf(" - RX Alignment Bug\n");
6070 	}
6071 
6072 	return (error);
6073 }
6074 
6075 static int
6076 bge_sysctl_reg_read(SYSCTL_HANDLER_ARGS)
6077 {
6078 	struct bge_softc *sc;
6079 	int error;
6080 	uint16_t result;
6081 	uint32_t val;
6082 
6083 	result = -1;
6084 	error = sysctl_handle_int(oidp, &result, 0, req);
6085 	if (error || (req->newptr == NULL))
6086 		return (error);
6087 
6088 	if (result < 0x8000) {
6089 		sc = (struct bge_softc *)arg1;
6090 		val = CSR_READ_4(sc, result);
6091 		printf("reg 0x%06X = 0x%08X\n", result, val);
6092 	}
6093 
6094 	return (error);
6095 }
6096 
6097 static int
6098 bge_sysctl_mem_read(SYSCTL_HANDLER_ARGS)
6099 {
6100 	struct bge_softc *sc;
6101 	int error;
6102 	uint16_t result;
6103 	uint32_t val;
6104 
6105 	result = -1;
6106 	error = sysctl_handle_int(oidp, &result, 0, req);
6107 	if (error || (req->newptr == NULL))
6108 		return (error);
6109 
6110 	if (result < 0x8000) {
6111 		sc = (struct bge_softc *)arg1;
6112 		val = bge_readmem_ind(sc, result);
6113 		printf("mem 0x%06X = 0x%08X\n", result, val);
6114 	}
6115 
6116 	return (error);
6117 }
6118 #endif
6119 
6120 static int
6121 bge_get_eaddr_fw(struct bge_softc *sc, uint8_t ether_addr[])
6122 {
6123 
6124 	if (sc->bge_flags & BGE_FLAG_EADDR)
6125 		return (1);
6126 
6127 #ifdef __sparc64__
6128 	OF_getetheraddr(sc->bge_dev, ether_addr);
6129 	return (0);
6130 #endif
6131 	return (1);
6132 }
6133 
6134 static int
6135 bge_get_eaddr_mem(struct bge_softc *sc, uint8_t ether_addr[])
6136 {
6137 	uint32_t mac_addr;
6138 
6139 	mac_addr = bge_readmem_ind(sc, BGE_SRAM_MAC_ADDR_HIGH_MB);
6140 	if ((mac_addr >> 16) == 0x484b) {
6141 		ether_addr[0] = (uint8_t)(mac_addr >> 8);
6142 		ether_addr[1] = (uint8_t)mac_addr;
6143 		mac_addr = bge_readmem_ind(sc, BGE_SRAM_MAC_ADDR_LOW_MB);
6144 		ether_addr[2] = (uint8_t)(mac_addr >> 24);
6145 		ether_addr[3] = (uint8_t)(mac_addr >> 16);
6146 		ether_addr[4] = (uint8_t)(mac_addr >> 8);
6147 		ether_addr[5] = (uint8_t)mac_addr;
6148 		return (0);
6149 	}
6150 	return (1);
6151 }
6152 
6153 static int
6154 bge_get_eaddr_nvram(struct bge_softc *sc, uint8_t ether_addr[])
6155 {
6156 	int mac_offset = BGE_EE_MAC_OFFSET;
6157 
6158 	if (sc->bge_asicrev == BGE_ASICREV_BCM5906)
6159 		mac_offset = BGE_EE_MAC_OFFSET_5906;
6160 
6161 	return (bge_read_nvram(sc, ether_addr, mac_offset + 2,
6162 	    ETHER_ADDR_LEN));
6163 }
6164 
6165 static int
6166 bge_get_eaddr_eeprom(struct bge_softc *sc, uint8_t ether_addr[])
6167 {
6168 
6169 	if (sc->bge_asicrev == BGE_ASICREV_BCM5906)
6170 		return (1);
6171 
6172 	return (bge_read_eeprom(sc, ether_addr, BGE_EE_MAC_OFFSET + 2,
6173 	   ETHER_ADDR_LEN));
6174 }
6175 
6176 static int
6177 bge_get_eaddr(struct bge_softc *sc, uint8_t eaddr[])
6178 {
6179 	static const bge_eaddr_fcn_t bge_eaddr_funcs[] = {
6180 		/* NOTE: Order is critical */
6181 		bge_get_eaddr_fw,
6182 		bge_get_eaddr_mem,
6183 		bge_get_eaddr_nvram,
6184 		bge_get_eaddr_eeprom,
6185 		NULL
6186 	};
6187 	const bge_eaddr_fcn_t *func;
6188 
6189 	for (func = bge_eaddr_funcs; *func != NULL; ++func) {
6190 		if ((*func)(sc, eaddr) == 0)
6191 			break;
6192 	}
6193 	return (*func == NULL ? ENXIO : 0);
6194 }
6195