1 /* 2 * Copyright (c) 2001 Wind River Systems 3 * Copyright (c) 1997, 1998, 1999, 2001 4 * Bill Paul <wpaul@windriver.com>. All rights reserved. 5 * 6 * Redistribution and use in source and binary forms, with or without 7 * modification, are permitted provided that the following conditions 8 * are met: 9 * 1. Redistributions of source code must retain the above copyright 10 * notice, this list of conditions and the following disclaimer. 11 * 2. Redistributions in binary form must reproduce the above copyright 12 * notice, this list of conditions and the following disclaimer in the 13 * documentation and/or other materials provided with the distribution. 14 * 3. All advertising materials mentioning features or use of this software 15 * must display the following acknowledgement: 16 * This product includes software developed by Bill Paul. 17 * 4. Neither the name of the author nor the names of any co-contributors 18 * may be used to endorse or promote products derived from this software 19 * without specific prior written permission. 20 * 21 * THIS SOFTWARE IS PROVIDED BY Bill Paul AND CONTRIBUTORS ``AS IS'' AND 22 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 23 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 24 * ARE DISCLAIMED. IN NO EVENT SHALL Bill Paul OR THE VOICES IN HIS HEAD 25 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR 26 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF 27 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS 28 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN 29 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) 30 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF 31 * THE POSSIBILITY OF SUCH DAMAGE. 32 */ 33 34 #include <sys/cdefs.h> 35 __FBSDID("$FreeBSD$"); 36 37 /* 38 * Broadcom BCM570x family gigabit ethernet driver for FreeBSD. 39 * 40 * The Broadcom BCM5700 is based on technology originally developed by 41 * Alteon Networks as part of the Tigon I and Tigon II gigabit ethernet 42 * MAC chips. The BCM5700, sometimes refered to as the Tigon III, has 43 * two on-board MIPS R4000 CPUs and can have as much as 16MB of external 44 * SSRAM. The BCM5700 supports TCP, UDP and IP checksum offload, jumbo 45 * frames, highly configurable RX filtering, and 16 RX and TX queues 46 * (which, along with RX filter rules, can be used for QOS applications). 47 * Other features, such as TCP segmentation, may be available as part 48 * of value-added firmware updates. Unlike the Tigon I and Tigon II, 49 * firmware images can be stored in hardware and need not be compiled 50 * into the driver. 51 * 52 * The BCM5700 supports the PCI v2.2 and PCI-X v1.0 standards, and will 53 * function in a 32-bit/64-bit 33/66Mhz bus, or a 64-bit/133Mhz bus. 54 * 55 * The BCM5701 is a single-chip solution incorporating both the BCM5700 56 * MAC and a BCM5401 10/100/1000 PHY. Unlike the BCM5700, the BCM5701 57 * does not support external SSRAM. 58 * 59 * Broadcom also produces a variation of the BCM5700 under the "Altima" 60 * brand name, which is functionally similar but lacks PCI-X support. 61 * 62 * Without external SSRAM, you can only have at most 4 TX rings, 63 * and the use of the mini RX ring is disabled. This seems to imply 64 * that these features are simply not available on the BCM5701. As a 65 * result, this driver does not implement any support for the mini RX 66 * ring. 67 */ 68 69 #include <sys/param.h> 70 #include <sys/endian.h> 71 #include <sys/systm.h> 72 #include <sys/sockio.h> 73 #include <sys/mbuf.h> 74 #include <sys/malloc.h> 75 #include <sys/kernel.h> 76 #include <sys/module.h> 77 #include <sys/socket.h> 78 #include <sys/queue.h> 79 80 #include <net/if.h> 81 #include <net/if_arp.h> 82 #include <net/ethernet.h> 83 #include <net/if_dl.h> 84 #include <net/if_media.h> 85 86 #include <net/bpf.h> 87 88 #include <net/if_types.h> 89 #include <net/if_vlan_var.h> 90 91 #include <netinet/in_systm.h> 92 #include <netinet/in.h> 93 #include <netinet/ip.h> 94 95 #include <machine/clock.h> /* for DELAY */ 96 #include <machine/bus_memio.h> 97 #include <machine/bus.h> 98 #include <machine/resource.h> 99 #include <sys/bus.h> 100 #include <sys/rman.h> 101 102 #include <dev/mii/mii.h> 103 #include <dev/mii/miivar.h> 104 #include "miidevs.h" 105 #include <dev/mii/brgphyreg.h> 106 107 #include <dev/pci/pcireg.h> 108 #include <dev/pci/pcivar.h> 109 110 #include <dev/bge/if_bgereg.h> 111 112 #define BGE_CSUM_FEATURES (CSUM_IP | CSUM_TCP | CSUM_UDP) 113 114 MODULE_DEPEND(bge, pci, 1, 1, 1); 115 MODULE_DEPEND(bge, ether, 1, 1, 1); 116 MODULE_DEPEND(bge, miibus, 1, 1, 1); 117 118 /* "controller miibus0" required. See GENERIC if you get errors here. */ 119 #include "miibus_if.h" 120 121 /* 122 * Various supported device vendors/types and their names. Note: the 123 * spec seems to indicate that the hardware still has Alteon's vendor 124 * ID burned into it, though it will always be overriden by the vendor 125 * ID in the EEPROM. Just to be safe, we cover all possibilities. 126 */ 127 #define BGE_DEVDESC_MAX 64 /* Maximum device description length */ 128 129 static struct bge_type bge_devs[] = { 130 { ALT_VENDORID, ALT_DEVICEID_BCM5700, 131 "Broadcom BCM5700 Gigabit Ethernet" }, 132 { ALT_VENDORID, ALT_DEVICEID_BCM5701, 133 "Broadcom BCM5701 Gigabit Ethernet" }, 134 { BCOM_VENDORID, BCOM_DEVICEID_BCM5700, 135 "Broadcom BCM5700 Gigabit Ethernet" }, 136 { BCOM_VENDORID, BCOM_DEVICEID_BCM5701, 137 "Broadcom BCM5701 Gigabit Ethernet" }, 138 { BCOM_VENDORID, BCOM_DEVICEID_BCM5702, 139 "Broadcom BCM5702 Gigabit Ethernet" }, 140 { BCOM_VENDORID, BCOM_DEVICEID_BCM5702X, 141 "Broadcom BCM5702X Gigabit Ethernet" }, 142 { BCOM_VENDORID, BCOM_DEVICEID_BCM5703, 143 "Broadcom BCM5703 Gigabit Ethernet" }, 144 { BCOM_VENDORID, BCOM_DEVICEID_BCM5703X, 145 "Broadcom BCM5703X Gigabit Ethernet" }, 146 { BCOM_VENDORID, BCOM_DEVICEID_BCM5704C, 147 "Broadcom BCM5704C Dual Gigabit Ethernet" }, 148 { BCOM_VENDORID, BCOM_DEVICEID_BCM5704S, 149 "Broadcom BCM5704S Dual Gigabit Ethernet" }, 150 { BCOM_VENDORID, BCOM_DEVICEID_BCM5705, 151 "Broadcom BCM5705 Gigabit Ethernet" }, 152 { BCOM_VENDORID, BCOM_DEVICEID_BCM5705K, 153 "Broadcom BCM5705K Gigabit Ethernet" }, 154 { BCOM_VENDORID, BCOM_DEVICEID_BCM5705M, 155 "Broadcom BCM5705M Gigabit Ethernet" }, 156 { BCOM_VENDORID, BCOM_DEVICEID_BCM5705M_ALT, 157 "Broadcom BCM5705M Gigabit Ethernet" }, 158 { BCOM_VENDORID, BCOM_DEVICEID_BCM5750, 159 "Broadcom BCM5750 Gigabit Ethernet" }, 160 { BCOM_VENDORID, BCOM_DEVICEID_BCM5750M, 161 "Broadcom BCM5750M Gigabit Ethernet" }, 162 { BCOM_VENDORID, BCOM_DEVICEID_BCM5751, 163 "Broadcom BCM5751 Gigabit Ethernet" }, 164 { BCOM_VENDORID, BCOM_DEVICEID_BCM5782, 165 "Broadcom BCM5782 Gigabit Ethernet" }, 166 { BCOM_VENDORID, BCOM_DEVICEID_BCM5788, 167 "Broadcom BCM5788 Gigabit Ethernet" }, 168 { BCOM_VENDORID, BCOM_DEVICEID_BCM5901, 169 "Broadcom BCM5901 Fast Ethernet" }, 170 { BCOM_VENDORID, BCOM_DEVICEID_BCM5901A2, 171 "Broadcom BCM5901A2 Fast Ethernet" }, 172 { SK_VENDORID, SK_DEVICEID_ALTIMA, 173 "SysKonnect Gigabit Ethernet" }, 174 { ALTIMA_VENDORID, ALTIMA_DEVICE_AC1000, 175 "Altima AC1000 Gigabit Ethernet" }, 176 { ALTIMA_VENDORID, ALTIMA_DEVICE_AC1002, 177 "Altima AC1002 Gigabit Ethernet" }, 178 { ALTIMA_VENDORID, ALTIMA_DEVICE_AC9100, 179 "Altima AC9100 Gigabit Ethernet" }, 180 { 0, 0, NULL } 181 }; 182 183 static int bge_probe (device_t); 184 static int bge_attach (device_t); 185 static int bge_detach (device_t); 186 static void bge_release_resources 187 (struct bge_softc *); 188 static void bge_dma_map_addr (void *, bus_dma_segment_t *, int, int); 189 static void bge_dma_map_tx_desc (void *, bus_dma_segment_t *, int, 190 bus_size_t, int); 191 static int bge_dma_alloc (device_t); 192 static void bge_dma_free (struct bge_softc *); 193 194 static void bge_txeof (struct bge_softc *); 195 static void bge_rxeof (struct bge_softc *); 196 197 static void bge_tick_locked (struct bge_softc *); 198 static void bge_tick (void *); 199 static void bge_stats_update (struct bge_softc *); 200 static void bge_stats_update_regs 201 (struct bge_softc *); 202 static int bge_encap (struct bge_softc *, struct mbuf *, 203 u_int32_t *); 204 205 static void bge_intr (void *); 206 static void bge_start_locked (struct ifnet *); 207 static void bge_start (struct ifnet *); 208 static int bge_ioctl (struct ifnet *, u_long, caddr_t); 209 static void bge_init_locked (struct bge_softc *); 210 static void bge_init (void *); 211 static void bge_stop (struct bge_softc *); 212 static void bge_watchdog (struct ifnet *); 213 static void bge_shutdown (device_t); 214 static int bge_ifmedia_upd (struct ifnet *); 215 static void bge_ifmedia_sts (struct ifnet *, struct ifmediareq *); 216 217 static u_int8_t bge_eeprom_getbyte (struct bge_softc *, int, u_int8_t *); 218 static int bge_read_eeprom (struct bge_softc *, caddr_t, int, int); 219 220 static void bge_setmulti (struct bge_softc *); 221 222 static void bge_handle_events (struct bge_softc *); 223 static int bge_alloc_jumbo_mem (struct bge_softc *); 224 static void bge_free_jumbo_mem (struct bge_softc *); 225 static void *bge_jalloc (struct bge_softc *); 226 static void bge_jfree (void *, void *); 227 static int bge_newbuf_std (struct bge_softc *, int, struct mbuf *); 228 static int bge_newbuf_jumbo (struct bge_softc *, int, struct mbuf *); 229 static int bge_init_rx_ring_std (struct bge_softc *); 230 static void bge_free_rx_ring_std (struct bge_softc *); 231 static int bge_init_rx_ring_jumbo (struct bge_softc *); 232 static void bge_free_rx_ring_jumbo (struct bge_softc *); 233 static void bge_free_tx_ring (struct bge_softc *); 234 static int bge_init_tx_ring (struct bge_softc *); 235 236 static int bge_chipinit (struct bge_softc *); 237 static int bge_blockinit (struct bge_softc *); 238 239 #ifdef notdef 240 static u_int8_t bge_vpd_readbyte(struct bge_softc *, int); 241 static void bge_vpd_read_res (struct bge_softc *, struct vpd_res *, int); 242 static void bge_vpd_read (struct bge_softc *); 243 #endif 244 245 static u_int32_t bge_readmem_ind 246 (struct bge_softc *, int); 247 static void bge_writemem_ind (struct bge_softc *, int, int); 248 #ifdef notdef 249 static u_int32_t bge_readreg_ind 250 (struct bge_softc *, int); 251 #endif 252 static void bge_writereg_ind (struct bge_softc *, int, int); 253 254 static int bge_miibus_readreg (device_t, int, int); 255 static int bge_miibus_writereg (device_t, int, int, int); 256 static void bge_miibus_statchg (device_t); 257 258 static void bge_reset (struct bge_softc *); 259 260 static device_method_t bge_methods[] = { 261 /* Device interface */ 262 DEVMETHOD(device_probe, bge_probe), 263 DEVMETHOD(device_attach, bge_attach), 264 DEVMETHOD(device_detach, bge_detach), 265 DEVMETHOD(device_shutdown, bge_shutdown), 266 267 /* bus interface */ 268 DEVMETHOD(bus_print_child, bus_generic_print_child), 269 DEVMETHOD(bus_driver_added, bus_generic_driver_added), 270 271 /* MII interface */ 272 DEVMETHOD(miibus_readreg, bge_miibus_readreg), 273 DEVMETHOD(miibus_writereg, bge_miibus_writereg), 274 DEVMETHOD(miibus_statchg, bge_miibus_statchg), 275 276 { 0, 0 } 277 }; 278 279 static driver_t bge_driver = { 280 "bge", 281 bge_methods, 282 sizeof(struct bge_softc) 283 }; 284 285 static devclass_t bge_devclass; 286 287 DRIVER_MODULE(bge, pci, bge_driver, bge_devclass, 0, 0); 288 DRIVER_MODULE(miibus, bge, miibus_driver, miibus_devclass, 0, 0); 289 290 static u_int32_t 291 bge_readmem_ind(sc, off) 292 struct bge_softc *sc; 293 int off; 294 { 295 device_t dev; 296 297 dev = sc->bge_dev; 298 299 pci_write_config(dev, BGE_PCI_MEMWIN_BASEADDR, off, 4); 300 return(pci_read_config(dev, BGE_PCI_MEMWIN_DATA, 4)); 301 } 302 303 static void 304 bge_writemem_ind(sc, off, val) 305 struct bge_softc *sc; 306 int off, val; 307 { 308 device_t dev; 309 310 dev = sc->bge_dev; 311 312 pci_write_config(dev, BGE_PCI_MEMWIN_BASEADDR, off, 4); 313 pci_write_config(dev, BGE_PCI_MEMWIN_DATA, val, 4); 314 315 return; 316 } 317 318 #ifdef notdef 319 static u_int32_t 320 bge_readreg_ind(sc, off) 321 struct bge_softc *sc; 322 int off; 323 { 324 device_t dev; 325 326 dev = sc->bge_dev; 327 328 pci_write_config(dev, BGE_PCI_REG_BASEADDR, off, 4); 329 return(pci_read_config(dev, BGE_PCI_REG_DATA, 4)); 330 } 331 #endif 332 333 static void 334 bge_writereg_ind(sc, off, val) 335 struct bge_softc *sc; 336 int off, val; 337 { 338 device_t dev; 339 340 dev = sc->bge_dev; 341 342 pci_write_config(dev, BGE_PCI_REG_BASEADDR, off, 4); 343 pci_write_config(dev, BGE_PCI_REG_DATA, val, 4); 344 345 return; 346 } 347 348 /* 349 * Map a single buffer address. 350 */ 351 352 static void 353 bge_dma_map_addr(arg, segs, nseg, error) 354 void *arg; 355 bus_dma_segment_t *segs; 356 int nseg; 357 int error; 358 { 359 struct bge_dmamap_arg *ctx; 360 361 if (error) 362 return; 363 364 ctx = arg; 365 366 if (nseg > ctx->bge_maxsegs) { 367 ctx->bge_maxsegs = 0; 368 return; 369 } 370 371 ctx->bge_busaddr = segs->ds_addr; 372 373 return; 374 } 375 376 /* 377 * Map an mbuf chain into an TX ring. 378 */ 379 380 static void 381 bge_dma_map_tx_desc(arg, segs, nseg, mapsize, error) 382 void *arg; 383 bus_dma_segment_t *segs; 384 int nseg; 385 bus_size_t mapsize; 386 int error; 387 { 388 struct bge_dmamap_arg *ctx; 389 struct bge_tx_bd *d = NULL; 390 int i = 0, idx; 391 392 if (error) 393 return; 394 395 ctx = arg; 396 397 /* Signal error to caller if there's too many segments */ 398 if (nseg > ctx->bge_maxsegs) { 399 ctx->bge_maxsegs = 0; 400 return; 401 } 402 403 idx = ctx->bge_idx; 404 while(1) { 405 d = &ctx->bge_ring[idx]; 406 d->bge_addr.bge_addr_lo = 407 htole32(BGE_ADDR_LO(segs[i].ds_addr)); 408 d->bge_addr.bge_addr_hi = 409 htole32(BGE_ADDR_HI(segs[i].ds_addr)); 410 d->bge_len = htole16(segs[i].ds_len); 411 d->bge_flags = htole16(ctx->bge_flags); 412 i++; 413 if (i == nseg) 414 break; 415 BGE_INC(idx, BGE_TX_RING_CNT); 416 } 417 418 d->bge_flags |= htole16(BGE_TXBDFLAG_END); 419 ctx->bge_maxsegs = nseg; 420 ctx->bge_idx = idx; 421 422 return; 423 } 424 425 426 #ifdef notdef 427 static u_int8_t 428 bge_vpd_readbyte(sc, addr) 429 struct bge_softc *sc; 430 int addr; 431 { 432 int i; 433 device_t dev; 434 u_int32_t val; 435 436 dev = sc->bge_dev; 437 pci_write_config(dev, BGE_PCI_VPD_ADDR, addr, 2); 438 for (i = 0; i < BGE_TIMEOUT * 10; i++) { 439 DELAY(10); 440 if (pci_read_config(dev, BGE_PCI_VPD_ADDR, 2) & BGE_VPD_FLAG) 441 break; 442 } 443 444 if (i == BGE_TIMEOUT) { 445 printf("bge%d: VPD read timed out\n", sc->bge_unit); 446 return(0); 447 } 448 449 val = pci_read_config(dev, BGE_PCI_VPD_DATA, 4); 450 451 return((val >> ((addr % 4) * 8)) & 0xFF); 452 } 453 454 static void 455 bge_vpd_read_res(sc, res, addr) 456 struct bge_softc *sc; 457 struct vpd_res *res; 458 int addr; 459 { 460 int i; 461 u_int8_t *ptr; 462 463 ptr = (u_int8_t *)res; 464 for (i = 0; i < sizeof(struct vpd_res); i++) 465 ptr[i] = bge_vpd_readbyte(sc, i + addr); 466 467 return; 468 } 469 470 static void 471 bge_vpd_read(sc) 472 struct bge_softc *sc; 473 { 474 int pos = 0, i; 475 struct vpd_res res; 476 477 if (sc->bge_vpd_prodname != NULL) 478 free(sc->bge_vpd_prodname, M_DEVBUF); 479 if (sc->bge_vpd_readonly != NULL) 480 free(sc->bge_vpd_readonly, M_DEVBUF); 481 sc->bge_vpd_prodname = NULL; 482 sc->bge_vpd_readonly = NULL; 483 484 bge_vpd_read_res(sc, &res, pos); 485 486 if (res.vr_id != VPD_RES_ID) { 487 printf("bge%d: bad VPD resource id: expected %x got %x\n", 488 sc->bge_unit, VPD_RES_ID, res.vr_id); 489 return; 490 } 491 492 pos += sizeof(res); 493 sc->bge_vpd_prodname = malloc(res.vr_len + 1, M_DEVBUF, M_NOWAIT); 494 for (i = 0; i < res.vr_len; i++) 495 sc->bge_vpd_prodname[i] = bge_vpd_readbyte(sc, i + pos); 496 sc->bge_vpd_prodname[i] = '\0'; 497 pos += i; 498 499 bge_vpd_read_res(sc, &res, pos); 500 501 if (res.vr_id != VPD_RES_READ) { 502 printf("bge%d: bad VPD resource id: expected %x got %x\n", 503 sc->bge_unit, VPD_RES_READ, res.vr_id); 504 return; 505 } 506 507 pos += sizeof(res); 508 sc->bge_vpd_readonly = malloc(res.vr_len, M_DEVBUF, M_NOWAIT); 509 for (i = 0; i < res.vr_len + 1; i++) 510 sc->bge_vpd_readonly[i] = bge_vpd_readbyte(sc, i + pos); 511 512 return; 513 } 514 #endif 515 516 /* 517 * Read a byte of data stored in the EEPROM at address 'addr.' The 518 * BCM570x supports both the traditional bitbang interface and an 519 * auto access interface for reading the EEPROM. We use the auto 520 * access method. 521 */ 522 static u_int8_t 523 bge_eeprom_getbyte(sc, addr, dest) 524 struct bge_softc *sc; 525 int addr; 526 u_int8_t *dest; 527 { 528 int i; 529 u_int32_t byte = 0; 530 531 /* 532 * Enable use of auto EEPROM access so we can avoid 533 * having to use the bitbang method. 534 */ 535 BGE_SETBIT(sc, BGE_MISC_LOCAL_CTL, BGE_MLC_AUTO_EEPROM); 536 537 /* Reset the EEPROM, load the clock period. */ 538 CSR_WRITE_4(sc, BGE_EE_ADDR, 539 BGE_EEADDR_RESET|BGE_EEHALFCLK(BGE_HALFCLK_384SCL)); 540 DELAY(20); 541 542 /* Issue the read EEPROM command. */ 543 CSR_WRITE_4(sc, BGE_EE_ADDR, BGE_EE_READCMD | addr); 544 545 /* Wait for completion */ 546 for(i = 0; i < BGE_TIMEOUT * 10; i++) { 547 DELAY(10); 548 if (CSR_READ_4(sc, BGE_EE_ADDR) & BGE_EEADDR_DONE) 549 break; 550 } 551 552 if (i == BGE_TIMEOUT) { 553 printf("bge%d: eeprom read timed out\n", sc->bge_unit); 554 return(0); 555 } 556 557 /* Get result. */ 558 byte = CSR_READ_4(sc, BGE_EE_DATA); 559 560 *dest = (byte >> ((addr % 4) * 8)) & 0xFF; 561 562 return(0); 563 } 564 565 /* 566 * Read a sequence of bytes from the EEPROM. 567 */ 568 static int 569 bge_read_eeprom(sc, dest, off, cnt) 570 struct bge_softc *sc; 571 caddr_t dest; 572 int off; 573 int cnt; 574 { 575 int err = 0, i; 576 u_int8_t byte = 0; 577 578 for (i = 0; i < cnt; i++) { 579 err = bge_eeprom_getbyte(sc, off + i, &byte); 580 if (err) 581 break; 582 *(dest + i) = byte; 583 } 584 585 return(err ? 1 : 0); 586 } 587 588 static int 589 bge_miibus_readreg(dev, phy, reg) 590 device_t dev; 591 int phy, reg; 592 { 593 struct bge_softc *sc; 594 u_int32_t val, autopoll; 595 int i; 596 597 sc = device_get_softc(dev); 598 599 /* 600 * Broadcom's own driver always assumes the internal 601 * PHY is at GMII address 1. On some chips, the PHY responds 602 * to accesses at all addresses, which could cause us to 603 * bogusly attach the PHY 32 times at probe type. Always 604 * restricting the lookup to address 1 is simpler than 605 * trying to figure out which chips revisions should be 606 * special-cased. 607 */ 608 if (phy != 1) 609 return(0); 610 611 /* Reading with autopolling on may trigger PCI errors */ 612 autopoll = CSR_READ_4(sc, BGE_MI_MODE); 613 if (autopoll & BGE_MIMODE_AUTOPOLL) { 614 BGE_CLRBIT(sc, BGE_MI_MODE, BGE_MIMODE_AUTOPOLL); 615 DELAY(40); 616 } 617 618 CSR_WRITE_4(sc, BGE_MI_COMM, BGE_MICMD_READ|BGE_MICOMM_BUSY| 619 BGE_MIPHY(phy)|BGE_MIREG(reg)); 620 621 for (i = 0; i < BGE_TIMEOUT; i++) { 622 val = CSR_READ_4(sc, BGE_MI_COMM); 623 if (!(val & BGE_MICOMM_BUSY)) 624 break; 625 } 626 627 if (i == BGE_TIMEOUT) { 628 printf("bge%d: PHY read timed out\n", sc->bge_unit); 629 val = 0; 630 goto done; 631 } 632 633 val = CSR_READ_4(sc, BGE_MI_COMM); 634 635 done: 636 if (autopoll & BGE_MIMODE_AUTOPOLL) { 637 BGE_SETBIT(sc, BGE_MI_MODE, BGE_MIMODE_AUTOPOLL); 638 DELAY(40); 639 } 640 641 if (val & BGE_MICOMM_READFAIL) 642 return(0); 643 644 return(val & 0xFFFF); 645 } 646 647 static int 648 bge_miibus_writereg(dev, phy, reg, val) 649 device_t dev; 650 int phy, reg, val; 651 { 652 struct bge_softc *sc; 653 u_int32_t autopoll; 654 int i; 655 656 sc = device_get_softc(dev); 657 658 /* Reading with autopolling on may trigger PCI errors */ 659 autopoll = CSR_READ_4(sc, BGE_MI_MODE); 660 if (autopoll & BGE_MIMODE_AUTOPOLL) { 661 BGE_CLRBIT(sc, BGE_MI_MODE, BGE_MIMODE_AUTOPOLL); 662 DELAY(40); 663 } 664 665 CSR_WRITE_4(sc, BGE_MI_COMM, BGE_MICMD_WRITE|BGE_MICOMM_BUSY| 666 BGE_MIPHY(phy)|BGE_MIREG(reg)|val); 667 668 for (i = 0; i < BGE_TIMEOUT; i++) { 669 if (!(CSR_READ_4(sc, BGE_MI_COMM) & BGE_MICOMM_BUSY)) 670 break; 671 } 672 673 if (autopoll & BGE_MIMODE_AUTOPOLL) { 674 BGE_SETBIT(sc, BGE_MI_MODE, BGE_MIMODE_AUTOPOLL); 675 DELAY(40); 676 } 677 678 if (i == BGE_TIMEOUT) { 679 printf("bge%d: PHY read timed out\n", sc->bge_unit); 680 return(0); 681 } 682 683 return(0); 684 } 685 686 static void 687 bge_miibus_statchg(dev) 688 device_t dev; 689 { 690 struct bge_softc *sc; 691 struct mii_data *mii; 692 693 sc = device_get_softc(dev); 694 mii = device_get_softc(sc->bge_miibus); 695 696 BGE_CLRBIT(sc, BGE_MAC_MODE, BGE_MACMODE_PORTMODE); 697 if (IFM_SUBTYPE(mii->mii_media_active) == IFM_1000_T) { 698 BGE_SETBIT(sc, BGE_MAC_MODE, BGE_PORTMODE_GMII); 699 } else { 700 BGE_SETBIT(sc, BGE_MAC_MODE, BGE_PORTMODE_MII); 701 } 702 703 if ((mii->mii_media_active & IFM_GMASK) == IFM_FDX) { 704 BGE_CLRBIT(sc, BGE_MAC_MODE, BGE_MACMODE_HALF_DUPLEX); 705 } else { 706 BGE_SETBIT(sc, BGE_MAC_MODE, BGE_MACMODE_HALF_DUPLEX); 707 } 708 709 return; 710 } 711 712 /* 713 * Handle events that have triggered interrupts. 714 */ 715 static void 716 bge_handle_events(sc) 717 struct bge_softc *sc; 718 { 719 720 return; 721 } 722 723 /* 724 * Memory management for jumbo frames. 725 */ 726 727 static int 728 bge_alloc_jumbo_mem(sc) 729 struct bge_softc *sc; 730 { 731 caddr_t ptr; 732 register int i, error; 733 struct bge_jpool_entry *entry; 734 735 /* Create tag for jumbo buffer block */ 736 737 error = bus_dma_tag_create(sc->bge_cdata.bge_parent_tag, 738 PAGE_SIZE, 0, BUS_SPACE_MAXADDR, BUS_SPACE_MAXADDR, NULL, 739 NULL, BGE_JMEM, 1, BGE_JMEM, 0, NULL, NULL, 740 &sc->bge_cdata.bge_jumbo_tag); 741 742 if (error) { 743 printf("bge%d: could not allocate jumbo dma tag\n", 744 sc->bge_unit); 745 return (ENOMEM); 746 } 747 748 /* Allocate DMA'able memory for jumbo buffer block */ 749 750 error = bus_dmamem_alloc(sc->bge_cdata.bge_jumbo_tag, 751 (void **)&sc->bge_ldata.bge_jumbo_buf, BUS_DMA_NOWAIT, 752 &sc->bge_cdata.bge_jumbo_map); 753 754 if (error) 755 return (ENOMEM); 756 757 SLIST_INIT(&sc->bge_jfree_listhead); 758 SLIST_INIT(&sc->bge_jinuse_listhead); 759 760 /* 761 * Now divide it up into 9K pieces and save the addresses 762 * in an array. 763 */ 764 ptr = sc->bge_ldata.bge_jumbo_buf; 765 for (i = 0; i < BGE_JSLOTS; i++) { 766 sc->bge_cdata.bge_jslots[i] = ptr; 767 ptr += BGE_JLEN; 768 entry = malloc(sizeof(struct bge_jpool_entry), 769 M_DEVBUF, M_NOWAIT); 770 if (entry == NULL) { 771 bge_free_jumbo_mem(sc); 772 sc->bge_ldata.bge_jumbo_buf = NULL; 773 printf("bge%d: no memory for jumbo " 774 "buffer queue!\n", sc->bge_unit); 775 return(ENOBUFS); 776 } 777 entry->slot = i; 778 SLIST_INSERT_HEAD(&sc->bge_jfree_listhead, 779 entry, jpool_entries); 780 } 781 782 return(0); 783 } 784 785 static void 786 bge_free_jumbo_mem(sc) 787 struct bge_softc *sc; 788 { 789 int i; 790 struct bge_jpool_entry *entry; 791 792 for (i = 0; i < BGE_JSLOTS; i++) { 793 entry = SLIST_FIRST(&sc->bge_jfree_listhead); 794 SLIST_REMOVE_HEAD(&sc->bge_jfree_listhead, jpool_entries); 795 free(entry, M_DEVBUF); 796 } 797 798 /* Destroy jumbo buffer block */ 799 800 if (sc->bge_ldata.bge_rx_jumbo_ring) 801 bus_dmamem_free(sc->bge_cdata.bge_jumbo_tag, 802 sc->bge_ldata.bge_jumbo_buf, 803 sc->bge_cdata.bge_jumbo_map); 804 805 if (sc->bge_cdata.bge_rx_jumbo_ring_map) 806 bus_dmamap_destroy(sc->bge_cdata.bge_jumbo_tag, 807 sc->bge_cdata.bge_jumbo_map); 808 809 if (sc->bge_cdata.bge_jumbo_tag) 810 bus_dma_tag_destroy(sc->bge_cdata.bge_jumbo_tag); 811 812 return; 813 } 814 815 /* 816 * Allocate a jumbo buffer. 817 */ 818 static void * 819 bge_jalloc(sc) 820 struct bge_softc *sc; 821 { 822 struct bge_jpool_entry *entry; 823 824 entry = SLIST_FIRST(&sc->bge_jfree_listhead); 825 826 if (entry == NULL) { 827 printf("bge%d: no free jumbo buffers\n", sc->bge_unit); 828 return(NULL); 829 } 830 831 SLIST_REMOVE_HEAD(&sc->bge_jfree_listhead, jpool_entries); 832 SLIST_INSERT_HEAD(&sc->bge_jinuse_listhead, entry, jpool_entries); 833 return(sc->bge_cdata.bge_jslots[entry->slot]); 834 } 835 836 /* 837 * Release a jumbo buffer. 838 */ 839 static void 840 bge_jfree(buf, args) 841 void *buf; 842 void *args; 843 { 844 struct bge_jpool_entry *entry; 845 struct bge_softc *sc; 846 int i; 847 848 /* Extract the softc struct pointer. */ 849 sc = (struct bge_softc *)args; 850 851 if (sc == NULL) 852 panic("bge_jfree: can't find softc pointer!"); 853 854 /* calculate the slot this buffer belongs to */ 855 856 i = ((vm_offset_t)buf 857 - (vm_offset_t)sc->bge_ldata.bge_jumbo_buf) / BGE_JLEN; 858 859 if ((i < 0) || (i >= BGE_JSLOTS)) 860 panic("bge_jfree: asked to free buffer that we don't manage!"); 861 862 entry = SLIST_FIRST(&sc->bge_jinuse_listhead); 863 if (entry == NULL) 864 panic("bge_jfree: buffer not in use!"); 865 entry->slot = i; 866 SLIST_REMOVE_HEAD(&sc->bge_jinuse_listhead, jpool_entries); 867 SLIST_INSERT_HEAD(&sc->bge_jfree_listhead, entry, jpool_entries); 868 869 return; 870 } 871 872 873 /* 874 * Intialize a standard receive ring descriptor. 875 */ 876 static int 877 bge_newbuf_std(sc, i, m) 878 struct bge_softc *sc; 879 int i; 880 struct mbuf *m; 881 { 882 struct mbuf *m_new = NULL; 883 struct bge_rx_bd *r; 884 struct bge_dmamap_arg ctx; 885 int error; 886 887 if (m == NULL) { 888 MGETHDR(m_new, M_DONTWAIT, MT_DATA); 889 if (m_new == NULL) { 890 return(ENOBUFS); 891 } 892 893 MCLGET(m_new, M_DONTWAIT); 894 if (!(m_new->m_flags & M_EXT)) { 895 m_freem(m_new); 896 return(ENOBUFS); 897 } 898 m_new->m_len = m_new->m_pkthdr.len = MCLBYTES; 899 } else { 900 m_new = m; 901 m_new->m_len = m_new->m_pkthdr.len = MCLBYTES; 902 m_new->m_data = m_new->m_ext.ext_buf; 903 } 904 905 if (!sc->bge_rx_alignment_bug) 906 m_adj(m_new, ETHER_ALIGN); 907 sc->bge_cdata.bge_rx_std_chain[i] = m_new; 908 r = &sc->bge_ldata.bge_rx_std_ring[i]; 909 ctx.bge_maxsegs = 1; 910 ctx.sc = sc; 911 error = bus_dmamap_load(sc->bge_cdata.bge_mtag, 912 sc->bge_cdata.bge_rx_std_dmamap[i], mtod(m_new, void *), 913 m_new->m_len, bge_dma_map_addr, &ctx, BUS_DMA_NOWAIT); 914 if (error || ctx.bge_maxsegs == 0) { 915 if (m == NULL) 916 m_freem(m_new); 917 return(ENOMEM); 918 } 919 r->bge_addr.bge_addr_lo = htole32(BGE_ADDR_LO(ctx.bge_busaddr)); 920 r->bge_addr.bge_addr_hi = htole32(BGE_ADDR_HI(ctx.bge_busaddr)); 921 r->bge_flags = htole16(BGE_RXBDFLAG_END); 922 r->bge_len = htole16(m_new->m_len); 923 r->bge_idx = htole16(i); 924 925 bus_dmamap_sync(sc->bge_cdata.bge_mtag, 926 sc->bge_cdata.bge_rx_std_dmamap[i], 927 BUS_DMASYNC_PREREAD); 928 929 return(0); 930 } 931 932 /* 933 * Initialize a jumbo receive ring descriptor. This allocates 934 * a jumbo buffer from the pool managed internally by the driver. 935 */ 936 static int 937 bge_newbuf_jumbo(sc, i, m) 938 struct bge_softc *sc; 939 int i; 940 struct mbuf *m; 941 { 942 struct mbuf *m_new = NULL; 943 struct bge_rx_bd *r; 944 struct bge_dmamap_arg ctx; 945 int error; 946 947 if (m == NULL) { 948 caddr_t *buf = NULL; 949 950 /* Allocate the mbuf. */ 951 MGETHDR(m_new, M_DONTWAIT, MT_DATA); 952 if (m_new == NULL) { 953 return(ENOBUFS); 954 } 955 956 /* Allocate the jumbo buffer */ 957 buf = bge_jalloc(sc); 958 if (buf == NULL) { 959 m_freem(m_new); 960 printf("bge%d: jumbo allocation failed " 961 "-- packet dropped!\n", sc->bge_unit); 962 return(ENOBUFS); 963 } 964 965 /* Attach the buffer to the mbuf. */ 966 m_new->m_data = (void *) buf; 967 m_new->m_len = m_new->m_pkthdr.len = BGE_JUMBO_FRAMELEN; 968 MEXTADD(m_new, buf, BGE_JUMBO_FRAMELEN, bge_jfree, 969 (struct bge_softc *)sc, 0, EXT_NET_DRV); 970 } else { 971 m_new = m; 972 m_new->m_data = m_new->m_ext.ext_buf; 973 m_new->m_ext.ext_size = BGE_JUMBO_FRAMELEN; 974 } 975 976 if (!sc->bge_rx_alignment_bug) 977 m_adj(m_new, ETHER_ALIGN); 978 /* Set up the descriptor. */ 979 sc->bge_cdata.bge_rx_jumbo_chain[i] = m_new; 980 r = &sc->bge_ldata.bge_rx_jumbo_ring[i]; 981 ctx.bge_maxsegs = 1; 982 ctx.sc = sc; 983 error = bus_dmamap_load(sc->bge_cdata.bge_mtag_jumbo, 984 sc->bge_cdata.bge_rx_jumbo_dmamap[i], mtod(m_new, void *), 985 m_new->m_len, bge_dma_map_addr, &ctx, BUS_DMA_NOWAIT); 986 if (error || ctx.bge_maxsegs == 0) { 987 if (m == NULL) 988 m_freem(m_new); 989 return(ENOMEM); 990 } 991 r->bge_addr.bge_addr_lo = htole32(BGE_ADDR_LO(ctx.bge_busaddr)); 992 r->bge_addr.bge_addr_hi = htole32(BGE_ADDR_HI(ctx.bge_busaddr)); 993 r->bge_flags = htole16(BGE_RXBDFLAG_END|BGE_RXBDFLAG_JUMBO_RING); 994 r->bge_len = htole16(m_new->m_len); 995 r->bge_idx = htole16(i); 996 997 bus_dmamap_sync(sc->bge_cdata.bge_mtag, 998 sc->bge_cdata.bge_rx_jumbo_dmamap[i], 999 BUS_DMASYNC_PREREAD); 1000 1001 return(0); 1002 } 1003 1004 /* 1005 * The standard receive ring has 512 entries in it. At 2K per mbuf cluster, 1006 * that's 1MB or memory, which is a lot. For now, we fill only the first 1007 * 256 ring entries and hope that our CPU is fast enough to keep up with 1008 * the NIC. 1009 */ 1010 static int 1011 bge_init_rx_ring_std(sc) 1012 struct bge_softc *sc; 1013 { 1014 int i; 1015 1016 for (i = 0; i < BGE_SSLOTS; i++) { 1017 if (bge_newbuf_std(sc, i, NULL) == ENOBUFS) 1018 return(ENOBUFS); 1019 }; 1020 1021 bus_dmamap_sync(sc->bge_cdata.bge_rx_std_ring_tag, 1022 sc->bge_cdata.bge_rx_std_ring_map, 1023 BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE); 1024 1025 sc->bge_std = i - 1; 1026 CSR_WRITE_4(sc, BGE_MBX_RX_STD_PROD_LO, sc->bge_std); 1027 1028 return(0); 1029 } 1030 1031 static void 1032 bge_free_rx_ring_std(sc) 1033 struct bge_softc *sc; 1034 { 1035 int i; 1036 1037 for (i = 0; i < BGE_STD_RX_RING_CNT; i++) { 1038 if (sc->bge_cdata.bge_rx_std_chain[i] != NULL) { 1039 m_freem(sc->bge_cdata.bge_rx_std_chain[i]); 1040 sc->bge_cdata.bge_rx_std_chain[i] = NULL; 1041 bus_dmamap_unload(sc->bge_cdata.bge_mtag, 1042 sc->bge_cdata.bge_rx_std_dmamap[i]); 1043 } 1044 bzero((char *)&sc->bge_ldata.bge_rx_std_ring[i], 1045 sizeof(struct bge_rx_bd)); 1046 } 1047 1048 return; 1049 } 1050 1051 static int 1052 bge_init_rx_ring_jumbo(sc) 1053 struct bge_softc *sc; 1054 { 1055 int i; 1056 struct bge_rcb *rcb; 1057 1058 for (i = 0; i < BGE_JUMBO_RX_RING_CNT; i++) { 1059 if (bge_newbuf_jumbo(sc, i, NULL) == ENOBUFS) 1060 return(ENOBUFS); 1061 }; 1062 1063 bus_dmamap_sync(sc->bge_cdata.bge_rx_jumbo_ring_tag, 1064 sc->bge_cdata.bge_rx_jumbo_ring_map, 1065 BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE); 1066 1067 sc->bge_jumbo = i - 1; 1068 1069 rcb = &sc->bge_ldata.bge_info.bge_jumbo_rx_rcb; 1070 rcb->bge_maxlen_flags = BGE_RCB_MAXLEN_FLAGS(0, 0); 1071 CSR_WRITE_4(sc, BGE_RX_JUMBO_RCB_MAXLEN_FLAGS, rcb->bge_maxlen_flags); 1072 1073 CSR_WRITE_4(sc, BGE_MBX_RX_JUMBO_PROD_LO, sc->bge_jumbo); 1074 1075 return(0); 1076 } 1077 1078 static void 1079 bge_free_rx_ring_jumbo(sc) 1080 struct bge_softc *sc; 1081 { 1082 int i; 1083 1084 for (i = 0; i < BGE_JUMBO_RX_RING_CNT; i++) { 1085 if (sc->bge_cdata.bge_rx_jumbo_chain[i] != NULL) { 1086 m_freem(sc->bge_cdata.bge_rx_jumbo_chain[i]); 1087 sc->bge_cdata.bge_rx_jumbo_chain[i] = NULL; 1088 bus_dmamap_unload(sc->bge_cdata.bge_mtag_jumbo, 1089 sc->bge_cdata.bge_rx_jumbo_dmamap[i]); 1090 } 1091 bzero((char *)&sc->bge_ldata.bge_rx_jumbo_ring[i], 1092 sizeof(struct bge_rx_bd)); 1093 } 1094 1095 return; 1096 } 1097 1098 static void 1099 bge_free_tx_ring(sc) 1100 struct bge_softc *sc; 1101 { 1102 int i; 1103 1104 if (sc->bge_ldata.bge_tx_ring == NULL) 1105 return; 1106 1107 for (i = 0; i < BGE_TX_RING_CNT; i++) { 1108 if (sc->bge_cdata.bge_tx_chain[i] != NULL) { 1109 m_freem(sc->bge_cdata.bge_tx_chain[i]); 1110 sc->bge_cdata.bge_tx_chain[i] = NULL; 1111 bus_dmamap_unload(sc->bge_cdata.bge_mtag, 1112 sc->bge_cdata.bge_tx_dmamap[i]); 1113 } 1114 bzero((char *)&sc->bge_ldata.bge_tx_ring[i], 1115 sizeof(struct bge_tx_bd)); 1116 } 1117 1118 return; 1119 } 1120 1121 static int 1122 bge_init_tx_ring(sc) 1123 struct bge_softc *sc; 1124 { 1125 sc->bge_txcnt = 0; 1126 sc->bge_tx_saved_considx = 0; 1127 1128 CSR_WRITE_4(sc, BGE_MBX_TX_HOST_PROD0_LO, 0); 1129 /* 5700 b2 errata */ 1130 if (sc->bge_chiprev == BGE_CHIPREV_5700_BX) 1131 CSR_WRITE_4(sc, BGE_MBX_TX_HOST_PROD0_LO, 0); 1132 1133 CSR_WRITE_4(sc, BGE_MBX_TX_NIC_PROD0_LO, 0); 1134 /* 5700 b2 errata */ 1135 if (sc->bge_chiprev == BGE_CHIPREV_5700_BX) 1136 CSR_WRITE_4(sc, BGE_MBX_TX_NIC_PROD0_LO, 0); 1137 1138 return(0); 1139 } 1140 1141 static void 1142 bge_setmulti(sc) 1143 struct bge_softc *sc; 1144 { 1145 struct ifnet *ifp; 1146 struct ifmultiaddr *ifma; 1147 u_int32_t hashes[4] = { 0, 0, 0, 0 }; 1148 int h, i; 1149 1150 BGE_LOCK_ASSERT(sc); 1151 1152 ifp = &sc->arpcom.ac_if; 1153 1154 if (ifp->if_flags & IFF_ALLMULTI || ifp->if_flags & IFF_PROMISC) { 1155 for (i = 0; i < 4; i++) 1156 CSR_WRITE_4(sc, BGE_MAR0 + (i * 4), 0xFFFFFFFF); 1157 return; 1158 } 1159 1160 /* First, zot all the existing filters. */ 1161 for (i = 0; i < 4; i++) 1162 CSR_WRITE_4(sc, BGE_MAR0 + (i * 4), 0); 1163 1164 /* Now program new ones. */ 1165 TAILQ_FOREACH(ifma, &ifp->if_multiaddrs, ifma_link) { 1166 if (ifma->ifma_addr->sa_family != AF_LINK) 1167 continue; 1168 h = ether_crc32_le(LLADDR((struct sockaddr_dl *) 1169 ifma->ifma_addr), ETHER_ADDR_LEN) & 0x7F; 1170 hashes[(h & 0x60) >> 5] |= 1 << (h & 0x1F); 1171 } 1172 1173 for (i = 0; i < 4; i++) 1174 CSR_WRITE_4(sc, BGE_MAR0 + (i * 4), hashes[i]); 1175 1176 return; 1177 } 1178 1179 /* 1180 * Do endian, PCI and DMA initialization. Also check the on-board ROM 1181 * self-test results. 1182 */ 1183 static int 1184 bge_chipinit(sc) 1185 struct bge_softc *sc; 1186 { 1187 int i; 1188 u_int32_t dma_rw_ctl; 1189 1190 /* Set endianness before we access any non-PCI registers. */ 1191 #if BYTE_ORDER == BIG_ENDIAN 1192 pci_write_config(sc->bge_dev, BGE_PCI_MISC_CTL, 1193 BGE_BIGENDIAN_INIT, 4); 1194 #else 1195 pci_write_config(sc->bge_dev, BGE_PCI_MISC_CTL, 1196 BGE_LITTLEENDIAN_INIT, 4); 1197 #endif 1198 1199 /* 1200 * Check the 'ROM failed' bit on the RX CPU to see if 1201 * self-tests passed. 1202 */ 1203 if (CSR_READ_4(sc, BGE_RXCPU_MODE) & BGE_RXCPUMODE_ROMFAIL) { 1204 printf("bge%d: RX CPU self-diagnostics failed!\n", 1205 sc->bge_unit); 1206 return(ENODEV); 1207 } 1208 1209 /* Clear the MAC control register */ 1210 CSR_WRITE_4(sc, BGE_MAC_MODE, 0); 1211 1212 /* 1213 * Clear the MAC statistics block in the NIC's 1214 * internal memory. 1215 */ 1216 for (i = BGE_STATS_BLOCK; 1217 i < BGE_STATS_BLOCK_END + 1; i += sizeof(u_int32_t)) 1218 BGE_MEMWIN_WRITE(sc, i, 0); 1219 1220 for (i = BGE_STATUS_BLOCK; 1221 i < BGE_STATUS_BLOCK_END + 1; i += sizeof(u_int32_t)) 1222 BGE_MEMWIN_WRITE(sc, i, 0); 1223 1224 /* Set up the PCI DMA control register. */ 1225 if (sc->bge_pcie) { 1226 dma_rw_ctl = BGE_PCI_READ_CMD|BGE_PCI_WRITE_CMD | 1227 (0xf << BGE_PCIDMARWCTL_RD_WAT_SHIFT) | 1228 (0x2 << BGE_PCIDMARWCTL_WR_WAT_SHIFT); 1229 } else if (pci_read_config(sc->bge_dev, BGE_PCI_PCISTATE, 4) & 1230 BGE_PCISTATE_PCI_BUSMODE) { 1231 /* Conventional PCI bus */ 1232 dma_rw_ctl = BGE_PCI_READ_CMD|BGE_PCI_WRITE_CMD | 1233 (0x7 << BGE_PCIDMARWCTL_RD_WAT_SHIFT) | 1234 (0x7 << BGE_PCIDMARWCTL_WR_WAT_SHIFT) | 1235 (0x0F); 1236 } else { 1237 /* PCI-X bus */ 1238 /* 1239 * The 5704 uses a different encoding of read/write 1240 * watermarks. 1241 */ 1242 if (sc->bge_asicrev == BGE_ASICREV_BCM5704) 1243 dma_rw_ctl = BGE_PCI_READ_CMD|BGE_PCI_WRITE_CMD | 1244 (0x7 << BGE_PCIDMARWCTL_RD_WAT_SHIFT) | 1245 (0x3 << BGE_PCIDMARWCTL_WR_WAT_SHIFT); 1246 else 1247 dma_rw_ctl = BGE_PCI_READ_CMD|BGE_PCI_WRITE_CMD | 1248 (0x3 << BGE_PCIDMARWCTL_RD_WAT_SHIFT) | 1249 (0x3 << BGE_PCIDMARWCTL_WR_WAT_SHIFT) | 1250 (0x0F); 1251 1252 /* 1253 * 5703 and 5704 need ONEDMA_AT_ONCE as a workaround 1254 * for hardware bugs. 1255 */ 1256 if (sc->bge_asicrev == BGE_ASICREV_BCM5703 || 1257 sc->bge_asicrev == BGE_ASICREV_BCM5704) { 1258 u_int32_t tmp; 1259 1260 tmp = CSR_READ_4(sc, BGE_PCI_CLKCTL) & 0x1f; 1261 if (tmp == 0x6 || tmp == 0x7) 1262 dma_rw_ctl |= BGE_PCIDMARWCTL_ONEDMA_ATONCE; 1263 } 1264 } 1265 1266 if (sc->bge_asicrev == BGE_ASICREV_BCM5703 || 1267 sc->bge_asicrev == BGE_ASICREV_BCM5704 || 1268 sc->bge_asicrev == BGE_ASICREV_BCM5705 || 1269 sc->bge_asicrev == BGE_ASICREV_BCM5750) 1270 dma_rw_ctl &= ~BGE_PCIDMARWCTL_MINDMA; 1271 pci_write_config(sc->bge_dev, BGE_PCI_DMA_RW_CTL, dma_rw_ctl, 4); 1272 1273 /* 1274 * Set up general mode register. 1275 */ 1276 CSR_WRITE_4(sc, BGE_MODE_CTL, BGE_MODECTL_WORDSWAP_NONFRAME| 1277 BGE_MODECTL_BYTESWAP_DATA|BGE_MODECTL_WORDSWAP_DATA| 1278 BGE_MODECTL_MAC_ATTN_INTR|BGE_MODECTL_HOST_SEND_BDS| 1279 BGE_MODECTL_TX_NO_PHDR_CSUM|BGE_MODECTL_RX_NO_PHDR_CSUM); 1280 1281 /* 1282 * Disable memory write invalidate. Apparently it is not supported 1283 * properly by these devices. 1284 */ 1285 PCI_CLRBIT(sc->bge_dev, BGE_PCI_CMD, PCIM_CMD_MWIEN, 4); 1286 1287 #ifdef __brokenalpha__ 1288 /* 1289 * Must insure that we do not cross an 8K (bytes) boundary 1290 * for DMA reads. Our highest limit is 1K bytes. This is a 1291 * restriction on some ALPHA platforms with early revision 1292 * 21174 PCI chipsets, such as the AlphaPC 164lx 1293 */ 1294 PCI_SETBIT(sc->bge_dev, BGE_PCI_DMA_RW_CTL, 1295 BGE_PCI_READ_BNDRY_1024BYTES, 4); 1296 #endif 1297 1298 /* Set the timer prescaler (always 66Mhz) */ 1299 CSR_WRITE_4(sc, BGE_MISC_CFG, 65 << 1/*BGE_32BITTIME_66MHZ*/); 1300 1301 return(0); 1302 } 1303 1304 static int 1305 bge_blockinit(sc) 1306 struct bge_softc *sc; 1307 { 1308 struct bge_rcb *rcb; 1309 volatile struct bge_rcb *vrcb; 1310 int i; 1311 1312 /* 1313 * Initialize the memory window pointer register so that 1314 * we can access the first 32K of internal NIC RAM. This will 1315 * allow us to set up the TX send ring RCBs and the RX return 1316 * ring RCBs, plus other things which live in NIC memory. 1317 */ 1318 CSR_WRITE_4(sc, BGE_PCI_MEMWIN_BASEADDR, 0); 1319 1320 /* Note: the BCM5704 has a smaller mbuf space than other chips. */ 1321 1322 if (sc->bge_asicrev != BGE_ASICREV_BCM5705 && 1323 sc->bge_asicrev != BGE_ASICREV_BCM5750) { 1324 /* Configure mbuf memory pool */ 1325 if (sc->bge_extram) { 1326 CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_BASEADDR, 1327 BGE_EXT_SSRAM); 1328 if (sc->bge_asicrev == BGE_ASICREV_BCM5704) 1329 CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_LEN, 0x10000); 1330 else 1331 CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_LEN, 0x18000); 1332 } else { 1333 CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_BASEADDR, 1334 BGE_BUFFPOOL_1); 1335 if (sc->bge_asicrev == BGE_ASICREV_BCM5704) 1336 CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_LEN, 0x10000); 1337 else 1338 CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_LEN, 0x18000); 1339 } 1340 1341 /* Configure DMA resource pool */ 1342 CSR_WRITE_4(sc, BGE_BMAN_DMA_DESCPOOL_BASEADDR, 1343 BGE_DMA_DESCRIPTORS); 1344 CSR_WRITE_4(sc, BGE_BMAN_DMA_DESCPOOL_LEN, 0x2000); 1345 } 1346 1347 /* Configure mbuf pool watermarks */ 1348 if (sc->bge_asicrev == BGE_ASICREV_BCM5705 || 1349 sc->bge_asicrev == BGE_ASICREV_BCM5750) { 1350 CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_READDMA_LOWAT, 0x0); 1351 CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_MACRX_LOWAT, 0x10); 1352 } else { 1353 CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_READDMA_LOWAT, 0x50); 1354 CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_MACRX_LOWAT, 0x20); 1355 } 1356 CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_HIWAT, 0x60); 1357 1358 /* Configure DMA resource watermarks */ 1359 CSR_WRITE_4(sc, BGE_BMAN_DMA_DESCPOOL_LOWAT, 5); 1360 CSR_WRITE_4(sc, BGE_BMAN_DMA_DESCPOOL_HIWAT, 10); 1361 1362 /* Enable buffer manager */ 1363 if (sc->bge_asicrev != BGE_ASICREV_BCM5705 && 1364 sc->bge_asicrev != BGE_ASICREV_BCM5750) { 1365 CSR_WRITE_4(sc, BGE_BMAN_MODE, 1366 BGE_BMANMODE_ENABLE|BGE_BMANMODE_LOMBUF_ATTN); 1367 1368 /* Poll for buffer manager start indication */ 1369 for (i = 0; i < BGE_TIMEOUT; i++) { 1370 if (CSR_READ_4(sc, BGE_BMAN_MODE) & BGE_BMANMODE_ENABLE) 1371 break; 1372 DELAY(10); 1373 } 1374 1375 if (i == BGE_TIMEOUT) { 1376 printf("bge%d: buffer manager failed to start\n", 1377 sc->bge_unit); 1378 return(ENXIO); 1379 } 1380 } 1381 1382 /* Enable flow-through queues */ 1383 CSR_WRITE_4(sc, BGE_FTQ_RESET, 0xFFFFFFFF); 1384 CSR_WRITE_4(sc, BGE_FTQ_RESET, 0); 1385 1386 /* Wait until queue initialization is complete */ 1387 for (i = 0; i < BGE_TIMEOUT; i++) { 1388 if (CSR_READ_4(sc, BGE_FTQ_RESET) == 0) 1389 break; 1390 DELAY(10); 1391 } 1392 1393 if (i == BGE_TIMEOUT) { 1394 printf("bge%d: flow-through queue init failed\n", 1395 sc->bge_unit); 1396 return(ENXIO); 1397 } 1398 1399 /* Initialize the standard RX ring control block */ 1400 rcb = &sc->bge_ldata.bge_info.bge_std_rx_rcb; 1401 rcb->bge_hostaddr.bge_addr_lo = 1402 BGE_ADDR_LO(sc->bge_ldata.bge_rx_std_ring_paddr); 1403 rcb->bge_hostaddr.bge_addr_hi = 1404 BGE_ADDR_HI(sc->bge_ldata.bge_rx_std_ring_paddr); 1405 bus_dmamap_sync(sc->bge_cdata.bge_rx_std_ring_tag, 1406 sc->bge_cdata.bge_rx_std_ring_map, BUS_DMASYNC_PREREAD); 1407 if (sc->bge_asicrev == BGE_ASICREV_BCM5705 || 1408 sc->bge_asicrev == BGE_ASICREV_BCM5750) 1409 rcb->bge_maxlen_flags = BGE_RCB_MAXLEN_FLAGS(512, 0); 1410 else 1411 rcb->bge_maxlen_flags = 1412 BGE_RCB_MAXLEN_FLAGS(BGE_MAX_FRAMELEN, 0); 1413 if (sc->bge_extram) 1414 rcb->bge_nicaddr = BGE_EXT_STD_RX_RINGS; 1415 else 1416 rcb->bge_nicaddr = BGE_STD_RX_RINGS; 1417 CSR_WRITE_4(sc, BGE_RX_STD_RCB_HADDR_HI, rcb->bge_hostaddr.bge_addr_hi); 1418 CSR_WRITE_4(sc, BGE_RX_STD_RCB_HADDR_LO, rcb->bge_hostaddr.bge_addr_lo); 1419 1420 CSR_WRITE_4(sc, BGE_RX_STD_RCB_MAXLEN_FLAGS, rcb->bge_maxlen_flags); 1421 CSR_WRITE_4(sc, BGE_RX_STD_RCB_NICADDR, rcb->bge_nicaddr); 1422 1423 /* 1424 * Initialize the jumbo RX ring control block 1425 * We set the 'ring disabled' bit in the flags 1426 * field until we're actually ready to start 1427 * using this ring (i.e. once we set the MTU 1428 * high enough to require it). 1429 */ 1430 if (sc->bge_asicrev != BGE_ASICREV_BCM5705 && 1431 sc->bge_asicrev != BGE_ASICREV_BCM5750) { 1432 rcb = &sc->bge_ldata.bge_info.bge_jumbo_rx_rcb; 1433 1434 rcb->bge_hostaddr.bge_addr_lo = 1435 BGE_ADDR_LO(sc->bge_ldata.bge_rx_jumbo_ring_paddr); 1436 rcb->bge_hostaddr.bge_addr_hi = 1437 BGE_ADDR_HI(sc->bge_ldata.bge_rx_jumbo_ring_paddr); 1438 bus_dmamap_sync(sc->bge_cdata.bge_rx_jumbo_ring_tag, 1439 sc->bge_cdata.bge_rx_jumbo_ring_map, 1440 BUS_DMASYNC_PREREAD); 1441 rcb->bge_maxlen_flags = 1442 BGE_RCB_MAXLEN_FLAGS(BGE_MAX_FRAMELEN, 1443 BGE_RCB_FLAG_RING_DISABLED); 1444 if (sc->bge_extram) 1445 rcb->bge_nicaddr = BGE_EXT_JUMBO_RX_RINGS; 1446 else 1447 rcb->bge_nicaddr = BGE_JUMBO_RX_RINGS; 1448 CSR_WRITE_4(sc, BGE_RX_JUMBO_RCB_HADDR_HI, 1449 rcb->bge_hostaddr.bge_addr_hi); 1450 CSR_WRITE_4(sc, BGE_RX_JUMBO_RCB_HADDR_LO, 1451 rcb->bge_hostaddr.bge_addr_lo); 1452 1453 CSR_WRITE_4(sc, BGE_RX_JUMBO_RCB_MAXLEN_FLAGS, 1454 rcb->bge_maxlen_flags); 1455 CSR_WRITE_4(sc, BGE_RX_JUMBO_RCB_NICADDR, rcb->bge_nicaddr); 1456 1457 /* Set up dummy disabled mini ring RCB */ 1458 rcb = &sc->bge_ldata.bge_info.bge_mini_rx_rcb; 1459 rcb->bge_maxlen_flags = 1460 BGE_RCB_MAXLEN_FLAGS(0, BGE_RCB_FLAG_RING_DISABLED); 1461 CSR_WRITE_4(sc, BGE_RX_MINI_RCB_MAXLEN_FLAGS, 1462 rcb->bge_maxlen_flags); 1463 } 1464 1465 /* 1466 * Set the BD ring replentish thresholds. The recommended 1467 * values are 1/8th the number of descriptors allocated to 1468 * each ring. 1469 */ 1470 CSR_WRITE_4(sc, BGE_RBDI_STD_REPL_THRESH, BGE_STD_RX_RING_CNT/8); 1471 CSR_WRITE_4(sc, BGE_RBDI_JUMBO_REPL_THRESH, BGE_JUMBO_RX_RING_CNT/8); 1472 1473 /* 1474 * Disable all unused send rings by setting the 'ring disabled' 1475 * bit in the flags field of all the TX send ring control blocks. 1476 * These are located in NIC memory. 1477 */ 1478 vrcb = (volatile struct bge_rcb *)(sc->bge_vhandle + BGE_MEMWIN_START + 1479 BGE_SEND_RING_RCB); 1480 for (i = 0; i < BGE_TX_RINGS_EXTSSRAM_MAX; i++) { 1481 vrcb->bge_maxlen_flags = 1482 BGE_RCB_MAXLEN_FLAGS(0, BGE_RCB_FLAG_RING_DISABLED); 1483 vrcb->bge_nicaddr = 0; 1484 vrcb++; 1485 } 1486 1487 /* Configure TX RCB 0 (we use only the first ring) */ 1488 vrcb = (volatile struct bge_rcb *)(sc->bge_vhandle + BGE_MEMWIN_START + 1489 BGE_SEND_RING_RCB); 1490 vrcb->bge_hostaddr.bge_addr_lo = 1491 htole32(BGE_ADDR_LO(sc->bge_ldata.bge_tx_ring_paddr)); 1492 vrcb->bge_hostaddr.bge_addr_hi = 1493 htole32(BGE_ADDR_HI(sc->bge_ldata.bge_tx_ring_paddr)); 1494 vrcb->bge_nicaddr = BGE_NIC_TXRING_ADDR(0, BGE_TX_RING_CNT); 1495 if (sc->bge_asicrev != BGE_ASICREV_BCM5705 && 1496 sc->bge_asicrev != BGE_ASICREV_BCM5750) 1497 vrcb->bge_maxlen_flags = 1498 BGE_RCB_MAXLEN_FLAGS(BGE_TX_RING_CNT, 0); 1499 1500 /* Disable all unused RX return rings */ 1501 vrcb = (volatile struct bge_rcb *)(sc->bge_vhandle + BGE_MEMWIN_START + 1502 BGE_RX_RETURN_RING_RCB); 1503 for (i = 0; i < BGE_RX_RINGS_MAX; i++) { 1504 vrcb->bge_hostaddr.bge_addr_hi = 0; 1505 vrcb->bge_hostaddr.bge_addr_lo = 0; 1506 vrcb->bge_maxlen_flags = 1507 BGE_RCB_MAXLEN_FLAGS(sc->bge_return_ring_cnt, 1508 BGE_RCB_FLAG_RING_DISABLED); 1509 vrcb->bge_nicaddr = 0; 1510 CSR_WRITE_4(sc, BGE_MBX_RX_CONS0_LO + 1511 (i * (sizeof(u_int64_t))), 0); 1512 vrcb++; 1513 } 1514 1515 /* Initialize RX ring indexes */ 1516 CSR_WRITE_4(sc, BGE_MBX_RX_STD_PROD_LO, 0); 1517 CSR_WRITE_4(sc, BGE_MBX_RX_JUMBO_PROD_LO, 0); 1518 CSR_WRITE_4(sc, BGE_MBX_RX_MINI_PROD_LO, 0); 1519 1520 /* 1521 * Set up RX return ring 0 1522 * Note that the NIC address for RX return rings is 0x00000000. 1523 * The return rings live entirely within the host, so the 1524 * nicaddr field in the RCB isn't used. 1525 */ 1526 vrcb = (volatile struct bge_rcb *)(sc->bge_vhandle + BGE_MEMWIN_START + 1527 BGE_RX_RETURN_RING_RCB); 1528 vrcb->bge_hostaddr.bge_addr_lo = 1529 BGE_ADDR_LO(sc->bge_ldata.bge_rx_return_ring_paddr); 1530 vrcb->bge_hostaddr.bge_addr_hi = 1531 BGE_ADDR_HI(sc->bge_ldata.bge_rx_return_ring_paddr); 1532 bus_dmamap_sync(sc->bge_cdata.bge_rx_return_ring_tag, 1533 sc->bge_cdata.bge_rx_return_ring_map, BUS_DMASYNC_PREWRITE); 1534 vrcb->bge_nicaddr = 0x00000000; 1535 vrcb->bge_maxlen_flags = 1536 BGE_RCB_MAXLEN_FLAGS(sc->bge_return_ring_cnt, 0); 1537 1538 /* Set random backoff seed for TX */ 1539 CSR_WRITE_4(sc, BGE_TX_RANDOM_BACKOFF, 1540 sc->arpcom.ac_enaddr[0] + sc->arpcom.ac_enaddr[1] + 1541 sc->arpcom.ac_enaddr[2] + sc->arpcom.ac_enaddr[3] + 1542 sc->arpcom.ac_enaddr[4] + sc->arpcom.ac_enaddr[5] + 1543 BGE_TX_BACKOFF_SEED_MASK); 1544 1545 /* Set inter-packet gap */ 1546 CSR_WRITE_4(sc, BGE_TX_LENGTHS, 0x2620); 1547 1548 /* 1549 * Specify which ring to use for packets that don't match 1550 * any RX rules. 1551 */ 1552 CSR_WRITE_4(sc, BGE_RX_RULES_CFG, 0x08); 1553 1554 /* 1555 * Configure number of RX lists. One interrupt distribution 1556 * list, sixteen active lists, one bad frames class. 1557 */ 1558 CSR_WRITE_4(sc, BGE_RXLP_CFG, 0x181); 1559 1560 /* Inialize RX list placement stats mask. */ 1561 CSR_WRITE_4(sc, BGE_RXLP_STATS_ENABLE_MASK, 0x007FFFFF); 1562 CSR_WRITE_4(sc, BGE_RXLP_STATS_CTL, 0x1); 1563 1564 /* Disable host coalescing until we get it set up */ 1565 CSR_WRITE_4(sc, BGE_HCC_MODE, 0x00000000); 1566 1567 /* Poll to make sure it's shut down. */ 1568 for (i = 0; i < BGE_TIMEOUT; i++) { 1569 if (!(CSR_READ_4(sc, BGE_HCC_MODE) & BGE_HCCMODE_ENABLE)) 1570 break; 1571 DELAY(10); 1572 } 1573 1574 if (i == BGE_TIMEOUT) { 1575 printf("bge%d: host coalescing engine failed to idle\n", 1576 sc->bge_unit); 1577 return(ENXIO); 1578 } 1579 1580 /* Set up host coalescing defaults */ 1581 CSR_WRITE_4(sc, BGE_HCC_RX_COAL_TICKS, sc->bge_rx_coal_ticks); 1582 CSR_WRITE_4(sc, BGE_HCC_TX_COAL_TICKS, sc->bge_tx_coal_ticks); 1583 CSR_WRITE_4(sc, BGE_HCC_RX_MAX_COAL_BDS, sc->bge_rx_max_coal_bds); 1584 CSR_WRITE_4(sc, BGE_HCC_TX_MAX_COAL_BDS, sc->bge_tx_max_coal_bds); 1585 if (sc->bge_asicrev != BGE_ASICREV_BCM5705 && 1586 sc->bge_asicrev != BGE_ASICREV_BCM5750) { 1587 CSR_WRITE_4(sc, BGE_HCC_RX_COAL_TICKS_INT, 0); 1588 CSR_WRITE_4(sc, BGE_HCC_TX_COAL_TICKS_INT, 0); 1589 } 1590 CSR_WRITE_4(sc, BGE_HCC_RX_MAX_COAL_BDS_INT, 0); 1591 CSR_WRITE_4(sc, BGE_HCC_TX_MAX_COAL_BDS_INT, 0); 1592 1593 /* Set up address of statistics block */ 1594 if (sc->bge_asicrev != BGE_ASICREV_BCM5705 && 1595 sc->bge_asicrev != BGE_ASICREV_BCM5750) { 1596 CSR_WRITE_4(sc, BGE_HCC_STATS_ADDR_HI, 1597 BGE_ADDR_HI(sc->bge_ldata.bge_stats_paddr)); 1598 CSR_WRITE_4(sc, BGE_HCC_STATS_ADDR_LO, 1599 BGE_ADDR_LO(sc->bge_ldata.bge_stats_paddr)); 1600 CSR_WRITE_4(sc, BGE_HCC_STATS_BASEADDR, BGE_STATS_BLOCK); 1601 CSR_WRITE_4(sc, BGE_HCC_STATUSBLK_BASEADDR, BGE_STATUS_BLOCK); 1602 CSR_WRITE_4(sc, BGE_HCC_STATS_TICKS, sc->bge_stat_ticks); 1603 } 1604 1605 /* Set up address of status block */ 1606 CSR_WRITE_4(sc, BGE_HCC_STATUSBLK_ADDR_HI, 1607 BGE_ADDR_HI(sc->bge_ldata.bge_status_block_paddr)); 1608 CSR_WRITE_4(sc, BGE_HCC_STATUSBLK_ADDR_LO, 1609 BGE_ADDR_LO(sc->bge_ldata.bge_status_block_paddr)); 1610 bus_dmamap_sync(sc->bge_cdata.bge_status_tag, 1611 sc->bge_cdata.bge_status_map, BUS_DMASYNC_PREWRITE); 1612 sc->bge_ldata.bge_status_block->bge_idx[0].bge_rx_prod_idx = 0; 1613 sc->bge_ldata.bge_status_block->bge_idx[0].bge_tx_cons_idx = 0; 1614 1615 /* Turn on host coalescing state machine */ 1616 CSR_WRITE_4(sc, BGE_HCC_MODE, BGE_HCCMODE_ENABLE); 1617 1618 /* Turn on RX BD completion state machine and enable attentions */ 1619 CSR_WRITE_4(sc, BGE_RBDC_MODE, 1620 BGE_RBDCMODE_ENABLE|BGE_RBDCMODE_ATTN); 1621 1622 /* Turn on RX list placement state machine */ 1623 CSR_WRITE_4(sc, BGE_RXLP_MODE, BGE_RXLPMODE_ENABLE); 1624 1625 /* Turn on RX list selector state machine. */ 1626 if (sc->bge_asicrev != BGE_ASICREV_BCM5705 && 1627 sc->bge_asicrev != BGE_ASICREV_BCM5750) 1628 CSR_WRITE_4(sc, BGE_RXLS_MODE, BGE_RXLSMODE_ENABLE); 1629 1630 /* Turn on DMA, clear stats */ 1631 CSR_WRITE_4(sc, BGE_MAC_MODE, BGE_MACMODE_TXDMA_ENB| 1632 BGE_MACMODE_RXDMA_ENB|BGE_MACMODE_RX_STATS_CLEAR| 1633 BGE_MACMODE_TX_STATS_CLEAR|BGE_MACMODE_RX_STATS_ENB| 1634 BGE_MACMODE_TX_STATS_ENB|BGE_MACMODE_FRMHDR_DMA_ENB| 1635 (sc->bge_tbi ? BGE_PORTMODE_TBI : BGE_PORTMODE_MII)); 1636 1637 /* Set misc. local control, enable interrupts on attentions */ 1638 CSR_WRITE_4(sc, BGE_MISC_LOCAL_CTL, BGE_MLC_INTR_ONATTN); 1639 1640 #ifdef notdef 1641 /* Assert GPIO pins for PHY reset */ 1642 BGE_SETBIT(sc, BGE_MISC_LOCAL_CTL, BGE_MLC_MISCIO_OUT0| 1643 BGE_MLC_MISCIO_OUT1|BGE_MLC_MISCIO_OUT2); 1644 BGE_SETBIT(sc, BGE_MISC_LOCAL_CTL, BGE_MLC_MISCIO_OUTEN0| 1645 BGE_MLC_MISCIO_OUTEN1|BGE_MLC_MISCIO_OUTEN2); 1646 #endif 1647 1648 /* Turn on DMA completion state machine */ 1649 if (sc->bge_asicrev != BGE_ASICREV_BCM5705 && 1650 sc->bge_asicrev != BGE_ASICREV_BCM5750) 1651 CSR_WRITE_4(sc, BGE_DMAC_MODE, BGE_DMACMODE_ENABLE); 1652 1653 /* Turn on write DMA state machine */ 1654 CSR_WRITE_4(sc, BGE_WDMA_MODE, 1655 BGE_WDMAMODE_ENABLE|BGE_WDMAMODE_ALL_ATTNS); 1656 1657 /* Turn on read DMA state machine */ 1658 CSR_WRITE_4(sc, BGE_RDMA_MODE, 1659 BGE_RDMAMODE_ENABLE|BGE_RDMAMODE_ALL_ATTNS); 1660 1661 /* Turn on RX data completion state machine */ 1662 CSR_WRITE_4(sc, BGE_RDC_MODE, BGE_RDCMODE_ENABLE); 1663 1664 /* Turn on RX BD initiator state machine */ 1665 CSR_WRITE_4(sc, BGE_RBDI_MODE, BGE_RBDIMODE_ENABLE); 1666 1667 /* Turn on RX data and RX BD initiator state machine */ 1668 CSR_WRITE_4(sc, BGE_RDBDI_MODE, BGE_RDBDIMODE_ENABLE); 1669 1670 /* Turn on Mbuf cluster free state machine */ 1671 if (sc->bge_asicrev != BGE_ASICREV_BCM5705 && 1672 sc->bge_asicrev != BGE_ASICREV_BCM5750) 1673 CSR_WRITE_4(sc, BGE_MBCF_MODE, BGE_MBCFMODE_ENABLE); 1674 1675 /* Turn on send BD completion state machine */ 1676 CSR_WRITE_4(sc, BGE_SBDC_MODE, BGE_SBDCMODE_ENABLE); 1677 1678 /* Turn on send data completion state machine */ 1679 CSR_WRITE_4(sc, BGE_SDC_MODE, BGE_SDCMODE_ENABLE); 1680 1681 /* Turn on send data initiator state machine */ 1682 CSR_WRITE_4(sc, BGE_SDI_MODE, BGE_SDIMODE_ENABLE); 1683 1684 /* Turn on send BD initiator state machine */ 1685 CSR_WRITE_4(sc, BGE_SBDI_MODE, BGE_SBDIMODE_ENABLE); 1686 1687 /* Turn on send BD selector state machine */ 1688 CSR_WRITE_4(sc, BGE_SRS_MODE, BGE_SRSMODE_ENABLE); 1689 1690 CSR_WRITE_4(sc, BGE_SDI_STATS_ENABLE_MASK, 0x007FFFFF); 1691 CSR_WRITE_4(sc, BGE_SDI_STATS_CTL, 1692 BGE_SDISTATSCTL_ENABLE|BGE_SDISTATSCTL_FASTER); 1693 1694 /* ack/clear link change events */ 1695 CSR_WRITE_4(sc, BGE_MAC_STS, BGE_MACSTAT_SYNC_CHANGED| 1696 BGE_MACSTAT_CFG_CHANGED|BGE_MACSTAT_MI_COMPLETE| 1697 BGE_MACSTAT_LINK_CHANGED); 1698 CSR_WRITE_4(sc, BGE_MI_STS, 0); 1699 1700 /* Enable PHY auto polling (for MII/GMII only) */ 1701 if (sc->bge_tbi) { 1702 CSR_WRITE_4(sc, BGE_MI_STS, BGE_MISTS_LINK); 1703 } else { 1704 BGE_SETBIT(sc, BGE_MI_MODE, BGE_MIMODE_AUTOPOLL|10<<16); 1705 if (sc->bge_asicrev == BGE_ASICREV_BCM5700) 1706 CSR_WRITE_4(sc, BGE_MAC_EVT_ENB, 1707 BGE_EVTENB_MI_INTERRUPT); 1708 } 1709 1710 /* Enable link state change attentions. */ 1711 BGE_SETBIT(sc, BGE_MAC_EVT_ENB, BGE_EVTENB_LINK_CHANGED); 1712 1713 return(0); 1714 } 1715 1716 /* 1717 * Probe for a Broadcom chip. Check the PCI vendor and device IDs 1718 * against our list and return its name if we find a match. Note 1719 * that since the Broadcom controller contains VPD support, we 1720 * can get the device name string from the controller itself instead 1721 * of the compiled-in string. This is a little slow, but it guarantees 1722 * we'll always announce the right product name. 1723 */ 1724 static int 1725 bge_probe(dev) 1726 device_t dev; 1727 { 1728 struct bge_type *t; 1729 struct bge_softc *sc; 1730 char *descbuf; 1731 1732 t = bge_devs; 1733 1734 sc = device_get_softc(dev); 1735 bzero(sc, sizeof(struct bge_softc)); 1736 sc->bge_unit = device_get_unit(dev); 1737 sc->bge_dev = dev; 1738 1739 while(t->bge_name != NULL) { 1740 if ((pci_get_vendor(dev) == t->bge_vid) && 1741 (pci_get_device(dev) == t->bge_did)) { 1742 #ifdef notdef 1743 bge_vpd_read(sc); 1744 device_set_desc(dev, sc->bge_vpd_prodname); 1745 #endif 1746 descbuf = malloc(BGE_DEVDESC_MAX, M_TEMP, M_NOWAIT); 1747 if (descbuf == NULL) 1748 return(ENOMEM); 1749 snprintf(descbuf, BGE_DEVDESC_MAX, 1750 "%s, ASIC rev. %#04x", t->bge_name, 1751 pci_read_config(dev, BGE_PCI_MISC_CTL, 4) >> 16); 1752 device_set_desc_copy(dev, descbuf); 1753 if (pci_get_subvendor(dev) == DELL_VENDORID) 1754 sc->bge_no_3_led = 1; 1755 free(descbuf, M_TEMP); 1756 return(0); 1757 } 1758 t++; 1759 } 1760 1761 return(ENXIO); 1762 } 1763 1764 static void 1765 bge_dma_free(sc) 1766 struct bge_softc *sc; 1767 { 1768 int i; 1769 1770 1771 /* Destroy DMA maps for RX buffers */ 1772 1773 for (i = 0; i < BGE_STD_RX_RING_CNT; i++) { 1774 if (sc->bge_cdata.bge_rx_std_dmamap[i]) 1775 bus_dmamap_destroy(sc->bge_cdata.bge_mtag, 1776 sc->bge_cdata.bge_rx_std_dmamap[i]); 1777 } 1778 1779 /* Destroy DMA maps for jumbo RX buffers */ 1780 1781 for (i = 0; i < BGE_JUMBO_RX_RING_CNT; i++) { 1782 if (sc->bge_cdata.bge_rx_jumbo_dmamap[i]) 1783 bus_dmamap_destroy(sc->bge_cdata.bge_mtag_jumbo, 1784 sc->bge_cdata.bge_rx_jumbo_dmamap[i]); 1785 } 1786 1787 /* Destroy DMA maps for TX buffers */ 1788 1789 for (i = 0; i < BGE_TX_RING_CNT; i++) { 1790 if (sc->bge_cdata.bge_tx_dmamap[i]) 1791 bus_dmamap_destroy(sc->bge_cdata.bge_mtag, 1792 sc->bge_cdata.bge_tx_dmamap[i]); 1793 } 1794 1795 if (sc->bge_cdata.bge_mtag) 1796 bus_dma_tag_destroy(sc->bge_cdata.bge_mtag); 1797 1798 1799 /* Destroy standard RX ring */ 1800 1801 if (sc->bge_ldata.bge_rx_std_ring) 1802 bus_dmamem_free(sc->bge_cdata.bge_rx_std_ring_tag, 1803 sc->bge_ldata.bge_rx_std_ring, 1804 sc->bge_cdata.bge_rx_std_ring_map); 1805 1806 if (sc->bge_cdata.bge_rx_std_ring_map) { 1807 bus_dmamap_unload(sc->bge_cdata.bge_rx_std_ring_tag, 1808 sc->bge_cdata.bge_rx_std_ring_map); 1809 bus_dmamap_destroy(sc->bge_cdata.bge_rx_std_ring_tag, 1810 sc->bge_cdata.bge_rx_std_ring_map); 1811 } 1812 1813 if (sc->bge_cdata.bge_rx_std_ring_tag) 1814 bus_dma_tag_destroy(sc->bge_cdata.bge_rx_std_ring_tag); 1815 1816 /* Destroy jumbo RX ring */ 1817 1818 if (sc->bge_ldata.bge_rx_jumbo_ring) 1819 bus_dmamem_free(sc->bge_cdata.bge_rx_jumbo_ring_tag, 1820 sc->bge_ldata.bge_rx_jumbo_ring, 1821 sc->bge_cdata.bge_rx_jumbo_ring_map); 1822 1823 if (sc->bge_cdata.bge_rx_jumbo_ring_map) { 1824 bus_dmamap_unload(sc->bge_cdata.bge_rx_jumbo_ring_tag, 1825 sc->bge_cdata.bge_rx_jumbo_ring_map); 1826 bus_dmamap_destroy(sc->bge_cdata.bge_rx_jumbo_ring_tag, 1827 sc->bge_cdata.bge_rx_jumbo_ring_map); 1828 } 1829 1830 if (sc->bge_cdata.bge_rx_jumbo_ring_tag) 1831 bus_dma_tag_destroy(sc->bge_cdata.bge_rx_jumbo_ring_tag); 1832 1833 /* Destroy RX return ring */ 1834 1835 if (sc->bge_ldata.bge_rx_return_ring) 1836 bus_dmamem_free(sc->bge_cdata.bge_rx_return_ring_tag, 1837 sc->bge_ldata.bge_rx_return_ring, 1838 sc->bge_cdata.bge_rx_return_ring_map); 1839 1840 if (sc->bge_cdata.bge_rx_return_ring_map) { 1841 bus_dmamap_unload(sc->bge_cdata.bge_rx_return_ring_tag, 1842 sc->bge_cdata.bge_rx_return_ring_map); 1843 bus_dmamap_destroy(sc->bge_cdata.bge_rx_return_ring_tag, 1844 sc->bge_cdata.bge_rx_return_ring_map); 1845 } 1846 1847 if (sc->bge_cdata.bge_rx_return_ring_tag) 1848 bus_dma_tag_destroy(sc->bge_cdata.bge_rx_return_ring_tag); 1849 1850 /* Destroy TX ring */ 1851 1852 if (sc->bge_ldata.bge_tx_ring) 1853 bus_dmamem_free(sc->bge_cdata.bge_tx_ring_tag, 1854 sc->bge_ldata.bge_tx_ring, 1855 sc->bge_cdata.bge_tx_ring_map); 1856 1857 if (sc->bge_cdata.bge_tx_ring_map) { 1858 bus_dmamap_unload(sc->bge_cdata.bge_tx_ring_tag, 1859 sc->bge_cdata.bge_tx_ring_map); 1860 bus_dmamap_destroy(sc->bge_cdata.bge_tx_ring_tag, 1861 sc->bge_cdata.bge_tx_ring_map); 1862 } 1863 1864 if (sc->bge_cdata.bge_tx_ring_tag) 1865 bus_dma_tag_destroy(sc->bge_cdata.bge_tx_ring_tag); 1866 1867 /* Destroy status block */ 1868 1869 if (sc->bge_ldata.bge_status_block) 1870 bus_dmamem_free(sc->bge_cdata.bge_status_tag, 1871 sc->bge_ldata.bge_status_block, 1872 sc->bge_cdata.bge_status_map); 1873 1874 if (sc->bge_cdata.bge_status_map) { 1875 bus_dmamap_unload(sc->bge_cdata.bge_status_tag, 1876 sc->bge_cdata.bge_status_map); 1877 bus_dmamap_destroy(sc->bge_cdata.bge_status_tag, 1878 sc->bge_cdata.bge_status_map); 1879 } 1880 1881 if (sc->bge_cdata.bge_status_tag) 1882 bus_dma_tag_destroy(sc->bge_cdata.bge_status_tag); 1883 1884 /* Destroy statistics block */ 1885 1886 if (sc->bge_ldata.bge_stats) 1887 bus_dmamem_free(sc->bge_cdata.bge_stats_tag, 1888 sc->bge_ldata.bge_stats, 1889 sc->bge_cdata.bge_stats_map); 1890 1891 if (sc->bge_cdata.bge_stats_map) { 1892 bus_dmamap_unload(sc->bge_cdata.bge_stats_tag, 1893 sc->bge_cdata.bge_stats_map); 1894 bus_dmamap_destroy(sc->bge_cdata.bge_stats_tag, 1895 sc->bge_cdata.bge_stats_map); 1896 } 1897 1898 if (sc->bge_cdata.bge_stats_tag) 1899 bus_dma_tag_destroy(sc->bge_cdata.bge_stats_tag); 1900 1901 /* Destroy the parent tag */ 1902 1903 if (sc->bge_cdata.bge_parent_tag) 1904 bus_dma_tag_destroy(sc->bge_cdata.bge_parent_tag); 1905 1906 return; 1907 } 1908 1909 static int 1910 bge_dma_alloc(dev) 1911 device_t dev; 1912 { 1913 struct bge_softc *sc; 1914 int nseg, i, error; 1915 struct bge_dmamap_arg ctx; 1916 1917 sc = device_get_softc(dev); 1918 1919 /* 1920 * Allocate the parent bus DMA tag appropriate for PCI. 1921 */ 1922 #define BGE_NSEG_NEW 32 1923 error = bus_dma_tag_create(NULL, /* parent */ 1924 PAGE_SIZE, 0, /* alignment, boundary */ 1925 BUS_SPACE_MAXADDR, /* lowaddr */ 1926 BUS_SPACE_MAXADDR_32BIT,/* highaddr */ 1927 NULL, NULL, /* filter, filterarg */ 1928 MAXBSIZE, BGE_NSEG_NEW, /* maxsize, nsegments */ 1929 BUS_SPACE_MAXSIZE_32BIT,/* maxsegsize */ 1930 0, /* flags */ 1931 NULL, NULL, /* lockfunc, lockarg */ 1932 &sc->bge_cdata.bge_parent_tag); 1933 1934 /* 1935 * Create tag for RX mbufs. 1936 */ 1937 nseg = 32; 1938 error = bus_dma_tag_create(sc->bge_cdata.bge_parent_tag, 1, 1939 0, BUS_SPACE_MAXADDR, BUS_SPACE_MAXADDR, NULL, 1940 NULL, MCLBYTES * nseg, nseg, MCLBYTES, BUS_DMA_ALLOCNOW, NULL, NULL, 1941 &sc->bge_cdata.bge_mtag); 1942 1943 if (error) { 1944 device_printf(dev, "could not allocate dma tag\n"); 1945 return (ENOMEM); 1946 } 1947 1948 /* Create DMA maps for RX buffers */ 1949 1950 for (i = 0; i < BGE_STD_RX_RING_CNT; i++) { 1951 error = bus_dmamap_create(sc->bge_cdata.bge_mtag, 0, 1952 &sc->bge_cdata.bge_rx_std_dmamap[i]); 1953 if (error) { 1954 device_printf(dev, "can't create DMA map for RX\n"); 1955 return(ENOMEM); 1956 } 1957 } 1958 1959 /* Create DMA maps for TX buffers */ 1960 1961 for (i = 0; i < BGE_TX_RING_CNT; i++) { 1962 error = bus_dmamap_create(sc->bge_cdata.bge_mtag, 0, 1963 &sc->bge_cdata.bge_tx_dmamap[i]); 1964 if (error) { 1965 device_printf(dev, "can't create DMA map for RX\n"); 1966 return(ENOMEM); 1967 } 1968 } 1969 1970 /* Create tag for standard RX ring */ 1971 1972 error = bus_dma_tag_create(sc->bge_cdata.bge_parent_tag, 1973 PAGE_SIZE, 0, BUS_SPACE_MAXADDR, BUS_SPACE_MAXADDR, NULL, 1974 NULL, BGE_STD_RX_RING_SZ, 1, BGE_STD_RX_RING_SZ, 0, 1975 NULL, NULL, &sc->bge_cdata.bge_rx_std_ring_tag); 1976 1977 if (error) { 1978 device_printf(dev, "could not allocate dma tag\n"); 1979 return (ENOMEM); 1980 } 1981 1982 /* Allocate DMA'able memory for standard RX ring */ 1983 1984 error = bus_dmamem_alloc(sc->bge_cdata.bge_rx_std_ring_tag, 1985 (void **)&sc->bge_ldata.bge_rx_std_ring, BUS_DMA_NOWAIT, 1986 &sc->bge_cdata.bge_rx_std_ring_map); 1987 if (error) 1988 return (ENOMEM); 1989 1990 bzero((char *)sc->bge_ldata.bge_rx_std_ring, BGE_STD_RX_RING_SZ); 1991 1992 /* Load the address of the standard RX ring */ 1993 1994 ctx.bge_maxsegs = 1; 1995 ctx.sc = sc; 1996 1997 error = bus_dmamap_load(sc->bge_cdata.bge_rx_std_ring_tag, 1998 sc->bge_cdata.bge_rx_std_ring_map, sc->bge_ldata.bge_rx_std_ring, 1999 BGE_STD_RX_RING_SZ, bge_dma_map_addr, &ctx, BUS_DMA_NOWAIT); 2000 2001 if (error) 2002 return (ENOMEM); 2003 2004 sc->bge_ldata.bge_rx_std_ring_paddr = ctx.bge_busaddr; 2005 2006 if (sc->bge_asicrev != BGE_ASICREV_BCM5705 && 2007 sc->bge_asicrev != BGE_ASICREV_BCM5750) { 2008 2009 /* 2010 * Create tag for jumbo mbufs. 2011 * This is really a bit of a kludge. We allocate a special 2012 * jumbo buffer pool which (thanks to the way our DMA 2013 * memory allocation works) will consist of contiguous 2014 * pages. This means that even though a jumbo buffer might 2015 * be larger than a page size, we don't really need to 2016 * map it into more than one DMA segment. However, the 2017 * default mbuf tag will result in multi-segment mappings, 2018 * so we have to create a special jumbo mbuf tag that 2019 * lets us get away with mapping the jumbo buffers as 2020 * a single segment. I think eventually the driver should 2021 * be changed so that it uses ordinary mbufs and cluster 2022 * buffers, i.e. jumbo frames can span multiple DMA 2023 * descriptors. But that's a project for another day. 2024 */ 2025 2026 error = bus_dma_tag_create(sc->bge_cdata.bge_parent_tag, 2027 1, 0, BUS_SPACE_MAXADDR, BUS_SPACE_MAXADDR, NULL, 2028 NULL, MCLBYTES * nseg, nseg, BGE_JLEN, 0, NULL, NULL, 2029 &sc->bge_cdata.bge_mtag_jumbo); 2030 2031 if (error) { 2032 device_printf(dev, "could not allocate dma tag\n"); 2033 return (ENOMEM); 2034 } 2035 2036 /* Create tag for jumbo RX ring */ 2037 2038 error = bus_dma_tag_create(sc->bge_cdata.bge_parent_tag, 2039 PAGE_SIZE, 0, BUS_SPACE_MAXADDR, BUS_SPACE_MAXADDR, NULL, 2040 NULL, BGE_JUMBO_RX_RING_SZ, 1, BGE_JUMBO_RX_RING_SZ, 0, 2041 NULL, NULL, &sc->bge_cdata.bge_rx_jumbo_ring_tag); 2042 2043 if (error) { 2044 device_printf(dev, "could not allocate dma tag\n"); 2045 return (ENOMEM); 2046 } 2047 2048 /* Allocate DMA'able memory for jumbo RX ring */ 2049 2050 error = bus_dmamem_alloc(sc->bge_cdata.bge_rx_jumbo_ring_tag, 2051 (void **)&sc->bge_ldata.bge_rx_jumbo_ring, BUS_DMA_NOWAIT, 2052 &sc->bge_cdata.bge_rx_jumbo_ring_map); 2053 if (error) 2054 return (ENOMEM); 2055 2056 bzero((char *)sc->bge_ldata.bge_rx_jumbo_ring, 2057 BGE_JUMBO_RX_RING_SZ); 2058 2059 /* Load the address of the jumbo RX ring */ 2060 2061 ctx.bge_maxsegs = 1; 2062 ctx.sc = sc; 2063 2064 error = bus_dmamap_load(sc->bge_cdata.bge_rx_jumbo_ring_tag, 2065 sc->bge_cdata.bge_rx_jumbo_ring_map, 2066 sc->bge_ldata.bge_rx_jumbo_ring, BGE_JUMBO_RX_RING_SZ, 2067 bge_dma_map_addr, &ctx, BUS_DMA_NOWAIT); 2068 2069 if (error) 2070 return (ENOMEM); 2071 2072 sc->bge_ldata.bge_rx_jumbo_ring_paddr = ctx.bge_busaddr; 2073 2074 /* Create DMA maps for jumbo RX buffers */ 2075 2076 for (i = 0; i < BGE_JUMBO_RX_RING_CNT; i++) { 2077 error = bus_dmamap_create(sc->bge_cdata.bge_mtag_jumbo, 2078 0, &sc->bge_cdata.bge_rx_jumbo_dmamap[i]); 2079 if (error) { 2080 device_printf(dev, 2081 "can't create DMA map for RX\n"); 2082 return(ENOMEM); 2083 } 2084 } 2085 2086 } 2087 2088 /* Create tag for RX return ring */ 2089 2090 error = bus_dma_tag_create(sc->bge_cdata.bge_parent_tag, 2091 PAGE_SIZE, 0, BUS_SPACE_MAXADDR, BUS_SPACE_MAXADDR, NULL, 2092 NULL, BGE_RX_RTN_RING_SZ(sc), 1, BGE_RX_RTN_RING_SZ(sc), 0, 2093 NULL, NULL, &sc->bge_cdata.bge_rx_return_ring_tag); 2094 2095 if (error) { 2096 device_printf(dev, "could not allocate dma tag\n"); 2097 return (ENOMEM); 2098 } 2099 2100 /* Allocate DMA'able memory for RX return ring */ 2101 2102 error = bus_dmamem_alloc(sc->bge_cdata.bge_rx_return_ring_tag, 2103 (void **)&sc->bge_ldata.bge_rx_return_ring, BUS_DMA_NOWAIT, 2104 &sc->bge_cdata.bge_rx_return_ring_map); 2105 if (error) 2106 return (ENOMEM); 2107 2108 bzero((char *)sc->bge_ldata.bge_rx_return_ring, 2109 BGE_RX_RTN_RING_SZ(sc)); 2110 2111 /* Load the address of the RX return ring */ 2112 2113 ctx.bge_maxsegs = 1; 2114 ctx.sc = sc; 2115 2116 error = bus_dmamap_load(sc->bge_cdata.bge_rx_return_ring_tag, 2117 sc->bge_cdata.bge_rx_return_ring_map, 2118 sc->bge_ldata.bge_rx_return_ring, BGE_RX_RTN_RING_SZ(sc), 2119 bge_dma_map_addr, &ctx, BUS_DMA_NOWAIT); 2120 2121 if (error) 2122 return (ENOMEM); 2123 2124 sc->bge_ldata.bge_rx_return_ring_paddr = ctx.bge_busaddr; 2125 2126 /* Create tag for TX ring */ 2127 2128 error = bus_dma_tag_create(sc->bge_cdata.bge_parent_tag, 2129 PAGE_SIZE, 0, BUS_SPACE_MAXADDR, BUS_SPACE_MAXADDR, NULL, 2130 NULL, BGE_TX_RING_SZ, 1, BGE_TX_RING_SZ, 0, NULL, NULL, 2131 &sc->bge_cdata.bge_tx_ring_tag); 2132 2133 if (error) { 2134 device_printf(dev, "could not allocate dma tag\n"); 2135 return (ENOMEM); 2136 } 2137 2138 /* Allocate DMA'able memory for TX ring */ 2139 2140 error = bus_dmamem_alloc(sc->bge_cdata.bge_tx_ring_tag, 2141 (void **)&sc->bge_ldata.bge_tx_ring, BUS_DMA_NOWAIT, 2142 &sc->bge_cdata.bge_tx_ring_map); 2143 if (error) 2144 return (ENOMEM); 2145 2146 bzero((char *)sc->bge_ldata.bge_tx_ring, BGE_TX_RING_SZ); 2147 2148 /* Load the address of the TX ring */ 2149 2150 ctx.bge_maxsegs = 1; 2151 ctx.sc = sc; 2152 2153 error = bus_dmamap_load(sc->bge_cdata.bge_tx_ring_tag, 2154 sc->bge_cdata.bge_tx_ring_map, sc->bge_ldata.bge_tx_ring, 2155 BGE_TX_RING_SZ, bge_dma_map_addr, &ctx, BUS_DMA_NOWAIT); 2156 2157 if (error) 2158 return (ENOMEM); 2159 2160 sc->bge_ldata.bge_tx_ring_paddr = ctx.bge_busaddr; 2161 2162 /* Create tag for status block */ 2163 2164 error = bus_dma_tag_create(sc->bge_cdata.bge_parent_tag, 2165 PAGE_SIZE, 0, BUS_SPACE_MAXADDR, BUS_SPACE_MAXADDR, NULL, 2166 NULL, BGE_STATUS_BLK_SZ, 1, BGE_STATUS_BLK_SZ, 0, 2167 NULL, NULL, &sc->bge_cdata.bge_status_tag); 2168 2169 if (error) { 2170 device_printf(dev, "could not allocate dma tag\n"); 2171 return (ENOMEM); 2172 } 2173 2174 /* Allocate DMA'able memory for status block */ 2175 2176 error = bus_dmamem_alloc(sc->bge_cdata.bge_status_tag, 2177 (void **)&sc->bge_ldata.bge_status_block, BUS_DMA_NOWAIT, 2178 &sc->bge_cdata.bge_status_map); 2179 if (error) 2180 return (ENOMEM); 2181 2182 bzero((char *)sc->bge_ldata.bge_status_block, BGE_STATUS_BLK_SZ); 2183 2184 /* Load the address of the status block */ 2185 2186 ctx.sc = sc; 2187 ctx.bge_maxsegs = 1; 2188 2189 error = bus_dmamap_load(sc->bge_cdata.bge_status_tag, 2190 sc->bge_cdata.bge_status_map, sc->bge_ldata.bge_status_block, 2191 BGE_STATUS_BLK_SZ, bge_dma_map_addr, &ctx, BUS_DMA_NOWAIT); 2192 2193 if (error) 2194 return (ENOMEM); 2195 2196 sc->bge_ldata.bge_status_block_paddr = ctx.bge_busaddr; 2197 2198 /* Create tag for statistics block */ 2199 2200 error = bus_dma_tag_create(sc->bge_cdata.bge_parent_tag, 2201 PAGE_SIZE, 0, BUS_SPACE_MAXADDR, BUS_SPACE_MAXADDR, NULL, 2202 NULL, BGE_STATS_SZ, 1, BGE_STATS_SZ, 0, NULL, NULL, 2203 &sc->bge_cdata.bge_stats_tag); 2204 2205 if (error) { 2206 device_printf(dev, "could not allocate dma tag\n"); 2207 return (ENOMEM); 2208 } 2209 2210 /* Allocate DMA'able memory for statistics block */ 2211 2212 error = bus_dmamem_alloc(sc->bge_cdata.bge_stats_tag, 2213 (void **)&sc->bge_ldata.bge_stats, BUS_DMA_NOWAIT, 2214 &sc->bge_cdata.bge_stats_map); 2215 if (error) 2216 return (ENOMEM); 2217 2218 bzero((char *)sc->bge_ldata.bge_stats, BGE_STATS_SZ); 2219 2220 /* Load the address of the statstics block */ 2221 2222 ctx.sc = sc; 2223 ctx.bge_maxsegs = 1; 2224 2225 error = bus_dmamap_load(sc->bge_cdata.bge_stats_tag, 2226 sc->bge_cdata.bge_stats_map, sc->bge_ldata.bge_stats, 2227 BGE_STATS_SZ, bge_dma_map_addr, &ctx, BUS_DMA_NOWAIT); 2228 2229 if (error) 2230 return (ENOMEM); 2231 2232 sc->bge_ldata.bge_stats_paddr = ctx.bge_busaddr; 2233 2234 return(0); 2235 } 2236 2237 static int 2238 bge_attach(dev) 2239 device_t dev; 2240 { 2241 struct ifnet *ifp; 2242 struct bge_softc *sc; 2243 u_int32_t hwcfg = 0; 2244 u_int32_t mac_addr = 0; 2245 int unit, error = 0, rid; 2246 2247 sc = device_get_softc(dev); 2248 unit = device_get_unit(dev); 2249 sc->bge_dev = dev; 2250 sc->bge_unit = unit; 2251 2252 /* 2253 * Map control/status registers. 2254 */ 2255 pci_enable_busmaster(dev); 2256 2257 rid = BGE_PCI_BAR0; 2258 sc->bge_res = bus_alloc_resource_any(dev, SYS_RES_MEMORY, &rid, 2259 RF_ACTIVE|PCI_RF_DENSE); 2260 2261 if (sc->bge_res == NULL) { 2262 printf ("bge%d: couldn't map memory\n", unit); 2263 error = ENXIO; 2264 goto fail; 2265 } 2266 2267 sc->bge_btag = rman_get_bustag(sc->bge_res); 2268 sc->bge_bhandle = rman_get_bushandle(sc->bge_res); 2269 sc->bge_vhandle = (vm_offset_t)rman_get_virtual(sc->bge_res); 2270 2271 /* Allocate interrupt */ 2272 rid = 0; 2273 2274 sc->bge_irq = bus_alloc_resource_any(dev, SYS_RES_IRQ, &rid, 2275 RF_SHAREABLE | RF_ACTIVE); 2276 2277 if (sc->bge_irq == NULL) { 2278 printf("bge%d: couldn't map interrupt\n", unit); 2279 error = ENXIO; 2280 goto fail; 2281 } 2282 2283 sc->bge_unit = unit; 2284 2285 BGE_LOCK_INIT(sc, device_get_nameunit(dev)); 2286 2287 /* Save ASIC rev. */ 2288 2289 sc->bge_chipid = 2290 pci_read_config(dev, BGE_PCI_MISC_CTL, 4) & 2291 BGE_PCIMISCCTL_ASICREV; 2292 sc->bge_asicrev = BGE_ASICREV(sc->bge_chipid); 2293 sc->bge_chiprev = BGE_CHIPREV(sc->bge_chipid); 2294 2295 /* 2296 * XXX: Broadcom Linux driver. Not in specs or eratta. 2297 * PCI-Express? 2298 */ 2299 if (sc->bge_asicrev == BGE_ASICREV_BCM5750) { 2300 u_int32_t v; 2301 2302 v = pci_read_config(dev, BGE_PCI_MSI_CAPID, 4); 2303 if (((v >> 8) & 0xff) == BGE_PCIE_CAPID_REG) { 2304 v = pci_read_config(dev, BGE_PCIE_CAPID_REG, 4); 2305 if ((v & 0xff) == BGE_PCIE_CAPID) 2306 sc->bge_pcie = 1; 2307 } 2308 } 2309 2310 /* Try to reset the chip. */ 2311 bge_reset(sc); 2312 2313 if (bge_chipinit(sc)) { 2314 printf("bge%d: chip initialization failed\n", sc->bge_unit); 2315 bge_release_resources(sc); 2316 error = ENXIO; 2317 goto fail; 2318 } 2319 2320 /* 2321 * Get station address from the EEPROM. 2322 */ 2323 mac_addr = bge_readmem_ind(sc, 0x0c14); 2324 if ((mac_addr >> 16) == 0x484b) { 2325 sc->arpcom.ac_enaddr[0] = (u_char)(mac_addr >> 8); 2326 sc->arpcom.ac_enaddr[1] = (u_char)mac_addr; 2327 mac_addr = bge_readmem_ind(sc, 0x0c18); 2328 sc->arpcom.ac_enaddr[2] = (u_char)(mac_addr >> 24); 2329 sc->arpcom.ac_enaddr[3] = (u_char)(mac_addr >> 16); 2330 sc->arpcom.ac_enaddr[4] = (u_char)(mac_addr >> 8); 2331 sc->arpcom.ac_enaddr[5] = (u_char)mac_addr; 2332 } else if (bge_read_eeprom(sc, (caddr_t)&sc->arpcom.ac_enaddr, 2333 BGE_EE_MAC_OFFSET + 2, ETHER_ADDR_LEN)) { 2334 printf("bge%d: failed to read station address\n", unit); 2335 bge_release_resources(sc); 2336 error = ENXIO; 2337 goto fail; 2338 } 2339 2340 /* 5705 limits RX return ring to 512 entries. */ 2341 if (sc->bge_asicrev == BGE_ASICREV_BCM5705 || 2342 sc->bge_asicrev == BGE_ASICREV_BCM5750) 2343 sc->bge_return_ring_cnt = BGE_RETURN_RING_CNT_5705; 2344 else 2345 sc->bge_return_ring_cnt = BGE_RETURN_RING_CNT; 2346 2347 if (bge_dma_alloc(dev)) { 2348 printf ("bge%d: failed to allocate DMA resources\n", 2349 sc->bge_unit); 2350 bge_release_resources(sc); 2351 error = ENXIO; 2352 goto fail; 2353 } 2354 2355 /* 2356 * Try to allocate memory for jumbo buffers. 2357 * The 5705 does not appear to support jumbo frames. 2358 */ 2359 if (sc->bge_asicrev != BGE_ASICREV_BCM5705 && 2360 sc->bge_asicrev != BGE_ASICREV_BCM5750) { 2361 if (bge_alloc_jumbo_mem(sc)) { 2362 printf("bge%d: jumbo buffer allocation " 2363 "failed\n", sc->bge_unit); 2364 bge_release_resources(sc); 2365 error = ENXIO; 2366 goto fail; 2367 } 2368 } 2369 2370 /* Set default tuneable values. */ 2371 sc->bge_stat_ticks = BGE_TICKS_PER_SEC; 2372 sc->bge_rx_coal_ticks = 150; 2373 sc->bge_tx_coal_ticks = 150; 2374 sc->bge_rx_max_coal_bds = 64; 2375 sc->bge_tx_max_coal_bds = 128; 2376 2377 /* Set up ifnet structure */ 2378 ifp = &sc->arpcom.ac_if; 2379 ifp->if_softc = sc; 2380 if_initname(ifp, device_get_name(dev), device_get_unit(dev)); 2381 ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST; 2382 ifp->if_ioctl = bge_ioctl; 2383 ifp->if_start = bge_start; 2384 ifp->if_watchdog = bge_watchdog; 2385 ifp->if_init = bge_init; 2386 ifp->if_mtu = ETHERMTU; 2387 ifp->if_snd.ifq_drv_maxlen = BGE_TX_RING_CNT - 1; 2388 IFQ_SET_MAXLEN(&ifp->if_snd, ifp->if_snd.ifq_drv_maxlen); 2389 IFQ_SET_READY(&ifp->if_snd); 2390 ifp->if_hwassist = BGE_CSUM_FEATURES; 2391 /* NB: the code for RX csum offload is disabled for now */ 2392 ifp->if_capabilities = IFCAP_TXCSUM | IFCAP_VLAN_HWTAGGING | 2393 IFCAP_VLAN_MTU; 2394 ifp->if_capenable = ifp->if_capabilities; 2395 2396 /* 2397 * Figure out what sort of media we have by checking the 2398 * hardware config word in the first 32k of NIC internal memory, 2399 * or fall back to examining the EEPROM if necessary. 2400 * Note: on some BCM5700 cards, this value appears to be unset. 2401 * If that's the case, we have to rely on identifying the NIC 2402 * by its PCI subsystem ID, as we do below for the SysKonnect 2403 * SK-9D41. 2404 */ 2405 if (bge_readmem_ind(sc, BGE_SOFTWARE_GENCOMM_SIG) == BGE_MAGIC_NUMBER) 2406 hwcfg = bge_readmem_ind(sc, BGE_SOFTWARE_GENCOMM_NICCFG); 2407 else { 2408 bge_read_eeprom(sc, (caddr_t)&hwcfg, 2409 BGE_EE_HWCFG_OFFSET, sizeof(hwcfg)); 2410 hwcfg = ntohl(hwcfg); 2411 } 2412 2413 if ((hwcfg & BGE_HWCFG_MEDIA) == BGE_MEDIA_FIBER) 2414 sc->bge_tbi = 1; 2415 2416 /* The SysKonnect SK-9D41 is a 1000baseSX card. */ 2417 if ((pci_read_config(dev, BGE_PCI_SUBSYS, 4) >> 16) == SK_SUBSYSID_9D41) 2418 sc->bge_tbi = 1; 2419 2420 if (sc->bge_tbi) { 2421 ifmedia_init(&sc->bge_ifmedia, IFM_IMASK, 2422 bge_ifmedia_upd, bge_ifmedia_sts); 2423 ifmedia_add(&sc->bge_ifmedia, IFM_ETHER|IFM_1000_SX, 0, NULL); 2424 ifmedia_add(&sc->bge_ifmedia, 2425 IFM_ETHER|IFM_1000_SX|IFM_FDX, 0, NULL); 2426 ifmedia_add(&sc->bge_ifmedia, IFM_ETHER|IFM_AUTO, 0, NULL); 2427 ifmedia_set(&sc->bge_ifmedia, IFM_ETHER|IFM_AUTO); 2428 sc->bge_ifmedia.ifm_media = sc->bge_ifmedia.ifm_cur->ifm_media; 2429 } else { 2430 /* 2431 * Do transceiver setup. 2432 */ 2433 if (mii_phy_probe(dev, &sc->bge_miibus, 2434 bge_ifmedia_upd, bge_ifmedia_sts)) { 2435 printf("bge%d: MII without any PHY!\n", sc->bge_unit); 2436 bge_release_resources(sc); 2437 bge_free_jumbo_mem(sc); 2438 error = ENXIO; 2439 goto fail; 2440 } 2441 } 2442 2443 /* 2444 * When using the BCM5701 in PCI-X mode, data corruption has 2445 * been observed in the first few bytes of some received packets. 2446 * Aligning the packet buffer in memory eliminates the corruption. 2447 * Unfortunately, this misaligns the packet payloads. On platforms 2448 * which do not support unaligned accesses, we will realign the 2449 * payloads by copying the received packets. 2450 */ 2451 switch (sc->bge_chipid) { 2452 case BGE_CHIPID_BCM5701_A0: 2453 case BGE_CHIPID_BCM5701_B0: 2454 case BGE_CHIPID_BCM5701_B2: 2455 case BGE_CHIPID_BCM5701_B5: 2456 /* If in PCI-X mode, work around the alignment bug. */ 2457 if ((pci_read_config(dev, BGE_PCI_PCISTATE, 4) & 2458 (BGE_PCISTATE_PCI_BUSMODE | BGE_PCISTATE_PCI_BUSSPEED)) == 2459 BGE_PCISTATE_PCI_BUSSPEED) 2460 sc->bge_rx_alignment_bug = 1; 2461 break; 2462 } 2463 2464 /* 2465 * Call MI attach routine. 2466 */ 2467 ether_ifattach(ifp, sc->arpcom.ac_enaddr); 2468 callout_init(&sc->bge_stat_ch, CALLOUT_MPSAFE); 2469 2470 /* 2471 * Hookup IRQ last. 2472 */ 2473 error = bus_setup_intr(dev, sc->bge_irq, INTR_TYPE_NET | INTR_MPSAFE, 2474 bge_intr, sc, &sc->bge_intrhand); 2475 2476 if (error) { 2477 bge_release_resources(sc); 2478 printf("bge%d: couldn't set up irq\n", unit); 2479 } 2480 2481 fail: 2482 return(error); 2483 } 2484 2485 static int 2486 bge_detach(dev) 2487 device_t dev; 2488 { 2489 struct bge_softc *sc; 2490 struct ifnet *ifp; 2491 2492 sc = device_get_softc(dev); 2493 ifp = &sc->arpcom.ac_if; 2494 2495 BGE_LOCK(sc); 2496 bge_stop(sc); 2497 bge_reset(sc); 2498 BGE_UNLOCK(sc); 2499 2500 ether_ifdetach(ifp); 2501 2502 if (sc->bge_tbi) { 2503 ifmedia_removeall(&sc->bge_ifmedia); 2504 } else { 2505 bus_generic_detach(dev); 2506 device_delete_child(dev, sc->bge_miibus); 2507 } 2508 2509 bge_release_resources(sc); 2510 if (sc->bge_asicrev != BGE_ASICREV_BCM5705 && 2511 sc->bge_asicrev != BGE_ASICREV_BCM5750) 2512 bge_free_jumbo_mem(sc); 2513 2514 return(0); 2515 } 2516 2517 static void 2518 bge_release_resources(sc) 2519 struct bge_softc *sc; 2520 { 2521 device_t dev; 2522 2523 dev = sc->bge_dev; 2524 2525 if (sc->bge_vpd_prodname != NULL) 2526 free(sc->bge_vpd_prodname, M_DEVBUF); 2527 2528 if (sc->bge_vpd_readonly != NULL) 2529 free(sc->bge_vpd_readonly, M_DEVBUF); 2530 2531 if (sc->bge_intrhand != NULL) 2532 bus_teardown_intr(dev, sc->bge_irq, sc->bge_intrhand); 2533 2534 if (sc->bge_irq != NULL) 2535 bus_release_resource(dev, SYS_RES_IRQ, 0, sc->bge_irq); 2536 2537 if (sc->bge_res != NULL) 2538 bus_release_resource(dev, SYS_RES_MEMORY, 2539 BGE_PCI_BAR0, sc->bge_res); 2540 2541 bge_dma_free(sc); 2542 2543 if (mtx_initialized(&sc->bge_mtx)) /* XXX */ 2544 BGE_LOCK_DESTROY(sc); 2545 2546 return; 2547 } 2548 2549 static void 2550 bge_reset(sc) 2551 struct bge_softc *sc; 2552 { 2553 device_t dev; 2554 u_int32_t cachesize, command, pcistate, reset; 2555 int i, val = 0; 2556 2557 dev = sc->bge_dev; 2558 2559 /* Save some important PCI state. */ 2560 cachesize = pci_read_config(dev, BGE_PCI_CACHESZ, 4); 2561 command = pci_read_config(dev, BGE_PCI_CMD, 4); 2562 pcistate = pci_read_config(dev, BGE_PCI_PCISTATE, 4); 2563 2564 pci_write_config(dev, BGE_PCI_MISC_CTL, 2565 BGE_PCIMISCCTL_INDIRECT_ACCESS|BGE_PCIMISCCTL_MASK_PCI_INTR| 2566 BGE_PCIMISCCTL_ENDIAN_WORDSWAP|BGE_PCIMISCCTL_PCISTATE_RW, 4); 2567 2568 reset = BGE_MISCCFG_RESET_CORE_CLOCKS|(65<<1); 2569 2570 /* XXX: Broadcom Linux driver. */ 2571 if (sc->bge_pcie) { 2572 if (CSR_READ_4(sc, 0x7e2c) == 0x60) /* PCIE 1.0 */ 2573 CSR_WRITE_4(sc, 0x7e2c, 0x20); 2574 if (sc->bge_chipid != BGE_CHIPID_BCM5750_A0) { 2575 /* Prevent PCIE link training during global reset */ 2576 CSR_WRITE_4(sc, BGE_MISC_CFG, (1<<29)); 2577 reset |= (1<<29); 2578 } 2579 } 2580 2581 /* Issue global reset */ 2582 bge_writereg_ind(sc, BGE_MISC_CFG, reset); 2583 2584 DELAY(1000); 2585 2586 /* XXX: Broadcom Linux driver. */ 2587 if (sc->bge_pcie) { 2588 if (sc->bge_chipid == BGE_CHIPID_BCM5750_A0) { 2589 uint32_t v; 2590 2591 DELAY(500000); /* wait for link training to complete */ 2592 v = pci_read_config(dev, 0xc4, 4); 2593 pci_write_config(dev, 0xc4, v | (1<<15), 4); 2594 } 2595 /* Set PCIE max payload size and clear error status. */ 2596 pci_write_config(dev, 0xd8, 0xf5000, 4); 2597 } 2598 2599 /* Reset some of the PCI state that got zapped by reset */ 2600 pci_write_config(dev, BGE_PCI_MISC_CTL, 2601 BGE_PCIMISCCTL_INDIRECT_ACCESS|BGE_PCIMISCCTL_MASK_PCI_INTR| 2602 BGE_PCIMISCCTL_ENDIAN_WORDSWAP|BGE_PCIMISCCTL_PCISTATE_RW, 4); 2603 pci_write_config(dev, BGE_PCI_CACHESZ, cachesize, 4); 2604 pci_write_config(dev, BGE_PCI_CMD, command, 4); 2605 bge_writereg_ind(sc, BGE_MISC_CFG, (65 << 1)); 2606 2607 /* Enable memory arbiter. */ 2608 if (sc->bge_asicrev != BGE_ASICREV_BCM5705 && 2609 sc->bge_asicrev != BGE_ASICREV_BCM5750) 2610 CSR_WRITE_4(sc, BGE_MARB_MODE, BGE_MARBMODE_ENABLE); 2611 2612 /* 2613 * Prevent PXE restart: write a magic number to the 2614 * general communications memory at 0xB50. 2615 */ 2616 bge_writemem_ind(sc, BGE_SOFTWARE_GENCOMM, BGE_MAGIC_NUMBER); 2617 /* 2618 * Poll the value location we just wrote until 2619 * we see the 1's complement of the magic number. 2620 * This indicates that the firmware initialization 2621 * is complete. 2622 */ 2623 for (i = 0; i < BGE_TIMEOUT; i++) { 2624 val = bge_readmem_ind(sc, BGE_SOFTWARE_GENCOMM); 2625 if (val == ~BGE_MAGIC_NUMBER) 2626 break; 2627 DELAY(10); 2628 } 2629 2630 if (i == BGE_TIMEOUT) { 2631 printf("bge%d: firmware handshake timed out\n", sc->bge_unit); 2632 return; 2633 } 2634 2635 /* 2636 * XXX Wait for the value of the PCISTATE register to 2637 * return to its original pre-reset state. This is a 2638 * fairly good indicator of reset completion. If we don't 2639 * wait for the reset to fully complete, trying to read 2640 * from the device's non-PCI registers may yield garbage 2641 * results. 2642 */ 2643 for (i = 0; i < BGE_TIMEOUT; i++) { 2644 if (pci_read_config(dev, BGE_PCI_PCISTATE, 4) == pcistate) 2645 break; 2646 DELAY(10); 2647 } 2648 2649 /* Fix up byte swapping */ 2650 CSR_WRITE_4(sc, BGE_MODE_CTL, BGE_MODECTL_BYTESWAP_NONFRAME| 2651 BGE_MODECTL_BYTESWAP_DATA); 2652 2653 CSR_WRITE_4(sc, BGE_MAC_MODE, 0); 2654 2655 /* 2656 * The 5704 in TBI mode apparently needs some special 2657 * adjustment to insure the SERDES drive level is set 2658 * to 1.2V. 2659 */ 2660 if (sc->bge_asicrev == BGE_ASICREV_BCM5704 && sc->bge_tbi) { 2661 uint32_t serdescfg; 2662 serdescfg = CSR_READ_4(sc, BGE_SERDES_CFG); 2663 serdescfg = (serdescfg & ~0xFFF) | 0x880; 2664 CSR_WRITE_4(sc, BGE_SERDES_CFG, serdescfg); 2665 } 2666 2667 /* XXX: Broadcom Linux driver. */ 2668 if (sc->bge_pcie && sc->bge_chipid != BGE_CHIPID_BCM5750_A0) { 2669 uint32_t v; 2670 2671 v = CSR_READ_4(sc, 0x7c00); 2672 CSR_WRITE_4(sc, 0x7c00, v | (1<<25)); 2673 } 2674 DELAY(10000); 2675 2676 return; 2677 } 2678 2679 /* 2680 * Frame reception handling. This is called if there's a frame 2681 * on the receive return list. 2682 * 2683 * Note: we have to be able to handle two possibilities here: 2684 * 1) the frame is from the jumbo recieve ring 2685 * 2) the frame is from the standard receive ring 2686 */ 2687 2688 static void 2689 bge_rxeof(sc) 2690 struct bge_softc *sc; 2691 { 2692 struct ifnet *ifp; 2693 int stdcnt = 0, jumbocnt = 0; 2694 2695 BGE_LOCK_ASSERT(sc); 2696 2697 ifp = &sc->arpcom.ac_if; 2698 2699 bus_dmamap_sync(sc->bge_cdata.bge_rx_return_ring_tag, 2700 sc->bge_cdata.bge_rx_return_ring_map, BUS_DMASYNC_POSTWRITE); 2701 bus_dmamap_sync(sc->bge_cdata.bge_rx_std_ring_tag, 2702 sc->bge_cdata.bge_rx_std_ring_map, BUS_DMASYNC_POSTREAD); 2703 if (sc->bge_asicrev != BGE_ASICREV_BCM5705 && 2704 sc->bge_asicrev != BGE_ASICREV_BCM5750) { 2705 bus_dmamap_sync(sc->bge_cdata.bge_rx_jumbo_ring_tag, 2706 sc->bge_cdata.bge_rx_jumbo_ring_map, 2707 BUS_DMASYNC_POSTREAD); 2708 } 2709 2710 while(sc->bge_rx_saved_considx != 2711 sc->bge_ldata.bge_status_block->bge_idx[0].bge_rx_prod_idx) { 2712 struct bge_rx_bd *cur_rx; 2713 u_int32_t rxidx; 2714 struct ether_header *eh; 2715 struct mbuf *m = NULL; 2716 u_int16_t vlan_tag = 0; 2717 int have_tag = 0; 2718 2719 cur_rx = 2720 &sc->bge_ldata.bge_rx_return_ring[sc->bge_rx_saved_considx]; 2721 2722 rxidx = cur_rx->bge_idx; 2723 BGE_INC(sc->bge_rx_saved_considx, sc->bge_return_ring_cnt); 2724 2725 if (cur_rx->bge_flags & BGE_RXBDFLAG_VLAN_TAG) { 2726 have_tag = 1; 2727 vlan_tag = cur_rx->bge_vlan_tag; 2728 } 2729 2730 if (cur_rx->bge_flags & BGE_RXBDFLAG_JUMBO_RING) { 2731 BGE_INC(sc->bge_jumbo, BGE_JUMBO_RX_RING_CNT); 2732 bus_dmamap_sync(sc->bge_cdata.bge_mtag_jumbo, 2733 sc->bge_cdata.bge_rx_jumbo_dmamap[rxidx], 2734 BUS_DMASYNC_POSTREAD); 2735 bus_dmamap_unload(sc->bge_cdata.bge_mtag_jumbo, 2736 sc->bge_cdata.bge_rx_jumbo_dmamap[rxidx]); 2737 m = sc->bge_cdata.bge_rx_jumbo_chain[rxidx]; 2738 sc->bge_cdata.bge_rx_jumbo_chain[rxidx] = NULL; 2739 jumbocnt++; 2740 if (cur_rx->bge_flags & BGE_RXBDFLAG_ERROR) { 2741 ifp->if_ierrors++; 2742 bge_newbuf_jumbo(sc, sc->bge_jumbo, m); 2743 continue; 2744 } 2745 if (bge_newbuf_jumbo(sc, 2746 sc->bge_jumbo, NULL) == ENOBUFS) { 2747 ifp->if_ierrors++; 2748 bge_newbuf_jumbo(sc, sc->bge_jumbo, m); 2749 continue; 2750 } 2751 } else { 2752 BGE_INC(sc->bge_std, BGE_STD_RX_RING_CNT); 2753 bus_dmamap_sync(sc->bge_cdata.bge_mtag, 2754 sc->bge_cdata.bge_rx_std_dmamap[rxidx], 2755 BUS_DMASYNC_POSTREAD); 2756 bus_dmamap_unload(sc->bge_cdata.bge_mtag, 2757 sc->bge_cdata.bge_rx_std_dmamap[rxidx]); 2758 m = sc->bge_cdata.bge_rx_std_chain[rxidx]; 2759 sc->bge_cdata.bge_rx_std_chain[rxidx] = NULL; 2760 stdcnt++; 2761 if (cur_rx->bge_flags & BGE_RXBDFLAG_ERROR) { 2762 ifp->if_ierrors++; 2763 bge_newbuf_std(sc, sc->bge_std, m); 2764 continue; 2765 } 2766 if (bge_newbuf_std(sc, sc->bge_std, 2767 NULL) == ENOBUFS) { 2768 ifp->if_ierrors++; 2769 bge_newbuf_std(sc, sc->bge_std, m); 2770 continue; 2771 } 2772 } 2773 2774 ifp->if_ipackets++; 2775 #ifndef __i386__ 2776 /* 2777 * The i386 allows unaligned accesses, but for other 2778 * platforms we must make sure the payload is aligned. 2779 */ 2780 if (sc->bge_rx_alignment_bug) { 2781 bcopy(m->m_data, m->m_data + ETHER_ALIGN, 2782 cur_rx->bge_len); 2783 m->m_data += ETHER_ALIGN; 2784 } 2785 #endif 2786 eh = mtod(m, struct ether_header *); 2787 m->m_pkthdr.len = m->m_len = cur_rx->bge_len - ETHER_CRC_LEN; 2788 m->m_pkthdr.rcvif = ifp; 2789 2790 #if 0 /* currently broken for some packets, possibly related to TCP options */ 2791 if (ifp->if_capenable & IFCAP_RXCSUM) { 2792 m->m_pkthdr.csum_flags |= CSUM_IP_CHECKED; 2793 if ((cur_rx->bge_ip_csum ^ 0xffff) == 0) 2794 m->m_pkthdr.csum_flags |= CSUM_IP_VALID; 2795 if (cur_rx->bge_flags & BGE_RXBDFLAG_TCP_UDP_CSUM) { 2796 m->m_pkthdr.csum_data = 2797 cur_rx->bge_tcp_udp_csum; 2798 m->m_pkthdr.csum_flags |= CSUM_DATA_VALID; 2799 } 2800 } 2801 #endif 2802 2803 /* 2804 * If we received a packet with a vlan tag, 2805 * attach that information to the packet. 2806 */ 2807 if (have_tag) 2808 VLAN_INPUT_TAG(ifp, m, vlan_tag, continue); 2809 2810 BGE_UNLOCK(sc); 2811 (*ifp->if_input)(ifp, m); 2812 BGE_LOCK(sc); 2813 } 2814 2815 bus_dmamap_sync(sc->bge_cdata.bge_rx_return_ring_tag, 2816 sc->bge_cdata.bge_rx_return_ring_map, BUS_DMASYNC_PREWRITE); 2817 bus_dmamap_sync(sc->bge_cdata.bge_rx_std_ring_tag, 2818 sc->bge_cdata.bge_rx_std_ring_map, 2819 BUS_DMASYNC_POSTREAD|BUS_DMASYNC_PREWRITE); 2820 if (sc->bge_asicrev != BGE_ASICREV_BCM5705 && 2821 sc->bge_asicrev != BGE_ASICREV_BCM5750) { 2822 bus_dmamap_sync(sc->bge_cdata.bge_rx_jumbo_ring_tag, 2823 sc->bge_cdata.bge_rx_jumbo_ring_map, 2824 BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE); 2825 } 2826 2827 CSR_WRITE_4(sc, BGE_MBX_RX_CONS0_LO, sc->bge_rx_saved_considx); 2828 if (stdcnt) 2829 CSR_WRITE_4(sc, BGE_MBX_RX_STD_PROD_LO, sc->bge_std); 2830 if (jumbocnt) 2831 CSR_WRITE_4(sc, BGE_MBX_RX_JUMBO_PROD_LO, sc->bge_jumbo); 2832 2833 return; 2834 } 2835 2836 static void 2837 bge_txeof(sc) 2838 struct bge_softc *sc; 2839 { 2840 struct bge_tx_bd *cur_tx = NULL; 2841 struct ifnet *ifp; 2842 2843 BGE_LOCK_ASSERT(sc); 2844 2845 ifp = &sc->arpcom.ac_if; 2846 2847 /* 2848 * Go through our tx ring and free mbufs for those 2849 * frames that have been sent. 2850 */ 2851 while (sc->bge_tx_saved_considx != 2852 sc->bge_ldata.bge_status_block->bge_idx[0].bge_tx_cons_idx) { 2853 u_int32_t idx = 0; 2854 2855 idx = sc->bge_tx_saved_considx; 2856 cur_tx = &sc->bge_ldata.bge_tx_ring[idx]; 2857 if (cur_tx->bge_flags & BGE_TXBDFLAG_END) 2858 ifp->if_opackets++; 2859 if (sc->bge_cdata.bge_tx_chain[idx] != NULL) { 2860 m_freem(sc->bge_cdata.bge_tx_chain[idx]); 2861 sc->bge_cdata.bge_tx_chain[idx] = NULL; 2862 bus_dmamap_unload(sc->bge_cdata.bge_mtag, 2863 sc->bge_cdata.bge_tx_dmamap[idx]); 2864 } 2865 sc->bge_txcnt--; 2866 BGE_INC(sc->bge_tx_saved_considx, BGE_TX_RING_CNT); 2867 ifp->if_timer = 0; 2868 } 2869 2870 if (cur_tx != NULL) 2871 ifp->if_flags &= ~IFF_OACTIVE; 2872 2873 return; 2874 } 2875 2876 static void 2877 bge_intr(xsc) 2878 void *xsc; 2879 { 2880 struct bge_softc *sc; 2881 struct ifnet *ifp; 2882 u_int32_t statusword; 2883 u_int32_t status, mimode; 2884 2885 sc = xsc; 2886 ifp = &sc->arpcom.ac_if; 2887 2888 BGE_LOCK(sc); 2889 2890 bus_dmamap_sync(sc->bge_cdata.bge_status_tag, 2891 sc->bge_cdata.bge_status_map, BUS_DMASYNC_POSTWRITE); 2892 2893 statusword = 2894 atomic_readandclear_32(&sc->bge_ldata.bge_status_block->bge_status); 2895 2896 #ifdef notdef 2897 /* Avoid this for now -- checking this register is expensive. */ 2898 /* Make sure this is really our interrupt. */ 2899 if (!(CSR_READ_4(sc, BGE_MISC_LOCAL_CTL) & BGE_MLC_INTR_STATE)) 2900 return; 2901 #endif 2902 /* Ack interrupt and stop others from occuring. */ 2903 CSR_WRITE_4(sc, BGE_MBX_IRQ0_LO, 1); 2904 2905 /* 2906 * Process link state changes. 2907 * Grrr. The link status word in the status block does 2908 * not work correctly on the BCM5700 rev AX and BX chips, 2909 * according to all available information. Hence, we have 2910 * to enable MII interrupts in order to properly obtain 2911 * async link changes. Unfortunately, this also means that 2912 * we have to read the MAC status register to detect link 2913 * changes, thereby adding an additional register access to 2914 * the interrupt handler. 2915 */ 2916 2917 if (sc->bge_asicrev == BGE_ASICREV_BCM5700) { 2918 2919 status = CSR_READ_4(sc, BGE_MAC_STS); 2920 if (status & BGE_MACSTAT_MI_INTERRUPT) { 2921 sc->bge_link = 0; 2922 callout_stop(&sc->bge_stat_ch); 2923 bge_tick_locked(sc); 2924 /* Clear the interrupt */ 2925 CSR_WRITE_4(sc, BGE_MAC_EVT_ENB, 2926 BGE_EVTENB_MI_INTERRUPT); 2927 bge_miibus_readreg(sc->bge_dev, 1, BRGPHY_MII_ISR); 2928 bge_miibus_writereg(sc->bge_dev, 1, BRGPHY_MII_IMR, 2929 BRGPHY_INTRS); 2930 } 2931 } else { 2932 if (statusword & BGE_STATFLAG_LINKSTATE_CHANGED) { 2933 /* 2934 * Sometimes PCS encoding errors are detected in 2935 * TBI mode (on fiber NICs), and for some reason 2936 * the chip will signal them as link changes. 2937 * If we get a link change event, but the 'PCS 2938 * encoding error' bit in the MAC status register 2939 * is set, don't bother doing a link check. 2940 * This avoids spurious "gigabit link up" messages 2941 * that sometimes appear on fiber NICs during 2942 * periods of heavy traffic. (There should be no 2943 * effect on copper NICs.) 2944 * 2945 * If we do have a copper NIC (bge_tbi == 0) then 2946 * check that the AUTOPOLL bit is set before 2947 * processing the event as a real link change. 2948 * Turning AUTOPOLL on and off in the MII read/write 2949 * functions will often trigger a link status 2950 * interrupt for no reason. 2951 */ 2952 status = CSR_READ_4(sc, BGE_MAC_STS); 2953 mimode = CSR_READ_4(sc, BGE_MI_MODE); 2954 if (!(status & (BGE_MACSTAT_PORT_DECODE_ERROR| 2955 BGE_MACSTAT_MI_COMPLETE)) && (!sc->bge_tbi && 2956 (mimode & BGE_MIMODE_AUTOPOLL))) { 2957 sc->bge_link = 0; 2958 callout_stop(&sc->bge_stat_ch); 2959 bge_tick_locked(sc); 2960 } 2961 /* Clear the interrupt */ 2962 CSR_WRITE_4(sc, BGE_MAC_STS, BGE_MACSTAT_SYNC_CHANGED| 2963 BGE_MACSTAT_CFG_CHANGED|BGE_MACSTAT_MI_COMPLETE| 2964 BGE_MACSTAT_LINK_CHANGED); 2965 2966 /* Force flush the status block cached by PCI bridge */ 2967 CSR_READ_4(sc, BGE_MBX_IRQ0_LO); 2968 } 2969 } 2970 2971 if (ifp->if_flags & IFF_RUNNING) { 2972 /* Check RX return ring producer/consumer */ 2973 bge_rxeof(sc); 2974 2975 /* Check TX ring producer/consumer */ 2976 bge_txeof(sc); 2977 } 2978 2979 bus_dmamap_sync(sc->bge_cdata.bge_status_tag, 2980 sc->bge_cdata.bge_status_map, BUS_DMASYNC_PREWRITE); 2981 2982 bge_handle_events(sc); 2983 2984 /* Re-enable interrupts. */ 2985 CSR_WRITE_4(sc, BGE_MBX_IRQ0_LO, 0); 2986 2987 if (ifp->if_flags & IFF_RUNNING && !IFQ_DRV_IS_EMPTY(&ifp->if_snd)) 2988 bge_start_locked(ifp); 2989 2990 BGE_UNLOCK(sc); 2991 2992 return; 2993 } 2994 2995 static void 2996 bge_tick_locked(sc) 2997 struct bge_softc *sc; 2998 { 2999 struct mii_data *mii = NULL; 3000 struct ifmedia *ifm = NULL; 3001 struct ifnet *ifp; 3002 3003 ifp = &sc->arpcom.ac_if; 3004 3005 BGE_LOCK_ASSERT(sc); 3006 3007 if (sc->bge_asicrev == BGE_ASICREV_BCM5705 || 3008 sc->bge_asicrev == BGE_ASICREV_BCM5750) 3009 bge_stats_update_regs(sc); 3010 else 3011 bge_stats_update(sc); 3012 callout_reset(&sc->bge_stat_ch, hz, bge_tick, sc); 3013 if (sc->bge_link) 3014 return; 3015 3016 if (sc->bge_tbi) { 3017 ifm = &sc->bge_ifmedia; 3018 if (CSR_READ_4(sc, BGE_MAC_STS) & 3019 BGE_MACSTAT_TBI_PCS_SYNCHED) { 3020 sc->bge_link++; 3021 if (sc->bge_asicrev == BGE_ASICREV_BCM5704) 3022 BGE_CLRBIT(sc, BGE_MAC_MODE, 3023 BGE_MACMODE_TBI_SEND_CFGS); 3024 CSR_WRITE_4(sc, BGE_MAC_STS, 0xFFFFFFFF); 3025 if (bootverbose) 3026 printf("bge%d: gigabit link up\n", 3027 sc->bge_unit); 3028 if (!IFQ_DRV_IS_EMPTY(&ifp->if_snd)) 3029 bge_start_locked(ifp); 3030 } 3031 return; 3032 } 3033 3034 mii = device_get_softc(sc->bge_miibus); 3035 mii_tick(mii); 3036 3037 if (!sc->bge_link && mii->mii_media_status & IFM_ACTIVE && 3038 IFM_SUBTYPE(mii->mii_media_active) != IFM_NONE) { 3039 sc->bge_link++; 3040 if ((IFM_SUBTYPE(mii->mii_media_active) == IFM_1000_T || 3041 IFM_SUBTYPE(mii->mii_media_active) == IFM_1000_SX) && 3042 bootverbose) 3043 printf("bge%d: gigabit link up\n", sc->bge_unit); 3044 if (!IFQ_DRV_IS_EMPTY(&ifp->if_snd)) 3045 bge_start_locked(ifp); 3046 } 3047 3048 return; 3049 } 3050 3051 static void 3052 bge_tick(xsc) 3053 void *xsc; 3054 { 3055 struct bge_softc *sc; 3056 3057 sc = xsc; 3058 3059 BGE_LOCK(sc); 3060 bge_tick_locked(sc); 3061 BGE_UNLOCK(sc); 3062 } 3063 3064 static void 3065 bge_stats_update_regs(sc) 3066 struct bge_softc *sc; 3067 { 3068 struct ifnet *ifp; 3069 struct bge_mac_stats_regs stats; 3070 u_int32_t *s; 3071 int i; 3072 3073 ifp = &sc->arpcom.ac_if; 3074 3075 s = (u_int32_t *)&stats; 3076 for (i = 0; i < sizeof(struct bge_mac_stats_regs); i += 4) { 3077 *s = CSR_READ_4(sc, BGE_RX_STATS + i); 3078 s++; 3079 } 3080 3081 ifp->if_collisions += 3082 (stats.dot3StatsSingleCollisionFrames + 3083 stats.dot3StatsMultipleCollisionFrames + 3084 stats.dot3StatsExcessiveCollisions + 3085 stats.dot3StatsLateCollisions) - 3086 ifp->if_collisions; 3087 3088 return; 3089 } 3090 3091 static void 3092 bge_stats_update(sc) 3093 struct bge_softc *sc; 3094 { 3095 struct ifnet *ifp; 3096 struct bge_stats *stats; 3097 3098 ifp = &sc->arpcom.ac_if; 3099 3100 stats = (struct bge_stats *)(sc->bge_vhandle + 3101 BGE_MEMWIN_START + BGE_STATS_BLOCK); 3102 3103 ifp->if_collisions += 3104 (stats->txstats.dot3StatsSingleCollisionFrames.bge_addr_lo + 3105 stats->txstats.dot3StatsMultipleCollisionFrames.bge_addr_lo + 3106 stats->txstats.dot3StatsExcessiveCollisions.bge_addr_lo + 3107 stats->txstats.dot3StatsLateCollisions.bge_addr_lo) - 3108 ifp->if_collisions; 3109 3110 #ifdef notdef 3111 ifp->if_collisions += 3112 (sc->bge_rdata->bge_info.bge_stats.dot3StatsSingleCollisionFrames + 3113 sc->bge_rdata->bge_info.bge_stats.dot3StatsMultipleCollisionFrames + 3114 sc->bge_rdata->bge_info.bge_stats.dot3StatsExcessiveCollisions + 3115 sc->bge_rdata->bge_info.bge_stats.dot3StatsLateCollisions) - 3116 ifp->if_collisions; 3117 #endif 3118 3119 return; 3120 } 3121 3122 /* 3123 * Encapsulate an mbuf chain in the tx ring by coupling the mbuf data 3124 * pointers to descriptors. 3125 */ 3126 static int 3127 bge_encap(sc, m_head, txidx) 3128 struct bge_softc *sc; 3129 struct mbuf *m_head; 3130 u_int32_t *txidx; 3131 { 3132 struct bge_tx_bd *f = NULL; 3133 u_int16_t csum_flags = 0; 3134 struct m_tag *mtag; 3135 struct bge_dmamap_arg ctx; 3136 bus_dmamap_t map; 3137 int error; 3138 3139 3140 if (m_head->m_pkthdr.csum_flags) { 3141 if (m_head->m_pkthdr.csum_flags & CSUM_IP) 3142 csum_flags |= BGE_TXBDFLAG_IP_CSUM; 3143 if (m_head->m_pkthdr.csum_flags & (CSUM_TCP | CSUM_UDP)) 3144 csum_flags |= BGE_TXBDFLAG_TCP_UDP_CSUM; 3145 if (m_head->m_flags & M_LASTFRAG) 3146 csum_flags |= BGE_TXBDFLAG_IP_FRAG_END; 3147 else if (m_head->m_flags & M_FRAG) 3148 csum_flags |= BGE_TXBDFLAG_IP_FRAG; 3149 } 3150 3151 mtag = VLAN_OUTPUT_TAG(&sc->arpcom.ac_if, m_head); 3152 3153 ctx.sc = sc; 3154 ctx.bge_idx = *txidx; 3155 ctx.bge_ring = sc->bge_ldata.bge_tx_ring; 3156 ctx.bge_flags = csum_flags; 3157 /* 3158 * Sanity check: avoid coming within 16 descriptors 3159 * of the end of the ring. 3160 */ 3161 ctx.bge_maxsegs = (BGE_TX_RING_CNT - sc->bge_txcnt) - 16; 3162 3163 map = sc->bge_cdata.bge_tx_dmamap[*txidx]; 3164 error = bus_dmamap_load_mbuf(sc->bge_cdata.bge_mtag, map, 3165 m_head, bge_dma_map_tx_desc, &ctx, BUS_DMA_NOWAIT); 3166 3167 if (error || ctx.bge_maxsegs == 0 /*|| 3168 ctx.bge_idx == sc->bge_tx_saved_considx*/) 3169 return (ENOBUFS); 3170 3171 /* 3172 * Insure that the map for this transmission 3173 * is placed at the array index of the last descriptor 3174 * in this chain. 3175 */ 3176 sc->bge_cdata.bge_tx_dmamap[*txidx] = 3177 sc->bge_cdata.bge_tx_dmamap[ctx.bge_idx]; 3178 sc->bge_cdata.bge_tx_dmamap[ctx.bge_idx] = map; 3179 sc->bge_cdata.bge_tx_chain[ctx.bge_idx] = m_head; 3180 sc->bge_txcnt += ctx.bge_maxsegs; 3181 f = &sc->bge_ldata.bge_tx_ring[*txidx]; 3182 if (mtag != NULL) { 3183 f->bge_flags |= htole16(BGE_TXBDFLAG_VLAN_TAG); 3184 f->bge_vlan_tag = htole16(VLAN_TAG_VALUE(mtag)); 3185 } else { 3186 f->bge_vlan_tag = 0; 3187 } 3188 3189 BGE_INC(ctx.bge_idx, BGE_TX_RING_CNT); 3190 *txidx = ctx.bge_idx; 3191 3192 return(0); 3193 } 3194 3195 /* 3196 * Main transmit routine. To avoid having to do mbuf copies, we put pointers 3197 * to the mbuf data regions directly in the transmit descriptors. 3198 */ 3199 static void 3200 bge_start_locked(ifp) 3201 struct ifnet *ifp; 3202 { 3203 struct bge_softc *sc; 3204 struct mbuf *m_head = NULL; 3205 u_int32_t prodidx = 0; 3206 int count = 0; 3207 3208 sc = ifp->if_softc; 3209 3210 if (!sc->bge_link && IFQ_DRV_IS_EMPTY(&ifp->if_snd)) 3211 return; 3212 3213 prodidx = CSR_READ_4(sc, BGE_MBX_TX_HOST_PROD0_LO); 3214 3215 while(sc->bge_cdata.bge_tx_chain[prodidx] == NULL) { 3216 IFQ_DRV_DEQUEUE(&ifp->if_snd, m_head); 3217 if (m_head == NULL) 3218 break; 3219 3220 /* 3221 * XXX 3222 * The code inside the if() block is never reached since we 3223 * must mark CSUM_IP_FRAGS in our if_hwassist to start getting 3224 * requests to checksum TCP/UDP in a fragmented packet. 3225 * 3226 * XXX 3227 * safety overkill. If this is a fragmented packet chain 3228 * with delayed TCP/UDP checksums, then only encapsulate 3229 * it if we have enough descriptors to handle the entire 3230 * chain at once. 3231 * (paranoia -- may not actually be needed) 3232 */ 3233 if (m_head->m_flags & M_FIRSTFRAG && 3234 m_head->m_pkthdr.csum_flags & (CSUM_DELAY_DATA)) { 3235 if ((BGE_TX_RING_CNT - sc->bge_txcnt) < 3236 m_head->m_pkthdr.csum_data + 16) { 3237 IFQ_DRV_PREPEND(&ifp->if_snd, m_head); 3238 ifp->if_flags |= IFF_OACTIVE; 3239 break; 3240 } 3241 } 3242 3243 /* 3244 * Pack the data into the transmit ring. If we 3245 * don't have room, set the OACTIVE flag and wait 3246 * for the NIC to drain the ring. 3247 */ 3248 if (bge_encap(sc, m_head, &prodidx)) { 3249 IFQ_DRV_PREPEND(&ifp->if_snd, m_head); 3250 ifp->if_flags |= IFF_OACTIVE; 3251 break; 3252 } 3253 ++count; 3254 3255 /* 3256 * If there's a BPF listener, bounce a copy of this frame 3257 * to him. 3258 */ 3259 BPF_MTAP(ifp, m_head); 3260 } 3261 3262 if (count == 0) { 3263 /* no packets were dequeued */ 3264 return; 3265 } 3266 3267 /* Transmit */ 3268 CSR_WRITE_4(sc, BGE_MBX_TX_HOST_PROD0_LO, prodidx); 3269 /* 5700 b2 errata */ 3270 if (sc->bge_chiprev == BGE_CHIPREV_5700_BX) 3271 CSR_WRITE_4(sc, BGE_MBX_TX_HOST_PROD0_LO, prodidx); 3272 3273 /* 3274 * Set a timeout in case the chip goes out to lunch. 3275 */ 3276 ifp->if_timer = 5; 3277 3278 return; 3279 } 3280 3281 /* 3282 * Main transmit routine. To avoid having to do mbuf copies, we put pointers 3283 * to the mbuf data regions directly in the transmit descriptors. 3284 */ 3285 static void 3286 bge_start(ifp) 3287 struct ifnet *ifp; 3288 { 3289 struct bge_softc *sc; 3290 3291 sc = ifp->if_softc; 3292 BGE_LOCK(sc); 3293 bge_start_locked(ifp); 3294 BGE_UNLOCK(sc); 3295 } 3296 3297 static void 3298 bge_init_locked(sc) 3299 struct bge_softc *sc; 3300 { 3301 struct ifnet *ifp; 3302 u_int16_t *m; 3303 3304 BGE_LOCK_ASSERT(sc); 3305 3306 ifp = &sc->arpcom.ac_if; 3307 3308 if (ifp->if_flags & IFF_RUNNING) 3309 return; 3310 3311 /* Cancel pending I/O and flush buffers. */ 3312 bge_stop(sc); 3313 bge_reset(sc); 3314 bge_chipinit(sc); 3315 3316 /* 3317 * Init the various state machines, ring 3318 * control blocks and firmware. 3319 */ 3320 if (bge_blockinit(sc)) { 3321 printf("bge%d: initialization failure\n", sc->bge_unit); 3322 return; 3323 } 3324 3325 ifp = &sc->arpcom.ac_if; 3326 3327 /* Specify MTU. */ 3328 CSR_WRITE_4(sc, BGE_RX_MTU, ifp->if_mtu + 3329 ETHER_HDR_LEN + ETHER_CRC_LEN + ETHER_VLAN_ENCAP_LEN); 3330 3331 /* Load our MAC address. */ 3332 m = (u_int16_t *)&sc->arpcom.ac_enaddr[0]; 3333 CSR_WRITE_4(sc, BGE_MAC_ADDR1_LO, htons(m[0])); 3334 CSR_WRITE_4(sc, BGE_MAC_ADDR1_HI, (htons(m[1]) << 16) | htons(m[2])); 3335 3336 /* Enable or disable promiscuous mode as needed. */ 3337 if (ifp->if_flags & IFF_PROMISC) { 3338 BGE_SETBIT(sc, BGE_RX_MODE, BGE_RXMODE_RX_PROMISC); 3339 } else { 3340 BGE_CLRBIT(sc, BGE_RX_MODE, BGE_RXMODE_RX_PROMISC); 3341 } 3342 3343 /* Program multicast filter. */ 3344 bge_setmulti(sc); 3345 3346 /* Init RX ring. */ 3347 bge_init_rx_ring_std(sc); 3348 3349 /* 3350 * Workaround for a bug in 5705 ASIC rev A0. Poll the NIC's 3351 * memory to insure that the chip has in fact read the first 3352 * entry of the ring. 3353 */ 3354 if (sc->bge_chipid == BGE_CHIPID_BCM5705_A0) { 3355 u_int32_t v, i; 3356 for (i = 0; i < 10; i++) { 3357 DELAY(20); 3358 v = bge_readmem_ind(sc, BGE_STD_RX_RINGS + 8); 3359 if (v == (MCLBYTES - ETHER_ALIGN)) 3360 break; 3361 } 3362 if (i == 10) 3363 printf ("bge%d: 5705 A0 chip failed to load RX ring\n", 3364 sc->bge_unit); 3365 } 3366 3367 /* Init jumbo RX ring. */ 3368 if (ifp->if_mtu > (ETHERMTU + ETHER_HDR_LEN + ETHER_CRC_LEN)) 3369 bge_init_rx_ring_jumbo(sc); 3370 3371 /* Init our RX return ring index */ 3372 sc->bge_rx_saved_considx = 0; 3373 3374 /* Init TX ring. */ 3375 bge_init_tx_ring(sc); 3376 3377 /* Turn on transmitter */ 3378 BGE_SETBIT(sc, BGE_TX_MODE, BGE_TXMODE_ENABLE); 3379 3380 /* Turn on receiver */ 3381 BGE_SETBIT(sc, BGE_RX_MODE, BGE_RXMODE_ENABLE); 3382 3383 /* Tell firmware we're alive. */ 3384 BGE_SETBIT(sc, BGE_MODE_CTL, BGE_MODECTL_STACKUP); 3385 3386 /* Enable host interrupts. */ 3387 BGE_SETBIT(sc, BGE_PCI_MISC_CTL, BGE_PCIMISCCTL_CLEAR_INTA); 3388 BGE_CLRBIT(sc, BGE_PCI_MISC_CTL, BGE_PCIMISCCTL_MASK_PCI_INTR); 3389 CSR_WRITE_4(sc, BGE_MBX_IRQ0_LO, 0); 3390 3391 bge_ifmedia_upd(ifp); 3392 3393 ifp->if_flags |= IFF_RUNNING; 3394 ifp->if_flags &= ~IFF_OACTIVE; 3395 3396 callout_reset(&sc->bge_stat_ch, hz, bge_tick, sc); 3397 3398 return; 3399 } 3400 3401 static void 3402 bge_init(xsc) 3403 void *xsc; 3404 { 3405 struct bge_softc *sc = xsc; 3406 3407 BGE_LOCK(sc); 3408 bge_init_locked(sc); 3409 BGE_UNLOCK(sc); 3410 3411 return; 3412 } 3413 3414 /* 3415 * Set media options. 3416 */ 3417 static int 3418 bge_ifmedia_upd(ifp) 3419 struct ifnet *ifp; 3420 { 3421 struct bge_softc *sc; 3422 struct mii_data *mii; 3423 struct ifmedia *ifm; 3424 3425 sc = ifp->if_softc; 3426 ifm = &sc->bge_ifmedia; 3427 3428 /* If this is a 1000baseX NIC, enable the TBI port. */ 3429 if (sc->bge_tbi) { 3430 if (IFM_TYPE(ifm->ifm_media) != IFM_ETHER) 3431 return(EINVAL); 3432 switch(IFM_SUBTYPE(ifm->ifm_media)) { 3433 case IFM_AUTO: 3434 /* 3435 * The BCM5704 ASIC appears to have a special 3436 * mechanism for programming the autoneg 3437 * advertisement registers in TBI mode. 3438 */ 3439 if (sc->bge_asicrev == BGE_ASICREV_BCM5704) { 3440 uint32_t sgdig; 3441 CSR_WRITE_4(sc, BGE_TX_TBI_AUTONEG, 0); 3442 sgdig = CSR_READ_4(sc, BGE_SGDIG_CFG); 3443 sgdig |= BGE_SGDIGCFG_AUTO| 3444 BGE_SGDIGCFG_PAUSE_CAP| 3445 BGE_SGDIGCFG_ASYM_PAUSE; 3446 CSR_WRITE_4(sc, BGE_SGDIG_CFG, 3447 sgdig|BGE_SGDIGCFG_SEND); 3448 DELAY(5); 3449 CSR_WRITE_4(sc, BGE_SGDIG_CFG, sgdig); 3450 } 3451 break; 3452 case IFM_1000_SX: 3453 if ((ifm->ifm_media & IFM_GMASK) == IFM_FDX) { 3454 BGE_CLRBIT(sc, BGE_MAC_MODE, 3455 BGE_MACMODE_HALF_DUPLEX); 3456 } else { 3457 BGE_SETBIT(sc, BGE_MAC_MODE, 3458 BGE_MACMODE_HALF_DUPLEX); 3459 } 3460 break; 3461 default: 3462 return(EINVAL); 3463 } 3464 return(0); 3465 } 3466 3467 mii = device_get_softc(sc->bge_miibus); 3468 sc->bge_link = 0; 3469 if (mii->mii_instance) { 3470 struct mii_softc *miisc; 3471 for (miisc = LIST_FIRST(&mii->mii_phys); miisc != NULL; 3472 miisc = LIST_NEXT(miisc, mii_list)) 3473 mii_phy_reset(miisc); 3474 } 3475 mii_mediachg(mii); 3476 3477 return(0); 3478 } 3479 3480 /* 3481 * Report current media status. 3482 */ 3483 static void 3484 bge_ifmedia_sts(ifp, ifmr) 3485 struct ifnet *ifp; 3486 struct ifmediareq *ifmr; 3487 { 3488 struct bge_softc *sc; 3489 struct mii_data *mii; 3490 3491 sc = ifp->if_softc; 3492 3493 if (sc->bge_tbi) { 3494 ifmr->ifm_status = IFM_AVALID; 3495 ifmr->ifm_active = IFM_ETHER; 3496 if (CSR_READ_4(sc, BGE_MAC_STS) & 3497 BGE_MACSTAT_TBI_PCS_SYNCHED) 3498 ifmr->ifm_status |= IFM_ACTIVE; 3499 ifmr->ifm_active |= IFM_1000_SX; 3500 if (CSR_READ_4(sc, BGE_MAC_MODE) & BGE_MACMODE_HALF_DUPLEX) 3501 ifmr->ifm_active |= IFM_HDX; 3502 else 3503 ifmr->ifm_active |= IFM_FDX; 3504 return; 3505 } 3506 3507 mii = device_get_softc(sc->bge_miibus); 3508 mii_pollstat(mii); 3509 ifmr->ifm_active = mii->mii_media_active; 3510 ifmr->ifm_status = mii->mii_media_status; 3511 3512 return; 3513 } 3514 3515 static int 3516 bge_ioctl(ifp, command, data) 3517 struct ifnet *ifp; 3518 u_long command; 3519 caddr_t data; 3520 { 3521 struct bge_softc *sc = ifp->if_softc; 3522 struct ifreq *ifr = (struct ifreq *) data; 3523 int mask, error = 0; 3524 struct mii_data *mii; 3525 3526 switch(command) { 3527 case SIOCSIFMTU: 3528 /* Disallow jumbo frames on 5705. */ 3529 if (((sc->bge_asicrev == BGE_ASICREV_BCM5705 || 3530 sc->bge_asicrev == BGE_ASICREV_BCM5750) && 3531 ifr->ifr_mtu > ETHERMTU) || ifr->ifr_mtu > BGE_JUMBO_MTU) 3532 error = EINVAL; 3533 else { 3534 ifp->if_mtu = ifr->ifr_mtu; 3535 ifp->if_flags &= ~IFF_RUNNING; 3536 bge_init(sc); 3537 } 3538 break; 3539 case SIOCSIFFLAGS: 3540 BGE_LOCK(sc); 3541 if (ifp->if_flags & IFF_UP) { 3542 /* 3543 * If only the state of the PROMISC flag changed, 3544 * then just use the 'set promisc mode' command 3545 * instead of reinitializing the entire NIC. Doing 3546 * a full re-init means reloading the firmware and 3547 * waiting for it to start up, which may take a 3548 * second or two. 3549 */ 3550 if (ifp->if_flags & IFF_RUNNING && 3551 ifp->if_flags & IFF_PROMISC && 3552 !(sc->bge_if_flags & IFF_PROMISC)) { 3553 BGE_SETBIT(sc, BGE_RX_MODE, 3554 BGE_RXMODE_RX_PROMISC); 3555 } else if (ifp->if_flags & IFF_RUNNING && 3556 !(ifp->if_flags & IFF_PROMISC) && 3557 sc->bge_if_flags & IFF_PROMISC) { 3558 BGE_CLRBIT(sc, BGE_RX_MODE, 3559 BGE_RXMODE_RX_PROMISC); 3560 } else 3561 bge_init_locked(sc); 3562 } else { 3563 if (ifp->if_flags & IFF_RUNNING) { 3564 bge_stop(sc); 3565 } 3566 } 3567 sc->bge_if_flags = ifp->if_flags; 3568 BGE_UNLOCK(sc); 3569 error = 0; 3570 break; 3571 case SIOCADDMULTI: 3572 case SIOCDELMULTI: 3573 if (ifp->if_flags & IFF_RUNNING) { 3574 BGE_LOCK(sc); 3575 bge_setmulti(sc); 3576 BGE_UNLOCK(sc); 3577 error = 0; 3578 } 3579 break; 3580 case SIOCSIFMEDIA: 3581 case SIOCGIFMEDIA: 3582 if (sc->bge_tbi) { 3583 error = ifmedia_ioctl(ifp, ifr, 3584 &sc->bge_ifmedia, command); 3585 } else { 3586 mii = device_get_softc(sc->bge_miibus); 3587 error = ifmedia_ioctl(ifp, ifr, 3588 &mii->mii_media, command); 3589 } 3590 break; 3591 case SIOCSIFCAP: 3592 mask = ifr->ifr_reqcap ^ ifp->if_capenable; 3593 /* NB: the code for RX csum offload is disabled for now */ 3594 if (mask & IFCAP_TXCSUM) { 3595 ifp->if_capenable ^= IFCAP_TXCSUM; 3596 if (IFCAP_TXCSUM & ifp->if_capenable) 3597 ifp->if_hwassist = BGE_CSUM_FEATURES; 3598 else 3599 ifp->if_hwassist = 0; 3600 } 3601 error = 0; 3602 break; 3603 default: 3604 error = ether_ioctl(ifp, command, data); 3605 break; 3606 } 3607 3608 return(error); 3609 } 3610 3611 static void 3612 bge_watchdog(ifp) 3613 struct ifnet *ifp; 3614 { 3615 struct bge_softc *sc; 3616 3617 sc = ifp->if_softc; 3618 3619 printf("bge%d: watchdog timeout -- resetting\n", sc->bge_unit); 3620 3621 ifp->if_flags &= ~IFF_RUNNING; 3622 bge_init(sc); 3623 3624 ifp->if_oerrors++; 3625 3626 return; 3627 } 3628 3629 /* 3630 * Stop the adapter and free any mbufs allocated to the 3631 * RX and TX lists. 3632 */ 3633 static void 3634 bge_stop(sc) 3635 struct bge_softc *sc; 3636 { 3637 struct ifnet *ifp; 3638 struct ifmedia_entry *ifm; 3639 struct mii_data *mii = NULL; 3640 int mtmp, itmp; 3641 3642 BGE_LOCK_ASSERT(sc); 3643 3644 ifp = &sc->arpcom.ac_if; 3645 3646 if (!sc->bge_tbi) 3647 mii = device_get_softc(sc->bge_miibus); 3648 3649 callout_stop(&sc->bge_stat_ch); 3650 3651 /* 3652 * Disable all of the receiver blocks 3653 */ 3654 BGE_CLRBIT(sc, BGE_RX_MODE, BGE_RXMODE_ENABLE); 3655 BGE_CLRBIT(sc, BGE_RBDI_MODE, BGE_RBDIMODE_ENABLE); 3656 BGE_CLRBIT(sc, BGE_RXLP_MODE, BGE_RXLPMODE_ENABLE); 3657 if (sc->bge_asicrev != BGE_ASICREV_BCM5705 && 3658 sc->bge_asicrev != BGE_ASICREV_BCM5750) 3659 BGE_CLRBIT(sc, BGE_RXLS_MODE, BGE_RXLSMODE_ENABLE); 3660 BGE_CLRBIT(sc, BGE_RDBDI_MODE, BGE_RBDIMODE_ENABLE); 3661 BGE_CLRBIT(sc, BGE_RDC_MODE, BGE_RDCMODE_ENABLE); 3662 BGE_CLRBIT(sc, BGE_RBDC_MODE, BGE_RBDCMODE_ENABLE); 3663 3664 /* 3665 * Disable all of the transmit blocks 3666 */ 3667 BGE_CLRBIT(sc, BGE_SRS_MODE, BGE_SRSMODE_ENABLE); 3668 BGE_CLRBIT(sc, BGE_SBDI_MODE, BGE_SBDIMODE_ENABLE); 3669 BGE_CLRBIT(sc, BGE_SDI_MODE, BGE_SDIMODE_ENABLE); 3670 BGE_CLRBIT(sc, BGE_RDMA_MODE, BGE_RDMAMODE_ENABLE); 3671 BGE_CLRBIT(sc, BGE_SDC_MODE, BGE_SDCMODE_ENABLE); 3672 if (sc->bge_asicrev != BGE_ASICREV_BCM5705 && 3673 sc->bge_asicrev != BGE_ASICREV_BCM5750) 3674 BGE_CLRBIT(sc, BGE_DMAC_MODE, BGE_DMACMODE_ENABLE); 3675 BGE_CLRBIT(sc, BGE_SBDC_MODE, BGE_SBDCMODE_ENABLE); 3676 3677 /* 3678 * Shut down all of the memory managers and related 3679 * state machines. 3680 */ 3681 BGE_CLRBIT(sc, BGE_HCC_MODE, BGE_HCCMODE_ENABLE); 3682 BGE_CLRBIT(sc, BGE_WDMA_MODE, BGE_WDMAMODE_ENABLE); 3683 if (sc->bge_asicrev != BGE_ASICREV_BCM5705 && 3684 sc->bge_asicrev != BGE_ASICREV_BCM5750) 3685 BGE_CLRBIT(sc, BGE_MBCF_MODE, BGE_MBCFMODE_ENABLE); 3686 CSR_WRITE_4(sc, BGE_FTQ_RESET, 0xFFFFFFFF); 3687 CSR_WRITE_4(sc, BGE_FTQ_RESET, 0); 3688 if (sc->bge_asicrev != BGE_ASICREV_BCM5705 && 3689 sc->bge_asicrev != BGE_ASICREV_BCM5750) { 3690 BGE_CLRBIT(sc, BGE_BMAN_MODE, BGE_BMANMODE_ENABLE); 3691 BGE_CLRBIT(sc, BGE_MARB_MODE, BGE_MARBMODE_ENABLE); 3692 } 3693 3694 /* Disable host interrupts. */ 3695 BGE_SETBIT(sc, BGE_PCI_MISC_CTL, BGE_PCIMISCCTL_MASK_PCI_INTR); 3696 CSR_WRITE_4(sc, BGE_MBX_IRQ0_LO, 1); 3697 3698 /* 3699 * Tell firmware we're shutting down. 3700 */ 3701 BGE_CLRBIT(sc, BGE_MODE_CTL, BGE_MODECTL_STACKUP); 3702 3703 /* Free the RX lists. */ 3704 bge_free_rx_ring_std(sc); 3705 3706 /* Free jumbo RX list. */ 3707 if (sc->bge_asicrev != BGE_ASICREV_BCM5705 && 3708 sc->bge_asicrev != BGE_ASICREV_BCM5750) 3709 bge_free_rx_ring_jumbo(sc); 3710 3711 /* Free TX buffers. */ 3712 bge_free_tx_ring(sc); 3713 3714 /* 3715 * Isolate/power down the PHY, but leave the media selection 3716 * unchanged so that things will be put back to normal when 3717 * we bring the interface back up. 3718 */ 3719 if (!sc->bge_tbi) { 3720 itmp = ifp->if_flags; 3721 ifp->if_flags |= IFF_UP; 3722 ifm = mii->mii_media.ifm_cur; 3723 mtmp = ifm->ifm_media; 3724 ifm->ifm_media = IFM_ETHER|IFM_NONE; 3725 mii_mediachg(mii); 3726 ifm->ifm_media = mtmp; 3727 ifp->if_flags = itmp; 3728 } 3729 3730 sc->bge_link = 0; 3731 3732 sc->bge_tx_saved_considx = BGE_TXCONS_UNSET; 3733 3734 ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE); 3735 3736 return; 3737 } 3738 3739 /* 3740 * Stop all chip I/O so that the kernel's probe routines don't 3741 * get confused by errant DMAs when rebooting. 3742 */ 3743 static void 3744 bge_shutdown(dev) 3745 device_t dev; 3746 { 3747 struct bge_softc *sc; 3748 3749 sc = device_get_softc(dev); 3750 3751 BGE_LOCK(sc); 3752 bge_stop(sc); 3753 bge_reset(sc); 3754 BGE_UNLOCK(sc); 3755 3756 return; 3757 } 3758