xref: /freebsd/sys/dev/bge/if_bge.c (revision 52f72944b8f5abb2386eae924357dee8aea17d5b)
1 /*-
2  * SPDX-License-Identifier: BSD-4-Clause
3  *
4  * Copyright (c) 2001 Wind River Systems
5  * Copyright (c) 1997, 1998, 1999, 2001
6  *	Bill Paul <wpaul@windriver.com>.  All rights reserved.
7  *
8  * Redistribution and use in source and binary forms, with or without
9  * modification, are permitted provided that the following conditions
10  * are met:
11  * 1. Redistributions of source code must retain the above copyright
12  *    notice, this list of conditions and the following disclaimer.
13  * 2. Redistributions in binary form must reproduce the above copyright
14  *    notice, this list of conditions and the following disclaimer in the
15  *    documentation and/or other materials provided with the distribution.
16  * 3. All advertising materials mentioning features or use of this software
17  *    must display the following acknowledgement:
18  *	This product includes software developed by Bill Paul.
19  * 4. Neither the name of the author nor the names of any co-contributors
20  *    may be used to endorse or promote products derived from this software
21  *    without specific prior written permission.
22  *
23  * THIS SOFTWARE IS PROVIDED BY Bill Paul AND CONTRIBUTORS ``AS IS'' AND
24  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
25  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
26  * ARE DISCLAIMED.  IN NO EVENT SHALL Bill Paul OR THE VOICES IN HIS HEAD
27  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
28  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
29  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
30  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
31  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
32  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF
33  * THE POSSIBILITY OF SUCH DAMAGE.
34  */
35 
36 #include <sys/cdefs.h>
37 __FBSDID("$FreeBSD$");
38 
39 /*
40  * Broadcom BCM57xx(x)/BCM590x NetXtreme and NetLink family Ethernet driver
41  *
42  * The Broadcom BCM5700 is based on technology originally developed by
43  * Alteon Networks as part of the Tigon I and Tigon II Gigabit Ethernet
44  * MAC chips. The BCM5700, sometimes referred to as the Tigon III, has
45  * two on-board MIPS R4000 CPUs and can have as much as 16MB of external
46  * SSRAM. The BCM5700 supports TCP, UDP and IP checksum offload, jumbo
47  * frames, highly configurable RX filtering, and 16 RX and TX queues
48  * (which, along with RX filter rules, can be used for QOS applications).
49  * Other features, such as TCP segmentation, may be available as part
50  * of value-added firmware updates. Unlike the Tigon I and Tigon II,
51  * firmware images can be stored in hardware and need not be compiled
52  * into the driver.
53  *
54  * The BCM5700 supports the PCI v2.2 and PCI-X v1.0 standards, and will
55  * function in a 32-bit/64-bit 33/66Mhz bus, or a 64-bit/133Mhz bus.
56  *
57  * The BCM5701 is a single-chip solution incorporating both the BCM5700
58  * MAC and a BCM5401 10/100/1000 PHY. Unlike the BCM5700, the BCM5701
59  * does not support external SSRAM.
60  *
61  * Broadcom also produces a variation of the BCM5700 under the "Altima"
62  * brand name, which is functionally similar but lacks PCI-X support.
63  *
64  * Without external SSRAM, you can only have at most 4 TX rings,
65  * and the use of the mini RX ring is disabled. This seems to imply
66  * that these features are simply not available on the BCM5701. As a
67  * result, this driver does not implement any support for the mini RX
68  * ring.
69  */
70 
71 #ifdef HAVE_KERNEL_OPTION_HEADERS
72 #include "opt_device_polling.h"
73 #endif
74 
75 #include <sys/param.h>
76 #include <sys/endian.h>
77 #include <sys/systm.h>
78 #include <sys/sockio.h>
79 #include <sys/mbuf.h>
80 #include <sys/malloc.h>
81 #include <sys/kernel.h>
82 #include <sys/module.h>
83 #include <sys/socket.h>
84 #include <sys/sysctl.h>
85 #include <sys/taskqueue.h>
86 
87 #include <net/if.h>
88 #include <net/if_var.h>
89 #include <net/if_arp.h>
90 #include <net/ethernet.h>
91 #include <net/if_dl.h>
92 #include <net/if_media.h>
93 
94 #include <net/bpf.h>
95 
96 #include <net/if_types.h>
97 #include <net/if_vlan_var.h>
98 
99 #include <netinet/in_systm.h>
100 #include <netinet/in.h>
101 #include <netinet/ip.h>
102 #include <netinet/tcp.h>
103 
104 #include <machine/bus.h>
105 #include <machine/resource.h>
106 #include <sys/bus.h>
107 #include <sys/rman.h>
108 
109 #include <dev/mii/mii.h>
110 #include <dev/mii/miivar.h>
111 #include "miidevs.h"
112 #include <dev/mii/brgphyreg.h>
113 
114 #ifdef __sparc64__
115 #include <dev/ofw/ofw_bus.h>
116 #include <dev/ofw/openfirm.h>
117 #include <machine/ofw_machdep.h>
118 #include <machine/ver.h>
119 #endif
120 
121 #include <dev/pci/pcireg.h>
122 #include <dev/pci/pcivar.h>
123 
124 #include <dev/bge/if_bgereg.h>
125 
126 #define	BGE_CSUM_FEATURES	(CSUM_IP | CSUM_TCP)
127 #define	ETHER_MIN_NOPAD		(ETHER_MIN_LEN - ETHER_CRC_LEN) /* i.e., 60 */
128 
129 MODULE_DEPEND(bge, pci, 1, 1, 1);
130 MODULE_DEPEND(bge, ether, 1, 1, 1);
131 MODULE_DEPEND(bge, miibus, 1, 1, 1);
132 
133 /* "device miibus" required.  See GENERIC if you get errors here. */
134 #include "miibus_if.h"
135 
136 /*
137  * Various supported device vendors/types and their names. Note: the
138  * spec seems to indicate that the hardware still has Alteon's vendor
139  * ID burned into it, though it will always be overriden by the vendor
140  * ID in the EEPROM. Just to be safe, we cover all possibilities.
141  */
142 static const struct bge_type {
143 	uint16_t	bge_vid;
144 	uint16_t	bge_did;
145 } bge_devs[] = {
146 	{ ALTEON_VENDORID,	ALTEON_DEVICEID_BCM5700 },
147 	{ ALTEON_VENDORID,	ALTEON_DEVICEID_BCM5701 },
148 
149 	{ ALTIMA_VENDORID,	ALTIMA_DEVICE_AC1000 },
150 	{ ALTIMA_VENDORID,	ALTIMA_DEVICE_AC1002 },
151 	{ ALTIMA_VENDORID,	ALTIMA_DEVICE_AC9100 },
152 
153 	{ APPLE_VENDORID,	APPLE_DEVICE_BCM5701 },
154 
155 	{ BCOM_VENDORID,	BCOM_DEVICEID_BCM5700 },
156 	{ BCOM_VENDORID,	BCOM_DEVICEID_BCM5701 },
157 	{ BCOM_VENDORID,	BCOM_DEVICEID_BCM5702 },
158 	{ BCOM_VENDORID,	BCOM_DEVICEID_BCM5702_ALT },
159 	{ BCOM_VENDORID,	BCOM_DEVICEID_BCM5702X },
160 	{ BCOM_VENDORID,	BCOM_DEVICEID_BCM5703 },
161 	{ BCOM_VENDORID,	BCOM_DEVICEID_BCM5703_ALT },
162 	{ BCOM_VENDORID,	BCOM_DEVICEID_BCM5703X },
163 	{ BCOM_VENDORID,	BCOM_DEVICEID_BCM5704C },
164 	{ BCOM_VENDORID,	BCOM_DEVICEID_BCM5704S },
165 	{ BCOM_VENDORID,	BCOM_DEVICEID_BCM5704S_ALT },
166 	{ BCOM_VENDORID,	BCOM_DEVICEID_BCM5705 },
167 	{ BCOM_VENDORID,	BCOM_DEVICEID_BCM5705F },
168 	{ BCOM_VENDORID,	BCOM_DEVICEID_BCM5705K },
169 	{ BCOM_VENDORID,	BCOM_DEVICEID_BCM5705M },
170 	{ BCOM_VENDORID,	BCOM_DEVICEID_BCM5705M_ALT },
171 	{ BCOM_VENDORID,	BCOM_DEVICEID_BCM5714C },
172 	{ BCOM_VENDORID,	BCOM_DEVICEID_BCM5714S },
173 	{ BCOM_VENDORID,	BCOM_DEVICEID_BCM5715 },
174 	{ BCOM_VENDORID,	BCOM_DEVICEID_BCM5715S },
175 	{ BCOM_VENDORID,	BCOM_DEVICEID_BCM5717 },
176 	{ BCOM_VENDORID,	BCOM_DEVICEID_BCM5717C },
177 	{ BCOM_VENDORID,	BCOM_DEVICEID_BCM5718 },
178 	{ BCOM_VENDORID,	BCOM_DEVICEID_BCM5719 },
179 	{ BCOM_VENDORID,	BCOM_DEVICEID_BCM5720 },
180 	{ BCOM_VENDORID,	BCOM_DEVICEID_BCM5721 },
181 	{ BCOM_VENDORID,	BCOM_DEVICEID_BCM5722 },
182 	{ BCOM_VENDORID,	BCOM_DEVICEID_BCM5723 },
183 	{ BCOM_VENDORID,	BCOM_DEVICEID_BCM5725 },
184 	{ BCOM_VENDORID,	BCOM_DEVICEID_BCM5727 },
185 	{ BCOM_VENDORID,	BCOM_DEVICEID_BCM5750 },
186 	{ BCOM_VENDORID,	BCOM_DEVICEID_BCM5750M },
187 	{ BCOM_VENDORID,	BCOM_DEVICEID_BCM5751 },
188 	{ BCOM_VENDORID,	BCOM_DEVICEID_BCM5751F },
189 	{ BCOM_VENDORID,	BCOM_DEVICEID_BCM5751M },
190 	{ BCOM_VENDORID,	BCOM_DEVICEID_BCM5752 },
191 	{ BCOM_VENDORID,	BCOM_DEVICEID_BCM5752M },
192 	{ BCOM_VENDORID,	BCOM_DEVICEID_BCM5753 },
193 	{ BCOM_VENDORID,	BCOM_DEVICEID_BCM5753F },
194 	{ BCOM_VENDORID,	BCOM_DEVICEID_BCM5753M },
195 	{ BCOM_VENDORID,	BCOM_DEVICEID_BCM5754 },
196 	{ BCOM_VENDORID,	BCOM_DEVICEID_BCM5754M },
197 	{ BCOM_VENDORID,	BCOM_DEVICEID_BCM5755 },
198 	{ BCOM_VENDORID,	BCOM_DEVICEID_BCM5755M },
199 	{ BCOM_VENDORID,	BCOM_DEVICEID_BCM5756 },
200 	{ BCOM_VENDORID,	BCOM_DEVICEID_BCM5761 },
201 	{ BCOM_VENDORID,	BCOM_DEVICEID_BCM5761E },
202 	{ BCOM_VENDORID,	BCOM_DEVICEID_BCM5761S },
203 	{ BCOM_VENDORID,	BCOM_DEVICEID_BCM5761SE },
204 	{ BCOM_VENDORID,	BCOM_DEVICEID_BCM5762 },
205 	{ BCOM_VENDORID,	BCOM_DEVICEID_BCM5764 },
206 	{ BCOM_VENDORID,	BCOM_DEVICEID_BCM5780 },
207 	{ BCOM_VENDORID,	BCOM_DEVICEID_BCM5780S },
208 	{ BCOM_VENDORID,	BCOM_DEVICEID_BCM5781 },
209 	{ BCOM_VENDORID,	BCOM_DEVICEID_BCM5782 },
210 	{ BCOM_VENDORID,	BCOM_DEVICEID_BCM5784 },
211 	{ BCOM_VENDORID,	BCOM_DEVICEID_BCM5785F },
212 	{ BCOM_VENDORID,	BCOM_DEVICEID_BCM5785G },
213 	{ BCOM_VENDORID,	BCOM_DEVICEID_BCM5786 },
214 	{ BCOM_VENDORID,	BCOM_DEVICEID_BCM5787 },
215 	{ BCOM_VENDORID,	BCOM_DEVICEID_BCM5787F },
216 	{ BCOM_VENDORID,	BCOM_DEVICEID_BCM5787M },
217 	{ BCOM_VENDORID,	BCOM_DEVICEID_BCM5788 },
218 	{ BCOM_VENDORID,	BCOM_DEVICEID_BCM5789 },
219 	{ BCOM_VENDORID,	BCOM_DEVICEID_BCM5901 },
220 	{ BCOM_VENDORID,	BCOM_DEVICEID_BCM5901A2 },
221 	{ BCOM_VENDORID,	BCOM_DEVICEID_BCM5903M },
222 	{ BCOM_VENDORID,	BCOM_DEVICEID_BCM5906 },
223 	{ BCOM_VENDORID,	BCOM_DEVICEID_BCM5906M },
224 	{ BCOM_VENDORID,	BCOM_DEVICEID_BCM57760 },
225 	{ BCOM_VENDORID,	BCOM_DEVICEID_BCM57761 },
226 	{ BCOM_VENDORID,	BCOM_DEVICEID_BCM57762 },
227 	{ BCOM_VENDORID,	BCOM_DEVICEID_BCM57764 },
228 	{ BCOM_VENDORID,	BCOM_DEVICEID_BCM57765 },
229 	{ BCOM_VENDORID,	BCOM_DEVICEID_BCM57766 },
230 	{ BCOM_VENDORID,	BCOM_DEVICEID_BCM57767 },
231 	{ BCOM_VENDORID,	BCOM_DEVICEID_BCM57780 },
232 	{ BCOM_VENDORID,	BCOM_DEVICEID_BCM57781 },
233 	{ BCOM_VENDORID,	BCOM_DEVICEID_BCM57782 },
234 	{ BCOM_VENDORID,	BCOM_DEVICEID_BCM57785 },
235 	{ BCOM_VENDORID,	BCOM_DEVICEID_BCM57786 },
236 	{ BCOM_VENDORID,	BCOM_DEVICEID_BCM57787 },
237 	{ BCOM_VENDORID,	BCOM_DEVICEID_BCM57788 },
238 	{ BCOM_VENDORID,	BCOM_DEVICEID_BCM57790 },
239 	{ BCOM_VENDORID,	BCOM_DEVICEID_BCM57791 },
240 	{ BCOM_VENDORID,	BCOM_DEVICEID_BCM57795 },
241 
242 	{ SK_VENDORID,		SK_DEVICEID_ALTIMA },
243 
244 	{ TC_VENDORID,		TC_DEVICEID_3C996 },
245 
246 	{ FJTSU_VENDORID,	FJTSU_DEVICEID_PW008GE4 },
247 	{ FJTSU_VENDORID,	FJTSU_DEVICEID_PW008GE5 },
248 	{ FJTSU_VENDORID,	FJTSU_DEVICEID_PP250450 },
249 
250 	{ 0, 0 }
251 };
252 
253 static const struct bge_vendor {
254 	uint16_t	v_id;
255 	const char	*v_name;
256 } bge_vendors[] = {
257 	{ ALTEON_VENDORID,	"Alteon" },
258 	{ ALTIMA_VENDORID,	"Altima" },
259 	{ APPLE_VENDORID,	"Apple" },
260 	{ BCOM_VENDORID,	"Broadcom" },
261 	{ SK_VENDORID,		"SysKonnect" },
262 	{ TC_VENDORID,		"3Com" },
263 	{ FJTSU_VENDORID,	"Fujitsu" },
264 
265 	{ 0, NULL }
266 };
267 
268 static const struct bge_revision {
269 	uint32_t	br_chipid;
270 	const char	*br_name;
271 } bge_revisions[] = {
272 	{ BGE_CHIPID_BCM5700_A0,	"BCM5700 A0" },
273 	{ BGE_CHIPID_BCM5700_A1,	"BCM5700 A1" },
274 	{ BGE_CHIPID_BCM5700_B0,	"BCM5700 B0" },
275 	{ BGE_CHIPID_BCM5700_B1,	"BCM5700 B1" },
276 	{ BGE_CHIPID_BCM5700_B2,	"BCM5700 B2" },
277 	{ BGE_CHIPID_BCM5700_B3,	"BCM5700 B3" },
278 	{ BGE_CHIPID_BCM5700_ALTIMA,	"BCM5700 Altima" },
279 	{ BGE_CHIPID_BCM5700_C0,	"BCM5700 C0" },
280 	{ BGE_CHIPID_BCM5701_A0,	"BCM5701 A0" },
281 	{ BGE_CHIPID_BCM5701_B0,	"BCM5701 B0" },
282 	{ BGE_CHIPID_BCM5701_B2,	"BCM5701 B2" },
283 	{ BGE_CHIPID_BCM5701_B5,	"BCM5701 B5" },
284 	{ BGE_CHIPID_BCM5703_A0,	"BCM5703 A0" },
285 	{ BGE_CHIPID_BCM5703_A1,	"BCM5703 A1" },
286 	{ BGE_CHIPID_BCM5703_A2,	"BCM5703 A2" },
287 	{ BGE_CHIPID_BCM5703_A3,	"BCM5703 A3" },
288 	{ BGE_CHIPID_BCM5703_B0,	"BCM5703 B0" },
289 	{ BGE_CHIPID_BCM5704_A0,	"BCM5704 A0" },
290 	{ BGE_CHIPID_BCM5704_A1,	"BCM5704 A1" },
291 	{ BGE_CHIPID_BCM5704_A2,	"BCM5704 A2" },
292 	{ BGE_CHIPID_BCM5704_A3,	"BCM5704 A3" },
293 	{ BGE_CHIPID_BCM5704_B0,	"BCM5704 B0" },
294 	{ BGE_CHIPID_BCM5705_A0,	"BCM5705 A0" },
295 	{ BGE_CHIPID_BCM5705_A1,	"BCM5705 A1" },
296 	{ BGE_CHIPID_BCM5705_A2,	"BCM5705 A2" },
297 	{ BGE_CHIPID_BCM5705_A3,	"BCM5705 A3" },
298 	{ BGE_CHIPID_BCM5750_A0,	"BCM5750 A0" },
299 	{ BGE_CHIPID_BCM5750_A1,	"BCM5750 A1" },
300 	{ BGE_CHIPID_BCM5750_A3,	"BCM5750 A3" },
301 	{ BGE_CHIPID_BCM5750_B0,	"BCM5750 B0" },
302 	{ BGE_CHIPID_BCM5750_B1,	"BCM5750 B1" },
303 	{ BGE_CHIPID_BCM5750_C0,	"BCM5750 C0" },
304 	{ BGE_CHIPID_BCM5750_C1,	"BCM5750 C1" },
305 	{ BGE_CHIPID_BCM5750_C2,	"BCM5750 C2" },
306 	{ BGE_CHIPID_BCM5714_A0,	"BCM5714 A0" },
307 	{ BGE_CHIPID_BCM5752_A0,	"BCM5752 A0" },
308 	{ BGE_CHIPID_BCM5752_A1,	"BCM5752 A1" },
309 	{ BGE_CHIPID_BCM5752_A2,	"BCM5752 A2" },
310 	{ BGE_CHIPID_BCM5714_B0,	"BCM5714 B0" },
311 	{ BGE_CHIPID_BCM5714_B3,	"BCM5714 B3" },
312 	{ BGE_CHIPID_BCM5715_A0,	"BCM5715 A0" },
313 	{ BGE_CHIPID_BCM5715_A1,	"BCM5715 A1" },
314 	{ BGE_CHIPID_BCM5715_A3,	"BCM5715 A3" },
315 	{ BGE_CHIPID_BCM5717_A0,	"BCM5717 A0" },
316 	{ BGE_CHIPID_BCM5717_B0,	"BCM5717 B0" },
317 	{ BGE_CHIPID_BCM5717_C0,	"BCM5717 C0" },
318 	{ BGE_CHIPID_BCM5719_A0,	"BCM5719 A0" },
319 	{ BGE_CHIPID_BCM5720_A0,	"BCM5720 A0" },
320 	{ BGE_CHIPID_BCM5755_A0,	"BCM5755 A0" },
321 	{ BGE_CHIPID_BCM5755_A1,	"BCM5755 A1" },
322 	{ BGE_CHIPID_BCM5755_A2,	"BCM5755 A2" },
323 	{ BGE_CHIPID_BCM5722_A0,	"BCM5722 A0" },
324 	{ BGE_CHIPID_BCM5761_A0,	"BCM5761 A0" },
325 	{ BGE_CHIPID_BCM5761_A1,	"BCM5761 A1" },
326 	{ BGE_CHIPID_BCM5762_A0,	"BCM5762 A0" },
327 	{ BGE_CHIPID_BCM5784_A0,	"BCM5784 A0" },
328 	{ BGE_CHIPID_BCM5784_A1,	"BCM5784 A1" },
329 	/* 5754 and 5787 share the same ASIC ID */
330 	{ BGE_CHIPID_BCM5787_A0,	"BCM5754/5787 A0" },
331 	{ BGE_CHIPID_BCM5787_A1,	"BCM5754/5787 A1" },
332 	{ BGE_CHIPID_BCM5787_A2,	"BCM5754/5787 A2" },
333 	{ BGE_CHIPID_BCM5906_A1,	"BCM5906 A1" },
334 	{ BGE_CHIPID_BCM5906_A2,	"BCM5906 A2" },
335 	{ BGE_CHIPID_BCM57765_A0,	"BCM57765 A0" },
336 	{ BGE_CHIPID_BCM57765_B0,	"BCM57765 B0" },
337 	{ BGE_CHIPID_BCM57780_A0,	"BCM57780 A0" },
338 	{ BGE_CHIPID_BCM57780_A1,	"BCM57780 A1" },
339 
340 	{ 0, NULL }
341 };
342 
343 /*
344  * Some defaults for major revisions, so that newer steppings
345  * that we don't know about have a shot at working.
346  */
347 static const struct bge_revision bge_majorrevs[] = {
348 	{ BGE_ASICREV_BCM5700,		"unknown BCM5700" },
349 	{ BGE_ASICREV_BCM5701,		"unknown BCM5701" },
350 	{ BGE_ASICREV_BCM5703,		"unknown BCM5703" },
351 	{ BGE_ASICREV_BCM5704,		"unknown BCM5704" },
352 	{ BGE_ASICREV_BCM5705,		"unknown BCM5705" },
353 	{ BGE_ASICREV_BCM5750,		"unknown BCM5750" },
354 	{ BGE_ASICREV_BCM5714_A0,	"unknown BCM5714" },
355 	{ BGE_ASICREV_BCM5752,		"unknown BCM5752" },
356 	{ BGE_ASICREV_BCM5780,		"unknown BCM5780" },
357 	{ BGE_ASICREV_BCM5714,		"unknown BCM5714" },
358 	{ BGE_ASICREV_BCM5755,		"unknown BCM5755" },
359 	{ BGE_ASICREV_BCM5761,		"unknown BCM5761" },
360 	{ BGE_ASICREV_BCM5784,		"unknown BCM5784" },
361 	{ BGE_ASICREV_BCM5785,		"unknown BCM5785" },
362 	/* 5754 and 5787 share the same ASIC ID */
363 	{ BGE_ASICREV_BCM5787,		"unknown BCM5754/5787" },
364 	{ BGE_ASICREV_BCM5906,		"unknown BCM5906" },
365 	{ BGE_ASICREV_BCM57765,		"unknown BCM57765" },
366 	{ BGE_ASICREV_BCM57766,		"unknown BCM57766" },
367 	{ BGE_ASICREV_BCM57780,		"unknown BCM57780" },
368 	{ BGE_ASICREV_BCM5717,		"unknown BCM5717" },
369 	{ BGE_ASICREV_BCM5719,		"unknown BCM5719" },
370 	{ BGE_ASICREV_BCM5720,		"unknown BCM5720" },
371 	{ BGE_ASICREV_BCM5762,		"unknown BCM5762" },
372 
373 	{ 0, NULL }
374 };
375 
376 #define	BGE_IS_JUMBO_CAPABLE(sc)	((sc)->bge_flags & BGE_FLAG_JUMBO)
377 #define	BGE_IS_5700_FAMILY(sc)		((sc)->bge_flags & BGE_FLAG_5700_FAMILY)
378 #define	BGE_IS_5705_PLUS(sc)		((sc)->bge_flags & BGE_FLAG_5705_PLUS)
379 #define	BGE_IS_5714_FAMILY(sc)		((sc)->bge_flags & BGE_FLAG_5714_FAMILY)
380 #define	BGE_IS_575X_PLUS(sc)		((sc)->bge_flags & BGE_FLAG_575X_PLUS)
381 #define	BGE_IS_5755_PLUS(sc)		((sc)->bge_flags & BGE_FLAG_5755_PLUS)
382 #define	BGE_IS_5717_PLUS(sc)		((sc)->bge_flags & BGE_FLAG_5717_PLUS)
383 #define	BGE_IS_57765_PLUS(sc)		((sc)->bge_flags & BGE_FLAG_57765_PLUS)
384 
385 static uint32_t bge_chipid(device_t);
386 static const struct bge_vendor * bge_lookup_vendor(uint16_t);
387 static const struct bge_revision * bge_lookup_rev(uint32_t);
388 
389 typedef int	(*bge_eaddr_fcn_t)(struct bge_softc *, uint8_t[]);
390 
391 static int bge_probe(device_t);
392 static int bge_attach(device_t);
393 static int bge_detach(device_t);
394 static int bge_suspend(device_t);
395 static int bge_resume(device_t);
396 static void bge_release_resources(struct bge_softc *);
397 static void bge_dma_map_addr(void *, bus_dma_segment_t *, int, int);
398 static int bge_dma_alloc(struct bge_softc *);
399 static void bge_dma_free(struct bge_softc *);
400 static int bge_dma_ring_alloc(struct bge_softc *, bus_size_t, bus_size_t,
401     bus_dma_tag_t *, uint8_t **, bus_dmamap_t *, bus_addr_t *, const char *);
402 
403 static void bge_devinfo(struct bge_softc *);
404 static int bge_mbox_reorder(struct bge_softc *);
405 
406 static int bge_get_eaddr_fw(struct bge_softc *sc, uint8_t ether_addr[]);
407 static int bge_get_eaddr_mem(struct bge_softc *, uint8_t[]);
408 static int bge_get_eaddr_nvram(struct bge_softc *, uint8_t[]);
409 static int bge_get_eaddr_eeprom(struct bge_softc *, uint8_t[]);
410 static int bge_get_eaddr(struct bge_softc *, uint8_t[]);
411 
412 static void bge_txeof(struct bge_softc *, uint16_t);
413 static void bge_rxcsum(struct bge_softc *, struct bge_rx_bd *, struct mbuf *);
414 static int bge_rxeof(struct bge_softc *, uint16_t, int);
415 
416 static void bge_asf_driver_up (struct bge_softc *);
417 static void bge_tick(void *);
418 static void bge_stats_clear_regs(struct bge_softc *);
419 static void bge_stats_update(struct bge_softc *);
420 static void bge_stats_update_regs(struct bge_softc *);
421 static struct mbuf *bge_check_short_dma(struct mbuf *);
422 static struct mbuf *bge_setup_tso(struct bge_softc *, struct mbuf *,
423     uint16_t *, uint16_t *);
424 static int bge_encap(struct bge_softc *, struct mbuf **, uint32_t *);
425 
426 static void bge_intr(void *);
427 static int bge_msi_intr(void *);
428 static void bge_intr_task(void *, int);
429 static void bge_start_locked(if_t);
430 static void bge_start(if_t);
431 static int bge_ioctl(if_t, u_long, caddr_t);
432 static void bge_init_locked(struct bge_softc *);
433 static void bge_init(void *);
434 static void bge_stop_block(struct bge_softc *, bus_size_t, uint32_t);
435 static void bge_stop(struct bge_softc *);
436 static void bge_watchdog(struct bge_softc *);
437 static int bge_shutdown(device_t);
438 static int bge_ifmedia_upd_locked(if_t);
439 static int bge_ifmedia_upd(if_t);
440 static void bge_ifmedia_sts(if_t, struct ifmediareq *);
441 static uint64_t bge_get_counter(if_t, ift_counter);
442 
443 static uint8_t bge_nvram_getbyte(struct bge_softc *, int, uint8_t *);
444 static int bge_read_nvram(struct bge_softc *, caddr_t, int, int);
445 
446 static uint8_t bge_eeprom_getbyte(struct bge_softc *, int, uint8_t *);
447 static int bge_read_eeprom(struct bge_softc *, caddr_t, int, int);
448 
449 static void bge_setpromisc(struct bge_softc *);
450 static void bge_setmulti(struct bge_softc *);
451 static void bge_setvlan(struct bge_softc *);
452 
453 static __inline void bge_rxreuse_std(struct bge_softc *, int);
454 static __inline void bge_rxreuse_jumbo(struct bge_softc *, int);
455 static int bge_newbuf_std(struct bge_softc *, int);
456 static int bge_newbuf_jumbo(struct bge_softc *, int);
457 static int bge_init_rx_ring_std(struct bge_softc *);
458 static void bge_free_rx_ring_std(struct bge_softc *);
459 static int bge_init_rx_ring_jumbo(struct bge_softc *);
460 static void bge_free_rx_ring_jumbo(struct bge_softc *);
461 static void bge_free_tx_ring(struct bge_softc *);
462 static int bge_init_tx_ring(struct bge_softc *);
463 
464 static int bge_chipinit(struct bge_softc *);
465 static int bge_blockinit(struct bge_softc *);
466 static uint32_t bge_dma_swap_options(struct bge_softc *);
467 
468 static int bge_has_eaddr(struct bge_softc *);
469 static uint32_t bge_readmem_ind(struct bge_softc *, int);
470 static void bge_writemem_ind(struct bge_softc *, int, int);
471 static void bge_writembx(struct bge_softc *, int, int);
472 #ifdef notdef
473 static uint32_t bge_readreg_ind(struct bge_softc *, int);
474 #endif
475 static void bge_writemem_direct(struct bge_softc *, int, int);
476 static void bge_writereg_ind(struct bge_softc *, int, int);
477 
478 static int bge_miibus_readreg(device_t, int, int);
479 static int bge_miibus_writereg(device_t, int, int, int);
480 static void bge_miibus_statchg(device_t);
481 #ifdef DEVICE_POLLING
482 static int bge_poll(if_t ifp, enum poll_cmd cmd, int count);
483 #endif
484 
485 #define	BGE_RESET_SHUTDOWN	0
486 #define	BGE_RESET_START		1
487 #define	BGE_RESET_SUSPEND	2
488 static void bge_sig_post_reset(struct bge_softc *, int);
489 static void bge_sig_legacy(struct bge_softc *, int);
490 static void bge_sig_pre_reset(struct bge_softc *, int);
491 static void bge_stop_fw(struct bge_softc *);
492 static int bge_reset(struct bge_softc *);
493 static void bge_link_upd(struct bge_softc *);
494 
495 static void bge_ape_lock_init(struct bge_softc *);
496 static void bge_ape_read_fw_ver(struct bge_softc *);
497 static int bge_ape_lock(struct bge_softc *, int);
498 static void bge_ape_unlock(struct bge_softc *, int);
499 static void bge_ape_send_event(struct bge_softc *, uint32_t);
500 static void bge_ape_driver_state_change(struct bge_softc *, int);
501 
502 /*
503  * The BGE_REGISTER_DEBUG option is only for low-level debugging.  It may
504  * leak information to untrusted users.  It is also known to cause alignment
505  * traps on certain architectures.
506  */
507 #ifdef BGE_REGISTER_DEBUG
508 static int bge_sysctl_debug_info(SYSCTL_HANDLER_ARGS);
509 static int bge_sysctl_reg_read(SYSCTL_HANDLER_ARGS);
510 static int bge_sysctl_ape_read(SYSCTL_HANDLER_ARGS);
511 static int bge_sysctl_mem_read(SYSCTL_HANDLER_ARGS);
512 #endif
513 static void bge_add_sysctls(struct bge_softc *);
514 static void bge_add_sysctl_stats_regs(struct bge_softc *,
515     struct sysctl_ctx_list *, struct sysctl_oid_list *);
516 static void bge_add_sysctl_stats(struct bge_softc *, struct sysctl_ctx_list *,
517     struct sysctl_oid_list *);
518 static int bge_sysctl_stats(SYSCTL_HANDLER_ARGS);
519 
520 static device_method_t bge_methods[] = {
521 	/* Device interface */
522 	DEVMETHOD(device_probe,		bge_probe),
523 	DEVMETHOD(device_attach,	bge_attach),
524 	DEVMETHOD(device_detach,	bge_detach),
525 	DEVMETHOD(device_shutdown,	bge_shutdown),
526 	DEVMETHOD(device_suspend,	bge_suspend),
527 	DEVMETHOD(device_resume,	bge_resume),
528 
529 	/* MII interface */
530 	DEVMETHOD(miibus_readreg,	bge_miibus_readreg),
531 	DEVMETHOD(miibus_writereg,	bge_miibus_writereg),
532 	DEVMETHOD(miibus_statchg,	bge_miibus_statchg),
533 
534 	DEVMETHOD_END
535 };
536 
537 static driver_t bge_driver = {
538 	"bge",
539 	bge_methods,
540 	sizeof(struct bge_softc)
541 };
542 
543 static devclass_t bge_devclass;
544 
545 DRIVER_MODULE(bge, pci, bge_driver, bge_devclass, 0, 0);
546 DRIVER_MODULE(miibus, bge, miibus_driver, miibus_devclass, 0, 0);
547 
548 static int bge_allow_asf = 1;
549 
550 static SYSCTL_NODE(_hw, OID_AUTO, bge, CTLFLAG_RD, 0, "BGE driver parameters");
551 SYSCTL_INT(_hw_bge, OID_AUTO, allow_asf, CTLFLAG_RDTUN, &bge_allow_asf, 0,
552 	"Allow ASF mode if available");
553 
554 #define	SPARC64_BLADE_1500_MODEL	"SUNW,Sun-Blade-1500"
555 #define	SPARC64_BLADE_1500_PATH_BGE	"/pci@1f,700000/network@2"
556 #define	SPARC64_BLADE_2500_MODEL	"SUNW,Sun-Blade-2500"
557 #define	SPARC64_BLADE_2500_PATH_BGE	"/pci@1c,600000/network@3"
558 #define	SPARC64_OFW_SUBVENDOR		"subsystem-vendor-id"
559 
560 static int
561 bge_has_eaddr(struct bge_softc *sc)
562 {
563 #ifdef __sparc64__
564 	char buf[sizeof(SPARC64_BLADE_1500_PATH_BGE)];
565 	device_t dev;
566 	uint32_t subvendor;
567 
568 	dev = sc->bge_dev;
569 
570 	/*
571 	 * The on-board BGEs found in sun4u machines aren't fitted with
572 	 * an EEPROM which means that we have to obtain the MAC address
573 	 * via OFW and that some tests will always fail.  We distinguish
574 	 * such BGEs by the subvendor ID, which also has to be obtained
575 	 * from OFW instead of the PCI configuration space as the latter
576 	 * indicates Broadcom as the subvendor of the netboot interface.
577 	 * For early Blade 1500 and 2500 we even have to check the OFW
578 	 * device path as the subvendor ID always defaults to Broadcom
579 	 * there.
580 	 */
581 	if (OF_getprop(ofw_bus_get_node(dev), SPARC64_OFW_SUBVENDOR,
582 	    &subvendor, sizeof(subvendor)) == sizeof(subvendor) &&
583 	    (subvendor == FJTSU_VENDORID || subvendor == SUN_VENDORID))
584 		return (0);
585 	memset(buf, 0, sizeof(buf));
586 	if (OF_package_to_path(ofw_bus_get_node(dev), buf, sizeof(buf)) > 0) {
587 		if (strcmp(sparc64_model, SPARC64_BLADE_1500_MODEL) == 0 &&
588 		    strcmp(buf, SPARC64_BLADE_1500_PATH_BGE) == 0)
589 			return (0);
590 		if (strcmp(sparc64_model, SPARC64_BLADE_2500_MODEL) == 0 &&
591 		    strcmp(buf, SPARC64_BLADE_2500_PATH_BGE) == 0)
592 			return (0);
593 	}
594 #endif
595 	return (1);
596 }
597 
598 static uint32_t
599 bge_readmem_ind(struct bge_softc *sc, int off)
600 {
601 	device_t dev;
602 	uint32_t val;
603 
604 	if (sc->bge_asicrev == BGE_ASICREV_BCM5906 &&
605 	    off >= BGE_STATS_BLOCK && off < BGE_SEND_RING_1_TO_4)
606 		return (0);
607 
608 	dev = sc->bge_dev;
609 
610 	pci_write_config(dev, BGE_PCI_MEMWIN_BASEADDR, off, 4);
611 	val = pci_read_config(dev, BGE_PCI_MEMWIN_DATA, 4);
612 	pci_write_config(dev, BGE_PCI_MEMWIN_BASEADDR, 0, 4);
613 	return (val);
614 }
615 
616 static void
617 bge_writemem_ind(struct bge_softc *sc, int off, int val)
618 {
619 	device_t dev;
620 
621 	if (sc->bge_asicrev == BGE_ASICREV_BCM5906 &&
622 	    off >= BGE_STATS_BLOCK && off < BGE_SEND_RING_1_TO_4)
623 		return;
624 
625 	dev = sc->bge_dev;
626 
627 	pci_write_config(dev, BGE_PCI_MEMWIN_BASEADDR, off, 4);
628 	pci_write_config(dev, BGE_PCI_MEMWIN_DATA, val, 4);
629 	pci_write_config(dev, BGE_PCI_MEMWIN_BASEADDR, 0, 4);
630 }
631 
632 #ifdef notdef
633 static uint32_t
634 bge_readreg_ind(struct bge_softc *sc, int off)
635 {
636 	device_t dev;
637 
638 	dev = sc->bge_dev;
639 
640 	pci_write_config(dev, BGE_PCI_REG_BASEADDR, off, 4);
641 	return (pci_read_config(dev, BGE_PCI_REG_DATA, 4));
642 }
643 #endif
644 
645 static void
646 bge_writereg_ind(struct bge_softc *sc, int off, int val)
647 {
648 	device_t dev;
649 
650 	dev = sc->bge_dev;
651 
652 	pci_write_config(dev, BGE_PCI_REG_BASEADDR, off, 4);
653 	pci_write_config(dev, BGE_PCI_REG_DATA, val, 4);
654 }
655 
656 static void
657 bge_writemem_direct(struct bge_softc *sc, int off, int val)
658 {
659 	CSR_WRITE_4(sc, off, val);
660 }
661 
662 static void
663 bge_writembx(struct bge_softc *sc, int off, int val)
664 {
665 	if (sc->bge_asicrev == BGE_ASICREV_BCM5906)
666 		off += BGE_LPMBX_IRQ0_HI - BGE_MBX_IRQ0_HI;
667 
668 	CSR_WRITE_4(sc, off, val);
669 	if ((sc->bge_flags & BGE_FLAG_MBOX_REORDER) != 0)
670 		CSR_READ_4(sc, off);
671 }
672 
673 /*
674  * Clear all stale locks and select the lock for this driver instance.
675  */
676 static void
677 bge_ape_lock_init(struct bge_softc *sc)
678 {
679 	uint32_t bit, regbase;
680 	int i;
681 
682 	if (sc->bge_asicrev == BGE_ASICREV_BCM5761)
683 		regbase = BGE_APE_LOCK_GRANT;
684 	else
685 		regbase = BGE_APE_PER_LOCK_GRANT;
686 
687 	/* Clear any stale locks. */
688 	for (i = BGE_APE_LOCK_PHY0; i <= BGE_APE_LOCK_GPIO; i++) {
689 		switch (i) {
690 		case BGE_APE_LOCK_PHY0:
691 		case BGE_APE_LOCK_PHY1:
692 		case BGE_APE_LOCK_PHY2:
693 		case BGE_APE_LOCK_PHY3:
694 			bit = BGE_APE_LOCK_GRANT_DRIVER0;
695 			break;
696 		default:
697 			if (sc->bge_func_addr == 0)
698 				bit = BGE_APE_LOCK_GRANT_DRIVER0;
699 			else
700 				bit = (1 << sc->bge_func_addr);
701 		}
702 		APE_WRITE_4(sc, regbase + 4 * i, bit);
703 	}
704 
705 	/* Select the PHY lock based on the device's function number. */
706 	switch (sc->bge_func_addr) {
707 	case 0:
708 		sc->bge_phy_ape_lock = BGE_APE_LOCK_PHY0;
709 		break;
710 	case 1:
711 		sc->bge_phy_ape_lock = BGE_APE_LOCK_PHY1;
712 		break;
713 	case 2:
714 		sc->bge_phy_ape_lock = BGE_APE_LOCK_PHY2;
715 		break;
716 	case 3:
717 		sc->bge_phy_ape_lock = BGE_APE_LOCK_PHY3;
718 		break;
719 	default:
720 		device_printf(sc->bge_dev,
721 		    "PHY lock not supported on this function\n");
722 	}
723 }
724 
725 /*
726  * Check for APE firmware, set flags, and print version info.
727  */
728 static void
729 bge_ape_read_fw_ver(struct bge_softc *sc)
730 {
731 	const char *fwtype;
732 	uint32_t apedata, features;
733 
734 	/* Check for a valid APE signature in shared memory. */
735 	apedata = APE_READ_4(sc, BGE_APE_SEG_SIG);
736 	if (apedata != BGE_APE_SEG_SIG_MAGIC) {
737 		sc->bge_mfw_flags &= ~ BGE_MFW_ON_APE;
738 		return;
739 	}
740 
741 	/* Check if APE firmware is running. */
742 	apedata = APE_READ_4(sc, BGE_APE_FW_STATUS);
743 	if ((apedata & BGE_APE_FW_STATUS_READY) == 0) {
744 		device_printf(sc->bge_dev, "APE signature found "
745 		    "but FW status not ready! 0x%08x\n", apedata);
746 		return;
747 	}
748 
749 	sc->bge_mfw_flags |= BGE_MFW_ON_APE;
750 
751 	/* Fetch the APE firwmare type and version. */
752 	apedata = APE_READ_4(sc, BGE_APE_FW_VERSION);
753 	features = APE_READ_4(sc, BGE_APE_FW_FEATURES);
754 	if ((features & BGE_APE_FW_FEATURE_NCSI) != 0) {
755 		sc->bge_mfw_flags |= BGE_MFW_TYPE_NCSI;
756 		fwtype = "NCSI";
757 	} else if ((features & BGE_APE_FW_FEATURE_DASH) != 0) {
758 		sc->bge_mfw_flags |= BGE_MFW_TYPE_DASH;
759 		fwtype = "DASH";
760 	} else
761 		fwtype = "UNKN";
762 
763 	/* Print the APE firmware version. */
764 	device_printf(sc->bge_dev, "APE FW version: %s v%d.%d.%d.%d\n",
765 	    fwtype,
766 	    (apedata & BGE_APE_FW_VERSION_MAJMSK) >> BGE_APE_FW_VERSION_MAJSFT,
767 	    (apedata & BGE_APE_FW_VERSION_MINMSK) >> BGE_APE_FW_VERSION_MINSFT,
768 	    (apedata & BGE_APE_FW_VERSION_REVMSK) >> BGE_APE_FW_VERSION_REVSFT,
769 	    (apedata & BGE_APE_FW_VERSION_BLDMSK));
770 }
771 
772 static int
773 bge_ape_lock(struct bge_softc *sc, int locknum)
774 {
775 	uint32_t bit, gnt, req, status;
776 	int i, off;
777 
778 	if ((sc->bge_mfw_flags & BGE_MFW_ON_APE) == 0)
779 		return (0);
780 
781 	/* Lock request/grant registers have different bases. */
782 	if (sc->bge_asicrev == BGE_ASICREV_BCM5761) {
783 		req = BGE_APE_LOCK_REQ;
784 		gnt = BGE_APE_LOCK_GRANT;
785 	} else {
786 		req = BGE_APE_PER_LOCK_REQ;
787 		gnt = BGE_APE_PER_LOCK_GRANT;
788 	}
789 
790 	off = 4 * locknum;
791 
792 	switch (locknum) {
793 	case BGE_APE_LOCK_GPIO:
794 		/* Lock required when using GPIO. */
795 		if (sc->bge_asicrev == BGE_ASICREV_BCM5761)
796 			return (0);
797 		if (sc->bge_func_addr == 0)
798 			bit = BGE_APE_LOCK_REQ_DRIVER0;
799 		else
800 			bit = (1 << sc->bge_func_addr);
801 		break;
802 	case BGE_APE_LOCK_GRC:
803 		/* Lock required to reset the device. */
804 		if (sc->bge_func_addr == 0)
805 			bit = BGE_APE_LOCK_REQ_DRIVER0;
806 		else
807 			bit = (1 << sc->bge_func_addr);
808 		break;
809 	case BGE_APE_LOCK_MEM:
810 		/* Lock required when accessing certain APE memory. */
811 		if (sc->bge_func_addr == 0)
812 			bit = BGE_APE_LOCK_REQ_DRIVER0;
813 		else
814 			bit = (1 << sc->bge_func_addr);
815 		break;
816 	case BGE_APE_LOCK_PHY0:
817 	case BGE_APE_LOCK_PHY1:
818 	case BGE_APE_LOCK_PHY2:
819 	case BGE_APE_LOCK_PHY3:
820 		/* Lock required when accessing PHYs. */
821 		bit = BGE_APE_LOCK_REQ_DRIVER0;
822 		break;
823 	default:
824 		return (EINVAL);
825 	}
826 
827 	/* Request a lock. */
828 	APE_WRITE_4(sc, req + off, bit);
829 
830 	/* Wait up to 1 second to acquire lock. */
831 	for (i = 0; i < 20000; i++) {
832 		status = APE_READ_4(sc, gnt + off);
833 		if (status == bit)
834 			break;
835 		DELAY(50);
836 	}
837 
838 	/* Handle any errors. */
839 	if (status != bit) {
840 		device_printf(sc->bge_dev, "APE lock %d request failed! "
841 		    "request = 0x%04x[0x%04x], status = 0x%04x[0x%04x]\n",
842 		    locknum, req + off, bit & 0xFFFF, gnt + off,
843 		    status & 0xFFFF);
844 		/* Revoke the lock request. */
845 		APE_WRITE_4(sc, gnt + off, bit);
846 		return (EBUSY);
847 	}
848 
849 	return (0);
850 }
851 
852 static void
853 bge_ape_unlock(struct bge_softc *sc, int locknum)
854 {
855 	uint32_t bit, gnt;
856 	int off;
857 
858 	if ((sc->bge_mfw_flags & BGE_MFW_ON_APE) == 0)
859 		return;
860 
861 	if (sc->bge_asicrev == BGE_ASICREV_BCM5761)
862 		gnt = BGE_APE_LOCK_GRANT;
863 	else
864 		gnt = BGE_APE_PER_LOCK_GRANT;
865 
866 	off = 4 * locknum;
867 
868 	switch (locknum) {
869 	case BGE_APE_LOCK_GPIO:
870 		if (sc->bge_asicrev == BGE_ASICREV_BCM5761)
871 			return;
872 		if (sc->bge_func_addr == 0)
873 			bit = BGE_APE_LOCK_GRANT_DRIVER0;
874 		else
875 			bit = (1 << sc->bge_func_addr);
876 		break;
877 	case BGE_APE_LOCK_GRC:
878 		if (sc->bge_func_addr == 0)
879 			bit = BGE_APE_LOCK_GRANT_DRIVER0;
880 		else
881 			bit = (1 << sc->bge_func_addr);
882 		break;
883 	case BGE_APE_LOCK_MEM:
884 		if (sc->bge_func_addr == 0)
885 			bit = BGE_APE_LOCK_GRANT_DRIVER0;
886 		else
887 			bit = (1 << sc->bge_func_addr);
888 		break;
889 	case BGE_APE_LOCK_PHY0:
890 	case BGE_APE_LOCK_PHY1:
891 	case BGE_APE_LOCK_PHY2:
892 	case BGE_APE_LOCK_PHY3:
893 		bit = BGE_APE_LOCK_GRANT_DRIVER0;
894 		break;
895 	default:
896 		return;
897 	}
898 
899 	APE_WRITE_4(sc, gnt + off, bit);
900 }
901 
902 /*
903  * Send an event to the APE firmware.
904  */
905 static void
906 bge_ape_send_event(struct bge_softc *sc, uint32_t event)
907 {
908 	uint32_t apedata;
909 	int i;
910 
911 	/* NCSI does not support APE events. */
912 	if ((sc->bge_mfw_flags & BGE_MFW_ON_APE) == 0)
913 		return;
914 
915 	/* Wait up to 1ms for APE to service previous event. */
916 	for (i = 10; i > 0; i--) {
917 		if (bge_ape_lock(sc, BGE_APE_LOCK_MEM) != 0)
918 			break;
919 		apedata = APE_READ_4(sc, BGE_APE_EVENT_STATUS);
920 		if ((apedata & BGE_APE_EVENT_STATUS_EVENT_PENDING) == 0) {
921 			APE_WRITE_4(sc, BGE_APE_EVENT_STATUS, event |
922 			    BGE_APE_EVENT_STATUS_EVENT_PENDING);
923 			bge_ape_unlock(sc, BGE_APE_LOCK_MEM);
924 			APE_WRITE_4(sc, BGE_APE_EVENT, BGE_APE_EVENT_1);
925 			break;
926 		}
927 		bge_ape_unlock(sc, BGE_APE_LOCK_MEM);
928 		DELAY(100);
929 	}
930 	if (i == 0)
931 		device_printf(sc->bge_dev, "APE event 0x%08x send timed out\n",
932 		    event);
933 }
934 
935 static void
936 bge_ape_driver_state_change(struct bge_softc *sc, int kind)
937 {
938 	uint32_t apedata, event;
939 
940 	if ((sc->bge_mfw_flags & BGE_MFW_ON_APE) == 0)
941 		return;
942 
943 	switch (kind) {
944 	case BGE_RESET_START:
945 		/* If this is the first load, clear the load counter. */
946 		apedata = APE_READ_4(sc, BGE_APE_HOST_SEG_SIG);
947 		if (apedata != BGE_APE_HOST_SEG_SIG_MAGIC)
948 			APE_WRITE_4(sc, BGE_APE_HOST_INIT_COUNT, 0);
949 		else {
950 			apedata = APE_READ_4(sc, BGE_APE_HOST_INIT_COUNT);
951 			APE_WRITE_4(sc, BGE_APE_HOST_INIT_COUNT, ++apedata);
952 		}
953 		APE_WRITE_4(sc, BGE_APE_HOST_SEG_SIG,
954 		    BGE_APE_HOST_SEG_SIG_MAGIC);
955 		APE_WRITE_4(sc, BGE_APE_HOST_SEG_LEN,
956 		    BGE_APE_HOST_SEG_LEN_MAGIC);
957 
958 		/* Add some version info if bge(4) supports it. */
959 		APE_WRITE_4(sc, BGE_APE_HOST_DRIVER_ID,
960 		    BGE_APE_HOST_DRIVER_ID_MAGIC(1, 0));
961 		APE_WRITE_4(sc, BGE_APE_HOST_BEHAVIOR,
962 		    BGE_APE_HOST_BEHAV_NO_PHYLOCK);
963 		APE_WRITE_4(sc, BGE_APE_HOST_HEARTBEAT_INT_MS,
964 		    BGE_APE_HOST_HEARTBEAT_INT_DISABLE);
965 		APE_WRITE_4(sc, BGE_APE_HOST_DRVR_STATE,
966 		    BGE_APE_HOST_DRVR_STATE_START);
967 		event = BGE_APE_EVENT_STATUS_STATE_START;
968 		break;
969 	case BGE_RESET_SHUTDOWN:
970 		APE_WRITE_4(sc, BGE_APE_HOST_DRVR_STATE,
971 		    BGE_APE_HOST_DRVR_STATE_UNLOAD);
972 		event = BGE_APE_EVENT_STATUS_STATE_UNLOAD;
973 		break;
974 	case BGE_RESET_SUSPEND:
975 		event = BGE_APE_EVENT_STATUS_STATE_SUSPEND;
976 		break;
977 	default:
978 		return;
979 	}
980 
981 	bge_ape_send_event(sc, event | BGE_APE_EVENT_STATUS_DRIVER_EVNT |
982 	    BGE_APE_EVENT_STATUS_STATE_CHNGE);
983 }
984 
985 /*
986  * Map a single buffer address.
987  */
988 
989 static void
990 bge_dma_map_addr(void *arg, bus_dma_segment_t *segs, int nseg, int error)
991 {
992 	struct bge_dmamap_arg *ctx;
993 
994 	if (error)
995 		return;
996 
997 	KASSERT(nseg == 1, ("%s: %d segments returned!", __func__, nseg));
998 
999 	ctx = arg;
1000 	ctx->bge_busaddr = segs->ds_addr;
1001 }
1002 
1003 static uint8_t
1004 bge_nvram_getbyte(struct bge_softc *sc, int addr, uint8_t *dest)
1005 {
1006 	uint32_t access, byte = 0;
1007 	int i;
1008 
1009 	/* Lock. */
1010 	CSR_WRITE_4(sc, BGE_NVRAM_SWARB, BGE_NVRAMSWARB_SET1);
1011 	for (i = 0; i < 8000; i++) {
1012 		if (CSR_READ_4(sc, BGE_NVRAM_SWARB) & BGE_NVRAMSWARB_GNT1)
1013 			break;
1014 		DELAY(20);
1015 	}
1016 	if (i == 8000)
1017 		return (1);
1018 
1019 	/* Enable access. */
1020 	access = CSR_READ_4(sc, BGE_NVRAM_ACCESS);
1021 	CSR_WRITE_4(sc, BGE_NVRAM_ACCESS, access | BGE_NVRAMACC_ENABLE);
1022 
1023 	CSR_WRITE_4(sc, BGE_NVRAM_ADDR, addr & 0xfffffffc);
1024 	CSR_WRITE_4(sc, BGE_NVRAM_CMD, BGE_NVRAM_READCMD);
1025 	for (i = 0; i < BGE_TIMEOUT * 10; i++) {
1026 		DELAY(10);
1027 		if (CSR_READ_4(sc, BGE_NVRAM_CMD) & BGE_NVRAMCMD_DONE) {
1028 			DELAY(10);
1029 			break;
1030 		}
1031 	}
1032 
1033 	if (i == BGE_TIMEOUT * 10) {
1034 		if_printf(sc->bge_ifp, "nvram read timed out\n");
1035 		return (1);
1036 	}
1037 
1038 	/* Get result. */
1039 	byte = CSR_READ_4(sc, BGE_NVRAM_RDDATA);
1040 
1041 	*dest = (bswap32(byte) >> ((addr % 4) * 8)) & 0xFF;
1042 
1043 	/* Disable access. */
1044 	CSR_WRITE_4(sc, BGE_NVRAM_ACCESS, access);
1045 
1046 	/* Unlock. */
1047 	CSR_WRITE_4(sc, BGE_NVRAM_SWARB, BGE_NVRAMSWARB_CLR1);
1048 	CSR_READ_4(sc, BGE_NVRAM_SWARB);
1049 
1050 	return (0);
1051 }
1052 
1053 /*
1054  * Read a sequence of bytes from NVRAM.
1055  */
1056 static int
1057 bge_read_nvram(struct bge_softc *sc, caddr_t dest, int off, int cnt)
1058 {
1059 	int err = 0, i;
1060 	uint8_t byte = 0;
1061 
1062 	if (sc->bge_asicrev != BGE_ASICREV_BCM5906)
1063 		return (1);
1064 
1065 	for (i = 0; i < cnt; i++) {
1066 		err = bge_nvram_getbyte(sc, off + i, &byte);
1067 		if (err)
1068 			break;
1069 		*(dest + i) = byte;
1070 	}
1071 
1072 	return (err ? 1 : 0);
1073 }
1074 
1075 /*
1076  * Read a byte of data stored in the EEPROM at address 'addr.' The
1077  * BCM570x supports both the traditional bitbang interface and an
1078  * auto access interface for reading the EEPROM. We use the auto
1079  * access method.
1080  */
1081 static uint8_t
1082 bge_eeprom_getbyte(struct bge_softc *sc, int addr, uint8_t *dest)
1083 {
1084 	int i;
1085 	uint32_t byte = 0;
1086 
1087 	/*
1088 	 * Enable use of auto EEPROM access so we can avoid
1089 	 * having to use the bitbang method.
1090 	 */
1091 	BGE_SETBIT(sc, BGE_MISC_LOCAL_CTL, BGE_MLC_AUTO_EEPROM);
1092 
1093 	/* Reset the EEPROM, load the clock period. */
1094 	CSR_WRITE_4(sc, BGE_EE_ADDR,
1095 	    BGE_EEADDR_RESET | BGE_EEHALFCLK(BGE_HALFCLK_384SCL));
1096 	DELAY(20);
1097 
1098 	/* Issue the read EEPROM command. */
1099 	CSR_WRITE_4(sc, BGE_EE_ADDR, BGE_EE_READCMD | addr);
1100 
1101 	/* Wait for completion */
1102 	for(i = 0; i < BGE_TIMEOUT * 10; i++) {
1103 		DELAY(10);
1104 		if (CSR_READ_4(sc, BGE_EE_ADDR) & BGE_EEADDR_DONE)
1105 			break;
1106 	}
1107 
1108 	if (i == BGE_TIMEOUT * 10) {
1109 		device_printf(sc->bge_dev, "EEPROM read timed out\n");
1110 		return (1);
1111 	}
1112 
1113 	/* Get result. */
1114 	byte = CSR_READ_4(sc, BGE_EE_DATA);
1115 
1116 	*dest = (byte >> ((addr % 4) * 8)) & 0xFF;
1117 
1118 	return (0);
1119 }
1120 
1121 /*
1122  * Read a sequence of bytes from the EEPROM.
1123  */
1124 static int
1125 bge_read_eeprom(struct bge_softc *sc, caddr_t dest, int off, int cnt)
1126 {
1127 	int i, error = 0;
1128 	uint8_t byte = 0;
1129 
1130 	for (i = 0; i < cnt; i++) {
1131 		error = bge_eeprom_getbyte(sc, off + i, &byte);
1132 		if (error)
1133 			break;
1134 		*(dest + i) = byte;
1135 	}
1136 
1137 	return (error ? 1 : 0);
1138 }
1139 
1140 static int
1141 bge_miibus_readreg(device_t dev, int phy, int reg)
1142 {
1143 	struct bge_softc *sc;
1144 	uint32_t val;
1145 	int i;
1146 
1147 	sc = device_get_softc(dev);
1148 
1149 	if (bge_ape_lock(sc, sc->bge_phy_ape_lock) != 0)
1150 		return (0);
1151 
1152 	/* Clear the autopoll bit if set, otherwise may trigger PCI errors. */
1153 	if ((sc->bge_mi_mode & BGE_MIMODE_AUTOPOLL) != 0) {
1154 		CSR_WRITE_4(sc, BGE_MI_MODE,
1155 		    sc->bge_mi_mode & ~BGE_MIMODE_AUTOPOLL);
1156 		DELAY(80);
1157 	}
1158 
1159 	CSR_WRITE_4(sc, BGE_MI_COMM, BGE_MICMD_READ | BGE_MICOMM_BUSY |
1160 	    BGE_MIPHY(phy) | BGE_MIREG(reg));
1161 
1162 	/* Poll for the PHY register access to complete. */
1163 	for (i = 0; i < BGE_TIMEOUT; i++) {
1164 		DELAY(10);
1165 		val = CSR_READ_4(sc, BGE_MI_COMM);
1166 		if ((val & BGE_MICOMM_BUSY) == 0) {
1167 			DELAY(5);
1168 			val = CSR_READ_4(sc, BGE_MI_COMM);
1169 			break;
1170 		}
1171 	}
1172 
1173 	if (i == BGE_TIMEOUT) {
1174 		device_printf(sc->bge_dev,
1175 		    "PHY read timed out (phy %d, reg %d, val 0x%08x)\n",
1176 		    phy, reg, val);
1177 		val = 0;
1178 	}
1179 
1180 	/* Restore the autopoll bit if necessary. */
1181 	if ((sc->bge_mi_mode & BGE_MIMODE_AUTOPOLL) != 0) {
1182 		CSR_WRITE_4(sc, BGE_MI_MODE, sc->bge_mi_mode);
1183 		DELAY(80);
1184 	}
1185 
1186 	bge_ape_unlock(sc, sc->bge_phy_ape_lock);
1187 
1188 	if (val & BGE_MICOMM_READFAIL)
1189 		return (0);
1190 
1191 	return (val & 0xFFFF);
1192 }
1193 
1194 static int
1195 bge_miibus_writereg(device_t dev, int phy, int reg, int val)
1196 {
1197 	struct bge_softc *sc;
1198 	int i;
1199 
1200 	sc = device_get_softc(dev);
1201 
1202 	if (sc->bge_asicrev == BGE_ASICREV_BCM5906 &&
1203 	    (reg == BRGPHY_MII_1000CTL || reg == BRGPHY_MII_AUXCTL))
1204 		return (0);
1205 
1206 	if (bge_ape_lock(sc, sc->bge_phy_ape_lock) != 0)
1207 		return (0);
1208 
1209 	/* Clear the autopoll bit if set, otherwise may trigger PCI errors. */
1210 	if ((sc->bge_mi_mode & BGE_MIMODE_AUTOPOLL) != 0) {
1211 		CSR_WRITE_4(sc, BGE_MI_MODE,
1212 		    sc->bge_mi_mode & ~BGE_MIMODE_AUTOPOLL);
1213 		DELAY(80);
1214 	}
1215 
1216 	CSR_WRITE_4(sc, BGE_MI_COMM, BGE_MICMD_WRITE | BGE_MICOMM_BUSY |
1217 	    BGE_MIPHY(phy) | BGE_MIREG(reg) | val);
1218 
1219 	for (i = 0; i < BGE_TIMEOUT; i++) {
1220 		DELAY(10);
1221 		if (!(CSR_READ_4(sc, BGE_MI_COMM) & BGE_MICOMM_BUSY)) {
1222 			DELAY(5);
1223 			CSR_READ_4(sc, BGE_MI_COMM); /* dummy read */
1224 			break;
1225 		}
1226 	}
1227 
1228 	/* Restore the autopoll bit if necessary. */
1229 	if ((sc->bge_mi_mode & BGE_MIMODE_AUTOPOLL) != 0) {
1230 		CSR_WRITE_4(sc, BGE_MI_MODE, sc->bge_mi_mode);
1231 		DELAY(80);
1232 	}
1233 
1234 	bge_ape_unlock(sc, sc->bge_phy_ape_lock);
1235 
1236 	if (i == BGE_TIMEOUT)
1237 		device_printf(sc->bge_dev,
1238 		    "PHY write timed out (phy %d, reg %d, val 0x%04x)\n",
1239 		    phy, reg, val);
1240 
1241 	return (0);
1242 }
1243 
1244 static void
1245 bge_miibus_statchg(device_t dev)
1246 {
1247 	struct bge_softc *sc;
1248 	struct mii_data *mii;
1249 	uint32_t mac_mode, rx_mode, tx_mode;
1250 
1251 	sc = device_get_softc(dev);
1252 	if ((if_getdrvflags(sc->bge_ifp) & IFF_DRV_RUNNING) == 0)
1253 		return;
1254 	mii = device_get_softc(sc->bge_miibus);
1255 
1256 	if ((mii->mii_media_status & (IFM_ACTIVE | IFM_AVALID)) ==
1257 	    (IFM_ACTIVE | IFM_AVALID)) {
1258 		switch (IFM_SUBTYPE(mii->mii_media_active)) {
1259 		case IFM_10_T:
1260 		case IFM_100_TX:
1261 			sc->bge_link = 1;
1262 			break;
1263 		case IFM_1000_T:
1264 		case IFM_1000_SX:
1265 		case IFM_2500_SX:
1266 			if (sc->bge_asicrev != BGE_ASICREV_BCM5906)
1267 				sc->bge_link = 1;
1268 			else
1269 				sc->bge_link = 0;
1270 			break;
1271 		default:
1272 			sc->bge_link = 0;
1273 			break;
1274 		}
1275 	} else
1276 		sc->bge_link = 0;
1277 	if (sc->bge_link == 0)
1278 		return;
1279 
1280 	/*
1281 	 * APE firmware touches these registers to keep the MAC
1282 	 * connected to the outside world.  Try to keep the
1283 	 * accesses atomic.
1284 	 */
1285 
1286 	/* Set the port mode (MII/GMII) to match the link speed. */
1287 	mac_mode = CSR_READ_4(sc, BGE_MAC_MODE) &
1288 	    ~(BGE_MACMODE_PORTMODE | BGE_MACMODE_HALF_DUPLEX);
1289 	tx_mode = CSR_READ_4(sc, BGE_TX_MODE);
1290 	rx_mode = CSR_READ_4(sc, BGE_RX_MODE);
1291 
1292 	if (IFM_SUBTYPE(mii->mii_media_active) == IFM_1000_T ||
1293 	    IFM_SUBTYPE(mii->mii_media_active) == IFM_1000_SX)
1294 		mac_mode |= BGE_PORTMODE_GMII;
1295 	else
1296 		mac_mode |= BGE_PORTMODE_MII;
1297 
1298 	/* Set MAC flow control behavior to match link flow control settings. */
1299 	tx_mode &= ~BGE_TXMODE_FLOWCTL_ENABLE;
1300 	rx_mode &= ~BGE_RXMODE_FLOWCTL_ENABLE;
1301 	if ((IFM_OPTIONS(mii->mii_media_active) & IFM_FDX) != 0) {
1302 		if ((IFM_OPTIONS(mii->mii_media_active) & IFM_ETH_TXPAUSE) != 0)
1303 			tx_mode |= BGE_TXMODE_FLOWCTL_ENABLE;
1304 		if ((IFM_OPTIONS(mii->mii_media_active) & IFM_ETH_RXPAUSE) != 0)
1305 			rx_mode |= BGE_RXMODE_FLOWCTL_ENABLE;
1306 	} else
1307 		mac_mode |= BGE_MACMODE_HALF_DUPLEX;
1308 
1309 	CSR_WRITE_4(sc, BGE_MAC_MODE, mac_mode);
1310 	DELAY(40);
1311 	CSR_WRITE_4(sc, BGE_TX_MODE, tx_mode);
1312 	CSR_WRITE_4(sc, BGE_RX_MODE, rx_mode);
1313 }
1314 
1315 /*
1316  * Intialize a standard receive ring descriptor.
1317  */
1318 static int
1319 bge_newbuf_std(struct bge_softc *sc, int i)
1320 {
1321 	struct mbuf *m;
1322 	struct bge_rx_bd *r;
1323 	bus_dma_segment_t segs[1];
1324 	bus_dmamap_t map;
1325 	int error, nsegs;
1326 
1327 	if (sc->bge_flags & BGE_FLAG_JUMBO_STD &&
1328 	    (if_getmtu(sc->bge_ifp) + ETHER_HDR_LEN + ETHER_CRC_LEN +
1329 	    ETHER_VLAN_ENCAP_LEN > (MCLBYTES - ETHER_ALIGN))) {
1330 		m = m_getjcl(M_NOWAIT, MT_DATA, M_PKTHDR, MJUM9BYTES);
1331 		if (m == NULL)
1332 			return (ENOBUFS);
1333 		m->m_len = m->m_pkthdr.len = MJUM9BYTES;
1334 	} else {
1335 		m = m_getcl(M_NOWAIT, MT_DATA, M_PKTHDR);
1336 		if (m == NULL)
1337 			return (ENOBUFS);
1338 		m->m_len = m->m_pkthdr.len = MCLBYTES;
1339 	}
1340 	if ((sc->bge_flags & BGE_FLAG_RX_ALIGNBUG) == 0)
1341 		m_adj(m, ETHER_ALIGN);
1342 
1343 	error = bus_dmamap_load_mbuf_sg(sc->bge_cdata.bge_rx_mtag,
1344 	    sc->bge_cdata.bge_rx_std_sparemap, m, segs, &nsegs, 0);
1345 	if (error != 0) {
1346 		m_freem(m);
1347 		return (error);
1348 	}
1349 	if (sc->bge_cdata.bge_rx_std_chain[i] != NULL) {
1350 		bus_dmamap_sync(sc->bge_cdata.bge_rx_mtag,
1351 		    sc->bge_cdata.bge_rx_std_dmamap[i], BUS_DMASYNC_POSTREAD);
1352 		bus_dmamap_unload(sc->bge_cdata.bge_rx_mtag,
1353 		    sc->bge_cdata.bge_rx_std_dmamap[i]);
1354 	}
1355 	map = sc->bge_cdata.bge_rx_std_dmamap[i];
1356 	sc->bge_cdata.bge_rx_std_dmamap[i] = sc->bge_cdata.bge_rx_std_sparemap;
1357 	sc->bge_cdata.bge_rx_std_sparemap = map;
1358 	sc->bge_cdata.bge_rx_std_chain[i] = m;
1359 	sc->bge_cdata.bge_rx_std_seglen[i] = segs[0].ds_len;
1360 	r = &sc->bge_ldata.bge_rx_std_ring[sc->bge_std];
1361 	r->bge_addr.bge_addr_lo = BGE_ADDR_LO(segs[0].ds_addr);
1362 	r->bge_addr.bge_addr_hi = BGE_ADDR_HI(segs[0].ds_addr);
1363 	r->bge_flags = BGE_RXBDFLAG_END;
1364 	r->bge_len = segs[0].ds_len;
1365 	r->bge_idx = i;
1366 
1367 	bus_dmamap_sync(sc->bge_cdata.bge_rx_mtag,
1368 	    sc->bge_cdata.bge_rx_std_dmamap[i], BUS_DMASYNC_PREREAD);
1369 
1370 	return (0);
1371 }
1372 
1373 /*
1374  * Initialize a jumbo receive ring descriptor. This allocates
1375  * a jumbo buffer from the pool managed internally by the driver.
1376  */
1377 static int
1378 bge_newbuf_jumbo(struct bge_softc *sc, int i)
1379 {
1380 	bus_dma_segment_t segs[BGE_NSEG_JUMBO];
1381 	bus_dmamap_t map;
1382 	struct bge_extrx_bd *r;
1383 	struct mbuf *m;
1384 	int error, nsegs;
1385 
1386 	MGETHDR(m, M_NOWAIT, MT_DATA);
1387 	if (m == NULL)
1388 		return (ENOBUFS);
1389 
1390 	if (m_cljget(m, M_NOWAIT, MJUM9BYTES) == NULL) {
1391 		m_freem(m);
1392 		return (ENOBUFS);
1393 	}
1394 	m->m_len = m->m_pkthdr.len = MJUM9BYTES;
1395 	if ((sc->bge_flags & BGE_FLAG_RX_ALIGNBUG) == 0)
1396 		m_adj(m, ETHER_ALIGN);
1397 
1398 	error = bus_dmamap_load_mbuf_sg(sc->bge_cdata.bge_mtag_jumbo,
1399 	    sc->bge_cdata.bge_rx_jumbo_sparemap, m, segs, &nsegs, 0);
1400 	if (error != 0) {
1401 		m_freem(m);
1402 		return (error);
1403 	}
1404 
1405 	if (sc->bge_cdata.bge_rx_jumbo_chain[i] != NULL) {
1406 		bus_dmamap_sync(sc->bge_cdata.bge_mtag_jumbo,
1407 		    sc->bge_cdata.bge_rx_jumbo_dmamap[i], BUS_DMASYNC_POSTREAD);
1408 		bus_dmamap_unload(sc->bge_cdata.bge_mtag_jumbo,
1409 		    sc->bge_cdata.bge_rx_jumbo_dmamap[i]);
1410 	}
1411 	map = sc->bge_cdata.bge_rx_jumbo_dmamap[i];
1412 	sc->bge_cdata.bge_rx_jumbo_dmamap[i] =
1413 	    sc->bge_cdata.bge_rx_jumbo_sparemap;
1414 	sc->bge_cdata.bge_rx_jumbo_sparemap = map;
1415 	sc->bge_cdata.bge_rx_jumbo_chain[i] = m;
1416 	sc->bge_cdata.bge_rx_jumbo_seglen[i][0] = 0;
1417 	sc->bge_cdata.bge_rx_jumbo_seglen[i][1] = 0;
1418 	sc->bge_cdata.bge_rx_jumbo_seglen[i][2] = 0;
1419 	sc->bge_cdata.bge_rx_jumbo_seglen[i][3] = 0;
1420 
1421 	/*
1422 	 * Fill in the extended RX buffer descriptor.
1423 	 */
1424 	r = &sc->bge_ldata.bge_rx_jumbo_ring[sc->bge_jumbo];
1425 	r->bge_flags = BGE_RXBDFLAG_JUMBO_RING | BGE_RXBDFLAG_END;
1426 	r->bge_idx = i;
1427 	r->bge_len3 = r->bge_len2 = r->bge_len1 = 0;
1428 	switch (nsegs) {
1429 	case 4:
1430 		r->bge_addr3.bge_addr_lo = BGE_ADDR_LO(segs[3].ds_addr);
1431 		r->bge_addr3.bge_addr_hi = BGE_ADDR_HI(segs[3].ds_addr);
1432 		r->bge_len3 = segs[3].ds_len;
1433 		sc->bge_cdata.bge_rx_jumbo_seglen[i][3] = segs[3].ds_len;
1434 	case 3:
1435 		r->bge_addr2.bge_addr_lo = BGE_ADDR_LO(segs[2].ds_addr);
1436 		r->bge_addr2.bge_addr_hi = BGE_ADDR_HI(segs[2].ds_addr);
1437 		r->bge_len2 = segs[2].ds_len;
1438 		sc->bge_cdata.bge_rx_jumbo_seglen[i][2] = segs[2].ds_len;
1439 	case 2:
1440 		r->bge_addr1.bge_addr_lo = BGE_ADDR_LO(segs[1].ds_addr);
1441 		r->bge_addr1.bge_addr_hi = BGE_ADDR_HI(segs[1].ds_addr);
1442 		r->bge_len1 = segs[1].ds_len;
1443 		sc->bge_cdata.bge_rx_jumbo_seglen[i][1] = segs[1].ds_len;
1444 	case 1:
1445 		r->bge_addr0.bge_addr_lo = BGE_ADDR_LO(segs[0].ds_addr);
1446 		r->bge_addr0.bge_addr_hi = BGE_ADDR_HI(segs[0].ds_addr);
1447 		r->bge_len0 = segs[0].ds_len;
1448 		sc->bge_cdata.bge_rx_jumbo_seglen[i][0] = segs[0].ds_len;
1449 		break;
1450 	default:
1451 		panic("%s: %d segments\n", __func__, nsegs);
1452 	}
1453 
1454 	bus_dmamap_sync(sc->bge_cdata.bge_mtag_jumbo,
1455 	    sc->bge_cdata.bge_rx_jumbo_dmamap[i], BUS_DMASYNC_PREREAD);
1456 
1457 	return (0);
1458 }
1459 
1460 static int
1461 bge_init_rx_ring_std(struct bge_softc *sc)
1462 {
1463 	int error, i;
1464 
1465 	bzero(sc->bge_ldata.bge_rx_std_ring, BGE_STD_RX_RING_SZ);
1466 	sc->bge_std = 0;
1467 	for (i = 0; i < BGE_STD_RX_RING_CNT; i++) {
1468 		if ((error = bge_newbuf_std(sc, i)) != 0)
1469 			return (error);
1470 		BGE_INC(sc->bge_std, BGE_STD_RX_RING_CNT);
1471 	}
1472 
1473 	bus_dmamap_sync(sc->bge_cdata.bge_rx_std_ring_tag,
1474 	    sc->bge_cdata.bge_rx_std_ring_map, BUS_DMASYNC_PREWRITE);
1475 
1476 	sc->bge_std = 0;
1477 	bge_writembx(sc, BGE_MBX_RX_STD_PROD_LO, BGE_STD_RX_RING_CNT - 1);
1478 
1479 	return (0);
1480 }
1481 
1482 static void
1483 bge_free_rx_ring_std(struct bge_softc *sc)
1484 {
1485 	int i;
1486 
1487 	for (i = 0; i < BGE_STD_RX_RING_CNT; i++) {
1488 		if (sc->bge_cdata.bge_rx_std_chain[i] != NULL) {
1489 			bus_dmamap_sync(sc->bge_cdata.bge_rx_mtag,
1490 			    sc->bge_cdata.bge_rx_std_dmamap[i],
1491 			    BUS_DMASYNC_POSTREAD);
1492 			bus_dmamap_unload(sc->bge_cdata.bge_rx_mtag,
1493 			    sc->bge_cdata.bge_rx_std_dmamap[i]);
1494 			m_freem(sc->bge_cdata.bge_rx_std_chain[i]);
1495 			sc->bge_cdata.bge_rx_std_chain[i] = NULL;
1496 		}
1497 		bzero((char *)&sc->bge_ldata.bge_rx_std_ring[i],
1498 		    sizeof(struct bge_rx_bd));
1499 	}
1500 }
1501 
1502 static int
1503 bge_init_rx_ring_jumbo(struct bge_softc *sc)
1504 {
1505 	struct bge_rcb *rcb;
1506 	int error, i;
1507 
1508 	bzero(sc->bge_ldata.bge_rx_jumbo_ring, BGE_JUMBO_RX_RING_SZ);
1509 	sc->bge_jumbo = 0;
1510 	for (i = 0; i < BGE_JUMBO_RX_RING_CNT; i++) {
1511 		if ((error = bge_newbuf_jumbo(sc, i)) != 0)
1512 			return (error);
1513 		BGE_INC(sc->bge_jumbo, BGE_JUMBO_RX_RING_CNT);
1514 	}
1515 
1516 	bus_dmamap_sync(sc->bge_cdata.bge_rx_jumbo_ring_tag,
1517 	    sc->bge_cdata.bge_rx_jumbo_ring_map, BUS_DMASYNC_PREWRITE);
1518 
1519 	sc->bge_jumbo = 0;
1520 
1521 	/* Enable the jumbo receive producer ring. */
1522 	rcb = &sc->bge_ldata.bge_info.bge_jumbo_rx_rcb;
1523 	rcb->bge_maxlen_flags =
1524 	    BGE_RCB_MAXLEN_FLAGS(0, BGE_RCB_FLAG_USE_EXT_RX_BD);
1525 	CSR_WRITE_4(sc, BGE_RX_JUMBO_RCB_MAXLEN_FLAGS, rcb->bge_maxlen_flags);
1526 
1527 	bge_writembx(sc, BGE_MBX_RX_JUMBO_PROD_LO, BGE_JUMBO_RX_RING_CNT - 1);
1528 
1529 	return (0);
1530 }
1531 
1532 static void
1533 bge_free_rx_ring_jumbo(struct bge_softc *sc)
1534 {
1535 	int i;
1536 
1537 	for (i = 0; i < BGE_JUMBO_RX_RING_CNT; i++) {
1538 		if (sc->bge_cdata.bge_rx_jumbo_chain[i] != NULL) {
1539 			bus_dmamap_sync(sc->bge_cdata.bge_mtag_jumbo,
1540 			    sc->bge_cdata.bge_rx_jumbo_dmamap[i],
1541 			    BUS_DMASYNC_POSTREAD);
1542 			bus_dmamap_unload(sc->bge_cdata.bge_mtag_jumbo,
1543 			    sc->bge_cdata.bge_rx_jumbo_dmamap[i]);
1544 			m_freem(sc->bge_cdata.bge_rx_jumbo_chain[i]);
1545 			sc->bge_cdata.bge_rx_jumbo_chain[i] = NULL;
1546 		}
1547 		bzero((char *)&sc->bge_ldata.bge_rx_jumbo_ring[i],
1548 		    sizeof(struct bge_extrx_bd));
1549 	}
1550 }
1551 
1552 static void
1553 bge_free_tx_ring(struct bge_softc *sc)
1554 {
1555 	int i;
1556 
1557 	if (sc->bge_ldata.bge_tx_ring == NULL)
1558 		return;
1559 
1560 	for (i = 0; i < BGE_TX_RING_CNT; i++) {
1561 		if (sc->bge_cdata.bge_tx_chain[i] != NULL) {
1562 			bus_dmamap_sync(sc->bge_cdata.bge_tx_mtag,
1563 			    sc->bge_cdata.bge_tx_dmamap[i],
1564 			    BUS_DMASYNC_POSTWRITE);
1565 			bus_dmamap_unload(sc->bge_cdata.bge_tx_mtag,
1566 			    sc->bge_cdata.bge_tx_dmamap[i]);
1567 			m_freem(sc->bge_cdata.bge_tx_chain[i]);
1568 			sc->bge_cdata.bge_tx_chain[i] = NULL;
1569 		}
1570 		bzero((char *)&sc->bge_ldata.bge_tx_ring[i],
1571 		    sizeof(struct bge_tx_bd));
1572 	}
1573 }
1574 
1575 static int
1576 bge_init_tx_ring(struct bge_softc *sc)
1577 {
1578 	sc->bge_txcnt = 0;
1579 	sc->bge_tx_saved_considx = 0;
1580 
1581 	bzero(sc->bge_ldata.bge_tx_ring, BGE_TX_RING_SZ);
1582 	bus_dmamap_sync(sc->bge_cdata.bge_tx_ring_tag,
1583 	    sc->bge_cdata.bge_tx_ring_map, BUS_DMASYNC_PREWRITE);
1584 
1585 	/* Initialize transmit producer index for host-memory send ring. */
1586 	sc->bge_tx_prodidx = 0;
1587 	bge_writembx(sc, BGE_MBX_TX_HOST_PROD0_LO, sc->bge_tx_prodidx);
1588 
1589 	/* 5700 b2 errata */
1590 	if (sc->bge_chiprev == BGE_CHIPREV_5700_BX)
1591 		bge_writembx(sc, BGE_MBX_TX_HOST_PROD0_LO, sc->bge_tx_prodidx);
1592 
1593 	/* NIC-memory send ring not used; initialize to zero. */
1594 	bge_writembx(sc, BGE_MBX_TX_NIC_PROD0_LO, 0);
1595 	/* 5700 b2 errata */
1596 	if (sc->bge_chiprev == BGE_CHIPREV_5700_BX)
1597 		bge_writembx(sc, BGE_MBX_TX_NIC_PROD0_LO, 0);
1598 
1599 	return (0);
1600 }
1601 
1602 static void
1603 bge_setpromisc(struct bge_softc *sc)
1604 {
1605 	if_t ifp;
1606 
1607 	BGE_LOCK_ASSERT(sc);
1608 
1609 	ifp = sc->bge_ifp;
1610 
1611 	/* Enable or disable promiscuous mode as needed. */
1612 	if (if_getflags(ifp) & IFF_PROMISC)
1613 		BGE_SETBIT(sc, BGE_RX_MODE, BGE_RXMODE_RX_PROMISC);
1614 	else
1615 		BGE_CLRBIT(sc, BGE_RX_MODE, BGE_RXMODE_RX_PROMISC);
1616 }
1617 
1618 static void
1619 bge_setmulti(struct bge_softc *sc)
1620 {
1621 	if_t ifp;
1622 	int mc_count = 0;
1623 	uint32_t hashes[4] = { 0, 0, 0, 0 };
1624 	int h, i, mcnt;
1625 	unsigned char *mta;
1626 
1627 	BGE_LOCK_ASSERT(sc);
1628 
1629 	ifp = sc->bge_ifp;
1630 
1631 	mc_count = if_multiaddr_count(ifp, -1);
1632 	mta = malloc(sizeof(unsigned char) *  ETHER_ADDR_LEN *
1633 	    mc_count, M_DEVBUF, M_NOWAIT);
1634 
1635 	if(mta == NULL) {
1636 		device_printf(sc->bge_dev,
1637 		    "Failed to allocated temp mcast list\n");
1638 		return;
1639 	}
1640 
1641 	if (if_getflags(ifp) & IFF_ALLMULTI || if_getflags(ifp) & IFF_PROMISC) {
1642 		for (i = 0; i < 4; i++)
1643 			CSR_WRITE_4(sc, BGE_MAR0 + (i * 4), 0xFFFFFFFF);
1644 		free(mta, M_DEVBUF);
1645 		return;
1646 	}
1647 
1648 	/* First, zot all the existing filters. */
1649 	for (i = 0; i < 4; i++)
1650 		CSR_WRITE_4(sc, BGE_MAR0 + (i * 4), 0);
1651 
1652 	if_multiaddr_array(ifp, mta, &mcnt, mc_count);
1653 	for(i = 0; i < mcnt; i++) {
1654 		h = ether_crc32_le(mta + (i * ETHER_ADDR_LEN),
1655 		    ETHER_ADDR_LEN) & 0x7F;
1656 		hashes[(h & 0x60) >> 5] |= 1 << (h & 0x1F);
1657 	}
1658 
1659 	for (i = 0; i < 4; i++)
1660 		CSR_WRITE_4(sc, BGE_MAR0 + (i * 4), hashes[i]);
1661 
1662 	free(mta, M_DEVBUF);
1663 }
1664 
1665 static void
1666 bge_setvlan(struct bge_softc *sc)
1667 {
1668 	if_t ifp;
1669 
1670 	BGE_LOCK_ASSERT(sc);
1671 
1672 	ifp = sc->bge_ifp;
1673 
1674 	/* Enable or disable VLAN tag stripping as needed. */
1675 	if (if_getcapenable(ifp) & IFCAP_VLAN_HWTAGGING)
1676 		BGE_CLRBIT(sc, BGE_RX_MODE, BGE_RXMODE_RX_KEEP_VLAN_DIAG);
1677 	else
1678 		BGE_SETBIT(sc, BGE_RX_MODE, BGE_RXMODE_RX_KEEP_VLAN_DIAG);
1679 }
1680 
1681 static void
1682 bge_sig_pre_reset(struct bge_softc *sc, int type)
1683 {
1684 
1685 	/*
1686 	 * Some chips don't like this so only do this if ASF is enabled
1687 	 */
1688 	if (sc->bge_asf_mode)
1689 		bge_writemem_ind(sc, BGE_SRAM_FW_MB, BGE_SRAM_FW_MB_MAGIC);
1690 
1691 	if (sc->bge_asf_mode & ASF_NEW_HANDSHAKE) {
1692 		switch (type) {
1693 		case BGE_RESET_START:
1694 			bge_writemem_ind(sc, BGE_SRAM_FW_DRV_STATE_MB,
1695 			    BGE_FW_DRV_STATE_START);
1696 			break;
1697 		case BGE_RESET_SHUTDOWN:
1698 			bge_writemem_ind(sc, BGE_SRAM_FW_DRV_STATE_MB,
1699 			    BGE_FW_DRV_STATE_UNLOAD);
1700 			break;
1701 		case BGE_RESET_SUSPEND:
1702 			bge_writemem_ind(sc, BGE_SRAM_FW_DRV_STATE_MB,
1703 			    BGE_FW_DRV_STATE_SUSPEND);
1704 			break;
1705 		}
1706 	}
1707 
1708 	if (type == BGE_RESET_START || type == BGE_RESET_SUSPEND)
1709 		bge_ape_driver_state_change(sc, type);
1710 }
1711 
1712 static void
1713 bge_sig_post_reset(struct bge_softc *sc, int type)
1714 {
1715 
1716 	if (sc->bge_asf_mode & ASF_NEW_HANDSHAKE) {
1717 		switch (type) {
1718 		case BGE_RESET_START:
1719 			bge_writemem_ind(sc, BGE_SRAM_FW_DRV_STATE_MB,
1720 			    BGE_FW_DRV_STATE_START_DONE);
1721 			/* START DONE */
1722 			break;
1723 		case BGE_RESET_SHUTDOWN:
1724 			bge_writemem_ind(sc, BGE_SRAM_FW_DRV_STATE_MB,
1725 			    BGE_FW_DRV_STATE_UNLOAD_DONE);
1726 			break;
1727 		}
1728 	}
1729 	if (type == BGE_RESET_SHUTDOWN)
1730 		bge_ape_driver_state_change(sc, type);
1731 }
1732 
1733 static void
1734 bge_sig_legacy(struct bge_softc *sc, int type)
1735 {
1736 
1737 	if (sc->bge_asf_mode) {
1738 		switch (type) {
1739 		case BGE_RESET_START:
1740 			bge_writemem_ind(sc, BGE_SRAM_FW_DRV_STATE_MB,
1741 			    BGE_FW_DRV_STATE_START);
1742 			break;
1743 		case BGE_RESET_SHUTDOWN:
1744 			bge_writemem_ind(sc, BGE_SRAM_FW_DRV_STATE_MB,
1745 			    BGE_FW_DRV_STATE_UNLOAD);
1746 			break;
1747 		}
1748 	}
1749 }
1750 
1751 static void
1752 bge_stop_fw(struct bge_softc *sc)
1753 {
1754 	int i;
1755 
1756 	if (sc->bge_asf_mode) {
1757 		bge_writemem_ind(sc, BGE_SRAM_FW_CMD_MB, BGE_FW_CMD_PAUSE);
1758 		CSR_WRITE_4(sc, BGE_RX_CPU_EVENT,
1759 		    CSR_READ_4(sc, BGE_RX_CPU_EVENT) | BGE_RX_CPU_DRV_EVENT);
1760 
1761 		for (i = 0; i < 100; i++ ) {
1762 			if (!(CSR_READ_4(sc, BGE_RX_CPU_EVENT) &
1763 			    BGE_RX_CPU_DRV_EVENT))
1764 				break;
1765 			DELAY(10);
1766 		}
1767 	}
1768 }
1769 
1770 static uint32_t
1771 bge_dma_swap_options(struct bge_softc *sc)
1772 {
1773 	uint32_t dma_options;
1774 
1775 	dma_options = BGE_MODECTL_WORDSWAP_NONFRAME |
1776 	    BGE_MODECTL_BYTESWAP_DATA | BGE_MODECTL_WORDSWAP_DATA;
1777 #if BYTE_ORDER == BIG_ENDIAN
1778 	dma_options |= BGE_MODECTL_BYTESWAP_NONFRAME;
1779 #endif
1780 	return (dma_options);
1781 }
1782 
1783 /*
1784  * Do endian, PCI and DMA initialization.
1785  */
1786 static int
1787 bge_chipinit(struct bge_softc *sc)
1788 {
1789 	uint32_t dma_rw_ctl, misc_ctl, mode_ctl;
1790 	uint16_t val;
1791 	int i;
1792 
1793 	/* Set endianness before we access any non-PCI registers. */
1794 	misc_ctl = BGE_INIT;
1795 	if (sc->bge_flags & BGE_FLAG_TAGGED_STATUS)
1796 		misc_ctl |= BGE_PCIMISCCTL_TAGGED_STATUS;
1797 	pci_write_config(sc->bge_dev, BGE_PCI_MISC_CTL, misc_ctl, 4);
1798 
1799 	/*
1800 	 * Clear the MAC statistics block in the NIC's
1801 	 * internal memory.
1802 	 */
1803 	for (i = BGE_STATS_BLOCK;
1804 	    i < BGE_STATS_BLOCK_END + 1; i += sizeof(uint32_t))
1805 		BGE_MEMWIN_WRITE(sc, i, 0);
1806 
1807 	for (i = BGE_STATUS_BLOCK;
1808 	    i < BGE_STATUS_BLOCK_END + 1; i += sizeof(uint32_t))
1809 		BGE_MEMWIN_WRITE(sc, i, 0);
1810 
1811 	if (sc->bge_chiprev == BGE_CHIPREV_5704_BX) {
1812 		/*
1813 		 *  Fix data corruption caused by non-qword write with WB.
1814 		 *  Fix master abort in PCI mode.
1815 		 *  Fix PCI latency timer.
1816 		 */
1817 		val = pci_read_config(sc->bge_dev, BGE_PCI_MSI_DATA + 2, 2);
1818 		val |= (1 << 10) | (1 << 12) | (1 << 13);
1819 		pci_write_config(sc->bge_dev, BGE_PCI_MSI_DATA + 2, val, 2);
1820 	}
1821 
1822 	if (sc->bge_asicrev == BGE_ASICREV_BCM57765 ||
1823 	    sc->bge_asicrev == BGE_ASICREV_BCM57766) {
1824 		/*
1825 		 * For the 57766 and non Ax versions of 57765, bootcode
1826 		 * needs to setup the PCIE Fast Training Sequence (FTS)
1827 		 * value to prevent transmit hangs.
1828 		 */
1829 		if (sc->bge_chiprev != BGE_CHIPREV_57765_AX) {
1830 			CSR_WRITE_4(sc, BGE_CPMU_PADRNG_CTL,
1831 			    CSR_READ_4(sc, BGE_CPMU_PADRNG_CTL) |
1832 			    BGE_CPMU_PADRNG_CTL_RDIV2);
1833 		}
1834 	}
1835 
1836 	/*
1837 	 * Set up the PCI DMA control register.
1838 	 */
1839 	dma_rw_ctl = BGE_PCIDMARWCTL_RD_CMD_SHIFT(6) |
1840 	    BGE_PCIDMARWCTL_WR_CMD_SHIFT(7);
1841 	if (sc->bge_flags & BGE_FLAG_PCIE) {
1842 		if (sc->bge_mps >= 256)
1843 			dma_rw_ctl |= BGE_PCIDMARWCTL_WR_WAT_SHIFT(7);
1844 		else
1845 			dma_rw_ctl |= BGE_PCIDMARWCTL_WR_WAT_SHIFT(3);
1846 	} else if (sc->bge_flags & BGE_FLAG_PCIX) {
1847 		if (BGE_IS_5714_FAMILY(sc)) {
1848 			/* 256 bytes for read and write. */
1849 			dma_rw_ctl |= BGE_PCIDMARWCTL_RD_WAT_SHIFT(2) |
1850 			    BGE_PCIDMARWCTL_WR_WAT_SHIFT(2);
1851 			dma_rw_ctl |= (sc->bge_asicrev == BGE_ASICREV_BCM5780) ?
1852 			    BGE_PCIDMARWCTL_ONEDMA_ATONCE_GLOBAL :
1853 			    BGE_PCIDMARWCTL_ONEDMA_ATONCE_LOCAL;
1854 		} else if (sc->bge_asicrev == BGE_ASICREV_BCM5703) {
1855 			/*
1856 			 * In the BCM5703, the DMA read watermark should
1857 			 * be set to less than or equal to the maximum
1858 			 * memory read byte count of the PCI-X command
1859 			 * register.
1860 			 */
1861 			dma_rw_ctl |= BGE_PCIDMARWCTL_RD_WAT_SHIFT(4) |
1862 			    BGE_PCIDMARWCTL_WR_WAT_SHIFT(3);
1863 		} else if (sc->bge_asicrev == BGE_ASICREV_BCM5704) {
1864 			/* 1536 bytes for read, 384 bytes for write. */
1865 			dma_rw_ctl |= BGE_PCIDMARWCTL_RD_WAT_SHIFT(7) |
1866 			    BGE_PCIDMARWCTL_WR_WAT_SHIFT(3);
1867 		} else {
1868 			/* 384 bytes for read and write. */
1869 			dma_rw_ctl |= BGE_PCIDMARWCTL_RD_WAT_SHIFT(3) |
1870 			    BGE_PCIDMARWCTL_WR_WAT_SHIFT(3) |
1871 			    0x0F;
1872 		}
1873 		if (sc->bge_asicrev == BGE_ASICREV_BCM5703 ||
1874 		    sc->bge_asicrev == BGE_ASICREV_BCM5704) {
1875 			uint32_t tmp;
1876 
1877 			/* Set ONE_DMA_AT_ONCE for hardware workaround. */
1878 			tmp = CSR_READ_4(sc, BGE_PCI_CLKCTL) & 0x1F;
1879 			if (tmp == 6 || tmp == 7)
1880 				dma_rw_ctl |=
1881 				    BGE_PCIDMARWCTL_ONEDMA_ATONCE_GLOBAL;
1882 
1883 			/* Set PCI-X DMA write workaround. */
1884 			dma_rw_ctl |= BGE_PCIDMARWCTL_ASRT_ALL_BE;
1885 		}
1886 	} else {
1887 		/* Conventional PCI bus: 256 bytes for read and write. */
1888 		dma_rw_ctl |= BGE_PCIDMARWCTL_RD_WAT_SHIFT(7) |
1889 		    BGE_PCIDMARWCTL_WR_WAT_SHIFT(7);
1890 
1891 		if (sc->bge_asicrev != BGE_ASICREV_BCM5705 &&
1892 		    sc->bge_asicrev != BGE_ASICREV_BCM5750)
1893 			dma_rw_ctl |= 0x0F;
1894 	}
1895 	if (sc->bge_asicrev == BGE_ASICREV_BCM5700 ||
1896 	    sc->bge_asicrev == BGE_ASICREV_BCM5701)
1897 		dma_rw_ctl |= BGE_PCIDMARWCTL_USE_MRM |
1898 		    BGE_PCIDMARWCTL_ASRT_ALL_BE;
1899 	if (sc->bge_asicrev == BGE_ASICREV_BCM5703 ||
1900 	    sc->bge_asicrev == BGE_ASICREV_BCM5704)
1901 		dma_rw_ctl &= ~BGE_PCIDMARWCTL_MINDMA;
1902 	if (BGE_IS_5717_PLUS(sc)) {
1903 		dma_rw_ctl &= ~BGE_PCIDMARWCTL_DIS_CACHE_ALIGNMENT;
1904 		if (sc->bge_chipid == BGE_CHIPID_BCM57765_A0)
1905 			dma_rw_ctl &= ~BGE_PCIDMARWCTL_CRDRDR_RDMA_MRRS_MSK;
1906 		/*
1907 		 * Enable HW workaround for controllers that misinterpret
1908 		 * a status tag update and leave interrupts permanently
1909 		 * disabled.
1910 		 */
1911 		if (!BGE_IS_57765_PLUS(sc) &&
1912 		    sc->bge_asicrev != BGE_ASICREV_BCM5717 &&
1913 		    sc->bge_asicrev != BGE_ASICREV_BCM5762)
1914 			dma_rw_ctl |= BGE_PCIDMARWCTL_TAGGED_STATUS_WA;
1915 	}
1916 	pci_write_config(sc->bge_dev, BGE_PCI_DMA_RW_CTL, dma_rw_ctl, 4);
1917 
1918 	/*
1919 	 * Set up general mode register.
1920 	 */
1921 	mode_ctl = bge_dma_swap_options(sc);
1922 	if (sc->bge_asicrev == BGE_ASICREV_BCM5720 ||
1923 	    sc->bge_asicrev == BGE_ASICREV_BCM5762) {
1924 		/* Retain Host-2-BMC settings written by APE firmware. */
1925 		mode_ctl |= CSR_READ_4(sc, BGE_MODE_CTL) &
1926 		    (BGE_MODECTL_BYTESWAP_B2HRX_DATA |
1927 		    BGE_MODECTL_WORDSWAP_B2HRX_DATA |
1928 		    BGE_MODECTL_B2HRX_ENABLE | BGE_MODECTL_HTX2B_ENABLE);
1929 	}
1930 	mode_ctl |= BGE_MODECTL_MAC_ATTN_INTR | BGE_MODECTL_HOST_SEND_BDS |
1931 	    BGE_MODECTL_TX_NO_PHDR_CSUM;
1932 
1933 	/*
1934 	 * BCM5701 B5 have a bug causing data corruption when using
1935 	 * 64-bit DMA reads, which can be terminated early and then
1936 	 * completed later as 32-bit accesses, in combination with
1937 	 * certain bridges.
1938 	 */
1939 	if (sc->bge_asicrev == BGE_ASICREV_BCM5701 &&
1940 	    sc->bge_chipid == BGE_CHIPID_BCM5701_B5)
1941 		mode_ctl |= BGE_MODECTL_FORCE_PCI32;
1942 
1943 	/*
1944 	 * Tell the firmware the driver is running
1945 	 */
1946 	if (sc->bge_asf_mode & ASF_STACKUP)
1947 		mode_ctl |= BGE_MODECTL_STACKUP;
1948 
1949 	CSR_WRITE_4(sc, BGE_MODE_CTL, mode_ctl);
1950 
1951 	/*
1952 	 * Disable memory write invalidate.  Apparently it is not supported
1953 	 * properly by these devices.
1954 	 */
1955 	PCI_CLRBIT(sc->bge_dev, BGE_PCI_CMD, PCIM_CMD_MWIEN, 4);
1956 
1957 	/* Set the timer prescaler (always 66 MHz). */
1958 	CSR_WRITE_4(sc, BGE_MISC_CFG, BGE_32BITTIME_66MHZ);
1959 
1960 	/* XXX: The Linux tg3 driver does this at the start of brgphy_reset. */
1961 	if (sc->bge_asicrev == BGE_ASICREV_BCM5906) {
1962 		DELAY(40);	/* XXX */
1963 
1964 		/* Put PHY into ready state */
1965 		BGE_CLRBIT(sc, BGE_MISC_CFG, BGE_MISCCFG_EPHY_IDDQ);
1966 		CSR_READ_4(sc, BGE_MISC_CFG); /* Flush */
1967 		DELAY(40);
1968 	}
1969 
1970 	return (0);
1971 }
1972 
1973 static int
1974 bge_blockinit(struct bge_softc *sc)
1975 {
1976 	struct bge_rcb *rcb;
1977 	bus_size_t vrcb;
1978 	bge_hostaddr taddr;
1979 	uint32_t dmactl, rdmareg, val;
1980 	int i, limit;
1981 
1982 	/*
1983 	 * Initialize the memory window pointer register so that
1984 	 * we can access the first 32K of internal NIC RAM. This will
1985 	 * allow us to set up the TX send ring RCBs and the RX return
1986 	 * ring RCBs, plus other things which live in NIC memory.
1987 	 */
1988 	CSR_WRITE_4(sc, BGE_PCI_MEMWIN_BASEADDR, 0);
1989 
1990 	/* Note: the BCM5704 has a smaller mbuf space than other chips. */
1991 
1992 	if (!(BGE_IS_5705_PLUS(sc))) {
1993 		/* Configure mbuf memory pool */
1994 		CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_BASEADDR, BGE_BUFFPOOL_1);
1995 		if (sc->bge_asicrev == BGE_ASICREV_BCM5704)
1996 			CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_LEN, 0x10000);
1997 		else
1998 			CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_LEN, 0x18000);
1999 
2000 		/* Configure DMA resource pool */
2001 		CSR_WRITE_4(sc, BGE_BMAN_DMA_DESCPOOL_BASEADDR,
2002 		    BGE_DMA_DESCRIPTORS);
2003 		CSR_WRITE_4(sc, BGE_BMAN_DMA_DESCPOOL_LEN, 0x2000);
2004 	}
2005 
2006 	/* Configure mbuf pool watermarks */
2007 	if (BGE_IS_5717_PLUS(sc)) {
2008 		CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_READDMA_LOWAT, 0x0);
2009 		if (if_getmtu(sc->bge_ifp) > ETHERMTU) {
2010 			CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_MACRX_LOWAT, 0x7e);
2011 			CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_HIWAT, 0xea);
2012 		} else {
2013 			CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_MACRX_LOWAT, 0x2a);
2014 			CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_HIWAT, 0xa0);
2015 		}
2016 	} else if (!BGE_IS_5705_PLUS(sc)) {
2017 		CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_READDMA_LOWAT, 0x50);
2018 		CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_MACRX_LOWAT, 0x20);
2019 		CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_HIWAT, 0x60);
2020 	} else if (sc->bge_asicrev == BGE_ASICREV_BCM5906) {
2021 		CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_READDMA_LOWAT, 0x0);
2022 		CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_MACRX_LOWAT, 0x04);
2023 		CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_HIWAT, 0x10);
2024 	} else {
2025 		CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_READDMA_LOWAT, 0x0);
2026 		CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_MACRX_LOWAT, 0x10);
2027 		CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_HIWAT, 0x60);
2028 	}
2029 
2030 	/* Configure DMA resource watermarks */
2031 	CSR_WRITE_4(sc, BGE_BMAN_DMA_DESCPOOL_LOWAT, 5);
2032 	CSR_WRITE_4(sc, BGE_BMAN_DMA_DESCPOOL_HIWAT, 10);
2033 
2034 	/* Enable buffer manager */
2035 	val = BGE_BMANMODE_ENABLE | BGE_BMANMODE_LOMBUF_ATTN;
2036 	/*
2037 	 * Change the arbitration algorithm of TXMBUF read request to
2038 	 * round-robin instead of priority based for BCM5719.  When
2039 	 * TXFIFO is almost empty, RDMA will hold its request until
2040 	 * TXFIFO is not almost empty.
2041 	 */
2042 	if (sc->bge_asicrev == BGE_ASICREV_BCM5719)
2043 		val |= BGE_BMANMODE_NO_TX_UNDERRUN;
2044 	CSR_WRITE_4(sc, BGE_BMAN_MODE, val);
2045 
2046 	/* Poll for buffer manager start indication */
2047 	for (i = 0; i < BGE_TIMEOUT; i++) {
2048 		DELAY(10);
2049 		if (CSR_READ_4(sc, BGE_BMAN_MODE) & BGE_BMANMODE_ENABLE)
2050 			break;
2051 	}
2052 
2053 	if (i == BGE_TIMEOUT) {
2054 		device_printf(sc->bge_dev, "buffer manager failed to start\n");
2055 		return (ENXIO);
2056 	}
2057 
2058 	/* Enable flow-through queues */
2059 	CSR_WRITE_4(sc, BGE_FTQ_RESET, 0xFFFFFFFF);
2060 	CSR_WRITE_4(sc, BGE_FTQ_RESET, 0);
2061 
2062 	/* Wait until queue initialization is complete */
2063 	for (i = 0; i < BGE_TIMEOUT; i++) {
2064 		DELAY(10);
2065 		if (CSR_READ_4(sc, BGE_FTQ_RESET) == 0)
2066 			break;
2067 	}
2068 
2069 	if (i == BGE_TIMEOUT) {
2070 		device_printf(sc->bge_dev, "flow-through queue init failed\n");
2071 		return (ENXIO);
2072 	}
2073 
2074 	/*
2075 	 * Summary of rings supported by the controller:
2076 	 *
2077 	 * Standard Receive Producer Ring
2078 	 * - This ring is used to feed receive buffers for "standard"
2079 	 *   sized frames (typically 1536 bytes) to the controller.
2080 	 *
2081 	 * Jumbo Receive Producer Ring
2082 	 * - This ring is used to feed receive buffers for jumbo sized
2083 	 *   frames (i.e. anything bigger than the "standard" frames)
2084 	 *   to the controller.
2085 	 *
2086 	 * Mini Receive Producer Ring
2087 	 * - This ring is used to feed receive buffers for "mini"
2088 	 *   sized frames to the controller.
2089 	 * - This feature required external memory for the controller
2090 	 *   but was never used in a production system.  Should always
2091 	 *   be disabled.
2092 	 *
2093 	 * Receive Return Ring
2094 	 * - After the controller has placed an incoming frame into a
2095 	 *   receive buffer that buffer is moved into a receive return
2096 	 *   ring.  The driver is then responsible to passing the
2097 	 *   buffer up to the stack.  Many versions of the controller
2098 	 *   support multiple RR rings.
2099 	 *
2100 	 * Send Ring
2101 	 * - This ring is used for outgoing frames.  Many versions of
2102 	 *   the controller support multiple send rings.
2103 	 */
2104 
2105 	/* Initialize the standard receive producer ring control block. */
2106 	rcb = &sc->bge_ldata.bge_info.bge_std_rx_rcb;
2107 	rcb->bge_hostaddr.bge_addr_lo =
2108 	    BGE_ADDR_LO(sc->bge_ldata.bge_rx_std_ring_paddr);
2109 	rcb->bge_hostaddr.bge_addr_hi =
2110 	    BGE_ADDR_HI(sc->bge_ldata.bge_rx_std_ring_paddr);
2111 	bus_dmamap_sync(sc->bge_cdata.bge_rx_std_ring_tag,
2112 	    sc->bge_cdata.bge_rx_std_ring_map, BUS_DMASYNC_PREREAD);
2113 	if (BGE_IS_5717_PLUS(sc)) {
2114 		/*
2115 		 * Bits 31-16: Programmable ring size (2048, 1024, 512, .., 32)
2116 		 * Bits 15-2 : Maximum RX frame size
2117 		 * Bit 1     : 1 = Ring Disabled, 0 = Ring ENabled
2118 		 * Bit 0     : Reserved
2119 		 */
2120 		rcb->bge_maxlen_flags =
2121 		    BGE_RCB_MAXLEN_FLAGS(512, BGE_MAX_FRAMELEN << 2);
2122 	} else if (BGE_IS_5705_PLUS(sc)) {
2123 		/*
2124 		 * Bits 31-16: Programmable ring size (512, 256, 128, 64, 32)
2125 		 * Bits 15-2 : Reserved (should be 0)
2126 		 * Bit 1     : 1 = Ring Disabled, 0 = Ring Enabled
2127 		 * Bit 0     : Reserved
2128 		 */
2129 		rcb->bge_maxlen_flags = BGE_RCB_MAXLEN_FLAGS(512, 0);
2130 	} else {
2131 		/*
2132 		 * Ring size is always XXX entries
2133 		 * Bits 31-16: Maximum RX frame size
2134 		 * Bits 15-2 : Reserved (should be 0)
2135 		 * Bit 1     : 1 = Ring Disabled, 0 = Ring Enabled
2136 		 * Bit 0     : Reserved
2137 		 */
2138 		rcb->bge_maxlen_flags =
2139 		    BGE_RCB_MAXLEN_FLAGS(BGE_MAX_FRAMELEN, 0);
2140 	}
2141 	if (sc->bge_asicrev == BGE_ASICREV_BCM5717 ||
2142 	    sc->bge_asicrev == BGE_ASICREV_BCM5719 ||
2143 	    sc->bge_asicrev == BGE_ASICREV_BCM5720)
2144 		rcb->bge_nicaddr = BGE_STD_RX_RINGS_5717;
2145 	else
2146 		rcb->bge_nicaddr = BGE_STD_RX_RINGS;
2147 	/* Write the standard receive producer ring control block. */
2148 	CSR_WRITE_4(sc, BGE_RX_STD_RCB_HADDR_HI, rcb->bge_hostaddr.bge_addr_hi);
2149 	CSR_WRITE_4(sc, BGE_RX_STD_RCB_HADDR_LO, rcb->bge_hostaddr.bge_addr_lo);
2150 	CSR_WRITE_4(sc, BGE_RX_STD_RCB_MAXLEN_FLAGS, rcb->bge_maxlen_flags);
2151 	CSR_WRITE_4(sc, BGE_RX_STD_RCB_NICADDR, rcb->bge_nicaddr);
2152 
2153 	/* Reset the standard receive producer ring producer index. */
2154 	bge_writembx(sc, BGE_MBX_RX_STD_PROD_LO, 0);
2155 
2156 	/*
2157 	 * Initialize the jumbo RX producer ring control
2158 	 * block.  We set the 'ring disabled' bit in the
2159 	 * flags field until we're actually ready to start
2160 	 * using this ring (i.e. once we set the MTU
2161 	 * high enough to require it).
2162 	 */
2163 	if (BGE_IS_JUMBO_CAPABLE(sc)) {
2164 		rcb = &sc->bge_ldata.bge_info.bge_jumbo_rx_rcb;
2165 		/* Get the jumbo receive producer ring RCB parameters. */
2166 		rcb->bge_hostaddr.bge_addr_lo =
2167 		    BGE_ADDR_LO(sc->bge_ldata.bge_rx_jumbo_ring_paddr);
2168 		rcb->bge_hostaddr.bge_addr_hi =
2169 		    BGE_ADDR_HI(sc->bge_ldata.bge_rx_jumbo_ring_paddr);
2170 		bus_dmamap_sync(sc->bge_cdata.bge_rx_jumbo_ring_tag,
2171 		    sc->bge_cdata.bge_rx_jumbo_ring_map,
2172 		    BUS_DMASYNC_PREREAD);
2173 		rcb->bge_maxlen_flags = BGE_RCB_MAXLEN_FLAGS(0,
2174 		    BGE_RCB_FLAG_USE_EXT_RX_BD | BGE_RCB_FLAG_RING_DISABLED);
2175 		if (sc->bge_asicrev == BGE_ASICREV_BCM5717 ||
2176 		    sc->bge_asicrev == BGE_ASICREV_BCM5719 ||
2177 		    sc->bge_asicrev == BGE_ASICREV_BCM5720)
2178 			rcb->bge_nicaddr = BGE_JUMBO_RX_RINGS_5717;
2179 		else
2180 			rcb->bge_nicaddr = BGE_JUMBO_RX_RINGS;
2181 		CSR_WRITE_4(sc, BGE_RX_JUMBO_RCB_HADDR_HI,
2182 		    rcb->bge_hostaddr.bge_addr_hi);
2183 		CSR_WRITE_4(sc, BGE_RX_JUMBO_RCB_HADDR_LO,
2184 		    rcb->bge_hostaddr.bge_addr_lo);
2185 		/* Program the jumbo receive producer ring RCB parameters. */
2186 		CSR_WRITE_4(sc, BGE_RX_JUMBO_RCB_MAXLEN_FLAGS,
2187 		    rcb->bge_maxlen_flags);
2188 		CSR_WRITE_4(sc, BGE_RX_JUMBO_RCB_NICADDR, rcb->bge_nicaddr);
2189 		/* Reset the jumbo receive producer ring producer index. */
2190 		bge_writembx(sc, BGE_MBX_RX_JUMBO_PROD_LO, 0);
2191 	}
2192 
2193 	/* Disable the mini receive producer ring RCB. */
2194 	if (BGE_IS_5700_FAMILY(sc)) {
2195 		rcb = &sc->bge_ldata.bge_info.bge_mini_rx_rcb;
2196 		rcb->bge_maxlen_flags =
2197 		    BGE_RCB_MAXLEN_FLAGS(0, BGE_RCB_FLAG_RING_DISABLED);
2198 		CSR_WRITE_4(sc, BGE_RX_MINI_RCB_MAXLEN_FLAGS,
2199 		    rcb->bge_maxlen_flags);
2200 		/* Reset the mini receive producer ring producer index. */
2201 		bge_writembx(sc, BGE_MBX_RX_MINI_PROD_LO, 0);
2202 	}
2203 
2204 	/* Choose de-pipeline mode for BCM5906 A0, A1 and A2. */
2205 	if (sc->bge_asicrev == BGE_ASICREV_BCM5906) {
2206 		if (sc->bge_chipid == BGE_CHIPID_BCM5906_A0 ||
2207 		    sc->bge_chipid == BGE_CHIPID_BCM5906_A1 ||
2208 		    sc->bge_chipid == BGE_CHIPID_BCM5906_A2)
2209 			CSR_WRITE_4(sc, BGE_ISO_PKT_TX,
2210 			    (CSR_READ_4(sc, BGE_ISO_PKT_TX) & ~3) | 2);
2211 	}
2212 	/*
2213 	 * The BD ring replenish thresholds control how often the
2214 	 * hardware fetches new BD's from the producer rings in host
2215 	 * memory.  Setting the value too low on a busy system can
2216 	 * starve the hardware and recue the throughpout.
2217 	 *
2218 	 * Set the BD ring replentish thresholds. The recommended
2219 	 * values are 1/8th the number of descriptors allocated to
2220 	 * each ring.
2221 	 * XXX The 5754 requires a lower threshold, so it might be a
2222 	 * requirement of all 575x family chips.  The Linux driver sets
2223 	 * the lower threshold for all 5705 family chips as well, but there
2224 	 * are reports that it might not need to be so strict.
2225 	 *
2226 	 * XXX Linux does some extra fiddling here for the 5906 parts as
2227 	 * well.
2228 	 */
2229 	if (BGE_IS_5705_PLUS(sc))
2230 		val = 8;
2231 	else
2232 		val = BGE_STD_RX_RING_CNT / 8;
2233 	CSR_WRITE_4(sc, BGE_RBDI_STD_REPL_THRESH, val);
2234 	if (BGE_IS_JUMBO_CAPABLE(sc))
2235 		CSR_WRITE_4(sc, BGE_RBDI_JUMBO_REPL_THRESH,
2236 		    BGE_JUMBO_RX_RING_CNT/8);
2237 	if (BGE_IS_5717_PLUS(sc)) {
2238 		CSR_WRITE_4(sc, BGE_STD_REPLENISH_LWM, 32);
2239 		CSR_WRITE_4(sc, BGE_JMB_REPLENISH_LWM, 16);
2240 	}
2241 
2242 	/*
2243 	 * Disable all send rings by setting the 'ring disabled' bit
2244 	 * in the flags field of all the TX send ring control blocks,
2245 	 * located in NIC memory.
2246 	 */
2247 	if (!BGE_IS_5705_PLUS(sc))
2248 		/* 5700 to 5704 had 16 send rings. */
2249 		limit = BGE_TX_RINGS_EXTSSRAM_MAX;
2250 	else if (BGE_IS_57765_PLUS(sc) ||
2251 	    sc->bge_asicrev == BGE_ASICREV_BCM5762)
2252 		limit = 2;
2253 	else if (BGE_IS_5717_PLUS(sc))
2254 		limit = 4;
2255 	else
2256 		limit = 1;
2257 	vrcb = BGE_MEMWIN_START + BGE_SEND_RING_RCB;
2258 	for (i = 0; i < limit; i++) {
2259 		RCB_WRITE_4(sc, vrcb, bge_maxlen_flags,
2260 		    BGE_RCB_MAXLEN_FLAGS(0, BGE_RCB_FLAG_RING_DISABLED));
2261 		RCB_WRITE_4(sc, vrcb, bge_nicaddr, 0);
2262 		vrcb += sizeof(struct bge_rcb);
2263 	}
2264 
2265 	/* Configure send ring RCB 0 (we use only the first ring) */
2266 	vrcb = BGE_MEMWIN_START + BGE_SEND_RING_RCB;
2267 	BGE_HOSTADDR(taddr, sc->bge_ldata.bge_tx_ring_paddr);
2268 	RCB_WRITE_4(sc, vrcb, bge_hostaddr.bge_addr_hi, taddr.bge_addr_hi);
2269 	RCB_WRITE_4(sc, vrcb, bge_hostaddr.bge_addr_lo, taddr.bge_addr_lo);
2270 	if (sc->bge_asicrev == BGE_ASICREV_BCM5717 ||
2271 	    sc->bge_asicrev == BGE_ASICREV_BCM5719 ||
2272 	    sc->bge_asicrev == BGE_ASICREV_BCM5720)
2273 		RCB_WRITE_4(sc, vrcb, bge_nicaddr, BGE_SEND_RING_5717);
2274 	else
2275 		RCB_WRITE_4(sc, vrcb, bge_nicaddr,
2276 		    BGE_NIC_TXRING_ADDR(0, BGE_TX_RING_CNT));
2277 	RCB_WRITE_4(sc, vrcb, bge_maxlen_flags,
2278 	    BGE_RCB_MAXLEN_FLAGS(BGE_TX_RING_CNT, 0));
2279 
2280 	/*
2281 	 * Disable all receive return rings by setting the
2282 	 * 'ring diabled' bit in the flags field of all the receive
2283 	 * return ring control blocks, located in NIC memory.
2284 	 */
2285 	if (sc->bge_asicrev == BGE_ASICREV_BCM5717 ||
2286 	    sc->bge_asicrev == BGE_ASICREV_BCM5719 ||
2287 	    sc->bge_asicrev == BGE_ASICREV_BCM5720) {
2288 		/* Should be 17, use 16 until we get an SRAM map. */
2289 		limit = 16;
2290 	} else if (!BGE_IS_5705_PLUS(sc))
2291 		limit = BGE_RX_RINGS_MAX;
2292 	else if (sc->bge_asicrev == BGE_ASICREV_BCM5755 ||
2293 	    sc->bge_asicrev == BGE_ASICREV_BCM5762 ||
2294 	    BGE_IS_57765_PLUS(sc))
2295 		limit = 4;
2296 	else
2297 		limit = 1;
2298 	/* Disable all receive return rings. */
2299 	vrcb = BGE_MEMWIN_START + BGE_RX_RETURN_RING_RCB;
2300 	for (i = 0; i < limit; i++) {
2301 		RCB_WRITE_4(sc, vrcb, bge_hostaddr.bge_addr_hi, 0);
2302 		RCB_WRITE_4(sc, vrcb, bge_hostaddr.bge_addr_lo, 0);
2303 		RCB_WRITE_4(sc, vrcb, bge_maxlen_flags,
2304 		    BGE_RCB_FLAG_RING_DISABLED);
2305 		RCB_WRITE_4(sc, vrcb, bge_nicaddr, 0);
2306 		bge_writembx(sc, BGE_MBX_RX_CONS0_LO +
2307 		    (i * (sizeof(uint64_t))), 0);
2308 		vrcb += sizeof(struct bge_rcb);
2309 	}
2310 
2311 	/*
2312 	 * Set up receive return ring 0.  Note that the NIC address
2313 	 * for RX return rings is 0x0.  The return rings live entirely
2314 	 * within the host, so the nicaddr field in the RCB isn't used.
2315 	 */
2316 	vrcb = BGE_MEMWIN_START + BGE_RX_RETURN_RING_RCB;
2317 	BGE_HOSTADDR(taddr, sc->bge_ldata.bge_rx_return_ring_paddr);
2318 	RCB_WRITE_4(sc, vrcb, bge_hostaddr.bge_addr_hi, taddr.bge_addr_hi);
2319 	RCB_WRITE_4(sc, vrcb, bge_hostaddr.bge_addr_lo, taddr.bge_addr_lo);
2320 	RCB_WRITE_4(sc, vrcb, bge_nicaddr, 0);
2321 	RCB_WRITE_4(sc, vrcb, bge_maxlen_flags,
2322 	    BGE_RCB_MAXLEN_FLAGS(sc->bge_return_ring_cnt, 0));
2323 
2324 	/* Set random backoff seed for TX */
2325 	CSR_WRITE_4(sc, BGE_TX_RANDOM_BACKOFF,
2326 	    (IF_LLADDR(sc->bge_ifp)[0] + IF_LLADDR(sc->bge_ifp)[1] +
2327 	    IF_LLADDR(sc->bge_ifp)[2] + IF_LLADDR(sc->bge_ifp)[3] +
2328 	    IF_LLADDR(sc->bge_ifp)[4] + IF_LLADDR(sc->bge_ifp)[5]) &
2329 	    BGE_TX_BACKOFF_SEED_MASK);
2330 
2331 	/* Set inter-packet gap */
2332 	val = 0x2620;
2333 	if (sc->bge_asicrev == BGE_ASICREV_BCM5720 ||
2334 	    sc->bge_asicrev == BGE_ASICREV_BCM5762)
2335 		val |= CSR_READ_4(sc, BGE_TX_LENGTHS) &
2336 		    (BGE_TXLEN_JMB_FRM_LEN_MSK | BGE_TXLEN_CNT_DN_VAL_MSK);
2337 	CSR_WRITE_4(sc, BGE_TX_LENGTHS, val);
2338 
2339 	/*
2340 	 * Specify which ring to use for packets that don't match
2341 	 * any RX rules.
2342 	 */
2343 	CSR_WRITE_4(sc, BGE_RX_RULES_CFG, 0x08);
2344 
2345 	/*
2346 	 * Configure number of RX lists. One interrupt distribution
2347 	 * list, sixteen active lists, one bad frames class.
2348 	 */
2349 	CSR_WRITE_4(sc, BGE_RXLP_CFG, 0x181);
2350 
2351 	/* Inialize RX list placement stats mask. */
2352 	CSR_WRITE_4(sc, BGE_RXLP_STATS_ENABLE_MASK, 0x007FFFFF);
2353 	CSR_WRITE_4(sc, BGE_RXLP_STATS_CTL, 0x1);
2354 
2355 	/* Disable host coalescing until we get it set up */
2356 	CSR_WRITE_4(sc, BGE_HCC_MODE, 0x00000000);
2357 
2358 	/* Poll to make sure it's shut down. */
2359 	for (i = 0; i < BGE_TIMEOUT; i++) {
2360 		DELAY(10);
2361 		if (!(CSR_READ_4(sc, BGE_HCC_MODE) & BGE_HCCMODE_ENABLE))
2362 			break;
2363 	}
2364 
2365 	if (i == BGE_TIMEOUT) {
2366 		device_printf(sc->bge_dev,
2367 		    "host coalescing engine failed to idle\n");
2368 		return (ENXIO);
2369 	}
2370 
2371 	/* Set up host coalescing defaults */
2372 	CSR_WRITE_4(sc, BGE_HCC_RX_COAL_TICKS, sc->bge_rx_coal_ticks);
2373 	CSR_WRITE_4(sc, BGE_HCC_TX_COAL_TICKS, sc->bge_tx_coal_ticks);
2374 	CSR_WRITE_4(sc, BGE_HCC_RX_MAX_COAL_BDS, sc->bge_rx_max_coal_bds);
2375 	CSR_WRITE_4(sc, BGE_HCC_TX_MAX_COAL_BDS, sc->bge_tx_max_coal_bds);
2376 	if (!(BGE_IS_5705_PLUS(sc))) {
2377 		CSR_WRITE_4(sc, BGE_HCC_RX_COAL_TICKS_INT, 0);
2378 		CSR_WRITE_4(sc, BGE_HCC_TX_COAL_TICKS_INT, 0);
2379 	}
2380 	CSR_WRITE_4(sc, BGE_HCC_RX_MAX_COAL_BDS_INT, 1);
2381 	CSR_WRITE_4(sc, BGE_HCC_TX_MAX_COAL_BDS_INT, 1);
2382 
2383 	/* Set up address of statistics block */
2384 	if (!(BGE_IS_5705_PLUS(sc))) {
2385 		CSR_WRITE_4(sc, BGE_HCC_STATS_ADDR_HI,
2386 		    BGE_ADDR_HI(sc->bge_ldata.bge_stats_paddr));
2387 		CSR_WRITE_4(sc, BGE_HCC_STATS_ADDR_LO,
2388 		    BGE_ADDR_LO(sc->bge_ldata.bge_stats_paddr));
2389 		CSR_WRITE_4(sc, BGE_HCC_STATS_BASEADDR, BGE_STATS_BLOCK);
2390 		CSR_WRITE_4(sc, BGE_HCC_STATUSBLK_BASEADDR, BGE_STATUS_BLOCK);
2391 		CSR_WRITE_4(sc, BGE_HCC_STATS_TICKS, sc->bge_stat_ticks);
2392 	}
2393 
2394 	/* Set up address of status block */
2395 	CSR_WRITE_4(sc, BGE_HCC_STATUSBLK_ADDR_HI,
2396 	    BGE_ADDR_HI(sc->bge_ldata.bge_status_block_paddr));
2397 	CSR_WRITE_4(sc, BGE_HCC_STATUSBLK_ADDR_LO,
2398 	    BGE_ADDR_LO(sc->bge_ldata.bge_status_block_paddr));
2399 
2400 	/* Set up status block size. */
2401 	if (sc->bge_asicrev == BGE_ASICREV_BCM5700 &&
2402 	    sc->bge_chipid != BGE_CHIPID_BCM5700_C0) {
2403 		val = BGE_STATBLKSZ_FULL;
2404 		bzero(sc->bge_ldata.bge_status_block, BGE_STATUS_BLK_SZ);
2405 	} else {
2406 		val = BGE_STATBLKSZ_32BYTE;
2407 		bzero(sc->bge_ldata.bge_status_block, 32);
2408 	}
2409 	bus_dmamap_sync(sc->bge_cdata.bge_status_tag,
2410 	    sc->bge_cdata.bge_status_map,
2411 	    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
2412 
2413 	/* Turn on host coalescing state machine */
2414 	CSR_WRITE_4(sc, BGE_HCC_MODE, val | BGE_HCCMODE_ENABLE);
2415 
2416 	/* Turn on RX BD completion state machine and enable attentions */
2417 	CSR_WRITE_4(sc, BGE_RBDC_MODE,
2418 	    BGE_RBDCMODE_ENABLE | BGE_RBDCMODE_ATTN);
2419 
2420 	/* Turn on RX list placement state machine */
2421 	CSR_WRITE_4(sc, BGE_RXLP_MODE, BGE_RXLPMODE_ENABLE);
2422 
2423 	/* Turn on RX list selector state machine. */
2424 	if (!(BGE_IS_5705_PLUS(sc)))
2425 		CSR_WRITE_4(sc, BGE_RXLS_MODE, BGE_RXLSMODE_ENABLE);
2426 
2427 	/* Turn on DMA, clear stats. */
2428 	val = BGE_MACMODE_TXDMA_ENB | BGE_MACMODE_RXDMA_ENB |
2429 	    BGE_MACMODE_RX_STATS_CLEAR | BGE_MACMODE_TX_STATS_CLEAR |
2430 	    BGE_MACMODE_RX_STATS_ENB | BGE_MACMODE_TX_STATS_ENB |
2431 	    BGE_MACMODE_FRMHDR_DMA_ENB;
2432 
2433 	if (sc->bge_flags & BGE_FLAG_TBI)
2434 		val |= BGE_PORTMODE_TBI;
2435 	else if (sc->bge_flags & BGE_FLAG_MII_SERDES)
2436 		val |= BGE_PORTMODE_GMII;
2437 	else
2438 		val |= BGE_PORTMODE_MII;
2439 
2440 	/* Allow APE to send/receive frames. */
2441 	if ((sc->bge_mfw_flags & BGE_MFW_ON_APE) != 0)
2442 		val |= BGE_MACMODE_APE_RX_EN | BGE_MACMODE_APE_TX_EN;
2443 
2444 	CSR_WRITE_4(sc, BGE_MAC_MODE, val);
2445 	DELAY(40);
2446 
2447 	/* Set misc. local control, enable interrupts on attentions */
2448 	BGE_SETBIT(sc, BGE_MISC_LOCAL_CTL, BGE_MLC_INTR_ONATTN);
2449 
2450 #ifdef notdef
2451 	/* Assert GPIO pins for PHY reset */
2452 	BGE_SETBIT(sc, BGE_MISC_LOCAL_CTL, BGE_MLC_MISCIO_OUT0 |
2453 	    BGE_MLC_MISCIO_OUT1 | BGE_MLC_MISCIO_OUT2);
2454 	BGE_SETBIT(sc, BGE_MISC_LOCAL_CTL, BGE_MLC_MISCIO_OUTEN0 |
2455 	    BGE_MLC_MISCIO_OUTEN1 | BGE_MLC_MISCIO_OUTEN2);
2456 #endif
2457 
2458 	/* Turn on DMA completion state machine */
2459 	if (!(BGE_IS_5705_PLUS(sc)))
2460 		CSR_WRITE_4(sc, BGE_DMAC_MODE, BGE_DMACMODE_ENABLE);
2461 
2462 	val = BGE_WDMAMODE_ENABLE | BGE_WDMAMODE_ALL_ATTNS;
2463 
2464 	/* Enable host coalescing bug fix. */
2465 	if (BGE_IS_5755_PLUS(sc))
2466 		val |= BGE_WDMAMODE_STATUS_TAG_FIX;
2467 
2468 	/* Request larger DMA burst size to get better performance. */
2469 	if (sc->bge_asicrev == BGE_ASICREV_BCM5785)
2470 		val |= BGE_WDMAMODE_BURST_ALL_DATA;
2471 
2472 	/* Turn on write DMA state machine */
2473 	CSR_WRITE_4(sc, BGE_WDMA_MODE, val);
2474 	DELAY(40);
2475 
2476 	/* Turn on read DMA state machine */
2477 	val = BGE_RDMAMODE_ENABLE | BGE_RDMAMODE_ALL_ATTNS;
2478 
2479 	if (sc->bge_asicrev == BGE_ASICREV_BCM5717)
2480 		val |= BGE_RDMAMODE_MULT_DMA_RD_DIS;
2481 
2482 	if (sc->bge_asicrev == BGE_ASICREV_BCM5784 ||
2483 	    sc->bge_asicrev == BGE_ASICREV_BCM5785 ||
2484 	    sc->bge_asicrev == BGE_ASICREV_BCM57780)
2485 		val |= BGE_RDMAMODE_BD_SBD_CRPT_ATTN |
2486 		    BGE_RDMAMODE_MBUF_RBD_CRPT_ATTN |
2487 		    BGE_RDMAMODE_MBUF_SBD_CRPT_ATTN;
2488 	if (sc->bge_flags & BGE_FLAG_PCIE)
2489 		val |= BGE_RDMAMODE_FIFO_LONG_BURST;
2490 	if (sc->bge_flags & (BGE_FLAG_TSO | BGE_FLAG_TSO3)) {
2491 		val |= BGE_RDMAMODE_TSO4_ENABLE;
2492 		if (sc->bge_flags & BGE_FLAG_TSO3 ||
2493 		    sc->bge_asicrev == BGE_ASICREV_BCM5785 ||
2494 		    sc->bge_asicrev == BGE_ASICREV_BCM57780)
2495 			val |= BGE_RDMAMODE_TSO6_ENABLE;
2496 	}
2497 
2498 	if (sc->bge_asicrev == BGE_ASICREV_BCM5720 ||
2499 	    sc->bge_asicrev == BGE_ASICREV_BCM5762) {
2500 		val |= CSR_READ_4(sc, BGE_RDMA_MODE) &
2501 			BGE_RDMAMODE_H2BNC_VLAN_DET;
2502 		/*
2503 		 * Allow multiple outstanding read requests from
2504 		 * non-LSO read DMA engine.
2505 		 */
2506 		val &= ~BGE_RDMAMODE_MULT_DMA_RD_DIS;
2507 	}
2508 
2509 	if (sc->bge_asicrev == BGE_ASICREV_BCM5761 ||
2510 	    sc->bge_asicrev == BGE_ASICREV_BCM5784 ||
2511 	    sc->bge_asicrev == BGE_ASICREV_BCM5785 ||
2512 	    sc->bge_asicrev == BGE_ASICREV_BCM57780 ||
2513 	    BGE_IS_5717_PLUS(sc) || BGE_IS_57765_PLUS(sc)) {
2514 		if (sc->bge_asicrev == BGE_ASICREV_BCM5762)
2515 			rdmareg = BGE_RDMA_RSRVCTRL_REG2;
2516 		else
2517 			rdmareg = BGE_RDMA_RSRVCTRL;
2518 		dmactl = CSR_READ_4(sc, rdmareg);
2519 		/*
2520 		 * Adjust tx margin to prevent TX data corruption and
2521 		 * fix internal FIFO overflow.
2522 		 */
2523 		if (sc->bge_chipid == BGE_CHIPID_BCM5719_A0 ||
2524 		    sc->bge_asicrev == BGE_ASICREV_BCM5762) {
2525 			dmactl &= ~(BGE_RDMA_RSRVCTRL_FIFO_LWM_MASK |
2526 			    BGE_RDMA_RSRVCTRL_FIFO_HWM_MASK |
2527 			    BGE_RDMA_RSRVCTRL_TXMRGN_MASK);
2528 			dmactl |= BGE_RDMA_RSRVCTRL_FIFO_LWM_1_5K |
2529 			    BGE_RDMA_RSRVCTRL_FIFO_HWM_1_5K |
2530 			    BGE_RDMA_RSRVCTRL_TXMRGN_320B;
2531 		}
2532 		/*
2533 		 * Enable fix for read DMA FIFO overruns.
2534 		 * The fix is to limit the number of RX BDs
2535 		 * the hardware would fetch at a fime.
2536 		 */
2537 		CSR_WRITE_4(sc, rdmareg, dmactl |
2538 		    BGE_RDMA_RSRVCTRL_FIFO_OFLW_FIX);
2539 	}
2540 
2541 	if (sc->bge_asicrev == BGE_ASICREV_BCM5719) {
2542 		CSR_WRITE_4(sc, BGE_RDMA_LSO_CRPTEN_CTRL,
2543 		    CSR_READ_4(sc, BGE_RDMA_LSO_CRPTEN_CTRL) |
2544 		    BGE_RDMA_LSO_CRPTEN_CTRL_BLEN_BD_4K |
2545 		    BGE_RDMA_LSO_CRPTEN_CTRL_BLEN_LSO_4K);
2546 	} else if (sc->bge_asicrev == BGE_ASICREV_BCM5720) {
2547 		/*
2548 		 * Allow 4KB burst length reads for non-LSO frames.
2549 		 * Enable 512B burst length reads for buffer descriptors.
2550 		 */
2551 		CSR_WRITE_4(sc, BGE_RDMA_LSO_CRPTEN_CTRL,
2552 		    CSR_READ_4(sc, BGE_RDMA_LSO_CRPTEN_CTRL) |
2553 		    BGE_RDMA_LSO_CRPTEN_CTRL_BLEN_BD_512 |
2554 		    BGE_RDMA_LSO_CRPTEN_CTRL_BLEN_LSO_4K);
2555 	} else if (sc->bge_asicrev == BGE_ASICREV_BCM5762) {
2556 		CSR_WRITE_4(sc, BGE_RDMA_LSO_CRPTEN_CTRL_REG2,
2557 		    CSR_READ_4(sc, BGE_RDMA_LSO_CRPTEN_CTRL_REG2) |
2558 		    BGE_RDMA_LSO_CRPTEN_CTRL_BLEN_BD_4K |
2559 		    BGE_RDMA_LSO_CRPTEN_CTRL_BLEN_LSO_4K);
2560 	}
2561 
2562 	CSR_WRITE_4(sc, BGE_RDMA_MODE, val);
2563 	DELAY(40);
2564 
2565 	if (sc->bge_flags & BGE_FLAG_RDMA_BUG) {
2566 		for (i = 0; i < BGE_NUM_RDMA_CHANNELS / 2; i++) {
2567 			val = CSR_READ_4(sc, BGE_RDMA_LENGTH + i * 4);
2568 			if ((val & 0xFFFF) > BGE_FRAMELEN)
2569 				break;
2570 			if (((val >> 16) & 0xFFFF) > BGE_FRAMELEN)
2571 				break;
2572 		}
2573 		if (i != BGE_NUM_RDMA_CHANNELS / 2) {
2574 			val = CSR_READ_4(sc, BGE_RDMA_LSO_CRPTEN_CTRL);
2575 			if (sc->bge_asicrev == BGE_ASICREV_BCM5719)
2576 				val |= BGE_RDMA_TX_LENGTH_WA_5719;
2577 			else
2578 				val |= BGE_RDMA_TX_LENGTH_WA_5720;
2579 			CSR_WRITE_4(sc, BGE_RDMA_LSO_CRPTEN_CTRL, val);
2580 		}
2581 	}
2582 
2583 	/* Turn on RX data completion state machine */
2584 	CSR_WRITE_4(sc, BGE_RDC_MODE, BGE_RDCMODE_ENABLE);
2585 
2586 	/* Turn on RX BD initiator state machine */
2587 	CSR_WRITE_4(sc, BGE_RBDI_MODE, BGE_RBDIMODE_ENABLE);
2588 
2589 	/* Turn on RX data and RX BD initiator state machine */
2590 	CSR_WRITE_4(sc, BGE_RDBDI_MODE, BGE_RDBDIMODE_ENABLE);
2591 
2592 	/* Turn on Mbuf cluster free state machine */
2593 	if (!(BGE_IS_5705_PLUS(sc)))
2594 		CSR_WRITE_4(sc, BGE_MBCF_MODE, BGE_MBCFMODE_ENABLE);
2595 
2596 	/* Turn on send BD completion state machine */
2597 	CSR_WRITE_4(sc, BGE_SBDC_MODE, BGE_SBDCMODE_ENABLE);
2598 
2599 	/* Turn on send data completion state machine */
2600 	val = BGE_SDCMODE_ENABLE;
2601 	if (sc->bge_asicrev == BGE_ASICREV_BCM5761)
2602 		val |= BGE_SDCMODE_CDELAY;
2603 	CSR_WRITE_4(sc, BGE_SDC_MODE, val);
2604 
2605 	/* Turn on send data initiator state machine */
2606 	if (sc->bge_flags & (BGE_FLAG_TSO | BGE_FLAG_TSO3))
2607 		CSR_WRITE_4(sc, BGE_SDI_MODE, BGE_SDIMODE_ENABLE |
2608 		    BGE_SDIMODE_HW_LSO_PRE_DMA);
2609 	else
2610 		CSR_WRITE_4(sc, BGE_SDI_MODE, BGE_SDIMODE_ENABLE);
2611 
2612 	/* Turn on send BD initiator state machine */
2613 	CSR_WRITE_4(sc, BGE_SBDI_MODE, BGE_SBDIMODE_ENABLE);
2614 
2615 	/* Turn on send BD selector state machine */
2616 	CSR_WRITE_4(sc, BGE_SRS_MODE, BGE_SRSMODE_ENABLE);
2617 
2618 	CSR_WRITE_4(sc, BGE_SDI_STATS_ENABLE_MASK, 0x007FFFFF);
2619 	CSR_WRITE_4(sc, BGE_SDI_STATS_CTL,
2620 	    BGE_SDISTATSCTL_ENABLE | BGE_SDISTATSCTL_FASTER);
2621 
2622 	/* ack/clear link change events */
2623 	CSR_WRITE_4(sc, BGE_MAC_STS, BGE_MACSTAT_SYNC_CHANGED |
2624 	    BGE_MACSTAT_CFG_CHANGED | BGE_MACSTAT_MI_COMPLETE |
2625 	    BGE_MACSTAT_LINK_CHANGED);
2626 	CSR_WRITE_4(sc, BGE_MI_STS, 0);
2627 
2628 	/*
2629 	 * Enable attention when the link has changed state for
2630 	 * devices that use auto polling.
2631 	 */
2632 	if (sc->bge_flags & BGE_FLAG_TBI) {
2633 		CSR_WRITE_4(sc, BGE_MI_STS, BGE_MISTS_LINK);
2634 	} else {
2635 		if (sc->bge_mi_mode & BGE_MIMODE_AUTOPOLL) {
2636 			CSR_WRITE_4(sc, BGE_MI_MODE, sc->bge_mi_mode);
2637 			DELAY(80);
2638 		}
2639 		if (sc->bge_asicrev == BGE_ASICREV_BCM5700 &&
2640 		    sc->bge_chipid != BGE_CHIPID_BCM5700_B2)
2641 			CSR_WRITE_4(sc, BGE_MAC_EVT_ENB,
2642 			    BGE_EVTENB_MI_INTERRUPT);
2643 	}
2644 
2645 	/*
2646 	 * Clear any pending link state attention.
2647 	 * Otherwise some link state change events may be lost until attention
2648 	 * is cleared by bge_intr() -> bge_link_upd() sequence.
2649 	 * It's not necessary on newer BCM chips - perhaps enabling link
2650 	 * state change attentions implies clearing pending attention.
2651 	 */
2652 	CSR_WRITE_4(sc, BGE_MAC_STS, BGE_MACSTAT_SYNC_CHANGED |
2653 	    BGE_MACSTAT_CFG_CHANGED | BGE_MACSTAT_MI_COMPLETE |
2654 	    BGE_MACSTAT_LINK_CHANGED);
2655 
2656 	/* Enable link state change attentions. */
2657 	BGE_SETBIT(sc, BGE_MAC_EVT_ENB, BGE_EVTENB_LINK_CHANGED);
2658 
2659 	return (0);
2660 }
2661 
2662 static const struct bge_revision *
2663 bge_lookup_rev(uint32_t chipid)
2664 {
2665 	const struct bge_revision *br;
2666 
2667 	for (br = bge_revisions; br->br_name != NULL; br++) {
2668 		if (br->br_chipid == chipid)
2669 			return (br);
2670 	}
2671 
2672 	for (br = bge_majorrevs; br->br_name != NULL; br++) {
2673 		if (br->br_chipid == BGE_ASICREV(chipid))
2674 			return (br);
2675 	}
2676 
2677 	return (NULL);
2678 }
2679 
2680 static const struct bge_vendor *
2681 bge_lookup_vendor(uint16_t vid)
2682 {
2683 	const struct bge_vendor *v;
2684 
2685 	for (v = bge_vendors; v->v_name != NULL; v++)
2686 		if (v->v_id == vid)
2687 			return (v);
2688 
2689 	return (NULL);
2690 }
2691 
2692 static uint32_t
2693 bge_chipid(device_t dev)
2694 {
2695 	uint32_t id;
2696 
2697 	id = pci_read_config(dev, BGE_PCI_MISC_CTL, 4) >>
2698 	    BGE_PCIMISCCTL_ASICREV_SHIFT;
2699 	if (BGE_ASICREV(id) == BGE_ASICREV_USE_PRODID_REG) {
2700 		/*
2701 		 * Find the ASCI revision.  Different chips use different
2702 		 * registers.
2703 		 */
2704 		switch (pci_get_device(dev)) {
2705 		case BCOM_DEVICEID_BCM5717C:
2706 			/* 5717 C0 seems to belong to 5720 line. */
2707 			id = BGE_CHIPID_BCM5720_A0;
2708 			break;
2709 		case BCOM_DEVICEID_BCM5717:
2710 		case BCOM_DEVICEID_BCM5718:
2711 		case BCOM_DEVICEID_BCM5719:
2712 		case BCOM_DEVICEID_BCM5720:
2713 		case BCOM_DEVICEID_BCM5725:
2714 		case BCOM_DEVICEID_BCM5727:
2715 		case BCOM_DEVICEID_BCM5762:
2716 		case BCOM_DEVICEID_BCM57764:
2717 		case BCOM_DEVICEID_BCM57767:
2718 		case BCOM_DEVICEID_BCM57787:
2719 			id = pci_read_config(dev,
2720 			    BGE_PCI_GEN2_PRODID_ASICREV, 4);
2721 			break;
2722 		case BCOM_DEVICEID_BCM57761:
2723 		case BCOM_DEVICEID_BCM57762:
2724 		case BCOM_DEVICEID_BCM57765:
2725 		case BCOM_DEVICEID_BCM57766:
2726 		case BCOM_DEVICEID_BCM57781:
2727 		case BCOM_DEVICEID_BCM57782:
2728 		case BCOM_DEVICEID_BCM57785:
2729 		case BCOM_DEVICEID_BCM57786:
2730 		case BCOM_DEVICEID_BCM57791:
2731 		case BCOM_DEVICEID_BCM57795:
2732 			id = pci_read_config(dev,
2733 			    BGE_PCI_GEN15_PRODID_ASICREV, 4);
2734 			break;
2735 		default:
2736 			id = pci_read_config(dev, BGE_PCI_PRODID_ASICREV, 4);
2737 		}
2738 	}
2739 	return (id);
2740 }
2741 
2742 /*
2743  * Probe for a Broadcom chip. Check the PCI vendor and device IDs
2744  * against our list and return its name if we find a match.
2745  *
2746  * Note that since the Broadcom controller contains VPD support, we
2747  * try to get the device name string from the controller itself instead
2748  * of the compiled-in string. It guarantees we'll always announce the
2749  * right product name. We fall back to the compiled-in string when
2750  * VPD is unavailable or corrupt.
2751  */
2752 static int
2753 bge_probe(device_t dev)
2754 {
2755 	char buf[96];
2756 	char model[64];
2757 	const struct bge_revision *br;
2758 	const char *pname;
2759 	struct bge_softc *sc;
2760 	const struct bge_type *t = bge_devs;
2761 	const struct bge_vendor *v;
2762 	uint32_t id;
2763 	uint16_t did, vid;
2764 
2765 	sc = device_get_softc(dev);
2766 	sc->bge_dev = dev;
2767 	vid = pci_get_vendor(dev);
2768 	did = pci_get_device(dev);
2769 	while(t->bge_vid != 0) {
2770 		if ((vid == t->bge_vid) && (did == t->bge_did)) {
2771 			id = bge_chipid(dev);
2772 			br = bge_lookup_rev(id);
2773 			if (bge_has_eaddr(sc) &&
2774 			    pci_get_vpd_ident(dev, &pname) == 0)
2775 				snprintf(model, sizeof(model), "%s", pname);
2776 			else {
2777 				v = bge_lookup_vendor(vid);
2778 				snprintf(model, sizeof(model), "%s %s",
2779 				    v != NULL ? v->v_name : "Unknown",
2780 				    br != NULL ? br->br_name :
2781 				    "NetXtreme/NetLink Ethernet Controller");
2782 			}
2783 			snprintf(buf, sizeof(buf), "%s, %sASIC rev. %#08x",
2784 			    model, br != NULL ? "" : "unknown ", id);
2785 			device_set_desc_copy(dev, buf);
2786 			return (BUS_PROBE_DEFAULT);
2787 		}
2788 		t++;
2789 	}
2790 
2791 	return (ENXIO);
2792 }
2793 
2794 static void
2795 bge_dma_free(struct bge_softc *sc)
2796 {
2797 	int i;
2798 
2799 	/* Destroy DMA maps for RX buffers. */
2800 	for (i = 0; i < BGE_STD_RX_RING_CNT; i++) {
2801 		if (sc->bge_cdata.bge_rx_std_dmamap[i])
2802 			bus_dmamap_destroy(sc->bge_cdata.bge_rx_mtag,
2803 			    sc->bge_cdata.bge_rx_std_dmamap[i]);
2804 	}
2805 	if (sc->bge_cdata.bge_rx_std_sparemap)
2806 		bus_dmamap_destroy(sc->bge_cdata.bge_rx_mtag,
2807 		    sc->bge_cdata.bge_rx_std_sparemap);
2808 
2809 	/* Destroy DMA maps for jumbo RX buffers. */
2810 	for (i = 0; i < BGE_JUMBO_RX_RING_CNT; i++) {
2811 		if (sc->bge_cdata.bge_rx_jumbo_dmamap[i])
2812 			bus_dmamap_destroy(sc->bge_cdata.bge_mtag_jumbo,
2813 			    sc->bge_cdata.bge_rx_jumbo_dmamap[i]);
2814 	}
2815 	if (sc->bge_cdata.bge_rx_jumbo_sparemap)
2816 		bus_dmamap_destroy(sc->bge_cdata.bge_mtag_jumbo,
2817 		    sc->bge_cdata.bge_rx_jumbo_sparemap);
2818 
2819 	/* Destroy DMA maps for TX buffers. */
2820 	for (i = 0; i < BGE_TX_RING_CNT; i++) {
2821 		if (sc->bge_cdata.bge_tx_dmamap[i])
2822 			bus_dmamap_destroy(sc->bge_cdata.bge_tx_mtag,
2823 			    sc->bge_cdata.bge_tx_dmamap[i]);
2824 	}
2825 
2826 	if (sc->bge_cdata.bge_rx_mtag)
2827 		bus_dma_tag_destroy(sc->bge_cdata.bge_rx_mtag);
2828 	if (sc->bge_cdata.bge_mtag_jumbo)
2829 		bus_dma_tag_destroy(sc->bge_cdata.bge_mtag_jumbo);
2830 	if (sc->bge_cdata.bge_tx_mtag)
2831 		bus_dma_tag_destroy(sc->bge_cdata.bge_tx_mtag);
2832 
2833 	/* Destroy standard RX ring. */
2834 	if (sc->bge_ldata.bge_rx_std_ring_paddr)
2835 		bus_dmamap_unload(sc->bge_cdata.bge_rx_std_ring_tag,
2836 		    sc->bge_cdata.bge_rx_std_ring_map);
2837 	if (sc->bge_ldata.bge_rx_std_ring)
2838 		bus_dmamem_free(sc->bge_cdata.bge_rx_std_ring_tag,
2839 		    sc->bge_ldata.bge_rx_std_ring,
2840 		    sc->bge_cdata.bge_rx_std_ring_map);
2841 
2842 	if (sc->bge_cdata.bge_rx_std_ring_tag)
2843 		bus_dma_tag_destroy(sc->bge_cdata.bge_rx_std_ring_tag);
2844 
2845 	/* Destroy jumbo RX ring. */
2846 	if (sc->bge_ldata.bge_rx_jumbo_ring_paddr)
2847 		bus_dmamap_unload(sc->bge_cdata.bge_rx_jumbo_ring_tag,
2848 		    sc->bge_cdata.bge_rx_jumbo_ring_map);
2849 
2850 	if (sc->bge_ldata.bge_rx_jumbo_ring)
2851 		bus_dmamem_free(sc->bge_cdata.bge_rx_jumbo_ring_tag,
2852 		    sc->bge_ldata.bge_rx_jumbo_ring,
2853 		    sc->bge_cdata.bge_rx_jumbo_ring_map);
2854 
2855 	if (sc->bge_cdata.bge_rx_jumbo_ring_tag)
2856 		bus_dma_tag_destroy(sc->bge_cdata.bge_rx_jumbo_ring_tag);
2857 
2858 	/* Destroy RX return ring. */
2859 	if (sc->bge_ldata.bge_rx_return_ring_paddr)
2860 		bus_dmamap_unload(sc->bge_cdata.bge_rx_return_ring_tag,
2861 		    sc->bge_cdata.bge_rx_return_ring_map);
2862 
2863 	if (sc->bge_ldata.bge_rx_return_ring)
2864 		bus_dmamem_free(sc->bge_cdata.bge_rx_return_ring_tag,
2865 		    sc->bge_ldata.bge_rx_return_ring,
2866 		    sc->bge_cdata.bge_rx_return_ring_map);
2867 
2868 	if (sc->bge_cdata.bge_rx_return_ring_tag)
2869 		bus_dma_tag_destroy(sc->bge_cdata.bge_rx_return_ring_tag);
2870 
2871 	/* Destroy TX ring. */
2872 	if (sc->bge_ldata.bge_tx_ring_paddr)
2873 		bus_dmamap_unload(sc->bge_cdata.bge_tx_ring_tag,
2874 		    sc->bge_cdata.bge_tx_ring_map);
2875 
2876 	if (sc->bge_ldata.bge_tx_ring)
2877 		bus_dmamem_free(sc->bge_cdata.bge_tx_ring_tag,
2878 		    sc->bge_ldata.bge_tx_ring,
2879 		    sc->bge_cdata.bge_tx_ring_map);
2880 
2881 	if (sc->bge_cdata.bge_tx_ring_tag)
2882 		bus_dma_tag_destroy(sc->bge_cdata.bge_tx_ring_tag);
2883 
2884 	/* Destroy status block. */
2885 	if (sc->bge_ldata.bge_status_block_paddr)
2886 		bus_dmamap_unload(sc->bge_cdata.bge_status_tag,
2887 		    sc->bge_cdata.bge_status_map);
2888 
2889 	if (sc->bge_ldata.bge_status_block)
2890 		bus_dmamem_free(sc->bge_cdata.bge_status_tag,
2891 		    sc->bge_ldata.bge_status_block,
2892 		    sc->bge_cdata.bge_status_map);
2893 
2894 	if (sc->bge_cdata.bge_status_tag)
2895 		bus_dma_tag_destroy(sc->bge_cdata.bge_status_tag);
2896 
2897 	/* Destroy statistics block. */
2898 	if (sc->bge_ldata.bge_stats_paddr)
2899 		bus_dmamap_unload(sc->bge_cdata.bge_stats_tag,
2900 		    sc->bge_cdata.bge_stats_map);
2901 
2902 	if (sc->bge_ldata.bge_stats)
2903 		bus_dmamem_free(sc->bge_cdata.bge_stats_tag,
2904 		    sc->bge_ldata.bge_stats,
2905 		    sc->bge_cdata.bge_stats_map);
2906 
2907 	if (sc->bge_cdata.bge_stats_tag)
2908 		bus_dma_tag_destroy(sc->bge_cdata.bge_stats_tag);
2909 
2910 	if (sc->bge_cdata.bge_buffer_tag)
2911 		bus_dma_tag_destroy(sc->bge_cdata.bge_buffer_tag);
2912 
2913 	/* Destroy the parent tag. */
2914 	if (sc->bge_cdata.bge_parent_tag)
2915 		bus_dma_tag_destroy(sc->bge_cdata.bge_parent_tag);
2916 }
2917 
2918 static int
2919 bge_dma_ring_alloc(struct bge_softc *sc, bus_size_t alignment,
2920     bus_size_t maxsize, bus_dma_tag_t *tag, uint8_t **ring, bus_dmamap_t *map,
2921     bus_addr_t *paddr, const char *msg)
2922 {
2923 	struct bge_dmamap_arg ctx;
2924 	int error;
2925 
2926 	error = bus_dma_tag_create(sc->bge_cdata.bge_parent_tag,
2927 	    alignment, 0, BUS_SPACE_MAXADDR, BUS_SPACE_MAXADDR, NULL,
2928 	    NULL, maxsize, 1, maxsize, 0, NULL, NULL, tag);
2929 	if (error != 0) {
2930 		device_printf(sc->bge_dev,
2931 		    "could not create %s dma tag\n", msg);
2932 		return (ENOMEM);
2933 	}
2934 	/* Allocate DMA'able memory for ring. */
2935 	error = bus_dmamem_alloc(*tag, (void **)ring,
2936 	    BUS_DMA_NOWAIT | BUS_DMA_ZERO | BUS_DMA_COHERENT, map);
2937 	if (error != 0) {
2938 		device_printf(sc->bge_dev,
2939 		    "could not allocate DMA'able memory for %s\n", msg);
2940 		return (ENOMEM);
2941 	}
2942 	/* Load the address of the ring. */
2943 	ctx.bge_busaddr = 0;
2944 	error = bus_dmamap_load(*tag, *map, *ring, maxsize, bge_dma_map_addr,
2945 	    &ctx, BUS_DMA_NOWAIT);
2946 	if (error != 0) {
2947 		device_printf(sc->bge_dev,
2948 		    "could not load DMA'able memory for %s\n", msg);
2949 		return (ENOMEM);
2950 	}
2951 	*paddr = ctx.bge_busaddr;
2952 	return (0);
2953 }
2954 
2955 static int
2956 bge_dma_alloc(struct bge_softc *sc)
2957 {
2958 	bus_addr_t lowaddr;
2959 	bus_size_t rxmaxsegsz, sbsz, txsegsz, txmaxsegsz;
2960 	int i, error;
2961 
2962 	lowaddr = BUS_SPACE_MAXADDR;
2963 	if ((sc->bge_flags & BGE_FLAG_40BIT_BUG) != 0)
2964 		lowaddr = BGE_DMA_MAXADDR;
2965 	/*
2966 	 * Allocate the parent bus DMA tag appropriate for PCI.
2967 	 */
2968 	error = bus_dma_tag_create(bus_get_dma_tag(sc->bge_dev),
2969 	    1, 0, lowaddr, BUS_SPACE_MAXADDR, NULL,
2970 	    NULL, BUS_SPACE_MAXSIZE_32BIT, 0, BUS_SPACE_MAXSIZE_32BIT,
2971 	    0, NULL, NULL, &sc->bge_cdata.bge_parent_tag);
2972 	if (error != 0) {
2973 		device_printf(sc->bge_dev,
2974 		    "could not allocate parent dma tag\n");
2975 		return (ENOMEM);
2976 	}
2977 
2978 	/* Create tag for standard RX ring. */
2979 	error = bge_dma_ring_alloc(sc, PAGE_SIZE, BGE_STD_RX_RING_SZ,
2980 	    &sc->bge_cdata.bge_rx_std_ring_tag,
2981 	    (uint8_t **)&sc->bge_ldata.bge_rx_std_ring,
2982 	    &sc->bge_cdata.bge_rx_std_ring_map,
2983 	    &sc->bge_ldata.bge_rx_std_ring_paddr, "RX ring");
2984 	if (error)
2985 		return (error);
2986 
2987 	/* Create tag for RX return ring. */
2988 	error = bge_dma_ring_alloc(sc, PAGE_SIZE, BGE_RX_RTN_RING_SZ(sc),
2989 	    &sc->bge_cdata.bge_rx_return_ring_tag,
2990 	    (uint8_t **)&sc->bge_ldata.bge_rx_return_ring,
2991 	    &sc->bge_cdata.bge_rx_return_ring_map,
2992 	    &sc->bge_ldata.bge_rx_return_ring_paddr, "RX return ring");
2993 	if (error)
2994 		return (error);
2995 
2996 	/* Create tag for TX ring. */
2997 	error = bge_dma_ring_alloc(sc, PAGE_SIZE, BGE_TX_RING_SZ,
2998 	    &sc->bge_cdata.bge_tx_ring_tag,
2999 	    (uint8_t **)&sc->bge_ldata.bge_tx_ring,
3000 	    &sc->bge_cdata.bge_tx_ring_map,
3001 	    &sc->bge_ldata.bge_tx_ring_paddr, "TX ring");
3002 	if (error)
3003 		return (error);
3004 
3005 	/*
3006 	 * Create tag for status block.
3007 	 * Because we only use single Tx/Rx/Rx return ring, use
3008 	 * minimum status block size except BCM5700 AX/BX which
3009 	 * seems to want to see full status block size regardless
3010 	 * of configured number of ring.
3011 	 */
3012 	if (sc->bge_asicrev == BGE_ASICREV_BCM5700 &&
3013 	    sc->bge_chipid != BGE_CHIPID_BCM5700_C0)
3014 		sbsz = BGE_STATUS_BLK_SZ;
3015 	else
3016 		sbsz = 32;
3017 	error = bge_dma_ring_alloc(sc, PAGE_SIZE, sbsz,
3018 	    &sc->bge_cdata.bge_status_tag,
3019 	    (uint8_t **)&sc->bge_ldata.bge_status_block,
3020 	    &sc->bge_cdata.bge_status_map,
3021 	    &sc->bge_ldata.bge_status_block_paddr, "status block");
3022 	if (error)
3023 		return (error);
3024 
3025 	/* Create tag for statistics block. */
3026 	error = bge_dma_ring_alloc(sc, PAGE_SIZE, BGE_STATS_SZ,
3027 	    &sc->bge_cdata.bge_stats_tag,
3028 	    (uint8_t **)&sc->bge_ldata.bge_stats,
3029 	    &sc->bge_cdata.bge_stats_map,
3030 	    &sc->bge_ldata.bge_stats_paddr, "statistics block");
3031 	if (error)
3032 		return (error);
3033 
3034 	/* Create tag for jumbo RX ring. */
3035 	if (BGE_IS_JUMBO_CAPABLE(sc)) {
3036 		error = bge_dma_ring_alloc(sc, PAGE_SIZE, BGE_JUMBO_RX_RING_SZ,
3037 		    &sc->bge_cdata.bge_rx_jumbo_ring_tag,
3038 		    (uint8_t **)&sc->bge_ldata.bge_rx_jumbo_ring,
3039 		    &sc->bge_cdata.bge_rx_jumbo_ring_map,
3040 		    &sc->bge_ldata.bge_rx_jumbo_ring_paddr, "jumbo RX ring");
3041 		if (error)
3042 			return (error);
3043 	}
3044 
3045 	/* Create parent tag for buffers. */
3046 	if ((sc->bge_flags & BGE_FLAG_4G_BNDRY_BUG) != 0) {
3047 		/*
3048 		 * XXX
3049 		 * watchdog timeout issue was observed on BCM5704 which
3050 		 * lives behind PCI-X bridge(e.g AMD 8131 PCI-X bridge).
3051 		 * Both limiting DMA address space to 32bits and flushing
3052 		 * mailbox write seem to address the issue.
3053 		 */
3054 		if (sc->bge_pcixcap != 0)
3055 			lowaddr = BUS_SPACE_MAXADDR_32BIT;
3056 	}
3057 	error = bus_dma_tag_create(bus_get_dma_tag(sc->bge_dev), 1, 0, lowaddr,
3058 	    BUS_SPACE_MAXADDR, NULL, NULL, BUS_SPACE_MAXSIZE_32BIT, 0,
3059 	    BUS_SPACE_MAXSIZE_32BIT, 0, NULL, NULL,
3060 	    &sc->bge_cdata.bge_buffer_tag);
3061 	if (error != 0) {
3062 		device_printf(sc->bge_dev,
3063 		    "could not allocate buffer dma tag\n");
3064 		return (ENOMEM);
3065 	}
3066 	/* Create tag for Tx mbufs. */
3067 	if (sc->bge_flags & (BGE_FLAG_TSO | BGE_FLAG_TSO3)) {
3068 		txsegsz = BGE_TSOSEG_SZ;
3069 		txmaxsegsz = 65535 + sizeof(struct ether_vlan_header);
3070 	} else {
3071 		txsegsz = MCLBYTES;
3072 		txmaxsegsz = MCLBYTES * BGE_NSEG_NEW;
3073 	}
3074 	error = bus_dma_tag_create(sc->bge_cdata.bge_buffer_tag, 1,
3075 	    0, BUS_SPACE_MAXADDR, BUS_SPACE_MAXADDR, NULL, NULL,
3076 	    txmaxsegsz, BGE_NSEG_NEW, txsegsz, 0, NULL, NULL,
3077 	    &sc->bge_cdata.bge_tx_mtag);
3078 
3079 	if (error) {
3080 		device_printf(sc->bge_dev, "could not allocate TX dma tag\n");
3081 		return (ENOMEM);
3082 	}
3083 
3084 	/* Create tag for Rx mbufs. */
3085 	if (sc->bge_flags & BGE_FLAG_JUMBO_STD)
3086 		rxmaxsegsz = MJUM9BYTES;
3087 	else
3088 		rxmaxsegsz = MCLBYTES;
3089 	error = bus_dma_tag_create(sc->bge_cdata.bge_buffer_tag, 1, 0,
3090 	    BUS_SPACE_MAXADDR, BUS_SPACE_MAXADDR, NULL, NULL, rxmaxsegsz, 1,
3091 	    rxmaxsegsz, 0, NULL, NULL, &sc->bge_cdata.bge_rx_mtag);
3092 
3093 	if (error) {
3094 		device_printf(sc->bge_dev, "could not allocate RX dma tag\n");
3095 		return (ENOMEM);
3096 	}
3097 
3098 	/* Create DMA maps for RX buffers. */
3099 	error = bus_dmamap_create(sc->bge_cdata.bge_rx_mtag, 0,
3100 	    &sc->bge_cdata.bge_rx_std_sparemap);
3101 	if (error) {
3102 		device_printf(sc->bge_dev,
3103 		    "can't create spare DMA map for RX\n");
3104 		return (ENOMEM);
3105 	}
3106 	for (i = 0; i < BGE_STD_RX_RING_CNT; i++) {
3107 		error = bus_dmamap_create(sc->bge_cdata.bge_rx_mtag, 0,
3108 			    &sc->bge_cdata.bge_rx_std_dmamap[i]);
3109 		if (error) {
3110 			device_printf(sc->bge_dev,
3111 			    "can't create DMA map for RX\n");
3112 			return (ENOMEM);
3113 		}
3114 	}
3115 
3116 	/* Create DMA maps for TX buffers. */
3117 	for (i = 0; i < BGE_TX_RING_CNT; i++) {
3118 		error = bus_dmamap_create(sc->bge_cdata.bge_tx_mtag, 0,
3119 			    &sc->bge_cdata.bge_tx_dmamap[i]);
3120 		if (error) {
3121 			device_printf(sc->bge_dev,
3122 			    "can't create DMA map for TX\n");
3123 			return (ENOMEM);
3124 		}
3125 	}
3126 
3127 	/* Create tags for jumbo RX buffers. */
3128 	if (BGE_IS_JUMBO_CAPABLE(sc)) {
3129 		error = bus_dma_tag_create(sc->bge_cdata.bge_buffer_tag,
3130 		    1, 0, BUS_SPACE_MAXADDR, BUS_SPACE_MAXADDR, NULL,
3131 		    NULL, MJUM9BYTES, BGE_NSEG_JUMBO, PAGE_SIZE,
3132 		    0, NULL, NULL, &sc->bge_cdata.bge_mtag_jumbo);
3133 		if (error) {
3134 			device_printf(sc->bge_dev,
3135 			    "could not allocate jumbo dma tag\n");
3136 			return (ENOMEM);
3137 		}
3138 		/* Create DMA maps for jumbo RX buffers. */
3139 		error = bus_dmamap_create(sc->bge_cdata.bge_mtag_jumbo,
3140 		    0, &sc->bge_cdata.bge_rx_jumbo_sparemap);
3141 		if (error) {
3142 			device_printf(sc->bge_dev,
3143 			    "can't create spare DMA map for jumbo RX\n");
3144 			return (ENOMEM);
3145 		}
3146 		for (i = 0; i < BGE_JUMBO_RX_RING_CNT; i++) {
3147 			error = bus_dmamap_create(sc->bge_cdata.bge_mtag_jumbo,
3148 				    0, &sc->bge_cdata.bge_rx_jumbo_dmamap[i]);
3149 			if (error) {
3150 				device_printf(sc->bge_dev,
3151 				    "can't create DMA map for jumbo RX\n");
3152 				return (ENOMEM);
3153 			}
3154 		}
3155 	}
3156 
3157 	return (0);
3158 }
3159 
3160 /*
3161  * Return true if this device has more than one port.
3162  */
3163 static int
3164 bge_has_multiple_ports(struct bge_softc *sc)
3165 {
3166 	device_t dev = sc->bge_dev;
3167 	u_int b, d, f, fscan, s;
3168 
3169 	d = pci_get_domain(dev);
3170 	b = pci_get_bus(dev);
3171 	s = pci_get_slot(dev);
3172 	f = pci_get_function(dev);
3173 	for (fscan = 0; fscan <= PCI_FUNCMAX; fscan++)
3174 		if (fscan != f && pci_find_dbsf(d, b, s, fscan) != NULL)
3175 			return (1);
3176 	return (0);
3177 }
3178 
3179 /*
3180  * Return true if MSI can be used with this device.
3181  */
3182 static int
3183 bge_can_use_msi(struct bge_softc *sc)
3184 {
3185 	int can_use_msi = 0;
3186 
3187 	if (sc->bge_msi == 0)
3188 		return (0);
3189 
3190 	/* Disable MSI for polling(4). */
3191 #ifdef DEVICE_POLLING
3192 	return (0);
3193 #endif
3194 	switch (sc->bge_asicrev) {
3195 	case BGE_ASICREV_BCM5714_A0:
3196 	case BGE_ASICREV_BCM5714:
3197 		/*
3198 		 * Apparently, MSI doesn't work when these chips are
3199 		 * configured in single-port mode.
3200 		 */
3201 		if (bge_has_multiple_ports(sc))
3202 			can_use_msi = 1;
3203 		break;
3204 	case BGE_ASICREV_BCM5750:
3205 		if (sc->bge_chiprev != BGE_CHIPREV_5750_AX &&
3206 		    sc->bge_chiprev != BGE_CHIPREV_5750_BX)
3207 			can_use_msi = 1;
3208 		break;
3209 	default:
3210 		if (BGE_IS_575X_PLUS(sc))
3211 			can_use_msi = 1;
3212 	}
3213 	return (can_use_msi);
3214 }
3215 
3216 static int
3217 bge_mbox_reorder(struct bge_softc *sc)
3218 {
3219 	/* Lists of PCI bridges that are known to reorder mailbox writes. */
3220 	static const struct mbox_reorder {
3221 		const uint16_t vendor;
3222 		const uint16_t device;
3223 		const char *desc;
3224 	} mbox_reorder_lists[] = {
3225 		{ 0x1022, 0x7450, "AMD-8131 PCI-X Bridge" },
3226 	};
3227 	devclass_t pci, pcib;
3228 	device_t bus, dev;
3229 	int i;
3230 
3231 	pci = devclass_find("pci");
3232 	pcib = devclass_find("pcib");
3233 	dev = sc->bge_dev;
3234 	bus = device_get_parent(dev);
3235 	for (;;) {
3236 		dev = device_get_parent(bus);
3237 		bus = device_get_parent(dev);
3238 		if (device_get_devclass(dev) != pcib)
3239 			break;
3240 		for (i = 0; i < nitems(mbox_reorder_lists); i++) {
3241 			if (pci_get_vendor(dev) ==
3242 			    mbox_reorder_lists[i].vendor &&
3243 			    pci_get_device(dev) ==
3244 			    mbox_reorder_lists[i].device) {
3245 				device_printf(sc->bge_dev,
3246 				    "enabling MBOX workaround for %s\n",
3247 				    mbox_reorder_lists[i].desc);
3248 				return (1);
3249 			}
3250 		}
3251 		if (device_get_devclass(bus) != pci)
3252 			break;
3253 	}
3254 	return (0);
3255 }
3256 
3257 static void
3258 bge_devinfo(struct bge_softc *sc)
3259 {
3260 	uint32_t cfg, clk;
3261 
3262 	device_printf(sc->bge_dev,
3263 	    "CHIP ID 0x%08x; ASIC REV 0x%02x; CHIP REV 0x%02x; ",
3264 	    sc->bge_chipid, sc->bge_asicrev, sc->bge_chiprev);
3265 	if (sc->bge_flags & BGE_FLAG_PCIE)
3266 		printf("PCI-E\n");
3267 	else if (sc->bge_flags & BGE_FLAG_PCIX) {
3268 		printf("PCI-X ");
3269 		cfg = CSR_READ_4(sc, BGE_MISC_CFG) & BGE_MISCCFG_BOARD_ID_MASK;
3270 		if (cfg == BGE_MISCCFG_BOARD_ID_5704CIOBE)
3271 			clk = 133;
3272 		else {
3273 			clk = CSR_READ_4(sc, BGE_PCI_CLKCTL) & 0x1F;
3274 			switch (clk) {
3275 			case 0:
3276 				clk = 33;
3277 				break;
3278 			case 2:
3279 				clk = 50;
3280 				break;
3281 			case 4:
3282 				clk = 66;
3283 				break;
3284 			case 6:
3285 				clk = 100;
3286 				break;
3287 			case 7:
3288 				clk = 133;
3289 				break;
3290 			}
3291 		}
3292 		printf("%u MHz\n", clk);
3293 	} else {
3294 		if (sc->bge_pcixcap != 0)
3295 			printf("PCI on PCI-X ");
3296 		else
3297 			printf("PCI ");
3298 		cfg = pci_read_config(sc->bge_dev, BGE_PCI_PCISTATE, 4);
3299 		if (cfg & BGE_PCISTATE_PCI_BUSSPEED)
3300 			clk = 66;
3301 		else
3302 			clk = 33;
3303 		if (cfg & BGE_PCISTATE_32BIT_BUS)
3304 			printf("%u MHz; 32bit\n", clk);
3305 		else
3306 			printf("%u MHz; 64bit\n", clk);
3307 	}
3308 }
3309 
3310 static int
3311 bge_attach(device_t dev)
3312 {
3313 	if_t ifp;
3314 	struct bge_softc *sc;
3315 	uint32_t hwcfg = 0, misccfg, pcistate;
3316 	u_char eaddr[ETHER_ADDR_LEN];
3317 	int capmask, error, reg, rid, trys;
3318 
3319 	sc = device_get_softc(dev);
3320 	sc->bge_dev = dev;
3321 
3322 	BGE_LOCK_INIT(sc, device_get_nameunit(dev));
3323 	TASK_INIT(&sc->bge_intr_task, 0, bge_intr_task, sc);
3324 	callout_init_mtx(&sc->bge_stat_ch, &sc->bge_mtx, 0);
3325 
3326 	pci_enable_busmaster(dev);
3327 
3328 	/*
3329 	 * Allocate control/status registers.
3330 	 */
3331 	rid = PCIR_BAR(0);
3332 	sc->bge_res = bus_alloc_resource_any(dev, SYS_RES_MEMORY, &rid,
3333 	    RF_ACTIVE);
3334 
3335 	if (sc->bge_res == NULL) {
3336 		device_printf (sc->bge_dev, "couldn't map BAR0 memory\n");
3337 		error = ENXIO;
3338 		goto fail;
3339 	}
3340 
3341 	/* Save various chip information. */
3342 	sc->bge_func_addr = pci_get_function(dev);
3343 	sc->bge_chipid = bge_chipid(dev);
3344 	sc->bge_asicrev = BGE_ASICREV(sc->bge_chipid);
3345 	sc->bge_chiprev = BGE_CHIPREV(sc->bge_chipid);
3346 
3347 	/* Set default PHY address. */
3348 	sc->bge_phy_addr = 1;
3349 	 /*
3350 	  * PHY address mapping for various devices.
3351 	  *
3352 	  *          | F0 Cu | F0 Sr | F1 Cu | F1 Sr |
3353 	  * ---------+-------+-------+-------+-------+
3354 	  * BCM57XX  |   1   |   X   |   X   |   X   |
3355 	  * BCM5704  |   1   |   X   |   1   |   X   |
3356 	  * BCM5717  |   1   |   8   |   2   |   9   |
3357 	  * BCM5719  |   1   |   8   |   2   |   9   |
3358 	  * BCM5720  |   1   |   8   |   2   |   9   |
3359 	  *
3360 	  *          | F2 Cu | F2 Sr | F3 Cu | F3 Sr |
3361 	  * ---------+-------+-------+-------+-------+
3362 	  * BCM57XX  |   X   |   X   |   X   |   X   |
3363 	  * BCM5704  |   X   |   X   |   X   |   X   |
3364 	  * BCM5717  |   X   |   X   |   X   |   X   |
3365 	  * BCM5719  |   3   |   10  |   4   |   11  |
3366 	  * BCM5720  |   X   |   X   |   X   |   X   |
3367 	  *
3368 	  * Other addresses may respond but they are not
3369 	  * IEEE compliant PHYs and should be ignored.
3370 	  */
3371 	if (sc->bge_asicrev == BGE_ASICREV_BCM5717 ||
3372 	    sc->bge_asicrev == BGE_ASICREV_BCM5719 ||
3373 	    sc->bge_asicrev == BGE_ASICREV_BCM5720) {
3374 		if (sc->bge_chipid != BGE_CHIPID_BCM5717_A0) {
3375 			if (CSR_READ_4(sc, BGE_SGDIG_STS) &
3376 			    BGE_SGDIGSTS_IS_SERDES)
3377 				sc->bge_phy_addr = sc->bge_func_addr + 8;
3378 			else
3379 				sc->bge_phy_addr = sc->bge_func_addr + 1;
3380 		} else {
3381 			if (CSR_READ_4(sc, BGE_CPMU_PHY_STRAP) &
3382 			    BGE_CPMU_PHY_STRAP_IS_SERDES)
3383 				sc->bge_phy_addr = sc->bge_func_addr + 8;
3384 			else
3385 				sc->bge_phy_addr = sc->bge_func_addr + 1;
3386 		}
3387 	}
3388 
3389 	if (bge_has_eaddr(sc))
3390 		sc->bge_flags |= BGE_FLAG_EADDR;
3391 
3392 	/* Save chipset family. */
3393 	switch (sc->bge_asicrev) {
3394 	case BGE_ASICREV_BCM5762:
3395 	case BGE_ASICREV_BCM57765:
3396 	case BGE_ASICREV_BCM57766:
3397 		sc->bge_flags |= BGE_FLAG_57765_PLUS;
3398 		/* FALLTHROUGH */
3399 	case BGE_ASICREV_BCM5717:
3400 	case BGE_ASICREV_BCM5719:
3401 	case BGE_ASICREV_BCM5720:
3402 		sc->bge_flags |= BGE_FLAG_5717_PLUS | BGE_FLAG_5755_PLUS |
3403 		    BGE_FLAG_575X_PLUS | BGE_FLAG_5705_PLUS | BGE_FLAG_JUMBO |
3404 		    BGE_FLAG_JUMBO_FRAME;
3405 		if (sc->bge_asicrev == BGE_ASICREV_BCM5719 ||
3406 		    sc->bge_asicrev == BGE_ASICREV_BCM5720) {
3407 			/*
3408 			 * Enable work around for DMA engine miscalculation
3409 			 * of TXMBUF available space.
3410 			 */
3411 			sc->bge_flags |= BGE_FLAG_RDMA_BUG;
3412 			if (sc->bge_asicrev == BGE_ASICREV_BCM5719 &&
3413 			    sc->bge_chipid == BGE_CHIPID_BCM5719_A0) {
3414 				/* Jumbo frame on BCM5719 A0 does not work. */
3415 				sc->bge_flags &= ~BGE_FLAG_JUMBO;
3416 			}
3417 		}
3418 		break;
3419 	case BGE_ASICREV_BCM5755:
3420 	case BGE_ASICREV_BCM5761:
3421 	case BGE_ASICREV_BCM5784:
3422 	case BGE_ASICREV_BCM5785:
3423 	case BGE_ASICREV_BCM5787:
3424 	case BGE_ASICREV_BCM57780:
3425 		sc->bge_flags |= BGE_FLAG_5755_PLUS | BGE_FLAG_575X_PLUS |
3426 		    BGE_FLAG_5705_PLUS;
3427 		break;
3428 	case BGE_ASICREV_BCM5700:
3429 	case BGE_ASICREV_BCM5701:
3430 	case BGE_ASICREV_BCM5703:
3431 	case BGE_ASICREV_BCM5704:
3432 		sc->bge_flags |= BGE_FLAG_5700_FAMILY | BGE_FLAG_JUMBO;
3433 		break;
3434 	case BGE_ASICREV_BCM5714_A0:
3435 	case BGE_ASICREV_BCM5780:
3436 	case BGE_ASICREV_BCM5714:
3437 		sc->bge_flags |= BGE_FLAG_5714_FAMILY | BGE_FLAG_JUMBO_STD;
3438 		/* FALLTHROUGH */
3439 	case BGE_ASICREV_BCM5750:
3440 	case BGE_ASICREV_BCM5752:
3441 	case BGE_ASICREV_BCM5906:
3442 		sc->bge_flags |= BGE_FLAG_575X_PLUS;
3443 		/* FALLTHROUGH */
3444 	case BGE_ASICREV_BCM5705:
3445 		sc->bge_flags |= BGE_FLAG_5705_PLUS;
3446 		break;
3447 	}
3448 
3449 	/* Identify chips with APE processor. */
3450 	switch (sc->bge_asicrev) {
3451 	case BGE_ASICREV_BCM5717:
3452 	case BGE_ASICREV_BCM5719:
3453 	case BGE_ASICREV_BCM5720:
3454 	case BGE_ASICREV_BCM5761:
3455 	case BGE_ASICREV_BCM5762:
3456 		sc->bge_flags |= BGE_FLAG_APE;
3457 		break;
3458 	}
3459 
3460 	/* Chips with APE need BAR2 access for APE registers/memory. */
3461 	if ((sc->bge_flags & BGE_FLAG_APE) != 0) {
3462 		rid = PCIR_BAR(2);
3463 		sc->bge_res2 = bus_alloc_resource_any(dev, SYS_RES_MEMORY, &rid,
3464 		    RF_ACTIVE);
3465 		if (sc->bge_res2 == NULL) {
3466 			device_printf (sc->bge_dev,
3467 			    "couldn't map BAR2 memory\n");
3468 			error = ENXIO;
3469 			goto fail;
3470 		}
3471 
3472 		/* Enable APE register/memory access by host driver. */
3473 		pcistate = pci_read_config(dev, BGE_PCI_PCISTATE, 4);
3474 		pcistate |= BGE_PCISTATE_ALLOW_APE_CTLSPC_WR |
3475 		    BGE_PCISTATE_ALLOW_APE_SHMEM_WR |
3476 		    BGE_PCISTATE_ALLOW_APE_PSPACE_WR;
3477 		pci_write_config(dev, BGE_PCI_PCISTATE, pcistate, 4);
3478 
3479 		bge_ape_lock_init(sc);
3480 		bge_ape_read_fw_ver(sc);
3481 	}
3482 
3483 	/* Add SYSCTLs, requires the chipset family to be set. */
3484 	bge_add_sysctls(sc);
3485 
3486 	/* Identify the chips that use an CPMU. */
3487 	if (BGE_IS_5717_PLUS(sc) ||
3488 	    sc->bge_asicrev == BGE_ASICREV_BCM5784 ||
3489 	    sc->bge_asicrev == BGE_ASICREV_BCM5761 ||
3490 	    sc->bge_asicrev == BGE_ASICREV_BCM5785 ||
3491 	    sc->bge_asicrev == BGE_ASICREV_BCM57780)
3492 		sc->bge_flags |= BGE_FLAG_CPMU_PRESENT;
3493 	if ((sc->bge_flags & BGE_FLAG_CPMU_PRESENT) != 0)
3494 		sc->bge_mi_mode = BGE_MIMODE_500KHZ_CONST;
3495 	else
3496 		sc->bge_mi_mode = BGE_MIMODE_BASE;
3497 	/* Enable auto polling for BCM570[0-5]. */
3498 	if (BGE_IS_5700_FAMILY(sc) || sc->bge_asicrev == BGE_ASICREV_BCM5705)
3499 		sc->bge_mi_mode |= BGE_MIMODE_AUTOPOLL;
3500 
3501 	/*
3502 	 * All Broadcom controllers have 4GB boundary DMA bug.
3503 	 * Whenever an address crosses a multiple of the 4GB boundary
3504 	 * (including 4GB, 8Gb, 12Gb, etc.) and makes the transition
3505 	 * from 0xX_FFFF_FFFF to 0x(X+1)_0000_0000 an internal DMA
3506 	 * state machine will lockup and cause the device to hang.
3507 	 */
3508 	sc->bge_flags |= BGE_FLAG_4G_BNDRY_BUG;
3509 
3510 	/* BCM5755 or higher and BCM5906 have short DMA bug. */
3511 	if (BGE_IS_5755_PLUS(sc) || sc->bge_asicrev == BGE_ASICREV_BCM5906)
3512 		sc->bge_flags |= BGE_FLAG_SHORT_DMA_BUG;
3513 
3514 	/*
3515 	 * BCM5719 cannot handle DMA requests for DMA segments that
3516 	 * have larger than 4KB in size.  However the maximum DMA
3517 	 * segment size created in DMA tag is 4KB for TSO, so we
3518 	 * wouldn't encounter the issue here.
3519 	 */
3520 	if (sc->bge_asicrev == BGE_ASICREV_BCM5719)
3521 		sc->bge_flags |= BGE_FLAG_4K_RDMA_BUG;
3522 
3523 	misccfg = CSR_READ_4(sc, BGE_MISC_CFG) & BGE_MISCCFG_BOARD_ID_MASK;
3524 	if (sc->bge_asicrev == BGE_ASICREV_BCM5705) {
3525 		if (misccfg == BGE_MISCCFG_BOARD_ID_5788 ||
3526 		    misccfg == BGE_MISCCFG_BOARD_ID_5788M)
3527 			sc->bge_flags |= BGE_FLAG_5788;
3528 	}
3529 
3530 	capmask = BMSR_DEFCAPMASK;
3531 	if ((sc->bge_asicrev == BGE_ASICREV_BCM5703 &&
3532 	    (misccfg == 0x4000 || misccfg == 0x8000)) ||
3533 	    (sc->bge_asicrev == BGE_ASICREV_BCM5705 &&
3534 	    pci_get_vendor(dev) == BCOM_VENDORID &&
3535 	    (pci_get_device(dev) == BCOM_DEVICEID_BCM5901 ||
3536 	    pci_get_device(dev) == BCOM_DEVICEID_BCM5901A2 ||
3537 	    pci_get_device(dev) == BCOM_DEVICEID_BCM5705F)) ||
3538 	    (pci_get_vendor(dev) == BCOM_VENDORID &&
3539 	    (pci_get_device(dev) == BCOM_DEVICEID_BCM5751F ||
3540 	    pci_get_device(dev) == BCOM_DEVICEID_BCM5753F ||
3541 	    pci_get_device(dev) == BCOM_DEVICEID_BCM5787F)) ||
3542 	    pci_get_device(dev) == BCOM_DEVICEID_BCM57790 ||
3543 	    pci_get_device(dev) == BCOM_DEVICEID_BCM57791 ||
3544 	    pci_get_device(dev) == BCOM_DEVICEID_BCM57795 ||
3545 	    sc->bge_asicrev == BGE_ASICREV_BCM5906) {
3546 		/* These chips are 10/100 only. */
3547 		capmask &= ~BMSR_EXTSTAT;
3548 		sc->bge_phy_flags |= BGE_PHY_NO_WIRESPEED;
3549 	}
3550 
3551 	/*
3552 	 * Some controllers seem to require a special firmware to use
3553 	 * TSO. But the firmware is not available to FreeBSD and Linux
3554 	 * claims that the TSO performed by the firmware is slower than
3555 	 * hardware based TSO. Moreover the firmware based TSO has one
3556 	 * known bug which can't handle TSO if Ethernet header + IP/TCP
3557 	 * header is greater than 80 bytes. A workaround for the TSO
3558 	 * bug exist but it seems it's too expensive than not using
3559 	 * TSO at all. Some hardwares also have the TSO bug so limit
3560 	 * the TSO to the controllers that are not affected TSO issues
3561 	 * (e.g. 5755 or higher).
3562 	 */
3563 	if (BGE_IS_5717_PLUS(sc)) {
3564 		/* BCM5717 requires different TSO configuration. */
3565 		sc->bge_flags |= BGE_FLAG_TSO3;
3566 		if (sc->bge_asicrev == BGE_ASICREV_BCM5719 &&
3567 		    sc->bge_chipid == BGE_CHIPID_BCM5719_A0) {
3568 			/* TSO on BCM5719 A0 does not work. */
3569 			sc->bge_flags &= ~BGE_FLAG_TSO3;
3570 		}
3571 	} else if (BGE_IS_5755_PLUS(sc)) {
3572 		/*
3573 		 * BCM5754 and BCM5787 shares the same ASIC id so
3574 		 * explicit device id check is required.
3575 		 * Due to unknown reason TSO does not work on BCM5755M.
3576 		 */
3577 		if (pci_get_device(dev) != BCOM_DEVICEID_BCM5754 &&
3578 		    pci_get_device(dev) != BCOM_DEVICEID_BCM5754M &&
3579 		    pci_get_device(dev) != BCOM_DEVICEID_BCM5755M)
3580 			sc->bge_flags |= BGE_FLAG_TSO;
3581 	}
3582 
3583 	/*
3584 	 * Check if this is a PCI-X or PCI Express device.
3585 	 */
3586 	if (pci_find_cap(dev, PCIY_EXPRESS, &reg) == 0) {
3587 		/*
3588 		 * Found a PCI Express capabilities register, this
3589 		 * must be a PCI Express device.
3590 		 */
3591 		sc->bge_flags |= BGE_FLAG_PCIE;
3592 		sc->bge_expcap = reg;
3593 		/* Extract supported maximum payload size. */
3594 		sc->bge_mps = pci_read_config(dev, sc->bge_expcap +
3595 		    PCIER_DEVICE_CAP, 2);
3596 		sc->bge_mps = 128 << (sc->bge_mps & PCIEM_CAP_MAX_PAYLOAD);
3597 		if (sc->bge_asicrev == BGE_ASICREV_BCM5719 ||
3598 		    sc->bge_asicrev == BGE_ASICREV_BCM5720)
3599 			sc->bge_expmrq = 2048;
3600 		else
3601 			sc->bge_expmrq = 4096;
3602 		pci_set_max_read_req(dev, sc->bge_expmrq);
3603 	} else {
3604 		/*
3605 		 * Check if the device is in PCI-X Mode.
3606 		 * (This bit is not valid on PCI Express controllers.)
3607 		 */
3608 		if (pci_find_cap(dev, PCIY_PCIX, &reg) == 0)
3609 			sc->bge_pcixcap = reg;
3610 		if ((pci_read_config(dev, BGE_PCI_PCISTATE, 4) &
3611 		    BGE_PCISTATE_PCI_BUSMODE) == 0)
3612 			sc->bge_flags |= BGE_FLAG_PCIX;
3613 	}
3614 
3615 	/*
3616 	 * The 40bit DMA bug applies to the 5714/5715 controllers and is
3617 	 * not actually a MAC controller bug but an issue with the embedded
3618 	 * PCIe to PCI-X bridge in the device. Use 40bit DMA workaround.
3619 	 */
3620 	if (BGE_IS_5714_FAMILY(sc) && (sc->bge_flags & BGE_FLAG_PCIX))
3621 		sc->bge_flags |= BGE_FLAG_40BIT_BUG;
3622 	/*
3623 	 * Some PCI-X bridges are known to trigger write reordering to
3624 	 * the mailbox registers. Typical phenomena is watchdog timeouts
3625 	 * caused by out-of-order TX completions.  Enable workaround for
3626 	 * PCI-X devices that live behind these bridges.
3627 	 * Note, PCI-X controllers can run in PCI mode so we can't use
3628 	 * BGE_FLAG_PCIX flag to detect PCI-X controllers.
3629 	 */
3630 	if (sc->bge_pcixcap != 0 && bge_mbox_reorder(sc) != 0)
3631 		sc->bge_flags |= BGE_FLAG_MBOX_REORDER;
3632 	/*
3633 	 * Allocate the interrupt, using MSI if possible.  These devices
3634 	 * support 8 MSI messages, but only the first one is used in
3635 	 * normal operation.
3636 	 */
3637 	rid = 0;
3638 	if (pci_find_cap(sc->bge_dev, PCIY_MSI, &reg) == 0) {
3639 		sc->bge_msicap = reg;
3640 		reg = 1;
3641 		if (bge_can_use_msi(sc) && pci_alloc_msi(dev, &reg) == 0) {
3642 			rid = 1;
3643 			sc->bge_flags |= BGE_FLAG_MSI;
3644 		}
3645 	}
3646 
3647 	/*
3648 	 * All controllers except BCM5700 supports tagged status but
3649 	 * we use tagged status only for MSI case on BCM5717. Otherwise
3650 	 * MSI on BCM5717 does not work.
3651 	 */
3652 #ifndef DEVICE_POLLING
3653 	if (sc->bge_flags & BGE_FLAG_MSI && BGE_IS_5717_PLUS(sc))
3654 		sc->bge_flags |= BGE_FLAG_TAGGED_STATUS;
3655 #endif
3656 
3657 	sc->bge_irq = bus_alloc_resource_any(dev, SYS_RES_IRQ, &rid,
3658 	    RF_ACTIVE | (rid != 0 ? 0 : RF_SHAREABLE));
3659 
3660 	if (sc->bge_irq == NULL) {
3661 		device_printf(sc->bge_dev, "couldn't map interrupt\n");
3662 		error = ENXIO;
3663 		goto fail;
3664 	}
3665 
3666 	bge_devinfo(sc);
3667 
3668 	sc->bge_asf_mode = 0;
3669 	/* No ASF if APE present. */
3670 	if ((sc->bge_flags & BGE_FLAG_APE) == 0) {
3671 		if (bge_allow_asf && (bge_readmem_ind(sc, BGE_SRAM_DATA_SIG) ==
3672 		    BGE_SRAM_DATA_SIG_MAGIC)) {
3673 			if (bge_readmem_ind(sc, BGE_SRAM_DATA_CFG) &
3674 			    BGE_HWCFG_ASF) {
3675 				sc->bge_asf_mode |= ASF_ENABLE;
3676 				sc->bge_asf_mode |= ASF_STACKUP;
3677 				if (BGE_IS_575X_PLUS(sc))
3678 					sc->bge_asf_mode |= ASF_NEW_HANDSHAKE;
3679 			}
3680 		}
3681 	}
3682 
3683 	bge_stop_fw(sc);
3684 	bge_sig_pre_reset(sc, BGE_RESET_SHUTDOWN);
3685 	if (bge_reset(sc)) {
3686 		device_printf(sc->bge_dev, "chip reset failed\n");
3687 		error = ENXIO;
3688 		goto fail;
3689 	}
3690 
3691 	bge_sig_legacy(sc, BGE_RESET_SHUTDOWN);
3692 	bge_sig_post_reset(sc, BGE_RESET_SHUTDOWN);
3693 
3694 	if (bge_chipinit(sc)) {
3695 		device_printf(sc->bge_dev, "chip initialization failed\n");
3696 		error = ENXIO;
3697 		goto fail;
3698 	}
3699 
3700 	error = bge_get_eaddr(sc, eaddr);
3701 	if (error) {
3702 		device_printf(sc->bge_dev,
3703 		    "failed to read station address\n");
3704 		error = ENXIO;
3705 		goto fail;
3706 	}
3707 
3708 	/* 5705 limits RX return ring to 512 entries. */
3709 	if (BGE_IS_5717_PLUS(sc))
3710 		sc->bge_return_ring_cnt = BGE_RETURN_RING_CNT;
3711 	else if (BGE_IS_5705_PLUS(sc))
3712 		sc->bge_return_ring_cnt = BGE_RETURN_RING_CNT_5705;
3713 	else
3714 		sc->bge_return_ring_cnt = BGE_RETURN_RING_CNT;
3715 
3716 	if (bge_dma_alloc(sc)) {
3717 		device_printf(sc->bge_dev,
3718 		    "failed to allocate DMA resources\n");
3719 		error = ENXIO;
3720 		goto fail;
3721 	}
3722 
3723 	/* Set default tuneable values. */
3724 	sc->bge_stat_ticks = BGE_TICKS_PER_SEC;
3725 	sc->bge_rx_coal_ticks = 150;
3726 	sc->bge_tx_coal_ticks = 150;
3727 	sc->bge_rx_max_coal_bds = 10;
3728 	sc->bge_tx_max_coal_bds = 10;
3729 
3730 	/* Initialize checksum features to use. */
3731 	sc->bge_csum_features = BGE_CSUM_FEATURES;
3732 	if (sc->bge_forced_udpcsum != 0)
3733 		sc->bge_csum_features |= CSUM_UDP;
3734 
3735 	/* Set up ifnet structure */
3736 	ifp = sc->bge_ifp = if_alloc(IFT_ETHER);
3737 	if (ifp == NULL) {
3738 		device_printf(sc->bge_dev, "failed to if_alloc()\n");
3739 		error = ENXIO;
3740 		goto fail;
3741 	}
3742 	if_setsoftc(ifp, sc);
3743 	if_initname(ifp, device_get_name(dev), device_get_unit(dev));
3744 	if_setflags(ifp, IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST);
3745 	if_setioctlfn(ifp, bge_ioctl);
3746 	if_setstartfn(ifp, bge_start);
3747 	if_setinitfn(ifp, bge_init);
3748 	if_setgetcounterfn(ifp, bge_get_counter);
3749 	if_setsendqlen(ifp, BGE_TX_RING_CNT - 1);
3750 	if_setsendqready(ifp);
3751 	if_sethwassist(ifp, sc->bge_csum_features);
3752 	if_setcapabilities(ifp, IFCAP_HWCSUM | IFCAP_VLAN_HWTAGGING |
3753 	    IFCAP_VLAN_MTU);
3754 	if ((sc->bge_flags & (BGE_FLAG_TSO | BGE_FLAG_TSO3)) != 0) {
3755 		if_sethwassistbits(ifp, CSUM_TSO, 0);
3756 		if_setcapabilitiesbit(ifp, IFCAP_TSO4 | IFCAP_VLAN_HWTSO, 0);
3757 	}
3758 #ifdef IFCAP_VLAN_HWCSUM
3759 	if_setcapabilitiesbit(ifp, IFCAP_VLAN_HWCSUM, 0);
3760 #endif
3761 	if_setcapenable(ifp, if_getcapabilities(ifp));
3762 #ifdef DEVICE_POLLING
3763 	if_setcapabilitiesbit(ifp, IFCAP_POLLING, 0);
3764 #endif
3765 
3766 	/*
3767 	 * 5700 B0 chips do not support checksumming correctly due
3768 	 * to hardware bugs.
3769 	 */
3770 	if (sc->bge_chipid == BGE_CHIPID_BCM5700_B0) {
3771 		if_setcapabilitiesbit(ifp, 0, IFCAP_HWCSUM);
3772 		if_setcapenablebit(ifp, 0, IFCAP_HWCSUM);
3773 		if_sethwassist(ifp, 0);
3774 	}
3775 
3776 	/*
3777 	 * Figure out what sort of media we have by checking the
3778 	 * hardware config word in the first 32k of NIC internal memory,
3779 	 * or fall back to examining the EEPROM if necessary.
3780 	 * Note: on some BCM5700 cards, this value appears to be unset.
3781 	 * If that's the case, we have to rely on identifying the NIC
3782 	 * by its PCI subsystem ID, as we do below for the SysKonnect
3783 	 * SK-9D41.
3784 	 */
3785 	if (bge_readmem_ind(sc, BGE_SRAM_DATA_SIG) == BGE_SRAM_DATA_SIG_MAGIC)
3786 		hwcfg = bge_readmem_ind(sc, BGE_SRAM_DATA_CFG);
3787 	else if ((sc->bge_flags & BGE_FLAG_EADDR) &&
3788 	    (sc->bge_asicrev != BGE_ASICREV_BCM5906)) {
3789 		if (bge_read_eeprom(sc, (caddr_t)&hwcfg, BGE_EE_HWCFG_OFFSET,
3790 		    sizeof(hwcfg))) {
3791 			device_printf(sc->bge_dev, "failed to read EEPROM\n");
3792 			error = ENXIO;
3793 			goto fail;
3794 		}
3795 		hwcfg = ntohl(hwcfg);
3796 	}
3797 
3798 	/* The SysKonnect SK-9D41 is a 1000baseSX card. */
3799 	if ((pci_read_config(dev, BGE_PCI_SUBSYS, 4) >> 16) ==
3800 	    SK_SUBSYSID_9D41 || (hwcfg & BGE_HWCFG_MEDIA) == BGE_MEDIA_FIBER) {
3801 		if (BGE_IS_5705_PLUS(sc)) {
3802 			sc->bge_flags |= BGE_FLAG_MII_SERDES;
3803 			sc->bge_phy_flags |= BGE_PHY_NO_WIRESPEED;
3804 		} else
3805 			sc->bge_flags |= BGE_FLAG_TBI;
3806 	}
3807 
3808 	/* Set various PHY bug flags. */
3809 	if (sc->bge_chipid == BGE_CHIPID_BCM5701_A0 ||
3810 	    sc->bge_chipid == BGE_CHIPID_BCM5701_B0)
3811 		sc->bge_phy_flags |= BGE_PHY_CRC_BUG;
3812 	if (sc->bge_chiprev == BGE_CHIPREV_5703_AX ||
3813 	    sc->bge_chiprev == BGE_CHIPREV_5704_AX)
3814 		sc->bge_phy_flags |= BGE_PHY_ADC_BUG;
3815 	if (sc->bge_chipid == BGE_CHIPID_BCM5704_A0)
3816 		sc->bge_phy_flags |= BGE_PHY_5704_A0_BUG;
3817 	if (pci_get_subvendor(dev) == DELL_VENDORID)
3818 		sc->bge_phy_flags |= BGE_PHY_NO_3LED;
3819 	if ((BGE_IS_5705_PLUS(sc)) &&
3820 	    sc->bge_asicrev != BGE_ASICREV_BCM5906 &&
3821 	    sc->bge_asicrev != BGE_ASICREV_BCM5785 &&
3822 	    sc->bge_asicrev != BGE_ASICREV_BCM57780 &&
3823 	    !BGE_IS_5717_PLUS(sc)) {
3824 		if (sc->bge_asicrev == BGE_ASICREV_BCM5755 ||
3825 		    sc->bge_asicrev == BGE_ASICREV_BCM5761 ||
3826 		    sc->bge_asicrev == BGE_ASICREV_BCM5784 ||
3827 		    sc->bge_asicrev == BGE_ASICREV_BCM5787) {
3828 			if (pci_get_device(dev) != BCOM_DEVICEID_BCM5722 &&
3829 			    pci_get_device(dev) != BCOM_DEVICEID_BCM5756)
3830 				sc->bge_phy_flags |= BGE_PHY_JITTER_BUG;
3831 			if (pci_get_device(dev) == BCOM_DEVICEID_BCM5755M)
3832 				sc->bge_phy_flags |= BGE_PHY_ADJUST_TRIM;
3833 		} else
3834 			sc->bge_phy_flags |= BGE_PHY_BER_BUG;
3835 	}
3836 
3837 	/*
3838 	 * Don't enable Ethernet@WireSpeed for the 5700 or the
3839 	 * 5705 A0 and A1 chips.
3840 	 */
3841 	if (sc->bge_asicrev == BGE_ASICREV_BCM5700 ||
3842 	    (sc->bge_asicrev == BGE_ASICREV_BCM5705 &&
3843 	    (sc->bge_chipid != BGE_CHIPID_BCM5705_A0 &&
3844 	    sc->bge_chipid != BGE_CHIPID_BCM5705_A1)))
3845 		sc->bge_phy_flags |= BGE_PHY_NO_WIRESPEED;
3846 
3847 	if (sc->bge_flags & BGE_FLAG_TBI) {
3848 		ifmedia_init(&sc->bge_ifmedia, IFM_IMASK, bge_ifmedia_upd,
3849 		    bge_ifmedia_sts);
3850 		ifmedia_add(&sc->bge_ifmedia, IFM_ETHER | IFM_1000_SX, 0, NULL);
3851 		ifmedia_add(&sc->bge_ifmedia, IFM_ETHER | IFM_1000_SX | IFM_FDX,
3852 		    0, NULL);
3853 		ifmedia_add(&sc->bge_ifmedia, IFM_ETHER | IFM_AUTO, 0, NULL);
3854 		ifmedia_set(&sc->bge_ifmedia, IFM_ETHER | IFM_AUTO);
3855 		sc->bge_ifmedia.ifm_media = sc->bge_ifmedia.ifm_cur->ifm_media;
3856 	} else {
3857 		/*
3858 		 * Do transceiver setup and tell the firmware the
3859 		 * driver is down so we can try to get access the
3860 		 * probe if ASF is running.  Retry a couple of times
3861 		 * if we get a conflict with the ASF firmware accessing
3862 		 * the PHY.
3863 		 */
3864 		trys = 0;
3865 		BGE_CLRBIT(sc, BGE_MODE_CTL, BGE_MODECTL_STACKUP);
3866 again:
3867 		bge_asf_driver_up(sc);
3868 
3869 		error = mii_attach(dev, &sc->bge_miibus, ifp,
3870 		    (ifm_change_cb_t)bge_ifmedia_upd,
3871 		    (ifm_stat_cb_t)bge_ifmedia_sts, capmask, sc->bge_phy_addr,
3872 		    MII_OFFSET_ANY, MIIF_DOPAUSE);
3873 		if (error != 0) {
3874 			if (trys++ < 4) {
3875 				device_printf(sc->bge_dev, "Try again\n");
3876 				bge_miibus_writereg(sc->bge_dev,
3877 				    sc->bge_phy_addr, MII_BMCR, BMCR_RESET);
3878 				goto again;
3879 			}
3880 			device_printf(sc->bge_dev, "attaching PHYs failed\n");
3881 			goto fail;
3882 		}
3883 
3884 		/*
3885 		 * Now tell the firmware we are going up after probing the PHY
3886 		 */
3887 		if (sc->bge_asf_mode & ASF_STACKUP)
3888 			BGE_SETBIT(sc, BGE_MODE_CTL, BGE_MODECTL_STACKUP);
3889 	}
3890 
3891 	/*
3892 	 * When using the BCM5701 in PCI-X mode, data corruption has
3893 	 * been observed in the first few bytes of some received packets.
3894 	 * Aligning the packet buffer in memory eliminates the corruption.
3895 	 * Unfortunately, this misaligns the packet payloads.  On platforms
3896 	 * which do not support unaligned accesses, we will realign the
3897 	 * payloads by copying the received packets.
3898 	 */
3899 	if (sc->bge_asicrev == BGE_ASICREV_BCM5701 &&
3900 	    sc->bge_flags & BGE_FLAG_PCIX)
3901                 sc->bge_flags |= BGE_FLAG_RX_ALIGNBUG;
3902 
3903 	/*
3904 	 * Call MI attach routine.
3905 	 */
3906 	ether_ifattach(ifp, eaddr);
3907 
3908 	/* Tell upper layer we support long frames. */
3909 	if_setifheaderlen(ifp, sizeof(struct ether_vlan_header));
3910 
3911 	/*
3912 	 * Hookup IRQ last.
3913 	 */
3914 	if (BGE_IS_5755_PLUS(sc) && sc->bge_flags & BGE_FLAG_MSI) {
3915 		/* Take advantage of single-shot MSI. */
3916 		CSR_WRITE_4(sc, BGE_MSI_MODE, CSR_READ_4(sc, BGE_MSI_MODE) &
3917 		    ~BGE_MSIMODE_ONE_SHOT_DISABLE);
3918 		sc->bge_tq = taskqueue_create_fast("bge_taskq", M_WAITOK,
3919 		    taskqueue_thread_enqueue, &sc->bge_tq);
3920 		if (sc->bge_tq == NULL) {
3921 			device_printf(dev, "could not create taskqueue.\n");
3922 			ether_ifdetach(ifp);
3923 			error = ENOMEM;
3924 			goto fail;
3925 		}
3926 		error = taskqueue_start_threads(&sc->bge_tq, 1, PI_NET,
3927 		    "%s taskq", device_get_nameunit(sc->bge_dev));
3928 		if (error != 0) {
3929 			device_printf(dev, "could not start threads.\n");
3930 			ether_ifdetach(ifp);
3931 			goto fail;
3932 		}
3933 		error = bus_setup_intr(dev, sc->bge_irq,
3934 		    INTR_TYPE_NET | INTR_MPSAFE, bge_msi_intr, NULL, sc,
3935 		    &sc->bge_intrhand);
3936 	} else
3937 		error = bus_setup_intr(dev, sc->bge_irq,
3938 		    INTR_TYPE_NET | INTR_MPSAFE, NULL, bge_intr, sc,
3939 		    &sc->bge_intrhand);
3940 
3941 	if (error) {
3942 		ether_ifdetach(ifp);
3943 		device_printf(sc->bge_dev, "couldn't set up irq\n");
3944 	}
3945 
3946 fail:
3947 	if (error)
3948 		bge_detach(dev);
3949 	return (error);
3950 }
3951 
3952 static int
3953 bge_detach(device_t dev)
3954 {
3955 	struct bge_softc *sc;
3956 	if_t ifp;
3957 
3958 	sc = device_get_softc(dev);
3959 	ifp = sc->bge_ifp;
3960 
3961 #ifdef DEVICE_POLLING
3962 	if (if_getcapenable(ifp) & IFCAP_POLLING)
3963 		ether_poll_deregister(ifp);
3964 #endif
3965 
3966 	if (device_is_attached(dev)) {
3967 		ether_ifdetach(ifp);
3968 		BGE_LOCK(sc);
3969 		bge_stop(sc);
3970 		BGE_UNLOCK(sc);
3971 		callout_drain(&sc->bge_stat_ch);
3972 	}
3973 
3974 	if (sc->bge_tq)
3975 		taskqueue_drain(sc->bge_tq, &sc->bge_intr_task);
3976 
3977 	if (sc->bge_flags & BGE_FLAG_TBI)
3978 		ifmedia_removeall(&sc->bge_ifmedia);
3979 	else if (sc->bge_miibus != NULL) {
3980 		bus_generic_detach(dev);
3981 		device_delete_child(dev, sc->bge_miibus);
3982 	}
3983 
3984 	bge_release_resources(sc);
3985 
3986 	return (0);
3987 }
3988 
3989 static void
3990 bge_release_resources(struct bge_softc *sc)
3991 {
3992 	device_t dev;
3993 
3994 	dev = sc->bge_dev;
3995 
3996 	if (sc->bge_tq != NULL)
3997 		taskqueue_free(sc->bge_tq);
3998 
3999 	if (sc->bge_intrhand != NULL)
4000 		bus_teardown_intr(dev, sc->bge_irq, sc->bge_intrhand);
4001 
4002 	if (sc->bge_irq != NULL) {
4003 		bus_release_resource(dev, SYS_RES_IRQ,
4004 		    rman_get_rid(sc->bge_irq), sc->bge_irq);
4005 		pci_release_msi(dev);
4006 	}
4007 
4008 	if (sc->bge_res != NULL)
4009 		bus_release_resource(dev, SYS_RES_MEMORY,
4010 		    rman_get_rid(sc->bge_res), sc->bge_res);
4011 
4012 	if (sc->bge_res2 != NULL)
4013 		bus_release_resource(dev, SYS_RES_MEMORY,
4014 		    rman_get_rid(sc->bge_res2), sc->bge_res2);
4015 
4016 	if (sc->bge_ifp != NULL)
4017 		if_free(sc->bge_ifp);
4018 
4019 	bge_dma_free(sc);
4020 
4021 	if (mtx_initialized(&sc->bge_mtx))	/* XXX */
4022 		BGE_LOCK_DESTROY(sc);
4023 }
4024 
4025 static int
4026 bge_reset(struct bge_softc *sc)
4027 {
4028 	device_t dev;
4029 	uint32_t cachesize, command, mac_mode, mac_mode_mask, reset, val;
4030 	void (*write_op)(struct bge_softc *, int, int);
4031 	uint16_t devctl;
4032 	int i;
4033 
4034 	dev = sc->bge_dev;
4035 
4036 	mac_mode_mask = BGE_MACMODE_HALF_DUPLEX | BGE_MACMODE_PORTMODE;
4037 	if ((sc->bge_mfw_flags & BGE_MFW_ON_APE) != 0)
4038 		mac_mode_mask |= BGE_MACMODE_APE_RX_EN | BGE_MACMODE_APE_TX_EN;
4039 	mac_mode = CSR_READ_4(sc, BGE_MAC_MODE) & mac_mode_mask;
4040 
4041 	if (BGE_IS_575X_PLUS(sc) && !BGE_IS_5714_FAMILY(sc) &&
4042 	    (sc->bge_asicrev != BGE_ASICREV_BCM5906)) {
4043 		if (sc->bge_flags & BGE_FLAG_PCIE)
4044 			write_op = bge_writemem_direct;
4045 		else
4046 			write_op = bge_writemem_ind;
4047 	} else
4048 		write_op = bge_writereg_ind;
4049 
4050 	if (sc->bge_asicrev != BGE_ASICREV_BCM5700 &&
4051 	    sc->bge_asicrev != BGE_ASICREV_BCM5701) {
4052 		CSR_WRITE_4(sc, BGE_NVRAM_SWARB, BGE_NVRAMSWARB_SET1);
4053 		for (i = 0; i < 8000; i++) {
4054 			if (CSR_READ_4(sc, BGE_NVRAM_SWARB) &
4055 			    BGE_NVRAMSWARB_GNT1)
4056 				break;
4057 			DELAY(20);
4058 		}
4059 		if (i == 8000) {
4060 			if (bootverbose)
4061 				device_printf(dev, "NVRAM lock timedout!\n");
4062 		}
4063 	}
4064 	/* Take APE lock when performing reset. */
4065 	bge_ape_lock(sc, BGE_APE_LOCK_GRC);
4066 
4067 	/* Save some important PCI state. */
4068 	cachesize = pci_read_config(dev, BGE_PCI_CACHESZ, 4);
4069 	command = pci_read_config(dev, BGE_PCI_CMD, 4);
4070 
4071 	pci_write_config(dev, BGE_PCI_MISC_CTL,
4072 	    BGE_PCIMISCCTL_INDIRECT_ACCESS | BGE_PCIMISCCTL_MASK_PCI_INTR |
4073 	    BGE_HIF_SWAP_OPTIONS | BGE_PCIMISCCTL_PCISTATE_RW, 4);
4074 
4075 	/* Disable fastboot on controllers that support it. */
4076 	if (sc->bge_asicrev == BGE_ASICREV_BCM5752 ||
4077 	    BGE_IS_5755_PLUS(sc)) {
4078 		if (bootverbose)
4079 			device_printf(dev, "Disabling fastboot\n");
4080 		CSR_WRITE_4(sc, BGE_FASTBOOT_PC, 0x0);
4081 	}
4082 
4083 	/*
4084 	 * Write the magic number to SRAM at offset 0xB50.
4085 	 * When firmware finishes its initialization it will
4086 	 * write ~BGE_SRAM_FW_MB_MAGIC to the same location.
4087 	 */
4088 	bge_writemem_ind(sc, BGE_SRAM_FW_MB, BGE_SRAM_FW_MB_MAGIC);
4089 
4090 	reset = BGE_MISCCFG_RESET_CORE_CLOCKS | BGE_32BITTIME_66MHZ;
4091 
4092 	/* XXX: Broadcom Linux driver. */
4093 	if (sc->bge_flags & BGE_FLAG_PCIE) {
4094 		if (sc->bge_asicrev != BGE_ASICREV_BCM5785 &&
4095 		    (sc->bge_flags & BGE_FLAG_5717_PLUS) == 0) {
4096 			if (CSR_READ_4(sc, 0x7E2C) == 0x60)	/* PCIE 1.0 */
4097 				CSR_WRITE_4(sc, 0x7E2C, 0x20);
4098 		}
4099 		if (sc->bge_chipid != BGE_CHIPID_BCM5750_A0) {
4100 			/* Prevent PCIE link training during global reset */
4101 			CSR_WRITE_4(sc, BGE_MISC_CFG, 1 << 29);
4102 			reset |= 1 << 29;
4103 		}
4104 	}
4105 
4106 	if (sc->bge_asicrev == BGE_ASICREV_BCM5906) {
4107 		val = CSR_READ_4(sc, BGE_VCPU_STATUS);
4108 		CSR_WRITE_4(sc, BGE_VCPU_STATUS,
4109 		    val | BGE_VCPU_STATUS_DRV_RESET);
4110 		val = CSR_READ_4(sc, BGE_VCPU_EXT_CTRL);
4111 		CSR_WRITE_4(sc, BGE_VCPU_EXT_CTRL,
4112 		    val & ~BGE_VCPU_EXT_CTRL_HALT_CPU);
4113 	}
4114 
4115 	/*
4116 	 * Set GPHY Power Down Override to leave GPHY
4117 	 * powered up in D0 uninitialized.
4118 	 */
4119 	if (BGE_IS_5705_PLUS(sc) &&
4120 	    (sc->bge_flags & BGE_FLAG_CPMU_PRESENT) == 0)
4121 		reset |= BGE_MISCCFG_GPHY_PD_OVERRIDE;
4122 
4123 	/* Issue global reset */
4124 	write_op(sc, BGE_MISC_CFG, reset);
4125 
4126 	if (sc->bge_flags & BGE_FLAG_PCIE)
4127 		DELAY(100 * 1000);
4128 	else
4129 		DELAY(1000);
4130 
4131 	/* XXX: Broadcom Linux driver. */
4132 	if (sc->bge_flags & BGE_FLAG_PCIE) {
4133 		if (sc->bge_chipid == BGE_CHIPID_BCM5750_A0) {
4134 			DELAY(500000); /* wait for link training to complete */
4135 			val = pci_read_config(dev, 0xC4, 4);
4136 			pci_write_config(dev, 0xC4, val | (1 << 15), 4);
4137 		}
4138 		devctl = pci_read_config(dev,
4139 		    sc->bge_expcap + PCIER_DEVICE_CTL, 2);
4140 		/* Clear enable no snoop and disable relaxed ordering. */
4141 		devctl &= ~(PCIEM_CTL_RELAXED_ORD_ENABLE |
4142 		    PCIEM_CTL_NOSNOOP_ENABLE);
4143 		pci_write_config(dev, sc->bge_expcap + PCIER_DEVICE_CTL,
4144 		    devctl, 2);
4145 		pci_set_max_read_req(dev, sc->bge_expmrq);
4146 		/* Clear error status. */
4147 		pci_write_config(dev, sc->bge_expcap + PCIER_DEVICE_STA,
4148 		    PCIEM_STA_CORRECTABLE_ERROR |
4149 		    PCIEM_STA_NON_FATAL_ERROR | PCIEM_STA_FATAL_ERROR |
4150 		    PCIEM_STA_UNSUPPORTED_REQ, 2);
4151 	}
4152 
4153 	/* Reset some of the PCI state that got zapped by reset. */
4154 	pci_write_config(dev, BGE_PCI_MISC_CTL,
4155 	    BGE_PCIMISCCTL_INDIRECT_ACCESS | BGE_PCIMISCCTL_MASK_PCI_INTR |
4156 	    BGE_HIF_SWAP_OPTIONS | BGE_PCIMISCCTL_PCISTATE_RW, 4);
4157 	val = BGE_PCISTATE_ROM_ENABLE | BGE_PCISTATE_ROM_RETRY_ENABLE;
4158 	if (sc->bge_chipid == BGE_CHIPID_BCM5704_A0 &&
4159 	    (sc->bge_flags & BGE_FLAG_PCIX) != 0)
4160 		val |= BGE_PCISTATE_RETRY_SAME_DMA;
4161 	if ((sc->bge_mfw_flags & BGE_MFW_ON_APE) != 0)
4162 		val |= BGE_PCISTATE_ALLOW_APE_CTLSPC_WR |
4163 		    BGE_PCISTATE_ALLOW_APE_SHMEM_WR |
4164 		    BGE_PCISTATE_ALLOW_APE_PSPACE_WR;
4165 	pci_write_config(dev, BGE_PCI_PCISTATE, val, 4);
4166 	pci_write_config(dev, BGE_PCI_CACHESZ, cachesize, 4);
4167 	pci_write_config(dev, BGE_PCI_CMD, command, 4);
4168 	/*
4169 	 * Disable PCI-X relaxed ordering to ensure status block update
4170 	 * comes first then packet buffer DMA. Otherwise driver may
4171 	 * read stale status block.
4172 	 */
4173 	if (sc->bge_flags & BGE_FLAG_PCIX) {
4174 		devctl = pci_read_config(dev,
4175 		    sc->bge_pcixcap + PCIXR_COMMAND, 2);
4176 		devctl &= ~PCIXM_COMMAND_ERO;
4177 		if (sc->bge_asicrev == BGE_ASICREV_BCM5703) {
4178 			devctl &= ~PCIXM_COMMAND_MAX_READ;
4179 			devctl |= PCIXM_COMMAND_MAX_READ_2048;
4180 		} else if (sc->bge_asicrev == BGE_ASICREV_BCM5704) {
4181 			devctl &= ~(PCIXM_COMMAND_MAX_SPLITS |
4182 			    PCIXM_COMMAND_MAX_READ);
4183 			devctl |= PCIXM_COMMAND_MAX_READ_2048;
4184 		}
4185 		pci_write_config(dev, sc->bge_pcixcap + PCIXR_COMMAND,
4186 		    devctl, 2);
4187 	}
4188 	/* Re-enable MSI, if necessary, and enable the memory arbiter. */
4189 	if (BGE_IS_5714_FAMILY(sc)) {
4190 		/* This chip disables MSI on reset. */
4191 		if (sc->bge_flags & BGE_FLAG_MSI) {
4192 			val = pci_read_config(dev,
4193 			    sc->bge_msicap + PCIR_MSI_CTRL, 2);
4194 			pci_write_config(dev,
4195 			    sc->bge_msicap + PCIR_MSI_CTRL,
4196 			    val | PCIM_MSICTRL_MSI_ENABLE, 2);
4197 			val = CSR_READ_4(sc, BGE_MSI_MODE);
4198 			CSR_WRITE_4(sc, BGE_MSI_MODE,
4199 			    val | BGE_MSIMODE_ENABLE);
4200 		}
4201 		val = CSR_READ_4(sc, BGE_MARB_MODE);
4202 		CSR_WRITE_4(sc, BGE_MARB_MODE, BGE_MARBMODE_ENABLE | val);
4203 	} else
4204 		CSR_WRITE_4(sc, BGE_MARB_MODE, BGE_MARBMODE_ENABLE);
4205 
4206 	/* Fix up byte swapping. */
4207 	CSR_WRITE_4(sc, BGE_MODE_CTL, bge_dma_swap_options(sc));
4208 
4209 	val = CSR_READ_4(sc, BGE_MAC_MODE);
4210 	val = (val & ~mac_mode_mask) | mac_mode;
4211 	CSR_WRITE_4(sc, BGE_MAC_MODE, val);
4212 	DELAY(40);
4213 
4214 	bge_ape_unlock(sc, BGE_APE_LOCK_GRC);
4215 
4216 	if (sc->bge_asicrev == BGE_ASICREV_BCM5906) {
4217 		for (i = 0; i < BGE_TIMEOUT; i++) {
4218 			val = CSR_READ_4(sc, BGE_VCPU_STATUS);
4219 			if (val & BGE_VCPU_STATUS_INIT_DONE)
4220 				break;
4221 			DELAY(100);
4222 		}
4223 		if (i == BGE_TIMEOUT) {
4224 			device_printf(dev, "reset timed out\n");
4225 			return (1);
4226 		}
4227 	} else {
4228 		/*
4229 		 * Poll until we see the 1's complement of the magic number.
4230 		 * This indicates that the firmware initialization is complete.
4231 		 * We expect this to fail if no chip containing the Ethernet
4232 		 * address is fitted though.
4233 		 */
4234 		for (i = 0; i < BGE_TIMEOUT; i++) {
4235 			DELAY(10);
4236 			val = bge_readmem_ind(sc, BGE_SRAM_FW_MB);
4237 			if (val == ~BGE_SRAM_FW_MB_MAGIC)
4238 				break;
4239 		}
4240 
4241 		if ((sc->bge_flags & BGE_FLAG_EADDR) && i == BGE_TIMEOUT)
4242 			device_printf(dev,
4243 			    "firmware handshake timed out, found 0x%08x\n",
4244 			    val);
4245 		/* BCM57765 A0 needs additional time before accessing. */
4246 		if (sc->bge_chipid == BGE_CHIPID_BCM57765_A0)
4247 			DELAY(10 * 1000);	/* XXX */
4248 	}
4249 
4250 	/*
4251 	 * The 5704 in TBI mode apparently needs some special
4252 	 * adjustment to insure the SERDES drive level is set
4253 	 * to 1.2V.
4254 	 */
4255 	if (sc->bge_asicrev == BGE_ASICREV_BCM5704 &&
4256 	    sc->bge_flags & BGE_FLAG_TBI) {
4257 		val = CSR_READ_4(sc, BGE_SERDES_CFG);
4258 		val = (val & ~0xFFF) | 0x880;
4259 		CSR_WRITE_4(sc, BGE_SERDES_CFG, val);
4260 	}
4261 
4262 	/* XXX: Broadcom Linux driver. */
4263 	if (sc->bge_flags & BGE_FLAG_PCIE &&
4264 	    !BGE_IS_5717_PLUS(sc) &&
4265 	    sc->bge_chipid != BGE_CHIPID_BCM5750_A0 &&
4266 	    sc->bge_asicrev != BGE_ASICREV_BCM5785) {
4267 		/* Enable Data FIFO protection. */
4268 		val = CSR_READ_4(sc, 0x7C00);
4269 		CSR_WRITE_4(sc, 0x7C00, val | (1 << 25));
4270 	}
4271 
4272 	if (sc->bge_asicrev == BGE_ASICREV_BCM5720)
4273 		BGE_CLRBIT(sc, BGE_CPMU_CLCK_ORIDE,
4274 		    CPMU_CLCK_ORIDE_MAC_ORIDE_EN);
4275 
4276 	return (0);
4277 }
4278 
4279 static __inline void
4280 bge_rxreuse_std(struct bge_softc *sc, int i)
4281 {
4282 	struct bge_rx_bd *r;
4283 
4284 	r = &sc->bge_ldata.bge_rx_std_ring[sc->bge_std];
4285 	r->bge_flags = BGE_RXBDFLAG_END;
4286 	r->bge_len = sc->bge_cdata.bge_rx_std_seglen[i];
4287 	r->bge_idx = i;
4288 	BGE_INC(sc->bge_std, BGE_STD_RX_RING_CNT);
4289 }
4290 
4291 static __inline void
4292 bge_rxreuse_jumbo(struct bge_softc *sc, int i)
4293 {
4294 	struct bge_extrx_bd *r;
4295 
4296 	r = &sc->bge_ldata.bge_rx_jumbo_ring[sc->bge_jumbo];
4297 	r->bge_flags = BGE_RXBDFLAG_JUMBO_RING | BGE_RXBDFLAG_END;
4298 	r->bge_len0 = sc->bge_cdata.bge_rx_jumbo_seglen[i][0];
4299 	r->bge_len1 = sc->bge_cdata.bge_rx_jumbo_seglen[i][1];
4300 	r->bge_len2 = sc->bge_cdata.bge_rx_jumbo_seglen[i][2];
4301 	r->bge_len3 = sc->bge_cdata.bge_rx_jumbo_seglen[i][3];
4302 	r->bge_idx = i;
4303 	BGE_INC(sc->bge_jumbo, BGE_JUMBO_RX_RING_CNT);
4304 }
4305 
4306 /*
4307  * Frame reception handling. This is called if there's a frame
4308  * on the receive return list.
4309  *
4310  * Note: we have to be able to handle two possibilities here:
4311  * 1) the frame is from the jumbo receive ring
4312  * 2) the frame is from the standard receive ring
4313  */
4314 
4315 static int
4316 bge_rxeof(struct bge_softc *sc, uint16_t rx_prod, int holdlck)
4317 {
4318 	if_t ifp;
4319 	int rx_npkts = 0, stdcnt = 0, jumbocnt = 0;
4320 	uint16_t rx_cons;
4321 
4322 	rx_cons = sc->bge_rx_saved_considx;
4323 
4324 	/* Nothing to do. */
4325 	if (rx_cons == rx_prod)
4326 		return (rx_npkts);
4327 
4328 	ifp = sc->bge_ifp;
4329 
4330 	bus_dmamap_sync(sc->bge_cdata.bge_rx_return_ring_tag,
4331 	    sc->bge_cdata.bge_rx_return_ring_map, BUS_DMASYNC_POSTREAD);
4332 	bus_dmamap_sync(sc->bge_cdata.bge_rx_std_ring_tag,
4333 	    sc->bge_cdata.bge_rx_std_ring_map, BUS_DMASYNC_POSTWRITE);
4334 	if (BGE_IS_JUMBO_CAPABLE(sc) &&
4335 	    if_getmtu(ifp) + ETHER_HDR_LEN + ETHER_CRC_LEN +
4336 	    ETHER_VLAN_ENCAP_LEN > (MCLBYTES - ETHER_ALIGN))
4337 		bus_dmamap_sync(sc->bge_cdata.bge_rx_jumbo_ring_tag,
4338 		    sc->bge_cdata.bge_rx_jumbo_ring_map, BUS_DMASYNC_POSTWRITE);
4339 
4340 	while (rx_cons != rx_prod) {
4341 		struct bge_rx_bd	*cur_rx;
4342 		uint32_t		rxidx;
4343 		struct mbuf		*m = NULL;
4344 		uint16_t		vlan_tag = 0;
4345 		int			have_tag = 0;
4346 
4347 #ifdef DEVICE_POLLING
4348 		if (if_getcapenable(ifp) & IFCAP_POLLING) {
4349 			if (sc->rxcycles <= 0)
4350 				break;
4351 			sc->rxcycles--;
4352 		}
4353 #endif
4354 
4355 		cur_rx = &sc->bge_ldata.bge_rx_return_ring[rx_cons];
4356 
4357 		rxidx = cur_rx->bge_idx;
4358 		BGE_INC(rx_cons, sc->bge_return_ring_cnt);
4359 
4360 		if (if_getcapenable(ifp) & IFCAP_VLAN_HWTAGGING &&
4361 		    cur_rx->bge_flags & BGE_RXBDFLAG_VLAN_TAG) {
4362 			have_tag = 1;
4363 			vlan_tag = cur_rx->bge_vlan_tag;
4364 		}
4365 
4366 		if (cur_rx->bge_flags & BGE_RXBDFLAG_JUMBO_RING) {
4367 			jumbocnt++;
4368 			m = sc->bge_cdata.bge_rx_jumbo_chain[rxidx];
4369 			if (cur_rx->bge_flags & BGE_RXBDFLAG_ERROR) {
4370 				bge_rxreuse_jumbo(sc, rxidx);
4371 				continue;
4372 			}
4373 			if (bge_newbuf_jumbo(sc, rxidx) != 0) {
4374 				bge_rxreuse_jumbo(sc, rxidx);
4375 				if_inc_counter(ifp, IFCOUNTER_IQDROPS, 1);
4376 				continue;
4377 			}
4378 			BGE_INC(sc->bge_jumbo, BGE_JUMBO_RX_RING_CNT);
4379 		} else {
4380 			stdcnt++;
4381 			m = sc->bge_cdata.bge_rx_std_chain[rxidx];
4382 			if (cur_rx->bge_flags & BGE_RXBDFLAG_ERROR) {
4383 				bge_rxreuse_std(sc, rxidx);
4384 				continue;
4385 			}
4386 			if (bge_newbuf_std(sc, rxidx) != 0) {
4387 				bge_rxreuse_std(sc, rxidx);
4388 				if_inc_counter(ifp, IFCOUNTER_IQDROPS, 1);
4389 				continue;
4390 			}
4391 			BGE_INC(sc->bge_std, BGE_STD_RX_RING_CNT);
4392 		}
4393 
4394 		if_inc_counter(ifp, IFCOUNTER_IPACKETS, 1);
4395 #ifndef __NO_STRICT_ALIGNMENT
4396 		/*
4397 		 * For architectures with strict alignment we must make sure
4398 		 * the payload is aligned.
4399 		 */
4400 		if (sc->bge_flags & BGE_FLAG_RX_ALIGNBUG) {
4401 			bcopy(m->m_data, m->m_data + ETHER_ALIGN,
4402 			    cur_rx->bge_len);
4403 			m->m_data += ETHER_ALIGN;
4404 		}
4405 #endif
4406 		m->m_pkthdr.len = m->m_len = cur_rx->bge_len - ETHER_CRC_LEN;
4407 		m->m_pkthdr.rcvif = ifp;
4408 
4409 		if (if_getcapenable(ifp) & IFCAP_RXCSUM)
4410 			bge_rxcsum(sc, cur_rx, m);
4411 
4412 		/*
4413 		 * If we received a packet with a vlan tag,
4414 		 * attach that information to the packet.
4415 		 */
4416 		if (have_tag) {
4417 			m->m_pkthdr.ether_vtag = vlan_tag;
4418 			m->m_flags |= M_VLANTAG;
4419 		}
4420 
4421 		if (holdlck != 0) {
4422 			BGE_UNLOCK(sc);
4423 			if_input(ifp, m);
4424 			BGE_LOCK(sc);
4425 		} else
4426 			if_input(ifp, m);
4427 		rx_npkts++;
4428 
4429 		if (!(if_getdrvflags(ifp) & IFF_DRV_RUNNING))
4430 			return (rx_npkts);
4431 	}
4432 
4433 	bus_dmamap_sync(sc->bge_cdata.bge_rx_return_ring_tag,
4434 	    sc->bge_cdata.bge_rx_return_ring_map, BUS_DMASYNC_PREREAD);
4435 	if (stdcnt > 0)
4436 		bus_dmamap_sync(sc->bge_cdata.bge_rx_std_ring_tag,
4437 		    sc->bge_cdata.bge_rx_std_ring_map, BUS_DMASYNC_PREWRITE);
4438 
4439 	if (jumbocnt > 0)
4440 		bus_dmamap_sync(sc->bge_cdata.bge_rx_jumbo_ring_tag,
4441 		    sc->bge_cdata.bge_rx_jumbo_ring_map, BUS_DMASYNC_PREWRITE);
4442 
4443 	sc->bge_rx_saved_considx = rx_cons;
4444 	bge_writembx(sc, BGE_MBX_RX_CONS0_LO, sc->bge_rx_saved_considx);
4445 	if (stdcnt)
4446 		bge_writembx(sc, BGE_MBX_RX_STD_PROD_LO, (sc->bge_std +
4447 		    BGE_STD_RX_RING_CNT - 1) % BGE_STD_RX_RING_CNT);
4448 	if (jumbocnt)
4449 		bge_writembx(sc, BGE_MBX_RX_JUMBO_PROD_LO, (sc->bge_jumbo +
4450 		    BGE_JUMBO_RX_RING_CNT - 1) % BGE_JUMBO_RX_RING_CNT);
4451 #ifdef notyet
4452 	/*
4453 	 * This register wraps very quickly under heavy packet drops.
4454 	 * If you need correct statistics, you can enable this check.
4455 	 */
4456 	if (BGE_IS_5705_PLUS(sc))
4457 		if_incierrors(ifp, CSR_READ_4(sc, BGE_RXLP_LOCSTAT_IFIN_DROPS));
4458 #endif
4459 	return (rx_npkts);
4460 }
4461 
4462 static void
4463 bge_rxcsum(struct bge_softc *sc, struct bge_rx_bd *cur_rx, struct mbuf *m)
4464 {
4465 
4466 	if (BGE_IS_5717_PLUS(sc)) {
4467 		if ((cur_rx->bge_flags & BGE_RXBDFLAG_IPV6) == 0) {
4468 			if (cur_rx->bge_flags & BGE_RXBDFLAG_IP_CSUM) {
4469 				m->m_pkthdr.csum_flags |= CSUM_IP_CHECKED;
4470 				if ((cur_rx->bge_error_flag &
4471 				    BGE_RXERRFLAG_IP_CSUM_NOK) == 0)
4472 					m->m_pkthdr.csum_flags |= CSUM_IP_VALID;
4473 			}
4474 			if (cur_rx->bge_flags & BGE_RXBDFLAG_TCP_UDP_CSUM) {
4475 				m->m_pkthdr.csum_data =
4476 				    cur_rx->bge_tcp_udp_csum;
4477 				m->m_pkthdr.csum_flags |= CSUM_DATA_VALID |
4478 				    CSUM_PSEUDO_HDR;
4479 			}
4480 		}
4481 	} else {
4482 		if (cur_rx->bge_flags & BGE_RXBDFLAG_IP_CSUM) {
4483 			m->m_pkthdr.csum_flags |= CSUM_IP_CHECKED;
4484 			if ((cur_rx->bge_ip_csum ^ 0xFFFF) == 0)
4485 				m->m_pkthdr.csum_flags |= CSUM_IP_VALID;
4486 		}
4487 		if (cur_rx->bge_flags & BGE_RXBDFLAG_TCP_UDP_CSUM &&
4488 		    m->m_pkthdr.len >= ETHER_MIN_NOPAD) {
4489 			m->m_pkthdr.csum_data =
4490 			    cur_rx->bge_tcp_udp_csum;
4491 			m->m_pkthdr.csum_flags |= CSUM_DATA_VALID |
4492 			    CSUM_PSEUDO_HDR;
4493 		}
4494 	}
4495 }
4496 
4497 static void
4498 bge_txeof(struct bge_softc *sc, uint16_t tx_cons)
4499 {
4500 	struct bge_tx_bd *cur_tx;
4501 	if_t ifp;
4502 
4503 	BGE_LOCK_ASSERT(sc);
4504 
4505 	/* Nothing to do. */
4506 	if (sc->bge_tx_saved_considx == tx_cons)
4507 		return;
4508 
4509 	ifp = sc->bge_ifp;
4510 
4511 	bus_dmamap_sync(sc->bge_cdata.bge_tx_ring_tag,
4512 	    sc->bge_cdata.bge_tx_ring_map, BUS_DMASYNC_POSTWRITE);
4513 	/*
4514 	 * Go through our tx ring and free mbufs for those
4515 	 * frames that have been sent.
4516 	 */
4517 	while (sc->bge_tx_saved_considx != tx_cons) {
4518 		uint32_t		idx;
4519 
4520 		idx = sc->bge_tx_saved_considx;
4521 		cur_tx = &sc->bge_ldata.bge_tx_ring[idx];
4522 		if (cur_tx->bge_flags & BGE_TXBDFLAG_END)
4523 			if_inc_counter(ifp, IFCOUNTER_OPACKETS, 1);
4524 		if (sc->bge_cdata.bge_tx_chain[idx] != NULL) {
4525 			bus_dmamap_sync(sc->bge_cdata.bge_tx_mtag,
4526 			    sc->bge_cdata.bge_tx_dmamap[idx],
4527 			    BUS_DMASYNC_POSTWRITE);
4528 			bus_dmamap_unload(sc->bge_cdata.bge_tx_mtag,
4529 			    sc->bge_cdata.bge_tx_dmamap[idx]);
4530 			m_freem(sc->bge_cdata.bge_tx_chain[idx]);
4531 			sc->bge_cdata.bge_tx_chain[idx] = NULL;
4532 		}
4533 		sc->bge_txcnt--;
4534 		BGE_INC(sc->bge_tx_saved_considx, BGE_TX_RING_CNT);
4535 	}
4536 
4537 	if_setdrvflagbits(ifp, 0, IFF_DRV_OACTIVE);
4538 	if (sc->bge_txcnt == 0)
4539 		sc->bge_timer = 0;
4540 }
4541 
4542 #ifdef DEVICE_POLLING
4543 static int
4544 bge_poll(if_t ifp, enum poll_cmd cmd, int count)
4545 {
4546 	struct bge_softc *sc = if_getsoftc(ifp);
4547 	uint16_t rx_prod, tx_cons;
4548 	uint32_t statusword;
4549 	int rx_npkts = 0;
4550 
4551 	BGE_LOCK(sc);
4552 	if (!(if_getdrvflags(ifp) & IFF_DRV_RUNNING)) {
4553 		BGE_UNLOCK(sc);
4554 		return (rx_npkts);
4555 	}
4556 
4557 	bus_dmamap_sync(sc->bge_cdata.bge_status_tag,
4558 	    sc->bge_cdata.bge_status_map,
4559 	    BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE);
4560 	/* Fetch updates from the status block. */
4561 	rx_prod = sc->bge_ldata.bge_status_block->bge_idx[0].bge_rx_prod_idx;
4562 	tx_cons = sc->bge_ldata.bge_status_block->bge_idx[0].bge_tx_cons_idx;
4563 
4564 	statusword = sc->bge_ldata.bge_status_block->bge_status;
4565 	/* Clear the status so the next pass only sees the changes. */
4566 	sc->bge_ldata.bge_status_block->bge_status = 0;
4567 
4568 	bus_dmamap_sync(sc->bge_cdata.bge_status_tag,
4569 	    sc->bge_cdata.bge_status_map,
4570 	    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
4571 
4572 	/* Note link event. It will be processed by POLL_AND_CHECK_STATUS. */
4573 	if (statusword & BGE_STATFLAG_LINKSTATE_CHANGED)
4574 		sc->bge_link_evt++;
4575 
4576 	if (cmd == POLL_AND_CHECK_STATUS)
4577 		if ((sc->bge_asicrev == BGE_ASICREV_BCM5700 &&
4578 		    sc->bge_chipid != BGE_CHIPID_BCM5700_B2) ||
4579 		    sc->bge_link_evt || (sc->bge_flags & BGE_FLAG_TBI))
4580 			bge_link_upd(sc);
4581 
4582 	sc->rxcycles = count;
4583 	rx_npkts = bge_rxeof(sc, rx_prod, 1);
4584 	if (!(if_getdrvflags(ifp) & IFF_DRV_RUNNING)) {
4585 		BGE_UNLOCK(sc);
4586 		return (rx_npkts);
4587 	}
4588 	bge_txeof(sc, tx_cons);
4589 	if (!if_sendq_empty(ifp))
4590 		bge_start_locked(ifp);
4591 
4592 	BGE_UNLOCK(sc);
4593 	return (rx_npkts);
4594 }
4595 #endif /* DEVICE_POLLING */
4596 
4597 static int
4598 bge_msi_intr(void *arg)
4599 {
4600 	struct bge_softc *sc;
4601 
4602 	sc = (struct bge_softc *)arg;
4603 	/*
4604 	 * This interrupt is not shared and controller already
4605 	 * disabled further interrupt.
4606 	 */
4607 	taskqueue_enqueue(sc->bge_tq, &sc->bge_intr_task);
4608 	return (FILTER_HANDLED);
4609 }
4610 
4611 static void
4612 bge_intr_task(void *arg, int pending)
4613 {
4614 	struct bge_softc *sc;
4615 	if_t ifp;
4616 	uint32_t status, status_tag;
4617 	uint16_t rx_prod, tx_cons;
4618 
4619 	sc = (struct bge_softc *)arg;
4620 	ifp = sc->bge_ifp;
4621 
4622 	BGE_LOCK(sc);
4623 	if ((if_getdrvflags(ifp) & IFF_DRV_RUNNING) == 0) {
4624 		BGE_UNLOCK(sc);
4625 		return;
4626 	}
4627 
4628 	/* Get updated status block. */
4629 	bus_dmamap_sync(sc->bge_cdata.bge_status_tag,
4630 	    sc->bge_cdata.bge_status_map,
4631 	    BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE);
4632 
4633 	/* Save producer/consumer indices. */
4634 	rx_prod = sc->bge_ldata.bge_status_block->bge_idx[0].bge_rx_prod_idx;
4635 	tx_cons = sc->bge_ldata.bge_status_block->bge_idx[0].bge_tx_cons_idx;
4636 	status = sc->bge_ldata.bge_status_block->bge_status;
4637 	status_tag = sc->bge_ldata.bge_status_block->bge_status_tag << 24;
4638 	/* Dirty the status flag. */
4639 	sc->bge_ldata.bge_status_block->bge_status = 0;
4640 	bus_dmamap_sync(sc->bge_cdata.bge_status_tag,
4641 	    sc->bge_cdata.bge_status_map,
4642 	    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
4643 	if ((sc->bge_flags & BGE_FLAG_TAGGED_STATUS) == 0)
4644 		status_tag = 0;
4645 
4646 	if ((status & BGE_STATFLAG_LINKSTATE_CHANGED) != 0)
4647 		bge_link_upd(sc);
4648 
4649 	/* Let controller work. */
4650 	bge_writembx(sc, BGE_MBX_IRQ0_LO, status_tag);
4651 
4652 	if (if_getdrvflags(ifp) & IFF_DRV_RUNNING &&
4653 	    sc->bge_rx_saved_considx != rx_prod) {
4654 		/* Check RX return ring producer/consumer. */
4655 		BGE_UNLOCK(sc);
4656 		bge_rxeof(sc, rx_prod, 0);
4657 		BGE_LOCK(sc);
4658 	}
4659 	if (if_getdrvflags(ifp) & IFF_DRV_RUNNING) {
4660 		/* Check TX ring producer/consumer. */
4661 		bge_txeof(sc, tx_cons);
4662 		if (!if_sendq_empty(ifp))
4663 			bge_start_locked(ifp);
4664 	}
4665 	BGE_UNLOCK(sc);
4666 }
4667 
4668 static void
4669 bge_intr(void *xsc)
4670 {
4671 	struct bge_softc *sc;
4672 	if_t ifp;
4673 	uint32_t statusword;
4674 	uint16_t rx_prod, tx_cons;
4675 
4676 	sc = xsc;
4677 
4678 	BGE_LOCK(sc);
4679 
4680 	ifp = sc->bge_ifp;
4681 
4682 #ifdef DEVICE_POLLING
4683 	if (if_getcapenable(ifp) & IFCAP_POLLING) {
4684 		BGE_UNLOCK(sc);
4685 		return;
4686 	}
4687 #endif
4688 
4689 	/*
4690 	 * Ack the interrupt by writing something to BGE_MBX_IRQ0_LO.  Don't
4691 	 * disable interrupts by writing nonzero like we used to, since with
4692 	 * our current organization this just gives complications and
4693 	 * pessimizations for re-enabling interrupts.  We used to have races
4694 	 * instead of the necessary complications.  Disabling interrupts
4695 	 * would just reduce the chance of a status update while we are
4696 	 * running (by switching to the interrupt-mode coalescence
4697 	 * parameters), but this chance is already very low so it is more
4698 	 * efficient to get another interrupt than prevent it.
4699 	 *
4700 	 * We do the ack first to ensure another interrupt if there is a
4701 	 * status update after the ack.  We don't check for the status
4702 	 * changing later because it is more efficient to get another
4703 	 * interrupt than prevent it, not quite as above (not checking is
4704 	 * a smaller optimization than not toggling the interrupt enable,
4705 	 * since checking doesn't involve PCI accesses and toggling require
4706 	 * the status check).  So toggling would probably be a pessimization
4707 	 * even with MSI.  It would only be needed for using a task queue.
4708 	 */
4709 	bge_writembx(sc, BGE_MBX_IRQ0_LO, 0);
4710 
4711 	/*
4712 	 * Do the mandatory PCI flush as well as get the link status.
4713 	 */
4714 	statusword = CSR_READ_4(sc, BGE_MAC_STS) & BGE_MACSTAT_LINK_CHANGED;
4715 
4716 	/* Make sure the descriptor ring indexes are coherent. */
4717 	bus_dmamap_sync(sc->bge_cdata.bge_status_tag,
4718 	    sc->bge_cdata.bge_status_map,
4719 	    BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE);
4720 	rx_prod = sc->bge_ldata.bge_status_block->bge_idx[0].bge_rx_prod_idx;
4721 	tx_cons = sc->bge_ldata.bge_status_block->bge_idx[0].bge_tx_cons_idx;
4722 	sc->bge_ldata.bge_status_block->bge_status = 0;
4723 	bus_dmamap_sync(sc->bge_cdata.bge_status_tag,
4724 	    sc->bge_cdata.bge_status_map,
4725 	    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
4726 
4727 	if ((sc->bge_asicrev == BGE_ASICREV_BCM5700 &&
4728 	    sc->bge_chipid != BGE_CHIPID_BCM5700_B2) ||
4729 	    statusword || sc->bge_link_evt)
4730 		bge_link_upd(sc);
4731 
4732 	if (if_getdrvflags(ifp) & IFF_DRV_RUNNING) {
4733 		/* Check RX return ring producer/consumer. */
4734 		bge_rxeof(sc, rx_prod, 1);
4735 	}
4736 
4737 	if (if_getdrvflags(ifp) & IFF_DRV_RUNNING) {
4738 		/* Check TX ring producer/consumer. */
4739 		bge_txeof(sc, tx_cons);
4740 	}
4741 
4742 	if (if_getdrvflags(ifp) & IFF_DRV_RUNNING &&
4743 	    !if_sendq_empty(ifp))
4744 		bge_start_locked(ifp);
4745 
4746 	BGE_UNLOCK(sc);
4747 }
4748 
4749 static void
4750 bge_asf_driver_up(struct bge_softc *sc)
4751 {
4752 	if (sc->bge_asf_mode & ASF_STACKUP) {
4753 		/* Send ASF heartbeat aprox. every 2s */
4754 		if (sc->bge_asf_count)
4755 			sc->bge_asf_count --;
4756 		else {
4757 			sc->bge_asf_count = 2;
4758 			bge_writemem_ind(sc, BGE_SRAM_FW_CMD_MB,
4759 			    BGE_FW_CMD_DRV_ALIVE);
4760 			bge_writemem_ind(sc, BGE_SRAM_FW_CMD_LEN_MB, 4);
4761 			bge_writemem_ind(sc, BGE_SRAM_FW_CMD_DATA_MB,
4762 			    BGE_FW_HB_TIMEOUT_SEC);
4763 			CSR_WRITE_4(sc, BGE_RX_CPU_EVENT,
4764 			    CSR_READ_4(sc, BGE_RX_CPU_EVENT) |
4765 			    BGE_RX_CPU_DRV_EVENT);
4766 		}
4767 	}
4768 }
4769 
4770 static void
4771 bge_tick(void *xsc)
4772 {
4773 	struct bge_softc *sc = xsc;
4774 	struct mii_data *mii = NULL;
4775 
4776 	BGE_LOCK_ASSERT(sc);
4777 
4778 	/* Synchronize with possible callout reset/stop. */
4779 	if (callout_pending(&sc->bge_stat_ch) ||
4780 	    !callout_active(&sc->bge_stat_ch))
4781 		return;
4782 
4783 	if (BGE_IS_5705_PLUS(sc))
4784 		bge_stats_update_regs(sc);
4785 	else
4786 		bge_stats_update(sc);
4787 
4788 	/* XXX Add APE heartbeat check here? */
4789 
4790 	if ((sc->bge_flags & BGE_FLAG_TBI) == 0) {
4791 		mii = device_get_softc(sc->bge_miibus);
4792 		/*
4793 		 * Do not touch PHY if we have link up. This could break
4794 		 * IPMI/ASF mode or produce extra input errors
4795 		 * (extra errors was reported for bcm5701 & bcm5704).
4796 		 */
4797 		if (!sc->bge_link)
4798 			mii_tick(mii);
4799 	} else {
4800 		/*
4801 		 * Since in TBI mode auto-polling can't be used we should poll
4802 		 * link status manually. Here we register pending link event
4803 		 * and trigger interrupt.
4804 		 */
4805 #ifdef DEVICE_POLLING
4806 		/* In polling mode we poll link state in bge_poll(). */
4807 		if (!(if_getcapenable(sc->bge_ifp) & IFCAP_POLLING))
4808 #endif
4809 		{
4810 		sc->bge_link_evt++;
4811 		if (sc->bge_asicrev == BGE_ASICREV_BCM5700 ||
4812 		    sc->bge_flags & BGE_FLAG_5788)
4813 			BGE_SETBIT(sc, BGE_MISC_LOCAL_CTL, BGE_MLC_INTR_SET);
4814 		else
4815 			BGE_SETBIT(sc, BGE_HCC_MODE, BGE_HCCMODE_COAL_NOW);
4816 		}
4817 	}
4818 
4819 	bge_asf_driver_up(sc);
4820 	bge_watchdog(sc);
4821 
4822 	callout_reset(&sc->bge_stat_ch, hz, bge_tick, sc);
4823 }
4824 
4825 static void
4826 bge_stats_update_regs(struct bge_softc *sc)
4827 {
4828 	if_t ifp;
4829 	struct bge_mac_stats *stats;
4830 	uint32_t val;
4831 
4832 	ifp = sc->bge_ifp;
4833 	stats = &sc->bge_mac_stats;
4834 
4835 	stats->ifHCOutOctets +=
4836 	    CSR_READ_4(sc, BGE_TX_MAC_STATS_OCTETS);
4837 	stats->etherStatsCollisions +=
4838 	    CSR_READ_4(sc, BGE_TX_MAC_STATS_COLLS);
4839 	stats->outXonSent +=
4840 	    CSR_READ_4(sc, BGE_TX_MAC_STATS_XON_SENT);
4841 	stats->outXoffSent +=
4842 	    CSR_READ_4(sc, BGE_TX_MAC_STATS_XOFF_SENT);
4843 	stats->dot3StatsInternalMacTransmitErrors +=
4844 	    CSR_READ_4(sc, BGE_TX_MAC_STATS_ERRORS);
4845 	stats->dot3StatsSingleCollisionFrames +=
4846 	    CSR_READ_4(sc, BGE_TX_MAC_STATS_SINGLE_COLL);
4847 	stats->dot3StatsMultipleCollisionFrames +=
4848 	    CSR_READ_4(sc, BGE_TX_MAC_STATS_MULTI_COLL);
4849 	stats->dot3StatsDeferredTransmissions +=
4850 	    CSR_READ_4(sc, BGE_TX_MAC_STATS_DEFERRED);
4851 	stats->dot3StatsExcessiveCollisions +=
4852 	    CSR_READ_4(sc, BGE_TX_MAC_STATS_EXCESS_COLL);
4853 	stats->dot3StatsLateCollisions +=
4854 	    CSR_READ_4(sc, BGE_TX_MAC_STATS_LATE_COLL);
4855 	stats->ifHCOutUcastPkts +=
4856 	    CSR_READ_4(sc, BGE_TX_MAC_STATS_UCAST);
4857 	stats->ifHCOutMulticastPkts +=
4858 	    CSR_READ_4(sc, BGE_TX_MAC_STATS_MCAST);
4859 	stats->ifHCOutBroadcastPkts +=
4860 	    CSR_READ_4(sc, BGE_TX_MAC_STATS_BCAST);
4861 
4862 	stats->ifHCInOctets +=
4863 	    CSR_READ_4(sc, BGE_RX_MAC_STATS_OCTESTS);
4864 	stats->etherStatsFragments +=
4865 	    CSR_READ_4(sc, BGE_RX_MAC_STATS_FRAGMENTS);
4866 	stats->ifHCInUcastPkts +=
4867 	    CSR_READ_4(sc, BGE_RX_MAC_STATS_UCAST);
4868 	stats->ifHCInMulticastPkts +=
4869 	    CSR_READ_4(sc, BGE_RX_MAC_STATS_MCAST);
4870 	stats->ifHCInBroadcastPkts +=
4871 	    CSR_READ_4(sc, BGE_RX_MAC_STATS_BCAST);
4872 	stats->dot3StatsFCSErrors +=
4873 	    CSR_READ_4(sc, BGE_RX_MAC_STATS_FCS_ERRORS);
4874 	stats->dot3StatsAlignmentErrors +=
4875 	    CSR_READ_4(sc, BGE_RX_MAC_STATS_ALGIN_ERRORS);
4876 	stats->xonPauseFramesReceived +=
4877 	    CSR_READ_4(sc, BGE_RX_MAC_STATS_XON_RCVD);
4878 	stats->xoffPauseFramesReceived +=
4879 	    CSR_READ_4(sc, BGE_RX_MAC_STATS_XOFF_RCVD);
4880 	stats->macControlFramesReceived +=
4881 	    CSR_READ_4(sc, BGE_RX_MAC_STATS_CTRL_RCVD);
4882 	stats->xoffStateEntered +=
4883 	    CSR_READ_4(sc, BGE_RX_MAC_STATS_XOFF_ENTERED);
4884 	stats->dot3StatsFramesTooLong +=
4885 	    CSR_READ_4(sc, BGE_RX_MAC_STATS_FRAME_TOO_LONG);
4886 	stats->etherStatsJabbers +=
4887 	    CSR_READ_4(sc, BGE_RX_MAC_STATS_JABBERS);
4888 	stats->etherStatsUndersizePkts +=
4889 	    CSR_READ_4(sc, BGE_RX_MAC_STATS_UNDERSIZE);
4890 
4891 	stats->FramesDroppedDueToFilters +=
4892 	    CSR_READ_4(sc, BGE_RXLP_LOCSTAT_FILTDROP);
4893 	stats->DmaWriteQueueFull +=
4894 	    CSR_READ_4(sc, BGE_RXLP_LOCSTAT_DMA_WRQ_FULL);
4895 	stats->DmaWriteHighPriQueueFull +=
4896 	    CSR_READ_4(sc, BGE_RXLP_LOCSTAT_DMA_HPWRQ_FULL);
4897 	stats->NoMoreRxBDs +=
4898 	    CSR_READ_4(sc, BGE_RXLP_LOCSTAT_OUT_OF_BDS);
4899 	/*
4900 	 * XXX
4901 	 * Unlike other controllers, BGE_RXLP_LOCSTAT_IFIN_DROPS
4902 	 * counter of BCM5717, BCM5718, BCM5719 A0 and BCM5720 A0
4903 	 * includes number of unwanted multicast frames.  This comes
4904 	 * from silicon bug and known workaround to get rough(not
4905 	 * exact) counter is to enable interrupt on MBUF low water
4906 	 * attention.  This can be accomplished by setting
4907 	 * BGE_HCCMODE_ATTN bit of BGE_HCC_MODE,
4908 	 * BGE_BMANMODE_LOMBUF_ATTN bit of BGE_BMAN_MODE and
4909 	 * BGE_MODECTL_FLOWCTL_ATTN_INTR bit of BGE_MODE_CTL.
4910 	 * However that change would generate more interrupts and
4911 	 * there are still possibilities of losing multiple frames
4912 	 * during BGE_MODECTL_FLOWCTL_ATTN_INTR interrupt handling.
4913 	 * Given that the workaround still would not get correct
4914 	 * counter I don't think it's worth to implement it.  So
4915 	 * ignore reading the counter on controllers that have the
4916 	 * silicon bug.
4917 	 */
4918 	if (sc->bge_asicrev != BGE_ASICREV_BCM5717 &&
4919 	    sc->bge_chipid != BGE_CHIPID_BCM5719_A0 &&
4920 	    sc->bge_chipid != BGE_CHIPID_BCM5720_A0)
4921 		stats->InputDiscards +=
4922 		    CSR_READ_4(sc, BGE_RXLP_LOCSTAT_IFIN_DROPS);
4923 	stats->InputErrors +=
4924 	    CSR_READ_4(sc, BGE_RXLP_LOCSTAT_IFIN_ERRORS);
4925 	stats->RecvThresholdHit +=
4926 	    CSR_READ_4(sc, BGE_RXLP_LOCSTAT_RXTHRESH_HIT);
4927 
4928 	if (sc->bge_flags & BGE_FLAG_RDMA_BUG) {
4929 		/*
4930 		 * If controller transmitted more than BGE_NUM_RDMA_CHANNELS
4931 		 * frames, it's safe to disable workaround for DMA engine's
4932 		 * miscalculation of TXMBUF space.
4933 		 */
4934 		if (stats->ifHCOutUcastPkts + stats->ifHCOutMulticastPkts +
4935 		    stats->ifHCOutBroadcastPkts > BGE_NUM_RDMA_CHANNELS) {
4936 			val = CSR_READ_4(sc, BGE_RDMA_LSO_CRPTEN_CTRL);
4937 			if (sc->bge_asicrev == BGE_ASICREV_BCM5719)
4938 				val &= ~BGE_RDMA_TX_LENGTH_WA_5719;
4939 			else
4940 				val &= ~BGE_RDMA_TX_LENGTH_WA_5720;
4941 			CSR_WRITE_4(sc, BGE_RDMA_LSO_CRPTEN_CTRL, val);
4942 			sc->bge_flags &= ~BGE_FLAG_RDMA_BUG;
4943 		}
4944 	}
4945 }
4946 
4947 static void
4948 bge_stats_clear_regs(struct bge_softc *sc)
4949 {
4950 
4951 	CSR_READ_4(sc, BGE_TX_MAC_STATS_OCTETS);
4952 	CSR_READ_4(sc, BGE_TX_MAC_STATS_COLLS);
4953 	CSR_READ_4(sc, BGE_TX_MAC_STATS_XON_SENT);
4954 	CSR_READ_4(sc, BGE_TX_MAC_STATS_XOFF_SENT);
4955 	CSR_READ_4(sc, BGE_TX_MAC_STATS_ERRORS);
4956 	CSR_READ_4(sc, BGE_TX_MAC_STATS_SINGLE_COLL);
4957 	CSR_READ_4(sc, BGE_TX_MAC_STATS_MULTI_COLL);
4958 	CSR_READ_4(sc, BGE_TX_MAC_STATS_DEFERRED);
4959 	CSR_READ_4(sc, BGE_TX_MAC_STATS_EXCESS_COLL);
4960 	CSR_READ_4(sc, BGE_TX_MAC_STATS_LATE_COLL);
4961 	CSR_READ_4(sc, BGE_TX_MAC_STATS_UCAST);
4962 	CSR_READ_4(sc, BGE_TX_MAC_STATS_MCAST);
4963 	CSR_READ_4(sc, BGE_TX_MAC_STATS_BCAST);
4964 
4965 	CSR_READ_4(sc, BGE_RX_MAC_STATS_OCTESTS);
4966 	CSR_READ_4(sc, BGE_RX_MAC_STATS_FRAGMENTS);
4967 	CSR_READ_4(sc, BGE_RX_MAC_STATS_UCAST);
4968 	CSR_READ_4(sc, BGE_RX_MAC_STATS_MCAST);
4969 	CSR_READ_4(sc, BGE_RX_MAC_STATS_BCAST);
4970 	CSR_READ_4(sc, BGE_RX_MAC_STATS_FCS_ERRORS);
4971 	CSR_READ_4(sc, BGE_RX_MAC_STATS_ALGIN_ERRORS);
4972 	CSR_READ_4(sc, BGE_RX_MAC_STATS_XON_RCVD);
4973 	CSR_READ_4(sc, BGE_RX_MAC_STATS_XOFF_RCVD);
4974 	CSR_READ_4(sc, BGE_RX_MAC_STATS_CTRL_RCVD);
4975 	CSR_READ_4(sc, BGE_RX_MAC_STATS_XOFF_ENTERED);
4976 	CSR_READ_4(sc, BGE_RX_MAC_STATS_FRAME_TOO_LONG);
4977 	CSR_READ_4(sc, BGE_RX_MAC_STATS_JABBERS);
4978 	CSR_READ_4(sc, BGE_RX_MAC_STATS_UNDERSIZE);
4979 
4980 	CSR_READ_4(sc, BGE_RXLP_LOCSTAT_FILTDROP);
4981 	CSR_READ_4(sc, BGE_RXLP_LOCSTAT_DMA_WRQ_FULL);
4982 	CSR_READ_4(sc, BGE_RXLP_LOCSTAT_DMA_HPWRQ_FULL);
4983 	CSR_READ_4(sc, BGE_RXLP_LOCSTAT_OUT_OF_BDS);
4984 	CSR_READ_4(sc, BGE_RXLP_LOCSTAT_IFIN_DROPS);
4985 	CSR_READ_4(sc, BGE_RXLP_LOCSTAT_IFIN_ERRORS);
4986 	CSR_READ_4(sc, BGE_RXLP_LOCSTAT_RXTHRESH_HIT);
4987 }
4988 
4989 static void
4990 bge_stats_update(struct bge_softc *sc)
4991 {
4992 	if_t ifp;
4993 	bus_size_t stats;
4994 	uint32_t cnt;	/* current register value */
4995 
4996 	ifp = sc->bge_ifp;
4997 
4998 	stats = BGE_MEMWIN_START + BGE_STATS_BLOCK;
4999 
5000 #define	READ_STAT(sc, stats, stat) \
5001 	CSR_READ_4(sc, stats + offsetof(struct bge_stats, stat))
5002 
5003 	cnt = READ_STAT(sc, stats, txstats.etherStatsCollisions.bge_addr_lo);
5004 	if_inc_counter(ifp, IFCOUNTER_COLLISIONS, cnt - sc->bge_tx_collisions);
5005 	sc->bge_tx_collisions = cnt;
5006 
5007 	cnt = READ_STAT(sc, stats, nicNoMoreRxBDs.bge_addr_lo);
5008 	if_inc_counter(ifp, IFCOUNTER_IERRORS, cnt - sc->bge_rx_nobds);
5009 	sc->bge_rx_nobds = cnt;
5010 	cnt = READ_STAT(sc, stats, ifInErrors.bge_addr_lo);
5011 	if_inc_counter(ifp, IFCOUNTER_IERRORS, cnt - sc->bge_rx_inerrs);
5012 	sc->bge_rx_inerrs = cnt;
5013 	cnt = READ_STAT(sc, stats, ifInDiscards.bge_addr_lo);
5014 	if_inc_counter(ifp, IFCOUNTER_IERRORS, cnt - sc->bge_rx_discards);
5015 	sc->bge_rx_discards = cnt;
5016 
5017 	cnt = READ_STAT(sc, stats, txstats.ifOutDiscards.bge_addr_lo);
5018 	if_inc_counter(ifp, IFCOUNTER_OERRORS, cnt - sc->bge_tx_discards);
5019 	sc->bge_tx_discards = cnt;
5020 
5021 #undef	READ_STAT
5022 }
5023 
5024 /*
5025  * Pad outbound frame to ETHER_MIN_NOPAD for an unusual reason.
5026  * The bge hardware will pad out Tx runts to ETHER_MIN_NOPAD,
5027  * but when such padded frames employ the bge IP/TCP checksum offload,
5028  * the hardware checksum assist gives incorrect results (possibly
5029  * from incorporating its own padding into the UDP/TCP checksum; who knows).
5030  * If we pad such runts with zeros, the onboard checksum comes out correct.
5031  */
5032 static __inline int
5033 bge_cksum_pad(struct mbuf *m)
5034 {
5035 	int padlen = ETHER_MIN_NOPAD - m->m_pkthdr.len;
5036 	struct mbuf *last;
5037 
5038 	/* If there's only the packet-header and we can pad there, use it. */
5039 	if (m->m_pkthdr.len == m->m_len && M_WRITABLE(m) &&
5040 	    M_TRAILINGSPACE(m) >= padlen) {
5041 		last = m;
5042 	} else {
5043 		/*
5044 		 * Walk packet chain to find last mbuf. We will either
5045 		 * pad there, or append a new mbuf and pad it.
5046 		 */
5047 		for (last = m; last->m_next != NULL; last = last->m_next);
5048 		if (!(M_WRITABLE(last) && M_TRAILINGSPACE(last) >= padlen)) {
5049 			/* Allocate new empty mbuf, pad it. Compact later. */
5050 			struct mbuf *n;
5051 
5052 			MGET(n, M_NOWAIT, MT_DATA);
5053 			if (n == NULL)
5054 				return (ENOBUFS);
5055 			n->m_len = 0;
5056 			last->m_next = n;
5057 			last = n;
5058 		}
5059 	}
5060 
5061 	/* Now zero the pad area, to avoid the bge cksum-assist bug. */
5062 	memset(mtod(last, caddr_t) + last->m_len, 0, padlen);
5063 	last->m_len += padlen;
5064 	m->m_pkthdr.len += padlen;
5065 
5066 	return (0);
5067 }
5068 
5069 static struct mbuf *
5070 bge_check_short_dma(struct mbuf *m)
5071 {
5072 	struct mbuf *n;
5073 	int found;
5074 
5075 	/*
5076 	 * If device receive two back-to-back send BDs with less than
5077 	 * or equal to 8 total bytes then the device may hang.  The two
5078 	 * back-to-back send BDs must in the same frame for this failure
5079 	 * to occur.  Scan mbuf chains and see whether two back-to-back
5080 	 * send BDs are there. If this is the case, allocate new mbuf
5081 	 * and copy the frame to workaround the silicon bug.
5082 	 */
5083 	for (n = m, found = 0; n != NULL; n = n->m_next) {
5084 		if (n->m_len < 8) {
5085 			found++;
5086 			if (found > 1)
5087 				break;
5088 			continue;
5089 		}
5090 		found = 0;
5091 	}
5092 
5093 	if (found > 1) {
5094 		n = m_defrag(m, M_NOWAIT);
5095 		if (n == NULL)
5096 			m_freem(m);
5097 	} else
5098 		n = m;
5099 	return (n);
5100 }
5101 
5102 static struct mbuf *
5103 bge_setup_tso(struct bge_softc *sc, struct mbuf *m, uint16_t *mss,
5104     uint16_t *flags)
5105 {
5106 	struct ip *ip;
5107 	struct tcphdr *tcp;
5108 	struct mbuf *n;
5109 	uint16_t hlen;
5110 	uint32_t poff;
5111 
5112 	if (M_WRITABLE(m) == 0) {
5113 		/* Get a writable copy. */
5114 		n = m_dup(m, M_NOWAIT);
5115 		m_freem(m);
5116 		if (n == NULL)
5117 			return (NULL);
5118 		m = n;
5119 	}
5120 	m = m_pullup(m, sizeof(struct ether_header) + sizeof(struct ip));
5121 	if (m == NULL)
5122 		return (NULL);
5123 	ip = (struct ip *)(mtod(m, char *) + sizeof(struct ether_header));
5124 	poff = sizeof(struct ether_header) + (ip->ip_hl << 2);
5125 	m = m_pullup(m, poff + sizeof(struct tcphdr));
5126 	if (m == NULL)
5127 		return (NULL);
5128 	tcp = (struct tcphdr *)(mtod(m, char *) + poff);
5129 	m = m_pullup(m, poff + (tcp->th_off << 2));
5130 	if (m == NULL)
5131 		return (NULL);
5132 	/*
5133 	 * It seems controller doesn't modify IP length and TCP pseudo
5134 	 * checksum. These checksum computed by upper stack should be 0.
5135 	 */
5136 	*mss = m->m_pkthdr.tso_segsz;
5137 	ip = (struct ip *)(mtod(m, char *) + sizeof(struct ether_header));
5138 	ip->ip_sum = 0;
5139 	ip->ip_len = htons(*mss + (ip->ip_hl << 2) + (tcp->th_off << 2));
5140 	/* Clear pseudo checksum computed by TCP stack. */
5141 	tcp = (struct tcphdr *)(mtod(m, char *) + poff);
5142 	tcp->th_sum = 0;
5143 	/*
5144 	 * Broadcom controllers uses different descriptor format for
5145 	 * TSO depending on ASIC revision. Due to TSO-capable firmware
5146 	 * license issue and lower performance of firmware based TSO
5147 	 * we only support hardware based TSO.
5148 	 */
5149 	/* Calculate header length, incl. TCP/IP options, in 32 bit units. */
5150 	hlen = ((ip->ip_hl << 2) + (tcp->th_off << 2)) >> 2;
5151 	if (sc->bge_flags & BGE_FLAG_TSO3) {
5152 		/*
5153 		 * For BCM5717 and newer controllers, hardware based TSO
5154 		 * uses the 14 lower bits of the bge_mss field to store the
5155 		 * MSS and the upper 2 bits to store the lowest 2 bits of
5156 		 * the IP/TCP header length.  The upper 6 bits of the header
5157 		 * length are stored in the bge_flags[14:10,4] field.  Jumbo
5158 		 * frames are supported.
5159 		 */
5160 		*mss |= ((hlen & 0x3) << 14);
5161 		*flags |= ((hlen & 0xF8) << 7) | ((hlen & 0x4) << 2);
5162 	} else {
5163 		/*
5164 		 * For BCM5755 and newer controllers, hardware based TSO uses
5165 		 * the lower 11	bits to store the MSS and the upper 5 bits to
5166 		 * store the IP/TCP header length. Jumbo frames are not
5167 		 * supported.
5168 		 */
5169 		*mss |= (hlen << 11);
5170 	}
5171 	return (m);
5172 }
5173 
5174 /*
5175  * Encapsulate an mbuf chain in the tx ring  by coupling the mbuf data
5176  * pointers to descriptors.
5177  */
5178 static int
5179 bge_encap(struct bge_softc *sc, struct mbuf **m_head, uint32_t *txidx)
5180 {
5181 	bus_dma_segment_t	segs[BGE_NSEG_NEW];
5182 	bus_dmamap_t		map;
5183 	struct bge_tx_bd	*d;
5184 	struct mbuf		*m = *m_head;
5185 	uint32_t		idx = *txidx;
5186 	uint16_t		csum_flags, mss, vlan_tag;
5187 	int			nsegs, i, error;
5188 
5189 	csum_flags = 0;
5190 	mss = 0;
5191 	vlan_tag = 0;
5192 	if ((sc->bge_flags & BGE_FLAG_SHORT_DMA_BUG) != 0 &&
5193 	    m->m_next != NULL) {
5194 		*m_head = bge_check_short_dma(m);
5195 		if (*m_head == NULL)
5196 			return (ENOBUFS);
5197 		m = *m_head;
5198 	}
5199 	if ((m->m_pkthdr.csum_flags & CSUM_TSO) != 0) {
5200 		*m_head = m = bge_setup_tso(sc, m, &mss, &csum_flags);
5201 		if (*m_head == NULL)
5202 			return (ENOBUFS);
5203 		csum_flags |= BGE_TXBDFLAG_CPU_PRE_DMA |
5204 		    BGE_TXBDFLAG_CPU_POST_DMA;
5205 	} else if ((m->m_pkthdr.csum_flags & sc->bge_csum_features) != 0) {
5206 		if (m->m_pkthdr.csum_flags & CSUM_IP)
5207 			csum_flags |= BGE_TXBDFLAG_IP_CSUM;
5208 		if (m->m_pkthdr.csum_flags & (CSUM_TCP | CSUM_UDP)) {
5209 			csum_flags |= BGE_TXBDFLAG_TCP_UDP_CSUM;
5210 			if (m->m_pkthdr.len < ETHER_MIN_NOPAD &&
5211 			    (error = bge_cksum_pad(m)) != 0) {
5212 				m_freem(m);
5213 				*m_head = NULL;
5214 				return (error);
5215 			}
5216 		}
5217 	}
5218 
5219 	if ((m->m_pkthdr.csum_flags & CSUM_TSO) == 0) {
5220 		if (sc->bge_flags & BGE_FLAG_JUMBO_FRAME &&
5221 		    m->m_pkthdr.len > ETHER_MAX_LEN)
5222 			csum_flags |= BGE_TXBDFLAG_JUMBO_FRAME;
5223 		if (sc->bge_forced_collapse > 0 &&
5224 		    (sc->bge_flags & BGE_FLAG_PCIE) != 0 && m->m_next != NULL) {
5225 			/*
5226 			 * Forcedly collapse mbuf chains to overcome hardware
5227 			 * limitation which only support a single outstanding
5228 			 * DMA read operation.
5229 			 */
5230 			if (sc->bge_forced_collapse == 1)
5231 				m = m_defrag(m, M_NOWAIT);
5232 			else
5233 				m = m_collapse(m, M_NOWAIT,
5234 				    sc->bge_forced_collapse);
5235 			if (m == NULL)
5236 				m = *m_head;
5237 			*m_head = m;
5238 		}
5239 	}
5240 
5241 	map = sc->bge_cdata.bge_tx_dmamap[idx];
5242 	error = bus_dmamap_load_mbuf_sg(sc->bge_cdata.bge_tx_mtag, map, m, segs,
5243 	    &nsegs, BUS_DMA_NOWAIT);
5244 	if (error == EFBIG) {
5245 		m = m_collapse(m, M_NOWAIT, BGE_NSEG_NEW);
5246 		if (m == NULL) {
5247 			m_freem(*m_head);
5248 			*m_head = NULL;
5249 			return (ENOBUFS);
5250 		}
5251 		*m_head = m;
5252 		error = bus_dmamap_load_mbuf_sg(sc->bge_cdata.bge_tx_mtag, map,
5253 		    m, segs, &nsegs, BUS_DMA_NOWAIT);
5254 		if (error) {
5255 			m_freem(m);
5256 			*m_head = NULL;
5257 			return (error);
5258 		}
5259 	} else if (error != 0)
5260 		return (error);
5261 
5262 	/* Check if we have enough free send BDs. */
5263 	if (sc->bge_txcnt + nsegs >= BGE_TX_RING_CNT) {
5264 		bus_dmamap_unload(sc->bge_cdata.bge_tx_mtag, map);
5265 		return (ENOBUFS);
5266 	}
5267 
5268 	bus_dmamap_sync(sc->bge_cdata.bge_tx_mtag, map, BUS_DMASYNC_PREWRITE);
5269 
5270 	if (m->m_flags & M_VLANTAG) {
5271 		csum_flags |= BGE_TXBDFLAG_VLAN_TAG;
5272 		vlan_tag = m->m_pkthdr.ether_vtag;
5273 	}
5274 
5275 	if (sc->bge_asicrev == BGE_ASICREV_BCM5762 &&
5276 	    (m->m_pkthdr.csum_flags & CSUM_TSO) != 0) {
5277 		/*
5278 		 * 5725 family of devices corrupts TSO packets when TSO DMA
5279 		 * buffers cross into regions which are within MSS bytes of
5280 		 * a 4GB boundary.  If we encounter the condition, drop the
5281 		 * packet.
5282 		 */
5283 		for (i = 0; ; i++) {
5284 			d = &sc->bge_ldata.bge_tx_ring[idx];
5285 			d->bge_addr.bge_addr_lo = BGE_ADDR_LO(segs[i].ds_addr);
5286 			d->bge_addr.bge_addr_hi = BGE_ADDR_HI(segs[i].ds_addr);
5287 			d->bge_len = segs[i].ds_len;
5288 			if (d->bge_addr.bge_addr_lo + segs[i].ds_len + mss <
5289 			    d->bge_addr.bge_addr_lo)
5290 				break;
5291 			d->bge_flags = csum_flags;
5292 			d->bge_vlan_tag = vlan_tag;
5293 			d->bge_mss = mss;
5294 			if (i == nsegs - 1)
5295 				break;
5296 			BGE_INC(idx, BGE_TX_RING_CNT);
5297 		}
5298 		if (i != nsegs - 1) {
5299 			bus_dmamap_sync(sc->bge_cdata.bge_tx_mtag, map,
5300 			    BUS_DMASYNC_POSTWRITE);
5301 			bus_dmamap_unload(sc->bge_cdata.bge_tx_mtag, map);
5302 			m_freem(*m_head);
5303 			*m_head = NULL;
5304 			return (EIO);
5305 		}
5306 	} else {
5307 		for (i = 0; ; i++) {
5308 			d = &sc->bge_ldata.bge_tx_ring[idx];
5309 			d->bge_addr.bge_addr_lo = BGE_ADDR_LO(segs[i].ds_addr);
5310 			d->bge_addr.bge_addr_hi = BGE_ADDR_HI(segs[i].ds_addr);
5311 			d->bge_len = segs[i].ds_len;
5312 			d->bge_flags = csum_flags;
5313 			d->bge_vlan_tag = vlan_tag;
5314 			d->bge_mss = mss;
5315 			if (i == nsegs - 1)
5316 				break;
5317 			BGE_INC(idx, BGE_TX_RING_CNT);
5318 		}
5319 	}
5320 
5321 	/* Mark the last segment as end of packet... */
5322 	d->bge_flags |= BGE_TXBDFLAG_END;
5323 
5324 	/*
5325 	 * Insure that the map for this transmission
5326 	 * is placed at the array index of the last descriptor
5327 	 * in this chain.
5328 	 */
5329 	sc->bge_cdata.bge_tx_dmamap[*txidx] = sc->bge_cdata.bge_tx_dmamap[idx];
5330 	sc->bge_cdata.bge_tx_dmamap[idx] = map;
5331 	sc->bge_cdata.bge_tx_chain[idx] = m;
5332 	sc->bge_txcnt += nsegs;
5333 
5334 	BGE_INC(idx, BGE_TX_RING_CNT);
5335 	*txidx = idx;
5336 
5337 	return (0);
5338 }
5339 
5340 /*
5341  * Main transmit routine. To avoid having to do mbuf copies, we put pointers
5342  * to the mbuf data regions directly in the transmit descriptors.
5343  */
5344 static void
5345 bge_start_locked(if_t ifp)
5346 {
5347 	struct bge_softc *sc;
5348 	struct mbuf *m_head;
5349 	uint32_t prodidx;
5350 	int count;
5351 
5352 	sc = if_getsoftc(ifp);
5353 	BGE_LOCK_ASSERT(sc);
5354 
5355 	if (!sc->bge_link ||
5356 	    (if_getdrvflags(ifp) & (IFF_DRV_RUNNING | IFF_DRV_OACTIVE)) !=
5357 	    IFF_DRV_RUNNING)
5358 		return;
5359 
5360 	prodidx = sc->bge_tx_prodidx;
5361 
5362 	for (count = 0; !if_sendq_empty(ifp);) {
5363 		if (sc->bge_txcnt > BGE_TX_RING_CNT - 16) {
5364 			if_setdrvflagbits(ifp, IFF_DRV_OACTIVE, 0);
5365 			break;
5366 		}
5367 		m_head = if_dequeue(ifp);
5368 		if (m_head == NULL)
5369 			break;
5370 
5371 		/*
5372 		 * Pack the data into the transmit ring. If we
5373 		 * don't have room, set the OACTIVE flag and wait
5374 		 * for the NIC to drain the ring.
5375 		 */
5376 		if (bge_encap(sc, &m_head, &prodidx)) {
5377 			if (m_head == NULL)
5378 				break;
5379 			if_sendq_prepend(ifp, m_head);
5380 			if_setdrvflagbits(ifp, IFF_DRV_OACTIVE, 0);
5381 			break;
5382 		}
5383 		++count;
5384 
5385 		/*
5386 		 * If there's a BPF listener, bounce a copy of this frame
5387 		 * to him.
5388 		 */
5389 		if_bpfmtap(ifp, m_head);
5390 	}
5391 
5392 	if (count > 0) {
5393 		bus_dmamap_sync(sc->bge_cdata.bge_tx_ring_tag,
5394 		    sc->bge_cdata.bge_tx_ring_map, BUS_DMASYNC_PREWRITE);
5395 		/* Transmit. */
5396 		bge_writembx(sc, BGE_MBX_TX_HOST_PROD0_LO, prodidx);
5397 		/* 5700 b2 errata */
5398 		if (sc->bge_chiprev == BGE_CHIPREV_5700_BX)
5399 			bge_writembx(sc, BGE_MBX_TX_HOST_PROD0_LO, prodidx);
5400 
5401 		sc->bge_tx_prodidx = prodidx;
5402 
5403 		/*
5404 		 * Set a timeout in case the chip goes out to lunch.
5405 		 */
5406 		sc->bge_timer = BGE_TX_TIMEOUT;
5407 	}
5408 }
5409 
5410 /*
5411  * Main transmit routine. To avoid having to do mbuf copies, we put pointers
5412  * to the mbuf data regions directly in the transmit descriptors.
5413  */
5414 static void
5415 bge_start(if_t ifp)
5416 {
5417 	struct bge_softc *sc;
5418 
5419 	sc = if_getsoftc(ifp);
5420 	BGE_LOCK(sc);
5421 	bge_start_locked(ifp);
5422 	BGE_UNLOCK(sc);
5423 }
5424 
5425 static void
5426 bge_init_locked(struct bge_softc *sc)
5427 {
5428 	if_t ifp;
5429 	uint16_t *m;
5430 	uint32_t mode;
5431 
5432 	BGE_LOCK_ASSERT(sc);
5433 
5434 	ifp = sc->bge_ifp;
5435 
5436 	if (if_getdrvflags(ifp) & IFF_DRV_RUNNING)
5437 		return;
5438 
5439 	/* Cancel pending I/O and flush buffers. */
5440 	bge_stop(sc);
5441 
5442 	bge_stop_fw(sc);
5443 	bge_sig_pre_reset(sc, BGE_RESET_START);
5444 	bge_reset(sc);
5445 	bge_sig_legacy(sc, BGE_RESET_START);
5446 	bge_sig_post_reset(sc, BGE_RESET_START);
5447 
5448 	bge_chipinit(sc);
5449 
5450 	/*
5451 	 * Init the various state machines, ring
5452 	 * control blocks and firmware.
5453 	 */
5454 	if (bge_blockinit(sc)) {
5455 		device_printf(sc->bge_dev, "initialization failure\n");
5456 		return;
5457 	}
5458 
5459 	ifp = sc->bge_ifp;
5460 
5461 	/* Specify MTU. */
5462 	CSR_WRITE_4(sc, BGE_RX_MTU, if_getmtu(ifp) +
5463 	    ETHER_HDR_LEN + ETHER_CRC_LEN +
5464 	    (if_getcapenable(ifp) & IFCAP_VLAN_MTU ? ETHER_VLAN_ENCAP_LEN : 0));
5465 
5466 	/* Load our MAC address. */
5467 	m = (uint16_t *)IF_LLADDR(sc->bge_ifp);
5468 	CSR_WRITE_4(sc, BGE_MAC_ADDR1_LO, htons(m[0]));
5469 	CSR_WRITE_4(sc, BGE_MAC_ADDR1_HI, (htons(m[1]) << 16) | htons(m[2]));
5470 
5471 	/* Program promiscuous mode. */
5472 	bge_setpromisc(sc);
5473 
5474 	/* Program multicast filter. */
5475 	bge_setmulti(sc);
5476 
5477 	/* Program VLAN tag stripping. */
5478 	bge_setvlan(sc);
5479 
5480 	/* Override UDP checksum offloading. */
5481 	if (sc->bge_forced_udpcsum == 0)
5482 		sc->bge_csum_features &= ~CSUM_UDP;
5483 	else
5484 		sc->bge_csum_features |= CSUM_UDP;
5485 	if (if_getcapabilities(ifp) & IFCAP_TXCSUM &&
5486 	    if_getcapenable(ifp) & IFCAP_TXCSUM) {
5487 		if_sethwassistbits(ifp, 0, (BGE_CSUM_FEATURES | CSUM_UDP));
5488 		if_sethwassistbits(ifp, sc->bge_csum_features, 0);
5489 	}
5490 
5491 	/* Init RX ring. */
5492 	if (bge_init_rx_ring_std(sc) != 0) {
5493 		device_printf(sc->bge_dev, "no memory for std Rx buffers.\n");
5494 		bge_stop(sc);
5495 		return;
5496 	}
5497 
5498 	/*
5499 	 * Workaround for a bug in 5705 ASIC rev A0. Poll the NIC's
5500 	 * memory to insure that the chip has in fact read the first
5501 	 * entry of the ring.
5502 	 */
5503 	if (sc->bge_chipid == BGE_CHIPID_BCM5705_A0) {
5504 		uint32_t		v, i;
5505 		for (i = 0; i < 10; i++) {
5506 			DELAY(20);
5507 			v = bge_readmem_ind(sc, BGE_STD_RX_RINGS + 8);
5508 			if (v == (MCLBYTES - ETHER_ALIGN))
5509 				break;
5510 		}
5511 		if (i == 10)
5512 			device_printf (sc->bge_dev,
5513 			    "5705 A0 chip failed to load RX ring\n");
5514 	}
5515 
5516 	/* Init jumbo RX ring. */
5517 	if (BGE_IS_JUMBO_CAPABLE(sc) &&
5518 	    if_getmtu(ifp) + ETHER_HDR_LEN + ETHER_CRC_LEN +
5519      	    ETHER_VLAN_ENCAP_LEN > (MCLBYTES - ETHER_ALIGN)) {
5520 		if (bge_init_rx_ring_jumbo(sc) != 0) {
5521 			device_printf(sc->bge_dev,
5522 			    "no memory for jumbo Rx buffers.\n");
5523 			bge_stop(sc);
5524 			return;
5525 		}
5526 	}
5527 
5528 	/* Init our RX return ring index. */
5529 	sc->bge_rx_saved_considx = 0;
5530 
5531 	/* Init our RX/TX stat counters. */
5532 	sc->bge_rx_discards = sc->bge_tx_discards = sc->bge_tx_collisions = 0;
5533 
5534 	/* Init TX ring. */
5535 	bge_init_tx_ring(sc);
5536 
5537 	/* Enable TX MAC state machine lockup fix. */
5538 	mode = CSR_READ_4(sc, BGE_TX_MODE);
5539 	if (BGE_IS_5755_PLUS(sc) || sc->bge_asicrev == BGE_ASICREV_BCM5906)
5540 		mode |= BGE_TXMODE_MBUF_LOCKUP_FIX;
5541 	if (sc->bge_asicrev == BGE_ASICREV_BCM5720 ||
5542 	    sc->bge_asicrev == BGE_ASICREV_BCM5762) {
5543 		mode &= ~(BGE_TXMODE_JMB_FRM_LEN | BGE_TXMODE_CNT_DN_MODE);
5544 		mode |= CSR_READ_4(sc, BGE_TX_MODE) &
5545 		    (BGE_TXMODE_JMB_FRM_LEN | BGE_TXMODE_CNT_DN_MODE);
5546 	}
5547 	/* Turn on transmitter. */
5548 	CSR_WRITE_4(sc, BGE_TX_MODE, mode | BGE_TXMODE_ENABLE);
5549 	DELAY(100);
5550 
5551 	/* Turn on receiver. */
5552 	mode = CSR_READ_4(sc, BGE_RX_MODE);
5553 	if (BGE_IS_5755_PLUS(sc))
5554 		mode |= BGE_RXMODE_IPV6_ENABLE;
5555 	if (sc->bge_asicrev == BGE_ASICREV_BCM5762)
5556 		mode |= BGE_RXMODE_IPV4_FRAG_FIX;
5557 	CSR_WRITE_4(sc,BGE_RX_MODE, mode | BGE_RXMODE_ENABLE);
5558 	DELAY(10);
5559 
5560 	/*
5561 	 * Set the number of good frames to receive after RX MBUF
5562 	 * Low Watermark has been reached. After the RX MAC receives
5563 	 * this number of frames, it will drop subsequent incoming
5564 	 * frames until the MBUF High Watermark is reached.
5565 	 */
5566 	if (BGE_IS_57765_PLUS(sc))
5567 		CSR_WRITE_4(sc, BGE_MAX_RX_FRAME_LOWAT, 1);
5568 	else
5569 		CSR_WRITE_4(sc, BGE_MAX_RX_FRAME_LOWAT, 2);
5570 
5571 	/* Clear MAC statistics. */
5572 	if (BGE_IS_5705_PLUS(sc))
5573 		bge_stats_clear_regs(sc);
5574 
5575 	/* Tell firmware we're alive. */
5576 	BGE_SETBIT(sc, BGE_MODE_CTL, BGE_MODECTL_STACKUP);
5577 
5578 #ifdef DEVICE_POLLING
5579 	/* Disable interrupts if we are polling. */
5580 	if (if_getcapenable(ifp) & IFCAP_POLLING) {
5581 		BGE_SETBIT(sc, BGE_PCI_MISC_CTL,
5582 		    BGE_PCIMISCCTL_MASK_PCI_INTR);
5583 		bge_writembx(sc, BGE_MBX_IRQ0_LO, 1);
5584 	} else
5585 #endif
5586 
5587 	/* Enable host interrupts. */
5588 	{
5589 	BGE_SETBIT(sc, BGE_PCI_MISC_CTL, BGE_PCIMISCCTL_CLEAR_INTA);
5590 	BGE_CLRBIT(sc, BGE_PCI_MISC_CTL, BGE_PCIMISCCTL_MASK_PCI_INTR);
5591 	bge_writembx(sc, BGE_MBX_IRQ0_LO, 0);
5592 	}
5593 
5594 	if_setdrvflagbits(ifp, IFF_DRV_RUNNING, 0);
5595 	if_setdrvflagbits(ifp, 0, IFF_DRV_OACTIVE);
5596 
5597 	bge_ifmedia_upd_locked(ifp);
5598 
5599 	callout_reset(&sc->bge_stat_ch, hz, bge_tick, sc);
5600 }
5601 
5602 static void
5603 bge_init(void *xsc)
5604 {
5605 	struct bge_softc *sc = xsc;
5606 
5607 	BGE_LOCK(sc);
5608 	bge_init_locked(sc);
5609 	BGE_UNLOCK(sc);
5610 }
5611 
5612 /*
5613  * Set media options.
5614  */
5615 static int
5616 bge_ifmedia_upd(if_t ifp)
5617 {
5618 	struct bge_softc *sc = if_getsoftc(ifp);
5619 	int res;
5620 
5621 	BGE_LOCK(sc);
5622 	res = bge_ifmedia_upd_locked(ifp);
5623 	BGE_UNLOCK(sc);
5624 
5625 	return (res);
5626 }
5627 
5628 static int
5629 bge_ifmedia_upd_locked(if_t ifp)
5630 {
5631 	struct bge_softc *sc = if_getsoftc(ifp);
5632 	struct mii_data *mii;
5633 	struct mii_softc *miisc;
5634 	struct ifmedia *ifm;
5635 
5636 	BGE_LOCK_ASSERT(sc);
5637 
5638 	ifm = &sc->bge_ifmedia;
5639 
5640 	/* If this is a 1000baseX NIC, enable the TBI port. */
5641 	if (sc->bge_flags & BGE_FLAG_TBI) {
5642 		if (IFM_TYPE(ifm->ifm_media) != IFM_ETHER)
5643 			return (EINVAL);
5644 		switch(IFM_SUBTYPE(ifm->ifm_media)) {
5645 		case IFM_AUTO:
5646 			/*
5647 			 * The BCM5704 ASIC appears to have a special
5648 			 * mechanism for programming the autoneg
5649 			 * advertisement registers in TBI mode.
5650 			 */
5651 			if (sc->bge_asicrev == BGE_ASICREV_BCM5704) {
5652 				uint32_t sgdig;
5653 				sgdig = CSR_READ_4(sc, BGE_SGDIG_STS);
5654 				if (sgdig & BGE_SGDIGSTS_DONE) {
5655 					CSR_WRITE_4(sc, BGE_TX_TBI_AUTONEG, 0);
5656 					sgdig = CSR_READ_4(sc, BGE_SGDIG_CFG);
5657 					sgdig |= BGE_SGDIGCFG_AUTO |
5658 					    BGE_SGDIGCFG_PAUSE_CAP |
5659 					    BGE_SGDIGCFG_ASYM_PAUSE;
5660 					CSR_WRITE_4(sc, BGE_SGDIG_CFG,
5661 					    sgdig | BGE_SGDIGCFG_SEND);
5662 					DELAY(5);
5663 					CSR_WRITE_4(sc, BGE_SGDIG_CFG, sgdig);
5664 				}
5665 			}
5666 			break;
5667 		case IFM_1000_SX:
5668 			if ((ifm->ifm_media & IFM_GMASK) == IFM_FDX) {
5669 				BGE_CLRBIT(sc, BGE_MAC_MODE,
5670 				    BGE_MACMODE_HALF_DUPLEX);
5671 			} else {
5672 				BGE_SETBIT(sc, BGE_MAC_MODE,
5673 				    BGE_MACMODE_HALF_DUPLEX);
5674 			}
5675 			DELAY(40);
5676 			break;
5677 		default:
5678 			return (EINVAL);
5679 		}
5680 		return (0);
5681 	}
5682 
5683 	sc->bge_link_evt++;
5684 	mii = device_get_softc(sc->bge_miibus);
5685 	LIST_FOREACH(miisc, &mii->mii_phys, mii_list)
5686 		PHY_RESET(miisc);
5687 	mii_mediachg(mii);
5688 
5689 	/*
5690 	 * Force an interrupt so that we will call bge_link_upd
5691 	 * if needed and clear any pending link state attention.
5692 	 * Without this we are not getting any further interrupts
5693 	 * for link state changes and thus will not UP the link and
5694 	 * not be able to send in bge_start_locked. The only
5695 	 * way to get things working was to receive a packet and
5696 	 * get an RX intr.
5697 	 * bge_tick should help for fiber cards and we might not
5698 	 * need to do this here if BGE_FLAG_TBI is set but as
5699 	 * we poll for fiber anyway it should not harm.
5700 	 */
5701 	if (sc->bge_asicrev == BGE_ASICREV_BCM5700 ||
5702 	    sc->bge_flags & BGE_FLAG_5788)
5703 		BGE_SETBIT(sc, BGE_MISC_LOCAL_CTL, BGE_MLC_INTR_SET);
5704 	else
5705 		BGE_SETBIT(sc, BGE_HCC_MODE, BGE_HCCMODE_COAL_NOW);
5706 
5707 	return (0);
5708 }
5709 
5710 /*
5711  * Report current media status.
5712  */
5713 static void
5714 bge_ifmedia_sts(if_t ifp, struct ifmediareq *ifmr)
5715 {
5716 	struct bge_softc *sc = if_getsoftc(ifp);
5717 	struct mii_data *mii;
5718 
5719 	BGE_LOCK(sc);
5720 
5721 	if ((if_getflags(ifp) & IFF_UP) == 0) {
5722 		BGE_UNLOCK(sc);
5723 		return;
5724 	}
5725 	if (sc->bge_flags & BGE_FLAG_TBI) {
5726 		ifmr->ifm_status = IFM_AVALID;
5727 		ifmr->ifm_active = IFM_ETHER;
5728 		if (CSR_READ_4(sc, BGE_MAC_STS) &
5729 		    BGE_MACSTAT_TBI_PCS_SYNCHED)
5730 			ifmr->ifm_status |= IFM_ACTIVE;
5731 		else {
5732 			ifmr->ifm_active |= IFM_NONE;
5733 			BGE_UNLOCK(sc);
5734 			return;
5735 		}
5736 		ifmr->ifm_active |= IFM_1000_SX;
5737 		if (CSR_READ_4(sc, BGE_MAC_MODE) & BGE_MACMODE_HALF_DUPLEX)
5738 			ifmr->ifm_active |= IFM_HDX;
5739 		else
5740 			ifmr->ifm_active |= IFM_FDX;
5741 		BGE_UNLOCK(sc);
5742 		return;
5743 	}
5744 
5745 	mii = device_get_softc(sc->bge_miibus);
5746 	mii_pollstat(mii);
5747 	ifmr->ifm_active = mii->mii_media_active;
5748 	ifmr->ifm_status = mii->mii_media_status;
5749 
5750 	BGE_UNLOCK(sc);
5751 }
5752 
5753 static int
5754 bge_ioctl(if_t ifp, u_long command, caddr_t data)
5755 {
5756 	struct bge_softc *sc = if_getsoftc(ifp);
5757 	struct ifreq *ifr = (struct ifreq *) data;
5758 	struct mii_data *mii;
5759 	int flags, mask, error = 0;
5760 
5761 	switch (command) {
5762 	case SIOCSIFMTU:
5763 		if (BGE_IS_JUMBO_CAPABLE(sc) ||
5764 		    (sc->bge_flags & BGE_FLAG_JUMBO_STD)) {
5765 			if (ifr->ifr_mtu < ETHERMIN ||
5766 			    ifr->ifr_mtu > BGE_JUMBO_MTU) {
5767 				error = EINVAL;
5768 				break;
5769 			}
5770 		} else if (ifr->ifr_mtu < ETHERMIN || ifr->ifr_mtu > ETHERMTU) {
5771 			error = EINVAL;
5772 			break;
5773 		}
5774 		BGE_LOCK(sc);
5775 		if (if_getmtu(ifp) != ifr->ifr_mtu) {
5776 			if_setmtu(ifp, ifr->ifr_mtu);
5777 			if (if_getdrvflags(ifp) & IFF_DRV_RUNNING) {
5778 				if_setdrvflagbits(ifp, 0, IFF_DRV_RUNNING);
5779 				bge_init_locked(sc);
5780 			}
5781 		}
5782 		BGE_UNLOCK(sc);
5783 		break;
5784 	case SIOCSIFFLAGS:
5785 		BGE_LOCK(sc);
5786 		if (if_getflags(ifp) & IFF_UP) {
5787 			/*
5788 			 * If only the state of the PROMISC flag changed,
5789 			 * then just use the 'set promisc mode' command
5790 			 * instead of reinitializing the entire NIC. Doing
5791 			 * a full re-init means reloading the firmware and
5792 			 * waiting for it to start up, which may take a
5793 			 * second or two.  Similarly for ALLMULTI.
5794 			 */
5795 			if (if_getdrvflags(ifp) & IFF_DRV_RUNNING) {
5796 				flags = if_getflags(ifp) ^ sc->bge_if_flags;
5797 				if (flags & IFF_PROMISC)
5798 					bge_setpromisc(sc);
5799 				if (flags & IFF_ALLMULTI)
5800 					bge_setmulti(sc);
5801 			} else
5802 				bge_init_locked(sc);
5803 		} else {
5804 			if (if_getdrvflags(ifp) & IFF_DRV_RUNNING) {
5805 				bge_stop(sc);
5806 			}
5807 		}
5808 		sc->bge_if_flags = if_getflags(ifp);
5809 		BGE_UNLOCK(sc);
5810 		error = 0;
5811 		break;
5812 	case SIOCADDMULTI:
5813 	case SIOCDELMULTI:
5814 		if (if_getdrvflags(ifp) & IFF_DRV_RUNNING) {
5815 			BGE_LOCK(sc);
5816 			bge_setmulti(sc);
5817 			BGE_UNLOCK(sc);
5818 			error = 0;
5819 		}
5820 		break;
5821 	case SIOCSIFMEDIA:
5822 	case SIOCGIFMEDIA:
5823 		if (sc->bge_flags & BGE_FLAG_TBI) {
5824 			error = ifmedia_ioctl(ifp, ifr,
5825 			    &sc->bge_ifmedia, command);
5826 		} else {
5827 			mii = device_get_softc(sc->bge_miibus);
5828 			error = ifmedia_ioctl(ifp, ifr,
5829 			    &mii->mii_media, command);
5830 		}
5831 		break;
5832 	case SIOCSIFCAP:
5833 		mask = ifr->ifr_reqcap ^ if_getcapenable(ifp);
5834 #ifdef DEVICE_POLLING
5835 		if (mask & IFCAP_POLLING) {
5836 			if (ifr->ifr_reqcap & IFCAP_POLLING) {
5837 				error = ether_poll_register(bge_poll, ifp);
5838 				if (error)
5839 					return (error);
5840 				BGE_LOCK(sc);
5841 				BGE_SETBIT(sc, BGE_PCI_MISC_CTL,
5842 				    BGE_PCIMISCCTL_MASK_PCI_INTR);
5843 				bge_writembx(sc, BGE_MBX_IRQ0_LO, 1);
5844 				if_setcapenablebit(ifp, IFCAP_POLLING, 0);
5845 				BGE_UNLOCK(sc);
5846 			} else {
5847 				error = ether_poll_deregister(ifp);
5848 				/* Enable interrupt even in error case */
5849 				BGE_LOCK(sc);
5850 				BGE_CLRBIT(sc, BGE_PCI_MISC_CTL,
5851 				    BGE_PCIMISCCTL_MASK_PCI_INTR);
5852 				bge_writembx(sc, BGE_MBX_IRQ0_LO, 0);
5853 				if_setcapenablebit(ifp, 0, IFCAP_POLLING);
5854 				BGE_UNLOCK(sc);
5855 			}
5856 		}
5857 #endif
5858 		if ((mask & IFCAP_TXCSUM) != 0 &&
5859 		    (if_getcapabilities(ifp) & IFCAP_TXCSUM) != 0) {
5860 			if_togglecapenable(ifp, IFCAP_TXCSUM);
5861 			if ((if_getcapenable(ifp) & IFCAP_TXCSUM) != 0)
5862 				if_sethwassistbits(ifp,
5863 				    sc->bge_csum_features, 0);
5864 			else
5865 				if_sethwassistbits(ifp, 0,
5866 				    sc->bge_csum_features);
5867 		}
5868 
5869 		if ((mask & IFCAP_RXCSUM) != 0 &&
5870 		    (if_getcapabilities(ifp) & IFCAP_RXCSUM) != 0)
5871 			if_togglecapenable(ifp, IFCAP_RXCSUM);
5872 
5873 		if ((mask & IFCAP_TSO4) != 0 &&
5874 		    (if_getcapabilities(ifp) & IFCAP_TSO4) != 0) {
5875 			if_togglecapenable(ifp, IFCAP_TSO4);
5876 			if ((if_getcapenable(ifp) & IFCAP_TSO4) != 0)
5877 				if_sethwassistbits(ifp, CSUM_TSO, 0);
5878 			else
5879 				if_sethwassistbits(ifp, 0, CSUM_TSO);
5880 		}
5881 
5882 		if (mask & IFCAP_VLAN_MTU) {
5883 			if_togglecapenable(ifp, IFCAP_VLAN_MTU);
5884 			if_setdrvflagbits(ifp, 0, IFF_DRV_RUNNING);
5885 			bge_init(sc);
5886 		}
5887 
5888 		if ((mask & IFCAP_VLAN_HWTSO) != 0 &&
5889 		    (if_getcapabilities(ifp) & IFCAP_VLAN_HWTSO) != 0)
5890 			if_togglecapenable(ifp, IFCAP_VLAN_HWTSO);
5891 		if ((mask & IFCAP_VLAN_HWTAGGING) != 0 &&
5892 		    (if_getcapabilities(ifp) & IFCAP_VLAN_HWTAGGING) != 0) {
5893 			if_togglecapenable(ifp, IFCAP_VLAN_HWTAGGING);
5894 			if ((if_getcapenable(ifp) & IFCAP_VLAN_HWTAGGING) == 0)
5895 				if_setcapenablebit(ifp, 0, IFCAP_VLAN_HWTSO);
5896 			BGE_LOCK(sc);
5897 			bge_setvlan(sc);
5898 			BGE_UNLOCK(sc);
5899 		}
5900 #ifdef VLAN_CAPABILITIES
5901 		if_vlancap(ifp);
5902 #endif
5903 		break;
5904 	default:
5905 		error = ether_ioctl(ifp, command, data);
5906 		break;
5907 	}
5908 
5909 	return (error);
5910 }
5911 
5912 static void
5913 bge_watchdog(struct bge_softc *sc)
5914 {
5915 	if_t ifp;
5916 	uint32_t status;
5917 
5918 	BGE_LOCK_ASSERT(sc);
5919 
5920 	if (sc->bge_timer == 0 || --sc->bge_timer)
5921 		return;
5922 
5923 	/* If pause frames are active then don't reset the hardware. */
5924 	if ((CSR_READ_4(sc, BGE_RX_MODE) & BGE_RXMODE_FLOWCTL_ENABLE) != 0) {
5925 		status = CSR_READ_4(sc, BGE_RX_STS);
5926 		if ((status & BGE_RXSTAT_REMOTE_XOFFED) != 0) {
5927 			/*
5928 			 * If link partner has us in XOFF state then wait for
5929 			 * the condition to clear.
5930 			 */
5931 			CSR_WRITE_4(sc, BGE_RX_STS, status);
5932 			sc->bge_timer = BGE_TX_TIMEOUT;
5933 			return;
5934 		} else if ((status & BGE_RXSTAT_RCVD_XOFF) != 0 &&
5935 		    (status & BGE_RXSTAT_RCVD_XON) != 0) {
5936 			/*
5937 			 * If link partner has us in XOFF state then wait for
5938 			 * the condition to clear.
5939 			 */
5940 			CSR_WRITE_4(sc, BGE_RX_STS, status);
5941 			sc->bge_timer = BGE_TX_TIMEOUT;
5942 			return;
5943 		}
5944 		/*
5945 		 * Any other condition is unexpected and the controller
5946 		 * should be reset.
5947 		 */
5948 	}
5949 
5950 	ifp = sc->bge_ifp;
5951 
5952 	if_printf(ifp, "watchdog timeout -- resetting\n");
5953 
5954 	if_setdrvflagbits(ifp, 0, IFF_DRV_RUNNING);
5955 	bge_init_locked(sc);
5956 
5957 	if_inc_counter(ifp, IFCOUNTER_OERRORS, 1);
5958 }
5959 
5960 static void
5961 bge_stop_block(struct bge_softc *sc, bus_size_t reg, uint32_t bit)
5962 {
5963 	int i;
5964 
5965 	BGE_CLRBIT(sc, reg, bit);
5966 
5967 	for (i = 0; i < BGE_TIMEOUT; i++) {
5968 		if ((CSR_READ_4(sc, reg) & bit) == 0)
5969 			return;
5970 		DELAY(100);
5971         }
5972 }
5973 
5974 /*
5975  * Stop the adapter and free any mbufs allocated to the
5976  * RX and TX lists.
5977  */
5978 static void
5979 bge_stop(struct bge_softc *sc)
5980 {
5981 	if_t ifp;
5982 
5983 	BGE_LOCK_ASSERT(sc);
5984 
5985 	ifp = sc->bge_ifp;
5986 
5987 	callout_stop(&sc->bge_stat_ch);
5988 
5989 	/* Disable host interrupts. */
5990 	BGE_SETBIT(sc, BGE_PCI_MISC_CTL, BGE_PCIMISCCTL_MASK_PCI_INTR);
5991 	bge_writembx(sc, BGE_MBX_IRQ0_LO, 1);
5992 
5993 	/*
5994 	 * Tell firmware we're shutting down.
5995 	 */
5996 	bge_stop_fw(sc);
5997 	bge_sig_pre_reset(sc, BGE_RESET_SHUTDOWN);
5998 
5999 	/*
6000 	 * Disable all of the receiver blocks.
6001 	 */
6002 	bge_stop_block(sc, BGE_RX_MODE, BGE_RXMODE_ENABLE);
6003 	bge_stop_block(sc, BGE_RBDI_MODE, BGE_RBDIMODE_ENABLE);
6004 	bge_stop_block(sc, BGE_RXLP_MODE, BGE_RXLPMODE_ENABLE);
6005 	if (BGE_IS_5700_FAMILY(sc))
6006 		bge_stop_block(sc, BGE_RXLS_MODE, BGE_RXLSMODE_ENABLE);
6007 	bge_stop_block(sc, BGE_RDBDI_MODE, BGE_RBDIMODE_ENABLE);
6008 	bge_stop_block(sc, BGE_RDC_MODE, BGE_RDCMODE_ENABLE);
6009 	bge_stop_block(sc, BGE_RBDC_MODE, BGE_RBDCMODE_ENABLE);
6010 
6011 	/*
6012 	 * Disable all of the transmit blocks.
6013 	 */
6014 	bge_stop_block(sc, BGE_SRS_MODE, BGE_SRSMODE_ENABLE);
6015 	bge_stop_block(sc, BGE_SBDI_MODE, BGE_SBDIMODE_ENABLE);
6016 	bge_stop_block(sc, BGE_SDI_MODE, BGE_SDIMODE_ENABLE);
6017 	bge_stop_block(sc, BGE_RDMA_MODE, BGE_RDMAMODE_ENABLE);
6018 	bge_stop_block(sc, BGE_SDC_MODE, BGE_SDCMODE_ENABLE);
6019 	if (BGE_IS_5700_FAMILY(sc))
6020 		bge_stop_block(sc, BGE_DMAC_MODE, BGE_DMACMODE_ENABLE);
6021 	bge_stop_block(sc, BGE_SBDC_MODE, BGE_SBDCMODE_ENABLE);
6022 
6023 	/*
6024 	 * Shut down all of the memory managers and related
6025 	 * state machines.
6026 	 */
6027 	bge_stop_block(sc, BGE_HCC_MODE, BGE_HCCMODE_ENABLE);
6028 	bge_stop_block(sc, BGE_WDMA_MODE, BGE_WDMAMODE_ENABLE);
6029 	if (BGE_IS_5700_FAMILY(sc))
6030 		bge_stop_block(sc, BGE_MBCF_MODE, BGE_MBCFMODE_ENABLE);
6031 
6032 	CSR_WRITE_4(sc, BGE_FTQ_RESET, 0xFFFFFFFF);
6033 	CSR_WRITE_4(sc, BGE_FTQ_RESET, 0);
6034 	if (!(BGE_IS_5705_PLUS(sc))) {
6035 		BGE_CLRBIT(sc, BGE_BMAN_MODE, BGE_BMANMODE_ENABLE);
6036 		BGE_CLRBIT(sc, BGE_MARB_MODE, BGE_MARBMODE_ENABLE);
6037 	}
6038 	/* Update MAC statistics. */
6039 	if (BGE_IS_5705_PLUS(sc))
6040 		bge_stats_update_regs(sc);
6041 
6042 	bge_reset(sc);
6043 	bge_sig_legacy(sc, BGE_RESET_SHUTDOWN);
6044 	bge_sig_post_reset(sc, BGE_RESET_SHUTDOWN);
6045 
6046 	/*
6047 	 * Keep the ASF firmware running if up.
6048 	 */
6049 	if (sc->bge_asf_mode & ASF_STACKUP)
6050 		BGE_SETBIT(sc, BGE_MODE_CTL, BGE_MODECTL_STACKUP);
6051 	else
6052 		BGE_CLRBIT(sc, BGE_MODE_CTL, BGE_MODECTL_STACKUP);
6053 
6054 	/* Free the RX lists. */
6055 	bge_free_rx_ring_std(sc);
6056 
6057 	/* Free jumbo RX list. */
6058 	if (BGE_IS_JUMBO_CAPABLE(sc))
6059 		bge_free_rx_ring_jumbo(sc);
6060 
6061 	/* Free TX buffers. */
6062 	bge_free_tx_ring(sc);
6063 
6064 	sc->bge_tx_saved_considx = BGE_TXCONS_UNSET;
6065 
6066 	/* Clear MAC's link state (PHY may still have link UP). */
6067 	if (bootverbose && sc->bge_link)
6068 		if_printf(sc->bge_ifp, "link DOWN\n");
6069 	sc->bge_link = 0;
6070 
6071 	if_setdrvflagbits(ifp, 0, (IFF_DRV_RUNNING | IFF_DRV_OACTIVE));
6072 }
6073 
6074 /*
6075  * Stop all chip I/O so that the kernel's probe routines don't
6076  * get confused by errant DMAs when rebooting.
6077  */
6078 static int
6079 bge_shutdown(device_t dev)
6080 {
6081 	struct bge_softc *sc;
6082 
6083 	sc = device_get_softc(dev);
6084 	BGE_LOCK(sc);
6085 	bge_stop(sc);
6086 	BGE_UNLOCK(sc);
6087 
6088 	return (0);
6089 }
6090 
6091 static int
6092 bge_suspend(device_t dev)
6093 {
6094 	struct bge_softc *sc;
6095 
6096 	sc = device_get_softc(dev);
6097 	BGE_LOCK(sc);
6098 	bge_stop(sc);
6099 	BGE_UNLOCK(sc);
6100 
6101 	return (0);
6102 }
6103 
6104 static int
6105 bge_resume(device_t dev)
6106 {
6107 	struct bge_softc *sc;
6108 	if_t ifp;
6109 
6110 	sc = device_get_softc(dev);
6111 	BGE_LOCK(sc);
6112 	ifp = sc->bge_ifp;
6113 	if (if_getflags(ifp) & IFF_UP) {
6114 		bge_init_locked(sc);
6115 		if (if_getdrvflags(ifp) & IFF_DRV_RUNNING)
6116 			bge_start_locked(ifp);
6117 	}
6118 	BGE_UNLOCK(sc);
6119 
6120 	return (0);
6121 }
6122 
6123 static void
6124 bge_link_upd(struct bge_softc *sc)
6125 {
6126 	struct mii_data *mii;
6127 	uint32_t link, status;
6128 
6129 	BGE_LOCK_ASSERT(sc);
6130 
6131 	/* Clear 'pending link event' flag. */
6132 	sc->bge_link_evt = 0;
6133 
6134 	/*
6135 	 * Process link state changes.
6136 	 * Grrr. The link status word in the status block does
6137 	 * not work correctly on the BCM5700 rev AX and BX chips,
6138 	 * according to all available information. Hence, we have
6139 	 * to enable MII interrupts in order to properly obtain
6140 	 * async link changes. Unfortunately, this also means that
6141 	 * we have to read the MAC status register to detect link
6142 	 * changes, thereby adding an additional register access to
6143 	 * the interrupt handler.
6144 	 *
6145 	 * XXX: perhaps link state detection procedure used for
6146 	 * BGE_CHIPID_BCM5700_B2 can be used for others BCM5700 revisions.
6147 	 */
6148 
6149 	if (sc->bge_asicrev == BGE_ASICREV_BCM5700 &&
6150 	    sc->bge_chipid != BGE_CHIPID_BCM5700_B2) {
6151 		status = CSR_READ_4(sc, BGE_MAC_STS);
6152 		if (status & BGE_MACSTAT_MI_INTERRUPT) {
6153 			mii = device_get_softc(sc->bge_miibus);
6154 			mii_pollstat(mii);
6155 			if (!sc->bge_link &&
6156 			    mii->mii_media_status & IFM_ACTIVE &&
6157 			    IFM_SUBTYPE(mii->mii_media_active) != IFM_NONE) {
6158 				sc->bge_link++;
6159 				if (bootverbose)
6160 					if_printf(sc->bge_ifp, "link UP\n");
6161 			} else if (sc->bge_link &&
6162 			    (!(mii->mii_media_status & IFM_ACTIVE) ||
6163 			    IFM_SUBTYPE(mii->mii_media_active) == IFM_NONE)) {
6164 				sc->bge_link = 0;
6165 				if (bootverbose)
6166 					if_printf(sc->bge_ifp, "link DOWN\n");
6167 			}
6168 
6169 			/* Clear the interrupt. */
6170 			CSR_WRITE_4(sc, BGE_MAC_EVT_ENB,
6171 			    BGE_EVTENB_MI_INTERRUPT);
6172 			bge_miibus_readreg(sc->bge_dev, sc->bge_phy_addr,
6173 			    BRGPHY_MII_ISR);
6174 			bge_miibus_writereg(sc->bge_dev, sc->bge_phy_addr,
6175 			    BRGPHY_MII_IMR, BRGPHY_INTRS);
6176 		}
6177 		return;
6178 	}
6179 
6180 	if (sc->bge_flags & BGE_FLAG_TBI) {
6181 		status = CSR_READ_4(sc, BGE_MAC_STS);
6182 		if (status & BGE_MACSTAT_TBI_PCS_SYNCHED) {
6183 			if (!sc->bge_link) {
6184 				sc->bge_link++;
6185 				if (sc->bge_asicrev == BGE_ASICREV_BCM5704) {
6186 					BGE_CLRBIT(sc, BGE_MAC_MODE,
6187 					    BGE_MACMODE_TBI_SEND_CFGS);
6188 					DELAY(40);
6189 				}
6190 				CSR_WRITE_4(sc, BGE_MAC_STS, 0xFFFFFFFF);
6191 				if (bootverbose)
6192 					if_printf(sc->bge_ifp, "link UP\n");
6193 				if_link_state_change(sc->bge_ifp,
6194 				    LINK_STATE_UP);
6195 			}
6196 		} else if (sc->bge_link) {
6197 			sc->bge_link = 0;
6198 			if (bootverbose)
6199 				if_printf(sc->bge_ifp, "link DOWN\n");
6200 			if_link_state_change(sc->bge_ifp, LINK_STATE_DOWN);
6201 		}
6202 	} else if ((sc->bge_mi_mode & BGE_MIMODE_AUTOPOLL) != 0) {
6203 		/*
6204 		 * Some broken BCM chips have BGE_STATFLAG_LINKSTATE_CHANGED bit
6205 		 * in status word always set. Workaround this bug by reading
6206 		 * PHY link status directly.
6207 		 */
6208 		link = (CSR_READ_4(sc, BGE_MI_STS) & BGE_MISTS_LINK) ? 1 : 0;
6209 
6210 		if (link != sc->bge_link ||
6211 		    sc->bge_asicrev == BGE_ASICREV_BCM5700) {
6212 			mii = device_get_softc(sc->bge_miibus);
6213 			mii_pollstat(mii);
6214 			if (!sc->bge_link &&
6215 			    mii->mii_media_status & IFM_ACTIVE &&
6216 			    IFM_SUBTYPE(mii->mii_media_active) != IFM_NONE) {
6217 				sc->bge_link++;
6218 				if (bootverbose)
6219 					if_printf(sc->bge_ifp, "link UP\n");
6220 			} else if (sc->bge_link &&
6221 			    (!(mii->mii_media_status & IFM_ACTIVE) ||
6222 			    IFM_SUBTYPE(mii->mii_media_active) == IFM_NONE)) {
6223 				sc->bge_link = 0;
6224 				if (bootverbose)
6225 					if_printf(sc->bge_ifp, "link DOWN\n");
6226 			}
6227 		}
6228 	} else {
6229 		/*
6230 		 * For controllers that call mii_tick, we have to poll
6231 		 * link status.
6232 		 */
6233 		mii = device_get_softc(sc->bge_miibus);
6234 		mii_pollstat(mii);
6235 		bge_miibus_statchg(sc->bge_dev);
6236 	}
6237 
6238 	/* Disable MAC attention when link is up. */
6239 	CSR_WRITE_4(sc, BGE_MAC_STS, BGE_MACSTAT_SYNC_CHANGED |
6240 	    BGE_MACSTAT_CFG_CHANGED | BGE_MACSTAT_MI_COMPLETE |
6241 	    BGE_MACSTAT_LINK_CHANGED);
6242 }
6243 
6244 static void
6245 bge_add_sysctls(struct bge_softc *sc)
6246 {
6247 	struct sysctl_ctx_list *ctx;
6248 	struct sysctl_oid_list *children;
6249 	int unit;
6250 
6251 	ctx = device_get_sysctl_ctx(sc->bge_dev);
6252 	children = SYSCTL_CHILDREN(device_get_sysctl_tree(sc->bge_dev));
6253 
6254 #ifdef BGE_REGISTER_DEBUG
6255 	SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "debug_info",
6256 	    CTLTYPE_INT | CTLFLAG_RW, sc, 0, bge_sysctl_debug_info, "I",
6257 	    "Debug Information");
6258 
6259 	SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "reg_read",
6260 	    CTLTYPE_INT | CTLFLAG_RW, sc, 0, bge_sysctl_reg_read, "I",
6261 	    "MAC Register Read");
6262 
6263 	SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "ape_read",
6264 	    CTLTYPE_INT | CTLFLAG_RW, sc, 0, bge_sysctl_ape_read, "I",
6265 	    "APE Register Read");
6266 
6267 	SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "mem_read",
6268 	    CTLTYPE_INT | CTLFLAG_RW, sc, 0, bge_sysctl_mem_read, "I",
6269 	    "Memory Read");
6270 
6271 #endif
6272 
6273 	unit = device_get_unit(sc->bge_dev);
6274 	/*
6275 	 * A common design characteristic for many Broadcom client controllers
6276 	 * is that they only support a single outstanding DMA read operation
6277 	 * on the PCIe bus. This means that it will take twice as long to fetch
6278 	 * a TX frame that is split into header and payload buffers as it does
6279 	 * to fetch a single, contiguous TX frame (2 reads vs. 1 read). For
6280 	 * these controllers, coalescing buffers to reduce the number of memory
6281 	 * reads is effective way to get maximum performance(about 940Mbps).
6282 	 * Without collapsing TX buffers the maximum TCP bulk transfer
6283 	 * performance is about 850Mbps. However forcing coalescing mbufs
6284 	 * consumes a lot of CPU cycles, so leave it off by default.
6285 	 */
6286 	sc->bge_forced_collapse = 0;
6287 	SYSCTL_ADD_INT(ctx, children, OID_AUTO, "forced_collapse",
6288 	    CTLFLAG_RWTUN, &sc->bge_forced_collapse, 0,
6289 	    "Number of fragmented TX buffers of a frame allowed before "
6290 	    "forced collapsing");
6291 
6292 	sc->bge_msi = 1;
6293 	SYSCTL_ADD_INT(ctx, children, OID_AUTO, "msi",
6294 	    CTLFLAG_RDTUN, &sc->bge_msi, 0, "Enable MSI");
6295 
6296 	/*
6297 	 * It seems all Broadcom controllers have a bug that can generate UDP
6298 	 * datagrams with checksum value 0 when TX UDP checksum offloading is
6299 	 * enabled.  Generating UDP checksum value 0 is RFC 768 violation.
6300 	 * Even though the probability of generating such UDP datagrams is
6301 	 * low, I don't want to see FreeBSD boxes to inject such datagrams
6302 	 * into network so disable UDP checksum offloading by default.  Users
6303 	 * still override this behavior by setting a sysctl variable,
6304 	 * dev.bge.0.forced_udpcsum.
6305 	 */
6306 	sc->bge_forced_udpcsum = 0;
6307 	SYSCTL_ADD_INT(ctx, children, OID_AUTO, "forced_udpcsum",
6308 	    CTLFLAG_RWTUN, &sc->bge_forced_udpcsum, 0,
6309 	    "Enable UDP checksum offloading even if controller can "
6310 	    "generate UDP checksum value 0");
6311 
6312 	if (BGE_IS_5705_PLUS(sc))
6313 		bge_add_sysctl_stats_regs(sc, ctx, children);
6314 	else
6315 		bge_add_sysctl_stats(sc, ctx, children);
6316 }
6317 
6318 #define BGE_SYSCTL_STAT(sc, ctx, desc, parent, node, oid) \
6319 	SYSCTL_ADD_PROC(ctx, parent, OID_AUTO, oid, CTLTYPE_UINT|CTLFLAG_RD, \
6320 	    sc, offsetof(struct bge_stats, node), bge_sysctl_stats, "IU", \
6321 	    desc)
6322 
6323 static void
6324 bge_add_sysctl_stats(struct bge_softc *sc, struct sysctl_ctx_list *ctx,
6325     struct sysctl_oid_list *parent)
6326 {
6327 	struct sysctl_oid *tree;
6328 	struct sysctl_oid_list *children, *schildren;
6329 
6330 	tree = SYSCTL_ADD_NODE(ctx, parent, OID_AUTO, "stats", CTLFLAG_RD,
6331 	    NULL, "BGE Statistics");
6332 	schildren = children = SYSCTL_CHILDREN(tree);
6333 	BGE_SYSCTL_STAT(sc, ctx, "Frames Dropped Due To Filters",
6334 	    children, COSFramesDroppedDueToFilters,
6335 	    "FramesDroppedDueToFilters");
6336 	BGE_SYSCTL_STAT(sc, ctx, "NIC DMA Write Queue Full",
6337 	    children, nicDmaWriteQueueFull, "DmaWriteQueueFull");
6338 	BGE_SYSCTL_STAT(sc, ctx, "NIC DMA Write High Priority Queue Full",
6339 	    children, nicDmaWriteHighPriQueueFull, "DmaWriteHighPriQueueFull");
6340 	BGE_SYSCTL_STAT(sc, ctx, "NIC No More RX Buffer Descriptors",
6341 	    children, nicNoMoreRxBDs, "NoMoreRxBDs");
6342 	BGE_SYSCTL_STAT(sc, ctx, "Discarded Input Frames",
6343 	    children, ifInDiscards, "InputDiscards");
6344 	BGE_SYSCTL_STAT(sc, ctx, "Input Errors",
6345 	    children, ifInErrors, "InputErrors");
6346 	BGE_SYSCTL_STAT(sc, ctx, "NIC Recv Threshold Hit",
6347 	    children, nicRecvThresholdHit, "RecvThresholdHit");
6348 	BGE_SYSCTL_STAT(sc, ctx, "NIC DMA Read Queue Full",
6349 	    children, nicDmaReadQueueFull, "DmaReadQueueFull");
6350 	BGE_SYSCTL_STAT(sc, ctx, "NIC DMA Read High Priority Queue Full",
6351 	    children, nicDmaReadHighPriQueueFull, "DmaReadHighPriQueueFull");
6352 	BGE_SYSCTL_STAT(sc, ctx, "NIC Send Data Complete Queue Full",
6353 	    children, nicSendDataCompQueueFull, "SendDataCompQueueFull");
6354 	BGE_SYSCTL_STAT(sc, ctx, "NIC Ring Set Send Producer Index",
6355 	    children, nicRingSetSendProdIndex, "RingSetSendProdIndex");
6356 	BGE_SYSCTL_STAT(sc, ctx, "NIC Ring Status Update",
6357 	    children, nicRingStatusUpdate, "RingStatusUpdate");
6358 	BGE_SYSCTL_STAT(sc, ctx, "NIC Interrupts",
6359 	    children, nicInterrupts, "Interrupts");
6360 	BGE_SYSCTL_STAT(sc, ctx, "NIC Avoided Interrupts",
6361 	    children, nicAvoidedInterrupts, "AvoidedInterrupts");
6362 	BGE_SYSCTL_STAT(sc, ctx, "NIC Send Threshold Hit",
6363 	    children, nicSendThresholdHit, "SendThresholdHit");
6364 
6365 	tree = SYSCTL_ADD_NODE(ctx, schildren, OID_AUTO, "rx", CTLFLAG_RD,
6366 	    NULL, "BGE RX Statistics");
6367 	children = SYSCTL_CHILDREN(tree);
6368 	BGE_SYSCTL_STAT(sc, ctx, "Inbound Octets",
6369 	    children, rxstats.ifHCInOctets, "ifHCInOctets");
6370 	BGE_SYSCTL_STAT(sc, ctx, "Fragments",
6371 	    children, rxstats.etherStatsFragments, "Fragments");
6372 	BGE_SYSCTL_STAT(sc, ctx, "Inbound Unicast Packets",
6373 	    children, rxstats.ifHCInUcastPkts, "UnicastPkts");
6374 	BGE_SYSCTL_STAT(sc, ctx, "Inbound Multicast Packets",
6375 	    children, rxstats.ifHCInMulticastPkts, "MulticastPkts");
6376 	BGE_SYSCTL_STAT(sc, ctx, "FCS Errors",
6377 	    children, rxstats.dot3StatsFCSErrors, "FCSErrors");
6378 	BGE_SYSCTL_STAT(sc, ctx, "Alignment Errors",
6379 	    children, rxstats.dot3StatsAlignmentErrors, "AlignmentErrors");
6380 	BGE_SYSCTL_STAT(sc, ctx, "XON Pause Frames Received",
6381 	    children, rxstats.xonPauseFramesReceived, "xonPauseFramesReceived");
6382 	BGE_SYSCTL_STAT(sc, ctx, "XOFF Pause Frames Received",
6383 	    children, rxstats.xoffPauseFramesReceived,
6384 	    "xoffPauseFramesReceived");
6385 	BGE_SYSCTL_STAT(sc, ctx, "MAC Control Frames Received",
6386 	    children, rxstats.macControlFramesReceived,
6387 	    "ControlFramesReceived");
6388 	BGE_SYSCTL_STAT(sc, ctx, "XOFF State Entered",
6389 	    children, rxstats.xoffStateEntered, "xoffStateEntered");
6390 	BGE_SYSCTL_STAT(sc, ctx, "Frames Too Long",
6391 	    children, rxstats.dot3StatsFramesTooLong, "FramesTooLong");
6392 	BGE_SYSCTL_STAT(sc, ctx, "Jabbers",
6393 	    children, rxstats.etherStatsJabbers, "Jabbers");
6394 	BGE_SYSCTL_STAT(sc, ctx, "Undersized Packets",
6395 	    children, rxstats.etherStatsUndersizePkts, "UndersizePkts");
6396 	BGE_SYSCTL_STAT(sc, ctx, "Inbound Range Length Errors",
6397 	    children, rxstats.inRangeLengthError, "inRangeLengthError");
6398 	BGE_SYSCTL_STAT(sc, ctx, "Outbound Range Length Errors",
6399 	    children, rxstats.outRangeLengthError, "outRangeLengthError");
6400 
6401 	tree = SYSCTL_ADD_NODE(ctx, schildren, OID_AUTO, "tx", CTLFLAG_RD,
6402 	    NULL, "BGE TX Statistics");
6403 	children = SYSCTL_CHILDREN(tree);
6404 	BGE_SYSCTL_STAT(sc, ctx, "Outbound Octets",
6405 	    children, txstats.ifHCOutOctets, "ifHCOutOctets");
6406 	BGE_SYSCTL_STAT(sc, ctx, "TX Collisions",
6407 	    children, txstats.etherStatsCollisions, "Collisions");
6408 	BGE_SYSCTL_STAT(sc, ctx, "XON Sent",
6409 	    children, txstats.outXonSent, "XonSent");
6410 	BGE_SYSCTL_STAT(sc, ctx, "XOFF Sent",
6411 	    children, txstats.outXoffSent, "XoffSent");
6412 	BGE_SYSCTL_STAT(sc, ctx, "Flow Control Done",
6413 	    children, txstats.flowControlDone, "flowControlDone");
6414 	BGE_SYSCTL_STAT(sc, ctx, "Internal MAC TX errors",
6415 	    children, txstats.dot3StatsInternalMacTransmitErrors,
6416 	    "InternalMacTransmitErrors");
6417 	BGE_SYSCTL_STAT(sc, ctx, "Single Collision Frames",
6418 	    children, txstats.dot3StatsSingleCollisionFrames,
6419 	    "SingleCollisionFrames");
6420 	BGE_SYSCTL_STAT(sc, ctx, "Multiple Collision Frames",
6421 	    children, txstats.dot3StatsMultipleCollisionFrames,
6422 	    "MultipleCollisionFrames");
6423 	BGE_SYSCTL_STAT(sc, ctx, "Deferred Transmissions",
6424 	    children, txstats.dot3StatsDeferredTransmissions,
6425 	    "DeferredTransmissions");
6426 	BGE_SYSCTL_STAT(sc, ctx, "Excessive Collisions",
6427 	    children, txstats.dot3StatsExcessiveCollisions,
6428 	    "ExcessiveCollisions");
6429 	BGE_SYSCTL_STAT(sc, ctx, "Late Collisions",
6430 	    children, txstats.dot3StatsLateCollisions,
6431 	    "LateCollisions");
6432 	BGE_SYSCTL_STAT(sc, ctx, "Outbound Unicast Packets",
6433 	    children, txstats.ifHCOutUcastPkts, "UnicastPkts");
6434 	BGE_SYSCTL_STAT(sc, ctx, "Outbound Multicast Packets",
6435 	    children, txstats.ifHCOutMulticastPkts, "MulticastPkts");
6436 	BGE_SYSCTL_STAT(sc, ctx, "Outbound Broadcast Packets",
6437 	    children, txstats.ifHCOutBroadcastPkts, "BroadcastPkts");
6438 	BGE_SYSCTL_STAT(sc, ctx, "Carrier Sense Errors",
6439 	    children, txstats.dot3StatsCarrierSenseErrors,
6440 	    "CarrierSenseErrors");
6441 	BGE_SYSCTL_STAT(sc, ctx, "Outbound Discards",
6442 	    children, txstats.ifOutDiscards, "Discards");
6443 	BGE_SYSCTL_STAT(sc, ctx, "Outbound Errors",
6444 	    children, txstats.ifOutErrors, "Errors");
6445 }
6446 
6447 #undef BGE_SYSCTL_STAT
6448 
6449 #define	BGE_SYSCTL_STAT_ADD64(c, h, n, p, d)	\
6450 	    SYSCTL_ADD_UQUAD(c, h, OID_AUTO, n, CTLFLAG_RD, p, d)
6451 
6452 static void
6453 bge_add_sysctl_stats_regs(struct bge_softc *sc, struct sysctl_ctx_list *ctx,
6454     struct sysctl_oid_list *parent)
6455 {
6456 	struct sysctl_oid *tree;
6457 	struct sysctl_oid_list *child, *schild;
6458 	struct bge_mac_stats *stats;
6459 
6460 	stats = &sc->bge_mac_stats;
6461 	tree = SYSCTL_ADD_NODE(ctx, parent, OID_AUTO, "stats", CTLFLAG_RD,
6462 	    NULL, "BGE Statistics");
6463 	schild = child = SYSCTL_CHILDREN(tree);
6464 	BGE_SYSCTL_STAT_ADD64(ctx, child, "FramesDroppedDueToFilters",
6465 	    &stats->FramesDroppedDueToFilters, "Frames Dropped Due to Filters");
6466 	BGE_SYSCTL_STAT_ADD64(ctx, child, "DmaWriteQueueFull",
6467 	    &stats->DmaWriteQueueFull, "NIC DMA Write Queue Full");
6468 	BGE_SYSCTL_STAT_ADD64(ctx, child, "DmaWriteHighPriQueueFull",
6469 	    &stats->DmaWriteHighPriQueueFull,
6470 	    "NIC DMA Write High Priority Queue Full");
6471 	BGE_SYSCTL_STAT_ADD64(ctx, child, "NoMoreRxBDs",
6472 	    &stats->NoMoreRxBDs, "NIC No More RX Buffer Descriptors");
6473 	BGE_SYSCTL_STAT_ADD64(ctx, child, "InputDiscards",
6474 	    &stats->InputDiscards, "Discarded Input Frames");
6475 	BGE_SYSCTL_STAT_ADD64(ctx, child, "InputErrors",
6476 	    &stats->InputErrors, "Input Errors");
6477 	BGE_SYSCTL_STAT_ADD64(ctx, child, "RecvThresholdHit",
6478 	    &stats->RecvThresholdHit, "NIC Recv Threshold Hit");
6479 
6480 	tree = SYSCTL_ADD_NODE(ctx, schild, OID_AUTO, "rx", CTLFLAG_RD,
6481 	    NULL, "BGE RX Statistics");
6482 	child = SYSCTL_CHILDREN(tree);
6483 	BGE_SYSCTL_STAT_ADD64(ctx, child, "ifHCInOctets",
6484 	    &stats->ifHCInOctets, "Inbound Octets");
6485 	BGE_SYSCTL_STAT_ADD64(ctx, child, "Fragments",
6486 	    &stats->etherStatsFragments, "Fragments");
6487 	BGE_SYSCTL_STAT_ADD64(ctx, child, "UnicastPkts",
6488 	    &stats->ifHCInUcastPkts, "Inbound Unicast Packets");
6489 	BGE_SYSCTL_STAT_ADD64(ctx, child, "MulticastPkts",
6490 	    &stats->ifHCInMulticastPkts, "Inbound Multicast Packets");
6491 	BGE_SYSCTL_STAT_ADD64(ctx, child, "BroadcastPkts",
6492 	    &stats->ifHCInBroadcastPkts, "Inbound Broadcast Packets");
6493 	BGE_SYSCTL_STAT_ADD64(ctx, child, "FCSErrors",
6494 	    &stats->dot3StatsFCSErrors, "FCS Errors");
6495 	BGE_SYSCTL_STAT_ADD64(ctx, child, "AlignmentErrors",
6496 	    &stats->dot3StatsAlignmentErrors, "Alignment Errors");
6497 	BGE_SYSCTL_STAT_ADD64(ctx, child, "xonPauseFramesReceived",
6498 	    &stats->xonPauseFramesReceived, "XON Pause Frames Received");
6499 	BGE_SYSCTL_STAT_ADD64(ctx, child, "xoffPauseFramesReceived",
6500 	    &stats->xoffPauseFramesReceived, "XOFF Pause Frames Received");
6501 	BGE_SYSCTL_STAT_ADD64(ctx, child, "ControlFramesReceived",
6502 	    &stats->macControlFramesReceived, "MAC Control Frames Received");
6503 	BGE_SYSCTL_STAT_ADD64(ctx, child, "xoffStateEntered",
6504 	    &stats->xoffStateEntered, "XOFF State Entered");
6505 	BGE_SYSCTL_STAT_ADD64(ctx, child, "FramesTooLong",
6506 	    &stats->dot3StatsFramesTooLong, "Frames Too Long");
6507 	BGE_SYSCTL_STAT_ADD64(ctx, child, "Jabbers",
6508 	    &stats->etherStatsJabbers, "Jabbers");
6509 	BGE_SYSCTL_STAT_ADD64(ctx, child, "UndersizePkts",
6510 	    &stats->etherStatsUndersizePkts, "Undersized Packets");
6511 
6512 	tree = SYSCTL_ADD_NODE(ctx, schild, OID_AUTO, "tx", CTLFLAG_RD,
6513 	    NULL, "BGE TX Statistics");
6514 	child = SYSCTL_CHILDREN(tree);
6515 	BGE_SYSCTL_STAT_ADD64(ctx, child, "ifHCOutOctets",
6516 	    &stats->ifHCOutOctets, "Outbound Octets");
6517 	BGE_SYSCTL_STAT_ADD64(ctx, child, "Collisions",
6518 	    &stats->etherStatsCollisions, "TX Collisions");
6519 	BGE_SYSCTL_STAT_ADD64(ctx, child, "XonSent",
6520 	    &stats->outXonSent, "XON Sent");
6521 	BGE_SYSCTL_STAT_ADD64(ctx, child, "XoffSent",
6522 	    &stats->outXoffSent, "XOFF Sent");
6523 	BGE_SYSCTL_STAT_ADD64(ctx, child, "InternalMacTransmitErrors",
6524 	    &stats->dot3StatsInternalMacTransmitErrors,
6525 	    "Internal MAC TX Errors");
6526 	BGE_SYSCTL_STAT_ADD64(ctx, child, "SingleCollisionFrames",
6527 	    &stats->dot3StatsSingleCollisionFrames, "Single Collision Frames");
6528 	BGE_SYSCTL_STAT_ADD64(ctx, child, "MultipleCollisionFrames",
6529 	    &stats->dot3StatsMultipleCollisionFrames,
6530 	    "Multiple Collision Frames");
6531 	BGE_SYSCTL_STAT_ADD64(ctx, child, "DeferredTransmissions",
6532 	    &stats->dot3StatsDeferredTransmissions, "Deferred Transmissions");
6533 	BGE_SYSCTL_STAT_ADD64(ctx, child, "ExcessiveCollisions",
6534 	    &stats->dot3StatsExcessiveCollisions, "Excessive Collisions");
6535 	BGE_SYSCTL_STAT_ADD64(ctx, child, "LateCollisions",
6536 	    &stats->dot3StatsLateCollisions, "Late Collisions");
6537 	BGE_SYSCTL_STAT_ADD64(ctx, child, "UnicastPkts",
6538 	    &stats->ifHCOutUcastPkts, "Outbound Unicast Packets");
6539 	BGE_SYSCTL_STAT_ADD64(ctx, child, "MulticastPkts",
6540 	    &stats->ifHCOutMulticastPkts, "Outbound Multicast Packets");
6541 	BGE_SYSCTL_STAT_ADD64(ctx, child, "BroadcastPkts",
6542 	    &stats->ifHCOutBroadcastPkts, "Outbound Broadcast Packets");
6543 }
6544 
6545 #undef	BGE_SYSCTL_STAT_ADD64
6546 
6547 static int
6548 bge_sysctl_stats(SYSCTL_HANDLER_ARGS)
6549 {
6550 	struct bge_softc *sc;
6551 	uint32_t result;
6552 	int offset;
6553 
6554 	sc = (struct bge_softc *)arg1;
6555 	offset = arg2;
6556 	result = CSR_READ_4(sc, BGE_MEMWIN_START + BGE_STATS_BLOCK + offset +
6557 	    offsetof(bge_hostaddr, bge_addr_lo));
6558 	return (sysctl_handle_int(oidp, &result, 0, req));
6559 }
6560 
6561 #ifdef BGE_REGISTER_DEBUG
6562 static int
6563 bge_sysctl_debug_info(SYSCTL_HANDLER_ARGS)
6564 {
6565 	struct bge_softc *sc;
6566 	uint16_t *sbdata;
6567 	int error, result, sbsz;
6568 	int i, j;
6569 
6570 	result = -1;
6571 	error = sysctl_handle_int(oidp, &result, 0, req);
6572 	if (error || (req->newptr == NULL))
6573 		return (error);
6574 
6575 	if (result == 1) {
6576 		sc = (struct bge_softc *)arg1;
6577 
6578 		if (sc->bge_asicrev == BGE_ASICREV_BCM5700 &&
6579 		    sc->bge_chipid != BGE_CHIPID_BCM5700_C0)
6580 			sbsz = BGE_STATUS_BLK_SZ;
6581 		else
6582 			sbsz = 32;
6583 		sbdata = (uint16_t *)sc->bge_ldata.bge_status_block;
6584 		printf("Status Block:\n");
6585 		BGE_LOCK(sc);
6586 		bus_dmamap_sync(sc->bge_cdata.bge_status_tag,
6587 		    sc->bge_cdata.bge_status_map,
6588 		    BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE);
6589 		for (i = 0x0; i < sbsz / sizeof(uint16_t); ) {
6590 			printf("%06x:", i);
6591 			for (j = 0; j < 8; j++)
6592 				printf(" %04x", sbdata[i++]);
6593 			printf("\n");
6594 		}
6595 
6596 		printf("Registers:\n");
6597 		for (i = 0x800; i < 0xA00; ) {
6598 			printf("%06x:", i);
6599 			for (j = 0; j < 8; j++) {
6600 				printf(" %08x", CSR_READ_4(sc, i));
6601 				i += 4;
6602 			}
6603 			printf("\n");
6604 		}
6605 		BGE_UNLOCK(sc);
6606 
6607 		printf("Hardware Flags:\n");
6608 		if (BGE_IS_5717_PLUS(sc))
6609 			printf(" - 5717 Plus\n");
6610 		if (BGE_IS_5755_PLUS(sc))
6611 			printf(" - 5755 Plus\n");
6612 		if (BGE_IS_575X_PLUS(sc))
6613 			printf(" - 575X Plus\n");
6614 		if (BGE_IS_5705_PLUS(sc))
6615 			printf(" - 5705 Plus\n");
6616 		if (BGE_IS_5714_FAMILY(sc))
6617 			printf(" - 5714 Family\n");
6618 		if (BGE_IS_5700_FAMILY(sc))
6619 			printf(" - 5700 Family\n");
6620 		if (sc->bge_flags & BGE_FLAG_JUMBO)
6621 			printf(" - Supports Jumbo Frames\n");
6622 		if (sc->bge_flags & BGE_FLAG_PCIX)
6623 			printf(" - PCI-X Bus\n");
6624 		if (sc->bge_flags & BGE_FLAG_PCIE)
6625 			printf(" - PCI Express Bus\n");
6626 		if (sc->bge_phy_flags & BGE_PHY_NO_3LED)
6627 			printf(" - No 3 LEDs\n");
6628 		if (sc->bge_flags & BGE_FLAG_RX_ALIGNBUG)
6629 			printf(" - RX Alignment Bug\n");
6630 	}
6631 
6632 	return (error);
6633 }
6634 
6635 static int
6636 bge_sysctl_reg_read(SYSCTL_HANDLER_ARGS)
6637 {
6638 	struct bge_softc *sc;
6639 	int error;
6640 	uint16_t result;
6641 	uint32_t val;
6642 
6643 	result = -1;
6644 	error = sysctl_handle_int(oidp, &result, 0, req);
6645 	if (error || (req->newptr == NULL))
6646 		return (error);
6647 
6648 	if (result < 0x8000) {
6649 		sc = (struct bge_softc *)arg1;
6650 		val = CSR_READ_4(sc, result);
6651 		printf("reg 0x%06X = 0x%08X\n", result, val);
6652 	}
6653 
6654 	return (error);
6655 }
6656 
6657 static int
6658 bge_sysctl_ape_read(SYSCTL_HANDLER_ARGS)
6659 {
6660 	struct bge_softc *sc;
6661 	int error;
6662 	uint16_t result;
6663 	uint32_t val;
6664 
6665 	result = -1;
6666 	error = sysctl_handle_int(oidp, &result, 0, req);
6667 	if (error || (req->newptr == NULL))
6668 		return (error);
6669 
6670 	if (result < 0x8000) {
6671 		sc = (struct bge_softc *)arg1;
6672 		val = APE_READ_4(sc, result);
6673 		printf("reg 0x%06X = 0x%08X\n", result, val);
6674 	}
6675 
6676 	return (error);
6677 }
6678 
6679 static int
6680 bge_sysctl_mem_read(SYSCTL_HANDLER_ARGS)
6681 {
6682 	struct bge_softc *sc;
6683 	int error;
6684 	uint16_t result;
6685 	uint32_t val;
6686 
6687 	result = -1;
6688 	error = sysctl_handle_int(oidp, &result, 0, req);
6689 	if (error || (req->newptr == NULL))
6690 		return (error);
6691 
6692 	if (result < 0x8000) {
6693 		sc = (struct bge_softc *)arg1;
6694 		val = bge_readmem_ind(sc, result);
6695 		printf("mem 0x%06X = 0x%08X\n", result, val);
6696 	}
6697 
6698 	return (error);
6699 }
6700 #endif
6701 
6702 static int
6703 bge_get_eaddr_fw(struct bge_softc *sc, uint8_t ether_addr[])
6704 {
6705 
6706 	if (sc->bge_flags & BGE_FLAG_EADDR)
6707 		return (1);
6708 
6709 #ifdef __sparc64__
6710 	OF_getetheraddr(sc->bge_dev, ether_addr);
6711 	return (0);
6712 #endif
6713 	return (1);
6714 }
6715 
6716 static int
6717 bge_get_eaddr_mem(struct bge_softc *sc, uint8_t ether_addr[])
6718 {
6719 	uint32_t mac_addr;
6720 
6721 	mac_addr = bge_readmem_ind(sc, BGE_SRAM_MAC_ADDR_HIGH_MB);
6722 	if ((mac_addr >> 16) == 0x484b) {
6723 		ether_addr[0] = (uint8_t)(mac_addr >> 8);
6724 		ether_addr[1] = (uint8_t)mac_addr;
6725 		mac_addr = bge_readmem_ind(sc, BGE_SRAM_MAC_ADDR_LOW_MB);
6726 		ether_addr[2] = (uint8_t)(mac_addr >> 24);
6727 		ether_addr[3] = (uint8_t)(mac_addr >> 16);
6728 		ether_addr[4] = (uint8_t)(mac_addr >> 8);
6729 		ether_addr[5] = (uint8_t)mac_addr;
6730 		return (0);
6731 	}
6732 	return (1);
6733 }
6734 
6735 static int
6736 bge_get_eaddr_nvram(struct bge_softc *sc, uint8_t ether_addr[])
6737 {
6738 	int mac_offset = BGE_EE_MAC_OFFSET;
6739 
6740 	if (sc->bge_asicrev == BGE_ASICREV_BCM5906)
6741 		mac_offset = BGE_EE_MAC_OFFSET_5906;
6742 
6743 	return (bge_read_nvram(sc, ether_addr, mac_offset + 2,
6744 	    ETHER_ADDR_LEN));
6745 }
6746 
6747 static int
6748 bge_get_eaddr_eeprom(struct bge_softc *sc, uint8_t ether_addr[])
6749 {
6750 
6751 	if (sc->bge_asicrev == BGE_ASICREV_BCM5906)
6752 		return (1);
6753 
6754 	return (bge_read_eeprom(sc, ether_addr, BGE_EE_MAC_OFFSET + 2,
6755 	   ETHER_ADDR_LEN));
6756 }
6757 
6758 static int
6759 bge_get_eaddr(struct bge_softc *sc, uint8_t eaddr[])
6760 {
6761 	static const bge_eaddr_fcn_t bge_eaddr_funcs[] = {
6762 		/* NOTE: Order is critical */
6763 		bge_get_eaddr_fw,
6764 		bge_get_eaddr_mem,
6765 		bge_get_eaddr_nvram,
6766 		bge_get_eaddr_eeprom,
6767 		NULL
6768 	};
6769 	const bge_eaddr_fcn_t *func;
6770 
6771 	for (func = bge_eaddr_funcs; *func != NULL; ++func) {
6772 		if ((*func)(sc, eaddr) == 0)
6773 			break;
6774 	}
6775 	return (*func == NULL ? ENXIO : 0);
6776 }
6777 
6778 static uint64_t
6779 bge_get_counter(if_t ifp, ift_counter cnt)
6780 {
6781 	struct bge_softc *sc;
6782 	struct bge_mac_stats *stats;
6783 
6784 	sc = if_getsoftc(ifp);
6785 	if (!BGE_IS_5705_PLUS(sc))
6786 		return (if_get_counter_default(ifp, cnt));
6787 	stats = &sc->bge_mac_stats;
6788 
6789 	switch (cnt) {
6790 	case IFCOUNTER_IERRORS:
6791 		return (stats->NoMoreRxBDs + stats->InputDiscards +
6792 		    stats->InputErrors);
6793 	case IFCOUNTER_COLLISIONS:
6794 		return (stats->etherStatsCollisions);
6795 	default:
6796 		return (if_get_counter_default(ifp, cnt));
6797 	}
6798 }
6799