xref: /freebsd/sys/dev/bge/if_bge.c (revision 5022f21bd974c740b9052f149fb31745dc602965)
1 /*-
2  * Copyright (c) 2001 Wind River Systems
3  * Copyright (c) 1997, 1998, 1999, 2001
4  *	Bill Paul <wpaul@windriver.com>.  All rights reserved.
5  *
6  * Redistribution and use in source and binary forms, with or without
7  * modification, are permitted provided that the following conditions
8  * are met:
9  * 1. Redistributions of source code must retain the above copyright
10  *    notice, this list of conditions and the following disclaimer.
11  * 2. Redistributions in binary form must reproduce the above copyright
12  *    notice, this list of conditions and the following disclaimer in the
13  *    documentation and/or other materials provided with the distribution.
14  * 3. All advertising materials mentioning features or use of this software
15  *    must display the following acknowledgement:
16  *	This product includes software developed by Bill Paul.
17  * 4. Neither the name of the author nor the names of any co-contributors
18  *    may be used to endorse or promote products derived from this software
19  *    without specific prior written permission.
20  *
21  * THIS SOFTWARE IS PROVIDED BY Bill Paul AND CONTRIBUTORS ``AS IS'' AND
22  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
23  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
24  * ARE DISCLAIMED.  IN NO EVENT SHALL Bill Paul OR THE VOICES IN HIS HEAD
25  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
26  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
27  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
28  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
29  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
30  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF
31  * THE POSSIBILITY OF SUCH DAMAGE.
32  */
33 
34 #include <sys/cdefs.h>
35 __FBSDID("$FreeBSD$");
36 
37 /*
38  * Broadcom BCM570x family gigabit ethernet driver for FreeBSD.
39  *
40  * The Broadcom BCM5700 is based on technology originally developed by
41  * Alteon Networks as part of the Tigon I and Tigon II gigabit ethernet
42  * MAC chips. The BCM5700, sometimes refered to as the Tigon III, has
43  * two on-board MIPS R4000 CPUs and can have as much as 16MB of external
44  * SSRAM. The BCM5700 supports TCP, UDP and IP checksum offload, jumbo
45  * frames, highly configurable RX filtering, and 16 RX and TX queues
46  * (which, along with RX filter rules, can be used for QOS applications).
47  * Other features, such as TCP segmentation, may be available as part
48  * of value-added firmware updates. Unlike the Tigon I and Tigon II,
49  * firmware images can be stored in hardware and need not be compiled
50  * into the driver.
51  *
52  * The BCM5700 supports the PCI v2.2 and PCI-X v1.0 standards, and will
53  * function in a 32-bit/64-bit 33/66Mhz bus, or a 64-bit/133Mhz bus.
54  *
55  * The BCM5701 is a single-chip solution incorporating both the BCM5700
56  * MAC and a BCM5401 10/100/1000 PHY. Unlike the BCM5700, the BCM5701
57  * does not support external SSRAM.
58  *
59  * Broadcom also produces a variation of the BCM5700 under the "Altima"
60  * brand name, which is functionally similar but lacks PCI-X support.
61  *
62  * Without external SSRAM, you can only have at most 4 TX rings,
63  * and the use of the mini RX ring is disabled. This seems to imply
64  * that these features are simply not available on the BCM5701. As a
65  * result, this driver does not implement any support for the mini RX
66  * ring.
67  */
68 
69 #ifdef HAVE_KERNEL_OPTION_HEADERS
70 #include "opt_device_polling.h"
71 #endif
72 
73 #include <sys/param.h>
74 #include <sys/endian.h>
75 #include <sys/systm.h>
76 #include <sys/sockio.h>
77 #include <sys/mbuf.h>
78 #include <sys/malloc.h>
79 #include <sys/kernel.h>
80 #include <sys/module.h>
81 #include <sys/socket.h>
82 #include <sys/sysctl.h>
83 #include <sys/taskqueue.h>
84 
85 #include <net/if.h>
86 #include <net/if_arp.h>
87 #include <net/ethernet.h>
88 #include <net/if_dl.h>
89 #include <net/if_media.h>
90 
91 #include <net/bpf.h>
92 
93 #include <net/if_types.h>
94 #include <net/if_vlan_var.h>
95 
96 #include <netinet/in_systm.h>
97 #include <netinet/in.h>
98 #include <netinet/ip.h>
99 #include <netinet/tcp.h>
100 
101 #include <machine/bus.h>
102 #include <machine/resource.h>
103 #include <sys/bus.h>
104 #include <sys/rman.h>
105 
106 #include <dev/mii/mii.h>
107 #include <dev/mii/miivar.h>
108 #include "miidevs.h"
109 #include <dev/mii/brgphyreg.h>
110 
111 #ifdef __sparc64__
112 #include <dev/ofw/ofw_bus.h>
113 #include <dev/ofw/openfirm.h>
114 #include <machine/ofw_machdep.h>
115 #include <machine/ver.h>
116 #endif
117 
118 #include <dev/pci/pcireg.h>
119 #include <dev/pci/pcivar.h>
120 
121 #include <dev/bge/if_bgereg.h>
122 
123 #define	BGE_CSUM_FEATURES	(CSUM_IP | CSUM_TCP | CSUM_UDP)
124 #define	ETHER_MIN_NOPAD		(ETHER_MIN_LEN - ETHER_CRC_LEN) /* i.e., 60 */
125 
126 MODULE_DEPEND(bge, pci, 1, 1, 1);
127 MODULE_DEPEND(bge, ether, 1, 1, 1);
128 MODULE_DEPEND(bge, miibus, 1, 1, 1);
129 
130 /* "device miibus" required.  See GENERIC if you get errors here. */
131 #include "miibus_if.h"
132 
133 /*
134  * Various supported device vendors/types and their names. Note: the
135  * spec seems to indicate that the hardware still has Alteon's vendor
136  * ID burned into it, though it will always be overriden by the vendor
137  * ID in the EEPROM. Just to be safe, we cover all possibilities.
138  */
139 static const struct bge_type {
140 	uint16_t	bge_vid;
141 	uint16_t	bge_did;
142 } bge_devs[] = {
143 	{ ALTEON_VENDORID,	ALTEON_DEVICEID_BCM5700 },
144 	{ ALTEON_VENDORID,	ALTEON_DEVICEID_BCM5701 },
145 
146 	{ ALTIMA_VENDORID,	ALTIMA_DEVICE_AC1000 },
147 	{ ALTIMA_VENDORID,	ALTIMA_DEVICE_AC1002 },
148 	{ ALTIMA_VENDORID,	ALTIMA_DEVICE_AC9100 },
149 
150 	{ APPLE_VENDORID,	APPLE_DEVICE_BCM5701 },
151 
152 	{ BCOM_VENDORID,	BCOM_DEVICEID_BCM5700 },
153 	{ BCOM_VENDORID,	BCOM_DEVICEID_BCM5701 },
154 	{ BCOM_VENDORID,	BCOM_DEVICEID_BCM5702 },
155 	{ BCOM_VENDORID,	BCOM_DEVICEID_BCM5702_ALT },
156 	{ BCOM_VENDORID,	BCOM_DEVICEID_BCM5702X },
157 	{ BCOM_VENDORID,	BCOM_DEVICEID_BCM5703 },
158 	{ BCOM_VENDORID,	BCOM_DEVICEID_BCM5703_ALT },
159 	{ BCOM_VENDORID,	BCOM_DEVICEID_BCM5703X },
160 	{ BCOM_VENDORID,	BCOM_DEVICEID_BCM5704C },
161 	{ BCOM_VENDORID,	BCOM_DEVICEID_BCM5704S },
162 	{ BCOM_VENDORID,	BCOM_DEVICEID_BCM5704S_ALT },
163 	{ BCOM_VENDORID,	BCOM_DEVICEID_BCM5705 },
164 	{ BCOM_VENDORID,	BCOM_DEVICEID_BCM5705F },
165 	{ BCOM_VENDORID,	BCOM_DEVICEID_BCM5705K },
166 	{ BCOM_VENDORID,	BCOM_DEVICEID_BCM5705M },
167 	{ BCOM_VENDORID,	BCOM_DEVICEID_BCM5705M_ALT },
168 	{ BCOM_VENDORID,	BCOM_DEVICEID_BCM5714C },
169 	{ BCOM_VENDORID,	BCOM_DEVICEID_BCM5714S },
170 	{ BCOM_VENDORID,	BCOM_DEVICEID_BCM5715 },
171 	{ BCOM_VENDORID,	BCOM_DEVICEID_BCM5715S },
172 	{ BCOM_VENDORID,	BCOM_DEVICEID_BCM5720 },
173 	{ BCOM_VENDORID,	BCOM_DEVICEID_BCM5721 },
174 	{ BCOM_VENDORID,	BCOM_DEVICEID_BCM5722 },
175 	{ BCOM_VENDORID,	BCOM_DEVICEID_BCM5723 },
176 	{ BCOM_VENDORID,	BCOM_DEVICEID_BCM5750 },
177 	{ BCOM_VENDORID,	BCOM_DEVICEID_BCM5750M },
178 	{ BCOM_VENDORID,	BCOM_DEVICEID_BCM5751 },
179 	{ BCOM_VENDORID,	BCOM_DEVICEID_BCM5751F },
180 	{ BCOM_VENDORID,	BCOM_DEVICEID_BCM5751M },
181 	{ BCOM_VENDORID,	BCOM_DEVICEID_BCM5752 },
182 	{ BCOM_VENDORID,	BCOM_DEVICEID_BCM5752M },
183 	{ BCOM_VENDORID,	BCOM_DEVICEID_BCM5753 },
184 	{ BCOM_VENDORID,	BCOM_DEVICEID_BCM5753F },
185 	{ BCOM_VENDORID,	BCOM_DEVICEID_BCM5753M },
186 	{ BCOM_VENDORID,	BCOM_DEVICEID_BCM5754 },
187 	{ BCOM_VENDORID,	BCOM_DEVICEID_BCM5754M },
188 	{ BCOM_VENDORID,	BCOM_DEVICEID_BCM5755 },
189 	{ BCOM_VENDORID,	BCOM_DEVICEID_BCM5755M },
190 	{ BCOM_VENDORID,	BCOM_DEVICEID_BCM5761 },
191 	{ BCOM_VENDORID,	BCOM_DEVICEID_BCM5761E },
192 	{ BCOM_VENDORID,	BCOM_DEVICEID_BCM5761S },
193 	{ BCOM_VENDORID,	BCOM_DEVICEID_BCM5761SE },
194 	{ BCOM_VENDORID,	BCOM_DEVICEID_BCM5764 },
195 	{ BCOM_VENDORID,	BCOM_DEVICEID_BCM5780 },
196 	{ BCOM_VENDORID,	BCOM_DEVICEID_BCM5780S },
197 	{ BCOM_VENDORID,	BCOM_DEVICEID_BCM5781 },
198 	{ BCOM_VENDORID,	BCOM_DEVICEID_BCM5782 },
199 	{ BCOM_VENDORID,	BCOM_DEVICEID_BCM5784 },
200 	{ BCOM_VENDORID,	BCOM_DEVICEID_BCM5785F },
201 	{ BCOM_VENDORID,	BCOM_DEVICEID_BCM5785G },
202 	{ BCOM_VENDORID,	BCOM_DEVICEID_BCM5786 },
203 	{ BCOM_VENDORID,	BCOM_DEVICEID_BCM5787 },
204 	{ BCOM_VENDORID,	BCOM_DEVICEID_BCM5787F },
205 	{ BCOM_VENDORID,	BCOM_DEVICEID_BCM5787M },
206 	{ BCOM_VENDORID,	BCOM_DEVICEID_BCM5788 },
207 	{ BCOM_VENDORID,	BCOM_DEVICEID_BCM5789 },
208 	{ BCOM_VENDORID,	BCOM_DEVICEID_BCM5901 },
209 	{ BCOM_VENDORID,	BCOM_DEVICEID_BCM5901A2 },
210 	{ BCOM_VENDORID,	BCOM_DEVICEID_BCM5903M },
211 	{ BCOM_VENDORID,	BCOM_DEVICEID_BCM5906 },
212 	{ BCOM_VENDORID,	BCOM_DEVICEID_BCM5906M },
213 	{ BCOM_VENDORID,	BCOM_DEVICEID_BCM57760 },
214 	{ BCOM_VENDORID,	BCOM_DEVICEID_BCM57780 },
215 	{ BCOM_VENDORID,	BCOM_DEVICEID_BCM57788 },
216 	{ BCOM_VENDORID,	BCOM_DEVICEID_BCM57790 },
217 
218 	{ SK_VENDORID,		SK_DEVICEID_ALTIMA },
219 
220 	{ TC_VENDORID,		TC_DEVICEID_3C996 },
221 
222 	{ FJTSU_VENDORID,	FJTSU_DEVICEID_PW008GE4 },
223 	{ FJTSU_VENDORID,	FJTSU_DEVICEID_PW008GE5 },
224 	{ FJTSU_VENDORID,	FJTSU_DEVICEID_PP250450 },
225 
226 	{ 0, 0 }
227 };
228 
229 static const struct bge_vendor {
230 	uint16_t	v_id;
231 	const char	*v_name;
232 } bge_vendors[] = {
233 	{ ALTEON_VENDORID,	"Alteon" },
234 	{ ALTIMA_VENDORID,	"Altima" },
235 	{ APPLE_VENDORID,	"Apple" },
236 	{ BCOM_VENDORID,	"Broadcom" },
237 	{ SK_VENDORID,		"SysKonnect" },
238 	{ TC_VENDORID,		"3Com" },
239 	{ FJTSU_VENDORID,	"Fujitsu" },
240 
241 	{ 0, NULL }
242 };
243 
244 static const struct bge_revision {
245 	uint32_t	br_chipid;
246 	const char	*br_name;
247 } bge_revisions[] = {
248 	{ BGE_CHIPID_BCM5700_A0,	"BCM5700 A0" },
249 	{ BGE_CHIPID_BCM5700_A1,	"BCM5700 A1" },
250 	{ BGE_CHIPID_BCM5700_B0,	"BCM5700 B0" },
251 	{ BGE_CHIPID_BCM5700_B1,	"BCM5700 B1" },
252 	{ BGE_CHIPID_BCM5700_B2,	"BCM5700 B2" },
253 	{ BGE_CHIPID_BCM5700_B3,	"BCM5700 B3" },
254 	{ BGE_CHIPID_BCM5700_ALTIMA,	"BCM5700 Altima" },
255 	{ BGE_CHIPID_BCM5700_C0,	"BCM5700 C0" },
256 	{ BGE_CHIPID_BCM5701_A0,	"BCM5701 A0" },
257 	{ BGE_CHIPID_BCM5701_B0,	"BCM5701 B0" },
258 	{ BGE_CHIPID_BCM5701_B2,	"BCM5701 B2" },
259 	{ BGE_CHIPID_BCM5701_B5,	"BCM5701 B5" },
260 	{ BGE_CHIPID_BCM5703_A0,	"BCM5703 A0" },
261 	{ BGE_CHIPID_BCM5703_A1,	"BCM5703 A1" },
262 	{ BGE_CHIPID_BCM5703_A2,	"BCM5703 A2" },
263 	{ BGE_CHIPID_BCM5703_A3,	"BCM5703 A3" },
264 	{ BGE_CHIPID_BCM5703_B0,	"BCM5703 B0" },
265 	{ BGE_CHIPID_BCM5704_A0,	"BCM5704 A0" },
266 	{ BGE_CHIPID_BCM5704_A1,	"BCM5704 A1" },
267 	{ BGE_CHIPID_BCM5704_A2,	"BCM5704 A2" },
268 	{ BGE_CHIPID_BCM5704_A3,	"BCM5704 A3" },
269 	{ BGE_CHIPID_BCM5704_B0,	"BCM5704 B0" },
270 	{ BGE_CHIPID_BCM5705_A0,	"BCM5705 A0" },
271 	{ BGE_CHIPID_BCM5705_A1,	"BCM5705 A1" },
272 	{ BGE_CHIPID_BCM5705_A2,	"BCM5705 A2" },
273 	{ BGE_CHIPID_BCM5705_A3,	"BCM5705 A3" },
274 	{ BGE_CHIPID_BCM5750_A0,	"BCM5750 A0" },
275 	{ BGE_CHIPID_BCM5750_A1,	"BCM5750 A1" },
276 	{ BGE_CHIPID_BCM5750_A3,	"BCM5750 A3" },
277 	{ BGE_CHIPID_BCM5750_B0,	"BCM5750 B0" },
278 	{ BGE_CHIPID_BCM5750_B1,	"BCM5750 B1" },
279 	{ BGE_CHIPID_BCM5750_C0,	"BCM5750 C0" },
280 	{ BGE_CHIPID_BCM5750_C1,	"BCM5750 C1" },
281 	{ BGE_CHIPID_BCM5750_C2,	"BCM5750 C2" },
282 	{ BGE_CHIPID_BCM5714_A0,	"BCM5714 A0" },
283 	{ BGE_CHIPID_BCM5752_A0,	"BCM5752 A0" },
284 	{ BGE_CHIPID_BCM5752_A1,	"BCM5752 A1" },
285 	{ BGE_CHIPID_BCM5752_A2,	"BCM5752 A2" },
286 	{ BGE_CHIPID_BCM5714_B0,	"BCM5714 B0" },
287 	{ BGE_CHIPID_BCM5714_B3,	"BCM5714 B3" },
288 	{ BGE_CHIPID_BCM5715_A0,	"BCM5715 A0" },
289 	{ BGE_CHIPID_BCM5715_A1,	"BCM5715 A1" },
290 	{ BGE_CHIPID_BCM5715_A3,	"BCM5715 A3" },
291 	{ BGE_CHIPID_BCM5755_A0,	"BCM5755 A0" },
292 	{ BGE_CHIPID_BCM5755_A1,	"BCM5755 A1" },
293 	{ BGE_CHIPID_BCM5755_A2,	"BCM5755 A2" },
294 	{ BGE_CHIPID_BCM5722_A0,	"BCM5722 A0" },
295 	{ BGE_CHIPID_BCM5761_A0,	"BCM5761 A0" },
296 	{ BGE_CHIPID_BCM5761_A1,	"BCM5761 A1" },
297 	{ BGE_CHIPID_BCM5784_A0,	"BCM5784 A0" },
298 	{ BGE_CHIPID_BCM5784_A1,	"BCM5784 A1" },
299 	/* 5754 and 5787 share the same ASIC ID */
300 	{ BGE_CHIPID_BCM5787_A0,	"BCM5754/5787 A0" },
301 	{ BGE_CHIPID_BCM5787_A1,	"BCM5754/5787 A1" },
302 	{ BGE_CHIPID_BCM5787_A2,	"BCM5754/5787 A2" },
303 	{ BGE_CHIPID_BCM5906_A1,	"BCM5906 A1" },
304 	{ BGE_CHIPID_BCM5906_A2,	"BCM5906 A2" },
305 	{ BGE_CHIPID_BCM57780_A0,	"BCM57780 A0" },
306 	{ BGE_CHIPID_BCM57780_A1,	"BCM57780 A1" },
307 
308 	{ 0, NULL }
309 };
310 
311 /*
312  * Some defaults for major revisions, so that newer steppings
313  * that we don't know about have a shot at working.
314  */
315 static const struct bge_revision bge_majorrevs[] = {
316 	{ BGE_ASICREV_BCM5700,		"unknown BCM5700" },
317 	{ BGE_ASICREV_BCM5701,		"unknown BCM5701" },
318 	{ BGE_ASICREV_BCM5703,		"unknown BCM5703" },
319 	{ BGE_ASICREV_BCM5704,		"unknown BCM5704" },
320 	{ BGE_ASICREV_BCM5705,		"unknown BCM5705" },
321 	{ BGE_ASICREV_BCM5750,		"unknown BCM5750" },
322 	{ BGE_ASICREV_BCM5714_A0,	"unknown BCM5714" },
323 	{ BGE_ASICREV_BCM5752,		"unknown BCM5752" },
324 	{ BGE_ASICREV_BCM5780,		"unknown BCM5780" },
325 	{ BGE_ASICREV_BCM5714,		"unknown BCM5714" },
326 	{ BGE_ASICREV_BCM5755,		"unknown BCM5755" },
327 	{ BGE_ASICREV_BCM5761,		"unknown BCM5761" },
328 	{ BGE_ASICREV_BCM5784,		"unknown BCM5784" },
329 	{ BGE_ASICREV_BCM5785,		"unknown BCM5785" },
330 	/* 5754 and 5787 share the same ASIC ID */
331 	{ BGE_ASICREV_BCM5787,		"unknown BCM5754/5787" },
332 	{ BGE_ASICREV_BCM5906,		"unknown BCM5906" },
333 	{ BGE_ASICREV_BCM57780,		"unknown BCM57780" },
334 
335 	{ 0, NULL }
336 };
337 
338 #define	BGE_IS_JUMBO_CAPABLE(sc)	((sc)->bge_flags & BGE_FLAG_JUMBO)
339 #define	BGE_IS_5700_FAMILY(sc)		((sc)->bge_flags & BGE_FLAG_5700_FAMILY)
340 #define	BGE_IS_5705_PLUS(sc)		((sc)->bge_flags & BGE_FLAG_5705_PLUS)
341 #define	BGE_IS_5714_FAMILY(sc)		((sc)->bge_flags & BGE_FLAG_5714_FAMILY)
342 #define	BGE_IS_575X_PLUS(sc)		((sc)->bge_flags & BGE_FLAG_575X_PLUS)
343 #define	BGE_IS_5755_PLUS(sc)		((sc)->bge_flags & BGE_FLAG_5755_PLUS)
344 
345 const struct bge_revision * bge_lookup_rev(uint32_t);
346 const struct bge_vendor * bge_lookup_vendor(uint16_t);
347 
348 typedef int	(*bge_eaddr_fcn_t)(struct bge_softc *, uint8_t[]);
349 
350 static int bge_probe(device_t);
351 static int bge_attach(device_t);
352 static int bge_detach(device_t);
353 static int bge_suspend(device_t);
354 static int bge_resume(device_t);
355 static void bge_release_resources(struct bge_softc *);
356 static void bge_dma_map_addr(void *, bus_dma_segment_t *, int, int);
357 static int bge_dma_alloc(device_t);
358 static void bge_dma_free(struct bge_softc *);
359 
360 static int bge_get_eaddr_fw(struct bge_softc *sc, uint8_t ether_addr[]);
361 static int bge_get_eaddr_mem(struct bge_softc *, uint8_t[]);
362 static int bge_get_eaddr_nvram(struct bge_softc *, uint8_t[]);
363 static int bge_get_eaddr_eeprom(struct bge_softc *, uint8_t[]);
364 static int bge_get_eaddr(struct bge_softc *, uint8_t[]);
365 
366 static void bge_txeof(struct bge_softc *, uint16_t);
367 static int bge_rxeof(struct bge_softc *, uint16_t, int);
368 
369 static void bge_asf_driver_up (struct bge_softc *);
370 static void bge_tick(void *);
371 static void bge_stats_update(struct bge_softc *);
372 static void bge_stats_update_regs(struct bge_softc *);
373 static struct mbuf *bge_setup_tso(struct bge_softc *, struct mbuf *,
374     uint16_t *);
375 static int bge_encap(struct bge_softc *, struct mbuf **, uint32_t *);
376 
377 static void bge_intr(void *);
378 static int bge_msi_intr(void *);
379 static void bge_intr_task(void *, int);
380 static void bge_start_locked(struct ifnet *);
381 static void bge_start(struct ifnet *);
382 static int bge_ioctl(struct ifnet *, u_long, caddr_t);
383 static void bge_init_locked(struct bge_softc *);
384 static void bge_init(void *);
385 static void bge_stop(struct bge_softc *);
386 static void bge_watchdog(struct bge_softc *);
387 static int bge_shutdown(device_t);
388 static int bge_ifmedia_upd_locked(struct ifnet *);
389 static int bge_ifmedia_upd(struct ifnet *);
390 static void bge_ifmedia_sts(struct ifnet *, struct ifmediareq *);
391 
392 static uint8_t bge_nvram_getbyte(struct bge_softc *, int, uint8_t *);
393 static int bge_read_nvram(struct bge_softc *, caddr_t, int, int);
394 
395 static uint8_t bge_eeprom_getbyte(struct bge_softc *, int, uint8_t *);
396 static int bge_read_eeprom(struct bge_softc *, caddr_t, int, int);
397 
398 static void bge_setpromisc(struct bge_softc *);
399 static void bge_setmulti(struct bge_softc *);
400 static void bge_setvlan(struct bge_softc *);
401 
402 static int bge_newbuf_std(struct bge_softc *, int);
403 static int bge_newbuf_jumbo(struct bge_softc *, int);
404 static int bge_init_rx_ring_std(struct bge_softc *);
405 static void bge_free_rx_ring_std(struct bge_softc *);
406 static int bge_init_rx_ring_jumbo(struct bge_softc *);
407 static void bge_free_rx_ring_jumbo(struct bge_softc *);
408 static void bge_free_tx_ring(struct bge_softc *);
409 static int bge_init_tx_ring(struct bge_softc *);
410 
411 static int bge_chipinit(struct bge_softc *);
412 static int bge_blockinit(struct bge_softc *);
413 
414 static int bge_has_eaddr(struct bge_softc *);
415 static uint32_t bge_readmem_ind(struct bge_softc *, int);
416 static void bge_writemem_ind(struct bge_softc *, int, int);
417 static void bge_writembx(struct bge_softc *, int, int);
418 #ifdef notdef
419 static uint32_t bge_readreg_ind(struct bge_softc *, int);
420 #endif
421 static void bge_writemem_direct(struct bge_softc *, int, int);
422 static void bge_writereg_ind(struct bge_softc *, int, int);
423 static void bge_set_max_readrq(struct bge_softc *);
424 
425 static int bge_miibus_readreg(device_t, int, int);
426 static int bge_miibus_writereg(device_t, int, int, int);
427 static void bge_miibus_statchg(device_t);
428 #ifdef DEVICE_POLLING
429 static int bge_poll(struct ifnet *ifp, enum poll_cmd cmd, int count);
430 #endif
431 
432 #define	BGE_RESET_START 1
433 #define	BGE_RESET_STOP  2
434 static void bge_sig_post_reset(struct bge_softc *, int);
435 static void bge_sig_legacy(struct bge_softc *, int);
436 static void bge_sig_pre_reset(struct bge_softc *, int);
437 static int bge_reset(struct bge_softc *);
438 static void bge_link_upd(struct bge_softc *);
439 
440 /*
441  * The BGE_REGISTER_DEBUG option is only for low-level debugging.  It may
442  * leak information to untrusted users.  It is also known to cause alignment
443  * traps on certain architectures.
444  */
445 #ifdef BGE_REGISTER_DEBUG
446 static int bge_sysctl_debug_info(SYSCTL_HANDLER_ARGS);
447 static int bge_sysctl_reg_read(SYSCTL_HANDLER_ARGS);
448 static int bge_sysctl_mem_read(SYSCTL_HANDLER_ARGS);
449 #endif
450 static void bge_add_sysctls(struct bge_softc *);
451 static int bge_sysctl_stats(SYSCTL_HANDLER_ARGS);
452 
453 static device_method_t bge_methods[] = {
454 	/* Device interface */
455 	DEVMETHOD(device_probe,		bge_probe),
456 	DEVMETHOD(device_attach,	bge_attach),
457 	DEVMETHOD(device_detach,	bge_detach),
458 	DEVMETHOD(device_shutdown,	bge_shutdown),
459 	DEVMETHOD(device_suspend,	bge_suspend),
460 	DEVMETHOD(device_resume,	bge_resume),
461 
462 	/* bus interface */
463 	DEVMETHOD(bus_print_child,	bus_generic_print_child),
464 	DEVMETHOD(bus_driver_added,	bus_generic_driver_added),
465 
466 	/* MII interface */
467 	DEVMETHOD(miibus_readreg,	bge_miibus_readreg),
468 	DEVMETHOD(miibus_writereg,	bge_miibus_writereg),
469 	DEVMETHOD(miibus_statchg,	bge_miibus_statchg),
470 
471 	{ 0, 0 }
472 };
473 
474 static driver_t bge_driver = {
475 	"bge",
476 	bge_methods,
477 	sizeof(struct bge_softc)
478 };
479 
480 static devclass_t bge_devclass;
481 
482 DRIVER_MODULE(bge, pci, bge_driver, bge_devclass, 0, 0);
483 DRIVER_MODULE(miibus, bge, miibus_driver, miibus_devclass, 0, 0);
484 
485 static int bge_allow_asf = 1;
486 
487 TUNABLE_INT("hw.bge.allow_asf", &bge_allow_asf);
488 
489 SYSCTL_NODE(_hw, OID_AUTO, bge, CTLFLAG_RD, 0, "BGE driver parameters");
490 SYSCTL_INT(_hw_bge, OID_AUTO, allow_asf, CTLFLAG_RD, &bge_allow_asf, 0,
491 	"Allow ASF mode if available");
492 
493 #define	SPARC64_BLADE_1500_MODEL	"SUNW,Sun-Blade-1500"
494 #define	SPARC64_BLADE_1500_PATH_BGE	"/pci@1f,700000/network@2"
495 #define	SPARC64_BLADE_2500_MODEL	"SUNW,Sun-Blade-2500"
496 #define	SPARC64_BLADE_2500_PATH_BGE	"/pci@1c,600000/network@3"
497 #define	SPARC64_OFW_SUBVENDOR		"subsystem-vendor-id"
498 
499 static int
500 bge_has_eaddr(struct bge_softc *sc)
501 {
502 #ifdef __sparc64__
503 	char buf[sizeof(SPARC64_BLADE_1500_PATH_BGE)];
504 	device_t dev;
505 	uint32_t subvendor;
506 
507 	dev = sc->bge_dev;
508 
509 	/*
510 	 * The on-board BGEs found in sun4u machines aren't fitted with
511 	 * an EEPROM which means that we have to obtain the MAC address
512 	 * via OFW and that some tests will always fail.  We distinguish
513 	 * such BGEs by the subvendor ID, which also has to be obtained
514 	 * from OFW instead of the PCI configuration space as the latter
515 	 * indicates Broadcom as the subvendor of the netboot interface.
516 	 * For early Blade 1500 and 2500 we even have to check the OFW
517 	 * device path as the subvendor ID always defaults to Broadcom
518 	 * there.
519 	 */
520 	if (OF_getprop(ofw_bus_get_node(dev), SPARC64_OFW_SUBVENDOR,
521 	    &subvendor, sizeof(subvendor)) == sizeof(subvendor) &&
522 	    subvendor == SUN_VENDORID)
523 		return (0);
524 	memset(buf, 0, sizeof(buf));
525 	if (OF_package_to_path(ofw_bus_get_node(dev), buf, sizeof(buf)) > 0) {
526 		if (strcmp(sparc64_model, SPARC64_BLADE_1500_MODEL) == 0 &&
527 		    strcmp(buf, SPARC64_BLADE_1500_PATH_BGE) == 0)
528 			return (0);
529 		if (strcmp(sparc64_model, SPARC64_BLADE_2500_MODEL) == 0 &&
530 		    strcmp(buf, SPARC64_BLADE_2500_PATH_BGE) == 0)
531 			return (0);
532 	}
533 #endif
534 	return (1);
535 }
536 
537 static uint32_t
538 bge_readmem_ind(struct bge_softc *sc, int off)
539 {
540 	device_t dev;
541 	uint32_t val;
542 
543 	dev = sc->bge_dev;
544 
545 	pci_write_config(dev, BGE_PCI_MEMWIN_BASEADDR, off, 4);
546 	val = pci_read_config(dev, BGE_PCI_MEMWIN_DATA, 4);
547 	pci_write_config(dev, BGE_PCI_MEMWIN_BASEADDR, 0, 4);
548 	return (val);
549 }
550 
551 static void
552 bge_writemem_ind(struct bge_softc *sc, int off, int val)
553 {
554 	device_t dev;
555 
556 	dev = sc->bge_dev;
557 
558 	pci_write_config(dev, BGE_PCI_MEMWIN_BASEADDR, off, 4);
559 	pci_write_config(dev, BGE_PCI_MEMWIN_DATA, val, 4);
560 	pci_write_config(dev, BGE_PCI_MEMWIN_BASEADDR, 0, 4);
561 }
562 
563 /*
564  * PCI Express only
565  */
566 static void
567 bge_set_max_readrq(struct bge_softc *sc)
568 {
569 	device_t dev;
570 	uint16_t val;
571 
572 	dev = sc->bge_dev;
573 
574 	val = pci_read_config(dev, sc->bge_expcap + PCIR_EXPRESS_DEVICE_CTL, 2);
575 	if ((val & PCIM_EXP_CTL_MAX_READ_REQUEST) !=
576 	    BGE_PCIE_DEVCTL_MAX_READRQ_4096) {
577 		if (bootverbose)
578 			device_printf(dev, "adjust device control 0x%04x ",
579 			    val);
580 		val &= ~PCIM_EXP_CTL_MAX_READ_REQUEST;
581 		val |= BGE_PCIE_DEVCTL_MAX_READRQ_4096;
582 		pci_write_config(dev, sc->bge_expcap + PCIR_EXPRESS_DEVICE_CTL,
583 		    val, 2);
584 		if (bootverbose)
585 			printf("-> 0x%04x\n", val);
586 	}
587 }
588 
589 #ifdef notdef
590 static uint32_t
591 bge_readreg_ind(struct bge_softc *sc, int off)
592 {
593 	device_t dev;
594 
595 	dev = sc->bge_dev;
596 
597 	pci_write_config(dev, BGE_PCI_REG_BASEADDR, off, 4);
598 	return (pci_read_config(dev, BGE_PCI_REG_DATA, 4));
599 }
600 #endif
601 
602 static void
603 bge_writereg_ind(struct bge_softc *sc, int off, int val)
604 {
605 	device_t dev;
606 
607 	dev = sc->bge_dev;
608 
609 	pci_write_config(dev, BGE_PCI_REG_BASEADDR, off, 4);
610 	pci_write_config(dev, BGE_PCI_REG_DATA, val, 4);
611 }
612 
613 static void
614 bge_writemem_direct(struct bge_softc *sc, int off, int val)
615 {
616 	CSR_WRITE_4(sc, off, val);
617 }
618 
619 static void
620 bge_writembx(struct bge_softc *sc, int off, int val)
621 {
622 	if (sc->bge_asicrev == BGE_ASICREV_BCM5906)
623 		off += BGE_LPMBX_IRQ0_HI - BGE_MBX_IRQ0_HI;
624 
625 	CSR_WRITE_4(sc, off, val);
626 }
627 
628 /*
629  * Map a single buffer address.
630  */
631 
632 static void
633 bge_dma_map_addr(void *arg, bus_dma_segment_t *segs, int nseg, int error)
634 {
635 	struct bge_dmamap_arg *ctx;
636 
637 	if (error)
638 		return;
639 
640 	ctx = arg;
641 
642 	if (nseg > ctx->bge_maxsegs) {
643 		ctx->bge_maxsegs = 0;
644 		return;
645 	}
646 
647 	ctx->bge_busaddr = segs->ds_addr;
648 }
649 
650 static uint8_t
651 bge_nvram_getbyte(struct bge_softc *sc, int addr, uint8_t *dest)
652 {
653 	uint32_t access, byte = 0;
654 	int i;
655 
656 	/* Lock. */
657 	CSR_WRITE_4(sc, BGE_NVRAM_SWARB, BGE_NVRAMSWARB_SET1);
658 	for (i = 0; i < 8000; i++) {
659 		if (CSR_READ_4(sc, BGE_NVRAM_SWARB) & BGE_NVRAMSWARB_GNT1)
660 			break;
661 		DELAY(20);
662 	}
663 	if (i == 8000)
664 		return (1);
665 
666 	/* Enable access. */
667 	access = CSR_READ_4(sc, BGE_NVRAM_ACCESS);
668 	CSR_WRITE_4(sc, BGE_NVRAM_ACCESS, access | BGE_NVRAMACC_ENABLE);
669 
670 	CSR_WRITE_4(sc, BGE_NVRAM_ADDR, addr & 0xfffffffc);
671 	CSR_WRITE_4(sc, BGE_NVRAM_CMD, BGE_NVRAM_READCMD);
672 	for (i = 0; i < BGE_TIMEOUT * 10; i++) {
673 		DELAY(10);
674 		if (CSR_READ_4(sc, BGE_NVRAM_CMD) & BGE_NVRAMCMD_DONE) {
675 			DELAY(10);
676 			break;
677 		}
678 	}
679 
680 	if (i == BGE_TIMEOUT * 10) {
681 		if_printf(sc->bge_ifp, "nvram read timed out\n");
682 		return (1);
683 	}
684 
685 	/* Get result. */
686 	byte = CSR_READ_4(sc, BGE_NVRAM_RDDATA);
687 
688 	*dest = (bswap32(byte) >> ((addr % 4) * 8)) & 0xFF;
689 
690 	/* Disable access. */
691 	CSR_WRITE_4(sc, BGE_NVRAM_ACCESS, access);
692 
693 	/* Unlock. */
694 	CSR_WRITE_4(sc, BGE_NVRAM_SWARB, BGE_NVRAMSWARB_CLR1);
695 	CSR_READ_4(sc, BGE_NVRAM_SWARB);
696 
697 	return (0);
698 }
699 
700 /*
701  * Read a sequence of bytes from NVRAM.
702  */
703 static int
704 bge_read_nvram(struct bge_softc *sc, caddr_t dest, int off, int cnt)
705 {
706 	int err = 0, i;
707 	uint8_t byte = 0;
708 
709 	if (sc->bge_asicrev != BGE_ASICREV_BCM5906)
710 		return (1);
711 
712 	for (i = 0; i < cnt; i++) {
713 		err = bge_nvram_getbyte(sc, off + i, &byte);
714 		if (err)
715 			break;
716 		*(dest + i) = byte;
717 	}
718 
719 	return (err ? 1 : 0);
720 }
721 
722 /*
723  * Read a byte of data stored in the EEPROM at address 'addr.' The
724  * BCM570x supports both the traditional bitbang interface and an
725  * auto access interface for reading the EEPROM. We use the auto
726  * access method.
727  */
728 static uint8_t
729 bge_eeprom_getbyte(struct bge_softc *sc, int addr, uint8_t *dest)
730 {
731 	int i;
732 	uint32_t byte = 0;
733 
734 	/*
735 	 * Enable use of auto EEPROM access so we can avoid
736 	 * having to use the bitbang method.
737 	 */
738 	BGE_SETBIT(sc, BGE_MISC_LOCAL_CTL, BGE_MLC_AUTO_EEPROM);
739 
740 	/* Reset the EEPROM, load the clock period. */
741 	CSR_WRITE_4(sc, BGE_EE_ADDR,
742 	    BGE_EEADDR_RESET | BGE_EEHALFCLK(BGE_HALFCLK_384SCL));
743 	DELAY(20);
744 
745 	/* Issue the read EEPROM command. */
746 	CSR_WRITE_4(sc, BGE_EE_ADDR, BGE_EE_READCMD | addr);
747 
748 	/* Wait for completion */
749 	for(i = 0; i < BGE_TIMEOUT * 10; i++) {
750 		DELAY(10);
751 		if (CSR_READ_4(sc, BGE_EE_ADDR) & BGE_EEADDR_DONE)
752 			break;
753 	}
754 
755 	if (i == BGE_TIMEOUT * 10) {
756 		device_printf(sc->bge_dev, "EEPROM read timed out\n");
757 		return (1);
758 	}
759 
760 	/* Get result. */
761 	byte = CSR_READ_4(sc, BGE_EE_DATA);
762 
763 	*dest = (byte >> ((addr % 4) * 8)) & 0xFF;
764 
765 	return (0);
766 }
767 
768 /*
769  * Read a sequence of bytes from the EEPROM.
770  */
771 static int
772 bge_read_eeprom(struct bge_softc *sc, caddr_t dest, int off, int cnt)
773 {
774 	int i, error = 0;
775 	uint8_t byte = 0;
776 
777 	for (i = 0; i < cnt; i++) {
778 		error = bge_eeprom_getbyte(sc, off + i, &byte);
779 		if (error)
780 			break;
781 		*(dest + i) = byte;
782 	}
783 
784 	return (error ? 1 : 0);
785 }
786 
787 static int
788 bge_miibus_readreg(device_t dev, int phy, int reg)
789 {
790 	struct bge_softc *sc;
791 	uint32_t val, autopoll;
792 	int i;
793 
794 	sc = device_get_softc(dev);
795 
796 	/*
797 	 * Broadcom's own driver always assumes the internal
798 	 * PHY is at GMII address 1. On some chips, the PHY responds
799 	 * to accesses at all addresses, which could cause us to
800 	 * bogusly attach the PHY 32 times at probe type. Always
801 	 * restricting the lookup to address 1 is simpler than
802 	 * trying to figure out which chips revisions should be
803 	 * special-cased.
804 	 */
805 	if (phy != 1)
806 		return (0);
807 
808 	/* Reading with autopolling on may trigger PCI errors */
809 	autopoll = CSR_READ_4(sc, BGE_MI_MODE);
810 	if (autopoll & BGE_MIMODE_AUTOPOLL) {
811 		BGE_CLRBIT(sc, BGE_MI_MODE, BGE_MIMODE_AUTOPOLL);
812 		DELAY(40);
813 	}
814 
815 	CSR_WRITE_4(sc, BGE_MI_COMM, BGE_MICMD_READ | BGE_MICOMM_BUSY |
816 	    BGE_MIPHY(phy) | BGE_MIREG(reg));
817 
818 	for (i = 0; i < BGE_TIMEOUT; i++) {
819 		DELAY(10);
820 		val = CSR_READ_4(sc, BGE_MI_COMM);
821 		if (!(val & BGE_MICOMM_BUSY))
822 			break;
823 	}
824 
825 	if (i == BGE_TIMEOUT) {
826 		device_printf(sc->bge_dev,
827 		    "PHY read timed out (phy %d, reg %d, val 0x%08x)\n",
828 		    phy, reg, val);
829 		val = 0;
830 		goto done;
831 	}
832 
833 	DELAY(5);
834 	val = CSR_READ_4(sc, BGE_MI_COMM);
835 
836 done:
837 	if (autopoll & BGE_MIMODE_AUTOPOLL) {
838 		BGE_SETBIT(sc, BGE_MI_MODE, BGE_MIMODE_AUTOPOLL);
839 		DELAY(40);
840 	}
841 
842 	if (val & BGE_MICOMM_READFAIL)
843 		return (0);
844 
845 	return (val & 0xFFFF);
846 }
847 
848 static int
849 bge_miibus_writereg(device_t dev, int phy, int reg, int val)
850 {
851 	struct bge_softc *sc;
852 	uint32_t autopoll;
853 	int i;
854 
855 	sc = device_get_softc(dev);
856 
857 	if (sc->bge_asicrev == BGE_ASICREV_BCM5906 &&
858 	    (reg == BRGPHY_MII_1000CTL || reg == BRGPHY_MII_AUXCTL))
859 		return(0);
860 
861 	/* Reading with autopolling on may trigger PCI errors */
862 	autopoll = CSR_READ_4(sc, BGE_MI_MODE);
863 	if (autopoll & BGE_MIMODE_AUTOPOLL) {
864 		BGE_CLRBIT(sc, BGE_MI_MODE, BGE_MIMODE_AUTOPOLL);
865 		DELAY(40);
866 	}
867 
868 	CSR_WRITE_4(sc, BGE_MI_COMM, BGE_MICMD_WRITE | BGE_MICOMM_BUSY |
869 	    BGE_MIPHY(phy) | BGE_MIREG(reg) | val);
870 
871 	for (i = 0; i < BGE_TIMEOUT; i++) {
872 		DELAY(10);
873 		if (!(CSR_READ_4(sc, BGE_MI_COMM) & BGE_MICOMM_BUSY)) {
874 			DELAY(5);
875 			CSR_READ_4(sc, BGE_MI_COMM); /* dummy read */
876 			break;
877 		}
878 	}
879 
880 	if (i == BGE_TIMEOUT) {
881 		device_printf(sc->bge_dev,
882 		    "PHY write timed out (phy %d, reg %d, val %d)\n",
883 		    phy, reg, val);
884 		return (0);
885 	}
886 
887 	if (autopoll & BGE_MIMODE_AUTOPOLL) {
888 		BGE_SETBIT(sc, BGE_MI_MODE, BGE_MIMODE_AUTOPOLL);
889 		DELAY(40);
890 	}
891 
892 	return (0);
893 }
894 
895 static void
896 bge_miibus_statchg(device_t dev)
897 {
898 	struct bge_softc *sc;
899 	struct mii_data *mii;
900 	sc = device_get_softc(dev);
901 	mii = device_get_softc(sc->bge_miibus);
902 
903 	BGE_CLRBIT(sc, BGE_MAC_MODE, BGE_MACMODE_PORTMODE);
904 	if (IFM_SUBTYPE(mii->mii_media_active) == IFM_1000_T)
905 		BGE_SETBIT(sc, BGE_MAC_MODE, BGE_PORTMODE_GMII);
906 	else
907 		BGE_SETBIT(sc, BGE_MAC_MODE, BGE_PORTMODE_MII);
908 
909 	if ((mii->mii_media_active & IFM_GMASK) == IFM_FDX)
910 		BGE_CLRBIT(sc, BGE_MAC_MODE, BGE_MACMODE_HALF_DUPLEX);
911 	else
912 		BGE_SETBIT(sc, BGE_MAC_MODE, BGE_MACMODE_HALF_DUPLEX);
913 }
914 
915 /*
916  * Intialize a standard receive ring descriptor.
917  */
918 static int
919 bge_newbuf_std(struct bge_softc *sc, int i)
920 {
921 	struct mbuf *m;
922 	struct bge_rx_bd *r;
923 	bus_dma_segment_t segs[1];
924 	bus_dmamap_t map;
925 	int error, nsegs;
926 
927 	m = m_getcl(M_DONTWAIT, MT_DATA, M_PKTHDR);
928 	if (m == NULL)
929 		return (ENOBUFS);
930 	m->m_len = m->m_pkthdr.len = MCLBYTES;
931 	if ((sc->bge_flags & BGE_FLAG_RX_ALIGNBUG) == 0)
932 		m_adj(m, ETHER_ALIGN);
933 
934 	error = bus_dmamap_load_mbuf_sg(sc->bge_cdata.bge_rx_mtag,
935 	    sc->bge_cdata.bge_rx_std_sparemap, m, segs, &nsegs, 0);
936 	if (error != 0) {
937 		m_freem(m);
938 		return (error);
939 	}
940 	if (sc->bge_cdata.bge_rx_std_chain[i] != NULL) {
941 		bus_dmamap_sync(sc->bge_cdata.bge_rx_mtag,
942 		    sc->bge_cdata.bge_rx_std_dmamap[i], BUS_DMASYNC_POSTREAD);
943 		bus_dmamap_unload(sc->bge_cdata.bge_rx_mtag,
944 		    sc->bge_cdata.bge_rx_std_dmamap[i]);
945 	}
946 	map = sc->bge_cdata.bge_rx_std_dmamap[i];
947 	sc->bge_cdata.bge_rx_std_dmamap[i] = sc->bge_cdata.bge_rx_std_sparemap;
948 	sc->bge_cdata.bge_rx_std_sparemap = map;
949 	sc->bge_cdata.bge_rx_std_chain[i] = m;
950 	r = &sc->bge_ldata.bge_rx_std_ring[sc->bge_std];
951 	r->bge_addr.bge_addr_lo = BGE_ADDR_LO(segs[0].ds_addr);
952 	r->bge_addr.bge_addr_hi = BGE_ADDR_HI(segs[0].ds_addr);
953 	r->bge_flags = BGE_RXBDFLAG_END;
954 	r->bge_len = segs[0].ds_len;
955 	r->bge_idx = i;
956 
957 	bus_dmamap_sync(sc->bge_cdata.bge_rx_mtag,
958 	    sc->bge_cdata.bge_rx_std_dmamap[i], BUS_DMASYNC_PREREAD);
959 
960 	return (0);
961 }
962 
963 /*
964  * Initialize a jumbo receive ring descriptor. This allocates
965  * a jumbo buffer from the pool managed internally by the driver.
966  */
967 static int
968 bge_newbuf_jumbo(struct bge_softc *sc, int i)
969 {
970 	bus_dma_segment_t segs[BGE_NSEG_JUMBO];
971 	bus_dmamap_t map;
972 	struct bge_extrx_bd *r;
973 	struct mbuf *m;
974 	int error, nsegs;
975 
976 	MGETHDR(m, M_DONTWAIT, MT_DATA);
977 	if (m == NULL)
978 		return (ENOBUFS);
979 
980 	m_cljget(m, M_DONTWAIT, MJUM9BYTES);
981 	if (!(m->m_flags & M_EXT)) {
982 		m_freem(m);
983 		return (ENOBUFS);
984 	}
985 	m->m_len = m->m_pkthdr.len = MJUM9BYTES;
986 	if ((sc->bge_flags & BGE_FLAG_RX_ALIGNBUG) == 0)
987 		m_adj(m, ETHER_ALIGN);
988 
989 	error = bus_dmamap_load_mbuf_sg(sc->bge_cdata.bge_mtag_jumbo,
990 	    sc->bge_cdata.bge_rx_jumbo_sparemap, m, segs, &nsegs, 0);
991 	if (error != 0) {
992 		m_freem(m);
993 		return (error);
994 	}
995 
996 	if (sc->bge_cdata.bge_rx_jumbo_chain[i] == NULL) {
997 		bus_dmamap_sync(sc->bge_cdata.bge_mtag_jumbo,
998 		    sc->bge_cdata.bge_rx_jumbo_dmamap[i], BUS_DMASYNC_POSTREAD);
999 		bus_dmamap_unload(sc->bge_cdata.bge_mtag_jumbo,
1000 		    sc->bge_cdata.bge_rx_jumbo_dmamap[i]);
1001 	}
1002 	map = sc->bge_cdata.bge_rx_jumbo_dmamap[i];
1003 	sc->bge_cdata.bge_rx_jumbo_dmamap[i] =
1004 	    sc->bge_cdata.bge_rx_jumbo_sparemap;
1005 	sc->bge_cdata.bge_rx_jumbo_sparemap = map;
1006 	sc->bge_cdata.bge_rx_jumbo_chain[i] = m;
1007 	/*
1008 	 * Fill in the extended RX buffer descriptor.
1009 	 */
1010 	r = &sc->bge_ldata.bge_rx_jumbo_ring[sc->bge_jumbo];
1011 	r->bge_flags = BGE_RXBDFLAG_JUMBO_RING | BGE_RXBDFLAG_END;
1012 	r->bge_idx = i;
1013 	r->bge_len3 = r->bge_len2 = r->bge_len1 = 0;
1014 	switch (nsegs) {
1015 	case 4:
1016 		r->bge_addr3.bge_addr_lo = BGE_ADDR_LO(segs[3].ds_addr);
1017 		r->bge_addr3.bge_addr_hi = BGE_ADDR_HI(segs[3].ds_addr);
1018 		r->bge_len3 = segs[3].ds_len;
1019 	case 3:
1020 		r->bge_addr2.bge_addr_lo = BGE_ADDR_LO(segs[2].ds_addr);
1021 		r->bge_addr2.bge_addr_hi = BGE_ADDR_HI(segs[2].ds_addr);
1022 		r->bge_len2 = segs[2].ds_len;
1023 	case 2:
1024 		r->bge_addr1.bge_addr_lo = BGE_ADDR_LO(segs[1].ds_addr);
1025 		r->bge_addr1.bge_addr_hi = BGE_ADDR_HI(segs[1].ds_addr);
1026 		r->bge_len1 = segs[1].ds_len;
1027 	case 1:
1028 		r->bge_addr0.bge_addr_lo = BGE_ADDR_LO(segs[0].ds_addr);
1029 		r->bge_addr0.bge_addr_hi = BGE_ADDR_HI(segs[0].ds_addr);
1030 		r->bge_len0 = segs[0].ds_len;
1031 		break;
1032 	default:
1033 		panic("%s: %d segments\n", __func__, nsegs);
1034 	}
1035 
1036 	bus_dmamap_sync(sc->bge_cdata.bge_mtag_jumbo,
1037 	    sc->bge_cdata.bge_rx_jumbo_dmamap[i], BUS_DMASYNC_PREREAD);
1038 
1039 	return (0);
1040 }
1041 
1042 /*
1043  * The standard receive ring has 512 entries in it. At 2K per mbuf cluster,
1044  * that's 1MB or memory, which is a lot. For now, we fill only the first
1045  * 256 ring entries and hope that our CPU is fast enough to keep up with
1046  * the NIC.
1047  */
1048 static int
1049 bge_init_rx_ring_std(struct bge_softc *sc)
1050 {
1051 	int error, i;
1052 
1053 	bzero(sc->bge_ldata.bge_rx_std_ring, BGE_STD_RX_RING_SZ);
1054 	sc->bge_std = 0;
1055 	for (i = 0; i < BGE_SSLOTS; i++) {
1056 		if ((error = bge_newbuf_std(sc, i)) != 0)
1057 			return (error);
1058 		BGE_INC(sc->bge_std, BGE_STD_RX_RING_CNT);
1059 	};
1060 
1061 	bus_dmamap_sync(sc->bge_cdata.bge_rx_std_ring_tag,
1062 	    sc->bge_cdata.bge_rx_std_ring_map, BUS_DMASYNC_PREWRITE);
1063 
1064 	sc->bge_std = i - 1;
1065 	bge_writembx(sc, BGE_MBX_RX_STD_PROD_LO, sc->bge_std);
1066 
1067 	return (0);
1068 }
1069 
1070 static void
1071 bge_free_rx_ring_std(struct bge_softc *sc)
1072 {
1073 	int i;
1074 
1075 	for (i = 0; i < BGE_STD_RX_RING_CNT; i++) {
1076 		if (sc->bge_cdata.bge_rx_std_chain[i] != NULL) {
1077 			bus_dmamap_sync(sc->bge_cdata.bge_rx_mtag,
1078 			    sc->bge_cdata.bge_rx_std_dmamap[i],
1079 			    BUS_DMASYNC_POSTREAD);
1080 			bus_dmamap_unload(sc->bge_cdata.bge_rx_mtag,
1081 			    sc->bge_cdata.bge_rx_std_dmamap[i]);
1082 			m_freem(sc->bge_cdata.bge_rx_std_chain[i]);
1083 			sc->bge_cdata.bge_rx_std_chain[i] = NULL;
1084 		}
1085 		bzero((char *)&sc->bge_ldata.bge_rx_std_ring[i],
1086 		    sizeof(struct bge_rx_bd));
1087 	}
1088 }
1089 
1090 static int
1091 bge_init_rx_ring_jumbo(struct bge_softc *sc)
1092 {
1093 	struct bge_rcb *rcb;
1094 	int error, i;
1095 
1096 	bzero(sc->bge_ldata.bge_rx_jumbo_ring, BGE_JUMBO_RX_RING_SZ);
1097 	sc->bge_jumbo = 0;
1098 	for (i = 0; i < BGE_JUMBO_RX_RING_CNT; i++) {
1099 		if ((error = bge_newbuf_jumbo(sc, i)) != 0)
1100 			return (error);
1101 		BGE_INC(sc->bge_jumbo, BGE_JUMBO_RX_RING_CNT);
1102 	};
1103 
1104 	bus_dmamap_sync(sc->bge_cdata.bge_rx_jumbo_ring_tag,
1105 	    sc->bge_cdata.bge_rx_jumbo_ring_map, BUS_DMASYNC_PREWRITE);
1106 
1107 	sc->bge_jumbo = i - 1;
1108 
1109 	rcb = &sc->bge_ldata.bge_info.bge_jumbo_rx_rcb;
1110 	rcb->bge_maxlen_flags = BGE_RCB_MAXLEN_FLAGS(0,
1111 				    BGE_RCB_FLAG_USE_EXT_RX_BD);
1112 	CSR_WRITE_4(sc, BGE_RX_JUMBO_RCB_MAXLEN_FLAGS, rcb->bge_maxlen_flags);
1113 
1114 	bge_writembx(sc, BGE_MBX_RX_JUMBO_PROD_LO, sc->bge_jumbo);
1115 
1116 	return (0);
1117 }
1118 
1119 static void
1120 bge_free_rx_ring_jumbo(struct bge_softc *sc)
1121 {
1122 	int i;
1123 
1124 	for (i = 0; i < BGE_JUMBO_RX_RING_CNT; i++) {
1125 		if (sc->bge_cdata.bge_rx_jumbo_chain[i] != NULL) {
1126 			bus_dmamap_sync(sc->bge_cdata.bge_mtag_jumbo,
1127 			    sc->bge_cdata.bge_rx_jumbo_dmamap[i],
1128 			    BUS_DMASYNC_POSTREAD);
1129 			bus_dmamap_unload(sc->bge_cdata.bge_mtag_jumbo,
1130 			    sc->bge_cdata.bge_rx_jumbo_dmamap[i]);
1131 			m_freem(sc->bge_cdata.bge_rx_jumbo_chain[i]);
1132 			sc->bge_cdata.bge_rx_jumbo_chain[i] = NULL;
1133 		}
1134 		bzero((char *)&sc->bge_ldata.bge_rx_jumbo_ring[i],
1135 		    sizeof(struct bge_extrx_bd));
1136 	}
1137 }
1138 
1139 static void
1140 bge_free_tx_ring(struct bge_softc *sc)
1141 {
1142 	int i;
1143 
1144 	if (sc->bge_ldata.bge_tx_ring == NULL)
1145 		return;
1146 
1147 	for (i = 0; i < BGE_TX_RING_CNT; i++) {
1148 		if (sc->bge_cdata.bge_tx_chain[i] != NULL) {
1149 			bus_dmamap_sync(sc->bge_cdata.bge_tx_mtag,
1150 			    sc->bge_cdata.bge_tx_dmamap[i],
1151 			    BUS_DMASYNC_POSTWRITE);
1152 			bus_dmamap_unload(sc->bge_cdata.bge_tx_mtag,
1153 			    sc->bge_cdata.bge_tx_dmamap[i]);
1154 			m_freem(sc->bge_cdata.bge_tx_chain[i]);
1155 			sc->bge_cdata.bge_tx_chain[i] = NULL;
1156 		}
1157 		bzero((char *)&sc->bge_ldata.bge_tx_ring[i],
1158 		    sizeof(struct bge_tx_bd));
1159 	}
1160 }
1161 
1162 static int
1163 bge_init_tx_ring(struct bge_softc *sc)
1164 {
1165 	sc->bge_txcnt = 0;
1166 	sc->bge_tx_saved_considx = 0;
1167 
1168 	bzero(sc->bge_ldata.bge_tx_ring, BGE_TX_RING_SZ);
1169 	bus_dmamap_sync(sc->bge_cdata.bge_tx_ring_tag,
1170 	    sc->bge_cdata.bge_tx_ring_map, BUS_DMASYNC_PREWRITE);
1171 
1172 	/* Initialize transmit producer index for host-memory send ring. */
1173 	sc->bge_tx_prodidx = 0;
1174 	bge_writembx(sc, BGE_MBX_TX_HOST_PROD0_LO, sc->bge_tx_prodidx);
1175 
1176 	/* 5700 b2 errata */
1177 	if (sc->bge_chiprev == BGE_CHIPREV_5700_BX)
1178 		bge_writembx(sc, BGE_MBX_TX_HOST_PROD0_LO, sc->bge_tx_prodidx);
1179 
1180 	/* NIC-memory send ring not used; initialize to zero. */
1181 	bge_writembx(sc, BGE_MBX_TX_NIC_PROD0_LO, 0);
1182 	/* 5700 b2 errata */
1183 	if (sc->bge_chiprev == BGE_CHIPREV_5700_BX)
1184 		bge_writembx(sc, BGE_MBX_TX_NIC_PROD0_LO, 0);
1185 
1186 	return (0);
1187 }
1188 
1189 static void
1190 bge_setpromisc(struct bge_softc *sc)
1191 {
1192 	struct ifnet *ifp;
1193 
1194 	BGE_LOCK_ASSERT(sc);
1195 
1196 	ifp = sc->bge_ifp;
1197 
1198 	/* Enable or disable promiscuous mode as needed. */
1199 	if (ifp->if_flags & IFF_PROMISC)
1200 		BGE_SETBIT(sc, BGE_RX_MODE, BGE_RXMODE_RX_PROMISC);
1201 	else
1202 		BGE_CLRBIT(sc, BGE_RX_MODE, BGE_RXMODE_RX_PROMISC);
1203 }
1204 
1205 static void
1206 bge_setmulti(struct bge_softc *sc)
1207 {
1208 	struct ifnet *ifp;
1209 	struct ifmultiaddr *ifma;
1210 	uint32_t hashes[4] = { 0, 0, 0, 0 };
1211 	int h, i;
1212 
1213 	BGE_LOCK_ASSERT(sc);
1214 
1215 	ifp = sc->bge_ifp;
1216 
1217 	if (ifp->if_flags & IFF_ALLMULTI || ifp->if_flags & IFF_PROMISC) {
1218 		for (i = 0; i < 4; i++)
1219 			CSR_WRITE_4(sc, BGE_MAR0 + (i * 4), 0xFFFFFFFF);
1220 		return;
1221 	}
1222 
1223 	/* First, zot all the existing filters. */
1224 	for (i = 0; i < 4; i++)
1225 		CSR_WRITE_4(sc, BGE_MAR0 + (i * 4), 0);
1226 
1227 	/* Now program new ones. */
1228 	if_maddr_rlock(ifp);
1229 	TAILQ_FOREACH(ifma, &ifp->if_multiaddrs, ifma_link) {
1230 		if (ifma->ifma_addr->sa_family != AF_LINK)
1231 			continue;
1232 		h = ether_crc32_le(LLADDR((struct sockaddr_dl *)
1233 		    ifma->ifma_addr), ETHER_ADDR_LEN) & 0x7F;
1234 		hashes[(h & 0x60) >> 5] |= 1 << (h & 0x1F);
1235 	}
1236 	if_maddr_runlock(ifp);
1237 
1238 	for (i = 0; i < 4; i++)
1239 		CSR_WRITE_4(sc, BGE_MAR0 + (i * 4), hashes[i]);
1240 }
1241 
1242 static void
1243 bge_setvlan(struct bge_softc *sc)
1244 {
1245 	struct ifnet *ifp;
1246 
1247 	BGE_LOCK_ASSERT(sc);
1248 
1249 	ifp = sc->bge_ifp;
1250 
1251 	/* Enable or disable VLAN tag stripping as needed. */
1252 	if (ifp->if_capenable & IFCAP_VLAN_HWTAGGING)
1253 		BGE_CLRBIT(sc, BGE_RX_MODE, BGE_RXMODE_RX_KEEP_VLAN_DIAG);
1254 	else
1255 		BGE_SETBIT(sc, BGE_RX_MODE, BGE_RXMODE_RX_KEEP_VLAN_DIAG);
1256 }
1257 
1258 static void
1259 bge_sig_pre_reset(sc, type)
1260 	struct bge_softc *sc;
1261 	int type;
1262 {
1263 	/*
1264 	 * Some chips don't like this so only do this if ASF is enabled
1265 	 */
1266 	if (sc->bge_asf_mode)
1267 		bge_writemem_ind(sc, BGE_SOFTWARE_GENCOMM, BGE_MAGIC_NUMBER);
1268 
1269 	if (sc->bge_asf_mode & ASF_NEW_HANDSHAKE) {
1270 		switch (type) {
1271 		case BGE_RESET_START:
1272 			bge_writemem_ind(sc, BGE_SDI_STATUS, 0x1); /* START */
1273 			break;
1274 		case BGE_RESET_STOP:
1275 			bge_writemem_ind(sc, BGE_SDI_STATUS, 0x2); /* UNLOAD */
1276 			break;
1277 		}
1278 	}
1279 }
1280 
1281 static void
1282 bge_sig_post_reset(sc, type)
1283 	struct bge_softc *sc;
1284 	int type;
1285 {
1286 	if (sc->bge_asf_mode & ASF_NEW_HANDSHAKE) {
1287 		switch (type) {
1288 		case BGE_RESET_START:
1289 			bge_writemem_ind(sc, BGE_SDI_STATUS, 0x80000001);
1290 			/* START DONE */
1291 			break;
1292 		case BGE_RESET_STOP:
1293 			bge_writemem_ind(sc, BGE_SDI_STATUS, 0x80000002);
1294 			break;
1295 		}
1296 	}
1297 }
1298 
1299 static void
1300 bge_sig_legacy(sc, type)
1301 	struct bge_softc *sc;
1302 	int type;
1303 {
1304 	if (sc->bge_asf_mode) {
1305 		switch (type) {
1306 		case BGE_RESET_START:
1307 			bge_writemem_ind(sc, BGE_SDI_STATUS, 0x1); /* START */
1308 			break;
1309 		case BGE_RESET_STOP:
1310 			bge_writemem_ind(sc, BGE_SDI_STATUS, 0x2); /* UNLOAD */
1311 			break;
1312 		}
1313 	}
1314 }
1315 
1316 void bge_stop_fw(struct bge_softc *);
1317 void
1318 bge_stop_fw(sc)
1319 	struct bge_softc *sc;
1320 {
1321 	int i;
1322 
1323 	if (sc->bge_asf_mode) {
1324 		bge_writemem_ind(sc, BGE_SOFTWARE_GENCOMM_FW, BGE_FW_PAUSE);
1325 		CSR_WRITE_4(sc, BGE_CPU_EVENT,
1326 		    CSR_READ_4(sc, BGE_CPU_EVENT) | (1 << 14));
1327 
1328 		for (i = 0; i < 100; i++ ) {
1329 			if (!(CSR_READ_4(sc, BGE_CPU_EVENT) & (1 << 14)))
1330 				break;
1331 			DELAY(10);
1332 		}
1333 	}
1334 }
1335 
1336 /*
1337  * Do endian, PCI and DMA initialization.
1338  */
1339 static int
1340 bge_chipinit(struct bge_softc *sc)
1341 {
1342 	uint32_t dma_rw_ctl;
1343 	int i;
1344 
1345 	/* Set endianness before we access any non-PCI registers. */
1346 	pci_write_config(sc->bge_dev, BGE_PCI_MISC_CTL, BGE_INIT, 4);
1347 
1348 	/* Clear the MAC control register */
1349 	CSR_WRITE_4(sc, BGE_MAC_MODE, 0);
1350 
1351 	/*
1352 	 * Clear the MAC statistics block in the NIC's
1353 	 * internal memory.
1354 	 */
1355 	for (i = BGE_STATS_BLOCK;
1356 	    i < BGE_STATS_BLOCK_END + 1; i += sizeof(uint32_t))
1357 		BGE_MEMWIN_WRITE(sc, i, 0);
1358 
1359 	for (i = BGE_STATUS_BLOCK;
1360 	    i < BGE_STATUS_BLOCK_END + 1; i += sizeof(uint32_t))
1361 		BGE_MEMWIN_WRITE(sc, i, 0);
1362 
1363 	/*
1364 	 * Set up the PCI DMA control register.
1365 	 */
1366 	dma_rw_ctl = BGE_PCIDMARWCTL_RD_CMD_SHIFT(6) |
1367 	    BGE_PCIDMARWCTL_WR_CMD_SHIFT(7);
1368 	if (sc->bge_flags & BGE_FLAG_PCIE) {
1369 		/* Read watermark not used, 128 bytes for write. */
1370 		dma_rw_ctl |= BGE_PCIDMARWCTL_WR_WAT_SHIFT(3);
1371 	} else if (sc->bge_flags & BGE_FLAG_PCIX) {
1372 		if (BGE_IS_5714_FAMILY(sc)) {
1373 			/* 256 bytes for read and write. */
1374 			dma_rw_ctl |= BGE_PCIDMARWCTL_RD_WAT_SHIFT(2) |
1375 			    BGE_PCIDMARWCTL_WR_WAT_SHIFT(2);
1376 			dma_rw_ctl |= (sc->bge_asicrev == BGE_ASICREV_BCM5780) ?
1377 			    BGE_PCIDMARWCTL_ONEDMA_ATONCE_GLOBAL :
1378 			    BGE_PCIDMARWCTL_ONEDMA_ATONCE_LOCAL;
1379 		} else if (sc->bge_asicrev == BGE_ASICREV_BCM5704) {
1380 			/* 1536 bytes for read, 384 bytes for write. */
1381 			dma_rw_ctl |= BGE_PCIDMARWCTL_RD_WAT_SHIFT(7) |
1382 			    BGE_PCIDMARWCTL_WR_WAT_SHIFT(3);
1383 		} else {
1384 			/* 384 bytes for read and write. */
1385 			dma_rw_ctl |= BGE_PCIDMARWCTL_RD_WAT_SHIFT(3) |
1386 			    BGE_PCIDMARWCTL_WR_WAT_SHIFT(3) |
1387 			    0x0F;
1388 		}
1389 		if (sc->bge_asicrev == BGE_ASICREV_BCM5703 ||
1390 		    sc->bge_asicrev == BGE_ASICREV_BCM5704) {
1391 			uint32_t tmp;
1392 
1393 			/* Set ONE_DMA_AT_ONCE for hardware workaround. */
1394 			tmp = CSR_READ_4(sc, BGE_PCI_CLKCTL) & 0x1F;
1395 			if (tmp == 6 || tmp == 7)
1396 				dma_rw_ctl |=
1397 				    BGE_PCIDMARWCTL_ONEDMA_ATONCE_GLOBAL;
1398 
1399 			/* Set PCI-X DMA write workaround. */
1400 			dma_rw_ctl |= BGE_PCIDMARWCTL_ASRT_ALL_BE;
1401 		}
1402 	} else {
1403 		/* Conventional PCI bus: 256 bytes for read and write. */
1404 		dma_rw_ctl |= BGE_PCIDMARWCTL_RD_WAT_SHIFT(7) |
1405 		    BGE_PCIDMARWCTL_WR_WAT_SHIFT(7);
1406 
1407 		if (sc->bge_asicrev != BGE_ASICREV_BCM5705 &&
1408 		    sc->bge_asicrev != BGE_ASICREV_BCM5750)
1409 			dma_rw_ctl |= 0x0F;
1410 	}
1411 	if (sc->bge_asicrev == BGE_ASICREV_BCM5700 ||
1412 	    sc->bge_asicrev == BGE_ASICREV_BCM5701)
1413 		dma_rw_ctl |= BGE_PCIDMARWCTL_USE_MRM |
1414 		    BGE_PCIDMARWCTL_ASRT_ALL_BE;
1415 	if (sc->bge_asicrev == BGE_ASICREV_BCM5703 ||
1416 	    sc->bge_asicrev == BGE_ASICREV_BCM5704)
1417 		dma_rw_ctl &= ~BGE_PCIDMARWCTL_MINDMA;
1418 	pci_write_config(sc->bge_dev, BGE_PCI_DMA_RW_CTL, dma_rw_ctl, 4);
1419 
1420 	/*
1421 	 * Set up general mode register.
1422 	 */
1423 	CSR_WRITE_4(sc, BGE_MODE_CTL, BGE_DMA_SWAP_OPTIONS |
1424 	    BGE_MODECTL_MAC_ATTN_INTR | BGE_MODECTL_HOST_SEND_BDS |
1425 	    BGE_MODECTL_TX_NO_PHDR_CSUM);
1426 
1427 	/*
1428 	 * BCM5701 B5 have a bug causing data corruption when using
1429 	 * 64-bit DMA reads, which can be terminated early and then
1430 	 * completed later as 32-bit accesses, in combination with
1431 	 * certain bridges.
1432 	 */
1433 	if (sc->bge_asicrev == BGE_ASICREV_BCM5701 &&
1434 	    sc->bge_chipid == BGE_CHIPID_BCM5701_B5)
1435 		BGE_SETBIT(sc, BGE_MODE_CTL, BGE_MODECTL_FORCE_PCI32);
1436 
1437 	/*
1438 	 * Tell the firmware the driver is running
1439 	 */
1440 	if (sc->bge_asf_mode & ASF_STACKUP)
1441 		BGE_SETBIT(sc, BGE_MODE_CTL, BGE_MODECTL_STACKUP);
1442 
1443 	/*
1444 	 * Disable memory write invalidate.  Apparently it is not supported
1445 	 * properly by these devices.  Also ensure that INTx isn't disabled,
1446 	 * as these chips need it even when using MSI.
1447 	 */
1448 	PCI_CLRBIT(sc->bge_dev, BGE_PCI_CMD,
1449 	    PCIM_CMD_INTxDIS | PCIM_CMD_MWIEN, 4);
1450 
1451 	/* Set the timer prescaler (always 66Mhz) */
1452 	CSR_WRITE_4(sc, BGE_MISC_CFG, BGE_32BITTIME_66MHZ);
1453 
1454 	/* XXX: The Linux tg3 driver does this at the start of brgphy_reset. */
1455 	if (sc->bge_asicrev == BGE_ASICREV_BCM5906) {
1456 		DELAY(40);	/* XXX */
1457 
1458 		/* Put PHY into ready state */
1459 		BGE_CLRBIT(sc, BGE_MISC_CFG, BGE_MISCCFG_EPHY_IDDQ);
1460 		CSR_READ_4(sc, BGE_MISC_CFG); /* Flush */
1461 		DELAY(40);
1462 	}
1463 
1464 	return (0);
1465 }
1466 
1467 static int
1468 bge_blockinit(struct bge_softc *sc)
1469 {
1470 	struct bge_rcb *rcb;
1471 	bus_size_t vrcb;
1472 	bge_hostaddr taddr;
1473 	uint32_t val;
1474 	int i;
1475 
1476 	/*
1477 	 * Initialize the memory window pointer register so that
1478 	 * we can access the first 32K of internal NIC RAM. This will
1479 	 * allow us to set up the TX send ring RCBs and the RX return
1480 	 * ring RCBs, plus other things which live in NIC memory.
1481 	 */
1482 	CSR_WRITE_4(sc, BGE_PCI_MEMWIN_BASEADDR, 0);
1483 
1484 	/* Note: the BCM5704 has a smaller mbuf space than other chips. */
1485 
1486 	if (!(BGE_IS_5705_PLUS(sc))) {
1487 		/* Configure mbuf memory pool */
1488 		CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_BASEADDR, BGE_BUFFPOOL_1);
1489 		if (sc->bge_asicrev == BGE_ASICREV_BCM5704)
1490 			CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_LEN, 0x10000);
1491 		else
1492 			CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_LEN, 0x18000);
1493 
1494 		/* Configure DMA resource pool */
1495 		CSR_WRITE_4(sc, BGE_BMAN_DMA_DESCPOOL_BASEADDR,
1496 		    BGE_DMA_DESCRIPTORS);
1497 		CSR_WRITE_4(sc, BGE_BMAN_DMA_DESCPOOL_LEN, 0x2000);
1498 	}
1499 
1500 	/* Configure mbuf pool watermarks */
1501 	if (!BGE_IS_5705_PLUS(sc)) {
1502 		CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_READDMA_LOWAT, 0x50);
1503 		CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_MACRX_LOWAT, 0x20);
1504 		CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_HIWAT, 0x60);
1505 	} else if (sc->bge_asicrev == BGE_ASICREV_BCM5906) {
1506 		CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_READDMA_LOWAT, 0x0);
1507 		CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_MACRX_LOWAT, 0x04);
1508 		CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_HIWAT, 0x10);
1509 	} else {
1510 		CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_READDMA_LOWAT, 0x0);
1511 		CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_MACRX_LOWAT, 0x10);
1512 		CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_HIWAT, 0x60);
1513 	}
1514 
1515 	/* Configure DMA resource watermarks */
1516 	CSR_WRITE_4(sc, BGE_BMAN_DMA_DESCPOOL_LOWAT, 5);
1517 	CSR_WRITE_4(sc, BGE_BMAN_DMA_DESCPOOL_HIWAT, 10);
1518 
1519 	/* Enable buffer manager */
1520 	if (!(BGE_IS_5705_PLUS(sc))) {
1521 		CSR_WRITE_4(sc, BGE_BMAN_MODE,
1522 		    BGE_BMANMODE_ENABLE | BGE_BMANMODE_LOMBUF_ATTN);
1523 
1524 		/* Poll for buffer manager start indication */
1525 		for (i = 0; i < BGE_TIMEOUT; i++) {
1526 			DELAY(10);
1527 			if (CSR_READ_4(sc, BGE_BMAN_MODE) & BGE_BMANMODE_ENABLE)
1528 				break;
1529 		}
1530 
1531 		if (i == BGE_TIMEOUT) {
1532 			device_printf(sc->bge_dev,
1533 			    "buffer manager failed to start\n");
1534 			return (ENXIO);
1535 		}
1536 	}
1537 
1538 	/* Enable flow-through queues */
1539 	CSR_WRITE_4(sc, BGE_FTQ_RESET, 0xFFFFFFFF);
1540 	CSR_WRITE_4(sc, BGE_FTQ_RESET, 0);
1541 
1542 	/* Wait until queue initialization is complete */
1543 	for (i = 0; i < BGE_TIMEOUT; i++) {
1544 		DELAY(10);
1545 		if (CSR_READ_4(sc, BGE_FTQ_RESET) == 0)
1546 			break;
1547 	}
1548 
1549 	if (i == BGE_TIMEOUT) {
1550 		device_printf(sc->bge_dev, "flow-through queue init failed\n");
1551 		return (ENXIO);
1552 	}
1553 
1554 	/* Initialize the standard RX ring control block */
1555 	rcb = &sc->bge_ldata.bge_info.bge_std_rx_rcb;
1556 	rcb->bge_hostaddr.bge_addr_lo =
1557 	    BGE_ADDR_LO(sc->bge_ldata.bge_rx_std_ring_paddr);
1558 	rcb->bge_hostaddr.bge_addr_hi =
1559 	    BGE_ADDR_HI(sc->bge_ldata.bge_rx_std_ring_paddr);
1560 	bus_dmamap_sync(sc->bge_cdata.bge_rx_std_ring_tag,
1561 	    sc->bge_cdata.bge_rx_std_ring_map, BUS_DMASYNC_PREREAD);
1562 	if (BGE_IS_5705_PLUS(sc))
1563 		rcb->bge_maxlen_flags = BGE_RCB_MAXLEN_FLAGS(512, 0);
1564 	else
1565 		rcb->bge_maxlen_flags =
1566 		    BGE_RCB_MAXLEN_FLAGS(BGE_MAX_FRAMELEN, 0);
1567 	rcb->bge_nicaddr = BGE_STD_RX_RINGS;
1568 	CSR_WRITE_4(sc, BGE_RX_STD_RCB_HADDR_HI, rcb->bge_hostaddr.bge_addr_hi);
1569 	CSR_WRITE_4(sc, BGE_RX_STD_RCB_HADDR_LO, rcb->bge_hostaddr.bge_addr_lo);
1570 
1571 	CSR_WRITE_4(sc, BGE_RX_STD_RCB_MAXLEN_FLAGS, rcb->bge_maxlen_flags);
1572 	CSR_WRITE_4(sc, BGE_RX_STD_RCB_NICADDR, rcb->bge_nicaddr);
1573 
1574 	/*
1575 	 * Initialize the jumbo RX ring control block
1576 	 * We set the 'ring disabled' bit in the flags
1577 	 * field until we're actually ready to start
1578 	 * using this ring (i.e. once we set the MTU
1579 	 * high enough to require it).
1580 	 */
1581 	if (BGE_IS_JUMBO_CAPABLE(sc)) {
1582 		rcb = &sc->bge_ldata.bge_info.bge_jumbo_rx_rcb;
1583 
1584 		rcb->bge_hostaddr.bge_addr_lo =
1585 		    BGE_ADDR_LO(sc->bge_ldata.bge_rx_jumbo_ring_paddr);
1586 		rcb->bge_hostaddr.bge_addr_hi =
1587 		    BGE_ADDR_HI(sc->bge_ldata.bge_rx_jumbo_ring_paddr);
1588 		bus_dmamap_sync(sc->bge_cdata.bge_rx_jumbo_ring_tag,
1589 		    sc->bge_cdata.bge_rx_jumbo_ring_map,
1590 		    BUS_DMASYNC_PREREAD);
1591 		rcb->bge_maxlen_flags = BGE_RCB_MAXLEN_FLAGS(0,
1592 		    BGE_RCB_FLAG_USE_EXT_RX_BD | BGE_RCB_FLAG_RING_DISABLED);
1593 		rcb->bge_nicaddr = BGE_JUMBO_RX_RINGS;
1594 		CSR_WRITE_4(sc, BGE_RX_JUMBO_RCB_HADDR_HI,
1595 		    rcb->bge_hostaddr.bge_addr_hi);
1596 		CSR_WRITE_4(sc, BGE_RX_JUMBO_RCB_HADDR_LO,
1597 		    rcb->bge_hostaddr.bge_addr_lo);
1598 
1599 		CSR_WRITE_4(sc, BGE_RX_JUMBO_RCB_MAXLEN_FLAGS,
1600 		    rcb->bge_maxlen_flags);
1601 		CSR_WRITE_4(sc, BGE_RX_JUMBO_RCB_NICADDR, rcb->bge_nicaddr);
1602 
1603 		/* Set up dummy disabled mini ring RCB */
1604 		rcb = &sc->bge_ldata.bge_info.bge_mini_rx_rcb;
1605 		rcb->bge_maxlen_flags =
1606 		    BGE_RCB_MAXLEN_FLAGS(0, BGE_RCB_FLAG_RING_DISABLED);
1607 		CSR_WRITE_4(sc, BGE_RX_MINI_RCB_MAXLEN_FLAGS,
1608 		    rcb->bge_maxlen_flags);
1609 	}
1610 
1611 	/*
1612 	 * Set the BD ring replentish thresholds. The recommended
1613 	 * values are 1/8th the number of descriptors allocated to
1614 	 * each ring.
1615 	 * XXX The 5754 requires a lower threshold, so it might be a
1616 	 * requirement of all 575x family chips.  The Linux driver sets
1617 	 * the lower threshold for all 5705 family chips as well, but there
1618 	 * are reports that it might not need to be so strict.
1619 	 *
1620 	 * XXX Linux does some extra fiddling here for the 5906 parts as
1621 	 * well.
1622 	 */
1623 	if (BGE_IS_5705_PLUS(sc))
1624 		val = 8;
1625 	else
1626 		val = BGE_STD_RX_RING_CNT / 8;
1627 	CSR_WRITE_4(sc, BGE_RBDI_STD_REPL_THRESH, val);
1628 	CSR_WRITE_4(sc, BGE_RBDI_JUMBO_REPL_THRESH, BGE_JUMBO_RX_RING_CNT/8);
1629 
1630 	/*
1631 	 * Disable all unused send rings by setting the 'ring disabled'
1632 	 * bit in the flags field of all the TX send ring control blocks.
1633 	 * These are located in NIC memory.
1634 	 */
1635 	vrcb = BGE_MEMWIN_START + BGE_SEND_RING_RCB;
1636 	for (i = 0; i < BGE_TX_RINGS_EXTSSRAM_MAX; i++) {
1637 		RCB_WRITE_4(sc, vrcb, bge_maxlen_flags,
1638 		    BGE_RCB_MAXLEN_FLAGS(0, BGE_RCB_FLAG_RING_DISABLED));
1639 		RCB_WRITE_4(sc, vrcb, bge_nicaddr, 0);
1640 		vrcb += sizeof(struct bge_rcb);
1641 	}
1642 
1643 	/* Configure TX RCB 0 (we use only the first ring) */
1644 	vrcb = BGE_MEMWIN_START + BGE_SEND_RING_RCB;
1645 	BGE_HOSTADDR(taddr, sc->bge_ldata.bge_tx_ring_paddr);
1646 	RCB_WRITE_4(sc, vrcb, bge_hostaddr.bge_addr_hi, taddr.bge_addr_hi);
1647 	RCB_WRITE_4(sc, vrcb, bge_hostaddr.bge_addr_lo, taddr.bge_addr_lo);
1648 	RCB_WRITE_4(sc, vrcb, bge_nicaddr,
1649 	    BGE_NIC_TXRING_ADDR(0, BGE_TX_RING_CNT));
1650 	if (!(BGE_IS_5705_PLUS(sc)))
1651 		RCB_WRITE_4(sc, vrcb, bge_maxlen_flags,
1652 		    BGE_RCB_MAXLEN_FLAGS(BGE_TX_RING_CNT, 0));
1653 
1654 	/* Disable all unused RX return rings */
1655 	vrcb = BGE_MEMWIN_START + BGE_RX_RETURN_RING_RCB;
1656 	for (i = 0; i < BGE_RX_RINGS_MAX; i++) {
1657 		RCB_WRITE_4(sc, vrcb, bge_hostaddr.bge_addr_hi, 0);
1658 		RCB_WRITE_4(sc, vrcb, bge_hostaddr.bge_addr_lo, 0);
1659 		RCB_WRITE_4(sc, vrcb, bge_maxlen_flags,
1660 		    BGE_RCB_MAXLEN_FLAGS(sc->bge_return_ring_cnt,
1661 		    BGE_RCB_FLAG_RING_DISABLED));
1662 		RCB_WRITE_4(sc, vrcb, bge_nicaddr, 0);
1663 		bge_writembx(sc, BGE_MBX_RX_CONS0_LO +
1664 		    (i * (sizeof(uint64_t))), 0);
1665 		vrcb += sizeof(struct bge_rcb);
1666 	}
1667 
1668 	/* Initialize RX ring indexes */
1669 	bge_writembx(sc, BGE_MBX_RX_STD_PROD_LO, 0);
1670 	bge_writembx(sc, BGE_MBX_RX_JUMBO_PROD_LO, 0);
1671 	bge_writembx(sc, BGE_MBX_RX_MINI_PROD_LO, 0);
1672 
1673 	/*
1674 	 * Set up RX return ring 0
1675 	 * Note that the NIC address for RX return rings is 0x00000000.
1676 	 * The return rings live entirely within the host, so the
1677 	 * nicaddr field in the RCB isn't used.
1678 	 */
1679 	vrcb = BGE_MEMWIN_START + BGE_RX_RETURN_RING_RCB;
1680 	BGE_HOSTADDR(taddr, sc->bge_ldata.bge_rx_return_ring_paddr);
1681 	RCB_WRITE_4(sc, vrcb, bge_hostaddr.bge_addr_hi, taddr.bge_addr_hi);
1682 	RCB_WRITE_4(sc, vrcb, bge_hostaddr.bge_addr_lo, taddr.bge_addr_lo);
1683 	RCB_WRITE_4(sc, vrcb, bge_nicaddr, 0x00000000);
1684 	RCB_WRITE_4(sc, vrcb, bge_maxlen_flags,
1685 	    BGE_RCB_MAXLEN_FLAGS(sc->bge_return_ring_cnt, 0));
1686 
1687 	/* Set random backoff seed for TX */
1688 	CSR_WRITE_4(sc, BGE_TX_RANDOM_BACKOFF,
1689 	    IF_LLADDR(sc->bge_ifp)[0] + IF_LLADDR(sc->bge_ifp)[1] +
1690 	    IF_LLADDR(sc->bge_ifp)[2] + IF_LLADDR(sc->bge_ifp)[3] +
1691 	    IF_LLADDR(sc->bge_ifp)[4] + IF_LLADDR(sc->bge_ifp)[5] +
1692 	    BGE_TX_BACKOFF_SEED_MASK);
1693 
1694 	/* Set inter-packet gap */
1695 	CSR_WRITE_4(sc, BGE_TX_LENGTHS, 0x2620);
1696 
1697 	/*
1698 	 * Specify which ring to use for packets that don't match
1699 	 * any RX rules.
1700 	 */
1701 	CSR_WRITE_4(sc, BGE_RX_RULES_CFG, 0x08);
1702 
1703 	/*
1704 	 * Configure number of RX lists. One interrupt distribution
1705 	 * list, sixteen active lists, one bad frames class.
1706 	 */
1707 	CSR_WRITE_4(sc, BGE_RXLP_CFG, 0x181);
1708 
1709 	/* Inialize RX list placement stats mask. */
1710 	CSR_WRITE_4(sc, BGE_RXLP_STATS_ENABLE_MASK, 0x007FFFFF);
1711 	CSR_WRITE_4(sc, BGE_RXLP_STATS_CTL, 0x1);
1712 
1713 	/* Disable host coalescing until we get it set up */
1714 	CSR_WRITE_4(sc, BGE_HCC_MODE, 0x00000000);
1715 
1716 	/* Poll to make sure it's shut down. */
1717 	for (i = 0; i < BGE_TIMEOUT; i++) {
1718 		DELAY(10);
1719 		if (!(CSR_READ_4(sc, BGE_HCC_MODE) & BGE_HCCMODE_ENABLE))
1720 			break;
1721 	}
1722 
1723 	if (i == BGE_TIMEOUT) {
1724 		device_printf(sc->bge_dev,
1725 		    "host coalescing engine failed to idle\n");
1726 		return (ENXIO);
1727 	}
1728 
1729 	/* Set up host coalescing defaults */
1730 	CSR_WRITE_4(sc, BGE_HCC_RX_COAL_TICKS, sc->bge_rx_coal_ticks);
1731 	CSR_WRITE_4(sc, BGE_HCC_TX_COAL_TICKS, sc->bge_tx_coal_ticks);
1732 	CSR_WRITE_4(sc, BGE_HCC_RX_MAX_COAL_BDS, sc->bge_rx_max_coal_bds);
1733 	CSR_WRITE_4(sc, BGE_HCC_TX_MAX_COAL_BDS, sc->bge_tx_max_coal_bds);
1734 	if (!(BGE_IS_5705_PLUS(sc))) {
1735 		CSR_WRITE_4(sc, BGE_HCC_RX_COAL_TICKS_INT, 0);
1736 		CSR_WRITE_4(sc, BGE_HCC_TX_COAL_TICKS_INT, 0);
1737 	}
1738 	CSR_WRITE_4(sc, BGE_HCC_RX_MAX_COAL_BDS_INT, 1);
1739 	CSR_WRITE_4(sc, BGE_HCC_TX_MAX_COAL_BDS_INT, 1);
1740 
1741 	/* Set up address of statistics block */
1742 	if (!(BGE_IS_5705_PLUS(sc))) {
1743 		CSR_WRITE_4(sc, BGE_HCC_STATS_ADDR_HI,
1744 		    BGE_ADDR_HI(sc->bge_ldata.bge_stats_paddr));
1745 		CSR_WRITE_4(sc, BGE_HCC_STATS_ADDR_LO,
1746 		    BGE_ADDR_LO(sc->bge_ldata.bge_stats_paddr));
1747 		CSR_WRITE_4(sc, BGE_HCC_STATS_BASEADDR, BGE_STATS_BLOCK);
1748 		CSR_WRITE_4(sc, BGE_HCC_STATUSBLK_BASEADDR, BGE_STATUS_BLOCK);
1749 		CSR_WRITE_4(sc, BGE_HCC_STATS_TICKS, sc->bge_stat_ticks);
1750 	}
1751 
1752 	/* Set up address of status block */
1753 	CSR_WRITE_4(sc, BGE_HCC_STATUSBLK_ADDR_HI,
1754 	    BGE_ADDR_HI(sc->bge_ldata.bge_status_block_paddr));
1755 	CSR_WRITE_4(sc, BGE_HCC_STATUSBLK_ADDR_LO,
1756 	    BGE_ADDR_LO(sc->bge_ldata.bge_status_block_paddr));
1757 	sc->bge_ldata.bge_status_block->bge_idx[0].bge_rx_prod_idx = 0;
1758 	sc->bge_ldata.bge_status_block->bge_idx[0].bge_tx_cons_idx = 0;
1759 
1760 	/* Set up status block size. */
1761 	if (sc->bge_asicrev == BGE_ASICREV_BCM5700 &&
1762 	    sc->bge_chipid != BGE_CHIPID_BCM5700_C0)
1763 		val = BGE_STATBLKSZ_FULL;
1764 	else
1765 		val = BGE_STATBLKSZ_32BYTE;
1766 
1767 	/* Turn on host coalescing state machine */
1768 	CSR_WRITE_4(sc, BGE_HCC_MODE, val | BGE_HCCMODE_ENABLE);
1769 
1770 	/* Turn on RX BD completion state machine and enable attentions */
1771 	CSR_WRITE_4(sc, BGE_RBDC_MODE,
1772 	    BGE_RBDCMODE_ENABLE | BGE_RBDCMODE_ATTN);
1773 
1774 	/* Turn on RX list placement state machine */
1775 	CSR_WRITE_4(sc, BGE_RXLP_MODE, BGE_RXLPMODE_ENABLE);
1776 
1777 	/* Turn on RX list selector state machine. */
1778 	if (!(BGE_IS_5705_PLUS(sc)))
1779 		CSR_WRITE_4(sc, BGE_RXLS_MODE, BGE_RXLSMODE_ENABLE);
1780 
1781 	/* Turn on DMA, clear stats */
1782 	CSR_WRITE_4(sc, BGE_MAC_MODE, BGE_MACMODE_TXDMA_ENB |
1783 	    BGE_MACMODE_RXDMA_ENB | BGE_MACMODE_RX_STATS_CLEAR |
1784 	    BGE_MACMODE_TX_STATS_CLEAR | BGE_MACMODE_RX_STATS_ENB |
1785 	    BGE_MACMODE_TX_STATS_ENB | BGE_MACMODE_FRMHDR_DMA_ENB |
1786 	    ((sc->bge_flags & BGE_FLAG_TBI) ?
1787 	    BGE_PORTMODE_TBI : BGE_PORTMODE_MII));
1788 
1789 	/* Set misc. local control, enable interrupts on attentions */
1790 	CSR_WRITE_4(sc, BGE_MISC_LOCAL_CTL, BGE_MLC_INTR_ONATTN);
1791 
1792 #ifdef notdef
1793 	/* Assert GPIO pins for PHY reset */
1794 	BGE_SETBIT(sc, BGE_MISC_LOCAL_CTL, BGE_MLC_MISCIO_OUT0 |
1795 	    BGE_MLC_MISCIO_OUT1 | BGE_MLC_MISCIO_OUT2);
1796 	BGE_SETBIT(sc, BGE_MISC_LOCAL_CTL, BGE_MLC_MISCIO_OUTEN0 |
1797 	    BGE_MLC_MISCIO_OUTEN1 | BGE_MLC_MISCIO_OUTEN2);
1798 #endif
1799 
1800 	/* Turn on DMA completion state machine */
1801 	if (!(BGE_IS_5705_PLUS(sc)))
1802 		CSR_WRITE_4(sc, BGE_DMAC_MODE, BGE_DMACMODE_ENABLE);
1803 
1804 	val = BGE_WDMAMODE_ENABLE | BGE_WDMAMODE_ALL_ATTNS;
1805 
1806 	/* Enable host coalescing bug fix. */
1807 	if (BGE_IS_5755_PLUS(sc))
1808 		val |= BGE_WDMAMODE_STATUS_TAG_FIX;
1809 
1810 	/* Turn on write DMA state machine */
1811 	CSR_WRITE_4(sc, BGE_WDMA_MODE, val);
1812 	DELAY(40);
1813 
1814 	/* Turn on read DMA state machine */
1815 	val = BGE_RDMAMODE_ENABLE | BGE_RDMAMODE_ALL_ATTNS;
1816 	if (sc->bge_asicrev == BGE_ASICREV_BCM5784 ||
1817 	    sc->bge_asicrev == BGE_ASICREV_BCM5785 ||
1818 	    sc->bge_asicrev == BGE_ASICREV_BCM57780)
1819 		val |= BGE_RDMAMODE_BD_SBD_CRPT_ATTN |
1820 		    BGE_RDMAMODE_MBUF_RBD_CRPT_ATTN |
1821 		    BGE_RDMAMODE_MBUF_SBD_CRPT_ATTN;
1822 	if (sc->bge_flags & BGE_FLAG_PCIE)
1823 		val |= BGE_RDMAMODE_FIFO_LONG_BURST;
1824 	if (sc->bge_flags & BGE_FLAG_TSO)
1825 		val |= BGE_RDMAMODE_TSO4_ENABLE;
1826 	CSR_WRITE_4(sc, BGE_RDMA_MODE, val);
1827 	DELAY(40);
1828 
1829 	/* Turn on RX data completion state machine */
1830 	CSR_WRITE_4(sc, BGE_RDC_MODE, BGE_RDCMODE_ENABLE);
1831 
1832 	/* Turn on RX BD initiator state machine */
1833 	CSR_WRITE_4(sc, BGE_RBDI_MODE, BGE_RBDIMODE_ENABLE);
1834 
1835 	/* Turn on RX data and RX BD initiator state machine */
1836 	CSR_WRITE_4(sc, BGE_RDBDI_MODE, BGE_RDBDIMODE_ENABLE);
1837 
1838 	/* Turn on Mbuf cluster free state machine */
1839 	if (!(BGE_IS_5705_PLUS(sc)))
1840 		CSR_WRITE_4(sc, BGE_MBCF_MODE, BGE_MBCFMODE_ENABLE);
1841 
1842 	/* Turn on send BD completion state machine */
1843 	CSR_WRITE_4(sc, BGE_SBDC_MODE, BGE_SBDCMODE_ENABLE);
1844 
1845 	/* Turn on send data completion state machine */
1846 	val = BGE_SDCMODE_ENABLE;
1847 	if (sc->bge_asicrev == BGE_ASICREV_BCM5761)
1848 		val |= BGE_SDCMODE_CDELAY;
1849 	CSR_WRITE_4(sc, BGE_SDC_MODE, val);
1850 
1851 	/* Turn on send data initiator state machine */
1852 	if (sc->bge_flags & BGE_FLAG_TSO)
1853 		CSR_WRITE_4(sc, BGE_SDI_MODE, BGE_SDIMODE_ENABLE | 0x08);
1854 	else
1855 		CSR_WRITE_4(sc, BGE_SDI_MODE, BGE_SDIMODE_ENABLE);
1856 
1857 	/* Turn on send BD initiator state machine */
1858 	CSR_WRITE_4(sc, BGE_SBDI_MODE, BGE_SBDIMODE_ENABLE);
1859 
1860 	/* Turn on send BD selector state machine */
1861 	CSR_WRITE_4(sc, BGE_SRS_MODE, BGE_SRSMODE_ENABLE);
1862 
1863 	CSR_WRITE_4(sc, BGE_SDI_STATS_ENABLE_MASK, 0x007FFFFF);
1864 	CSR_WRITE_4(sc, BGE_SDI_STATS_CTL,
1865 	    BGE_SDISTATSCTL_ENABLE | BGE_SDISTATSCTL_FASTER);
1866 
1867 	/* ack/clear link change events */
1868 	CSR_WRITE_4(sc, BGE_MAC_STS, BGE_MACSTAT_SYNC_CHANGED |
1869 	    BGE_MACSTAT_CFG_CHANGED | BGE_MACSTAT_MI_COMPLETE |
1870 	    BGE_MACSTAT_LINK_CHANGED);
1871 	CSR_WRITE_4(sc, BGE_MI_STS, 0);
1872 
1873 	/* Enable PHY auto polling (for MII/GMII only) */
1874 	if (sc->bge_flags & BGE_FLAG_TBI) {
1875 		CSR_WRITE_4(sc, BGE_MI_STS, BGE_MISTS_LINK);
1876 	} else {
1877 		BGE_SETBIT(sc, BGE_MI_MODE, BGE_MIMODE_AUTOPOLL | (10 << 16));
1878 		if (sc->bge_asicrev == BGE_ASICREV_BCM5700 &&
1879 		    sc->bge_chipid != BGE_CHIPID_BCM5700_B2)
1880 			CSR_WRITE_4(sc, BGE_MAC_EVT_ENB,
1881 			    BGE_EVTENB_MI_INTERRUPT);
1882 	}
1883 
1884 	/*
1885 	 * Clear any pending link state attention.
1886 	 * Otherwise some link state change events may be lost until attention
1887 	 * is cleared by bge_intr() -> bge_link_upd() sequence.
1888 	 * It's not necessary on newer BCM chips - perhaps enabling link
1889 	 * state change attentions implies clearing pending attention.
1890 	 */
1891 	CSR_WRITE_4(sc, BGE_MAC_STS, BGE_MACSTAT_SYNC_CHANGED |
1892 	    BGE_MACSTAT_CFG_CHANGED | BGE_MACSTAT_MI_COMPLETE |
1893 	    BGE_MACSTAT_LINK_CHANGED);
1894 
1895 	/* Enable link state change attentions. */
1896 	BGE_SETBIT(sc, BGE_MAC_EVT_ENB, BGE_EVTENB_LINK_CHANGED);
1897 
1898 	return (0);
1899 }
1900 
1901 const struct bge_revision *
1902 bge_lookup_rev(uint32_t chipid)
1903 {
1904 	const struct bge_revision *br;
1905 
1906 	for (br = bge_revisions; br->br_name != NULL; br++) {
1907 		if (br->br_chipid == chipid)
1908 			return (br);
1909 	}
1910 
1911 	for (br = bge_majorrevs; br->br_name != NULL; br++) {
1912 		if (br->br_chipid == BGE_ASICREV(chipid))
1913 			return (br);
1914 	}
1915 
1916 	return (NULL);
1917 }
1918 
1919 const struct bge_vendor *
1920 bge_lookup_vendor(uint16_t vid)
1921 {
1922 	const struct bge_vendor *v;
1923 
1924 	for (v = bge_vendors; v->v_name != NULL; v++)
1925 		if (v->v_id == vid)
1926 			return (v);
1927 
1928 	panic("%s: unknown vendor %d", __func__, vid);
1929 	return (NULL);
1930 }
1931 
1932 /*
1933  * Probe for a Broadcom chip. Check the PCI vendor and device IDs
1934  * against our list and return its name if we find a match.
1935  *
1936  * Note that since the Broadcom controller contains VPD support, we
1937  * try to get the device name string from the controller itself instead
1938  * of the compiled-in string. It guarantees we'll always announce the
1939  * right product name. We fall back to the compiled-in string when
1940  * VPD is unavailable or corrupt.
1941  */
1942 static int
1943 bge_probe(device_t dev)
1944 {
1945 	const struct bge_type *t = bge_devs;
1946 	struct bge_softc *sc = device_get_softc(dev);
1947 	uint16_t vid, did;
1948 
1949 	sc->bge_dev = dev;
1950 	vid = pci_get_vendor(dev);
1951 	did = pci_get_device(dev);
1952 	while(t->bge_vid != 0) {
1953 		if ((vid == t->bge_vid) && (did == t->bge_did)) {
1954 			char model[64], buf[96];
1955 			const struct bge_revision *br;
1956 			const struct bge_vendor *v;
1957 			uint32_t id;
1958 
1959 			id = pci_read_config(dev, BGE_PCI_MISC_CTL, 4) >>
1960 			    BGE_PCIMISCCTL_ASICREV_SHIFT;
1961 			if (BGE_ASICREV(id) == BGE_ASICREV_USE_PRODID_REG)
1962 				id = pci_read_config(dev,
1963 				    BGE_PCI_PRODID_ASICREV, 4);
1964 			br = bge_lookup_rev(id);
1965 			v = bge_lookup_vendor(vid);
1966 			{
1967 #if __FreeBSD_version > 700024
1968 				const char *pname;
1969 
1970 				if (bge_has_eaddr(sc) &&
1971 				    pci_get_vpd_ident(dev, &pname) == 0)
1972 					snprintf(model, 64, "%s", pname);
1973 				else
1974 #endif
1975 					snprintf(model, 64, "%s %s",
1976 					    v->v_name,
1977 					    br != NULL ? br->br_name :
1978 					    "NetXtreme Ethernet Controller");
1979 			}
1980 			snprintf(buf, 96, "%s, %sASIC rev. %#08x", model,
1981 			    br != NULL ? "" : "unknown ", id);
1982 			device_set_desc_copy(dev, buf);
1983 			if (pci_get_subvendor(dev) == DELL_VENDORID)
1984 				sc->bge_flags |= BGE_FLAG_NO_3LED;
1985 			if (did == BCOM_DEVICEID_BCM5755M)
1986 				sc->bge_flags |= BGE_FLAG_ADJUST_TRIM;
1987 			return (0);
1988 		}
1989 		t++;
1990 	}
1991 
1992 	return (ENXIO);
1993 }
1994 
1995 static void
1996 bge_dma_free(struct bge_softc *sc)
1997 {
1998 	int i;
1999 
2000 	/* Destroy DMA maps for RX buffers. */
2001 	for (i = 0; i < BGE_STD_RX_RING_CNT; i++) {
2002 		if (sc->bge_cdata.bge_rx_std_dmamap[i])
2003 			bus_dmamap_destroy(sc->bge_cdata.bge_rx_mtag,
2004 			    sc->bge_cdata.bge_rx_std_dmamap[i]);
2005 	}
2006 	if (sc->bge_cdata.bge_rx_std_sparemap)
2007 		bus_dmamap_destroy(sc->bge_cdata.bge_rx_mtag,
2008 		    sc->bge_cdata.bge_rx_std_sparemap);
2009 
2010 	/* Destroy DMA maps for jumbo RX buffers. */
2011 	for (i = 0; i < BGE_JUMBO_RX_RING_CNT; i++) {
2012 		if (sc->bge_cdata.bge_rx_jumbo_dmamap[i])
2013 			bus_dmamap_destroy(sc->bge_cdata.bge_mtag_jumbo,
2014 			    sc->bge_cdata.bge_rx_jumbo_dmamap[i]);
2015 	}
2016 	if (sc->bge_cdata.bge_rx_jumbo_sparemap)
2017 		bus_dmamap_destroy(sc->bge_cdata.bge_mtag_jumbo,
2018 		    sc->bge_cdata.bge_rx_jumbo_sparemap);
2019 
2020 	/* Destroy DMA maps for TX buffers. */
2021 	for (i = 0; i < BGE_TX_RING_CNT; i++) {
2022 		if (sc->bge_cdata.bge_tx_dmamap[i])
2023 			bus_dmamap_destroy(sc->bge_cdata.bge_tx_mtag,
2024 			    sc->bge_cdata.bge_tx_dmamap[i]);
2025 	}
2026 
2027 	if (sc->bge_cdata.bge_rx_mtag)
2028 		bus_dma_tag_destroy(sc->bge_cdata.bge_rx_mtag);
2029 	if (sc->bge_cdata.bge_tx_mtag)
2030 		bus_dma_tag_destroy(sc->bge_cdata.bge_tx_mtag);
2031 
2032 
2033 	/* Destroy standard RX ring. */
2034 	if (sc->bge_cdata.bge_rx_std_ring_map)
2035 		bus_dmamap_unload(sc->bge_cdata.bge_rx_std_ring_tag,
2036 		    sc->bge_cdata.bge_rx_std_ring_map);
2037 	if (sc->bge_cdata.bge_rx_std_ring_map && sc->bge_ldata.bge_rx_std_ring)
2038 		bus_dmamem_free(sc->bge_cdata.bge_rx_std_ring_tag,
2039 		    sc->bge_ldata.bge_rx_std_ring,
2040 		    sc->bge_cdata.bge_rx_std_ring_map);
2041 
2042 	if (sc->bge_cdata.bge_rx_std_ring_tag)
2043 		bus_dma_tag_destroy(sc->bge_cdata.bge_rx_std_ring_tag);
2044 
2045 	/* Destroy jumbo RX ring. */
2046 	if (sc->bge_cdata.bge_rx_jumbo_ring_map)
2047 		bus_dmamap_unload(sc->bge_cdata.bge_rx_jumbo_ring_tag,
2048 		    sc->bge_cdata.bge_rx_jumbo_ring_map);
2049 
2050 	if (sc->bge_cdata.bge_rx_jumbo_ring_map &&
2051 	    sc->bge_ldata.bge_rx_jumbo_ring)
2052 		bus_dmamem_free(sc->bge_cdata.bge_rx_jumbo_ring_tag,
2053 		    sc->bge_ldata.bge_rx_jumbo_ring,
2054 		    sc->bge_cdata.bge_rx_jumbo_ring_map);
2055 
2056 	if (sc->bge_cdata.bge_rx_jumbo_ring_tag)
2057 		bus_dma_tag_destroy(sc->bge_cdata.bge_rx_jumbo_ring_tag);
2058 
2059 	/* Destroy RX return ring. */
2060 	if (sc->bge_cdata.bge_rx_return_ring_map)
2061 		bus_dmamap_unload(sc->bge_cdata.bge_rx_return_ring_tag,
2062 		    sc->bge_cdata.bge_rx_return_ring_map);
2063 
2064 	if (sc->bge_cdata.bge_rx_return_ring_map &&
2065 	    sc->bge_ldata.bge_rx_return_ring)
2066 		bus_dmamem_free(sc->bge_cdata.bge_rx_return_ring_tag,
2067 		    sc->bge_ldata.bge_rx_return_ring,
2068 		    sc->bge_cdata.bge_rx_return_ring_map);
2069 
2070 	if (sc->bge_cdata.bge_rx_return_ring_tag)
2071 		bus_dma_tag_destroy(sc->bge_cdata.bge_rx_return_ring_tag);
2072 
2073 	/* Destroy TX ring. */
2074 	if (sc->bge_cdata.bge_tx_ring_map)
2075 		bus_dmamap_unload(sc->bge_cdata.bge_tx_ring_tag,
2076 		    sc->bge_cdata.bge_tx_ring_map);
2077 
2078 	if (sc->bge_cdata.bge_tx_ring_map && sc->bge_ldata.bge_tx_ring)
2079 		bus_dmamem_free(sc->bge_cdata.bge_tx_ring_tag,
2080 		    sc->bge_ldata.bge_tx_ring,
2081 		    sc->bge_cdata.bge_tx_ring_map);
2082 
2083 	if (sc->bge_cdata.bge_tx_ring_tag)
2084 		bus_dma_tag_destroy(sc->bge_cdata.bge_tx_ring_tag);
2085 
2086 	/* Destroy status block. */
2087 	if (sc->bge_cdata.bge_status_map)
2088 		bus_dmamap_unload(sc->bge_cdata.bge_status_tag,
2089 		    sc->bge_cdata.bge_status_map);
2090 
2091 	if (sc->bge_cdata.bge_status_map && sc->bge_ldata.bge_status_block)
2092 		bus_dmamem_free(sc->bge_cdata.bge_status_tag,
2093 		    sc->bge_ldata.bge_status_block,
2094 		    sc->bge_cdata.bge_status_map);
2095 
2096 	if (sc->bge_cdata.bge_status_tag)
2097 		bus_dma_tag_destroy(sc->bge_cdata.bge_status_tag);
2098 
2099 	/* Destroy statistics block. */
2100 	if (sc->bge_cdata.bge_stats_map)
2101 		bus_dmamap_unload(sc->bge_cdata.bge_stats_tag,
2102 		    sc->bge_cdata.bge_stats_map);
2103 
2104 	if (sc->bge_cdata.bge_stats_map && sc->bge_ldata.bge_stats)
2105 		bus_dmamem_free(sc->bge_cdata.bge_stats_tag,
2106 		    sc->bge_ldata.bge_stats,
2107 		    sc->bge_cdata.bge_stats_map);
2108 
2109 	if (sc->bge_cdata.bge_stats_tag)
2110 		bus_dma_tag_destroy(sc->bge_cdata.bge_stats_tag);
2111 
2112 	/* Destroy the parent tag. */
2113 	if (sc->bge_cdata.bge_parent_tag)
2114 		bus_dma_tag_destroy(sc->bge_cdata.bge_parent_tag);
2115 }
2116 
2117 static int
2118 bge_dma_alloc(device_t dev)
2119 {
2120 	struct bge_dmamap_arg ctx;
2121 	struct bge_softc *sc;
2122 	bus_addr_t lowaddr;
2123 	bus_size_t sbsz, txsegsz, txmaxsegsz;
2124 	int i, error;
2125 
2126 	sc = device_get_softc(dev);
2127 
2128 	lowaddr = BUS_SPACE_MAXADDR;
2129 	if ((sc->bge_flags & BGE_FLAG_40BIT_BUG) != 0)
2130 		lowaddr = BGE_DMA_MAXADDR;
2131 	if ((sc->bge_flags & BGE_FLAG_4G_BNDRY_BUG) != 0)
2132 		lowaddr = BUS_SPACE_MAXADDR_32BIT;
2133 	/*
2134 	 * Allocate the parent bus DMA tag appropriate for PCI.
2135 	 */
2136 	error = bus_dma_tag_create(bus_get_dma_tag(sc->bge_dev),
2137 	    1, 0, lowaddr, BUS_SPACE_MAXADDR, NULL,
2138 	    NULL, BUS_SPACE_MAXSIZE_32BIT, 0, BUS_SPACE_MAXSIZE_32BIT,
2139 	    0, NULL, NULL, &sc->bge_cdata.bge_parent_tag);
2140 
2141 	if (error != 0) {
2142 		device_printf(sc->bge_dev,
2143 		    "could not allocate parent dma tag\n");
2144 		return (ENOMEM);
2145 	}
2146 
2147 	/*
2148 	 * Create tag for Tx mbufs.
2149 	 */
2150 	if (sc->bge_flags & BGE_FLAG_TSO) {
2151 		txsegsz = BGE_TSOSEG_SZ;
2152 		txmaxsegsz = 65535 + sizeof(struct ether_vlan_header);
2153 	} else {
2154 		txsegsz = MCLBYTES;
2155 		txmaxsegsz = MCLBYTES * BGE_NSEG_NEW;
2156 	}
2157 	error = bus_dma_tag_create(sc->bge_cdata.bge_parent_tag, 1,
2158 	    0, BUS_SPACE_MAXADDR, BUS_SPACE_MAXADDR, NULL, NULL,
2159 	    txmaxsegsz, BGE_NSEG_NEW, txsegsz, 0, NULL, NULL,
2160 	    &sc->bge_cdata.bge_tx_mtag);
2161 
2162 	if (error) {
2163 		device_printf(sc->bge_dev, "could not allocate TX dma tag\n");
2164 		return (ENOMEM);
2165 	}
2166 
2167 	/*
2168 	 * Create tag for Rx mbufs.
2169 	 */
2170 	error = bus_dma_tag_create(sc->bge_cdata.bge_parent_tag, 1, 0,
2171 	    BUS_SPACE_MAXADDR, BUS_SPACE_MAXADDR, NULL, NULL, MCLBYTES, 1,
2172 	    MCLBYTES, 0, NULL, NULL, &sc->bge_cdata.bge_rx_mtag);
2173 
2174 	if (error) {
2175 		device_printf(sc->bge_dev, "could not allocate RX dma tag\n");
2176 		return (ENOMEM);
2177 	}
2178 
2179 	/* Create DMA maps for RX buffers. */
2180 	error = bus_dmamap_create(sc->bge_cdata.bge_rx_mtag, 0,
2181 	    &sc->bge_cdata.bge_rx_std_sparemap);
2182 	if (error) {
2183 		device_printf(sc->bge_dev,
2184 		    "can't create spare DMA map for RX\n");
2185 		return (ENOMEM);
2186 	}
2187 	for (i = 0; i < BGE_STD_RX_RING_CNT; i++) {
2188 		error = bus_dmamap_create(sc->bge_cdata.bge_rx_mtag, 0,
2189 			    &sc->bge_cdata.bge_rx_std_dmamap[i]);
2190 		if (error) {
2191 			device_printf(sc->bge_dev,
2192 			    "can't create DMA map for RX\n");
2193 			return (ENOMEM);
2194 		}
2195 	}
2196 
2197 	/* Create DMA maps for TX buffers. */
2198 	for (i = 0; i < BGE_TX_RING_CNT; i++) {
2199 		error = bus_dmamap_create(sc->bge_cdata.bge_tx_mtag, 0,
2200 			    &sc->bge_cdata.bge_tx_dmamap[i]);
2201 		if (error) {
2202 			device_printf(sc->bge_dev,
2203 			    "can't create DMA map for TX\n");
2204 			return (ENOMEM);
2205 		}
2206 	}
2207 
2208 	/* Create tag for standard RX ring. */
2209 	error = bus_dma_tag_create(sc->bge_cdata.bge_parent_tag,
2210 	    PAGE_SIZE, 0, BUS_SPACE_MAXADDR, BUS_SPACE_MAXADDR, NULL,
2211 	    NULL, BGE_STD_RX_RING_SZ, 1, BGE_STD_RX_RING_SZ, 0,
2212 	    NULL, NULL, &sc->bge_cdata.bge_rx_std_ring_tag);
2213 
2214 	if (error) {
2215 		device_printf(sc->bge_dev, "could not allocate dma tag\n");
2216 		return (ENOMEM);
2217 	}
2218 
2219 	/* Allocate DMA'able memory for standard RX ring. */
2220 	error = bus_dmamem_alloc(sc->bge_cdata.bge_rx_std_ring_tag,
2221 	    (void **)&sc->bge_ldata.bge_rx_std_ring, BUS_DMA_NOWAIT,
2222 	    &sc->bge_cdata.bge_rx_std_ring_map);
2223 	if (error)
2224 		return (ENOMEM);
2225 
2226 	bzero((char *)sc->bge_ldata.bge_rx_std_ring, BGE_STD_RX_RING_SZ);
2227 
2228 	/* Load the address of the standard RX ring. */
2229 	ctx.bge_maxsegs = 1;
2230 	ctx.sc = sc;
2231 
2232 	error = bus_dmamap_load(sc->bge_cdata.bge_rx_std_ring_tag,
2233 	    sc->bge_cdata.bge_rx_std_ring_map, sc->bge_ldata.bge_rx_std_ring,
2234 	    BGE_STD_RX_RING_SZ, bge_dma_map_addr, &ctx, BUS_DMA_NOWAIT);
2235 
2236 	if (error)
2237 		return (ENOMEM);
2238 
2239 	sc->bge_ldata.bge_rx_std_ring_paddr = ctx.bge_busaddr;
2240 
2241 	/* Create tags for jumbo mbufs. */
2242 	if (BGE_IS_JUMBO_CAPABLE(sc)) {
2243 		error = bus_dma_tag_create(sc->bge_cdata.bge_parent_tag,
2244 		    1, 0, BUS_SPACE_MAXADDR, BUS_SPACE_MAXADDR, NULL,
2245 		    NULL, MJUM9BYTES, BGE_NSEG_JUMBO, PAGE_SIZE,
2246 		    0, NULL, NULL, &sc->bge_cdata.bge_mtag_jumbo);
2247 		if (error) {
2248 			device_printf(sc->bge_dev,
2249 			    "could not allocate jumbo dma tag\n");
2250 			return (ENOMEM);
2251 		}
2252 
2253 		/* Create tag for jumbo RX ring. */
2254 		error = bus_dma_tag_create(sc->bge_cdata.bge_parent_tag,
2255 		    PAGE_SIZE, 0, BUS_SPACE_MAXADDR, BUS_SPACE_MAXADDR, NULL,
2256 		    NULL, BGE_JUMBO_RX_RING_SZ, 1, BGE_JUMBO_RX_RING_SZ, 0,
2257 		    NULL, NULL, &sc->bge_cdata.bge_rx_jumbo_ring_tag);
2258 
2259 		if (error) {
2260 			device_printf(sc->bge_dev,
2261 			    "could not allocate jumbo ring dma tag\n");
2262 			return (ENOMEM);
2263 		}
2264 
2265 		/* Allocate DMA'able memory for jumbo RX ring. */
2266 		error = bus_dmamem_alloc(sc->bge_cdata.bge_rx_jumbo_ring_tag,
2267 		    (void **)&sc->bge_ldata.bge_rx_jumbo_ring,
2268 		    BUS_DMA_NOWAIT | BUS_DMA_ZERO,
2269 		    &sc->bge_cdata.bge_rx_jumbo_ring_map);
2270 		if (error)
2271 			return (ENOMEM);
2272 
2273 		/* Load the address of the jumbo RX ring. */
2274 		ctx.bge_maxsegs = 1;
2275 		ctx.sc = sc;
2276 
2277 		error = bus_dmamap_load(sc->bge_cdata.bge_rx_jumbo_ring_tag,
2278 		    sc->bge_cdata.bge_rx_jumbo_ring_map,
2279 		    sc->bge_ldata.bge_rx_jumbo_ring, BGE_JUMBO_RX_RING_SZ,
2280 		    bge_dma_map_addr, &ctx, BUS_DMA_NOWAIT);
2281 
2282 		if (error)
2283 			return (ENOMEM);
2284 
2285 		sc->bge_ldata.bge_rx_jumbo_ring_paddr = ctx.bge_busaddr;
2286 
2287 		/* Create DMA maps for jumbo RX buffers. */
2288 		error = bus_dmamap_create(sc->bge_cdata.bge_mtag_jumbo,
2289 		    0, &sc->bge_cdata.bge_rx_jumbo_sparemap);
2290 		if (error) {
2291 			device_printf(sc->bge_dev,
2292 			    "can't create spare DMA map for jumbo RX\n");
2293 			return (ENOMEM);
2294 		}
2295 		for (i = 0; i < BGE_JUMBO_RX_RING_CNT; i++) {
2296 			error = bus_dmamap_create(sc->bge_cdata.bge_mtag_jumbo,
2297 				    0, &sc->bge_cdata.bge_rx_jumbo_dmamap[i]);
2298 			if (error) {
2299 				device_printf(sc->bge_dev,
2300 				    "can't create DMA map for jumbo RX\n");
2301 				return (ENOMEM);
2302 			}
2303 		}
2304 
2305 	}
2306 
2307 	/* Create tag for RX return ring. */
2308 	error = bus_dma_tag_create(sc->bge_cdata.bge_parent_tag,
2309 	    PAGE_SIZE, 0, BUS_SPACE_MAXADDR, BUS_SPACE_MAXADDR, NULL,
2310 	    NULL, BGE_RX_RTN_RING_SZ(sc), 1, BGE_RX_RTN_RING_SZ(sc), 0,
2311 	    NULL, NULL, &sc->bge_cdata.bge_rx_return_ring_tag);
2312 
2313 	if (error) {
2314 		device_printf(sc->bge_dev, "could not allocate dma tag\n");
2315 		return (ENOMEM);
2316 	}
2317 
2318 	/* Allocate DMA'able memory for RX return ring. */
2319 	error = bus_dmamem_alloc(sc->bge_cdata.bge_rx_return_ring_tag,
2320 	    (void **)&sc->bge_ldata.bge_rx_return_ring, BUS_DMA_NOWAIT,
2321 	    &sc->bge_cdata.bge_rx_return_ring_map);
2322 	if (error)
2323 		return (ENOMEM);
2324 
2325 	bzero((char *)sc->bge_ldata.bge_rx_return_ring,
2326 	    BGE_RX_RTN_RING_SZ(sc));
2327 
2328 	/* Load the address of the RX return ring. */
2329 	ctx.bge_maxsegs = 1;
2330 	ctx.sc = sc;
2331 
2332 	error = bus_dmamap_load(sc->bge_cdata.bge_rx_return_ring_tag,
2333 	    sc->bge_cdata.bge_rx_return_ring_map,
2334 	    sc->bge_ldata.bge_rx_return_ring, BGE_RX_RTN_RING_SZ(sc),
2335 	    bge_dma_map_addr, &ctx, BUS_DMA_NOWAIT);
2336 
2337 	if (error)
2338 		return (ENOMEM);
2339 
2340 	sc->bge_ldata.bge_rx_return_ring_paddr = ctx.bge_busaddr;
2341 
2342 	/* Create tag for TX ring. */
2343 	error = bus_dma_tag_create(sc->bge_cdata.bge_parent_tag,
2344 	    PAGE_SIZE, 0, BUS_SPACE_MAXADDR, BUS_SPACE_MAXADDR, NULL,
2345 	    NULL, BGE_TX_RING_SZ, 1, BGE_TX_RING_SZ, 0, NULL, NULL,
2346 	    &sc->bge_cdata.bge_tx_ring_tag);
2347 
2348 	if (error) {
2349 		device_printf(sc->bge_dev, "could not allocate dma tag\n");
2350 		return (ENOMEM);
2351 	}
2352 
2353 	/* Allocate DMA'able memory for TX ring. */
2354 	error = bus_dmamem_alloc(sc->bge_cdata.bge_tx_ring_tag,
2355 	    (void **)&sc->bge_ldata.bge_tx_ring, BUS_DMA_NOWAIT,
2356 	    &sc->bge_cdata.bge_tx_ring_map);
2357 	if (error)
2358 		return (ENOMEM);
2359 
2360 	bzero((char *)sc->bge_ldata.bge_tx_ring, BGE_TX_RING_SZ);
2361 
2362 	/* Load the address of the TX ring. */
2363 	ctx.bge_maxsegs = 1;
2364 	ctx.sc = sc;
2365 
2366 	error = bus_dmamap_load(sc->bge_cdata.bge_tx_ring_tag,
2367 	    sc->bge_cdata.bge_tx_ring_map, sc->bge_ldata.bge_tx_ring,
2368 	    BGE_TX_RING_SZ, bge_dma_map_addr, &ctx, BUS_DMA_NOWAIT);
2369 
2370 	if (error)
2371 		return (ENOMEM);
2372 
2373 	sc->bge_ldata.bge_tx_ring_paddr = ctx.bge_busaddr;
2374 
2375 	/*
2376 	 * Create tag for status block.
2377 	 * Because we only use single Tx/Rx/Rx return ring, use
2378 	 * minimum status block size except BCM5700 AX/BX which
2379 	 * seems to want to see full status block size regardless
2380 	 * of configured number of ring.
2381 	 */
2382 	if (sc->bge_asicrev == BGE_ASICREV_BCM5700 &&
2383 	    sc->bge_chipid != BGE_CHIPID_BCM5700_C0)
2384 		sbsz = BGE_STATUS_BLK_SZ;
2385 	else
2386 		sbsz = 32;
2387 	error = bus_dma_tag_create(sc->bge_cdata.bge_parent_tag,
2388 	    PAGE_SIZE, 0, BUS_SPACE_MAXADDR, BUS_SPACE_MAXADDR, NULL,
2389 	    NULL, sbsz, 1, sbsz, 0, NULL, NULL, &sc->bge_cdata.bge_status_tag);
2390 
2391 	if (error) {
2392 		device_printf(sc->bge_dev,
2393 		    "could not allocate status dma tag\n");
2394 		return (ENOMEM);
2395 	}
2396 
2397 	/* Allocate DMA'able memory for status block. */
2398 	error = bus_dmamem_alloc(sc->bge_cdata.bge_status_tag,
2399 	    (void **)&sc->bge_ldata.bge_status_block, BUS_DMA_NOWAIT,
2400 	    &sc->bge_cdata.bge_status_map);
2401 	if (error)
2402 		return (ENOMEM);
2403 
2404 	bzero((char *)sc->bge_ldata.bge_status_block, sbsz);
2405 
2406 	/* Load the address of the status block. */
2407 	ctx.sc = sc;
2408 	ctx.bge_maxsegs = 1;
2409 
2410 	error = bus_dmamap_load(sc->bge_cdata.bge_status_tag,
2411 	    sc->bge_cdata.bge_status_map, sc->bge_ldata.bge_status_block,
2412 	    sbsz, bge_dma_map_addr, &ctx, BUS_DMA_NOWAIT);
2413 
2414 	if (error)
2415 		return (ENOMEM);
2416 
2417 	sc->bge_ldata.bge_status_block_paddr = ctx.bge_busaddr;
2418 
2419 	/* Create tag for statistics block. */
2420 	error = bus_dma_tag_create(sc->bge_cdata.bge_parent_tag,
2421 	    PAGE_SIZE, 0, BUS_SPACE_MAXADDR, BUS_SPACE_MAXADDR, NULL,
2422 	    NULL, BGE_STATS_SZ, 1, BGE_STATS_SZ, 0, NULL, NULL,
2423 	    &sc->bge_cdata.bge_stats_tag);
2424 
2425 	if (error) {
2426 		device_printf(sc->bge_dev, "could not allocate dma tag\n");
2427 		return (ENOMEM);
2428 	}
2429 
2430 	/* Allocate DMA'able memory for statistics block. */
2431 	error = bus_dmamem_alloc(sc->bge_cdata.bge_stats_tag,
2432 	    (void **)&sc->bge_ldata.bge_stats, BUS_DMA_NOWAIT,
2433 	    &sc->bge_cdata.bge_stats_map);
2434 	if (error)
2435 		return (ENOMEM);
2436 
2437 	bzero((char *)sc->bge_ldata.bge_stats, BGE_STATS_SZ);
2438 
2439 	/* Load the address of the statstics block. */
2440 	ctx.sc = sc;
2441 	ctx.bge_maxsegs = 1;
2442 
2443 	error = bus_dmamap_load(sc->bge_cdata.bge_stats_tag,
2444 	    sc->bge_cdata.bge_stats_map, sc->bge_ldata.bge_stats,
2445 	    BGE_STATS_SZ, bge_dma_map_addr, &ctx, BUS_DMA_NOWAIT);
2446 
2447 	if (error)
2448 		return (ENOMEM);
2449 
2450 	sc->bge_ldata.bge_stats_paddr = ctx.bge_busaddr;
2451 
2452 	return (0);
2453 }
2454 
2455 /*
2456  * Return true if this device has more than one port.
2457  */
2458 static int
2459 bge_has_multiple_ports(struct bge_softc *sc)
2460 {
2461 	device_t dev = sc->bge_dev;
2462 	u_int b, d, f, fscan, s;
2463 
2464 	d = pci_get_domain(dev);
2465 	b = pci_get_bus(dev);
2466 	s = pci_get_slot(dev);
2467 	f = pci_get_function(dev);
2468 	for (fscan = 0; fscan <= PCI_FUNCMAX; fscan++)
2469 		if (fscan != f && pci_find_dbsf(d, b, s, fscan) != NULL)
2470 			return (1);
2471 	return (0);
2472 }
2473 
2474 /*
2475  * Return true if MSI can be used with this device.
2476  */
2477 static int
2478 bge_can_use_msi(struct bge_softc *sc)
2479 {
2480 	int can_use_msi = 0;
2481 
2482 	switch (sc->bge_asicrev) {
2483 	case BGE_ASICREV_BCM5714_A0:
2484 	case BGE_ASICREV_BCM5714:
2485 		/*
2486 		 * Apparently, MSI doesn't work when these chips are
2487 		 * configured in single-port mode.
2488 		 */
2489 		if (bge_has_multiple_ports(sc))
2490 			can_use_msi = 1;
2491 		break;
2492 	case BGE_ASICREV_BCM5750:
2493 		if (sc->bge_chiprev != BGE_CHIPREV_5750_AX &&
2494 		    sc->bge_chiprev != BGE_CHIPREV_5750_BX)
2495 			can_use_msi = 1;
2496 		break;
2497 	default:
2498 		if (BGE_IS_575X_PLUS(sc))
2499 			can_use_msi = 1;
2500 	}
2501 	return (can_use_msi);
2502 }
2503 
2504 static int
2505 bge_attach(device_t dev)
2506 {
2507 	struct ifnet *ifp;
2508 	struct bge_softc *sc;
2509 	uint32_t hwcfg = 0, misccfg;
2510 	u_char eaddr[ETHER_ADDR_LEN];
2511 	int error, msicount, reg, rid, trys;
2512 
2513 	sc = device_get_softc(dev);
2514 	sc->bge_dev = dev;
2515 
2516 	TASK_INIT(&sc->bge_intr_task, 0, bge_intr_task, sc);
2517 
2518 	/*
2519 	 * Map control/status registers.
2520 	 */
2521 	pci_enable_busmaster(dev);
2522 
2523 	rid = BGE_PCI_BAR0;
2524 	sc->bge_res = bus_alloc_resource_any(dev, SYS_RES_MEMORY, &rid,
2525 	    RF_ACTIVE);
2526 
2527 	if (sc->bge_res == NULL) {
2528 		device_printf (sc->bge_dev, "couldn't map memory\n");
2529 		error = ENXIO;
2530 		goto fail;
2531 	}
2532 
2533 	/* Save various chip information. */
2534 	sc->bge_chipid =
2535 	    pci_read_config(dev, BGE_PCI_MISC_CTL, 4) >>
2536 	    BGE_PCIMISCCTL_ASICREV_SHIFT;
2537 	if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_USE_PRODID_REG)
2538 		sc->bge_chipid = pci_read_config(dev, BGE_PCI_PRODID_ASICREV,
2539 		    4);
2540 	sc->bge_asicrev = BGE_ASICREV(sc->bge_chipid);
2541 	sc->bge_chiprev = BGE_CHIPREV(sc->bge_chipid);
2542 
2543 	/*
2544 	 * Don't enable Ethernet@WireSpeed for the 5700, 5906, or the
2545 	 * 5705 A0 and A1 chips.
2546 	 */
2547 	if (sc->bge_asicrev != BGE_ASICREV_BCM5700 &&
2548 	    sc->bge_asicrev != BGE_ASICREV_BCM5906 &&
2549 	    sc->bge_chipid != BGE_CHIPID_BCM5705_A0 &&
2550 	    sc->bge_chipid != BGE_CHIPID_BCM5705_A1)
2551 		sc->bge_flags |= BGE_FLAG_WIRESPEED;
2552 
2553 	if (bge_has_eaddr(sc))
2554 		sc->bge_flags |= BGE_FLAG_EADDR;
2555 
2556 	/* Save chipset family. */
2557 	switch (sc->bge_asicrev) {
2558 	case BGE_ASICREV_BCM5755:
2559 	case BGE_ASICREV_BCM5761:
2560 	case BGE_ASICREV_BCM5784:
2561 	case BGE_ASICREV_BCM5785:
2562 	case BGE_ASICREV_BCM5787:
2563 	case BGE_ASICREV_BCM57780:
2564 		sc->bge_flags |= BGE_FLAG_5755_PLUS | BGE_FLAG_575X_PLUS |
2565 		    BGE_FLAG_5705_PLUS;
2566 		break;
2567 	case BGE_ASICREV_BCM5700:
2568 	case BGE_ASICREV_BCM5701:
2569 	case BGE_ASICREV_BCM5703:
2570 	case BGE_ASICREV_BCM5704:
2571 		sc->bge_flags |= BGE_FLAG_5700_FAMILY | BGE_FLAG_JUMBO;
2572 		break;
2573 	case BGE_ASICREV_BCM5714_A0:
2574 	case BGE_ASICREV_BCM5780:
2575 	case BGE_ASICREV_BCM5714:
2576 		sc->bge_flags |= BGE_FLAG_5714_FAMILY /* | BGE_FLAG_JUMBO */;
2577 		/* FALLTHROUGH */
2578 	case BGE_ASICREV_BCM5750:
2579 	case BGE_ASICREV_BCM5752:
2580 	case BGE_ASICREV_BCM5906:
2581 		sc->bge_flags |= BGE_FLAG_575X_PLUS;
2582 		/* FALLTHROUGH */
2583 	case BGE_ASICREV_BCM5705:
2584 		sc->bge_flags |= BGE_FLAG_5705_PLUS;
2585 		break;
2586 	}
2587 
2588 	/* Set various bug flags. */
2589 	if (sc->bge_chipid == BGE_CHIPID_BCM5701_A0 ||
2590 	    sc->bge_chipid == BGE_CHIPID_BCM5701_B0)
2591 		sc->bge_flags |= BGE_FLAG_CRC_BUG;
2592 	if (sc->bge_chiprev == BGE_CHIPREV_5703_AX ||
2593 	    sc->bge_chiprev == BGE_CHIPREV_5704_AX)
2594 		sc->bge_flags |= BGE_FLAG_ADC_BUG;
2595 	if (sc->bge_chipid == BGE_CHIPID_BCM5704_A0)
2596 		sc->bge_flags |= BGE_FLAG_5704_A0_BUG;
2597 	if (BGE_IS_5705_PLUS(sc) &&
2598 	    !(sc->bge_flags & BGE_FLAG_ADJUST_TRIM)) {
2599 		if (sc->bge_asicrev == BGE_ASICREV_BCM5755 ||
2600 		    sc->bge_asicrev == BGE_ASICREV_BCM5761 ||
2601 		    sc->bge_asicrev == BGE_ASICREV_BCM5784 ||
2602 		    sc->bge_asicrev == BGE_ASICREV_BCM5787) {
2603 			if (sc->bge_chipid != BGE_CHIPID_BCM5722_A0)
2604 				sc->bge_flags |= BGE_FLAG_JITTER_BUG;
2605 		} else if (sc->bge_asicrev != BGE_ASICREV_BCM5906)
2606 			sc->bge_flags |= BGE_FLAG_BER_BUG;
2607 	}
2608 
2609 	/*
2610 	 * All controllers that are not 5755 or higher have 4GB
2611 	 * boundary DMA bug.
2612 	 * Whenever an address crosses a multiple of the 4GB boundary
2613 	 * (including 4GB, 8Gb, 12Gb, etc.) and makes the transition
2614 	 * from 0xX_FFFF_FFFF to 0x(X+1)_0000_0000 an internal DMA
2615 	 * state machine will lockup and cause the device to hang.
2616 	 */
2617 	if (BGE_IS_5755_PLUS(sc) == 0)
2618 		sc->bge_flags |= BGE_FLAG_4G_BNDRY_BUG;
2619 
2620 	/*
2621 	 * We could possibly check for BCOM_DEVICEID_BCM5788 in bge_probe()
2622 	 * but I do not know the DEVICEID for the 5788M.
2623 	 */
2624 	misccfg = CSR_READ_4(sc, BGE_MISC_CFG) & BGE_MISCCFG_BOARD_ID;
2625 	if (misccfg == BGE_MISCCFG_BOARD_ID_5788 ||
2626 	    misccfg == BGE_MISCCFG_BOARD_ID_5788M)
2627 		sc->bge_flags |= BGE_FLAG_5788;
2628 
2629 	/*
2630 	 * Some controllers seem to require a special firmware to use
2631 	 * TSO. But the firmware is not available to FreeBSD and Linux
2632 	 * claims that the TSO performed by the firmware is slower than
2633 	 * hardware based TSO. Moreover the firmware based TSO has one
2634 	 * known bug which can't handle TSO if ethernet header + IP/TCP
2635 	 * header is greater than 80 bytes. The workaround for the TSO
2636 	 * bug exist but it seems it's too expensive than not using
2637 	 * TSO at all. Some hardwares also have the TSO bug so limit
2638 	 * the TSO to the controllers that are not affected TSO issues
2639 	 * (e.g. 5755 or higher).
2640 	 */
2641 	if (BGE_IS_5755_PLUS(sc))
2642 		sc->bge_flags |= BGE_FLAG_TSO;
2643 
2644   	/*
2645 	 * Check if this is a PCI-X or PCI Express device.
2646   	 */
2647 	if (pci_find_extcap(dev, PCIY_EXPRESS, &reg) == 0) {
2648 		/*
2649 		 * Found a PCI Express capabilities register, this
2650 		 * must be a PCI Express device.
2651 		 */
2652 		sc->bge_flags |= BGE_FLAG_PCIE;
2653 		sc->bge_expcap = reg;
2654 		bge_set_max_readrq(sc);
2655 	} else {
2656 		/*
2657 		 * Check if the device is in PCI-X Mode.
2658 		 * (This bit is not valid on PCI Express controllers.)
2659 		 */
2660 		if (pci_find_extcap(dev, PCIY_PCIX, &reg) == 0)
2661 			sc->bge_pcixcap = reg;
2662 		if ((pci_read_config(dev, BGE_PCI_PCISTATE, 4) &
2663 		    BGE_PCISTATE_PCI_BUSMODE) == 0)
2664 			sc->bge_flags |= BGE_FLAG_PCIX;
2665 	}
2666 
2667 	/*
2668 	 * The 40bit DMA bug applies to the 5714/5715 controllers and is
2669 	 * not actually a MAC controller bug but an issue with the embedded
2670 	 * PCIe to PCI-X bridge in the device. Use 40bit DMA workaround.
2671 	 */
2672 	if (BGE_IS_5714_FAMILY(sc) && (sc->bge_flags & BGE_FLAG_PCIX))
2673 		sc->bge_flags |= BGE_FLAG_40BIT_BUG;
2674 	/*
2675 	 * Allocate the interrupt, using MSI if possible.  These devices
2676 	 * support 8 MSI messages, but only the first one is used in
2677 	 * normal operation.
2678 	 */
2679 	rid = 0;
2680 	if (pci_find_extcap(sc->bge_dev, PCIY_MSI, &reg) == 0) {
2681 		sc->bge_msicap = reg;
2682 		if (bge_can_use_msi(sc)) {
2683 			msicount = pci_msi_count(dev);
2684 			if (msicount > 1)
2685 				msicount = 1;
2686 		} else
2687 			msicount = 0;
2688 		if (msicount == 1 && pci_alloc_msi(dev, &msicount) == 0) {
2689 			rid = 1;
2690 			sc->bge_flags |= BGE_FLAG_MSI;
2691 		}
2692 	}
2693 
2694 	sc->bge_irq = bus_alloc_resource_any(dev, SYS_RES_IRQ, &rid,
2695 	    RF_SHAREABLE | RF_ACTIVE);
2696 
2697 	if (sc->bge_irq == NULL) {
2698 		device_printf(sc->bge_dev, "couldn't map interrupt\n");
2699 		error = ENXIO;
2700 		goto fail;
2701 	}
2702 
2703 	if (bootverbose)
2704 		device_printf(dev,
2705 		    "CHIP ID 0x%08x; ASIC REV 0x%02x; CHIP REV 0x%02x; %s\n",
2706 		    sc->bge_chipid, sc->bge_asicrev, sc->bge_chiprev,
2707 		    (sc->bge_flags & BGE_FLAG_PCIX) ? "PCI-X" :
2708 		    ((sc->bge_flags & BGE_FLAG_PCIE) ? "PCI-E" : "PCI"));
2709 
2710 	BGE_LOCK_INIT(sc, device_get_nameunit(dev));
2711 
2712 	/* Try to reset the chip. */
2713 	if (bge_reset(sc)) {
2714 		device_printf(sc->bge_dev, "chip reset failed\n");
2715 		error = ENXIO;
2716 		goto fail;
2717 	}
2718 
2719 	sc->bge_asf_mode = 0;
2720 	if (bge_allow_asf && (bge_readmem_ind(sc, BGE_SOFTWARE_GENCOMM_SIG)
2721 	    == BGE_MAGIC_NUMBER)) {
2722 		if (bge_readmem_ind(sc, BGE_SOFTWARE_GENCOMM_NICCFG)
2723 		    & BGE_HWCFG_ASF) {
2724 			sc->bge_asf_mode |= ASF_ENABLE;
2725 			sc->bge_asf_mode |= ASF_STACKUP;
2726 			if (sc->bge_asicrev == BGE_ASICREV_BCM5750) {
2727 				sc->bge_asf_mode |= ASF_NEW_HANDSHAKE;
2728 			}
2729 		}
2730 	}
2731 
2732 	/* Try to reset the chip again the nice way. */
2733 	bge_stop_fw(sc);
2734 	bge_sig_pre_reset(sc, BGE_RESET_STOP);
2735 	if (bge_reset(sc)) {
2736 		device_printf(sc->bge_dev, "chip reset failed\n");
2737 		error = ENXIO;
2738 		goto fail;
2739 	}
2740 
2741 	bge_sig_legacy(sc, BGE_RESET_STOP);
2742 	bge_sig_post_reset(sc, BGE_RESET_STOP);
2743 
2744 	if (bge_chipinit(sc)) {
2745 		device_printf(sc->bge_dev, "chip initialization failed\n");
2746 		error = ENXIO;
2747 		goto fail;
2748 	}
2749 
2750 	error = bge_get_eaddr(sc, eaddr);
2751 	if (error) {
2752 		device_printf(sc->bge_dev,
2753 		    "failed to read station address\n");
2754 		error = ENXIO;
2755 		goto fail;
2756 	}
2757 
2758 	/* 5705 limits RX return ring to 512 entries. */
2759 	if (BGE_IS_5705_PLUS(sc))
2760 		sc->bge_return_ring_cnt = BGE_RETURN_RING_CNT_5705;
2761 	else
2762 		sc->bge_return_ring_cnt = BGE_RETURN_RING_CNT;
2763 
2764 	if (bge_dma_alloc(dev)) {
2765 		device_printf(sc->bge_dev,
2766 		    "failed to allocate DMA resources\n");
2767 		error = ENXIO;
2768 		goto fail;
2769 	}
2770 
2771 	/* Set default tuneable values. */
2772 	sc->bge_stat_ticks = BGE_TICKS_PER_SEC;
2773 	sc->bge_rx_coal_ticks = 150;
2774 	sc->bge_tx_coal_ticks = 150;
2775 	sc->bge_rx_max_coal_bds = 10;
2776 	sc->bge_tx_max_coal_bds = 10;
2777 
2778 	/* Set up ifnet structure */
2779 	ifp = sc->bge_ifp = if_alloc(IFT_ETHER);
2780 	if (ifp == NULL) {
2781 		device_printf(sc->bge_dev, "failed to if_alloc()\n");
2782 		error = ENXIO;
2783 		goto fail;
2784 	}
2785 	ifp->if_softc = sc;
2786 	if_initname(ifp, device_get_name(dev), device_get_unit(dev));
2787 	ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
2788 	ifp->if_ioctl = bge_ioctl;
2789 	ifp->if_start = bge_start;
2790 	ifp->if_init = bge_init;
2791 	ifp->if_snd.ifq_drv_maxlen = BGE_TX_RING_CNT - 1;
2792 	IFQ_SET_MAXLEN(&ifp->if_snd, ifp->if_snd.ifq_drv_maxlen);
2793 	IFQ_SET_READY(&ifp->if_snd);
2794 	ifp->if_hwassist = BGE_CSUM_FEATURES;
2795 	ifp->if_capabilities = IFCAP_HWCSUM | IFCAP_VLAN_HWTAGGING |
2796 	    IFCAP_VLAN_MTU;
2797 	if ((sc->bge_flags & BGE_FLAG_TSO) != 0) {
2798 		ifp->if_hwassist |= CSUM_TSO;
2799 		ifp->if_capabilities |= IFCAP_TSO4;
2800 	}
2801 #ifdef IFCAP_VLAN_HWCSUM
2802 	ifp->if_capabilities |= IFCAP_VLAN_HWCSUM;
2803 #endif
2804 	ifp->if_capenable = ifp->if_capabilities;
2805 #ifdef DEVICE_POLLING
2806 	ifp->if_capabilities |= IFCAP_POLLING;
2807 #endif
2808 
2809 	/*
2810 	 * 5700 B0 chips do not support checksumming correctly due
2811 	 * to hardware bugs.
2812 	 */
2813 	if (sc->bge_chipid == BGE_CHIPID_BCM5700_B0) {
2814 		ifp->if_capabilities &= ~IFCAP_HWCSUM;
2815 		ifp->if_capenable &= ~IFCAP_HWCSUM;
2816 		ifp->if_hwassist = 0;
2817 	}
2818 
2819 	/*
2820 	 * Figure out what sort of media we have by checking the
2821 	 * hardware config word in the first 32k of NIC internal memory,
2822 	 * or fall back to examining the EEPROM if necessary.
2823 	 * Note: on some BCM5700 cards, this value appears to be unset.
2824 	 * If that's the case, we have to rely on identifying the NIC
2825 	 * by its PCI subsystem ID, as we do below for the SysKonnect
2826 	 * SK-9D41.
2827 	 */
2828 	if (bge_readmem_ind(sc, BGE_SOFTWARE_GENCOMM_SIG) == BGE_MAGIC_NUMBER)
2829 		hwcfg = bge_readmem_ind(sc, BGE_SOFTWARE_GENCOMM_NICCFG);
2830 	else if ((sc->bge_flags & BGE_FLAG_EADDR) &&
2831 	    (sc->bge_asicrev != BGE_ASICREV_BCM5906)) {
2832 		if (bge_read_eeprom(sc, (caddr_t)&hwcfg, BGE_EE_HWCFG_OFFSET,
2833 		    sizeof(hwcfg))) {
2834 			device_printf(sc->bge_dev, "failed to read EEPROM\n");
2835 			error = ENXIO;
2836 			goto fail;
2837 		}
2838 		hwcfg = ntohl(hwcfg);
2839 	}
2840 
2841 	if ((hwcfg & BGE_HWCFG_MEDIA) == BGE_MEDIA_FIBER)
2842 		sc->bge_flags |= BGE_FLAG_TBI;
2843 
2844 	/* The SysKonnect SK-9D41 is a 1000baseSX card. */
2845 	if ((pci_read_config(dev, BGE_PCI_SUBSYS, 4) >> 16) == SK_SUBSYSID_9D41)
2846 		sc->bge_flags |= BGE_FLAG_TBI;
2847 
2848 	if (sc->bge_flags & BGE_FLAG_TBI) {
2849 		ifmedia_init(&sc->bge_ifmedia, IFM_IMASK, bge_ifmedia_upd,
2850 		    bge_ifmedia_sts);
2851 		ifmedia_add(&sc->bge_ifmedia, IFM_ETHER | IFM_1000_SX, 0, NULL);
2852 		ifmedia_add(&sc->bge_ifmedia, IFM_ETHER | IFM_1000_SX | IFM_FDX,
2853 		    0, NULL);
2854 		ifmedia_add(&sc->bge_ifmedia, IFM_ETHER | IFM_AUTO, 0, NULL);
2855 		ifmedia_set(&sc->bge_ifmedia, IFM_ETHER | IFM_AUTO);
2856 		sc->bge_ifmedia.ifm_media = sc->bge_ifmedia.ifm_cur->ifm_media;
2857 	} else {
2858 		/*
2859 		 * Do transceiver setup and tell the firmware the
2860 		 * driver is down so we can try to get access the
2861 		 * probe if ASF is running.  Retry a couple of times
2862 		 * if we get a conflict with the ASF firmware accessing
2863 		 * the PHY.
2864 		 */
2865 		trys = 0;
2866 		BGE_CLRBIT(sc, BGE_MODE_CTL, BGE_MODECTL_STACKUP);
2867 again:
2868 		bge_asf_driver_up(sc);
2869 
2870 		if (mii_phy_probe(dev, &sc->bge_miibus,
2871 		    bge_ifmedia_upd, bge_ifmedia_sts)) {
2872 			if (trys++ < 4) {
2873 				device_printf(sc->bge_dev, "Try again\n");
2874 				bge_miibus_writereg(sc->bge_dev, 1, MII_BMCR,
2875 				    BMCR_RESET);
2876 				goto again;
2877 			}
2878 
2879 			device_printf(sc->bge_dev, "MII without any PHY!\n");
2880 			error = ENXIO;
2881 			goto fail;
2882 		}
2883 
2884 		/*
2885 		 * Now tell the firmware we are going up after probing the PHY
2886 		 */
2887 		if (sc->bge_asf_mode & ASF_STACKUP)
2888 			BGE_SETBIT(sc, BGE_MODE_CTL, BGE_MODECTL_STACKUP);
2889 	}
2890 
2891 	/*
2892 	 * When using the BCM5701 in PCI-X mode, data corruption has
2893 	 * been observed in the first few bytes of some received packets.
2894 	 * Aligning the packet buffer in memory eliminates the corruption.
2895 	 * Unfortunately, this misaligns the packet payloads.  On platforms
2896 	 * which do not support unaligned accesses, we will realign the
2897 	 * payloads by copying the received packets.
2898 	 */
2899 	if (sc->bge_asicrev == BGE_ASICREV_BCM5701 &&
2900 	    sc->bge_flags & BGE_FLAG_PCIX)
2901                 sc->bge_flags |= BGE_FLAG_RX_ALIGNBUG;
2902 
2903 	/*
2904 	 * Call MI attach routine.
2905 	 */
2906 	ether_ifattach(ifp, eaddr);
2907 	callout_init_mtx(&sc->bge_stat_ch, &sc->bge_mtx, 0);
2908 
2909 	/* Tell upper layer we support long frames. */
2910 	ifp->if_data.ifi_hdrlen = sizeof(struct ether_vlan_header);
2911 
2912 	/*
2913 	 * Hookup IRQ last.
2914 	 */
2915 #if __FreeBSD_version > 700030
2916 	if (BGE_IS_5755_PLUS(sc) && sc->bge_flags & BGE_FLAG_MSI) {
2917 		/* Take advantage of single-shot MSI. */
2918 		CSR_WRITE_4(sc, BGE_MSI_MODE, CSR_READ_4(sc, BGE_MSI_MODE) &
2919 		    ~BGE_MSIMODE_ONE_SHOT_DISABLE);
2920 		sc->bge_tq = taskqueue_create_fast("bge_taskq", M_WAITOK,
2921 		    taskqueue_thread_enqueue, &sc->bge_tq);
2922 		if (sc->bge_tq == NULL) {
2923 			device_printf(dev, "could not create taskqueue.\n");
2924 			ether_ifdetach(ifp);
2925 			error = ENXIO;
2926 			goto fail;
2927 		}
2928 		taskqueue_start_threads(&sc->bge_tq, 1, PI_NET, "%s taskq",
2929 		    device_get_nameunit(sc->bge_dev));
2930 		error = bus_setup_intr(dev, sc->bge_irq,
2931 		    INTR_TYPE_NET | INTR_MPSAFE, bge_msi_intr, NULL, sc,
2932 		    &sc->bge_intrhand);
2933 		if (error)
2934 			ether_ifdetach(ifp);
2935 	} else
2936 		error = bus_setup_intr(dev, sc->bge_irq,
2937 		    INTR_TYPE_NET | INTR_MPSAFE, NULL, bge_intr, sc,
2938 		    &sc->bge_intrhand);
2939 #else
2940 	error = bus_setup_intr(dev, sc->bge_irq, INTR_TYPE_NET | INTR_MPSAFE,
2941 	   bge_intr, sc, &sc->bge_intrhand);
2942 #endif
2943 
2944 	if (error) {
2945 		bge_detach(dev);
2946 		device_printf(sc->bge_dev, "couldn't set up irq\n");
2947 	}
2948 
2949 	bge_add_sysctls(sc);
2950 
2951 	return (0);
2952 
2953 fail:
2954 	bge_release_resources(sc);
2955 
2956 	return (error);
2957 }
2958 
2959 static int
2960 bge_detach(device_t dev)
2961 {
2962 	struct bge_softc *sc;
2963 	struct ifnet *ifp;
2964 
2965 	sc = device_get_softc(dev);
2966 	ifp = sc->bge_ifp;
2967 
2968 #ifdef DEVICE_POLLING
2969 	if (ifp->if_capenable & IFCAP_POLLING)
2970 		ether_poll_deregister(ifp);
2971 #endif
2972 
2973 	BGE_LOCK(sc);
2974 	bge_stop(sc);
2975 	bge_reset(sc);
2976 	BGE_UNLOCK(sc);
2977 
2978 	callout_drain(&sc->bge_stat_ch);
2979 
2980 	if (sc->bge_tq)
2981 		taskqueue_drain(sc->bge_tq, &sc->bge_intr_task);
2982 	ether_ifdetach(ifp);
2983 
2984 	if (sc->bge_flags & BGE_FLAG_TBI) {
2985 		ifmedia_removeall(&sc->bge_ifmedia);
2986 	} else {
2987 		bus_generic_detach(dev);
2988 		device_delete_child(dev, sc->bge_miibus);
2989 	}
2990 
2991 	bge_release_resources(sc);
2992 
2993 	return (0);
2994 }
2995 
2996 static void
2997 bge_release_resources(struct bge_softc *sc)
2998 {
2999 	device_t dev;
3000 
3001 	dev = sc->bge_dev;
3002 
3003 	if (sc->bge_tq != NULL)
3004 		taskqueue_free(sc->bge_tq);
3005 
3006 	if (sc->bge_intrhand != NULL)
3007 		bus_teardown_intr(dev, sc->bge_irq, sc->bge_intrhand);
3008 
3009 	if (sc->bge_irq != NULL)
3010 		bus_release_resource(dev, SYS_RES_IRQ,
3011 		    sc->bge_flags & BGE_FLAG_MSI ? 1 : 0, sc->bge_irq);
3012 
3013 	if (sc->bge_flags & BGE_FLAG_MSI)
3014 		pci_release_msi(dev);
3015 
3016 	if (sc->bge_res != NULL)
3017 		bus_release_resource(dev, SYS_RES_MEMORY,
3018 		    BGE_PCI_BAR0, sc->bge_res);
3019 
3020 	if (sc->bge_ifp != NULL)
3021 		if_free(sc->bge_ifp);
3022 
3023 	bge_dma_free(sc);
3024 
3025 	if (mtx_initialized(&sc->bge_mtx))	/* XXX */
3026 		BGE_LOCK_DESTROY(sc);
3027 }
3028 
3029 static int
3030 bge_reset(struct bge_softc *sc)
3031 {
3032 	device_t dev;
3033 	uint32_t cachesize, command, pcistate, reset, val;
3034 	void (*write_op)(struct bge_softc *, int, int);
3035 	uint16_t devctl;
3036 	int i;
3037 
3038 	dev = sc->bge_dev;
3039 
3040 	if (BGE_IS_575X_PLUS(sc) && !BGE_IS_5714_FAMILY(sc) &&
3041 	    (sc->bge_asicrev != BGE_ASICREV_BCM5906)) {
3042 		if (sc->bge_flags & BGE_FLAG_PCIE)
3043 			write_op = bge_writemem_direct;
3044 		else
3045 			write_op = bge_writemem_ind;
3046 	} else
3047 		write_op = bge_writereg_ind;
3048 
3049 	/* Save some important PCI state. */
3050 	cachesize = pci_read_config(dev, BGE_PCI_CACHESZ, 4);
3051 	command = pci_read_config(dev, BGE_PCI_CMD, 4);
3052 	pcistate = pci_read_config(dev, BGE_PCI_PCISTATE, 4);
3053 
3054 	pci_write_config(dev, BGE_PCI_MISC_CTL,
3055 	    BGE_PCIMISCCTL_INDIRECT_ACCESS | BGE_PCIMISCCTL_MASK_PCI_INTR |
3056 	    BGE_HIF_SWAP_OPTIONS | BGE_PCIMISCCTL_PCISTATE_RW, 4);
3057 
3058 	/* Disable fastboot on controllers that support it. */
3059 	if (sc->bge_asicrev == BGE_ASICREV_BCM5752 ||
3060 	    BGE_IS_5755_PLUS(sc)) {
3061 		if (bootverbose)
3062 			device_printf(sc->bge_dev, "Disabling fastboot\n");
3063 		CSR_WRITE_4(sc, BGE_FASTBOOT_PC, 0x0);
3064 	}
3065 
3066 	/*
3067 	 * Write the magic number to SRAM at offset 0xB50.
3068 	 * When firmware finishes its initialization it will
3069 	 * write ~BGE_MAGIC_NUMBER to the same location.
3070 	 */
3071 	bge_writemem_ind(sc, BGE_SOFTWARE_GENCOMM, BGE_MAGIC_NUMBER);
3072 
3073 	reset = BGE_MISCCFG_RESET_CORE_CLOCKS | BGE_32BITTIME_66MHZ;
3074 
3075 	/* XXX: Broadcom Linux driver. */
3076 	if (sc->bge_flags & BGE_FLAG_PCIE) {
3077 		if (CSR_READ_4(sc, 0x7E2C) == 0x60)	/* PCIE 1.0 */
3078 			CSR_WRITE_4(sc, 0x7E2C, 0x20);
3079 		if (sc->bge_chipid != BGE_CHIPID_BCM5750_A0) {
3080 			/* Prevent PCIE link training during global reset */
3081 			CSR_WRITE_4(sc, BGE_MISC_CFG, 1 << 29);
3082 			reset |= 1 << 29;
3083 		}
3084 	}
3085 
3086 	/*
3087 	 * Set GPHY Power Down Override to leave GPHY
3088 	 * powered up in D0 uninitialized.
3089 	 */
3090 	if (BGE_IS_5705_PLUS(sc))
3091 		reset |= 0x04000000;
3092 
3093 	/* Issue global reset */
3094 	write_op(sc, BGE_MISC_CFG, reset);
3095 
3096 	if (sc->bge_asicrev == BGE_ASICREV_BCM5906) {
3097 		val = CSR_READ_4(sc, BGE_VCPU_STATUS);
3098 		CSR_WRITE_4(sc, BGE_VCPU_STATUS,
3099 		    val | BGE_VCPU_STATUS_DRV_RESET);
3100 		val = CSR_READ_4(sc, BGE_VCPU_EXT_CTRL);
3101 		CSR_WRITE_4(sc, BGE_VCPU_EXT_CTRL,
3102 		    val & ~BGE_VCPU_EXT_CTRL_HALT_CPU);
3103 	}
3104 
3105 	DELAY(1000);
3106 
3107 	/* XXX: Broadcom Linux driver. */
3108 	if (sc->bge_flags & BGE_FLAG_PCIE) {
3109 		if (sc->bge_chipid == BGE_CHIPID_BCM5750_A0) {
3110 			DELAY(500000); /* wait for link training to complete */
3111 			val = pci_read_config(dev, 0xC4, 4);
3112 			pci_write_config(dev, 0xC4, val | (1 << 15), 4);
3113 		}
3114 		devctl = pci_read_config(dev,
3115 		    sc->bge_expcap + PCIR_EXPRESS_DEVICE_CTL, 2);
3116 		/* Clear enable no snoop and disable relaxed ordering. */
3117 		devctl &= ~(0x0010 | 0x0800);
3118 		/* Set PCIE max payload size to 128. */
3119 		devctl &= ~PCIM_EXP_CTL_MAX_PAYLOAD;
3120 		pci_write_config(dev, sc->bge_expcap + PCIR_EXPRESS_DEVICE_CTL,
3121 		    devctl, 2);
3122 		/* Clear error status. */
3123 		pci_write_config(dev, sc->bge_expcap + PCIR_EXPRESS_DEVICE_STA,
3124 		    0, 2);
3125 	}
3126 
3127 	/* Reset some of the PCI state that got zapped by reset. */
3128 	pci_write_config(dev, BGE_PCI_MISC_CTL,
3129 	    BGE_PCIMISCCTL_INDIRECT_ACCESS | BGE_PCIMISCCTL_MASK_PCI_INTR |
3130 	    BGE_HIF_SWAP_OPTIONS | BGE_PCIMISCCTL_PCISTATE_RW, 4);
3131 	pci_write_config(dev, BGE_PCI_CACHESZ, cachesize, 4);
3132 	pci_write_config(dev, BGE_PCI_CMD, command, 4);
3133 	write_op(sc, BGE_MISC_CFG, BGE_32BITTIME_66MHZ);
3134 
3135 	/* Re-enable MSI, if neccesary, and enable the memory arbiter. */
3136 	if (BGE_IS_5714_FAMILY(sc)) {
3137 		/* This chip disables MSI on reset. */
3138 		if (sc->bge_flags & BGE_FLAG_MSI) {
3139 			val = pci_read_config(dev,
3140 			    sc->bge_msicap + PCIR_MSI_CTRL, 2);
3141 			pci_write_config(dev,
3142 			    sc->bge_msicap + PCIR_MSI_CTRL,
3143 			    val | PCIM_MSICTRL_MSI_ENABLE, 2);
3144 			val = CSR_READ_4(sc, BGE_MSI_MODE);
3145 			CSR_WRITE_4(sc, BGE_MSI_MODE,
3146 			    val | BGE_MSIMODE_ENABLE);
3147 		}
3148 		val = CSR_READ_4(sc, BGE_MARB_MODE);
3149 		CSR_WRITE_4(sc, BGE_MARB_MODE, BGE_MARBMODE_ENABLE | val);
3150 	} else
3151 		CSR_WRITE_4(sc, BGE_MARB_MODE, BGE_MARBMODE_ENABLE);
3152 
3153 	if (sc->bge_asicrev == BGE_ASICREV_BCM5906) {
3154 		for (i = 0; i < BGE_TIMEOUT; i++) {
3155 			val = CSR_READ_4(sc, BGE_VCPU_STATUS);
3156 			if (val & BGE_VCPU_STATUS_INIT_DONE)
3157 				break;
3158 			DELAY(100);
3159 		}
3160 		if (i == BGE_TIMEOUT) {
3161 			device_printf(sc->bge_dev, "reset timed out\n");
3162 			return (1);
3163 		}
3164 	} else {
3165 		/*
3166 		 * Poll until we see the 1's complement of the magic number.
3167 		 * This indicates that the firmware initialization is complete.
3168 		 * We expect this to fail if no chip containing the Ethernet
3169 		 * address is fitted though.
3170 		 */
3171 		for (i = 0; i < BGE_TIMEOUT; i++) {
3172 			DELAY(10);
3173 			val = bge_readmem_ind(sc, BGE_SOFTWARE_GENCOMM);
3174 			if (val == ~BGE_MAGIC_NUMBER)
3175 				break;
3176 		}
3177 
3178 		if ((sc->bge_flags & BGE_FLAG_EADDR) && i == BGE_TIMEOUT)
3179 			device_printf(sc->bge_dev, "firmware handshake timed out, "
3180 			    "found 0x%08x\n", val);
3181 	}
3182 
3183 	/*
3184 	 * XXX Wait for the value of the PCISTATE register to
3185 	 * return to its original pre-reset state. This is a
3186 	 * fairly good indicator of reset completion. If we don't
3187 	 * wait for the reset to fully complete, trying to read
3188 	 * from the device's non-PCI registers may yield garbage
3189 	 * results.
3190 	 */
3191 	for (i = 0; i < BGE_TIMEOUT; i++) {
3192 		if (pci_read_config(dev, BGE_PCI_PCISTATE, 4) == pcistate)
3193 			break;
3194 		DELAY(10);
3195 	}
3196 
3197 	if (sc->bge_flags & BGE_FLAG_PCIE) {
3198 		reset = bge_readmem_ind(sc, 0x7C00);
3199 		bge_writemem_ind(sc, 0x7C00, reset | (1 << 25));
3200 	}
3201 
3202 	/* Fix up byte swapping. */
3203 	CSR_WRITE_4(sc, BGE_MODE_CTL, BGE_DMA_SWAP_OPTIONS |
3204 	    BGE_MODECTL_BYTESWAP_DATA);
3205 
3206 	/* Tell the ASF firmware we are up */
3207 	if (sc->bge_asf_mode & ASF_STACKUP)
3208 		BGE_SETBIT(sc, BGE_MODE_CTL, BGE_MODECTL_STACKUP);
3209 
3210 	CSR_WRITE_4(sc, BGE_MAC_MODE, 0);
3211 
3212 	/*
3213 	 * The 5704 in TBI mode apparently needs some special
3214 	 * adjustment to insure the SERDES drive level is set
3215 	 * to 1.2V.
3216 	 */
3217 	if (sc->bge_asicrev == BGE_ASICREV_BCM5704 &&
3218 	    sc->bge_flags & BGE_FLAG_TBI) {
3219 		val = CSR_READ_4(sc, BGE_SERDES_CFG);
3220 		val = (val & ~0xFFF) | 0x880;
3221 		CSR_WRITE_4(sc, BGE_SERDES_CFG, val);
3222 	}
3223 
3224 	/* XXX: Broadcom Linux driver. */
3225 	if (sc->bge_flags & BGE_FLAG_PCIE &&
3226 	    sc->bge_chipid != BGE_CHIPID_BCM5750_A0) {
3227 		val = CSR_READ_4(sc, 0x7C00);
3228 		CSR_WRITE_4(sc, 0x7C00, val | (1 << 25));
3229 	}
3230 	DELAY(10000);
3231 
3232 	return(0);
3233 }
3234 
3235 /*
3236  * Frame reception handling. This is called if there's a frame
3237  * on the receive return list.
3238  *
3239  * Note: we have to be able to handle two possibilities here:
3240  * 1) the frame is from the jumbo receive ring
3241  * 2) the frame is from the standard receive ring
3242  */
3243 
3244 static int
3245 bge_rxeof(struct bge_softc *sc, uint16_t rx_prod, int holdlck)
3246 {
3247 	struct ifnet *ifp;
3248 	int rx_npkts = 0, stdcnt = 0, jumbocnt = 0;
3249 	uint16_t rx_cons;
3250 
3251 	rx_cons = sc->bge_rx_saved_considx;
3252 
3253 	/* Nothing to do. */
3254 	if (rx_cons == rx_prod)
3255 		return (rx_npkts);
3256 
3257 	ifp = sc->bge_ifp;
3258 
3259 	bus_dmamap_sync(sc->bge_cdata.bge_rx_return_ring_tag,
3260 	    sc->bge_cdata.bge_rx_return_ring_map, BUS_DMASYNC_POSTREAD);
3261 	bus_dmamap_sync(sc->bge_cdata.bge_rx_std_ring_tag,
3262 	    sc->bge_cdata.bge_rx_std_ring_map, BUS_DMASYNC_POSTWRITE);
3263 	if (ifp->if_mtu + ETHER_HDR_LEN + ETHER_CRC_LEN + ETHER_VLAN_ENCAP_LEN >
3264 	    (MCLBYTES - ETHER_ALIGN))
3265 		bus_dmamap_sync(sc->bge_cdata.bge_rx_jumbo_ring_tag,
3266 		    sc->bge_cdata.bge_rx_jumbo_ring_map, BUS_DMASYNC_POSTWRITE);
3267 
3268 	while (rx_cons != rx_prod) {
3269 		struct bge_rx_bd	*cur_rx;
3270 		uint32_t		rxidx;
3271 		struct mbuf		*m = NULL;
3272 		uint16_t		vlan_tag = 0;
3273 		int			have_tag = 0;
3274 
3275 #ifdef DEVICE_POLLING
3276 		if (ifp->if_capenable & IFCAP_POLLING) {
3277 			if (sc->rxcycles <= 0)
3278 				break;
3279 			sc->rxcycles--;
3280 		}
3281 #endif
3282 
3283 		cur_rx = &sc->bge_ldata.bge_rx_return_ring[rx_cons];
3284 
3285 		rxidx = cur_rx->bge_idx;
3286 		BGE_INC(rx_cons, sc->bge_return_ring_cnt);
3287 
3288 		if (ifp->if_capenable & IFCAP_VLAN_HWTAGGING &&
3289 		    cur_rx->bge_flags & BGE_RXBDFLAG_VLAN_TAG) {
3290 			have_tag = 1;
3291 			vlan_tag = cur_rx->bge_vlan_tag;
3292 		}
3293 
3294 		if (cur_rx->bge_flags & BGE_RXBDFLAG_JUMBO_RING) {
3295 			jumbocnt++;
3296 			m = sc->bge_cdata.bge_rx_jumbo_chain[rxidx];
3297 			if (cur_rx->bge_flags & BGE_RXBDFLAG_ERROR) {
3298 				BGE_INC(sc->bge_jumbo, BGE_JUMBO_RX_RING_CNT);
3299 				continue;
3300 			}
3301 			if (bge_newbuf_jumbo(sc, rxidx) != 0) {
3302 				BGE_INC(sc->bge_jumbo, BGE_JUMBO_RX_RING_CNT);
3303 				ifp->if_iqdrops++;
3304 				continue;
3305 			}
3306 			BGE_INC(sc->bge_jumbo, BGE_JUMBO_RX_RING_CNT);
3307 		} else {
3308 			stdcnt++;
3309 			if (cur_rx->bge_flags & BGE_RXBDFLAG_ERROR) {
3310 				BGE_INC(sc->bge_std, BGE_STD_RX_RING_CNT);
3311 				continue;
3312 			}
3313 			m = sc->bge_cdata.bge_rx_std_chain[rxidx];
3314 			if (bge_newbuf_std(sc, rxidx) != 0) {
3315 				BGE_INC(sc->bge_std, BGE_STD_RX_RING_CNT);
3316 				ifp->if_iqdrops++;
3317 				continue;
3318 			}
3319 			BGE_INC(sc->bge_std, BGE_STD_RX_RING_CNT);
3320 		}
3321 
3322 		ifp->if_ipackets++;
3323 #ifndef __NO_STRICT_ALIGNMENT
3324 		/*
3325 		 * For architectures with strict alignment we must make sure
3326 		 * the payload is aligned.
3327 		 */
3328 		if (sc->bge_flags & BGE_FLAG_RX_ALIGNBUG) {
3329 			bcopy(m->m_data, m->m_data + ETHER_ALIGN,
3330 			    cur_rx->bge_len);
3331 			m->m_data += ETHER_ALIGN;
3332 		}
3333 #endif
3334 		m->m_pkthdr.len = m->m_len = cur_rx->bge_len - ETHER_CRC_LEN;
3335 		m->m_pkthdr.rcvif = ifp;
3336 
3337 		if (ifp->if_capenable & IFCAP_RXCSUM) {
3338 			if (cur_rx->bge_flags & BGE_RXBDFLAG_IP_CSUM) {
3339 				m->m_pkthdr.csum_flags |= CSUM_IP_CHECKED;
3340 				if ((cur_rx->bge_ip_csum ^ 0xFFFF) == 0)
3341 					m->m_pkthdr.csum_flags |= CSUM_IP_VALID;
3342 			}
3343 			if (cur_rx->bge_flags & BGE_RXBDFLAG_TCP_UDP_CSUM &&
3344 			    m->m_pkthdr.len >= ETHER_MIN_NOPAD) {
3345 				m->m_pkthdr.csum_data =
3346 				    cur_rx->bge_tcp_udp_csum;
3347 				m->m_pkthdr.csum_flags |=
3348 				    CSUM_DATA_VALID | CSUM_PSEUDO_HDR;
3349 			}
3350 		}
3351 
3352 		/*
3353 		 * If we received a packet with a vlan tag,
3354 		 * attach that information to the packet.
3355 		 */
3356 		if (have_tag) {
3357 #if __FreeBSD_version > 700022
3358 			m->m_pkthdr.ether_vtag = vlan_tag;
3359 			m->m_flags |= M_VLANTAG;
3360 #else
3361 			VLAN_INPUT_TAG_NEW(ifp, m, vlan_tag);
3362 			if (m == NULL)
3363 				continue;
3364 #endif
3365 		}
3366 
3367 		if (holdlck != 0) {
3368 			BGE_UNLOCK(sc);
3369 			(*ifp->if_input)(ifp, m);
3370 			BGE_LOCK(sc);
3371 		} else
3372 			(*ifp->if_input)(ifp, m);
3373 		rx_npkts++;
3374 
3375 		if (!(ifp->if_drv_flags & IFF_DRV_RUNNING))
3376 			return (rx_npkts);
3377 	}
3378 
3379 	bus_dmamap_sync(sc->bge_cdata.bge_rx_return_ring_tag,
3380 	    sc->bge_cdata.bge_rx_return_ring_map, BUS_DMASYNC_PREREAD);
3381 	if (stdcnt > 0)
3382 		bus_dmamap_sync(sc->bge_cdata.bge_rx_std_ring_tag,
3383 		    sc->bge_cdata.bge_rx_std_ring_map, BUS_DMASYNC_PREWRITE);
3384 
3385 	if (jumbocnt > 0)
3386 		bus_dmamap_sync(sc->bge_cdata.bge_rx_jumbo_ring_tag,
3387 		    sc->bge_cdata.bge_rx_jumbo_ring_map, BUS_DMASYNC_PREWRITE);
3388 
3389 	sc->bge_rx_saved_considx = rx_cons;
3390 	bge_writembx(sc, BGE_MBX_RX_CONS0_LO, sc->bge_rx_saved_considx);
3391 	if (stdcnt)
3392 		bge_writembx(sc, BGE_MBX_RX_STD_PROD_LO, sc->bge_std);
3393 	if (jumbocnt)
3394 		bge_writembx(sc, BGE_MBX_RX_JUMBO_PROD_LO, sc->bge_jumbo);
3395 #ifdef notyet
3396 	/*
3397 	 * This register wraps very quickly under heavy packet drops.
3398 	 * If you need correct statistics, you can enable this check.
3399 	 */
3400 	if (BGE_IS_5705_PLUS(sc))
3401 		ifp->if_ierrors += CSR_READ_4(sc, BGE_RXLP_LOCSTAT_IFIN_DROPS);
3402 #endif
3403 	return (rx_npkts);
3404 }
3405 
3406 static void
3407 bge_txeof(struct bge_softc *sc, uint16_t tx_cons)
3408 {
3409 	struct bge_tx_bd *cur_tx = NULL;
3410 	struct ifnet *ifp;
3411 
3412 	BGE_LOCK_ASSERT(sc);
3413 
3414 	/* Nothing to do. */
3415 	if (sc->bge_tx_saved_considx == tx_cons)
3416 		return;
3417 
3418 	ifp = sc->bge_ifp;
3419 
3420 	bus_dmamap_sync(sc->bge_cdata.bge_tx_ring_tag,
3421 	    sc->bge_cdata.bge_tx_ring_map, BUS_DMASYNC_POSTWRITE);
3422 	/*
3423 	 * Go through our tx ring and free mbufs for those
3424 	 * frames that have been sent.
3425 	 */
3426 	while (sc->bge_tx_saved_considx != tx_cons) {
3427 		uint32_t		idx = 0;
3428 
3429 		idx = sc->bge_tx_saved_considx;
3430 		cur_tx = &sc->bge_ldata.bge_tx_ring[idx];
3431 		if (cur_tx->bge_flags & BGE_TXBDFLAG_END)
3432 			ifp->if_opackets++;
3433 		if (sc->bge_cdata.bge_tx_chain[idx] != NULL) {
3434 			bus_dmamap_sync(sc->bge_cdata.bge_tx_mtag,
3435 			    sc->bge_cdata.bge_tx_dmamap[idx],
3436 			    BUS_DMASYNC_POSTWRITE);
3437 			bus_dmamap_unload(sc->bge_cdata.bge_tx_mtag,
3438 			    sc->bge_cdata.bge_tx_dmamap[idx]);
3439 			m_freem(sc->bge_cdata.bge_tx_chain[idx]);
3440 			sc->bge_cdata.bge_tx_chain[idx] = NULL;
3441 		}
3442 		sc->bge_txcnt--;
3443 		BGE_INC(sc->bge_tx_saved_considx, BGE_TX_RING_CNT);
3444 	}
3445 
3446 	if (cur_tx != NULL)
3447 		ifp->if_drv_flags &= ~IFF_DRV_OACTIVE;
3448 	if (sc->bge_txcnt == 0)
3449 		sc->bge_timer = 0;
3450 }
3451 
3452 #ifdef DEVICE_POLLING
3453 static int
3454 bge_poll(struct ifnet *ifp, enum poll_cmd cmd, int count)
3455 {
3456 	struct bge_softc *sc = ifp->if_softc;
3457 	uint16_t rx_prod, tx_cons;
3458 	uint32_t statusword;
3459 	int rx_npkts = 0;
3460 
3461 	BGE_LOCK(sc);
3462 	if (!(ifp->if_drv_flags & IFF_DRV_RUNNING)) {
3463 		BGE_UNLOCK(sc);
3464 		return (rx_npkts);
3465 	}
3466 
3467 	bus_dmamap_sync(sc->bge_cdata.bge_status_tag,
3468 	    sc->bge_cdata.bge_status_map,
3469 	    BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE);
3470 	rx_prod = sc->bge_ldata.bge_status_block->bge_idx[0].bge_rx_prod_idx;
3471 	tx_cons = sc->bge_ldata.bge_status_block->bge_idx[0].bge_tx_cons_idx;
3472 
3473 	statusword = atomic_readandclear_32(
3474 	    &sc->bge_ldata.bge_status_block->bge_status);
3475 
3476 	bus_dmamap_sync(sc->bge_cdata.bge_status_tag,
3477 	    sc->bge_cdata.bge_status_map,
3478 	    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
3479 
3480 	/* Note link event. It will be processed by POLL_AND_CHECK_STATUS. */
3481 	if (statusword & BGE_STATFLAG_LINKSTATE_CHANGED)
3482 		sc->bge_link_evt++;
3483 
3484 	if (cmd == POLL_AND_CHECK_STATUS)
3485 		if ((sc->bge_asicrev == BGE_ASICREV_BCM5700 &&
3486 		    sc->bge_chipid != BGE_CHIPID_BCM5700_B2) ||
3487 		    sc->bge_link_evt || (sc->bge_flags & BGE_FLAG_TBI))
3488 			bge_link_upd(sc);
3489 
3490 	sc->rxcycles = count;
3491 	rx_npkts = bge_rxeof(sc, rx_prod, 1);
3492 	if (!(ifp->if_drv_flags & IFF_DRV_RUNNING)) {
3493 		BGE_UNLOCK(sc);
3494 		return (rx_npkts);
3495 	}
3496 	bge_txeof(sc, tx_cons);
3497 	if (!IFQ_DRV_IS_EMPTY(&ifp->if_snd))
3498 		bge_start_locked(ifp);
3499 
3500 	BGE_UNLOCK(sc);
3501 	return (rx_npkts);
3502 }
3503 #endif /* DEVICE_POLLING */
3504 
3505 static int
3506 bge_msi_intr(void *arg)
3507 {
3508 	struct bge_softc *sc;
3509 
3510 	sc = (struct bge_softc *)arg;
3511 	/*
3512 	 * This interrupt is not shared and controller already
3513 	 * disabled further interrupt.
3514 	 */
3515 	taskqueue_enqueue(sc->bge_tq, &sc->bge_intr_task);
3516 	return (FILTER_HANDLED);
3517 }
3518 
3519 static void
3520 bge_intr_task(void *arg, int pending)
3521 {
3522 	struct bge_softc *sc;
3523 	struct ifnet *ifp;
3524 	uint32_t status;
3525 	uint16_t rx_prod, tx_cons;
3526 
3527 	sc = (struct bge_softc *)arg;
3528 	ifp = sc->bge_ifp;
3529 
3530 	if ((ifp->if_drv_flags & IFF_DRV_RUNNING) == 0)
3531 		return;
3532 
3533 	/* Get updated status block. */
3534 	bus_dmamap_sync(sc->bge_cdata.bge_status_tag,
3535 	    sc->bge_cdata.bge_status_map,
3536 	    BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE);
3537 
3538 	/* Save producer/consumer indexess. */
3539 	rx_prod = sc->bge_ldata.bge_status_block->bge_idx[0].bge_rx_prod_idx;
3540 	tx_cons = sc->bge_ldata.bge_status_block->bge_idx[0].bge_tx_cons_idx;
3541 	status = sc->bge_ldata.bge_status_block->bge_status;
3542 	sc->bge_ldata.bge_status_block->bge_status = 0;
3543 	bus_dmamap_sync(sc->bge_cdata.bge_status_tag,
3544 	    sc->bge_cdata.bge_status_map,
3545 	    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
3546 	/* Let controller work. */
3547 	bge_writembx(sc, BGE_MBX_IRQ0_LO, 0);
3548 
3549 	if ((status & BGE_STATFLAG_LINKSTATE_CHANGED) != 0) {
3550 		BGE_LOCK(sc);
3551 		bge_link_upd(sc);
3552 		BGE_UNLOCK(sc);
3553 	}
3554 	if (ifp->if_drv_flags & IFF_DRV_RUNNING) {
3555 		/* Check RX return ring producer/consumer. */
3556 		bge_rxeof(sc, rx_prod, 0);
3557 	}
3558 	if (ifp->if_drv_flags & IFF_DRV_RUNNING) {
3559 		BGE_LOCK(sc);
3560 		/* Check TX ring producer/consumer. */
3561 		bge_txeof(sc, tx_cons);
3562 	    	if (!IFQ_DRV_IS_EMPTY(&ifp->if_snd))
3563 			bge_start_locked(ifp);
3564 		BGE_UNLOCK(sc);
3565 	}
3566 }
3567 
3568 static void
3569 bge_intr(void *xsc)
3570 {
3571 	struct bge_softc *sc;
3572 	struct ifnet *ifp;
3573 	uint32_t statusword;
3574 	uint16_t rx_prod, tx_cons;
3575 
3576 	sc = xsc;
3577 
3578 	BGE_LOCK(sc);
3579 
3580 	ifp = sc->bge_ifp;
3581 
3582 #ifdef DEVICE_POLLING
3583 	if (ifp->if_capenable & IFCAP_POLLING) {
3584 		BGE_UNLOCK(sc);
3585 		return;
3586 	}
3587 #endif
3588 
3589 	/*
3590 	 * Ack the interrupt by writing something to BGE_MBX_IRQ0_LO.  Don't
3591 	 * disable interrupts by writing nonzero like we used to, since with
3592 	 * our current organization this just gives complications and
3593 	 * pessimizations for re-enabling interrupts.  We used to have races
3594 	 * instead of the necessary complications.  Disabling interrupts
3595 	 * would just reduce the chance of a status update while we are
3596 	 * running (by switching to the interrupt-mode coalescence
3597 	 * parameters), but this chance is already very low so it is more
3598 	 * efficient to get another interrupt than prevent it.
3599 	 *
3600 	 * We do the ack first to ensure another interrupt if there is a
3601 	 * status update after the ack.  We don't check for the status
3602 	 * changing later because it is more efficient to get another
3603 	 * interrupt than prevent it, not quite as above (not checking is
3604 	 * a smaller optimization than not toggling the interrupt enable,
3605 	 * since checking doesn't involve PCI accesses and toggling require
3606 	 * the status check).  So toggling would probably be a pessimization
3607 	 * even with MSI.  It would only be needed for using a task queue.
3608 	 */
3609 	bge_writembx(sc, BGE_MBX_IRQ0_LO, 0);
3610 
3611 	/*
3612 	 * Do the mandatory PCI flush as well as get the link status.
3613 	 */
3614 	statusword = CSR_READ_4(sc, BGE_MAC_STS) & BGE_MACSTAT_LINK_CHANGED;
3615 
3616 	/* Make sure the descriptor ring indexes are coherent. */
3617 	bus_dmamap_sync(sc->bge_cdata.bge_status_tag,
3618 	    sc->bge_cdata.bge_status_map,
3619 	    BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE);
3620 	rx_prod = sc->bge_ldata.bge_status_block->bge_idx[0].bge_rx_prod_idx;
3621 	tx_cons = sc->bge_ldata.bge_status_block->bge_idx[0].bge_tx_cons_idx;
3622 	sc->bge_ldata.bge_status_block->bge_status = 0;
3623 	bus_dmamap_sync(sc->bge_cdata.bge_status_tag,
3624 	    sc->bge_cdata.bge_status_map,
3625 	    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
3626 
3627 	if ((sc->bge_asicrev == BGE_ASICREV_BCM5700 &&
3628 	    sc->bge_chipid != BGE_CHIPID_BCM5700_B2) ||
3629 	    statusword || sc->bge_link_evt)
3630 		bge_link_upd(sc);
3631 
3632 	if (ifp->if_drv_flags & IFF_DRV_RUNNING) {
3633 		/* Check RX return ring producer/consumer. */
3634 		bge_rxeof(sc, rx_prod, 1);
3635 	}
3636 
3637 	if (ifp->if_drv_flags & IFF_DRV_RUNNING) {
3638 		/* Check TX ring producer/consumer. */
3639 		bge_txeof(sc, tx_cons);
3640 	}
3641 
3642 	if (ifp->if_drv_flags & IFF_DRV_RUNNING &&
3643 	    !IFQ_DRV_IS_EMPTY(&ifp->if_snd))
3644 		bge_start_locked(ifp);
3645 
3646 	BGE_UNLOCK(sc);
3647 }
3648 
3649 static void
3650 bge_asf_driver_up(struct bge_softc *sc)
3651 {
3652 	if (sc->bge_asf_mode & ASF_STACKUP) {
3653 		/* Send ASF heartbeat aprox. every 2s */
3654 		if (sc->bge_asf_count)
3655 			sc->bge_asf_count --;
3656 		else {
3657 			sc->bge_asf_count = 5;
3658 			bge_writemem_ind(sc, BGE_SOFTWARE_GENCOMM_FW,
3659 			    BGE_FW_DRV_ALIVE);
3660 			bge_writemem_ind(sc, BGE_SOFTWARE_GENNCOMM_FW_LEN, 4);
3661 			bge_writemem_ind(sc, BGE_SOFTWARE_GENNCOMM_FW_DATA, 3);
3662 			CSR_WRITE_4(sc, BGE_CPU_EVENT,
3663 			    CSR_READ_4(sc, BGE_CPU_EVENT) | (1 << 14));
3664 		}
3665 	}
3666 }
3667 
3668 static void
3669 bge_tick(void *xsc)
3670 {
3671 	struct bge_softc *sc = xsc;
3672 	struct mii_data *mii = NULL;
3673 
3674 	BGE_LOCK_ASSERT(sc);
3675 
3676 	/* Synchronize with possible callout reset/stop. */
3677 	if (callout_pending(&sc->bge_stat_ch) ||
3678 	    !callout_active(&sc->bge_stat_ch))
3679 	    	return;
3680 
3681 	if (BGE_IS_5705_PLUS(sc))
3682 		bge_stats_update_regs(sc);
3683 	else
3684 		bge_stats_update(sc);
3685 
3686 	if ((sc->bge_flags & BGE_FLAG_TBI) == 0) {
3687 		mii = device_get_softc(sc->bge_miibus);
3688 		/*
3689 		 * Do not touch PHY if we have link up. This could break
3690 		 * IPMI/ASF mode or produce extra input errors
3691 		 * (extra errors was reported for bcm5701 & bcm5704).
3692 		 */
3693 		if (!sc->bge_link)
3694 			mii_tick(mii);
3695 	} else {
3696 		/*
3697 		 * Since in TBI mode auto-polling can't be used we should poll
3698 		 * link status manually. Here we register pending link event
3699 		 * and trigger interrupt.
3700 		 */
3701 #ifdef DEVICE_POLLING
3702 		/* In polling mode we poll link state in bge_poll(). */
3703 		if (!(sc->bge_ifp->if_capenable & IFCAP_POLLING))
3704 #endif
3705 		{
3706 		sc->bge_link_evt++;
3707 		if (sc->bge_asicrev == BGE_ASICREV_BCM5700 ||
3708 		    sc->bge_flags & BGE_FLAG_5788)
3709 			BGE_SETBIT(sc, BGE_MISC_LOCAL_CTL, BGE_MLC_INTR_SET);
3710 		else
3711 			BGE_SETBIT(sc, BGE_HCC_MODE, BGE_HCCMODE_COAL_NOW);
3712 		}
3713 	}
3714 
3715 	bge_asf_driver_up(sc);
3716 	bge_watchdog(sc);
3717 
3718 	callout_reset(&sc->bge_stat_ch, hz, bge_tick, sc);
3719 }
3720 
3721 static void
3722 bge_stats_update_regs(struct bge_softc *sc)
3723 {
3724 	struct ifnet *ifp;
3725 
3726 	ifp = sc->bge_ifp;
3727 
3728 	ifp->if_collisions += CSR_READ_4(sc, BGE_MAC_STATS +
3729 	    offsetof(struct bge_mac_stats_regs, etherStatsCollisions));
3730 
3731 	ifp->if_ierrors += CSR_READ_4(sc, BGE_RXLP_LOCSTAT_OUT_OF_BDS);
3732 	ifp->if_ierrors += CSR_READ_4(sc, BGE_RXLP_LOCSTAT_IFIN_DROPS);
3733 	ifp->if_ierrors += CSR_READ_4(sc, BGE_RXLP_LOCSTAT_IFIN_ERRORS);
3734 }
3735 
3736 static void
3737 bge_stats_update(struct bge_softc *sc)
3738 {
3739 	struct ifnet *ifp;
3740 	bus_size_t stats;
3741 	uint32_t cnt;	/* current register value */
3742 
3743 	ifp = sc->bge_ifp;
3744 
3745 	stats = BGE_MEMWIN_START + BGE_STATS_BLOCK;
3746 
3747 #define	READ_STAT(sc, stats, stat) \
3748 	CSR_READ_4(sc, stats + offsetof(struct bge_stats, stat))
3749 
3750 	cnt = READ_STAT(sc, stats, txstats.etherStatsCollisions.bge_addr_lo);
3751 	ifp->if_collisions += (uint32_t)(cnt - sc->bge_tx_collisions);
3752 	sc->bge_tx_collisions = cnt;
3753 
3754 	cnt = READ_STAT(sc, stats, ifInDiscards.bge_addr_lo);
3755 	ifp->if_ierrors += (uint32_t)(cnt - sc->bge_rx_discards);
3756 	sc->bge_rx_discards = cnt;
3757 
3758 	cnt = READ_STAT(sc, stats, txstats.ifOutDiscards.bge_addr_lo);
3759 	ifp->if_oerrors += (uint32_t)(cnt - sc->bge_tx_discards);
3760 	sc->bge_tx_discards = cnt;
3761 
3762 #undef	READ_STAT
3763 }
3764 
3765 /*
3766  * Pad outbound frame to ETHER_MIN_NOPAD for an unusual reason.
3767  * The bge hardware will pad out Tx runts to ETHER_MIN_NOPAD,
3768  * but when such padded frames employ the bge IP/TCP checksum offload,
3769  * the hardware checksum assist gives incorrect results (possibly
3770  * from incorporating its own padding into the UDP/TCP checksum; who knows).
3771  * If we pad such runts with zeros, the onboard checksum comes out correct.
3772  */
3773 static __inline int
3774 bge_cksum_pad(struct mbuf *m)
3775 {
3776 	int padlen = ETHER_MIN_NOPAD - m->m_pkthdr.len;
3777 	struct mbuf *last;
3778 
3779 	/* If there's only the packet-header and we can pad there, use it. */
3780 	if (m->m_pkthdr.len == m->m_len && M_WRITABLE(m) &&
3781 	    M_TRAILINGSPACE(m) >= padlen) {
3782 		last = m;
3783 	} else {
3784 		/*
3785 		 * Walk packet chain to find last mbuf. We will either
3786 		 * pad there, or append a new mbuf and pad it.
3787 		 */
3788 		for (last = m; last->m_next != NULL; last = last->m_next);
3789 		if (!(M_WRITABLE(last) && M_TRAILINGSPACE(last) >= padlen)) {
3790 			/* Allocate new empty mbuf, pad it. Compact later. */
3791 			struct mbuf *n;
3792 
3793 			MGET(n, M_DONTWAIT, MT_DATA);
3794 			if (n == NULL)
3795 				return (ENOBUFS);
3796 			n->m_len = 0;
3797 			last->m_next = n;
3798 			last = n;
3799 		}
3800 	}
3801 
3802 	/* Now zero the pad area, to avoid the bge cksum-assist bug. */
3803 	memset(mtod(last, caddr_t) + last->m_len, 0, padlen);
3804 	last->m_len += padlen;
3805 	m->m_pkthdr.len += padlen;
3806 
3807 	return (0);
3808 }
3809 
3810 static struct mbuf *
3811 bge_setup_tso(struct bge_softc *sc, struct mbuf *m, uint16_t *mss)
3812 {
3813 	struct ether_header *eh;
3814 	struct ip *ip;
3815 	struct tcphdr *tcp;
3816 	struct mbuf *n;
3817 	uint16_t hlen;
3818 	uint32_t ip_off, poff;
3819 
3820 	if (M_WRITABLE(m) == 0) {
3821 		/* Get a writable copy. */
3822 		n = m_dup(m, M_DONTWAIT);
3823 		m_freem(m);
3824 		if (n == NULL)
3825 			return (NULL);
3826 		m = n;
3827 	}
3828 	ip_off = sizeof(struct ether_header);
3829 	m = m_pullup(m, ip_off);
3830 	if (m == NULL)
3831 		return (NULL);
3832 	eh = mtod(m, struct ether_header *);
3833 	/* Check the existence of VLAN tag. */
3834 	if (eh->ether_type == htons(ETHERTYPE_VLAN)) {
3835 		ip_off = sizeof(struct ether_vlan_header);
3836 		m = m_pullup(m, ip_off);
3837 		if (m == NULL)
3838 			return (NULL);
3839 	}
3840 	m = m_pullup(m, ip_off + sizeof(struct ip));
3841 	if (m == NULL)
3842 		return (NULL);
3843 	ip = (struct ip *)(mtod(m, char *) + ip_off);
3844 	poff = ip_off + (ip->ip_hl << 2);
3845 	m = m_pullup(m, poff + sizeof(struct tcphdr));
3846 	if (m == NULL)
3847 		return (NULL);
3848 	tcp = (struct tcphdr *)(mtod(m, char *) + poff);
3849 	m = m_pullup(m, poff + sizeof(struct tcphdr) + tcp->th_off);
3850 	if (m == NULL)
3851 		return (NULL);
3852 	/*
3853 	 * It seems controller doesn't modify IP length and TCP pseudo
3854 	 * checksum. These checksum computed by upper stack should be 0.
3855 	 */
3856 	*mss = m->m_pkthdr.tso_segsz;
3857 	ip->ip_sum = 0;
3858 	ip->ip_len = htons(*mss + (ip->ip_hl << 2) + (tcp->th_off << 2));
3859 	/* Clear pseudo checksum computed by TCP stack. */
3860 	tcp->th_sum = 0;
3861 	/*
3862 	 * Broadcom controllers uses different descriptor format for
3863 	 * TSO depending on ASIC revision. Due to TSO-capable firmware
3864 	 * license issue and lower performance of firmware based TSO
3865 	 * we only support hardware based TSO which is applicable for
3866 	 * BCM5755 or newer controllers. Hardware based TSO uses 11
3867 	 * bits to store MSS and upper 5 bits are used to store IP/TCP
3868 	 * header length(including IP/TCP options). The header length
3869 	 * is expressed as 32 bits unit.
3870 	 */
3871 	hlen = ((ip->ip_hl << 2) + (tcp->th_off << 2)) >> 2;
3872 	*mss |= (hlen << 11);
3873 	return (m);
3874 }
3875 
3876 /*
3877  * Encapsulate an mbuf chain in the tx ring  by coupling the mbuf data
3878  * pointers to descriptors.
3879  */
3880 static int
3881 bge_encap(struct bge_softc *sc, struct mbuf **m_head, uint32_t *txidx)
3882 {
3883 	bus_dma_segment_t	segs[BGE_NSEG_NEW];
3884 	bus_dmamap_t		map;
3885 	struct bge_tx_bd	*d;
3886 	struct mbuf		*m = *m_head;
3887 	uint32_t		idx = *txidx;
3888 	uint16_t		csum_flags, mss, vlan_tag;
3889 	int			nsegs, i, error;
3890 
3891 	csum_flags = 0;
3892 	mss = 0;
3893 	vlan_tag = 0;
3894 	if ((m->m_pkthdr.csum_flags & CSUM_TSO) != 0) {
3895 		*m_head = m = bge_setup_tso(sc, m, &mss);
3896 		if (*m_head == NULL)
3897 			return (ENOBUFS);
3898 		csum_flags |= BGE_TXBDFLAG_CPU_PRE_DMA |
3899 		    BGE_TXBDFLAG_CPU_POST_DMA;
3900 	} else if ((m->m_pkthdr.csum_flags & BGE_CSUM_FEATURES) != 0) {
3901 		if (m->m_pkthdr.csum_flags & CSUM_IP)
3902 			csum_flags |= BGE_TXBDFLAG_IP_CSUM;
3903 		if (m->m_pkthdr.csum_flags & (CSUM_TCP | CSUM_UDP)) {
3904 			csum_flags |= BGE_TXBDFLAG_TCP_UDP_CSUM;
3905 			if (m->m_pkthdr.len < ETHER_MIN_NOPAD &&
3906 			    (error = bge_cksum_pad(m)) != 0) {
3907 				m_freem(m);
3908 				*m_head = NULL;
3909 				return (error);
3910 			}
3911 		}
3912 		if (m->m_flags & M_LASTFRAG)
3913 			csum_flags |= BGE_TXBDFLAG_IP_FRAG_END;
3914 		else if (m->m_flags & M_FRAG)
3915 			csum_flags |= BGE_TXBDFLAG_IP_FRAG;
3916 	}
3917 
3918 	map = sc->bge_cdata.bge_tx_dmamap[idx];
3919 	error = bus_dmamap_load_mbuf_sg(sc->bge_cdata.bge_tx_mtag, map, m, segs,
3920 	    &nsegs, BUS_DMA_NOWAIT);
3921 	if (error == EFBIG) {
3922 		m = m_collapse(m, M_DONTWAIT, BGE_NSEG_NEW);
3923 		if (m == NULL) {
3924 			m_freem(*m_head);
3925 			*m_head = NULL;
3926 			return (ENOBUFS);
3927 		}
3928 		*m_head = m;
3929 		error = bus_dmamap_load_mbuf_sg(sc->bge_cdata.bge_tx_mtag, map,
3930 		    m, segs, &nsegs, BUS_DMA_NOWAIT);
3931 		if (error) {
3932 			m_freem(m);
3933 			*m_head = NULL;
3934 			return (error);
3935 		}
3936 	} else if (error != 0)
3937 		return (error);
3938 
3939 	/* Check if we have enough free send BDs. */
3940 	if (sc->bge_txcnt + nsegs >= BGE_TX_RING_CNT) {
3941 		bus_dmamap_unload(sc->bge_cdata.bge_tx_mtag, map);
3942 		return (ENOBUFS);
3943 	}
3944 
3945 	bus_dmamap_sync(sc->bge_cdata.bge_tx_mtag, map, BUS_DMASYNC_PREWRITE);
3946 
3947 #if __FreeBSD_version > 700022
3948 	if (m->m_flags & M_VLANTAG) {
3949 		csum_flags |= BGE_TXBDFLAG_VLAN_TAG;
3950 		vlan_tag = m->m_pkthdr.ether_vtag;
3951 	}
3952 #else
3953 	{
3954 		struct m_tag		*mtag;
3955 
3956 		if ((mtag = VLAN_OUTPUT_TAG(sc->bge_ifp, m)) != NULL) {
3957 			csum_flags |= BGE_TXBDFLAG_VLAN_TAG;
3958 			vlan_tag = VLAN_TAG_VALUE(mtag);
3959 		}
3960 	}
3961 #endif
3962 	for (i = 0; ; i++) {
3963 		d = &sc->bge_ldata.bge_tx_ring[idx];
3964 		d->bge_addr.bge_addr_lo = BGE_ADDR_LO(segs[i].ds_addr);
3965 		d->bge_addr.bge_addr_hi = BGE_ADDR_HI(segs[i].ds_addr);
3966 		d->bge_len = segs[i].ds_len;
3967 		d->bge_flags = csum_flags;
3968 		d->bge_vlan_tag = vlan_tag;
3969 		d->bge_mss = mss;
3970 		if (i == nsegs - 1)
3971 			break;
3972 		BGE_INC(idx, BGE_TX_RING_CNT);
3973 	}
3974 
3975 	/* Mark the last segment as end of packet... */
3976 	d->bge_flags |= BGE_TXBDFLAG_END;
3977 
3978 	/*
3979 	 * Insure that the map for this transmission
3980 	 * is placed at the array index of the last descriptor
3981 	 * in this chain.
3982 	 */
3983 	sc->bge_cdata.bge_tx_dmamap[*txidx] = sc->bge_cdata.bge_tx_dmamap[idx];
3984 	sc->bge_cdata.bge_tx_dmamap[idx] = map;
3985 	sc->bge_cdata.bge_tx_chain[idx] = m;
3986 	sc->bge_txcnt += nsegs;
3987 
3988 	BGE_INC(idx, BGE_TX_RING_CNT);
3989 	*txidx = idx;
3990 
3991 	return (0);
3992 }
3993 
3994 /*
3995  * Main transmit routine. To avoid having to do mbuf copies, we put pointers
3996  * to the mbuf data regions directly in the transmit descriptors.
3997  */
3998 static void
3999 bge_start_locked(struct ifnet *ifp)
4000 {
4001 	struct bge_softc *sc;
4002 	struct mbuf *m_head;
4003 	uint32_t prodidx;
4004 	int count;
4005 
4006 	sc = ifp->if_softc;
4007 	BGE_LOCK_ASSERT(sc);
4008 
4009 	if (!sc->bge_link ||
4010 	    (ifp->if_drv_flags & (IFF_DRV_RUNNING | IFF_DRV_OACTIVE)) !=
4011 	    IFF_DRV_RUNNING)
4012 		return;
4013 
4014 	prodidx = sc->bge_tx_prodidx;
4015 
4016 	for (count = 0; !IFQ_DRV_IS_EMPTY(&ifp->if_snd);) {
4017 		if (sc->bge_txcnt > BGE_TX_RING_CNT - 16) {
4018 			ifp->if_drv_flags |= IFF_DRV_OACTIVE;
4019 			break;
4020 		}
4021 		IFQ_DRV_DEQUEUE(&ifp->if_snd, m_head);
4022 		if (m_head == NULL)
4023 			break;
4024 
4025 		/*
4026 		 * XXX
4027 		 * The code inside the if() block is never reached since we
4028 		 * must mark CSUM_IP_FRAGS in our if_hwassist to start getting
4029 		 * requests to checksum TCP/UDP in a fragmented packet.
4030 		 *
4031 		 * XXX
4032 		 * safety overkill.  If this is a fragmented packet chain
4033 		 * with delayed TCP/UDP checksums, then only encapsulate
4034 		 * it if we have enough descriptors to handle the entire
4035 		 * chain at once.
4036 		 * (paranoia -- may not actually be needed)
4037 		 */
4038 		if (m_head->m_flags & M_FIRSTFRAG &&
4039 		    m_head->m_pkthdr.csum_flags & (CSUM_DELAY_DATA)) {
4040 			if ((BGE_TX_RING_CNT - sc->bge_txcnt) <
4041 			    m_head->m_pkthdr.csum_data + 16) {
4042 				IFQ_DRV_PREPEND(&ifp->if_snd, m_head);
4043 				ifp->if_drv_flags |= IFF_DRV_OACTIVE;
4044 				break;
4045 			}
4046 		}
4047 
4048 		/*
4049 		 * Pack the data into the transmit ring. If we
4050 		 * don't have room, set the OACTIVE flag and wait
4051 		 * for the NIC to drain the ring.
4052 		 */
4053 		if (bge_encap(sc, &m_head, &prodidx)) {
4054 			if (m_head == NULL)
4055 				break;
4056 			IFQ_DRV_PREPEND(&ifp->if_snd, m_head);
4057 			ifp->if_drv_flags |= IFF_DRV_OACTIVE;
4058 			break;
4059 		}
4060 		++count;
4061 
4062 		/*
4063 		 * If there's a BPF listener, bounce a copy of this frame
4064 		 * to him.
4065 		 */
4066 #ifdef ETHER_BPF_MTAP
4067 		ETHER_BPF_MTAP(ifp, m_head);
4068 #else
4069 		BPF_MTAP(ifp, m_head);
4070 #endif
4071 	}
4072 
4073 	if (count > 0) {
4074 		bus_dmamap_sync(sc->bge_cdata.bge_tx_ring_tag,
4075 		    sc->bge_cdata.bge_tx_ring_map, BUS_DMASYNC_PREWRITE);
4076 		/* Transmit. */
4077 		bge_writembx(sc, BGE_MBX_TX_HOST_PROD0_LO, prodidx);
4078 		/* 5700 b2 errata */
4079 		if (sc->bge_chiprev == BGE_CHIPREV_5700_BX)
4080 			bge_writembx(sc, BGE_MBX_TX_HOST_PROD0_LO, prodidx);
4081 
4082 		sc->bge_tx_prodidx = prodidx;
4083 
4084 		/*
4085 		 * Set a timeout in case the chip goes out to lunch.
4086 		 */
4087 		sc->bge_timer = 5;
4088 	}
4089 }
4090 
4091 /*
4092  * Main transmit routine. To avoid having to do mbuf copies, we put pointers
4093  * to the mbuf data regions directly in the transmit descriptors.
4094  */
4095 static void
4096 bge_start(struct ifnet *ifp)
4097 {
4098 	struct bge_softc *sc;
4099 
4100 	sc = ifp->if_softc;
4101 	BGE_LOCK(sc);
4102 	bge_start_locked(ifp);
4103 	BGE_UNLOCK(sc);
4104 }
4105 
4106 static void
4107 bge_init_locked(struct bge_softc *sc)
4108 {
4109 	struct ifnet *ifp;
4110 	uint16_t *m;
4111 
4112 	BGE_LOCK_ASSERT(sc);
4113 
4114 	ifp = sc->bge_ifp;
4115 
4116 	if (ifp->if_drv_flags & IFF_DRV_RUNNING)
4117 		return;
4118 
4119 	/* Cancel pending I/O and flush buffers. */
4120 	bge_stop(sc);
4121 
4122 	bge_stop_fw(sc);
4123 	bge_sig_pre_reset(sc, BGE_RESET_START);
4124 	bge_reset(sc);
4125 	bge_sig_legacy(sc, BGE_RESET_START);
4126 	bge_sig_post_reset(sc, BGE_RESET_START);
4127 
4128 	bge_chipinit(sc);
4129 
4130 	/*
4131 	 * Init the various state machines, ring
4132 	 * control blocks and firmware.
4133 	 */
4134 	if (bge_blockinit(sc)) {
4135 		device_printf(sc->bge_dev, "initialization failure\n");
4136 		return;
4137 	}
4138 
4139 	ifp = sc->bge_ifp;
4140 
4141 	/* Specify MTU. */
4142 	CSR_WRITE_4(sc, BGE_RX_MTU, ifp->if_mtu +
4143 	    ETHER_HDR_LEN + ETHER_CRC_LEN +
4144 	    (ifp->if_capenable & IFCAP_VLAN_MTU ? ETHER_VLAN_ENCAP_LEN : 0));
4145 
4146 	/* Load our MAC address. */
4147 	m = (uint16_t *)IF_LLADDR(sc->bge_ifp);
4148 	CSR_WRITE_4(sc, BGE_MAC_ADDR1_LO, htons(m[0]));
4149 	CSR_WRITE_4(sc, BGE_MAC_ADDR1_HI, (htons(m[1]) << 16) | htons(m[2]));
4150 
4151 	/* Program promiscuous mode. */
4152 	bge_setpromisc(sc);
4153 
4154 	/* Program multicast filter. */
4155 	bge_setmulti(sc);
4156 
4157 	/* Program VLAN tag stripping. */
4158 	bge_setvlan(sc);
4159 
4160 	/* Init RX ring. */
4161 	if (bge_init_rx_ring_std(sc) != 0) {
4162 		device_printf(sc->bge_dev, "no memory for std Rx buffers.\n");
4163 		bge_stop(sc);
4164 		return;
4165 	}
4166 
4167 	/*
4168 	 * Workaround for a bug in 5705 ASIC rev A0. Poll the NIC's
4169 	 * memory to insure that the chip has in fact read the first
4170 	 * entry of the ring.
4171 	 */
4172 	if (sc->bge_chipid == BGE_CHIPID_BCM5705_A0) {
4173 		uint32_t		v, i;
4174 		for (i = 0; i < 10; i++) {
4175 			DELAY(20);
4176 			v = bge_readmem_ind(sc, BGE_STD_RX_RINGS + 8);
4177 			if (v == (MCLBYTES - ETHER_ALIGN))
4178 				break;
4179 		}
4180 		if (i == 10)
4181 			device_printf (sc->bge_dev,
4182 			    "5705 A0 chip failed to load RX ring\n");
4183 	}
4184 
4185 	/* Init jumbo RX ring. */
4186 	if (ifp->if_mtu + ETHER_HDR_LEN + ETHER_CRC_LEN + ETHER_VLAN_ENCAP_LEN >
4187 	    (MCLBYTES - ETHER_ALIGN)) {
4188 		if (bge_init_rx_ring_jumbo(sc) != 0) {
4189 			device_printf(sc->bge_dev, "no memory for std Rx buffers.\n");
4190 			bge_stop(sc);
4191 			return;
4192 		}
4193 	}
4194 
4195 	/* Init our RX return ring index. */
4196 	sc->bge_rx_saved_considx = 0;
4197 
4198 	/* Init our RX/TX stat counters. */
4199 	sc->bge_rx_discards = sc->bge_tx_discards = sc->bge_tx_collisions = 0;
4200 
4201 	/* Init TX ring. */
4202 	bge_init_tx_ring(sc);
4203 
4204 	/* Turn on transmitter. */
4205 	BGE_SETBIT(sc, BGE_TX_MODE, BGE_TXMODE_ENABLE);
4206 
4207 	/* Turn on receiver. */
4208 	BGE_SETBIT(sc, BGE_RX_MODE, BGE_RXMODE_ENABLE);
4209 
4210 	/* Tell firmware we're alive. */
4211 	BGE_SETBIT(sc, BGE_MODE_CTL, BGE_MODECTL_STACKUP);
4212 
4213 #ifdef DEVICE_POLLING
4214 	/* Disable interrupts if we are polling. */
4215 	if (ifp->if_capenable & IFCAP_POLLING) {
4216 		BGE_SETBIT(sc, BGE_PCI_MISC_CTL,
4217 		    BGE_PCIMISCCTL_MASK_PCI_INTR);
4218 		bge_writembx(sc, BGE_MBX_IRQ0_LO, 1);
4219 	} else
4220 #endif
4221 
4222 	/* Enable host interrupts. */
4223 	{
4224 	BGE_SETBIT(sc, BGE_PCI_MISC_CTL, BGE_PCIMISCCTL_CLEAR_INTA);
4225 	BGE_CLRBIT(sc, BGE_PCI_MISC_CTL, BGE_PCIMISCCTL_MASK_PCI_INTR);
4226 	bge_writembx(sc, BGE_MBX_IRQ0_LO, 0);
4227 	}
4228 
4229 	bge_ifmedia_upd_locked(ifp);
4230 
4231 	ifp->if_drv_flags |= IFF_DRV_RUNNING;
4232 	ifp->if_drv_flags &= ~IFF_DRV_OACTIVE;
4233 
4234 	callout_reset(&sc->bge_stat_ch, hz, bge_tick, sc);
4235 }
4236 
4237 static void
4238 bge_init(void *xsc)
4239 {
4240 	struct bge_softc *sc = xsc;
4241 
4242 	BGE_LOCK(sc);
4243 	bge_init_locked(sc);
4244 	BGE_UNLOCK(sc);
4245 }
4246 
4247 /*
4248  * Set media options.
4249  */
4250 static int
4251 bge_ifmedia_upd(struct ifnet *ifp)
4252 {
4253 	struct bge_softc *sc = ifp->if_softc;
4254 	int res;
4255 
4256 	BGE_LOCK(sc);
4257 	res = bge_ifmedia_upd_locked(ifp);
4258 	BGE_UNLOCK(sc);
4259 
4260 	return (res);
4261 }
4262 
4263 static int
4264 bge_ifmedia_upd_locked(struct ifnet *ifp)
4265 {
4266 	struct bge_softc *sc = ifp->if_softc;
4267 	struct mii_data *mii;
4268 	struct mii_softc *miisc;
4269 	struct ifmedia *ifm;
4270 
4271 	BGE_LOCK_ASSERT(sc);
4272 
4273 	ifm = &sc->bge_ifmedia;
4274 
4275 	/* If this is a 1000baseX NIC, enable the TBI port. */
4276 	if (sc->bge_flags & BGE_FLAG_TBI) {
4277 		if (IFM_TYPE(ifm->ifm_media) != IFM_ETHER)
4278 			return (EINVAL);
4279 		switch(IFM_SUBTYPE(ifm->ifm_media)) {
4280 		case IFM_AUTO:
4281 			/*
4282 			 * The BCM5704 ASIC appears to have a special
4283 			 * mechanism for programming the autoneg
4284 			 * advertisement registers in TBI mode.
4285 			 */
4286 			if (sc->bge_asicrev == BGE_ASICREV_BCM5704) {
4287 				uint32_t sgdig;
4288 				sgdig = CSR_READ_4(sc, BGE_SGDIG_STS);
4289 				if (sgdig & BGE_SGDIGSTS_DONE) {
4290 					CSR_WRITE_4(sc, BGE_TX_TBI_AUTONEG, 0);
4291 					sgdig = CSR_READ_4(sc, BGE_SGDIG_CFG);
4292 					sgdig |= BGE_SGDIGCFG_AUTO |
4293 					    BGE_SGDIGCFG_PAUSE_CAP |
4294 					    BGE_SGDIGCFG_ASYM_PAUSE;
4295 					CSR_WRITE_4(sc, BGE_SGDIG_CFG,
4296 					    sgdig | BGE_SGDIGCFG_SEND);
4297 					DELAY(5);
4298 					CSR_WRITE_4(sc, BGE_SGDIG_CFG, sgdig);
4299 				}
4300 			}
4301 			break;
4302 		case IFM_1000_SX:
4303 			if ((ifm->ifm_media & IFM_GMASK) == IFM_FDX) {
4304 				BGE_CLRBIT(sc, BGE_MAC_MODE,
4305 				    BGE_MACMODE_HALF_DUPLEX);
4306 			} else {
4307 				BGE_SETBIT(sc, BGE_MAC_MODE,
4308 				    BGE_MACMODE_HALF_DUPLEX);
4309 			}
4310 			break;
4311 		default:
4312 			return (EINVAL);
4313 		}
4314 		return (0);
4315 	}
4316 
4317 	sc->bge_link_evt++;
4318 	mii = device_get_softc(sc->bge_miibus);
4319 	if (mii->mii_instance)
4320 		LIST_FOREACH(miisc, &mii->mii_phys, mii_list)
4321 			mii_phy_reset(miisc);
4322 	mii_mediachg(mii);
4323 
4324 	/*
4325 	 * Force an interrupt so that we will call bge_link_upd
4326 	 * if needed and clear any pending link state attention.
4327 	 * Without this we are not getting any further interrupts
4328 	 * for link state changes and thus will not UP the link and
4329 	 * not be able to send in bge_start_locked. The only
4330 	 * way to get things working was to receive a packet and
4331 	 * get an RX intr.
4332 	 * bge_tick should help for fiber cards and we might not
4333 	 * need to do this here if BGE_FLAG_TBI is set but as
4334 	 * we poll for fiber anyway it should not harm.
4335 	 */
4336 	if (sc->bge_asicrev == BGE_ASICREV_BCM5700 ||
4337 	    sc->bge_flags & BGE_FLAG_5788)
4338 		BGE_SETBIT(sc, BGE_MISC_LOCAL_CTL, BGE_MLC_INTR_SET);
4339 	else
4340 		BGE_SETBIT(sc, BGE_HCC_MODE, BGE_HCCMODE_COAL_NOW);
4341 
4342 	return (0);
4343 }
4344 
4345 /*
4346  * Report current media status.
4347  */
4348 static void
4349 bge_ifmedia_sts(struct ifnet *ifp, struct ifmediareq *ifmr)
4350 {
4351 	struct bge_softc *sc = ifp->if_softc;
4352 	struct mii_data *mii;
4353 
4354 	BGE_LOCK(sc);
4355 
4356 	if (sc->bge_flags & BGE_FLAG_TBI) {
4357 		ifmr->ifm_status = IFM_AVALID;
4358 		ifmr->ifm_active = IFM_ETHER;
4359 		if (CSR_READ_4(sc, BGE_MAC_STS) &
4360 		    BGE_MACSTAT_TBI_PCS_SYNCHED)
4361 			ifmr->ifm_status |= IFM_ACTIVE;
4362 		else {
4363 			ifmr->ifm_active |= IFM_NONE;
4364 			BGE_UNLOCK(sc);
4365 			return;
4366 		}
4367 		ifmr->ifm_active |= IFM_1000_SX;
4368 		if (CSR_READ_4(sc, BGE_MAC_MODE) & BGE_MACMODE_HALF_DUPLEX)
4369 			ifmr->ifm_active |= IFM_HDX;
4370 		else
4371 			ifmr->ifm_active |= IFM_FDX;
4372 		BGE_UNLOCK(sc);
4373 		return;
4374 	}
4375 
4376 	mii = device_get_softc(sc->bge_miibus);
4377 	mii_pollstat(mii);
4378 	ifmr->ifm_active = mii->mii_media_active;
4379 	ifmr->ifm_status = mii->mii_media_status;
4380 
4381 	BGE_UNLOCK(sc);
4382 }
4383 
4384 static int
4385 bge_ioctl(struct ifnet *ifp, u_long command, caddr_t data)
4386 {
4387 	struct bge_softc *sc = ifp->if_softc;
4388 	struct ifreq *ifr = (struct ifreq *) data;
4389 	struct mii_data *mii;
4390 	int flags, mask, error = 0;
4391 
4392 	switch (command) {
4393 	case SIOCSIFMTU:
4394 		if (ifr->ifr_mtu < ETHERMIN ||
4395 		    ((BGE_IS_JUMBO_CAPABLE(sc)) &&
4396 		    ifr->ifr_mtu > BGE_JUMBO_MTU) ||
4397 		    ((!BGE_IS_JUMBO_CAPABLE(sc)) &&
4398 		    ifr->ifr_mtu > ETHERMTU))
4399 			error = EINVAL;
4400 		else if (ifp->if_mtu != ifr->ifr_mtu) {
4401 			ifp->if_mtu = ifr->ifr_mtu;
4402 			ifp->if_drv_flags &= ~IFF_DRV_RUNNING;
4403 			bge_init(sc);
4404 		}
4405 		break;
4406 	case SIOCSIFFLAGS:
4407 		BGE_LOCK(sc);
4408 		if (ifp->if_flags & IFF_UP) {
4409 			/*
4410 			 * If only the state of the PROMISC flag changed,
4411 			 * then just use the 'set promisc mode' command
4412 			 * instead of reinitializing the entire NIC. Doing
4413 			 * a full re-init means reloading the firmware and
4414 			 * waiting for it to start up, which may take a
4415 			 * second or two.  Similarly for ALLMULTI.
4416 			 */
4417 			if (ifp->if_drv_flags & IFF_DRV_RUNNING) {
4418 				flags = ifp->if_flags ^ sc->bge_if_flags;
4419 				if (flags & IFF_PROMISC)
4420 					bge_setpromisc(sc);
4421 				if (flags & IFF_ALLMULTI)
4422 					bge_setmulti(sc);
4423 			} else
4424 				bge_init_locked(sc);
4425 		} else {
4426 			if (ifp->if_drv_flags & IFF_DRV_RUNNING) {
4427 				bge_stop(sc);
4428 			}
4429 		}
4430 		sc->bge_if_flags = ifp->if_flags;
4431 		BGE_UNLOCK(sc);
4432 		error = 0;
4433 		break;
4434 	case SIOCADDMULTI:
4435 	case SIOCDELMULTI:
4436 		if (ifp->if_drv_flags & IFF_DRV_RUNNING) {
4437 			BGE_LOCK(sc);
4438 			bge_setmulti(sc);
4439 			BGE_UNLOCK(sc);
4440 			error = 0;
4441 		}
4442 		break;
4443 	case SIOCSIFMEDIA:
4444 	case SIOCGIFMEDIA:
4445 		if (sc->bge_flags & BGE_FLAG_TBI) {
4446 			error = ifmedia_ioctl(ifp, ifr,
4447 			    &sc->bge_ifmedia, command);
4448 		} else {
4449 			mii = device_get_softc(sc->bge_miibus);
4450 			error = ifmedia_ioctl(ifp, ifr,
4451 			    &mii->mii_media, command);
4452 		}
4453 		break;
4454 	case SIOCSIFCAP:
4455 		mask = ifr->ifr_reqcap ^ ifp->if_capenable;
4456 #ifdef DEVICE_POLLING
4457 		if (mask & IFCAP_POLLING) {
4458 			if (ifr->ifr_reqcap & IFCAP_POLLING) {
4459 				error = ether_poll_register(bge_poll, ifp);
4460 				if (error)
4461 					return (error);
4462 				BGE_LOCK(sc);
4463 				BGE_SETBIT(sc, BGE_PCI_MISC_CTL,
4464 				    BGE_PCIMISCCTL_MASK_PCI_INTR);
4465 				bge_writembx(sc, BGE_MBX_IRQ0_LO, 1);
4466 				ifp->if_capenable |= IFCAP_POLLING;
4467 				BGE_UNLOCK(sc);
4468 			} else {
4469 				error = ether_poll_deregister(ifp);
4470 				/* Enable interrupt even in error case */
4471 				BGE_LOCK(sc);
4472 				BGE_CLRBIT(sc, BGE_PCI_MISC_CTL,
4473 				    BGE_PCIMISCCTL_MASK_PCI_INTR);
4474 				bge_writembx(sc, BGE_MBX_IRQ0_LO, 0);
4475 				ifp->if_capenable &= ~IFCAP_POLLING;
4476 				BGE_UNLOCK(sc);
4477 			}
4478 		}
4479 #endif
4480 		if (mask & IFCAP_HWCSUM) {
4481 			ifp->if_capenable ^= IFCAP_HWCSUM;
4482 			if (IFCAP_HWCSUM & ifp->if_capenable &&
4483 			    IFCAP_HWCSUM & ifp->if_capabilities)
4484 				ifp->if_hwassist |= BGE_CSUM_FEATURES;
4485 			else
4486 				ifp->if_hwassist &= ~BGE_CSUM_FEATURES;
4487 #ifdef VLAN_CAPABILITIES
4488 			VLAN_CAPABILITIES(ifp);
4489 #endif
4490 		}
4491 
4492 		if ((mask & IFCAP_TSO4) != 0 &&
4493 		    (ifp->if_capabilities & IFCAP_TSO4) != 0) {
4494 			ifp->if_capenable ^= IFCAP_TSO4;
4495 			if ((ifp->if_capenable & IFCAP_TSO4) != 0)
4496 				ifp->if_hwassist |= CSUM_TSO;
4497 			else
4498 				ifp->if_hwassist &= ~CSUM_TSO;
4499 		}
4500 
4501 		if (mask & IFCAP_VLAN_MTU) {
4502 			ifp->if_capenable ^= IFCAP_VLAN_MTU;
4503 			ifp->if_drv_flags &= ~IFF_DRV_RUNNING;
4504 			bge_init(sc);
4505 		}
4506 
4507 		if (mask & IFCAP_VLAN_HWTAGGING) {
4508 			ifp->if_capenable ^= IFCAP_VLAN_HWTAGGING;
4509 			BGE_LOCK(sc);
4510 			bge_setvlan(sc);
4511 			BGE_UNLOCK(sc);
4512 #ifdef VLAN_CAPABILITIES
4513 			VLAN_CAPABILITIES(ifp);
4514 #endif
4515 		}
4516 
4517 		break;
4518 	default:
4519 		error = ether_ioctl(ifp, command, data);
4520 		break;
4521 	}
4522 
4523 	return (error);
4524 }
4525 
4526 static void
4527 bge_watchdog(struct bge_softc *sc)
4528 {
4529 	struct ifnet *ifp;
4530 
4531 	BGE_LOCK_ASSERT(sc);
4532 
4533 	if (sc->bge_timer == 0 || --sc->bge_timer)
4534 		return;
4535 
4536 	ifp = sc->bge_ifp;
4537 
4538 	if_printf(ifp, "watchdog timeout -- resetting\n");
4539 
4540 	ifp->if_drv_flags &= ~IFF_DRV_RUNNING;
4541 	bge_init_locked(sc);
4542 
4543 	ifp->if_oerrors++;
4544 }
4545 
4546 /*
4547  * Stop the adapter and free any mbufs allocated to the
4548  * RX and TX lists.
4549  */
4550 static void
4551 bge_stop(struct bge_softc *sc)
4552 {
4553 	struct ifnet *ifp;
4554 	struct ifmedia_entry *ifm;
4555 	struct mii_data *mii = NULL;
4556 	int mtmp, itmp;
4557 
4558 	BGE_LOCK_ASSERT(sc);
4559 
4560 	ifp = sc->bge_ifp;
4561 
4562 	if ((sc->bge_flags & BGE_FLAG_TBI) == 0)
4563 		mii = device_get_softc(sc->bge_miibus);
4564 
4565 	callout_stop(&sc->bge_stat_ch);
4566 
4567 	/* Disable host interrupts. */
4568 	BGE_SETBIT(sc, BGE_PCI_MISC_CTL, BGE_PCIMISCCTL_MASK_PCI_INTR);
4569 	bge_writembx(sc, BGE_MBX_IRQ0_LO, 1);
4570 
4571 	/*
4572 	 * Tell firmware we're shutting down.
4573 	 */
4574 	bge_stop_fw(sc);
4575 	bge_sig_pre_reset(sc, BGE_RESET_STOP);
4576 
4577 	/*
4578 	 * Disable all of the receiver blocks.
4579 	 */
4580 	BGE_CLRBIT(sc, BGE_RX_MODE, BGE_RXMODE_ENABLE);
4581 	BGE_CLRBIT(sc, BGE_RBDI_MODE, BGE_RBDIMODE_ENABLE);
4582 	BGE_CLRBIT(sc, BGE_RXLP_MODE, BGE_RXLPMODE_ENABLE);
4583 	if (!(BGE_IS_5705_PLUS(sc)))
4584 		BGE_CLRBIT(sc, BGE_RXLS_MODE, BGE_RXLSMODE_ENABLE);
4585 	BGE_CLRBIT(sc, BGE_RDBDI_MODE, BGE_RBDIMODE_ENABLE);
4586 	BGE_CLRBIT(sc, BGE_RDC_MODE, BGE_RDCMODE_ENABLE);
4587 	BGE_CLRBIT(sc, BGE_RBDC_MODE, BGE_RBDCMODE_ENABLE);
4588 
4589 	/*
4590 	 * Disable all of the transmit blocks.
4591 	 */
4592 	BGE_CLRBIT(sc, BGE_SRS_MODE, BGE_SRSMODE_ENABLE);
4593 	BGE_CLRBIT(sc, BGE_SBDI_MODE, BGE_SBDIMODE_ENABLE);
4594 	BGE_CLRBIT(sc, BGE_SDI_MODE, BGE_SDIMODE_ENABLE);
4595 	BGE_CLRBIT(sc, BGE_RDMA_MODE, BGE_RDMAMODE_ENABLE);
4596 	BGE_CLRBIT(sc, BGE_SDC_MODE, BGE_SDCMODE_ENABLE);
4597 	if (!(BGE_IS_5705_PLUS(sc)))
4598 		BGE_CLRBIT(sc, BGE_DMAC_MODE, BGE_DMACMODE_ENABLE);
4599 	BGE_CLRBIT(sc, BGE_SBDC_MODE, BGE_SBDCMODE_ENABLE);
4600 
4601 	/*
4602 	 * Shut down all of the memory managers and related
4603 	 * state machines.
4604 	 */
4605 	BGE_CLRBIT(sc, BGE_HCC_MODE, BGE_HCCMODE_ENABLE);
4606 	BGE_CLRBIT(sc, BGE_WDMA_MODE, BGE_WDMAMODE_ENABLE);
4607 	if (!(BGE_IS_5705_PLUS(sc)))
4608 		BGE_CLRBIT(sc, BGE_MBCF_MODE, BGE_MBCFMODE_ENABLE);
4609 	CSR_WRITE_4(sc, BGE_FTQ_RESET, 0xFFFFFFFF);
4610 	CSR_WRITE_4(sc, BGE_FTQ_RESET, 0);
4611 	if (!(BGE_IS_5705_PLUS(sc))) {
4612 		BGE_CLRBIT(sc, BGE_BMAN_MODE, BGE_BMANMODE_ENABLE);
4613 		BGE_CLRBIT(sc, BGE_MARB_MODE, BGE_MARBMODE_ENABLE);
4614 	}
4615 
4616 	bge_reset(sc);
4617 	bge_sig_legacy(sc, BGE_RESET_STOP);
4618 	bge_sig_post_reset(sc, BGE_RESET_STOP);
4619 
4620 	/*
4621 	 * Keep the ASF firmware running if up.
4622 	 */
4623 	if (sc->bge_asf_mode & ASF_STACKUP)
4624 		BGE_SETBIT(sc, BGE_MODE_CTL, BGE_MODECTL_STACKUP);
4625 	else
4626 		BGE_CLRBIT(sc, BGE_MODE_CTL, BGE_MODECTL_STACKUP);
4627 
4628 	/* Free the RX lists. */
4629 	bge_free_rx_ring_std(sc);
4630 
4631 	/* Free jumbo RX list. */
4632 	if (BGE_IS_JUMBO_CAPABLE(sc))
4633 		bge_free_rx_ring_jumbo(sc);
4634 
4635 	/* Free TX buffers. */
4636 	bge_free_tx_ring(sc);
4637 
4638 	/*
4639 	 * Isolate/power down the PHY, but leave the media selection
4640 	 * unchanged so that things will be put back to normal when
4641 	 * we bring the interface back up.
4642 	 */
4643 	if ((sc->bge_flags & BGE_FLAG_TBI) == 0) {
4644 		itmp = ifp->if_flags;
4645 		ifp->if_flags |= IFF_UP;
4646 		/*
4647 		 * If we are called from bge_detach(), mii is already NULL.
4648 		 */
4649 		if (mii != NULL) {
4650 			ifm = mii->mii_media.ifm_cur;
4651 			mtmp = ifm->ifm_media;
4652 			ifm->ifm_media = IFM_ETHER | IFM_NONE;
4653 			mii_mediachg(mii);
4654 			ifm->ifm_media = mtmp;
4655 		}
4656 		ifp->if_flags = itmp;
4657 	}
4658 
4659 	sc->bge_tx_saved_considx = BGE_TXCONS_UNSET;
4660 
4661 	/* Clear MAC's link state (PHY may still have link UP). */
4662 	if (bootverbose && sc->bge_link)
4663 		if_printf(sc->bge_ifp, "link DOWN\n");
4664 	sc->bge_link = 0;
4665 
4666 	ifp->if_drv_flags &= ~(IFF_DRV_RUNNING | IFF_DRV_OACTIVE);
4667 }
4668 
4669 /*
4670  * Stop all chip I/O so that the kernel's probe routines don't
4671  * get confused by errant DMAs when rebooting.
4672  */
4673 static int
4674 bge_shutdown(device_t dev)
4675 {
4676 	struct bge_softc *sc;
4677 
4678 	sc = device_get_softc(dev);
4679 	BGE_LOCK(sc);
4680 	bge_stop(sc);
4681 	bge_reset(sc);
4682 	BGE_UNLOCK(sc);
4683 
4684 	return (0);
4685 }
4686 
4687 static int
4688 bge_suspend(device_t dev)
4689 {
4690 	struct bge_softc *sc;
4691 
4692 	sc = device_get_softc(dev);
4693 	BGE_LOCK(sc);
4694 	bge_stop(sc);
4695 	BGE_UNLOCK(sc);
4696 
4697 	return (0);
4698 }
4699 
4700 static int
4701 bge_resume(device_t dev)
4702 {
4703 	struct bge_softc *sc;
4704 	struct ifnet *ifp;
4705 
4706 	sc = device_get_softc(dev);
4707 	BGE_LOCK(sc);
4708 	ifp = sc->bge_ifp;
4709 	if (ifp->if_flags & IFF_UP) {
4710 		bge_init_locked(sc);
4711 		if (ifp->if_drv_flags & IFF_DRV_RUNNING)
4712 			bge_start_locked(ifp);
4713 	}
4714 	BGE_UNLOCK(sc);
4715 
4716 	return (0);
4717 }
4718 
4719 static void
4720 bge_link_upd(struct bge_softc *sc)
4721 {
4722 	struct mii_data *mii;
4723 	uint32_t link, status;
4724 
4725 	BGE_LOCK_ASSERT(sc);
4726 
4727 	/* Clear 'pending link event' flag. */
4728 	sc->bge_link_evt = 0;
4729 
4730 	/*
4731 	 * Process link state changes.
4732 	 * Grrr. The link status word in the status block does
4733 	 * not work correctly on the BCM5700 rev AX and BX chips,
4734 	 * according to all available information. Hence, we have
4735 	 * to enable MII interrupts in order to properly obtain
4736 	 * async link changes. Unfortunately, this also means that
4737 	 * we have to read the MAC status register to detect link
4738 	 * changes, thereby adding an additional register access to
4739 	 * the interrupt handler.
4740 	 *
4741 	 * XXX: perhaps link state detection procedure used for
4742 	 * BGE_CHIPID_BCM5700_B2 can be used for others BCM5700 revisions.
4743 	 */
4744 
4745 	if (sc->bge_asicrev == BGE_ASICREV_BCM5700 &&
4746 	    sc->bge_chipid != BGE_CHIPID_BCM5700_B2) {
4747 		status = CSR_READ_4(sc, BGE_MAC_STS);
4748 		if (status & BGE_MACSTAT_MI_INTERRUPT) {
4749 			mii = device_get_softc(sc->bge_miibus);
4750 			mii_pollstat(mii);
4751 			if (!sc->bge_link &&
4752 			    mii->mii_media_status & IFM_ACTIVE &&
4753 			    IFM_SUBTYPE(mii->mii_media_active) != IFM_NONE) {
4754 				sc->bge_link++;
4755 				if (bootverbose)
4756 					if_printf(sc->bge_ifp, "link UP\n");
4757 			} else if (sc->bge_link &&
4758 			    (!(mii->mii_media_status & IFM_ACTIVE) ||
4759 			    IFM_SUBTYPE(mii->mii_media_active) == IFM_NONE)) {
4760 				sc->bge_link = 0;
4761 				if (bootverbose)
4762 					if_printf(sc->bge_ifp, "link DOWN\n");
4763 			}
4764 
4765 			/* Clear the interrupt. */
4766 			CSR_WRITE_4(sc, BGE_MAC_EVT_ENB,
4767 			    BGE_EVTENB_MI_INTERRUPT);
4768 			bge_miibus_readreg(sc->bge_dev, 1, BRGPHY_MII_ISR);
4769 			bge_miibus_writereg(sc->bge_dev, 1, BRGPHY_MII_IMR,
4770 			    BRGPHY_INTRS);
4771 		}
4772 		return;
4773 	}
4774 
4775 	if (sc->bge_flags & BGE_FLAG_TBI) {
4776 		status = CSR_READ_4(sc, BGE_MAC_STS);
4777 		if (status & BGE_MACSTAT_TBI_PCS_SYNCHED) {
4778 			if (!sc->bge_link) {
4779 				sc->bge_link++;
4780 				if (sc->bge_asicrev == BGE_ASICREV_BCM5704)
4781 					BGE_CLRBIT(sc, BGE_MAC_MODE,
4782 					    BGE_MACMODE_TBI_SEND_CFGS);
4783 				CSR_WRITE_4(sc, BGE_MAC_STS, 0xFFFFFFFF);
4784 				if (bootverbose)
4785 					if_printf(sc->bge_ifp, "link UP\n");
4786 				if_link_state_change(sc->bge_ifp,
4787 				    LINK_STATE_UP);
4788 			}
4789 		} else if (sc->bge_link) {
4790 			sc->bge_link = 0;
4791 			if (bootverbose)
4792 				if_printf(sc->bge_ifp, "link DOWN\n");
4793 			if_link_state_change(sc->bge_ifp, LINK_STATE_DOWN);
4794 		}
4795 	} else if (CSR_READ_4(sc, BGE_MI_MODE) & BGE_MIMODE_AUTOPOLL) {
4796 		/*
4797 		 * Some broken BCM chips have BGE_STATFLAG_LINKSTATE_CHANGED bit
4798 		 * in status word always set. Workaround this bug by reading
4799 		 * PHY link status directly.
4800 		 */
4801 		link = (CSR_READ_4(sc, BGE_MI_STS) & BGE_MISTS_LINK) ? 1 : 0;
4802 
4803 		if (link != sc->bge_link ||
4804 		    sc->bge_asicrev == BGE_ASICREV_BCM5700) {
4805 			mii = device_get_softc(sc->bge_miibus);
4806 			mii_pollstat(mii);
4807 			if (!sc->bge_link &&
4808 			    mii->mii_media_status & IFM_ACTIVE &&
4809 			    IFM_SUBTYPE(mii->mii_media_active) != IFM_NONE) {
4810 				sc->bge_link++;
4811 				if (bootverbose)
4812 					if_printf(sc->bge_ifp, "link UP\n");
4813 			} else if (sc->bge_link &&
4814 			    (!(mii->mii_media_status & IFM_ACTIVE) ||
4815 			    IFM_SUBTYPE(mii->mii_media_active) == IFM_NONE)) {
4816 				sc->bge_link = 0;
4817 				if (bootverbose)
4818 					if_printf(sc->bge_ifp, "link DOWN\n");
4819 			}
4820 		}
4821 	} else {
4822 		/*
4823 		 * Discard link events for MII/GMII controllers
4824 		 * if MI auto-polling is disabled.
4825 		 */
4826 	}
4827 
4828 	/* Clear the attention. */
4829 	CSR_WRITE_4(sc, BGE_MAC_STS, BGE_MACSTAT_SYNC_CHANGED |
4830 	    BGE_MACSTAT_CFG_CHANGED | BGE_MACSTAT_MI_COMPLETE |
4831 	    BGE_MACSTAT_LINK_CHANGED);
4832 }
4833 
4834 #define BGE_SYSCTL_STAT(sc, ctx, desc, parent, node, oid) \
4835 	SYSCTL_ADD_PROC(ctx, parent, OID_AUTO, oid, CTLTYPE_UINT|CTLFLAG_RD, \
4836 	    sc, offsetof(struct bge_stats, node), bge_sysctl_stats, "IU", \
4837 	    desc)
4838 
4839 static void
4840 bge_add_sysctls(struct bge_softc *sc)
4841 {
4842 	struct sysctl_ctx_list *ctx;
4843 	struct sysctl_oid_list *children, *schildren;
4844 	struct sysctl_oid *tree;
4845 
4846 	ctx = device_get_sysctl_ctx(sc->bge_dev);
4847 	children = SYSCTL_CHILDREN(device_get_sysctl_tree(sc->bge_dev));
4848 
4849 #ifdef BGE_REGISTER_DEBUG
4850 	SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "debug_info",
4851 	    CTLTYPE_INT | CTLFLAG_RW, sc, 0, bge_sysctl_debug_info, "I",
4852 	    "Debug Information");
4853 
4854 	SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "reg_read",
4855 	    CTLTYPE_INT | CTLFLAG_RW, sc, 0, bge_sysctl_reg_read, "I",
4856 	    "Register Read");
4857 
4858 	SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "mem_read",
4859 	    CTLTYPE_INT | CTLFLAG_RW, sc, 0, bge_sysctl_mem_read, "I",
4860 	    "Memory Read");
4861 
4862 #endif
4863 
4864 	if (BGE_IS_5705_PLUS(sc))
4865 		return;
4866 
4867 	tree = SYSCTL_ADD_NODE(ctx, children, OID_AUTO, "stats", CTLFLAG_RD,
4868 	    NULL, "BGE Statistics");
4869 	schildren = children = SYSCTL_CHILDREN(tree);
4870 	BGE_SYSCTL_STAT(sc, ctx, "Frames Dropped Due To Filters",
4871 	    children, COSFramesDroppedDueToFilters,
4872 	    "FramesDroppedDueToFilters");
4873 	BGE_SYSCTL_STAT(sc, ctx, "NIC DMA Write Queue Full",
4874 	    children, nicDmaWriteQueueFull, "DmaWriteQueueFull");
4875 	BGE_SYSCTL_STAT(sc, ctx, "NIC DMA Write High Priority Queue Full",
4876 	    children, nicDmaWriteHighPriQueueFull, "DmaWriteHighPriQueueFull");
4877 	BGE_SYSCTL_STAT(sc, ctx, "NIC No More RX Buffer Descriptors",
4878 	    children, nicNoMoreRxBDs, "NoMoreRxBDs");
4879 	BGE_SYSCTL_STAT(sc, ctx, "Discarded Input Frames",
4880 	    children, ifInDiscards, "InputDiscards");
4881 	BGE_SYSCTL_STAT(sc, ctx, "Input Errors",
4882 	    children, ifInErrors, "InputErrors");
4883 	BGE_SYSCTL_STAT(sc, ctx, "NIC Recv Threshold Hit",
4884 	    children, nicRecvThresholdHit, "RecvThresholdHit");
4885 	BGE_SYSCTL_STAT(sc, ctx, "NIC DMA Read Queue Full",
4886 	    children, nicDmaReadQueueFull, "DmaReadQueueFull");
4887 	BGE_SYSCTL_STAT(sc, ctx, "NIC DMA Read High Priority Queue Full",
4888 	    children, nicDmaReadHighPriQueueFull, "DmaReadHighPriQueueFull");
4889 	BGE_SYSCTL_STAT(sc, ctx, "NIC Send Data Complete Queue Full",
4890 	    children, nicSendDataCompQueueFull, "SendDataCompQueueFull");
4891 	BGE_SYSCTL_STAT(sc, ctx, "NIC Ring Set Send Producer Index",
4892 	    children, nicRingSetSendProdIndex, "RingSetSendProdIndex");
4893 	BGE_SYSCTL_STAT(sc, ctx, "NIC Ring Status Update",
4894 	    children, nicRingStatusUpdate, "RingStatusUpdate");
4895 	BGE_SYSCTL_STAT(sc, ctx, "NIC Interrupts",
4896 	    children, nicInterrupts, "Interrupts");
4897 	BGE_SYSCTL_STAT(sc, ctx, "NIC Avoided Interrupts",
4898 	    children, nicAvoidedInterrupts, "AvoidedInterrupts");
4899 	BGE_SYSCTL_STAT(sc, ctx, "NIC Send Threshold Hit",
4900 	    children, nicSendThresholdHit, "SendThresholdHit");
4901 
4902 	tree = SYSCTL_ADD_NODE(ctx, schildren, OID_AUTO, "rx", CTLFLAG_RD,
4903 	    NULL, "BGE RX Statistics");
4904 	children = SYSCTL_CHILDREN(tree);
4905 	BGE_SYSCTL_STAT(sc, ctx, "Inbound Octets",
4906 	    children, rxstats.ifHCInOctets, "Octets");
4907 	BGE_SYSCTL_STAT(sc, ctx, "Fragments",
4908 	    children, rxstats.etherStatsFragments, "Fragments");
4909 	BGE_SYSCTL_STAT(sc, ctx, "Inbound Unicast Packets",
4910 	    children, rxstats.ifHCInUcastPkts, "UcastPkts");
4911 	BGE_SYSCTL_STAT(sc, ctx, "Inbound Multicast Packets",
4912 	    children, rxstats.ifHCInMulticastPkts, "MulticastPkts");
4913 	BGE_SYSCTL_STAT(sc, ctx, "FCS Errors",
4914 	    children, rxstats.dot3StatsFCSErrors, "FCSErrors");
4915 	BGE_SYSCTL_STAT(sc, ctx, "Alignment Errors",
4916 	    children, rxstats.dot3StatsAlignmentErrors, "AlignmentErrors");
4917 	BGE_SYSCTL_STAT(sc, ctx, "XON Pause Frames Received",
4918 	    children, rxstats.xonPauseFramesReceived, "xonPauseFramesReceived");
4919 	BGE_SYSCTL_STAT(sc, ctx, "XOFF Pause Frames Received",
4920 	    children, rxstats.xoffPauseFramesReceived,
4921 	    "xoffPauseFramesReceived");
4922 	BGE_SYSCTL_STAT(sc, ctx, "MAC Control Frames Received",
4923 	    children, rxstats.macControlFramesReceived,
4924 	    "ControlFramesReceived");
4925 	BGE_SYSCTL_STAT(sc, ctx, "XOFF State Entered",
4926 	    children, rxstats.xoffStateEntered, "xoffStateEntered");
4927 	BGE_SYSCTL_STAT(sc, ctx, "Frames Too Long",
4928 	    children, rxstats.dot3StatsFramesTooLong, "FramesTooLong");
4929 	BGE_SYSCTL_STAT(sc, ctx, "Jabbers",
4930 	    children, rxstats.etherStatsJabbers, "Jabbers");
4931 	BGE_SYSCTL_STAT(sc, ctx, "Undersized Packets",
4932 	    children, rxstats.etherStatsUndersizePkts, "UndersizePkts");
4933 	BGE_SYSCTL_STAT(sc, ctx, "Inbound Range Length Errors",
4934 	    children, rxstats.inRangeLengthError, "inRangeLengthError");
4935 	BGE_SYSCTL_STAT(sc, ctx, "Outbound Range Length Errors",
4936 	    children, rxstats.outRangeLengthError, "outRangeLengthError");
4937 
4938 	tree = SYSCTL_ADD_NODE(ctx, schildren, OID_AUTO, "tx", CTLFLAG_RD,
4939 	    NULL, "BGE TX Statistics");
4940 	children = SYSCTL_CHILDREN(tree);
4941 	BGE_SYSCTL_STAT(sc, ctx, "Outbound Octets",
4942 	    children, txstats.ifHCOutOctets, "Octets");
4943 	BGE_SYSCTL_STAT(sc, ctx, "TX Collisions",
4944 	    children, txstats.etherStatsCollisions, "Collisions");
4945 	BGE_SYSCTL_STAT(sc, ctx, "XON Sent",
4946 	    children, txstats.outXonSent, "XonSent");
4947 	BGE_SYSCTL_STAT(sc, ctx, "XOFF Sent",
4948 	    children, txstats.outXoffSent, "XoffSent");
4949 	BGE_SYSCTL_STAT(sc, ctx, "Flow Control Done",
4950 	    children, txstats.flowControlDone, "flowControlDone");
4951 	BGE_SYSCTL_STAT(sc, ctx, "Internal MAC TX errors",
4952 	    children, txstats.dot3StatsInternalMacTransmitErrors,
4953 	    "InternalMacTransmitErrors");
4954 	BGE_SYSCTL_STAT(sc, ctx, "Single Collision Frames",
4955 	    children, txstats.dot3StatsSingleCollisionFrames,
4956 	    "SingleCollisionFrames");
4957 	BGE_SYSCTL_STAT(sc, ctx, "Multiple Collision Frames",
4958 	    children, txstats.dot3StatsMultipleCollisionFrames,
4959 	    "MultipleCollisionFrames");
4960 	BGE_SYSCTL_STAT(sc, ctx, "Deferred Transmissions",
4961 	    children, txstats.dot3StatsDeferredTransmissions,
4962 	    "DeferredTransmissions");
4963 	BGE_SYSCTL_STAT(sc, ctx, "Excessive Collisions",
4964 	    children, txstats.dot3StatsExcessiveCollisions,
4965 	    "ExcessiveCollisions");
4966 	BGE_SYSCTL_STAT(sc, ctx, "Late Collisions",
4967 	    children, txstats.dot3StatsLateCollisions,
4968 	    "LateCollisions");
4969 	BGE_SYSCTL_STAT(sc, ctx, "Outbound Unicast Packets",
4970 	    children, txstats.ifHCOutUcastPkts, "UcastPkts");
4971 	BGE_SYSCTL_STAT(sc, ctx, "Outbound Multicast Packets",
4972 	    children, txstats.ifHCOutMulticastPkts, "MulticastPkts");
4973 	BGE_SYSCTL_STAT(sc, ctx, "Outbound Broadcast Packets",
4974 	    children, txstats.ifHCOutBroadcastPkts, "BroadcastPkts");
4975 	BGE_SYSCTL_STAT(sc, ctx, "Carrier Sense Errors",
4976 	    children, txstats.dot3StatsCarrierSenseErrors,
4977 	    "CarrierSenseErrors");
4978 	BGE_SYSCTL_STAT(sc, ctx, "Outbound Discards",
4979 	    children, txstats.ifOutDiscards, "Discards");
4980 	BGE_SYSCTL_STAT(sc, ctx, "Outbound Errors",
4981 	    children, txstats.ifOutErrors, "Errors");
4982 }
4983 
4984 static int
4985 bge_sysctl_stats(SYSCTL_HANDLER_ARGS)
4986 {
4987 	struct bge_softc *sc;
4988 	uint32_t result;
4989 	int offset;
4990 
4991 	sc = (struct bge_softc *)arg1;
4992 	offset = arg2;
4993 	result = CSR_READ_4(sc, BGE_MEMWIN_START + BGE_STATS_BLOCK + offset +
4994 	    offsetof(bge_hostaddr, bge_addr_lo));
4995 	return (sysctl_handle_int(oidp, &result, 0, req));
4996 }
4997 
4998 #ifdef BGE_REGISTER_DEBUG
4999 static int
5000 bge_sysctl_debug_info(SYSCTL_HANDLER_ARGS)
5001 {
5002 	struct bge_softc *sc;
5003 	uint16_t *sbdata;
5004 	int error;
5005 	int result;
5006 	int i, j;
5007 
5008 	result = -1;
5009 	error = sysctl_handle_int(oidp, &result, 0, req);
5010 	if (error || (req->newptr == NULL))
5011 		return (error);
5012 
5013 	if (result == 1) {
5014 		sc = (struct bge_softc *)arg1;
5015 
5016 		sbdata = (uint16_t *)sc->bge_ldata.bge_status_block;
5017 		printf("Status Block:\n");
5018 		for (i = 0x0; i < (BGE_STATUS_BLK_SZ / 4); ) {
5019 			printf("%06x:", i);
5020 			for (j = 0; j < 8; j++) {
5021 				printf(" %04x", sbdata[i]);
5022 				i += 4;
5023 			}
5024 			printf("\n");
5025 		}
5026 
5027 		printf("Registers:\n");
5028 		for (i = 0x800; i < 0xA00; ) {
5029 			printf("%06x:", i);
5030 			for (j = 0; j < 8; j++) {
5031 				printf(" %08x", CSR_READ_4(sc, i));
5032 				i += 4;
5033 			}
5034 			printf("\n");
5035 		}
5036 
5037 		printf("Hardware Flags:\n");
5038 		if (BGE_IS_5755_PLUS(sc))
5039 			printf(" - 5755 Plus\n");
5040 		if (BGE_IS_575X_PLUS(sc))
5041 			printf(" - 575X Plus\n");
5042 		if (BGE_IS_5705_PLUS(sc))
5043 			printf(" - 5705 Plus\n");
5044 		if (BGE_IS_5714_FAMILY(sc))
5045 			printf(" - 5714 Family\n");
5046 		if (BGE_IS_5700_FAMILY(sc))
5047 			printf(" - 5700 Family\n");
5048 		if (sc->bge_flags & BGE_FLAG_JUMBO)
5049 			printf(" - Supports Jumbo Frames\n");
5050 		if (sc->bge_flags & BGE_FLAG_PCIX)
5051 			printf(" - PCI-X Bus\n");
5052 		if (sc->bge_flags & BGE_FLAG_PCIE)
5053 			printf(" - PCI Express Bus\n");
5054 		if (sc->bge_flags & BGE_FLAG_NO_3LED)
5055 			printf(" - No 3 LEDs\n");
5056 		if (sc->bge_flags & BGE_FLAG_RX_ALIGNBUG)
5057 			printf(" - RX Alignment Bug\n");
5058 	}
5059 
5060 	return (error);
5061 }
5062 
5063 static int
5064 bge_sysctl_reg_read(SYSCTL_HANDLER_ARGS)
5065 {
5066 	struct bge_softc *sc;
5067 	int error;
5068 	uint16_t result;
5069 	uint32_t val;
5070 
5071 	result = -1;
5072 	error = sysctl_handle_int(oidp, &result, 0, req);
5073 	if (error || (req->newptr == NULL))
5074 		return (error);
5075 
5076 	if (result < 0x8000) {
5077 		sc = (struct bge_softc *)arg1;
5078 		val = CSR_READ_4(sc, result);
5079 		printf("reg 0x%06X = 0x%08X\n", result, val);
5080 	}
5081 
5082 	return (error);
5083 }
5084 
5085 static int
5086 bge_sysctl_mem_read(SYSCTL_HANDLER_ARGS)
5087 {
5088 	struct bge_softc *sc;
5089 	int error;
5090 	uint16_t result;
5091 	uint32_t val;
5092 
5093 	result = -1;
5094 	error = sysctl_handle_int(oidp, &result, 0, req);
5095 	if (error || (req->newptr == NULL))
5096 		return (error);
5097 
5098 	if (result < 0x8000) {
5099 		sc = (struct bge_softc *)arg1;
5100 		val = bge_readmem_ind(sc, result);
5101 		printf("mem 0x%06X = 0x%08X\n", result, val);
5102 	}
5103 
5104 	return (error);
5105 }
5106 #endif
5107 
5108 static int
5109 bge_get_eaddr_fw(struct bge_softc *sc, uint8_t ether_addr[])
5110 {
5111 
5112 	if (sc->bge_flags & BGE_FLAG_EADDR)
5113 		return (1);
5114 
5115 #ifdef __sparc64__
5116 	OF_getetheraddr(sc->bge_dev, ether_addr);
5117 	return (0);
5118 #endif
5119 	return (1);
5120 }
5121 
5122 static int
5123 bge_get_eaddr_mem(struct bge_softc *sc, uint8_t ether_addr[])
5124 {
5125 	uint32_t mac_addr;
5126 
5127 	mac_addr = bge_readmem_ind(sc, 0x0c14);
5128 	if ((mac_addr >> 16) == 0x484b) {
5129 		ether_addr[0] = (uint8_t)(mac_addr >> 8);
5130 		ether_addr[1] = (uint8_t)mac_addr;
5131 		mac_addr = bge_readmem_ind(sc, 0x0c18);
5132 		ether_addr[2] = (uint8_t)(mac_addr >> 24);
5133 		ether_addr[3] = (uint8_t)(mac_addr >> 16);
5134 		ether_addr[4] = (uint8_t)(mac_addr >> 8);
5135 		ether_addr[5] = (uint8_t)mac_addr;
5136 		return (0);
5137 	}
5138 	return (1);
5139 }
5140 
5141 static int
5142 bge_get_eaddr_nvram(struct bge_softc *sc, uint8_t ether_addr[])
5143 {
5144 	int mac_offset = BGE_EE_MAC_OFFSET;
5145 
5146 	if (sc->bge_asicrev == BGE_ASICREV_BCM5906)
5147 		mac_offset = BGE_EE_MAC_OFFSET_5906;
5148 
5149 	return (bge_read_nvram(sc, ether_addr, mac_offset + 2,
5150 	    ETHER_ADDR_LEN));
5151 }
5152 
5153 static int
5154 bge_get_eaddr_eeprom(struct bge_softc *sc, uint8_t ether_addr[])
5155 {
5156 
5157 	if (sc->bge_asicrev == BGE_ASICREV_BCM5906)
5158 		return (1);
5159 
5160 	return (bge_read_eeprom(sc, ether_addr, BGE_EE_MAC_OFFSET + 2,
5161 	   ETHER_ADDR_LEN));
5162 }
5163 
5164 static int
5165 bge_get_eaddr(struct bge_softc *sc, uint8_t eaddr[])
5166 {
5167 	static const bge_eaddr_fcn_t bge_eaddr_funcs[] = {
5168 		/* NOTE: Order is critical */
5169 		bge_get_eaddr_fw,
5170 		bge_get_eaddr_mem,
5171 		bge_get_eaddr_nvram,
5172 		bge_get_eaddr_eeprom,
5173 		NULL
5174 	};
5175 	const bge_eaddr_fcn_t *func;
5176 
5177 	for (func = bge_eaddr_funcs; *func != NULL; ++func) {
5178 		if ((*func)(sc, eaddr) == 0)
5179 			break;
5180 	}
5181 	return (*func == NULL ? ENXIO : 0);
5182 }
5183