xref: /freebsd/sys/dev/bge/if_bge.c (revision 4ed925457ab06e83238a5db33e89ccc94b99a713)
1 /*-
2  * Copyright (c) 2001 Wind River Systems
3  * Copyright (c) 1997, 1998, 1999, 2001
4  *	Bill Paul <wpaul@windriver.com>.  All rights reserved.
5  *
6  * Redistribution and use in source and binary forms, with or without
7  * modification, are permitted provided that the following conditions
8  * are met:
9  * 1. Redistributions of source code must retain the above copyright
10  *    notice, this list of conditions and the following disclaimer.
11  * 2. Redistributions in binary form must reproduce the above copyright
12  *    notice, this list of conditions and the following disclaimer in the
13  *    documentation and/or other materials provided with the distribution.
14  * 3. All advertising materials mentioning features or use of this software
15  *    must display the following acknowledgement:
16  *	This product includes software developed by Bill Paul.
17  * 4. Neither the name of the author nor the names of any co-contributors
18  *    may be used to endorse or promote products derived from this software
19  *    without specific prior written permission.
20  *
21  * THIS SOFTWARE IS PROVIDED BY Bill Paul AND CONTRIBUTORS ``AS IS'' AND
22  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
23  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
24  * ARE DISCLAIMED.  IN NO EVENT SHALL Bill Paul OR THE VOICES IN HIS HEAD
25  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
26  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
27  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
28  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
29  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
30  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF
31  * THE POSSIBILITY OF SUCH DAMAGE.
32  */
33 
34 #include <sys/cdefs.h>
35 __FBSDID("$FreeBSD$");
36 
37 /*
38  * Broadcom BCM570x family gigabit ethernet driver for FreeBSD.
39  *
40  * The Broadcom BCM5700 is based on technology originally developed by
41  * Alteon Networks as part of the Tigon I and Tigon II gigabit ethernet
42  * MAC chips. The BCM5700, sometimes refered to as the Tigon III, has
43  * two on-board MIPS R4000 CPUs and can have as much as 16MB of external
44  * SSRAM. The BCM5700 supports TCP, UDP and IP checksum offload, jumbo
45  * frames, highly configurable RX filtering, and 16 RX and TX queues
46  * (which, along with RX filter rules, can be used for QOS applications).
47  * Other features, such as TCP segmentation, may be available as part
48  * of value-added firmware updates. Unlike the Tigon I and Tigon II,
49  * firmware images can be stored in hardware and need not be compiled
50  * into the driver.
51  *
52  * The BCM5700 supports the PCI v2.2 and PCI-X v1.0 standards, and will
53  * function in a 32-bit/64-bit 33/66Mhz bus, or a 64-bit/133Mhz bus.
54  *
55  * The BCM5701 is a single-chip solution incorporating both the BCM5700
56  * MAC and a BCM5401 10/100/1000 PHY. Unlike the BCM5700, the BCM5701
57  * does not support external SSRAM.
58  *
59  * Broadcom also produces a variation of the BCM5700 under the "Altima"
60  * brand name, which is functionally similar but lacks PCI-X support.
61  *
62  * Without external SSRAM, you can only have at most 4 TX rings,
63  * and the use of the mini RX ring is disabled. This seems to imply
64  * that these features are simply not available on the BCM5701. As a
65  * result, this driver does not implement any support for the mini RX
66  * ring.
67  */
68 
69 #ifdef HAVE_KERNEL_OPTION_HEADERS
70 #include "opt_device_polling.h"
71 #endif
72 
73 #include <sys/param.h>
74 #include <sys/endian.h>
75 #include <sys/systm.h>
76 #include <sys/sockio.h>
77 #include <sys/mbuf.h>
78 #include <sys/malloc.h>
79 #include <sys/kernel.h>
80 #include <sys/module.h>
81 #include <sys/socket.h>
82 #include <sys/sysctl.h>
83 #include <sys/taskqueue.h>
84 
85 #include <net/if.h>
86 #include <net/if_arp.h>
87 #include <net/ethernet.h>
88 #include <net/if_dl.h>
89 #include <net/if_media.h>
90 
91 #include <net/bpf.h>
92 
93 #include <net/if_types.h>
94 #include <net/if_vlan_var.h>
95 
96 #include <netinet/in_systm.h>
97 #include <netinet/in.h>
98 #include <netinet/ip.h>
99 #include <netinet/tcp.h>
100 
101 #include <machine/bus.h>
102 #include <machine/resource.h>
103 #include <sys/bus.h>
104 #include <sys/rman.h>
105 
106 #include <dev/mii/mii.h>
107 #include <dev/mii/miivar.h>
108 #include "miidevs.h"
109 #include <dev/mii/brgphyreg.h>
110 
111 #ifdef __sparc64__
112 #include <dev/ofw/ofw_bus.h>
113 #include <dev/ofw/openfirm.h>
114 #include <machine/ofw_machdep.h>
115 #include <machine/ver.h>
116 #endif
117 
118 #include <dev/pci/pcireg.h>
119 #include <dev/pci/pcivar.h>
120 
121 #include <dev/bge/if_bgereg.h>
122 
123 #define	BGE_CSUM_FEATURES	(CSUM_IP | CSUM_TCP | CSUM_UDP)
124 #define	ETHER_MIN_NOPAD		(ETHER_MIN_LEN - ETHER_CRC_LEN) /* i.e., 60 */
125 
126 MODULE_DEPEND(bge, pci, 1, 1, 1);
127 MODULE_DEPEND(bge, ether, 1, 1, 1);
128 MODULE_DEPEND(bge, miibus, 1, 1, 1);
129 
130 /* "device miibus" required.  See GENERIC if you get errors here. */
131 #include "miibus_if.h"
132 
133 /*
134  * Various supported device vendors/types and their names. Note: the
135  * spec seems to indicate that the hardware still has Alteon's vendor
136  * ID burned into it, though it will always be overriden by the vendor
137  * ID in the EEPROM. Just to be safe, we cover all possibilities.
138  */
139 static const struct bge_type {
140 	uint16_t	bge_vid;
141 	uint16_t	bge_did;
142 } bge_devs[] = {
143 	{ ALTEON_VENDORID,	ALTEON_DEVICEID_BCM5700 },
144 	{ ALTEON_VENDORID,	ALTEON_DEVICEID_BCM5701 },
145 
146 	{ ALTIMA_VENDORID,	ALTIMA_DEVICE_AC1000 },
147 	{ ALTIMA_VENDORID,	ALTIMA_DEVICE_AC1002 },
148 	{ ALTIMA_VENDORID,	ALTIMA_DEVICE_AC9100 },
149 
150 	{ APPLE_VENDORID,	APPLE_DEVICE_BCM5701 },
151 
152 	{ BCOM_VENDORID,	BCOM_DEVICEID_BCM5700 },
153 	{ BCOM_VENDORID,	BCOM_DEVICEID_BCM5701 },
154 	{ BCOM_VENDORID,	BCOM_DEVICEID_BCM5702 },
155 	{ BCOM_VENDORID,	BCOM_DEVICEID_BCM5702_ALT },
156 	{ BCOM_VENDORID,	BCOM_DEVICEID_BCM5702X },
157 	{ BCOM_VENDORID,	BCOM_DEVICEID_BCM5703 },
158 	{ BCOM_VENDORID,	BCOM_DEVICEID_BCM5703_ALT },
159 	{ BCOM_VENDORID,	BCOM_DEVICEID_BCM5703X },
160 	{ BCOM_VENDORID,	BCOM_DEVICEID_BCM5704C },
161 	{ BCOM_VENDORID,	BCOM_DEVICEID_BCM5704S },
162 	{ BCOM_VENDORID,	BCOM_DEVICEID_BCM5704S_ALT },
163 	{ BCOM_VENDORID,	BCOM_DEVICEID_BCM5705 },
164 	{ BCOM_VENDORID,	BCOM_DEVICEID_BCM5705F },
165 	{ BCOM_VENDORID,	BCOM_DEVICEID_BCM5705K },
166 	{ BCOM_VENDORID,	BCOM_DEVICEID_BCM5705M },
167 	{ BCOM_VENDORID,	BCOM_DEVICEID_BCM5705M_ALT },
168 	{ BCOM_VENDORID,	BCOM_DEVICEID_BCM5714C },
169 	{ BCOM_VENDORID,	BCOM_DEVICEID_BCM5714S },
170 	{ BCOM_VENDORID,	BCOM_DEVICEID_BCM5715 },
171 	{ BCOM_VENDORID,	BCOM_DEVICEID_BCM5715S },
172 	{ BCOM_VENDORID,	BCOM_DEVICEID_BCM5720 },
173 	{ BCOM_VENDORID,	BCOM_DEVICEID_BCM5721 },
174 	{ BCOM_VENDORID,	BCOM_DEVICEID_BCM5722 },
175 	{ BCOM_VENDORID,	BCOM_DEVICEID_BCM5723 },
176 	{ BCOM_VENDORID,	BCOM_DEVICEID_BCM5750 },
177 	{ BCOM_VENDORID,	BCOM_DEVICEID_BCM5750M },
178 	{ BCOM_VENDORID,	BCOM_DEVICEID_BCM5751 },
179 	{ BCOM_VENDORID,	BCOM_DEVICEID_BCM5751F },
180 	{ BCOM_VENDORID,	BCOM_DEVICEID_BCM5751M },
181 	{ BCOM_VENDORID,	BCOM_DEVICEID_BCM5752 },
182 	{ BCOM_VENDORID,	BCOM_DEVICEID_BCM5752M },
183 	{ BCOM_VENDORID,	BCOM_DEVICEID_BCM5753 },
184 	{ BCOM_VENDORID,	BCOM_DEVICEID_BCM5753F },
185 	{ BCOM_VENDORID,	BCOM_DEVICEID_BCM5753M },
186 	{ BCOM_VENDORID,	BCOM_DEVICEID_BCM5754 },
187 	{ BCOM_VENDORID,	BCOM_DEVICEID_BCM5754M },
188 	{ BCOM_VENDORID,	BCOM_DEVICEID_BCM5755 },
189 	{ BCOM_VENDORID,	BCOM_DEVICEID_BCM5755M },
190 	{ BCOM_VENDORID,	BCOM_DEVICEID_BCM5756 },
191 	{ BCOM_VENDORID,	BCOM_DEVICEID_BCM5761 },
192 	{ BCOM_VENDORID,	BCOM_DEVICEID_BCM5761E },
193 	{ BCOM_VENDORID,	BCOM_DEVICEID_BCM5761S },
194 	{ BCOM_VENDORID,	BCOM_DEVICEID_BCM5761SE },
195 	{ BCOM_VENDORID,	BCOM_DEVICEID_BCM5764 },
196 	{ BCOM_VENDORID,	BCOM_DEVICEID_BCM5780 },
197 	{ BCOM_VENDORID,	BCOM_DEVICEID_BCM5780S },
198 	{ BCOM_VENDORID,	BCOM_DEVICEID_BCM5781 },
199 	{ BCOM_VENDORID,	BCOM_DEVICEID_BCM5782 },
200 	{ BCOM_VENDORID,	BCOM_DEVICEID_BCM5784 },
201 	{ BCOM_VENDORID,	BCOM_DEVICEID_BCM5785F },
202 	{ BCOM_VENDORID,	BCOM_DEVICEID_BCM5785G },
203 	{ BCOM_VENDORID,	BCOM_DEVICEID_BCM5786 },
204 	{ BCOM_VENDORID,	BCOM_DEVICEID_BCM5787 },
205 	{ BCOM_VENDORID,	BCOM_DEVICEID_BCM5787F },
206 	{ BCOM_VENDORID,	BCOM_DEVICEID_BCM5787M },
207 	{ BCOM_VENDORID,	BCOM_DEVICEID_BCM5788 },
208 	{ BCOM_VENDORID,	BCOM_DEVICEID_BCM5789 },
209 	{ BCOM_VENDORID,	BCOM_DEVICEID_BCM5901 },
210 	{ BCOM_VENDORID,	BCOM_DEVICEID_BCM5901A2 },
211 	{ BCOM_VENDORID,	BCOM_DEVICEID_BCM5903M },
212 	{ BCOM_VENDORID,	BCOM_DEVICEID_BCM5906 },
213 	{ BCOM_VENDORID,	BCOM_DEVICEID_BCM5906M },
214 	{ BCOM_VENDORID,	BCOM_DEVICEID_BCM57760 },
215 	{ BCOM_VENDORID,	BCOM_DEVICEID_BCM57780 },
216 	{ BCOM_VENDORID,	BCOM_DEVICEID_BCM57788 },
217 	{ BCOM_VENDORID,	BCOM_DEVICEID_BCM57790 },
218 
219 	{ SK_VENDORID,		SK_DEVICEID_ALTIMA },
220 
221 	{ TC_VENDORID,		TC_DEVICEID_3C996 },
222 
223 	{ FJTSU_VENDORID,	FJTSU_DEVICEID_PW008GE4 },
224 	{ FJTSU_VENDORID,	FJTSU_DEVICEID_PW008GE5 },
225 	{ FJTSU_VENDORID,	FJTSU_DEVICEID_PP250450 },
226 
227 	{ 0, 0 }
228 };
229 
230 static const struct bge_vendor {
231 	uint16_t	v_id;
232 	const char	*v_name;
233 } bge_vendors[] = {
234 	{ ALTEON_VENDORID,	"Alteon" },
235 	{ ALTIMA_VENDORID,	"Altima" },
236 	{ APPLE_VENDORID,	"Apple" },
237 	{ BCOM_VENDORID,	"Broadcom" },
238 	{ SK_VENDORID,		"SysKonnect" },
239 	{ TC_VENDORID,		"3Com" },
240 	{ FJTSU_VENDORID,	"Fujitsu" },
241 
242 	{ 0, NULL }
243 };
244 
245 static const struct bge_revision {
246 	uint32_t	br_chipid;
247 	const char	*br_name;
248 } bge_revisions[] = {
249 	{ BGE_CHIPID_BCM5700_A0,	"BCM5700 A0" },
250 	{ BGE_CHIPID_BCM5700_A1,	"BCM5700 A1" },
251 	{ BGE_CHIPID_BCM5700_B0,	"BCM5700 B0" },
252 	{ BGE_CHIPID_BCM5700_B1,	"BCM5700 B1" },
253 	{ BGE_CHIPID_BCM5700_B2,	"BCM5700 B2" },
254 	{ BGE_CHIPID_BCM5700_B3,	"BCM5700 B3" },
255 	{ BGE_CHIPID_BCM5700_ALTIMA,	"BCM5700 Altima" },
256 	{ BGE_CHIPID_BCM5700_C0,	"BCM5700 C0" },
257 	{ BGE_CHIPID_BCM5701_A0,	"BCM5701 A0" },
258 	{ BGE_CHIPID_BCM5701_B0,	"BCM5701 B0" },
259 	{ BGE_CHIPID_BCM5701_B2,	"BCM5701 B2" },
260 	{ BGE_CHIPID_BCM5701_B5,	"BCM5701 B5" },
261 	{ BGE_CHIPID_BCM5703_A0,	"BCM5703 A0" },
262 	{ BGE_CHIPID_BCM5703_A1,	"BCM5703 A1" },
263 	{ BGE_CHIPID_BCM5703_A2,	"BCM5703 A2" },
264 	{ BGE_CHIPID_BCM5703_A3,	"BCM5703 A3" },
265 	{ BGE_CHIPID_BCM5703_B0,	"BCM5703 B0" },
266 	{ BGE_CHIPID_BCM5704_A0,	"BCM5704 A0" },
267 	{ BGE_CHIPID_BCM5704_A1,	"BCM5704 A1" },
268 	{ BGE_CHIPID_BCM5704_A2,	"BCM5704 A2" },
269 	{ BGE_CHIPID_BCM5704_A3,	"BCM5704 A3" },
270 	{ BGE_CHIPID_BCM5704_B0,	"BCM5704 B0" },
271 	{ BGE_CHIPID_BCM5705_A0,	"BCM5705 A0" },
272 	{ BGE_CHIPID_BCM5705_A1,	"BCM5705 A1" },
273 	{ BGE_CHIPID_BCM5705_A2,	"BCM5705 A2" },
274 	{ BGE_CHIPID_BCM5705_A3,	"BCM5705 A3" },
275 	{ BGE_CHIPID_BCM5750_A0,	"BCM5750 A0" },
276 	{ BGE_CHIPID_BCM5750_A1,	"BCM5750 A1" },
277 	{ BGE_CHIPID_BCM5750_A3,	"BCM5750 A3" },
278 	{ BGE_CHIPID_BCM5750_B0,	"BCM5750 B0" },
279 	{ BGE_CHIPID_BCM5750_B1,	"BCM5750 B1" },
280 	{ BGE_CHIPID_BCM5750_C0,	"BCM5750 C0" },
281 	{ BGE_CHIPID_BCM5750_C1,	"BCM5750 C1" },
282 	{ BGE_CHIPID_BCM5750_C2,	"BCM5750 C2" },
283 	{ BGE_CHIPID_BCM5714_A0,	"BCM5714 A0" },
284 	{ BGE_CHIPID_BCM5752_A0,	"BCM5752 A0" },
285 	{ BGE_CHIPID_BCM5752_A1,	"BCM5752 A1" },
286 	{ BGE_CHIPID_BCM5752_A2,	"BCM5752 A2" },
287 	{ BGE_CHIPID_BCM5714_B0,	"BCM5714 B0" },
288 	{ BGE_CHIPID_BCM5714_B3,	"BCM5714 B3" },
289 	{ BGE_CHIPID_BCM5715_A0,	"BCM5715 A0" },
290 	{ BGE_CHIPID_BCM5715_A1,	"BCM5715 A1" },
291 	{ BGE_CHIPID_BCM5715_A3,	"BCM5715 A3" },
292 	{ BGE_CHIPID_BCM5755_A0,	"BCM5755 A0" },
293 	{ BGE_CHIPID_BCM5755_A1,	"BCM5755 A1" },
294 	{ BGE_CHIPID_BCM5755_A2,	"BCM5755 A2" },
295 	{ BGE_CHIPID_BCM5722_A0,	"BCM5722 A0" },
296 	{ BGE_CHIPID_BCM5761_A0,	"BCM5761 A0" },
297 	{ BGE_CHIPID_BCM5761_A1,	"BCM5761 A1" },
298 	{ BGE_CHIPID_BCM5784_A0,	"BCM5784 A0" },
299 	{ BGE_CHIPID_BCM5784_A1,	"BCM5784 A1" },
300 	/* 5754 and 5787 share the same ASIC ID */
301 	{ BGE_CHIPID_BCM5787_A0,	"BCM5754/5787 A0" },
302 	{ BGE_CHIPID_BCM5787_A1,	"BCM5754/5787 A1" },
303 	{ BGE_CHIPID_BCM5787_A2,	"BCM5754/5787 A2" },
304 	{ BGE_CHIPID_BCM5906_A1,	"BCM5906 A1" },
305 	{ BGE_CHIPID_BCM5906_A2,	"BCM5906 A2" },
306 	{ BGE_CHIPID_BCM57780_A0,	"BCM57780 A0" },
307 	{ BGE_CHIPID_BCM57780_A1,	"BCM57780 A1" },
308 
309 	{ 0, NULL }
310 };
311 
312 /*
313  * Some defaults for major revisions, so that newer steppings
314  * that we don't know about have a shot at working.
315  */
316 static const struct bge_revision bge_majorrevs[] = {
317 	{ BGE_ASICREV_BCM5700,		"unknown BCM5700" },
318 	{ BGE_ASICREV_BCM5701,		"unknown BCM5701" },
319 	{ BGE_ASICREV_BCM5703,		"unknown BCM5703" },
320 	{ BGE_ASICREV_BCM5704,		"unknown BCM5704" },
321 	{ BGE_ASICREV_BCM5705,		"unknown BCM5705" },
322 	{ BGE_ASICREV_BCM5750,		"unknown BCM5750" },
323 	{ BGE_ASICREV_BCM5714_A0,	"unknown BCM5714" },
324 	{ BGE_ASICREV_BCM5752,		"unknown BCM5752" },
325 	{ BGE_ASICREV_BCM5780,		"unknown BCM5780" },
326 	{ BGE_ASICREV_BCM5714,		"unknown BCM5714" },
327 	{ BGE_ASICREV_BCM5755,		"unknown BCM5755" },
328 	{ BGE_ASICREV_BCM5761,		"unknown BCM5761" },
329 	{ BGE_ASICREV_BCM5784,		"unknown BCM5784" },
330 	{ BGE_ASICREV_BCM5785,		"unknown BCM5785" },
331 	/* 5754 and 5787 share the same ASIC ID */
332 	{ BGE_ASICREV_BCM5787,		"unknown BCM5754/5787" },
333 	{ BGE_ASICREV_BCM5906,		"unknown BCM5906" },
334 	{ BGE_ASICREV_BCM57780,		"unknown BCM57780" },
335 
336 	{ 0, NULL }
337 };
338 
339 #define	BGE_IS_JUMBO_CAPABLE(sc)	((sc)->bge_flags & BGE_FLAG_JUMBO)
340 #define	BGE_IS_5700_FAMILY(sc)		((sc)->bge_flags & BGE_FLAG_5700_FAMILY)
341 #define	BGE_IS_5705_PLUS(sc)		((sc)->bge_flags & BGE_FLAG_5705_PLUS)
342 #define	BGE_IS_5714_FAMILY(sc)		((sc)->bge_flags & BGE_FLAG_5714_FAMILY)
343 #define	BGE_IS_575X_PLUS(sc)		((sc)->bge_flags & BGE_FLAG_575X_PLUS)
344 #define	BGE_IS_5755_PLUS(sc)		((sc)->bge_flags & BGE_FLAG_5755_PLUS)
345 
346 const struct bge_revision * bge_lookup_rev(uint32_t);
347 const struct bge_vendor * bge_lookup_vendor(uint16_t);
348 
349 typedef int	(*bge_eaddr_fcn_t)(struct bge_softc *, uint8_t[]);
350 
351 static int bge_probe(device_t);
352 static int bge_attach(device_t);
353 static int bge_detach(device_t);
354 static int bge_suspend(device_t);
355 static int bge_resume(device_t);
356 static void bge_release_resources(struct bge_softc *);
357 static void bge_dma_map_addr(void *, bus_dma_segment_t *, int, int);
358 static int bge_dma_alloc(device_t);
359 static void bge_dma_free(struct bge_softc *);
360 
361 static int bge_get_eaddr_fw(struct bge_softc *sc, uint8_t ether_addr[]);
362 static int bge_get_eaddr_mem(struct bge_softc *, uint8_t[]);
363 static int bge_get_eaddr_nvram(struct bge_softc *, uint8_t[]);
364 static int bge_get_eaddr_eeprom(struct bge_softc *, uint8_t[]);
365 static int bge_get_eaddr(struct bge_softc *, uint8_t[]);
366 
367 static void bge_txeof(struct bge_softc *, uint16_t);
368 static int bge_rxeof(struct bge_softc *, uint16_t, int);
369 
370 static void bge_asf_driver_up (struct bge_softc *);
371 static void bge_tick(void *);
372 static void bge_stats_update(struct bge_softc *);
373 static void bge_stats_update_regs(struct bge_softc *);
374 static struct mbuf *bge_setup_tso(struct bge_softc *, struct mbuf *,
375     uint16_t *);
376 static int bge_encap(struct bge_softc *, struct mbuf **, uint32_t *);
377 
378 static void bge_intr(void *);
379 static int bge_msi_intr(void *);
380 static void bge_intr_task(void *, int);
381 static void bge_start_locked(struct ifnet *);
382 static void bge_start(struct ifnet *);
383 static int bge_ioctl(struct ifnet *, u_long, caddr_t);
384 static void bge_init_locked(struct bge_softc *);
385 static void bge_init(void *);
386 static void bge_stop(struct bge_softc *);
387 static void bge_watchdog(struct bge_softc *);
388 static int bge_shutdown(device_t);
389 static int bge_ifmedia_upd_locked(struct ifnet *);
390 static int bge_ifmedia_upd(struct ifnet *);
391 static void bge_ifmedia_sts(struct ifnet *, struct ifmediareq *);
392 
393 static uint8_t bge_nvram_getbyte(struct bge_softc *, int, uint8_t *);
394 static int bge_read_nvram(struct bge_softc *, caddr_t, int, int);
395 
396 static uint8_t bge_eeprom_getbyte(struct bge_softc *, int, uint8_t *);
397 static int bge_read_eeprom(struct bge_softc *, caddr_t, int, int);
398 
399 static void bge_setpromisc(struct bge_softc *);
400 static void bge_setmulti(struct bge_softc *);
401 static void bge_setvlan(struct bge_softc *);
402 
403 static int bge_newbuf_std(struct bge_softc *, int);
404 static int bge_newbuf_jumbo(struct bge_softc *, int);
405 static int bge_init_rx_ring_std(struct bge_softc *);
406 static void bge_free_rx_ring_std(struct bge_softc *);
407 static int bge_init_rx_ring_jumbo(struct bge_softc *);
408 static void bge_free_rx_ring_jumbo(struct bge_softc *);
409 static void bge_free_tx_ring(struct bge_softc *);
410 static int bge_init_tx_ring(struct bge_softc *);
411 
412 static int bge_chipinit(struct bge_softc *);
413 static int bge_blockinit(struct bge_softc *);
414 
415 static int bge_has_eaddr(struct bge_softc *);
416 static uint32_t bge_readmem_ind(struct bge_softc *, int);
417 static void bge_writemem_ind(struct bge_softc *, int, int);
418 static void bge_writembx(struct bge_softc *, int, int);
419 #ifdef notdef
420 static uint32_t bge_readreg_ind(struct bge_softc *, int);
421 #endif
422 static void bge_writemem_direct(struct bge_softc *, int, int);
423 static void bge_writereg_ind(struct bge_softc *, int, int);
424 static void bge_set_max_readrq(struct bge_softc *);
425 
426 static int bge_miibus_readreg(device_t, int, int);
427 static int bge_miibus_writereg(device_t, int, int, int);
428 static void bge_miibus_statchg(device_t);
429 #ifdef DEVICE_POLLING
430 static int bge_poll(struct ifnet *ifp, enum poll_cmd cmd, int count);
431 #endif
432 
433 #define	BGE_RESET_START 1
434 #define	BGE_RESET_STOP  2
435 static void bge_sig_post_reset(struct bge_softc *, int);
436 static void bge_sig_legacy(struct bge_softc *, int);
437 static void bge_sig_pre_reset(struct bge_softc *, int);
438 static int bge_reset(struct bge_softc *);
439 static void bge_link_upd(struct bge_softc *);
440 
441 /*
442  * The BGE_REGISTER_DEBUG option is only for low-level debugging.  It may
443  * leak information to untrusted users.  It is also known to cause alignment
444  * traps on certain architectures.
445  */
446 #ifdef BGE_REGISTER_DEBUG
447 static int bge_sysctl_debug_info(SYSCTL_HANDLER_ARGS);
448 static int bge_sysctl_reg_read(SYSCTL_HANDLER_ARGS);
449 static int bge_sysctl_mem_read(SYSCTL_HANDLER_ARGS);
450 #endif
451 static void bge_add_sysctls(struct bge_softc *);
452 static int bge_sysctl_stats(SYSCTL_HANDLER_ARGS);
453 
454 static device_method_t bge_methods[] = {
455 	/* Device interface */
456 	DEVMETHOD(device_probe,		bge_probe),
457 	DEVMETHOD(device_attach,	bge_attach),
458 	DEVMETHOD(device_detach,	bge_detach),
459 	DEVMETHOD(device_shutdown,	bge_shutdown),
460 	DEVMETHOD(device_suspend,	bge_suspend),
461 	DEVMETHOD(device_resume,	bge_resume),
462 
463 	/* bus interface */
464 	DEVMETHOD(bus_print_child,	bus_generic_print_child),
465 	DEVMETHOD(bus_driver_added,	bus_generic_driver_added),
466 
467 	/* MII interface */
468 	DEVMETHOD(miibus_readreg,	bge_miibus_readreg),
469 	DEVMETHOD(miibus_writereg,	bge_miibus_writereg),
470 	DEVMETHOD(miibus_statchg,	bge_miibus_statchg),
471 
472 	{ 0, 0 }
473 };
474 
475 static driver_t bge_driver = {
476 	"bge",
477 	bge_methods,
478 	sizeof(struct bge_softc)
479 };
480 
481 static devclass_t bge_devclass;
482 
483 DRIVER_MODULE(bge, pci, bge_driver, bge_devclass, 0, 0);
484 DRIVER_MODULE(miibus, bge, miibus_driver, miibus_devclass, 0, 0);
485 
486 static int bge_allow_asf = 1;
487 
488 TUNABLE_INT("hw.bge.allow_asf", &bge_allow_asf);
489 
490 SYSCTL_NODE(_hw, OID_AUTO, bge, CTLFLAG_RD, 0, "BGE driver parameters");
491 SYSCTL_INT(_hw_bge, OID_AUTO, allow_asf, CTLFLAG_RD, &bge_allow_asf, 0,
492 	"Allow ASF mode if available");
493 
494 #define	SPARC64_BLADE_1500_MODEL	"SUNW,Sun-Blade-1500"
495 #define	SPARC64_BLADE_1500_PATH_BGE	"/pci@1f,700000/network@2"
496 #define	SPARC64_BLADE_2500_MODEL	"SUNW,Sun-Blade-2500"
497 #define	SPARC64_BLADE_2500_PATH_BGE	"/pci@1c,600000/network@3"
498 #define	SPARC64_OFW_SUBVENDOR		"subsystem-vendor-id"
499 
500 static int
501 bge_has_eaddr(struct bge_softc *sc)
502 {
503 #ifdef __sparc64__
504 	char buf[sizeof(SPARC64_BLADE_1500_PATH_BGE)];
505 	device_t dev;
506 	uint32_t subvendor;
507 
508 	dev = sc->bge_dev;
509 
510 	/*
511 	 * The on-board BGEs found in sun4u machines aren't fitted with
512 	 * an EEPROM which means that we have to obtain the MAC address
513 	 * via OFW and that some tests will always fail.  We distinguish
514 	 * such BGEs by the subvendor ID, which also has to be obtained
515 	 * from OFW instead of the PCI configuration space as the latter
516 	 * indicates Broadcom as the subvendor of the netboot interface.
517 	 * For early Blade 1500 and 2500 we even have to check the OFW
518 	 * device path as the subvendor ID always defaults to Broadcom
519 	 * there.
520 	 */
521 	if (OF_getprop(ofw_bus_get_node(dev), SPARC64_OFW_SUBVENDOR,
522 	    &subvendor, sizeof(subvendor)) == sizeof(subvendor) &&
523 	    subvendor == SUN_VENDORID)
524 		return (0);
525 	memset(buf, 0, sizeof(buf));
526 	if (OF_package_to_path(ofw_bus_get_node(dev), buf, sizeof(buf)) > 0) {
527 		if (strcmp(sparc64_model, SPARC64_BLADE_1500_MODEL) == 0 &&
528 		    strcmp(buf, SPARC64_BLADE_1500_PATH_BGE) == 0)
529 			return (0);
530 		if (strcmp(sparc64_model, SPARC64_BLADE_2500_MODEL) == 0 &&
531 		    strcmp(buf, SPARC64_BLADE_2500_PATH_BGE) == 0)
532 			return (0);
533 	}
534 #endif
535 	return (1);
536 }
537 
538 static uint32_t
539 bge_readmem_ind(struct bge_softc *sc, int off)
540 {
541 	device_t dev;
542 	uint32_t val;
543 
544 	dev = sc->bge_dev;
545 
546 	pci_write_config(dev, BGE_PCI_MEMWIN_BASEADDR, off, 4);
547 	val = pci_read_config(dev, BGE_PCI_MEMWIN_DATA, 4);
548 	pci_write_config(dev, BGE_PCI_MEMWIN_BASEADDR, 0, 4);
549 	return (val);
550 }
551 
552 static void
553 bge_writemem_ind(struct bge_softc *sc, int off, int val)
554 {
555 	device_t dev;
556 
557 	dev = sc->bge_dev;
558 
559 	pci_write_config(dev, BGE_PCI_MEMWIN_BASEADDR, off, 4);
560 	pci_write_config(dev, BGE_PCI_MEMWIN_DATA, val, 4);
561 	pci_write_config(dev, BGE_PCI_MEMWIN_BASEADDR, 0, 4);
562 }
563 
564 /*
565  * PCI Express only
566  */
567 static void
568 bge_set_max_readrq(struct bge_softc *sc)
569 {
570 	device_t dev;
571 	uint16_t val;
572 
573 	dev = sc->bge_dev;
574 
575 	val = pci_read_config(dev, sc->bge_expcap + PCIR_EXPRESS_DEVICE_CTL, 2);
576 	if ((val & PCIM_EXP_CTL_MAX_READ_REQUEST) !=
577 	    BGE_PCIE_DEVCTL_MAX_READRQ_4096) {
578 		if (bootverbose)
579 			device_printf(dev, "adjust device control 0x%04x ",
580 			    val);
581 		val &= ~PCIM_EXP_CTL_MAX_READ_REQUEST;
582 		val |= BGE_PCIE_DEVCTL_MAX_READRQ_4096;
583 		pci_write_config(dev, sc->bge_expcap + PCIR_EXPRESS_DEVICE_CTL,
584 		    val, 2);
585 		if (bootverbose)
586 			printf("-> 0x%04x\n", val);
587 	}
588 }
589 
590 #ifdef notdef
591 static uint32_t
592 bge_readreg_ind(struct bge_softc *sc, int off)
593 {
594 	device_t dev;
595 
596 	dev = sc->bge_dev;
597 
598 	pci_write_config(dev, BGE_PCI_REG_BASEADDR, off, 4);
599 	return (pci_read_config(dev, BGE_PCI_REG_DATA, 4));
600 }
601 #endif
602 
603 static void
604 bge_writereg_ind(struct bge_softc *sc, int off, int val)
605 {
606 	device_t dev;
607 
608 	dev = sc->bge_dev;
609 
610 	pci_write_config(dev, BGE_PCI_REG_BASEADDR, off, 4);
611 	pci_write_config(dev, BGE_PCI_REG_DATA, val, 4);
612 }
613 
614 static void
615 bge_writemem_direct(struct bge_softc *sc, int off, int val)
616 {
617 	CSR_WRITE_4(sc, off, val);
618 }
619 
620 static void
621 bge_writembx(struct bge_softc *sc, int off, int val)
622 {
623 	if (sc->bge_asicrev == BGE_ASICREV_BCM5906)
624 		off += BGE_LPMBX_IRQ0_HI - BGE_MBX_IRQ0_HI;
625 
626 	CSR_WRITE_4(sc, off, val);
627 }
628 
629 /*
630  * Map a single buffer address.
631  */
632 
633 static void
634 bge_dma_map_addr(void *arg, bus_dma_segment_t *segs, int nseg, int error)
635 {
636 	struct bge_dmamap_arg *ctx;
637 
638 	if (error)
639 		return;
640 
641 	ctx = arg;
642 
643 	if (nseg > ctx->bge_maxsegs) {
644 		ctx->bge_maxsegs = 0;
645 		return;
646 	}
647 
648 	ctx->bge_busaddr = segs->ds_addr;
649 }
650 
651 static uint8_t
652 bge_nvram_getbyte(struct bge_softc *sc, int addr, uint8_t *dest)
653 {
654 	uint32_t access, byte = 0;
655 	int i;
656 
657 	/* Lock. */
658 	CSR_WRITE_4(sc, BGE_NVRAM_SWARB, BGE_NVRAMSWARB_SET1);
659 	for (i = 0; i < 8000; i++) {
660 		if (CSR_READ_4(sc, BGE_NVRAM_SWARB) & BGE_NVRAMSWARB_GNT1)
661 			break;
662 		DELAY(20);
663 	}
664 	if (i == 8000)
665 		return (1);
666 
667 	/* Enable access. */
668 	access = CSR_READ_4(sc, BGE_NVRAM_ACCESS);
669 	CSR_WRITE_4(sc, BGE_NVRAM_ACCESS, access | BGE_NVRAMACC_ENABLE);
670 
671 	CSR_WRITE_4(sc, BGE_NVRAM_ADDR, addr & 0xfffffffc);
672 	CSR_WRITE_4(sc, BGE_NVRAM_CMD, BGE_NVRAM_READCMD);
673 	for (i = 0; i < BGE_TIMEOUT * 10; i++) {
674 		DELAY(10);
675 		if (CSR_READ_4(sc, BGE_NVRAM_CMD) & BGE_NVRAMCMD_DONE) {
676 			DELAY(10);
677 			break;
678 		}
679 	}
680 
681 	if (i == BGE_TIMEOUT * 10) {
682 		if_printf(sc->bge_ifp, "nvram read timed out\n");
683 		return (1);
684 	}
685 
686 	/* Get result. */
687 	byte = CSR_READ_4(sc, BGE_NVRAM_RDDATA);
688 
689 	*dest = (bswap32(byte) >> ((addr % 4) * 8)) & 0xFF;
690 
691 	/* Disable access. */
692 	CSR_WRITE_4(sc, BGE_NVRAM_ACCESS, access);
693 
694 	/* Unlock. */
695 	CSR_WRITE_4(sc, BGE_NVRAM_SWARB, BGE_NVRAMSWARB_CLR1);
696 	CSR_READ_4(sc, BGE_NVRAM_SWARB);
697 
698 	return (0);
699 }
700 
701 /*
702  * Read a sequence of bytes from NVRAM.
703  */
704 static int
705 bge_read_nvram(struct bge_softc *sc, caddr_t dest, int off, int cnt)
706 {
707 	int err = 0, i;
708 	uint8_t byte = 0;
709 
710 	if (sc->bge_asicrev != BGE_ASICREV_BCM5906)
711 		return (1);
712 
713 	for (i = 0; i < cnt; i++) {
714 		err = bge_nvram_getbyte(sc, off + i, &byte);
715 		if (err)
716 			break;
717 		*(dest + i) = byte;
718 	}
719 
720 	return (err ? 1 : 0);
721 }
722 
723 /*
724  * Read a byte of data stored in the EEPROM at address 'addr.' The
725  * BCM570x supports both the traditional bitbang interface and an
726  * auto access interface for reading the EEPROM. We use the auto
727  * access method.
728  */
729 static uint8_t
730 bge_eeprom_getbyte(struct bge_softc *sc, int addr, uint8_t *dest)
731 {
732 	int i;
733 	uint32_t byte = 0;
734 
735 	/*
736 	 * Enable use of auto EEPROM access so we can avoid
737 	 * having to use the bitbang method.
738 	 */
739 	BGE_SETBIT(sc, BGE_MISC_LOCAL_CTL, BGE_MLC_AUTO_EEPROM);
740 
741 	/* Reset the EEPROM, load the clock period. */
742 	CSR_WRITE_4(sc, BGE_EE_ADDR,
743 	    BGE_EEADDR_RESET | BGE_EEHALFCLK(BGE_HALFCLK_384SCL));
744 	DELAY(20);
745 
746 	/* Issue the read EEPROM command. */
747 	CSR_WRITE_4(sc, BGE_EE_ADDR, BGE_EE_READCMD | addr);
748 
749 	/* Wait for completion */
750 	for(i = 0; i < BGE_TIMEOUT * 10; i++) {
751 		DELAY(10);
752 		if (CSR_READ_4(sc, BGE_EE_ADDR) & BGE_EEADDR_DONE)
753 			break;
754 	}
755 
756 	if (i == BGE_TIMEOUT * 10) {
757 		device_printf(sc->bge_dev, "EEPROM read timed out\n");
758 		return (1);
759 	}
760 
761 	/* Get result. */
762 	byte = CSR_READ_4(sc, BGE_EE_DATA);
763 
764 	*dest = (byte >> ((addr % 4) * 8)) & 0xFF;
765 
766 	return (0);
767 }
768 
769 /*
770  * Read a sequence of bytes from the EEPROM.
771  */
772 static int
773 bge_read_eeprom(struct bge_softc *sc, caddr_t dest, int off, int cnt)
774 {
775 	int i, error = 0;
776 	uint8_t byte = 0;
777 
778 	for (i = 0; i < cnt; i++) {
779 		error = bge_eeprom_getbyte(sc, off + i, &byte);
780 		if (error)
781 			break;
782 		*(dest + i) = byte;
783 	}
784 
785 	return (error ? 1 : 0);
786 }
787 
788 static int
789 bge_miibus_readreg(device_t dev, int phy, int reg)
790 {
791 	struct bge_softc *sc;
792 	uint32_t val, autopoll;
793 	int i;
794 
795 	sc = device_get_softc(dev);
796 
797 	/*
798 	 * Broadcom's own driver always assumes the internal
799 	 * PHY is at GMII address 1. On some chips, the PHY responds
800 	 * to accesses at all addresses, which could cause us to
801 	 * bogusly attach the PHY 32 times at probe type. Always
802 	 * restricting the lookup to address 1 is simpler than
803 	 * trying to figure out which chips revisions should be
804 	 * special-cased.
805 	 */
806 	if (phy != 1)
807 		return (0);
808 
809 	/* Reading with autopolling on may trigger PCI errors */
810 	autopoll = CSR_READ_4(sc, BGE_MI_MODE);
811 	if (autopoll & BGE_MIMODE_AUTOPOLL) {
812 		BGE_CLRBIT(sc, BGE_MI_MODE, BGE_MIMODE_AUTOPOLL);
813 		DELAY(40);
814 	}
815 
816 	CSR_WRITE_4(sc, BGE_MI_COMM, BGE_MICMD_READ | BGE_MICOMM_BUSY |
817 	    BGE_MIPHY(phy) | BGE_MIREG(reg));
818 
819 	for (i = 0; i < BGE_TIMEOUT; i++) {
820 		DELAY(10);
821 		val = CSR_READ_4(sc, BGE_MI_COMM);
822 		if (!(val & BGE_MICOMM_BUSY))
823 			break;
824 	}
825 
826 	if (i == BGE_TIMEOUT) {
827 		device_printf(sc->bge_dev,
828 		    "PHY read timed out (phy %d, reg %d, val 0x%08x)\n",
829 		    phy, reg, val);
830 		val = 0;
831 		goto done;
832 	}
833 
834 	DELAY(5);
835 	val = CSR_READ_4(sc, BGE_MI_COMM);
836 
837 done:
838 	if (autopoll & BGE_MIMODE_AUTOPOLL) {
839 		BGE_SETBIT(sc, BGE_MI_MODE, BGE_MIMODE_AUTOPOLL);
840 		DELAY(40);
841 	}
842 
843 	if (val & BGE_MICOMM_READFAIL)
844 		return (0);
845 
846 	return (val & 0xFFFF);
847 }
848 
849 static int
850 bge_miibus_writereg(device_t dev, int phy, int reg, int val)
851 {
852 	struct bge_softc *sc;
853 	uint32_t autopoll;
854 	int i;
855 
856 	sc = device_get_softc(dev);
857 
858 	if (sc->bge_asicrev == BGE_ASICREV_BCM5906 &&
859 	    (reg == BRGPHY_MII_1000CTL || reg == BRGPHY_MII_AUXCTL))
860 		return(0);
861 
862 	/* Reading with autopolling on may trigger PCI errors */
863 	autopoll = CSR_READ_4(sc, BGE_MI_MODE);
864 	if (autopoll & BGE_MIMODE_AUTOPOLL) {
865 		BGE_CLRBIT(sc, BGE_MI_MODE, BGE_MIMODE_AUTOPOLL);
866 		DELAY(40);
867 	}
868 
869 	CSR_WRITE_4(sc, BGE_MI_COMM, BGE_MICMD_WRITE | BGE_MICOMM_BUSY |
870 	    BGE_MIPHY(phy) | BGE_MIREG(reg) | val);
871 
872 	for (i = 0; i < BGE_TIMEOUT; i++) {
873 		DELAY(10);
874 		if (!(CSR_READ_4(sc, BGE_MI_COMM) & BGE_MICOMM_BUSY)) {
875 			DELAY(5);
876 			CSR_READ_4(sc, BGE_MI_COMM); /* dummy read */
877 			break;
878 		}
879 	}
880 
881 	if (i == BGE_TIMEOUT) {
882 		device_printf(sc->bge_dev,
883 		    "PHY write timed out (phy %d, reg %d, val %d)\n",
884 		    phy, reg, val);
885 		return (0);
886 	}
887 
888 	if (autopoll & BGE_MIMODE_AUTOPOLL) {
889 		BGE_SETBIT(sc, BGE_MI_MODE, BGE_MIMODE_AUTOPOLL);
890 		DELAY(40);
891 	}
892 
893 	return (0);
894 }
895 
896 static void
897 bge_miibus_statchg(device_t dev)
898 {
899 	struct bge_softc *sc;
900 	struct mii_data *mii;
901 	sc = device_get_softc(dev);
902 	mii = device_get_softc(sc->bge_miibus);
903 
904 	BGE_CLRBIT(sc, BGE_MAC_MODE, BGE_MACMODE_PORTMODE);
905 	if (IFM_SUBTYPE(mii->mii_media_active) == IFM_1000_T ||
906 	    IFM_SUBTYPE(mii->mii_media_active) == IFM_1000_SX)
907 		BGE_SETBIT(sc, BGE_MAC_MODE, BGE_PORTMODE_GMII);
908 	else
909 		BGE_SETBIT(sc, BGE_MAC_MODE, BGE_PORTMODE_MII);
910 
911 	if ((mii->mii_media_active & IFM_GMASK) == IFM_FDX)
912 		BGE_CLRBIT(sc, BGE_MAC_MODE, BGE_MACMODE_HALF_DUPLEX);
913 	else
914 		BGE_SETBIT(sc, BGE_MAC_MODE, BGE_MACMODE_HALF_DUPLEX);
915 }
916 
917 /*
918  * Intialize a standard receive ring descriptor.
919  */
920 static int
921 bge_newbuf_std(struct bge_softc *sc, int i)
922 {
923 	struct mbuf *m;
924 	struct bge_rx_bd *r;
925 	bus_dma_segment_t segs[1];
926 	bus_dmamap_t map;
927 	int error, nsegs;
928 
929 	m = m_getcl(M_DONTWAIT, MT_DATA, M_PKTHDR);
930 	if (m == NULL)
931 		return (ENOBUFS);
932 	m->m_len = m->m_pkthdr.len = MCLBYTES;
933 	if ((sc->bge_flags & BGE_FLAG_RX_ALIGNBUG) == 0)
934 		m_adj(m, ETHER_ALIGN);
935 
936 	error = bus_dmamap_load_mbuf_sg(sc->bge_cdata.bge_rx_mtag,
937 	    sc->bge_cdata.bge_rx_std_sparemap, m, segs, &nsegs, 0);
938 	if (error != 0) {
939 		m_freem(m);
940 		return (error);
941 	}
942 	if (sc->bge_cdata.bge_rx_std_chain[i] != NULL) {
943 		bus_dmamap_sync(sc->bge_cdata.bge_rx_mtag,
944 		    sc->bge_cdata.bge_rx_std_dmamap[i], BUS_DMASYNC_POSTREAD);
945 		bus_dmamap_unload(sc->bge_cdata.bge_rx_mtag,
946 		    sc->bge_cdata.bge_rx_std_dmamap[i]);
947 	}
948 	map = sc->bge_cdata.bge_rx_std_dmamap[i];
949 	sc->bge_cdata.bge_rx_std_dmamap[i] = sc->bge_cdata.bge_rx_std_sparemap;
950 	sc->bge_cdata.bge_rx_std_sparemap = map;
951 	sc->bge_cdata.bge_rx_std_chain[i] = m;
952 	r = &sc->bge_ldata.bge_rx_std_ring[sc->bge_std];
953 	r->bge_addr.bge_addr_lo = BGE_ADDR_LO(segs[0].ds_addr);
954 	r->bge_addr.bge_addr_hi = BGE_ADDR_HI(segs[0].ds_addr);
955 	r->bge_flags = BGE_RXBDFLAG_END;
956 	r->bge_len = segs[0].ds_len;
957 	r->bge_idx = i;
958 
959 	bus_dmamap_sync(sc->bge_cdata.bge_rx_mtag,
960 	    sc->bge_cdata.bge_rx_std_dmamap[i], BUS_DMASYNC_PREREAD);
961 
962 	return (0);
963 }
964 
965 /*
966  * Initialize a jumbo receive ring descriptor. This allocates
967  * a jumbo buffer from the pool managed internally by the driver.
968  */
969 static int
970 bge_newbuf_jumbo(struct bge_softc *sc, int i)
971 {
972 	bus_dma_segment_t segs[BGE_NSEG_JUMBO];
973 	bus_dmamap_t map;
974 	struct bge_extrx_bd *r;
975 	struct mbuf *m;
976 	int error, nsegs;
977 
978 	MGETHDR(m, M_DONTWAIT, MT_DATA);
979 	if (m == NULL)
980 		return (ENOBUFS);
981 
982 	m_cljget(m, M_DONTWAIT, MJUM9BYTES);
983 	if (!(m->m_flags & M_EXT)) {
984 		m_freem(m);
985 		return (ENOBUFS);
986 	}
987 	m->m_len = m->m_pkthdr.len = MJUM9BYTES;
988 	if ((sc->bge_flags & BGE_FLAG_RX_ALIGNBUG) == 0)
989 		m_adj(m, ETHER_ALIGN);
990 
991 	error = bus_dmamap_load_mbuf_sg(sc->bge_cdata.bge_mtag_jumbo,
992 	    sc->bge_cdata.bge_rx_jumbo_sparemap, m, segs, &nsegs, 0);
993 	if (error != 0) {
994 		m_freem(m);
995 		return (error);
996 	}
997 
998 	if (sc->bge_cdata.bge_rx_jumbo_chain[i] == NULL) {
999 		bus_dmamap_sync(sc->bge_cdata.bge_mtag_jumbo,
1000 		    sc->bge_cdata.bge_rx_jumbo_dmamap[i], BUS_DMASYNC_POSTREAD);
1001 		bus_dmamap_unload(sc->bge_cdata.bge_mtag_jumbo,
1002 		    sc->bge_cdata.bge_rx_jumbo_dmamap[i]);
1003 	}
1004 	map = sc->bge_cdata.bge_rx_jumbo_dmamap[i];
1005 	sc->bge_cdata.bge_rx_jumbo_dmamap[i] =
1006 	    sc->bge_cdata.bge_rx_jumbo_sparemap;
1007 	sc->bge_cdata.bge_rx_jumbo_sparemap = map;
1008 	sc->bge_cdata.bge_rx_jumbo_chain[i] = m;
1009 	/*
1010 	 * Fill in the extended RX buffer descriptor.
1011 	 */
1012 	r = &sc->bge_ldata.bge_rx_jumbo_ring[sc->bge_jumbo];
1013 	r->bge_flags = BGE_RXBDFLAG_JUMBO_RING | BGE_RXBDFLAG_END;
1014 	r->bge_idx = i;
1015 	r->bge_len3 = r->bge_len2 = r->bge_len1 = 0;
1016 	switch (nsegs) {
1017 	case 4:
1018 		r->bge_addr3.bge_addr_lo = BGE_ADDR_LO(segs[3].ds_addr);
1019 		r->bge_addr3.bge_addr_hi = BGE_ADDR_HI(segs[3].ds_addr);
1020 		r->bge_len3 = segs[3].ds_len;
1021 	case 3:
1022 		r->bge_addr2.bge_addr_lo = BGE_ADDR_LO(segs[2].ds_addr);
1023 		r->bge_addr2.bge_addr_hi = BGE_ADDR_HI(segs[2].ds_addr);
1024 		r->bge_len2 = segs[2].ds_len;
1025 	case 2:
1026 		r->bge_addr1.bge_addr_lo = BGE_ADDR_LO(segs[1].ds_addr);
1027 		r->bge_addr1.bge_addr_hi = BGE_ADDR_HI(segs[1].ds_addr);
1028 		r->bge_len1 = segs[1].ds_len;
1029 	case 1:
1030 		r->bge_addr0.bge_addr_lo = BGE_ADDR_LO(segs[0].ds_addr);
1031 		r->bge_addr0.bge_addr_hi = BGE_ADDR_HI(segs[0].ds_addr);
1032 		r->bge_len0 = segs[0].ds_len;
1033 		break;
1034 	default:
1035 		panic("%s: %d segments\n", __func__, nsegs);
1036 	}
1037 
1038 	bus_dmamap_sync(sc->bge_cdata.bge_mtag_jumbo,
1039 	    sc->bge_cdata.bge_rx_jumbo_dmamap[i], BUS_DMASYNC_PREREAD);
1040 
1041 	return (0);
1042 }
1043 
1044 /*
1045  * The standard receive ring has 512 entries in it. At 2K per mbuf cluster,
1046  * that's 1MB or memory, which is a lot. For now, we fill only the first
1047  * 256 ring entries and hope that our CPU is fast enough to keep up with
1048  * the NIC.
1049  */
1050 static int
1051 bge_init_rx_ring_std(struct bge_softc *sc)
1052 {
1053 	int error, i;
1054 
1055 	bzero(sc->bge_ldata.bge_rx_std_ring, BGE_STD_RX_RING_SZ);
1056 	sc->bge_std = 0;
1057 	for (i = 0; i < BGE_SSLOTS; i++) {
1058 		if ((error = bge_newbuf_std(sc, i)) != 0)
1059 			return (error);
1060 		BGE_INC(sc->bge_std, BGE_STD_RX_RING_CNT);
1061 	};
1062 
1063 	bus_dmamap_sync(sc->bge_cdata.bge_rx_std_ring_tag,
1064 	    sc->bge_cdata.bge_rx_std_ring_map, BUS_DMASYNC_PREWRITE);
1065 
1066 	sc->bge_std = i - 1;
1067 	bge_writembx(sc, BGE_MBX_RX_STD_PROD_LO, sc->bge_std);
1068 
1069 	return (0);
1070 }
1071 
1072 static void
1073 bge_free_rx_ring_std(struct bge_softc *sc)
1074 {
1075 	int i;
1076 
1077 	for (i = 0; i < BGE_STD_RX_RING_CNT; i++) {
1078 		if (sc->bge_cdata.bge_rx_std_chain[i] != NULL) {
1079 			bus_dmamap_sync(sc->bge_cdata.bge_rx_mtag,
1080 			    sc->bge_cdata.bge_rx_std_dmamap[i],
1081 			    BUS_DMASYNC_POSTREAD);
1082 			bus_dmamap_unload(sc->bge_cdata.bge_rx_mtag,
1083 			    sc->bge_cdata.bge_rx_std_dmamap[i]);
1084 			m_freem(sc->bge_cdata.bge_rx_std_chain[i]);
1085 			sc->bge_cdata.bge_rx_std_chain[i] = NULL;
1086 		}
1087 		bzero((char *)&sc->bge_ldata.bge_rx_std_ring[i],
1088 		    sizeof(struct bge_rx_bd));
1089 	}
1090 }
1091 
1092 static int
1093 bge_init_rx_ring_jumbo(struct bge_softc *sc)
1094 {
1095 	struct bge_rcb *rcb;
1096 	int error, i;
1097 
1098 	bzero(sc->bge_ldata.bge_rx_jumbo_ring, BGE_JUMBO_RX_RING_SZ);
1099 	sc->bge_jumbo = 0;
1100 	for (i = 0; i < BGE_JUMBO_RX_RING_CNT; i++) {
1101 		if ((error = bge_newbuf_jumbo(sc, i)) != 0)
1102 			return (error);
1103 		BGE_INC(sc->bge_jumbo, BGE_JUMBO_RX_RING_CNT);
1104 	};
1105 
1106 	bus_dmamap_sync(sc->bge_cdata.bge_rx_jumbo_ring_tag,
1107 	    sc->bge_cdata.bge_rx_jumbo_ring_map, BUS_DMASYNC_PREWRITE);
1108 
1109 	sc->bge_jumbo = i - 1;
1110 
1111 	rcb = &sc->bge_ldata.bge_info.bge_jumbo_rx_rcb;
1112 	rcb->bge_maxlen_flags = BGE_RCB_MAXLEN_FLAGS(0,
1113 				    BGE_RCB_FLAG_USE_EXT_RX_BD);
1114 	CSR_WRITE_4(sc, BGE_RX_JUMBO_RCB_MAXLEN_FLAGS, rcb->bge_maxlen_flags);
1115 
1116 	bge_writembx(sc, BGE_MBX_RX_JUMBO_PROD_LO, sc->bge_jumbo);
1117 
1118 	return (0);
1119 }
1120 
1121 static void
1122 bge_free_rx_ring_jumbo(struct bge_softc *sc)
1123 {
1124 	int i;
1125 
1126 	for (i = 0; i < BGE_JUMBO_RX_RING_CNT; i++) {
1127 		if (sc->bge_cdata.bge_rx_jumbo_chain[i] != NULL) {
1128 			bus_dmamap_sync(sc->bge_cdata.bge_mtag_jumbo,
1129 			    sc->bge_cdata.bge_rx_jumbo_dmamap[i],
1130 			    BUS_DMASYNC_POSTREAD);
1131 			bus_dmamap_unload(sc->bge_cdata.bge_mtag_jumbo,
1132 			    sc->bge_cdata.bge_rx_jumbo_dmamap[i]);
1133 			m_freem(sc->bge_cdata.bge_rx_jumbo_chain[i]);
1134 			sc->bge_cdata.bge_rx_jumbo_chain[i] = NULL;
1135 		}
1136 		bzero((char *)&sc->bge_ldata.bge_rx_jumbo_ring[i],
1137 		    sizeof(struct bge_extrx_bd));
1138 	}
1139 }
1140 
1141 static void
1142 bge_free_tx_ring(struct bge_softc *sc)
1143 {
1144 	int i;
1145 
1146 	if (sc->bge_ldata.bge_tx_ring == NULL)
1147 		return;
1148 
1149 	for (i = 0; i < BGE_TX_RING_CNT; i++) {
1150 		if (sc->bge_cdata.bge_tx_chain[i] != NULL) {
1151 			bus_dmamap_sync(sc->bge_cdata.bge_tx_mtag,
1152 			    sc->bge_cdata.bge_tx_dmamap[i],
1153 			    BUS_DMASYNC_POSTWRITE);
1154 			bus_dmamap_unload(sc->bge_cdata.bge_tx_mtag,
1155 			    sc->bge_cdata.bge_tx_dmamap[i]);
1156 			m_freem(sc->bge_cdata.bge_tx_chain[i]);
1157 			sc->bge_cdata.bge_tx_chain[i] = NULL;
1158 		}
1159 		bzero((char *)&sc->bge_ldata.bge_tx_ring[i],
1160 		    sizeof(struct bge_tx_bd));
1161 	}
1162 }
1163 
1164 static int
1165 bge_init_tx_ring(struct bge_softc *sc)
1166 {
1167 	sc->bge_txcnt = 0;
1168 	sc->bge_tx_saved_considx = 0;
1169 
1170 	bzero(sc->bge_ldata.bge_tx_ring, BGE_TX_RING_SZ);
1171 	bus_dmamap_sync(sc->bge_cdata.bge_tx_ring_tag,
1172 	    sc->bge_cdata.bge_tx_ring_map, BUS_DMASYNC_PREWRITE);
1173 
1174 	/* Initialize transmit producer index for host-memory send ring. */
1175 	sc->bge_tx_prodidx = 0;
1176 	bge_writembx(sc, BGE_MBX_TX_HOST_PROD0_LO, sc->bge_tx_prodidx);
1177 
1178 	/* 5700 b2 errata */
1179 	if (sc->bge_chiprev == BGE_CHIPREV_5700_BX)
1180 		bge_writembx(sc, BGE_MBX_TX_HOST_PROD0_LO, sc->bge_tx_prodidx);
1181 
1182 	/* NIC-memory send ring not used; initialize to zero. */
1183 	bge_writembx(sc, BGE_MBX_TX_NIC_PROD0_LO, 0);
1184 	/* 5700 b2 errata */
1185 	if (sc->bge_chiprev == BGE_CHIPREV_5700_BX)
1186 		bge_writembx(sc, BGE_MBX_TX_NIC_PROD0_LO, 0);
1187 
1188 	return (0);
1189 }
1190 
1191 static void
1192 bge_setpromisc(struct bge_softc *sc)
1193 {
1194 	struct ifnet *ifp;
1195 
1196 	BGE_LOCK_ASSERT(sc);
1197 
1198 	ifp = sc->bge_ifp;
1199 
1200 	/* Enable or disable promiscuous mode as needed. */
1201 	if (ifp->if_flags & IFF_PROMISC)
1202 		BGE_SETBIT(sc, BGE_RX_MODE, BGE_RXMODE_RX_PROMISC);
1203 	else
1204 		BGE_CLRBIT(sc, BGE_RX_MODE, BGE_RXMODE_RX_PROMISC);
1205 }
1206 
1207 static void
1208 bge_setmulti(struct bge_softc *sc)
1209 {
1210 	struct ifnet *ifp;
1211 	struct ifmultiaddr *ifma;
1212 	uint32_t hashes[4] = { 0, 0, 0, 0 };
1213 	int h, i;
1214 
1215 	BGE_LOCK_ASSERT(sc);
1216 
1217 	ifp = sc->bge_ifp;
1218 
1219 	if (ifp->if_flags & IFF_ALLMULTI || ifp->if_flags & IFF_PROMISC) {
1220 		for (i = 0; i < 4; i++)
1221 			CSR_WRITE_4(sc, BGE_MAR0 + (i * 4), 0xFFFFFFFF);
1222 		return;
1223 	}
1224 
1225 	/* First, zot all the existing filters. */
1226 	for (i = 0; i < 4; i++)
1227 		CSR_WRITE_4(sc, BGE_MAR0 + (i * 4), 0);
1228 
1229 	/* Now program new ones. */
1230 	if_maddr_rlock(ifp);
1231 	TAILQ_FOREACH(ifma, &ifp->if_multiaddrs, ifma_link) {
1232 		if (ifma->ifma_addr->sa_family != AF_LINK)
1233 			continue;
1234 		h = ether_crc32_le(LLADDR((struct sockaddr_dl *)
1235 		    ifma->ifma_addr), ETHER_ADDR_LEN) & 0x7F;
1236 		hashes[(h & 0x60) >> 5] |= 1 << (h & 0x1F);
1237 	}
1238 	if_maddr_runlock(ifp);
1239 
1240 	for (i = 0; i < 4; i++)
1241 		CSR_WRITE_4(sc, BGE_MAR0 + (i * 4), hashes[i]);
1242 }
1243 
1244 static void
1245 bge_setvlan(struct bge_softc *sc)
1246 {
1247 	struct ifnet *ifp;
1248 
1249 	BGE_LOCK_ASSERT(sc);
1250 
1251 	ifp = sc->bge_ifp;
1252 
1253 	/* Enable or disable VLAN tag stripping as needed. */
1254 	if (ifp->if_capenable & IFCAP_VLAN_HWTAGGING)
1255 		BGE_CLRBIT(sc, BGE_RX_MODE, BGE_RXMODE_RX_KEEP_VLAN_DIAG);
1256 	else
1257 		BGE_SETBIT(sc, BGE_RX_MODE, BGE_RXMODE_RX_KEEP_VLAN_DIAG);
1258 }
1259 
1260 static void
1261 bge_sig_pre_reset(sc, type)
1262 	struct bge_softc *sc;
1263 	int type;
1264 {
1265 	/*
1266 	 * Some chips don't like this so only do this if ASF is enabled
1267 	 */
1268 	if (sc->bge_asf_mode)
1269 		bge_writemem_ind(sc, BGE_SOFTWARE_GENCOMM, BGE_MAGIC_NUMBER);
1270 
1271 	if (sc->bge_asf_mode & ASF_NEW_HANDSHAKE) {
1272 		switch (type) {
1273 		case BGE_RESET_START:
1274 			bge_writemem_ind(sc, BGE_SDI_STATUS, 0x1); /* START */
1275 			break;
1276 		case BGE_RESET_STOP:
1277 			bge_writemem_ind(sc, BGE_SDI_STATUS, 0x2); /* UNLOAD */
1278 			break;
1279 		}
1280 	}
1281 }
1282 
1283 static void
1284 bge_sig_post_reset(sc, type)
1285 	struct bge_softc *sc;
1286 	int type;
1287 {
1288 	if (sc->bge_asf_mode & ASF_NEW_HANDSHAKE) {
1289 		switch (type) {
1290 		case BGE_RESET_START:
1291 			bge_writemem_ind(sc, BGE_SDI_STATUS, 0x80000001);
1292 			/* START DONE */
1293 			break;
1294 		case BGE_RESET_STOP:
1295 			bge_writemem_ind(sc, BGE_SDI_STATUS, 0x80000002);
1296 			break;
1297 		}
1298 	}
1299 }
1300 
1301 static void
1302 bge_sig_legacy(sc, type)
1303 	struct bge_softc *sc;
1304 	int type;
1305 {
1306 	if (sc->bge_asf_mode) {
1307 		switch (type) {
1308 		case BGE_RESET_START:
1309 			bge_writemem_ind(sc, BGE_SDI_STATUS, 0x1); /* START */
1310 			break;
1311 		case BGE_RESET_STOP:
1312 			bge_writemem_ind(sc, BGE_SDI_STATUS, 0x2); /* UNLOAD */
1313 			break;
1314 		}
1315 	}
1316 }
1317 
1318 void bge_stop_fw(struct bge_softc *);
1319 void
1320 bge_stop_fw(sc)
1321 	struct bge_softc *sc;
1322 {
1323 	int i;
1324 
1325 	if (sc->bge_asf_mode) {
1326 		bge_writemem_ind(sc, BGE_SOFTWARE_GENCOMM_FW, BGE_FW_PAUSE);
1327 		CSR_WRITE_4(sc, BGE_CPU_EVENT,
1328 		    CSR_READ_4(sc, BGE_CPU_EVENT) | (1 << 14));
1329 
1330 		for (i = 0; i < 100; i++ ) {
1331 			if (!(CSR_READ_4(sc, BGE_CPU_EVENT) & (1 << 14)))
1332 				break;
1333 			DELAY(10);
1334 		}
1335 	}
1336 }
1337 
1338 /*
1339  * Do endian, PCI and DMA initialization.
1340  */
1341 static int
1342 bge_chipinit(struct bge_softc *sc)
1343 {
1344 	uint32_t dma_rw_ctl;
1345 	int i;
1346 
1347 	/* Set endianness before we access any non-PCI registers. */
1348 	pci_write_config(sc->bge_dev, BGE_PCI_MISC_CTL, BGE_INIT, 4);
1349 
1350 	/* Clear the MAC control register */
1351 	CSR_WRITE_4(sc, BGE_MAC_MODE, 0);
1352 
1353 	/*
1354 	 * Clear the MAC statistics block in the NIC's
1355 	 * internal memory.
1356 	 */
1357 	for (i = BGE_STATS_BLOCK;
1358 	    i < BGE_STATS_BLOCK_END + 1; i += sizeof(uint32_t))
1359 		BGE_MEMWIN_WRITE(sc, i, 0);
1360 
1361 	for (i = BGE_STATUS_BLOCK;
1362 	    i < BGE_STATUS_BLOCK_END + 1; i += sizeof(uint32_t))
1363 		BGE_MEMWIN_WRITE(sc, i, 0);
1364 
1365 	/*
1366 	 * Set up the PCI DMA control register.
1367 	 */
1368 	dma_rw_ctl = BGE_PCIDMARWCTL_RD_CMD_SHIFT(6) |
1369 	    BGE_PCIDMARWCTL_WR_CMD_SHIFT(7);
1370 	if (sc->bge_flags & BGE_FLAG_PCIE) {
1371 		/* Read watermark not used, 128 bytes for write. */
1372 		dma_rw_ctl |= BGE_PCIDMARWCTL_WR_WAT_SHIFT(3);
1373 	} else if (sc->bge_flags & BGE_FLAG_PCIX) {
1374 		if (BGE_IS_5714_FAMILY(sc)) {
1375 			/* 256 bytes for read and write. */
1376 			dma_rw_ctl |= BGE_PCIDMARWCTL_RD_WAT_SHIFT(2) |
1377 			    BGE_PCIDMARWCTL_WR_WAT_SHIFT(2);
1378 			dma_rw_ctl |= (sc->bge_asicrev == BGE_ASICREV_BCM5780) ?
1379 			    BGE_PCIDMARWCTL_ONEDMA_ATONCE_GLOBAL :
1380 			    BGE_PCIDMARWCTL_ONEDMA_ATONCE_LOCAL;
1381 		} else if (sc->bge_asicrev == BGE_ASICREV_BCM5704) {
1382 			/* 1536 bytes for read, 384 bytes for write. */
1383 			dma_rw_ctl |= BGE_PCIDMARWCTL_RD_WAT_SHIFT(7) |
1384 			    BGE_PCIDMARWCTL_WR_WAT_SHIFT(3);
1385 		} else {
1386 			/* 384 bytes for read and write. */
1387 			dma_rw_ctl |= BGE_PCIDMARWCTL_RD_WAT_SHIFT(3) |
1388 			    BGE_PCIDMARWCTL_WR_WAT_SHIFT(3) |
1389 			    0x0F;
1390 		}
1391 		if (sc->bge_asicrev == BGE_ASICREV_BCM5703 ||
1392 		    sc->bge_asicrev == BGE_ASICREV_BCM5704) {
1393 			uint32_t tmp;
1394 
1395 			/* Set ONE_DMA_AT_ONCE for hardware workaround. */
1396 			tmp = CSR_READ_4(sc, BGE_PCI_CLKCTL) & 0x1F;
1397 			if (tmp == 6 || tmp == 7)
1398 				dma_rw_ctl |=
1399 				    BGE_PCIDMARWCTL_ONEDMA_ATONCE_GLOBAL;
1400 
1401 			/* Set PCI-X DMA write workaround. */
1402 			dma_rw_ctl |= BGE_PCIDMARWCTL_ASRT_ALL_BE;
1403 		}
1404 	} else {
1405 		/* Conventional PCI bus: 256 bytes for read and write. */
1406 		dma_rw_ctl |= BGE_PCIDMARWCTL_RD_WAT_SHIFT(7) |
1407 		    BGE_PCIDMARWCTL_WR_WAT_SHIFT(7);
1408 
1409 		if (sc->bge_asicrev != BGE_ASICREV_BCM5705 &&
1410 		    sc->bge_asicrev != BGE_ASICREV_BCM5750)
1411 			dma_rw_ctl |= 0x0F;
1412 	}
1413 	if (sc->bge_asicrev == BGE_ASICREV_BCM5700 ||
1414 	    sc->bge_asicrev == BGE_ASICREV_BCM5701)
1415 		dma_rw_ctl |= BGE_PCIDMARWCTL_USE_MRM |
1416 		    BGE_PCIDMARWCTL_ASRT_ALL_BE;
1417 	if (sc->bge_asicrev == BGE_ASICREV_BCM5703 ||
1418 	    sc->bge_asicrev == BGE_ASICREV_BCM5704)
1419 		dma_rw_ctl &= ~BGE_PCIDMARWCTL_MINDMA;
1420 	pci_write_config(sc->bge_dev, BGE_PCI_DMA_RW_CTL, dma_rw_ctl, 4);
1421 
1422 	/*
1423 	 * Set up general mode register.
1424 	 */
1425 	CSR_WRITE_4(sc, BGE_MODE_CTL, BGE_DMA_SWAP_OPTIONS |
1426 	    BGE_MODECTL_MAC_ATTN_INTR | BGE_MODECTL_HOST_SEND_BDS |
1427 	    BGE_MODECTL_TX_NO_PHDR_CSUM);
1428 
1429 	/*
1430 	 * BCM5701 B5 have a bug causing data corruption when using
1431 	 * 64-bit DMA reads, which can be terminated early and then
1432 	 * completed later as 32-bit accesses, in combination with
1433 	 * certain bridges.
1434 	 */
1435 	if (sc->bge_asicrev == BGE_ASICREV_BCM5701 &&
1436 	    sc->bge_chipid == BGE_CHIPID_BCM5701_B5)
1437 		BGE_SETBIT(sc, BGE_MODE_CTL, BGE_MODECTL_FORCE_PCI32);
1438 
1439 	/*
1440 	 * Tell the firmware the driver is running
1441 	 */
1442 	if (sc->bge_asf_mode & ASF_STACKUP)
1443 		BGE_SETBIT(sc, BGE_MODE_CTL, BGE_MODECTL_STACKUP);
1444 
1445 	/*
1446 	 * Disable memory write invalidate.  Apparently it is not supported
1447 	 * properly by these devices.  Also ensure that INTx isn't disabled,
1448 	 * as these chips need it even when using MSI.
1449 	 */
1450 	PCI_CLRBIT(sc->bge_dev, BGE_PCI_CMD,
1451 	    PCIM_CMD_INTxDIS | PCIM_CMD_MWIEN, 4);
1452 
1453 	/* Set the timer prescaler (always 66Mhz) */
1454 	CSR_WRITE_4(sc, BGE_MISC_CFG, BGE_32BITTIME_66MHZ);
1455 
1456 	/* XXX: The Linux tg3 driver does this at the start of brgphy_reset. */
1457 	if (sc->bge_asicrev == BGE_ASICREV_BCM5906) {
1458 		DELAY(40);	/* XXX */
1459 
1460 		/* Put PHY into ready state */
1461 		BGE_CLRBIT(sc, BGE_MISC_CFG, BGE_MISCCFG_EPHY_IDDQ);
1462 		CSR_READ_4(sc, BGE_MISC_CFG); /* Flush */
1463 		DELAY(40);
1464 	}
1465 
1466 	return (0);
1467 }
1468 
1469 static int
1470 bge_blockinit(struct bge_softc *sc)
1471 {
1472 	struct bge_rcb *rcb;
1473 	bus_size_t vrcb;
1474 	bge_hostaddr taddr;
1475 	uint32_t val;
1476 	int i;
1477 
1478 	/*
1479 	 * Initialize the memory window pointer register so that
1480 	 * we can access the first 32K of internal NIC RAM. This will
1481 	 * allow us to set up the TX send ring RCBs and the RX return
1482 	 * ring RCBs, plus other things which live in NIC memory.
1483 	 */
1484 	CSR_WRITE_4(sc, BGE_PCI_MEMWIN_BASEADDR, 0);
1485 
1486 	/* Note: the BCM5704 has a smaller mbuf space than other chips. */
1487 
1488 	if (!(BGE_IS_5705_PLUS(sc))) {
1489 		/* Configure mbuf memory pool */
1490 		CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_BASEADDR, BGE_BUFFPOOL_1);
1491 		if (sc->bge_asicrev == BGE_ASICREV_BCM5704)
1492 			CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_LEN, 0x10000);
1493 		else
1494 			CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_LEN, 0x18000);
1495 
1496 		/* Configure DMA resource pool */
1497 		CSR_WRITE_4(sc, BGE_BMAN_DMA_DESCPOOL_BASEADDR,
1498 		    BGE_DMA_DESCRIPTORS);
1499 		CSR_WRITE_4(sc, BGE_BMAN_DMA_DESCPOOL_LEN, 0x2000);
1500 	}
1501 
1502 	/* Configure mbuf pool watermarks */
1503 	if (!BGE_IS_5705_PLUS(sc)) {
1504 		CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_READDMA_LOWAT, 0x50);
1505 		CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_MACRX_LOWAT, 0x20);
1506 		CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_HIWAT, 0x60);
1507 	} else if (sc->bge_asicrev == BGE_ASICREV_BCM5906) {
1508 		CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_READDMA_LOWAT, 0x0);
1509 		CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_MACRX_LOWAT, 0x04);
1510 		CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_HIWAT, 0x10);
1511 	} else {
1512 		CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_READDMA_LOWAT, 0x0);
1513 		CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_MACRX_LOWAT, 0x10);
1514 		CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_HIWAT, 0x60);
1515 	}
1516 
1517 	/* Configure DMA resource watermarks */
1518 	CSR_WRITE_4(sc, BGE_BMAN_DMA_DESCPOOL_LOWAT, 5);
1519 	CSR_WRITE_4(sc, BGE_BMAN_DMA_DESCPOOL_HIWAT, 10);
1520 
1521 	/* Enable buffer manager */
1522 	if (!(BGE_IS_5705_PLUS(sc))) {
1523 		CSR_WRITE_4(sc, BGE_BMAN_MODE,
1524 		    BGE_BMANMODE_ENABLE | BGE_BMANMODE_LOMBUF_ATTN);
1525 
1526 		/* Poll for buffer manager start indication */
1527 		for (i = 0; i < BGE_TIMEOUT; i++) {
1528 			DELAY(10);
1529 			if (CSR_READ_4(sc, BGE_BMAN_MODE) & BGE_BMANMODE_ENABLE)
1530 				break;
1531 		}
1532 
1533 		if (i == BGE_TIMEOUT) {
1534 			device_printf(sc->bge_dev,
1535 			    "buffer manager failed to start\n");
1536 			return (ENXIO);
1537 		}
1538 	}
1539 
1540 	/* Enable flow-through queues */
1541 	CSR_WRITE_4(sc, BGE_FTQ_RESET, 0xFFFFFFFF);
1542 	CSR_WRITE_4(sc, BGE_FTQ_RESET, 0);
1543 
1544 	/* Wait until queue initialization is complete */
1545 	for (i = 0; i < BGE_TIMEOUT; i++) {
1546 		DELAY(10);
1547 		if (CSR_READ_4(sc, BGE_FTQ_RESET) == 0)
1548 			break;
1549 	}
1550 
1551 	if (i == BGE_TIMEOUT) {
1552 		device_printf(sc->bge_dev, "flow-through queue init failed\n");
1553 		return (ENXIO);
1554 	}
1555 
1556 	/* Initialize the standard RX ring control block */
1557 	rcb = &sc->bge_ldata.bge_info.bge_std_rx_rcb;
1558 	rcb->bge_hostaddr.bge_addr_lo =
1559 	    BGE_ADDR_LO(sc->bge_ldata.bge_rx_std_ring_paddr);
1560 	rcb->bge_hostaddr.bge_addr_hi =
1561 	    BGE_ADDR_HI(sc->bge_ldata.bge_rx_std_ring_paddr);
1562 	bus_dmamap_sync(sc->bge_cdata.bge_rx_std_ring_tag,
1563 	    sc->bge_cdata.bge_rx_std_ring_map, BUS_DMASYNC_PREREAD);
1564 	if (BGE_IS_5705_PLUS(sc))
1565 		rcb->bge_maxlen_flags = BGE_RCB_MAXLEN_FLAGS(512, 0);
1566 	else
1567 		rcb->bge_maxlen_flags =
1568 		    BGE_RCB_MAXLEN_FLAGS(BGE_MAX_FRAMELEN, 0);
1569 	rcb->bge_nicaddr = BGE_STD_RX_RINGS;
1570 	CSR_WRITE_4(sc, BGE_RX_STD_RCB_HADDR_HI, rcb->bge_hostaddr.bge_addr_hi);
1571 	CSR_WRITE_4(sc, BGE_RX_STD_RCB_HADDR_LO, rcb->bge_hostaddr.bge_addr_lo);
1572 
1573 	CSR_WRITE_4(sc, BGE_RX_STD_RCB_MAXLEN_FLAGS, rcb->bge_maxlen_flags);
1574 	CSR_WRITE_4(sc, BGE_RX_STD_RCB_NICADDR, rcb->bge_nicaddr);
1575 
1576 	/*
1577 	 * Initialize the jumbo RX ring control block
1578 	 * We set the 'ring disabled' bit in the flags
1579 	 * field until we're actually ready to start
1580 	 * using this ring (i.e. once we set the MTU
1581 	 * high enough to require it).
1582 	 */
1583 	if (BGE_IS_JUMBO_CAPABLE(sc)) {
1584 		rcb = &sc->bge_ldata.bge_info.bge_jumbo_rx_rcb;
1585 
1586 		rcb->bge_hostaddr.bge_addr_lo =
1587 		    BGE_ADDR_LO(sc->bge_ldata.bge_rx_jumbo_ring_paddr);
1588 		rcb->bge_hostaddr.bge_addr_hi =
1589 		    BGE_ADDR_HI(sc->bge_ldata.bge_rx_jumbo_ring_paddr);
1590 		bus_dmamap_sync(sc->bge_cdata.bge_rx_jumbo_ring_tag,
1591 		    sc->bge_cdata.bge_rx_jumbo_ring_map,
1592 		    BUS_DMASYNC_PREREAD);
1593 		rcb->bge_maxlen_flags = BGE_RCB_MAXLEN_FLAGS(0,
1594 		    BGE_RCB_FLAG_USE_EXT_RX_BD | BGE_RCB_FLAG_RING_DISABLED);
1595 		rcb->bge_nicaddr = BGE_JUMBO_RX_RINGS;
1596 		CSR_WRITE_4(sc, BGE_RX_JUMBO_RCB_HADDR_HI,
1597 		    rcb->bge_hostaddr.bge_addr_hi);
1598 		CSR_WRITE_4(sc, BGE_RX_JUMBO_RCB_HADDR_LO,
1599 		    rcb->bge_hostaddr.bge_addr_lo);
1600 
1601 		CSR_WRITE_4(sc, BGE_RX_JUMBO_RCB_MAXLEN_FLAGS,
1602 		    rcb->bge_maxlen_flags);
1603 		CSR_WRITE_4(sc, BGE_RX_JUMBO_RCB_NICADDR, rcb->bge_nicaddr);
1604 
1605 		/* Set up dummy disabled mini ring RCB */
1606 		rcb = &sc->bge_ldata.bge_info.bge_mini_rx_rcb;
1607 		rcb->bge_maxlen_flags =
1608 		    BGE_RCB_MAXLEN_FLAGS(0, BGE_RCB_FLAG_RING_DISABLED);
1609 		CSR_WRITE_4(sc, BGE_RX_MINI_RCB_MAXLEN_FLAGS,
1610 		    rcb->bge_maxlen_flags);
1611 	}
1612 
1613 	/*
1614 	 * Set the BD ring replentish thresholds. The recommended
1615 	 * values are 1/8th the number of descriptors allocated to
1616 	 * each ring.
1617 	 * XXX The 5754 requires a lower threshold, so it might be a
1618 	 * requirement of all 575x family chips.  The Linux driver sets
1619 	 * the lower threshold for all 5705 family chips as well, but there
1620 	 * are reports that it might not need to be so strict.
1621 	 *
1622 	 * XXX Linux does some extra fiddling here for the 5906 parts as
1623 	 * well.
1624 	 */
1625 	if (BGE_IS_5705_PLUS(sc))
1626 		val = 8;
1627 	else
1628 		val = BGE_STD_RX_RING_CNT / 8;
1629 	CSR_WRITE_4(sc, BGE_RBDI_STD_REPL_THRESH, val);
1630 	if (BGE_IS_JUMBO_CAPABLE(sc))
1631 		CSR_WRITE_4(sc, BGE_RBDI_JUMBO_REPL_THRESH,
1632 		    BGE_JUMBO_RX_RING_CNT/8);
1633 
1634 	/*
1635 	 * Disable all unused send rings by setting the 'ring disabled'
1636 	 * bit in the flags field of all the TX send ring control blocks.
1637 	 * These are located in NIC memory.
1638 	 */
1639 	vrcb = BGE_MEMWIN_START + BGE_SEND_RING_RCB;
1640 	for (i = 0; i < BGE_TX_RINGS_EXTSSRAM_MAX; i++) {
1641 		RCB_WRITE_4(sc, vrcb, bge_maxlen_flags,
1642 		    BGE_RCB_MAXLEN_FLAGS(0, BGE_RCB_FLAG_RING_DISABLED));
1643 		RCB_WRITE_4(sc, vrcb, bge_nicaddr, 0);
1644 		vrcb += sizeof(struct bge_rcb);
1645 	}
1646 
1647 	/* Configure TX RCB 0 (we use only the first ring) */
1648 	vrcb = BGE_MEMWIN_START + BGE_SEND_RING_RCB;
1649 	BGE_HOSTADDR(taddr, sc->bge_ldata.bge_tx_ring_paddr);
1650 	RCB_WRITE_4(sc, vrcb, bge_hostaddr.bge_addr_hi, taddr.bge_addr_hi);
1651 	RCB_WRITE_4(sc, vrcb, bge_hostaddr.bge_addr_lo, taddr.bge_addr_lo);
1652 	RCB_WRITE_4(sc, vrcb, bge_nicaddr,
1653 	    BGE_NIC_TXRING_ADDR(0, BGE_TX_RING_CNT));
1654 	if (!(BGE_IS_5705_PLUS(sc)))
1655 		RCB_WRITE_4(sc, vrcb, bge_maxlen_flags,
1656 		    BGE_RCB_MAXLEN_FLAGS(BGE_TX_RING_CNT, 0));
1657 
1658 	/* Disable all unused RX return rings */
1659 	vrcb = BGE_MEMWIN_START + BGE_RX_RETURN_RING_RCB;
1660 	for (i = 0; i < BGE_RX_RINGS_MAX; i++) {
1661 		RCB_WRITE_4(sc, vrcb, bge_hostaddr.bge_addr_hi, 0);
1662 		RCB_WRITE_4(sc, vrcb, bge_hostaddr.bge_addr_lo, 0);
1663 		RCB_WRITE_4(sc, vrcb, bge_maxlen_flags,
1664 		    BGE_RCB_MAXLEN_FLAGS(sc->bge_return_ring_cnt,
1665 		    BGE_RCB_FLAG_RING_DISABLED));
1666 		RCB_WRITE_4(sc, vrcb, bge_nicaddr, 0);
1667 		bge_writembx(sc, BGE_MBX_RX_CONS0_LO +
1668 		    (i * (sizeof(uint64_t))), 0);
1669 		vrcb += sizeof(struct bge_rcb);
1670 	}
1671 
1672 	/* Initialize RX ring indexes */
1673 	bge_writembx(sc, BGE_MBX_RX_STD_PROD_LO, 0);
1674 	if (BGE_IS_JUMBO_CAPABLE(sc))
1675 		bge_writembx(sc, BGE_MBX_RX_JUMBO_PROD_LO, 0);
1676 	if (sc->bge_asicrev == BGE_ASICREV_BCM5700)
1677 		bge_writembx(sc, BGE_MBX_RX_MINI_PROD_LO, 0);
1678 
1679 	/*
1680 	 * Set up RX return ring 0
1681 	 * Note that the NIC address for RX return rings is 0x00000000.
1682 	 * The return rings live entirely within the host, so the
1683 	 * nicaddr field in the RCB isn't used.
1684 	 */
1685 	vrcb = BGE_MEMWIN_START + BGE_RX_RETURN_RING_RCB;
1686 	BGE_HOSTADDR(taddr, sc->bge_ldata.bge_rx_return_ring_paddr);
1687 	RCB_WRITE_4(sc, vrcb, bge_hostaddr.bge_addr_hi, taddr.bge_addr_hi);
1688 	RCB_WRITE_4(sc, vrcb, bge_hostaddr.bge_addr_lo, taddr.bge_addr_lo);
1689 	RCB_WRITE_4(sc, vrcb, bge_nicaddr, 0x00000000);
1690 	RCB_WRITE_4(sc, vrcb, bge_maxlen_flags,
1691 	    BGE_RCB_MAXLEN_FLAGS(sc->bge_return_ring_cnt, 0));
1692 
1693 	/* Set random backoff seed for TX */
1694 	CSR_WRITE_4(sc, BGE_TX_RANDOM_BACKOFF,
1695 	    IF_LLADDR(sc->bge_ifp)[0] + IF_LLADDR(sc->bge_ifp)[1] +
1696 	    IF_LLADDR(sc->bge_ifp)[2] + IF_LLADDR(sc->bge_ifp)[3] +
1697 	    IF_LLADDR(sc->bge_ifp)[4] + IF_LLADDR(sc->bge_ifp)[5] +
1698 	    BGE_TX_BACKOFF_SEED_MASK);
1699 
1700 	/* Set inter-packet gap */
1701 	CSR_WRITE_4(sc, BGE_TX_LENGTHS, 0x2620);
1702 
1703 	/*
1704 	 * Specify which ring to use for packets that don't match
1705 	 * any RX rules.
1706 	 */
1707 	CSR_WRITE_4(sc, BGE_RX_RULES_CFG, 0x08);
1708 
1709 	/*
1710 	 * Configure number of RX lists. One interrupt distribution
1711 	 * list, sixteen active lists, one bad frames class.
1712 	 */
1713 	CSR_WRITE_4(sc, BGE_RXLP_CFG, 0x181);
1714 
1715 	/* Inialize RX list placement stats mask. */
1716 	CSR_WRITE_4(sc, BGE_RXLP_STATS_ENABLE_MASK, 0x007FFFFF);
1717 	CSR_WRITE_4(sc, BGE_RXLP_STATS_CTL, 0x1);
1718 
1719 	/* Disable host coalescing until we get it set up */
1720 	CSR_WRITE_4(sc, BGE_HCC_MODE, 0x00000000);
1721 
1722 	/* Poll to make sure it's shut down. */
1723 	for (i = 0; i < BGE_TIMEOUT; i++) {
1724 		DELAY(10);
1725 		if (!(CSR_READ_4(sc, BGE_HCC_MODE) & BGE_HCCMODE_ENABLE))
1726 			break;
1727 	}
1728 
1729 	if (i == BGE_TIMEOUT) {
1730 		device_printf(sc->bge_dev,
1731 		    "host coalescing engine failed to idle\n");
1732 		return (ENXIO);
1733 	}
1734 
1735 	/* Set up host coalescing defaults */
1736 	CSR_WRITE_4(sc, BGE_HCC_RX_COAL_TICKS, sc->bge_rx_coal_ticks);
1737 	CSR_WRITE_4(sc, BGE_HCC_TX_COAL_TICKS, sc->bge_tx_coal_ticks);
1738 	CSR_WRITE_4(sc, BGE_HCC_RX_MAX_COAL_BDS, sc->bge_rx_max_coal_bds);
1739 	CSR_WRITE_4(sc, BGE_HCC_TX_MAX_COAL_BDS, sc->bge_tx_max_coal_bds);
1740 	if (!(BGE_IS_5705_PLUS(sc))) {
1741 		CSR_WRITE_4(sc, BGE_HCC_RX_COAL_TICKS_INT, 0);
1742 		CSR_WRITE_4(sc, BGE_HCC_TX_COAL_TICKS_INT, 0);
1743 	}
1744 	CSR_WRITE_4(sc, BGE_HCC_RX_MAX_COAL_BDS_INT, 1);
1745 	CSR_WRITE_4(sc, BGE_HCC_TX_MAX_COAL_BDS_INT, 1);
1746 
1747 	/* Set up address of statistics block */
1748 	if (!(BGE_IS_5705_PLUS(sc))) {
1749 		CSR_WRITE_4(sc, BGE_HCC_STATS_ADDR_HI,
1750 		    BGE_ADDR_HI(sc->bge_ldata.bge_stats_paddr));
1751 		CSR_WRITE_4(sc, BGE_HCC_STATS_ADDR_LO,
1752 		    BGE_ADDR_LO(sc->bge_ldata.bge_stats_paddr));
1753 		CSR_WRITE_4(sc, BGE_HCC_STATS_BASEADDR, BGE_STATS_BLOCK);
1754 		CSR_WRITE_4(sc, BGE_HCC_STATUSBLK_BASEADDR, BGE_STATUS_BLOCK);
1755 		CSR_WRITE_4(sc, BGE_HCC_STATS_TICKS, sc->bge_stat_ticks);
1756 	}
1757 
1758 	/* Set up address of status block */
1759 	CSR_WRITE_4(sc, BGE_HCC_STATUSBLK_ADDR_HI,
1760 	    BGE_ADDR_HI(sc->bge_ldata.bge_status_block_paddr));
1761 	CSR_WRITE_4(sc, BGE_HCC_STATUSBLK_ADDR_LO,
1762 	    BGE_ADDR_LO(sc->bge_ldata.bge_status_block_paddr));
1763 	sc->bge_ldata.bge_status_block->bge_idx[0].bge_rx_prod_idx = 0;
1764 	sc->bge_ldata.bge_status_block->bge_idx[0].bge_tx_cons_idx = 0;
1765 
1766 	/* Set up status block size. */
1767 	if (sc->bge_asicrev == BGE_ASICREV_BCM5700 &&
1768 	    sc->bge_chipid != BGE_CHIPID_BCM5700_C0)
1769 		val = BGE_STATBLKSZ_FULL;
1770 	else
1771 		val = BGE_STATBLKSZ_32BYTE;
1772 
1773 	/* Turn on host coalescing state machine */
1774 	CSR_WRITE_4(sc, BGE_HCC_MODE, val | BGE_HCCMODE_ENABLE);
1775 
1776 	/* Turn on RX BD completion state machine and enable attentions */
1777 	CSR_WRITE_4(sc, BGE_RBDC_MODE,
1778 	    BGE_RBDCMODE_ENABLE | BGE_RBDCMODE_ATTN);
1779 
1780 	/* Turn on RX list placement state machine */
1781 	CSR_WRITE_4(sc, BGE_RXLP_MODE, BGE_RXLPMODE_ENABLE);
1782 
1783 	/* Turn on RX list selector state machine. */
1784 	if (!(BGE_IS_5705_PLUS(sc)))
1785 		CSR_WRITE_4(sc, BGE_RXLS_MODE, BGE_RXLSMODE_ENABLE);
1786 
1787 	val = BGE_MACMODE_TXDMA_ENB | BGE_MACMODE_RXDMA_ENB |
1788 	    BGE_MACMODE_RX_STATS_CLEAR | BGE_MACMODE_TX_STATS_CLEAR |
1789 	    BGE_MACMODE_RX_STATS_ENB | BGE_MACMODE_TX_STATS_ENB |
1790 	    BGE_MACMODE_FRMHDR_DMA_ENB;
1791 
1792 	if (sc->bge_flags & BGE_FLAG_TBI)
1793 		val |= BGE_PORTMODE_TBI;
1794 	else if (sc->bge_flags & BGE_FLAG_MII_SERDES)
1795 		val |= BGE_PORTMODE_GMII;
1796 	else
1797 		val |= BGE_PORTMODE_MII;
1798 
1799 	/* Turn on DMA, clear stats */
1800 	CSR_WRITE_4(sc, BGE_MAC_MODE, val);
1801 
1802 	/* Set misc. local control, enable interrupts on attentions */
1803 	CSR_WRITE_4(sc, BGE_MISC_LOCAL_CTL, BGE_MLC_INTR_ONATTN);
1804 
1805 #ifdef notdef
1806 	/* Assert GPIO pins for PHY reset */
1807 	BGE_SETBIT(sc, BGE_MISC_LOCAL_CTL, BGE_MLC_MISCIO_OUT0 |
1808 	    BGE_MLC_MISCIO_OUT1 | BGE_MLC_MISCIO_OUT2);
1809 	BGE_SETBIT(sc, BGE_MISC_LOCAL_CTL, BGE_MLC_MISCIO_OUTEN0 |
1810 	    BGE_MLC_MISCIO_OUTEN1 | BGE_MLC_MISCIO_OUTEN2);
1811 #endif
1812 
1813 	/* Turn on DMA completion state machine */
1814 	if (!(BGE_IS_5705_PLUS(sc)))
1815 		CSR_WRITE_4(sc, BGE_DMAC_MODE, BGE_DMACMODE_ENABLE);
1816 
1817 	val = BGE_WDMAMODE_ENABLE | BGE_WDMAMODE_ALL_ATTNS;
1818 
1819 	/* Enable host coalescing bug fix. */
1820 	if (BGE_IS_5755_PLUS(sc))
1821 		val |= BGE_WDMAMODE_STATUS_TAG_FIX;
1822 
1823 	/* Turn on write DMA state machine */
1824 	CSR_WRITE_4(sc, BGE_WDMA_MODE, val);
1825 	DELAY(40);
1826 
1827 	/* Turn on read DMA state machine */
1828 	val = BGE_RDMAMODE_ENABLE | BGE_RDMAMODE_ALL_ATTNS;
1829 	if (sc->bge_asicrev == BGE_ASICREV_BCM5784 ||
1830 	    sc->bge_asicrev == BGE_ASICREV_BCM5785 ||
1831 	    sc->bge_asicrev == BGE_ASICREV_BCM57780)
1832 		val |= BGE_RDMAMODE_BD_SBD_CRPT_ATTN |
1833 		    BGE_RDMAMODE_MBUF_RBD_CRPT_ATTN |
1834 		    BGE_RDMAMODE_MBUF_SBD_CRPT_ATTN;
1835 	if (sc->bge_flags & BGE_FLAG_PCIE)
1836 		val |= BGE_RDMAMODE_FIFO_LONG_BURST;
1837 	if (sc->bge_flags & BGE_FLAG_TSO)
1838 		val |= BGE_RDMAMODE_TSO4_ENABLE;
1839 	CSR_WRITE_4(sc, BGE_RDMA_MODE, val);
1840 	DELAY(40);
1841 
1842 	/* Turn on RX data completion state machine */
1843 	CSR_WRITE_4(sc, BGE_RDC_MODE, BGE_RDCMODE_ENABLE);
1844 
1845 	/* Turn on RX BD initiator state machine */
1846 	CSR_WRITE_4(sc, BGE_RBDI_MODE, BGE_RBDIMODE_ENABLE);
1847 
1848 	/* Turn on RX data and RX BD initiator state machine */
1849 	CSR_WRITE_4(sc, BGE_RDBDI_MODE, BGE_RDBDIMODE_ENABLE);
1850 
1851 	/* Turn on Mbuf cluster free state machine */
1852 	if (!(BGE_IS_5705_PLUS(sc)))
1853 		CSR_WRITE_4(sc, BGE_MBCF_MODE, BGE_MBCFMODE_ENABLE);
1854 
1855 	/* Turn on send BD completion state machine */
1856 	CSR_WRITE_4(sc, BGE_SBDC_MODE, BGE_SBDCMODE_ENABLE);
1857 
1858 	/* Turn on send data completion state machine */
1859 	val = BGE_SDCMODE_ENABLE;
1860 	if (sc->bge_asicrev == BGE_ASICREV_BCM5761)
1861 		val |= BGE_SDCMODE_CDELAY;
1862 	CSR_WRITE_4(sc, BGE_SDC_MODE, val);
1863 
1864 	/* Turn on send data initiator state machine */
1865 	if (sc->bge_flags & BGE_FLAG_TSO)
1866 		CSR_WRITE_4(sc, BGE_SDI_MODE, BGE_SDIMODE_ENABLE | 0x08);
1867 	else
1868 		CSR_WRITE_4(sc, BGE_SDI_MODE, BGE_SDIMODE_ENABLE);
1869 
1870 	/* Turn on send BD initiator state machine */
1871 	CSR_WRITE_4(sc, BGE_SBDI_MODE, BGE_SBDIMODE_ENABLE);
1872 
1873 	/* Turn on send BD selector state machine */
1874 	CSR_WRITE_4(sc, BGE_SRS_MODE, BGE_SRSMODE_ENABLE);
1875 
1876 	CSR_WRITE_4(sc, BGE_SDI_STATS_ENABLE_MASK, 0x007FFFFF);
1877 	CSR_WRITE_4(sc, BGE_SDI_STATS_CTL,
1878 	    BGE_SDISTATSCTL_ENABLE | BGE_SDISTATSCTL_FASTER);
1879 
1880 	/* ack/clear link change events */
1881 	CSR_WRITE_4(sc, BGE_MAC_STS, BGE_MACSTAT_SYNC_CHANGED |
1882 	    BGE_MACSTAT_CFG_CHANGED | BGE_MACSTAT_MI_COMPLETE |
1883 	    BGE_MACSTAT_LINK_CHANGED);
1884 	CSR_WRITE_4(sc, BGE_MI_STS, 0);
1885 
1886 	/* Enable PHY auto polling (for MII/GMII only) */
1887 	if (sc->bge_flags & BGE_FLAG_TBI) {
1888 		CSR_WRITE_4(sc, BGE_MI_STS, BGE_MISTS_LINK);
1889 	} else {
1890 		BGE_SETBIT(sc, BGE_MI_MODE, BGE_MIMODE_AUTOPOLL | (10 << 16));
1891 		if (sc->bge_asicrev == BGE_ASICREV_BCM5700 &&
1892 		    sc->bge_chipid != BGE_CHIPID_BCM5700_B2)
1893 			CSR_WRITE_4(sc, BGE_MAC_EVT_ENB,
1894 			    BGE_EVTENB_MI_INTERRUPT);
1895 	}
1896 
1897 	/*
1898 	 * Clear any pending link state attention.
1899 	 * Otherwise some link state change events may be lost until attention
1900 	 * is cleared by bge_intr() -> bge_link_upd() sequence.
1901 	 * It's not necessary on newer BCM chips - perhaps enabling link
1902 	 * state change attentions implies clearing pending attention.
1903 	 */
1904 	CSR_WRITE_4(sc, BGE_MAC_STS, BGE_MACSTAT_SYNC_CHANGED |
1905 	    BGE_MACSTAT_CFG_CHANGED | BGE_MACSTAT_MI_COMPLETE |
1906 	    BGE_MACSTAT_LINK_CHANGED);
1907 
1908 	/* Enable link state change attentions. */
1909 	BGE_SETBIT(sc, BGE_MAC_EVT_ENB, BGE_EVTENB_LINK_CHANGED);
1910 
1911 	return (0);
1912 }
1913 
1914 const struct bge_revision *
1915 bge_lookup_rev(uint32_t chipid)
1916 {
1917 	const struct bge_revision *br;
1918 
1919 	for (br = bge_revisions; br->br_name != NULL; br++) {
1920 		if (br->br_chipid == chipid)
1921 			return (br);
1922 	}
1923 
1924 	for (br = bge_majorrevs; br->br_name != NULL; br++) {
1925 		if (br->br_chipid == BGE_ASICREV(chipid))
1926 			return (br);
1927 	}
1928 
1929 	return (NULL);
1930 }
1931 
1932 const struct bge_vendor *
1933 bge_lookup_vendor(uint16_t vid)
1934 {
1935 	const struct bge_vendor *v;
1936 
1937 	for (v = bge_vendors; v->v_name != NULL; v++)
1938 		if (v->v_id == vid)
1939 			return (v);
1940 
1941 	panic("%s: unknown vendor %d", __func__, vid);
1942 	return (NULL);
1943 }
1944 
1945 /*
1946  * Probe for a Broadcom chip. Check the PCI vendor and device IDs
1947  * against our list and return its name if we find a match.
1948  *
1949  * Note that since the Broadcom controller contains VPD support, we
1950  * try to get the device name string from the controller itself instead
1951  * of the compiled-in string. It guarantees we'll always announce the
1952  * right product name. We fall back to the compiled-in string when
1953  * VPD is unavailable or corrupt.
1954  */
1955 static int
1956 bge_probe(device_t dev)
1957 {
1958 	const struct bge_type *t = bge_devs;
1959 	struct bge_softc *sc = device_get_softc(dev);
1960 	uint16_t vid, did;
1961 
1962 	sc->bge_dev = dev;
1963 	vid = pci_get_vendor(dev);
1964 	did = pci_get_device(dev);
1965 	while(t->bge_vid != 0) {
1966 		if ((vid == t->bge_vid) && (did == t->bge_did)) {
1967 			char model[64], buf[96];
1968 			const struct bge_revision *br;
1969 			const struct bge_vendor *v;
1970 			uint32_t id;
1971 
1972 			id = pci_read_config(dev, BGE_PCI_MISC_CTL, 4) >>
1973 			    BGE_PCIMISCCTL_ASICREV_SHIFT;
1974 			if (BGE_ASICREV(id) == BGE_ASICREV_USE_PRODID_REG)
1975 				id = pci_read_config(dev,
1976 				    BGE_PCI_PRODID_ASICREV, 4);
1977 			br = bge_lookup_rev(id);
1978 			v = bge_lookup_vendor(vid);
1979 			{
1980 #if __FreeBSD_version > 700024
1981 				const char *pname;
1982 
1983 				if (bge_has_eaddr(sc) &&
1984 				    pci_get_vpd_ident(dev, &pname) == 0)
1985 					snprintf(model, 64, "%s", pname);
1986 				else
1987 #endif
1988 					snprintf(model, 64, "%s %s",
1989 					    v->v_name,
1990 					    br != NULL ? br->br_name :
1991 					    "NetXtreme Ethernet Controller");
1992 			}
1993 			snprintf(buf, 96, "%s, %sASIC rev. %#08x", model,
1994 			    br != NULL ? "" : "unknown ", id);
1995 			device_set_desc_copy(dev, buf);
1996 			return (0);
1997 		}
1998 		t++;
1999 	}
2000 
2001 	return (ENXIO);
2002 }
2003 
2004 static void
2005 bge_dma_free(struct bge_softc *sc)
2006 {
2007 	int i;
2008 
2009 	/* Destroy DMA maps for RX buffers. */
2010 	for (i = 0; i < BGE_STD_RX_RING_CNT; i++) {
2011 		if (sc->bge_cdata.bge_rx_std_dmamap[i])
2012 			bus_dmamap_destroy(sc->bge_cdata.bge_rx_mtag,
2013 			    sc->bge_cdata.bge_rx_std_dmamap[i]);
2014 	}
2015 	if (sc->bge_cdata.bge_rx_std_sparemap)
2016 		bus_dmamap_destroy(sc->bge_cdata.bge_rx_mtag,
2017 		    sc->bge_cdata.bge_rx_std_sparemap);
2018 
2019 	/* Destroy DMA maps for jumbo RX buffers. */
2020 	for (i = 0; i < BGE_JUMBO_RX_RING_CNT; i++) {
2021 		if (sc->bge_cdata.bge_rx_jumbo_dmamap[i])
2022 			bus_dmamap_destroy(sc->bge_cdata.bge_mtag_jumbo,
2023 			    sc->bge_cdata.bge_rx_jumbo_dmamap[i]);
2024 	}
2025 	if (sc->bge_cdata.bge_rx_jumbo_sparemap)
2026 		bus_dmamap_destroy(sc->bge_cdata.bge_mtag_jumbo,
2027 		    sc->bge_cdata.bge_rx_jumbo_sparemap);
2028 
2029 	/* Destroy DMA maps for TX buffers. */
2030 	for (i = 0; i < BGE_TX_RING_CNT; i++) {
2031 		if (sc->bge_cdata.bge_tx_dmamap[i])
2032 			bus_dmamap_destroy(sc->bge_cdata.bge_tx_mtag,
2033 			    sc->bge_cdata.bge_tx_dmamap[i]);
2034 	}
2035 
2036 	if (sc->bge_cdata.bge_rx_mtag)
2037 		bus_dma_tag_destroy(sc->bge_cdata.bge_rx_mtag);
2038 	if (sc->bge_cdata.bge_tx_mtag)
2039 		bus_dma_tag_destroy(sc->bge_cdata.bge_tx_mtag);
2040 
2041 
2042 	/* Destroy standard RX ring. */
2043 	if (sc->bge_cdata.bge_rx_std_ring_map)
2044 		bus_dmamap_unload(sc->bge_cdata.bge_rx_std_ring_tag,
2045 		    sc->bge_cdata.bge_rx_std_ring_map);
2046 	if (sc->bge_cdata.bge_rx_std_ring_map && sc->bge_ldata.bge_rx_std_ring)
2047 		bus_dmamem_free(sc->bge_cdata.bge_rx_std_ring_tag,
2048 		    sc->bge_ldata.bge_rx_std_ring,
2049 		    sc->bge_cdata.bge_rx_std_ring_map);
2050 
2051 	if (sc->bge_cdata.bge_rx_std_ring_tag)
2052 		bus_dma_tag_destroy(sc->bge_cdata.bge_rx_std_ring_tag);
2053 
2054 	/* Destroy jumbo RX ring. */
2055 	if (sc->bge_cdata.bge_rx_jumbo_ring_map)
2056 		bus_dmamap_unload(sc->bge_cdata.bge_rx_jumbo_ring_tag,
2057 		    sc->bge_cdata.bge_rx_jumbo_ring_map);
2058 
2059 	if (sc->bge_cdata.bge_rx_jumbo_ring_map &&
2060 	    sc->bge_ldata.bge_rx_jumbo_ring)
2061 		bus_dmamem_free(sc->bge_cdata.bge_rx_jumbo_ring_tag,
2062 		    sc->bge_ldata.bge_rx_jumbo_ring,
2063 		    sc->bge_cdata.bge_rx_jumbo_ring_map);
2064 
2065 	if (sc->bge_cdata.bge_rx_jumbo_ring_tag)
2066 		bus_dma_tag_destroy(sc->bge_cdata.bge_rx_jumbo_ring_tag);
2067 
2068 	/* Destroy RX return ring. */
2069 	if (sc->bge_cdata.bge_rx_return_ring_map)
2070 		bus_dmamap_unload(sc->bge_cdata.bge_rx_return_ring_tag,
2071 		    sc->bge_cdata.bge_rx_return_ring_map);
2072 
2073 	if (sc->bge_cdata.bge_rx_return_ring_map &&
2074 	    sc->bge_ldata.bge_rx_return_ring)
2075 		bus_dmamem_free(sc->bge_cdata.bge_rx_return_ring_tag,
2076 		    sc->bge_ldata.bge_rx_return_ring,
2077 		    sc->bge_cdata.bge_rx_return_ring_map);
2078 
2079 	if (sc->bge_cdata.bge_rx_return_ring_tag)
2080 		bus_dma_tag_destroy(sc->bge_cdata.bge_rx_return_ring_tag);
2081 
2082 	/* Destroy TX ring. */
2083 	if (sc->bge_cdata.bge_tx_ring_map)
2084 		bus_dmamap_unload(sc->bge_cdata.bge_tx_ring_tag,
2085 		    sc->bge_cdata.bge_tx_ring_map);
2086 
2087 	if (sc->bge_cdata.bge_tx_ring_map && sc->bge_ldata.bge_tx_ring)
2088 		bus_dmamem_free(sc->bge_cdata.bge_tx_ring_tag,
2089 		    sc->bge_ldata.bge_tx_ring,
2090 		    sc->bge_cdata.bge_tx_ring_map);
2091 
2092 	if (sc->bge_cdata.bge_tx_ring_tag)
2093 		bus_dma_tag_destroy(sc->bge_cdata.bge_tx_ring_tag);
2094 
2095 	/* Destroy status block. */
2096 	if (sc->bge_cdata.bge_status_map)
2097 		bus_dmamap_unload(sc->bge_cdata.bge_status_tag,
2098 		    sc->bge_cdata.bge_status_map);
2099 
2100 	if (sc->bge_cdata.bge_status_map && sc->bge_ldata.bge_status_block)
2101 		bus_dmamem_free(sc->bge_cdata.bge_status_tag,
2102 		    sc->bge_ldata.bge_status_block,
2103 		    sc->bge_cdata.bge_status_map);
2104 
2105 	if (sc->bge_cdata.bge_status_tag)
2106 		bus_dma_tag_destroy(sc->bge_cdata.bge_status_tag);
2107 
2108 	/* Destroy statistics block. */
2109 	if (sc->bge_cdata.bge_stats_map)
2110 		bus_dmamap_unload(sc->bge_cdata.bge_stats_tag,
2111 		    sc->bge_cdata.bge_stats_map);
2112 
2113 	if (sc->bge_cdata.bge_stats_map && sc->bge_ldata.bge_stats)
2114 		bus_dmamem_free(sc->bge_cdata.bge_stats_tag,
2115 		    sc->bge_ldata.bge_stats,
2116 		    sc->bge_cdata.bge_stats_map);
2117 
2118 	if (sc->bge_cdata.bge_stats_tag)
2119 		bus_dma_tag_destroy(sc->bge_cdata.bge_stats_tag);
2120 
2121 	/* Destroy the parent tag. */
2122 	if (sc->bge_cdata.bge_parent_tag)
2123 		bus_dma_tag_destroy(sc->bge_cdata.bge_parent_tag);
2124 }
2125 
2126 static int
2127 bge_dma_alloc(device_t dev)
2128 {
2129 	struct bge_dmamap_arg ctx;
2130 	struct bge_softc *sc;
2131 	bus_addr_t lowaddr;
2132 	bus_size_t sbsz, txsegsz, txmaxsegsz;
2133 	int i, error;
2134 
2135 	sc = device_get_softc(dev);
2136 
2137 	lowaddr = BUS_SPACE_MAXADDR;
2138 	if ((sc->bge_flags & BGE_FLAG_40BIT_BUG) != 0)
2139 		lowaddr = BGE_DMA_MAXADDR;
2140 	if ((sc->bge_flags & BGE_FLAG_4G_BNDRY_BUG) != 0)
2141 		lowaddr = BUS_SPACE_MAXADDR_32BIT;
2142 	/*
2143 	 * Allocate the parent bus DMA tag appropriate for PCI.
2144 	 */
2145 	error = bus_dma_tag_create(bus_get_dma_tag(sc->bge_dev),
2146 	    1, 0, lowaddr, BUS_SPACE_MAXADDR, NULL,
2147 	    NULL, BUS_SPACE_MAXSIZE_32BIT, 0, BUS_SPACE_MAXSIZE_32BIT,
2148 	    0, NULL, NULL, &sc->bge_cdata.bge_parent_tag);
2149 
2150 	if (error != 0) {
2151 		device_printf(sc->bge_dev,
2152 		    "could not allocate parent dma tag\n");
2153 		return (ENOMEM);
2154 	}
2155 
2156 	/*
2157 	 * Create tag for Tx mbufs.
2158 	 */
2159 	if (sc->bge_flags & BGE_FLAG_TSO) {
2160 		txsegsz = BGE_TSOSEG_SZ;
2161 		txmaxsegsz = 65535 + sizeof(struct ether_vlan_header);
2162 	} else {
2163 		txsegsz = MCLBYTES;
2164 		txmaxsegsz = MCLBYTES * BGE_NSEG_NEW;
2165 	}
2166 	error = bus_dma_tag_create(sc->bge_cdata.bge_parent_tag, 1,
2167 	    0, BUS_SPACE_MAXADDR, BUS_SPACE_MAXADDR, NULL, NULL,
2168 	    txmaxsegsz, BGE_NSEG_NEW, txsegsz, 0, NULL, NULL,
2169 	    &sc->bge_cdata.bge_tx_mtag);
2170 
2171 	if (error) {
2172 		device_printf(sc->bge_dev, "could not allocate TX dma tag\n");
2173 		return (ENOMEM);
2174 	}
2175 
2176 	/*
2177 	 * Create tag for Rx mbufs.
2178 	 */
2179 	error = bus_dma_tag_create(sc->bge_cdata.bge_parent_tag, 1, 0,
2180 	    BUS_SPACE_MAXADDR, BUS_SPACE_MAXADDR, NULL, NULL, MCLBYTES, 1,
2181 	    MCLBYTES, 0, NULL, NULL, &sc->bge_cdata.bge_rx_mtag);
2182 
2183 	if (error) {
2184 		device_printf(sc->bge_dev, "could not allocate RX dma tag\n");
2185 		return (ENOMEM);
2186 	}
2187 
2188 	/* Create DMA maps for RX buffers. */
2189 	error = bus_dmamap_create(sc->bge_cdata.bge_rx_mtag, 0,
2190 	    &sc->bge_cdata.bge_rx_std_sparemap);
2191 	if (error) {
2192 		device_printf(sc->bge_dev,
2193 		    "can't create spare DMA map for RX\n");
2194 		return (ENOMEM);
2195 	}
2196 	for (i = 0; i < BGE_STD_RX_RING_CNT; i++) {
2197 		error = bus_dmamap_create(sc->bge_cdata.bge_rx_mtag, 0,
2198 			    &sc->bge_cdata.bge_rx_std_dmamap[i]);
2199 		if (error) {
2200 			device_printf(sc->bge_dev,
2201 			    "can't create DMA map for RX\n");
2202 			return (ENOMEM);
2203 		}
2204 	}
2205 
2206 	/* Create DMA maps for TX buffers. */
2207 	for (i = 0; i < BGE_TX_RING_CNT; i++) {
2208 		error = bus_dmamap_create(sc->bge_cdata.bge_tx_mtag, 0,
2209 			    &sc->bge_cdata.bge_tx_dmamap[i]);
2210 		if (error) {
2211 			device_printf(sc->bge_dev,
2212 			    "can't create DMA map for TX\n");
2213 			return (ENOMEM);
2214 		}
2215 	}
2216 
2217 	/* Create tag for standard RX ring. */
2218 	error = bus_dma_tag_create(sc->bge_cdata.bge_parent_tag,
2219 	    PAGE_SIZE, 0, BUS_SPACE_MAXADDR, BUS_SPACE_MAXADDR, NULL,
2220 	    NULL, BGE_STD_RX_RING_SZ, 1, BGE_STD_RX_RING_SZ, 0,
2221 	    NULL, NULL, &sc->bge_cdata.bge_rx_std_ring_tag);
2222 
2223 	if (error) {
2224 		device_printf(sc->bge_dev, "could not allocate dma tag\n");
2225 		return (ENOMEM);
2226 	}
2227 
2228 	/* Allocate DMA'able memory for standard RX ring. */
2229 	error = bus_dmamem_alloc(sc->bge_cdata.bge_rx_std_ring_tag,
2230 	    (void **)&sc->bge_ldata.bge_rx_std_ring, BUS_DMA_NOWAIT,
2231 	    &sc->bge_cdata.bge_rx_std_ring_map);
2232 	if (error)
2233 		return (ENOMEM);
2234 
2235 	bzero((char *)sc->bge_ldata.bge_rx_std_ring, BGE_STD_RX_RING_SZ);
2236 
2237 	/* Load the address of the standard RX ring. */
2238 	ctx.bge_maxsegs = 1;
2239 	ctx.sc = sc;
2240 
2241 	error = bus_dmamap_load(sc->bge_cdata.bge_rx_std_ring_tag,
2242 	    sc->bge_cdata.bge_rx_std_ring_map, sc->bge_ldata.bge_rx_std_ring,
2243 	    BGE_STD_RX_RING_SZ, bge_dma_map_addr, &ctx, BUS_DMA_NOWAIT);
2244 
2245 	if (error)
2246 		return (ENOMEM);
2247 
2248 	sc->bge_ldata.bge_rx_std_ring_paddr = ctx.bge_busaddr;
2249 
2250 	/* Create tags for jumbo mbufs. */
2251 	if (BGE_IS_JUMBO_CAPABLE(sc)) {
2252 		error = bus_dma_tag_create(sc->bge_cdata.bge_parent_tag,
2253 		    1, 0, BUS_SPACE_MAXADDR, BUS_SPACE_MAXADDR, NULL,
2254 		    NULL, MJUM9BYTES, BGE_NSEG_JUMBO, PAGE_SIZE,
2255 		    0, NULL, NULL, &sc->bge_cdata.bge_mtag_jumbo);
2256 		if (error) {
2257 			device_printf(sc->bge_dev,
2258 			    "could not allocate jumbo dma tag\n");
2259 			return (ENOMEM);
2260 		}
2261 
2262 		/* Create tag for jumbo RX ring. */
2263 		error = bus_dma_tag_create(sc->bge_cdata.bge_parent_tag,
2264 		    PAGE_SIZE, 0, BUS_SPACE_MAXADDR, BUS_SPACE_MAXADDR, NULL,
2265 		    NULL, BGE_JUMBO_RX_RING_SZ, 1, BGE_JUMBO_RX_RING_SZ, 0,
2266 		    NULL, NULL, &sc->bge_cdata.bge_rx_jumbo_ring_tag);
2267 
2268 		if (error) {
2269 			device_printf(sc->bge_dev,
2270 			    "could not allocate jumbo ring dma tag\n");
2271 			return (ENOMEM);
2272 		}
2273 
2274 		/* Allocate DMA'able memory for jumbo RX ring. */
2275 		error = bus_dmamem_alloc(sc->bge_cdata.bge_rx_jumbo_ring_tag,
2276 		    (void **)&sc->bge_ldata.bge_rx_jumbo_ring,
2277 		    BUS_DMA_NOWAIT | BUS_DMA_ZERO,
2278 		    &sc->bge_cdata.bge_rx_jumbo_ring_map);
2279 		if (error)
2280 			return (ENOMEM);
2281 
2282 		/* Load the address of the jumbo RX ring. */
2283 		ctx.bge_maxsegs = 1;
2284 		ctx.sc = sc;
2285 
2286 		error = bus_dmamap_load(sc->bge_cdata.bge_rx_jumbo_ring_tag,
2287 		    sc->bge_cdata.bge_rx_jumbo_ring_map,
2288 		    sc->bge_ldata.bge_rx_jumbo_ring, BGE_JUMBO_RX_RING_SZ,
2289 		    bge_dma_map_addr, &ctx, BUS_DMA_NOWAIT);
2290 
2291 		if (error)
2292 			return (ENOMEM);
2293 
2294 		sc->bge_ldata.bge_rx_jumbo_ring_paddr = ctx.bge_busaddr;
2295 
2296 		/* Create DMA maps for jumbo RX buffers. */
2297 		error = bus_dmamap_create(sc->bge_cdata.bge_mtag_jumbo,
2298 		    0, &sc->bge_cdata.bge_rx_jumbo_sparemap);
2299 		if (error) {
2300 			device_printf(sc->bge_dev,
2301 			    "can't create spare DMA map for jumbo RX\n");
2302 			return (ENOMEM);
2303 		}
2304 		for (i = 0; i < BGE_JUMBO_RX_RING_CNT; i++) {
2305 			error = bus_dmamap_create(sc->bge_cdata.bge_mtag_jumbo,
2306 				    0, &sc->bge_cdata.bge_rx_jumbo_dmamap[i]);
2307 			if (error) {
2308 				device_printf(sc->bge_dev,
2309 				    "can't create DMA map for jumbo RX\n");
2310 				return (ENOMEM);
2311 			}
2312 		}
2313 
2314 	}
2315 
2316 	/* Create tag for RX return ring. */
2317 	error = bus_dma_tag_create(sc->bge_cdata.bge_parent_tag,
2318 	    PAGE_SIZE, 0, BUS_SPACE_MAXADDR, BUS_SPACE_MAXADDR, NULL,
2319 	    NULL, BGE_RX_RTN_RING_SZ(sc), 1, BGE_RX_RTN_RING_SZ(sc), 0,
2320 	    NULL, NULL, &sc->bge_cdata.bge_rx_return_ring_tag);
2321 
2322 	if (error) {
2323 		device_printf(sc->bge_dev, "could not allocate dma tag\n");
2324 		return (ENOMEM);
2325 	}
2326 
2327 	/* Allocate DMA'able memory for RX return ring. */
2328 	error = bus_dmamem_alloc(sc->bge_cdata.bge_rx_return_ring_tag,
2329 	    (void **)&sc->bge_ldata.bge_rx_return_ring, BUS_DMA_NOWAIT,
2330 	    &sc->bge_cdata.bge_rx_return_ring_map);
2331 	if (error)
2332 		return (ENOMEM);
2333 
2334 	bzero((char *)sc->bge_ldata.bge_rx_return_ring,
2335 	    BGE_RX_RTN_RING_SZ(sc));
2336 
2337 	/* Load the address of the RX return ring. */
2338 	ctx.bge_maxsegs = 1;
2339 	ctx.sc = sc;
2340 
2341 	error = bus_dmamap_load(sc->bge_cdata.bge_rx_return_ring_tag,
2342 	    sc->bge_cdata.bge_rx_return_ring_map,
2343 	    sc->bge_ldata.bge_rx_return_ring, BGE_RX_RTN_RING_SZ(sc),
2344 	    bge_dma_map_addr, &ctx, BUS_DMA_NOWAIT);
2345 
2346 	if (error)
2347 		return (ENOMEM);
2348 
2349 	sc->bge_ldata.bge_rx_return_ring_paddr = ctx.bge_busaddr;
2350 
2351 	/* Create tag for TX ring. */
2352 	error = bus_dma_tag_create(sc->bge_cdata.bge_parent_tag,
2353 	    PAGE_SIZE, 0, BUS_SPACE_MAXADDR, BUS_SPACE_MAXADDR, NULL,
2354 	    NULL, BGE_TX_RING_SZ, 1, BGE_TX_RING_SZ, 0, NULL, NULL,
2355 	    &sc->bge_cdata.bge_tx_ring_tag);
2356 
2357 	if (error) {
2358 		device_printf(sc->bge_dev, "could not allocate dma tag\n");
2359 		return (ENOMEM);
2360 	}
2361 
2362 	/* Allocate DMA'able memory for TX ring. */
2363 	error = bus_dmamem_alloc(sc->bge_cdata.bge_tx_ring_tag,
2364 	    (void **)&sc->bge_ldata.bge_tx_ring, BUS_DMA_NOWAIT,
2365 	    &sc->bge_cdata.bge_tx_ring_map);
2366 	if (error)
2367 		return (ENOMEM);
2368 
2369 	bzero((char *)sc->bge_ldata.bge_tx_ring, BGE_TX_RING_SZ);
2370 
2371 	/* Load the address of the TX ring. */
2372 	ctx.bge_maxsegs = 1;
2373 	ctx.sc = sc;
2374 
2375 	error = bus_dmamap_load(sc->bge_cdata.bge_tx_ring_tag,
2376 	    sc->bge_cdata.bge_tx_ring_map, sc->bge_ldata.bge_tx_ring,
2377 	    BGE_TX_RING_SZ, bge_dma_map_addr, &ctx, BUS_DMA_NOWAIT);
2378 
2379 	if (error)
2380 		return (ENOMEM);
2381 
2382 	sc->bge_ldata.bge_tx_ring_paddr = ctx.bge_busaddr;
2383 
2384 	/*
2385 	 * Create tag for status block.
2386 	 * Because we only use single Tx/Rx/Rx return ring, use
2387 	 * minimum status block size except BCM5700 AX/BX which
2388 	 * seems to want to see full status block size regardless
2389 	 * of configured number of ring.
2390 	 */
2391 	if (sc->bge_asicrev == BGE_ASICREV_BCM5700 &&
2392 	    sc->bge_chipid != BGE_CHIPID_BCM5700_C0)
2393 		sbsz = BGE_STATUS_BLK_SZ;
2394 	else
2395 		sbsz = 32;
2396 	error = bus_dma_tag_create(sc->bge_cdata.bge_parent_tag,
2397 	    PAGE_SIZE, 0, BUS_SPACE_MAXADDR, BUS_SPACE_MAXADDR, NULL,
2398 	    NULL, sbsz, 1, sbsz, 0, NULL, NULL, &sc->bge_cdata.bge_status_tag);
2399 
2400 	if (error) {
2401 		device_printf(sc->bge_dev,
2402 		    "could not allocate status dma tag\n");
2403 		return (ENOMEM);
2404 	}
2405 
2406 	/* Allocate DMA'able memory for status block. */
2407 	error = bus_dmamem_alloc(sc->bge_cdata.bge_status_tag,
2408 	    (void **)&sc->bge_ldata.bge_status_block, BUS_DMA_NOWAIT,
2409 	    &sc->bge_cdata.bge_status_map);
2410 	if (error)
2411 		return (ENOMEM);
2412 
2413 	bzero((char *)sc->bge_ldata.bge_status_block, sbsz);
2414 
2415 	/* Load the address of the status block. */
2416 	ctx.sc = sc;
2417 	ctx.bge_maxsegs = 1;
2418 
2419 	error = bus_dmamap_load(sc->bge_cdata.bge_status_tag,
2420 	    sc->bge_cdata.bge_status_map, sc->bge_ldata.bge_status_block,
2421 	    sbsz, bge_dma_map_addr, &ctx, BUS_DMA_NOWAIT);
2422 
2423 	if (error)
2424 		return (ENOMEM);
2425 
2426 	sc->bge_ldata.bge_status_block_paddr = ctx.bge_busaddr;
2427 
2428 	/* Create tag for statistics block. */
2429 	error = bus_dma_tag_create(sc->bge_cdata.bge_parent_tag,
2430 	    PAGE_SIZE, 0, BUS_SPACE_MAXADDR, BUS_SPACE_MAXADDR, NULL,
2431 	    NULL, BGE_STATS_SZ, 1, BGE_STATS_SZ, 0, NULL, NULL,
2432 	    &sc->bge_cdata.bge_stats_tag);
2433 
2434 	if (error) {
2435 		device_printf(sc->bge_dev, "could not allocate dma tag\n");
2436 		return (ENOMEM);
2437 	}
2438 
2439 	/* Allocate DMA'able memory for statistics block. */
2440 	error = bus_dmamem_alloc(sc->bge_cdata.bge_stats_tag,
2441 	    (void **)&sc->bge_ldata.bge_stats, BUS_DMA_NOWAIT,
2442 	    &sc->bge_cdata.bge_stats_map);
2443 	if (error)
2444 		return (ENOMEM);
2445 
2446 	bzero((char *)sc->bge_ldata.bge_stats, BGE_STATS_SZ);
2447 
2448 	/* Load the address of the statstics block. */
2449 	ctx.sc = sc;
2450 	ctx.bge_maxsegs = 1;
2451 
2452 	error = bus_dmamap_load(sc->bge_cdata.bge_stats_tag,
2453 	    sc->bge_cdata.bge_stats_map, sc->bge_ldata.bge_stats,
2454 	    BGE_STATS_SZ, bge_dma_map_addr, &ctx, BUS_DMA_NOWAIT);
2455 
2456 	if (error)
2457 		return (ENOMEM);
2458 
2459 	sc->bge_ldata.bge_stats_paddr = ctx.bge_busaddr;
2460 
2461 	return (0);
2462 }
2463 
2464 /*
2465  * Return true if this device has more than one port.
2466  */
2467 static int
2468 bge_has_multiple_ports(struct bge_softc *sc)
2469 {
2470 	device_t dev = sc->bge_dev;
2471 	u_int b, d, f, fscan, s;
2472 
2473 	d = pci_get_domain(dev);
2474 	b = pci_get_bus(dev);
2475 	s = pci_get_slot(dev);
2476 	f = pci_get_function(dev);
2477 	for (fscan = 0; fscan <= PCI_FUNCMAX; fscan++)
2478 		if (fscan != f && pci_find_dbsf(d, b, s, fscan) != NULL)
2479 			return (1);
2480 	return (0);
2481 }
2482 
2483 /*
2484  * Return true if MSI can be used with this device.
2485  */
2486 static int
2487 bge_can_use_msi(struct bge_softc *sc)
2488 {
2489 	int can_use_msi = 0;
2490 
2491 	switch (sc->bge_asicrev) {
2492 	case BGE_ASICREV_BCM5714_A0:
2493 	case BGE_ASICREV_BCM5714:
2494 		/*
2495 		 * Apparently, MSI doesn't work when these chips are
2496 		 * configured in single-port mode.
2497 		 */
2498 		if (bge_has_multiple_ports(sc))
2499 			can_use_msi = 1;
2500 		break;
2501 	case BGE_ASICREV_BCM5750:
2502 		if (sc->bge_chiprev != BGE_CHIPREV_5750_AX &&
2503 		    sc->bge_chiprev != BGE_CHIPREV_5750_BX)
2504 			can_use_msi = 1;
2505 		break;
2506 	default:
2507 		if (BGE_IS_575X_PLUS(sc))
2508 			can_use_msi = 1;
2509 	}
2510 	return (can_use_msi);
2511 }
2512 
2513 static int
2514 bge_attach(device_t dev)
2515 {
2516 	struct ifnet *ifp;
2517 	struct bge_softc *sc;
2518 	uint32_t hwcfg = 0, misccfg;
2519 	u_char eaddr[ETHER_ADDR_LEN];
2520 	int error, msicount, reg, rid, trys;
2521 
2522 	sc = device_get_softc(dev);
2523 	sc->bge_dev = dev;
2524 
2525 	TASK_INIT(&sc->bge_intr_task, 0, bge_intr_task, sc);
2526 
2527 	/*
2528 	 * Map control/status registers.
2529 	 */
2530 	pci_enable_busmaster(dev);
2531 
2532 	rid = BGE_PCI_BAR0;
2533 	sc->bge_res = bus_alloc_resource_any(dev, SYS_RES_MEMORY, &rid,
2534 	    RF_ACTIVE);
2535 
2536 	if (sc->bge_res == NULL) {
2537 		device_printf (sc->bge_dev, "couldn't map memory\n");
2538 		error = ENXIO;
2539 		goto fail;
2540 	}
2541 
2542 	/* Save various chip information. */
2543 	sc->bge_chipid =
2544 	    pci_read_config(dev, BGE_PCI_MISC_CTL, 4) >>
2545 	    BGE_PCIMISCCTL_ASICREV_SHIFT;
2546 	if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_USE_PRODID_REG)
2547 		sc->bge_chipid = pci_read_config(dev, BGE_PCI_PRODID_ASICREV,
2548 		    4);
2549 	sc->bge_asicrev = BGE_ASICREV(sc->bge_chipid);
2550 	sc->bge_chiprev = BGE_CHIPREV(sc->bge_chipid);
2551 
2552 	/*
2553 	 * Don't enable Ethernet@WireSpeed for the 5700, 5906, or the
2554 	 * 5705 A0 and A1 chips.
2555 	 */
2556 	if (sc->bge_asicrev != BGE_ASICREV_BCM5700 &&
2557 	    sc->bge_asicrev != BGE_ASICREV_BCM5906 &&
2558 	    sc->bge_chipid != BGE_CHIPID_BCM5705_A0 &&
2559 	    sc->bge_chipid != BGE_CHIPID_BCM5705_A1)
2560 		sc->bge_flags |= BGE_FLAG_WIRESPEED;
2561 
2562 	if (bge_has_eaddr(sc))
2563 		sc->bge_flags |= BGE_FLAG_EADDR;
2564 
2565 	/* Save chipset family. */
2566 	switch (sc->bge_asicrev) {
2567 	case BGE_ASICREV_BCM5755:
2568 	case BGE_ASICREV_BCM5761:
2569 	case BGE_ASICREV_BCM5784:
2570 	case BGE_ASICREV_BCM5785:
2571 	case BGE_ASICREV_BCM5787:
2572 	case BGE_ASICREV_BCM57780:
2573 		sc->bge_flags |= BGE_FLAG_5755_PLUS | BGE_FLAG_575X_PLUS |
2574 		    BGE_FLAG_5705_PLUS;
2575 		break;
2576 	case BGE_ASICREV_BCM5700:
2577 	case BGE_ASICREV_BCM5701:
2578 	case BGE_ASICREV_BCM5703:
2579 	case BGE_ASICREV_BCM5704:
2580 		sc->bge_flags |= BGE_FLAG_5700_FAMILY | BGE_FLAG_JUMBO;
2581 		break;
2582 	case BGE_ASICREV_BCM5714_A0:
2583 	case BGE_ASICREV_BCM5780:
2584 	case BGE_ASICREV_BCM5714:
2585 		sc->bge_flags |= BGE_FLAG_5714_FAMILY /* | BGE_FLAG_JUMBO */;
2586 		/* FALLTHROUGH */
2587 	case BGE_ASICREV_BCM5750:
2588 	case BGE_ASICREV_BCM5752:
2589 	case BGE_ASICREV_BCM5906:
2590 		sc->bge_flags |= BGE_FLAG_575X_PLUS;
2591 		/* FALLTHROUGH */
2592 	case BGE_ASICREV_BCM5705:
2593 		sc->bge_flags |= BGE_FLAG_5705_PLUS;
2594 		break;
2595 	}
2596 
2597 	/* Set various bug flags. */
2598 	if (sc->bge_chipid == BGE_CHIPID_BCM5701_A0 ||
2599 	    sc->bge_chipid == BGE_CHIPID_BCM5701_B0)
2600 		sc->bge_flags |= BGE_FLAG_CRC_BUG;
2601 	if (sc->bge_chiprev == BGE_CHIPREV_5703_AX ||
2602 	    sc->bge_chiprev == BGE_CHIPREV_5704_AX)
2603 		sc->bge_flags |= BGE_FLAG_ADC_BUG;
2604 	if (sc->bge_chipid == BGE_CHIPID_BCM5704_A0)
2605 		sc->bge_flags |= BGE_FLAG_5704_A0_BUG;
2606 	if (pci_get_subvendor(dev) == DELL_VENDORID)
2607 		sc->bge_flags |= BGE_FLAG_NO_3LED;
2608 	if (pci_get_device(dev) == BCOM_DEVICEID_BCM5755M)
2609 		sc->bge_flags |= BGE_FLAG_ADJUST_TRIM;
2610 	if (BGE_IS_5705_PLUS(sc) &&
2611 	    !(sc->bge_flags & BGE_FLAG_ADJUST_TRIM)) {
2612 		if (sc->bge_asicrev == BGE_ASICREV_BCM5755 ||
2613 		    sc->bge_asicrev == BGE_ASICREV_BCM5761 ||
2614 		    sc->bge_asicrev == BGE_ASICREV_BCM5784 ||
2615 		    sc->bge_asicrev == BGE_ASICREV_BCM5787) {
2616 			if (pci_get_device(dev) != BCOM_DEVICEID_BCM5722 &&
2617 			    pci_get_device(dev) != BCOM_DEVICEID_BCM5756)
2618 				sc->bge_flags |= BGE_FLAG_JITTER_BUG;
2619 		} else if (sc->bge_asicrev != BGE_ASICREV_BCM5906)
2620 			sc->bge_flags |= BGE_FLAG_BER_BUG;
2621 	}
2622 
2623 	/*
2624 	 * All controllers that are not 5755 or higher have 4GB
2625 	 * boundary DMA bug.
2626 	 * Whenever an address crosses a multiple of the 4GB boundary
2627 	 * (including 4GB, 8Gb, 12Gb, etc.) and makes the transition
2628 	 * from 0xX_FFFF_FFFF to 0x(X+1)_0000_0000 an internal DMA
2629 	 * state machine will lockup and cause the device to hang.
2630 	 */
2631 	if (BGE_IS_5755_PLUS(sc) == 0)
2632 		sc->bge_flags |= BGE_FLAG_4G_BNDRY_BUG;
2633 
2634 	/*
2635 	 * We could possibly check for BCOM_DEVICEID_BCM5788 in bge_probe()
2636 	 * but I do not know the DEVICEID for the 5788M.
2637 	 */
2638 	misccfg = CSR_READ_4(sc, BGE_MISC_CFG) & BGE_MISCCFG_BOARD_ID;
2639 	if (misccfg == BGE_MISCCFG_BOARD_ID_5788 ||
2640 	    misccfg == BGE_MISCCFG_BOARD_ID_5788M)
2641 		sc->bge_flags |= BGE_FLAG_5788;
2642 
2643 	/*
2644 	 * Some controllers seem to require a special firmware to use
2645 	 * TSO. But the firmware is not available to FreeBSD and Linux
2646 	 * claims that the TSO performed by the firmware is slower than
2647 	 * hardware based TSO. Moreover the firmware based TSO has one
2648 	 * known bug which can't handle TSO if ethernet header + IP/TCP
2649 	 * header is greater than 80 bytes. The workaround for the TSO
2650 	 * bug exist but it seems it's too expensive than not using
2651 	 * TSO at all. Some hardwares also have the TSO bug so limit
2652 	 * the TSO to the controllers that are not affected TSO issues
2653 	 * (e.g. 5755 or higher).
2654 	 */
2655 	if (BGE_IS_5755_PLUS(sc)) {
2656 		/*
2657 		 * BCM5754 and BCM5787 shares the same ASIC id so
2658 		 * explicit device id check is required.
2659 		 */
2660 		if (pci_get_device(dev) != BCOM_DEVICEID_BCM5754 &&
2661 		    pci_get_device(dev) != BCOM_DEVICEID_BCM5754M)
2662 			sc->bge_flags |= BGE_FLAG_TSO;
2663 	}
2664 
2665   	/*
2666 	 * Check if this is a PCI-X or PCI Express device.
2667   	 */
2668 	if (pci_find_extcap(dev, PCIY_EXPRESS, &reg) == 0) {
2669 		/*
2670 		 * Found a PCI Express capabilities register, this
2671 		 * must be a PCI Express device.
2672 		 */
2673 		sc->bge_flags |= BGE_FLAG_PCIE;
2674 		sc->bge_expcap = reg;
2675 		bge_set_max_readrq(sc);
2676 	} else {
2677 		/*
2678 		 * Check if the device is in PCI-X Mode.
2679 		 * (This bit is not valid on PCI Express controllers.)
2680 		 */
2681 		if (pci_find_extcap(dev, PCIY_PCIX, &reg) == 0)
2682 			sc->bge_pcixcap = reg;
2683 		if ((pci_read_config(dev, BGE_PCI_PCISTATE, 4) &
2684 		    BGE_PCISTATE_PCI_BUSMODE) == 0)
2685 			sc->bge_flags |= BGE_FLAG_PCIX;
2686 	}
2687 
2688 	/*
2689 	 * The 40bit DMA bug applies to the 5714/5715 controllers and is
2690 	 * not actually a MAC controller bug but an issue with the embedded
2691 	 * PCIe to PCI-X bridge in the device. Use 40bit DMA workaround.
2692 	 */
2693 	if (BGE_IS_5714_FAMILY(sc) && (sc->bge_flags & BGE_FLAG_PCIX))
2694 		sc->bge_flags |= BGE_FLAG_40BIT_BUG;
2695 	/*
2696 	 * Allocate the interrupt, using MSI if possible.  These devices
2697 	 * support 8 MSI messages, but only the first one is used in
2698 	 * normal operation.
2699 	 */
2700 	rid = 0;
2701 	if (pci_find_extcap(sc->bge_dev, PCIY_MSI, &reg) == 0) {
2702 		sc->bge_msicap = reg;
2703 		if (bge_can_use_msi(sc)) {
2704 			msicount = pci_msi_count(dev);
2705 			if (msicount > 1)
2706 				msicount = 1;
2707 		} else
2708 			msicount = 0;
2709 		if (msicount == 1 && pci_alloc_msi(dev, &msicount) == 0) {
2710 			rid = 1;
2711 			sc->bge_flags |= BGE_FLAG_MSI;
2712 		}
2713 	}
2714 
2715 	sc->bge_irq = bus_alloc_resource_any(dev, SYS_RES_IRQ, &rid,
2716 	    RF_SHAREABLE | RF_ACTIVE);
2717 
2718 	if (sc->bge_irq == NULL) {
2719 		device_printf(sc->bge_dev, "couldn't map interrupt\n");
2720 		error = ENXIO;
2721 		goto fail;
2722 	}
2723 
2724 	if (bootverbose)
2725 		device_printf(dev,
2726 		    "CHIP ID 0x%08x; ASIC REV 0x%02x; CHIP REV 0x%02x; %s\n",
2727 		    sc->bge_chipid, sc->bge_asicrev, sc->bge_chiprev,
2728 		    (sc->bge_flags & BGE_FLAG_PCIX) ? "PCI-X" :
2729 		    ((sc->bge_flags & BGE_FLAG_PCIE) ? "PCI-E" : "PCI"));
2730 
2731 	BGE_LOCK_INIT(sc, device_get_nameunit(dev));
2732 
2733 	/* Try to reset the chip. */
2734 	if (bge_reset(sc)) {
2735 		device_printf(sc->bge_dev, "chip reset failed\n");
2736 		error = ENXIO;
2737 		goto fail;
2738 	}
2739 
2740 	sc->bge_asf_mode = 0;
2741 	if (bge_allow_asf && (bge_readmem_ind(sc, BGE_SOFTWARE_GENCOMM_SIG)
2742 	    == BGE_MAGIC_NUMBER)) {
2743 		if (bge_readmem_ind(sc, BGE_SOFTWARE_GENCOMM_NICCFG)
2744 		    & BGE_HWCFG_ASF) {
2745 			sc->bge_asf_mode |= ASF_ENABLE;
2746 			sc->bge_asf_mode |= ASF_STACKUP;
2747 			if (BGE_IS_575X_PLUS(sc))
2748 				sc->bge_asf_mode |= ASF_NEW_HANDSHAKE;
2749 		}
2750 	}
2751 
2752 	/* Try to reset the chip again the nice way. */
2753 	bge_stop_fw(sc);
2754 	bge_sig_pre_reset(sc, BGE_RESET_STOP);
2755 	if (bge_reset(sc)) {
2756 		device_printf(sc->bge_dev, "chip reset failed\n");
2757 		error = ENXIO;
2758 		goto fail;
2759 	}
2760 
2761 	bge_sig_legacy(sc, BGE_RESET_STOP);
2762 	bge_sig_post_reset(sc, BGE_RESET_STOP);
2763 
2764 	if (bge_chipinit(sc)) {
2765 		device_printf(sc->bge_dev, "chip initialization failed\n");
2766 		error = ENXIO;
2767 		goto fail;
2768 	}
2769 
2770 	error = bge_get_eaddr(sc, eaddr);
2771 	if (error) {
2772 		device_printf(sc->bge_dev,
2773 		    "failed to read station address\n");
2774 		error = ENXIO;
2775 		goto fail;
2776 	}
2777 
2778 	/* 5705 limits RX return ring to 512 entries. */
2779 	if (BGE_IS_5705_PLUS(sc))
2780 		sc->bge_return_ring_cnt = BGE_RETURN_RING_CNT_5705;
2781 	else
2782 		sc->bge_return_ring_cnt = BGE_RETURN_RING_CNT;
2783 
2784 	if (bge_dma_alloc(dev)) {
2785 		device_printf(sc->bge_dev,
2786 		    "failed to allocate DMA resources\n");
2787 		error = ENXIO;
2788 		goto fail;
2789 	}
2790 
2791 	/* Set default tuneable values. */
2792 	sc->bge_stat_ticks = BGE_TICKS_PER_SEC;
2793 	sc->bge_rx_coal_ticks = 150;
2794 	sc->bge_tx_coal_ticks = 150;
2795 	sc->bge_rx_max_coal_bds = 10;
2796 	sc->bge_tx_max_coal_bds = 10;
2797 
2798 	/* Set up ifnet structure */
2799 	ifp = sc->bge_ifp = if_alloc(IFT_ETHER);
2800 	if (ifp == NULL) {
2801 		device_printf(sc->bge_dev, "failed to if_alloc()\n");
2802 		error = ENXIO;
2803 		goto fail;
2804 	}
2805 	ifp->if_softc = sc;
2806 	if_initname(ifp, device_get_name(dev), device_get_unit(dev));
2807 	ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
2808 	ifp->if_ioctl = bge_ioctl;
2809 	ifp->if_start = bge_start;
2810 	ifp->if_init = bge_init;
2811 	ifp->if_snd.ifq_drv_maxlen = BGE_TX_RING_CNT - 1;
2812 	IFQ_SET_MAXLEN(&ifp->if_snd, ifp->if_snd.ifq_drv_maxlen);
2813 	IFQ_SET_READY(&ifp->if_snd);
2814 	ifp->if_hwassist = BGE_CSUM_FEATURES;
2815 	ifp->if_capabilities = IFCAP_HWCSUM | IFCAP_VLAN_HWTAGGING |
2816 	    IFCAP_VLAN_MTU;
2817 	if ((sc->bge_flags & BGE_FLAG_TSO) != 0) {
2818 		ifp->if_hwassist |= CSUM_TSO;
2819 		ifp->if_capabilities |= IFCAP_TSO4;
2820 	}
2821 #ifdef IFCAP_VLAN_HWCSUM
2822 	ifp->if_capabilities |= IFCAP_VLAN_HWCSUM;
2823 #endif
2824 	ifp->if_capenable = ifp->if_capabilities;
2825 #ifdef DEVICE_POLLING
2826 	ifp->if_capabilities |= IFCAP_POLLING;
2827 #endif
2828 
2829 	/*
2830 	 * 5700 B0 chips do not support checksumming correctly due
2831 	 * to hardware bugs.
2832 	 */
2833 	if (sc->bge_chipid == BGE_CHIPID_BCM5700_B0) {
2834 		ifp->if_capabilities &= ~IFCAP_HWCSUM;
2835 		ifp->if_capenable &= ~IFCAP_HWCSUM;
2836 		ifp->if_hwassist = 0;
2837 	}
2838 
2839 	/*
2840 	 * Figure out what sort of media we have by checking the
2841 	 * hardware config word in the first 32k of NIC internal memory,
2842 	 * or fall back to examining the EEPROM if necessary.
2843 	 * Note: on some BCM5700 cards, this value appears to be unset.
2844 	 * If that's the case, we have to rely on identifying the NIC
2845 	 * by its PCI subsystem ID, as we do below for the SysKonnect
2846 	 * SK-9D41.
2847 	 */
2848 	if (bge_readmem_ind(sc, BGE_SOFTWARE_GENCOMM_SIG) == BGE_MAGIC_NUMBER)
2849 		hwcfg = bge_readmem_ind(sc, BGE_SOFTWARE_GENCOMM_NICCFG);
2850 	else if ((sc->bge_flags & BGE_FLAG_EADDR) &&
2851 	    (sc->bge_asicrev != BGE_ASICREV_BCM5906)) {
2852 		if (bge_read_eeprom(sc, (caddr_t)&hwcfg, BGE_EE_HWCFG_OFFSET,
2853 		    sizeof(hwcfg))) {
2854 			device_printf(sc->bge_dev, "failed to read EEPROM\n");
2855 			error = ENXIO;
2856 			goto fail;
2857 		}
2858 		hwcfg = ntohl(hwcfg);
2859 	}
2860 
2861 	/* The SysKonnect SK-9D41 is a 1000baseSX card. */
2862 	if ((pci_read_config(dev, BGE_PCI_SUBSYS, 4) >> 16) ==
2863 	    SK_SUBSYSID_9D41 || (hwcfg & BGE_HWCFG_MEDIA) == BGE_MEDIA_FIBER) {
2864 		if (BGE_IS_5714_FAMILY(sc))
2865 			sc->bge_flags |= BGE_FLAG_MII_SERDES;
2866 		else
2867 			sc->bge_flags |= BGE_FLAG_TBI;
2868 	}
2869 
2870 	if (sc->bge_flags & BGE_FLAG_TBI) {
2871 		ifmedia_init(&sc->bge_ifmedia, IFM_IMASK, bge_ifmedia_upd,
2872 		    bge_ifmedia_sts);
2873 		ifmedia_add(&sc->bge_ifmedia, IFM_ETHER | IFM_1000_SX, 0, NULL);
2874 		ifmedia_add(&sc->bge_ifmedia, IFM_ETHER | IFM_1000_SX | IFM_FDX,
2875 		    0, NULL);
2876 		ifmedia_add(&sc->bge_ifmedia, IFM_ETHER | IFM_AUTO, 0, NULL);
2877 		ifmedia_set(&sc->bge_ifmedia, IFM_ETHER | IFM_AUTO);
2878 		sc->bge_ifmedia.ifm_media = sc->bge_ifmedia.ifm_cur->ifm_media;
2879 	} else {
2880 		/*
2881 		 * Do transceiver setup and tell the firmware the
2882 		 * driver is down so we can try to get access the
2883 		 * probe if ASF is running.  Retry a couple of times
2884 		 * if we get a conflict with the ASF firmware accessing
2885 		 * the PHY.
2886 		 */
2887 		trys = 0;
2888 		BGE_CLRBIT(sc, BGE_MODE_CTL, BGE_MODECTL_STACKUP);
2889 again:
2890 		bge_asf_driver_up(sc);
2891 
2892 		if (mii_phy_probe(dev, &sc->bge_miibus,
2893 		    bge_ifmedia_upd, bge_ifmedia_sts)) {
2894 			if (trys++ < 4) {
2895 				device_printf(sc->bge_dev, "Try again\n");
2896 				bge_miibus_writereg(sc->bge_dev, 1, MII_BMCR,
2897 				    BMCR_RESET);
2898 				goto again;
2899 			}
2900 
2901 			device_printf(sc->bge_dev, "MII without any PHY!\n");
2902 			error = ENXIO;
2903 			goto fail;
2904 		}
2905 
2906 		/*
2907 		 * Now tell the firmware we are going up after probing the PHY
2908 		 */
2909 		if (sc->bge_asf_mode & ASF_STACKUP)
2910 			BGE_SETBIT(sc, BGE_MODE_CTL, BGE_MODECTL_STACKUP);
2911 	}
2912 
2913 	/*
2914 	 * When using the BCM5701 in PCI-X mode, data corruption has
2915 	 * been observed in the first few bytes of some received packets.
2916 	 * Aligning the packet buffer in memory eliminates the corruption.
2917 	 * Unfortunately, this misaligns the packet payloads.  On platforms
2918 	 * which do not support unaligned accesses, we will realign the
2919 	 * payloads by copying the received packets.
2920 	 */
2921 	if (sc->bge_asicrev == BGE_ASICREV_BCM5701 &&
2922 	    sc->bge_flags & BGE_FLAG_PCIX)
2923                 sc->bge_flags |= BGE_FLAG_RX_ALIGNBUG;
2924 
2925 	/*
2926 	 * Call MI attach routine.
2927 	 */
2928 	ether_ifattach(ifp, eaddr);
2929 	callout_init_mtx(&sc->bge_stat_ch, &sc->bge_mtx, 0);
2930 
2931 	/* Tell upper layer we support long frames. */
2932 	ifp->if_data.ifi_hdrlen = sizeof(struct ether_vlan_header);
2933 
2934 	/*
2935 	 * Hookup IRQ last.
2936 	 */
2937 #if __FreeBSD_version > 700030
2938 	if (BGE_IS_5755_PLUS(sc) && sc->bge_flags & BGE_FLAG_MSI) {
2939 		/* Take advantage of single-shot MSI. */
2940 		CSR_WRITE_4(sc, BGE_MSI_MODE, CSR_READ_4(sc, BGE_MSI_MODE) &
2941 		    ~BGE_MSIMODE_ONE_SHOT_DISABLE);
2942 		sc->bge_tq = taskqueue_create_fast("bge_taskq", M_WAITOK,
2943 		    taskqueue_thread_enqueue, &sc->bge_tq);
2944 		if (sc->bge_tq == NULL) {
2945 			device_printf(dev, "could not create taskqueue.\n");
2946 			ether_ifdetach(ifp);
2947 			error = ENXIO;
2948 			goto fail;
2949 		}
2950 		taskqueue_start_threads(&sc->bge_tq, 1, PI_NET, "%s taskq",
2951 		    device_get_nameunit(sc->bge_dev));
2952 		error = bus_setup_intr(dev, sc->bge_irq,
2953 		    INTR_TYPE_NET | INTR_MPSAFE, bge_msi_intr, NULL, sc,
2954 		    &sc->bge_intrhand);
2955 		if (error)
2956 			ether_ifdetach(ifp);
2957 	} else
2958 		error = bus_setup_intr(dev, sc->bge_irq,
2959 		    INTR_TYPE_NET | INTR_MPSAFE, NULL, bge_intr, sc,
2960 		    &sc->bge_intrhand);
2961 #else
2962 	error = bus_setup_intr(dev, sc->bge_irq, INTR_TYPE_NET | INTR_MPSAFE,
2963 	   bge_intr, sc, &sc->bge_intrhand);
2964 #endif
2965 
2966 	if (error) {
2967 		bge_detach(dev);
2968 		device_printf(sc->bge_dev, "couldn't set up irq\n");
2969 	}
2970 
2971 	bge_add_sysctls(sc);
2972 
2973 	return (0);
2974 
2975 fail:
2976 	bge_release_resources(sc);
2977 
2978 	return (error);
2979 }
2980 
2981 static int
2982 bge_detach(device_t dev)
2983 {
2984 	struct bge_softc *sc;
2985 	struct ifnet *ifp;
2986 
2987 	sc = device_get_softc(dev);
2988 	ifp = sc->bge_ifp;
2989 
2990 #ifdef DEVICE_POLLING
2991 	if (ifp->if_capenable & IFCAP_POLLING)
2992 		ether_poll_deregister(ifp);
2993 #endif
2994 
2995 	BGE_LOCK(sc);
2996 	bge_stop(sc);
2997 	bge_reset(sc);
2998 	BGE_UNLOCK(sc);
2999 
3000 	callout_drain(&sc->bge_stat_ch);
3001 
3002 	if (sc->bge_tq)
3003 		taskqueue_drain(sc->bge_tq, &sc->bge_intr_task);
3004 	ether_ifdetach(ifp);
3005 
3006 	if (sc->bge_flags & BGE_FLAG_TBI) {
3007 		ifmedia_removeall(&sc->bge_ifmedia);
3008 	} else {
3009 		bus_generic_detach(dev);
3010 		device_delete_child(dev, sc->bge_miibus);
3011 	}
3012 
3013 	bge_release_resources(sc);
3014 
3015 	return (0);
3016 }
3017 
3018 static void
3019 bge_release_resources(struct bge_softc *sc)
3020 {
3021 	device_t dev;
3022 
3023 	dev = sc->bge_dev;
3024 
3025 	if (sc->bge_tq != NULL)
3026 		taskqueue_free(sc->bge_tq);
3027 
3028 	if (sc->bge_intrhand != NULL)
3029 		bus_teardown_intr(dev, sc->bge_irq, sc->bge_intrhand);
3030 
3031 	if (sc->bge_irq != NULL)
3032 		bus_release_resource(dev, SYS_RES_IRQ,
3033 		    sc->bge_flags & BGE_FLAG_MSI ? 1 : 0, sc->bge_irq);
3034 
3035 	if (sc->bge_flags & BGE_FLAG_MSI)
3036 		pci_release_msi(dev);
3037 
3038 	if (sc->bge_res != NULL)
3039 		bus_release_resource(dev, SYS_RES_MEMORY,
3040 		    BGE_PCI_BAR0, sc->bge_res);
3041 
3042 	if (sc->bge_ifp != NULL)
3043 		if_free(sc->bge_ifp);
3044 
3045 	bge_dma_free(sc);
3046 
3047 	if (mtx_initialized(&sc->bge_mtx))	/* XXX */
3048 		BGE_LOCK_DESTROY(sc);
3049 }
3050 
3051 static int
3052 bge_reset(struct bge_softc *sc)
3053 {
3054 	device_t dev;
3055 	uint32_t cachesize, command, pcistate, reset, val;
3056 	void (*write_op)(struct bge_softc *, int, int);
3057 	uint16_t devctl;
3058 	int i;
3059 
3060 	dev = sc->bge_dev;
3061 
3062 	if (BGE_IS_575X_PLUS(sc) && !BGE_IS_5714_FAMILY(sc) &&
3063 	    (sc->bge_asicrev != BGE_ASICREV_BCM5906)) {
3064 		if (sc->bge_flags & BGE_FLAG_PCIE)
3065 			write_op = bge_writemem_direct;
3066 		else
3067 			write_op = bge_writemem_ind;
3068 	} else
3069 		write_op = bge_writereg_ind;
3070 
3071 	/* Save some important PCI state. */
3072 	cachesize = pci_read_config(dev, BGE_PCI_CACHESZ, 4);
3073 	command = pci_read_config(dev, BGE_PCI_CMD, 4);
3074 	pcistate = pci_read_config(dev, BGE_PCI_PCISTATE, 4);
3075 
3076 	pci_write_config(dev, BGE_PCI_MISC_CTL,
3077 	    BGE_PCIMISCCTL_INDIRECT_ACCESS | BGE_PCIMISCCTL_MASK_PCI_INTR |
3078 	    BGE_HIF_SWAP_OPTIONS | BGE_PCIMISCCTL_PCISTATE_RW, 4);
3079 
3080 	/* Disable fastboot on controllers that support it. */
3081 	if (sc->bge_asicrev == BGE_ASICREV_BCM5752 ||
3082 	    BGE_IS_5755_PLUS(sc)) {
3083 		if (bootverbose)
3084 			device_printf(sc->bge_dev, "Disabling fastboot\n");
3085 		CSR_WRITE_4(sc, BGE_FASTBOOT_PC, 0x0);
3086 	}
3087 
3088 	/*
3089 	 * Write the magic number to SRAM at offset 0xB50.
3090 	 * When firmware finishes its initialization it will
3091 	 * write ~BGE_MAGIC_NUMBER to the same location.
3092 	 */
3093 	bge_writemem_ind(sc, BGE_SOFTWARE_GENCOMM, BGE_MAGIC_NUMBER);
3094 
3095 	reset = BGE_MISCCFG_RESET_CORE_CLOCKS | BGE_32BITTIME_66MHZ;
3096 
3097 	/* XXX: Broadcom Linux driver. */
3098 	if (sc->bge_flags & BGE_FLAG_PCIE) {
3099 		if (CSR_READ_4(sc, 0x7E2C) == 0x60)	/* PCIE 1.0 */
3100 			CSR_WRITE_4(sc, 0x7E2C, 0x20);
3101 		if (sc->bge_chipid != BGE_CHIPID_BCM5750_A0) {
3102 			/* Prevent PCIE link training during global reset */
3103 			CSR_WRITE_4(sc, BGE_MISC_CFG, 1 << 29);
3104 			reset |= 1 << 29;
3105 		}
3106 	}
3107 
3108 	/*
3109 	 * Set GPHY Power Down Override to leave GPHY
3110 	 * powered up in D0 uninitialized.
3111 	 */
3112 	if (BGE_IS_5705_PLUS(sc))
3113 		reset |= 0x04000000;
3114 
3115 	/* Issue global reset */
3116 	write_op(sc, BGE_MISC_CFG, reset);
3117 
3118 	if (sc->bge_asicrev == BGE_ASICREV_BCM5906) {
3119 		val = CSR_READ_4(sc, BGE_VCPU_STATUS);
3120 		CSR_WRITE_4(sc, BGE_VCPU_STATUS,
3121 		    val | BGE_VCPU_STATUS_DRV_RESET);
3122 		val = CSR_READ_4(sc, BGE_VCPU_EXT_CTRL);
3123 		CSR_WRITE_4(sc, BGE_VCPU_EXT_CTRL,
3124 		    val & ~BGE_VCPU_EXT_CTRL_HALT_CPU);
3125 	}
3126 
3127 	DELAY(1000);
3128 
3129 	/* XXX: Broadcom Linux driver. */
3130 	if (sc->bge_flags & BGE_FLAG_PCIE) {
3131 		if (sc->bge_chipid == BGE_CHIPID_BCM5750_A0) {
3132 			DELAY(500000); /* wait for link training to complete */
3133 			val = pci_read_config(dev, 0xC4, 4);
3134 			pci_write_config(dev, 0xC4, val | (1 << 15), 4);
3135 		}
3136 		devctl = pci_read_config(dev,
3137 		    sc->bge_expcap + PCIR_EXPRESS_DEVICE_CTL, 2);
3138 		/* Clear enable no snoop and disable relaxed ordering. */
3139 		devctl &= ~(PCIM_EXP_CTL_RELAXED_ORD_ENABLE |
3140 		    PCIM_EXP_CTL_NOSNOOP_ENABLE);
3141 		/* Set PCIE max payload size to 128. */
3142 		devctl &= ~PCIM_EXP_CTL_MAX_PAYLOAD;
3143 		pci_write_config(dev, sc->bge_expcap + PCIR_EXPRESS_DEVICE_CTL,
3144 		    devctl, 2);
3145 		/* Clear error status. */
3146 		pci_write_config(dev, sc->bge_expcap + PCIR_EXPRESS_DEVICE_STA,
3147 		    PCIM_EXP_STA_CORRECTABLE_ERROR |
3148 		    PCIM_EXP_STA_NON_FATAL_ERROR | PCIM_EXP_STA_FATAL_ERROR |
3149 		    PCIM_EXP_STA_UNSUPPORTED_REQ, 2);
3150 	}
3151 
3152 	/* Reset some of the PCI state that got zapped by reset. */
3153 	pci_write_config(dev, BGE_PCI_MISC_CTL,
3154 	    BGE_PCIMISCCTL_INDIRECT_ACCESS | BGE_PCIMISCCTL_MASK_PCI_INTR |
3155 	    BGE_HIF_SWAP_OPTIONS | BGE_PCIMISCCTL_PCISTATE_RW, 4);
3156 	pci_write_config(dev, BGE_PCI_CACHESZ, cachesize, 4);
3157 	pci_write_config(dev, BGE_PCI_CMD, command, 4);
3158 	write_op(sc, BGE_MISC_CFG, BGE_32BITTIME_66MHZ);
3159 
3160 	/* Re-enable MSI, if neccesary, and enable the memory arbiter. */
3161 	if (BGE_IS_5714_FAMILY(sc)) {
3162 		/* This chip disables MSI on reset. */
3163 		if (sc->bge_flags & BGE_FLAG_MSI) {
3164 			val = pci_read_config(dev,
3165 			    sc->bge_msicap + PCIR_MSI_CTRL, 2);
3166 			pci_write_config(dev,
3167 			    sc->bge_msicap + PCIR_MSI_CTRL,
3168 			    val | PCIM_MSICTRL_MSI_ENABLE, 2);
3169 			val = CSR_READ_4(sc, BGE_MSI_MODE);
3170 			CSR_WRITE_4(sc, BGE_MSI_MODE,
3171 			    val | BGE_MSIMODE_ENABLE);
3172 		}
3173 		val = CSR_READ_4(sc, BGE_MARB_MODE);
3174 		CSR_WRITE_4(sc, BGE_MARB_MODE, BGE_MARBMODE_ENABLE | val);
3175 	} else
3176 		CSR_WRITE_4(sc, BGE_MARB_MODE, BGE_MARBMODE_ENABLE);
3177 
3178 	if (sc->bge_asicrev == BGE_ASICREV_BCM5906) {
3179 		for (i = 0; i < BGE_TIMEOUT; i++) {
3180 			val = CSR_READ_4(sc, BGE_VCPU_STATUS);
3181 			if (val & BGE_VCPU_STATUS_INIT_DONE)
3182 				break;
3183 			DELAY(100);
3184 		}
3185 		if (i == BGE_TIMEOUT) {
3186 			device_printf(sc->bge_dev, "reset timed out\n");
3187 			return (1);
3188 		}
3189 	} else {
3190 		/*
3191 		 * Poll until we see the 1's complement of the magic number.
3192 		 * This indicates that the firmware initialization is complete.
3193 		 * We expect this to fail if no chip containing the Ethernet
3194 		 * address is fitted though.
3195 		 */
3196 		for (i = 0; i < BGE_TIMEOUT; i++) {
3197 			DELAY(10);
3198 			val = bge_readmem_ind(sc, BGE_SOFTWARE_GENCOMM);
3199 			if (val == ~BGE_MAGIC_NUMBER)
3200 				break;
3201 		}
3202 
3203 		if ((sc->bge_flags & BGE_FLAG_EADDR) && i == BGE_TIMEOUT)
3204 			device_printf(sc->bge_dev, "firmware handshake timed out, "
3205 			    "found 0x%08x\n", val);
3206 	}
3207 
3208 	/*
3209 	 * XXX Wait for the value of the PCISTATE register to
3210 	 * return to its original pre-reset state. This is a
3211 	 * fairly good indicator of reset completion. If we don't
3212 	 * wait for the reset to fully complete, trying to read
3213 	 * from the device's non-PCI registers may yield garbage
3214 	 * results.
3215 	 */
3216 	for (i = 0; i < BGE_TIMEOUT; i++) {
3217 		if (pci_read_config(dev, BGE_PCI_PCISTATE, 4) == pcistate)
3218 			break;
3219 		DELAY(10);
3220 	}
3221 
3222 	if (sc->bge_flags & BGE_FLAG_PCIE) {
3223 		reset = bge_readmem_ind(sc, 0x7C00);
3224 		bge_writemem_ind(sc, 0x7C00, reset | (1 << 25));
3225 	}
3226 
3227 	/* Fix up byte swapping. */
3228 	CSR_WRITE_4(sc, BGE_MODE_CTL, BGE_DMA_SWAP_OPTIONS |
3229 	    BGE_MODECTL_BYTESWAP_DATA);
3230 
3231 	/* Tell the ASF firmware we are up */
3232 	if (sc->bge_asf_mode & ASF_STACKUP)
3233 		BGE_SETBIT(sc, BGE_MODE_CTL, BGE_MODECTL_STACKUP);
3234 
3235 	CSR_WRITE_4(sc, BGE_MAC_MODE, 0);
3236 
3237 	/*
3238 	 * The 5704 in TBI mode apparently needs some special
3239 	 * adjustment to insure the SERDES drive level is set
3240 	 * to 1.2V.
3241 	 */
3242 	if (sc->bge_asicrev == BGE_ASICREV_BCM5704 &&
3243 	    sc->bge_flags & BGE_FLAG_TBI) {
3244 		val = CSR_READ_4(sc, BGE_SERDES_CFG);
3245 		val = (val & ~0xFFF) | 0x880;
3246 		CSR_WRITE_4(sc, BGE_SERDES_CFG, val);
3247 	}
3248 
3249 	/* XXX: Broadcom Linux driver. */
3250 	if (sc->bge_flags & BGE_FLAG_PCIE &&
3251 	    sc->bge_chipid != BGE_CHIPID_BCM5750_A0) {
3252 		val = CSR_READ_4(sc, 0x7C00);
3253 		CSR_WRITE_4(sc, 0x7C00, val | (1 << 25));
3254 	}
3255 	DELAY(10000);
3256 
3257 	return(0);
3258 }
3259 
3260 /*
3261  * Frame reception handling. This is called if there's a frame
3262  * on the receive return list.
3263  *
3264  * Note: we have to be able to handle two possibilities here:
3265  * 1) the frame is from the jumbo receive ring
3266  * 2) the frame is from the standard receive ring
3267  */
3268 
3269 static int
3270 bge_rxeof(struct bge_softc *sc, uint16_t rx_prod, int holdlck)
3271 {
3272 	struct ifnet *ifp;
3273 	int rx_npkts = 0, stdcnt = 0, jumbocnt = 0;
3274 	uint16_t rx_cons;
3275 
3276 	rx_cons = sc->bge_rx_saved_considx;
3277 
3278 	/* Nothing to do. */
3279 	if (rx_cons == rx_prod)
3280 		return (rx_npkts);
3281 
3282 	ifp = sc->bge_ifp;
3283 
3284 	bus_dmamap_sync(sc->bge_cdata.bge_rx_return_ring_tag,
3285 	    sc->bge_cdata.bge_rx_return_ring_map, BUS_DMASYNC_POSTREAD);
3286 	bus_dmamap_sync(sc->bge_cdata.bge_rx_std_ring_tag,
3287 	    sc->bge_cdata.bge_rx_std_ring_map, BUS_DMASYNC_POSTWRITE);
3288 	if (ifp->if_mtu + ETHER_HDR_LEN + ETHER_CRC_LEN + ETHER_VLAN_ENCAP_LEN >
3289 	    (MCLBYTES - ETHER_ALIGN))
3290 		bus_dmamap_sync(sc->bge_cdata.bge_rx_jumbo_ring_tag,
3291 		    sc->bge_cdata.bge_rx_jumbo_ring_map, BUS_DMASYNC_POSTWRITE);
3292 
3293 	while (rx_cons != rx_prod) {
3294 		struct bge_rx_bd	*cur_rx;
3295 		uint32_t		rxidx;
3296 		struct mbuf		*m = NULL;
3297 		uint16_t		vlan_tag = 0;
3298 		int			have_tag = 0;
3299 
3300 #ifdef DEVICE_POLLING
3301 		if (ifp->if_capenable & IFCAP_POLLING) {
3302 			if (sc->rxcycles <= 0)
3303 				break;
3304 			sc->rxcycles--;
3305 		}
3306 #endif
3307 
3308 		cur_rx = &sc->bge_ldata.bge_rx_return_ring[rx_cons];
3309 
3310 		rxidx = cur_rx->bge_idx;
3311 		BGE_INC(rx_cons, sc->bge_return_ring_cnt);
3312 
3313 		if (ifp->if_capenable & IFCAP_VLAN_HWTAGGING &&
3314 		    cur_rx->bge_flags & BGE_RXBDFLAG_VLAN_TAG) {
3315 			have_tag = 1;
3316 			vlan_tag = cur_rx->bge_vlan_tag;
3317 		}
3318 
3319 		if (cur_rx->bge_flags & BGE_RXBDFLAG_JUMBO_RING) {
3320 			jumbocnt++;
3321 			m = sc->bge_cdata.bge_rx_jumbo_chain[rxidx];
3322 			if (cur_rx->bge_flags & BGE_RXBDFLAG_ERROR) {
3323 				BGE_INC(sc->bge_jumbo, BGE_JUMBO_RX_RING_CNT);
3324 				continue;
3325 			}
3326 			if (bge_newbuf_jumbo(sc, rxidx) != 0) {
3327 				BGE_INC(sc->bge_jumbo, BGE_JUMBO_RX_RING_CNT);
3328 				ifp->if_iqdrops++;
3329 				continue;
3330 			}
3331 			BGE_INC(sc->bge_jumbo, BGE_JUMBO_RX_RING_CNT);
3332 		} else {
3333 			stdcnt++;
3334 			if (cur_rx->bge_flags & BGE_RXBDFLAG_ERROR) {
3335 				BGE_INC(sc->bge_std, BGE_STD_RX_RING_CNT);
3336 				continue;
3337 			}
3338 			m = sc->bge_cdata.bge_rx_std_chain[rxidx];
3339 			if (bge_newbuf_std(sc, rxidx) != 0) {
3340 				BGE_INC(sc->bge_std, BGE_STD_RX_RING_CNT);
3341 				ifp->if_iqdrops++;
3342 				continue;
3343 			}
3344 			BGE_INC(sc->bge_std, BGE_STD_RX_RING_CNT);
3345 		}
3346 
3347 		ifp->if_ipackets++;
3348 #ifndef __NO_STRICT_ALIGNMENT
3349 		/*
3350 		 * For architectures with strict alignment we must make sure
3351 		 * the payload is aligned.
3352 		 */
3353 		if (sc->bge_flags & BGE_FLAG_RX_ALIGNBUG) {
3354 			bcopy(m->m_data, m->m_data + ETHER_ALIGN,
3355 			    cur_rx->bge_len);
3356 			m->m_data += ETHER_ALIGN;
3357 		}
3358 #endif
3359 		m->m_pkthdr.len = m->m_len = cur_rx->bge_len - ETHER_CRC_LEN;
3360 		m->m_pkthdr.rcvif = ifp;
3361 
3362 		if (ifp->if_capenable & IFCAP_RXCSUM) {
3363 			if (cur_rx->bge_flags & BGE_RXBDFLAG_IP_CSUM) {
3364 				m->m_pkthdr.csum_flags |= CSUM_IP_CHECKED;
3365 				if ((cur_rx->bge_ip_csum ^ 0xFFFF) == 0)
3366 					m->m_pkthdr.csum_flags |= CSUM_IP_VALID;
3367 			}
3368 			if (cur_rx->bge_flags & BGE_RXBDFLAG_TCP_UDP_CSUM &&
3369 			    m->m_pkthdr.len >= ETHER_MIN_NOPAD) {
3370 				m->m_pkthdr.csum_data =
3371 				    cur_rx->bge_tcp_udp_csum;
3372 				m->m_pkthdr.csum_flags |=
3373 				    CSUM_DATA_VALID | CSUM_PSEUDO_HDR;
3374 			}
3375 		}
3376 
3377 		/*
3378 		 * If we received a packet with a vlan tag,
3379 		 * attach that information to the packet.
3380 		 */
3381 		if (have_tag) {
3382 #if __FreeBSD_version > 700022
3383 			m->m_pkthdr.ether_vtag = vlan_tag;
3384 			m->m_flags |= M_VLANTAG;
3385 #else
3386 			VLAN_INPUT_TAG_NEW(ifp, m, vlan_tag);
3387 			if (m == NULL)
3388 				continue;
3389 #endif
3390 		}
3391 
3392 		if (holdlck != 0) {
3393 			BGE_UNLOCK(sc);
3394 			(*ifp->if_input)(ifp, m);
3395 			BGE_LOCK(sc);
3396 		} else
3397 			(*ifp->if_input)(ifp, m);
3398 		rx_npkts++;
3399 
3400 		if (!(ifp->if_drv_flags & IFF_DRV_RUNNING))
3401 			return (rx_npkts);
3402 	}
3403 
3404 	bus_dmamap_sync(sc->bge_cdata.bge_rx_return_ring_tag,
3405 	    sc->bge_cdata.bge_rx_return_ring_map, BUS_DMASYNC_PREREAD);
3406 	if (stdcnt > 0)
3407 		bus_dmamap_sync(sc->bge_cdata.bge_rx_std_ring_tag,
3408 		    sc->bge_cdata.bge_rx_std_ring_map, BUS_DMASYNC_PREWRITE);
3409 
3410 	if (jumbocnt > 0)
3411 		bus_dmamap_sync(sc->bge_cdata.bge_rx_jumbo_ring_tag,
3412 		    sc->bge_cdata.bge_rx_jumbo_ring_map, BUS_DMASYNC_PREWRITE);
3413 
3414 	sc->bge_rx_saved_considx = rx_cons;
3415 	bge_writembx(sc, BGE_MBX_RX_CONS0_LO, sc->bge_rx_saved_considx);
3416 	if (stdcnt)
3417 		bge_writembx(sc, BGE_MBX_RX_STD_PROD_LO, sc->bge_std);
3418 	if (jumbocnt)
3419 		bge_writembx(sc, BGE_MBX_RX_JUMBO_PROD_LO, sc->bge_jumbo);
3420 #ifdef notyet
3421 	/*
3422 	 * This register wraps very quickly under heavy packet drops.
3423 	 * If you need correct statistics, you can enable this check.
3424 	 */
3425 	if (BGE_IS_5705_PLUS(sc))
3426 		ifp->if_ierrors += CSR_READ_4(sc, BGE_RXLP_LOCSTAT_IFIN_DROPS);
3427 #endif
3428 	return (rx_npkts);
3429 }
3430 
3431 static void
3432 bge_txeof(struct bge_softc *sc, uint16_t tx_cons)
3433 {
3434 	struct bge_tx_bd *cur_tx = NULL;
3435 	struct ifnet *ifp;
3436 
3437 	BGE_LOCK_ASSERT(sc);
3438 
3439 	/* Nothing to do. */
3440 	if (sc->bge_tx_saved_considx == tx_cons)
3441 		return;
3442 
3443 	ifp = sc->bge_ifp;
3444 
3445 	bus_dmamap_sync(sc->bge_cdata.bge_tx_ring_tag,
3446 	    sc->bge_cdata.bge_tx_ring_map, BUS_DMASYNC_POSTWRITE);
3447 	/*
3448 	 * Go through our tx ring and free mbufs for those
3449 	 * frames that have been sent.
3450 	 */
3451 	while (sc->bge_tx_saved_considx != tx_cons) {
3452 		uint32_t		idx = 0;
3453 
3454 		idx = sc->bge_tx_saved_considx;
3455 		cur_tx = &sc->bge_ldata.bge_tx_ring[idx];
3456 		if (cur_tx->bge_flags & BGE_TXBDFLAG_END)
3457 			ifp->if_opackets++;
3458 		if (sc->bge_cdata.bge_tx_chain[idx] != NULL) {
3459 			bus_dmamap_sync(sc->bge_cdata.bge_tx_mtag,
3460 			    sc->bge_cdata.bge_tx_dmamap[idx],
3461 			    BUS_DMASYNC_POSTWRITE);
3462 			bus_dmamap_unload(sc->bge_cdata.bge_tx_mtag,
3463 			    sc->bge_cdata.bge_tx_dmamap[idx]);
3464 			m_freem(sc->bge_cdata.bge_tx_chain[idx]);
3465 			sc->bge_cdata.bge_tx_chain[idx] = NULL;
3466 		}
3467 		sc->bge_txcnt--;
3468 		BGE_INC(sc->bge_tx_saved_considx, BGE_TX_RING_CNT);
3469 	}
3470 
3471 	if (cur_tx != NULL)
3472 		ifp->if_drv_flags &= ~IFF_DRV_OACTIVE;
3473 	if (sc->bge_txcnt == 0)
3474 		sc->bge_timer = 0;
3475 }
3476 
3477 #ifdef DEVICE_POLLING
3478 static int
3479 bge_poll(struct ifnet *ifp, enum poll_cmd cmd, int count)
3480 {
3481 	struct bge_softc *sc = ifp->if_softc;
3482 	uint16_t rx_prod, tx_cons;
3483 	uint32_t statusword;
3484 	int rx_npkts = 0;
3485 
3486 	BGE_LOCK(sc);
3487 	if (!(ifp->if_drv_flags & IFF_DRV_RUNNING)) {
3488 		BGE_UNLOCK(sc);
3489 		return (rx_npkts);
3490 	}
3491 
3492 	bus_dmamap_sync(sc->bge_cdata.bge_status_tag,
3493 	    sc->bge_cdata.bge_status_map,
3494 	    BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE);
3495 	rx_prod = sc->bge_ldata.bge_status_block->bge_idx[0].bge_rx_prod_idx;
3496 	tx_cons = sc->bge_ldata.bge_status_block->bge_idx[0].bge_tx_cons_idx;
3497 
3498 	statusword = atomic_readandclear_32(
3499 	    &sc->bge_ldata.bge_status_block->bge_status);
3500 
3501 	bus_dmamap_sync(sc->bge_cdata.bge_status_tag,
3502 	    sc->bge_cdata.bge_status_map,
3503 	    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
3504 
3505 	/* Note link event. It will be processed by POLL_AND_CHECK_STATUS. */
3506 	if (statusword & BGE_STATFLAG_LINKSTATE_CHANGED)
3507 		sc->bge_link_evt++;
3508 
3509 	if (cmd == POLL_AND_CHECK_STATUS)
3510 		if ((sc->bge_asicrev == BGE_ASICREV_BCM5700 &&
3511 		    sc->bge_chipid != BGE_CHIPID_BCM5700_B2) ||
3512 		    sc->bge_link_evt || (sc->bge_flags & BGE_FLAG_TBI))
3513 			bge_link_upd(sc);
3514 
3515 	sc->rxcycles = count;
3516 	rx_npkts = bge_rxeof(sc, rx_prod, 1);
3517 	if (!(ifp->if_drv_flags & IFF_DRV_RUNNING)) {
3518 		BGE_UNLOCK(sc);
3519 		return (rx_npkts);
3520 	}
3521 	bge_txeof(sc, tx_cons);
3522 	if (!IFQ_DRV_IS_EMPTY(&ifp->if_snd))
3523 		bge_start_locked(ifp);
3524 
3525 	BGE_UNLOCK(sc);
3526 	return (rx_npkts);
3527 }
3528 #endif /* DEVICE_POLLING */
3529 
3530 static int
3531 bge_msi_intr(void *arg)
3532 {
3533 	struct bge_softc *sc;
3534 
3535 	sc = (struct bge_softc *)arg;
3536 	/*
3537 	 * This interrupt is not shared and controller already
3538 	 * disabled further interrupt.
3539 	 */
3540 	taskqueue_enqueue(sc->bge_tq, &sc->bge_intr_task);
3541 	return (FILTER_HANDLED);
3542 }
3543 
3544 static void
3545 bge_intr_task(void *arg, int pending)
3546 {
3547 	struct bge_softc *sc;
3548 	struct ifnet *ifp;
3549 	uint32_t status;
3550 	uint16_t rx_prod, tx_cons;
3551 
3552 	sc = (struct bge_softc *)arg;
3553 	ifp = sc->bge_ifp;
3554 
3555 	if ((ifp->if_drv_flags & IFF_DRV_RUNNING) == 0)
3556 		return;
3557 
3558 	/* Get updated status block. */
3559 	bus_dmamap_sync(sc->bge_cdata.bge_status_tag,
3560 	    sc->bge_cdata.bge_status_map,
3561 	    BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE);
3562 
3563 	/* Save producer/consumer indexess. */
3564 	rx_prod = sc->bge_ldata.bge_status_block->bge_idx[0].bge_rx_prod_idx;
3565 	tx_cons = sc->bge_ldata.bge_status_block->bge_idx[0].bge_tx_cons_idx;
3566 	status = sc->bge_ldata.bge_status_block->bge_status;
3567 	sc->bge_ldata.bge_status_block->bge_status = 0;
3568 	bus_dmamap_sync(sc->bge_cdata.bge_status_tag,
3569 	    sc->bge_cdata.bge_status_map,
3570 	    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
3571 	/* Let controller work. */
3572 	bge_writembx(sc, BGE_MBX_IRQ0_LO, 0);
3573 
3574 	if ((status & BGE_STATFLAG_LINKSTATE_CHANGED) != 0) {
3575 		BGE_LOCK(sc);
3576 		bge_link_upd(sc);
3577 		BGE_UNLOCK(sc);
3578 	}
3579 	if (ifp->if_drv_flags & IFF_DRV_RUNNING) {
3580 		/* Check RX return ring producer/consumer. */
3581 		bge_rxeof(sc, rx_prod, 0);
3582 	}
3583 	if (ifp->if_drv_flags & IFF_DRV_RUNNING) {
3584 		BGE_LOCK(sc);
3585 		/* Check TX ring producer/consumer. */
3586 		bge_txeof(sc, tx_cons);
3587 	    	if (!IFQ_DRV_IS_EMPTY(&ifp->if_snd))
3588 			bge_start_locked(ifp);
3589 		BGE_UNLOCK(sc);
3590 	}
3591 }
3592 
3593 static void
3594 bge_intr(void *xsc)
3595 {
3596 	struct bge_softc *sc;
3597 	struct ifnet *ifp;
3598 	uint32_t statusword;
3599 	uint16_t rx_prod, tx_cons;
3600 
3601 	sc = xsc;
3602 
3603 	BGE_LOCK(sc);
3604 
3605 	ifp = sc->bge_ifp;
3606 
3607 #ifdef DEVICE_POLLING
3608 	if (ifp->if_capenable & IFCAP_POLLING) {
3609 		BGE_UNLOCK(sc);
3610 		return;
3611 	}
3612 #endif
3613 
3614 	/*
3615 	 * Ack the interrupt by writing something to BGE_MBX_IRQ0_LO.  Don't
3616 	 * disable interrupts by writing nonzero like we used to, since with
3617 	 * our current organization this just gives complications and
3618 	 * pessimizations for re-enabling interrupts.  We used to have races
3619 	 * instead of the necessary complications.  Disabling interrupts
3620 	 * would just reduce the chance of a status update while we are
3621 	 * running (by switching to the interrupt-mode coalescence
3622 	 * parameters), but this chance is already very low so it is more
3623 	 * efficient to get another interrupt than prevent it.
3624 	 *
3625 	 * We do the ack first to ensure another interrupt if there is a
3626 	 * status update after the ack.  We don't check for the status
3627 	 * changing later because it is more efficient to get another
3628 	 * interrupt than prevent it, not quite as above (not checking is
3629 	 * a smaller optimization than not toggling the interrupt enable,
3630 	 * since checking doesn't involve PCI accesses and toggling require
3631 	 * the status check).  So toggling would probably be a pessimization
3632 	 * even with MSI.  It would only be needed for using a task queue.
3633 	 */
3634 	bge_writembx(sc, BGE_MBX_IRQ0_LO, 0);
3635 
3636 	/*
3637 	 * Do the mandatory PCI flush as well as get the link status.
3638 	 */
3639 	statusword = CSR_READ_4(sc, BGE_MAC_STS) & BGE_MACSTAT_LINK_CHANGED;
3640 
3641 	/* Make sure the descriptor ring indexes are coherent. */
3642 	bus_dmamap_sync(sc->bge_cdata.bge_status_tag,
3643 	    sc->bge_cdata.bge_status_map,
3644 	    BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE);
3645 	rx_prod = sc->bge_ldata.bge_status_block->bge_idx[0].bge_rx_prod_idx;
3646 	tx_cons = sc->bge_ldata.bge_status_block->bge_idx[0].bge_tx_cons_idx;
3647 	sc->bge_ldata.bge_status_block->bge_status = 0;
3648 	bus_dmamap_sync(sc->bge_cdata.bge_status_tag,
3649 	    sc->bge_cdata.bge_status_map,
3650 	    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
3651 
3652 	if ((sc->bge_asicrev == BGE_ASICREV_BCM5700 &&
3653 	    sc->bge_chipid != BGE_CHIPID_BCM5700_B2) ||
3654 	    statusword || sc->bge_link_evt)
3655 		bge_link_upd(sc);
3656 
3657 	if (ifp->if_drv_flags & IFF_DRV_RUNNING) {
3658 		/* Check RX return ring producer/consumer. */
3659 		bge_rxeof(sc, rx_prod, 1);
3660 	}
3661 
3662 	if (ifp->if_drv_flags & IFF_DRV_RUNNING) {
3663 		/* Check TX ring producer/consumer. */
3664 		bge_txeof(sc, tx_cons);
3665 	}
3666 
3667 	if (ifp->if_drv_flags & IFF_DRV_RUNNING &&
3668 	    !IFQ_DRV_IS_EMPTY(&ifp->if_snd))
3669 		bge_start_locked(ifp);
3670 
3671 	BGE_UNLOCK(sc);
3672 }
3673 
3674 static void
3675 bge_asf_driver_up(struct bge_softc *sc)
3676 {
3677 	if (sc->bge_asf_mode & ASF_STACKUP) {
3678 		/* Send ASF heartbeat aprox. every 2s */
3679 		if (sc->bge_asf_count)
3680 			sc->bge_asf_count --;
3681 		else {
3682 			sc->bge_asf_count = 2;
3683 			bge_writemem_ind(sc, BGE_SOFTWARE_GENCOMM_FW,
3684 			    BGE_FW_DRV_ALIVE);
3685 			bge_writemem_ind(sc, BGE_SOFTWARE_GENNCOMM_FW_LEN, 4);
3686 			bge_writemem_ind(sc, BGE_SOFTWARE_GENNCOMM_FW_DATA, 3);
3687 			CSR_WRITE_4(sc, BGE_CPU_EVENT,
3688 			    CSR_READ_4(sc, BGE_CPU_EVENT) | (1 << 14));
3689 		}
3690 	}
3691 }
3692 
3693 static void
3694 bge_tick(void *xsc)
3695 {
3696 	struct bge_softc *sc = xsc;
3697 	struct mii_data *mii = NULL;
3698 
3699 	BGE_LOCK_ASSERT(sc);
3700 
3701 	/* Synchronize with possible callout reset/stop. */
3702 	if (callout_pending(&sc->bge_stat_ch) ||
3703 	    !callout_active(&sc->bge_stat_ch))
3704 	    	return;
3705 
3706 	if (BGE_IS_5705_PLUS(sc))
3707 		bge_stats_update_regs(sc);
3708 	else
3709 		bge_stats_update(sc);
3710 
3711 	if ((sc->bge_flags & BGE_FLAG_TBI) == 0) {
3712 		mii = device_get_softc(sc->bge_miibus);
3713 		/*
3714 		 * Do not touch PHY if we have link up. This could break
3715 		 * IPMI/ASF mode or produce extra input errors
3716 		 * (extra errors was reported for bcm5701 & bcm5704).
3717 		 */
3718 		if (!sc->bge_link)
3719 			mii_tick(mii);
3720 	} else {
3721 		/*
3722 		 * Since in TBI mode auto-polling can't be used we should poll
3723 		 * link status manually. Here we register pending link event
3724 		 * and trigger interrupt.
3725 		 */
3726 #ifdef DEVICE_POLLING
3727 		/* In polling mode we poll link state in bge_poll(). */
3728 		if (!(sc->bge_ifp->if_capenable & IFCAP_POLLING))
3729 #endif
3730 		{
3731 		sc->bge_link_evt++;
3732 		if (sc->bge_asicrev == BGE_ASICREV_BCM5700 ||
3733 		    sc->bge_flags & BGE_FLAG_5788)
3734 			BGE_SETBIT(sc, BGE_MISC_LOCAL_CTL, BGE_MLC_INTR_SET);
3735 		else
3736 			BGE_SETBIT(sc, BGE_HCC_MODE, BGE_HCCMODE_COAL_NOW);
3737 		}
3738 	}
3739 
3740 	bge_asf_driver_up(sc);
3741 	bge_watchdog(sc);
3742 
3743 	callout_reset(&sc->bge_stat_ch, hz, bge_tick, sc);
3744 }
3745 
3746 static void
3747 bge_stats_update_regs(struct bge_softc *sc)
3748 {
3749 	struct ifnet *ifp;
3750 
3751 	ifp = sc->bge_ifp;
3752 
3753 	ifp->if_collisions += CSR_READ_4(sc, BGE_MAC_STATS +
3754 	    offsetof(struct bge_mac_stats_regs, etherStatsCollisions));
3755 
3756 	ifp->if_ierrors += CSR_READ_4(sc, BGE_RXLP_LOCSTAT_OUT_OF_BDS);
3757 	ifp->if_ierrors += CSR_READ_4(sc, BGE_RXLP_LOCSTAT_IFIN_DROPS);
3758 	ifp->if_ierrors += CSR_READ_4(sc, BGE_RXLP_LOCSTAT_IFIN_ERRORS);
3759 }
3760 
3761 static void
3762 bge_stats_update(struct bge_softc *sc)
3763 {
3764 	struct ifnet *ifp;
3765 	bus_size_t stats;
3766 	uint32_t cnt;	/* current register value */
3767 
3768 	ifp = sc->bge_ifp;
3769 
3770 	stats = BGE_MEMWIN_START + BGE_STATS_BLOCK;
3771 
3772 #define	READ_STAT(sc, stats, stat) \
3773 	CSR_READ_4(sc, stats + offsetof(struct bge_stats, stat))
3774 
3775 	cnt = READ_STAT(sc, stats, txstats.etherStatsCollisions.bge_addr_lo);
3776 	ifp->if_collisions += (uint32_t)(cnt - sc->bge_tx_collisions);
3777 	sc->bge_tx_collisions = cnt;
3778 
3779 	cnt = READ_STAT(sc, stats, ifInDiscards.bge_addr_lo);
3780 	ifp->if_ierrors += (uint32_t)(cnt - sc->bge_rx_discards);
3781 	sc->bge_rx_discards = cnt;
3782 
3783 	cnt = READ_STAT(sc, stats, txstats.ifOutDiscards.bge_addr_lo);
3784 	ifp->if_oerrors += (uint32_t)(cnt - sc->bge_tx_discards);
3785 	sc->bge_tx_discards = cnt;
3786 
3787 #undef	READ_STAT
3788 }
3789 
3790 /*
3791  * Pad outbound frame to ETHER_MIN_NOPAD for an unusual reason.
3792  * The bge hardware will pad out Tx runts to ETHER_MIN_NOPAD,
3793  * but when such padded frames employ the bge IP/TCP checksum offload,
3794  * the hardware checksum assist gives incorrect results (possibly
3795  * from incorporating its own padding into the UDP/TCP checksum; who knows).
3796  * If we pad such runts with zeros, the onboard checksum comes out correct.
3797  */
3798 static __inline int
3799 bge_cksum_pad(struct mbuf *m)
3800 {
3801 	int padlen = ETHER_MIN_NOPAD - m->m_pkthdr.len;
3802 	struct mbuf *last;
3803 
3804 	/* If there's only the packet-header and we can pad there, use it. */
3805 	if (m->m_pkthdr.len == m->m_len && M_WRITABLE(m) &&
3806 	    M_TRAILINGSPACE(m) >= padlen) {
3807 		last = m;
3808 	} else {
3809 		/*
3810 		 * Walk packet chain to find last mbuf. We will either
3811 		 * pad there, or append a new mbuf and pad it.
3812 		 */
3813 		for (last = m; last->m_next != NULL; last = last->m_next);
3814 		if (!(M_WRITABLE(last) && M_TRAILINGSPACE(last) >= padlen)) {
3815 			/* Allocate new empty mbuf, pad it. Compact later. */
3816 			struct mbuf *n;
3817 
3818 			MGET(n, M_DONTWAIT, MT_DATA);
3819 			if (n == NULL)
3820 				return (ENOBUFS);
3821 			n->m_len = 0;
3822 			last->m_next = n;
3823 			last = n;
3824 		}
3825 	}
3826 
3827 	/* Now zero the pad area, to avoid the bge cksum-assist bug. */
3828 	memset(mtod(last, caddr_t) + last->m_len, 0, padlen);
3829 	last->m_len += padlen;
3830 	m->m_pkthdr.len += padlen;
3831 
3832 	return (0);
3833 }
3834 
3835 static struct mbuf *
3836 bge_setup_tso(struct bge_softc *sc, struct mbuf *m, uint16_t *mss)
3837 {
3838 	struct ether_header *eh;
3839 	struct ip *ip;
3840 	struct tcphdr *tcp;
3841 	struct mbuf *n;
3842 	uint16_t hlen;
3843 	uint32_t ip_off, poff;
3844 
3845 	if (M_WRITABLE(m) == 0) {
3846 		/* Get a writable copy. */
3847 		n = m_dup(m, M_DONTWAIT);
3848 		m_freem(m);
3849 		if (n == NULL)
3850 			return (NULL);
3851 		m = n;
3852 	}
3853 	ip_off = sizeof(struct ether_header);
3854 	m = m_pullup(m, ip_off);
3855 	if (m == NULL)
3856 		return (NULL);
3857 	eh = mtod(m, struct ether_header *);
3858 	/* Check the existence of VLAN tag. */
3859 	if (eh->ether_type == htons(ETHERTYPE_VLAN)) {
3860 		ip_off = sizeof(struct ether_vlan_header);
3861 		m = m_pullup(m, ip_off);
3862 		if (m == NULL)
3863 			return (NULL);
3864 	}
3865 	m = m_pullup(m, ip_off + sizeof(struct ip));
3866 	if (m == NULL)
3867 		return (NULL);
3868 	ip = (struct ip *)(mtod(m, char *) + ip_off);
3869 	poff = ip_off + (ip->ip_hl << 2);
3870 	m = m_pullup(m, poff + sizeof(struct tcphdr));
3871 	if (m == NULL)
3872 		return (NULL);
3873 	tcp = (struct tcphdr *)(mtod(m, char *) + poff);
3874 	m = m_pullup(m, poff + sizeof(struct tcphdr) + tcp->th_off);
3875 	if (m == NULL)
3876 		return (NULL);
3877 	/*
3878 	 * It seems controller doesn't modify IP length and TCP pseudo
3879 	 * checksum. These checksum computed by upper stack should be 0.
3880 	 */
3881 	*mss = m->m_pkthdr.tso_segsz;
3882 	ip->ip_sum = 0;
3883 	ip->ip_len = htons(*mss + (ip->ip_hl << 2) + (tcp->th_off << 2));
3884 	/* Clear pseudo checksum computed by TCP stack. */
3885 	tcp->th_sum = 0;
3886 	/*
3887 	 * Broadcom controllers uses different descriptor format for
3888 	 * TSO depending on ASIC revision. Due to TSO-capable firmware
3889 	 * license issue and lower performance of firmware based TSO
3890 	 * we only support hardware based TSO which is applicable for
3891 	 * BCM5755 or newer controllers. Hardware based TSO uses 11
3892 	 * bits to store MSS and upper 5 bits are used to store IP/TCP
3893 	 * header length(including IP/TCP options). The header length
3894 	 * is expressed as 32 bits unit.
3895 	 */
3896 	hlen = ((ip->ip_hl << 2) + (tcp->th_off << 2)) >> 2;
3897 	*mss |= (hlen << 11);
3898 	return (m);
3899 }
3900 
3901 /*
3902  * Encapsulate an mbuf chain in the tx ring  by coupling the mbuf data
3903  * pointers to descriptors.
3904  */
3905 static int
3906 bge_encap(struct bge_softc *sc, struct mbuf **m_head, uint32_t *txidx)
3907 {
3908 	bus_dma_segment_t	segs[BGE_NSEG_NEW];
3909 	bus_dmamap_t		map;
3910 	struct bge_tx_bd	*d;
3911 	struct mbuf		*m = *m_head;
3912 	uint32_t		idx = *txidx;
3913 	uint16_t		csum_flags, mss, vlan_tag;
3914 	int			nsegs, i, error;
3915 
3916 	csum_flags = 0;
3917 	mss = 0;
3918 	vlan_tag = 0;
3919 	if ((m->m_pkthdr.csum_flags & CSUM_TSO) != 0) {
3920 		*m_head = m = bge_setup_tso(sc, m, &mss);
3921 		if (*m_head == NULL)
3922 			return (ENOBUFS);
3923 		csum_flags |= BGE_TXBDFLAG_CPU_PRE_DMA |
3924 		    BGE_TXBDFLAG_CPU_POST_DMA;
3925 	} else if ((m->m_pkthdr.csum_flags & BGE_CSUM_FEATURES) != 0) {
3926 		if (m->m_pkthdr.csum_flags & CSUM_IP)
3927 			csum_flags |= BGE_TXBDFLAG_IP_CSUM;
3928 		if (m->m_pkthdr.csum_flags & (CSUM_TCP | CSUM_UDP)) {
3929 			csum_flags |= BGE_TXBDFLAG_TCP_UDP_CSUM;
3930 			if (m->m_pkthdr.len < ETHER_MIN_NOPAD &&
3931 			    (error = bge_cksum_pad(m)) != 0) {
3932 				m_freem(m);
3933 				*m_head = NULL;
3934 				return (error);
3935 			}
3936 		}
3937 		if (m->m_flags & M_LASTFRAG)
3938 			csum_flags |= BGE_TXBDFLAG_IP_FRAG_END;
3939 		else if (m->m_flags & M_FRAG)
3940 			csum_flags |= BGE_TXBDFLAG_IP_FRAG;
3941 	}
3942 
3943 	if ((m->m_pkthdr.csum_flags & CSUM_TSO) == 0 &&
3944 	    sc->bge_forced_collapse > 0 &&
3945 	    (sc->bge_flags & BGE_FLAG_PCIE) != 0 && m->m_next != NULL) {
3946 		/*
3947 		 * Forcedly collapse mbuf chains to overcome hardware
3948 		 * limitation which only support a single outstanding
3949 		 * DMA read operation.
3950 		 */
3951 		if (sc->bge_forced_collapse == 1)
3952 			m = m_defrag(m, M_DONTWAIT);
3953 		else
3954 			m = m_collapse(m, M_DONTWAIT, sc->bge_forced_collapse);
3955 		if (m == NULL)
3956 			m = *m_head;
3957 		*m_head = m;
3958 	}
3959 
3960 	map = sc->bge_cdata.bge_tx_dmamap[idx];
3961 	error = bus_dmamap_load_mbuf_sg(sc->bge_cdata.bge_tx_mtag, map, m, segs,
3962 	    &nsegs, BUS_DMA_NOWAIT);
3963 	if (error == EFBIG) {
3964 		m = m_collapse(m, M_DONTWAIT, BGE_NSEG_NEW);
3965 		if (m == NULL) {
3966 			m_freem(*m_head);
3967 			*m_head = NULL;
3968 			return (ENOBUFS);
3969 		}
3970 		*m_head = m;
3971 		error = bus_dmamap_load_mbuf_sg(sc->bge_cdata.bge_tx_mtag, map,
3972 		    m, segs, &nsegs, BUS_DMA_NOWAIT);
3973 		if (error) {
3974 			m_freem(m);
3975 			*m_head = NULL;
3976 			return (error);
3977 		}
3978 	} else if (error != 0)
3979 		return (error);
3980 
3981 	/* Check if we have enough free send BDs. */
3982 	if (sc->bge_txcnt + nsegs >= BGE_TX_RING_CNT) {
3983 		bus_dmamap_unload(sc->bge_cdata.bge_tx_mtag, map);
3984 		return (ENOBUFS);
3985 	}
3986 
3987 	bus_dmamap_sync(sc->bge_cdata.bge_tx_mtag, map, BUS_DMASYNC_PREWRITE);
3988 
3989 #if __FreeBSD_version > 700022
3990 	if (m->m_flags & M_VLANTAG) {
3991 		csum_flags |= BGE_TXBDFLAG_VLAN_TAG;
3992 		vlan_tag = m->m_pkthdr.ether_vtag;
3993 	}
3994 #else
3995 	{
3996 		struct m_tag		*mtag;
3997 
3998 		if ((mtag = VLAN_OUTPUT_TAG(sc->bge_ifp, m)) != NULL) {
3999 			csum_flags |= BGE_TXBDFLAG_VLAN_TAG;
4000 			vlan_tag = VLAN_TAG_VALUE(mtag);
4001 		}
4002 	}
4003 #endif
4004 	for (i = 0; ; i++) {
4005 		d = &sc->bge_ldata.bge_tx_ring[idx];
4006 		d->bge_addr.bge_addr_lo = BGE_ADDR_LO(segs[i].ds_addr);
4007 		d->bge_addr.bge_addr_hi = BGE_ADDR_HI(segs[i].ds_addr);
4008 		d->bge_len = segs[i].ds_len;
4009 		d->bge_flags = csum_flags;
4010 		d->bge_vlan_tag = vlan_tag;
4011 		d->bge_mss = mss;
4012 		if (i == nsegs - 1)
4013 			break;
4014 		BGE_INC(idx, BGE_TX_RING_CNT);
4015 	}
4016 
4017 	/* Mark the last segment as end of packet... */
4018 	d->bge_flags |= BGE_TXBDFLAG_END;
4019 
4020 	/*
4021 	 * Insure that the map for this transmission
4022 	 * is placed at the array index of the last descriptor
4023 	 * in this chain.
4024 	 */
4025 	sc->bge_cdata.bge_tx_dmamap[*txidx] = sc->bge_cdata.bge_tx_dmamap[idx];
4026 	sc->bge_cdata.bge_tx_dmamap[idx] = map;
4027 	sc->bge_cdata.bge_tx_chain[idx] = m;
4028 	sc->bge_txcnt += nsegs;
4029 
4030 	BGE_INC(idx, BGE_TX_RING_CNT);
4031 	*txidx = idx;
4032 
4033 	return (0);
4034 }
4035 
4036 /*
4037  * Main transmit routine. To avoid having to do mbuf copies, we put pointers
4038  * to the mbuf data regions directly in the transmit descriptors.
4039  */
4040 static void
4041 bge_start_locked(struct ifnet *ifp)
4042 {
4043 	struct bge_softc *sc;
4044 	struct mbuf *m_head;
4045 	uint32_t prodidx;
4046 	int count;
4047 
4048 	sc = ifp->if_softc;
4049 	BGE_LOCK_ASSERT(sc);
4050 
4051 	if (!sc->bge_link ||
4052 	    (ifp->if_drv_flags & (IFF_DRV_RUNNING | IFF_DRV_OACTIVE)) !=
4053 	    IFF_DRV_RUNNING)
4054 		return;
4055 
4056 	prodidx = sc->bge_tx_prodidx;
4057 
4058 	for (count = 0; !IFQ_DRV_IS_EMPTY(&ifp->if_snd);) {
4059 		if (sc->bge_txcnt > BGE_TX_RING_CNT - 16) {
4060 			ifp->if_drv_flags |= IFF_DRV_OACTIVE;
4061 			break;
4062 		}
4063 		IFQ_DRV_DEQUEUE(&ifp->if_snd, m_head);
4064 		if (m_head == NULL)
4065 			break;
4066 
4067 		/*
4068 		 * XXX
4069 		 * The code inside the if() block is never reached since we
4070 		 * must mark CSUM_IP_FRAGS in our if_hwassist to start getting
4071 		 * requests to checksum TCP/UDP in a fragmented packet.
4072 		 *
4073 		 * XXX
4074 		 * safety overkill.  If this is a fragmented packet chain
4075 		 * with delayed TCP/UDP checksums, then only encapsulate
4076 		 * it if we have enough descriptors to handle the entire
4077 		 * chain at once.
4078 		 * (paranoia -- may not actually be needed)
4079 		 */
4080 		if (m_head->m_flags & M_FIRSTFRAG &&
4081 		    m_head->m_pkthdr.csum_flags & (CSUM_DELAY_DATA)) {
4082 			if ((BGE_TX_RING_CNT - sc->bge_txcnt) <
4083 			    m_head->m_pkthdr.csum_data + 16) {
4084 				IFQ_DRV_PREPEND(&ifp->if_snd, m_head);
4085 				ifp->if_drv_flags |= IFF_DRV_OACTIVE;
4086 				break;
4087 			}
4088 		}
4089 
4090 		/*
4091 		 * Pack the data into the transmit ring. If we
4092 		 * don't have room, set the OACTIVE flag and wait
4093 		 * for the NIC to drain the ring.
4094 		 */
4095 		if (bge_encap(sc, &m_head, &prodidx)) {
4096 			if (m_head == NULL)
4097 				break;
4098 			IFQ_DRV_PREPEND(&ifp->if_snd, m_head);
4099 			ifp->if_drv_flags |= IFF_DRV_OACTIVE;
4100 			break;
4101 		}
4102 		++count;
4103 
4104 		/*
4105 		 * If there's a BPF listener, bounce a copy of this frame
4106 		 * to him.
4107 		 */
4108 #ifdef ETHER_BPF_MTAP
4109 		ETHER_BPF_MTAP(ifp, m_head);
4110 #else
4111 		BPF_MTAP(ifp, m_head);
4112 #endif
4113 	}
4114 
4115 	if (count > 0) {
4116 		bus_dmamap_sync(sc->bge_cdata.bge_tx_ring_tag,
4117 		    sc->bge_cdata.bge_tx_ring_map, BUS_DMASYNC_PREWRITE);
4118 		/* Transmit. */
4119 		bge_writembx(sc, BGE_MBX_TX_HOST_PROD0_LO, prodidx);
4120 		/* 5700 b2 errata */
4121 		if (sc->bge_chiprev == BGE_CHIPREV_5700_BX)
4122 			bge_writembx(sc, BGE_MBX_TX_HOST_PROD0_LO, prodidx);
4123 
4124 		sc->bge_tx_prodidx = prodidx;
4125 
4126 		/*
4127 		 * Set a timeout in case the chip goes out to lunch.
4128 		 */
4129 		sc->bge_timer = 5;
4130 	}
4131 }
4132 
4133 /*
4134  * Main transmit routine. To avoid having to do mbuf copies, we put pointers
4135  * to the mbuf data regions directly in the transmit descriptors.
4136  */
4137 static void
4138 bge_start(struct ifnet *ifp)
4139 {
4140 	struct bge_softc *sc;
4141 
4142 	sc = ifp->if_softc;
4143 	BGE_LOCK(sc);
4144 	bge_start_locked(ifp);
4145 	BGE_UNLOCK(sc);
4146 }
4147 
4148 static void
4149 bge_init_locked(struct bge_softc *sc)
4150 {
4151 	struct ifnet *ifp;
4152 	uint16_t *m;
4153 
4154 	BGE_LOCK_ASSERT(sc);
4155 
4156 	ifp = sc->bge_ifp;
4157 
4158 	if (ifp->if_drv_flags & IFF_DRV_RUNNING)
4159 		return;
4160 
4161 	/* Cancel pending I/O and flush buffers. */
4162 	bge_stop(sc);
4163 
4164 	bge_stop_fw(sc);
4165 	bge_sig_pre_reset(sc, BGE_RESET_START);
4166 	bge_reset(sc);
4167 	bge_sig_legacy(sc, BGE_RESET_START);
4168 	bge_sig_post_reset(sc, BGE_RESET_START);
4169 
4170 	bge_chipinit(sc);
4171 
4172 	/*
4173 	 * Init the various state machines, ring
4174 	 * control blocks and firmware.
4175 	 */
4176 	if (bge_blockinit(sc)) {
4177 		device_printf(sc->bge_dev, "initialization failure\n");
4178 		return;
4179 	}
4180 
4181 	ifp = sc->bge_ifp;
4182 
4183 	/* Specify MTU. */
4184 	CSR_WRITE_4(sc, BGE_RX_MTU, ifp->if_mtu +
4185 	    ETHER_HDR_LEN + ETHER_CRC_LEN +
4186 	    (ifp->if_capenable & IFCAP_VLAN_MTU ? ETHER_VLAN_ENCAP_LEN : 0));
4187 
4188 	/* Load our MAC address. */
4189 	m = (uint16_t *)IF_LLADDR(sc->bge_ifp);
4190 	CSR_WRITE_4(sc, BGE_MAC_ADDR1_LO, htons(m[0]));
4191 	CSR_WRITE_4(sc, BGE_MAC_ADDR1_HI, (htons(m[1]) << 16) | htons(m[2]));
4192 
4193 	/* Program promiscuous mode. */
4194 	bge_setpromisc(sc);
4195 
4196 	/* Program multicast filter. */
4197 	bge_setmulti(sc);
4198 
4199 	/* Program VLAN tag stripping. */
4200 	bge_setvlan(sc);
4201 
4202 	/* Init RX ring. */
4203 	if (bge_init_rx_ring_std(sc) != 0) {
4204 		device_printf(sc->bge_dev, "no memory for std Rx buffers.\n");
4205 		bge_stop(sc);
4206 		return;
4207 	}
4208 
4209 	/*
4210 	 * Workaround for a bug in 5705 ASIC rev A0. Poll the NIC's
4211 	 * memory to insure that the chip has in fact read the first
4212 	 * entry of the ring.
4213 	 */
4214 	if (sc->bge_chipid == BGE_CHIPID_BCM5705_A0) {
4215 		uint32_t		v, i;
4216 		for (i = 0; i < 10; i++) {
4217 			DELAY(20);
4218 			v = bge_readmem_ind(sc, BGE_STD_RX_RINGS + 8);
4219 			if (v == (MCLBYTES - ETHER_ALIGN))
4220 				break;
4221 		}
4222 		if (i == 10)
4223 			device_printf (sc->bge_dev,
4224 			    "5705 A0 chip failed to load RX ring\n");
4225 	}
4226 
4227 	/* Init jumbo RX ring. */
4228 	if (ifp->if_mtu + ETHER_HDR_LEN + ETHER_CRC_LEN + ETHER_VLAN_ENCAP_LEN >
4229 	    (MCLBYTES - ETHER_ALIGN)) {
4230 		if (bge_init_rx_ring_jumbo(sc) != 0) {
4231 			device_printf(sc->bge_dev, "no memory for std Rx buffers.\n");
4232 			bge_stop(sc);
4233 			return;
4234 		}
4235 	}
4236 
4237 	/* Init our RX return ring index. */
4238 	sc->bge_rx_saved_considx = 0;
4239 
4240 	/* Init our RX/TX stat counters. */
4241 	sc->bge_rx_discards = sc->bge_tx_discards = sc->bge_tx_collisions = 0;
4242 
4243 	/* Init TX ring. */
4244 	bge_init_tx_ring(sc);
4245 
4246 	/* Turn on transmitter. */
4247 	BGE_SETBIT(sc, BGE_TX_MODE, BGE_TXMODE_ENABLE);
4248 
4249 	/* Turn on receiver. */
4250 	BGE_SETBIT(sc, BGE_RX_MODE, BGE_RXMODE_ENABLE);
4251 
4252 	/* Tell firmware we're alive. */
4253 	BGE_SETBIT(sc, BGE_MODE_CTL, BGE_MODECTL_STACKUP);
4254 
4255 #ifdef DEVICE_POLLING
4256 	/* Disable interrupts if we are polling. */
4257 	if (ifp->if_capenable & IFCAP_POLLING) {
4258 		BGE_SETBIT(sc, BGE_PCI_MISC_CTL,
4259 		    BGE_PCIMISCCTL_MASK_PCI_INTR);
4260 		bge_writembx(sc, BGE_MBX_IRQ0_LO, 1);
4261 	} else
4262 #endif
4263 
4264 	/* Enable host interrupts. */
4265 	{
4266 	BGE_SETBIT(sc, BGE_PCI_MISC_CTL, BGE_PCIMISCCTL_CLEAR_INTA);
4267 	BGE_CLRBIT(sc, BGE_PCI_MISC_CTL, BGE_PCIMISCCTL_MASK_PCI_INTR);
4268 	bge_writembx(sc, BGE_MBX_IRQ0_LO, 0);
4269 	}
4270 
4271 	bge_ifmedia_upd_locked(ifp);
4272 
4273 	ifp->if_drv_flags |= IFF_DRV_RUNNING;
4274 	ifp->if_drv_flags &= ~IFF_DRV_OACTIVE;
4275 
4276 	callout_reset(&sc->bge_stat_ch, hz, bge_tick, sc);
4277 }
4278 
4279 static void
4280 bge_init(void *xsc)
4281 {
4282 	struct bge_softc *sc = xsc;
4283 
4284 	BGE_LOCK(sc);
4285 	bge_init_locked(sc);
4286 	BGE_UNLOCK(sc);
4287 }
4288 
4289 /*
4290  * Set media options.
4291  */
4292 static int
4293 bge_ifmedia_upd(struct ifnet *ifp)
4294 {
4295 	struct bge_softc *sc = ifp->if_softc;
4296 	int res;
4297 
4298 	BGE_LOCK(sc);
4299 	res = bge_ifmedia_upd_locked(ifp);
4300 	BGE_UNLOCK(sc);
4301 
4302 	return (res);
4303 }
4304 
4305 static int
4306 bge_ifmedia_upd_locked(struct ifnet *ifp)
4307 {
4308 	struct bge_softc *sc = ifp->if_softc;
4309 	struct mii_data *mii;
4310 	struct mii_softc *miisc;
4311 	struct ifmedia *ifm;
4312 
4313 	BGE_LOCK_ASSERT(sc);
4314 
4315 	ifm = &sc->bge_ifmedia;
4316 
4317 	/* If this is a 1000baseX NIC, enable the TBI port. */
4318 	if (sc->bge_flags & BGE_FLAG_TBI) {
4319 		if (IFM_TYPE(ifm->ifm_media) != IFM_ETHER)
4320 			return (EINVAL);
4321 		switch(IFM_SUBTYPE(ifm->ifm_media)) {
4322 		case IFM_AUTO:
4323 			/*
4324 			 * The BCM5704 ASIC appears to have a special
4325 			 * mechanism for programming the autoneg
4326 			 * advertisement registers in TBI mode.
4327 			 */
4328 			if (sc->bge_asicrev == BGE_ASICREV_BCM5704) {
4329 				uint32_t sgdig;
4330 				sgdig = CSR_READ_4(sc, BGE_SGDIG_STS);
4331 				if (sgdig & BGE_SGDIGSTS_DONE) {
4332 					CSR_WRITE_4(sc, BGE_TX_TBI_AUTONEG, 0);
4333 					sgdig = CSR_READ_4(sc, BGE_SGDIG_CFG);
4334 					sgdig |= BGE_SGDIGCFG_AUTO |
4335 					    BGE_SGDIGCFG_PAUSE_CAP |
4336 					    BGE_SGDIGCFG_ASYM_PAUSE;
4337 					CSR_WRITE_4(sc, BGE_SGDIG_CFG,
4338 					    sgdig | BGE_SGDIGCFG_SEND);
4339 					DELAY(5);
4340 					CSR_WRITE_4(sc, BGE_SGDIG_CFG, sgdig);
4341 				}
4342 			}
4343 			break;
4344 		case IFM_1000_SX:
4345 			if ((ifm->ifm_media & IFM_GMASK) == IFM_FDX) {
4346 				BGE_CLRBIT(sc, BGE_MAC_MODE,
4347 				    BGE_MACMODE_HALF_DUPLEX);
4348 			} else {
4349 				BGE_SETBIT(sc, BGE_MAC_MODE,
4350 				    BGE_MACMODE_HALF_DUPLEX);
4351 			}
4352 			break;
4353 		default:
4354 			return (EINVAL);
4355 		}
4356 		return (0);
4357 	}
4358 
4359 	sc->bge_link_evt++;
4360 	mii = device_get_softc(sc->bge_miibus);
4361 	if (mii->mii_instance)
4362 		LIST_FOREACH(miisc, &mii->mii_phys, mii_list)
4363 			mii_phy_reset(miisc);
4364 	mii_mediachg(mii);
4365 
4366 	/*
4367 	 * Force an interrupt so that we will call bge_link_upd
4368 	 * if needed and clear any pending link state attention.
4369 	 * Without this we are not getting any further interrupts
4370 	 * for link state changes and thus will not UP the link and
4371 	 * not be able to send in bge_start_locked. The only
4372 	 * way to get things working was to receive a packet and
4373 	 * get an RX intr.
4374 	 * bge_tick should help for fiber cards and we might not
4375 	 * need to do this here if BGE_FLAG_TBI is set but as
4376 	 * we poll for fiber anyway it should not harm.
4377 	 */
4378 	if (sc->bge_asicrev == BGE_ASICREV_BCM5700 ||
4379 	    sc->bge_flags & BGE_FLAG_5788)
4380 		BGE_SETBIT(sc, BGE_MISC_LOCAL_CTL, BGE_MLC_INTR_SET);
4381 	else
4382 		BGE_SETBIT(sc, BGE_HCC_MODE, BGE_HCCMODE_COAL_NOW);
4383 
4384 	return (0);
4385 }
4386 
4387 /*
4388  * Report current media status.
4389  */
4390 static void
4391 bge_ifmedia_sts(struct ifnet *ifp, struct ifmediareq *ifmr)
4392 {
4393 	struct bge_softc *sc = ifp->if_softc;
4394 	struct mii_data *mii;
4395 
4396 	BGE_LOCK(sc);
4397 
4398 	if (sc->bge_flags & BGE_FLAG_TBI) {
4399 		ifmr->ifm_status = IFM_AVALID;
4400 		ifmr->ifm_active = IFM_ETHER;
4401 		if (CSR_READ_4(sc, BGE_MAC_STS) &
4402 		    BGE_MACSTAT_TBI_PCS_SYNCHED)
4403 			ifmr->ifm_status |= IFM_ACTIVE;
4404 		else {
4405 			ifmr->ifm_active |= IFM_NONE;
4406 			BGE_UNLOCK(sc);
4407 			return;
4408 		}
4409 		ifmr->ifm_active |= IFM_1000_SX;
4410 		if (CSR_READ_4(sc, BGE_MAC_MODE) & BGE_MACMODE_HALF_DUPLEX)
4411 			ifmr->ifm_active |= IFM_HDX;
4412 		else
4413 			ifmr->ifm_active |= IFM_FDX;
4414 		BGE_UNLOCK(sc);
4415 		return;
4416 	}
4417 
4418 	mii = device_get_softc(sc->bge_miibus);
4419 	mii_pollstat(mii);
4420 	ifmr->ifm_active = mii->mii_media_active;
4421 	ifmr->ifm_status = mii->mii_media_status;
4422 
4423 	BGE_UNLOCK(sc);
4424 }
4425 
4426 static int
4427 bge_ioctl(struct ifnet *ifp, u_long command, caddr_t data)
4428 {
4429 	struct bge_softc *sc = ifp->if_softc;
4430 	struct ifreq *ifr = (struct ifreq *) data;
4431 	struct mii_data *mii;
4432 	int flags, mask, error = 0;
4433 
4434 	switch (command) {
4435 	case SIOCSIFMTU:
4436 		if (ifr->ifr_mtu < ETHERMIN ||
4437 		    ((BGE_IS_JUMBO_CAPABLE(sc)) &&
4438 		    ifr->ifr_mtu > BGE_JUMBO_MTU) ||
4439 		    ((!BGE_IS_JUMBO_CAPABLE(sc)) &&
4440 		    ifr->ifr_mtu > ETHERMTU))
4441 			error = EINVAL;
4442 		else if (ifp->if_mtu != ifr->ifr_mtu) {
4443 			ifp->if_mtu = ifr->ifr_mtu;
4444 			ifp->if_drv_flags &= ~IFF_DRV_RUNNING;
4445 			bge_init(sc);
4446 		}
4447 		break;
4448 	case SIOCSIFFLAGS:
4449 		BGE_LOCK(sc);
4450 		if (ifp->if_flags & IFF_UP) {
4451 			/*
4452 			 * If only the state of the PROMISC flag changed,
4453 			 * then just use the 'set promisc mode' command
4454 			 * instead of reinitializing the entire NIC. Doing
4455 			 * a full re-init means reloading the firmware and
4456 			 * waiting for it to start up, which may take a
4457 			 * second or two.  Similarly for ALLMULTI.
4458 			 */
4459 			if (ifp->if_drv_flags & IFF_DRV_RUNNING) {
4460 				flags = ifp->if_flags ^ sc->bge_if_flags;
4461 				if (flags & IFF_PROMISC)
4462 					bge_setpromisc(sc);
4463 				if (flags & IFF_ALLMULTI)
4464 					bge_setmulti(sc);
4465 			} else
4466 				bge_init_locked(sc);
4467 		} else {
4468 			if (ifp->if_drv_flags & IFF_DRV_RUNNING) {
4469 				bge_stop(sc);
4470 			}
4471 		}
4472 		sc->bge_if_flags = ifp->if_flags;
4473 		BGE_UNLOCK(sc);
4474 		error = 0;
4475 		break;
4476 	case SIOCADDMULTI:
4477 	case SIOCDELMULTI:
4478 		if (ifp->if_drv_flags & IFF_DRV_RUNNING) {
4479 			BGE_LOCK(sc);
4480 			bge_setmulti(sc);
4481 			BGE_UNLOCK(sc);
4482 			error = 0;
4483 		}
4484 		break;
4485 	case SIOCSIFMEDIA:
4486 	case SIOCGIFMEDIA:
4487 		if (sc->bge_flags & BGE_FLAG_TBI) {
4488 			error = ifmedia_ioctl(ifp, ifr,
4489 			    &sc->bge_ifmedia, command);
4490 		} else {
4491 			mii = device_get_softc(sc->bge_miibus);
4492 			error = ifmedia_ioctl(ifp, ifr,
4493 			    &mii->mii_media, command);
4494 		}
4495 		break;
4496 	case SIOCSIFCAP:
4497 		mask = ifr->ifr_reqcap ^ ifp->if_capenable;
4498 #ifdef DEVICE_POLLING
4499 		if (mask & IFCAP_POLLING) {
4500 			if (ifr->ifr_reqcap & IFCAP_POLLING) {
4501 				error = ether_poll_register(bge_poll, ifp);
4502 				if (error)
4503 					return (error);
4504 				BGE_LOCK(sc);
4505 				BGE_SETBIT(sc, BGE_PCI_MISC_CTL,
4506 				    BGE_PCIMISCCTL_MASK_PCI_INTR);
4507 				bge_writembx(sc, BGE_MBX_IRQ0_LO, 1);
4508 				ifp->if_capenable |= IFCAP_POLLING;
4509 				BGE_UNLOCK(sc);
4510 			} else {
4511 				error = ether_poll_deregister(ifp);
4512 				/* Enable interrupt even in error case */
4513 				BGE_LOCK(sc);
4514 				BGE_CLRBIT(sc, BGE_PCI_MISC_CTL,
4515 				    BGE_PCIMISCCTL_MASK_PCI_INTR);
4516 				bge_writembx(sc, BGE_MBX_IRQ0_LO, 0);
4517 				ifp->if_capenable &= ~IFCAP_POLLING;
4518 				BGE_UNLOCK(sc);
4519 			}
4520 		}
4521 #endif
4522 		if (mask & IFCAP_HWCSUM) {
4523 			ifp->if_capenable ^= IFCAP_HWCSUM;
4524 			if (IFCAP_HWCSUM & ifp->if_capenable &&
4525 			    IFCAP_HWCSUM & ifp->if_capabilities)
4526 				ifp->if_hwassist |= BGE_CSUM_FEATURES;
4527 			else
4528 				ifp->if_hwassist &= ~BGE_CSUM_FEATURES;
4529 #ifdef VLAN_CAPABILITIES
4530 			VLAN_CAPABILITIES(ifp);
4531 #endif
4532 		}
4533 
4534 		if ((mask & IFCAP_TSO4) != 0 &&
4535 		    (ifp->if_capabilities & IFCAP_TSO4) != 0) {
4536 			ifp->if_capenable ^= IFCAP_TSO4;
4537 			if ((ifp->if_capenable & IFCAP_TSO4) != 0)
4538 				ifp->if_hwassist |= CSUM_TSO;
4539 			else
4540 				ifp->if_hwassist &= ~CSUM_TSO;
4541 		}
4542 
4543 		if (mask & IFCAP_VLAN_MTU) {
4544 			ifp->if_capenable ^= IFCAP_VLAN_MTU;
4545 			ifp->if_drv_flags &= ~IFF_DRV_RUNNING;
4546 			bge_init(sc);
4547 		}
4548 
4549 		if (mask & IFCAP_VLAN_HWTAGGING) {
4550 			ifp->if_capenable ^= IFCAP_VLAN_HWTAGGING;
4551 			BGE_LOCK(sc);
4552 			bge_setvlan(sc);
4553 			BGE_UNLOCK(sc);
4554 #ifdef VLAN_CAPABILITIES
4555 			VLAN_CAPABILITIES(ifp);
4556 #endif
4557 		}
4558 
4559 		break;
4560 	default:
4561 		error = ether_ioctl(ifp, command, data);
4562 		break;
4563 	}
4564 
4565 	return (error);
4566 }
4567 
4568 static void
4569 bge_watchdog(struct bge_softc *sc)
4570 {
4571 	struct ifnet *ifp;
4572 
4573 	BGE_LOCK_ASSERT(sc);
4574 
4575 	if (sc->bge_timer == 0 || --sc->bge_timer)
4576 		return;
4577 
4578 	ifp = sc->bge_ifp;
4579 
4580 	if_printf(ifp, "watchdog timeout -- resetting\n");
4581 
4582 	ifp->if_drv_flags &= ~IFF_DRV_RUNNING;
4583 	bge_init_locked(sc);
4584 
4585 	ifp->if_oerrors++;
4586 }
4587 
4588 /*
4589  * Stop the adapter and free any mbufs allocated to the
4590  * RX and TX lists.
4591  */
4592 static void
4593 bge_stop(struct bge_softc *sc)
4594 {
4595 	struct ifnet *ifp;
4596 
4597 	BGE_LOCK_ASSERT(sc);
4598 
4599 	ifp = sc->bge_ifp;
4600 
4601 	callout_stop(&sc->bge_stat_ch);
4602 
4603 	/* Disable host interrupts. */
4604 	BGE_SETBIT(sc, BGE_PCI_MISC_CTL, BGE_PCIMISCCTL_MASK_PCI_INTR);
4605 	bge_writembx(sc, BGE_MBX_IRQ0_LO, 1);
4606 
4607 	/*
4608 	 * Tell firmware we're shutting down.
4609 	 */
4610 	bge_stop_fw(sc);
4611 	bge_sig_pre_reset(sc, BGE_RESET_STOP);
4612 
4613 	/*
4614 	 * Disable all of the receiver blocks.
4615 	 */
4616 	BGE_CLRBIT(sc, BGE_RX_MODE, BGE_RXMODE_ENABLE);
4617 	BGE_CLRBIT(sc, BGE_RBDI_MODE, BGE_RBDIMODE_ENABLE);
4618 	BGE_CLRBIT(sc, BGE_RXLP_MODE, BGE_RXLPMODE_ENABLE);
4619 	if (!(BGE_IS_5705_PLUS(sc)))
4620 		BGE_CLRBIT(sc, BGE_RXLS_MODE, BGE_RXLSMODE_ENABLE);
4621 	BGE_CLRBIT(sc, BGE_RDBDI_MODE, BGE_RBDIMODE_ENABLE);
4622 	BGE_CLRBIT(sc, BGE_RDC_MODE, BGE_RDCMODE_ENABLE);
4623 	BGE_CLRBIT(sc, BGE_RBDC_MODE, BGE_RBDCMODE_ENABLE);
4624 
4625 	/*
4626 	 * Disable all of the transmit blocks.
4627 	 */
4628 	BGE_CLRBIT(sc, BGE_SRS_MODE, BGE_SRSMODE_ENABLE);
4629 	BGE_CLRBIT(sc, BGE_SBDI_MODE, BGE_SBDIMODE_ENABLE);
4630 	BGE_CLRBIT(sc, BGE_SDI_MODE, BGE_SDIMODE_ENABLE);
4631 	BGE_CLRBIT(sc, BGE_RDMA_MODE, BGE_RDMAMODE_ENABLE);
4632 	BGE_CLRBIT(sc, BGE_SDC_MODE, BGE_SDCMODE_ENABLE);
4633 	if (!(BGE_IS_5705_PLUS(sc)))
4634 		BGE_CLRBIT(sc, BGE_DMAC_MODE, BGE_DMACMODE_ENABLE);
4635 	BGE_CLRBIT(sc, BGE_SBDC_MODE, BGE_SBDCMODE_ENABLE);
4636 
4637 	/*
4638 	 * Shut down all of the memory managers and related
4639 	 * state machines.
4640 	 */
4641 	BGE_CLRBIT(sc, BGE_HCC_MODE, BGE_HCCMODE_ENABLE);
4642 	BGE_CLRBIT(sc, BGE_WDMA_MODE, BGE_WDMAMODE_ENABLE);
4643 	if (!(BGE_IS_5705_PLUS(sc)))
4644 		BGE_CLRBIT(sc, BGE_MBCF_MODE, BGE_MBCFMODE_ENABLE);
4645 	CSR_WRITE_4(sc, BGE_FTQ_RESET, 0xFFFFFFFF);
4646 	CSR_WRITE_4(sc, BGE_FTQ_RESET, 0);
4647 	if (!(BGE_IS_5705_PLUS(sc))) {
4648 		BGE_CLRBIT(sc, BGE_BMAN_MODE, BGE_BMANMODE_ENABLE);
4649 		BGE_CLRBIT(sc, BGE_MARB_MODE, BGE_MARBMODE_ENABLE);
4650 	}
4651 
4652 	bge_reset(sc);
4653 	bge_sig_legacy(sc, BGE_RESET_STOP);
4654 	bge_sig_post_reset(sc, BGE_RESET_STOP);
4655 
4656 	/*
4657 	 * Keep the ASF firmware running if up.
4658 	 */
4659 	if (sc->bge_asf_mode & ASF_STACKUP)
4660 		BGE_SETBIT(sc, BGE_MODE_CTL, BGE_MODECTL_STACKUP);
4661 	else
4662 		BGE_CLRBIT(sc, BGE_MODE_CTL, BGE_MODECTL_STACKUP);
4663 
4664 	/* Free the RX lists. */
4665 	bge_free_rx_ring_std(sc);
4666 
4667 	/* Free jumbo RX list. */
4668 	if (BGE_IS_JUMBO_CAPABLE(sc))
4669 		bge_free_rx_ring_jumbo(sc);
4670 
4671 	/* Free TX buffers. */
4672 	bge_free_tx_ring(sc);
4673 
4674 	sc->bge_tx_saved_considx = BGE_TXCONS_UNSET;
4675 
4676 	/* Clear MAC's link state (PHY may still have link UP). */
4677 	if (bootverbose && sc->bge_link)
4678 		if_printf(sc->bge_ifp, "link DOWN\n");
4679 	sc->bge_link = 0;
4680 
4681 	ifp->if_drv_flags &= ~(IFF_DRV_RUNNING | IFF_DRV_OACTIVE);
4682 }
4683 
4684 /*
4685  * Stop all chip I/O so that the kernel's probe routines don't
4686  * get confused by errant DMAs when rebooting.
4687  */
4688 static int
4689 bge_shutdown(device_t dev)
4690 {
4691 	struct bge_softc *sc;
4692 
4693 	sc = device_get_softc(dev);
4694 	BGE_LOCK(sc);
4695 	bge_stop(sc);
4696 	bge_reset(sc);
4697 	BGE_UNLOCK(sc);
4698 
4699 	return (0);
4700 }
4701 
4702 static int
4703 bge_suspend(device_t dev)
4704 {
4705 	struct bge_softc *sc;
4706 
4707 	sc = device_get_softc(dev);
4708 	BGE_LOCK(sc);
4709 	bge_stop(sc);
4710 	BGE_UNLOCK(sc);
4711 
4712 	return (0);
4713 }
4714 
4715 static int
4716 bge_resume(device_t dev)
4717 {
4718 	struct bge_softc *sc;
4719 	struct ifnet *ifp;
4720 
4721 	sc = device_get_softc(dev);
4722 	BGE_LOCK(sc);
4723 	ifp = sc->bge_ifp;
4724 	if (ifp->if_flags & IFF_UP) {
4725 		bge_init_locked(sc);
4726 		if (ifp->if_drv_flags & IFF_DRV_RUNNING)
4727 			bge_start_locked(ifp);
4728 	}
4729 	BGE_UNLOCK(sc);
4730 
4731 	return (0);
4732 }
4733 
4734 static void
4735 bge_link_upd(struct bge_softc *sc)
4736 {
4737 	struct mii_data *mii;
4738 	uint32_t link, status;
4739 
4740 	BGE_LOCK_ASSERT(sc);
4741 
4742 	/* Clear 'pending link event' flag. */
4743 	sc->bge_link_evt = 0;
4744 
4745 	/*
4746 	 * Process link state changes.
4747 	 * Grrr. The link status word in the status block does
4748 	 * not work correctly on the BCM5700 rev AX and BX chips,
4749 	 * according to all available information. Hence, we have
4750 	 * to enable MII interrupts in order to properly obtain
4751 	 * async link changes. Unfortunately, this also means that
4752 	 * we have to read the MAC status register to detect link
4753 	 * changes, thereby adding an additional register access to
4754 	 * the interrupt handler.
4755 	 *
4756 	 * XXX: perhaps link state detection procedure used for
4757 	 * BGE_CHIPID_BCM5700_B2 can be used for others BCM5700 revisions.
4758 	 */
4759 
4760 	if (sc->bge_asicrev == BGE_ASICREV_BCM5700 &&
4761 	    sc->bge_chipid != BGE_CHIPID_BCM5700_B2) {
4762 		status = CSR_READ_4(sc, BGE_MAC_STS);
4763 		if (status & BGE_MACSTAT_MI_INTERRUPT) {
4764 			mii = device_get_softc(sc->bge_miibus);
4765 			mii_pollstat(mii);
4766 			if (!sc->bge_link &&
4767 			    mii->mii_media_status & IFM_ACTIVE &&
4768 			    IFM_SUBTYPE(mii->mii_media_active) != IFM_NONE) {
4769 				sc->bge_link++;
4770 				if (bootverbose)
4771 					if_printf(sc->bge_ifp, "link UP\n");
4772 			} else if (sc->bge_link &&
4773 			    (!(mii->mii_media_status & IFM_ACTIVE) ||
4774 			    IFM_SUBTYPE(mii->mii_media_active) == IFM_NONE)) {
4775 				sc->bge_link = 0;
4776 				if (bootverbose)
4777 					if_printf(sc->bge_ifp, "link DOWN\n");
4778 			}
4779 
4780 			/* Clear the interrupt. */
4781 			CSR_WRITE_4(sc, BGE_MAC_EVT_ENB,
4782 			    BGE_EVTENB_MI_INTERRUPT);
4783 			bge_miibus_readreg(sc->bge_dev, 1, BRGPHY_MII_ISR);
4784 			bge_miibus_writereg(sc->bge_dev, 1, BRGPHY_MII_IMR,
4785 			    BRGPHY_INTRS);
4786 		}
4787 		return;
4788 	}
4789 
4790 	if (sc->bge_flags & BGE_FLAG_TBI) {
4791 		status = CSR_READ_4(sc, BGE_MAC_STS);
4792 		if (status & BGE_MACSTAT_TBI_PCS_SYNCHED) {
4793 			if (!sc->bge_link) {
4794 				sc->bge_link++;
4795 				if (sc->bge_asicrev == BGE_ASICREV_BCM5704)
4796 					BGE_CLRBIT(sc, BGE_MAC_MODE,
4797 					    BGE_MACMODE_TBI_SEND_CFGS);
4798 				CSR_WRITE_4(sc, BGE_MAC_STS, 0xFFFFFFFF);
4799 				if (bootverbose)
4800 					if_printf(sc->bge_ifp, "link UP\n");
4801 				if_link_state_change(sc->bge_ifp,
4802 				    LINK_STATE_UP);
4803 			}
4804 		} else if (sc->bge_link) {
4805 			sc->bge_link = 0;
4806 			if (bootverbose)
4807 				if_printf(sc->bge_ifp, "link DOWN\n");
4808 			if_link_state_change(sc->bge_ifp, LINK_STATE_DOWN);
4809 		}
4810 	} else if (CSR_READ_4(sc, BGE_MI_MODE) & BGE_MIMODE_AUTOPOLL) {
4811 		/*
4812 		 * Some broken BCM chips have BGE_STATFLAG_LINKSTATE_CHANGED bit
4813 		 * in status word always set. Workaround this bug by reading
4814 		 * PHY link status directly.
4815 		 */
4816 		link = (CSR_READ_4(sc, BGE_MI_STS) & BGE_MISTS_LINK) ? 1 : 0;
4817 
4818 		if (link != sc->bge_link ||
4819 		    sc->bge_asicrev == BGE_ASICREV_BCM5700) {
4820 			mii = device_get_softc(sc->bge_miibus);
4821 			mii_pollstat(mii);
4822 			if (!sc->bge_link &&
4823 			    mii->mii_media_status & IFM_ACTIVE &&
4824 			    IFM_SUBTYPE(mii->mii_media_active) != IFM_NONE) {
4825 				sc->bge_link++;
4826 				if (bootverbose)
4827 					if_printf(sc->bge_ifp, "link UP\n");
4828 			} else if (sc->bge_link &&
4829 			    (!(mii->mii_media_status & IFM_ACTIVE) ||
4830 			    IFM_SUBTYPE(mii->mii_media_active) == IFM_NONE)) {
4831 				sc->bge_link = 0;
4832 				if (bootverbose)
4833 					if_printf(sc->bge_ifp, "link DOWN\n");
4834 			}
4835 		}
4836 	} else {
4837 		/*
4838 		 * Discard link events for MII/GMII controllers
4839 		 * if MI auto-polling is disabled.
4840 		 */
4841 	}
4842 
4843 	/* Clear the attention. */
4844 	CSR_WRITE_4(sc, BGE_MAC_STS, BGE_MACSTAT_SYNC_CHANGED |
4845 	    BGE_MACSTAT_CFG_CHANGED | BGE_MACSTAT_MI_COMPLETE |
4846 	    BGE_MACSTAT_LINK_CHANGED);
4847 }
4848 
4849 #define BGE_SYSCTL_STAT(sc, ctx, desc, parent, node, oid) \
4850 	SYSCTL_ADD_PROC(ctx, parent, OID_AUTO, oid, CTLTYPE_UINT|CTLFLAG_RD, \
4851 	    sc, offsetof(struct bge_stats, node), bge_sysctl_stats, "IU", \
4852 	    desc)
4853 
4854 static void
4855 bge_add_sysctls(struct bge_softc *sc)
4856 {
4857 	struct sysctl_ctx_list *ctx;
4858 	struct sysctl_oid_list *children, *schildren;
4859 	struct sysctl_oid *tree;
4860 
4861 	ctx = device_get_sysctl_ctx(sc->bge_dev);
4862 	children = SYSCTL_CHILDREN(device_get_sysctl_tree(sc->bge_dev));
4863 
4864 #ifdef BGE_REGISTER_DEBUG
4865 	SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "debug_info",
4866 	    CTLTYPE_INT | CTLFLAG_RW, sc, 0, bge_sysctl_debug_info, "I",
4867 	    "Debug Information");
4868 
4869 	SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "reg_read",
4870 	    CTLTYPE_INT | CTLFLAG_RW, sc, 0, bge_sysctl_reg_read, "I",
4871 	    "Register Read");
4872 
4873 	SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "mem_read",
4874 	    CTLTYPE_INT | CTLFLAG_RW, sc, 0, bge_sysctl_mem_read, "I",
4875 	    "Memory Read");
4876 
4877 #endif
4878 
4879 	/*
4880 	 * A common design characteristic for many Broadcom client controllers
4881 	 * is that they only support a single outstanding DMA read operation
4882 	 * on the PCIe bus. This means that it will take twice as long to fetch
4883 	 * a TX frame that is split into header and payload buffers as it does
4884 	 * to fetch a single, contiguous TX frame (2 reads vs. 1 read). For
4885 	 * these controllers, coalescing buffers to reduce the number of memory
4886 	 * reads is effective way to get maximum performance(about 940Mbps).
4887 	 * Without collapsing TX buffers the maximum TCP bulk transfer
4888 	 * performance is about 850Mbps. However forcing coalescing mbufs
4889 	 * consumes a lot of CPU cycles, so leave it off by default.
4890 	 */
4891 	SYSCTL_ADD_INT(ctx, children, OID_AUTO, "forced_collapse",
4892 	    CTLFLAG_RW, &sc->bge_forced_collapse, 0,
4893 	    "Number of fragmented TX buffers of a frame allowed before "
4894 	    "forced collapsing");
4895 	resource_int_value(device_get_name(sc->bge_dev),
4896 	    device_get_unit(sc->bge_dev), "forced_collapse",
4897 	    &sc->bge_forced_collapse);
4898 
4899 	if (BGE_IS_5705_PLUS(sc))
4900 		return;
4901 
4902 	tree = SYSCTL_ADD_NODE(ctx, children, OID_AUTO, "stats", CTLFLAG_RD,
4903 	    NULL, "BGE Statistics");
4904 	schildren = children = SYSCTL_CHILDREN(tree);
4905 	BGE_SYSCTL_STAT(sc, ctx, "Frames Dropped Due To Filters",
4906 	    children, COSFramesDroppedDueToFilters,
4907 	    "FramesDroppedDueToFilters");
4908 	BGE_SYSCTL_STAT(sc, ctx, "NIC DMA Write Queue Full",
4909 	    children, nicDmaWriteQueueFull, "DmaWriteQueueFull");
4910 	BGE_SYSCTL_STAT(sc, ctx, "NIC DMA Write High Priority Queue Full",
4911 	    children, nicDmaWriteHighPriQueueFull, "DmaWriteHighPriQueueFull");
4912 	BGE_SYSCTL_STAT(sc, ctx, "NIC No More RX Buffer Descriptors",
4913 	    children, nicNoMoreRxBDs, "NoMoreRxBDs");
4914 	BGE_SYSCTL_STAT(sc, ctx, "Discarded Input Frames",
4915 	    children, ifInDiscards, "InputDiscards");
4916 	BGE_SYSCTL_STAT(sc, ctx, "Input Errors",
4917 	    children, ifInErrors, "InputErrors");
4918 	BGE_SYSCTL_STAT(sc, ctx, "NIC Recv Threshold Hit",
4919 	    children, nicRecvThresholdHit, "RecvThresholdHit");
4920 	BGE_SYSCTL_STAT(sc, ctx, "NIC DMA Read Queue Full",
4921 	    children, nicDmaReadQueueFull, "DmaReadQueueFull");
4922 	BGE_SYSCTL_STAT(sc, ctx, "NIC DMA Read High Priority Queue Full",
4923 	    children, nicDmaReadHighPriQueueFull, "DmaReadHighPriQueueFull");
4924 	BGE_SYSCTL_STAT(sc, ctx, "NIC Send Data Complete Queue Full",
4925 	    children, nicSendDataCompQueueFull, "SendDataCompQueueFull");
4926 	BGE_SYSCTL_STAT(sc, ctx, "NIC Ring Set Send Producer Index",
4927 	    children, nicRingSetSendProdIndex, "RingSetSendProdIndex");
4928 	BGE_SYSCTL_STAT(sc, ctx, "NIC Ring Status Update",
4929 	    children, nicRingStatusUpdate, "RingStatusUpdate");
4930 	BGE_SYSCTL_STAT(sc, ctx, "NIC Interrupts",
4931 	    children, nicInterrupts, "Interrupts");
4932 	BGE_SYSCTL_STAT(sc, ctx, "NIC Avoided Interrupts",
4933 	    children, nicAvoidedInterrupts, "AvoidedInterrupts");
4934 	BGE_SYSCTL_STAT(sc, ctx, "NIC Send Threshold Hit",
4935 	    children, nicSendThresholdHit, "SendThresholdHit");
4936 
4937 	tree = SYSCTL_ADD_NODE(ctx, schildren, OID_AUTO, "rx", CTLFLAG_RD,
4938 	    NULL, "BGE RX Statistics");
4939 	children = SYSCTL_CHILDREN(tree);
4940 	BGE_SYSCTL_STAT(sc, ctx, "Inbound Octets",
4941 	    children, rxstats.ifHCInOctets, "Octets");
4942 	BGE_SYSCTL_STAT(sc, ctx, "Fragments",
4943 	    children, rxstats.etherStatsFragments, "Fragments");
4944 	BGE_SYSCTL_STAT(sc, ctx, "Inbound Unicast Packets",
4945 	    children, rxstats.ifHCInUcastPkts, "UcastPkts");
4946 	BGE_SYSCTL_STAT(sc, ctx, "Inbound Multicast Packets",
4947 	    children, rxstats.ifHCInMulticastPkts, "MulticastPkts");
4948 	BGE_SYSCTL_STAT(sc, ctx, "FCS Errors",
4949 	    children, rxstats.dot3StatsFCSErrors, "FCSErrors");
4950 	BGE_SYSCTL_STAT(sc, ctx, "Alignment Errors",
4951 	    children, rxstats.dot3StatsAlignmentErrors, "AlignmentErrors");
4952 	BGE_SYSCTL_STAT(sc, ctx, "XON Pause Frames Received",
4953 	    children, rxstats.xonPauseFramesReceived, "xonPauseFramesReceived");
4954 	BGE_SYSCTL_STAT(sc, ctx, "XOFF Pause Frames Received",
4955 	    children, rxstats.xoffPauseFramesReceived,
4956 	    "xoffPauseFramesReceived");
4957 	BGE_SYSCTL_STAT(sc, ctx, "MAC Control Frames Received",
4958 	    children, rxstats.macControlFramesReceived,
4959 	    "ControlFramesReceived");
4960 	BGE_SYSCTL_STAT(sc, ctx, "XOFF State Entered",
4961 	    children, rxstats.xoffStateEntered, "xoffStateEntered");
4962 	BGE_SYSCTL_STAT(sc, ctx, "Frames Too Long",
4963 	    children, rxstats.dot3StatsFramesTooLong, "FramesTooLong");
4964 	BGE_SYSCTL_STAT(sc, ctx, "Jabbers",
4965 	    children, rxstats.etherStatsJabbers, "Jabbers");
4966 	BGE_SYSCTL_STAT(sc, ctx, "Undersized Packets",
4967 	    children, rxstats.etherStatsUndersizePkts, "UndersizePkts");
4968 	BGE_SYSCTL_STAT(sc, ctx, "Inbound Range Length Errors",
4969 	    children, rxstats.inRangeLengthError, "inRangeLengthError");
4970 	BGE_SYSCTL_STAT(sc, ctx, "Outbound Range Length Errors",
4971 	    children, rxstats.outRangeLengthError, "outRangeLengthError");
4972 
4973 	tree = SYSCTL_ADD_NODE(ctx, schildren, OID_AUTO, "tx", CTLFLAG_RD,
4974 	    NULL, "BGE TX Statistics");
4975 	children = SYSCTL_CHILDREN(tree);
4976 	BGE_SYSCTL_STAT(sc, ctx, "Outbound Octets",
4977 	    children, txstats.ifHCOutOctets, "Octets");
4978 	BGE_SYSCTL_STAT(sc, ctx, "TX Collisions",
4979 	    children, txstats.etherStatsCollisions, "Collisions");
4980 	BGE_SYSCTL_STAT(sc, ctx, "XON Sent",
4981 	    children, txstats.outXonSent, "XonSent");
4982 	BGE_SYSCTL_STAT(sc, ctx, "XOFF Sent",
4983 	    children, txstats.outXoffSent, "XoffSent");
4984 	BGE_SYSCTL_STAT(sc, ctx, "Flow Control Done",
4985 	    children, txstats.flowControlDone, "flowControlDone");
4986 	BGE_SYSCTL_STAT(sc, ctx, "Internal MAC TX errors",
4987 	    children, txstats.dot3StatsInternalMacTransmitErrors,
4988 	    "InternalMacTransmitErrors");
4989 	BGE_SYSCTL_STAT(sc, ctx, "Single Collision Frames",
4990 	    children, txstats.dot3StatsSingleCollisionFrames,
4991 	    "SingleCollisionFrames");
4992 	BGE_SYSCTL_STAT(sc, ctx, "Multiple Collision Frames",
4993 	    children, txstats.dot3StatsMultipleCollisionFrames,
4994 	    "MultipleCollisionFrames");
4995 	BGE_SYSCTL_STAT(sc, ctx, "Deferred Transmissions",
4996 	    children, txstats.dot3StatsDeferredTransmissions,
4997 	    "DeferredTransmissions");
4998 	BGE_SYSCTL_STAT(sc, ctx, "Excessive Collisions",
4999 	    children, txstats.dot3StatsExcessiveCollisions,
5000 	    "ExcessiveCollisions");
5001 	BGE_SYSCTL_STAT(sc, ctx, "Late Collisions",
5002 	    children, txstats.dot3StatsLateCollisions,
5003 	    "LateCollisions");
5004 	BGE_SYSCTL_STAT(sc, ctx, "Outbound Unicast Packets",
5005 	    children, txstats.ifHCOutUcastPkts, "UcastPkts");
5006 	BGE_SYSCTL_STAT(sc, ctx, "Outbound Multicast Packets",
5007 	    children, txstats.ifHCOutMulticastPkts, "MulticastPkts");
5008 	BGE_SYSCTL_STAT(sc, ctx, "Outbound Broadcast Packets",
5009 	    children, txstats.ifHCOutBroadcastPkts, "BroadcastPkts");
5010 	BGE_SYSCTL_STAT(sc, ctx, "Carrier Sense Errors",
5011 	    children, txstats.dot3StatsCarrierSenseErrors,
5012 	    "CarrierSenseErrors");
5013 	BGE_SYSCTL_STAT(sc, ctx, "Outbound Discards",
5014 	    children, txstats.ifOutDiscards, "Discards");
5015 	BGE_SYSCTL_STAT(sc, ctx, "Outbound Errors",
5016 	    children, txstats.ifOutErrors, "Errors");
5017 }
5018 
5019 static int
5020 bge_sysctl_stats(SYSCTL_HANDLER_ARGS)
5021 {
5022 	struct bge_softc *sc;
5023 	uint32_t result;
5024 	int offset;
5025 
5026 	sc = (struct bge_softc *)arg1;
5027 	offset = arg2;
5028 	result = CSR_READ_4(sc, BGE_MEMWIN_START + BGE_STATS_BLOCK + offset +
5029 	    offsetof(bge_hostaddr, bge_addr_lo));
5030 	return (sysctl_handle_int(oidp, &result, 0, req));
5031 }
5032 
5033 #ifdef BGE_REGISTER_DEBUG
5034 static int
5035 bge_sysctl_debug_info(SYSCTL_HANDLER_ARGS)
5036 {
5037 	struct bge_softc *sc;
5038 	uint16_t *sbdata;
5039 	int error;
5040 	int result;
5041 	int i, j;
5042 
5043 	result = -1;
5044 	error = sysctl_handle_int(oidp, &result, 0, req);
5045 	if (error || (req->newptr == NULL))
5046 		return (error);
5047 
5048 	if (result == 1) {
5049 		sc = (struct bge_softc *)arg1;
5050 
5051 		sbdata = (uint16_t *)sc->bge_ldata.bge_status_block;
5052 		printf("Status Block:\n");
5053 		for (i = 0x0; i < (BGE_STATUS_BLK_SZ / 4); ) {
5054 			printf("%06x:", i);
5055 			for (j = 0; j < 8; j++) {
5056 				printf(" %04x", sbdata[i]);
5057 				i += 4;
5058 			}
5059 			printf("\n");
5060 		}
5061 
5062 		printf("Registers:\n");
5063 		for (i = 0x800; i < 0xA00; ) {
5064 			printf("%06x:", i);
5065 			for (j = 0; j < 8; j++) {
5066 				printf(" %08x", CSR_READ_4(sc, i));
5067 				i += 4;
5068 			}
5069 			printf("\n");
5070 		}
5071 
5072 		printf("Hardware Flags:\n");
5073 		if (BGE_IS_5755_PLUS(sc))
5074 			printf(" - 5755 Plus\n");
5075 		if (BGE_IS_575X_PLUS(sc))
5076 			printf(" - 575X Plus\n");
5077 		if (BGE_IS_5705_PLUS(sc))
5078 			printf(" - 5705 Plus\n");
5079 		if (BGE_IS_5714_FAMILY(sc))
5080 			printf(" - 5714 Family\n");
5081 		if (BGE_IS_5700_FAMILY(sc))
5082 			printf(" - 5700 Family\n");
5083 		if (sc->bge_flags & BGE_FLAG_JUMBO)
5084 			printf(" - Supports Jumbo Frames\n");
5085 		if (sc->bge_flags & BGE_FLAG_PCIX)
5086 			printf(" - PCI-X Bus\n");
5087 		if (sc->bge_flags & BGE_FLAG_PCIE)
5088 			printf(" - PCI Express Bus\n");
5089 		if (sc->bge_flags & BGE_FLAG_NO_3LED)
5090 			printf(" - No 3 LEDs\n");
5091 		if (sc->bge_flags & BGE_FLAG_RX_ALIGNBUG)
5092 			printf(" - RX Alignment Bug\n");
5093 	}
5094 
5095 	return (error);
5096 }
5097 
5098 static int
5099 bge_sysctl_reg_read(SYSCTL_HANDLER_ARGS)
5100 {
5101 	struct bge_softc *sc;
5102 	int error;
5103 	uint16_t result;
5104 	uint32_t val;
5105 
5106 	result = -1;
5107 	error = sysctl_handle_int(oidp, &result, 0, req);
5108 	if (error || (req->newptr == NULL))
5109 		return (error);
5110 
5111 	if (result < 0x8000) {
5112 		sc = (struct bge_softc *)arg1;
5113 		val = CSR_READ_4(sc, result);
5114 		printf("reg 0x%06X = 0x%08X\n", result, val);
5115 	}
5116 
5117 	return (error);
5118 }
5119 
5120 static int
5121 bge_sysctl_mem_read(SYSCTL_HANDLER_ARGS)
5122 {
5123 	struct bge_softc *sc;
5124 	int error;
5125 	uint16_t result;
5126 	uint32_t val;
5127 
5128 	result = -1;
5129 	error = sysctl_handle_int(oidp, &result, 0, req);
5130 	if (error || (req->newptr == NULL))
5131 		return (error);
5132 
5133 	if (result < 0x8000) {
5134 		sc = (struct bge_softc *)arg1;
5135 		val = bge_readmem_ind(sc, result);
5136 		printf("mem 0x%06X = 0x%08X\n", result, val);
5137 	}
5138 
5139 	return (error);
5140 }
5141 #endif
5142 
5143 static int
5144 bge_get_eaddr_fw(struct bge_softc *sc, uint8_t ether_addr[])
5145 {
5146 
5147 	if (sc->bge_flags & BGE_FLAG_EADDR)
5148 		return (1);
5149 
5150 #ifdef __sparc64__
5151 	OF_getetheraddr(sc->bge_dev, ether_addr);
5152 	return (0);
5153 #endif
5154 	return (1);
5155 }
5156 
5157 static int
5158 bge_get_eaddr_mem(struct bge_softc *sc, uint8_t ether_addr[])
5159 {
5160 	uint32_t mac_addr;
5161 
5162 	mac_addr = bge_readmem_ind(sc, 0x0c14);
5163 	if ((mac_addr >> 16) == 0x484b) {
5164 		ether_addr[0] = (uint8_t)(mac_addr >> 8);
5165 		ether_addr[1] = (uint8_t)mac_addr;
5166 		mac_addr = bge_readmem_ind(sc, 0x0c18);
5167 		ether_addr[2] = (uint8_t)(mac_addr >> 24);
5168 		ether_addr[3] = (uint8_t)(mac_addr >> 16);
5169 		ether_addr[4] = (uint8_t)(mac_addr >> 8);
5170 		ether_addr[5] = (uint8_t)mac_addr;
5171 		return (0);
5172 	}
5173 	return (1);
5174 }
5175 
5176 static int
5177 bge_get_eaddr_nvram(struct bge_softc *sc, uint8_t ether_addr[])
5178 {
5179 	int mac_offset = BGE_EE_MAC_OFFSET;
5180 
5181 	if (sc->bge_asicrev == BGE_ASICREV_BCM5906)
5182 		mac_offset = BGE_EE_MAC_OFFSET_5906;
5183 
5184 	return (bge_read_nvram(sc, ether_addr, mac_offset + 2,
5185 	    ETHER_ADDR_LEN));
5186 }
5187 
5188 static int
5189 bge_get_eaddr_eeprom(struct bge_softc *sc, uint8_t ether_addr[])
5190 {
5191 
5192 	if (sc->bge_asicrev == BGE_ASICREV_BCM5906)
5193 		return (1);
5194 
5195 	return (bge_read_eeprom(sc, ether_addr, BGE_EE_MAC_OFFSET + 2,
5196 	   ETHER_ADDR_LEN));
5197 }
5198 
5199 static int
5200 bge_get_eaddr(struct bge_softc *sc, uint8_t eaddr[])
5201 {
5202 	static const bge_eaddr_fcn_t bge_eaddr_funcs[] = {
5203 		/* NOTE: Order is critical */
5204 		bge_get_eaddr_fw,
5205 		bge_get_eaddr_mem,
5206 		bge_get_eaddr_nvram,
5207 		bge_get_eaddr_eeprom,
5208 		NULL
5209 	};
5210 	const bge_eaddr_fcn_t *func;
5211 
5212 	for (func = bge_eaddr_funcs; *func != NULL; ++func) {
5213 		if ((*func)(sc, eaddr) == 0)
5214 			break;
5215 	}
5216 	return (*func == NULL ? ENXIO : 0);
5217 }
5218