xref: /freebsd/sys/dev/bge/if_bge.c (revision 4b2eaea43fec8e8792be611dea204071a10b655a)
1 /*
2  * Copyright (c) 2001 Wind River Systems
3  * Copyright (c) 1997, 1998, 1999, 2001
4  *	Bill Paul <wpaul@windriver.com>.  All rights reserved.
5  *
6  * Redistribution and use in source and binary forms, with or without
7  * modification, are permitted provided that the following conditions
8  * are met:
9  * 1. Redistributions of source code must retain the above copyright
10  *    notice, this list of conditions and the following disclaimer.
11  * 2. Redistributions in binary form must reproduce the above copyright
12  *    notice, this list of conditions and the following disclaimer in the
13  *    documentation and/or other materials provided with the distribution.
14  * 3. All advertising materials mentioning features or use of this software
15  *    must display the following acknowledgement:
16  *	This product includes software developed by Bill Paul.
17  * 4. Neither the name of the author nor the names of any co-contributors
18  *    may be used to endorse or promote products derived from this software
19  *    without specific prior written permission.
20  *
21  * THIS SOFTWARE IS PROVIDED BY Bill Paul AND CONTRIBUTORS ``AS IS'' AND
22  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
23  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
24  * ARE DISCLAIMED.  IN NO EVENT SHALL Bill Paul OR THE VOICES IN HIS HEAD
25  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
26  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
27  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
28  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
29  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
30  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF
31  * THE POSSIBILITY OF SUCH DAMAGE.
32  *
33  * $FreeBSD$
34  */
35 
36 /*
37  * Broadcom BCM570x family gigabit ethernet driver for FreeBSD.
38  *
39  * Written by Bill Paul <wpaul@windriver.com>
40  * Senior Engineer, Wind River Systems
41  */
42 
43 /*
44  * The Broadcom BCM5700 is based on technology originally developed by
45  * Alteon Networks as part of the Tigon I and Tigon II gigabit ethernet
46  * MAC chips. The BCM5700, sometimes refered to as the Tigon III, has
47  * two on-board MIPS R4000 CPUs and can have as much as 16MB of external
48  * SSRAM. The BCM5700 supports TCP, UDP and IP checksum offload, jumbo
49  * frames, highly configurable RX filtering, and 16 RX and TX queues
50  * (which, along with RX filter rules, can be used for QOS applications).
51  * Other features, such as TCP segmentation, may be available as part
52  * of value-added firmware updates. Unlike the Tigon I and Tigon II,
53  * firmware images can be stored in hardware and need not be compiled
54  * into the driver.
55  *
56  * The BCM5700 supports the PCI v2.2 and PCI-X v1.0 standards, and will
57  * function in a 32-bit/64-bit 33/66Mhz bus, or a 64-bit/133Mhz bus.
58  *
59  * The BCM5701 is a single-chip solution incorporating both the BCM5700
60  * MAC and a BCM5401 10/100/1000 PHY. Unlike the BCM5700, the BCM5701
61  * does not support external SSRAM.
62  *
63  * Broadcom also produces a variation of the BCM5700 under the "Altima"
64  * brand name, which is functionally similar but lacks PCI-X support.
65  *
66  * Without external SSRAM, you can only have at most 4 TX rings,
67  * and the use of the mini RX ring is disabled. This seems to imply
68  * that these features are simply not available on the BCM5701. As a
69  * result, this driver does not implement any support for the mini RX
70  * ring.
71  */
72 
73 #include <sys/param.h>
74 #include <sys/systm.h>
75 #include <sys/sockio.h>
76 #include <sys/mbuf.h>
77 #include <sys/malloc.h>
78 #include <sys/kernel.h>
79 #include <sys/socket.h>
80 #include <sys/queue.h>
81 
82 #include <net/if.h>
83 #include <net/if_arp.h>
84 #include <net/ethernet.h>
85 #include <net/if_dl.h>
86 #include <net/if_media.h>
87 
88 #include <net/bpf.h>
89 
90 #include <net/if_types.h>
91 #include <net/if_vlan_var.h>
92 
93 #include <netinet/in_systm.h>
94 #include <netinet/in.h>
95 #include <netinet/ip.h>
96 
97 #include <vm/vm.h>              /* for vtophys */
98 #include <vm/pmap.h>            /* for vtophys */
99 #include <machine/clock.h>      /* for DELAY */
100 #include <machine/bus_memio.h>
101 #include <machine/bus.h>
102 #include <machine/resource.h>
103 #include <sys/bus.h>
104 #include <sys/rman.h>
105 
106 #include <dev/mii/mii.h>
107 #include <dev/mii/miivar.h>
108 #include "miidevs.h"
109 #include <dev/mii/brgphyreg.h>
110 
111 #include <pci/pcireg.h>
112 #include <pci/pcivar.h>
113 
114 #include <dev/bge/if_bgereg.h>
115 
116 #define BGE_CSUM_FEATURES	(CSUM_IP | CSUM_TCP | CSUM_UDP)
117 
118 MODULE_DEPEND(bge, miibus, 1, 1, 1);
119 
120 /* "controller miibus0" required.  See GENERIC if you get errors here. */
121 #include "miibus_if.h"
122 
123 #if !defined(lint)
124 static const char rcsid[] =
125   "$FreeBSD$";
126 #endif
127 
128 /*
129  * Various supported device vendors/types and their names. Note: the
130  * spec seems to indicate that the hardware still has Alteon's vendor
131  * ID burned into it, though it will always be overriden by the vendor
132  * ID in the EEPROM. Just to be safe, we cover all possibilities.
133  */
134 #define BGE_DEVDESC_MAX		64	/* Maximum device description length */
135 
136 static struct bge_type bge_devs[] = {
137 	{ ALT_VENDORID,	ALT_DEVICEID_BCM5700,
138 		"Broadcom BCM5700 Gigabit Ethernet" },
139 	{ ALT_VENDORID,	ALT_DEVICEID_BCM5701,
140 		"Broadcom BCM5701 Gigabit Ethernet" },
141 	{ BCOM_VENDORID, BCOM_DEVICEID_BCM5700,
142 		"Broadcom BCM5700 Gigabit Ethernet" },
143 	{ BCOM_VENDORID, BCOM_DEVICEID_BCM5701,
144 		"Broadcom BCM5701 Gigabit Ethernet" },
145 	{ BCOM_VENDORID, BCOM_DEVICEID_BCM5702X,
146 		"Broadcom BCM5702X Gigabit Ethernet" },
147 	{ BCOM_VENDORID, BCOM_DEVICEID_BCM5703X,
148 		"Broadcom BCM5703X Gigabit Ethernet" },
149 	{ SK_VENDORID, SK_DEVICEID_ALTIMA,
150 		"SysKonnect Gigabit Ethernet" },
151 	{ ALTIMA_VENDORID, ALTIMA_DEVICE_AC1000,
152 		"Altima AC1000 Gigabit Ethernet" },
153 	{ ALTIMA_VENDORID, ALTIMA_DEVICE_AC9100,
154 		"Altima AC9100 Gigabit Ethernet" },
155 	{ 0, 0, NULL }
156 };
157 
158 static int bge_probe		(device_t);
159 static int bge_attach		(device_t);
160 static int bge_detach		(device_t);
161 static void bge_release_resources
162 				(struct bge_softc *);
163 static void bge_txeof		(struct bge_softc *);
164 static void bge_rxeof		(struct bge_softc *);
165 
166 static void bge_tick		(void *);
167 static void bge_stats_update	(struct bge_softc *);
168 static int bge_encap		(struct bge_softc *, struct mbuf *,
169 					u_int32_t *);
170 
171 static void bge_intr		(void *);
172 static void bge_start		(struct ifnet *);
173 static int bge_ioctl		(struct ifnet *, u_long, caddr_t);
174 static void bge_init		(void *);
175 static void bge_stop		(struct bge_softc *);
176 static void bge_watchdog		(struct ifnet *);
177 static void bge_shutdown		(device_t);
178 static int bge_ifmedia_upd	(struct ifnet *);
179 static void bge_ifmedia_sts	(struct ifnet *, struct ifmediareq *);
180 
181 static u_int8_t	bge_eeprom_getbyte	(struct bge_softc *, int, u_int8_t *);
182 static int bge_read_eeprom	(struct bge_softc *, caddr_t, int, int);
183 
184 static u_int32_t bge_crc	(caddr_t);
185 static void bge_setmulti	(struct bge_softc *);
186 
187 static void bge_handle_events	(struct bge_softc *);
188 static int bge_alloc_jumbo_mem	(struct bge_softc *);
189 static void bge_free_jumbo_mem	(struct bge_softc *);
190 static void *bge_jalloc		(struct bge_softc *);
191 static void bge_jfree		(void *, void *);
192 static int bge_newbuf_std	(struct bge_softc *, int, struct mbuf *);
193 static int bge_newbuf_jumbo	(struct bge_softc *, int, struct mbuf *);
194 static int bge_init_rx_ring_std	(struct bge_softc *);
195 static void bge_free_rx_ring_std	(struct bge_softc *);
196 static int bge_init_rx_ring_jumbo	(struct bge_softc *);
197 static void bge_free_rx_ring_jumbo	(struct bge_softc *);
198 static void bge_free_tx_ring	(struct bge_softc *);
199 static int bge_init_tx_ring	(struct bge_softc *);
200 
201 static int bge_chipinit		(struct bge_softc *);
202 static int bge_blockinit	(struct bge_softc *);
203 
204 #ifdef notdef
205 static u_int8_t bge_vpd_readbyte(struct bge_softc *, int);
206 static void bge_vpd_read_res	(struct bge_softc *, struct vpd_res *, int);
207 static void bge_vpd_read	(struct bge_softc *);
208 #endif
209 
210 static u_int32_t bge_readmem_ind
211 				(struct bge_softc *, int);
212 static void bge_writemem_ind	(struct bge_softc *, int, int);
213 #ifdef notdef
214 static u_int32_t bge_readreg_ind
215 				(struct bge_softc *, int);
216 #endif
217 static void bge_writereg_ind	(struct bge_softc *, int, int);
218 
219 static int bge_miibus_readreg	(device_t, int, int);
220 static int bge_miibus_writereg	(device_t, int, int, int);
221 static void bge_miibus_statchg	(device_t);
222 
223 static void bge_reset		(struct bge_softc *);
224 static void bge_phy_hack	(struct bge_softc *);
225 
226 static device_method_t bge_methods[] = {
227 	/* Device interface */
228 	DEVMETHOD(device_probe,		bge_probe),
229 	DEVMETHOD(device_attach,	bge_attach),
230 	DEVMETHOD(device_detach,	bge_detach),
231 	DEVMETHOD(device_shutdown,	bge_shutdown),
232 
233 	/* bus interface */
234 	DEVMETHOD(bus_print_child,	bus_generic_print_child),
235 	DEVMETHOD(bus_driver_added,	bus_generic_driver_added),
236 
237 	/* MII interface */
238 	DEVMETHOD(miibus_readreg,	bge_miibus_readreg),
239 	DEVMETHOD(miibus_writereg,	bge_miibus_writereg),
240 	DEVMETHOD(miibus_statchg,	bge_miibus_statchg),
241 
242 	{ 0, 0 }
243 };
244 
245 static driver_t bge_driver = {
246 	"bge",
247 	bge_methods,
248 	sizeof(struct bge_softc)
249 };
250 
251 static devclass_t bge_devclass;
252 
253 DRIVER_MODULE(if_bge, pci, bge_driver, bge_devclass, 0, 0);
254 DRIVER_MODULE(miibus, bge, miibus_driver, miibus_devclass, 0, 0);
255 
256 static u_int32_t
257 bge_readmem_ind(sc, off)
258 	struct bge_softc *sc;
259 	int off;
260 {
261 	device_t dev;
262 
263 	dev = sc->bge_dev;
264 
265 	pci_write_config(dev, BGE_PCI_MEMWIN_BASEADDR, off, 4);
266 	return(pci_read_config(dev, BGE_PCI_MEMWIN_DATA, 4));
267 }
268 
269 static void
270 bge_writemem_ind(sc, off, val)
271 	struct bge_softc *sc;
272 	int off, val;
273 {
274 	device_t dev;
275 
276 	dev = sc->bge_dev;
277 
278 	pci_write_config(dev, BGE_PCI_MEMWIN_BASEADDR, off, 4);
279 	pci_write_config(dev, BGE_PCI_MEMWIN_DATA, val, 4);
280 
281 	return;
282 }
283 
284 #ifdef notdef
285 static u_int32_t
286 bge_readreg_ind(sc, off)
287 	struct bge_softc *sc;
288 	int off;
289 {
290 	device_t dev;
291 
292 	dev = sc->bge_dev;
293 
294 	pci_write_config(dev, BGE_PCI_REG_BASEADDR, off, 4);
295 	return(pci_read_config(dev, BGE_PCI_REG_DATA, 4));
296 }
297 #endif
298 
299 static void
300 bge_writereg_ind(sc, off, val)
301 	struct bge_softc *sc;
302 	int off, val;
303 {
304 	device_t dev;
305 
306 	dev = sc->bge_dev;
307 
308 	pci_write_config(dev, BGE_PCI_REG_BASEADDR, off, 4);
309 	pci_write_config(dev, BGE_PCI_REG_DATA, val, 4);
310 
311 	return;
312 }
313 
314 #ifdef notdef
315 static u_int8_t
316 bge_vpd_readbyte(sc, addr)
317 	struct bge_softc *sc;
318 	int addr;
319 {
320 	int i;
321 	device_t dev;
322 	u_int32_t val;
323 
324 	dev = sc->bge_dev;
325 	pci_write_config(dev, BGE_PCI_VPD_ADDR, addr, 2);
326 	for (i = 0; i < BGE_TIMEOUT * 10; i++) {
327 		DELAY(10);
328 		if (pci_read_config(dev, BGE_PCI_VPD_ADDR, 2) & BGE_VPD_FLAG)
329 			break;
330 	}
331 
332 	if (i == BGE_TIMEOUT) {
333 		printf("bge%d: VPD read timed out\n", sc->bge_unit);
334 		return(0);
335 	}
336 
337 	val = pci_read_config(dev, BGE_PCI_VPD_DATA, 4);
338 
339 	return((val >> ((addr % 4) * 8)) & 0xFF);
340 }
341 
342 static void
343 bge_vpd_read_res(sc, res, addr)
344 	struct bge_softc *sc;
345 	struct vpd_res *res;
346 	int addr;
347 {
348 	int i;
349 	u_int8_t *ptr;
350 
351 	ptr = (u_int8_t *)res;
352 	for (i = 0; i < sizeof(struct vpd_res); i++)
353 		ptr[i] = bge_vpd_readbyte(sc, i + addr);
354 
355 	return;
356 }
357 
358 static void
359 bge_vpd_read(sc)
360 	struct bge_softc *sc;
361 {
362 	int pos = 0, i;
363 	struct vpd_res res;
364 
365 	if (sc->bge_vpd_prodname != NULL)
366 		free(sc->bge_vpd_prodname, M_DEVBUF);
367 	if (sc->bge_vpd_readonly != NULL)
368 		free(sc->bge_vpd_readonly, M_DEVBUF);
369 	sc->bge_vpd_prodname = NULL;
370 	sc->bge_vpd_readonly = NULL;
371 
372 	bge_vpd_read_res(sc, &res, pos);
373 
374 	if (res.vr_id != VPD_RES_ID) {
375 		printf("bge%d: bad VPD resource id: expected %x got %x\n",
376 			sc->bge_unit, VPD_RES_ID, res.vr_id);
377                 return;
378         }
379 
380 	pos += sizeof(res);
381 	sc->bge_vpd_prodname = malloc(res.vr_len + 1, M_DEVBUF, M_NOWAIT);
382 	for (i = 0; i < res.vr_len; i++)
383 		sc->bge_vpd_prodname[i] = bge_vpd_readbyte(sc, i + pos);
384 	sc->bge_vpd_prodname[i] = '\0';
385 	pos += i;
386 
387 	bge_vpd_read_res(sc, &res, pos);
388 
389 	if (res.vr_id != VPD_RES_READ) {
390 		printf("bge%d: bad VPD resource id: expected %x got %x\n",
391 		    sc->bge_unit, VPD_RES_READ, res.vr_id);
392 		return;
393 	}
394 
395 	pos += sizeof(res);
396 	sc->bge_vpd_readonly = malloc(res.vr_len, M_DEVBUF, M_NOWAIT);
397 	for (i = 0; i < res.vr_len + 1; i++)
398 		sc->bge_vpd_readonly[i] = bge_vpd_readbyte(sc, i + pos);
399 
400 	return;
401 }
402 #endif
403 
404 /*
405  * Read a byte of data stored in the EEPROM at address 'addr.' The
406  * BCM570x supports both the traditional bitbang interface and an
407  * auto access interface for reading the EEPROM. We use the auto
408  * access method.
409  */
410 static u_int8_t
411 bge_eeprom_getbyte(sc, addr, dest)
412 	struct bge_softc *sc;
413 	int addr;
414 	u_int8_t *dest;
415 {
416 	int i;
417 	u_int32_t byte = 0;
418 
419 	/*
420 	 * Enable use of auto EEPROM access so we can avoid
421 	 * having to use the bitbang method.
422 	 */
423 	BGE_SETBIT(sc, BGE_MISC_LOCAL_CTL, BGE_MLC_AUTO_EEPROM);
424 
425 	/* Reset the EEPROM, load the clock period. */
426 	CSR_WRITE_4(sc, BGE_EE_ADDR,
427 	    BGE_EEADDR_RESET|BGE_EEHALFCLK(BGE_HALFCLK_384SCL));
428 	DELAY(20);
429 
430 	/* Issue the read EEPROM command. */
431 	CSR_WRITE_4(sc, BGE_EE_ADDR, BGE_EE_READCMD | addr);
432 
433 	/* Wait for completion */
434 	for(i = 0; i < BGE_TIMEOUT * 10; i++) {
435 		DELAY(10);
436 		if (CSR_READ_4(sc, BGE_EE_ADDR) & BGE_EEADDR_DONE)
437 			break;
438 	}
439 
440 	if (i == BGE_TIMEOUT) {
441 		printf("bge%d: eeprom read timed out\n", sc->bge_unit);
442 		return(0);
443 	}
444 
445 	/* Get result. */
446 	byte = CSR_READ_4(sc, BGE_EE_DATA);
447 
448         *dest = (byte >> ((addr % 4) * 8)) & 0xFF;
449 
450 	return(0);
451 }
452 
453 /*
454  * Read a sequence of bytes from the EEPROM.
455  */
456 static int
457 bge_read_eeprom(sc, dest, off, cnt)
458 	struct bge_softc *sc;
459 	caddr_t dest;
460 	int off;
461 	int cnt;
462 {
463 	int err = 0, i;
464 	u_int8_t byte = 0;
465 
466 	for (i = 0; i < cnt; i++) {
467 		err = bge_eeprom_getbyte(sc, off + i, &byte);
468 		if (err)
469 			break;
470 		*(dest + i) = byte;
471 	}
472 
473 	return(err ? 1 : 0);
474 }
475 
476 static int
477 bge_miibus_readreg(dev, phy, reg)
478 	device_t dev;
479 	int phy, reg;
480 {
481 	struct bge_softc *sc;
482 	struct ifnet *ifp;
483 	u_int32_t val;
484 	int i;
485 
486 	sc = device_get_softc(dev);
487 	ifp = &sc->arpcom.ac_if;
488 
489 	if (phy != 1)
490 		switch(sc->bge_asicrev) {
491 		case BGE_ASICREV_BCM5701_B5:
492 		case BGE_ASICREV_BCM5703_A2:
493 			return(0);
494 		}
495 
496 	CSR_WRITE_4(sc, BGE_MI_COMM, BGE_MICMD_READ|BGE_MICOMM_BUSY|
497 	    BGE_MIPHY(phy)|BGE_MIREG(reg));
498 
499 	for (i = 0; i < BGE_TIMEOUT; i++) {
500 		val = CSR_READ_4(sc, BGE_MI_COMM);
501 		if (!(val & BGE_MICOMM_BUSY))
502 			break;
503 	}
504 
505 	if (i == BGE_TIMEOUT) {
506 		printf("bge%d: PHY read timed out\n", sc->bge_unit);
507 		return(0);
508 	}
509 
510 	val = CSR_READ_4(sc, BGE_MI_COMM);
511 
512 	if (val & BGE_MICOMM_READFAIL)
513 		return(0);
514 
515 	return(val & 0xFFFF);
516 }
517 
518 static int
519 bge_miibus_writereg(dev, phy, reg, val)
520 	device_t dev;
521 	int phy, reg, val;
522 {
523 	struct bge_softc *sc;
524 	int i;
525 
526 	sc = device_get_softc(dev);
527 
528 	CSR_WRITE_4(sc, BGE_MI_COMM, BGE_MICMD_WRITE|BGE_MICOMM_BUSY|
529 	    BGE_MIPHY(phy)|BGE_MIREG(reg)|val);
530 
531 	for (i = 0; i < BGE_TIMEOUT; i++) {
532 		if (!(CSR_READ_4(sc, BGE_MI_COMM) & BGE_MICOMM_BUSY))
533 			break;
534 	}
535 
536 	if (i == BGE_TIMEOUT) {
537 		printf("bge%d: PHY read timed out\n", sc->bge_unit);
538 		return(0);
539 	}
540 
541 	return(0);
542 }
543 
544 static void
545 bge_miibus_statchg(dev)
546 	device_t dev;
547 {
548 	struct bge_softc *sc;
549 	struct mii_data *mii;
550 
551 	sc = device_get_softc(dev);
552 	mii = device_get_softc(sc->bge_miibus);
553 
554 	BGE_CLRBIT(sc, BGE_MAC_MODE, BGE_MACMODE_PORTMODE);
555 	if (IFM_SUBTYPE(mii->mii_media_active) == IFM_1000_T) {
556 		BGE_SETBIT(sc, BGE_MAC_MODE, BGE_PORTMODE_GMII);
557 	} else {
558 		BGE_SETBIT(sc, BGE_MAC_MODE, BGE_PORTMODE_MII);
559 	}
560 
561 	if ((mii->mii_media_active & IFM_GMASK) == IFM_FDX) {
562 		BGE_CLRBIT(sc, BGE_MAC_MODE, BGE_MACMODE_HALF_DUPLEX);
563 	} else {
564 		BGE_SETBIT(sc, BGE_MAC_MODE, BGE_MACMODE_HALF_DUPLEX);
565 	}
566 
567 	bge_phy_hack(sc);
568 
569 	return;
570 }
571 
572 /*
573  * Handle events that have triggered interrupts.
574  */
575 static void
576 bge_handle_events(sc)
577 	struct bge_softc		*sc;
578 {
579 
580 	return;
581 }
582 
583 /*
584  * Memory management for jumbo frames.
585  */
586 
587 static int
588 bge_alloc_jumbo_mem(sc)
589 	struct bge_softc		*sc;
590 {
591 	caddr_t			ptr;
592 	register int		i;
593 	struct bge_jpool_entry   *entry;
594 
595 	/* Grab a big chunk o' storage. */
596 	sc->bge_cdata.bge_jumbo_buf = contigmalloc(BGE_JMEM, M_DEVBUF,
597 		M_NOWAIT, 0, 0xffffffff, PAGE_SIZE, 0);
598 
599 	if (sc->bge_cdata.bge_jumbo_buf == NULL) {
600 		printf("bge%d: no memory for jumbo buffers!\n", sc->bge_unit);
601 		return(ENOBUFS);
602 	}
603 
604 	SLIST_INIT(&sc->bge_jfree_listhead);
605 	SLIST_INIT(&sc->bge_jinuse_listhead);
606 
607 	/*
608 	 * Now divide it up into 9K pieces and save the addresses
609 	 * in an array.
610 	 */
611 	ptr = sc->bge_cdata.bge_jumbo_buf;
612 	for (i = 0; i < BGE_JSLOTS; i++) {
613 		sc->bge_cdata.bge_jslots[i] = ptr;
614 		ptr += BGE_JLEN;
615 		entry = malloc(sizeof(struct bge_jpool_entry),
616 		    M_DEVBUF, M_NOWAIT);
617 		if (entry == NULL) {
618 			contigfree(sc->bge_cdata.bge_jumbo_buf,
619 			    BGE_JMEM, M_DEVBUF);
620 			sc->bge_cdata.bge_jumbo_buf = NULL;
621 			printf("bge%d: no memory for jumbo "
622 			    "buffer queue!\n", sc->bge_unit);
623 			return(ENOBUFS);
624 		}
625 		entry->slot = i;
626 		SLIST_INSERT_HEAD(&sc->bge_jfree_listhead,
627 		    entry, jpool_entries);
628 	}
629 
630 	return(0);
631 }
632 
633 static void
634 bge_free_jumbo_mem(sc)
635         struct bge_softc *sc;
636 {
637         int i;
638         struct bge_jpool_entry *entry;
639 
640 	for (i = 0; i < BGE_JSLOTS; i++) {
641 		entry = SLIST_FIRST(&sc->bge_jfree_listhead);
642 		SLIST_REMOVE_HEAD(&sc->bge_jfree_listhead, jpool_entries);
643 		free(entry, M_DEVBUF);
644 	}
645 
646 	contigfree(sc->bge_cdata.bge_jumbo_buf, BGE_JMEM, M_DEVBUF);
647 
648         return;
649 }
650 
651 /*
652  * Allocate a jumbo buffer.
653  */
654 static void *
655 bge_jalloc(sc)
656 	struct bge_softc		*sc;
657 {
658 	struct bge_jpool_entry   *entry;
659 
660 	entry = SLIST_FIRST(&sc->bge_jfree_listhead);
661 
662 	if (entry == NULL) {
663 		printf("bge%d: no free jumbo buffers\n", sc->bge_unit);
664 		return(NULL);
665 	}
666 
667 	SLIST_REMOVE_HEAD(&sc->bge_jfree_listhead, jpool_entries);
668 	SLIST_INSERT_HEAD(&sc->bge_jinuse_listhead, entry, jpool_entries);
669 	return(sc->bge_cdata.bge_jslots[entry->slot]);
670 }
671 
672 /*
673  * Release a jumbo buffer.
674  */
675 static void
676 bge_jfree(buf, args)
677 	void *buf;
678 	void *args;
679 {
680 	struct bge_jpool_entry *entry;
681 	struct bge_softc *sc;
682 	int i;
683 
684 	/* Extract the softc struct pointer. */
685 	sc = (struct bge_softc *)args;
686 
687 	if (sc == NULL)
688 		panic("bge_jfree: can't find softc pointer!");
689 
690 	/* calculate the slot this buffer belongs to */
691 
692 	i = ((vm_offset_t)buf
693 	     - (vm_offset_t)sc->bge_cdata.bge_jumbo_buf) / BGE_JLEN;
694 
695 	if ((i < 0) || (i >= BGE_JSLOTS))
696 		panic("bge_jfree: asked to free buffer that we don't manage!");
697 
698 	entry = SLIST_FIRST(&sc->bge_jinuse_listhead);
699 	if (entry == NULL)
700 		panic("bge_jfree: buffer not in use!");
701 	entry->slot = i;
702 	SLIST_REMOVE_HEAD(&sc->bge_jinuse_listhead, jpool_entries);
703 	SLIST_INSERT_HEAD(&sc->bge_jfree_listhead, entry, jpool_entries);
704 
705 	return;
706 }
707 
708 
709 /*
710  * Intialize a standard receive ring descriptor.
711  */
712 static int
713 bge_newbuf_std(sc, i, m)
714 	struct bge_softc	*sc;
715 	int			i;
716 	struct mbuf		*m;
717 {
718 	struct mbuf		*m_new = NULL;
719 	struct bge_rx_bd	*r;
720 
721 	if (m == NULL) {
722 		MGETHDR(m_new, M_NOWAIT, MT_DATA);
723 		if (m_new == NULL) {
724 			return(ENOBUFS);
725 		}
726 
727 		MCLGET(m_new, M_NOWAIT);
728 		if (!(m_new->m_flags & M_EXT)) {
729 			m_freem(m_new);
730 			return(ENOBUFS);
731 		}
732 		m_new->m_len = m_new->m_pkthdr.len = MCLBYTES;
733 	} else {
734 		m_new = m;
735 		m_new->m_len = m_new->m_pkthdr.len = MCLBYTES;
736 		m_new->m_data = m_new->m_ext.ext_buf;
737 	}
738 
739 	if (!sc->bge_rx_alignment_bug)
740 		m_adj(m_new, ETHER_ALIGN);
741 	sc->bge_cdata.bge_rx_std_chain[i] = m_new;
742 	r = &sc->bge_rdata->bge_rx_std_ring[i];
743 	BGE_HOSTADDR(r->bge_addr) = vtophys(mtod(m_new, caddr_t));
744 	r->bge_flags = BGE_RXBDFLAG_END;
745 	r->bge_len = m_new->m_len;
746 	r->bge_idx = i;
747 
748 	return(0);
749 }
750 
751 /*
752  * Initialize a jumbo receive ring descriptor. This allocates
753  * a jumbo buffer from the pool managed internally by the driver.
754  */
755 static int
756 bge_newbuf_jumbo(sc, i, m)
757 	struct bge_softc *sc;
758 	int i;
759 	struct mbuf *m;
760 {
761 	struct mbuf *m_new = NULL;
762 	struct bge_rx_bd *r;
763 
764 	if (m == NULL) {
765 		caddr_t			*buf = NULL;
766 
767 		/* Allocate the mbuf. */
768 		MGETHDR(m_new, M_NOWAIT, MT_DATA);
769 		if (m_new == NULL) {
770 			return(ENOBUFS);
771 		}
772 
773 		/* Allocate the jumbo buffer */
774 		buf = bge_jalloc(sc);
775 		if (buf == NULL) {
776 			m_freem(m_new);
777 			printf("bge%d: jumbo allocation failed "
778 			    "-- packet dropped!\n", sc->bge_unit);
779 			return(ENOBUFS);
780 		}
781 
782 		/* Attach the buffer to the mbuf. */
783 		m_new->m_data = (void *) buf;
784 		m_new->m_len = m_new->m_pkthdr.len = BGE_JUMBO_FRAMELEN;
785 		MEXTADD(m_new, buf, BGE_JUMBO_FRAMELEN, bge_jfree,
786 		    (struct bge_softc *)sc, 0, EXT_NET_DRV);
787 	} else {
788 		m_new = m;
789 		m_new->m_data = m_new->m_ext.ext_buf;
790 		m_new->m_ext.ext_size = BGE_JUMBO_FRAMELEN;
791 	}
792 
793 	if (!sc->bge_rx_alignment_bug)
794 		m_adj(m_new, ETHER_ALIGN);
795 	/* Set up the descriptor. */
796 	r = &sc->bge_rdata->bge_rx_jumbo_ring[i];
797 	sc->bge_cdata.bge_rx_jumbo_chain[i] = m_new;
798 	BGE_HOSTADDR(r->bge_addr) = vtophys(mtod(m_new, caddr_t));
799 	r->bge_flags = BGE_RXBDFLAG_END|BGE_RXBDFLAG_JUMBO_RING;
800 	r->bge_len = m_new->m_len;
801 	r->bge_idx = i;
802 
803 	return(0);
804 }
805 
806 /*
807  * The standard receive ring has 512 entries in it. At 2K per mbuf cluster,
808  * that's 1MB or memory, which is a lot. For now, we fill only the first
809  * 256 ring entries and hope that our CPU is fast enough to keep up with
810  * the NIC.
811  */
812 static int
813 bge_init_rx_ring_std(sc)
814 	struct bge_softc *sc;
815 {
816 	int i;
817 
818 	for (i = 0; i < BGE_SSLOTS; i++) {
819 		if (bge_newbuf_std(sc, i, NULL) == ENOBUFS)
820 			return(ENOBUFS);
821 	};
822 
823 	sc->bge_std = i - 1;
824 	CSR_WRITE_4(sc, BGE_MBX_RX_STD_PROD_LO, sc->bge_std);
825 
826 	return(0);
827 }
828 
829 static void
830 bge_free_rx_ring_std(sc)
831 	struct bge_softc *sc;
832 {
833 	int i;
834 
835 	for (i = 0; i < BGE_STD_RX_RING_CNT; i++) {
836 		if (sc->bge_cdata.bge_rx_std_chain[i] != NULL) {
837 			m_freem(sc->bge_cdata.bge_rx_std_chain[i]);
838 			sc->bge_cdata.bge_rx_std_chain[i] = NULL;
839 		}
840 		bzero((char *)&sc->bge_rdata->bge_rx_std_ring[i],
841 		    sizeof(struct bge_rx_bd));
842 	}
843 
844 	return;
845 }
846 
847 static int
848 bge_init_rx_ring_jumbo(sc)
849 	struct bge_softc *sc;
850 {
851 	int i;
852 	struct bge_rcb *rcb;
853 
854 	for (i = 0; i < BGE_JUMBO_RX_RING_CNT; i++) {
855 		if (bge_newbuf_jumbo(sc, i, NULL) == ENOBUFS)
856 			return(ENOBUFS);
857 	};
858 
859 	sc->bge_jumbo = i - 1;
860 
861 	rcb = &sc->bge_rdata->bge_info.bge_jumbo_rx_rcb;
862 	rcb->bge_maxlen_flags = BGE_RCB_MAXLEN_FLAGS(0, 0);
863 	CSR_WRITE_4(sc, BGE_RX_JUMBO_RCB_MAXLEN_FLAGS, rcb->bge_maxlen_flags);
864 
865 	CSR_WRITE_4(sc, BGE_MBX_RX_JUMBO_PROD_LO, sc->bge_jumbo);
866 
867 	return(0);
868 }
869 
870 static void
871 bge_free_rx_ring_jumbo(sc)
872 	struct bge_softc *sc;
873 {
874 	int i;
875 
876 	for (i = 0; i < BGE_JUMBO_RX_RING_CNT; i++) {
877 		if (sc->bge_cdata.bge_rx_jumbo_chain[i] != NULL) {
878 			m_freem(sc->bge_cdata.bge_rx_jumbo_chain[i]);
879 			sc->bge_cdata.bge_rx_jumbo_chain[i] = NULL;
880 		}
881 		bzero((char *)&sc->bge_rdata->bge_rx_jumbo_ring[i],
882 		    sizeof(struct bge_rx_bd));
883 	}
884 
885 	return;
886 }
887 
888 static void
889 bge_free_tx_ring(sc)
890 	struct bge_softc *sc;
891 {
892 	int i;
893 
894 	if (sc->bge_rdata->bge_tx_ring == NULL)
895 		return;
896 
897 	for (i = 0; i < BGE_TX_RING_CNT; i++) {
898 		if (sc->bge_cdata.bge_tx_chain[i] != NULL) {
899 			m_freem(sc->bge_cdata.bge_tx_chain[i]);
900 			sc->bge_cdata.bge_tx_chain[i] = NULL;
901 		}
902 		bzero((char *)&sc->bge_rdata->bge_tx_ring[i],
903 		    sizeof(struct bge_tx_bd));
904 	}
905 
906 	return;
907 }
908 
909 static int
910 bge_init_tx_ring(sc)
911 	struct bge_softc *sc;
912 {
913 	sc->bge_txcnt = 0;
914 	sc->bge_tx_saved_considx = 0;
915 	CSR_WRITE_4(sc, BGE_MBX_TX_HOST_PROD0_LO, 0);
916 	CSR_WRITE_4(sc, BGE_MBX_TX_NIC_PROD0_LO, 0);
917 
918 	return(0);
919 }
920 
921 #define BGE_POLY	0xEDB88320
922 
923 static u_int32_t
924 bge_crc(addr)
925 	caddr_t addr;
926 {
927 	u_int32_t idx, bit, data, crc;
928 
929 	/* Compute CRC for the address value. */
930 	crc = 0xFFFFFFFF; /* initial value */
931 
932 	for (idx = 0; idx < 6; idx++) {
933 		for (data = *addr++, bit = 0; bit < 8; bit++, data >>= 1)
934 			crc = (crc >> 1) ^ (((crc ^ data) & 1) ? BGE_POLY : 0);
935 	}
936 
937 	return(crc & 0x7F);
938 }
939 
940 static void
941 bge_setmulti(sc)
942 	struct bge_softc *sc;
943 {
944 	struct ifnet *ifp;
945 	struct ifmultiaddr *ifma;
946 	u_int32_t hashes[4] = { 0, 0, 0, 0 };
947 	int h, i;
948 
949 	ifp = &sc->arpcom.ac_if;
950 
951 	if (ifp->if_flags & IFF_ALLMULTI || ifp->if_flags & IFF_PROMISC) {
952 		for (i = 0; i < 4; i++)
953 			CSR_WRITE_4(sc, BGE_MAR0 + (i * 4), 0xFFFFFFFF);
954 		return;
955 	}
956 
957 	/* First, zot all the existing filters. */
958 	for (i = 0; i < 4; i++)
959 		CSR_WRITE_4(sc, BGE_MAR0 + (i * 4), 0);
960 
961 	/* Now program new ones. */
962 	TAILQ_FOREACH(ifma, &ifp->if_multiaddrs, ifma_link) {
963 		if (ifma->ifma_addr->sa_family != AF_LINK)
964 			continue;
965 		h = bge_crc(LLADDR((struct sockaddr_dl *)ifma->ifma_addr));
966 		hashes[(h & 0x60) >> 5] |= 1 << (h & 0x1F);
967 	}
968 
969 	for (i = 0; i < 4; i++)
970 		CSR_WRITE_4(sc, BGE_MAR0 + (i * 4), hashes[i]);
971 
972 	return;
973 }
974 
975 /*
976  * Do endian, PCI and DMA initialization. Also check the on-board ROM
977  * self-test results.
978  */
979 static int
980 bge_chipinit(sc)
981 	struct bge_softc *sc;
982 {
983 	int			i;
984 
985 	/* Set endianness before we access any non-PCI registers. */
986 #if BYTE_ORDER == BIG_ENDIAN
987 	pci_write_config(sc->bge_dev, BGE_PCI_MISC_CTL,
988 	    BGE_BIGENDIAN_INIT, 4);
989 #else
990 	pci_write_config(sc->bge_dev, BGE_PCI_MISC_CTL,
991 	    BGE_LITTLEENDIAN_INIT, 4);
992 #endif
993 
994 	/*
995 	 * Check the 'ROM failed' bit on the RX CPU to see if
996 	 * self-tests passed.
997 	 */
998 	if (CSR_READ_4(sc, BGE_RXCPU_MODE) & BGE_RXCPUMODE_ROMFAIL) {
999 		printf("bge%d: RX CPU self-diagnostics failed!\n",
1000 		    sc->bge_unit);
1001 		return(ENODEV);
1002 	}
1003 
1004 	/* Clear the MAC control register */
1005 	CSR_WRITE_4(sc, BGE_MAC_MODE, 0);
1006 
1007 	/*
1008 	 * Clear the MAC statistics block in the NIC's
1009 	 * internal memory.
1010 	 */
1011 	for (i = BGE_STATS_BLOCK;
1012 	    i < BGE_STATS_BLOCK_END + 1; i += sizeof(u_int32_t))
1013 		BGE_MEMWIN_WRITE(sc, i, 0);
1014 
1015 	for (i = BGE_STATUS_BLOCK;
1016 	    i < BGE_STATUS_BLOCK_END + 1; i += sizeof(u_int32_t))
1017 		BGE_MEMWIN_WRITE(sc, i, 0);
1018 
1019 	/* Set up the PCI DMA control register. */
1020 	if (pci_read_config(sc->bge_dev, BGE_PCI_PCISTATE, 4) &
1021 	    BGE_PCISTATE_PCI_BUSMODE) {
1022 		/* Conventional PCI bus */
1023 		pci_write_config(sc->bge_dev, BGE_PCI_DMA_RW_CTL,
1024 		    BGE_PCI_READ_CMD|BGE_PCI_WRITE_CMD|0x3F000F, 4);
1025 	} else {
1026 		/* PCI-X bus */
1027 		pci_write_config(sc->bge_dev, BGE_PCI_DMA_RW_CTL,
1028 		    BGE_PCI_READ_CMD|BGE_PCI_WRITE_CMD|0x1B000F, 4);
1029 	}
1030 
1031 	/*
1032 	 * Set up general mode register.
1033 	 */
1034 	CSR_WRITE_4(sc, BGE_MODE_CTL, BGE_MODECTL_WORDSWAP_NONFRAME|
1035 	    BGE_MODECTL_BYTESWAP_DATA|BGE_MODECTL_WORDSWAP_DATA|
1036 	    BGE_MODECTL_MAC_ATTN_INTR|BGE_MODECTL_HOST_SEND_BDS|
1037 	    BGE_MODECTL_NO_RX_CRC|BGE_MODECTL_TX_NO_PHDR_CSUM|
1038 	    BGE_MODECTL_RX_NO_PHDR_CSUM);
1039 
1040 	/*
1041 	 * Disable memory write invalidate.  Apparently it is not supported
1042 	 * properly by these devices.
1043 	 */
1044 	PCI_CLRBIT(sc->bge_dev, BGE_PCI_CMD, PCIM_CMD_MWIEN, 4);
1045 
1046 #ifdef __brokenalpha__
1047 	/*
1048 	 * Must insure that we do not cross an 8K (bytes) boundary
1049 	 * for DMA reads.  Our highest limit is 1K bytes.  This is a
1050 	 * restriction on some ALPHA platforms with early revision
1051 	 * 21174 PCI chipsets, such as the AlphaPC 164lx
1052 	 */
1053 	PCI_SETBIT(sc->bge_dev, BGE_PCI_DMA_RW_CTL,
1054 	    BGE_PCI_READ_BNDRY_1024BYTES, 4);
1055 #endif
1056 
1057 	/* Set the timer prescaler (always 66Mhz) */
1058 	CSR_WRITE_4(sc, BGE_MISC_CFG, 65 << 1/*BGE_32BITTIME_66MHZ*/);
1059 
1060 	return(0);
1061 }
1062 
1063 static int
1064 bge_blockinit(sc)
1065 	struct bge_softc *sc;
1066 {
1067 	struct bge_rcb *rcb;
1068 	volatile struct bge_rcb *vrcb;
1069 	int i;
1070 
1071 	/*
1072 	 * Initialize the memory window pointer register so that
1073 	 * we can access the first 32K of internal NIC RAM. This will
1074 	 * allow us to set up the TX send ring RCBs and the RX return
1075 	 * ring RCBs, plus other things which live in NIC memory.
1076 	 */
1077 	CSR_WRITE_4(sc, BGE_PCI_MEMWIN_BASEADDR, 0);
1078 
1079 	/* Configure mbuf memory pool */
1080 	if (sc->bge_extram) {
1081 		CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_BASEADDR, BGE_EXT_SSRAM);
1082 		CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_LEN, 0x18000);
1083 	} else {
1084 		CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_BASEADDR, BGE_BUFFPOOL_1);
1085 		CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_LEN, 0x18000);
1086 	}
1087 
1088 	/* Configure DMA resource pool */
1089 	CSR_WRITE_4(sc, BGE_BMAN_DMA_DESCPOOL_BASEADDR, BGE_DMA_DESCRIPTORS);
1090 	CSR_WRITE_4(sc, BGE_BMAN_DMA_DESCPOOL_LEN, 0x2000);
1091 
1092 	/* Configure mbuf pool watermarks */
1093 	CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_READDMA_LOWAT, 24);
1094 	CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_MACRX_LOWAT, 24);
1095 	CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_HIWAT, 48);
1096 
1097 	/* Configure DMA resource watermarks */
1098 	CSR_WRITE_4(sc, BGE_BMAN_DMA_DESCPOOL_LOWAT, 5);
1099 	CSR_WRITE_4(sc, BGE_BMAN_DMA_DESCPOOL_HIWAT, 10);
1100 
1101 	/* Enable buffer manager */
1102 	CSR_WRITE_4(sc, BGE_BMAN_MODE,
1103 	    BGE_BMANMODE_ENABLE|BGE_BMANMODE_LOMBUF_ATTN);
1104 
1105 	/* Poll for buffer manager start indication */
1106 	for (i = 0; i < BGE_TIMEOUT; i++) {
1107 		if (CSR_READ_4(sc, BGE_BMAN_MODE) & BGE_BMANMODE_ENABLE)
1108 			break;
1109 		DELAY(10);
1110 	}
1111 
1112 	if (i == BGE_TIMEOUT) {
1113 		printf("bge%d: buffer manager failed to start\n",
1114 		    sc->bge_unit);
1115 		return(ENXIO);
1116 	}
1117 
1118 	/* Enable flow-through queues */
1119 	CSR_WRITE_4(sc, BGE_FTQ_RESET, 0xFFFFFFFF);
1120 	CSR_WRITE_4(sc, BGE_FTQ_RESET, 0);
1121 
1122 	/* Wait until queue initialization is complete */
1123 	for (i = 0; i < BGE_TIMEOUT; i++) {
1124 		if (CSR_READ_4(sc, BGE_FTQ_RESET) == 0)
1125 			break;
1126 		DELAY(10);
1127 	}
1128 
1129 	if (i == BGE_TIMEOUT) {
1130 		printf("bge%d: flow-through queue init failed\n",
1131 		    sc->bge_unit);
1132 		return(ENXIO);
1133 	}
1134 
1135 	/* Initialize the standard RX ring control block */
1136 	rcb = &sc->bge_rdata->bge_info.bge_std_rx_rcb;
1137 	BGE_HOSTADDR(rcb->bge_hostaddr) =
1138 	    vtophys(&sc->bge_rdata->bge_rx_std_ring);
1139 	rcb->bge_maxlen_flags = BGE_RCB_MAXLEN_FLAGS(BGE_MAX_FRAMELEN, 0);
1140 	if (sc->bge_extram)
1141 		rcb->bge_nicaddr = BGE_EXT_STD_RX_RINGS;
1142 	else
1143 		rcb->bge_nicaddr = BGE_STD_RX_RINGS;
1144 	CSR_WRITE_4(sc, BGE_RX_STD_RCB_HADDR_HI, rcb->bge_hostaddr.bge_addr_hi);
1145 	CSR_WRITE_4(sc, BGE_RX_STD_RCB_HADDR_LO, rcb->bge_hostaddr.bge_addr_lo);
1146 	CSR_WRITE_4(sc, BGE_RX_STD_RCB_MAXLEN_FLAGS, rcb->bge_maxlen_flags);
1147 	CSR_WRITE_4(sc, BGE_RX_STD_RCB_NICADDR, rcb->bge_nicaddr);
1148 
1149 	/*
1150 	 * Initialize the jumbo RX ring control block
1151 	 * We set the 'ring disabled' bit in the flags
1152 	 * field until we're actually ready to start
1153 	 * using this ring (i.e. once we set the MTU
1154 	 * high enough to require it).
1155 	 */
1156 	rcb = &sc->bge_rdata->bge_info.bge_jumbo_rx_rcb;
1157 	BGE_HOSTADDR(rcb->bge_hostaddr) =
1158 	    vtophys(&sc->bge_rdata->bge_rx_jumbo_ring);
1159 	rcb->bge_maxlen_flags =
1160 	    BGE_RCB_MAXLEN_FLAGS(BGE_MAX_FRAMELEN, BGE_RCB_FLAG_RING_DISABLED);
1161 	if (sc->bge_extram)
1162 		rcb->bge_nicaddr = BGE_EXT_JUMBO_RX_RINGS;
1163 	else
1164 		rcb->bge_nicaddr = BGE_JUMBO_RX_RINGS;
1165 	CSR_WRITE_4(sc, BGE_RX_JUMBO_RCB_HADDR_HI,
1166 	    rcb->bge_hostaddr.bge_addr_hi);
1167 	CSR_WRITE_4(sc, BGE_RX_JUMBO_RCB_HADDR_LO,
1168 	    rcb->bge_hostaddr.bge_addr_lo);
1169 	CSR_WRITE_4(sc, BGE_RX_JUMBO_RCB_MAXLEN_FLAGS, rcb->bge_maxlen_flags);
1170 	CSR_WRITE_4(sc, BGE_RX_JUMBO_RCB_NICADDR, rcb->bge_nicaddr);
1171 
1172 	/* Set up dummy disabled mini ring RCB */
1173 	rcb = &sc->bge_rdata->bge_info.bge_mini_rx_rcb;
1174 	rcb->bge_maxlen_flags =
1175 	    BGE_RCB_MAXLEN_FLAGS(0, BGE_RCB_FLAG_RING_DISABLED);
1176 	CSR_WRITE_4(sc, BGE_RX_MINI_RCB_MAXLEN_FLAGS, rcb->bge_maxlen_flags);
1177 
1178 	/*
1179 	 * Set the BD ring replentish thresholds. The recommended
1180 	 * values are 1/8th the number of descriptors allocated to
1181 	 * each ring.
1182 	 */
1183 	CSR_WRITE_4(sc, BGE_RBDI_STD_REPL_THRESH, BGE_STD_RX_RING_CNT/8);
1184 	CSR_WRITE_4(sc, BGE_RBDI_JUMBO_REPL_THRESH, BGE_JUMBO_RX_RING_CNT/8);
1185 
1186 	/*
1187 	 * Disable all unused send rings by setting the 'ring disabled'
1188 	 * bit in the flags field of all the TX send ring control blocks.
1189 	 * These are located in NIC memory.
1190 	 */
1191 	vrcb = (volatile struct bge_rcb *)(sc->bge_vhandle + BGE_MEMWIN_START +
1192 	    BGE_SEND_RING_RCB);
1193 	for (i = 0; i < BGE_TX_RINGS_EXTSSRAM_MAX; i++) {
1194 		vrcb->bge_maxlen_flags =
1195 		    BGE_RCB_MAXLEN_FLAGS(0, BGE_RCB_FLAG_RING_DISABLED);
1196 		vrcb->bge_nicaddr = 0;
1197 		vrcb++;
1198 	}
1199 
1200 	/* Configure TX RCB 0 (we use only the first ring) */
1201 	vrcb = (volatile struct bge_rcb *)(sc->bge_vhandle + BGE_MEMWIN_START +
1202 	    BGE_SEND_RING_RCB);
1203 	vrcb->bge_hostaddr.bge_addr_hi = 0;
1204 	BGE_HOSTADDR(vrcb->bge_hostaddr) =
1205 	    vtophys(&sc->bge_rdata->bge_tx_ring);
1206 	vrcb->bge_nicaddr = BGE_NIC_TXRING_ADDR(0, BGE_TX_RING_CNT);
1207 	vrcb->bge_maxlen_flags = BGE_RCB_MAXLEN_FLAGS(BGE_TX_RING_CNT, 0);
1208 
1209 	/* Disable all unused RX return rings */
1210 	vrcb = (volatile struct bge_rcb *)(sc->bge_vhandle + BGE_MEMWIN_START +
1211 	    BGE_RX_RETURN_RING_RCB);
1212 	for (i = 0; i < BGE_RX_RINGS_MAX; i++) {
1213 		vrcb->bge_hostaddr.bge_addr_hi = 0;
1214 		vrcb->bge_hostaddr.bge_addr_lo = 0;
1215 		vrcb->bge_maxlen_flags =
1216 		    BGE_RCB_MAXLEN_FLAGS(BGE_RETURN_RING_CNT,
1217 		    BGE_RCB_FLAG_RING_DISABLED);
1218 		vrcb->bge_nicaddr = 0;
1219 		CSR_WRITE_4(sc, BGE_MBX_RX_CONS0_LO +
1220 		    (i * (sizeof(u_int64_t))), 0);
1221 		vrcb++;
1222 	}
1223 
1224 	/* Initialize RX ring indexes */
1225 	CSR_WRITE_4(sc, BGE_MBX_RX_STD_PROD_LO, 0);
1226 	CSR_WRITE_4(sc, BGE_MBX_RX_JUMBO_PROD_LO, 0);
1227 	CSR_WRITE_4(sc, BGE_MBX_RX_MINI_PROD_LO, 0);
1228 
1229 	/*
1230 	 * Set up RX return ring 0
1231 	 * Note that the NIC address for RX return rings is 0x00000000.
1232 	 * The return rings live entirely within the host, so the
1233 	 * nicaddr field in the RCB isn't used.
1234 	 */
1235 	vrcb = (volatile struct bge_rcb *)(sc->bge_vhandle + BGE_MEMWIN_START +
1236 	    BGE_RX_RETURN_RING_RCB);
1237 	vrcb->bge_hostaddr.bge_addr_hi = 0;
1238 	BGE_HOSTADDR(vrcb->bge_hostaddr) =
1239 	    vtophys(&sc->bge_rdata->bge_rx_return_ring);
1240 	vrcb->bge_nicaddr = 0x00000000;
1241 	vrcb->bge_maxlen_flags = BGE_RCB_MAXLEN_FLAGS(BGE_RETURN_RING_CNT, 0);
1242 
1243 	/* Set random backoff seed for TX */
1244 	CSR_WRITE_4(sc, BGE_TX_RANDOM_BACKOFF,
1245 	    sc->arpcom.ac_enaddr[0] + sc->arpcom.ac_enaddr[1] +
1246 	    sc->arpcom.ac_enaddr[2] + sc->arpcom.ac_enaddr[3] +
1247 	    sc->arpcom.ac_enaddr[4] + sc->arpcom.ac_enaddr[5] +
1248 	    BGE_TX_BACKOFF_SEED_MASK);
1249 
1250 	/* Set inter-packet gap */
1251 	CSR_WRITE_4(sc, BGE_TX_LENGTHS, 0x2620);
1252 
1253 	/*
1254 	 * Specify which ring to use for packets that don't match
1255 	 * any RX rules.
1256 	 */
1257 	CSR_WRITE_4(sc, BGE_RX_RULES_CFG, 0x08);
1258 
1259 	/*
1260 	 * Configure number of RX lists. One interrupt distribution
1261 	 * list, sixteen active lists, one bad frames class.
1262 	 */
1263 	CSR_WRITE_4(sc, BGE_RXLP_CFG, 0x181);
1264 
1265 	/* Inialize RX list placement stats mask. */
1266 	CSR_WRITE_4(sc, BGE_RXLP_STATS_ENABLE_MASK, 0x007FFFFF);
1267 	CSR_WRITE_4(sc, BGE_RXLP_STATS_CTL, 0x1);
1268 
1269 	/* Disable host coalescing until we get it set up */
1270 	CSR_WRITE_4(sc, BGE_HCC_MODE, 0x00000000);
1271 
1272 	/* Poll to make sure it's shut down. */
1273 	for (i = 0; i < BGE_TIMEOUT; i++) {
1274 		if (!(CSR_READ_4(sc, BGE_HCC_MODE) & BGE_HCCMODE_ENABLE))
1275 			break;
1276 		DELAY(10);
1277 	}
1278 
1279 	if (i == BGE_TIMEOUT) {
1280 		printf("bge%d: host coalescing engine failed to idle\n",
1281 		    sc->bge_unit);
1282 		return(ENXIO);
1283 	}
1284 
1285 	/* Set up host coalescing defaults */
1286 	CSR_WRITE_4(sc, BGE_HCC_RX_COAL_TICKS, sc->bge_rx_coal_ticks);
1287 	CSR_WRITE_4(sc, BGE_HCC_TX_COAL_TICKS, sc->bge_tx_coal_ticks);
1288 	CSR_WRITE_4(sc, BGE_HCC_RX_MAX_COAL_BDS, sc->bge_rx_max_coal_bds);
1289 	CSR_WRITE_4(sc, BGE_HCC_TX_MAX_COAL_BDS, sc->bge_tx_max_coal_bds);
1290 	CSR_WRITE_4(sc, BGE_HCC_RX_COAL_TICKS_INT, 0);
1291 	CSR_WRITE_4(sc, BGE_HCC_TX_COAL_TICKS_INT, 0);
1292 	CSR_WRITE_4(sc, BGE_HCC_RX_MAX_COAL_BDS_INT, 0);
1293 	CSR_WRITE_4(sc, BGE_HCC_TX_MAX_COAL_BDS_INT, 0);
1294 	CSR_WRITE_4(sc, BGE_HCC_STATS_TICKS, sc->bge_stat_ticks);
1295 
1296 	/* Set up address of statistics block */
1297 	CSR_WRITE_4(sc, BGE_HCC_STATS_BASEADDR, BGE_STATS_BLOCK);
1298 	CSR_WRITE_4(sc, BGE_HCC_STATS_ADDR_HI, 0);
1299 	CSR_WRITE_4(sc, BGE_HCC_STATS_ADDR_LO,
1300 	    vtophys(&sc->bge_rdata->bge_info.bge_stats));
1301 
1302 	/* Set up address of status block */
1303 	CSR_WRITE_4(sc, BGE_HCC_STATUSBLK_BASEADDR, BGE_STATUS_BLOCK);
1304 	CSR_WRITE_4(sc, BGE_HCC_STATUSBLK_ADDR_HI, 0);
1305 	CSR_WRITE_4(sc, BGE_HCC_STATUSBLK_ADDR_LO,
1306 	    vtophys(&sc->bge_rdata->bge_status_block));
1307 	sc->bge_rdata->bge_status_block.bge_idx[0].bge_rx_prod_idx = 0;
1308 	sc->bge_rdata->bge_status_block.bge_idx[0].bge_tx_cons_idx = 0;
1309 
1310 	/* Turn on host coalescing state machine */
1311 	CSR_WRITE_4(sc, BGE_HCC_MODE, BGE_HCCMODE_ENABLE);
1312 
1313 	/* Turn on RX BD completion state machine and enable attentions */
1314 	CSR_WRITE_4(sc, BGE_RBDC_MODE,
1315 	    BGE_RBDCMODE_ENABLE|BGE_RBDCMODE_ATTN);
1316 
1317 	/* Turn on RX list placement state machine */
1318 	CSR_WRITE_4(sc, BGE_RXLP_MODE, BGE_RXLPMODE_ENABLE);
1319 
1320 	/* Turn on RX list selector state machine. */
1321 	CSR_WRITE_4(sc, BGE_RXLS_MODE, BGE_RXLSMODE_ENABLE);
1322 
1323 	/* Turn on DMA, clear stats */
1324 	CSR_WRITE_4(sc, BGE_MAC_MODE, BGE_MACMODE_TXDMA_ENB|
1325 	    BGE_MACMODE_RXDMA_ENB|BGE_MACMODE_RX_STATS_CLEAR|
1326 	    BGE_MACMODE_TX_STATS_CLEAR|BGE_MACMODE_RX_STATS_ENB|
1327 	    BGE_MACMODE_TX_STATS_ENB|BGE_MACMODE_FRMHDR_DMA_ENB|
1328 	    (sc->bge_tbi ? BGE_PORTMODE_TBI : BGE_PORTMODE_MII));
1329 
1330 	/* Set misc. local control, enable interrupts on attentions */
1331 	CSR_WRITE_4(sc, BGE_MISC_LOCAL_CTL, BGE_MLC_INTR_ONATTN);
1332 
1333 #ifdef notdef
1334 	/* Assert GPIO pins for PHY reset */
1335 	BGE_SETBIT(sc, BGE_MISC_LOCAL_CTL, BGE_MLC_MISCIO_OUT0|
1336 	    BGE_MLC_MISCIO_OUT1|BGE_MLC_MISCIO_OUT2);
1337 	BGE_SETBIT(sc, BGE_MISC_LOCAL_CTL, BGE_MLC_MISCIO_OUTEN0|
1338 	    BGE_MLC_MISCIO_OUTEN1|BGE_MLC_MISCIO_OUTEN2);
1339 #endif
1340 
1341 	/* Turn on DMA completion state machine */
1342 	CSR_WRITE_4(sc, BGE_DMAC_MODE, BGE_DMACMODE_ENABLE);
1343 
1344 	/* Turn on write DMA state machine */
1345 	CSR_WRITE_4(sc, BGE_WDMA_MODE,
1346 	    BGE_WDMAMODE_ENABLE|BGE_WDMAMODE_ALL_ATTNS);
1347 
1348 	/* Turn on read DMA state machine */
1349 	CSR_WRITE_4(sc, BGE_RDMA_MODE,
1350 	    BGE_RDMAMODE_ENABLE|BGE_RDMAMODE_ALL_ATTNS);
1351 
1352 	/* Turn on RX data completion state machine */
1353 	CSR_WRITE_4(sc, BGE_RDC_MODE, BGE_RDCMODE_ENABLE);
1354 
1355 	/* Turn on RX BD initiator state machine */
1356 	CSR_WRITE_4(sc, BGE_RBDI_MODE, BGE_RBDIMODE_ENABLE);
1357 
1358 	/* Turn on RX data and RX BD initiator state machine */
1359 	CSR_WRITE_4(sc, BGE_RDBDI_MODE, BGE_RDBDIMODE_ENABLE);
1360 
1361 	/* Turn on Mbuf cluster free state machine */
1362 	CSR_WRITE_4(sc, BGE_MBCF_MODE, BGE_MBCFMODE_ENABLE);
1363 
1364 	/* Turn on send BD completion state machine */
1365 	CSR_WRITE_4(sc, BGE_SBDC_MODE, BGE_SBDCMODE_ENABLE);
1366 
1367 	/* Turn on send data completion state machine */
1368 	CSR_WRITE_4(sc, BGE_SDC_MODE, BGE_SDCMODE_ENABLE);
1369 
1370 	/* Turn on send data initiator state machine */
1371 	CSR_WRITE_4(sc, BGE_SDI_MODE, BGE_SDIMODE_ENABLE);
1372 
1373 	/* Turn on send BD initiator state machine */
1374 	CSR_WRITE_4(sc, BGE_SBDI_MODE, BGE_SBDIMODE_ENABLE);
1375 
1376 	/* Turn on send BD selector state machine */
1377 	CSR_WRITE_4(sc, BGE_SRS_MODE, BGE_SRSMODE_ENABLE);
1378 
1379 	CSR_WRITE_4(sc, BGE_SDI_STATS_ENABLE_MASK, 0x007FFFFF);
1380 	CSR_WRITE_4(sc, BGE_SDI_STATS_CTL,
1381 	    BGE_SDISTATSCTL_ENABLE|BGE_SDISTATSCTL_FASTER);
1382 
1383 	/* init LED register */
1384 	CSR_WRITE_4(sc, BGE_MAC_LED_CTL, 0x00000000);
1385 
1386 	/* ack/clear link change events */
1387 	CSR_WRITE_4(sc, BGE_MAC_STS, BGE_MACSTAT_SYNC_CHANGED|
1388 	    BGE_MACSTAT_CFG_CHANGED);
1389 	CSR_WRITE_4(sc, BGE_MI_STS, 0);
1390 
1391 	/* Enable PHY auto polling (for MII/GMII only) */
1392 	if (sc->bge_tbi) {
1393 		CSR_WRITE_4(sc, BGE_MI_STS, BGE_MISTS_LINK);
1394  	} else {
1395 		BGE_SETBIT(sc, BGE_MI_MODE, BGE_MIMODE_AUTOPOLL|10<<16);
1396 		if (sc->bge_asicrev == BGE_ASICREV_BCM5700)
1397 			CSR_WRITE_4(sc, BGE_MAC_EVT_ENB,
1398 			    BGE_EVTENB_MI_INTERRUPT);
1399 	}
1400 
1401 	/* Enable link state change attentions. */
1402 	BGE_SETBIT(sc, BGE_MAC_EVT_ENB, BGE_EVTENB_LINK_CHANGED);
1403 
1404 	return(0);
1405 }
1406 
1407 /*
1408  * Probe for a Broadcom chip. Check the PCI vendor and device IDs
1409  * against our list and return its name if we find a match. Note
1410  * that since the Broadcom controller contains VPD support, we
1411  * can get the device name string from the controller itself instead
1412  * of the compiled-in string. This is a little slow, but it guarantees
1413  * we'll always announce the right product name.
1414  */
1415 static int
1416 bge_probe(dev)
1417 	device_t dev;
1418 {
1419 	struct bge_type *t;
1420 	struct bge_softc *sc;
1421 	char *descbuf;
1422 
1423 	t = bge_devs;
1424 
1425 	sc = device_get_softc(dev);
1426 	bzero(sc, sizeof(struct bge_softc));
1427 	sc->bge_unit = device_get_unit(dev);
1428 	sc->bge_dev = dev;
1429 
1430 	while(t->bge_name != NULL) {
1431 		if ((pci_get_vendor(dev) == t->bge_vid) &&
1432 		    (pci_get_device(dev) == t->bge_did)) {
1433 #ifdef notdef
1434 			bge_vpd_read(sc);
1435 			device_set_desc(dev, sc->bge_vpd_prodname);
1436 #endif
1437 			descbuf = malloc(BGE_DEVDESC_MAX, M_TEMP, M_NOWAIT);
1438 			if (descbuf == NULL)
1439 				return(ENOMEM);
1440 			snprintf(descbuf, BGE_DEVDESC_MAX,
1441 			    "%s, ASIC rev. %#04x", t->bge_name,
1442 			    pci_read_config(dev, BGE_PCI_MISC_CTL, 4) >> 16);
1443 			device_set_desc_copy(dev, descbuf);
1444 			free(descbuf, M_TEMP);
1445 			return(0);
1446 		}
1447 		t++;
1448 	}
1449 
1450 	return(ENXIO);
1451 }
1452 
1453 static int
1454 bge_attach(dev)
1455 	device_t dev;
1456 {
1457 	int s;
1458 	u_int32_t command;
1459 	struct ifnet *ifp;
1460 	struct bge_softc *sc;
1461 	u_int32_t hwcfg = 0;
1462 	u_int32_t mac_addr = 0;
1463 	int unit, error = 0, rid;
1464 
1465 	s = splimp();
1466 
1467 	sc = device_get_softc(dev);
1468 	unit = device_get_unit(dev);
1469 	sc->bge_dev = dev;
1470 	sc->bge_unit = unit;
1471 
1472 	/*
1473 	 * Map control/status registers.
1474 	 */
1475 	pci_enable_busmaster(dev);
1476 	pci_enable_io(dev, SYS_RES_MEMORY);
1477 	command = pci_read_config(dev, PCIR_COMMAND, 4);
1478 
1479 	if (!(command & PCIM_CMD_MEMEN)) {
1480 		printf("bge%d: failed to enable memory mapping!\n", unit);
1481 		error = ENXIO;
1482 		goto fail;
1483 	}
1484 
1485 	rid = BGE_PCI_BAR0;
1486 	sc->bge_res = bus_alloc_resource(dev, SYS_RES_MEMORY, &rid,
1487 	    0, ~0, 1, RF_ACTIVE|PCI_RF_DENSE);
1488 
1489 	if (sc->bge_res == NULL) {
1490 		printf ("bge%d: couldn't map memory\n", unit);
1491 		error = ENXIO;
1492 		goto fail;
1493 	}
1494 
1495 	sc->bge_btag = rman_get_bustag(sc->bge_res);
1496 	sc->bge_bhandle = rman_get_bushandle(sc->bge_res);
1497 	sc->bge_vhandle = (vm_offset_t)rman_get_virtual(sc->bge_res);
1498 
1499 	/* Allocate interrupt */
1500 	rid = 0;
1501 
1502 	sc->bge_irq = bus_alloc_resource(dev, SYS_RES_IRQ, &rid, 0, ~0, 1,
1503 	    RF_SHAREABLE | RF_ACTIVE);
1504 
1505 	if (sc->bge_irq == NULL) {
1506 		printf("bge%d: couldn't map interrupt\n", unit);
1507 		error = ENXIO;
1508 		goto fail;
1509 	}
1510 
1511 	error = bus_setup_intr(dev, sc->bge_irq, INTR_TYPE_NET,
1512 	   bge_intr, sc, &sc->bge_intrhand);
1513 
1514 	if (error) {
1515 		bge_release_resources(sc);
1516 		printf("bge%d: couldn't set up irq\n", unit);
1517 		goto fail;
1518 	}
1519 
1520 	sc->bge_unit = unit;
1521 
1522 	/* Try to reset the chip. */
1523 	bge_reset(sc);
1524 
1525 	if (bge_chipinit(sc)) {
1526 		printf("bge%d: chip initialization failed\n", sc->bge_unit);
1527 		bge_release_resources(sc);
1528 		error = ENXIO;
1529 		goto fail;
1530 	}
1531 
1532 	/*
1533 	 * Get station address from the EEPROM.
1534 	 */
1535 	mac_addr = bge_readmem_ind(sc, 0x0c14);
1536 	if ((mac_addr >> 16) == 0x484b) {
1537 		sc->arpcom.ac_enaddr[0] = (u_char)(mac_addr >> 8);
1538 		sc->arpcom.ac_enaddr[1] = (u_char)mac_addr;
1539 		mac_addr = bge_readmem_ind(sc, 0x0c18);
1540 		sc->arpcom.ac_enaddr[2] = (u_char)(mac_addr >> 24);
1541 		sc->arpcom.ac_enaddr[3] = (u_char)(mac_addr >> 16);
1542 		sc->arpcom.ac_enaddr[4] = (u_char)(mac_addr >> 8);
1543 		sc->arpcom.ac_enaddr[5] = (u_char)mac_addr;
1544 	} else if (bge_read_eeprom(sc, (caddr_t)&sc->arpcom.ac_enaddr,
1545 	    BGE_EE_MAC_OFFSET + 2, ETHER_ADDR_LEN)) {
1546 		printf("bge%d: failed to read station address\n", unit);
1547 		bge_release_resources(sc);
1548 		error = ENXIO;
1549 		goto fail;
1550 	}
1551 
1552 	/*
1553 	 * A Broadcom chip was detected. Inform the world.
1554 	 */
1555 	printf("bge%d: Ethernet address: %6D\n", unit,
1556 	    sc->arpcom.ac_enaddr, ":");
1557 
1558 	/* Allocate the general information block and ring buffers. */
1559 	sc->bge_rdata = contigmalloc(sizeof(struct bge_ring_data), M_DEVBUF,
1560 	    M_NOWAIT, 0, 0xffffffff, PAGE_SIZE, 0);
1561 
1562 	if (sc->bge_rdata == NULL) {
1563 		bge_release_resources(sc);
1564 		error = ENXIO;
1565 		printf("bge%d: no memory for list buffers!\n", sc->bge_unit);
1566 		goto fail;
1567 	}
1568 
1569 	bzero(sc->bge_rdata, sizeof(struct bge_ring_data));
1570 
1571 	/* Try to allocate memory for jumbo buffers. */
1572 	if (bge_alloc_jumbo_mem(sc)) {
1573 		printf("bge%d: jumbo buffer allocation "
1574 		    "failed\n", sc->bge_unit);
1575 		bge_release_resources(sc);
1576 		error = ENXIO;
1577 		goto fail;
1578 	}
1579 
1580 	/* Set default tuneable values. */
1581 	sc->bge_stat_ticks = BGE_TICKS_PER_SEC;
1582 	sc->bge_rx_coal_ticks = 150;
1583 	sc->bge_tx_coal_ticks = 150;
1584 	sc->bge_rx_max_coal_bds = 64;
1585 	sc->bge_tx_max_coal_bds = 128;
1586 
1587 	/* Set up ifnet structure */
1588 	ifp = &sc->arpcom.ac_if;
1589 	ifp->if_softc = sc;
1590 	ifp->if_unit = sc->bge_unit;
1591 	ifp->if_name = "bge";
1592 	ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
1593 	ifp->if_ioctl = bge_ioctl;
1594 	ifp->if_output = ether_output;
1595 	ifp->if_start = bge_start;
1596 	ifp->if_watchdog = bge_watchdog;
1597 	ifp->if_init = bge_init;
1598 	ifp->if_mtu = ETHERMTU;
1599 	ifp->if_snd.ifq_maxlen = BGE_TX_RING_CNT - 1;
1600 	ifp->if_hwassist = BGE_CSUM_FEATURES;
1601 	ifp->if_capabilities = IFCAP_HWCSUM | IFCAP_VLAN_HWTAGGING | IFCAP_VLAN_MTU;
1602 	ifp->if_capenable = ifp->if_capabilities;
1603 
1604 	/* Save ASIC rev. */
1605 
1606 	sc->bge_asicrev =
1607 	    pci_read_config(dev, BGE_PCI_MISC_CTL, 4) &
1608 	    BGE_PCIMISCCTL_ASICREV;
1609 
1610 	/* Pretend all 5700s are the same */
1611 	if ((sc->bge_asicrev & 0xFF000000) == BGE_ASICREV_BCM5700)
1612 		sc->bge_asicrev = BGE_ASICREV_BCM5700;
1613 
1614 	/*
1615 	 * Figure out what sort of media we have by checking the
1616 	 * hardware config word in the EEPROM. Note: on some BCM5700
1617 	 * cards, this value appears to be unset. If that's the
1618 	 * case, we have to rely on identifying the NIC by its PCI
1619 	 * subsystem ID, as we do below for the SysKonnect SK-9D41.
1620 	 */
1621 	bge_read_eeprom(sc, (caddr_t)&hwcfg,
1622 		    BGE_EE_HWCFG_OFFSET, sizeof(hwcfg));
1623 	if ((ntohl(hwcfg) & BGE_HWCFG_MEDIA) == BGE_MEDIA_FIBER)
1624 		sc->bge_tbi = 1;
1625 
1626 	/* The SysKonnect SK-9D41 is a 1000baseSX card. */
1627 	if ((pci_read_config(dev, BGE_PCI_SUBSYS, 4) >> 16) == SK_SUBSYSID_9D41)
1628 		sc->bge_tbi = 1;
1629 
1630 	if (sc->bge_tbi) {
1631 		ifmedia_init(&sc->bge_ifmedia, IFM_IMASK,
1632 		    bge_ifmedia_upd, bge_ifmedia_sts);
1633 		ifmedia_add(&sc->bge_ifmedia, IFM_ETHER|IFM_1000_SX, 0, NULL);
1634 		ifmedia_add(&sc->bge_ifmedia,
1635 		    IFM_ETHER|IFM_1000_SX|IFM_FDX, 0, NULL);
1636 		ifmedia_add(&sc->bge_ifmedia, IFM_ETHER|IFM_AUTO, 0, NULL);
1637 		ifmedia_set(&sc->bge_ifmedia, IFM_ETHER|IFM_AUTO);
1638 	} else {
1639 		/*
1640 		 * Do transceiver setup.
1641 		 */
1642 		if (mii_phy_probe(dev, &sc->bge_miibus,
1643 		    bge_ifmedia_upd, bge_ifmedia_sts)) {
1644 			printf("bge%d: MII without any PHY!\n", sc->bge_unit);
1645 			bge_release_resources(sc);
1646 			bge_free_jumbo_mem(sc);
1647 			error = ENXIO;
1648 			goto fail;
1649 		}
1650 	}
1651 
1652 	/*
1653 	 * When using the BCM5701 in PCI-X mode, data corruption has
1654 	 * been observed in the first few bytes of some received packets.
1655 	 * Aligning the packet buffer in memory eliminates the corruption.
1656 	 * Unfortunately, this misaligns the packet payloads.  On platforms
1657 	 * which do not support unaligned accesses, we will realign the
1658 	 * payloads by copying the received packets.
1659 	 */
1660 	switch (sc->bge_asicrev) {
1661 	case BGE_ASICREV_BCM5701_A0:
1662 	case BGE_ASICREV_BCM5701_B0:
1663 	case BGE_ASICREV_BCM5701_B2:
1664 	case BGE_ASICREV_BCM5701_B5:
1665 		/* If in PCI-X mode, work around the alignment bug. */
1666 		if ((pci_read_config(dev, BGE_PCI_PCISTATE, 4) &
1667 		    (BGE_PCISTATE_PCI_BUSMODE | BGE_PCISTATE_PCI_BUSSPEED)) ==
1668 		    BGE_PCISTATE_PCI_BUSSPEED)
1669 			sc->bge_rx_alignment_bug = 1;
1670 		break;
1671 	}
1672 
1673 	/*
1674 	 * Call MI attach routine.
1675 	 */
1676 	ether_ifattach(ifp, sc->arpcom.ac_enaddr);
1677 	callout_handle_init(&sc->bge_stat_ch);
1678 
1679 fail:
1680 	splx(s);
1681 
1682 	return(error);
1683 }
1684 
1685 static int
1686 bge_detach(dev)
1687 	device_t dev;
1688 {
1689 	struct bge_softc *sc;
1690 	struct ifnet *ifp;
1691 	int s;
1692 
1693 	s = splimp();
1694 
1695 	sc = device_get_softc(dev);
1696 	ifp = &sc->arpcom.ac_if;
1697 
1698 	ether_ifdetach(ifp);
1699 	bge_stop(sc);
1700 	bge_reset(sc);
1701 
1702 	if (sc->bge_tbi) {
1703 		ifmedia_removeall(&sc->bge_ifmedia);
1704 	} else {
1705 		bus_generic_detach(dev);
1706 		device_delete_child(dev, sc->bge_miibus);
1707 	}
1708 
1709 	bge_release_resources(sc);
1710 	bge_free_jumbo_mem(sc);
1711 
1712 	splx(s);
1713 
1714 	return(0);
1715 }
1716 
1717 static void
1718 bge_release_resources(sc)
1719 	struct bge_softc *sc;
1720 {
1721         device_t dev;
1722 
1723         dev = sc->bge_dev;
1724 
1725 	if (sc->bge_vpd_prodname != NULL)
1726 		free(sc->bge_vpd_prodname, M_DEVBUF);
1727 
1728 	if (sc->bge_vpd_readonly != NULL)
1729 		free(sc->bge_vpd_readonly, M_DEVBUF);
1730 
1731         if (sc->bge_intrhand != NULL)
1732                 bus_teardown_intr(dev, sc->bge_irq, sc->bge_intrhand);
1733 
1734         if (sc->bge_irq != NULL)
1735 		bus_release_resource(dev, SYS_RES_IRQ, 0, sc->bge_irq);
1736 
1737         if (sc->bge_res != NULL)
1738 		bus_release_resource(dev, SYS_RES_MEMORY,
1739 		    BGE_PCI_BAR0, sc->bge_res);
1740 
1741         if (sc->bge_rdata != NULL)
1742 		contigfree(sc->bge_rdata,
1743 		    sizeof(struct bge_ring_data), M_DEVBUF);
1744 
1745         return;
1746 }
1747 
1748 static void
1749 bge_reset(sc)
1750 	struct bge_softc *sc;
1751 {
1752 	device_t dev;
1753 	u_int32_t cachesize, command, pcistate;
1754 	int i, val = 0;
1755 
1756 	dev = sc->bge_dev;
1757 
1758 	/* Save some important PCI state. */
1759 	cachesize = pci_read_config(dev, BGE_PCI_CACHESZ, 4);
1760 	command = pci_read_config(dev, BGE_PCI_CMD, 4);
1761 	pcistate = pci_read_config(dev, BGE_PCI_PCISTATE, 4);
1762 
1763 	pci_write_config(dev, BGE_PCI_MISC_CTL,
1764 	    BGE_PCIMISCCTL_INDIRECT_ACCESS|BGE_PCIMISCCTL_MASK_PCI_INTR|
1765 	    BGE_PCIMISCCTL_ENDIAN_WORDSWAP|BGE_PCIMISCCTL_PCISTATE_RW, 4);
1766 
1767 	/* Issue global reset */
1768 	bge_writereg_ind(sc, BGE_MISC_CFG,
1769 	    BGE_MISCCFG_RESET_CORE_CLOCKS|(65<<1));
1770 
1771 	DELAY(1000);
1772 
1773 	/* Reset some of the PCI state that got zapped by reset */
1774 	pci_write_config(dev, BGE_PCI_MISC_CTL,
1775 	    BGE_PCIMISCCTL_INDIRECT_ACCESS|BGE_PCIMISCCTL_MASK_PCI_INTR|
1776 	    BGE_PCIMISCCTL_ENDIAN_WORDSWAP|BGE_PCIMISCCTL_PCISTATE_RW, 4);
1777 	pci_write_config(dev, BGE_PCI_CACHESZ, cachesize, 4);
1778 	pci_write_config(dev, BGE_PCI_CMD, command, 4);
1779 	bge_writereg_ind(sc, BGE_MISC_CFG, (65 << 1));
1780 
1781 	/*
1782 	 * Prevent PXE restart: write a magic number to the
1783 	 * general communications memory at 0xB50.
1784 	 */
1785 	bge_writemem_ind(sc, BGE_SOFTWARE_GENCOMM, BGE_MAGIC_NUMBER);
1786 	/*
1787 	 * Poll the value location we just wrote until
1788 	 * we see the 1's complement of the magic number.
1789 	 * This indicates that the firmware initialization
1790 	 * is complete.
1791 	 */
1792 	for (i = 0; i < BGE_TIMEOUT; i++) {
1793 		val = bge_readmem_ind(sc, BGE_SOFTWARE_GENCOMM);
1794 		if (val == ~BGE_MAGIC_NUMBER)
1795 			break;
1796 		DELAY(10);
1797 	}
1798 
1799 	if (i == BGE_TIMEOUT) {
1800 		printf("bge%d: firmware handshake timed out\n", sc->bge_unit);
1801 		return;
1802 	}
1803 
1804 	/*
1805 	 * XXX Wait for the value of the PCISTATE register to
1806 	 * return to its original pre-reset state. This is a
1807 	 * fairly good indicator of reset completion. If we don't
1808 	 * wait for the reset to fully complete, trying to read
1809 	 * from the device's non-PCI registers may yield garbage
1810 	 * results.
1811 	 */
1812 	for (i = 0; i < BGE_TIMEOUT; i++) {
1813 		if (pci_read_config(dev, BGE_PCI_PCISTATE, 4) == pcistate)
1814 			break;
1815 		DELAY(10);
1816 	}
1817 
1818 	/* Enable memory arbiter. */
1819 	CSR_WRITE_4(sc, BGE_MARB_MODE, BGE_MARBMODE_ENABLE);
1820 
1821 	/* Fix up byte swapping */
1822 	CSR_WRITE_4(sc, BGE_MODE_CTL, BGE_MODECTL_BYTESWAP_NONFRAME|
1823 	    BGE_MODECTL_BYTESWAP_DATA);
1824 
1825 	CSR_WRITE_4(sc, BGE_MAC_MODE, 0);
1826 
1827 	DELAY(10000);
1828 
1829 	return;
1830 }
1831 
1832 /*
1833  * Frame reception handling. This is called if there's a frame
1834  * on the receive return list.
1835  *
1836  * Note: we have to be able to handle two possibilities here:
1837  * 1) the frame is from the jumbo recieve ring
1838  * 2) the frame is from the standard receive ring
1839  */
1840 
1841 static void
1842 bge_rxeof(sc)
1843 	struct bge_softc *sc;
1844 {
1845 	struct ifnet *ifp;
1846 	int stdcnt = 0, jumbocnt = 0;
1847 
1848 	ifp = &sc->arpcom.ac_if;
1849 
1850 	while(sc->bge_rx_saved_considx !=
1851 	    sc->bge_rdata->bge_status_block.bge_idx[0].bge_rx_prod_idx) {
1852 		struct bge_rx_bd	*cur_rx;
1853 		u_int32_t		rxidx;
1854 		struct ether_header	*eh;
1855 		struct mbuf		*m = NULL;
1856 		u_int16_t		vlan_tag = 0;
1857 		int			have_tag = 0;
1858 
1859 		cur_rx =
1860 	    &sc->bge_rdata->bge_rx_return_ring[sc->bge_rx_saved_considx];
1861 
1862 		rxidx = cur_rx->bge_idx;
1863 		BGE_INC(sc->bge_rx_saved_considx, BGE_RETURN_RING_CNT);
1864 
1865 		if (cur_rx->bge_flags & BGE_RXBDFLAG_VLAN_TAG) {
1866 			have_tag = 1;
1867 			vlan_tag = cur_rx->bge_vlan_tag;
1868 		}
1869 
1870 		if (cur_rx->bge_flags & BGE_RXBDFLAG_JUMBO_RING) {
1871 			BGE_INC(sc->bge_jumbo, BGE_JUMBO_RX_RING_CNT);
1872 			m = sc->bge_cdata.bge_rx_jumbo_chain[rxidx];
1873 			sc->bge_cdata.bge_rx_jumbo_chain[rxidx] = NULL;
1874 			jumbocnt++;
1875 			if (cur_rx->bge_flags & BGE_RXBDFLAG_ERROR) {
1876 				ifp->if_ierrors++;
1877 				bge_newbuf_jumbo(sc, sc->bge_jumbo, m);
1878 				continue;
1879 			}
1880 			if (bge_newbuf_jumbo(sc,
1881 			    sc->bge_jumbo, NULL) == ENOBUFS) {
1882 				ifp->if_ierrors++;
1883 				bge_newbuf_jumbo(sc, sc->bge_jumbo, m);
1884 				continue;
1885 			}
1886 		} else {
1887 			BGE_INC(sc->bge_std, BGE_STD_RX_RING_CNT);
1888 			m = sc->bge_cdata.bge_rx_std_chain[rxidx];
1889 			sc->bge_cdata.bge_rx_std_chain[rxidx] = NULL;
1890 			stdcnt++;
1891 			if (cur_rx->bge_flags & BGE_RXBDFLAG_ERROR) {
1892 				ifp->if_ierrors++;
1893 				bge_newbuf_std(sc, sc->bge_std, m);
1894 				continue;
1895 			}
1896 			if (bge_newbuf_std(sc, sc->bge_std,
1897 			    NULL) == ENOBUFS) {
1898 				ifp->if_ierrors++;
1899 				bge_newbuf_std(sc, sc->bge_std, m);
1900 				continue;
1901 			}
1902 		}
1903 
1904 		ifp->if_ipackets++;
1905 #ifndef __i386__
1906 		/*
1907 		 * The i386 allows unaligned accesses, but for other
1908 		 * platforms we must make sure the payload is aligned.
1909 		 */
1910 		if (sc->bge_rx_alignment_bug) {
1911 			bcopy(m->m_data, m->m_data + ETHER_ALIGN,
1912 			    cur_rx->bge_len);
1913 			m->m_data += ETHER_ALIGN;
1914 		}
1915 #endif
1916 		eh = mtod(m, struct ether_header *);
1917 		m->m_pkthdr.len = m->m_len = cur_rx->bge_len;
1918 		m->m_pkthdr.rcvif = ifp;
1919 
1920 #if 0 /* currently broken for some packets, possibly related to TCP options */
1921 		if (ifp->if_hwassist) {
1922 			m->m_pkthdr.csum_flags |= CSUM_IP_CHECKED;
1923 			if ((cur_rx->bge_ip_csum ^ 0xffff) == 0)
1924 				m->m_pkthdr.csum_flags |= CSUM_IP_VALID;
1925 			if (cur_rx->bge_flags & BGE_RXBDFLAG_TCP_UDP_CSUM) {
1926 				m->m_pkthdr.csum_data =
1927 				    cur_rx->bge_tcp_udp_csum;
1928 				m->m_pkthdr.csum_flags |= CSUM_DATA_VALID;
1929 			}
1930 		}
1931 #endif
1932 
1933 		/*
1934 		 * If we received a packet with a vlan tag,
1935 		 * attach that information to the packet.
1936 		 */
1937 		if (have_tag)
1938 			VLAN_INPUT_TAG(ifp, m, vlan_tag, continue);
1939 
1940 		(*ifp->if_input)(ifp, m);
1941 	}
1942 
1943 	CSR_WRITE_4(sc, BGE_MBX_RX_CONS0_LO, sc->bge_rx_saved_considx);
1944 	if (stdcnt)
1945 		CSR_WRITE_4(sc, BGE_MBX_RX_STD_PROD_LO, sc->bge_std);
1946 	if (jumbocnt)
1947 		CSR_WRITE_4(sc, BGE_MBX_RX_JUMBO_PROD_LO, sc->bge_jumbo);
1948 
1949 	return;
1950 }
1951 
1952 static void
1953 bge_txeof(sc)
1954 	struct bge_softc *sc;
1955 {
1956 	struct bge_tx_bd *cur_tx = NULL;
1957 	struct ifnet *ifp;
1958 
1959 	ifp = &sc->arpcom.ac_if;
1960 
1961 	/*
1962 	 * Go through our tx ring and free mbufs for those
1963 	 * frames that have been sent.
1964 	 */
1965 	while (sc->bge_tx_saved_considx !=
1966 	    sc->bge_rdata->bge_status_block.bge_idx[0].bge_tx_cons_idx) {
1967 		u_int32_t		idx = 0;
1968 
1969 		idx = sc->bge_tx_saved_considx;
1970 		cur_tx = &sc->bge_rdata->bge_tx_ring[idx];
1971 		if (cur_tx->bge_flags & BGE_TXBDFLAG_END)
1972 			ifp->if_opackets++;
1973 		if (sc->bge_cdata.bge_tx_chain[idx] != NULL) {
1974 			m_freem(sc->bge_cdata.bge_tx_chain[idx]);
1975 			sc->bge_cdata.bge_tx_chain[idx] = NULL;
1976 		}
1977 		sc->bge_txcnt--;
1978 		BGE_INC(sc->bge_tx_saved_considx, BGE_TX_RING_CNT);
1979 		ifp->if_timer = 0;
1980 	}
1981 
1982 	if (cur_tx != NULL)
1983 		ifp->if_flags &= ~IFF_OACTIVE;
1984 
1985 	return;
1986 }
1987 
1988 static void
1989 bge_intr(xsc)
1990 	void *xsc;
1991 {
1992 	struct bge_softc *sc;
1993 	struct ifnet *ifp;
1994 
1995 	sc = xsc;
1996 	ifp = &sc->arpcom.ac_if;
1997 
1998 #ifdef notdef
1999 	/* Avoid this for now -- checking this register is expensive. */
2000 	/* Make sure this is really our interrupt. */
2001 	if (!(CSR_READ_4(sc, BGE_MISC_LOCAL_CTL) & BGE_MLC_INTR_STATE))
2002 		return;
2003 #endif
2004 	/* Ack interrupt and stop others from occuring. */
2005 	CSR_WRITE_4(sc, BGE_MBX_IRQ0_LO, 1);
2006 
2007 	/*
2008 	 * Process link state changes.
2009 	 * Grrr. The link status word in the status block does
2010 	 * not work correctly on the BCM5700 rev AX and BX chips,
2011 	 * according to all avaibable information. Hence, we have
2012 	 * to enable MII interrupts in order to properly obtain
2013 	 * async link changes. Unfortunately, this also means that
2014 	 * we have to read the MAC status register to detect link
2015 	 * changes, thereby adding an additional register access to
2016 	 * the interrupt handler.
2017 	 */
2018 
2019 	if (sc->bge_asicrev == BGE_ASICREV_BCM5700) {
2020 		u_int32_t		status;
2021 
2022 		status = CSR_READ_4(sc, BGE_MAC_STS);
2023 		if (status & BGE_MACSTAT_MI_INTERRUPT) {
2024 			sc->bge_link = 0;
2025 			untimeout(bge_tick, sc, sc->bge_stat_ch);
2026 			bge_tick(sc);
2027 			/* Clear the interrupt */
2028 			CSR_WRITE_4(sc, BGE_MAC_EVT_ENB,
2029 			    BGE_EVTENB_MI_INTERRUPT);
2030 			bge_miibus_readreg(sc->bge_dev, 1, BRGPHY_MII_ISR);
2031 			bge_miibus_writereg(sc->bge_dev, 1, BRGPHY_MII_IMR,
2032 			    BRGPHY_INTRS);
2033 		}
2034 	} else {
2035 		if (sc->bge_rdata->bge_status_block.bge_status &
2036 		    BGE_STATFLAG_LINKSTATE_CHANGED) {
2037 			sc->bge_link = 0;
2038 			untimeout(bge_tick, sc, sc->bge_stat_ch);
2039 			bge_tick(sc);
2040 			/* Clear the interrupt */
2041 			CSR_WRITE_4(sc, BGE_MAC_STS, BGE_MACSTAT_SYNC_CHANGED|
2042 			    BGE_MACSTAT_CFG_CHANGED);
2043 		}
2044 	}
2045 
2046 	if (ifp->if_flags & IFF_RUNNING) {
2047 		/* Check RX return ring producer/consumer */
2048 		bge_rxeof(sc);
2049 
2050 		/* Check TX ring producer/consumer */
2051 		bge_txeof(sc);
2052 	}
2053 
2054 	bge_handle_events(sc);
2055 
2056 	/* Re-enable interrupts. */
2057 	CSR_WRITE_4(sc, BGE_MBX_IRQ0_LO, 0);
2058 
2059 	if (ifp->if_flags & IFF_RUNNING && ifp->if_snd.ifq_head != NULL)
2060 		bge_start(ifp);
2061 
2062 	return;
2063 }
2064 
2065 static void
2066 bge_tick(xsc)
2067 	void *xsc;
2068 {
2069 	struct bge_softc *sc;
2070 	struct mii_data *mii = NULL;
2071 	struct ifmedia *ifm = NULL;
2072 	struct ifnet *ifp;
2073 	int s;
2074 
2075 	sc = xsc;
2076 	ifp = &sc->arpcom.ac_if;
2077 
2078 	s = splimp();
2079 
2080 	bge_stats_update(sc);
2081 	sc->bge_stat_ch = timeout(bge_tick, sc, hz);
2082 	if (sc->bge_link) {
2083 		splx(s);
2084 		return;
2085 	}
2086 
2087 	if (sc->bge_tbi) {
2088 		ifm = &sc->bge_ifmedia;
2089 		if (CSR_READ_4(sc, BGE_MAC_STS) &
2090 		    BGE_MACSTAT_TBI_PCS_SYNCHED) {
2091 			sc->bge_link++;
2092 			CSR_WRITE_4(sc, BGE_MAC_STS, 0xFFFFFFFF);
2093 			printf("bge%d: gigabit link up\n", sc->bge_unit);
2094 			if (ifp->if_snd.ifq_head != NULL)
2095 				bge_start(ifp);
2096 		}
2097 		splx(s);
2098 		return;
2099 	}
2100 
2101 	mii = device_get_softc(sc->bge_miibus);
2102 	mii_tick(mii);
2103 
2104 	if (!sc->bge_link && mii->mii_media_status & IFM_ACTIVE &&
2105 	    IFM_SUBTYPE(mii->mii_media_active) != IFM_NONE) {
2106 		sc->bge_link++;
2107 		if (IFM_SUBTYPE(mii->mii_media_active) == IFM_1000_T ||
2108 		    IFM_SUBTYPE(mii->mii_media_active) == IFM_1000_SX)
2109 			printf("bge%d: gigabit link up\n",
2110 			   sc->bge_unit);
2111 		if (ifp->if_snd.ifq_head != NULL)
2112 			bge_start(ifp);
2113 	}
2114 
2115 	splx(s);
2116 
2117 	return;
2118 }
2119 
2120 static void
2121 bge_stats_update(sc)
2122 	struct bge_softc *sc;
2123 {
2124 	struct ifnet *ifp;
2125 	struct bge_stats *stats;
2126 
2127 	ifp = &sc->arpcom.ac_if;
2128 
2129 	stats = (struct bge_stats *)(sc->bge_vhandle +
2130 	    BGE_MEMWIN_START + BGE_STATS_BLOCK);
2131 
2132 	ifp->if_collisions +=
2133 	   (stats->dot3StatsSingleCollisionFrames.bge_addr_lo +
2134 	   stats->dot3StatsMultipleCollisionFrames.bge_addr_lo +
2135 	   stats->dot3StatsExcessiveCollisions.bge_addr_lo +
2136 	   stats->dot3StatsLateCollisions.bge_addr_lo) -
2137 	   ifp->if_collisions;
2138 
2139 #ifdef notdef
2140 	ifp->if_collisions +=
2141 	   (sc->bge_rdata->bge_info.bge_stats.dot3StatsSingleCollisionFrames +
2142 	   sc->bge_rdata->bge_info.bge_stats.dot3StatsMultipleCollisionFrames +
2143 	   sc->bge_rdata->bge_info.bge_stats.dot3StatsExcessiveCollisions +
2144 	   sc->bge_rdata->bge_info.bge_stats.dot3StatsLateCollisions) -
2145 	   ifp->if_collisions;
2146 #endif
2147 
2148 	return;
2149 }
2150 
2151 /*
2152  * Encapsulate an mbuf chain in the tx ring  by coupling the mbuf data
2153  * pointers to descriptors.
2154  */
2155 static int
2156 bge_encap(sc, m_head, txidx)
2157 	struct bge_softc *sc;
2158 	struct mbuf *m_head;
2159 	u_int32_t *txidx;
2160 {
2161 	struct bge_tx_bd	*f = NULL;
2162 	struct mbuf		*m;
2163 	u_int32_t		frag, cur, cnt = 0;
2164 	u_int16_t		csum_flags = 0;
2165 	struct m_tag		*mtag;
2166 
2167 	m = m_head;
2168 	cur = frag = *txidx;
2169 
2170 	if (m_head->m_pkthdr.csum_flags) {
2171 		if (m_head->m_pkthdr.csum_flags & CSUM_IP)
2172 			csum_flags |= BGE_TXBDFLAG_IP_CSUM;
2173 		if (m_head->m_pkthdr.csum_flags & (CSUM_TCP | CSUM_UDP))
2174 			csum_flags |= BGE_TXBDFLAG_TCP_UDP_CSUM;
2175 		if (m_head->m_flags & M_LASTFRAG)
2176 			csum_flags |= BGE_TXBDFLAG_IP_FRAG_END;
2177 		else if (m_head->m_flags & M_FRAG)
2178 			csum_flags |= BGE_TXBDFLAG_IP_FRAG;
2179 	}
2180 
2181 	mtag = VLAN_OUTPUT_TAG(&sc->arpcom.ac_if, m);
2182 
2183 	/*
2184  	 * Start packing the mbufs in this chain into
2185 	 * the fragment pointers. Stop when we run out
2186  	 * of fragments or hit the end of the mbuf chain.
2187 	 */
2188 	for (m = m_head; m != NULL; m = m->m_next) {
2189 		if (m->m_len != 0) {
2190 			f = &sc->bge_rdata->bge_tx_ring[frag];
2191 			if (sc->bge_cdata.bge_tx_chain[frag] != NULL)
2192 				break;
2193 			BGE_HOSTADDR(f->bge_addr) =
2194 			   vtophys(mtod(m, vm_offset_t));
2195 			f->bge_len = m->m_len;
2196 			f->bge_flags = csum_flags;
2197 			if (mtag != NULL) {
2198 				f->bge_flags |= BGE_TXBDFLAG_VLAN_TAG;
2199 				f->bge_vlan_tag = VLAN_TAG_VALUE(mtag);
2200 			} else {
2201 				f->bge_vlan_tag = 0;
2202 			}
2203 			/*
2204 			 * Sanity check: avoid coming within 16 descriptors
2205 			 * of the end of the ring.
2206 			 */
2207 			if ((BGE_TX_RING_CNT - (sc->bge_txcnt + cnt)) < 16)
2208 				return(ENOBUFS);
2209 			cur = frag;
2210 			BGE_INC(frag, BGE_TX_RING_CNT);
2211 			cnt++;
2212 		}
2213 	}
2214 
2215 	if (m != NULL)
2216 		return(ENOBUFS);
2217 
2218 	if (frag == sc->bge_tx_saved_considx)
2219 		return(ENOBUFS);
2220 
2221 	sc->bge_rdata->bge_tx_ring[cur].bge_flags |= BGE_TXBDFLAG_END;
2222 	sc->bge_cdata.bge_tx_chain[cur] = m_head;
2223 	sc->bge_txcnt += cnt;
2224 
2225 	*txidx = frag;
2226 
2227 	return(0);
2228 }
2229 
2230 /*
2231  * Main transmit routine. To avoid having to do mbuf copies, we put pointers
2232  * to the mbuf data regions directly in the transmit descriptors.
2233  */
2234 static void
2235 bge_start(ifp)
2236 	struct ifnet *ifp;
2237 {
2238 	struct bge_softc *sc;
2239 	struct mbuf *m_head = NULL;
2240 	u_int32_t prodidx = 0;
2241 
2242 	sc = ifp->if_softc;
2243 
2244 	if (!sc->bge_link && ifp->if_snd.ifq_len < 10)
2245 		return;
2246 
2247 	prodidx = CSR_READ_4(sc, BGE_MBX_TX_HOST_PROD0_LO);
2248 
2249 	while(sc->bge_cdata.bge_tx_chain[prodidx] == NULL) {
2250 		IF_DEQUEUE(&ifp->if_snd, m_head);
2251 		if (m_head == NULL)
2252 			break;
2253 
2254 		/*
2255 		 * XXX
2256 		 * safety overkill.  If this is a fragmented packet chain
2257 		 * with delayed TCP/UDP checksums, then only encapsulate
2258 		 * it if we have enough descriptors to handle the entire
2259 		 * chain at once.
2260 		 * (paranoia -- may not actually be needed)
2261 		 */
2262 		if (m_head->m_flags & M_FIRSTFRAG &&
2263 		    m_head->m_pkthdr.csum_flags & (CSUM_DELAY_DATA)) {
2264 			if ((BGE_TX_RING_CNT - sc->bge_txcnt) <
2265 			    m_head->m_pkthdr.csum_data + 16) {
2266 				IF_PREPEND(&ifp->if_snd, m_head);
2267 				ifp->if_flags |= IFF_OACTIVE;
2268 				break;
2269 			}
2270 		}
2271 
2272 		/*
2273 		 * Pack the data into the transmit ring. If we
2274 		 * don't have room, set the OACTIVE flag and wait
2275 		 * for the NIC to drain the ring.
2276 		 */
2277 		if (bge_encap(sc, m_head, &prodidx)) {
2278 			IF_PREPEND(&ifp->if_snd, m_head);
2279 			ifp->if_flags |= IFF_OACTIVE;
2280 			break;
2281 		}
2282 
2283 		/*
2284 		 * If there's a BPF listener, bounce a copy of this frame
2285 		 * to him.
2286 		 */
2287 		BPF_MTAP(ifp, m_head);
2288 	}
2289 
2290 	/* Transmit */
2291 	CSR_WRITE_4(sc, BGE_MBX_TX_HOST_PROD0_LO, prodidx);
2292 
2293 	/*
2294 	 * Set a timeout in case the chip goes out to lunch.
2295 	 */
2296 	ifp->if_timer = 5;
2297 
2298 	return;
2299 }
2300 
2301 /*
2302  * If we have a BCM5400 or BCM5401 PHY, we need to properly
2303  * program its internal DSP. Failing to do this can result in
2304  * massive packet loss at 1Gb speeds.
2305  */
2306 static void
2307 bge_phy_hack(sc)
2308 	struct bge_softc *sc;
2309 {
2310 	struct bge_bcom_hack bhack[] = {
2311 	{ BRGPHY_MII_AUXCTL, 0x4C20 },
2312 	{ BRGPHY_MII_DSP_ADDR_REG, 0x0012 },
2313 	{ BRGPHY_MII_DSP_RW_PORT, 0x1804 },
2314 	{ BRGPHY_MII_DSP_ADDR_REG, 0x0013 },
2315 	{ BRGPHY_MII_DSP_RW_PORT, 0x1204 },
2316 	{ BRGPHY_MII_DSP_ADDR_REG, 0x8006 },
2317 	{ BRGPHY_MII_DSP_RW_PORT, 0x0132 },
2318 	{ BRGPHY_MII_DSP_ADDR_REG, 0x8006 },
2319 	{ BRGPHY_MII_DSP_RW_PORT, 0x0232 },
2320 	{ BRGPHY_MII_DSP_ADDR_REG, 0x201F },
2321 	{ BRGPHY_MII_DSP_RW_PORT, 0x0A20 },
2322 	{ 0, 0 } };
2323 	u_int16_t vid, did;
2324 	int i;
2325 
2326 	vid = bge_miibus_readreg(sc->bge_dev, 1, MII_PHYIDR1);
2327 	did = bge_miibus_readreg(sc->bge_dev, 1, MII_PHYIDR2);
2328 
2329 	if (MII_OUI(vid, did) == MII_OUI_xxBROADCOM &&
2330 	    (MII_MODEL(did) == MII_MODEL_xxBROADCOM_BCM5400 ||
2331 	    MII_MODEL(did) == MII_MODEL_xxBROADCOM_BCM5401)) {
2332 		i = 0;
2333 		while(bhack[i].reg) {
2334 			bge_miibus_writereg(sc->bge_dev, 1, bhack[i].reg,
2335 			    bhack[i].val);
2336 			i++;
2337 		}
2338 	}
2339 
2340 	return;
2341 }
2342 
2343 static void
2344 bge_init(xsc)
2345 	void *xsc;
2346 {
2347 	struct bge_softc *sc = xsc;
2348 	struct ifnet *ifp;
2349 	u_int16_t *m;
2350         int s;
2351 
2352 	s = splimp();
2353 
2354 	ifp = &sc->arpcom.ac_if;
2355 
2356 	if (ifp->if_flags & IFF_RUNNING) {
2357 		splx(s);
2358 		return;
2359 	}
2360 
2361 	/* Cancel pending I/O and flush buffers. */
2362 	bge_stop(sc);
2363 	bge_reset(sc);
2364 	bge_chipinit(sc);
2365 
2366 	/*
2367 	 * Init the various state machines, ring
2368 	 * control blocks and firmware.
2369 	 */
2370 	if (bge_blockinit(sc)) {
2371 		printf("bge%d: initialization failure\n", sc->bge_unit);
2372 		splx(s);
2373 		return;
2374 	}
2375 
2376 	ifp = &sc->arpcom.ac_if;
2377 
2378 	/* Specify MTU. */
2379 	CSR_WRITE_4(sc, BGE_RX_MTU, ifp->if_mtu +
2380 	    ETHER_HDR_LEN + ETHER_CRC_LEN);
2381 
2382 	/* Load our MAC address. */
2383 	m = (u_int16_t *)&sc->arpcom.ac_enaddr[0];
2384 	CSR_WRITE_4(sc, BGE_MAC_ADDR1_LO, htons(m[0]));
2385 	CSR_WRITE_4(sc, BGE_MAC_ADDR1_HI, (htons(m[1]) << 16) | htons(m[2]));
2386 
2387 	/* Enable or disable promiscuous mode as needed. */
2388 	if (ifp->if_flags & IFF_PROMISC) {
2389 		BGE_SETBIT(sc, BGE_RX_MODE, BGE_RXMODE_RX_PROMISC);
2390 	} else {
2391 		BGE_CLRBIT(sc, BGE_RX_MODE, BGE_RXMODE_RX_PROMISC);
2392 	}
2393 
2394 	/* Program multicast filter. */
2395 	bge_setmulti(sc);
2396 
2397 	/* Init RX ring. */
2398 	bge_init_rx_ring_std(sc);
2399 
2400 	/* Init jumbo RX ring. */
2401 	if (ifp->if_mtu > (ETHERMTU + ETHER_HDR_LEN + ETHER_CRC_LEN))
2402 		bge_init_rx_ring_jumbo(sc);
2403 
2404 	/* Init our RX return ring index */
2405 	sc->bge_rx_saved_considx = 0;
2406 
2407 	/* Init TX ring. */
2408 	bge_init_tx_ring(sc);
2409 
2410 	/* Turn on transmitter */
2411 	BGE_SETBIT(sc, BGE_TX_MODE, BGE_TXMODE_ENABLE);
2412 
2413 	/* Turn on receiver */
2414 	BGE_SETBIT(sc, BGE_RX_MODE, BGE_RXMODE_ENABLE);
2415 
2416 	/* Tell firmware we're alive. */
2417 	BGE_SETBIT(sc, BGE_MODE_CTL, BGE_MODECTL_STACKUP);
2418 
2419 	/* Enable host interrupts. */
2420 	BGE_SETBIT(sc, BGE_PCI_MISC_CTL, BGE_PCIMISCCTL_CLEAR_INTA);
2421 	BGE_CLRBIT(sc, BGE_PCI_MISC_CTL, BGE_PCIMISCCTL_MASK_PCI_INTR);
2422 	CSR_WRITE_4(sc, BGE_MBX_IRQ0_LO, 0);
2423 
2424 	bge_ifmedia_upd(ifp);
2425 
2426 	ifp->if_flags |= IFF_RUNNING;
2427 	ifp->if_flags &= ~IFF_OACTIVE;
2428 
2429 	splx(s);
2430 
2431 	sc->bge_stat_ch = timeout(bge_tick, sc, hz);
2432 
2433 	return;
2434 }
2435 
2436 /*
2437  * Set media options.
2438  */
2439 static int
2440 bge_ifmedia_upd(ifp)
2441 	struct ifnet *ifp;
2442 {
2443 	struct bge_softc *sc;
2444 	struct mii_data *mii;
2445 	struct ifmedia *ifm;
2446 
2447 	sc = ifp->if_softc;
2448 	ifm = &sc->bge_ifmedia;
2449 
2450 	/* If this is a 1000baseX NIC, enable the TBI port. */
2451 	if (sc->bge_tbi) {
2452 		if (IFM_TYPE(ifm->ifm_media) != IFM_ETHER)
2453 			return(EINVAL);
2454 		switch(IFM_SUBTYPE(ifm->ifm_media)) {
2455 		case IFM_AUTO:
2456 			break;
2457 		case IFM_1000_SX:
2458 			if ((ifm->ifm_media & IFM_GMASK) == IFM_FDX) {
2459 				BGE_CLRBIT(sc, BGE_MAC_MODE,
2460 				    BGE_MACMODE_HALF_DUPLEX);
2461 			} else {
2462 				BGE_SETBIT(sc, BGE_MAC_MODE,
2463 				    BGE_MACMODE_HALF_DUPLEX);
2464 			}
2465 			break;
2466 		default:
2467 			return(EINVAL);
2468 		}
2469 		return(0);
2470 	}
2471 
2472 	mii = device_get_softc(sc->bge_miibus);
2473 	sc->bge_link = 0;
2474 	if (mii->mii_instance) {
2475 		struct mii_softc *miisc;
2476 		for (miisc = LIST_FIRST(&mii->mii_phys); miisc != NULL;
2477 		    miisc = LIST_NEXT(miisc, mii_list))
2478 			mii_phy_reset(miisc);
2479 	}
2480 	bge_phy_hack(sc);
2481 	mii_mediachg(mii);
2482 
2483 	return(0);
2484 }
2485 
2486 /*
2487  * Report current media status.
2488  */
2489 static void
2490 bge_ifmedia_sts(ifp, ifmr)
2491 	struct ifnet *ifp;
2492 	struct ifmediareq *ifmr;
2493 {
2494 	struct bge_softc *sc;
2495 	struct mii_data *mii;
2496 
2497 	sc = ifp->if_softc;
2498 
2499 	if (sc->bge_tbi) {
2500 		ifmr->ifm_status = IFM_AVALID;
2501 		ifmr->ifm_active = IFM_ETHER;
2502 		if (CSR_READ_4(sc, BGE_MAC_STS) &
2503 		    BGE_MACSTAT_TBI_PCS_SYNCHED)
2504 			ifmr->ifm_status |= IFM_ACTIVE;
2505 		ifmr->ifm_active |= IFM_1000_SX;
2506 		if (CSR_READ_4(sc, BGE_MAC_MODE) & BGE_MACMODE_HALF_DUPLEX)
2507 			ifmr->ifm_active |= IFM_HDX;
2508 		else
2509 			ifmr->ifm_active |= IFM_FDX;
2510 		return;
2511 	}
2512 
2513 	mii = device_get_softc(sc->bge_miibus);
2514 	mii_pollstat(mii);
2515 	ifmr->ifm_active = mii->mii_media_active;
2516 	ifmr->ifm_status = mii->mii_media_status;
2517 
2518 	return;
2519 }
2520 
2521 static int
2522 bge_ioctl(ifp, command, data)
2523 	struct ifnet *ifp;
2524 	u_long command;
2525 	caddr_t data;
2526 {
2527 	struct bge_softc *sc = ifp->if_softc;
2528 	struct ifreq *ifr = (struct ifreq *) data;
2529 	int s, mask, error = 0;
2530 	struct mii_data *mii;
2531 
2532 	s = splimp();
2533 
2534 	switch(command) {
2535 	case SIOCSIFMTU:
2536 		if (ifr->ifr_mtu > BGE_JUMBO_MTU)
2537 			error = EINVAL;
2538 		else {
2539 			ifp->if_mtu = ifr->ifr_mtu;
2540 			ifp->if_flags &= ~IFF_RUNNING;
2541 			bge_init(sc);
2542 		}
2543 		break;
2544 	case SIOCSIFFLAGS:
2545 		if (ifp->if_flags & IFF_UP) {
2546 			/*
2547 			 * If only the state of the PROMISC flag changed,
2548 			 * then just use the 'set promisc mode' command
2549 			 * instead of reinitializing the entire NIC. Doing
2550 			 * a full re-init means reloading the firmware and
2551 			 * waiting for it to start up, which may take a
2552 			 * second or two.
2553 			 */
2554 			if (ifp->if_flags & IFF_RUNNING &&
2555 			    ifp->if_flags & IFF_PROMISC &&
2556 			    !(sc->bge_if_flags & IFF_PROMISC)) {
2557 				BGE_SETBIT(sc, BGE_RX_MODE,
2558 				    BGE_RXMODE_RX_PROMISC);
2559 			} else if (ifp->if_flags & IFF_RUNNING &&
2560 			    !(ifp->if_flags & IFF_PROMISC) &&
2561 			    sc->bge_if_flags & IFF_PROMISC) {
2562 				BGE_CLRBIT(sc, BGE_RX_MODE,
2563 				    BGE_RXMODE_RX_PROMISC);
2564 			} else
2565 				bge_init(sc);
2566 		} else {
2567 			if (ifp->if_flags & IFF_RUNNING) {
2568 				bge_stop(sc);
2569 			}
2570 		}
2571 		sc->bge_if_flags = ifp->if_flags;
2572 		error = 0;
2573 		break;
2574 	case SIOCADDMULTI:
2575 	case SIOCDELMULTI:
2576 		if (ifp->if_flags & IFF_RUNNING) {
2577 			bge_setmulti(sc);
2578 			error = 0;
2579 		}
2580 		break;
2581 	case SIOCSIFMEDIA:
2582 	case SIOCGIFMEDIA:
2583 		if (sc->bge_tbi) {
2584 			error = ifmedia_ioctl(ifp, ifr,
2585 			    &sc->bge_ifmedia, command);
2586 		} else {
2587 			mii = device_get_softc(sc->bge_miibus);
2588 			error = ifmedia_ioctl(ifp, ifr,
2589 			    &mii->mii_media, command);
2590 		}
2591 		break;
2592         case SIOCSIFCAP:
2593 		mask = ifr->ifr_reqcap ^ ifp->if_capenable;
2594 		if (mask & IFCAP_HWCSUM) {
2595 			if (IFCAP_HWCSUM & ifp->if_capenable)
2596 				ifp->if_capenable &= ~IFCAP_HWCSUM;
2597 			else
2598 				ifp->if_capenable |= IFCAP_HWCSUM;
2599 		}
2600 		error = 0;
2601 		break;
2602 	default:
2603 		error = ether_ioctl(ifp, command, data);
2604 		break;
2605 	}
2606 
2607 	(void)splx(s);
2608 
2609 	return(error);
2610 }
2611 
2612 static void
2613 bge_watchdog(ifp)
2614 	struct ifnet *ifp;
2615 {
2616 	struct bge_softc *sc;
2617 
2618 	sc = ifp->if_softc;
2619 
2620 	printf("bge%d: watchdog timeout -- resetting\n", sc->bge_unit);
2621 
2622 	ifp->if_flags &= ~IFF_RUNNING;
2623 	bge_init(sc);
2624 
2625 	ifp->if_oerrors++;
2626 
2627 	return;
2628 }
2629 
2630 /*
2631  * Stop the adapter and free any mbufs allocated to the
2632  * RX and TX lists.
2633  */
2634 static void
2635 bge_stop(sc)
2636 	struct bge_softc *sc;
2637 {
2638 	struct ifnet *ifp;
2639 	struct ifmedia_entry *ifm;
2640 	struct mii_data *mii = NULL;
2641 	int mtmp, itmp;
2642 
2643 	ifp = &sc->arpcom.ac_if;
2644 
2645 	if (!sc->bge_tbi)
2646 		mii = device_get_softc(sc->bge_miibus);
2647 
2648 	untimeout(bge_tick, sc, sc->bge_stat_ch);
2649 
2650 	/*
2651 	 * Disable all of the receiver blocks
2652 	 */
2653 	BGE_CLRBIT(sc, BGE_RX_MODE, BGE_RXMODE_ENABLE);
2654 	BGE_CLRBIT(sc, BGE_RBDI_MODE, BGE_RBDIMODE_ENABLE);
2655 	BGE_CLRBIT(sc, BGE_RXLP_MODE, BGE_RXLPMODE_ENABLE);
2656 	BGE_CLRBIT(sc, BGE_RXLS_MODE, BGE_RXLSMODE_ENABLE);
2657 	BGE_CLRBIT(sc, BGE_RDBDI_MODE, BGE_RBDIMODE_ENABLE);
2658 	BGE_CLRBIT(sc, BGE_RDC_MODE, BGE_RDCMODE_ENABLE);
2659 	BGE_CLRBIT(sc, BGE_RBDC_MODE, BGE_RBDCMODE_ENABLE);
2660 
2661 	/*
2662 	 * Disable all of the transmit blocks
2663 	 */
2664 	BGE_CLRBIT(sc, BGE_SRS_MODE, BGE_SRSMODE_ENABLE);
2665 	BGE_CLRBIT(sc, BGE_SBDI_MODE, BGE_SBDIMODE_ENABLE);
2666 	BGE_CLRBIT(sc, BGE_SDI_MODE, BGE_SDIMODE_ENABLE);
2667 	BGE_CLRBIT(sc, BGE_RDMA_MODE, BGE_RDMAMODE_ENABLE);
2668 	BGE_CLRBIT(sc, BGE_SDC_MODE, BGE_SDCMODE_ENABLE);
2669 	BGE_CLRBIT(sc, BGE_DMAC_MODE, BGE_DMACMODE_ENABLE);
2670 	BGE_CLRBIT(sc, BGE_SBDC_MODE, BGE_SBDCMODE_ENABLE);
2671 
2672 	/*
2673 	 * Shut down all of the memory managers and related
2674 	 * state machines.
2675 	 */
2676 	BGE_CLRBIT(sc, BGE_HCC_MODE, BGE_HCCMODE_ENABLE);
2677 	BGE_CLRBIT(sc, BGE_WDMA_MODE, BGE_WDMAMODE_ENABLE);
2678 	BGE_CLRBIT(sc, BGE_MBCF_MODE, BGE_MBCFMODE_ENABLE);
2679 	CSR_WRITE_4(sc, BGE_FTQ_RESET, 0xFFFFFFFF);
2680 	CSR_WRITE_4(sc, BGE_FTQ_RESET, 0);
2681 	BGE_CLRBIT(sc, BGE_BMAN_MODE, BGE_BMANMODE_ENABLE);
2682 	BGE_CLRBIT(sc, BGE_MARB_MODE, BGE_MARBMODE_ENABLE);
2683 
2684 	/* Disable host interrupts. */
2685 	BGE_SETBIT(sc, BGE_PCI_MISC_CTL, BGE_PCIMISCCTL_MASK_PCI_INTR);
2686 	CSR_WRITE_4(sc, BGE_MBX_IRQ0_LO, 1);
2687 
2688 	/*
2689 	 * Tell firmware we're shutting down.
2690 	 */
2691 	BGE_CLRBIT(sc, BGE_MODE_CTL, BGE_MODECTL_STACKUP);
2692 
2693 	/* Free the RX lists. */
2694 	bge_free_rx_ring_std(sc);
2695 
2696 	/* Free jumbo RX list. */
2697 	bge_free_rx_ring_jumbo(sc);
2698 
2699 	/* Free TX buffers. */
2700 	bge_free_tx_ring(sc);
2701 
2702 	/*
2703 	 * Isolate/power down the PHY, but leave the media selection
2704 	 * unchanged so that things will be put back to normal when
2705 	 * we bring the interface back up.
2706 	 */
2707 	if (!sc->bge_tbi) {
2708 		itmp = ifp->if_flags;
2709 		ifp->if_flags |= IFF_UP;
2710 		ifm = mii->mii_media.ifm_cur;
2711 		mtmp = ifm->ifm_media;
2712 		ifm->ifm_media = IFM_ETHER|IFM_NONE;
2713 		mii_mediachg(mii);
2714 		ifm->ifm_media = mtmp;
2715 		ifp->if_flags = itmp;
2716 	}
2717 
2718 	sc->bge_link = 0;
2719 
2720 	sc->bge_tx_saved_considx = BGE_TXCONS_UNSET;
2721 
2722 	ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE);
2723 
2724 	return;
2725 }
2726 
2727 /*
2728  * Stop all chip I/O so that the kernel's probe routines don't
2729  * get confused by errant DMAs when rebooting.
2730  */
2731 static void
2732 bge_shutdown(dev)
2733 	device_t dev;
2734 {
2735 	struct bge_softc *sc;
2736 
2737 	sc = device_get_softc(dev);
2738 
2739 	bge_stop(sc);
2740 	bge_reset(sc);
2741 
2742 	return;
2743 }
2744