xref: /freebsd/sys/dev/bge/if_bge.c (revision 42c159fe388a3765f69860c84183700af37aca8a)
1 /*
2  * Copyright (c) 2001 Wind River Systems
3  * Copyright (c) 1997, 1998, 1999, 2001
4  *	Bill Paul <wpaul@windriver.com>.  All rights reserved.
5  *
6  * Redistribution and use in source and binary forms, with or without
7  * modification, are permitted provided that the following conditions
8  * are met:
9  * 1. Redistributions of source code must retain the above copyright
10  *    notice, this list of conditions and the following disclaimer.
11  * 2. Redistributions in binary form must reproduce the above copyright
12  *    notice, this list of conditions and the following disclaimer in the
13  *    documentation and/or other materials provided with the distribution.
14  * 3. All advertising materials mentioning features or use of this software
15  *    must display the following acknowledgement:
16  *	This product includes software developed by Bill Paul.
17  * 4. Neither the name of the author nor the names of any co-contributors
18  *    may be used to endorse or promote products derived from this software
19  *    without specific prior written permission.
20  *
21  * THIS SOFTWARE IS PROVIDED BY Bill Paul AND CONTRIBUTORS ``AS IS'' AND
22  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
23  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
24  * ARE DISCLAIMED.  IN NO EVENT SHALL Bill Paul OR THE VOICES IN HIS HEAD
25  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
26  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
27  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
28  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
29  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
30  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF
31  * THE POSSIBILITY OF SUCH DAMAGE.
32  *
33  * $FreeBSD$
34  */
35 
36 /*
37  * Broadcom BCM570x family gigabit ethernet driver for FreeBSD.
38  *
39  * Written by Bill Paul <wpaul@windriver.com>
40  * Senior Engineer, Wind River Systems
41  */
42 
43 /*
44  * The Broadcom BCM5700 is based on technology originally developed by
45  * Alteon Networks as part of the Tigon I and Tigon II gigabit ethernet
46  * MAC chips. The BCM5700, sometimes refered to as the Tigon III, has
47  * two on-board MIPS R4000 CPUs and can have as much as 16MB of external
48  * SSRAM. The BCM5700 supports TCP, UDP and IP checksum offload, jumbo
49  * frames, highly configurable RX filtering, and 16 RX and TX queues
50  * (which, along with RX filter rules, can be used for QOS applications).
51  * Other features, such as TCP segmentation, may be available as part
52  * of value-added firmware updates. Unlike the Tigon I and Tigon II,
53  * firmware images can be stored in hardware and need not be compiled
54  * into the driver.
55  *
56  * The BCM5700 supports the PCI v2.2 and PCI-X v1.0 standards, and will
57  * function in a 32-bit/64-bit 33/66Mhz bus, or a 64-bit/133Mhz bus.
58  *
59  * The BCM5701 is a single-chip solution incorporating both the BCM5700
60  * MAC and a BCM5401 10/100/1000 PHY. Unlike the BCM5700, the BCM5701
61  * does not support external SSRAM.
62  *
63  * Broadcom also produces a variation of the BCM5700 under the "Altima"
64  * brand name, which is functionally similar but lacks PCI-X support.
65  *
66  * Without external SSRAM, you can only have at most 4 TX rings,
67  * and the use of the mini RX ring is disabled. This seems to imply
68  * that these features are simply not available on the BCM5701. As a
69  * result, this driver does not implement any support for the mini RX
70  * ring.
71  */
72 
73 #include <sys/param.h>
74 #include <sys/systm.h>
75 #include <sys/sockio.h>
76 #include <sys/mbuf.h>
77 #include <sys/malloc.h>
78 #include <sys/kernel.h>
79 #include <sys/socket.h>
80 #include <sys/queue.h>
81 
82 #include <net/if.h>
83 #include <net/if_arp.h>
84 #include <net/ethernet.h>
85 #include <net/if_dl.h>
86 #include <net/if_media.h>
87 
88 #include <net/bpf.h>
89 
90 #include <net/if_types.h>
91 #include <net/if_vlan_var.h>
92 
93 #include <netinet/in_systm.h>
94 #include <netinet/in.h>
95 #include <netinet/ip.h>
96 
97 #include <vm/vm.h>              /* for vtophys */
98 #include <vm/pmap.h>            /* for vtophys */
99 #include <machine/clock.h>      /* for DELAY */
100 #include <machine/bus_memio.h>
101 #include <machine/bus.h>
102 #include <machine/resource.h>
103 #include <sys/bus.h>
104 #include <sys/rman.h>
105 
106 #include <dev/mii/mii.h>
107 #include <dev/mii/miivar.h>
108 #include <dev/mii/miidevs.h>
109 #include <dev/mii/brgphyreg.h>
110 
111 #include <pci/pcireg.h>
112 #include <pci/pcivar.h>
113 
114 #include <dev/bge/if_bgereg.h>
115 
116 #define BGE_CSUM_FEATURES	(CSUM_IP | CSUM_TCP | CSUM_UDP | CSUM_IP_FRAGS)
117 
118 MODULE_DEPEND(bge, miibus, 1, 1, 1);
119 
120 /* "controller miibus0" required.  See GENERIC if you get errors here. */
121 #include "miibus_if.h"
122 
123 #if !defined(lint)
124 static const char rcsid[] =
125   "$FreeBSD$";
126 #endif
127 
128 /*
129  * Various supported device vendors/types and their names. Note: the
130  * spec seems to indicate that the hardware still has Alteon's vendor
131  * ID burned into it, though it will always be overriden by the vendor
132  * ID in the EEPROM. Just to be safe, we cover all possibilities.
133  */
134 
135 static struct bge_type bge_devs[] = {
136 	{ ALT_VENDORID,	ALT_DEVICEID_BCM5700,
137 		"Broadcom BCM5700 Gigabit Ethernet" },
138 	{ ALT_VENDORID,	ALT_DEVICEID_BCM5701,
139 		"Broadcom BCM5701 Gigabit Ethernet" },
140 	{ BCOM_VENDORID, BCOM_DEVICEID_BCM5700,
141 		"Broadcom BCM5700 Gigabit Ethernet" },
142 	{ BCOM_VENDORID, BCOM_DEVICEID_BCM5701,
143 		"Broadcom BCM5701 Gigabit Ethernet" },
144 	{ SK_VENDORID, SK_DEVICEID_ALTIMA,
145 		"SysKonnect Gigabit Ethernet" },
146 	{ ALTIMA_VENDORID, ALTIMA_DEVICE_AC1000,
147 		"Altima AC1000 Gigabit Ethernet" },
148 	{ 0, 0, NULL }
149 };
150 
151 static int bge_probe		(device_t);
152 static int bge_attach		(device_t);
153 static int bge_detach		(device_t);
154 static void bge_release_resources
155 				(struct bge_softc *);
156 static void bge_txeof		(struct bge_softc *);
157 static void bge_rxeof		(struct bge_softc *);
158 
159 static void bge_tick		(void *);
160 static void bge_stats_update	(struct bge_softc *);
161 static int bge_encap		(struct bge_softc *, struct mbuf *,
162 					u_int32_t *);
163 
164 static void bge_intr		(void *);
165 static void bge_start		(struct ifnet *);
166 static int bge_ioctl		(struct ifnet *, u_long, caddr_t);
167 static void bge_init		(void *);
168 static void bge_stop		(struct bge_softc *);
169 static void bge_watchdog		(struct ifnet *);
170 static void bge_shutdown		(device_t);
171 static int bge_ifmedia_upd	(struct ifnet *);
172 static void bge_ifmedia_sts	(struct ifnet *, struct ifmediareq *);
173 
174 static u_int8_t	bge_eeprom_getbyte	(struct bge_softc *, int, u_int8_t *);
175 static int bge_read_eeprom	(struct bge_softc *, caddr_t, int, int);
176 
177 static u_int32_t bge_crc	(caddr_t);
178 static void bge_setmulti	(struct bge_softc *);
179 
180 static void bge_handle_events	(struct bge_softc *);
181 static int bge_alloc_jumbo_mem	(struct bge_softc *);
182 static void bge_free_jumbo_mem	(struct bge_softc *);
183 static void *bge_jalloc		(struct bge_softc *);
184 static void bge_jfree		(caddr_t, void *);
185 static int bge_newbuf_std	(struct bge_softc *, int, struct mbuf *);
186 static int bge_newbuf_jumbo	(struct bge_softc *, int, struct mbuf *);
187 static int bge_init_rx_ring_std	(struct bge_softc *);
188 static void bge_free_rx_ring_std	(struct bge_softc *);
189 static int bge_init_rx_ring_jumbo	(struct bge_softc *);
190 static void bge_free_rx_ring_jumbo	(struct bge_softc *);
191 static void bge_free_tx_ring	(struct bge_softc *);
192 static int bge_init_tx_ring	(struct bge_softc *);
193 
194 static int bge_chipinit		(struct bge_softc *);
195 static int bge_blockinit	(struct bge_softc *);
196 
197 #ifdef notdef
198 static u_int8_t bge_vpd_readbyte(struct bge_softc *, int);
199 static void bge_vpd_read_res	(struct bge_softc *, struct vpd_res *, int);
200 static void bge_vpd_read	(struct bge_softc *);
201 #endif
202 
203 static u_int32_t bge_readmem_ind
204 				(struct bge_softc *, int);
205 static void bge_writemem_ind	(struct bge_softc *, int, int);
206 #ifdef notdef
207 static u_int32_t bge_readreg_ind
208 				(struct bge_softc *, int);
209 #endif
210 static void bge_writereg_ind	(struct bge_softc *, int, int);
211 
212 static int bge_miibus_readreg	(device_t, int, int);
213 static int bge_miibus_writereg	(device_t, int, int, int);
214 static void bge_miibus_statchg	(device_t);
215 
216 static void bge_reset		(struct bge_softc *);
217 static void bge_phy_hack	(struct bge_softc *);
218 
219 static device_method_t bge_methods[] = {
220 	/* Device interface */
221 	DEVMETHOD(device_probe,		bge_probe),
222 	DEVMETHOD(device_attach,	bge_attach),
223 	DEVMETHOD(device_detach,	bge_detach),
224 	DEVMETHOD(device_shutdown,	bge_shutdown),
225 
226 	/* bus interface */
227 	DEVMETHOD(bus_print_child,	bus_generic_print_child),
228 	DEVMETHOD(bus_driver_added,	bus_generic_driver_added),
229 
230 	/* MII interface */
231 	DEVMETHOD(miibus_readreg,	bge_miibus_readreg),
232 	DEVMETHOD(miibus_writereg,	bge_miibus_writereg),
233 	DEVMETHOD(miibus_statchg,	bge_miibus_statchg),
234 
235 	{ 0, 0 }
236 };
237 
238 static driver_t bge_driver = {
239 	"bge",
240 	bge_methods,
241 	sizeof(struct bge_softc)
242 };
243 
244 static devclass_t bge_devclass;
245 
246 DRIVER_MODULE(if_bge, pci, bge_driver, bge_devclass, 0, 0);
247 DRIVER_MODULE(miibus, bge, miibus_driver, miibus_devclass, 0, 0);
248 
249 static u_int32_t
250 bge_readmem_ind(sc, off)
251 	struct bge_softc *sc;
252 	int off;
253 {
254 	device_t dev;
255 
256 	dev = sc->bge_dev;
257 
258 	pci_write_config(dev, BGE_PCI_MEMWIN_BASEADDR, off, 4);
259 	return(pci_read_config(dev, BGE_PCI_MEMWIN_DATA, 4));
260 }
261 
262 static void
263 bge_writemem_ind(sc, off, val)
264 	struct bge_softc *sc;
265 	int off, val;
266 {
267 	device_t dev;
268 
269 	dev = sc->bge_dev;
270 
271 	pci_write_config(dev, BGE_PCI_MEMWIN_BASEADDR, off, 4);
272 	pci_write_config(dev, BGE_PCI_MEMWIN_DATA, val, 4);
273 
274 	return;
275 }
276 
277 #ifdef notdef
278 static u_int32_t
279 bge_readreg_ind(sc, off)
280 	struct bge_softc *sc;
281 	int off;
282 {
283 	device_t dev;
284 
285 	dev = sc->bge_dev;
286 
287 	pci_write_config(dev, BGE_PCI_REG_BASEADDR, off, 4);
288 	return(pci_read_config(dev, BGE_PCI_REG_DATA, 4));
289 }
290 #endif
291 
292 static void
293 bge_writereg_ind(sc, off, val)
294 	struct bge_softc *sc;
295 	int off, val;
296 {
297 	device_t dev;
298 
299 	dev = sc->bge_dev;
300 
301 	pci_write_config(dev, BGE_PCI_REG_BASEADDR, off, 4);
302 	pci_write_config(dev, BGE_PCI_REG_DATA, val, 4);
303 
304 	return;
305 }
306 
307 #ifdef notdef
308 static u_int8_t
309 bge_vpd_readbyte(sc, addr)
310 	struct bge_softc *sc;
311 	int addr;
312 {
313 	int i;
314 	device_t dev;
315 	u_int32_t val;
316 
317 	dev = sc->bge_dev;
318 	pci_write_config(dev, BGE_PCI_VPD_ADDR, addr, 2);
319 	for (i = 0; i < BGE_TIMEOUT * 10; i++) {
320 		DELAY(10);
321 		if (pci_read_config(dev, BGE_PCI_VPD_ADDR, 2) & BGE_VPD_FLAG)
322 			break;
323 	}
324 
325 	if (i == BGE_TIMEOUT) {
326 		printf("bge%d: VPD read timed out\n", sc->bge_unit);
327 		return(0);
328 	}
329 
330 	val = pci_read_config(dev, BGE_PCI_VPD_DATA, 4);
331 
332 	return((val >> ((addr % 4) * 8)) & 0xFF);
333 }
334 
335 static void
336 bge_vpd_read_res(sc, res, addr)
337 	struct bge_softc *sc;
338 	struct vpd_res *res;
339 	int addr;
340 {
341 	int i;
342 	u_int8_t *ptr;
343 
344 	ptr = (u_int8_t *)res;
345 	for (i = 0; i < sizeof(struct vpd_res); i++)
346 		ptr[i] = bge_vpd_readbyte(sc, i + addr);
347 
348 	return;
349 }
350 
351 static void
352 bge_vpd_read(sc)
353 	struct bge_softc *sc;
354 {
355 	int pos = 0, i;
356 	struct vpd_res res;
357 
358 	if (sc->bge_vpd_prodname != NULL)
359 		free(sc->bge_vpd_prodname, M_DEVBUF);
360 	if (sc->bge_vpd_readonly != NULL)
361 		free(sc->bge_vpd_readonly, M_DEVBUF);
362 	sc->bge_vpd_prodname = NULL;
363 	sc->bge_vpd_readonly = NULL;
364 
365 	bge_vpd_read_res(sc, &res, pos);
366 
367 	if (res.vr_id != VPD_RES_ID) {
368 		printf("bge%d: bad VPD resource id: expected %x got %x\n",
369 			sc->bge_unit, VPD_RES_ID, res.vr_id);
370                 return;
371         }
372 
373 	pos += sizeof(res);
374 	sc->bge_vpd_prodname = malloc(res.vr_len + 1, M_DEVBUF, M_NOWAIT);
375 	for (i = 0; i < res.vr_len; i++)
376 		sc->bge_vpd_prodname[i] = bge_vpd_readbyte(sc, i + pos);
377 	sc->bge_vpd_prodname[i] = '\0';
378 	pos += i;
379 
380 	bge_vpd_read_res(sc, &res, pos);
381 
382 	if (res.vr_id != VPD_RES_READ) {
383 		printf("bge%d: bad VPD resource id: expected %x got %x\n",
384 		    sc->bge_unit, VPD_RES_READ, res.vr_id);
385 		return;
386 	}
387 
388 	pos += sizeof(res);
389 	sc->bge_vpd_readonly = malloc(res.vr_len, M_DEVBUF, M_NOWAIT);
390 	for (i = 0; i < res.vr_len + 1; i++)
391 		sc->bge_vpd_readonly[i] = bge_vpd_readbyte(sc, i + pos);
392 
393 	return;
394 }
395 #endif
396 
397 /*
398  * Read a byte of data stored in the EEPROM at address 'addr.' The
399  * BCM570x supports both the traditional bitbang interface and an
400  * auto access interface for reading the EEPROM. We use the auto
401  * access method.
402  */
403 static u_int8_t
404 bge_eeprom_getbyte(sc, addr, dest)
405 	struct bge_softc *sc;
406 	int addr;
407 	u_int8_t *dest;
408 {
409 	int i;
410 	u_int32_t byte = 0;
411 
412 	/*
413 	 * Enable use of auto EEPROM access so we can avoid
414 	 * having to use the bitbang method.
415 	 */
416 	BGE_SETBIT(sc, BGE_MISC_LOCAL_CTL, BGE_MLC_AUTO_EEPROM);
417 
418 	/* Reset the EEPROM, load the clock period. */
419 	CSR_WRITE_4(sc, BGE_EE_ADDR,
420 	    BGE_EEADDR_RESET|BGE_EEHALFCLK(BGE_HALFCLK_384SCL));
421 	DELAY(20);
422 
423 	/* Issue the read EEPROM command. */
424 	CSR_WRITE_4(sc, BGE_EE_ADDR, BGE_EE_READCMD | addr);
425 
426 	/* Wait for completion */
427 	for(i = 0; i < BGE_TIMEOUT * 10; i++) {
428 		DELAY(10);
429 		if (CSR_READ_4(sc, BGE_EE_ADDR) & BGE_EEADDR_DONE)
430 			break;
431 	}
432 
433 	if (i == BGE_TIMEOUT) {
434 		printf("bge%d: eeprom read timed out\n", sc->bge_unit);
435 		return(0);
436 	}
437 
438 	/* Get result. */
439 	byte = CSR_READ_4(sc, BGE_EE_DATA);
440 
441         *dest = (byte >> ((addr % 4) * 8)) & 0xFF;
442 
443 	return(0);
444 }
445 
446 /*
447  * Read a sequence of bytes from the EEPROM.
448  */
449 static int
450 bge_read_eeprom(sc, dest, off, cnt)
451 	struct bge_softc *sc;
452 	caddr_t dest;
453 	int off;
454 	int cnt;
455 {
456 	int err = 0, i;
457 	u_int8_t byte = 0;
458 
459 	for (i = 0; i < cnt; i++) {
460 		err = bge_eeprom_getbyte(sc, off + i, &byte);
461 		if (err)
462 			break;
463 		*(dest + i) = byte;
464 	}
465 
466 	return(err ? 1 : 0);
467 }
468 
469 static int
470 bge_miibus_readreg(dev, phy, reg)
471 	device_t dev;
472 	int phy, reg;
473 {
474 	struct bge_softc *sc;
475 	struct ifnet *ifp;
476 	u_int32_t val;
477 	int i;
478 
479 	sc = device_get_softc(dev);
480 	ifp = &sc->arpcom.ac_if;
481 
482 	if (sc->bge_asicrev == BGE_ASICREV_BCM5701_B5 && phy != 1)
483 		return(0);
484 
485 	if (ifp->if_flags & IFF_RUNNING)
486 		BGE_CLRBIT(sc, BGE_MI_MODE, BGE_MIMODE_AUTOPOLL);
487 
488 	CSR_WRITE_4(sc, BGE_MI_COMM, BGE_MICMD_READ|BGE_MICOMM_BUSY|
489 	    BGE_MIPHY(phy)|BGE_MIREG(reg));
490 
491 	for (i = 0; i < BGE_TIMEOUT; i++) {
492 		val = CSR_READ_4(sc, BGE_MI_COMM);
493 		if (!(val & BGE_MICOMM_BUSY))
494 			break;
495 	}
496 
497 	if (i == BGE_TIMEOUT) {
498 		printf("bge%d: PHY read timed out\n", sc->bge_unit);
499 		return(0);
500 	}
501 
502 	val = CSR_READ_4(sc, BGE_MI_COMM);
503 
504 	if (ifp->if_flags & IFF_RUNNING)
505 		BGE_SETBIT(sc, BGE_MI_MODE, BGE_MIMODE_AUTOPOLL);
506 
507 	if (val & BGE_MICOMM_READFAIL)
508 		return(0);
509 
510 	return(val & 0xFFFF);
511 }
512 
513 static int
514 bge_miibus_writereg(dev, phy, reg, val)
515 	device_t dev;
516 	int phy, reg, val;
517 {
518 	struct bge_softc *sc;
519 	int i;
520 
521 	sc = device_get_softc(dev);
522 
523 	CSR_WRITE_4(sc, BGE_MI_COMM, BGE_MICMD_WRITE|BGE_MICOMM_BUSY|
524 	    BGE_MIPHY(phy)|BGE_MIREG(reg)|val);
525 
526 	for (i = 0; i < BGE_TIMEOUT; i++) {
527 		if (!(CSR_READ_4(sc, BGE_MI_COMM) & BGE_MICOMM_BUSY))
528 			break;
529 	}
530 
531 	if (i == BGE_TIMEOUT) {
532 		printf("bge%d: PHY read timed out\n", sc->bge_unit);
533 		return(0);
534 	}
535 
536 	return(0);
537 }
538 
539 static void
540 bge_miibus_statchg(dev)
541 	device_t dev;
542 {
543 	struct bge_softc *sc;
544 	struct mii_data *mii;
545 
546 	sc = device_get_softc(dev);
547 	mii = device_get_softc(sc->bge_miibus);
548 
549 	BGE_CLRBIT(sc, BGE_MAC_MODE, BGE_MACMODE_PORTMODE);
550 	if (IFM_SUBTYPE(mii->mii_media_active) == IFM_1000_TX) {
551 		BGE_SETBIT(sc, BGE_MAC_MODE, BGE_PORTMODE_GMII);
552 	} else {
553 		BGE_SETBIT(sc, BGE_MAC_MODE, BGE_PORTMODE_MII);
554 	}
555 
556 	if ((mii->mii_media_active & IFM_GMASK) == IFM_FDX) {
557 		BGE_CLRBIT(sc, BGE_MAC_MODE, BGE_MACMODE_HALF_DUPLEX);
558 	} else {
559 		BGE_SETBIT(sc, BGE_MAC_MODE, BGE_MACMODE_HALF_DUPLEX);
560 	}
561 
562 	bge_phy_hack(sc);
563 
564 	return;
565 }
566 
567 /*
568  * Handle events that have triggered interrupts.
569  */
570 static void
571 bge_handle_events(sc)
572 	struct bge_softc		*sc;
573 {
574 
575 	return;
576 }
577 
578 /*
579  * Memory management for jumbo frames.
580  */
581 
582 static int
583 bge_alloc_jumbo_mem(sc)
584 	struct bge_softc		*sc;
585 {
586 	caddr_t			ptr;
587 	register int		i;
588 	struct bge_jpool_entry   *entry;
589 
590 	/* Grab a big chunk o' storage. */
591 	sc->bge_cdata.bge_jumbo_buf = contigmalloc(BGE_JMEM, M_DEVBUF,
592 		M_NOWAIT, 0, 0xffffffff, PAGE_SIZE, 0);
593 
594 	if (sc->bge_cdata.bge_jumbo_buf == NULL) {
595 		printf("bge%d: no memory for jumbo buffers!\n", sc->bge_unit);
596 		return(ENOBUFS);
597 	}
598 
599 	SLIST_INIT(&sc->bge_jfree_listhead);
600 	SLIST_INIT(&sc->bge_jinuse_listhead);
601 
602 	/*
603 	 * Now divide it up into 9K pieces and save the addresses
604 	 * in an array.
605 	 */
606 	ptr = sc->bge_cdata.bge_jumbo_buf;
607 	for (i = 0; i < BGE_JSLOTS; i++) {
608 		sc->bge_cdata.bge_jslots[i] = ptr;
609 		ptr += BGE_JLEN;
610 		entry = malloc(sizeof(struct bge_jpool_entry),
611 		    M_DEVBUF, M_NOWAIT);
612 		if (entry == NULL) {
613 			contigfree(sc->bge_cdata.bge_jumbo_buf,
614 			    BGE_JMEM, M_DEVBUF);
615 			sc->bge_cdata.bge_jumbo_buf = NULL;
616 			printf("bge%d: no memory for jumbo "
617 			    "buffer queue!\n", sc->bge_unit);
618 			return(ENOBUFS);
619 		}
620 		entry->slot = i;
621 		SLIST_INSERT_HEAD(&sc->bge_jfree_listhead,
622 		    entry, jpool_entries);
623 	}
624 
625 	return(0);
626 }
627 
628 static void
629 bge_free_jumbo_mem(sc)
630         struct bge_softc *sc;
631 {
632         int i;
633         struct bge_jpool_entry *entry;
634 
635 	for (i = 0; i < BGE_JSLOTS; i++) {
636 		entry = SLIST_FIRST(&sc->bge_jfree_listhead);
637 		SLIST_REMOVE_HEAD(&sc->bge_jfree_listhead, jpool_entries);
638 		free(entry, M_DEVBUF);
639 	}
640 
641 	contigfree(sc->bge_cdata.bge_jumbo_buf, BGE_JMEM, M_DEVBUF);
642 
643         return;
644 }
645 
646 /*
647  * Allocate a jumbo buffer.
648  */
649 static void *
650 bge_jalloc(sc)
651 	struct bge_softc		*sc;
652 {
653 	struct bge_jpool_entry   *entry;
654 
655 	entry = SLIST_FIRST(&sc->bge_jfree_listhead);
656 
657 	if (entry == NULL) {
658 		printf("bge%d: no free jumbo buffers\n", sc->bge_unit);
659 		return(NULL);
660 	}
661 
662 	SLIST_REMOVE_HEAD(&sc->bge_jfree_listhead, jpool_entries);
663 	SLIST_INSERT_HEAD(&sc->bge_jinuse_listhead, entry, jpool_entries);
664 	return(sc->bge_cdata.bge_jslots[entry->slot]);
665 }
666 
667 /*
668  * Release a jumbo buffer.
669  */
670 static void
671 bge_jfree(buf, args)
672 	caddr_t buf;
673 	void *args;
674 {
675 	struct bge_jpool_entry *entry;
676 	struct bge_softc *sc;
677 	int i;
678 
679 	/* Extract the softc struct pointer. */
680 	sc = (struct bge_softc *)args;
681 
682 	if (sc == NULL)
683 		panic("bge_jfree: can't find softc pointer!");
684 
685 	/* calculate the slot this buffer belongs to */
686 
687 	i = ((vm_offset_t)buf
688 	     - (vm_offset_t)sc->bge_cdata.bge_jumbo_buf) / BGE_JLEN;
689 
690 	if ((i < 0) || (i >= BGE_JSLOTS))
691 		panic("bge_jfree: asked to free buffer that we don't manage!");
692 
693 	entry = SLIST_FIRST(&sc->bge_jinuse_listhead);
694 	if (entry == NULL)
695 		panic("bge_jfree: buffer not in use!");
696 	entry->slot = i;
697 	SLIST_REMOVE_HEAD(&sc->bge_jinuse_listhead, jpool_entries);
698 	SLIST_INSERT_HEAD(&sc->bge_jfree_listhead, entry, jpool_entries);
699 
700 	return;
701 }
702 
703 
704 /*
705  * Intialize a standard receive ring descriptor.
706  */
707 static int
708 bge_newbuf_std(sc, i, m)
709 	struct bge_softc	*sc;
710 	int			i;
711 	struct mbuf		*m;
712 {
713 	struct mbuf		*m_new = NULL;
714 	struct bge_rx_bd	*r;
715 
716 	if (m == NULL) {
717 		MGETHDR(m_new, M_DONTWAIT, MT_DATA);
718 		if (m_new == NULL) {
719 			return(ENOBUFS);
720 		}
721 
722 		MCLGET(m_new, M_DONTWAIT);
723 		if (!(m_new->m_flags & M_EXT)) {
724 			m_freem(m_new);
725 			return(ENOBUFS);
726 		}
727 		m_new->m_len = m_new->m_pkthdr.len = MCLBYTES;
728 	} else {
729 		m_new = m;
730 		m_new->m_len = m_new->m_pkthdr.len = MCLBYTES;
731 		m_new->m_data = m_new->m_ext.ext_buf;
732 	}
733 
734 	m_adj(m_new, ETHER_ALIGN);
735 	sc->bge_cdata.bge_rx_std_chain[i] = m_new;
736 	r = &sc->bge_rdata->bge_rx_std_ring[i];
737 	BGE_HOSTADDR(r->bge_addr) = vtophys(mtod(m_new, caddr_t));
738 	r->bge_flags = BGE_RXBDFLAG_END;
739 	r->bge_len = m_new->m_len;
740 	r->bge_idx = i;
741 
742 	return(0);
743 }
744 
745 /*
746  * Initialize a jumbo receive ring descriptor. This allocates
747  * a jumbo buffer from the pool managed internally by the driver.
748  */
749 static int
750 bge_newbuf_jumbo(sc, i, m)
751 	struct bge_softc *sc;
752 	int i;
753 	struct mbuf *m;
754 {
755 	struct mbuf *m_new = NULL;
756 	struct bge_rx_bd *r;
757 
758 	if (m == NULL) {
759 		caddr_t			*buf = NULL;
760 
761 		/* Allocate the mbuf. */
762 		MGETHDR(m_new, M_DONTWAIT, MT_DATA);
763 		if (m_new == NULL) {
764 			return(ENOBUFS);
765 		}
766 
767 		/* Allocate the jumbo buffer */
768 		buf = bge_jalloc(sc);
769 		if (buf == NULL) {
770 			m_freem(m_new);
771 			printf("bge%d: jumbo allocation failed "
772 			    "-- packet dropped!\n", sc->bge_unit);
773 			return(ENOBUFS);
774 		}
775 
776 		/* Attach the buffer to the mbuf. */
777 		m_new->m_data = (void *) buf;
778 		m_new->m_len = m_new->m_pkthdr.len = BGE_JUMBO_FRAMELEN;
779 		MEXTADD(m_new, buf, BGE_JUMBO_FRAMELEN, bge_jfree,
780 		    (struct bge_softc *)sc, 0, EXT_NET_DRV);
781 	} else {
782 		m_new = m;
783 		m_new->m_data = m_new->m_ext.ext_buf;
784 		m_new->m_ext.ext_size = BGE_JUMBO_FRAMELEN;
785 	}
786 
787 	m_adj(m_new, ETHER_ALIGN);
788 	/* Set up the descriptor. */
789 	r = &sc->bge_rdata->bge_rx_jumbo_ring[i];
790 	sc->bge_cdata.bge_rx_jumbo_chain[i] = m_new;
791 	BGE_HOSTADDR(r->bge_addr) = vtophys(mtod(m_new, caddr_t));
792 	r->bge_flags = BGE_RXBDFLAG_END|BGE_RXBDFLAG_JUMBO_RING;
793 	r->bge_len = m_new->m_len;
794 	r->bge_idx = i;
795 
796 	return(0);
797 }
798 
799 /*
800  * The standard receive ring has 512 entries in it. At 2K per mbuf cluster,
801  * that's 1MB or memory, which is a lot. For now, we fill only the first
802  * 256 ring entries and hope that our CPU is fast enough to keep up with
803  * the NIC.
804  */
805 static int
806 bge_init_rx_ring_std(sc)
807 	struct bge_softc *sc;
808 {
809 	int i;
810 
811 	for (i = 0; i < BGE_SSLOTS; i++) {
812 		if (bge_newbuf_std(sc, i, NULL) == ENOBUFS)
813 			return(ENOBUFS);
814 	};
815 
816 	sc->bge_std = i - 1;
817 	CSR_WRITE_4(sc, BGE_MBX_RX_STD_PROD_LO, sc->bge_std);
818 
819 	return(0);
820 }
821 
822 static void
823 bge_free_rx_ring_std(sc)
824 	struct bge_softc *sc;
825 {
826 	int i;
827 
828 	for (i = 0; i < BGE_STD_RX_RING_CNT; i++) {
829 		if (sc->bge_cdata.bge_rx_std_chain[i] != NULL) {
830 			m_freem(sc->bge_cdata.bge_rx_std_chain[i]);
831 			sc->bge_cdata.bge_rx_std_chain[i] = NULL;
832 		}
833 		bzero((char *)&sc->bge_rdata->bge_rx_std_ring[i],
834 		    sizeof(struct bge_rx_bd));
835 	}
836 
837 	return;
838 }
839 
840 static int
841 bge_init_rx_ring_jumbo(sc)
842 	struct bge_softc *sc;
843 {
844 	int i;
845 	struct bge_rcb *rcb;
846 	struct bge_rcb_opaque *rcbo;
847 
848 	for (i = 0; i < BGE_JUMBO_RX_RING_CNT; i++) {
849 		if (bge_newbuf_jumbo(sc, i, NULL) == ENOBUFS)
850 			return(ENOBUFS);
851 	};
852 
853 	sc->bge_jumbo = i - 1;
854 
855 	rcb = &sc->bge_rdata->bge_info.bge_jumbo_rx_rcb;
856 	rcbo = (struct bge_rcb_opaque *)rcb;
857 	rcb->bge_flags = 0;
858 	CSR_WRITE_4(sc, BGE_RX_JUMBO_RCB_MAXLEN_FLAGS, rcbo->bge_reg2);
859 
860 	CSR_WRITE_4(sc, BGE_MBX_RX_JUMBO_PROD_LO, sc->bge_jumbo);
861 
862 	return(0);
863 }
864 
865 static void
866 bge_free_rx_ring_jumbo(sc)
867 	struct bge_softc *sc;
868 {
869 	int i;
870 
871 	for (i = 0; i < BGE_JUMBO_RX_RING_CNT; i++) {
872 		if (sc->bge_cdata.bge_rx_jumbo_chain[i] != NULL) {
873 			m_freem(sc->bge_cdata.bge_rx_jumbo_chain[i]);
874 			sc->bge_cdata.bge_rx_jumbo_chain[i] = NULL;
875 		}
876 		bzero((char *)&sc->bge_rdata->bge_rx_jumbo_ring[i],
877 		    sizeof(struct bge_rx_bd));
878 	}
879 
880 	return;
881 }
882 
883 static void
884 bge_free_tx_ring(sc)
885 	struct bge_softc *sc;
886 {
887 	int i;
888 
889 	if (sc->bge_rdata->bge_tx_ring == NULL)
890 		return;
891 
892 	for (i = 0; i < BGE_TX_RING_CNT; i++) {
893 		if (sc->bge_cdata.bge_tx_chain[i] != NULL) {
894 			m_freem(sc->bge_cdata.bge_tx_chain[i]);
895 			sc->bge_cdata.bge_tx_chain[i] = NULL;
896 		}
897 		bzero((char *)&sc->bge_rdata->bge_tx_ring[i],
898 		    sizeof(struct bge_tx_bd));
899 	}
900 
901 	return;
902 }
903 
904 static int
905 bge_init_tx_ring(sc)
906 	struct bge_softc *sc;
907 {
908 	sc->bge_txcnt = 0;
909 	sc->bge_tx_saved_considx = 0;
910 	CSR_WRITE_4(sc, BGE_MBX_TX_HOST_PROD0_LO, 0);
911 	CSR_WRITE_4(sc, BGE_MBX_TX_NIC_PROD0_LO, 0);
912 
913 	return(0);
914 }
915 
916 #define BGE_POLY	0xEDB88320
917 
918 static u_int32_t
919 bge_crc(addr)
920 	caddr_t addr;
921 {
922 	u_int32_t idx, bit, data, crc;
923 
924 	/* Compute CRC for the address value. */
925 	crc = 0xFFFFFFFF; /* initial value */
926 
927 	for (idx = 0; idx < 6; idx++) {
928 		for (data = *addr++, bit = 0; bit < 8; bit++, data >>= 1)
929 			crc = (crc >> 1) ^ (((crc ^ data) & 1) ? BGE_POLY : 0);
930 	}
931 
932 	return(crc & 0x7F);
933 }
934 
935 static void
936 bge_setmulti(sc)
937 	struct bge_softc *sc;
938 {
939 	struct ifnet *ifp;
940 	struct ifmultiaddr *ifma;
941 	u_int32_t hashes[4] = { 0, 0, 0, 0 };
942 	int h, i;
943 
944 	ifp = &sc->arpcom.ac_if;
945 
946 	if (ifp->if_flags & IFF_ALLMULTI || ifp->if_flags & IFF_PROMISC) {
947 		for (i = 0; i < 4; i++)
948 			CSR_WRITE_4(sc, BGE_MAR0 + (i * 4), 0xFFFFFFFF);
949 		return;
950 	}
951 
952 	/* First, zot all the existing filters. */
953 	for (i = 0; i < 4; i++)
954 		CSR_WRITE_4(sc, BGE_MAR0 + (i * 4), 0);
955 
956 	/* Now program new ones. */
957 	TAILQ_FOREACH(ifma, &ifp->if_multiaddrs, ifma_link) {
958 		if (ifma->ifma_addr->sa_family != AF_LINK)
959 			continue;
960 		h = bge_crc(LLADDR((struct sockaddr_dl *)ifma->ifma_addr));
961 		hashes[(h & 0x60) >> 5] |= 1 << (h & 0x1F);
962 	}
963 
964 	for (i = 0; i < 4; i++)
965 		CSR_WRITE_4(sc, BGE_MAR0 + (i * 4), hashes[i]);
966 
967 	return;
968 }
969 
970 /*
971  * Do endian, PCI and DMA initialization. Also check the on-board ROM
972  * self-test results.
973  */
974 static int
975 bge_chipinit(sc)
976 	struct bge_softc *sc;
977 {
978 	u_int32_t		cachesize;
979 	int			i;
980 
981 	/* Set endianness before we access any non-PCI registers. */
982 #if BYTE_ORDER == BIG_ENDIAN
983 	pci_write_config(sc->bge_dev, BGE_PCI_MISC_CTL,
984 	    BGE_BIGENDIAN_INIT, 4);
985 #else
986 	pci_write_config(sc->bge_dev, BGE_PCI_MISC_CTL,
987 	    BGE_LITTLEENDIAN_INIT, 4);
988 #endif
989 
990 	/*
991 	 * Check the 'ROM failed' bit on the RX CPU to see if
992 	 * self-tests passed.
993 	 */
994 	if (CSR_READ_4(sc, BGE_RXCPU_MODE) & BGE_RXCPUMODE_ROMFAIL) {
995 		printf("bge%d: RX CPU self-diagnostics failed!\n",
996 		    sc->bge_unit);
997 		return(ENODEV);
998 	}
999 
1000 	/* Clear the MAC control register */
1001 	CSR_WRITE_4(sc, BGE_MAC_MODE, 0);
1002 
1003 	/*
1004 	 * Clear the MAC statistics block in the NIC's
1005 	 * internal memory.
1006 	 */
1007 	for (i = BGE_STATS_BLOCK;
1008 	    i < BGE_STATS_BLOCK_END + 1; i += sizeof(u_int32_t))
1009 		BGE_MEMWIN_WRITE(sc, i, 0);
1010 
1011 	for (i = BGE_STATUS_BLOCK;
1012 	    i < BGE_STATUS_BLOCK_END + 1; i += sizeof(u_int32_t))
1013 		BGE_MEMWIN_WRITE(sc, i, 0);
1014 
1015 	/* Set up the PCI DMA control register. */
1016 	pci_write_config(sc->bge_dev, BGE_PCI_DMA_RW_CTL,
1017 	    BGE_PCI_READ_CMD|BGE_PCI_WRITE_CMD|0x0F, 4);
1018 
1019 	/*
1020 	 * Set up general mode register.
1021 	 */
1022 	CSR_WRITE_4(sc, BGE_MODE_CTL, BGE_MODECTL_WORDSWAP_NONFRAME|
1023 	    BGE_MODECTL_BYTESWAP_DATA|BGE_MODECTL_WORDSWAP_DATA|
1024 	    BGE_MODECTL_MAC_ATTN_INTR|BGE_MODECTL_HOST_SEND_BDS|
1025 	    BGE_MODECTL_NO_RX_CRC|BGE_MODECTL_TX_NO_PHDR_CSUM|
1026 	    BGE_MODECTL_RX_NO_PHDR_CSUM);
1027 
1028 	/* Get cache line size. */
1029 	cachesize = pci_read_config(sc->bge_dev, BGE_PCI_CACHESZ, 1);
1030 
1031 	/*
1032 	 * Avoid violating PCI spec on certain chip revs.
1033 	 */
1034 	if (pci_read_config(sc->bge_dev, BGE_PCI_CMD, 4) & PCIM_CMD_MWIEN) {
1035 		switch(cachesize) {
1036 		case 1:
1037 			PCI_SETBIT(sc->bge_dev, BGE_PCI_DMA_RW_CTL,
1038 			    BGE_PCI_WRITE_BNDRY_16BYTES, 4);
1039 			break;
1040 		case 2:
1041 			PCI_SETBIT(sc->bge_dev, BGE_PCI_DMA_RW_CTL,
1042 			    BGE_PCI_WRITE_BNDRY_32BYTES, 4);
1043 			break;
1044 		case 4:
1045 			PCI_SETBIT(sc->bge_dev, BGE_PCI_DMA_RW_CTL,
1046 			    BGE_PCI_WRITE_BNDRY_64BYTES, 4);
1047 			break;
1048 		case 8:
1049 			PCI_SETBIT(sc->bge_dev, BGE_PCI_DMA_RW_CTL,
1050 			    BGE_PCI_WRITE_BNDRY_128BYTES, 4);
1051 			break;
1052 		case 16:
1053 			PCI_SETBIT(sc->bge_dev, BGE_PCI_DMA_RW_CTL,
1054 			    BGE_PCI_WRITE_BNDRY_256BYTES, 4);
1055 			break;
1056 		case 32:
1057 			PCI_SETBIT(sc->bge_dev, BGE_PCI_DMA_RW_CTL,
1058 			    BGE_PCI_WRITE_BNDRY_512BYTES, 4);
1059 			break;
1060 		case 64:
1061 			PCI_SETBIT(sc->bge_dev, BGE_PCI_DMA_RW_CTL,
1062 			    BGE_PCI_WRITE_BNDRY_1024BYTES, 4);
1063 			break;
1064 		default:
1065 		/* Disable PCI memory write and invalidate. */
1066 			if (bootverbose)
1067 				printf("bge%d: cache line size %d not "
1068 				    "supported; disabling PCI MWI\n",
1069 				    sc->bge_unit, cachesize);
1070 			PCI_CLRBIT(sc->bge_dev, BGE_PCI_CMD,
1071 			    PCIM_CMD_MWIEN, 4);
1072 			break;
1073 		}
1074 	}
1075 
1076 #ifdef __brokenalpha__
1077 	/*
1078 	 * Must insure that we do not cross an 8K (bytes) boundary
1079 	 * for DMA reads.  Our highest limit is 1K bytes.  This is a
1080 	 * restriction on some ALPHA platforms with early revision
1081 	 * 21174 PCI chipsets, such as the AlphaPC 164lx
1082 	 */
1083 	PCI_SETBIT(sc, BGE_PCI_DMA_RW_CTL, BGE_PCI_READ_BNDRY_1024, 4);
1084 #endif
1085 
1086 	/* Set the timer prescaler (always 66Mhz) */
1087 	CSR_WRITE_4(sc, BGE_MISC_CFG, 65 << 1/*BGE_32BITTIME_66MHZ*/);
1088 
1089 	return(0);
1090 }
1091 
1092 static int
1093 bge_blockinit(sc)
1094 	struct bge_softc *sc;
1095 {
1096 	struct bge_rcb *rcb;
1097 	struct bge_rcb_opaque *rcbo;
1098 	int i;
1099 
1100 	/*
1101 	 * Initialize the memory window pointer register so that
1102 	 * we can access the first 32K of internal NIC RAM. This will
1103 	 * allow us to set up the TX send ring RCBs and the RX return
1104 	 * ring RCBs, plus other things which live in NIC memory.
1105 	 */
1106 	CSR_WRITE_4(sc, BGE_PCI_MEMWIN_BASEADDR, 0);
1107 
1108 	/* Configure mbuf memory pool */
1109 	if (sc->bge_extram) {
1110 		CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_BASEADDR, BGE_EXT_SSRAM);
1111 		CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_LEN, 0x18000);
1112 	} else {
1113 		CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_BASEADDR, BGE_BUFFPOOL_1);
1114 		CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_LEN, 0x18000);
1115 	}
1116 
1117 	/* Configure DMA resource pool */
1118 	CSR_WRITE_4(sc, BGE_BMAN_DMA_DESCPOOL_BASEADDR, BGE_DMA_DESCRIPTORS);
1119 	CSR_WRITE_4(sc, BGE_BMAN_DMA_DESCPOOL_LEN, 0x2000);
1120 
1121 	/* Configure mbuf pool watermarks */
1122 	CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_READDMA_LOWAT, 24);
1123 	CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_MACRX_LOWAT, 24);
1124 	CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_HIWAT, 48);
1125 
1126 	/* Configure DMA resource watermarks */
1127 	CSR_WRITE_4(sc, BGE_BMAN_DMA_DESCPOOL_LOWAT, 5);
1128 	CSR_WRITE_4(sc, BGE_BMAN_DMA_DESCPOOL_HIWAT, 10);
1129 
1130 	/* Enable buffer manager */
1131 	CSR_WRITE_4(sc, BGE_BMAN_MODE,
1132 	    BGE_BMANMODE_ENABLE|BGE_BMANMODE_LOMBUF_ATTN);
1133 
1134 	/* Poll for buffer manager start indication */
1135 	for (i = 0; i < BGE_TIMEOUT; i++) {
1136 		if (CSR_READ_4(sc, BGE_BMAN_MODE) & BGE_BMANMODE_ENABLE)
1137 			break;
1138 		DELAY(10);
1139 	}
1140 
1141 	if (i == BGE_TIMEOUT) {
1142 		printf("bge%d: buffer manager failed to start\n",
1143 		    sc->bge_unit);
1144 		return(ENXIO);
1145 	}
1146 
1147 	/* Enable flow-through queues */
1148 	CSR_WRITE_4(sc, BGE_FTQ_RESET, 0xFFFFFFFF);
1149 	CSR_WRITE_4(sc, BGE_FTQ_RESET, 0);
1150 
1151 	/* Wait until queue initialization is complete */
1152 	for (i = 0; i < BGE_TIMEOUT; i++) {
1153 		if (CSR_READ_4(sc, BGE_FTQ_RESET) == 0)
1154 			break;
1155 		DELAY(10);
1156 	}
1157 
1158 	if (i == BGE_TIMEOUT) {
1159 		printf("bge%d: flow-through queue init failed\n",
1160 		    sc->bge_unit);
1161 		return(ENXIO);
1162 	}
1163 
1164 	/* Initialize the standard RX ring control block */
1165 	rcb = &sc->bge_rdata->bge_info.bge_std_rx_rcb;
1166 	BGE_HOSTADDR(rcb->bge_hostaddr) =
1167 	    vtophys(&sc->bge_rdata->bge_rx_std_ring);
1168 	rcb->bge_max_len = BGE_MAX_FRAMELEN;
1169 	if (sc->bge_extram)
1170 		rcb->bge_nicaddr = BGE_EXT_STD_RX_RINGS;
1171 	else
1172 		rcb->bge_nicaddr = BGE_STD_RX_RINGS;
1173 	rcb->bge_flags = 0;
1174 	rcbo = (struct bge_rcb_opaque *)rcb;
1175 	CSR_WRITE_4(sc, BGE_RX_STD_RCB_HADDR_HI, rcbo->bge_reg0);
1176 	CSR_WRITE_4(sc, BGE_RX_STD_RCB_HADDR_LO, rcbo->bge_reg1);
1177 	CSR_WRITE_4(sc, BGE_RX_STD_RCB_MAXLEN_FLAGS, rcbo->bge_reg2);
1178 	CSR_WRITE_4(sc, BGE_RX_STD_RCB_NICADDR, rcbo->bge_reg3);
1179 
1180 	/*
1181 	 * Initialize the jumbo RX ring control block
1182 	 * We set the 'ring disabled' bit in the flags
1183 	 * field until we're actually ready to start
1184 	 * using this ring (i.e. once we set the MTU
1185 	 * high enough to require it).
1186 	 */
1187 	rcb = &sc->bge_rdata->bge_info.bge_jumbo_rx_rcb;
1188 	BGE_HOSTADDR(rcb->bge_hostaddr) =
1189 	    vtophys(&sc->bge_rdata->bge_rx_jumbo_ring);
1190 	rcb->bge_max_len = BGE_MAX_FRAMELEN;
1191 	if (sc->bge_extram)
1192 		rcb->bge_nicaddr = BGE_EXT_JUMBO_RX_RINGS;
1193 	else
1194 		rcb->bge_nicaddr = BGE_JUMBO_RX_RINGS;
1195 	rcb->bge_flags = BGE_RCB_FLAG_RING_DISABLED;
1196 
1197 	rcbo = (struct bge_rcb_opaque *)rcb;
1198 	CSR_WRITE_4(sc, BGE_RX_JUMBO_RCB_HADDR_HI, rcbo->bge_reg0);
1199 	CSR_WRITE_4(sc, BGE_RX_JUMBO_RCB_HADDR_LO, rcbo->bge_reg1);
1200 	CSR_WRITE_4(sc, BGE_RX_JUMBO_RCB_MAXLEN_FLAGS, rcbo->bge_reg2);
1201 	CSR_WRITE_4(sc, BGE_RX_JUMBO_RCB_NICADDR, rcbo->bge_reg3);
1202 
1203 	/* Set up dummy disabled mini ring RCB */
1204 	rcb = &sc->bge_rdata->bge_info.bge_mini_rx_rcb;
1205 	rcb->bge_flags = BGE_RCB_FLAG_RING_DISABLED;
1206 	rcbo = (struct bge_rcb_opaque *)rcb;
1207 	CSR_WRITE_4(sc, BGE_RX_MINI_RCB_MAXLEN_FLAGS, rcbo->bge_reg2);
1208 
1209 	/*
1210 	 * Set the BD ring replentish thresholds. The recommended
1211 	 * values are 1/8th the number of descriptors allocated to
1212 	 * each ring.
1213 	 */
1214 	CSR_WRITE_4(sc, BGE_RBDI_STD_REPL_THRESH, BGE_STD_RX_RING_CNT/8);
1215 	CSR_WRITE_4(sc, BGE_RBDI_JUMBO_REPL_THRESH, BGE_JUMBO_RX_RING_CNT/8);
1216 
1217 	/*
1218 	 * Disable all unused send rings by setting the 'ring disabled'
1219 	 * bit in the flags field of all the TX send ring control blocks.
1220 	 * These are located in NIC memory.
1221 	 */
1222 	rcb = (struct bge_rcb *)(sc->bge_vhandle + BGE_MEMWIN_START +
1223 	    BGE_SEND_RING_RCB);
1224 	for (i = 0; i < BGE_TX_RINGS_EXTSSRAM_MAX; i++) {
1225 		rcb->bge_flags = BGE_RCB_FLAG_RING_DISABLED;
1226 		rcb->bge_max_len = 0;
1227 		rcb->bge_nicaddr = 0;
1228 		rcb++;
1229 	}
1230 
1231 	/* Configure TX RCB 0 (we use only the first ring) */
1232 	rcb = (struct bge_rcb *)(sc->bge_vhandle + BGE_MEMWIN_START +
1233 	    BGE_SEND_RING_RCB);
1234 	rcb->bge_hostaddr.bge_addr_hi = 0;
1235 	BGE_HOSTADDR(rcb->bge_hostaddr) =
1236 	    vtophys(&sc->bge_rdata->bge_tx_ring);
1237 	rcb->bge_nicaddr = BGE_NIC_TXRING_ADDR(0, BGE_TX_RING_CNT);
1238 	rcb->bge_max_len = BGE_TX_RING_CNT;
1239 	rcb->bge_flags = 0;
1240 
1241 	/* Disable all unused RX return rings */
1242 	rcb = (struct bge_rcb *)(sc->bge_vhandle + BGE_MEMWIN_START +
1243 	    BGE_RX_RETURN_RING_RCB);
1244 	for (i = 0; i < BGE_RX_RINGS_MAX; i++) {
1245 		rcb->bge_hostaddr.bge_addr_hi = 0;
1246 		rcb->bge_hostaddr.bge_addr_lo = 0;
1247 		rcb->bge_flags = BGE_RCB_FLAG_RING_DISABLED;
1248 		rcb->bge_max_len = BGE_RETURN_RING_CNT;
1249 		rcb->bge_nicaddr = 0;
1250 		CSR_WRITE_4(sc, BGE_MBX_RX_CONS0_LO +
1251 		    (i * (sizeof(u_int64_t))), 0);
1252 		rcb++;
1253 	}
1254 
1255 	/* Initialize RX ring indexes */
1256 	CSR_WRITE_4(sc, BGE_MBX_RX_STD_PROD_LO, 0);
1257 	CSR_WRITE_4(sc, BGE_MBX_RX_JUMBO_PROD_LO, 0);
1258 	CSR_WRITE_4(sc, BGE_MBX_RX_MINI_PROD_LO, 0);
1259 
1260 	/*
1261 	 * Set up RX return ring 0
1262 	 * Note that the NIC address for RX return rings is 0x00000000.
1263 	 * The return rings live entirely within the host, so the
1264 	 * nicaddr field in the RCB isn't used.
1265 	 */
1266 	rcb = (struct bge_rcb *)(sc->bge_vhandle + BGE_MEMWIN_START +
1267 	    BGE_RX_RETURN_RING_RCB);
1268 	rcb->bge_hostaddr.bge_addr_hi = 0;
1269 	BGE_HOSTADDR(rcb->bge_hostaddr) =
1270 	    vtophys(&sc->bge_rdata->bge_rx_return_ring);
1271 	rcb->bge_nicaddr = 0x00000000;
1272 	rcb->bge_max_len = BGE_RETURN_RING_CNT;
1273 	rcb->bge_flags = 0;
1274 
1275 	/* Set random backoff seed for TX */
1276 	CSR_WRITE_4(sc, BGE_TX_RANDOM_BACKOFF,
1277 	    sc->arpcom.ac_enaddr[0] + sc->arpcom.ac_enaddr[1] +
1278 	    sc->arpcom.ac_enaddr[2] + sc->arpcom.ac_enaddr[3] +
1279 	    sc->arpcom.ac_enaddr[4] + sc->arpcom.ac_enaddr[5] +
1280 	    BGE_TX_BACKOFF_SEED_MASK);
1281 
1282 	/* Set inter-packet gap */
1283 	CSR_WRITE_4(sc, BGE_TX_LENGTHS, 0x2620);
1284 
1285 	/*
1286 	 * Specify which ring to use for packets that don't match
1287 	 * any RX rules.
1288 	 */
1289 	CSR_WRITE_4(sc, BGE_RX_RULES_CFG, 0x08);
1290 
1291 	/*
1292 	 * Configure number of RX lists. One interrupt distribution
1293 	 * list, sixteen active lists, one bad frames class.
1294 	 */
1295 	CSR_WRITE_4(sc, BGE_RXLP_CFG, 0x181);
1296 
1297 	/* Inialize RX list placement stats mask. */
1298 	CSR_WRITE_4(sc, BGE_RXLP_STATS_ENABLE_MASK, 0x007FFFFF);
1299 	CSR_WRITE_4(sc, BGE_RXLP_STATS_CTL, 0x1);
1300 
1301 	/* Disable host coalescing until we get it set up */
1302 	CSR_WRITE_4(sc, BGE_HCC_MODE, 0x00000000);
1303 
1304 	/* Poll to make sure it's shut down. */
1305 	for (i = 0; i < BGE_TIMEOUT; i++) {
1306 		if (!(CSR_READ_4(sc, BGE_HCC_MODE) & BGE_HCCMODE_ENABLE))
1307 			break;
1308 		DELAY(10);
1309 	}
1310 
1311 	if (i == BGE_TIMEOUT) {
1312 		printf("bge%d: host coalescing engine failed to idle\n",
1313 		    sc->bge_unit);
1314 		return(ENXIO);
1315 	}
1316 
1317 	/* Set up host coalescing defaults */
1318 	CSR_WRITE_4(sc, BGE_HCC_RX_COAL_TICKS, sc->bge_rx_coal_ticks);
1319 	CSR_WRITE_4(sc, BGE_HCC_TX_COAL_TICKS, sc->bge_tx_coal_ticks);
1320 	CSR_WRITE_4(sc, BGE_HCC_RX_MAX_COAL_BDS, sc->bge_rx_max_coal_bds);
1321 	CSR_WRITE_4(sc, BGE_HCC_TX_MAX_COAL_BDS, sc->bge_tx_max_coal_bds);
1322 	CSR_WRITE_4(sc, BGE_HCC_RX_COAL_TICKS_INT, 0);
1323 	CSR_WRITE_4(sc, BGE_HCC_TX_COAL_TICKS_INT, 0);
1324 	CSR_WRITE_4(sc, BGE_HCC_RX_MAX_COAL_BDS_INT, 0);
1325 	CSR_WRITE_4(sc, BGE_HCC_TX_MAX_COAL_BDS_INT, 0);
1326 	CSR_WRITE_4(sc, BGE_HCC_STATS_TICKS, sc->bge_stat_ticks);
1327 
1328 	/* Set up address of statistics block */
1329 	CSR_WRITE_4(sc, BGE_HCC_STATS_BASEADDR, BGE_STATS_BLOCK);
1330 	CSR_WRITE_4(sc, BGE_HCC_STATS_ADDR_HI, 0);
1331 	CSR_WRITE_4(sc, BGE_HCC_STATS_ADDR_LO,
1332 	    vtophys(&sc->bge_rdata->bge_info.bge_stats));
1333 
1334 	/* Set up address of status block */
1335 	CSR_WRITE_4(sc, BGE_HCC_STATUSBLK_BASEADDR, BGE_STATUS_BLOCK);
1336 	CSR_WRITE_4(sc, BGE_HCC_STATUSBLK_ADDR_HI, 0);
1337 	CSR_WRITE_4(sc, BGE_HCC_STATUSBLK_ADDR_LO,
1338 	    vtophys(&sc->bge_rdata->bge_status_block));
1339 	sc->bge_rdata->bge_status_block.bge_idx[0].bge_rx_prod_idx = 0;
1340 	sc->bge_rdata->bge_status_block.bge_idx[0].bge_tx_cons_idx = 0;
1341 
1342 	/* Turn on host coalescing state machine */
1343 	CSR_WRITE_4(sc, BGE_HCC_MODE, BGE_HCCMODE_ENABLE);
1344 
1345 	/* Turn on RX BD completion state machine and enable attentions */
1346 	CSR_WRITE_4(sc, BGE_RBDC_MODE,
1347 	    BGE_RBDCMODE_ENABLE|BGE_RBDCMODE_ATTN);
1348 
1349 	/* Turn on RX list placement state machine */
1350 	CSR_WRITE_4(sc, BGE_RXLP_MODE, BGE_RXLPMODE_ENABLE);
1351 
1352 	/* Turn on RX list selector state machine. */
1353 	CSR_WRITE_4(sc, BGE_RXLS_MODE, BGE_RXLSMODE_ENABLE);
1354 
1355 	/* Turn on DMA, clear stats */
1356 	CSR_WRITE_4(sc, BGE_MAC_MODE, BGE_MACMODE_TXDMA_ENB|
1357 	    BGE_MACMODE_RXDMA_ENB|BGE_MACMODE_RX_STATS_CLEAR|
1358 	    BGE_MACMODE_TX_STATS_CLEAR|BGE_MACMODE_RX_STATS_ENB|
1359 	    BGE_MACMODE_TX_STATS_ENB|BGE_MACMODE_FRMHDR_DMA_ENB|
1360 	    (sc->bge_tbi ? BGE_PORTMODE_TBI : BGE_PORTMODE_MII));
1361 
1362 	/* Set misc. local control, enable interrupts on attentions */
1363 	CSR_WRITE_4(sc, BGE_MISC_LOCAL_CTL, BGE_MLC_INTR_ONATTN);
1364 
1365 #ifdef notdef
1366 	/* Assert GPIO pins for PHY reset */
1367 	BGE_SETBIT(sc, BGE_MISC_LOCAL_CTL, BGE_MLC_MISCIO_OUT0|
1368 	    BGE_MLC_MISCIO_OUT1|BGE_MLC_MISCIO_OUT2);
1369 	BGE_SETBIT(sc, BGE_MISC_LOCAL_CTL, BGE_MLC_MISCIO_OUTEN0|
1370 	    BGE_MLC_MISCIO_OUTEN1|BGE_MLC_MISCIO_OUTEN2);
1371 #endif
1372 
1373 	/* Turn on DMA completion state machine */
1374 	CSR_WRITE_4(sc, BGE_DMAC_MODE, BGE_DMACMODE_ENABLE);
1375 
1376 	/* Turn on write DMA state machine */
1377 	CSR_WRITE_4(sc, BGE_WDMA_MODE,
1378 	    BGE_WDMAMODE_ENABLE|BGE_WDMAMODE_ALL_ATTNS);
1379 
1380 	/* Turn on read DMA state machine */
1381 	CSR_WRITE_4(sc, BGE_RDMA_MODE,
1382 	    BGE_RDMAMODE_ENABLE|BGE_RDMAMODE_ALL_ATTNS);
1383 
1384 	/* Turn on RX data completion state machine */
1385 	CSR_WRITE_4(sc, BGE_RDC_MODE, BGE_RDCMODE_ENABLE);
1386 
1387 	/* Turn on RX BD initiator state machine */
1388 	CSR_WRITE_4(sc, BGE_RBDI_MODE, BGE_RBDIMODE_ENABLE);
1389 
1390 	/* Turn on RX data and RX BD initiator state machine */
1391 	CSR_WRITE_4(sc, BGE_RDBDI_MODE, BGE_RDBDIMODE_ENABLE);
1392 
1393 	/* Turn on Mbuf cluster free state machine */
1394 	CSR_WRITE_4(sc, BGE_MBCF_MODE, BGE_MBCFMODE_ENABLE);
1395 
1396 	/* Turn on send BD completion state machine */
1397 	CSR_WRITE_4(sc, BGE_SBDC_MODE, BGE_SBDCMODE_ENABLE);
1398 
1399 	/* Turn on send data completion state machine */
1400 	CSR_WRITE_4(sc, BGE_SDC_MODE, BGE_SDCMODE_ENABLE);
1401 
1402 	/* Turn on send data initiator state machine */
1403 	CSR_WRITE_4(sc, BGE_SDI_MODE, BGE_SDIMODE_ENABLE);
1404 
1405 	/* Turn on send BD initiator state machine */
1406 	CSR_WRITE_4(sc, BGE_SBDI_MODE, BGE_SBDIMODE_ENABLE);
1407 
1408 	/* Turn on send BD selector state machine */
1409 	CSR_WRITE_4(sc, BGE_SRS_MODE, BGE_SRSMODE_ENABLE);
1410 
1411 	CSR_WRITE_4(sc, BGE_SDI_STATS_ENABLE_MASK, 0x007FFFFF);
1412 	CSR_WRITE_4(sc, BGE_SDI_STATS_CTL,
1413 	    BGE_SDISTATSCTL_ENABLE|BGE_SDISTATSCTL_FASTER);
1414 
1415 	/* init LED register */
1416 	CSR_WRITE_4(sc, BGE_MAC_LED_CTL, 0x00000000);
1417 
1418 	/* ack/clear link change events */
1419 	CSR_WRITE_4(sc, BGE_MAC_STS, BGE_MACSTAT_SYNC_CHANGED|
1420 	    BGE_MACSTAT_CFG_CHANGED);
1421 	CSR_WRITE_4(sc, BGE_MI_STS, 0);
1422 
1423 	/* Enable PHY auto polling (for MII/GMII only) */
1424 	if (sc->bge_tbi) {
1425 		CSR_WRITE_4(sc, BGE_MI_STS, BGE_MISTS_LINK);
1426 	} else
1427 		BGE_SETBIT(sc, BGE_MI_MODE, BGE_MIMODE_AUTOPOLL|10<<16);
1428 
1429 	/* Enable link state change attentions. */
1430 	BGE_SETBIT(sc, BGE_MAC_EVT_ENB, BGE_EVTENB_LINK_CHANGED);
1431 
1432 	return(0);
1433 }
1434 
1435 /*
1436  * Probe for a Broadcom chip. Check the PCI vendor and device IDs
1437  * against our list and return its name if we find a match. Note
1438  * that since the Broadcom controller contains VPD support, we
1439  * can get the device name string from the controller itself instead
1440  * of the compiled-in string. This is a little slow, but it guarantees
1441  * we'll always announce the right product name.
1442  */
1443 static int
1444 bge_probe(dev)
1445 	device_t dev;
1446 {
1447 	struct bge_type *t;
1448 	struct bge_softc *sc;
1449 
1450 	t = bge_devs;
1451 
1452 	sc = device_get_softc(dev);
1453 	bzero(sc, sizeof(struct bge_softc));
1454 	sc->bge_unit = device_get_unit(dev);
1455 	sc->bge_dev = dev;
1456 
1457 	while(t->bge_name != NULL) {
1458 		if ((pci_get_vendor(dev) == t->bge_vid) &&
1459 		    (pci_get_device(dev) == t->bge_did)) {
1460 #ifdef notdef
1461 			bge_vpd_read(sc);
1462 			device_set_desc(dev, sc->bge_vpd_prodname);
1463 #endif
1464 			device_set_desc(dev, t->bge_name);
1465 			return(0);
1466 		}
1467 		t++;
1468 	}
1469 
1470 	return(ENXIO);
1471 }
1472 
1473 static int
1474 bge_attach(dev)
1475 	device_t dev;
1476 {
1477 	int s;
1478 	u_int32_t command;
1479 	struct ifnet *ifp;
1480 	struct bge_softc *sc;
1481 	int unit, error = 0, rid;
1482 
1483 	s = splimp();
1484 
1485 	sc = device_get_softc(dev);
1486 	unit = device_get_unit(dev);
1487 	sc->bge_dev = dev;
1488 	sc->bge_unit = unit;
1489 
1490 	/*
1491 	 * Map control/status registers.
1492 	 */
1493 	pci_enable_busmaster(dev);
1494 	pci_enable_io(dev, SYS_RES_MEMORY);
1495 	command = pci_read_config(dev, PCIR_COMMAND, 4);
1496 
1497 	if (!(command & PCIM_CMD_MEMEN)) {
1498 		printf("bge%d: failed to enable memory mapping!\n", unit);
1499 		error = ENXIO;
1500 		goto fail;
1501 	}
1502 
1503 	rid = BGE_PCI_BAR0;
1504 	sc->bge_res = bus_alloc_resource(dev, SYS_RES_MEMORY, &rid,
1505 	    0, ~0, 1, RF_ACTIVE);
1506 
1507 	if (sc->bge_res == NULL) {
1508 		printf ("bge%d: couldn't map memory\n", unit);
1509 		error = ENXIO;
1510 		goto fail;
1511 	}
1512 
1513 	sc->bge_btag = rman_get_bustag(sc->bge_res);
1514 	sc->bge_bhandle = rman_get_bushandle(sc->bge_res);
1515 	sc->bge_vhandle = (vm_offset_t)rman_get_virtual(sc->bge_res);
1516 
1517 	/*
1518 	 * XXX FIXME: rman_get_virtual() on the alpha is currently
1519 	 * broken and returns a physical address instead of a kernel
1520 	 * virtual address. Consequently, we need to do a little
1521 	 * extra mangling of the vhandle on the alpha. This should
1522 	 * eventually be fixed! The whole idea here is to get rid
1523 	 * of platform dependencies.
1524 	 */
1525 #ifdef __alpha__
1526 	if (pci_cvt_to_bwx(sc->bge_vhandle))
1527 		sc->bge_vhandle = pci_cvt_to_bwx(sc->bge_vhandle);
1528 	else
1529 		sc->bge_vhandle = pci_cvt_to_dense(sc->bge_vhandle);
1530 	sc->bge_vhandle = ALPHA_PHYS_TO_K0SEG(sc->bge_vhandle);
1531 #endif
1532 
1533 	/* Allocate interrupt */
1534 	rid = 0;
1535 
1536 	sc->bge_irq = bus_alloc_resource(dev, SYS_RES_IRQ, &rid, 0, ~0, 1,
1537 	    RF_SHAREABLE | RF_ACTIVE);
1538 
1539 	if (sc->bge_irq == NULL) {
1540 		printf("bge%d: couldn't map interrupt\n", unit);
1541 		error = ENXIO;
1542 		goto fail;
1543 	}
1544 
1545 	error = bus_setup_intr(dev, sc->bge_irq, INTR_TYPE_NET,
1546 	   bge_intr, sc, &sc->bge_intrhand);
1547 
1548 	if (error) {
1549 		bge_release_resources(sc);
1550 		printf("bge%d: couldn't set up irq\n", unit);
1551 		goto fail;
1552 	}
1553 
1554 	sc->bge_unit = unit;
1555 
1556 	/* Try to reset the chip. */
1557 	bge_reset(sc);
1558 
1559 	if (bge_chipinit(sc)) {
1560 		printf("bge%d: chip initialization failed\n", sc->bge_unit);
1561 		bge_release_resources(sc);
1562 		error = ENXIO;
1563 		goto fail;
1564 	}
1565 
1566 	/*
1567 	 * Get station address from the EEPROM.
1568 	 */
1569 	if (bge_read_eeprom(sc, (caddr_t)&sc->arpcom.ac_enaddr,
1570 	    BGE_EE_MAC_OFFSET + 2, ETHER_ADDR_LEN)) {
1571 		printf("bge%d: failed to read station address\n", unit);
1572 		bge_release_resources(sc);
1573 		error = ENXIO;
1574 		goto fail;
1575 	}
1576 
1577 	/*
1578 	 * A Broadcom chip was detected. Inform the world.
1579 	 */
1580 	printf("bge%d: Ethernet address: %6D\n", unit,
1581 	    sc->arpcom.ac_enaddr, ":");
1582 
1583 	/* Allocate the general information block and ring buffers. */
1584 	sc->bge_rdata = contigmalloc(sizeof(struct bge_ring_data), M_DEVBUF,
1585 	    M_NOWAIT, 0, 0xffffffff, PAGE_SIZE, 0);
1586 
1587 	if (sc->bge_rdata == NULL) {
1588 		bge_release_resources(sc);
1589 		error = ENXIO;
1590 		printf("bge%d: no memory for list buffers!\n", sc->bge_unit);
1591 		goto fail;
1592 	}
1593 
1594 	bzero(sc->bge_rdata, sizeof(struct bge_ring_data));
1595 
1596 	/* Try to allocate memory for jumbo buffers. */
1597 	if (bge_alloc_jumbo_mem(sc)) {
1598 		printf("bge%d: jumbo buffer allocation "
1599 		    "failed\n", sc->bge_unit);
1600 		bge_release_resources(sc);
1601 		error = ENXIO;
1602 		goto fail;
1603 	}
1604 
1605 	/* Set default tuneable values. */
1606 	sc->bge_stat_ticks = BGE_TICKS_PER_SEC;
1607 	sc->bge_rx_coal_ticks = 150;
1608 	sc->bge_tx_coal_ticks = 150;
1609 	sc->bge_rx_max_coal_bds = 64;
1610 	sc->bge_tx_max_coal_bds = 128;
1611 
1612 	/* Set up ifnet structure */
1613 	ifp = &sc->arpcom.ac_if;
1614 	ifp->if_softc = sc;
1615 	ifp->if_unit = sc->bge_unit;
1616 	ifp->if_name = "bge";
1617 	ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
1618 	ifp->if_ioctl = bge_ioctl;
1619 	ifp->if_output = ether_output;
1620 	ifp->if_start = bge_start;
1621 	ifp->if_watchdog = bge_watchdog;
1622 	ifp->if_init = bge_init;
1623 	ifp->if_mtu = ETHERMTU;
1624 	ifp->if_snd.ifq_maxlen = BGE_TX_RING_CNT - 1;
1625 	ifp->if_hwassist = BGE_CSUM_FEATURES;
1626 	ifp->if_capabilities = IFCAP_HWCSUM;
1627 	ifp->if_capenable = ifp->if_capabilities;
1628 
1629 	/* Save ASIC rev. */
1630 
1631 	sc->bge_asicrev =
1632 	    pci_read_config(dev, BGE_PCI_MISC_CTL, 4) &
1633 	    BGE_PCIMISCCTL_ASICREV;
1634 
1635 	/* The SysKonnect SK-9D41 is a 1000baseSX card. */
1636 	if ((pci_read_config(dev, BGE_PCI_SUBSYS, 4) >> 16) == SK_SUBSYSID_9D41)
1637 		sc->bge_tbi = 1;
1638 
1639 	if (sc->bge_tbi) {
1640 		ifmedia_init(&sc->bge_ifmedia, IFM_IMASK,
1641 		    bge_ifmedia_upd, bge_ifmedia_sts);
1642 		ifmedia_add(&sc->bge_ifmedia, IFM_ETHER|IFM_1000_SX, 0, NULL);
1643 		ifmedia_add(&sc->bge_ifmedia,
1644 		    IFM_ETHER|IFM_1000_SX|IFM_FDX, 0, NULL);
1645 		ifmedia_add(&sc->bge_ifmedia, IFM_ETHER|IFM_AUTO, 0, NULL);
1646 		ifmedia_set(&sc->bge_ifmedia, IFM_ETHER|IFM_AUTO);
1647 	} else {
1648 		/*
1649 		 * Do transceiver setup.
1650 		 */
1651 		if (mii_phy_probe(dev, &sc->bge_miibus,
1652 		    bge_ifmedia_upd, bge_ifmedia_sts)) {
1653 			printf("bge%d: MII without any PHY!\n", sc->bge_unit);
1654 			bge_release_resources(sc);
1655 			bge_free_jumbo_mem(sc);
1656 			error = ENXIO;
1657 			goto fail;
1658 		}
1659 	}
1660 
1661 	/*
1662 	 * Call MI attach routine.
1663 	 */
1664 	ether_ifattach(ifp, ETHER_BPF_SUPPORTED);
1665 	callout_handle_init(&sc->bge_stat_ch);
1666 
1667 fail:
1668 	splx(s);
1669 
1670 	return(error);
1671 }
1672 
1673 static int
1674 bge_detach(dev)
1675 	device_t dev;
1676 {
1677 	struct bge_softc *sc;
1678 	struct ifnet *ifp;
1679 	int s;
1680 
1681 	s = splimp();
1682 
1683 	sc = device_get_softc(dev);
1684 	ifp = &sc->arpcom.ac_if;
1685 
1686 	ether_ifdetach(ifp, ETHER_BPF_SUPPORTED);
1687 	bge_stop(sc);
1688 	bge_reset(sc);
1689 
1690 	if (sc->bge_tbi) {
1691 		ifmedia_removeall(&sc->bge_ifmedia);
1692 	} else {
1693 		bus_generic_detach(dev);
1694 		device_delete_child(dev, sc->bge_miibus);
1695 	}
1696 
1697 	bge_release_resources(sc);
1698 	bge_free_jumbo_mem(sc);
1699 
1700 	splx(s);
1701 
1702 	return(0);
1703 }
1704 
1705 static void
1706 bge_release_resources(sc)
1707 	struct bge_softc *sc;
1708 {
1709         device_t dev;
1710 
1711         dev = sc->bge_dev;
1712 
1713 	if (sc->bge_vpd_prodname != NULL)
1714 		free(sc->bge_vpd_prodname, M_DEVBUF);
1715 
1716 	if (sc->bge_vpd_readonly != NULL)
1717 		free(sc->bge_vpd_readonly, M_DEVBUF);
1718 
1719         if (sc->bge_intrhand != NULL)
1720                 bus_teardown_intr(dev, sc->bge_irq, sc->bge_intrhand);
1721 
1722         if (sc->bge_irq != NULL)
1723 		bus_release_resource(dev, SYS_RES_IRQ, 0, sc->bge_irq);
1724 
1725         if (sc->bge_res != NULL)
1726 		bus_release_resource(dev, SYS_RES_MEMORY,
1727 		    BGE_PCI_BAR0, sc->bge_res);
1728 
1729         if (sc->bge_rdata != NULL)
1730 		contigfree(sc->bge_rdata,
1731 		    sizeof(struct bge_ring_data), M_DEVBUF);
1732 
1733         return;
1734 }
1735 
1736 static void
1737 bge_reset(sc)
1738 	struct bge_softc *sc;
1739 {
1740 	device_t dev;
1741 	u_int32_t cachesize, command, pcistate;
1742 	int i, val = 0;
1743 
1744 	dev = sc->bge_dev;
1745 
1746 	/* Save some important PCI state. */
1747 	cachesize = pci_read_config(dev, BGE_PCI_CACHESZ, 4);
1748 	command = pci_read_config(dev, BGE_PCI_CMD, 4);
1749 	pcistate = pci_read_config(dev, BGE_PCI_PCISTATE, 4);
1750 
1751 	pci_write_config(dev, BGE_PCI_MISC_CTL,
1752 	    BGE_PCIMISCCTL_INDIRECT_ACCESS|BGE_PCIMISCCTL_MASK_PCI_INTR|
1753 	    BGE_PCIMISCCTL_ENDIAN_WORDSWAP|BGE_PCIMISCCTL_PCISTATE_RW, 4);
1754 
1755 	/* Issue global reset */
1756 	bge_writereg_ind(sc, BGE_MISC_CFG,
1757 	    BGE_MISCCFG_RESET_CORE_CLOCKS|(65<<1));
1758 
1759 	DELAY(1000);
1760 
1761 	/* Reset some of the PCI state that got zapped by reset */
1762 	pci_write_config(dev, BGE_PCI_MISC_CTL,
1763 	    BGE_PCIMISCCTL_INDIRECT_ACCESS|BGE_PCIMISCCTL_MASK_PCI_INTR|
1764 	    BGE_PCIMISCCTL_ENDIAN_WORDSWAP|BGE_PCIMISCCTL_PCISTATE_RW, 4);
1765 	pci_write_config(dev, BGE_PCI_CACHESZ, cachesize, 4);
1766 	pci_write_config(dev, BGE_PCI_CMD, command, 4);
1767 	bge_writereg_ind(sc, BGE_MISC_CFG, (65 << 1));
1768 
1769 	/*
1770 	 * Prevent PXE restart: write a magic number to the
1771 	 * general communications memory at 0xB50.
1772 	 */
1773 	bge_writemem_ind(sc, BGE_SOFTWARE_GENCOMM, BGE_MAGIC_NUMBER);
1774 	/*
1775 	 * Poll the value location we just wrote until
1776 	 * we see the 1's complement of the magic number.
1777 	 * This indicates that the firmware initialization
1778 	 * is complete.
1779 	 */
1780 	for (i = 0; i < BGE_TIMEOUT; i++) {
1781 		val = bge_readmem_ind(sc, BGE_SOFTWARE_GENCOMM);
1782 		if (val == ~BGE_MAGIC_NUMBER)
1783 			break;
1784 		DELAY(10);
1785 	}
1786 
1787 	if (i == BGE_TIMEOUT) {
1788 		printf("bge%d: firmware handshake timed out\n", sc->bge_unit);
1789 		return;
1790 	}
1791 
1792 	/*
1793 	 * XXX Wait for the value of the PCISTATE register to
1794 	 * return to its original pre-reset state. This is a
1795 	 * fairly good indicator of reset completion. If we don't
1796 	 * wait for the reset to fully complete, trying to read
1797 	 * from the device's non-PCI registers may yield garbage
1798 	 * results.
1799 	 */
1800 	for (i = 0; i < BGE_TIMEOUT; i++) {
1801 		if (pci_read_config(dev, BGE_PCI_PCISTATE, 4) == pcistate)
1802 			break;
1803 		DELAY(10);
1804 	}
1805 
1806 	/* Enable memory arbiter. */
1807 	CSR_WRITE_4(sc, BGE_MARB_MODE, BGE_MARBMODE_ENABLE);
1808 
1809 	/* Fix up byte swapping */
1810 	CSR_WRITE_4(sc, BGE_MODE_CTL, BGE_MODECTL_BYTESWAP_NONFRAME|
1811 	    BGE_MODECTL_BYTESWAP_DATA);
1812 
1813 	CSR_WRITE_4(sc, BGE_MAC_MODE, 0);
1814 
1815 	DELAY(10000);
1816 
1817 	return;
1818 }
1819 
1820 /*
1821  * Frame reception handling. This is called if there's a frame
1822  * on the receive return list.
1823  *
1824  * Note: we have to be able to handle two possibilities here:
1825  * 1) the frame is from the jumbo recieve ring
1826  * 2) the frame is from the standard receive ring
1827  */
1828 
1829 static void
1830 bge_rxeof(sc)
1831 	struct bge_softc *sc;
1832 {
1833 	struct ifnet *ifp;
1834 	int stdcnt = 0, jumbocnt = 0;
1835 
1836 	ifp = &sc->arpcom.ac_if;
1837 
1838 	while(sc->bge_rx_saved_considx !=
1839 	    sc->bge_rdata->bge_status_block.bge_idx[0].bge_rx_prod_idx) {
1840 		struct bge_rx_bd	*cur_rx;
1841 		u_int32_t		rxidx;
1842 		struct ether_header	*eh;
1843 		struct mbuf		*m = NULL;
1844 		u_int16_t		vlan_tag = 0;
1845 		int			have_tag = 0;
1846 
1847 		cur_rx =
1848 	    &sc->bge_rdata->bge_rx_return_ring[sc->bge_rx_saved_considx];
1849 
1850 		rxidx = cur_rx->bge_idx;
1851 		BGE_INC(sc->bge_rx_saved_considx, BGE_RETURN_RING_CNT);
1852 
1853 		if (cur_rx->bge_flags & BGE_RXBDFLAG_VLAN_TAG) {
1854 			have_tag = 1;
1855 			vlan_tag = cur_rx->bge_vlan_tag;
1856 		}
1857 
1858 		if (cur_rx->bge_flags & BGE_RXBDFLAG_JUMBO_RING) {
1859 			BGE_INC(sc->bge_jumbo, BGE_JUMBO_RX_RING_CNT);
1860 			m = sc->bge_cdata.bge_rx_jumbo_chain[rxidx];
1861 			sc->bge_cdata.bge_rx_jumbo_chain[rxidx] = NULL;
1862 			jumbocnt++;
1863 			if (cur_rx->bge_flags & BGE_RXBDFLAG_ERROR) {
1864 				ifp->if_ierrors++;
1865 				bge_newbuf_jumbo(sc, sc->bge_jumbo, m);
1866 				continue;
1867 			}
1868 			if (bge_newbuf_jumbo(sc,
1869 			    sc->bge_jumbo, NULL) == ENOBUFS) {
1870 				ifp->if_ierrors++;
1871 				bge_newbuf_jumbo(sc, sc->bge_jumbo, m);
1872 				continue;
1873 			}
1874 		} else {
1875 			BGE_INC(sc->bge_std, BGE_STD_RX_RING_CNT);
1876 			m = sc->bge_cdata.bge_rx_std_chain[rxidx];
1877 			sc->bge_cdata.bge_rx_std_chain[rxidx] = NULL;
1878 			stdcnt++;
1879 			if (cur_rx->bge_flags & BGE_RXBDFLAG_ERROR) {
1880 				ifp->if_ierrors++;
1881 				bge_newbuf_std(sc, sc->bge_std, m);
1882 				continue;
1883 			}
1884 			if (bge_newbuf_std(sc, sc->bge_std,
1885 			    NULL) == ENOBUFS) {
1886 				ifp->if_ierrors++;
1887 				bge_newbuf_std(sc, sc->bge_std, m);
1888 				continue;
1889 			}
1890 		}
1891 
1892 		ifp->if_ipackets++;
1893 		eh = mtod(m, struct ether_header *);
1894 		m->m_pkthdr.len = m->m_len = cur_rx->bge_len;
1895 		m->m_pkthdr.rcvif = ifp;
1896 
1897 		/* Remove header from mbuf and pass it on. */
1898 		m_adj(m, sizeof(struct ether_header));
1899 
1900 #if 0 /* currently broken for some packets, possibly related to TCP options */
1901 		if (ifp->if_hwassist) {
1902 			m->m_pkthdr.csum_flags |= CSUM_IP_CHECKED;
1903 			if ((cur_rx->bge_ip_csum ^ 0xffff) == 0)
1904 				m->m_pkthdr.csum_flags |= CSUM_IP_VALID;
1905 			if (cur_rx->bge_flags & BGE_RXBDFLAG_TCP_UDP_CSUM) {
1906 				m->m_pkthdr.csum_data =
1907 				    cur_rx->bge_tcp_udp_csum;
1908 				m->m_pkthdr.csum_flags |= CSUM_DATA_VALID;
1909 			}
1910 		}
1911 #endif
1912 
1913 		/*
1914 		 * If we received a packet with a vlan tag, pass it
1915 		 * to vlan_input() instead of ether_input().
1916 		 */
1917 		if (have_tag) {
1918 			VLAN_INPUT_TAG(eh, m, vlan_tag);
1919 			have_tag = vlan_tag = 0;
1920 			continue;
1921 		}
1922 
1923 		ether_input(ifp, eh, m);
1924 	}
1925 
1926 	CSR_WRITE_4(sc, BGE_MBX_RX_CONS0_LO, sc->bge_rx_saved_considx);
1927 	if (stdcnt)
1928 		CSR_WRITE_4(sc, BGE_MBX_RX_STD_PROD_LO, sc->bge_std);
1929 	if (jumbocnt)
1930 		CSR_WRITE_4(sc, BGE_MBX_RX_JUMBO_PROD_LO, sc->bge_jumbo);
1931 
1932 	return;
1933 }
1934 
1935 static void
1936 bge_txeof(sc)
1937 	struct bge_softc *sc;
1938 {
1939 	struct bge_tx_bd *cur_tx = NULL;
1940 	struct ifnet *ifp;
1941 
1942 	ifp = &sc->arpcom.ac_if;
1943 
1944 	/*
1945 	 * Go through our tx ring and free mbufs for those
1946 	 * frames that have been sent.
1947 	 */
1948 	while (sc->bge_tx_saved_considx !=
1949 	    sc->bge_rdata->bge_status_block.bge_idx[0].bge_tx_cons_idx) {
1950 		u_int32_t		idx = 0;
1951 
1952 		idx = sc->bge_tx_saved_considx;
1953 		cur_tx = &sc->bge_rdata->bge_tx_ring[idx];
1954 		if (cur_tx->bge_flags & BGE_TXBDFLAG_END)
1955 			ifp->if_opackets++;
1956 		if (sc->bge_cdata.bge_tx_chain[idx] != NULL) {
1957 			m_freem(sc->bge_cdata.bge_tx_chain[idx]);
1958 			sc->bge_cdata.bge_tx_chain[idx] = NULL;
1959 		}
1960 		sc->bge_txcnt--;
1961 		BGE_INC(sc->bge_tx_saved_considx, BGE_TX_RING_CNT);
1962 		ifp->if_timer = 0;
1963 	}
1964 
1965 	if (cur_tx != NULL)
1966 		ifp->if_flags &= ~IFF_OACTIVE;
1967 
1968 	return;
1969 }
1970 
1971 static void
1972 bge_intr(xsc)
1973 	void *xsc;
1974 {
1975 	struct bge_softc *sc;
1976 	struct ifnet *ifp;
1977 
1978 	sc = xsc;
1979 	ifp = &sc->arpcom.ac_if;
1980 
1981 #ifdef notdef
1982 	/* Avoid this for now -- checking this register is expensive. */
1983 	/* Make sure this is really our interrupt. */
1984 	if (!(CSR_READ_4(sc, BGE_MISC_LOCAL_CTL) & BGE_MLC_INTR_STATE))
1985 		return;
1986 #endif
1987 	/* Ack interrupt and stop others from occuring. */
1988 	CSR_WRITE_4(sc, BGE_MBX_IRQ0_LO, 1);
1989 
1990 	/* Process link state changes. */
1991 	if (sc->bge_rdata->bge_status_block.bge_status &
1992 	    BGE_STATFLAG_LINKSTATE_CHANGED) {
1993 		if (sc->bge_asicrev != BGE_ASICREV_BCM5701_B5) {
1994 			sc->bge_link = 0;
1995 			untimeout(bge_tick, sc, sc->bge_stat_ch);
1996 			bge_tick(sc);
1997 		}
1998 		/* ack the event to clear/reset it */
1999 		CSR_WRITE_4(sc, BGE_MAC_STS, BGE_MACSTAT_SYNC_CHANGED|
2000 		    BGE_MACSTAT_CFG_CHANGED);
2001 		CSR_WRITE_4(sc, BGE_MI_STS, 0);
2002 	}
2003 
2004 	if (ifp->if_flags & IFF_RUNNING) {
2005 		/* Check RX return ring producer/consumer */
2006 		bge_rxeof(sc);
2007 
2008 		/* Check TX ring producer/consumer */
2009 		bge_txeof(sc);
2010 	}
2011 
2012 	bge_handle_events(sc);
2013 
2014 	/* Re-enable interrupts. */
2015 	CSR_WRITE_4(sc, BGE_MBX_IRQ0_LO, 0);
2016 
2017 	if (ifp->if_flags & IFF_RUNNING && ifp->if_snd.ifq_head != NULL)
2018 		bge_start(ifp);
2019 
2020 	return;
2021 }
2022 
2023 static void
2024 bge_tick(xsc)
2025 	void *xsc;
2026 {
2027 	struct bge_softc *sc;
2028 	struct mii_data *mii = NULL;
2029 	struct ifmedia *ifm = NULL;
2030 	struct ifnet *ifp;
2031 	int s;
2032 
2033 	sc = xsc;
2034 	ifp = &sc->arpcom.ac_if;
2035 
2036 	s = splimp();
2037 
2038 	bge_stats_update(sc);
2039 	sc->bge_stat_ch = timeout(bge_tick, sc, hz);
2040 	if (sc->bge_link)
2041 		return;
2042 
2043 	if (sc->bge_tbi) {
2044 		ifm = &sc->bge_ifmedia;
2045 		if (CSR_READ_4(sc, BGE_MAC_STS) &
2046 		    BGE_MACSTAT_TBI_PCS_SYNCHED) {
2047 			sc->bge_link++;
2048 			CSR_WRITE_4(sc, BGE_MAC_STS, 0xFFFFFFFF);
2049 			printf("bge%d: gigabit link up\n", sc->bge_unit);
2050 			if (ifp->if_snd.ifq_head != NULL)
2051 				bge_start(ifp);
2052 		}
2053 		return;
2054 	}
2055 
2056 	mii = device_get_softc(sc->bge_miibus);
2057 	mii_tick(mii);
2058 
2059 	if (!sc->bge_link && mii->mii_media_status & IFM_ACTIVE &&
2060 	    IFM_SUBTYPE(mii->mii_media_active) != IFM_NONE) {
2061 		sc->bge_link++;
2062 		if (IFM_SUBTYPE(mii->mii_media_active) == IFM_1000_TX ||
2063 		    IFM_SUBTYPE(mii->mii_media_active) == IFM_1000_SX)
2064 			printf("bge%d: gigabit link up\n",
2065 			   sc->bge_unit);
2066 		if (ifp->if_snd.ifq_head != NULL)
2067 			bge_start(ifp);
2068 	}
2069 
2070 	splx(s);
2071 
2072 	return;
2073 }
2074 
2075 static void
2076 bge_stats_update(sc)
2077 	struct bge_softc *sc;
2078 {
2079 	struct ifnet *ifp;
2080 	struct bge_stats *stats;
2081 
2082 	ifp = &sc->arpcom.ac_if;
2083 
2084 	stats = (struct bge_stats *)(sc->bge_vhandle +
2085 	    BGE_MEMWIN_START + BGE_STATS_BLOCK);
2086 
2087 	ifp->if_collisions +=
2088 	   (stats->dot3StatsSingleCollisionFrames.bge_addr_lo +
2089 	   stats->dot3StatsMultipleCollisionFrames.bge_addr_lo +
2090 	   stats->dot3StatsExcessiveCollisions.bge_addr_lo +
2091 	   stats->dot3StatsLateCollisions.bge_addr_lo) -
2092 	   ifp->if_collisions;
2093 
2094 #ifdef notdef
2095 	ifp->if_collisions +=
2096 	   (sc->bge_rdata->bge_info.bge_stats.dot3StatsSingleCollisionFrames +
2097 	   sc->bge_rdata->bge_info.bge_stats.dot3StatsMultipleCollisionFrames +
2098 	   sc->bge_rdata->bge_info.bge_stats.dot3StatsExcessiveCollisions +
2099 	   sc->bge_rdata->bge_info.bge_stats.dot3StatsLateCollisions) -
2100 	   ifp->if_collisions;
2101 #endif
2102 
2103 	return;
2104 }
2105 
2106 /*
2107  * Encapsulate an mbuf chain in the tx ring  by coupling the mbuf data
2108  * pointers to descriptors.
2109  */
2110 static int
2111 bge_encap(sc, m_head, txidx)
2112 	struct bge_softc *sc;
2113 	struct mbuf *m_head;
2114 	u_int32_t *txidx;
2115 {
2116 	struct bge_tx_bd	*f = NULL;
2117 	struct mbuf		*m;
2118 	u_int32_t		frag, cur, cnt = 0;
2119 	u_int16_t		csum_flags = 0;
2120 	struct ifvlan		*ifv = NULL;
2121 
2122 	if ((m_head->m_flags & (M_PROTO1|M_PKTHDR)) == (M_PROTO1|M_PKTHDR) &&
2123 	    m_head->m_pkthdr.rcvif != NULL &&
2124 	    m_head->m_pkthdr.rcvif->if_type == IFT_L2VLAN)
2125 		ifv = m_head->m_pkthdr.rcvif->if_softc;
2126 
2127 	m = m_head;
2128 	cur = frag = *txidx;
2129 
2130 	if (m_head->m_pkthdr.csum_flags) {
2131 		if (m_head->m_pkthdr.csum_flags & CSUM_IP)
2132 			csum_flags |= BGE_TXBDFLAG_IP_CSUM;
2133 		if (m_head->m_pkthdr.csum_flags & (CSUM_TCP | CSUM_UDP))
2134 			csum_flags |= BGE_TXBDFLAG_TCP_UDP_CSUM;
2135 		if (m_head->m_flags & M_LASTFRAG)
2136 			csum_flags |= BGE_TXBDFLAG_IP_FRAG_END;
2137 		else if (m_head->m_flags & M_FRAG)
2138 			csum_flags |= BGE_TXBDFLAG_IP_FRAG;
2139 	}
2140 
2141 	/*
2142  	 * Start packing the mbufs in this chain into
2143 	 * the fragment pointers. Stop when we run out
2144  	 * of fragments or hit the end of the mbuf chain.
2145 	 */
2146 	for (m = m_head; m != NULL; m = m->m_next) {
2147 		if (m->m_len != 0) {
2148 			f = &sc->bge_rdata->bge_tx_ring[frag];
2149 			if (sc->bge_cdata.bge_tx_chain[frag] != NULL)
2150 				break;
2151 			BGE_HOSTADDR(f->bge_addr) =
2152 			   vtophys(mtod(m, vm_offset_t));
2153 			f->bge_len = m->m_len;
2154 			f->bge_flags = csum_flags;
2155 			if (ifv != NULL) {
2156 				f->bge_flags |= BGE_TXBDFLAG_VLAN_TAG;
2157 				f->bge_vlan_tag = ifv->ifv_tag;
2158 			} else {
2159 				f->bge_vlan_tag = 0;
2160 			}
2161 			/*
2162 			 * Sanity check: avoid coming within 16 descriptors
2163 			 * of the end of the ring.
2164 			 */
2165 			if ((BGE_TX_RING_CNT - (sc->bge_txcnt + cnt)) < 16)
2166 				return(ENOBUFS);
2167 			cur = frag;
2168 			BGE_INC(frag, BGE_TX_RING_CNT);
2169 			cnt++;
2170 		}
2171 	}
2172 
2173 	if (m != NULL)
2174 		return(ENOBUFS);
2175 
2176 	if (frag == sc->bge_tx_saved_considx)
2177 		return(ENOBUFS);
2178 
2179 	sc->bge_rdata->bge_tx_ring[cur].bge_flags |= BGE_TXBDFLAG_END;
2180 	sc->bge_cdata.bge_tx_chain[cur] = m_head;
2181 	sc->bge_txcnt += cnt;
2182 
2183 	*txidx = frag;
2184 
2185 	return(0);
2186 }
2187 
2188 /*
2189  * Main transmit routine. To avoid having to do mbuf copies, we put pointers
2190  * to the mbuf data regions directly in the transmit descriptors.
2191  */
2192 static void
2193 bge_start(ifp)
2194 	struct ifnet *ifp;
2195 {
2196 	struct bge_softc *sc;
2197 	struct mbuf *m_head = NULL;
2198 	u_int32_t prodidx = 0;
2199 
2200 	sc = ifp->if_softc;
2201 
2202 	if (!sc->bge_link && ifp->if_snd.ifq_len < 10)
2203 		return;
2204 
2205 	prodidx = CSR_READ_4(sc, BGE_MBX_TX_HOST_PROD0_LO);
2206 
2207 	while(sc->bge_cdata.bge_tx_chain[prodidx] == NULL) {
2208 		IF_DEQUEUE(&ifp->if_snd, m_head);
2209 		if (m_head == NULL)
2210 			break;
2211 
2212 		/*
2213 		 * XXX
2214 		 * safety overkill.  If this is a fragmented packet chain
2215 		 * with delayed TCP/UDP checksums, then only encapsulate
2216 		 * it if we have enough descriptors to handle the entire
2217 		 * chain at once.
2218 		 * (paranoia -- may not actually be needed)
2219 		 */
2220 		if (m_head->m_flags & M_FIRSTFRAG &&
2221 		    m_head->m_pkthdr.csum_flags & (CSUM_DELAY_DATA)) {
2222 			if ((BGE_TX_RING_CNT - sc->bge_txcnt) <
2223 			    m_head->m_pkthdr.csum_data + 16) {
2224 				IF_PREPEND(&ifp->if_snd, m_head);
2225 				ifp->if_flags |= IFF_OACTIVE;
2226 				break;
2227 			}
2228 		}
2229 
2230 		/*
2231 		 * Pack the data into the transmit ring. If we
2232 		 * don't have room, set the OACTIVE flag and wait
2233 		 * for the NIC to drain the ring.
2234 		 */
2235 		if (bge_encap(sc, m_head, &prodidx)) {
2236 			IF_PREPEND(&ifp->if_snd, m_head);
2237 			ifp->if_flags |= IFF_OACTIVE;
2238 			break;
2239 		}
2240 
2241 		/*
2242 		 * If there's a BPF listener, bounce a copy of this frame
2243 		 * to him.
2244 		 */
2245 		if (ifp->if_bpf)
2246 			bpf_mtap(ifp, m_head);
2247 	}
2248 
2249 	/* Transmit */
2250 	CSR_WRITE_4(sc, BGE_MBX_TX_HOST_PROD0_LO, prodidx);
2251 
2252 	/*
2253 	 * Set a timeout in case the chip goes out to lunch.
2254 	 */
2255 	ifp->if_timer = 5;
2256 
2257 	return;
2258 }
2259 
2260 /*
2261  * If we have a BCM5400 or BCM5401 PHY, we need to properly
2262  * program its internal DSP. Failing to do this can result in
2263  * massive packet loss at 1Gb speeds.
2264  */
2265 static void
2266 bge_phy_hack(sc)
2267 	struct bge_softc *sc;
2268 {
2269 	struct bge_bcom_hack bhack[] = {
2270 	{ BRGPHY_MII_AUXCTL, 0x4C20 },
2271 	{ BRGPHY_MII_DSP_ADDR_REG, 0x0012 },
2272 	{ BRGPHY_MII_DSP_RW_PORT, 0x1804 },
2273 	{ BRGPHY_MII_DSP_ADDR_REG, 0x0013 },
2274 	{ BRGPHY_MII_DSP_RW_PORT, 0x1204 },
2275 	{ BRGPHY_MII_DSP_ADDR_REG, 0x8006 },
2276 	{ BRGPHY_MII_DSP_RW_PORT, 0x0132 },
2277 	{ BRGPHY_MII_DSP_ADDR_REG, 0x8006 },
2278 	{ BRGPHY_MII_DSP_RW_PORT, 0x0232 },
2279 	{ BRGPHY_MII_DSP_ADDR_REG, 0x201F },
2280 	{ BRGPHY_MII_DSP_RW_PORT, 0x0A20 },
2281 	{ 0, 0 } };
2282 	u_int16_t vid, did;
2283 	int i;
2284 
2285 	vid = bge_miibus_readreg(sc->bge_dev, 1, MII_PHYIDR1);
2286 	did = bge_miibus_readreg(sc->bge_dev, 1, MII_PHYIDR2);
2287 
2288 	if (MII_OUI(vid, did) == MII_OUI_xxBROADCOM &&
2289 	    (MII_MODEL(did) == MII_MODEL_xxBROADCOM_BCM5400 ||
2290 	    MII_MODEL(did) == MII_MODEL_xxBROADCOM_BCM5401)) {
2291 		i = 0;
2292 		while(bhack[i].reg) {
2293 			bge_miibus_writereg(sc->bge_dev, 1, bhack[i].reg,
2294 			    bhack[i].val);
2295 			i++;
2296 		}
2297 	}
2298 
2299 	return;
2300 }
2301 
2302 static void
2303 bge_init(xsc)
2304 	void *xsc;
2305 {
2306 	struct bge_softc *sc = xsc;
2307 	struct ifnet *ifp;
2308 	u_int16_t *m;
2309         int s;
2310 
2311 	s = splimp();
2312 
2313 	ifp = &sc->arpcom.ac_if;
2314 
2315 	if (ifp->if_flags & IFF_RUNNING)
2316 		return;
2317 
2318 	/* Cancel pending I/O and flush buffers. */
2319 	bge_stop(sc);
2320 	bge_reset(sc);
2321 	bge_chipinit(sc);
2322 
2323 	/*
2324 	 * Init the various state machines, ring
2325 	 * control blocks and firmware.
2326 	 */
2327 	if (bge_blockinit(sc)) {
2328 		printf("bge%d: initialization failure\n", sc->bge_unit);
2329 		splx(s);
2330 		return;
2331 	}
2332 
2333 	ifp = &sc->arpcom.ac_if;
2334 
2335 	/* Specify MTU. */
2336 	CSR_WRITE_4(sc, BGE_RX_MTU, ifp->if_mtu +
2337 	    ETHER_HDR_LEN + ETHER_CRC_LEN);
2338 
2339 	/* Load our MAC address. */
2340 	m = (u_int16_t *)&sc->arpcom.ac_enaddr[0];
2341 	CSR_WRITE_4(sc, BGE_MAC_ADDR1_LO, htons(m[0]));
2342 	CSR_WRITE_4(sc, BGE_MAC_ADDR1_HI, (htons(m[1]) << 16) | htons(m[2]));
2343 
2344 	/* Enable or disable promiscuous mode as needed. */
2345 	if (ifp->if_flags & IFF_PROMISC) {
2346 		BGE_SETBIT(sc, BGE_RX_MODE, BGE_RXMODE_RX_PROMISC);
2347 	} else {
2348 		BGE_CLRBIT(sc, BGE_RX_MODE, BGE_RXMODE_RX_PROMISC);
2349 	}
2350 
2351 	/* Program multicast filter. */
2352 	bge_setmulti(sc);
2353 
2354 	/* Init RX ring. */
2355 	bge_init_rx_ring_std(sc);
2356 
2357 	/* Init jumbo RX ring. */
2358 	if (ifp->if_mtu > (ETHERMTU + ETHER_HDR_LEN + ETHER_CRC_LEN))
2359 		bge_init_rx_ring_jumbo(sc);
2360 
2361 	/* Init our RX return ring index */
2362 	sc->bge_rx_saved_considx = 0;
2363 
2364 	/* Init TX ring. */
2365 	bge_init_tx_ring(sc);
2366 
2367 	/* Turn on transmitter */
2368 	BGE_SETBIT(sc, BGE_TX_MODE, BGE_TXMODE_ENABLE);
2369 
2370 	/* Turn on receiver */
2371 	BGE_SETBIT(sc, BGE_RX_MODE, BGE_RXMODE_ENABLE);
2372 
2373 	/* Tell firmware we're alive. */
2374 	BGE_SETBIT(sc, BGE_MODE_CTL, BGE_MODECTL_STACKUP);
2375 
2376 	/* Enable host interrupts. */
2377 	BGE_SETBIT(sc, BGE_PCI_MISC_CTL, BGE_PCIMISCCTL_CLEAR_INTA);
2378 	BGE_CLRBIT(sc, BGE_PCI_MISC_CTL, BGE_PCIMISCCTL_MASK_PCI_INTR);
2379 	CSR_WRITE_4(sc, BGE_MBX_IRQ0_LO, 0);
2380 
2381 	bge_ifmedia_upd(ifp);
2382 
2383 	ifp->if_flags |= IFF_RUNNING;
2384 	ifp->if_flags &= ~IFF_OACTIVE;
2385 
2386 	splx(s);
2387 
2388 	sc->bge_stat_ch = timeout(bge_tick, sc, hz);
2389 
2390 	return;
2391 }
2392 
2393 /*
2394  * Set media options.
2395  */
2396 static int
2397 bge_ifmedia_upd(ifp)
2398 	struct ifnet *ifp;
2399 {
2400 	struct bge_softc *sc;
2401 	struct mii_data *mii;
2402 	struct ifmedia *ifm;
2403 
2404 	sc = ifp->if_softc;
2405 	ifm = &sc->bge_ifmedia;
2406 
2407 	/* If this is a 1000baseX NIC, enable the TBI port. */
2408 	if (sc->bge_tbi) {
2409 		if (IFM_TYPE(ifm->ifm_media) != IFM_ETHER)
2410 			return(EINVAL);
2411 		switch(IFM_SUBTYPE(ifm->ifm_media)) {
2412 		case IFM_AUTO:
2413 			break;
2414 		case IFM_1000_SX:
2415 			if ((ifm->ifm_media & IFM_GMASK) == IFM_FDX) {
2416 				BGE_CLRBIT(sc, BGE_MAC_MODE,
2417 				    BGE_MACMODE_HALF_DUPLEX);
2418 			} else {
2419 				BGE_SETBIT(sc, BGE_MAC_MODE,
2420 				    BGE_MACMODE_HALF_DUPLEX);
2421 			}
2422 			break;
2423 		default:
2424 			return(EINVAL);
2425 		}
2426 		return(0);
2427 	}
2428 
2429 	mii = device_get_softc(sc->bge_miibus);
2430 	sc->bge_link = 0;
2431 	if (mii->mii_instance) {
2432 		struct mii_softc *miisc;
2433 		for (miisc = LIST_FIRST(&mii->mii_phys); miisc != NULL;
2434 		    miisc = LIST_NEXT(miisc, mii_list))
2435 			mii_phy_reset(miisc);
2436 	}
2437 	bge_phy_hack(sc);
2438 	mii_mediachg(mii);
2439 
2440 	return(0);
2441 }
2442 
2443 /*
2444  * Report current media status.
2445  */
2446 static void
2447 bge_ifmedia_sts(ifp, ifmr)
2448 	struct ifnet *ifp;
2449 	struct ifmediareq *ifmr;
2450 {
2451 	struct bge_softc *sc;
2452 	struct mii_data *mii;
2453 
2454 	sc = ifp->if_softc;
2455 
2456 	if (sc->bge_tbi) {
2457 		ifmr->ifm_status = IFM_AVALID;
2458 		ifmr->ifm_active = IFM_ETHER;
2459 		if (CSR_READ_4(sc, BGE_MAC_STS) &
2460 		    BGE_MACSTAT_TBI_PCS_SYNCHED)
2461 			ifmr->ifm_status |= IFM_ACTIVE;
2462 		ifmr->ifm_active |= IFM_1000_SX;
2463 		if (CSR_READ_4(sc, BGE_MAC_MODE) & BGE_MACMODE_HALF_DUPLEX)
2464 			ifmr->ifm_active |= IFM_HDX;
2465 		else
2466 			ifmr->ifm_active |= IFM_FDX;
2467 		return;
2468 	}
2469 
2470 	mii = device_get_softc(sc->bge_miibus);
2471 	mii_pollstat(mii);
2472 	ifmr->ifm_active = mii->mii_media_active;
2473 	ifmr->ifm_status = mii->mii_media_status;
2474 
2475 	return;
2476 }
2477 
2478 static int
2479 bge_ioctl(ifp, command, data)
2480 	struct ifnet *ifp;
2481 	u_long command;
2482 	caddr_t data;
2483 {
2484 	struct bge_softc *sc = ifp->if_softc;
2485 	struct ifreq *ifr = (struct ifreq *) data;
2486 	int s, mask, error = 0;
2487 	struct mii_data *mii;
2488 
2489 	s = splimp();
2490 
2491 	switch(command) {
2492 	case SIOCSIFADDR:
2493 	case SIOCGIFADDR:
2494 		error = ether_ioctl(ifp, command, data);
2495 		break;
2496 	case SIOCSIFMTU:
2497 		if (ifr->ifr_mtu > BGE_JUMBO_MTU)
2498 			error = EINVAL;
2499 		else {
2500 			ifp->if_mtu = ifr->ifr_mtu;
2501 			ifp->if_flags &= ~IFF_RUNNING;
2502 			bge_init(sc);
2503 		}
2504 		break;
2505 	case SIOCSIFFLAGS:
2506 		if (ifp->if_flags & IFF_UP) {
2507 			/*
2508 			 * If only the state of the PROMISC flag changed,
2509 			 * then just use the 'set promisc mode' command
2510 			 * instead of reinitializing the entire NIC. Doing
2511 			 * a full re-init means reloading the firmware and
2512 			 * waiting for it to start up, which may take a
2513 			 * second or two.
2514 			 */
2515 			if (ifp->if_flags & IFF_RUNNING &&
2516 			    ifp->if_flags & IFF_PROMISC &&
2517 			    !(sc->bge_if_flags & IFF_PROMISC)) {
2518 				BGE_SETBIT(sc, BGE_RX_MODE,
2519 				    BGE_RXMODE_RX_PROMISC);
2520 			} else if (ifp->if_flags & IFF_RUNNING &&
2521 			    !(ifp->if_flags & IFF_PROMISC) &&
2522 			    sc->bge_if_flags & IFF_PROMISC) {
2523 				BGE_CLRBIT(sc, BGE_RX_MODE,
2524 				    BGE_RXMODE_RX_PROMISC);
2525 			} else
2526 				bge_init(sc);
2527 		} else {
2528 			if (ifp->if_flags & IFF_RUNNING) {
2529 				bge_stop(sc);
2530 			}
2531 		}
2532 		sc->bge_if_flags = ifp->if_flags;
2533 		error = 0;
2534 		break;
2535 	case SIOCADDMULTI:
2536 	case SIOCDELMULTI:
2537 		if (ifp->if_flags & IFF_RUNNING) {
2538 			bge_setmulti(sc);
2539 			error = 0;
2540 		}
2541 		break;
2542 	case SIOCSIFMEDIA:
2543 	case SIOCGIFMEDIA:
2544 		if (sc->bge_tbi) {
2545 			error = ifmedia_ioctl(ifp, ifr,
2546 			    &sc->bge_ifmedia, command);
2547 		} else {
2548 			mii = device_get_softc(sc->bge_miibus);
2549 			error = ifmedia_ioctl(ifp, ifr,
2550 			    &mii->mii_media, command);
2551 		}
2552 		break;
2553         case SIOCSIFCAP:
2554 		mask = ifr->ifr_reqcap ^ ifp->if_capenable;
2555 		if (mask & IFCAP_HWCSUM) {
2556 			if (IFCAP_HWCSUM & ifp->if_capenable)
2557 				ifp->if_capenable &= ~IFCAP_HWCSUM;
2558 			else
2559 				ifp->if_capenable |= IFCAP_HWCSUM;
2560 		}
2561 		error = 0;
2562 		break;
2563 	default:
2564 		error = EINVAL;
2565 		break;
2566 	}
2567 
2568 	(void)splx(s);
2569 
2570 	return(error);
2571 }
2572 
2573 static void
2574 bge_watchdog(ifp)
2575 	struct ifnet *ifp;
2576 {
2577 	struct bge_softc *sc;
2578 
2579 	sc = ifp->if_softc;
2580 
2581 	printf("bge%d: watchdog timeout -- resetting\n", sc->bge_unit);
2582 
2583 	ifp->if_flags &= ~IFF_RUNNING;
2584 	bge_init(sc);
2585 
2586 	ifp->if_oerrors++;
2587 
2588 	return;
2589 }
2590 
2591 /*
2592  * Stop the adapter and free any mbufs allocated to the
2593  * RX and TX lists.
2594  */
2595 static void
2596 bge_stop(sc)
2597 	struct bge_softc *sc;
2598 {
2599 	struct ifnet *ifp;
2600 	struct ifmedia_entry *ifm;
2601 	struct mii_data *mii = NULL;
2602 	int mtmp, itmp;
2603 
2604 	ifp = &sc->arpcom.ac_if;
2605 
2606 	if (!sc->bge_tbi)
2607 		mii = device_get_softc(sc->bge_miibus);
2608 
2609 	untimeout(bge_tick, sc, sc->bge_stat_ch);
2610 
2611 	/*
2612 	 * Disable all of the receiver blocks
2613 	 */
2614 	BGE_CLRBIT(sc, BGE_RX_MODE, BGE_RXMODE_ENABLE);
2615 	BGE_CLRBIT(sc, BGE_RBDI_MODE, BGE_RBDIMODE_ENABLE);
2616 	BGE_CLRBIT(sc, BGE_RXLP_MODE, BGE_RXLPMODE_ENABLE);
2617 	BGE_CLRBIT(sc, BGE_RXLS_MODE, BGE_RXLSMODE_ENABLE);
2618 	BGE_CLRBIT(sc, BGE_RDBDI_MODE, BGE_RBDIMODE_ENABLE);
2619 	BGE_CLRBIT(sc, BGE_RDC_MODE, BGE_RDCMODE_ENABLE);
2620 	BGE_CLRBIT(sc, BGE_RBDC_MODE, BGE_RBDCMODE_ENABLE);
2621 
2622 	/*
2623 	 * Disable all of the transmit blocks
2624 	 */
2625 	BGE_CLRBIT(sc, BGE_SRS_MODE, BGE_SRSMODE_ENABLE);
2626 	BGE_CLRBIT(sc, BGE_SBDI_MODE, BGE_SBDIMODE_ENABLE);
2627 	BGE_CLRBIT(sc, BGE_SDI_MODE, BGE_SDIMODE_ENABLE);
2628 	BGE_CLRBIT(sc, BGE_RDMA_MODE, BGE_RDMAMODE_ENABLE);
2629 	BGE_CLRBIT(sc, BGE_SDC_MODE, BGE_SDCMODE_ENABLE);
2630 	BGE_CLRBIT(sc, BGE_DMAC_MODE, BGE_DMACMODE_ENABLE);
2631 	BGE_CLRBIT(sc, BGE_SBDC_MODE, BGE_SBDCMODE_ENABLE);
2632 
2633 	/*
2634 	 * Shut down all of the memory managers and related
2635 	 * state machines.
2636 	 */
2637 	BGE_CLRBIT(sc, BGE_HCC_MODE, BGE_HCCMODE_ENABLE);
2638 	BGE_CLRBIT(sc, BGE_WDMA_MODE, BGE_WDMAMODE_ENABLE);
2639 	BGE_CLRBIT(sc, BGE_MBCF_MODE, BGE_MBCFMODE_ENABLE);
2640 	CSR_WRITE_4(sc, BGE_FTQ_RESET, 0xFFFFFFFF);
2641 	CSR_WRITE_4(sc, BGE_FTQ_RESET, 0);
2642 	BGE_CLRBIT(sc, BGE_BMAN_MODE, BGE_BMANMODE_ENABLE);
2643 	BGE_CLRBIT(sc, BGE_MARB_MODE, BGE_MARBMODE_ENABLE);
2644 
2645 	/* Disable host interrupts. */
2646 	BGE_SETBIT(sc, BGE_PCI_MISC_CTL, BGE_PCIMISCCTL_MASK_PCI_INTR);
2647 	CSR_WRITE_4(sc, BGE_MBX_IRQ0_LO, 1);
2648 
2649 	/*
2650 	 * Tell firmware we're shutting down.
2651 	 */
2652 	BGE_CLRBIT(sc, BGE_MODE_CTL, BGE_MODECTL_STACKUP);
2653 
2654 	/* Free the RX lists. */
2655 	bge_free_rx_ring_std(sc);
2656 
2657 	/* Free jumbo RX list. */
2658 	bge_free_rx_ring_jumbo(sc);
2659 
2660 	/* Free TX buffers. */
2661 	bge_free_tx_ring(sc);
2662 
2663 	/*
2664 	 * Isolate/power down the PHY, but leave the media selection
2665 	 * unchanged so that things will be put back to normal when
2666 	 * we bring the interface back up.
2667 	 */
2668 	if (!sc->bge_tbi) {
2669 		itmp = ifp->if_flags;
2670 		ifp->if_flags |= IFF_UP;
2671 		ifm = mii->mii_media.ifm_cur;
2672 		mtmp = ifm->ifm_media;
2673 		ifm->ifm_media = IFM_ETHER|IFM_NONE;
2674 		mii_mediachg(mii);
2675 		ifm->ifm_media = mtmp;
2676 		ifp->if_flags = itmp;
2677 	}
2678 
2679 	sc->bge_link = 0;
2680 
2681 	sc->bge_tx_saved_considx = BGE_TXCONS_UNSET;
2682 
2683 	ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE);
2684 
2685 	return;
2686 }
2687 
2688 /*
2689  * Stop all chip I/O so that the kernel's probe routines don't
2690  * get confused by errant DMAs when rebooting.
2691  */
2692 static void
2693 bge_shutdown(dev)
2694 	device_t dev;
2695 {
2696 	struct bge_softc *sc;
2697 
2698 	sc = device_get_softc(dev);
2699 
2700 	bge_stop(sc);
2701 	bge_reset(sc);
2702 
2703 	return;
2704 }
2705