xref: /freebsd/sys/dev/bge/if_bge.c (revision 39ee7a7a6bdd1557b1c3532abf60d139798ac88b)
1 /*-
2  * Copyright (c) 2001 Wind River Systems
3  * Copyright (c) 1997, 1998, 1999, 2001
4  *	Bill Paul <wpaul@windriver.com>.  All rights reserved.
5  *
6  * Redistribution and use in source and binary forms, with or without
7  * modification, are permitted provided that the following conditions
8  * are met:
9  * 1. Redistributions of source code must retain the above copyright
10  *    notice, this list of conditions and the following disclaimer.
11  * 2. Redistributions in binary form must reproduce the above copyright
12  *    notice, this list of conditions and the following disclaimer in the
13  *    documentation and/or other materials provided with the distribution.
14  * 3. All advertising materials mentioning features or use of this software
15  *    must display the following acknowledgement:
16  *	This product includes software developed by Bill Paul.
17  * 4. Neither the name of the author nor the names of any co-contributors
18  *    may be used to endorse or promote products derived from this software
19  *    without specific prior written permission.
20  *
21  * THIS SOFTWARE IS PROVIDED BY Bill Paul AND CONTRIBUTORS ``AS IS'' AND
22  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
23  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
24  * ARE DISCLAIMED.  IN NO EVENT SHALL Bill Paul OR THE VOICES IN HIS HEAD
25  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
26  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
27  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
28  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
29  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
30  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF
31  * THE POSSIBILITY OF SUCH DAMAGE.
32  */
33 
34 #include <sys/cdefs.h>
35 __FBSDID("$FreeBSD$");
36 
37 /*
38  * Broadcom BCM57xx(x)/BCM590x NetXtreme and NetLink family Ethernet driver
39  *
40  * The Broadcom BCM5700 is based on technology originally developed by
41  * Alteon Networks as part of the Tigon I and Tigon II Gigabit Ethernet
42  * MAC chips. The BCM5700, sometimes referred to as the Tigon III, has
43  * two on-board MIPS R4000 CPUs and can have as much as 16MB of external
44  * SSRAM. The BCM5700 supports TCP, UDP and IP checksum offload, jumbo
45  * frames, highly configurable RX filtering, and 16 RX and TX queues
46  * (which, along with RX filter rules, can be used for QOS applications).
47  * Other features, such as TCP segmentation, may be available as part
48  * of value-added firmware updates. Unlike the Tigon I and Tigon II,
49  * firmware images can be stored in hardware and need not be compiled
50  * into the driver.
51  *
52  * The BCM5700 supports the PCI v2.2 and PCI-X v1.0 standards, and will
53  * function in a 32-bit/64-bit 33/66Mhz bus, or a 64-bit/133Mhz bus.
54  *
55  * The BCM5701 is a single-chip solution incorporating both the BCM5700
56  * MAC and a BCM5401 10/100/1000 PHY. Unlike the BCM5700, the BCM5701
57  * does not support external SSRAM.
58  *
59  * Broadcom also produces a variation of the BCM5700 under the "Altima"
60  * brand name, which is functionally similar but lacks PCI-X support.
61  *
62  * Without external SSRAM, you can only have at most 4 TX rings,
63  * and the use of the mini RX ring is disabled. This seems to imply
64  * that these features are simply not available on the BCM5701. As a
65  * result, this driver does not implement any support for the mini RX
66  * ring.
67  */
68 
69 #ifdef HAVE_KERNEL_OPTION_HEADERS
70 #include "opt_device_polling.h"
71 #endif
72 
73 #include <sys/param.h>
74 #include <sys/endian.h>
75 #include <sys/systm.h>
76 #include <sys/sockio.h>
77 #include <sys/mbuf.h>
78 #include <sys/malloc.h>
79 #include <sys/kernel.h>
80 #include <sys/module.h>
81 #include <sys/socket.h>
82 #include <sys/sysctl.h>
83 #include <sys/taskqueue.h>
84 
85 #include <net/if.h>
86 #include <net/if_var.h>
87 #include <net/if_arp.h>
88 #include <net/ethernet.h>
89 #include <net/if_dl.h>
90 #include <net/if_media.h>
91 
92 #include <net/bpf.h>
93 
94 #include <net/if_types.h>
95 #include <net/if_vlan_var.h>
96 
97 #include <netinet/in_systm.h>
98 #include <netinet/in.h>
99 #include <netinet/ip.h>
100 #include <netinet/tcp.h>
101 
102 #include <machine/bus.h>
103 #include <machine/resource.h>
104 #include <sys/bus.h>
105 #include <sys/rman.h>
106 
107 #include <dev/mii/mii.h>
108 #include <dev/mii/miivar.h>
109 #include "miidevs.h"
110 #include <dev/mii/brgphyreg.h>
111 
112 #ifdef __sparc64__
113 #include <dev/ofw/ofw_bus.h>
114 #include <dev/ofw/openfirm.h>
115 #include <machine/ofw_machdep.h>
116 #include <machine/ver.h>
117 #endif
118 
119 #include <dev/pci/pcireg.h>
120 #include <dev/pci/pcivar.h>
121 
122 #include <dev/bge/if_bgereg.h>
123 
124 #define	BGE_CSUM_FEATURES	(CSUM_IP | CSUM_TCP)
125 #define	ETHER_MIN_NOPAD		(ETHER_MIN_LEN - ETHER_CRC_LEN) /* i.e., 60 */
126 
127 MODULE_DEPEND(bge, pci, 1, 1, 1);
128 MODULE_DEPEND(bge, ether, 1, 1, 1);
129 MODULE_DEPEND(bge, miibus, 1, 1, 1);
130 
131 /* "device miibus" required.  See GENERIC if you get errors here. */
132 #include "miibus_if.h"
133 
134 /*
135  * Various supported device vendors/types and their names. Note: the
136  * spec seems to indicate that the hardware still has Alteon's vendor
137  * ID burned into it, though it will always be overriden by the vendor
138  * ID in the EEPROM. Just to be safe, we cover all possibilities.
139  */
140 static const struct bge_type {
141 	uint16_t	bge_vid;
142 	uint16_t	bge_did;
143 } bge_devs[] = {
144 	{ ALTEON_VENDORID,	ALTEON_DEVICEID_BCM5700 },
145 	{ ALTEON_VENDORID,	ALTEON_DEVICEID_BCM5701 },
146 
147 	{ ALTIMA_VENDORID,	ALTIMA_DEVICE_AC1000 },
148 	{ ALTIMA_VENDORID,	ALTIMA_DEVICE_AC1002 },
149 	{ ALTIMA_VENDORID,	ALTIMA_DEVICE_AC9100 },
150 
151 	{ APPLE_VENDORID,	APPLE_DEVICE_BCM5701 },
152 
153 	{ BCOM_VENDORID,	BCOM_DEVICEID_BCM5700 },
154 	{ BCOM_VENDORID,	BCOM_DEVICEID_BCM5701 },
155 	{ BCOM_VENDORID,	BCOM_DEVICEID_BCM5702 },
156 	{ BCOM_VENDORID,	BCOM_DEVICEID_BCM5702_ALT },
157 	{ BCOM_VENDORID,	BCOM_DEVICEID_BCM5702X },
158 	{ BCOM_VENDORID,	BCOM_DEVICEID_BCM5703 },
159 	{ BCOM_VENDORID,	BCOM_DEVICEID_BCM5703_ALT },
160 	{ BCOM_VENDORID,	BCOM_DEVICEID_BCM5703X },
161 	{ BCOM_VENDORID,	BCOM_DEVICEID_BCM5704C },
162 	{ BCOM_VENDORID,	BCOM_DEVICEID_BCM5704S },
163 	{ BCOM_VENDORID,	BCOM_DEVICEID_BCM5704S_ALT },
164 	{ BCOM_VENDORID,	BCOM_DEVICEID_BCM5705 },
165 	{ BCOM_VENDORID,	BCOM_DEVICEID_BCM5705F },
166 	{ BCOM_VENDORID,	BCOM_DEVICEID_BCM5705K },
167 	{ BCOM_VENDORID,	BCOM_DEVICEID_BCM5705M },
168 	{ BCOM_VENDORID,	BCOM_DEVICEID_BCM5705M_ALT },
169 	{ BCOM_VENDORID,	BCOM_DEVICEID_BCM5714C },
170 	{ BCOM_VENDORID,	BCOM_DEVICEID_BCM5714S },
171 	{ BCOM_VENDORID,	BCOM_DEVICEID_BCM5715 },
172 	{ BCOM_VENDORID,	BCOM_DEVICEID_BCM5715S },
173 	{ BCOM_VENDORID,	BCOM_DEVICEID_BCM5717 },
174 	{ BCOM_VENDORID,	BCOM_DEVICEID_BCM5718 },
175 	{ BCOM_VENDORID,	BCOM_DEVICEID_BCM5719 },
176 	{ BCOM_VENDORID,	BCOM_DEVICEID_BCM5720 },
177 	{ BCOM_VENDORID,	BCOM_DEVICEID_BCM5721 },
178 	{ BCOM_VENDORID,	BCOM_DEVICEID_BCM5722 },
179 	{ BCOM_VENDORID,	BCOM_DEVICEID_BCM5723 },
180 	{ BCOM_VENDORID,	BCOM_DEVICEID_BCM5725 },
181 	{ BCOM_VENDORID,	BCOM_DEVICEID_BCM5727 },
182 	{ BCOM_VENDORID,	BCOM_DEVICEID_BCM5750 },
183 	{ BCOM_VENDORID,	BCOM_DEVICEID_BCM5750M },
184 	{ BCOM_VENDORID,	BCOM_DEVICEID_BCM5751 },
185 	{ BCOM_VENDORID,	BCOM_DEVICEID_BCM5751F },
186 	{ BCOM_VENDORID,	BCOM_DEVICEID_BCM5751M },
187 	{ BCOM_VENDORID,	BCOM_DEVICEID_BCM5752 },
188 	{ BCOM_VENDORID,	BCOM_DEVICEID_BCM5752M },
189 	{ BCOM_VENDORID,	BCOM_DEVICEID_BCM5753 },
190 	{ BCOM_VENDORID,	BCOM_DEVICEID_BCM5753F },
191 	{ BCOM_VENDORID,	BCOM_DEVICEID_BCM5753M },
192 	{ BCOM_VENDORID,	BCOM_DEVICEID_BCM5754 },
193 	{ BCOM_VENDORID,	BCOM_DEVICEID_BCM5754M },
194 	{ BCOM_VENDORID,	BCOM_DEVICEID_BCM5755 },
195 	{ BCOM_VENDORID,	BCOM_DEVICEID_BCM5755M },
196 	{ BCOM_VENDORID,	BCOM_DEVICEID_BCM5756 },
197 	{ BCOM_VENDORID,	BCOM_DEVICEID_BCM5761 },
198 	{ BCOM_VENDORID,	BCOM_DEVICEID_BCM5761E },
199 	{ BCOM_VENDORID,	BCOM_DEVICEID_BCM5761S },
200 	{ BCOM_VENDORID,	BCOM_DEVICEID_BCM5761SE },
201 	{ BCOM_VENDORID,	BCOM_DEVICEID_BCM5762 },
202 	{ BCOM_VENDORID,	BCOM_DEVICEID_BCM5764 },
203 	{ BCOM_VENDORID,	BCOM_DEVICEID_BCM5780 },
204 	{ BCOM_VENDORID,	BCOM_DEVICEID_BCM5780S },
205 	{ BCOM_VENDORID,	BCOM_DEVICEID_BCM5781 },
206 	{ BCOM_VENDORID,	BCOM_DEVICEID_BCM5782 },
207 	{ BCOM_VENDORID,	BCOM_DEVICEID_BCM5784 },
208 	{ BCOM_VENDORID,	BCOM_DEVICEID_BCM5785F },
209 	{ BCOM_VENDORID,	BCOM_DEVICEID_BCM5785G },
210 	{ BCOM_VENDORID,	BCOM_DEVICEID_BCM5786 },
211 	{ BCOM_VENDORID,	BCOM_DEVICEID_BCM5787 },
212 	{ BCOM_VENDORID,	BCOM_DEVICEID_BCM5787F },
213 	{ BCOM_VENDORID,	BCOM_DEVICEID_BCM5787M },
214 	{ BCOM_VENDORID,	BCOM_DEVICEID_BCM5788 },
215 	{ BCOM_VENDORID,	BCOM_DEVICEID_BCM5789 },
216 	{ BCOM_VENDORID,	BCOM_DEVICEID_BCM5901 },
217 	{ BCOM_VENDORID,	BCOM_DEVICEID_BCM5901A2 },
218 	{ BCOM_VENDORID,	BCOM_DEVICEID_BCM5903M },
219 	{ BCOM_VENDORID,	BCOM_DEVICEID_BCM5906 },
220 	{ BCOM_VENDORID,	BCOM_DEVICEID_BCM5906M },
221 	{ BCOM_VENDORID,	BCOM_DEVICEID_BCM57760 },
222 	{ BCOM_VENDORID,	BCOM_DEVICEID_BCM57761 },
223 	{ BCOM_VENDORID,	BCOM_DEVICEID_BCM57762 },
224 	{ BCOM_VENDORID,	BCOM_DEVICEID_BCM57764 },
225 	{ BCOM_VENDORID,	BCOM_DEVICEID_BCM57765 },
226 	{ BCOM_VENDORID,	BCOM_DEVICEID_BCM57766 },
227 	{ BCOM_VENDORID,	BCOM_DEVICEID_BCM57767 },
228 	{ BCOM_VENDORID,	BCOM_DEVICEID_BCM57780 },
229 	{ BCOM_VENDORID,	BCOM_DEVICEID_BCM57781 },
230 	{ BCOM_VENDORID,	BCOM_DEVICEID_BCM57782 },
231 	{ BCOM_VENDORID,	BCOM_DEVICEID_BCM57785 },
232 	{ BCOM_VENDORID,	BCOM_DEVICEID_BCM57786 },
233 	{ BCOM_VENDORID,	BCOM_DEVICEID_BCM57787 },
234 	{ BCOM_VENDORID,	BCOM_DEVICEID_BCM57788 },
235 	{ BCOM_VENDORID,	BCOM_DEVICEID_BCM57790 },
236 	{ BCOM_VENDORID,	BCOM_DEVICEID_BCM57791 },
237 	{ BCOM_VENDORID,	BCOM_DEVICEID_BCM57795 },
238 
239 	{ SK_VENDORID,		SK_DEVICEID_ALTIMA },
240 
241 	{ TC_VENDORID,		TC_DEVICEID_3C996 },
242 
243 	{ FJTSU_VENDORID,	FJTSU_DEVICEID_PW008GE4 },
244 	{ FJTSU_VENDORID,	FJTSU_DEVICEID_PW008GE5 },
245 	{ FJTSU_VENDORID,	FJTSU_DEVICEID_PP250450 },
246 
247 	{ 0, 0 }
248 };
249 
250 static const struct bge_vendor {
251 	uint16_t	v_id;
252 	const char	*v_name;
253 } bge_vendors[] = {
254 	{ ALTEON_VENDORID,	"Alteon" },
255 	{ ALTIMA_VENDORID,	"Altima" },
256 	{ APPLE_VENDORID,	"Apple" },
257 	{ BCOM_VENDORID,	"Broadcom" },
258 	{ SK_VENDORID,		"SysKonnect" },
259 	{ TC_VENDORID,		"3Com" },
260 	{ FJTSU_VENDORID,	"Fujitsu" },
261 
262 	{ 0, NULL }
263 };
264 
265 static const struct bge_revision {
266 	uint32_t	br_chipid;
267 	const char	*br_name;
268 } bge_revisions[] = {
269 	{ BGE_CHIPID_BCM5700_A0,	"BCM5700 A0" },
270 	{ BGE_CHIPID_BCM5700_A1,	"BCM5700 A1" },
271 	{ BGE_CHIPID_BCM5700_B0,	"BCM5700 B0" },
272 	{ BGE_CHIPID_BCM5700_B1,	"BCM5700 B1" },
273 	{ BGE_CHIPID_BCM5700_B2,	"BCM5700 B2" },
274 	{ BGE_CHIPID_BCM5700_B3,	"BCM5700 B3" },
275 	{ BGE_CHIPID_BCM5700_ALTIMA,	"BCM5700 Altima" },
276 	{ BGE_CHIPID_BCM5700_C0,	"BCM5700 C0" },
277 	{ BGE_CHIPID_BCM5701_A0,	"BCM5701 A0" },
278 	{ BGE_CHIPID_BCM5701_B0,	"BCM5701 B0" },
279 	{ BGE_CHIPID_BCM5701_B2,	"BCM5701 B2" },
280 	{ BGE_CHIPID_BCM5701_B5,	"BCM5701 B5" },
281 	{ BGE_CHIPID_BCM5703_A0,	"BCM5703 A0" },
282 	{ BGE_CHIPID_BCM5703_A1,	"BCM5703 A1" },
283 	{ BGE_CHIPID_BCM5703_A2,	"BCM5703 A2" },
284 	{ BGE_CHIPID_BCM5703_A3,	"BCM5703 A3" },
285 	{ BGE_CHIPID_BCM5703_B0,	"BCM5703 B0" },
286 	{ BGE_CHIPID_BCM5704_A0,	"BCM5704 A0" },
287 	{ BGE_CHIPID_BCM5704_A1,	"BCM5704 A1" },
288 	{ BGE_CHIPID_BCM5704_A2,	"BCM5704 A2" },
289 	{ BGE_CHIPID_BCM5704_A3,	"BCM5704 A3" },
290 	{ BGE_CHIPID_BCM5704_B0,	"BCM5704 B0" },
291 	{ BGE_CHIPID_BCM5705_A0,	"BCM5705 A0" },
292 	{ BGE_CHIPID_BCM5705_A1,	"BCM5705 A1" },
293 	{ BGE_CHIPID_BCM5705_A2,	"BCM5705 A2" },
294 	{ BGE_CHIPID_BCM5705_A3,	"BCM5705 A3" },
295 	{ BGE_CHIPID_BCM5750_A0,	"BCM5750 A0" },
296 	{ BGE_CHIPID_BCM5750_A1,	"BCM5750 A1" },
297 	{ BGE_CHIPID_BCM5750_A3,	"BCM5750 A3" },
298 	{ BGE_CHIPID_BCM5750_B0,	"BCM5750 B0" },
299 	{ BGE_CHIPID_BCM5750_B1,	"BCM5750 B1" },
300 	{ BGE_CHIPID_BCM5750_C0,	"BCM5750 C0" },
301 	{ BGE_CHIPID_BCM5750_C1,	"BCM5750 C1" },
302 	{ BGE_CHIPID_BCM5750_C2,	"BCM5750 C2" },
303 	{ BGE_CHIPID_BCM5714_A0,	"BCM5714 A0" },
304 	{ BGE_CHIPID_BCM5752_A0,	"BCM5752 A0" },
305 	{ BGE_CHIPID_BCM5752_A1,	"BCM5752 A1" },
306 	{ BGE_CHIPID_BCM5752_A2,	"BCM5752 A2" },
307 	{ BGE_CHIPID_BCM5714_B0,	"BCM5714 B0" },
308 	{ BGE_CHIPID_BCM5714_B3,	"BCM5714 B3" },
309 	{ BGE_CHIPID_BCM5715_A0,	"BCM5715 A0" },
310 	{ BGE_CHIPID_BCM5715_A1,	"BCM5715 A1" },
311 	{ BGE_CHIPID_BCM5715_A3,	"BCM5715 A3" },
312 	{ BGE_CHIPID_BCM5717_A0,	"BCM5717 A0" },
313 	{ BGE_CHIPID_BCM5717_B0,	"BCM5717 B0" },
314 	{ BGE_CHIPID_BCM5719_A0,	"BCM5719 A0" },
315 	{ BGE_CHIPID_BCM5720_A0,	"BCM5720 A0" },
316 	{ BGE_CHIPID_BCM5755_A0,	"BCM5755 A0" },
317 	{ BGE_CHIPID_BCM5755_A1,	"BCM5755 A1" },
318 	{ BGE_CHIPID_BCM5755_A2,	"BCM5755 A2" },
319 	{ BGE_CHIPID_BCM5722_A0,	"BCM5722 A0" },
320 	{ BGE_CHIPID_BCM5761_A0,	"BCM5761 A0" },
321 	{ BGE_CHIPID_BCM5761_A1,	"BCM5761 A1" },
322 	{ BGE_CHIPID_BCM5762_A0,	"BCM5762 A0" },
323 	{ BGE_CHIPID_BCM5784_A0,	"BCM5784 A0" },
324 	{ BGE_CHIPID_BCM5784_A1,	"BCM5784 A1" },
325 	/* 5754 and 5787 share the same ASIC ID */
326 	{ BGE_CHIPID_BCM5787_A0,	"BCM5754/5787 A0" },
327 	{ BGE_CHIPID_BCM5787_A1,	"BCM5754/5787 A1" },
328 	{ BGE_CHIPID_BCM5787_A2,	"BCM5754/5787 A2" },
329 	{ BGE_CHIPID_BCM5906_A1,	"BCM5906 A1" },
330 	{ BGE_CHIPID_BCM5906_A2,	"BCM5906 A2" },
331 	{ BGE_CHIPID_BCM57765_A0,	"BCM57765 A0" },
332 	{ BGE_CHIPID_BCM57765_B0,	"BCM57765 B0" },
333 	{ BGE_CHIPID_BCM57780_A0,	"BCM57780 A0" },
334 	{ BGE_CHIPID_BCM57780_A1,	"BCM57780 A1" },
335 
336 	{ 0, NULL }
337 };
338 
339 /*
340  * Some defaults for major revisions, so that newer steppings
341  * that we don't know about have a shot at working.
342  */
343 static const struct bge_revision bge_majorrevs[] = {
344 	{ BGE_ASICREV_BCM5700,		"unknown BCM5700" },
345 	{ BGE_ASICREV_BCM5701,		"unknown BCM5701" },
346 	{ BGE_ASICREV_BCM5703,		"unknown BCM5703" },
347 	{ BGE_ASICREV_BCM5704,		"unknown BCM5704" },
348 	{ BGE_ASICREV_BCM5705,		"unknown BCM5705" },
349 	{ BGE_ASICREV_BCM5750,		"unknown BCM5750" },
350 	{ BGE_ASICREV_BCM5714_A0,	"unknown BCM5714" },
351 	{ BGE_ASICREV_BCM5752,		"unknown BCM5752" },
352 	{ BGE_ASICREV_BCM5780,		"unknown BCM5780" },
353 	{ BGE_ASICREV_BCM5714,		"unknown BCM5714" },
354 	{ BGE_ASICREV_BCM5755,		"unknown BCM5755" },
355 	{ BGE_ASICREV_BCM5761,		"unknown BCM5761" },
356 	{ BGE_ASICREV_BCM5784,		"unknown BCM5784" },
357 	{ BGE_ASICREV_BCM5785,		"unknown BCM5785" },
358 	/* 5754 and 5787 share the same ASIC ID */
359 	{ BGE_ASICREV_BCM5787,		"unknown BCM5754/5787" },
360 	{ BGE_ASICREV_BCM5906,		"unknown BCM5906" },
361 	{ BGE_ASICREV_BCM57765,		"unknown BCM57765" },
362 	{ BGE_ASICREV_BCM57766,		"unknown BCM57766" },
363 	{ BGE_ASICREV_BCM57780,		"unknown BCM57780" },
364 	{ BGE_ASICREV_BCM5717,		"unknown BCM5717" },
365 	{ BGE_ASICREV_BCM5719,		"unknown BCM5719" },
366 	{ BGE_ASICREV_BCM5720,		"unknown BCM5720" },
367 	{ BGE_ASICREV_BCM5762,		"unknown BCM5762" },
368 
369 	{ 0, NULL }
370 };
371 
372 #define	BGE_IS_JUMBO_CAPABLE(sc)	((sc)->bge_flags & BGE_FLAG_JUMBO)
373 #define	BGE_IS_5700_FAMILY(sc)		((sc)->bge_flags & BGE_FLAG_5700_FAMILY)
374 #define	BGE_IS_5705_PLUS(sc)		((sc)->bge_flags & BGE_FLAG_5705_PLUS)
375 #define	BGE_IS_5714_FAMILY(sc)		((sc)->bge_flags & BGE_FLAG_5714_FAMILY)
376 #define	BGE_IS_575X_PLUS(sc)		((sc)->bge_flags & BGE_FLAG_575X_PLUS)
377 #define	BGE_IS_5755_PLUS(sc)		((sc)->bge_flags & BGE_FLAG_5755_PLUS)
378 #define	BGE_IS_5717_PLUS(sc)		((sc)->bge_flags & BGE_FLAG_5717_PLUS)
379 #define	BGE_IS_57765_PLUS(sc)		((sc)->bge_flags & BGE_FLAG_57765_PLUS)
380 
381 static uint32_t bge_chipid(device_t);
382 static const struct bge_vendor * bge_lookup_vendor(uint16_t);
383 static const struct bge_revision * bge_lookup_rev(uint32_t);
384 
385 typedef int	(*bge_eaddr_fcn_t)(struct bge_softc *, uint8_t[]);
386 
387 static int bge_probe(device_t);
388 static int bge_attach(device_t);
389 static int bge_detach(device_t);
390 static int bge_suspend(device_t);
391 static int bge_resume(device_t);
392 static void bge_release_resources(struct bge_softc *);
393 static void bge_dma_map_addr(void *, bus_dma_segment_t *, int, int);
394 static int bge_dma_alloc(struct bge_softc *);
395 static void bge_dma_free(struct bge_softc *);
396 static int bge_dma_ring_alloc(struct bge_softc *, bus_size_t, bus_size_t,
397     bus_dma_tag_t *, uint8_t **, bus_dmamap_t *, bus_addr_t *, const char *);
398 
399 static void bge_devinfo(struct bge_softc *);
400 static int bge_mbox_reorder(struct bge_softc *);
401 
402 static int bge_get_eaddr_fw(struct bge_softc *sc, uint8_t ether_addr[]);
403 static int bge_get_eaddr_mem(struct bge_softc *, uint8_t[]);
404 static int bge_get_eaddr_nvram(struct bge_softc *, uint8_t[]);
405 static int bge_get_eaddr_eeprom(struct bge_softc *, uint8_t[]);
406 static int bge_get_eaddr(struct bge_softc *, uint8_t[]);
407 
408 static void bge_txeof(struct bge_softc *, uint16_t);
409 static void bge_rxcsum(struct bge_softc *, struct bge_rx_bd *, struct mbuf *);
410 static int bge_rxeof(struct bge_softc *, uint16_t, int);
411 
412 static void bge_asf_driver_up (struct bge_softc *);
413 static void bge_tick(void *);
414 static void bge_stats_clear_regs(struct bge_softc *);
415 static void bge_stats_update(struct bge_softc *);
416 static void bge_stats_update_regs(struct bge_softc *);
417 static struct mbuf *bge_check_short_dma(struct mbuf *);
418 static struct mbuf *bge_setup_tso(struct bge_softc *, struct mbuf *,
419     uint16_t *, uint16_t *);
420 static int bge_encap(struct bge_softc *, struct mbuf **, uint32_t *);
421 
422 static void bge_intr(void *);
423 static int bge_msi_intr(void *);
424 static void bge_intr_task(void *, int);
425 static void bge_start_locked(if_t);
426 static void bge_start(if_t);
427 static int bge_ioctl(if_t, u_long, caddr_t);
428 static void bge_init_locked(struct bge_softc *);
429 static void bge_init(void *);
430 static void bge_stop_block(struct bge_softc *, bus_size_t, uint32_t);
431 static void bge_stop(struct bge_softc *);
432 static void bge_watchdog(struct bge_softc *);
433 static int bge_shutdown(device_t);
434 static int bge_ifmedia_upd_locked(if_t);
435 static int bge_ifmedia_upd(if_t);
436 static void bge_ifmedia_sts(if_t, struct ifmediareq *);
437 static uint64_t bge_get_counter(if_t, ift_counter);
438 
439 static uint8_t bge_nvram_getbyte(struct bge_softc *, int, uint8_t *);
440 static int bge_read_nvram(struct bge_softc *, caddr_t, int, int);
441 
442 static uint8_t bge_eeprom_getbyte(struct bge_softc *, int, uint8_t *);
443 static int bge_read_eeprom(struct bge_softc *, caddr_t, int, int);
444 
445 static void bge_setpromisc(struct bge_softc *);
446 static void bge_setmulti(struct bge_softc *);
447 static void bge_setvlan(struct bge_softc *);
448 
449 static __inline void bge_rxreuse_std(struct bge_softc *, int);
450 static __inline void bge_rxreuse_jumbo(struct bge_softc *, int);
451 static int bge_newbuf_std(struct bge_softc *, int);
452 static int bge_newbuf_jumbo(struct bge_softc *, int);
453 static int bge_init_rx_ring_std(struct bge_softc *);
454 static void bge_free_rx_ring_std(struct bge_softc *);
455 static int bge_init_rx_ring_jumbo(struct bge_softc *);
456 static void bge_free_rx_ring_jumbo(struct bge_softc *);
457 static void bge_free_tx_ring(struct bge_softc *);
458 static int bge_init_tx_ring(struct bge_softc *);
459 
460 static int bge_chipinit(struct bge_softc *);
461 static int bge_blockinit(struct bge_softc *);
462 static uint32_t bge_dma_swap_options(struct bge_softc *);
463 
464 static int bge_has_eaddr(struct bge_softc *);
465 static uint32_t bge_readmem_ind(struct bge_softc *, int);
466 static void bge_writemem_ind(struct bge_softc *, int, int);
467 static void bge_writembx(struct bge_softc *, int, int);
468 #ifdef notdef
469 static uint32_t bge_readreg_ind(struct bge_softc *, int);
470 #endif
471 static void bge_writemem_direct(struct bge_softc *, int, int);
472 static void bge_writereg_ind(struct bge_softc *, int, int);
473 
474 static int bge_miibus_readreg(device_t, int, int);
475 static int bge_miibus_writereg(device_t, int, int, int);
476 static void bge_miibus_statchg(device_t);
477 #ifdef DEVICE_POLLING
478 static int bge_poll(if_t ifp, enum poll_cmd cmd, int count);
479 #endif
480 
481 #define	BGE_RESET_SHUTDOWN	0
482 #define	BGE_RESET_START		1
483 #define	BGE_RESET_SUSPEND	2
484 static void bge_sig_post_reset(struct bge_softc *, int);
485 static void bge_sig_legacy(struct bge_softc *, int);
486 static void bge_sig_pre_reset(struct bge_softc *, int);
487 static void bge_stop_fw(struct bge_softc *);
488 static int bge_reset(struct bge_softc *);
489 static void bge_link_upd(struct bge_softc *);
490 
491 static void bge_ape_lock_init(struct bge_softc *);
492 static void bge_ape_read_fw_ver(struct bge_softc *);
493 static int bge_ape_lock(struct bge_softc *, int);
494 static void bge_ape_unlock(struct bge_softc *, int);
495 static void bge_ape_send_event(struct bge_softc *, uint32_t);
496 static void bge_ape_driver_state_change(struct bge_softc *, int);
497 
498 /*
499  * The BGE_REGISTER_DEBUG option is only for low-level debugging.  It may
500  * leak information to untrusted users.  It is also known to cause alignment
501  * traps on certain architectures.
502  */
503 #ifdef BGE_REGISTER_DEBUG
504 static int bge_sysctl_debug_info(SYSCTL_HANDLER_ARGS);
505 static int bge_sysctl_reg_read(SYSCTL_HANDLER_ARGS);
506 static int bge_sysctl_ape_read(SYSCTL_HANDLER_ARGS);
507 static int bge_sysctl_mem_read(SYSCTL_HANDLER_ARGS);
508 #endif
509 static void bge_add_sysctls(struct bge_softc *);
510 static void bge_add_sysctl_stats_regs(struct bge_softc *,
511     struct sysctl_ctx_list *, struct sysctl_oid_list *);
512 static void bge_add_sysctl_stats(struct bge_softc *, struct sysctl_ctx_list *,
513     struct sysctl_oid_list *);
514 static int bge_sysctl_stats(SYSCTL_HANDLER_ARGS);
515 
516 static device_method_t bge_methods[] = {
517 	/* Device interface */
518 	DEVMETHOD(device_probe,		bge_probe),
519 	DEVMETHOD(device_attach,	bge_attach),
520 	DEVMETHOD(device_detach,	bge_detach),
521 	DEVMETHOD(device_shutdown,	bge_shutdown),
522 	DEVMETHOD(device_suspend,	bge_suspend),
523 	DEVMETHOD(device_resume,	bge_resume),
524 
525 	/* MII interface */
526 	DEVMETHOD(miibus_readreg,	bge_miibus_readreg),
527 	DEVMETHOD(miibus_writereg,	bge_miibus_writereg),
528 	DEVMETHOD(miibus_statchg,	bge_miibus_statchg),
529 
530 	DEVMETHOD_END
531 };
532 
533 static driver_t bge_driver = {
534 	"bge",
535 	bge_methods,
536 	sizeof(struct bge_softc)
537 };
538 
539 static devclass_t bge_devclass;
540 
541 DRIVER_MODULE(bge, pci, bge_driver, bge_devclass, 0, 0);
542 DRIVER_MODULE(miibus, bge, miibus_driver, miibus_devclass, 0, 0);
543 
544 static int bge_allow_asf = 1;
545 
546 static SYSCTL_NODE(_hw, OID_AUTO, bge, CTLFLAG_RD, 0, "BGE driver parameters");
547 SYSCTL_INT(_hw_bge, OID_AUTO, allow_asf, CTLFLAG_RDTUN, &bge_allow_asf, 0,
548 	"Allow ASF mode if available");
549 
550 #define	SPARC64_BLADE_1500_MODEL	"SUNW,Sun-Blade-1500"
551 #define	SPARC64_BLADE_1500_PATH_BGE	"/pci@1f,700000/network@2"
552 #define	SPARC64_BLADE_2500_MODEL	"SUNW,Sun-Blade-2500"
553 #define	SPARC64_BLADE_2500_PATH_BGE	"/pci@1c,600000/network@3"
554 #define	SPARC64_OFW_SUBVENDOR		"subsystem-vendor-id"
555 
556 static int
557 bge_has_eaddr(struct bge_softc *sc)
558 {
559 #ifdef __sparc64__
560 	char buf[sizeof(SPARC64_BLADE_1500_PATH_BGE)];
561 	device_t dev;
562 	uint32_t subvendor;
563 
564 	dev = sc->bge_dev;
565 
566 	/*
567 	 * The on-board BGEs found in sun4u machines aren't fitted with
568 	 * an EEPROM which means that we have to obtain the MAC address
569 	 * via OFW and that some tests will always fail.  We distinguish
570 	 * such BGEs by the subvendor ID, which also has to be obtained
571 	 * from OFW instead of the PCI configuration space as the latter
572 	 * indicates Broadcom as the subvendor of the netboot interface.
573 	 * For early Blade 1500 and 2500 we even have to check the OFW
574 	 * device path as the subvendor ID always defaults to Broadcom
575 	 * there.
576 	 */
577 	if (OF_getprop(ofw_bus_get_node(dev), SPARC64_OFW_SUBVENDOR,
578 	    &subvendor, sizeof(subvendor)) == sizeof(subvendor) &&
579 	    (subvendor == FJTSU_VENDORID || subvendor == SUN_VENDORID))
580 		return (0);
581 	memset(buf, 0, sizeof(buf));
582 	if (OF_package_to_path(ofw_bus_get_node(dev), buf, sizeof(buf)) > 0) {
583 		if (strcmp(sparc64_model, SPARC64_BLADE_1500_MODEL) == 0 &&
584 		    strcmp(buf, SPARC64_BLADE_1500_PATH_BGE) == 0)
585 			return (0);
586 		if (strcmp(sparc64_model, SPARC64_BLADE_2500_MODEL) == 0 &&
587 		    strcmp(buf, SPARC64_BLADE_2500_PATH_BGE) == 0)
588 			return (0);
589 	}
590 #endif
591 	return (1);
592 }
593 
594 static uint32_t
595 bge_readmem_ind(struct bge_softc *sc, int off)
596 {
597 	device_t dev;
598 	uint32_t val;
599 
600 	if (sc->bge_asicrev == BGE_ASICREV_BCM5906 &&
601 	    off >= BGE_STATS_BLOCK && off < BGE_SEND_RING_1_TO_4)
602 		return (0);
603 
604 	dev = sc->bge_dev;
605 
606 	pci_write_config(dev, BGE_PCI_MEMWIN_BASEADDR, off, 4);
607 	val = pci_read_config(dev, BGE_PCI_MEMWIN_DATA, 4);
608 	pci_write_config(dev, BGE_PCI_MEMWIN_BASEADDR, 0, 4);
609 	return (val);
610 }
611 
612 static void
613 bge_writemem_ind(struct bge_softc *sc, int off, int val)
614 {
615 	device_t dev;
616 
617 	if (sc->bge_asicrev == BGE_ASICREV_BCM5906 &&
618 	    off >= BGE_STATS_BLOCK && off < BGE_SEND_RING_1_TO_4)
619 		return;
620 
621 	dev = sc->bge_dev;
622 
623 	pci_write_config(dev, BGE_PCI_MEMWIN_BASEADDR, off, 4);
624 	pci_write_config(dev, BGE_PCI_MEMWIN_DATA, val, 4);
625 	pci_write_config(dev, BGE_PCI_MEMWIN_BASEADDR, 0, 4);
626 }
627 
628 #ifdef notdef
629 static uint32_t
630 bge_readreg_ind(struct bge_softc *sc, int off)
631 {
632 	device_t dev;
633 
634 	dev = sc->bge_dev;
635 
636 	pci_write_config(dev, BGE_PCI_REG_BASEADDR, off, 4);
637 	return (pci_read_config(dev, BGE_PCI_REG_DATA, 4));
638 }
639 #endif
640 
641 static void
642 bge_writereg_ind(struct bge_softc *sc, int off, int val)
643 {
644 	device_t dev;
645 
646 	dev = sc->bge_dev;
647 
648 	pci_write_config(dev, BGE_PCI_REG_BASEADDR, off, 4);
649 	pci_write_config(dev, BGE_PCI_REG_DATA, val, 4);
650 }
651 
652 static void
653 bge_writemem_direct(struct bge_softc *sc, int off, int val)
654 {
655 	CSR_WRITE_4(sc, off, val);
656 }
657 
658 static void
659 bge_writembx(struct bge_softc *sc, int off, int val)
660 {
661 	if (sc->bge_asicrev == BGE_ASICREV_BCM5906)
662 		off += BGE_LPMBX_IRQ0_HI - BGE_MBX_IRQ0_HI;
663 
664 	CSR_WRITE_4(sc, off, val);
665 	if ((sc->bge_flags & BGE_FLAG_MBOX_REORDER) != 0)
666 		CSR_READ_4(sc, off);
667 }
668 
669 /*
670  * Clear all stale locks and select the lock for this driver instance.
671  */
672 static void
673 bge_ape_lock_init(struct bge_softc *sc)
674 {
675 	uint32_t bit, regbase;
676 	int i;
677 
678 	if (sc->bge_asicrev == BGE_ASICREV_BCM5761)
679 		regbase = BGE_APE_LOCK_GRANT;
680 	else
681 		regbase = BGE_APE_PER_LOCK_GRANT;
682 
683 	/* Clear any stale locks. */
684 	for (i = BGE_APE_LOCK_PHY0; i <= BGE_APE_LOCK_GPIO; i++) {
685 		switch (i) {
686 		case BGE_APE_LOCK_PHY0:
687 		case BGE_APE_LOCK_PHY1:
688 		case BGE_APE_LOCK_PHY2:
689 		case BGE_APE_LOCK_PHY3:
690 			bit = BGE_APE_LOCK_GRANT_DRIVER0;
691 			break;
692 		default:
693 			if (sc->bge_func_addr == 0)
694 				bit = BGE_APE_LOCK_GRANT_DRIVER0;
695 			else
696 				bit = (1 << sc->bge_func_addr);
697 		}
698 		APE_WRITE_4(sc, regbase + 4 * i, bit);
699 	}
700 
701 	/* Select the PHY lock based on the device's function number. */
702 	switch (sc->bge_func_addr) {
703 	case 0:
704 		sc->bge_phy_ape_lock = BGE_APE_LOCK_PHY0;
705 		break;
706 	case 1:
707 		sc->bge_phy_ape_lock = BGE_APE_LOCK_PHY1;
708 		break;
709 	case 2:
710 		sc->bge_phy_ape_lock = BGE_APE_LOCK_PHY2;
711 		break;
712 	case 3:
713 		sc->bge_phy_ape_lock = BGE_APE_LOCK_PHY3;
714 		break;
715 	default:
716 		device_printf(sc->bge_dev,
717 		    "PHY lock not supported on this function\n");
718 	}
719 }
720 
721 /*
722  * Check for APE firmware, set flags, and print version info.
723  */
724 static void
725 bge_ape_read_fw_ver(struct bge_softc *sc)
726 {
727 	const char *fwtype;
728 	uint32_t apedata, features;
729 
730 	/* Check for a valid APE signature in shared memory. */
731 	apedata = APE_READ_4(sc, BGE_APE_SEG_SIG);
732 	if (apedata != BGE_APE_SEG_SIG_MAGIC) {
733 		sc->bge_mfw_flags &= ~ BGE_MFW_ON_APE;
734 		return;
735 	}
736 
737 	/* Check if APE firmware is running. */
738 	apedata = APE_READ_4(sc, BGE_APE_FW_STATUS);
739 	if ((apedata & BGE_APE_FW_STATUS_READY) == 0) {
740 		device_printf(sc->bge_dev, "APE signature found "
741 		    "but FW status not ready! 0x%08x\n", apedata);
742 		return;
743 	}
744 
745 	sc->bge_mfw_flags |= BGE_MFW_ON_APE;
746 
747 	/* Fetch the APE firwmare type and version. */
748 	apedata = APE_READ_4(sc, BGE_APE_FW_VERSION);
749 	features = APE_READ_4(sc, BGE_APE_FW_FEATURES);
750 	if ((features & BGE_APE_FW_FEATURE_NCSI) != 0) {
751 		sc->bge_mfw_flags |= BGE_MFW_TYPE_NCSI;
752 		fwtype = "NCSI";
753 	} else if ((features & BGE_APE_FW_FEATURE_DASH) != 0) {
754 		sc->bge_mfw_flags |= BGE_MFW_TYPE_DASH;
755 		fwtype = "DASH";
756 	} else
757 		fwtype = "UNKN";
758 
759 	/* Print the APE firmware version. */
760 	device_printf(sc->bge_dev, "APE FW version: %s v%d.%d.%d.%d\n",
761 	    fwtype,
762 	    (apedata & BGE_APE_FW_VERSION_MAJMSK) >> BGE_APE_FW_VERSION_MAJSFT,
763 	    (apedata & BGE_APE_FW_VERSION_MINMSK) >> BGE_APE_FW_VERSION_MINSFT,
764 	    (apedata & BGE_APE_FW_VERSION_REVMSK) >> BGE_APE_FW_VERSION_REVSFT,
765 	    (apedata & BGE_APE_FW_VERSION_BLDMSK));
766 }
767 
768 static int
769 bge_ape_lock(struct bge_softc *sc, int locknum)
770 {
771 	uint32_t bit, gnt, req, status;
772 	int i, off;
773 
774 	if ((sc->bge_mfw_flags & BGE_MFW_ON_APE) == 0)
775 		return (0);
776 
777 	/* Lock request/grant registers have different bases. */
778 	if (sc->bge_asicrev == BGE_ASICREV_BCM5761) {
779 		req = BGE_APE_LOCK_REQ;
780 		gnt = BGE_APE_LOCK_GRANT;
781 	} else {
782 		req = BGE_APE_PER_LOCK_REQ;
783 		gnt = BGE_APE_PER_LOCK_GRANT;
784 	}
785 
786 	off = 4 * locknum;
787 
788 	switch (locknum) {
789 	case BGE_APE_LOCK_GPIO:
790 		/* Lock required when using GPIO. */
791 		if (sc->bge_asicrev == BGE_ASICREV_BCM5761)
792 			return (0);
793 		if (sc->bge_func_addr == 0)
794 			bit = BGE_APE_LOCK_REQ_DRIVER0;
795 		else
796 			bit = (1 << sc->bge_func_addr);
797 		break;
798 	case BGE_APE_LOCK_GRC:
799 		/* Lock required to reset the device. */
800 		if (sc->bge_func_addr == 0)
801 			bit = BGE_APE_LOCK_REQ_DRIVER0;
802 		else
803 			bit = (1 << sc->bge_func_addr);
804 		break;
805 	case BGE_APE_LOCK_MEM:
806 		/* Lock required when accessing certain APE memory. */
807 		if (sc->bge_func_addr == 0)
808 			bit = BGE_APE_LOCK_REQ_DRIVER0;
809 		else
810 			bit = (1 << sc->bge_func_addr);
811 		break;
812 	case BGE_APE_LOCK_PHY0:
813 	case BGE_APE_LOCK_PHY1:
814 	case BGE_APE_LOCK_PHY2:
815 	case BGE_APE_LOCK_PHY3:
816 		/* Lock required when accessing PHYs. */
817 		bit = BGE_APE_LOCK_REQ_DRIVER0;
818 		break;
819 	default:
820 		return (EINVAL);
821 	}
822 
823 	/* Request a lock. */
824 	APE_WRITE_4(sc, req + off, bit);
825 
826 	/* Wait up to 1 second to acquire lock. */
827 	for (i = 0; i < 20000; i++) {
828 		status = APE_READ_4(sc, gnt + off);
829 		if (status == bit)
830 			break;
831 		DELAY(50);
832 	}
833 
834 	/* Handle any errors. */
835 	if (status != bit) {
836 		device_printf(sc->bge_dev, "APE lock %d request failed! "
837 		    "request = 0x%04x[0x%04x], status = 0x%04x[0x%04x]\n",
838 		    locknum, req + off, bit & 0xFFFF, gnt + off,
839 		    status & 0xFFFF);
840 		/* Revoke the lock request. */
841 		APE_WRITE_4(sc, gnt + off, bit);
842 		return (EBUSY);
843 	}
844 
845 	return (0);
846 }
847 
848 static void
849 bge_ape_unlock(struct bge_softc *sc, int locknum)
850 {
851 	uint32_t bit, gnt;
852 	int off;
853 
854 	if ((sc->bge_mfw_flags & BGE_MFW_ON_APE) == 0)
855 		return;
856 
857 	if (sc->bge_asicrev == BGE_ASICREV_BCM5761)
858 		gnt = BGE_APE_LOCK_GRANT;
859 	else
860 		gnt = BGE_APE_PER_LOCK_GRANT;
861 
862 	off = 4 * locknum;
863 
864 	switch (locknum) {
865 	case BGE_APE_LOCK_GPIO:
866 		if (sc->bge_asicrev == BGE_ASICREV_BCM5761)
867 			return;
868 		if (sc->bge_func_addr == 0)
869 			bit = BGE_APE_LOCK_GRANT_DRIVER0;
870 		else
871 			bit = (1 << sc->bge_func_addr);
872 		break;
873 	case BGE_APE_LOCK_GRC:
874 		if (sc->bge_func_addr == 0)
875 			bit = BGE_APE_LOCK_GRANT_DRIVER0;
876 		else
877 			bit = (1 << sc->bge_func_addr);
878 		break;
879 	case BGE_APE_LOCK_MEM:
880 		if (sc->bge_func_addr == 0)
881 			bit = BGE_APE_LOCK_GRANT_DRIVER0;
882 		else
883 			bit = (1 << sc->bge_func_addr);
884 		break;
885 	case BGE_APE_LOCK_PHY0:
886 	case BGE_APE_LOCK_PHY1:
887 	case BGE_APE_LOCK_PHY2:
888 	case BGE_APE_LOCK_PHY3:
889 		bit = BGE_APE_LOCK_GRANT_DRIVER0;
890 		break;
891 	default:
892 		return;
893 	}
894 
895 	APE_WRITE_4(sc, gnt + off, bit);
896 }
897 
898 /*
899  * Send an event to the APE firmware.
900  */
901 static void
902 bge_ape_send_event(struct bge_softc *sc, uint32_t event)
903 {
904 	uint32_t apedata;
905 	int i;
906 
907 	/* NCSI does not support APE events. */
908 	if ((sc->bge_mfw_flags & BGE_MFW_ON_APE) == 0)
909 		return;
910 
911 	/* Wait up to 1ms for APE to service previous event. */
912 	for (i = 10; i > 0; i--) {
913 		if (bge_ape_lock(sc, BGE_APE_LOCK_MEM) != 0)
914 			break;
915 		apedata = APE_READ_4(sc, BGE_APE_EVENT_STATUS);
916 		if ((apedata & BGE_APE_EVENT_STATUS_EVENT_PENDING) == 0) {
917 			APE_WRITE_4(sc, BGE_APE_EVENT_STATUS, event |
918 			    BGE_APE_EVENT_STATUS_EVENT_PENDING);
919 			bge_ape_unlock(sc, BGE_APE_LOCK_MEM);
920 			APE_WRITE_4(sc, BGE_APE_EVENT, BGE_APE_EVENT_1);
921 			break;
922 		}
923 		bge_ape_unlock(sc, BGE_APE_LOCK_MEM);
924 		DELAY(100);
925 	}
926 	if (i == 0)
927 		device_printf(sc->bge_dev, "APE event 0x%08x send timed out\n",
928 		    event);
929 }
930 
931 static void
932 bge_ape_driver_state_change(struct bge_softc *sc, int kind)
933 {
934 	uint32_t apedata, event;
935 
936 	if ((sc->bge_mfw_flags & BGE_MFW_ON_APE) == 0)
937 		return;
938 
939 	switch (kind) {
940 	case BGE_RESET_START:
941 		/* If this is the first load, clear the load counter. */
942 		apedata = APE_READ_4(sc, BGE_APE_HOST_SEG_SIG);
943 		if (apedata != BGE_APE_HOST_SEG_SIG_MAGIC)
944 			APE_WRITE_4(sc, BGE_APE_HOST_INIT_COUNT, 0);
945 		else {
946 			apedata = APE_READ_4(sc, BGE_APE_HOST_INIT_COUNT);
947 			APE_WRITE_4(sc, BGE_APE_HOST_INIT_COUNT, ++apedata);
948 		}
949 		APE_WRITE_4(sc, BGE_APE_HOST_SEG_SIG,
950 		    BGE_APE_HOST_SEG_SIG_MAGIC);
951 		APE_WRITE_4(sc, BGE_APE_HOST_SEG_LEN,
952 		    BGE_APE_HOST_SEG_LEN_MAGIC);
953 
954 		/* Add some version info if bge(4) supports it. */
955 		APE_WRITE_4(sc, BGE_APE_HOST_DRIVER_ID,
956 		    BGE_APE_HOST_DRIVER_ID_MAGIC(1, 0));
957 		APE_WRITE_4(sc, BGE_APE_HOST_BEHAVIOR,
958 		    BGE_APE_HOST_BEHAV_NO_PHYLOCK);
959 		APE_WRITE_4(sc, BGE_APE_HOST_HEARTBEAT_INT_MS,
960 		    BGE_APE_HOST_HEARTBEAT_INT_DISABLE);
961 		APE_WRITE_4(sc, BGE_APE_HOST_DRVR_STATE,
962 		    BGE_APE_HOST_DRVR_STATE_START);
963 		event = BGE_APE_EVENT_STATUS_STATE_START;
964 		break;
965 	case BGE_RESET_SHUTDOWN:
966 		APE_WRITE_4(sc, BGE_APE_HOST_DRVR_STATE,
967 		    BGE_APE_HOST_DRVR_STATE_UNLOAD);
968 		event = BGE_APE_EVENT_STATUS_STATE_UNLOAD;
969 		break;
970 	case BGE_RESET_SUSPEND:
971 		event = BGE_APE_EVENT_STATUS_STATE_SUSPEND;
972 		break;
973 	default:
974 		return;
975 	}
976 
977 	bge_ape_send_event(sc, event | BGE_APE_EVENT_STATUS_DRIVER_EVNT |
978 	    BGE_APE_EVENT_STATUS_STATE_CHNGE);
979 }
980 
981 /*
982  * Map a single buffer address.
983  */
984 
985 static void
986 bge_dma_map_addr(void *arg, bus_dma_segment_t *segs, int nseg, int error)
987 {
988 	struct bge_dmamap_arg *ctx;
989 
990 	if (error)
991 		return;
992 
993 	KASSERT(nseg == 1, ("%s: %d segments returned!", __func__, nseg));
994 
995 	ctx = arg;
996 	ctx->bge_busaddr = segs->ds_addr;
997 }
998 
999 static uint8_t
1000 bge_nvram_getbyte(struct bge_softc *sc, int addr, uint8_t *dest)
1001 {
1002 	uint32_t access, byte = 0;
1003 	int i;
1004 
1005 	/* Lock. */
1006 	CSR_WRITE_4(sc, BGE_NVRAM_SWARB, BGE_NVRAMSWARB_SET1);
1007 	for (i = 0; i < 8000; i++) {
1008 		if (CSR_READ_4(sc, BGE_NVRAM_SWARB) & BGE_NVRAMSWARB_GNT1)
1009 			break;
1010 		DELAY(20);
1011 	}
1012 	if (i == 8000)
1013 		return (1);
1014 
1015 	/* Enable access. */
1016 	access = CSR_READ_4(sc, BGE_NVRAM_ACCESS);
1017 	CSR_WRITE_4(sc, BGE_NVRAM_ACCESS, access | BGE_NVRAMACC_ENABLE);
1018 
1019 	CSR_WRITE_4(sc, BGE_NVRAM_ADDR, addr & 0xfffffffc);
1020 	CSR_WRITE_4(sc, BGE_NVRAM_CMD, BGE_NVRAM_READCMD);
1021 	for (i = 0; i < BGE_TIMEOUT * 10; i++) {
1022 		DELAY(10);
1023 		if (CSR_READ_4(sc, BGE_NVRAM_CMD) & BGE_NVRAMCMD_DONE) {
1024 			DELAY(10);
1025 			break;
1026 		}
1027 	}
1028 
1029 	if (i == BGE_TIMEOUT * 10) {
1030 		if_printf(sc->bge_ifp, "nvram read timed out\n");
1031 		return (1);
1032 	}
1033 
1034 	/* Get result. */
1035 	byte = CSR_READ_4(sc, BGE_NVRAM_RDDATA);
1036 
1037 	*dest = (bswap32(byte) >> ((addr % 4) * 8)) & 0xFF;
1038 
1039 	/* Disable access. */
1040 	CSR_WRITE_4(sc, BGE_NVRAM_ACCESS, access);
1041 
1042 	/* Unlock. */
1043 	CSR_WRITE_4(sc, BGE_NVRAM_SWARB, BGE_NVRAMSWARB_CLR1);
1044 	CSR_READ_4(sc, BGE_NVRAM_SWARB);
1045 
1046 	return (0);
1047 }
1048 
1049 /*
1050  * Read a sequence of bytes from NVRAM.
1051  */
1052 static int
1053 bge_read_nvram(struct bge_softc *sc, caddr_t dest, int off, int cnt)
1054 {
1055 	int err = 0, i;
1056 	uint8_t byte = 0;
1057 
1058 	if (sc->bge_asicrev != BGE_ASICREV_BCM5906)
1059 		return (1);
1060 
1061 	for (i = 0; i < cnt; i++) {
1062 		err = bge_nvram_getbyte(sc, off + i, &byte);
1063 		if (err)
1064 			break;
1065 		*(dest + i) = byte;
1066 	}
1067 
1068 	return (err ? 1 : 0);
1069 }
1070 
1071 /*
1072  * Read a byte of data stored in the EEPROM at address 'addr.' The
1073  * BCM570x supports both the traditional bitbang interface and an
1074  * auto access interface for reading the EEPROM. We use the auto
1075  * access method.
1076  */
1077 static uint8_t
1078 bge_eeprom_getbyte(struct bge_softc *sc, int addr, uint8_t *dest)
1079 {
1080 	int i;
1081 	uint32_t byte = 0;
1082 
1083 	/*
1084 	 * Enable use of auto EEPROM access so we can avoid
1085 	 * having to use the bitbang method.
1086 	 */
1087 	BGE_SETBIT(sc, BGE_MISC_LOCAL_CTL, BGE_MLC_AUTO_EEPROM);
1088 
1089 	/* Reset the EEPROM, load the clock period. */
1090 	CSR_WRITE_4(sc, BGE_EE_ADDR,
1091 	    BGE_EEADDR_RESET | BGE_EEHALFCLK(BGE_HALFCLK_384SCL));
1092 	DELAY(20);
1093 
1094 	/* Issue the read EEPROM command. */
1095 	CSR_WRITE_4(sc, BGE_EE_ADDR, BGE_EE_READCMD | addr);
1096 
1097 	/* Wait for completion */
1098 	for(i = 0; i < BGE_TIMEOUT * 10; i++) {
1099 		DELAY(10);
1100 		if (CSR_READ_4(sc, BGE_EE_ADDR) & BGE_EEADDR_DONE)
1101 			break;
1102 	}
1103 
1104 	if (i == BGE_TIMEOUT * 10) {
1105 		device_printf(sc->bge_dev, "EEPROM read timed out\n");
1106 		return (1);
1107 	}
1108 
1109 	/* Get result. */
1110 	byte = CSR_READ_4(sc, BGE_EE_DATA);
1111 
1112 	*dest = (byte >> ((addr % 4) * 8)) & 0xFF;
1113 
1114 	return (0);
1115 }
1116 
1117 /*
1118  * Read a sequence of bytes from the EEPROM.
1119  */
1120 static int
1121 bge_read_eeprom(struct bge_softc *sc, caddr_t dest, int off, int cnt)
1122 {
1123 	int i, error = 0;
1124 	uint8_t byte = 0;
1125 
1126 	for (i = 0; i < cnt; i++) {
1127 		error = bge_eeprom_getbyte(sc, off + i, &byte);
1128 		if (error)
1129 			break;
1130 		*(dest + i) = byte;
1131 	}
1132 
1133 	return (error ? 1 : 0);
1134 }
1135 
1136 static int
1137 bge_miibus_readreg(device_t dev, int phy, int reg)
1138 {
1139 	struct bge_softc *sc;
1140 	uint32_t val;
1141 	int i;
1142 
1143 	sc = device_get_softc(dev);
1144 
1145 	if (bge_ape_lock(sc, sc->bge_phy_ape_lock) != 0)
1146 		return (0);
1147 
1148 	/* Clear the autopoll bit if set, otherwise may trigger PCI errors. */
1149 	if ((sc->bge_mi_mode & BGE_MIMODE_AUTOPOLL) != 0) {
1150 		CSR_WRITE_4(sc, BGE_MI_MODE,
1151 		    sc->bge_mi_mode & ~BGE_MIMODE_AUTOPOLL);
1152 		DELAY(80);
1153 	}
1154 
1155 	CSR_WRITE_4(sc, BGE_MI_COMM, BGE_MICMD_READ | BGE_MICOMM_BUSY |
1156 	    BGE_MIPHY(phy) | BGE_MIREG(reg));
1157 
1158 	/* Poll for the PHY register access to complete. */
1159 	for (i = 0; i < BGE_TIMEOUT; i++) {
1160 		DELAY(10);
1161 		val = CSR_READ_4(sc, BGE_MI_COMM);
1162 		if ((val & BGE_MICOMM_BUSY) == 0) {
1163 			DELAY(5);
1164 			val = CSR_READ_4(sc, BGE_MI_COMM);
1165 			break;
1166 		}
1167 	}
1168 
1169 	if (i == BGE_TIMEOUT) {
1170 		device_printf(sc->bge_dev,
1171 		    "PHY read timed out (phy %d, reg %d, val 0x%08x)\n",
1172 		    phy, reg, val);
1173 		val = 0;
1174 	}
1175 
1176 	/* Restore the autopoll bit if necessary. */
1177 	if ((sc->bge_mi_mode & BGE_MIMODE_AUTOPOLL) != 0) {
1178 		CSR_WRITE_4(sc, BGE_MI_MODE, sc->bge_mi_mode);
1179 		DELAY(80);
1180 	}
1181 
1182 	bge_ape_unlock(sc, sc->bge_phy_ape_lock);
1183 
1184 	if (val & BGE_MICOMM_READFAIL)
1185 		return (0);
1186 
1187 	return (val & 0xFFFF);
1188 }
1189 
1190 static int
1191 bge_miibus_writereg(device_t dev, int phy, int reg, int val)
1192 {
1193 	struct bge_softc *sc;
1194 	int i;
1195 
1196 	sc = device_get_softc(dev);
1197 
1198 	if (sc->bge_asicrev == BGE_ASICREV_BCM5906 &&
1199 	    (reg == BRGPHY_MII_1000CTL || reg == BRGPHY_MII_AUXCTL))
1200 		return (0);
1201 
1202 	if (bge_ape_lock(sc, sc->bge_phy_ape_lock) != 0)
1203 		return (0);
1204 
1205 	/* Clear the autopoll bit if set, otherwise may trigger PCI errors. */
1206 	if ((sc->bge_mi_mode & BGE_MIMODE_AUTOPOLL) != 0) {
1207 		CSR_WRITE_4(sc, BGE_MI_MODE,
1208 		    sc->bge_mi_mode & ~BGE_MIMODE_AUTOPOLL);
1209 		DELAY(80);
1210 	}
1211 
1212 	CSR_WRITE_4(sc, BGE_MI_COMM, BGE_MICMD_WRITE | BGE_MICOMM_BUSY |
1213 	    BGE_MIPHY(phy) | BGE_MIREG(reg) | val);
1214 
1215 	for (i = 0; i < BGE_TIMEOUT; i++) {
1216 		DELAY(10);
1217 		if (!(CSR_READ_4(sc, BGE_MI_COMM) & BGE_MICOMM_BUSY)) {
1218 			DELAY(5);
1219 			CSR_READ_4(sc, BGE_MI_COMM); /* dummy read */
1220 			break;
1221 		}
1222 	}
1223 
1224 	/* Restore the autopoll bit if necessary. */
1225 	if ((sc->bge_mi_mode & BGE_MIMODE_AUTOPOLL) != 0) {
1226 		CSR_WRITE_4(sc, BGE_MI_MODE, sc->bge_mi_mode);
1227 		DELAY(80);
1228 	}
1229 
1230 	bge_ape_unlock(sc, sc->bge_phy_ape_lock);
1231 
1232 	if (i == BGE_TIMEOUT)
1233 		device_printf(sc->bge_dev,
1234 		    "PHY write timed out (phy %d, reg %d, val 0x%04x)\n",
1235 		    phy, reg, val);
1236 
1237 	return (0);
1238 }
1239 
1240 static void
1241 bge_miibus_statchg(device_t dev)
1242 {
1243 	struct bge_softc *sc;
1244 	struct mii_data *mii;
1245 	uint32_t mac_mode, rx_mode, tx_mode;
1246 
1247 	sc = device_get_softc(dev);
1248 	if ((if_getdrvflags(sc->bge_ifp) & IFF_DRV_RUNNING) == 0)
1249 		return;
1250 	mii = device_get_softc(sc->bge_miibus);
1251 
1252 	if ((mii->mii_media_status & (IFM_ACTIVE | IFM_AVALID)) ==
1253 	    (IFM_ACTIVE | IFM_AVALID)) {
1254 		switch (IFM_SUBTYPE(mii->mii_media_active)) {
1255 		case IFM_10_T:
1256 		case IFM_100_TX:
1257 			sc->bge_link = 1;
1258 			break;
1259 		case IFM_1000_T:
1260 		case IFM_1000_SX:
1261 		case IFM_2500_SX:
1262 			if (sc->bge_asicrev != BGE_ASICREV_BCM5906)
1263 				sc->bge_link = 1;
1264 			else
1265 				sc->bge_link = 0;
1266 			break;
1267 		default:
1268 			sc->bge_link = 0;
1269 			break;
1270 		}
1271 	} else
1272 		sc->bge_link = 0;
1273 	if (sc->bge_link == 0)
1274 		return;
1275 
1276 	/*
1277 	 * APE firmware touches these registers to keep the MAC
1278 	 * connected to the outside world.  Try to keep the
1279 	 * accesses atomic.
1280 	 */
1281 
1282 	/* Set the port mode (MII/GMII) to match the link speed. */
1283 	mac_mode = CSR_READ_4(sc, BGE_MAC_MODE) &
1284 	    ~(BGE_MACMODE_PORTMODE | BGE_MACMODE_HALF_DUPLEX);
1285 	tx_mode = CSR_READ_4(sc, BGE_TX_MODE);
1286 	rx_mode = CSR_READ_4(sc, BGE_RX_MODE);
1287 
1288 	if (IFM_SUBTYPE(mii->mii_media_active) == IFM_1000_T ||
1289 	    IFM_SUBTYPE(mii->mii_media_active) == IFM_1000_SX)
1290 		mac_mode |= BGE_PORTMODE_GMII;
1291 	else
1292 		mac_mode |= BGE_PORTMODE_MII;
1293 
1294 	/* Set MAC flow control behavior to match link flow control settings. */
1295 	tx_mode &= ~BGE_TXMODE_FLOWCTL_ENABLE;
1296 	rx_mode &= ~BGE_RXMODE_FLOWCTL_ENABLE;
1297 	if ((IFM_OPTIONS(mii->mii_media_active) & IFM_FDX) != 0) {
1298 		if ((IFM_OPTIONS(mii->mii_media_active) & IFM_ETH_TXPAUSE) != 0)
1299 			tx_mode |= BGE_TXMODE_FLOWCTL_ENABLE;
1300 		if ((IFM_OPTIONS(mii->mii_media_active) & IFM_ETH_RXPAUSE) != 0)
1301 			rx_mode |= BGE_RXMODE_FLOWCTL_ENABLE;
1302 	} else
1303 		mac_mode |= BGE_MACMODE_HALF_DUPLEX;
1304 
1305 	CSR_WRITE_4(sc, BGE_MAC_MODE, mac_mode);
1306 	DELAY(40);
1307 	CSR_WRITE_4(sc, BGE_TX_MODE, tx_mode);
1308 	CSR_WRITE_4(sc, BGE_RX_MODE, rx_mode);
1309 }
1310 
1311 /*
1312  * Intialize a standard receive ring descriptor.
1313  */
1314 static int
1315 bge_newbuf_std(struct bge_softc *sc, int i)
1316 {
1317 	struct mbuf *m;
1318 	struct bge_rx_bd *r;
1319 	bus_dma_segment_t segs[1];
1320 	bus_dmamap_t map;
1321 	int error, nsegs;
1322 
1323 	if (sc->bge_flags & BGE_FLAG_JUMBO_STD &&
1324 	    (if_getmtu(sc->bge_ifp) + ETHER_HDR_LEN + ETHER_CRC_LEN +
1325 	    ETHER_VLAN_ENCAP_LEN > (MCLBYTES - ETHER_ALIGN))) {
1326 		m = m_getjcl(M_NOWAIT, MT_DATA, M_PKTHDR, MJUM9BYTES);
1327 		if (m == NULL)
1328 			return (ENOBUFS);
1329 		m->m_len = m->m_pkthdr.len = MJUM9BYTES;
1330 	} else {
1331 		m = m_getcl(M_NOWAIT, MT_DATA, M_PKTHDR);
1332 		if (m == NULL)
1333 			return (ENOBUFS);
1334 		m->m_len = m->m_pkthdr.len = MCLBYTES;
1335 	}
1336 	if ((sc->bge_flags & BGE_FLAG_RX_ALIGNBUG) == 0)
1337 		m_adj(m, ETHER_ALIGN);
1338 
1339 	error = bus_dmamap_load_mbuf_sg(sc->bge_cdata.bge_rx_mtag,
1340 	    sc->bge_cdata.bge_rx_std_sparemap, m, segs, &nsegs, 0);
1341 	if (error != 0) {
1342 		m_freem(m);
1343 		return (error);
1344 	}
1345 	if (sc->bge_cdata.bge_rx_std_chain[i] != NULL) {
1346 		bus_dmamap_sync(sc->bge_cdata.bge_rx_mtag,
1347 		    sc->bge_cdata.bge_rx_std_dmamap[i], BUS_DMASYNC_POSTREAD);
1348 		bus_dmamap_unload(sc->bge_cdata.bge_rx_mtag,
1349 		    sc->bge_cdata.bge_rx_std_dmamap[i]);
1350 	}
1351 	map = sc->bge_cdata.bge_rx_std_dmamap[i];
1352 	sc->bge_cdata.bge_rx_std_dmamap[i] = sc->bge_cdata.bge_rx_std_sparemap;
1353 	sc->bge_cdata.bge_rx_std_sparemap = map;
1354 	sc->bge_cdata.bge_rx_std_chain[i] = m;
1355 	sc->bge_cdata.bge_rx_std_seglen[i] = segs[0].ds_len;
1356 	r = &sc->bge_ldata.bge_rx_std_ring[sc->bge_std];
1357 	r->bge_addr.bge_addr_lo = BGE_ADDR_LO(segs[0].ds_addr);
1358 	r->bge_addr.bge_addr_hi = BGE_ADDR_HI(segs[0].ds_addr);
1359 	r->bge_flags = BGE_RXBDFLAG_END;
1360 	r->bge_len = segs[0].ds_len;
1361 	r->bge_idx = i;
1362 
1363 	bus_dmamap_sync(sc->bge_cdata.bge_rx_mtag,
1364 	    sc->bge_cdata.bge_rx_std_dmamap[i], BUS_DMASYNC_PREREAD);
1365 
1366 	return (0);
1367 }
1368 
1369 /*
1370  * Initialize a jumbo receive ring descriptor. This allocates
1371  * a jumbo buffer from the pool managed internally by the driver.
1372  */
1373 static int
1374 bge_newbuf_jumbo(struct bge_softc *sc, int i)
1375 {
1376 	bus_dma_segment_t segs[BGE_NSEG_JUMBO];
1377 	bus_dmamap_t map;
1378 	struct bge_extrx_bd *r;
1379 	struct mbuf *m;
1380 	int error, nsegs;
1381 
1382 	MGETHDR(m, M_NOWAIT, MT_DATA);
1383 	if (m == NULL)
1384 		return (ENOBUFS);
1385 
1386 	if (m_cljget(m, M_NOWAIT, MJUM9BYTES) == NULL) {
1387 		m_freem(m);
1388 		return (ENOBUFS);
1389 	}
1390 	m->m_len = m->m_pkthdr.len = MJUM9BYTES;
1391 	if ((sc->bge_flags & BGE_FLAG_RX_ALIGNBUG) == 0)
1392 		m_adj(m, ETHER_ALIGN);
1393 
1394 	error = bus_dmamap_load_mbuf_sg(sc->bge_cdata.bge_mtag_jumbo,
1395 	    sc->bge_cdata.bge_rx_jumbo_sparemap, m, segs, &nsegs, 0);
1396 	if (error != 0) {
1397 		m_freem(m);
1398 		return (error);
1399 	}
1400 
1401 	if (sc->bge_cdata.bge_rx_jumbo_chain[i] != NULL) {
1402 		bus_dmamap_sync(sc->bge_cdata.bge_mtag_jumbo,
1403 		    sc->bge_cdata.bge_rx_jumbo_dmamap[i], BUS_DMASYNC_POSTREAD);
1404 		bus_dmamap_unload(sc->bge_cdata.bge_mtag_jumbo,
1405 		    sc->bge_cdata.bge_rx_jumbo_dmamap[i]);
1406 	}
1407 	map = sc->bge_cdata.bge_rx_jumbo_dmamap[i];
1408 	sc->bge_cdata.bge_rx_jumbo_dmamap[i] =
1409 	    sc->bge_cdata.bge_rx_jumbo_sparemap;
1410 	sc->bge_cdata.bge_rx_jumbo_sparemap = map;
1411 	sc->bge_cdata.bge_rx_jumbo_chain[i] = m;
1412 	sc->bge_cdata.bge_rx_jumbo_seglen[i][0] = 0;
1413 	sc->bge_cdata.bge_rx_jumbo_seglen[i][1] = 0;
1414 	sc->bge_cdata.bge_rx_jumbo_seglen[i][2] = 0;
1415 	sc->bge_cdata.bge_rx_jumbo_seglen[i][3] = 0;
1416 
1417 	/*
1418 	 * Fill in the extended RX buffer descriptor.
1419 	 */
1420 	r = &sc->bge_ldata.bge_rx_jumbo_ring[sc->bge_jumbo];
1421 	r->bge_flags = BGE_RXBDFLAG_JUMBO_RING | BGE_RXBDFLAG_END;
1422 	r->bge_idx = i;
1423 	r->bge_len3 = r->bge_len2 = r->bge_len1 = 0;
1424 	switch (nsegs) {
1425 	case 4:
1426 		r->bge_addr3.bge_addr_lo = BGE_ADDR_LO(segs[3].ds_addr);
1427 		r->bge_addr3.bge_addr_hi = BGE_ADDR_HI(segs[3].ds_addr);
1428 		r->bge_len3 = segs[3].ds_len;
1429 		sc->bge_cdata.bge_rx_jumbo_seglen[i][3] = segs[3].ds_len;
1430 	case 3:
1431 		r->bge_addr2.bge_addr_lo = BGE_ADDR_LO(segs[2].ds_addr);
1432 		r->bge_addr2.bge_addr_hi = BGE_ADDR_HI(segs[2].ds_addr);
1433 		r->bge_len2 = segs[2].ds_len;
1434 		sc->bge_cdata.bge_rx_jumbo_seglen[i][2] = segs[2].ds_len;
1435 	case 2:
1436 		r->bge_addr1.bge_addr_lo = BGE_ADDR_LO(segs[1].ds_addr);
1437 		r->bge_addr1.bge_addr_hi = BGE_ADDR_HI(segs[1].ds_addr);
1438 		r->bge_len1 = segs[1].ds_len;
1439 		sc->bge_cdata.bge_rx_jumbo_seglen[i][1] = segs[1].ds_len;
1440 	case 1:
1441 		r->bge_addr0.bge_addr_lo = BGE_ADDR_LO(segs[0].ds_addr);
1442 		r->bge_addr0.bge_addr_hi = BGE_ADDR_HI(segs[0].ds_addr);
1443 		r->bge_len0 = segs[0].ds_len;
1444 		sc->bge_cdata.bge_rx_jumbo_seglen[i][0] = segs[0].ds_len;
1445 		break;
1446 	default:
1447 		panic("%s: %d segments\n", __func__, nsegs);
1448 	}
1449 
1450 	bus_dmamap_sync(sc->bge_cdata.bge_mtag_jumbo,
1451 	    sc->bge_cdata.bge_rx_jumbo_dmamap[i], BUS_DMASYNC_PREREAD);
1452 
1453 	return (0);
1454 }
1455 
1456 static int
1457 bge_init_rx_ring_std(struct bge_softc *sc)
1458 {
1459 	int error, i;
1460 
1461 	bzero(sc->bge_ldata.bge_rx_std_ring, BGE_STD_RX_RING_SZ);
1462 	sc->bge_std = 0;
1463 	for (i = 0; i < BGE_STD_RX_RING_CNT; i++) {
1464 		if ((error = bge_newbuf_std(sc, i)) != 0)
1465 			return (error);
1466 		BGE_INC(sc->bge_std, BGE_STD_RX_RING_CNT);
1467 	}
1468 
1469 	bus_dmamap_sync(sc->bge_cdata.bge_rx_std_ring_tag,
1470 	    sc->bge_cdata.bge_rx_std_ring_map, BUS_DMASYNC_PREWRITE);
1471 
1472 	sc->bge_std = 0;
1473 	bge_writembx(sc, BGE_MBX_RX_STD_PROD_LO, BGE_STD_RX_RING_CNT - 1);
1474 
1475 	return (0);
1476 }
1477 
1478 static void
1479 bge_free_rx_ring_std(struct bge_softc *sc)
1480 {
1481 	int i;
1482 
1483 	for (i = 0; i < BGE_STD_RX_RING_CNT; i++) {
1484 		if (sc->bge_cdata.bge_rx_std_chain[i] != NULL) {
1485 			bus_dmamap_sync(sc->bge_cdata.bge_rx_mtag,
1486 			    sc->bge_cdata.bge_rx_std_dmamap[i],
1487 			    BUS_DMASYNC_POSTREAD);
1488 			bus_dmamap_unload(sc->bge_cdata.bge_rx_mtag,
1489 			    sc->bge_cdata.bge_rx_std_dmamap[i]);
1490 			m_freem(sc->bge_cdata.bge_rx_std_chain[i]);
1491 			sc->bge_cdata.bge_rx_std_chain[i] = NULL;
1492 		}
1493 		bzero((char *)&sc->bge_ldata.bge_rx_std_ring[i],
1494 		    sizeof(struct bge_rx_bd));
1495 	}
1496 }
1497 
1498 static int
1499 bge_init_rx_ring_jumbo(struct bge_softc *sc)
1500 {
1501 	struct bge_rcb *rcb;
1502 	int error, i;
1503 
1504 	bzero(sc->bge_ldata.bge_rx_jumbo_ring, BGE_JUMBO_RX_RING_SZ);
1505 	sc->bge_jumbo = 0;
1506 	for (i = 0; i < BGE_JUMBO_RX_RING_CNT; i++) {
1507 		if ((error = bge_newbuf_jumbo(sc, i)) != 0)
1508 			return (error);
1509 		BGE_INC(sc->bge_jumbo, BGE_JUMBO_RX_RING_CNT);
1510 	}
1511 
1512 	bus_dmamap_sync(sc->bge_cdata.bge_rx_jumbo_ring_tag,
1513 	    sc->bge_cdata.bge_rx_jumbo_ring_map, BUS_DMASYNC_PREWRITE);
1514 
1515 	sc->bge_jumbo = 0;
1516 
1517 	/* Enable the jumbo receive producer ring. */
1518 	rcb = &sc->bge_ldata.bge_info.bge_jumbo_rx_rcb;
1519 	rcb->bge_maxlen_flags =
1520 	    BGE_RCB_MAXLEN_FLAGS(0, BGE_RCB_FLAG_USE_EXT_RX_BD);
1521 	CSR_WRITE_4(sc, BGE_RX_JUMBO_RCB_MAXLEN_FLAGS, rcb->bge_maxlen_flags);
1522 
1523 	bge_writembx(sc, BGE_MBX_RX_JUMBO_PROD_LO, BGE_JUMBO_RX_RING_CNT - 1);
1524 
1525 	return (0);
1526 }
1527 
1528 static void
1529 bge_free_rx_ring_jumbo(struct bge_softc *sc)
1530 {
1531 	int i;
1532 
1533 	for (i = 0; i < BGE_JUMBO_RX_RING_CNT; i++) {
1534 		if (sc->bge_cdata.bge_rx_jumbo_chain[i] != NULL) {
1535 			bus_dmamap_sync(sc->bge_cdata.bge_mtag_jumbo,
1536 			    sc->bge_cdata.bge_rx_jumbo_dmamap[i],
1537 			    BUS_DMASYNC_POSTREAD);
1538 			bus_dmamap_unload(sc->bge_cdata.bge_mtag_jumbo,
1539 			    sc->bge_cdata.bge_rx_jumbo_dmamap[i]);
1540 			m_freem(sc->bge_cdata.bge_rx_jumbo_chain[i]);
1541 			sc->bge_cdata.bge_rx_jumbo_chain[i] = NULL;
1542 		}
1543 		bzero((char *)&sc->bge_ldata.bge_rx_jumbo_ring[i],
1544 		    sizeof(struct bge_extrx_bd));
1545 	}
1546 }
1547 
1548 static void
1549 bge_free_tx_ring(struct bge_softc *sc)
1550 {
1551 	int i;
1552 
1553 	if (sc->bge_ldata.bge_tx_ring == NULL)
1554 		return;
1555 
1556 	for (i = 0; i < BGE_TX_RING_CNT; i++) {
1557 		if (sc->bge_cdata.bge_tx_chain[i] != NULL) {
1558 			bus_dmamap_sync(sc->bge_cdata.bge_tx_mtag,
1559 			    sc->bge_cdata.bge_tx_dmamap[i],
1560 			    BUS_DMASYNC_POSTWRITE);
1561 			bus_dmamap_unload(sc->bge_cdata.bge_tx_mtag,
1562 			    sc->bge_cdata.bge_tx_dmamap[i]);
1563 			m_freem(sc->bge_cdata.bge_tx_chain[i]);
1564 			sc->bge_cdata.bge_tx_chain[i] = NULL;
1565 		}
1566 		bzero((char *)&sc->bge_ldata.bge_tx_ring[i],
1567 		    sizeof(struct bge_tx_bd));
1568 	}
1569 }
1570 
1571 static int
1572 bge_init_tx_ring(struct bge_softc *sc)
1573 {
1574 	sc->bge_txcnt = 0;
1575 	sc->bge_tx_saved_considx = 0;
1576 
1577 	bzero(sc->bge_ldata.bge_tx_ring, BGE_TX_RING_SZ);
1578 	bus_dmamap_sync(sc->bge_cdata.bge_tx_ring_tag,
1579 	    sc->bge_cdata.bge_tx_ring_map, BUS_DMASYNC_PREWRITE);
1580 
1581 	/* Initialize transmit producer index for host-memory send ring. */
1582 	sc->bge_tx_prodidx = 0;
1583 	bge_writembx(sc, BGE_MBX_TX_HOST_PROD0_LO, sc->bge_tx_prodidx);
1584 
1585 	/* 5700 b2 errata */
1586 	if (sc->bge_chiprev == BGE_CHIPREV_5700_BX)
1587 		bge_writembx(sc, BGE_MBX_TX_HOST_PROD0_LO, sc->bge_tx_prodidx);
1588 
1589 	/* NIC-memory send ring not used; initialize to zero. */
1590 	bge_writembx(sc, BGE_MBX_TX_NIC_PROD0_LO, 0);
1591 	/* 5700 b2 errata */
1592 	if (sc->bge_chiprev == BGE_CHIPREV_5700_BX)
1593 		bge_writembx(sc, BGE_MBX_TX_NIC_PROD0_LO, 0);
1594 
1595 	return (0);
1596 }
1597 
1598 static void
1599 bge_setpromisc(struct bge_softc *sc)
1600 {
1601 	if_t ifp;
1602 
1603 	BGE_LOCK_ASSERT(sc);
1604 
1605 	ifp = sc->bge_ifp;
1606 
1607 	/* Enable or disable promiscuous mode as needed. */
1608 	if (if_getflags(ifp) & IFF_PROMISC)
1609 		BGE_SETBIT(sc, BGE_RX_MODE, BGE_RXMODE_RX_PROMISC);
1610 	else
1611 		BGE_CLRBIT(sc, BGE_RX_MODE, BGE_RXMODE_RX_PROMISC);
1612 }
1613 
1614 static void
1615 bge_setmulti(struct bge_softc *sc)
1616 {
1617 	if_t ifp;
1618 	int mc_count = 0;
1619 	uint32_t hashes[4] = { 0, 0, 0, 0 };
1620 	int h, i, mcnt;
1621 	unsigned char *mta;
1622 
1623 	BGE_LOCK_ASSERT(sc);
1624 
1625 	ifp = sc->bge_ifp;
1626 
1627 	mc_count = if_multiaddr_count(ifp, -1);
1628 	mta = malloc(sizeof(unsigned char) *  ETHER_ADDR_LEN *
1629 	    mc_count, M_DEVBUF, M_NOWAIT);
1630 
1631 	if(mta == NULL) {
1632 		device_printf(sc->bge_dev,
1633 		    "Failed to allocated temp mcast list\n");
1634 		return;
1635 	}
1636 
1637 	if (if_getflags(ifp) & IFF_ALLMULTI || if_getflags(ifp) & IFF_PROMISC) {
1638 		for (i = 0; i < 4; i++)
1639 			CSR_WRITE_4(sc, BGE_MAR0 + (i * 4), 0xFFFFFFFF);
1640 		free(mta, M_DEVBUF);
1641 		return;
1642 	}
1643 
1644 	/* First, zot all the existing filters. */
1645 	for (i = 0; i < 4; i++)
1646 		CSR_WRITE_4(sc, BGE_MAR0 + (i * 4), 0);
1647 
1648 	if_multiaddr_array(ifp, mta, &mcnt, mc_count);
1649 	for(i = 0; i < mcnt; i++) {
1650 		h = ether_crc32_le(mta + (i * ETHER_ADDR_LEN),
1651 		    ETHER_ADDR_LEN) & 0x7F;
1652 		hashes[(h & 0x60) >> 5] |= 1 << (h & 0x1F);
1653 	}
1654 
1655 	for (i = 0; i < 4; i++)
1656 		CSR_WRITE_4(sc, BGE_MAR0 + (i * 4), hashes[i]);
1657 
1658 	free(mta, M_DEVBUF);
1659 }
1660 
1661 static void
1662 bge_setvlan(struct bge_softc *sc)
1663 {
1664 	if_t ifp;
1665 
1666 	BGE_LOCK_ASSERT(sc);
1667 
1668 	ifp = sc->bge_ifp;
1669 
1670 	/* Enable or disable VLAN tag stripping as needed. */
1671 	if (if_getcapenable(ifp) & IFCAP_VLAN_HWTAGGING)
1672 		BGE_CLRBIT(sc, BGE_RX_MODE, BGE_RXMODE_RX_KEEP_VLAN_DIAG);
1673 	else
1674 		BGE_SETBIT(sc, BGE_RX_MODE, BGE_RXMODE_RX_KEEP_VLAN_DIAG);
1675 }
1676 
1677 static void
1678 bge_sig_pre_reset(struct bge_softc *sc, int type)
1679 {
1680 
1681 	/*
1682 	 * Some chips don't like this so only do this if ASF is enabled
1683 	 */
1684 	if (sc->bge_asf_mode)
1685 		bge_writemem_ind(sc, BGE_SRAM_FW_MB, BGE_SRAM_FW_MB_MAGIC);
1686 
1687 	if (sc->bge_asf_mode & ASF_NEW_HANDSHAKE) {
1688 		switch (type) {
1689 		case BGE_RESET_START:
1690 			bge_writemem_ind(sc, BGE_SRAM_FW_DRV_STATE_MB,
1691 			    BGE_FW_DRV_STATE_START);
1692 			break;
1693 		case BGE_RESET_SHUTDOWN:
1694 			bge_writemem_ind(sc, BGE_SRAM_FW_DRV_STATE_MB,
1695 			    BGE_FW_DRV_STATE_UNLOAD);
1696 			break;
1697 		case BGE_RESET_SUSPEND:
1698 			bge_writemem_ind(sc, BGE_SRAM_FW_DRV_STATE_MB,
1699 			    BGE_FW_DRV_STATE_SUSPEND);
1700 			break;
1701 		}
1702 	}
1703 
1704 	if (type == BGE_RESET_START || type == BGE_RESET_SUSPEND)
1705 		bge_ape_driver_state_change(sc, type);
1706 }
1707 
1708 static void
1709 bge_sig_post_reset(struct bge_softc *sc, int type)
1710 {
1711 
1712 	if (sc->bge_asf_mode & ASF_NEW_HANDSHAKE) {
1713 		switch (type) {
1714 		case BGE_RESET_START:
1715 			bge_writemem_ind(sc, BGE_SRAM_FW_DRV_STATE_MB,
1716 			    BGE_FW_DRV_STATE_START_DONE);
1717 			/* START DONE */
1718 			break;
1719 		case BGE_RESET_SHUTDOWN:
1720 			bge_writemem_ind(sc, BGE_SRAM_FW_DRV_STATE_MB,
1721 			    BGE_FW_DRV_STATE_UNLOAD_DONE);
1722 			break;
1723 		}
1724 	}
1725 	if (type == BGE_RESET_SHUTDOWN)
1726 		bge_ape_driver_state_change(sc, type);
1727 }
1728 
1729 static void
1730 bge_sig_legacy(struct bge_softc *sc, int type)
1731 {
1732 
1733 	if (sc->bge_asf_mode) {
1734 		switch (type) {
1735 		case BGE_RESET_START:
1736 			bge_writemem_ind(sc, BGE_SRAM_FW_DRV_STATE_MB,
1737 			    BGE_FW_DRV_STATE_START);
1738 			break;
1739 		case BGE_RESET_SHUTDOWN:
1740 			bge_writemem_ind(sc, BGE_SRAM_FW_DRV_STATE_MB,
1741 			    BGE_FW_DRV_STATE_UNLOAD);
1742 			break;
1743 		}
1744 	}
1745 }
1746 
1747 static void
1748 bge_stop_fw(struct bge_softc *sc)
1749 {
1750 	int i;
1751 
1752 	if (sc->bge_asf_mode) {
1753 		bge_writemem_ind(sc, BGE_SRAM_FW_CMD_MB, BGE_FW_CMD_PAUSE);
1754 		CSR_WRITE_4(sc, BGE_RX_CPU_EVENT,
1755 		    CSR_READ_4(sc, BGE_RX_CPU_EVENT) | BGE_RX_CPU_DRV_EVENT);
1756 
1757 		for (i = 0; i < 100; i++ ) {
1758 			if (!(CSR_READ_4(sc, BGE_RX_CPU_EVENT) &
1759 			    BGE_RX_CPU_DRV_EVENT))
1760 				break;
1761 			DELAY(10);
1762 		}
1763 	}
1764 }
1765 
1766 static uint32_t
1767 bge_dma_swap_options(struct bge_softc *sc)
1768 {
1769 	uint32_t dma_options;
1770 
1771 	dma_options = BGE_MODECTL_WORDSWAP_NONFRAME |
1772 	    BGE_MODECTL_BYTESWAP_DATA | BGE_MODECTL_WORDSWAP_DATA;
1773 #if BYTE_ORDER == BIG_ENDIAN
1774 	dma_options |= BGE_MODECTL_BYTESWAP_NONFRAME;
1775 #endif
1776 	return (dma_options);
1777 }
1778 
1779 /*
1780  * Do endian, PCI and DMA initialization.
1781  */
1782 static int
1783 bge_chipinit(struct bge_softc *sc)
1784 {
1785 	uint32_t dma_rw_ctl, misc_ctl, mode_ctl;
1786 	uint16_t val;
1787 	int i;
1788 
1789 	/* Set endianness before we access any non-PCI registers. */
1790 	misc_ctl = BGE_INIT;
1791 	if (sc->bge_flags & BGE_FLAG_TAGGED_STATUS)
1792 		misc_ctl |= BGE_PCIMISCCTL_TAGGED_STATUS;
1793 	pci_write_config(sc->bge_dev, BGE_PCI_MISC_CTL, misc_ctl, 4);
1794 
1795 	/*
1796 	 * Clear the MAC statistics block in the NIC's
1797 	 * internal memory.
1798 	 */
1799 	for (i = BGE_STATS_BLOCK;
1800 	    i < BGE_STATS_BLOCK_END + 1; i += sizeof(uint32_t))
1801 		BGE_MEMWIN_WRITE(sc, i, 0);
1802 
1803 	for (i = BGE_STATUS_BLOCK;
1804 	    i < BGE_STATUS_BLOCK_END + 1; i += sizeof(uint32_t))
1805 		BGE_MEMWIN_WRITE(sc, i, 0);
1806 
1807 	if (sc->bge_chiprev == BGE_CHIPREV_5704_BX) {
1808 		/*
1809 		 *  Fix data corruption caused by non-qword write with WB.
1810 		 *  Fix master abort in PCI mode.
1811 		 *  Fix PCI latency timer.
1812 		 */
1813 		val = pci_read_config(sc->bge_dev, BGE_PCI_MSI_DATA + 2, 2);
1814 		val |= (1 << 10) | (1 << 12) | (1 << 13);
1815 		pci_write_config(sc->bge_dev, BGE_PCI_MSI_DATA + 2, val, 2);
1816 	}
1817 
1818 	if (sc->bge_asicrev == BGE_ASICREV_BCM57765 ||
1819 	    sc->bge_asicrev == BGE_ASICREV_BCM57766) {
1820 		/*
1821 		 * For the 57766 and non Ax versions of 57765, bootcode
1822 		 * needs to setup the PCIE Fast Training Sequence (FTS)
1823 		 * value to prevent transmit hangs.
1824 		 */
1825 		if (sc->bge_chiprev != BGE_CHIPREV_57765_AX) {
1826 			CSR_WRITE_4(sc, BGE_CPMU_PADRNG_CTL,
1827 			    CSR_READ_4(sc, BGE_CPMU_PADRNG_CTL) |
1828 			    BGE_CPMU_PADRNG_CTL_RDIV2);
1829 		}
1830 	}
1831 
1832 	/*
1833 	 * Set up the PCI DMA control register.
1834 	 */
1835 	dma_rw_ctl = BGE_PCIDMARWCTL_RD_CMD_SHIFT(6) |
1836 	    BGE_PCIDMARWCTL_WR_CMD_SHIFT(7);
1837 	if (sc->bge_flags & BGE_FLAG_PCIE) {
1838 		if (sc->bge_mps >= 256)
1839 			dma_rw_ctl |= BGE_PCIDMARWCTL_WR_WAT_SHIFT(7);
1840 		else
1841 			dma_rw_ctl |= BGE_PCIDMARWCTL_WR_WAT_SHIFT(3);
1842 	} else if (sc->bge_flags & BGE_FLAG_PCIX) {
1843 		if (BGE_IS_5714_FAMILY(sc)) {
1844 			/* 256 bytes for read and write. */
1845 			dma_rw_ctl |= BGE_PCIDMARWCTL_RD_WAT_SHIFT(2) |
1846 			    BGE_PCIDMARWCTL_WR_WAT_SHIFT(2);
1847 			dma_rw_ctl |= (sc->bge_asicrev == BGE_ASICREV_BCM5780) ?
1848 			    BGE_PCIDMARWCTL_ONEDMA_ATONCE_GLOBAL :
1849 			    BGE_PCIDMARWCTL_ONEDMA_ATONCE_LOCAL;
1850 		} else if (sc->bge_asicrev == BGE_ASICREV_BCM5703) {
1851 			/*
1852 			 * In the BCM5703, the DMA read watermark should
1853 			 * be set to less than or equal to the maximum
1854 			 * memory read byte count of the PCI-X command
1855 			 * register.
1856 			 */
1857 			dma_rw_ctl |= BGE_PCIDMARWCTL_RD_WAT_SHIFT(4) |
1858 			    BGE_PCIDMARWCTL_WR_WAT_SHIFT(3);
1859 		} else if (sc->bge_asicrev == BGE_ASICREV_BCM5704) {
1860 			/* 1536 bytes for read, 384 bytes for write. */
1861 			dma_rw_ctl |= BGE_PCIDMARWCTL_RD_WAT_SHIFT(7) |
1862 			    BGE_PCIDMARWCTL_WR_WAT_SHIFT(3);
1863 		} else {
1864 			/* 384 bytes for read and write. */
1865 			dma_rw_ctl |= BGE_PCIDMARWCTL_RD_WAT_SHIFT(3) |
1866 			    BGE_PCIDMARWCTL_WR_WAT_SHIFT(3) |
1867 			    0x0F;
1868 		}
1869 		if (sc->bge_asicrev == BGE_ASICREV_BCM5703 ||
1870 		    sc->bge_asicrev == BGE_ASICREV_BCM5704) {
1871 			uint32_t tmp;
1872 
1873 			/* Set ONE_DMA_AT_ONCE for hardware workaround. */
1874 			tmp = CSR_READ_4(sc, BGE_PCI_CLKCTL) & 0x1F;
1875 			if (tmp == 6 || tmp == 7)
1876 				dma_rw_ctl |=
1877 				    BGE_PCIDMARWCTL_ONEDMA_ATONCE_GLOBAL;
1878 
1879 			/* Set PCI-X DMA write workaround. */
1880 			dma_rw_ctl |= BGE_PCIDMARWCTL_ASRT_ALL_BE;
1881 		}
1882 	} else {
1883 		/* Conventional PCI bus: 256 bytes for read and write. */
1884 		dma_rw_ctl |= BGE_PCIDMARWCTL_RD_WAT_SHIFT(7) |
1885 		    BGE_PCIDMARWCTL_WR_WAT_SHIFT(7);
1886 
1887 		if (sc->bge_asicrev != BGE_ASICREV_BCM5705 &&
1888 		    sc->bge_asicrev != BGE_ASICREV_BCM5750)
1889 			dma_rw_ctl |= 0x0F;
1890 	}
1891 	if (sc->bge_asicrev == BGE_ASICREV_BCM5700 ||
1892 	    sc->bge_asicrev == BGE_ASICREV_BCM5701)
1893 		dma_rw_ctl |= BGE_PCIDMARWCTL_USE_MRM |
1894 		    BGE_PCIDMARWCTL_ASRT_ALL_BE;
1895 	if (sc->bge_asicrev == BGE_ASICREV_BCM5703 ||
1896 	    sc->bge_asicrev == BGE_ASICREV_BCM5704)
1897 		dma_rw_ctl &= ~BGE_PCIDMARWCTL_MINDMA;
1898 	if (BGE_IS_5717_PLUS(sc)) {
1899 		dma_rw_ctl &= ~BGE_PCIDMARWCTL_DIS_CACHE_ALIGNMENT;
1900 		if (sc->bge_chipid == BGE_CHIPID_BCM57765_A0)
1901 			dma_rw_ctl &= ~BGE_PCIDMARWCTL_CRDRDR_RDMA_MRRS_MSK;
1902 		/*
1903 		 * Enable HW workaround for controllers that misinterpret
1904 		 * a status tag update and leave interrupts permanently
1905 		 * disabled.
1906 		 */
1907 		if (!BGE_IS_57765_PLUS(sc) &&
1908 		    sc->bge_asicrev != BGE_ASICREV_BCM5717 &&
1909 		    sc->bge_asicrev != BGE_ASICREV_BCM5762)
1910 			dma_rw_ctl |= BGE_PCIDMARWCTL_TAGGED_STATUS_WA;
1911 	}
1912 	pci_write_config(sc->bge_dev, BGE_PCI_DMA_RW_CTL, dma_rw_ctl, 4);
1913 
1914 	/*
1915 	 * Set up general mode register.
1916 	 */
1917 	mode_ctl = bge_dma_swap_options(sc);
1918 	if (sc->bge_asicrev == BGE_ASICREV_BCM5720 ||
1919 	    sc->bge_asicrev == BGE_ASICREV_BCM5762) {
1920 		/* Retain Host-2-BMC settings written by APE firmware. */
1921 		mode_ctl |= CSR_READ_4(sc, BGE_MODE_CTL) &
1922 		    (BGE_MODECTL_BYTESWAP_B2HRX_DATA |
1923 		    BGE_MODECTL_WORDSWAP_B2HRX_DATA |
1924 		    BGE_MODECTL_B2HRX_ENABLE | BGE_MODECTL_HTX2B_ENABLE);
1925 	}
1926 	mode_ctl |= BGE_MODECTL_MAC_ATTN_INTR | BGE_MODECTL_HOST_SEND_BDS |
1927 	    BGE_MODECTL_TX_NO_PHDR_CSUM;
1928 
1929 	/*
1930 	 * BCM5701 B5 have a bug causing data corruption when using
1931 	 * 64-bit DMA reads, which can be terminated early and then
1932 	 * completed later as 32-bit accesses, in combination with
1933 	 * certain bridges.
1934 	 */
1935 	if (sc->bge_asicrev == BGE_ASICREV_BCM5701 &&
1936 	    sc->bge_chipid == BGE_CHIPID_BCM5701_B5)
1937 		mode_ctl |= BGE_MODECTL_FORCE_PCI32;
1938 
1939 	/*
1940 	 * Tell the firmware the driver is running
1941 	 */
1942 	if (sc->bge_asf_mode & ASF_STACKUP)
1943 		mode_ctl |= BGE_MODECTL_STACKUP;
1944 
1945 	CSR_WRITE_4(sc, BGE_MODE_CTL, mode_ctl);
1946 
1947 	/*
1948 	 * Disable memory write invalidate.  Apparently it is not supported
1949 	 * properly by these devices.
1950 	 */
1951 	PCI_CLRBIT(sc->bge_dev, BGE_PCI_CMD, PCIM_CMD_MWIEN, 4);
1952 
1953 	/* Set the timer prescaler (always 66 MHz). */
1954 	CSR_WRITE_4(sc, BGE_MISC_CFG, BGE_32BITTIME_66MHZ);
1955 
1956 	/* XXX: The Linux tg3 driver does this at the start of brgphy_reset. */
1957 	if (sc->bge_asicrev == BGE_ASICREV_BCM5906) {
1958 		DELAY(40);	/* XXX */
1959 
1960 		/* Put PHY into ready state */
1961 		BGE_CLRBIT(sc, BGE_MISC_CFG, BGE_MISCCFG_EPHY_IDDQ);
1962 		CSR_READ_4(sc, BGE_MISC_CFG); /* Flush */
1963 		DELAY(40);
1964 	}
1965 
1966 	return (0);
1967 }
1968 
1969 static int
1970 bge_blockinit(struct bge_softc *sc)
1971 {
1972 	struct bge_rcb *rcb;
1973 	bus_size_t vrcb;
1974 	bge_hostaddr taddr;
1975 	uint32_t dmactl, rdmareg, val;
1976 	int i, limit;
1977 
1978 	/*
1979 	 * Initialize the memory window pointer register so that
1980 	 * we can access the first 32K of internal NIC RAM. This will
1981 	 * allow us to set up the TX send ring RCBs and the RX return
1982 	 * ring RCBs, plus other things which live in NIC memory.
1983 	 */
1984 	CSR_WRITE_4(sc, BGE_PCI_MEMWIN_BASEADDR, 0);
1985 
1986 	/* Note: the BCM5704 has a smaller mbuf space than other chips. */
1987 
1988 	if (!(BGE_IS_5705_PLUS(sc))) {
1989 		/* Configure mbuf memory pool */
1990 		CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_BASEADDR, BGE_BUFFPOOL_1);
1991 		if (sc->bge_asicrev == BGE_ASICREV_BCM5704)
1992 			CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_LEN, 0x10000);
1993 		else
1994 			CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_LEN, 0x18000);
1995 
1996 		/* Configure DMA resource pool */
1997 		CSR_WRITE_4(sc, BGE_BMAN_DMA_DESCPOOL_BASEADDR,
1998 		    BGE_DMA_DESCRIPTORS);
1999 		CSR_WRITE_4(sc, BGE_BMAN_DMA_DESCPOOL_LEN, 0x2000);
2000 	}
2001 
2002 	/* Configure mbuf pool watermarks */
2003 	if (BGE_IS_5717_PLUS(sc)) {
2004 		CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_READDMA_LOWAT, 0x0);
2005 		if (if_getmtu(sc->bge_ifp) > ETHERMTU) {
2006 			CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_MACRX_LOWAT, 0x7e);
2007 			CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_HIWAT, 0xea);
2008 		} else {
2009 			CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_MACRX_LOWAT, 0x2a);
2010 			CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_HIWAT, 0xa0);
2011 		}
2012 	} else if (!BGE_IS_5705_PLUS(sc)) {
2013 		CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_READDMA_LOWAT, 0x50);
2014 		CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_MACRX_LOWAT, 0x20);
2015 		CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_HIWAT, 0x60);
2016 	} else if (sc->bge_asicrev == BGE_ASICREV_BCM5906) {
2017 		CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_READDMA_LOWAT, 0x0);
2018 		CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_MACRX_LOWAT, 0x04);
2019 		CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_HIWAT, 0x10);
2020 	} else {
2021 		CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_READDMA_LOWAT, 0x0);
2022 		CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_MACRX_LOWAT, 0x10);
2023 		CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_HIWAT, 0x60);
2024 	}
2025 
2026 	/* Configure DMA resource watermarks */
2027 	CSR_WRITE_4(sc, BGE_BMAN_DMA_DESCPOOL_LOWAT, 5);
2028 	CSR_WRITE_4(sc, BGE_BMAN_DMA_DESCPOOL_HIWAT, 10);
2029 
2030 	/* Enable buffer manager */
2031 	val = BGE_BMANMODE_ENABLE | BGE_BMANMODE_LOMBUF_ATTN;
2032 	/*
2033 	 * Change the arbitration algorithm of TXMBUF read request to
2034 	 * round-robin instead of priority based for BCM5719.  When
2035 	 * TXFIFO is almost empty, RDMA will hold its request until
2036 	 * TXFIFO is not almost empty.
2037 	 */
2038 	if (sc->bge_asicrev == BGE_ASICREV_BCM5719)
2039 		val |= BGE_BMANMODE_NO_TX_UNDERRUN;
2040 	CSR_WRITE_4(sc, BGE_BMAN_MODE, val);
2041 
2042 	/* Poll for buffer manager start indication */
2043 	for (i = 0; i < BGE_TIMEOUT; i++) {
2044 		DELAY(10);
2045 		if (CSR_READ_4(sc, BGE_BMAN_MODE) & BGE_BMANMODE_ENABLE)
2046 			break;
2047 	}
2048 
2049 	if (i == BGE_TIMEOUT) {
2050 		device_printf(sc->bge_dev, "buffer manager failed to start\n");
2051 		return (ENXIO);
2052 	}
2053 
2054 	/* Enable flow-through queues */
2055 	CSR_WRITE_4(sc, BGE_FTQ_RESET, 0xFFFFFFFF);
2056 	CSR_WRITE_4(sc, BGE_FTQ_RESET, 0);
2057 
2058 	/* Wait until queue initialization is complete */
2059 	for (i = 0; i < BGE_TIMEOUT; i++) {
2060 		DELAY(10);
2061 		if (CSR_READ_4(sc, BGE_FTQ_RESET) == 0)
2062 			break;
2063 	}
2064 
2065 	if (i == BGE_TIMEOUT) {
2066 		device_printf(sc->bge_dev, "flow-through queue init failed\n");
2067 		return (ENXIO);
2068 	}
2069 
2070 	/*
2071 	 * Summary of rings supported by the controller:
2072 	 *
2073 	 * Standard Receive Producer Ring
2074 	 * - This ring is used to feed receive buffers for "standard"
2075 	 *   sized frames (typically 1536 bytes) to the controller.
2076 	 *
2077 	 * Jumbo Receive Producer Ring
2078 	 * - This ring is used to feed receive buffers for jumbo sized
2079 	 *   frames (i.e. anything bigger than the "standard" frames)
2080 	 *   to the controller.
2081 	 *
2082 	 * Mini Receive Producer Ring
2083 	 * - This ring is used to feed receive buffers for "mini"
2084 	 *   sized frames to the controller.
2085 	 * - This feature required external memory for the controller
2086 	 *   but was never used in a production system.  Should always
2087 	 *   be disabled.
2088 	 *
2089 	 * Receive Return Ring
2090 	 * - After the controller has placed an incoming frame into a
2091 	 *   receive buffer that buffer is moved into a receive return
2092 	 *   ring.  The driver is then responsible to passing the
2093 	 *   buffer up to the stack.  Many versions of the controller
2094 	 *   support multiple RR rings.
2095 	 *
2096 	 * Send Ring
2097 	 * - This ring is used for outgoing frames.  Many versions of
2098 	 *   the controller support multiple send rings.
2099 	 */
2100 
2101 	/* Initialize the standard receive producer ring control block. */
2102 	rcb = &sc->bge_ldata.bge_info.bge_std_rx_rcb;
2103 	rcb->bge_hostaddr.bge_addr_lo =
2104 	    BGE_ADDR_LO(sc->bge_ldata.bge_rx_std_ring_paddr);
2105 	rcb->bge_hostaddr.bge_addr_hi =
2106 	    BGE_ADDR_HI(sc->bge_ldata.bge_rx_std_ring_paddr);
2107 	bus_dmamap_sync(sc->bge_cdata.bge_rx_std_ring_tag,
2108 	    sc->bge_cdata.bge_rx_std_ring_map, BUS_DMASYNC_PREREAD);
2109 	if (BGE_IS_5717_PLUS(sc)) {
2110 		/*
2111 		 * Bits 31-16: Programmable ring size (2048, 1024, 512, .., 32)
2112 		 * Bits 15-2 : Maximum RX frame size
2113 		 * Bit 1     : 1 = Ring Disabled, 0 = Ring ENabled
2114 		 * Bit 0     : Reserved
2115 		 */
2116 		rcb->bge_maxlen_flags =
2117 		    BGE_RCB_MAXLEN_FLAGS(512, BGE_MAX_FRAMELEN << 2);
2118 	} else if (BGE_IS_5705_PLUS(sc)) {
2119 		/*
2120 		 * Bits 31-16: Programmable ring size (512, 256, 128, 64, 32)
2121 		 * Bits 15-2 : Reserved (should be 0)
2122 		 * Bit 1     : 1 = Ring Disabled, 0 = Ring Enabled
2123 		 * Bit 0     : Reserved
2124 		 */
2125 		rcb->bge_maxlen_flags = BGE_RCB_MAXLEN_FLAGS(512, 0);
2126 	} else {
2127 		/*
2128 		 * Ring size is always XXX entries
2129 		 * Bits 31-16: Maximum RX frame size
2130 		 * Bits 15-2 : Reserved (should be 0)
2131 		 * Bit 1     : 1 = Ring Disabled, 0 = Ring Enabled
2132 		 * Bit 0     : Reserved
2133 		 */
2134 		rcb->bge_maxlen_flags =
2135 		    BGE_RCB_MAXLEN_FLAGS(BGE_MAX_FRAMELEN, 0);
2136 	}
2137 	if (sc->bge_asicrev == BGE_ASICREV_BCM5717 ||
2138 	    sc->bge_asicrev == BGE_ASICREV_BCM5719 ||
2139 	    sc->bge_asicrev == BGE_ASICREV_BCM5720)
2140 		rcb->bge_nicaddr = BGE_STD_RX_RINGS_5717;
2141 	else
2142 		rcb->bge_nicaddr = BGE_STD_RX_RINGS;
2143 	/* Write the standard receive producer ring control block. */
2144 	CSR_WRITE_4(sc, BGE_RX_STD_RCB_HADDR_HI, rcb->bge_hostaddr.bge_addr_hi);
2145 	CSR_WRITE_4(sc, BGE_RX_STD_RCB_HADDR_LO, rcb->bge_hostaddr.bge_addr_lo);
2146 	CSR_WRITE_4(sc, BGE_RX_STD_RCB_MAXLEN_FLAGS, rcb->bge_maxlen_flags);
2147 	CSR_WRITE_4(sc, BGE_RX_STD_RCB_NICADDR, rcb->bge_nicaddr);
2148 
2149 	/* Reset the standard receive producer ring producer index. */
2150 	bge_writembx(sc, BGE_MBX_RX_STD_PROD_LO, 0);
2151 
2152 	/*
2153 	 * Initialize the jumbo RX producer ring control
2154 	 * block.  We set the 'ring disabled' bit in the
2155 	 * flags field until we're actually ready to start
2156 	 * using this ring (i.e. once we set the MTU
2157 	 * high enough to require it).
2158 	 */
2159 	if (BGE_IS_JUMBO_CAPABLE(sc)) {
2160 		rcb = &sc->bge_ldata.bge_info.bge_jumbo_rx_rcb;
2161 		/* Get the jumbo receive producer ring RCB parameters. */
2162 		rcb->bge_hostaddr.bge_addr_lo =
2163 		    BGE_ADDR_LO(sc->bge_ldata.bge_rx_jumbo_ring_paddr);
2164 		rcb->bge_hostaddr.bge_addr_hi =
2165 		    BGE_ADDR_HI(sc->bge_ldata.bge_rx_jumbo_ring_paddr);
2166 		bus_dmamap_sync(sc->bge_cdata.bge_rx_jumbo_ring_tag,
2167 		    sc->bge_cdata.bge_rx_jumbo_ring_map,
2168 		    BUS_DMASYNC_PREREAD);
2169 		rcb->bge_maxlen_flags = BGE_RCB_MAXLEN_FLAGS(0,
2170 		    BGE_RCB_FLAG_USE_EXT_RX_BD | BGE_RCB_FLAG_RING_DISABLED);
2171 		if (sc->bge_asicrev == BGE_ASICREV_BCM5717 ||
2172 		    sc->bge_asicrev == BGE_ASICREV_BCM5719 ||
2173 		    sc->bge_asicrev == BGE_ASICREV_BCM5720)
2174 			rcb->bge_nicaddr = BGE_JUMBO_RX_RINGS_5717;
2175 		else
2176 			rcb->bge_nicaddr = BGE_JUMBO_RX_RINGS;
2177 		CSR_WRITE_4(sc, BGE_RX_JUMBO_RCB_HADDR_HI,
2178 		    rcb->bge_hostaddr.bge_addr_hi);
2179 		CSR_WRITE_4(sc, BGE_RX_JUMBO_RCB_HADDR_LO,
2180 		    rcb->bge_hostaddr.bge_addr_lo);
2181 		/* Program the jumbo receive producer ring RCB parameters. */
2182 		CSR_WRITE_4(sc, BGE_RX_JUMBO_RCB_MAXLEN_FLAGS,
2183 		    rcb->bge_maxlen_flags);
2184 		CSR_WRITE_4(sc, BGE_RX_JUMBO_RCB_NICADDR, rcb->bge_nicaddr);
2185 		/* Reset the jumbo receive producer ring producer index. */
2186 		bge_writembx(sc, BGE_MBX_RX_JUMBO_PROD_LO, 0);
2187 	}
2188 
2189 	/* Disable the mini receive producer ring RCB. */
2190 	if (BGE_IS_5700_FAMILY(sc)) {
2191 		rcb = &sc->bge_ldata.bge_info.bge_mini_rx_rcb;
2192 		rcb->bge_maxlen_flags =
2193 		    BGE_RCB_MAXLEN_FLAGS(0, BGE_RCB_FLAG_RING_DISABLED);
2194 		CSR_WRITE_4(sc, BGE_RX_MINI_RCB_MAXLEN_FLAGS,
2195 		    rcb->bge_maxlen_flags);
2196 		/* Reset the mini receive producer ring producer index. */
2197 		bge_writembx(sc, BGE_MBX_RX_MINI_PROD_LO, 0);
2198 	}
2199 
2200 	/* Choose de-pipeline mode for BCM5906 A0, A1 and A2. */
2201 	if (sc->bge_asicrev == BGE_ASICREV_BCM5906) {
2202 		if (sc->bge_chipid == BGE_CHIPID_BCM5906_A0 ||
2203 		    sc->bge_chipid == BGE_CHIPID_BCM5906_A1 ||
2204 		    sc->bge_chipid == BGE_CHIPID_BCM5906_A2)
2205 			CSR_WRITE_4(sc, BGE_ISO_PKT_TX,
2206 			    (CSR_READ_4(sc, BGE_ISO_PKT_TX) & ~3) | 2);
2207 	}
2208 	/*
2209 	 * The BD ring replenish thresholds control how often the
2210 	 * hardware fetches new BD's from the producer rings in host
2211 	 * memory.  Setting the value too low on a busy system can
2212 	 * starve the hardware and recue the throughpout.
2213 	 *
2214 	 * Set the BD ring replentish thresholds. The recommended
2215 	 * values are 1/8th the number of descriptors allocated to
2216 	 * each ring.
2217 	 * XXX The 5754 requires a lower threshold, so it might be a
2218 	 * requirement of all 575x family chips.  The Linux driver sets
2219 	 * the lower threshold for all 5705 family chips as well, but there
2220 	 * are reports that it might not need to be so strict.
2221 	 *
2222 	 * XXX Linux does some extra fiddling here for the 5906 parts as
2223 	 * well.
2224 	 */
2225 	if (BGE_IS_5705_PLUS(sc))
2226 		val = 8;
2227 	else
2228 		val = BGE_STD_RX_RING_CNT / 8;
2229 	CSR_WRITE_4(sc, BGE_RBDI_STD_REPL_THRESH, val);
2230 	if (BGE_IS_JUMBO_CAPABLE(sc))
2231 		CSR_WRITE_4(sc, BGE_RBDI_JUMBO_REPL_THRESH,
2232 		    BGE_JUMBO_RX_RING_CNT/8);
2233 	if (BGE_IS_5717_PLUS(sc)) {
2234 		CSR_WRITE_4(sc, BGE_STD_REPLENISH_LWM, 32);
2235 		CSR_WRITE_4(sc, BGE_JMB_REPLENISH_LWM, 16);
2236 	}
2237 
2238 	/*
2239 	 * Disable all send rings by setting the 'ring disabled' bit
2240 	 * in the flags field of all the TX send ring control blocks,
2241 	 * located in NIC memory.
2242 	 */
2243 	if (!BGE_IS_5705_PLUS(sc))
2244 		/* 5700 to 5704 had 16 send rings. */
2245 		limit = BGE_TX_RINGS_EXTSSRAM_MAX;
2246 	else if (BGE_IS_57765_PLUS(sc) ||
2247 	    sc->bge_asicrev == BGE_ASICREV_BCM5762)
2248 		limit = 2;
2249 	else if (BGE_IS_5717_PLUS(sc))
2250 		limit = 4;
2251 	else
2252 		limit = 1;
2253 	vrcb = BGE_MEMWIN_START + BGE_SEND_RING_RCB;
2254 	for (i = 0; i < limit; i++) {
2255 		RCB_WRITE_4(sc, vrcb, bge_maxlen_flags,
2256 		    BGE_RCB_MAXLEN_FLAGS(0, BGE_RCB_FLAG_RING_DISABLED));
2257 		RCB_WRITE_4(sc, vrcb, bge_nicaddr, 0);
2258 		vrcb += sizeof(struct bge_rcb);
2259 	}
2260 
2261 	/* Configure send ring RCB 0 (we use only the first ring) */
2262 	vrcb = BGE_MEMWIN_START + BGE_SEND_RING_RCB;
2263 	BGE_HOSTADDR(taddr, sc->bge_ldata.bge_tx_ring_paddr);
2264 	RCB_WRITE_4(sc, vrcb, bge_hostaddr.bge_addr_hi, taddr.bge_addr_hi);
2265 	RCB_WRITE_4(sc, vrcb, bge_hostaddr.bge_addr_lo, taddr.bge_addr_lo);
2266 	if (sc->bge_asicrev == BGE_ASICREV_BCM5717 ||
2267 	    sc->bge_asicrev == BGE_ASICREV_BCM5719 ||
2268 	    sc->bge_asicrev == BGE_ASICREV_BCM5720)
2269 		RCB_WRITE_4(sc, vrcb, bge_nicaddr, BGE_SEND_RING_5717);
2270 	else
2271 		RCB_WRITE_4(sc, vrcb, bge_nicaddr,
2272 		    BGE_NIC_TXRING_ADDR(0, BGE_TX_RING_CNT));
2273 	RCB_WRITE_4(sc, vrcb, bge_maxlen_flags,
2274 	    BGE_RCB_MAXLEN_FLAGS(BGE_TX_RING_CNT, 0));
2275 
2276 	/*
2277 	 * Disable all receive return rings by setting the
2278 	 * 'ring diabled' bit in the flags field of all the receive
2279 	 * return ring control blocks, located in NIC memory.
2280 	 */
2281 	if (sc->bge_asicrev == BGE_ASICREV_BCM5717 ||
2282 	    sc->bge_asicrev == BGE_ASICREV_BCM5719 ||
2283 	    sc->bge_asicrev == BGE_ASICREV_BCM5720) {
2284 		/* Should be 17, use 16 until we get an SRAM map. */
2285 		limit = 16;
2286 	} else if (!BGE_IS_5705_PLUS(sc))
2287 		limit = BGE_RX_RINGS_MAX;
2288 	else if (sc->bge_asicrev == BGE_ASICREV_BCM5755 ||
2289 	    sc->bge_asicrev == BGE_ASICREV_BCM5762 ||
2290 	    BGE_IS_57765_PLUS(sc))
2291 		limit = 4;
2292 	else
2293 		limit = 1;
2294 	/* Disable all receive return rings. */
2295 	vrcb = BGE_MEMWIN_START + BGE_RX_RETURN_RING_RCB;
2296 	for (i = 0; i < limit; i++) {
2297 		RCB_WRITE_4(sc, vrcb, bge_hostaddr.bge_addr_hi, 0);
2298 		RCB_WRITE_4(sc, vrcb, bge_hostaddr.bge_addr_lo, 0);
2299 		RCB_WRITE_4(sc, vrcb, bge_maxlen_flags,
2300 		    BGE_RCB_FLAG_RING_DISABLED);
2301 		RCB_WRITE_4(sc, vrcb, bge_nicaddr, 0);
2302 		bge_writembx(sc, BGE_MBX_RX_CONS0_LO +
2303 		    (i * (sizeof(uint64_t))), 0);
2304 		vrcb += sizeof(struct bge_rcb);
2305 	}
2306 
2307 	/*
2308 	 * Set up receive return ring 0.  Note that the NIC address
2309 	 * for RX return rings is 0x0.  The return rings live entirely
2310 	 * within the host, so the nicaddr field in the RCB isn't used.
2311 	 */
2312 	vrcb = BGE_MEMWIN_START + BGE_RX_RETURN_RING_RCB;
2313 	BGE_HOSTADDR(taddr, sc->bge_ldata.bge_rx_return_ring_paddr);
2314 	RCB_WRITE_4(sc, vrcb, bge_hostaddr.bge_addr_hi, taddr.bge_addr_hi);
2315 	RCB_WRITE_4(sc, vrcb, bge_hostaddr.bge_addr_lo, taddr.bge_addr_lo);
2316 	RCB_WRITE_4(sc, vrcb, bge_nicaddr, 0);
2317 	RCB_WRITE_4(sc, vrcb, bge_maxlen_flags,
2318 	    BGE_RCB_MAXLEN_FLAGS(sc->bge_return_ring_cnt, 0));
2319 
2320 	/* Set random backoff seed for TX */
2321 	CSR_WRITE_4(sc, BGE_TX_RANDOM_BACKOFF,
2322 	    (IF_LLADDR(sc->bge_ifp)[0] + IF_LLADDR(sc->bge_ifp)[1] +
2323 	    IF_LLADDR(sc->bge_ifp)[2] + IF_LLADDR(sc->bge_ifp)[3] +
2324 	    IF_LLADDR(sc->bge_ifp)[4] + IF_LLADDR(sc->bge_ifp)[5]) &
2325 	    BGE_TX_BACKOFF_SEED_MASK);
2326 
2327 	/* Set inter-packet gap */
2328 	val = 0x2620;
2329 	if (sc->bge_asicrev == BGE_ASICREV_BCM5720 ||
2330 	    sc->bge_asicrev == BGE_ASICREV_BCM5762)
2331 		val |= CSR_READ_4(sc, BGE_TX_LENGTHS) &
2332 		    (BGE_TXLEN_JMB_FRM_LEN_MSK | BGE_TXLEN_CNT_DN_VAL_MSK);
2333 	CSR_WRITE_4(sc, BGE_TX_LENGTHS, val);
2334 
2335 	/*
2336 	 * Specify which ring to use for packets that don't match
2337 	 * any RX rules.
2338 	 */
2339 	CSR_WRITE_4(sc, BGE_RX_RULES_CFG, 0x08);
2340 
2341 	/*
2342 	 * Configure number of RX lists. One interrupt distribution
2343 	 * list, sixteen active lists, one bad frames class.
2344 	 */
2345 	CSR_WRITE_4(sc, BGE_RXLP_CFG, 0x181);
2346 
2347 	/* Inialize RX list placement stats mask. */
2348 	CSR_WRITE_4(sc, BGE_RXLP_STATS_ENABLE_MASK, 0x007FFFFF);
2349 	CSR_WRITE_4(sc, BGE_RXLP_STATS_CTL, 0x1);
2350 
2351 	/* Disable host coalescing until we get it set up */
2352 	CSR_WRITE_4(sc, BGE_HCC_MODE, 0x00000000);
2353 
2354 	/* Poll to make sure it's shut down. */
2355 	for (i = 0; i < BGE_TIMEOUT; i++) {
2356 		DELAY(10);
2357 		if (!(CSR_READ_4(sc, BGE_HCC_MODE) & BGE_HCCMODE_ENABLE))
2358 			break;
2359 	}
2360 
2361 	if (i == BGE_TIMEOUT) {
2362 		device_printf(sc->bge_dev,
2363 		    "host coalescing engine failed to idle\n");
2364 		return (ENXIO);
2365 	}
2366 
2367 	/* Set up host coalescing defaults */
2368 	CSR_WRITE_4(sc, BGE_HCC_RX_COAL_TICKS, sc->bge_rx_coal_ticks);
2369 	CSR_WRITE_4(sc, BGE_HCC_TX_COAL_TICKS, sc->bge_tx_coal_ticks);
2370 	CSR_WRITE_4(sc, BGE_HCC_RX_MAX_COAL_BDS, sc->bge_rx_max_coal_bds);
2371 	CSR_WRITE_4(sc, BGE_HCC_TX_MAX_COAL_BDS, sc->bge_tx_max_coal_bds);
2372 	if (!(BGE_IS_5705_PLUS(sc))) {
2373 		CSR_WRITE_4(sc, BGE_HCC_RX_COAL_TICKS_INT, 0);
2374 		CSR_WRITE_4(sc, BGE_HCC_TX_COAL_TICKS_INT, 0);
2375 	}
2376 	CSR_WRITE_4(sc, BGE_HCC_RX_MAX_COAL_BDS_INT, 1);
2377 	CSR_WRITE_4(sc, BGE_HCC_TX_MAX_COAL_BDS_INT, 1);
2378 
2379 	/* Set up address of statistics block */
2380 	if (!(BGE_IS_5705_PLUS(sc))) {
2381 		CSR_WRITE_4(sc, BGE_HCC_STATS_ADDR_HI,
2382 		    BGE_ADDR_HI(sc->bge_ldata.bge_stats_paddr));
2383 		CSR_WRITE_4(sc, BGE_HCC_STATS_ADDR_LO,
2384 		    BGE_ADDR_LO(sc->bge_ldata.bge_stats_paddr));
2385 		CSR_WRITE_4(sc, BGE_HCC_STATS_BASEADDR, BGE_STATS_BLOCK);
2386 		CSR_WRITE_4(sc, BGE_HCC_STATUSBLK_BASEADDR, BGE_STATUS_BLOCK);
2387 		CSR_WRITE_4(sc, BGE_HCC_STATS_TICKS, sc->bge_stat_ticks);
2388 	}
2389 
2390 	/* Set up address of status block */
2391 	CSR_WRITE_4(sc, BGE_HCC_STATUSBLK_ADDR_HI,
2392 	    BGE_ADDR_HI(sc->bge_ldata.bge_status_block_paddr));
2393 	CSR_WRITE_4(sc, BGE_HCC_STATUSBLK_ADDR_LO,
2394 	    BGE_ADDR_LO(sc->bge_ldata.bge_status_block_paddr));
2395 
2396 	/* Set up status block size. */
2397 	if (sc->bge_asicrev == BGE_ASICREV_BCM5700 &&
2398 	    sc->bge_chipid != BGE_CHIPID_BCM5700_C0) {
2399 		val = BGE_STATBLKSZ_FULL;
2400 		bzero(sc->bge_ldata.bge_status_block, BGE_STATUS_BLK_SZ);
2401 	} else {
2402 		val = BGE_STATBLKSZ_32BYTE;
2403 		bzero(sc->bge_ldata.bge_status_block, 32);
2404 	}
2405 	bus_dmamap_sync(sc->bge_cdata.bge_status_tag,
2406 	    sc->bge_cdata.bge_status_map,
2407 	    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
2408 
2409 	/* Turn on host coalescing state machine */
2410 	CSR_WRITE_4(sc, BGE_HCC_MODE, val | BGE_HCCMODE_ENABLE);
2411 
2412 	/* Turn on RX BD completion state machine and enable attentions */
2413 	CSR_WRITE_4(sc, BGE_RBDC_MODE,
2414 	    BGE_RBDCMODE_ENABLE | BGE_RBDCMODE_ATTN);
2415 
2416 	/* Turn on RX list placement state machine */
2417 	CSR_WRITE_4(sc, BGE_RXLP_MODE, BGE_RXLPMODE_ENABLE);
2418 
2419 	/* Turn on RX list selector state machine. */
2420 	if (!(BGE_IS_5705_PLUS(sc)))
2421 		CSR_WRITE_4(sc, BGE_RXLS_MODE, BGE_RXLSMODE_ENABLE);
2422 
2423 	/* Turn on DMA, clear stats. */
2424 	val = BGE_MACMODE_TXDMA_ENB | BGE_MACMODE_RXDMA_ENB |
2425 	    BGE_MACMODE_RX_STATS_CLEAR | BGE_MACMODE_TX_STATS_CLEAR |
2426 	    BGE_MACMODE_RX_STATS_ENB | BGE_MACMODE_TX_STATS_ENB |
2427 	    BGE_MACMODE_FRMHDR_DMA_ENB;
2428 
2429 	if (sc->bge_flags & BGE_FLAG_TBI)
2430 		val |= BGE_PORTMODE_TBI;
2431 	else if (sc->bge_flags & BGE_FLAG_MII_SERDES)
2432 		val |= BGE_PORTMODE_GMII;
2433 	else
2434 		val |= BGE_PORTMODE_MII;
2435 
2436 	/* Allow APE to send/receive frames. */
2437 	if ((sc->bge_mfw_flags & BGE_MFW_ON_APE) != 0)
2438 		val |= BGE_MACMODE_APE_RX_EN | BGE_MACMODE_APE_TX_EN;
2439 
2440 	CSR_WRITE_4(sc, BGE_MAC_MODE, val);
2441 	DELAY(40);
2442 
2443 	/* Set misc. local control, enable interrupts on attentions */
2444 	BGE_SETBIT(sc, BGE_MISC_LOCAL_CTL, BGE_MLC_INTR_ONATTN);
2445 
2446 #ifdef notdef
2447 	/* Assert GPIO pins for PHY reset */
2448 	BGE_SETBIT(sc, BGE_MISC_LOCAL_CTL, BGE_MLC_MISCIO_OUT0 |
2449 	    BGE_MLC_MISCIO_OUT1 | BGE_MLC_MISCIO_OUT2);
2450 	BGE_SETBIT(sc, BGE_MISC_LOCAL_CTL, BGE_MLC_MISCIO_OUTEN0 |
2451 	    BGE_MLC_MISCIO_OUTEN1 | BGE_MLC_MISCIO_OUTEN2);
2452 #endif
2453 
2454 	/* Turn on DMA completion state machine */
2455 	if (!(BGE_IS_5705_PLUS(sc)))
2456 		CSR_WRITE_4(sc, BGE_DMAC_MODE, BGE_DMACMODE_ENABLE);
2457 
2458 	val = BGE_WDMAMODE_ENABLE | BGE_WDMAMODE_ALL_ATTNS;
2459 
2460 	/* Enable host coalescing bug fix. */
2461 	if (BGE_IS_5755_PLUS(sc))
2462 		val |= BGE_WDMAMODE_STATUS_TAG_FIX;
2463 
2464 	/* Request larger DMA burst size to get better performance. */
2465 	if (sc->bge_asicrev == BGE_ASICREV_BCM5785)
2466 		val |= BGE_WDMAMODE_BURST_ALL_DATA;
2467 
2468 	/* Turn on write DMA state machine */
2469 	CSR_WRITE_4(sc, BGE_WDMA_MODE, val);
2470 	DELAY(40);
2471 
2472 	/* Turn on read DMA state machine */
2473 	val = BGE_RDMAMODE_ENABLE | BGE_RDMAMODE_ALL_ATTNS;
2474 
2475 	if (sc->bge_asicrev == BGE_ASICREV_BCM5717)
2476 		val |= BGE_RDMAMODE_MULT_DMA_RD_DIS;
2477 
2478 	if (sc->bge_asicrev == BGE_ASICREV_BCM5784 ||
2479 	    sc->bge_asicrev == BGE_ASICREV_BCM5785 ||
2480 	    sc->bge_asicrev == BGE_ASICREV_BCM57780)
2481 		val |= BGE_RDMAMODE_BD_SBD_CRPT_ATTN |
2482 		    BGE_RDMAMODE_MBUF_RBD_CRPT_ATTN |
2483 		    BGE_RDMAMODE_MBUF_SBD_CRPT_ATTN;
2484 	if (sc->bge_flags & BGE_FLAG_PCIE)
2485 		val |= BGE_RDMAMODE_FIFO_LONG_BURST;
2486 	if (sc->bge_flags & (BGE_FLAG_TSO | BGE_FLAG_TSO3)) {
2487 		val |= BGE_RDMAMODE_TSO4_ENABLE;
2488 		if (sc->bge_flags & BGE_FLAG_TSO3 ||
2489 		    sc->bge_asicrev == BGE_ASICREV_BCM5785 ||
2490 		    sc->bge_asicrev == BGE_ASICREV_BCM57780)
2491 			val |= BGE_RDMAMODE_TSO6_ENABLE;
2492 	}
2493 
2494 	if (sc->bge_asicrev == BGE_ASICREV_BCM5720 ||
2495 	    sc->bge_asicrev == BGE_ASICREV_BCM5762) {
2496 		val |= CSR_READ_4(sc, BGE_RDMA_MODE) &
2497 			BGE_RDMAMODE_H2BNC_VLAN_DET;
2498 		/*
2499 		 * Allow multiple outstanding read requests from
2500 		 * non-LSO read DMA engine.
2501 		 */
2502 		val &= ~BGE_RDMAMODE_MULT_DMA_RD_DIS;
2503 	}
2504 
2505 	if (sc->bge_asicrev == BGE_ASICREV_BCM5761 ||
2506 	    sc->bge_asicrev == BGE_ASICREV_BCM5784 ||
2507 	    sc->bge_asicrev == BGE_ASICREV_BCM5785 ||
2508 	    sc->bge_asicrev == BGE_ASICREV_BCM57780 ||
2509 	    BGE_IS_5717_PLUS(sc) || BGE_IS_57765_PLUS(sc)) {
2510 		if (sc->bge_asicrev == BGE_ASICREV_BCM5762)
2511 			rdmareg = BGE_RDMA_RSRVCTRL_REG2;
2512 		else
2513 			rdmareg = BGE_RDMA_RSRVCTRL;
2514 		dmactl = CSR_READ_4(sc, rdmareg);
2515 		/*
2516 		 * Adjust tx margin to prevent TX data corruption and
2517 		 * fix internal FIFO overflow.
2518 		 */
2519 		if (sc->bge_chipid == BGE_CHIPID_BCM5719_A0 ||
2520 		    sc->bge_asicrev == BGE_ASICREV_BCM5762) {
2521 			dmactl &= ~(BGE_RDMA_RSRVCTRL_FIFO_LWM_MASK |
2522 			    BGE_RDMA_RSRVCTRL_FIFO_HWM_MASK |
2523 			    BGE_RDMA_RSRVCTRL_TXMRGN_MASK);
2524 			dmactl |= BGE_RDMA_RSRVCTRL_FIFO_LWM_1_5K |
2525 			    BGE_RDMA_RSRVCTRL_FIFO_HWM_1_5K |
2526 			    BGE_RDMA_RSRVCTRL_TXMRGN_320B;
2527 		}
2528 		/*
2529 		 * Enable fix for read DMA FIFO overruns.
2530 		 * The fix is to limit the number of RX BDs
2531 		 * the hardware would fetch at a fime.
2532 		 */
2533 		CSR_WRITE_4(sc, rdmareg, dmactl |
2534 		    BGE_RDMA_RSRVCTRL_FIFO_OFLW_FIX);
2535 	}
2536 
2537 	if (sc->bge_asicrev == BGE_ASICREV_BCM5719) {
2538 		CSR_WRITE_4(sc, BGE_RDMA_LSO_CRPTEN_CTRL,
2539 		    CSR_READ_4(sc, BGE_RDMA_LSO_CRPTEN_CTRL) |
2540 		    BGE_RDMA_LSO_CRPTEN_CTRL_BLEN_BD_4K |
2541 		    BGE_RDMA_LSO_CRPTEN_CTRL_BLEN_LSO_4K);
2542 	} else if (sc->bge_asicrev == BGE_ASICREV_BCM5720) {
2543 		/*
2544 		 * Allow 4KB burst length reads for non-LSO frames.
2545 		 * Enable 512B burst length reads for buffer descriptors.
2546 		 */
2547 		CSR_WRITE_4(sc, BGE_RDMA_LSO_CRPTEN_CTRL,
2548 		    CSR_READ_4(sc, BGE_RDMA_LSO_CRPTEN_CTRL) |
2549 		    BGE_RDMA_LSO_CRPTEN_CTRL_BLEN_BD_512 |
2550 		    BGE_RDMA_LSO_CRPTEN_CTRL_BLEN_LSO_4K);
2551 	} else if (sc->bge_asicrev == BGE_ASICREV_BCM5762) {
2552 		CSR_WRITE_4(sc, BGE_RDMA_LSO_CRPTEN_CTRL_REG2,
2553 		    CSR_READ_4(sc, BGE_RDMA_LSO_CRPTEN_CTRL_REG2) |
2554 		    BGE_RDMA_LSO_CRPTEN_CTRL_BLEN_BD_4K |
2555 		    BGE_RDMA_LSO_CRPTEN_CTRL_BLEN_LSO_4K);
2556 	}
2557 
2558 	CSR_WRITE_4(sc, BGE_RDMA_MODE, val);
2559 	DELAY(40);
2560 
2561 	if (sc->bge_flags & BGE_FLAG_RDMA_BUG) {
2562 		for (i = 0; i < BGE_NUM_RDMA_CHANNELS / 2; i++) {
2563 			val = CSR_READ_4(sc, BGE_RDMA_LENGTH + i * 4);
2564 			if ((val & 0xFFFF) > BGE_FRAMELEN)
2565 				break;
2566 			if (((val >> 16) & 0xFFFF) > BGE_FRAMELEN)
2567 				break;
2568 		}
2569 		if (i != BGE_NUM_RDMA_CHANNELS / 2) {
2570 			val = CSR_READ_4(sc, BGE_RDMA_LSO_CRPTEN_CTRL);
2571 			if (sc->bge_asicrev == BGE_ASICREV_BCM5719)
2572 				val |= BGE_RDMA_TX_LENGTH_WA_5719;
2573 			else
2574 				val |= BGE_RDMA_TX_LENGTH_WA_5720;
2575 			CSR_WRITE_4(sc, BGE_RDMA_LSO_CRPTEN_CTRL, val);
2576 		}
2577 	}
2578 
2579 	/* Turn on RX data completion state machine */
2580 	CSR_WRITE_4(sc, BGE_RDC_MODE, BGE_RDCMODE_ENABLE);
2581 
2582 	/* Turn on RX BD initiator state machine */
2583 	CSR_WRITE_4(sc, BGE_RBDI_MODE, BGE_RBDIMODE_ENABLE);
2584 
2585 	/* Turn on RX data and RX BD initiator state machine */
2586 	CSR_WRITE_4(sc, BGE_RDBDI_MODE, BGE_RDBDIMODE_ENABLE);
2587 
2588 	/* Turn on Mbuf cluster free state machine */
2589 	if (!(BGE_IS_5705_PLUS(sc)))
2590 		CSR_WRITE_4(sc, BGE_MBCF_MODE, BGE_MBCFMODE_ENABLE);
2591 
2592 	/* Turn on send BD completion state machine */
2593 	CSR_WRITE_4(sc, BGE_SBDC_MODE, BGE_SBDCMODE_ENABLE);
2594 
2595 	/* Turn on send data completion state machine */
2596 	val = BGE_SDCMODE_ENABLE;
2597 	if (sc->bge_asicrev == BGE_ASICREV_BCM5761)
2598 		val |= BGE_SDCMODE_CDELAY;
2599 	CSR_WRITE_4(sc, BGE_SDC_MODE, val);
2600 
2601 	/* Turn on send data initiator state machine */
2602 	if (sc->bge_flags & (BGE_FLAG_TSO | BGE_FLAG_TSO3))
2603 		CSR_WRITE_4(sc, BGE_SDI_MODE, BGE_SDIMODE_ENABLE |
2604 		    BGE_SDIMODE_HW_LSO_PRE_DMA);
2605 	else
2606 		CSR_WRITE_4(sc, BGE_SDI_MODE, BGE_SDIMODE_ENABLE);
2607 
2608 	/* Turn on send BD initiator state machine */
2609 	CSR_WRITE_4(sc, BGE_SBDI_MODE, BGE_SBDIMODE_ENABLE);
2610 
2611 	/* Turn on send BD selector state machine */
2612 	CSR_WRITE_4(sc, BGE_SRS_MODE, BGE_SRSMODE_ENABLE);
2613 
2614 	CSR_WRITE_4(sc, BGE_SDI_STATS_ENABLE_MASK, 0x007FFFFF);
2615 	CSR_WRITE_4(sc, BGE_SDI_STATS_CTL,
2616 	    BGE_SDISTATSCTL_ENABLE | BGE_SDISTATSCTL_FASTER);
2617 
2618 	/* ack/clear link change events */
2619 	CSR_WRITE_4(sc, BGE_MAC_STS, BGE_MACSTAT_SYNC_CHANGED |
2620 	    BGE_MACSTAT_CFG_CHANGED | BGE_MACSTAT_MI_COMPLETE |
2621 	    BGE_MACSTAT_LINK_CHANGED);
2622 	CSR_WRITE_4(sc, BGE_MI_STS, 0);
2623 
2624 	/*
2625 	 * Enable attention when the link has changed state for
2626 	 * devices that use auto polling.
2627 	 */
2628 	if (sc->bge_flags & BGE_FLAG_TBI) {
2629 		CSR_WRITE_4(sc, BGE_MI_STS, BGE_MISTS_LINK);
2630 	} else {
2631 		if (sc->bge_mi_mode & BGE_MIMODE_AUTOPOLL) {
2632 			CSR_WRITE_4(sc, BGE_MI_MODE, sc->bge_mi_mode);
2633 			DELAY(80);
2634 		}
2635 		if (sc->bge_asicrev == BGE_ASICREV_BCM5700 &&
2636 		    sc->bge_chipid != BGE_CHIPID_BCM5700_B2)
2637 			CSR_WRITE_4(sc, BGE_MAC_EVT_ENB,
2638 			    BGE_EVTENB_MI_INTERRUPT);
2639 	}
2640 
2641 	/*
2642 	 * Clear any pending link state attention.
2643 	 * Otherwise some link state change events may be lost until attention
2644 	 * is cleared by bge_intr() -> bge_link_upd() sequence.
2645 	 * It's not necessary on newer BCM chips - perhaps enabling link
2646 	 * state change attentions implies clearing pending attention.
2647 	 */
2648 	CSR_WRITE_4(sc, BGE_MAC_STS, BGE_MACSTAT_SYNC_CHANGED |
2649 	    BGE_MACSTAT_CFG_CHANGED | BGE_MACSTAT_MI_COMPLETE |
2650 	    BGE_MACSTAT_LINK_CHANGED);
2651 
2652 	/* Enable link state change attentions. */
2653 	BGE_SETBIT(sc, BGE_MAC_EVT_ENB, BGE_EVTENB_LINK_CHANGED);
2654 
2655 	return (0);
2656 }
2657 
2658 static const struct bge_revision *
2659 bge_lookup_rev(uint32_t chipid)
2660 {
2661 	const struct bge_revision *br;
2662 
2663 	for (br = bge_revisions; br->br_name != NULL; br++) {
2664 		if (br->br_chipid == chipid)
2665 			return (br);
2666 	}
2667 
2668 	for (br = bge_majorrevs; br->br_name != NULL; br++) {
2669 		if (br->br_chipid == BGE_ASICREV(chipid))
2670 			return (br);
2671 	}
2672 
2673 	return (NULL);
2674 }
2675 
2676 static const struct bge_vendor *
2677 bge_lookup_vendor(uint16_t vid)
2678 {
2679 	const struct bge_vendor *v;
2680 
2681 	for (v = bge_vendors; v->v_name != NULL; v++)
2682 		if (v->v_id == vid)
2683 			return (v);
2684 
2685 	return (NULL);
2686 }
2687 
2688 static uint32_t
2689 bge_chipid(device_t dev)
2690 {
2691 	uint32_t id;
2692 
2693 	id = pci_read_config(dev, BGE_PCI_MISC_CTL, 4) >>
2694 	    BGE_PCIMISCCTL_ASICREV_SHIFT;
2695 	if (BGE_ASICREV(id) == BGE_ASICREV_USE_PRODID_REG) {
2696 		/*
2697 		 * Find the ASCI revision.  Different chips use different
2698 		 * registers.
2699 		 */
2700 		switch (pci_get_device(dev)) {
2701 		case BCOM_DEVICEID_BCM5717:
2702 		case BCOM_DEVICEID_BCM5718:
2703 		case BCOM_DEVICEID_BCM5719:
2704 		case BCOM_DEVICEID_BCM5720:
2705 		case BCOM_DEVICEID_BCM5725:
2706 		case BCOM_DEVICEID_BCM5727:
2707 		case BCOM_DEVICEID_BCM5762:
2708 		case BCOM_DEVICEID_BCM57764:
2709 		case BCOM_DEVICEID_BCM57767:
2710 		case BCOM_DEVICEID_BCM57787:
2711 			id = pci_read_config(dev,
2712 			    BGE_PCI_GEN2_PRODID_ASICREV, 4);
2713 			break;
2714 		case BCOM_DEVICEID_BCM57761:
2715 		case BCOM_DEVICEID_BCM57762:
2716 		case BCOM_DEVICEID_BCM57765:
2717 		case BCOM_DEVICEID_BCM57766:
2718 		case BCOM_DEVICEID_BCM57781:
2719 		case BCOM_DEVICEID_BCM57782:
2720 		case BCOM_DEVICEID_BCM57785:
2721 		case BCOM_DEVICEID_BCM57786:
2722 		case BCOM_DEVICEID_BCM57791:
2723 		case BCOM_DEVICEID_BCM57795:
2724 			id = pci_read_config(dev,
2725 			    BGE_PCI_GEN15_PRODID_ASICREV, 4);
2726 			break;
2727 		default:
2728 			id = pci_read_config(dev, BGE_PCI_PRODID_ASICREV, 4);
2729 		}
2730 	}
2731 	return (id);
2732 }
2733 
2734 /*
2735  * Probe for a Broadcom chip. Check the PCI vendor and device IDs
2736  * against our list and return its name if we find a match.
2737  *
2738  * Note that since the Broadcom controller contains VPD support, we
2739  * try to get the device name string from the controller itself instead
2740  * of the compiled-in string. It guarantees we'll always announce the
2741  * right product name. We fall back to the compiled-in string when
2742  * VPD is unavailable or corrupt.
2743  */
2744 static int
2745 bge_probe(device_t dev)
2746 {
2747 	char buf[96];
2748 	char model[64];
2749 	const struct bge_revision *br;
2750 	const char *pname;
2751 	struct bge_softc *sc;
2752 	const struct bge_type *t = bge_devs;
2753 	const struct bge_vendor *v;
2754 	uint32_t id;
2755 	uint16_t did, vid;
2756 
2757 	sc = device_get_softc(dev);
2758 	sc->bge_dev = dev;
2759 	vid = pci_get_vendor(dev);
2760 	did = pci_get_device(dev);
2761 	while(t->bge_vid != 0) {
2762 		if ((vid == t->bge_vid) && (did == t->bge_did)) {
2763 			id = bge_chipid(dev);
2764 			br = bge_lookup_rev(id);
2765 			if (bge_has_eaddr(sc) &&
2766 			    pci_get_vpd_ident(dev, &pname) == 0)
2767 				snprintf(model, sizeof(model), "%s", pname);
2768 			else {
2769 				v = bge_lookup_vendor(vid);
2770 				snprintf(model, sizeof(model), "%s %s",
2771 				    v != NULL ? v->v_name : "Unknown",
2772 				    br != NULL ? br->br_name :
2773 				    "NetXtreme/NetLink Ethernet Controller");
2774 			}
2775 			snprintf(buf, sizeof(buf), "%s, %sASIC rev. %#08x",
2776 			    model, br != NULL ? "" : "unknown ", id);
2777 			device_set_desc_copy(dev, buf);
2778 			return (BUS_PROBE_DEFAULT);
2779 		}
2780 		t++;
2781 	}
2782 
2783 	return (ENXIO);
2784 }
2785 
2786 static void
2787 bge_dma_free(struct bge_softc *sc)
2788 {
2789 	int i;
2790 
2791 	/* Destroy DMA maps for RX buffers. */
2792 	for (i = 0; i < BGE_STD_RX_RING_CNT; i++) {
2793 		if (sc->bge_cdata.bge_rx_std_dmamap[i])
2794 			bus_dmamap_destroy(sc->bge_cdata.bge_rx_mtag,
2795 			    sc->bge_cdata.bge_rx_std_dmamap[i]);
2796 	}
2797 	if (sc->bge_cdata.bge_rx_std_sparemap)
2798 		bus_dmamap_destroy(sc->bge_cdata.bge_rx_mtag,
2799 		    sc->bge_cdata.bge_rx_std_sparemap);
2800 
2801 	/* Destroy DMA maps for jumbo RX buffers. */
2802 	for (i = 0; i < BGE_JUMBO_RX_RING_CNT; i++) {
2803 		if (sc->bge_cdata.bge_rx_jumbo_dmamap[i])
2804 			bus_dmamap_destroy(sc->bge_cdata.bge_mtag_jumbo,
2805 			    sc->bge_cdata.bge_rx_jumbo_dmamap[i]);
2806 	}
2807 	if (sc->bge_cdata.bge_rx_jumbo_sparemap)
2808 		bus_dmamap_destroy(sc->bge_cdata.bge_mtag_jumbo,
2809 		    sc->bge_cdata.bge_rx_jumbo_sparemap);
2810 
2811 	/* Destroy DMA maps for TX buffers. */
2812 	for (i = 0; i < BGE_TX_RING_CNT; i++) {
2813 		if (sc->bge_cdata.bge_tx_dmamap[i])
2814 			bus_dmamap_destroy(sc->bge_cdata.bge_tx_mtag,
2815 			    sc->bge_cdata.bge_tx_dmamap[i]);
2816 	}
2817 
2818 	if (sc->bge_cdata.bge_rx_mtag)
2819 		bus_dma_tag_destroy(sc->bge_cdata.bge_rx_mtag);
2820 	if (sc->bge_cdata.bge_mtag_jumbo)
2821 		bus_dma_tag_destroy(sc->bge_cdata.bge_mtag_jumbo);
2822 	if (sc->bge_cdata.bge_tx_mtag)
2823 		bus_dma_tag_destroy(sc->bge_cdata.bge_tx_mtag);
2824 
2825 	/* Destroy standard RX ring. */
2826 	if (sc->bge_ldata.bge_rx_std_ring_paddr)
2827 		bus_dmamap_unload(sc->bge_cdata.bge_rx_std_ring_tag,
2828 		    sc->bge_cdata.bge_rx_std_ring_map);
2829 	if (sc->bge_ldata.bge_rx_std_ring)
2830 		bus_dmamem_free(sc->bge_cdata.bge_rx_std_ring_tag,
2831 		    sc->bge_ldata.bge_rx_std_ring,
2832 		    sc->bge_cdata.bge_rx_std_ring_map);
2833 
2834 	if (sc->bge_cdata.bge_rx_std_ring_tag)
2835 		bus_dma_tag_destroy(sc->bge_cdata.bge_rx_std_ring_tag);
2836 
2837 	/* Destroy jumbo RX ring. */
2838 	if (sc->bge_ldata.bge_rx_jumbo_ring_paddr)
2839 		bus_dmamap_unload(sc->bge_cdata.bge_rx_jumbo_ring_tag,
2840 		    sc->bge_cdata.bge_rx_jumbo_ring_map);
2841 
2842 	if (sc->bge_ldata.bge_rx_jumbo_ring)
2843 		bus_dmamem_free(sc->bge_cdata.bge_rx_jumbo_ring_tag,
2844 		    sc->bge_ldata.bge_rx_jumbo_ring,
2845 		    sc->bge_cdata.bge_rx_jumbo_ring_map);
2846 
2847 	if (sc->bge_cdata.bge_rx_jumbo_ring_tag)
2848 		bus_dma_tag_destroy(sc->bge_cdata.bge_rx_jumbo_ring_tag);
2849 
2850 	/* Destroy RX return ring. */
2851 	if (sc->bge_ldata.bge_rx_return_ring_paddr)
2852 		bus_dmamap_unload(sc->bge_cdata.bge_rx_return_ring_tag,
2853 		    sc->bge_cdata.bge_rx_return_ring_map);
2854 
2855 	if (sc->bge_ldata.bge_rx_return_ring)
2856 		bus_dmamem_free(sc->bge_cdata.bge_rx_return_ring_tag,
2857 		    sc->bge_ldata.bge_rx_return_ring,
2858 		    sc->bge_cdata.bge_rx_return_ring_map);
2859 
2860 	if (sc->bge_cdata.bge_rx_return_ring_tag)
2861 		bus_dma_tag_destroy(sc->bge_cdata.bge_rx_return_ring_tag);
2862 
2863 	/* Destroy TX ring. */
2864 	if (sc->bge_ldata.bge_tx_ring_paddr)
2865 		bus_dmamap_unload(sc->bge_cdata.bge_tx_ring_tag,
2866 		    sc->bge_cdata.bge_tx_ring_map);
2867 
2868 	if (sc->bge_ldata.bge_tx_ring)
2869 		bus_dmamem_free(sc->bge_cdata.bge_tx_ring_tag,
2870 		    sc->bge_ldata.bge_tx_ring,
2871 		    sc->bge_cdata.bge_tx_ring_map);
2872 
2873 	if (sc->bge_cdata.bge_tx_ring_tag)
2874 		bus_dma_tag_destroy(sc->bge_cdata.bge_tx_ring_tag);
2875 
2876 	/* Destroy status block. */
2877 	if (sc->bge_ldata.bge_status_block_paddr)
2878 		bus_dmamap_unload(sc->bge_cdata.bge_status_tag,
2879 		    sc->bge_cdata.bge_status_map);
2880 
2881 	if (sc->bge_ldata.bge_status_block)
2882 		bus_dmamem_free(sc->bge_cdata.bge_status_tag,
2883 		    sc->bge_ldata.bge_status_block,
2884 		    sc->bge_cdata.bge_status_map);
2885 
2886 	if (sc->bge_cdata.bge_status_tag)
2887 		bus_dma_tag_destroy(sc->bge_cdata.bge_status_tag);
2888 
2889 	/* Destroy statistics block. */
2890 	if (sc->bge_ldata.bge_stats_paddr)
2891 		bus_dmamap_unload(sc->bge_cdata.bge_stats_tag,
2892 		    sc->bge_cdata.bge_stats_map);
2893 
2894 	if (sc->bge_ldata.bge_stats)
2895 		bus_dmamem_free(sc->bge_cdata.bge_stats_tag,
2896 		    sc->bge_ldata.bge_stats,
2897 		    sc->bge_cdata.bge_stats_map);
2898 
2899 	if (sc->bge_cdata.bge_stats_tag)
2900 		bus_dma_tag_destroy(sc->bge_cdata.bge_stats_tag);
2901 
2902 	if (sc->bge_cdata.bge_buffer_tag)
2903 		bus_dma_tag_destroy(sc->bge_cdata.bge_buffer_tag);
2904 
2905 	/* Destroy the parent tag. */
2906 	if (sc->bge_cdata.bge_parent_tag)
2907 		bus_dma_tag_destroy(sc->bge_cdata.bge_parent_tag);
2908 }
2909 
2910 static int
2911 bge_dma_ring_alloc(struct bge_softc *sc, bus_size_t alignment,
2912     bus_size_t maxsize, bus_dma_tag_t *tag, uint8_t **ring, bus_dmamap_t *map,
2913     bus_addr_t *paddr, const char *msg)
2914 {
2915 	struct bge_dmamap_arg ctx;
2916 	int error;
2917 
2918 	error = bus_dma_tag_create(sc->bge_cdata.bge_parent_tag,
2919 	    alignment, 0, BUS_SPACE_MAXADDR, BUS_SPACE_MAXADDR, NULL,
2920 	    NULL, maxsize, 1, maxsize, 0, NULL, NULL, tag);
2921 	if (error != 0) {
2922 		device_printf(sc->bge_dev,
2923 		    "could not create %s dma tag\n", msg);
2924 		return (ENOMEM);
2925 	}
2926 	/* Allocate DMA'able memory for ring. */
2927 	error = bus_dmamem_alloc(*tag, (void **)ring,
2928 	    BUS_DMA_NOWAIT | BUS_DMA_ZERO | BUS_DMA_COHERENT, map);
2929 	if (error != 0) {
2930 		device_printf(sc->bge_dev,
2931 		    "could not allocate DMA'able memory for %s\n", msg);
2932 		return (ENOMEM);
2933 	}
2934 	/* Load the address of the ring. */
2935 	ctx.bge_busaddr = 0;
2936 	error = bus_dmamap_load(*tag, *map, *ring, maxsize, bge_dma_map_addr,
2937 	    &ctx, BUS_DMA_NOWAIT);
2938 	if (error != 0) {
2939 		device_printf(sc->bge_dev,
2940 		    "could not load DMA'able memory for %s\n", msg);
2941 		return (ENOMEM);
2942 	}
2943 	*paddr = ctx.bge_busaddr;
2944 	return (0);
2945 }
2946 
2947 static int
2948 bge_dma_alloc(struct bge_softc *sc)
2949 {
2950 	bus_addr_t lowaddr;
2951 	bus_size_t rxmaxsegsz, sbsz, txsegsz, txmaxsegsz;
2952 	int i, error;
2953 
2954 	lowaddr = BUS_SPACE_MAXADDR;
2955 	if ((sc->bge_flags & BGE_FLAG_40BIT_BUG) != 0)
2956 		lowaddr = BGE_DMA_MAXADDR;
2957 	/*
2958 	 * Allocate the parent bus DMA tag appropriate for PCI.
2959 	 */
2960 	error = bus_dma_tag_create(bus_get_dma_tag(sc->bge_dev),
2961 	    1, 0, lowaddr, BUS_SPACE_MAXADDR, NULL,
2962 	    NULL, BUS_SPACE_MAXSIZE_32BIT, 0, BUS_SPACE_MAXSIZE_32BIT,
2963 	    0, NULL, NULL, &sc->bge_cdata.bge_parent_tag);
2964 	if (error != 0) {
2965 		device_printf(sc->bge_dev,
2966 		    "could not allocate parent dma tag\n");
2967 		return (ENOMEM);
2968 	}
2969 
2970 	/* Create tag for standard RX ring. */
2971 	error = bge_dma_ring_alloc(sc, PAGE_SIZE, BGE_STD_RX_RING_SZ,
2972 	    &sc->bge_cdata.bge_rx_std_ring_tag,
2973 	    (uint8_t **)&sc->bge_ldata.bge_rx_std_ring,
2974 	    &sc->bge_cdata.bge_rx_std_ring_map,
2975 	    &sc->bge_ldata.bge_rx_std_ring_paddr, "RX ring");
2976 	if (error)
2977 		return (error);
2978 
2979 	/* Create tag for RX return ring. */
2980 	error = bge_dma_ring_alloc(sc, PAGE_SIZE, BGE_RX_RTN_RING_SZ(sc),
2981 	    &sc->bge_cdata.bge_rx_return_ring_tag,
2982 	    (uint8_t **)&sc->bge_ldata.bge_rx_return_ring,
2983 	    &sc->bge_cdata.bge_rx_return_ring_map,
2984 	    &sc->bge_ldata.bge_rx_return_ring_paddr, "RX return ring");
2985 	if (error)
2986 		return (error);
2987 
2988 	/* Create tag for TX ring. */
2989 	error = bge_dma_ring_alloc(sc, PAGE_SIZE, BGE_TX_RING_SZ,
2990 	    &sc->bge_cdata.bge_tx_ring_tag,
2991 	    (uint8_t **)&sc->bge_ldata.bge_tx_ring,
2992 	    &sc->bge_cdata.bge_tx_ring_map,
2993 	    &sc->bge_ldata.bge_tx_ring_paddr, "TX ring");
2994 	if (error)
2995 		return (error);
2996 
2997 	/*
2998 	 * Create tag for status block.
2999 	 * Because we only use single Tx/Rx/Rx return ring, use
3000 	 * minimum status block size except BCM5700 AX/BX which
3001 	 * seems to want to see full status block size regardless
3002 	 * of configured number of ring.
3003 	 */
3004 	if (sc->bge_asicrev == BGE_ASICREV_BCM5700 &&
3005 	    sc->bge_chipid != BGE_CHIPID_BCM5700_C0)
3006 		sbsz = BGE_STATUS_BLK_SZ;
3007 	else
3008 		sbsz = 32;
3009 	error = bge_dma_ring_alloc(sc, PAGE_SIZE, sbsz,
3010 	    &sc->bge_cdata.bge_status_tag,
3011 	    (uint8_t **)&sc->bge_ldata.bge_status_block,
3012 	    &sc->bge_cdata.bge_status_map,
3013 	    &sc->bge_ldata.bge_status_block_paddr, "status block");
3014 	if (error)
3015 		return (error);
3016 
3017 	/* Create tag for statistics block. */
3018 	error = bge_dma_ring_alloc(sc, PAGE_SIZE, BGE_STATS_SZ,
3019 	    &sc->bge_cdata.bge_stats_tag,
3020 	    (uint8_t **)&sc->bge_ldata.bge_stats,
3021 	    &sc->bge_cdata.bge_stats_map,
3022 	    &sc->bge_ldata.bge_stats_paddr, "statistics block");
3023 	if (error)
3024 		return (error);
3025 
3026 	/* Create tag for jumbo RX ring. */
3027 	if (BGE_IS_JUMBO_CAPABLE(sc)) {
3028 		error = bge_dma_ring_alloc(sc, PAGE_SIZE, BGE_JUMBO_RX_RING_SZ,
3029 		    &sc->bge_cdata.bge_rx_jumbo_ring_tag,
3030 		    (uint8_t **)&sc->bge_ldata.bge_rx_jumbo_ring,
3031 		    &sc->bge_cdata.bge_rx_jumbo_ring_map,
3032 		    &sc->bge_ldata.bge_rx_jumbo_ring_paddr, "jumbo RX ring");
3033 		if (error)
3034 			return (error);
3035 	}
3036 
3037 	/* Create parent tag for buffers. */
3038 	if ((sc->bge_flags & BGE_FLAG_4G_BNDRY_BUG) != 0) {
3039 		/*
3040 		 * XXX
3041 		 * watchdog timeout issue was observed on BCM5704 which
3042 		 * lives behind PCI-X bridge(e.g AMD 8131 PCI-X bridge).
3043 		 * Both limiting DMA address space to 32bits and flushing
3044 		 * mailbox write seem to address the issue.
3045 		 */
3046 		if (sc->bge_pcixcap != 0)
3047 			lowaddr = BUS_SPACE_MAXADDR_32BIT;
3048 	}
3049 	error = bus_dma_tag_create(bus_get_dma_tag(sc->bge_dev), 1, 0, lowaddr,
3050 	    BUS_SPACE_MAXADDR, NULL, NULL, BUS_SPACE_MAXSIZE_32BIT, 0,
3051 	    BUS_SPACE_MAXSIZE_32BIT, 0, NULL, NULL,
3052 	    &sc->bge_cdata.bge_buffer_tag);
3053 	if (error != 0) {
3054 		device_printf(sc->bge_dev,
3055 		    "could not allocate buffer dma tag\n");
3056 		return (ENOMEM);
3057 	}
3058 	/* Create tag for Tx mbufs. */
3059 	if (sc->bge_flags & (BGE_FLAG_TSO | BGE_FLAG_TSO3)) {
3060 		txsegsz = BGE_TSOSEG_SZ;
3061 		txmaxsegsz = 65535 + sizeof(struct ether_vlan_header);
3062 	} else {
3063 		txsegsz = MCLBYTES;
3064 		txmaxsegsz = MCLBYTES * BGE_NSEG_NEW;
3065 	}
3066 	error = bus_dma_tag_create(sc->bge_cdata.bge_buffer_tag, 1,
3067 	    0, BUS_SPACE_MAXADDR, BUS_SPACE_MAXADDR, NULL, NULL,
3068 	    txmaxsegsz, BGE_NSEG_NEW, txsegsz, 0, NULL, NULL,
3069 	    &sc->bge_cdata.bge_tx_mtag);
3070 
3071 	if (error) {
3072 		device_printf(sc->bge_dev, "could not allocate TX dma tag\n");
3073 		return (ENOMEM);
3074 	}
3075 
3076 	/* Create tag for Rx mbufs. */
3077 	if (sc->bge_flags & BGE_FLAG_JUMBO_STD)
3078 		rxmaxsegsz = MJUM9BYTES;
3079 	else
3080 		rxmaxsegsz = MCLBYTES;
3081 	error = bus_dma_tag_create(sc->bge_cdata.bge_buffer_tag, 1, 0,
3082 	    BUS_SPACE_MAXADDR, BUS_SPACE_MAXADDR, NULL, NULL, rxmaxsegsz, 1,
3083 	    rxmaxsegsz, 0, NULL, NULL, &sc->bge_cdata.bge_rx_mtag);
3084 
3085 	if (error) {
3086 		device_printf(sc->bge_dev, "could not allocate RX dma tag\n");
3087 		return (ENOMEM);
3088 	}
3089 
3090 	/* Create DMA maps for RX buffers. */
3091 	error = bus_dmamap_create(sc->bge_cdata.bge_rx_mtag, 0,
3092 	    &sc->bge_cdata.bge_rx_std_sparemap);
3093 	if (error) {
3094 		device_printf(sc->bge_dev,
3095 		    "can't create spare DMA map for RX\n");
3096 		return (ENOMEM);
3097 	}
3098 	for (i = 0; i < BGE_STD_RX_RING_CNT; i++) {
3099 		error = bus_dmamap_create(sc->bge_cdata.bge_rx_mtag, 0,
3100 			    &sc->bge_cdata.bge_rx_std_dmamap[i]);
3101 		if (error) {
3102 			device_printf(sc->bge_dev,
3103 			    "can't create DMA map for RX\n");
3104 			return (ENOMEM);
3105 		}
3106 	}
3107 
3108 	/* Create DMA maps for TX buffers. */
3109 	for (i = 0; i < BGE_TX_RING_CNT; i++) {
3110 		error = bus_dmamap_create(sc->bge_cdata.bge_tx_mtag, 0,
3111 			    &sc->bge_cdata.bge_tx_dmamap[i]);
3112 		if (error) {
3113 			device_printf(sc->bge_dev,
3114 			    "can't create DMA map for TX\n");
3115 			return (ENOMEM);
3116 		}
3117 	}
3118 
3119 	/* Create tags for jumbo RX buffers. */
3120 	if (BGE_IS_JUMBO_CAPABLE(sc)) {
3121 		error = bus_dma_tag_create(sc->bge_cdata.bge_buffer_tag,
3122 		    1, 0, BUS_SPACE_MAXADDR, BUS_SPACE_MAXADDR, NULL,
3123 		    NULL, MJUM9BYTES, BGE_NSEG_JUMBO, PAGE_SIZE,
3124 		    0, NULL, NULL, &sc->bge_cdata.bge_mtag_jumbo);
3125 		if (error) {
3126 			device_printf(sc->bge_dev,
3127 			    "could not allocate jumbo dma tag\n");
3128 			return (ENOMEM);
3129 		}
3130 		/* Create DMA maps for jumbo RX buffers. */
3131 		error = bus_dmamap_create(sc->bge_cdata.bge_mtag_jumbo,
3132 		    0, &sc->bge_cdata.bge_rx_jumbo_sparemap);
3133 		if (error) {
3134 			device_printf(sc->bge_dev,
3135 			    "can't create spare DMA map for jumbo RX\n");
3136 			return (ENOMEM);
3137 		}
3138 		for (i = 0; i < BGE_JUMBO_RX_RING_CNT; i++) {
3139 			error = bus_dmamap_create(sc->bge_cdata.bge_mtag_jumbo,
3140 				    0, &sc->bge_cdata.bge_rx_jumbo_dmamap[i]);
3141 			if (error) {
3142 				device_printf(sc->bge_dev,
3143 				    "can't create DMA map for jumbo RX\n");
3144 				return (ENOMEM);
3145 			}
3146 		}
3147 	}
3148 
3149 	return (0);
3150 }
3151 
3152 /*
3153  * Return true if this device has more than one port.
3154  */
3155 static int
3156 bge_has_multiple_ports(struct bge_softc *sc)
3157 {
3158 	device_t dev = sc->bge_dev;
3159 	u_int b, d, f, fscan, s;
3160 
3161 	d = pci_get_domain(dev);
3162 	b = pci_get_bus(dev);
3163 	s = pci_get_slot(dev);
3164 	f = pci_get_function(dev);
3165 	for (fscan = 0; fscan <= PCI_FUNCMAX; fscan++)
3166 		if (fscan != f && pci_find_dbsf(d, b, s, fscan) != NULL)
3167 			return (1);
3168 	return (0);
3169 }
3170 
3171 /*
3172  * Return true if MSI can be used with this device.
3173  */
3174 static int
3175 bge_can_use_msi(struct bge_softc *sc)
3176 {
3177 	int can_use_msi = 0;
3178 
3179 	if (sc->bge_msi == 0)
3180 		return (0);
3181 
3182 	/* Disable MSI for polling(4). */
3183 #ifdef DEVICE_POLLING
3184 	return (0);
3185 #endif
3186 	switch (sc->bge_asicrev) {
3187 	case BGE_ASICREV_BCM5714_A0:
3188 	case BGE_ASICREV_BCM5714:
3189 		/*
3190 		 * Apparently, MSI doesn't work when these chips are
3191 		 * configured in single-port mode.
3192 		 */
3193 		if (bge_has_multiple_ports(sc))
3194 			can_use_msi = 1;
3195 		break;
3196 	case BGE_ASICREV_BCM5750:
3197 		if (sc->bge_chiprev != BGE_CHIPREV_5750_AX &&
3198 		    sc->bge_chiprev != BGE_CHIPREV_5750_BX)
3199 			can_use_msi = 1;
3200 		break;
3201 	default:
3202 		if (BGE_IS_575X_PLUS(sc))
3203 			can_use_msi = 1;
3204 	}
3205 	return (can_use_msi);
3206 }
3207 
3208 static int
3209 bge_mbox_reorder(struct bge_softc *sc)
3210 {
3211 	/* Lists of PCI bridges that are known to reorder mailbox writes. */
3212 	static const struct mbox_reorder {
3213 		const uint16_t vendor;
3214 		const uint16_t device;
3215 		const char *desc;
3216 	} mbox_reorder_lists[] = {
3217 		{ 0x1022, 0x7450, "AMD-8131 PCI-X Bridge" },
3218 	};
3219 	devclass_t pci, pcib;
3220 	device_t bus, dev;
3221 	int i;
3222 
3223 	pci = devclass_find("pci");
3224 	pcib = devclass_find("pcib");
3225 	dev = sc->bge_dev;
3226 	bus = device_get_parent(dev);
3227 	for (;;) {
3228 		dev = device_get_parent(bus);
3229 		bus = device_get_parent(dev);
3230 		if (device_get_devclass(dev) != pcib)
3231 			break;
3232 		for (i = 0; i < nitems(mbox_reorder_lists); i++) {
3233 			if (pci_get_vendor(dev) ==
3234 			    mbox_reorder_lists[i].vendor &&
3235 			    pci_get_device(dev) ==
3236 			    mbox_reorder_lists[i].device) {
3237 				device_printf(sc->bge_dev,
3238 				    "enabling MBOX workaround for %s\n",
3239 				    mbox_reorder_lists[i].desc);
3240 				return (1);
3241 			}
3242 		}
3243 		if (device_get_devclass(bus) != pci)
3244 			break;
3245 	}
3246 	return (0);
3247 }
3248 
3249 static void
3250 bge_devinfo(struct bge_softc *sc)
3251 {
3252 	uint32_t cfg, clk;
3253 
3254 	device_printf(sc->bge_dev,
3255 	    "CHIP ID 0x%08x; ASIC REV 0x%02x; CHIP REV 0x%02x; ",
3256 	    sc->bge_chipid, sc->bge_asicrev, sc->bge_chiprev);
3257 	if (sc->bge_flags & BGE_FLAG_PCIE)
3258 		printf("PCI-E\n");
3259 	else if (sc->bge_flags & BGE_FLAG_PCIX) {
3260 		printf("PCI-X ");
3261 		cfg = CSR_READ_4(sc, BGE_MISC_CFG) & BGE_MISCCFG_BOARD_ID_MASK;
3262 		if (cfg == BGE_MISCCFG_BOARD_ID_5704CIOBE)
3263 			clk = 133;
3264 		else {
3265 			clk = CSR_READ_4(sc, BGE_PCI_CLKCTL) & 0x1F;
3266 			switch (clk) {
3267 			case 0:
3268 				clk = 33;
3269 				break;
3270 			case 2:
3271 				clk = 50;
3272 				break;
3273 			case 4:
3274 				clk = 66;
3275 				break;
3276 			case 6:
3277 				clk = 100;
3278 				break;
3279 			case 7:
3280 				clk = 133;
3281 				break;
3282 			}
3283 		}
3284 		printf("%u MHz\n", clk);
3285 	} else {
3286 		if (sc->bge_pcixcap != 0)
3287 			printf("PCI on PCI-X ");
3288 		else
3289 			printf("PCI ");
3290 		cfg = pci_read_config(sc->bge_dev, BGE_PCI_PCISTATE, 4);
3291 		if (cfg & BGE_PCISTATE_PCI_BUSSPEED)
3292 			clk = 66;
3293 		else
3294 			clk = 33;
3295 		if (cfg & BGE_PCISTATE_32BIT_BUS)
3296 			printf("%u MHz; 32bit\n", clk);
3297 		else
3298 			printf("%u MHz; 64bit\n", clk);
3299 	}
3300 }
3301 
3302 static int
3303 bge_attach(device_t dev)
3304 {
3305 	if_t ifp;
3306 	struct bge_softc *sc;
3307 	uint32_t hwcfg = 0, misccfg, pcistate;
3308 	u_char eaddr[ETHER_ADDR_LEN];
3309 	int capmask, error, reg, rid, trys;
3310 
3311 	sc = device_get_softc(dev);
3312 	sc->bge_dev = dev;
3313 
3314 	BGE_LOCK_INIT(sc, device_get_nameunit(dev));
3315 	TASK_INIT(&sc->bge_intr_task, 0, bge_intr_task, sc);
3316 	callout_init_mtx(&sc->bge_stat_ch, &sc->bge_mtx, 0);
3317 
3318 	pci_enable_busmaster(dev);
3319 
3320 	/*
3321 	 * Allocate control/status registers.
3322 	 */
3323 	rid = PCIR_BAR(0);
3324 	sc->bge_res = bus_alloc_resource_any(dev, SYS_RES_MEMORY, &rid,
3325 	    RF_ACTIVE);
3326 
3327 	if (sc->bge_res == NULL) {
3328 		device_printf (sc->bge_dev, "couldn't map BAR0 memory\n");
3329 		error = ENXIO;
3330 		goto fail;
3331 	}
3332 
3333 	/* Save various chip information. */
3334 	sc->bge_func_addr = pci_get_function(dev);
3335 	sc->bge_chipid = bge_chipid(dev);
3336 	sc->bge_asicrev = BGE_ASICREV(sc->bge_chipid);
3337 	sc->bge_chiprev = BGE_CHIPREV(sc->bge_chipid);
3338 
3339 	/* Set default PHY address. */
3340 	sc->bge_phy_addr = 1;
3341 	 /*
3342 	  * PHY address mapping for various devices.
3343 	  *
3344 	  *          | F0 Cu | F0 Sr | F1 Cu | F1 Sr |
3345 	  * ---------+-------+-------+-------+-------+
3346 	  * BCM57XX  |   1   |   X   |   X   |   X   |
3347 	  * BCM5704  |   1   |   X   |   1   |   X   |
3348 	  * BCM5717  |   1   |   8   |   2   |   9   |
3349 	  * BCM5719  |   1   |   8   |   2   |   9   |
3350 	  * BCM5720  |   1   |   8   |   2   |   9   |
3351 	  *
3352 	  *          | F2 Cu | F2 Sr | F3 Cu | F3 Sr |
3353 	  * ---------+-------+-------+-------+-------+
3354 	  * BCM57XX  |   X   |   X   |   X   |   X   |
3355 	  * BCM5704  |   X   |   X   |   X   |   X   |
3356 	  * BCM5717  |   X   |   X   |   X   |   X   |
3357 	  * BCM5719  |   3   |   10  |   4   |   11  |
3358 	  * BCM5720  |   X   |   X   |   X   |   X   |
3359 	  *
3360 	  * Other addresses may respond but they are not
3361 	  * IEEE compliant PHYs and should be ignored.
3362 	  */
3363 	if (sc->bge_asicrev == BGE_ASICREV_BCM5717 ||
3364 	    sc->bge_asicrev == BGE_ASICREV_BCM5719 ||
3365 	    sc->bge_asicrev == BGE_ASICREV_BCM5720) {
3366 		if (sc->bge_chipid != BGE_CHIPID_BCM5717_A0) {
3367 			if (CSR_READ_4(sc, BGE_SGDIG_STS) &
3368 			    BGE_SGDIGSTS_IS_SERDES)
3369 				sc->bge_phy_addr = sc->bge_func_addr + 8;
3370 			else
3371 				sc->bge_phy_addr = sc->bge_func_addr + 1;
3372 		} else {
3373 			if (CSR_READ_4(sc, BGE_CPMU_PHY_STRAP) &
3374 			    BGE_CPMU_PHY_STRAP_IS_SERDES)
3375 				sc->bge_phy_addr = sc->bge_func_addr + 8;
3376 			else
3377 				sc->bge_phy_addr = sc->bge_func_addr + 1;
3378 		}
3379 	}
3380 
3381 	if (bge_has_eaddr(sc))
3382 		sc->bge_flags |= BGE_FLAG_EADDR;
3383 
3384 	/* Save chipset family. */
3385 	switch (sc->bge_asicrev) {
3386 	case BGE_ASICREV_BCM5762:
3387 	case BGE_ASICREV_BCM57765:
3388 	case BGE_ASICREV_BCM57766:
3389 		sc->bge_flags |= BGE_FLAG_57765_PLUS;
3390 		/* FALLTHROUGH */
3391 	case BGE_ASICREV_BCM5717:
3392 	case BGE_ASICREV_BCM5719:
3393 	case BGE_ASICREV_BCM5720:
3394 		sc->bge_flags |= BGE_FLAG_5717_PLUS | BGE_FLAG_5755_PLUS |
3395 		    BGE_FLAG_575X_PLUS | BGE_FLAG_5705_PLUS | BGE_FLAG_JUMBO |
3396 		    BGE_FLAG_JUMBO_FRAME;
3397 		if (sc->bge_asicrev == BGE_ASICREV_BCM5719 ||
3398 		    sc->bge_asicrev == BGE_ASICREV_BCM5720) {
3399 			/*
3400 			 * Enable work around for DMA engine miscalculation
3401 			 * of TXMBUF available space.
3402 			 */
3403 			sc->bge_flags |= BGE_FLAG_RDMA_BUG;
3404 			if (sc->bge_asicrev == BGE_ASICREV_BCM5719 &&
3405 			    sc->bge_chipid == BGE_CHIPID_BCM5719_A0) {
3406 				/* Jumbo frame on BCM5719 A0 does not work. */
3407 				sc->bge_flags &= ~BGE_FLAG_JUMBO;
3408 			}
3409 		}
3410 		break;
3411 	case BGE_ASICREV_BCM5755:
3412 	case BGE_ASICREV_BCM5761:
3413 	case BGE_ASICREV_BCM5784:
3414 	case BGE_ASICREV_BCM5785:
3415 	case BGE_ASICREV_BCM5787:
3416 	case BGE_ASICREV_BCM57780:
3417 		sc->bge_flags |= BGE_FLAG_5755_PLUS | BGE_FLAG_575X_PLUS |
3418 		    BGE_FLAG_5705_PLUS;
3419 		break;
3420 	case BGE_ASICREV_BCM5700:
3421 	case BGE_ASICREV_BCM5701:
3422 	case BGE_ASICREV_BCM5703:
3423 	case BGE_ASICREV_BCM5704:
3424 		sc->bge_flags |= BGE_FLAG_5700_FAMILY | BGE_FLAG_JUMBO;
3425 		break;
3426 	case BGE_ASICREV_BCM5714_A0:
3427 	case BGE_ASICREV_BCM5780:
3428 	case BGE_ASICREV_BCM5714:
3429 		sc->bge_flags |= BGE_FLAG_5714_FAMILY | BGE_FLAG_JUMBO_STD;
3430 		/* FALLTHROUGH */
3431 	case BGE_ASICREV_BCM5750:
3432 	case BGE_ASICREV_BCM5752:
3433 	case BGE_ASICREV_BCM5906:
3434 		sc->bge_flags |= BGE_FLAG_575X_PLUS;
3435 		/* FALLTHROUGH */
3436 	case BGE_ASICREV_BCM5705:
3437 		sc->bge_flags |= BGE_FLAG_5705_PLUS;
3438 		break;
3439 	}
3440 
3441 	/* Identify chips with APE processor. */
3442 	switch (sc->bge_asicrev) {
3443 	case BGE_ASICREV_BCM5717:
3444 	case BGE_ASICREV_BCM5719:
3445 	case BGE_ASICREV_BCM5720:
3446 	case BGE_ASICREV_BCM5761:
3447 	case BGE_ASICREV_BCM5762:
3448 		sc->bge_flags |= BGE_FLAG_APE;
3449 		break;
3450 	}
3451 
3452 	/* Chips with APE need BAR2 access for APE registers/memory. */
3453 	if ((sc->bge_flags & BGE_FLAG_APE) != 0) {
3454 		rid = PCIR_BAR(2);
3455 		sc->bge_res2 = bus_alloc_resource_any(dev, SYS_RES_MEMORY, &rid,
3456 		    RF_ACTIVE);
3457 		if (sc->bge_res2 == NULL) {
3458 			device_printf (sc->bge_dev,
3459 			    "couldn't map BAR2 memory\n");
3460 			error = ENXIO;
3461 			goto fail;
3462 		}
3463 
3464 		/* Enable APE register/memory access by host driver. */
3465 		pcistate = pci_read_config(dev, BGE_PCI_PCISTATE, 4);
3466 		pcistate |= BGE_PCISTATE_ALLOW_APE_CTLSPC_WR |
3467 		    BGE_PCISTATE_ALLOW_APE_SHMEM_WR |
3468 		    BGE_PCISTATE_ALLOW_APE_PSPACE_WR;
3469 		pci_write_config(dev, BGE_PCI_PCISTATE, pcistate, 4);
3470 
3471 		bge_ape_lock_init(sc);
3472 		bge_ape_read_fw_ver(sc);
3473 	}
3474 
3475 	/* Add SYSCTLs, requires the chipset family to be set. */
3476 	bge_add_sysctls(sc);
3477 
3478 	/* Identify the chips that use an CPMU. */
3479 	if (BGE_IS_5717_PLUS(sc) ||
3480 	    sc->bge_asicrev == BGE_ASICREV_BCM5784 ||
3481 	    sc->bge_asicrev == BGE_ASICREV_BCM5761 ||
3482 	    sc->bge_asicrev == BGE_ASICREV_BCM5785 ||
3483 	    sc->bge_asicrev == BGE_ASICREV_BCM57780)
3484 		sc->bge_flags |= BGE_FLAG_CPMU_PRESENT;
3485 	if ((sc->bge_flags & BGE_FLAG_CPMU_PRESENT) != 0)
3486 		sc->bge_mi_mode = BGE_MIMODE_500KHZ_CONST;
3487 	else
3488 		sc->bge_mi_mode = BGE_MIMODE_BASE;
3489 	/* Enable auto polling for BCM570[0-5]. */
3490 	if (BGE_IS_5700_FAMILY(sc) || sc->bge_asicrev == BGE_ASICREV_BCM5705)
3491 		sc->bge_mi_mode |= BGE_MIMODE_AUTOPOLL;
3492 
3493 	/*
3494 	 * All Broadcom controllers have 4GB boundary DMA bug.
3495 	 * Whenever an address crosses a multiple of the 4GB boundary
3496 	 * (including 4GB, 8Gb, 12Gb, etc.) and makes the transition
3497 	 * from 0xX_FFFF_FFFF to 0x(X+1)_0000_0000 an internal DMA
3498 	 * state machine will lockup and cause the device to hang.
3499 	 */
3500 	sc->bge_flags |= BGE_FLAG_4G_BNDRY_BUG;
3501 
3502 	/* BCM5755 or higher and BCM5906 have short DMA bug. */
3503 	if (BGE_IS_5755_PLUS(sc) || sc->bge_asicrev == BGE_ASICREV_BCM5906)
3504 		sc->bge_flags |= BGE_FLAG_SHORT_DMA_BUG;
3505 
3506 	/*
3507 	 * BCM5719 cannot handle DMA requests for DMA segments that
3508 	 * have larger than 4KB in size.  However the maximum DMA
3509 	 * segment size created in DMA tag is 4KB for TSO, so we
3510 	 * wouldn't encounter the issue here.
3511 	 */
3512 	if (sc->bge_asicrev == BGE_ASICREV_BCM5719)
3513 		sc->bge_flags |= BGE_FLAG_4K_RDMA_BUG;
3514 
3515 	misccfg = CSR_READ_4(sc, BGE_MISC_CFG) & BGE_MISCCFG_BOARD_ID_MASK;
3516 	if (sc->bge_asicrev == BGE_ASICREV_BCM5705) {
3517 		if (misccfg == BGE_MISCCFG_BOARD_ID_5788 ||
3518 		    misccfg == BGE_MISCCFG_BOARD_ID_5788M)
3519 			sc->bge_flags |= BGE_FLAG_5788;
3520 	}
3521 
3522 	capmask = BMSR_DEFCAPMASK;
3523 	if ((sc->bge_asicrev == BGE_ASICREV_BCM5703 &&
3524 	    (misccfg == 0x4000 || misccfg == 0x8000)) ||
3525 	    (sc->bge_asicrev == BGE_ASICREV_BCM5705 &&
3526 	    pci_get_vendor(dev) == BCOM_VENDORID &&
3527 	    (pci_get_device(dev) == BCOM_DEVICEID_BCM5901 ||
3528 	    pci_get_device(dev) == BCOM_DEVICEID_BCM5901A2 ||
3529 	    pci_get_device(dev) == BCOM_DEVICEID_BCM5705F)) ||
3530 	    (pci_get_vendor(dev) == BCOM_VENDORID &&
3531 	    (pci_get_device(dev) == BCOM_DEVICEID_BCM5751F ||
3532 	    pci_get_device(dev) == BCOM_DEVICEID_BCM5753F ||
3533 	    pci_get_device(dev) == BCOM_DEVICEID_BCM5787F)) ||
3534 	    pci_get_device(dev) == BCOM_DEVICEID_BCM57790 ||
3535 	    pci_get_device(dev) == BCOM_DEVICEID_BCM57791 ||
3536 	    pci_get_device(dev) == BCOM_DEVICEID_BCM57795 ||
3537 	    sc->bge_asicrev == BGE_ASICREV_BCM5906) {
3538 		/* These chips are 10/100 only. */
3539 		capmask &= ~BMSR_EXTSTAT;
3540 		sc->bge_phy_flags |= BGE_PHY_NO_WIRESPEED;
3541 	}
3542 
3543 	/*
3544 	 * Some controllers seem to require a special firmware to use
3545 	 * TSO. But the firmware is not available to FreeBSD and Linux
3546 	 * claims that the TSO performed by the firmware is slower than
3547 	 * hardware based TSO. Moreover the firmware based TSO has one
3548 	 * known bug which can't handle TSO if Ethernet header + IP/TCP
3549 	 * header is greater than 80 bytes. A workaround for the TSO
3550 	 * bug exist but it seems it's too expensive than not using
3551 	 * TSO at all. Some hardwares also have the TSO bug so limit
3552 	 * the TSO to the controllers that are not affected TSO issues
3553 	 * (e.g. 5755 or higher).
3554 	 */
3555 	if (BGE_IS_5717_PLUS(sc)) {
3556 		/* BCM5717 requires different TSO configuration. */
3557 		sc->bge_flags |= BGE_FLAG_TSO3;
3558 		if (sc->bge_asicrev == BGE_ASICREV_BCM5719 &&
3559 		    sc->bge_chipid == BGE_CHIPID_BCM5719_A0) {
3560 			/* TSO on BCM5719 A0 does not work. */
3561 			sc->bge_flags &= ~BGE_FLAG_TSO3;
3562 		}
3563 	} else if (BGE_IS_5755_PLUS(sc)) {
3564 		/*
3565 		 * BCM5754 and BCM5787 shares the same ASIC id so
3566 		 * explicit device id check is required.
3567 		 * Due to unknown reason TSO does not work on BCM5755M.
3568 		 */
3569 		if (pci_get_device(dev) != BCOM_DEVICEID_BCM5754 &&
3570 		    pci_get_device(dev) != BCOM_DEVICEID_BCM5754M &&
3571 		    pci_get_device(dev) != BCOM_DEVICEID_BCM5755M)
3572 			sc->bge_flags |= BGE_FLAG_TSO;
3573 	}
3574 
3575 	/*
3576 	 * Check if this is a PCI-X or PCI Express device.
3577 	 */
3578 	if (pci_find_cap(dev, PCIY_EXPRESS, &reg) == 0) {
3579 		/*
3580 		 * Found a PCI Express capabilities register, this
3581 		 * must be a PCI Express device.
3582 		 */
3583 		sc->bge_flags |= BGE_FLAG_PCIE;
3584 		sc->bge_expcap = reg;
3585 		/* Extract supported maximum payload size. */
3586 		sc->bge_mps = pci_read_config(dev, sc->bge_expcap +
3587 		    PCIER_DEVICE_CAP, 2);
3588 		sc->bge_mps = 128 << (sc->bge_mps & PCIEM_CAP_MAX_PAYLOAD);
3589 		if (sc->bge_asicrev == BGE_ASICREV_BCM5719 ||
3590 		    sc->bge_asicrev == BGE_ASICREV_BCM5720)
3591 			sc->bge_expmrq = 2048;
3592 		else
3593 			sc->bge_expmrq = 4096;
3594 		pci_set_max_read_req(dev, sc->bge_expmrq);
3595 	} else {
3596 		/*
3597 		 * Check if the device is in PCI-X Mode.
3598 		 * (This bit is not valid on PCI Express controllers.)
3599 		 */
3600 		if (pci_find_cap(dev, PCIY_PCIX, &reg) == 0)
3601 			sc->bge_pcixcap = reg;
3602 		if ((pci_read_config(dev, BGE_PCI_PCISTATE, 4) &
3603 		    BGE_PCISTATE_PCI_BUSMODE) == 0)
3604 			sc->bge_flags |= BGE_FLAG_PCIX;
3605 	}
3606 
3607 	/*
3608 	 * The 40bit DMA bug applies to the 5714/5715 controllers and is
3609 	 * not actually a MAC controller bug but an issue with the embedded
3610 	 * PCIe to PCI-X bridge in the device. Use 40bit DMA workaround.
3611 	 */
3612 	if (BGE_IS_5714_FAMILY(sc) && (sc->bge_flags & BGE_FLAG_PCIX))
3613 		sc->bge_flags |= BGE_FLAG_40BIT_BUG;
3614 	/*
3615 	 * Some PCI-X bridges are known to trigger write reordering to
3616 	 * the mailbox registers. Typical phenomena is watchdog timeouts
3617 	 * caused by out-of-order TX completions.  Enable workaround for
3618 	 * PCI-X devices that live behind these bridges.
3619 	 * Note, PCI-X controllers can run in PCI mode so we can't use
3620 	 * BGE_FLAG_PCIX flag to detect PCI-X controllers.
3621 	 */
3622 	if (sc->bge_pcixcap != 0 && bge_mbox_reorder(sc) != 0)
3623 		sc->bge_flags |= BGE_FLAG_MBOX_REORDER;
3624 	/*
3625 	 * Allocate the interrupt, using MSI if possible.  These devices
3626 	 * support 8 MSI messages, but only the first one is used in
3627 	 * normal operation.
3628 	 */
3629 	rid = 0;
3630 	if (pci_find_cap(sc->bge_dev, PCIY_MSI, &reg) == 0) {
3631 		sc->bge_msicap = reg;
3632 		reg = 1;
3633 		if (bge_can_use_msi(sc) && pci_alloc_msi(dev, &reg) == 0) {
3634 			rid = 1;
3635 			sc->bge_flags |= BGE_FLAG_MSI;
3636 		}
3637 	}
3638 
3639 	/*
3640 	 * All controllers except BCM5700 supports tagged status but
3641 	 * we use tagged status only for MSI case on BCM5717. Otherwise
3642 	 * MSI on BCM5717 does not work.
3643 	 */
3644 #ifndef DEVICE_POLLING
3645 	if (sc->bge_flags & BGE_FLAG_MSI && BGE_IS_5717_PLUS(sc))
3646 		sc->bge_flags |= BGE_FLAG_TAGGED_STATUS;
3647 #endif
3648 
3649 	sc->bge_irq = bus_alloc_resource_any(dev, SYS_RES_IRQ, &rid,
3650 	    RF_ACTIVE | (rid != 0 ? 0 : RF_SHAREABLE));
3651 
3652 	if (sc->bge_irq == NULL) {
3653 		device_printf(sc->bge_dev, "couldn't map interrupt\n");
3654 		error = ENXIO;
3655 		goto fail;
3656 	}
3657 
3658 	bge_devinfo(sc);
3659 
3660 	sc->bge_asf_mode = 0;
3661 	/* No ASF if APE present. */
3662 	if ((sc->bge_flags & BGE_FLAG_APE) == 0) {
3663 		if (bge_allow_asf && (bge_readmem_ind(sc, BGE_SRAM_DATA_SIG) ==
3664 		    BGE_SRAM_DATA_SIG_MAGIC)) {
3665 			if (bge_readmem_ind(sc, BGE_SRAM_DATA_CFG) &
3666 			    BGE_HWCFG_ASF) {
3667 				sc->bge_asf_mode |= ASF_ENABLE;
3668 				sc->bge_asf_mode |= ASF_STACKUP;
3669 				if (BGE_IS_575X_PLUS(sc))
3670 					sc->bge_asf_mode |= ASF_NEW_HANDSHAKE;
3671 			}
3672 		}
3673 	}
3674 
3675 	bge_stop_fw(sc);
3676 	bge_sig_pre_reset(sc, BGE_RESET_SHUTDOWN);
3677 	if (bge_reset(sc)) {
3678 		device_printf(sc->bge_dev, "chip reset failed\n");
3679 		error = ENXIO;
3680 		goto fail;
3681 	}
3682 
3683 	bge_sig_legacy(sc, BGE_RESET_SHUTDOWN);
3684 	bge_sig_post_reset(sc, BGE_RESET_SHUTDOWN);
3685 
3686 	if (bge_chipinit(sc)) {
3687 		device_printf(sc->bge_dev, "chip initialization failed\n");
3688 		error = ENXIO;
3689 		goto fail;
3690 	}
3691 
3692 	error = bge_get_eaddr(sc, eaddr);
3693 	if (error) {
3694 		device_printf(sc->bge_dev,
3695 		    "failed to read station address\n");
3696 		error = ENXIO;
3697 		goto fail;
3698 	}
3699 
3700 	/* 5705 limits RX return ring to 512 entries. */
3701 	if (BGE_IS_5717_PLUS(sc))
3702 		sc->bge_return_ring_cnt = BGE_RETURN_RING_CNT;
3703 	else if (BGE_IS_5705_PLUS(sc))
3704 		sc->bge_return_ring_cnt = BGE_RETURN_RING_CNT_5705;
3705 	else
3706 		sc->bge_return_ring_cnt = BGE_RETURN_RING_CNT;
3707 
3708 	if (bge_dma_alloc(sc)) {
3709 		device_printf(sc->bge_dev,
3710 		    "failed to allocate DMA resources\n");
3711 		error = ENXIO;
3712 		goto fail;
3713 	}
3714 
3715 	/* Set default tuneable values. */
3716 	sc->bge_stat_ticks = BGE_TICKS_PER_SEC;
3717 	sc->bge_rx_coal_ticks = 150;
3718 	sc->bge_tx_coal_ticks = 150;
3719 	sc->bge_rx_max_coal_bds = 10;
3720 	sc->bge_tx_max_coal_bds = 10;
3721 
3722 	/* Initialize checksum features to use. */
3723 	sc->bge_csum_features = BGE_CSUM_FEATURES;
3724 	if (sc->bge_forced_udpcsum != 0)
3725 		sc->bge_csum_features |= CSUM_UDP;
3726 
3727 	/* Set up ifnet structure */
3728 	ifp = sc->bge_ifp = if_alloc(IFT_ETHER);
3729 	if (ifp == NULL) {
3730 		device_printf(sc->bge_dev, "failed to if_alloc()\n");
3731 		error = ENXIO;
3732 		goto fail;
3733 	}
3734 	if_setsoftc(ifp, sc);
3735 	if_initname(ifp, device_get_name(dev), device_get_unit(dev));
3736 	if_setflags(ifp, IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST);
3737 	if_setioctlfn(ifp, bge_ioctl);
3738 	if_setstartfn(ifp, bge_start);
3739 	if_setinitfn(ifp, bge_init);
3740 	if_setgetcounterfn(ifp, bge_get_counter);
3741 	if_setsendqlen(ifp, BGE_TX_RING_CNT - 1);
3742 	if_setsendqready(ifp);
3743 	if_sethwassist(ifp, sc->bge_csum_features);
3744 	if_setcapabilities(ifp, IFCAP_HWCSUM | IFCAP_VLAN_HWTAGGING |
3745 	    IFCAP_VLAN_MTU);
3746 	if ((sc->bge_flags & (BGE_FLAG_TSO | BGE_FLAG_TSO3)) != 0) {
3747 		if_sethwassistbits(ifp, CSUM_TSO, 0);
3748 		if_setcapabilitiesbit(ifp, IFCAP_TSO4 | IFCAP_VLAN_HWTSO, 0);
3749 	}
3750 #ifdef IFCAP_VLAN_HWCSUM
3751 	if_setcapabilitiesbit(ifp, IFCAP_VLAN_HWCSUM, 0);
3752 #endif
3753 	if_setcapenable(ifp, if_getcapabilities(ifp));
3754 #ifdef DEVICE_POLLING
3755 	if_setcapabilitiesbit(ifp, IFCAP_POLLING, 0);
3756 #endif
3757 
3758 	/*
3759 	 * 5700 B0 chips do not support checksumming correctly due
3760 	 * to hardware bugs.
3761 	 */
3762 	if (sc->bge_chipid == BGE_CHIPID_BCM5700_B0) {
3763 		if_setcapabilitiesbit(ifp, 0, IFCAP_HWCSUM);
3764 		if_setcapenablebit(ifp, 0, IFCAP_HWCSUM);
3765 		if_sethwassist(ifp, 0);
3766 	}
3767 
3768 	/*
3769 	 * Figure out what sort of media we have by checking the
3770 	 * hardware config word in the first 32k of NIC internal memory,
3771 	 * or fall back to examining the EEPROM if necessary.
3772 	 * Note: on some BCM5700 cards, this value appears to be unset.
3773 	 * If that's the case, we have to rely on identifying the NIC
3774 	 * by its PCI subsystem ID, as we do below for the SysKonnect
3775 	 * SK-9D41.
3776 	 */
3777 	if (bge_readmem_ind(sc, BGE_SRAM_DATA_SIG) == BGE_SRAM_DATA_SIG_MAGIC)
3778 		hwcfg = bge_readmem_ind(sc, BGE_SRAM_DATA_CFG);
3779 	else if ((sc->bge_flags & BGE_FLAG_EADDR) &&
3780 	    (sc->bge_asicrev != BGE_ASICREV_BCM5906)) {
3781 		if (bge_read_eeprom(sc, (caddr_t)&hwcfg, BGE_EE_HWCFG_OFFSET,
3782 		    sizeof(hwcfg))) {
3783 			device_printf(sc->bge_dev, "failed to read EEPROM\n");
3784 			error = ENXIO;
3785 			goto fail;
3786 		}
3787 		hwcfg = ntohl(hwcfg);
3788 	}
3789 
3790 	/* The SysKonnect SK-9D41 is a 1000baseSX card. */
3791 	if ((pci_read_config(dev, BGE_PCI_SUBSYS, 4) >> 16) ==
3792 	    SK_SUBSYSID_9D41 || (hwcfg & BGE_HWCFG_MEDIA) == BGE_MEDIA_FIBER) {
3793 		if (BGE_IS_5705_PLUS(sc)) {
3794 			sc->bge_flags |= BGE_FLAG_MII_SERDES;
3795 			sc->bge_phy_flags |= BGE_PHY_NO_WIRESPEED;
3796 		} else
3797 			sc->bge_flags |= BGE_FLAG_TBI;
3798 	}
3799 
3800 	/* Set various PHY bug flags. */
3801 	if (sc->bge_chipid == BGE_CHIPID_BCM5701_A0 ||
3802 	    sc->bge_chipid == BGE_CHIPID_BCM5701_B0)
3803 		sc->bge_phy_flags |= BGE_PHY_CRC_BUG;
3804 	if (sc->bge_chiprev == BGE_CHIPREV_5703_AX ||
3805 	    sc->bge_chiprev == BGE_CHIPREV_5704_AX)
3806 		sc->bge_phy_flags |= BGE_PHY_ADC_BUG;
3807 	if (sc->bge_chipid == BGE_CHIPID_BCM5704_A0)
3808 		sc->bge_phy_flags |= BGE_PHY_5704_A0_BUG;
3809 	if (pci_get_subvendor(dev) == DELL_VENDORID)
3810 		sc->bge_phy_flags |= BGE_PHY_NO_3LED;
3811 	if ((BGE_IS_5705_PLUS(sc)) &&
3812 	    sc->bge_asicrev != BGE_ASICREV_BCM5906 &&
3813 	    sc->bge_asicrev != BGE_ASICREV_BCM5785 &&
3814 	    sc->bge_asicrev != BGE_ASICREV_BCM57780 &&
3815 	    !BGE_IS_5717_PLUS(sc)) {
3816 		if (sc->bge_asicrev == BGE_ASICREV_BCM5755 ||
3817 		    sc->bge_asicrev == BGE_ASICREV_BCM5761 ||
3818 		    sc->bge_asicrev == BGE_ASICREV_BCM5784 ||
3819 		    sc->bge_asicrev == BGE_ASICREV_BCM5787) {
3820 			if (pci_get_device(dev) != BCOM_DEVICEID_BCM5722 &&
3821 			    pci_get_device(dev) != BCOM_DEVICEID_BCM5756)
3822 				sc->bge_phy_flags |= BGE_PHY_JITTER_BUG;
3823 			if (pci_get_device(dev) == BCOM_DEVICEID_BCM5755M)
3824 				sc->bge_phy_flags |= BGE_PHY_ADJUST_TRIM;
3825 		} else
3826 			sc->bge_phy_flags |= BGE_PHY_BER_BUG;
3827 	}
3828 
3829 	/*
3830 	 * Don't enable Ethernet@WireSpeed for the 5700 or the
3831 	 * 5705 A0 and A1 chips.
3832 	 */
3833 	if (sc->bge_asicrev == BGE_ASICREV_BCM5700 ||
3834 	    (sc->bge_asicrev == BGE_ASICREV_BCM5705 &&
3835 	    (sc->bge_chipid != BGE_CHIPID_BCM5705_A0 &&
3836 	    sc->bge_chipid != BGE_CHIPID_BCM5705_A1)))
3837 		sc->bge_phy_flags |= BGE_PHY_NO_WIRESPEED;
3838 
3839 	if (sc->bge_flags & BGE_FLAG_TBI) {
3840 		ifmedia_init(&sc->bge_ifmedia, IFM_IMASK, bge_ifmedia_upd,
3841 		    bge_ifmedia_sts);
3842 		ifmedia_add(&sc->bge_ifmedia, IFM_ETHER | IFM_1000_SX, 0, NULL);
3843 		ifmedia_add(&sc->bge_ifmedia, IFM_ETHER | IFM_1000_SX | IFM_FDX,
3844 		    0, NULL);
3845 		ifmedia_add(&sc->bge_ifmedia, IFM_ETHER | IFM_AUTO, 0, NULL);
3846 		ifmedia_set(&sc->bge_ifmedia, IFM_ETHER | IFM_AUTO);
3847 		sc->bge_ifmedia.ifm_media = sc->bge_ifmedia.ifm_cur->ifm_media;
3848 	} else {
3849 		/*
3850 		 * Do transceiver setup and tell the firmware the
3851 		 * driver is down so we can try to get access the
3852 		 * probe if ASF is running.  Retry a couple of times
3853 		 * if we get a conflict with the ASF firmware accessing
3854 		 * the PHY.
3855 		 */
3856 		trys = 0;
3857 		BGE_CLRBIT(sc, BGE_MODE_CTL, BGE_MODECTL_STACKUP);
3858 again:
3859 		bge_asf_driver_up(sc);
3860 
3861 		error = mii_attach(dev, &sc->bge_miibus, ifp,
3862 		    (ifm_change_cb_t)bge_ifmedia_upd,
3863 		    (ifm_stat_cb_t)bge_ifmedia_sts, capmask, sc->bge_phy_addr,
3864 		    MII_OFFSET_ANY, MIIF_DOPAUSE);
3865 		if (error != 0) {
3866 			if (trys++ < 4) {
3867 				device_printf(sc->bge_dev, "Try again\n");
3868 				bge_miibus_writereg(sc->bge_dev,
3869 				    sc->bge_phy_addr, MII_BMCR, BMCR_RESET);
3870 				goto again;
3871 			}
3872 			device_printf(sc->bge_dev, "attaching PHYs failed\n");
3873 			goto fail;
3874 		}
3875 
3876 		/*
3877 		 * Now tell the firmware we are going up after probing the PHY
3878 		 */
3879 		if (sc->bge_asf_mode & ASF_STACKUP)
3880 			BGE_SETBIT(sc, BGE_MODE_CTL, BGE_MODECTL_STACKUP);
3881 	}
3882 
3883 	/*
3884 	 * When using the BCM5701 in PCI-X mode, data corruption has
3885 	 * been observed in the first few bytes of some received packets.
3886 	 * Aligning the packet buffer in memory eliminates the corruption.
3887 	 * Unfortunately, this misaligns the packet payloads.  On platforms
3888 	 * which do not support unaligned accesses, we will realign the
3889 	 * payloads by copying the received packets.
3890 	 */
3891 	if (sc->bge_asicrev == BGE_ASICREV_BCM5701 &&
3892 	    sc->bge_flags & BGE_FLAG_PCIX)
3893                 sc->bge_flags |= BGE_FLAG_RX_ALIGNBUG;
3894 
3895 	/*
3896 	 * Call MI attach routine.
3897 	 */
3898 	ether_ifattach(ifp, eaddr);
3899 
3900 	/* Tell upper layer we support long frames. */
3901 	if_setifheaderlen(ifp, sizeof(struct ether_vlan_header));
3902 
3903 	/*
3904 	 * Hookup IRQ last.
3905 	 */
3906 	if (BGE_IS_5755_PLUS(sc) && sc->bge_flags & BGE_FLAG_MSI) {
3907 		/* Take advantage of single-shot MSI. */
3908 		CSR_WRITE_4(sc, BGE_MSI_MODE, CSR_READ_4(sc, BGE_MSI_MODE) &
3909 		    ~BGE_MSIMODE_ONE_SHOT_DISABLE);
3910 		sc->bge_tq = taskqueue_create_fast("bge_taskq", M_WAITOK,
3911 		    taskqueue_thread_enqueue, &sc->bge_tq);
3912 		if (sc->bge_tq == NULL) {
3913 			device_printf(dev, "could not create taskqueue.\n");
3914 			ether_ifdetach(ifp);
3915 			error = ENOMEM;
3916 			goto fail;
3917 		}
3918 		error = taskqueue_start_threads(&sc->bge_tq, 1, PI_NET,
3919 		    "%s taskq", device_get_nameunit(sc->bge_dev));
3920 		if (error != 0) {
3921 			device_printf(dev, "could not start threads.\n");
3922 			ether_ifdetach(ifp);
3923 			goto fail;
3924 		}
3925 		error = bus_setup_intr(dev, sc->bge_irq,
3926 		    INTR_TYPE_NET | INTR_MPSAFE, bge_msi_intr, NULL, sc,
3927 		    &sc->bge_intrhand);
3928 	} else
3929 		error = bus_setup_intr(dev, sc->bge_irq,
3930 		    INTR_TYPE_NET | INTR_MPSAFE, NULL, bge_intr, sc,
3931 		    &sc->bge_intrhand);
3932 
3933 	if (error) {
3934 		ether_ifdetach(ifp);
3935 		device_printf(sc->bge_dev, "couldn't set up irq\n");
3936 	}
3937 
3938 fail:
3939 	if (error)
3940 		bge_detach(dev);
3941 	return (error);
3942 }
3943 
3944 static int
3945 bge_detach(device_t dev)
3946 {
3947 	struct bge_softc *sc;
3948 	if_t ifp;
3949 
3950 	sc = device_get_softc(dev);
3951 	ifp = sc->bge_ifp;
3952 
3953 #ifdef DEVICE_POLLING
3954 	if (if_getcapenable(ifp) & IFCAP_POLLING)
3955 		ether_poll_deregister(ifp);
3956 #endif
3957 
3958 	if (device_is_attached(dev)) {
3959 		ether_ifdetach(ifp);
3960 		BGE_LOCK(sc);
3961 		bge_stop(sc);
3962 		BGE_UNLOCK(sc);
3963 		callout_drain(&sc->bge_stat_ch);
3964 	}
3965 
3966 	if (sc->bge_tq)
3967 		taskqueue_drain(sc->bge_tq, &sc->bge_intr_task);
3968 
3969 	if (sc->bge_flags & BGE_FLAG_TBI)
3970 		ifmedia_removeall(&sc->bge_ifmedia);
3971 	else if (sc->bge_miibus != NULL) {
3972 		bus_generic_detach(dev);
3973 		device_delete_child(dev, sc->bge_miibus);
3974 	}
3975 
3976 	bge_release_resources(sc);
3977 
3978 	return (0);
3979 }
3980 
3981 static void
3982 bge_release_resources(struct bge_softc *sc)
3983 {
3984 	device_t dev;
3985 
3986 	dev = sc->bge_dev;
3987 
3988 	if (sc->bge_tq != NULL)
3989 		taskqueue_free(sc->bge_tq);
3990 
3991 	if (sc->bge_intrhand != NULL)
3992 		bus_teardown_intr(dev, sc->bge_irq, sc->bge_intrhand);
3993 
3994 	if (sc->bge_irq != NULL) {
3995 		bus_release_resource(dev, SYS_RES_IRQ,
3996 		    rman_get_rid(sc->bge_irq), sc->bge_irq);
3997 		pci_release_msi(dev);
3998 	}
3999 
4000 	if (sc->bge_res != NULL)
4001 		bus_release_resource(dev, SYS_RES_MEMORY,
4002 		    rman_get_rid(sc->bge_res), sc->bge_res);
4003 
4004 	if (sc->bge_res2 != NULL)
4005 		bus_release_resource(dev, SYS_RES_MEMORY,
4006 		    rman_get_rid(sc->bge_res2), sc->bge_res2);
4007 
4008 	if (sc->bge_ifp != NULL)
4009 		if_free(sc->bge_ifp);
4010 
4011 	bge_dma_free(sc);
4012 
4013 	if (mtx_initialized(&sc->bge_mtx))	/* XXX */
4014 		BGE_LOCK_DESTROY(sc);
4015 }
4016 
4017 static int
4018 bge_reset(struct bge_softc *sc)
4019 {
4020 	device_t dev;
4021 	uint32_t cachesize, command, mac_mode, mac_mode_mask, reset, val;
4022 	void (*write_op)(struct bge_softc *, int, int);
4023 	uint16_t devctl;
4024 	int i;
4025 
4026 	dev = sc->bge_dev;
4027 
4028 	mac_mode_mask = BGE_MACMODE_HALF_DUPLEX | BGE_MACMODE_PORTMODE;
4029 	if ((sc->bge_mfw_flags & BGE_MFW_ON_APE) != 0)
4030 		mac_mode_mask |= BGE_MACMODE_APE_RX_EN | BGE_MACMODE_APE_TX_EN;
4031 	mac_mode = CSR_READ_4(sc, BGE_MAC_MODE) & mac_mode_mask;
4032 
4033 	if (BGE_IS_575X_PLUS(sc) && !BGE_IS_5714_FAMILY(sc) &&
4034 	    (sc->bge_asicrev != BGE_ASICREV_BCM5906)) {
4035 		if (sc->bge_flags & BGE_FLAG_PCIE)
4036 			write_op = bge_writemem_direct;
4037 		else
4038 			write_op = bge_writemem_ind;
4039 	} else
4040 		write_op = bge_writereg_ind;
4041 
4042 	if (sc->bge_asicrev != BGE_ASICREV_BCM5700 &&
4043 	    sc->bge_asicrev != BGE_ASICREV_BCM5701) {
4044 		CSR_WRITE_4(sc, BGE_NVRAM_SWARB, BGE_NVRAMSWARB_SET1);
4045 		for (i = 0; i < 8000; i++) {
4046 			if (CSR_READ_4(sc, BGE_NVRAM_SWARB) &
4047 			    BGE_NVRAMSWARB_GNT1)
4048 				break;
4049 			DELAY(20);
4050 		}
4051 		if (i == 8000) {
4052 			if (bootverbose)
4053 				device_printf(dev, "NVRAM lock timedout!\n");
4054 		}
4055 	}
4056 	/* Take APE lock when performing reset. */
4057 	bge_ape_lock(sc, BGE_APE_LOCK_GRC);
4058 
4059 	/* Save some important PCI state. */
4060 	cachesize = pci_read_config(dev, BGE_PCI_CACHESZ, 4);
4061 	command = pci_read_config(dev, BGE_PCI_CMD, 4);
4062 
4063 	pci_write_config(dev, BGE_PCI_MISC_CTL,
4064 	    BGE_PCIMISCCTL_INDIRECT_ACCESS | BGE_PCIMISCCTL_MASK_PCI_INTR |
4065 	    BGE_HIF_SWAP_OPTIONS | BGE_PCIMISCCTL_PCISTATE_RW, 4);
4066 
4067 	/* Disable fastboot on controllers that support it. */
4068 	if (sc->bge_asicrev == BGE_ASICREV_BCM5752 ||
4069 	    BGE_IS_5755_PLUS(sc)) {
4070 		if (bootverbose)
4071 			device_printf(dev, "Disabling fastboot\n");
4072 		CSR_WRITE_4(sc, BGE_FASTBOOT_PC, 0x0);
4073 	}
4074 
4075 	/*
4076 	 * Write the magic number to SRAM at offset 0xB50.
4077 	 * When firmware finishes its initialization it will
4078 	 * write ~BGE_SRAM_FW_MB_MAGIC to the same location.
4079 	 */
4080 	bge_writemem_ind(sc, BGE_SRAM_FW_MB, BGE_SRAM_FW_MB_MAGIC);
4081 
4082 	reset = BGE_MISCCFG_RESET_CORE_CLOCKS | BGE_32BITTIME_66MHZ;
4083 
4084 	/* XXX: Broadcom Linux driver. */
4085 	if (sc->bge_flags & BGE_FLAG_PCIE) {
4086 		if (sc->bge_asicrev != BGE_ASICREV_BCM5785 &&
4087 		    (sc->bge_flags & BGE_FLAG_5717_PLUS) == 0) {
4088 			if (CSR_READ_4(sc, 0x7E2C) == 0x60)	/* PCIE 1.0 */
4089 				CSR_WRITE_4(sc, 0x7E2C, 0x20);
4090 		}
4091 		if (sc->bge_chipid != BGE_CHIPID_BCM5750_A0) {
4092 			/* Prevent PCIE link training during global reset */
4093 			CSR_WRITE_4(sc, BGE_MISC_CFG, 1 << 29);
4094 			reset |= 1 << 29;
4095 		}
4096 	}
4097 
4098 	if (sc->bge_asicrev == BGE_ASICREV_BCM5906) {
4099 		val = CSR_READ_4(sc, BGE_VCPU_STATUS);
4100 		CSR_WRITE_4(sc, BGE_VCPU_STATUS,
4101 		    val | BGE_VCPU_STATUS_DRV_RESET);
4102 		val = CSR_READ_4(sc, BGE_VCPU_EXT_CTRL);
4103 		CSR_WRITE_4(sc, BGE_VCPU_EXT_CTRL,
4104 		    val & ~BGE_VCPU_EXT_CTRL_HALT_CPU);
4105 	}
4106 
4107 	/*
4108 	 * Set GPHY Power Down Override to leave GPHY
4109 	 * powered up in D0 uninitialized.
4110 	 */
4111 	if (BGE_IS_5705_PLUS(sc) &&
4112 	    (sc->bge_flags & BGE_FLAG_CPMU_PRESENT) == 0)
4113 		reset |= BGE_MISCCFG_GPHY_PD_OVERRIDE;
4114 
4115 	/* Issue global reset */
4116 	write_op(sc, BGE_MISC_CFG, reset);
4117 
4118 	if (sc->bge_flags & BGE_FLAG_PCIE)
4119 		DELAY(100 * 1000);
4120 	else
4121 		DELAY(1000);
4122 
4123 	/* XXX: Broadcom Linux driver. */
4124 	if (sc->bge_flags & BGE_FLAG_PCIE) {
4125 		if (sc->bge_chipid == BGE_CHIPID_BCM5750_A0) {
4126 			DELAY(500000); /* wait for link training to complete */
4127 			val = pci_read_config(dev, 0xC4, 4);
4128 			pci_write_config(dev, 0xC4, val | (1 << 15), 4);
4129 		}
4130 		devctl = pci_read_config(dev,
4131 		    sc->bge_expcap + PCIER_DEVICE_CTL, 2);
4132 		/* Clear enable no snoop and disable relaxed ordering. */
4133 		devctl &= ~(PCIEM_CTL_RELAXED_ORD_ENABLE |
4134 		    PCIEM_CTL_NOSNOOP_ENABLE);
4135 		pci_write_config(dev, sc->bge_expcap + PCIER_DEVICE_CTL,
4136 		    devctl, 2);
4137 		pci_set_max_read_req(dev, sc->bge_expmrq);
4138 		/* Clear error status. */
4139 		pci_write_config(dev, sc->bge_expcap + PCIER_DEVICE_STA,
4140 		    PCIEM_STA_CORRECTABLE_ERROR |
4141 		    PCIEM_STA_NON_FATAL_ERROR | PCIEM_STA_FATAL_ERROR |
4142 		    PCIEM_STA_UNSUPPORTED_REQ, 2);
4143 	}
4144 
4145 	/* Reset some of the PCI state that got zapped by reset. */
4146 	pci_write_config(dev, BGE_PCI_MISC_CTL,
4147 	    BGE_PCIMISCCTL_INDIRECT_ACCESS | BGE_PCIMISCCTL_MASK_PCI_INTR |
4148 	    BGE_HIF_SWAP_OPTIONS | BGE_PCIMISCCTL_PCISTATE_RW, 4);
4149 	val = BGE_PCISTATE_ROM_ENABLE | BGE_PCISTATE_ROM_RETRY_ENABLE;
4150 	if (sc->bge_chipid == BGE_CHIPID_BCM5704_A0 &&
4151 	    (sc->bge_flags & BGE_FLAG_PCIX) != 0)
4152 		val |= BGE_PCISTATE_RETRY_SAME_DMA;
4153 	if ((sc->bge_mfw_flags & BGE_MFW_ON_APE) != 0)
4154 		val |= BGE_PCISTATE_ALLOW_APE_CTLSPC_WR |
4155 		    BGE_PCISTATE_ALLOW_APE_SHMEM_WR |
4156 		    BGE_PCISTATE_ALLOW_APE_PSPACE_WR;
4157 	pci_write_config(dev, BGE_PCI_PCISTATE, val, 4);
4158 	pci_write_config(dev, BGE_PCI_CACHESZ, cachesize, 4);
4159 	pci_write_config(dev, BGE_PCI_CMD, command, 4);
4160 	/*
4161 	 * Disable PCI-X relaxed ordering to ensure status block update
4162 	 * comes first then packet buffer DMA. Otherwise driver may
4163 	 * read stale status block.
4164 	 */
4165 	if (sc->bge_flags & BGE_FLAG_PCIX) {
4166 		devctl = pci_read_config(dev,
4167 		    sc->bge_pcixcap + PCIXR_COMMAND, 2);
4168 		devctl &= ~PCIXM_COMMAND_ERO;
4169 		if (sc->bge_asicrev == BGE_ASICREV_BCM5703) {
4170 			devctl &= ~PCIXM_COMMAND_MAX_READ;
4171 			devctl |= PCIXM_COMMAND_MAX_READ_2048;
4172 		} else if (sc->bge_asicrev == BGE_ASICREV_BCM5704) {
4173 			devctl &= ~(PCIXM_COMMAND_MAX_SPLITS |
4174 			    PCIXM_COMMAND_MAX_READ);
4175 			devctl |= PCIXM_COMMAND_MAX_READ_2048;
4176 		}
4177 		pci_write_config(dev, sc->bge_pcixcap + PCIXR_COMMAND,
4178 		    devctl, 2);
4179 	}
4180 	/* Re-enable MSI, if necessary, and enable the memory arbiter. */
4181 	if (BGE_IS_5714_FAMILY(sc)) {
4182 		/* This chip disables MSI on reset. */
4183 		if (sc->bge_flags & BGE_FLAG_MSI) {
4184 			val = pci_read_config(dev,
4185 			    sc->bge_msicap + PCIR_MSI_CTRL, 2);
4186 			pci_write_config(dev,
4187 			    sc->bge_msicap + PCIR_MSI_CTRL,
4188 			    val | PCIM_MSICTRL_MSI_ENABLE, 2);
4189 			val = CSR_READ_4(sc, BGE_MSI_MODE);
4190 			CSR_WRITE_4(sc, BGE_MSI_MODE,
4191 			    val | BGE_MSIMODE_ENABLE);
4192 		}
4193 		val = CSR_READ_4(sc, BGE_MARB_MODE);
4194 		CSR_WRITE_4(sc, BGE_MARB_MODE, BGE_MARBMODE_ENABLE | val);
4195 	} else
4196 		CSR_WRITE_4(sc, BGE_MARB_MODE, BGE_MARBMODE_ENABLE);
4197 
4198 	/* Fix up byte swapping. */
4199 	CSR_WRITE_4(sc, BGE_MODE_CTL, bge_dma_swap_options(sc));
4200 
4201 	val = CSR_READ_4(sc, BGE_MAC_MODE);
4202 	val = (val & ~mac_mode_mask) | mac_mode;
4203 	CSR_WRITE_4(sc, BGE_MAC_MODE, val);
4204 	DELAY(40);
4205 
4206 	bge_ape_unlock(sc, BGE_APE_LOCK_GRC);
4207 
4208 	if (sc->bge_asicrev == BGE_ASICREV_BCM5906) {
4209 		for (i = 0; i < BGE_TIMEOUT; i++) {
4210 			val = CSR_READ_4(sc, BGE_VCPU_STATUS);
4211 			if (val & BGE_VCPU_STATUS_INIT_DONE)
4212 				break;
4213 			DELAY(100);
4214 		}
4215 		if (i == BGE_TIMEOUT) {
4216 			device_printf(dev, "reset timed out\n");
4217 			return (1);
4218 		}
4219 	} else {
4220 		/*
4221 		 * Poll until we see the 1's complement of the magic number.
4222 		 * This indicates that the firmware initialization is complete.
4223 		 * We expect this to fail if no chip containing the Ethernet
4224 		 * address is fitted though.
4225 		 */
4226 		for (i = 0; i < BGE_TIMEOUT; i++) {
4227 			DELAY(10);
4228 			val = bge_readmem_ind(sc, BGE_SRAM_FW_MB);
4229 			if (val == ~BGE_SRAM_FW_MB_MAGIC)
4230 				break;
4231 		}
4232 
4233 		if ((sc->bge_flags & BGE_FLAG_EADDR) && i == BGE_TIMEOUT)
4234 			device_printf(dev,
4235 			    "firmware handshake timed out, found 0x%08x\n",
4236 			    val);
4237 		/* BCM57765 A0 needs additional time before accessing. */
4238 		if (sc->bge_chipid == BGE_CHIPID_BCM57765_A0)
4239 			DELAY(10 * 1000);	/* XXX */
4240 	}
4241 
4242 	/*
4243 	 * The 5704 in TBI mode apparently needs some special
4244 	 * adjustment to insure the SERDES drive level is set
4245 	 * to 1.2V.
4246 	 */
4247 	if (sc->bge_asicrev == BGE_ASICREV_BCM5704 &&
4248 	    sc->bge_flags & BGE_FLAG_TBI) {
4249 		val = CSR_READ_4(sc, BGE_SERDES_CFG);
4250 		val = (val & ~0xFFF) | 0x880;
4251 		CSR_WRITE_4(sc, BGE_SERDES_CFG, val);
4252 	}
4253 
4254 	/* XXX: Broadcom Linux driver. */
4255 	if (sc->bge_flags & BGE_FLAG_PCIE &&
4256 	    !BGE_IS_5717_PLUS(sc) &&
4257 	    sc->bge_chipid != BGE_CHIPID_BCM5750_A0 &&
4258 	    sc->bge_asicrev != BGE_ASICREV_BCM5785) {
4259 		/* Enable Data FIFO protection. */
4260 		val = CSR_READ_4(sc, 0x7C00);
4261 		CSR_WRITE_4(sc, 0x7C00, val | (1 << 25));
4262 	}
4263 
4264 	if (sc->bge_asicrev == BGE_ASICREV_BCM5720)
4265 		BGE_CLRBIT(sc, BGE_CPMU_CLCK_ORIDE,
4266 		    CPMU_CLCK_ORIDE_MAC_ORIDE_EN);
4267 
4268 	return (0);
4269 }
4270 
4271 static __inline void
4272 bge_rxreuse_std(struct bge_softc *sc, int i)
4273 {
4274 	struct bge_rx_bd *r;
4275 
4276 	r = &sc->bge_ldata.bge_rx_std_ring[sc->bge_std];
4277 	r->bge_flags = BGE_RXBDFLAG_END;
4278 	r->bge_len = sc->bge_cdata.bge_rx_std_seglen[i];
4279 	r->bge_idx = i;
4280 	BGE_INC(sc->bge_std, BGE_STD_RX_RING_CNT);
4281 }
4282 
4283 static __inline void
4284 bge_rxreuse_jumbo(struct bge_softc *sc, int i)
4285 {
4286 	struct bge_extrx_bd *r;
4287 
4288 	r = &sc->bge_ldata.bge_rx_jumbo_ring[sc->bge_jumbo];
4289 	r->bge_flags = BGE_RXBDFLAG_JUMBO_RING | BGE_RXBDFLAG_END;
4290 	r->bge_len0 = sc->bge_cdata.bge_rx_jumbo_seglen[i][0];
4291 	r->bge_len1 = sc->bge_cdata.bge_rx_jumbo_seglen[i][1];
4292 	r->bge_len2 = sc->bge_cdata.bge_rx_jumbo_seglen[i][2];
4293 	r->bge_len3 = sc->bge_cdata.bge_rx_jumbo_seglen[i][3];
4294 	r->bge_idx = i;
4295 	BGE_INC(sc->bge_jumbo, BGE_JUMBO_RX_RING_CNT);
4296 }
4297 
4298 /*
4299  * Frame reception handling. This is called if there's a frame
4300  * on the receive return list.
4301  *
4302  * Note: we have to be able to handle two possibilities here:
4303  * 1) the frame is from the jumbo receive ring
4304  * 2) the frame is from the standard receive ring
4305  */
4306 
4307 static int
4308 bge_rxeof(struct bge_softc *sc, uint16_t rx_prod, int holdlck)
4309 {
4310 	if_t ifp;
4311 	int rx_npkts = 0, stdcnt = 0, jumbocnt = 0;
4312 	uint16_t rx_cons;
4313 
4314 	rx_cons = sc->bge_rx_saved_considx;
4315 
4316 	/* Nothing to do. */
4317 	if (rx_cons == rx_prod)
4318 		return (rx_npkts);
4319 
4320 	ifp = sc->bge_ifp;
4321 
4322 	bus_dmamap_sync(sc->bge_cdata.bge_rx_return_ring_tag,
4323 	    sc->bge_cdata.bge_rx_return_ring_map, BUS_DMASYNC_POSTREAD);
4324 	bus_dmamap_sync(sc->bge_cdata.bge_rx_std_ring_tag,
4325 	    sc->bge_cdata.bge_rx_std_ring_map, BUS_DMASYNC_POSTWRITE);
4326 	if (BGE_IS_JUMBO_CAPABLE(sc) &&
4327 	    if_getmtu(ifp) + ETHER_HDR_LEN + ETHER_CRC_LEN +
4328 	    ETHER_VLAN_ENCAP_LEN > (MCLBYTES - ETHER_ALIGN))
4329 		bus_dmamap_sync(sc->bge_cdata.bge_rx_jumbo_ring_tag,
4330 		    sc->bge_cdata.bge_rx_jumbo_ring_map, BUS_DMASYNC_POSTWRITE);
4331 
4332 	while (rx_cons != rx_prod) {
4333 		struct bge_rx_bd	*cur_rx;
4334 		uint32_t		rxidx;
4335 		struct mbuf		*m = NULL;
4336 		uint16_t		vlan_tag = 0;
4337 		int			have_tag = 0;
4338 
4339 #ifdef DEVICE_POLLING
4340 		if (if_getcapenable(ifp) & IFCAP_POLLING) {
4341 			if (sc->rxcycles <= 0)
4342 				break;
4343 			sc->rxcycles--;
4344 		}
4345 #endif
4346 
4347 		cur_rx = &sc->bge_ldata.bge_rx_return_ring[rx_cons];
4348 
4349 		rxidx = cur_rx->bge_idx;
4350 		BGE_INC(rx_cons, sc->bge_return_ring_cnt);
4351 
4352 		if (if_getcapenable(ifp) & IFCAP_VLAN_HWTAGGING &&
4353 		    cur_rx->bge_flags & BGE_RXBDFLAG_VLAN_TAG) {
4354 			have_tag = 1;
4355 			vlan_tag = cur_rx->bge_vlan_tag;
4356 		}
4357 
4358 		if (cur_rx->bge_flags & BGE_RXBDFLAG_JUMBO_RING) {
4359 			jumbocnt++;
4360 			m = sc->bge_cdata.bge_rx_jumbo_chain[rxidx];
4361 			if (cur_rx->bge_flags & BGE_RXBDFLAG_ERROR) {
4362 				bge_rxreuse_jumbo(sc, rxidx);
4363 				continue;
4364 			}
4365 			if (bge_newbuf_jumbo(sc, rxidx) != 0) {
4366 				bge_rxreuse_jumbo(sc, rxidx);
4367 				if_inc_counter(ifp, IFCOUNTER_IQDROPS, 1);
4368 				continue;
4369 			}
4370 			BGE_INC(sc->bge_jumbo, BGE_JUMBO_RX_RING_CNT);
4371 		} else {
4372 			stdcnt++;
4373 			m = sc->bge_cdata.bge_rx_std_chain[rxidx];
4374 			if (cur_rx->bge_flags & BGE_RXBDFLAG_ERROR) {
4375 				bge_rxreuse_std(sc, rxidx);
4376 				continue;
4377 			}
4378 			if (bge_newbuf_std(sc, rxidx) != 0) {
4379 				bge_rxreuse_std(sc, rxidx);
4380 				if_inc_counter(ifp, IFCOUNTER_IQDROPS, 1);
4381 				continue;
4382 			}
4383 			BGE_INC(sc->bge_std, BGE_STD_RX_RING_CNT);
4384 		}
4385 
4386 		if_inc_counter(ifp, IFCOUNTER_IPACKETS, 1);
4387 #ifndef __NO_STRICT_ALIGNMENT
4388 		/*
4389 		 * For architectures with strict alignment we must make sure
4390 		 * the payload is aligned.
4391 		 */
4392 		if (sc->bge_flags & BGE_FLAG_RX_ALIGNBUG) {
4393 			bcopy(m->m_data, m->m_data + ETHER_ALIGN,
4394 			    cur_rx->bge_len);
4395 			m->m_data += ETHER_ALIGN;
4396 		}
4397 #endif
4398 		m->m_pkthdr.len = m->m_len = cur_rx->bge_len - ETHER_CRC_LEN;
4399 		m->m_pkthdr.rcvif = ifp;
4400 
4401 		if (if_getcapenable(ifp) & IFCAP_RXCSUM)
4402 			bge_rxcsum(sc, cur_rx, m);
4403 
4404 		/*
4405 		 * If we received a packet with a vlan tag,
4406 		 * attach that information to the packet.
4407 		 */
4408 		if (have_tag) {
4409 			m->m_pkthdr.ether_vtag = vlan_tag;
4410 			m->m_flags |= M_VLANTAG;
4411 		}
4412 
4413 		if (holdlck != 0) {
4414 			BGE_UNLOCK(sc);
4415 			if_input(ifp, m);
4416 			BGE_LOCK(sc);
4417 		} else
4418 			if_input(ifp, m);
4419 		rx_npkts++;
4420 
4421 		if (!(if_getdrvflags(ifp) & IFF_DRV_RUNNING))
4422 			return (rx_npkts);
4423 	}
4424 
4425 	bus_dmamap_sync(sc->bge_cdata.bge_rx_return_ring_tag,
4426 	    sc->bge_cdata.bge_rx_return_ring_map, BUS_DMASYNC_PREREAD);
4427 	if (stdcnt > 0)
4428 		bus_dmamap_sync(sc->bge_cdata.bge_rx_std_ring_tag,
4429 		    sc->bge_cdata.bge_rx_std_ring_map, BUS_DMASYNC_PREWRITE);
4430 
4431 	if (jumbocnt > 0)
4432 		bus_dmamap_sync(sc->bge_cdata.bge_rx_jumbo_ring_tag,
4433 		    sc->bge_cdata.bge_rx_jumbo_ring_map, BUS_DMASYNC_PREWRITE);
4434 
4435 	sc->bge_rx_saved_considx = rx_cons;
4436 	bge_writembx(sc, BGE_MBX_RX_CONS0_LO, sc->bge_rx_saved_considx);
4437 	if (stdcnt)
4438 		bge_writembx(sc, BGE_MBX_RX_STD_PROD_LO, (sc->bge_std +
4439 		    BGE_STD_RX_RING_CNT - 1) % BGE_STD_RX_RING_CNT);
4440 	if (jumbocnt)
4441 		bge_writembx(sc, BGE_MBX_RX_JUMBO_PROD_LO, (sc->bge_jumbo +
4442 		    BGE_JUMBO_RX_RING_CNT - 1) % BGE_JUMBO_RX_RING_CNT);
4443 #ifdef notyet
4444 	/*
4445 	 * This register wraps very quickly under heavy packet drops.
4446 	 * If you need correct statistics, you can enable this check.
4447 	 */
4448 	if (BGE_IS_5705_PLUS(sc))
4449 		if_incierrors(ifp, CSR_READ_4(sc, BGE_RXLP_LOCSTAT_IFIN_DROPS));
4450 #endif
4451 	return (rx_npkts);
4452 }
4453 
4454 static void
4455 bge_rxcsum(struct bge_softc *sc, struct bge_rx_bd *cur_rx, struct mbuf *m)
4456 {
4457 
4458 	if (BGE_IS_5717_PLUS(sc)) {
4459 		if ((cur_rx->bge_flags & BGE_RXBDFLAG_IPV6) == 0) {
4460 			if (cur_rx->bge_flags & BGE_RXBDFLAG_IP_CSUM) {
4461 				m->m_pkthdr.csum_flags |= CSUM_IP_CHECKED;
4462 				if ((cur_rx->bge_error_flag &
4463 				    BGE_RXERRFLAG_IP_CSUM_NOK) == 0)
4464 					m->m_pkthdr.csum_flags |= CSUM_IP_VALID;
4465 			}
4466 			if (cur_rx->bge_flags & BGE_RXBDFLAG_TCP_UDP_CSUM) {
4467 				m->m_pkthdr.csum_data =
4468 				    cur_rx->bge_tcp_udp_csum;
4469 				m->m_pkthdr.csum_flags |= CSUM_DATA_VALID |
4470 				    CSUM_PSEUDO_HDR;
4471 			}
4472 		}
4473 	} else {
4474 		if (cur_rx->bge_flags & BGE_RXBDFLAG_IP_CSUM) {
4475 			m->m_pkthdr.csum_flags |= CSUM_IP_CHECKED;
4476 			if ((cur_rx->bge_ip_csum ^ 0xFFFF) == 0)
4477 				m->m_pkthdr.csum_flags |= CSUM_IP_VALID;
4478 		}
4479 		if (cur_rx->bge_flags & BGE_RXBDFLAG_TCP_UDP_CSUM &&
4480 		    m->m_pkthdr.len >= ETHER_MIN_NOPAD) {
4481 			m->m_pkthdr.csum_data =
4482 			    cur_rx->bge_tcp_udp_csum;
4483 			m->m_pkthdr.csum_flags |= CSUM_DATA_VALID |
4484 			    CSUM_PSEUDO_HDR;
4485 		}
4486 	}
4487 }
4488 
4489 static void
4490 bge_txeof(struct bge_softc *sc, uint16_t tx_cons)
4491 {
4492 	struct bge_tx_bd *cur_tx;
4493 	if_t ifp;
4494 
4495 	BGE_LOCK_ASSERT(sc);
4496 
4497 	/* Nothing to do. */
4498 	if (sc->bge_tx_saved_considx == tx_cons)
4499 		return;
4500 
4501 	ifp = sc->bge_ifp;
4502 
4503 	bus_dmamap_sync(sc->bge_cdata.bge_tx_ring_tag,
4504 	    sc->bge_cdata.bge_tx_ring_map, BUS_DMASYNC_POSTWRITE);
4505 	/*
4506 	 * Go through our tx ring and free mbufs for those
4507 	 * frames that have been sent.
4508 	 */
4509 	while (sc->bge_tx_saved_considx != tx_cons) {
4510 		uint32_t		idx;
4511 
4512 		idx = sc->bge_tx_saved_considx;
4513 		cur_tx = &sc->bge_ldata.bge_tx_ring[idx];
4514 		if (cur_tx->bge_flags & BGE_TXBDFLAG_END)
4515 			if_inc_counter(ifp, IFCOUNTER_OPACKETS, 1);
4516 		if (sc->bge_cdata.bge_tx_chain[idx] != NULL) {
4517 			bus_dmamap_sync(sc->bge_cdata.bge_tx_mtag,
4518 			    sc->bge_cdata.bge_tx_dmamap[idx],
4519 			    BUS_DMASYNC_POSTWRITE);
4520 			bus_dmamap_unload(sc->bge_cdata.bge_tx_mtag,
4521 			    sc->bge_cdata.bge_tx_dmamap[idx]);
4522 			m_freem(sc->bge_cdata.bge_tx_chain[idx]);
4523 			sc->bge_cdata.bge_tx_chain[idx] = NULL;
4524 		}
4525 		sc->bge_txcnt--;
4526 		BGE_INC(sc->bge_tx_saved_considx, BGE_TX_RING_CNT);
4527 	}
4528 
4529 	if_setdrvflagbits(ifp, 0, IFF_DRV_OACTIVE);
4530 	if (sc->bge_txcnt == 0)
4531 		sc->bge_timer = 0;
4532 }
4533 
4534 #ifdef DEVICE_POLLING
4535 static int
4536 bge_poll(if_t ifp, enum poll_cmd cmd, int count)
4537 {
4538 	struct bge_softc *sc = if_getsoftc(ifp);
4539 	uint16_t rx_prod, tx_cons;
4540 	uint32_t statusword;
4541 	int rx_npkts = 0;
4542 
4543 	BGE_LOCK(sc);
4544 	if (!(if_getdrvflags(ifp) & IFF_DRV_RUNNING)) {
4545 		BGE_UNLOCK(sc);
4546 		return (rx_npkts);
4547 	}
4548 
4549 	bus_dmamap_sync(sc->bge_cdata.bge_status_tag,
4550 	    sc->bge_cdata.bge_status_map,
4551 	    BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE);
4552 	/* Fetch updates from the status block. */
4553 	rx_prod = sc->bge_ldata.bge_status_block->bge_idx[0].bge_rx_prod_idx;
4554 	tx_cons = sc->bge_ldata.bge_status_block->bge_idx[0].bge_tx_cons_idx;
4555 
4556 	statusword = sc->bge_ldata.bge_status_block->bge_status;
4557 	/* Clear the status so the next pass only sees the changes. */
4558 	sc->bge_ldata.bge_status_block->bge_status = 0;
4559 
4560 	bus_dmamap_sync(sc->bge_cdata.bge_status_tag,
4561 	    sc->bge_cdata.bge_status_map,
4562 	    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
4563 
4564 	/* Note link event. It will be processed by POLL_AND_CHECK_STATUS. */
4565 	if (statusword & BGE_STATFLAG_LINKSTATE_CHANGED)
4566 		sc->bge_link_evt++;
4567 
4568 	if (cmd == POLL_AND_CHECK_STATUS)
4569 		if ((sc->bge_asicrev == BGE_ASICREV_BCM5700 &&
4570 		    sc->bge_chipid != BGE_CHIPID_BCM5700_B2) ||
4571 		    sc->bge_link_evt || (sc->bge_flags & BGE_FLAG_TBI))
4572 			bge_link_upd(sc);
4573 
4574 	sc->rxcycles = count;
4575 	rx_npkts = bge_rxeof(sc, rx_prod, 1);
4576 	if (!(if_getdrvflags(ifp) & IFF_DRV_RUNNING)) {
4577 		BGE_UNLOCK(sc);
4578 		return (rx_npkts);
4579 	}
4580 	bge_txeof(sc, tx_cons);
4581 	if (!if_sendq_empty(ifp))
4582 		bge_start_locked(ifp);
4583 
4584 	BGE_UNLOCK(sc);
4585 	return (rx_npkts);
4586 }
4587 #endif /* DEVICE_POLLING */
4588 
4589 static int
4590 bge_msi_intr(void *arg)
4591 {
4592 	struct bge_softc *sc;
4593 
4594 	sc = (struct bge_softc *)arg;
4595 	/*
4596 	 * This interrupt is not shared and controller already
4597 	 * disabled further interrupt.
4598 	 */
4599 	taskqueue_enqueue(sc->bge_tq, &sc->bge_intr_task);
4600 	return (FILTER_HANDLED);
4601 }
4602 
4603 static void
4604 bge_intr_task(void *arg, int pending)
4605 {
4606 	struct bge_softc *sc;
4607 	if_t ifp;
4608 	uint32_t status, status_tag;
4609 	uint16_t rx_prod, tx_cons;
4610 
4611 	sc = (struct bge_softc *)arg;
4612 	ifp = sc->bge_ifp;
4613 
4614 	BGE_LOCK(sc);
4615 	if ((if_getdrvflags(ifp) & IFF_DRV_RUNNING) == 0) {
4616 		BGE_UNLOCK(sc);
4617 		return;
4618 	}
4619 
4620 	/* Get updated status block. */
4621 	bus_dmamap_sync(sc->bge_cdata.bge_status_tag,
4622 	    sc->bge_cdata.bge_status_map,
4623 	    BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE);
4624 
4625 	/* Save producer/consumer indices. */
4626 	rx_prod = sc->bge_ldata.bge_status_block->bge_idx[0].bge_rx_prod_idx;
4627 	tx_cons = sc->bge_ldata.bge_status_block->bge_idx[0].bge_tx_cons_idx;
4628 	status = sc->bge_ldata.bge_status_block->bge_status;
4629 	status_tag = sc->bge_ldata.bge_status_block->bge_status_tag << 24;
4630 	/* Dirty the status flag. */
4631 	sc->bge_ldata.bge_status_block->bge_status = 0;
4632 	bus_dmamap_sync(sc->bge_cdata.bge_status_tag,
4633 	    sc->bge_cdata.bge_status_map,
4634 	    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
4635 	if ((sc->bge_flags & BGE_FLAG_TAGGED_STATUS) == 0)
4636 		status_tag = 0;
4637 
4638 	if ((status & BGE_STATFLAG_LINKSTATE_CHANGED) != 0)
4639 		bge_link_upd(sc);
4640 
4641 	/* Let controller work. */
4642 	bge_writembx(sc, BGE_MBX_IRQ0_LO, status_tag);
4643 
4644 	if (if_getdrvflags(ifp) & IFF_DRV_RUNNING &&
4645 	    sc->bge_rx_saved_considx != rx_prod) {
4646 		/* Check RX return ring producer/consumer. */
4647 		BGE_UNLOCK(sc);
4648 		bge_rxeof(sc, rx_prod, 0);
4649 		BGE_LOCK(sc);
4650 	}
4651 	if (if_getdrvflags(ifp) & IFF_DRV_RUNNING) {
4652 		/* Check TX ring producer/consumer. */
4653 		bge_txeof(sc, tx_cons);
4654 		if (!if_sendq_empty(ifp))
4655 			bge_start_locked(ifp);
4656 	}
4657 	BGE_UNLOCK(sc);
4658 }
4659 
4660 static void
4661 bge_intr(void *xsc)
4662 {
4663 	struct bge_softc *sc;
4664 	if_t ifp;
4665 	uint32_t statusword;
4666 	uint16_t rx_prod, tx_cons;
4667 
4668 	sc = xsc;
4669 
4670 	BGE_LOCK(sc);
4671 
4672 	ifp = sc->bge_ifp;
4673 
4674 #ifdef DEVICE_POLLING
4675 	if (if_getcapenable(ifp) & IFCAP_POLLING) {
4676 		BGE_UNLOCK(sc);
4677 		return;
4678 	}
4679 #endif
4680 
4681 	/*
4682 	 * Ack the interrupt by writing something to BGE_MBX_IRQ0_LO.  Don't
4683 	 * disable interrupts by writing nonzero like we used to, since with
4684 	 * our current organization this just gives complications and
4685 	 * pessimizations for re-enabling interrupts.  We used to have races
4686 	 * instead of the necessary complications.  Disabling interrupts
4687 	 * would just reduce the chance of a status update while we are
4688 	 * running (by switching to the interrupt-mode coalescence
4689 	 * parameters), but this chance is already very low so it is more
4690 	 * efficient to get another interrupt than prevent it.
4691 	 *
4692 	 * We do the ack first to ensure another interrupt if there is a
4693 	 * status update after the ack.  We don't check for the status
4694 	 * changing later because it is more efficient to get another
4695 	 * interrupt than prevent it, not quite as above (not checking is
4696 	 * a smaller optimization than not toggling the interrupt enable,
4697 	 * since checking doesn't involve PCI accesses and toggling require
4698 	 * the status check).  So toggling would probably be a pessimization
4699 	 * even with MSI.  It would only be needed for using a task queue.
4700 	 */
4701 	bge_writembx(sc, BGE_MBX_IRQ0_LO, 0);
4702 
4703 	/*
4704 	 * Do the mandatory PCI flush as well as get the link status.
4705 	 */
4706 	statusword = CSR_READ_4(sc, BGE_MAC_STS) & BGE_MACSTAT_LINK_CHANGED;
4707 
4708 	/* Make sure the descriptor ring indexes are coherent. */
4709 	bus_dmamap_sync(sc->bge_cdata.bge_status_tag,
4710 	    sc->bge_cdata.bge_status_map,
4711 	    BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE);
4712 	rx_prod = sc->bge_ldata.bge_status_block->bge_idx[0].bge_rx_prod_idx;
4713 	tx_cons = sc->bge_ldata.bge_status_block->bge_idx[0].bge_tx_cons_idx;
4714 	sc->bge_ldata.bge_status_block->bge_status = 0;
4715 	bus_dmamap_sync(sc->bge_cdata.bge_status_tag,
4716 	    sc->bge_cdata.bge_status_map,
4717 	    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
4718 
4719 	if ((sc->bge_asicrev == BGE_ASICREV_BCM5700 &&
4720 	    sc->bge_chipid != BGE_CHIPID_BCM5700_B2) ||
4721 	    statusword || sc->bge_link_evt)
4722 		bge_link_upd(sc);
4723 
4724 	if (if_getdrvflags(ifp) & IFF_DRV_RUNNING) {
4725 		/* Check RX return ring producer/consumer. */
4726 		bge_rxeof(sc, rx_prod, 1);
4727 	}
4728 
4729 	if (if_getdrvflags(ifp) & IFF_DRV_RUNNING) {
4730 		/* Check TX ring producer/consumer. */
4731 		bge_txeof(sc, tx_cons);
4732 	}
4733 
4734 	if (if_getdrvflags(ifp) & IFF_DRV_RUNNING &&
4735 	    !if_sendq_empty(ifp))
4736 		bge_start_locked(ifp);
4737 
4738 	BGE_UNLOCK(sc);
4739 }
4740 
4741 static void
4742 bge_asf_driver_up(struct bge_softc *sc)
4743 {
4744 	if (sc->bge_asf_mode & ASF_STACKUP) {
4745 		/* Send ASF heartbeat aprox. every 2s */
4746 		if (sc->bge_asf_count)
4747 			sc->bge_asf_count --;
4748 		else {
4749 			sc->bge_asf_count = 2;
4750 			bge_writemem_ind(sc, BGE_SRAM_FW_CMD_MB,
4751 			    BGE_FW_CMD_DRV_ALIVE);
4752 			bge_writemem_ind(sc, BGE_SRAM_FW_CMD_LEN_MB, 4);
4753 			bge_writemem_ind(sc, BGE_SRAM_FW_CMD_DATA_MB,
4754 			    BGE_FW_HB_TIMEOUT_SEC);
4755 			CSR_WRITE_4(sc, BGE_RX_CPU_EVENT,
4756 			    CSR_READ_4(sc, BGE_RX_CPU_EVENT) |
4757 			    BGE_RX_CPU_DRV_EVENT);
4758 		}
4759 	}
4760 }
4761 
4762 static void
4763 bge_tick(void *xsc)
4764 {
4765 	struct bge_softc *sc = xsc;
4766 	struct mii_data *mii = NULL;
4767 
4768 	BGE_LOCK_ASSERT(sc);
4769 
4770 	/* Synchronize with possible callout reset/stop. */
4771 	if (callout_pending(&sc->bge_stat_ch) ||
4772 	    !callout_active(&sc->bge_stat_ch))
4773 		return;
4774 
4775 	if (BGE_IS_5705_PLUS(sc))
4776 		bge_stats_update_regs(sc);
4777 	else
4778 		bge_stats_update(sc);
4779 
4780 	/* XXX Add APE heartbeat check here? */
4781 
4782 	if ((sc->bge_flags & BGE_FLAG_TBI) == 0) {
4783 		mii = device_get_softc(sc->bge_miibus);
4784 		/*
4785 		 * Do not touch PHY if we have link up. This could break
4786 		 * IPMI/ASF mode or produce extra input errors
4787 		 * (extra errors was reported for bcm5701 & bcm5704).
4788 		 */
4789 		if (!sc->bge_link)
4790 			mii_tick(mii);
4791 	} else {
4792 		/*
4793 		 * Since in TBI mode auto-polling can't be used we should poll
4794 		 * link status manually. Here we register pending link event
4795 		 * and trigger interrupt.
4796 		 */
4797 #ifdef DEVICE_POLLING
4798 		/* In polling mode we poll link state in bge_poll(). */
4799 		if (!(if_getcapenable(sc->bge_ifp) & IFCAP_POLLING))
4800 #endif
4801 		{
4802 		sc->bge_link_evt++;
4803 		if (sc->bge_asicrev == BGE_ASICREV_BCM5700 ||
4804 		    sc->bge_flags & BGE_FLAG_5788)
4805 			BGE_SETBIT(sc, BGE_MISC_LOCAL_CTL, BGE_MLC_INTR_SET);
4806 		else
4807 			BGE_SETBIT(sc, BGE_HCC_MODE, BGE_HCCMODE_COAL_NOW);
4808 		}
4809 	}
4810 
4811 	bge_asf_driver_up(sc);
4812 	bge_watchdog(sc);
4813 
4814 	callout_reset(&sc->bge_stat_ch, hz, bge_tick, sc);
4815 }
4816 
4817 static void
4818 bge_stats_update_regs(struct bge_softc *sc)
4819 {
4820 	if_t ifp;
4821 	struct bge_mac_stats *stats;
4822 	uint32_t val;
4823 
4824 	ifp = sc->bge_ifp;
4825 	stats = &sc->bge_mac_stats;
4826 
4827 	stats->ifHCOutOctets +=
4828 	    CSR_READ_4(sc, BGE_TX_MAC_STATS_OCTETS);
4829 	stats->etherStatsCollisions +=
4830 	    CSR_READ_4(sc, BGE_TX_MAC_STATS_COLLS);
4831 	stats->outXonSent +=
4832 	    CSR_READ_4(sc, BGE_TX_MAC_STATS_XON_SENT);
4833 	stats->outXoffSent +=
4834 	    CSR_READ_4(sc, BGE_TX_MAC_STATS_XOFF_SENT);
4835 	stats->dot3StatsInternalMacTransmitErrors +=
4836 	    CSR_READ_4(sc, BGE_TX_MAC_STATS_ERRORS);
4837 	stats->dot3StatsSingleCollisionFrames +=
4838 	    CSR_READ_4(sc, BGE_TX_MAC_STATS_SINGLE_COLL);
4839 	stats->dot3StatsMultipleCollisionFrames +=
4840 	    CSR_READ_4(sc, BGE_TX_MAC_STATS_MULTI_COLL);
4841 	stats->dot3StatsDeferredTransmissions +=
4842 	    CSR_READ_4(sc, BGE_TX_MAC_STATS_DEFERRED);
4843 	stats->dot3StatsExcessiveCollisions +=
4844 	    CSR_READ_4(sc, BGE_TX_MAC_STATS_EXCESS_COLL);
4845 	stats->dot3StatsLateCollisions +=
4846 	    CSR_READ_4(sc, BGE_TX_MAC_STATS_LATE_COLL);
4847 	stats->ifHCOutUcastPkts +=
4848 	    CSR_READ_4(sc, BGE_TX_MAC_STATS_UCAST);
4849 	stats->ifHCOutMulticastPkts +=
4850 	    CSR_READ_4(sc, BGE_TX_MAC_STATS_MCAST);
4851 	stats->ifHCOutBroadcastPkts +=
4852 	    CSR_READ_4(sc, BGE_TX_MAC_STATS_BCAST);
4853 
4854 	stats->ifHCInOctets +=
4855 	    CSR_READ_4(sc, BGE_RX_MAC_STATS_OCTESTS);
4856 	stats->etherStatsFragments +=
4857 	    CSR_READ_4(sc, BGE_RX_MAC_STATS_FRAGMENTS);
4858 	stats->ifHCInUcastPkts +=
4859 	    CSR_READ_4(sc, BGE_RX_MAC_STATS_UCAST);
4860 	stats->ifHCInMulticastPkts +=
4861 	    CSR_READ_4(sc, BGE_RX_MAC_STATS_MCAST);
4862 	stats->ifHCInBroadcastPkts +=
4863 	    CSR_READ_4(sc, BGE_RX_MAC_STATS_BCAST);
4864 	stats->dot3StatsFCSErrors +=
4865 	    CSR_READ_4(sc, BGE_RX_MAC_STATS_FCS_ERRORS);
4866 	stats->dot3StatsAlignmentErrors +=
4867 	    CSR_READ_4(sc, BGE_RX_MAC_STATS_ALGIN_ERRORS);
4868 	stats->xonPauseFramesReceived +=
4869 	    CSR_READ_4(sc, BGE_RX_MAC_STATS_XON_RCVD);
4870 	stats->xoffPauseFramesReceived +=
4871 	    CSR_READ_4(sc, BGE_RX_MAC_STATS_XOFF_RCVD);
4872 	stats->macControlFramesReceived +=
4873 	    CSR_READ_4(sc, BGE_RX_MAC_STATS_CTRL_RCVD);
4874 	stats->xoffStateEntered +=
4875 	    CSR_READ_4(sc, BGE_RX_MAC_STATS_XOFF_ENTERED);
4876 	stats->dot3StatsFramesTooLong +=
4877 	    CSR_READ_4(sc, BGE_RX_MAC_STATS_FRAME_TOO_LONG);
4878 	stats->etherStatsJabbers +=
4879 	    CSR_READ_4(sc, BGE_RX_MAC_STATS_JABBERS);
4880 	stats->etherStatsUndersizePkts +=
4881 	    CSR_READ_4(sc, BGE_RX_MAC_STATS_UNDERSIZE);
4882 
4883 	stats->FramesDroppedDueToFilters +=
4884 	    CSR_READ_4(sc, BGE_RXLP_LOCSTAT_FILTDROP);
4885 	stats->DmaWriteQueueFull +=
4886 	    CSR_READ_4(sc, BGE_RXLP_LOCSTAT_DMA_WRQ_FULL);
4887 	stats->DmaWriteHighPriQueueFull +=
4888 	    CSR_READ_4(sc, BGE_RXLP_LOCSTAT_DMA_HPWRQ_FULL);
4889 	stats->NoMoreRxBDs +=
4890 	    CSR_READ_4(sc, BGE_RXLP_LOCSTAT_OUT_OF_BDS);
4891 	/*
4892 	 * XXX
4893 	 * Unlike other controllers, BGE_RXLP_LOCSTAT_IFIN_DROPS
4894 	 * counter of BCM5717, BCM5718, BCM5719 A0 and BCM5720 A0
4895 	 * includes number of unwanted multicast frames.  This comes
4896 	 * from silicon bug and known workaround to get rough(not
4897 	 * exact) counter is to enable interrupt on MBUF low water
4898 	 * attention.  This can be accomplished by setting
4899 	 * BGE_HCCMODE_ATTN bit of BGE_HCC_MODE,
4900 	 * BGE_BMANMODE_LOMBUF_ATTN bit of BGE_BMAN_MODE and
4901 	 * BGE_MODECTL_FLOWCTL_ATTN_INTR bit of BGE_MODE_CTL.
4902 	 * However that change would generate more interrupts and
4903 	 * there are still possibilities of losing multiple frames
4904 	 * during BGE_MODECTL_FLOWCTL_ATTN_INTR interrupt handling.
4905 	 * Given that the workaround still would not get correct
4906 	 * counter I don't think it's worth to implement it.  So
4907 	 * ignore reading the counter on controllers that have the
4908 	 * silicon bug.
4909 	 */
4910 	if (sc->bge_asicrev != BGE_ASICREV_BCM5717 &&
4911 	    sc->bge_chipid != BGE_CHIPID_BCM5719_A0 &&
4912 	    sc->bge_chipid != BGE_CHIPID_BCM5720_A0)
4913 		stats->InputDiscards +=
4914 		    CSR_READ_4(sc, BGE_RXLP_LOCSTAT_IFIN_DROPS);
4915 	stats->InputErrors +=
4916 	    CSR_READ_4(sc, BGE_RXLP_LOCSTAT_IFIN_ERRORS);
4917 	stats->RecvThresholdHit +=
4918 	    CSR_READ_4(sc, BGE_RXLP_LOCSTAT_RXTHRESH_HIT);
4919 
4920 	if (sc->bge_flags & BGE_FLAG_RDMA_BUG) {
4921 		/*
4922 		 * If controller transmitted more than BGE_NUM_RDMA_CHANNELS
4923 		 * frames, it's safe to disable workaround for DMA engine's
4924 		 * miscalculation of TXMBUF space.
4925 		 */
4926 		if (stats->ifHCOutUcastPkts + stats->ifHCOutMulticastPkts +
4927 		    stats->ifHCOutBroadcastPkts > BGE_NUM_RDMA_CHANNELS) {
4928 			val = CSR_READ_4(sc, BGE_RDMA_LSO_CRPTEN_CTRL);
4929 			if (sc->bge_asicrev == BGE_ASICREV_BCM5719)
4930 				val &= ~BGE_RDMA_TX_LENGTH_WA_5719;
4931 			else
4932 				val &= ~BGE_RDMA_TX_LENGTH_WA_5720;
4933 			CSR_WRITE_4(sc, BGE_RDMA_LSO_CRPTEN_CTRL, val);
4934 			sc->bge_flags &= ~BGE_FLAG_RDMA_BUG;
4935 		}
4936 	}
4937 }
4938 
4939 static void
4940 bge_stats_clear_regs(struct bge_softc *sc)
4941 {
4942 
4943 	CSR_READ_4(sc, BGE_TX_MAC_STATS_OCTETS);
4944 	CSR_READ_4(sc, BGE_TX_MAC_STATS_COLLS);
4945 	CSR_READ_4(sc, BGE_TX_MAC_STATS_XON_SENT);
4946 	CSR_READ_4(sc, BGE_TX_MAC_STATS_XOFF_SENT);
4947 	CSR_READ_4(sc, BGE_TX_MAC_STATS_ERRORS);
4948 	CSR_READ_4(sc, BGE_TX_MAC_STATS_SINGLE_COLL);
4949 	CSR_READ_4(sc, BGE_TX_MAC_STATS_MULTI_COLL);
4950 	CSR_READ_4(sc, BGE_TX_MAC_STATS_DEFERRED);
4951 	CSR_READ_4(sc, BGE_TX_MAC_STATS_EXCESS_COLL);
4952 	CSR_READ_4(sc, BGE_TX_MAC_STATS_LATE_COLL);
4953 	CSR_READ_4(sc, BGE_TX_MAC_STATS_UCAST);
4954 	CSR_READ_4(sc, BGE_TX_MAC_STATS_MCAST);
4955 	CSR_READ_4(sc, BGE_TX_MAC_STATS_BCAST);
4956 
4957 	CSR_READ_4(sc, BGE_RX_MAC_STATS_OCTESTS);
4958 	CSR_READ_4(sc, BGE_RX_MAC_STATS_FRAGMENTS);
4959 	CSR_READ_4(sc, BGE_RX_MAC_STATS_UCAST);
4960 	CSR_READ_4(sc, BGE_RX_MAC_STATS_MCAST);
4961 	CSR_READ_4(sc, BGE_RX_MAC_STATS_BCAST);
4962 	CSR_READ_4(sc, BGE_RX_MAC_STATS_FCS_ERRORS);
4963 	CSR_READ_4(sc, BGE_RX_MAC_STATS_ALGIN_ERRORS);
4964 	CSR_READ_4(sc, BGE_RX_MAC_STATS_XON_RCVD);
4965 	CSR_READ_4(sc, BGE_RX_MAC_STATS_XOFF_RCVD);
4966 	CSR_READ_4(sc, BGE_RX_MAC_STATS_CTRL_RCVD);
4967 	CSR_READ_4(sc, BGE_RX_MAC_STATS_XOFF_ENTERED);
4968 	CSR_READ_4(sc, BGE_RX_MAC_STATS_FRAME_TOO_LONG);
4969 	CSR_READ_4(sc, BGE_RX_MAC_STATS_JABBERS);
4970 	CSR_READ_4(sc, BGE_RX_MAC_STATS_UNDERSIZE);
4971 
4972 	CSR_READ_4(sc, BGE_RXLP_LOCSTAT_FILTDROP);
4973 	CSR_READ_4(sc, BGE_RXLP_LOCSTAT_DMA_WRQ_FULL);
4974 	CSR_READ_4(sc, BGE_RXLP_LOCSTAT_DMA_HPWRQ_FULL);
4975 	CSR_READ_4(sc, BGE_RXLP_LOCSTAT_OUT_OF_BDS);
4976 	CSR_READ_4(sc, BGE_RXLP_LOCSTAT_IFIN_DROPS);
4977 	CSR_READ_4(sc, BGE_RXLP_LOCSTAT_IFIN_ERRORS);
4978 	CSR_READ_4(sc, BGE_RXLP_LOCSTAT_RXTHRESH_HIT);
4979 }
4980 
4981 static void
4982 bge_stats_update(struct bge_softc *sc)
4983 {
4984 	if_t ifp;
4985 	bus_size_t stats;
4986 	uint32_t cnt;	/* current register value */
4987 
4988 	ifp = sc->bge_ifp;
4989 
4990 	stats = BGE_MEMWIN_START + BGE_STATS_BLOCK;
4991 
4992 #define	READ_STAT(sc, stats, stat) \
4993 	CSR_READ_4(sc, stats + offsetof(struct bge_stats, stat))
4994 
4995 	cnt = READ_STAT(sc, stats, txstats.etherStatsCollisions.bge_addr_lo);
4996 	if_inc_counter(ifp, IFCOUNTER_COLLISIONS, cnt - sc->bge_tx_collisions);
4997 	sc->bge_tx_collisions = cnt;
4998 
4999 	cnt = READ_STAT(sc, stats, nicNoMoreRxBDs.bge_addr_lo);
5000 	if_inc_counter(ifp, IFCOUNTER_IERRORS, cnt - sc->bge_rx_nobds);
5001 	sc->bge_rx_nobds = cnt;
5002 	cnt = READ_STAT(sc, stats, ifInErrors.bge_addr_lo);
5003 	if_inc_counter(ifp, IFCOUNTER_IERRORS, cnt - sc->bge_rx_inerrs);
5004 	sc->bge_rx_inerrs = cnt;
5005 	cnt = READ_STAT(sc, stats, ifInDiscards.bge_addr_lo);
5006 	if_inc_counter(ifp, IFCOUNTER_IERRORS, cnt - sc->bge_rx_discards);
5007 	sc->bge_rx_discards = cnt;
5008 
5009 	cnt = READ_STAT(sc, stats, txstats.ifOutDiscards.bge_addr_lo);
5010 	if_inc_counter(ifp, IFCOUNTER_OERRORS, cnt - sc->bge_tx_discards);
5011 	sc->bge_tx_discards = cnt;
5012 
5013 #undef	READ_STAT
5014 }
5015 
5016 /*
5017  * Pad outbound frame to ETHER_MIN_NOPAD for an unusual reason.
5018  * The bge hardware will pad out Tx runts to ETHER_MIN_NOPAD,
5019  * but when such padded frames employ the bge IP/TCP checksum offload,
5020  * the hardware checksum assist gives incorrect results (possibly
5021  * from incorporating its own padding into the UDP/TCP checksum; who knows).
5022  * If we pad such runts with zeros, the onboard checksum comes out correct.
5023  */
5024 static __inline int
5025 bge_cksum_pad(struct mbuf *m)
5026 {
5027 	int padlen = ETHER_MIN_NOPAD - m->m_pkthdr.len;
5028 	struct mbuf *last;
5029 
5030 	/* If there's only the packet-header and we can pad there, use it. */
5031 	if (m->m_pkthdr.len == m->m_len && M_WRITABLE(m) &&
5032 	    M_TRAILINGSPACE(m) >= padlen) {
5033 		last = m;
5034 	} else {
5035 		/*
5036 		 * Walk packet chain to find last mbuf. We will either
5037 		 * pad there, or append a new mbuf and pad it.
5038 		 */
5039 		for (last = m; last->m_next != NULL; last = last->m_next);
5040 		if (!(M_WRITABLE(last) && M_TRAILINGSPACE(last) >= padlen)) {
5041 			/* Allocate new empty mbuf, pad it. Compact later. */
5042 			struct mbuf *n;
5043 
5044 			MGET(n, M_NOWAIT, MT_DATA);
5045 			if (n == NULL)
5046 				return (ENOBUFS);
5047 			n->m_len = 0;
5048 			last->m_next = n;
5049 			last = n;
5050 		}
5051 	}
5052 
5053 	/* Now zero the pad area, to avoid the bge cksum-assist bug. */
5054 	memset(mtod(last, caddr_t) + last->m_len, 0, padlen);
5055 	last->m_len += padlen;
5056 	m->m_pkthdr.len += padlen;
5057 
5058 	return (0);
5059 }
5060 
5061 static struct mbuf *
5062 bge_check_short_dma(struct mbuf *m)
5063 {
5064 	struct mbuf *n;
5065 	int found;
5066 
5067 	/*
5068 	 * If device receive two back-to-back send BDs with less than
5069 	 * or equal to 8 total bytes then the device may hang.  The two
5070 	 * back-to-back send BDs must in the same frame for this failure
5071 	 * to occur.  Scan mbuf chains and see whether two back-to-back
5072 	 * send BDs are there. If this is the case, allocate new mbuf
5073 	 * and copy the frame to workaround the silicon bug.
5074 	 */
5075 	for (n = m, found = 0; n != NULL; n = n->m_next) {
5076 		if (n->m_len < 8) {
5077 			found++;
5078 			if (found > 1)
5079 				break;
5080 			continue;
5081 		}
5082 		found = 0;
5083 	}
5084 
5085 	if (found > 1) {
5086 		n = m_defrag(m, M_NOWAIT);
5087 		if (n == NULL)
5088 			m_freem(m);
5089 	} else
5090 		n = m;
5091 	return (n);
5092 }
5093 
5094 static struct mbuf *
5095 bge_setup_tso(struct bge_softc *sc, struct mbuf *m, uint16_t *mss,
5096     uint16_t *flags)
5097 {
5098 	struct ip *ip;
5099 	struct tcphdr *tcp;
5100 	struct mbuf *n;
5101 	uint16_t hlen;
5102 	uint32_t poff;
5103 
5104 	if (M_WRITABLE(m) == 0) {
5105 		/* Get a writable copy. */
5106 		n = m_dup(m, M_NOWAIT);
5107 		m_freem(m);
5108 		if (n == NULL)
5109 			return (NULL);
5110 		m = n;
5111 	}
5112 	m = m_pullup(m, sizeof(struct ether_header) + sizeof(struct ip));
5113 	if (m == NULL)
5114 		return (NULL);
5115 	ip = (struct ip *)(mtod(m, char *) + sizeof(struct ether_header));
5116 	poff = sizeof(struct ether_header) + (ip->ip_hl << 2);
5117 	m = m_pullup(m, poff + sizeof(struct tcphdr));
5118 	if (m == NULL)
5119 		return (NULL);
5120 	tcp = (struct tcphdr *)(mtod(m, char *) + poff);
5121 	m = m_pullup(m, poff + (tcp->th_off << 2));
5122 	if (m == NULL)
5123 		return (NULL);
5124 	/*
5125 	 * It seems controller doesn't modify IP length and TCP pseudo
5126 	 * checksum. These checksum computed by upper stack should be 0.
5127 	 */
5128 	*mss = m->m_pkthdr.tso_segsz;
5129 	ip = (struct ip *)(mtod(m, char *) + sizeof(struct ether_header));
5130 	ip->ip_sum = 0;
5131 	ip->ip_len = htons(*mss + (ip->ip_hl << 2) + (tcp->th_off << 2));
5132 	/* Clear pseudo checksum computed by TCP stack. */
5133 	tcp = (struct tcphdr *)(mtod(m, char *) + poff);
5134 	tcp->th_sum = 0;
5135 	/*
5136 	 * Broadcom controllers uses different descriptor format for
5137 	 * TSO depending on ASIC revision. Due to TSO-capable firmware
5138 	 * license issue and lower performance of firmware based TSO
5139 	 * we only support hardware based TSO.
5140 	 */
5141 	/* Calculate header length, incl. TCP/IP options, in 32 bit units. */
5142 	hlen = ((ip->ip_hl << 2) + (tcp->th_off << 2)) >> 2;
5143 	if (sc->bge_flags & BGE_FLAG_TSO3) {
5144 		/*
5145 		 * For BCM5717 and newer controllers, hardware based TSO
5146 		 * uses the 14 lower bits of the bge_mss field to store the
5147 		 * MSS and the upper 2 bits to store the lowest 2 bits of
5148 		 * the IP/TCP header length.  The upper 6 bits of the header
5149 		 * length are stored in the bge_flags[14:10,4] field.  Jumbo
5150 		 * frames are supported.
5151 		 */
5152 		*mss |= ((hlen & 0x3) << 14);
5153 		*flags |= ((hlen & 0xF8) << 7) | ((hlen & 0x4) << 2);
5154 	} else {
5155 		/*
5156 		 * For BCM5755 and newer controllers, hardware based TSO uses
5157 		 * the lower 11	bits to store the MSS and the upper 5 bits to
5158 		 * store the IP/TCP header length. Jumbo frames are not
5159 		 * supported.
5160 		 */
5161 		*mss |= (hlen << 11);
5162 	}
5163 	return (m);
5164 }
5165 
5166 /*
5167  * Encapsulate an mbuf chain in the tx ring  by coupling the mbuf data
5168  * pointers to descriptors.
5169  */
5170 static int
5171 bge_encap(struct bge_softc *sc, struct mbuf **m_head, uint32_t *txidx)
5172 {
5173 	bus_dma_segment_t	segs[BGE_NSEG_NEW];
5174 	bus_dmamap_t		map;
5175 	struct bge_tx_bd	*d;
5176 	struct mbuf		*m = *m_head;
5177 	uint32_t		idx = *txidx;
5178 	uint16_t		csum_flags, mss, vlan_tag;
5179 	int			nsegs, i, error;
5180 
5181 	csum_flags = 0;
5182 	mss = 0;
5183 	vlan_tag = 0;
5184 	if ((sc->bge_flags & BGE_FLAG_SHORT_DMA_BUG) != 0 &&
5185 	    m->m_next != NULL) {
5186 		*m_head = bge_check_short_dma(m);
5187 		if (*m_head == NULL)
5188 			return (ENOBUFS);
5189 		m = *m_head;
5190 	}
5191 	if ((m->m_pkthdr.csum_flags & CSUM_TSO) != 0) {
5192 		*m_head = m = bge_setup_tso(sc, m, &mss, &csum_flags);
5193 		if (*m_head == NULL)
5194 			return (ENOBUFS);
5195 		csum_flags |= BGE_TXBDFLAG_CPU_PRE_DMA |
5196 		    BGE_TXBDFLAG_CPU_POST_DMA;
5197 	} else if ((m->m_pkthdr.csum_flags & sc->bge_csum_features) != 0) {
5198 		if (m->m_pkthdr.csum_flags & CSUM_IP)
5199 			csum_flags |= BGE_TXBDFLAG_IP_CSUM;
5200 		if (m->m_pkthdr.csum_flags & (CSUM_TCP | CSUM_UDP)) {
5201 			csum_flags |= BGE_TXBDFLAG_TCP_UDP_CSUM;
5202 			if (m->m_pkthdr.len < ETHER_MIN_NOPAD &&
5203 			    (error = bge_cksum_pad(m)) != 0) {
5204 				m_freem(m);
5205 				*m_head = NULL;
5206 				return (error);
5207 			}
5208 		}
5209 	}
5210 
5211 	if ((m->m_pkthdr.csum_flags & CSUM_TSO) == 0) {
5212 		if (sc->bge_flags & BGE_FLAG_JUMBO_FRAME &&
5213 		    m->m_pkthdr.len > ETHER_MAX_LEN)
5214 			csum_flags |= BGE_TXBDFLAG_JUMBO_FRAME;
5215 		if (sc->bge_forced_collapse > 0 &&
5216 		    (sc->bge_flags & BGE_FLAG_PCIE) != 0 && m->m_next != NULL) {
5217 			/*
5218 			 * Forcedly collapse mbuf chains to overcome hardware
5219 			 * limitation which only support a single outstanding
5220 			 * DMA read operation.
5221 			 */
5222 			if (sc->bge_forced_collapse == 1)
5223 				m = m_defrag(m, M_NOWAIT);
5224 			else
5225 				m = m_collapse(m, M_NOWAIT,
5226 				    sc->bge_forced_collapse);
5227 			if (m == NULL)
5228 				m = *m_head;
5229 			*m_head = m;
5230 		}
5231 	}
5232 
5233 	map = sc->bge_cdata.bge_tx_dmamap[idx];
5234 	error = bus_dmamap_load_mbuf_sg(sc->bge_cdata.bge_tx_mtag, map, m, segs,
5235 	    &nsegs, BUS_DMA_NOWAIT);
5236 	if (error == EFBIG) {
5237 		m = m_collapse(m, M_NOWAIT, BGE_NSEG_NEW);
5238 		if (m == NULL) {
5239 			m_freem(*m_head);
5240 			*m_head = NULL;
5241 			return (ENOBUFS);
5242 		}
5243 		*m_head = m;
5244 		error = bus_dmamap_load_mbuf_sg(sc->bge_cdata.bge_tx_mtag, map,
5245 		    m, segs, &nsegs, BUS_DMA_NOWAIT);
5246 		if (error) {
5247 			m_freem(m);
5248 			*m_head = NULL;
5249 			return (error);
5250 		}
5251 	} else if (error != 0)
5252 		return (error);
5253 
5254 	/* Check if we have enough free send BDs. */
5255 	if (sc->bge_txcnt + nsegs >= BGE_TX_RING_CNT) {
5256 		bus_dmamap_unload(sc->bge_cdata.bge_tx_mtag, map);
5257 		return (ENOBUFS);
5258 	}
5259 
5260 	bus_dmamap_sync(sc->bge_cdata.bge_tx_mtag, map, BUS_DMASYNC_PREWRITE);
5261 
5262 	if (m->m_flags & M_VLANTAG) {
5263 		csum_flags |= BGE_TXBDFLAG_VLAN_TAG;
5264 		vlan_tag = m->m_pkthdr.ether_vtag;
5265 	}
5266 
5267 	if (sc->bge_asicrev == BGE_ASICREV_BCM5762 &&
5268 	    (m->m_pkthdr.csum_flags & CSUM_TSO) != 0) {
5269 		/*
5270 		 * 5725 family of devices corrupts TSO packets when TSO DMA
5271 		 * buffers cross into regions which are within MSS bytes of
5272 		 * a 4GB boundary.  If we encounter the condition, drop the
5273 		 * packet.
5274 		 */
5275 		for (i = 0; ; i++) {
5276 			d = &sc->bge_ldata.bge_tx_ring[idx];
5277 			d->bge_addr.bge_addr_lo = BGE_ADDR_LO(segs[i].ds_addr);
5278 			d->bge_addr.bge_addr_hi = BGE_ADDR_HI(segs[i].ds_addr);
5279 			d->bge_len = segs[i].ds_len;
5280 			if (d->bge_addr.bge_addr_lo + segs[i].ds_len + mss <
5281 			    d->bge_addr.bge_addr_lo)
5282 				break;
5283 			d->bge_flags = csum_flags;
5284 			d->bge_vlan_tag = vlan_tag;
5285 			d->bge_mss = mss;
5286 			if (i == nsegs - 1)
5287 				break;
5288 			BGE_INC(idx, BGE_TX_RING_CNT);
5289 		}
5290 		if (i != nsegs - 1) {
5291 			bus_dmamap_sync(sc->bge_cdata.bge_tx_mtag, map,
5292 			    BUS_DMASYNC_POSTWRITE);
5293 			bus_dmamap_unload(sc->bge_cdata.bge_tx_mtag, map);
5294 			m_freem(*m_head);
5295 			*m_head = NULL;
5296 			return (EIO);
5297 		}
5298 	} else {
5299 		for (i = 0; ; i++) {
5300 			d = &sc->bge_ldata.bge_tx_ring[idx];
5301 			d->bge_addr.bge_addr_lo = BGE_ADDR_LO(segs[i].ds_addr);
5302 			d->bge_addr.bge_addr_hi = BGE_ADDR_HI(segs[i].ds_addr);
5303 			d->bge_len = segs[i].ds_len;
5304 			d->bge_flags = csum_flags;
5305 			d->bge_vlan_tag = vlan_tag;
5306 			d->bge_mss = mss;
5307 			if (i == nsegs - 1)
5308 				break;
5309 			BGE_INC(idx, BGE_TX_RING_CNT);
5310 		}
5311 	}
5312 
5313 	/* Mark the last segment as end of packet... */
5314 	d->bge_flags |= BGE_TXBDFLAG_END;
5315 
5316 	/*
5317 	 * Insure that the map for this transmission
5318 	 * is placed at the array index of the last descriptor
5319 	 * in this chain.
5320 	 */
5321 	sc->bge_cdata.bge_tx_dmamap[*txidx] = sc->bge_cdata.bge_tx_dmamap[idx];
5322 	sc->bge_cdata.bge_tx_dmamap[idx] = map;
5323 	sc->bge_cdata.bge_tx_chain[idx] = m;
5324 	sc->bge_txcnt += nsegs;
5325 
5326 	BGE_INC(idx, BGE_TX_RING_CNT);
5327 	*txidx = idx;
5328 
5329 	return (0);
5330 }
5331 
5332 /*
5333  * Main transmit routine. To avoid having to do mbuf copies, we put pointers
5334  * to the mbuf data regions directly in the transmit descriptors.
5335  */
5336 static void
5337 bge_start_locked(if_t ifp)
5338 {
5339 	struct bge_softc *sc;
5340 	struct mbuf *m_head;
5341 	uint32_t prodidx;
5342 	int count;
5343 
5344 	sc = if_getsoftc(ifp);
5345 	BGE_LOCK_ASSERT(sc);
5346 
5347 	if (!sc->bge_link ||
5348 	    (if_getdrvflags(ifp) & (IFF_DRV_RUNNING | IFF_DRV_OACTIVE)) !=
5349 	    IFF_DRV_RUNNING)
5350 		return;
5351 
5352 	prodidx = sc->bge_tx_prodidx;
5353 
5354 	for (count = 0; !if_sendq_empty(ifp);) {
5355 		if (sc->bge_txcnt > BGE_TX_RING_CNT - 16) {
5356 			if_setdrvflagbits(ifp, IFF_DRV_OACTIVE, 0);
5357 			break;
5358 		}
5359 		m_head = if_dequeue(ifp);
5360 		if (m_head == NULL)
5361 			break;
5362 
5363 		/*
5364 		 * Pack the data into the transmit ring. If we
5365 		 * don't have room, set the OACTIVE flag and wait
5366 		 * for the NIC to drain the ring.
5367 		 */
5368 		if (bge_encap(sc, &m_head, &prodidx)) {
5369 			if (m_head == NULL)
5370 				break;
5371 			if_sendq_prepend(ifp, m_head);
5372 			if_setdrvflagbits(ifp, IFF_DRV_OACTIVE, 0);
5373 			break;
5374 		}
5375 		++count;
5376 
5377 		/*
5378 		 * If there's a BPF listener, bounce a copy of this frame
5379 		 * to him.
5380 		 */
5381 		if_bpfmtap(ifp, m_head);
5382 	}
5383 
5384 	if (count > 0) {
5385 		bus_dmamap_sync(sc->bge_cdata.bge_tx_ring_tag,
5386 		    sc->bge_cdata.bge_tx_ring_map, BUS_DMASYNC_PREWRITE);
5387 		/* Transmit. */
5388 		bge_writembx(sc, BGE_MBX_TX_HOST_PROD0_LO, prodidx);
5389 		/* 5700 b2 errata */
5390 		if (sc->bge_chiprev == BGE_CHIPREV_5700_BX)
5391 			bge_writembx(sc, BGE_MBX_TX_HOST_PROD0_LO, prodidx);
5392 
5393 		sc->bge_tx_prodidx = prodidx;
5394 
5395 		/*
5396 		 * Set a timeout in case the chip goes out to lunch.
5397 		 */
5398 		sc->bge_timer = BGE_TX_TIMEOUT;
5399 	}
5400 }
5401 
5402 /*
5403  * Main transmit routine. To avoid having to do mbuf copies, we put pointers
5404  * to the mbuf data regions directly in the transmit descriptors.
5405  */
5406 static void
5407 bge_start(if_t ifp)
5408 {
5409 	struct bge_softc *sc;
5410 
5411 	sc = if_getsoftc(ifp);
5412 	BGE_LOCK(sc);
5413 	bge_start_locked(ifp);
5414 	BGE_UNLOCK(sc);
5415 }
5416 
5417 static void
5418 bge_init_locked(struct bge_softc *sc)
5419 {
5420 	if_t ifp;
5421 	uint16_t *m;
5422 	uint32_t mode;
5423 
5424 	BGE_LOCK_ASSERT(sc);
5425 
5426 	ifp = sc->bge_ifp;
5427 
5428 	if (if_getdrvflags(ifp) & IFF_DRV_RUNNING)
5429 		return;
5430 
5431 	/* Cancel pending I/O and flush buffers. */
5432 	bge_stop(sc);
5433 
5434 	bge_stop_fw(sc);
5435 	bge_sig_pre_reset(sc, BGE_RESET_START);
5436 	bge_reset(sc);
5437 	bge_sig_legacy(sc, BGE_RESET_START);
5438 	bge_sig_post_reset(sc, BGE_RESET_START);
5439 
5440 	bge_chipinit(sc);
5441 
5442 	/*
5443 	 * Init the various state machines, ring
5444 	 * control blocks and firmware.
5445 	 */
5446 	if (bge_blockinit(sc)) {
5447 		device_printf(sc->bge_dev, "initialization failure\n");
5448 		return;
5449 	}
5450 
5451 	ifp = sc->bge_ifp;
5452 
5453 	/* Specify MTU. */
5454 	CSR_WRITE_4(sc, BGE_RX_MTU, if_getmtu(ifp) +
5455 	    ETHER_HDR_LEN + ETHER_CRC_LEN +
5456 	    (if_getcapenable(ifp) & IFCAP_VLAN_MTU ? ETHER_VLAN_ENCAP_LEN : 0));
5457 
5458 	/* Load our MAC address. */
5459 	m = (uint16_t *)IF_LLADDR(sc->bge_ifp);
5460 	CSR_WRITE_4(sc, BGE_MAC_ADDR1_LO, htons(m[0]));
5461 	CSR_WRITE_4(sc, BGE_MAC_ADDR1_HI, (htons(m[1]) << 16) | htons(m[2]));
5462 
5463 	/* Program promiscuous mode. */
5464 	bge_setpromisc(sc);
5465 
5466 	/* Program multicast filter. */
5467 	bge_setmulti(sc);
5468 
5469 	/* Program VLAN tag stripping. */
5470 	bge_setvlan(sc);
5471 
5472 	/* Override UDP checksum offloading. */
5473 	if (sc->bge_forced_udpcsum == 0)
5474 		sc->bge_csum_features &= ~CSUM_UDP;
5475 	else
5476 		sc->bge_csum_features |= CSUM_UDP;
5477 	if (if_getcapabilities(ifp) & IFCAP_TXCSUM &&
5478 	    if_getcapenable(ifp) & IFCAP_TXCSUM) {
5479 		if_sethwassistbits(ifp, 0, (BGE_CSUM_FEATURES | CSUM_UDP));
5480 		if_sethwassistbits(ifp, sc->bge_csum_features, 0);
5481 	}
5482 
5483 	/* Init RX ring. */
5484 	if (bge_init_rx_ring_std(sc) != 0) {
5485 		device_printf(sc->bge_dev, "no memory for std Rx buffers.\n");
5486 		bge_stop(sc);
5487 		return;
5488 	}
5489 
5490 	/*
5491 	 * Workaround for a bug in 5705 ASIC rev A0. Poll the NIC's
5492 	 * memory to insure that the chip has in fact read the first
5493 	 * entry of the ring.
5494 	 */
5495 	if (sc->bge_chipid == BGE_CHIPID_BCM5705_A0) {
5496 		uint32_t		v, i;
5497 		for (i = 0; i < 10; i++) {
5498 			DELAY(20);
5499 			v = bge_readmem_ind(sc, BGE_STD_RX_RINGS + 8);
5500 			if (v == (MCLBYTES - ETHER_ALIGN))
5501 				break;
5502 		}
5503 		if (i == 10)
5504 			device_printf (sc->bge_dev,
5505 			    "5705 A0 chip failed to load RX ring\n");
5506 	}
5507 
5508 	/* Init jumbo RX ring. */
5509 	if (BGE_IS_JUMBO_CAPABLE(sc) &&
5510 	    if_getmtu(ifp) + ETHER_HDR_LEN + ETHER_CRC_LEN +
5511      	    ETHER_VLAN_ENCAP_LEN > (MCLBYTES - ETHER_ALIGN)) {
5512 		if (bge_init_rx_ring_jumbo(sc) != 0) {
5513 			device_printf(sc->bge_dev,
5514 			    "no memory for jumbo Rx buffers.\n");
5515 			bge_stop(sc);
5516 			return;
5517 		}
5518 	}
5519 
5520 	/* Init our RX return ring index. */
5521 	sc->bge_rx_saved_considx = 0;
5522 
5523 	/* Init our RX/TX stat counters. */
5524 	sc->bge_rx_discards = sc->bge_tx_discards = sc->bge_tx_collisions = 0;
5525 
5526 	/* Init TX ring. */
5527 	bge_init_tx_ring(sc);
5528 
5529 	/* Enable TX MAC state machine lockup fix. */
5530 	mode = CSR_READ_4(sc, BGE_TX_MODE);
5531 	if (BGE_IS_5755_PLUS(sc) || sc->bge_asicrev == BGE_ASICREV_BCM5906)
5532 		mode |= BGE_TXMODE_MBUF_LOCKUP_FIX;
5533 	if (sc->bge_asicrev == BGE_ASICREV_BCM5720 ||
5534 	    sc->bge_asicrev == BGE_ASICREV_BCM5762) {
5535 		mode &= ~(BGE_TXMODE_JMB_FRM_LEN | BGE_TXMODE_CNT_DN_MODE);
5536 		mode |= CSR_READ_4(sc, BGE_TX_MODE) &
5537 		    (BGE_TXMODE_JMB_FRM_LEN | BGE_TXMODE_CNT_DN_MODE);
5538 	}
5539 	/* Turn on transmitter. */
5540 	CSR_WRITE_4(sc, BGE_TX_MODE, mode | BGE_TXMODE_ENABLE);
5541 	DELAY(100);
5542 
5543 	/* Turn on receiver. */
5544 	mode = CSR_READ_4(sc, BGE_RX_MODE);
5545 	if (BGE_IS_5755_PLUS(sc))
5546 		mode |= BGE_RXMODE_IPV6_ENABLE;
5547 	if (sc->bge_asicrev == BGE_ASICREV_BCM5762)
5548 		mode |= BGE_RXMODE_IPV4_FRAG_FIX;
5549 	CSR_WRITE_4(sc,BGE_RX_MODE, mode | BGE_RXMODE_ENABLE);
5550 	DELAY(10);
5551 
5552 	/*
5553 	 * Set the number of good frames to receive after RX MBUF
5554 	 * Low Watermark has been reached. After the RX MAC receives
5555 	 * this number of frames, it will drop subsequent incoming
5556 	 * frames until the MBUF High Watermark is reached.
5557 	 */
5558 	if (BGE_IS_57765_PLUS(sc))
5559 		CSR_WRITE_4(sc, BGE_MAX_RX_FRAME_LOWAT, 1);
5560 	else
5561 		CSR_WRITE_4(sc, BGE_MAX_RX_FRAME_LOWAT, 2);
5562 
5563 	/* Clear MAC statistics. */
5564 	if (BGE_IS_5705_PLUS(sc))
5565 		bge_stats_clear_regs(sc);
5566 
5567 	/* Tell firmware we're alive. */
5568 	BGE_SETBIT(sc, BGE_MODE_CTL, BGE_MODECTL_STACKUP);
5569 
5570 #ifdef DEVICE_POLLING
5571 	/* Disable interrupts if we are polling. */
5572 	if (if_getcapenable(ifp) & IFCAP_POLLING) {
5573 		BGE_SETBIT(sc, BGE_PCI_MISC_CTL,
5574 		    BGE_PCIMISCCTL_MASK_PCI_INTR);
5575 		bge_writembx(sc, BGE_MBX_IRQ0_LO, 1);
5576 	} else
5577 #endif
5578 
5579 	/* Enable host interrupts. */
5580 	{
5581 	BGE_SETBIT(sc, BGE_PCI_MISC_CTL, BGE_PCIMISCCTL_CLEAR_INTA);
5582 	BGE_CLRBIT(sc, BGE_PCI_MISC_CTL, BGE_PCIMISCCTL_MASK_PCI_INTR);
5583 	bge_writembx(sc, BGE_MBX_IRQ0_LO, 0);
5584 	}
5585 
5586 	if_setdrvflagbits(ifp, IFF_DRV_RUNNING, 0);
5587 	if_setdrvflagbits(ifp, 0, IFF_DRV_OACTIVE);
5588 
5589 	bge_ifmedia_upd_locked(ifp);
5590 
5591 	callout_reset(&sc->bge_stat_ch, hz, bge_tick, sc);
5592 }
5593 
5594 static void
5595 bge_init(void *xsc)
5596 {
5597 	struct bge_softc *sc = xsc;
5598 
5599 	BGE_LOCK(sc);
5600 	bge_init_locked(sc);
5601 	BGE_UNLOCK(sc);
5602 }
5603 
5604 /*
5605  * Set media options.
5606  */
5607 static int
5608 bge_ifmedia_upd(if_t ifp)
5609 {
5610 	struct bge_softc *sc = if_getsoftc(ifp);
5611 	int res;
5612 
5613 	BGE_LOCK(sc);
5614 	res = bge_ifmedia_upd_locked(ifp);
5615 	BGE_UNLOCK(sc);
5616 
5617 	return (res);
5618 }
5619 
5620 static int
5621 bge_ifmedia_upd_locked(if_t ifp)
5622 {
5623 	struct bge_softc *sc = if_getsoftc(ifp);
5624 	struct mii_data *mii;
5625 	struct mii_softc *miisc;
5626 	struct ifmedia *ifm;
5627 
5628 	BGE_LOCK_ASSERT(sc);
5629 
5630 	ifm = &sc->bge_ifmedia;
5631 
5632 	/* If this is a 1000baseX NIC, enable the TBI port. */
5633 	if (sc->bge_flags & BGE_FLAG_TBI) {
5634 		if (IFM_TYPE(ifm->ifm_media) != IFM_ETHER)
5635 			return (EINVAL);
5636 		switch(IFM_SUBTYPE(ifm->ifm_media)) {
5637 		case IFM_AUTO:
5638 			/*
5639 			 * The BCM5704 ASIC appears to have a special
5640 			 * mechanism for programming the autoneg
5641 			 * advertisement registers in TBI mode.
5642 			 */
5643 			if (sc->bge_asicrev == BGE_ASICREV_BCM5704) {
5644 				uint32_t sgdig;
5645 				sgdig = CSR_READ_4(sc, BGE_SGDIG_STS);
5646 				if (sgdig & BGE_SGDIGSTS_DONE) {
5647 					CSR_WRITE_4(sc, BGE_TX_TBI_AUTONEG, 0);
5648 					sgdig = CSR_READ_4(sc, BGE_SGDIG_CFG);
5649 					sgdig |= BGE_SGDIGCFG_AUTO |
5650 					    BGE_SGDIGCFG_PAUSE_CAP |
5651 					    BGE_SGDIGCFG_ASYM_PAUSE;
5652 					CSR_WRITE_4(sc, BGE_SGDIG_CFG,
5653 					    sgdig | BGE_SGDIGCFG_SEND);
5654 					DELAY(5);
5655 					CSR_WRITE_4(sc, BGE_SGDIG_CFG, sgdig);
5656 				}
5657 			}
5658 			break;
5659 		case IFM_1000_SX:
5660 			if ((ifm->ifm_media & IFM_GMASK) == IFM_FDX) {
5661 				BGE_CLRBIT(sc, BGE_MAC_MODE,
5662 				    BGE_MACMODE_HALF_DUPLEX);
5663 			} else {
5664 				BGE_SETBIT(sc, BGE_MAC_MODE,
5665 				    BGE_MACMODE_HALF_DUPLEX);
5666 			}
5667 			DELAY(40);
5668 			break;
5669 		default:
5670 			return (EINVAL);
5671 		}
5672 		return (0);
5673 	}
5674 
5675 	sc->bge_link_evt++;
5676 	mii = device_get_softc(sc->bge_miibus);
5677 	LIST_FOREACH(miisc, &mii->mii_phys, mii_list)
5678 		PHY_RESET(miisc);
5679 	mii_mediachg(mii);
5680 
5681 	/*
5682 	 * Force an interrupt so that we will call bge_link_upd
5683 	 * if needed and clear any pending link state attention.
5684 	 * Without this we are not getting any further interrupts
5685 	 * for link state changes and thus will not UP the link and
5686 	 * not be able to send in bge_start_locked. The only
5687 	 * way to get things working was to receive a packet and
5688 	 * get an RX intr.
5689 	 * bge_tick should help for fiber cards and we might not
5690 	 * need to do this here if BGE_FLAG_TBI is set but as
5691 	 * we poll for fiber anyway it should not harm.
5692 	 */
5693 	if (sc->bge_asicrev == BGE_ASICREV_BCM5700 ||
5694 	    sc->bge_flags & BGE_FLAG_5788)
5695 		BGE_SETBIT(sc, BGE_MISC_LOCAL_CTL, BGE_MLC_INTR_SET);
5696 	else
5697 		BGE_SETBIT(sc, BGE_HCC_MODE, BGE_HCCMODE_COAL_NOW);
5698 
5699 	return (0);
5700 }
5701 
5702 /*
5703  * Report current media status.
5704  */
5705 static void
5706 bge_ifmedia_sts(if_t ifp, struct ifmediareq *ifmr)
5707 {
5708 	struct bge_softc *sc = if_getsoftc(ifp);
5709 	struct mii_data *mii;
5710 
5711 	BGE_LOCK(sc);
5712 
5713 	if ((if_getflags(ifp) & IFF_UP) == 0) {
5714 		BGE_UNLOCK(sc);
5715 		return;
5716 	}
5717 	if (sc->bge_flags & BGE_FLAG_TBI) {
5718 		ifmr->ifm_status = IFM_AVALID;
5719 		ifmr->ifm_active = IFM_ETHER;
5720 		if (CSR_READ_4(sc, BGE_MAC_STS) &
5721 		    BGE_MACSTAT_TBI_PCS_SYNCHED)
5722 			ifmr->ifm_status |= IFM_ACTIVE;
5723 		else {
5724 			ifmr->ifm_active |= IFM_NONE;
5725 			BGE_UNLOCK(sc);
5726 			return;
5727 		}
5728 		ifmr->ifm_active |= IFM_1000_SX;
5729 		if (CSR_READ_4(sc, BGE_MAC_MODE) & BGE_MACMODE_HALF_DUPLEX)
5730 			ifmr->ifm_active |= IFM_HDX;
5731 		else
5732 			ifmr->ifm_active |= IFM_FDX;
5733 		BGE_UNLOCK(sc);
5734 		return;
5735 	}
5736 
5737 	mii = device_get_softc(sc->bge_miibus);
5738 	mii_pollstat(mii);
5739 	ifmr->ifm_active = mii->mii_media_active;
5740 	ifmr->ifm_status = mii->mii_media_status;
5741 
5742 	BGE_UNLOCK(sc);
5743 }
5744 
5745 static int
5746 bge_ioctl(if_t ifp, u_long command, caddr_t data)
5747 {
5748 	struct bge_softc *sc = if_getsoftc(ifp);
5749 	struct ifreq *ifr = (struct ifreq *) data;
5750 	struct mii_data *mii;
5751 	int flags, mask, error = 0;
5752 
5753 	switch (command) {
5754 	case SIOCSIFMTU:
5755 		if (BGE_IS_JUMBO_CAPABLE(sc) ||
5756 		    (sc->bge_flags & BGE_FLAG_JUMBO_STD)) {
5757 			if (ifr->ifr_mtu < ETHERMIN ||
5758 			    ifr->ifr_mtu > BGE_JUMBO_MTU) {
5759 				error = EINVAL;
5760 				break;
5761 			}
5762 		} else if (ifr->ifr_mtu < ETHERMIN || ifr->ifr_mtu > ETHERMTU) {
5763 			error = EINVAL;
5764 			break;
5765 		}
5766 		BGE_LOCK(sc);
5767 		if (if_getmtu(ifp) != ifr->ifr_mtu) {
5768 			if_setmtu(ifp, ifr->ifr_mtu);
5769 			if (if_getdrvflags(ifp) & IFF_DRV_RUNNING) {
5770 				if_setdrvflagbits(ifp, 0, IFF_DRV_RUNNING);
5771 				bge_init_locked(sc);
5772 			}
5773 		}
5774 		BGE_UNLOCK(sc);
5775 		break;
5776 	case SIOCSIFFLAGS:
5777 		BGE_LOCK(sc);
5778 		if (if_getflags(ifp) & IFF_UP) {
5779 			/*
5780 			 * If only the state of the PROMISC flag changed,
5781 			 * then just use the 'set promisc mode' command
5782 			 * instead of reinitializing the entire NIC. Doing
5783 			 * a full re-init means reloading the firmware and
5784 			 * waiting for it to start up, which may take a
5785 			 * second or two.  Similarly for ALLMULTI.
5786 			 */
5787 			if (if_getdrvflags(ifp) & IFF_DRV_RUNNING) {
5788 				flags = if_getflags(ifp) ^ sc->bge_if_flags;
5789 				if (flags & IFF_PROMISC)
5790 					bge_setpromisc(sc);
5791 				if (flags & IFF_ALLMULTI)
5792 					bge_setmulti(sc);
5793 			} else
5794 				bge_init_locked(sc);
5795 		} else {
5796 			if (if_getdrvflags(ifp) & IFF_DRV_RUNNING) {
5797 				bge_stop(sc);
5798 			}
5799 		}
5800 		sc->bge_if_flags = if_getflags(ifp);
5801 		BGE_UNLOCK(sc);
5802 		error = 0;
5803 		break;
5804 	case SIOCADDMULTI:
5805 	case SIOCDELMULTI:
5806 		if (if_getdrvflags(ifp) & IFF_DRV_RUNNING) {
5807 			BGE_LOCK(sc);
5808 			bge_setmulti(sc);
5809 			BGE_UNLOCK(sc);
5810 			error = 0;
5811 		}
5812 		break;
5813 	case SIOCSIFMEDIA:
5814 	case SIOCGIFMEDIA:
5815 		if (sc->bge_flags & BGE_FLAG_TBI) {
5816 			error = ifmedia_ioctl(ifp, ifr,
5817 			    &sc->bge_ifmedia, command);
5818 		} else {
5819 			mii = device_get_softc(sc->bge_miibus);
5820 			error = ifmedia_ioctl(ifp, ifr,
5821 			    &mii->mii_media, command);
5822 		}
5823 		break;
5824 	case SIOCSIFCAP:
5825 		mask = ifr->ifr_reqcap ^ if_getcapenable(ifp);
5826 #ifdef DEVICE_POLLING
5827 		if (mask & IFCAP_POLLING) {
5828 			if (ifr->ifr_reqcap & IFCAP_POLLING) {
5829 				error = ether_poll_register(bge_poll, ifp);
5830 				if (error)
5831 					return (error);
5832 				BGE_LOCK(sc);
5833 				BGE_SETBIT(sc, BGE_PCI_MISC_CTL,
5834 				    BGE_PCIMISCCTL_MASK_PCI_INTR);
5835 				bge_writembx(sc, BGE_MBX_IRQ0_LO, 1);
5836 				if_setcapenablebit(ifp, IFCAP_POLLING, 0);
5837 				BGE_UNLOCK(sc);
5838 			} else {
5839 				error = ether_poll_deregister(ifp);
5840 				/* Enable interrupt even in error case */
5841 				BGE_LOCK(sc);
5842 				BGE_CLRBIT(sc, BGE_PCI_MISC_CTL,
5843 				    BGE_PCIMISCCTL_MASK_PCI_INTR);
5844 				bge_writembx(sc, BGE_MBX_IRQ0_LO, 0);
5845 				if_setcapenablebit(ifp, 0, IFCAP_POLLING);
5846 				BGE_UNLOCK(sc);
5847 			}
5848 		}
5849 #endif
5850 		if ((mask & IFCAP_TXCSUM) != 0 &&
5851 		    (if_getcapabilities(ifp) & IFCAP_TXCSUM) != 0) {
5852 			if_togglecapenable(ifp, IFCAP_TXCSUM);
5853 			if ((if_getcapenable(ifp) & IFCAP_TXCSUM) != 0)
5854 				if_sethwassistbits(ifp,
5855 				    sc->bge_csum_features, 0);
5856 			else
5857 				if_sethwassistbits(ifp, 0,
5858 				    sc->bge_csum_features);
5859 		}
5860 
5861 		if ((mask & IFCAP_RXCSUM) != 0 &&
5862 		    (if_getcapabilities(ifp) & IFCAP_RXCSUM) != 0)
5863 			if_togglecapenable(ifp, IFCAP_RXCSUM);
5864 
5865 		if ((mask & IFCAP_TSO4) != 0 &&
5866 		    (if_getcapabilities(ifp) & IFCAP_TSO4) != 0) {
5867 			if_togglecapenable(ifp, IFCAP_TSO4);
5868 			if ((if_getcapenable(ifp) & IFCAP_TSO4) != 0)
5869 				if_sethwassistbits(ifp, CSUM_TSO, 0);
5870 			else
5871 				if_sethwassistbits(ifp, 0, CSUM_TSO);
5872 		}
5873 
5874 		if (mask & IFCAP_VLAN_MTU) {
5875 			if_togglecapenable(ifp, IFCAP_VLAN_MTU);
5876 			if_setdrvflagbits(ifp, 0, IFF_DRV_RUNNING);
5877 			bge_init(sc);
5878 		}
5879 
5880 		if ((mask & IFCAP_VLAN_HWTSO) != 0 &&
5881 		    (if_getcapabilities(ifp) & IFCAP_VLAN_HWTSO) != 0)
5882 			if_togglecapenable(ifp, IFCAP_VLAN_HWTSO);
5883 		if ((mask & IFCAP_VLAN_HWTAGGING) != 0 &&
5884 		    (if_getcapabilities(ifp) & IFCAP_VLAN_HWTAGGING) != 0) {
5885 			if_togglecapenable(ifp, IFCAP_VLAN_HWTAGGING);
5886 			if ((if_getcapenable(ifp) & IFCAP_VLAN_HWTAGGING) == 0)
5887 				if_setcapenablebit(ifp, 0, IFCAP_VLAN_HWTSO);
5888 			BGE_LOCK(sc);
5889 			bge_setvlan(sc);
5890 			BGE_UNLOCK(sc);
5891 		}
5892 #ifdef VLAN_CAPABILITIES
5893 		if_vlancap(ifp);
5894 #endif
5895 		break;
5896 	default:
5897 		error = ether_ioctl(ifp, command, data);
5898 		break;
5899 	}
5900 
5901 	return (error);
5902 }
5903 
5904 static void
5905 bge_watchdog(struct bge_softc *sc)
5906 {
5907 	if_t ifp;
5908 	uint32_t status;
5909 
5910 	BGE_LOCK_ASSERT(sc);
5911 
5912 	if (sc->bge_timer == 0 || --sc->bge_timer)
5913 		return;
5914 
5915 	/* If pause frames are active then don't reset the hardware. */
5916 	if ((CSR_READ_4(sc, BGE_RX_MODE) & BGE_RXMODE_FLOWCTL_ENABLE) != 0) {
5917 		status = CSR_READ_4(sc, BGE_RX_STS);
5918 		if ((status & BGE_RXSTAT_REMOTE_XOFFED) != 0) {
5919 			/*
5920 			 * If link partner has us in XOFF state then wait for
5921 			 * the condition to clear.
5922 			 */
5923 			CSR_WRITE_4(sc, BGE_RX_STS, status);
5924 			sc->bge_timer = BGE_TX_TIMEOUT;
5925 			return;
5926 		} else if ((status & BGE_RXSTAT_RCVD_XOFF) != 0 &&
5927 		    (status & BGE_RXSTAT_RCVD_XON) != 0) {
5928 			/*
5929 			 * If link partner has us in XOFF state then wait for
5930 			 * the condition to clear.
5931 			 */
5932 			CSR_WRITE_4(sc, BGE_RX_STS, status);
5933 			sc->bge_timer = BGE_TX_TIMEOUT;
5934 			return;
5935 		}
5936 		/*
5937 		 * Any other condition is unexpected and the controller
5938 		 * should be reset.
5939 		 */
5940 	}
5941 
5942 	ifp = sc->bge_ifp;
5943 
5944 	if_printf(ifp, "watchdog timeout -- resetting\n");
5945 
5946 	if_setdrvflagbits(ifp, 0, IFF_DRV_RUNNING);
5947 	bge_init_locked(sc);
5948 
5949 	if_inc_counter(ifp, IFCOUNTER_OERRORS, 1);
5950 }
5951 
5952 static void
5953 bge_stop_block(struct bge_softc *sc, bus_size_t reg, uint32_t bit)
5954 {
5955 	int i;
5956 
5957 	BGE_CLRBIT(sc, reg, bit);
5958 
5959 	for (i = 0; i < BGE_TIMEOUT; i++) {
5960 		if ((CSR_READ_4(sc, reg) & bit) == 0)
5961 			return;
5962 		DELAY(100);
5963         }
5964 }
5965 
5966 /*
5967  * Stop the adapter and free any mbufs allocated to the
5968  * RX and TX lists.
5969  */
5970 static void
5971 bge_stop(struct bge_softc *sc)
5972 {
5973 	if_t ifp;
5974 
5975 	BGE_LOCK_ASSERT(sc);
5976 
5977 	ifp = sc->bge_ifp;
5978 
5979 	callout_stop(&sc->bge_stat_ch);
5980 
5981 	/* Disable host interrupts. */
5982 	BGE_SETBIT(sc, BGE_PCI_MISC_CTL, BGE_PCIMISCCTL_MASK_PCI_INTR);
5983 	bge_writembx(sc, BGE_MBX_IRQ0_LO, 1);
5984 
5985 	/*
5986 	 * Tell firmware we're shutting down.
5987 	 */
5988 	bge_stop_fw(sc);
5989 	bge_sig_pre_reset(sc, BGE_RESET_SHUTDOWN);
5990 
5991 	/*
5992 	 * Disable all of the receiver blocks.
5993 	 */
5994 	bge_stop_block(sc, BGE_RX_MODE, BGE_RXMODE_ENABLE);
5995 	bge_stop_block(sc, BGE_RBDI_MODE, BGE_RBDIMODE_ENABLE);
5996 	bge_stop_block(sc, BGE_RXLP_MODE, BGE_RXLPMODE_ENABLE);
5997 	if (BGE_IS_5700_FAMILY(sc))
5998 		bge_stop_block(sc, BGE_RXLS_MODE, BGE_RXLSMODE_ENABLE);
5999 	bge_stop_block(sc, BGE_RDBDI_MODE, BGE_RBDIMODE_ENABLE);
6000 	bge_stop_block(sc, BGE_RDC_MODE, BGE_RDCMODE_ENABLE);
6001 	bge_stop_block(sc, BGE_RBDC_MODE, BGE_RBDCMODE_ENABLE);
6002 
6003 	/*
6004 	 * Disable all of the transmit blocks.
6005 	 */
6006 	bge_stop_block(sc, BGE_SRS_MODE, BGE_SRSMODE_ENABLE);
6007 	bge_stop_block(sc, BGE_SBDI_MODE, BGE_SBDIMODE_ENABLE);
6008 	bge_stop_block(sc, BGE_SDI_MODE, BGE_SDIMODE_ENABLE);
6009 	bge_stop_block(sc, BGE_RDMA_MODE, BGE_RDMAMODE_ENABLE);
6010 	bge_stop_block(sc, BGE_SDC_MODE, BGE_SDCMODE_ENABLE);
6011 	if (BGE_IS_5700_FAMILY(sc))
6012 		bge_stop_block(sc, BGE_DMAC_MODE, BGE_DMACMODE_ENABLE);
6013 	bge_stop_block(sc, BGE_SBDC_MODE, BGE_SBDCMODE_ENABLE);
6014 
6015 	/*
6016 	 * Shut down all of the memory managers and related
6017 	 * state machines.
6018 	 */
6019 	bge_stop_block(sc, BGE_HCC_MODE, BGE_HCCMODE_ENABLE);
6020 	bge_stop_block(sc, BGE_WDMA_MODE, BGE_WDMAMODE_ENABLE);
6021 	if (BGE_IS_5700_FAMILY(sc))
6022 		bge_stop_block(sc, BGE_MBCF_MODE, BGE_MBCFMODE_ENABLE);
6023 
6024 	CSR_WRITE_4(sc, BGE_FTQ_RESET, 0xFFFFFFFF);
6025 	CSR_WRITE_4(sc, BGE_FTQ_RESET, 0);
6026 	if (!(BGE_IS_5705_PLUS(sc))) {
6027 		BGE_CLRBIT(sc, BGE_BMAN_MODE, BGE_BMANMODE_ENABLE);
6028 		BGE_CLRBIT(sc, BGE_MARB_MODE, BGE_MARBMODE_ENABLE);
6029 	}
6030 	/* Update MAC statistics. */
6031 	if (BGE_IS_5705_PLUS(sc))
6032 		bge_stats_update_regs(sc);
6033 
6034 	bge_reset(sc);
6035 	bge_sig_legacy(sc, BGE_RESET_SHUTDOWN);
6036 	bge_sig_post_reset(sc, BGE_RESET_SHUTDOWN);
6037 
6038 	/*
6039 	 * Keep the ASF firmware running if up.
6040 	 */
6041 	if (sc->bge_asf_mode & ASF_STACKUP)
6042 		BGE_SETBIT(sc, BGE_MODE_CTL, BGE_MODECTL_STACKUP);
6043 	else
6044 		BGE_CLRBIT(sc, BGE_MODE_CTL, BGE_MODECTL_STACKUP);
6045 
6046 	/* Free the RX lists. */
6047 	bge_free_rx_ring_std(sc);
6048 
6049 	/* Free jumbo RX list. */
6050 	if (BGE_IS_JUMBO_CAPABLE(sc))
6051 		bge_free_rx_ring_jumbo(sc);
6052 
6053 	/* Free TX buffers. */
6054 	bge_free_tx_ring(sc);
6055 
6056 	sc->bge_tx_saved_considx = BGE_TXCONS_UNSET;
6057 
6058 	/* Clear MAC's link state (PHY may still have link UP). */
6059 	if (bootverbose && sc->bge_link)
6060 		if_printf(sc->bge_ifp, "link DOWN\n");
6061 	sc->bge_link = 0;
6062 
6063 	if_setdrvflagbits(ifp, 0, (IFF_DRV_RUNNING | IFF_DRV_OACTIVE));
6064 }
6065 
6066 /*
6067  * Stop all chip I/O so that the kernel's probe routines don't
6068  * get confused by errant DMAs when rebooting.
6069  */
6070 static int
6071 bge_shutdown(device_t dev)
6072 {
6073 	struct bge_softc *sc;
6074 
6075 	sc = device_get_softc(dev);
6076 	BGE_LOCK(sc);
6077 	bge_stop(sc);
6078 	BGE_UNLOCK(sc);
6079 
6080 	return (0);
6081 }
6082 
6083 static int
6084 bge_suspend(device_t dev)
6085 {
6086 	struct bge_softc *sc;
6087 
6088 	sc = device_get_softc(dev);
6089 	BGE_LOCK(sc);
6090 	bge_stop(sc);
6091 	BGE_UNLOCK(sc);
6092 
6093 	return (0);
6094 }
6095 
6096 static int
6097 bge_resume(device_t dev)
6098 {
6099 	struct bge_softc *sc;
6100 	if_t ifp;
6101 
6102 	sc = device_get_softc(dev);
6103 	BGE_LOCK(sc);
6104 	ifp = sc->bge_ifp;
6105 	if (if_getflags(ifp) & IFF_UP) {
6106 		bge_init_locked(sc);
6107 		if (if_getdrvflags(ifp) & IFF_DRV_RUNNING)
6108 			bge_start_locked(ifp);
6109 	}
6110 	BGE_UNLOCK(sc);
6111 
6112 	return (0);
6113 }
6114 
6115 static void
6116 bge_link_upd(struct bge_softc *sc)
6117 {
6118 	struct mii_data *mii;
6119 	uint32_t link, status;
6120 
6121 	BGE_LOCK_ASSERT(sc);
6122 
6123 	/* Clear 'pending link event' flag. */
6124 	sc->bge_link_evt = 0;
6125 
6126 	/*
6127 	 * Process link state changes.
6128 	 * Grrr. The link status word in the status block does
6129 	 * not work correctly on the BCM5700 rev AX and BX chips,
6130 	 * according to all available information. Hence, we have
6131 	 * to enable MII interrupts in order to properly obtain
6132 	 * async link changes. Unfortunately, this also means that
6133 	 * we have to read the MAC status register to detect link
6134 	 * changes, thereby adding an additional register access to
6135 	 * the interrupt handler.
6136 	 *
6137 	 * XXX: perhaps link state detection procedure used for
6138 	 * BGE_CHIPID_BCM5700_B2 can be used for others BCM5700 revisions.
6139 	 */
6140 
6141 	if (sc->bge_asicrev == BGE_ASICREV_BCM5700 &&
6142 	    sc->bge_chipid != BGE_CHIPID_BCM5700_B2) {
6143 		status = CSR_READ_4(sc, BGE_MAC_STS);
6144 		if (status & BGE_MACSTAT_MI_INTERRUPT) {
6145 			mii = device_get_softc(sc->bge_miibus);
6146 			mii_pollstat(mii);
6147 			if (!sc->bge_link &&
6148 			    mii->mii_media_status & IFM_ACTIVE &&
6149 			    IFM_SUBTYPE(mii->mii_media_active) != IFM_NONE) {
6150 				sc->bge_link++;
6151 				if (bootverbose)
6152 					if_printf(sc->bge_ifp, "link UP\n");
6153 			} else if (sc->bge_link &&
6154 			    (!(mii->mii_media_status & IFM_ACTIVE) ||
6155 			    IFM_SUBTYPE(mii->mii_media_active) == IFM_NONE)) {
6156 				sc->bge_link = 0;
6157 				if (bootverbose)
6158 					if_printf(sc->bge_ifp, "link DOWN\n");
6159 			}
6160 
6161 			/* Clear the interrupt. */
6162 			CSR_WRITE_4(sc, BGE_MAC_EVT_ENB,
6163 			    BGE_EVTENB_MI_INTERRUPT);
6164 			bge_miibus_readreg(sc->bge_dev, sc->bge_phy_addr,
6165 			    BRGPHY_MII_ISR);
6166 			bge_miibus_writereg(sc->bge_dev, sc->bge_phy_addr,
6167 			    BRGPHY_MII_IMR, BRGPHY_INTRS);
6168 		}
6169 		return;
6170 	}
6171 
6172 	if (sc->bge_flags & BGE_FLAG_TBI) {
6173 		status = CSR_READ_4(sc, BGE_MAC_STS);
6174 		if (status & BGE_MACSTAT_TBI_PCS_SYNCHED) {
6175 			if (!sc->bge_link) {
6176 				sc->bge_link++;
6177 				if (sc->bge_asicrev == BGE_ASICREV_BCM5704) {
6178 					BGE_CLRBIT(sc, BGE_MAC_MODE,
6179 					    BGE_MACMODE_TBI_SEND_CFGS);
6180 					DELAY(40);
6181 				}
6182 				CSR_WRITE_4(sc, BGE_MAC_STS, 0xFFFFFFFF);
6183 				if (bootverbose)
6184 					if_printf(sc->bge_ifp, "link UP\n");
6185 				if_link_state_change(sc->bge_ifp,
6186 				    LINK_STATE_UP);
6187 			}
6188 		} else if (sc->bge_link) {
6189 			sc->bge_link = 0;
6190 			if (bootverbose)
6191 				if_printf(sc->bge_ifp, "link DOWN\n");
6192 			if_link_state_change(sc->bge_ifp, LINK_STATE_DOWN);
6193 		}
6194 	} else if ((sc->bge_mi_mode & BGE_MIMODE_AUTOPOLL) != 0) {
6195 		/*
6196 		 * Some broken BCM chips have BGE_STATFLAG_LINKSTATE_CHANGED bit
6197 		 * in status word always set. Workaround this bug by reading
6198 		 * PHY link status directly.
6199 		 */
6200 		link = (CSR_READ_4(sc, BGE_MI_STS) & BGE_MISTS_LINK) ? 1 : 0;
6201 
6202 		if (link != sc->bge_link ||
6203 		    sc->bge_asicrev == BGE_ASICREV_BCM5700) {
6204 			mii = device_get_softc(sc->bge_miibus);
6205 			mii_pollstat(mii);
6206 			if (!sc->bge_link &&
6207 			    mii->mii_media_status & IFM_ACTIVE &&
6208 			    IFM_SUBTYPE(mii->mii_media_active) != IFM_NONE) {
6209 				sc->bge_link++;
6210 				if (bootverbose)
6211 					if_printf(sc->bge_ifp, "link UP\n");
6212 			} else if (sc->bge_link &&
6213 			    (!(mii->mii_media_status & IFM_ACTIVE) ||
6214 			    IFM_SUBTYPE(mii->mii_media_active) == IFM_NONE)) {
6215 				sc->bge_link = 0;
6216 				if (bootverbose)
6217 					if_printf(sc->bge_ifp, "link DOWN\n");
6218 			}
6219 		}
6220 	} else {
6221 		/*
6222 		 * For controllers that call mii_tick, we have to poll
6223 		 * link status.
6224 		 */
6225 		mii = device_get_softc(sc->bge_miibus);
6226 		mii_pollstat(mii);
6227 		bge_miibus_statchg(sc->bge_dev);
6228 	}
6229 
6230 	/* Disable MAC attention when link is up. */
6231 	CSR_WRITE_4(sc, BGE_MAC_STS, BGE_MACSTAT_SYNC_CHANGED |
6232 	    BGE_MACSTAT_CFG_CHANGED | BGE_MACSTAT_MI_COMPLETE |
6233 	    BGE_MACSTAT_LINK_CHANGED);
6234 }
6235 
6236 static void
6237 bge_add_sysctls(struct bge_softc *sc)
6238 {
6239 	struct sysctl_ctx_list *ctx;
6240 	struct sysctl_oid_list *children;
6241 	int unit;
6242 
6243 	ctx = device_get_sysctl_ctx(sc->bge_dev);
6244 	children = SYSCTL_CHILDREN(device_get_sysctl_tree(sc->bge_dev));
6245 
6246 #ifdef BGE_REGISTER_DEBUG
6247 	SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "debug_info",
6248 	    CTLTYPE_INT | CTLFLAG_RW, sc, 0, bge_sysctl_debug_info, "I",
6249 	    "Debug Information");
6250 
6251 	SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "reg_read",
6252 	    CTLTYPE_INT | CTLFLAG_RW, sc, 0, bge_sysctl_reg_read, "I",
6253 	    "MAC Register Read");
6254 
6255 	SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "ape_read",
6256 	    CTLTYPE_INT | CTLFLAG_RW, sc, 0, bge_sysctl_ape_read, "I",
6257 	    "APE Register Read");
6258 
6259 	SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "mem_read",
6260 	    CTLTYPE_INT | CTLFLAG_RW, sc, 0, bge_sysctl_mem_read, "I",
6261 	    "Memory Read");
6262 
6263 #endif
6264 
6265 	unit = device_get_unit(sc->bge_dev);
6266 	/*
6267 	 * A common design characteristic for many Broadcom client controllers
6268 	 * is that they only support a single outstanding DMA read operation
6269 	 * on the PCIe bus. This means that it will take twice as long to fetch
6270 	 * a TX frame that is split into header and payload buffers as it does
6271 	 * to fetch a single, contiguous TX frame (2 reads vs. 1 read). For
6272 	 * these controllers, coalescing buffers to reduce the number of memory
6273 	 * reads is effective way to get maximum performance(about 940Mbps).
6274 	 * Without collapsing TX buffers the maximum TCP bulk transfer
6275 	 * performance is about 850Mbps. However forcing coalescing mbufs
6276 	 * consumes a lot of CPU cycles, so leave it off by default.
6277 	 */
6278 	sc->bge_forced_collapse = 0;
6279 	SYSCTL_ADD_INT(ctx, children, OID_AUTO, "forced_collapse",
6280 	    CTLFLAG_RWTUN, &sc->bge_forced_collapse, 0,
6281 	    "Number of fragmented TX buffers of a frame allowed before "
6282 	    "forced collapsing");
6283 
6284 	sc->bge_msi = 1;
6285 	SYSCTL_ADD_INT(ctx, children, OID_AUTO, "msi",
6286 	    CTLFLAG_RDTUN, &sc->bge_msi, 0, "Enable MSI");
6287 
6288 	/*
6289 	 * It seems all Broadcom controllers have a bug that can generate UDP
6290 	 * datagrams with checksum value 0 when TX UDP checksum offloading is
6291 	 * enabled.  Generating UDP checksum value 0 is RFC 768 violation.
6292 	 * Even though the probability of generating such UDP datagrams is
6293 	 * low, I don't want to see FreeBSD boxes to inject such datagrams
6294 	 * into network so disable UDP checksum offloading by default.  Users
6295 	 * still override this behavior by setting a sysctl variable,
6296 	 * dev.bge.0.forced_udpcsum.
6297 	 */
6298 	sc->bge_forced_udpcsum = 0;
6299 	SYSCTL_ADD_INT(ctx, children, OID_AUTO, "forced_udpcsum",
6300 	    CTLFLAG_RWTUN, &sc->bge_forced_udpcsum, 0,
6301 	    "Enable UDP checksum offloading even if controller can "
6302 	    "generate UDP checksum value 0");
6303 
6304 	if (BGE_IS_5705_PLUS(sc))
6305 		bge_add_sysctl_stats_regs(sc, ctx, children);
6306 	else
6307 		bge_add_sysctl_stats(sc, ctx, children);
6308 }
6309 
6310 #define BGE_SYSCTL_STAT(sc, ctx, desc, parent, node, oid) \
6311 	SYSCTL_ADD_PROC(ctx, parent, OID_AUTO, oid, CTLTYPE_UINT|CTLFLAG_RD, \
6312 	    sc, offsetof(struct bge_stats, node), bge_sysctl_stats, "IU", \
6313 	    desc)
6314 
6315 static void
6316 bge_add_sysctl_stats(struct bge_softc *sc, struct sysctl_ctx_list *ctx,
6317     struct sysctl_oid_list *parent)
6318 {
6319 	struct sysctl_oid *tree;
6320 	struct sysctl_oid_list *children, *schildren;
6321 
6322 	tree = SYSCTL_ADD_NODE(ctx, parent, OID_AUTO, "stats", CTLFLAG_RD,
6323 	    NULL, "BGE Statistics");
6324 	schildren = children = SYSCTL_CHILDREN(tree);
6325 	BGE_SYSCTL_STAT(sc, ctx, "Frames Dropped Due To Filters",
6326 	    children, COSFramesDroppedDueToFilters,
6327 	    "FramesDroppedDueToFilters");
6328 	BGE_SYSCTL_STAT(sc, ctx, "NIC DMA Write Queue Full",
6329 	    children, nicDmaWriteQueueFull, "DmaWriteQueueFull");
6330 	BGE_SYSCTL_STAT(sc, ctx, "NIC DMA Write High Priority Queue Full",
6331 	    children, nicDmaWriteHighPriQueueFull, "DmaWriteHighPriQueueFull");
6332 	BGE_SYSCTL_STAT(sc, ctx, "NIC No More RX Buffer Descriptors",
6333 	    children, nicNoMoreRxBDs, "NoMoreRxBDs");
6334 	BGE_SYSCTL_STAT(sc, ctx, "Discarded Input Frames",
6335 	    children, ifInDiscards, "InputDiscards");
6336 	BGE_SYSCTL_STAT(sc, ctx, "Input Errors",
6337 	    children, ifInErrors, "InputErrors");
6338 	BGE_SYSCTL_STAT(sc, ctx, "NIC Recv Threshold Hit",
6339 	    children, nicRecvThresholdHit, "RecvThresholdHit");
6340 	BGE_SYSCTL_STAT(sc, ctx, "NIC DMA Read Queue Full",
6341 	    children, nicDmaReadQueueFull, "DmaReadQueueFull");
6342 	BGE_SYSCTL_STAT(sc, ctx, "NIC DMA Read High Priority Queue Full",
6343 	    children, nicDmaReadHighPriQueueFull, "DmaReadHighPriQueueFull");
6344 	BGE_SYSCTL_STAT(sc, ctx, "NIC Send Data Complete Queue Full",
6345 	    children, nicSendDataCompQueueFull, "SendDataCompQueueFull");
6346 	BGE_SYSCTL_STAT(sc, ctx, "NIC Ring Set Send Producer Index",
6347 	    children, nicRingSetSendProdIndex, "RingSetSendProdIndex");
6348 	BGE_SYSCTL_STAT(sc, ctx, "NIC Ring Status Update",
6349 	    children, nicRingStatusUpdate, "RingStatusUpdate");
6350 	BGE_SYSCTL_STAT(sc, ctx, "NIC Interrupts",
6351 	    children, nicInterrupts, "Interrupts");
6352 	BGE_SYSCTL_STAT(sc, ctx, "NIC Avoided Interrupts",
6353 	    children, nicAvoidedInterrupts, "AvoidedInterrupts");
6354 	BGE_SYSCTL_STAT(sc, ctx, "NIC Send Threshold Hit",
6355 	    children, nicSendThresholdHit, "SendThresholdHit");
6356 
6357 	tree = SYSCTL_ADD_NODE(ctx, schildren, OID_AUTO, "rx", CTLFLAG_RD,
6358 	    NULL, "BGE RX Statistics");
6359 	children = SYSCTL_CHILDREN(tree);
6360 	BGE_SYSCTL_STAT(sc, ctx, "Inbound Octets",
6361 	    children, rxstats.ifHCInOctets, "ifHCInOctets");
6362 	BGE_SYSCTL_STAT(sc, ctx, "Fragments",
6363 	    children, rxstats.etherStatsFragments, "Fragments");
6364 	BGE_SYSCTL_STAT(sc, ctx, "Inbound Unicast Packets",
6365 	    children, rxstats.ifHCInUcastPkts, "UnicastPkts");
6366 	BGE_SYSCTL_STAT(sc, ctx, "Inbound Multicast Packets",
6367 	    children, rxstats.ifHCInMulticastPkts, "MulticastPkts");
6368 	BGE_SYSCTL_STAT(sc, ctx, "FCS Errors",
6369 	    children, rxstats.dot3StatsFCSErrors, "FCSErrors");
6370 	BGE_SYSCTL_STAT(sc, ctx, "Alignment Errors",
6371 	    children, rxstats.dot3StatsAlignmentErrors, "AlignmentErrors");
6372 	BGE_SYSCTL_STAT(sc, ctx, "XON Pause Frames Received",
6373 	    children, rxstats.xonPauseFramesReceived, "xonPauseFramesReceived");
6374 	BGE_SYSCTL_STAT(sc, ctx, "XOFF Pause Frames Received",
6375 	    children, rxstats.xoffPauseFramesReceived,
6376 	    "xoffPauseFramesReceived");
6377 	BGE_SYSCTL_STAT(sc, ctx, "MAC Control Frames Received",
6378 	    children, rxstats.macControlFramesReceived,
6379 	    "ControlFramesReceived");
6380 	BGE_SYSCTL_STAT(sc, ctx, "XOFF State Entered",
6381 	    children, rxstats.xoffStateEntered, "xoffStateEntered");
6382 	BGE_SYSCTL_STAT(sc, ctx, "Frames Too Long",
6383 	    children, rxstats.dot3StatsFramesTooLong, "FramesTooLong");
6384 	BGE_SYSCTL_STAT(sc, ctx, "Jabbers",
6385 	    children, rxstats.etherStatsJabbers, "Jabbers");
6386 	BGE_SYSCTL_STAT(sc, ctx, "Undersized Packets",
6387 	    children, rxstats.etherStatsUndersizePkts, "UndersizePkts");
6388 	BGE_SYSCTL_STAT(sc, ctx, "Inbound Range Length Errors",
6389 	    children, rxstats.inRangeLengthError, "inRangeLengthError");
6390 	BGE_SYSCTL_STAT(sc, ctx, "Outbound Range Length Errors",
6391 	    children, rxstats.outRangeLengthError, "outRangeLengthError");
6392 
6393 	tree = SYSCTL_ADD_NODE(ctx, schildren, OID_AUTO, "tx", CTLFLAG_RD,
6394 	    NULL, "BGE TX Statistics");
6395 	children = SYSCTL_CHILDREN(tree);
6396 	BGE_SYSCTL_STAT(sc, ctx, "Outbound Octets",
6397 	    children, txstats.ifHCOutOctets, "ifHCOutOctets");
6398 	BGE_SYSCTL_STAT(sc, ctx, "TX Collisions",
6399 	    children, txstats.etherStatsCollisions, "Collisions");
6400 	BGE_SYSCTL_STAT(sc, ctx, "XON Sent",
6401 	    children, txstats.outXonSent, "XonSent");
6402 	BGE_SYSCTL_STAT(sc, ctx, "XOFF Sent",
6403 	    children, txstats.outXoffSent, "XoffSent");
6404 	BGE_SYSCTL_STAT(sc, ctx, "Flow Control Done",
6405 	    children, txstats.flowControlDone, "flowControlDone");
6406 	BGE_SYSCTL_STAT(sc, ctx, "Internal MAC TX errors",
6407 	    children, txstats.dot3StatsInternalMacTransmitErrors,
6408 	    "InternalMacTransmitErrors");
6409 	BGE_SYSCTL_STAT(sc, ctx, "Single Collision Frames",
6410 	    children, txstats.dot3StatsSingleCollisionFrames,
6411 	    "SingleCollisionFrames");
6412 	BGE_SYSCTL_STAT(sc, ctx, "Multiple Collision Frames",
6413 	    children, txstats.dot3StatsMultipleCollisionFrames,
6414 	    "MultipleCollisionFrames");
6415 	BGE_SYSCTL_STAT(sc, ctx, "Deferred Transmissions",
6416 	    children, txstats.dot3StatsDeferredTransmissions,
6417 	    "DeferredTransmissions");
6418 	BGE_SYSCTL_STAT(sc, ctx, "Excessive Collisions",
6419 	    children, txstats.dot3StatsExcessiveCollisions,
6420 	    "ExcessiveCollisions");
6421 	BGE_SYSCTL_STAT(sc, ctx, "Late Collisions",
6422 	    children, txstats.dot3StatsLateCollisions,
6423 	    "LateCollisions");
6424 	BGE_SYSCTL_STAT(sc, ctx, "Outbound Unicast Packets",
6425 	    children, txstats.ifHCOutUcastPkts, "UnicastPkts");
6426 	BGE_SYSCTL_STAT(sc, ctx, "Outbound Multicast Packets",
6427 	    children, txstats.ifHCOutMulticastPkts, "MulticastPkts");
6428 	BGE_SYSCTL_STAT(sc, ctx, "Outbound Broadcast Packets",
6429 	    children, txstats.ifHCOutBroadcastPkts, "BroadcastPkts");
6430 	BGE_SYSCTL_STAT(sc, ctx, "Carrier Sense Errors",
6431 	    children, txstats.dot3StatsCarrierSenseErrors,
6432 	    "CarrierSenseErrors");
6433 	BGE_SYSCTL_STAT(sc, ctx, "Outbound Discards",
6434 	    children, txstats.ifOutDiscards, "Discards");
6435 	BGE_SYSCTL_STAT(sc, ctx, "Outbound Errors",
6436 	    children, txstats.ifOutErrors, "Errors");
6437 }
6438 
6439 #undef BGE_SYSCTL_STAT
6440 
6441 #define	BGE_SYSCTL_STAT_ADD64(c, h, n, p, d)	\
6442 	    SYSCTL_ADD_UQUAD(c, h, OID_AUTO, n, CTLFLAG_RD, p, d)
6443 
6444 static void
6445 bge_add_sysctl_stats_regs(struct bge_softc *sc, struct sysctl_ctx_list *ctx,
6446     struct sysctl_oid_list *parent)
6447 {
6448 	struct sysctl_oid *tree;
6449 	struct sysctl_oid_list *child, *schild;
6450 	struct bge_mac_stats *stats;
6451 
6452 	stats = &sc->bge_mac_stats;
6453 	tree = SYSCTL_ADD_NODE(ctx, parent, OID_AUTO, "stats", CTLFLAG_RD,
6454 	    NULL, "BGE Statistics");
6455 	schild = child = SYSCTL_CHILDREN(tree);
6456 	BGE_SYSCTL_STAT_ADD64(ctx, child, "FramesDroppedDueToFilters",
6457 	    &stats->FramesDroppedDueToFilters, "Frames Dropped Due to Filters");
6458 	BGE_SYSCTL_STAT_ADD64(ctx, child, "DmaWriteQueueFull",
6459 	    &stats->DmaWriteQueueFull, "NIC DMA Write Queue Full");
6460 	BGE_SYSCTL_STAT_ADD64(ctx, child, "DmaWriteHighPriQueueFull",
6461 	    &stats->DmaWriteHighPriQueueFull,
6462 	    "NIC DMA Write High Priority Queue Full");
6463 	BGE_SYSCTL_STAT_ADD64(ctx, child, "NoMoreRxBDs",
6464 	    &stats->NoMoreRxBDs, "NIC No More RX Buffer Descriptors");
6465 	BGE_SYSCTL_STAT_ADD64(ctx, child, "InputDiscards",
6466 	    &stats->InputDiscards, "Discarded Input Frames");
6467 	BGE_SYSCTL_STAT_ADD64(ctx, child, "InputErrors",
6468 	    &stats->InputErrors, "Input Errors");
6469 	BGE_SYSCTL_STAT_ADD64(ctx, child, "RecvThresholdHit",
6470 	    &stats->RecvThresholdHit, "NIC Recv Threshold Hit");
6471 
6472 	tree = SYSCTL_ADD_NODE(ctx, schild, OID_AUTO, "rx", CTLFLAG_RD,
6473 	    NULL, "BGE RX Statistics");
6474 	child = SYSCTL_CHILDREN(tree);
6475 	BGE_SYSCTL_STAT_ADD64(ctx, child, "ifHCInOctets",
6476 	    &stats->ifHCInOctets, "Inbound Octets");
6477 	BGE_SYSCTL_STAT_ADD64(ctx, child, "Fragments",
6478 	    &stats->etherStatsFragments, "Fragments");
6479 	BGE_SYSCTL_STAT_ADD64(ctx, child, "UnicastPkts",
6480 	    &stats->ifHCInUcastPkts, "Inbound Unicast Packets");
6481 	BGE_SYSCTL_STAT_ADD64(ctx, child, "MulticastPkts",
6482 	    &stats->ifHCInMulticastPkts, "Inbound Multicast Packets");
6483 	BGE_SYSCTL_STAT_ADD64(ctx, child, "BroadcastPkts",
6484 	    &stats->ifHCInBroadcastPkts, "Inbound Broadcast Packets");
6485 	BGE_SYSCTL_STAT_ADD64(ctx, child, "FCSErrors",
6486 	    &stats->dot3StatsFCSErrors, "FCS Errors");
6487 	BGE_SYSCTL_STAT_ADD64(ctx, child, "AlignmentErrors",
6488 	    &stats->dot3StatsAlignmentErrors, "Alignment Errors");
6489 	BGE_SYSCTL_STAT_ADD64(ctx, child, "xonPauseFramesReceived",
6490 	    &stats->xonPauseFramesReceived, "XON Pause Frames Received");
6491 	BGE_SYSCTL_STAT_ADD64(ctx, child, "xoffPauseFramesReceived",
6492 	    &stats->xoffPauseFramesReceived, "XOFF Pause Frames Received");
6493 	BGE_SYSCTL_STAT_ADD64(ctx, child, "ControlFramesReceived",
6494 	    &stats->macControlFramesReceived, "MAC Control Frames Received");
6495 	BGE_SYSCTL_STAT_ADD64(ctx, child, "xoffStateEntered",
6496 	    &stats->xoffStateEntered, "XOFF State Entered");
6497 	BGE_SYSCTL_STAT_ADD64(ctx, child, "FramesTooLong",
6498 	    &stats->dot3StatsFramesTooLong, "Frames Too Long");
6499 	BGE_SYSCTL_STAT_ADD64(ctx, child, "Jabbers",
6500 	    &stats->etherStatsJabbers, "Jabbers");
6501 	BGE_SYSCTL_STAT_ADD64(ctx, child, "UndersizePkts",
6502 	    &stats->etherStatsUndersizePkts, "Undersized Packets");
6503 
6504 	tree = SYSCTL_ADD_NODE(ctx, schild, OID_AUTO, "tx", CTLFLAG_RD,
6505 	    NULL, "BGE TX Statistics");
6506 	child = SYSCTL_CHILDREN(tree);
6507 	BGE_SYSCTL_STAT_ADD64(ctx, child, "ifHCOutOctets",
6508 	    &stats->ifHCOutOctets, "Outbound Octets");
6509 	BGE_SYSCTL_STAT_ADD64(ctx, child, "Collisions",
6510 	    &stats->etherStatsCollisions, "TX Collisions");
6511 	BGE_SYSCTL_STAT_ADD64(ctx, child, "XonSent",
6512 	    &stats->outXonSent, "XON Sent");
6513 	BGE_SYSCTL_STAT_ADD64(ctx, child, "XoffSent",
6514 	    &stats->outXoffSent, "XOFF Sent");
6515 	BGE_SYSCTL_STAT_ADD64(ctx, child, "InternalMacTransmitErrors",
6516 	    &stats->dot3StatsInternalMacTransmitErrors,
6517 	    "Internal MAC TX Errors");
6518 	BGE_SYSCTL_STAT_ADD64(ctx, child, "SingleCollisionFrames",
6519 	    &stats->dot3StatsSingleCollisionFrames, "Single Collision Frames");
6520 	BGE_SYSCTL_STAT_ADD64(ctx, child, "MultipleCollisionFrames",
6521 	    &stats->dot3StatsMultipleCollisionFrames,
6522 	    "Multiple Collision Frames");
6523 	BGE_SYSCTL_STAT_ADD64(ctx, child, "DeferredTransmissions",
6524 	    &stats->dot3StatsDeferredTransmissions, "Deferred Transmissions");
6525 	BGE_SYSCTL_STAT_ADD64(ctx, child, "ExcessiveCollisions",
6526 	    &stats->dot3StatsExcessiveCollisions, "Excessive Collisions");
6527 	BGE_SYSCTL_STAT_ADD64(ctx, child, "LateCollisions",
6528 	    &stats->dot3StatsLateCollisions, "Late Collisions");
6529 	BGE_SYSCTL_STAT_ADD64(ctx, child, "UnicastPkts",
6530 	    &stats->ifHCOutUcastPkts, "Outbound Unicast Packets");
6531 	BGE_SYSCTL_STAT_ADD64(ctx, child, "MulticastPkts",
6532 	    &stats->ifHCOutMulticastPkts, "Outbound Multicast Packets");
6533 	BGE_SYSCTL_STAT_ADD64(ctx, child, "BroadcastPkts",
6534 	    &stats->ifHCOutBroadcastPkts, "Outbound Broadcast Packets");
6535 }
6536 
6537 #undef	BGE_SYSCTL_STAT_ADD64
6538 
6539 static int
6540 bge_sysctl_stats(SYSCTL_HANDLER_ARGS)
6541 {
6542 	struct bge_softc *sc;
6543 	uint32_t result;
6544 	int offset;
6545 
6546 	sc = (struct bge_softc *)arg1;
6547 	offset = arg2;
6548 	result = CSR_READ_4(sc, BGE_MEMWIN_START + BGE_STATS_BLOCK + offset +
6549 	    offsetof(bge_hostaddr, bge_addr_lo));
6550 	return (sysctl_handle_int(oidp, &result, 0, req));
6551 }
6552 
6553 #ifdef BGE_REGISTER_DEBUG
6554 static int
6555 bge_sysctl_debug_info(SYSCTL_HANDLER_ARGS)
6556 {
6557 	struct bge_softc *sc;
6558 	uint16_t *sbdata;
6559 	int error, result, sbsz;
6560 	int i, j;
6561 
6562 	result = -1;
6563 	error = sysctl_handle_int(oidp, &result, 0, req);
6564 	if (error || (req->newptr == NULL))
6565 		return (error);
6566 
6567 	if (result == 1) {
6568 		sc = (struct bge_softc *)arg1;
6569 
6570 		if (sc->bge_asicrev == BGE_ASICREV_BCM5700 &&
6571 		    sc->bge_chipid != BGE_CHIPID_BCM5700_C0)
6572 			sbsz = BGE_STATUS_BLK_SZ;
6573 		else
6574 			sbsz = 32;
6575 		sbdata = (uint16_t *)sc->bge_ldata.bge_status_block;
6576 		printf("Status Block:\n");
6577 		BGE_LOCK(sc);
6578 		bus_dmamap_sync(sc->bge_cdata.bge_status_tag,
6579 		    sc->bge_cdata.bge_status_map,
6580 		    BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE);
6581 		for (i = 0x0; i < sbsz / sizeof(uint16_t); ) {
6582 			printf("%06x:", i);
6583 			for (j = 0; j < 8; j++)
6584 				printf(" %04x", sbdata[i++]);
6585 			printf("\n");
6586 		}
6587 
6588 		printf("Registers:\n");
6589 		for (i = 0x800; i < 0xA00; ) {
6590 			printf("%06x:", i);
6591 			for (j = 0; j < 8; j++) {
6592 				printf(" %08x", CSR_READ_4(sc, i));
6593 				i += 4;
6594 			}
6595 			printf("\n");
6596 		}
6597 		BGE_UNLOCK(sc);
6598 
6599 		printf("Hardware Flags:\n");
6600 		if (BGE_IS_5717_PLUS(sc))
6601 			printf(" - 5717 Plus\n");
6602 		if (BGE_IS_5755_PLUS(sc))
6603 			printf(" - 5755 Plus\n");
6604 		if (BGE_IS_575X_PLUS(sc))
6605 			printf(" - 575X Plus\n");
6606 		if (BGE_IS_5705_PLUS(sc))
6607 			printf(" - 5705 Plus\n");
6608 		if (BGE_IS_5714_FAMILY(sc))
6609 			printf(" - 5714 Family\n");
6610 		if (BGE_IS_5700_FAMILY(sc))
6611 			printf(" - 5700 Family\n");
6612 		if (sc->bge_flags & BGE_FLAG_JUMBO)
6613 			printf(" - Supports Jumbo Frames\n");
6614 		if (sc->bge_flags & BGE_FLAG_PCIX)
6615 			printf(" - PCI-X Bus\n");
6616 		if (sc->bge_flags & BGE_FLAG_PCIE)
6617 			printf(" - PCI Express Bus\n");
6618 		if (sc->bge_phy_flags & BGE_PHY_NO_3LED)
6619 			printf(" - No 3 LEDs\n");
6620 		if (sc->bge_flags & BGE_FLAG_RX_ALIGNBUG)
6621 			printf(" - RX Alignment Bug\n");
6622 	}
6623 
6624 	return (error);
6625 }
6626 
6627 static int
6628 bge_sysctl_reg_read(SYSCTL_HANDLER_ARGS)
6629 {
6630 	struct bge_softc *sc;
6631 	int error;
6632 	uint16_t result;
6633 	uint32_t val;
6634 
6635 	result = -1;
6636 	error = sysctl_handle_int(oidp, &result, 0, req);
6637 	if (error || (req->newptr == NULL))
6638 		return (error);
6639 
6640 	if (result < 0x8000) {
6641 		sc = (struct bge_softc *)arg1;
6642 		val = CSR_READ_4(sc, result);
6643 		printf("reg 0x%06X = 0x%08X\n", result, val);
6644 	}
6645 
6646 	return (error);
6647 }
6648 
6649 static int
6650 bge_sysctl_ape_read(SYSCTL_HANDLER_ARGS)
6651 {
6652 	struct bge_softc *sc;
6653 	int error;
6654 	uint16_t result;
6655 	uint32_t val;
6656 
6657 	result = -1;
6658 	error = sysctl_handle_int(oidp, &result, 0, req);
6659 	if (error || (req->newptr == NULL))
6660 		return (error);
6661 
6662 	if (result < 0x8000) {
6663 		sc = (struct bge_softc *)arg1;
6664 		val = APE_READ_4(sc, result);
6665 		printf("reg 0x%06X = 0x%08X\n", result, val);
6666 	}
6667 
6668 	return (error);
6669 }
6670 
6671 static int
6672 bge_sysctl_mem_read(SYSCTL_HANDLER_ARGS)
6673 {
6674 	struct bge_softc *sc;
6675 	int error;
6676 	uint16_t result;
6677 	uint32_t val;
6678 
6679 	result = -1;
6680 	error = sysctl_handle_int(oidp, &result, 0, req);
6681 	if (error || (req->newptr == NULL))
6682 		return (error);
6683 
6684 	if (result < 0x8000) {
6685 		sc = (struct bge_softc *)arg1;
6686 		val = bge_readmem_ind(sc, result);
6687 		printf("mem 0x%06X = 0x%08X\n", result, val);
6688 	}
6689 
6690 	return (error);
6691 }
6692 #endif
6693 
6694 static int
6695 bge_get_eaddr_fw(struct bge_softc *sc, uint8_t ether_addr[])
6696 {
6697 
6698 	if (sc->bge_flags & BGE_FLAG_EADDR)
6699 		return (1);
6700 
6701 #ifdef __sparc64__
6702 	OF_getetheraddr(sc->bge_dev, ether_addr);
6703 	return (0);
6704 #endif
6705 	return (1);
6706 }
6707 
6708 static int
6709 bge_get_eaddr_mem(struct bge_softc *sc, uint8_t ether_addr[])
6710 {
6711 	uint32_t mac_addr;
6712 
6713 	mac_addr = bge_readmem_ind(sc, BGE_SRAM_MAC_ADDR_HIGH_MB);
6714 	if ((mac_addr >> 16) == 0x484b) {
6715 		ether_addr[0] = (uint8_t)(mac_addr >> 8);
6716 		ether_addr[1] = (uint8_t)mac_addr;
6717 		mac_addr = bge_readmem_ind(sc, BGE_SRAM_MAC_ADDR_LOW_MB);
6718 		ether_addr[2] = (uint8_t)(mac_addr >> 24);
6719 		ether_addr[3] = (uint8_t)(mac_addr >> 16);
6720 		ether_addr[4] = (uint8_t)(mac_addr >> 8);
6721 		ether_addr[5] = (uint8_t)mac_addr;
6722 		return (0);
6723 	}
6724 	return (1);
6725 }
6726 
6727 static int
6728 bge_get_eaddr_nvram(struct bge_softc *sc, uint8_t ether_addr[])
6729 {
6730 	int mac_offset = BGE_EE_MAC_OFFSET;
6731 
6732 	if (sc->bge_asicrev == BGE_ASICREV_BCM5906)
6733 		mac_offset = BGE_EE_MAC_OFFSET_5906;
6734 
6735 	return (bge_read_nvram(sc, ether_addr, mac_offset + 2,
6736 	    ETHER_ADDR_LEN));
6737 }
6738 
6739 static int
6740 bge_get_eaddr_eeprom(struct bge_softc *sc, uint8_t ether_addr[])
6741 {
6742 
6743 	if (sc->bge_asicrev == BGE_ASICREV_BCM5906)
6744 		return (1);
6745 
6746 	return (bge_read_eeprom(sc, ether_addr, BGE_EE_MAC_OFFSET + 2,
6747 	   ETHER_ADDR_LEN));
6748 }
6749 
6750 static int
6751 bge_get_eaddr(struct bge_softc *sc, uint8_t eaddr[])
6752 {
6753 	static const bge_eaddr_fcn_t bge_eaddr_funcs[] = {
6754 		/* NOTE: Order is critical */
6755 		bge_get_eaddr_fw,
6756 		bge_get_eaddr_mem,
6757 		bge_get_eaddr_nvram,
6758 		bge_get_eaddr_eeprom,
6759 		NULL
6760 	};
6761 	const bge_eaddr_fcn_t *func;
6762 
6763 	for (func = bge_eaddr_funcs; *func != NULL; ++func) {
6764 		if ((*func)(sc, eaddr) == 0)
6765 			break;
6766 	}
6767 	return (*func == NULL ? ENXIO : 0);
6768 }
6769 
6770 static uint64_t
6771 bge_get_counter(if_t ifp, ift_counter cnt)
6772 {
6773 	struct bge_softc *sc;
6774 	struct bge_mac_stats *stats;
6775 
6776 	sc = if_getsoftc(ifp);
6777 	if (!BGE_IS_5705_PLUS(sc))
6778 		return (if_get_counter_default(ifp, cnt));
6779 	stats = &sc->bge_mac_stats;
6780 
6781 	switch (cnt) {
6782 	case IFCOUNTER_IERRORS:
6783 		return (stats->NoMoreRxBDs + stats->InputDiscards +
6784 		    stats->InputErrors);
6785 	case IFCOUNTER_COLLISIONS:
6786 		return (stats->etherStatsCollisions);
6787 	default:
6788 		return (if_get_counter_default(ifp, cnt));
6789 	}
6790 }
6791