xref: /freebsd/sys/dev/bge/if_bge.c (revision 36daf0495aa68d669ac6abf004940ec1b1e83e42)
1 /*-
2  * Copyright (c) 2001 Wind River Systems
3  * Copyright (c) 1997, 1998, 1999, 2001
4  *	Bill Paul <wpaul@windriver.com>.  All rights reserved.
5  *
6  * Redistribution and use in source and binary forms, with or without
7  * modification, are permitted provided that the following conditions
8  * are met:
9  * 1. Redistributions of source code must retain the above copyright
10  *    notice, this list of conditions and the following disclaimer.
11  * 2. Redistributions in binary form must reproduce the above copyright
12  *    notice, this list of conditions and the following disclaimer in the
13  *    documentation and/or other materials provided with the distribution.
14  * 3. All advertising materials mentioning features or use of this software
15  *    must display the following acknowledgement:
16  *	This product includes software developed by Bill Paul.
17  * 4. Neither the name of the author nor the names of any co-contributors
18  *    may be used to endorse or promote products derived from this software
19  *    without specific prior written permission.
20  *
21  * THIS SOFTWARE IS PROVIDED BY Bill Paul AND CONTRIBUTORS ``AS IS'' AND
22  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
23  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
24  * ARE DISCLAIMED.  IN NO EVENT SHALL Bill Paul OR THE VOICES IN HIS HEAD
25  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
26  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
27  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
28  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
29  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
30  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF
31  * THE POSSIBILITY OF SUCH DAMAGE.
32  */
33 
34 #include <sys/cdefs.h>
35 __FBSDID("$FreeBSD$");
36 
37 /*
38  * Broadcom BCM570x family gigabit ethernet driver for FreeBSD.
39  *
40  * The Broadcom BCM5700 is based on technology originally developed by
41  * Alteon Networks as part of the Tigon I and Tigon II gigabit ethernet
42  * MAC chips. The BCM5700, sometimes referred to as the Tigon III, has
43  * two on-board MIPS R4000 CPUs and can have as much as 16MB of external
44  * SSRAM. The BCM5700 supports TCP, UDP and IP checksum offload, jumbo
45  * frames, highly configurable RX filtering, and 16 RX and TX queues
46  * (which, along with RX filter rules, can be used for QOS applications).
47  * Other features, such as TCP segmentation, may be available as part
48  * of value-added firmware updates. Unlike the Tigon I and Tigon II,
49  * firmware images can be stored in hardware and need not be compiled
50  * into the driver.
51  *
52  * The BCM5700 supports the PCI v2.2 and PCI-X v1.0 standards, and will
53  * function in a 32-bit/64-bit 33/66Mhz bus, or a 64-bit/133Mhz bus.
54  *
55  * The BCM5701 is a single-chip solution incorporating both the BCM5700
56  * MAC and a BCM5401 10/100/1000 PHY. Unlike the BCM5700, the BCM5701
57  * does not support external SSRAM.
58  *
59  * Broadcom also produces a variation of the BCM5700 under the "Altima"
60  * brand name, which is functionally similar but lacks PCI-X support.
61  *
62  * Without external SSRAM, you can only have at most 4 TX rings,
63  * and the use of the mini RX ring is disabled. This seems to imply
64  * that these features are simply not available on the BCM5701. As a
65  * result, this driver does not implement any support for the mini RX
66  * ring.
67  */
68 
69 #ifdef HAVE_KERNEL_OPTION_HEADERS
70 #include "opt_device_polling.h"
71 #endif
72 
73 #include <sys/param.h>
74 #include <sys/endian.h>
75 #include <sys/systm.h>
76 #include <sys/sockio.h>
77 #include <sys/mbuf.h>
78 #include <sys/malloc.h>
79 #include <sys/kernel.h>
80 #include <sys/module.h>
81 #include <sys/socket.h>
82 #include <sys/sysctl.h>
83 #include <sys/taskqueue.h>
84 
85 #include <net/if.h>
86 #include <net/if_arp.h>
87 #include <net/ethernet.h>
88 #include <net/if_dl.h>
89 #include <net/if_media.h>
90 
91 #include <net/bpf.h>
92 
93 #include <net/if_types.h>
94 #include <net/if_vlan_var.h>
95 
96 #include <netinet/in_systm.h>
97 #include <netinet/in.h>
98 #include <netinet/ip.h>
99 #include <netinet/tcp.h>
100 
101 #include <machine/bus.h>
102 #include <machine/resource.h>
103 #include <sys/bus.h>
104 #include <sys/rman.h>
105 
106 #include <dev/mii/mii.h>
107 #include <dev/mii/miivar.h>
108 #include "miidevs.h"
109 #include <dev/mii/brgphyreg.h>
110 
111 #ifdef __sparc64__
112 #include <dev/ofw/ofw_bus.h>
113 #include <dev/ofw/openfirm.h>
114 #include <machine/ofw_machdep.h>
115 #include <machine/ver.h>
116 #endif
117 
118 #include <dev/pci/pcireg.h>
119 #include <dev/pci/pcivar.h>
120 
121 #include <dev/bge/if_bgereg.h>
122 
123 #define	BGE_CSUM_FEATURES	(CSUM_IP | CSUM_TCP)
124 #define	ETHER_MIN_NOPAD		(ETHER_MIN_LEN - ETHER_CRC_LEN) /* i.e., 60 */
125 
126 MODULE_DEPEND(bge, pci, 1, 1, 1);
127 MODULE_DEPEND(bge, ether, 1, 1, 1);
128 MODULE_DEPEND(bge, miibus, 1, 1, 1);
129 
130 /* "device miibus" required.  See GENERIC if you get errors here. */
131 #include "miibus_if.h"
132 
133 /*
134  * Various supported device vendors/types and their names. Note: the
135  * spec seems to indicate that the hardware still has Alteon's vendor
136  * ID burned into it, though it will always be overriden by the vendor
137  * ID in the EEPROM. Just to be safe, we cover all possibilities.
138  */
139 static const struct bge_type {
140 	uint16_t	bge_vid;
141 	uint16_t	bge_did;
142 } const bge_devs[] = {
143 	{ ALTEON_VENDORID,	ALTEON_DEVICEID_BCM5700 },
144 	{ ALTEON_VENDORID,	ALTEON_DEVICEID_BCM5701 },
145 
146 	{ ALTIMA_VENDORID,	ALTIMA_DEVICE_AC1000 },
147 	{ ALTIMA_VENDORID,	ALTIMA_DEVICE_AC1002 },
148 	{ ALTIMA_VENDORID,	ALTIMA_DEVICE_AC9100 },
149 
150 	{ APPLE_VENDORID,	APPLE_DEVICE_BCM5701 },
151 
152 	{ BCOM_VENDORID,	BCOM_DEVICEID_BCM5700 },
153 	{ BCOM_VENDORID,	BCOM_DEVICEID_BCM5701 },
154 	{ BCOM_VENDORID,	BCOM_DEVICEID_BCM5702 },
155 	{ BCOM_VENDORID,	BCOM_DEVICEID_BCM5702_ALT },
156 	{ BCOM_VENDORID,	BCOM_DEVICEID_BCM5702X },
157 	{ BCOM_VENDORID,	BCOM_DEVICEID_BCM5703 },
158 	{ BCOM_VENDORID,	BCOM_DEVICEID_BCM5703_ALT },
159 	{ BCOM_VENDORID,	BCOM_DEVICEID_BCM5703X },
160 	{ BCOM_VENDORID,	BCOM_DEVICEID_BCM5704C },
161 	{ BCOM_VENDORID,	BCOM_DEVICEID_BCM5704S },
162 	{ BCOM_VENDORID,	BCOM_DEVICEID_BCM5704S_ALT },
163 	{ BCOM_VENDORID,	BCOM_DEVICEID_BCM5705 },
164 	{ BCOM_VENDORID,	BCOM_DEVICEID_BCM5705F },
165 	{ BCOM_VENDORID,	BCOM_DEVICEID_BCM5705K },
166 	{ BCOM_VENDORID,	BCOM_DEVICEID_BCM5705M },
167 	{ BCOM_VENDORID,	BCOM_DEVICEID_BCM5705M_ALT },
168 	{ BCOM_VENDORID,	BCOM_DEVICEID_BCM5714C },
169 	{ BCOM_VENDORID,	BCOM_DEVICEID_BCM5714S },
170 	{ BCOM_VENDORID,	BCOM_DEVICEID_BCM5715 },
171 	{ BCOM_VENDORID,	BCOM_DEVICEID_BCM5715S },
172 	{ BCOM_VENDORID,	BCOM_DEVICEID_BCM5717 },
173 	{ BCOM_VENDORID,	BCOM_DEVICEID_BCM5718 },
174 	{ BCOM_VENDORID,	BCOM_DEVICEID_BCM5719 },
175 	{ BCOM_VENDORID,	BCOM_DEVICEID_BCM5720 },
176 	{ BCOM_VENDORID,	BCOM_DEVICEID_BCM5721 },
177 	{ BCOM_VENDORID,	BCOM_DEVICEID_BCM5722 },
178 	{ BCOM_VENDORID,	BCOM_DEVICEID_BCM5723 },
179 	{ BCOM_VENDORID,	BCOM_DEVICEID_BCM5750 },
180 	{ BCOM_VENDORID,	BCOM_DEVICEID_BCM5750M },
181 	{ BCOM_VENDORID,	BCOM_DEVICEID_BCM5751 },
182 	{ BCOM_VENDORID,	BCOM_DEVICEID_BCM5751F },
183 	{ BCOM_VENDORID,	BCOM_DEVICEID_BCM5751M },
184 	{ BCOM_VENDORID,	BCOM_DEVICEID_BCM5752 },
185 	{ BCOM_VENDORID,	BCOM_DEVICEID_BCM5752M },
186 	{ BCOM_VENDORID,	BCOM_DEVICEID_BCM5753 },
187 	{ BCOM_VENDORID,	BCOM_DEVICEID_BCM5753F },
188 	{ BCOM_VENDORID,	BCOM_DEVICEID_BCM5753M },
189 	{ BCOM_VENDORID,	BCOM_DEVICEID_BCM5754 },
190 	{ BCOM_VENDORID,	BCOM_DEVICEID_BCM5754M },
191 	{ BCOM_VENDORID,	BCOM_DEVICEID_BCM5755 },
192 	{ BCOM_VENDORID,	BCOM_DEVICEID_BCM5755M },
193 	{ BCOM_VENDORID,	BCOM_DEVICEID_BCM5756 },
194 	{ BCOM_VENDORID,	BCOM_DEVICEID_BCM5761 },
195 	{ BCOM_VENDORID,	BCOM_DEVICEID_BCM5761E },
196 	{ BCOM_VENDORID,	BCOM_DEVICEID_BCM5761S },
197 	{ BCOM_VENDORID,	BCOM_DEVICEID_BCM5761SE },
198 	{ BCOM_VENDORID,	BCOM_DEVICEID_BCM5764 },
199 	{ BCOM_VENDORID,	BCOM_DEVICEID_BCM5780 },
200 	{ BCOM_VENDORID,	BCOM_DEVICEID_BCM5780S },
201 	{ BCOM_VENDORID,	BCOM_DEVICEID_BCM5781 },
202 	{ BCOM_VENDORID,	BCOM_DEVICEID_BCM5782 },
203 	{ BCOM_VENDORID,	BCOM_DEVICEID_BCM5784 },
204 	{ BCOM_VENDORID,	BCOM_DEVICEID_BCM5785F },
205 	{ BCOM_VENDORID,	BCOM_DEVICEID_BCM5785G },
206 	{ BCOM_VENDORID,	BCOM_DEVICEID_BCM5786 },
207 	{ BCOM_VENDORID,	BCOM_DEVICEID_BCM5787 },
208 	{ BCOM_VENDORID,	BCOM_DEVICEID_BCM5787F },
209 	{ BCOM_VENDORID,	BCOM_DEVICEID_BCM5787M },
210 	{ BCOM_VENDORID,	BCOM_DEVICEID_BCM5788 },
211 	{ BCOM_VENDORID,	BCOM_DEVICEID_BCM5789 },
212 	{ BCOM_VENDORID,	BCOM_DEVICEID_BCM5901 },
213 	{ BCOM_VENDORID,	BCOM_DEVICEID_BCM5901A2 },
214 	{ BCOM_VENDORID,	BCOM_DEVICEID_BCM5903M },
215 	{ BCOM_VENDORID,	BCOM_DEVICEID_BCM5906 },
216 	{ BCOM_VENDORID,	BCOM_DEVICEID_BCM5906M },
217 	{ BCOM_VENDORID,	BCOM_DEVICEID_BCM57760 },
218 	{ BCOM_VENDORID,	BCOM_DEVICEID_BCM57761 },
219 	{ BCOM_VENDORID,	BCOM_DEVICEID_BCM57765 },
220 	{ BCOM_VENDORID,	BCOM_DEVICEID_BCM57780 },
221 	{ BCOM_VENDORID,	BCOM_DEVICEID_BCM57781 },
222 	{ BCOM_VENDORID,	BCOM_DEVICEID_BCM57785 },
223 	{ BCOM_VENDORID,	BCOM_DEVICEID_BCM57788 },
224 	{ BCOM_VENDORID,	BCOM_DEVICEID_BCM57790 },
225 	{ BCOM_VENDORID,	BCOM_DEVICEID_BCM57791 },
226 	{ BCOM_VENDORID,	BCOM_DEVICEID_BCM57795 },
227 
228 	{ SK_VENDORID,		SK_DEVICEID_ALTIMA },
229 
230 	{ TC_VENDORID,		TC_DEVICEID_3C996 },
231 
232 	{ FJTSU_VENDORID,	FJTSU_DEVICEID_PW008GE4 },
233 	{ FJTSU_VENDORID,	FJTSU_DEVICEID_PW008GE5 },
234 	{ FJTSU_VENDORID,	FJTSU_DEVICEID_PP250450 },
235 
236 	{ 0, 0 }
237 };
238 
239 static const struct bge_vendor {
240 	uint16_t	v_id;
241 	const char	*v_name;
242 } const bge_vendors[] = {
243 	{ ALTEON_VENDORID,	"Alteon" },
244 	{ ALTIMA_VENDORID,	"Altima" },
245 	{ APPLE_VENDORID,	"Apple" },
246 	{ BCOM_VENDORID,	"Broadcom" },
247 	{ SK_VENDORID,		"SysKonnect" },
248 	{ TC_VENDORID,		"3Com" },
249 	{ FJTSU_VENDORID,	"Fujitsu" },
250 
251 	{ 0, NULL }
252 };
253 
254 static const struct bge_revision {
255 	uint32_t	br_chipid;
256 	const char	*br_name;
257 } const bge_revisions[] = {
258 	{ BGE_CHIPID_BCM5700_A0,	"BCM5700 A0" },
259 	{ BGE_CHIPID_BCM5700_A1,	"BCM5700 A1" },
260 	{ BGE_CHIPID_BCM5700_B0,	"BCM5700 B0" },
261 	{ BGE_CHIPID_BCM5700_B1,	"BCM5700 B1" },
262 	{ BGE_CHIPID_BCM5700_B2,	"BCM5700 B2" },
263 	{ BGE_CHIPID_BCM5700_B3,	"BCM5700 B3" },
264 	{ BGE_CHIPID_BCM5700_ALTIMA,	"BCM5700 Altima" },
265 	{ BGE_CHIPID_BCM5700_C0,	"BCM5700 C0" },
266 	{ BGE_CHIPID_BCM5701_A0,	"BCM5701 A0" },
267 	{ BGE_CHIPID_BCM5701_B0,	"BCM5701 B0" },
268 	{ BGE_CHIPID_BCM5701_B2,	"BCM5701 B2" },
269 	{ BGE_CHIPID_BCM5701_B5,	"BCM5701 B5" },
270 	{ BGE_CHIPID_BCM5703_A0,	"BCM5703 A0" },
271 	{ BGE_CHIPID_BCM5703_A1,	"BCM5703 A1" },
272 	{ BGE_CHIPID_BCM5703_A2,	"BCM5703 A2" },
273 	{ BGE_CHIPID_BCM5703_A3,	"BCM5703 A3" },
274 	{ BGE_CHIPID_BCM5703_B0,	"BCM5703 B0" },
275 	{ BGE_CHIPID_BCM5704_A0,	"BCM5704 A0" },
276 	{ BGE_CHIPID_BCM5704_A1,	"BCM5704 A1" },
277 	{ BGE_CHIPID_BCM5704_A2,	"BCM5704 A2" },
278 	{ BGE_CHIPID_BCM5704_A3,	"BCM5704 A3" },
279 	{ BGE_CHIPID_BCM5704_B0,	"BCM5704 B0" },
280 	{ BGE_CHIPID_BCM5705_A0,	"BCM5705 A0" },
281 	{ BGE_CHIPID_BCM5705_A1,	"BCM5705 A1" },
282 	{ BGE_CHIPID_BCM5705_A2,	"BCM5705 A2" },
283 	{ BGE_CHIPID_BCM5705_A3,	"BCM5705 A3" },
284 	{ BGE_CHIPID_BCM5750_A0,	"BCM5750 A0" },
285 	{ BGE_CHIPID_BCM5750_A1,	"BCM5750 A1" },
286 	{ BGE_CHIPID_BCM5750_A3,	"BCM5750 A3" },
287 	{ BGE_CHIPID_BCM5750_B0,	"BCM5750 B0" },
288 	{ BGE_CHIPID_BCM5750_B1,	"BCM5750 B1" },
289 	{ BGE_CHIPID_BCM5750_C0,	"BCM5750 C0" },
290 	{ BGE_CHIPID_BCM5750_C1,	"BCM5750 C1" },
291 	{ BGE_CHIPID_BCM5750_C2,	"BCM5750 C2" },
292 	{ BGE_CHIPID_BCM5714_A0,	"BCM5714 A0" },
293 	{ BGE_CHIPID_BCM5752_A0,	"BCM5752 A0" },
294 	{ BGE_CHIPID_BCM5752_A1,	"BCM5752 A1" },
295 	{ BGE_CHIPID_BCM5752_A2,	"BCM5752 A2" },
296 	{ BGE_CHIPID_BCM5714_B0,	"BCM5714 B0" },
297 	{ BGE_CHIPID_BCM5714_B3,	"BCM5714 B3" },
298 	{ BGE_CHIPID_BCM5715_A0,	"BCM5715 A0" },
299 	{ BGE_CHIPID_BCM5715_A1,	"BCM5715 A1" },
300 	{ BGE_CHIPID_BCM5715_A3,	"BCM5715 A3" },
301 	{ BGE_CHIPID_BCM5717_A0,	"BCM5717 A0" },
302 	{ BGE_CHIPID_BCM5717_B0,	"BCM5717 B0" },
303 	{ BGE_CHIPID_BCM5719_A0,	"BCM5719 A0" },
304 	{ BGE_CHIPID_BCM5755_A0,	"BCM5755 A0" },
305 	{ BGE_CHIPID_BCM5755_A1,	"BCM5755 A1" },
306 	{ BGE_CHIPID_BCM5755_A2,	"BCM5755 A2" },
307 	{ BGE_CHIPID_BCM5722_A0,	"BCM5722 A0" },
308 	{ BGE_CHIPID_BCM5761_A0,	"BCM5761 A0" },
309 	{ BGE_CHIPID_BCM5761_A1,	"BCM5761 A1" },
310 	{ BGE_CHIPID_BCM5784_A0,	"BCM5784 A0" },
311 	{ BGE_CHIPID_BCM5784_A1,	"BCM5784 A1" },
312 	/* 5754 and 5787 share the same ASIC ID */
313 	{ BGE_CHIPID_BCM5787_A0,	"BCM5754/5787 A0" },
314 	{ BGE_CHIPID_BCM5787_A1,	"BCM5754/5787 A1" },
315 	{ BGE_CHIPID_BCM5787_A2,	"BCM5754/5787 A2" },
316 	{ BGE_CHIPID_BCM5906_A1,	"BCM5906 A1" },
317 	{ BGE_CHIPID_BCM5906_A2,	"BCM5906 A2" },
318 	{ BGE_CHIPID_BCM57765_A0,	"BCM57765 A0" },
319 	{ BGE_CHIPID_BCM57765_B0,	"BCM57765 B0" },
320 	{ BGE_CHIPID_BCM57780_A0,	"BCM57780 A0" },
321 	{ BGE_CHIPID_BCM57780_A1,	"BCM57780 A1" },
322 
323 	{ 0, NULL }
324 };
325 
326 /*
327  * Some defaults for major revisions, so that newer steppings
328  * that we don't know about have a shot at working.
329  */
330 static const struct bge_revision const bge_majorrevs[] = {
331 	{ BGE_ASICREV_BCM5700,		"unknown BCM5700" },
332 	{ BGE_ASICREV_BCM5701,		"unknown BCM5701" },
333 	{ BGE_ASICREV_BCM5703,		"unknown BCM5703" },
334 	{ BGE_ASICREV_BCM5704,		"unknown BCM5704" },
335 	{ BGE_ASICREV_BCM5705,		"unknown BCM5705" },
336 	{ BGE_ASICREV_BCM5750,		"unknown BCM5750" },
337 	{ BGE_ASICREV_BCM5714_A0,	"unknown BCM5714" },
338 	{ BGE_ASICREV_BCM5752,		"unknown BCM5752" },
339 	{ BGE_ASICREV_BCM5780,		"unknown BCM5780" },
340 	{ BGE_ASICREV_BCM5714,		"unknown BCM5714" },
341 	{ BGE_ASICREV_BCM5755,		"unknown BCM5755" },
342 	{ BGE_ASICREV_BCM5761,		"unknown BCM5761" },
343 	{ BGE_ASICREV_BCM5784,		"unknown BCM5784" },
344 	{ BGE_ASICREV_BCM5785,		"unknown BCM5785" },
345 	/* 5754 and 5787 share the same ASIC ID */
346 	{ BGE_ASICREV_BCM5787,		"unknown BCM5754/5787" },
347 	{ BGE_ASICREV_BCM5906,		"unknown BCM5906" },
348 	{ BGE_ASICREV_BCM57765,		"unknown BCM57765" },
349 	{ BGE_ASICREV_BCM57780,		"unknown BCM57780" },
350 	{ BGE_ASICREV_BCM5717,		"unknown BCM5717" },
351 	{ BGE_ASICREV_BCM5719,		"unknown BCM5719" },
352 
353 	{ 0, NULL }
354 };
355 
356 #define	BGE_IS_JUMBO_CAPABLE(sc)	((sc)->bge_flags & BGE_FLAG_JUMBO)
357 #define	BGE_IS_5700_FAMILY(sc)		((sc)->bge_flags & BGE_FLAG_5700_FAMILY)
358 #define	BGE_IS_5705_PLUS(sc)		((sc)->bge_flags & BGE_FLAG_5705_PLUS)
359 #define	BGE_IS_5714_FAMILY(sc)		((sc)->bge_flags & BGE_FLAG_5714_FAMILY)
360 #define	BGE_IS_575X_PLUS(sc)		((sc)->bge_flags & BGE_FLAG_575X_PLUS)
361 #define	BGE_IS_5755_PLUS(sc)		((sc)->bge_flags & BGE_FLAG_5755_PLUS)
362 #define	BGE_IS_5717_PLUS(sc)		((sc)->bge_flags & BGE_FLAG_5717_PLUS)
363 
364 const struct bge_revision * bge_lookup_rev(uint32_t);
365 const struct bge_vendor * bge_lookup_vendor(uint16_t);
366 
367 typedef int	(*bge_eaddr_fcn_t)(struct bge_softc *, uint8_t[]);
368 
369 static int bge_probe(device_t);
370 static int bge_attach(device_t);
371 static int bge_detach(device_t);
372 static int bge_suspend(device_t);
373 static int bge_resume(device_t);
374 static void bge_release_resources(struct bge_softc *);
375 static void bge_dma_map_addr(void *, bus_dma_segment_t *, int, int);
376 static int bge_dma_alloc(struct bge_softc *);
377 static void bge_dma_free(struct bge_softc *);
378 static int bge_dma_ring_alloc(struct bge_softc *, bus_size_t, bus_size_t,
379     bus_dma_tag_t *, uint8_t **, bus_dmamap_t *, bus_addr_t *, const char *);
380 
381 static int bge_get_eaddr_fw(struct bge_softc *sc, uint8_t ether_addr[]);
382 static int bge_get_eaddr_mem(struct bge_softc *, uint8_t[]);
383 static int bge_get_eaddr_nvram(struct bge_softc *, uint8_t[]);
384 static int bge_get_eaddr_eeprom(struct bge_softc *, uint8_t[]);
385 static int bge_get_eaddr(struct bge_softc *, uint8_t[]);
386 
387 static void bge_txeof(struct bge_softc *, uint16_t);
388 static void bge_rxcsum(struct bge_softc *, struct bge_rx_bd *, struct mbuf *);
389 static int bge_rxeof(struct bge_softc *, uint16_t, int);
390 
391 static void bge_asf_driver_up (struct bge_softc *);
392 static void bge_tick(void *);
393 static void bge_stats_clear_regs(struct bge_softc *);
394 static void bge_stats_update(struct bge_softc *);
395 static void bge_stats_update_regs(struct bge_softc *);
396 static struct mbuf *bge_check_short_dma(struct mbuf *);
397 static struct mbuf *bge_setup_tso(struct bge_softc *, struct mbuf *,
398     uint16_t *, uint16_t *);
399 static int bge_encap(struct bge_softc *, struct mbuf **, uint32_t *);
400 
401 static void bge_intr(void *);
402 static int bge_msi_intr(void *);
403 static void bge_intr_task(void *, int);
404 static void bge_start_locked(struct ifnet *);
405 static void bge_start(struct ifnet *);
406 static int bge_ioctl(struct ifnet *, u_long, caddr_t);
407 static void bge_init_locked(struct bge_softc *);
408 static void bge_init(void *);
409 static void bge_stop_block(struct bge_softc *, bus_size_t, uint32_t);
410 static void bge_stop(struct bge_softc *);
411 static void bge_watchdog(struct bge_softc *);
412 static int bge_shutdown(device_t);
413 static int bge_ifmedia_upd_locked(struct ifnet *);
414 static int bge_ifmedia_upd(struct ifnet *);
415 static void bge_ifmedia_sts(struct ifnet *, struct ifmediareq *);
416 
417 static uint8_t bge_nvram_getbyte(struct bge_softc *, int, uint8_t *);
418 static int bge_read_nvram(struct bge_softc *, caddr_t, int, int);
419 
420 static uint8_t bge_eeprom_getbyte(struct bge_softc *, int, uint8_t *);
421 static int bge_read_eeprom(struct bge_softc *, caddr_t, int, int);
422 
423 static void bge_setpromisc(struct bge_softc *);
424 static void bge_setmulti(struct bge_softc *);
425 static void bge_setvlan(struct bge_softc *);
426 
427 static __inline void bge_rxreuse_std(struct bge_softc *, int);
428 static __inline void bge_rxreuse_jumbo(struct bge_softc *, int);
429 static int bge_newbuf_std(struct bge_softc *, int);
430 static int bge_newbuf_jumbo(struct bge_softc *, int);
431 static int bge_init_rx_ring_std(struct bge_softc *);
432 static void bge_free_rx_ring_std(struct bge_softc *);
433 static int bge_init_rx_ring_jumbo(struct bge_softc *);
434 static void bge_free_rx_ring_jumbo(struct bge_softc *);
435 static void bge_free_tx_ring(struct bge_softc *);
436 static int bge_init_tx_ring(struct bge_softc *);
437 
438 static int bge_chipinit(struct bge_softc *);
439 static int bge_blockinit(struct bge_softc *);
440 
441 static int bge_has_eaddr(struct bge_softc *);
442 static uint32_t bge_readmem_ind(struct bge_softc *, int);
443 static void bge_writemem_ind(struct bge_softc *, int, int);
444 static void bge_writembx(struct bge_softc *, int, int);
445 #ifdef notdef
446 static uint32_t bge_readreg_ind(struct bge_softc *, int);
447 #endif
448 static void bge_writemem_direct(struct bge_softc *, int, int);
449 static void bge_writereg_ind(struct bge_softc *, int, int);
450 
451 static int bge_miibus_readreg(device_t, int, int);
452 static int bge_miibus_writereg(device_t, int, int, int);
453 static void bge_miibus_statchg(device_t);
454 #ifdef DEVICE_POLLING
455 static int bge_poll(struct ifnet *ifp, enum poll_cmd cmd, int count);
456 #endif
457 
458 #define	BGE_RESET_START 1
459 #define	BGE_RESET_STOP  2
460 static void bge_sig_post_reset(struct bge_softc *, int);
461 static void bge_sig_legacy(struct bge_softc *, int);
462 static void bge_sig_pre_reset(struct bge_softc *, int);
463 static void bge_stop_fw(struct bge_softc *);
464 static int bge_reset(struct bge_softc *);
465 static void bge_link_upd(struct bge_softc *);
466 
467 /*
468  * The BGE_REGISTER_DEBUG option is only for low-level debugging.  It may
469  * leak information to untrusted users.  It is also known to cause alignment
470  * traps on certain architectures.
471  */
472 #ifdef BGE_REGISTER_DEBUG
473 static int bge_sysctl_debug_info(SYSCTL_HANDLER_ARGS);
474 static int bge_sysctl_reg_read(SYSCTL_HANDLER_ARGS);
475 static int bge_sysctl_mem_read(SYSCTL_HANDLER_ARGS);
476 #endif
477 static void bge_add_sysctls(struct bge_softc *);
478 static void bge_add_sysctl_stats_regs(struct bge_softc *,
479     struct sysctl_ctx_list *, struct sysctl_oid_list *);
480 static void bge_add_sysctl_stats(struct bge_softc *, struct sysctl_ctx_list *,
481     struct sysctl_oid_list *);
482 static int bge_sysctl_stats(SYSCTL_HANDLER_ARGS);
483 
484 static device_method_t bge_methods[] = {
485 	/* Device interface */
486 	DEVMETHOD(device_probe,		bge_probe),
487 	DEVMETHOD(device_attach,	bge_attach),
488 	DEVMETHOD(device_detach,	bge_detach),
489 	DEVMETHOD(device_shutdown,	bge_shutdown),
490 	DEVMETHOD(device_suspend,	bge_suspend),
491 	DEVMETHOD(device_resume,	bge_resume),
492 
493 	/* bus interface */
494 	DEVMETHOD(bus_print_child,	bus_generic_print_child),
495 	DEVMETHOD(bus_driver_added,	bus_generic_driver_added),
496 
497 	/* MII interface */
498 	DEVMETHOD(miibus_readreg,	bge_miibus_readreg),
499 	DEVMETHOD(miibus_writereg,	bge_miibus_writereg),
500 	DEVMETHOD(miibus_statchg,	bge_miibus_statchg),
501 
502 	{ 0, 0 }
503 };
504 
505 static driver_t bge_driver = {
506 	"bge",
507 	bge_methods,
508 	sizeof(struct bge_softc)
509 };
510 
511 static devclass_t bge_devclass;
512 
513 DRIVER_MODULE(bge, pci, bge_driver, bge_devclass, 0, 0);
514 DRIVER_MODULE(miibus, bge, miibus_driver, miibus_devclass, 0, 0);
515 
516 static int bge_allow_asf = 1;
517 
518 TUNABLE_INT("hw.bge.allow_asf", &bge_allow_asf);
519 
520 SYSCTL_NODE(_hw, OID_AUTO, bge, CTLFLAG_RD, 0, "BGE driver parameters");
521 SYSCTL_INT(_hw_bge, OID_AUTO, allow_asf, CTLFLAG_RD, &bge_allow_asf, 0,
522 	"Allow ASF mode if available");
523 
524 #define	SPARC64_BLADE_1500_MODEL	"SUNW,Sun-Blade-1500"
525 #define	SPARC64_BLADE_1500_PATH_BGE	"/pci@1f,700000/network@2"
526 #define	SPARC64_BLADE_2500_MODEL	"SUNW,Sun-Blade-2500"
527 #define	SPARC64_BLADE_2500_PATH_BGE	"/pci@1c,600000/network@3"
528 #define	SPARC64_OFW_SUBVENDOR		"subsystem-vendor-id"
529 
530 static int
531 bge_has_eaddr(struct bge_softc *sc)
532 {
533 #ifdef __sparc64__
534 	char buf[sizeof(SPARC64_BLADE_1500_PATH_BGE)];
535 	device_t dev;
536 	uint32_t subvendor;
537 
538 	dev = sc->bge_dev;
539 
540 	/*
541 	 * The on-board BGEs found in sun4u machines aren't fitted with
542 	 * an EEPROM which means that we have to obtain the MAC address
543 	 * via OFW and that some tests will always fail.  We distinguish
544 	 * such BGEs by the subvendor ID, which also has to be obtained
545 	 * from OFW instead of the PCI configuration space as the latter
546 	 * indicates Broadcom as the subvendor of the netboot interface.
547 	 * For early Blade 1500 and 2500 we even have to check the OFW
548 	 * device path as the subvendor ID always defaults to Broadcom
549 	 * there.
550 	 */
551 	if (OF_getprop(ofw_bus_get_node(dev), SPARC64_OFW_SUBVENDOR,
552 	    &subvendor, sizeof(subvendor)) == sizeof(subvendor) &&
553 	    (subvendor == FJTSU_VENDORID || subvendor == SUN_VENDORID))
554 		return (0);
555 	memset(buf, 0, sizeof(buf));
556 	if (OF_package_to_path(ofw_bus_get_node(dev), buf, sizeof(buf)) > 0) {
557 		if (strcmp(sparc64_model, SPARC64_BLADE_1500_MODEL) == 0 &&
558 		    strcmp(buf, SPARC64_BLADE_1500_PATH_BGE) == 0)
559 			return (0);
560 		if (strcmp(sparc64_model, SPARC64_BLADE_2500_MODEL) == 0 &&
561 		    strcmp(buf, SPARC64_BLADE_2500_PATH_BGE) == 0)
562 			return (0);
563 	}
564 #endif
565 	return (1);
566 }
567 
568 static uint32_t
569 bge_readmem_ind(struct bge_softc *sc, int off)
570 {
571 	device_t dev;
572 	uint32_t val;
573 
574 	if (sc->bge_asicrev == BGE_ASICREV_BCM5906 &&
575 	    off >= BGE_STATS_BLOCK && off < BGE_SEND_RING_1_TO_4)
576 		return (0);
577 
578 	dev = sc->bge_dev;
579 
580 	pci_write_config(dev, BGE_PCI_MEMWIN_BASEADDR, off, 4);
581 	val = pci_read_config(dev, BGE_PCI_MEMWIN_DATA, 4);
582 	pci_write_config(dev, BGE_PCI_MEMWIN_BASEADDR, 0, 4);
583 	return (val);
584 }
585 
586 static void
587 bge_writemem_ind(struct bge_softc *sc, int off, int val)
588 {
589 	device_t dev;
590 
591 	if (sc->bge_asicrev == BGE_ASICREV_BCM5906 &&
592 	    off >= BGE_STATS_BLOCK && off < BGE_SEND_RING_1_TO_4)
593 		return;
594 
595 	dev = sc->bge_dev;
596 
597 	pci_write_config(dev, BGE_PCI_MEMWIN_BASEADDR, off, 4);
598 	pci_write_config(dev, BGE_PCI_MEMWIN_DATA, val, 4);
599 	pci_write_config(dev, BGE_PCI_MEMWIN_BASEADDR, 0, 4);
600 }
601 
602 #ifdef notdef
603 static uint32_t
604 bge_readreg_ind(struct bge_softc *sc, int off)
605 {
606 	device_t dev;
607 
608 	dev = sc->bge_dev;
609 
610 	pci_write_config(dev, BGE_PCI_REG_BASEADDR, off, 4);
611 	return (pci_read_config(dev, BGE_PCI_REG_DATA, 4));
612 }
613 #endif
614 
615 static void
616 bge_writereg_ind(struct bge_softc *sc, int off, int val)
617 {
618 	device_t dev;
619 
620 	dev = sc->bge_dev;
621 
622 	pci_write_config(dev, BGE_PCI_REG_BASEADDR, off, 4);
623 	pci_write_config(dev, BGE_PCI_REG_DATA, val, 4);
624 }
625 
626 static void
627 bge_writemem_direct(struct bge_softc *sc, int off, int val)
628 {
629 	CSR_WRITE_4(sc, off, val);
630 }
631 
632 static void
633 bge_writembx(struct bge_softc *sc, int off, int val)
634 {
635 	if (sc->bge_asicrev == BGE_ASICREV_BCM5906)
636 		off += BGE_LPMBX_IRQ0_HI - BGE_MBX_IRQ0_HI;
637 
638 	CSR_WRITE_4(sc, off, val);
639 }
640 
641 /*
642  * Map a single buffer address.
643  */
644 
645 static void
646 bge_dma_map_addr(void *arg, bus_dma_segment_t *segs, int nseg, int error)
647 {
648 	struct bge_dmamap_arg *ctx;
649 
650 	if (error)
651 		return;
652 
653 	KASSERT(nseg == 1, ("%s: %d segments returned!", __func__, nseg));
654 
655 	ctx = arg;
656 	ctx->bge_busaddr = segs->ds_addr;
657 }
658 
659 static uint8_t
660 bge_nvram_getbyte(struct bge_softc *sc, int addr, uint8_t *dest)
661 {
662 	uint32_t access, byte = 0;
663 	int i;
664 
665 	/* Lock. */
666 	CSR_WRITE_4(sc, BGE_NVRAM_SWARB, BGE_NVRAMSWARB_SET1);
667 	for (i = 0; i < 8000; i++) {
668 		if (CSR_READ_4(sc, BGE_NVRAM_SWARB) & BGE_NVRAMSWARB_GNT1)
669 			break;
670 		DELAY(20);
671 	}
672 	if (i == 8000)
673 		return (1);
674 
675 	/* Enable access. */
676 	access = CSR_READ_4(sc, BGE_NVRAM_ACCESS);
677 	CSR_WRITE_4(sc, BGE_NVRAM_ACCESS, access | BGE_NVRAMACC_ENABLE);
678 
679 	CSR_WRITE_4(sc, BGE_NVRAM_ADDR, addr & 0xfffffffc);
680 	CSR_WRITE_4(sc, BGE_NVRAM_CMD, BGE_NVRAM_READCMD);
681 	for (i = 0; i < BGE_TIMEOUT * 10; i++) {
682 		DELAY(10);
683 		if (CSR_READ_4(sc, BGE_NVRAM_CMD) & BGE_NVRAMCMD_DONE) {
684 			DELAY(10);
685 			break;
686 		}
687 	}
688 
689 	if (i == BGE_TIMEOUT * 10) {
690 		if_printf(sc->bge_ifp, "nvram read timed out\n");
691 		return (1);
692 	}
693 
694 	/* Get result. */
695 	byte = CSR_READ_4(sc, BGE_NVRAM_RDDATA);
696 
697 	*dest = (bswap32(byte) >> ((addr % 4) * 8)) & 0xFF;
698 
699 	/* Disable access. */
700 	CSR_WRITE_4(sc, BGE_NVRAM_ACCESS, access);
701 
702 	/* Unlock. */
703 	CSR_WRITE_4(sc, BGE_NVRAM_SWARB, BGE_NVRAMSWARB_CLR1);
704 	CSR_READ_4(sc, BGE_NVRAM_SWARB);
705 
706 	return (0);
707 }
708 
709 /*
710  * Read a sequence of bytes from NVRAM.
711  */
712 static int
713 bge_read_nvram(struct bge_softc *sc, caddr_t dest, int off, int cnt)
714 {
715 	int err = 0, i;
716 	uint8_t byte = 0;
717 
718 	if (sc->bge_asicrev != BGE_ASICREV_BCM5906)
719 		return (1);
720 
721 	for (i = 0; i < cnt; i++) {
722 		err = bge_nvram_getbyte(sc, off + i, &byte);
723 		if (err)
724 			break;
725 		*(dest + i) = byte;
726 	}
727 
728 	return (err ? 1 : 0);
729 }
730 
731 /*
732  * Read a byte of data stored in the EEPROM at address 'addr.' The
733  * BCM570x supports both the traditional bitbang interface and an
734  * auto access interface for reading the EEPROM. We use the auto
735  * access method.
736  */
737 static uint8_t
738 bge_eeprom_getbyte(struct bge_softc *sc, int addr, uint8_t *dest)
739 {
740 	int i;
741 	uint32_t byte = 0;
742 
743 	/*
744 	 * Enable use of auto EEPROM access so we can avoid
745 	 * having to use the bitbang method.
746 	 */
747 	BGE_SETBIT(sc, BGE_MISC_LOCAL_CTL, BGE_MLC_AUTO_EEPROM);
748 
749 	/* Reset the EEPROM, load the clock period. */
750 	CSR_WRITE_4(sc, BGE_EE_ADDR,
751 	    BGE_EEADDR_RESET | BGE_EEHALFCLK(BGE_HALFCLK_384SCL));
752 	DELAY(20);
753 
754 	/* Issue the read EEPROM command. */
755 	CSR_WRITE_4(sc, BGE_EE_ADDR, BGE_EE_READCMD | addr);
756 
757 	/* Wait for completion */
758 	for(i = 0; i < BGE_TIMEOUT * 10; i++) {
759 		DELAY(10);
760 		if (CSR_READ_4(sc, BGE_EE_ADDR) & BGE_EEADDR_DONE)
761 			break;
762 	}
763 
764 	if (i == BGE_TIMEOUT * 10) {
765 		device_printf(sc->bge_dev, "EEPROM read timed out\n");
766 		return (1);
767 	}
768 
769 	/* Get result. */
770 	byte = CSR_READ_4(sc, BGE_EE_DATA);
771 
772 	*dest = (byte >> ((addr % 4) * 8)) & 0xFF;
773 
774 	return (0);
775 }
776 
777 /*
778  * Read a sequence of bytes from the EEPROM.
779  */
780 static int
781 bge_read_eeprom(struct bge_softc *sc, caddr_t dest, int off, int cnt)
782 {
783 	int i, error = 0;
784 	uint8_t byte = 0;
785 
786 	for (i = 0; i < cnt; i++) {
787 		error = bge_eeprom_getbyte(sc, off + i, &byte);
788 		if (error)
789 			break;
790 		*(dest + i) = byte;
791 	}
792 
793 	return (error ? 1 : 0);
794 }
795 
796 static int
797 bge_miibus_readreg(device_t dev, int phy, int reg)
798 {
799 	struct bge_softc *sc;
800 	uint32_t val;
801 	int i;
802 
803 	sc = device_get_softc(dev);
804 
805 	/* Clear the autopoll bit if set, otherwise may trigger PCI errors. */
806 	if ((sc->bge_mi_mode & BGE_MIMODE_AUTOPOLL) != 0) {
807 		CSR_WRITE_4(sc, BGE_MI_MODE,
808 		    sc->bge_mi_mode & ~BGE_MIMODE_AUTOPOLL);
809 		DELAY(80);
810 	}
811 
812 	CSR_WRITE_4(sc, BGE_MI_COMM, BGE_MICMD_READ | BGE_MICOMM_BUSY |
813 	    BGE_MIPHY(phy) | BGE_MIREG(reg));
814 
815 	/* Poll for the PHY register access to complete. */
816 	for (i = 0; i < BGE_TIMEOUT; i++) {
817 		DELAY(10);
818 		val = CSR_READ_4(sc, BGE_MI_COMM);
819 		if ((val & BGE_MICOMM_BUSY) == 0) {
820 			DELAY(5);
821 			val = CSR_READ_4(sc, BGE_MI_COMM);
822 			break;
823 		}
824 	}
825 
826 	if (i == BGE_TIMEOUT) {
827 		device_printf(sc->bge_dev,
828 		    "PHY read timed out (phy %d, reg %d, val 0x%08x)\n",
829 		    phy, reg, val);
830 		val = 0;
831 	}
832 
833 	/* Restore the autopoll bit if necessary. */
834 	if ((sc->bge_mi_mode & BGE_MIMODE_AUTOPOLL) != 0) {
835 		CSR_WRITE_4(sc, BGE_MI_MODE, sc->bge_mi_mode);
836 		DELAY(80);
837 	}
838 
839 	if (val & BGE_MICOMM_READFAIL)
840 		return (0);
841 
842 	return (val & 0xFFFF);
843 }
844 
845 static int
846 bge_miibus_writereg(device_t dev, int phy, int reg, int val)
847 {
848 	struct bge_softc *sc;
849 	int i;
850 
851 	sc = device_get_softc(dev);
852 
853 	if (sc->bge_asicrev == BGE_ASICREV_BCM5906 &&
854 	    (reg == BRGPHY_MII_1000CTL || reg == BRGPHY_MII_AUXCTL))
855 		return (0);
856 
857 	/* Clear the autopoll bit if set, otherwise may trigger PCI errors. */
858 	if ((sc->bge_mi_mode & BGE_MIMODE_AUTOPOLL) != 0) {
859 		CSR_WRITE_4(sc, BGE_MI_MODE,
860 		    sc->bge_mi_mode & ~BGE_MIMODE_AUTOPOLL);
861 		DELAY(80);
862 	}
863 
864 	CSR_WRITE_4(sc, BGE_MI_COMM, BGE_MICMD_WRITE | BGE_MICOMM_BUSY |
865 	    BGE_MIPHY(phy) | BGE_MIREG(reg) | val);
866 
867 	for (i = 0; i < BGE_TIMEOUT; i++) {
868 		DELAY(10);
869 		if (!(CSR_READ_4(sc, BGE_MI_COMM) & BGE_MICOMM_BUSY)) {
870 			DELAY(5);
871 			CSR_READ_4(sc, BGE_MI_COMM); /* dummy read */
872 			break;
873 		}
874 	}
875 
876 	/* Restore the autopoll bit if necessary. */
877 	if ((sc->bge_mi_mode & BGE_MIMODE_AUTOPOLL) != 0) {
878 		CSR_WRITE_4(sc, BGE_MI_MODE, sc->bge_mi_mode);
879 		DELAY(80);
880 	}
881 
882 	if (i == BGE_TIMEOUT)
883 		device_printf(sc->bge_dev,
884 		    "PHY write timed out (phy %d, reg %d, val %d)\n",
885 		    phy, reg, val);
886 
887 	return (0);
888 }
889 
890 static void
891 bge_miibus_statchg(device_t dev)
892 {
893 	struct bge_softc *sc;
894 	struct mii_data *mii;
895 	sc = device_get_softc(dev);
896 	mii = device_get_softc(sc->bge_miibus);
897 
898 	if ((mii->mii_media_status & (IFM_ACTIVE | IFM_AVALID)) ==
899 	    (IFM_ACTIVE | IFM_AVALID)) {
900 		switch (IFM_SUBTYPE(mii->mii_media_active)) {
901 		case IFM_10_T:
902 		case IFM_100_TX:
903 			sc->bge_link = 1;
904 			break;
905 		case IFM_1000_T:
906 		case IFM_1000_SX:
907 		case IFM_2500_SX:
908 			if (sc->bge_asicrev != BGE_ASICREV_BCM5906)
909 				sc->bge_link = 1;
910 			else
911 				sc->bge_link = 0;
912 			break;
913 		default:
914 			sc->bge_link = 0;
915 			break;
916 		}
917 	} else
918 		sc->bge_link = 0;
919 	if (sc->bge_link == 0)
920 		return;
921 	BGE_CLRBIT(sc, BGE_MAC_MODE, BGE_MACMODE_PORTMODE);
922 	if (IFM_SUBTYPE(mii->mii_media_active) == IFM_1000_T ||
923 	    IFM_SUBTYPE(mii->mii_media_active) == IFM_1000_SX)
924 		BGE_SETBIT(sc, BGE_MAC_MODE, BGE_PORTMODE_GMII);
925 	else
926 		BGE_SETBIT(sc, BGE_MAC_MODE, BGE_PORTMODE_MII);
927 
928 	if (IFM_OPTIONS(mii->mii_media_active & IFM_FDX) != 0) {
929 		BGE_CLRBIT(sc, BGE_MAC_MODE, BGE_MACMODE_HALF_DUPLEX);
930 		if ((IFM_OPTIONS(mii->mii_media_active) &
931 		    IFM_ETH_TXPAUSE) != 0)
932 			BGE_SETBIT(sc, BGE_TX_MODE, BGE_TXMODE_FLOWCTL_ENABLE);
933 		else
934 			BGE_CLRBIT(sc, BGE_TX_MODE, BGE_TXMODE_FLOWCTL_ENABLE);
935 		if ((IFM_OPTIONS(mii->mii_media_active) &
936 		    IFM_ETH_RXPAUSE) != 0)
937 			BGE_SETBIT(sc, BGE_RX_MODE, BGE_RXMODE_FLOWCTL_ENABLE);
938 		else
939 			BGE_CLRBIT(sc, BGE_RX_MODE, BGE_RXMODE_FLOWCTL_ENABLE);
940 	} else {
941 		BGE_SETBIT(sc, BGE_MAC_MODE, BGE_MACMODE_HALF_DUPLEX);
942 		BGE_CLRBIT(sc, BGE_TX_MODE, BGE_TXMODE_FLOWCTL_ENABLE);
943 		BGE_CLRBIT(sc, BGE_RX_MODE, BGE_RXMODE_FLOWCTL_ENABLE);
944 	}
945 }
946 
947 /*
948  * Intialize a standard receive ring descriptor.
949  */
950 static int
951 bge_newbuf_std(struct bge_softc *sc, int i)
952 {
953 	struct mbuf *m;
954 	struct bge_rx_bd *r;
955 	bus_dma_segment_t segs[1];
956 	bus_dmamap_t map;
957 	int error, nsegs;
958 
959 	if (sc->bge_flags & BGE_FLAG_JUMBO_STD &&
960 	    (sc->bge_ifp->if_mtu + ETHER_HDR_LEN + ETHER_CRC_LEN +
961 	    ETHER_VLAN_ENCAP_LEN > (MCLBYTES - ETHER_ALIGN))) {
962 		m = m_getjcl(M_DONTWAIT, MT_DATA, M_PKTHDR, MJUM9BYTES);
963 		if (m == NULL)
964 			return (ENOBUFS);
965 		m->m_len = m->m_pkthdr.len = MJUM9BYTES;
966 	} else {
967 		m = m_getcl(M_DONTWAIT, MT_DATA, M_PKTHDR);
968 		if (m == NULL)
969 			return (ENOBUFS);
970 		m->m_len = m->m_pkthdr.len = MCLBYTES;
971 	}
972 	if ((sc->bge_flags & BGE_FLAG_RX_ALIGNBUG) == 0)
973 		m_adj(m, ETHER_ALIGN);
974 
975 	error = bus_dmamap_load_mbuf_sg(sc->bge_cdata.bge_rx_mtag,
976 	    sc->bge_cdata.bge_rx_std_sparemap, m, segs, &nsegs, 0);
977 	if (error != 0) {
978 		m_freem(m);
979 		return (error);
980 	}
981 	if (sc->bge_cdata.bge_rx_std_chain[i] != NULL) {
982 		bus_dmamap_sync(sc->bge_cdata.bge_rx_mtag,
983 		    sc->bge_cdata.bge_rx_std_dmamap[i], BUS_DMASYNC_POSTREAD);
984 		bus_dmamap_unload(sc->bge_cdata.bge_rx_mtag,
985 		    sc->bge_cdata.bge_rx_std_dmamap[i]);
986 	}
987 	map = sc->bge_cdata.bge_rx_std_dmamap[i];
988 	sc->bge_cdata.bge_rx_std_dmamap[i] = sc->bge_cdata.bge_rx_std_sparemap;
989 	sc->bge_cdata.bge_rx_std_sparemap = map;
990 	sc->bge_cdata.bge_rx_std_chain[i] = m;
991 	sc->bge_cdata.bge_rx_std_seglen[i] = segs[0].ds_len;
992 	r = &sc->bge_ldata.bge_rx_std_ring[sc->bge_std];
993 	r->bge_addr.bge_addr_lo = BGE_ADDR_LO(segs[0].ds_addr);
994 	r->bge_addr.bge_addr_hi = BGE_ADDR_HI(segs[0].ds_addr);
995 	r->bge_flags = BGE_RXBDFLAG_END;
996 	r->bge_len = segs[0].ds_len;
997 	r->bge_idx = i;
998 
999 	bus_dmamap_sync(sc->bge_cdata.bge_rx_mtag,
1000 	    sc->bge_cdata.bge_rx_std_dmamap[i], BUS_DMASYNC_PREREAD);
1001 
1002 	return (0);
1003 }
1004 
1005 /*
1006  * Initialize a jumbo receive ring descriptor. This allocates
1007  * a jumbo buffer from the pool managed internally by the driver.
1008  */
1009 static int
1010 bge_newbuf_jumbo(struct bge_softc *sc, int i)
1011 {
1012 	bus_dma_segment_t segs[BGE_NSEG_JUMBO];
1013 	bus_dmamap_t map;
1014 	struct bge_extrx_bd *r;
1015 	struct mbuf *m;
1016 	int error, nsegs;
1017 
1018 	MGETHDR(m, M_DONTWAIT, MT_DATA);
1019 	if (m == NULL)
1020 		return (ENOBUFS);
1021 
1022 	m_cljget(m, M_DONTWAIT, MJUM9BYTES);
1023 	if (!(m->m_flags & M_EXT)) {
1024 		m_freem(m);
1025 		return (ENOBUFS);
1026 	}
1027 	m->m_len = m->m_pkthdr.len = MJUM9BYTES;
1028 	if ((sc->bge_flags & BGE_FLAG_RX_ALIGNBUG) == 0)
1029 		m_adj(m, ETHER_ALIGN);
1030 
1031 	error = bus_dmamap_load_mbuf_sg(sc->bge_cdata.bge_mtag_jumbo,
1032 	    sc->bge_cdata.bge_rx_jumbo_sparemap, m, segs, &nsegs, 0);
1033 	if (error != 0) {
1034 		m_freem(m);
1035 		return (error);
1036 	}
1037 
1038 	if (sc->bge_cdata.bge_rx_jumbo_chain[i] != NULL) {
1039 		bus_dmamap_sync(sc->bge_cdata.bge_mtag_jumbo,
1040 		    sc->bge_cdata.bge_rx_jumbo_dmamap[i], BUS_DMASYNC_POSTREAD);
1041 		bus_dmamap_unload(sc->bge_cdata.bge_mtag_jumbo,
1042 		    sc->bge_cdata.bge_rx_jumbo_dmamap[i]);
1043 	}
1044 	map = sc->bge_cdata.bge_rx_jumbo_dmamap[i];
1045 	sc->bge_cdata.bge_rx_jumbo_dmamap[i] =
1046 	    sc->bge_cdata.bge_rx_jumbo_sparemap;
1047 	sc->bge_cdata.bge_rx_jumbo_sparemap = map;
1048 	sc->bge_cdata.bge_rx_jumbo_chain[i] = m;
1049 	sc->bge_cdata.bge_rx_jumbo_seglen[i][0] = 0;
1050 	sc->bge_cdata.bge_rx_jumbo_seglen[i][1] = 0;
1051 	sc->bge_cdata.bge_rx_jumbo_seglen[i][2] = 0;
1052 	sc->bge_cdata.bge_rx_jumbo_seglen[i][3] = 0;
1053 
1054 	/*
1055 	 * Fill in the extended RX buffer descriptor.
1056 	 */
1057 	r = &sc->bge_ldata.bge_rx_jumbo_ring[sc->bge_jumbo];
1058 	r->bge_flags = BGE_RXBDFLAG_JUMBO_RING | BGE_RXBDFLAG_END;
1059 	r->bge_idx = i;
1060 	r->bge_len3 = r->bge_len2 = r->bge_len1 = 0;
1061 	switch (nsegs) {
1062 	case 4:
1063 		r->bge_addr3.bge_addr_lo = BGE_ADDR_LO(segs[3].ds_addr);
1064 		r->bge_addr3.bge_addr_hi = BGE_ADDR_HI(segs[3].ds_addr);
1065 		r->bge_len3 = segs[3].ds_len;
1066 		sc->bge_cdata.bge_rx_jumbo_seglen[i][3] = segs[3].ds_len;
1067 	case 3:
1068 		r->bge_addr2.bge_addr_lo = BGE_ADDR_LO(segs[2].ds_addr);
1069 		r->bge_addr2.bge_addr_hi = BGE_ADDR_HI(segs[2].ds_addr);
1070 		r->bge_len2 = segs[2].ds_len;
1071 		sc->bge_cdata.bge_rx_jumbo_seglen[i][2] = segs[2].ds_len;
1072 	case 2:
1073 		r->bge_addr1.bge_addr_lo = BGE_ADDR_LO(segs[1].ds_addr);
1074 		r->bge_addr1.bge_addr_hi = BGE_ADDR_HI(segs[1].ds_addr);
1075 		r->bge_len1 = segs[1].ds_len;
1076 		sc->bge_cdata.bge_rx_jumbo_seglen[i][1] = segs[1].ds_len;
1077 	case 1:
1078 		r->bge_addr0.bge_addr_lo = BGE_ADDR_LO(segs[0].ds_addr);
1079 		r->bge_addr0.bge_addr_hi = BGE_ADDR_HI(segs[0].ds_addr);
1080 		r->bge_len0 = segs[0].ds_len;
1081 		sc->bge_cdata.bge_rx_jumbo_seglen[i][0] = segs[0].ds_len;
1082 		break;
1083 	default:
1084 		panic("%s: %d segments\n", __func__, nsegs);
1085 	}
1086 
1087 	bus_dmamap_sync(sc->bge_cdata.bge_mtag_jumbo,
1088 	    sc->bge_cdata.bge_rx_jumbo_dmamap[i], BUS_DMASYNC_PREREAD);
1089 
1090 	return (0);
1091 }
1092 
1093 static int
1094 bge_init_rx_ring_std(struct bge_softc *sc)
1095 {
1096 	int error, i;
1097 
1098 	bzero(sc->bge_ldata.bge_rx_std_ring, BGE_STD_RX_RING_SZ);
1099 	sc->bge_std = 0;
1100 	for (i = 0; i < BGE_STD_RX_RING_CNT; i++) {
1101 		if ((error = bge_newbuf_std(sc, i)) != 0)
1102 			return (error);
1103 		BGE_INC(sc->bge_std, BGE_STD_RX_RING_CNT);
1104 	}
1105 
1106 	bus_dmamap_sync(sc->bge_cdata.bge_rx_std_ring_tag,
1107 	    sc->bge_cdata.bge_rx_std_ring_map, BUS_DMASYNC_PREWRITE);
1108 
1109 	sc->bge_std = 0;
1110 	bge_writembx(sc, BGE_MBX_RX_STD_PROD_LO, BGE_STD_RX_RING_CNT - 1);
1111 
1112 	return (0);
1113 }
1114 
1115 static void
1116 bge_free_rx_ring_std(struct bge_softc *sc)
1117 {
1118 	int i;
1119 
1120 	for (i = 0; i < BGE_STD_RX_RING_CNT; i++) {
1121 		if (sc->bge_cdata.bge_rx_std_chain[i] != NULL) {
1122 			bus_dmamap_sync(sc->bge_cdata.bge_rx_mtag,
1123 			    sc->bge_cdata.bge_rx_std_dmamap[i],
1124 			    BUS_DMASYNC_POSTREAD);
1125 			bus_dmamap_unload(sc->bge_cdata.bge_rx_mtag,
1126 			    sc->bge_cdata.bge_rx_std_dmamap[i]);
1127 			m_freem(sc->bge_cdata.bge_rx_std_chain[i]);
1128 			sc->bge_cdata.bge_rx_std_chain[i] = NULL;
1129 		}
1130 		bzero((char *)&sc->bge_ldata.bge_rx_std_ring[i],
1131 		    sizeof(struct bge_rx_bd));
1132 	}
1133 }
1134 
1135 static int
1136 bge_init_rx_ring_jumbo(struct bge_softc *sc)
1137 {
1138 	struct bge_rcb *rcb;
1139 	int error, i;
1140 
1141 	bzero(sc->bge_ldata.bge_rx_jumbo_ring, BGE_JUMBO_RX_RING_SZ);
1142 	sc->bge_jumbo = 0;
1143 	for (i = 0; i < BGE_JUMBO_RX_RING_CNT; i++) {
1144 		if ((error = bge_newbuf_jumbo(sc, i)) != 0)
1145 			return (error);
1146 		BGE_INC(sc->bge_jumbo, BGE_JUMBO_RX_RING_CNT);
1147 	}
1148 
1149 	bus_dmamap_sync(sc->bge_cdata.bge_rx_jumbo_ring_tag,
1150 	    sc->bge_cdata.bge_rx_jumbo_ring_map, BUS_DMASYNC_PREWRITE);
1151 
1152 	sc->bge_jumbo = 0;
1153 
1154 	/* Enable the jumbo receive producer ring. */
1155 	rcb = &sc->bge_ldata.bge_info.bge_jumbo_rx_rcb;
1156 	rcb->bge_maxlen_flags =
1157 	    BGE_RCB_MAXLEN_FLAGS(0, BGE_RCB_FLAG_USE_EXT_RX_BD);
1158 	CSR_WRITE_4(sc, BGE_RX_JUMBO_RCB_MAXLEN_FLAGS, rcb->bge_maxlen_flags);
1159 
1160 	bge_writembx(sc, BGE_MBX_RX_JUMBO_PROD_LO, BGE_JUMBO_RX_RING_CNT - 1);
1161 
1162 	return (0);
1163 }
1164 
1165 static void
1166 bge_free_rx_ring_jumbo(struct bge_softc *sc)
1167 {
1168 	int i;
1169 
1170 	for (i = 0; i < BGE_JUMBO_RX_RING_CNT; i++) {
1171 		if (sc->bge_cdata.bge_rx_jumbo_chain[i] != NULL) {
1172 			bus_dmamap_sync(sc->bge_cdata.bge_mtag_jumbo,
1173 			    sc->bge_cdata.bge_rx_jumbo_dmamap[i],
1174 			    BUS_DMASYNC_POSTREAD);
1175 			bus_dmamap_unload(sc->bge_cdata.bge_mtag_jumbo,
1176 			    sc->bge_cdata.bge_rx_jumbo_dmamap[i]);
1177 			m_freem(sc->bge_cdata.bge_rx_jumbo_chain[i]);
1178 			sc->bge_cdata.bge_rx_jumbo_chain[i] = NULL;
1179 		}
1180 		bzero((char *)&sc->bge_ldata.bge_rx_jumbo_ring[i],
1181 		    sizeof(struct bge_extrx_bd));
1182 	}
1183 }
1184 
1185 static void
1186 bge_free_tx_ring(struct bge_softc *sc)
1187 {
1188 	int i;
1189 
1190 	if (sc->bge_ldata.bge_tx_ring == NULL)
1191 		return;
1192 
1193 	for (i = 0; i < BGE_TX_RING_CNT; i++) {
1194 		if (sc->bge_cdata.bge_tx_chain[i] != NULL) {
1195 			bus_dmamap_sync(sc->bge_cdata.bge_tx_mtag,
1196 			    sc->bge_cdata.bge_tx_dmamap[i],
1197 			    BUS_DMASYNC_POSTWRITE);
1198 			bus_dmamap_unload(sc->bge_cdata.bge_tx_mtag,
1199 			    sc->bge_cdata.bge_tx_dmamap[i]);
1200 			m_freem(sc->bge_cdata.bge_tx_chain[i]);
1201 			sc->bge_cdata.bge_tx_chain[i] = NULL;
1202 		}
1203 		bzero((char *)&sc->bge_ldata.bge_tx_ring[i],
1204 		    sizeof(struct bge_tx_bd));
1205 	}
1206 }
1207 
1208 static int
1209 bge_init_tx_ring(struct bge_softc *sc)
1210 {
1211 	sc->bge_txcnt = 0;
1212 	sc->bge_tx_saved_considx = 0;
1213 
1214 	bzero(sc->bge_ldata.bge_tx_ring, BGE_TX_RING_SZ);
1215 	bus_dmamap_sync(sc->bge_cdata.bge_tx_ring_tag,
1216 	    sc->bge_cdata.bge_tx_ring_map, BUS_DMASYNC_PREWRITE);
1217 
1218 	/* Initialize transmit producer index for host-memory send ring. */
1219 	sc->bge_tx_prodidx = 0;
1220 	bge_writembx(sc, BGE_MBX_TX_HOST_PROD0_LO, sc->bge_tx_prodidx);
1221 
1222 	/* 5700 b2 errata */
1223 	if (sc->bge_chiprev == BGE_CHIPREV_5700_BX)
1224 		bge_writembx(sc, BGE_MBX_TX_HOST_PROD0_LO, sc->bge_tx_prodidx);
1225 
1226 	/* NIC-memory send ring not used; initialize to zero. */
1227 	bge_writembx(sc, BGE_MBX_TX_NIC_PROD0_LO, 0);
1228 	/* 5700 b2 errata */
1229 	if (sc->bge_chiprev == BGE_CHIPREV_5700_BX)
1230 		bge_writembx(sc, BGE_MBX_TX_NIC_PROD0_LO, 0);
1231 
1232 	return (0);
1233 }
1234 
1235 static void
1236 bge_setpromisc(struct bge_softc *sc)
1237 {
1238 	struct ifnet *ifp;
1239 
1240 	BGE_LOCK_ASSERT(sc);
1241 
1242 	ifp = sc->bge_ifp;
1243 
1244 	/* Enable or disable promiscuous mode as needed. */
1245 	if (ifp->if_flags & IFF_PROMISC)
1246 		BGE_SETBIT(sc, BGE_RX_MODE, BGE_RXMODE_RX_PROMISC);
1247 	else
1248 		BGE_CLRBIT(sc, BGE_RX_MODE, BGE_RXMODE_RX_PROMISC);
1249 }
1250 
1251 static void
1252 bge_setmulti(struct bge_softc *sc)
1253 {
1254 	struct ifnet *ifp;
1255 	struct ifmultiaddr *ifma;
1256 	uint32_t hashes[4] = { 0, 0, 0, 0 };
1257 	int h, i;
1258 
1259 	BGE_LOCK_ASSERT(sc);
1260 
1261 	ifp = sc->bge_ifp;
1262 
1263 	if (ifp->if_flags & IFF_ALLMULTI || ifp->if_flags & IFF_PROMISC) {
1264 		for (i = 0; i < 4; i++)
1265 			CSR_WRITE_4(sc, BGE_MAR0 + (i * 4), 0xFFFFFFFF);
1266 		return;
1267 	}
1268 
1269 	/* First, zot all the existing filters. */
1270 	for (i = 0; i < 4; i++)
1271 		CSR_WRITE_4(sc, BGE_MAR0 + (i * 4), 0);
1272 
1273 	/* Now program new ones. */
1274 	if_maddr_rlock(ifp);
1275 	TAILQ_FOREACH(ifma, &ifp->if_multiaddrs, ifma_link) {
1276 		if (ifma->ifma_addr->sa_family != AF_LINK)
1277 			continue;
1278 		h = ether_crc32_le(LLADDR((struct sockaddr_dl *)
1279 		    ifma->ifma_addr), ETHER_ADDR_LEN) & 0x7F;
1280 		hashes[(h & 0x60) >> 5] |= 1 << (h & 0x1F);
1281 	}
1282 	if_maddr_runlock(ifp);
1283 
1284 	for (i = 0; i < 4; i++)
1285 		CSR_WRITE_4(sc, BGE_MAR0 + (i * 4), hashes[i]);
1286 }
1287 
1288 static void
1289 bge_setvlan(struct bge_softc *sc)
1290 {
1291 	struct ifnet *ifp;
1292 
1293 	BGE_LOCK_ASSERT(sc);
1294 
1295 	ifp = sc->bge_ifp;
1296 
1297 	/* Enable or disable VLAN tag stripping as needed. */
1298 	if (ifp->if_capenable & IFCAP_VLAN_HWTAGGING)
1299 		BGE_CLRBIT(sc, BGE_RX_MODE, BGE_RXMODE_RX_KEEP_VLAN_DIAG);
1300 	else
1301 		BGE_SETBIT(sc, BGE_RX_MODE, BGE_RXMODE_RX_KEEP_VLAN_DIAG);
1302 }
1303 
1304 static void
1305 bge_sig_pre_reset(struct bge_softc *sc, int type)
1306 {
1307 
1308 	/*
1309 	 * Some chips don't like this so only do this if ASF is enabled
1310 	 */
1311 	if (sc->bge_asf_mode)
1312 		bge_writemem_ind(sc, BGE_SOFTWARE_GENCOMM, BGE_MAGIC_NUMBER);
1313 
1314 	if (sc->bge_asf_mode & ASF_NEW_HANDSHAKE) {
1315 		switch (type) {
1316 		case BGE_RESET_START:
1317 			bge_writemem_ind(sc, BGE_SDI_STATUS, 0x1); /* START */
1318 			break;
1319 		case BGE_RESET_STOP:
1320 			bge_writemem_ind(sc, BGE_SDI_STATUS, 0x2); /* UNLOAD */
1321 			break;
1322 		}
1323 	}
1324 }
1325 
1326 static void
1327 bge_sig_post_reset(struct bge_softc *sc, int type)
1328 {
1329 
1330 	if (sc->bge_asf_mode & ASF_NEW_HANDSHAKE) {
1331 		switch (type) {
1332 		case BGE_RESET_START:
1333 			bge_writemem_ind(sc, BGE_SDI_STATUS, 0x80000001);
1334 			/* START DONE */
1335 			break;
1336 		case BGE_RESET_STOP:
1337 			bge_writemem_ind(sc, BGE_SDI_STATUS, 0x80000002);
1338 			break;
1339 		}
1340 	}
1341 }
1342 
1343 static void
1344 bge_sig_legacy(struct bge_softc *sc, int type)
1345 {
1346 
1347 	if (sc->bge_asf_mode) {
1348 		switch (type) {
1349 		case BGE_RESET_START:
1350 			bge_writemem_ind(sc, BGE_SDI_STATUS, 0x1); /* START */
1351 			break;
1352 		case BGE_RESET_STOP:
1353 			bge_writemem_ind(sc, BGE_SDI_STATUS, 0x2); /* UNLOAD */
1354 			break;
1355 		}
1356 	}
1357 }
1358 
1359 static void
1360 bge_stop_fw(struct bge_softc *sc)
1361 {
1362 	int i;
1363 
1364 	if (sc->bge_asf_mode) {
1365 		bge_writemem_ind(sc, BGE_SOFTWARE_GENCOMM_FW, BGE_FW_PAUSE);
1366 		CSR_WRITE_4(sc, BGE_CPU_EVENT,
1367 		    CSR_READ_4(sc, BGE_CPU_EVENT) | (1 << 14));
1368 
1369 		for (i = 0; i < 100; i++ ) {
1370 			if (!(CSR_READ_4(sc, BGE_CPU_EVENT) & (1 << 14)))
1371 				break;
1372 			DELAY(10);
1373 		}
1374 	}
1375 }
1376 
1377 /*
1378  * Do endian, PCI and DMA initialization.
1379  */
1380 static int
1381 bge_chipinit(struct bge_softc *sc)
1382 {
1383 	uint32_t dma_rw_ctl, misc_ctl;
1384 	uint16_t val;
1385 	int i;
1386 
1387 	/* Set endianness before we access any non-PCI registers. */
1388 	misc_ctl = BGE_INIT;
1389 	if (sc->bge_flags & BGE_FLAG_TAGGED_STATUS)
1390 		misc_ctl |= BGE_PCIMISCCTL_TAGGED_STATUS;
1391 	pci_write_config(sc->bge_dev, BGE_PCI_MISC_CTL, misc_ctl, 4);
1392 
1393 	/* Clear the MAC control register */
1394 	CSR_WRITE_4(sc, BGE_MAC_MODE, 0);
1395 
1396 	/*
1397 	 * Clear the MAC statistics block in the NIC's
1398 	 * internal memory.
1399 	 */
1400 	for (i = BGE_STATS_BLOCK;
1401 	    i < BGE_STATS_BLOCK_END + 1; i += sizeof(uint32_t))
1402 		BGE_MEMWIN_WRITE(sc, i, 0);
1403 
1404 	for (i = BGE_STATUS_BLOCK;
1405 	    i < BGE_STATUS_BLOCK_END + 1; i += sizeof(uint32_t))
1406 		BGE_MEMWIN_WRITE(sc, i, 0);
1407 
1408 	if (sc->bge_chiprev == BGE_CHIPREV_5704_BX) {
1409 		/*
1410 		 *  Fix data corruption caused by non-qword write with WB.
1411 		 *  Fix master abort in PCI mode.
1412 		 *  Fix PCI latency timer.
1413 		 */
1414 		val = pci_read_config(sc->bge_dev, BGE_PCI_MSI_DATA + 2, 2);
1415 		val |= (1 << 10) | (1 << 12) | (1 << 13);
1416 		pci_write_config(sc->bge_dev, BGE_PCI_MSI_DATA + 2, val, 2);
1417 	}
1418 
1419 	/*
1420 	 * Set up the PCI DMA control register.
1421 	 */
1422 	dma_rw_ctl = BGE_PCIDMARWCTL_RD_CMD_SHIFT(6) |
1423 	    BGE_PCIDMARWCTL_WR_CMD_SHIFT(7);
1424 	if (sc->bge_flags & BGE_FLAG_PCIE) {
1425 		/* Read watermark not used, 128 bytes for write. */
1426 		dma_rw_ctl |= BGE_PCIDMARWCTL_WR_WAT_SHIFT(3);
1427 	} else if (sc->bge_flags & BGE_FLAG_PCIX) {
1428 		if (BGE_IS_5714_FAMILY(sc)) {
1429 			/* 256 bytes for read and write. */
1430 			dma_rw_ctl |= BGE_PCIDMARWCTL_RD_WAT_SHIFT(2) |
1431 			    BGE_PCIDMARWCTL_WR_WAT_SHIFT(2);
1432 			dma_rw_ctl |= (sc->bge_asicrev == BGE_ASICREV_BCM5780) ?
1433 			    BGE_PCIDMARWCTL_ONEDMA_ATONCE_GLOBAL :
1434 			    BGE_PCIDMARWCTL_ONEDMA_ATONCE_LOCAL;
1435 		} else if (sc->bge_asicrev == BGE_ASICREV_BCM5703) {
1436 			/*
1437 			 * In the BCM5703, the DMA read watermark should
1438 			 * be set to less than or equal to the maximum
1439 			 * memory read byte count of the PCI-X command
1440 			 * register.
1441 			 */
1442 			dma_rw_ctl |= BGE_PCIDMARWCTL_RD_WAT_SHIFT(4) |
1443 			    BGE_PCIDMARWCTL_WR_WAT_SHIFT(3);
1444 		} else if (sc->bge_asicrev == BGE_ASICREV_BCM5704) {
1445 			/* 1536 bytes for read, 384 bytes for write. */
1446 			dma_rw_ctl |= BGE_PCIDMARWCTL_RD_WAT_SHIFT(7) |
1447 			    BGE_PCIDMARWCTL_WR_WAT_SHIFT(3);
1448 		} else {
1449 			/* 384 bytes for read and write. */
1450 			dma_rw_ctl |= BGE_PCIDMARWCTL_RD_WAT_SHIFT(3) |
1451 			    BGE_PCIDMARWCTL_WR_WAT_SHIFT(3) |
1452 			    0x0F;
1453 		}
1454 		if (sc->bge_asicrev == BGE_ASICREV_BCM5703 ||
1455 		    sc->bge_asicrev == BGE_ASICREV_BCM5704) {
1456 			uint32_t tmp;
1457 
1458 			/* Set ONE_DMA_AT_ONCE for hardware workaround. */
1459 			tmp = CSR_READ_4(sc, BGE_PCI_CLKCTL) & 0x1F;
1460 			if (tmp == 6 || tmp == 7)
1461 				dma_rw_ctl |=
1462 				    BGE_PCIDMARWCTL_ONEDMA_ATONCE_GLOBAL;
1463 
1464 			/* Set PCI-X DMA write workaround. */
1465 			dma_rw_ctl |= BGE_PCIDMARWCTL_ASRT_ALL_BE;
1466 		}
1467 	} else {
1468 		/* Conventional PCI bus: 256 bytes for read and write. */
1469 		dma_rw_ctl |= BGE_PCIDMARWCTL_RD_WAT_SHIFT(7) |
1470 		    BGE_PCIDMARWCTL_WR_WAT_SHIFT(7);
1471 
1472 		if (sc->bge_asicrev != BGE_ASICREV_BCM5705 &&
1473 		    sc->bge_asicrev != BGE_ASICREV_BCM5750)
1474 			dma_rw_ctl |= 0x0F;
1475 	}
1476 	if (sc->bge_asicrev == BGE_ASICREV_BCM5700 ||
1477 	    sc->bge_asicrev == BGE_ASICREV_BCM5701)
1478 		dma_rw_ctl |= BGE_PCIDMARWCTL_USE_MRM |
1479 		    BGE_PCIDMARWCTL_ASRT_ALL_BE;
1480 	if (sc->bge_asicrev == BGE_ASICREV_BCM5703 ||
1481 	    sc->bge_asicrev == BGE_ASICREV_BCM5704)
1482 		dma_rw_ctl &= ~BGE_PCIDMARWCTL_MINDMA;
1483 	if (BGE_IS_5717_PLUS(sc)) {
1484 		dma_rw_ctl &= ~BGE_PCIDMARWCTL_DIS_CACHE_ALIGNMENT;
1485 		if (sc->bge_chipid == BGE_CHIPID_BCM57765_A0)
1486 			dma_rw_ctl &= ~BGE_PCIDMARWCTL_CRDRDR_RDMA_MRRS_MSK;
1487 		/*
1488 		 * Enable HW workaround for controllers that misinterpret
1489 		 * a status tag update and leave interrupts permanently
1490 		 * disabled.
1491 		 */
1492 		if (sc->bge_asicrev != BGE_ASICREV_BCM5717 &&
1493 		    sc->bge_asicrev != BGE_ASICREV_BCM57765)
1494 			dma_rw_ctl |= BGE_PCIDMARWCTL_TAGGED_STATUS_WA;
1495 	}
1496 	pci_write_config(sc->bge_dev, BGE_PCI_DMA_RW_CTL, dma_rw_ctl, 4);
1497 
1498 	/*
1499 	 * Set up general mode register.
1500 	 */
1501 	CSR_WRITE_4(sc, BGE_MODE_CTL, BGE_DMA_SWAP_OPTIONS |
1502 	    BGE_MODECTL_MAC_ATTN_INTR | BGE_MODECTL_HOST_SEND_BDS |
1503 	    BGE_MODECTL_TX_NO_PHDR_CSUM);
1504 
1505 	/*
1506 	 * BCM5701 B5 have a bug causing data corruption when using
1507 	 * 64-bit DMA reads, which can be terminated early and then
1508 	 * completed later as 32-bit accesses, in combination with
1509 	 * certain bridges.
1510 	 */
1511 	if (sc->bge_asicrev == BGE_ASICREV_BCM5701 &&
1512 	    sc->bge_chipid == BGE_CHIPID_BCM5701_B5)
1513 		BGE_SETBIT(sc, BGE_MODE_CTL, BGE_MODECTL_FORCE_PCI32);
1514 
1515 	/*
1516 	 * Tell the firmware the driver is running
1517 	 */
1518 	if (sc->bge_asf_mode & ASF_STACKUP)
1519 		BGE_SETBIT(sc, BGE_MODE_CTL, BGE_MODECTL_STACKUP);
1520 
1521 	/*
1522 	 * Disable memory write invalidate.  Apparently it is not supported
1523 	 * properly by these devices.  Also ensure that INTx isn't disabled,
1524 	 * as these chips need it even when using MSI.
1525 	 */
1526 	PCI_CLRBIT(sc->bge_dev, BGE_PCI_CMD,
1527 	    PCIM_CMD_INTxDIS | PCIM_CMD_MWIEN, 4);
1528 
1529 	/* Set the timer prescaler (always 66Mhz) */
1530 	CSR_WRITE_4(sc, BGE_MISC_CFG, BGE_32BITTIME_66MHZ);
1531 
1532 	/* XXX: The Linux tg3 driver does this at the start of brgphy_reset. */
1533 	if (sc->bge_asicrev == BGE_ASICREV_BCM5906) {
1534 		DELAY(40);	/* XXX */
1535 
1536 		/* Put PHY into ready state */
1537 		BGE_CLRBIT(sc, BGE_MISC_CFG, BGE_MISCCFG_EPHY_IDDQ);
1538 		CSR_READ_4(sc, BGE_MISC_CFG); /* Flush */
1539 		DELAY(40);
1540 	}
1541 
1542 	return (0);
1543 }
1544 
1545 static int
1546 bge_blockinit(struct bge_softc *sc)
1547 {
1548 	struct bge_rcb *rcb;
1549 	bus_size_t vrcb;
1550 	bge_hostaddr taddr;
1551 	uint32_t dmactl, val;
1552 	int i, limit;
1553 
1554 	/*
1555 	 * Initialize the memory window pointer register so that
1556 	 * we can access the first 32K of internal NIC RAM. This will
1557 	 * allow us to set up the TX send ring RCBs and the RX return
1558 	 * ring RCBs, plus other things which live in NIC memory.
1559 	 */
1560 	CSR_WRITE_4(sc, BGE_PCI_MEMWIN_BASEADDR, 0);
1561 
1562 	/* Note: the BCM5704 has a smaller mbuf space than other chips. */
1563 
1564 	if (!(BGE_IS_5705_PLUS(sc))) {
1565 		/* Configure mbuf memory pool */
1566 		CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_BASEADDR, BGE_BUFFPOOL_1);
1567 		if (sc->bge_asicrev == BGE_ASICREV_BCM5704)
1568 			CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_LEN, 0x10000);
1569 		else
1570 			CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_LEN, 0x18000);
1571 
1572 		/* Configure DMA resource pool */
1573 		CSR_WRITE_4(sc, BGE_BMAN_DMA_DESCPOOL_BASEADDR,
1574 		    BGE_DMA_DESCRIPTORS);
1575 		CSR_WRITE_4(sc, BGE_BMAN_DMA_DESCPOOL_LEN, 0x2000);
1576 	}
1577 
1578 	/* Configure mbuf pool watermarks */
1579 	if (sc->bge_asicrev == BGE_ASICREV_BCM5717 ||
1580 	    sc->bge_asicrev == BGE_ASICREV_BCM57765) {
1581 		CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_READDMA_LOWAT, 0x0);
1582 		if (sc->bge_ifp->if_mtu > ETHERMTU) {
1583 			CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_MACRX_LOWAT, 0x7e);
1584 			CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_HIWAT, 0xea);
1585 		} else {
1586 			CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_MACRX_LOWAT, 0x2a);
1587 			CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_HIWAT, 0xa0);
1588 		}
1589 	} else if (!BGE_IS_5705_PLUS(sc)) {
1590 		CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_READDMA_LOWAT, 0x50);
1591 		CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_MACRX_LOWAT, 0x20);
1592 		CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_HIWAT, 0x60);
1593 	} else if (sc->bge_asicrev == BGE_ASICREV_BCM5906) {
1594 		CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_READDMA_LOWAT, 0x0);
1595 		CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_MACRX_LOWAT, 0x04);
1596 		CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_HIWAT, 0x10);
1597 	} else {
1598 		CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_READDMA_LOWAT, 0x0);
1599 		CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_MACRX_LOWAT, 0x10);
1600 		CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_HIWAT, 0x60);
1601 	}
1602 
1603 	/* Configure DMA resource watermarks */
1604 	CSR_WRITE_4(sc, BGE_BMAN_DMA_DESCPOOL_LOWAT, 5);
1605 	CSR_WRITE_4(sc, BGE_BMAN_DMA_DESCPOOL_HIWAT, 10);
1606 
1607 	/* Enable buffer manager */
1608 	val = BGE_BMANMODE_ENABLE | BGE_BMANMODE_LOMBUF_ATTN;
1609 	/*
1610 	 * Change the arbitration algorithm of TXMBUF read request to
1611 	 * round-robin instead of priority based for BCM5719.  When
1612 	 * TXFIFO is almost empty, RDMA will hold its request until
1613 	 * TXFIFO is not almost empty.
1614 	 */
1615 	if (sc->bge_asicrev == BGE_ASICREV_BCM5719)
1616 		val |= BGE_BMANMODE_NO_TX_UNDERRUN;
1617 	CSR_WRITE_4(sc, BGE_BMAN_MODE, val);
1618 
1619 	/* Poll for buffer manager start indication */
1620 	for (i = 0; i < BGE_TIMEOUT; i++) {
1621 		DELAY(10);
1622 		if (CSR_READ_4(sc, BGE_BMAN_MODE) & BGE_BMANMODE_ENABLE)
1623 			break;
1624 	}
1625 
1626 	if (i == BGE_TIMEOUT) {
1627 		device_printf(sc->bge_dev, "buffer manager failed to start\n");
1628 		return (ENXIO);
1629 	}
1630 
1631 	/* Enable flow-through queues */
1632 	CSR_WRITE_4(sc, BGE_FTQ_RESET, 0xFFFFFFFF);
1633 	CSR_WRITE_4(sc, BGE_FTQ_RESET, 0);
1634 
1635 	/* Wait until queue initialization is complete */
1636 	for (i = 0; i < BGE_TIMEOUT; i++) {
1637 		DELAY(10);
1638 		if (CSR_READ_4(sc, BGE_FTQ_RESET) == 0)
1639 			break;
1640 	}
1641 
1642 	if (i == BGE_TIMEOUT) {
1643 		device_printf(sc->bge_dev, "flow-through queue init failed\n");
1644 		return (ENXIO);
1645 	}
1646 
1647 	/*
1648 	 * Summary of rings supported by the controller:
1649 	 *
1650 	 * Standard Receive Producer Ring
1651 	 * - This ring is used to feed receive buffers for "standard"
1652 	 *   sized frames (typically 1536 bytes) to the controller.
1653 	 *
1654 	 * Jumbo Receive Producer Ring
1655 	 * - This ring is used to feed receive buffers for jumbo sized
1656 	 *   frames (i.e. anything bigger than the "standard" frames)
1657 	 *   to the controller.
1658 	 *
1659 	 * Mini Receive Producer Ring
1660 	 * - This ring is used to feed receive buffers for "mini"
1661 	 *   sized frames to the controller.
1662 	 * - This feature required external memory for the controller
1663 	 *   but was never used in a production system.  Should always
1664 	 *   be disabled.
1665 	 *
1666 	 * Receive Return Ring
1667 	 * - After the controller has placed an incoming frame into a
1668 	 *   receive buffer that buffer is moved into a receive return
1669 	 *   ring.  The driver is then responsible to passing the
1670 	 *   buffer up to the stack.  Many versions of the controller
1671 	 *   support multiple RR rings.
1672 	 *
1673 	 * Send Ring
1674 	 * - This ring is used for outgoing frames.  Many versions of
1675 	 *   the controller support multiple send rings.
1676 	 */
1677 
1678 	/* Initialize the standard receive producer ring control block. */
1679 	rcb = &sc->bge_ldata.bge_info.bge_std_rx_rcb;
1680 	rcb->bge_hostaddr.bge_addr_lo =
1681 	    BGE_ADDR_LO(sc->bge_ldata.bge_rx_std_ring_paddr);
1682 	rcb->bge_hostaddr.bge_addr_hi =
1683 	    BGE_ADDR_HI(sc->bge_ldata.bge_rx_std_ring_paddr);
1684 	bus_dmamap_sync(sc->bge_cdata.bge_rx_std_ring_tag,
1685 	    sc->bge_cdata.bge_rx_std_ring_map, BUS_DMASYNC_PREREAD);
1686 	if (BGE_IS_5717_PLUS(sc)) {
1687 		/*
1688 		 * Bits 31-16: Programmable ring size (2048, 1024, 512, .., 32)
1689 		 * Bits 15-2 : Maximum RX frame size
1690 		 * Bit 1     : 1 = Ring Disabled, 0 = Ring ENabled
1691 		 * Bit 0     : Reserved
1692 		 */
1693 		rcb->bge_maxlen_flags =
1694 		    BGE_RCB_MAXLEN_FLAGS(512, BGE_MAX_FRAMELEN << 2);
1695 	} else if (BGE_IS_5705_PLUS(sc)) {
1696 		/*
1697 		 * Bits 31-16: Programmable ring size (512, 256, 128, 64, 32)
1698 		 * Bits 15-2 : Reserved (should be 0)
1699 		 * Bit 1     : 1 = Ring Disabled, 0 = Ring Enabled
1700 		 * Bit 0     : Reserved
1701 		 */
1702 		rcb->bge_maxlen_flags = BGE_RCB_MAXLEN_FLAGS(512, 0);
1703 	} else {
1704 		/*
1705 		 * Ring size is always XXX entries
1706 		 * Bits 31-16: Maximum RX frame size
1707 		 * Bits 15-2 : Reserved (should be 0)
1708 		 * Bit 1     : 1 = Ring Disabled, 0 = Ring Enabled
1709 		 * Bit 0     : Reserved
1710 		 */
1711 		rcb->bge_maxlen_flags =
1712 		    BGE_RCB_MAXLEN_FLAGS(BGE_MAX_FRAMELEN, 0);
1713 	}
1714 	if (sc->bge_asicrev == BGE_ASICREV_BCM5717 ||
1715 	    sc->bge_asicrev == BGE_ASICREV_BCM5719)
1716 		rcb->bge_nicaddr = BGE_STD_RX_RINGS_5717;
1717 	else
1718 		rcb->bge_nicaddr = BGE_STD_RX_RINGS;
1719 	/* Write the standard receive producer ring control block. */
1720 	CSR_WRITE_4(sc, BGE_RX_STD_RCB_HADDR_HI, rcb->bge_hostaddr.bge_addr_hi);
1721 	CSR_WRITE_4(sc, BGE_RX_STD_RCB_HADDR_LO, rcb->bge_hostaddr.bge_addr_lo);
1722 	CSR_WRITE_4(sc, BGE_RX_STD_RCB_MAXLEN_FLAGS, rcb->bge_maxlen_flags);
1723 	CSR_WRITE_4(sc, BGE_RX_STD_RCB_NICADDR, rcb->bge_nicaddr);
1724 
1725 	/* Reset the standard receive producer ring producer index. */
1726 	bge_writembx(sc, BGE_MBX_RX_STD_PROD_LO, 0);
1727 
1728 	/*
1729 	 * Initialize the jumbo RX producer ring control
1730 	 * block.  We set the 'ring disabled' bit in the
1731 	 * flags field until we're actually ready to start
1732 	 * using this ring (i.e. once we set the MTU
1733 	 * high enough to require it).
1734 	 */
1735 	if (BGE_IS_JUMBO_CAPABLE(sc)) {
1736 		rcb = &sc->bge_ldata.bge_info.bge_jumbo_rx_rcb;
1737 		/* Get the jumbo receive producer ring RCB parameters. */
1738 		rcb->bge_hostaddr.bge_addr_lo =
1739 		    BGE_ADDR_LO(sc->bge_ldata.bge_rx_jumbo_ring_paddr);
1740 		rcb->bge_hostaddr.bge_addr_hi =
1741 		    BGE_ADDR_HI(sc->bge_ldata.bge_rx_jumbo_ring_paddr);
1742 		bus_dmamap_sync(sc->bge_cdata.bge_rx_jumbo_ring_tag,
1743 		    sc->bge_cdata.bge_rx_jumbo_ring_map,
1744 		    BUS_DMASYNC_PREREAD);
1745 		rcb->bge_maxlen_flags = BGE_RCB_MAXLEN_FLAGS(0,
1746 		    BGE_RCB_FLAG_USE_EXT_RX_BD | BGE_RCB_FLAG_RING_DISABLED);
1747 		if (sc->bge_asicrev == BGE_ASICREV_BCM5717 ||
1748 		    sc->bge_asicrev == BGE_ASICREV_BCM5719)
1749 			rcb->bge_nicaddr = BGE_JUMBO_RX_RINGS_5717;
1750 		else
1751 			rcb->bge_nicaddr = BGE_JUMBO_RX_RINGS;
1752 		CSR_WRITE_4(sc, BGE_RX_JUMBO_RCB_HADDR_HI,
1753 		    rcb->bge_hostaddr.bge_addr_hi);
1754 		CSR_WRITE_4(sc, BGE_RX_JUMBO_RCB_HADDR_LO,
1755 		    rcb->bge_hostaddr.bge_addr_lo);
1756 		/* Program the jumbo receive producer ring RCB parameters. */
1757 		CSR_WRITE_4(sc, BGE_RX_JUMBO_RCB_MAXLEN_FLAGS,
1758 		    rcb->bge_maxlen_flags);
1759 		CSR_WRITE_4(sc, BGE_RX_JUMBO_RCB_NICADDR, rcb->bge_nicaddr);
1760 		/* Reset the jumbo receive producer ring producer index. */
1761 		bge_writembx(sc, BGE_MBX_RX_JUMBO_PROD_LO, 0);
1762 	}
1763 
1764 	/* Disable the mini receive producer ring RCB. */
1765 	if (BGE_IS_5700_FAMILY(sc)) {
1766 		rcb = &sc->bge_ldata.bge_info.bge_mini_rx_rcb;
1767 		rcb->bge_maxlen_flags =
1768 		    BGE_RCB_MAXLEN_FLAGS(0, BGE_RCB_FLAG_RING_DISABLED);
1769 		CSR_WRITE_4(sc, BGE_RX_MINI_RCB_MAXLEN_FLAGS,
1770 		    rcb->bge_maxlen_flags);
1771 		/* Reset the mini receive producer ring producer index. */
1772 		bge_writembx(sc, BGE_MBX_RX_MINI_PROD_LO, 0);
1773 	}
1774 
1775 	/* Choose de-pipeline mode for BCM5906 A0, A1 and A2. */
1776 	if (sc->bge_asicrev == BGE_ASICREV_BCM5906) {
1777 		if (sc->bge_chipid == BGE_CHIPID_BCM5906_A0 ||
1778 		    sc->bge_chipid == BGE_CHIPID_BCM5906_A1 ||
1779 		    sc->bge_chipid == BGE_CHIPID_BCM5906_A2)
1780 			CSR_WRITE_4(sc, BGE_ISO_PKT_TX,
1781 			    (CSR_READ_4(sc, BGE_ISO_PKT_TX) & ~3) | 2);
1782 	}
1783 	/*
1784 	 * The BD ring replenish thresholds control how often the
1785 	 * hardware fetches new BD's from the producer rings in host
1786 	 * memory.  Setting the value too low on a busy system can
1787 	 * starve the hardware and recue the throughpout.
1788 	 *
1789 	 * Set the BD ring replentish thresholds. The recommended
1790 	 * values are 1/8th the number of descriptors allocated to
1791 	 * each ring.
1792 	 * XXX The 5754 requires a lower threshold, so it might be a
1793 	 * requirement of all 575x family chips.  The Linux driver sets
1794 	 * the lower threshold for all 5705 family chips as well, but there
1795 	 * are reports that it might not need to be so strict.
1796 	 *
1797 	 * XXX Linux does some extra fiddling here for the 5906 parts as
1798 	 * well.
1799 	 */
1800 	if (BGE_IS_5705_PLUS(sc))
1801 		val = 8;
1802 	else
1803 		val = BGE_STD_RX_RING_CNT / 8;
1804 	CSR_WRITE_4(sc, BGE_RBDI_STD_REPL_THRESH, val);
1805 	if (BGE_IS_JUMBO_CAPABLE(sc))
1806 		CSR_WRITE_4(sc, BGE_RBDI_JUMBO_REPL_THRESH,
1807 		    BGE_JUMBO_RX_RING_CNT/8);
1808 	if (BGE_IS_5717_PLUS(sc)) {
1809 		CSR_WRITE_4(sc, BGE_STD_REPLENISH_LWM, 32);
1810 		CSR_WRITE_4(sc, BGE_JMB_REPLENISH_LWM, 16);
1811 	}
1812 
1813 	/*
1814 	 * Disable all send rings by setting the 'ring disabled' bit
1815 	 * in the flags field of all the TX send ring control blocks,
1816 	 * located in NIC memory.
1817 	 */
1818 	if (!BGE_IS_5705_PLUS(sc))
1819 		/* 5700 to 5704 had 16 send rings. */
1820 		limit = BGE_TX_RINGS_EXTSSRAM_MAX;
1821 	else
1822 		limit = 1;
1823 	vrcb = BGE_MEMWIN_START + BGE_SEND_RING_RCB;
1824 	for (i = 0; i < limit; i++) {
1825 		RCB_WRITE_4(sc, vrcb, bge_maxlen_flags,
1826 		    BGE_RCB_MAXLEN_FLAGS(0, BGE_RCB_FLAG_RING_DISABLED));
1827 		RCB_WRITE_4(sc, vrcb, bge_nicaddr, 0);
1828 		vrcb += sizeof(struct bge_rcb);
1829 	}
1830 
1831 	/* Configure send ring RCB 0 (we use only the first ring) */
1832 	vrcb = BGE_MEMWIN_START + BGE_SEND_RING_RCB;
1833 	BGE_HOSTADDR(taddr, sc->bge_ldata.bge_tx_ring_paddr);
1834 	RCB_WRITE_4(sc, vrcb, bge_hostaddr.bge_addr_hi, taddr.bge_addr_hi);
1835 	RCB_WRITE_4(sc, vrcb, bge_hostaddr.bge_addr_lo, taddr.bge_addr_lo);
1836 	if (sc->bge_asicrev == BGE_ASICREV_BCM5717 ||
1837 	    sc->bge_asicrev == BGE_ASICREV_BCM5719)
1838 		RCB_WRITE_4(sc, vrcb, bge_nicaddr, BGE_SEND_RING_5717);
1839 	else
1840 		RCB_WRITE_4(sc, vrcb, bge_nicaddr,
1841 		    BGE_NIC_TXRING_ADDR(0, BGE_TX_RING_CNT));
1842 	RCB_WRITE_4(sc, vrcb, bge_maxlen_flags,
1843 	    BGE_RCB_MAXLEN_FLAGS(BGE_TX_RING_CNT, 0));
1844 
1845 	/*
1846 	 * Disable all receive return rings by setting the
1847 	 * 'ring diabled' bit in the flags field of all the receive
1848 	 * return ring control blocks, located in NIC memory.
1849 	 */
1850 	if (sc->bge_asicrev == BGE_ASICREV_BCM5717 ||
1851 	    sc->bge_asicrev == BGE_ASICREV_BCM5719) {
1852 		/* Should be 17, use 16 until we get an SRAM map. */
1853 		limit = 16;
1854 	} else if (!BGE_IS_5705_PLUS(sc))
1855 		limit = BGE_RX_RINGS_MAX;
1856 	else if (sc->bge_asicrev == BGE_ASICREV_BCM5755 ||
1857 	    sc->bge_asicrev == BGE_ASICREV_BCM57765)
1858 		limit = 4;
1859 	else
1860 		limit = 1;
1861 	/* Disable all receive return rings. */
1862 	vrcb = BGE_MEMWIN_START + BGE_RX_RETURN_RING_RCB;
1863 	for (i = 0; i < limit; i++) {
1864 		RCB_WRITE_4(sc, vrcb, bge_hostaddr.bge_addr_hi, 0);
1865 		RCB_WRITE_4(sc, vrcb, bge_hostaddr.bge_addr_lo, 0);
1866 		RCB_WRITE_4(sc, vrcb, bge_maxlen_flags,
1867 		    BGE_RCB_FLAG_RING_DISABLED);
1868 		RCB_WRITE_4(sc, vrcb, bge_nicaddr, 0);
1869 		bge_writembx(sc, BGE_MBX_RX_CONS0_LO +
1870 		    (i * (sizeof(uint64_t))), 0);
1871 		vrcb += sizeof(struct bge_rcb);
1872 	}
1873 
1874 	/*
1875 	 * Set up receive return ring 0.  Note that the NIC address
1876 	 * for RX return rings is 0x0.  The return rings live entirely
1877 	 * within the host, so the nicaddr field in the RCB isn't used.
1878 	 */
1879 	vrcb = BGE_MEMWIN_START + BGE_RX_RETURN_RING_RCB;
1880 	BGE_HOSTADDR(taddr, sc->bge_ldata.bge_rx_return_ring_paddr);
1881 	RCB_WRITE_4(sc, vrcb, bge_hostaddr.bge_addr_hi, taddr.bge_addr_hi);
1882 	RCB_WRITE_4(sc, vrcb, bge_hostaddr.bge_addr_lo, taddr.bge_addr_lo);
1883 	RCB_WRITE_4(sc, vrcb, bge_nicaddr, 0);
1884 	RCB_WRITE_4(sc, vrcb, bge_maxlen_flags,
1885 	    BGE_RCB_MAXLEN_FLAGS(sc->bge_return_ring_cnt, 0));
1886 
1887 	/* Set random backoff seed for TX */
1888 	CSR_WRITE_4(sc, BGE_TX_RANDOM_BACKOFF,
1889 	    IF_LLADDR(sc->bge_ifp)[0] + IF_LLADDR(sc->bge_ifp)[1] +
1890 	    IF_LLADDR(sc->bge_ifp)[2] + IF_LLADDR(sc->bge_ifp)[3] +
1891 	    IF_LLADDR(sc->bge_ifp)[4] + IF_LLADDR(sc->bge_ifp)[5] +
1892 	    BGE_TX_BACKOFF_SEED_MASK);
1893 
1894 	/* Set inter-packet gap */
1895 	CSR_WRITE_4(sc, BGE_TX_LENGTHS, 0x2620);
1896 
1897 	/*
1898 	 * Specify which ring to use for packets that don't match
1899 	 * any RX rules.
1900 	 */
1901 	CSR_WRITE_4(sc, BGE_RX_RULES_CFG, 0x08);
1902 
1903 	/*
1904 	 * Configure number of RX lists. One interrupt distribution
1905 	 * list, sixteen active lists, one bad frames class.
1906 	 */
1907 	CSR_WRITE_4(sc, BGE_RXLP_CFG, 0x181);
1908 
1909 	/* Inialize RX list placement stats mask. */
1910 	CSR_WRITE_4(sc, BGE_RXLP_STATS_ENABLE_MASK, 0x007FFFFF);
1911 	CSR_WRITE_4(sc, BGE_RXLP_STATS_CTL, 0x1);
1912 
1913 	/* Disable host coalescing until we get it set up */
1914 	CSR_WRITE_4(sc, BGE_HCC_MODE, 0x00000000);
1915 
1916 	/* Poll to make sure it's shut down. */
1917 	for (i = 0; i < BGE_TIMEOUT; i++) {
1918 		DELAY(10);
1919 		if (!(CSR_READ_4(sc, BGE_HCC_MODE) & BGE_HCCMODE_ENABLE))
1920 			break;
1921 	}
1922 
1923 	if (i == BGE_TIMEOUT) {
1924 		device_printf(sc->bge_dev,
1925 		    "host coalescing engine failed to idle\n");
1926 		return (ENXIO);
1927 	}
1928 
1929 	/* Set up host coalescing defaults */
1930 	CSR_WRITE_4(sc, BGE_HCC_RX_COAL_TICKS, sc->bge_rx_coal_ticks);
1931 	CSR_WRITE_4(sc, BGE_HCC_TX_COAL_TICKS, sc->bge_tx_coal_ticks);
1932 	CSR_WRITE_4(sc, BGE_HCC_RX_MAX_COAL_BDS, sc->bge_rx_max_coal_bds);
1933 	CSR_WRITE_4(sc, BGE_HCC_TX_MAX_COAL_BDS, sc->bge_tx_max_coal_bds);
1934 	if (!(BGE_IS_5705_PLUS(sc))) {
1935 		CSR_WRITE_4(sc, BGE_HCC_RX_COAL_TICKS_INT, 0);
1936 		CSR_WRITE_4(sc, BGE_HCC_TX_COAL_TICKS_INT, 0);
1937 	}
1938 	CSR_WRITE_4(sc, BGE_HCC_RX_MAX_COAL_BDS_INT, 1);
1939 	CSR_WRITE_4(sc, BGE_HCC_TX_MAX_COAL_BDS_INT, 1);
1940 
1941 	/* Set up address of statistics block */
1942 	if (!(BGE_IS_5705_PLUS(sc))) {
1943 		CSR_WRITE_4(sc, BGE_HCC_STATS_ADDR_HI,
1944 		    BGE_ADDR_HI(sc->bge_ldata.bge_stats_paddr));
1945 		CSR_WRITE_4(sc, BGE_HCC_STATS_ADDR_LO,
1946 		    BGE_ADDR_LO(sc->bge_ldata.bge_stats_paddr));
1947 		CSR_WRITE_4(sc, BGE_HCC_STATS_BASEADDR, BGE_STATS_BLOCK);
1948 		CSR_WRITE_4(sc, BGE_HCC_STATUSBLK_BASEADDR, BGE_STATUS_BLOCK);
1949 		CSR_WRITE_4(sc, BGE_HCC_STATS_TICKS, sc->bge_stat_ticks);
1950 	}
1951 
1952 	/* Set up address of status block */
1953 	CSR_WRITE_4(sc, BGE_HCC_STATUSBLK_ADDR_HI,
1954 	    BGE_ADDR_HI(sc->bge_ldata.bge_status_block_paddr));
1955 	CSR_WRITE_4(sc, BGE_HCC_STATUSBLK_ADDR_LO,
1956 	    BGE_ADDR_LO(sc->bge_ldata.bge_status_block_paddr));
1957 
1958 	/* Set up status block size. */
1959 	if (sc->bge_asicrev == BGE_ASICREV_BCM5700 &&
1960 	    sc->bge_chipid != BGE_CHIPID_BCM5700_C0) {
1961 		val = BGE_STATBLKSZ_FULL;
1962 		bzero(sc->bge_ldata.bge_status_block, BGE_STATUS_BLK_SZ);
1963 	} else {
1964 		val = BGE_STATBLKSZ_32BYTE;
1965 		bzero(sc->bge_ldata.bge_status_block, 32);
1966 	}
1967 	bus_dmamap_sync(sc->bge_cdata.bge_status_tag,
1968 	    sc->bge_cdata.bge_status_map,
1969 	    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
1970 
1971 	/* Turn on host coalescing state machine */
1972 	CSR_WRITE_4(sc, BGE_HCC_MODE, val | BGE_HCCMODE_ENABLE);
1973 
1974 	/* Turn on RX BD completion state machine and enable attentions */
1975 	CSR_WRITE_4(sc, BGE_RBDC_MODE,
1976 	    BGE_RBDCMODE_ENABLE | BGE_RBDCMODE_ATTN);
1977 
1978 	/* Turn on RX list placement state machine */
1979 	CSR_WRITE_4(sc, BGE_RXLP_MODE, BGE_RXLPMODE_ENABLE);
1980 
1981 	/* Turn on RX list selector state machine. */
1982 	if (!(BGE_IS_5705_PLUS(sc)))
1983 		CSR_WRITE_4(sc, BGE_RXLS_MODE, BGE_RXLSMODE_ENABLE);
1984 
1985 	val = BGE_MACMODE_TXDMA_ENB | BGE_MACMODE_RXDMA_ENB |
1986 	    BGE_MACMODE_RX_STATS_CLEAR | BGE_MACMODE_TX_STATS_CLEAR |
1987 	    BGE_MACMODE_RX_STATS_ENB | BGE_MACMODE_TX_STATS_ENB |
1988 	    BGE_MACMODE_FRMHDR_DMA_ENB;
1989 
1990 	if (sc->bge_flags & BGE_FLAG_TBI)
1991 		val |= BGE_PORTMODE_TBI;
1992 	else if (sc->bge_flags & BGE_FLAG_MII_SERDES)
1993 		val |= BGE_PORTMODE_GMII;
1994 	else
1995 		val |= BGE_PORTMODE_MII;
1996 
1997 	/* Turn on DMA, clear stats */
1998 	CSR_WRITE_4(sc, BGE_MAC_MODE, val);
1999 
2000 	/* Set misc. local control, enable interrupts on attentions */
2001 	CSR_WRITE_4(sc, BGE_MISC_LOCAL_CTL, BGE_MLC_INTR_ONATTN);
2002 
2003 #ifdef notdef
2004 	/* Assert GPIO pins for PHY reset */
2005 	BGE_SETBIT(sc, BGE_MISC_LOCAL_CTL, BGE_MLC_MISCIO_OUT0 |
2006 	    BGE_MLC_MISCIO_OUT1 | BGE_MLC_MISCIO_OUT2);
2007 	BGE_SETBIT(sc, BGE_MISC_LOCAL_CTL, BGE_MLC_MISCIO_OUTEN0 |
2008 	    BGE_MLC_MISCIO_OUTEN1 | BGE_MLC_MISCIO_OUTEN2);
2009 #endif
2010 
2011 	/* Turn on DMA completion state machine */
2012 	if (!(BGE_IS_5705_PLUS(sc)))
2013 		CSR_WRITE_4(sc, BGE_DMAC_MODE, BGE_DMACMODE_ENABLE);
2014 
2015 	val = BGE_WDMAMODE_ENABLE | BGE_WDMAMODE_ALL_ATTNS;
2016 
2017 	/* Enable host coalescing bug fix. */
2018 	if (BGE_IS_5755_PLUS(sc))
2019 		val |= BGE_WDMAMODE_STATUS_TAG_FIX;
2020 
2021 	/* Request larger DMA burst size to get better performance. */
2022 	if (sc->bge_asicrev == BGE_ASICREV_BCM5785)
2023 		val |= BGE_WDMAMODE_BURST_ALL_DATA;
2024 
2025 	/* Turn on write DMA state machine */
2026 	CSR_WRITE_4(sc, BGE_WDMA_MODE, val);
2027 	DELAY(40);
2028 
2029 	/* Turn on read DMA state machine */
2030 	val = BGE_RDMAMODE_ENABLE | BGE_RDMAMODE_ALL_ATTNS;
2031 
2032 	if (sc->bge_asicrev == BGE_ASICREV_BCM5717)
2033 		val |= BGE_RDMAMODE_MULT_DMA_RD_DIS;
2034 
2035 	if (sc->bge_asicrev == BGE_ASICREV_BCM5784 ||
2036 	    sc->bge_asicrev == BGE_ASICREV_BCM5785 ||
2037 	    sc->bge_asicrev == BGE_ASICREV_BCM57780)
2038 		val |= BGE_RDMAMODE_BD_SBD_CRPT_ATTN |
2039 		    BGE_RDMAMODE_MBUF_RBD_CRPT_ATTN |
2040 		    BGE_RDMAMODE_MBUF_SBD_CRPT_ATTN;
2041 	if (sc->bge_flags & BGE_FLAG_PCIE)
2042 		val |= BGE_RDMAMODE_FIFO_LONG_BURST;
2043 	if (sc->bge_flags & (BGE_FLAG_TSO | BGE_FLAG_TSO3)) {
2044 		val |= BGE_RDMAMODE_TSO4_ENABLE;
2045 		if (sc->bge_flags & BGE_FLAG_TSO3 ||
2046 		    sc->bge_asicrev == BGE_ASICREV_BCM5785 ||
2047 		    sc->bge_asicrev == BGE_ASICREV_BCM57780)
2048 			val |= BGE_RDMAMODE_TSO6_ENABLE;
2049 	}
2050 	if (sc->bge_asicrev == BGE_ASICREV_BCM5761 ||
2051 	    sc->bge_asicrev == BGE_ASICREV_BCM5784 ||
2052 	    sc->bge_asicrev == BGE_ASICREV_BCM5785 ||
2053 	    sc->bge_asicrev == BGE_ASICREV_BCM57780 ||
2054 	    BGE_IS_5717_PLUS(sc)) {
2055 		dmactl = CSR_READ_4(sc, BGE_RDMA_RSRVCTRL);
2056 		/*
2057 		 * Adjust tx margin to prevent TX data corruption and
2058 		 * fix internal FIFO overflow.
2059 		 */
2060 		if (sc->bge_asicrev == BGE_ASICREV_BCM5719) {
2061 			dmactl &= ~(BGE_RDMA_RSRVCTRL_FIFO_LWM_MASK |
2062 			    BGE_RDMA_RSRVCTRL_FIFO_HWM_MASK |
2063 			    BGE_RDMA_RSRVCTRL_TXMRGN_MASK);
2064 			dmactl |= BGE_RDMA_RSRVCTRL_FIFO_LWM_1_5K |
2065 			    BGE_RDMA_RSRVCTRL_FIFO_HWM_1_5K |
2066 			    BGE_RDMA_RSRVCTRL_TXMRGN_320B;
2067 		}
2068 		/*
2069 		 * Enable fix for read DMA FIFO overruns.
2070 		 * The fix is to limit the number of RX BDs
2071 		 * the hardware would fetch at a fime.
2072 		 */
2073 		CSR_WRITE_4(sc, BGE_RDMA_RSRVCTRL, dmactl |
2074 		    BGE_RDMA_RSRVCTRL_FIFO_OFLW_FIX);
2075 	}
2076 
2077 	if (sc->bge_asicrev == BGE_ASICREV_BCM5719) {
2078 		CSR_WRITE_4(sc, BGE_RDMA_LSO_CRPTEN_CTRL,
2079 		    CSR_READ_4(sc, BGE_RDMA_LSO_CRPTEN_CTRL) |
2080 		    BGE_RDMA_LSO_CRPTEN_CTRL_BLEN_BD_4K |
2081 		    BGE_RDMA_LSO_CRPTEN_CTRL_BLEN_LSO_4K);
2082 	}
2083 
2084 	CSR_WRITE_4(sc, BGE_RDMA_MODE, val);
2085 	DELAY(40);
2086 
2087 	/* Turn on RX data completion state machine */
2088 	CSR_WRITE_4(sc, BGE_RDC_MODE, BGE_RDCMODE_ENABLE);
2089 
2090 	/* Turn on RX BD initiator state machine */
2091 	CSR_WRITE_4(sc, BGE_RBDI_MODE, BGE_RBDIMODE_ENABLE);
2092 
2093 	/* Turn on RX data and RX BD initiator state machine */
2094 	CSR_WRITE_4(sc, BGE_RDBDI_MODE, BGE_RDBDIMODE_ENABLE);
2095 
2096 	/* Turn on Mbuf cluster free state machine */
2097 	if (!(BGE_IS_5705_PLUS(sc)))
2098 		CSR_WRITE_4(sc, BGE_MBCF_MODE, BGE_MBCFMODE_ENABLE);
2099 
2100 	/* Turn on send BD completion state machine */
2101 	CSR_WRITE_4(sc, BGE_SBDC_MODE, BGE_SBDCMODE_ENABLE);
2102 
2103 	/* Turn on send data completion state machine */
2104 	val = BGE_SDCMODE_ENABLE;
2105 	if (sc->bge_asicrev == BGE_ASICREV_BCM5761)
2106 		val |= BGE_SDCMODE_CDELAY;
2107 	CSR_WRITE_4(sc, BGE_SDC_MODE, val);
2108 
2109 	/* Turn on send data initiator state machine */
2110 	if (sc->bge_flags & (BGE_FLAG_TSO | BGE_FLAG_TSO3))
2111 		CSR_WRITE_4(sc, BGE_SDI_MODE, BGE_SDIMODE_ENABLE |
2112 		    BGE_SDIMODE_HW_LSO_PRE_DMA);
2113 	else
2114 		CSR_WRITE_4(sc, BGE_SDI_MODE, BGE_SDIMODE_ENABLE);
2115 
2116 	/* Turn on send BD initiator state machine */
2117 	CSR_WRITE_4(sc, BGE_SBDI_MODE, BGE_SBDIMODE_ENABLE);
2118 
2119 	/* Turn on send BD selector state machine */
2120 	CSR_WRITE_4(sc, BGE_SRS_MODE, BGE_SRSMODE_ENABLE);
2121 
2122 	CSR_WRITE_4(sc, BGE_SDI_STATS_ENABLE_MASK, 0x007FFFFF);
2123 	CSR_WRITE_4(sc, BGE_SDI_STATS_CTL,
2124 	    BGE_SDISTATSCTL_ENABLE | BGE_SDISTATSCTL_FASTER);
2125 
2126 	/* ack/clear link change events */
2127 	CSR_WRITE_4(sc, BGE_MAC_STS, BGE_MACSTAT_SYNC_CHANGED |
2128 	    BGE_MACSTAT_CFG_CHANGED | BGE_MACSTAT_MI_COMPLETE |
2129 	    BGE_MACSTAT_LINK_CHANGED);
2130 	CSR_WRITE_4(sc, BGE_MI_STS, 0);
2131 
2132 	/*
2133 	 * Enable attention when the link has changed state for
2134 	 * devices that use auto polling.
2135 	 */
2136 	if (sc->bge_flags & BGE_FLAG_TBI) {
2137 		CSR_WRITE_4(sc, BGE_MI_STS, BGE_MISTS_LINK);
2138 	} else {
2139 		if (sc->bge_mi_mode & BGE_MIMODE_AUTOPOLL) {
2140 			CSR_WRITE_4(sc, BGE_MI_MODE, sc->bge_mi_mode);
2141 			DELAY(80);
2142 		}
2143 		if (sc->bge_asicrev == BGE_ASICREV_BCM5700 &&
2144 		    sc->bge_chipid != BGE_CHIPID_BCM5700_B2)
2145 			CSR_WRITE_4(sc, BGE_MAC_EVT_ENB,
2146 			    BGE_EVTENB_MI_INTERRUPT);
2147 	}
2148 
2149 	/*
2150 	 * Clear any pending link state attention.
2151 	 * Otherwise some link state change events may be lost until attention
2152 	 * is cleared by bge_intr() -> bge_link_upd() sequence.
2153 	 * It's not necessary on newer BCM chips - perhaps enabling link
2154 	 * state change attentions implies clearing pending attention.
2155 	 */
2156 	CSR_WRITE_4(sc, BGE_MAC_STS, BGE_MACSTAT_SYNC_CHANGED |
2157 	    BGE_MACSTAT_CFG_CHANGED | BGE_MACSTAT_MI_COMPLETE |
2158 	    BGE_MACSTAT_LINK_CHANGED);
2159 
2160 	/* Enable link state change attentions. */
2161 	BGE_SETBIT(sc, BGE_MAC_EVT_ENB, BGE_EVTENB_LINK_CHANGED);
2162 
2163 	return (0);
2164 }
2165 
2166 const struct bge_revision *
2167 bge_lookup_rev(uint32_t chipid)
2168 {
2169 	const struct bge_revision *br;
2170 
2171 	for (br = bge_revisions; br->br_name != NULL; br++) {
2172 		if (br->br_chipid == chipid)
2173 			return (br);
2174 	}
2175 
2176 	for (br = bge_majorrevs; br->br_name != NULL; br++) {
2177 		if (br->br_chipid == BGE_ASICREV(chipid))
2178 			return (br);
2179 	}
2180 
2181 	return (NULL);
2182 }
2183 
2184 const struct bge_vendor *
2185 bge_lookup_vendor(uint16_t vid)
2186 {
2187 	const struct bge_vendor *v;
2188 
2189 	for (v = bge_vendors; v->v_name != NULL; v++)
2190 		if (v->v_id == vid)
2191 			return (v);
2192 
2193 	panic("%s: unknown vendor %d", __func__, vid);
2194 	return (NULL);
2195 }
2196 
2197 /*
2198  * Probe for a Broadcom chip. Check the PCI vendor and device IDs
2199  * against our list and return its name if we find a match.
2200  *
2201  * Note that since the Broadcom controller contains VPD support, we
2202  * try to get the device name string from the controller itself instead
2203  * of the compiled-in string. It guarantees we'll always announce the
2204  * right product name. We fall back to the compiled-in string when
2205  * VPD is unavailable or corrupt.
2206  */
2207 static int
2208 bge_probe(device_t dev)
2209 {
2210 	char buf[96];
2211 	char model[64];
2212 	const struct bge_revision *br;
2213 	const char *pname;
2214 	struct bge_softc *sc = device_get_softc(dev);
2215 	const struct bge_type *t = bge_devs;
2216 	const struct bge_vendor *v;
2217 	uint32_t id;
2218 	uint16_t did, vid;
2219 
2220 	sc->bge_dev = dev;
2221 	vid = pci_get_vendor(dev);
2222 	did = pci_get_device(dev);
2223 	while(t->bge_vid != 0) {
2224 		if ((vid == t->bge_vid) && (did == t->bge_did)) {
2225 			id = pci_read_config(dev, BGE_PCI_MISC_CTL, 4) >>
2226 			    BGE_PCIMISCCTL_ASICREV_SHIFT;
2227 			if (BGE_ASICREV(id) == BGE_ASICREV_USE_PRODID_REG) {
2228 				/*
2229 				 * Find the ASCI revision.  Different chips
2230 				 * use different registers.
2231 				 */
2232 				switch (pci_get_device(dev)) {
2233 				case BCOM_DEVICEID_BCM5717:
2234 				case BCOM_DEVICEID_BCM5718:
2235 				case BCOM_DEVICEID_BCM5719:
2236 					id = pci_read_config(dev,
2237 					    BGE_PCI_GEN2_PRODID_ASICREV, 4);
2238 					break;
2239 				case BCOM_DEVICEID_BCM57761:
2240 				case BCOM_DEVICEID_BCM57765:
2241 				case BCOM_DEVICEID_BCM57781:
2242 				case BCOM_DEVICEID_BCM57785:
2243 				case BCOM_DEVICEID_BCM57791:
2244 				case BCOM_DEVICEID_BCM57795:
2245 					id = pci_read_config(dev,
2246 					    BGE_PCI_GEN15_PRODID_ASICREV, 4);
2247 					break;
2248 				default:
2249 					id = pci_read_config(dev,
2250 					    BGE_PCI_PRODID_ASICREV, 4);
2251 				}
2252 			}
2253 			br = bge_lookup_rev(id);
2254 			v = bge_lookup_vendor(vid);
2255 			if (bge_has_eaddr(sc) &&
2256 			    pci_get_vpd_ident(dev, &pname) == 0)
2257 				snprintf(model, 64, "%s", pname);
2258 			else
2259 				snprintf(model, 64, "%s %s", v->v_name,
2260 				    br != NULL ? br->br_name :
2261 				    "NetXtreme Ethernet Controller");
2262 			snprintf(buf, 96, "%s, %sASIC rev. %#08x", model,
2263 			    br != NULL ? "" : "unknown ", id);
2264 			device_set_desc_copy(dev, buf);
2265 			return (0);
2266 		}
2267 		t++;
2268 	}
2269 
2270 	return (ENXIO);
2271 }
2272 
2273 static void
2274 bge_dma_free(struct bge_softc *sc)
2275 {
2276 	int i;
2277 
2278 	/* Destroy DMA maps for RX buffers. */
2279 	for (i = 0; i < BGE_STD_RX_RING_CNT; i++) {
2280 		if (sc->bge_cdata.bge_rx_std_dmamap[i])
2281 			bus_dmamap_destroy(sc->bge_cdata.bge_rx_mtag,
2282 			    sc->bge_cdata.bge_rx_std_dmamap[i]);
2283 	}
2284 	if (sc->bge_cdata.bge_rx_std_sparemap)
2285 		bus_dmamap_destroy(sc->bge_cdata.bge_rx_mtag,
2286 		    sc->bge_cdata.bge_rx_std_sparemap);
2287 
2288 	/* Destroy DMA maps for jumbo RX buffers. */
2289 	for (i = 0; i < BGE_JUMBO_RX_RING_CNT; i++) {
2290 		if (sc->bge_cdata.bge_rx_jumbo_dmamap[i])
2291 			bus_dmamap_destroy(sc->bge_cdata.bge_mtag_jumbo,
2292 			    sc->bge_cdata.bge_rx_jumbo_dmamap[i]);
2293 	}
2294 	if (sc->bge_cdata.bge_rx_jumbo_sparemap)
2295 		bus_dmamap_destroy(sc->bge_cdata.bge_mtag_jumbo,
2296 		    sc->bge_cdata.bge_rx_jumbo_sparemap);
2297 
2298 	/* Destroy DMA maps for TX buffers. */
2299 	for (i = 0; i < BGE_TX_RING_CNT; i++) {
2300 		if (sc->bge_cdata.bge_tx_dmamap[i])
2301 			bus_dmamap_destroy(sc->bge_cdata.bge_tx_mtag,
2302 			    sc->bge_cdata.bge_tx_dmamap[i]);
2303 	}
2304 
2305 	if (sc->bge_cdata.bge_rx_mtag)
2306 		bus_dma_tag_destroy(sc->bge_cdata.bge_rx_mtag);
2307 	if (sc->bge_cdata.bge_tx_mtag)
2308 		bus_dma_tag_destroy(sc->bge_cdata.bge_tx_mtag);
2309 
2310 
2311 	/* Destroy standard RX ring. */
2312 	if (sc->bge_cdata.bge_rx_std_ring_map)
2313 		bus_dmamap_unload(sc->bge_cdata.bge_rx_std_ring_tag,
2314 		    sc->bge_cdata.bge_rx_std_ring_map);
2315 	if (sc->bge_cdata.bge_rx_std_ring_map && sc->bge_ldata.bge_rx_std_ring)
2316 		bus_dmamem_free(sc->bge_cdata.bge_rx_std_ring_tag,
2317 		    sc->bge_ldata.bge_rx_std_ring,
2318 		    sc->bge_cdata.bge_rx_std_ring_map);
2319 
2320 	if (sc->bge_cdata.bge_rx_std_ring_tag)
2321 		bus_dma_tag_destroy(sc->bge_cdata.bge_rx_std_ring_tag);
2322 
2323 	/* Destroy jumbo RX ring. */
2324 	if (sc->bge_cdata.bge_rx_jumbo_ring_map)
2325 		bus_dmamap_unload(sc->bge_cdata.bge_rx_jumbo_ring_tag,
2326 		    sc->bge_cdata.bge_rx_jumbo_ring_map);
2327 
2328 	if (sc->bge_cdata.bge_rx_jumbo_ring_map &&
2329 	    sc->bge_ldata.bge_rx_jumbo_ring)
2330 		bus_dmamem_free(sc->bge_cdata.bge_rx_jumbo_ring_tag,
2331 		    sc->bge_ldata.bge_rx_jumbo_ring,
2332 		    sc->bge_cdata.bge_rx_jumbo_ring_map);
2333 
2334 	if (sc->bge_cdata.bge_rx_jumbo_ring_tag)
2335 		bus_dma_tag_destroy(sc->bge_cdata.bge_rx_jumbo_ring_tag);
2336 
2337 	/* Destroy RX return ring. */
2338 	if (sc->bge_cdata.bge_rx_return_ring_map)
2339 		bus_dmamap_unload(sc->bge_cdata.bge_rx_return_ring_tag,
2340 		    sc->bge_cdata.bge_rx_return_ring_map);
2341 
2342 	if (sc->bge_cdata.bge_rx_return_ring_map &&
2343 	    sc->bge_ldata.bge_rx_return_ring)
2344 		bus_dmamem_free(sc->bge_cdata.bge_rx_return_ring_tag,
2345 		    sc->bge_ldata.bge_rx_return_ring,
2346 		    sc->bge_cdata.bge_rx_return_ring_map);
2347 
2348 	if (sc->bge_cdata.bge_rx_return_ring_tag)
2349 		bus_dma_tag_destroy(sc->bge_cdata.bge_rx_return_ring_tag);
2350 
2351 	/* Destroy TX ring. */
2352 	if (sc->bge_cdata.bge_tx_ring_map)
2353 		bus_dmamap_unload(sc->bge_cdata.bge_tx_ring_tag,
2354 		    sc->bge_cdata.bge_tx_ring_map);
2355 
2356 	if (sc->bge_cdata.bge_tx_ring_map && sc->bge_ldata.bge_tx_ring)
2357 		bus_dmamem_free(sc->bge_cdata.bge_tx_ring_tag,
2358 		    sc->bge_ldata.bge_tx_ring,
2359 		    sc->bge_cdata.bge_tx_ring_map);
2360 
2361 	if (sc->bge_cdata.bge_tx_ring_tag)
2362 		bus_dma_tag_destroy(sc->bge_cdata.bge_tx_ring_tag);
2363 
2364 	/* Destroy status block. */
2365 	if (sc->bge_cdata.bge_status_map)
2366 		bus_dmamap_unload(sc->bge_cdata.bge_status_tag,
2367 		    sc->bge_cdata.bge_status_map);
2368 
2369 	if (sc->bge_cdata.bge_status_map && sc->bge_ldata.bge_status_block)
2370 		bus_dmamem_free(sc->bge_cdata.bge_status_tag,
2371 		    sc->bge_ldata.bge_status_block,
2372 		    sc->bge_cdata.bge_status_map);
2373 
2374 	if (sc->bge_cdata.bge_status_tag)
2375 		bus_dma_tag_destroy(sc->bge_cdata.bge_status_tag);
2376 
2377 	/* Destroy statistics block. */
2378 	if (sc->bge_cdata.bge_stats_map)
2379 		bus_dmamap_unload(sc->bge_cdata.bge_stats_tag,
2380 		    sc->bge_cdata.bge_stats_map);
2381 
2382 	if (sc->bge_cdata.bge_stats_map && sc->bge_ldata.bge_stats)
2383 		bus_dmamem_free(sc->bge_cdata.bge_stats_tag,
2384 		    sc->bge_ldata.bge_stats,
2385 		    sc->bge_cdata.bge_stats_map);
2386 
2387 	if (sc->bge_cdata.bge_stats_tag)
2388 		bus_dma_tag_destroy(sc->bge_cdata.bge_stats_tag);
2389 
2390 	if (sc->bge_cdata.bge_buffer_tag)
2391 		bus_dma_tag_destroy(sc->bge_cdata.bge_buffer_tag);
2392 
2393 	/* Destroy the parent tag. */
2394 	if (sc->bge_cdata.bge_parent_tag)
2395 		bus_dma_tag_destroy(sc->bge_cdata.bge_parent_tag);
2396 }
2397 
2398 static int
2399 bge_dma_ring_alloc(struct bge_softc *sc, bus_size_t alignment,
2400     bus_size_t maxsize, bus_dma_tag_t *tag, uint8_t **ring, bus_dmamap_t *map,
2401     bus_addr_t *paddr, const char *msg)
2402 {
2403 	struct bge_dmamap_arg ctx;
2404 	bus_addr_t lowaddr;
2405 	bus_size_t ring_end;
2406 	int error;
2407 
2408 	lowaddr = BUS_SPACE_MAXADDR;
2409 again:
2410 	error = bus_dma_tag_create(sc->bge_cdata.bge_parent_tag,
2411 	    alignment, 0, lowaddr, BUS_SPACE_MAXADDR, NULL,
2412 	    NULL, maxsize, 1, maxsize, 0, NULL, NULL, tag);
2413 	if (error != 0) {
2414 		device_printf(sc->bge_dev,
2415 		    "could not create %s dma tag\n", msg);
2416 		return (ENOMEM);
2417 	}
2418 	/* Allocate DMA'able memory for ring. */
2419 	error = bus_dmamem_alloc(*tag, (void **)ring,
2420 	    BUS_DMA_NOWAIT | BUS_DMA_ZERO | BUS_DMA_COHERENT, map);
2421 	if (error != 0) {
2422 		device_printf(sc->bge_dev,
2423 		    "could not allocate DMA'able memory for %s\n", msg);
2424 		return (ENOMEM);
2425 	}
2426 	/* Load the address of the ring. */
2427 	ctx.bge_busaddr = 0;
2428 	error = bus_dmamap_load(*tag, *map, *ring, maxsize, bge_dma_map_addr,
2429 	    &ctx, BUS_DMA_NOWAIT);
2430 	if (error != 0) {
2431 		device_printf(sc->bge_dev,
2432 		    "could not load DMA'able memory for %s\n", msg);
2433 		return (ENOMEM);
2434 	}
2435 	*paddr = ctx.bge_busaddr;
2436 	ring_end = *paddr + maxsize;
2437 	if ((sc->bge_flags & BGE_FLAG_4G_BNDRY_BUG) != 0 &&
2438 	    BGE_ADDR_HI(*paddr) != BGE_ADDR_HI(ring_end)) {
2439 		/*
2440 		 * 4GB boundary crossed.  Limit maximum allowable DMA
2441 		 * address space to 32bit and try again.
2442 		 */
2443 		bus_dmamap_unload(*tag, *map);
2444 		bus_dmamem_free(*tag, *ring, *map);
2445 		bus_dma_tag_destroy(*tag);
2446 		if (bootverbose)
2447 			device_printf(sc->bge_dev, "4GB boundary crossed, "
2448 			    "limit DMA address space to 32bit for %s\n", msg);
2449 		*ring = NULL;
2450 		*tag = NULL;
2451 		*map = NULL;
2452 		lowaddr = BUS_SPACE_MAXADDR_32BIT;
2453 		goto again;
2454 	}
2455 	return (0);
2456 }
2457 
2458 static int
2459 bge_dma_alloc(struct bge_softc *sc)
2460 {
2461 	bus_addr_t lowaddr;
2462 	bus_size_t boundary, sbsz, rxmaxsegsz, txsegsz, txmaxsegsz;
2463 	int i, error;
2464 
2465 	lowaddr = BUS_SPACE_MAXADDR;
2466 	if ((sc->bge_flags & BGE_FLAG_40BIT_BUG) != 0)
2467 		lowaddr = BGE_DMA_MAXADDR;
2468 	/*
2469 	 * Allocate the parent bus DMA tag appropriate for PCI.
2470 	 */
2471 	error = bus_dma_tag_create(bus_get_dma_tag(sc->bge_dev),
2472 	    1, 0, lowaddr, BUS_SPACE_MAXADDR, NULL,
2473 	    NULL, BUS_SPACE_MAXSIZE_32BIT, 0, BUS_SPACE_MAXSIZE_32BIT,
2474 	    0, NULL, NULL, &sc->bge_cdata.bge_parent_tag);
2475 	if (error != 0) {
2476 		device_printf(sc->bge_dev,
2477 		    "could not allocate parent dma tag\n");
2478 		return (ENOMEM);
2479 	}
2480 
2481 	/* Create tag for standard RX ring. */
2482 	error = bge_dma_ring_alloc(sc, PAGE_SIZE, BGE_STD_RX_RING_SZ,
2483 	    &sc->bge_cdata.bge_rx_std_ring_tag,
2484 	    (uint8_t **)&sc->bge_ldata.bge_rx_std_ring,
2485 	    &sc->bge_cdata.bge_rx_std_ring_map,
2486 	    &sc->bge_ldata.bge_rx_std_ring_paddr, "RX ring");
2487 	if (error)
2488 		return (error);
2489 
2490 	/* Create tag for RX return ring. */
2491 	error = bge_dma_ring_alloc(sc, PAGE_SIZE, BGE_RX_RTN_RING_SZ(sc),
2492 	    &sc->bge_cdata.bge_rx_return_ring_tag,
2493 	    (uint8_t **)&sc->bge_ldata.bge_rx_return_ring,
2494 	    &sc->bge_cdata.bge_rx_return_ring_map,
2495 	    &sc->bge_ldata.bge_rx_return_ring_paddr, "RX return ring");
2496 	if (error)
2497 		return (error);
2498 
2499 	/* Create tag for TX ring. */
2500 	error = bge_dma_ring_alloc(sc, PAGE_SIZE, BGE_TX_RING_SZ,
2501 	    &sc->bge_cdata.bge_tx_ring_tag,
2502 	    (uint8_t **)&sc->bge_ldata.bge_tx_ring,
2503 	    &sc->bge_cdata.bge_tx_ring_map,
2504 	    &sc->bge_ldata.bge_tx_ring_paddr, "TX ring");
2505 	if (error)
2506 		return (error);
2507 
2508 	/*
2509 	 * Create tag for status block.
2510 	 * Because we only use single Tx/Rx/Rx return ring, use
2511 	 * minimum status block size except BCM5700 AX/BX which
2512 	 * seems to want to see full status block size regardless
2513 	 * of configured number of ring.
2514 	 */
2515 	if (sc->bge_asicrev == BGE_ASICREV_BCM5700 &&
2516 	    sc->bge_chipid != BGE_CHIPID_BCM5700_C0)
2517 		sbsz = BGE_STATUS_BLK_SZ;
2518 	else
2519 		sbsz = 32;
2520 	error = bge_dma_ring_alloc(sc, PAGE_SIZE, sbsz,
2521 	    &sc->bge_cdata.bge_status_tag,
2522 	    (uint8_t **)&sc->bge_ldata.bge_status_block,
2523 	    &sc->bge_cdata.bge_status_map,
2524 	    &sc->bge_ldata.bge_status_block_paddr, "status block");
2525 	if (error)
2526 		return (error);
2527 
2528 	/* Create tag for statistics block. */
2529 	error = bge_dma_ring_alloc(sc, PAGE_SIZE, BGE_STATS_SZ,
2530 	    &sc->bge_cdata.bge_stats_tag,
2531 	    (uint8_t **)&sc->bge_ldata.bge_stats,
2532 	    &sc->bge_cdata.bge_stats_map,
2533 	    &sc->bge_ldata.bge_stats_paddr, "statistics block");
2534 	if (error)
2535 		return (error);
2536 
2537 	/* Create tag for jumbo RX ring. */
2538 	if (BGE_IS_JUMBO_CAPABLE(sc)) {
2539 		error = bge_dma_ring_alloc(sc, PAGE_SIZE, BGE_JUMBO_RX_RING_SZ,
2540 		    &sc->bge_cdata.bge_rx_jumbo_ring_tag,
2541 		    (uint8_t **)&sc->bge_ldata.bge_rx_jumbo_ring,
2542 		    &sc->bge_cdata.bge_rx_jumbo_ring_map,
2543 		    &sc->bge_ldata.bge_rx_jumbo_ring_paddr, "jumbo RX ring");
2544 		if (error)
2545 			return (error);
2546 	}
2547 
2548 	/* Create parent tag for buffers. */
2549 	boundary = 0;
2550 	if ((sc->bge_flags & BGE_FLAG_4G_BNDRY_BUG) != 0) {
2551 		boundary = BGE_DMA_BNDRY;
2552 		/*
2553 		 * XXX
2554 		 * watchdog timeout issue was observed on BCM5704 which
2555 		 * lives behind PCI-X bridge(e.g AMD 8131 PCI-X bridge).
2556 		 * Limiting DMA address space to 32bits seems to address
2557 		 * it.
2558 		 */
2559 		if (sc->bge_flags & BGE_FLAG_PCIX)
2560 			lowaddr = BUS_SPACE_MAXADDR_32BIT;
2561 	}
2562 	error = bus_dma_tag_create(bus_get_dma_tag(sc->bge_dev),
2563 	    1, boundary, lowaddr, BUS_SPACE_MAXADDR, NULL,
2564 	    NULL, BUS_SPACE_MAXSIZE_32BIT, 0, BUS_SPACE_MAXSIZE_32BIT,
2565 	    0, NULL, NULL, &sc->bge_cdata.bge_buffer_tag);
2566 	if (error != 0) {
2567 		device_printf(sc->bge_dev,
2568 		    "could not allocate buffer dma tag\n");
2569 		return (ENOMEM);
2570 	}
2571 	/* Create tag for Tx mbufs. */
2572 	if (sc->bge_flags & (BGE_FLAG_TSO | BGE_FLAG_TSO3)) {
2573 		txsegsz = BGE_TSOSEG_SZ;
2574 		txmaxsegsz = 65535 + sizeof(struct ether_vlan_header);
2575 	} else {
2576 		txsegsz = MCLBYTES;
2577 		txmaxsegsz = MCLBYTES * BGE_NSEG_NEW;
2578 	}
2579 	error = bus_dma_tag_create(sc->bge_cdata.bge_buffer_tag, 1,
2580 	    0, BUS_SPACE_MAXADDR, BUS_SPACE_MAXADDR, NULL, NULL,
2581 	    txmaxsegsz, BGE_NSEG_NEW, txsegsz, 0, NULL, NULL,
2582 	    &sc->bge_cdata.bge_tx_mtag);
2583 
2584 	if (error) {
2585 		device_printf(sc->bge_dev, "could not allocate TX dma tag\n");
2586 		return (ENOMEM);
2587 	}
2588 
2589 	/* Create tag for Rx mbufs. */
2590 	if (sc->bge_flags & BGE_FLAG_JUMBO_STD)
2591 		rxmaxsegsz = MJUM9BYTES;
2592 	else
2593 		rxmaxsegsz = MCLBYTES;
2594 	error = bus_dma_tag_create(sc->bge_cdata.bge_buffer_tag, 1, 0,
2595 	    BUS_SPACE_MAXADDR, BUS_SPACE_MAXADDR, NULL, NULL, rxmaxsegsz, 1,
2596 	    rxmaxsegsz, 0, NULL, NULL, &sc->bge_cdata.bge_rx_mtag);
2597 
2598 	if (error) {
2599 		device_printf(sc->bge_dev, "could not allocate RX dma tag\n");
2600 		return (ENOMEM);
2601 	}
2602 
2603 	/* Create DMA maps for RX buffers. */
2604 	error = bus_dmamap_create(sc->bge_cdata.bge_rx_mtag, 0,
2605 	    &sc->bge_cdata.bge_rx_std_sparemap);
2606 	if (error) {
2607 		device_printf(sc->bge_dev,
2608 		    "can't create spare DMA map for RX\n");
2609 		return (ENOMEM);
2610 	}
2611 	for (i = 0; i < BGE_STD_RX_RING_CNT; i++) {
2612 		error = bus_dmamap_create(sc->bge_cdata.bge_rx_mtag, 0,
2613 			    &sc->bge_cdata.bge_rx_std_dmamap[i]);
2614 		if (error) {
2615 			device_printf(sc->bge_dev,
2616 			    "can't create DMA map for RX\n");
2617 			return (ENOMEM);
2618 		}
2619 	}
2620 
2621 	/* Create DMA maps for TX buffers. */
2622 	for (i = 0; i < BGE_TX_RING_CNT; i++) {
2623 		error = bus_dmamap_create(sc->bge_cdata.bge_tx_mtag, 0,
2624 			    &sc->bge_cdata.bge_tx_dmamap[i]);
2625 		if (error) {
2626 			device_printf(sc->bge_dev,
2627 			    "can't create DMA map for TX\n");
2628 			return (ENOMEM);
2629 		}
2630 	}
2631 
2632 	/* Create tags for jumbo RX buffers. */
2633 	if (BGE_IS_JUMBO_CAPABLE(sc)) {
2634 		error = bus_dma_tag_create(sc->bge_cdata.bge_buffer_tag,
2635 		    1, 0, BUS_SPACE_MAXADDR, BUS_SPACE_MAXADDR, NULL,
2636 		    NULL, MJUM9BYTES, BGE_NSEG_JUMBO, PAGE_SIZE,
2637 		    0, NULL, NULL, &sc->bge_cdata.bge_mtag_jumbo);
2638 		if (error) {
2639 			device_printf(sc->bge_dev,
2640 			    "could not allocate jumbo dma tag\n");
2641 			return (ENOMEM);
2642 		}
2643 		/* Create DMA maps for jumbo RX buffers. */
2644 		error = bus_dmamap_create(sc->bge_cdata.bge_mtag_jumbo,
2645 		    0, &sc->bge_cdata.bge_rx_jumbo_sparemap);
2646 		if (error) {
2647 			device_printf(sc->bge_dev,
2648 			    "can't create spare DMA map for jumbo RX\n");
2649 			return (ENOMEM);
2650 		}
2651 		for (i = 0; i < BGE_JUMBO_RX_RING_CNT; i++) {
2652 			error = bus_dmamap_create(sc->bge_cdata.bge_mtag_jumbo,
2653 				    0, &sc->bge_cdata.bge_rx_jumbo_dmamap[i]);
2654 			if (error) {
2655 				device_printf(sc->bge_dev,
2656 				    "can't create DMA map for jumbo RX\n");
2657 				return (ENOMEM);
2658 			}
2659 		}
2660 	}
2661 
2662 	return (0);
2663 }
2664 
2665 /*
2666  * Return true if this device has more than one port.
2667  */
2668 static int
2669 bge_has_multiple_ports(struct bge_softc *sc)
2670 {
2671 	device_t dev = sc->bge_dev;
2672 	u_int b, d, f, fscan, s;
2673 
2674 	d = pci_get_domain(dev);
2675 	b = pci_get_bus(dev);
2676 	s = pci_get_slot(dev);
2677 	f = pci_get_function(dev);
2678 	for (fscan = 0; fscan <= PCI_FUNCMAX; fscan++)
2679 		if (fscan != f && pci_find_dbsf(d, b, s, fscan) != NULL)
2680 			return (1);
2681 	return (0);
2682 }
2683 
2684 /*
2685  * Return true if MSI can be used with this device.
2686  */
2687 static int
2688 bge_can_use_msi(struct bge_softc *sc)
2689 {
2690 	int can_use_msi = 0;
2691 
2692 	/* Disable MSI for polling(4). */
2693 #ifdef DEVICE_POLLING
2694 	return (0);
2695 #endif
2696 	switch (sc->bge_asicrev) {
2697 	case BGE_ASICREV_BCM5714_A0:
2698 	case BGE_ASICREV_BCM5714:
2699 		/*
2700 		 * Apparently, MSI doesn't work when these chips are
2701 		 * configured in single-port mode.
2702 		 */
2703 		if (bge_has_multiple_ports(sc))
2704 			can_use_msi = 1;
2705 		break;
2706 	case BGE_ASICREV_BCM5750:
2707 		if (sc->bge_chiprev != BGE_CHIPREV_5750_AX &&
2708 		    sc->bge_chiprev != BGE_CHIPREV_5750_BX)
2709 			can_use_msi = 1;
2710 		break;
2711 	default:
2712 		if (BGE_IS_575X_PLUS(sc))
2713 			can_use_msi = 1;
2714 	}
2715 	return (can_use_msi);
2716 }
2717 
2718 static int
2719 bge_attach(device_t dev)
2720 {
2721 	struct ifnet *ifp;
2722 	struct bge_softc *sc;
2723 	uint32_t hwcfg = 0, misccfg;
2724 	u_char eaddr[ETHER_ADDR_LEN];
2725 	int capmask, error, f, msicount, phy_addr, reg, rid, trys;
2726 
2727 	sc = device_get_softc(dev);
2728 	sc->bge_dev = dev;
2729 
2730 	TASK_INIT(&sc->bge_intr_task, 0, bge_intr_task, sc);
2731 
2732 	/*
2733 	 * Map control/status registers.
2734 	 */
2735 	pci_enable_busmaster(dev);
2736 
2737 	rid = PCIR_BAR(0);
2738 	sc->bge_res = bus_alloc_resource_any(dev, SYS_RES_MEMORY, &rid,
2739 	    RF_ACTIVE);
2740 
2741 	if (sc->bge_res == NULL) {
2742 		device_printf (sc->bge_dev, "couldn't map memory\n");
2743 		error = ENXIO;
2744 		goto fail;
2745 	}
2746 
2747 	/* Save various chip information. */
2748 	sc->bge_chipid =
2749 	    pci_read_config(dev, BGE_PCI_MISC_CTL, 4) >>
2750 	    BGE_PCIMISCCTL_ASICREV_SHIFT;
2751 	if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_USE_PRODID_REG) {
2752 		/*
2753 		 * Find the ASCI revision.  Different chips use different
2754 		 * registers.
2755 		 */
2756 		switch (pci_get_device(dev)) {
2757 		case BCOM_DEVICEID_BCM5717:
2758 		case BCOM_DEVICEID_BCM5718:
2759 		case BCOM_DEVICEID_BCM5719:
2760 			sc->bge_chipid = pci_read_config(dev,
2761 			    BGE_PCI_GEN2_PRODID_ASICREV, 4);
2762 			break;
2763 		case BCOM_DEVICEID_BCM57761:
2764 		case BCOM_DEVICEID_BCM57765:
2765 		case BCOM_DEVICEID_BCM57781:
2766 		case BCOM_DEVICEID_BCM57785:
2767 		case BCOM_DEVICEID_BCM57791:
2768 		case BCOM_DEVICEID_BCM57795:
2769 			sc->bge_chipid = pci_read_config(dev,
2770 			    BGE_PCI_GEN15_PRODID_ASICREV, 4);
2771 			break;
2772 		default:
2773 			sc->bge_chipid = pci_read_config(dev,
2774 			    BGE_PCI_PRODID_ASICREV, 4);
2775 		}
2776 	}
2777 	sc->bge_asicrev = BGE_ASICREV(sc->bge_chipid);
2778 	sc->bge_chiprev = BGE_CHIPREV(sc->bge_chipid);
2779 
2780 	/* Set default PHY address. */
2781 	phy_addr = 1;
2782 	 /*
2783 	  * PHY address mapping for various devices.
2784 	  *
2785 	  *          | F0 Cu | F0 Sr | F1 Cu | F1 Sr |
2786 	  * ---------+-------+-------+-------+-------+
2787 	  * BCM57XX  |   1   |   X   |   X   |   X   |
2788 	  * BCM5704  |   1   |   X   |   1   |   X   |
2789 	  * BCM5717  |   1   |   8   |   2   |   9   |
2790 	  * BCM5719  |   1   |   8   |   2   |   9   |
2791 	  *
2792 	  * Other addresses may respond but they are not
2793 	  * IEEE compliant PHYs and should be ignored.
2794 	  */
2795 	if (sc->bge_asicrev == BGE_ASICREV_BCM5717 ||
2796 	    sc->bge_asicrev == BGE_ASICREV_BCM5719) {
2797 		f = pci_get_function(dev);
2798 		if (sc->bge_chipid == BGE_CHIPID_BCM5717_A0) {
2799 			if (CSR_READ_4(sc, BGE_SGDIG_STS) &
2800 			    BGE_SGDIGSTS_IS_SERDES)
2801 				phy_addr = f + 8;
2802 			else
2803 				phy_addr = f + 1;
2804 		} else {
2805 			if (CSR_READ_4(sc, BGE_CPMU_PHY_STRAP) &
2806 			    BGE_CPMU_PHY_STRAP_IS_SERDES)
2807 				phy_addr = f + 8;
2808 			else
2809 				phy_addr = f + 1;
2810 		}
2811 	}
2812 
2813 	/*
2814 	 * Don't enable Ethernet@WireSpeed for the 5700, 5906, or the
2815 	 * 5705 A0 and A1 chips.
2816 	 */
2817 	if (sc->bge_asicrev == BGE_ASICREV_BCM5700 ||
2818 	    (sc->bge_asicrev == BGE_ASICREV_BCM5705 &&
2819 	    (sc->bge_chipid != BGE_CHIPID_BCM5705_A0 &&
2820 	    sc->bge_chipid != BGE_CHIPID_BCM5705_A1)) ||
2821 	    sc->bge_asicrev == BGE_ASICREV_BCM5906)
2822 		sc->bge_phy_flags |= BGE_PHY_NO_WIRESPEED;
2823 
2824 	if (bge_has_eaddr(sc))
2825 		sc->bge_flags |= BGE_FLAG_EADDR;
2826 
2827 	/* Save chipset family. */
2828 	switch (sc->bge_asicrev) {
2829 	case BGE_ASICREV_BCM5717:
2830 	case BGE_ASICREV_BCM5719:
2831 		sc->bge_flags |= BGE_FLAG_SHORT_DMA_BUG;
2832 	case BGE_ASICREV_BCM57765:
2833 		sc->bge_flags |= BGE_FLAG_5717_PLUS | BGE_FLAG_5755_PLUS |
2834 		    BGE_FLAG_575X_PLUS | BGE_FLAG_5705_PLUS | BGE_FLAG_JUMBO |
2835 		    BGE_FLAG_JUMBO_FRAME;
2836 		if (sc->bge_asicrev == BGE_ASICREV_BCM5719 &&
2837 		    sc->bge_chipid == BGE_CHIPID_BCM5719_A0) {
2838 			/* Jumbo frame on BCM5719 A0 does not work. */
2839 			sc->bge_flags &= ~BGE_FLAG_JUMBO;
2840 		}
2841 		break;
2842 	case BGE_ASICREV_BCM5755:
2843 	case BGE_ASICREV_BCM5761:
2844 	case BGE_ASICREV_BCM5784:
2845 	case BGE_ASICREV_BCM5785:
2846 	case BGE_ASICREV_BCM5787:
2847 	case BGE_ASICREV_BCM57780:
2848 		sc->bge_flags |= BGE_FLAG_5755_PLUS | BGE_FLAG_575X_PLUS |
2849 		    BGE_FLAG_5705_PLUS;
2850 		break;
2851 	case BGE_ASICREV_BCM5700:
2852 	case BGE_ASICREV_BCM5701:
2853 	case BGE_ASICREV_BCM5703:
2854 	case BGE_ASICREV_BCM5704:
2855 		sc->bge_flags |= BGE_FLAG_5700_FAMILY | BGE_FLAG_JUMBO;
2856 		break;
2857 	case BGE_ASICREV_BCM5714_A0:
2858 	case BGE_ASICREV_BCM5780:
2859 	case BGE_ASICREV_BCM5714:
2860 		sc->bge_flags |= BGE_FLAG_5714_FAMILY | BGE_FLAG_JUMBO_STD;
2861 		/* FALLTHROUGH */
2862 	case BGE_ASICREV_BCM5750:
2863 	case BGE_ASICREV_BCM5752:
2864 	case BGE_ASICREV_BCM5906:
2865 		sc->bge_flags |= BGE_FLAG_575X_PLUS;
2866 		if (sc->bge_asicrev == BGE_ASICREV_BCM5906)
2867 			sc->bge_flags |= BGE_FLAG_SHORT_DMA_BUG;
2868 		/* FALLTHROUGH */
2869 	case BGE_ASICREV_BCM5705:
2870 		sc->bge_flags |= BGE_FLAG_5705_PLUS;
2871 		break;
2872 	}
2873 
2874 	/* Set various PHY bug flags. */
2875 	if (sc->bge_chipid == BGE_CHIPID_BCM5701_A0 ||
2876 	    sc->bge_chipid == BGE_CHIPID_BCM5701_B0)
2877 		sc->bge_phy_flags |= BGE_PHY_CRC_BUG;
2878 	if (sc->bge_chiprev == BGE_CHIPREV_5703_AX ||
2879 	    sc->bge_chiprev == BGE_CHIPREV_5704_AX)
2880 		sc->bge_phy_flags |= BGE_PHY_ADC_BUG;
2881 	if (sc->bge_chipid == BGE_CHIPID_BCM5704_A0)
2882 		sc->bge_phy_flags |= BGE_PHY_5704_A0_BUG;
2883 	if (pci_get_subvendor(dev) == DELL_VENDORID)
2884 		sc->bge_phy_flags |= BGE_PHY_NO_3LED;
2885 	if ((BGE_IS_5705_PLUS(sc)) &&
2886 	    sc->bge_asicrev != BGE_ASICREV_BCM5906 &&
2887 	    sc->bge_asicrev != BGE_ASICREV_BCM5717 &&
2888 	    sc->bge_asicrev != BGE_ASICREV_BCM5719 &&
2889 	    sc->bge_asicrev != BGE_ASICREV_BCM5785 &&
2890 	    sc->bge_asicrev != BGE_ASICREV_BCM57765 &&
2891 	    sc->bge_asicrev != BGE_ASICREV_BCM57780) {
2892 		if (sc->bge_asicrev == BGE_ASICREV_BCM5755 ||
2893 		    sc->bge_asicrev == BGE_ASICREV_BCM5761 ||
2894 		    sc->bge_asicrev == BGE_ASICREV_BCM5784 ||
2895 		    sc->bge_asicrev == BGE_ASICREV_BCM5787) {
2896 			if (pci_get_device(dev) != BCOM_DEVICEID_BCM5722 &&
2897 			    pci_get_device(dev) != BCOM_DEVICEID_BCM5756)
2898 				sc->bge_phy_flags |= BGE_PHY_JITTER_BUG;
2899 			if (pci_get_device(dev) == BCOM_DEVICEID_BCM5755M)
2900 				sc->bge_phy_flags |= BGE_PHY_ADJUST_TRIM;
2901 		} else
2902 			sc->bge_phy_flags |= BGE_PHY_BER_BUG;
2903 	}
2904 
2905 	/* Identify the chips that use an CPMU. */
2906 	if (BGE_IS_5717_PLUS(sc) ||
2907 	    sc->bge_asicrev == BGE_ASICREV_BCM5784 ||
2908 	    sc->bge_asicrev == BGE_ASICREV_BCM5761 ||
2909 	    sc->bge_asicrev == BGE_ASICREV_BCM5785 ||
2910 	    sc->bge_asicrev == BGE_ASICREV_BCM57780)
2911 		sc->bge_flags |= BGE_FLAG_CPMU_PRESENT;
2912 	if ((sc->bge_flags & BGE_FLAG_CPMU_PRESENT) != 0)
2913 		sc->bge_mi_mode = BGE_MIMODE_500KHZ_CONST;
2914 	else
2915 		sc->bge_mi_mode = BGE_MIMODE_BASE;
2916 	/* Enable auto polling for BCM570[0-5]. */
2917 	if (BGE_IS_5700_FAMILY(sc) || sc->bge_asicrev == BGE_ASICREV_BCM5705)
2918 		sc->bge_mi_mode |= BGE_MIMODE_AUTOPOLL;
2919 
2920 	/*
2921 	 * All controllers that are not 5755 or higher have 4GB
2922 	 * boundary DMA bug.
2923 	 * Whenever an address crosses a multiple of the 4GB boundary
2924 	 * (including 4GB, 8Gb, 12Gb, etc.) and makes the transition
2925 	 * from 0xX_FFFF_FFFF to 0x(X+1)_0000_0000 an internal DMA
2926 	 * state machine will lockup and cause the device to hang.
2927 	 */
2928 	if (BGE_IS_5755_PLUS(sc) == 0)
2929 		sc->bge_flags |= BGE_FLAG_4G_BNDRY_BUG;
2930 
2931 	misccfg = CSR_READ_4(sc, BGE_MISC_CFG) & BGE_MISCCFG_BOARD_ID;
2932 	if (sc->bge_asicrev == BGE_ASICREV_BCM5705) {
2933 		if (misccfg == BGE_MISCCFG_BOARD_ID_5788 ||
2934 		    misccfg == BGE_MISCCFG_BOARD_ID_5788M)
2935 			sc->bge_flags |= BGE_FLAG_5788;
2936 	}
2937 
2938 	capmask = BMSR_DEFCAPMASK;
2939 	if ((sc->bge_asicrev == BGE_ASICREV_BCM5703 &&
2940 	    (misccfg == 0x4000 || misccfg == 0x8000)) ||
2941 	    (sc->bge_asicrev == BGE_ASICREV_BCM5705 &&
2942 	    pci_get_vendor(dev) == BCOM_VENDORID &&
2943 	    (pci_get_device(dev) == BCOM_DEVICEID_BCM5901 ||
2944 	    pci_get_device(dev) == BCOM_DEVICEID_BCM5901A2 ||
2945 	    pci_get_device(dev) == BCOM_DEVICEID_BCM5705F)) ||
2946 	    (pci_get_vendor(dev) == BCOM_VENDORID &&
2947 	    (pci_get_device(dev) == BCOM_DEVICEID_BCM5751F ||
2948 	    pci_get_device(dev) == BCOM_DEVICEID_BCM5753F ||
2949 	    pci_get_device(dev) == BCOM_DEVICEID_BCM5787F)) ||
2950 	    pci_get_device(dev) == BCOM_DEVICEID_BCM57790 ||
2951 	    sc->bge_asicrev == BGE_ASICREV_BCM5906) {
2952 		/* These chips are 10/100 only. */
2953 		capmask &= ~BMSR_EXTSTAT;
2954 	}
2955 
2956 	/*
2957 	 * Some controllers seem to require a special firmware to use
2958 	 * TSO. But the firmware is not available to FreeBSD and Linux
2959 	 * claims that the TSO performed by the firmware is slower than
2960 	 * hardware based TSO. Moreover the firmware based TSO has one
2961 	 * known bug which can't handle TSO if ethernet header + IP/TCP
2962 	 * header is greater than 80 bytes. The workaround for the TSO
2963 	 * bug exist but it seems it's too expensive than not using
2964 	 * TSO at all. Some hardwares also have the TSO bug so limit
2965 	 * the TSO to the controllers that are not affected TSO issues
2966 	 * (e.g. 5755 or higher).
2967 	 */
2968 	if (BGE_IS_5717_PLUS(sc)) {
2969 		/* BCM5717 requires different TSO configuration. */
2970 		sc->bge_flags |= BGE_FLAG_TSO3;
2971 		if (sc->bge_asicrev == BGE_ASICREV_BCM5719 &&
2972 		    sc->bge_chipid == BGE_CHIPID_BCM5719_A0) {
2973 			/* TSO on BCM5719 A0 does not work. */
2974 			sc->bge_flags &= ~BGE_FLAG_TSO3;
2975 		}
2976 	} else if (BGE_IS_5755_PLUS(sc)) {
2977 		/*
2978 		 * BCM5754 and BCM5787 shares the same ASIC id so
2979 		 * explicit device id check is required.
2980 		 * Due to unknown reason TSO does not work on BCM5755M.
2981 		 */
2982 		if (pci_get_device(dev) != BCOM_DEVICEID_BCM5754 &&
2983 		    pci_get_device(dev) != BCOM_DEVICEID_BCM5754M &&
2984 		    pci_get_device(dev) != BCOM_DEVICEID_BCM5755M)
2985 			sc->bge_flags |= BGE_FLAG_TSO;
2986 	}
2987 
2988   	/*
2989 	 * Check if this is a PCI-X or PCI Express device.
2990   	 */
2991 	if (pci_find_cap(dev, PCIY_EXPRESS, &reg) == 0) {
2992 		/*
2993 		 * Found a PCI Express capabilities register, this
2994 		 * must be a PCI Express device.
2995 		 */
2996 		sc->bge_flags |= BGE_FLAG_PCIE;
2997 		sc->bge_expcap = reg;
2998 		if (sc->bge_asicrev == BGE_ASICREV_BCM5719)
2999 			pci_set_max_read_req(dev, 2048);
3000 		else if (pci_get_max_read_req(dev) != 4096)
3001 			pci_set_max_read_req(dev, 4096);
3002 	} else {
3003 		/*
3004 		 * Check if the device is in PCI-X Mode.
3005 		 * (This bit is not valid on PCI Express controllers.)
3006 		 */
3007 		if (pci_find_cap(dev, PCIY_PCIX, &reg) == 0)
3008 			sc->bge_pcixcap = reg;
3009 		if ((pci_read_config(dev, BGE_PCI_PCISTATE, 4) &
3010 		    BGE_PCISTATE_PCI_BUSMODE) == 0)
3011 			sc->bge_flags |= BGE_FLAG_PCIX;
3012 	}
3013 
3014 	/*
3015 	 * The 40bit DMA bug applies to the 5714/5715 controllers and is
3016 	 * not actually a MAC controller bug but an issue with the embedded
3017 	 * PCIe to PCI-X bridge in the device. Use 40bit DMA workaround.
3018 	 */
3019 	if (BGE_IS_5714_FAMILY(sc) && (sc->bge_flags & BGE_FLAG_PCIX))
3020 		sc->bge_flags |= BGE_FLAG_40BIT_BUG;
3021 	/*
3022 	 * Allocate the interrupt, using MSI if possible.  These devices
3023 	 * support 8 MSI messages, but only the first one is used in
3024 	 * normal operation.
3025 	 */
3026 	rid = 0;
3027 	if (pci_find_cap(sc->bge_dev, PCIY_MSI, &reg) == 0) {
3028 		sc->bge_msicap = reg;
3029 		if (bge_can_use_msi(sc)) {
3030 			msicount = pci_msi_count(dev);
3031 			if (msicount > 1)
3032 				msicount = 1;
3033 		} else
3034 			msicount = 0;
3035 		if (msicount == 1 && pci_alloc_msi(dev, &msicount) == 0) {
3036 			rid = 1;
3037 			sc->bge_flags |= BGE_FLAG_MSI;
3038 		}
3039 	}
3040 
3041 	/*
3042 	 * All controllers except BCM5700 supports tagged status but
3043 	 * we use tagged status only for MSI case on BCM5717. Otherwise
3044 	 * MSI on BCM5717 does not work.
3045 	 */
3046 #ifndef DEVICE_POLLING
3047 	if (sc->bge_flags & BGE_FLAG_MSI && BGE_IS_5717_PLUS(sc))
3048 		sc->bge_flags |= BGE_FLAG_TAGGED_STATUS;
3049 #endif
3050 
3051 	sc->bge_irq = bus_alloc_resource_any(dev, SYS_RES_IRQ, &rid,
3052 	    RF_SHAREABLE | RF_ACTIVE);
3053 
3054 	if (sc->bge_irq == NULL) {
3055 		device_printf(sc->bge_dev, "couldn't map interrupt\n");
3056 		error = ENXIO;
3057 		goto fail;
3058 	}
3059 
3060 	device_printf(dev,
3061 	    "CHIP ID 0x%08x; ASIC REV 0x%02x; CHIP REV 0x%02x; %s\n",
3062 	    sc->bge_chipid, sc->bge_asicrev, sc->bge_chiprev,
3063 	    (sc->bge_flags & BGE_FLAG_PCIX) ? "PCI-X" :
3064 	    ((sc->bge_flags & BGE_FLAG_PCIE) ? "PCI-E" : "PCI"));
3065 
3066 	BGE_LOCK_INIT(sc, device_get_nameunit(dev));
3067 
3068 	/* Try to reset the chip. */
3069 	if (bge_reset(sc)) {
3070 		device_printf(sc->bge_dev, "chip reset failed\n");
3071 		error = ENXIO;
3072 		goto fail;
3073 	}
3074 
3075 	sc->bge_asf_mode = 0;
3076 	if (bge_allow_asf && (bge_readmem_ind(sc, BGE_SOFTWARE_GENCOMM_SIG)
3077 	    == BGE_MAGIC_NUMBER)) {
3078 		if (bge_readmem_ind(sc, BGE_SOFTWARE_GENCOMM_NICCFG)
3079 		    & BGE_HWCFG_ASF) {
3080 			sc->bge_asf_mode |= ASF_ENABLE;
3081 			sc->bge_asf_mode |= ASF_STACKUP;
3082 			if (BGE_IS_575X_PLUS(sc))
3083 				sc->bge_asf_mode |= ASF_NEW_HANDSHAKE;
3084 		}
3085 	}
3086 
3087 	/* Try to reset the chip again the nice way. */
3088 	bge_stop_fw(sc);
3089 	bge_sig_pre_reset(sc, BGE_RESET_STOP);
3090 	if (bge_reset(sc)) {
3091 		device_printf(sc->bge_dev, "chip reset failed\n");
3092 		error = ENXIO;
3093 		goto fail;
3094 	}
3095 
3096 	bge_sig_legacy(sc, BGE_RESET_STOP);
3097 	bge_sig_post_reset(sc, BGE_RESET_STOP);
3098 
3099 	if (bge_chipinit(sc)) {
3100 		device_printf(sc->bge_dev, "chip initialization failed\n");
3101 		error = ENXIO;
3102 		goto fail;
3103 	}
3104 
3105 	error = bge_get_eaddr(sc, eaddr);
3106 	if (error) {
3107 		device_printf(sc->bge_dev,
3108 		    "failed to read station address\n");
3109 		error = ENXIO;
3110 		goto fail;
3111 	}
3112 
3113 	/* 5705 limits RX return ring to 512 entries. */
3114 	if (BGE_IS_5717_PLUS(sc))
3115 		sc->bge_return_ring_cnt = BGE_RETURN_RING_CNT;
3116 	else if (BGE_IS_5705_PLUS(sc))
3117 		sc->bge_return_ring_cnt = BGE_RETURN_RING_CNT_5705;
3118 	else
3119 		sc->bge_return_ring_cnt = BGE_RETURN_RING_CNT;
3120 
3121 	if (bge_dma_alloc(sc)) {
3122 		device_printf(sc->bge_dev,
3123 		    "failed to allocate DMA resources\n");
3124 		error = ENXIO;
3125 		goto fail;
3126 	}
3127 
3128 	bge_add_sysctls(sc);
3129 
3130 	/* Set default tuneable values. */
3131 	sc->bge_stat_ticks = BGE_TICKS_PER_SEC;
3132 	sc->bge_rx_coal_ticks = 150;
3133 	sc->bge_tx_coal_ticks = 150;
3134 	sc->bge_rx_max_coal_bds = 10;
3135 	sc->bge_tx_max_coal_bds = 10;
3136 
3137 	/* Initialize checksum features to use. */
3138 	sc->bge_csum_features = BGE_CSUM_FEATURES;
3139 	if (sc->bge_forced_udpcsum != 0)
3140 		sc->bge_csum_features |= CSUM_UDP;
3141 
3142 	/* Set up ifnet structure */
3143 	ifp = sc->bge_ifp = if_alloc(IFT_ETHER);
3144 	if (ifp == NULL) {
3145 		device_printf(sc->bge_dev, "failed to if_alloc()\n");
3146 		error = ENXIO;
3147 		goto fail;
3148 	}
3149 	ifp->if_softc = sc;
3150 	if_initname(ifp, device_get_name(dev), device_get_unit(dev));
3151 	ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
3152 	ifp->if_ioctl = bge_ioctl;
3153 	ifp->if_start = bge_start;
3154 	ifp->if_init = bge_init;
3155 	ifp->if_snd.ifq_drv_maxlen = BGE_TX_RING_CNT - 1;
3156 	IFQ_SET_MAXLEN(&ifp->if_snd, ifp->if_snd.ifq_drv_maxlen);
3157 	IFQ_SET_READY(&ifp->if_snd);
3158 	ifp->if_hwassist = sc->bge_csum_features;
3159 	ifp->if_capabilities = IFCAP_HWCSUM | IFCAP_VLAN_HWTAGGING |
3160 	    IFCAP_VLAN_MTU;
3161 	if ((sc->bge_flags & (BGE_FLAG_TSO | BGE_FLAG_TSO3)) != 0) {
3162 		ifp->if_hwassist |= CSUM_TSO;
3163 		ifp->if_capabilities |= IFCAP_TSO4 | IFCAP_VLAN_HWTSO;
3164 	}
3165 #ifdef IFCAP_VLAN_HWCSUM
3166 	ifp->if_capabilities |= IFCAP_VLAN_HWCSUM;
3167 #endif
3168 	ifp->if_capenable = ifp->if_capabilities;
3169 #ifdef DEVICE_POLLING
3170 	ifp->if_capabilities |= IFCAP_POLLING;
3171 #endif
3172 
3173 	/*
3174 	 * 5700 B0 chips do not support checksumming correctly due
3175 	 * to hardware bugs.
3176 	 */
3177 	if (sc->bge_chipid == BGE_CHIPID_BCM5700_B0) {
3178 		ifp->if_capabilities &= ~IFCAP_HWCSUM;
3179 		ifp->if_capenable &= ~IFCAP_HWCSUM;
3180 		ifp->if_hwassist = 0;
3181 	}
3182 
3183 	/*
3184 	 * Figure out what sort of media we have by checking the
3185 	 * hardware config word in the first 32k of NIC internal memory,
3186 	 * or fall back to examining the EEPROM if necessary.
3187 	 * Note: on some BCM5700 cards, this value appears to be unset.
3188 	 * If that's the case, we have to rely on identifying the NIC
3189 	 * by its PCI subsystem ID, as we do below for the SysKonnect
3190 	 * SK-9D41.
3191 	 */
3192 	if (bge_readmem_ind(sc, BGE_SOFTWARE_GENCOMM_SIG) == BGE_MAGIC_NUMBER)
3193 		hwcfg = bge_readmem_ind(sc, BGE_SOFTWARE_GENCOMM_NICCFG);
3194 	else if ((sc->bge_flags & BGE_FLAG_EADDR) &&
3195 	    (sc->bge_asicrev != BGE_ASICREV_BCM5906)) {
3196 		if (bge_read_eeprom(sc, (caddr_t)&hwcfg, BGE_EE_HWCFG_OFFSET,
3197 		    sizeof(hwcfg))) {
3198 			device_printf(sc->bge_dev, "failed to read EEPROM\n");
3199 			error = ENXIO;
3200 			goto fail;
3201 		}
3202 		hwcfg = ntohl(hwcfg);
3203 	}
3204 
3205 	/* The SysKonnect SK-9D41 is a 1000baseSX card. */
3206 	if ((pci_read_config(dev, BGE_PCI_SUBSYS, 4) >> 16) ==
3207 	    SK_SUBSYSID_9D41 || (hwcfg & BGE_HWCFG_MEDIA) == BGE_MEDIA_FIBER) {
3208 		if (BGE_IS_5714_FAMILY(sc))
3209 			sc->bge_flags |= BGE_FLAG_MII_SERDES;
3210 		else
3211 			sc->bge_flags |= BGE_FLAG_TBI;
3212 	}
3213 
3214 	if (sc->bge_flags & BGE_FLAG_TBI) {
3215 		ifmedia_init(&sc->bge_ifmedia, IFM_IMASK, bge_ifmedia_upd,
3216 		    bge_ifmedia_sts);
3217 		ifmedia_add(&sc->bge_ifmedia, IFM_ETHER | IFM_1000_SX, 0, NULL);
3218 		ifmedia_add(&sc->bge_ifmedia, IFM_ETHER | IFM_1000_SX | IFM_FDX,
3219 		    0, NULL);
3220 		ifmedia_add(&sc->bge_ifmedia, IFM_ETHER | IFM_AUTO, 0, NULL);
3221 		ifmedia_set(&sc->bge_ifmedia, IFM_ETHER | IFM_AUTO);
3222 		sc->bge_ifmedia.ifm_media = sc->bge_ifmedia.ifm_cur->ifm_media;
3223 	} else {
3224 		/*
3225 		 * Do transceiver setup and tell the firmware the
3226 		 * driver is down so we can try to get access the
3227 		 * probe if ASF is running.  Retry a couple of times
3228 		 * if we get a conflict with the ASF firmware accessing
3229 		 * the PHY.
3230 		 */
3231 		trys = 0;
3232 		BGE_CLRBIT(sc, BGE_MODE_CTL, BGE_MODECTL_STACKUP);
3233 again:
3234 		bge_asf_driver_up(sc);
3235 
3236 		error = mii_attach(dev, &sc->bge_miibus, ifp, bge_ifmedia_upd,
3237 		    bge_ifmedia_sts, capmask, phy_addr, MII_OFFSET_ANY,
3238 		    MIIF_DOPAUSE);
3239 		if (error != 0) {
3240 			if (trys++ < 4) {
3241 				device_printf(sc->bge_dev, "Try again\n");
3242 				bge_miibus_writereg(sc->bge_dev, 1, MII_BMCR,
3243 				    BMCR_RESET);
3244 				goto again;
3245 			}
3246 			device_printf(sc->bge_dev, "attaching PHYs failed\n");
3247 			goto fail;
3248 		}
3249 
3250 		/*
3251 		 * Now tell the firmware we are going up after probing the PHY
3252 		 */
3253 		if (sc->bge_asf_mode & ASF_STACKUP)
3254 			BGE_SETBIT(sc, BGE_MODE_CTL, BGE_MODECTL_STACKUP);
3255 	}
3256 
3257 	/*
3258 	 * When using the BCM5701 in PCI-X mode, data corruption has
3259 	 * been observed in the first few bytes of some received packets.
3260 	 * Aligning the packet buffer in memory eliminates the corruption.
3261 	 * Unfortunately, this misaligns the packet payloads.  On platforms
3262 	 * which do not support unaligned accesses, we will realign the
3263 	 * payloads by copying the received packets.
3264 	 */
3265 	if (sc->bge_asicrev == BGE_ASICREV_BCM5701 &&
3266 	    sc->bge_flags & BGE_FLAG_PCIX)
3267                 sc->bge_flags |= BGE_FLAG_RX_ALIGNBUG;
3268 
3269 	/*
3270 	 * Call MI attach routine.
3271 	 */
3272 	ether_ifattach(ifp, eaddr);
3273 	callout_init_mtx(&sc->bge_stat_ch, &sc->bge_mtx, 0);
3274 
3275 	/* Tell upper layer we support long frames. */
3276 	ifp->if_data.ifi_hdrlen = sizeof(struct ether_vlan_header);
3277 
3278 	/*
3279 	 * Hookup IRQ last.
3280 	 */
3281 	if (BGE_IS_5755_PLUS(sc) && sc->bge_flags & BGE_FLAG_MSI) {
3282 		/* Take advantage of single-shot MSI. */
3283 		CSR_WRITE_4(sc, BGE_MSI_MODE, CSR_READ_4(sc, BGE_MSI_MODE) &
3284 		    ~BGE_MSIMODE_ONE_SHOT_DISABLE);
3285 		sc->bge_tq = taskqueue_create_fast("bge_taskq", M_WAITOK,
3286 		    taskqueue_thread_enqueue, &sc->bge_tq);
3287 		if (sc->bge_tq == NULL) {
3288 			device_printf(dev, "could not create taskqueue.\n");
3289 			ether_ifdetach(ifp);
3290 			error = ENXIO;
3291 			goto fail;
3292 		}
3293 		taskqueue_start_threads(&sc->bge_tq, 1, PI_NET, "%s taskq",
3294 		    device_get_nameunit(sc->bge_dev));
3295 		error = bus_setup_intr(dev, sc->bge_irq,
3296 		    INTR_TYPE_NET | INTR_MPSAFE, bge_msi_intr, NULL, sc,
3297 		    &sc->bge_intrhand);
3298 		if (error)
3299 			ether_ifdetach(ifp);
3300 	} else
3301 		error = bus_setup_intr(dev, sc->bge_irq,
3302 		    INTR_TYPE_NET | INTR_MPSAFE, NULL, bge_intr, sc,
3303 		    &sc->bge_intrhand);
3304 
3305 	if (error) {
3306 		bge_detach(dev);
3307 		device_printf(sc->bge_dev, "couldn't set up irq\n");
3308 	}
3309 
3310 	return (0);
3311 
3312 fail:
3313 	bge_release_resources(sc);
3314 
3315 	return (error);
3316 }
3317 
3318 static int
3319 bge_detach(device_t dev)
3320 {
3321 	struct bge_softc *sc;
3322 	struct ifnet *ifp;
3323 
3324 	sc = device_get_softc(dev);
3325 	ifp = sc->bge_ifp;
3326 
3327 #ifdef DEVICE_POLLING
3328 	if (ifp->if_capenable & IFCAP_POLLING)
3329 		ether_poll_deregister(ifp);
3330 #endif
3331 
3332 	BGE_LOCK(sc);
3333 	bge_stop(sc);
3334 	bge_reset(sc);
3335 	BGE_UNLOCK(sc);
3336 
3337 	callout_drain(&sc->bge_stat_ch);
3338 
3339 	if (sc->bge_tq)
3340 		taskqueue_drain(sc->bge_tq, &sc->bge_intr_task);
3341 	ether_ifdetach(ifp);
3342 
3343 	if (sc->bge_flags & BGE_FLAG_TBI) {
3344 		ifmedia_removeall(&sc->bge_ifmedia);
3345 	} else {
3346 		bus_generic_detach(dev);
3347 		device_delete_child(dev, sc->bge_miibus);
3348 	}
3349 
3350 	bge_release_resources(sc);
3351 
3352 	return (0);
3353 }
3354 
3355 static void
3356 bge_release_resources(struct bge_softc *sc)
3357 {
3358 	device_t dev;
3359 
3360 	dev = sc->bge_dev;
3361 
3362 	if (sc->bge_tq != NULL)
3363 		taskqueue_free(sc->bge_tq);
3364 
3365 	if (sc->bge_intrhand != NULL)
3366 		bus_teardown_intr(dev, sc->bge_irq, sc->bge_intrhand);
3367 
3368 	if (sc->bge_irq != NULL)
3369 		bus_release_resource(dev, SYS_RES_IRQ,
3370 		    sc->bge_flags & BGE_FLAG_MSI ? 1 : 0, sc->bge_irq);
3371 
3372 	if (sc->bge_flags & BGE_FLAG_MSI)
3373 		pci_release_msi(dev);
3374 
3375 	if (sc->bge_res != NULL)
3376 		bus_release_resource(dev, SYS_RES_MEMORY,
3377 		    PCIR_BAR(0), sc->bge_res);
3378 
3379 	if (sc->bge_ifp != NULL)
3380 		if_free(sc->bge_ifp);
3381 
3382 	bge_dma_free(sc);
3383 
3384 	if (mtx_initialized(&sc->bge_mtx))	/* XXX */
3385 		BGE_LOCK_DESTROY(sc);
3386 }
3387 
3388 static int
3389 bge_reset(struct bge_softc *sc)
3390 {
3391 	device_t dev;
3392 	uint32_t cachesize, command, pcistate, reset, val;
3393 	void (*write_op)(struct bge_softc *, int, int);
3394 	uint16_t devctl;
3395 	int i;
3396 
3397 	dev = sc->bge_dev;
3398 
3399 	if (BGE_IS_575X_PLUS(sc) && !BGE_IS_5714_FAMILY(sc) &&
3400 	    (sc->bge_asicrev != BGE_ASICREV_BCM5906)) {
3401 		if (sc->bge_flags & BGE_FLAG_PCIE)
3402 			write_op = bge_writemem_direct;
3403 		else
3404 			write_op = bge_writemem_ind;
3405 	} else
3406 		write_op = bge_writereg_ind;
3407 
3408 	/* Save some important PCI state. */
3409 	cachesize = pci_read_config(dev, BGE_PCI_CACHESZ, 4);
3410 	command = pci_read_config(dev, BGE_PCI_CMD, 4);
3411 	pcistate = pci_read_config(dev, BGE_PCI_PCISTATE, 4);
3412 
3413 	pci_write_config(dev, BGE_PCI_MISC_CTL,
3414 	    BGE_PCIMISCCTL_INDIRECT_ACCESS | BGE_PCIMISCCTL_MASK_PCI_INTR |
3415 	    BGE_HIF_SWAP_OPTIONS | BGE_PCIMISCCTL_PCISTATE_RW, 4);
3416 
3417 	/* Disable fastboot on controllers that support it. */
3418 	if (sc->bge_asicrev == BGE_ASICREV_BCM5752 ||
3419 	    BGE_IS_5755_PLUS(sc)) {
3420 		if (bootverbose)
3421 			device_printf(dev, "Disabling fastboot\n");
3422 		CSR_WRITE_4(sc, BGE_FASTBOOT_PC, 0x0);
3423 	}
3424 
3425 	/*
3426 	 * Write the magic number to SRAM at offset 0xB50.
3427 	 * When firmware finishes its initialization it will
3428 	 * write ~BGE_MAGIC_NUMBER to the same location.
3429 	 */
3430 	bge_writemem_ind(sc, BGE_SOFTWARE_GENCOMM, BGE_MAGIC_NUMBER);
3431 
3432 	reset = BGE_MISCCFG_RESET_CORE_CLOCKS | BGE_32BITTIME_66MHZ;
3433 
3434 	/* XXX: Broadcom Linux driver. */
3435 	if (sc->bge_flags & BGE_FLAG_PCIE) {
3436 		if (CSR_READ_4(sc, 0x7E2C) == 0x60)	/* PCIE 1.0 */
3437 			CSR_WRITE_4(sc, 0x7E2C, 0x20);
3438 		if (sc->bge_chipid != BGE_CHIPID_BCM5750_A0) {
3439 			/* Prevent PCIE link training during global reset */
3440 			CSR_WRITE_4(sc, BGE_MISC_CFG, 1 << 29);
3441 			reset |= 1 << 29;
3442 		}
3443 	}
3444 
3445 	/*
3446 	 * Set GPHY Power Down Override to leave GPHY
3447 	 * powered up in D0 uninitialized.
3448 	 */
3449 	if (BGE_IS_5705_PLUS(sc))
3450 		reset |= BGE_MISCCFG_GPHY_PD_OVERRIDE;
3451 
3452 	/* Issue global reset */
3453 	write_op(sc, BGE_MISC_CFG, reset);
3454 
3455 	if (sc->bge_asicrev == BGE_ASICREV_BCM5906) {
3456 		val = CSR_READ_4(sc, BGE_VCPU_STATUS);
3457 		CSR_WRITE_4(sc, BGE_VCPU_STATUS,
3458 		    val | BGE_VCPU_STATUS_DRV_RESET);
3459 		val = CSR_READ_4(sc, BGE_VCPU_EXT_CTRL);
3460 		CSR_WRITE_4(sc, BGE_VCPU_EXT_CTRL,
3461 		    val & ~BGE_VCPU_EXT_CTRL_HALT_CPU);
3462 	}
3463 
3464 	DELAY(1000);
3465 
3466 	/* XXX: Broadcom Linux driver. */
3467 	if (sc->bge_flags & BGE_FLAG_PCIE) {
3468 		if (sc->bge_chipid == BGE_CHIPID_BCM5750_A0) {
3469 			DELAY(500000); /* wait for link training to complete */
3470 			val = pci_read_config(dev, 0xC4, 4);
3471 			pci_write_config(dev, 0xC4, val | (1 << 15), 4);
3472 		}
3473 		devctl = pci_read_config(dev,
3474 		    sc->bge_expcap + PCIR_EXPRESS_DEVICE_CTL, 2);
3475 		/* Clear enable no snoop and disable relaxed ordering. */
3476 		devctl &= ~(PCIM_EXP_CTL_RELAXED_ORD_ENABLE |
3477 		    PCIM_EXP_CTL_NOSNOOP_ENABLE);
3478 		/* Set PCIE max payload size to 128. */
3479 		devctl &= ~PCIM_EXP_CTL_MAX_PAYLOAD;
3480 		pci_write_config(dev, sc->bge_expcap + PCIR_EXPRESS_DEVICE_CTL,
3481 		    devctl, 2);
3482 		/* Clear error status. */
3483 		pci_write_config(dev, sc->bge_expcap + PCIR_EXPRESS_DEVICE_STA,
3484 		    PCIM_EXP_STA_CORRECTABLE_ERROR |
3485 		    PCIM_EXP_STA_NON_FATAL_ERROR | PCIM_EXP_STA_FATAL_ERROR |
3486 		    PCIM_EXP_STA_UNSUPPORTED_REQ, 2);
3487 	}
3488 
3489 	/* Reset some of the PCI state that got zapped by reset. */
3490 	pci_write_config(dev, BGE_PCI_MISC_CTL,
3491 	    BGE_PCIMISCCTL_INDIRECT_ACCESS | BGE_PCIMISCCTL_MASK_PCI_INTR |
3492 	    BGE_HIF_SWAP_OPTIONS | BGE_PCIMISCCTL_PCISTATE_RW, 4);
3493 	pci_write_config(dev, BGE_PCI_CACHESZ, cachesize, 4);
3494 	pci_write_config(dev, BGE_PCI_CMD, command, 4);
3495 	write_op(sc, BGE_MISC_CFG, BGE_32BITTIME_66MHZ);
3496 	/*
3497 	 * Disable PCI-X relaxed ordering to ensure status block update
3498 	 * comes first then packet buffer DMA. Otherwise driver may
3499 	 * read stale status block.
3500 	 */
3501 	if (sc->bge_flags & BGE_FLAG_PCIX) {
3502 		devctl = pci_read_config(dev,
3503 		    sc->bge_pcixcap + PCIXR_COMMAND, 2);
3504 		devctl &= ~PCIXM_COMMAND_ERO;
3505 		if (sc->bge_asicrev == BGE_ASICREV_BCM5703) {
3506 			devctl &= ~PCIXM_COMMAND_MAX_READ;
3507 			devctl |= PCIXM_COMMAND_MAX_READ_2048;
3508 		} else if (sc->bge_asicrev == BGE_ASICREV_BCM5704) {
3509 			devctl &= ~(PCIXM_COMMAND_MAX_SPLITS |
3510 			    PCIXM_COMMAND_MAX_READ);
3511 			devctl |= PCIXM_COMMAND_MAX_READ_2048;
3512 		}
3513 		pci_write_config(dev, sc->bge_pcixcap + PCIXR_COMMAND,
3514 		    devctl, 2);
3515 	}
3516 	/* Re-enable MSI, if necessary, and enable the memory arbiter. */
3517 	if (BGE_IS_5714_FAMILY(sc)) {
3518 		/* This chip disables MSI on reset. */
3519 		if (sc->bge_flags & BGE_FLAG_MSI) {
3520 			val = pci_read_config(dev,
3521 			    sc->bge_msicap + PCIR_MSI_CTRL, 2);
3522 			pci_write_config(dev,
3523 			    sc->bge_msicap + PCIR_MSI_CTRL,
3524 			    val | PCIM_MSICTRL_MSI_ENABLE, 2);
3525 			val = CSR_READ_4(sc, BGE_MSI_MODE);
3526 			CSR_WRITE_4(sc, BGE_MSI_MODE,
3527 			    val | BGE_MSIMODE_ENABLE);
3528 		}
3529 		val = CSR_READ_4(sc, BGE_MARB_MODE);
3530 		CSR_WRITE_4(sc, BGE_MARB_MODE, BGE_MARBMODE_ENABLE | val);
3531 	} else
3532 		CSR_WRITE_4(sc, BGE_MARB_MODE, BGE_MARBMODE_ENABLE);
3533 
3534 	if (sc->bge_asicrev == BGE_ASICREV_BCM5906) {
3535 		for (i = 0; i < BGE_TIMEOUT; i++) {
3536 			val = CSR_READ_4(sc, BGE_VCPU_STATUS);
3537 			if (val & BGE_VCPU_STATUS_INIT_DONE)
3538 				break;
3539 			DELAY(100);
3540 		}
3541 		if (i == BGE_TIMEOUT) {
3542 			device_printf(dev, "reset timed out\n");
3543 			return (1);
3544 		}
3545 	} else {
3546 		/*
3547 		 * Poll until we see the 1's complement of the magic number.
3548 		 * This indicates that the firmware initialization is complete.
3549 		 * We expect this to fail if no chip containing the Ethernet
3550 		 * address is fitted though.
3551 		 */
3552 		for (i = 0; i < BGE_TIMEOUT; i++) {
3553 			DELAY(10);
3554 			val = bge_readmem_ind(sc, BGE_SOFTWARE_GENCOMM);
3555 			if (val == ~BGE_MAGIC_NUMBER)
3556 				break;
3557 		}
3558 
3559 		if ((sc->bge_flags & BGE_FLAG_EADDR) && i == BGE_TIMEOUT)
3560 			device_printf(dev,
3561 			    "firmware handshake timed out, found 0x%08x\n",
3562 			    val);
3563 		/* BCM57765 A0 needs additional time before accessing. */
3564 		if (sc->bge_chipid == BGE_CHIPID_BCM57765_A0)
3565 			DELAY(10 * 1000);	/* XXX */
3566 	}
3567 
3568 	/*
3569 	 * XXX Wait for the value of the PCISTATE register to
3570 	 * return to its original pre-reset state. This is a
3571 	 * fairly good indicator of reset completion. If we don't
3572 	 * wait for the reset to fully complete, trying to read
3573 	 * from the device's non-PCI registers may yield garbage
3574 	 * results.
3575 	 */
3576 	for (i = 0; i < BGE_TIMEOUT; i++) {
3577 		if (pci_read_config(dev, BGE_PCI_PCISTATE, 4) == pcistate)
3578 			break;
3579 		DELAY(10);
3580 	}
3581 
3582 	/* Fix up byte swapping. */
3583 	CSR_WRITE_4(sc, BGE_MODE_CTL, BGE_DMA_SWAP_OPTIONS |
3584 	    BGE_MODECTL_BYTESWAP_DATA);
3585 
3586 	/* Tell the ASF firmware we are up */
3587 	if (sc->bge_asf_mode & ASF_STACKUP)
3588 		BGE_SETBIT(sc, BGE_MODE_CTL, BGE_MODECTL_STACKUP);
3589 
3590 	CSR_WRITE_4(sc, BGE_MAC_MODE, 0);
3591 
3592 	/*
3593 	 * The 5704 in TBI mode apparently needs some special
3594 	 * adjustment to insure the SERDES drive level is set
3595 	 * to 1.2V.
3596 	 */
3597 	if (sc->bge_asicrev == BGE_ASICREV_BCM5704 &&
3598 	    sc->bge_flags & BGE_FLAG_TBI) {
3599 		val = CSR_READ_4(sc, BGE_SERDES_CFG);
3600 		val = (val & ~0xFFF) | 0x880;
3601 		CSR_WRITE_4(sc, BGE_SERDES_CFG, val);
3602 	}
3603 
3604 	/* XXX: Broadcom Linux driver. */
3605 	if (sc->bge_flags & BGE_FLAG_PCIE &&
3606 	    !BGE_IS_5717_PLUS(sc) &&
3607 	    sc->bge_chipid != BGE_CHIPID_BCM5750_A0 &&
3608 	    sc->bge_asicrev != BGE_ASICREV_BCM5785) {
3609 		/* Enable Data FIFO protection. */
3610 		val = CSR_READ_4(sc, 0x7C00);
3611 		CSR_WRITE_4(sc, 0x7C00, val | (1 << 25));
3612 	}
3613 	DELAY(10000);
3614 
3615 	return (0);
3616 }
3617 
3618 static __inline void
3619 bge_rxreuse_std(struct bge_softc *sc, int i)
3620 {
3621 	struct bge_rx_bd *r;
3622 
3623 	r = &sc->bge_ldata.bge_rx_std_ring[sc->bge_std];
3624 	r->bge_flags = BGE_RXBDFLAG_END;
3625 	r->bge_len = sc->bge_cdata.bge_rx_std_seglen[i];
3626 	r->bge_idx = i;
3627 	BGE_INC(sc->bge_std, BGE_STD_RX_RING_CNT);
3628 }
3629 
3630 static __inline void
3631 bge_rxreuse_jumbo(struct bge_softc *sc, int i)
3632 {
3633 	struct bge_extrx_bd *r;
3634 
3635 	r = &sc->bge_ldata.bge_rx_jumbo_ring[sc->bge_jumbo];
3636 	r->bge_flags = BGE_RXBDFLAG_JUMBO_RING | BGE_RXBDFLAG_END;
3637 	r->bge_len0 = sc->bge_cdata.bge_rx_jumbo_seglen[i][0];
3638 	r->bge_len1 = sc->bge_cdata.bge_rx_jumbo_seglen[i][1];
3639 	r->bge_len2 = sc->bge_cdata.bge_rx_jumbo_seglen[i][2];
3640 	r->bge_len3 = sc->bge_cdata.bge_rx_jumbo_seglen[i][3];
3641 	r->bge_idx = i;
3642 	BGE_INC(sc->bge_jumbo, BGE_JUMBO_RX_RING_CNT);
3643 }
3644 
3645 /*
3646  * Frame reception handling. This is called if there's a frame
3647  * on the receive return list.
3648  *
3649  * Note: we have to be able to handle two possibilities here:
3650  * 1) the frame is from the jumbo receive ring
3651  * 2) the frame is from the standard receive ring
3652  */
3653 
3654 static int
3655 bge_rxeof(struct bge_softc *sc, uint16_t rx_prod, int holdlck)
3656 {
3657 	struct ifnet *ifp;
3658 	int rx_npkts = 0, stdcnt = 0, jumbocnt = 0;
3659 	uint16_t rx_cons;
3660 
3661 	rx_cons = sc->bge_rx_saved_considx;
3662 
3663 	/* Nothing to do. */
3664 	if (rx_cons == rx_prod)
3665 		return (rx_npkts);
3666 
3667 	ifp = sc->bge_ifp;
3668 
3669 	bus_dmamap_sync(sc->bge_cdata.bge_rx_return_ring_tag,
3670 	    sc->bge_cdata.bge_rx_return_ring_map, BUS_DMASYNC_POSTREAD);
3671 	bus_dmamap_sync(sc->bge_cdata.bge_rx_std_ring_tag,
3672 	    sc->bge_cdata.bge_rx_std_ring_map, BUS_DMASYNC_POSTWRITE);
3673 	if (BGE_IS_JUMBO_CAPABLE(sc) &&
3674 	    ifp->if_mtu + ETHER_HDR_LEN + ETHER_CRC_LEN + ETHER_VLAN_ENCAP_LEN >
3675 	    (MCLBYTES - ETHER_ALIGN))
3676 		bus_dmamap_sync(sc->bge_cdata.bge_rx_jumbo_ring_tag,
3677 		    sc->bge_cdata.bge_rx_jumbo_ring_map, BUS_DMASYNC_POSTWRITE);
3678 
3679 	while (rx_cons != rx_prod) {
3680 		struct bge_rx_bd	*cur_rx;
3681 		uint32_t		rxidx;
3682 		struct mbuf		*m = NULL;
3683 		uint16_t		vlan_tag = 0;
3684 		int			have_tag = 0;
3685 
3686 #ifdef DEVICE_POLLING
3687 		if (ifp->if_capenable & IFCAP_POLLING) {
3688 			if (sc->rxcycles <= 0)
3689 				break;
3690 			sc->rxcycles--;
3691 		}
3692 #endif
3693 
3694 		cur_rx = &sc->bge_ldata.bge_rx_return_ring[rx_cons];
3695 
3696 		rxidx = cur_rx->bge_idx;
3697 		BGE_INC(rx_cons, sc->bge_return_ring_cnt);
3698 
3699 		if (ifp->if_capenable & IFCAP_VLAN_HWTAGGING &&
3700 		    cur_rx->bge_flags & BGE_RXBDFLAG_VLAN_TAG) {
3701 			have_tag = 1;
3702 			vlan_tag = cur_rx->bge_vlan_tag;
3703 		}
3704 
3705 		if (cur_rx->bge_flags & BGE_RXBDFLAG_JUMBO_RING) {
3706 			jumbocnt++;
3707 			m = sc->bge_cdata.bge_rx_jumbo_chain[rxidx];
3708 			if (cur_rx->bge_flags & BGE_RXBDFLAG_ERROR) {
3709 				bge_rxreuse_jumbo(sc, rxidx);
3710 				continue;
3711 			}
3712 			if (bge_newbuf_jumbo(sc, rxidx) != 0) {
3713 				bge_rxreuse_jumbo(sc, rxidx);
3714 				ifp->if_iqdrops++;
3715 				continue;
3716 			}
3717 			BGE_INC(sc->bge_jumbo, BGE_JUMBO_RX_RING_CNT);
3718 		} else {
3719 			stdcnt++;
3720 			m = sc->bge_cdata.bge_rx_std_chain[rxidx];
3721 			if (cur_rx->bge_flags & BGE_RXBDFLAG_ERROR) {
3722 				bge_rxreuse_std(sc, rxidx);
3723 				continue;
3724 			}
3725 			if (bge_newbuf_std(sc, rxidx) != 0) {
3726 				bge_rxreuse_std(sc, rxidx);
3727 				ifp->if_iqdrops++;
3728 				continue;
3729 			}
3730 			BGE_INC(sc->bge_std, BGE_STD_RX_RING_CNT);
3731 		}
3732 
3733 		ifp->if_ipackets++;
3734 #ifndef __NO_STRICT_ALIGNMENT
3735 		/*
3736 		 * For architectures with strict alignment we must make sure
3737 		 * the payload is aligned.
3738 		 */
3739 		if (sc->bge_flags & BGE_FLAG_RX_ALIGNBUG) {
3740 			bcopy(m->m_data, m->m_data + ETHER_ALIGN,
3741 			    cur_rx->bge_len);
3742 			m->m_data += ETHER_ALIGN;
3743 		}
3744 #endif
3745 		m->m_pkthdr.len = m->m_len = cur_rx->bge_len - ETHER_CRC_LEN;
3746 		m->m_pkthdr.rcvif = ifp;
3747 
3748 		if (ifp->if_capenable & IFCAP_RXCSUM)
3749 			bge_rxcsum(sc, cur_rx, m);
3750 
3751 		/*
3752 		 * If we received a packet with a vlan tag,
3753 		 * attach that information to the packet.
3754 		 */
3755 		if (have_tag) {
3756 			m->m_pkthdr.ether_vtag = vlan_tag;
3757 			m->m_flags |= M_VLANTAG;
3758 		}
3759 
3760 		if (holdlck != 0) {
3761 			BGE_UNLOCK(sc);
3762 			(*ifp->if_input)(ifp, m);
3763 			BGE_LOCK(sc);
3764 		} else
3765 			(*ifp->if_input)(ifp, m);
3766 		rx_npkts++;
3767 
3768 		if (!(ifp->if_drv_flags & IFF_DRV_RUNNING))
3769 			return (rx_npkts);
3770 	}
3771 
3772 	bus_dmamap_sync(sc->bge_cdata.bge_rx_return_ring_tag,
3773 	    sc->bge_cdata.bge_rx_return_ring_map, BUS_DMASYNC_PREREAD);
3774 	if (stdcnt > 0)
3775 		bus_dmamap_sync(sc->bge_cdata.bge_rx_std_ring_tag,
3776 		    sc->bge_cdata.bge_rx_std_ring_map, BUS_DMASYNC_PREWRITE);
3777 
3778 	if (jumbocnt > 0)
3779 		bus_dmamap_sync(sc->bge_cdata.bge_rx_jumbo_ring_tag,
3780 		    sc->bge_cdata.bge_rx_jumbo_ring_map, BUS_DMASYNC_PREWRITE);
3781 
3782 	sc->bge_rx_saved_considx = rx_cons;
3783 	bge_writembx(sc, BGE_MBX_RX_CONS0_LO, sc->bge_rx_saved_considx);
3784 	if (stdcnt)
3785 		bge_writembx(sc, BGE_MBX_RX_STD_PROD_LO, (sc->bge_std +
3786 		    BGE_STD_RX_RING_CNT - 1) % BGE_STD_RX_RING_CNT);
3787 	if (jumbocnt)
3788 		bge_writembx(sc, BGE_MBX_RX_JUMBO_PROD_LO, (sc->bge_jumbo +
3789 		    BGE_JUMBO_RX_RING_CNT - 1) % BGE_JUMBO_RX_RING_CNT);
3790 #ifdef notyet
3791 	/*
3792 	 * This register wraps very quickly under heavy packet drops.
3793 	 * If you need correct statistics, you can enable this check.
3794 	 */
3795 	if (BGE_IS_5705_PLUS(sc))
3796 		ifp->if_ierrors += CSR_READ_4(sc, BGE_RXLP_LOCSTAT_IFIN_DROPS);
3797 #endif
3798 	return (rx_npkts);
3799 }
3800 
3801 static void
3802 bge_rxcsum(struct bge_softc *sc, struct bge_rx_bd *cur_rx, struct mbuf *m)
3803 {
3804 
3805 	if (BGE_IS_5717_PLUS(sc)) {
3806 		if ((cur_rx->bge_flags & BGE_RXBDFLAG_IPV6) == 0) {
3807 			if (cur_rx->bge_flags & BGE_RXBDFLAG_IP_CSUM) {
3808 				m->m_pkthdr.csum_flags |= CSUM_IP_CHECKED;
3809 				if ((cur_rx->bge_error_flag &
3810 				    BGE_RXERRFLAG_IP_CSUM_NOK) == 0)
3811 					m->m_pkthdr.csum_flags |= CSUM_IP_VALID;
3812 			}
3813 			if (cur_rx->bge_flags & BGE_RXBDFLAG_TCP_UDP_CSUM) {
3814 				m->m_pkthdr.csum_data =
3815 				    cur_rx->bge_tcp_udp_csum;
3816 				m->m_pkthdr.csum_flags |= CSUM_DATA_VALID |
3817 				    CSUM_PSEUDO_HDR;
3818 			}
3819 		}
3820 	} else {
3821 		if (cur_rx->bge_flags & BGE_RXBDFLAG_IP_CSUM) {
3822 			m->m_pkthdr.csum_flags |= CSUM_IP_CHECKED;
3823 			if ((cur_rx->bge_ip_csum ^ 0xFFFF) == 0)
3824 				m->m_pkthdr.csum_flags |= CSUM_IP_VALID;
3825 		}
3826 		if (cur_rx->bge_flags & BGE_RXBDFLAG_TCP_UDP_CSUM &&
3827 		    m->m_pkthdr.len >= ETHER_MIN_NOPAD) {
3828 			m->m_pkthdr.csum_data =
3829 			    cur_rx->bge_tcp_udp_csum;
3830 			m->m_pkthdr.csum_flags |= CSUM_DATA_VALID |
3831 			    CSUM_PSEUDO_HDR;
3832 		}
3833 	}
3834 }
3835 
3836 static void
3837 bge_txeof(struct bge_softc *sc, uint16_t tx_cons)
3838 {
3839 	struct bge_tx_bd *cur_tx;
3840 	struct ifnet *ifp;
3841 
3842 	BGE_LOCK_ASSERT(sc);
3843 
3844 	/* Nothing to do. */
3845 	if (sc->bge_tx_saved_considx == tx_cons)
3846 		return;
3847 
3848 	ifp = sc->bge_ifp;
3849 
3850 	bus_dmamap_sync(sc->bge_cdata.bge_tx_ring_tag,
3851 	    sc->bge_cdata.bge_tx_ring_map, BUS_DMASYNC_POSTWRITE);
3852 	/*
3853 	 * Go through our tx ring and free mbufs for those
3854 	 * frames that have been sent.
3855 	 */
3856 	while (sc->bge_tx_saved_considx != tx_cons) {
3857 		uint32_t		idx;
3858 
3859 		idx = sc->bge_tx_saved_considx;
3860 		cur_tx = &sc->bge_ldata.bge_tx_ring[idx];
3861 		if (cur_tx->bge_flags & BGE_TXBDFLAG_END)
3862 			ifp->if_opackets++;
3863 		if (sc->bge_cdata.bge_tx_chain[idx] != NULL) {
3864 			bus_dmamap_sync(sc->bge_cdata.bge_tx_mtag,
3865 			    sc->bge_cdata.bge_tx_dmamap[idx],
3866 			    BUS_DMASYNC_POSTWRITE);
3867 			bus_dmamap_unload(sc->bge_cdata.bge_tx_mtag,
3868 			    sc->bge_cdata.bge_tx_dmamap[idx]);
3869 			m_freem(sc->bge_cdata.bge_tx_chain[idx]);
3870 			sc->bge_cdata.bge_tx_chain[idx] = NULL;
3871 		}
3872 		sc->bge_txcnt--;
3873 		BGE_INC(sc->bge_tx_saved_considx, BGE_TX_RING_CNT);
3874 	}
3875 
3876 	ifp->if_drv_flags &= ~IFF_DRV_OACTIVE;
3877 	if (sc->bge_txcnt == 0)
3878 		sc->bge_timer = 0;
3879 }
3880 
3881 #ifdef DEVICE_POLLING
3882 static int
3883 bge_poll(struct ifnet *ifp, enum poll_cmd cmd, int count)
3884 {
3885 	struct bge_softc *sc = ifp->if_softc;
3886 	uint16_t rx_prod, tx_cons;
3887 	uint32_t statusword;
3888 	int rx_npkts = 0;
3889 
3890 	BGE_LOCK(sc);
3891 	if (!(ifp->if_drv_flags & IFF_DRV_RUNNING)) {
3892 		BGE_UNLOCK(sc);
3893 		return (rx_npkts);
3894 	}
3895 
3896 	bus_dmamap_sync(sc->bge_cdata.bge_status_tag,
3897 	    sc->bge_cdata.bge_status_map,
3898 	    BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE);
3899 	rx_prod = sc->bge_ldata.bge_status_block->bge_idx[0].bge_rx_prod_idx;
3900 	tx_cons = sc->bge_ldata.bge_status_block->bge_idx[0].bge_tx_cons_idx;
3901 
3902 	statusword = sc->bge_ldata.bge_status_block->bge_status;
3903 	sc->bge_ldata.bge_status_block->bge_status = 0;
3904 
3905 	bus_dmamap_sync(sc->bge_cdata.bge_status_tag,
3906 	    sc->bge_cdata.bge_status_map,
3907 	    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
3908 
3909 	/* Note link event. It will be processed by POLL_AND_CHECK_STATUS. */
3910 	if (statusword & BGE_STATFLAG_LINKSTATE_CHANGED)
3911 		sc->bge_link_evt++;
3912 
3913 	if (cmd == POLL_AND_CHECK_STATUS)
3914 		if ((sc->bge_asicrev == BGE_ASICREV_BCM5700 &&
3915 		    sc->bge_chipid != BGE_CHIPID_BCM5700_B2) ||
3916 		    sc->bge_link_evt || (sc->bge_flags & BGE_FLAG_TBI))
3917 			bge_link_upd(sc);
3918 
3919 	sc->rxcycles = count;
3920 	rx_npkts = bge_rxeof(sc, rx_prod, 1);
3921 	if (!(ifp->if_drv_flags & IFF_DRV_RUNNING)) {
3922 		BGE_UNLOCK(sc);
3923 		return (rx_npkts);
3924 	}
3925 	bge_txeof(sc, tx_cons);
3926 	if (!IFQ_DRV_IS_EMPTY(&ifp->if_snd))
3927 		bge_start_locked(ifp);
3928 
3929 	BGE_UNLOCK(sc);
3930 	return (rx_npkts);
3931 }
3932 #endif /* DEVICE_POLLING */
3933 
3934 static int
3935 bge_msi_intr(void *arg)
3936 {
3937 	struct bge_softc *sc;
3938 
3939 	sc = (struct bge_softc *)arg;
3940 	/*
3941 	 * This interrupt is not shared and controller already
3942 	 * disabled further interrupt.
3943 	 */
3944 	taskqueue_enqueue(sc->bge_tq, &sc->bge_intr_task);
3945 	return (FILTER_HANDLED);
3946 }
3947 
3948 static void
3949 bge_intr_task(void *arg, int pending)
3950 {
3951 	struct bge_softc *sc;
3952 	struct ifnet *ifp;
3953 	uint32_t status, status_tag;
3954 	uint16_t rx_prod, tx_cons;
3955 
3956 	sc = (struct bge_softc *)arg;
3957 	ifp = sc->bge_ifp;
3958 
3959 	BGE_LOCK(sc);
3960 	if ((ifp->if_drv_flags & IFF_DRV_RUNNING) == 0) {
3961 		BGE_UNLOCK(sc);
3962 		return;
3963 	}
3964 
3965 	/* Get updated status block. */
3966 	bus_dmamap_sync(sc->bge_cdata.bge_status_tag,
3967 	    sc->bge_cdata.bge_status_map,
3968 	    BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE);
3969 
3970 	/* Save producer/consumer indexess. */
3971 	rx_prod = sc->bge_ldata.bge_status_block->bge_idx[0].bge_rx_prod_idx;
3972 	tx_cons = sc->bge_ldata.bge_status_block->bge_idx[0].bge_tx_cons_idx;
3973 	status = sc->bge_ldata.bge_status_block->bge_status;
3974 	status_tag = sc->bge_ldata.bge_status_block->bge_status_tag << 24;
3975 	sc->bge_ldata.bge_status_block->bge_status = 0;
3976 	bus_dmamap_sync(sc->bge_cdata.bge_status_tag,
3977 	    sc->bge_cdata.bge_status_map,
3978 	    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
3979 	if ((sc->bge_flags & BGE_FLAG_TAGGED_STATUS) == 0)
3980 		status_tag = 0;
3981 
3982 	if ((status & BGE_STATFLAG_LINKSTATE_CHANGED) != 0)
3983 		bge_link_upd(sc);
3984 
3985 	/* Let controller work. */
3986 	bge_writembx(sc, BGE_MBX_IRQ0_LO, status_tag);
3987 
3988 	if (ifp->if_drv_flags & IFF_DRV_RUNNING &&
3989 	    sc->bge_rx_saved_considx != rx_prod) {
3990 		/* Check RX return ring producer/consumer. */
3991 		BGE_UNLOCK(sc);
3992 		bge_rxeof(sc, rx_prod, 0);
3993 		BGE_LOCK(sc);
3994 	}
3995 	if (ifp->if_drv_flags & IFF_DRV_RUNNING) {
3996 		/* Check TX ring producer/consumer. */
3997 		bge_txeof(sc, tx_cons);
3998 	    	if (!IFQ_DRV_IS_EMPTY(&ifp->if_snd))
3999 			bge_start_locked(ifp);
4000 	}
4001 	BGE_UNLOCK(sc);
4002 }
4003 
4004 static void
4005 bge_intr(void *xsc)
4006 {
4007 	struct bge_softc *sc;
4008 	struct ifnet *ifp;
4009 	uint32_t statusword;
4010 	uint16_t rx_prod, tx_cons;
4011 
4012 	sc = xsc;
4013 
4014 	BGE_LOCK(sc);
4015 
4016 	ifp = sc->bge_ifp;
4017 
4018 #ifdef DEVICE_POLLING
4019 	if (ifp->if_capenable & IFCAP_POLLING) {
4020 		BGE_UNLOCK(sc);
4021 		return;
4022 	}
4023 #endif
4024 
4025 	/*
4026 	 * Ack the interrupt by writing something to BGE_MBX_IRQ0_LO.  Don't
4027 	 * disable interrupts by writing nonzero like we used to, since with
4028 	 * our current organization this just gives complications and
4029 	 * pessimizations for re-enabling interrupts.  We used to have races
4030 	 * instead of the necessary complications.  Disabling interrupts
4031 	 * would just reduce the chance of a status update while we are
4032 	 * running (by switching to the interrupt-mode coalescence
4033 	 * parameters), but this chance is already very low so it is more
4034 	 * efficient to get another interrupt than prevent it.
4035 	 *
4036 	 * We do the ack first to ensure another interrupt if there is a
4037 	 * status update after the ack.  We don't check for the status
4038 	 * changing later because it is more efficient to get another
4039 	 * interrupt than prevent it, not quite as above (not checking is
4040 	 * a smaller optimization than not toggling the interrupt enable,
4041 	 * since checking doesn't involve PCI accesses and toggling require
4042 	 * the status check).  So toggling would probably be a pessimization
4043 	 * even with MSI.  It would only be needed for using a task queue.
4044 	 */
4045 	bge_writembx(sc, BGE_MBX_IRQ0_LO, 0);
4046 
4047 	/*
4048 	 * Do the mandatory PCI flush as well as get the link status.
4049 	 */
4050 	statusword = CSR_READ_4(sc, BGE_MAC_STS) & BGE_MACSTAT_LINK_CHANGED;
4051 
4052 	/* Make sure the descriptor ring indexes are coherent. */
4053 	bus_dmamap_sync(sc->bge_cdata.bge_status_tag,
4054 	    sc->bge_cdata.bge_status_map,
4055 	    BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE);
4056 	rx_prod = sc->bge_ldata.bge_status_block->bge_idx[0].bge_rx_prod_idx;
4057 	tx_cons = sc->bge_ldata.bge_status_block->bge_idx[0].bge_tx_cons_idx;
4058 	sc->bge_ldata.bge_status_block->bge_status = 0;
4059 	bus_dmamap_sync(sc->bge_cdata.bge_status_tag,
4060 	    sc->bge_cdata.bge_status_map,
4061 	    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
4062 
4063 	if ((sc->bge_asicrev == BGE_ASICREV_BCM5700 &&
4064 	    sc->bge_chipid != BGE_CHIPID_BCM5700_B2) ||
4065 	    statusword || sc->bge_link_evt)
4066 		bge_link_upd(sc);
4067 
4068 	if (ifp->if_drv_flags & IFF_DRV_RUNNING) {
4069 		/* Check RX return ring producer/consumer. */
4070 		bge_rxeof(sc, rx_prod, 1);
4071 	}
4072 
4073 	if (ifp->if_drv_flags & IFF_DRV_RUNNING) {
4074 		/* Check TX ring producer/consumer. */
4075 		bge_txeof(sc, tx_cons);
4076 	}
4077 
4078 	if (ifp->if_drv_flags & IFF_DRV_RUNNING &&
4079 	    !IFQ_DRV_IS_EMPTY(&ifp->if_snd))
4080 		bge_start_locked(ifp);
4081 
4082 	BGE_UNLOCK(sc);
4083 }
4084 
4085 static void
4086 bge_asf_driver_up(struct bge_softc *sc)
4087 {
4088 	if (sc->bge_asf_mode & ASF_STACKUP) {
4089 		/* Send ASF heartbeat aprox. every 2s */
4090 		if (sc->bge_asf_count)
4091 			sc->bge_asf_count --;
4092 		else {
4093 			sc->bge_asf_count = 2;
4094 			bge_writemem_ind(sc, BGE_SOFTWARE_GENCOMM_FW,
4095 			    BGE_FW_DRV_ALIVE);
4096 			bge_writemem_ind(sc, BGE_SOFTWARE_GENNCOMM_FW_LEN, 4);
4097 			bge_writemem_ind(sc, BGE_SOFTWARE_GENNCOMM_FW_DATA, 3);
4098 			CSR_WRITE_4(sc, BGE_CPU_EVENT,
4099 			    CSR_READ_4(sc, BGE_CPU_EVENT) | (1 << 14));
4100 		}
4101 	}
4102 }
4103 
4104 static void
4105 bge_tick(void *xsc)
4106 {
4107 	struct bge_softc *sc = xsc;
4108 	struct mii_data *mii = NULL;
4109 
4110 	BGE_LOCK_ASSERT(sc);
4111 
4112 	/* Synchronize with possible callout reset/stop. */
4113 	if (callout_pending(&sc->bge_stat_ch) ||
4114 	    !callout_active(&sc->bge_stat_ch))
4115 	    	return;
4116 
4117 	if (BGE_IS_5705_PLUS(sc))
4118 		bge_stats_update_regs(sc);
4119 	else
4120 		bge_stats_update(sc);
4121 
4122 	if ((sc->bge_flags & BGE_FLAG_TBI) == 0) {
4123 		mii = device_get_softc(sc->bge_miibus);
4124 		/*
4125 		 * Do not touch PHY if we have link up. This could break
4126 		 * IPMI/ASF mode or produce extra input errors
4127 		 * (extra errors was reported for bcm5701 & bcm5704).
4128 		 */
4129 		if (!sc->bge_link)
4130 			mii_tick(mii);
4131 	} else {
4132 		/*
4133 		 * Since in TBI mode auto-polling can't be used we should poll
4134 		 * link status manually. Here we register pending link event
4135 		 * and trigger interrupt.
4136 		 */
4137 #ifdef DEVICE_POLLING
4138 		/* In polling mode we poll link state in bge_poll(). */
4139 		if (!(sc->bge_ifp->if_capenable & IFCAP_POLLING))
4140 #endif
4141 		{
4142 		sc->bge_link_evt++;
4143 		if (sc->bge_asicrev == BGE_ASICREV_BCM5700 ||
4144 		    sc->bge_flags & BGE_FLAG_5788)
4145 			BGE_SETBIT(sc, BGE_MISC_LOCAL_CTL, BGE_MLC_INTR_SET);
4146 		else
4147 			BGE_SETBIT(sc, BGE_HCC_MODE, BGE_HCCMODE_COAL_NOW);
4148 		}
4149 	}
4150 
4151 	bge_asf_driver_up(sc);
4152 	bge_watchdog(sc);
4153 
4154 	callout_reset(&sc->bge_stat_ch, hz, bge_tick, sc);
4155 }
4156 
4157 static void
4158 bge_stats_update_regs(struct bge_softc *sc)
4159 {
4160 	struct ifnet *ifp;
4161 	struct bge_mac_stats *stats;
4162 
4163 	ifp = sc->bge_ifp;
4164 	stats = &sc->bge_mac_stats;
4165 
4166 	stats->ifHCOutOctets +=
4167 	    CSR_READ_4(sc, BGE_TX_MAC_STATS_OCTETS);
4168 	stats->etherStatsCollisions +=
4169 	    CSR_READ_4(sc, BGE_TX_MAC_STATS_COLLS);
4170 	stats->outXonSent +=
4171 	    CSR_READ_4(sc, BGE_TX_MAC_STATS_XON_SENT);
4172 	stats->outXoffSent +=
4173 	    CSR_READ_4(sc, BGE_TX_MAC_STATS_XOFF_SENT);
4174 	stats->dot3StatsInternalMacTransmitErrors +=
4175 	    CSR_READ_4(sc, BGE_TX_MAC_STATS_ERRORS);
4176 	stats->dot3StatsSingleCollisionFrames +=
4177 	    CSR_READ_4(sc, BGE_TX_MAC_STATS_SINGLE_COLL);
4178 	stats->dot3StatsMultipleCollisionFrames +=
4179 	    CSR_READ_4(sc, BGE_TX_MAC_STATS_MULTI_COLL);
4180 	stats->dot3StatsDeferredTransmissions +=
4181 	    CSR_READ_4(sc, BGE_TX_MAC_STATS_DEFERRED);
4182 	stats->dot3StatsExcessiveCollisions +=
4183 	    CSR_READ_4(sc, BGE_TX_MAC_STATS_EXCESS_COLL);
4184 	stats->dot3StatsLateCollisions +=
4185 	    CSR_READ_4(sc, BGE_TX_MAC_STATS_LATE_COLL);
4186 	stats->ifHCOutUcastPkts +=
4187 	    CSR_READ_4(sc, BGE_TX_MAC_STATS_UCAST);
4188 	stats->ifHCOutMulticastPkts +=
4189 	    CSR_READ_4(sc, BGE_TX_MAC_STATS_MCAST);
4190 	stats->ifHCOutBroadcastPkts +=
4191 	    CSR_READ_4(sc, BGE_TX_MAC_STATS_BCAST);
4192 
4193 	stats->ifHCInOctets +=
4194 	    CSR_READ_4(sc, BGE_RX_MAC_STATS_OCTESTS);
4195 	stats->etherStatsFragments +=
4196 	    CSR_READ_4(sc, BGE_RX_MAC_STATS_FRAGMENTS);
4197 	stats->ifHCInUcastPkts +=
4198 	    CSR_READ_4(sc, BGE_RX_MAC_STATS_UCAST);
4199 	stats->ifHCInMulticastPkts +=
4200 	    CSR_READ_4(sc, BGE_RX_MAC_STATS_MCAST);
4201 	stats->ifHCInBroadcastPkts +=
4202 	    CSR_READ_4(sc, BGE_RX_MAC_STATS_BCAST);
4203 	stats->dot3StatsFCSErrors +=
4204 	    CSR_READ_4(sc, BGE_RX_MAC_STATS_FCS_ERRORS);
4205 	stats->dot3StatsAlignmentErrors +=
4206 	    CSR_READ_4(sc, BGE_RX_MAC_STATS_ALGIN_ERRORS);
4207 	stats->xonPauseFramesReceived +=
4208 	    CSR_READ_4(sc, BGE_RX_MAC_STATS_XON_RCVD);
4209 	stats->xoffPauseFramesReceived +=
4210 	    CSR_READ_4(sc, BGE_RX_MAC_STATS_XOFF_RCVD);
4211 	stats->macControlFramesReceived +=
4212 	    CSR_READ_4(sc, BGE_RX_MAC_STATS_CTRL_RCVD);
4213 	stats->xoffStateEntered +=
4214 	    CSR_READ_4(sc, BGE_RX_MAC_STATS_XOFF_ENTERED);
4215 	stats->dot3StatsFramesTooLong +=
4216 	    CSR_READ_4(sc, BGE_RX_MAC_STATS_FRAME_TOO_LONG);
4217 	stats->etherStatsJabbers +=
4218 	    CSR_READ_4(sc, BGE_RX_MAC_STATS_JABBERS);
4219 	stats->etherStatsUndersizePkts +=
4220 	    CSR_READ_4(sc, BGE_RX_MAC_STATS_UNDERSIZE);
4221 
4222 	stats->FramesDroppedDueToFilters +=
4223 	    CSR_READ_4(sc, BGE_RXLP_LOCSTAT_FILTDROP);
4224 	stats->DmaWriteQueueFull +=
4225 	    CSR_READ_4(sc, BGE_RXLP_LOCSTAT_DMA_WRQ_FULL);
4226 	stats->DmaWriteHighPriQueueFull +=
4227 	    CSR_READ_4(sc, BGE_RXLP_LOCSTAT_DMA_HPWRQ_FULL);
4228 	stats->NoMoreRxBDs +=
4229 	    CSR_READ_4(sc, BGE_RXLP_LOCSTAT_OUT_OF_BDS);
4230 	stats->InputDiscards +=
4231 	    CSR_READ_4(sc, BGE_RXLP_LOCSTAT_IFIN_DROPS);
4232 	stats->InputErrors +=
4233 	    CSR_READ_4(sc, BGE_RXLP_LOCSTAT_IFIN_ERRORS);
4234 	stats->RecvThresholdHit +=
4235 	    CSR_READ_4(sc, BGE_RXLP_LOCSTAT_RXTHRESH_HIT);
4236 
4237 	ifp->if_collisions = (u_long)stats->etherStatsCollisions;
4238 	ifp->if_ierrors = (u_long)(stats->NoMoreRxBDs + stats->InputDiscards +
4239 	    stats->InputErrors);
4240 }
4241 
4242 static void
4243 bge_stats_clear_regs(struct bge_softc *sc)
4244 {
4245 
4246 	CSR_READ_4(sc, BGE_TX_MAC_STATS_OCTETS);
4247 	CSR_READ_4(sc, BGE_TX_MAC_STATS_COLLS);
4248 	CSR_READ_4(sc, BGE_TX_MAC_STATS_XON_SENT);
4249 	CSR_READ_4(sc, BGE_TX_MAC_STATS_XOFF_SENT);
4250 	CSR_READ_4(sc, BGE_TX_MAC_STATS_ERRORS);
4251 	CSR_READ_4(sc, BGE_TX_MAC_STATS_SINGLE_COLL);
4252 	CSR_READ_4(sc, BGE_TX_MAC_STATS_MULTI_COLL);
4253 	CSR_READ_4(sc, BGE_TX_MAC_STATS_DEFERRED);
4254 	CSR_READ_4(sc, BGE_TX_MAC_STATS_EXCESS_COLL);
4255 	CSR_READ_4(sc, BGE_TX_MAC_STATS_LATE_COLL);
4256 	CSR_READ_4(sc, BGE_TX_MAC_STATS_UCAST);
4257 	CSR_READ_4(sc, BGE_TX_MAC_STATS_MCAST);
4258 	CSR_READ_4(sc, BGE_TX_MAC_STATS_BCAST);
4259 
4260 	CSR_READ_4(sc, BGE_RX_MAC_STATS_OCTESTS);
4261 	CSR_READ_4(sc, BGE_RX_MAC_STATS_FRAGMENTS);
4262 	CSR_READ_4(sc, BGE_RX_MAC_STATS_UCAST);
4263 	CSR_READ_4(sc, BGE_RX_MAC_STATS_MCAST);
4264 	CSR_READ_4(sc, BGE_RX_MAC_STATS_BCAST);
4265 	CSR_READ_4(sc, BGE_RX_MAC_STATS_FCS_ERRORS);
4266 	CSR_READ_4(sc, BGE_RX_MAC_STATS_ALGIN_ERRORS);
4267 	CSR_READ_4(sc, BGE_RX_MAC_STATS_XON_RCVD);
4268 	CSR_READ_4(sc, BGE_RX_MAC_STATS_XOFF_RCVD);
4269 	CSR_READ_4(sc, BGE_RX_MAC_STATS_CTRL_RCVD);
4270 	CSR_READ_4(sc, BGE_RX_MAC_STATS_XOFF_ENTERED);
4271 	CSR_READ_4(sc, BGE_RX_MAC_STATS_FRAME_TOO_LONG);
4272 	CSR_READ_4(sc, BGE_RX_MAC_STATS_JABBERS);
4273 	CSR_READ_4(sc, BGE_RX_MAC_STATS_UNDERSIZE);
4274 
4275 	CSR_READ_4(sc, BGE_RXLP_LOCSTAT_FILTDROP);
4276 	CSR_READ_4(sc, BGE_RXLP_LOCSTAT_DMA_WRQ_FULL);
4277 	CSR_READ_4(sc, BGE_RXLP_LOCSTAT_DMA_HPWRQ_FULL);
4278 	CSR_READ_4(sc, BGE_RXLP_LOCSTAT_OUT_OF_BDS);
4279 	CSR_READ_4(sc, BGE_RXLP_LOCSTAT_IFIN_DROPS);
4280 	CSR_READ_4(sc, BGE_RXLP_LOCSTAT_IFIN_ERRORS);
4281 	CSR_READ_4(sc, BGE_RXLP_LOCSTAT_RXTHRESH_HIT);
4282 }
4283 
4284 static void
4285 bge_stats_update(struct bge_softc *sc)
4286 {
4287 	struct ifnet *ifp;
4288 	bus_size_t stats;
4289 	uint32_t cnt;	/* current register value */
4290 
4291 	ifp = sc->bge_ifp;
4292 
4293 	stats = BGE_MEMWIN_START + BGE_STATS_BLOCK;
4294 
4295 #define	READ_STAT(sc, stats, stat) \
4296 	CSR_READ_4(sc, stats + offsetof(struct bge_stats, stat))
4297 
4298 	cnt = READ_STAT(sc, stats, txstats.etherStatsCollisions.bge_addr_lo);
4299 	ifp->if_collisions += (uint32_t)(cnt - sc->bge_tx_collisions);
4300 	sc->bge_tx_collisions = cnt;
4301 
4302 	cnt = READ_STAT(sc, stats, ifInDiscards.bge_addr_lo);
4303 	ifp->if_ierrors += (uint32_t)(cnt - sc->bge_rx_discards);
4304 	sc->bge_rx_discards = cnt;
4305 
4306 	cnt = READ_STAT(sc, stats, txstats.ifOutDiscards.bge_addr_lo);
4307 	ifp->if_oerrors += (uint32_t)(cnt - sc->bge_tx_discards);
4308 	sc->bge_tx_discards = cnt;
4309 
4310 #undef	READ_STAT
4311 }
4312 
4313 /*
4314  * Pad outbound frame to ETHER_MIN_NOPAD for an unusual reason.
4315  * The bge hardware will pad out Tx runts to ETHER_MIN_NOPAD,
4316  * but when such padded frames employ the bge IP/TCP checksum offload,
4317  * the hardware checksum assist gives incorrect results (possibly
4318  * from incorporating its own padding into the UDP/TCP checksum; who knows).
4319  * If we pad such runts with zeros, the onboard checksum comes out correct.
4320  */
4321 static __inline int
4322 bge_cksum_pad(struct mbuf *m)
4323 {
4324 	int padlen = ETHER_MIN_NOPAD - m->m_pkthdr.len;
4325 	struct mbuf *last;
4326 
4327 	/* If there's only the packet-header and we can pad there, use it. */
4328 	if (m->m_pkthdr.len == m->m_len && M_WRITABLE(m) &&
4329 	    M_TRAILINGSPACE(m) >= padlen) {
4330 		last = m;
4331 	} else {
4332 		/*
4333 		 * Walk packet chain to find last mbuf. We will either
4334 		 * pad there, or append a new mbuf and pad it.
4335 		 */
4336 		for (last = m; last->m_next != NULL; last = last->m_next);
4337 		if (!(M_WRITABLE(last) && M_TRAILINGSPACE(last) >= padlen)) {
4338 			/* Allocate new empty mbuf, pad it. Compact later. */
4339 			struct mbuf *n;
4340 
4341 			MGET(n, M_DONTWAIT, MT_DATA);
4342 			if (n == NULL)
4343 				return (ENOBUFS);
4344 			n->m_len = 0;
4345 			last->m_next = n;
4346 			last = n;
4347 		}
4348 	}
4349 
4350 	/* Now zero the pad area, to avoid the bge cksum-assist bug. */
4351 	memset(mtod(last, caddr_t) + last->m_len, 0, padlen);
4352 	last->m_len += padlen;
4353 	m->m_pkthdr.len += padlen;
4354 
4355 	return (0);
4356 }
4357 
4358 static struct mbuf *
4359 bge_check_short_dma(struct mbuf *m)
4360 {
4361 	struct mbuf *n;
4362 	int found;
4363 
4364 	/*
4365 	 * If device receive two back-to-back send BDs with less than
4366 	 * or equal to 8 total bytes then the device may hang.  The two
4367 	 * back-to-back send BDs must in the same frame for this failure
4368 	 * to occur.  Scan mbuf chains and see whether two back-to-back
4369 	 * send BDs are there. If this is the case, allocate new mbuf
4370 	 * and copy the frame to workaround the silicon bug.
4371 	 */
4372 	for (n = m, found = 0; n != NULL; n = n->m_next) {
4373 		if (n->m_len < 8) {
4374 			found++;
4375 			if (found > 1)
4376 				break;
4377 			continue;
4378 		}
4379 		found = 0;
4380 	}
4381 
4382 	if (found > 1) {
4383 		n = m_defrag(m, M_DONTWAIT);
4384 		if (n == NULL)
4385 			m_freem(m);
4386 	} else
4387 		n = m;
4388 	return (n);
4389 }
4390 
4391 static struct mbuf *
4392 bge_setup_tso(struct bge_softc *sc, struct mbuf *m, uint16_t *mss,
4393     uint16_t *flags)
4394 {
4395 	struct ip *ip;
4396 	struct tcphdr *tcp;
4397 	struct mbuf *n;
4398 	uint16_t hlen;
4399 	uint32_t poff;
4400 
4401 	if (M_WRITABLE(m) == 0) {
4402 		/* Get a writable copy. */
4403 		n = m_dup(m, M_DONTWAIT);
4404 		m_freem(m);
4405 		if (n == NULL)
4406 			return (NULL);
4407 		m = n;
4408 	}
4409 	m = m_pullup(m, sizeof(struct ether_header) + sizeof(struct ip));
4410 	if (m == NULL)
4411 		return (NULL);
4412 	ip = (struct ip *)(mtod(m, char *) + sizeof(struct ether_header));
4413 	poff = sizeof(struct ether_header) + (ip->ip_hl << 2);
4414 	m = m_pullup(m, poff + sizeof(struct tcphdr));
4415 	if (m == NULL)
4416 		return (NULL);
4417 	tcp = (struct tcphdr *)(mtod(m, char *) + poff);
4418 	m = m_pullup(m, poff + (tcp->th_off << 2));
4419 	if (m == NULL)
4420 		return (NULL);
4421 	/*
4422 	 * It seems controller doesn't modify IP length and TCP pseudo
4423 	 * checksum. These checksum computed by upper stack should be 0.
4424 	 */
4425 	*mss = m->m_pkthdr.tso_segsz;
4426 	ip = (struct ip *)(mtod(m, char *) + sizeof(struct ether_header));
4427 	ip->ip_sum = 0;
4428 	ip->ip_len = htons(*mss + (ip->ip_hl << 2) + (tcp->th_off << 2));
4429 	/* Clear pseudo checksum computed by TCP stack. */
4430 	tcp = (struct tcphdr *)(mtod(m, char *) + poff);
4431 	tcp->th_sum = 0;
4432 	/*
4433 	 * Broadcom controllers uses different descriptor format for
4434 	 * TSO depending on ASIC revision. Due to TSO-capable firmware
4435 	 * license issue and lower performance of firmware based TSO
4436 	 * we only support hardware based TSO.
4437 	 */
4438 	/* Calculate header length, incl. TCP/IP options, in 32 bit units. */
4439 	hlen = ((ip->ip_hl << 2) + (tcp->th_off << 2)) >> 2;
4440 	if (sc->bge_flags & BGE_FLAG_TSO3) {
4441 		/*
4442 		 * For BCM5717 and newer controllers, hardware based TSO
4443 		 * uses the 14 lower bits of the bge_mss field to store the
4444 		 * MSS and the upper 2 bits to store the lowest 2 bits of
4445 		 * the IP/TCP header length.  The upper 6 bits of the header
4446 		 * length are stored in the bge_flags[14:10,4] field.  Jumbo
4447 		 * frames are supported.
4448 		 */
4449 		*mss |= ((hlen & 0x3) << 14);
4450 		*flags |= ((hlen & 0xF8) << 7) | ((hlen & 0x4) << 2);
4451 	} else {
4452 		/*
4453 		 * For BCM5755 and newer controllers, hardware based TSO uses
4454 		 * the lower 11	bits to store the MSS and the upper 5 bits to
4455 		 * store the IP/TCP header length. Jumbo frames are not
4456 		 * supported.
4457 		 */
4458 		*mss |= (hlen << 11);
4459 	}
4460 	return (m);
4461 }
4462 
4463 /*
4464  * Encapsulate an mbuf chain in the tx ring  by coupling the mbuf data
4465  * pointers to descriptors.
4466  */
4467 static int
4468 bge_encap(struct bge_softc *sc, struct mbuf **m_head, uint32_t *txidx)
4469 {
4470 	bus_dma_segment_t	segs[BGE_NSEG_NEW];
4471 	bus_dmamap_t		map;
4472 	struct bge_tx_bd	*d;
4473 	struct mbuf		*m = *m_head;
4474 	uint32_t		idx = *txidx;
4475 	uint16_t		csum_flags, mss, vlan_tag;
4476 	int			nsegs, i, error;
4477 
4478 	csum_flags = 0;
4479 	mss = 0;
4480 	vlan_tag = 0;
4481 	if ((sc->bge_flags & BGE_FLAG_SHORT_DMA_BUG) != 0 &&
4482 	    m->m_next != NULL) {
4483 		*m_head = bge_check_short_dma(m);
4484 		if (*m_head == NULL)
4485 			return (ENOBUFS);
4486 		m = *m_head;
4487 	}
4488 	if ((m->m_pkthdr.csum_flags & CSUM_TSO) != 0) {
4489 		*m_head = m = bge_setup_tso(sc, m, &mss, &csum_flags);
4490 		if (*m_head == NULL)
4491 			return (ENOBUFS);
4492 		csum_flags |= BGE_TXBDFLAG_CPU_PRE_DMA |
4493 		    BGE_TXBDFLAG_CPU_POST_DMA;
4494 	} else if ((m->m_pkthdr.csum_flags & sc->bge_csum_features) != 0) {
4495 		if (m->m_pkthdr.csum_flags & CSUM_IP)
4496 			csum_flags |= BGE_TXBDFLAG_IP_CSUM;
4497 		if (m->m_pkthdr.csum_flags & (CSUM_TCP | CSUM_UDP)) {
4498 			csum_flags |= BGE_TXBDFLAG_TCP_UDP_CSUM;
4499 			if (m->m_pkthdr.len < ETHER_MIN_NOPAD &&
4500 			    (error = bge_cksum_pad(m)) != 0) {
4501 				m_freem(m);
4502 				*m_head = NULL;
4503 				return (error);
4504 			}
4505 		}
4506 		if (m->m_flags & M_LASTFRAG)
4507 			csum_flags |= BGE_TXBDFLAG_IP_FRAG_END;
4508 		else if (m->m_flags & M_FRAG)
4509 			csum_flags |= BGE_TXBDFLAG_IP_FRAG;
4510 	}
4511 
4512 	if ((m->m_pkthdr.csum_flags & CSUM_TSO) == 0) {
4513 		if (sc->bge_flags & BGE_FLAG_JUMBO_FRAME &&
4514 		    m->m_pkthdr.len > ETHER_MAX_LEN)
4515 			csum_flags |= BGE_TXBDFLAG_JUMBO_FRAME;
4516 		if (sc->bge_forced_collapse > 0 &&
4517 		    (sc->bge_flags & BGE_FLAG_PCIE) != 0 && m->m_next != NULL) {
4518 			/*
4519 			 * Forcedly collapse mbuf chains to overcome hardware
4520 			 * limitation which only support a single outstanding
4521 			 * DMA read operation.
4522 			 */
4523 			if (sc->bge_forced_collapse == 1)
4524 				m = m_defrag(m, M_DONTWAIT);
4525 			else
4526 				m = m_collapse(m, M_DONTWAIT,
4527 				    sc->bge_forced_collapse);
4528 			if (m == NULL)
4529 				m = *m_head;
4530 			*m_head = m;
4531 		}
4532 	}
4533 
4534 	map = sc->bge_cdata.bge_tx_dmamap[idx];
4535 	error = bus_dmamap_load_mbuf_sg(sc->bge_cdata.bge_tx_mtag, map, m, segs,
4536 	    &nsegs, BUS_DMA_NOWAIT);
4537 	if (error == EFBIG) {
4538 		m = m_collapse(m, M_DONTWAIT, BGE_NSEG_NEW);
4539 		if (m == NULL) {
4540 			m_freem(*m_head);
4541 			*m_head = NULL;
4542 			return (ENOBUFS);
4543 		}
4544 		*m_head = m;
4545 		error = bus_dmamap_load_mbuf_sg(sc->bge_cdata.bge_tx_mtag, map,
4546 		    m, segs, &nsegs, BUS_DMA_NOWAIT);
4547 		if (error) {
4548 			m_freem(m);
4549 			*m_head = NULL;
4550 			return (error);
4551 		}
4552 	} else if (error != 0)
4553 		return (error);
4554 
4555 	/* Check if we have enough free send BDs. */
4556 	if (sc->bge_txcnt + nsegs >= BGE_TX_RING_CNT) {
4557 		bus_dmamap_unload(sc->bge_cdata.bge_tx_mtag, map);
4558 		return (ENOBUFS);
4559 	}
4560 
4561 	bus_dmamap_sync(sc->bge_cdata.bge_tx_mtag, map, BUS_DMASYNC_PREWRITE);
4562 
4563 	if (m->m_flags & M_VLANTAG) {
4564 		csum_flags |= BGE_TXBDFLAG_VLAN_TAG;
4565 		vlan_tag = m->m_pkthdr.ether_vtag;
4566 	}
4567 	for (i = 0; ; i++) {
4568 		d = &sc->bge_ldata.bge_tx_ring[idx];
4569 		d->bge_addr.bge_addr_lo = BGE_ADDR_LO(segs[i].ds_addr);
4570 		d->bge_addr.bge_addr_hi = BGE_ADDR_HI(segs[i].ds_addr);
4571 		d->bge_len = segs[i].ds_len;
4572 		d->bge_flags = csum_flags;
4573 		d->bge_vlan_tag = vlan_tag;
4574 		d->bge_mss = mss;
4575 		if (i == nsegs - 1)
4576 			break;
4577 		BGE_INC(idx, BGE_TX_RING_CNT);
4578 	}
4579 
4580 	/* Mark the last segment as end of packet... */
4581 	d->bge_flags |= BGE_TXBDFLAG_END;
4582 
4583 	/*
4584 	 * Insure that the map for this transmission
4585 	 * is placed at the array index of the last descriptor
4586 	 * in this chain.
4587 	 */
4588 	sc->bge_cdata.bge_tx_dmamap[*txidx] = sc->bge_cdata.bge_tx_dmamap[idx];
4589 	sc->bge_cdata.bge_tx_dmamap[idx] = map;
4590 	sc->bge_cdata.bge_tx_chain[idx] = m;
4591 	sc->bge_txcnt += nsegs;
4592 
4593 	BGE_INC(idx, BGE_TX_RING_CNT);
4594 	*txidx = idx;
4595 
4596 	return (0);
4597 }
4598 
4599 /*
4600  * Main transmit routine. To avoid having to do mbuf copies, we put pointers
4601  * to the mbuf data regions directly in the transmit descriptors.
4602  */
4603 static void
4604 bge_start_locked(struct ifnet *ifp)
4605 {
4606 	struct bge_softc *sc;
4607 	struct mbuf *m_head;
4608 	uint32_t prodidx;
4609 	int count;
4610 
4611 	sc = ifp->if_softc;
4612 	BGE_LOCK_ASSERT(sc);
4613 
4614 	if (!sc->bge_link ||
4615 	    (ifp->if_drv_flags & (IFF_DRV_RUNNING | IFF_DRV_OACTIVE)) !=
4616 	    IFF_DRV_RUNNING)
4617 		return;
4618 
4619 	prodidx = sc->bge_tx_prodidx;
4620 
4621 	for (count = 0; !IFQ_DRV_IS_EMPTY(&ifp->if_snd);) {
4622 		if (sc->bge_txcnt > BGE_TX_RING_CNT - 16) {
4623 			ifp->if_drv_flags |= IFF_DRV_OACTIVE;
4624 			break;
4625 		}
4626 		IFQ_DRV_DEQUEUE(&ifp->if_snd, m_head);
4627 		if (m_head == NULL)
4628 			break;
4629 
4630 		/*
4631 		 * XXX
4632 		 * The code inside the if() block is never reached since we
4633 		 * must mark CSUM_IP_FRAGS in our if_hwassist to start getting
4634 		 * requests to checksum TCP/UDP in a fragmented packet.
4635 		 *
4636 		 * XXX
4637 		 * safety overkill.  If this is a fragmented packet chain
4638 		 * with delayed TCP/UDP checksums, then only encapsulate
4639 		 * it if we have enough descriptors to handle the entire
4640 		 * chain at once.
4641 		 * (paranoia -- may not actually be needed)
4642 		 */
4643 		if (m_head->m_flags & M_FIRSTFRAG &&
4644 		    m_head->m_pkthdr.csum_flags & (CSUM_DELAY_DATA)) {
4645 			if ((BGE_TX_RING_CNT - sc->bge_txcnt) <
4646 			    m_head->m_pkthdr.csum_data + 16) {
4647 				IFQ_DRV_PREPEND(&ifp->if_snd, m_head);
4648 				ifp->if_drv_flags |= IFF_DRV_OACTIVE;
4649 				break;
4650 			}
4651 		}
4652 
4653 		/*
4654 		 * Pack the data into the transmit ring. If we
4655 		 * don't have room, set the OACTIVE flag and wait
4656 		 * for the NIC to drain the ring.
4657 		 */
4658 		if (bge_encap(sc, &m_head, &prodidx)) {
4659 			if (m_head == NULL)
4660 				break;
4661 			IFQ_DRV_PREPEND(&ifp->if_snd, m_head);
4662 			ifp->if_drv_flags |= IFF_DRV_OACTIVE;
4663 			break;
4664 		}
4665 		++count;
4666 
4667 		/*
4668 		 * If there's a BPF listener, bounce a copy of this frame
4669 		 * to him.
4670 		 */
4671 #ifdef ETHER_BPF_MTAP
4672 		ETHER_BPF_MTAP(ifp, m_head);
4673 #else
4674 		BPF_MTAP(ifp, m_head);
4675 #endif
4676 	}
4677 
4678 	if (count > 0) {
4679 		bus_dmamap_sync(sc->bge_cdata.bge_tx_ring_tag,
4680 		    sc->bge_cdata.bge_tx_ring_map, BUS_DMASYNC_PREWRITE);
4681 		/* Transmit. */
4682 		bge_writembx(sc, BGE_MBX_TX_HOST_PROD0_LO, prodidx);
4683 		/* 5700 b2 errata */
4684 		if (sc->bge_chiprev == BGE_CHIPREV_5700_BX)
4685 			bge_writembx(sc, BGE_MBX_TX_HOST_PROD0_LO, prodidx);
4686 
4687 		sc->bge_tx_prodidx = prodidx;
4688 
4689 		/*
4690 		 * Set a timeout in case the chip goes out to lunch.
4691 		 */
4692 		sc->bge_timer = 5;
4693 	}
4694 }
4695 
4696 /*
4697  * Main transmit routine. To avoid having to do mbuf copies, we put pointers
4698  * to the mbuf data regions directly in the transmit descriptors.
4699  */
4700 static void
4701 bge_start(struct ifnet *ifp)
4702 {
4703 	struct bge_softc *sc;
4704 
4705 	sc = ifp->if_softc;
4706 	BGE_LOCK(sc);
4707 	bge_start_locked(ifp);
4708 	BGE_UNLOCK(sc);
4709 }
4710 
4711 static void
4712 bge_init_locked(struct bge_softc *sc)
4713 {
4714 	struct ifnet *ifp;
4715 	uint16_t *m;
4716 	uint32_t mode;
4717 
4718 	BGE_LOCK_ASSERT(sc);
4719 
4720 	ifp = sc->bge_ifp;
4721 
4722 	if (ifp->if_drv_flags & IFF_DRV_RUNNING)
4723 		return;
4724 
4725 	/* Cancel pending I/O and flush buffers. */
4726 	bge_stop(sc);
4727 
4728 	bge_stop_fw(sc);
4729 	bge_sig_pre_reset(sc, BGE_RESET_START);
4730 	bge_reset(sc);
4731 	bge_sig_legacy(sc, BGE_RESET_START);
4732 	bge_sig_post_reset(sc, BGE_RESET_START);
4733 
4734 	bge_chipinit(sc);
4735 
4736 	/*
4737 	 * Init the various state machines, ring
4738 	 * control blocks and firmware.
4739 	 */
4740 	if (bge_blockinit(sc)) {
4741 		device_printf(sc->bge_dev, "initialization failure\n");
4742 		return;
4743 	}
4744 
4745 	ifp = sc->bge_ifp;
4746 
4747 	/* Specify MTU. */
4748 	CSR_WRITE_4(sc, BGE_RX_MTU, ifp->if_mtu +
4749 	    ETHER_HDR_LEN + ETHER_CRC_LEN +
4750 	    (ifp->if_capenable & IFCAP_VLAN_MTU ? ETHER_VLAN_ENCAP_LEN : 0));
4751 
4752 	/* Load our MAC address. */
4753 	m = (uint16_t *)IF_LLADDR(sc->bge_ifp);
4754 	CSR_WRITE_4(sc, BGE_MAC_ADDR1_LO, htons(m[0]));
4755 	CSR_WRITE_4(sc, BGE_MAC_ADDR1_HI, (htons(m[1]) << 16) | htons(m[2]));
4756 
4757 	/* Program promiscuous mode. */
4758 	bge_setpromisc(sc);
4759 
4760 	/* Program multicast filter. */
4761 	bge_setmulti(sc);
4762 
4763 	/* Program VLAN tag stripping. */
4764 	bge_setvlan(sc);
4765 
4766 	/* Override UDP checksum offloading. */
4767 	if (sc->bge_forced_udpcsum == 0)
4768 		sc->bge_csum_features &= ~CSUM_UDP;
4769 	else
4770 		sc->bge_csum_features |= CSUM_UDP;
4771 	if (ifp->if_capabilities & IFCAP_TXCSUM &&
4772 	    ifp->if_capenable & IFCAP_TXCSUM) {
4773 		ifp->if_hwassist &= ~(BGE_CSUM_FEATURES | CSUM_UDP);
4774 		ifp->if_hwassist |= sc->bge_csum_features;
4775 	}
4776 
4777 	/* Init RX ring. */
4778 	if (bge_init_rx_ring_std(sc) != 0) {
4779 		device_printf(sc->bge_dev, "no memory for std Rx buffers.\n");
4780 		bge_stop(sc);
4781 		return;
4782 	}
4783 
4784 	/*
4785 	 * Workaround for a bug in 5705 ASIC rev A0. Poll the NIC's
4786 	 * memory to insure that the chip has in fact read the first
4787 	 * entry of the ring.
4788 	 */
4789 	if (sc->bge_chipid == BGE_CHIPID_BCM5705_A0) {
4790 		uint32_t		v, i;
4791 		for (i = 0; i < 10; i++) {
4792 			DELAY(20);
4793 			v = bge_readmem_ind(sc, BGE_STD_RX_RINGS + 8);
4794 			if (v == (MCLBYTES - ETHER_ALIGN))
4795 				break;
4796 		}
4797 		if (i == 10)
4798 			device_printf (sc->bge_dev,
4799 			    "5705 A0 chip failed to load RX ring\n");
4800 	}
4801 
4802 	/* Init jumbo RX ring. */
4803 	if (BGE_IS_JUMBO_CAPABLE(sc) &&
4804 	    ifp->if_mtu + ETHER_HDR_LEN + ETHER_CRC_LEN + ETHER_VLAN_ENCAP_LEN >
4805 	    (MCLBYTES - ETHER_ALIGN)) {
4806 		if (bge_init_rx_ring_jumbo(sc) != 0) {
4807 			device_printf(sc->bge_dev,
4808 			    "no memory for jumbo Rx buffers.\n");
4809 			bge_stop(sc);
4810 			return;
4811 		}
4812 	}
4813 
4814 	/* Init our RX return ring index. */
4815 	sc->bge_rx_saved_considx = 0;
4816 
4817 	/* Init our RX/TX stat counters. */
4818 	sc->bge_rx_discards = sc->bge_tx_discards = sc->bge_tx_collisions = 0;
4819 
4820 	/* Init TX ring. */
4821 	bge_init_tx_ring(sc);
4822 
4823 	/* Enable TX MAC state machine lockup fix. */
4824 	mode = CSR_READ_4(sc, BGE_TX_MODE);
4825 	if (BGE_IS_5755_PLUS(sc) || sc->bge_asicrev == BGE_ASICREV_BCM5906)
4826 		mode |= BGE_TXMODE_MBUF_LOCKUP_FIX;
4827 	/* Turn on transmitter. */
4828 	CSR_WRITE_4(sc, BGE_TX_MODE, mode | BGE_TXMODE_ENABLE);
4829 
4830 	/* Turn on receiver. */
4831 	BGE_SETBIT(sc, BGE_RX_MODE, BGE_RXMODE_ENABLE);
4832 
4833 	/*
4834 	 * Set the number of good frames to receive after RX MBUF
4835 	 * Low Watermark has been reached. After the RX MAC receives
4836 	 * this number of frames, it will drop subsequent incoming
4837 	 * frames until the MBUF High Watermark is reached.
4838 	 */
4839 	if (sc->bge_asicrev == BGE_ASICREV_BCM57765)
4840 		CSR_WRITE_4(sc, BGE_MAX_RX_FRAME_LOWAT, 1);
4841 	else
4842 		CSR_WRITE_4(sc, BGE_MAX_RX_FRAME_LOWAT, 2);
4843 
4844 	/* Clear MAC statistics. */
4845 	if (BGE_IS_5705_PLUS(sc))
4846 		bge_stats_clear_regs(sc);
4847 
4848 	/* Tell firmware we're alive. */
4849 	BGE_SETBIT(sc, BGE_MODE_CTL, BGE_MODECTL_STACKUP);
4850 
4851 #ifdef DEVICE_POLLING
4852 	/* Disable interrupts if we are polling. */
4853 	if (ifp->if_capenable & IFCAP_POLLING) {
4854 		BGE_SETBIT(sc, BGE_PCI_MISC_CTL,
4855 		    BGE_PCIMISCCTL_MASK_PCI_INTR);
4856 		bge_writembx(sc, BGE_MBX_IRQ0_LO, 1);
4857 	} else
4858 #endif
4859 
4860 	/* Enable host interrupts. */
4861 	{
4862 	BGE_SETBIT(sc, BGE_PCI_MISC_CTL, BGE_PCIMISCCTL_CLEAR_INTA);
4863 	BGE_CLRBIT(sc, BGE_PCI_MISC_CTL, BGE_PCIMISCCTL_MASK_PCI_INTR);
4864 	bge_writembx(sc, BGE_MBX_IRQ0_LO, 0);
4865 	}
4866 
4867 	bge_ifmedia_upd_locked(ifp);
4868 
4869 	ifp->if_drv_flags |= IFF_DRV_RUNNING;
4870 	ifp->if_drv_flags &= ~IFF_DRV_OACTIVE;
4871 
4872 	callout_reset(&sc->bge_stat_ch, hz, bge_tick, sc);
4873 }
4874 
4875 static void
4876 bge_init(void *xsc)
4877 {
4878 	struct bge_softc *sc = xsc;
4879 
4880 	BGE_LOCK(sc);
4881 	bge_init_locked(sc);
4882 	BGE_UNLOCK(sc);
4883 }
4884 
4885 /*
4886  * Set media options.
4887  */
4888 static int
4889 bge_ifmedia_upd(struct ifnet *ifp)
4890 {
4891 	struct bge_softc *sc = ifp->if_softc;
4892 	int res;
4893 
4894 	BGE_LOCK(sc);
4895 	res = bge_ifmedia_upd_locked(ifp);
4896 	BGE_UNLOCK(sc);
4897 
4898 	return (res);
4899 }
4900 
4901 static int
4902 bge_ifmedia_upd_locked(struct ifnet *ifp)
4903 {
4904 	struct bge_softc *sc = ifp->if_softc;
4905 	struct mii_data *mii;
4906 	struct mii_softc *miisc;
4907 	struct ifmedia *ifm;
4908 
4909 	BGE_LOCK_ASSERT(sc);
4910 
4911 	ifm = &sc->bge_ifmedia;
4912 
4913 	/* If this is a 1000baseX NIC, enable the TBI port. */
4914 	if (sc->bge_flags & BGE_FLAG_TBI) {
4915 		if (IFM_TYPE(ifm->ifm_media) != IFM_ETHER)
4916 			return (EINVAL);
4917 		switch(IFM_SUBTYPE(ifm->ifm_media)) {
4918 		case IFM_AUTO:
4919 			/*
4920 			 * The BCM5704 ASIC appears to have a special
4921 			 * mechanism for programming the autoneg
4922 			 * advertisement registers in TBI mode.
4923 			 */
4924 			if (sc->bge_asicrev == BGE_ASICREV_BCM5704) {
4925 				uint32_t sgdig;
4926 				sgdig = CSR_READ_4(sc, BGE_SGDIG_STS);
4927 				if (sgdig & BGE_SGDIGSTS_DONE) {
4928 					CSR_WRITE_4(sc, BGE_TX_TBI_AUTONEG, 0);
4929 					sgdig = CSR_READ_4(sc, BGE_SGDIG_CFG);
4930 					sgdig |= BGE_SGDIGCFG_AUTO |
4931 					    BGE_SGDIGCFG_PAUSE_CAP |
4932 					    BGE_SGDIGCFG_ASYM_PAUSE;
4933 					CSR_WRITE_4(sc, BGE_SGDIG_CFG,
4934 					    sgdig | BGE_SGDIGCFG_SEND);
4935 					DELAY(5);
4936 					CSR_WRITE_4(sc, BGE_SGDIG_CFG, sgdig);
4937 				}
4938 			}
4939 			break;
4940 		case IFM_1000_SX:
4941 			if ((ifm->ifm_media & IFM_GMASK) == IFM_FDX) {
4942 				BGE_CLRBIT(sc, BGE_MAC_MODE,
4943 				    BGE_MACMODE_HALF_DUPLEX);
4944 			} else {
4945 				BGE_SETBIT(sc, BGE_MAC_MODE,
4946 				    BGE_MACMODE_HALF_DUPLEX);
4947 			}
4948 			break;
4949 		default:
4950 			return (EINVAL);
4951 		}
4952 		return (0);
4953 	}
4954 
4955 	sc->bge_link_evt++;
4956 	mii = device_get_softc(sc->bge_miibus);
4957 	LIST_FOREACH(miisc, &mii->mii_phys, mii_list)
4958 		PHY_RESET(miisc);
4959 	mii_mediachg(mii);
4960 
4961 	/*
4962 	 * Force an interrupt so that we will call bge_link_upd
4963 	 * if needed and clear any pending link state attention.
4964 	 * Without this we are not getting any further interrupts
4965 	 * for link state changes and thus will not UP the link and
4966 	 * not be able to send in bge_start_locked. The only
4967 	 * way to get things working was to receive a packet and
4968 	 * get an RX intr.
4969 	 * bge_tick should help for fiber cards and we might not
4970 	 * need to do this here if BGE_FLAG_TBI is set but as
4971 	 * we poll for fiber anyway it should not harm.
4972 	 */
4973 	if (sc->bge_asicrev == BGE_ASICREV_BCM5700 ||
4974 	    sc->bge_flags & BGE_FLAG_5788)
4975 		BGE_SETBIT(sc, BGE_MISC_LOCAL_CTL, BGE_MLC_INTR_SET);
4976 	else
4977 		BGE_SETBIT(sc, BGE_HCC_MODE, BGE_HCCMODE_COAL_NOW);
4978 
4979 	return (0);
4980 }
4981 
4982 /*
4983  * Report current media status.
4984  */
4985 static void
4986 bge_ifmedia_sts(struct ifnet *ifp, struct ifmediareq *ifmr)
4987 {
4988 	struct bge_softc *sc = ifp->if_softc;
4989 	struct mii_data *mii;
4990 
4991 	BGE_LOCK(sc);
4992 
4993 	if (sc->bge_flags & BGE_FLAG_TBI) {
4994 		ifmr->ifm_status = IFM_AVALID;
4995 		ifmr->ifm_active = IFM_ETHER;
4996 		if (CSR_READ_4(sc, BGE_MAC_STS) &
4997 		    BGE_MACSTAT_TBI_PCS_SYNCHED)
4998 			ifmr->ifm_status |= IFM_ACTIVE;
4999 		else {
5000 			ifmr->ifm_active |= IFM_NONE;
5001 			BGE_UNLOCK(sc);
5002 			return;
5003 		}
5004 		ifmr->ifm_active |= IFM_1000_SX;
5005 		if (CSR_READ_4(sc, BGE_MAC_MODE) & BGE_MACMODE_HALF_DUPLEX)
5006 			ifmr->ifm_active |= IFM_HDX;
5007 		else
5008 			ifmr->ifm_active |= IFM_FDX;
5009 		BGE_UNLOCK(sc);
5010 		return;
5011 	}
5012 
5013 	mii = device_get_softc(sc->bge_miibus);
5014 	mii_pollstat(mii);
5015 	ifmr->ifm_active = mii->mii_media_active;
5016 	ifmr->ifm_status = mii->mii_media_status;
5017 
5018 	BGE_UNLOCK(sc);
5019 }
5020 
5021 static int
5022 bge_ioctl(struct ifnet *ifp, u_long command, caddr_t data)
5023 {
5024 	struct bge_softc *sc = ifp->if_softc;
5025 	struct ifreq *ifr = (struct ifreq *) data;
5026 	struct mii_data *mii;
5027 	int flags, mask, error = 0;
5028 
5029 	switch (command) {
5030 	case SIOCSIFMTU:
5031 		if (BGE_IS_JUMBO_CAPABLE(sc) ||
5032 		    (sc->bge_flags & BGE_FLAG_JUMBO_STD)) {
5033 			if (ifr->ifr_mtu < ETHERMIN ||
5034 			    ifr->ifr_mtu > BGE_JUMBO_MTU) {
5035 				error = EINVAL;
5036 				break;
5037 			}
5038 		} else if (ifr->ifr_mtu < ETHERMIN || ifr->ifr_mtu > ETHERMTU) {
5039 			error = EINVAL;
5040 			break;
5041 		}
5042 		BGE_LOCK(sc);
5043 		if (ifp->if_mtu != ifr->ifr_mtu) {
5044 			ifp->if_mtu = ifr->ifr_mtu;
5045 			if (ifp->if_drv_flags & IFF_DRV_RUNNING) {
5046 				ifp->if_drv_flags &= ~IFF_DRV_RUNNING;
5047 				bge_init_locked(sc);
5048 			}
5049 		}
5050 		BGE_UNLOCK(sc);
5051 		break;
5052 	case SIOCSIFFLAGS:
5053 		BGE_LOCK(sc);
5054 		if (ifp->if_flags & IFF_UP) {
5055 			/*
5056 			 * If only the state of the PROMISC flag changed,
5057 			 * then just use the 'set promisc mode' command
5058 			 * instead of reinitializing the entire NIC. Doing
5059 			 * a full re-init means reloading the firmware and
5060 			 * waiting for it to start up, which may take a
5061 			 * second or two.  Similarly for ALLMULTI.
5062 			 */
5063 			if (ifp->if_drv_flags & IFF_DRV_RUNNING) {
5064 				flags = ifp->if_flags ^ sc->bge_if_flags;
5065 				if (flags & IFF_PROMISC)
5066 					bge_setpromisc(sc);
5067 				if (flags & IFF_ALLMULTI)
5068 					bge_setmulti(sc);
5069 			} else
5070 				bge_init_locked(sc);
5071 		} else {
5072 			if (ifp->if_drv_flags & IFF_DRV_RUNNING) {
5073 				bge_stop(sc);
5074 			}
5075 		}
5076 		sc->bge_if_flags = ifp->if_flags;
5077 		BGE_UNLOCK(sc);
5078 		error = 0;
5079 		break;
5080 	case SIOCADDMULTI:
5081 	case SIOCDELMULTI:
5082 		if (ifp->if_drv_flags & IFF_DRV_RUNNING) {
5083 			BGE_LOCK(sc);
5084 			bge_setmulti(sc);
5085 			BGE_UNLOCK(sc);
5086 			error = 0;
5087 		}
5088 		break;
5089 	case SIOCSIFMEDIA:
5090 	case SIOCGIFMEDIA:
5091 		if (sc->bge_flags & BGE_FLAG_TBI) {
5092 			error = ifmedia_ioctl(ifp, ifr,
5093 			    &sc->bge_ifmedia, command);
5094 		} else {
5095 			mii = device_get_softc(sc->bge_miibus);
5096 			error = ifmedia_ioctl(ifp, ifr,
5097 			    &mii->mii_media, command);
5098 		}
5099 		break;
5100 	case SIOCSIFCAP:
5101 		mask = ifr->ifr_reqcap ^ ifp->if_capenable;
5102 #ifdef DEVICE_POLLING
5103 		if (mask & IFCAP_POLLING) {
5104 			if (ifr->ifr_reqcap & IFCAP_POLLING) {
5105 				error = ether_poll_register(bge_poll, ifp);
5106 				if (error)
5107 					return (error);
5108 				BGE_LOCK(sc);
5109 				BGE_SETBIT(sc, BGE_PCI_MISC_CTL,
5110 				    BGE_PCIMISCCTL_MASK_PCI_INTR);
5111 				bge_writembx(sc, BGE_MBX_IRQ0_LO, 1);
5112 				ifp->if_capenable |= IFCAP_POLLING;
5113 				BGE_UNLOCK(sc);
5114 			} else {
5115 				error = ether_poll_deregister(ifp);
5116 				/* Enable interrupt even in error case */
5117 				BGE_LOCK(sc);
5118 				BGE_CLRBIT(sc, BGE_PCI_MISC_CTL,
5119 				    BGE_PCIMISCCTL_MASK_PCI_INTR);
5120 				bge_writembx(sc, BGE_MBX_IRQ0_LO, 0);
5121 				ifp->if_capenable &= ~IFCAP_POLLING;
5122 				BGE_UNLOCK(sc);
5123 			}
5124 		}
5125 #endif
5126 		if ((mask & IFCAP_TXCSUM) != 0 &&
5127 		    (ifp->if_capabilities & IFCAP_TXCSUM) != 0) {
5128 			ifp->if_capenable ^= IFCAP_TXCSUM;
5129 			if ((ifp->if_capenable & IFCAP_TXCSUM) != 0)
5130 				ifp->if_hwassist |= sc->bge_csum_features;
5131 			else
5132 				ifp->if_hwassist &= ~sc->bge_csum_features;
5133 		}
5134 
5135 		if ((mask & IFCAP_RXCSUM) != 0 &&
5136 		    (ifp->if_capabilities & IFCAP_RXCSUM) != 0)
5137 			ifp->if_capenable ^= IFCAP_RXCSUM;
5138 
5139 		if ((mask & IFCAP_TSO4) != 0 &&
5140 		    (ifp->if_capabilities & IFCAP_TSO4) != 0) {
5141 			ifp->if_capenable ^= IFCAP_TSO4;
5142 			if ((ifp->if_capenable & IFCAP_TSO4) != 0)
5143 				ifp->if_hwassist |= CSUM_TSO;
5144 			else
5145 				ifp->if_hwassist &= ~CSUM_TSO;
5146 		}
5147 
5148 		if (mask & IFCAP_VLAN_MTU) {
5149 			ifp->if_capenable ^= IFCAP_VLAN_MTU;
5150 			ifp->if_drv_flags &= ~IFF_DRV_RUNNING;
5151 			bge_init(sc);
5152 		}
5153 
5154 		if ((mask & IFCAP_VLAN_HWTSO) != 0 &&
5155 		    (ifp->if_capabilities & IFCAP_VLAN_HWTSO) != 0)
5156 			ifp->if_capenable ^= IFCAP_VLAN_HWTSO;
5157 		if ((mask & IFCAP_VLAN_HWTAGGING) != 0 &&
5158 		    (ifp->if_capabilities & IFCAP_VLAN_HWTAGGING) != 0) {
5159 			ifp->if_capenable ^= IFCAP_VLAN_HWTAGGING;
5160 			if ((ifp->if_capenable & IFCAP_VLAN_HWTAGGING) == 0)
5161 				ifp->if_capenable &= ~IFCAP_VLAN_HWTSO;
5162 			BGE_LOCK(sc);
5163 			bge_setvlan(sc);
5164 			BGE_UNLOCK(sc);
5165 		}
5166 #ifdef VLAN_CAPABILITIES
5167 		VLAN_CAPABILITIES(ifp);
5168 #endif
5169 		break;
5170 	default:
5171 		error = ether_ioctl(ifp, command, data);
5172 		break;
5173 	}
5174 
5175 	return (error);
5176 }
5177 
5178 static void
5179 bge_watchdog(struct bge_softc *sc)
5180 {
5181 	struct ifnet *ifp;
5182 
5183 	BGE_LOCK_ASSERT(sc);
5184 
5185 	if (sc->bge_timer == 0 || --sc->bge_timer)
5186 		return;
5187 
5188 	ifp = sc->bge_ifp;
5189 
5190 	if_printf(ifp, "watchdog timeout -- resetting\n");
5191 
5192 	ifp->if_drv_flags &= ~IFF_DRV_RUNNING;
5193 	bge_init_locked(sc);
5194 
5195 	ifp->if_oerrors++;
5196 }
5197 
5198 static void
5199 bge_stop_block(struct bge_softc *sc, bus_size_t reg, uint32_t bit)
5200 {
5201 	int i;
5202 
5203 	BGE_CLRBIT(sc, reg, bit);
5204 
5205 	for (i = 0; i < BGE_TIMEOUT; i++) {
5206 		if ((CSR_READ_4(sc, reg) & bit) == 0)
5207 			return;
5208 		DELAY(100);
5209         }
5210 }
5211 
5212 /*
5213  * Stop the adapter and free any mbufs allocated to the
5214  * RX and TX lists.
5215  */
5216 static void
5217 bge_stop(struct bge_softc *sc)
5218 {
5219 	struct ifnet *ifp;
5220 
5221 	BGE_LOCK_ASSERT(sc);
5222 
5223 	ifp = sc->bge_ifp;
5224 
5225 	callout_stop(&sc->bge_stat_ch);
5226 
5227 	/* Disable host interrupts. */
5228 	BGE_SETBIT(sc, BGE_PCI_MISC_CTL, BGE_PCIMISCCTL_MASK_PCI_INTR);
5229 	bge_writembx(sc, BGE_MBX_IRQ0_LO, 1);
5230 
5231 	/*
5232 	 * Tell firmware we're shutting down.
5233 	 */
5234 	bge_stop_fw(sc);
5235 	bge_sig_pre_reset(sc, BGE_RESET_STOP);
5236 
5237 	/*
5238 	 * Disable all of the receiver blocks.
5239 	 */
5240 	bge_stop_block(sc, BGE_RX_MODE, BGE_RXMODE_ENABLE);
5241 	bge_stop_block(sc, BGE_RBDI_MODE, BGE_RBDIMODE_ENABLE);
5242 	bge_stop_block(sc, BGE_RXLP_MODE, BGE_RXLPMODE_ENABLE);
5243 	if (BGE_IS_5700_FAMILY(sc))
5244 		bge_stop_block(sc, BGE_RXLS_MODE, BGE_RXLSMODE_ENABLE);
5245 	bge_stop_block(sc, BGE_RDBDI_MODE, BGE_RBDIMODE_ENABLE);
5246 	bge_stop_block(sc, BGE_RDC_MODE, BGE_RDCMODE_ENABLE);
5247 	bge_stop_block(sc, BGE_RBDC_MODE, BGE_RBDCMODE_ENABLE);
5248 
5249 	/*
5250 	 * Disable all of the transmit blocks.
5251 	 */
5252 	bge_stop_block(sc, BGE_SRS_MODE, BGE_SRSMODE_ENABLE);
5253 	bge_stop_block(sc, BGE_SBDI_MODE, BGE_SBDIMODE_ENABLE);
5254 	bge_stop_block(sc, BGE_SDI_MODE, BGE_SDIMODE_ENABLE);
5255 	bge_stop_block(sc, BGE_RDMA_MODE, BGE_RDMAMODE_ENABLE);
5256 	bge_stop_block(sc, BGE_SDC_MODE, BGE_SDCMODE_ENABLE);
5257 	if (BGE_IS_5700_FAMILY(sc))
5258 		bge_stop_block(sc, BGE_DMAC_MODE, BGE_DMACMODE_ENABLE);
5259 	bge_stop_block(sc, BGE_SBDC_MODE, BGE_SBDCMODE_ENABLE);
5260 
5261 	/*
5262 	 * Shut down all of the memory managers and related
5263 	 * state machines.
5264 	 */
5265 	bge_stop_block(sc, BGE_HCC_MODE, BGE_HCCMODE_ENABLE);
5266 	bge_stop_block(sc, BGE_WDMA_MODE, BGE_WDMAMODE_ENABLE);
5267 	if (BGE_IS_5700_FAMILY(sc))
5268 		bge_stop_block(sc, BGE_MBCF_MODE, BGE_MBCFMODE_ENABLE);
5269 
5270 	CSR_WRITE_4(sc, BGE_FTQ_RESET, 0xFFFFFFFF);
5271 	CSR_WRITE_4(sc, BGE_FTQ_RESET, 0);
5272 	if (!(BGE_IS_5705_PLUS(sc))) {
5273 		BGE_CLRBIT(sc, BGE_BMAN_MODE, BGE_BMANMODE_ENABLE);
5274 		BGE_CLRBIT(sc, BGE_MARB_MODE, BGE_MARBMODE_ENABLE);
5275 	}
5276 	/* Update MAC statistics. */
5277 	if (BGE_IS_5705_PLUS(sc))
5278 		bge_stats_update_regs(sc);
5279 
5280 	bge_reset(sc);
5281 	bge_sig_legacy(sc, BGE_RESET_STOP);
5282 	bge_sig_post_reset(sc, BGE_RESET_STOP);
5283 
5284 	/*
5285 	 * Keep the ASF firmware running if up.
5286 	 */
5287 	if (sc->bge_asf_mode & ASF_STACKUP)
5288 		BGE_SETBIT(sc, BGE_MODE_CTL, BGE_MODECTL_STACKUP);
5289 	else
5290 		BGE_CLRBIT(sc, BGE_MODE_CTL, BGE_MODECTL_STACKUP);
5291 
5292 	/* Free the RX lists. */
5293 	bge_free_rx_ring_std(sc);
5294 
5295 	/* Free jumbo RX list. */
5296 	if (BGE_IS_JUMBO_CAPABLE(sc))
5297 		bge_free_rx_ring_jumbo(sc);
5298 
5299 	/* Free TX buffers. */
5300 	bge_free_tx_ring(sc);
5301 
5302 	sc->bge_tx_saved_considx = BGE_TXCONS_UNSET;
5303 
5304 	/* Clear MAC's link state (PHY may still have link UP). */
5305 	if (bootverbose && sc->bge_link)
5306 		if_printf(sc->bge_ifp, "link DOWN\n");
5307 	sc->bge_link = 0;
5308 
5309 	ifp->if_drv_flags &= ~(IFF_DRV_RUNNING | IFF_DRV_OACTIVE);
5310 }
5311 
5312 /*
5313  * Stop all chip I/O so that the kernel's probe routines don't
5314  * get confused by errant DMAs when rebooting.
5315  */
5316 static int
5317 bge_shutdown(device_t dev)
5318 {
5319 	struct bge_softc *sc;
5320 
5321 	sc = device_get_softc(dev);
5322 	BGE_LOCK(sc);
5323 	bge_stop(sc);
5324 	bge_reset(sc);
5325 	BGE_UNLOCK(sc);
5326 
5327 	return (0);
5328 }
5329 
5330 static int
5331 bge_suspend(device_t dev)
5332 {
5333 	struct bge_softc *sc;
5334 
5335 	sc = device_get_softc(dev);
5336 	BGE_LOCK(sc);
5337 	bge_stop(sc);
5338 	BGE_UNLOCK(sc);
5339 
5340 	return (0);
5341 }
5342 
5343 static int
5344 bge_resume(device_t dev)
5345 {
5346 	struct bge_softc *sc;
5347 	struct ifnet *ifp;
5348 
5349 	sc = device_get_softc(dev);
5350 	BGE_LOCK(sc);
5351 	ifp = sc->bge_ifp;
5352 	if (ifp->if_flags & IFF_UP) {
5353 		bge_init_locked(sc);
5354 		if (ifp->if_drv_flags & IFF_DRV_RUNNING)
5355 			bge_start_locked(ifp);
5356 	}
5357 	BGE_UNLOCK(sc);
5358 
5359 	return (0);
5360 }
5361 
5362 static void
5363 bge_link_upd(struct bge_softc *sc)
5364 {
5365 	struct mii_data *mii;
5366 	uint32_t link, status;
5367 
5368 	BGE_LOCK_ASSERT(sc);
5369 
5370 	/* Clear 'pending link event' flag. */
5371 	sc->bge_link_evt = 0;
5372 
5373 	/*
5374 	 * Process link state changes.
5375 	 * Grrr. The link status word in the status block does
5376 	 * not work correctly on the BCM5700 rev AX and BX chips,
5377 	 * according to all available information. Hence, we have
5378 	 * to enable MII interrupts in order to properly obtain
5379 	 * async link changes. Unfortunately, this also means that
5380 	 * we have to read the MAC status register to detect link
5381 	 * changes, thereby adding an additional register access to
5382 	 * the interrupt handler.
5383 	 *
5384 	 * XXX: perhaps link state detection procedure used for
5385 	 * BGE_CHIPID_BCM5700_B2 can be used for others BCM5700 revisions.
5386 	 */
5387 
5388 	if (sc->bge_asicrev == BGE_ASICREV_BCM5700 &&
5389 	    sc->bge_chipid != BGE_CHIPID_BCM5700_B2) {
5390 		status = CSR_READ_4(sc, BGE_MAC_STS);
5391 		if (status & BGE_MACSTAT_MI_INTERRUPT) {
5392 			mii = device_get_softc(sc->bge_miibus);
5393 			mii_pollstat(mii);
5394 			if (!sc->bge_link &&
5395 			    mii->mii_media_status & IFM_ACTIVE &&
5396 			    IFM_SUBTYPE(mii->mii_media_active) != IFM_NONE) {
5397 				sc->bge_link++;
5398 				if (bootverbose)
5399 					if_printf(sc->bge_ifp, "link UP\n");
5400 			} else if (sc->bge_link &&
5401 			    (!(mii->mii_media_status & IFM_ACTIVE) ||
5402 			    IFM_SUBTYPE(mii->mii_media_active) == IFM_NONE)) {
5403 				sc->bge_link = 0;
5404 				if (bootverbose)
5405 					if_printf(sc->bge_ifp, "link DOWN\n");
5406 			}
5407 
5408 			/* Clear the interrupt. */
5409 			CSR_WRITE_4(sc, BGE_MAC_EVT_ENB,
5410 			    BGE_EVTENB_MI_INTERRUPT);
5411 			bge_miibus_readreg(sc->bge_dev, 1, BRGPHY_MII_ISR);
5412 			bge_miibus_writereg(sc->bge_dev, 1, BRGPHY_MII_IMR,
5413 			    BRGPHY_INTRS);
5414 		}
5415 		return;
5416 	}
5417 
5418 	if (sc->bge_flags & BGE_FLAG_TBI) {
5419 		status = CSR_READ_4(sc, BGE_MAC_STS);
5420 		if (status & BGE_MACSTAT_TBI_PCS_SYNCHED) {
5421 			if (!sc->bge_link) {
5422 				sc->bge_link++;
5423 				if (sc->bge_asicrev == BGE_ASICREV_BCM5704)
5424 					BGE_CLRBIT(sc, BGE_MAC_MODE,
5425 					    BGE_MACMODE_TBI_SEND_CFGS);
5426 				CSR_WRITE_4(sc, BGE_MAC_STS, 0xFFFFFFFF);
5427 				if (bootverbose)
5428 					if_printf(sc->bge_ifp, "link UP\n");
5429 				if_link_state_change(sc->bge_ifp,
5430 				    LINK_STATE_UP);
5431 			}
5432 		} else if (sc->bge_link) {
5433 			sc->bge_link = 0;
5434 			if (bootverbose)
5435 				if_printf(sc->bge_ifp, "link DOWN\n");
5436 			if_link_state_change(sc->bge_ifp, LINK_STATE_DOWN);
5437 		}
5438 	} else if ((sc->bge_mi_mode & BGE_MIMODE_AUTOPOLL) != 0) {
5439 		/*
5440 		 * Some broken BCM chips have BGE_STATFLAG_LINKSTATE_CHANGED bit
5441 		 * in status word always set. Workaround this bug by reading
5442 		 * PHY link status directly.
5443 		 */
5444 		link = (CSR_READ_4(sc, BGE_MI_STS) & BGE_MISTS_LINK) ? 1 : 0;
5445 
5446 		if (link != sc->bge_link ||
5447 		    sc->bge_asicrev == BGE_ASICREV_BCM5700) {
5448 			mii = device_get_softc(sc->bge_miibus);
5449 			mii_pollstat(mii);
5450 			if (!sc->bge_link &&
5451 			    mii->mii_media_status & IFM_ACTIVE &&
5452 			    IFM_SUBTYPE(mii->mii_media_active) != IFM_NONE) {
5453 				sc->bge_link++;
5454 				if (bootverbose)
5455 					if_printf(sc->bge_ifp, "link UP\n");
5456 			} else if (sc->bge_link &&
5457 			    (!(mii->mii_media_status & IFM_ACTIVE) ||
5458 			    IFM_SUBTYPE(mii->mii_media_active) == IFM_NONE)) {
5459 				sc->bge_link = 0;
5460 				if (bootverbose)
5461 					if_printf(sc->bge_ifp, "link DOWN\n");
5462 			}
5463 		}
5464 	} else {
5465 		/*
5466 		 * For controllers that call mii_tick, we have to poll
5467 		 * link status.
5468 		 */
5469 		mii = device_get_softc(sc->bge_miibus);
5470 		mii_pollstat(mii);
5471 		bge_miibus_statchg(sc->bge_dev);
5472 	}
5473 
5474 	/* Clear the attention. */
5475 	CSR_WRITE_4(sc, BGE_MAC_STS, BGE_MACSTAT_SYNC_CHANGED |
5476 	    BGE_MACSTAT_CFG_CHANGED | BGE_MACSTAT_MI_COMPLETE |
5477 	    BGE_MACSTAT_LINK_CHANGED);
5478 }
5479 
5480 static void
5481 bge_add_sysctls(struct bge_softc *sc)
5482 {
5483 	struct sysctl_ctx_list *ctx;
5484 	struct sysctl_oid_list *children;
5485 	char tn[32];
5486 	int unit;
5487 
5488 	ctx = device_get_sysctl_ctx(sc->bge_dev);
5489 	children = SYSCTL_CHILDREN(device_get_sysctl_tree(sc->bge_dev));
5490 
5491 #ifdef BGE_REGISTER_DEBUG
5492 	SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "debug_info",
5493 	    CTLTYPE_INT | CTLFLAG_RW, sc, 0, bge_sysctl_debug_info, "I",
5494 	    "Debug Information");
5495 
5496 	SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "reg_read",
5497 	    CTLTYPE_INT | CTLFLAG_RW, sc, 0, bge_sysctl_reg_read, "I",
5498 	    "Register Read");
5499 
5500 	SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "mem_read",
5501 	    CTLTYPE_INT | CTLFLAG_RW, sc, 0, bge_sysctl_mem_read, "I",
5502 	    "Memory Read");
5503 
5504 #endif
5505 
5506 	unit = device_get_unit(sc->bge_dev);
5507 	/*
5508 	 * A common design characteristic for many Broadcom client controllers
5509 	 * is that they only support a single outstanding DMA read operation
5510 	 * on the PCIe bus. This means that it will take twice as long to fetch
5511 	 * a TX frame that is split into header and payload buffers as it does
5512 	 * to fetch a single, contiguous TX frame (2 reads vs. 1 read). For
5513 	 * these controllers, coalescing buffers to reduce the number of memory
5514 	 * reads is effective way to get maximum performance(about 940Mbps).
5515 	 * Without collapsing TX buffers the maximum TCP bulk transfer
5516 	 * performance is about 850Mbps. However forcing coalescing mbufs
5517 	 * consumes a lot of CPU cycles, so leave it off by default.
5518 	 */
5519 	sc->bge_forced_collapse = 0;
5520 	snprintf(tn, sizeof(tn), "dev.bge.%d.forced_collapse", unit);
5521 	TUNABLE_INT_FETCH(tn, &sc->bge_forced_collapse);
5522 	SYSCTL_ADD_INT(ctx, children, OID_AUTO, "forced_collapse",
5523 	    CTLFLAG_RW, &sc->bge_forced_collapse, 0,
5524 	    "Number of fragmented TX buffers of a frame allowed before "
5525 	    "forced collapsing");
5526 
5527 	/*
5528 	 * It seems all Broadcom controllers have a bug that can generate UDP
5529 	 * datagrams with checksum value 0 when TX UDP checksum offloading is
5530 	 * enabled.  Generating UDP checksum value 0 is RFC 768 violation.
5531 	 * Even though the probability of generating such UDP datagrams is
5532 	 * low, I don't want to see FreeBSD boxes to inject such datagrams
5533 	 * into network so disable UDP checksum offloading by default.  Users
5534 	 * still override this behavior by setting a sysctl variable,
5535 	 * dev.bge.0.forced_udpcsum.
5536 	 */
5537 	sc->bge_forced_udpcsum = 0;
5538 	snprintf(tn, sizeof(tn), "dev.bge.%d.bge_forced_udpcsum", unit);
5539 	TUNABLE_INT_FETCH(tn, &sc->bge_forced_udpcsum);
5540 	SYSCTL_ADD_INT(ctx, children, OID_AUTO, "forced_udpcsum",
5541 	    CTLFLAG_RW, &sc->bge_forced_udpcsum, 0,
5542 	    "Enable UDP checksum offloading even if controller can "
5543 	    "generate UDP checksum value 0");
5544 
5545 	if (BGE_IS_5705_PLUS(sc))
5546 		bge_add_sysctl_stats_regs(sc, ctx, children);
5547 	else
5548 		bge_add_sysctl_stats(sc, ctx, children);
5549 }
5550 
5551 #define BGE_SYSCTL_STAT(sc, ctx, desc, parent, node, oid) \
5552 	SYSCTL_ADD_PROC(ctx, parent, OID_AUTO, oid, CTLTYPE_UINT|CTLFLAG_RD, \
5553 	    sc, offsetof(struct bge_stats, node), bge_sysctl_stats, "IU", \
5554 	    desc)
5555 
5556 static void
5557 bge_add_sysctl_stats(struct bge_softc *sc, struct sysctl_ctx_list *ctx,
5558     struct sysctl_oid_list *parent)
5559 {
5560 	struct sysctl_oid *tree;
5561 	struct sysctl_oid_list *children, *schildren;
5562 
5563 	tree = SYSCTL_ADD_NODE(ctx, parent, OID_AUTO, "stats", CTLFLAG_RD,
5564 	    NULL, "BGE Statistics");
5565 	schildren = children = SYSCTL_CHILDREN(tree);
5566 	BGE_SYSCTL_STAT(sc, ctx, "Frames Dropped Due To Filters",
5567 	    children, COSFramesDroppedDueToFilters,
5568 	    "FramesDroppedDueToFilters");
5569 	BGE_SYSCTL_STAT(sc, ctx, "NIC DMA Write Queue Full",
5570 	    children, nicDmaWriteQueueFull, "DmaWriteQueueFull");
5571 	BGE_SYSCTL_STAT(sc, ctx, "NIC DMA Write High Priority Queue Full",
5572 	    children, nicDmaWriteHighPriQueueFull, "DmaWriteHighPriQueueFull");
5573 	BGE_SYSCTL_STAT(sc, ctx, "NIC No More RX Buffer Descriptors",
5574 	    children, nicNoMoreRxBDs, "NoMoreRxBDs");
5575 	BGE_SYSCTL_STAT(sc, ctx, "Discarded Input Frames",
5576 	    children, ifInDiscards, "InputDiscards");
5577 	BGE_SYSCTL_STAT(sc, ctx, "Input Errors",
5578 	    children, ifInErrors, "InputErrors");
5579 	BGE_SYSCTL_STAT(sc, ctx, "NIC Recv Threshold Hit",
5580 	    children, nicRecvThresholdHit, "RecvThresholdHit");
5581 	BGE_SYSCTL_STAT(sc, ctx, "NIC DMA Read Queue Full",
5582 	    children, nicDmaReadQueueFull, "DmaReadQueueFull");
5583 	BGE_SYSCTL_STAT(sc, ctx, "NIC DMA Read High Priority Queue Full",
5584 	    children, nicDmaReadHighPriQueueFull, "DmaReadHighPriQueueFull");
5585 	BGE_SYSCTL_STAT(sc, ctx, "NIC Send Data Complete Queue Full",
5586 	    children, nicSendDataCompQueueFull, "SendDataCompQueueFull");
5587 	BGE_SYSCTL_STAT(sc, ctx, "NIC Ring Set Send Producer Index",
5588 	    children, nicRingSetSendProdIndex, "RingSetSendProdIndex");
5589 	BGE_SYSCTL_STAT(sc, ctx, "NIC Ring Status Update",
5590 	    children, nicRingStatusUpdate, "RingStatusUpdate");
5591 	BGE_SYSCTL_STAT(sc, ctx, "NIC Interrupts",
5592 	    children, nicInterrupts, "Interrupts");
5593 	BGE_SYSCTL_STAT(sc, ctx, "NIC Avoided Interrupts",
5594 	    children, nicAvoidedInterrupts, "AvoidedInterrupts");
5595 	BGE_SYSCTL_STAT(sc, ctx, "NIC Send Threshold Hit",
5596 	    children, nicSendThresholdHit, "SendThresholdHit");
5597 
5598 	tree = SYSCTL_ADD_NODE(ctx, schildren, OID_AUTO, "rx", CTLFLAG_RD,
5599 	    NULL, "BGE RX Statistics");
5600 	children = SYSCTL_CHILDREN(tree);
5601 	BGE_SYSCTL_STAT(sc, ctx, "Inbound Octets",
5602 	    children, rxstats.ifHCInOctets, "ifHCInOctets");
5603 	BGE_SYSCTL_STAT(sc, ctx, "Fragments",
5604 	    children, rxstats.etherStatsFragments, "Fragments");
5605 	BGE_SYSCTL_STAT(sc, ctx, "Inbound Unicast Packets",
5606 	    children, rxstats.ifHCInUcastPkts, "UnicastPkts");
5607 	BGE_SYSCTL_STAT(sc, ctx, "Inbound Multicast Packets",
5608 	    children, rxstats.ifHCInMulticastPkts, "MulticastPkts");
5609 	BGE_SYSCTL_STAT(sc, ctx, "FCS Errors",
5610 	    children, rxstats.dot3StatsFCSErrors, "FCSErrors");
5611 	BGE_SYSCTL_STAT(sc, ctx, "Alignment Errors",
5612 	    children, rxstats.dot3StatsAlignmentErrors, "AlignmentErrors");
5613 	BGE_SYSCTL_STAT(sc, ctx, "XON Pause Frames Received",
5614 	    children, rxstats.xonPauseFramesReceived, "xonPauseFramesReceived");
5615 	BGE_SYSCTL_STAT(sc, ctx, "XOFF Pause Frames Received",
5616 	    children, rxstats.xoffPauseFramesReceived,
5617 	    "xoffPauseFramesReceived");
5618 	BGE_SYSCTL_STAT(sc, ctx, "MAC Control Frames Received",
5619 	    children, rxstats.macControlFramesReceived,
5620 	    "ControlFramesReceived");
5621 	BGE_SYSCTL_STAT(sc, ctx, "XOFF State Entered",
5622 	    children, rxstats.xoffStateEntered, "xoffStateEntered");
5623 	BGE_SYSCTL_STAT(sc, ctx, "Frames Too Long",
5624 	    children, rxstats.dot3StatsFramesTooLong, "FramesTooLong");
5625 	BGE_SYSCTL_STAT(sc, ctx, "Jabbers",
5626 	    children, rxstats.etherStatsJabbers, "Jabbers");
5627 	BGE_SYSCTL_STAT(sc, ctx, "Undersized Packets",
5628 	    children, rxstats.etherStatsUndersizePkts, "UndersizePkts");
5629 	BGE_SYSCTL_STAT(sc, ctx, "Inbound Range Length Errors",
5630 	    children, rxstats.inRangeLengthError, "inRangeLengthError");
5631 	BGE_SYSCTL_STAT(sc, ctx, "Outbound Range Length Errors",
5632 	    children, rxstats.outRangeLengthError, "outRangeLengthError");
5633 
5634 	tree = SYSCTL_ADD_NODE(ctx, schildren, OID_AUTO, "tx", CTLFLAG_RD,
5635 	    NULL, "BGE TX Statistics");
5636 	children = SYSCTL_CHILDREN(tree);
5637 	BGE_SYSCTL_STAT(sc, ctx, "Outbound Octets",
5638 	    children, txstats.ifHCOutOctets, "ifHCOutOctets");
5639 	BGE_SYSCTL_STAT(sc, ctx, "TX Collisions",
5640 	    children, txstats.etherStatsCollisions, "Collisions");
5641 	BGE_SYSCTL_STAT(sc, ctx, "XON Sent",
5642 	    children, txstats.outXonSent, "XonSent");
5643 	BGE_SYSCTL_STAT(sc, ctx, "XOFF Sent",
5644 	    children, txstats.outXoffSent, "XoffSent");
5645 	BGE_SYSCTL_STAT(sc, ctx, "Flow Control Done",
5646 	    children, txstats.flowControlDone, "flowControlDone");
5647 	BGE_SYSCTL_STAT(sc, ctx, "Internal MAC TX errors",
5648 	    children, txstats.dot3StatsInternalMacTransmitErrors,
5649 	    "InternalMacTransmitErrors");
5650 	BGE_SYSCTL_STAT(sc, ctx, "Single Collision Frames",
5651 	    children, txstats.dot3StatsSingleCollisionFrames,
5652 	    "SingleCollisionFrames");
5653 	BGE_SYSCTL_STAT(sc, ctx, "Multiple Collision Frames",
5654 	    children, txstats.dot3StatsMultipleCollisionFrames,
5655 	    "MultipleCollisionFrames");
5656 	BGE_SYSCTL_STAT(sc, ctx, "Deferred Transmissions",
5657 	    children, txstats.dot3StatsDeferredTransmissions,
5658 	    "DeferredTransmissions");
5659 	BGE_SYSCTL_STAT(sc, ctx, "Excessive Collisions",
5660 	    children, txstats.dot3StatsExcessiveCollisions,
5661 	    "ExcessiveCollisions");
5662 	BGE_SYSCTL_STAT(sc, ctx, "Late Collisions",
5663 	    children, txstats.dot3StatsLateCollisions,
5664 	    "LateCollisions");
5665 	BGE_SYSCTL_STAT(sc, ctx, "Outbound Unicast Packets",
5666 	    children, txstats.ifHCOutUcastPkts, "UnicastPkts");
5667 	BGE_SYSCTL_STAT(sc, ctx, "Outbound Multicast Packets",
5668 	    children, txstats.ifHCOutMulticastPkts, "MulticastPkts");
5669 	BGE_SYSCTL_STAT(sc, ctx, "Outbound Broadcast Packets",
5670 	    children, txstats.ifHCOutBroadcastPkts, "BroadcastPkts");
5671 	BGE_SYSCTL_STAT(sc, ctx, "Carrier Sense Errors",
5672 	    children, txstats.dot3StatsCarrierSenseErrors,
5673 	    "CarrierSenseErrors");
5674 	BGE_SYSCTL_STAT(sc, ctx, "Outbound Discards",
5675 	    children, txstats.ifOutDiscards, "Discards");
5676 	BGE_SYSCTL_STAT(sc, ctx, "Outbound Errors",
5677 	    children, txstats.ifOutErrors, "Errors");
5678 }
5679 
5680 #undef BGE_SYSCTL_STAT
5681 
5682 #define	BGE_SYSCTL_STAT_ADD64(c, h, n, p, d)	\
5683 	    SYSCTL_ADD_UQUAD(c, h, OID_AUTO, n, CTLFLAG_RD, p, d)
5684 
5685 static void
5686 bge_add_sysctl_stats_regs(struct bge_softc *sc, struct sysctl_ctx_list *ctx,
5687     struct sysctl_oid_list *parent)
5688 {
5689 	struct sysctl_oid *tree;
5690 	struct sysctl_oid_list *child, *schild;
5691 	struct bge_mac_stats *stats;
5692 
5693 	stats = &sc->bge_mac_stats;
5694 	tree = SYSCTL_ADD_NODE(ctx, parent, OID_AUTO, "stats", CTLFLAG_RD,
5695 	    NULL, "BGE Statistics");
5696 	schild = child = SYSCTL_CHILDREN(tree);
5697 	BGE_SYSCTL_STAT_ADD64(ctx, child, "FramesDroppedDueToFilters",
5698 	    &stats->FramesDroppedDueToFilters, "Frames Dropped Due to Filters");
5699 	BGE_SYSCTL_STAT_ADD64(ctx, child, "DmaWriteQueueFull",
5700 	    &stats->DmaWriteQueueFull, "NIC DMA Write Queue Full");
5701 	BGE_SYSCTL_STAT_ADD64(ctx, child, "DmaWriteHighPriQueueFull",
5702 	    &stats->DmaWriteHighPriQueueFull,
5703 	    "NIC DMA Write High Priority Queue Full");
5704 	BGE_SYSCTL_STAT_ADD64(ctx, child, "NoMoreRxBDs",
5705 	    &stats->NoMoreRxBDs, "NIC No More RX Buffer Descriptors");
5706 	BGE_SYSCTL_STAT_ADD64(ctx, child, "InputDiscards",
5707 	    &stats->InputDiscards, "Discarded Input Frames");
5708 	BGE_SYSCTL_STAT_ADD64(ctx, child, "InputErrors",
5709 	    &stats->InputErrors, "Input Errors");
5710 	BGE_SYSCTL_STAT_ADD64(ctx, child, "RecvThresholdHit",
5711 	    &stats->RecvThresholdHit, "NIC Recv Threshold Hit");
5712 
5713 	tree = SYSCTL_ADD_NODE(ctx, schild, OID_AUTO, "rx", CTLFLAG_RD,
5714 	    NULL, "BGE RX Statistics");
5715 	child = SYSCTL_CHILDREN(tree);
5716 	BGE_SYSCTL_STAT_ADD64(ctx, child, "ifHCInOctets",
5717 	    &stats->ifHCInOctets, "Inbound Octets");
5718 	BGE_SYSCTL_STAT_ADD64(ctx, child, "Fragments",
5719 	    &stats->etherStatsFragments, "Fragments");
5720 	BGE_SYSCTL_STAT_ADD64(ctx, child, "UnicastPkts",
5721 	    &stats->ifHCInUcastPkts, "Inbound Unicast Packets");
5722 	BGE_SYSCTL_STAT_ADD64(ctx, child, "MulticastPkts",
5723 	    &stats->ifHCInMulticastPkts, "Inbound Multicast Packets");
5724 	BGE_SYSCTL_STAT_ADD64(ctx, child, "BroadcastPkts",
5725 	    &stats->ifHCInBroadcastPkts, "Inbound Broadcast Packets");
5726 	BGE_SYSCTL_STAT_ADD64(ctx, child, "FCSErrors",
5727 	    &stats->dot3StatsFCSErrors, "FCS Errors");
5728 	BGE_SYSCTL_STAT_ADD64(ctx, child, "AlignmentErrors",
5729 	    &stats->dot3StatsAlignmentErrors, "Alignment Errors");
5730 	BGE_SYSCTL_STAT_ADD64(ctx, child, "xonPauseFramesReceived",
5731 	    &stats->xonPauseFramesReceived, "XON Pause Frames Received");
5732 	BGE_SYSCTL_STAT_ADD64(ctx, child, "xoffPauseFramesReceived",
5733 	    &stats->xoffPauseFramesReceived, "XOFF Pause Frames Received");
5734 	BGE_SYSCTL_STAT_ADD64(ctx, child, "ControlFramesReceived",
5735 	    &stats->macControlFramesReceived, "MAC Control Frames Received");
5736 	BGE_SYSCTL_STAT_ADD64(ctx, child, "xoffStateEntered",
5737 	    &stats->xoffStateEntered, "XOFF State Entered");
5738 	BGE_SYSCTL_STAT_ADD64(ctx, child, "FramesTooLong",
5739 	    &stats->dot3StatsFramesTooLong, "Frames Too Long");
5740 	BGE_SYSCTL_STAT_ADD64(ctx, child, "Jabbers",
5741 	    &stats->etherStatsJabbers, "Jabbers");
5742 	BGE_SYSCTL_STAT_ADD64(ctx, child, "UndersizePkts",
5743 	    &stats->etherStatsUndersizePkts, "Undersized Packets");
5744 
5745 	tree = SYSCTL_ADD_NODE(ctx, schild, OID_AUTO, "tx", CTLFLAG_RD,
5746 	    NULL, "BGE TX Statistics");
5747 	child = SYSCTL_CHILDREN(tree);
5748 	BGE_SYSCTL_STAT_ADD64(ctx, child, "ifHCOutOctets",
5749 	    &stats->ifHCOutOctets, "Outbound Octets");
5750 	BGE_SYSCTL_STAT_ADD64(ctx, child, "Collisions",
5751 	    &stats->etherStatsCollisions, "TX Collisions");
5752 	BGE_SYSCTL_STAT_ADD64(ctx, child, "XonSent",
5753 	    &stats->outXonSent, "XON Sent");
5754 	BGE_SYSCTL_STAT_ADD64(ctx, child, "XoffSent",
5755 	    &stats->outXoffSent, "XOFF Sent");
5756 	BGE_SYSCTL_STAT_ADD64(ctx, child, "InternalMacTransmitErrors",
5757 	    &stats->dot3StatsInternalMacTransmitErrors,
5758 	    "Internal MAC TX Errors");
5759 	BGE_SYSCTL_STAT_ADD64(ctx, child, "SingleCollisionFrames",
5760 	    &stats->dot3StatsSingleCollisionFrames, "Single Collision Frames");
5761 	BGE_SYSCTL_STAT_ADD64(ctx, child, "MultipleCollisionFrames",
5762 	    &stats->dot3StatsMultipleCollisionFrames,
5763 	    "Multiple Collision Frames");
5764 	BGE_SYSCTL_STAT_ADD64(ctx, child, "DeferredTransmissions",
5765 	    &stats->dot3StatsDeferredTransmissions, "Deferred Transmissions");
5766 	BGE_SYSCTL_STAT_ADD64(ctx, child, "ExcessiveCollisions",
5767 	    &stats->dot3StatsExcessiveCollisions, "Excessive Collisions");
5768 	BGE_SYSCTL_STAT_ADD64(ctx, child, "LateCollisions",
5769 	    &stats->dot3StatsLateCollisions, "Late Collisions");
5770 	BGE_SYSCTL_STAT_ADD64(ctx, child, "UnicastPkts",
5771 	    &stats->ifHCOutUcastPkts, "Outbound Unicast Packets");
5772 	BGE_SYSCTL_STAT_ADD64(ctx, child, "MulticastPkts",
5773 	    &stats->ifHCOutMulticastPkts, "Outbound Multicast Packets");
5774 	BGE_SYSCTL_STAT_ADD64(ctx, child, "BroadcastPkts",
5775 	    &stats->ifHCOutBroadcastPkts, "Outbound Broadcast Packets");
5776 }
5777 
5778 #undef	BGE_SYSCTL_STAT_ADD64
5779 
5780 static int
5781 bge_sysctl_stats(SYSCTL_HANDLER_ARGS)
5782 {
5783 	struct bge_softc *sc;
5784 	uint32_t result;
5785 	int offset;
5786 
5787 	sc = (struct bge_softc *)arg1;
5788 	offset = arg2;
5789 	result = CSR_READ_4(sc, BGE_MEMWIN_START + BGE_STATS_BLOCK + offset +
5790 	    offsetof(bge_hostaddr, bge_addr_lo));
5791 	return (sysctl_handle_int(oidp, &result, 0, req));
5792 }
5793 
5794 #ifdef BGE_REGISTER_DEBUG
5795 static int
5796 bge_sysctl_debug_info(SYSCTL_HANDLER_ARGS)
5797 {
5798 	struct bge_softc *sc;
5799 	uint16_t *sbdata;
5800 	int error;
5801 	int result;
5802 	int i, j;
5803 
5804 	result = -1;
5805 	error = sysctl_handle_int(oidp, &result, 0, req);
5806 	if (error || (req->newptr == NULL))
5807 		return (error);
5808 
5809 	if (result == 1) {
5810 		sc = (struct bge_softc *)arg1;
5811 
5812 		sbdata = (uint16_t *)sc->bge_ldata.bge_status_block;
5813 		printf("Status Block:\n");
5814 		for (i = 0x0; i < (BGE_STATUS_BLK_SZ / 4); ) {
5815 			printf("%06x:", i);
5816 			for (j = 0; j < 8; j++) {
5817 				printf(" %04x", sbdata[i]);
5818 				i += 4;
5819 			}
5820 			printf("\n");
5821 		}
5822 
5823 		printf("Registers:\n");
5824 		for (i = 0x800; i < 0xA00; ) {
5825 			printf("%06x:", i);
5826 			for (j = 0; j < 8; j++) {
5827 				printf(" %08x", CSR_READ_4(sc, i));
5828 				i += 4;
5829 			}
5830 			printf("\n");
5831 		}
5832 
5833 		printf("Hardware Flags:\n");
5834 		if (BGE_IS_5755_PLUS(sc))
5835 			printf(" - 5755 Plus\n");
5836 		if (BGE_IS_575X_PLUS(sc))
5837 			printf(" - 575X Plus\n");
5838 		if (BGE_IS_5705_PLUS(sc))
5839 			printf(" - 5705 Plus\n");
5840 		if (BGE_IS_5714_FAMILY(sc))
5841 			printf(" - 5714 Family\n");
5842 		if (BGE_IS_5700_FAMILY(sc))
5843 			printf(" - 5700 Family\n");
5844 		if (sc->bge_flags & BGE_FLAG_JUMBO)
5845 			printf(" - Supports Jumbo Frames\n");
5846 		if (sc->bge_flags & BGE_FLAG_PCIX)
5847 			printf(" - PCI-X Bus\n");
5848 		if (sc->bge_flags & BGE_FLAG_PCIE)
5849 			printf(" - PCI Express Bus\n");
5850 		if (sc->bge_phy_flags & BGE_PHY_NO_3LED)
5851 			printf(" - No 3 LEDs\n");
5852 		if (sc->bge_flags & BGE_FLAG_RX_ALIGNBUG)
5853 			printf(" - RX Alignment Bug\n");
5854 	}
5855 
5856 	return (error);
5857 }
5858 
5859 static int
5860 bge_sysctl_reg_read(SYSCTL_HANDLER_ARGS)
5861 {
5862 	struct bge_softc *sc;
5863 	int error;
5864 	uint16_t result;
5865 	uint32_t val;
5866 
5867 	result = -1;
5868 	error = sysctl_handle_int(oidp, &result, 0, req);
5869 	if (error || (req->newptr == NULL))
5870 		return (error);
5871 
5872 	if (result < 0x8000) {
5873 		sc = (struct bge_softc *)arg1;
5874 		val = CSR_READ_4(sc, result);
5875 		printf("reg 0x%06X = 0x%08X\n", result, val);
5876 	}
5877 
5878 	return (error);
5879 }
5880 
5881 static int
5882 bge_sysctl_mem_read(SYSCTL_HANDLER_ARGS)
5883 {
5884 	struct bge_softc *sc;
5885 	int error;
5886 	uint16_t result;
5887 	uint32_t val;
5888 
5889 	result = -1;
5890 	error = sysctl_handle_int(oidp, &result, 0, req);
5891 	if (error || (req->newptr == NULL))
5892 		return (error);
5893 
5894 	if (result < 0x8000) {
5895 		sc = (struct bge_softc *)arg1;
5896 		val = bge_readmem_ind(sc, result);
5897 		printf("mem 0x%06X = 0x%08X\n", result, val);
5898 	}
5899 
5900 	return (error);
5901 }
5902 #endif
5903 
5904 static int
5905 bge_get_eaddr_fw(struct bge_softc *sc, uint8_t ether_addr[])
5906 {
5907 
5908 	if (sc->bge_flags & BGE_FLAG_EADDR)
5909 		return (1);
5910 
5911 #ifdef __sparc64__
5912 	OF_getetheraddr(sc->bge_dev, ether_addr);
5913 	return (0);
5914 #endif
5915 	return (1);
5916 }
5917 
5918 static int
5919 bge_get_eaddr_mem(struct bge_softc *sc, uint8_t ether_addr[])
5920 {
5921 	uint32_t mac_addr;
5922 
5923 	mac_addr = bge_readmem_ind(sc, 0x0c14);
5924 	if ((mac_addr >> 16) == 0x484b) {
5925 		ether_addr[0] = (uint8_t)(mac_addr >> 8);
5926 		ether_addr[1] = (uint8_t)mac_addr;
5927 		mac_addr = bge_readmem_ind(sc, 0x0c18);
5928 		ether_addr[2] = (uint8_t)(mac_addr >> 24);
5929 		ether_addr[3] = (uint8_t)(mac_addr >> 16);
5930 		ether_addr[4] = (uint8_t)(mac_addr >> 8);
5931 		ether_addr[5] = (uint8_t)mac_addr;
5932 		return (0);
5933 	}
5934 	return (1);
5935 }
5936 
5937 static int
5938 bge_get_eaddr_nvram(struct bge_softc *sc, uint8_t ether_addr[])
5939 {
5940 	int mac_offset = BGE_EE_MAC_OFFSET;
5941 
5942 	if (sc->bge_asicrev == BGE_ASICREV_BCM5906)
5943 		mac_offset = BGE_EE_MAC_OFFSET_5906;
5944 
5945 	return (bge_read_nvram(sc, ether_addr, mac_offset + 2,
5946 	    ETHER_ADDR_LEN));
5947 }
5948 
5949 static int
5950 bge_get_eaddr_eeprom(struct bge_softc *sc, uint8_t ether_addr[])
5951 {
5952 
5953 	if (sc->bge_asicrev == BGE_ASICREV_BCM5906)
5954 		return (1);
5955 
5956 	return (bge_read_eeprom(sc, ether_addr, BGE_EE_MAC_OFFSET + 2,
5957 	   ETHER_ADDR_LEN));
5958 }
5959 
5960 static int
5961 bge_get_eaddr(struct bge_softc *sc, uint8_t eaddr[])
5962 {
5963 	static const bge_eaddr_fcn_t bge_eaddr_funcs[] = {
5964 		/* NOTE: Order is critical */
5965 		bge_get_eaddr_fw,
5966 		bge_get_eaddr_mem,
5967 		bge_get_eaddr_nvram,
5968 		bge_get_eaddr_eeprom,
5969 		NULL
5970 	};
5971 	const bge_eaddr_fcn_t *func;
5972 
5973 	for (func = bge_eaddr_funcs; *func != NULL; ++func) {
5974 		if ((*func)(sc, eaddr) == 0)
5975 			break;
5976 	}
5977 	return (*func == NULL ? ENXIO : 0);
5978 }
5979