1 /*- 2 * Copyright (c) 2001 Wind River Systems 3 * Copyright (c) 1997, 1998, 1999, 2001 4 * Bill Paul <wpaul@windriver.com>. All rights reserved. 5 * 6 * Redistribution and use in source and binary forms, with or without 7 * modification, are permitted provided that the following conditions 8 * are met: 9 * 1. Redistributions of source code must retain the above copyright 10 * notice, this list of conditions and the following disclaimer. 11 * 2. Redistributions in binary form must reproduce the above copyright 12 * notice, this list of conditions and the following disclaimer in the 13 * documentation and/or other materials provided with the distribution. 14 * 3. All advertising materials mentioning features or use of this software 15 * must display the following acknowledgement: 16 * This product includes software developed by Bill Paul. 17 * 4. Neither the name of the author nor the names of any co-contributors 18 * may be used to endorse or promote products derived from this software 19 * without specific prior written permission. 20 * 21 * THIS SOFTWARE IS PROVIDED BY Bill Paul AND CONTRIBUTORS ``AS IS'' AND 22 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 23 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 24 * ARE DISCLAIMED. IN NO EVENT SHALL Bill Paul OR THE VOICES IN HIS HEAD 25 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR 26 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF 27 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS 28 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN 29 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) 30 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF 31 * THE POSSIBILITY OF SUCH DAMAGE. 32 */ 33 34 #include <sys/cdefs.h> 35 __FBSDID("$FreeBSD$"); 36 37 /* 38 * Broadcom BCM570x family gigabit ethernet driver for FreeBSD. 39 * 40 * The Broadcom BCM5700 is based on technology originally developed by 41 * Alteon Networks as part of the Tigon I and Tigon II gigabit ethernet 42 * MAC chips. The BCM5700, sometimes referred to as the Tigon III, has 43 * two on-board MIPS R4000 CPUs and can have as much as 16MB of external 44 * SSRAM. The BCM5700 supports TCP, UDP and IP checksum offload, jumbo 45 * frames, highly configurable RX filtering, and 16 RX and TX queues 46 * (which, along with RX filter rules, can be used for QOS applications). 47 * Other features, such as TCP segmentation, may be available as part 48 * of value-added firmware updates. Unlike the Tigon I and Tigon II, 49 * firmware images can be stored in hardware and need not be compiled 50 * into the driver. 51 * 52 * The BCM5700 supports the PCI v2.2 and PCI-X v1.0 standards, and will 53 * function in a 32-bit/64-bit 33/66Mhz bus, or a 64-bit/133Mhz bus. 54 * 55 * The BCM5701 is a single-chip solution incorporating both the BCM5700 56 * MAC and a BCM5401 10/100/1000 PHY. Unlike the BCM5700, the BCM5701 57 * does not support external SSRAM. 58 * 59 * Broadcom also produces a variation of the BCM5700 under the "Altima" 60 * brand name, which is functionally similar but lacks PCI-X support. 61 * 62 * Without external SSRAM, you can only have at most 4 TX rings, 63 * and the use of the mini RX ring is disabled. This seems to imply 64 * that these features are simply not available on the BCM5701. As a 65 * result, this driver does not implement any support for the mini RX 66 * ring. 67 */ 68 69 #ifdef HAVE_KERNEL_OPTION_HEADERS 70 #include "opt_device_polling.h" 71 #endif 72 73 #include <sys/param.h> 74 #include <sys/endian.h> 75 #include <sys/systm.h> 76 #include <sys/sockio.h> 77 #include <sys/mbuf.h> 78 #include <sys/malloc.h> 79 #include <sys/kernel.h> 80 #include <sys/module.h> 81 #include <sys/socket.h> 82 #include <sys/sysctl.h> 83 #include <sys/taskqueue.h> 84 85 #include <net/if.h> 86 #include <net/if_arp.h> 87 #include <net/ethernet.h> 88 #include <net/if_dl.h> 89 #include <net/if_media.h> 90 91 #include <net/bpf.h> 92 93 #include <net/if_types.h> 94 #include <net/if_vlan_var.h> 95 96 #include <netinet/in_systm.h> 97 #include <netinet/in.h> 98 #include <netinet/ip.h> 99 #include <netinet/tcp.h> 100 101 #include <machine/bus.h> 102 #include <machine/resource.h> 103 #include <sys/bus.h> 104 #include <sys/rman.h> 105 106 #include <dev/mii/mii.h> 107 #include <dev/mii/miivar.h> 108 #include "miidevs.h" 109 #include <dev/mii/brgphyreg.h> 110 111 #ifdef __sparc64__ 112 #include <dev/ofw/ofw_bus.h> 113 #include <dev/ofw/openfirm.h> 114 #include <machine/ofw_machdep.h> 115 #include <machine/ver.h> 116 #endif 117 118 #include <dev/pci/pcireg.h> 119 #include <dev/pci/pcivar.h> 120 121 #include <dev/bge/if_bgereg.h> 122 123 #define BGE_CSUM_FEATURES (CSUM_IP | CSUM_TCP) 124 #define ETHER_MIN_NOPAD (ETHER_MIN_LEN - ETHER_CRC_LEN) /* i.e., 60 */ 125 126 MODULE_DEPEND(bge, pci, 1, 1, 1); 127 MODULE_DEPEND(bge, ether, 1, 1, 1); 128 MODULE_DEPEND(bge, miibus, 1, 1, 1); 129 130 /* "device miibus" required. See GENERIC if you get errors here. */ 131 #include "miibus_if.h" 132 133 /* 134 * Various supported device vendors/types and their names. Note: the 135 * spec seems to indicate that the hardware still has Alteon's vendor 136 * ID burned into it, though it will always be overriden by the vendor 137 * ID in the EEPROM. Just to be safe, we cover all possibilities. 138 */ 139 static const struct bge_type { 140 uint16_t bge_vid; 141 uint16_t bge_did; 142 } const bge_devs[] = { 143 { ALTEON_VENDORID, ALTEON_DEVICEID_BCM5700 }, 144 { ALTEON_VENDORID, ALTEON_DEVICEID_BCM5701 }, 145 146 { ALTIMA_VENDORID, ALTIMA_DEVICE_AC1000 }, 147 { ALTIMA_VENDORID, ALTIMA_DEVICE_AC1002 }, 148 { ALTIMA_VENDORID, ALTIMA_DEVICE_AC9100 }, 149 150 { APPLE_VENDORID, APPLE_DEVICE_BCM5701 }, 151 152 { BCOM_VENDORID, BCOM_DEVICEID_BCM5700 }, 153 { BCOM_VENDORID, BCOM_DEVICEID_BCM5701 }, 154 { BCOM_VENDORID, BCOM_DEVICEID_BCM5702 }, 155 { BCOM_VENDORID, BCOM_DEVICEID_BCM5702_ALT }, 156 { BCOM_VENDORID, BCOM_DEVICEID_BCM5702X }, 157 { BCOM_VENDORID, BCOM_DEVICEID_BCM5703 }, 158 { BCOM_VENDORID, BCOM_DEVICEID_BCM5703_ALT }, 159 { BCOM_VENDORID, BCOM_DEVICEID_BCM5703X }, 160 { BCOM_VENDORID, BCOM_DEVICEID_BCM5704C }, 161 { BCOM_VENDORID, BCOM_DEVICEID_BCM5704S }, 162 { BCOM_VENDORID, BCOM_DEVICEID_BCM5704S_ALT }, 163 { BCOM_VENDORID, BCOM_DEVICEID_BCM5705 }, 164 { BCOM_VENDORID, BCOM_DEVICEID_BCM5705F }, 165 { BCOM_VENDORID, BCOM_DEVICEID_BCM5705K }, 166 { BCOM_VENDORID, BCOM_DEVICEID_BCM5705M }, 167 { BCOM_VENDORID, BCOM_DEVICEID_BCM5705M_ALT }, 168 { BCOM_VENDORID, BCOM_DEVICEID_BCM5714C }, 169 { BCOM_VENDORID, BCOM_DEVICEID_BCM5714S }, 170 { BCOM_VENDORID, BCOM_DEVICEID_BCM5715 }, 171 { BCOM_VENDORID, BCOM_DEVICEID_BCM5715S }, 172 { BCOM_VENDORID, BCOM_DEVICEID_BCM5717 }, 173 { BCOM_VENDORID, BCOM_DEVICEID_BCM5718 }, 174 { BCOM_VENDORID, BCOM_DEVICEID_BCM5719 }, 175 { BCOM_VENDORID, BCOM_DEVICEID_BCM5720 }, 176 { BCOM_VENDORID, BCOM_DEVICEID_BCM5721 }, 177 { BCOM_VENDORID, BCOM_DEVICEID_BCM5722 }, 178 { BCOM_VENDORID, BCOM_DEVICEID_BCM5723 }, 179 { BCOM_VENDORID, BCOM_DEVICEID_BCM5750 }, 180 { BCOM_VENDORID, BCOM_DEVICEID_BCM5750M }, 181 { BCOM_VENDORID, BCOM_DEVICEID_BCM5751 }, 182 { BCOM_VENDORID, BCOM_DEVICEID_BCM5751F }, 183 { BCOM_VENDORID, BCOM_DEVICEID_BCM5751M }, 184 { BCOM_VENDORID, BCOM_DEVICEID_BCM5752 }, 185 { BCOM_VENDORID, BCOM_DEVICEID_BCM5752M }, 186 { BCOM_VENDORID, BCOM_DEVICEID_BCM5753 }, 187 { BCOM_VENDORID, BCOM_DEVICEID_BCM5753F }, 188 { BCOM_VENDORID, BCOM_DEVICEID_BCM5753M }, 189 { BCOM_VENDORID, BCOM_DEVICEID_BCM5754 }, 190 { BCOM_VENDORID, BCOM_DEVICEID_BCM5754M }, 191 { BCOM_VENDORID, BCOM_DEVICEID_BCM5755 }, 192 { BCOM_VENDORID, BCOM_DEVICEID_BCM5755M }, 193 { BCOM_VENDORID, BCOM_DEVICEID_BCM5756 }, 194 { BCOM_VENDORID, BCOM_DEVICEID_BCM5761 }, 195 { BCOM_VENDORID, BCOM_DEVICEID_BCM5761E }, 196 { BCOM_VENDORID, BCOM_DEVICEID_BCM5761S }, 197 { BCOM_VENDORID, BCOM_DEVICEID_BCM5761SE }, 198 { BCOM_VENDORID, BCOM_DEVICEID_BCM5764 }, 199 { BCOM_VENDORID, BCOM_DEVICEID_BCM5780 }, 200 { BCOM_VENDORID, BCOM_DEVICEID_BCM5780S }, 201 { BCOM_VENDORID, BCOM_DEVICEID_BCM5781 }, 202 { BCOM_VENDORID, BCOM_DEVICEID_BCM5782 }, 203 { BCOM_VENDORID, BCOM_DEVICEID_BCM5784 }, 204 { BCOM_VENDORID, BCOM_DEVICEID_BCM5785F }, 205 { BCOM_VENDORID, BCOM_DEVICEID_BCM5785G }, 206 { BCOM_VENDORID, BCOM_DEVICEID_BCM5786 }, 207 { BCOM_VENDORID, BCOM_DEVICEID_BCM5787 }, 208 { BCOM_VENDORID, BCOM_DEVICEID_BCM5787F }, 209 { BCOM_VENDORID, BCOM_DEVICEID_BCM5787M }, 210 { BCOM_VENDORID, BCOM_DEVICEID_BCM5788 }, 211 { BCOM_VENDORID, BCOM_DEVICEID_BCM5789 }, 212 { BCOM_VENDORID, BCOM_DEVICEID_BCM5901 }, 213 { BCOM_VENDORID, BCOM_DEVICEID_BCM5901A2 }, 214 { BCOM_VENDORID, BCOM_DEVICEID_BCM5903M }, 215 { BCOM_VENDORID, BCOM_DEVICEID_BCM5906 }, 216 { BCOM_VENDORID, BCOM_DEVICEID_BCM5906M }, 217 { BCOM_VENDORID, BCOM_DEVICEID_BCM57760 }, 218 { BCOM_VENDORID, BCOM_DEVICEID_BCM57761 }, 219 { BCOM_VENDORID, BCOM_DEVICEID_BCM57765 }, 220 { BCOM_VENDORID, BCOM_DEVICEID_BCM57780 }, 221 { BCOM_VENDORID, BCOM_DEVICEID_BCM57781 }, 222 { BCOM_VENDORID, BCOM_DEVICEID_BCM57785 }, 223 { BCOM_VENDORID, BCOM_DEVICEID_BCM57788 }, 224 { BCOM_VENDORID, BCOM_DEVICEID_BCM57790 }, 225 { BCOM_VENDORID, BCOM_DEVICEID_BCM57791 }, 226 { BCOM_VENDORID, BCOM_DEVICEID_BCM57795 }, 227 228 { SK_VENDORID, SK_DEVICEID_ALTIMA }, 229 230 { TC_VENDORID, TC_DEVICEID_3C996 }, 231 232 { FJTSU_VENDORID, FJTSU_DEVICEID_PW008GE4 }, 233 { FJTSU_VENDORID, FJTSU_DEVICEID_PW008GE5 }, 234 { FJTSU_VENDORID, FJTSU_DEVICEID_PP250450 }, 235 236 { 0, 0 } 237 }; 238 239 static const struct bge_vendor { 240 uint16_t v_id; 241 const char *v_name; 242 } const bge_vendors[] = { 243 { ALTEON_VENDORID, "Alteon" }, 244 { ALTIMA_VENDORID, "Altima" }, 245 { APPLE_VENDORID, "Apple" }, 246 { BCOM_VENDORID, "Broadcom" }, 247 { SK_VENDORID, "SysKonnect" }, 248 { TC_VENDORID, "3Com" }, 249 { FJTSU_VENDORID, "Fujitsu" }, 250 251 { 0, NULL } 252 }; 253 254 static const struct bge_revision { 255 uint32_t br_chipid; 256 const char *br_name; 257 } const bge_revisions[] = { 258 { BGE_CHIPID_BCM5700_A0, "BCM5700 A0" }, 259 { BGE_CHIPID_BCM5700_A1, "BCM5700 A1" }, 260 { BGE_CHIPID_BCM5700_B0, "BCM5700 B0" }, 261 { BGE_CHIPID_BCM5700_B1, "BCM5700 B1" }, 262 { BGE_CHIPID_BCM5700_B2, "BCM5700 B2" }, 263 { BGE_CHIPID_BCM5700_B3, "BCM5700 B3" }, 264 { BGE_CHIPID_BCM5700_ALTIMA, "BCM5700 Altima" }, 265 { BGE_CHIPID_BCM5700_C0, "BCM5700 C0" }, 266 { BGE_CHIPID_BCM5701_A0, "BCM5701 A0" }, 267 { BGE_CHIPID_BCM5701_B0, "BCM5701 B0" }, 268 { BGE_CHIPID_BCM5701_B2, "BCM5701 B2" }, 269 { BGE_CHIPID_BCM5701_B5, "BCM5701 B5" }, 270 { BGE_CHIPID_BCM5703_A0, "BCM5703 A0" }, 271 { BGE_CHIPID_BCM5703_A1, "BCM5703 A1" }, 272 { BGE_CHIPID_BCM5703_A2, "BCM5703 A2" }, 273 { BGE_CHIPID_BCM5703_A3, "BCM5703 A3" }, 274 { BGE_CHIPID_BCM5703_B0, "BCM5703 B0" }, 275 { BGE_CHIPID_BCM5704_A0, "BCM5704 A0" }, 276 { BGE_CHIPID_BCM5704_A1, "BCM5704 A1" }, 277 { BGE_CHIPID_BCM5704_A2, "BCM5704 A2" }, 278 { BGE_CHIPID_BCM5704_A3, "BCM5704 A3" }, 279 { BGE_CHIPID_BCM5704_B0, "BCM5704 B0" }, 280 { BGE_CHIPID_BCM5705_A0, "BCM5705 A0" }, 281 { BGE_CHIPID_BCM5705_A1, "BCM5705 A1" }, 282 { BGE_CHIPID_BCM5705_A2, "BCM5705 A2" }, 283 { BGE_CHIPID_BCM5705_A3, "BCM5705 A3" }, 284 { BGE_CHIPID_BCM5750_A0, "BCM5750 A0" }, 285 { BGE_CHIPID_BCM5750_A1, "BCM5750 A1" }, 286 { BGE_CHIPID_BCM5750_A3, "BCM5750 A3" }, 287 { BGE_CHIPID_BCM5750_B0, "BCM5750 B0" }, 288 { BGE_CHIPID_BCM5750_B1, "BCM5750 B1" }, 289 { BGE_CHIPID_BCM5750_C0, "BCM5750 C0" }, 290 { BGE_CHIPID_BCM5750_C1, "BCM5750 C1" }, 291 { BGE_CHIPID_BCM5750_C2, "BCM5750 C2" }, 292 { BGE_CHIPID_BCM5714_A0, "BCM5714 A0" }, 293 { BGE_CHIPID_BCM5752_A0, "BCM5752 A0" }, 294 { BGE_CHIPID_BCM5752_A1, "BCM5752 A1" }, 295 { BGE_CHIPID_BCM5752_A2, "BCM5752 A2" }, 296 { BGE_CHIPID_BCM5714_B0, "BCM5714 B0" }, 297 { BGE_CHIPID_BCM5714_B3, "BCM5714 B3" }, 298 { BGE_CHIPID_BCM5715_A0, "BCM5715 A0" }, 299 { BGE_CHIPID_BCM5715_A1, "BCM5715 A1" }, 300 { BGE_CHIPID_BCM5715_A3, "BCM5715 A3" }, 301 { BGE_CHIPID_BCM5717_A0, "BCM5717 A0" }, 302 { BGE_CHIPID_BCM5717_B0, "BCM5717 B0" }, 303 { BGE_CHIPID_BCM5719_A0, "BCM5719 A0" }, 304 { BGE_CHIPID_BCM5755_A0, "BCM5755 A0" }, 305 { BGE_CHIPID_BCM5755_A1, "BCM5755 A1" }, 306 { BGE_CHIPID_BCM5755_A2, "BCM5755 A2" }, 307 { BGE_CHIPID_BCM5722_A0, "BCM5722 A0" }, 308 { BGE_CHIPID_BCM5761_A0, "BCM5761 A0" }, 309 { BGE_CHIPID_BCM5761_A1, "BCM5761 A1" }, 310 { BGE_CHIPID_BCM5784_A0, "BCM5784 A0" }, 311 { BGE_CHIPID_BCM5784_A1, "BCM5784 A1" }, 312 /* 5754 and 5787 share the same ASIC ID */ 313 { BGE_CHIPID_BCM5787_A0, "BCM5754/5787 A0" }, 314 { BGE_CHIPID_BCM5787_A1, "BCM5754/5787 A1" }, 315 { BGE_CHIPID_BCM5787_A2, "BCM5754/5787 A2" }, 316 { BGE_CHIPID_BCM5906_A1, "BCM5906 A1" }, 317 { BGE_CHIPID_BCM5906_A2, "BCM5906 A2" }, 318 { BGE_CHIPID_BCM57765_A0, "BCM57765 A0" }, 319 { BGE_CHIPID_BCM57765_B0, "BCM57765 B0" }, 320 { BGE_CHIPID_BCM57780_A0, "BCM57780 A0" }, 321 { BGE_CHIPID_BCM57780_A1, "BCM57780 A1" }, 322 323 { 0, NULL } 324 }; 325 326 /* 327 * Some defaults for major revisions, so that newer steppings 328 * that we don't know about have a shot at working. 329 */ 330 static const struct bge_revision const bge_majorrevs[] = { 331 { BGE_ASICREV_BCM5700, "unknown BCM5700" }, 332 { BGE_ASICREV_BCM5701, "unknown BCM5701" }, 333 { BGE_ASICREV_BCM5703, "unknown BCM5703" }, 334 { BGE_ASICREV_BCM5704, "unknown BCM5704" }, 335 { BGE_ASICREV_BCM5705, "unknown BCM5705" }, 336 { BGE_ASICREV_BCM5750, "unknown BCM5750" }, 337 { BGE_ASICREV_BCM5714_A0, "unknown BCM5714" }, 338 { BGE_ASICREV_BCM5752, "unknown BCM5752" }, 339 { BGE_ASICREV_BCM5780, "unknown BCM5780" }, 340 { BGE_ASICREV_BCM5714, "unknown BCM5714" }, 341 { BGE_ASICREV_BCM5755, "unknown BCM5755" }, 342 { BGE_ASICREV_BCM5761, "unknown BCM5761" }, 343 { BGE_ASICREV_BCM5784, "unknown BCM5784" }, 344 { BGE_ASICREV_BCM5785, "unknown BCM5785" }, 345 /* 5754 and 5787 share the same ASIC ID */ 346 { BGE_ASICREV_BCM5787, "unknown BCM5754/5787" }, 347 { BGE_ASICREV_BCM5906, "unknown BCM5906" }, 348 { BGE_ASICREV_BCM57765, "unknown BCM57765" }, 349 { BGE_ASICREV_BCM57780, "unknown BCM57780" }, 350 { BGE_ASICREV_BCM5717, "unknown BCM5717" }, 351 { BGE_ASICREV_BCM5719, "unknown BCM5719" }, 352 353 { 0, NULL } 354 }; 355 356 #define BGE_IS_JUMBO_CAPABLE(sc) ((sc)->bge_flags & BGE_FLAG_JUMBO) 357 #define BGE_IS_5700_FAMILY(sc) ((sc)->bge_flags & BGE_FLAG_5700_FAMILY) 358 #define BGE_IS_5705_PLUS(sc) ((sc)->bge_flags & BGE_FLAG_5705_PLUS) 359 #define BGE_IS_5714_FAMILY(sc) ((sc)->bge_flags & BGE_FLAG_5714_FAMILY) 360 #define BGE_IS_575X_PLUS(sc) ((sc)->bge_flags & BGE_FLAG_575X_PLUS) 361 #define BGE_IS_5755_PLUS(sc) ((sc)->bge_flags & BGE_FLAG_5755_PLUS) 362 #define BGE_IS_5717_PLUS(sc) ((sc)->bge_flags & BGE_FLAG_5717_PLUS) 363 364 const struct bge_revision * bge_lookup_rev(uint32_t); 365 const struct bge_vendor * bge_lookup_vendor(uint16_t); 366 367 typedef int (*bge_eaddr_fcn_t)(struct bge_softc *, uint8_t[]); 368 369 static int bge_probe(device_t); 370 static int bge_attach(device_t); 371 static int bge_detach(device_t); 372 static int bge_suspend(device_t); 373 static int bge_resume(device_t); 374 static void bge_release_resources(struct bge_softc *); 375 static void bge_dma_map_addr(void *, bus_dma_segment_t *, int, int); 376 static int bge_dma_alloc(struct bge_softc *); 377 static void bge_dma_free(struct bge_softc *); 378 static int bge_dma_ring_alloc(struct bge_softc *, bus_size_t, bus_size_t, 379 bus_dma_tag_t *, uint8_t **, bus_dmamap_t *, bus_addr_t *, const char *); 380 381 static int bge_get_eaddr_fw(struct bge_softc *sc, uint8_t ether_addr[]); 382 static int bge_get_eaddr_mem(struct bge_softc *, uint8_t[]); 383 static int bge_get_eaddr_nvram(struct bge_softc *, uint8_t[]); 384 static int bge_get_eaddr_eeprom(struct bge_softc *, uint8_t[]); 385 static int bge_get_eaddr(struct bge_softc *, uint8_t[]); 386 387 static void bge_txeof(struct bge_softc *, uint16_t); 388 static void bge_rxcsum(struct bge_softc *, struct bge_rx_bd *, struct mbuf *); 389 static int bge_rxeof(struct bge_softc *, uint16_t, int); 390 391 static void bge_asf_driver_up (struct bge_softc *); 392 static void bge_tick(void *); 393 static void bge_stats_clear_regs(struct bge_softc *); 394 static void bge_stats_update(struct bge_softc *); 395 static void bge_stats_update_regs(struct bge_softc *); 396 static struct mbuf *bge_check_short_dma(struct mbuf *); 397 static struct mbuf *bge_setup_tso(struct bge_softc *, struct mbuf *, 398 uint16_t *, uint16_t *); 399 static int bge_encap(struct bge_softc *, struct mbuf **, uint32_t *); 400 401 static void bge_intr(void *); 402 static int bge_msi_intr(void *); 403 static void bge_intr_task(void *, int); 404 static void bge_start_locked(struct ifnet *); 405 static void bge_start(struct ifnet *); 406 static int bge_ioctl(struct ifnet *, u_long, caddr_t); 407 static void bge_init_locked(struct bge_softc *); 408 static void bge_init(void *); 409 static void bge_stop_block(struct bge_softc *, bus_size_t, uint32_t); 410 static void bge_stop(struct bge_softc *); 411 static void bge_watchdog(struct bge_softc *); 412 static int bge_shutdown(device_t); 413 static int bge_ifmedia_upd_locked(struct ifnet *); 414 static int bge_ifmedia_upd(struct ifnet *); 415 static void bge_ifmedia_sts(struct ifnet *, struct ifmediareq *); 416 417 static uint8_t bge_nvram_getbyte(struct bge_softc *, int, uint8_t *); 418 static int bge_read_nvram(struct bge_softc *, caddr_t, int, int); 419 420 static uint8_t bge_eeprom_getbyte(struct bge_softc *, int, uint8_t *); 421 static int bge_read_eeprom(struct bge_softc *, caddr_t, int, int); 422 423 static void bge_setpromisc(struct bge_softc *); 424 static void bge_setmulti(struct bge_softc *); 425 static void bge_setvlan(struct bge_softc *); 426 427 static __inline void bge_rxreuse_std(struct bge_softc *, int); 428 static __inline void bge_rxreuse_jumbo(struct bge_softc *, int); 429 static int bge_newbuf_std(struct bge_softc *, int); 430 static int bge_newbuf_jumbo(struct bge_softc *, int); 431 static int bge_init_rx_ring_std(struct bge_softc *); 432 static void bge_free_rx_ring_std(struct bge_softc *); 433 static int bge_init_rx_ring_jumbo(struct bge_softc *); 434 static void bge_free_rx_ring_jumbo(struct bge_softc *); 435 static void bge_free_tx_ring(struct bge_softc *); 436 static int bge_init_tx_ring(struct bge_softc *); 437 438 static int bge_chipinit(struct bge_softc *); 439 static int bge_blockinit(struct bge_softc *); 440 441 static int bge_has_eaddr(struct bge_softc *); 442 static uint32_t bge_readmem_ind(struct bge_softc *, int); 443 static void bge_writemem_ind(struct bge_softc *, int, int); 444 static void bge_writembx(struct bge_softc *, int, int); 445 #ifdef notdef 446 static uint32_t bge_readreg_ind(struct bge_softc *, int); 447 #endif 448 static void bge_writemem_direct(struct bge_softc *, int, int); 449 static void bge_writereg_ind(struct bge_softc *, int, int); 450 451 static int bge_miibus_readreg(device_t, int, int); 452 static int bge_miibus_writereg(device_t, int, int, int); 453 static void bge_miibus_statchg(device_t); 454 #ifdef DEVICE_POLLING 455 static int bge_poll(struct ifnet *ifp, enum poll_cmd cmd, int count); 456 #endif 457 458 #define BGE_RESET_START 1 459 #define BGE_RESET_STOP 2 460 static void bge_sig_post_reset(struct bge_softc *, int); 461 static void bge_sig_legacy(struct bge_softc *, int); 462 static void bge_sig_pre_reset(struct bge_softc *, int); 463 static void bge_stop_fw(struct bge_softc *); 464 static int bge_reset(struct bge_softc *); 465 static void bge_link_upd(struct bge_softc *); 466 467 /* 468 * The BGE_REGISTER_DEBUG option is only for low-level debugging. It may 469 * leak information to untrusted users. It is also known to cause alignment 470 * traps on certain architectures. 471 */ 472 #ifdef BGE_REGISTER_DEBUG 473 static int bge_sysctl_debug_info(SYSCTL_HANDLER_ARGS); 474 static int bge_sysctl_reg_read(SYSCTL_HANDLER_ARGS); 475 static int bge_sysctl_mem_read(SYSCTL_HANDLER_ARGS); 476 #endif 477 static void bge_add_sysctls(struct bge_softc *); 478 static void bge_add_sysctl_stats_regs(struct bge_softc *, 479 struct sysctl_ctx_list *, struct sysctl_oid_list *); 480 static void bge_add_sysctl_stats(struct bge_softc *, struct sysctl_ctx_list *, 481 struct sysctl_oid_list *); 482 static int bge_sysctl_stats(SYSCTL_HANDLER_ARGS); 483 484 static device_method_t bge_methods[] = { 485 /* Device interface */ 486 DEVMETHOD(device_probe, bge_probe), 487 DEVMETHOD(device_attach, bge_attach), 488 DEVMETHOD(device_detach, bge_detach), 489 DEVMETHOD(device_shutdown, bge_shutdown), 490 DEVMETHOD(device_suspend, bge_suspend), 491 DEVMETHOD(device_resume, bge_resume), 492 493 /* bus interface */ 494 DEVMETHOD(bus_print_child, bus_generic_print_child), 495 DEVMETHOD(bus_driver_added, bus_generic_driver_added), 496 497 /* MII interface */ 498 DEVMETHOD(miibus_readreg, bge_miibus_readreg), 499 DEVMETHOD(miibus_writereg, bge_miibus_writereg), 500 DEVMETHOD(miibus_statchg, bge_miibus_statchg), 501 502 { 0, 0 } 503 }; 504 505 static driver_t bge_driver = { 506 "bge", 507 bge_methods, 508 sizeof(struct bge_softc) 509 }; 510 511 static devclass_t bge_devclass; 512 513 DRIVER_MODULE(bge, pci, bge_driver, bge_devclass, 0, 0); 514 DRIVER_MODULE(miibus, bge, miibus_driver, miibus_devclass, 0, 0); 515 516 static int bge_allow_asf = 1; 517 518 TUNABLE_INT("hw.bge.allow_asf", &bge_allow_asf); 519 520 SYSCTL_NODE(_hw, OID_AUTO, bge, CTLFLAG_RD, 0, "BGE driver parameters"); 521 SYSCTL_INT(_hw_bge, OID_AUTO, allow_asf, CTLFLAG_RD, &bge_allow_asf, 0, 522 "Allow ASF mode if available"); 523 524 #define SPARC64_BLADE_1500_MODEL "SUNW,Sun-Blade-1500" 525 #define SPARC64_BLADE_1500_PATH_BGE "/pci@1f,700000/network@2" 526 #define SPARC64_BLADE_2500_MODEL "SUNW,Sun-Blade-2500" 527 #define SPARC64_BLADE_2500_PATH_BGE "/pci@1c,600000/network@3" 528 #define SPARC64_OFW_SUBVENDOR "subsystem-vendor-id" 529 530 static int 531 bge_has_eaddr(struct bge_softc *sc) 532 { 533 #ifdef __sparc64__ 534 char buf[sizeof(SPARC64_BLADE_1500_PATH_BGE)]; 535 device_t dev; 536 uint32_t subvendor; 537 538 dev = sc->bge_dev; 539 540 /* 541 * The on-board BGEs found in sun4u machines aren't fitted with 542 * an EEPROM which means that we have to obtain the MAC address 543 * via OFW and that some tests will always fail. We distinguish 544 * such BGEs by the subvendor ID, which also has to be obtained 545 * from OFW instead of the PCI configuration space as the latter 546 * indicates Broadcom as the subvendor of the netboot interface. 547 * For early Blade 1500 and 2500 we even have to check the OFW 548 * device path as the subvendor ID always defaults to Broadcom 549 * there. 550 */ 551 if (OF_getprop(ofw_bus_get_node(dev), SPARC64_OFW_SUBVENDOR, 552 &subvendor, sizeof(subvendor)) == sizeof(subvendor) && 553 (subvendor == FJTSU_VENDORID || subvendor == SUN_VENDORID)) 554 return (0); 555 memset(buf, 0, sizeof(buf)); 556 if (OF_package_to_path(ofw_bus_get_node(dev), buf, sizeof(buf)) > 0) { 557 if (strcmp(sparc64_model, SPARC64_BLADE_1500_MODEL) == 0 && 558 strcmp(buf, SPARC64_BLADE_1500_PATH_BGE) == 0) 559 return (0); 560 if (strcmp(sparc64_model, SPARC64_BLADE_2500_MODEL) == 0 && 561 strcmp(buf, SPARC64_BLADE_2500_PATH_BGE) == 0) 562 return (0); 563 } 564 #endif 565 return (1); 566 } 567 568 static uint32_t 569 bge_readmem_ind(struct bge_softc *sc, int off) 570 { 571 device_t dev; 572 uint32_t val; 573 574 if (sc->bge_asicrev == BGE_ASICREV_BCM5906 && 575 off >= BGE_STATS_BLOCK && off < BGE_SEND_RING_1_TO_4) 576 return (0); 577 578 dev = sc->bge_dev; 579 580 pci_write_config(dev, BGE_PCI_MEMWIN_BASEADDR, off, 4); 581 val = pci_read_config(dev, BGE_PCI_MEMWIN_DATA, 4); 582 pci_write_config(dev, BGE_PCI_MEMWIN_BASEADDR, 0, 4); 583 return (val); 584 } 585 586 static void 587 bge_writemem_ind(struct bge_softc *sc, int off, int val) 588 { 589 device_t dev; 590 591 if (sc->bge_asicrev == BGE_ASICREV_BCM5906 && 592 off >= BGE_STATS_BLOCK && off < BGE_SEND_RING_1_TO_4) 593 return; 594 595 dev = sc->bge_dev; 596 597 pci_write_config(dev, BGE_PCI_MEMWIN_BASEADDR, off, 4); 598 pci_write_config(dev, BGE_PCI_MEMWIN_DATA, val, 4); 599 pci_write_config(dev, BGE_PCI_MEMWIN_BASEADDR, 0, 4); 600 } 601 602 #ifdef notdef 603 static uint32_t 604 bge_readreg_ind(struct bge_softc *sc, int off) 605 { 606 device_t dev; 607 608 dev = sc->bge_dev; 609 610 pci_write_config(dev, BGE_PCI_REG_BASEADDR, off, 4); 611 return (pci_read_config(dev, BGE_PCI_REG_DATA, 4)); 612 } 613 #endif 614 615 static void 616 bge_writereg_ind(struct bge_softc *sc, int off, int val) 617 { 618 device_t dev; 619 620 dev = sc->bge_dev; 621 622 pci_write_config(dev, BGE_PCI_REG_BASEADDR, off, 4); 623 pci_write_config(dev, BGE_PCI_REG_DATA, val, 4); 624 } 625 626 static void 627 bge_writemem_direct(struct bge_softc *sc, int off, int val) 628 { 629 CSR_WRITE_4(sc, off, val); 630 } 631 632 static void 633 bge_writembx(struct bge_softc *sc, int off, int val) 634 { 635 if (sc->bge_asicrev == BGE_ASICREV_BCM5906) 636 off += BGE_LPMBX_IRQ0_HI - BGE_MBX_IRQ0_HI; 637 638 CSR_WRITE_4(sc, off, val); 639 } 640 641 /* 642 * Map a single buffer address. 643 */ 644 645 static void 646 bge_dma_map_addr(void *arg, bus_dma_segment_t *segs, int nseg, int error) 647 { 648 struct bge_dmamap_arg *ctx; 649 650 if (error) 651 return; 652 653 KASSERT(nseg == 1, ("%s: %d segments returned!", __func__, nseg)); 654 655 ctx = arg; 656 ctx->bge_busaddr = segs->ds_addr; 657 } 658 659 static uint8_t 660 bge_nvram_getbyte(struct bge_softc *sc, int addr, uint8_t *dest) 661 { 662 uint32_t access, byte = 0; 663 int i; 664 665 /* Lock. */ 666 CSR_WRITE_4(sc, BGE_NVRAM_SWARB, BGE_NVRAMSWARB_SET1); 667 for (i = 0; i < 8000; i++) { 668 if (CSR_READ_4(sc, BGE_NVRAM_SWARB) & BGE_NVRAMSWARB_GNT1) 669 break; 670 DELAY(20); 671 } 672 if (i == 8000) 673 return (1); 674 675 /* Enable access. */ 676 access = CSR_READ_4(sc, BGE_NVRAM_ACCESS); 677 CSR_WRITE_4(sc, BGE_NVRAM_ACCESS, access | BGE_NVRAMACC_ENABLE); 678 679 CSR_WRITE_4(sc, BGE_NVRAM_ADDR, addr & 0xfffffffc); 680 CSR_WRITE_4(sc, BGE_NVRAM_CMD, BGE_NVRAM_READCMD); 681 for (i = 0; i < BGE_TIMEOUT * 10; i++) { 682 DELAY(10); 683 if (CSR_READ_4(sc, BGE_NVRAM_CMD) & BGE_NVRAMCMD_DONE) { 684 DELAY(10); 685 break; 686 } 687 } 688 689 if (i == BGE_TIMEOUT * 10) { 690 if_printf(sc->bge_ifp, "nvram read timed out\n"); 691 return (1); 692 } 693 694 /* Get result. */ 695 byte = CSR_READ_4(sc, BGE_NVRAM_RDDATA); 696 697 *dest = (bswap32(byte) >> ((addr % 4) * 8)) & 0xFF; 698 699 /* Disable access. */ 700 CSR_WRITE_4(sc, BGE_NVRAM_ACCESS, access); 701 702 /* Unlock. */ 703 CSR_WRITE_4(sc, BGE_NVRAM_SWARB, BGE_NVRAMSWARB_CLR1); 704 CSR_READ_4(sc, BGE_NVRAM_SWARB); 705 706 return (0); 707 } 708 709 /* 710 * Read a sequence of bytes from NVRAM. 711 */ 712 static int 713 bge_read_nvram(struct bge_softc *sc, caddr_t dest, int off, int cnt) 714 { 715 int err = 0, i; 716 uint8_t byte = 0; 717 718 if (sc->bge_asicrev != BGE_ASICREV_BCM5906) 719 return (1); 720 721 for (i = 0; i < cnt; i++) { 722 err = bge_nvram_getbyte(sc, off + i, &byte); 723 if (err) 724 break; 725 *(dest + i) = byte; 726 } 727 728 return (err ? 1 : 0); 729 } 730 731 /* 732 * Read a byte of data stored in the EEPROM at address 'addr.' The 733 * BCM570x supports both the traditional bitbang interface and an 734 * auto access interface for reading the EEPROM. We use the auto 735 * access method. 736 */ 737 static uint8_t 738 bge_eeprom_getbyte(struct bge_softc *sc, int addr, uint8_t *dest) 739 { 740 int i; 741 uint32_t byte = 0; 742 743 /* 744 * Enable use of auto EEPROM access so we can avoid 745 * having to use the bitbang method. 746 */ 747 BGE_SETBIT(sc, BGE_MISC_LOCAL_CTL, BGE_MLC_AUTO_EEPROM); 748 749 /* Reset the EEPROM, load the clock period. */ 750 CSR_WRITE_4(sc, BGE_EE_ADDR, 751 BGE_EEADDR_RESET | BGE_EEHALFCLK(BGE_HALFCLK_384SCL)); 752 DELAY(20); 753 754 /* Issue the read EEPROM command. */ 755 CSR_WRITE_4(sc, BGE_EE_ADDR, BGE_EE_READCMD | addr); 756 757 /* Wait for completion */ 758 for(i = 0; i < BGE_TIMEOUT * 10; i++) { 759 DELAY(10); 760 if (CSR_READ_4(sc, BGE_EE_ADDR) & BGE_EEADDR_DONE) 761 break; 762 } 763 764 if (i == BGE_TIMEOUT * 10) { 765 device_printf(sc->bge_dev, "EEPROM read timed out\n"); 766 return (1); 767 } 768 769 /* Get result. */ 770 byte = CSR_READ_4(sc, BGE_EE_DATA); 771 772 *dest = (byte >> ((addr % 4) * 8)) & 0xFF; 773 774 return (0); 775 } 776 777 /* 778 * Read a sequence of bytes from the EEPROM. 779 */ 780 static int 781 bge_read_eeprom(struct bge_softc *sc, caddr_t dest, int off, int cnt) 782 { 783 int i, error = 0; 784 uint8_t byte = 0; 785 786 for (i = 0; i < cnt; i++) { 787 error = bge_eeprom_getbyte(sc, off + i, &byte); 788 if (error) 789 break; 790 *(dest + i) = byte; 791 } 792 793 return (error ? 1 : 0); 794 } 795 796 static int 797 bge_miibus_readreg(device_t dev, int phy, int reg) 798 { 799 struct bge_softc *sc; 800 uint32_t val; 801 int i; 802 803 sc = device_get_softc(dev); 804 805 /* Clear the autopoll bit if set, otherwise may trigger PCI errors. */ 806 if ((sc->bge_mi_mode & BGE_MIMODE_AUTOPOLL) != 0) { 807 CSR_WRITE_4(sc, BGE_MI_MODE, 808 sc->bge_mi_mode & ~BGE_MIMODE_AUTOPOLL); 809 DELAY(80); 810 } 811 812 CSR_WRITE_4(sc, BGE_MI_COMM, BGE_MICMD_READ | BGE_MICOMM_BUSY | 813 BGE_MIPHY(phy) | BGE_MIREG(reg)); 814 815 /* Poll for the PHY register access to complete. */ 816 for (i = 0; i < BGE_TIMEOUT; i++) { 817 DELAY(10); 818 val = CSR_READ_4(sc, BGE_MI_COMM); 819 if ((val & BGE_MICOMM_BUSY) == 0) { 820 DELAY(5); 821 val = CSR_READ_4(sc, BGE_MI_COMM); 822 break; 823 } 824 } 825 826 if (i == BGE_TIMEOUT) { 827 device_printf(sc->bge_dev, 828 "PHY read timed out (phy %d, reg %d, val 0x%08x)\n", 829 phy, reg, val); 830 val = 0; 831 } 832 833 /* Restore the autopoll bit if necessary. */ 834 if ((sc->bge_mi_mode & BGE_MIMODE_AUTOPOLL) != 0) { 835 CSR_WRITE_4(sc, BGE_MI_MODE, sc->bge_mi_mode); 836 DELAY(80); 837 } 838 839 if (val & BGE_MICOMM_READFAIL) 840 return (0); 841 842 return (val & 0xFFFF); 843 } 844 845 static int 846 bge_miibus_writereg(device_t dev, int phy, int reg, int val) 847 { 848 struct bge_softc *sc; 849 int i; 850 851 sc = device_get_softc(dev); 852 853 if (sc->bge_asicrev == BGE_ASICREV_BCM5906 && 854 (reg == BRGPHY_MII_1000CTL || reg == BRGPHY_MII_AUXCTL)) 855 return (0); 856 857 /* Clear the autopoll bit if set, otherwise may trigger PCI errors. */ 858 if ((sc->bge_mi_mode & BGE_MIMODE_AUTOPOLL) != 0) { 859 CSR_WRITE_4(sc, BGE_MI_MODE, 860 sc->bge_mi_mode & ~BGE_MIMODE_AUTOPOLL); 861 DELAY(80); 862 } 863 864 CSR_WRITE_4(sc, BGE_MI_COMM, BGE_MICMD_WRITE | BGE_MICOMM_BUSY | 865 BGE_MIPHY(phy) | BGE_MIREG(reg) | val); 866 867 for (i = 0; i < BGE_TIMEOUT; i++) { 868 DELAY(10); 869 if (!(CSR_READ_4(sc, BGE_MI_COMM) & BGE_MICOMM_BUSY)) { 870 DELAY(5); 871 CSR_READ_4(sc, BGE_MI_COMM); /* dummy read */ 872 break; 873 } 874 } 875 876 /* Restore the autopoll bit if necessary. */ 877 if ((sc->bge_mi_mode & BGE_MIMODE_AUTOPOLL) != 0) { 878 CSR_WRITE_4(sc, BGE_MI_MODE, sc->bge_mi_mode); 879 DELAY(80); 880 } 881 882 if (i == BGE_TIMEOUT) 883 device_printf(sc->bge_dev, 884 "PHY write timed out (phy %d, reg %d, val %d)\n", 885 phy, reg, val); 886 887 return (0); 888 } 889 890 static void 891 bge_miibus_statchg(device_t dev) 892 { 893 struct bge_softc *sc; 894 struct mii_data *mii; 895 sc = device_get_softc(dev); 896 mii = device_get_softc(sc->bge_miibus); 897 898 if ((mii->mii_media_status & (IFM_ACTIVE | IFM_AVALID)) == 899 (IFM_ACTIVE | IFM_AVALID)) { 900 switch (IFM_SUBTYPE(mii->mii_media_active)) { 901 case IFM_10_T: 902 case IFM_100_TX: 903 sc->bge_link = 1; 904 break; 905 case IFM_1000_T: 906 case IFM_1000_SX: 907 case IFM_2500_SX: 908 if (sc->bge_asicrev != BGE_ASICREV_BCM5906) 909 sc->bge_link = 1; 910 else 911 sc->bge_link = 0; 912 break; 913 default: 914 sc->bge_link = 0; 915 break; 916 } 917 } else 918 sc->bge_link = 0; 919 if (sc->bge_link == 0) 920 return; 921 BGE_CLRBIT(sc, BGE_MAC_MODE, BGE_MACMODE_PORTMODE); 922 if (IFM_SUBTYPE(mii->mii_media_active) == IFM_1000_T || 923 IFM_SUBTYPE(mii->mii_media_active) == IFM_1000_SX) 924 BGE_SETBIT(sc, BGE_MAC_MODE, BGE_PORTMODE_GMII); 925 else 926 BGE_SETBIT(sc, BGE_MAC_MODE, BGE_PORTMODE_MII); 927 928 if (IFM_OPTIONS(mii->mii_media_active & IFM_FDX) != 0) { 929 BGE_CLRBIT(sc, BGE_MAC_MODE, BGE_MACMODE_HALF_DUPLEX); 930 if ((IFM_OPTIONS(mii->mii_media_active) & 931 IFM_ETH_TXPAUSE) != 0) 932 BGE_SETBIT(sc, BGE_TX_MODE, BGE_TXMODE_FLOWCTL_ENABLE); 933 else 934 BGE_CLRBIT(sc, BGE_TX_MODE, BGE_TXMODE_FLOWCTL_ENABLE); 935 if ((IFM_OPTIONS(mii->mii_media_active) & 936 IFM_ETH_RXPAUSE) != 0) 937 BGE_SETBIT(sc, BGE_RX_MODE, BGE_RXMODE_FLOWCTL_ENABLE); 938 else 939 BGE_CLRBIT(sc, BGE_RX_MODE, BGE_RXMODE_FLOWCTL_ENABLE); 940 } else { 941 BGE_SETBIT(sc, BGE_MAC_MODE, BGE_MACMODE_HALF_DUPLEX); 942 BGE_CLRBIT(sc, BGE_TX_MODE, BGE_TXMODE_FLOWCTL_ENABLE); 943 BGE_CLRBIT(sc, BGE_RX_MODE, BGE_RXMODE_FLOWCTL_ENABLE); 944 } 945 } 946 947 /* 948 * Intialize a standard receive ring descriptor. 949 */ 950 static int 951 bge_newbuf_std(struct bge_softc *sc, int i) 952 { 953 struct mbuf *m; 954 struct bge_rx_bd *r; 955 bus_dma_segment_t segs[1]; 956 bus_dmamap_t map; 957 int error, nsegs; 958 959 if (sc->bge_flags & BGE_FLAG_JUMBO_STD && 960 (sc->bge_ifp->if_mtu + ETHER_HDR_LEN + ETHER_CRC_LEN + 961 ETHER_VLAN_ENCAP_LEN > (MCLBYTES - ETHER_ALIGN))) { 962 m = m_getjcl(M_DONTWAIT, MT_DATA, M_PKTHDR, MJUM9BYTES); 963 if (m == NULL) 964 return (ENOBUFS); 965 m->m_len = m->m_pkthdr.len = MJUM9BYTES; 966 } else { 967 m = m_getcl(M_DONTWAIT, MT_DATA, M_PKTHDR); 968 if (m == NULL) 969 return (ENOBUFS); 970 m->m_len = m->m_pkthdr.len = MCLBYTES; 971 } 972 if ((sc->bge_flags & BGE_FLAG_RX_ALIGNBUG) == 0) 973 m_adj(m, ETHER_ALIGN); 974 975 error = bus_dmamap_load_mbuf_sg(sc->bge_cdata.bge_rx_mtag, 976 sc->bge_cdata.bge_rx_std_sparemap, m, segs, &nsegs, 0); 977 if (error != 0) { 978 m_freem(m); 979 return (error); 980 } 981 if (sc->bge_cdata.bge_rx_std_chain[i] != NULL) { 982 bus_dmamap_sync(sc->bge_cdata.bge_rx_mtag, 983 sc->bge_cdata.bge_rx_std_dmamap[i], BUS_DMASYNC_POSTREAD); 984 bus_dmamap_unload(sc->bge_cdata.bge_rx_mtag, 985 sc->bge_cdata.bge_rx_std_dmamap[i]); 986 } 987 map = sc->bge_cdata.bge_rx_std_dmamap[i]; 988 sc->bge_cdata.bge_rx_std_dmamap[i] = sc->bge_cdata.bge_rx_std_sparemap; 989 sc->bge_cdata.bge_rx_std_sparemap = map; 990 sc->bge_cdata.bge_rx_std_chain[i] = m; 991 sc->bge_cdata.bge_rx_std_seglen[i] = segs[0].ds_len; 992 r = &sc->bge_ldata.bge_rx_std_ring[sc->bge_std]; 993 r->bge_addr.bge_addr_lo = BGE_ADDR_LO(segs[0].ds_addr); 994 r->bge_addr.bge_addr_hi = BGE_ADDR_HI(segs[0].ds_addr); 995 r->bge_flags = BGE_RXBDFLAG_END; 996 r->bge_len = segs[0].ds_len; 997 r->bge_idx = i; 998 999 bus_dmamap_sync(sc->bge_cdata.bge_rx_mtag, 1000 sc->bge_cdata.bge_rx_std_dmamap[i], BUS_DMASYNC_PREREAD); 1001 1002 return (0); 1003 } 1004 1005 /* 1006 * Initialize a jumbo receive ring descriptor. This allocates 1007 * a jumbo buffer from the pool managed internally by the driver. 1008 */ 1009 static int 1010 bge_newbuf_jumbo(struct bge_softc *sc, int i) 1011 { 1012 bus_dma_segment_t segs[BGE_NSEG_JUMBO]; 1013 bus_dmamap_t map; 1014 struct bge_extrx_bd *r; 1015 struct mbuf *m; 1016 int error, nsegs; 1017 1018 MGETHDR(m, M_DONTWAIT, MT_DATA); 1019 if (m == NULL) 1020 return (ENOBUFS); 1021 1022 m_cljget(m, M_DONTWAIT, MJUM9BYTES); 1023 if (!(m->m_flags & M_EXT)) { 1024 m_freem(m); 1025 return (ENOBUFS); 1026 } 1027 m->m_len = m->m_pkthdr.len = MJUM9BYTES; 1028 if ((sc->bge_flags & BGE_FLAG_RX_ALIGNBUG) == 0) 1029 m_adj(m, ETHER_ALIGN); 1030 1031 error = bus_dmamap_load_mbuf_sg(sc->bge_cdata.bge_mtag_jumbo, 1032 sc->bge_cdata.bge_rx_jumbo_sparemap, m, segs, &nsegs, 0); 1033 if (error != 0) { 1034 m_freem(m); 1035 return (error); 1036 } 1037 1038 if (sc->bge_cdata.bge_rx_jumbo_chain[i] != NULL) { 1039 bus_dmamap_sync(sc->bge_cdata.bge_mtag_jumbo, 1040 sc->bge_cdata.bge_rx_jumbo_dmamap[i], BUS_DMASYNC_POSTREAD); 1041 bus_dmamap_unload(sc->bge_cdata.bge_mtag_jumbo, 1042 sc->bge_cdata.bge_rx_jumbo_dmamap[i]); 1043 } 1044 map = sc->bge_cdata.bge_rx_jumbo_dmamap[i]; 1045 sc->bge_cdata.bge_rx_jumbo_dmamap[i] = 1046 sc->bge_cdata.bge_rx_jumbo_sparemap; 1047 sc->bge_cdata.bge_rx_jumbo_sparemap = map; 1048 sc->bge_cdata.bge_rx_jumbo_chain[i] = m; 1049 sc->bge_cdata.bge_rx_jumbo_seglen[i][0] = 0; 1050 sc->bge_cdata.bge_rx_jumbo_seglen[i][1] = 0; 1051 sc->bge_cdata.bge_rx_jumbo_seglen[i][2] = 0; 1052 sc->bge_cdata.bge_rx_jumbo_seglen[i][3] = 0; 1053 1054 /* 1055 * Fill in the extended RX buffer descriptor. 1056 */ 1057 r = &sc->bge_ldata.bge_rx_jumbo_ring[sc->bge_jumbo]; 1058 r->bge_flags = BGE_RXBDFLAG_JUMBO_RING | BGE_RXBDFLAG_END; 1059 r->bge_idx = i; 1060 r->bge_len3 = r->bge_len2 = r->bge_len1 = 0; 1061 switch (nsegs) { 1062 case 4: 1063 r->bge_addr3.bge_addr_lo = BGE_ADDR_LO(segs[3].ds_addr); 1064 r->bge_addr3.bge_addr_hi = BGE_ADDR_HI(segs[3].ds_addr); 1065 r->bge_len3 = segs[3].ds_len; 1066 sc->bge_cdata.bge_rx_jumbo_seglen[i][3] = segs[3].ds_len; 1067 case 3: 1068 r->bge_addr2.bge_addr_lo = BGE_ADDR_LO(segs[2].ds_addr); 1069 r->bge_addr2.bge_addr_hi = BGE_ADDR_HI(segs[2].ds_addr); 1070 r->bge_len2 = segs[2].ds_len; 1071 sc->bge_cdata.bge_rx_jumbo_seglen[i][2] = segs[2].ds_len; 1072 case 2: 1073 r->bge_addr1.bge_addr_lo = BGE_ADDR_LO(segs[1].ds_addr); 1074 r->bge_addr1.bge_addr_hi = BGE_ADDR_HI(segs[1].ds_addr); 1075 r->bge_len1 = segs[1].ds_len; 1076 sc->bge_cdata.bge_rx_jumbo_seglen[i][1] = segs[1].ds_len; 1077 case 1: 1078 r->bge_addr0.bge_addr_lo = BGE_ADDR_LO(segs[0].ds_addr); 1079 r->bge_addr0.bge_addr_hi = BGE_ADDR_HI(segs[0].ds_addr); 1080 r->bge_len0 = segs[0].ds_len; 1081 sc->bge_cdata.bge_rx_jumbo_seglen[i][0] = segs[0].ds_len; 1082 break; 1083 default: 1084 panic("%s: %d segments\n", __func__, nsegs); 1085 } 1086 1087 bus_dmamap_sync(sc->bge_cdata.bge_mtag_jumbo, 1088 sc->bge_cdata.bge_rx_jumbo_dmamap[i], BUS_DMASYNC_PREREAD); 1089 1090 return (0); 1091 } 1092 1093 static int 1094 bge_init_rx_ring_std(struct bge_softc *sc) 1095 { 1096 int error, i; 1097 1098 bzero(sc->bge_ldata.bge_rx_std_ring, BGE_STD_RX_RING_SZ); 1099 sc->bge_std = 0; 1100 for (i = 0; i < BGE_STD_RX_RING_CNT; i++) { 1101 if ((error = bge_newbuf_std(sc, i)) != 0) 1102 return (error); 1103 BGE_INC(sc->bge_std, BGE_STD_RX_RING_CNT); 1104 } 1105 1106 bus_dmamap_sync(sc->bge_cdata.bge_rx_std_ring_tag, 1107 sc->bge_cdata.bge_rx_std_ring_map, BUS_DMASYNC_PREWRITE); 1108 1109 sc->bge_std = 0; 1110 bge_writembx(sc, BGE_MBX_RX_STD_PROD_LO, BGE_STD_RX_RING_CNT - 1); 1111 1112 return (0); 1113 } 1114 1115 static void 1116 bge_free_rx_ring_std(struct bge_softc *sc) 1117 { 1118 int i; 1119 1120 for (i = 0; i < BGE_STD_RX_RING_CNT; i++) { 1121 if (sc->bge_cdata.bge_rx_std_chain[i] != NULL) { 1122 bus_dmamap_sync(sc->bge_cdata.bge_rx_mtag, 1123 sc->bge_cdata.bge_rx_std_dmamap[i], 1124 BUS_DMASYNC_POSTREAD); 1125 bus_dmamap_unload(sc->bge_cdata.bge_rx_mtag, 1126 sc->bge_cdata.bge_rx_std_dmamap[i]); 1127 m_freem(sc->bge_cdata.bge_rx_std_chain[i]); 1128 sc->bge_cdata.bge_rx_std_chain[i] = NULL; 1129 } 1130 bzero((char *)&sc->bge_ldata.bge_rx_std_ring[i], 1131 sizeof(struct bge_rx_bd)); 1132 } 1133 } 1134 1135 static int 1136 bge_init_rx_ring_jumbo(struct bge_softc *sc) 1137 { 1138 struct bge_rcb *rcb; 1139 int error, i; 1140 1141 bzero(sc->bge_ldata.bge_rx_jumbo_ring, BGE_JUMBO_RX_RING_SZ); 1142 sc->bge_jumbo = 0; 1143 for (i = 0; i < BGE_JUMBO_RX_RING_CNT; i++) { 1144 if ((error = bge_newbuf_jumbo(sc, i)) != 0) 1145 return (error); 1146 BGE_INC(sc->bge_jumbo, BGE_JUMBO_RX_RING_CNT); 1147 } 1148 1149 bus_dmamap_sync(sc->bge_cdata.bge_rx_jumbo_ring_tag, 1150 sc->bge_cdata.bge_rx_jumbo_ring_map, BUS_DMASYNC_PREWRITE); 1151 1152 sc->bge_jumbo = 0; 1153 1154 /* Enable the jumbo receive producer ring. */ 1155 rcb = &sc->bge_ldata.bge_info.bge_jumbo_rx_rcb; 1156 rcb->bge_maxlen_flags = 1157 BGE_RCB_MAXLEN_FLAGS(0, BGE_RCB_FLAG_USE_EXT_RX_BD); 1158 CSR_WRITE_4(sc, BGE_RX_JUMBO_RCB_MAXLEN_FLAGS, rcb->bge_maxlen_flags); 1159 1160 bge_writembx(sc, BGE_MBX_RX_JUMBO_PROD_LO, BGE_JUMBO_RX_RING_CNT - 1); 1161 1162 return (0); 1163 } 1164 1165 static void 1166 bge_free_rx_ring_jumbo(struct bge_softc *sc) 1167 { 1168 int i; 1169 1170 for (i = 0; i < BGE_JUMBO_RX_RING_CNT; i++) { 1171 if (sc->bge_cdata.bge_rx_jumbo_chain[i] != NULL) { 1172 bus_dmamap_sync(sc->bge_cdata.bge_mtag_jumbo, 1173 sc->bge_cdata.bge_rx_jumbo_dmamap[i], 1174 BUS_DMASYNC_POSTREAD); 1175 bus_dmamap_unload(sc->bge_cdata.bge_mtag_jumbo, 1176 sc->bge_cdata.bge_rx_jumbo_dmamap[i]); 1177 m_freem(sc->bge_cdata.bge_rx_jumbo_chain[i]); 1178 sc->bge_cdata.bge_rx_jumbo_chain[i] = NULL; 1179 } 1180 bzero((char *)&sc->bge_ldata.bge_rx_jumbo_ring[i], 1181 sizeof(struct bge_extrx_bd)); 1182 } 1183 } 1184 1185 static void 1186 bge_free_tx_ring(struct bge_softc *sc) 1187 { 1188 int i; 1189 1190 if (sc->bge_ldata.bge_tx_ring == NULL) 1191 return; 1192 1193 for (i = 0; i < BGE_TX_RING_CNT; i++) { 1194 if (sc->bge_cdata.bge_tx_chain[i] != NULL) { 1195 bus_dmamap_sync(sc->bge_cdata.bge_tx_mtag, 1196 sc->bge_cdata.bge_tx_dmamap[i], 1197 BUS_DMASYNC_POSTWRITE); 1198 bus_dmamap_unload(sc->bge_cdata.bge_tx_mtag, 1199 sc->bge_cdata.bge_tx_dmamap[i]); 1200 m_freem(sc->bge_cdata.bge_tx_chain[i]); 1201 sc->bge_cdata.bge_tx_chain[i] = NULL; 1202 } 1203 bzero((char *)&sc->bge_ldata.bge_tx_ring[i], 1204 sizeof(struct bge_tx_bd)); 1205 } 1206 } 1207 1208 static int 1209 bge_init_tx_ring(struct bge_softc *sc) 1210 { 1211 sc->bge_txcnt = 0; 1212 sc->bge_tx_saved_considx = 0; 1213 1214 bzero(sc->bge_ldata.bge_tx_ring, BGE_TX_RING_SZ); 1215 bus_dmamap_sync(sc->bge_cdata.bge_tx_ring_tag, 1216 sc->bge_cdata.bge_tx_ring_map, BUS_DMASYNC_PREWRITE); 1217 1218 /* Initialize transmit producer index for host-memory send ring. */ 1219 sc->bge_tx_prodidx = 0; 1220 bge_writembx(sc, BGE_MBX_TX_HOST_PROD0_LO, sc->bge_tx_prodidx); 1221 1222 /* 5700 b2 errata */ 1223 if (sc->bge_chiprev == BGE_CHIPREV_5700_BX) 1224 bge_writembx(sc, BGE_MBX_TX_HOST_PROD0_LO, sc->bge_tx_prodidx); 1225 1226 /* NIC-memory send ring not used; initialize to zero. */ 1227 bge_writembx(sc, BGE_MBX_TX_NIC_PROD0_LO, 0); 1228 /* 5700 b2 errata */ 1229 if (sc->bge_chiprev == BGE_CHIPREV_5700_BX) 1230 bge_writembx(sc, BGE_MBX_TX_NIC_PROD0_LO, 0); 1231 1232 return (0); 1233 } 1234 1235 static void 1236 bge_setpromisc(struct bge_softc *sc) 1237 { 1238 struct ifnet *ifp; 1239 1240 BGE_LOCK_ASSERT(sc); 1241 1242 ifp = sc->bge_ifp; 1243 1244 /* Enable or disable promiscuous mode as needed. */ 1245 if (ifp->if_flags & IFF_PROMISC) 1246 BGE_SETBIT(sc, BGE_RX_MODE, BGE_RXMODE_RX_PROMISC); 1247 else 1248 BGE_CLRBIT(sc, BGE_RX_MODE, BGE_RXMODE_RX_PROMISC); 1249 } 1250 1251 static void 1252 bge_setmulti(struct bge_softc *sc) 1253 { 1254 struct ifnet *ifp; 1255 struct ifmultiaddr *ifma; 1256 uint32_t hashes[4] = { 0, 0, 0, 0 }; 1257 int h, i; 1258 1259 BGE_LOCK_ASSERT(sc); 1260 1261 ifp = sc->bge_ifp; 1262 1263 if (ifp->if_flags & IFF_ALLMULTI || ifp->if_flags & IFF_PROMISC) { 1264 for (i = 0; i < 4; i++) 1265 CSR_WRITE_4(sc, BGE_MAR0 + (i * 4), 0xFFFFFFFF); 1266 return; 1267 } 1268 1269 /* First, zot all the existing filters. */ 1270 for (i = 0; i < 4; i++) 1271 CSR_WRITE_4(sc, BGE_MAR0 + (i * 4), 0); 1272 1273 /* Now program new ones. */ 1274 if_maddr_rlock(ifp); 1275 TAILQ_FOREACH(ifma, &ifp->if_multiaddrs, ifma_link) { 1276 if (ifma->ifma_addr->sa_family != AF_LINK) 1277 continue; 1278 h = ether_crc32_le(LLADDR((struct sockaddr_dl *) 1279 ifma->ifma_addr), ETHER_ADDR_LEN) & 0x7F; 1280 hashes[(h & 0x60) >> 5] |= 1 << (h & 0x1F); 1281 } 1282 if_maddr_runlock(ifp); 1283 1284 for (i = 0; i < 4; i++) 1285 CSR_WRITE_4(sc, BGE_MAR0 + (i * 4), hashes[i]); 1286 } 1287 1288 static void 1289 bge_setvlan(struct bge_softc *sc) 1290 { 1291 struct ifnet *ifp; 1292 1293 BGE_LOCK_ASSERT(sc); 1294 1295 ifp = sc->bge_ifp; 1296 1297 /* Enable or disable VLAN tag stripping as needed. */ 1298 if (ifp->if_capenable & IFCAP_VLAN_HWTAGGING) 1299 BGE_CLRBIT(sc, BGE_RX_MODE, BGE_RXMODE_RX_KEEP_VLAN_DIAG); 1300 else 1301 BGE_SETBIT(sc, BGE_RX_MODE, BGE_RXMODE_RX_KEEP_VLAN_DIAG); 1302 } 1303 1304 static void 1305 bge_sig_pre_reset(struct bge_softc *sc, int type) 1306 { 1307 1308 /* 1309 * Some chips don't like this so only do this if ASF is enabled 1310 */ 1311 if (sc->bge_asf_mode) 1312 bge_writemem_ind(sc, BGE_SOFTWARE_GENCOMM, BGE_MAGIC_NUMBER); 1313 1314 if (sc->bge_asf_mode & ASF_NEW_HANDSHAKE) { 1315 switch (type) { 1316 case BGE_RESET_START: 1317 bge_writemem_ind(sc, BGE_SDI_STATUS, 0x1); /* START */ 1318 break; 1319 case BGE_RESET_STOP: 1320 bge_writemem_ind(sc, BGE_SDI_STATUS, 0x2); /* UNLOAD */ 1321 break; 1322 } 1323 } 1324 } 1325 1326 static void 1327 bge_sig_post_reset(struct bge_softc *sc, int type) 1328 { 1329 1330 if (sc->bge_asf_mode & ASF_NEW_HANDSHAKE) { 1331 switch (type) { 1332 case BGE_RESET_START: 1333 bge_writemem_ind(sc, BGE_SDI_STATUS, 0x80000001); 1334 /* START DONE */ 1335 break; 1336 case BGE_RESET_STOP: 1337 bge_writemem_ind(sc, BGE_SDI_STATUS, 0x80000002); 1338 break; 1339 } 1340 } 1341 } 1342 1343 static void 1344 bge_sig_legacy(struct bge_softc *sc, int type) 1345 { 1346 1347 if (sc->bge_asf_mode) { 1348 switch (type) { 1349 case BGE_RESET_START: 1350 bge_writemem_ind(sc, BGE_SDI_STATUS, 0x1); /* START */ 1351 break; 1352 case BGE_RESET_STOP: 1353 bge_writemem_ind(sc, BGE_SDI_STATUS, 0x2); /* UNLOAD */ 1354 break; 1355 } 1356 } 1357 } 1358 1359 static void 1360 bge_stop_fw(struct bge_softc *sc) 1361 { 1362 int i; 1363 1364 if (sc->bge_asf_mode) { 1365 bge_writemem_ind(sc, BGE_SOFTWARE_GENCOMM_FW, BGE_FW_PAUSE); 1366 CSR_WRITE_4(sc, BGE_CPU_EVENT, 1367 CSR_READ_4(sc, BGE_CPU_EVENT) | (1 << 14)); 1368 1369 for (i = 0; i < 100; i++ ) { 1370 if (!(CSR_READ_4(sc, BGE_CPU_EVENT) & (1 << 14))) 1371 break; 1372 DELAY(10); 1373 } 1374 } 1375 } 1376 1377 /* 1378 * Do endian, PCI and DMA initialization. 1379 */ 1380 static int 1381 bge_chipinit(struct bge_softc *sc) 1382 { 1383 uint32_t dma_rw_ctl, misc_ctl; 1384 uint16_t val; 1385 int i; 1386 1387 /* Set endianness before we access any non-PCI registers. */ 1388 misc_ctl = BGE_INIT; 1389 if (sc->bge_flags & BGE_FLAG_TAGGED_STATUS) 1390 misc_ctl |= BGE_PCIMISCCTL_TAGGED_STATUS; 1391 pci_write_config(sc->bge_dev, BGE_PCI_MISC_CTL, misc_ctl, 4); 1392 1393 /* Clear the MAC control register */ 1394 CSR_WRITE_4(sc, BGE_MAC_MODE, 0); 1395 1396 /* 1397 * Clear the MAC statistics block in the NIC's 1398 * internal memory. 1399 */ 1400 for (i = BGE_STATS_BLOCK; 1401 i < BGE_STATS_BLOCK_END + 1; i += sizeof(uint32_t)) 1402 BGE_MEMWIN_WRITE(sc, i, 0); 1403 1404 for (i = BGE_STATUS_BLOCK; 1405 i < BGE_STATUS_BLOCK_END + 1; i += sizeof(uint32_t)) 1406 BGE_MEMWIN_WRITE(sc, i, 0); 1407 1408 if (sc->bge_chiprev == BGE_CHIPREV_5704_BX) { 1409 /* 1410 * Fix data corruption caused by non-qword write with WB. 1411 * Fix master abort in PCI mode. 1412 * Fix PCI latency timer. 1413 */ 1414 val = pci_read_config(sc->bge_dev, BGE_PCI_MSI_DATA + 2, 2); 1415 val |= (1 << 10) | (1 << 12) | (1 << 13); 1416 pci_write_config(sc->bge_dev, BGE_PCI_MSI_DATA + 2, val, 2); 1417 } 1418 1419 /* 1420 * Set up the PCI DMA control register. 1421 */ 1422 dma_rw_ctl = BGE_PCIDMARWCTL_RD_CMD_SHIFT(6) | 1423 BGE_PCIDMARWCTL_WR_CMD_SHIFT(7); 1424 if (sc->bge_flags & BGE_FLAG_PCIE) { 1425 /* Read watermark not used, 128 bytes for write. */ 1426 dma_rw_ctl |= BGE_PCIDMARWCTL_WR_WAT_SHIFT(3); 1427 } else if (sc->bge_flags & BGE_FLAG_PCIX) { 1428 if (BGE_IS_5714_FAMILY(sc)) { 1429 /* 256 bytes for read and write. */ 1430 dma_rw_ctl |= BGE_PCIDMARWCTL_RD_WAT_SHIFT(2) | 1431 BGE_PCIDMARWCTL_WR_WAT_SHIFT(2); 1432 dma_rw_ctl |= (sc->bge_asicrev == BGE_ASICREV_BCM5780) ? 1433 BGE_PCIDMARWCTL_ONEDMA_ATONCE_GLOBAL : 1434 BGE_PCIDMARWCTL_ONEDMA_ATONCE_LOCAL; 1435 } else if (sc->bge_asicrev == BGE_ASICREV_BCM5703) { 1436 /* 1437 * In the BCM5703, the DMA read watermark should 1438 * be set to less than or equal to the maximum 1439 * memory read byte count of the PCI-X command 1440 * register. 1441 */ 1442 dma_rw_ctl |= BGE_PCIDMARWCTL_RD_WAT_SHIFT(4) | 1443 BGE_PCIDMARWCTL_WR_WAT_SHIFT(3); 1444 } else if (sc->bge_asicrev == BGE_ASICREV_BCM5704) { 1445 /* 1536 bytes for read, 384 bytes for write. */ 1446 dma_rw_ctl |= BGE_PCIDMARWCTL_RD_WAT_SHIFT(7) | 1447 BGE_PCIDMARWCTL_WR_WAT_SHIFT(3); 1448 } else { 1449 /* 384 bytes for read and write. */ 1450 dma_rw_ctl |= BGE_PCIDMARWCTL_RD_WAT_SHIFT(3) | 1451 BGE_PCIDMARWCTL_WR_WAT_SHIFT(3) | 1452 0x0F; 1453 } 1454 if (sc->bge_asicrev == BGE_ASICREV_BCM5703 || 1455 sc->bge_asicrev == BGE_ASICREV_BCM5704) { 1456 uint32_t tmp; 1457 1458 /* Set ONE_DMA_AT_ONCE for hardware workaround. */ 1459 tmp = CSR_READ_4(sc, BGE_PCI_CLKCTL) & 0x1F; 1460 if (tmp == 6 || tmp == 7) 1461 dma_rw_ctl |= 1462 BGE_PCIDMARWCTL_ONEDMA_ATONCE_GLOBAL; 1463 1464 /* Set PCI-X DMA write workaround. */ 1465 dma_rw_ctl |= BGE_PCIDMARWCTL_ASRT_ALL_BE; 1466 } 1467 } else { 1468 /* Conventional PCI bus: 256 bytes for read and write. */ 1469 dma_rw_ctl |= BGE_PCIDMARWCTL_RD_WAT_SHIFT(7) | 1470 BGE_PCIDMARWCTL_WR_WAT_SHIFT(7); 1471 1472 if (sc->bge_asicrev != BGE_ASICREV_BCM5705 && 1473 sc->bge_asicrev != BGE_ASICREV_BCM5750) 1474 dma_rw_ctl |= 0x0F; 1475 } 1476 if (sc->bge_asicrev == BGE_ASICREV_BCM5700 || 1477 sc->bge_asicrev == BGE_ASICREV_BCM5701) 1478 dma_rw_ctl |= BGE_PCIDMARWCTL_USE_MRM | 1479 BGE_PCIDMARWCTL_ASRT_ALL_BE; 1480 if (sc->bge_asicrev == BGE_ASICREV_BCM5703 || 1481 sc->bge_asicrev == BGE_ASICREV_BCM5704) 1482 dma_rw_ctl &= ~BGE_PCIDMARWCTL_MINDMA; 1483 if (BGE_IS_5717_PLUS(sc)) { 1484 dma_rw_ctl &= ~BGE_PCIDMARWCTL_DIS_CACHE_ALIGNMENT; 1485 if (sc->bge_chipid == BGE_CHIPID_BCM57765_A0) 1486 dma_rw_ctl &= ~BGE_PCIDMARWCTL_CRDRDR_RDMA_MRRS_MSK; 1487 /* 1488 * Enable HW workaround for controllers that misinterpret 1489 * a status tag update and leave interrupts permanently 1490 * disabled. 1491 */ 1492 if (sc->bge_asicrev != BGE_ASICREV_BCM5717 && 1493 sc->bge_asicrev != BGE_ASICREV_BCM57765) 1494 dma_rw_ctl |= BGE_PCIDMARWCTL_TAGGED_STATUS_WA; 1495 } 1496 pci_write_config(sc->bge_dev, BGE_PCI_DMA_RW_CTL, dma_rw_ctl, 4); 1497 1498 /* 1499 * Set up general mode register. 1500 */ 1501 CSR_WRITE_4(sc, BGE_MODE_CTL, BGE_DMA_SWAP_OPTIONS | 1502 BGE_MODECTL_MAC_ATTN_INTR | BGE_MODECTL_HOST_SEND_BDS | 1503 BGE_MODECTL_TX_NO_PHDR_CSUM); 1504 1505 /* 1506 * BCM5701 B5 have a bug causing data corruption when using 1507 * 64-bit DMA reads, which can be terminated early and then 1508 * completed later as 32-bit accesses, in combination with 1509 * certain bridges. 1510 */ 1511 if (sc->bge_asicrev == BGE_ASICREV_BCM5701 && 1512 sc->bge_chipid == BGE_CHIPID_BCM5701_B5) 1513 BGE_SETBIT(sc, BGE_MODE_CTL, BGE_MODECTL_FORCE_PCI32); 1514 1515 /* 1516 * Tell the firmware the driver is running 1517 */ 1518 if (sc->bge_asf_mode & ASF_STACKUP) 1519 BGE_SETBIT(sc, BGE_MODE_CTL, BGE_MODECTL_STACKUP); 1520 1521 /* 1522 * Disable memory write invalidate. Apparently it is not supported 1523 * properly by these devices. Also ensure that INTx isn't disabled, 1524 * as these chips need it even when using MSI. 1525 */ 1526 PCI_CLRBIT(sc->bge_dev, BGE_PCI_CMD, 1527 PCIM_CMD_INTxDIS | PCIM_CMD_MWIEN, 4); 1528 1529 /* Set the timer prescaler (always 66Mhz) */ 1530 CSR_WRITE_4(sc, BGE_MISC_CFG, BGE_32BITTIME_66MHZ); 1531 1532 /* XXX: The Linux tg3 driver does this at the start of brgphy_reset. */ 1533 if (sc->bge_asicrev == BGE_ASICREV_BCM5906) { 1534 DELAY(40); /* XXX */ 1535 1536 /* Put PHY into ready state */ 1537 BGE_CLRBIT(sc, BGE_MISC_CFG, BGE_MISCCFG_EPHY_IDDQ); 1538 CSR_READ_4(sc, BGE_MISC_CFG); /* Flush */ 1539 DELAY(40); 1540 } 1541 1542 return (0); 1543 } 1544 1545 static int 1546 bge_blockinit(struct bge_softc *sc) 1547 { 1548 struct bge_rcb *rcb; 1549 bus_size_t vrcb; 1550 bge_hostaddr taddr; 1551 uint32_t dmactl, val; 1552 int i, limit; 1553 1554 /* 1555 * Initialize the memory window pointer register so that 1556 * we can access the first 32K of internal NIC RAM. This will 1557 * allow us to set up the TX send ring RCBs and the RX return 1558 * ring RCBs, plus other things which live in NIC memory. 1559 */ 1560 CSR_WRITE_4(sc, BGE_PCI_MEMWIN_BASEADDR, 0); 1561 1562 /* Note: the BCM5704 has a smaller mbuf space than other chips. */ 1563 1564 if (!(BGE_IS_5705_PLUS(sc))) { 1565 /* Configure mbuf memory pool */ 1566 CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_BASEADDR, BGE_BUFFPOOL_1); 1567 if (sc->bge_asicrev == BGE_ASICREV_BCM5704) 1568 CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_LEN, 0x10000); 1569 else 1570 CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_LEN, 0x18000); 1571 1572 /* Configure DMA resource pool */ 1573 CSR_WRITE_4(sc, BGE_BMAN_DMA_DESCPOOL_BASEADDR, 1574 BGE_DMA_DESCRIPTORS); 1575 CSR_WRITE_4(sc, BGE_BMAN_DMA_DESCPOOL_LEN, 0x2000); 1576 } 1577 1578 /* Configure mbuf pool watermarks */ 1579 if (sc->bge_asicrev == BGE_ASICREV_BCM5717 || 1580 sc->bge_asicrev == BGE_ASICREV_BCM57765) { 1581 CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_READDMA_LOWAT, 0x0); 1582 if (sc->bge_ifp->if_mtu > ETHERMTU) { 1583 CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_MACRX_LOWAT, 0x7e); 1584 CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_HIWAT, 0xea); 1585 } else { 1586 CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_MACRX_LOWAT, 0x2a); 1587 CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_HIWAT, 0xa0); 1588 } 1589 } else if (!BGE_IS_5705_PLUS(sc)) { 1590 CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_READDMA_LOWAT, 0x50); 1591 CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_MACRX_LOWAT, 0x20); 1592 CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_HIWAT, 0x60); 1593 } else if (sc->bge_asicrev == BGE_ASICREV_BCM5906) { 1594 CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_READDMA_LOWAT, 0x0); 1595 CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_MACRX_LOWAT, 0x04); 1596 CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_HIWAT, 0x10); 1597 } else { 1598 CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_READDMA_LOWAT, 0x0); 1599 CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_MACRX_LOWAT, 0x10); 1600 CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_HIWAT, 0x60); 1601 } 1602 1603 /* Configure DMA resource watermarks */ 1604 CSR_WRITE_4(sc, BGE_BMAN_DMA_DESCPOOL_LOWAT, 5); 1605 CSR_WRITE_4(sc, BGE_BMAN_DMA_DESCPOOL_HIWAT, 10); 1606 1607 /* Enable buffer manager */ 1608 val = BGE_BMANMODE_ENABLE | BGE_BMANMODE_LOMBUF_ATTN; 1609 /* 1610 * Change the arbitration algorithm of TXMBUF read request to 1611 * round-robin instead of priority based for BCM5719. When 1612 * TXFIFO is almost empty, RDMA will hold its request until 1613 * TXFIFO is not almost empty. 1614 */ 1615 if (sc->bge_asicrev == BGE_ASICREV_BCM5719) 1616 val |= BGE_BMANMODE_NO_TX_UNDERRUN; 1617 CSR_WRITE_4(sc, BGE_BMAN_MODE, val); 1618 1619 /* Poll for buffer manager start indication */ 1620 for (i = 0; i < BGE_TIMEOUT; i++) { 1621 DELAY(10); 1622 if (CSR_READ_4(sc, BGE_BMAN_MODE) & BGE_BMANMODE_ENABLE) 1623 break; 1624 } 1625 1626 if (i == BGE_TIMEOUT) { 1627 device_printf(sc->bge_dev, "buffer manager failed to start\n"); 1628 return (ENXIO); 1629 } 1630 1631 /* Enable flow-through queues */ 1632 CSR_WRITE_4(sc, BGE_FTQ_RESET, 0xFFFFFFFF); 1633 CSR_WRITE_4(sc, BGE_FTQ_RESET, 0); 1634 1635 /* Wait until queue initialization is complete */ 1636 for (i = 0; i < BGE_TIMEOUT; i++) { 1637 DELAY(10); 1638 if (CSR_READ_4(sc, BGE_FTQ_RESET) == 0) 1639 break; 1640 } 1641 1642 if (i == BGE_TIMEOUT) { 1643 device_printf(sc->bge_dev, "flow-through queue init failed\n"); 1644 return (ENXIO); 1645 } 1646 1647 /* 1648 * Summary of rings supported by the controller: 1649 * 1650 * Standard Receive Producer Ring 1651 * - This ring is used to feed receive buffers for "standard" 1652 * sized frames (typically 1536 bytes) to the controller. 1653 * 1654 * Jumbo Receive Producer Ring 1655 * - This ring is used to feed receive buffers for jumbo sized 1656 * frames (i.e. anything bigger than the "standard" frames) 1657 * to the controller. 1658 * 1659 * Mini Receive Producer Ring 1660 * - This ring is used to feed receive buffers for "mini" 1661 * sized frames to the controller. 1662 * - This feature required external memory for the controller 1663 * but was never used in a production system. Should always 1664 * be disabled. 1665 * 1666 * Receive Return Ring 1667 * - After the controller has placed an incoming frame into a 1668 * receive buffer that buffer is moved into a receive return 1669 * ring. The driver is then responsible to passing the 1670 * buffer up to the stack. Many versions of the controller 1671 * support multiple RR rings. 1672 * 1673 * Send Ring 1674 * - This ring is used for outgoing frames. Many versions of 1675 * the controller support multiple send rings. 1676 */ 1677 1678 /* Initialize the standard receive producer ring control block. */ 1679 rcb = &sc->bge_ldata.bge_info.bge_std_rx_rcb; 1680 rcb->bge_hostaddr.bge_addr_lo = 1681 BGE_ADDR_LO(sc->bge_ldata.bge_rx_std_ring_paddr); 1682 rcb->bge_hostaddr.bge_addr_hi = 1683 BGE_ADDR_HI(sc->bge_ldata.bge_rx_std_ring_paddr); 1684 bus_dmamap_sync(sc->bge_cdata.bge_rx_std_ring_tag, 1685 sc->bge_cdata.bge_rx_std_ring_map, BUS_DMASYNC_PREREAD); 1686 if (BGE_IS_5717_PLUS(sc)) { 1687 /* 1688 * Bits 31-16: Programmable ring size (2048, 1024, 512, .., 32) 1689 * Bits 15-2 : Maximum RX frame size 1690 * Bit 1 : 1 = Ring Disabled, 0 = Ring ENabled 1691 * Bit 0 : Reserved 1692 */ 1693 rcb->bge_maxlen_flags = 1694 BGE_RCB_MAXLEN_FLAGS(512, BGE_MAX_FRAMELEN << 2); 1695 } else if (BGE_IS_5705_PLUS(sc)) { 1696 /* 1697 * Bits 31-16: Programmable ring size (512, 256, 128, 64, 32) 1698 * Bits 15-2 : Reserved (should be 0) 1699 * Bit 1 : 1 = Ring Disabled, 0 = Ring Enabled 1700 * Bit 0 : Reserved 1701 */ 1702 rcb->bge_maxlen_flags = BGE_RCB_MAXLEN_FLAGS(512, 0); 1703 } else { 1704 /* 1705 * Ring size is always XXX entries 1706 * Bits 31-16: Maximum RX frame size 1707 * Bits 15-2 : Reserved (should be 0) 1708 * Bit 1 : 1 = Ring Disabled, 0 = Ring Enabled 1709 * Bit 0 : Reserved 1710 */ 1711 rcb->bge_maxlen_flags = 1712 BGE_RCB_MAXLEN_FLAGS(BGE_MAX_FRAMELEN, 0); 1713 } 1714 if (sc->bge_asicrev == BGE_ASICREV_BCM5717 || 1715 sc->bge_asicrev == BGE_ASICREV_BCM5719) 1716 rcb->bge_nicaddr = BGE_STD_RX_RINGS_5717; 1717 else 1718 rcb->bge_nicaddr = BGE_STD_RX_RINGS; 1719 /* Write the standard receive producer ring control block. */ 1720 CSR_WRITE_4(sc, BGE_RX_STD_RCB_HADDR_HI, rcb->bge_hostaddr.bge_addr_hi); 1721 CSR_WRITE_4(sc, BGE_RX_STD_RCB_HADDR_LO, rcb->bge_hostaddr.bge_addr_lo); 1722 CSR_WRITE_4(sc, BGE_RX_STD_RCB_MAXLEN_FLAGS, rcb->bge_maxlen_flags); 1723 CSR_WRITE_4(sc, BGE_RX_STD_RCB_NICADDR, rcb->bge_nicaddr); 1724 1725 /* Reset the standard receive producer ring producer index. */ 1726 bge_writembx(sc, BGE_MBX_RX_STD_PROD_LO, 0); 1727 1728 /* 1729 * Initialize the jumbo RX producer ring control 1730 * block. We set the 'ring disabled' bit in the 1731 * flags field until we're actually ready to start 1732 * using this ring (i.e. once we set the MTU 1733 * high enough to require it). 1734 */ 1735 if (BGE_IS_JUMBO_CAPABLE(sc)) { 1736 rcb = &sc->bge_ldata.bge_info.bge_jumbo_rx_rcb; 1737 /* Get the jumbo receive producer ring RCB parameters. */ 1738 rcb->bge_hostaddr.bge_addr_lo = 1739 BGE_ADDR_LO(sc->bge_ldata.bge_rx_jumbo_ring_paddr); 1740 rcb->bge_hostaddr.bge_addr_hi = 1741 BGE_ADDR_HI(sc->bge_ldata.bge_rx_jumbo_ring_paddr); 1742 bus_dmamap_sync(sc->bge_cdata.bge_rx_jumbo_ring_tag, 1743 sc->bge_cdata.bge_rx_jumbo_ring_map, 1744 BUS_DMASYNC_PREREAD); 1745 rcb->bge_maxlen_flags = BGE_RCB_MAXLEN_FLAGS(0, 1746 BGE_RCB_FLAG_USE_EXT_RX_BD | BGE_RCB_FLAG_RING_DISABLED); 1747 if (sc->bge_asicrev == BGE_ASICREV_BCM5717 || 1748 sc->bge_asicrev == BGE_ASICREV_BCM5719) 1749 rcb->bge_nicaddr = BGE_JUMBO_RX_RINGS_5717; 1750 else 1751 rcb->bge_nicaddr = BGE_JUMBO_RX_RINGS; 1752 CSR_WRITE_4(sc, BGE_RX_JUMBO_RCB_HADDR_HI, 1753 rcb->bge_hostaddr.bge_addr_hi); 1754 CSR_WRITE_4(sc, BGE_RX_JUMBO_RCB_HADDR_LO, 1755 rcb->bge_hostaddr.bge_addr_lo); 1756 /* Program the jumbo receive producer ring RCB parameters. */ 1757 CSR_WRITE_4(sc, BGE_RX_JUMBO_RCB_MAXLEN_FLAGS, 1758 rcb->bge_maxlen_flags); 1759 CSR_WRITE_4(sc, BGE_RX_JUMBO_RCB_NICADDR, rcb->bge_nicaddr); 1760 /* Reset the jumbo receive producer ring producer index. */ 1761 bge_writembx(sc, BGE_MBX_RX_JUMBO_PROD_LO, 0); 1762 } 1763 1764 /* Disable the mini receive producer ring RCB. */ 1765 if (BGE_IS_5700_FAMILY(sc)) { 1766 rcb = &sc->bge_ldata.bge_info.bge_mini_rx_rcb; 1767 rcb->bge_maxlen_flags = 1768 BGE_RCB_MAXLEN_FLAGS(0, BGE_RCB_FLAG_RING_DISABLED); 1769 CSR_WRITE_4(sc, BGE_RX_MINI_RCB_MAXLEN_FLAGS, 1770 rcb->bge_maxlen_flags); 1771 /* Reset the mini receive producer ring producer index. */ 1772 bge_writembx(sc, BGE_MBX_RX_MINI_PROD_LO, 0); 1773 } 1774 1775 /* Choose de-pipeline mode for BCM5906 A0, A1 and A2. */ 1776 if (sc->bge_asicrev == BGE_ASICREV_BCM5906) { 1777 if (sc->bge_chipid == BGE_CHIPID_BCM5906_A0 || 1778 sc->bge_chipid == BGE_CHIPID_BCM5906_A1 || 1779 sc->bge_chipid == BGE_CHIPID_BCM5906_A2) 1780 CSR_WRITE_4(sc, BGE_ISO_PKT_TX, 1781 (CSR_READ_4(sc, BGE_ISO_PKT_TX) & ~3) | 2); 1782 } 1783 /* 1784 * The BD ring replenish thresholds control how often the 1785 * hardware fetches new BD's from the producer rings in host 1786 * memory. Setting the value too low on a busy system can 1787 * starve the hardware and recue the throughpout. 1788 * 1789 * Set the BD ring replentish thresholds. The recommended 1790 * values are 1/8th the number of descriptors allocated to 1791 * each ring. 1792 * XXX The 5754 requires a lower threshold, so it might be a 1793 * requirement of all 575x family chips. The Linux driver sets 1794 * the lower threshold for all 5705 family chips as well, but there 1795 * are reports that it might not need to be so strict. 1796 * 1797 * XXX Linux does some extra fiddling here for the 5906 parts as 1798 * well. 1799 */ 1800 if (BGE_IS_5705_PLUS(sc)) 1801 val = 8; 1802 else 1803 val = BGE_STD_RX_RING_CNT / 8; 1804 CSR_WRITE_4(sc, BGE_RBDI_STD_REPL_THRESH, val); 1805 if (BGE_IS_JUMBO_CAPABLE(sc)) 1806 CSR_WRITE_4(sc, BGE_RBDI_JUMBO_REPL_THRESH, 1807 BGE_JUMBO_RX_RING_CNT/8); 1808 if (BGE_IS_5717_PLUS(sc)) { 1809 CSR_WRITE_4(sc, BGE_STD_REPLENISH_LWM, 32); 1810 CSR_WRITE_4(sc, BGE_JMB_REPLENISH_LWM, 16); 1811 } 1812 1813 /* 1814 * Disable all send rings by setting the 'ring disabled' bit 1815 * in the flags field of all the TX send ring control blocks, 1816 * located in NIC memory. 1817 */ 1818 if (!BGE_IS_5705_PLUS(sc)) 1819 /* 5700 to 5704 had 16 send rings. */ 1820 limit = BGE_TX_RINGS_EXTSSRAM_MAX; 1821 else 1822 limit = 1; 1823 vrcb = BGE_MEMWIN_START + BGE_SEND_RING_RCB; 1824 for (i = 0; i < limit; i++) { 1825 RCB_WRITE_4(sc, vrcb, bge_maxlen_flags, 1826 BGE_RCB_MAXLEN_FLAGS(0, BGE_RCB_FLAG_RING_DISABLED)); 1827 RCB_WRITE_4(sc, vrcb, bge_nicaddr, 0); 1828 vrcb += sizeof(struct bge_rcb); 1829 } 1830 1831 /* Configure send ring RCB 0 (we use only the first ring) */ 1832 vrcb = BGE_MEMWIN_START + BGE_SEND_RING_RCB; 1833 BGE_HOSTADDR(taddr, sc->bge_ldata.bge_tx_ring_paddr); 1834 RCB_WRITE_4(sc, vrcb, bge_hostaddr.bge_addr_hi, taddr.bge_addr_hi); 1835 RCB_WRITE_4(sc, vrcb, bge_hostaddr.bge_addr_lo, taddr.bge_addr_lo); 1836 if (sc->bge_asicrev == BGE_ASICREV_BCM5717 || 1837 sc->bge_asicrev == BGE_ASICREV_BCM5719) 1838 RCB_WRITE_4(sc, vrcb, bge_nicaddr, BGE_SEND_RING_5717); 1839 else 1840 RCB_WRITE_4(sc, vrcb, bge_nicaddr, 1841 BGE_NIC_TXRING_ADDR(0, BGE_TX_RING_CNT)); 1842 RCB_WRITE_4(sc, vrcb, bge_maxlen_flags, 1843 BGE_RCB_MAXLEN_FLAGS(BGE_TX_RING_CNT, 0)); 1844 1845 /* 1846 * Disable all receive return rings by setting the 1847 * 'ring diabled' bit in the flags field of all the receive 1848 * return ring control blocks, located in NIC memory. 1849 */ 1850 if (sc->bge_asicrev == BGE_ASICREV_BCM5717 || 1851 sc->bge_asicrev == BGE_ASICREV_BCM5719) { 1852 /* Should be 17, use 16 until we get an SRAM map. */ 1853 limit = 16; 1854 } else if (!BGE_IS_5705_PLUS(sc)) 1855 limit = BGE_RX_RINGS_MAX; 1856 else if (sc->bge_asicrev == BGE_ASICREV_BCM5755 || 1857 sc->bge_asicrev == BGE_ASICREV_BCM57765) 1858 limit = 4; 1859 else 1860 limit = 1; 1861 /* Disable all receive return rings. */ 1862 vrcb = BGE_MEMWIN_START + BGE_RX_RETURN_RING_RCB; 1863 for (i = 0; i < limit; i++) { 1864 RCB_WRITE_4(sc, vrcb, bge_hostaddr.bge_addr_hi, 0); 1865 RCB_WRITE_4(sc, vrcb, bge_hostaddr.bge_addr_lo, 0); 1866 RCB_WRITE_4(sc, vrcb, bge_maxlen_flags, 1867 BGE_RCB_FLAG_RING_DISABLED); 1868 RCB_WRITE_4(sc, vrcb, bge_nicaddr, 0); 1869 bge_writembx(sc, BGE_MBX_RX_CONS0_LO + 1870 (i * (sizeof(uint64_t))), 0); 1871 vrcb += sizeof(struct bge_rcb); 1872 } 1873 1874 /* 1875 * Set up receive return ring 0. Note that the NIC address 1876 * for RX return rings is 0x0. The return rings live entirely 1877 * within the host, so the nicaddr field in the RCB isn't used. 1878 */ 1879 vrcb = BGE_MEMWIN_START + BGE_RX_RETURN_RING_RCB; 1880 BGE_HOSTADDR(taddr, sc->bge_ldata.bge_rx_return_ring_paddr); 1881 RCB_WRITE_4(sc, vrcb, bge_hostaddr.bge_addr_hi, taddr.bge_addr_hi); 1882 RCB_WRITE_4(sc, vrcb, bge_hostaddr.bge_addr_lo, taddr.bge_addr_lo); 1883 RCB_WRITE_4(sc, vrcb, bge_nicaddr, 0); 1884 RCB_WRITE_4(sc, vrcb, bge_maxlen_flags, 1885 BGE_RCB_MAXLEN_FLAGS(sc->bge_return_ring_cnt, 0)); 1886 1887 /* Set random backoff seed for TX */ 1888 CSR_WRITE_4(sc, BGE_TX_RANDOM_BACKOFF, 1889 IF_LLADDR(sc->bge_ifp)[0] + IF_LLADDR(sc->bge_ifp)[1] + 1890 IF_LLADDR(sc->bge_ifp)[2] + IF_LLADDR(sc->bge_ifp)[3] + 1891 IF_LLADDR(sc->bge_ifp)[4] + IF_LLADDR(sc->bge_ifp)[5] + 1892 BGE_TX_BACKOFF_SEED_MASK); 1893 1894 /* Set inter-packet gap */ 1895 CSR_WRITE_4(sc, BGE_TX_LENGTHS, 0x2620); 1896 1897 /* 1898 * Specify which ring to use for packets that don't match 1899 * any RX rules. 1900 */ 1901 CSR_WRITE_4(sc, BGE_RX_RULES_CFG, 0x08); 1902 1903 /* 1904 * Configure number of RX lists. One interrupt distribution 1905 * list, sixteen active lists, one bad frames class. 1906 */ 1907 CSR_WRITE_4(sc, BGE_RXLP_CFG, 0x181); 1908 1909 /* Inialize RX list placement stats mask. */ 1910 CSR_WRITE_4(sc, BGE_RXLP_STATS_ENABLE_MASK, 0x007FFFFF); 1911 CSR_WRITE_4(sc, BGE_RXLP_STATS_CTL, 0x1); 1912 1913 /* Disable host coalescing until we get it set up */ 1914 CSR_WRITE_4(sc, BGE_HCC_MODE, 0x00000000); 1915 1916 /* Poll to make sure it's shut down. */ 1917 for (i = 0; i < BGE_TIMEOUT; i++) { 1918 DELAY(10); 1919 if (!(CSR_READ_4(sc, BGE_HCC_MODE) & BGE_HCCMODE_ENABLE)) 1920 break; 1921 } 1922 1923 if (i == BGE_TIMEOUT) { 1924 device_printf(sc->bge_dev, 1925 "host coalescing engine failed to idle\n"); 1926 return (ENXIO); 1927 } 1928 1929 /* Set up host coalescing defaults */ 1930 CSR_WRITE_4(sc, BGE_HCC_RX_COAL_TICKS, sc->bge_rx_coal_ticks); 1931 CSR_WRITE_4(sc, BGE_HCC_TX_COAL_TICKS, sc->bge_tx_coal_ticks); 1932 CSR_WRITE_4(sc, BGE_HCC_RX_MAX_COAL_BDS, sc->bge_rx_max_coal_bds); 1933 CSR_WRITE_4(sc, BGE_HCC_TX_MAX_COAL_BDS, sc->bge_tx_max_coal_bds); 1934 if (!(BGE_IS_5705_PLUS(sc))) { 1935 CSR_WRITE_4(sc, BGE_HCC_RX_COAL_TICKS_INT, 0); 1936 CSR_WRITE_4(sc, BGE_HCC_TX_COAL_TICKS_INT, 0); 1937 } 1938 CSR_WRITE_4(sc, BGE_HCC_RX_MAX_COAL_BDS_INT, 1); 1939 CSR_WRITE_4(sc, BGE_HCC_TX_MAX_COAL_BDS_INT, 1); 1940 1941 /* Set up address of statistics block */ 1942 if (!(BGE_IS_5705_PLUS(sc))) { 1943 CSR_WRITE_4(sc, BGE_HCC_STATS_ADDR_HI, 1944 BGE_ADDR_HI(sc->bge_ldata.bge_stats_paddr)); 1945 CSR_WRITE_4(sc, BGE_HCC_STATS_ADDR_LO, 1946 BGE_ADDR_LO(sc->bge_ldata.bge_stats_paddr)); 1947 CSR_WRITE_4(sc, BGE_HCC_STATS_BASEADDR, BGE_STATS_BLOCK); 1948 CSR_WRITE_4(sc, BGE_HCC_STATUSBLK_BASEADDR, BGE_STATUS_BLOCK); 1949 CSR_WRITE_4(sc, BGE_HCC_STATS_TICKS, sc->bge_stat_ticks); 1950 } 1951 1952 /* Set up address of status block */ 1953 CSR_WRITE_4(sc, BGE_HCC_STATUSBLK_ADDR_HI, 1954 BGE_ADDR_HI(sc->bge_ldata.bge_status_block_paddr)); 1955 CSR_WRITE_4(sc, BGE_HCC_STATUSBLK_ADDR_LO, 1956 BGE_ADDR_LO(sc->bge_ldata.bge_status_block_paddr)); 1957 1958 /* Set up status block size. */ 1959 if (sc->bge_asicrev == BGE_ASICREV_BCM5700 && 1960 sc->bge_chipid != BGE_CHIPID_BCM5700_C0) { 1961 val = BGE_STATBLKSZ_FULL; 1962 bzero(sc->bge_ldata.bge_status_block, BGE_STATUS_BLK_SZ); 1963 } else { 1964 val = BGE_STATBLKSZ_32BYTE; 1965 bzero(sc->bge_ldata.bge_status_block, 32); 1966 } 1967 bus_dmamap_sync(sc->bge_cdata.bge_status_tag, 1968 sc->bge_cdata.bge_status_map, 1969 BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE); 1970 1971 /* Turn on host coalescing state machine */ 1972 CSR_WRITE_4(sc, BGE_HCC_MODE, val | BGE_HCCMODE_ENABLE); 1973 1974 /* Turn on RX BD completion state machine and enable attentions */ 1975 CSR_WRITE_4(sc, BGE_RBDC_MODE, 1976 BGE_RBDCMODE_ENABLE | BGE_RBDCMODE_ATTN); 1977 1978 /* Turn on RX list placement state machine */ 1979 CSR_WRITE_4(sc, BGE_RXLP_MODE, BGE_RXLPMODE_ENABLE); 1980 1981 /* Turn on RX list selector state machine. */ 1982 if (!(BGE_IS_5705_PLUS(sc))) 1983 CSR_WRITE_4(sc, BGE_RXLS_MODE, BGE_RXLSMODE_ENABLE); 1984 1985 val = BGE_MACMODE_TXDMA_ENB | BGE_MACMODE_RXDMA_ENB | 1986 BGE_MACMODE_RX_STATS_CLEAR | BGE_MACMODE_TX_STATS_CLEAR | 1987 BGE_MACMODE_RX_STATS_ENB | BGE_MACMODE_TX_STATS_ENB | 1988 BGE_MACMODE_FRMHDR_DMA_ENB; 1989 1990 if (sc->bge_flags & BGE_FLAG_TBI) 1991 val |= BGE_PORTMODE_TBI; 1992 else if (sc->bge_flags & BGE_FLAG_MII_SERDES) 1993 val |= BGE_PORTMODE_GMII; 1994 else 1995 val |= BGE_PORTMODE_MII; 1996 1997 /* Turn on DMA, clear stats */ 1998 CSR_WRITE_4(sc, BGE_MAC_MODE, val); 1999 2000 /* Set misc. local control, enable interrupts on attentions */ 2001 CSR_WRITE_4(sc, BGE_MISC_LOCAL_CTL, BGE_MLC_INTR_ONATTN); 2002 2003 #ifdef notdef 2004 /* Assert GPIO pins for PHY reset */ 2005 BGE_SETBIT(sc, BGE_MISC_LOCAL_CTL, BGE_MLC_MISCIO_OUT0 | 2006 BGE_MLC_MISCIO_OUT1 | BGE_MLC_MISCIO_OUT2); 2007 BGE_SETBIT(sc, BGE_MISC_LOCAL_CTL, BGE_MLC_MISCIO_OUTEN0 | 2008 BGE_MLC_MISCIO_OUTEN1 | BGE_MLC_MISCIO_OUTEN2); 2009 #endif 2010 2011 /* Turn on DMA completion state machine */ 2012 if (!(BGE_IS_5705_PLUS(sc))) 2013 CSR_WRITE_4(sc, BGE_DMAC_MODE, BGE_DMACMODE_ENABLE); 2014 2015 val = BGE_WDMAMODE_ENABLE | BGE_WDMAMODE_ALL_ATTNS; 2016 2017 /* Enable host coalescing bug fix. */ 2018 if (BGE_IS_5755_PLUS(sc)) 2019 val |= BGE_WDMAMODE_STATUS_TAG_FIX; 2020 2021 /* Request larger DMA burst size to get better performance. */ 2022 if (sc->bge_asicrev == BGE_ASICREV_BCM5785) 2023 val |= BGE_WDMAMODE_BURST_ALL_DATA; 2024 2025 /* Turn on write DMA state machine */ 2026 CSR_WRITE_4(sc, BGE_WDMA_MODE, val); 2027 DELAY(40); 2028 2029 /* Turn on read DMA state machine */ 2030 val = BGE_RDMAMODE_ENABLE | BGE_RDMAMODE_ALL_ATTNS; 2031 2032 if (sc->bge_asicrev == BGE_ASICREV_BCM5717) 2033 val |= BGE_RDMAMODE_MULT_DMA_RD_DIS; 2034 2035 if (sc->bge_asicrev == BGE_ASICREV_BCM5784 || 2036 sc->bge_asicrev == BGE_ASICREV_BCM5785 || 2037 sc->bge_asicrev == BGE_ASICREV_BCM57780) 2038 val |= BGE_RDMAMODE_BD_SBD_CRPT_ATTN | 2039 BGE_RDMAMODE_MBUF_RBD_CRPT_ATTN | 2040 BGE_RDMAMODE_MBUF_SBD_CRPT_ATTN; 2041 if (sc->bge_flags & BGE_FLAG_PCIE) 2042 val |= BGE_RDMAMODE_FIFO_LONG_BURST; 2043 if (sc->bge_flags & (BGE_FLAG_TSO | BGE_FLAG_TSO3)) { 2044 val |= BGE_RDMAMODE_TSO4_ENABLE; 2045 if (sc->bge_flags & BGE_FLAG_TSO3 || 2046 sc->bge_asicrev == BGE_ASICREV_BCM5785 || 2047 sc->bge_asicrev == BGE_ASICREV_BCM57780) 2048 val |= BGE_RDMAMODE_TSO6_ENABLE; 2049 } 2050 if (sc->bge_asicrev == BGE_ASICREV_BCM5761 || 2051 sc->bge_asicrev == BGE_ASICREV_BCM5784 || 2052 sc->bge_asicrev == BGE_ASICREV_BCM5785 || 2053 sc->bge_asicrev == BGE_ASICREV_BCM57780 || 2054 BGE_IS_5717_PLUS(sc)) { 2055 dmactl = CSR_READ_4(sc, BGE_RDMA_RSRVCTRL); 2056 /* 2057 * Adjust tx margin to prevent TX data corruption and 2058 * fix internal FIFO overflow. 2059 */ 2060 if (sc->bge_asicrev == BGE_ASICREV_BCM5719) { 2061 dmactl &= ~(BGE_RDMA_RSRVCTRL_FIFO_LWM_MASK | 2062 BGE_RDMA_RSRVCTRL_FIFO_HWM_MASK | 2063 BGE_RDMA_RSRVCTRL_TXMRGN_MASK); 2064 dmactl |= BGE_RDMA_RSRVCTRL_FIFO_LWM_1_5K | 2065 BGE_RDMA_RSRVCTRL_FIFO_HWM_1_5K | 2066 BGE_RDMA_RSRVCTRL_TXMRGN_320B; 2067 } 2068 /* 2069 * Enable fix for read DMA FIFO overruns. 2070 * The fix is to limit the number of RX BDs 2071 * the hardware would fetch at a fime. 2072 */ 2073 CSR_WRITE_4(sc, BGE_RDMA_RSRVCTRL, dmactl | 2074 BGE_RDMA_RSRVCTRL_FIFO_OFLW_FIX); 2075 } 2076 2077 if (sc->bge_asicrev == BGE_ASICREV_BCM5719) { 2078 CSR_WRITE_4(sc, BGE_RDMA_LSO_CRPTEN_CTRL, 2079 CSR_READ_4(sc, BGE_RDMA_LSO_CRPTEN_CTRL) | 2080 BGE_RDMA_LSO_CRPTEN_CTRL_BLEN_BD_4K | 2081 BGE_RDMA_LSO_CRPTEN_CTRL_BLEN_LSO_4K); 2082 } 2083 2084 CSR_WRITE_4(sc, BGE_RDMA_MODE, val); 2085 DELAY(40); 2086 2087 /* Turn on RX data completion state machine */ 2088 CSR_WRITE_4(sc, BGE_RDC_MODE, BGE_RDCMODE_ENABLE); 2089 2090 /* Turn on RX BD initiator state machine */ 2091 CSR_WRITE_4(sc, BGE_RBDI_MODE, BGE_RBDIMODE_ENABLE); 2092 2093 /* Turn on RX data and RX BD initiator state machine */ 2094 CSR_WRITE_4(sc, BGE_RDBDI_MODE, BGE_RDBDIMODE_ENABLE); 2095 2096 /* Turn on Mbuf cluster free state machine */ 2097 if (!(BGE_IS_5705_PLUS(sc))) 2098 CSR_WRITE_4(sc, BGE_MBCF_MODE, BGE_MBCFMODE_ENABLE); 2099 2100 /* Turn on send BD completion state machine */ 2101 CSR_WRITE_4(sc, BGE_SBDC_MODE, BGE_SBDCMODE_ENABLE); 2102 2103 /* Turn on send data completion state machine */ 2104 val = BGE_SDCMODE_ENABLE; 2105 if (sc->bge_asicrev == BGE_ASICREV_BCM5761) 2106 val |= BGE_SDCMODE_CDELAY; 2107 CSR_WRITE_4(sc, BGE_SDC_MODE, val); 2108 2109 /* Turn on send data initiator state machine */ 2110 if (sc->bge_flags & (BGE_FLAG_TSO | BGE_FLAG_TSO3)) 2111 CSR_WRITE_4(sc, BGE_SDI_MODE, BGE_SDIMODE_ENABLE | 2112 BGE_SDIMODE_HW_LSO_PRE_DMA); 2113 else 2114 CSR_WRITE_4(sc, BGE_SDI_MODE, BGE_SDIMODE_ENABLE); 2115 2116 /* Turn on send BD initiator state machine */ 2117 CSR_WRITE_4(sc, BGE_SBDI_MODE, BGE_SBDIMODE_ENABLE); 2118 2119 /* Turn on send BD selector state machine */ 2120 CSR_WRITE_4(sc, BGE_SRS_MODE, BGE_SRSMODE_ENABLE); 2121 2122 CSR_WRITE_4(sc, BGE_SDI_STATS_ENABLE_MASK, 0x007FFFFF); 2123 CSR_WRITE_4(sc, BGE_SDI_STATS_CTL, 2124 BGE_SDISTATSCTL_ENABLE | BGE_SDISTATSCTL_FASTER); 2125 2126 /* ack/clear link change events */ 2127 CSR_WRITE_4(sc, BGE_MAC_STS, BGE_MACSTAT_SYNC_CHANGED | 2128 BGE_MACSTAT_CFG_CHANGED | BGE_MACSTAT_MI_COMPLETE | 2129 BGE_MACSTAT_LINK_CHANGED); 2130 CSR_WRITE_4(sc, BGE_MI_STS, 0); 2131 2132 /* 2133 * Enable attention when the link has changed state for 2134 * devices that use auto polling. 2135 */ 2136 if (sc->bge_flags & BGE_FLAG_TBI) { 2137 CSR_WRITE_4(sc, BGE_MI_STS, BGE_MISTS_LINK); 2138 } else { 2139 if (sc->bge_mi_mode & BGE_MIMODE_AUTOPOLL) { 2140 CSR_WRITE_4(sc, BGE_MI_MODE, sc->bge_mi_mode); 2141 DELAY(80); 2142 } 2143 if (sc->bge_asicrev == BGE_ASICREV_BCM5700 && 2144 sc->bge_chipid != BGE_CHIPID_BCM5700_B2) 2145 CSR_WRITE_4(sc, BGE_MAC_EVT_ENB, 2146 BGE_EVTENB_MI_INTERRUPT); 2147 } 2148 2149 /* 2150 * Clear any pending link state attention. 2151 * Otherwise some link state change events may be lost until attention 2152 * is cleared by bge_intr() -> bge_link_upd() sequence. 2153 * It's not necessary on newer BCM chips - perhaps enabling link 2154 * state change attentions implies clearing pending attention. 2155 */ 2156 CSR_WRITE_4(sc, BGE_MAC_STS, BGE_MACSTAT_SYNC_CHANGED | 2157 BGE_MACSTAT_CFG_CHANGED | BGE_MACSTAT_MI_COMPLETE | 2158 BGE_MACSTAT_LINK_CHANGED); 2159 2160 /* Enable link state change attentions. */ 2161 BGE_SETBIT(sc, BGE_MAC_EVT_ENB, BGE_EVTENB_LINK_CHANGED); 2162 2163 return (0); 2164 } 2165 2166 const struct bge_revision * 2167 bge_lookup_rev(uint32_t chipid) 2168 { 2169 const struct bge_revision *br; 2170 2171 for (br = bge_revisions; br->br_name != NULL; br++) { 2172 if (br->br_chipid == chipid) 2173 return (br); 2174 } 2175 2176 for (br = bge_majorrevs; br->br_name != NULL; br++) { 2177 if (br->br_chipid == BGE_ASICREV(chipid)) 2178 return (br); 2179 } 2180 2181 return (NULL); 2182 } 2183 2184 const struct bge_vendor * 2185 bge_lookup_vendor(uint16_t vid) 2186 { 2187 const struct bge_vendor *v; 2188 2189 for (v = bge_vendors; v->v_name != NULL; v++) 2190 if (v->v_id == vid) 2191 return (v); 2192 2193 panic("%s: unknown vendor %d", __func__, vid); 2194 return (NULL); 2195 } 2196 2197 /* 2198 * Probe for a Broadcom chip. Check the PCI vendor and device IDs 2199 * against our list and return its name if we find a match. 2200 * 2201 * Note that since the Broadcom controller contains VPD support, we 2202 * try to get the device name string from the controller itself instead 2203 * of the compiled-in string. It guarantees we'll always announce the 2204 * right product name. We fall back to the compiled-in string when 2205 * VPD is unavailable or corrupt. 2206 */ 2207 static int 2208 bge_probe(device_t dev) 2209 { 2210 char buf[96]; 2211 char model[64]; 2212 const struct bge_revision *br; 2213 const char *pname; 2214 struct bge_softc *sc = device_get_softc(dev); 2215 const struct bge_type *t = bge_devs; 2216 const struct bge_vendor *v; 2217 uint32_t id; 2218 uint16_t did, vid; 2219 2220 sc->bge_dev = dev; 2221 vid = pci_get_vendor(dev); 2222 did = pci_get_device(dev); 2223 while(t->bge_vid != 0) { 2224 if ((vid == t->bge_vid) && (did == t->bge_did)) { 2225 id = pci_read_config(dev, BGE_PCI_MISC_CTL, 4) >> 2226 BGE_PCIMISCCTL_ASICREV_SHIFT; 2227 if (BGE_ASICREV(id) == BGE_ASICREV_USE_PRODID_REG) { 2228 /* 2229 * Find the ASCI revision. Different chips 2230 * use different registers. 2231 */ 2232 switch (pci_get_device(dev)) { 2233 case BCOM_DEVICEID_BCM5717: 2234 case BCOM_DEVICEID_BCM5718: 2235 case BCOM_DEVICEID_BCM5719: 2236 id = pci_read_config(dev, 2237 BGE_PCI_GEN2_PRODID_ASICREV, 4); 2238 break; 2239 case BCOM_DEVICEID_BCM57761: 2240 case BCOM_DEVICEID_BCM57765: 2241 case BCOM_DEVICEID_BCM57781: 2242 case BCOM_DEVICEID_BCM57785: 2243 case BCOM_DEVICEID_BCM57791: 2244 case BCOM_DEVICEID_BCM57795: 2245 id = pci_read_config(dev, 2246 BGE_PCI_GEN15_PRODID_ASICREV, 4); 2247 break; 2248 default: 2249 id = pci_read_config(dev, 2250 BGE_PCI_PRODID_ASICREV, 4); 2251 } 2252 } 2253 br = bge_lookup_rev(id); 2254 v = bge_lookup_vendor(vid); 2255 if (bge_has_eaddr(sc) && 2256 pci_get_vpd_ident(dev, &pname) == 0) 2257 snprintf(model, 64, "%s", pname); 2258 else 2259 snprintf(model, 64, "%s %s", v->v_name, 2260 br != NULL ? br->br_name : 2261 "NetXtreme Ethernet Controller"); 2262 snprintf(buf, 96, "%s, %sASIC rev. %#08x", model, 2263 br != NULL ? "" : "unknown ", id); 2264 device_set_desc_copy(dev, buf); 2265 return (0); 2266 } 2267 t++; 2268 } 2269 2270 return (ENXIO); 2271 } 2272 2273 static void 2274 bge_dma_free(struct bge_softc *sc) 2275 { 2276 int i; 2277 2278 /* Destroy DMA maps for RX buffers. */ 2279 for (i = 0; i < BGE_STD_RX_RING_CNT; i++) { 2280 if (sc->bge_cdata.bge_rx_std_dmamap[i]) 2281 bus_dmamap_destroy(sc->bge_cdata.bge_rx_mtag, 2282 sc->bge_cdata.bge_rx_std_dmamap[i]); 2283 } 2284 if (sc->bge_cdata.bge_rx_std_sparemap) 2285 bus_dmamap_destroy(sc->bge_cdata.bge_rx_mtag, 2286 sc->bge_cdata.bge_rx_std_sparemap); 2287 2288 /* Destroy DMA maps for jumbo RX buffers. */ 2289 for (i = 0; i < BGE_JUMBO_RX_RING_CNT; i++) { 2290 if (sc->bge_cdata.bge_rx_jumbo_dmamap[i]) 2291 bus_dmamap_destroy(sc->bge_cdata.bge_mtag_jumbo, 2292 sc->bge_cdata.bge_rx_jumbo_dmamap[i]); 2293 } 2294 if (sc->bge_cdata.bge_rx_jumbo_sparemap) 2295 bus_dmamap_destroy(sc->bge_cdata.bge_mtag_jumbo, 2296 sc->bge_cdata.bge_rx_jumbo_sparemap); 2297 2298 /* Destroy DMA maps for TX buffers. */ 2299 for (i = 0; i < BGE_TX_RING_CNT; i++) { 2300 if (sc->bge_cdata.bge_tx_dmamap[i]) 2301 bus_dmamap_destroy(sc->bge_cdata.bge_tx_mtag, 2302 sc->bge_cdata.bge_tx_dmamap[i]); 2303 } 2304 2305 if (sc->bge_cdata.bge_rx_mtag) 2306 bus_dma_tag_destroy(sc->bge_cdata.bge_rx_mtag); 2307 if (sc->bge_cdata.bge_tx_mtag) 2308 bus_dma_tag_destroy(sc->bge_cdata.bge_tx_mtag); 2309 2310 2311 /* Destroy standard RX ring. */ 2312 if (sc->bge_cdata.bge_rx_std_ring_map) 2313 bus_dmamap_unload(sc->bge_cdata.bge_rx_std_ring_tag, 2314 sc->bge_cdata.bge_rx_std_ring_map); 2315 if (sc->bge_cdata.bge_rx_std_ring_map && sc->bge_ldata.bge_rx_std_ring) 2316 bus_dmamem_free(sc->bge_cdata.bge_rx_std_ring_tag, 2317 sc->bge_ldata.bge_rx_std_ring, 2318 sc->bge_cdata.bge_rx_std_ring_map); 2319 2320 if (sc->bge_cdata.bge_rx_std_ring_tag) 2321 bus_dma_tag_destroy(sc->bge_cdata.bge_rx_std_ring_tag); 2322 2323 /* Destroy jumbo RX ring. */ 2324 if (sc->bge_cdata.bge_rx_jumbo_ring_map) 2325 bus_dmamap_unload(sc->bge_cdata.bge_rx_jumbo_ring_tag, 2326 sc->bge_cdata.bge_rx_jumbo_ring_map); 2327 2328 if (sc->bge_cdata.bge_rx_jumbo_ring_map && 2329 sc->bge_ldata.bge_rx_jumbo_ring) 2330 bus_dmamem_free(sc->bge_cdata.bge_rx_jumbo_ring_tag, 2331 sc->bge_ldata.bge_rx_jumbo_ring, 2332 sc->bge_cdata.bge_rx_jumbo_ring_map); 2333 2334 if (sc->bge_cdata.bge_rx_jumbo_ring_tag) 2335 bus_dma_tag_destroy(sc->bge_cdata.bge_rx_jumbo_ring_tag); 2336 2337 /* Destroy RX return ring. */ 2338 if (sc->bge_cdata.bge_rx_return_ring_map) 2339 bus_dmamap_unload(sc->bge_cdata.bge_rx_return_ring_tag, 2340 sc->bge_cdata.bge_rx_return_ring_map); 2341 2342 if (sc->bge_cdata.bge_rx_return_ring_map && 2343 sc->bge_ldata.bge_rx_return_ring) 2344 bus_dmamem_free(sc->bge_cdata.bge_rx_return_ring_tag, 2345 sc->bge_ldata.bge_rx_return_ring, 2346 sc->bge_cdata.bge_rx_return_ring_map); 2347 2348 if (sc->bge_cdata.bge_rx_return_ring_tag) 2349 bus_dma_tag_destroy(sc->bge_cdata.bge_rx_return_ring_tag); 2350 2351 /* Destroy TX ring. */ 2352 if (sc->bge_cdata.bge_tx_ring_map) 2353 bus_dmamap_unload(sc->bge_cdata.bge_tx_ring_tag, 2354 sc->bge_cdata.bge_tx_ring_map); 2355 2356 if (sc->bge_cdata.bge_tx_ring_map && sc->bge_ldata.bge_tx_ring) 2357 bus_dmamem_free(sc->bge_cdata.bge_tx_ring_tag, 2358 sc->bge_ldata.bge_tx_ring, 2359 sc->bge_cdata.bge_tx_ring_map); 2360 2361 if (sc->bge_cdata.bge_tx_ring_tag) 2362 bus_dma_tag_destroy(sc->bge_cdata.bge_tx_ring_tag); 2363 2364 /* Destroy status block. */ 2365 if (sc->bge_cdata.bge_status_map) 2366 bus_dmamap_unload(sc->bge_cdata.bge_status_tag, 2367 sc->bge_cdata.bge_status_map); 2368 2369 if (sc->bge_cdata.bge_status_map && sc->bge_ldata.bge_status_block) 2370 bus_dmamem_free(sc->bge_cdata.bge_status_tag, 2371 sc->bge_ldata.bge_status_block, 2372 sc->bge_cdata.bge_status_map); 2373 2374 if (sc->bge_cdata.bge_status_tag) 2375 bus_dma_tag_destroy(sc->bge_cdata.bge_status_tag); 2376 2377 /* Destroy statistics block. */ 2378 if (sc->bge_cdata.bge_stats_map) 2379 bus_dmamap_unload(sc->bge_cdata.bge_stats_tag, 2380 sc->bge_cdata.bge_stats_map); 2381 2382 if (sc->bge_cdata.bge_stats_map && sc->bge_ldata.bge_stats) 2383 bus_dmamem_free(sc->bge_cdata.bge_stats_tag, 2384 sc->bge_ldata.bge_stats, 2385 sc->bge_cdata.bge_stats_map); 2386 2387 if (sc->bge_cdata.bge_stats_tag) 2388 bus_dma_tag_destroy(sc->bge_cdata.bge_stats_tag); 2389 2390 if (sc->bge_cdata.bge_buffer_tag) 2391 bus_dma_tag_destroy(sc->bge_cdata.bge_buffer_tag); 2392 2393 /* Destroy the parent tag. */ 2394 if (sc->bge_cdata.bge_parent_tag) 2395 bus_dma_tag_destroy(sc->bge_cdata.bge_parent_tag); 2396 } 2397 2398 static int 2399 bge_dma_ring_alloc(struct bge_softc *sc, bus_size_t alignment, 2400 bus_size_t maxsize, bus_dma_tag_t *tag, uint8_t **ring, bus_dmamap_t *map, 2401 bus_addr_t *paddr, const char *msg) 2402 { 2403 struct bge_dmamap_arg ctx; 2404 bus_addr_t lowaddr; 2405 bus_size_t ring_end; 2406 int error; 2407 2408 lowaddr = BUS_SPACE_MAXADDR; 2409 again: 2410 error = bus_dma_tag_create(sc->bge_cdata.bge_parent_tag, 2411 alignment, 0, lowaddr, BUS_SPACE_MAXADDR, NULL, 2412 NULL, maxsize, 1, maxsize, 0, NULL, NULL, tag); 2413 if (error != 0) { 2414 device_printf(sc->bge_dev, 2415 "could not create %s dma tag\n", msg); 2416 return (ENOMEM); 2417 } 2418 /* Allocate DMA'able memory for ring. */ 2419 error = bus_dmamem_alloc(*tag, (void **)ring, 2420 BUS_DMA_NOWAIT | BUS_DMA_ZERO | BUS_DMA_COHERENT, map); 2421 if (error != 0) { 2422 device_printf(sc->bge_dev, 2423 "could not allocate DMA'able memory for %s\n", msg); 2424 return (ENOMEM); 2425 } 2426 /* Load the address of the ring. */ 2427 ctx.bge_busaddr = 0; 2428 error = bus_dmamap_load(*tag, *map, *ring, maxsize, bge_dma_map_addr, 2429 &ctx, BUS_DMA_NOWAIT); 2430 if (error != 0) { 2431 device_printf(sc->bge_dev, 2432 "could not load DMA'able memory for %s\n", msg); 2433 return (ENOMEM); 2434 } 2435 *paddr = ctx.bge_busaddr; 2436 ring_end = *paddr + maxsize; 2437 if ((sc->bge_flags & BGE_FLAG_4G_BNDRY_BUG) != 0 && 2438 BGE_ADDR_HI(*paddr) != BGE_ADDR_HI(ring_end)) { 2439 /* 2440 * 4GB boundary crossed. Limit maximum allowable DMA 2441 * address space to 32bit and try again. 2442 */ 2443 bus_dmamap_unload(*tag, *map); 2444 bus_dmamem_free(*tag, *ring, *map); 2445 bus_dma_tag_destroy(*tag); 2446 if (bootverbose) 2447 device_printf(sc->bge_dev, "4GB boundary crossed, " 2448 "limit DMA address space to 32bit for %s\n", msg); 2449 *ring = NULL; 2450 *tag = NULL; 2451 *map = NULL; 2452 lowaddr = BUS_SPACE_MAXADDR_32BIT; 2453 goto again; 2454 } 2455 return (0); 2456 } 2457 2458 static int 2459 bge_dma_alloc(struct bge_softc *sc) 2460 { 2461 bus_addr_t lowaddr; 2462 bus_size_t boundary, sbsz, rxmaxsegsz, txsegsz, txmaxsegsz; 2463 int i, error; 2464 2465 lowaddr = BUS_SPACE_MAXADDR; 2466 if ((sc->bge_flags & BGE_FLAG_40BIT_BUG) != 0) 2467 lowaddr = BGE_DMA_MAXADDR; 2468 /* 2469 * Allocate the parent bus DMA tag appropriate for PCI. 2470 */ 2471 error = bus_dma_tag_create(bus_get_dma_tag(sc->bge_dev), 2472 1, 0, lowaddr, BUS_SPACE_MAXADDR, NULL, 2473 NULL, BUS_SPACE_MAXSIZE_32BIT, 0, BUS_SPACE_MAXSIZE_32BIT, 2474 0, NULL, NULL, &sc->bge_cdata.bge_parent_tag); 2475 if (error != 0) { 2476 device_printf(sc->bge_dev, 2477 "could not allocate parent dma tag\n"); 2478 return (ENOMEM); 2479 } 2480 2481 /* Create tag for standard RX ring. */ 2482 error = bge_dma_ring_alloc(sc, PAGE_SIZE, BGE_STD_RX_RING_SZ, 2483 &sc->bge_cdata.bge_rx_std_ring_tag, 2484 (uint8_t **)&sc->bge_ldata.bge_rx_std_ring, 2485 &sc->bge_cdata.bge_rx_std_ring_map, 2486 &sc->bge_ldata.bge_rx_std_ring_paddr, "RX ring"); 2487 if (error) 2488 return (error); 2489 2490 /* Create tag for RX return ring. */ 2491 error = bge_dma_ring_alloc(sc, PAGE_SIZE, BGE_RX_RTN_RING_SZ(sc), 2492 &sc->bge_cdata.bge_rx_return_ring_tag, 2493 (uint8_t **)&sc->bge_ldata.bge_rx_return_ring, 2494 &sc->bge_cdata.bge_rx_return_ring_map, 2495 &sc->bge_ldata.bge_rx_return_ring_paddr, "RX return ring"); 2496 if (error) 2497 return (error); 2498 2499 /* Create tag for TX ring. */ 2500 error = bge_dma_ring_alloc(sc, PAGE_SIZE, BGE_TX_RING_SZ, 2501 &sc->bge_cdata.bge_tx_ring_tag, 2502 (uint8_t **)&sc->bge_ldata.bge_tx_ring, 2503 &sc->bge_cdata.bge_tx_ring_map, 2504 &sc->bge_ldata.bge_tx_ring_paddr, "TX ring"); 2505 if (error) 2506 return (error); 2507 2508 /* 2509 * Create tag for status block. 2510 * Because we only use single Tx/Rx/Rx return ring, use 2511 * minimum status block size except BCM5700 AX/BX which 2512 * seems to want to see full status block size regardless 2513 * of configured number of ring. 2514 */ 2515 if (sc->bge_asicrev == BGE_ASICREV_BCM5700 && 2516 sc->bge_chipid != BGE_CHIPID_BCM5700_C0) 2517 sbsz = BGE_STATUS_BLK_SZ; 2518 else 2519 sbsz = 32; 2520 error = bge_dma_ring_alloc(sc, PAGE_SIZE, sbsz, 2521 &sc->bge_cdata.bge_status_tag, 2522 (uint8_t **)&sc->bge_ldata.bge_status_block, 2523 &sc->bge_cdata.bge_status_map, 2524 &sc->bge_ldata.bge_status_block_paddr, "status block"); 2525 if (error) 2526 return (error); 2527 2528 /* Create tag for statistics block. */ 2529 error = bge_dma_ring_alloc(sc, PAGE_SIZE, BGE_STATS_SZ, 2530 &sc->bge_cdata.bge_stats_tag, 2531 (uint8_t **)&sc->bge_ldata.bge_stats, 2532 &sc->bge_cdata.bge_stats_map, 2533 &sc->bge_ldata.bge_stats_paddr, "statistics block"); 2534 if (error) 2535 return (error); 2536 2537 /* Create tag for jumbo RX ring. */ 2538 if (BGE_IS_JUMBO_CAPABLE(sc)) { 2539 error = bge_dma_ring_alloc(sc, PAGE_SIZE, BGE_JUMBO_RX_RING_SZ, 2540 &sc->bge_cdata.bge_rx_jumbo_ring_tag, 2541 (uint8_t **)&sc->bge_ldata.bge_rx_jumbo_ring, 2542 &sc->bge_cdata.bge_rx_jumbo_ring_map, 2543 &sc->bge_ldata.bge_rx_jumbo_ring_paddr, "jumbo RX ring"); 2544 if (error) 2545 return (error); 2546 } 2547 2548 /* Create parent tag for buffers. */ 2549 boundary = 0; 2550 if ((sc->bge_flags & BGE_FLAG_4G_BNDRY_BUG) != 0) { 2551 boundary = BGE_DMA_BNDRY; 2552 /* 2553 * XXX 2554 * watchdog timeout issue was observed on BCM5704 which 2555 * lives behind PCI-X bridge(e.g AMD 8131 PCI-X bridge). 2556 * Limiting DMA address space to 32bits seems to address 2557 * it. 2558 */ 2559 if (sc->bge_flags & BGE_FLAG_PCIX) 2560 lowaddr = BUS_SPACE_MAXADDR_32BIT; 2561 } 2562 error = bus_dma_tag_create(bus_get_dma_tag(sc->bge_dev), 2563 1, boundary, lowaddr, BUS_SPACE_MAXADDR, NULL, 2564 NULL, BUS_SPACE_MAXSIZE_32BIT, 0, BUS_SPACE_MAXSIZE_32BIT, 2565 0, NULL, NULL, &sc->bge_cdata.bge_buffer_tag); 2566 if (error != 0) { 2567 device_printf(sc->bge_dev, 2568 "could not allocate buffer dma tag\n"); 2569 return (ENOMEM); 2570 } 2571 /* Create tag for Tx mbufs. */ 2572 if (sc->bge_flags & (BGE_FLAG_TSO | BGE_FLAG_TSO3)) { 2573 txsegsz = BGE_TSOSEG_SZ; 2574 txmaxsegsz = 65535 + sizeof(struct ether_vlan_header); 2575 } else { 2576 txsegsz = MCLBYTES; 2577 txmaxsegsz = MCLBYTES * BGE_NSEG_NEW; 2578 } 2579 error = bus_dma_tag_create(sc->bge_cdata.bge_buffer_tag, 1, 2580 0, BUS_SPACE_MAXADDR, BUS_SPACE_MAXADDR, NULL, NULL, 2581 txmaxsegsz, BGE_NSEG_NEW, txsegsz, 0, NULL, NULL, 2582 &sc->bge_cdata.bge_tx_mtag); 2583 2584 if (error) { 2585 device_printf(sc->bge_dev, "could not allocate TX dma tag\n"); 2586 return (ENOMEM); 2587 } 2588 2589 /* Create tag for Rx mbufs. */ 2590 if (sc->bge_flags & BGE_FLAG_JUMBO_STD) 2591 rxmaxsegsz = MJUM9BYTES; 2592 else 2593 rxmaxsegsz = MCLBYTES; 2594 error = bus_dma_tag_create(sc->bge_cdata.bge_buffer_tag, 1, 0, 2595 BUS_SPACE_MAXADDR, BUS_SPACE_MAXADDR, NULL, NULL, rxmaxsegsz, 1, 2596 rxmaxsegsz, 0, NULL, NULL, &sc->bge_cdata.bge_rx_mtag); 2597 2598 if (error) { 2599 device_printf(sc->bge_dev, "could not allocate RX dma tag\n"); 2600 return (ENOMEM); 2601 } 2602 2603 /* Create DMA maps for RX buffers. */ 2604 error = bus_dmamap_create(sc->bge_cdata.bge_rx_mtag, 0, 2605 &sc->bge_cdata.bge_rx_std_sparemap); 2606 if (error) { 2607 device_printf(sc->bge_dev, 2608 "can't create spare DMA map for RX\n"); 2609 return (ENOMEM); 2610 } 2611 for (i = 0; i < BGE_STD_RX_RING_CNT; i++) { 2612 error = bus_dmamap_create(sc->bge_cdata.bge_rx_mtag, 0, 2613 &sc->bge_cdata.bge_rx_std_dmamap[i]); 2614 if (error) { 2615 device_printf(sc->bge_dev, 2616 "can't create DMA map for RX\n"); 2617 return (ENOMEM); 2618 } 2619 } 2620 2621 /* Create DMA maps for TX buffers. */ 2622 for (i = 0; i < BGE_TX_RING_CNT; i++) { 2623 error = bus_dmamap_create(sc->bge_cdata.bge_tx_mtag, 0, 2624 &sc->bge_cdata.bge_tx_dmamap[i]); 2625 if (error) { 2626 device_printf(sc->bge_dev, 2627 "can't create DMA map for TX\n"); 2628 return (ENOMEM); 2629 } 2630 } 2631 2632 /* Create tags for jumbo RX buffers. */ 2633 if (BGE_IS_JUMBO_CAPABLE(sc)) { 2634 error = bus_dma_tag_create(sc->bge_cdata.bge_buffer_tag, 2635 1, 0, BUS_SPACE_MAXADDR, BUS_SPACE_MAXADDR, NULL, 2636 NULL, MJUM9BYTES, BGE_NSEG_JUMBO, PAGE_SIZE, 2637 0, NULL, NULL, &sc->bge_cdata.bge_mtag_jumbo); 2638 if (error) { 2639 device_printf(sc->bge_dev, 2640 "could not allocate jumbo dma tag\n"); 2641 return (ENOMEM); 2642 } 2643 /* Create DMA maps for jumbo RX buffers. */ 2644 error = bus_dmamap_create(sc->bge_cdata.bge_mtag_jumbo, 2645 0, &sc->bge_cdata.bge_rx_jumbo_sparemap); 2646 if (error) { 2647 device_printf(sc->bge_dev, 2648 "can't create spare DMA map for jumbo RX\n"); 2649 return (ENOMEM); 2650 } 2651 for (i = 0; i < BGE_JUMBO_RX_RING_CNT; i++) { 2652 error = bus_dmamap_create(sc->bge_cdata.bge_mtag_jumbo, 2653 0, &sc->bge_cdata.bge_rx_jumbo_dmamap[i]); 2654 if (error) { 2655 device_printf(sc->bge_dev, 2656 "can't create DMA map for jumbo RX\n"); 2657 return (ENOMEM); 2658 } 2659 } 2660 } 2661 2662 return (0); 2663 } 2664 2665 /* 2666 * Return true if this device has more than one port. 2667 */ 2668 static int 2669 bge_has_multiple_ports(struct bge_softc *sc) 2670 { 2671 device_t dev = sc->bge_dev; 2672 u_int b, d, f, fscan, s; 2673 2674 d = pci_get_domain(dev); 2675 b = pci_get_bus(dev); 2676 s = pci_get_slot(dev); 2677 f = pci_get_function(dev); 2678 for (fscan = 0; fscan <= PCI_FUNCMAX; fscan++) 2679 if (fscan != f && pci_find_dbsf(d, b, s, fscan) != NULL) 2680 return (1); 2681 return (0); 2682 } 2683 2684 /* 2685 * Return true if MSI can be used with this device. 2686 */ 2687 static int 2688 bge_can_use_msi(struct bge_softc *sc) 2689 { 2690 int can_use_msi = 0; 2691 2692 /* Disable MSI for polling(4). */ 2693 #ifdef DEVICE_POLLING 2694 return (0); 2695 #endif 2696 switch (sc->bge_asicrev) { 2697 case BGE_ASICREV_BCM5714_A0: 2698 case BGE_ASICREV_BCM5714: 2699 /* 2700 * Apparently, MSI doesn't work when these chips are 2701 * configured in single-port mode. 2702 */ 2703 if (bge_has_multiple_ports(sc)) 2704 can_use_msi = 1; 2705 break; 2706 case BGE_ASICREV_BCM5750: 2707 if (sc->bge_chiprev != BGE_CHIPREV_5750_AX && 2708 sc->bge_chiprev != BGE_CHIPREV_5750_BX) 2709 can_use_msi = 1; 2710 break; 2711 default: 2712 if (BGE_IS_575X_PLUS(sc)) 2713 can_use_msi = 1; 2714 } 2715 return (can_use_msi); 2716 } 2717 2718 static int 2719 bge_attach(device_t dev) 2720 { 2721 struct ifnet *ifp; 2722 struct bge_softc *sc; 2723 uint32_t hwcfg = 0, misccfg; 2724 u_char eaddr[ETHER_ADDR_LEN]; 2725 int capmask, error, f, msicount, phy_addr, reg, rid, trys; 2726 2727 sc = device_get_softc(dev); 2728 sc->bge_dev = dev; 2729 2730 TASK_INIT(&sc->bge_intr_task, 0, bge_intr_task, sc); 2731 2732 /* 2733 * Map control/status registers. 2734 */ 2735 pci_enable_busmaster(dev); 2736 2737 rid = PCIR_BAR(0); 2738 sc->bge_res = bus_alloc_resource_any(dev, SYS_RES_MEMORY, &rid, 2739 RF_ACTIVE); 2740 2741 if (sc->bge_res == NULL) { 2742 device_printf (sc->bge_dev, "couldn't map memory\n"); 2743 error = ENXIO; 2744 goto fail; 2745 } 2746 2747 /* Save various chip information. */ 2748 sc->bge_chipid = 2749 pci_read_config(dev, BGE_PCI_MISC_CTL, 4) >> 2750 BGE_PCIMISCCTL_ASICREV_SHIFT; 2751 if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_USE_PRODID_REG) { 2752 /* 2753 * Find the ASCI revision. Different chips use different 2754 * registers. 2755 */ 2756 switch (pci_get_device(dev)) { 2757 case BCOM_DEVICEID_BCM5717: 2758 case BCOM_DEVICEID_BCM5718: 2759 case BCOM_DEVICEID_BCM5719: 2760 sc->bge_chipid = pci_read_config(dev, 2761 BGE_PCI_GEN2_PRODID_ASICREV, 4); 2762 break; 2763 case BCOM_DEVICEID_BCM57761: 2764 case BCOM_DEVICEID_BCM57765: 2765 case BCOM_DEVICEID_BCM57781: 2766 case BCOM_DEVICEID_BCM57785: 2767 case BCOM_DEVICEID_BCM57791: 2768 case BCOM_DEVICEID_BCM57795: 2769 sc->bge_chipid = pci_read_config(dev, 2770 BGE_PCI_GEN15_PRODID_ASICREV, 4); 2771 break; 2772 default: 2773 sc->bge_chipid = pci_read_config(dev, 2774 BGE_PCI_PRODID_ASICREV, 4); 2775 } 2776 } 2777 sc->bge_asicrev = BGE_ASICREV(sc->bge_chipid); 2778 sc->bge_chiprev = BGE_CHIPREV(sc->bge_chipid); 2779 2780 /* Set default PHY address. */ 2781 phy_addr = 1; 2782 /* 2783 * PHY address mapping for various devices. 2784 * 2785 * | F0 Cu | F0 Sr | F1 Cu | F1 Sr | 2786 * ---------+-------+-------+-------+-------+ 2787 * BCM57XX | 1 | X | X | X | 2788 * BCM5704 | 1 | X | 1 | X | 2789 * BCM5717 | 1 | 8 | 2 | 9 | 2790 * BCM5719 | 1 | 8 | 2 | 9 | 2791 * 2792 * Other addresses may respond but they are not 2793 * IEEE compliant PHYs and should be ignored. 2794 */ 2795 if (sc->bge_asicrev == BGE_ASICREV_BCM5717 || 2796 sc->bge_asicrev == BGE_ASICREV_BCM5719) { 2797 f = pci_get_function(dev); 2798 if (sc->bge_chipid == BGE_CHIPID_BCM5717_A0) { 2799 if (CSR_READ_4(sc, BGE_SGDIG_STS) & 2800 BGE_SGDIGSTS_IS_SERDES) 2801 phy_addr = f + 8; 2802 else 2803 phy_addr = f + 1; 2804 } else { 2805 if (CSR_READ_4(sc, BGE_CPMU_PHY_STRAP) & 2806 BGE_CPMU_PHY_STRAP_IS_SERDES) 2807 phy_addr = f + 8; 2808 else 2809 phy_addr = f + 1; 2810 } 2811 } 2812 2813 /* 2814 * Don't enable Ethernet@WireSpeed for the 5700, 5906, or the 2815 * 5705 A0 and A1 chips. 2816 */ 2817 if (sc->bge_asicrev == BGE_ASICREV_BCM5700 || 2818 (sc->bge_asicrev == BGE_ASICREV_BCM5705 && 2819 (sc->bge_chipid != BGE_CHIPID_BCM5705_A0 && 2820 sc->bge_chipid != BGE_CHIPID_BCM5705_A1)) || 2821 sc->bge_asicrev == BGE_ASICREV_BCM5906) 2822 sc->bge_phy_flags |= BGE_PHY_NO_WIRESPEED; 2823 2824 if (bge_has_eaddr(sc)) 2825 sc->bge_flags |= BGE_FLAG_EADDR; 2826 2827 /* Save chipset family. */ 2828 switch (sc->bge_asicrev) { 2829 case BGE_ASICREV_BCM5717: 2830 case BGE_ASICREV_BCM5719: 2831 sc->bge_flags |= BGE_FLAG_SHORT_DMA_BUG; 2832 case BGE_ASICREV_BCM57765: 2833 sc->bge_flags |= BGE_FLAG_5717_PLUS | BGE_FLAG_5755_PLUS | 2834 BGE_FLAG_575X_PLUS | BGE_FLAG_5705_PLUS | BGE_FLAG_JUMBO | 2835 BGE_FLAG_JUMBO_FRAME; 2836 if (sc->bge_asicrev == BGE_ASICREV_BCM5719 && 2837 sc->bge_chipid == BGE_CHIPID_BCM5719_A0) { 2838 /* Jumbo frame on BCM5719 A0 does not work. */ 2839 sc->bge_flags &= ~BGE_FLAG_JUMBO; 2840 } 2841 break; 2842 case BGE_ASICREV_BCM5755: 2843 case BGE_ASICREV_BCM5761: 2844 case BGE_ASICREV_BCM5784: 2845 case BGE_ASICREV_BCM5785: 2846 case BGE_ASICREV_BCM5787: 2847 case BGE_ASICREV_BCM57780: 2848 sc->bge_flags |= BGE_FLAG_5755_PLUS | BGE_FLAG_575X_PLUS | 2849 BGE_FLAG_5705_PLUS; 2850 break; 2851 case BGE_ASICREV_BCM5700: 2852 case BGE_ASICREV_BCM5701: 2853 case BGE_ASICREV_BCM5703: 2854 case BGE_ASICREV_BCM5704: 2855 sc->bge_flags |= BGE_FLAG_5700_FAMILY | BGE_FLAG_JUMBO; 2856 break; 2857 case BGE_ASICREV_BCM5714_A0: 2858 case BGE_ASICREV_BCM5780: 2859 case BGE_ASICREV_BCM5714: 2860 sc->bge_flags |= BGE_FLAG_5714_FAMILY | BGE_FLAG_JUMBO_STD; 2861 /* FALLTHROUGH */ 2862 case BGE_ASICREV_BCM5750: 2863 case BGE_ASICREV_BCM5752: 2864 case BGE_ASICREV_BCM5906: 2865 sc->bge_flags |= BGE_FLAG_575X_PLUS; 2866 if (sc->bge_asicrev == BGE_ASICREV_BCM5906) 2867 sc->bge_flags |= BGE_FLAG_SHORT_DMA_BUG; 2868 /* FALLTHROUGH */ 2869 case BGE_ASICREV_BCM5705: 2870 sc->bge_flags |= BGE_FLAG_5705_PLUS; 2871 break; 2872 } 2873 2874 /* Set various PHY bug flags. */ 2875 if (sc->bge_chipid == BGE_CHIPID_BCM5701_A0 || 2876 sc->bge_chipid == BGE_CHIPID_BCM5701_B0) 2877 sc->bge_phy_flags |= BGE_PHY_CRC_BUG; 2878 if (sc->bge_chiprev == BGE_CHIPREV_5703_AX || 2879 sc->bge_chiprev == BGE_CHIPREV_5704_AX) 2880 sc->bge_phy_flags |= BGE_PHY_ADC_BUG; 2881 if (sc->bge_chipid == BGE_CHIPID_BCM5704_A0) 2882 sc->bge_phy_flags |= BGE_PHY_5704_A0_BUG; 2883 if (pci_get_subvendor(dev) == DELL_VENDORID) 2884 sc->bge_phy_flags |= BGE_PHY_NO_3LED; 2885 if ((BGE_IS_5705_PLUS(sc)) && 2886 sc->bge_asicrev != BGE_ASICREV_BCM5906 && 2887 sc->bge_asicrev != BGE_ASICREV_BCM5717 && 2888 sc->bge_asicrev != BGE_ASICREV_BCM5719 && 2889 sc->bge_asicrev != BGE_ASICREV_BCM5785 && 2890 sc->bge_asicrev != BGE_ASICREV_BCM57765 && 2891 sc->bge_asicrev != BGE_ASICREV_BCM57780) { 2892 if (sc->bge_asicrev == BGE_ASICREV_BCM5755 || 2893 sc->bge_asicrev == BGE_ASICREV_BCM5761 || 2894 sc->bge_asicrev == BGE_ASICREV_BCM5784 || 2895 sc->bge_asicrev == BGE_ASICREV_BCM5787) { 2896 if (pci_get_device(dev) != BCOM_DEVICEID_BCM5722 && 2897 pci_get_device(dev) != BCOM_DEVICEID_BCM5756) 2898 sc->bge_phy_flags |= BGE_PHY_JITTER_BUG; 2899 if (pci_get_device(dev) == BCOM_DEVICEID_BCM5755M) 2900 sc->bge_phy_flags |= BGE_PHY_ADJUST_TRIM; 2901 } else 2902 sc->bge_phy_flags |= BGE_PHY_BER_BUG; 2903 } 2904 2905 /* Identify the chips that use an CPMU. */ 2906 if (BGE_IS_5717_PLUS(sc) || 2907 sc->bge_asicrev == BGE_ASICREV_BCM5784 || 2908 sc->bge_asicrev == BGE_ASICREV_BCM5761 || 2909 sc->bge_asicrev == BGE_ASICREV_BCM5785 || 2910 sc->bge_asicrev == BGE_ASICREV_BCM57780) 2911 sc->bge_flags |= BGE_FLAG_CPMU_PRESENT; 2912 if ((sc->bge_flags & BGE_FLAG_CPMU_PRESENT) != 0) 2913 sc->bge_mi_mode = BGE_MIMODE_500KHZ_CONST; 2914 else 2915 sc->bge_mi_mode = BGE_MIMODE_BASE; 2916 /* Enable auto polling for BCM570[0-5]. */ 2917 if (BGE_IS_5700_FAMILY(sc) || sc->bge_asicrev == BGE_ASICREV_BCM5705) 2918 sc->bge_mi_mode |= BGE_MIMODE_AUTOPOLL; 2919 2920 /* 2921 * All controllers that are not 5755 or higher have 4GB 2922 * boundary DMA bug. 2923 * Whenever an address crosses a multiple of the 4GB boundary 2924 * (including 4GB, 8Gb, 12Gb, etc.) and makes the transition 2925 * from 0xX_FFFF_FFFF to 0x(X+1)_0000_0000 an internal DMA 2926 * state machine will lockup and cause the device to hang. 2927 */ 2928 if (BGE_IS_5755_PLUS(sc) == 0) 2929 sc->bge_flags |= BGE_FLAG_4G_BNDRY_BUG; 2930 2931 misccfg = CSR_READ_4(sc, BGE_MISC_CFG) & BGE_MISCCFG_BOARD_ID; 2932 if (sc->bge_asicrev == BGE_ASICREV_BCM5705) { 2933 if (misccfg == BGE_MISCCFG_BOARD_ID_5788 || 2934 misccfg == BGE_MISCCFG_BOARD_ID_5788M) 2935 sc->bge_flags |= BGE_FLAG_5788; 2936 } 2937 2938 capmask = BMSR_DEFCAPMASK; 2939 if ((sc->bge_asicrev == BGE_ASICREV_BCM5703 && 2940 (misccfg == 0x4000 || misccfg == 0x8000)) || 2941 (sc->bge_asicrev == BGE_ASICREV_BCM5705 && 2942 pci_get_vendor(dev) == BCOM_VENDORID && 2943 (pci_get_device(dev) == BCOM_DEVICEID_BCM5901 || 2944 pci_get_device(dev) == BCOM_DEVICEID_BCM5901A2 || 2945 pci_get_device(dev) == BCOM_DEVICEID_BCM5705F)) || 2946 (pci_get_vendor(dev) == BCOM_VENDORID && 2947 (pci_get_device(dev) == BCOM_DEVICEID_BCM5751F || 2948 pci_get_device(dev) == BCOM_DEVICEID_BCM5753F || 2949 pci_get_device(dev) == BCOM_DEVICEID_BCM5787F)) || 2950 pci_get_device(dev) == BCOM_DEVICEID_BCM57790 || 2951 sc->bge_asicrev == BGE_ASICREV_BCM5906) { 2952 /* These chips are 10/100 only. */ 2953 capmask &= ~BMSR_EXTSTAT; 2954 } 2955 2956 /* 2957 * Some controllers seem to require a special firmware to use 2958 * TSO. But the firmware is not available to FreeBSD and Linux 2959 * claims that the TSO performed by the firmware is slower than 2960 * hardware based TSO. Moreover the firmware based TSO has one 2961 * known bug which can't handle TSO if ethernet header + IP/TCP 2962 * header is greater than 80 bytes. The workaround for the TSO 2963 * bug exist but it seems it's too expensive than not using 2964 * TSO at all. Some hardwares also have the TSO bug so limit 2965 * the TSO to the controllers that are not affected TSO issues 2966 * (e.g. 5755 or higher). 2967 */ 2968 if (BGE_IS_5717_PLUS(sc)) { 2969 /* BCM5717 requires different TSO configuration. */ 2970 sc->bge_flags |= BGE_FLAG_TSO3; 2971 if (sc->bge_asicrev == BGE_ASICREV_BCM5719 && 2972 sc->bge_chipid == BGE_CHIPID_BCM5719_A0) { 2973 /* TSO on BCM5719 A0 does not work. */ 2974 sc->bge_flags &= ~BGE_FLAG_TSO3; 2975 } 2976 } else if (BGE_IS_5755_PLUS(sc)) { 2977 /* 2978 * BCM5754 and BCM5787 shares the same ASIC id so 2979 * explicit device id check is required. 2980 * Due to unknown reason TSO does not work on BCM5755M. 2981 */ 2982 if (pci_get_device(dev) != BCOM_DEVICEID_BCM5754 && 2983 pci_get_device(dev) != BCOM_DEVICEID_BCM5754M && 2984 pci_get_device(dev) != BCOM_DEVICEID_BCM5755M) 2985 sc->bge_flags |= BGE_FLAG_TSO; 2986 } 2987 2988 /* 2989 * Check if this is a PCI-X or PCI Express device. 2990 */ 2991 if (pci_find_cap(dev, PCIY_EXPRESS, ®) == 0) { 2992 /* 2993 * Found a PCI Express capabilities register, this 2994 * must be a PCI Express device. 2995 */ 2996 sc->bge_flags |= BGE_FLAG_PCIE; 2997 sc->bge_expcap = reg; 2998 if (sc->bge_asicrev == BGE_ASICREV_BCM5719) 2999 pci_set_max_read_req(dev, 2048); 3000 else if (pci_get_max_read_req(dev) != 4096) 3001 pci_set_max_read_req(dev, 4096); 3002 } else { 3003 /* 3004 * Check if the device is in PCI-X Mode. 3005 * (This bit is not valid on PCI Express controllers.) 3006 */ 3007 if (pci_find_cap(dev, PCIY_PCIX, ®) == 0) 3008 sc->bge_pcixcap = reg; 3009 if ((pci_read_config(dev, BGE_PCI_PCISTATE, 4) & 3010 BGE_PCISTATE_PCI_BUSMODE) == 0) 3011 sc->bge_flags |= BGE_FLAG_PCIX; 3012 } 3013 3014 /* 3015 * The 40bit DMA bug applies to the 5714/5715 controllers and is 3016 * not actually a MAC controller bug but an issue with the embedded 3017 * PCIe to PCI-X bridge in the device. Use 40bit DMA workaround. 3018 */ 3019 if (BGE_IS_5714_FAMILY(sc) && (sc->bge_flags & BGE_FLAG_PCIX)) 3020 sc->bge_flags |= BGE_FLAG_40BIT_BUG; 3021 /* 3022 * Allocate the interrupt, using MSI if possible. These devices 3023 * support 8 MSI messages, but only the first one is used in 3024 * normal operation. 3025 */ 3026 rid = 0; 3027 if (pci_find_cap(sc->bge_dev, PCIY_MSI, ®) == 0) { 3028 sc->bge_msicap = reg; 3029 if (bge_can_use_msi(sc)) { 3030 msicount = pci_msi_count(dev); 3031 if (msicount > 1) 3032 msicount = 1; 3033 } else 3034 msicount = 0; 3035 if (msicount == 1 && pci_alloc_msi(dev, &msicount) == 0) { 3036 rid = 1; 3037 sc->bge_flags |= BGE_FLAG_MSI; 3038 } 3039 } 3040 3041 /* 3042 * All controllers except BCM5700 supports tagged status but 3043 * we use tagged status only for MSI case on BCM5717. Otherwise 3044 * MSI on BCM5717 does not work. 3045 */ 3046 #ifndef DEVICE_POLLING 3047 if (sc->bge_flags & BGE_FLAG_MSI && BGE_IS_5717_PLUS(sc)) 3048 sc->bge_flags |= BGE_FLAG_TAGGED_STATUS; 3049 #endif 3050 3051 sc->bge_irq = bus_alloc_resource_any(dev, SYS_RES_IRQ, &rid, 3052 RF_SHAREABLE | RF_ACTIVE); 3053 3054 if (sc->bge_irq == NULL) { 3055 device_printf(sc->bge_dev, "couldn't map interrupt\n"); 3056 error = ENXIO; 3057 goto fail; 3058 } 3059 3060 device_printf(dev, 3061 "CHIP ID 0x%08x; ASIC REV 0x%02x; CHIP REV 0x%02x; %s\n", 3062 sc->bge_chipid, sc->bge_asicrev, sc->bge_chiprev, 3063 (sc->bge_flags & BGE_FLAG_PCIX) ? "PCI-X" : 3064 ((sc->bge_flags & BGE_FLAG_PCIE) ? "PCI-E" : "PCI")); 3065 3066 BGE_LOCK_INIT(sc, device_get_nameunit(dev)); 3067 3068 /* Try to reset the chip. */ 3069 if (bge_reset(sc)) { 3070 device_printf(sc->bge_dev, "chip reset failed\n"); 3071 error = ENXIO; 3072 goto fail; 3073 } 3074 3075 sc->bge_asf_mode = 0; 3076 if (bge_allow_asf && (bge_readmem_ind(sc, BGE_SOFTWARE_GENCOMM_SIG) 3077 == BGE_MAGIC_NUMBER)) { 3078 if (bge_readmem_ind(sc, BGE_SOFTWARE_GENCOMM_NICCFG) 3079 & BGE_HWCFG_ASF) { 3080 sc->bge_asf_mode |= ASF_ENABLE; 3081 sc->bge_asf_mode |= ASF_STACKUP; 3082 if (BGE_IS_575X_PLUS(sc)) 3083 sc->bge_asf_mode |= ASF_NEW_HANDSHAKE; 3084 } 3085 } 3086 3087 /* Try to reset the chip again the nice way. */ 3088 bge_stop_fw(sc); 3089 bge_sig_pre_reset(sc, BGE_RESET_STOP); 3090 if (bge_reset(sc)) { 3091 device_printf(sc->bge_dev, "chip reset failed\n"); 3092 error = ENXIO; 3093 goto fail; 3094 } 3095 3096 bge_sig_legacy(sc, BGE_RESET_STOP); 3097 bge_sig_post_reset(sc, BGE_RESET_STOP); 3098 3099 if (bge_chipinit(sc)) { 3100 device_printf(sc->bge_dev, "chip initialization failed\n"); 3101 error = ENXIO; 3102 goto fail; 3103 } 3104 3105 error = bge_get_eaddr(sc, eaddr); 3106 if (error) { 3107 device_printf(sc->bge_dev, 3108 "failed to read station address\n"); 3109 error = ENXIO; 3110 goto fail; 3111 } 3112 3113 /* 5705 limits RX return ring to 512 entries. */ 3114 if (BGE_IS_5717_PLUS(sc)) 3115 sc->bge_return_ring_cnt = BGE_RETURN_RING_CNT; 3116 else if (BGE_IS_5705_PLUS(sc)) 3117 sc->bge_return_ring_cnt = BGE_RETURN_RING_CNT_5705; 3118 else 3119 sc->bge_return_ring_cnt = BGE_RETURN_RING_CNT; 3120 3121 if (bge_dma_alloc(sc)) { 3122 device_printf(sc->bge_dev, 3123 "failed to allocate DMA resources\n"); 3124 error = ENXIO; 3125 goto fail; 3126 } 3127 3128 bge_add_sysctls(sc); 3129 3130 /* Set default tuneable values. */ 3131 sc->bge_stat_ticks = BGE_TICKS_PER_SEC; 3132 sc->bge_rx_coal_ticks = 150; 3133 sc->bge_tx_coal_ticks = 150; 3134 sc->bge_rx_max_coal_bds = 10; 3135 sc->bge_tx_max_coal_bds = 10; 3136 3137 /* Initialize checksum features to use. */ 3138 sc->bge_csum_features = BGE_CSUM_FEATURES; 3139 if (sc->bge_forced_udpcsum != 0) 3140 sc->bge_csum_features |= CSUM_UDP; 3141 3142 /* Set up ifnet structure */ 3143 ifp = sc->bge_ifp = if_alloc(IFT_ETHER); 3144 if (ifp == NULL) { 3145 device_printf(sc->bge_dev, "failed to if_alloc()\n"); 3146 error = ENXIO; 3147 goto fail; 3148 } 3149 ifp->if_softc = sc; 3150 if_initname(ifp, device_get_name(dev), device_get_unit(dev)); 3151 ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST; 3152 ifp->if_ioctl = bge_ioctl; 3153 ifp->if_start = bge_start; 3154 ifp->if_init = bge_init; 3155 ifp->if_snd.ifq_drv_maxlen = BGE_TX_RING_CNT - 1; 3156 IFQ_SET_MAXLEN(&ifp->if_snd, ifp->if_snd.ifq_drv_maxlen); 3157 IFQ_SET_READY(&ifp->if_snd); 3158 ifp->if_hwassist = sc->bge_csum_features; 3159 ifp->if_capabilities = IFCAP_HWCSUM | IFCAP_VLAN_HWTAGGING | 3160 IFCAP_VLAN_MTU; 3161 if ((sc->bge_flags & (BGE_FLAG_TSO | BGE_FLAG_TSO3)) != 0) { 3162 ifp->if_hwassist |= CSUM_TSO; 3163 ifp->if_capabilities |= IFCAP_TSO4 | IFCAP_VLAN_HWTSO; 3164 } 3165 #ifdef IFCAP_VLAN_HWCSUM 3166 ifp->if_capabilities |= IFCAP_VLAN_HWCSUM; 3167 #endif 3168 ifp->if_capenable = ifp->if_capabilities; 3169 #ifdef DEVICE_POLLING 3170 ifp->if_capabilities |= IFCAP_POLLING; 3171 #endif 3172 3173 /* 3174 * 5700 B0 chips do not support checksumming correctly due 3175 * to hardware bugs. 3176 */ 3177 if (sc->bge_chipid == BGE_CHIPID_BCM5700_B0) { 3178 ifp->if_capabilities &= ~IFCAP_HWCSUM; 3179 ifp->if_capenable &= ~IFCAP_HWCSUM; 3180 ifp->if_hwassist = 0; 3181 } 3182 3183 /* 3184 * Figure out what sort of media we have by checking the 3185 * hardware config word in the first 32k of NIC internal memory, 3186 * or fall back to examining the EEPROM if necessary. 3187 * Note: on some BCM5700 cards, this value appears to be unset. 3188 * If that's the case, we have to rely on identifying the NIC 3189 * by its PCI subsystem ID, as we do below for the SysKonnect 3190 * SK-9D41. 3191 */ 3192 if (bge_readmem_ind(sc, BGE_SOFTWARE_GENCOMM_SIG) == BGE_MAGIC_NUMBER) 3193 hwcfg = bge_readmem_ind(sc, BGE_SOFTWARE_GENCOMM_NICCFG); 3194 else if ((sc->bge_flags & BGE_FLAG_EADDR) && 3195 (sc->bge_asicrev != BGE_ASICREV_BCM5906)) { 3196 if (bge_read_eeprom(sc, (caddr_t)&hwcfg, BGE_EE_HWCFG_OFFSET, 3197 sizeof(hwcfg))) { 3198 device_printf(sc->bge_dev, "failed to read EEPROM\n"); 3199 error = ENXIO; 3200 goto fail; 3201 } 3202 hwcfg = ntohl(hwcfg); 3203 } 3204 3205 /* The SysKonnect SK-9D41 is a 1000baseSX card. */ 3206 if ((pci_read_config(dev, BGE_PCI_SUBSYS, 4) >> 16) == 3207 SK_SUBSYSID_9D41 || (hwcfg & BGE_HWCFG_MEDIA) == BGE_MEDIA_FIBER) { 3208 if (BGE_IS_5714_FAMILY(sc)) 3209 sc->bge_flags |= BGE_FLAG_MII_SERDES; 3210 else 3211 sc->bge_flags |= BGE_FLAG_TBI; 3212 } 3213 3214 if (sc->bge_flags & BGE_FLAG_TBI) { 3215 ifmedia_init(&sc->bge_ifmedia, IFM_IMASK, bge_ifmedia_upd, 3216 bge_ifmedia_sts); 3217 ifmedia_add(&sc->bge_ifmedia, IFM_ETHER | IFM_1000_SX, 0, NULL); 3218 ifmedia_add(&sc->bge_ifmedia, IFM_ETHER | IFM_1000_SX | IFM_FDX, 3219 0, NULL); 3220 ifmedia_add(&sc->bge_ifmedia, IFM_ETHER | IFM_AUTO, 0, NULL); 3221 ifmedia_set(&sc->bge_ifmedia, IFM_ETHER | IFM_AUTO); 3222 sc->bge_ifmedia.ifm_media = sc->bge_ifmedia.ifm_cur->ifm_media; 3223 } else { 3224 /* 3225 * Do transceiver setup and tell the firmware the 3226 * driver is down so we can try to get access the 3227 * probe if ASF is running. Retry a couple of times 3228 * if we get a conflict with the ASF firmware accessing 3229 * the PHY. 3230 */ 3231 trys = 0; 3232 BGE_CLRBIT(sc, BGE_MODE_CTL, BGE_MODECTL_STACKUP); 3233 again: 3234 bge_asf_driver_up(sc); 3235 3236 error = mii_attach(dev, &sc->bge_miibus, ifp, bge_ifmedia_upd, 3237 bge_ifmedia_sts, capmask, phy_addr, MII_OFFSET_ANY, 3238 MIIF_DOPAUSE); 3239 if (error != 0) { 3240 if (trys++ < 4) { 3241 device_printf(sc->bge_dev, "Try again\n"); 3242 bge_miibus_writereg(sc->bge_dev, 1, MII_BMCR, 3243 BMCR_RESET); 3244 goto again; 3245 } 3246 device_printf(sc->bge_dev, "attaching PHYs failed\n"); 3247 goto fail; 3248 } 3249 3250 /* 3251 * Now tell the firmware we are going up after probing the PHY 3252 */ 3253 if (sc->bge_asf_mode & ASF_STACKUP) 3254 BGE_SETBIT(sc, BGE_MODE_CTL, BGE_MODECTL_STACKUP); 3255 } 3256 3257 /* 3258 * When using the BCM5701 in PCI-X mode, data corruption has 3259 * been observed in the first few bytes of some received packets. 3260 * Aligning the packet buffer in memory eliminates the corruption. 3261 * Unfortunately, this misaligns the packet payloads. On platforms 3262 * which do not support unaligned accesses, we will realign the 3263 * payloads by copying the received packets. 3264 */ 3265 if (sc->bge_asicrev == BGE_ASICREV_BCM5701 && 3266 sc->bge_flags & BGE_FLAG_PCIX) 3267 sc->bge_flags |= BGE_FLAG_RX_ALIGNBUG; 3268 3269 /* 3270 * Call MI attach routine. 3271 */ 3272 ether_ifattach(ifp, eaddr); 3273 callout_init_mtx(&sc->bge_stat_ch, &sc->bge_mtx, 0); 3274 3275 /* Tell upper layer we support long frames. */ 3276 ifp->if_data.ifi_hdrlen = sizeof(struct ether_vlan_header); 3277 3278 /* 3279 * Hookup IRQ last. 3280 */ 3281 if (BGE_IS_5755_PLUS(sc) && sc->bge_flags & BGE_FLAG_MSI) { 3282 /* Take advantage of single-shot MSI. */ 3283 CSR_WRITE_4(sc, BGE_MSI_MODE, CSR_READ_4(sc, BGE_MSI_MODE) & 3284 ~BGE_MSIMODE_ONE_SHOT_DISABLE); 3285 sc->bge_tq = taskqueue_create_fast("bge_taskq", M_WAITOK, 3286 taskqueue_thread_enqueue, &sc->bge_tq); 3287 if (sc->bge_tq == NULL) { 3288 device_printf(dev, "could not create taskqueue.\n"); 3289 ether_ifdetach(ifp); 3290 error = ENXIO; 3291 goto fail; 3292 } 3293 taskqueue_start_threads(&sc->bge_tq, 1, PI_NET, "%s taskq", 3294 device_get_nameunit(sc->bge_dev)); 3295 error = bus_setup_intr(dev, sc->bge_irq, 3296 INTR_TYPE_NET | INTR_MPSAFE, bge_msi_intr, NULL, sc, 3297 &sc->bge_intrhand); 3298 if (error) 3299 ether_ifdetach(ifp); 3300 } else 3301 error = bus_setup_intr(dev, sc->bge_irq, 3302 INTR_TYPE_NET | INTR_MPSAFE, NULL, bge_intr, sc, 3303 &sc->bge_intrhand); 3304 3305 if (error) { 3306 bge_detach(dev); 3307 device_printf(sc->bge_dev, "couldn't set up irq\n"); 3308 } 3309 3310 return (0); 3311 3312 fail: 3313 bge_release_resources(sc); 3314 3315 return (error); 3316 } 3317 3318 static int 3319 bge_detach(device_t dev) 3320 { 3321 struct bge_softc *sc; 3322 struct ifnet *ifp; 3323 3324 sc = device_get_softc(dev); 3325 ifp = sc->bge_ifp; 3326 3327 #ifdef DEVICE_POLLING 3328 if (ifp->if_capenable & IFCAP_POLLING) 3329 ether_poll_deregister(ifp); 3330 #endif 3331 3332 BGE_LOCK(sc); 3333 bge_stop(sc); 3334 bge_reset(sc); 3335 BGE_UNLOCK(sc); 3336 3337 callout_drain(&sc->bge_stat_ch); 3338 3339 if (sc->bge_tq) 3340 taskqueue_drain(sc->bge_tq, &sc->bge_intr_task); 3341 ether_ifdetach(ifp); 3342 3343 if (sc->bge_flags & BGE_FLAG_TBI) { 3344 ifmedia_removeall(&sc->bge_ifmedia); 3345 } else { 3346 bus_generic_detach(dev); 3347 device_delete_child(dev, sc->bge_miibus); 3348 } 3349 3350 bge_release_resources(sc); 3351 3352 return (0); 3353 } 3354 3355 static void 3356 bge_release_resources(struct bge_softc *sc) 3357 { 3358 device_t dev; 3359 3360 dev = sc->bge_dev; 3361 3362 if (sc->bge_tq != NULL) 3363 taskqueue_free(sc->bge_tq); 3364 3365 if (sc->bge_intrhand != NULL) 3366 bus_teardown_intr(dev, sc->bge_irq, sc->bge_intrhand); 3367 3368 if (sc->bge_irq != NULL) 3369 bus_release_resource(dev, SYS_RES_IRQ, 3370 sc->bge_flags & BGE_FLAG_MSI ? 1 : 0, sc->bge_irq); 3371 3372 if (sc->bge_flags & BGE_FLAG_MSI) 3373 pci_release_msi(dev); 3374 3375 if (sc->bge_res != NULL) 3376 bus_release_resource(dev, SYS_RES_MEMORY, 3377 PCIR_BAR(0), sc->bge_res); 3378 3379 if (sc->bge_ifp != NULL) 3380 if_free(sc->bge_ifp); 3381 3382 bge_dma_free(sc); 3383 3384 if (mtx_initialized(&sc->bge_mtx)) /* XXX */ 3385 BGE_LOCK_DESTROY(sc); 3386 } 3387 3388 static int 3389 bge_reset(struct bge_softc *sc) 3390 { 3391 device_t dev; 3392 uint32_t cachesize, command, pcistate, reset, val; 3393 void (*write_op)(struct bge_softc *, int, int); 3394 uint16_t devctl; 3395 int i; 3396 3397 dev = sc->bge_dev; 3398 3399 if (BGE_IS_575X_PLUS(sc) && !BGE_IS_5714_FAMILY(sc) && 3400 (sc->bge_asicrev != BGE_ASICREV_BCM5906)) { 3401 if (sc->bge_flags & BGE_FLAG_PCIE) 3402 write_op = bge_writemem_direct; 3403 else 3404 write_op = bge_writemem_ind; 3405 } else 3406 write_op = bge_writereg_ind; 3407 3408 /* Save some important PCI state. */ 3409 cachesize = pci_read_config(dev, BGE_PCI_CACHESZ, 4); 3410 command = pci_read_config(dev, BGE_PCI_CMD, 4); 3411 pcistate = pci_read_config(dev, BGE_PCI_PCISTATE, 4); 3412 3413 pci_write_config(dev, BGE_PCI_MISC_CTL, 3414 BGE_PCIMISCCTL_INDIRECT_ACCESS | BGE_PCIMISCCTL_MASK_PCI_INTR | 3415 BGE_HIF_SWAP_OPTIONS | BGE_PCIMISCCTL_PCISTATE_RW, 4); 3416 3417 /* Disable fastboot on controllers that support it. */ 3418 if (sc->bge_asicrev == BGE_ASICREV_BCM5752 || 3419 BGE_IS_5755_PLUS(sc)) { 3420 if (bootverbose) 3421 device_printf(dev, "Disabling fastboot\n"); 3422 CSR_WRITE_4(sc, BGE_FASTBOOT_PC, 0x0); 3423 } 3424 3425 /* 3426 * Write the magic number to SRAM at offset 0xB50. 3427 * When firmware finishes its initialization it will 3428 * write ~BGE_MAGIC_NUMBER to the same location. 3429 */ 3430 bge_writemem_ind(sc, BGE_SOFTWARE_GENCOMM, BGE_MAGIC_NUMBER); 3431 3432 reset = BGE_MISCCFG_RESET_CORE_CLOCKS | BGE_32BITTIME_66MHZ; 3433 3434 /* XXX: Broadcom Linux driver. */ 3435 if (sc->bge_flags & BGE_FLAG_PCIE) { 3436 if (CSR_READ_4(sc, 0x7E2C) == 0x60) /* PCIE 1.0 */ 3437 CSR_WRITE_4(sc, 0x7E2C, 0x20); 3438 if (sc->bge_chipid != BGE_CHIPID_BCM5750_A0) { 3439 /* Prevent PCIE link training during global reset */ 3440 CSR_WRITE_4(sc, BGE_MISC_CFG, 1 << 29); 3441 reset |= 1 << 29; 3442 } 3443 } 3444 3445 /* 3446 * Set GPHY Power Down Override to leave GPHY 3447 * powered up in D0 uninitialized. 3448 */ 3449 if (BGE_IS_5705_PLUS(sc)) 3450 reset |= BGE_MISCCFG_GPHY_PD_OVERRIDE; 3451 3452 /* Issue global reset */ 3453 write_op(sc, BGE_MISC_CFG, reset); 3454 3455 if (sc->bge_asicrev == BGE_ASICREV_BCM5906) { 3456 val = CSR_READ_4(sc, BGE_VCPU_STATUS); 3457 CSR_WRITE_4(sc, BGE_VCPU_STATUS, 3458 val | BGE_VCPU_STATUS_DRV_RESET); 3459 val = CSR_READ_4(sc, BGE_VCPU_EXT_CTRL); 3460 CSR_WRITE_4(sc, BGE_VCPU_EXT_CTRL, 3461 val & ~BGE_VCPU_EXT_CTRL_HALT_CPU); 3462 } 3463 3464 DELAY(1000); 3465 3466 /* XXX: Broadcom Linux driver. */ 3467 if (sc->bge_flags & BGE_FLAG_PCIE) { 3468 if (sc->bge_chipid == BGE_CHIPID_BCM5750_A0) { 3469 DELAY(500000); /* wait for link training to complete */ 3470 val = pci_read_config(dev, 0xC4, 4); 3471 pci_write_config(dev, 0xC4, val | (1 << 15), 4); 3472 } 3473 devctl = pci_read_config(dev, 3474 sc->bge_expcap + PCIR_EXPRESS_DEVICE_CTL, 2); 3475 /* Clear enable no snoop and disable relaxed ordering. */ 3476 devctl &= ~(PCIM_EXP_CTL_RELAXED_ORD_ENABLE | 3477 PCIM_EXP_CTL_NOSNOOP_ENABLE); 3478 /* Set PCIE max payload size to 128. */ 3479 devctl &= ~PCIM_EXP_CTL_MAX_PAYLOAD; 3480 pci_write_config(dev, sc->bge_expcap + PCIR_EXPRESS_DEVICE_CTL, 3481 devctl, 2); 3482 /* Clear error status. */ 3483 pci_write_config(dev, sc->bge_expcap + PCIR_EXPRESS_DEVICE_STA, 3484 PCIM_EXP_STA_CORRECTABLE_ERROR | 3485 PCIM_EXP_STA_NON_FATAL_ERROR | PCIM_EXP_STA_FATAL_ERROR | 3486 PCIM_EXP_STA_UNSUPPORTED_REQ, 2); 3487 } 3488 3489 /* Reset some of the PCI state that got zapped by reset. */ 3490 pci_write_config(dev, BGE_PCI_MISC_CTL, 3491 BGE_PCIMISCCTL_INDIRECT_ACCESS | BGE_PCIMISCCTL_MASK_PCI_INTR | 3492 BGE_HIF_SWAP_OPTIONS | BGE_PCIMISCCTL_PCISTATE_RW, 4); 3493 pci_write_config(dev, BGE_PCI_CACHESZ, cachesize, 4); 3494 pci_write_config(dev, BGE_PCI_CMD, command, 4); 3495 write_op(sc, BGE_MISC_CFG, BGE_32BITTIME_66MHZ); 3496 /* 3497 * Disable PCI-X relaxed ordering to ensure status block update 3498 * comes first then packet buffer DMA. Otherwise driver may 3499 * read stale status block. 3500 */ 3501 if (sc->bge_flags & BGE_FLAG_PCIX) { 3502 devctl = pci_read_config(dev, 3503 sc->bge_pcixcap + PCIXR_COMMAND, 2); 3504 devctl &= ~PCIXM_COMMAND_ERO; 3505 if (sc->bge_asicrev == BGE_ASICREV_BCM5703) { 3506 devctl &= ~PCIXM_COMMAND_MAX_READ; 3507 devctl |= PCIXM_COMMAND_MAX_READ_2048; 3508 } else if (sc->bge_asicrev == BGE_ASICREV_BCM5704) { 3509 devctl &= ~(PCIXM_COMMAND_MAX_SPLITS | 3510 PCIXM_COMMAND_MAX_READ); 3511 devctl |= PCIXM_COMMAND_MAX_READ_2048; 3512 } 3513 pci_write_config(dev, sc->bge_pcixcap + PCIXR_COMMAND, 3514 devctl, 2); 3515 } 3516 /* Re-enable MSI, if necessary, and enable the memory arbiter. */ 3517 if (BGE_IS_5714_FAMILY(sc)) { 3518 /* This chip disables MSI on reset. */ 3519 if (sc->bge_flags & BGE_FLAG_MSI) { 3520 val = pci_read_config(dev, 3521 sc->bge_msicap + PCIR_MSI_CTRL, 2); 3522 pci_write_config(dev, 3523 sc->bge_msicap + PCIR_MSI_CTRL, 3524 val | PCIM_MSICTRL_MSI_ENABLE, 2); 3525 val = CSR_READ_4(sc, BGE_MSI_MODE); 3526 CSR_WRITE_4(sc, BGE_MSI_MODE, 3527 val | BGE_MSIMODE_ENABLE); 3528 } 3529 val = CSR_READ_4(sc, BGE_MARB_MODE); 3530 CSR_WRITE_4(sc, BGE_MARB_MODE, BGE_MARBMODE_ENABLE | val); 3531 } else 3532 CSR_WRITE_4(sc, BGE_MARB_MODE, BGE_MARBMODE_ENABLE); 3533 3534 if (sc->bge_asicrev == BGE_ASICREV_BCM5906) { 3535 for (i = 0; i < BGE_TIMEOUT; i++) { 3536 val = CSR_READ_4(sc, BGE_VCPU_STATUS); 3537 if (val & BGE_VCPU_STATUS_INIT_DONE) 3538 break; 3539 DELAY(100); 3540 } 3541 if (i == BGE_TIMEOUT) { 3542 device_printf(dev, "reset timed out\n"); 3543 return (1); 3544 } 3545 } else { 3546 /* 3547 * Poll until we see the 1's complement of the magic number. 3548 * This indicates that the firmware initialization is complete. 3549 * We expect this to fail if no chip containing the Ethernet 3550 * address is fitted though. 3551 */ 3552 for (i = 0; i < BGE_TIMEOUT; i++) { 3553 DELAY(10); 3554 val = bge_readmem_ind(sc, BGE_SOFTWARE_GENCOMM); 3555 if (val == ~BGE_MAGIC_NUMBER) 3556 break; 3557 } 3558 3559 if ((sc->bge_flags & BGE_FLAG_EADDR) && i == BGE_TIMEOUT) 3560 device_printf(dev, 3561 "firmware handshake timed out, found 0x%08x\n", 3562 val); 3563 /* BCM57765 A0 needs additional time before accessing. */ 3564 if (sc->bge_chipid == BGE_CHIPID_BCM57765_A0) 3565 DELAY(10 * 1000); /* XXX */ 3566 } 3567 3568 /* 3569 * XXX Wait for the value of the PCISTATE register to 3570 * return to its original pre-reset state. This is a 3571 * fairly good indicator of reset completion. If we don't 3572 * wait for the reset to fully complete, trying to read 3573 * from the device's non-PCI registers may yield garbage 3574 * results. 3575 */ 3576 for (i = 0; i < BGE_TIMEOUT; i++) { 3577 if (pci_read_config(dev, BGE_PCI_PCISTATE, 4) == pcistate) 3578 break; 3579 DELAY(10); 3580 } 3581 3582 /* Fix up byte swapping. */ 3583 CSR_WRITE_4(sc, BGE_MODE_CTL, BGE_DMA_SWAP_OPTIONS | 3584 BGE_MODECTL_BYTESWAP_DATA); 3585 3586 /* Tell the ASF firmware we are up */ 3587 if (sc->bge_asf_mode & ASF_STACKUP) 3588 BGE_SETBIT(sc, BGE_MODE_CTL, BGE_MODECTL_STACKUP); 3589 3590 CSR_WRITE_4(sc, BGE_MAC_MODE, 0); 3591 3592 /* 3593 * The 5704 in TBI mode apparently needs some special 3594 * adjustment to insure the SERDES drive level is set 3595 * to 1.2V. 3596 */ 3597 if (sc->bge_asicrev == BGE_ASICREV_BCM5704 && 3598 sc->bge_flags & BGE_FLAG_TBI) { 3599 val = CSR_READ_4(sc, BGE_SERDES_CFG); 3600 val = (val & ~0xFFF) | 0x880; 3601 CSR_WRITE_4(sc, BGE_SERDES_CFG, val); 3602 } 3603 3604 /* XXX: Broadcom Linux driver. */ 3605 if (sc->bge_flags & BGE_FLAG_PCIE && 3606 !BGE_IS_5717_PLUS(sc) && 3607 sc->bge_chipid != BGE_CHIPID_BCM5750_A0 && 3608 sc->bge_asicrev != BGE_ASICREV_BCM5785) { 3609 /* Enable Data FIFO protection. */ 3610 val = CSR_READ_4(sc, 0x7C00); 3611 CSR_WRITE_4(sc, 0x7C00, val | (1 << 25)); 3612 } 3613 DELAY(10000); 3614 3615 return (0); 3616 } 3617 3618 static __inline void 3619 bge_rxreuse_std(struct bge_softc *sc, int i) 3620 { 3621 struct bge_rx_bd *r; 3622 3623 r = &sc->bge_ldata.bge_rx_std_ring[sc->bge_std]; 3624 r->bge_flags = BGE_RXBDFLAG_END; 3625 r->bge_len = sc->bge_cdata.bge_rx_std_seglen[i]; 3626 r->bge_idx = i; 3627 BGE_INC(sc->bge_std, BGE_STD_RX_RING_CNT); 3628 } 3629 3630 static __inline void 3631 bge_rxreuse_jumbo(struct bge_softc *sc, int i) 3632 { 3633 struct bge_extrx_bd *r; 3634 3635 r = &sc->bge_ldata.bge_rx_jumbo_ring[sc->bge_jumbo]; 3636 r->bge_flags = BGE_RXBDFLAG_JUMBO_RING | BGE_RXBDFLAG_END; 3637 r->bge_len0 = sc->bge_cdata.bge_rx_jumbo_seglen[i][0]; 3638 r->bge_len1 = sc->bge_cdata.bge_rx_jumbo_seglen[i][1]; 3639 r->bge_len2 = sc->bge_cdata.bge_rx_jumbo_seglen[i][2]; 3640 r->bge_len3 = sc->bge_cdata.bge_rx_jumbo_seglen[i][3]; 3641 r->bge_idx = i; 3642 BGE_INC(sc->bge_jumbo, BGE_JUMBO_RX_RING_CNT); 3643 } 3644 3645 /* 3646 * Frame reception handling. This is called if there's a frame 3647 * on the receive return list. 3648 * 3649 * Note: we have to be able to handle two possibilities here: 3650 * 1) the frame is from the jumbo receive ring 3651 * 2) the frame is from the standard receive ring 3652 */ 3653 3654 static int 3655 bge_rxeof(struct bge_softc *sc, uint16_t rx_prod, int holdlck) 3656 { 3657 struct ifnet *ifp; 3658 int rx_npkts = 0, stdcnt = 0, jumbocnt = 0; 3659 uint16_t rx_cons; 3660 3661 rx_cons = sc->bge_rx_saved_considx; 3662 3663 /* Nothing to do. */ 3664 if (rx_cons == rx_prod) 3665 return (rx_npkts); 3666 3667 ifp = sc->bge_ifp; 3668 3669 bus_dmamap_sync(sc->bge_cdata.bge_rx_return_ring_tag, 3670 sc->bge_cdata.bge_rx_return_ring_map, BUS_DMASYNC_POSTREAD); 3671 bus_dmamap_sync(sc->bge_cdata.bge_rx_std_ring_tag, 3672 sc->bge_cdata.bge_rx_std_ring_map, BUS_DMASYNC_POSTWRITE); 3673 if (BGE_IS_JUMBO_CAPABLE(sc) && 3674 ifp->if_mtu + ETHER_HDR_LEN + ETHER_CRC_LEN + ETHER_VLAN_ENCAP_LEN > 3675 (MCLBYTES - ETHER_ALIGN)) 3676 bus_dmamap_sync(sc->bge_cdata.bge_rx_jumbo_ring_tag, 3677 sc->bge_cdata.bge_rx_jumbo_ring_map, BUS_DMASYNC_POSTWRITE); 3678 3679 while (rx_cons != rx_prod) { 3680 struct bge_rx_bd *cur_rx; 3681 uint32_t rxidx; 3682 struct mbuf *m = NULL; 3683 uint16_t vlan_tag = 0; 3684 int have_tag = 0; 3685 3686 #ifdef DEVICE_POLLING 3687 if (ifp->if_capenable & IFCAP_POLLING) { 3688 if (sc->rxcycles <= 0) 3689 break; 3690 sc->rxcycles--; 3691 } 3692 #endif 3693 3694 cur_rx = &sc->bge_ldata.bge_rx_return_ring[rx_cons]; 3695 3696 rxidx = cur_rx->bge_idx; 3697 BGE_INC(rx_cons, sc->bge_return_ring_cnt); 3698 3699 if (ifp->if_capenable & IFCAP_VLAN_HWTAGGING && 3700 cur_rx->bge_flags & BGE_RXBDFLAG_VLAN_TAG) { 3701 have_tag = 1; 3702 vlan_tag = cur_rx->bge_vlan_tag; 3703 } 3704 3705 if (cur_rx->bge_flags & BGE_RXBDFLAG_JUMBO_RING) { 3706 jumbocnt++; 3707 m = sc->bge_cdata.bge_rx_jumbo_chain[rxidx]; 3708 if (cur_rx->bge_flags & BGE_RXBDFLAG_ERROR) { 3709 bge_rxreuse_jumbo(sc, rxidx); 3710 continue; 3711 } 3712 if (bge_newbuf_jumbo(sc, rxidx) != 0) { 3713 bge_rxreuse_jumbo(sc, rxidx); 3714 ifp->if_iqdrops++; 3715 continue; 3716 } 3717 BGE_INC(sc->bge_jumbo, BGE_JUMBO_RX_RING_CNT); 3718 } else { 3719 stdcnt++; 3720 m = sc->bge_cdata.bge_rx_std_chain[rxidx]; 3721 if (cur_rx->bge_flags & BGE_RXBDFLAG_ERROR) { 3722 bge_rxreuse_std(sc, rxidx); 3723 continue; 3724 } 3725 if (bge_newbuf_std(sc, rxidx) != 0) { 3726 bge_rxreuse_std(sc, rxidx); 3727 ifp->if_iqdrops++; 3728 continue; 3729 } 3730 BGE_INC(sc->bge_std, BGE_STD_RX_RING_CNT); 3731 } 3732 3733 ifp->if_ipackets++; 3734 #ifndef __NO_STRICT_ALIGNMENT 3735 /* 3736 * For architectures with strict alignment we must make sure 3737 * the payload is aligned. 3738 */ 3739 if (sc->bge_flags & BGE_FLAG_RX_ALIGNBUG) { 3740 bcopy(m->m_data, m->m_data + ETHER_ALIGN, 3741 cur_rx->bge_len); 3742 m->m_data += ETHER_ALIGN; 3743 } 3744 #endif 3745 m->m_pkthdr.len = m->m_len = cur_rx->bge_len - ETHER_CRC_LEN; 3746 m->m_pkthdr.rcvif = ifp; 3747 3748 if (ifp->if_capenable & IFCAP_RXCSUM) 3749 bge_rxcsum(sc, cur_rx, m); 3750 3751 /* 3752 * If we received a packet with a vlan tag, 3753 * attach that information to the packet. 3754 */ 3755 if (have_tag) { 3756 m->m_pkthdr.ether_vtag = vlan_tag; 3757 m->m_flags |= M_VLANTAG; 3758 } 3759 3760 if (holdlck != 0) { 3761 BGE_UNLOCK(sc); 3762 (*ifp->if_input)(ifp, m); 3763 BGE_LOCK(sc); 3764 } else 3765 (*ifp->if_input)(ifp, m); 3766 rx_npkts++; 3767 3768 if (!(ifp->if_drv_flags & IFF_DRV_RUNNING)) 3769 return (rx_npkts); 3770 } 3771 3772 bus_dmamap_sync(sc->bge_cdata.bge_rx_return_ring_tag, 3773 sc->bge_cdata.bge_rx_return_ring_map, BUS_DMASYNC_PREREAD); 3774 if (stdcnt > 0) 3775 bus_dmamap_sync(sc->bge_cdata.bge_rx_std_ring_tag, 3776 sc->bge_cdata.bge_rx_std_ring_map, BUS_DMASYNC_PREWRITE); 3777 3778 if (jumbocnt > 0) 3779 bus_dmamap_sync(sc->bge_cdata.bge_rx_jumbo_ring_tag, 3780 sc->bge_cdata.bge_rx_jumbo_ring_map, BUS_DMASYNC_PREWRITE); 3781 3782 sc->bge_rx_saved_considx = rx_cons; 3783 bge_writembx(sc, BGE_MBX_RX_CONS0_LO, sc->bge_rx_saved_considx); 3784 if (stdcnt) 3785 bge_writembx(sc, BGE_MBX_RX_STD_PROD_LO, (sc->bge_std + 3786 BGE_STD_RX_RING_CNT - 1) % BGE_STD_RX_RING_CNT); 3787 if (jumbocnt) 3788 bge_writembx(sc, BGE_MBX_RX_JUMBO_PROD_LO, (sc->bge_jumbo + 3789 BGE_JUMBO_RX_RING_CNT - 1) % BGE_JUMBO_RX_RING_CNT); 3790 #ifdef notyet 3791 /* 3792 * This register wraps very quickly under heavy packet drops. 3793 * If you need correct statistics, you can enable this check. 3794 */ 3795 if (BGE_IS_5705_PLUS(sc)) 3796 ifp->if_ierrors += CSR_READ_4(sc, BGE_RXLP_LOCSTAT_IFIN_DROPS); 3797 #endif 3798 return (rx_npkts); 3799 } 3800 3801 static void 3802 bge_rxcsum(struct bge_softc *sc, struct bge_rx_bd *cur_rx, struct mbuf *m) 3803 { 3804 3805 if (BGE_IS_5717_PLUS(sc)) { 3806 if ((cur_rx->bge_flags & BGE_RXBDFLAG_IPV6) == 0) { 3807 if (cur_rx->bge_flags & BGE_RXBDFLAG_IP_CSUM) { 3808 m->m_pkthdr.csum_flags |= CSUM_IP_CHECKED; 3809 if ((cur_rx->bge_error_flag & 3810 BGE_RXERRFLAG_IP_CSUM_NOK) == 0) 3811 m->m_pkthdr.csum_flags |= CSUM_IP_VALID; 3812 } 3813 if (cur_rx->bge_flags & BGE_RXBDFLAG_TCP_UDP_CSUM) { 3814 m->m_pkthdr.csum_data = 3815 cur_rx->bge_tcp_udp_csum; 3816 m->m_pkthdr.csum_flags |= CSUM_DATA_VALID | 3817 CSUM_PSEUDO_HDR; 3818 } 3819 } 3820 } else { 3821 if (cur_rx->bge_flags & BGE_RXBDFLAG_IP_CSUM) { 3822 m->m_pkthdr.csum_flags |= CSUM_IP_CHECKED; 3823 if ((cur_rx->bge_ip_csum ^ 0xFFFF) == 0) 3824 m->m_pkthdr.csum_flags |= CSUM_IP_VALID; 3825 } 3826 if (cur_rx->bge_flags & BGE_RXBDFLAG_TCP_UDP_CSUM && 3827 m->m_pkthdr.len >= ETHER_MIN_NOPAD) { 3828 m->m_pkthdr.csum_data = 3829 cur_rx->bge_tcp_udp_csum; 3830 m->m_pkthdr.csum_flags |= CSUM_DATA_VALID | 3831 CSUM_PSEUDO_HDR; 3832 } 3833 } 3834 } 3835 3836 static void 3837 bge_txeof(struct bge_softc *sc, uint16_t tx_cons) 3838 { 3839 struct bge_tx_bd *cur_tx; 3840 struct ifnet *ifp; 3841 3842 BGE_LOCK_ASSERT(sc); 3843 3844 /* Nothing to do. */ 3845 if (sc->bge_tx_saved_considx == tx_cons) 3846 return; 3847 3848 ifp = sc->bge_ifp; 3849 3850 bus_dmamap_sync(sc->bge_cdata.bge_tx_ring_tag, 3851 sc->bge_cdata.bge_tx_ring_map, BUS_DMASYNC_POSTWRITE); 3852 /* 3853 * Go through our tx ring and free mbufs for those 3854 * frames that have been sent. 3855 */ 3856 while (sc->bge_tx_saved_considx != tx_cons) { 3857 uint32_t idx; 3858 3859 idx = sc->bge_tx_saved_considx; 3860 cur_tx = &sc->bge_ldata.bge_tx_ring[idx]; 3861 if (cur_tx->bge_flags & BGE_TXBDFLAG_END) 3862 ifp->if_opackets++; 3863 if (sc->bge_cdata.bge_tx_chain[idx] != NULL) { 3864 bus_dmamap_sync(sc->bge_cdata.bge_tx_mtag, 3865 sc->bge_cdata.bge_tx_dmamap[idx], 3866 BUS_DMASYNC_POSTWRITE); 3867 bus_dmamap_unload(sc->bge_cdata.bge_tx_mtag, 3868 sc->bge_cdata.bge_tx_dmamap[idx]); 3869 m_freem(sc->bge_cdata.bge_tx_chain[idx]); 3870 sc->bge_cdata.bge_tx_chain[idx] = NULL; 3871 } 3872 sc->bge_txcnt--; 3873 BGE_INC(sc->bge_tx_saved_considx, BGE_TX_RING_CNT); 3874 } 3875 3876 ifp->if_drv_flags &= ~IFF_DRV_OACTIVE; 3877 if (sc->bge_txcnt == 0) 3878 sc->bge_timer = 0; 3879 } 3880 3881 #ifdef DEVICE_POLLING 3882 static int 3883 bge_poll(struct ifnet *ifp, enum poll_cmd cmd, int count) 3884 { 3885 struct bge_softc *sc = ifp->if_softc; 3886 uint16_t rx_prod, tx_cons; 3887 uint32_t statusword; 3888 int rx_npkts = 0; 3889 3890 BGE_LOCK(sc); 3891 if (!(ifp->if_drv_flags & IFF_DRV_RUNNING)) { 3892 BGE_UNLOCK(sc); 3893 return (rx_npkts); 3894 } 3895 3896 bus_dmamap_sync(sc->bge_cdata.bge_status_tag, 3897 sc->bge_cdata.bge_status_map, 3898 BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE); 3899 rx_prod = sc->bge_ldata.bge_status_block->bge_idx[0].bge_rx_prod_idx; 3900 tx_cons = sc->bge_ldata.bge_status_block->bge_idx[0].bge_tx_cons_idx; 3901 3902 statusword = sc->bge_ldata.bge_status_block->bge_status; 3903 sc->bge_ldata.bge_status_block->bge_status = 0; 3904 3905 bus_dmamap_sync(sc->bge_cdata.bge_status_tag, 3906 sc->bge_cdata.bge_status_map, 3907 BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE); 3908 3909 /* Note link event. It will be processed by POLL_AND_CHECK_STATUS. */ 3910 if (statusword & BGE_STATFLAG_LINKSTATE_CHANGED) 3911 sc->bge_link_evt++; 3912 3913 if (cmd == POLL_AND_CHECK_STATUS) 3914 if ((sc->bge_asicrev == BGE_ASICREV_BCM5700 && 3915 sc->bge_chipid != BGE_CHIPID_BCM5700_B2) || 3916 sc->bge_link_evt || (sc->bge_flags & BGE_FLAG_TBI)) 3917 bge_link_upd(sc); 3918 3919 sc->rxcycles = count; 3920 rx_npkts = bge_rxeof(sc, rx_prod, 1); 3921 if (!(ifp->if_drv_flags & IFF_DRV_RUNNING)) { 3922 BGE_UNLOCK(sc); 3923 return (rx_npkts); 3924 } 3925 bge_txeof(sc, tx_cons); 3926 if (!IFQ_DRV_IS_EMPTY(&ifp->if_snd)) 3927 bge_start_locked(ifp); 3928 3929 BGE_UNLOCK(sc); 3930 return (rx_npkts); 3931 } 3932 #endif /* DEVICE_POLLING */ 3933 3934 static int 3935 bge_msi_intr(void *arg) 3936 { 3937 struct bge_softc *sc; 3938 3939 sc = (struct bge_softc *)arg; 3940 /* 3941 * This interrupt is not shared and controller already 3942 * disabled further interrupt. 3943 */ 3944 taskqueue_enqueue(sc->bge_tq, &sc->bge_intr_task); 3945 return (FILTER_HANDLED); 3946 } 3947 3948 static void 3949 bge_intr_task(void *arg, int pending) 3950 { 3951 struct bge_softc *sc; 3952 struct ifnet *ifp; 3953 uint32_t status, status_tag; 3954 uint16_t rx_prod, tx_cons; 3955 3956 sc = (struct bge_softc *)arg; 3957 ifp = sc->bge_ifp; 3958 3959 BGE_LOCK(sc); 3960 if ((ifp->if_drv_flags & IFF_DRV_RUNNING) == 0) { 3961 BGE_UNLOCK(sc); 3962 return; 3963 } 3964 3965 /* Get updated status block. */ 3966 bus_dmamap_sync(sc->bge_cdata.bge_status_tag, 3967 sc->bge_cdata.bge_status_map, 3968 BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE); 3969 3970 /* Save producer/consumer indexess. */ 3971 rx_prod = sc->bge_ldata.bge_status_block->bge_idx[0].bge_rx_prod_idx; 3972 tx_cons = sc->bge_ldata.bge_status_block->bge_idx[0].bge_tx_cons_idx; 3973 status = sc->bge_ldata.bge_status_block->bge_status; 3974 status_tag = sc->bge_ldata.bge_status_block->bge_status_tag << 24; 3975 sc->bge_ldata.bge_status_block->bge_status = 0; 3976 bus_dmamap_sync(sc->bge_cdata.bge_status_tag, 3977 sc->bge_cdata.bge_status_map, 3978 BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE); 3979 if ((sc->bge_flags & BGE_FLAG_TAGGED_STATUS) == 0) 3980 status_tag = 0; 3981 3982 if ((status & BGE_STATFLAG_LINKSTATE_CHANGED) != 0) 3983 bge_link_upd(sc); 3984 3985 /* Let controller work. */ 3986 bge_writembx(sc, BGE_MBX_IRQ0_LO, status_tag); 3987 3988 if (ifp->if_drv_flags & IFF_DRV_RUNNING && 3989 sc->bge_rx_saved_considx != rx_prod) { 3990 /* Check RX return ring producer/consumer. */ 3991 BGE_UNLOCK(sc); 3992 bge_rxeof(sc, rx_prod, 0); 3993 BGE_LOCK(sc); 3994 } 3995 if (ifp->if_drv_flags & IFF_DRV_RUNNING) { 3996 /* Check TX ring producer/consumer. */ 3997 bge_txeof(sc, tx_cons); 3998 if (!IFQ_DRV_IS_EMPTY(&ifp->if_snd)) 3999 bge_start_locked(ifp); 4000 } 4001 BGE_UNLOCK(sc); 4002 } 4003 4004 static void 4005 bge_intr(void *xsc) 4006 { 4007 struct bge_softc *sc; 4008 struct ifnet *ifp; 4009 uint32_t statusword; 4010 uint16_t rx_prod, tx_cons; 4011 4012 sc = xsc; 4013 4014 BGE_LOCK(sc); 4015 4016 ifp = sc->bge_ifp; 4017 4018 #ifdef DEVICE_POLLING 4019 if (ifp->if_capenable & IFCAP_POLLING) { 4020 BGE_UNLOCK(sc); 4021 return; 4022 } 4023 #endif 4024 4025 /* 4026 * Ack the interrupt by writing something to BGE_MBX_IRQ0_LO. Don't 4027 * disable interrupts by writing nonzero like we used to, since with 4028 * our current organization this just gives complications and 4029 * pessimizations for re-enabling interrupts. We used to have races 4030 * instead of the necessary complications. Disabling interrupts 4031 * would just reduce the chance of a status update while we are 4032 * running (by switching to the interrupt-mode coalescence 4033 * parameters), but this chance is already very low so it is more 4034 * efficient to get another interrupt than prevent it. 4035 * 4036 * We do the ack first to ensure another interrupt if there is a 4037 * status update after the ack. We don't check for the status 4038 * changing later because it is more efficient to get another 4039 * interrupt than prevent it, not quite as above (not checking is 4040 * a smaller optimization than not toggling the interrupt enable, 4041 * since checking doesn't involve PCI accesses and toggling require 4042 * the status check). So toggling would probably be a pessimization 4043 * even with MSI. It would only be needed for using a task queue. 4044 */ 4045 bge_writembx(sc, BGE_MBX_IRQ0_LO, 0); 4046 4047 /* 4048 * Do the mandatory PCI flush as well as get the link status. 4049 */ 4050 statusword = CSR_READ_4(sc, BGE_MAC_STS) & BGE_MACSTAT_LINK_CHANGED; 4051 4052 /* Make sure the descriptor ring indexes are coherent. */ 4053 bus_dmamap_sync(sc->bge_cdata.bge_status_tag, 4054 sc->bge_cdata.bge_status_map, 4055 BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE); 4056 rx_prod = sc->bge_ldata.bge_status_block->bge_idx[0].bge_rx_prod_idx; 4057 tx_cons = sc->bge_ldata.bge_status_block->bge_idx[0].bge_tx_cons_idx; 4058 sc->bge_ldata.bge_status_block->bge_status = 0; 4059 bus_dmamap_sync(sc->bge_cdata.bge_status_tag, 4060 sc->bge_cdata.bge_status_map, 4061 BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE); 4062 4063 if ((sc->bge_asicrev == BGE_ASICREV_BCM5700 && 4064 sc->bge_chipid != BGE_CHIPID_BCM5700_B2) || 4065 statusword || sc->bge_link_evt) 4066 bge_link_upd(sc); 4067 4068 if (ifp->if_drv_flags & IFF_DRV_RUNNING) { 4069 /* Check RX return ring producer/consumer. */ 4070 bge_rxeof(sc, rx_prod, 1); 4071 } 4072 4073 if (ifp->if_drv_flags & IFF_DRV_RUNNING) { 4074 /* Check TX ring producer/consumer. */ 4075 bge_txeof(sc, tx_cons); 4076 } 4077 4078 if (ifp->if_drv_flags & IFF_DRV_RUNNING && 4079 !IFQ_DRV_IS_EMPTY(&ifp->if_snd)) 4080 bge_start_locked(ifp); 4081 4082 BGE_UNLOCK(sc); 4083 } 4084 4085 static void 4086 bge_asf_driver_up(struct bge_softc *sc) 4087 { 4088 if (sc->bge_asf_mode & ASF_STACKUP) { 4089 /* Send ASF heartbeat aprox. every 2s */ 4090 if (sc->bge_asf_count) 4091 sc->bge_asf_count --; 4092 else { 4093 sc->bge_asf_count = 2; 4094 bge_writemem_ind(sc, BGE_SOFTWARE_GENCOMM_FW, 4095 BGE_FW_DRV_ALIVE); 4096 bge_writemem_ind(sc, BGE_SOFTWARE_GENNCOMM_FW_LEN, 4); 4097 bge_writemem_ind(sc, BGE_SOFTWARE_GENNCOMM_FW_DATA, 3); 4098 CSR_WRITE_4(sc, BGE_CPU_EVENT, 4099 CSR_READ_4(sc, BGE_CPU_EVENT) | (1 << 14)); 4100 } 4101 } 4102 } 4103 4104 static void 4105 bge_tick(void *xsc) 4106 { 4107 struct bge_softc *sc = xsc; 4108 struct mii_data *mii = NULL; 4109 4110 BGE_LOCK_ASSERT(sc); 4111 4112 /* Synchronize with possible callout reset/stop. */ 4113 if (callout_pending(&sc->bge_stat_ch) || 4114 !callout_active(&sc->bge_stat_ch)) 4115 return; 4116 4117 if (BGE_IS_5705_PLUS(sc)) 4118 bge_stats_update_regs(sc); 4119 else 4120 bge_stats_update(sc); 4121 4122 if ((sc->bge_flags & BGE_FLAG_TBI) == 0) { 4123 mii = device_get_softc(sc->bge_miibus); 4124 /* 4125 * Do not touch PHY if we have link up. This could break 4126 * IPMI/ASF mode or produce extra input errors 4127 * (extra errors was reported for bcm5701 & bcm5704). 4128 */ 4129 if (!sc->bge_link) 4130 mii_tick(mii); 4131 } else { 4132 /* 4133 * Since in TBI mode auto-polling can't be used we should poll 4134 * link status manually. Here we register pending link event 4135 * and trigger interrupt. 4136 */ 4137 #ifdef DEVICE_POLLING 4138 /* In polling mode we poll link state in bge_poll(). */ 4139 if (!(sc->bge_ifp->if_capenable & IFCAP_POLLING)) 4140 #endif 4141 { 4142 sc->bge_link_evt++; 4143 if (sc->bge_asicrev == BGE_ASICREV_BCM5700 || 4144 sc->bge_flags & BGE_FLAG_5788) 4145 BGE_SETBIT(sc, BGE_MISC_LOCAL_CTL, BGE_MLC_INTR_SET); 4146 else 4147 BGE_SETBIT(sc, BGE_HCC_MODE, BGE_HCCMODE_COAL_NOW); 4148 } 4149 } 4150 4151 bge_asf_driver_up(sc); 4152 bge_watchdog(sc); 4153 4154 callout_reset(&sc->bge_stat_ch, hz, bge_tick, sc); 4155 } 4156 4157 static void 4158 bge_stats_update_regs(struct bge_softc *sc) 4159 { 4160 struct ifnet *ifp; 4161 struct bge_mac_stats *stats; 4162 4163 ifp = sc->bge_ifp; 4164 stats = &sc->bge_mac_stats; 4165 4166 stats->ifHCOutOctets += 4167 CSR_READ_4(sc, BGE_TX_MAC_STATS_OCTETS); 4168 stats->etherStatsCollisions += 4169 CSR_READ_4(sc, BGE_TX_MAC_STATS_COLLS); 4170 stats->outXonSent += 4171 CSR_READ_4(sc, BGE_TX_MAC_STATS_XON_SENT); 4172 stats->outXoffSent += 4173 CSR_READ_4(sc, BGE_TX_MAC_STATS_XOFF_SENT); 4174 stats->dot3StatsInternalMacTransmitErrors += 4175 CSR_READ_4(sc, BGE_TX_MAC_STATS_ERRORS); 4176 stats->dot3StatsSingleCollisionFrames += 4177 CSR_READ_4(sc, BGE_TX_MAC_STATS_SINGLE_COLL); 4178 stats->dot3StatsMultipleCollisionFrames += 4179 CSR_READ_4(sc, BGE_TX_MAC_STATS_MULTI_COLL); 4180 stats->dot3StatsDeferredTransmissions += 4181 CSR_READ_4(sc, BGE_TX_MAC_STATS_DEFERRED); 4182 stats->dot3StatsExcessiveCollisions += 4183 CSR_READ_4(sc, BGE_TX_MAC_STATS_EXCESS_COLL); 4184 stats->dot3StatsLateCollisions += 4185 CSR_READ_4(sc, BGE_TX_MAC_STATS_LATE_COLL); 4186 stats->ifHCOutUcastPkts += 4187 CSR_READ_4(sc, BGE_TX_MAC_STATS_UCAST); 4188 stats->ifHCOutMulticastPkts += 4189 CSR_READ_4(sc, BGE_TX_MAC_STATS_MCAST); 4190 stats->ifHCOutBroadcastPkts += 4191 CSR_READ_4(sc, BGE_TX_MAC_STATS_BCAST); 4192 4193 stats->ifHCInOctets += 4194 CSR_READ_4(sc, BGE_RX_MAC_STATS_OCTESTS); 4195 stats->etherStatsFragments += 4196 CSR_READ_4(sc, BGE_RX_MAC_STATS_FRAGMENTS); 4197 stats->ifHCInUcastPkts += 4198 CSR_READ_4(sc, BGE_RX_MAC_STATS_UCAST); 4199 stats->ifHCInMulticastPkts += 4200 CSR_READ_4(sc, BGE_RX_MAC_STATS_MCAST); 4201 stats->ifHCInBroadcastPkts += 4202 CSR_READ_4(sc, BGE_RX_MAC_STATS_BCAST); 4203 stats->dot3StatsFCSErrors += 4204 CSR_READ_4(sc, BGE_RX_MAC_STATS_FCS_ERRORS); 4205 stats->dot3StatsAlignmentErrors += 4206 CSR_READ_4(sc, BGE_RX_MAC_STATS_ALGIN_ERRORS); 4207 stats->xonPauseFramesReceived += 4208 CSR_READ_4(sc, BGE_RX_MAC_STATS_XON_RCVD); 4209 stats->xoffPauseFramesReceived += 4210 CSR_READ_4(sc, BGE_RX_MAC_STATS_XOFF_RCVD); 4211 stats->macControlFramesReceived += 4212 CSR_READ_4(sc, BGE_RX_MAC_STATS_CTRL_RCVD); 4213 stats->xoffStateEntered += 4214 CSR_READ_4(sc, BGE_RX_MAC_STATS_XOFF_ENTERED); 4215 stats->dot3StatsFramesTooLong += 4216 CSR_READ_4(sc, BGE_RX_MAC_STATS_FRAME_TOO_LONG); 4217 stats->etherStatsJabbers += 4218 CSR_READ_4(sc, BGE_RX_MAC_STATS_JABBERS); 4219 stats->etherStatsUndersizePkts += 4220 CSR_READ_4(sc, BGE_RX_MAC_STATS_UNDERSIZE); 4221 4222 stats->FramesDroppedDueToFilters += 4223 CSR_READ_4(sc, BGE_RXLP_LOCSTAT_FILTDROP); 4224 stats->DmaWriteQueueFull += 4225 CSR_READ_4(sc, BGE_RXLP_LOCSTAT_DMA_WRQ_FULL); 4226 stats->DmaWriteHighPriQueueFull += 4227 CSR_READ_4(sc, BGE_RXLP_LOCSTAT_DMA_HPWRQ_FULL); 4228 stats->NoMoreRxBDs += 4229 CSR_READ_4(sc, BGE_RXLP_LOCSTAT_OUT_OF_BDS); 4230 stats->InputDiscards += 4231 CSR_READ_4(sc, BGE_RXLP_LOCSTAT_IFIN_DROPS); 4232 stats->InputErrors += 4233 CSR_READ_4(sc, BGE_RXLP_LOCSTAT_IFIN_ERRORS); 4234 stats->RecvThresholdHit += 4235 CSR_READ_4(sc, BGE_RXLP_LOCSTAT_RXTHRESH_HIT); 4236 4237 ifp->if_collisions = (u_long)stats->etherStatsCollisions; 4238 ifp->if_ierrors = (u_long)(stats->NoMoreRxBDs + stats->InputDiscards + 4239 stats->InputErrors); 4240 } 4241 4242 static void 4243 bge_stats_clear_regs(struct bge_softc *sc) 4244 { 4245 4246 CSR_READ_4(sc, BGE_TX_MAC_STATS_OCTETS); 4247 CSR_READ_4(sc, BGE_TX_MAC_STATS_COLLS); 4248 CSR_READ_4(sc, BGE_TX_MAC_STATS_XON_SENT); 4249 CSR_READ_4(sc, BGE_TX_MAC_STATS_XOFF_SENT); 4250 CSR_READ_4(sc, BGE_TX_MAC_STATS_ERRORS); 4251 CSR_READ_4(sc, BGE_TX_MAC_STATS_SINGLE_COLL); 4252 CSR_READ_4(sc, BGE_TX_MAC_STATS_MULTI_COLL); 4253 CSR_READ_4(sc, BGE_TX_MAC_STATS_DEFERRED); 4254 CSR_READ_4(sc, BGE_TX_MAC_STATS_EXCESS_COLL); 4255 CSR_READ_4(sc, BGE_TX_MAC_STATS_LATE_COLL); 4256 CSR_READ_4(sc, BGE_TX_MAC_STATS_UCAST); 4257 CSR_READ_4(sc, BGE_TX_MAC_STATS_MCAST); 4258 CSR_READ_4(sc, BGE_TX_MAC_STATS_BCAST); 4259 4260 CSR_READ_4(sc, BGE_RX_MAC_STATS_OCTESTS); 4261 CSR_READ_4(sc, BGE_RX_MAC_STATS_FRAGMENTS); 4262 CSR_READ_4(sc, BGE_RX_MAC_STATS_UCAST); 4263 CSR_READ_4(sc, BGE_RX_MAC_STATS_MCAST); 4264 CSR_READ_4(sc, BGE_RX_MAC_STATS_BCAST); 4265 CSR_READ_4(sc, BGE_RX_MAC_STATS_FCS_ERRORS); 4266 CSR_READ_4(sc, BGE_RX_MAC_STATS_ALGIN_ERRORS); 4267 CSR_READ_4(sc, BGE_RX_MAC_STATS_XON_RCVD); 4268 CSR_READ_4(sc, BGE_RX_MAC_STATS_XOFF_RCVD); 4269 CSR_READ_4(sc, BGE_RX_MAC_STATS_CTRL_RCVD); 4270 CSR_READ_4(sc, BGE_RX_MAC_STATS_XOFF_ENTERED); 4271 CSR_READ_4(sc, BGE_RX_MAC_STATS_FRAME_TOO_LONG); 4272 CSR_READ_4(sc, BGE_RX_MAC_STATS_JABBERS); 4273 CSR_READ_4(sc, BGE_RX_MAC_STATS_UNDERSIZE); 4274 4275 CSR_READ_4(sc, BGE_RXLP_LOCSTAT_FILTDROP); 4276 CSR_READ_4(sc, BGE_RXLP_LOCSTAT_DMA_WRQ_FULL); 4277 CSR_READ_4(sc, BGE_RXLP_LOCSTAT_DMA_HPWRQ_FULL); 4278 CSR_READ_4(sc, BGE_RXLP_LOCSTAT_OUT_OF_BDS); 4279 CSR_READ_4(sc, BGE_RXLP_LOCSTAT_IFIN_DROPS); 4280 CSR_READ_4(sc, BGE_RXLP_LOCSTAT_IFIN_ERRORS); 4281 CSR_READ_4(sc, BGE_RXLP_LOCSTAT_RXTHRESH_HIT); 4282 } 4283 4284 static void 4285 bge_stats_update(struct bge_softc *sc) 4286 { 4287 struct ifnet *ifp; 4288 bus_size_t stats; 4289 uint32_t cnt; /* current register value */ 4290 4291 ifp = sc->bge_ifp; 4292 4293 stats = BGE_MEMWIN_START + BGE_STATS_BLOCK; 4294 4295 #define READ_STAT(sc, stats, stat) \ 4296 CSR_READ_4(sc, stats + offsetof(struct bge_stats, stat)) 4297 4298 cnt = READ_STAT(sc, stats, txstats.etherStatsCollisions.bge_addr_lo); 4299 ifp->if_collisions += (uint32_t)(cnt - sc->bge_tx_collisions); 4300 sc->bge_tx_collisions = cnt; 4301 4302 cnt = READ_STAT(sc, stats, ifInDiscards.bge_addr_lo); 4303 ifp->if_ierrors += (uint32_t)(cnt - sc->bge_rx_discards); 4304 sc->bge_rx_discards = cnt; 4305 4306 cnt = READ_STAT(sc, stats, txstats.ifOutDiscards.bge_addr_lo); 4307 ifp->if_oerrors += (uint32_t)(cnt - sc->bge_tx_discards); 4308 sc->bge_tx_discards = cnt; 4309 4310 #undef READ_STAT 4311 } 4312 4313 /* 4314 * Pad outbound frame to ETHER_MIN_NOPAD for an unusual reason. 4315 * The bge hardware will pad out Tx runts to ETHER_MIN_NOPAD, 4316 * but when such padded frames employ the bge IP/TCP checksum offload, 4317 * the hardware checksum assist gives incorrect results (possibly 4318 * from incorporating its own padding into the UDP/TCP checksum; who knows). 4319 * If we pad such runts with zeros, the onboard checksum comes out correct. 4320 */ 4321 static __inline int 4322 bge_cksum_pad(struct mbuf *m) 4323 { 4324 int padlen = ETHER_MIN_NOPAD - m->m_pkthdr.len; 4325 struct mbuf *last; 4326 4327 /* If there's only the packet-header and we can pad there, use it. */ 4328 if (m->m_pkthdr.len == m->m_len && M_WRITABLE(m) && 4329 M_TRAILINGSPACE(m) >= padlen) { 4330 last = m; 4331 } else { 4332 /* 4333 * Walk packet chain to find last mbuf. We will either 4334 * pad there, or append a new mbuf and pad it. 4335 */ 4336 for (last = m; last->m_next != NULL; last = last->m_next); 4337 if (!(M_WRITABLE(last) && M_TRAILINGSPACE(last) >= padlen)) { 4338 /* Allocate new empty mbuf, pad it. Compact later. */ 4339 struct mbuf *n; 4340 4341 MGET(n, M_DONTWAIT, MT_DATA); 4342 if (n == NULL) 4343 return (ENOBUFS); 4344 n->m_len = 0; 4345 last->m_next = n; 4346 last = n; 4347 } 4348 } 4349 4350 /* Now zero the pad area, to avoid the bge cksum-assist bug. */ 4351 memset(mtod(last, caddr_t) + last->m_len, 0, padlen); 4352 last->m_len += padlen; 4353 m->m_pkthdr.len += padlen; 4354 4355 return (0); 4356 } 4357 4358 static struct mbuf * 4359 bge_check_short_dma(struct mbuf *m) 4360 { 4361 struct mbuf *n; 4362 int found; 4363 4364 /* 4365 * If device receive two back-to-back send BDs with less than 4366 * or equal to 8 total bytes then the device may hang. The two 4367 * back-to-back send BDs must in the same frame for this failure 4368 * to occur. Scan mbuf chains and see whether two back-to-back 4369 * send BDs are there. If this is the case, allocate new mbuf 4370 * and copy the frame to workaround the silicon bug. 4371 */ 4372 for (n = m, found = 0; n != NULL; n = n->m_next) { 4373 if (n->m_len < 8) { 4374 found++; 4375 if (found > 1) 4376 break; 4377 continue; 4378 } 4379 found = 0; 4380 } 4381 4382 if (found > 1) { 4383 n = m_defrag(m, M_DONTWAIT); 4384 if (n == NULL) 4385 m_freem(m); 4386 } else 4387 n = m; 4388 return (n); 4389 } 4390 4391 static struct mbuf * 4392 bge_setup_tso(struct bge_softc *sc, struct mbuf *m, uint16_t *mss, 4393 uint16_t *flags) 4394 { 4395 struct ip *ip; 4396 struct tcphdr *tcp; 4397 struct mbuf *n; 4398 uint16_t hlen; 4399 uint32_t poff; 4400 4401 if (M_WRITABLE(m) == 0) { 4402 /* Get a writable copy. */ 4403 n = m_dup(m, M_DONTWAIT); 4404 m_freem(m); 4405 if (n == NULL) 4406 return (NULL); 4407 m = n; 4408 } 4409 m = m_pullup(m, sizeof(struct ether_header) + sizeof(struct ip)); 4410 if (m == NULL) 4411 return (NULL); 4412 ip = (struct ip *)(mtod(m, char *) + sizeof(struct ether_header)); 4413 poff = sizeof(struct ether_header) + (ip->ip_hl << 2); 4414 m = m_pullup(m, poff + sizeof(struct tcphdr)); 4415 if (m == NULL) 4416 return (NULL); 4417 tcp = (struct tcphdr *)(mtod(m, char *) + poff); 4418 m = m_pullup(m, poff + (tcp->th_off << 2)); 4419 if (m == NULL) 4420 return (NULL); 4421 /* 4422 * It seems controller doesn't modify IP length and TCP pseudo 4423 * checksum. These checksum computed by upper stack should be 0. 4424 */ 4425 *mss = m->m_pkthdr.tso_segsz; 4426 ip = (struct ip *)(mtod(m, char *) + sizeof(struct ether_header)); 4427 ip->ip_sum = 0; 4428 ip->ip_len = htons(*mss + (ip->ip_hl << 2) + (tcp->th_off << 2)); 4429 /* Clear pseudo checksum computed by TCP stack. */ 4430 tcp = (struct tcphdr *)(mtod(m, char *) + poff); 4431 tcp->th_sum = 0; 4432 /* 4433 * Broadcom controllers uses different descriptor format for 4434 * TSO depending on ASIC revision. Due to TSO-capable firmware 4435 * license issue and lower performance of firmware based TSO 4436 * we only support hardware based TSO. 4437 */ 4438 /* Calculate header length, incl. TCP/IP options, in 32 bit units. */ 4439 hlen = ((ip->ip_hl << 2) + (tcp->th_off << 2)) >> 2; 4440 if (sc->bge_flags & BGE_FLAG_TSO3) { 4441 /* 4442 * For BCM5717 and newer controllers, hardware based TSO 4443 * uses the 14 lower bits of the bge_mss field to store the 4444 * MSS and the upper 2 bits to store the lowest 2 bits of 4445 * the IP/TCP header length. The upper 6 bits of the header 4446 * length are stored in the bge_flags[14:10,4] field. Jumbo 4447 * frames are supported. 4448 */ 4449 *mss |= ((hlen & 0x3) << 14); 4450 *flags |= ((hlen & 0xF8) << 7) | ((hlen & 0x4) << 2); 4451 } else { 4452 /* 4453 * For BCM5755 and newer controllers, hardware based TSO uses 4454 * the lower 11 bits to store the MSS and the upper 5 bits to 4455 * store the IP/TCP header length. Jumbo frames are not 4456 * supported. 4457 */ 4458 *mss |= (hlen << 11); 4459 } 4460 return (m); 4461 } 4462 4463 /* 4464 * Encapsulate an mbuf chain in the tx ring by coupling the mbuf data 4465 * pointers to descriptors. 4466 */ 4467 static int 4468 bge_encap(struct bge_softc *sc, struct mbuf **m_head, uint32_t *txidx) 4469 { 4470 bus_dma_segment_t segs[BGE_NSEG_NEW]; 4471 bus_dmamap_t map; 4472 struct bge_tx_bd *d; 4473 struct mbuf *m = *m_head; 4474 uint32_t idx = *txidx; 4475 uint16_t csum_flags, mss, vlan_tag; 4476 int nsegs, i, error; 4477 4478 csum_flags = 0; 4479 mss = 0; 4480 vlan_tag = 0; 4481 if ((sc->bge_flags & BGE_FLAG_SHORT_DMA_BUG) != 0 && 4482 m->m_next != NULL) { 4483 *m_head = bge_check_short_dma(m); 4484 if (*m_head == NULL) 4485 return (ENOBUFS); 4486 m = *m_head; 4487 } 4488 if ((m->m_pkthdr.csum_flags & CSUM_TSO) != 0) { 4489 *m_head = m = bge_setup_tso(sc, m, &mss, &csum_flags); 4490 if (*m_head == NULL) 4491 return (ENOBUFS); 4492 csum_flags |= BGE_TXBDFLAG_CPU_PRE_DMA | 4493 BGE_TXBDFLAG_CPU_POST_DMA; 4494 } else if ((m->m_pkthdr.csum_flags & sc->bge_csum_features) != 0) { 4495 if (m->m_pkthdr.csum_flags & CSUM_IP) 4496 csum_flags |= BGE_TXBDFLAG_IP_CSUM; 4497 if (m->m_pkthdr.csum_flags & (CSUM_TCP | CSUM_UDP)) { 4498 csum_flags |= BGE_TXBDFLAG_TCP_UDP_CSUM; 4499 if (m->m_pkthdr.len < ETHER_MIN_NOPAD && 4500 (error = bge_cksum_pad(m)) != 0) { 4501 m_freem(m); 4502 *m_head = NULL; 4503 return (error); 4504 } 4505 } 4506 if (m->m_flags & M_LASTFRAG) 4507 csum_flags |= BGE_TXBDFLAG_IP_FRAG_END; 4508 else if (m->m_flags & M_FRAG) 4509 csum_flags |= BGE_TXBDFLAG_IP_FRAG; 4510 } 4511 4512 if ((m->m_pkthdr.csum_flags & CSUM_TSO) == 0) { 4513 if (sc->bge_flags & BGE_FLAG_JUMBO_FRAME && 4514 m->m_pkthdr.len > ETHER_MAX_LEN) 4515 csum_flags |= BGE_TXBDFLAG_JUMBO_FRAME; 4516 if (sc->bge_forced_collapse > 0 && 4517 (sc->bge_flags & BGE_FLAG_PCIE) != 0 && m->m_next != NULL) { 4518 /* 4519 * Forcedly collapse mbuf chains to overcome hardware 4520 * limitation which only support a single outstanding 4521 * DMA read operation. 4522 */ 4523 if (sc->bge_forced_collapse == 1) 4524 m = m_defrag(m, M_DONTWAIT); 4525 else 4526 m = m_collapse(m, M_DONTWAIT, 4527 sc->bge_forced_collapse); 4528 if (m == NULL) 4529 m = *m_head; 4530 *m_head = m; 4531 } 4532 } 4533 4534 map = sc->bge_cdata.bge_tx_dmamap[idx]; 4535 error = bus_dmamap_load_mbuf_sg(sc->bge_cdata.bge_tx_mtag, map, m, segs, 4536 &nsegs, BUS_DMA_NOWAIT); 4537 if (error == EFBIG) { 4538 m = m_collapse(m, M_DONTWAIT, BGE_NSEG_NEW); 4539 if (m == NULL) { 4540 m_freem(*m_head); 4541 *m_head = NULL; 4542 return (ENOBUFS); 4543 } 4544 *m_head = m; 4545 error = bus_dmamap_load_mbuf_sg(sc->bge_cdata.bge_tx_mtag, map, 4546 m, segs, &nsegs, BUS_DMA_NOWAIT); 4547 if (error) { 4548 m_freem(m); 4549 *m_head = NULL; 4550 return (error); 4551 } 4552 } else if (error != 0) 4553 return (error); 4554 4555 /* Check if we have enough free send BDs. */ 4556 if (sc->bge_txcnt + nsegs >= BGE_TX_RING_CNT) { 4557 bus_dmamap_unload(sc->bge_cdata.bge_tx_mtag, map); 4558 return (ENOBUFS); 4559 } 4560 4561 bus_dmamap_sync(sc->bge_cdata.bge_tx_mtag, map, BUS_DMASYNC_PREWRITE); 4562 4563 if (m->m_flags & M_VLANTAG) { 4564 csum_flags |= BGE_TXBDFLAG_VLAN_TAG; 4565 vlan_tag = m->m_pkthdr.ether_vtag; 4566 } 4567 for (i = 0; ; i++) { 4568 d = &sc->bge_ldata.bge_tx_ring[idx]; 4569 d->bge_addr.bge_addr_lo = BGE_ADDR_LO(segs[i].ds_addr); 4570 d->bge_addr.bge_addr_hi = BGE_ADDR_HI(segs[i].ds_addr); 4571 d->bge_len = segs[i].ds_len; 4572 d->bge_flags = csum_flags; 4573 d->bge_vlan_tag = vlan_tag; 4574 d->bge_mss = mss; 4575 if (i == nsegs - 1) 4576 break; 4577 BGE_INC(idx, BGE_TX_RING_CNT); 4578 } 4579 4580 /* Mark the last segment as end of packet... */ 4581 d->bge_flags |= BGE_TXBDFLAG_END; 4582 4583 /* 4584 * Insure that the map for this transmission 4585 * is placed at the array index of the last descriptor 4586 * in this chain. 4587 */ 4588 sc->bge_cdata.bge_tx_dmamap[*txidx] = sc->bge_cdata.bge_tx_dmamap[idx]; 4589 sc->bge_cdata.bge_tx_dmamap[idx] = map; 4590 sc->bge_cdata.bge_tx_chain[idx] = m; 4591 sc->bge_txcnt += nsegs; 4592 4593 BGE_INC(idx, BGE_TX_RING_CNT); 4594 *txidx = idx; 4595 4596 return (0); 4597 } 4598 4599 /* 4600 * Main transmit routine. To avoid having to do mbuf copies, we put pointers 4601 * to the mbuf data regions directly in the transmit descriptors. 4602 */ 4603 static void 4604 bge_start_locked(struct ifnet *ifp) 4605 { 4606 struct bge_softc *sc; 4607 struct mbuf *m_head; 4608 uint32_t prodidx; 4609 int count; 4610 4611 sc = ifp->if_softc; 4612 BGE_LOCK_ASSERT(sc); 4613 4614 if (!sc->bge_link || 4615 (ifp->if_drv_flags & (IFF_DRV_RUNNING | IFF_DRV_OACTIVE)) != 4616 IFF_DRV_RUNNING) 4617 return; 4618 4619 prodidx = sc->bge_tx_prodidx; 4620 4621 for (count = 0; !IFQ_DRV_IS_EMPTY(&ifp->if_snd);) { 4622 if (sc->bge_txcnt > BGE_TX_RING_CNT - 16) { 4623 ifp->if_drv_flags |= IFF_DRV_OACTIVE; 4624 break; 4625 } 4626 IFQ_DRV_DEQUEUE(&ifp->if_snd, m_head); 4627 if (m_head == NULL) 4628 break; 4629 4630 /* 4631 * XXX 4632 * The code inside the if() block is never reached since we 4633 * must mark CSUM_IP_FRAGS in our if_hwassist to start getting 4634 * requests to checksum TCP/UDP in a fragmented packet. 4635 * 4636 * XXX 4637 * safety overkill. If this is a fragmented packet chain 4638 * with delayed TCP/UDP checksums, then only encapsulate 4639 * it if we have enough descriptors to handle the entire 4640 * chain at once. 4641 * (paranoia -- may not actually be needed) 4642 */ 4643 if (m_head->m_flags & M_FIRSTFRAG && 4644 m_head->m_pkthdr.csum_flags & (CSUM_DELAY_DATA)) { 4645 if ((BGE_TX_RING_CNT - sc->bge_txcnt) < 4646 m_head->m_pkthdr.csum_data + 16) { 4647 IFQ_DRV_PREPEND(&ifp->if_snd, m_head); 4648 ifp->if_drv_flags |= IFF_DRV_OACTIVE; 4649 break; 4650 } 4651 } 4652 4653 /* 4654 * Pack the data into the transmit ring. If we 4655 * don't have room, set the OACTIVE flag and wait 4656 * for the NIC to drain the ring. 4657 */ 4658 if (bge_encap(sc, &m_head, &prodidx)) { 4659 if (m_head == NULL) 4660 break; 4661 IFQ_DRV_PREPEND(&ifp->if_snd, m_head); 4662 ifp->if_drv_flags |= IFF_DRV_OACTIVE; 4663 break; 4664 } 4665 ++count; 4666 4667 /* 4668 * If there's a BPF listener, bounce a copy of this frame 4669 * to him. 4670 */ 4671 #ifdef ETHER_BPF_MTAP 4672 ETHER_BPF_MTAP(ifp, m_head); 4673 #else 4674 BPF_MTAP(ifp, m_head); 4675 #endif 4676 } 4677 4678 if (count > 0) { 4679 bus_dmamap_sync(sc->bge_cdata.bge_tx_ring_tag, 4680 sc->bge_cdata.bge_tx_ring_map, BUS_DMASYNC_PREWRITE); 4681 /* Transmit. */ 4682 bge_writembx(sc, BGE_MBX_TX_HOST_PROD0_LO, prodidx); 4683 /* 5700 b2 errata */ 4684 if (sc->bge_chiprev == BGE_CHIPREV_5700_BX) 4685 bge_writembx(sc, BGE_MBX_TX_HOST_PROD0_LO, prodidx); 4686 4687 sc->bge_tx_prodidx = prodidx; 4688 4689 /* 4690 * Set a timeout in case the chip goes out to lunch. 4691 */ 4692 sc->bge_timer = 5; 4693 } 4694 } 4695 4696 /* 4697 * Main transmit routine. To avoid having to do mbuf copies, we put pointers 4698 * to the mbuf data regions directly in the transmit descriptors. 4699 */ 4700 static void 4701 bge_start(struct ifnet *ifp) 4702 { 4703 struct bge_softc *sc; 4704 4705 sc = ifp->if_softc; 4706 BGE_LOCK(sc); 4707 bge_start_locked(ifp); 4708 BGE_UNLOCK(sc); 4709 } 4710 4711 static void 4712 bge_init_locked(struct bge_softc *sc) 4713 { 4714 struct ifnet *ifp; 4715 uint16_t *m; 4716 uint32_t mode; 4717 4718 BGE_LOCK_ASSERT(sc); 4719 4720 ifp = sc->bge_ifp; 4721 4722 if (ifp->if_drv_flags & IFF_DRV_RUNNING) 4723 return; 4724 4725 /* Cancel pending I/O and flush buffers. */ 4726 bge_stop(sc); 4727 4728 bge_stop_fw(sc); 4729 bge_sig_pre_reset(sc, BGE_RESET_START); 4730 bge_reset(sc); 4731 bge_sig_legacy(sc, BGE_RESET_START); 4732 bge_sig_post_reset(sc, BGE_RESET_START); 4733 4734 bge_chipinit(sc); 4735 4736 /* 4737 * Init the various state machines, ring 4738 * control blocks and firmware. 4739 */ 4740 if (bge_blockinit(sc)) { 4741 device_printf(sc->bge_dev, "initialization failure\n"); 4742 return; 4743 } 4744 4745 ifp = sc->bge_ifp; 4746 4747 /* Specify MTU. */ 4748 CSR_WRITE_4(sc, BGE_RX_MTU, ifp->if_mtu + 4749 ETHER_HDR_LEN + ETHER_CRC_LEN + 4750 (ifp->if_capenable & IFCAP_VLAN_MTU ? ETHER_VLAN_ENCAP_LEN : 0)); 4751 4752 /* Load our MAC address. */ 4753 m = (uint16_t *)IF_LLADDR(sc->bge_ifp); 4754 CSR_WRITE_4(sc, BGE_MAC_ADDR1_LO, htons(m[0])); 4755 CSR_WRITE_4(sc, BGE_MAC_ADDR1_HI, (htons(m[1]) << 16) | htons(m[2])); 4756 4757 /* Program promiscuous mode. */ 4758 bge_setpromisc(sc); 4759 4760 /* Program multicast filter. */ 4761 bge_setmulti(sc); 4762 4763 /* Program VLAN tag stripping. */ 4764 bge_setvlan(sc); 4765 4766 /* Override UDP checksum offloading. */ 4767 if (sc->bge_forced_udpcsum == 0) 4768 sc->bge_csum_features &= ~CSUM_UDP; 4769 else 4770 sc->bge_csum_features |= CSUM_UDP; 4771 if (ifp->if_capabilities & IFCAP_TXCSUM && 4772 ifp->if_capenable & IFCAP_TXCSUM) { 4773 ifp->if_hwassist &= ~(BGE_CSUM_FEATURES | CSUM_UDP); 4774 ifp->if_hwassist |= sc->bge_csum_features; 4775 } 4776 4777 /* Init RX ring. */ 4778 if (bge_init_rx_ring_std(sc) != 0) { 4779 device_printf(sc->bge_dev, "no memory for std Rx buffers.\n"); 4780 bge_stop(sc); 4781 return; 4782 } 4783 4784 /* 4785 * Workaround for a bug in 5705 ASIC rev A0. Poll the NIC's 4786 * memory to insure that the chip has in fact read the first 4787 * entry of the ring. 4788 */ 4789 if (sc->bge_chipid == BGE_CHIPID_BCM5705_A0) { 4790 uint32_t v, i; 4791 for (i = 0; i < 10; i++) { 4792 DELAY(20); 4793 v = bge_readmem_ind(sc, BGE_STD_RX_RINGS + 8); 4794 if (v == (MCLBYTES - ETHER_ALIGN)) 4795 break; 4796 } 4797 if (i == 10) 4798 device_printf (sc->bge_dev, 4799 "5705 A0 chip failed to load RX ring\n"); 4800 } 4801 4802 /* Init jumbo RX ring. */ 4803 if (BGE_IS_JUMBO_CAPABLE(sc) && 4804 ifp->if_mtu + ETHER_HDR_LEN + ETHER_CRC_LEN + ETHER_VLAN_ENCAP_LEN > 4805 (MCLBYTES - ETHER_ALIGN)) { 4806 if (bge_init_rx_ring_jumbo(sc) != 0) { 4807 device_printf(sc->bge_dev, 4808 "no memory for jumbo Rx buffers.\n"); 4809 bge_stop(sc); 4810 return; 4811 } 4812 } 4813 4814 /* Init our RX return ring index. */ 4815 sc->bge_rx_saved_considx = 0; 4816 4817 /* Init our RX/TX stat counters. */ 4818 sc->bge_rx_discards = sc->bge_tx_discards = sc->bge_tx_collisions = 0; 4819 4820 /* Init TX ring. */ 4821 bge_init_tx_ring(sc); 4822 4823 /* Enable TX MAC state machine lockup fix. */ 4824 mode = CSR_READ_4(sc, BGE_TX_MODE); 4825 if (BGE_IS_5755_PLUS(sc) || sc->bge_asicrev == BGE_ASICREV_BCM5906) 4826 mode |= BGE_TXMODE_MBUF_LOCKUP_FIX; 4827 /* Turn on transmitter. */ 4828 CSR_WRITE_4(sc, BGE_TX_MODE, mode | BGE_TXMODE_ENABLE); 4829 4830 /* Turn on receiver. */ 4831 BGE_SETBIT(sc, BGE_RX_MODE, BGE_RXMODE_ENABLE); 4832 4833 /* 4834 * Set the number of good frames to receive after RX MBUF 4835 * Low Watermark has been reached. After the RX MAC receives 4836 * this number of frames, it will drop subsequent incoming 4837 * frames until the MBUF High Watermark is reached. 4838 */ 4839 if (sc->bge_asicrev == BGE_ASICREV_BCM57765) 4840 CSR_WRITE_4(sc, BGE_MAX_RX_FRAME_LOWAT, 1); 4841 else 4842 CSR_WRITE_4(sc, BGE_MAX_RX_FRAME_LOWAT, 2); 4843 4844 /* Clear MAC statistics. */ 4845 if (BGE_IS_5705_PLUS(sc)) 4846 bge_stats_clear_regs(sc); 4847 4848 /* Tell firmware we're alive. */ 4849 BGE_SETBIT(sc, BGE_MODE_CTL, BGE_MODECTL_STACKUP); 4850 4851 #ifdef DEVICE_POLLING 4852 /* Disable interrupts if we are polling. */ 4853 if (ifp->if_capenable & IFCAP_POLLING) { 4854 BGE_SETBIT(sc, BGE_PCI_MISC_CTL, 4855 BGE_PCIMISCCTL_MASK_PCI_INTR); 4856 bge_writembx(sc, BGE_MBX_IRQ0_LO, 1); 4857 } else 4858 #endif 4859 4860 /* Enable host interrupts. */ 4861 { 4862 BGE_SETBIT(sc, BGE_PCI_MISC_CTL, BGE_PCIMISCCTL_CLEAR_INTA); 4863 BGE_CLRBIT(sc, BGE_PCI_MISC_CTL, BGE_PCIMISCCTL_MASK_PCI_INTR); 4864 bge_writembx(sc, BGE_MBX_IRQ0_LO, 0); 4865 } 4866 4867 bge_ifmedia_upd_locked(ifp); 4868 4869 ifp->if_drv_flags |= IFF_DRV_RUNNING; 4870 ifp->if_drv_flags &= ~IFF_DRV_OACTIVE; 4871 4872 callout_reset(&sc->bge_stat_ch, hz, bge_tick, sc); 4873 } 4874 4875 static void 4876 bge_init(void *xsc) 4877 { 4878 struct bge_softc *sc = xsc; 4879 4880 BGE_LOCK(sc); 4881 bge_init_locked(sc); 4882 BGE_UNLOCK(sc); 4883 } 4884 4885 /* 4886 * Set media options. 4887 */ 4888 static int 4889 bge_ifmedia_upd(struct ifnet *ifp) 4890 { 4891 struct bge_softc *sc = ifp->if_softc; 4892 int res; 4893 4894 BGE_LOCK(sc); 4895 res = bge_ifmedia_upd_locked(ifp); 4896 BGE_UNLOCK(sc); 4897 4898 return (res); 4899 } 4900 4901 static int 4902 bge_ifmedia_upd_locked(struct ifnet *ifp) 4903 { 4904 struct bge_softc *sc = ifp->if_softc; 4905 struct mii_data *mii; 4906 struct mii_softc *miisc; 4907 struct ifmedia *ifm; 4908 4909 BGE_LOCK_ASSERT(sc); 4910 4911 ifm = &sc->bge_ifmedia; 4912 4913 /* If this is a 1000baseX NIC, enable the TBI port. */ 4914 if (sc->bge_flags & BGE_FLAG_TBI) { 4915 if (IFM_TYPE(ifm->ifm_media) != IFM_ETHER) 4916 return (EINVAL); 4917 switch(IFM_SUBTYPE(ifm->ifm_media)) { 4918 case IFM_AUTO: 4919 /* 4920 * The BCM5704 ASIC appears to have a special 4921 * mechanism for programming the autoneg 4922 * advertisement registers in TBI mode. 4923 */ 4924 if (sc->bge_asicrev == BGE_ASICREV_BCM5704) { 4925 uint32_t sgdig; 4926 sgdig = CSR_READ_4(sc, BGE_SGDIG_STS); 4927 if (sgdig & BGE_SGDIGSTS_DONE) { 4928 CSR_WRITE_4(sc, BGE_TX_TBI_AUTONEG, 0); 4929 sgdig = CSR_READ_4(sc, BGE_SGDIG_CFG); 4930 sgdig |= BGE_SGDIGCFG_AUTO | 4931 BGE_SGDIGCFG_PAUSE_CAP | 4932 BGE_SGDIGCFG_ASYM_PAUSE; 4933 CSR_WRITE_4(sc, BGE_SGDIG_CFG, 4934 sgdig | BGE_SGDIGCFG_SEND); 4935 DELAY(5); 4936 CSR_WRITE_4(sc, BGE_SGDIG_CFG, sgdig); 4937 } 4938 } 4939 break; 4940 case IFM_1000_SX: 4941 if ((ifm->ifm_media & IFM_GMASK) == IFM_FDX) { 4942 BGE_CLRBIT(sc, BGE_MAC_MODE, 4943 BGE_MACMODE_HALF_DUPLEX); 4944 } else { 4945 BGE_SETBIT(sc, BGE_MAC_MODE, 4946 BGE_MACMODE_HALF_DUPLEX); 4947 } 4948 break; 4949 default: 4950 return (EINVAL); 4951 } 4952 return (0); 4953 } 4954 4955 sc->bge_link_evt++; 4956 mii = device_get_softc(sc->bge_miibus); 4957 LIST_FOREACH(miisc, &mii->mii_phys, mii_list) 4958 PHY_RESET(miisc); 4959 mii_mediachg(mii); 4960 4961 /* 4962 * Force an interrupt so that we will call bge_link_upd 4963 * if needed and clear any pending link state attention. 4964 * Without this we are not getting any further interrupts 4965 * for link state changes and thus will not UP the link and 4966 * not be able to send in bge_start_locked. The only 4967 * way to get things working was to receive a packet and 4968 * get an RX intr. 4969 * bge_tick should help for fiber cards and we might not 4970 * need to do this here if BGE_FLAG_TBI is set but as 4971 * we poll for fiber anyway it should not harm. 4972 */ 4973 if (sc->bge_asicrev == BGE_ASICREV_BCM5700 || 4974 sc->bge_flags & BGE_FLAG_5788) 4975 BGE_SETBIT(sc, BGE_MISC_LOCAL_CTL, BGE_MLC_INTR_SET); 4976 else 4977 BGE_SETBIT(sc, BGE_HCC_MODE, BGE_HCCMODE_COAL_NOW); 4978 4979 return (0); 4980 } 4981 4982 /* 4983 * Report current media status. 4984 */ 4985 static void 4986 bge_ifmedia_sts(struct ifnet *ifp, struct ifmediareq *ifmr) 4987 { 4988 struct bge_softc *sc = ifp->if_softc; 4989 struct mii_data *mii; 4990 4991 BGE_LOCK(sc); 4992 4993 if (sc->bge_flags & BGE_FLAG_TBI) { 4994 ifmr->ifm_status = IFM_AVALID; 4995 ifmr->ifm_active = IFM_ETHER; 4996 if (CSR_READ_4(sc, BGE_MAC_STS) & 4997 BGE_MACSTAT_TBI_PCS_SYNCHED) 4998 ifmr->ifm_status |= IFM_ACTIVE; 4999 else { 5000 ifmr->ifm_active |= IFM_NONE; 5001 BGE_UNLOCK(sc); 5002 return; 5003 } 5004 ifmr->ifm_active |= IFM_1000_SX; 5005 if (CSR_READ_4(sc, BGE_MAC_MODE) & BGE_MACMODE_HALF_DUPLEX) 5006 ifmr->ifm_active |= IFM_HDX; 5007 else 5008 ifmr->ifm_active |= IFM_FDX; 5009 BGE_UNLOCK(sc); 5010 return; 5011 } 5012 5013 mii = device_get_softc(sc->bge_miibus); 5014 mii_pollstat(mii); 5015 ifmr->ifm_active = mii->mii_media_active; 5016 ifmr->ifm_status = mii->mii_media_status; 5017 5018 BGE_UNLOCK(sc); 5019 } 5020 5021 static int 5022 bge_ioctl(struct ifnet *ifp, u_long command, caddr_t data) 5023 { 5024 struct bge_softc *sc = ifp->if_softc; 5025 struct ifreq *ifr = (struct ifreq *) data; 5026 struct mii_data *mii; 5027 int flags, mask, error = 0; 5028 5029 switch (command) { 5030 case SIOCSIFMTU: 5031 if (BGE_IS_JUMBO_CAPABLE(sc) || 5032 (sc->bge_flags & BGE_FLAG_JUMBO_STD)) { 5033 if (ifr->ifr_mtu < ETHERMIN || 5034 ifr->ifr_mtu > BGE_JUMBO_MTU) { 5035 error = EINVAL; 5036 break; 5037 } 5038 } else if (ifr->ifr_mtu < ETHERMIN || ifr->ifr_mtu > ETHERMTU) { 5039 error = EINVAL; 5040 break; 5041 } 5042 BGE_LOCK(sc); 5043 if (ifp->if_mtu != ifr->ifr_mtu) { 5044 ifp->if_mtu = ifr->ifr_mtu; 5045 if (ifp->if_drv_flags & IFF_DRV_RUNNING) { 5046 ifp->if_drv_flags &= ~IFF_DRV_RUNNING; 5047 bge_init_locked(sc); 5048 } 5049 } 5050 BGE_UNLOCK(sc); 5051 break; 5052 case SIOCSIFFLAGS: 5053 BGE_LOCK(sc); 5054 if (ifp->if_flags & IFF_UP) { 5055 /* 5056 * If only the state of the PROMISC flag changed, 5057 * then just use the 'set promisc mode' command 5058 * instead of reinitializing the entire NIC. Doing 5059 * a full re-init means reloading the firmware and 5060 * waiting for it to start up, which may take a 5061 * second or two. Similarly for ALLMULTI. 5062 */ 5063 if (ifp->if_drv_flags & IFF_DRV_RUNNING) { 5064 flags = ifp->if_flags ^ sc->bge_if_flags; 5065 if (flags & IFF_PROMISC) 5066 bge_setpromisc(sc); 5067 if (flags & IFF_ALLMULTI) 5068 bge_setmulti(sc); 5069 } else 5070 bge_init_locked(sc); 5071 } else { 5072 if (ifp->if_drv_flags & IFF_DRV_RUNNING) { 5073 bge_stop(sc); 5074 } 5075 } 5076 sc->bge_if_flags = ifp->if_flags; 5077 BGE_UNLOCK(sc); 5078 error = 0; 5079 break; 5080 case SIOCADDMULTI: 5081 case SIOCDELMULTI: 5082 if (ifp->if_drv_flags & IFF_DRV_RUNNING) { 5083 BGE_LOCK(sc); 5084 bge_setmulti(sc); 5085 BGE_UNLOCK(sc); 5086 error = 0; 5087 } 5088 break; 5089 case SIOCSIFMEDIA: 5090 case SIOCGIFMEDIA: 5091 if (sc->bge_flags & BGE_FLAG_TBI) { 5092 error = ifmedia_ioctl(ifp, ifr, 5093 &sc->bge_ifmedia, command); 5094 } else { 5095 mii = device_get_softc(sc->bge_miibus); 5096 error = ifmedia_ioctl(ifp, ifr, 5097 &mii->mii_media, command); 5098 } 5099 break; 5100 case SIOCSIFCAP: 5101 mask = ifr->ifr_reqcap ^ ifp->if_capenable; 5102 #ifdef DEVICE_POLLING 5103 if (mask & IFCAP_POLLING) { 5104 if (ifr->ifr_reqcap & IFCAP_POLLING) { 5105 error = ether_poll_register(bge_poll, ifp); 5106 if (error) 5107 return (error); 5108 BGE_LOCK(sc); 5109 BGE_SETBIT(sc, BGE_PCI_MISC_CTL, 5110 BGE_PCIMISCCTL_MASK_PCI_INTR); 5111 bge_writembx(sc, BGE_MBX_IRQ0_LO, 1); 5112 ifp->if_capenable |= IFCAP_POLLING; 5113 BGE_UNLOCK(sc); 5114 } else { 5115 error = ether_poll_deregister(ifp); 5116 /* Enable interrupt even in error case */ 5117 BGE_LOCK(sc); 5118 BGE_CLRBIT(sc, BGE_PCI_MISC_CTL, 5119 BGE_PCIMISCCTL_MASK_PCI_INTR); 5120 bge_writembx(sc, BGE_MBX_IRQ0_LO, 0); 5121 ifp->if_capenable &= ~IFCAP_POLLING; 5122 BGE_UNLOCK(sc); 5123 } 5124 } 5125 #endif 5126 if ((mask & IFCAP_TXCSUM) != 0 && 5127 (ifp->if_capabilities & IFCAP_TXCSUM) != 0) { 5128 ifp->if_capenable ^= IFCAP_TXCSUM; 5129 if ((ifp->if_capenable & IFCAP_TXCSUM) != 0) 5130 ifp->if_hwassist |= sc->bge_csum_features; 5131 else 5132 ifp->if_hwassist &= ~sc->bge_csum_features; 5133 } 5134 5135 if ((mask & IFCAP_RXCSUM) != 0 && 5136 (ifp->if_capabilities & IFCAP_RXCSUM) != 0) 5137 ifp->if_capenable ^= IFCAP_RXCSUM; 5138 5139 if ((mask & IFCAP_TSO4) != 0 && 5140 (ifp->if_capabilities & IFCAP_TSO4) != 0) { 5141 ifp->if_capenable ^= IFCAP_TSO4; 5142 if ((ifp->if_capenable & IFCAP_TSO4) != 0) 5143 ifp->if_hwassist |= CSUM_TSO; 5144 else 5145 ifp->if_hwassist &= ~CSUM_TSO; 5146 } 5147 5148 if (mask & IFCAP_VLAN_MTU) { 5149 ifp->if_capenable ^= IFCAP_VLAN_MTU; 5150 ifp->if_drv_flags &= ~IFF_DRV_RUNNING; 5151 bge_init(sc); 5152 } 5153 5154 if ((mask & IFCAP_VLAN_HWTSO) != 0 && 5155 (ifp->if_capabilities & IFCAP_VLAN_HWTSO) != 0) 5156 ifp->if_capenable ^= IFCAP_VLAN_HWTSO; 5157 if ((mask & IFCAP_VLAN_HWTAGGING) != 0 && 5158 (ifp->if_capabilities & IFCAP_VLAN_HWTAGGING) != 0) { 5159 ifp->if_capenable ^= IFCAP_VLAN_HWTAGGING; 5160 if ((ifp->if_capenable & IFCAP_VLAN_HWTAGGING) == 0) 5161 ifp->if_capenable &= ~IFCAP_VLAN_HWTSO; 5162 BGE_LOCK(sc); 5163 bge_setvlan(sc); 5164 BGE_UNLOCK(sc); 5165 } 5166 #ifdef VLAN_CAPABILITIES 5167 VLAN_CAPABILITIES(ifp); 5168 #endif 5169 break; 5170 default: 5171 error = ether_ioctl(ifp, command, data); 5172 break; 5173 } 5174 5175 return (error); 5176 } 5177 5178 static void 5179 bge_watchdog(struct bge_softc *sc) 5180 { 5181 struct ifnet *ifp; 5182 5183 BGE_LOCK_ASSERT(sc); 5184 5185 if (sc->bge_timer == 0 || --sc->bge_timer) 5186 return; 5187 5188 ifp = sc->bge_ifp; 5189 5190 if_printf(ifp, "watchdog timeout -- resetting\n"); 5191 5192 ifp->if_drv_flags &= ~IFF_DRV_RUNNING; 5193 bge_init_locked(sc); 5194 5195 ifp->if_oerrors++; 5196 } 5197 5198 static void 5199 bge_stop_block(struct bge_softc *sc, bus_size_t reg, uint32_t bit) 5200 { 5201 int i; 5202 5203 BGE_CLRBIT(sc, reg, bit); 5204 5205 for (i = 0; i < BGE_TIMEOUT; i++) { 5206 if ((CSR_READ_4(sc, reg) & bit) == 0) 5207 return; 5208 DELAY(100); 5209 } 5210 } 5211 5212 /* 5213 * Stop the adapter and free any mbufs allocated to the 5214 * RX and TX lists. 5215 */ 5216 static void 5217 bge_stop(struct bge_softc *sc) 5218 { 5219 struct ifnet *ifp; 5220 5221 BGE_LOCK_ASSERT(sc); 5222 5223 ifp = sc->bge_ifp; 5224 5225 callout_stop(&sc->bge_stat_ch); 5226 5227 /* Disable host interrupts. */ 5228 BGE_SETBIT(sc, BGE_PCI_MISC_CTL, BGE_PCIMISCCTL_MASK_PCI_INTR); 5229 bge_writembx(sc, BGE_MBX_IRQ0_LO, 1); 5230 5231 /* 5232 * Tell firmware we're shutting down. 5233 */ 5234 bge_stop_fw(sc); 5235 bge_sig_pre_reset(sc, BGE_RESET_STOP); 5236 5237 /* 5238 * Disable all of the receiver blocks. 5239 */ 5240 bge_stop_block(sc, BGE_RX_MODE, BGE_RXMODE_ENABLE); 5241 bge_stop_block(sc, BGE_RBDI_MODE, BGE_RBDIMODE_ENABLE); 5242 bge_stop_block(sc, BGE_RXLP_MODE, BGE_RXLPMODE_ENABLE); 5243 if (BGE_IS_5700_FAMILY(sc)) 5244 bge_stop_block(sc, BGE_RXLS_MODE, BGE_RXLSMODE_ENABLE); 5245 bge_stop_block(sc, BGE_RDBDI_MODE, BGE_RBDIMODE_ENABLE); 5246 bge_stop_block(sc, BGE_RDC_MODE, BGE_RDCMODE_ENABLE); 5247 bge_stop_block(sc, BGE_RBDC_MODE, BGE_RBDCMODE_ENABLE); 5248 5249 /* 5250 * Disable all of the transmit blocks. 5251 */ 5252 bge_stop_block(sc, BGE_SRS_MODE, BGE_SRSMODE_ENABLE); 5253 bge_stop_block(sc, BGE_SBDI_MODE, BGE_SBDIMODE_ENABLE); 5254 bge_stop_block(sc, BGE_SDI_MODE, BGE_SDIMODE_ENABLE); 5255 bge_stop_block(sc, BGE_RDMA_MODE, BGE_RDMAMODE_ENABLE); 5256 bge_stop_block(sc, BGE_SDC_MODE, BGE_SDCMODE_ENABLE); 5257 if (BGE_IS_5700_FAMILY(sc)) 5258 bge_stop_block(sc, BGE_DMAC_MODE, BGE_DMACMODE_ENABLE); 5259 bge_stop_block(sc, BGE_SBDC_MODE, BGE_SBDCMODE_ENABLE); 5260 5261 /* 5262 * Shut down all of the memory managers and related 5263 * state machines. 5264 */ 5265 bge_stop_block(sc, BGE_HCC_MODE, BGE_HCCMODE_ENABLE); 5266 bge_stop_block(sc, BGE_WDMA_MODE, BGE_WDMAMODE_ENABLE); 5267 if (BGE_IS_5700_FAMILY(sc)) 5268 bge_stop_block(sc, BGE_MBCF_MODE, BGE_MBCFMODE_ENABLE); 5269 5270 CSR_WRITE_4(sc, BGE_FTQ_RESET, 0xFFFFFFFF); 5271 CSR_WRITE_4(sc, BGE_FTQ_RESET, 0); 5272 if (!(BGE_IS_5705_PLUS(sc))) { 5273 BGE_CLRBIT(sc, BGE_BMAN_MODE, BGE_BMANMODE_ENABLE); 5274 BGE_CLRBIT(sc, BGE_MARB_MODE, BGE_MARBMODE_ENABLE); 5275 } 5276 /* Update MAC statistics. */ 5277 if (BGE_IS_5705_PLUS(sc)) 5278 bge_stats_update_regs(sc); 5279 5280 bge_reset(sc); 5281 bge_sig_legacy(sc, BGE_RESET_STOP); 5282 bge_sig_post_reset(sc, BGE_RESET_STOP); 5283 5284 /* 5285 * Keep the ASF firmware running if up. 5286 */ 5287 if (sc->bge_asf_mode & ASF_STACKUP) 5288 BGE_SETBIT(sc, BGE_MODE_CTL, BGE_MODECTL_STACKUP); 5289 else 5290 BGE_CLRBIT(sc, BGE_MODE_CTL, BGE_MODECTL_STACKUP); 5291 5292 /* Free the RX lists. */ 5293 bge_free_rx_ring_std(sc); 5294 5295 /* Free jumbo RX list. */ 5296 if (BGE_IS_JUMBO_CAPABLE(sc)) 5297 bge_free_rx_ring_jumbo(sc); 5298 5299 /* Free TX buffers. */ 5300 bge_free_tx_ring(sc); 5301 5302 sc->bge_tx_saved_considx = BGE_TXCONS_UNSET; 5303 5304 /* Clear MAC's link state (PHY may still have link UP). */ 5305 if (bootverbose && sc->bge_link) 5306 if_printf(sc->bge_ifp, "link DOWN\n"); 5307 sc->bge_link = 0; 5308 5309 ifp->if_drv_flags &= ~(IFF_DRV_RUNNING | IFF_DRV_OACTIVE); 5310 } 5311 5312 /* 5313 * Stop all chip I/O so that the kernel's probe routines don't 5314 * get confused by errant DMAs when rebooting. 5315 */ 5316 static int 5317 bge_shutdown(device_t dev) 5318 { 5319 struct bge_softc *sc; 5320 5321 sc = device_get_softc(dev); 5322 BGE_LOCK(sc); 5323 bge_stop(sc); 5324 bge_reset(sc); 5325 BGE_UNLOCK(sc); 5326 5327 return (0); 5328 } 5329 5330 static int 5331 bge_suspend(device_t dev) 5332 { 5333 struct bge_softc *sc; 5334 5335 sc = device_get_softc(dev); 5336 BGE_LOCK(sc); 5337 bge_stop(sc); 5338 BGE_UNLOCK(sc); 5339 5340 return (0); 5341 } 5342 5343 static int 5344 bge_resume(device_t dev) 5345 { 5346 struct bge_softc *sc; 5347 struct ifnet *ifp; 5348 5349 sc = device_get_softc(dev); 5350 BGE_LOCK(sc); 5351 ifp = sc->bge_ifp; 5352 if (ifp->if_flags & IFF_UP) { 5353 bge_init_locked(sc); 5354 if (ifp->if_drv_flags & IFF_DRV_RUNNING) 5355 bge_start_locked(ifp); 5356 } 5357 BGE_UNLOCK(sc); 5358 5359 return (0); 5360 } 5361 5362 static void 5363 bge_link_upd(struct bge_softc *sc) 5364 { 5365 struct mii_data *mii; 5366 uint32_t link, status; 5367 5368 BGE_LOCK_ASSERT(sc); 5369 5370 /* Clear 'pending link event' flag. */ 5371 sc->bge_link_evt = 0; 5372 5373 /* 5374 * Process link state changes. 5375 * Grrr. The link status word in the status block does 5376 * not work correctly on the BCM5700 rev AX and BX chips, 5377 * according to all available information. Hence, we have 5378 * to enable MII interrupts in order to properly obtain 5379 * async link changes. Unfortunately, this also means that 5380 * we have to read the MAC status register to detect link 5381 * changes, thereby adding an additional register access to 5382 * the interrupt handler. 5383 * 5384 * XXX: perhaps link state detection procedure used for 5385 * BGE_CHIPID_BCM5700_B2 can be used for others BCM5700 revisions. 5386 */ 5387 5388 if (sc->bge_asicrev == BGE_ASICREV_BCM5700 && 5389 sc->bge_chipid != BGE_CHIPID_BCM5700_B2) { 5390 status = CSR_READ_4(sc, BGE_MAC_STS); 5391 if (status & BGE_MACSTAT_MI_INTERRUPT) { 5392 mii = device_get_softc(sc->bge_miibus); 5393 mii_pollstat(mii); 5394 if (!sc->bge_link && 5395 mii->mii_media_status & IFM_ACTIVE && 5396 IFM_SUBTYPE(mii->mii_media_active) != IFM_NONE) { 5397 sc->bge_link++; 5398 if (bootverbose) 5399 if_printf(sc->bge_ifp, "link UP\n"); 5400 } else if (sc->bge_link && 5401 (!(mii->mii_media_status & IFM_ACTIVE) || 5402 IFM_SUBTYPE(mii->mii_media_active) == IFM_NONE)) { 5403 sc->bge_link = 0; 5404 if (bootverbose) 5405 if_printf(sc->bge_ifp, "link DOWN\n"); 5406 } 5407 5408 /* Clear the interrupt. */ 5409 CSR_WRITE_4(sc, BGE_MAC_EVT_ENB, 5410 BGE_EVTENB_MI_INTERRUPT); 5411 bge_miibus_readreg(sc->bge_dev, 1, BRGPHY_MII_ISR); 5412 bge_miibus_writereg(sc->bge_dev, 1, BRGPHY_MII_IMR, 5413 BRGPHY_INTRS); 5414 } 5415 return; 5416 } 5417 5418 if (sc->bge_flags & BGE_FLAG_TBI) { 5419 status = CSR_READ_4(sc, BGE_MAC_STS); 5420 if (status & BGE_MACSTAT_TBI_PCS_SYNCHED) { 5421 if (!sc->bge_link) { 5422 sc->bge_link++; 5423 if (sc->bge_asicrev == BGE_ASICREV_BCM5704) 5424 BGE_CLRBIT(sc, BGE_MAC_MODE, 5425 BGE_MACMODE_TBI_SEND_CFGS); 5426 CSR_WRITE_4(sc, BGE_MAC_STS, 0xFFFFFFFF); 5427 if (bootverbose) 5428 if_printf(sc->bge_ifp, "link UP\n"); 5429 if_link_state_change(sc->bge_ifp, 5430 LINK_STATE_UP); 5431 } 5432 } else if (sc->bge_link) { 5433 sc->bge_link = 0; 5434 if (bootverbose) 5435 if_printf(sc->bge_ifp, "link DOWN\n"); 5436 if_link_state_change(sc->bge_ifp, LINK_STATE_DOWN); 5437 } 5438 } else if ((sc->bge_mi_mode & BGE_MIMODE_AUTOPOLL) != 0) { 5439 /* 5440 * Some broken BCM chips have BGE_STATFLAG_LINKSTATE_CHANGED bit 5441 * in status word always set. Workaround this bug by reading 5442 * PHY link status directly. 5443 */ 5444 link = (CSR_READ_4(sc, BGE_MI_STS) & BGE_MISTS_LINK) ? 1 : 0; 5445 5446 if (link != sc->bge_link || 5447 sc->bge_asicrev == BGE_ASICREV_BCM5700) { 5448 mii = device_get_softc(sc->bge_miibus); 5449 mii_pollstat(mii); 5450 if (!sc->bge_link && 5451 mii->mii_media_status & IFM_ACTIVE && 5452 IFM_SUBTYPE(mii->mii_media_active) != IFM_NONE) { 5453 sc->bge_link++; 5454 if (bootverbose) 5455 if_printf(sc->bge_ifp, "link UP\n"); 5456 } else if (sc->bge_link && 5457 (!(mii->mii_media_status & IFM_ACTIVE) || 5458 IFM_SUBTYPE(mii->mii_media_active) == IFM_NONE)) { 5459 sc->bge_link = 0; 5460 if (bootverbose) 5461 if_printf(sc->bge_ifp, "link DOWN\n"); 5462 } 5463 } 5464 } else { 5465 /* 5466 * For controllers that call mii_tick, we have to poll 5467 * link status. 5468 */ 5469 mii = device_get_softc(sc->bge_miibus); 5470 mii_pollstat(mii); 5471 bge_miibus_statchg(sc->bge_dev); 5472 } 5473 5474 /* Clear the attention. */ 5475 CSR_WRITE_4(sc, BGE_MAC_STS, BGE_MACSTAT_SYNC_CHANGED | 5476 BGE_MACSTAT_CFG_CHANGED | BGE_MACSTAT_MI_COMPLETE | 5477 BGE_MACSTAT_LINK_CHANGED); 5478 } 5479 5480 static void 5481 bge_add_sysctls(struct bge_softc *sc) 5482 { 5483 struct sysctl_ctx_list *ctx; 5484 struct sysctl_oid_list *children; 5485 char tn[32]; 5486 int unit; 5487 5488 ctx = device_get_sysctl_ctx(sc->bge_dev); 5489 children = SYSCTL_CHILDREN(device_get_sysctl_tree(sc->bge_dev)); 5490 5491 #ifdef BGE_REGISTER_DEBUG 5492 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "debug_info", 5493 CTLTYPE_INT | CTLFLAG_RW, sc, 0, bge_sysctl_debug_info, "I", 5494 "Debug Information"); 5495 5496 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "reg_read", 5497 CTLTYPE_INT | CTLFLAG_RW, sc, 0, bge_sysctl_reg_read, "I", 5498 "Register Read"); 5499 5500 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "mem_read", 5501 CTLTYPE_INT | CTLFLAG_RW, sc, 0, bge_sysctl_mem_read, "I", 5502 "Memory Read"); 5503 5504 #endif 5505 5506 unit = device_get_unit(sc->bge_dev); 5507 /* 5508 * A common design characteristic for many Broadcom client controllers 5509 * is that they only support a single outstanding DMA read operation 5510 * on the PCIe bus. This means that it will take twice as long to fetch 5511 * a TX frame that is split into header and payload buffers as it does 5512 * to fetch a single, contiguous TX frame (2 reads vs. 1 read). For 5513 * these controllers, coalescing buffers to reduce the number of memory 5514 * reads is effective way to get maximum performance(about 940Mbps). 5515 * Without collapsing TX buffers the maximum TCP bulk transfer 5516 * performance is about 850Mbps. However forcing coalescing mbufs 5517 * consumes a lot of CPU cycles, so leave it off by default. 5518 */ 5519 sc->bge_forced_collapse = 0; 5520 snprintf(tn, sizeof(tn), "dev.bge.%d.forced_collapse", unit); 5521 TUNABLE_INT_FETCH(tn, &sc->bge_forced_collapse); 5522 SYSCTL_ADD_INT(ctx, children, OID_AUTO, "forced_collapse", 5523 CTLFLAG_RW, &sc->bge_forced_collapse, 0, 5524 "Number of fragmented TX buffers of a frame allowed before " 5525 "forced collapsing"); 5526 5527 /* 5528 * It seems all Broadcom controllers have a bug that can generate UDP 5529 * datagrams with checksum value 0 when TX UDP checksum offloading is 5530 * enabled. Generating UDP checksum value 0 is RFC 768 violation. 5531 * Even though the probability of generating such UDP datagrams is 5532 * low, I don't want to see FreeBSD boxes to inject such datagrams 5533 * into network so disable UDP checksum offloading by default. Users 5534 * still override this behavior by setting a sysctl variable, 5535 * dev.bge.0.forced_udpcsum. 5536 */ 5537 sc->bge_forced_udpcsum = 0; 5538 snprintf(tn, sizeof(tn), "dev.bge.%d.bge_forced_udpcsum", unit); 5539 TUNABLE_INT_FETCH(tn, &sc->bge_forced_udpcsum); 5540 SYSCTL_ADD_INT(ctx, children, OID_AUTO, "forced_udpcsum", 5541 CTLFLAG_RW, &sc->bge_forced_udpcsum, 0, 5542 "Enable UDP checksum offloading even if controller can " 5543 "generate UDP checksum value 0"); 5544 5545 if (BGE_IS_5705_PLUS(sc)) 5546 bge_add_sysctl_stats_regs(sc, ctx, children); 5547 else 5548 bge_add_sysctl_stats(sc, ctx, children); 5549 } 5550 5551 #define BGE_SYSCTL_STAT(sc, ctx, desc, parent, node, oid) \ 5552 SYSCTL_ADD_PROC(ctx, parent, OID_AUTO, oid, CTLTYPE_UINT|CTLFLAG_RD, \ 5553 sc, offsetof(struct bge_stats, node), bge_sysctl_stats, "IU", \ 5554 desc) 5555 5556 static void 5557 bge_add_sysctl_stats(struct bge_softc *sc, struct sysctl_ctx_list *ctx, 5558 struct sysctl_oid_list *parent) 5559 { 5560 struct sysctl_oid *tree; 5561 struct sysctl_oid_list *children, *schildren; 5562 5563 tree = SYSCTL_ADD_NODE(ctx, parent, OID_AUTO, "stats", CTLFLAG_RD, 5564 NULL, "BGE Statistics"); 5565 schildren = children = SYSCTL_CHILDREN(tree); 5566 BGE_SYSCTL_STAT(sc, ctx, "Frames Dropped Due To Filters", 5567 children, COSFramesDroppedDueToFilters, 5568 "FramesDroppedDueToFilters"); 5569 BGE_SYSCTL_STAT(sc, ctx, "NIC DMA Write Queue Full", 5570 children, nicDmaWriteQueueFull, "DmaWriteQueueFull"); 5571 BGE_SYSCTL_STAT(sc, ctx, "NIC DMA Write High Priority Queue Full", 5572 children, nicDmaWriteHighPriQueueFull, "DmaWriteHighPriQueueFull"); 5573 BGE_SYSCTL_STAT(sc, ctx, "NIC No More RX Buffer Descriptors", 5574 children, nicNoMoreRxBDs, "NoMoreRxBDs"); 5575 BGE_SYSCTL_STAT(sc, ctx, "Discarded Input Frames", 5576 children, ifInDiscards, "InputDiscards"); 5577 BGE_SYSCTL_STAT(sc, ctx, "Input Errors", 5578 children, ifInErrors, "InputErrors"); 5579 BGE_SYSCTL_STAT(sc, ctx, "NIC Recv Threshold Hit", 5580 children, nicRecvThresholdHit, "RecvThresholdHit"); 5581 BGE_SYSCTL_STAT(sc, ctx, "NIC DMA Read Queue Full", 5582 children, nicDmaReadQueueFull, "DmaReadQueueFull"); 5583 BGE_SYSCTL_STAT(sc, ctx, "NIC DMA Read High Priority Queue Full", 5584 children, nicDmaReadHighPriQueueFull, "DmaReadHighPriQueueFull"); 5585 BGE_SYSCTL_STAT(sc, ctx, "NIC Send Data Complete Queue Full", 5586 children, nicSendDataCompQueueFull, "SendDataCompQueueFull"); 5587 BGE_SYSCTL_STAT(sc, ctx, "NIC Ring Set Send Producer Index", 5588 children, nicRingSetSendProdIndex, "RingSetSendProdIndex"); 5589 BGE_SYSCTL_STAT(sc, ctx, "NIC Ring Status Update", 5590 children, nicRingStatusUpdate, "RingStatusUpdate"); 5591 BGE_SYSCTL_STAT(sc, ctx, "NIC Interrupts", 5592 children, nicInterrupts, "Interrupts"); 5593 BGE_SYSCTL_STAT(sc, ctx, "NIC Avoided Interrupts", 5594 children, nicAvoidedInterrupts, "AvoidedInterrupts"); 5595 BGE_SYSCTL_STAT(sc, ctx, "NIC Send Threshold Hit", 5596 children, nicSendThresholdHit, "SendThresholdHit"); 5597 5598 tree = SYSCTL_ADD_NODE(ctx, schildren, OID_AUTO, "rx", CTLFLAG_RD, 5599 NULL, "BGE RX Statistics"); 5600 children = SYSCTL_CHILDREN(tree); 5601 BGE_SYSCTL_STAT(sc, ctx, "Inbound Octets", 5602 children, rxstats.ifHCInOctets, "ifHCInOctets"); 5603 BGE_SYSCTL_STAT(sc, ctx, "Fragments", 5604 children, rxstats.etherStatsFragments, "Fragments"); 5605 BGE_SYSCTL_STAT(sc, ctx, "Inbound Unicast Packets", 5606 children, rxstats.ifHCInUcastPkts, "UnicastPkts"); 5607 BGE_SYSCTL_STAT(sc, ctx, "Inbound Multicast Packets", 5608 children, rxstats.ifHCInMulticastPkts, "MulticastPkts"); 5609 BGE_SYSCTL_STAT(sc, ctx, "FCS Errors", 5610 children, rxstats.dot3StatsFCSErrors, "FCSErrors"); 5611 BGE_SYSCTL_STAT(sc, ctx, "Alignment Errors", 5612 children, rxstats.dot3StatsAlignmentErrors, "AlignmentErrors"); 5613 BGE_SYSCTL_STAT(sc, ctx, "XON Pause Frames Received", 5614 children, rxstats.xonPauseFramesReceived, "xonPauseFramesReceived"); 5615 BGE_SYSCTL_STAT(sc, ctx, "XOFF Pause Frames Received", 5616 children, rxstats.xoffPauseFramesReceived, 5617 "xoffPauseFramesReceived"); 5618 BGE_SYSCTL_STAT(sc, ctx, "MAC Control Frames Received", 5619 children, rxstats.macControlFramesReceived, 5620 "ControlFramesReceived"); 5621 BGE_SYSCTL_STAT(sc, ctx, "XOFF State Entered", 5622 children, rxstats.xoffStateEntered, "xoffStateEntered"); 5623 BGE_SYSCTL_STAT(sc, ctx, "Frames Too Long", 5624 children, rxstats.dot3StatsFramesTooLong, "FramesTooLong"); 5625 BGE_SYSCTL_STAT(sc, ctx, "Jabbers", 5626 children, rxstats.etherStatsJabbers, "Jabbers"); 5627 BGE_SYSCTL_STAT(sc, ctx, "Undersized Packets", 5628 children, rxstats.etherStatsUndersizePkts, "UndersizePkts"); 5629 BGE_SYSCTL_STAT(sc, ctx, "Inbound Range Length Errors", 5630 children, rxstats.inRangeLengthError, "inRangeLengthError"); 5631 BGE_SYSCTL_STAT(sc, ctx, "Outbound Range Length Errors", 5632 children, rxstats.outRangeLengthError, "outRangeLengthError"); 5633 5634 tree = SYSCTL_ADD_NODE(ctx, schildren, OID_AUTO, "tx", CTLFLAG_RD, 5635 NULL, "BGE TX Statistics"); 5636 children = SYSCTL_CHILDREN(tree); 5637 BGE_SYSCTL_STAT(sc, ctx, "Outbound Octets", 5638 children, txstats.ifHCOutOctets, "ifHCOutOctets"); 5639 BGE_SYSCTL_STAT(sc, ctx, "TX Collisions", 5640 children, txstats.etherStatsCollisions, "Collisions"); 5641 BGE_SYSCTL_STAT(sc, ctx, "XON Sent", 5642 children, txstats.outXonSent, "XonSent"); 5643 BGE_SYSCTL_STAT(sc, ctx, "XOFF Sent", 5644 children, txstats.outXoffSent, "XoffSent"); 5645 BGE_SYSCTL_STAT(sc, ctx, "Flow Control Done", 5646 children, txstats.flowControlDone, "flowControlDone"); 5647 BGE_SYSCTL_STAT(sc, ctx, "Internal MAC TX errors", 5648 children, txstats.dot3StatsInternalMacTransmitErrors, 5649 "InternalMacTransmitErrors"); 5650 BGE_SYSCTL_STAT(sc, ctx, "Single Collision Frames", 5651 children, txstats.dot3StatsSingleCollisionFrames, 5652 "SingleCollisionFrames"); 5653 BGE_SYSCTL_STAT(sc, ctx, "Multiple Collision Frames", 5654 children, txstats.dot3StatsMultipleCollisionFrames, 5655 "MultipleCollisionFrames"); 5656 BGE_SYSCTL_STAT(sc, ctx, "Deferred Transmissions", 5657 children, txstats.dot3StatsDeferredTransmissions, 5658 "DeferredTransmissions"); 5659 BGE_SYSCTL_STAT(sc, ctx, "Excessive Collisions", 5660 children, txstats.dot3StatsExcessiveCollisions, 5661 "ExcessiveCollisions"); 5662 BGE_SYSCTL_STAT(sc, ctx, "Late Collisions", 5663 children, txstats.dot3StatsLateCollisions, 5664 "LateCollisions"); 5665 BGE_SYSCTL_STAT(sc, ctx, "Outbound Unicast Packets", 5666 children, txstats.ifHCOutUcastPkts, "UnicastPkts"); 5667 BGE_SYSCTL_STAT(sc, ctx, "Outbound Multicast Packets", 5668 children, txstats.ifHCOutMulticastPkts, "MulticastPkts"); 5669 BGE_SYSCTL_STAT(sc, ctx, "Outbound Broadcast Packets", 5670 children, txstats.ifHCOutBroadcastPkts, "BroadcastPkts"); 5671 BGE_SYSCTL_STAT(sc, ctx, "Carrier Sense Errors", 5672 children, txstats.dot3StatsCarrierSenseErrors, 5673 "CarrierSenseErrors"); 5674 BGE_SYSCTL_STAT(sc, ctx, "Outbound Discards", 5675 children, txstats.ifOutDiscards, "Discards"); 5676 BGE_SYSCTL_STAT(sc, ctx, "Outbound Errors", 5677 children, txstats.ifOutErrors, "Errors"); 5678 } 5679 5680 #undef BGE_SYSCTL_STAT 5681 5682 #define BGE_SYSCTL_STAT_ADD64(c, h, n, p, d) \ 5683 SYSCTL_ADD_UQUAD(c, h, OID_AUTO, n, CTLFLAG_RD, p, d) 5684 5685 static void 5686 bge_add_sysctl_stats_regs(struct bge_softc *sc, struct sysctl_ctx_list *ctx, 5687 struct sysctl_oid_list *parent) 5688 { 5689 struct sysctl_oid *tree; 5690 struct sysctl_oid_list *child, *schild; 5691 struct bge_mac_stats *stats; 5692 5693 stats = &sc->bge_mac_stats; 5694 tree = SYSCTL_ADD_NODE(ctx, parent, OID_AUTO, "stats", CTLFLAG_RD, 5695 NULL, "BGE Statistics"); 5696 schild = child = SYSCTL_CHILDREN(tree); 5697 BGE_SYSCTL_STAT_ADD64(ctx, child, "FramesDroppedDueToFilters", 5698 &stats->FramesDroppedDueToFilters, "Frames Dropped Due to Filters"); 5699 BGE_SYSCTL_STAT_ADD64(ctx, child, "DmaWriteQueueFull", 5700 &stats->DmaWriteQueueFull, "NIC DMA Write Queue Full"); 5701 BGE_SYSCTL_STAT_ADD64(ctx, child, "DmaWriteHighPriQueueFull", 5702 &stats->DmaWriteHighPriQueueFull, 5703 "NIC DMA Write High Priority Queue Full"); 5704 BGE_SYSCTL_STAT_ADD64(ctx, child, "NoMoreRxBDs", 5705 &stats->NoMoreRxBDs, "NIC No More RX Buffer Descriptors"); 5706 BGE_SYSCTL_STAT_ADD64(ctx, child, "InputDiscards", 5707 &stats->InputDiscards, "Discarded Input Frames"); 5708 BGE_SYSCTL_STAT_ADD64(ctx, child, "InputErrors", 5709 &stats->InputErrors, "Input Errors"); 5710 BGE_SYSCTL_STAT_ADD64(ctx, child, "RecvThresholdHit", 5711 &stats->RecvThresholdHit, "NIC Recv Threshold Hit"); 5712 5713 tree = SYSCTL_ADD_NODE(ctx, schild, OID_AUTO, "rx", CTLFLAG_RD, 5714 NULL, "BGE RX Statistics"); 5715 child = SYSCTL_CHILDREN(tree); 5716 BGE_SYSCTL_STAT_ADD64(ctx, child, "ifHCInOctets", 5717 &stats->ifHCInOctets, "Inbound Octets"); 5718 BGE_SYSCTL_STAT_ADD64(ctx, child, "Fragments", 5719 &stats->etherStatsFragments, "Fragments"); 5720 BGE_SYSCTL_STAT_ADD64(ctx, child, "UnicastPkts", 5721 &stats->ifHCInUcastPkts, "Inbound Unicast Packets"); 5722 BGE_SYSCTL_STAT_ADD64(ctx, child, "MulticastPkts", 5723 &stats->ifHCInMulticastPkts, "Inbound Multicast Packets"); 5724 BGE_SYSCTL_STAT_ADD64(ctx, child, "BroadcastPkts", 5725 &stats->ifHCInBroadcastPkts, "Inbound Broadcast Packets"); 5726 BGE_SYSCTL_STAT_ADD64(ctx, child, "FCSErrors", 5727 &stats->dot3StatsFCSErrors, "FCS Errors"); 5728 BGE_SYSCTL_STAT_ADD64(ctx, child, "AlignmentErrors", 5729 &stats->dot3StatsAlignmentErrors, "Alignment Errors"); 5730 BGE_SYSCTL_STAT_ADD64(ctx, child, "xonPauseFramesReceived", 5731 &stats->xonPauseFramesReceived, "XON Pause Frames Received"); 5732 BGE_SYSCTL_STAT_ADD64(ctx, child, "xoffPauseFramesReceived", 5733 &stats->xoffPauseFramesReceived, "XOFF Pause Frames Received"); 5734 BGE_SYSCTL_STAT_ADD64(ctx, child, "ControlFramesReceived", 5735 &stats->macControlFramesReceived, "MAC Control Frames Received"); 5736 BGE_SYSCTL_STAT_ADD64(ctx, child, "xoffStateEntered", 5737 &stats->xoffStateEntered, "XOFF State Entered"); 5738 BGE_SYSCTL_STAT_ADD64(ctx, child, "FramesTooLong", 5739 &stats->dot3StatsFramesTooLong, "Frames Too Long"); 5740 BGE_SYSCTL_STAT_ADD64(ctx, child, "Jabbers", 5741 &stats->etherStatsJabbers, "Jabbers"); 5742 BGE_SYSCTL_STAT_ADD64(ctx, child, "UndersizePkts", 5743 &stats->etherStatsUndersizePkts, "Undersized Packets"); 5744 5745 tree = SYSCTL_ADD_NODE(ctx, schild, OID_AUTO, "tx", CTLFLAG_RD, 5746 NULL, "BGE TX Statistics"); 5747 child = SYSCTL_CHILDREN(tree); 5748 BGE_SYSCTL_STAT_ADD64(ctx, child, "ifHCOutOctets", 5749 &stats->ifHCOutOctets, "Outbound Octets"); 5750 BGE_SYSCTL_STAT_ADD64(ctx, child, "Collisions", 5751 &stats->etherStatsCollisions, "TX Collisions"); 5752 BGE_SYSCTL_STAT_ADD64(ctx, child, "XonSent", 5753 &stats->outXonSent, "XON Sent"); 5754 BGE_SYSCTL_STAT_ADD64(ctx, child, "XoffSent", 5755 &stats->outXoffSent, "XOFF Sent"); 5756 BGE_SYSCTL_STAT_ADD64(ctx, child, "InternalMacTransmitErrors", 5757 &stats->dot3StatsInternalMacTransmitErrors, 5758 "Internal MAC TX Errors"); 5759 BGE_SYSCTL_STAT_ADD64(ctx, child, "SingleCollisionFrames", 5760 &stats->dot3StatsSingleCollisionFrames, "Single Collision Frames"); 5761 BGE_SYSCTL_STAT_ADD64(ctx, child, "MultipleCollisionFrames", 5762 &stats->dot3StatsMultipleCollisionFrames, 5763 "Multiple Collision Frames"); 5764 BGE_SYSCTL_STAT_ADD64(ctx, child, "DeferredTransmissions", 5765 &stats->dot3StatsDeferredTransmissions, "Deferred Transmissions"); 5766 BGE_SYSCTL_STAT_ADD64(ctx, child, "ExcessiveCollisions", 5767 &stats->dot3StatsExcessiveCollisions, "Excessive Collisions"); 5768 BGE_SYSCTL_STAT_ADD64(ctx, child, "LateCollisions", 5769 &stats->dot3StatsLateCollisions, "Late Collisions"); 5770 BGE_SYSCTL_STAT_ADD64(ctx, child, "UnicastPkts", 5771 &stats->ifHCOutUcastPkts, "Outbound Unicast Packets"); 5772 BGE_SYSCTL_STAT_ADD64(ctx, child, "MulticastPkts", 5773 &stats->ifHCOutMulticastPkts, "Outbound Multicast Packets"); 5774 BGE_SYSCTL_STAT_ADD64(ctx, child, "BroadcastPkts", 5775 &stats->ifHCOutBroadcastPkts, "Outbound Broadcast Packets"); 5776 } 5777 5778 #undef BGE_SYSCTL_STAT_ADD64 5779 5780 static int 5781 bge_sysctl_stats(SYSCTL_HANDLER_ARGS) 5782 { 5783 struct bge_softc *sc; 5784 uint32_t result; 5785 int offset; 5786 5787 sc = (struct bge_softc *)arg1; 5788 offset = arg2; 5789 result = CSR_READ_4(sc, BGE_MEMWIN_START + BGE_STATS_BLOCK + offset + 5790 offsetof(bge_hostaddr, bge_addr_lo)); 5791 return (sysctl_handle_int(oidp, &result, 0, req)); 5792 } 5793 5794 #ifdef BGE_REGISTER_DEBUG 5795 static int 5796 bge_sysctl_debug_info(SYSCTL_HANDLER_ARGS) 5797 { 5798 struct bge_softc *sc; 5799 uint16_t *sbdata; 5800 int error; 5801 int result; 5802 int i, j; 5803 5804 result = -1; 5805 error = sysctl_handle_int(oidp, &result, 0, req); 5806 if (error || (req->newptr == NULL)) 5807 return (error); 5808 5809 if (result == 1) { 5810 sc = (struct bge_softc *)arg1; 5811 5812 sbdata = (uint16_t *)sc->bge_ldata.bge_status_block; 5813 printf("Status Block:\n"); 5814 for (i = 0x0; i < (BGE_STATUS_BLK_SZ / 4); ) { 5815 printf("%06x:", i); 5816 for (j = 0; j < 8; j++) { 5817 printf(" %04x", sbdata[i]); 5818 i += 4; 5819 } 5820 printf("\n"); 5821 } 5822 5823 printf("Registers:\n"); 5824 for (i = 0x800; i < 0xA00; ) { 5825 printf("%06x:", i); 5826 for (j = 0; j < 8; j++) { 5827 printf(" %08x", CSR_READ_4(sc, i)); 5828 i += 4; 5829 } 5830 printf("\n"); 5831 } 5832 5833 printf("Hardware Flags:\n"); 5834 if (BGE_IS_5755_PLUS(sc)) 5835 printf(" - 5755 Plus\n"); 5836 if (BGE_IS_575X_PLUS(sc)) 5837 printf(" - 575X Plus\n"); 5838 if (BGE_IS_5705_PLUS(sc)) 5839 printf(" - 5705 Plus\n"); 5840 if (BGE_IS_5714_FAMILY(sc)) 5841 printf(" - 5714 Family\n"); 5842 if (BGE_IS_5700_FAMILY(sc)) 5843 printf(" - 5700 Family\n"); 5844 if (sc->bge_flags & BGE_FLAG_JUMBO) 5845 printf(" - Supports Jumbo Frames\n"); 5846 if (sc->bge_flags & BGE_FLAG_PCIX) 5847 printf(" - PCI-X Bus\n"); 5848 if (sc->bge_flags & BGE_FLAG_PCIE) 5849 printf(" - PCI Express Bus\n"); 5850 if (sc->bge_phy_flags & BGE_PHY_NO_3LED) 5851 printf(" - No 3 LEDs\n"); 5852 if (sc->bge_flags & BGE_FLAG_RX_ALIGNBUG) 5853 printf(" - RX Alignment Bug\n"); 5854 } 5855 5856 return (error); 5857 } 5858 5859 static int 5860 bge_sysctl_reg_read(SYSCTL_HANDLER_ARGS) 5861 { 5862 struct bge_softc *sc; 5863 int error; 5864 uint16_t result; 5865 uint32_t val; 5866 5867 result = -1; 5868 error = sysctl_handle_int(oidp, &result, 0, req); 5869 if (error || (req->newptr == NULL)) 5870 return (error); 5871 5872 if (result < 0x8000) { 5873 sc = (struct bge_softc *)arg1; 5874 val = CSR_READ_4(sc, result); 5875 printf("reg 0x%06X = 0x%08X\n", result, val); 5876 } 5877 5878 return (error); 5879 } 5880 5881 static int 5882 bge_sysctl_mem_read(SYSCTL_HANDLER_ARGS) 5883 { 5884 struct bge_softc *sc; 5885 int error; 5886 uint16_t result; 5887 uint32_t val; 5888 5889 result = -1; 5890 error = sysctl_handle_int(oidp, &result, 0, req); 5891 if (error || (req->newptr == NULL)) 5892 return (error); 5893 5894 if (result < 0x8000) { 5895 sc = (struct bge_softc *)arg1; 5896 val = bge_readmem_ind(sc, result); 5897 printf("mem 0x%06X = 0x%08X\n", result, val); 5898 } 5899 5900 return (error); 5901 } 5902 #endif 5903 5904 static int 5905 bge_get_eaddr_fw(struct bge_softc *sc, uint8_t ether_addr[]) 5906 { 5907 5908 if (sc->bge_flags & BGE_FLAG_EADDR) 5909 return (1); 5910 5911 #ifdef __sparc64__ 5912 OF_getetheraddr(sc->bge_dev, ether_addr); 5913 return (0); 5914 #endif 5915 return (1); 5916 } 5917 5918 static int 5919 bge_get_eaddr_mem(struct bge_softc *sc, uint8_t ether_addr[]) 5920 { 5921 uint32_t mac_addr; 5922 5923 mac_addr = bge_readmem_ind(sc, 0x0c14); 5924 if ((mac_addr >> 16) == 0x484b) { 5925 ether_addr[0] = (uint8_t)(mac_addr >> 8); 5926 ether_addr[1] = (uint8_t)mac_addr; 5927 mac_addr = bge_readmem_ind(sc, 0x0c18); 5928 ether_addr[2] = (uint8_t)(mac_addr >> 24); 5929 ether_addr[3] = (uint8_t)(mac_addr >> 16); 5930 ether_addr[4] = (uint8_t)(mac_addr >> 8); 5931 ether_addr[5] = (uint8_t)mac_addr; 5932 return (0); 5933 } 5934 return (1); 5935 } 5936 5937 static int 5938 bge_get_eaddr_nvram(struct bge_softc *sc, uint8_t ether_addr[]) 5939 { 5940 int mac_offset = BGE_EE_MAC_OFFSET; 5941 5942 if (sc->bge_asicrev == BGE_ASICREV_BCM5906) 5943 mac_offset = BGE_EE_MAC_OFFSET_5906; 5944 5945 return (bge_read_nvram(sc, ether_addr, mac_offset + 2, 5946 ETHER_ADDR_LEN)); 5947 } 5948 5949 static int 5950 bge_get_eaddr_eeprom(struct bge_softc *sc, uint8_t ether_addr[]) 5951 { 5952 5953 if (sc->bge_asicrev == BGE_ASICREV_BCM5906) 5954 return (1); 5955 5956 return (bge_read_eeprom(sc, ether_addr, BGE_EE_MAC_OFFSET + 2, 5957 ETHER_ADDR_LEN)); 5958 } 5959 5960 static int 5961 bge_get_eaddr(struct bge_softc *sc, uint8_t eaddr[]) 5962 { 5963 static const bge_eaddr_fcn_t bge_eaddr_funcs[] = { 5964 /* NOTE: Order is critical */ 5965 bge_get_eaddr_fw, 5966 bge_get_eaddr_mem, 5967 bge_get_eaddr_nvram, 5968 bge_get_eaddr_eeprom, 5969 NULL 5970 }; 5971 const bge_eaddr_fcn_t *func; 5972 5973 for (func = bge_eaddr_funcs; *func != NULL; ++func) { 5974 if ((*func)(sc, eaddr) == 0) 5975 break; 5976 } 5977 return (*func == NULL ? ENXIO : 0); 5978 } 5979