1 /*- 2 * Copyright (c) 2001 Wind River Systems 3 * Copyright (c) 1997, 1998, 1999, 2001 4 * Bill Paul <wpaul@windriver.com>. All rights reserved. 5 * 6 * Redistribution and use in source and binary forms, with or without 7 * modification, are permitted provided that the following conditions 8 * are met: 9 * 1. Redistributions of source code must retain the above copyright 10 * notice, this list of conditions and the following disclaimer. 11 * 2. Redistributions in binary form must reproduce the above copyright 12 * notice, this list of conditions and the following disclaimer in the 13 * documentation and/or other materials provided with the distribution. 14 * 3. All advertising materials mentioning features or use of this software 15 * must display the following acknowledgement: 16 * This product includes software developed by Bill Paul. 17 * 4. Neither the name of the author nor the names of any co-contributors 18 * may be used to endorse or promote products derived from this software 19 * without specific prior written permission. 20 * 21 * THIS SOFTWARE IS PROVIDED BY Bill Paul AND CONTRIBUTORS ``AS IS'' AND 22 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 23 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 24 * ARE DISCLAIMED. IN NO EVENT SHALL Bill Paul OR THE VOICES IN HIS HEAD 25 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR 26 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF 27 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS 28 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN 29 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) 30 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF 31 * THE POSSIBILITY OF SUCH DAMAGE. 32 */ 33 34 #include <sys/cdefs.h> 35 __FBSDID("$FreeBSD$"); 36 37 /* 38 * Broadcom BCM570x family gigabit ethernet driver for FreeBSD. 39 * 40 * The Broadcom BCM5700 is based on technology originally developed by 41 * Alteon Networks as part of the Tigon I and Tigon II gigabit ethernet 42 * MAC chips. The BCM5700, sometimes refered to as the Tigon III, has 43 * two on-board MIPS R4000 CPUs and can have as much as 16MB of external 44 * SSRAM. The BCM5700 supports TCP, UDP and IP checksum offload, jumbo 45 * frames, highly configurable RX filtering, and 16 RX and TX queues 46 * (which, along with RX filter rules, can be used for QOS applications). 47 * Other features, such as TCP segmentation, may be available as part 48 * of value-added firmware updates. Unlike the Tigon I and Tigon II, 49 * firmware images can be stored in hardware and need not be compiled 50 * into the driver. 51 * 52 * The BCM5700 supports the PCI v2.2 and PCI-X v1.0 standards, and will 53 * function in a 32-bit/64-bit 33/66Mhz bus, or a 64-bit/133Mhz bus. 54 * 55 * The BCM5701 is a single-chip solution incorporating both the BCM5700 56 * MAC and a BCM5401 10/100/1000 PHY. Unlike the BCM5700, the BCM5701 57 * does not support external SSRAM. 58 * 59 * Broadcom also produces a variation of the BCM5700 under the "Altima" 60 * brand name, which is functionally similar but lacks PCI-X support. 61 * 62 * Without external SSRAM, you can only have at most 4 TX rings, 63 * and the use of the mini RX ring is disabled. This seems to imply 64 * that these features are simply not available on the BCM5701. As a 65 * result, this driver does not implement any support for the mini RX 66 * ring. 67 */ 68 69 #include <sys/param.h> 70 #include <sys/endian.h> 71 #include <sys/systm.h> 72 #include <sys/sockio.h> 73 #include <sys/mbuf.h> 74 #include <sys/malloc.h> 75 #include <sys/kernel.h> 76 #include <sys/module.h> 77 #include <sys/socket.h> 78 #include <sys/queue.h> 79 80 #include <net/if.h> 81 #include <net/if_arp.h> 82 #include <net/ethernet.h> 83 #include <net/if_dl.h> 84 #include <net/if_media.h> 85 86 #include <net/bpf.h> 87 88 #include <net/if_types.h> 89 #include <net/if_vlan_var.h> 90 91 #include <netinet/in_systm.h> 92 #include <netinet/in.h> 93 #include <netinet/ip.h> 94 95 #include <machine/clock.h> /* for DELAY */ 96 #include <machine/bus.h> 97 #include <machine/resource.h> 98 #include <sys/bus.h> 99 #include <sys/rman.h> 100 101 #include <dev/mii/mii.h> 102 #include <dev/mii/miivar.h> 103 #include "miidevs.h" 104 #include <dev/mii/brgphyreg.h> 105 106 #include <dev/pci/pcireg.h> 107 #include <dev/pci/pcivar.h> 108 109 #include <dev/bge/if_bgereg.h> 110 111 #include "opt_bge.h" 112 113 #define BGE_CSUM_FEATURES (CSUM_IP | CSUM_TCP | CSUM_UDP) 114 115 MODULE_DEPEND(bge, pci, 1, 1, 1); 116 MODULE_DEPEND(bge, ether, 1, 1, 1); 117 MODULE_DEPEND(bge, miibus, 1, 1, 1); 118 119 /* "controller miibus0" required. See GENERIC if you get errors here. */ 120 #include "miibus_if.h" 121 122 /* 123 * Various supported device vendors/types and their names. Note: the 124 * spec seems to indicate that the hardware still has Alteon's vendor 125 * ID burned into it, though it will always be overriden by the vendor 126 * ID in the EEPROM. Just to be safe, we cover all possibilities. 127 */ 128 #define BGE_DEVDESC_MAX 64 /* Maximum device description length */ 129 130 static struct bge_type bge_devs[] = { 131 { ALT_VENDORID, ALT_DEVICEID_BCM5700, 132 "Broadcom BCM5700 Gigabit Ethernet" }, 133 { ALT_VENDORID, ALT_DEVICEID_BCM5701, 134 "Broadcom BCM5701 Gigabit Ethernet" }, 135 { BCOM_VENDORID, BCOM_DEVICEID_BCM5700, 136 "Broadcom BCM5700 Gigabit Ethernet" }, 137 { BCOM_VENDORID, BCOM_DEVICEID_BCM5701, 138 "Broadcom BCM5701 Gigabit Ethernet" }, 139 { BCOM_VENDORID, BCOM_DEVICEID_BCM5702, 140 "Broadcom BCM5702 Gigabit Ethernet" }, 141 { BCOM_VENDORID, BCOM_DEVICEID_BCM5702X, 142 "Broadcom BCM5702X Gigabit Ethernet" }, 143 { BCOM_VENDORID, BCOM_DEVICEID_BCM5703, 144 "Broadcom BCM5703 Gigabit Ethernet" }, 145 { BCOM_VENDORID, BCOM_DEVICEID_BCM5703X, 146 "Broadcom BCM5703X Gigabit Ethernet" }, 147 { BCOM_VENDORID, BCOM_DEVICEID_BCM5704C, 148 "Broadcom BCM5704C Dual Gigabit Ethernet" }, 149 { BCOM_VENDORID, BCOM_DEVICEID_BCM5704S, 150 "Broadcom BCM5704S Dual Gigabit Ethernet" }, 151 { BCOM_VENDORID, BCOM_DEVICEID_BCM5705, 152 "Broadcom BCM5705 Gigabit Ethernet" }, 153 { BCOM_VENDORID, BCOM_DEVICEID_BCM5705K, 154 "Broadcom BCM5705K Gigabit Ethernet" }, 155 { BCOM_VENDORID, BCOM_DEVICEID_BCM5705M, 156 "Broadcom BCM5705M Gigabit Ethernet" }, 157 { BCOM_VENDORID, BCOM_DEVICEID_BCM5705M_ALT, 158 "Broadcom BCM5705M Gigabit Ethernet" }, 159 { BCOM_VENDORID, BCOM_DEVICEID_BCM5714C, 160 "Broadcom BCM5714C Gigabit Ethernet" }, 161 { BCOM_VENDORID, BCOM_DEVICEID_BCM5721, 162 "Broadcom BCM5721 Gigabit Ethernet" }, 163 { BCOM_VENDORID, BCOM_DEVICEID_BCM5750, 164 "Broadcom BCM5750 Gigabit Ethernet" }, 165 { BCOM_VENDORID, BCOM_DEVICEID_BCM5750M, 166 "Broadcom BCM5750M Gigabit Ethernet" }, 167 { BCOM_VENDORID, BCOM_DEVICEID_BCM5751, 168 "Broadcom BCM5751 Gigabit Ethernet" }, 169 { BCOM_VENDORID, BCOM_DEVICEID_BCM5751M, 170 "Broadcom BCM5751M Gigabit Ethernet" }, 171 { BCOM_VENDORID, BCOM_DEVICEID_BCM5782, 172 "Broadcom BCM5782 Gigabit Ethernet" }, 173 { BCOM_VENDORID, BCOM_DEVICEID_BCM5788, 174 "Broadcom BCM5788 Gigabit Ethernet" }, 175 { BCOM_VENDORID, BCOM_DEVICEID_BCM5789, 176 "Broadcom BCM5789 Gigabit Ethernet" }, 177 { BCOM_VENDORID, BCOM_DEVICEID_BCM5901, 178 "Broadcom BCM5901 Fast Ethernet" }, 179 { BCOM_VENDORID, BCOM_DEVICEID_BCM5901A2, 180 "Broadcom BCM5901A2 Fast Ethernet" }, 181 { SK_VENDORID, SK_DEVICEID_ALTIMA, 182 "SysKonnect Gigabit Ethernet" }, 183 { ALTIMA_VENDORID, ALTIMA_DEVICE_AC1000, 184 "Altima AC1000 Gigabit Ethernet" }, 185 { ALTIMA_VENDORID, ALTIMA_DEVICE_AC1002, 186 "Altima AC1002 Gigabit Ethernet" }, 187 { ALTIMA_VENDORID, ALTIMA_DEVICE_AC9100, 188 "Altima AC9100 Gigabit Ethernet" }, 189 { 0, 0, NULL } 190 }; 191 192 static int bge_probe (device_t); 193 static int bge_attach (device_t); 194 static int bge_detach (device_t); 195 static void bge_release_resources 196 (struct bge_softc *); 197 static void bge_dma_map_addr (void *, bus_dma_segment_t *, int, int); 198 static void bge_dma_map_tx_desc (void *, bus_dma_segment_t *, int, 199 bus_size_t, int); 200 static int bge_dma_alloc (device_t); 201 static void bge_dma_free (struct bge_softc *); 202 203 static void bge_txeof (struct bge_softc *); 204 static void bge_rxeof (struct bge_softc *); 205 206 static void bge_tick_locked (struct bge_softc *); 207 static void bge_tick (void *); 208 static void bge_stats_update (struct bge_softc *); 209 static void bge_stats_update_regs 210 (struct bge_softc *); 211 static int bge_encap (struct bge_softc *, struct mbuf *, 212 u_int32_t *); 213 214 static void bge_intr (void *); 215 static void bge_start_locked (struct ifnet *); 216 static void bge_start (struct ifnet *); 217 static int bge_ioctl (struct ifnet *, u_long, caddr_t); 218 static void bge_init_locked (struct bge_softc *); 219 static void bge_init (void *); 220 static void bge_stop (struct bge_softc *); 221 static void bge_watchdog (struct ifnet *); 222 static void bge_shutdown (device_t); 223 static int bge_ifmedia_upd (struct ifnet *); 224 static void bge_ifmedia_sts (struct ifnet *, struct ifmediareq *); 225 226 static u_int8_t bge_eeprom_getbyte (struct bge_softc *, int, u_int8_t *); 227 static int bge_read_eeprom (struct bge_softc *, caddr_t, int, int); 228 229 static void bge_setmulti (struct bge_softc *); 230 231 static void bge_handle_events (struct bge_softc *); 232 static int bge_alloc_jumbo_mem (struct bge_softc *); 233 static void bge_free_jumbo_mem (struct bge_softc *); 234 static void *bge_jalloc (struct bge_softc *); 235 static void bge_jfree (void *, void *); 236 static int bge_newbuf_std (struct bge_softc *, int, struct mbuf *); 237 static int bge_newbuf_jumbo (struct bge_softc *, int, struct mbuf *); 238 static int bge_init_rx_ring_std (struct bge_softc *); 239 static void bge_free_rx_ring_std (struct bge_softc *); 240 static int bge_init_rx_ring_jumbo (struct bge_softc *); 241 static void bge_free_rx_ring_jumbo (struct bge_softc *); 242 static void bge_free_tx_ring (struct bge_softc *); 243 static int bge_init_tx_ring (struct bge_softc *); 244 245 static int bge_chipinit (struct bge_softc *); 246 static int bge_blockinit (struct bge_softc *); 247 248 #ifdef notdef 249 static u_int8_t bge_vpd_readbyte(struct bge_softc *, int); 250 static void bge_vpd_read_res (struct bge_softc *, struct vpd_res *, int); 251 static void bge_vpd_read (struct bge_softc *); 252 #endif 253 254 static u_int32_t bge_readmem_ind 255 (struct bge_softc *, int); 256 static void bge_writemem_ind (struct bge_softc *, int, int); 257 #ifdef notdef 258 static u_int32_t bge_readreg_ind 259 (struct bge_softc *, int); 260 #endif 261 static void bge_writereg_ind (struct bge_softc *, int, int); 262 263 static int bge_miibus_readreg (device_t, int, int); 264 static int bge_miibus_writereg (device_t, int, int, int); 265 static void bge_miibus_statchg (device_t); 266 267 static void bge_reset (struct bge_softc *); 268 269 static device_method_t bge_methods[] = { 270 /* Device interface */ 271 DEVMETHOD(device_probe, bge_probe), 272 DEVMETHOD(device_attach, bge_attach), 273 DEVMETHOD(device_detach, bge_detach), 274 DEVMETHOD(device_shutdown, bge_shutdown), 275 276 /* bus interface */ 277 DEVMETHOD(bus_print_child, bus_generic_print_child), 278 DEVMETHOD(bus_driver_added, bus_generic_driver_added), 279 280 /* MII interface */ 281 DEVMETHOD(miibus_readreg, bge_miibus_readreg), 282 DEVMETHOD(miibus_writereg, bge_miibus_writereg), 283 DEVMETHOD(miibus_statchg, bge_miibus_statchg), 284 285 { 0, 0 } 286 }; 287 288 static driver_t bge_driver = { 289 "bge", 290 bge_methods, 291 sizeof(struct bge_softc) 292 }; 293 294 static devclass_t bge_devclass; 295 296 DRIVER_MODULE(bge, pci, bge_driver, bge_devclass, 0, 0); 297 DRIVER_MODULE(miibus, bge, miibus_driver, miibus_devclass, 0, 0); 298 299 static u_int32_t 300 bge_readmem_ind(sc, off) 301 struct bge_softc *sc; 302 int off; 303 { 304 device_t dev; 305 306 dev = sc->bge_dev; 307 308 pci_write_config(dev, BGE_PCI_MEMWIN_BASEADDR, off, 4); 309 return(pci_read_config(dev, BGE_PCI_MEMWIN_DATA, 4)); 310 } 311 312 static void 313 bge_writemem_ind(sc, off, val) 314 struct bge_softc *sc; 315 int off, val; 316 { 317 device_t dev; 318 319 dev = sc->bge_dev; 320 321 pci_write_config(dev, BGE_PCI_MEMWIN_BASEADDR, off, 4); 322 pci_write_config(dev, BGE_PCI_MEMWIN_DATA, val, 4); 323 324 return; 325 } 326 327 #ifdef notdef 328 static u_int32_t 329 bge_readreg_ind(sc, off) 330 struct bge_softc *sc; 331 int off; 332 { 333 device_t dev; 334 335 dev = sc->bge_dev; 336 337 pci_write_config(dev, BGE_PCI_REG_BASEADDR, off, 4); 338 return(pci_read_config(dev, BGE_PCI_REG_DATA, 4)); 339 } 340 #endif 341 342 static void 343 bge_writereg_ind(sc, off, val) 344 struct bge_softc *sc; 345 int off, val; 346 { 347 device_t dev; 348 349 dev = sc->bge_dev; 350 351 pci_write_config(dev, BGE_PCI_REG_BASEADDR, off, 4); 352 pci_write_config(dev, BGE_PCI_REG_DATA, val, 4); 353 354 return; 355 } 356 357 /* 358 * Map a single buffer address. 359 */ 360 361 static void 362 bge_dma_map_addr(arg, segs, nseg, error) 363 void *arg; 364 bus_dma_segment_t *segs; 365 int nseg; 366 int error; 367 { 368 struct bge_dmamap_arg *ctx; 369 370 if (error) 371 return; 372 373 ctx = arg; 374 375 if (nseg > ctx->bge_maxsegs) { 376 ctx->bge_maxsegs = 0; 377 return; 378 } 379 380 ctx->bge_busaddr = segs->ds_addr; 381 382 return; 383 } 384 385 /* 386 * Map an mbuf chain into an TX ring. 387 */ 388 389 static void 390 bge_dma_map_tx_desc(arg, segs, nseg, mapsize, error) 391 void *arg; 392 bus_dma_segment_t *segs; 393 int nseg; 394 bus_size_t mapsize; 395 int error; 396 { 397 struct bge_dmamap_arg *ctx; 398 struct bge_tx_bd *d = NULL; 399 int i = 0, idx; 400 401 if (error) 402 return; 403 404 ctx = arg; 405 406 /* Signal error to caller if there's too many segments */ 407 if (nseg > ctx->bge_maxsegs) { 408 ctx->bge_maxsegs = 0; 409 return; 410 } 411 412 idx = ctx->bge_idx; 413 while(1) { 414 d = &ctx->bge_ring[idx]; 415 d->bge_addr.bge_addr_lo = 416 htole32(BGE_ADDR_LO(segs[i].ds_addr)); 417 d->bge_addr.bge_addr_hi = 418 htole32(BGE_ADDR_HI(segs[i].ds_addr)); 419 d->bge_len = htole16(segs[i].ds_len); 420 d->bge_flags = htole16(ctx->bge_flags); 421 i++; 422 if (i == nseg) 423 break; 424 BGE_INC(idx, BGE_TX_RING_CNT); 425 } 426 427 d->bge_flags |= htole16(BGE_TXBDFLAG_END); 428 ctx->bge_maxsegs = nseg; 429 ctx->bge_idx = idx; 430 431 return; 432 } 433 434 435 #ifdef notdef 436 static u_int8_t 437 bge_vpd_readbyte(sc, addr) 438 struct bge_softc *sc; 439 int addr; 440 { 441 int i; 442 device_t dev; 443 u_int32_t val; 444 445 dev = sc->bge_dev; 446 pci_write_config(dev, BGE_PCI_VPD_ADDR, addr, 2); 447 for (i = 0; i < BGE_TIMEOUT * 10; i++) { 448 DELAY(10); 449 if (pci_read_config(dev, BGE_PCI_VPD_ADDR, 2) & BGE_VPD_FLAG) 450 break; 451 } 452 453 if (i == BGE_TIMEOUT) { 454 printf("bge%d: VPD read timed out\n", sc->bge_unit); 455 return(0); 456 } 457 458 val = pci_read_config(dev, BGE_PCI_VPD_DATA, 4); 459 460 return((val >> ((addr % 4) * 8)) & 0xFF); 461 } 462 463 static void 464 bge_vpd_read_res(sc, res, addr) 465 struct bge_softc *sc; 466 struct vpd_res *res; 467 int addr; 468 { 469 int i; 470 u_int8_t *ptr; 471 472 ptr = (u_int8_t *)res; 473 for (i = 0; i < sizeof(struct vpd_res); i++) 474 ptr[i] = bge_vpd_readbyte(sc, i + addr); 475 476 return; 477 } 478 479 static void 480 bge_vpd_read(sc) 481 struct bge_softc *sc; 482 { 483 int pos = 0, i; 484 struct vpd_res res; 485 486 if (sc->bge_vpd_prodname != NULL) 487 free(sc->bge_vpd_prodname, M_DEVBUF); 488 if (sc->bge_vpd_readonly != NULL) 489 free(sc->bge_vpd_readonly, M_DEVBUF); 490 sc->bge_vpd_prodname = NULL; 491 sc->bge_vpd_readonly = NULL; 492 493 bge_vpd_read_res(sc, &res, pos); 494 495 if (res.vr_id != VPD_RES_ID) { 496 printf("bge%d: bad VPD resource id: expected %x got %x\n", 497 sc->bge_unit, VPD_RES_ID, res.vr_id); 498 return; 499 } 500 501 pos += sizeof(res); 502 sc->bge_vpd_prodname = malloc(res.vr_len + 1, M_DEVBUF, M_NOWAIT); 503 for (i = 0; i < res.vr_len; i++) 504 sc->bge_vpd_prodname[i] = bge_vpd_readbyte(sc, i + pos); 505 sc->bge_vpd_prodname[i] = '\0'; 506 pos += i; 507 508 bge_vpd_read_res(sc, &res, pos); 509 510 if (res.vr_id != VPD_RES_READ) { 511 printf("bge%d: bad VPD resource id: expected %x got %x\n", 512 sc->bge_unit, VPD_RES_READ, res.vr_id); 513 return; 514 } 515 516 pos += sizeof(res); 517 sc->bge_vpd_readonly = malloc(res.vr_len, M_DEVBUF, M_NOWAIT); 518 for (i = 0; i < res.vr_len + 1; i++) 519 sc->bge_vpd_readonly[i] = bge_vpd_readbyte(sc, i + pos); 520 521 return; 522 } 523 #endif 524 525 /* 526 * Read a byte of data stored in the EEPROM at address 'addr.' The 527 * BCM570x supports both the traditional bitbang interface and an 528 * auto access interface for reading the EEPROM. We use the auto 529 * access method. 530 */ 531 static u_int8_t 532 bge_eeprom_getbyte(sc, addr, dest) 533 struct bge_softc *sc; 534 int addr; 535 u_int8_t *dest; 536 { 537 int i; 538 u_int32_t byte = 0; 539 540 /* 541 * Enable use of auto EEPROM access so we can avoid 542 * having to use the bitbang method. 543 */ 544 BGE_SETBIT(sc, BGE_MISC_LOCAL_CTL, BGE_MLC_AUTO_EEPROM); 545 546 /* Reset the EEPROM, load the clock period. */ 547 CSR_WRITE_4(sc, BGE_EE_ADDR, 548 BGE_EEADDR_RESET|BGE_EEHALFCLK(BGE_HALFCLK_384SCL)); 549 DELAY(20); 550 551 /* Issue the read EEPROM command. */ 552 CSR_WRITE_4(sc, BGE_EE_ADDR, BGE_EE_READCMD | addr); 553 554 /* Wait for completion */ 555 for(i = 0; i < BGE_TIMEOUT * 10; i++) { 556 DELAY(10); 557 if (CSR_READ_4(sc, BGE_EE_ADDR) & BGE_EEADDR_DONE) 558 break; 559 } 560 561 if (i == BGE_TIMEOUT) { 562 printf("bge%d: eeprom read timed out\n", sc->bge_unit); 563 return(0); 564 } 565 566 /* Get result. */ 567 byte = CSR_READ_4(sc, BGE_EE_DATA); 568 569 *dest = (byte >> ((addr % 4) * 8)) & 0xFF; 570 571 return(0); 572 } 573 574 /* 575 * Read a sequence of bytes from the EEPROM. 576 */ 577 static int 578 bge_read_eeprom(sc, dest, off, cnt) 579 struct bge_softc *sc; 580 caddr_t dest; 581 int off; 582 int cnt; 583 { 584 int err = 0, i; 585 u_int8_t byte = 0; 586 587 for (i = 0; i < cnt; i++) { 588 err = bge_eeprom_getbyte(sc, off + i, &byte); 589 if (err) 590 break; 591 *(dest + i) = byte; 592 } 593 594 return(err ? 1 : 0); 595 } 596 597 static int 598 bge_miibus_readreg(dev, phy, reg) 599 device_t dev; 600 int phy, reg; 601 { 602 struct bge_softc *sc; 603 u_int32_t val, autopoll; 604 int i; 605 606 sc = device_get_softc(dev); 607 608 /* 609 * Broadcom's own driver always assumes the internal 610 * PHY is at GMII address 1. On some chips, the PHY responds 611 * to accesses at all addresses, which could cause us to 612 * bogusly attach the PHY 32 times at probe type. Always 613 * restricting the lookup to address 1 is simpler than 614 * trying to figure out which chips revisions should be 615 * special-cased. 616 */ 617 if (phy != 1) 618 return(0); 619 620 /* Reading with autopolling on may trigger PCI errors */ 621 autopoll = CSR_READ_4(sc, BGE_MI_MODE); 622 if (autopoll & BGE_MIMODE_AUTOPOLL) { 623 BGE_CLRBIT(sc, BGE_MI_MODE, BGE_MIMODE_AUTOPOLL); 624 DELAY(40); 625 } 626 627 CSR_WRITE_4(sc, BGE_MI_COMM, BGE_MICMD_READ|BGE_MICOMM_BUSY| 628 BGE_MIPHY(phy)|BGE_MIREG(reg)); 629 630 for (i = 0; i < BGE_TIMEOUT; i++) { 631 val = CSR_READ_4(sc, BGE_MI_COMM); 632 if (!(val & BGE_MICOMM_BUSY)) 633 break; 634 } 635 636 if (i == BGE_TIMEOUT) { 637 printf("bge%d: PHY read timed out\n", sc->bge_unit); 638 val = 0; 639 goto done; 640 } 641 642 val = CSR_READ_4(sc, BGE_MI_COMM); 643 644 done: 645 if (autopoll & BGE_MIMODE_AUTOPOLL) { 646 BGE_SETBIT(sc, BGE_MI_MODE, BGE_MIMODE_AUTOPOLL); 647 DELAY(40); 648 } 649 650 if (val & BGE_MICOMM_READFAIL) 651 return(0); 652 653 return(val & 0xFFFF); 654 } 655 656 static int 657 bge_miibus_writereg(dev, phy, reg, val) 658 device_t dev; 659 int phy, reg, val; 660 { 661 struct bge_softc *sc; 662 u_int32_t autopoll; 663 int i; 664 665 sc = device_get_softc(dev); 666 667 /* Reading with autopolling on may trigger PCI errors */ 668 autopoll = CSR_READ_4(sc, BGE_MI_MODE); 669 if (autopoll & BGE_MIMODE_AUTOPOLL) { 670 BGE_CLRBIT(sc, BGE_MI_MODE, BGE_MIMODE_AUTOPOLL); 671 DELAY(40); 672 } 673 674 CSR_WRITE_4(sc, BGE_MI_COMM, BGE_MICMD_WRITE|BGE_MICOMM_BUSY| 675 BGE_MIPHY(phy)|BGE_MIREG(reg)|val); 676 677 for (i = 0; i < BGE_TIMEOUT; i++) { 678 if (!(CSR_READ_4(sc, BGE_MI_COMM) & BGE_MICOMM_BUSY)) 679 break; 680 } 681 682 if (autopoll & BGE_MIMODE_AUTOPOLL) { 683 BGE_SETBIT(sc, BGE_MI_MODE, BGE_MIMODE_AUTOPOLL); 684 DELAY(40); 685 } 686 687 if (i == BGE_TIMEOUT) { 688 printf("bge%d: PHY read timed out\n", sc->bge_unit); 689 return(0); 690 } 691 692 return(0); 693 } 694 695 static void 696 bge_miibus_statchg(dev) 697 device_t dev; 698 { 699 struct bge_softc *sc; 700 struct mii_data *mii; 701 702 sc = device_get_softc(dev); 703 mii = device_get_softc(sc->bge_miibus); 704 705 BGE_CLRBIT(sc, BGE_MAC_MODE, BGE_MACMODE_PORTMODE); 706 if (IFM_SUBTYPE(mii->mii_media_active) == IFM_1000_T) { 707 BGE_SETBIT(sc, BGE_MAC_MODE, BGE_PORTMODE_GMII); 708 } else { 709 BGE_SETBIT(sc, BGE_MAC_MODE, BGE_PORTMODE_MII); 710 } 711 712 if ((mii->mii_media_active & IFM_GMASK) == IFM_FDX) { 713 BGE_CLRBIT(sc, BGE_MAC_MODE, BGE_MACMODE_HALF_DUPLEX); 714 } else { 715 BGE_SETBIT(sc, BGE_MAC_MODE, BGE_MACMODE_HALF_DUPLEX); 716 } 717 718 return; 719 } 720 721 /* 722 * Handle events that have triggered interrupts. 723 */ 724 static void 725 bge_handle_events(sc) 726 struct bge_softc *sc; 727 { 728 729 return; 730 } 731 732 /* 733 * Memory management for jumbo frames. 734 */ 735 736 static int 737 bge_alloc_jumbo_mem(sc) 738 struct bge_softc *sc; 739 { 740 caddr_t ptr; 741 register int i, error; 742 struct bge_jpool_entry *entry; 743 744 /* Create tag for jumbo buffer block */ 745 746 error = bus_dma_tag_create(sc->bge_cdata.bge_parent_tag, 747 PAGE_SIZE, 0, BUS_SPACE_MAXADDR, BUS_SPACE_MAXADDR, NULL, 748 NULL, BGE_JMEM, 1, BGE_JMEM, 0, NULL, NULL, 749 &sc->bge_cdata.bge_jumbo_tag); 750 751 if (error) { 752 printf("bge%d: could not allocate jumbo dma tag\n", 753 sc->bge_unit); 754 return (ENOMEM); 755 } 756 757 /* Allocate DMA'able memory for jumbo buffer block */ 758 759 error = bus_dmamem_alloc(sc->bge_cdata.bge_jumbo_tag, 760 (void **)&sc->bge_ldata.bge_jumbo_buf, BUS_DMA_NOWAIT, 761 &sc->bge_cdata.bge_jumbo_map); 762 763 if (error) 764 return (ENOMEM); 765 766 SLIST_INIT(&sc->bge_jfree_listhead); 767 SLIST_INIT(&sc->bge_jinuse_listhead); 768 769 /* 770 * Now divide it up into 9K pieces and save the addresses 771 * in an array. 772 */ 773 ptr = sc->bge_ldata.bge_jumbo_buf; 774 for (i = 0; i < BGE_JSLOTS; i++) { 775 sc->bge_cdata.bge_jslots[i] = ptr; 776 ptr += BGE_JLEN; 777 entry = malloc(sizeof(struct bge_jpool_entry), 778 M_DEVBUF, M_NOWAIT); 779 if (entry == NULL) { 780 bge_free_jumbo_mem(sc); 781 sc->bge_ldata.bge_jumbo_buf = NULL; 782 printf("bge%d: no memory for jumbo " 783 "buffer queue!\n", sc->bge_unit); 784 return(ENOBUFS); 785 } 786 entry->slot = i; 787 SLIST_INSERT_HEAD(&sc->bge_jfree_listhead, 788 entry, jpool_entries); 789 } 790 791 return(0); 792 } 793 794 static void 795 bge_free_jumbo_mem(sc) 796 struct bge_softc *sc; 797 { 798 int i; 799 struct bge_jpool_entry *entry; 800 801 for (i = 0; i < BGE_JSLOTS; i++) { 802 entry = SLIST_FIRST(&sc->bge_jfree_listhead); 803 SLIST_REMOVE_HEAD(&sc->bge_jfree_listhead, jpool_entries); 804 free(entry, M_DEVBUF); 805 } 806 807 /* Destroy jumbo buffer block */ 808 809 if (sc->bge_ldata.bge_rx_jumbo_ring) 810 bus_dmamem_free(sc->bge_cdata.bge_jumbo_tag, 811 sc->bge_ldata.bge_jumbo_buf, 812 sc->bge_cdata.bge_jumbo_map); 813 814 if (sc->bge_cdata.bge_rx_jumbo_ring_map) 815 bus_dmamap_destroy(sc->bge_cdata.bge_jumbo_tag, 816 sc->bge_cdata.bge_jumbo_map); 817 818 if (sc->bge_cdata.bge_jumbo_tag) 819 bus_dma_tag_destroy(sc->bge_cdata.bge_jumbo_tag); 820 821 return; 822 } 823 824 /* 825 * Allocate a jumbo buffer. 826 */ 827 static void * 828 bge_jalloc(sc) 829 struct bge_softc *sc; 830 { 831 struct bge_jpool_entry *entry; 832 833 entry = SLIST_FIRST(&sc->bge_jfree_listhead); 834 835 if (entry == NULL) { 836 printf("bge%d: no free jumbo buffers\n", sc->bge_unit); 837 return(NULL); 838 } 839 840 SLIST_REMOVE_HEAD(&sc->bge_jfree_listhead, jpool_entries); 841 SLIST_INSERT_HEAD(&sc->bge_jinuse_listhead, entry, jpool_entries); 842 return(sc->bge_cdata.bge_jslots[entry->slot]); 843 } 844 845 /* 846 * Release a jumbo buffer. 847 */ 848 static void 849 bge_jfree(buf, args) 850 void *buf; 851 void *args; 852 { 853 struct bge_jpool_entry *entry; 854 struct bge_softc *sc; 855 int i; 856 857 /* Extract the softc struct pointer. */ 858 sc = (struct bge_softc *)args; 859 860 if (sc == NULL) 861 panic("bge_jfree: can't find softc pointer!"); 862 863 /* calculate the slot this buffer belongs to */ 864 865 i = ((vm_offset_t)buf 866 - (vm_offset_t)sc->bge_ldata.bge_jumbo_buf) / BGE_JLEN; 867 868 if ((i < 0) || (i >= BGE_JSLOTS)) 869 panic("bge_jfree: asked to free buffer that we don't manage!"); 870 871 entry = SLIST_FIRST(&sc->bge_jinuse_listhead); 872 if (entry == NULL) 873 panic("bge_jfree: buffer not in use!"); 874 entry->slot = i; 875 SLIST_REMOVE_HEAD(&sc->bge_jinuse_listhead, jpool_entries); 876 SLIST_INSERT_HEAD(&sc->bge_jfree_listhead, entry, jpool_entries); 877 878 return; 879 } 880 881 882 /* 883 * Intialize a standard receive ring descriptor. 884 */ 885 static int 886 bge_newbuf_std(sc, i, m) 887 struct bge_softc *sc; 888 int i; 889 struct mbuf *m; 890 { 891 struct mbuf *m_new = NULL; 892 struct bge_rx_bd *r; 893 struct bge_dmamap_arg ctx; 894 int error; 895 896 if (m == NULL) { 897 MGETHDR(m_new, M_DONTWAIT, MT_DATA); 898 if (m_new == NULL) { 899 return(ENOBUFS); 900 } 901 902 MCLGET(m_new, M_DONTWAIT); 903 if (!(m_new->m_flags & M_EXT)) { 904 m_freem(m_new); 905 return(ENOBUFS); 906 } 907 m_new->m_len = m_new->m_pkthdr.len = MCLBYTES; 908 } else { 909 m_new = m; 910 m_new->m_len = m_new->m_pkthdr.len = MCLBYTES; 911 m_new->m_data = m_new->m_ext.ext_buf; 912 } 913 914 if (!sc->bge_rx_alignment_bug) 915 m_adj(m_new, ETHER_ALIGN); 916 sc->bge_cdata.bge_rx_std_chain[i] = m_new; 917 r = &sc->bge_ldata.bge_rx_std_ring[i]; 918 ctx.bge_maxsegs = 1; 919 ctx.sc = sc; 920 error = bus_dmamap_load(sc->bge_cdata.bge_mtag, 921 sc->bge_cdata.bge_rx_std_dmamap[i], mtod(m_new, void *), 922 m_new->m_len, bge_dma_map_addr, &ctx, BUS_DMA_NOWAIT); 923 if (error || ctx.bge_maxsegs == 0) { 924 if (m == NULL) 925 m_freem(m_new); 926 return(ENOMEM); 927 } 928 r->bge_addr.bge_addr_lo = htole32(BGE_ADDR_LO(ctx.bge_busaddr)); 929 r->bge_addr.bge_addr_hi = htole32(BGE_ADDR_HI(ctx.bge_busaddr)); 930 r->bge_flags = htole16(BGE_RXBDFLAG_END); 931 r->bge_len = htole16(m_new->m_len); 932 r->bge_idx = htole16(i); 933 934 bus_dmamap_sync(sc->bge_cdata.bge_mtag, 935 sc->bge_cdata.bge_rx_std_dmamap[i], 936 BUS_DMASYNC_PREREAD); 937 938 return(0); 939 } 940 941 /* 942 * Initialize a jumbo receive ring descriptor. This allocates 943 * a jumbo buffer from the pool managed internally by the driver. 944 */ 945 static int 946 bge_newbuf_jumbo(sc, i, m) 947 struct bge_softc *sc; 948 int i; 949 struct mbuf *m; 950 { 951 struct mbuf *m_new = NULL; 952 struct bge_rx_bd *r; 953 struct bge_dmamap_arg ctx; 954 int error; 955 956 if (m == NULL) { 957 caddr_t *buf = NULL; 958 959 /* Allocate the mbuf. */ 960 MGETHDR(m_new, M_DONTWAIT, MT_DATA); 961 if (m_new == NULL) { 962 return(ENOBUFS); 963 } 964 965 /* Allocate the jumbo buffer */ 966 buf = bge_jalloc(sc); 967 if (buf == NULL) { 968 m_freem(m_new); 969 printf("bge%d: jumbo allocation failed " 970 "-- packet dropped!\n", sc->bge_unit); 971 return(ENOBUFS); 972 } 973 974 /* Attach the buffer to the mbuf. */ 975 m_new->m_data = (void *) buf; 976 m_new->m_len = m_new->m_pkthdr.len = BGE_JUMBO_FRAMELEN; 977 MEXTADD(m_new, buf, BGE_JUMBO_FRAMELEN, bge_jfree, 978 (struct bge_softc *)sc, 0, EXT_NET_DRV); 979 } else { 980 m_new = m; 981 m_new->m_data = m_new->m_ext.ext_buf; 982 m_new->m_ext.ext_size = BGE_JUMBO_FRAMELEN; 983 } 984 985 if (!sc->bge_rx_alignment_bug) 986 m_adj(m_new, ETHER_ALIGN); 987 /* Set up the descriptor. */ 988 sc->bge_cdata.bge_rx_jumbo_chain[i] = m_new; 989 r = &sc->bge_ldata.bge_rx_jumbo_ring[i]; 990 ctx.bge_maxsegs = 1; 991 ctx.sc = sc; 992 error = bus_dmamap_load(sc->bge_cdata.bge_mtag_jumbo, 993 sc->bge_cdata.bge_rx_jumbo_dmamap[i], mtod(m_new, void *), 994 m_new->m_len, bge_dma_map_addr, &ctx, BUS_DMA_NOWAIT); 995 if (error || ctx.bge_maxsegs == 0) { 996 if (m == NULL) 997 m_freem(m_new); 998 return(ENOMEM); 999 } 1000 r->bge_addr.bge_addr_lo = htole32(BGE_ADDR_LO(ctx.bge_busaddr)); 1001 r->bge_addr.bge_addr_hi = htole32(BGE_ADDR_HI(ctx.bge_busaddr)); 1002 r->bge_flags = htole16(BGE_RXBDFLAG_END|BGE_RXBDFLAG_JUMBO_RING); 1003 r->bge_len = htole16(m_new->m_len); 1004 r->bge_idx = htole16(i); 1005 1006 bus_dmamap_sync(sc->bge_cdata.bge_mtag, 1007 sc->bge_cdata.bge_rx_jumbo_dmamap[i], 1008 BUS_DMASYNC_PREREAD); 1009 1010 return(0); 1011 } 1012 1013 /* 1014 * The standard receive ring has 512 entries in it. At 2K per mbuf cluster, 1015 * that's 1MB or memory, which is a lot. For now, we fill only the first 1016 * 256 ring entries and hope that our CPU is fast enough to keep up with 1017 * the NIC. 1018 */ 1019 static int 1020 bge_init_rx_ring_std(sc) 1021 struct bge_softc *sc; 1022 { 1023 int i; 1024 1025 for (i = 0; i < BGE_SSLOTS; i++) { 1026 if (bge_newbuf_std(sc, i, NULL) == ENOBUFS) 1027 return(ENOBUFS); 1028 }; 1029 1030 bus_dmamap_sync(sc->bge_cdata.bge_rx_std_ring_tag, 1031 sc->bge_cdata.bge_rx_std_ring_map, 1032 BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE); 1033 1034 sc->bge_std = i - 1; 1035 CSR_WRITE_4(sc, BGE_MBX_RX_STD_PROD_LO, sc->bge_std); 1036 1037 return(0); 1038 } 1039 1040 static void 1041 bge_free_rx_ring_std(sc) 1042 struct bge_softc *sc; 1043 { 1044 int i; 1045 1046 for (i = 0; i < BGE_STD_RX_RING_CNT; i++) { 1047 if (sc->bge_cdata.bge_rx_std_chain[i] != NULL) { 1048 m_freem(sc->bge_cdata.bge_rx_std_chain[i]); 1049 sc->bge_cdata.bge_rx_std_chain[i] = NULL; 1050 bus_dmamap_unload(sc->bge_cdata.bge_mtag, 1051 sc->bge_cdata.bge_rx_std_dmamap[i]); 1052 } 1053 bzero((char *)&sc->bge_ldata.bge_rx_std_ring[i], 1054 sizeof(struct bge_rx_bd)); 1055 } 1056 1057 return; 1058 } 1059 1060 static int 1061 bge_init_rx_ring_jumbo(sc) 1062 struct bge_softc *sc; 1063 { 1064 int i; 1065 struct bge_rcb *rcb; 1066 1067 for (i = 0; i < BGE_JUMBO_RX_RING_CNT; i++) { 1068 if (bge_newbuf_jumbo(sc, i, NULL) == ENOBUFS) 1069 return(ENOBUFS); 1070 }; 1071 1072 bus_dmamap_sync(sc->bge_cdata.bge_rx_jumbo_ring_tag, 1073 sc->bge_cdata.bge_rx_jumbo_ring_map, 1074 BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE); 1075 1076 sc->bge_jumbo = i - 1; 1077 1078 rcb = &sc->bge_ldata.bge_info.bge_jumbo_rx_rcb; 1079 rcb->bge_maxlen_flags = BGE_RCB_MAXLEN_FLAGS(0, 0); 1080 CSR_WRITE_4(sc, BGE_RX_JUMBO_RCB_MAXLEN_FLAGS, rcb->bge_maxlen_flags); 1081 1082 CSR_WRITE_4(sc, BGE_MBX_RX_JUMBO_PROD_LO, sc->bge_jumbo); 1083 1084 return(0); 1085 } 1086 1087 static void 1088 bge_free_rx_ring_jumbo(sc) 1089 struct bge_softc *sc; 1090 { 1091 int i; 1092 1093 for (i = 0; i < BGE_JUMBO_RX_RING_CNT; i++) { 1094 if (sc->bge_cdata.bge_rx_jumbo_chain[i] != NULL) { 1095 m_freem(sc->bge_cdata.bge_rx_jumbo_chain[i]); 1096 sc->bge_cdata.bge_rx_jumbo_chain[i] = NULL; 1097 bus_dmamap_unload(sc->bge_cdata.bge_mtag_jumbo, 1098 sc->bge_cdata.bge_rx_jumbo_dmamap[i]); 1099 } 1100 bzero((char *)&sc->bge_ldata.bge_rx_jumbo_ring[i], 1101 sizeof(struct bge_rx_bd)); 1102 } 1103 1104 return; 1105 } 1106 1107 static void 1108 bge_free_tx_ring(sc) 1109 struct bge_softc *sc; 1110 { 1111 int i; 1112 1113 if (sc->bge_ldata.bge_tx_ring == NULL) 1114 return; 1115 1116 for (i = 0; i < BGE_TX_RING_CNT; i++) { 1117 if (sc->bge_cdata.bge_tx_chain[i] != NULL) { 1118 m_freem(sc->bge_cdata.bge_tx_chain[i]); 1119 sc->bge_cdata.bge_tx_chain[i] = NULL; 1120 bus_dmamap_unload(sc->bge_cdata.bge_mtag, 1121 sc->bge_cdata.bge_tx_dmamap[i]); 1122 } 1123 bzero((char *)&sc->bge_ldata.bge_tx_ring[i], 1124 sizeof(struct bge_tx_bd)); 1125 } 1126 1127 return; 1128 } 1129 1130 static int 1131 bge_init_tx_ring(sc) 1132 struct bge_softc *sc; 1133 { 1134 sc->bge_txcnt = 0; 1135 sc->bge_tx_saved_considx = 0; 1136 1137 CSR_WRITE_4(sc, BGE_MBX_TX_HOST_PROD0_LO, 0); 1138 /* 5700 b2 errata */ 1139 if (sc->bge_chiprev == BGE_CHIPREV_5700_BX) 1140 CSR_WRITE_4(sc, BGE_MBX_TX_HOST_PROD0_LO, 0); 1141 1142 CSR_WRITE_4(sc, BGE_MBX_TX_NIC_PROD0_LO, 0); 1143 /* 5700 b2 errata */ 1144 if (sc->bge_chiprev == BGE_CHIPREV_5700_BX) 1145 CSR_WRITE_4(sc, BGE_MBX_TX_NIC_PROD0_LO, 0); 1146 1147 return(0); 1148 } 1149 1150 static void 1151 bge_setmulti(sc) 1152 struct bge_softc *sc; 1153 { 1154 struct ifnet *ifp; 1155 struct ifmultiaddr *ifma; 1156 u_int32_t hashes[4] = { 0, 0, 0, 0 }; 1157 int h, i; 1158 1159 BGE_LOCK_ASSERT(sc); 1160 1161 ifp = sc->bge_ifp; 1162 1163 if (ifp->if_flags & IFF_ALLMULTI || ifp->if_flags & IFF_PROMISC) { 1164 for (i = 0; i < 4; i++) 1165 CSR_WRITE_4(sc, BGE_MAR0 + (i * 4), 0xFFFFFFFF); 1166 return; 1167 } 1168 1169 /* First, zot all the existing filters. */ 1170 for (i = 0; i < 4; i++) 1171 CSR_WRITE_4(sc, BGE_MAR0 + (i * 4), 0); 1172 1173 /* Now program new ones. */ 1174 IF_ADDR_LOCK(ifp); 1175 TAILQ_FOREACH(ifma, &ifp->if_multiaddrs, ifma_link) { 1176 if (ifma->ifma_addr->sa_family != AF_LINK) 1177 continue; 1178 h = ether_crc32_le(LLADDR((struct sockaddr_dl *) 1179 ifma->ifma_addr), ETHER_ADDR_LEN) & 0x7F; 1180 hashes[(h & 0x60) >> 5] |= 1 << (h & 0x1F); 1181 } 1182 IF_ADDR_UNLOCK(ifp); 1183 1184 for (i = 0; i < 4; i++) 1185 CSR_WRITE_4(sc, BGE_MAR0 + (i * 4), hashes[i]); 1186 1187 return; 1188 } 1189 1190 /* 1191 * Do endian, PCI and DMA initialization. Also check the on-board ROM 1192 * self-test results. 1193 */ 1194 static int 1195 bge_chipinit(sc) 1196 struct bge_softc *sc; 1197 { 1198 int i; 1199 u_int32_t dma_rw_ctl; 1200 1201 /* Set endianness before we access any non-PCI registers. */ 1202 #if BYTE_ORDER == BIG_ENDIAN 1203 pci_write_config(sc->bge_dev, BGE_PCI_MISC_CTL, 1204 BGE_BIGENDIAN_INIT, 4); 1205 #else 1206 pci_write_config(sc->bge_dev, BGE_PCI_MISC_CTL, 1207 BGE_LITTLEENDIAN_INIT, 4); 1208 #endif 1209 1210 /* 1211 * Check the 'ROM failed' bit on the RX CPU to see if 1212 * self-tests passed. 1213 */ 1214 if (CSR_READ_4(sc, BGE_RXCPU_MODE) & BGE_RXCPUMODE_ROMFAIL) { 1215 printf("bge%d: RX CPU self-diagnostics failed!\n", 1216 sc->bge_unit); 1217 return(ENODEV); 1218 } 1219 1220 /* Clear the MAC control register */ 1221 CSR_WRITE_4(sc, BGE_MAC_MODE, 0); 1222 1223 /* 1224 * Clear the MAC statistics block in the NIC's 1225 * internal memory. 1226 */ 1227 for (i = BGE_STATS_BLOCK; 1228 i < BGE_STATS_BLOCK_END + 1; i += sizeof(u_int32_t)) 1229 BGE_MEMWIN_WRITE(sc, i, 0); 1230 1231 for (i = BGE_STATUS_BLOCK; 1232 i < BGE_STATUS_BLOCK_END + 1; i += sizeof(u_int32_t)) 1233 BGE_MEMWIN_WRITE(sc, i, 0); 1234 1235 /* Set up the PCI DMA control register. */ 1236 if (sc->bge_pcie) { 1237 dma_rw_ctl = BGE_PCI_READ_CMD|BGE_PCI_WRITE_CMD | 1238 (0xf << BGE_PCIDMARWCTL_RD_WAT_SHIFT) | 1239 (0x2 << BGE_PCIDMARWCTL_WR_WAT_SHIFT); 1240 } else if (pci_read_config(sc->bge_dev, BGE_PCI_PCISTATE, 4) & 1241 BGE_PCISTATE_PCI_BUSMODE) { 1242 /* Conventional PCI bus */ 1243 dma_rw_ctl = BGE_PCI_READ_CMD|BGE_PCI_WRITE_CMD | 1244 (0x7 << BGE_PCIDMARWCTL_RD_WAT_SHIFT) | 1245 (0x7 << BGE_PCIDMARWCTL_WR_WAT_SHIFT) | 1246 (0x0F); 1247 } else { 1248 /* PCI-X bus */ 1249 /* 1250 * The 5704 uses a different encoding of read/write 1251 * watermarks. 1252 */ 1253 if (sc->bge_asicrev == BGE_ASICREV_BCM5704) 1254 dma_rw_ctl = BGE_PCI_READ_CMD|BGE_PCI_WRITE_CMD | 1255 (0x7 << BGE_PCIDMARWCTL_RD_WAT_SHIFT) | 1256 (0x3 << BGE_PCIDMARWCTL_WR_WAT_SHIFT); 1257 else 1258 dma_rw_ctl = BGE_PCI_READ_CMD|BGE_PCI_WRITE_CMD | 1259 (0x3 << BGE_PCIDMARWCTL_RD_WAT_SHIFT) | 1260 (0x3 << BGE_PCIDMARWCTL_WR_WAT_SHIFT) | 1261 (0x0F); 1262 1263 /* 1264 * 5703 and 5704 need ONEDMA_AT_ONCE as a workaround 1265 * for hardware bugs. 1266 */ 1267 if (sc->bge_asicrev == BGE_ASICREV_BCM5703 || 1268 sc->bge_asicrev == BGE_ASICREV_BCM5704) { 1269 u_int32_t tmp; 1270 1271 tmp = CSR_READ_4(sc, BGE_PCI_CLKCTL) & 0x1f; 1272 if (tmp == 0x6 || tmp == 0x7) 1273 dma_rw_ctl |= BGE_PCIDMARWCTL_ONEDMA_ATONCE; 1274 } 1275 } 1276 1277 if (sc->bge_asicrev == BGE_ASICREV_BCM5703 || 1278 sc->bge_asicrev == BGE_ASICREV_BCM5704 || 1279 sc->bge_asicrev == BGE_ASICREV_BCM5705 || 1280 sc->bge_asicrev == BGE_ASICREV_BCM5750) 1281 dma_rw_ctl &= ~BGE_PCIDMARWCTL_MINDMA; 1282 pci_write_config(sc->bge_dev, BGE_PCI_DMA_RW_CTL, dma_rw_ctl, 4); 1283 1284 /* 1285 * Set up general mode register. 1286 */ 1287 CSR_WRITE_4(sc, BGE_MODE_CTL, BGE_MODECTL_WORDSWAP_NONFRAME| 1288 BGE_MODECTL_BYTESWAP_DATA|BGE_MODECTL_WORDSWAP_DATA| 1289 BGE_MODECTL_MAC_ATTN_INTR|BGE_MODECTL_HOST_SEND_BDS| 1290 BGE_MODECTL_TX_NO_PHDR_CSUM|BGE_MODECTL_RX_NO_PHDR_CSUM); 1291 1292 /* 1293 * Disable memory write invalidate. Apparently it is not supported 1294 * properly by these devices. 1295 */ 1296 PCI_CLRBIT(sc->bge_dev, BGE_PCI_CMD, PCIM_CMD_MWIEN, 4); 1297 1298 #ifdef __brokenalpha__ 1299 /* 1300 * Must insure that we do not cross an 8K (bytes) boundary 1301 * for DMA reads. Our highest limit is 1K bytes. This is a 1302 * restriction on some ALPHA platforms with early revision 1303 * 21174 PCI chipsets, such as the AlphaPC 164lx 1304 */ 1305 PCI_SETBIT(sc->bge_dev, BGE_PCI_DMA_RW_CTL, 1306 BGE_PCI_READ_BNDRY_1024BYTES, 4); 1307 #endif 1308 1309 /* Set the timer prescaler (always 66Mhz) */ 1310 CSR_WRITE_4(sc, BGE_MISC_CFG, 65 << 1/*BGE_32BITTIME_66MHZ*/); 1311 1312 return(0); 1313 } 1314 1315 static int 1316 bge_blockinit(sc) 1317 struct bge_softc *sc; 1318 { 1319 struct bge_rcb *rcb; 1320 volatile struct bge_rcb *vrcb; 1321 int i; 1322 1323 /* 1324 * Initialize the memory window pointer register so that 1325 * we can access the first 32K of internal NIC RAM. This will 1326 * allow us to set up the TX send ring RCBs and the RX return 1327 * ring RCBs, plus other things which live in NIC memory. 1328 */ 1329 CSR_WRITE_4(sc, BGE_PCI_MEMWIN_BASEADDR, 0); 1330 1331 /* Note: the BCM5704 has a smaller mbuf space than other chips. */ 1332 1333 if (sc->bge_asicrev != BGE_ASICREV_BCM5705 && 1334 sc->bge_asicrev != BGE_ASICREV_BCM5750) { 1335 /* Configure mbuf memory pool */ 1336 if (sc->bge_extram) { 1337 CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_BASEADDR, 1338 BGE_EXT_SSRAM); 1339 if (sc->bge_asicrev == BGE_ASICREV_BCM5704) 1340 CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_LEN, 0x10000); 1341 else 1342 CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_LEN, 0x18000); 1343 } else { 1344 CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_BASEADDR, 1345 BGE_BUFFPOOL_1); 1346 if (sc->bge_asicrev == BGE_ASICREV_BCM5704) 1347 CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_LEN, 0x10000); 1348 else 1349 CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_LEN, 0x18000); 1350 } 1351 1352 /* Configure DMA resource pool */ 1353 CSR_WRITE_4(sc, BGE_BMAN_DMA_DESCPOOL_BASEADDR, 1354 BGE_DMA_DESCRIPTORS); 1355 CSR_WRITE_4(sc, BGE_BMAN_DMA_DESCPOOL_LEN, 0x2000); 1356 } 1357 1358 /* Configure mbuf pool watermarks */ 1359 if (sc->bge_asicrev == BGE_ASICREV_BCM5705 || 1360 sc->bge_asicrev == BGE_ASICREV_BCM5750) { 1361 CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_READDMA_LOWAT, 0x0); 1362 CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_MACRX_LOWAT, 0x10); 1363 } else { 1364 CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_READDMA_LOWAT, 0x50); 1365 CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_MACRX_LOWAT, 0x20); 1366 } 1367 CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_HIWAT, 0x60); 1368 1369 /* Configure DMA resource watermarks */ 1370 CSR_WRITE_4(sc, BGE_BMAN_DMA_DESCPOOL_LOWAT, 5); 1371 CSR_WRITE_4(sc, BGE_BMAN_DMA_DESCPOOL_HIWAT, 10); 1372 1373 /* Enable buffer manager */ 1374 if (sc->bge_asicrev != BGE_ASICREV_BCM5705 && 1375 sc->bge_asicrev != BGE_ASICREV_BCM5750) { 1376 CSR_WRITE_4(sc, BGE_BMAN_MODE, 1377 BGE_BMANMODE_ENABLE|BGE_BMANMODE_LOMBUF_ATTN); 1378 1379 /* Poll for buffer manager start indication */ 1380 for (i = 0; i < BGE_TIMEOUT; i++) { 1381 if (CSR_READ_4(sc, BGE_BMAN_MODE) & BGE_BMANMODE_ENABLE) 1382 break; 1383 DELAY(10); 1384 } 1385 1386 if (i == BGE_TIMEOUT) { 1387 printf("bge%d: buffer manager failed to start\n", 1388 sc->bge_unit); 1389 return(ENXIO); 1390 } 1391 } 1392 1393 /* Enable flow-through queues */ 1394 CSR_WRITE_4(sc, BGE_FTQ_RESET, 0xFFFFFFFF); 1395 CSR_WRITE_4(sc, BGE_FTQ_RESET, 0); 1396 1397 /* Wait until queue initialization is complete */ 1398 for (i = 0; i < BGE_TIMEOUT; i++) { 1399 if (CSR_READ_4(sc, BGE_FTQ_RESET) == 0) 1400 break; 1401 DELAY(10); 1402 } 1403 1404 if (i == BGE_TIMEOUT) { 1405 printf("bge%d: flow-through queue init failed\n", 1406 sc->bge_unit); 1407 return(ENXIO); 1408 } 1409 1410 /* Initialize the standard RX ring control block */ 1411 rcb = &sc->bge_ldata.bge_info.bge_std_rx_rcb; 1412 rcb->bge_hostaddr.bge_addr_lo = 1413 BGE_ADDR_LO(sc->bge_ldata.bge_rx_std_ring_paddr); 1414 rcb->bge_hostaddr.bge_addr_hi = 1415 BGE_ADDR_HI(sc->bge_ldata.bge_rx_std_ring_paddr); 1416 bus_dmamap_sync(sc->bge_cdata.bge_rx_std_ring_tag, 1417 sc->bge_cdata.bge_rx_std_ring_map, BUS_DMASYNC_PREREAD); 1418 if (sc->bge_asicrev == BGE_ASICREV_BCM5705 || 1419 sc->bge_asicrev == BGE_ASICREV_BCM5750) 1420 rcb->bge_maxlen_flags = BGE_RCB_MAXLEN_FLAGS(512, 0); 1421 else 1422 rcb->bge_maxlen_flags = 1423 BGE_RCB_MAXLEN_FLAGS(BGE_MAX_FRAMELEN, 0); 1424 if (sc->bge_extram) 1425 rcb->bge_nicaddr = BGE_EXT_STD_RX_RINGS; 1426 else 1427 rcb->bge_nicaddr = BGE_STD_RX_RINGS; 1428 CSR_WRITE_4(sc, BGE_RX_STD_RCB_HADDR_HI, rcb->bge_hostaddr.bge_addr_hi); 1429 CSR_WRITE_4(sc, BGE_RX_STD_RCB_HADDR_LO, rcb->bge_hostaddr.bge_addr_lo); 1430 1431 CSR_WRITE_4(sc, BGE_RX_STD_RCB_MAXLEN_FLAGS, rcb->bge_maxlen_flags); 1432 CSR_WRITE_4(sc, BGE_RX_STD_RCB_NICADDR, rcb->bge_nicaddr); 1433 1434 /* 1435 * Initialize the jumbo RX ring control block 1436 * We set the 'ring disabled' bit in the flags 1437 * field until we're actually ready to start 1438 * using this ring (i.e. once we set the MTU 1439 * high enough to require it). 1440 */ 1441 if (sc->bge_asicrev != BGE_ASICREV_BCM5705 && 1442 sc->bge_asicrev != BGE_ASICREV_BCM5750) { 1443 rcb = &sc->bge_ldata.bge_info.bge_jumbo_rx_rcb; 1444 1445 rcb->bge_hostaddr.bge_addr_lo = 1446 BGE_ADDR_LO(sc->bge_ldata.bge_rx_jumbo_ring_paddr); 1447 rcb->bge_hostaddr.bge_addr_hi = 1448 BGE_ADDR_HI(sc->bge_ldata.bge_rx_jumbo_ring_paddr); 1449 bus_dmamap_sync(sc->bge_cdata.bge_rx_jumbo_ring_tag, 1450 sc->bge_cdata.bge_rx_jumbo_ring_map, 1451 BUS_DMASYNC_PREREAD); 1452 rcb->bge_maxlen_flags = 1453 BGE_RCB_MAXLEN_FLAGS(BGE_MAX_FRAMELEN, 1454 BGE_RCB_FLAG_RING_DISABLED); 1455 if (sc->bge_extram) 1456 rcb->bge_nicaddr = BGE_EXT_JUMBO_RX_RINGS; 1457 else 1458 rcb->bge_nicaddr = BGE_JUMBO_RX_RINGS; 1459 CSR_WRITE_4(sc, BGE_RX_JUMBO_RCB_HADDR_HI, 1460 rcb->bge_hostaddr.bge_addr_hi); 1461 CSR_WRITE_4(sc, BGE_RX_JUMBO_RCB_HADDR_LO, 1462 rcb->bge_hostaddr.bge_addr_lo); 1463 1464 CSR_WRITE_4(sc, BGE_RX_JUMBO_RCB_MAXLEN_FLAGS, 1465 rcb->bge_maxlen_flags); 1466 CSR_WRITE_4(sc, BGE_RX_JUMBO_RCB_NICADDR, rcb->bge_nicaddr); 1467 1468 /* Set up dummy disabled mini ring RCB */ 1469 rcb = &sc->bge_ldata.bge_info.bge_mini_rx_rcb; 1470 rcb->bge_maxlen_flags = 1471 BGE_RCB_MAXLEN_FLAGS(0, BGE_RCB_FLAG_RING_DISABLED); 1472 CSR_WRITE_4(sc, BGE_RX_MINI_RCB_MAXLEN_FLAGS, 1473 rcb->bge_maxlen_flags); 1474 } 1475 1476 /* 1477 * Set the BD ring replentish thresholds. The recommended 1478 * values are 1/8th the number of descriptors allocated to 1479 * each ring. 1480 */ 1481 CSR_WRITE_4(sc, BGE_RBDI_STD_REPL_THRESH, BGE_STD_RX_RING_CNT/8); 1482 CSR_WRITE_4(sc, BGE_RBDI_JUMBO_REPL_THRESH, BGE_JUMBO_RX_RING_CNT/8); 1483 1484 /* 1485 * Disable all unused send rings by setting the 'ring disabled' 1486 * bit in the flags field of all the TX send ring control blocks. 1487 * These are located in NIC memory. 1488 */ 1489 vrcb = (volatile struct bge_rcb *)(sc->bge_vhandle + BGE_MEMWIN_START + 1490 BGE_SEND_RING_RCB); 1491 for (i = 0; i < BGE_TX_RINGS_EXTSSRAM_MAX; i++) { 1492 vrcb->bge_maxlen_flags = 1493 BGE_RCB_MAXLEN_FLAGS(0, BGE_RCB_FLAG_RING_DISABLED); 1494 vrcb->bge_nicaddr = 0; 1495 vrcb++; 1496 } 1497 1498 /* Configure TX RCB 0 (we use only the first ring) */ 1499 vrcb = (volatile struct bge_rcb *)(sc->bge_vhandle + BGE_MEMWIN_START + 1500 BGE_SEND_RING_RCB); 1501 vrcb->bge_hostaddr.bge_addr_lo = 1502 htole32(BGE_ADDR_LO(sc->bge_ldata.bge_tx_ring_paddr)); 1503 vrcb->bge_hostaddr.bge_addr_hi = 1504 htole32(BGE_ADDR_HI(sc->bge_ldata.bge_tx_ring_paddr)); 1505 vrcb->bge_nicaddr = BGE_NIC_TXRING_ADDR(0, BGE_TX_RING_CNT); 1506 if (sc->bge_asicrev != BGE_ASICREV_BCM5705 && 1507 sc->bge_asicrev != BGE_ASICREV_BCM5750) 1508 vrcb->bge_maxlen_flags = 1509 BGE_RCB_MAXLEN_FLAGS(BGE_TX_RING_CNT, 0); 1510 1511 /* Disable all unused RX return rings */ 1512 vrcb = (volatile struct bge_rcb *)(sc->bge_vhandle + BGE_MEMWIN_START + 1513 BGE_RX_RETURN_RING_RCB); 1514 for (i = 0; i < BGE_RX_RINGS_MAX; i++) { 1515 vrcb->bge_hostaddr.bge_addr_hi = 0; 1516 vrcb->bge_hostaddr.bge_addr_lo = 0; 1517 vrcb->bge_maxlen_flags = 1518 BGE_RCB_MAXLEN_FLAGS(sc->bge_return_ring_cnt, 1519 BGE_RCB_FLAG_RING_DISABLED); 1520 vrcb->bge_nicaddr = 0; 1521 CSR_WRITE_4(sc, BGE_MBX_RX_CONS0_LO + 1522 (i * (sizeof(u_int64_t))), 0); 1523 vrcb++; 1524 } 1525 1526 /* Initialize RX ring indexes */ 1527 CSR_WRITE_4(sc, BGE_MBX_RX_STD_PROD_LO, 0); 1528 CSR_WRITE_4(sc, BGE_MBX_RX_JUMBO_PROD_LO, 0); 1529 CSR_WRITE_4(sc, BGE_MBX_RX_MINI_PROD_LO, 0); 1530 1531 /* 1532 * Set up RX return ring 0 1533 * Note that the NIC address for RX return rings is 0x00000000. 1534 * The return rings live entirely within the host, so the 1535 * nicaddr field in the RCB isn't used. 1536 */ 1537 vrcb = (volatile struct bge_rcb *)(sc->bge_vhandle + BGE_MEMWIN_START + 1538 BGE_RX_RETURN_RING_RCB); 1539 vrcb->bge_hostaddr.bge_addr_lo = 1540 BGE_ADDR_LO(sc->bge_ldata.bge_rx_return_ring_paddr); 1541 vrcb->bge_hostaddr.bge_addr_hi = 1542 BGE_ADDR_HI(sc->bge_ldata.bge_rx_return_ring_paddr); 1543 bus_dmamap_sync(sc->bge_cdata.bge_rx_return_ring_tag, 1544 sc->bge_cdata.bge_rx_return_ring_map, BUS_DMASYNC_PREWRITE); 1545 vrcb->bge_nicaddr = 0x00000000; 1546 vrcb->bge_maxlen_flags = 1547 BGE_RCB_MAXLEN_FLAGS(sc->bge_return_ring_cnt, 0); 1548 1549 /* Set random backoff seed for TX */ 1550 CSR_WRITE_4(sc, BGE_TX_RANDOM_BACKOFF, 1551 IFP2ENADDR(sc->bge_ifp)[0] + IFP2ENADDR(sc->bge_ifp)[1] + 1552 IFP2ENADDR(sc->bge_ifp)[2] + IFP2ENADDR(sc->bge_ifp)[3] + 1553 IFP2ENADDR(sc->bge_ifp)[4] + IFP2ENADDR(sc->bge_ifp)[5] + 1554 BGE_TX_BACKOFF_SEED_MASK); 1555 1556 /* Set inter-packet gap */ 1557 CSR_WRITE_4(sc, BGE_TX_LENGTHS, 0x2620); 1558 1559 /* 1560 * Specify which ring to use for packets that don't match 1561 * any RX rules. 1562 */ 1563 CSR_WRITE_4(sc, BGE_RX_RULES_CFG, 0x08); 1564 1565 /* 1566 * Configure number of RX lists. One interrupt distribution 1567 * list, sixteen active lists, one bad frames class. 1568 */ 1569 CSR_WRITE_4(sc, BGE_RXLP_CFG, 0x181); 1570 1571 /* Inialize RX list placement stats mask. */ 1572 CSR_WRITE_4(sc, BGE_RXLP_STATS_ENABLE_MASK, 0x007FFFFF); 1573 CSR_WRITE_4(sc, BGE_RXLP_STATS_CTL, 0x1); 1574 1575 /* Disable host coalescing until we get it set up */ 1576 CSR_WRITE_4(sc, BGE_HCC_MODE, 0x00000000); 1577 1578 /* Poll to make sure it's shut down. */ 1579 for (i = 0; i < BGE_TIMEOUT; i++) { 1580 if (!(CSR_READ_4(sc, BGE_HCC_MODE) & BGE_HCCMODE_ENABLE)) 1581 break; 1582 DELAY(10); 1583 } 1584 1585 if (i == BGE_TIMEOUT) { 1586 printf("bge%d: host coalescing engine failed to idle\n", 1587 sc->bge_unit); 1588 return(ENXIO); 1589 } 1590 1591 /* Set up host coalescing defaults */ 1592 CSR_WRITE_4(sc, BGE_HCC_RX_COAL_TICKS, sc->bge_rx_coal_ticks); 1593 CSR_WRITE_4(sc, BGE_HCC_TX_COAL_TICKS, sc->bge_tx_coal_ticks); 1594 CSR_WRITE_4(sc, BGE_HCC_RX_MAX_COAL_BDS, sc->bge_rx_max_coal_bds); 1595 CSR_WRITE_4(sc, BGE_HCC_TX_MAX_COAL_BDS, sc->bge_tx_max_coal_bds); 1596 if (sc->bge_asicrev != BGE_ASICREV_BCM5705 && 1597 sc->bge_asicrev != BGE_ASICREV_BCM5750) { 1598 CSR_WRITE_4(sc, BGE_HCC_RX_COAL_TICKS_INT, 0); 1599 CSR_WRITE_4(sc, BGE_HCC_TX_COAL_TICKS_INT, 0); 1600 } 1601 CSR_WRITE_4(sc, BGE_HCC_RX_MAX_COAL_BDS_INT, 0); 1602 CSR_WRITE_4(sc, BGE_HCC_TX_MAX_COAL_BDS_INT, 0); 1603 1604 /* Set up address of statistics block */ 1605 if (sc->bge_asicrev != BGE_ASICREV_BCM5705 && 1606 sc->bge_asicrev != BGE_ASICREV_BCM5750) { 1607 CSR_WRITE_4(sc, BGE_HCC_STATS_ADDR_HI, 1608 BGE_ADDR_HI(sc->bge_ldata.bge_stats_paddr)); 1609 CSR_WRITE_4(sc, BGE_HCC_STATS_ADDR_LO, 1610 BGE_ADDR_LO(sc->bge_ldata.bge_stats_paddr)); 1611 CSR_WRITE_4(sc, BGE_HCC_STATS_BASEADDR, BGE_STATS_BLOCK); 1612 CSR_WRITE_4(sc, BGE_HCC_STATUSBLK_BASEADDR, BGE_STATUS_BLOCK); 1613 CSR_WRITE_4(sc, BGE_HCC_STATS_TICKS, sc->bge_stat_ticks); 1614 } 1615 1616 /* Set up address of status block */ 1617 CSR_WRITE_4(sc, BGE_HCC_STATUSBLK_ADDR_HI, 1618 BGE_ADDR_HI(sc->bge_ldata.bge_status_block_paddr)); 1619 CSR_WRITE_4(sc, BGE_HCC_STATUSBLK_ADDR_LO, 1620 BGE_ADDR_LO(sc->bge_ldata.bge_status_block_paddr)); 1621 bus_dmamap_sync(sc->bge_cdata.bge_status_tag, 1622 sc->bge_cdata.bge_status_map, BUS_DMASYNC_PREWRITE); 1623 sc->bge_ldata.bge_status_block->bge_idx[0].bge_rx_prod_idx = 0; 1624 sc->bge_ldata.bge_status_block->bge_idx[0].bge_tx_cons_idx = 0; 1625 1626 /* Turn on host coalescing state machine */ 1627 CSR_WRITE_4(sc, BGE_HCC_MODE, BGE_HCCMODE_ENABLE); 1628 1629 /* Turn on RX BD completion state machine and enable attentions */ 1630 CSR_WRITE_4(sc, BGE_RBDC_MODE, 1631 BGE_RBDCMODE_ENABLE|BGE_RBDCMODE_ATTN); 1632 1633 /* Turn on RX list placement state machine */ 1634 CSR_WRITE_4(sc, BGE_RXLP_MODE, BGE_RXLPMODE_ENABLE); 1635 1636 /* Turn on RX list selector state machine. */ 1637 if (sc->bge_asicrev != BGE_ASICREV_BCM5705 && 1638 sc->bge_asicrev != BGE_ASICREV_BCM5750) 1639 CSR_WRITE_4(sc, BGE_RXLS_MODE, BGE_RXLSMODE_ENABLE); 1640 1641 /* Turn on DMA, clear stats */ 1642 CSR_WRITE_4(sc, BGE_MAC_MODE, BGE_MACMODE_TXDMA_ENB| 1643 BGE_MACMODE_RXDMA_ENB|BGE_MACMODE_RX_STATS_CLEAR| 1644 BGE_MACMODE_TX_STATS_CLEAR|BGE_MACMODE_RX_STATS_ENB| 1645 BGE_MACMODE_TX_STATS_ENB|BGE_MACMODE_FRMHDR_DMA_ENB| 1646 (sc->bge_tbi ? BGE_PORTMODE_TBI : BGE_PORTMODE_MII)); 1647 1648 /* Set misc. local control, enable interrupts on attentions */ 1649 CSR_WRITE_4(sc, BGE_MISC_LOCAL_CTL, BGE_MLC_INTR_ONATTN); 1650 1651 #ifdef notdef 1652 /* Assert GPIO pins for PHY reset */ 1653 BGE_SETBIT(sc, BGE_MISC_LOCAL_CTL, BGE_MLC_MISCIO_OUT0| 1654 BGE_MLC_MISCIO_OUT1|BGE_MLC_MISCIO_OUT2); 1655 BGE_SETBIT(sc, BGE_MISC_LOCAL_CTL, BGE_MLC_MISCIO_OUTEN0| 1656 BGE_MLC_MISCIO_OUTEN1|BGE_MLC_MISCIO_OUTEN2); 1657 #endif 1658 1659 /* Turn on DMA completion state machine */ 1660 if (sc->bge_asicrev != BGE_ASICREV_BCM5705 && 1661 sc->bge_asicrev != BGE_ASICREV_BCM5750) 1662 CSR_WRITE_4(sc, BGE_DMAC_MODE, BGE_DMACMODE_ENABLE); 1663 1664 /* Turn on write DMA state machine */ 1665 CSR_WRITE_4(sc, BGE_WDMA_MODE, 1666 BGE_WDMAMODE_ENABLE|BGE_WDMAMODE_ALL_ATTNS); 1667 1668 /* Turn on read DMA state machine */ 1669 CSR_WRITE_4(sc, BGE_RDMA_MODE, 1670 BGE_RDMAMODE_ENABLE|BGE_RDMAMODE_ALL_ATTNS); 1671 1672 /* Turn on RX data completion state machine */ 1673 CSR_WRITE_4(sc, BGE_RDC_MODE, BGE_RDCMODE_ENABLE); 1674 1675 /* Turn on RX BD initiator state machine */ 1676 CSR_WRITE_4(sc, BGE_RBDI_MODE, BGE_RBDIMODE_ENABLE); 1677 1678 /* Turn on RX data and RX BD initiator state machine */ 1679 CSR_WRITE_4(sc, BGE_RDBDI_MODE, BGE_RDBDIMODE_ENABLE); 1680 1681 /* Turn on Mbuf cluster free state machine */ 1682 if (sc->bge_asicrev != BGE_ASICREV_BCM5705 && 1683 sc->bge_asicrev != BGE_ASICREV_BCM5750) 1684 CSR_WRITE_4(sc, BGE_MBCF_MODE, BGE_MBCFMODE_ENABLE); 1685 1686 /* Turn on send BD completion state machine */ 1687 CSR_WRITE_4(sc, BGE_SBDC_MODE, BGE_SBDCMODE_ENABLE); 1688 1689 /* Turn on send data completion state machine */ 1690 CSR_WRITE_4(sc, BGE_SDC_MODE, BGE_SDCMODE_ENABLE); 1691 1692 /* Turn on send data initiator state machine */ 1693 CSR_WRITE_4(sc, BGE_SDI_MODE, BGE_SDIMODE_ENABLE); 1694 1695 /* Turn on send BD initiator state machine */ 1696 CSR_WRITE_4(sc, BGE_SBDI_MODE, BGE_SBDIMODE_ENABLE); 1697 1698 /* Turn on send BD selector state machine */ 1699 CSR_WRITE_4(sc, BGE_SRS_MODE, BGE_SRSMODE_ENABLE); 1700 1701 CSR_WRITE_4(sc, BGE_SDI_STATS_ENABLE_MASK, 0x007FFFFF); 1702 CSR_WRITE_4(sc, BGE_SDI_STATS_CTL, 1703 BGE_SDISTATSCTL_ENABLE|BGE_SDISTATSCTL_FASTER); 1704 1705 /* ack/clear link change events */ 1706 CSR_WRITE_4(sc, BGE_MAC_STS, BGE_MACSTAT_SYNC_CHANGED| 1707 BGE_MACSTAT_CFG_CHANGED|BGE_MACSTAT_MI_COMPLETE| 1708 BGE_MACSTAT_LINK_CHANGED); 1709 CSR_WRITE_4(sc, BGE_MI_STS, 0); 1710 1711 /* Enable PHY auto polling (for MII/GMII only) */ 1712 if (sc->bge_tbi) { 1713 CSR_WRITE_4(sc, BGE_MI_STS, BGE_MISTS_LINK); 1714 } else { 1715 BGE_SETBIT(sc, BGE_MI_MODE, BGE_MIMODE_AUTOPOLL|10<<16); 1716 if (sc->bge_asicrev == BGE_ASICREV_BCM5700) 1717 CSR_WRITE_4(sc, BGE_MAC_EVT_ENB, 1718 BGE_EVTENB_MI_INTERRUPT); 1719 } 1720 1721 /* Enable link state change attentions. */ 1722 BGE_SETBIT(sc, BGE_MAC_EVT_ENB, BGE_EVTENB_LINK_CHANGED); 1723 1724 return(0); 1725 } 1726 1727 /* 1728 * Probe for a Broadcom chip. Check the PCI vendor and device IDs 1729 * against our list and return its name if we find a match. Note 1730 * that since the Broadcom controller contains VPD support, we 1731 * can get the device name string from the controller itself instead 1732 * of the compiled-in string. This is a little slow, but it guarantees 1733 * we'll always announce the right product name. 1734 */ 1735 static int 1736 bge_probe(dev) 1737 device_t dev; 1738 { 1739 struct bge_type *t; 1740 struct bge_softc *sc; 1741 char *descbuf; 1742 1743 t = bge_devs; 1744 1745 sc = device_get_softc(dev); 1746 bzero(sc, sizeof(struct bge_softc)); 1747 sc->bge_unit = device_get_unit(dev); 1748 sc->bge_dev = dev; 1749 1750 while(t->bge_name != NULL) { 1751 if ((pci_get_vendor(dev) == t->bge_vid) && 1752 (pci_get_device(dev) == t->bge_did)) { 1753 #ifdef notdef 1754 bge_vpd_read(sc); 1755 device_set_desc(dev, sc->bge_vpd_prodname); 1756 #endif 1757 descbuf = malloc(BGE_DEVDESC_MAX, M_TEMP, M_NOWAIT); 1758 if (descbuf == NULL) 1759 return(ENOMEM); 1760 snprintf(descbuf, BGE_DEVDESC_MAX, 1761 "%s, ASIC rev. %#04x", t->bge_name, 1762 pci_read_config(dev, BGE_PCI_MISC_CTL, 4) >> 16); 1763 device_set_desc_copy(dev, descbuf); 1764 if (pci_get_subvendor(dev) == DELL_VENDORID) 1765 sc->bge_no_3_led = 1; 1766 free(descbuf, M_TEMP); 1767 return(0); 1768 } 1769 t++; 1770 } 1771 1772 return(ENXIO); 1773 } 1774 1775 static void 1776 bge_dma_free(sc) 1777 struct bge_softc *sc; 1778 { 1779 int i; 1780 1781 1782 /* Destroy DMA maps for RX buffers */ 1783 1784 for (i = 0; i < BGE_STD_RX_RING_CNT; i++) { 1785 if (sc->bge_cdata.bge_rx_std_dmamap[i]) 1786 bus_dmamap_destroy(sc->bge_cdata.bge_mtag, 1787 sc->bge_cdata.bge_rx_std_dmamap[i]); 1788 } 1789 1790 /* Destroy DMA maps for jumbo RX buffers */ 1791 1792 for (i = 0; i < BGE_JUMBO_RX_RING_CNT; i++) { 1793 if (sc->bge_cdata.bge_rx_jumbo_dmamap[i]) 1794 bus_dmamap_destroy(sc->bge_cdata.bge_mtag_jumbo, 1795 sc->bge_cdata.bge_rx_jumbo_dmamap[i]); 1796 } 1797 1798 /* Destroy DMA maps for TX buffers */ 1799 1800 for (i = 0; i < BGE_TX_RING_CNT; i++) { 1801 if (sc->bge_cdata.bge_tx_dmamap[i]) 1802 bus_dmamap_destroy(sc->bge_cdata.bge_mtag, 1803 sc->bge_cdata.bge_tx_dmamap[i]); 1804 } 1805 1806 if (sc->bge_cdata.bge_mtag) 1807 bus_dma_tag_destroy(sc->bge_cdata.bge_mtag); 1808 1809 1810 /* Destroy standard RX ring */ 1811 1812 if (sc->bge_ldata.bge_rx_std_ring) 1813 bus_dmamem_free(sc->bge_cdata.bge_rx_std_ring_tag, 1814 sc->bge_ldata.bge_rx_std_ring, 1815 sc->bge_cdata.bge_rx_std_ring_map); 1816 1817 if (sc->bge_cdata.bge_rx_std_ring_map) { 1818 bus_dmamap_unload(sc->bge_cdata.bge_rx_std_ring_tag, 1819 sc->bge_cdata.bge_rx_std_ring_map); 1820 bus_dmamap_destroy(sc->bge_cdata.bge_rx_std_ring_tag, 1821 sc->bge_cdata.bge_rx_std_ring_map); 1822 } 1823 1824 if (sc->bge_cdata.bge_rx_std_ring_tag) 1825 bus_dma_tag_destroy(sc->bge_cdata.bge_rx_std_ring_tag); 1826 1827 /* Destroy jumbo RX ring */ 1828 1829 if (sc->bge_ldata.bge_rx_jumbo_ring) 1830 bus_dmamem_free(sc->bge_cdata.bge_rx_jumbo_ring_tag, 1831 sc->bge_ldata.bge_rx_jumbo_ring, 1832 sc->bge_cdata.bge_rx_jumbo_ring_map); 1833 1834 if (sc->bge_cdata.bge_rx_jumbo_ring_map) { 1835 bus_dmamap_unload(sc->bge_cdata.bge_rx_jumbo_ring_tag, 1836 sc->bge_cdata.bge_rx_jumbo_ring_map); 1837 bus_dmamap_destroy(sc->bge_cdata.bge_rx_jumbo_ring_tag, 1838 sc->bge_cdata.bge_rx_jumbo_ring_map); 1839 } 1840 1841 if (sc->bge_cdata.bge_rx_jumbo_ring_tag) 1842 bus_dma_tag_destroy(sc->bge_cdata.bge_rx_jumbo_ring_tag); 1843 1844 /* Destroy RX return ring */ 1845 1846 if (sc->bge_ldata.bge_rx_return_ring) 1847 bus_dmamem_free(sc->bge_cdata.bge_rx_return_ring_tag, 1848 sc->bge_ldata.bge_rx_return_ring, 1849 sc->bge_cdata.bge_rx_return_ring_map); 1850 1851 if (sc->bge_cdata.bge_rx_return_ring_map) { 1852 bus_dmamap_unload(sc->bge_cdata.bge_rx_return_ring_tag, 1853 sc->bge_cdata.bge_rx_return_ring_map); 1854 bus_dmamap_destroy(sc->bge_cdata.bge_rx_return_ring_tag, 1855 sc->bge_cdata.bge_rx_return_ring_map); 1856 } 1857 1858 if (sc->bge_cdata.bge_rx_return_ring_tag) 1859 bus_dma_tag_destroy(sc->bge_cdata.bge_rx_return_ring_tag); 1860 1861 /* Destroy TX ring */ 1862 1863 if (sc->bge_ldata.bge_tx_ring) 1864 bus_dmamem_free(sc->bge_cdata.bge_tx_ring_tag, 1865 sc->bge_ldata.bge_tx_ring, 1866 sc->bge_cdata.bge_tx_ring_map); 1867 1868 if (sc->bge_cdata.bge_tx_ring_map) { 1869 bus_dmamap_unload(sc->bge_cdata.bge_tx_ring_tag, 1870 sc->bge_cdata.bge_tx_ring_map); 1871 bus_dmamap_destroy(sc->bge_cdata.bge_tx_ring_tag, 1872 sc->bge_cdata.bge_tx_ring_map); 1873 } 1874 1875 if (sc->bge_cdata.bge_tx_ring_tag) 1876 bus_dma_tag_destroy(sc->bge_cdata.bge_tx_ring_tag); 1877 1878 /* Destroy status block */ 1879 1880 if (sc->bge_ldata.bge_status_block) 1881 bus_dmamem_free(sc->bge_cdata.bge_status_tag, 1882 sc->bge_ldata.bge_status_block, 1883 sc->bge_cdata.bge_status_map); 1884 1885 if (sc->bge_cdata.bge_status_map) { 1886 bus_dmamap_unload(sc->bge_cdata.bge_status_tag, 1887 sc->bge_cdata.bge_status_map); 1888 bus_dmamap_destroy(sc->bge_cdata.bge_status_tag, 1889 sc->bge_cdata.bge_status_map); 1890 } 1891 1892 if (sc->bge_cdata.bge_status_tag) 1893 bus_dma_tag_destroy(sc->bge_cdata.bge_status_tag); 1894 1895 /* Destroy statistics block */ 1896 1897 if (sc->bge_ldata.bge_stats) 1898 bus_dmamem_free(sc->bge_cdata.bge_stats_tag, 1899 sc->bge_ldata.bge_stats, 1900 sc->bge_cdata.bge_stats_map); 1901 1902 if (sc->bge_cdata.bge_stats_map) { 1903 bus_dmamap_unload(sc->bge_cdata.bge_stats_tag, 1904 sc->bge_cdata.bge_stats_map); 1905 bus_dmamap_destroy(sc->bge_cdata.bge_stats_tag, 1906 sc->bge_cdata.bge_stats_map); 1907 } 1908 1909 if (sc->bge_cdata.bge_stats_tag) 1910 bus_dma_tag_destroy(sc->bge_cdata.bge_stats_tag); 1911 1912 /* Destroy the parent tag */ 1913 1914 if (sc->bge_cdata.bge_parent_tag) 1915 bus_dma_tag_destroy(sc->bge_cdata.bge_parent_tag); 1916 1917 return; 1918 } 1919 1920 static int 1921 bge_dma_alloc(dev) 1922 device_t dev; 1923 { 1924 struct bge_softc *sc; 1925 int nseg, i, error; 1926 struct bge_dmamap_arg ctx; 1927 1928 sc = device_get_softc(dev); 1929 1930 /* 1931 * Allocate the parent bus DMA tag appropriate for PCI. 1932 */ 1933 #define BGE_NSEG_NEW 32 1934 error = bus_dma_tag_create(NULL, /* parent */ 1935 PAGE_SIZE, 0, /* alignment, boundary */ 1936 BUS_SPACE_MAXADDR, /* lowaddr */ 1937 BUS_SPACE_MAXADDR, /* highaddr */ 1938 NULL, NULL, /* filter, filterarg */ 1939 MAXBSIZE, BGE_NSEG_NEW, /* maxsize, nsegments */ 1940 BUS_SPACE_MAXSIZE_32BIT,/* maxsegsize */ 1941 0, /* flags */ 1942 NULL, NULL, /* lockfunc, lockarg */ 1943 &sc->bge_cdata.bge_parent_tag); 1944 1945 /* 1946 * Create tag for RX mbufs. 1947 */ 1948 nseg = 32; 1949 error = bus_dma_tag_create(sc->bge_cdata.bge_parent_tag, 1, 1950 0, BUS_SPACE_MAXADDR, BUS_SPACE_MAXADDR, NULL, 1951 NULL, MCLBYTES * nseg, nseg, MCLBYTES, BUS_DMA_ALLOCNOW, NULL, NULL, 1952 &sc->bge_cdata.bge_mtag); 1953 1954 if (error) { 1955 device_printf(dev, "could not allocate dma tag\n"); 1956 return (ENOMEM); 1957 } 1958 1959 /* Create DMA maps for RX buffers */ 1960 1961 for (i = 0; i < BGE_STD_RX_RING_CNT; i++) { 1962 error = bus_dmamap_create(sc->bge_cdata.bge_mtag, 0, 1963 &sc->bge_cdata.bge_rx_std_dmamap[i]); 1964 if (error) { 1965 device_printf(dev, "can't create DMA map for RX\n"); 1966 return(ENOMEM); 1967 } 1968 } 1969 1970 /* Create DMA maps for TX buffers */ 1971 1972 for (i = 0; i < BGE_TX_RING_CNT; i++) { 1973 error = bus_dmamap_create(sc->bge_cdata.bge_mtag, 0, 1974 &sc->bge_cdata.bge_tx_dmamap[i]); 1975 if (error) { 1976 device_printf(dev, "can't create DMA map for RX\n"); 1977 return(ENOMEM); 1978 } 1979 } 1980 1981 /* Create tag for standard RX ring */ 1982 1983 error = bus_dma_tag_create(sc->bge_cdata.bge_parent_tag, 1984 PAGE_SIZE, 0, BUS_SPACE_MAXADDR, BUS_SPACE_MAXADDR, NULL, 1985 NULL, BGE_STD_RX_RING_SZ, 1, BGE_STD_RX_RING_SZ, 0, 1986 NULL, NULL, &sc->bge_cdata.bge_rx_std_ring_tag); 1987 1988 if (error) { 1989 device_printf(dev, "could not allocate dma tag\n"); 1990 return (ENOMEM); 1991 } 1992 1993 /* Allocate DMA'able memory for standard RX ring */ 1994 1995 error = bus_dmamem_alloc(sc->bge_cdata.bge_rx_std_ring_tag, 1996 (void **)&sc->bge_ldata.bge_rx_std_ring, BUS_DMA_NOWAIT, 1997 &sc->bge_cdata.bge_rx_std_ring_map); 1998 if (error) 1999 return (ENOMEM); 2000 2001 bzero((char *)sc->bge_ldata.bge_rx_std_ring, BGE_STD_RX_RING_SZ); 2002 2003 /* Load the address of the standard RX ring */ 2004 2005 ctx.bge_maxsegs = 1; 2006 ctx.sc = sc; 2007 2008 error = bus_dmamap_load(sc->bge_cdata.bge_rx_std_ring_tag, 2009 sc->bge_cdata.bge_rx_std_ring_map, sc->bge_ldata.bge_rx_std_ring, 2010 BGE_STD_RX_RING_SZ, bge_dma_map_addr, &ctx, BUS_DMA_NOWAIT); 2011 2012 if (error) 2013 return (ENOMEM); 2014 2015 sc->bge_ldata.bge_rx_std_ring_paddr = ctx.bge_busaddr; 2016 2017 if (sc->bge_asicrev != BGE_ASICREV_BCM5705 && 2018 sc->bge_asicrev != BGE_ASICREV_BCM5750) { 2019 2020 /* 2021 * Create tag for jumbo mbufs. 2022 * This is really a bit of a kludge. We allocate a special 2023 * jumbo buffer pool which (thanks to the way our DMA 2024 * memory allocation works) will consist of contiguous 2025 * pages. This means that even though a jumbo buffer might 2026 * be larger than a page size, we don't really need to 2027 * map it into more than one DMA segment. However, the 2028 * default mbuf tag will result in multi-segment mappings, 2029 * so we have to create a special jumbo mbuf tag that 2030 * lets us get away with mapping the jumbo buffers as 2031 * a single segment. I think eventually the driver should 2032 * be changed so that it uses ordinary mbufs and cluster 2033 * buffers, i.e. jumbo frames can span multiple DMA 2034 * descriptors. But that's a project for another day. 2035 */ 2036 2037 error = bus_dma_tag_create(sc->bge_cdata.bge_parent_tag, 2038 1, 0, BUS_SPACE_MAXADDR, BUS_SPACE_MAXADDR, NULL, 2039 NULL, MCLBYTES * nseg, nseg, BGE_JLEN, 0, NULL, NULL, 2040 &sc->bge_cdata.bge_mtag_jumbo); 2041 2042 if (error) { 2043 device_printf(dev, "could not allocate dma tag\n"); 2044 return (ENOMEM); 2045 } 2046 2047 /* Create tag for jumbo RX ring */ 2048 2049 error = bus_dma_tag_create(sc->bge_cdata.bge_parent_tag, 2050 PAGE_SIZE, 0, BUS_SPACE_MAXADDR, BUS_SPACE_MAXADDR, NULL, 2051 NULL, BGE_JUMBO_RX_RING_SZ, 1, BGE_JUMBO_RX_RING_SZ, 0, 2052 NULL, NULL, &sc->bge_cdata.bge_rx_jumbo_ring_tag); 2053 2054 if (error) { 2055 device_printf(dev, "could not allocate dma tag\n"); 2056 return (ENOMEM); 2057 } 2058 2059 /* Allocate DMA'able memory for jumbo RX ring */ 2060 2061 error = bus_dmamem_alloc(sc->bge_cdata.bge_rx_jumbo_ring_tag, 2062 (void **)&sc->bge_ldata.bge_rx_jumbo_ring, BUS_DMA_NOWAIT, 2063 &sc->bge_cdata.bge_rx_jumbo_ring_map); 2064 if (error) 2065 return (ENOMEM); 2066 2067 bzero((char *)sc->bge_ldata.bge_rx_jumbo_ring, 2068 BGE_JUMBO_RX_RING_SZ); 2069 2070 /* Load the address of the jumbo RX ring */ 2071 2072 ctx.bge_maxsegs = 1; 2073 ctx.sc = sc; 2074 2075 error = bus_dmamap_load(sc->bge_cdata.bge_rx_jumbo_ring_tag, 2076 sc->bge_cdata.bge_rx_jumbo_ring_map, 2077 sc->bge_ldata.bge_rx_jumbo_ring, BGE_JUMBO_RX_RING_SZ, 2078 bge_dma_map_addr, &ctx, BUS_DMA_NOWAIT); 2079 2080 if (error) 2081 return (ENOMEM); 2082 2083 sc->bge_ldata.bge_rx_jumbo_ring_paddr = ctx.bge_busaddr; 2084 2085 /* Create DMA maps for jumbo RX buffers */ 2086 2087 for (i = 0; i < BGE_JUMBO_RX_RING_CNT; i++) { 2088 error = bus_dmamap_create(sc->bge_cdata.bge_mtag_jumbo, 2089 0, &sc->bge_cdata.bge_rx_jumbo_dmamap[i]); 2090 if (error) { 2091 device_printf(dev, 2092 "can't create DMA map for RX\n"); 2093 return(ENOMEM); 2094 } 2095 } 2096 2097 } 2098 2099 /* Create tag for RX return ring */ 2100 2101 error = bus_dma_tag_create(sc->bge_cdata.bge_parent_tag, 2102 PAGE_SIZE, 0, BUS_SPACE_MAXADDR, BUS_SPACE_MAXADDR, NULL, 2103 NULL, BGE_RX_RTN_RING_SZ(sc), 1, BGE_RX_RTN_RING_SZ(sc), 0, 2104 NULL, NULL, &sc->bge_cdata.bge_rx_return_ring_tag); 2105 2106 if (error) { 2107 device_printf(dev, "could not allocate dma tag\n"); 2108 return (ENOMEM); 2109 } 2110 2111 /* Allocate DMA'able memory for RX return ring */ 2112 2113 error = bus_dmamem_alloc(sc->bge_cdata.bge_rx_return_ring_tag, 2114 (void **)&sc->bge_ldata.bge_rx_return_ring, BUS_DMA_NOWAIT, 2115 &sc->bge_cdata.bge_rx_return_ring_map); 2116 if (error) 2117 return (ENOMEM); 2118 2119 bzero((char *)sc->bge_ldata.bge_rx_return_ring, 2120 BGE_RX_RTN_RING_SZ(sc)); 2121 2122 /* Load the address of the RX return ring */ 2123 2124 ctx.bge_maxsegs = 1; 2125 ctx.sc = sc; 2126 2127 error = bus_dmamap_load(sc->bge_cdata.bge_rx_return_ring_tag, 2128 sc->bge_cdata.bge_rx_return_ring_map, 2129 sc->bge_ldata.bge_rx_return_ring, BGE_RX_RTN_RING_SZ(sc), 2130 bge_dma_map_addr, &ctx, BUS_DMA_NOWAIT); 2131 2132 if (error) 2133 return (ENOMEM); 2134 2135 sc->bge_ldata.bge_rx_return_ring_paddr = ctx.bge_busaddr; 2136 2137 /* Create tag for TX ring */ 2138 2139 error = bus_dma_tag_create(sc->bge_cdata.bge_parent_tag, 2140 PAGE_SIZE, 0, BUS_SPACE_MAXADDR, BUS_SPACE_MAXADDR, NULL, 2141 NULL, BGE_TX_RING_SZ, 1, BGE_TX_RING_SZ, 0, NULL, NULL, 2142 &sc->bge_cdata.bge_tx_ring_tag); 2143 2144 if (error) { 2145 device_printf(dev, "could not allocate dma tag\n"); 2146 return (ENOMEM); 2147 } 2148 2149 /* Allocate DMA'able memory for TX ring */ 2150 2151 error = bus_dmamem_alloc(sc->bge_cdata.bge_tx_ring_tag, 2152 (void **)&sc->bge_ldata.bge_tx_ring, BUS_DMA_NOWAIT, 2153 &sc->bge_cdata.bge_tx_ring_map); 2154 if (error) 2155 return (ENOMEM); 2156 2157 bzero((char *)sc->bge_ldata.bge_tx_ring, BGE_TX_RING_SZ); 2158 2159 /* Load the address of the TX ring */ 2160 2161 ctx.bge_maxsegs = 1; 2162 ctx.sc = sc; 2163 2164 error = bus_dmamap_load(sc->bge_cdata.bge_tx_ring_tag, 2165 sc->bge_cdata.bge_tx_ring_map, sc->bge_ldata.bge_tx_ring, 2166 BGE_TX_RING_SZ, bge_dma_map_addr, &ctx, BUS_DMA_NOWAIT); 2167 2168 if (error) 2169 return (ENOMEM); 2170 2171 sc->bge_ldata.bge_tx_ring_paddr = ctx.bge_busaddr; 2172 2173 /* Create tag for status block */ 2174 2175 error = bus_dma_tag_create(sc->bge_cdata.bge_parent_tag, 2176 PAGE_SIZE, 0, BUS_SPACE_MAXADDR, BUS_SPACE_MAXADDR, NULL, 2177 NULL, BGE_STATUS_BLK_SZ, 1, BGE_STATUS_BLK_SZ, 0, 2178 NULL, NULL, &sc->bge_cdata.bge_status_tag); 2179 2180 if (error) { 2181 device_printf(dev, "could not allocate dma tag\n"); 2182 return (ENOMEM); 2183 } 2184 2185 /* Allocate DMA'able memory for status block */ 2186 2187 error = bus_dmamem_alloc(sc->bge_cdata.bge_status_tag, 2188 (void **)&sc->bge_ldata.bge_status_block, BUS_DMA_NOWAIT, 2189 &sc->bge_cdata.bge_status_map); 2190 if (error) 2191 return (ENOMEM); 2192 2193 bzero((char *)sc->bge_ldata.bge_status_block, BGE_STATUS_BLK_SZ); 2194 2195 /* Load the address of the status block */ 2196 2197 ctx.sc = sc; 2198 ctx.bge_maxsegs = 1; 2199 2200 error = bus_dmamap_load(sc->bge_cdata.bge_status_tag, 2201 sc->bge_cdata.bge_status_map, sc->bge_ldata.bge_status_block, 2202 BGE_STATUS_BLK_SZ, bge_dma_map_addr, &ctx, BUS_DMA_NOWAIT); 2203 2204 if (error) 2205 return (ENOMEM); 2206 2207 sc->bge_ldata.bge_status_block_paddr = ctx.bge_busaddr; 2208 2209 /* Create tag for statistics block */ 2210 2211 error = bus_dma_tag_create(sc->bge_cdata.bge_parent_tag, 2212 PAGE_SIZE, 0, BUS_SPACE_MAXADDR, BUS_SPACE_MAXADDR, NULL, 2213 NULL, BGE_STATS_SZ, 1, BGE_STATS_SZ, 0, NULL, NULL, 2214 &sc->bge_cdata.bge_stats_tag); 2215 2216 if (error) { 2217 device_printf(dev, "could not allocate dma tag\n"); 2218 return (ENOMEM); 2219 } 2220 2221 /* Allocate DMA'able memory for statistics block */ 2222 2223 error = bus_dmamem_alloc(sc->bge_cdata.bge_stats_tag, 2224 (void **)&sc->bge_ldata.bge_stats, BUS_DMA_NOWAIT, 2225 &sc->bge_cdata.bge_stats_map); 2226 if (error) 2227 return (ENOMEM); 2228 2229 bzero((char *)sc->bge_ldata.bge_stats, BGE_STATS_SZ); 2230 2231 /* Load the address of the statstics block */ 2232 2233 ctx.sc = sc; 2234 ctx.bge_maxsegs = 1; 2235 2236 error = bus_dmamap_load(sc->bge_cdata.bge_stats_tag, 2237 sc->bge_cdata.bge_stats_map, sc->bge_ldata.bge_stats, 2238 BGE_STATS_SZ, bge_dma_map_addr, &ctx, BUS_DMA_NOWAIT); 2239 2240 if (error) 2241 return (ENOMEM); 2242 2243 sc->bge_ldata.bge_stats_paddr = ctx.bge_busaddr; 2244 2245 return(0); 2246 } 2247 2248 static int 2249 bge_attach(dev) 2250 device_t dev; 2251 { 2252 struct ifnet *ifp; 2253 struct bge_softc *sc; 2254 u_int32_t hwcfg = 0; 2255 u_int32_t mac_tmp = 0; 2256 u_char eaddr[6]; 2257 int unit, error = 0, rid; 2258 2259 sc = device_get_softc(dev); 2260 unit = device_get_unit(dev); 2261 sc->bge_dev = dev; 2262 sc->bge_unit = unit; 2263 2264 /* 2265 * Map control/status registers. 2266 */ 2267 pci_enable_busmaster(dev); 2268 2269 rid = BGE_PCI_BAR0; 2270 sc->bge_res = bus_alloc_resource_any(dev, SYS_RES_MEMORY, &rid, 2271 RF_ACTIVE|PCI_RF_DENSE); 2272 2273 if (sc->bge_res == NULL) { 2274 printf ("bge%d: couldn't map memory\n", unit); 2275 error = ENXIO; 2276 goto fail; 2277 } 2278 2279 sc->bge_btag = rman_get_bustag(sc->bge_res); 2280 sc->bge_bhandle = rman_get_bushandle(sc->bge_res); 2281 sc->bge_vhandle = (vm_offset_t)rman_get_virtual(sc->bge_res); 2282 2283 /* Allocate interrupt */ 2284 rid = 0; 2285 2286 sc->bge_irq = bus_alloc_resource_any(dev, SYS_RES_IRQ, &rid, 2287 RF_SHAREABLE | RF_ACTIVE); 2288 2289 if (sc->bge_irq == NULL) { 2290 printf("bge%d: couldn't map interrupt\n", unit); 2291 error = ENXIO; 2292 goto fail; 2293 } 2294 2295 sc->bge_unit = unit; 2296 2297 BGE_LOCK_INIT(sc, device_get_nameunit(dev)); 2298 2299 /* Save ASIC rev. */ 2300 2301 sc->bge_chipid = 2302 pci_read_config(dev, BGE_PCI_MISC_CTL, 4) & 2303 BGE_PCIMISCCTL_ASICREV; 2304 sc->bge_asicrev = BGE_ASICREV(sc->bge_chipid); 2305 sc->bge_chiprev = BGE_CHIPREV(sc->bge_chipid); 2306 2307 /* 2308 * Treat the 5714 like the 5750 until we have more info 2309 * on this chip. 2310 */ 2311 if (sc->bge_asicrev == BGE_ASICREV_BCM5714) 2312 sc->bge_asicrev = BGE_ASICREV_BCM5750; 2313 2314 /* 2315 * XXX: Broadcom Linux driver. Not in specs or eratta. 2316 * PCI-Express? 2317 */ 2318 if (sc->bge_asicrev == BGE_ASICREV_BCM5750) { 2319 u_int32_t v; 2320 2321 v = pci_read_config(dev, BGE_PCI_MSI_CAPID, 4); 2322 if (((v >> 8) & 0xff) == BGE_PCIE_CAPID_REG) { 2323 v = pci_read_config(dev, BGE_PCIE_CAPID_REG, 4); 2324 if ((v & 0xff) == BGE_PCIE_CAPID) 2325 sc->bge_pcie = 1; 2326 } 2327 } 2328 2329 /* Try to reset the chip. */ 2330 bge_reset(sc); 2331 2332 if (bge_chipinit(sc)) { 2333 printf("bge%d: chip initialization failed\n", sc->bge_unit); 2334 bge_release_resources(sc); 2335 error = ENXIO; 2336 goto fail; 2337 } 2338 2339 /* 2340 * Get station address from the EEPROM. 2341 */ 2342 mac_tmp = bge_readmem_ind(sc, 0x0c14); 2343 if ((mac_tmp >> 16) == 0x484b) { 2344 eaddr[0] = (u_char)(mac_tmp >> 8); 2345 eaddr[1] = (u_char)mac_tmp; 2346 mac_tmp = bge_readmem_ind(sc, 0x0c18); 2347 eaddr[2] = (u_char)(mac_tmp >> 24); 2348 eaddr[3] = (u_char)(mac_tmp >> 16); 2349 eaddr[4] = (u_char)(mac_tmp >> 8); 2350 eaddr[5] = (u_char)mac_tmp; 2351 } else if (bge_read_eeprom(sc, eaddr, 2352 BGE_EE_MAC_OFFSET + 2, ETHER_ADDR_LEN)) { 2353 printf("bge%d: failed to read station address\n", unit); 2354 bge_release_resources(sc); 2355 error = ENXIO; 2356 goto fail; 2357 } 2358 2359 /* 5705 limits RX return ring to 512 entries. */ 2360 if (sc->bge_asicrev == BGE_ASICREV_BCM5705 || 2361 sc->bge_asicrev == BGE_ASICREV_BCM5750) 2362 sc->bge_return_ring_cnt = BGE_RETURN_RING_CNT_5705; 2363 else 2364 sc->bge_return_ring_cnt = BGE_RETURN_RING_CNT; 2365 2366 if (bge_dma_alloc(dev)) { 2367 printf ("bge%d: failed to allocate DMA resources\n", 2368 sc->bge_unit); 2369 bge_release_resources(sc); 2370 error = ENXIO; 2371 goto fail; 2372 } 2373 2374 /* 2375 * Try to allocate memory for jumbo buffers. 2376 * The 5705 does not appear to support jumbo frames. 2377 */ 2378 if (sc->bge_asicrev != BGE_ASICREV_BCM5705 && 2379 sc->bge_asicrev != BGE_ASICREV_BCM5750) { 2380 if (bge_alloc_jumbo_mem(sc)) { 2381 printf("bge%d: jumbo buffer allocation " 2382 "failed\n", sc->bge_unit); 2383 bge_release_resources(sc); 2384 error = ENXIO; 2385 goto fail; 2386 } 2387 } 2388 2389 /* Set default tuneable values. */ 2390 sc->bge_stat_ticks = BGE_TICKS_PER_SEC; 2391 sc->bge_rx_coal_ticks = 150; 2392 sc->bge_tx_coal_ticks = 150; 2393 sc->bge_rx_max_coal_bds = 64; 2394 sc->bge_tx_max_coal_bds = 128; 2395 2396 /* Set up ifnet structure */ 2397 ifp = sc->bge_ifp = if_alloc(IFT_ETHER); 2398 if (ifp == NULL) { 2399 printf("bge%d: failed to if_alloc()\n", sc->bge_unit); 2400 bge_release_resources(sc); 2401 error = ENXIO; 2402 goto fail; 2403 } 2404 ifp->if_softc = sc; 2405 if_initname(ifp, device_get_name(dev), device_get_unit(dev)); 2406 ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST; 2407 ifp->if_ioctl = bge_ioctl; 2408 ifp->if_start = bge_start; 2409 ifp->if_watchdog = bge_watchdog; 2410 ifp->if_init = bge_init; 2411 ifp->if_mtu = ETHERMTU; 2412 ifp->if_snd.ifq_drv_maxlen = BGE_TX_RING_CNT - 1; 2413 IFQ_SET_MAXLEN(&ifp->if_snd, ifp->if_snd.ifq_drv_maxlen); 2414 IFQ_SET_READY(&ifp->if_snd); 2415 ifp->if_hwassist = BGE_CSUM_FEATURES; 2416 /* NB: the code for RX csum offload is disabled for now */ 2417 ifp->if_capabilities = IFCAP_TXCSUM | IFCAP_VLAN_HWTAGGING | 2418 IFCAP_VLAN_MTU; 2419 ifp->if_capenable = ifp->if_capabilities; 2420 2421 /* 2422 * Figure out what sort of media we have by checking the 2423 * hardware config word in the first 32k of NIC internal memory, 2424 * or fall back to examining the EEPROM if necessary. 2425 * Note: on some BCM5700 cards, this value appears to be unset. 2426 * If that's the case, we have to rely on identifying the NIC 2427 * by its PCI subsystem ID, as we do below for the SysKonnect 2428 * SK-9D41. 2429 */ 2430 if (bge_readmem_ind(sc, BGE_SOFTWARE_GENCOMM_SIG) == BGE_MAGIC_NUMBER) 2431 hwcfg = bge_readmem_ind(sc, BGE_SOFTWARE_GENCOMM_NICCFG); 2432 else { 2433 bge_read_eeprom(sc, (caddr_t)&hwcfg, 2434 BGE_EE_HWCFG_OFFSET, sizeof(hwcfg)); 2435 hwcfg = ntohl(hwcfg); 2436 } 2437 2438 if ((hwcfg & BGE_HWCFG_MEDIA) == BGE_MEDIA_FIBER) 2439 sc->bge_tbi = 1; 2440 2441 /* The SysKonnect SK-9D41 is a 1000baseSX card. */ 2442 if ((pci_read_config(dev, BGE_PCI_SUBSYS, 4) >> 16) == SK_SUBSYSID_9D41) 2443 sc->bge_tbi = 1; 2444 2445 if (sc->bge_tbi) { 2446 ifmedia_init(&sc->bge_ifmedia, IFM_IMASK, 2447 bge_ifmedia_upd, bge_ifmedia_sts); 2448 ifmedia_add(&sc->bge_ifmedia, IFM_ETHER|IFM_1000_SX, 0, NULL); 2449 ifmedia_add(&sc->bge_ifmedia, 2450 IFM_ETHER|IFM_1000_SX|IFM_FDX, 0, NULL); 2451 ifmedia_add(&sc->bge_ifmedia, IFM_ETHER|IFM_AUTO, 0, NULL); 2452 ifmedia_set(&sc->bge_ifmedia, IFM_ETHER|IFM_AUTO); 2453 sc->bge_ifmedia.ifm_media = sc->bge_ifmedia.ifm_cur->ifm_media; 2454 } else { 2455 /* 2456 * Do transceiver setup. 2457 */ 2458 if (mii_phy_probe(dev, &sc->bge_miibus, 2459 bge_ifmedia_upd, bge_ifmedia_sts)) { 2460 printf("bge%d: MII without any PHY!\n", sc->bge_unit); 2461 bge_release_resources(sc); 2462 bge_free_jumbo_mem(sc); 2463 error = ENXIO; 2464 goto fail; 2465 } 2466 } 2467 2468 /* 2469 * When using the BCM5701 in PCI-X mode, data corruption has 2470 * been observed in the first few bytes of some received packets. 2471 * Aligning the packet buffer in memory eliminates the corruption. 2472 * Unfortunately, this misaligns the packet payloads. On platforms 2473 * which do not support unaligned accesses, we will realign the 2474 * payloads by copying the received packets. 2475 */ 2476 switch (sc->bge_chipid) { 2477 case BGE_CHIPID_BCM5701_A0: 2478 case BGE_CHIPID_BCM5701_B0: 2479 case BGE_CHIPID_BCM5701_B2: 2480 case BGE_CHIPID_BCM5701_B5: 2481 /* If in PCI-X mode, work around the alignment bug. */ 2482 if ((pci_read_config(dev, BGE_PCI_PCISTATE, 4) & 2483 (BGE_PCISTATE_PCI_BUSMODE | BGE_PCISTATE_PCI_BUSSPEED)) == 2484 BGE_PCISTATE_PCI_BUSSPEED) 2485 sc->bge_rx_alignment_bug = 1; 2486 break; 2487 } 2488 2489 /* 2490 * Call MI attach routine. 2491 */ 2492 ether_ifattach(ifp, eaddr); 2493 callout_init(&sc->bge_stat_ch, CALLOUT_MPSAFE); 2494 2495 /* 2496 * Hookup IRQ last. 2497 */ 2498 error = bus_setup_intr(dev, sc->bge_irq, INTR_TYPE_NET | INTR_MPSAFE, 2499 bge_intr, sc, &sc->bge_intrhand); 2500 2501 if (error) { 2502 bge_detach(dev); 2503 printf("bge%d: couldn't set up irq\n", unit); 2504 } 2505 2506 fail: 2507 return(error); 2508 } 2509 2510 static int 2511 bge_detach(dev) 2512 device_t dev; 2513 { 2514 struct bge_softc *sc; 2515 struct ifnet *ifp; 2516 2517 sc = device_get_softc(dev); 2518 ifp = sc->bge_ifp; 2519 2520 BGE_LOCK(sc); 2521 bge_stop(sc); 2522 bge_reset(sc); 2523 BGE_UNLOCK(sc); 2524 2525 ether_ifdetach(ifp); 2526 2527 if (sc->bge_tbi) { 2528 ifmedia_removeall(&sc->bge_ifmedia); 2529 } else { 2530 bus_generic_detach(dev); 2531 device_delete_child(dev, sc->bge_miibus); 2532 } 2533 2534 bge_release_resources(sc); 2535 if (sc->bge_asicrev != BGE_ASICREV_BCM5705 && 2536 sc->bge_asicrev != BGE_ASICREV_BCM5750) 2537 bge_free_jumbo_mem(sc); 2538 2539 return(0); 2540 } 2541 2542 static void 2543 bge_release_resources(sc) 2544 struct bge_softc *sc; 2545 { 2546 device_t dev; 2547 2548 dev = sc->bge_dev; 2549 2550 if (sc->bge_vpd_prodname != NULL) 2551 free(sc->bge_vpd_prodname, M_DEVBUF); 2552 2553 if (sc->bge_vpd_readonly != NULL) 2554 free(sc->bge_vpd_readonly, M_DEVBUF); 2555 2556 if (sc->bge_intrhand != NULL) 2557 bus_teardown_intr(dev, sc->bge_irq, sc->bge_intrhand); 2558 2559 if (sc->bge_irq != NULL) 2560 bus_release_resource(dev, SYS_RES_IRQ, 0, sc->bge_irq); 2561 2562 if (sc->bge_res != NULL) 2563 bus_release_resource(dev, SYS_RES_MEMORY, 2564 BGE_PCI_BAR0, sc->bge_res); 2565 2566 if (sc->bge_ifp != NULL) 2567 if_free(sc->bge_ifp); 2568 2569 bge_dma_free(sc); 2570 2571 if (mtx_initialized(&sc->bge_mtx)) /* XXX */ 2572 BGE_LOCK_DESTROY(sc); 2573 2574 return; 2575 } 2576 2577 static void 2578 bge_reset(sc) 2579 struct bge_softc *sc; 2580 { 2581 device_t dev; 2582 u_int32_t cachesize, command, pcistate, reset; 2583 int i, val = 0; 2584 2585 dev = sc->bge_dev; 2586 2587 /* Save some important PCI state. */ 2588 cachesize = pci_read_config(dev, BGE_PCI_CACHESZ, 4); 2589 command = pci_read_config(dev, BGE_PCI_CMD, 4); 2590 pcistate = pci_read_config(dev, BGE_PCI_PCISTATE, 4); 2591 2592 pci_write_config(dev, BGE_PCI_MISC_CTL, 2593 BGE_PCIMISCCTL_INDIRECT_ACCESS|BGE_PCIMISCCTL_MASK_PCI_INTR| 2594 BGE_PCIMISCCTL_ENDIAN_WORDSWAP|BGE_PCIMISCCTL_PCISTATE_RW, 4); 2595 2596 reset = BGE_MISCCFG_RESET_CORE_CLOCKS|(65<<1); 2597 2598 /* XXX: Broadcom Linux driver. */ 2599 if (sc->bge_pcie) { 2600 if (CSR_READ_4(sc, 0x7e2c) == 0x60) /* PCIE 1.0 */ 2601 CSR_WRITE_4(sc, 0x7e2c, 0x20); 2602 if (sc->bge_chipid != BGE_CHIPID_BCM5750_A0) { 2603 /* Prevent PCIE link training during global reset */ 2604 CSR_WRITE_4(sc, BGE_MISC_CFG, (1<<29)); 2605 reset |= (1<<29); 2606 } 2607 } 2608 2609 /* Issue global reset */ 2610 bge_writereg_ind(sc, BGE_MISC_CFG, reset); 2611 2612 DELAY(1000); 2613 2614 /* XXX: Broadcom Linux driver. */ 2615 if (sc->bge_pcie) { 2616 if (sc->bge_chipid == BGE_CHIPID_BCM5750_A0) { 2617 uint32_t v; 2618 2619 DELAY(500000); /* wait for link training to complete */ 2620 v = pci_read_config(dev, 0xc4, 4); 2621 pci_write_config(dev, 0xc4, v | (1<<15), 4); 2622 } 2623 /* Set PCIE max payload size and clear error status. */ 2624 pci_write_config(dev, 0xd8, 0xf5000, 4); 2625 } 2626 2627 /* Reset some of the PCI state that got zapped by reset */ 2628 pci_write_config(dev, BGE_PCI_MISC_CTL, 2629 BGE_PCIMISCCTL_INDIRECT_ACCESS|BGE_PCIMISCCTL_MASK_PCI_INTR| 2630 BGE_PCIMISCCTL_ENDIAN_WORDSWAP|BGE_PCIMISCCTL_PCISTATE_RW, 4); 2631 pci_write_config(dev, BGE_PCI_CACHESZ, cachesize, 4); 2632 pci_write_config(dev, BGE_PCI_CMD, command, 4); 2633 bge_writereg_ind(sc, BGE_MISC_CFG, (65 << 1)); 2634 2635 /* Enable memory arbiter. */ 2636 if (sc->bge_asicrev != BGE_ASICREV_BCM5705 && 2637 sc->bge_asicrev != BGE_ASICREV_BCM5750) 2638 CSR_WRITE_4(sc, BGE_MARB_MODE, BGE_MARBMODE_ENABLE); 2639 2640 /* 2641 * Prevent PXE restart: write a magic number to the 2642 * general communications memory at 0xB50. 2643 */ 2644 bge_writemem_ind(sc, BGE_SOFTWARE_GENCOMM, BGE_MAGIC_NUMBER); 2645 /* 2646 * Poll the value location we just wrote until 2647 * we see the 1's complement of the magic number. 2648 * This indicates that the firmware initialization 2649 * is complete. 2650 */ 2651 for (i = 0; i < BGE_TIMEOUT; i++) { 2652 val = bge_readmem_ind(sc, BGE_SOFTWARE_GENCOMM); 2653 if (val == ~BGE_MAGIC_NUMBER) 2654 break; 2655 DELAY(10); 2656 } 2657 2658 if (i == BGE_TIMEOUT) { 2659 printf("bge%d: firmware handshake timed out\n", sc->bge_unit); 2660 return; 2661 } 2662 2663 /* 2664 * XXX Wait for the value of the PCISTATE register to 2665 * return to its original pre-reset state. This is a 2666 * fairly good indicator of reset completion. If we don't 2667 * wait for the reset to fully complete, trying to read 2668 * from the device's non-PCI registers may yield garbage 2669 * results. 2670 */ 2671 for (i = 0; i < BGE_TIMEOUT; i++) { 2672 if (pci_read_config(dev, BGE_PCI_PCISTATE, 4) == pcistate) 2673 break; 2674 DELAY(10); 2675 } 2676 2677 /* Fix up byte swapping */ 2678 CSR_WRITE_4(sc, BGE_MODE_CTL, BGE_MODECTL_BYTESWAP_NONFRAME| 2679 BGE_MODECTL_BYTESWAP_DATA); 2680 2681 CSR_WRITE_4(sc, BGE_MAC_MODE, 0); 2682 2683 /* 2684 * The 5704 in TBI mode apparently needs some special 2685 * adjustment to insure the SERDES drive level is set 2686 * to 1.2V. 2687 */ 2688 if (sc->bge_asicrev == BGE_ASICREV_BCM5704 && sc->bge_tbi) { 2689 uint32_t serdescfg; 2690 serdescfg = CSR_READ_4(sc, BGE_SERDES_CFG); 2691 serdescfg = (serdescfg & ~0xFFF) | 0x880; 2692 CSR_WRITE_4(sc, BGE_SERDES_CFG, serdescfg); 2693 } 2694 2695 /* XXX: Broadcom Linux driver. */ 2696 if (sc->bge_pcie && sc->bge_chipid != BGE_CHIPID_BCM5750_A0) { 2697 uint32_t v; 2698 2699 v = CSR_READ_4(sc, 0x7c00); 2700 CSR_WRITE_4(sc, 0x7c00, v | (1<<25)); 2701 } 2702 DELAY(10000); 2703 2704 return; 2705 } 2706 2707 /* 2708 * Frame reception handling. This is called if there's a frame 2709 * on the receive return list. 2710 * 2711 * Note: we have to be able to handle two possibilities here: 2712 * 1) the frame is from the jumbo recieve ring 2713 * 2) the frame is from the standard receive ring 2714 */ 2715 2716 static void 2717 bge_rxeof(sc) 2718 struct bge_softc *sc; 2719 { 2720 struct ifnet *ifp; 2721 int stdcnt = 0, jumbocnt = 0; 2722 2723 BGE_LOCK_ASSERT(sc); 2724 2725 ifp = sc->bge_ifp; 2726 2727 bus_dmamap_sync(sc->bge_cdata.bge_rx_return_ring_tag, 2728 sc->bge_cdata.bge_rx_return_ring_map, BUS_DMASYNC_POSTWRITE); 2729 bus_dmamap_sync(sc->bge_cdata.bge_rx_std_ring_tag, 2730 sc->bge_cdata.bge_rx_std_ring_map, BUS_DMASYNC_POSTREAD); 2731 if (sc->bge_asicrev != BGE_ASICREV_BCM5705 && 2732 sc->bge_asicrev != BGE_ASICREV_BCM5750) { 2733 bus_dmamap_sync(sc->bge_cdata.bge_rx_jumbo_ring_tag, 2734 sc->bge_cdata.bge_rx_jumbo_ring_map, 2735 BUS_DMASYNC_POSTREAD); 2736 } 2737 2738 while(sc->bge_rx_saved_considx != 2739 sc->bge_ldata.bge_status_block->bge_idx[0].bge_rx_prod_idx) { 2740 struct bge_rx_bd *cur_rx; 2741 u_int32_t rxidx; 2742 struct ether_header *eh; 2743 struct mbuf *m = NULL; 2744 u_int16_t vlan_tag = 0; 2745 int have_tag = 0; 2746 2747 cur_rx = 2748 &sc->bge_ldata.bge_rx_return_ring[sc->bge_rx_saved_considx]; 2749 2750 rxidx = cur_rx->bge_idx; 2751 BGE_INC(sc->bge_rx_saved_considx, sc->bge_return_ring_cnt); 2752 2753 if (cur_rx->bge_flags & BGE_RXBDFLAG_VLAN_TAG) { 2754 have_tag = 1; 2755 vlan_tag = cur_rx->bge_vlan_tag; 2756 } 2757 2758 if (cur_rx->bge_flags & BGE_RXBDFLAG_JUMBO_RING) { 2759 BGE_INC(sc->bge_jumbo, BGE_JUMBO_RX_RING_CNT); 2760 bus_dmamap_sync(sc->bge_cdata.bge_mtag_jumbo, 2761 sc->bge_cdata.bge_rx_jumbo_dmamap[rxidx], 2762 BUS_DMASYNC_POSTREAD); 2763 bus_dmamap_unload(sc->bge_cdata.bge_mtag_jumbo, 2764 sc->bge_cdata.bge_rx_jumbo_dmamap[rxidx]); 2765 m = sc->bge_cdata.bge_rx_jumbo_chain[rxidx]; 2766 sc->bge_cdata.bge_rx_jumbo_chain[rxidx] = NULL; 2767 jumbocnt++; 2768 if (cur_rx->bge_flags & BGE_RXBDFLAG_ERROR) { 2769 ifp->if_ierrors++; 2770 bge_newbuf_jumbo(sc, sc->bge_jumbo, m); 2771 continue; 2772 } 2773 if (bge_newbuf_jumbo(sc, 2774 sc->bge_jumbo, NULL) == ENOBUFS) { 2775 ifp->if_ierrors++; 2776 bge_newbuf_jumbo(sc, sc->bge_jumbo, m); 2777 continue; 2778 } 2779 } else { 2780 BGE_INC(sc->bge_std, BGE_STD_RX_RING_CNT); 2781 bus_dmamap_sync(sc->bge_cdata.bge_mtag, 2782 sc->bge_cdata.bge_rx_std_dmamap[rxidx], 2783 BUS_DMASYNC_POSTREAD); 2784 bus_dmamap_unload(sc->bge_cdata.bge_mtag, 2785 sc->bge_cdata.bge_rx_std_dmamap[rxidx]); 2786 m = sc->bge_cdata.bge_rx_std_chain[rxidx]; 2787 sc->bge_cdata.bge_rx_std_chain[rxidx] = NULL; 2788 stdcnt++; 2789 if (cur_rx->bge_flags & BGE_RXBDFLAG_ERROR) { 2790 ifp->if_ierrors++; 2791 bge_newbuf_std(sc, sc->bge_std, m); 2792 continue; 2793 } 2794 if (bge_newbuf_std(sc, sc->bge_std, 2795 NULL) == ENOBUFS) { 2796 ifp->if_ierrors++; 2797 bge_newbuf_std(sc, sc->bge_std, m); 2798 continue; 2799 } 2800 } 2801 2802 ifp->if_ipackets++; 2803 #ifndef __i386__ 2804 /* 2805 * The i386 allows unaligned accesses, but for other 2806 * platforms we must make sure the payload is aligned. 2807 */ 2808 if (sc->bge_rx_alignment_bug) { 2809 bcopy(m->m_data, m->m_data + ETHER_ALIGN, 2810 cur_rx->bge_len); 2811 m->m_data += ETHER_ALIGN; 2812 } 2813 #endif 2814 eh = mtod(m, struct ether_header *); 2815 m->m_pkthdr.len = m->m_len = cur_rx->bge_len - ETHER_CRC_LEN; 2816 m->m_pkthdr.rcvif = ifp; 2817 2818 #if 0 /* currently broken for some packets, possibly related to TCP options */ 2819 if (ifp->if_capenable & IFCAP_RXCSUM) { 2820 m->m_pkthdr.csum_flags |= CSUM_IP_CHECKED; 2821 if ((cur_rx->bge_ip_csum ^ 0xffff) == 0) 2822 m->m_pkthdr.csum_flags |= CSUM_IP_VALID; 2823 if (cur_rx->bge_flags & BGE_RXBDFLAG_TCP_UDP_CSUM) { 2824 m->m_pkthdr.csum_data = 2825 cur_rx->bge_tcp_udp_csum; 2826 m->m_pkthdr.csum_flags |= CSUM_DATA_VALID; 2827 } 2828 } 2829 #endif 2830 2831 /* 2832 * If we received a packet with a vlan tag, 2833 * attach that information to the packet. 2834 */ 2835 if (have_tag) 2836 VLAN_INPUT_TAG(ifp, m, vlan_tag, continue); 2837 2838 BGE_UNLOCK(sc); 2839 (*ifp->if_input)(ifp, m); 2840 BGE_LOCK(sc); 2841 } 2842 2843 bus_dmamap_sync(sc->bge_cdata.bge_rx_return_ring_tag, 2844 sc->bge_cdata.bge_rx_return_ring_map, BUS_DMASYNC_PREWRITE); 2845 bus_dmamap_sync(sc->bge_cdata.bge_rx_std_ring_tag, 2846 sc->bge_cdata.bge_rx_std_ring_map, 2847 BUS_DMASYNC_POSTREAD|BUS_DMASYNC_PREWRITE); 2848 if (sc->bge_asicrev != BGE_ASICREV_BCM5705 && 2849 sc->bge_asicrev != BGE_ASICREV_BCM5750) { 2850 bus_dmamap_sync(sc->bge_cdata.bge_rx_jumbo_ring_tag, 2851 sc->bge_cdata.bge_rx_jumbo_ring_map, 2852 BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE); 2853 } 2854 2855 CSR_WRITE_4(sc, BGE_MBX_RX_CONS0_LO, sc->bge_rx_saved_considx); 2856 if (stdcnt) 2857 CSR_WRITE_4(sc, BGE_MBX_RX_STD_PROD_LO, sc->bge_std); 2858 if (jumbocnt) 2859 CSR_WRITE_4(sc, BGE_MBX_RX_JUMBO_PROD_LO, sc->bge_jumbo); 2860 2861 return; 2862 } 2863 2864 static void 2865 bge_txeof(sc) 2866 struct bge_softc *sc; 2867 { 2868 struct bge_tx_bd *cur_tx = NULL; 2869 struct ifnet *ifp; 2870 2871 BGE_LOCK_ASSERT(sc); 2872 2873 ifp = sc->bge_ifp; 2874 2875 /* 2876 * Go through our tx ring and free mbufs for those 2877 * frames that have been sent. 2878 */ 2879 while (sc->bge_tx_saved_considx != 2880 sc->bge_ldata.bge_status_block->bge_idx[0].bge_tx_cons_idx) { 2881 u_int32_t idx = 0; 2882 2883 idx = sc->bge_tx_saved_considx; 2884 cur_tx = &sc->bge_ldata.bge_tx_ring[idx]; 2885 if (cur_tx->bge_flags & BGE_TXBDFLAG_END) 2886 ifp->if_opackets++; 2887 if (sc->bge_cdata.bge_tx_chain[idx] != NULL) { 2888 m_freem(sc->bge_cdata.bge_tx_chain[idx]); 2889 sc->bge_cdata.bge_tx_chain[idx] = NULL; 2890 bus_dmamap_unload(sc->bge_cdata.bge_mtag, 2891 sc->bge_cdata.bge_tx_dmamap[idx]); 2892 } 2893 sc->bge_txcnt--; 2894 BGE_INC(sc->bge_tx_saved_considx, BGE_TX_RING_CNT); 2895 ifp->if_timer = 0; 2896 } 2897 2898 if (cur_tx != NULL) 2899 ifp->if_drv_flags &= ~IFF_DRV_OACTIVE; 2900 2901 return; 2902 } 2903 2904 static void 2905 bge_intr(xsc) 2906 void *xsc; 2907 { 2908 struct bge_softc *sc; 2909 struct ifnet *ifp; 2910 u_int32_t statusword; 2911 u_int32_t status, mimode; 2912 2913 sc = xsc; 2914 ifp = sc->bge_ifp; 2915 2916 BGE_LOCK(sc); 2917 2918 bus_dmamap_sync(sc->bge_cdata.bge_status_tag, 2919 sc->bge_cdata.bge_status_map, BUS_DMASYNC_POSTWRITE); 2920 2921 statusword = 2922 atomic_readandclear_32(&sc->bge_ldata.bge_status_block->bge_status); 2923 2924 #ifdef notdef 2925 /* Avoid this for now -- checking this register is expensive. */ 2926 /* Make sure this is really our interrupt. */ 2927 if (!(CSR_READ_4(sc, BGE_MISC_LOCAL_CTL) & BGE_MLC_INTR_STATE)) 2928 return; 2929 #endif 2930 /* Ack interrupt and stop others from occuring. */ 2931 CSR_WRITE_4(sc, BGE_MBX_IRQ0_LO, 1); 2932 2933 /* 2934 * Process link state changes. 2935 * Grrr. The link status word in the status block does 2936 * not work correctly on the BCM5700 rev AX and BX chips, 2937 * according to all available information. Hence, we have 2938 * to enable MII interrupts in order to properly obtain 2939 * async link changes. Unfortunately, this also means that 2940 * we have to read the MAC status register to detect link 2941 * changes, thereby adding an additional register access to 2942 * the interrupt handler. 2943 */ 2944 2945 if (sc->bge_asicrev == BGE_ASICREV_BCM5700) { 2946 2947 status = CSR_READ_4(sc, BGE_MAC_STS); 2948 if (status & BGE_MACSTAT_MI_INTERRUPT) { 2949 sc->bge_link = 0; 2950 callout_stop(&sc->bge_stat_ch); 2951 bge_tick_locked(sc); 2952 /* Clear the interrupt */ 2953 CSR_WRITE_4(sc, BGE_MAC_EVT_ENB, 2954 BGE_EVTENB_MI_INTERRUPT); 2955 bge_miibus_readreg(sc->bge_dev, 1, BRGPHY_MII_ISR); 2956 bge_miibus_writereg(sc->bge_dev, 1, BRGPHY_MII_IMR, 2957 BRGPHY_INTRS); 2958 } 2959 } else { 2960 if (statusword & BGE_STATFLAG_LINKSTATE_CHANGED) { 2961 /* 2962 * Sometimes PCS encoding errors are detected in 2963 * TBI mode (on fiber NICs), and for some reason 2964 * the chip will signal them as link changes. 2965 * If we get a link change event, but the 'PCS 2966 * encoding error' bit in the MAC status register 2967 * is set, don't bother doing a link check. 2968 * This avoids spurious "gigabit link up" messages 2969 * that sometimes appear on fiber NICs during 2970 * periods of heavy traffic. (There should be no 2971 * effect on copper NICs.) 2972 * 2973 * If we do have a copper NIC (bge_tbi == 0) then 2974 * check that the AUTOPOLL bit is set before 2975 * processing the event as a real link change. 2976 * Turning AUTOPOLL on and off in the MII read/write 2977 * functions will often trigger a link status 2978 * interrupt for no reason. 2979 */ 2980 status = CSR_READ_4(sc, BGE_MAC_STS); 2981 mimode = CSR_READ_4(sc, BGE_MI_MODE); 2982 if (!(status & (BGE_MACSTAT_PORT_DECODE_ERROR| 2983 BGE_MACSTAT_MI_COMPLETE)) && (!sc->bge_tbi && 2984 (mimode & BGE_MIMODE_AUTOPOLL))) { 2985 sc->bge_link = 0; 2986 callout_stop(&sc->bge_stat_ch); 2987 bge_tick_locked(sc); 2988 } 2989 /* Clear the interrupt */ 2990 CSR_WRITE_4(sc, BGE_MAC_STS, BGE_MACSTAT_SYNC_CHANGED| 2991 BGE_MACSTAT_CFG_CHANGED|BGE_MACSTAT_MI_COMPLETE| 2992 BGE_MACSTAT_LINK_CHANGED); 2993 2994 /* Force flush the status block cached by PCI bridge */ 2995 CSR_READ_4(sc, BGE_MBX_IRQ0_LO); 2996 } 2997 } 2998 2999 if (ifp->if_drv_flags & IFF_DRV_RUNNING) { 3000 /* Check RX return ring producer/consumer */ 3001 bge_rxeof(sc); 3002 3003 /* Check TX ring producer/consumer */ 3004 bge_txeof(sc); 3005 } 3006 3007 bus_dmamap_sync(sc->bge_cdata.bge_status_tag, 3008 sc->bge_cdata.bge_status_map, BUS_DMASYNC_PREWRITE); 3009 3010 bge_handle_events(sc); 3011 3012 /* Re-enable interrupts. */ 3013 CSR_WRITE_4(sc, BGE_MBX_IRQ0_LO, 0); 3014 3015 if (ifp->if_drv_flags & IFF_DRV_RUNNING && 3016 !IFQ_DRV_IS_EMPTY(&ifp->if_snd)) 3017 bge_start_locked(ifp); 3018 3019 BGE_UNLOCK(sc); 3020 3021 return; 3022 } 3023 3024 static void 3025 bge_tick_locked(sc) 3026 struct bge_softc *sc; 3027 { 3028 struct mii_data *mii = NULL; 3029 struct ifmedia *ifm = NULL; 3030 struct ifnet *ifp; 3031 3032 ifp = sc->bge_ifp; 3033 3034 BGE_LOCK_ASSERT(sc); 3035 3036 if (sc->bge_asicrev == BGE_ASICREV_BCM5705 || 3037 sc->bge_asicrev == BGE_ASICREV_BCM5750) 3038 bge_stats_update_regs(sc); 3039 else 3040 bge_stats_update(sc); 3041 callout_reset(&sc->bge_stat_ch, hz, bge_tick, sc); 3042 if (sc->bge_link) 3043 return; 3044 3045 if (sc->bge_tbi) { 3046 ifm = &sc->bge_ifmedia; 3047 if (CSR_READ_4(sc, BGE_MAC_STS) & 3048 BGE_MACSTAT_TBI_PCS_SYNCHED) { 3049 sc->bge_link++; 3050 if (sc->bge_asicrev == BGE_ASICREV_BCM5704) 3051 BGE_CLRBIT(sc, BGE_MAC_MODE, 3052 BGE_MACMODE_TBI_SEND_CFGS); 3053 CSR_WRITE_4(sc, BGE_MAC_STS, 0xFFFFFFFF); 3054 if (bootverbose) 3055 printf("bge%d: gigabit link up\n", 3056 sc->bge_unit); 3057 if (!IFQ_DRV_IS_EMPTY(&ifp->if_snd)) 3058 bge_start_locked(ifp); 3059 } 3060 return; 3061 } 3062 3063 mii = device_get_softc(sc->bge_miibus); 3064 mii_tick(mii); 3065 3066 if (!sc->bge_link && mii->mii_media_status & IFM_ACTIVE && 3067 IFM_SUBTYPE(mii->mii_media_active) != IFM_NONE) { 3068 sc->bge_link++; 3069 if ((IFM_SUBTYPE(mii->mii_media_active) == IFM_1000_T || 3070 IFM_SUBTYPE(mii->mii_media_active) == IFM_1000_SX) && 3071 bootverbose) 3072 printf("bge%d: gigabit link up\n", sc->bge_unit); 3073 if (!IFQ_DRV_IS_EMPTY(&ifp->if_snd)) 3074 bge_start_locked(ifp); 3075 } 3076 3077 return; 3078 } 3079 3080 static void 3081 bge_tick(xsc) 3082 void *xsc; 3083 { 3084 struct bge_softc *sc; 3085 3086 sc = xsc; 3087 3088 BGE_LOCK(sc); 3089 bge_tick_locked(sc); 3090 BGE_UNLOCK(sc); 3091 } 3092 3093 static void 3094 bge_stats_update_regs(sc) 3095 struct bge_softc *sc; 3096 { 3097 struct ifnet *ifp; 3098 struct bge_mac_stats_regs stats; 3099 u_int32_t *s; 3100 int i; 3101 3102 ifp = sc->bge_ifp; 3103 3104 s = (u_int32_t *)&stats; 3105 for (i = 0; i < sizeof(struct bge_mac_stats_regs); i += 4) { 3106 *s = CSR_READ_4(sc, BGE_RX_STATS + i); 3107 s++; 3108 } 3109 3110 ifp->if_collisions += 3111 (stats.dot3StatsSingleCollisionFrames + 3112 stats.dot3StatsMultipleCollisionFrames + 3113 stats.dot3StatsExcessiveCollisions + 3114 stats.dot3StatsLateCollisions) - 3115 ifp->if_collisions; 3116 3117 return; 3118 } 3119 3120 static void 3121 bge_stats_update(sc) 3122 struct bge_softc *sc; 3123 { 3124 struct ifnet *ifp; 3125 struct bge_stats *stats; 3126 3127 ifp = sc->bge_ifp; 3128 3129 stats = (struct bge_stats *)(sc->bge_vhandle + 3130 BGE_MEMWIN_START + BGE_STATS_BLOCK); 3131 3132 ifp->if_collisions += 3133 (stats->txstats.dot3StatsSingleCollisionFrames.bge_addr_lo + 3134 stats->txstats.dot3StatsMultipleCollisionFrames.bge_addr_lo + 3135 stats->txstats.dot3StatsExcessiveCollisions.bge_addr_lo + 3136 stats->txstats.dot3StatsLateCollisions.bge_addr_lo) - 3137 ifp->if_collisions; 3138 3139 #ifdef notdef 3140 ifp->if_collisions += 3141 (sc->bge_rdata->bge_info.bge_stats.dot3StatsSingleCollisionFrames + 3142 sc->bge_rdata->bge_info.bge_stats.dot3StatsMultipleCollisionFrames + 3143 sc->bge_rdata->bge_info.bge_stats.dot3StatsExcessiveCollisions + 3144 sc->bge_rdata->bge_info.bge_stats.dot3StatsLateCollisions) - 3145 ifp->if_collisions; 3146 #endif 3147 3148 return; 3149 } 3150 3151 /* 3152 * Encapsulate an mbuf chain in the tx ring by coupling the mbuf data 3153 * pointers to descriptors. 3154 */ 3155 static int 3156 bge_encap(sc, m_head, txidx) 3157 struct bge_softc *sc; 3158 struct mbuf *m_head; 3159 u_int32_t *txidx; 3160 { 3161 struct bge_tx_bd *f = NULL; 3162 u_int16_t csum_flags = 0; 3163 struct m_tag *mtag; 3164 struct bge_dmamap_arg ctx; 3165 bus_dmamap_t map; 3166 int error; 3167 3168 3169 if (m_head->m_pkthdr.csum_flags) { 3170 if (m_head->m_pkthdr.csum_flags & CSUM_IP) 3171 csum_flags |= BGE_TXBDFLAG_IP_CSUM; 3172 if (m_head->m_pkthdr.csum_flags & (CSUM_TCP | CSUM_UDP)) 3173 csum_flags |= BGE_TXBDFLAG_TCP_UDP_CSUM; 3174 if (m_head->m_flags & M_LASTFRAG) 3175 csum_flags |= BGE_TXBDFLAG_IP_FRAG_END; 3176 else if (m_head->m_flags & M_FRAG) 3177 csum_flags |= BGE_TXBDFLAG_IP_FRAG; 3178 } 3179 3180 mtag = VLAN_OUTPUT_TAG(sc->bge_ifp, m_head); 3181 3182 ctx.sc = sc; 3183 ctx.bge_idx = *txidx; 3184 ctx.bge_ring = sc->bge_ldata.bge_tx_ring; 3185 ctx.bge_flags = csum_flags; 3186 /* 3187 * Sanity check: avoid coming within 16 descriptors 3188 * of the end of the ring. 3189 */ 3190 ctx.bge_maxsegs = (BGE_TX_RING_CNT - sc->bge_txcnt) - 16; 3191 3192 map = sc->bge_cdata.bge_tx_dmamap[*txidx]; 3193 error = bus_dmamap_load_mbuf(sc->bge_cdata.bge_mtag, map, 3194 m_head, bge_dma_map_tx_desc, &ctx, BUS_DMA_NOWAIT); 3195 3196 if (error || ctx.bge_maxsegs == 0 /*|| 3197 ctx.bge_idx == sc->bge_tx_saved_considx*/) 3198 return (ENOBUFS); 3199 3200 /* 3201 * Insure that the map for this transmission 3202 * is placed at the array index of the last descriptor 3203 * in this chain. 3204 */ 3205 sc->bge_cdata.bge_tx_dmamap[*txidx] = 3206 sc->bge_cdata.bge_tx_dmamap[ctx.bge_idx]; 3207 sc->bge_cdata.bge_tx_dmamap[ctx.bge_idx] = map; 3208 sc->bge_cdata.bge_tx_chain[ctx.bge_idx] = m_head; 3209 sc->bge_txcnt += ctx.bge_maxsegs; 3210 f = &sc->bge_ldata.bge_tx_ring[*txidx]; 3211 if (mtag != NULL) { 3212 f->bge_flags |= htole16(BGE_TXBDFLAG_VLAN_TAG); 3213 f->bge_vlan_tag = htole16(VLAN_TAG_VALUE(mtag)); 3214 } else { 3215 f->bge_vlan_tag = 0; 3216 } 3217 3218 BGE_INC(ctx.bge_idx, BGE_TX_RING_CNT); 3219 *txidx = ctx.bge_idx; 3220 3221 return(0); 3222 } 3223 3224 /* 3225 * Main transmit routine. To avoid having to do mbuf copies, we put pointers 3226 * to the mbuf data regions directly in the transmit descriptors. 3227 */ 3228 static void 3229 bge_start_locked(ifp) 3230 struct ifnet *ifp; 3231 { 3232 struct bge_softc *sc; 3233 struct mbuf *m_head = NULL; 3234 u_int32_t prodidx = 0; 3235 int count = 0; 3236 3237 sc = ifp->if_softc; 3238 3239 if (!sc->bge_link && IFQ_DRV_IS_EMPTY(&ifp->if_snd)) 3240 return; 3241 3242 prodidx = CSR_READ_4(sc, BGE_MBX_TX_HOST_PROD0_LO); 3243 3244 while(sc->bge_cdata.bge_tx_chain[prodidx] == NULL) { 3245 IFQ_DRV_DEQUEUE(&ifp->if_snd, m_head); 3246 if (m_head == NULL) 3247 break; 3248 3249 /* 3250 * XXX 3251 * The code inside the if() block is never reached since we 3252 * must mark CSUM_IP_FRAGS in our if_hwassist to start getting 3253 * requests to checksum TCP/UDP in a fragmented packet. 3254 * 3255 * XXX 3256 * safety overkill. If this is a fragmented packet chain 3257 * with delayed TCP/UDP checksums, then only encapsulate 3258 * it if we have enough descriptors to handle the entire 3259 * chain at once. 3260 * (paranoia -- may not actually be needed) 3261 */ 3262 if (m_head->m_flags & M_FIRSTFRAG && 3263 m_head->m_pkthdr.csum_flags & (CSUM_DELAY_DATA)) { 3264 if ((BGE_TX_RING_CNT - sc->bge_txcnt) < 3265 m_head->m_pkthdr.csum_data + 16) { 3266 IFQ_DRV_PREPEND(&ifp->if_snd, m_head); 3267 ifp->if_drv_flags |= IFF_DRV_OACTIVE; 3268 break; 3269 } 3270 } 3271 3272 /* 3273 * Pack the data into the transmit ring. If we 3274 * don't have room, set the OACTIVE flag and wait 3275 * for the NIC to drain the ring. 3276 */ 3277 if (bge_encap(sc, m_head, &prodidx)) { 3278 IFQ_DRV_PREPEND(&ifp->if_snd, m_head); 3279 ifp->if_drv_flags |= IFF_DRV_OACTIVE; 3280 break; 3281 } 3282 ++count; 3283 3284 /* 3285 * If there's a BPF listener, bounce a copy of this frame 3286 * to him. 3287 */ 3288 BPF_MTAP(ifp, m_head); 3289 } 3290 3291 if (count == 0) { 3292 /* no packets were dequeued */ 3293 return; 3294 } 3295 3296 /* Transmit */ 3297 CSR_WRITE_4(sc, BGE_MBX_TX_HOST_PROD0_LO, prodidx); 3298 /* 5700 b2 errata */ 3299 if (sc->bge_chiprev == BGE_CHIPREV_5700_BX) 3300 CSR_WRITE_4(sc, BGE_MBX_TX_HOST_PROD0_LO, prodidx); 3301 3302 /* 3303 * Set a timeout in case the chip goes out to lunch. 3304 */ 3305 ifp->if_timer = 5; 3306 3307 return; 3308 } 3309 3310 /* 3311 * Main transmit routine. To avoid having to do mbuf copies, we put pointers 3312 * to the mbuf data regions directly in the transmit descriptors. 3313 */ 3314 static void 3315 bge_start(ifp) 3316 struct ifnet *ifp; 3317 { 3318 struct bge_softc *sc; 3319 3320 sc = ifp->if_softc; 3321 BGE_LOCK(sc); 3322 bge_start_locked(ifp); 3323 BGE_UNLOCK(sc); 3324 } 3325 3326 static void 3327 bge_init_locked(sc) 3328 struct bge_softc *sc; 3329 { 3330 struct ifnet *ifp; 3331 u_int16_t *m; 3332 3333 BGE_LOCK_ASSERT(sc); 3334 3335 ifp = sc->bge_ifp; 3336 3337 if (ifp->if_drv_flags & IFF_DRV_RUNNING) 3338 return; 3339 3340 /* Cancel pending I/O and flush buffers. */ 3341 bge_stop(sc); 3342 bge_reset(sc); 3343 bge_chipinit(sc); 3344 3345 /* 3346 * Init the various state machines, ring 3347 * control blocks and firmware. 3348 */ 3349 if (bge_blockinit(sc)) { 3350 printf("bge%d: initialization failure\n", sc->bge_unit); 3351 return; 3352 } 3353 3354 ifp = sc->bge_ifp; 3355 3356 /* Specify MTU. */ 3357 CSR_WRITE_4(sc, BGE_RX_MTU, ifp->if_mtu + 3358 ETHER_HDR_LEN + ETHER_CRC_LEN + ETHER_VLAN_ENCAP_LEN); 3359 3360 /* Load our MAC address. */ 3361 m = (u_int16_t *)&IFP2ENADDR(sc->bge_ifp)[0]; 3362 CSR_WRITE_4(sc, BGE_MAC_ADDR1_LO, htons(m[0])); 3363 CSR_WRITE_4(sc, BGE_MAC_ADDR1_HI, (htons(m[1]) << 16) | htons(m[2])); 3364 3365 /* Enable or disable promiscuous mode as needed. */ 3366 if (ifp->if_flags & IFF_PROMISC) { 3367 BGE_SETBIT(sc, BGE_RX_MODE, BGE_RXMODE_RX_PROMISC); 3368 } else { 3369 BGE_CLRBIT(sc, BGE_RX_MODE, BGE_RXMODE_RX_PROMISC); 3370 } 3371 3372 /* Program multicast filter. */ 3373 bge_setmulti(sc); 3374 3375 /* Init RX ring. */ 3376 bge_init_rx_ring_std(sc); 3377 3378 /* 3379 * Workaround for a bug in 5705 ASIC rev A0. Poll the NIC's 3380 * memory to insure that the chip has in fact read the first 3381 * entry of the ring. 3382 */ 3383 if (sc->bge_chipid == BGE_CHIPID_BCM5705_A0) { 3384 u_int32_t v, i; 3385 for (i = 0; i < 10; i++) { 3386 DELAY(20); 3387 v = bge_readmem_ind(sc, BGE_STD_RX_RINGS + 8); 3388 if (v == (MCLBYTES - ETHER_ALIGN)) 3389 break; 3390 } 3391 if (i == 10) 3392 printf ("bge%d: 5705 A0 chip failed to load RX ring\n", 3393 sc->bge_unit); 3394 } 3395 3396 /* Init jumbo RX ring. */ 3397 if (ifp->if_mtu > (ETHERMTU + ETHER_HDR_LEN + ETHER_CRC_LEN)) 3398 bge_init_rx_ring_jumbo(sc); 3399 3400 /* Init our RX return ring index */ 3401 sc->bge_rx_saved_considx = 0; 3402 3403 /* Init TX ring. */ 3404 bge_init_tx_ring(sc); 3405 3406 /* Turn on transmitter */ 3407 BGE_SETBIT(sc, BGE_TX_MODE, BGE_TXMODE_ENABLE); 3408 3409 /* Turn on receiver */ 3410 BGE_SETBIT(sc, BGE_RX_MODE, BGE_RXMODE_ENABLE); 3411 3412 /* Tell firmware we're alive. */ 3413 BGE_SETBIT(sc, BGE_MODE_CTL, BGE_MODECTL_STACKUP); 3414 3415 /* Enable host interrupts. */ 3416 BGE_SETBIT(sc, BGE_PCI_MISC_CTL, BGE_PCIMISCCTL_CLEAR_INTA); 3417 BGE_CLRBIT(sc, BGE_PCI_MISC_CTL, BGE_PCIMISCCTL_MASK_PCI_INTR); 3418 CSR_WRITE_4(sc, BGE_MBX_IRQ0_LO, 0); 3419 3420 bge_ifmedia_upd(ifp); 3421 3422 ifp->if_drv_flags |= IFF_DRV_RUNNING; 3423 ifp->if_drv_flags &= ~IFF_DRV_OACTIVE; 3424 3425 callout_reset(&sc->bge_stat_ch, hz, bge_tick, sc); 3426 3427 return; 3428 } 3429 3430 static void 3431 bge_init(xsc) 3432 void *xsc; 3433 { 3434 struct bge_softc *sc = xsc; 3435 3436 BGE_LOCK(sc); 3437 bge_init_locked(sc); 3438 BGE_UNLOCK(sc); 3439 3440 return; 3441 } 3442 3443 /* 3444 * Set media options. 3445 */ 3446 static int 3447 bge_ifmedia_upd(ifp) 3448 struct ifnet *ifp; 3449 { 3450 struct bge_softc *sc; 3451 struct mii_data *mii; 3452 struct ifmedia *ifm; 3453 3454 sc = ifp->if_softc; 3455 ifm = &sc->bge_ifmedia; 3456 3457 /* If this is a 1000baseX NIC, enable the TBI port. */ 3458 if (sc->bge_tbi) { 3459 if (IFM_TYPE(ifm->ifm_media) != IFM_ETHER) 3460 return(EINVAL); 3461 switch(IFM_SUBTYPE(ifm->ifm_media)) { 3462 case IFM_AUTO: 3463 #ifndef BGE_FAKE_AUTONEG 3464 /* 3465 * The BCM5704 ASIC appears to have a special 3466 * mechanism for programming the autoneg 3467 * advertisement registers in TBI mode. 3468 */ 3469 if (sc->bge_asicrev == BGE_ASICREV_BCM5704) { 3470 uint32_t sgdig; 3471 CSR_WRITE_4(sc, BGE_TX_TBI_AUTONEG, 0); 3472 sgdig = CSR_READ_4(sc, BGE_SGDIG_CFG); 3473 sgdig |= BGE_SGDIGCFG_AUTO| 3474 BGE_SGDIGCFG_PAUSE_CAP| 3475 BGE_SGDIGCFG_ASYM_PAUSE; 3476 CSR_WRITE_4(sc, BGE_SGDIG_CFG, 3477 sgdig|BGE_SGDIGCFG_SEND); 3478 DELAY(5); 3479 CSR_WRITE_4(sc, BGE_SGDIG_CFG, sgdig); 3480 } 3481 #endif 3482 break; 3483 case IFM_1000_SX: 3484 if ((ifm->ifm_media & IFM_GMASK) == IFM_FDX) { 3485 BGE_CLRBIT(sc, BGE_MAC_MODE, 3486 BGE_MACMODE_HALF_DUPLEX); 3487 } else { 3488 BGE_SETBIT(sc, BGE_MAC_MODE, 3489 BGE_MACMODE_HALF_DUPLEX); 3490 } 3491 break; 3492 default: 3493 return(EINVAL); 3494 } 3495 return(0); 3496 } 3497 3498 mii = device_get_softc(sc->bge_miibus); 3499 sc->bge_link = 0; 3500 if (mii->mii_instance) { 3501 struct mii_softc *miisc; 3502 for (miisc = LIST_FIRST(&mii->mii_phys); miisc != NULL; 3503 miisc = LIST_NEXT(miisc, mii_list)) 3504 mii_phy_reset(miisc); 3505 } 3506 mii_mediachg(mii); 3507 3508 return(0); 3509 } 3510 3511 /* 3512 * Report current media status. 3513 */ 3514 static void 3515 bge_ifmedia_sts(ifp, ifmr) 3516 struct ifnet *ifp; 3517 struct ifmediareq *ifmr; 3518 { 3519 struct bge_softc *sc; 3520 struct mii_data *mii; 3521 3522 sc = ifp->if_softc; 3523 3524 if (sc->bge_tbi) { 3525 ifmr->ifm_status = IFM_AVALID; 3526 ifmr->ifm_active = IFM_ETHER; 3527 if (CSR_READ_4(sc, BGE_MAC_STS) & 3528 BGE_MACSTAT_TBI_PCS_SYNCHED) 3529 ifmr->ifm_status |= IFM_ACTIVE; 3530 ifmr->ifm_active |= IFM_1000_SX; 3531 if (CSR_READ_4(sc, BGE_MAC_MODE) & BGE_MACMODE_HALF_DUPLEX) 3532 ifmr->ifm_active |= IFM_HDX; 3533 else 3534 ifmr->ifm_active |= IFM_FDX; 3535 return; 3536 } 3537 3538 mii = device_get_softc(sc->bge_miibus); 3539 mii_pollstat(mii); 3540 ifmr->ifm_active = mii->mii_media_active; 3541 ifmr->ifm_status = mii->mii_media_status; 3542 3543 return; 3544 } 3545 3546 static int 3547 bge_ioctl(ifp, command, data) 3548 struct ifnet *ifp; 3549 u_long command; 3550 caddr_t data; 3551 { 3552 struct bge_softc *sc = ifp->if_softc; 3553 struct ifreq *ifr = (struct ifreq *) data; 3554 int mask, error = 0; 3555 struct mii_data *mii; 3556 3557 switch(command) { 3558 case SIOCSIFMTU: 3559 /* Disallow jumbo frames on 5705. */ 3560 if (((sc->bge_asicrev == BGE_ASICREV_BCM5705 || 3561 sc->bge_asicrev == BGE_ASICREV_BCM5750) && 3562 ifr->ifr_mtu > ETHERMTU) || ifr->ifr_mtu > BGE_JUMBO_MTU) 3563 error = EINVAL; 3564 else { 3565 ifp->if_mtu = ifr->ifr_mtu; 3566 ifp->if_drv_flags &= ~IFF_DRV_RUNNING; 3567 bge_init(sc); 3568 } 3569 break; 3570 case SIOCSIFFLAGS: 3571 BGE_LOCK(sc); 3572 if (ifp->if_flags & IFF_UP) { 3573 /* 3574 * If only the state of the PROMISC flag changed, 3575 * then just use the 'set promisc mode' command 3576 * instead of reinitializing the entire NIC. Doing 3577 * a full re-init means reloading the firmware and 3578 * waiting for it to start up, which may take a 3579 * second or two. 3580 */ 3581 if (ifp->if_drv_flags & IFF_DRV_RUNNING && 3582 ifp->if_flags & IFF_PROMISC && 3583 !(sc->bge_if_flags & IFF_PROMISC)) { 3584 BGE_SETBIT(sc, BGE_RX_MODE, 3585 BGE_RXMODE_RX_PROMISC); 3586 } else if (ifp->if_drv_flags & IFF_DRV_RUNNING && 3587 !(ifp->if_flags & IFF_PROMISC) && 3588 sc->bge_if_flags & IFF_PROMISC) { 3589 BGE_CLRBIT(sc, BGE_RX_MODE, 3590 BGE_RXMODE_RX_PROMISC); 3591 } else 3592 bge_init_locked(sc); 3593 } else { 3594 if (ifp->if_drv_flags & IFF_DRV_RUNNING) { 3595 bge_stop(sc); 3596 } 3597 } 3598 sc->bge_if_flags = ifp->if_flags; 3599 BGE_UNLOCK(sc); 3600 error = 0; 3601 break; 3602 case SIOCADDMULTI: 3603 case SIOCDELMULTI: 3604 if (ifp->if_drv_flags & IFF_DRV_RUNNING) { 3605 BGE_LOCK(sc); 3606 bge_setmulti(sc); 3607 BGE_UNLOCK(sc); 3608 error = 0; 3609 } 3610 break; 3611 case SIOCSIFMEDIA: 3612 case SIOCGIFMEDIA: 3613 if (sc->bge_tbi) { 3614 error = ifmedia_ioctl(ifp, ifr, 3615 &sc->bge_ifmedia, command); 3616 } else { 3617 mii = device_get_softc(sc->bge_miibus); 3618 error = ifmedia_ioctl(ifp, ifr, 3619 &mii->mii_media, command); 3620 } 3621 break; 3622 case SIOCSIFCAP: 3623 mask = ifr->ifr_reqcap ^ ifp->if_capenable; 3624 /* NB: the code for RX csum offload is disabled for now */ 3625 if (mask & IFCAP_TXCSUM) { 3626 ifp->if_capenable ^= IFCAP_TXCSUM; 3627 if (IFCAP_TXCSUM & ifp->if_capenable) 3628 ifp->if_hwassist = BGE_CSUM_FEATURES; 3629 else 3630 ifp->if_hwassist = 0; 3631 } 3632 error = 0; 3633 break; 3634 default: 3635 error = ether_ioctl(ifp, command, data); 3636 break; 3637 } 3638 3639 return(error); 3640 } 3641 3642 static void 3643 bge_watchdog(ifp) 3644 struct ifnet *ifp; 3645 { 3646 struct bge_softc *sc; 3647 3648 sc = ifp->if_softc; 3649 3650 printf("bge%d: watchdog timeout -- resetting\n", sc->bge_unit); 3651 3652 ifp->if_drv_flags &= ~IFF_DRV_RUNNING; 3653 bge_init(sc); 3654 3655 ifp->if_oerrors++; 3656 3657 return; 3658 } 3659 3660 /* 3661 * Stop the adapter and free any mbufs allocated to the 3662 * RX and TX lists. 3663 */ 3664 static void 3665 bge_stop(sc) 3666 struct bge_softc *sc; 3667 { 3668 struct ifnet *ifp; 3669 struct ifmedia_entry *ifm; 3670 struct mii_data *mii = NULL; 3671 int mtmp, itmp; 3672 3673 BGE_LOCK_ASSERT(sc); 3674 3675 ifp = sc->bge_ifp; 3676 3677 if (!sc->bge_tbi) 3678 mii = device_get_softc(sc->bge_miibus); 3679 3680 callout_stop(&sc->bge_stat_ch); 3681 3682 /* 3683 * Disable all of the receiver blocks 3684 */ 3685 BGE_CLRBIT(sc, BGE_RX_MODE, BGE_RXMODE_ENABLE); 3686 BGE_CLRBIT(sc, BGE_RBDI_MODE, BGE_RBDIMODE_ENABLE); 3687 BGE_CLRBIT(sc, BGE_RXLP_MODE, BGE_RXLPMODE_ENABLE); 3688 if (sc->bge_asicrev != BGE_ASICREV_BCM5705 && 3689 sc->bge_asicrev != BGE_ASICREV_BCM5750) 3690 BGE_CLRBIT(sc, BGE_RXLS_MODE, BGE_RXLSMODE_ENABLE); 3691 BGE_CLRBIT(sc, BGE_RDBDI_MODE, BGE_RBDIMODE_ENABLE); 3692 BGE_CLRBIT(sc, BGE_RDC_MODE, BGE_RDCMODE_ENABLE); 3693 BGE_CLRBIT(sc, BGE_RBDC_MODE, BGE_RBDCMODE_ENABLE); 3694 3695 /* 3696 * Disable all of the transmit blocks 3697 */ 3698 BGE_CLRBIT(sc, BGE_SRS_MODE, BGE_SRSMODE_ENABLE); 3699 BGE_CLRBIT(sc, BGE_SBDI_MODE, BGE_SBDIMODE_ENABLE); 3700 BGE_CLRBIT(sc, BGE_SDI_MODE, BGE_SDIMODE_ENABLE); 3701 BGE_CLRBIT(sc, BGE_RDMA_MODE, BGE_RDMAMODE_ENABLE); 3702 BGE_CLRBIT(sc, BGE_SDC_MODE, BGE_SDCMODE_ENABLE); 3703 if (sc->bge_asicrev != BGE_ASICREV_BCM5705 && 3704 sc->bge_asicrev != BGE_ASICREV_BCM5750) 3705 BGE_CLRBIT(sc, BGE_DMAC_MODE, BGE_DMACMODE_ENABLE); 3706 BGE_CLRBIT(sc, BGE_SBDC_MODE, BGE_SBDCMODE_ENABLE); 3707 3708 /* 3709 * Shut down all of the memory managers and related 3710 * state machines. 3711 */ 3712 BGE_CLRBIT(sc, BGE_HCC_MODE, BGE_HCCMODE_ENABLE); 3713 BGE_CLRBIT(sc, BGE_WDMA_MODE, BGE_WDMAMODE_ENABLE); 3714 if (sc->bge_asicrev != BGE_ASICREV_BCM5705 && 3715 sc->bge_asicrev != BGE_ASICREV_BCM5750) 3716 BGE_CLRBIT(sc, BGE_MBCF_MODE, BGE_MBCFMODE_ENABLE); 3717 CSR_WRITE_4(sc, BGE_FTQ_RESET, 0xFFFFFFFF); 3718 CSR_WRITE_4(sc, BGE_FTQ_RESET, 0); 3719 if (sc->bge_asicrev != BGE_ASICREV_BCM5705 && 3720 sc->bge_asicrev != BGE_ASICREV_BCM5750) { 3721 BGE_CLRBIT(sc, BGE_BMAN_MODE, BGE_BMANMODE_ENABLE); 3722 BGE_CLRBIT(sc, BGE_MARB_MODE, BGE_MARBMODE_ENABLE); 3723 } 3724 3725 /* Disable host interrupts. */ 3726 BGE_SETBIT(sc, BGE_PCI_MISC_CTL, BGE_PCIMISCCTL_MASK_PCI_INTR); 3727 CSR_WRITE_4(sc, BGE_MBX_IRQ0_LO, 1); 3728 3729 /* 3730 * Tell firmware we're shutting down. 3731 */ 3732 BGE_CLRBIT(sc, BGE_MODE_CTL, BGE_MODECTL_STACKUP); 3733 3734 /* Free the RX lists. */ 3735 bge_free_rx_ring_std(sc); 3736 3737 /* Free jumbo RX list. */ 3738 if (sc->bge_asicrev != BGE_ASICREV_BCM5705 && 3739 sc->bge_asicrev != BGE_ASICREV_BCM5750) 3740 bge_free_rx_ring_jumbo(sc); 3741 3742 /* Free TX buffers. */ 3743 bge_free_tx_ring(sc); 3744 3745 /* 3746 * Isolate/power down the PHY, but leave the media selection 3747 * unchanged so that things will be put back to normal when 3748 * we bring the interface back up. 3749 */ 3750 if (!sc->bge_tbi) { 3751 itmp = ifp->if_flags; 3752 ifp->if_flags |= IFF_UP; 3753 /* 3754 * If we are called from bge_detach(), mii is already NULL. 3755 */ 3756 if (mii != NULL) { 3757 ifm = mii->mii_media.ifm_cur; 3758 mtmp = ifm->ifm_media; 3759 ifm->ifm_media = IFM_ETHER|IFM_NONE; 3760 mii_mediachg(mii); 3761 ifm->ifm_media = mtmp; 3762 } 3763 ifp->if_flags = itmp; 3764 } 3765 3766 sc->bge_link = 0; 3767 3768 sc->bge_tx_saved_considx = BGE_TXCONS_UNSET; 3769 3770 ifp->if_drv_flags &= ~(IFF_DRV_RUNNING | IFF_DRV_OACTIVE); 3771 3772 return; 3773 } 3774 3775 /* 3776 * Stop all chip I/O so that the kernel's probe routines don't 3777 * get confused by errant DMAs when rebooting. 3778 */ 3779 static void 3780 bge_shutdown(dev) 3781 device_t dev; 3782 { 3783 struct bge_softc *sc; 3784 3785 sc = device_get_softc(dev); 3786 3787 BGE_LOCK(sc); 3788 bge_stop(sc); 3789 bge_reset(sc); 3790 BGE_UNLOCK(sc); 3791 3792 return; 3793 } 3794