1 /* 2 * Copyright (c) 2001 Wind River Systems 3 * Copyright (c) 1997, 1998, 1999, 2001 4 * Bill Paul <wpaul@windriver.com>. All rights reserved. 5 * 6 * Redistribution and use in source and binary forms, with or without 7 * modification, are permitted provided that the following conditions 8 * are met: 9 * 1. Redistributions of source code must retain the above copyright 10 * notice, this list of conditions and the following disclaimer. 11 * 2. Redistributions in binary form must reproduce the above copyright 12 * notice, this list of conditions and the following disclaimer in the 13 * documentation and/or other materials provided with the distribution. 14 * 3. All advertising materials mentioning features or use of this software 15 * must display the following acknowledgement: 16 * This product includes software developed by Bill Paul. 17 * 4. Neither the name of the author nor the names of any co-contributors 18 * may be used to endorse or promote products derived from this software 19 * without specific prior written permission. 20 * 21 * THIS SOFTWARE IS PROVIDED BY Bill Paul AND CONTRIBUTORS ``AS IS'' AND 22 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 23 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 24 * ARE DISCLAIMED. IN NO EVENT SHALL Bill Paul OR THE VOICES IN HIS HEAD 25 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR 26 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF 27 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS 28 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN 29 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) 30 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF 31 * THE POSSIBILITY OF SUCH DAMAGE. 32 */ 33 34 #include <sys/cdefs.h> 35 __FBSDID("$FreeBSD$"); 36 37 /* 38 * Broadcom BCM570x family gigabit ethernet driver for FreeBSD. 39 * 40 * The Broadcom BCM5700 is based on technology originally developed by 41 * Alteon Networks as part of the Tigon I and Tigon II gigabit ethernet 42 * MAC chips. The BCM5700, sometimes refered to as the Tigon III, has 43 * two on-board MIPS R4000 CPUs and can have as much as 16MB of external 44 * SSRAM. The BCM5700 supports TCP, UDP and IP checksum offload, jumbo 45 * frames, highly configurable RX filtering, and 16 RX and TX queues 46 * (which, along with RX filter rules, can be used for QOS applications). 47 * Other features, such as TCP segmentation, may be available as part 48 * of value-added firmware updates. Unlike the Tigon I and Tigon II, 49 * firmware images can be stored in hardware and need not be compiled 50 * into the driver. 51 * 52 * The BCM5700 supports the PCI v2.2 and PCI-X v1.0 standards, and will 53 * function in a 32-bit/64-bit 33/66Mhz bus, or a 64-bit/133Mhz bus. 54 * 55 * The BCM5701 is a single-chip solution incorporating both the BCM5700 56 * MAC and a BCM5401 10/100/1000 PHY. Unlike the BCM5700, the BCM5701 57 * does not support external SSRAM. 58 * 59 * Broadcom also produces a variation of the BCM5700 under the "Altima" 60 * brand name, which is functionally similar but lacks PCI-X support. 61 * 62 * Without external SSRAM, you can only have at most 4 TX rings, 63 * and the use of the mini RX ring is disabled. This seems to imply 64 * that these features are simply not available on the BCM5701. As a 65 * result, this driver does not implement any support for the mini RX 66 * ring. 67 */ 68 69 #include <sys/param.h> 70 #include <sys/endian.h> 71 #include <sys/systm.h> 72 #include <sys/sockio.h> 73 #include <sys/mbuf.h> 74 #include <sys/malloc.h> 75 #include <sys/kernel.h> 76 #include <sys/socket.h> 77 #include <sys/queue.h> 78 79 #include <net/if.h> 80 #include <net/if_arp.h> 81 #include <net/ethernet.h> 82 #include <net/if_dl.h> 83 #include <net/if_media.h> 84 85 #include <net/bpf.h> 86 87 #include <net/if_types.h> 88 #include <net/if_vlan_var.h> 89 90 #include <netinet/in_systm.h> 91 #include <netinet/in.h> 92 #include <netinet/ip.h> 93 94 #include <machine/clock.h> /* for DELAY */ 95 #include <machine/bus_memio.h> 96 #include <machine/bus.h> 97 #include <machine/resource.h> 98 #include <sys/bus.h> 99 #include <sys/rman.h> 100 101 #include <dev/mii/mii.h> 102 #include <dev/mii/miivar.h> 103 #include "miidevs.h" 104 #include <dev/mii/brgphyreg.h> 105 106 #include <dev/pci/pcireg.h> 107 #include <dev/pci/pcivar.h> 108 109 #include <dev/bge/if_bgereg.h> 110 111 #define BGE_CSUM_FEATURES (CSUM_IP | CSUM_TCP | CSUM_UDP) 112 113 MODULE_DEPEND(bge, pci, 1, 1, 1); 114 MODULE_DEPEND(bge, ether, 1, 1, 1); 115 MODULE_DEPEND(bge, miibus, 1, 1, 1); 116 117 /* "controller miibus0" required. See GENERIC if you get errors here. */ 118 #include "miibus_if.h" 119 120 /* 121 * Various supported device vendors/types and their names. Note: the 122 * spec seems to indicate that the hardware still has Alteon's vendor 123 * ID burned into it, though it will always be overriden by the vendor 124 * ID in the EEPROM. Just to be safe, we cover all possibilities. 125 */ 126 #define BGE_DEVDESC_MAX 64 /* Maximum device description length */ 127 128 static struct bge_type bge_devs[] = { 129 { ALT_VENDORID, ALT_DEVICEID_BCM5700, 130 "Broadcom BCM5700 Gigabit Ethernet" }, 131 { ALT_VENDORID, ALT_DEVICEID_BCM5701, 132 "Broadcom BCM5701 Gigabit Ethernet" }, 133 { BCOM_VENDORID, BCOM_DEVICEID_BCM5700, 134 "Broadcom BCM5700 Gigabit Ethernet" }, 135 { BCOM_VENDORID, BCOM_DEVICEID_BCM5701, 136 "Broadcom BCM5701 Gigabit Ethernet" }, 137 { BCOM_VENDORID, BCOM_DEVICEID_BCM5702, 138 "Broadcom BCM5702 Gigabit Ethernet" }, 139 { BCOM_VENDORID, BCOM_DEVICEID_BCM5702X, 140 "Broadcom BCM5702X Gigabit Ethernet" }, 141 { BCOM_VENDORID, BCOM_DEVICEID_BCM5703, 142 "Broadcom BCM5703 Gigabit Ethernet" }, 143 { BCOM_VENDORID, BCOM_DEVICEID_BCM5703X, 144 "Broadcom BCM5703X Gigabit Ethernet" }, 145 { BCOM_VENDORID, BCOM_DEVICEID_BCM5704C, 146 "Broadcom BCM5704C Dual Gigabit Ethernet" }, 147 { BCOM_VENDORID, BCOM_DEVICEID_BCM5704S, 148 "Broadcom BCM5704S Dual Gigabit Ethernet" }, 149 { BCOM_VENDORID, BCOM_DEVICEID_BCM5705, 150 "Broadcom BCM5705 Gigabit Ethernet" }, 151 { BCOM_VENDORID, BCOM_DEVICEID_BCM5705M, 152 "Broadcom BCM5705M Gigabit Ethernet" }, 153 { BCOM_VENDORID, BCOM_DEVICEID_BCM5705M_ALT, 154 "Broadcom BCM5705M Gigabit Ethernet" }, 155 { BCOM_VENDORID, BCOM_DEVICEID_BCM5782, 156 "Broadcom BCM5782 Gigabit Ethernet" }, 157 { BCOM_VENDORID, BCOM_DEVICEID_BCM5788, 158 "Broadcom BCM5788 Gigabit Ethernet" }, 159 { BCOM_VENDORID, BCOM_DEVICEID_BCM5901, 160 "Broadcom BCM5901 Fast Ethernet" }, 161 { BCOM_VENDORID, BCOM_DEVICEID_BCM5901A2, 162 "Broadcom BCM5901A2 Fast Ethernet" }, 163 { SK_VENDORID, SK_DEVICEID_ALTIMA, 164 "SysKonnect Gigabit Ethernet" }, 165 { ALTIMA_VENDORID, ALTIMA_DEVICE_AC1000, 166 "Altima AC1000 Gigabit Ethernet" }, 167 { ALTIMA_VENDORID, ALTIMA_DEVICE_AC9100, 168 "Altima AC9100 Gigabit Ethernet" }, 169 { 0, 0, NULL } 170 }; 171 172 static int bge_probe (device_t); 173 static int bge_attach (device_t); 174 static int bge_detach (device_t); 175 static void bge_release_resources 176 (struct bge_softc *); 177 static void bge_dma_map_addr (void *, bus_dma_segment_t *, int, int); 178 static void bge_dma_map_tx_desc (void *, bus_dma_segment_t *, int, 179 bus_size_t, int); 180 static int bge_dma_alloc (device_t); 181 static void bge_dma_free (struct bge_softc *); 182 183 static void bge_txeof (struct bge_softc *); 184 static void bge_rxeof (struct bge_softc *); 185 186 static void bge_tick_locked (struct bge_softc *); 187 static void bge_tick (void *); 188 static void bge_stats_update (struct bge_softc *); 189 static void bge_stats_update_regs 190 (struct bge_softc *); 191 static int bge_encap (struct bge_softc *, struct mbuf *, 192 u_int32_t *); 193 194 static void bge_intr (void *); 195 static void bge_start_locked (struct ifnet *); 196 static void bge_start (struct ifnet *); 197 static int bge_ioctl (struct ifnet *, u_long, caddr_t); 198 static void bge_init_locked (struct bge_softc *); 199 static void bge_init (void *); 200 static void bge_stop (struct bge_softc *); 201 static void bge_watchdog (struct ifnet *); 202 static void bge_shutdown (device_t); 203 static int bge_ifmedia_upd (struct ifnet *); 204 static void bge_ifmedia_sts (struct ifnet *, struct ifmediareq *); 205 206 static u_int8_t bge_eeprom_getbyte (struct bge_softc *, int, u_int8_t *); 207 static int bge_read_eeprom (struct bge_softc *, caddr_t, int, int); 208 209 static u_int32_t bge_mchash (caddr_t); 210 static void bge_setmulti (struct bge_softc *); 211 212 static void bge_handle_events (struct bge_softc *); 213 static int bge_alloc_jumbo_mem (struct bge_softc *); 214 static void bge_free_jumbo_mem (struct bge_softc *); 215 static void *bge_jalloc (struct bge_softc *); 216 static void bge_jfree (void *, void *); 217 static int bge_newbuf_std (struct bge_softc *, int, struct mbuf *); 218 static int bge_newbuf_jumbo (struct bge_softc *, int, struct mbuf *); 219 static int bge_init_rx_ring_std (struct bge_softc *); 220 static void bge_free_rx_ring_std (struct bge_softc *); 221 static int bge_init_rx_ring_jumbo (struct bge_softc *); 222 static void bge_free_rx_ring_jumbo (struct bge_softc *); 223 static void bge_free_tx_ring (struct bge_softc *); 224 static int bge_init_tx_ring (struct bge_softc *); 225 226 static int bge_chipinit (struct bge_softc *); 227 static int bge_blockinit (struct bge_softc *); 228 229 #ifdef notdef 230 static u_int8_t bge_vpd_readbyte(struct bge_softc *, int); 231 static void bge_vpd_read_res (struct bge_softc *, struct vpd_res *, int); 232 static void bge_vpd_read (struct bge_softc *); 233 #endif 234 235 static u_int32_t bge_readmem_ind 236 (struct bge_softc *, int); 237 static void bge_writemem_ind (struct bge_softc *, int, int); 238 #ifdef notdef 239 static u_int32_t bge_readreg_ind 240 (struct bge_softc *, int); 241 #endif 242 static void bge_writereg_ind (struct bge_softc *, int, int); 243 244 static int bge_miibus_readreg (device_t, int, int); 245 static int bge_miibus_writereg (device_t, int, int, int); 246 static void bge_miibus_statchg (device_t); 247 248 static void bge_reset (struct bge_softc *); 249 250 static device_method_t bge_methods[] = { 251 /* Device interface */ 252 DEVMETHOD(device_probe, bge_probe), 253 DEVMETHOD(device_attach, bge_attach), 254 DEVMETHOD(device_detach, bge_detach), 255 DEVMETHOD(device_shutdown, bge_shutdown), 256 257 /* bus interface */ 258 DEVMETHOD(bus_print_child, bus_generic_print_child), 259 DEVMETHOD(bus_driver_added, bus_generic_driver_added), 260 261 /* MII interface */ 262 DEVMETHOD(miibus_readreg, bge_miibus_readreg), 263 DEVMETHOD(miibus_writereg, bge_miibus_writereg), 264 DEVMETHOD(miibus_statchg, bge_miibus_statchg), 265 266 { 0, 0 } 267 }; 268 269 static driver_t bge_driver = { 270 "bge", 271 bge_methods, 272 sizeof(struct bge_softc) 273 }; 274 275 static devclass_t bge_devclass; 276 277 DRIVER_MODULE(bge, pci, bge_driver, bge_devclass, 0, 0); 278 DRIVER_MODULE(miibus, bge, miibus_driver, miibus_devclass, 0, 0); 279 280 static u_int32_t 281 bge_readmem_ind(sc, off) 282 struct bge_softc *sc; 283 int off; 284 { 285 device_t dev; 286 287 dev = sc->bge_dev; 288 289 pci_write_config(dev, BGE_PCI_MEMWIN_BASEADDR, off, 4); 290 return(pci_read_config(dev, BGE_PCI_MEMWIN_DATA, 4)); 291 } 292 293 static void 294 bge_writemem_ind(sc, off, val) 295 struct bge_softc *sc; 296 int off, val; 297 { 298 device_t dev; 299 300 dev = sc->bge_dev; 301 302 pci_write_config(dev, BGE_PCI_MEMWIN_BASEADDR, off, 4); 303 pci_write_config(dev, BGE_PCI_MEMWIN_DATA, val, 4); 304 305 return; 306 } 307 308 #ifdef notdef 309 static u_int32_t 310 bge_readreg_ind(sc, off) 311 struct bge_softc *sc; 312 int off; 313 { 314 device_t dev; 315 316 dev = sc->bge_dev; 317 318 pci_write_config(dev, BGE_PCI_REG_BASEADDR, off, 4); 319 return(pci_read_config(dev, BGE_PCI_REG_DATA, 4)); 320 } 321 #endif 322 323 static void 324 bge_writereg_ind(sc, off, val) 325 struct bge_softc *sc; 326 int off, val; 327 { 328 device_t dev; 329 330 dev = sc->bge_dev; 331 332 pci_write_config(dev, BGE_PCI_REG_BASEADDR, off, 4); 333 pci_write_config(dev, BGE_PCI_REG_DATA, val, 4); 334 335 return; 336 } 337 338 /* 339 * Map a single buffer address. 340 */ 341 342 static void 343 bge_dma_map_addr(arg, segs, nseg, error) 344 void *arg; 345 bus_dma_segment_t *segs; 346 int nseg; 347 int error; 348 { 349 struct bge_dmamap_arg *ctx; 350 351 if (error) 352 return; 353 354 ctx = arg; 355 356 if (nseg > ctx->bge_maxsegs) { 357 ctx->bge_maxsegs = 0; 358 return; 359 } 360 361 ctx->bge_busaddr = segs->ds_addr; 362 363 return; 364 } 365 366 /* 367 * Map an mbuf chain into an TX ring. 368 */ 369 370 static void 371 bge_dma_map_tx_desc(arg, segs, nseg, mapsize, error) 372 void *arg; 373 bus_dma_segment_t *segs; 374 int nseg; 375 bus_size_t mapsize; 376 int error; 377 { 378 struct bge_dmamap_arg *ctx; 379 struct bge_tx_bd *d = NULL; 380 int i = 0, idx; 381 382 if (error) 383 return; 384 385 ctx = arg; 386 387 /* Signal error to caller if there's too many segments */ 388 if (nseg > ctx->bge_maxsegs) { 389 ctx->bge_maxsegs = 0; 390 return; 391 } 392 393 idx = ctx->bge_idx; 394 while(1) { 395 d = &ctx->bge_ring[idx]; 396 d->bge_addr.bge_addr_lo = 397 htole32(BGE_ADDR_LO(segs[i].ds_addr)); 398 d->bge_addr.bge_addr_hi = 399 htole32(BGE_ADDR_HI(segs[i].ds_addr)); 400 d->bge_len = htole16(segs[i].ds_len); 401 d->bge_flags = htole16(ctx->bge_flags); 402 i++; 403 if (i == nseg) 404 break; 405 BGE_INC(idx, BGE_TX_RING_CNT); 406 } 407 408 d->bge_flags |= htole16(BGE_TXBDFLAG_END); 409 ctx->bge_maxsegs = nseg; 410 ctx->bge_idx = idx; 411 412 return; 413 } 414 415 416 #ifdef notdef 417 static u_int8_t 418 bge_vpd_readbyte(sc, addr) 419 struct bge_softc *sc; 420 int addr; 421 { 422 int i; 423 device_t dev; 424 u_int32_t val; 425 426 dev = sc->bge_dev; 427 pci_write_config(dev, BGE_PCI_VPD_ADDR, addr, 2); 428 for (i = 0; i < BGE_TIMEOUT * 10; i++) { 429 DELAY(10); 430 if (pci_read_config(dev, BGE_PCI_VPD_ADDR, 2) & BGE_VPD_FLAG) 431 break; 432 } 433 434 if (i == BGE_TIMEOUT) { 435 printf("bge%d: VPD read timed out\n", sc->bge_unit); 436 return(0); 437 } 438 439 val = pci_read_config(dev, BGE_PCI_VPD_DATA, 4); 440 441 return((val >> ((addr % 4) * 8)) & 0xFF); 442 } 443 444 static void 445 bge_vpd_read_res(sc, res, addr) 446 struct bge_softc *sc; 447 struct vpd_res *res; 448 int addr; 449 { 450 int i; 451 u_int8_t *ptr; 452 453 ptr = (u_int8_t *)res; 454 for (i = 0; i < sizeof(struct vpd_res); i++) 455 ptr[i] = bge_vpd_readbyte(sc, i + addr); 456 457 return; 458 } 459 460 static void 461 bge_vpd_read(sc) 462 struct bge_softc *sc; 463 { 464 int pos = 0, i; 465 struct vpd_res res; 466 467 if (sc->bge_vpd_prodname != NULL) 468 free(sc->bge_vpd_prodname, M_DEVBUF); 469 if (sc->bge_vpd_readonly != NULL) 470 free(sc->bge_vpd_readonly, M_DEVBUF); 471 sc->bge_vpd_prodname = NULL; 472 sc->bge_vpd_readonly = NULL; 473 474 bge_vpd_read_res(sc, &res, pos); 475 476 if (res.vr_id != VPD_RES_ID) { 477 printf("bge%d: bad VPD resource id: expected %x got %x\n", 478 sc->bge_unit, VPD_RES_ID, res.vr_id); 479 return; 480 } 481 482 pos += sizeof(res); 483 sc->bge_vpd_prodname = malloc(res.vr_len + 1, M_DEVBUF, M_NOWAIT); 484 for (i = 0; i < res.vr_len; i++) 485 sc->bge_vpd_prodname[i] = bge_vpd_readbyte(sc, i + pos); 486 sc->bge_vpd_prodname[i] = '\0'; 487 pos += i; 488 489 bge_vpd_read_res(sc, &res, pos); 490 491 if (res.vr_id != VPD_RES_READ) { 492 printf("bge%d: bad VPD resource id: expected %x got %x\n", 493 sc->bge_unit, VPD_RES_READ, res.vr_id); 494 return; 495 } 496 497 pos += sizeof(res); 498 sc->bge_vpd_readonly = malloc(res.vr_len, M_DEVBUF, M_NOWAIT); 499 for (i = 0; i < res.vr_len + 1; i++) 500 sc->bge_vpd_readonly[i] = bge_vpd_readbyte(sc, i + pos); 501 502 return; 503 } 504 #endif 505 506 /* 507 * Read a byte of data stored in the EEPROM at address 'addr.' The 508 * BCM570x supports both the traditional bitbang interface and an 509 * auto access interface for reading the EEPROM. We use the auto 510 * access method. 511 */ 512 static u_int8_t 513 bge_eeprom_getbyte(sc, addr, dest) 514 struct bge_softc *sc; 515 int addr; 516 u_int8_t *dest; 517 { 518 int i; 519 u_int32_t byte = 0; 520 521 /* 522 * Enable use of auto EEPROM access so we can avoid 523 * having to use the bitbang method. 524 */ 525 BGE_SETBIT(sc, BGE_MISC_LOCAL_CTL, BGE_MLC_AUTO_EEPROM); 526 527 /* Reset the EEPROM, load the clock period. */ 528 CSR_WRITE_4(sc, BGE_EE_ADDR, 529 BGE_EEADDR_RESET|BGE_EEHALFCLK(BGE_HALFCLK_384SCL)); 530 DELAY(20); 531 532 /* Issue the read EEPROM command. */ 533 CSR_WRITE_4(sc, BGE_EE_ADDR, BGE_EE_READCMD | addr); 534 535 /* Wait for completion */ 536 for(i = 0; i < BGE_TIMEOUT * 10; i++) { 537 DELAY(10); 538 if (CSR_READ_4(sc, BGE_EE_ADDR) & BGE_EEADDR_DONE) 539 break; 540 } 541 542 if (i == BGE_TIMEOUT) { 543 printf("bge%d: eeprom read timed out\n", sc->bge_unit); 544 return(0); 545 } 546 547 /* Get result. */ 548 byte = CSR_READ_4(sc, BGE_EE_DATA); 549 550 *dest = (byte >> ((addr % 4) * 8)) & 0xFF; 551 552 return(0); 553 } 554 555 /* 556 * Read a sequence of bytes from the EEPROM. 557 */ 558 static int 559 bge_read_eeprom(sc, dest, off, cnt) 560 struct bge_softc *sc; 561 caddr_t dest; 562 int off; 563 int cnt; 564 { 565 int err = 0, i; 566 u_int8_t byte = 0; 567 568 for (i = 0; i < cnt; i++) { 569 err = bge_eeprom_getbyte(sc, off + i, &byte); 570 if (err) 571 break; 572 *(dest + i) = byte; 573 } 574 575 return(err ? 1 : 0); 576 } 577 578 static int 579 bge_miibus_readreg(dev, phy, reg) 580 device_t dev; 581 int phy, reg; 582 { 583 struct bge_softc *sc; 584 u_int32_t val, autopoll; 585 int i; 586 587 sc = device_get_softc(dev); 588 589 /* 590 * Broadcom's own driver always assumes the internal 591 * PHY is at GMII address 1. On some chips, the PHY responds 592 * to accesses at all addresses, which could cause us to 593 * bogusly attach the PHY 32 times at probe type. Always 594 * restricting the lookup to address 1 is simpler than 595 * trying to figure out which chips revisions should be 596 * special-cased. 597 */ 598 if (phy != 1) 599 return(0); 600 601 /* Reading with autopolling on may trigger PCI errors */ 602 autopoll = CSR_READ_4(sc, BGE_MI_MODE); 603 if (autopoll & BGE_MIMODE_AUTOPOLL) { 604 BGE_CLRBIT(sc, BGE_MI_MODE, BGE_MIMODE_AUTOPOLL); 605 DELAY(40); 606 } 607 608 CSR_WRITE_4(sc, BGE_MI_COMM, BGE_MICMD_READ|BGE_MICOMM_BUSY| 609 BGE_MIPHY(phy)|BGE_MIREG(reg)); 610 611 for (i = 0; i < BGE_TIMEOUT; i++) { 612 val = CSR_READ_4(sc, BGE_MI_COMM); 613 if (!(val & BGE_MICOMM_BUSY)) 614 break; 615 } 616 617 if (i == BGE_TIMEOUT) { 618 printf("bge%d: PHY read timed out\n", sc->bge_unit); 619 val = 0; 620 goto done; 621 } 622 623 val = CSR_READ_4(sc, BGE_MI_COMM); 624 625 done: 626 if (autopoll & BGE_MIMODE_AUTOPOLL) { 627 BGE_SETBIT(sc, BGE_MI_MODE, BGE_MIMODE_AUTOPOLL); 628 DELAY(40); 629 } 630 631 if (val & BGE_MICOMM_READFAIL) 632 return(0); 633 634 return(val & 0xFFFF); 635 } 636 637 static int 638 bge_miibus_writereg(dev, phy, reg, val) 639 device_t dev; 640 int phy, reg, val; 641 { 642 struct bge_softc *sc; 643 u_int32_t autopoll; 644 int i; 645 646 sc = device_get_softc(dev); 647 648 /* Reading with autopolling on may trigger PCI errors */ 649 autopoll = CSR_READ_4(sc, BGE_MI_MODE); 650 if (autopoll & BGE_MIMODE_AUTOPOLL) { 651 BGE_CLRBIT(sc, BGE_MI_MODE, BGE_MIMODE_AUTOPOLL); 652 DELAY(40); 653 } 654 655 CSR_WRITE_4(sc, BGE_MI_COMM, BGE_MICMD_WRITE|BGE_MICOMM_BUSY| 656 BGE_MIPHY(phy)|BGE_MIREG(reg)|val); 657 658 for (i = 0; i < BGE_TIMEOUT; i++) { 659 if (!(CSR_READ_4(sc, BGE_MI_COMM) & BGE_MICOMM_BUSY)) 660 break; 661 } 662 663 if (autopoll & BGE_MIMODE_AUTOPOLL) { 664 BGE_SETBIT(sc, BGE_MI_MODE, BGE_MIMODE_AUTOPOLL); 665 DELAY(40); 666 } 667 668 if (i == BGE_TIMEOUT) { 669 printf("bge%d: PHY read timed out\n", sc->bge_unit); 670 return(0); 671 } 672 673 return(0); 674 } 675 676 static void 677 bge_miibus_statchg(dev) 678 device_t dev; 679 { 680 struct bge_softc *sc; 681 struct mii_data *mii; 682 683 sc = device_get_softc(dev); 684 mii = device_get_softc(sc->bge_miibus); 685 686 BGE_CLRBIT(sc, BGE_MAC_MODE, BGE_MACMODE_PORTMODE); 687 if (IFM_SUBTYPE(mii->mii_media_active) == IFM_1000_T) { 688 BGE_SETBIT(sc, BGE_MAC_MODE, BGE_PORTMODE_GMII); 689 } else { 690 BGE_SETBIT(sc, BGE_MAC_MODE, BGE_PORTMODE_MII); 691 } 692 693 if ((mii->mii_media_active & IFM_GMASK) == IFM_FDX) { 694 BGE_CLRBIT(sc, BGE_MAC_MODE, BGE_MACMODE_HALF_DUPLEX); 695 } else { 696 BGE_SETBIT(sc, BGE_MAC_MODE, BGE_MACMODE_HALF_DUPLEX); 697 } 698 699 return; 700 } 701 702 /* 703 * Handle events that have triggered interrupts. 704 */ 705 static void 706 bge_handle_events(sc) 707 struct bge_softc *sc; 708 { 709 710 return; 711 } 712 713 /* 714 * Memory management for jumbo frames. 715 */ 716 717 static int 718 bge_alloc_jumbo_mem(sc) 719 struct bge_softc *sc; 720 { 721 caddr_t ptr; 722 register int i, error; 723 struct bge_jpool_entry *entry; 724 725 /* Create tag for jumbo buffer block */ 726 727 error = bus_dma_tag_create(sc->bge_cdata.bge_parent_tag, 728 PAGE_SIZE, 0, BUS_SPACE_MAXADDR, BUS_SPACE_MAXADDR, NULL, 729 NULL, BGE_JMEM, 1, BGE_JMEM, 0, NULL, NULL, 730 &sc->bge_cdata.bge_jumbo_tag); 731 732 if (error) { 733 printf("bge%d: could not allocate jumbo dma tag\n", 734 sc->bge_unit); 735 return (ENOMEM); 736 } 737 738 /* Allocate DMA'able memory for jumbo buffer block */ 739 740 error = bus_dmamem_alloc(sc->bge_cdata.bge_jumbo_tag, 741 (void **)&sc->bge_ldata.bge_jumbo_buf, BUS_DMA_NOWAIT, 742 &sc->bge_cdata.bge_jumbo_map); 743 744 if (error) 745 return (ENOMEM); 746 747 SLIST_INIT(&sc->bge_jfree_listhead); 748 SLIST_INIT(&sc->bge_jinuse_listhead); 749 750 /* 751 * Now divide it up into 9K pieces and save the addresses 752 * in an array. 753 */ 754 ptr = sc->bge_ldata.bge_jumbo_buf; 755 for (i = 0; i < BGE_JSLOTS; i++) { 756 sc->bge_cdata.bge_jslots[i] = ptr; 757 ptr += BGE_JLEN; 758 entry = malloc(sizeof(struct bge_jpool_entry), 759 M_DEVBUF, M_NOWAIT); 760 if (entry == NULL) { 761 bge_free_jumbo_mem(sc); 762 sc->bge_ldata.bge_jumbo_buf = NULL; 763 printf("bge%d: no memory for jumbo " 764 "buffer queue!\n", sc->bge_unit); 765 return(ENOBUFS); 766 } 767 entry->slot = i; 768 SLIST_INSERT_HEAD(&sc->bge_jfree_listhead, 769 entry, jpool_entries); 770 } 771 772 return(0); 773 } 774 775 static void 776 bge_free_jumbo_mem(sc) 777 struct bge_softc *sc; 778 { 779 int i; 780 struct bge_jpool_entry *entry; 781 782 for (i = 0; i < BGE_JSLOTS; i++) { 783 entry = SLIST_FIRST(&sc->bge_jfree_listhead); 784 SLIST_REMOVE_HEAD(&sc->bge_jfree_listhead, jpool_entries); 785 free(entry, M_DEVBUF); 786 } 787 788 /* Destroy jumbo buffer block */ 789 790 if (sc->bge_ldata.bge_rx_jumbo_ring) 791 bus_dmamem_free(sc->bge_cdata.bge_jumbo_tag, 792 sc->bge_ldata.bge_jumbo_buf, 793 sc->bge_cdata.bge_jumbo_map); 794 795 if (sc->bge_cdata.bge_rx_jumbo_ring_map) 796 bus_dmamap_destroy(sc->bge_cdata.bge_jumbo_tag, 797 sc->bge_cdata.bge_jumbo_map); 798 799 if (sc->bge_cdata.bge_jumbo_tag) 800 bus_dma_tag_destroy(sc->bge_cdata.bge_jumbo_tag); 801 802 return; 803 } 804 805 /* 806 * Allocate a jumbo buffer. 807 */ 808 static void * 809 bge_jalloc(sc) 810 struct bge_softc *sc; 811 { 812 struct bge_jpool_entry *entry; 813 814 entry = SLIST_FIRST(&sc->bge_jfree_listhead); 815 816 if (entry == NULL) { 817 printf("bge%d: no free jumbo buffers\n", sc->bge_unit); 818 return(NULL); 819 } 820 821 SLIST_REMOVE_HEAD(&sc->bge_jfree_listhead, jpool_entries); 822 SLIST_INSERT_HEAD(&sc->bge_jinuse_listhead, entry, jpool_entries); 823 return(sc->bge_cdata.bge_jslots[entry->slot]); 824 } 825 826 /* 827 * Release a jumbo buffer. 828 */ 829 static void 830 bge_jfree(buf, args) 831 void *buf; 832 void *args; 833 { 834 struct bge_jpool_entry *entry; 835 struct bge_softc *sc; 836 int i; 837 838 /* Extract the softc struct pointer. */ 839 sc = (struct bge_softc *)args; 840 841 if (sc == NULL) 842 panic("bge_jfree: can't find softc pointer!"); 843 844 /* calculate the slot this buffer belongs to */ 845 846 i = ((vm_offset_t)buf 847 - (vm_offset_t)sc->bge_ldata.bge_jumbo_buf) / BGE_JLEN; 848 849 if ((i < 0) || (i >= BGE_JSLOTS)) 850 panic("bge_jfree: asked to free buffer that we don't manage!"); 851 852 entry = SLIST_FIRST(&sc->bge_jinuse_listhead); 853 if (entry == NULL) 854 panic("bge_jfree: buffer not in use!"); 855 entry->slot = i; 856 SLIST_REMOVE_HEAD(&sc->bge_jinuse_listhead, jpool_entries); 857 SLIST_INSERT_HEAD(&sc->bge_jfree_listhead, entry, jpool_entries); 858 859 return; 860 } 861 862 863 /* 864 * Intialize a standard receive ring descriptor. 865 */ 866 static int 867 bge_newbuf_std(sc, i, m) 868 struct bge_softc *sc; 869 int i; 870 struct mbuf *m; 871 { 872 struct mbuf *m_new = NULL; 873 struct bge_rx_bd *r; 874 struct bge_dmamap_arg ctx; 875 int error; 876 877 if (m == NULL) { 878 MGETHDR(m_new, M_DONTWAIT, MT_DATA); 879 if (m_new == NULL) { 880 return(ENOBUFS); 881 } 882 883 MCLGET(m_new, M_DONTWAIT); 884 if (!(m_new->m_flags & M_EXT)) { 885 m_freem(m_new); 886 return(ENOBUFS); 887 } 888 m_new->m_len = m_new->m_pkthdr.len = MCLBYTES; 889 } else { 890 m_new = m; 891 m_new->m_len = m_new->m_pkthdr.len = MCLBYTES; 892 m_new->m_data = m_new->m_ext.ext_buf; 893 } 894 895 if (!sc->bge_rx_alignment_bug) 896 m_adj(m_new, ETHER_ALIGN); 897 sc->bge_cdata.bge_rx_std_chain[i] = m_new; 898 r = &sc->bge_ldata.bge_rx_std_ring[i]; 899 ctx.bge_maxsegs = 1; 900 ctx.sc = sc; 901 error = bus_dmamap_load(sc->bge_cdata.bge_mtag, 902 sc->bge_cdata.bge_rx_std_dmamap[i], mtod(m_new, void *), 903 m_new->m_len, bge_dma_map_addr, &ctx, BUS_DMA_NOWAIT); 904 if (error || ctx.bge_maxsegs == 0) { 905 if (m == NULL) 906 m_freem(m_new); 907 return(ENOMEM); 908 } 909 r->bge_addr.bge_addr_lo = htole32(BGE_ADDR_LO(ctx.bge_busaddr)); 910 r->bge_addr.bge_addr_hi = htole32(BGE_ADDR_HI(ctx.bge_busaddr)); 911 r->bge_flags = htole16(BGE_RXBDFLAG_END); 912 r->bge_len = htole16(m_new->m_len); 913 r->bge_idx = htole16(i); 914 915 bus_dmamap_sync(sc->bge_cdata.bge_mtag, 916 sc->bge_cdata.bge_rx_std_dmamap[i], 917 BUS_DMASYNC_PREREAD); 918 919 return(0); 920 } 921 922 /* 923 * Initialize a jumbo receive ring descriptor. This allocates 924 * a jumbo buffer from the pool managed internally by the driver. 925 */ 926 static int 927 bge_newbuf_jumbo(sc, i, m) 928 struct bge_softc *sc; 929 int i; 930 struct mbuf *m; 931 { 932 struct mbuf *m_new = NULL; 933 struct bge_rx_bd *r; 934 struct bge_dmamap_arg ctx; 935 int error; 936 937 if (m == NULL) { 938 caddr_t *buf = NULL; 939 940 /* Allocate the mbuf. */ 941 MGETHDR(m_new, M_DONTWAIT, MT_DATA); 942 if (m_new == NULL) { 943 return(ENOBUFS); 944 } 945 946 /* Allocate the jumbo buffer */ 947 buf = bge_jalloc(sc); 948 if (buf == NULL) { 949 m_freem(m_new); 950 printf("bge%d: jumbo allocation failed " 951 "-- packet dropped!\n", sc->bge_unit); 952 return(ENOBUFS); 953 } 954 955 /* Attach the buffer to the mbuf. */ 956 m_new->m_data = (void *) buf; 957 m_new->m_len = m_new->m_pkthdr.len = BGE_JUMBO_FRAMELEN; 958 MEXTADD(m_new, buf, BGE_JUMBO_FRAMELEN, bge_jfree, 959 (struct bge_softc *)sc, 0, EXT_NET_DRV); 960 } else { 961 m_new = m; 962 m_new->m_data = m_new->m_ext.ext_buf; 963 m_new->m_ext.ext_size = BGE_JUMBO_FRAMELEN; 964 } 965 966 if (!sc->bge_rx_alignment_bug) 967 m_adj(m_new, ETHER_ALIGN); 968 /* Set up the descriptor. */ 969 sc->bge_cdata.bge_rx_jumbo_chain[i] = m_new; 970 r = &sc->bge_ldata.bge_rx_jumbo_ring[i]; 971 ctx.bge_maxsegs = 1; 972 ctx.sc = sc; 973 error = bus_dmamap_load(sc->bge_cdata.bge_mtag_jumbo, 974 sc->bge_cdata.bge_rx_jumbo_dmamap[i], mtod(m_new, void *), 975 m_new->m_len, bge_dma_map_addr, &ctx, BUS_DMA_NOWAIT); 976 if (error || ctx.bge_maxsegs == 0) { 977 if (m == NULL) 978 m_freem(m_new); 979 return(ENOMEM); 980 } 981 r->bge_addr.bge_addr_lo = htole32(BGE_ADDR_LO(ctx.bge_busaddr)); 982 r->bge_addr.bge_addr_hi = htole32(BGE_ADDR_HI(ctx.bge_busaddr)); 983 r->bge_flags = htole16(BGE_RXBDFLAG_END|BGE_RXBDFLAG_JUMBO_RING); 984 r->bge_len = htole16(m_new->m_len); 985 r->bge_idx = htole16(i); 986 987 bus_dmamap_sync(sc->bge_cdata.bge_mtag, 988 sc->bge_cdata.bge_rx_jumbo_dmamap[i], 989 BUS_DMASYNC_PREREAD); 990 991 return(0); 992 } 993 994 /* 995 * The standard receive ring has 512 entries in it. At 2K per mbuf cluster, 996 * that's 1MB or memory, which is a lot. For now, we fill only the first 997 * 256 ring entries and hope that our CPU is fast enough to keep up with 998 * the NIC. 999 */ 1000 static int 1001 bge_init_rx_ring_std(sc) 1002 struct bge_softc *sc; 1003 { 1004 int i; 1005 1006 for (i = 0; i < BGE_SSLOTS; i++) { 1007 if (bge_newbuf_std(sc, i, NULL) == ENOBUFS) 1008 return(ENOBUFS); 1009 }; 1010 1011 bus_dmamap_sync(sc->bge_cdata.bge_rx_std_ring_tag, 1012 sc->bge_cdata.bge_rx_std_ring_map, 1013 BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE); 1014 1015 sc->bge_std = i - 1; 1016 CSR_WRITE_4(sc, BGE_MBX_RX_STD_PROD_LO, sc->bge_std); 1017 1018 return(0); 1019 } 1020 1021 static void 1022 bge_free_rx_ring_std(sc) 1023 struct bge_softc *sc; 1024 { 1025 int i; 1026 1027 for (i = 0; i < BGE_STD_RX_RING_CNT; i++) { 1028 if (sc->bge_cdata.bge_rx_std_chain[i] != NULL) { 1029 m_freem(sc->bge_cdata.bge_rx_std_chain[i]); 1030 sc->bge_cdata.bge_rx_std_chain[i] = NULL; 1031 bus_dmamap_unload(sc->bge_cdata.bge_mtag, 1032 sc->bge_cdata.bge_rx_std_dmamap[i]); 1033 } 1034 bzero((char *)&sc->bge_ldata.bge_rx_std_ring[i], 1035 sizeof(struct bge_rx_bd)); 1036 } 1037 1038 return; 1039 } 1040 1041 static int 1042 bge_init_rx_ring_jumbo(sc) 1043 struct bge_softc *sc; 1044 { 1045 int i; 1046 struct bge_rcb *rcb; 1047 1048 for (i = 0; i < BGE_JUMBO_RX_RING_CNT; i++) { 1049 if (bge_newbuf_jumbo(sc, i, NULL) == ENOBUFS) 1050 return(ENOBUFS); 1051 }; 1052 1053 bus_dmamap_sync(sc->bge_cdata.bge_rx_jumbo_ring_tag, 1054 sc->bge_cdata.bge_rx_jumbo_ring_map, 1055 BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE); 1056 1057 sc->bge_jumbo = i - 1; 1058 1059 rcb = &sc->bge_ldata.bge_info.bge_jumbo_rx_rcb; 1060 rcb->bge_maxlen_flags = BGE_RCB_MAXLEN_FLAGS(0, 0); 1061 CSR_WRITE_4(sc, BGE_RX_JUMBO_RCB_MAXLEN_FLAGS, rcb->bge_maxlen_flags); 1062 1063 CSR_WRITE_4(sc, BGE_MBX_RX_JUMBO_PROD_LO, sc->bge_jumbo); 1064 1065 return(0); 1066 } 1067 1068 static void 1069 bge_free_rx_ring_jumbo(sc) 1070 struct bge_softc *sc; 1071 { 1072 int i; 1073 1074 for (i = 0; i < BGE_JUMBO_RX_RING_CNT; i++) { 1075 if (sc->bge_cdata.bge_rx_jumbo_chain[i] != NULL) { 1076 m_freem(sc->bge_cdata.bge_rx_jumbo_chain[i]); 1077 sc->bge_cdata.bge_rx_jumbo_chain[i] = NULL; 1078 bus_dmamap_unload(sc->bge_cdata.bge_mtag_jumbo, 1079 sc->bge_cdata.bge_rx_jumbo_dmamap[i]); 1080 } 1081 bzero((char *)&sc->bge_ldata.bge_rx_jumbo_ring[i], 1082 sizeof(struct bge_rx_bd)); 1083 } 1084 1085 return; 1086 } 1087 1088 static void 1089 bge_free_tx_ring(sc) 1090 struct bge_softc *sc; 1091 { 1092 int i; 1093 1094 if (sc->bge_ldata.bge_tx_ring == NULL) 1095 return; 1096 1097 for (i = 0; i < BGE_TX_RING_CNT; i++) { 1098 if (sc->bge_cdata.bge_tx_chain[i] != NULL) { 1099 m_freem(sc->bge_cdata.bge_tx_chain[i]); 1100 sc->bge_cdata.bge_tx_chain[i] = NULL; 1101 bus_dmamap_unload(sc->bge_cdata.bge_mtag, 1102 sc->bge_cdata.bge_tx_dmamap[i]); 1103 } 1104 bzero((char *)&sc->bge_ldata.bge_tx_ring[i], 1105 sizeof(struct bge_tx_bd)); 1106 } 1107 1108 return; 1109 } 1110 1111 static int 1112 bge_init_tx_ring(sc) 1113 struct bge_softc *sc; 1114 { 1115 sc->bge_txcnt = 0; 1116 sc->bge_tx_saved_considx = 0; 1117 1118 CSR_WRITE_4(sc, BGE_MBX_TX_HOST_PROD0_LO, 0); 1119 /* 5700 b2 errata */ 1120 if (sc->bge_chiprev == BGE_CHIPREV_5700_BX) 1121 CSR_WRITE_4(sc, BGE_MBX_TX_HOST_PROD0_LO, 0); 1122 1123 CSR_WRITE_4(sc, BGE_MBX_TX_NIC_PROD0_LO, 0); 1124 /* 5700 b2 errata */ 1125 if (sc->bge_chiprev == BGE_CHIPREV_5700_BX) 1126 CSR_WRITE_4(sc, BGE_MBX_TX_NIC_PROD0_LO, 0); 1127 1128 return(0); 1129 } 1130 1131 #define BGE_POLY 0xEDB88320 1132 1133 static u_int32_t 1134 bge_mchash(addr) 1135 caddr_t addr; 1136 { 1137 u_int32_t crc; 1138 int idx, bit; 1139 u_int8_t data; 1140 1141 /* Compute CRC for the address value. */ 1142 crc = 0xFFFFFFFF; /* initial value */ 1143 1144 for (idx = 0; idx < 6; idx++) { 1145 for (data = *addr++, bit = 0; bit < 8; bit++, data >>= 1) 1146 crc = (crc >> 1) ^ (((crc ^ data) & 1) ? BGE_POLY : 0); 1147 } 1148 1149 return(crc & 0x7F); 1150 } 1151 1152 static void 1153 bge_setmulti(sc) 1154 struct bge_softc *sc; 1155 { 1156 struct ifnet *ifp; 1157 struct ifmultiaddr *ifma; 1158 u_int32_t hashes[4] = { 0, 0, 0, 0 }; 1159 int h, i; 1160 1161 BGE_LOCK_ASSERT(sc); 1162 1163 ifp = &sc->arpcom.ac_if; 1164 1165 if (ifp->if_flags & IFF_ALLMULTI || ifp->if_flags & IFF_PROMISC) { 1166 for (i = 0; i < 4; i++) 1167 CSR_WRITE_4(sc, BGE_MAR0 + (i * 4), 0xFFFFFFFF); 1168 return; 1169 } 1170 1171 /* First, zot all the existing filters. */ 1172 for (i = 0; i < 4; i++) 1173 CSR_WRITE_4(sc, BGE_MAR0 + (i * 4), 0); 1174 1175 /* Now program new ones. */ 1176 TAILQ_FOREACH(ifma, &ifp->if_multiaddrs, ifma_link) { 1177 if (ifma->ifma_addr->sa_family != AF_LINK) 1178 continue; 1179 h = bge_mchash(LLADDR((struct sockaddr_dl *)ifma->ifma_addr)); 1180 hashes[(h & 0x60) >> 5] |= 1 << (h & 0x1F); 1181 } 1182 1183 for (i = 0; i < 4; i++) 1184 CSR_WRITE_4(sc, BGE_MAR0 + (i * 4), hashes[i]); 1185 1186 return; 1187 } 1188 1189 /* 1190 * Do endian, PCI and DMA initialization. Also check the on-board ROM 1191 * self-test results. 1192 */ 1193 static int 1194 bge_chipinit(sc) 1195 struct bge_softc *sc; 1196 { 1197 int i; 1198 u_int32_t dma_rw_ctl; 1199 1200 /* Set endianness before we access any non-PCI registers. */ 1201 #if BYTE_ORDER == BIG_ENDIAN 1202 pci_write_config(sc->bge_dev, BGE_PCI_MISC_CTL, 1203 BGE_BIGENDIAN_INIT, 4); 1204 #else 1205 pci_write_config(sc->bge_dev, BGE_PCI_MISC_CTL, 1206 BGE_LITTLEENDIAN_INIT, 4); 1207 #endif 1208 1209 /* 1210 * Check the 'ROM failed' bit on the RX CPU to see if 1211 * self-tests passed. 1212 */ 1213 if (CSR_READ_4(sc, BGE_RXCPU_MODE) & BGE_RXCPUMODE_ROMFAIL) { 1214 printf("bge%d: RX CPU self-diagnostics failed!\n", 1215 sc->bge_unit); 1216 return(ENODEV); 1217 } 1218 1219 /* Clear the MAC control register */ 1220 CSR_WRITE_4(sc, BGE_MAC_MODE, 0); 1221 1222 /* 1223 * Clear the MAC statistics block in the NIC's 1224 * internal memory. 1225 */ 1226 for (i = BGE_STATS_BLOCK; 1227 i < BGE_STATS_BLOCK_END + 1; i += sizeof(u_int32_t)) 1228 BGE_MEMWIN_WRITE(sc, i, 0); 1229 1230 for (i = BGE_STATUS_BLOCK; 1231 i < BGE_STATUS_BLOCK_END + 1; i += sizeof(u_int32_t)) 1232 BGE_MEMWIN_WRITE(sc, i, 0); 1233 1234 /* Set up the PCI DMA control register. */ 1235 if (pci_read_config(sc->bge_dev, BGE_PCI_PCISTATE, 4) & 1236 BGE_PCISTATE_PCI_BUSMODE) { 1237 /* Conventional PCI bus */ 1238 dma_rw_ctl = BGE_PCI_READ_CMD|BGE_PCI_WRITE_CMD | 1239 (0x7 << BGE_PCIDMARWCTL_RD_WAT_SHIFT) | 1240 (0x7 << BGE_PCIDMARWCTL_WR_WAT_SHIFT) | 1241 (0x0F); 1242 } else { 1243 /* PCI-X bus */ 1244 /* 1245 * The 5704 uses a different encoding of read/write 1246 * watermarks. 1247 */ 1248 if (sc->bge_asicrev == BGE_ASICREV_BCM5704) 1249 dma_rw_ctl = BGE_PCI_READ_CMD|BGE_PCI_WRITE_CMD | 1250 (0x7 << BGE_PCIDMARWCTL_RD_WAT_SHIFT) | 1251 (0x3 << BGE_PCIDMARWCTL_WR_WAT_SHIFT); 1252 else 1253 dma_rw_ctl = BGE_PCI_READ_CMD|BGE_PCI_WRITE_CMD | 1254 (0x3 << BGE_PCIDMARWCTL_RD_WAT_SHIFT) | 1255 (0x3 << BGE_PCIDMARWCTL_WR_WAT_SHIFT) | 1256 (0x0F); 1257 1258 /* 1259 * 5703 and 5704 need ONEDMA_AT_ONCE as a workaround 1260 * for hardware bugs. 1261 */ 1262 if (sc->bge_asicrev == BGE_ASICREV_BCM5703 || 1263 sc->bge_asicrev == BGE_ASICREV_BCM5704) { 1264 u_int32_t tmp; 1265 1266 tmp = CSR_READ_4(sc, BGE_PCI_CLKCTL) & 0x1f; 1267 if (tmp == 0x6 || tmp == 0x7) 1268 dma_rw_ctl |= BGE_PCIDMARWCTL_ONEDMA_ATONCE; 1269 } 1270 } 1271 1272 if (sc->bge_asicrev == BGE_ASICREV_BCM5703 || 1273 sc->bge_asicrev == BGE_ASICREV_BCM5704 || 1274 sc->bge_asicrev == BGE_ASICREV_BCM5705) 1275 dma_rw_ctl &= ~BGE_PCIDMARWCTL_MINDMA; 1276 pci_write_config(sc->bge_dev, BGE_PCI_DMA_RW_CTL, dma_rw_ctl, 4); 1277 1278 /* 1279 * Set up general mode register. 1280 */ 1281 CSR_WRITE_4(sc, BGE_MODE_CTL, BGE_MODECTL_WORDSWAP_NONFRAME| 1282 BGE_MODECTL_BYTESWAP_DATA|BGE_MODECTL_WORDSWAP_DATA| 1283 BGE_MODECTL_MAC_ATTN_INTR|BGE_MODECTL_HOST_SEND_BDS| 1284 BGE_MODECTL_TX_NO_PHDR_CSUM|BGE_MODECTL_RX_NO_PHDR_CSUM); 1285 1286 /* 1287 * Disable memory write invalidate. Apparently it is not supported 1288 * properly by these devices. 1289 */ 1290 PCI_CLRBIT(sc->bge_dev, BGE_PCI_CMD, PCIM_CMD_MWIEN, 4); 1291 1292 #ifdef __brokenalpha__ 1293 /* 1294 * Must insure that we do not cross an 8K (bytes) boundary 1295 * for DMA reads. Our highest limit is 1K bytes. This is a 1296 * restriction on some ALPHA platforms with early revision 1297 * 21174 PCI chipsets, such as the AlphaPC 164lx 1298 */ 1299 PCI_SETBIT(sc->bge_dev, BGE_PCI_DMA_RW_CTL, 1300 BGE_PCI_READ_BNDRY_1024BYTES, 4); 1301 #endif 1302 1303 /* Set the timer prescaler (always 66Mhz) */ 1304 CSR_WRITE_4(sc, BGE_MISC_CFG, 65 << 1/*BGE_32BITTIME_66MHZ*/); 1305 1306 return(0); 1307 } 1308 1309 static int 1310 bge_blockinit(sc) 1311 struct bge_softc *sc; 1312 { 1313 struct bge_rcb *rcb; 1314 volatile struct bge_rcb *vrcb; 1315 int i; 1316 1317 /* 1318 * Initialize the memory window pointer register so that 1319 * we can access the first 32K of internal NIC RAM. This will 1320 * allow us to set up the TX send ring RCBs and the RX return 1321 * ring RCBs, plus other things which live in NIC memory. 1322 */ 1323 CSR_WRITE_4(sc, BGE_PCI_MEMWIN_BASEADDR, 0); 1324 1325 /* Note: the BCM5704 has a smaller mbuf space than other chips. */ 1326 1327 if (sc->bge_asicrev != BGE_ASICREV_BCM5705) { 1328 /* Configure mbuf memory pool */ 1329 if (sc->bge_extram) { 1330 CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_BASEADDR, 1331 BGE_EXT_SSRAM); 1332 if (sc->bge_asicrev == BGE_ASICREV_BCM5704) 1333 CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_LEN, 0x10000); 1334 else 1335 CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_LEN, 0x18000); 1336 } else { 1337 CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_BASEADDR, 1338 BGE_BUFFPOOL_1); 1339 if (sc->bge_asicrev == BGE_ASICREV_BCM5704) 1340 CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_LEN, 0x10000); 1341 else 1342 CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_LEN, 0x18000); 1343 } 1344 1345 /* Configure DMA resource pool */ 1346 CSR_WRITE_4(sc, BGE_BMAN_DMA_DESCPOOL_BASEADDR, 1347 BGE_DMA_DESCRIPTORS); 1348 CSR_WRITE_4(sc, BGE_BMAN_DMA_DESCPOOL_LEN, 0x2000); 1349 } 1350 1351 /* Configure mbuf pool watermarks */ 1352 if (sc->bge_asicrev == BGE_ASICREV_BCM5705) { 1353 CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_READDMA_LOWAT, 0x0); 1354 CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_MACRX_LOWAT, 0x10); 1355 } else { 1356 CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_READDMA_LOWAT, 0x50); 1357 CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_MACRX_LOWAT, 0x20); 1358 } 1359 CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_HIWAT, 0x60); 1360 1361 /* Configure DMA resource watermarks */ 1362 CSR_WRITE_4(sc, BGE_BMAN_DMA_DESCPOOL_LOWAT, 5); 1363 CSR_WRITE_4(sc, BGE_BMAN_DMA_DESCPOOL_HIWAT, 10); 1364 1365 /* Enable buffer manager */ 1366 if (sc->bge_asicrev != BGE_ASICREV_BCM5705) { 1367 CSR_WRITE_4(sc, BGE_BMAN_MODE, 1368 BGE_BMANMODE_ENABLE|BGE_BMANMODE_LOMBUF_ATTN); 1369 1370 /* Poll for buffer manager start indication */ 1371 for (i = 0; i < BGE_TIMEOUT; i++) { 1372 if (CSR_READ_4(sc, BGE_BMAN_MODE) & BGE_BMANMODE_ENABLE) 1373 break; 1374 DELAY(10); 1375 } 1376 1377 if (i == BGE_TIMEOUT) { 1378 printf("bge%d: buffer manager failed to start\n", 1379 sc->bge_unit); 1380 return(ENXIO); 1381 } 1382 } 1383 1384 /* Enable flow-through queues */ 1385 CSR_WRITE_4(sc, BGE_FTQ_RESET, 0xFFFFFFFF); 1386 CSR_WRITE_4(sc, BGE_FTQ_RESET, 0); 1387 1388 /* Wait until queue initialization is complete */ 1389 for (i = 0; i < BGE_TIMEOUT; i++) { 1390 if (CSR_READ_4(sc, BGE_FTQ_RESET) == 0) 1391 break; 1392 DELAY(10); 1393 } 1394 1395 if (i == BGE_TIMEOUT) { 1396 printf("bge%d: flow-through queue init failed\n", 1397 sc->bge_unit); 1398 return(ENXIO); 1399 } 1400 1401 /* Initialize the standard RX ring control block */ 1402 rcb = &sc->bge_ldata.bge_info.bge_std_rx_rcb; 1403 rcb->bge_hostaddr.bge_addr_lo = 1404 BGE_ADDR_LO(sc->bge_ldata.bge_rx_std_ring_paddr); 1405 rcb->bge_hostaddr.bge_addr_hi = 1406 BGE_ADDR_HI(sc->bge_ldata.bge_rx_std_ring_paddr); 1407 bus_dmamap_sync(sc->bge_cdata.bge_rx_std_ring_tag, 1408 sc->bge_cdata.bge_rx_std_ring_map, BUS_DMASYNC_PREREAD); 1409 if (sc->bge_asicrev == BGE_ASICREV_BCM5705) 1410 rcb->bge_maxlen_flags = BGE_RCB_MAXLEN_FLAGS(512, 0); 1411 else 1412 rcb->bge_maxlen_flags = 1413 BGE_RCB_MAXLEN_FLAGS(BGE_MAX_FRAMELEN, 0); 1414 if (sc->bge_extram) 1415 rcb->bge_nicaddr = BGE_EXT_STD_RX_RINGS; 1416 else 1417 rcb->bge_nicaddr = BGE_STD_RX_RINGS; 1418 CSR_WRITE_4(sc, BGE_RX_STD_RCB_HADDR_HI, rcb->bge_hostaddr.bge_addr_hi); 1419 CSR_WRITE_4(sc, BGE_RX_STD_RCB_HADDR_LO, rcb->bge_hostaddr.bge_addr_lo); 1420 1421 CSR_WRITE_4(sc, BGE_RX_STD_RCB_MAXLEN_FLAGS, rcb->bge_maxlen_flags); 1422 CSR_WRITE_4(sc, BGE_RX_STD_RCB_NICADDR, rcb->bge_nicaddr); 1423 1424 /* 1425 * Initialize the jumbo RX ring control block 1426 * We set the 'ring disabled' bit in the flags 1427 * field until we're actually ready to start 1428 * using this ring (i.e. once we set the MTU 1429 * high enough to require it). 1430 */ 1431 if (sc->bge_asicrev != BGE_ASICREV_BCM5705) { 1432 rcb = &sc->bge_ldata.bge_info.bge_jumbo_rx_rcb; 1433 1434 rcb->bge_hostaddr.bge_addr_lo = 1435 BGE_ADDR_LO(sc->bge_ldata.bge_rx_jumbo_ring_paddr); 1436 rcb->bge_hostaddr.bge_addr_hi = 1437 BGE_ADDR_HI(sc->bge_ldata.bge_rx_jumbo_ring_paddr); 1438 bus_dmamap_sync(sc->bge_cdata.bge_rx_jumbo_ring_tag, 1439 sc->bge_cdata.bge_rx_jumbo_ring_map, 1440 BUS_DMASYNC_PREREAD); 1441 rcb->bge_maxlen_flags = 1442 BGE_RCB_MAXLEN_FLAGS(BGE_MAX_FRAMELEN, 1443 BGE_RCB_FLAG_RING_DISABLED); 1444 if (sc->bge_extram) 1445 rcb->bge_nicaddr = BGE_EXT_JUMBO_RX_RINGS; 1446 else 1447 rcb->bge_nicaddr = BGE_JUMBO_RX_RINGS; 1448 CSR_WRITE_4(sc, BGE_RX_JUMBO_RCB_HADDR_HI, 1449 rcb->bge_hostaddr.bge_addr_hi); 1450 CSR_WRITE_4(sc, BGE_RX_JUMBO_RCB_HADDR_LO, 1451 rcb->bge_hostaddr.bge_addr_lo); 1452 1453 CSR_WRITE_4(sc, BGE_RX_JUMBO_RCB_MAXLEN_FLAGS, 1454 rcb->bge_maxlen_flags); 1455 CSR_WRITE_4(sc, BGE_RX_JUMBO_RCB_NICADDR, rcb->bge_nicaddr); 1456 1457 /* Set up dummy disabled mini ring RCB */ 1458 rcb = &sc->bge_ldata.bge_info.bge_mini_rx_rcb; 1459 rcb->bge_maxlen_flags = 1460 BGE_RCB_MAXLEN_FLAGS(0, BGE_RCB_FLAG_RING_DISABLED); 1461 CSR_WRITE_4(sc, BGE_RX_MINI_RCB_MAXLEN_FLAGS, 1462 rcb->bge_maxlen_flags); 1463 } 1464 1465 /* 1466 * Set the BD ring replentish thresholds. The recommended 1467 * values are 1/8th the number of descriptors allocated to 1468 * each ring. 1469 */ 1470 CSR_WRITE_4(sc, BGE_RBDI_STD_REPL_THRESH, BGE_STD_RX_RING_CNT/8); 1471 CSR_WRITE_4(sc, BGE_RBDI_JUMBO_REPL_THRESH, BGE_JUMBO_RX_RING_CNT/8); 1472 1473 /* 1474 * Disable all unused send rings by setting the 'ring disabled' 1475 * bit in the flags field of all the TX send ring control blocks. 1476 * These are located in NIC memory. 1477 */ 1478 vrcb = (volatile struct bge_rcb *)(sc->bge_vhandle + BGE_MEMWIN_START + 1479 BGE_SEND_RING_RCB); 1480 for (i = 0; i < BGE_TX_RINGS_EXTSSRAM_MAX; i++) { 1481 vrcb->bge_maxlen_flags = 1482 BGE_RCB_MAXLEN_FLAGS(0, BGE_RCB_FLAG_RING_DISABLED); 1483 vrcb->bge_nicaddr = 0; 1484 vrcb++; 1485 } 1486 1487 /* Configure TX RCB 0 (we use only the first ring) */ 1488 vrcb = (volatile struct bge_rcb *)(sc->bge_vhandle + BGE_MEMWIN_START + 1489 BGE_SEND_RING_RCB); 1490 vrcb->bge_hostaddr.bge_addr_lo = 1491 htole32(BGE_ADDR_LO(sc->bge_ldata.bge_tx_ring_paddr)); 1492 vrcb->bge_hostaddr.bge_addr_hi = 1493 htole32(BGE_ADDR_HI(sc->bge_ldata.bge_tx_ring_paddr)); 1494 vrcb->bge_nicaddr = BGE_NIC_TXRING_ADDR(0, BGE_TX_RING_CNT); 1495 if (sc->bge_asicrev != BGE_ASICREV_BCM5705) 1496 vrcb->bge_maxlen_flags = 1497 BGE_RCB_MAXLEN_FLAGS(BGE_TX_RING_CNT, 0); 1498 1499 /* Disable all unused RX return rings */ 1500 vrcb = (volatile struct bge_rcb *)(sc->bge_vhandle + BGE_MEMWIN_START + 1501 BGE_RX_RETURN_RING_RCB); 1502 for (i = 0; i < BGE_RX_RINGS_MAX; i++) { 1503 vrcb->bge_hostaddr.bge_addr_hi = 0; 1504 vrcb->bge_hostaddr.bge_addr_lo = 0; 1505 vrcb->bge_maxlen_flags = 1506 BGE_RCB_MAXLEN_FLAGS(sc->bge_return_ring_cnt, 1507 BGE_RCB_FLAG_RING_DISABLED); 1508 vrcb->bge_nicaddr = 0; 1509 CSR_WRITE_4(sc, BGE_MBX_RX_CONS0_LO + 1510 (i * (sizeof(u_int64_t))), 0); 1511 vrcb++; 1512 } 1513 1514 /* Initialize RX ring indexes */ 1515 CSR_WRITE_4(sc, BGE_MBX_RX_STD_PROD_LO, 0); 1516 CSR_WRITE_4(sc, BGE_MBX_RX_JUMBO_PROD_LO, 0); 1517 CSR_WRITE_4(sc, BGE_MBX_RX_MINI_PROD_LO, 0); 1518 1519 /* 1520 * Set up RX return ring 0 1521 * Note that the NIC address for RX return rings is 0x00000000. 1522 * The return rings live entirely within the host, so the 1523 * nicaddr field in the RCB isn't used. 1524 */ 1525 vrcb = (volatile struct bge_rcb *)(sc->bge_vhandle + BGE_MEMWIN_START + 1526 BGE_RX_RETURN_RING_RCB); 1527 vrcb->bge_hostaddr.bge_addr_lo = 1528 BGE_ADDR_LO(sc->bge_ldata.bge_rx_return_ring_paddr); 1529 vrcb->bge_hostaddr.bge_addr_hi = 1530 BGE_ADDR_HI(sc->bge_ldata.bge_rx_return_ring_paddr); 1531 bus_dmamap_sync(sc->bge_cdata.bge_rx_return_ring_tag, 1532 sc->bge_cdata.bge_rx_return_ring_map, BUS_DMASYNC_PREWRITE); 1533 vrcb->bge_nicaddr = 0x00000000; 1534 vrcb->bge_maxlen_flags = 1535 BGE_RCB_MAXLEN_FLAGS(sc->bge_return_ring_cnt, 0); 1536 1537 /* Set random backoff seed for TX */ 1538 CSR_WRITE_4(sc, BGE_TX_RANDOM_BACKOFF, 1539 sc->arpcom.ac_enaddr[0] + sc->arpcom.ac_enaddr[1] + 1540 sc->arpcom.ac_enaddr[2] + sc->arpcom.ac_enaddr[3] + 1541 sc->arpcom.ac_enaddr[4] + sc->arpcom.ac_enaddr[5] + 1542 BGE_TX_BACKOFF_SEED_MASK); 1543 1544 /* Set inter-packet gap */ 1545 CSR_WRITE_4(sc, BGE_TX_LENGTHS, 0x2620); 1546 1547 /* 1548 * Specify which ring to use for packets that don't match 1549 * any RX rules. 1550 */ 1551 CSR_WRITE_4(sc, BGE_RX_RULES_CFG, 0x08); 1552 1553 /* 1554 * Configure number of RX lists. One interrupt distribution 1555 * list, sixteen active lists, one bad frames class. 1556 */ 1557 CSR_WRITE_4(sc, BGE_RXLP_CFG, 0x181); 1558 1559 /* Inialize RX list placement stats mask. */ 1560 CSR_WRITE_4(sc, BGE_RXLP_STATS_ENABLE_MASK, 0x007FFFFF); 1561 CSR_WRITE_4(sc, BGE_RXLP_STATS_CTL, 0x1); 1562 1563 /* Disable host coalescing until we get it set up */ 1564 CSR_WRITE_4(sc, BGE_HCC_MODE, 0x00000000); 1565 1566 /* Poll to make sure it's shut down. */ 1567 for (i = 0; i < BGE_TIMEOUT; i++) { 1568 if (!(CSR_READ_4(sc, BGE_HCC_MODE) & BGE_HCCMODE_ENABLE)) 1569 break; 1570 DELAY(10); 1571 } 1572 1573 if (i == BGE_TIMEOUT) { 1574 printf("bge%d: host coalescing engine failed to idle\n", 1575 sc->bge_unit); 1576 return(ENXIO); 1577 } 1578 1579 /* Set up host coalescing defaults */ 1580 CSR_WRITE_4(sc, BGE_HCC_RX_COAL_TICKS, sc->bge_rx_coal_ticks); 1581 CSR_WRITE_4(sc, BGE_HCC_TX_COAL_TICKS, sc->bge_tx_coal_ticks); 1582 CSR_WRITE_4(sc, BGE_HCC_RX_MAX_COAL_BDS, sc->bge_rx_max_coal_bds); 1583 CSR_WRITE_4(sc, BGE_HCC_TX_MAX_COAL_BDS, sc->bge_tx_max_coal_bds); 1584 if (sc->bge_asicrev != BGE_ASICREV_BCM5705) { 1585 CSR_WRITE_4(sc, BGE_HCC_RX_COAL_TICKS_INT, 0); 1586 CSR_WRITE_4(sc, BGE_HCC_TX_COAL_TICKS_INT, 0); 1587 } 1588 CSR_WRITE_4(sc, BGE_HCC_RX_MAX_COAL_BDS_INT, 0); 1589 CSR_WRITE_4(sc, BGE_HCC_TX_MAX_COAL_BDS_INT, 0); 1590 1591 /* Set up address of statistics block */ 1592 if (sc->bge_asicrev != BGE_ASICREV_BCM5705) { 1593 CSR_WRITE_4(sc, BGE_HCC_STATS_ADDR_HI, 1594 BGE_ADDR_HI(sc->bge_ldata.bge_stats_paddr)); 1595 CSR_WRITE_4(sc, BGE_HCC_STATS_ADDR_LO, 1596 BGE_ADDR_LO(sc->bge_ldata.bge_stats_paddr)); 1597 CSR_WRITE_4(sc, BGE_HCC_STATS_BASEADDR, BGE_STATS_BLOCK); 1598 CSR_WRITE_4(sc, BGE_HCC_STATUSBLK_BASEADDR, BGE_STATUS_BLOCK); 1599 CSR_WRITE_4(sc, BGE_HCC_STATS_TICKS, sc->bge_stat_ticks); 1600 } 1601 1602 /* Set up address of status block */ 1603 CSR_WRITE_4(sc, BGE_HCC_STATUSBLK_ADDR_HI, 1604 BGE_ADDR_HI(sc->bge_ldata.bge_status_block_paddr)); 1605 CSR_WRITE_4(sc, BGE_HCC_STATUSBLK_ADDR_LO, 1606 BGE_ADDR_LO(sc->bge_ldata.bge_status_block_paddr)); 1607 bus_dmamap_sync(sc->bge_cdata.bge_status_tag, 1608 sc->bge_cdata.bge_status_map, BUS_DMASYNC_PREWRITE); 1609 sc->bge_ldata.bge_status_block->bge_idx[0].bge_rx_prod_idx = 0; 1610 sc->bge_ldata.bge_status_block->bge_idx[0].bge_tx_cons_idx = 0; 1611 1612 /* Turn on host coalescing state machine */ 1613 CSR_WRITE_4(sc, BGE_HCC_MODE, BGE_HCCMODE_ENABLE); 1614 1615 /* Turn on RX BD completion state machine and enable attentions */ 1616 CSR_WRITE_4(sc, BGE_RBDC_MODE, 1617 BGE_RBDCMODE_ENABLE|BGE_RBDCMODE_ATTN); 1618 1619 /* Turn on RX list placement state machine */ 1620 CSR_WRITE_4(sc, BGE_RXLP_MODE, BGE_RXLPMODE_ENABLE); 1621 1622 /* Turn on RX list selector state machine. */ 1623 if (sc->bge_asicrev != BGE_ASICREV_BCM5705) 1624 CSR_WRITE_4(sc, BGE_RXLS_MODE, BGE_RXLSMODE_ENABLE); 1625 1626 /* Turn on DMA, clear stats */ 1627 CSR_WRITE_4(sc, BGE_MAC_MODE, BGE_MACMODE_TXDMA_ENB| 1628 BGE_MACMODE_RXDMA_ENB|BGE_MACMODE_RX_STATS_CLEAR| 1629 BGE_MACMODE_TX_STATS_CLEAR|BGE_MACMODE_RX_STATS_ENB| 1630 BGE_MACMODE_TX_STATS_ENB|BGE_MACMODE_FRMHDR_DMA_ENB| 1631 (sc->bge_tbi ? BGE_PORTMODE_TBI : BGE_PORTMODE_MII)); 1632 1633 /* Set misc. local control, enable interrupts on attentions */ 1634 CSR_WRITE_4(sc, BGE_MISC_LOCAL_CTL, BGE_MLC_INTR_ONATTN); 1635 1636 #ifdef notdef 1637 /* Assert GPIO pins for PHY reset */ 1638 BGE_SETBIT(sc, BGE_MISC_LOCAL_CTL, BGE_MLC_MISCIO_OUT0| 1639 BGE_MLC_MISCIO_OUT1|BGE_MLC_MISCIO_OUT2); 1640 BGE_SETBIT(sc, BGE_MISC_LOCAL_CTL, BGE_MLC_MISCIO_OUTEN0| 1641 BGE_MLC_MISCIO_OUTEN1|BGE_MLC_MISCIO_OUTEN2); 1642 #endif 1643 1644 /* Turn on DMA completion state machine */ 1645 if (sc->bge_asicrev != BGE_ASICREV_BCM5705) 1646 CSR_WRITE_4(sc, BGE_DMAC_MODE, BGE_DMACMODE_ENABLE); 1647 1648 /* Turn on write DMA state machine */ 1649 CSR_WRITE_4(sc, BGE_WDMA_MODE, 1650 BGE_WDMAMODE_ENABLE|BGE_WDMAMODE_ALL_ATTNS); 1651 1652 /* Turn on read DMA state machine */ 1653 CSR_WRITE_4(sc, BGE_RDMA_MODE, 1654 BGE_RDMAMODE_ENABLE|BGE_RDMAMODE_ALL_ATTNS); 1655 1656 /* Turn on RX data completion state machine */ 1657 CSR_WRITE_4(sc, BGE_RDC_MODE, BGE_RDCMODE_ENABLE); 1658 1659 /* Turn on RX BD initiator state machine */ 1660 CSR_WRITE_4(sc, BGE_RBDI_MODE, BGE_RBDIMODE_ENABLE); 1661 1662 /* Turn on RX data and RX BD initiator state machine */ 1663 CSR_WRITE_4(sc, BGE_RDBDI_MODE, BGE_RDBDIMODE_ENABLE); 1664 1665 /* Turn on Mbuf cluster free state machine */ 1666 if (sc->bge_asicrev != BGE_ASICREV_BCM5705) 1667 CSR_WRITE_4(sc, BGE_MBCF_MODE, BGE_MBCFMODE_ENABLE); 1668 1669 /* Turn on send BD completion state machine */ 1670 CSR_WRITE_4(sc, BGE_SBDC_MODE, BGE_SBDCMODE_ENABLE); 1671 1672 /* Turn on send data completion state machine */ 1673 CSR_WRITE_4(sc, BGE_SDC_MODE, BGE_SDCMODE_ENABLE); 1674 1675 /* Turn on send data initiator state machine */ 1676 CSR_WRITE_4(sc, BGE_SDI_MODE, BGE_SDIMODE_ENABLE); 1677 1678 /* Turn on send BD initiator state machine */ 1679 CSR_WRITE_4(sc, BGE_SBDI_MODE, BGE_SBDIMODE_ENABLE); 1680 1681 /* Turn on send BD selector state machine */ 1682 CSR_WRITE_4(sc, BGE_SRS_MODE, BGE_SRSMODE_ENABLE); 1683 1684 CSR_WRITE_4(sc, BGE_SDI_STATS_ENABLE_MASK, 0x007FFFFF); 1685 CSR_WRITE_4(sc, BGE_SDI_STATS_CTL, 1686 BGE_SDISTATSCTL_ENABLE|BGE_SDISTATSCTL_FASTER); 1687 1688 /* ack/clear link change events */ 1689 CSR_WRITE_4(sc, BGE_MAC_STS, BGE_MACSTAT_SYNC_CHANGED| 1690 BGE_MACSTAT_CFG_CHANGED|BGE_MACSTAT_MI_COMPLETE| 1691 BGE_MACSTAT_LINK_CHANGED); 1692 CSR_WRITE_4(sc, BGE_MI_STS, 0); 1693 1694 /* Enable PHY auto polling (for MII/GMII only) */ 1695 if (sc->bge_tbi) { 1696 CSR_WRITE_4(sc, BGE_MI_STS, BGE_MISTS_LINK); 1697 } else { 1698 BGE_SETBIT(sc, BGE_MI_MODE, BGE_MIMODE_AUTOPOLL|10<<16); 1699 if (sc->bge_asicrev == BGE_ASICREV_BCM5700) 1700 CSR_WRITE_4(sc, BGE_MAC_EVT_ENB, 1701 BGE_EVTENB_MI_INTERRUPT); 1702 } 1703 1704 /* Enable link state change attentions. */ 1705 BGE_SETBIT(sc, BGE_MAC_EVT_ENB, BGE_EVTENB_LINK_CHANGED); 1706 1707 return(0); 1708 } 1709 1710 /* 1711 * Probe for a Broadcom chip. Check the PCI vendor and device IDs 1712 * against our list and return its name if we find a match. Note 1713 * that since the Broadcom controller contains VPD support, we 1714 * can get the device name string from the controller itself instead 1715 * of the compiled-in string. This is a little slow, but it guarantees 1716 * we'll always announce the right product name. 1717 */ 1718 static int 1719 bge_probe(dev) 1720 device_t dev; 1721 { 1722 struct bge_type *t; 1723 struct bge_softc *sc; 1724 char *descbuf; 1725 1726 t = bge_devs; 1727 1728 sc = device_get_softc(dev); 1729 bzero(sc, sizeof(struct bge_softc)); 1730 sc->bge_unit = device_get_unit(dev); 1731 sc->bge_dev = dev; 1732 1733 while(t->bge_name != NULL) { 1734 if ((pci_get_vendor(dev) == t->bge_vid) && 1735 (pci_get_device(dev) == t->bge_did)) { 1736 #ifdef notdef 1737 bge_vpd_read(sc); 1738 device_set_desc(dev, sc->bge_vpd_prodname); 1739 #endif 1740 descbuf = malloc(BGE_DEVDESC_MAX, M_TEMP, M_NOWAIT); 1741 if (descbuf == NULL) 1742 return(ENOMEM); 1743 snprintf(descbuf, BGE_DEVDESC_MAX, 1744 "%s, ASIC rev. %#04x", t->bge_name, 1745 pci_read_config(dev, BGE_PCI_MISC_CTL, 4) >> 16); 1746 device_set_desc_copy(dev, descbuf); 1747 if (pci_get_subvendor(dev) == DELL_VENDORID) 1748 sc->bge_no_3_led = 1; 1749 free(descbuf, M_TEMP); 1750 return(0); 1751 } 1752 t++; 1753 } 1754 1755 return(ENXIO); 1756 } 1757 1758 static void 1759 bge_dma_free(sc) 1760 struct bge_softc *sc; 1761 { 1762 int i; 1763 1764 1765 /* Destroy DMA maps for RX buffers */ 1766 1767 for (i = 0; i < BGE_STD_RX_RING_CNT; i++) { 1768 if (sc->bge_cdata.bge_rx_std_dmamap[i]) 1769 bus_dmamap_destroy(sc->bge_cdata.bge_mtag, 1770 sc->bge_cdata.bge_rx_std_dmamap[i]); 1771 } 1772 1773 /* Destroy DMA maps for jumbo RX buffers */ 1774 1775 for (i = 0; i < BGE_JUMBO_RX_RING_CNT; i++) { 1776 if (sc->bge_cdata.bge_rx_jumbo_dmamap[i]) 1777 bus_dmamap_destroy(sc->bge_cdata.bge_mtag_jumbo, 1778 sc->bge_cdata.bge_rx_jumbo_dmamap[i]); 1779 } 1780 1781 /* Destroy DMA maps for TX buffers */ 1782 1783 for (i = 0; i < BGE_TX_RING_CNT; i++) { 1784 if (sc->bge_cdata.bge_tx_dmamap[i]) 1785 bus_dmamap_destroy(sc->bge_cdata.bge_mtag, 1786 sc->bge_cdata.bge_tx_dmamap[i]); 1787 } 1788 1789 if (sc->bge_cdata.bge_mtag) 1790 bus_dma_tag_destroy(sc->bge_cdata.bge_mtag); 1791 1792 1793 /* Destroy standard RX ring */ 1794 1795 if (sc->bge_ldata.bge_rx_std_ring) 1796 bus_dmamem_free(sc->bge_cdata.bge_rx_std_ring_tag, 1797 sc->bge_ldata.bge_rx_std_ring, 1798 sc->bge_cdata.bge_rx_std_ring_map); 1799 1800 if (sc->bge_cdata.bge_rx_std_ring_map) { 1801 bus_dmamap_unload(sc->bge_cdata.bge_rx_std_ring_tag, 1802 sc->bge_cdata.bge_rx_std_ring_map); 1803 bus_dmamap_destroy(sc->bge_cdata.bge_rx_std_ring_tag, 1804 sc->bge_cdata.bge_rx_std_ring_map); 1805 } 1806 1807 if (sc->bge_cdata.bge_rx_std_ring_tag) 1808 bus_dma_tag_destroy(sc->bge_cdata.bge_rx_std_ring_tag); 1809 1810 /* Destroy jumbo RX ring */ 1811 1812 if (sc->bge_ldata.bge_rx_jumbo_ring) 1813 bus_dmamem_free(sc->bge_cdata.bge_rx_jumbo_ring_tag, 1814 sc->bge_ldata.bge_rx_jumbo_ring, 1815 sc->bge_cdata.bge_rx_jumbo_ring_map); 1816 1817 if (sc->bge_cdata.bge_rx_jumbo_ring_map) { 1818 bus_dmamap_unload(sc->bge_cdata.bge_rx_jumbo_ring_tag, 1819 sc->bge_cdata.bge_rx_jumbo_ring_map); 1820 bus_dmamap_destroy(sc->bge_cdata.bge_rx_jumbo_ring_tag, 1821 sc->bge_cdata.bge_rx_jumbo_ring_map); 1822 } 1823 1824 if (sc->bge_cdata.bge_rx_jumbo_ring_tag) 1825 bus_dma_tag_destroy(sc->bge_cdata.bge_rx_jumbo_ring_tag); 1826 1827 /* Destroy RX return ring */ 1828 1829 if (sc->bge_ldata.bge_rx_return_ring) 1830 bus_dmamem_free(sc->bge_cdata.bge_rx_return_ring_tag, 1831 sc->bge_ldata.bge_rx_return_ring, 1832 sc->bge_cdata.bge_rx_return_ring_map); 1833 1834 if (sc->bge_cdata.bge_rx_return_ring_map) { 1835 bus_dmamap_unload(sc->bge_cdata.bge_rx_return_ring_tag, 1836 sc->bge_cdata.bge_rx_return_ring_map); 1837 bus_dmamap_destroy(sc->bge_cdata.bge_rx_return_ring_tag, 1838 sc->bge_cdata.bge_rx_return_ring_map); 1839 } 1840 1841 if (sc->bge_cdata.bge_rx_return_ring_tag) 1842 bus_dma_tag_destroy(sc->bge_cdata.bge_rx_return_ring_tag); 1843 1844 /* Destroy TX ring */ 1845 1846 if (sc->bge_ldata.bge_tx_ring) 1847 bus_dmamem_free(sc->bge_cdata.bge_tx_ring_tag, 1848 sc->bge_ldata.bge_tx_ring, 1849 sc->bge_cdata.bge_tx_ring_map); 1850 1851 if (sc->bge_cdata.bge_tx_ring_map) { 1852 bus_dmamap_unload(sc->bge_cdata.bge_tx_ring_tag, 1853 sc->bge_cdata.bge_tx_ring_map); 1854 bus_dmamap_destroy(sc->bge_cdata.bge_tx_ring_tag, 1855 sc->bge_cdata.bge_tx_ring_map); 1856 } 1857 1858 if (sc->bge_cdata.bge_tx_ring_tag) 1859 bus_dma_tag_destroy(sc->bge_cdata.bge_tx_ring_tag); 1860 1861 /* Destroy status block */ 1862 1863 if (sc->bge_ldata.bge_status_block) 1864 bus_dmamem_free(sc->bge_cdata.bge_status_tag, 1865 sc->bge_ldata.bge_status_block, 1866 sc->bge_cdata.bge_status_map); 1867 1868 if (sc->bge_cdata.bge_status_map) { 1869 bus_dmamap_unload(sc->bge_cdata.bge_status_tag, 1870 sc->bge_cdata.bge_status_map); 1871 bus_dmamap_destroy(sc->bge_cdata.bge_status_tag, 1872 sc->bge_cdata.bge_status_map); 1873 } 1874 1875 if (sc->bge_cdata.bge_status_tag) 1876 bus_dma_tag_destroy(sc->bge_cdata.bge_status_tag); 1877 1878 /* Destroy statistics block */ 1879 1880 if (sc->bge_ldata.bge_stats) 1881 bus_dmamem_free(sc->bge_cdata.bge_stats_tag, 1882 sc->bge_ldata.bge_stats, 1883 sc->bge_cdata.bge_stats_map); 1884 1885 if (sc->bge_cdata.bge_stats_map) { 1886 bus_dmamap_unload(sc->bge_cdata.bge_stats_tag, 1887 sc->bge_cdata.bge_stats_map); 1888 bus_dmamap_destroy(sc->bge_cdata.bge_stats_tag, 1889 sc->bge_cdata.bge_stats_map); 1890 } 1891 1892 if (sc->bge_cdata.bge_stats_tag) 1893 bus_dma_tag_destroy(sc->bge_cdata.bge_stats_tag); 1894 1895 /* Destroy the parent tag */ 1896 1897 if (sc->bge_cdata.bge_parent_tag) 1898 bus_dma_tag_destroy(sc->bge_cdata.bge_parent_tag); 1899 1900 return; 1901 } 1902 1903 static int 1904 bge_dma_alloc(dev) 1905 device_t dev; 1906 { 1907 struct bge_softc *sc; 1908 int nseg, i, error; 1909 struct bge_dmamap_arg ctx; 1910 1911 sc = device_get_softc(dev); 1912 1913 /* 1914 * Allocate the parent bus DMA tag appropriate for PCI. 1915 */ 1916 #define BGE_NSEG_NEW 32 1917 error = bus_dma_tag_create(NULL, /* parent */ 1918 PAGE_SIZE, 0, /* alignment, boundary */ 1919 BUS_SPACE_MAXADDR, /* lowaddr */ 1920 BUS_SPACE_MAXADDR_32BIT,/* highaddr */ 1921 NULL, NULL, /* filter, filterarg */ 1922 MAXBSIZE, BGE_NSEG_NEW, /* maxsize, nsegments */ 1923 BUS_SPACE_MAXSIZE_32BIT,/* maxsegsize */ 1924 BUS_DMA_ALLOCNOW, /* flags */ 1925 NULL, NULL, /* lockfunc, lockarg */ 1926 &sc->bge_cdata.bge_parent_tag); 1927 1928 /* 1929 * Create tag for RX mbufs. 1930 */ 1931 nseg = 32; 1932 error = bus_dma_tag_create(sc->bge_cdata.bge_parent_tag, ETHER_ALIGN, 1933 0, BUS_SPACE_MAXADDR, BUS_SPACE_MAXADDR, NULL, 1934 NULL, MCLBYTES * nseg, nseg, MCLBYTES, 0, NULL, NULL, 1935 &sc->bge_cdata.bge_mtag); 1936 1937 if (error) { 1938 device_printf(dev, "could not allocate dma tag\n"); 1939 return (ENOMEM); 1940 } 1941 1942 /* Create DMA maps for RX buffers */ 1943 1944 for (i = 0; i < BGE_STD_RX_RING_CNT; i++) { 1945 error = bus_dmamap_create(sc->bge_cdata.bge_mtag, 0, 1946 &sc->bge_cdata.bge_rx_std_dmamap[i]); 1947 if (error) { 1948 device_printf(dev, "can't create DMA map for RX\n"); 1949 return(ENOMEM); 1950 } 1951 } 1952 1953 /* Create DMA maps for TX buffers */ 1954 1955 for (i = 0; i < BGE_TX_RING_CNT; i++) { 1956 error = bus_dmamap_create(sc->bge_cdata.bge_mtag, 0, 1957 &sc->bge_cdata.bge_tx_dmamap[i]); 1958 if (error) { 1959 device_printf(dev, "can't create DMA map for RX\n"); 1960 return(ENOMEM); 1961 } 1962 } 1963 1964 /* Create tag for standard RX ring */ 1965 1966 error = bus_dma_tag_create(sc->bge_cdata.bge_parent_tag, 1967 PAGE_SIZE, 0, BUS_SPACE_MAXADDR, BUS_SPACE_MAXADDR, NULL, 1968 NULL, BGE_STD_RX_RING_SZ, 1, BGE_STD_RX_RING_SZ, 0, 1969 NULL, NULL, &sc->bge_cdata.bge_rx_std_ring_tag); 1970 1971 if (error) { 1972 device_printf(dev, "could not allocate dma tag\n"); 1973 return (ENOMEM); 1974 } 1975 1976 /* Allocate DMA'able memory for standard RX ring */ 1977 1978 error = bus_dmamem_alloc(sc->bge_cdata.bge_rx_std_ring_tag, 1979 (void **)&sc->bge_ldata.bge_rx_std_ring, BUS_DMA_NOWAIT, 1980 &sc->bge_cdata.bge_rx_std_ring_map); 1981 if (error) 1982 return (ENOMEM); 1983 1984 bzero((char *)sc->bge_ldata.bge_rx_std_ring, BGE_STD_RX_RING_SZ); 1985 1986 /* Load the address of the standard RX ring */ 1987 1988 ctx.bge_maxsegs = 1; 1989 ctx.sc = sc; 1990 1991 error = bus_dmamap_load(sc->bge_cdata.bge_rx_std_ring_tag, 1992 sc->bge_cdata.bge_rx_std_ring_map, sc->bge_ldata.bge_rx_std_ring, 1993 BGE_STD_RX_RING_SZ, bge_dma_map_addr, &ctx, BUS_DMA_NOWAIT); 1994 1995 if (error) 1996 return (ENOMEM); 1997 1998 sc->bge_ldata.bge_rx_std_ring_paddr = ctx.bge_busaddr; 1999 2000 if (sc->bge_asicrev != BGE_ASICREV_BCM5705) { 2001 2002 /* 2003 * Create tag for jumbo mbufs. 2004 * This is really a bit of a kludge. We allocate a special 2005 * jumbo buffer pool which (thanks to the way our DMA 2006 * memory allocation works) will consist of contiguous 2007 * pages. This means that even though a jumbo buffer might 2008 * be larger than a page size, we don't really need to 2009 * map it into more than one DMA segment. However, the 2010 * default mbuf tag will result in multi-segment mappings, 2011 * so we have to create a special jumbo mbuf tag that 2012 * lets us get away with mapping the jumbo buffers as 2013 * a single segment. I think eventually the driver should 2014 * be changed so that it uses ordinary mbufs and cluster 2015 * buffers, i.e. jumbo frames can span multiple DMA 2016 * descriptors. But that's a project for another day. 2017 */ 2018 2019 error = bus_dma_tag_create(sc->bge_cdata.bge_parent_tag, 2020 ETHER_ALIGN, 0, BUS_SPACE_MAXADDR, BUS_SPACE_MAXADDR, NULL, 2021 NULL, MCLBYTES * nseg, nseg, BGE_JLEN, 0, NULL, NULL, 2022 &sc->bge_cdata.bge_mtag_jumbo); 2023 2024 if (error) { 2025 device_printf(dev, "could not allocate dma tag\n"); 2026 return (ENOMEM); 2027 } 2028 2029 /* Create tag for jumbo RX ring */ 2030 2031 error = bus_dma_tag_create(sc->bge_cdata.bge_parent_tag, 2032 PAGE_SIZE, 0, BUS_SPACE_MAXADDR, BUS_SPACE_MAXADDR, NULL, 2033 NULL, BGE_JUMBO_RX_RING_SZ, 1, BGE_JUMBO_RX_RING_SZ, 0, 2034 NULL, NULL, &sc->bge_cdata.bge_rx_jumbo_ring_tag); 2035 2036 if (error) { 2037 device_printf(dev, "could not allocate dma tag\n"); 2038 return (ENOMEM); 2039 } 2040 2041 /* Allocate DMA'able memory for jumbo RX ring */ 2042 2043 error = bus_dmamem_alloc(sc->bge_cdata.bge_rx_jumbo_ring_tag, 2044 (void **)&sc->bge_ldata.bge_rx_jumbo_ring, BUS_DMA_NOWAIT, 2045 &sc->bge_cdata.bge_rx_jumbo_ring_map); 2046 if (error) 2047 return (ENOMEM); 2048 2049 bzero((char *)sc->bge_ldata.bge_rx_jumbo_ring, 2050 BGE_JUMBO_RX_RING_SZ); 2051 2052 /* Load the address of the jumbo RX ring */ 2053 2054 ctx.bge_maxsegs = 1; 2055 ctx.sc = sc; 2056 2057 error = bus_dmamap_load(sc->bge_cdata.bge_rx_jumbo_ring_tag, 2058 sc->bge_cdata.bge_rx_jumbo_ring_map, 2059 sc->bge_ldata.bge_rx_jumbo_ring, BGE_JUMBO_RX_RING_SZ, 2060 bge_dma_map_addr, &ctx, BUS_DMA_NOWAIT); 2061 2062 if (error) 2063 return (ENOMEM); 2064 2065 sc->bge_ldata.bge_rx_jumbo_ring_paddr = ctx.bge_busaddr; 2066 2067 /* Create DMA maps for jumbo RX buffers */ 2068 2069 for (i = 0; i < BGE_JUMBO_RX_RING_CNT; i++) { 2070 error = bus_dmamap_create(sc->bge_cdata.bge_mtag_jumbo, 2071 0, &sc->bge_cdata.bge_rx_jumbo_dmamap[i]); 2072 if (error) { 2073 device_printf(dev, 2074 "can't create DMA map for RX\n"); 2075 return(ENOMEM); 2076 } 2077 } 2078 2079 } 2080 2081 /* Create tag for RX return ring */ 2082 2083 error = bus_dma_tag_create(sc->bge_cdata.bge_parent_tag, 2084 PAGE_SIZE, 0, BUS_SPACE_MAXADDR, BUS_SPACE_MAXADDR, NULL, 2085 NULL, BGE_RX_RTN_RING_SZ(sc), 1, BGE_RX_RTN_RING_SZ(sc), 0, 2086 NULL, NULL, &sc->bge_cdata.bge_rx_return_ring_tag); 2087 2088 if (error) { 2089 device_printf(dev, "could not allocate dma tag\n"); 2090 return (ENOMEM); 2091 } 2092 2093 /* Allocate DMA'able memory for RX return ring */ 2094 2095 error = bus_dmamem_alloc(sc->bge_cdata.bge_rx_return_ring_tag, 2096 (void **)&sc->bge_ldata.bge_rx_return_ring, BUS_DMA_NOWAIT, 2097 &sc->bge_cdata.bge_rx_return_ring_map); 2098 if (error) 2099 return (ENOMEM); 2100 2101 bzero((char *)sc->bge_ldata.bge_rx_return_ring, 2102 BGE_RX_RTN_RING_SZ(sc)); 2103 2104 /* Load the address of the RX return ring */ 2105 2106 ctx.bge_maxsegs = 1; 2107 ctx.sc = sc; 2108 2109 error = bus_dmamap_load(sc->bge_cdata.bge_rx_return_ring_tag, 2110 sc->bge_cdata.bge_rx_return_ring_map, 2111 sc->bge_ldata.bge_rx_return_ring, BGE_RX_RTN_RING_SZ(sc), 2112 bge_dma_map_addr, &ctx, BUS_DMA_NOWAIT); 2113 2114 if (error) 2115 return (ENOMEM); 2116 2117 sc->bge_ldata.bge_rx_return_ring_paddr = ctx.bge_busaddr; 2118 2119 /* Create tag for TX ring */ 2120 2121 error = bus_dma_tag_create(sc->bge_cdata.bge_parent_tag, 2122 PAGE_SIZE, 0, BUS_SPACE_MAXADDR, BUS_SPACE_MAXADDR, NULL, 2123 NULL, BGE_TX_RING_SZ, 1, BGE_TX_RING_SZ, 0, NULL, NULL, 2124 &sc->bge_cdata.bge_tx_ring_tag); 2125 2126 if (error) { 2127 device_printf(dev, "could not allocate dma tag\n"); 2128 return (ENOMEM); 2129 } 2130 2131 /* Allocate DMA'able memory for TX ring */ 2132 2133 error = bus_dmamem_alloc(sc->bge_cdata.bge_tx_ring_tag, 2134 (void **)&sc->bge_ldata.bge_tx_ring, BUS_DMA_NOWAIT, 2135 &sc->bge_cdata.bge_tx_ring_map); 2136 if (error) 2137 return (ENOMEM); 2138 2139 bzero((char *)sc->bge_ldata.bge_tx_ring, BGE_TX_RING_SZ); 2140 2141 /* Load the address of the TX ring */ 2142 2143 ctx.bge_maxsegs = 1; 2144 ctx.sc = sc; 2145 2146 error = bus_dmamap_load(sc->bge_cdata.bge_tx_ring_tag, 2147 sc->bge_cdata.bge_tx_ring_map, sc->bge_ldata.bge_tx_ring, 2148 BGE_TX_RING_SZ, bge_dma_map_addr, &ctx, BUS_DMA_NOWAIT); 2149 2150 if (error) 2151 return (ENOMEM); 2152 2153 sc->bge_ldata.bge_tx_ring_paddr = ctx.bge_busaddr; 2154 2155 /* Create tag for status block */ 2156 2157 error = bus_dma_tag_create(sc->bge_cdata.bge_parent_tag, 2158 PAGE_SIZE, 0, BUS_SPACE_MAXADDR, BUS_SPACE_MAXADDR, NULL, 2159 NULL, BGE_STATUS_BLK_SZ, 1, BGE_STATUS_BLK_SZ, 0, 2160 NULL, NULL, &sc->bge_cdata.bge_status_tag); 2161 2162 if (error) { 2163 device_printf(dev, "could not allocate dma tag\n"); 2164 return (ENOMEM); 2165 } 2166 2167 /* Allocate DMA'able memory for status block */ 2168 2169 error = bus_dmamem_alloc(sc->bge_cdata.bge_status_tag, 2170 (void **)&sc->bge_ldata.bge_status_block, BUS_DMA_NOWAIT, 2171 &sc->bge_cdata.bge_status_map); 2172 if (error) 2173 return (ENOMEM); 2174 2175 bzero((char *)sc->bge_ldata.bge_status_block, BGE_STATUS_BLK_SZ); 2176 2177 /* Load the address of the status block */ 2178 2179 ctx.sc = sc; 2180 ctx.bge_maxsegs = 1; 2181 2182 error = bus_dmamap_load(sc->bge_cdata.bge_status_tag, 2183 sc->bge_cdata.bge_status_map, sc->bge_ldata.bge_status_block, 2184 BGE_STATUS_BLK_SZ, bge_dma_map_addr, &ctx, BUS_DMA_NOWAIT); 2185 2186 if (error) 2187 return (ENOMEM); 2188 2189 sc->bge_ldata.bge_status_block_paddr = ctx.bge_busaddr; 2190 2191 /* Create tag for statistics block */ 2192 2193 error = bus_dma_tag_create(sc->bge_cdata.bge_parent_tag, 2194 PAGE_SIZE, 0, BUS_SPACE_MAXADDR, BUS_SPACE_MAXADDR, NULL, 2195 NULL, BGE_STATS_SZ, 1, BGE_STATS_SZ, 0, NULL, NULL, 2196 &sc->bge_cdata.bge_stats_tag); 2197 2198 if (error) { 2199 device_printf(dev, "could not allocate dma tag\n"); 2200 return (ENOMEM); 2201 } 2202 2203 /* Allocate DMA'able memory for statistics block */ 2204 2205 error = bus_dmamem_alloc(sc->bge_cdata.bge_stats_tag, 2206 (void **)&sc->bge_ldata.bge_stats, BUS_DMA_NOWAIT, 2207 &sc->bge_cdata.bge_stats_map); 2208 if (error) 2209 return (ENOMEM); 2210 2211 bzero((char *)sc->bge_ldata.bge_stats, BGE_STATS_SZ); 2212 2213 /* Load the address of the statstics block */ 2214 2215 ctx.sc = sc; 2216 ctx.bge_maxsegs = 1; 2217 2218 error = bus_dmamap_load(sc->bge_cdata.bge_stats_tag, 2219 sc->bge_cdata.bge_stats_map, sc->bge_ldata.bge_stats, 2220 BGE_STATS_SZ, bge_dma_map_addr, &ctx, BUS_DMA_NOWAIT); 2221 2222 if (error) 2223 return (ENOMEM); 2224 2225 sc->bge_ldata.bge_stats_paddr = ctx.bge_busaddr; 2226 2227 return(0); 2228 } 2229 2230 static int 2231 bge_attach(dev) 2232 device_t dev; 2233 { 2234 struct ifnet *ifp; 2235 struct bge_softc *sc; 2236 u_int32_t hwcfg = 0; 2237 u_int32_t mac_addr = 0; 2238 int unit, error = 0, rid; 2239 2240 sc = device_get_softc(dev); 2241 unit = device_get_unit(dev); 2242 sc->bge_dev = dev; 2243 sc->bge_unit = unit; 2244 2245 /* 2246 * Map control/status registers. 2247 */ 2248 pci_enable_busmaster(dev); 2249 2250 rid = BGE_PCI_BAR0; 2251 sc->bge_res = bus_alloc_resource(dev, SYS_RES_MEMORY, &rid, 2252 0, ~0, 1, RF_ACTIVE|PCI_RF_DENSE); 2253 2254 if (sc->bge_res == NULL) { 2255 printf ("bge%d: couldn't map memory\n", unit); 2256 error = ENXIO; 2257 goto fail; 2258 } 2259 2260 sc->bge_btag = rman_get_bustag(sc->bge_res); 2261 sc->bge_bhandle = rman_get_bushandle(sc->bge_res); 2262 sc->bge_vhandle = (vm_offset_t)rman_get_virtual(sc->bge_res); 2263 2264 /* Allocate interrupt */ 2265 rid = 0; 2266 2267 sc->bge_irq = bus_alloc_resource(dev, SYS_RES_IRQ, &rid, 0, ~0, 1, 2268 RF_SHAREABLE | RF_ACTIVE); 2269 2270 if (sc->bge_irq == NULL) { 2271 printf("bge%d: couldn't map interrupt\n", unit); 2272 error = ENXIO; 2273 goto fail; 2274 } 2275 2276 sc->bge_unit = unit; 2277 2278 BGE_LOCK_INIT(sc, device_get_nameunit(dev)); 2279 2280 /* Try to reset the chip. */ 2281 bge_reset(sc); 2282 2283 if (bge_chipinit(sc)) { 2284 printf("bge%d: chip initialization failed\n", sc->bge_unit); 2285 bge_release_resources(sc); 2286 error = ENXIO; 2287 goto fail; 2288 } 2289 2290 /* 2291 * Get station address from the EEPROM. 2292 */ 2293 mac_addr = bge_readmem_ind(sc, 0x0c14); 2294 if ((mac_addr >> 16) == 0x484b) { 2295 sc->arpcom.ac_enaddr[0] = (u_char)(mac_addr >> 8); 2296 sc->arpcom.ac_enaddr[1] = (u_char)mac_addr; 2297 mac_addr = bge_readmem_ind(sc, 0x0c18); 2298 sc->arpcom.ac_enaddr[2] = (u_char)(mac_addr >> 24); 2299 sc->arpcom.ac_enaddr[3] = (u_char)(mac_addr >> 16); 2300 sc->arpcom.ac_enaddr[4] = (u_char)(mac_addr >> 8); 2301 sc->arpcom.ac_enaddr[5] = (u_char)mac_addr; 2302 } else if (bge_read_eeprom(sc, (caddr_t)&sc->arpcom.ac_enaddr, 2303 BGE_EE_MAC_OFFSET + 2, ETHER_ADDR_LEN)) { 2304 printf("bge%d: failed to read station address\n", unit); 2305 bge_release_resources(sc); 2306 error = ENXIO; 2307 goto fail; 2308 } 2309 2310 /* 2311 * A Broadcom chip was detected. Inform the world. 2312 */ 2313 printf("bge%d: Ethernet address: %6D\n", unit, 2314 sc->arpcom.ac_enaddr, ":"); 2315 2316 /* Save ASIC rev. */ 2317 2318 sc->bge_chipid = 2319 pci_read_config(dev, BGE_PCI_MISC_CTL, 4) & 2320 BGE_PCIMISCCTL_ASICREV; 2321 sc->bge_asicrev = BGE_ASICREV(sc->bge_chipid); 2322 sc->bge_chiprev = BGE_CHIPREV(sc->bge_chipid); 2323 2324 /* 5705 limits RX return ring to 512 entries. */ 2325 if (sc->bge_asicrev == BGE_ASICREV_BCM5705) 2326 sc->bge_return_ring_cnt = BGE_RETURN_RING_CNT_5705; 2327 else 2328 sc->bge_return_ring_cnt = BGE_RETURN_RING_CNT; 2329 2330 if (bge_dma_alloc(dev)) { 2331 printf ("bge%d: failed to allocate DMA resources\n", 2332 sc->bge_unit); 2333 bge_release_resources(sc); 2334 error = ENXIO; 2335 goto fail; 2336 } 2337 2338 /* 2339 * Try to allocate memory for jumbo buffers. 2340 * The 5705 does not appear to support jumbo frames. 2341 */ 2342 if (sc->bge_asicrev != BGE_ASICREV_BCM5705) { 2343 if (bge_alloc_jumbo_mem(sc)) { 2344 printf("bge%d: jumbo buffer allocation " 2345 "failed\n", sc->bge_unit); 2346 bge_release_resources(sc); 2347 error = ENXIO; 2348 goto fail; 2349 } 2350 } 2351 2352 /* Set default tuneable values. */ 2353 sc->bge_stat_ticks = BGE_TICKS_PER_SEC; 2354 sc->bge_rx_coal_ticks = 150; 2355 sc->bge_tx_coal_ticks = 150; 2356 sc->bge_rx_max_coal_bds = 64; 2357 sc->bge_tx_max_coal_bds = 128; 2358 2359 /* Set up ifnet structure */ 2360 ifp = &sc->arpcom.ac_if; 2361 ifp->if_softc = sc; 2362 if_initname(ifp, device_get_name(dev), device_get_unit(dev)); 2363 ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST; 2364 ifp->if_ioctl = bge_ioctl; 2365 ifp->if_output = ether_output; 2366 ifp->if_start = bge_start; 2367 ifp->if_watchdog = bge_watchdog; 2368 ifp->if_init = bge_init; 2369 ifp->if_mtu = ETHERMTU; 2370 ifp->if_snd.ifq_maxlen = BGE_TX_RING_CNT - 1; 2371 ifp->if_hwassist = BGE_CSUM_FEATURES; 2372 ifp->if_capabilities = IFCAP_HWCSUM | IFCAP_VLAN_HWTAGGING | 2373 IFCAP_VLAN_MTU; 2374 ifp->if_capenable = ifp->if_capabilities; 2375 2376 /* 2377 * Figure out what sort of media we have by checking the 2378 * hardware config word in the first 32k of NIC internal memory, 2379 * or fall back to examining the EEPROM if necessary. 2380 * Note: on some BCM5700 cards, this value appears to be unset. 2381 * If that's the case, we have to rely on identifying the NIC 2382 * by its PCI subsystem ID, as we do below for the SysKonnect 2383 * SK-9D41. 2384 */ 2385 if (bge_readmem_ind(sc, BGE_SOFTWARE_GENCOMM_SIG) == BGE_MAGIC_NUMBER) 2386 hwcfg = bge_readmem_ind(sc, BGE_SOFTWARE_GENCOMM_NICCFG); 2387 else { 2388 bge_read_eeprom(sc, (caddr_t)&hwcfg, 2389 BGE_EE_HWCFG_OFFSET, sizeof(hwcfg)); 2390 hwcfg = ntohl(hwcfg); 2391 } 2392 2393 if ((hwcfg & BGE_HWCFG_MEDIA) == BGE_MEDIA_FIBER) 2394 sc->bge_tbi = 1; 2395 2396 /* The SysKonnect SK-9D41 is a 1000baseSX card. */ 2397 if ((pci_read_config(dev, BGE_PCI_SUBSYS, 4) >> 16) == SK_SUBSYSID_9D41) 2398 sc->bge_tbi = 1; 2399 2400 if (sc->bge_tbi) { 2401 ifmedia_init(&sc->bge_ifmedia, IFM_IMASK, 2402 bge_ifmedia_upd, bge_ifmedia_sts); 2403 ifmedia_add(&sc->bge_ifmedia, IFM_ETHER|IFM_1000_SX, 0, NULL); 2404 ifmedia_add(&sc->bge_ifmedia, 2405 IFM_ETHER|IFM_1000_SX|IFM_FDX, 0, NULL); 2406 ifmedia_add(&sc->bge_ifmedia, IFM_ETHER|IFM_AUTO, 0, NULL); 2407 ifmedia_set(&sc->bge_ifmedia, IFM_ETHER|IFM_AUTO); 2408 } else { 2409 /* 2410 * Do transceiver setup. 2411 */ 2412 if (mii_phy_probe(dev, &sc->bge_miibus, 2413 bge_ifmedia_upd, bge_ifmedia_sts)) { 2414 printf("bge%d: MII without any PHY!\n", sc->bge_unit); 2415 bge_release_resources(sc); 2416 bge_free_jumbo_mem(sc); 2417 error = ENXIO; 2418 goto fail; 2419 } 2420 } 2421 2422 /* 2423 * When using the BCM5701 in PCI-X mode, data corruption has 2424 * been observed in the first few bytes of some received packets. 2425 * Aligning the packet buffer in memory eliminates the corruption. 2426 * Unfortunately, this misaligns the packet payloads. On platforms 2427 * which do not support unaligned accesses, we will realign the 2428 * payloads by copying the received packets. 2429 */ 2430 switch (sc->bge_chipid) { 2431 case BGE_CHIPID_BCM5701_A0: 2432 case BGE_CHIPID_BCM5701_B0: 2433 case BGE_CHIPID_BCM5701_B2: 2434 case BGE_CHIPID_BCM5701_B5: 2435 /* If in PCI-X mode, work around the alignment bug. */ 2436 if ((pci_read_config(dev, BGE_PCI_PCISTATE, 4) & 2437 (BGE_PCISTATE_PCI_BUSMODE | BGE_PCISTATE_PCI_BUSSPEED)) == 2438 BGE_PCISTATE_PCI_BUSSPEED) 2439 sc->bge_rx_alignment_bug = 1; 2440 break; 2441 } 2442 2443 /* 2444 * Call MI attach routine. 2445 */ 2446 ether_ifattach(ifp, sc->arpcom.ac_enaddr); 2447 callout_init(&sc->bge_stat_ch, CALLOUT_MPSAFE); 2448 2449 /* 2450 * Hookup IRQ last. 2451 */ 2452 error = bus_setup_intr(dev, sc->bge_irq, INTR_TYPE_NET | INTR_MPSAFE, 2453 bge_intr, sc, &sc->bge_intrhand); 2454 2455 if (error) { 2456 bge_release_resources(sc); 2457 printf("bge%d: couldn't set up irq\n", unit); 2458 } 2459 2460 fail: 2461 return(error); 2462 } 2463 2464 static int 2465 bge_detach(dev) 2466 device_t dev; 2467 { 2468 struct bge_softc *sc; 2469 struct ifnet *ifp; 2470 2471 sc = device_get_softc(dev); 2472 ifp = &sc->arpcom.ac_if; 2473 2474 BGE_LOCK(sc); 2475 bge_stop(sc); 2476 bge_reset(sc); 2477 BGE_UNLOCK(sc); 2478 2479 ether_ifdetach(ifp); 2480 2481 if (sc->bge_tbi) { 2482 ifmedia_removeall(&sc->bge_ifmedia); 2483 } else { 2484 bus_generic_detach(dev); 2485 device_delete_child(dev, sc->bge_miibus); 2486 } 2487 2488 bge_release_resources(sc); 2489 if (sc->bge_asicrev != BGE_ASICREV_BCM5705) 2490 bge_free_jumbo_mem(sc); 2491 2492 return(0); 2493 } 2494 2495 static void 2496 bge_release_resources(sc) 2497 struct bge_softc *sc; 2498 { 2499 device_t dev; 2500 2501 dev = sc->bge_dev; 2502 2503 if (sc->bge_vpd_prodname != NULL) 2504 free(sc->bge_vpd_prodname, M_DEVBUF); 2505 2506 if (sc->bge_vpd_readonly != NULL) 2507 free(sc->bge_vpd_readonly, M_DEVBUF); 2508 2509 if (sc->bge_intrhand != NULL) 2510 bus_teardown_intr(dev, sc->bge_irq, sc->bge_intrhand); 2511 2512 if (sc->bge_irq != NULL) 2513 bus_release_resource(dev, SYS_RES_IRQ, 0, sc->bge_irq); 2514 2515 if (sc->bge_res != NULL) 2516 bus_release_resource(dev, SYS_RES_MEMORY, 2517 BGE_PCI_BAR0, sc->bge_res); 2518 2519 bge_dma_free(sc); 2520 2521 if (mtx_initialized(&sc->bge_mtx)) /* XXX */ 2522 BGE_LOCK_DESTROY(sc); 2523 2524 return; 2525 } 2526 2527 static void 2528 bge_reset(sc) 2529 struct bge_softc *sc; 2530 { 2531 device_t dev; 2532 u_int32_t cachesize, command, pcistate; 2533 int i, val = 0; 2534 2535 dev = sc->bge_dev; 2536 2537 /* Save some important PCI state. */ 2538 cachesize = pci_read_config(dev, BGE_PCI_CACHESZ, 4); 2539 command = pci_read_config(dev, BGE_PCI_CMD, 4); 2540 pcistate = pci_read_config(dev, BGE_PCI_PCISTATE, 4); 2541 2542 pci_write_config(dev, BGE_PCI_MISC_CTL, 2543 BGE_PCIMISCCTL_INDIRECT_ACCESS|BGE_PCIMISCCTL_MASK_PCI_INTR| 2544 BGE_PCIMISCCTL_ENDIAN_WORDSWAP|BGE_PCIMISCCTL_PCISTATE_RW, 4); 2545 2546 /* Issue global reset */ 2547 bge_writereg_ind(sc, BGE_MISC_CFG, 2548 BGE_MISCCFG_RESET_CORE_CLOCKS|(65<<1)); 2549 2550 DELAY(1000); 2551 2552 /* Reset some of the PCI state that got zapped by reset */ 2553 pci_write_config(dev, BGE_PCI_MISC_CTL, 2554 BGE_PCIMISCCTL_INDIRECT_ACCESS|BGE_PCIMISCCTL_MASK_PCI_INTR| 2555 BGE_PCIMISCCTL_ENDIAN_WORDSWAP|BGE_PCIMISCCTL_PCISTATE_RW, 4); 2556 pci_write_config(dev, BGE_PCI_CACHESZ, cachesize, 4); 2557 pci_write_config(dev, BGE_PCI_CMD, command, 4); 2558 bge_writereg_ind(sc, BGE_MISC_CFG, (65 << 1)); 2559 2560 /* 2561 * Prevent PXE restart: write a magic number to the 2562 * general communications memory at 0xB50. 2563 */ 2564 bge_writemem_ind(sc, BGE_SOFTWARE_GENCOMM, BGE_MAGIC_NUMBER); 2565 /* 2566 * Poll the value location we just wrote until 2567 * we see the 1's complement of the magic number. 2568 * This indicates that the firmware initialization 2569 * is complete. 2570 */ 2571 for (i = 0; i < BGE_TIMEOUT; i++) { 2572 val = bge_readmem_ind(sc, BGE_SOFTWARE_GENCOMM); 2573 if (val == ~BGE_MAGIC_NUMBER) 2574 break; 2575 DELAY(10); 2576 } 2577 2578 if (i == BGE_TIMEOUT) { 2579 printf("bge%d: firmware handshake timed out\n", sc->bge_unit); 2580 return; 2581 } 2582 2583 /* 2584 * XXX Wait for the value of the PCISTATE register to 2585 * return to its original pre-reset state. This is a 2586 * fairly good indicator of reset completion. If we don't 2587 * wait for the reset to fully complete, trying to read 2588 * from the device's non-PCI registers may yield garbage 2589 * results. 2590 */ 2591 for (i = 0; i < BGE_TIMEOUT; i++) { 2592 if (pci_read_config(dev, BGE_PCI_PCISTATE, 4) == pcistate) 2593 break; 2594 DELAY(10); 2595 } 2596 2597 /* Enable memory arbiter. */ 2598 if (sc->bge_asicrev != BGE_ASICREV_BCM5705) 2599 CSR_WRITE_4(sc, BGE_MARB_MODE, BGE_MARBMODE_ENABLE); 2600 2601 /* Fix up byte swapping */ 2602 CSR_WRITE_4(sc, BGE_MODE_CTL, BGE_MODECTL_BYTESWAP_NONFRAME| 2603 BGE_MODECTL_BYTESWAP_DATA); 2604 2605 CSR_WRITE_4(sc, BGE_MAC_MODE, 0); 2606 2607 DELAY(10000); 2608 2609 return; 2610 } 2611 2612 /* 2613 * Frame reception handling. This is called if there's a frame 2614 * on the receive return list. 2615 * 2616 * Note: we have to be able to handle two possibilities here: 2617 * 1) the frame is from the jumbo recieve ring 2618 * 2) the frame is from the standard receive ring 2619 */ 2620 2621 static void 2622 bge_rxeof(sc) 2623 struct bge_softc *sc; 2624 { 2625 struct ifnet *ifp; 2626 int stdcnt = 0, jumbocnt = 0; 2627 2628 BGE_LOCK_ASSERT(sc); 2629 2630 ifp = &sc->arpcom.ac_if; 2631 2632 bus_dmamap_sync(sc->bge_cdata.bge_rx_return_ring_tag, 2633 sc->bge_cdata.bge_rx_return_ring_map, BUS_DMASYNC_POSTWRITE); 2634 bus_dmamap_sync(sc->bge_cdata.bge_rx_std_ring_tag, 2635 sc->bge_cdata.bge_rx_std_ring_map, BUS_DMASYNC_POSTREAD); 2636 if (sc->bge_asicrev != BGE_ASICREV_BCM5705) { 2637 bus_dmamap_sync(sc->bge_cdata.bge_rx_jumbo_ring_tag, 2638 sc->bge_cdata.bge_rx_jumbo_ring_map, 2639 BUS_DMASYNC_POSTREAD); 2640 } 2641 2642 while(sc->bge_rx_saved_considx != 2643 sc->bge_ldata.bge_status_block->bge_idx[0].bge_rx_prod_idx) { 2644 struct bge_rx_bd *cur_rx; 2645 u_int32_t rxidx; 2646 struct ether_header *eh; 2647 struct mbuf *m = NULL; 2648 u_int16_t vlan_tag = 0; 2649 int have_tag = 0; 2650 2651 cur_rx = 2652 &sc->bge_ldata.bge_rx_return_ring[sc->bge_rx_saved_considx]; 2653 2654 rxidx = cur_rx->bge_idx; 2655 BGE_INC(sc->bge_rx_saved_considx, sc->bge_return_ring_cnt); 2656 2657 if (cur_rx->bge_flags & BGE_RXBDFLAG_VLAN_TAG) { 2658 have_tag = 1; 2659 vlan_tag = cur_rx->bge_vlan_tag; 2660 } 2661 2662 if (cur_rx->bge_flags & BGE_RXBDFLAG_JUMBO_RING) { 2663 BGE_INC(sc->bge_jumbo, BGE_JUMBO_RX_RING_CNT); 2664 bus_dmamap_sync(sc->bge_cdata.bge_mtag_jumbo, 2665 sc->bge_cdata.bge_rx_jumbo_dmamap[rxidx], 2666 BUS_DMASYNC_POSTREAD); 2667 bus_dmamap_unload(sc->bge_cdata.bge_mtag_jumbo, 2668 sc->bge_cdata.bge_rx_jumbo_dmamap[rxidx]); 2669 m = sc->bge_cdata.bge_rx_jumbo_chain[rxidx]; 2670 sc->bge_cdata.bge_rx_jumbo_chain[rxidx] = NULL; 2671 jumbocnt++; 2672 if (cur_rx->bge_flags & BGE_RXBDFLAG_ERROR) { 2673 ifp->if_ierrors++; 2674 bge_newbuf_jumbo(sc, sc->bge_jumbo, m); 2675 continue; 2676 } 2677 if (bge_newbuf_jumbo(sc, 2678 sc->bge_jumbo, NULL) == ENOBUFS) { 2679 ifp->if_ierrors++; 2680 bge_newbuf_jumbo(sc, sc->bge_jumbo, m); 2681 continue; 2682 } 2683 } else { 2684 BGE_INC(sc->bge_std, BGE_STD_RX_RING_CNT); 2685 bus_dmamap_sync(sc->bge_cdata.bge_mtag, 2686 sc->bge_cdata.bge_rx_std_dmamap[rxidx], 2687 BUS_DMASYNC_POSTREAD); 2688 bus_dmamap_unload(sc->bge_cdata.bge_mtag, 2689 sc->bge_cdata.bge_rx_std_dmamap[rxidx]); 2690 m = sc->bge_cdata.bge_rx_std_chain[rxidx]; 2691 sc->bge_cdata.bge_rx_std_chain[rxidx] = NULL; 2692 stdcnt++; 2693 if (cur_rx->bge_flags & BGE_RXBDFLAG_ERROR) { 2694 ifp->if_ierrors++; 2695 bge_newbuf_std(sc, sc->bge_std, m); 2696 continue; 2697 } 2698 if (bge_newbuf_std(sc, sc->bge_std, 2699 NULL) == ENOBUFS) { 2700 ifp->if_ierrors++; 2701 bge_newbuf_std(sc, sc->bge_std, m); 2702 continue; 2703 } 2704 } 2705 2706 ifp->if_ipackets++; 2707 #ifndef __i386__ 2708 /* 2709 * The i386 allows unaligned accesses, but for other 2710 * platforms we must make sure the payload is aligned. 2711 */ 2712 if (sc->bge_rx_alignment_bug) { 2713 bcopy(m->m_data, m->m_data + ETHER_ALIGN, 2714 cur_rx->bge_len); 2715 m->m_data += ETHER_ALIGN; 2716 } 2717 #endif 2718 eh = mtod(m, struct ether_header *); 2719 m->m_pkthdr.len = m->m_len = cur_rx->bge_len - ETHER_CRC_LEN; 2720 m->m_pkthdr.rcvif = ifp; 2721 2722 #if 0 /* currently broken for some packets, possibly related to TCP options */ 2723 if (ifp->if_hwassist) { 2724 m->m_pkthdr.csum_flags |= CSUM_IP_CHECKED; 2725 if ((cur_rx->bge_ip_csum ^ 0xffff) == 0) 2726 m->m_pkthdr.csum_flags |= CSUM_IP_VALID; 2727 if (cur_rx->bge_flags & BGE_RXBDFLAG_TCP_UDP_CSUM) { 2728 m->m_pkthdr.csum_data = 2729 cur_rx->bge_tcp_udp_csum; 2730 m->m_pkthdr.csum_flags |= CSUM_DATA_VALID; 2731 } 2732 } 2733 #endif 2734 2735 /* 2736 * If we received a packet with a vlan tag, 2737 * attach that information to the packet. 2738 */ 2739 if (have_tag) 2740 VLAN_INPUT_TAG(ifp, m, vlan_tag, continue); 2741 2742 BGE_UNLOCK(sc); 2743 (*ifp->if_input)(ifp, m); 2744 BGE_LOCK(sc); 2745 } 2746 2747 bus_dmamap_sync(sc->bge_cdata.bge_rx_return_ring_tag, 2748 sc->bge_cdata.bge_rx_return_ring_map, BUS_DMASYNC_PREWRITE); 2749 bus_dmamap_sync(sc->bge_cdata.bge_rx_std_ring_tag, 2750 sc->bge_cdata.bge_rx_std_ring_map, 2751 BUS_DMASYNC_POSTREAD|BUS_DMASYNC_PREWRITE); 2752 if (sc->bge_asicrev != BGE_ASICREV_BCM5705) { 2753 bus_dmamap_sync(sc->bge_cdata.bge_rx_jumbo_ring_tag, 2754 sc->bge_cdata.bge_rx_jumbo_ring_map, 2755 BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE); 2756 } 2757 2758 CSR_WRITE_4(sc, BGE_MBX_RX_CONS0_LO, sc->bge_rx_saved_considx); 2759 if (stdcnt) 2760 CSR_WRITE_4(sc, BGE_MBX_RX_STD_PROD_LO, sc->bge_std); 2761 if (jumbocnt) 2762 CSR_WRITE_4(sc, BGE_MBX_RX_JUMBO_PROD_LO, sc->bge_jumbo); 2763 2764 return; 2765 } 2766 2767 static void 2768 bge_txeof(sc) 2769 struct bge_softc *sc; 2770 { 2771 struct bge_tx_bd *cur_tx = NULL; 2772 struct ifnet *ifp; 2773 2774 BGE_LOCK_ASSERT(sc); 2775 2776 ifp = &sc->arpcom.ac_if; 2777 2778 /* 2779 * Go through our tx ring and free mbufs for those 2780 * frames that have been sent. 2781 */ 2782 while (sc->bge_tx_saved_considx != 2783 sc->bge_ldata.bge_status_block->bge_idx[0].bge_tx_cons_idx) { 2784 u_int32_t idx = 0; 2785 2786 idx = sc->bge_tx_saved_considx; 2787 cur_tx = &sc->bge_ldata.bge_tx_ring[idx]; 2788 if (cur_tx->bge_flags & BGE_TXBDFLAG_END) 2789 ifp->if_opackets++; 2790 if (sc->bge_cdata.bge_tx_chain[idx] != NULL) { 2791 m_freem(sc->bge_cdata.bge_tx_chain[idx]); 2792 sc->bge_cdata.bge_tx_chain[idx] = NULL; 2793 bus_dmamap_unload(sc->bge_cdata.bge_mtag, 2794 sc->bge_cdata.bge_tx_dmamap[idx]); 2795 } 2796 sc->bge_txcnt--; 2797 BGE_INC(sc->bge_tx_saved_considx, BGE_TX_RING_CNT); 2798 ifp->if_timer = 0; 2799 } 2800 2801 if (cur_tx != NULL) 2802 ifp->if_flags &= ~IFF_OACTIVE; 2803 2804 return; 2805 } 2806 2807 static void 2808 bge_intr(xsc) 2809 void *xsc; 2810 { 2811 struct bge_softc *sc; 2812 struct ifnet *ifp; 2813 u_int32_t statusword; 2814 u_int32_t status; 2815 2816 sc = xsc; 2817 ifp = &sc->arpcom.ac_if; 2818 2819 BGE_LOCK(sc); 2820 2821 bus_dmamap_sync(sc->bge_cdata.bge_status_tag, 2822 sc->bge_cdata.bge_status_map, BUS_DMASYNC_POSTWRITE); 2823 2824 statusword = 2825 atomic_readandclear_32(&sc->bge_ldata.bge_status_block->bge_status); 2826 2827 #ifdef notdef 2828 /* Avoid this for now -- checking this register is expensive. */ 2829 /* Make sure this is really our interrupt. */ 2830 if (!(CSR_READ_4(sc, BGE_MISC_LOCAL_CTL) & BGE_MLC_INTR_STATE)) 2831 return; 2832 #endif 2833 /* Ack interrupt and stop others from occuring. */ 2834 CSR_WRITE_4(sc, BGE_MBX_IRQ0_LO, 1); 2835 2836 /* 2837 * Process link state changes. 2838 * Grrr. The link status word in the status block does 2839 * not work correctly on the BCM5700 rev AX and BX chips, 2840 * according to all avaibable information. Hence, we have 2841 * to enable MII interrupts in order to properly obtain 2842 * async link changes. Unfortunately, this also means that 2843 * we have to read the MAC status register to detect link 2844 * changes, thereby adding an additional register access to 2845 * the interrupt handler. 2846 */ 2847 2848 if (sc->bge_asicrev == BGE_ASICREV_BCM5700) { 2849 2850 status = CSR_READ_4(sc, BGE_MAC_STS); 2851 if (status & BGE_MACSTAT_MI_INTERRUPT) { 2852 sc->bge_link = 0; 2853 callout_stop(&sc->bge_stat_ch); 2854 bge_tick_locked(sc); 2855 /* Clear the interrupt */ 2856 CSR_WRITE_4(sc, BGE_MAC_EVT_ENB, 2857 BGE_EVTENB_MI_INTERRUPT); 2858 bge_miibus_readreg(sc->bge_dev, 1, BRGPHY_MII_ISR); 2859 bge_miibus_writereg(sc->bge_dev, 1, BRGPHY_MII_IMR, 2860 BRGPHY_INTRS); 2861 } 2862 } else { 2863 if (statusword & BGE_STATFLAG_LINKSTATE_CHANGED) { 2864 /* 2865 * Sometimes PCS encoding errors are detected in 2866 * TBI mode (on fiber NICs), and for some reason 2867 * the chip will signal them as link changes. 2868 * If we get a link change event, but the 'PCS 2869 * encoding error' bit in the MAC status register 2870 * is set, don't bother doing a link check. 2871 * This avoids spurious "gigabit link up" messages 2872 * that sometimes appear on fiber NICs during 2873 * periods of heavy traffic. (There should be no 2874 * effect on copper NICs.) 2875 */ 2876 status = CSR_READ_4(sc, BGE_MAC_STS); 2877 if (!(status & (BGE_MACSTAT_PORT_DECODE_ERROR| 2878 BGE_MACSTAT_MI_COMPLETE))) { 2879 sc->bge_link = 0; 2880 callout_stop(&sc->bge_stat_ch); 2881 bge_tick_locked(sc); 2882 } 2883 /* Clear the interrupt */ 2884 CSR_WRITE_4(sc, BGE_MAC_STS, BGE_MACSTAT_SYNC_CHANGED| 2885 BGE_MACSTAT_CFG_CHANGED|BGE_MACSTAT_MI_COMPLETE| 2886 BGE_MACSTAT_LINK_CHANGED); 2887 2888 /* Force flush the status block cached by PCI bridge */ 2889 CSR_READ_4(sc, BGE_MBX_IRQ0_LO); 2890 } 2891 } 2892 2893 if (ifp->if_flags & IFF_RUNNING) { 2894 /* Check RX return ring producer/consumer */ 2895 bge_rxeof(sc); 2896 2897 /* Check TX ring producer/consumer */ 2898 bge_txeof(sc); 2899 } 2900 2901 bus_dmamap_sync(sc->bge_cdata.bge_status_tag, 2902 sc->bge_cdata.bge_status_map, BUS_DMASYNC_PREWRITE); 2903 2904 bge_handle_events(sc); 2905 2906 /* Re-enable interrupts. */ 2907 CSR_WRITE_4(sc, BGE_MBX_IRQ0_LO, 0); 2908 2909 if (ifp->if_flags & IFF_RUNNING && ifp->if_snd.ifq_head != NULL) 2910 bge_start_locked(ifp); 2911 2912 BGE_UNLOCK(sc); 2913 2914 return; 2915 } 2916 2917 static void 2918 bge_tick_locked(sc) 2919 struct bge_softc *sc; 2920 { 2921 struct mii_data *mii = NULL; 2922 struct ifmedia *ifm = NULL; 2923 struct ifnet *ifp; 2924 2925 ifp = &sc->arpcom.ac_if; 2926 2927 BGE_LOCK_ASSERT(sc); 2928 2929 if (sc->bge_asicrev == BGE_ASICREV_BCM5705) 2930 bge_stats_update_regs(sc); 2931 else 2932 bge_stats_update(sc); 2933 callout_reset(&sc->bge_stat_ch, hz, bge_tick, sc); 2934 if (sc->bge_link) 2935 return; 2936 2937 if (sc->bge_tbi) { 2938 ifm = &sc->bge_ifmedia; 2939 if (CSR_READ_4(sc, BGE_MAC_STS) & 2940 BGE_MACSTAT_TBI_PCS_SYNCHED) { 2941 sc->bge_link++; 2942 CSR_WRITE_4(sc, BGE_MAC_STS, 0xFFFFFFFF); 2943 printf("bge%d: gigabit link up\n", sc->bge_unit); 2944 if (ifp->if_snd.ifq_head != NULL) 2945 bge_start_locked(ifp); 2946 } 2947 return; 2948 } 2949 2950 mii = device_get_softc(sc->bge_miibus); 2951 mii_tick(mii); 2952 2953 if (!sc->bge_link && mii->mii_media_status & IFM_ACTIVE && 2954 IFM_SUBTYPE(mii->mii_media_active) != IFM_NONE) { 2955 sc->bge_link++; 2956 if (IFM_SUBTYPE(mii->mii_media_active) == IFM_1000_T || 2957 IFM_SUBTYPE(mii->mii_media_active) == IFM_1000_SX) 2958 printf("bge%d: gigabit link up\n", 2959 sc->bge_unit); 2960 if (ifp->if_snd.ifq_head != NULL) 2961 bge_start_locked(ifp); 2962 } 2963 2964 return; 2965 } 2966 2967 static void 2968 bge_tick(xsc) 2969 void *xsc; 2970 { 2971 struct bge_softc *sc; 2972 2973 sc = xsc; 2974 2975 BGE_LOCK(sc); 2976 bge_tick_locked(sc); 2977 BGE_UNLOCK(sc); 2978 } 2979 2980 static void 2981 bge_stats_update_regs(sc) 2982 struct bge_softc *sc; 2983 { 2984 struct ifnet *ifp; 2985 struct bge_mac_stats_regs stats; 2986 u_int32_t *s; 2987 int i; 2988 2989 ifp = &sc->arpcom.ac_if; 2990 2991 s = (u_int32_t *)&stats; 2992 for (i = 0; i < sizeof(struct bge_mac_stats_regs); i += 4) { 2993 *s = CSR_READ_4(sc, BGE_RX_STATS + i); 2994 s++; 2995 } 2996 2997 ifp->if_collisions += 2998 (stats.dot3StatsSingleCollisionFrames + 2999 stats.dot3StatsMultipleCollisionFrames + 3000 stats.dot3StatsExcessiveCollisions + 3001 stats.dot3StatsLateCollisions) - 3002 ifp->if_collisions; 3003 3004 return; 3005 } 3006 3007 static void 3008 bge_stats_update(sc) 3009 struct bge_softc *sc; 3010 { 3011 struct ifnet *ifp; 3012 struct bge_stats *stats; 3013 3014 ifp = &sc->arpcom.ac_if; 3015 3016 stats = (struct bge_stats *)(sc->bge_vhandle + 3017 BGE_MEMWIN_START + BGE_STATS_BLOCK); 3018 3019 ifp->if_collisions += 3020 (stats->txstats.dot3StatsSingleCollisionFrames.bge_addr_lo + 3021 stats->txstats.dot3StatsMultipleCollisionFrames.bge_addr_lo + 3022 stats->txstats.dot3StatsExcessiveCollisions.bge_addr_lo + 3023 stats->txstats.dot3StatsLateCollisions.bge_addr_lo) - 3024 ifp->if_collisions; 3025 3026 #ifdef notdef 3027 ifp->if_collisions += 3028 (sc->bge_rdata->bge_info.bge_stats.dot3StatsSingleCollisionFrames + 3029 sc->bge_rdata->bge_info.bge_stats.dot3StatsMultipleCollisionFrames + 3030 sc->bge_rdata->bge_info.bge_stats.dot3StatsExcessiveCollisions + 3031 sc->bge_rdata->bge_info.bge_stats.dot3StatsLateCollisions) - 3032 ifp->if_collisions; 3033 #endif 3034 3035 return; 3036 } 3037 3038 /* 3039 * Encapsulate an mbuf chain in the tx ring by coupling the mbuf data 3040 * pointers to descriptors. 3041 */ 3042 static int 3043 bge_encap(sc, m_head, txidx) 3044 struct bge_softc *sc; 3045 struct mbuf *m_head; 3046 u_int32_t *txidx; 3047 { 3048 struct bge_tx_bd *f = NULL; 3049 u_int16_t csum_flags = 0; 3050 struct m_tag *mtag; 3051 struct bge_dmamap_arg ctx; 3052 bus_dmamap_t map; 3053 int error; 3054 3055 3056 if (m_head->m_pkthdr.csum_flags) { 3057 if (m_head->m_pkthdr.csum_flags & CSUM_IP) 3058 csum_flags |= BGE_TXBDFLAG_IP_CSUM; 3059 if (m_head->m_pkthdr.csum_flags & (CSUM_TCP | CSUM_UDP)) 3060 csum_flags |= BGE_TXBDFLAG_TCP_UDP_CSUM; 3061 if (m_head->m_flags & M_LASTFRAG) 3062 csum_flags |= BGE_TXBDFLAG_IP_FRAG_END; 3063 else if (m_head->m_flags & M_FRAG) 3064 csum_flags |= BGE_TXBDFLAG_IP_FRAG; 3065 } 3066 3067 mtag = VLAN_OUTPUT_TAG(&sc->arpcom.ac_if, m_head); 3068 3069 ctx.sc = sc; 3070 ctx.bge_idx = *txidx; 3071 ctx.bge_ring = sc->bge_ldata.bge_tx_ring; 3072 ctx.bge_flags = csum_flags; 3073 /* 3074 * Sanity check: avoid coming within 16 descriptors 3075 * of the end of the ring. 3076 */ 3077 ctx.bge_maxsegs = (BGE_TX_RING_CNT - sc->bge_txcnt) - 16; 3078 3079 map = sc->bge_cdata.bge_tx_dmamap[*txidx]; 3080 error = bus_dmamap_load_mbuf(sc->bge_cdata.bge_mtag, map, 3081 m_head, bge_dma_map_tx_desc, &ctx, BUS_DMA_NOWAIT); 3082 3083 if (error || ctx.bge_maxsegs == 0 /*|| 3084 ctx.bge_idx == sc->bge_tx_saved_considx*/) 3085 return (ENOBUFS); 3086 3087 /* 3088 * Insure that the map for this transmission 3089 * is placed at the array index of the last descriptor 3090 * in this chain. 3091 */ 3092 sc->bge_cdata.bge_tx_dmamap[*txidx] = 3093 sc->bge_cdata.bge_tx_dmamap[ctx.bge_idx]; 3094 sc->bge_cdata.bge_tx_dmamap[ctx.bge_idx] = map; 3095 sc->bge_cdata.bge_tx_chain[ctx.bge_idx] = m_head; 3096 sc->bge_txcnt += ctx.bge_maxsegs; 3097 f = &sc->bge_ldata.bge_tx_ring[*txidx]; 3098 if (mtag != NULL) { 3099 f->bge_flags |= htole16(BGE_TXBDFLAG_VLAN_TAG); 3100 f->bge_vlan_tag = htole16(VLAN_TAG_VALUE(mtag)); 3101 } else { 3102 f->bge_vlan_tag = 0; 3103 } 3104 3105 BGE_INC(ctx.bge_idx, BGE_TX_RING_CNT); 3106 *txidx = ctx.bge_idx; 3107 3108 return(0); 3109 } 3110 3111 /* 3112 * Main transmit routine. To avoid having to do mbuf copies, we put pointers 3113 * to the mbuf data regions directly in the transmit descriptors. 3114 */ 3115 static void 3116 bge_start_locked(ifp) 3117 struct ifnet *ifp; 3118 { 3119 struct bge_softc *sc; 3120 struct mbuf *m_head = NULL; 3121 u_int32_t prodidx = 0; 3122 3123 sc = ifp->if_softc; 3124 3125 if (!sc->bge_link && ifp->if_snd.ifq_len < 10) 3126 return; 3127 3128 prodidx = CSR_READ_4(sc, BGE_MBX_TX_HOST_PROD0_LO); 3129 3130 while(sc->bge_cdata.bge_tx_chain[prodidx] == NULL) { 3131 IF_DEQUEUE(&ifp->if_snd, m_head); 3132 if (m_head == NULL) 3133 break; 3134 3135 /* 3136 * XXX 3137 * safety overkill. If this is a fragmented packet chain 3138 * with delayed TCP/UDP checksums, then only encapsulate 3139 * it if we have enough descriptors to handle the entire 3140 * chain at once. 3141 * (paranoia -- may not actually be needed) 3142 */ 3143 if (m_head->m_flags & M_FIRSTFRAG && 3144 m_head->m_pkthdr.csum_flags & (CSUM_DELAY_DATA)) { 3145 if ((BGE_TX_RING_CNT - sc->bge_txcnt) < 3146 m_head->m_pkthdr.csum_data + 16) { 3147 IF_PREPEND(&ifp->if_snd, m_head); 3148 ifp->if_flags |= IFF_OACTIVE; 3149 break; 3150 } 3151 } 3152 3153 /* 3154 * Pack the data into the transmit ring. If we 3155 * don't have room, set the OACTIVE flag and wait 3156 * for the NIC to drain the ring. 3157 */ 3158 if (bge_encap(sc, m_head, &prodidx)) { 3159 IF_PREPEND(&ifp->if_snd, m_head); 3160 ifp->if_flags |= IFF_OACTIVE; 3161 break; 3162 } 3163 3164 /* 3165 * If there's a BPF listener, bounce a copy of this frame 3166 * to him. 3167 */ 3168 BPF_MTAP(ifp, m_head); 3169 } 3170 3171 /* Transmit */ 3172 CSR_WRITE_4(sc, BGE_MBX_TX_HOST_PROD0_LO, prodidx); 3173 /* 5700 b2 errata */ 3174 if (sc->bge_chiprev == BGE_CHIPREV_5700_BX) 3175 CSR_WRITE_4(sc, BGE_MBX_TX_HOST_PROD0_LO, prodidx); 3176 3177 /* 3178 * Set a timeout in case the chip goes out to lunch. 3179 */ 3180 ifp->if_timer = 5; 3181 3182 return; 3183 } 3184 3185 /* 3186 * Main transmit routine. To avoid having to do mbuf copies, we put pointers 3187 * to the mbuf data regions directly in the transmit descriptors. 3188 */ 3189 static void 3190 bge_start(ifp) 3191 struct ifnet *ifp; 3192 { 3193 struct bge_softc *sc; 3194 3195 sc = ifp->if_softc; 3196 BGE_LOCK(sc); 3197 bge_start_locked(ifp); 3198 BGE_UNLOCK(sc); 3199 } 3200 3201 static void 3202 bge_init_locked(sc) 3203 struct bge_softc *sc; 3204 { 3205 struct ifnet *ifp; 3206 u_int16_t *m; 3207 3208 BGE_LOCK_ASSERT(sc); 3209 3210 ifp = &sc->arpcom.ac_if; 3211 3212 if (ifp->if_flags & IFF_RUNNING) 3213 return; 3214 3215 /* Cancel pending I/O and flush buffers. */ 3216 bge_stop(sc); 3217 bge_reset(sc); 3218 bge_chipinit(sc); 3219 3220 /* 3221 * Init the various state machines, ring 3222 * control blocks and firmware. 3223 */ 3224 if (bge_blockinit(sc)) { 3225 printf("bge%d: initialization failure\n", sc->bge_unit); 3226 return; 3227 } 3228 3229 ifp = &sc->arpcom.ac_if; 3230 3231 /* Specify MTU. */ 3232 CSR_WRITE_4(sc, BGE_RX_MTU, ifp->if_mtu + 3233 ETHER_HDR_LEN + ETHER_CRC_LEN + ETHER_VLAN_ENCAP_LEN); 3234 3235 /* Load our MAC address. */ 3236 m = (u_int16_t *)&sc->arpcom.ac_enaddr[0]; 3237 CSR_WRITE_4(sc, BGE_MAC_ADDR1_LO, htons(m[0])); 3238 CSR_WRITE_4(sc, BGE_MAC_ADDR1_HI, (htons(m[1]) << 16) | htons(m[2])); 3239 3240 /* Enable or disable promiscuous mode as needed. */ 3241 if (ifp->if_flags & IFF_PROMISC) { 3242 BGE_SETBIT(sc, BGE_RX_MODE, BGE_RXMODE_RX_PROMISC); 3243 } else { 3244 BGE_CLRBIT(sc, BGE_RX_MODE, BGE_RXMODE_RX_PROMISC); 3245 } 3246 3247 /* Program multicast filter. */ 3248 bge_setmulti(sc); 3249 3250 /* Init RX ring. */ 3251 bge_init_rx_ring_std(sc); 3252 3253 /* 3254 * Workaround for a bug in 5705 ASIC rev A0. Poll the NIC's 3255 * memory to insure that the chip has in fact read the first 3256 * entry of the ring. 3257 */ 3258 if (sc->bge_chipid == BGE_CHIPID_BCM5705_A0) { 3259 u_int32_t v, i; 3260 for (i = 0; i < 10; i++) { 3261 DELAY(20); 3262 v = bge_readmem_ind(sc, BGE_STD_RX_RINGS + 8); 3263 if (v == (MCLBYTES - ETHER_ALIGN)) 3264 break; 3265 } 3266 if (i == 10) 3267 printf ("bge%d: 5705 A0 chip failed to load RX ring\n", 3268 sc->bge_unit); 3269 } 3270 3271 /* Init jumbo RX ring. */ 3272 if (ifp->if_mtu > (ETHERMTU + ETHER_HDR_LEN + ETHER_CRC_LEN)) 3273 bge_init_rx_ring_jumbo(sc); 3274 3275 /* Init our RX return ring index */ 3276 sc->bge_rx_saved_considx = 0; 3277 3278 /* Init TX ring. */ 3279 bge_init_tx_ring(sc); 3280 3281 /* Turn on transmitter */ 3282 BGE_SETBIT(sc, BGE_TX_MODE, BGE_TXMODE_ENABLE); 3283 3284 /* Turn on receiver */ 3285 BGE_SETBIT(sc, BGE_RX_MODE, BGE_RXMODE_ENABLE); 3286 3287 /* Tell firmware we're alive. */ 3288 BGE_SETBIT(sc, BGE_MODE_CTL, BGE_MODECTL_STACKUP); 3289 3290 /* Enable host interrupts. */ 3291 BGE_SETBIT(sc, BGE_PCI_MISC_CTL, BGE_PCIMISCCTL_CLEAR_INTA); 3292 BGE_CLRBIT(sc, BGE_PCI_MISC_CTL, BGE_PCIMISCCTL_MASK_PCI_INTR); 3293 CSR_WRITE_4(sc, BGE_MBX_IRQ0_LO, 0); 3294 3295 bge_ifmedia_upd(ifp); 3296 3297 ifp->if_flags |= IFF_RUNNING; 3298 ifp->if_flags &= ~IFF_OACTIVE; 3299 3300 callout_reset(&sc->bge_stat_ch, hz, bge_tick, sc); 3301 3302 return; 3303 } 3304 3305 static void 3306 bge_init(xsc) 3307 void *xsc; 3308 { 3309 struct bge_softc *sc = xsc; 3310 3311 BGE_LOCK(sc); 3312 bge_init_locked(sc); 3313 BGE_UNLOCK(sc); 3314 3315 return; 3316 } 3317 3318 /* 3319 * Set media options. 3320 */ 3321 static int 3322 bge_ifmedia_upd(ifp) 3323 struct ifnet *ifp; 3324 { 3325 struct bge_softc *sc; 3326 struct mii_data *mii; 3327 struct ifmedia *ifm; 3328 3329 sc = ifp->if_softc; 3330 ifm = &sc->bge_ifmedia; 3331 3332 /* If this is a 1000baseX NIC, enable the TBI port. */ 3333 if (sc->bge_tbi) { 3334 if (IFM_TYPE(ifm->ifm_media) != IFM_ETHER) 3335 return(EINVAL); 3336 switch(IFM_SUBTYPE(ifm->ifm_media)) { 3337 case IFM_AUTO: 3338 break; 3339 case IFM_1000_SX: 3340 if ((ifm->ifm_media & IFM_GMASK) == IFM_FDX) { 3341 BGE_CLRBIT(sc, BGE_MAC_MODE, 3342 BGE_MACMODE_HALF_DUPLEX); 3343 } else { 3344 BGE_SETBIT(sc, BGE_MAC_MODE, 3345 BGE_MACMODE_HALF_DUPLEX); 3346 } 3347 break; 3348 default: 3349 return(EINVAL); 3350 } 3351 return(0); 3352 } 3353 3354 mii = device_get_softc(sc->bge_miibus); 3355 sc->bge_link = 0; 3356 if (mii->mii_instance) { 3357 struct mii_softc *miisc; 3358 for (miisc = LIST_FIRST(&mii->mii_phys); miisc != NULL; 3359 miisc = LIST_NEXT(miisc, mii_list)) 3360 mii_phy_reset(miisc); 3361 } 3362 mii_mediachg(mii); 3363 3364 return(0); 3365 } 3366 3367 /* 3368 * Report current media status. 3369 */ 3370 static void 3371 bge_ifmedia_sts(ifp, ifmr) 3372 struct ifnet *ifp; 3373 struct ifmediareq *ifmr; 3374 { 3375 struct bge_softc *sc; 3376 struct mii_data *mii; 3377 3378 sc = ifp->if_softc; 3379 3380 if (sc->bge_tbi) { 3381 ifmr->ifm_status = IFM_AVALID; 3382 ifmr->ifm_active = IFM_ETHER; 3383 if (CSR_READ_4(sc, BGE_MAC_STS) & 3384 BGE_MACSTAT_TBI_PCS_SYNCHED) 3385 ifmr->ifm_status |= IFM_ACTIVE; 3386 ifmr->ifm_active |= IFM_1000_SX; 3387 if (CSR_READ_4(sc, BGE_MAC_MODE) & BGE_MACMODE_HALF_DUPLEX) 3388 ifmr->ifm_active |= IFM_HDX; 3389 else 3390 ifmr->ifm_active |= IFM_FDX; 3391 return; 3392 } 3393 3394 mii = device_get_softc(sc->bge_miibus); 3395 mii_pollstat(mii); 3396 ifmr->ifm_active = mii->mii_media_active; 3397 ifmr->ifm_status = mii->mii_media_status; 3398 3399 return; 3400 } 3401 3402 static int 3403 bge_ioctl(ifp, command, data) 3404 struct ifnet *ifp; 3405 u_long command; 3406 caddr_t data; 3407 { 3408 struct bge_softc *sc = ifp->if_softc; 3409 struct ifreq *ifr = (struct ifreq *) data; 3410 int mask, error = 0; 3411 struct mii_data *mii; 3412 3413 switch(command) { 3414 case SIOCSIFMTU: 3415 /* Disallow jumbo frames on 5705. */ 3416 if ((sc->bge_asicrev == BGE_ASICREV_BCM5705 && 3417 ifr->ifr_mtu > ETHERMTU) || ifr->ifr_mtu > BGE_JUMBO_MTU) 3418 error = EINVAL; 3419 else { 3420 ifp->if_mtu = ifr->ifr_mtu; 3421 ifp->if_flags &= ~IFF_RUNNING; 3422 bge_init(sc); 3423 } 3424 break; 3425 case SIOCSIFFLAGS: 3426 BGE_LOCK(sc); 3427 if (ifp->if_flags & IFF_UP) { 3428 /* 3429 * If only the state of the PROMISC flag changed, 3430 * then just use the 'set promisc mode' command 3431 * instead of reinitializing the entire NIC. Doing 3432 * a full re-init means reloading the firmware and 3433 * waiting for it to start up, which may take a 3434 * second or two. 3435 */ 3436 if (ifp->if_flags & IFF_RUNNING && 3437 ifp->if_flags & IFF_PROMISC && 3438 !(sc->bge_if_flags & IFF_PROMISC)) { 3439 BGE_SETBIT(sc, BGE_RX_MODE, 3440 BGE_RXMODE_RX_PROMISC); 3441 } else if (ifp->if_flags & IFF_RUNNING && 3442 !(ifp->if_flags & IFF_PROMISC) && 3443 sc->bge_if_flags & IFF_PROMISC) { 3444 BGE_CLRBIT(sc, BGE_RX_MODE, 3445 BGE_RXMODE_RX_PROMISC); 3446 } else 3447 bge_init_locked(sc); 3448 } else { 3449 if (ifp->if_flags & IFF_RUNNING) { 3450 bge_stop(sc); 3451 } 3452 } 3453 sc->bge_if_flags = ifp->if_flags; 3454 BGE_UNLOCK(sc); 3455 error = 0; 3456 break; 3457 case SIOCADDMULTI: 3458 case SIOCDELMULTI: 3459 if (ifp->if_flags & IFF_RUNNING) { 3460 BGE_LOCK(sc); 3461 bge_setmulti(sc); 3462 BGE_UNLOCK(sc); 3463 error = 0; 3464 } 3465 break; 3466 case SIOCSIFMEDIA: 3467 case SIOCGIFMEDIA: 3468 if (sc->bge_tbi) { 3469 error = ifmedia_ioctl(ifp, ifr, 3470 &sc->bge_ifmedia, command); 3471 } else { 3472 mii = device_get_softc(sc->bge_miibus); 3473 error = ifmedia_ioctl(ifp, ifr, 3474 &mii->mii_media, command); 3475 } 3476 break; 3477 case SIOCSIFCAP: 3478 mask = ifr->ifr_reqcap ^ ifp->if_capenable; 3479 if (mask & IFCAP_HWCSUM) { 3480 if (IFCAP_HWCSUM & ifp->if_capenable) 3481 ifp->if_capenable &= ~IFCAP_HWCSUM; 3482 else 3483 ifp->if_capenable |= IFCAP_HWCSUM; 3484 } 3485 error = 0; 3486 break; 3487 default: 3488 error = ether_ioctl(ifp, command, data); 3489 break; 3490 } 3491 3492 return(error); 3493 } 3494 3495 static void 3496 bge_watchdog(ifp) 3497 struct ifnet *ifp; 3498 { 3499 struct bge_softc *sc; 3500 3501 sc = ifp->if_softc; 3502 3503 printf("bge%d: watchdog timeout -- resetting\n", sc->bge_unit); 3504 3505 ifp->if_flags &= ~IFF_RUNNING; 3506 bge_init(sc); 3507 3508 ifp->if_oerrors++; 3509 3510 return; 3511 } 3512 3513 /* 3514 * Stop the adapter and free any mbufs allocated to the 3515 * RX and TX lists. 3516 */ 3517 static void 3518 bge_stop(sc) 3519 struct bge_softc *sc; 3520 { 3521 struct ifnet *ifp; 3522 struct ifmedia_entry *ifm; 3523 struct mii_data *mii = NULL; 3524 int mtmp, itmp; 3525 3526 BGE_LOCK_ASSERT(sc); 3527 3528 ifp = &sc->arpcom.ac_if; 3529 3530 if (!sc->bge_tbi) 3531 mii = device_get_softc(sc->bge_miibus); 3532 3533 callout_stop(&sc->bge_stat_ch); 3534 3535 /* 3536 * Disable all of the receiver blocks 3537 */ 3538 BGE_CLRBIT(sc, BGE_RX_MODE, BGE_RXMODE_ENABLE); 3539 BGE_CLRBIT(sc, BGE_RBDI_MODE, BGE_RBDIMODE_ENABLE); 3540 BGE_CLRBIT(sc, BGE_RXLP_MODE, BGE_RXLPMODE_ENABLE); 3541 if (sc->bge_asicrev != BGE_ASICREV_BCM5705) 3542 BGE_CLRBIT(sc, BGE_RXLS_MODE, BGE_RXLSMODE_ENABLE); 3543 BGE_CLRBIT(sc, BGE_RDBDI_MODE, BGE_RBDIMODE_ENABLE); 3544 BGE_CLRBIT(sc, BGE_RDC_MODE, BGE_RDCMODE_ENABLE); 3545 BGE_CLRBIT(sc, BGE_RBDC_MODE, BGE_RBDCMODE_ENABLE); 3546 3547 /* 3548 * Disable all of the transmit blocks 3549 */ 3550 BGE_CLRBIT(sc, BGE_SRS_MODE, BGE_SRSMODE_ENABLE); 3551 BGE_CLRBIT(sc, BGE_SBDI_MODE, BGE_SBDIMODE_ENABLE); 3552 BGE_CLRBIT(sc, BGE_SDI_MODE, BGE_SDIMODE_ENABLE); 3553 BGE_CLRBIT(sc, BGE_RDMA_MODE, BGE_RDMAMODE_ENABLE); 3554 BGE_CLRBIT(sc, BGE_SDC_MODE, BGE_SDCMODE_ENABLE); 3555 if (sc->bge_asicrev != BGE_ASICREV_BCM5705) 3556 BGE_CLRBIT(sc, BGE_DMAC_MODE, BGE_DMACMODE_ENABLE); 3557 BGE_CLRBIT(sc, BGE_SBDC_MODE, BGE_SBDCMODE_ENABLE); 3558 3559 /* 3560 * Shut down all of the memory managers and related 3561 * state machines. 3562 */ 3563 BGE_CLRBIT(sc, BGE_HCC_MODE, BGE_HCCMODE_ENABLE); 3564 BGE_CLRBIT(sc, BGE_WDMA_MODE, BGE_WDMAMODE_ENABLE); 3565 if (sc->bge_asicrev != BGE_ASICREV_BCM5705) 3566 BGE_CLRBIT(sc, BGE_MBCF_MODE, BGE_MBCFMODE_ENABLE); 3567 CSR_WRITE_4(sc, BGE_FTQ_RESET, 0xFFFFFFFF); 3568 CSR_WRITE_4(sc, BGE_FTQ_RESET, 0); 3569 if (sc->bge_asicrev != BGE_ASICREV_BCM5705) { 3570 BGE_CLRBIT(sc, BGE_BMAN_MODE, BGE_BMANMODE_ENABLE); 3571 BGE_CLRBIT(sc, BGE_MARB_MODE, BGE_MARBMODE_ENABLE); 3572 } 3573 3574 /* Disable host interrupts. */ 3575 BGE_SETBIT(sc, BGE_PCI_MISC_CTL, BGE_PCIMISCCTL_MASK_PCI_INTR); 3576 CSR_WRITE_4(sc, BGE_MBX_IRQ0_LO, 1); 3577 3578 /* 3579 * Tell firmware we're shutting down. 3580 */ 3581 BGE_CLRBIT(sc, BGE_MODE_CTL, BGE_MODECTL_STACKUP); 3582 3583 /* Free the RX lists. */ 3584 bge_free_rx_ring_std(sc); 3585 3586 /* Free jumbo RX list. */ 3587 if (sc->bge_asicrev != BGE_ASICREV_BCM5705) 3588 bge_free_rx_ring_jumbo(sc); 3589 3590 /* Free TX buffers. */ 3591 bge_free_tx_ring(sc); 3592 3593 /* 3594 * Isolate/power down the PHY, but leave the media selection 3595 * unchanged so that things will be put back to normal when 3596 * we bring the interface back up. 3597 */ 3598 if (!sc->bge_tbi) { 3599 itmp = ifp->if_flags; 3600 ifp->if_flags |= IFF_UP; 3601 ifm = mii->mii_media.ifm_cur; 3602 mtmp = ifm->ifm_media; 3603 ifm->ifm_media = IFM_ETHER|IFM_NONE; 3604 mii_mediachg(mii); 3605 ifm->ifm_media = mtmp; 3606 ifp->if_flags = itmp; 3607 } 3608 3609 sc->bge_link = 0; 3610 3611 sc->bge_tx_saved_considx = BGE_TXCONS_UNSET; 3612 3613 ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE); 3614 3615 return; 3616 } 3617 3618 /* 3619 * Stop all chip I/O so that the kernel's probe routines don't 3620 * get confused by errant DMAs when rebooting. 3621 */ 3622 static void 3623 bge_shutdown(dev) 3624 device_t dev; 3625 { 3626 struct bge_softc *sc; 3627 3628 sc = device_get_softc(dev); 3629 3630 BGE_LOCK(sc); 3631 bge_stop(sc); 3632 bge_reset(sc); 3633 BGE_UNLOCK(sc); 3634 3635 return; 3636 } 3637