1 /*- 2 * Copyright (c) 2001 Wind River Systems 3 * Copyright (c) 1997, 1998, 1999, 2001 4 * Bill Paul <wpaul@windriver.com>. All rights reserved. 5 * 6 * Redistribution and use in source and binary forms, with or without 7 * modification, are permitted provided that the following conditions 8 * are met: 9 * 1. Redistributions of source code must retain the above copyright 10 * notice, this list of conditions and the following disclaimer. 11 * 2. Redistributions in binary form must reproduce the above copyright 12 * notice, this list of conditions and the following disclaimer in the 13 * documentation and/or other materials provided with the distribution. 14 * 3. All advertising materials mentioning features or use of this software 15 * must display the following acknowledgement: 16 * This product includes software developed by Bill Paul. 17 * 4. Neither the name of the author nor the names of any co-contributors 18 * may be used to endorse or promote products derived from this software 19 * without specific prior written permission. 20 * 21 * THIS SOFTWARE IS PROVIDED BY Bill Paul AND CONTRIBUTORS ``AS IS'' AND 22 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 23 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 24 * ARE DISCLAIMED. IN NO EVENT SHALL Bill Paul OR THE VOICES IN HIS HEAD 25 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR 26 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF 27 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS 28 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN 29 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) 30 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF 31 * THE POSSIBILITY OF SUCH DAMAGE. 32 */ 33 34 #include <sys/cdefs.h> 35 __FBSDID("$FreeBSD$"); 36 37 /* 38 * Broadcom BCM570x family gigabit ethernet driver for FreeBSD. 39 * 40 * The Broadcom BCM5700 is based on technology originally developed by 41 * Alteon Networks as part of the Tigon I and Tigon II gigabit ethernet 42 * MAC chips. The BCM5700, sometimes refered to as the Tigon III, has 43 * two on-board MIPS R4000 CPUs and can have as much as 16MB of external 44 * SSRAM. The BCM5700 supports TCP, UDP and IP checksum offload, jumbo 45 * frames, highly configurable RX filtering, and 16 RX and TX queues 46 * (which, along with RX filter rules, can be used for QOS applications). 47 * Other features, such as TCP segmentation, may be available as part 48 * of value-added firmware updates. Unlike the Tigon I and Tigon II, 49 * firmware images can be stored in hardware and need not be compiled 50 * into the driver. 51 * 52 * The BCM5700 supports the PCI v2.2 and PCI-X v1.0 standards, and will 53 * function in a 32-bit/64-bit 33/66Mhz bus, or a 64-bit/133Mhz bus. 54 * 55 * The BCM5701 is a single-chip solution incorporating both the BCM5700 56 * MAC and a BCM5401 10/100/1000 PHY. Unlike the BCM5700, the BCM5701 57 * does not support external SSRAM. 58 * 59 * Broadcom also produces a variation of the BCM5700 under the "Altima" 60 * brand name, which is functionally similar but lacks PCI-X support. 61 * 62 * Without external SSRAM, you can only have at most 4 TX rings, 63 * and the use of the mini RX ring is disabled. This seems to imply 64 * that these features are simply not available on the BCM5701. As a 65 * result, this driver does not implement any support for the mini RX 66 * ring. 67 */ 68 69 #ifdef HAVE_KERNEL_OPTION_HEADERS 70 #include "opt_device_polling.h" 71 #endif 72 73 #include <sys/param.h> 74 #include <sys/endian.h> 75 #include <sys/systm.h> 76 #include <sys/sockio.h> 77 #include <sys/mbuf.h> 78 #include <sys/malloc.h> 79 #include <sys/kernel.h> 80 #include <sys/module.h> 81 #include <sys/socket.h> 82 83 #include <net/if.h> 84 #include <net/if_arp.h> 85 #include <net/ethernet.h> 86 #include <net/if_dl.h> 87 #include <net/if_media.h> 88 89 #include <net/bpf.h> 90 91 #include <net/if_types.h> 92 #include <net/if_vlan_var.h> 93 94 #include <netinet/in_systm.h> 95 #include <netinet/in.h> 96 #include <netinet/ip.h> 97 98 #include <machine/clock.h> /* for DELAY */ 99 #include <machine/bus.h> 100 #include <machine/resource.h> 101 #include <sys/bus.h> 102 #include <sys/rman.h> 103 104 #include <dev/mii/mii.h> 105 #include <dev/mii/miivar.h> 106 #include "miidevs.h" 107 #include <dev/mii/brgphyreg.h> 108 109 #include <dev/pci/pcireg.h> 110 #include <dev/pci/pcivar.h> 111 112 #include <dev/bge/if_bgereg.h> 113 114 #include "opt_bge.h" 115 116 #define BGE_CSUM_FEATURES (CSUM_IP | CSUM_TCP | CSUM_UDP) 117 118 MODULE_DEPEND(bge, pci, 1, 1, 1); 119 MODULE_DEPEND(bge, ether, 1, 1, 1); 120 MODULE_DEPEND(bge, miibus, 1, 1, 1); 121 122 /* "device miibus" required. See GENERIC if you get errors here. */ 123 #include "miibus_if.h" 124 125 /* 126 * Various supported device vendors/types and their names. Note: the 127 * spec seems to indicate that the hardware still has Alteon's vendor 128 * ID burned into it, though it will always be overriden by the vendor 129 * ID in the EEPROM. Just to be safe, we cover all possibilities. 130 */ 131 #define BGE_DEVDESC_MAX 64 /* Maximum device description length */ 132 133 static struct bge_type bge_devs[] = { 134 { ALT_VENDORID, ALT_DEVICEID_BCM5700, 135 "Broadcom BCM5700 Gigabit Ethernet" }, 136 { ALT_VENDORID, ALT_DEVICEID_BCM5701, 137 "Broadcom BCM5701 Gigabit Ethernet" }, 138 { BCOM_VENDORID, BCOM_DEVICEID_BCM5700, 139 "Broadcom BCM5700 Gigabit Ethernet" }, 140 { BCOM_VENDORID, BCOM_DEVICEID_BCM5701, 141 "Broadcom BCM5701 Gigabit Ethernet" }, 142 { BCOM_VENDORID, BCOM_DEVICEID_BCM5702, 143 "Broadcom BCM5702 Gigabit Ethernet" }, 144 { BCOM_VENDORID, BCOM_DEVICEID_BCM5702X, 145 "Broadcom BCM5702X Gigabit Ethernet" }, 146 { BCOM_VENDORID, BCOM_DEVICEID_BCM5703, 147 "Broadcom BCM5703 Gigabit Ethernet" }, 148 { BCOM_VENDORID, BCOM_DEVICEID_BCM5703X, 149 "Broadcom BCM5703X Gigabit Ethernet" }, 150 { BCOM_VENDORID, BCOM_DEVICEID_BCM5704C, 151 "Broadcom BCM5704C Dual Gigabit Ethernet" }, 152 { BCOM_VENDORID, BCOM_DEVICEID_BCM5704S, 153 "Broadcom BCM5704S Dual Gigabit Ethernet" }, 154 { BCOM_VENDORID, BCOM_DEVICEID_BCM5705, 155 "Broadcom BCM5705 Gigabit Ethernet" }, 156 { BCOM_VENDORID, BCOM_DEVICEID_BCM5705K, 157 "Broadcom BCM5705K Gigabit Ethernet" }, 158 { BCOM_VENDORID, BCOM_DEVICEID_BCM5705M, 159 "Broadcom BCM5705M Gigabit Ethernet" }, 160 { BCOM_VENDORID, BCOM_DEVICEID_BCM5705M_ALT, 161 "Broadcom BCM5705M Gigabit Ethernet" }, 162 { BCOM_VENDORID, BCOM_DEVICEID_BCM5714C, 163 "Broadcom BCM5714C Gigabit Ethernet" }, 164 { BCOM_VENDORID, BCOM_DEVICEID_BCM5721, 165 "Broadcom BCM5721 Gigabit Ethernet" }, 166 { BCOM_VENDORID, BCOM_DEVICEID_BCM5750, 167 "Broadcom BCM5750 Gigabit Ethernet" }, 168 { BCOM_VENDORID, BCOM_DEVICEID_BCM5750M, 169 "Broadcom BCM5750M Gigabit Ethernet" }, 170 { BCOM_VENDORID, BCOM_DEVICEID_BCM5751, 171 "Broadcom BCM5751 Gigabit Ethernet" }, 172 { BCOM_VENDORID, BCOM_DEVICEID_BCM5751M, 173 "Broadcom BCM5751M Gigabit Ethernet" }, 174 { BCOM_VENDORID, BCOM_DEVICEID_BCM5752, 175 "Broadcom BCM5752 Gigabit Ethernet" }, 176 { BCOM_VENDORID, BCOM_DEVICEID_BCM5782, 177 "Broadcom BCM5782 Gigabit Ethernet" }, 178 { BCOM_VENDORID, BCOM_DEVICEID_BCM5788, 179 "Broadcom BCM5788 Gigabit Ethernet" }, 180 { BCOM_VENDORID, BCOM_DEVICEID_BCM5789, 181 "Broadcom BCM5789 Gigabit Ethernet" }, 182 { BCOM_VENDORID, BCOM_DEVICEID_BCM5901, 183 "Broadcom BCM5901 Fast Ethernet" }, 184 { BCOM_VENDORID, BCOM_DEVICEID_BCM5901A2, 185 "Broadcom BCM5901A2 Fast Ethernet" }, 186 { SK_VENDORID, SK_DEVICEID_ALTIMA, 187 "SysKonnect Gigabit Ethernet" }, 188 { ALTIMA_VENDORID, ALTIMA_DEVICE_AC1000, 189 "Altima AC1000 Gigabit Ethernet" }, 190 { ALTIMA_VENDORID, ALTIMA_DEVICE_AC1002, 191 "Altima AC1002 Gigabit Ethernet" }, 192 { ALTIMA_VENDORID, ALTIMA_DEVICE_AC9100, 193 "Altima AC9100 Gigabit Ethernet" }, 194 { 0, 0, NULL } 195 }; 196 197 static int bge_probe (device_t); 198 static int bge_attach (device_t); 199 static int bge_detach (device_t); 200 static int bge_suspend (device_t); 201 static int bge_resume (device_t); 202 static void bge_release_resources 203 (struct bge_softc *); 204 static void bge_dma_map_addr (void *, bus_dma_segment_t *, int, int); 205 static void bge_dma_map_tx_desc (void *, bus_dma_segment_t *, int, 206 bus_size_t, int); 207 static int bge_dma_alloc (device_t); 208 static void bge_dma_free (struct bge_softc *); 209 210 static void bge_txeof (struct bge_softc *); 211 static void bge_rxeof (struct bge_softc *); 212 213 static void bge_tick_locked (struct bge_softc *); 214 static void bge_tick (void *); 215 static void bge_stats_update (struct bge_softc *); 216 static void bge_stats_update_regs 217 (struct bge_softc *); 218 static int bge_encap (struct bge_softc *, struct mbuf *, 219 u_int32_t *); 220 221 static void bge_intr (void *); 222 static void bge_start_locked (struct ifnet *); 223 static void bge_start (struct ifnet *); 224 static int bge_ioctl (struct ifnet *, u_long, caddr_t); 225 static void bge_init_locked (struct bge_softc *); 226 static void bge_init (void *); 227 static void bge_stop (struct bge_softc *); 228 static void bge_watchdog (struct ifnet *); 229 static void bge_shutdown (device_t); 230 static int bge_ifmedia_upd (struct ifnet *); 231 static void bge_ifmedia_sts (struct ifnet *, struct ifmediareq *); 232 233 static u_int8_t bge_eeprom_getbyte (struct bge_softc *, int, u_int8_t *); 234 static int bge_read_eeprom (struct bge_softc *, caddr_t, int, int); 235 236 static void bge_setmulti (struct bge_softc *); 237 238 static void bge_handle_events (struct bge_softc *); 239 static int bge_newbuf_std (struct bge_softc *, int, struct mbuf *); 240 static int bge_newbuf_jumbo (struct bge_softc *, int, struct mbuf *); 241 static int bge_init_rx_ring_std (struct bge_softc *); 242 static void bge_free_rx_ring_std (struct bge_softc *); 243 static int bge_init_rx_ring_jumbo (struct bge_softc *); 244 static void bge_free_rx_ring_jumbo (struct bge_softc *); 245 static void bge_free_tx_ring (struct bge_softc *); 246 static int bge_init_tx_ring (struct bge_softc *); 247 248 static int bge_chipinit (struct bge_softc *); 249 static int bge_blockinit (struct bge_softc *); 250 251 #ifdef notdef 252 static u_int8_t bge_vpd_readbyte(struct bge_softc *, int); 253 static void bge_vpd_read_res (struct bge_softc *, struct vpd_res *, int); 254 static void bge_vpd_read (struct bge_softc *); 255 #endif 256 257 static u_int32_t bge_readmem_ind 258 (struct bge_softc *, int); 259 static void bge_writemem_ind (struct bge_softc *, int, int); 260 #ifdef notdef 261 static u_int32_t bge_readreg_ind 262 (struct bge_softc *, int); 263 #endif 264 static void bge_writereg_ind (struct bge_softc *, int, int); 265 266 static int bge_miibus_readreg (device_t, int, int); 267 static int bge_miibus_writereg (device_t, int, int, int); 268 static void bge_miibus_statchg (device_t); 269 #ifdef DEVICE_POLLING 270 static void bge_poll (struct ifnet *ifp, enum poll_cmd cmd, 271 int count); 272 static void bge_poll_locked (struct ifnet *ifp, enum poll_cmd cmd, 273 int count); 274 #endif 275 276 static void bge_reset (struct bge_softc *); 277 static void bge_link_upd (struct bge_softc *); 278 279 static device_method_t bge_methods[] = { 280 /* Device interface */ 281 DEVMETHOD(device_probe, bge_probe), 282 DEVMETHOD(device_attach, bge_attach), 283 DEVMETHOD(device_detach, bge_detach), 284 DEVMETHOD(device_shutdown, bge_shutdown), 285 DEVMETHOD(device_suspend, bge_suspend), 286 DEVMETHOD(device_resume, bge_resume), 287 288 /* bus interface */ 289 DEVMETHOD(bus_print_child, bus_generic_print_child), 290 DEVMETHOD(bus_driver_added, bus_generic_driver_added), 291 292 /* MII interface */ 293 DEVMETHOD(miibus_readreg, bge_miibus_readreg), 294 DEVMETHOD(miibus_writereg, bge_miibus_writereg), 295 DEVMETHOD(miibus_statchg, bge_miibus_statchg), 296 297 { 0, 0 } 298 }; 299 300 static driver_t bge_driver = { 301 "bge", 302 bge_methods, 303 sizeof(struct bge_softc) 304 }; 305 306 static devclass_t bge_devclass; 307 308 DRIVER_MODULE(bge, pci, bge_driver, bge_devclass, 0, 0); 309 DRIVER_MODULE(miibus, bge, miibus_driver, miibus_devclass, 0, 0); 310 311 static u_int32_t 312 bge_readmem_ind(sc, off) 313 struct bge_softc *sc; 314 int off; 315 { 316 device_t dev; 317 318 dev = sc->bge_dev; 319 320 pci_write_config(dev, BGE_PCI_MEMWIN_BASEADDR, off, 4); 321 return(pci_read_config(dev, BGE_PCI_MEMWIN_DATA, 4)); 322 } 323 324 static void 325 bge_writemem_ind(sc, off, val) 326 struct bge_softc *sc; 327 int off, val; 328 { 329 device_t dev; 330 331 dev = sc->bge_dev; 332 333 pci_write_config(dev, BGE_PCI_MEMWIN_BASEADDR, off, 4); 334 pci_write_config(dev, BGE_PCI_MEMWIN_DATA, val, 4); 335 336 return; 337 } 338 339 #ifdef notdef 340 static u_int32_t 341 bge_readreg_ind(sc, off) 342 struct bge_softc *sc; 343 int off; 344 { 345 device_t dev; 346 347 dev = sc->bge_dev; 348 349 pci_write_config(dev, BGE_PCI_REG_BASEADDR, off, 4); 350 return(pci_read_config(dev, BGE_PCI_REG_DATA, 4)); 351 } 352 #endif 353 354 static void 355 bge_writereg_ind(sc, off, val) 356 struct bge_softc *sc; 357 int off, val; 358 { 359 device_t dev; 360 361 dev = sc->bge_dev; 362 363 pci_write_config(dev, BGE_PCI_REG_BASEADDR, off, 4); 364 pci_write_config(dev, BGE_PCI_REG_DATA, val, 4); 365 366 return; 367 } 368 369 /* 370 * Map a single buffer address. 371 */ 372 373 static void 374 bge_dma_map_addr(arg, segs, nseg, error) 375 void *arg; 376 bus_dma_segment_t *segs; 377 int nseg; 378 int error; 379 { 380 struct bge_dmamap_arg *ctx; 381 382 if (error) 383 return; 384 385 ctx = arg; 386 387 if (nseg > ctx->bge_maxsegs) { 388 ctx->bge_maxsegs = 0; 389 return; 390 } 391 392 ctx->bge_busaddr = segs->ds_addr; 393 394 return; 395 } 396 397 /* 398 * Map an mbuf chain into an TX ring. 399 */ 400 401 static void 402 bge_dma_map_tx_desc(arg, segs, nseg, mapsize, error) 403 void *arg; 404 bus_dma_segment_t *segs; 405 int nseg; 406 bus_size_t mapsize; 407 int error; 408 { 409 struct bge_dmamap_arg *ctx; 410 struct bge_tx_bd *d = NULL; 411 int i = 0, idx; 412 413 if (error) 414 return; 415 416 ctx = arg; 417 418 /* Signal error to caller if there's too many segments */ 419 if (nseg > ctx->bge_maxsegs) { 420 ctx->bge_maxsegs = 0; 421 return; 422 } 423 424 idx = ctx->bge_idx; 425 while(1) { 426 d = &ctx->bge_ring[idx]; 427 d->bge_addr.bge_addr_lo = 428 htole32(BGE_ADDR_LO(segs[i].ds_addr)); 429 d->bge_addr.bge_addr_hi = 430 htole32(BGE_ADDR_HI(segs[i].ds_addr)); 431 d->bge_len = htole16(segs[i].ds_len); 432 d->bge_flags = htole16(ctx->bge_flags); 433 i++; 434 if (i == nseg) 435 break; 436 BGE_INC(idx, BGE_TX_RING_CNT); 437 } 438 439 d->bge_flags |= htole16(BGE_TXBDFLAG_END); 440 ctx->bge_maxsegs = nseg; 441 ctx->bge_idx = idx; 442 443 return; 444 } 445 446 #ifdef notdef 447 static u_int8_t 448 bge_vpd_readbyte(sc, addr) 449 struct bge_softc *sc; 450 int addr; 451 { 452 int i; 453 device_t dev; 454 u_int32_t val; 455 456 dev = sc->bge_dev; 457 pci_write_config(dev, BGE_PCI_VPD_ADDR, addr, 2); 458 for (i = 0; i < BGE_TIMEOUT * 10; i++) { 459 DELAY(10); 460 if (pci_read_config(dev, BGE_PCI_VPD_ADDR, 2) & BGE_VPD_FLAG) 461 break; 462 } 463 464 if (i == BGE_TIMEOUT) { 465 printf("bge%d: VPD read timed out\n", sc->bge_unit); 466 return(0); 467 } 468 469 val = pci_read_config(dev, BGE_PCI_VPD_DATA, 4); 470 471 return((val >> ((addr % 4) * 8)) & 0xFF); 472 } 473 474 static void 475 bge_vpd_read_res(sc, res, addr) 476 struct bge_softc *sc; 477 struct vpd_res *res; 478 int addr; 479 { 480 int i; 481 u_int8_t *ptr; 482 483 ptr = (u_int8_t *)res; 484 for (i = 0; i < sizeof(struct vpd_res); i++) 485 ptr[i] = bge_vpd_readbyte(sc, i + addr); 486 487 return; 488 } 489 490 static void 491 bge_vpd_read(sc) 492 struct bge_softc *sc; 493 { 494 int pos = 0, i; 495 struct vpd_res res; 496 497 if (sc->bge_vpd_prodname != NULL) 498 free(sc->bge_vpd_prodname, M_DEVBUF); 499 if (sc->bge_vpd_readonly != NULL) 500 free(sc->bge_vpd_readonly, M_DEVBUF); 501 sc->bge_vpd_prodname = NULL; 502 sc->bge_vpd_readonly = NULL; 503 504 bge_vpd_read_res(sc, &res, pos); 505 506 if (res.vr_id != VPD_RES_ID) { 507 printf("bge%d: bad VPD resource id: expected %x got %x\n", 508 sc->bge_unit, VPD_RES_ID, res.vr_id); 509 return; 510 } 511 512 pos += sizeof(res); 513 sc->bge_vpd_prodname = malloc(res.vr_len + 1, M_DEVBUF, M_NOWAIT); 514 for (i = 0; i < res.vr_len; i++) 515 sc->bge_vpd_prodname[i] = bge_vpd_readbyte(sc, i + pos); 516 sc->bge_vpd_prodname[i] = '\0'; 517 pos += i; 518 519 bge_vpd_read_res(sc, &res, pos); 520 521 if (res.vr_id != VPD_RES_READ) { 522 printf("bge%d: bad VPD resource id: expected %x got %x\n", 523 sc->bge_unit, VPD_RES_READ, res.vr_id); 524 return; 525 } 526 527 pos += sizeof(res); 528 sc->bge_vpd_readonly = malloc(res.vr_len, M_DEVBUF, M_NOWAIT); 529 for (i = 0; i < res.vr_len + 1; i++) 530 sc->bge_vpd_readonly[i] = bge_vpd_readbyte(sc, i + pos); 531 532 return; 533 } 534 #endif 535 536 /* 537 * Read a byte of data stored in the EEPROM at address 'addr.' The 538 * BCM570x supports both the traditional bitbang interface and an 539 * auto access interface for reading the EEPROM. We use the auto 540 * access method. 541 */ 542 static u_int8_t 543 bge_eeprom_getbyte(sc, addr, dest) 544 struct bge_softc *sc; 545 int addr; 546 u_int8_t *dest; 547 { 548 int i; 549 u_int32_t byte = 0; 550 551 /* 552 * Enable use of auto EEPROM access so we can avoid 553 * having to use the bitbang method. 554 */ 555 BGE_SETBIT(sc, BGE_MISC_LOCAL_CTL, BGE_MLC_AUTO_EEPROM); 556 557 /* Reset the EEPROM, load the clock period. */ 558 CSR_WRITE_4(sc, BGE_EE_ADDR, 559 BGE_EEADDR_RESET|BGE_EEHALFCLK(BGE_HALFCLK_384SCL)); 560 DELAY(20); 561 562 /* Issue the read EEPROM command. */ 563 CSR_WRITE_4(sc, BGE_EE_ADDR, BGE_EE_READCMD | addr); 564 565 /* Wait for completion */ 566 for(i = 0; i < BGE_TIMEOUT * 10; i++) { 567 DELAY(10); 568 if (CSR_READ_4(sc, BGE_EE_ADDR) & BGE_EEADDR_DONE) 569 break; 570 } 571 572 if (i == BGE_TIMEOUT) { 573 printf("bge%d: eeprom read timed out\n", sc->bge_unit); 574 return(0); 575 } 576 577 /* Get result. */ 578 byte = CSR_READ_4(sc, BGE_EE_DATA); 579 580 *dest = (byte >> ((addr % 4) * 8)) & 0xFF; 581 582 return(0); 583 } 584 585 /* 586 * Read a sequence of bytes from the EEPROM. 587 */ 588 static int 589 bge_read_eeprom(sc, dest, off, cnt) 590 struct bge_softc *sc; 591 caddr_t dest; 592 int off; 593 int cnt; 594 { 595 int err = 0, i; 596 u_int8_t byte = 0; 597 598 for (i = 0; i < cnt; i++) { 599 err = bge_eeprom_getbyte(sc, off + i, &byte); 600 if (err) 601 break; 602 *(dest + i) = byte; 603 } 604 605 return(err ? 1 : 0); 606 } 607 608 static int 609 bge_miibus_readreg(dev, phy, reg) 610 device_t dev; 611 int phy, reg; 612 { 613 struct bge_softc *sc; 614 u_int32_t val, autopoll; 615 int i; 616 617 sc = device_get_softc(dev); 618 619 /* 620 * Broadcom's own driver always assumes the internal 621 * PHY is at GMII address 1. On some chips, the PHY responds 622 * to accesses at all addresses, which could cause us to 623 * bogusly attach the PHY 32 times at probe type. Always 624 * restricting the lookup to address 1 is simpler than 625 * trying to figure out which chips revisions should be 626 * special-cased. 627 */ 628 if (phy != 1) 629 return(0); 630 631 /* Reading with autopolling on may trigger PCI errors */ 632 autopoll = CSR_READ_4(sc, BGE_MI_MODE); 633 if (autopoll & BGE_MIMODE_AUTOPOLL) { 634 BGE_CLRBIT(sc, BGE_MI_MODE, BGE_MIMODE_AUTOPOLL); 635 DELAY(40); 636 } 637 638 CSR_WRITE_4(sc, BGE_MI_COMM, BGE_MICMD_READ|BGE_MICOMM_BUSY| 639 BGE_MIPHY(phy)|BGE_MIREG(reg)); 640 641 for (i = 0; i < BGE_TIMEOUT; i++) { 642 val = CSR_READ_4(sc, BGE_MI_COMM); 643 if (!(val & BGE_MICOMM_BUSY)) 644 break; 645 } 646 647 if (i == BGE_TIMEOUT) { 648 printf("bge%d: PHY read timed out\n", sc->bge_unit); 649 val = 0; 650 goto done; 651 } 652 653 val = CSR_READ_4(sc, BGE_MI_COMM); 654 655 done: 656 if (autopoll & BGE_MIMODE_AUTOPOLL) { 657 BGE_SETBIT(sc, BGE_MI_MODE, BGE_MIMODE_AUTOPOLL); 658 DELAY(40); 659 } 660 661 if (val & BGE_MICOMM_READFAIL) 662 return(0); 663 664 return(val & 0xFFFF); 665 } 666 667 static int 668 bge_miibus_writereg(dev, phy, reg, val) 669 device_t dev; 670 int phy, reg, val; 671 { 672 struct bge_softc *sc; 673 u_int32_t autopoll; 674 int i; 675 676 sc = device_get_softc(dev); 677 678 /* Reading with autopolling on may trigger PCI errors */ 679 autopoll = CSR_READ_4(sc, BGE_MI_MODE); 680 if (autopoll & BGE_MIMODE_AUTOPOLL) { 681 BGE_CLRBIT(sc, BGE_MI_MODE, BGE_MIMODE_AUTOPOLL); 682 DELAY(40); 683 } 684 685 CSR_WRITE_4(sc, BGE_MI_COMM, BGE_MICMD_WRITE|BGE_MICOMM_BUSY| 686 BGE_MIPHY(phy)|BGE_MIREG(reg)|val); 687 688 for (i = 0; i < BGE_TIMEOUT; i++) { 689 if (!(CSR_READ_4(sc, BGE_MI_COMM) & BGE_MICOMM_BUSY)) 690 break; 691 } 692 693 if (autopoll & BGE_MIMODE_AUTOPOLL) { 694 BGE_SETBIT(sc, BGE_MI_MODE, BGE_MIMODE_AUTOPOLL); 695 DELAY(40); 696 } 697 698 if (i == BGE_TIMEOUT) { 699 printf("bge%d: PHY read timed out\n", sc->bge_unit); 700 return(0); 701 } 702 703 return(0); 704 } 705 706 static void 707 bge_miibus_statchg(dev) 708 device_t dev; 709 { 710 struct bge_softc *sc; 711 struct mii_data *mii; 712 713 sc = device_get_softc(dev); 714 mii = device_get_softc(sc->bge_miibus); 715 716 BGE_CLRBIT(sc, BGE_MAC_MODE, BGE_MACMODE_PORTMODE); 717 if (IFM_SUBTYPE(mii->mii_media_active) == IFM_1000_T) { 718 BGE_SETBIT(sc, BGE_MAC_MODE, BGE_PORTMODE_GMII); 719 } else { 720 BGE_SETBIT(sc, BGE_MAC_MODE, BGE_PORTMODE_MII); 721 } 722 723 if ((mii->mii_media_active & IFM_GMASK) == IFM_FDX) { 724 BGE_CLRBIT(sc, BGE_MAC_MODE, BGE_MACMODE_HALF_DUPLEX); 725 } else { 726 BGE_SETBIT(sc, BGE_MAC_MODE, BGE_MACMODE_HALF_DUPLEX); 727 } 728 729 return; 730 } 731 732 /* 733 * Handle events that have triggered interrupts. 734 */ 735 static void 736 bge_handle_events(sc) 737 struct bge_softc *sc; 738 { 739 740 return; 741 } 742 743 /* 744 * Intialize a standard receive ring descriptor. 745 */ 746 static int 747 bge_newbuf_std(sc, i, m) 748 struct bge_softc *sc; 749 int i; 750 struct mbuf *m; 751 { 752 struct mbuf *m_new = NULL; 753 struct bge_rx_bd *r; 754 struct bge_dmamap_arg ctx; 755 int error; 756 757 if (m == NULL) { 758 MGETHDR(m_new, M_DONTWAIT, MT_DATA); 759 if (m_new == NULL) { 760 return(ENOBUFS); 761 } 762 763 MCLGET(m_new, M_DONTWAIT); 764 if (!(m_new->m_flags & M_EXT)) { 765 m_freem(m_new); 766 return(ENOBUFS); 767 } 768 m_new->m_len = m_new->m_pkthdr.len = MCLBYTES; 769 } else { 770 m_new = m; 771 m_new->m_len = m_new->m_pkthdr.len = MCLBYTES; 772 m_new->m_data = m_new->m_ext.ext_buf; 773 } 774 775 if (!sc->bge_rx_alignment_bug) 776 m_adj(m_new, ETHER_ALIGN); 777 sc->bge_cdata.bge_rx_std_chain[i] = m_new; 778 r = &sc->bge_ldata.bge_rx_std_ring[i]; 779 ctx.bge_maxsegs = 1; 780 ctx.sc = sc; 781 error = bus_dmamap_load(sc->bge_cdata.bge_mtag, 782 sc->bge_cdata.bge_rx_std_dmamap[i], mtod(m_new, void *), 783 m_new->m_len, bge_dma_map_addr, &ctx, BUS_DMA_NOWAIT); 784 if (error || ctx.bge_maxsegs == 0) { 785 if (m == NULL) { 786 sc->bge_cdata.bge_rx_std_chain[i] = NULL; 787 m_freem(m_new); 788 } 789 return(ENOMEM); 790 } 791 r->bge_addr.bge_addr_lo = htole32(BGE_ADDR_LO(ctx.bge_busaddr)); 792 r->bge_addr.bge_addr_hi = htole32(BGE_ADDR_HI(ctx.bge_busaddr)); 793 r->bge_flags = htole16(BGE_RXBDFLAG_END); 794 r->bge_len = htole16(m_new->m_len); 795 r->bge_idx = htole16(i); 796 797 bus_dmamap_sync(sc->bge_cdata.bge_mtag, 798 sc->bge_cdata.bge_rx_std_dmamap[i], 799 BUS_DMASYNC_PREREAD); 800 801 return(0); 802 } 803 804 /* 805 * Initialize a jumbo receive ring descriptor. This allocates 806 * a jumbo buffer from the pool managed internally by the driver. 807 */ 808 static int 809 bge_newbuf_jumbo(sc, i, m) 810 struct bge_softc *sc; 811 int i; 812 struct mbuf *m; 813 { 814 bus_dma_segment_t segs[BGE_NSEG_JUMBO]; 815 struct bge_extrx_bd *r; 816 struct mbuf *m_new = NULL; 817 int nsegs; 818 int error; 819 820 if (m == NULL) { 821 MGETHDR(m_new, M_DONTWAIT, MT_DATA); 822 if (m_new == NULL) 823 return(ENOBUFS); 824 825 m_cljget(m_new, M_DONTWAIT, MJUM9BYTES); 826 if (!(m_new->m_flags & M_EXT)) { 827 m_freem(m_new); 828 return(ENOBUFS); 829 } 830 m_new->m_len = m_new->m_pkthdr.len = MJUM9BYTES; 831 } else { 832 m_new = m; 833 m_new->m_len = m_new->m_pkthdr.len = MJUM9BYTES; 834 m_new->m_data = m_new->m_ext.ext_buf; 835 } 836 837 if (!sc->bge_rx_alignment_bug) 838 m_adj(m_new, ETHER_ALIGN); 839 840 error = bus_dmamap_load_mbuf_sg(sc->bge_cdata.bge_mtag_jumbo, 841 sc->bge_cdata.bge_rx_jumbo_dmamap[i], 842 m_new, segs, &nsegs, BUS_DMA_NOWAIT); 843 if (error) { 844 if (m == NULL) 845 m_freem(m_new); 846 return(error); 847 } 848 KASSERT(nsegs == BGE_NSEG_JUMBO, ("%s: %d segments", __func__, nsegs)); 849 850 sc->bge_cdata.bge_rx_jumbo_chain[i] = m_new; 851 852 /* 853 * Fill in the extended RX buffer descriptor. 854 */ 855 r = &sc->bge_ldata.bge_rx_jumbo_ring[i]; 856 r->bge_addr0.bge_addr_lo = htole32(BGE_ADDR_LO(segs[0].ds_addr)); 857 r->bge_addr0.bge_addr_hi = htole32(BGE_ADDR_HI(segs[0].ds_addr)); 858 r->bge_len0 = htole16(segs[0].ds_len); 859 r->bge_addr1.bge_addr_lo = htole32(BGE_ADDR_LO(segs[1].ds_addr)); 860 r->bge_addr1.bge_addr_hi = htole32(BGE_ADDR_HI(segs[1].ds_addr)); 861 r->bge_len1 = htole16(segs[1].ds_len); 862 r->bge_addr2.bge_addr_lo = htole32(BGE_ADDR_LO(segs[2].ds_addr)); 863 r->bge_addr2.bge_addr_hi = htole32(BGE_ADDR_HI(segs[2].ds_addr)); 864 r->bge_len2 = htole16(segs[2].ds_len); 865 r->bge_len3 = htole16(0); 866 r->bge_flags = htole16(BGE_RXBDFLAG_JUMBO_RING|BGE_RXBDFLAG_END); 867 r->bge_idx = htole16(i); 868 869 bus_dmamap_sync(sc->bge_cdata.bge_mtag, 870 sc->bge_cdata.bge_rx_jumbo_dmamap[i], 871 BUS_DMASYNC_PREREAD); 872 873 return (0); 874 } 875 876 /* 877 * The standard receive ring has 512 entries in it. At 2K per mbuf cluster, 878 * that's 1MB or memory, which is a lot. For now, we fill only the first 879 * 256 ring entries and hope that our CPU is fast enough to keep up with 880 * the NIC. 881 */ 882 static int 883 bge_init_rx_ring_std(sc) 884 struct bge_softc *sc; 885 { 886 int i; 887 888 for (i = 0; i < BGE_SSLOTS; i++) { 889 if (bge_newbuf_std(sc, i, NULL) == ENOBUFS) 890 return(ENOBUFS); 891 }; 892 893 bus_dmamap_sync(sc->bge_cdata.bge_rx_std_ring_tag, 894 sc->bge_cdata.bge_rx_std_ring_map, 895 BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE); 896 897 sc->bge_std = i - 1; 898 CSR_WRITE_4(sc, BGE_MBX_RX_STD_PROD_LO, sc->bge_std); 899 900 return(0); 901 } 902 903 static void 904 bge_free_rx_ring_std(sc) 905 struct bge_softc *sc; 906 { 907 int i; 908 909 for (i = 0; i < BGE_STD_RX_RING_CNT; i++) { 910 if (sc->bge_cdata.bge_rx_std_chain[i] != NULL) { 911 m_freem(sc->bge_cdata.bge_rx_std_chain[i]); 912 sc->bge_cdata.bge_rx_std_chain[i] = NULL; 913 bus_dmamap_unload(sc->bge_cdata.bge_mtag, 914 sc->bge_cdata.bge_rx_std_dmamap[i]); 915 } 916 bzero((char *)&sc->bge_ldata.bge_rx_std_ring[i], 917 sizeof(struct bge_rx_bd)); 918 } 919 920 return; 921 } 922 923 static int 924 bge_init_rx_ring_jumbo(sc) 925 struct bge_softc *sc; 926 { 927 struct bge_rcb *rcb; 928 int i; 929 930 for (i = 0; i < BGE_JUMBO_RX_RING_CNT; i++) { 931 if (bge_newbuf_jumbo(sc, i, NULL) == ENOBUFS) 932 return(ENOBUFS); 933 }; 934 935 bus_dmamap_sync(sc->bge_cdata.bge_rx_jumbo_ring_tag, 936 sc->bge_cdata.bge_rx_jumbo_ring_map, 937 BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE); 938 939 sc->bge_jumbo = i - 1; 940 941 rcb = &sc->bge_ldata.bge_info.bge_jumbo_rx_rcb; 942 rcb->bge_maxlen_flags = BGE_RCB_MAXLEN_FLAGS(0, 943 BGE_RCB_FLAG_USE_EXT_RX_BD); 944 CSR_WRITE_4(sc, BGE_RX_JUMBO_RCB_MAXLEN_FLAGS, rcb->bge_maxlen_flags); 945 946 CSR_WRITE_4(sc, BGE_MBX_RX_JUMBO_PROD_LO, sc->bge_jumbo); 947 948 return(0); 949 } 950 951 static void 952 bge_free_rx_ring_jumbo(sc) 953 struct bge_softc *sc; 954 { 955 int i; 956 957 for (i = 0; i < BGE_JUMBO_RX_RING_CNT; i++) { 958 if (sc->bge_cdata.bge_rx_jumbo_chain[i] != NULL) { 959 m_freem(sc->bge_cdata.bge_rx_jumbo_chain[i]); 960 sc->bge_cdata.bge_rx_jumbo_chain[i] = NULL; 961 bus_dmamap_unload(sc->bge_cdata.bge_mtag_jumbo, 962 sc->bge_cdata.bge_rx_jumbo_dmamap[i]); 963 } 964 bzero((char *)&sc->bge_ldata.bge_rx_jumbo_ring[i], 965 sizeof(struct bge_extrx_bd)); 966 } 967 968 return; 969 } 970 971 static void 972 bge_free_tx_ring(sc) 973 struct bge_softc *sc; 974 { 975 int i; 976 977 if (sc->bge_ldata.bge_tx_ring == NULL) 978 return; 979 980 for (i = 0; i < BGE_TX_RING_CNT; i++) { 981 if (sc->bge_cdata.bge_tx_chain[i] != NULL) { 982 m_freem(sc->bge_cdata.bge_tx_chain[i]); 983 sc->bge_cdata.bge_tx_chain[i] = NULL; 984 bus_dmamap_unload(sc->bge_cdata.bge_mtag, 985 sc->bge_cdata.bge_tx_dmamap[i]); 986 } 987 bzero((char *)&sc->bge_ldata.bge_tx_ring[i], 988 sizeof(struct bge_tx_bd)); 989 } 990 991 return; 992 } 993 994 static int 995 bge_init_tx_ring(sc) 996 struct bge_softc *sc; 997 { 998 sc->bge_txcnt = 0; 999 sc->bge_tx_saved_considx = 0; 1000 1001 CSR_WRITE_4(sc, BGE_MBX_TX_HOST_PROD0_LO, 0); 1002 /* 5700 b2 errata */ 1003 if (sc->bge_chiprev == BGE_CHIPREV_5700_BX) 1004 CSR_WRITE_4(sc, BGE_MBX_TX_HOST_PROD0_LO, 0); 1005 1006 CSR_WRITE_4(sc, BGE_MBX_TX_NIC_PROD0_LO, 0); 1007 /* 5700 b2 errata */ 1008 if (sc->bge_chiprev == BGE_CHIPREV_5700_BX) 1009 CSR_WRITE_4(sc, BGE_MBX_TX_NIC_PROD0_LO, 0); 1010 1011 return(0); 1012 } 1013 1014 static void 1015 bge_setmulti(sc) 1016 struct bge_softc *sc; 1017 { 1018 struct ifnet *ifp; 1019 struct ifmultiaddr *ifma; 1020 u_int32_t hashes[4] = { 0, 0, 0, 0 }; 1021 int h, i; 1022 1023 BGE_LOCK_ASSERT(sc); 1024 1025 ifp = sc->bge_ifp; 1026 1027 if (ifp->if_flags & IFF_ALLMULTI || ifp->if_flags & IFF_PROMISC) { 1028 for (i = 0; i < 4; i++) 1029 CSR_WRITE_4(sc, BGE_MAR0 + (i * 4), 0xFFFFFFFF); 1030 return; 1031 } 1032 1033 /* First, zot all the existing filters. */ 1034 for (i = 0; i < 4; i++) 1035 CSR_WRITE_4(sc, BGE_MAR0 + (i * 4), 0); 1036 1037 /* Now program new ones. */ 1038 IF_ADDR_LOCK(ifp); 1039 TAILQ_FOREACH(ifma, &ifp->if_multiaddrs, ifma_link) { 1040 if (ifma->ifma_addr->sa_family != AF_LINK) 1041 continue; 1042 h = ether_crc32_le(LLADDR((struct sockaddr_dl *) 1043 ifma->ifma_addr), ETHER_ADDR_LEN) & 0x7F; 1044 hashes[(h & 0x60) >> 5] |= 1 << (h & 0x1F); 1045 } 1046 IF_ADDR_UNLOCK(ifp); 1047 1048 for (i = 0; i < 4; i++) 1049 CSR_WRITE_4(sc, BGE_MAR0 + (i * 4), hashes[i]); 1050 1051 return; 1052 } 1053 1054 /* 1055 * Do endian, PCI and DMA initialization. Also check the on-board ROM 1056 * self-test results. 1057 */ 1058 static int 1059 bge_chipinit(sc) 1060 struct bge_softc *sc; 1061 { 1062 int i; 1063 u_int32_t dma_rw_ctl; 1064 1065 /* Set endianness before we access any non-PCI registers. */ 1066 #if BYTE_ORDER == BIG_ENDIAN 1067 pci_write_config(sc->bge_dev, BGE_PCI_MISC_CTL, 1068 BGE_BIGENDIAN_INIT, 4); 1069 #else 1070 pci_write_config(sc->bge_dev, BGE_PCI_MISC_CTL, 1071 BGE_LITTLEENDIAN_INIT, 4); 1072 #endif 1073 1074 /* 1075 * Check the 'ROM failed' bit on the RX CPU to see if 1076 * self-tests passed. 1077 */ 1078 if (CSR_READ_4(sc, BGE_RXCPU_MODE) & BGE_RXCPUMODE_ROMFAIL) { 1079 printf("bge%d: RX CPU self-diagnostics failed!\n", 1080 sc->bge_unit); 1081 return(ENODEV); 1082 } 1083 1084 /* Clear the MAC control register */ 1085 CSR_WRITE_4(sc, BGE_MAC_MODE, 0); 1086 1087 /* 1088 * Clear the MAC statistics block in the NIC's 1089 * internal memory. 1090 */ 1091 for (i = BGE_STATS_BLOCK; 1092 i < BGE_STATS_BLOCK_END + 1; i += sizeof(u_int32_t)) 1093 BGE_MEMWIN_WRITE(sc, i, 0); 1094 1095 for (i = BGE_STATUS_BLOCK; 1096 i < BGE_STATUS_BLOCK_END + 1; i += sizeof(u_int32_t)) 1097 BGE_MEMWIN_WRITE(sc, i, 0); 1098 1099 /* Set up the PCI DMA control register. */ 1100 if (sc->bge_pcie) { 1101 dma_rw_ctl = BGE_PCI_READ_CMD|BGE_PCI_WRITE_CMD | 1102 (0xf << BGE_PCIDMARWCTL_RD_WAT_SHIFT) | 1103 (0x2 << BGE_PCIDMARWCTL_WR_WAT_SHIFT); 1104 } else if (pci_read_config(sc->bge_dev, BGE_PCI_PCISTATE, 4) & 1105 BGE_PCISTATE_PCI_BUSMODE) { 1106 /* Conventional PCI bus */ 1107 dma_rw_ctl = BGE_PCI_READ_CMD|BGE_PCI_WRITE_CMD | 1108 (0x7 << BGE_PCIDMARWCTL_RD_WAT_SHIFT) | 1109 (0x7 << BGE_PCIDMARWCTL_WR_WAT_SHIFT) | 1110 (0x0F); 1111 } else { 1112 /* PCI-X bus */ 1113 /* 1114 * The 5704 uses a different encoding of read/write 1115 * watermarks. 1116 */ 1117 if (sc->bge_asicrev == BGE_ASICREV_BCM5704) 1118 dma_rw_ctl = BGE_PCI_READ_CMD|BGE_PCI_WRITE_CMD | 1119 (0x7 << BGE_PCIDMARWCTL_RD_WAT_SHIFT) | 1120 (0x3 << BGE_PCIDMARWCTL_WR_WAT_SHIFT); 1121 else 1122 dma_rw_ctl = BGE_PCI_READ_CMD|BGE_PCI_WRITE_CMD | 1123 (0x3 << BGE_PCIDMARWCTL_RD_WAT_SHIFT) | 1124 (0x3 << BGE_PCIDMARWCTL_WR_WAT_SHIFT) | 1125 (0x0F); 1126 1127 /* 1128 * 5703 and 5704 need ONEDMA_AT_ONCE as a workaround 1129 * for hardware bugs. 1130 */ 1131 if (sc->bge_asicrev == BGE_ASICREV_BCM5703 || 1132 sc->bge_asicrev == BGE_ASICREV_BCM5704) { 1133 u_int32_t tmp; 1134 1135 tmp = CSR_READ_4(sc, BGE_PCI_CLKCTL) & 0x1f; 1136 if (tmp == 0x6 || tmp == 0x7) 1137 dma_rw_ctl |= BGE_PCIDMARWCTL_ONEDMA_ATONCE; 1138 } 1139 } 1140 1141 if (sc->bge_asicrev == BGE_ASICREV_BCM5703 || 1142 sc->bge_asicrev == BGE_ASICREV_BCM5704 || 1143 sc->bge_asicrev == BGE_ASICREV_BCM5705 || 1144 sc->bge_asicrev == BGE_ASICREV_BCM5750) 1145 dma_rw_ctl &= ~BGE_PCIDMARWCTL_MINDMA; 1146 pci_write_config(sc->bge_dev, BGE_PCI_DMA_RW_CTL, dma_rw_ctl, 4); 1147 1148 /* 1149 * Set up general mode register. 1150 */ 1151 CSR_WRITE_4(sc, BGE_MODE_CTL, BGE_MODECTL_WORDSWAP_NONFRAME| 1152 BGE_MODECTL_BYTESWAP_DATA|BGE_MODECTL_WORDSWAP_DATA| 1153 BGE_MODECTL_MAC_ATTN_INTR|BGE_MODECTL_HOST_SEND_BDS| 1154 BGE_MODECTL_TX_NO_PHDR_CSUM|BGE_MODECTL_RX_NO_PHDR_CSUM); 1155 1156 /* 1157 * Disable memory write invalidate. Apparently it is not supported 1158 * properly by these devices. 1159 */ 1160 PCI_CLRBIT(sc->bge_dev, BGE_PCI_CMD, PCIM_CMD_MWIEN, 4); 1161 1162 #ifdef __brokenalpha__ 1163 /* 1164 * Must insure that we do not cross an 8K (bytes) boundary 1165 * for DMA reads. Our highest limit is 1K bytes. This is a 1166 * restriction on some ALPHA platforms with early revision 1167 * 21174 PCI chipsets, such as the AlphaPC 164lx 1168 */ 1169 PCI_SETBIT(sc->bge_dev, BGE_PCI_DMA_RW_CTL, 1170 BGE_PCI_READ_BNDRY_1024BYTES, 4); 1171 #endif 1172 1173 /* Set the timer prescaler (always 66Mhz) */ 1174 CSR_WRITE_4(sc, BGE_MISC_CFG, 65 << 1/*BGE_32BITTIME_66MHZ*/); 1175 1176 return(0); 1177 } 1178 1179 static int 1180 bge_blockinit(sc) 1181 struct bge_softc *sc; 1182 { 1183 struct bge_rcb *rcb; 1184 volatile struct bge_rcb *vrcb; 1185 int i; 1186 1187 /* 1188 * Initialize the memory window pointer register so that 1189 * we can access the first 32K of internal NIC RAM. This will 1190 * allow us to set up the TX send ring RCBs and the RX return 1191 * ring RCBs, plus other things which live in NIC memory. 1192 */ 1193 CSR_WRITE_4(sc, BGE_PCI_MEMWIN_BASEADDR, 0); 1194 1195 /* Note: the BCM5704 has a smaller mbuf space than other chips. */ 1196 1197 if (sc->bge_asicrev != BGE_ASICREV_BCM5705 && 1198 sc->bge_asicrev != BGE_ASICREV_BCM5750) { 1199 /* Configure mbuf memory pool */ 1200 if (sc->bge_extram) { 1201 CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_BASEADDR, 1202 BGE_EXT_SSRAM); 1203 if (sc->bge_asicrev == BGE_ASICREV_BCM5704) 1204 CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_LEN, 0x10000); 1205 else 1206 CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_LEN, 0x18000); 1207 } else { 1208 CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_BASEADDR, 1209 BGE_BUFFPOOL_1); 1210 if (sc->bge_asicrev == BGE_ASICREV_BCM5704) 1211 CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_LEN, 0x10000); 1212 else 1213 CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_LEN, 0x18000); 1214 } 1215 1216 /* Configure DMA resource pool */ 1217 CSR_WRITE_4(sc, BGE_BMAN_DMA_DESCPOOL_BASEADDR, 1218 BGE_DMA_DESCRIPTORS); 1219 CSR_WRITE_4(sc, BGE_BMAN_DMA_DESCPOOL_LEN, 0x2000); 1220 } 1221 1222 /* Configure mbuf pool watermarks */ 1223 if (sc->bge_asicrev == BGE_ASICREV_BCM5705 || 1224 sc->bge_asicrev == BGE_ASICREV_BCM5750) { 1225 CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_READDMA_LOWAT, 0x0); 1226 CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_MACRX_LOWAT, 0x10); 1227 } else { 1228 CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_READDMA_LOWAT, 0x50); 1229 CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_MACRX_LOWAT, 0x20); 1230 } 1231 CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_HIWAT, 0x60); 1232 1233 /* Configure DMA resource watermarks */ 1234 CSR_WRITE_4(sc, BGE_BMAN_DMA_DESCPOOL_LOWAT, 5); 1235 CSR_WRITE_4(sc, BGE_BMAN_DMA_DESCPOOL_HIWAT, 10); 1236 1237 /* Enable buffer manager */ 1238 if (sc->bge_asicrev != BGE_ASICREV_BCM5705 && 1239 sc->bge_asicrev != BGE_ASICREV_BCM5750) { 1240 CSR_WRITE_4(sc, BGE_BMAN_MODE, 1241 BGE_BMANMODE_ENABLE|BGE_BMANMODE_LOMBUF_ATTN); 1242 1243 /* Poll for buffer manager start indication */ 1244 for (i = 0; i < BGE_TIMEOUT; i++) { 1245 if (CSR_READ_4(sc, BGE_BMAN_MODE) & BGE_BMANMODE_ENABLE) 1246 break; 1247 DELAY(10); 1248 } 1249 1250 if (i == BGE_TIMEOUT) { 1251 printf("bge%d: buffer manager failed to start\n", 1252 sc->bge_unit); 1253 return(ENXIO); 1254 } 1255 } 1256 1257 /* Enable flow-through queues */ 1258 CSR_WRITE_4(sc, BGE_FTQ_RESET, 0xFFFFFFFF); 1259 CSR_WRITE_4(sc, BGE_FTQ_RESET, 0); 1260 1261 /* Wait until queue initialization is complete */ 1262 for (i = 0; i < BGE_TIMEOUT; i++) { 1263 if (CSR_READ_4(sc, BGE_FTQ_RESET) == 0) 1264 break; 1265 DELAY(10); 1266 } 1267 1268 if (i == BGE_TIMEOUT) { 1269 printf("bge%d: flow-through queue init failed\n", 1270 sc->bge_unit); 1271 return(ENXIO); 1272 } 1273 1274 /* Initialize the standard RX ring control block */ 1275 rcb = &sc->bge_ldata.bge_info.bge_std_rx_rcb; 1276 rcb->bge_hostaddr.bge_addr_lo = 1277 BGE_ADDR_LO(sc->bge_ldata.bge_rx_std_ring_paddr); 1278 rcb->bge_hostaddr.bge_addr_hi = 1279 BGE_ADDR_HI(sc->bge_ldata.bge_rx_std_ring_paddr); 1280 bus_dmamap_sync(sc->bge_cdata.bge_rx_std_ring_tag, 1281 sc->bge_cdata.bge_rx_std_ring_map, BUS_DMASYNC_PREREAD); 1282 if (sc->bge_asicrev == BGE_ASICREV_BCM5705 || 1283 sc->bge_asicrev == BGE_ASICREV_BCM5750) 1284 rcb->bge_maxlen_flags = BGE_RCB_MAXLEN_FLAGS(512, 0); 1285 else 1286 rcb->bge_maxlen_flags = 1287 BGE_RCB_MAXLEN_FLAGS(BGE_MAX_FRAMELEN, 0); 1288 if (sc->bge_extram) 1289 rcb->bge_nicaddr = BGE_EXT_STD_RX_RINGS; 1290 else 1291 rcb->bge_nicaddr = BGE_STD_RX_RINGS; 1292 CSR_WRITE_4(sc, BGE_RX_STD_RCB_HADDR_HI, rcb->bge_hostaddr.bge_addr_hi); 1293 CSR_WRITE_4(sc, BGE_RX_STD_RCB_HADDR_LO, rcb->bge_hostaddr.bge_addr_lo); 1294 1295 CSR_WRITE_4(sc, BGE_RX_STD_RCB_MAXLEN_FLAGS, rcb->bge_maxlen_flags); 1296 CSR_WRITE_4(sc, BGE_RX_STD_RCB_NICADDR, rcb->bge_nicaddr); 1297 1298 /* 1299 * Initialize the jumbo RX ring control block 1300 * We set the 'ring disabled' bit in the flags 1301 * field until we're actually ready to start 1302 * using this ring (i.e. once we set the MTU 1303 * high enough to require it). 1304 */ 1305 if (sc->bge_asicrev != BGE_ASICREV_BCM5705 && 1306 sc->bge_asicrev != BGE_ASICREV_BCM5750) { 1307 rcb = &sc->bge_ldata.bge_info.bge_jumbo_rx_rcb; 1308 1309 rcb->bge_hostaddr.bge_addr_lo = 1310 BGE_ADDR_LO(sc->bge_ldata.bge_rx_jumbo_ring_paddr); 1311 rcb->bge_hostaddr.bge_addr_hi = 1312 BGE_ADDR_HI(sc->bge_ldata.bge_rx_jumbo_ring_paddr); 1313 bus_dmamap_sync(sc->bge_cdata.bge_rx_jumbo_ring_tag, 1314 sc->bge_cdata.bge_rx_jumbo_ring_map, 1315 BUS_DMASYNC_PREREAD); 1316 rcb->bge_maxlen_flags = BGE_RCB_MAXLEN_FLAGS(0, 1317 BGE_RCB_FLAG_USE_EXT_RX_BD|BGE_RCB_FLAG_RING_DISABLED); 1318 if (sc->bge_extram) 1319 rcb->bge_nicaddr = BGE_EXT_JUMBO_RX_RINGS; 1320 else 1321 rcb->bge_nicaddr = BGE_JUMBO_RX_RINGS; 1322 CSR_WRITE_4(sc, BGE_RX_JUMBO_RCB_HADDR_HI, 1323 rcb->bge_hostaddr.bge_addr_hi); 1324 CSR_WRITE_4(sc, BGE_RX_JUMBO_RCB_HADDR_LO, 1325 rcb->bge_hostaddr.bge_addr_lo); 1326 1327 CSR_WRITE_4(sc, BGE_RX_JUMBO_RCB_MAXLEN_FLAGS, 1328 rcb->bge_maxlen_flags); 1329 CSR_WRITE_4(sc, BGE_RX_JUMBO_RCB_NICADDR, rcb->bge_nicaddr); 1330 1331 /* Set up dummy disabled mini ring RCB */ 1332 rcb = &sc->bge_ldata.bge_info.bge_mini_rx_rcb; 1333 rcb->bge_maxlen_flags = 1334 BGE_RCB_MAXLEN_FLAGS(0, BGE_RCB_FLAG_RING_DISABLED); 1335 CSR_WRITE_4(sc, BGE_RX_MINI_RCB_MAXLEN_FLAGS, 1336 rcb->bge_maxlen_flags); 1337 } 1338 1339 /* 1340 * Set the BD ring replentish thresholds. The recommended 1341 * values are 1/8th the number of descriptors allocated to 1342 * each ring. 1343 */ 1344 CSR_WRITE_4(sc, BGE_RBDI_STD_REPL_THRESH, BGE_STD_RX_RING_CNT/8); 1345 CSR_WRITE_4(sc, BGE_RBDI_JUMBO_REPL_THRESH, BGE_JUMBO_RX_RING_CNT/8); 1346 1347 /* 1348 * Disable all unused send rings by setting the 'ring disabled' 1349 * bit in the flags field of all the TX send ring control blocks. 1350 * These are located in NIC memory. 1351 */ 1352 vrcb = (volatile struct bge_rcb *)(sc->bge_vhandle + BGE_MEMWIN_START + 1353 BGE_SEND_RING_RCB); 1354 for (i = 0; i < BGE_TX_RINGS_EXTSSRAM_MAX; i++) { 1355 vrcb->bge_maxlen_flags = 1356 BGE_RCB_MAXLEN_FLAGS(0, BGE_RCB_FLAG_RING_DISABLED); 1357 vrcb->bge_nicaddr = 0; 1358 vrcb++; 1359 } 1360 1361 /* Configure TX RCB 0 (we use only the first ring) */ 1362 vrcb = (volatile struct bge_rcb *)(sc->bge_vhandle + BGE_MEMWIN_START + 1363 BGE_SEND_RING_RCB); 1364 vrcb->bge_hostaddr.bge_addr_lo = 1365 htole32(BGE_ADDR_LO(sc->bge_ldata.bge_tx_ring_paddr)); 1366 vrcb->bge_hostaddr.bge_addr_hi = 1367 htole32(BGE_ADDR_HI(sc->bge_ldata.bge_tx_ring_paddr)); 1368 vrcb->bge_nicaddr = BGE_NIC_TXRING_ADDR(0, BGE_TX_RING_CNT); 1369 if (sc->bge_asicrev != BGE_ASICREV_BCM5705 && 1370 sc->bge_asicrev != BGE_ASICREV_BCM5750) 1371 vrcb->bge_maxlen_flags = 1372 BGE_RCB_MAXLEN_FLAGS(BGE_TX_RING_CNT, 0); 1373 1374 /* Disable all unused RX return rings */ 1375 vrcb = (volatile struct bge_rcb *)(sc->bge_vhandle + BGE_MEMWIN_START + 1376 BGE_RX_RETURN_RING_RCB); 1377 for (i = 0; i < BGE_RX_RINGS_MAX; i++) { 1378 vrcb->bge_hostaddr.bge_addr_hi = 0; 1379 vrcb->bge_hostaddr.bge_addr_lo = 0; 1380 vrcb->bge_maxlen_flags = 1381 BGE_RCB_MAXLEN_FLAGS(sc->bge_return_ring_cnt, 1382 BGE_RCB_FLAG_RING_DISABLED); 1383 vrcb->bge_nicaddr = 0; 1384 CSR_WRITE_4(sc, BGE_MBX_RX_CONS0_LO + 1385 (i * (sizeof(u_int64_t))), 0); 1386 vrcb++; 1387 } 1388 1389 /* Initialize RX ring indexes */ 1390 CSR_WRITE_4(sc, BGE_MBX_RX_STD_PROD_LO, 0); 1391 CSR_WRITE_4(sc, BGE_MBX_RX_JUMBO_PROD_LO, 0); 1392 CSR_WRITE_4(sc, BGE_MBX_RX_MINI_PROD_LO, 0); 1393 1394 /* 1395 * Set up RX return ring 0 1396 * Note that the NIC address for RX return rings is 0x00000000. 1397 * The return rings live entirely within the host, so the 1398 * nicaddr field in the RCB isn't used. 1399 */ 1400 vrcb = (volatile struct bge_rcb *)(sc->bge_vhandle + BGE_MEMWIN_START + 1401 BGE_RX_RETURN_RING_RCB); 1402 vrcb->bge_hostaddr.bge_addr_lo = 1403 BGE_ADDR_LO(sc->bge_ldata.bge_rx_return_ring_paddr); 1404 vrcb->bge_hostaddr.bge_addr_hi = 1405 BGE_ADDR_HI(sc->bge_ldata.bge_rx_return_ring_paddr); 1406 bus_dmamap_sync(sc->bge_cdata.bge_rx_return_ring_tag, 1407 sc->bge_cdata.bge_rx_return_ring_map, BUS_DMASYNC_PREWRITE); 1408 vrcb->bge_nicaddr = 0x00000000; 1409 vrcb->bge_maxlen_flags = 1410 BGE_RCB_MAXLEN_FLAGS(sc->bge_return_ring_cnt, 0); 1411 1412 /* Set random backoff seed for TX */ 1413 CSR_WRITE_4(sc, BGE_TX_RANDOM_BACKOFF, 1414 IF_LLADDR(sc->bge_ifp)[0] + IF_LLADDR(sc->bge_ifp)[1] + 1415 IF_LLADDR(sc->bge_ifp)[2] + IF_LLADDR(sc->bge_ifp)[3] + 1416 IF_LLADDR(sc->bge_ifp)[4] + IF_LLADDR(sc->bge_ifp)[5] + 1417 BGE_TX_BACKOFF_SEED_MASK); 1418 1419 /* Set inter-packet gap */ 1420 CSR_WRITE_4(sc, BGE_TX_LENGTHS, 0x2620); 1421 1422 /* 1423 * Specify which ring to use for packets that don't match 1424 * any RX rules. 1425 */ 1426 CSR_WRITE_4(sc, BGE_RX_RULES_CFG, 0x08); 1427 1428 /* 1429 * Configure number of RX lists. One interrupt distribution 1430 * list, sixteen active lists, one bad frames class. 1431 */ 1432 CSR_WRITE_4(sc, BGE_RXLP_CFG, 0x181); 1433 1434 /* Inialize RX list placement stats mask. */ 1435 CSR_WRITE_4(sc, BGE_RXLP_STATS_ENABLE_MASK, 0x007FFFFF); 1436 CSR_WRITE_4(sc, BGE_RXLP_STATS_CTL, 0x1); 1437 1438 /* Disable host coalescing until we get it set up */ 1439 CSR_WRITE_4(sc, BGE_HCC_MODE, 0x00000000); 1440 1441 /* Poll to make sure it's shut down. */ 1442 for (i = 0; i < BGE_TIMEOUT; i++) { 1443 if (!(CSR_READ_4(sc, BGE_HCC_MODE) & BGE_HCCMODE_ENABLE)) 1444 break; 1445 DELAY(10); 1446 } 1447 1448 if (i == BGE_TIMEOUT) { 1449 printf("bge%d: host coalescing engine failed to idle\n", 1450 sc->bge_unit); 1451 return(ENXIO); 1452 } 1453 1454 /* Set up host coalescing defaults */ 1455 CSR_WRITE_4(sc, BGE_HCC_RX_COAL_TICKS, sc->bge_rx_coal_ticks); 1456 CSR_WRITE_4(sc, BGE_HCC_TX_COAL_TICKS, sc->bge_tx_coal_ticks); 1457 CSR_WRITE_4(sc, BGE_HCC_RX_MAX_COAL_BDS, sc->bge_rx_max_coal_bds); 1458 CSR_WRITE_4(sc, BGE_HCC_TX_MAX_COAL_BDS, sc->bge_tx_max_coal_bds); 1459 if (sc->bge_asicrev != BGE_ASICREV_BCM5705 && 1460 sc->bge_asicrev != BGE_ASICREV_BCM5750) { 1461 CSR_WRITE_4(sc, BGE_HCC_RX_COAL_TICKS_INT, 0); 1462 CSR_WRITE_4(sc, BGE_HCC_TX_COAL_TICKS_INT, 0); 1463 } 1464 CSR_WRITE_4(sc, BGE_HCC_RX_MAX_COAL_BDS_INT, 0); 1465 CSR_WRITE_4(sc, BGE_HCC_TX_MAX_COAL_BDS_INT, 0); 1466 1467 /* Set up address of statistics block */ 1468 if (sc->bge_asicrev != BGE_ASICREV_BCM5705 && 1469 sc->bge_asicrev != BGE_ASICREV_BCM5750) { 1470 CSR_WRITE_4(sc, BGE_HCC_STATS_ADDR_HI, 1471 BGE_ADDR_HI(sc->bge_ldata.bge_stats_paddr)); 1472 CSR_WRITE_4(sc, BGE_HCC_STATS_ADDR_LO, 1473 BGE_ADDR_LO(sc->bge_ldata.bge_stats_paddr)); 1474 CSR_WRITE_4(sc, BGE_HCC_STATS_BASEADDR, BGE_STATS_BLOCK); 1475 CSR_WRITE_4(sc, BGE_HCC_STATUSBLK_BASEADDR, BGE_STATUS_BLOCK); 1476 CSR_WRITE_4(sc, BGE_HCC_STATS_TICKS, sc->bge_stat_ticks); 1477 } 1478 1479 /* Set up address of status block */ 1480 CSR_WRITE_4(sc, BGE_HCC_STATUSBLK_ADDR_HI, 1481 BGE_ADDR_HI(sc->bge_ldata.bge_status_block_paddr)); 1482 CSR_WRITE_4(sc, BGE_HCC_STATUSBLK_ADDR_LO, 1483 BGE_ADDR_LO(sc->bge_ldata.bge_status_block_paddr)); 1484 bus_dmamap_sync(sc->bge_cdata.bge_status_tag, 1485 sc->bge_cdata.bge_status_map, BUS_DMASYNC_PREWRITE); 1486 sc->bge_ldata.bge_status_block->bge_idx[0].bge_rx_prod_idx = 0; 1487 sc->bge_ldata.bge_status_block->bge_idx[0].bge_tx_cons_idx = 0; 1488 1489 /* Turn on host coalescing state machine */ 1490 CSR_WRITE_4(sc, BGE_HCC_MODE, BGE_HCCMODE_ENABLE); 1491 1492 /* Turn on RX BD completion state machine and enable attentions */ 1493 CSR_WRITE_4(sc, BGE_RBDC_MODE, 1494 BGE_RBDCMODE_ENABLE|BGE_RBDCMODE_ATTN); 1495 1496 /* Turn on RX list placement state machine */ 1497 CSR_WRITE_4(sc, BGE_RXLP_MODE, BGE_RXLPMODE_ENABLE); 1498 1499 /* Turn on RX list selector state machine. */ 1500 if (sc->bge_asicrev != BGE_ASICREV_BCM5705 && 1501 sc->bge_asicrev != BGE_ASICREV_BCM5750) 1502 CSR_WRITE_4(sc, BGE_RXLS_MODE, BGE_RXLSMODE_ENABLE); 1503 1504 /* Turn on DMA, clear stats */ 1505 CSR_WRITE_4(sc, BGE_MAC_MODE, BGE_MACMODE_TXDMA_ENB| 1506 BGE_MACMODE_RXDMA_ENB|BGE_MACMODE_RX_STATS_CLEAR| 1507 BGE_MACMODE_TX_STATS_CLEAR|BGE_MACMODE_RX_STATS_ENB| 1508 BGE_MACMODE_TX_STATS_ENB|BGE_MACMODE_FRMHDR_DMA_ENB| 1509 (sc->bge_tbi ? BGE_PORTMODE_TBI : BGE_PORTMODE_MII)); 1510 1511 /* Set misc. local control, enable interrupts on attentions */ 1512 CSR_WRITE_4(sc, BGE_MISC_LOCAL_CTL, BGE_MLC_INTR_ONATTN); 1513 1514 #ifdef notdef 1515 /* Assert GPIO pins for PHY reset */ 1516 BGE_SETBIT(sc, BGE_MISC_LOCAL_CTL, BGE_MLC_MISCIO_OUT0| 1517 BGE_MLC_MISCIO_OUT1|BGE_MLC_MISCIO_OUT2); 1518 BGE_SETBIT(sc, BGE_MISC_LOCAL_CTL, BGE_MLC_MISCIO_OUTEN0| 1519 BGE_MLC_MISCIO_OUTEN1|BGE_MLC_MISCIO_OUTEN2); 1520 #endif 1521 1522 /* Turn on DMA completion state machine */ 1523 if (sc->bge_asicrev != BGE_ASICREV_BCM5705 && 1524 sc->bge_asicrev != BGE_ASICREV_BCM5750) 1525 CSR_WRITE_4(sc, BGE_DMAC_MODE, BGE_DMACMODE_ENABLE); 1526 1527 /* Turn on write DMA state machine */ 1528 CSR_WRITE_4(sc, BGE_WDMA_MODE, 1529 BGE_WDMAMODE_ENABLE|BGE_WDMAMODE_ALL_ATTNS); 1530 1531 /* Turn on read DMA state machine */ 1532 CSR_WRITE_4(sc, BGE_RDMA_MODE, 1533 BGE_RDMAMODE_ENABLE|BGE_RDMAMODE_ALL_ATTNS); 1534 1535 /* Turn on RX data completion state machine */ 1536 CSR_WRITE_4(sc, BGE_RDC_MODE, BGE_RDCMODE_ENABLE); 1537 1538 /* Turn on RX BD initiator state machine */ 1539 CSR_WRITE_4(sc, BGE_RBDI_MODE, BGE_RBDIMODE_ENABLE); 1540 1541 /* Turn on RX data and RX BD initiator state machine */ 1542 CSR_WRITE_4(sc, BGE_RDBDI_MODE, BGE_RDBDIMODE_ENABLE); 1543 1544 /* Turn on Mbuf cluster free state machine */ 1545 if (sc->bge_asicrev != BGE_ASICREV_BCM5705 && 1546 sc->bge_asicrev != BGE_ASICREV_BCM5750) 1547 CSR_WRITE_4(sc, BGE_MBCF_MODE, BGE_MBCFMODE_ENABLE); 1548 1549 /* Turn on send BD completion state machine */ 1550 CSR_WRITE_4(sc, BGE_SBDC_MODE, BGE_SBDCMODE_ENABLE); 1551 1552 /* Turn on send data completion state machine */ 1553 CSR_WRITE_4(sc, BGE_SDC_MODE, BGE_SDCMODE_ENABLE); 1554 1555 /* Turn on send data initiator state machine */ 1556 CSR_WRITE_4(sc, BGE_SDI_MODE, BGE_SDIMODE_ENABLE); 1557 1558 /* Turn on send BD initiator state machine */ 1559 CSR_WRITE_4(sc, BGE_SBDI_MODE, BGE_SBDIMODE_ENABLE); 1560 1561 /* Turn on send BD selector state machine */ 1562 CSR_WRITE_4(sc, BGE_SRS_MODE, BGE_SRSMODE_ENABLE); 1563 1564 CSR_WRITE_4(sc, BGE_SDI_STATS_ENABLE_MASK, 0x007FFFFF); 1565 CSR_WRITE_4(sc, BGE_SDI_STATS_CTL, 1566 BGE_SDISTATSCTL_ENABLE|BGE_SDISTATSCTL_FASTER); 1567 1568 /* ack/clear link change events */ 1569 CSR_WRITE_4(sc, BGE_MAC_STS, BGE_MACSTAT_SYNC_CHANGED| 1570 BGE_MACSTAT_CFG_CHANGED|BGE_MACSTAT_MI_COMPLETE| 1571 BGE_MACSTAT_LINK_CHANGED); 1572 CSR_WRITE_4(sc, BGE_MI_STS, 0); 1573 1574 /* Enable PHY auto polling (for MII/GMII only) */ 1575 if (sc->bge_tbi) { 1576 CSR_WRITE_4(sc, BGE_MI_STS, BGE_MISTS_LINK); 1577 } else { 1578 BGE_SETBIT(sc, BGE_MI_MODE, BGE_MIMODE_AUTOPOLL|10<<16); 1579 if (sc->bge_asicrev == BGE_ASICREV_BCM5700) 1580 CSR_WRITE_4(sc, BGE_MAC_EVT_ENB, 1581 BGE_EVTENB_MI_INTERRUPT); 1582 } 1583 1584 /* Enable link state change attentions. */ 1585 BGE_SETBIT(sc, BGE_MAC_EVT_ENB, BGE_EVTENB_LINK_CHANGED); 1586 1587 return(0); 1588 } 1589 1590 /* 1591 * Probe for a Broadcom chip. Check the PCI vendor and device IDs 1592 * against our list and return its name if we find a match. Note 1593 * that since the Broadcom controller contains VPD support, we 1594 * can get the device name string from the controller itself instead 1595 * of the compiled-in string. This is a little slow, but it guarantees 1596 * we'll always announce the right product name. 1597 */ 1598 static int 1599 bge_probe(dev) 1600 device_t dev; 1601 { 1602 struct bge_type *t; 1603 struct bge_softc *sc; 1604 char *descbuf; 1605 1606 t = bge_devs; 1607 1608 sc = device_get_softc(dev); 1609 bzero(sc, sizeof(struct bge_softc)); 1610 sc->bge_unit = device_get_unit(dev); 1611 sc->bge_dev = dev; 1612 1613 while(t->bge_name != NULL) { 1614 if ((pci_get_vendor(dev) == t->bge_vid) && 1615 (pci_get_device(dev) == t->bge_did)) { 1616 #ifdef notdef 1617 bge_vpd_read(sc); 1618 device_set_desc(dev, sc->bge_vpd_prodname); 1619 #endif 1620 descbuf = malloc(BGE_DEVDESC_MAX, M_TEMP, M_NOWAIT); 1621 if (descbuf == NULL) 1622 return(ENOMEM); 1623 snprintf(descbuf, BGE_DEVDESC_MAX, 1624 "%s, ASIC rev. %#04x", t->bge_name, 1625 pci_read_config(dev, BGE_PCI_MISC_CTL, 4) >> 16); 1626 device_set_desc_copy(dev, descbuf); 1627 if (pci_get_subvendor(dev) == DELL_VENDORID) 1628 sc->bge_no_3_led = 1; 1629 free(descbuf, M_TEMP); 1630 return(0); 1631 } 1632 t++; 1633 } 1634 1635 return(ENXIO); 1636 } 1637 1638 static void 1639 bge_dma_free(sc) 1640 struct bge_softc *sc; 1641 { 1642 int i; 1643 1644 1645 /* Destroy DMA maps for RX buffers */ 1646 1647 for (i = 0; i < BGE_STD_RX_RING_CNT; i++) { 1648 if (sc->bge_cdata.bge_rx_std_dmamap[i]) 1649 bus_dmamap_destroy(sc->bge_cdata.bge_mtag, 1650 sc->bge_cdata.bge_rx_std_dmamap[i]); 1651 } 1652 1653 /* Destroy DMA maps for jumbo RX buffers */ 1654 1655 for (i = 0; i < BGE_JUMBO_RX_RING_CNT; i++) { 1656 if (sc->bge_cdata.bge_rx_jumbo_dmamap[i]) 1657 bus_dmamap_destroy(sc->bge_cdata.bge_mtag_jumbo, 1658 sc->bge_cdata.bge_rx_jumbo_dmamap[i]); 1659 } 1660 1661 /* Destroy DMA maps for TX buffers */ 1662 1663 for (i = 0; i < BGE_TX_RING_CNT; i++) { 1664 if (sc->bge_cdata.bge_tx_dmamap[i]) 1665 bus_dmamap_destroy(sc->bge_cdata.bge_mtag, 1666 sc->bge_cdata.bge_tx_dmamap[i]); 1667 } 1668 1669 if (sc->bge_cdata.bge_mtag) 1670 bus_dma_tag_destroy(sc->bge_cdata.bge_mtag); 1671 1672 1673 /* Destroy standard RX ring */ 1674 1675 if (sc->bge_ldata.bge_rx_std_ring) 1676 bus_dmamem_free(sc->bge_cdata.bge_rx_std_ring_tag, 1677 sc->bge_ldata.bge_rx_std_ring, 1678 sc->bge_cdata.bge_rx_std_ring_map); 1679 1680 if (sc->bge_cdata.bge_rx_std_ring_map) { 1681 bus_dmamap_unload(sc->bge_cdata.bge_rx_std_ring_tag, 1682 sc->bge_cdata.bge_rx_std_ring_map); 1683 bus_dmamap_destroy(sc->bge_cdata.bge_rx_std_ring_tag, 1684 sc->bge_cdata.bge_rx_std_ring_map); 1685 } 1686 1687 if (sc->bge_cdata.bge_rx_std_ring_tag) 1688 bus_dma_tag_destroy(sc->bge_cdata.bge_rx_std_ring_tag); 1689 1690 /* Destroy jumbo RX ring */ 1691 1692 if (sc->bge_ldata.bge_rx_jumbo_ring) 1693 bus_dmamem_free(sc->bge_cdata.bge_rx_jumbo_ring_tag, 1694 sc->bge_ldata.bge_rx_jumbo_ring, 1695 sc->bge_cdata.bge_rx_jumbo_ring_map); 1696 1697 if (sc->bge_cdata.bge_rx_jumbo_ring_map) { 1698 bus_dmamap_unload(sc->bge_cdata.bge_rx_jumbo_ring_tag, 1699 sc->bge_cdata.bge_rx_jumbo_ring_map); 1700 bus_dmamap_destroy(sc->bge_cdata.bge_rx_jumbo_ring_tag, 1701 sc->bge_cdata.bge_rx_jumbo_ring_map); 1702 } 1703 1704 if (sc->bge_cdata.bge_rx_jumbo_ring_tag) 1705 bus_dma_tag_destroy(sc->bge_cdata.bge_rx_jumbo_ring_tag); 1706 1707 /* Destroy RX return ring */ 1708 1709 if (sc->bge_ldata.bge_rx_return_ring) 1710 bus_dmamem_free(sc->bge_cdata.bge_rx_return_ring_tag, 1711 sc->bge_ldata.bge_rx_return_ring, 1712 sc->bge_cdata.bge_rx_return_ring_map); 1713 1714 if (sc->bge_cdata.bge_rx_return_ring_map) { 1715 bus_dmamap_unload(sc->bge_cdata.bge_rx_return_ring_tag, 1716 sc->bge_cdata.bge_rx_return_ring_map); 1717 bus_dmamap_destroy(sc->bge_cdata.bge_rx_return_ring_tag, 1718 sc->bge_cdata.bge_rx_return_ring_map); 1719 } 1720 1721 if (sc->bge_cdata.bge_rx_return_ring_tag) 1722 bus_dma_tag_destroy(sc->bge_cdata.bge_rx_return_ring_tag); 1723 1724 /* Destroy TX ring */ 1725 1726 if (sc->bge_ldata.bge_tx_ring) 1727 bus_dmamem_free(sc->bge_cdata.bge_tx_ring_tag, 1728 sc->bge_ldata.bge_tx_ring, 1729 sc->bge_cdata.bge_tx_ring_map); 1730 1731 if (sc->bge_cdata.bge_tx_ring_map) { 1732 bus_dmamap_unload(sc->bge_cdata.bge_tx_ring_tag, 1733 sc->bge_cdata.bge_tx_ring_map); 1734 bus_dmamap_destroy(sc->bge_cdata.bge_tx_ring_tag, 1735 sc->bge_cdata.bge_tx_ring_map); 1736 } 1737 1738 if (sc->bge_cdata.bge_tx_ring_tag) 1739 bus_dma_tag_destroy(sc->bge_cdata.bge_tx_ring_tag); 1740 1741 /* Destroy status block */ 1742 1743 if (sc->bge_ldata.bge_status_block) 1744 bus_dmamem_free(sc->bge_cdata.bge_status_tag, 1745 sc->bge_ldata.bge_status_block, 1746 sc->bge_cdata.bge_status_map); 1747 1748 if (sc->bge_cdata.bge_status_map) { 1749 bus_dmamap_unload(sc->bge_cdata.bge_status_tag, 1750 sc->bge_cdata.bge_status_map); 1751 bus_dmamap_destroy(sc->bge_cdata.bge_status_tag, 1752 sc->bge_cdata.bge_status_map); 1753 } 1754 1755 if (sc->bge_cdata.bge_status_tag) 1756 bus_dma_tag_destroy(sc->bge_cdata.bge_status_tag); 1757 1758 /* Destroy statistics block */ 1759 1760 if (sc->bge_ldata.bge_stats) 1761 bus_dmamem_free(sc->bge_cdata.bge_stats_tag, 1762 sc->bge_ldata.bge_stats, 1763 sc->bge_cdata.bge_stats_map); 1764 1765 if (sc->bge_cdata.bge_stats_map) { 1766 bus_dmamap_unload(sc->bge_cdata.bge_stats_tag, 1767 sc->bge_cdata.bge_stats_map); 1768 bus_dmamap_destroy(sc->bge_cdata.bge_stats_tag, 1769 sc->bge_cdata.bge_stats_map); 1770 } 1771 1772 if (sc->bge_cdata.bge_stats_tag) 1773 bus_dma_tag_destroy(sc->bge_cdata.bge_stats_tag); 1774 1775 /* Destroy the parent tag */ 1776 1777 if (sc->bge_cdata.bge_parent_tag) 1778 bus_dma_tag_destroy(sc->bge_cdata.bge_parent_tag); 1779 1780 return; 1781 } 1782 1783 static int 1784 bge_dma_alloc(dev) 1785 device_t dev; 1786 { 1787 struct bge_softc *sc; 1788 int i, error; 1789 struct bge_dmamap_arg ctx; 1790 1791 sc = device_get_softc(dev); 1792 1793 /* 1794 * Allocate the parent bus DMA tag appropriate for PCI. 1795 */ 1796 error = bus_dma_tag_create(NULL, /* parent */ 1797 PAGE_SIZE, 0, /* alignment, boundary */ 1798 BUS_SPACE_MAXADDR, /* lowaddr */ 1799 BUS_SPACE_MAXADDR, /* highaddr */ 1800 NULL, NULL, /* filter, filterarg */ 1801 MAXBSIZE, BGE_NSEG_NEW, /* maxsize, nsegments */ 1802 BUS_SPACE_MAXSIZE_32BIT,/* maxsegsize */ 1803 0, /* flags */ 1804 NULL, NULL, /* lockfunc, lockarg */ 1805 &sc->bge_cdata.bge_parent_tag); 1806 1807 /* 1808 * Create tag for RX mbufs. 1809 */ 1810 error = bus_dma_tag_create(sc->bge_cdata.bge_parent_tag, 1, 1811 0, BUS_SPACE_MAXADDR, BUS_SPACE_MAXADDR, NULL, 1812 NULL, MCLBYTES * BGE_NSEG_NEW, BGE_NSEG_NEW, MCLBYTES, 1813 BUS_DMA_ALLOCNOW, NULL, NULL, &sc->bge_cdata.bge_mtag); 1814 1815 if (error) { 1816 device_printf(dev, "could not allocate dma tag\n"); 1817 return (ENOMEM); 1818 } 1819 1820 /* Create DMA maps for RX buffers */ 1821 1822 for (i = 0; i < BGE_STD_RX_RING_CNT; i++) { 1823 error = bus_dmamap_create(sc->bge_cdata.bge_mtag, 0, 1824 &sc->bge_cdata.bge_rx_std_dmamap[i]); 1825 if (error) { 1826 device_printf(dev, "can't create DMA map for RX\n"); 1827 return(ENOMEM); 1828 } 1829 } 1830 1831 /* Create DMA maps for TX buffers */ 1832 1833 for (i = 0; i < BGE_TX_RING_CNT; i++) { 1834 error = bus_dmamap_create(sc->bge_cdata.bge_mtag, 0, 1835 &sc->bge_cdata.bge_tx_dmamap[i]); 1836 if (error) { 1837 device_printf(dev, "can't create DMA map for RX\n"); 1838 return(ENOMEM); 1839 } 1840 } 1841 1842 /* Create tag for standard RX ring */ 1843 1844 error = bus_dma_tag_create(sc->bge_cdata.bge_parent_tag, 1845 PAGE_SIZE, 0, BUS_SPACE_MAXADDR, BUS_SPACE_MAXADDR, NULL, 1846 NULL, BGE_STD_RX_RING_SZ, 1, BGE_STD_RX_RING_SZ, 0, 1847 NULL, NULL, &sc->bge_cdata.bge_rx_std_ring_tag); 1848 1849 if (error) { 1850 device_printf(dev, "could not allocate dma tag\n"); 1851 return (ENOMEM); 1852 } 1853 1854 /* Allocate DMA'able memory for standard RX ring */ 1855 1856 error = bus_dmamem_alloc(sc->bge_cdata.bge_rx_std_ring_tag, 1857 (void **)&sc->bge_ldata.bge_rx_std_ring, BUS_DMA_NOWAIT, 1858 &sc->bge_cdata.bge_rx_std_ring_map); 1859 if (error) 1860 return (ENOMEM); 1861 1862 bzero((char *)sc->bge_ldata.bge_rx_std_ring, BGE_STD_RX_RING_SZ); 1863 1864 /* Load the address of the standard RX ring */ 1865 1866 ctx.bge_maxsegs = 1; 1867 ctx.sc = sc; 1868 1869 error = bus_dmamap_load(sc->bge_cdata.bge_rx_std_ring_tag, 1870 sc->bge_cdata.bge_rx_std_ring_map, sc->bge_ldata.bge_rx_std_ring, 1871 BGE_STD_RX_RING_SZ, bge_dma_map_addr, &ctx, BUS_DMA_NOWAIT); 1872 1873 if (error) 1874 return (ENOMEM); 1875 1876 sc->bge_ldata.bge_rx_std_ring_paddr = ctx.bge_busaddr; 1877 1878 if (sc->bge_asicrev != BGE_ASICREV_BCM5705 && 1879 sc->bge_asicrev != BGE_ASICREV_BCM5750) { 1880 1881 /* 1882 * Create tag for jumbo mbufs. 1883 * This is really a bit of a kludge. We allocate a special 1884 * jumbo buffer pool which (thanks to the way our DMA 1885 * memory allocation works) will consist of contiguous 1886 * pages. This means that even though a jumbo buffer might 1887 * be larger than a page size, we don't really need to 1888 * map it into more than one DMA segment. However, the 1889 * default mbuf tag will result in multi-segment mappings, 1890 * so we have to create a special jumbo mbuf tag that 1891 * lets us get away with mapping the jumbo buffers as 1892 * a single segment. I think eventually the driver should 1893 * be changed so that it uses ordinary mbufs and cluster 1894 * buffers, i.e. jumbo frames can span multiple DMA 1895 * descriptors. But that's a project for another day. 1896 */ 1897 1898 error = bus_dma_tag_create(sc->bge_cdata.bge_parent_tag, 1899 1, 0, BUS_SPACE_MAXADDR, BUS_SPACE_MAXADDR, NULL, 1900 NULL, MJUM9BYTES, BGE_NSEG_JUMBO, PAGE_SIZE, 1901 0, NULL, NULL, &sc->bge_cdata.bge_mtag_jumbo); 1902 1903 if (error) { 1904 device_printf(dev, "could not allocate dma tag\n"); 1905 return (ENOMEM); 1906 } 1907 1908 /* Create tag for jumbo RX ring */ 1909 error = bus_dma_tag_create(sc->bge_cdata.bge_parent_tag, 1910 PAGE_SIZE, 0, BUS_SPACE_MAXADDR, BUS_SPACE_MAXADDR, NULL, 1911 NULL, BGE_JUMBO_RX_RING_SZ, 1, BGE_JUMBO_RX_RING_SZ, 0, 1912 NULL, NULL, &sc->bge_cdata.bge_rx_jumbo_ring_tag); 1913 1914 if (error) { 1915 device_printf(dev, "could not allocate dma tag\n"); 1916 return (ENOMEM); 1917 } 1918 1919 /* Allocate DMA'able memory for jumbo RX ring */ 1920 error = bus_dmamem_alloc(sc->bge_cdata.bge_rx_jumbo_ring_tag, 1921 (void **)&sc->bge_ldata.bge_rx_jumbo_ring, 1922 BUS_DMA_NOWAIT | BUS_DMA_ZERO, 1923 &sc->bge_cdata.bge_rx_jumbo_ring_map); 1924 if (error) 1925 return (ENOMEM); 1926 1927 /* Load the address of the jumbo RX ring */ 1928 ctx.bge_maxsegs = 1; 1929 ctx.sc = sc; 1930 1931 error = bus_dmamap_load(sc->bge_cdata.bge_rx_jumbo_ring_tag, 1932 sc->bge_cdata.bge_rx_jumbo_ring_map, 1933 sc->bge_ldata.bge_rx_jumbo_ring, BGE_JUMBO_RX_RING_SZ, 1934 bge_dma_map_addr, &ctx, BUS_DMA_NOWAIT); 1935 1936 if (error) 1937 return (ENOMEM); 1938 1939 sc->bge_ldata.bge_rx_jumbo_ring_paddr = ctx.bge_busaddr; 1940 1941 /* Create DMA maps for jumbo RX buffers */ 1942 1943 for (i = 0; i < BGE_JUMBO_RX_RING_CNT; i++) { 1944 error = bus_dmamap_create(sc->bge_cdata.bge_mtag_jumbo, 1945 0, &sc->bge_cdata.bge_rx_jumbo_dmamap[i]); 1946 if (error) { 1947 device_printf(dev, 1948 "can't create DMA map for RX\n"); 1949 return(ENOMEM); 1950 } 1951 } 1952 1953 } 1954 1955 /* Create tag for RX return ring */ 1956 1957 error = bus_dma_tag_create(sc->bge_cdata.bge_parent_tag, 1958 PAGE_SIZE, 0, BUS_SPACE_MAXADDR, BUS_SPACE_MAXADDR, NULL, 1959 NULL, BGE_RX_RTN_RING_SZ(sc), 1, BGE_RX_RTN_RING_SZ(sc), 0, 1960 NULL, NULL, &sc->bge_cdata.bge_rx_return_ring_tag); 1961 1962 if (error) { 1963 device_printf(dev, "could not allocate dma tag\n"); 1964 return (ENOMEM); 1965 } 1966 1967 /* Allocate DMA'able memory for RX return ring */ 1968 1969 error = bus_dmamem_alloc(sc->bge_cdata.bge_rx_return_ring_tag, 1970 (void **)&sc->bge_ldata.bge_rx_return_ring, BUS_DMA_NOWAIT, 1971 &sc->bge_cdata.bge_rx_return_ring_map); 1972 if (error) 1973 return (ENOMEM); 1974 1975 bzero((char *)sc->bge_ldata.bge_rx_return_ring, 1976 BGE_RX_RTN_RING_SZ(sc)); 1977 1978 /* Load the address of the RX return ring */ 1979 1980 ctx.bge_maxsegs = 1; 1981 ctx.sc = sc; 1982 1983 error = bus_dmamap_load(sc->bge_cdata.bge_rx_return_ring_tag, 1984 sc->bge_cdata.bge_rx_return_ring_map, 1985 sc->bge_ldata.bge_rx_return_ring, BGE_RX_RTN_RING_SZ(sc), 1986 bge_dma_map_addr, &ctx, BUS_DMA_NOWAIT); 1987 1988 if (error) 1989 return (ENOMEM); 1990 1991 sc->bge_ldata.bge_rx_return_ring_paddr = ctx.bge_busaddr; 1992 1993 /* Create tag for TX ring */ 1994 1995 error = bus_dma_tag_create(sc->bge_cdata.bge_parent_tag, 1996 PAGE_SIZE, 0, BUS_SPACE_MAXADDR, BUS_SPACE_MAXADDR, NULL, 1997 NULL, BGE_TX_RING_SZ, 1, BGE_TX_RING_SZ, 0, NULL, NULL, 1998 &sc->bge_cdata.bge_tx_ring_tag); 1999 2000 if (error) { 2001 device_printf(dev, "could not allocate dma tag\n"); 2002 return (ENOMEM); 2003 } 2004 2005 /* Allocate DMA'able memory for TX ring */ 2006 2007 error = bus_dmamem_alloc(sc->bge_cdata.bge_tx_ring_tag, 2008 (void **)&sc->bge_ldata.bge_tx_ring, BUS_DMA_NOWAIT, 2009 &sc->bge_cdata.bge_tx_ring_map); 2010 if (error) 2011 return (ENOMEM); 2012 2013 bzero((char *)sc->bge_ldata.bge_tx_ring, BGE_TX_RING_SZ); 2014 2015 /* Load the address of the TX ring */ 2016 2017 ctx.bge_maxsegs = 1; 2018 ctx.sc = sc; 2019 2020 error = bus_dmamap_load(sc->bge_cdata.bge_tx_ring_tag, 2021 sc->bge_cdata.bge_tx_ring_map, sc->bge_ldata.bge_tx_ring, 2022 BGE_TX_RING_SZ, bge_dma_map_addr, &ctx, BUS_DMA_NOWAIT); 2023 2024 if (error) 2025 return (ENOMEM); 2026 2027 sc->bge_ldata.bge_tx_ring_paddr = ctx.bge_busaddr; 2028 2029 /* Create tag for status block */ 2030 2031 error = bus_dma_tag_create(sc->bge_cdata.bge_parent_tag, 2032 PAGE_SIZE, 0, BUS_SPACE_MAXADDR, BUS_SPACE_MAXADDR, NULL, 2033 NULL, BGE_STATUS_BLK_SZ, 1, BGE_STATUS_BLK_SZ, 0, 2034 NULL, NULL, &sc->bge_cdata.bge_status_tag); 2035 2036 if (error) { 2037 device_printf(dev, "could not allocate dma tag\n"); 2038 return (ENOMEM); 2039 } 2040 2041 /* Allocate DMA'able memory for status block */ 2042 2043 error = bus_dmamem_alloc(sc->bge_cdata.bge_status_tag, 2044 (void **)&sc->bge_ldata.bge_status_block, BUS_DMA_NOWAIT, 2045 &sc->bge_cdata.bge_status_map); 2046 if (error) 2047 return (ENOMEM); 2048 2049 bzero((char *)sc->bge_ldata.bge_status_block, BGE_STATUS_BLK_SZ); 2050 2051 /* Load the address of the status block */ 2052 2053 ctx.sc = sc; 2054 ctx.bge_maxsegs = 1; 2055 2056 error = bus_dmamap_load(sc->bge_cdata.bge_status_tag, 2057 sc->bge_cdata.bge_status_map, sc->bge_ldata.bge_status_block, 2058 BGE_STATUS_BLK_SZ, bge_dma_map_addr, &ctx, BUS_DMA_NOWAIT); 2059 2060 if (error) 2061 return (ENOMEM); 2062 2063 sc->bge_ldata.bge_status_block_paddr = ctx.bge_busaddr; 2064 2065 /* Create tag for statistics block */ 2066 2067 error = bus_dma_tag_create(sc->bge_cdata.bge_parent_tag, 2068 PAGE_SIZE, 0, BUS_SPACE_MAXADDR, BUS_SPACE_MAXADDR, NULL, 2069 NULL, BGE_STATS_SZ, 1, BGE_STATS_SZ, 0, NULL, NULL, 2070 &sc->bge_cdata.bge_stats_tag); 2071 2072 if (error) { 2073 device_printf(dev, "could not allocate dma tag\n"); 2074 return (ENOMEM); 2075 } 2076 2077 /* Allocate DMA'able memory for statistics block */ 2078 2079 error = bus_dmamem_alloc(sc->bge_cdata.bge_stats_tag, 2080 (void **)&sc->bge_ldata.bge_stats, BUS_DMA_NOWAIT, 2081 &sc->bge_cdata.bge_stats_map); 2082 if (error) 2083 return (ENOMEM); 2084 2085 bzero((char *)sc->bge_ldata.bge_stats, BGE_STATS_SZ); 2086 2087 /* Load the address of the statstics block */ 2088 2089 ctx.sc = sc; 2090 ctx.bge_maxsegs = 1; 2091 2092 error = bus_dmamap_load(sc->bge_cdata.bge_stats_tag, 2093 sc->bge_cdata.bge_stats_map, sc->bge_ldata.bge_stats, 2094 BGE_STATS_SZ, bge_dma_map_addr, &ctx, BUS_DMA_NOWAIT); 2095 2096 if (error) 2097 return (ENOMEM); 2098 2099 sc->bge_ldata.bge_stats_paddr = ctx.bge_busaddr; 2100 2101 return(0); 2102 } 2103 2104 static int 2105 bge_attach(dev) 2106 device_t dev; 2107 { 2108 struct ifnet *ifp; 2109 struct bge_softc *sc; 2110 u_int32_t hwcfg = 0; 2111 u_int32_t mac_tmp = 0; 2112 u_char eaddr[6]; 2113 int unit, error = 0, rid; 2114 2115 sc = device_get_softc(dev); 2116 unit = device_get_unit(dev); 2117 sc->bge_dev = dev; 2118 sc->bge_unit = unit; 2119 2120 /* 2121 * Map control/status registers. 2122 */ 2123 pci_enable_busmaster(dev); 2124 2125 rid = BGE_PCI_BAR0; 2126 sc->bge_res = bus_alloc_resource_any(dev, SYS_RES_MEMORY, &rid, 2127 RF_ACTIVE|PCI_RF_DENSE); 2128 2129 if (sc->bge_res == NULL) { 2130 printf ("bge%d: couldn't map memory\n", unit); 2131 error = ENXIO; 2132 goto fail; 2133 } 2134 2135 sc->bge_btag = rman_get_bustag(sc->bge_res); 2136 sc->bge_bhandle = rman_get_bushandle(sc->bge_res); 2137 sc->bge_vhandle = (vm_offset_t)rman_get_virtual(sc->bge_res); 2138 2139 /* Allocate interrupt */ 2140 rid = 0; 2141 2142 sc->bge_irq = bus_alloc_resource_any(dev, SYS_RES_IRQ, &rid, 2143 RF_SHAREABLE | RF_ACTIVE); 2144 2145 if (sc->bge_irq == NULL) { 2146 printf("bge%d: couldn't map interrupt\n", unit); 2147 error = ENXIO; 2148 goto fail; 2149 } 2150 2151 sc->bge_unit = unit; 2152 2153 BGE_LOCK_INIT(sc, device_get_nameunit(dev)); 2154 2155 /* Save ASIC rev. */ 2156 2157 sc->bge_chipid = 2158 pci_read_config(dev, BGE_PCI_MISC_CTL, 4) & 2159 BGE_PCIMISCCTL_ASICREV; 2160 sc->bge_asicrev = BGE_ASICREV(sc->bge_chipid); 2161 sc->bge_chiprev = BGE_CHIPREV(sc->bge_chipid); 2162 2163 /* 2164 * Treat the 5714 and the 5752 like the 5750 until we have more info 2165 * on this chip. 2166 */ 2167 if (sc->bge_asicrev == BGE_ASICREV_BCM5714 || 2168 sc->bge_asicrev == BGE_ASICREV_BCM5752) 2169 sc->bge_asicrev = BGE_ASICREV_BCM5750; 2170 2171 /* 2172 * XXX: Broadcom Linux driver. Not in specs or eratta. 2173 * PCI-Express? 2174 */ 2175 if (sc->bge_asicrev == BGE_ASICREV_BCM5750) { 2176 u_int32_t v; 2177 2178 v = pci_read_config(dev, BGE_PCI_MSI_CAPID, 4); 2179 if (((v >> 8) & 0xff) == BGE_PCIE_CAPID_REG) { 2180 v = pci_read_config(dev, BGE_PCIE_CAPID_REG, 4); 2181 if ((v & 0xff) == BGE_PCIE_CAPID) 2182 sc->bge_pcie = 1; 2183 } 2184 } 2185 2186 /* Try to reset the chip. */ 2187 bge_reset(sc); 2188 2189 if (bge_chipinit(sc)) { 2190 printf("bge%d: chip initialization failed\n", sc->bge_unit); 2191 bge_release_resources(sc); 2192 error = ENXIO; 2193 goto fail; 2194 } 2195 2196 /* 2197 * Get station address from the EEPROM. 2198 */ 2199 mac_tmp = bge_readmem_ind(sc, 0x0c14); 2200 if ((mac_tmp >> 16) == 0x484b) { 2201 eaddr[0] = (u_char)(mac_tmp >> 8); 2202 eaddr[1] = (u_char)mac_tmp; 2203 mac_tmp = bge_readmem_ind(sc, 0x0c18); 2204 eaddr[2] = (u_char)(mac_tmp >> 24); 2205 eaddr[3] = (u_char)(mac_tmp >> 16); 2206 eaddr[4] = (u_char)(mac_tmp >> 8); 2207 eaddr[5] = (u_char)mac_tmp; 2208 } else if (bge_read_eeprom(sc, eaddr, 2209 BGE_EE_MAC_OFFSET + 2, ETHER_ADDR_LEN)) { 2210 printf("bge%d: failed to read station address\n", unit); 2211 bge_release_resources(sc); 2212 error = ENXIO; 2213 goto fail; 2214 } 2215 2216 /* 5705 limits RX return ring to 512 entries. */ 2217 if (sc->bge_asicrev == BGE_ASICREV_BCM5705 || 2218 sc->bge_asicrev == BGE_ASICREV_BCM5750) 2219 sc->bge_return_ring_cnt = BGE_RETURN_RING_CNT_5705; 2220 else 2221 sc->bge_return_ring_cnt = BGE_RETURN_RING_CNT; 2222 2223 if (bge_dma_alloc(dev)) { 2224 printf ("bge%d: failed to allocate DMA resources\n", 2225 sc->bge_unit); 2226 bge_release_resources(sc); 2227 error = ENXIO; 2228 goto fail; 2229 } 2230 2231 /* Set default tuneable values. */ 2232 sc->bge_stat_ticks = BGE_TICKS_PER_SEC; 2233 sc->bge_rx_coal_ticks = 150; 2234 sc->bge_tx_coal_ticks = 150; 2235 sc->bge_rx_max_coal_bds = 64; 2236 sc->bge_tx_max_coal_bds = 128; 2237 2238 /* Set up ifnet structure */ 2239 ifp = sc->bge_ifp = if_alloc(IFT_ETHER); 2240 if (ifp == NULL) { 2241 printf("bge%d: failed to if_alloc()\n", sc->bge_unit); 2242 bge_release_resources(sc); 2243 error = ENXIO; 2244 goto fail; 2245 } 2246 ifp->if_softc = sc; 2247 if_initname(ifp, device_get_name(dev), device_get_unit(dev)); 2248 ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST; 2249 ifp->if_ioctl = bge_ioctl; 2250 ifp->if_start = bge_start; 2251 ifp->if_watchdog = bge_watchdog; 2252 ifp->if_init = bge_init; 2253 ifp->if_mtu = ETHERMTU; 2254 ifp->if_snd.ifq_drv_maxlen = BGE_TX_RING_CNT - 1; 2255 IFQ_SET_MAXLEN(&ifp->if_snd, ifp->if_snd.ifq_drv_maxlen); 2256 IFQ_SET_READY(&ifp->if_snd); 2257 ifp->if_hwassist = BGE_CSUM_FEATURES; 2258 /* NB: the code for RX csum offload is disabled for now */ 2259 ifp->if_capabilities = IFCAP_TXCSUM | IFCAP_VLAN_HWTAGGING | 2260 IFCAP_VLAN_MTU; 2261 ifp->if_capenable = ifp->if_capabilities; 2262 #ifdef DEVICE_POLLING 2263 ifp->if_capabilities |= IFCAP_POLLING; 2264 #endif 2265 2266 /* 2267 * Figure out what sort of media we have by checking the 2268 * hardware config word in the first 32k of NIC internal memory, 2269 * or fall back to examining the EEPROM if necessary. 2270 * Note: on some BCM5700 cards, this value appears to be unset. 2271 * If that's the case, we have to rely on identifying the NIC 2272 * by its PCI subsystem ID, as we do below for the SysKonnect 2273 * SK-9D41. 2274 */ 2275 if (bge_readmem_ind(sc, BGE_SOFTWARE_GENCOMM_SIG) == BGE_MAGIC_NUMBER) 2276 hwcfg = bge_readmem_ind(sc, BGE_SOFTWARE_GENCOMM_NICCFG); 2277 else { 2278 bge_read_eeprom(sc, (caddr_t)&hwcfg, 2279 BGE_EE_HWCFG_OFFSET, sizeof(hwcfg)); 2280 hwcfg = ntohl(hwcfg); 2281 } 2282 2283 if ((hwcfg & BGE_HWCFG_MEDIA) == BGE_MEDIA_FIBER) 2284 sc->bge_tbi = 1; 2285 2286 /* The SysKonnect SK-9D41 is a 1000baseSX card. */ 2287 if ((pci_read_config(dev, BGE_PCI_SUBSYS, 4) >> 16) == SK_SUBSYSID_9D41) 2288 sc->bge_tbi = 1; 2289 2290 if (sc->bge_tbi) { 2291 ifmedia_init(&sc->bge_ifmedia, IFM_IMASK, 2292 bge_ifmedia_upd, bge_ifmedia_sts); 2293 ifmedia_add(&sc->bge_ifmedia, IFM_ETHER|IFM_1000_SX, 0, NULL); 2294 ifmedia_add(&sc->bge_ifmedia, 2295 IFM_ETHER|IFM_1000_SX|IFM_FDX, 0, NULL); 2296 ifmedia_add(&sc->bge_ifmedia, IFM_ETHER|IFM_AUTO, 0, NULL); 2297 ifmedia_set(&sc->bge_ifmedia, IFM_ETHER|IFM_AUTO); 2298 sc->bge_ifmedia.ifm_media = sc->bge_ifmedia.ifm_cur->ifm_media; 2299 } else { 2300 /* 2301 * Do transceiver setup. 2302 */ 2303 if (mii_phy_probe(dev, &sc->bge_miibus, 2304 bge_ifmedia_upd, bge_ifmedia_sts)) { 2305 printf("bge%d: MII without any PHY!\n", sc->bge_unit); 2306 bge_release_resources(sc); 2307 error = ENXIO; 2308 goto fail; 2309 } 2310 } 2311 2312 /* 2313 * When using the BCM5701 in PCI-X mode, data corruption has 2314 * been observed in the first few bytes of some received packets. 2315 * Aligning the packet buffer in memory eliminates the corruption. 2316 * Unfortunately, this misaligns the packet payloads. On platforms 2317 * which do not support unaligned accesses, we will realign the 2318 * payloads by copying the received packets. 2319 */ 2320 switch (sc->bge_chipid) { 2321 case BGE_CHIPID_BCM5701_A0: 2322 case BGE_CHIPID_BCM5701_B0: 2323 case BGE_CHIPID_BCM5701_B2: 2324 case BGE_CHIPID_BCM5701_B5: 2325 /* If in PCI-X mode, work around the alignment bug. */ 2326 if ((pci_read_config(dev, BGE_PCI_PCISTATE, 4) & 2327 (BGE_PCISTATE_PCI_BUSMODE | BGE_PCISTATE_PCI_BUSSPEED)) == 2328 BGE_PCISTATE_PCI_BUSSPEED) 2329 sc->bge_rx_alignment_bug = 1; 2330 break; 2331 } 2332 2333 /* 2334 * Call MI attach routine. 2335 */ 2336 ether_ifattach(ifp, eaddr); 2337 callout_init(&sc->bge_stat_ch, CALLOUT_MPSAFE); 2338 2339 /* 2340 * Hookup IRQ last. 2341 */ 2342 error = bus_setup_intr(dev, sc->bge_irq, INTR_TYPE_NET | INTR_MPSAFE, 2343 bge_intr, sc, &sc->bge_intrhand); 2344 2345 if (error) { 2346 bge_detach(dev); 2347 printf("bge%d: couldn't set up irq\n", unit); 2348 } 2349 2350 fail: 2351 return(error); 2352 } 2353 2354 static int 2355 bge_detach(dev) 2356 device_t dev; 2357 { 2358 struct bge_softc *sc; 2359 struct ifnet *ifp; 2360 2361 sc = device_get_softc(dev); 2362 ifp = sc->bge_ifp; 2363 2364 #ifdef DEVICE_POLLING 2365 if (ifp->if_capenable & IFCAP_POLLING) 2366 ether_poll_deregister(ifp); 2367 #endif 2368 2369 BGE_LOCK(sc); 2370 bge_stop(sc); 2371 bge_reset(sc); 2372 BGE_UNLOCK(sc); 2373 2374 ether_ifdetach(ifp); 2375 2376 if (sc->bge_tbi) { 2377 ifmedia_removeall(&sc->bge_ifmedia); 2378 } else { 2379 bus_generic_detach(dev); 2380 device_delete_child(dev, sc->bge_miibus); 2381 } 2382 2383 bge_release_resources(sc); 2384 2385 return(0); 2386 } 2387 2388 static void 2389 bge_release_resources(sc) 2390 struct bge_softc *sc; 2391 { 2392 device_t dev; 2393 2394 dev = sc->bge_dev; 2395 2396 if (sc->bge_vpd_prodname != NULL) 2397 free(sc->bge_vpd_prodname, M_DEVBUF); 2398 2399 if (sc->bge_vpd_readonly != NULL) 2400 free(sc->bge_vpd_readonly, M_DEVBUF); 2401 2402 if (sc->bge_intrhand != NULL) 2403 bus_teardown_intr(dev, sc->bge_irq, sc->bge_intrhand); 2404 2405 if (sc->bge_irq != NULL) 2406 bus_release_resource(dev, SYS_RES_IRQ, 0, sc->bge_irq); 2407 2408 if (sc->bge_res != NULL) 2409 bus_release_resource(dev, SYS_RES_MEMORY, 2410 BGE_PCI_BAR0, sc->bge_res); 2411 2412 if (sc->bge_ifp != NULL) 2413 if_free(sc->bge_ifp); 2414 2415 bge_dma_free(sc); 2416 2417 if (mtx_initialized(&sc->bge_mtx)) /* XXX */ 2418 BGE_LOCK_DESTROY(sc); 2419 2420 return; 2421 } 2422 2423 static void 2424 bge_reset(sc) 2425 struct bge_softc *sc; 2426 { 2427 device_t dev; 2428 u_int32_t cachesize, command, pcistate, reset; 2429 int i, val = 0; 2430 2431 dev = sc->bge_dev; 2432 2433 /* Save some important PCI state. */ 2434 cachesize = pci_read_config(dev, BGE_PCI_CACHESZ, 4); 2435 command = pci_read_config(dev, BGE_PCI_CMD, 4); 2436 pcistate = pci_read_config(dev, BGE_PCI_PCISTATE, 4); 2437 2438 pci_write_config(dev, BGE_PCI_MISC_CTL, 2439 BGE_PCIMISCCTL_INDIRECT_ACCESS|BGE_PCIMISCCTL_MASK_PCI_INTR| 2440 BGE_PCIMISCCTL_ENDIAN_WORDSWAP|BGE_PCIMISCCTL_PCISTATE_RW, 4); 2441 2442 reset = BGE_MISCCFG_RESET_CORE_CLOCKS|(65<<1); 2443 2444 /* XXX: Broadcom Linux driver. */ 2445 if (sc->bge_pcie) { 2446 if (CSR_READ_4(sc, 0x7e2c) == 0x60) /* PCIE 1.0 */ 2447 CSR_WRITE_4(sc, 0x7e2c, 0x20); 2448 if (sc->bge_chipid != BGE_CHIPID_BCM5750_A0) { 2449 /* Prevent PCIE link training during global reset */ 2450 CSR_WRITE_4(sc, BGE_MISC_CFG, (1<<29)); 2451 reset |= (1<<29); 2452 } 2453 } 2454 2455 /* Issue global reset */ 2456 bge_writereg_ind(sc, BGE_MISC_CFG, reset); 2457 2458 DELAY(1000); 2459 2460 /* XXX: Broadcom Linux driver. */ 2461 if (sc->bge_pcie) { 2462 if (sc->bge_chipid == BGE_CHIPID_BCM5750_A0) { 2463 uint32_t v; 2464 2465 DELAY(500000); /* wait for link training to complete */ 2466 v = pci_read_config(dev, 0xc4, 4); 2467 pci_write_config(dev, 0xc4, v | (1<<15), 4); 2468 } 2469 /* Set PCIE max payload size and clear error status. */ 2470 pci_write_config(dev, 0xd8, 0xf5000, 4); 2471 } 2472 2473 /* Reset some of the PCI state that got zapped by reset */ 2474 pci_write_config(dev, BGE_PCI_MISC_CTL, 2475 BGE_PCIMISCCTL_INDIRECT_ACCESS|BGE_PCIMISCCTL_MASK_PCI_INTR| 2476 BGE_PCIMISCCTL_ENDIAN_WORDSWAP|BGE_PCIMISCCTL_PCISTATE_RW, 4); 2477 pci_write_config(dev, BGE_PCI_CACHESZ, cachesize, 4); 2478 pci_write_config(dev, BGE_PCI_CMD, command, 4); 2479 bge_writereg_ind(sc, BGE_MISC_CFG, (65 << 1)); 2480 2481 /* Enable memory arbiter. */ 2482 if (sc->bge_asicrev != BGE_ASICREV_BCM5705 && 2483 sc->bge_asicrev != BGE_ASICREV_BCM5750) 2484 CSR_WRITE_4(sc, BGE_MARB_MODE, BGE_MARBMODE_ENABLE); 2485 2486 /* 2487 * Prevent PXE restart: write a magic number to the 2488 * general communications memory at 0xB50. 2489 */ 2490 bge_writemem_ind(sc, BGE_SOFTWARE_GENCOMM, BGE_MAGIC_NUMBER); 2491 /* 2492 * Poll the value location we just wrote until 2493 * we see the 1's complement of the magic number. 2494 * This indicates that the firmware initialization 2495 * is complete. 2496 */ 2497 for (i = 0; i < BGE_TIMEOUT; i++) { 2498 val = bge_readmem_ind(sc, BGE_SOFTWARE_GENCOMM); 2499 if (val == ~BGE_MAGIC_NUMBER) 2500 break; 2501 DELAY(10); 2502 } 2503 2504 if (i == BGE_TIMEOUT) { 2505 printf("bge%d: firmware handshake timed out\n", sc->bge_unit); 2506 return; 2507 } 2508 2509 /* 2510 * XXX Wait for the value of the PCISTATE register to 2511 * return to its original pre-reset state. This is a 2512 * fairly good indicator of reset completion. If we don't 2513 * wait for the reset to fully complete, trying to read 2514 * from the device's non-PCI registers may yield garbage 2515 * results. 2516 */ 2517 for (i = 0; i < BGE_TIMEOUT; i++) { 2518 if (pci_read_config(dev, BGE_PCI_PCISTATE, 4) == pcistate) 2519 break; 2520 DELAY(10); 2521 } 2522 2523 /* Fix up byte swapping */ 2524 CSR_WRITE_4(sc, BGE_MODE_CTL, BGE_MODECTL_BYTESWAP_NONFRAME| 2525 BGE_MODECTL_BYTESWAP_DATA); 2526 2527 CSR_WRITE_4(sc, BGE_MAC_MODE, 0); 2528 2529 /* 2530 * The 5704 in TBI mode apparently needs some special 2531 * adjustment to insure the SERDES drive level is set 2532 * to 1.2V. 2533 */ 2534 if (sc->bge_asicrev == BGE_ASICREV_BCM5704 && sc->bge_tbi) { 2535 uint32_t serdescfg; 2536 serdescfg = CSR_READ_4(sc, BGE_SERDES_CFG); 2537 serdescfg = (serdescfg & ~0xFFF) | 0x880; 2538 CSR_WRITE_4(sc, BGE_SERDES_CFG, serdescfg); 2539 } 2540 2541 /* XXX: Broadcom Linux driver. */ 2542 if (sc->bge_pcie && sc->bge_chipid != BGE_CHIPID_BCM5750_A0) { 2543 uint32_t v; 2544 2545 v = CSR_READ_4(sc, 0x7c00); 2546 CSR_WRITE_4(sc, 0x7c00, v | (1<<25)); 2547 } 2548 DELAY(10000); 2549 2550 return; 2551 } 2552 2553 /* 2554 * Frame reception handling. This is called if there's a frame 2555 * on the receive return list. 2556 * 2557 * Note: we have to be able to handle two possibilities here: 2558 * 1) the frame is from the jumbo receive ring 2559 * 2) the frame is from the standard receive ring 2560 */ 2561 2562 static void 2563 bge_rxeof(sc) 2564 struct bge_softc *sc; 2565 { 2566 struct ifnet *ifp; 2567 int stdcnt = 0, jumbocnt = 0; 2568 2569 BGE_LOCK_ASSERT(sc); 2570 2571 ifp = sc->bge_ifp; 2572 2573 bus_dmamap_sync(sc->bge_cdata.bge_rx_return_ring_tag, 2574 sc->bge_cdata.bge_rx_return_ring_map, BUS_DMASYNC_POSTWRITE); 2575 bus_dmamap_sync(sc->bge_cdata.bge_rx_std_ring_tag, 2576 sc->bge_cdata.bge_rx_std_ring_map, BUS_DMASYNC_POSTREAD); 2577 if (sc->bge_asicrev != BGE_ASICREV_BCM5705 && 2578 sc->bge_asicrev != BGE_ASICREV_BCM5750) { 2579 bus_dmamap_sync(sc->bge_cdata.bge_rx_jumbo_ring_tag, 2580 sc->bge_cdata.bge_rx_jumbo_ring_map, 2581 BUS_DMASYNC_POSTREAD); 2582 } 2583 2584 while(sc->bge_rx_saved_considx != 2585 sc->bge_ldata.bge_status_block->bge_idx[0].bge_rx_prod_idx) { 2586 struct bge_rx_bd *cur_rx; 2587 u_int32_t rxidx; 2588 struct ether_header *eh; 2589 struct mbuf *m = NULL; 2590 u_int16_t vlan_tag = 0; 2591 int have_tag = 0; 2592 2593 #ifdef DEVICE_POLLING 2594 if (ifp->if_capenable & IFCAP_POLLING) { 2595 if (sc->rxcycles <= 0) 2596 break; 2597 sc->rxcycles--; 2598 } 2599 #endif 2600 2601 cur_rx = 2602 &sc->bge_ldata.bge_rx_return_ring[sc->bge_rx_saved_considx]; 2603 2604 rxidx = cur_rx->bge_idx; 2605 BGE_INC(sc->bge_rx_saved_considx, sc->bge_return_ring_cnt); 2606 2607 if (cur_rx->bge_flags & BGE_RXBDFLAG_VLAN_TAG) { 2608 have_tag = 1; 2609 vlan_tag = cur_rx->bge_vlan_tag; 2610 } 2611 2612 if (cur_rx->bge_flags & BGE_RXBDFLAG_JUMBO_RING) { 2613 BGE_INC(sc->bge_jumbo, BGE_JUMBO_RX_RING_CNT); 2614 bus_dmamap_sync(sc->bge_cdata.bge_mtag_jumbo, 2615 sc->bge_cdata.bge_rx_jumbo_dmamap[rxidx], 2616 BUS_DMASYNC_POSTREAD); 2617 bus_dmamap_unload(sc->bge_cdata.bge_mtag_jumbo, 2618 sc->bge_cdata.bge_rx_jumbo_dmamap[rxidx]); 2619 m = sc->bge_cdata.bge_rx_jumbo_chain[rxidx]; 2620 sc->bge_cdata.bge_rx_jumbo_chain[rxidx] = NULL; 2621 jumbocnt++; 2622 if (cur_rx->bge_flags & BGE_RXBDFLAG_ERROR) { 2623 ifp->if_ierrors++; 2624 bge_newbuf_jumbo(sc, sc->bge_jumbo, m); 2625 continue; 2626 } 2627 if (bge_newbuf_jumbo(sc, 2628 sc->bge_jumbo, NULL) == ENOBUFS) { 2629 ifp->if_ierrors++; 2630 bge_newbuf_jumbo(sc, sc->bge_jumbo, m); 2631 continue; 2632 } 2633 } else { 2634 BGE_INC(sc->bge_std, BGE_STD_RX_RING_CNT); 2635 bus_dmamap_sync(sc->bge_cdata.bge_mtag, 2636 sc->bge_cdata.bge_rx_std_dmamap[rxidx], 2637 BUS_DMASYNC_POSTREAD); 2638 bus_dmamap_unload(sc->bge_cdata.bge_mtag, 2639 sc->bge_cdata.bge_rx_std_dmamap[rxidx]); 2640 m = sc->bge_cdata.bge_rx_std_chain[rxidx]; 2641 sc->bge_cdata.bge_rx_std_chain[rxidx] = NULL; 2642 stdcnt++; 2643 if (cur_rx->bge_flags & BGE_RXBDFLAG_ERROR) { 2644 ifp->if_ierrors++; 2645 bge_newbuf_std(sc, sc->bge_std, m); 2646 continue; 2647 } 2648 if (bge_newbuf_std(sc, sc->bge_std, 2649 NULL) == ENOBUFS) { 2650 ifp->if_ierrors++; 2651 bge_newbuf_std(sc, sc->bge_std, m); 2652 continue; 2653 } 2654 } 2655 2656 ifp->if_ipackets++; 2657 #ifndef __i386__ 2658 /* 2659 * The i386 allows unaligned accesses, but for other 2660 * platforms we must make sure the payload is aligned. 2661 */ 2662 if (sc->bge_rx_alignment_bug) { 2663 bcopy(m->m_data, m->m_data + ETHER_ALIGN, 2664 cur_rx->bge_len); 2665 m->m_data += ETHER_ALIGN; 2666 } 2667 #endif 2668 eh = mtod(m, struct ether_header *); 2669 m->m_pkthdr.len = m->m_len = cur_rx->bge_len - ETHER_CRC_LEN; 2670 m->m_pkthdr.rcvif = ifp; 2671 2672 #if 0 /* currently broken for some packets, possibly related to TCP options */ 2673 if (ifp->if_capenable & IFCAP_RXCSUM) { 2674 m->m_pkthdr.csum_flags |= CSUM_IP_CHECKED; 2675 if ((cur_rx->bge_ip_csum ^ 0xffff) == 0) 2676 m->m_pkthdr.csum_flags |= CSUM_IP_VALID; 2677 if (cur_rx->bge_flags & BGE_RXBDFLAG_TCP_UDP_CSUM) { 2678 m->m_pkthdr.csum_data = 2679 cur_rx->bge_tcp_udp_csum; 2680 m->m_pkthdr.csum_flags |= CSUM_DATA_VALID; 2681 } 2682 } 2683 #endif 2684 2685 /* 2686 * If we received a packet with a vlan tag, 2687 * attach that information to the packet. 2688 */ 2689 if (have_tag) 2690 VLAN_INPUT_TAG(ifp, m, vlan_tag, continue); 2691 2692 BGE_UNLOCK(sc); 2693 (*ifp->if_input)(ifp, m); 2694 BGE_LOCK(sc); 2695 } 2696 2697 bus_dmamap_sync(sc->bge_cdata.bge_rx_return_ring_tag, 2698 sc->bge_cdata.bge_rx_return_ring_map, BUS_DMASYNC_PREWRITE); 2699 bus_dmamap_sync(sc->bge_cdata.bge_rx_std_ring_tag, 2700 sc->bge_cdata.bge_rx_std_ring_map, 2701 BUS_DMASYNC_POSTREAD|BUS_DMASYNC_PREWRITE); 2702 if (sc->bge_asicrev != BGE_ASICREV_BCM5705 && 2703 sc->bge_asicrev != BGE_ASICREV_BCM5750) { 2704 bus_dmamap_sync(sc->bge_cdata.bge_rx_jumbo_ring_tag, 2705 sc->bge_cdata.bge_rx_jumbo_ring_map, 2706 BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE); 2707 } 2708 2709 CSR_WRITE_4(sc, BGE_MBX_RX_CONS0_LO, sc->bge_rx_saved_considx); 2710 if (stdcnt) 2711 CSR_WRITE_4(sc, BGE_MBX_RX_STD_PROD_LO, sc->bge_std); 2712 if (jumbocnt) 2713 CSR_WRITE_4(sc, BGE_MBX_RX_JUMBO_PROD_LO, sc->bge_jumbo); 2714 2715 return; 2716 } 2717 2718 static void 2719 bge_txeof(sc) 2720 struct bge_softc *sc; 2721 { 2722 struct bge_tx_bd *cur_tx = NULL; 2723 struct ifnet *ifp; 2724 2725 BGE_LOCK_ASSERT(sc); 2726 2727 ifp = sc->bge_ifp; 2728 2729 /* 2730 * Go through our tx ring and free mbufs for those 2731 * frames that have been sent. 2732 */ 2733 while (sc->bge_tx_saved_considx != 2734 sc->bge_ldata.bge_status_block->bge_idx[0].bge_tx_cons_idx) { 2735 u_int32_t idx = 0; 2736 2737 idx = sc->bge_tx_saved_considx; 2738 cur_tx = &sc->bge_ldata.bge_tx_ring[idx]; 2739 if (cur_tx->bge_flags & BGE_TXBDFLAG_END) 2740 ifp->if_opackets++; 2741 if (sc->bge_cdata.bge_tx_chain[idx] != NULL) { 2742 m_freem(sc->bge_cdata.bge_tx_chain[idx]); 2743 sc->bge_cdata.bge_tx_chain[idx] = NULL; 2744 bus_dmamap_unload(sc->bge_cdata.bge_mtag, 2745 sc->bge_cdata.bge_tx_dmamap[idx]); 2746 } 2747 sc->bge_txcnt--; 2748 BGE_INC(sc->bge_tx_saved_considx, BGE_TX_RING_CNT); 2749 ifp->if_timer = 0; 2750 } 2751 2752 if (cur_tx != NULL) 2753 ifp->if_drv_flags &= ~IFF_DRV_OACTIVE; 2754 2755 return; 2756 } 2757 2758 #ifdef DEVICE_POLLING 2759 static void 2760 bge_poll(struct ifnet *ifp, enum poll_cmd cmd, int count) 2761 { 2762 struct bge_softc *sc = ifp->if_softc; 2763 2764 BGE_LOCK(sc); 2765 if (ifp->if_drv_flags & IFF_DRV_RUNNING) 2766 bge_poll_locked(ifp, cmd, count); 2767 BGE_UNLOCK(sc); 2768 } 2769 2770 static void 2771 bge_poll_locked(struct ifnet *ifp, enum poll_cmd cmd, int count) 2772 { 2773 struct bge_softc *sc = ifp->if_softc; 2774 2775 BGE_LOCK_ASSERT(sc); 2776 2777 sc->rxcycles = count; 2778 bge_rxeof(sc); 2779 bge_txeof(sc); 2780 if (!IFQ_DRV_IS_EMPTY(&ifp->if_snd)) 2781 bge_start_locked(ifp); 2782 2783 if (cmd == POLL_AND_CHECK_STATUS) { 2784 uint32_t statusword; 2785 2786 bus_dmamap_sync(sc->bge_cdata.bge_status_tag, 2787 sc->bge_cdata.bge_status_map, BUS_DMASYNC_POSTWRITE); 2788 2789 statusword = atomic_readandclear_32(&sc->bge_ldata.bge_status_block->bge_status); 2790 2791 if (sc->bge_asicrev == BGE_ASICREV_BCM5700 || 2792 statusword & BGE_STATFLAG_LINKSTATE_CHANGED) 2793 bge_link_upd(sc); 2794 2795 bus_dmamap_sync(sc->bge_cdata.bge_status_tag, 2796 sc->bge_cdata.bge_status_map, BUS_DMASYNC_PREWRITE); 2797 } 2798 } 2799 #endif /* DEVICE_POLLING */ 2800 2801 static void 2802 bge_intr(xsc) 2803 void *xsc; 2804 { 2805 struct bge_softc *sc; 2806 struct ifnet *ifp; 2807 uint32_t statusword; 2808 2809 sc = xsc; 2810 2811 BGE_LOCK(sc); 2812 2813 ifp = sc->bge_ifp; 2814 2815 #ifdef DEVICE_POLLING 2816 if (ifp->if_capenable & IFCAP_POLLING) { 2817 BGE_UNLOCK(sc); 2818 return; 2819 } 2820 #endif 2821 2822 bus_dmamap_sync(sc->bge_cdata.bge_status_tag, 2823 sc->bge_cdata.bge_status_map, BUS_DMASYNC_POSTWRITE); 2824 2825 statusword = 2826 atomic_readandclear_32(&sc->bge_ldata.bge_status_block->bge_status); 2827 2828 #ifdef notdef 2829 /* Avoid this for now -- checking this register is expensive. */ 2830 /* Make sure this is really our interrupt. */ 2831 if (!(CSR_READ_4(sc, BGE_MISC_LOCAL_CTL) & BGE_MLC_INTR_STATE)) 2832 return; 2833 #endif 2834 /* Ack interrupt and stop others from occuring. */ 2835 CSR_WRITE_4(sc, BGE_MBX_IRQ0_LO, 1); 2836 2837 if (sc->bge_asicrev == BGE_ASICREV_BCM5700 || 2838 statusword & BGE_STATFLAG_LINKSTATE_CHANGED) 2839 bge_link_upd(sc); 2840 2841 if (ifp->if_drv_flags & IFF_DRV_RUNNING) { 2842 /* Check RX return ring producer/consumer */ 2843 bge_rxeof(sc); 2844 2845 /* Check TX ring producer/consumer */ 2846 bge_txeof(sc); 2847 } 2848 2849 bus_dmamap_sync(sc->bge_cdata.bge_status_tag, 2850 sc->bge_cdata.bge_status_map, BUS_DMASYNC_PREWRITE); 2851 2852 bge_handle_events(sc); 2853 2854 /* Re-enable interrupts. */ 2855 CSR_WRITE_4(sc, BGE_MBX_IRQ0_LO, 0); 2856 2857 if (ifp->if_drv_flags & IFF_DRV_RUNNING && 2858 !IFQ_DRV_IS_EMPTY(&ifp->if_snd)) 2859 bge_start_locked(ifp); 2860 2861 BGE_UNLOCK(sc); 2862 2863 return; 2864 } 2865 2866 static void 2867 bge_tick_locked(sc) 2868 struct bge_softc *sc; 2869 { 2870 struct mii_data *mii = NULL; 2871 struct ifnet *ifp; 2872 2873 BGE_LOCK_ASSERT(sc); 2874 2875 ifp = sc->bge_ifp; 2876 2877 if (sc->bge_asicrev == BGE_ASICREV_BCM5705 || 2878 sc->bge_asicrev == BGE_ASICREV_BCM5750) 2879 bge_stats_update_regs(sc); 2880 else 2881 bge_stats_update(sc); 2882 2883 if (sc->bge_tbi) { 2884 if (!sc->bge_link) { 2885 if (CSR_READ_4(sc, BGE_MAC_STS) & 2886 BGE_MACSTAT_TBI_PCS_SYNCHED) { 2887 sc->bge_link++; 2888 if (sc->bge_asicrev == BGE_ASICREV_BCM5704) 2889 BGE_CLRBIT(sc, BGE_MAC_MODE, 2890 BGE_MACMODE_TBI_SEND_CFGS); 2891 CSR_WRITE_4(sc, BGE_MAC_STS, 0xFFFFFFFF); 2892 if (bootverbose) 2893 printf("bge%d: gigabit link up\n", 2894 sc->bge_unit); 2895 if (!IFQ_DRV_IS_EMPTY(&ifp->if_snd)) 2896 bge_start_locked(ifp); 2897 } 2898 } 2899 } 2900 else { 2901 mii = device_get_softc(sc->bge_miibus); 2902 mii_tick(mii); 2903 2904 if (!sc->bge_link && mii->mii_media_status & IFM_ACTIVE && 2905 IFM_SUBTYPE(mii->mii_media_active) != IFM_NONE) { 2906 sc->bge_link++; 2907 if ((IFM_SUBTYPE(mii->mii_media_active) == IFM_1000_T || 2908 IFM_SUBTYPE(mii->mii_media_active) == IFM_1000_SX)&& 2909 bootverbose) 2910 printf("bge%d: gigabit link up\n", sc->bge_unit); 2911 if (!IFQ_DRV_IS_EMPTY(&ifp->if_snd)) 2912 bge_start_locked(ifp); 2913 } 2914 } 2915 2916 callout_reset(&sc->bge_stat_ch, hz, bge_tick, sc); 2917 } 2918 2919 static void 2920 bge_tick(xsc) 2921 void *xsc; 2922 { 2923 struct bge_softc *sc; 2924 2925 sc = xsc; 2926 2927 BGE_LOCK(sc); 2928 bge_tick_locked(sc); 2929 BGE_UNLOCK(sc); 2930 } 2931 2932 static void 2933 bge_stats_update_regs(sc) 2934 struct bge_softc *sc; 2935 { 2936 struct ifnet *ifp; 2937 struct bge_mac_stats_regs stats; 2938 u_int32_t *s; 2939 int i; 2940 2941 ifp = sc->bge_ifp; 2942 2943 s = (u_int32_t *)&stats; 2944 for (i = 0; i < sizeof(struct bge_mac_stats_regs); i += 4) { 2945 *s = CSR_READ_4(sc, BGE_RX_STATS + i); 2946 s++; 2947 } 2948 2949 ifp->if_collisions += 2950 (stats.dot3StatsSingleCollisionFrames + 2951 stats.dot3StatsMultipleCollisionFrames + 2952 stats.dot3StatsExcessiveCollisions + 2953 stats.dot3StatsLateCollisions) - 2954 ifp->if_collisions; 2955 2956 return; 2957 } 2958 2959 static void 2960 bge_stats_update(sc) 2961 struct bge_softc *sc; 2962 { 2963 struct ifnet *ifp; 2964 struct bge_stats *stats; 2965 2966 ifp = sc->bge_ifp; 2967 2968 stats = (struct bge_stats *)(sc->bge_vhandle + 2969 BGE_MEMWIN_START + BGE_STATS_BLOCK); 2970 2971 ifp->if_collisions += 2972 (stats->txstats.dot3StatsSingleCollisionFrames.bge_addr_lo + 2973 stats->txstats.dot3StatsMultipleCollisionFrames.bge_addr_lo + 2974 stats->txstats.dot3StatsExcessiveCollisions.bge_addr_lo + 2975 stats->txstats.dot3StatsLateCollisions.bge_addr_lo) - 2976 ifp->if_collisions; 2977 2978 #ifdef notdef 2979 ifp->if_collisions += 2980 (sc->bge_rdata->bge_info.bge_stats.dot3StatsSingleCollisionFrames + 2981 sc->bge_rdata->bge_info.bge_stats.dot3StatsMultipleCollisionFrames + 2982 sc->bge_rdata->bge_info.bge_stats.dot3StatsExcessiveCollisions + 2983 sc->bge_rdata->bge_info.bge_stats.dot3StatsLateCollisions) - 2984 ifp->if_collisions; 2985 #endif 2986 2987 return; 2988 } 2989 2990 /* 2991 * Encapsulate an mbuf chain in the tx ring by coupling the mbuf data 2992 * pointers to descriptors. 2993 */ 2994 static int 2995 bge_encap(sc, m_head, txidx) 2996 struct bge_softc *sc; 2997 struct mbuf *m_head; 2998 u_int32_t *txidx; 2999 { 3000 struct bge_tx_bd *f = NULL; 3001 u_int16_t csum_flags = 0; 3002 struct m_tag *mtag; 3003 struct bge_dmamap_arg ctx; 3004 bus_dmamap_t map; 3005 int error; 3006 3007 3008 if (m_head->m_pkthdr.csum_flags) { 3009 if (m_head->m_pkthdr.csum_flags & CSUM_IP) 3010 csum_flags |= BGE_TXBDFLAG_IP_CSUM; 3011 if (m_head->m_pkthdr.csum_flags & (CSUM_TCP | CSUM_UDP)) 3012 csum_flags |= BGE_TXBDFLAG_TCP_UDP_CSUM; 3013 if (m_head->m_flags & M_LASTFRAG) 3014 csum_flags |= BGE_TXBDFLAG_IP_FRAG_END; 3015 else if (m_head->m_flags & M_FRAG) 3016 csum_flags |= BGE_TXBDFLAG_IP_FRAG; 3017 } 3018 3019 mtag = VLAN_OUTPUT_TAG(sc->bge_ifp, m_head); 3020 3021 ctx.sc = sc; 3022 ctx.bge_idx = *txidx; 3023 ctx.bge_ring = sc->bge_ldata.bge_tx_ring; 3024 ctx.bge_flags = csum_flags; 3025 /* 3026 * Sanity check: avoid coming within 16 descriptors 3027 * of the end of the ring. 3028 */ 3029 ctx.bge_maxsegs = (BGE_TX_RING_CNT - sc->bge_txcnt) - 16; 3030 3031 map = sc->bge_cdata.bge_tx_dmamap[*txidx]; 3032 error = bus_dmamap_load_mbuf(sc->bge_cdata.bge_mtag, map, 3033 m_head, bge_dma_map_tx_desc, &ctx, BUS_DMA_NOWAIT); 3034 3035 if (error || ctx.bge_maxsegs == 0 /*|| 3036 ctx.bge_idx == sc->bge_tx_saved_considx*/) 3037 return (ENOBUFS); 3038 3039 /* 3040 * Insure that the map for this transmission 3041 * is placed at the array index of the last descriptor 3042 * in this chain. 3043 */ 3044 sc->bge_cdata.bge_tx_dmamap[*txidx] = 3045 sc->bge_cdata.bge_tx_dmamap[ctx.bge_idx]; 3046 sc->bge_cdata.bge_tx_dmamap[ctx.bge_idx] = map; 3047 sc->bge_cdata.bge_tx_chain[ctx.bge_idx] = m_head; 3048 sc->bge_txcnt += ctx.bge_maxsegs; 3049 f = &sc->bge_ldata.bge_tx_ring[*txidx]; 3050 if (mtag != NULL) { 3051 f->bge_flags |= htole16(BGE_TXBDFLAG_VLAN_TAG); 3052 f->bge_vlan_tag = htole16(VLAN_TAG_VALUE(mtag)); 3053 } else { 3054 f->bge_vlan_tag = 0; 3055 } 3056 3057 BGE_INC(ctx.bge_idx, BGE_TX_RING_CNT); 3058 *txidx = ctx.bge_idx; 3059 3060 return(0); 3061 } 3062 3063 /* 3064 * Main transmit routine. To avoid having to do mbuf copies, we put pointers 3065 * to the mbuf data regions directly in the transmit descriptors. 3066 */ 3067 static void 3068 bge_start_locked(ifp) 3069 struct ifnet *ifp; 3070 { 3071 struct bge_softc *sc; 3072 struct mbuf *m_head = NULL; 3073 u_int32_t prodidx = 0; 3074 int count = 0; 3075 3076 sc = ifp->if_softc; 3077 3078 if (!sc->bge_link || IFQ_DRV_IS_EMPTY(&ifp->if_snd)) 3079 return; 3080 3081 prodidx = CSR_READ_4(sc, BGE_MBX_TX_HOST_PROD0_LO); 3082 3083 while(sc->bge_cdata.bge_tx_chain[prodidx] == NULL) { 3084 IFQ_DRV_DEQUEUE(&ifp->if_snd, m_head); 3085 if (m_head == NULL) 3086 break; 3087 3088 /* 3089 * XXX 3090 * The code inside the if() block is never reached since we 3091 * must mark CSUM_IP_FRAGS in our if_hwassist to start getting 3092 * requests to checksum TCP/UDP in a fragmented packet. 3093 * 3094 * XXX 3095 * safety overkill. If this is a fragmented packet chain 3096 * with delayed TCP/UDP checksums, then only encapsulate 3097 * it if we have enough descriptors to handle the entire 3098 * chain at once. 3099 * (paranoia -- may not actually be needed) 3100 */ 3101 if (m_head->m_flags & M_FIRSTFRAG && 3102 m_head->m_pkthdr.csum_flags & (CSUM_DELAY_DATA)) { 3103 if ((BGE_TX_RING_CNT - sc->bge_txcnt) < 3104 m_head->m_pkthdr.csum_data + 16) { 3105 IFQ_DRV_PREPEND(&ifp->if_snd, m_head); 3106 ifp->if_drv_flags |= IFF_DRV_OACTIVE; 3107 break; 3108 } 3109 } 3110 3111 /* 3112 * Pack the data into the transmit ring. If we 3113 * don't have room, set the OACTIVE flag and wait 3114 * for the NIC to drain the ring. 3115 */ 3116 if (bge_encap(sc, m_head, &prodidx)) { 3117 IFQ_DRV_PREPEND(&ifp->if_snd, m_head); 3118 ifp->if_drv_flags |= IFF_DRV_OACTIVE; 3119 break; 3120 } 3121 ++count; 3122 3123 /* 3124 * If there's a BPF listener, bounce a copy of this frame 3125 * to him. 3126 */ 3127 BPF_MTAP(ifp, m_head); 3128 } 3129 3130 if (count == 0) { 3131 /* no packets were dequeued */ 3132 return; 3133 } 3134 3135 /* Transmit */ 3136 CSR_WRITE_4(sc, BGE_MBX_TX_HOST_PROD0_LO, prodidx); 3137 /* 5700 b2 errata */ 3138 if (sc->bge_chiprev == BGE_CHIPREV_5700_BX) 3139 CSR_WRITE_4(sc, BGE_MBX_TX_HOST_PROD0_LO, prodidx); 3140 3141 /* 3142 * Set a timeout in case the chip goes out to lunch. 3143 */ 3144 ifp->if_timer = 5; 3145 3146 return; 3147 } 3148 3149 /* 3150 * Main transmit routine. To avoid having to do mbuf copies, we put pointers 3151 * to the mbuf data regions directly in the transmit descriptors. 3152 */ 3153 static void 3154 bge_start(ifp) 3155 struct ifnet *ifp; 3156 { 3157 struct bge_softc *sc; 3158 3159 sc = ifp->if_softc; 3160 BGE_LOCK(sc); 3161 bge_start_locked(ifp); 3162 BGE_UNLOCK(sc); 3163 } 3164 3165 static void 3166 bge_init_locked(sc) 3167 struct bge_softc *sc; 3168 { 3169 struct ifnet *ifp; 3170 u_int16_t *m; 3171 3172 BGE_LOCK_ASSERT(sc); 3173 3174 ifp = sc->bge_ifp; 3175 3176 if (ifp->if_drv_flags & IFF_DRV_RUNNING) 3177 return; 3178 3179 /* Cancel pending I/O and flush buffers. */ 3180 bge_stop(sc); 3181 bge_reset(sc); 3182 bge_chipinit(sc); 3183 3184 /* 3185 * Init the various state machines, ring 3186 * control blocks and firmware. 3187 */ 3188 if (bge_blockinit(sc)) { 3189 printf("bge%d: initialization failure\n", sc->bge_unit); 3190 return; 3191 } 3192 3193 ifp = sc->bge_ifp; 3194 3195 /* Specify MTU. */ 3196 CSR_WRITE_4(sc, BGE_RX_MTU, ifp->if_mtu + 3197 ETHER_HDR_LEN + ETHER_CRC_LEN + ETHER_VLAN_ENCAP_LEN); 3198 3199 /* Load our MAC address. */ 3200 m = (u_int16_t *)IF_LLADDR(sc->bge_ifp); 3201 CSR_WRITE_4(sc, BGE_MAC_ADDR1_LO, htons(m[0])); 3202 CSR_WRITE_4(sc, BGE_MAC_ADDR1_HI, (htons(m[1]) << 16) | htons(m[2])); 3203 3204 /* Enable or disable promiscuous mode as needed. */ 3205 if (ifp->if_flags & IFF_PROMISC) { 3206 BGE_SETBIT(sc, BGE_RX_MODE, BGE_RXMODE_RX_PROMISC); 3207 } else { 3208 BGE_CLRBIT(sc, BGE_RX_MODE, BGE_RXMODE_RX_PROMISC); 3209 } 3210 3211 /* Program multicast filter. */ 3212 bge_setmulti(sc); 3213 3214 /* Init RX ring. */ 3215 bge_init_rx_ring_std(sc); 3216 3217 /* 3218 * Workaround for a bug in 5705 ASIC rev A0. Poll the NIC's 3219 * memory to insure that the chip has in fact read the first 3220 * entry of the ring. 3221 */ 3222 if (sc->bge_chipid == BGE_CHIPID_BCM5705_A0) { 3223 u_int32_t v, i; 3224 for (i = 0; i < 10; i++) { 3225 DELAY(20); 3226 v = bge_readmem_ind(sc, BGE_STD_RX_RINGS + 8); 3227 if (v == (MCLBYTES - ETHER_ALIGN)) 3228 break; 3229 } 3230 if (i == 10) 3231 printf ("bge%d: 5705 A0 chip failed to load RX ring\n", 3232 sc->bge_unit); 3233 } 3234 3235 /* Init jumbo RX ring. */ 3236 if (ifp->if_mtu > (ETHERMTU + ETHER_HDR_LEN + ETHER_CRC_LEN)) 3237 bge_init_rx_ring_jumbo(sc); 3238 3239 /* Init our RX return ring index */ 3240 sc->bge_rx_saved_considx = 0; 3241 3242 /* Init TX ring. */ 3243 bge_init_tx_ring(sc); 3244 3245 /* Turn on transmitter */ 3246 BGE_SETBIT(sc, BGE_TX_MODE, BGE_TXMODE_ENABLE); 3247 3248 /* Turn on receiver */ 3249 BGE_SETBIT(sc, BGE_RX_MODE, BGE_RXMODE_ENABLE); 3250 3251 /* Tell firmware we're alive. */ 3252 BGE_SETBIT(sc, BGE_MODE_CTL, BGE_MODECTL_STACKUP); 3253 3254 #ifdef DEVICE_POLLING 3255 /* Disable interrupts if we are polling. */ 3256 if (ifp->if_capenable & IFCAP_POLLING) { 3257 BGE_SETBIT(sc, BGE_PCI_MISC_CTL, 3258 BGE_PCIMISCCTL_MASK_PCI_INTR); 3259 CSR_WRITE_4(sc, BGE_MBX_IRQ0_LO, 1); 3260 CSR_WRITE_4(sc, BGE_HCC_RX_MAX_COAL_BDS_INT, 1); 3261 CSR_WRITE_4(sc, BGE_HCC_TX_MAX_COAL_BDS_INT, 1); 3262 } else 3263 #endif 3264 3265 /* Enable host interrupts. */ 3266 { 3267 BGE_SETBIT(sc, BGE_PCI_MISC_CTL, BGE_PCIMISCCTL_CLEAR_INTA); 3268 BGE_CLRBIT(sc, BGE_PCI_MISC_CTL, BGE_PCIMISCCTL_MASK_PCI_INTR); 3269 CSR_WRITE_4(sc, BGE_MBX_IRQ0_LO, 0); 3270 } 3271 3272 bge_ifmedia_upd(ifp); 3273 3274 ifp->if_drv_flags |= IFF_DRV_RUNNING; 3275 ifp->if_drv_flags &= ~IFF_DRV_OACTIVE; 3276 3277 callout_reset(&sc->bge_stat_ch, hz, bge_tick, sc); 3278 3279 return; 3280 } 3281 3282 static void 3283 bge_init(xsc) 3284 void *xsc; 3285 { 3286 struct bge_softc *sc = xsc; 3287 3288 BGE_LOCK(sc); 3289 bge_init_locked(sc); 3290 BGE_UNLOCK(sc); 3291 3292 return; 3293 } 3294 3295 /* 3296 * Set media options. 3297 */ 3298 static int 3299 bge_ifmedia_upd(ifp) 3300 struct ifnet *ifp; 3301 { 3302 struct bge_softc *sc; 3303 struct mii_data *mii; 3304 struct ifmedia *ifm; 3305 3306 sc = ifp->if_softc; 3307 ifm = &sc->bge_ifmedia; 3308 3309 /* If this is a 1000baseX NIC, enable the TBI port. */ 3310 if (sc->bge_tbi) { 3311 if (IFM_TYPE(ifm->ifm_media) != IFM_ETHER) 3312 return(EINVAL); 3313 switch(IFM_SUBTYPE(ifm->ifm_media)) { 3314 case IFM_AUTO: 3315 #ifndef BGE_FAKE_AUTONEG 3316 /* 3317 * The BCM5704 ASIC appears to have a special 3318 * mechanism for programming the autoneg 3319 * advertisement registers in TBI mode. 3320 */ 3321 if (sc->bge_asicrev == BGE_ASICREV_BCM5704) { 3322 uint32_t sgdig; 3323 CSR_WRITE_4(sc, BGE_TX_TBI_AUTONEG, 0); 3324 sgdig = CSR_READ_4(sc, BGE_SGDIG_CFG); 3325 sgdig |= BGE_SGDIGCFG_AUTO| 3326 BGE_SGDIGCFG_PAUSE_CAP| 3327 BGE_SGDIGCFG_ASYM_PAUSE; 3328 CSR_WRITE_4(sc, BGE_SGDIG_CFG, 3329 sgdig|BGE_SGDIGCFG_SEND); 3330 DELAY(5); 3331 CSR_WRITE_4(sc, BGE_SGDIG_CFG, sgdig); 3332 } 3333 #endif 3334 break; 3335 case IFM_1000_SX: 3336 if ((ifm->ifm_media & IFM_GMASK) == IFM_FDX) { 3337 BGE_CLRBIT(sc, BGE_MAC_MODE, 3338 BGE_MACMODE_HALF_DUPLEX); 3339 } else { 3340 BGE_SETBIT(sc, BGE_MAC_MODE, 3341 BGE_MACMODE_HALF_DUPLEX); 3342 } 3343 break; 3344 default: 3345 return(EINVAL); 3346 } 3347 return(0); 3348 } 3349 3350 mii = device_get_softc(sc->bge_miibus); 3351 sc->bge_link = 0; 3352 if (mii->mii_instance) { 3353 struct mii_softc *miisc; 3354 for (miisc = LIST_FIRST(&mii->mii_phys); miisc != NULL; 3355 miisc = LIST_NEXT(miisc, mii_list)) 3356 mii_phy_reset(miisc); 3357 } 3358 mii_mediachg(mii); 3359 3360 return(0); 3361 } 3362 3363 /* 3364 * Report current media status. 3365 */ 3366 static void 3367 bge_ifmedia_sts(ifp, ifmr) 3368 struct ifnet *ifp; 3369 struct ifmediareq *ifmr; 3370 { 3371 struct bge_softc *sc; 3372 struct mii_data *mii; 3373 3374 sc = ifp->if_softc; 3375 3376 if (sc->bge_tbi) { 3377 ifmr->ifm_status = IFM_AVALID; 3378 ifmr->ifm_active = IFM_ETHER; 3379 if (CSR_READ_4(sc, BGE_MAC_STS) & 3380 BGE_MACSTAT_TBI_PCS_SYNCHED) 3381 ifmr->ifm_status |= IFM_ACTIVE; 3382 ifmr->ifm_active |= IFM_1000_SX; 3383 if (CSR_READ_4(sc, BGE_MAC_MODE) & BGE_MACMODE_HALF_DUPLEX) 3384 ifmr->ifm_active |= IFM_HDX; 3385 else 3386 ifmr->ifm_active |= IFM_FDX; 3387 return; 3388 } 3389 3390 mii = device_get_softc(sc->bge_miibus); 3391 mii_pollstat(mii); 3392 ifmr->ifm_active = mii->mii_media_active; 3393 ifmr->ifm_status = mii->mii_media_status; 3394 3395 return; 3396 } 3397 3398 static int 3399 bge_ioctl(ifp, command, data) 3400 struct ifnet *ifp; 3401 u_long command; 3402 caddr_t data; 3403 { 3404 struct bge_softc *sc = ifp->if_softc; 3405 struct ifreq *ifr = (struct ifreq *) data; 3406 int mask, error = 0; 3407 struct mii_data *mii; 3408 3409 switch(command) { 3410 case SIOCSIFMTU: 3411 /* Disallow jumbo frames on 5705. */ 3412 if (((sc->bge_asicrev == BGE_ASICREV_BCM5705 || 3413 sc->bge_asicrev == BGE_ASICREV_BCM5750) && 3414 ifr->ifr_mtu > ETHERMTU) || ifr->ifr_mtu > BGE_JUMBO_MTU) 3415 error = EINVAL; 3416 else { 3417 ifp->if_mtu = ifr->ifr_mtu; 3418 ifp->if_drv_flags &= ~IFF_DRV_RUNNING; 3419 bge_init(sc); 3420 } 3421 break; 3422 case SIOCSIFFLAGS: 3423 BGE_LOCK(sc); 3424 if (ifp->if_flags & IFF_UP) { 3425 /* 3426 * If only the state of the PROMISC flag changed, 3427 * then just use the 'set promisc mode' command 3428 * instead of reinitializing the entire NIC. Doing 3429 * a full re-init means reloading the firmware and 3430 * waiting for it to start up, which may take a 3431 * second or two. 3432 */ 3433 if (ifp->if_drv_flags & IFF_DRV_RUNNING && 3434 ifp->if_flags & IFF_PROMISC && 3435 !(sc->bge_if_flags & IFF_PROMISC)) { 3436 BGE_SETBIT(sc, BGE_RX_MODE, 3437 BGE_RXMODE_RX_PROMISC); 3438 } else if (ifp->if_drv_flags & IFF_DRV_RUNNING && 3439 !(ifp->if_flags & IFF_PROMISC) && 3440 sc->bge_if_flags & IFF_PROMISC) { 3441 BGE_CLRBIT(sc, BGE_RX_MODE, 3442 BGE_RXMODE_RX_PROMISC); 3443 } else 3444 bge_init_locked(sc); 3445 } else { 3446 if (ifp->if_drv_flags & IFF_DRV_RUNNING) { 3447 bge_stop(sc); 3448 } 3449 } 3450 sc->bge_if_flags = ifp->if_flags; 3451 BGE_UNLOCK(sc); 3452 error = 0; 3453 break; 3454 case SIOCADDMULTI: 3455 case SIOCDELMULTI: 3456 if (ifp->if_drv_flags & IFF_DRV_RUNNING) { 3457 BGE_LOCK(sc); 3458 bge_setmulti(sc); 3459 BGE_UNLOCK(sc); 3460 error = 0; 3461 } 3462 break; 3463 case SIOCSIFMEDIA: 3464 case SIOCGIFMEDIA: 3465 if (sc->bge_tbi) { 3466 error = ifmedia_ioctl(ifp, ifr, 3467 &sc->bge_ifmedia, command); 3468 } else { 3469 mii = device_get_softc(sc->bge_miibus); 3470 error = ifmedia_ioctl(ifp, ifr, 3471 &mii->mii_media, command); 3472 } 3473 break; 3474 case SIOCSIFCAP: 3475 mask = ifr->ifr_reqcap ^ ifp->if_capenable; 3476 #ifdef DEVICE_POLLING 3477 if (mask & IFCAP_POLLING) { 3478 if (ifr->ifr_reqcap & IFCAP_POLLING) { 3479 error = ether_poll_register(bge_poll, ifp); 3480 if (error) 3481 return(error); 3482 BGE_LOCK(sc); 3483 BGE_SETBIT(sc, BGE_PCI_MISC_CTL, 3484 BGE_PCIMISCCTL_MASK_PCI_INTR); 3485 CSR_WRITE_4(sc, BGE_MBX_IRQ0_LO, 1); 3486 CSR_WRITE_4(sc, BGE_HCC_RX_MAX_COAL_BDS_INT, 1); 3487 CSR_WRITE_4(sc, BGE_HCC_TX_MAX_COAL_BDS_INT, 1); 3488 ifp->if_capenable |= IFCAP_POLLING; 3489 BGE_UNLOCK(sc); 3490 } else { 3491 error = ether_poll_deregister(ifp); 3492 /* Enable interrupt even in error case */ 3493 BGE_LOCK(sc); 3494 CSR_WRITE_4(sc, BGE_HCC_RX_MAX_COAL_BDS_INT, 0); 3495 CSR_WRITE_4(sc, BGE_HCC_TX_MAX_COAL_BDS_INT, 0); 3496 BGE_CLRBIT(sc, BGE_PCI_MISC_CTL, 3497 BGE_PCIMISCCTL_MASK_PCI_INTR); 3498 CSR_WRITE_4(sc, BGE_MBX_IRQ0_LO, 0); 3499 ifp->if_capenable &= ~IFCAP_POLLING; 3500 BGE_UNLOCK(sc); 3501 } 3502 } 3503 #endif 3504 /* NB: the code for RX csum offload is disabled for now */ 3505 if (mask & IFCAP_TXCSUM) { 3506 ifp->if_capenable ^= IFCAP_TXCSUM; 3507 if (IFCAP_TXCSUM & ifp->if_capenable) 3508 ifp->if_hwassist = BGE_CSUM_FEATURES; 3509 else 3510 ifp->if_hwassist = 0; 3511 } 3512 break; 3513 default: 3514 error = ether_ioctl(ifp, command, data); 3515 break; 3516 } 3517 3518 return(error); 3519 } 3520 3521 static void 3522 bge_watchdog(ifp) 3523 struct ifnet *ifp; 3524 { 3525 struct bge_softc *sc; 3526 3527 sc = ifp->if_softc; 3528 3529 printf("bge%d: watchdog timeout -- resetting\n", sc->bge_unit); 3530 3531 ifp->if_drv_flags &= ~IFF_DRV_RUNNING; 3532 bge_init(sc); 3533 3534 ifp->if_oerrors++; 3535 3536 return; 3537 } 3538 3539 /* 3540 * Stop the adapter and free any mbufs allocated to the 3541 * RX and TX lists. 3542 */ 3543 static void 3544 bge_stop(sc) 3545 struct bge_softc *sc; 3546 { 3547 struct ifnet *ifp; 3548 struct ifmedia_entry *ifm; 3549 struct mii_data *mii = NULL; 3550 int mtmp, itmp; 3551 3552 BGE_LOCK_ASSERT(sc); 3553 3554 ifp = sc->bge_ifp; 3555 3556 if (!sc->bge_tbi) 3557 mii = device_get_softc(sc->bge_miibus); 3558 3559 callout_stop(&sc->bge_stat_ch); 3560 3561 /* 3562 * Disable all of the receiver blocks 3563 */ 3564 BGE_CLRBIT(sc, BGE_RX_MODE, BGE_RXMODE_ENABLE); 3565 BGE_CLRBIT(sc, BGE_RBDI_MODE, BGE_RBDIMODE_ENABLE); 3566 BGE_CLRBIT(sc, BGE_RXLP_MODE, BGE_RXLPMODE_ENABLE); 3567 if (sc->bge_asicrev != BGE_ASICREV_BCM5705 && 3568 sc->bge_asicrev != BGE_ASICREV_BCM5750) 3569 BGE_CLRBIT(sc, BGE_RXLS_MODE, BGE_RXLSMODE_ENABLE); 3570 BGE_CLRBIT(sc, BGE_RDBDI_MODE, BGE_RBDIMODE_ENABLE); 3571 BGE_CLRBIT(sc, BGE_RDC_MODE, BGE_RDCMODE_ENABLE); 3572 BGE_CLRBIT(sc, BGE_RBDC_MODE, BGE_RBDCMODE_ENABLE); 3573 3574 /* 3575 * Disable all of the transmit blocks 3576 */ 3577 BGE_CLRBIT(sc, BGE_SRS_MODE, BGE_SRSMODE_ENABLE); 3578 BGE_CLRBIT(sc, BGE_SBDI_MODE, BGE_SBDIMODE_ENABLE); 3579 BGE_CLRBIT(sc, BGE_SDI_MODE, BGE_SDIMODE_ENABLE); 3580 BGE_CLRBIT(sc, BGE_RDMA_MODE, BGE_RDMAMODE_ENABLE); 3581 BGE_CLRBIT(sc, BGE_SDC_MODE, BGE_SDCMODE_ENABLE); 3582 if (sc->bge_asicrev != BGE_ASICREV_BCM5705 && 3583 sc->bge_asicrev != BGE_ASICREV_BCM5750) 3584 BGE_CLRBIT(sc, BGE_DMAC_MODE, BGE_DMACMODE_ENABLE); 3585 BGE_CLRBIT(sc, BGE_SBDC_MODE, BGE_SBDCMODE_ENABLE); 3586 3587 /* 3588 * Shut down all of the memory managers and related 3589 * state machines. 3590 */ 3591 BGE_CLRBIT(sc, BGE_HCC_MODE, BGE_HCCMODE_ENABLE); 3592 BGE_CLRBIT(sc, BGE_WDMA_MODE, BGE_WDMAMODE_ENABLE); 3593 if (sc->bge_asicrev != BGE_ASICREV_BCM5705 && 3594 sc->bge_asicrev != BGE_ASICREV_BCM5750) 3595 BGE_CLRBIT(sc, BGE_MBCF_MODE, BGE_MBCFMODE_ENABLE); 3596 CSR_WRITE_4(sc, BGE_FTQ_RESET, 0xFFFFFFFF); 3597 CSR_WRITE_4(sc, BGE_FTQ_RESET, 0); 3598 if (sc->bge_asicrev != BGE_ASICREV_BCM5705 && 3599 sc->bge_asicrev != BGE_ASICREV_BCM5750) { 3600 BGE_CLRBIT(sc, BGE_BMAN_MODE, BGE_BMANMODE_ENABLE); 3601 BGE_CLRBIT(sc, BGE_MARB_MODE, BGE_MARBMODE_ENABLE); 3602 } 3603 3604 /* Disable host interrupts. */ 3605 BGE_SETBIT(sc, BGE_PCI_MISC_CTL, BGE_PCIMISCCTL_MASK_PCI_INTR); 3606 CSR_WRITE_4(sc, BGE_MBX_IRQ0_LO, 1); 3607 3608 /* 3609 * Tell firmware we're shutting down. 3610 */ 3611 BGE_CLRBIT(sc, BGE_MODE_CTL, BGE_MODECTL_STACKUP); 3612 3613 /* Free the RX lists. */ 3614 bge_free_rx_ring_std(sc); 3615 3616 /* Free jumbo RX list. */ 3617 if (sc->bge_asicrev != BGE_ASICREV_BCM5705 && 3618 sc->bge_asicrev != BGE_ASICREV_BCM5750) 3619 bge_free_rx_ring_jumbo(sc); 3620 3621 /* Free TX buffers. */ 3622 bge_free_tx_ring(sc); 3623 3624 /* 3625 * Isolate/power down the PHY, but leave the media selection 3626 * unchanged so that things will be put back to normal when 3627 * we bring the interface back up. 3628 */ 3629 if (!sc->bge_tbi) { 3630 itmp = ifp->if_flags; 3631 ifp->if_flags |= IFF_UP; 3632 /* 3633 * If we are called from bge_detach(), mii is already NULL. 3634 */ 3635 if (mii != NULL) { 3636 ifm = mii->mii_media.ifm_cur; 3637 mtmp = ifm->ifm_media; 3638 ifm->ifm_media = IFM_ETHER|IFM_NONE; 3639 mii_mediachg(mii); 3640 ifm->ifm_media = mtmp; 3641 } 3642 ifp->if_flags = itmp; 3643 } 3644 3645 sc->bge_link = 0; 3646 3647 sc->bge_tx_saved_considx = BGE_TXCONS_UNSET; 3648 3649 ifp->if_drv_flags &= ~(IFF_DRV_RUNNING | IFF_DRV_OACTIVE); 3650 3651 return; 3652 } 3653 3654 /* 3655 * Stop all chip I/O so that the kernel's probe routines don't 3656 * get confused by errant DMAs when rebooting. 3657 */ 3658 static void 3659 bge_shutdown(dev) 3660 device_t dev; 3661 { 3662 struct bge_softc *sc; 3663 3664 sc = device_get_softc(dev); 3665 3666 BGE_LOCK(sc); 3667 bge_stop(sc); 3668 bge_reset(sc); 3669 BGE_UNLOCK(sc); 3670 3671 return; 3672 } 3673 3674 static int 3675 bge_suspend(device_t dev) 3676 { 3677 struct bge_softc *sc; 3678 3679 sc = device_get_softc(dev); 3680 BGE_LOCK(sc); 3681 bge_stop(sc); 3682 BGE_UNLOCK(sc); 3683 3684 return (0); 3685 } 3686 3687 static int 3688 bge_resume(device_t dev) 3689 { 3690 struct bge_softc *sc; 3691 struct ifnet *ifp; 3692 3693 sc = device_get_softc(dev); 3694 BGE_LOCK(sc); 3695 ifp = sc->bge_ifp; 3696 if (ifp->if_flags & IFF_UP) { 3697 bge_init_locked(sc); 3698 if (ifp->if_drv_flags & IFF_DRV_RUNNING) 3699 bge_start_locked(ifp); 3700 } 3701 BGE_UNLOCK(sc); 3702 3703 return (0); 3704 } 3705 3706 static void 3707 bge_link_upd(sc) 3708 struct bge_softc *sc; 3709 { 3710 uint32_t status; 3711 3712 BGE_LOCK_ASSERT(sc); 3713 /* 3714 * Process link state changes. 3715 * Grrr. The link status word in the status block does 3716 * not work correctly on the BCM5700 rev AX and BX chips, 3717 * according to all available information. Hence, we have 3718 * to enable MII interrupts in order to properly obtain 3719 * async link changes. Unfortunately, this also means that 3720 * we have to read the MAC status register to detect link 3721 * changes, thereby adding an additional register access to 3722 * the interrupt handler. 3723 */ 3724 3725 if (sc->bge_asicrev == BGE_ASICREV_BCM5700) { 3726 status = CSR_READ_4(sc, BGE_MAC_STS); 3727 if (status & BGE_MACSTAT_MI_INTERRUPT) { 3728 sc->bge_link = 0; 3729 callout_stop(&sc->bge_stat_ch); 3730 bge_tick_locked(sc); 3731 /* Clear the interrupt */ 3732 CSR_WRITE_4(sc, BGE_MAC_EVT_ENB, 3733 BGE_EVTENB_MI_INTERRUPT); 3734 bge_miibus_readreg(sc->bge_dev, 1, BRGPHY_MII_ISR); 3735 bge_miibus_writereg(sc->bge_dev, 1, BRGPHY_MII_IMR, 3736 BRGPHY_INTRS); 3737 } 3738 return; 3739 } 3740 3741 /* 3742 * Sometimes PCS encoding errors are detected in 3743 * TBI mode (on fiber NICs), and for some reason 3744 * the chip will signal them as link changes. 3745 * If we get a link change event, but the 'PCS 3746 * encoding error' bit in the MAC status register 3747 * is set, don't bother doing a link check. 3748 * This avoids spurious "gigabit link up" messages 3749 * that sometimes appear on fiber NICs during 3750 * periods of heavy traffic. (There should be no 3751 * effect on copper NICs.) 3752 */ 3753 if (sc->bge_tbi) status = CSR_READ_4(sc, BGE_MAC_STS); 3754 3755 if (!sc->bge_tbi || !(status & (BGE_MACSTAT_PORT_DECODE_ERROR | 3756 BGE_MACSTAT_MI_COMPLETE))) { 3757 sc->bge_link = 0; 3758 callout_stop(&sc->bge_stat_ch); 3759 bge_tick_locked(sc); 3760 } 3761 3762 /* Clear the interrupt */ 3763 CSR_WRITE_4(sc, BGE_MAC_STS, BGE_MACSTAT_SYNC_CHANGED| 3764 BGE_MACSTAT_CFG_CHANGED|BGE_MACSTAT_MI_COMPLETE| 3765 BGE_MACSTAT_LINK_CHANGED); 3766 3767 /* Force flush the status block cached by PCI bridge */ 3768 CSR_READ_4(sc, BGE_MBX_IRQ0_LO); 3769 } 3770 3771