xref: /freebsd/sys/dev/bge/if_bge.c (revision 21fdc27a054f668c8b6c2be503fa68622e5226da)
1 /*-
2  * Copyright (c) 2001 Wind River Systems
3  * Copyright (c) 1997, 1998, 1999, 2001
4  *	Bill Paul <wpaul@windriver.com>.  All rights reserved.
5  *
6  * Redistribution and use in source and binary forms, with or without
7  * modification, are permitted provided that the following conditions
8  * are met:
9  * 1. Redistributions of source code must retain the above copyright
10  *    notice, this list of conditions and the following disclaimer.
11  * 2. Redistributions in binary form must reproduce the above copyright
12  *    notice, this list of conditions and the following disclaimer in the
13  *    documentation and/or other materials provided with the distribution.
14  * 3. All advertising materials mentioning features or use of this software
15  *    must display the following acknowledgement:
16  *	This product includes software developed by Bill Paul.
17  * 4. Neither the name of the author nor the names of any co-contributors
18  *    may be used to endorse or promote products derived from this software
19  *    without specific prior written permission.
20  *
21  * THIS SOFTWARE IS PROVIDED BY Bill Paul AND CONTRIBUTORS ``AS IS'' AND
22  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
23  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
24  * ARE DISCLAIMED.  IN NO EVENT SHALL Bill Paul OR THE VOICES IN HIS HEAD
25  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
26  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
27  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
28  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
29  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
30  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF
31  * THE POSSIBILITY OF SUCH DAMAGE.
32  */
33 
34 #include <sys/cdefs.h>
35 __FBSDID("$FreeBSD$");
36 
37 /*
38  * Broadcom BCM570x family gigabit ethernet driver for FreeBSD.
39  *
40  * The Broadcom BCM5700 is based on technology originally developed by
41  * Alteon Networks as part of the Tigon I and Tigon II gigabit ethernet
42  * MAC chips. The BCM5700, sometimes refered to as the Tigon III, has
43  * two on-board MIPS R4000 CPUs and can have as much as 16MB of external
44  * SSRAM. The BCM5700 supports TCP, UDP and IP checksum offload, jumbo
45  * frames, highly configurable RX filtering, and 16 RX and TX queues
46  * (which, along with RX filter rules, can be used for QOS applications).
47  * Other features, such as TCP segmentation, may be available as part
48  * of value-added firmware updates. Unlike the Tigon I and Tigon II,
49  * firmware images can be stored in hardware and need not be compiled
50  * into the driver.
51  *
52  * The BCM5700 supports the PCI v2.2 and PCI-X v1.0 standards, and will
53  * function in a 32-bit/64-bit 33/66Mhz bus, or a 64-bit/133Mhz bus.
54  *
55  * The BCM5701 is a single-chip solution incorporating both the BCM5700
56  * MAC and a BCM5401 10/100/1000 PHY. Unlike the BCM5700, the BCM5701
57  * does not support external SSRAM.
58  *
59  * Broadcom also produces a variation of the BCM5700 under the "Altima"
60  * brand name, which is functionally similar but lacks PCI-X support.
61  *
62  * Without external SSRAM, you can only have at most 4 TX rings,
63  * and the use of the mini RX ring is disabled. This seems to imply
64  * that these features are simply not available on the BCM5701. As a
65  * result, this driver does not implement any support for the mini RX
66  * ring.
67  */
68 
69 #ifdef HAVE_KERNEL_OPTION_HEADERS
70 #include "opt_device_polling.h"
71 #endif
72 
73 #include <sys/param.h>
74 #include <sys/endian.h>
75 #include <sys/systm.h>
76 #include <sys/sockio.h>
77 #include <sys/mbuf.h>
78 #include <sys/malloc.h>
79 #include <sys/kernel.h>
80 #include <sys/module.h>
81 #include <sys/socket.h>
82 #include <sys/sysctl.h>
83 #include <sys/taskqueue.h>
84 
85 #include <net/if.h>
86 #include <net/if_arp.h>
87 #include <net/ethernet.h>
88 #include <net/if_dl.h>
89 #include <net/if_media.h>
90 
91 #include <net/bpf.h>
92 
93 #include <net/if_types.h>
94 #include <net/if_vlan_var.h>
95 
96 #include <netinet/in_systm.h>
97 #include <netinet/in.h>
98 #include <netinet/ip.h>
99 #include <netinet/tcp.h>
100 
101 #include <machine/bus.h>
102 #include <machine/resource.h>
103 #include <sys/bus.h>
104 #include <sys/rman.h>
105 
106 #include <dev/mii/mii.h>
107 #include <dev/mii/miivar.h>
108 #include "miidevs.h"
109 #include <dev/mii/brgphyreg.h>
110 
111 #ifdef __sparc64__
112 #include <dev/ofw/ofw_bus.h>
113 #include <dev/ofw/openfirm.h>
114 #include <machine/ofw_machdep.h>
115 #include <machine/ver.h>
116 #endif
117 
118 #include <dev/pci/pcireg.h>
119 #include <dev/pci/pcivar.h>
120 
121 #include <dev/bge/if_bgereg.h>
122 
123 #define	BGE_CSUM_FEATURES	(CSUM_IP | CSUM_TCP | CSUM_UDP)
124 #define	ETHER_MIN_NOPAD		(ETHER_MIN_LEN - ETHER_CRC_LEN) /* i.e., 60 */
125 
126 MODULE_DEPEND(bge, pci, 1, 1, 1);
127 MODULE_DEPEND(bge, ether, 1, 1, 1);
128 MODULE_DEPEND(bge, miibus, 1, 1, 1);
129 
130 /* "device miibus" required.  See GENERIC if you get errors here. */
131 #include "miibus_if.h"
132 
133 /*
134  * Various supported device vendors/types and their names. Note: the
135  * spec seems to indicate that the hardware still has Alteon's vendor
136  * ID burned into it, though it will always be overriden by the vendor
137  * ID in the EEPROM. Just to be safe, we cover all possibilities.
138  */
139 static const struct bge_type {
140 	uint16_t	bge_vid;
141 	uint16_t	bge_did;
142 } bge_devs[] = {
143 	{ ALTEON_VENDORID,	ALTEON_DEVICEID_BCM5700 },
144 	{ ALTEON_VENDORID,	ALTEON_DEVICEID_BCM5701 },
145 
146 	{ ALTIMA_VENDORID,	ALTIMA_DEVICE_AC1000 },
147 	{ ALTIMA_VENDORID,	ALTIMA_DEVICE_AC1002 },
148 	{ ALTIMA_VENDORID,	ALTIMA_DEVICE_AC9100 },
149 
150 	{ APPLE_VENDORID,	APPLE_DEVICE_BCM5701 },
151 
152 	{ BCOM_VENDORID,	BCOM_DEVICEID_BCM5700 },
153 	{ BCOM_VENDORID,	BCOM_DEVICEID_BCM5701 },
154 	{ BCOM_VENDORID,	BCOM_DEVICEID_BCM5702 },
155 	{ BCOM_VENDORID,	BCOM_DEVICEID_BCM5702_ALT },
156 	{ BCOM_VENDORID,	BCOM_DEVICEID_BCM5702X },
157 	{ BCOM_VENDORID,	BCOM_DEVICEID_BCM5703 },
158 	{ BCOM_VENDORID,	BCOM_DEVICEID_BCM5703_ALT },
159 	{ BCOM_VENDORID,	BCOM_DEVICEID_BCM5703X },
160 	{ BCOM_VENDORID,	BCOM_DEVICEID_BCM5704C },
161 	{ BCOM_VENDORID,	BCOM_DEVICEID_BCM5704S },
162 	{ BCOM_VENDORID,	BCOM_DEVICEID_BCM5704S_ALT },
163 	{ BCOM_VENDORID,	BCOM_DEVICEID_BCM5705 },
164 	{ BCOM_VENDORID,	BCOM_DEVICEID_BCM5705F },
165 	{ BCOM_VENDORID,	BCOM_DEVICEID_BCM5705K },
166 	{ BCOM_VENDORID,	BCOM_DEVICEID_BCM5705M },
167 	{ BCOM_VENDORID,	BCOM_DEVICEID_BCM5705M_ALT },
168 	{ BCOM_VENDORID,	BCOM_DEVICEID_BCM5714C },
169 	{ BCOM_VENDORID,	BCOM_DEVICEID_BCM5714S },
170 	{ BCOM_VENDORID,	BCOM_DEVICEID_BCM5715 },
171 	{ BCOM_VENDORID,	BCOM_DEVICEID_BCM5715S },
172 	{ BCOM_VENDORID,	BCOM_DEVICEID_BCM5720 },
173 	{ BCOM_VENDORID,	BCOM_DEVICEID_BCM5721 },
174 	{ BCOM_VENDORID,	BCOM_DEVICEID_BCM5722 },
175 	{ BCOM_VENDORID,	BCOM_DEVICEID_BCM5723 },
176 	{ BCOM_VENDORID,	BCOM_DEVICEID_BCM5750 },
177 	{ BCOM_VENDORID,	BCOM_DEVICEID_BCM5750M },
178 	{ BCOM_VENDORID,	BCOM_DEVICEID_BCM5751 },
179 	{ BCOM_VENDORID,	BCOM_DEVICEID_BCM5751F },
180 	{ BCOM_VENDORID,	BCOM_DEVICEID_BCM5751M },
181 	{ BCOM_VENDORID,	BCOM_DEVICEID_BCM5752 },
182 	{ BCOM_VENDORID,	BCOM_DEVICEID_BCM5752M },
183 	{ BCOM_VENDORID,	BCOM_DEVICEID_BCM5753 },
184 	{ BCOM_VENDORID,	BCOM_DEVICEID_BCM5753F },
185 	{ BCOM_VENDORID,	BCOM_DEVICEID_BCM5753M },
186 	{ BCOM_VENDORID,	BCOM_DEVICEID_BCM5754 },
187 	{ BCOM_VENDORID,	BCOM_DEVICEID_BCM5754M },
188 	{ BCOM_VENDORID,	BCOM_DEVICEID_BCM5755 },
189 	{ BCOM_VENDORID,	BCOM_DEVICEID_BCM5755M },
190 	{ BCOM_VENDORID,	BCOM_DEVICEID_BCM5756 },
191 	{ BCOM_VENDORID,	BCOM_DEVICEID_BCM5761 },
192 	{ BCOM_VENDORID,	BCOM_DEVICEID_BCM5761E },
193 	{ BCOM_VENDORID,	BCOM_DEVICEID_BCM5761S },
194 	{ BCOM_VENDORID,	BCOM_DEVICEID_BCM5761SE },
195 	{ BCOM_VENDORID,	BCOM_DEVICEID_BCM5764 },
196 	{ BCOM_VENDORID,	BCOM_DEVICEID_BCM5780 },
197 	{ BCOM_VENDORID,	BCOM_DEVICEID_BCM5780S },
198 	{ BCOM_VENDORID,	BCOM_DEVICEID_BCM5781 },
199 	{ BCOM_VENDORID,	BCOM_DEVICEID_BCM5782 },
200 	{ BCOM_VENDORID,	BCOM_DEVICEID_BCM5784 },
201 	{ BCOM_VENDORID,	BCOM_DEVICEID_BCM5785F },
202 	{ BCOM_VENDORID,	BCOM_DEVICEID_BCM5785G },
203 	{ BCOM_VENDORID,	BCOM_DEVICEID_BCM5786 },
204 	{ BCOM_VENDORID,	BCOM_DEVICEID_BCM5787 },
205 	{ BCOM_VENDORID,	BCOM_DEVICEID_BCM5787F },
206 	{ BCOM_VENDORID,	BCOM_DEVICEID_BCM5787M },
207 	{ BCOM_VENDORID,	BCOM_DEVICEID_BCM5788 },
208 	{ BCOM_VENDORID,	BCOM_DEVICEID_BCM5789 },
209 	{ BCOM_VENDORID,	BCOM_DEVICEID_BCM5901 },
210 	{ BCOM_VENDORID,	BCOM_DEVICEID_BCM5901A2 },
211 	{ BCOM_VENDORID,	BCOM_DEVICEID_BCM5903M },
212 	{ BCOM_VENDORID,	BCOM_DEVICEID_BCM5906 },
213 	{ BCOM_VENDORID,	BCOM_DEVICEID_BCM5906M },
214 	{ BCOM_VENDORID,	BCOM_DEVICEID_BCM57760 },
215 	{ BCOM_VENDORID,	BCOM_DEVICEID_BCM57780 },
216 	{ BCOM_VENDORID,	BCOM_DEVICEID_BCM57788 },
217 	{ BCOM_VENDORID,	BCOM_DEVICEID_BCM57790 },
218 
219 	{ SK_VENDORID,		SK_DEVICEID_ALTIMA },
220 
221 	{ TC_VENDORID,		TC_DEVICEID_3C996 },
222 
223 	{ FJTSU_VENDORID,	FJTSU_DEVICEID_PW008GE4 },
224 	{ FJTSU_VENDORID,	FJTSU_DEVICEID_PW008GE5 },
225 	{ FJTSU_VENDORID,	FJTSU_DEVICEID_PP250450 },
226 
227 	{ 0, 0 }
228 };
229 
230 static const struct bge_vendor {
231 	uint16_t	v_id;
232 	const char	*v_name;
233 } bge_vendors[] = {
234 	{ ALTEON_VENDORID,	"Alteon" },
235 	{ ALTIMA_VENDORID,	"Altima" },
236 	{ APPLE_VENDORID,	"Apple" },
237 	{ BCOM_VENDORID,	"Broadcom" },
238 	{ SK_VENDORID,		"SysKonnect" },
239 	{ TC_VENDORID,		"3Com" },
240 	{ FJTSU_VENDORID,	"Fujitsu" },
241 
242 	{ 0, NULL }
243 };
244 
245 static const struct bge_revision {
246 	uint32_t	br_chipid;
247 	const char	*br_name;
248 } bge_revisions[] = {
249 	{ BGE_CHIPID_BCM5700_A0,	"BCM5700 A0" },
250 	{ BGE_CHIPID_BCM5700_A1,	"BCM5700 A1" },
251 	{ BGE_CHIPID_BCM5700_B0,	"BCM5700 B0" },
252 	{ BGE_CHIPID_BCM5700_B1,	"BCM5700 B1" },
253 	{ BGE_CHIPID_BCM5700_B2,	"BCM5700 B2" },
254 	{ BGE_CHIPID_BCM5700_B3,	"BCM5700 B3" },
255 	{ BGE_CHIPID_BCM5700_ALTIMA,	"BCM5700 Altima" },
256 	{ BGE_CHIPID_BCM5700_C0,	"BCM5700 C0" },
257 	{ BGE_CHIPID_BCM5701_A0,	"BCM5701 A0" },
258 	{ BGE_CHIPID_BCM5701_B0,	"BCM5701 B0" },
259 	{ BGE_CHIPID_BCM5701_B2,	"BCM5701 B2" },
260 	{ BGE_CHIPID_BCM5701_B5,	"BCM5701 B5" },
261 	{ BGE_CHIPID_BCM5703_A0,	"BCM5703 A0" },
262 	{ BGE_CHIPID_BCM5703_A1,	"BCM5703 A1" },
263 	{ BGE_CHIPID_BCM5703_A2,	"BCM5703 A2" },
264 	{ BGE_CHIPID_BCM5703_A3,	"BCM5703 A3" },
265 	{ BGE_CHIPID_BCM5703_B0,	"BCM5703 B0" },
266 	{ BGE_CHIPID_BCM5704_A0,	"BCM5704 A0" },
267 	{ BGE_CHIPID_BCM5704_A1,	"BCM5704 A1" },
268 	{ BGE_CHIPID_BCM5704_A2,	"BCM5704 A2" },
269 	{ BGE_CHIPID_BCM5704_A3,	"BCM5704 A3" },
270 	{ BGE_CHIPID_BCM5704_B0,	"BCM5704 B0" },
271 	{ BGE_CHIPID_BCM5705_A0,	"BCM5705 A0" },
272 	{ BGE_CHIPID_BCM5705_A1,	"BCM5705 A1" },
273 	{ BGE_CHIPID_BCM5705_A2,	"BCM5705 A2" },
274 	{ BGE_CHIPID_BCM5705_A3,	"BCM5705 A3" },
275 	{ BGE_CHIPID_BCM5750_A0,	"BCM5750 A0" },
276 	{ BGE_CHIPID_BCM5750_A1,	"BCM5750 A1" },
277 	{ BGE_CHIPID_BCM5750_A3,	"BCM5750 A3" },
278 	{ BGE_CHIPID_BCM5750_B0,	"BCM5750 B0" },
279 	{ BGE_CHIPID_BCM5750_B1,	"BCM5750 B1" },
280 	{ BGE_CHIPID_BCM5750_C0,	"BCM5750 C0" },
281 	{ BGE_CHIPID_BCM5750_C1,	"BCM5750 C1" },
282 	{ BGE_CHIPID_BCM5750_C2,	"BCM5750 C2" },
283 	{ BGE_CHIPID_BCM5714_A0,	"BCM5714 A0" },
284 	{ BGE_CHIPID_BCM5752_A0,	"BCM5752 A0" },
285 	{ BGE_CHIPID_BCM5752_A1,	"BCM5752 A1" },
286 	{ BGE_CHIPID_BCM5752_A2,	"BCM5752 A2" },
287 	{ BGE_CHIPID_BCM5714_B0,	"BCM5714 B0" },
288 	{ BGE_CHIPID_BCM5714_B3,	"BCM5714 B3" },
289 	{ BGE_CHIPID_BCM5715_A0,	"BCM5715 A0" },
290 	{ BGE_CHIPID_BCM5715_A1,	"BCM5715 A1" },
291 	{ BGE_CHIPID_BCM5715_A3,	"BCM5715 A3" },
292 	{ BGE_CHIPID_BCM5755_A0,	"BCM5755 A0" },
293 	{ BGE_CHIPID_BCM5755_A1,	"BCM5755 A1" },
294 	{ BGE_CHIPID_BCM5755_A2,	"BCM5755 A2" },
295 	{ BGE_CHIPID_BCM5722_A0,	"BCM5722 A0" },
296 	{ BGE_CHIPID_BCM5761_A0,	"BCM5761 A0" },
297 	{ BGE_CHIPID_BCM5761_A1,	"BCM5761 A1" },
298 	{ BGE_CHIPID_BCM5784_A0,	"BCM5784 A0" },
299 	{ BGE_CHIPID_BCM5784_A1,	"BCM5784 A1" },
300 	/* 5754 and 5787 share the same ASIC ID */
301 	{ BGE_CHIPID_BCM5787_A0,	"BCM5754/5787 A0" },
302 	{ BGE_CHIPID_BCM5787_A1,	"BCM5754/5787 A1" },
303 	{ BGE_CHIPID_BCM5787_A2,	"BCM5754/5787 A2" },
304 	{ BGE_CHIPID_BCM5906_A1,	"BCM5906 A1" },
305 	{ BGE_CHIPID_BCM5906_A2,	"BCM5906 A2" },
306 	{ BGE_CHIPID_BCM57780_A0,	"BCM57780 A0" },
307 	{ BGE_CHIPID_BCM57780_A1,	"BCM57780 A1" },
308 
309 	{ 0, NULL }
310 };
311 
312 /*
313  * Some defaults for major revisions, so that newer steppings
314  * that we don't know about have a shot at working.
315  */
316 static const struct bge_revision bge_majorrevs[] = {
317 	{ BGE_ASICREV_BCM5700,		"unknown BCM5700" },
318 	{ BGE_ASICREV_BCM5701,		"unknown BCM5701" },
319 	{ BGE_ASICREV_BCM5703,		"unknown BCM5703" },
320 	{ BGE_ASICREV_BCM5704,		"unknown BCM5704" },
321 	{ BGE_ASICREV_BCM5705,		"unknown BCM5705" },
322 	{ BGE_ASICREV_BCM5750,		"unknown BCM5750" },
323 	{ BGE_ASICREV_BCM5714_A0,	"unknown BCM5714" },
324 	{ BGE_ASICREV_BCM5752,		"unknown BCM5752" },
325 	{ BGE_ASICREV_BCM5780,		"unknown BCM5780" },
326 	{ BGE_ASICREV_BCM5714,		"unknown BCM5714" },
327 	{ BGE_ASICREV_BCM5755,		"unknown BCM5755" },
328 	{ BGE_ASICREV_BCM5761,		"unknown BCM5761" },
329 	{ BGE_ASICREV_BCM5784,		"unknown BCM5784" },
330 	{ BGE_ASICREV_BCM5785,		"unknown BCM5785" },
331 	/* 5754 and 5787 share the same ASIC ID */
332 	{ BGE_ASICREV_BCM5787,		"unknown BCM5754/5787" },
333 	{ BGE_ASICREV_BCM5906,		"unknown BCM5906" },
334 	{ BGE_ASICREV_BCM57780,		"unknown BCM57780" },
335 
336 	{ 0, NULL }
337 };
338 
339 #define	BGE_IS_JUMBO_CAPABLE(sc)	((sc)->bge_flags & BGE_FLAG_JUMBO)
340 #define	BGE_IS_5700_FAMILY(sc)		((sc)->bge_flags & BGE_FLAG_5700_FAMILY)
341 #define	BGE_IS_5705_PLUS(sc)		((sc)->bge_flags & BGE_FLAG_5705_PLUS)
342 #define	BGE_IS_5714_FAMILY(sc)		((sc)->bge_flags & BGE_FLAG_5714_FAMILY)
343 #define	BGE_IS_575X_PLUS(sc)		((sc)->bge_flags & BGE_FLAG_575X_PLUS)
344 #define	BGE_IS_5755_PLUS(sc)		((sc)->bge_flags & BGE_FLAG_5755_PLUS)
345 
346 const struct bge_revision * bge_lookup_rev(uint32_t);
347 const struct bge_vendor * bge_lookup_vendor(uint16_t);
348 
349 typedef int	(*bge_eaddr_fcn_t)(struct bge_softc *, uint8_t[]);
350 
351 static int bge_probe(device_t);
352 static int bge_attach(device_t);
353 static int bge_detach(device_t);
354 static int bge_suspend(device_t);
355 static int bge_resume(device_t);
356 static void bge_release_resources(struct bge_softc *);
357 static void bge_dma_map_addr(void *, bus_dma_segment_t *, int, int);
358 static int bge_dma_alloc(device_t);
359 static void bge_dma_free(struct bge_softc *);
360 
361 static int bge_get_eaddr_fw(struct bge_softc *sc, uint8_t ether_addr[]);
362 static int bge_get_eaddr_mem(struct bge_softc *, uint8_t[]);
363 static int bge_get_eaddr_nvram(struct bge_softc *, uint8_t[]);
364 static int bge_get_eaddr_eeprom(struct bge_softc *, uint8_t[]);
365 static int bge_get_eaddr(struct bge_softc *, uint8_t[]);
366 
367 static void bge_txeof(struct bge_softc *, uint16_t);
368 static int bge_rxeof(struct bge_softc *, uint16_t, int);
369 
370 static void bge_asf_driver_up (struct bge_softc *);
371 static void bge_tick(void *);
372 static void bge_stats_update(struct bge_softc *);
373 static void bge_stats_update_regs(struct bge_softc *);
374 static struct mbuf *bge_setup_tso(struct bge_softc *, struct mbuf *,
375     uint16_t *);
376 static int bge_encap(struct bge_softc *, struct mbuf **, uint32_t *);
377 
378 static void bge_intr(void *);
379 static int bge_msi_intr(void *);
380 static void bge_intr_task(void *, int);
381 static void bge_start_locked(struct ifnet *);
382 static void bge_start(struct ifnet *);
383 static int bge_ioctl(struct ifnet *, u_long, caddr_t);
384 static void bge_init_locked(struct bge_softc *);
385 static void bge_init(void *);
386 static void bge_stop(struct bge_softc *);
387 static void bge_watchdog(struct bge_softc *);
388 static int bge_shutdown(device_t);
389 static int bge_ifmedia_upd_locked(struct ifnet *);
390 static int bge_ifmedia_upd(struct ifnet *);
391 static void bge_ifmedia_sts(struct ifnet *, struct ifmediareq *);
392 
393 static uint8_t bge_nvram_getbyte(struct bge_softc *, int, uint8_t *);
394 static int bge_read_nvram(struct bge_softc *, caddr_t, int, int);
395 
396 static uint8_t bge_eeprom_getbyte(struct bge_softc *, int, uint8_t *);
397 static int bge_read_eeprom(struct bge_softc *, caddr_t, int, int);
398 
399 static void bge_setpromisc(struct bge_softc *);
400 static void bge_setmulti(struct bge_softc *);
401 static void bge_setvlan(struct bge_softc *);
402 
403 static int bge_newbuf_std(struct bge_softc *, int);
404 static int bge_newbuf_jumbo(struct bge_softc *, int);
405 static int bge_init_rx_ring_std(struct bge_softc *);
406 static void bge_free_rx_ring_std(struct bge_softc *);
407 static int bge_init_rx_ring_jumbo(struct bge_softc *);
408 static void bge_free_rx_ring_jumbo(struct bge_softc *);
409 static void bge_free_tx_ring(struct bge_softc *);
410 static int bge_init_tx_ring(struct bge_softc *);
411 
412 static int bge_chipinit(struct bge_softc *);
413 static int bge_blockinit(struct bge_softc *);
414 
415 static int bge_has_eaddr(struct bge_softc *);
416 static uint32_t bge_readmem_ind(struct bge_softc *, int);
417 static void bge_writemem_ind(struct bge_softc *, int, int);
418 static void bge_writembx(struct bge_softc *, int, int);
419 #ifdef notdef
420 static uint32_t bge_readreg_ind(struct bge_softc *, int);
421 #endif
422 static void bge_writemem_direct(struct bge_softc *, int, int);
423 static void bge_writereg_ind(struct bge_softc *, int, int);
424 static void bge_set_max_readrq(struct bge_softc *);
425 
426 static int bge_miibus_readreg(device_t, int, int);
427 static int bge_miibus_writereg(device_t, int, int, int);
428 static void bge_miibus_statchg(device_t);
429 #ifdef DEVICE_POLLING
430 static int bge_poll(struct ifnet *ifp, enum poll_cmd cmd, int count);
431 #endif
432 
433 #define	BGE_RESET_START 1
434 #define	BGE_RESET_STOP  2
435 static void bge_sig_post_reset(struct bge_softc *, int);
436 static void bge_sig_legacy(struct bge_softc *, int);
437 static void bge_sig_pre_reset(struct bge_softc *, int);
438 static int bge_reset(struct bge_softc *);
439 static void bge_link_upd(struct bge_softc *);
440 
441 /*
442  * The BGE_REGISTER_DEBUG option is only for low-level debugging.  It may
443  * leak information to untrusted users.  It is also known to cause alignment
444  * traps on certain architectures.
445  */
446 #ifdef BGE_REGISTER_DEBUG
447 static int bge_sysctl_debug_info(SYSCTL_HANDLER_ARGS);
448 static int bge_sysctl_reg_read(SYSCTL_HANDLER_ARGS);
449 static int bge_sysctl_mem_read(SYSCTL_HANDLER_ARGS);
450 #endif
451 static void bge_add_sysctls(struct bge_softc *);
452 static int bge_sysctl_stats(SYSCTL_HANDLER_ARGS);
453 
454 static device_method_t bge_methods[] = {
455 	/* Device interface */
456 	DEVMETHOD(device_probe,		bge_probe),
457 	DEVMETHOD(device_attach,	bge_attach),
458 	DEVMETHOD(device_detach,	bge_detach),
459 	DEVMETHOD(device_shutdown,	bge_shutdown),
460 	DEVMETHOD(device_suspend,	bge_suspend),
461 	DEVMETHOD(device_resume,	bge_resume),
462 
463 	/* bus interface */
464 	DEVMETHOD(bus_print_child,	bus_generic_print_child),
465 	DEVMETHOD(bus_driver_added,	bus_generic_driver_added),
466 
467 	/* MII interface */
468 	DEVMETHOD(miibus_readreg,	bge_miibus_readreg),
469 	DEVMETHOD(miibus_writereg,	bge_miibus_writereg),
470 	DEVMETHOD(miibus_statchg,	bge_miibus_statchg),
471 
472 	{ 0, 0 }
473 };
474 
475 static driver_t bge_driver = {
476 	"bge",
477 	bge_methods,
478 	sizeof(struct bge_softc)
479 };
480 
481 static devclass_t bge_devclass;
482 
483 DRIVER_MODULE(bge, pci, bge_driver, bge_devclass, 0, 0);
484 DRIVER_MODULE(miibus, bge, miibus_driver, miibus_devclass, 0, 0);
485 
486 static int bge_allow_asf = 1;
487 
488 TUNABLE_INT("hw.bge.allow_asf", &bge_allow_asf);
489 
490 SYSCTL_NODE(_hw, OID_AUTO, bge, CTLFLAG_RD, 0, "BGE driver parameters");
491 SYSCTL_INT(_hw_bge, OID_AUTO, allow_asf, CTLFLAG_RD, &bge_allow_asf, 0,
492 	"Allow ASF mode if available");
493 
494 #define	SPARC64_BLADE_1500_MODEL	"SUNW,Sun-Blade-1500"
495 #define	SPARC64_BLADE_1500_PATH_BGE	"/pci@1f,700000/network@2"
496 #define	SPARC64_BLADE_2500_MODEL	"SUNW,Sun-Blade-2500"
497 #define	SPARC64_BLADE_2500_PATH_BGE	"/pci@1c,600000/network@3"
498 #define	SPARC64_OFW_SUBVENDOR		"subsystem-vendor-id"
499 
500 static int
501 bge_has_eaddr(struct bge_softc *sc)
502 {
503 #ifdef __sparc64__
504 	char buf[sizeof(SPARC64_BLADE_1500_PATH_BGE)];
505 	device_t dev;
506 	uint32_t subvendor;
507 
508 	dev = sc->bge_dev;
509 
510 	/*
511 	 * The on-board BGEs found in sun4u machines aren't fitted with
512 	 * an EEPROM which means that we have to obtain the MAC address
513 	 * via OFW and that some tests will always fail.  We distinguish
514 	 * such BGEs by the subvendor ID, which also has to be obtained
515 	 * from OFW instead of the PCI configuration space as the latter
516 	 * indicates Broadcom as the subvendor of the netboot interface.
517 	 * For early Blade 1500 and 2500 we even have to check the OFW
518 	 * device path as the subvendor ID always defaults to Broadcom
519 	 * there.
520 	 */
521 	if (OF_getprop(ofw_bus_get_node(dev), SPARC64_OFW_SUBVENDOR,
522 	    &subvendor, sizeof(subvendor)) == sizeof(subvendor) &&
523 	    subvendor == SUN_VENDORID)
524 		return (0);
525 	memset(buf, 0, sizeof(buf));
526 	if (OF_package_to_path(ofw_bus_get_node(dev), buf, sizeof(buf)) > 0) {
527 		if (strcmp(sparc64_model, SPARC64_BLADE_1500_MODEL) == 0 &&
528 		    strcmp(buf, SPARC64_BLADE_1500_PATH_BGE) == 0)
529 			return (0);
530 		if (strcmp(sparc64_model, SPARC64_BLADE_2500_MODEL) == 0 &&
531 		    strcmp(buf, SPARC64_BLADE_2500_PATH_BGE) == 0)
532 			return (0);
533 	}
534 #endif
535 	return (1);
536 }
537 
538 static uint32_t
539 bge_readmem_ind(struct bge_softc *sc, int off)
540 {
541 	device_t dev;
542 	uint32_t val;
543 
544 	dev = sc->bge_dev;
545 
546 	pci_write_config(dev, BGE_PCI_MEMWIN_BASEADDR, off, 4);
547 	val = pci_read_config(dev, BGE_PCI_MEMWIN_DATA, 4);
548 	pci_write_config(dev, BGE_PCI_MEMWIN_BASEADDR, 0, 4);
549 	return (val);
550 }
551 
552 static void
553 bge_writemem_ind(struct bge_softc *sc, int off, int val)
554 {
555 	device_t dev;
556 
557 	dev = sc->bge_dev;
558 
559 	pci_write_config(dev, BGE_PCI_MEMWIN_BASEADDR, off, 4);
560 	pci_write_config(dev, BGE_PCI_MEMWIN_DATA, val, 4);
561 	pci_write_config(dev, BGE_PCI_MEMWIN_BASEADDR, 0, 4);
562 }
563 
564 /*
565  * PCI Express only
566  */
567 static void
568 bge_set_max_readrq(struct bge_softc *sc)
569 {
570 	device_t dev;
571 	uint16_t val;
572 
573 	dev = sc->bge_dev;
574 
575 	val = pci_read_config(dev, sc->bge_expcap + PCIR_EXPRESS_DEVICE_CTL, 2);
576 	if ((val & PCIM_EXP_CTL_MAX_READ_REQUEST) !=
577 	    BGE_PCIE_DEVCTL_MAX_READRQ_4096) {
578 		if (bootverbose)
579 			device_printf(dev, "adjust device control 0x%04x ",
580 			    val);
581 		val &= ~PCIM_EXP_CTL_MAX_READ_REQUEST;
582 		val |= BGE_PCIE_DEVCTL_MAX_READRQ_4096;
583 		pci_write_config(dev, sc->bge_expcap + PCIR_EXPRESS_DEVICE_CTL,
584 		    val, 2);
585 		if (bootverbose)
586 			printf("-> 0x%04x\n", val);
587 	}
588 }
589 
590 #ifdef notdef
591 static uint32_t
592 bge_readreg_ind(struct bge_softc *sc, int off)
593 {
594 	device_t dev;
595 
596 	dev = sc->bge_dev;
597 
598 	pci_write_config(dev, BGE_PCI_REG_BASEADDR, off, 4);
599 	return (pci_read_config(dev, BGE_PCI_REG_DATA, 4));
600 }
601 #endif
602 
603 static void
604 bge_writereg_ind(struct bge_softc *sc, int off, int val)
605 {
606 	device_t dev;
607 
608 	dev = sc->bge_dev;
609 
610 	pci_write_config(dev, BGE_PCI_REG_BASEADDR, off, 4);
611 	pci_write_config(dev, BGE_PCI_REG_DATA, val, 4);
612 }
613 
614 static void
615 bge_writemem_direct(struct bge_softc *sc, int off, int val)
616 {
617 	CSR_WRITE_4(sc, off, val);
618 }
619 
620 static void
621 bge_writembx(struct bge_softc *sc, int off, int val)
622 {
623 	if (sc->bge_asicrev == BGE_ASICREV_BCM5906)
624 		off += BGE_LPMBX_IRQ0_HI - BGE_MBX_IRQ0_HI;
625 
626 	CSR_WRITE_4(sc, off, val);
627 }
628 
629 /*
630  * Map a single buffer address.
631  */
632 
633 static void
634 bge_dma_map_addr(void *arg, bus_dma_segment_t *segs, int nseg, int error)
635 {
636 	struct bge_dmamap_arg *ctx;
637 
638 	if (error)
639 		return;
640 
641 	ctx = arg;
642 
643 	if (nseg > ctx->bge_maxsegs) {
644 		ctx->bge_maxsegs = 0;
645 		return;
646 	}
647 
648 	ctx->bge_busaddr = segs->ds_addr;
649 }
650 
651 static uint8_t
652 bge_nvram_getbyte(struct bge_softc *sc, int addr, uint8_t *dest)
653 {
654 	uint32_t access, byte = 0;
655 	int i;
656 
657 	/* Lock. */
658 	CSR_WRITE_4(sc, BGE_NVRAM_SWARB, BGE_NVRAMSWARB_SET1);
659 	for (i = 0; i < 8000; i++) {
660 		if (CSR_READ_4(sc, BGE_NVRAM_SWARB) & BGE_NVRAMSWARB_GNT1)
661 			break;
662 		DELAY(20);
663 	}
664 	if (i == 8000)
665 		return (1);
666 
667 	/* Enable access. */
668 	access = CSR_READ_4(sc, BGE_NVRAM_ACCESS);
669 	CSR_WRITE_4(sc, BGE_NVRAM_ACCESS, access | BGE_NVRAMACC_ENABLE);
670 
671 	CSR_WRITE_4(sc, BGE_NVRAM_ADDR, addr & 0xfffffffc);
672 	CSR_WRITE_4(sc, BGE_NVRAM_CMD, BGE_NVRAM_READCMD);
673 	for (i = 0; i < BGE_TIMEOUT * 10; i++) {
674 		DELAY(10);
675 		if (CSR_READ_4(sc, BGE_NVRAM_CMD) & BGE_NVRAMCMD_DONE) {
676 			DELAY(10);
677 			break;
678 		}
679 	}
680 
681 	if (i == BGE_TIMEOUT * 10) {
682 		if_printf(sc->bge_ifp, "nvram read timed out\n");
683 		return (1);
684 	}
685 
686 	/* Get result. */
687 	byte = CSR_READ_4(sc, BGE_NVRAM_RDDATA);
688 
689 	*dest = (bswap32(byte) >> ((addr % 4) * 8)) & 0xFF;
690 
691 	/* Disable access. */
692 	CSR_WRITE_4(sc, BGE_NVRAM_ACCESS, access);
693 
694 	/* Unlock. */
695 	CSR_WRITE_4(sc, BGE_NVRAM_SWARB, BGE_NVRAMSWARB_CLR1);
696 	CSR_READ_4(sc, BGE_NVRAM_SWARB);
697 
698 	return (0);
699 }
700 
701 /*
702  * Read a sequence of bytes from NVRAM.
703  */
704 static int
705 bge_read_nvram(struct bge_softc *sc, caddr_t dest, int off, int cnt)
706 {
707 	int err = 0, i;
708 	uint8_t byte = 0;
709 
710 	if (sc->bge_asicrev != BGE_ASICREV_BCM5906)
711 		return (1);
712 
713 	for (i = 0; i < cnt; i++) {
714 		err = bge_nvram_getbyte(sc, off + i, &byte);
715 		if (err)
716 			break;
717 		*(dest + i) = byte;
718 	}
719 
720 	return (err ? 1 : 0);
721 }
722 
723 /*
724  * Read a byte of data stored in the EEPROM at address 'addr.' The
725  * BCM570x supports both the traditional bitbang interface and an
726  * auto access interface for reading the EEPROM. We use the auto
727  * access method.
728  */
729 static uint8_t
730 bge_eeprom_getbyte(struct bge_softc *sc, int addr, uint8_t *dest)
731 {
732 	int i;
733 	uint32_t byte = 0;
734 
735 	/*
736 	 * Enable use of auto EEPROM access so we can avoid
737 	 * having to use the bitbang method.
738 	 */
739 	BGE_SETBIT(sc, BGE_MISC_LOCAL_CTL, BGE_MLC_AUTO_EEPROM);
740 
741 	/* Reset the EEPROM, load the clock period. */
742 	CSR_WRITE_4(sc, BGE_EE_ADDR,
743 	    BGE_EEADDR_RESET | BGE_EEHALFCLK(BGE_HALFCLK_384SCL));
744 	DELAY(20);
745 
746 	/* Issue the read EEPROM command. */
747 	CSR_WRITE_4(sc, BGE_EE_ADDR, BGE_EE_READCMD | addr);
748 
749 	/* Wait for completion */
750 	for(i = 0; i < BGE_TIMEOUT * 10; i++) {
751 		DELAY(10);
752 		if (CSR_READ_4(sc, BGE_EE_ADDR) & BGE_EEADDR_DONE)
753 			break;
754 	}
755 
756 	if (i == BGE_TIMEOUT * 10) {
757 		device_printf(sc->bge_dev, "EEPROM read timed out\n");
758 		return (1);
759 	}
760 
761 	/* Get result. */
762 	byte = CSR_READ_4(sc, BGE_EE_DATA);
763 
764 	*dest = (byte >> ((addr % 4) * 8)) & 0xFF;
765 
766 	return (0);
767 }
768 
769 /*
770  * Read a sequence of bytes from the EEPROM.
771  */
772 static int
773 bge_read_eeprom(struct bge_softc *sc, caddr_t dest, int off, int cnt)
774 {
775 	int i, error = 0;
776 	uint8_t byte = 0;
777 
778 	for (i = 0; i < cnt; i++) {
779 		error = bge_eeprom_getbyte(sc, off + i, &byte);
780 		if (error)
781 			break;
782 		*(dest + i) = byte;
783 	}
784 
785 	return (error ? 1 : 0);
786 }
787 
788 static int
789 bge_miibus_readreg(device_t dev, int phy, int reg)
790 {
791 	struct bge_softc *sc;
792 	uint32_t val, autopoll;
793 	int i;
794 
795 	sc = device_get_softc(dev);
796 
797 	/*
798 	 * Broadcom's own driver always assumes the internal
799 	 * PHY is at GMII address 1. On some chips, the PHY responds
800 	 * to accesses at all addresses, which could cause us to
801 	 * bogusly attach the PHY 32 times at probe type. Always
802 	 * restricting the lookup to address 1 is simpler than
803 	 * trying to figure out which chips revisions should be
804 	 * special-cased.
805 	 */
806 	if (phy != 1)
807 		return (0);
808 
809 	/* Reading with autopolling on may trigger PCI errors */
810 	autopoll = CSR_READ_4(sc, BGE_MI_MODE);
811 	if (autopoll & BGE_MIMODE_AUTOPOLL) {
812 		BGE_CLRBIT(sc, BGE_MI_MODE, BGE_MIMODE_AUTOPOLL);
813 		DELAY(40);
814 	}
815 
816 	CSR_WRITE_4(sc, BGE_MI_COMM, BGE_MICMD_READ | BGE_MICOMM_BUSY |
817 	    BGE_MIPHY(phy) | BGE_MIREG(reg));
818 
819 	for (i = 0; i < BGE_TIMEOUT; i++) {
820 		DELAY(10);
821 		val = CSR_READ_4(sc, BGE_MI_COMM);
822 		if (!(val & BGE_MICOMM_BUSY))
823 			break;
824 	}
825 
826 	if (i == BGE_TIMEOUT) {
827 		device_printf(sc->bge_dev,
828 		    "PHY read timed out (phy %d, reg %d, val 0x%08x)\n",
829 		    phy, reg, val);
830 		val = 0;
831 		goto done;
832 	}
833 
834 	DELAY(5);
835 	val = CSR_READ_4(sc, BGE_MI_COMM);
836 
837 done:
838 	if (autopoll & BGE_MIMODE_AUTOPOLL) {
839 		BGE_SETBIT(sc, BGE_MI_MODE, BGE_MIMODE_AUTOPOLL);
840 		DELAY(40);
841 	}
842 
843 	if (val & BGE_MICOMM_READFAIL)
844 		return (0);
845 
846 	return (val & 0xFFFF);
847 }
848 
849 static int
850 bge_miibus_writereg(device_t dev, int phy, int reg, int val)
851 {
852 	struct bge_softc *sc;
853 	uint32_t autopoll;
854 	int i;
855 
856 	sc = device_get_softc(dev);
857 
858 	if (sc->bge_asicrev == BGE_ASICREV_BCM5906 &&
859 	    (reg == BRGPHY_MII_1000CTL || reg == BRGPHY_MII_AUXCTL))
860 		return(0);
861 
862 	/* Reading with autopolling on may trigger PCI errors */
863 	autopoll = CSR_READ_4(sc, BGE_MI_MODE);
864 	if (autopoll & BGE_MIMODE_AUTOPOLL) {
865 		BGE_CLRBIT(sc, BGE_MI_MODE, BGE_MIMODE_AUTOPOLL);
866 		DELAY(40);
867 	}
868 
869 	CSR_WRITE_4(sc, BGE_MI_COMM, BGE_MICMD_WRITE | BGE_MICOMM_BUSY |
870 	    BGE_MIPHY(phy) | BGE_MIREG(reg) | val);
871 
872 	for (i = 0; i < BGE_TIMEOUT; i++) {
873 		DELAY(10);
874 		if (!(CSR_READ_4(sc, BGE_MI_COMM) & BGE_MICOMM_BUSY)) {
875 			DELAY(5);
876 			CSR_READ_4(sc, BGE_MI_COMM); /* dummy read */
877 			break;
878 		}
879 	}
880 
881 	if (i == BGE_TIMEOUT) {
882 		device_printf(sc->bge_dev,
883 		    "PHY write timed out (phy %d, reg %d, val %d)\n",
884 		    phy, reg, val);
885 		return (0);
886 	}
887 
888 	if (autopoll & BGE_MIMODE_AUTOPOLL) {
889 		BGE_SETBIT(sc, BGE_MI_MODE, BGE_MIMODE_AUTOPOLL);
890 		DELAY(40);
891 	}
892 
893 	return (0);
894 }
895 
896 static void
897 bge_miibus_statchg(device_t dev)
898 {
899 	struct bge_softc *sc;
900 	struct mii_data *mii;
901 	sc = device_get_softc(dev);
902 	mii = device_get_softc(sc->bge_miibus);
903 
904 	BGE_CLRBIT(sc, BGE_MAC_MODE, BGE_MACMODE_PORTMODE);
905 	if (IFM_SUBTYPE(mii->mii_media_active) == IFM_1000_T ||
906 	    IFM_SUBTYPE(mii->mii_media_active) == IFM_1000_SX)
907 		BGE_SETBIT(sc, BGE_MAC_MODE, BGE_PORTMODE_GMII);
908 	else
909 		BGE_SETBIT(sc, BGE_MAC_MODE, BGE_PORTMODE_MII);
910 
911 	if ((mii->mii_media_active & IFM_GMASK) == IFM_FDX)
912 		BGE_CLRBIT(sc, BGE_MAC_MODE, BGE_MACMODE_HALF_DUPLEX);
913 	else
914 		BGE_SETBIT(sc, BGE_MAC_MODE, BGE_MACMODE_HALF_DUPLEX);
915 }
916 
917 /*
918  * Intialize a standard receive ring descriptor.
919  */
920 static int
921 bge_newbuf_std(struct bge_softc *sc, int i)
922 {
923 	struct mbuf *m;
924 	struct bge_rx_bd *r;
925 	bus_dma_segment_t segs[1];
926 	bus_dmamap_t map;
927 	int error, nsegs;
928 
929 	m = m_getcl(M_DONTWAIT, MT_DATA, M_PKTHDR);
930 	if (m == NULL)
931 		return (ENOBUFS);
932 	m->m_len = m->m_pkthdr.len = MCLBYTES;
933 	if ((sc->bge_flags & BGE_FLAG_RX_ALIGNBUG) == 0)
934 		m_adj(m, ETHER_ALIGN);
935 
936 	error = bus_dmamap_load_mbuf_sg(sc->bge_cdata.bge_rx_mtag,
937 	    sc->bge_cdata.bge_rx_std_sparemap, m, segs, &nsegs, 0);
938 	if (error != 0) {
939 		m_freem(m);
940 		return (error);
941 	}
942 	if (sc->bge_cdata.bge_rx_std_chain[i] != NULL) {
943 		bus_dmamap_sync(sc->bge_cdata.bge_rx_mtag,
944 		    sc->bge_cdata.bge_rx_std_dmamap[i], BUS_DMASYNC_POSTREAD);
945 		bus_dmamap_unload(sc->bge_cdata.bge_rx_mtag,
946 		    sc->bge_cdata.bge_rx_std_dmamap[i]);
947 	}
948 	map = sc->bge_cdata.bge_rx_std_dmamap[i];
949 	sc->bge_cdata.bge_rx_std_dmamap[i] = sc->bge_cdata.bge_rx_std_sparemap;
950 	sc->bge_cdata.bge_rx_std_sparemap = map;
951 	sc->bge_cdata.bge_rx_std_chain[i] = m;
952 	r = &sc->bge_ldata.bge_rx_std_ring[sc->bge_std];
953 	r->bge_addr.bge_addr_lo = BGE_ADDR_LO(segs[0].ds_addr);
954 	r->bge_addr.bge_addr_hi = BGE_ADDR_HI(segs[0].ds_addr);
955 	r->bge_flags = BGE_RXBDFLAG_END;
956 	r->bge_len = segs[0].ds_len;
957 	r->bge_idx = i;
958 
959 	bus_dmamap_sync(sc->bge_cdata.bge_rx_mtag,
960 	    sc->bge_cdata.bge_rx_std_dmamap[i], BUS_DMASYNC_PREREAD);
961 
962 	return (0);
963 }
964 
965 /*
966  * Initialize a jumbo receive ring descriptor. This allocates
967  * a jumbo buffer from the pool managed internally by the driver.
968  */
969 static int
970 bge_newbuf_jumbo(struct bge_softc *sc, int i)
971 {
972 	bus_dma_segment_t segs[BGE_NSEG_JUMBO];
973 	bus_dmamap_t map;
974 	struct bge_extrx_bd *r;
975 	struct mbuf *m;
976 	int error, nsegs;
977 
978 	MGETHDR(m, M_DONTWAIT, MT_DATA);
979 	if (m == NULL)
980 		return (ENOBUFS);
981 
982 	m_cljget(m, M_DONTWAIT, MJUM9BYTES);
983 	if (!(m->m_flags & M_EXT)) {
984 		m_freem(m);
985 		return (ENOBUFS);
986 	}
987 	m->m_len = m->m_pkthdr.len = MJUM9BYTES;
988 	if ((sc->bge_flags & BGE_FLAG_RX_ALIGNBUG) == 0)
989 		m_adj(m, ETHER_ALIGN);
990 
991 	error = bus_dmamap_load_mbuf_sg(sc->bge_cdata.bge_mtag_jumbo,
992 	    sc->bge_cdata.bge_rx_jumbo_sparemap, m, segs, &nsegs, 0);
993 	if (error != 0) {
994 		m_freem(m);
995 		return (error);
996 	}
997 
998 	if (sc->bge_cdata.bge_rx_jumbo_chain[i] == NULL) {
999 		bus_dmamap_sync(sc->bge_cdata.bge_mtag_jumbo,
1000 		    sc->bge_cdata.bge_rx_jumbo_dmamap[i], BUS_DMASYNC_POSTREAD);
1001 		bus_dmamap_unload(sc->bge_cdata.bge_mtag_jumbo,
1002 		    sc->bge_cdata.bge_rx_jumbo_dmamap[i]);
1003 	}
1004 	map = sc->bge_cdata.bge_rx_jumbo_dmamap[i];
1005 	sc->bge_cdata.bge_rx_jumbo_dmamap[i] =
1006 	    sc->bge_cdata.bge_rx_jumbo_sparemap;
1007 	sc->bge_cdata.bge_rx_jumbo_sparemap = map;
1008 	sc->bge_cdata.bge_rx_jumbo_chain[i] = m;
1009 	/*
1010 	 * Fill in the extended RX buffer descriptor.
1011 	 */
1012 	r = &sc->bge_ldata.bge_rx_jumbo_ring[sc->bge_jumbo];
1013 	r->bge_flags = BGE_RXBDFLAG_JUMBO_RING | BGE_RXBDFLAG_END;
1014 	r->bge_idx = i;
1015 	r->bge_len3 = r->bge_len2 = r->bge_len1 = 0;
1016 	switch (nsegs) {
1017 	case 4:
1018 		r->bge_addr3.bge_addr_lo = BGE_ADDR_LO(segs[3].ds_addr);
1019 		r->bge_addr3.bge_addr_hi = BGE_ADDR_HI(segs[3].ds_addr);
1020 		r->bge_len3 = segs[3].ds_len;
1021 	case 3:
1022 		r->bge_addr2.bge_addr_lo = BGE_ADDR_LO(segs[2].ds_addr);
1023 		r->bge_addr2.bge_addr_hi = BGE_ADDR_HI(segs[2].ds_addr);
1024 		r->bge_len2 = segs[2].ds_len;
1025 	case 2:
1026 		r->bge_addr1.bge_addr_lo = BGE_ADDR_LO(segs[1].ds_addr);
1027 		r->bge_addr1.bge_addr_hi = BGE_ADDR_HI(segs[1].ds_addr);
1028 		r->bge_len1 = segs[1].ds_len;
1029 	case 1:
1030 		r->bge_addr0.bge_addr_lo = BGE_ADDR_LO(segs[0].ds_addr);
1031 		r->bge_addr0.bge_addr_hi = BGE_ADDR_HI(segs[0].ds_addr);
1032 		r->bge_len0 = segs[0].ds_len;
1033 		break;
1034 	default:
1035 		panic("%s: %d segments\n", __func__, nsegs);
1036 	}
1037 
1038 	bus_dmamap_sync(sc->bge_cdata.bge_mtag_jumbo,
1039 	    sc->bge_cdata.bge_rx_jumbo_dmamap[i], BUS_DMASYNC_PREREAD);
1040 
1041 	return (0);
1042 }
1043 
1044 /*
1045  * The standard receive ring has 512 entries in it. At 2K per mbuf cluster,
1046  * that's 1MB or memory, which is a lot. For now, we fill only the first
1047  * 256 ring entries and hope that our CPU is fast enough to keep up with
1048  * the NIC.
1049  */
1050 static int
1051 bge_init_rx_ring_std(struct bge_softc *sc)
1052 {
1053 	int error, i;
1054 
1055 	bzero(sc->bge_ldata.bge_rx_std_ring, BGE_STD_RX_RING_SZ);
1056 	sc->bge_std = 0;
1057 	for (i = 0; i < BGE_SSLOTS; i++) {
1058 		if ((error = bge_newbuf_std(sc, i)) != 0)
1059 			return (error);
1060 		BGE_INC(sc->bge_std, BGE_STD_RX_RING_CNT);
1061 	};
1062 
1063 	bus_dmamap_sync(sc->bge_cdata.bge_rx_std_ring_tag,
1064 	    sc->bge_cdata.bge_rx_std_ring_map, BUS_DMASYNC_PREWRITE);
1065 
1066 	sc->bge_std = i - 1;
1067 	bge_writembx(sc, BGE_MBX_RX_STD_PROD_LO, sc->bge_std);
1068 
1069 	return (0);
1070 }
1071 
1072 static void
1073 bge_free_rx_ring_std(struct bge_softc *sc)
1074 {
1075 	int i;
1076 
1077 	for (i = 0; i < BGE_STD_RX_RING_CNT; i++) {
1078 		if (sc->bge_cdata.bge_rx_std_chain[i] != NULL) {
1079 			bus_dmamap_sync(sc->bge_cdata.bge_rx_mtag,
1080 			    sc->bge_cdata.bge_rx_std_dmamap[i],
1081 			    BUS_DMASYNC_POSTREAD);
1082 			bus_dmamap_unload(sc->bge_cdata.bge_rx_mtag,
1083 			    sc->bge_cdata.bge_rx_std_dmamap[i]);
1084 			m_freem(sc->bge_cdata.bge_rx_std_chain[i]);
1085 			sc->bge_cdata.bge_rx_std_chain[i] = NULL;
1086 		}
1087 		bzero((char *)&sc->bge_ldata.bge_rx_std_ring[i],
1088 		    sizeof(struct bge_rx_bd));
1089 	}
1090 }
1091 
1092 static int
1093 bge_init_rx_ring_jumbo(struct bge_softc *sc)
1094 {
1095 	struct bge_rcb *rcb;
1096 	int error, i;
1097 
1098 	bzero(sc->bge_ldata.bge_rx_jumbo_ring, BGE_JUMBO_RX_RING_SZ);
1099 	sc->bge_jumbo = 0;
1100 	for (i = 0; i < BGE_JUMBO_RX_RING_CNT; i++) {
1101 		if ((error = bge_newbuf_jumbo(sc, i)) != 0)
1102 			return (error);
1103 		BGE_INC(sc->bge_jumbo, BGE_JUMBO_RX_RING_CNT);
1104 	};
1105 
1106 	bus_dmamap_sync(sc->bge_cdata.bge_rx_jumbo_ring_tag,
1107 	    sc->bge_cdata.bge_rx_jumbo_ring_map, BUS_DMASYNC_PREWRITE);
1108 
1109 	sc->bge_jumbo = i - 1;
1110 
1111 	rcb = &sc->bge_ldata.bge_info.bge_jumbo_rx_rcb;
1112 	rcb->bge_maxlen_flags = BGE_RCB_MAXLEN_FLAGS(0,
1113 				    BGE_RCB_FLAG_USE_EXT_RX_BD);
1114 	CSR_WRITE_4(sc, BGE_RX_JUMBO_RCB_MAXLEN_FLAGS, rcb->bge_maxlen_flags);
1115 
1116 	bge_writembx(sc, BGE_MBX_RX_JUMBO_PROD_LO, sc->bge_jumbo);
1117 
1118 	return (0);
1119 }
1120 
1121 static void
1122 bge_free_rx_ring_jumbo(struct bge_softc *sc)
1123 {
1124 	int i;
1125 
1126 	for (i = 0; i < BGE_JUMBO_RX_RING_CNT; i++) {
1127 		if (sc->bge_cdata.bge_rx_jumbo_chain[i] != NULL) {
1128 			bus_dmamap_sync(sc->bge_cdata.bge_mtag_jumbo,
1129 			    sc->bge_cdata.bge_rx_jumbo_dmamap[i],
1130 			    BUS_DMASYNC_POSTREAD);
1131 			bus_dmamap_unload(sc->bge_cdata.bge_mtag_jumbo,
1132 			    sc->bge_cdata.bge_rx_jumbo_dmamap[i]);
1133 			m_freem(sc->bge_cdata.bge_rx_jumbo_chain[i]);
1134 			sc->bge_cdata.bge_rx_jumbo_chain[i] = NULL;
1135 		}
1136 		bzero((char *)&sc->bge_ldata.bge_rx_jumbo_ring[i],
1137 		    sizeof(struct bge_extrx_bd));
1138 	}
1139 }
1140 
1141 static void
1142 bge_free_tx_ring(struct bge_softc *sc)
1143 {
1144 	int i;
1145 
1146 	if (sc->bge_ldata.bge_tx_ring == NULL)
1147 		return;
1148 
1149 	for (i = 0; i < BGE_TX_RING_CNT; i++) {
1150 		if (sc->bge_cdata.bge_tx_chain[i] != NULL) {
1151 			bus_dmamap_sync(sc->bge_cdata.bge_tx_mtag,
1152 			    sc->bge_cdata.bge_tx_dmamap[i],
1153 			    BUS_DMASYNC_POSTWRITE);
1154 			bus_dmamap_unload(sc->bge_cdata.bge_tx_mtag,
1155 			    sc->bge_cdata.bge_tx_dmamap[i]);
1156 			m_freem(sc->bge_cdata.bge_tx_chain[i]);
1157 			sc->bge_cdata.bge_tx_chain[i] = NULL;
1158 		}
1159 		bzero((char *)&sc->bge_ldata.bge_tx_ring[i],
1160 		    sizeof(struct bge_tx_bd));
1161 	}
1162 }
1163 
1164 static int
1165 bge_init_tx_ring(struct bge_softc *sc)
1166 {
1167 	sc->bge_txcnt = 0;
1168 	sc->bge_tx_saved_considx = 0;
1169 
1170 	bzero(sc->bge_ldata.bge_tx_ring, BGE_TX_RING_SZ);
1171 	bus_dmamap_sync(sc->bge_cdata.bge_tx_ring_tag,
1172 	    sc->bge_cdata.bge_tx_ring_map, BUS_DMASYNC_PREWRITE);
1173 
1174 	/* Initialize transmit producer index for host-memory send ring. */
1175 	sc->bge_tx_prodidx = 0;
1176 	bge_writembx(sc, BGE_MBX_TX_HOST_PROD0_LO, sc->bge_tx_prodidx);
1177 
1178 	/* 5700 b2 errata */
1179 	if (sc->bge_chiprev == BGE_CHIPREV_5700_BX)
1180 		bge_writembx(sc, BGE_MBX_TX_HOST_PROD0_LO, sc->bge_tx_prodidx);
1181 
1182 	/* NIC-memory send ring not used; initialize to zero. */
1183 	bge_writembx(sc, BGE_MBX_TX_NIC_PROD0_LO, 0);
1184 	/* 5700 b2 errata */
1185 	if (sc->bge_chiprev == BGE_CHIPREV_5700_BX)
1186 		bge_writembx(sc, BGE_MBX_TX_NIC_PROD0_LO, 0);
1187 
1188 	return (0);
1189 }
1190 
1191 static void
1192 bge_setpromisc(struct bge_softc *sc)
1193 {
1194 	struct ifnet *ifp;
1195 
1196 	BGE_LOCK_ASSERT(sc);
1197 
1198 	ifp = sc->bge_ifp;
1199 
1200 	/* Enable or disable promiscuous mode as needed. */
1201 	if (ifp->if_flags & IFF_PROMISC)
1202 		BGE_SETBIT(sc, BGE_RX_MODE, BGE_RXMODE_RX_PROMISC);
1203 	else
1204 		BGE_CLRBIT(sc, BGE_RX_MODE, BGE_RXMODE_RX_PROMISC);
1205 }
1206 
1207 static void
1208 bge_setmulti(struct bge_softc *sc)
1209 {
1210 	struct ifnet *ifp;
1211 	struct ifmultiaddr *ifma;
1212 	uint32_t hashes[4] = { 0, 0, 0, 0 };
1213 	int h, i;
1214 
1215 	BGE_LOCK_ASSERT(sc);
1216 
1217 	ifp = sc->bge_ifp;
1218 
1219 	if (ifp->if_flags & IFF_ALLMULTI || ifp->if_flags & IFF_PROMISC) {
1220 		for (i = 0; i < 4; i++)
1221 			CSR_WRITE_4(sc, BGE_MAR0 + (i * 4), 0xFFFFFFFF);
1222 		return;
1223 	}
1224 
1225 	/* First, zot all the existing filters. */
1226 	for (i = 0; i < 4; i++)
1227 		CSR_WRITE_4(sc, BGE_MAR0 + (i * 4), 0);
1228 
1229 	/* Now program new ones. */
1230 	if_maddr_rlock(ifp);
1231 	TAILQ_FOREACH(ifma, &ifp->if_multiaddrs, ifma_link) {
1232 		if (ifma->ifma_addr->sa_family != AF_LINK)
1233 			continue;
1234 		h = ether_crc32_le(LLADDR((struct sockaddr_dl *)
1235 		    ifma->ifma_addr), ETHER_ADDR_LEN) & 0x7F;
1236 		hashes[(h & 0x60) >> 5] |= 1 << (h & 0x1F);
1237 	}
1238 	if_maddr_runlock(ifp);
1239 
1240 	for (i = 0; i < 4; i++)
1241 		CSR_WRITE_4(sc, BGE_MAR0 + (i * 4), hashes[i]);
1242 }
1243 
1244 static void
1245 bge_setvlan(struct bge_softc *sc)
1246 {
1247 	struct ifnet *ifp;
1248 
1249 	BGE_LOCK_ASSERT(sc);
1250 
1251 	ifp = sc->bge_ifp;
1252 
1253 	/* Enable or disable VLAN tag stripping as needed. */
1254 	if (ifp->if_capenable & IFCAP_VLAN_HWTAGGING)
1255 		BGE_CLRBIT(sc, BGE_RX_MODE, BGE_RXMODE_RX_KEEP_VLAN_DIAG);
1256 	else
1257 		BGE_SETBIT(sc, BGE_RX_MODE, BGE_RXMODE_RX_KEEP_VLAN_DIAG);
1258 }
1259 
1260 static void
1261 bge_sig_pre_reset(sc, type)
1262 	struct bge_softc *sc;
1263 	int type;
1264 {
1265 	/*
1266 	 * Some chips don't like this so only do this if ASF is enabled
1267 	 */
1268 	if (sc->bge_asf_mode)
1269 		bge_writemem_ind(sc, BGE_SOFTWARE_GENCOMM, BGE_MAGIC_NUMBER);
1270 
1271 	if (sc->bge_asf_mode & ASF_NEW_HANDSHAKE) {
1272 		switch (type) {
1273 		case BGE_RESET_START:
1274 			bge_writemem_ind(sc, BGE_SDI_STATUS, 0x1); /* START */
1275 			break;
1276 		case BGE_RESET_STOP:
1277 			bge_writemem_ind(sc, BGE_SDI_STATUS, 0x2); /* UNLOAD */
1278 			break;
1279 		}
1280 	}
1281 }
1282 
1283 static void
1284 bge_sig_post_reset(sc, type)
1285 	struct bge_softc *sc;
1286 	int type;
1287 {
1288 	if (sc->bge_asf_mode & ASF_NEW_HANDSHAKE) {
1289 		switch (type) {
1290 		case BGE_RESET_START:
1291 			bge_writemem_ind(sc, BGE_SDI_STATUS, 0x80000001);
1292 			/* START DONE */
1293 			break;
1294 		case BGE_RESET_STOP:
1295 			bge_writemem_ind(sc, BGE_SDI_STATUS, 0x80000002);
1296 			break;
1297 		}
1298 	}
1299 }
1300 
1301 static void
1302 bge_sig_legacy(sc, type)
1303 	struct bge_softc *sc;
1304 	int type;
1305 {
1306 	if (sc->bge_asf_mode) {
1307 		switch (type) {
1308 		case BGE_RESET_START:
1309 			bge_writemem_ind(sc, BGE_SDI_STATUS, 0x1); /* START */
1310 			break;
1311 		case BGE_RESET_STOP:
1312 			bge_writemem_ind(sc, BGE_SDI_STATUS, 0x2); /* UNLOAD */
1313 			break;
1314 		}
1315 	}
1316 }
1317 
1318 void bge_stop_fw(struct bge_softc *);
1319 void
1320 bge_stop_fw(sc)
1321 	struct bge_softc *sc;
1322 {
1323 	int i;
1324 
1325 	if (sc->bge_asf_mode) {
1326 		bge_writemem_ind(sc, BGE_SOFTWARE_GENCOMM_FW, BGE_FW_PAUSE);
1327 		CSR_WRITE_4(sc, BGE_CPU_EVENT,
1328 		    CSR_READ_4(sc, BGE_CPU_EVENT) | (1 << 14));
1329 
1330 		for (i = 0; i < 100; i++ ) {
1331 			if (!(CSR_READ_4(sc, BGE_CPU_EVENT) & (1 << 14)))
1332 				break;
1333 			DELAY(10);
1334 		}
1335 	}
1336 }
1337 
1338 /*
1339  * Do endian, PCI and DMA initialization.
1340  */
1341 static int
1342 bge_chipinit(struct bge_softc *sc)
1343 {
1344 	uint32_t dma_rw_ctl;
1345 	int i;
1346 
1347 	/* Set endianness before we access any non-PCI registers. */
1348 	pci_write_config(sc->bge_dev, BGE_PCI_MISC_CTL, BGE_INIT, 4);
1349 
1350 	/* Clear the MAC control register */
1351 	CSR_WRITE_4(sc, BGE_MAC_MODE, 0);
1352 
1353 	/*
1354 	 * Clear the MAC statistics block in the NIC's
1355 	 * internal memory.
1356 	 */
1357 	for (i = BGE_STATS_BLOCK;
1358 	    i < BGE_STATS_BLOCK_END + 1; i += sizeof(uint32_t))
1359 		BGE_MEMWIN_WRITE(sc, i, 0);
1360 
1361 	for (i = BGE_STATUS_BLOCK;
1362 	    i < BGE_STATUS_BLOCK_END + 1; i += sizeof(uint32_t))
1363 		BGE_MEMWIN_WRITE(sc, i, 0);
1364 
1365 	/*
1366 	 * Set up the PCI DMA control register.
1367 	 */
1368 	dma_rw_ctl = BGE_PCIDMARWCTL_RD_CMD_SHIFT(6) |
1369 	    BGE_PCIDMARWCTL_WR_CMD_SHIFT(7);
1370 	if (sc->bge_flags & BGE_FLAG_PCIE) {
1371 		/* Read watermark not used, 128 bytes for write. */
1372 		dma_rw_ctl |= BGE_PCIDMARWCTL_WR_WAT_SHIFT(3);
1373 	} else if (sc->bge_flags & BGE_FLAG_PCIX) {
1374 		if (BGE_IS_5714_FAMILY(sc)) {
1375 			/* 256 bytes for read and write. */
1376 			dma_rw_ctl |= BGE_PCIDMARWCTL_RD_WAT_SHIFT(2) |
1377 			    BGE_PCIDMARWCTL_WR_WAT_SHIFT(2);
1378 			dma_rw_ctl |= (sc->bge_asicrev == BGE_ASICREV_BCM5780) ?
1379 			    BGE_PCIDMARWCTL_ONEDMA_ATONCE_GLOBAL :
1380 			    BGE_PCIDMARWCTL_ONEDMA_ATONCE_LOCAL;
1381 		} else if (sc->bge_asicrev == BGE_ASICREV_BCM5704) {
1382 			/* 1536 bytes for read, 384 bytes for write. */
1383 			dma_rw_ctl |= BGE_PCIDMARWCTL_RD_WAT_SHIFT(7) |
1384 			    BGE_PCIDMARWCTL_WR_WAT_SHIFT(3);
1385 		} else {
1386 			/* 384 bytes for read and write. */
1387 			dma_rw_ctl |= BGE_PCIDMARWCTL_RD_WAT_SHIFT(3) |
1388 			    BGE_PCIDMARWCTL_WR_WAT_SHIFT(3) |
1389 			    0x0F;
1390 		}
1391 		if (sc->bge_asicrev == BGE_ASICREV_BCM5703 ||
1392 		    sc->bge_asicrev == BGE_ASICREV_BCM5704) {
1393 			uint32_t tmp;
1394 
1395 			/* Set ONE_DMA_AT_ONCE for hardware workaround. */
1396 			tmp = CSR_READ_4(sc, BGE_PCI_CLKCTL) & 0x1F;
1397 			if (tmp == 6 || tmp == 7)
1398 				dma_rw_ctl |=
1399 				    BGE_PCIDMARWCTL_ONEDMA_ATONCE_GLOBAL;
1400 
1401 			/* Set PCI-X DMA write workaround. */
1402 			dma_rw_ctl |= BGE_PCIDMARWCTL_ASRT_ALL_BE;
1403 		}
1404 	} else {
1405 		/* Conventional PCI bus: 256 bytes for read and write. */
1406 		dma_rw_ctl |= BGE_PCIDMARWCTL_RD_WAT_SHIFT(7) |
1407 		    BGE_PCIDMARWCTL_WR_WAT_SHIFT(7);
1408 
1409 		if (sc->bge_asicrev != BGE_ASICREV_BCM5705 &&
1410 		    sc->bge_asicrev != BGE_ASICREV_BCM5750)
1411 			dma_rw_ctl |= 0x0F;
1412 	}
1413 	if (sc->bge_asicrev == BGE_ASICREV_BCM5700 ||
1414 	    sc->bge_asicrev == BGE_ASICREV_BCM5701)
1415 		dma_rw_ctl |= BGE_PCIDMARWCTL_USE_MRM |
1416 		    BGE_PCIDMARWCTL_ASRT_ALL_BE;
1417 	if (sc->bge_asicrev == BGE_ASICREV_BCM5703 ||
1418 	    sc->bge_asicrev == BGE_ASICREV_BCM5704)
1419 		dma_rw_ctl &= ~BGE_PCIDMARWCTL_MINDMA;
1420 	pci_write_config(sc->bge_dev, BGE_PCI_DMA_RW_CTL, dma_rw_ctl, 4);
1421 
1422 	/*
1423 	 * Set up general mode register.
1424 	 */
1425 	CSR_WRITE_4(sc, BGE_MODE_CTL, BGE_DMA_SWAP_OPTIONS |
1426 	    BGE_MODECTL_MAC_ATTN_INTR | BGE_MODECTL_HOST_SEND_BDS |
1427 	    BGE_MODECTL_TX_NO_PHDR_CSUM);
1428 
1429 	/*
1430 	 * BCM5701 B5 have a bug causing data corruption when using
1431 	 * 64-bit DMA reads, which can be terminated early and then
1432 	 * completed later as 32-bit accesses, in combination with
1433 	 * certain bridges.
1434 	 */
1435 	if (sc->bge_asicrev == BGE_ASICREV_BCM5701 &&
1436 	    sc->bge_chipid == BGE_CHIPID_BCM5701_B5)
1437 		BGE_SETBIT(sc, BGE_MODE_CTL, BGE_MODECTL_FORCE_PCI32);
1438 
1439 	/*
1440 	 * Tell the firmware the driver is running
1441 	 */
1442 	if (sc->bge_asf_mode & ASF_STACKUP)
1443 		BGE_SETBIT(sc, BGE_MODE_CTL, BGE_MODECTL_STACKUP);
1444 
1445 	/*
1446 	 * Disable memory write invalidate.  Apparently it is not supported
1447 	 * properly by these devices.  Also ensure that INTx isn't disabled,
1448 	 * as these chips need it even when using MSI.
1449 	 */
1450 	PCI_CLRBIT(sc->bge_dev, BGE_PCI_CMD,
1451 	    PCIM_CMD_INTxDIS | PCIM_CMD_MWIEN, 4);
1452 
1453 	/* Set the timer prescaler (always 66Mhz) */
1454 	CSR_WRITE_4(sc, BGE_MISC_CFG, BGE_32BITTIME_66MHZ);
1455 
1456 	/* XXX: The Linux tg3 driver does this at the start of brgphy_reset. */
1457 	if (sc->bge_asicrev == BGE_ASICREV_BCM5906) {
1458 		DELAY(40);	/* XXX */
1459 
1460 		/* Put PHY into ready state */
1461 		BGE_CLRBIT(sc, BGE_MISC_CFG, BGE_MISCCFG_EPHY_IDDQ);
1462 		CSR_READ_4(sc, BGE_MISC_CFG); /* Flush */
1463 		DELAY(40);
1464 	}
1465 
1466 	return (0);
1467 }
1468 
1469 static int
1470 bge_blockinit(struct bge_softc *sc)
1471 {
1472 	struct bge_rcb *rcb;
1473 	bus_size_t vrcb;
1474 	bge_hostaddr taddr;
1475 	uint32_t val;
1476 	int i;
1477 
1478 	/*
1479 	 * Initialize the memory window pointer register so that
1480 	 * we can access the first 32K of internal NIC RAM. This will
1481 	 * allow us to set up the TX send ring RCBs and the RX return
1482 	 * ring RCBs, plus other things which live in NIC memory.
1483 	 */
1484 	CSR_WRITE_4(sc, BGE_PCI_MEMWIN_BASEADDR, 0);
1485 
1486 	/* Note: the BCM5704 has a smaller mbuf space than other chips. */
1487 
1488 	if (!(BGE_IS_5705_PLUS(sc))) {
1489 		/* Configure mbuf memory pool */
1490 		CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_BASEADDR, BGE_BUFFPOOL_1);
1491 		if (sc->bge_asicrev == BGE_ASICREV_BCM5704)
1492 			CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_LEN, 0x10000);
1493 		else
1494 			CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_LEN, 0x18000);
1495 
1496 		/* Configure DMA resource pool */
1497 		CSR_WRITE_4(sc, BGE_BMAN_DMA_DESCPOOL_BASEADDR,
1498 		    BGE_DMA_DESCRIPTORS);
1499 		CSR_WRITE_4(sc, BGE_BMAN_DMA_DESCPOOL_LEN, 0x2000);
1500 	}
1501 
1502 	/* Configure mbuf pool watermarks */
1503 	if (!BGE_IS_5705_PLUS(sc)) {
1504 		CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_READDMA_LOWAT, 0x50);
1505 		CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_MACRX_LOWAT, 0x20);
1506 		CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_HIWAT, 0x60);
1507 	} else if (sc->bge_asicrev == BGE_ASICREV_BCM5906) {
1508 		CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_READDMA_LOWAT, 0x0);
1509 		CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_MACRX_LOWAT, 0x04);
1510 		CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_HIWAT, 0x10);
1511 	} else {
1512 		CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_READDMA_LOWAT, 0x0);
1513 		CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_MACRX_LOWAT, 0x10);
1514 		CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_HIWAT, 0x60);
1515 	}
1516 
1517 	/* Configure DMA resource watermarks */
1518 	CSR_WRITE_4(sc, BGE_BMAN_DMA_DESCPOOL_LOWAT, 5);
1519 	CSR_WRITE_4(sc, BGE_BMAN_DMA_DESCPOOL_HIWAT, 10);
1520 
1521 	/* Enable buffer manager */
1522 	if (!(BGE_IS_5705_PLUS(sc))) {
1523 		CSR_WRITE_4(sc, BGE_BMAN_MODE,
1524 		    BGE_BMANMODE_ENABLE | BGE_BMANMODE_LOMBUF_ATTN);
1525 
1526 		/* Poll for buffer manager start indication */
1527 		for (i = 0; i < BGE_TIMEOUT; i++) {
1528 			DELAY(10);
1529 			if (CSR_READ_4(sc, BGE_BMAN_MODE) & BGE_BMANMODE_ENABLE)
1530 				break;
1531 		}
1532 
1533 		if (i == BGE_TIMEOUT) {
1534 			device_printf(sc->bge_dev,
1535 			    "buffer manager failed to start\n");
1536 			return (ENXIO);
1537 		}
1538 	}
1539 
1540 	/* Enable flow-through queues */
1541 	CSR_WRITE_4(sc, BGE_FTQ_RESET, 0xFFFFFFFF);
1542 	CSR_WRITE_4(sc, BGE_FTQ_RESET, 0);
1543 
1544 	/* Wait until queue initialization is complete */
1545 	for (i = 0; i < BGE_TIMEOUT; i++) {
1546 		DELAY(10);
1547 		if (CSR_READ_4(sc, BGE_FTQ_RESET) == 0)
1548 			break;
1549 	}
1550 
1551 	if (i == BGE_TIMEOUT) {
1552 		device_printf(sc->bge_dev, "flow-through queue init failed\n");
1553 		return (ENXIO);
1554 	}
1555 
1556 	/* Initialize the standard RX ring control block */
1557 	rcb = &sc->bge_ldata.bge_info.bge_std_rx_rcb;
1558 	rcb->bge_hostaddr.bge_addr_lo =
1559 	    BGE_ADDR_LO(sc->bge_ldata.bge_rx_std_ring_paddr);
1560 	rcb->bge_hostaddr.bge_addr_hi =
1561 	    BGE_ADDR_HI(sc->bge_ldata.bge_rx_std_ring_paddr);
1562 	bus_dmamap_sync(sc->bge_cdata.bge_rx_std_ring_tag,
1563 	    sc->bge_cdata.bge_rx_std_ring_map, BUS_DMASYNC_PREREAD);
1564 	if (BGE_IS_5705_PLUS(sc))
1565 		rcb->bge_maxlen_flags = BGE_RCB_MAXLEN_FLAGS(512, 0);
1566 	else
1567 		rcb->bge_maxlen_flags =
1568 		    BGE_RCB_MAXLEN_FLAGS(BGE_MAX_FRAMELEN, 0);
1569 	rcb->bge_nicaddr = BGE_STD_RX_RINGS;
1570 	CSR_WRITE_4(sc, BGE_RX_STD_RCB_HADDR_HI, rcb->bge_hostaddr.bge_addr_hi);
1571 	CSR_WRITE_4(sc, BGE_RX_STD_RCB_HADDR_LO, rcb->bge_hostaddr.bge_addr_lo);
1572 
1573 	CSR_WRITE_4(sc, BGE_RX_STD_RCB_MAXLEN_FLAGS, rcb->bge_maxlen_flags);
1574 	CSR_WRITE_4(sc, BGE_RX_STD_RCB_NICADDR, rcb->bge_nicaddr);
1575 
1576 	/*
1577 	 * Initialize the jumbo RX ring control block
1578 	 * We set the 'ring disabled' bit in the flags
1579 	 * field until we're actually ready to start
1580 	 * using this ring (i.e. once we set the MTU
1581 	 * high enough to require it).
1582 	 */
1583 	if (BGE_IS_JUMBO_CAPABLE(sc)) {
1584 		rcb = &sc->bge_ldata.bge_info.bge_jumbo_rx_rcb;
1585 
1586 		rcb->bge_hostaddr.bge_addr_lo =
1587 		    BGE_ADDR_LO(sc->bge_ldata.bge_rx_jumbo_ring_paddr);
1588 		rcb->bge_hostaddr.bge_addr_hi =
1589 		    BGE_ADDR_HI(sc->bge_ldata.bge_rx_jumbo_ring_paddr);
1590 		bus_dmamap_sync(sc->bge_cdata.bge_rx_jumbo_ring_tag,
1591 		    sc->bge_cdata.bge_rx_jumbo_ring_map,
1592 		    BUS_DMASYNC_PREREAD);
1593 		rcb->bge_maxlen_flags = BGE_RCB_MAXLEN_FLAGS(0,
1594 		    BGE_RCB_FLAG_USE_EXT_RX_BD | BGE_RCB_FLAG_RING_DISABLED);
1595 		rcb->bge_nicaddr = BGE_JUMBO_RX_RINGS;
1596 		CSR_WRITE_4(sc, BGE_RX_JUMBO_RCB_HADDR_HI,
1597 		    rcb->bge_hostaddr.bge_addr_hi);
1598 		CSR_WRITE_4(sc, BGE_RX_JUMBO_RCB_HADDR_LO,
1599 		    rcb->bge_hostaddr.bge_addr_lo);
1600 
1601 		CSR_WRITE_4(sc, BGE_RX_JUMBO_RCB_MAXLEN_FLAGS,
1602 		    rcb->bge_maxlen_flags);
1603 		CSR_WRITE_4(sc, BGE_RX_JUMBO_RCB_NICADDR, rcb->bge_nicaddr);
1604 
1605 		/* Set up dummy disabled mini ring RCB */
1606 		rcb = &sc->bge_ldata.bge_info.bge_mini_rx_rcb;
1607 		rcb->bge_maxlen_flags =
1608 		    BGE_RCB_MAXLEN_FLAGS(0, BGE_RCB_FLAG_RING_DISABLED);
1609 		CSR_WRITE_4(sc, BGE_RX_MINI_RCB_MAXLEN_FLAGS,
1610 		    rcb->bge_maxlen_flags);
1611 	}
1612 
1613 	/*
1614 	 * Set the BD ring replentish thresholds. The recommended
1615 	 * values are 1/8th the number of descriptors allocated to
1616 	 * each ring.
1617 	 * XXX The 5754 requires a lower threshold, so it might be a
1618 	 * requirement of all 575x family chips.  The Linux driver sets
1619 	 * the lower threshold for all 5705 family chips as well, but there
1620 	 * are reports that it might not need to be so strict.
1621 	 *
1622 	 * XXX Linux does some extra fiddling here for the 5906 parts as
1623 	 * well.
1624 	 */
1625 	if (BGE_IS_5705_PLUS(sc))
1626 		val = 8;
1627 	else
1628 		val = BGE_STD_RX_RING_CNT / 8;
1629 	CSR_WRITE_4(sc, BGE_RBDI_STD_REPL_THRESH, val);
1630 	if (BGE_IS_JUMBO_CAPABLE(sc))
1631 		CSR_WRITE_4(sc, BGE_RBDI_JUMBO_REPL_THRESH,
1632 		    BGE_JUMBO_RX_RING_CNT/8);
1633 
1634 	/*
1635 	 * Disable all unused send rings by setting the 'ring disabled'
1636 	 * bit in the flags field of all the TX send ring control blocks.
1637 	 * These are located in NIC memory.
1638 	 */
1639 	vrcb = BGE_MEMWIN_START + BGE_SEND_RING_RCB;
1640 	for (i = 0; i < BGE_TX_RINGS_EXTSSRAM_MAX; i++) {
1641 		RCB_WRITE_4(sc, vrcb, bge_maxlen_flags,
1642 		    BGE_RCB_MAXLEN_FLAGS(0, BGE_RCB_FLAG_RING_DISABLED));
1643 		RCB_WRITE_4(sc, vrcb, bge_nicaddr, 0);
1644 		vrcb += sizeof(struct bge_rcb);
1645 	}
1646 
1647 	/* Configure TX RCB 0 (we use only the first ring) */
1648 	vrcb = BGE_MEMWIN_START + BGE_SEND_RING_RCB;
1649 	BGE_HOSTADDR(taddr, sc->bge_ldata.bge_tx_ring_paddr);
1650 	RCB_WRITE_4(sc, vrcb, bge_hostaddr.bge_addr_hi, taddr.bge_addr_hi);
1651 	RCB_WRITE_4(sc, vrcb, bge_hostaddr.bge_addr_lo, taddr.bge_addr_lo);
1652 	RCB_WRITE_4(sc, vrcb, bge_nicaddr,
1653 	    BGE_NIC_TXRING_ADDR(0, BGE_TX_RING_CNT));
1654 	if (!(BGE_IS_5705_PLUS(sc)))
1655 		RCB_WRITE_4(sc, vrcb, bge_maxlen_flags,
1656 		    BGE_RCB_MAXLEN_FLAGS(BGE_TX_RING_CNT, 0));
1657 
1658 	/* Disable all unused RX return rings */
1659 	vrcb = BGE_MEMWIN_START + BGE_RX_RETURN_RING_RCB;
1660 	for (i = 0; i < BGE_RX_RINGS_MAX; i++) {
1661 		RCB_WRITE_4(sc, vrcb, bge_hostaddr.bge_addr_hi, 0);
1662 		RCB_WRITE_4(sc, vrcb, bge_hostaddr.bge_addr_lo, 0);
1663 		RCB_WRITE_4(sc, vrcb, bge_maxlen_flags,
1664 		    BGE_RCB_MAXLEN_FLAGS(sc->bge_return_ring_cnt,
1665 		    BGE_RCB_FLAG_RING_DISABLED));
1666 		RCB_WRITE_4(sc, vrcb, bge_nicaddr, 0);
1667 		bge_writembx(sc, BGE_MBX_RX_CONS0_LO +
1668 		    (i * (sizeof(uint64_t))), 0);
1669 		vrcb += sizeof(struct bge_rcb);
1670 	}
1671 
1672 	/* Initialize RX ring indexes */
1673 	bge_writembx(sc, BGE_MBX_RX_STD_PROD_LO, 0);
1674 	if (BGE_IS_JUMBO_CAPABLE(sc))
1675 		bge_writembx(sc, BGE_MBX_RX_JUMBO_PROD_LO, 0);
1676 	if (sc->bge_asicrev == BGE_ASICREV_BCM5700)
1677 		bge_writembx(sc, BGE_MBX_RX_MINI_PROD_LO, 0);
1678 
1679 	/*
1680 	 * Set up RX return ring 0
1681 	 * Note that the NIC address for RX return rings is 0x00000000.
1682 	 * The return rings live entirely within the host, so the
1683 	 * nicaddr field in the RCB isn't used.
1684 	 */
1685 	vrcb = BGE_MEMWIN_START + BGE_RX_RETURN_RING_RCB;
1686 	BGE_HOSTADDR(taddr, sc->bge_ldata.bge_rx_return_ring_paddr);
1687 	RCB_WRITE_4(sc, vrcb, bge_hostaddr.bge_addr_hi, taddr.bge_addr_hi);
1688 	RCB_WRITE_4(sc, vrcb, bge_hostaddr.bge_addr_lo, taddr.bge_addr_lo);
1689 	RCB_WRITE_4(sc, vrcb, bge_nicaddr, 0x00000000);
1690 	RCB_WRITE_4(sc, vrcb, bge_maxlen_flags,
1691 	    BGE_RCB_MAXLEN_FLAGS(sc->bge_return_ring_cnt, 0));
1692 
1693 	/* Set random backoff seed for TX */
1694 	CSR_WRITE_4(sc, BGE_TX_RANDOM_BACKOFF,
1695 	    IF_LLADDR(sc->bge_ifp)[0] + IF_LLADDR(sc->bge_ifp)[1] +
1696 	    IF_LLADDR(sc->bge_ifp)[2] + IF_LLADDR(sc->bge_ifp)[3] +
1697 	    IF_LLADDR(sc->bge_ifp)[4] + IF_LLADDR(sc->bge_ifp)[5] +
1698 	    BGE_TX_BACKOFF_SEED_MASK);
1699 
1700 	/* Set inter-packet gap */
1701 	CSR_WRITE_4(sc, BGE_TX_LENGTHS, 0x2620);
1702 
1703 	/*
1704 	 * Specify which ring to use for packets that don't match
1705 	 * any RX rules.
1706 	 */
1707 	CSR_WRITE_4(sc, BGE_RX_RULES_CFG, 0x08);
1708 
1709 	/*
1710 	 * Configure number of RX lists. One interrupt distribution
1711 	 * list, sixteen active lists, one bad frames class.
1712 	 */
1713 	CSR_WRITE_4(sc, BGE_RXLP_CFG, 0x181);
1714 
1715 	/* Inialize RX list placement stats mask. */
1716 	CSR_WRITE_4(sc, BGE_RXLP_STATS_ENABLE_MASK, 0x007FFFFF);
1717 	CSR_WRITE_4(sc, BGE_RXLP_STATS_CTL, 0x1);
1718 
1719 	/* Disable host coalescing until we get it set up */
1720 	CSR_WRITE_4(sc, BGE_HCC_MODE, 0x00000000);
1721 
1722 	/* Poll to make sure it's shut down. */
1723 	for (i = 0; i < BGE_TIMEOUT; i++) {
1724 		DELAY(10);
1725 		if (!(CSR_READ_4(sc, BGE_HCC_MODE) & BGE_HCCMODE_ENABLE))
1726 			break;
1727 	}
1728 
1729 	if (i == BGE_TIMEOUT) {
1730 		device_printf(sc->bge_dev,
1731 		    "host coalescing engine failed to idle\n");
1732 		return (ENXIO);
1733 	}
1734 
1735 	/* Set up host coalescing defaults */
1736 	CSR_WRITE_4(sc, BGE_HCC_RX_COAL_TICKS, sc->bge_rx_coal_ticks);
1737 	CSR_WRITE_4(sc, BGE_HCC_TX_COAL_TICKS, sc->bge_tx_coal_ticks);
1738 	CSR_WRITE_4(sc, BGE_HCC_RX_MAX_COAL_BDS, sc->bge_rx_max_coal_bds);
1739 	CSR_WRITE_4(sc, BGE_HCC_TX_MAX_COAL_BDS, sc->bge_tx_max_coal_bds);
1740 	if (!(BGE_IS_5705_PLUS(sc))) {
1741 		CSR_WRITE_4(sc, BGE_HCC_RX_COAL_TICKS_INT, 0);
1742 		CSR_WRITE_4(sc, BGE_HCC_TX_COAL_TICKS_INT, 0);
1743 	}
1744 	CSR_WRITE_4(sc, BGE_HCC_RX_MAX_COAL_BDS_INT, 1);
1745 	CSR_WRITE_4(sc, BGE_HCC_TX_MAX_COAL_BDS_INT, 1);
1746 
1747 	/* Set up address of statistics block */
1748 	if (!(BGE_IS_5705_PLUS(sc))) {
1749 		CSR_WRITE_4(sc, BGE_HCC_STATS_ADDR_HI,
1750 		    BGE_ADDR_HI(sc->bge_ldata.bge_stats_paddr));
1751 		CSR_WRITE_4(sc, BGE_HCC_STATS_ADDR_LO,
1752 		    BGE_ADDR_LO(sc->bge_ldata.bge_stats_paddr));
1753 		CSR_WRITE_4(sc, BGE_HCC_STATS_BASEADDR, BGE_STATS_BLOCK);
1754 		CSR_WRITE_4(sc, BGE_HCC_STATUSBLK_BASEADDR, BGE_STATUS_BLOCK);
1755 		CSR_WRITE_4(sc, BGE_HCC_STATS_TICKS, sc->bge_stat_ticks);
1756 	}
1757 
1758 	/* Set up address of status block */
1759 	CSR_WRITE_4(sc, BGE_HCC_STATUSBLK_ADDR_HI,
1760 	    BGE_ADDR_HI(sc->bge_ldata.bge_status_block_paddr));
1761 	CSR_WRITE_4(sc, BGE_HCC_STATUSBLK_ADDR_LO,
1762 	    BGE_ADDR_LO(sc->bge_ldata.bge_status_block_paddr));
1763 	sc->bge_ldata.bge_status_block->bge_idx[0].bge_rx_prod_idx = 0;
1764 	sc->bge_ldata.bge_status_block->bge_idx[0].bge_tx_cons_idx = 0;
1765 
1766 	/* Set up status block size. */
1767 	if (sc->bge_asicrev == BGE_ASICREV_BCM5700 &&
1768 	    sc->bge_chipid != BGE_CHIPID_BCM5700_C0)
1769 		val = BGE_STATBLKSZ_FULL;
1770 	else
1771 		val = BGE_STATBLKSZ_32BYTE;
1772 
1773 	/* Turn on host coalescing state machine */
1774 	CSR_WRITE_4(sc, BGE_HCC_MODE, val | BGE_HCCMODE_ENABLE);
1775 
1776 	/* Turn on RX BD completion state machine and enable attentions */
1777 	CSR_WRITE_4(sc, BGE_RBDC_MODE,
1778 	    BGE_RBDCMODE_ENABLE | BGE_RBDCMODE_ATTN);
1779 
1780 	/* Turn on RX list placement state machine */
1781 	CSR_WRITE_4(sc, BGE_RXLP_MODE, BGE_RXLPMODE_ENABLE);
1782 
1783 	/* Turn on RX list selector state machine. */
1784 	if (!(BGE_IS_5705_PLUS(sc)))
1785 		CSR_WRITE_4(sc, BGE_RXLS_MODE, BGE_RXLSMODE_ENABLE);
1786 
1787 	val = BGE_MACMODE_TXDMA_ENB | BGE_MACMODE_RXDMA_ENB |
1788 	    BGE_MACMODE_RX_STATS_CLEAR | BGE_MACMODE_TX_STATS_CLEAR |
1789 	    BGE_MACMODE_RX_STATS_ENB | BGE_MACMODE_TX_STATS_ENB |
1790 	    BGE_MACMODE_FRMHDR_DMA_ENB;
1791 
1792 	if (sc->bge_flags & BGE_FLAG_TBI)
1793 		val |= BGE_PORTMODE_TBI;
1794 	else if (sc->bge_flags & BGE_FLAG_MII_SERDES)
1795 		val |= BGE_PORTMODE_GMII;
1796 	else
1797 		val |= BGE_PORTMODE_MII;
1798 
1799 	/* Turn on DMA, clear stats */
1800 	CSR_WRITE_4(sc, BGE_MAC_MODE, val);
1801 
1802 	/* Set misc. local control, enable interrupts on attentions */
1803 	CSR_WRITE_4(sc, BGE_MISC_LOCAL_CTL, BGE_MLC_INTR_ONATTN);
1804 
1805 #ifdef notdef
1806 	/* Assert GPIO pins for PHY reset */
1807 	BGE_SETBIT(sc, BGE_MISC_LOCAL_CTL, BGE_MLC_MISCIO_OUT0 |
1808 	    BGE_MLC_MISCIO_OUT1 | BGE_MLC_MISCIO_OUT2);
1809 	BGE_SETBIT(sc, BGE_MISC_LOCAL_CTL, BGE_MLC_MISCIO_OUTEN0 |
1810 	    BGE_MLC_MISCIO_OUTEN1 | BGE_MLC_MISCIO_OUTEN2);
1811 #endif
1812 
1813 	/* Turn on DMA completion state machine */
1814 	if (!(BGE_IS_5705_PLUS(sc)))
1815 		CSR_WRITE_4(sc, BGE_DMAC_MODE, BGE_DMACMODE_ENABLE);
1816 
1817 	val = BGE_WDMAMODE_ENABLE | BGE_WDMAMODE_ALL_ATTNS;
1818 
1819 	/* Enable host coalescing bug fix. */
1820 	if (BGE_IS_5755_PLUS(sc))
1821 		val |= BGE_WDMAMODE_STATUS_TAG_FIX;
1822 
1823 	/* Turn on write DMA state machine */
1824 	CSR_WRITE_4(sc, BGE_WDMA_MODE, val);
1825 	DELAY(40);
1826 
1827 	/* Turn on read DMA state machine */
1828 	val = BGE_RDMAMODE_ENABLE | BGE_RDMAMODE_ALL_ATTNS;
1829 	if (sc->bge_asicrev == BGE_ASICREV_BCM5784 ||
1830 	    sc->bge_asicrev == BGE_ASICREV_BCM5785 ||
1831 	    sc->bge_asicrev == BGE_ASICREV_BCM57780)
1832 		val |= BGE_RDMAMODE_BD_SBD_CRPT_ATTN |
1833 		    BGE_RDMAMODE_MBUF_RBD_CRPT_ATTN |
1834 		    BGE_RDMAMODE_MBUF_SBD_CRPT_ATTN;
1835 	if (sc->bge_flags & BGE_FLAG_PCIE)
1836 		val |= BGE_RDMAMODE_FIFO_LONG_BURST;
1837 	if (sc->bge_flags & BGE_FLAG_TSO)
1838 		val |= BGE_RDMAMODE_TSO4_ENABLE;
1839 	CSR_WRITE_4(sc, BGE_RDMA_MODE, val);
1840 	DELAY(40);
1841 
1842 	/* Turn on RX data completion state machine */
1843 	CSR_WRITE_4(sc, BGE_RDC_MODE, BGE_RDCMODE_ENABLE);
1844 
1845 	/* Turn on RX BD initiator state machine */
1846 	CSR_WRITE_4(sc, BGE_RBDI_MODE, BGE_RBDIMODE_ENABLE);
1847 
1848 	/* Turn on RX data and RX BD initiator state machine */
1849 	CSR_WRITE_4(sc, BGE_RDBDI_MODE, BGE_RDBDIMODE_ENABLE);
1850 
1851 	/* Turn on Mbuf cluster free state machine */
1852 	if (!(BGE_IS_5705_PLUS(sc)))
1853 		CSR_WRITE_4(sc, BGE_MBCF_MODE, BGE_MBCFMODE_ENABLE);
1854 
1855 	/* Turn on send BD completion state machine */
1856 	CSR_WRITE_4(sc, BGE_SBDC_MODE, BGE_SBDCMODE_ENABLE);
1857 
1858 	/* Turn on send data completion state machine */
1859 	val = BGE_SDCMODE_ENABLE;
1860 	if (sc->bge_asicrev == BGE_ASICREV_BCM5761)
1861 		val |= BGE_SDCMODE_CDELAY;
1862 	CSR_WRITE_4(sc, BGE_SDC_MODE, val);
1863 
1864 	/* Turn on send data initiator state machine */
1865 	if (sc->bge_flags & BGE_FLAG_TSO)
1866 		CSR_WRITE_4(sc, BGE_SDI_MODE, BGE_SDIMODE_ENABLE | 0x08);
1867 	else
1868 		CSR_WRITE_4(sc, BGE_SDI_MODE, BGE_SDIMODE_ENABLE);
1869 
1870 	/* Turn on send BD initiator state machine */
1871 	CSR_WRITE_4(sc, BGE_SBDI_MODE, BGE_SBDIMODE_ENABLE);
1872 
1873 	/* Turn on send BD selector state machine */
1874 	CSR_WRITE_4(sc, BGE_SRS_MODE, BGE_SRSMODE_ENABLE);
1875 
1876 	CSR_WRITE_4(sc, BGE_SDI_STATS_ENABLE_MASK, 0x007FFFFF);
1877 	CSR_WRITE_4(sc, BGE_SDI_STATS_CTL,
1878 	    BGE_SDISTATSCTL_ENABLE | BGE_SDISTATSCTL_FASTER);
1879 
1880 	/* ack/clear link change events */
1881 	CSR_WRITE_4(sc, BGE_MAC_STS, BGE_MACSTAT_SYNC_CHANGED |
1882 	    BGE_MACSTAT_CFG_CHANGED | BGE_MACSTAT_MI_COMPLETE |
1883 	    BGE_MACSTAT_LINK_CHANGED);
1884 	CSR_WRITE_4(sc, BGE_MI_STS, 0);
1885 
1886 	/* Enable PHY auto polling (for MII/GMII only) */
1887 	if (sc->bge_flags & BGE_FLAG_TBI) {
1888 		CSR_WRITE_4(sc, BGE_MI_STS, BGE_MISTS_LINK);
1889 	} else {
1890 		BGE_SETBIT(sc, BGE_MI_MODE, BGE_MIMODE_AUTOPOLL | (10 << 16));
1891 		if (sc->bge_asicrev == BGE_ASICREV_BCM5700 &&
1892 		    sc->bge_chipid != BGE_CHIPID_BCM5700_B2)
1893 			CSR_WRITE_4(sc, BGE_MAC_EVT_ENB,
1894 			    BGE_EVTENB_MI_INTERRUPT);
1895 	}
1896 
1897 	/*
1898 	 * Clear any pending link state attention.
1899 	 * Otherwise some link state change events may be lost until attention
1900 	 * is cleared by bge_intr() -> bge_link_upd() sequence.
1901 	 * It's not necessary on newer BCM chips - perhaps enabling link
1902 	 * state change attentions implies clearing pending attention.
1903 	 */
1904 	CSR_WRITE_4(sc, BGE_MAC_STS, BGE_MACSTAT_SYNC_CHANGED |
1905 	    BGE_MACSTAT_CFG_CHANGED | BGE_MACSTAT_MI_COMPLETE |
1906 	    BGE_MACSTAT_LINK_CHANGED);
1907 
1908 	/* Enable link state change attentions. */
1909 	BGE_SETBIT(sc, BGE_MAC_EVT_ENB, BGE_EVTENB_LINK_CHANGED);
1910 
1911 	return (0);
1912 }
1913 
1914 const struct bge_revision *
1915 bge_lookup_rev(uint32_t chipid)
1916 {
1917 	const struct bge_revision *br;
1918 
1919 	for (br = bge_revisions; br->br_name != NULL; br++) {
1920 		if (br->br_chipid == chipid)
1921 			return (br);
1922 	}
1923 
1924 	for (br = bge_majorrevs; br->br_name != NULL; br++) {
1925 		if (br->br_chipid == BGE_ASICREV(chipid))
1926 			return (br);
1927 	}
1928 
1929 	return (NULL);
1930 }
1931 
1932 const struct bge_vendor *
1933 bge_lookup_vendor(uint16_t vid)
1934 {
1935 	const struct bge_vendor *v;
1936 
1937 	for (v = bge_vendors; v->v_name != NULL; v++)
1938 		if (v->v_id == vid)
1939 			return (v);
1940 
1941 	panic("%s: unknown vendor %d", __func__, vid);
1942 	return (NULL);
1943 }
1944 
1945 /*
1946  * Probe for a Broadcom chip. Check the PCI vendor and device IDs
1947  * against our list and return its name if we find a match.
1948  *
1949  * Note that since the Broadcom controller contains VPD support, we
1950  * try to get the device name string from the controller itself instead
1951  * of the compiled-in string. It guarantees we'll always announce the
1952  * right product name. We fall back to the compiled-in string when
1953  * VPD is unavailable or corrupt.
1954  */
1955 static int
1956 bge_probe(device_t dev)
1957 {
1958 	const struct bge_type *t = bge_devs;
1959 	struct bge_softc *sc = device_get_softc(dev);
1960 	uint16_t vid, did;
1961 
1962 	sc->bge_dev = dev;
1963 	vid = pci_get_vendor(dev);
1964 	did = pci_get_device(dev);
1965 	while(t->bge_vid != 0) {
1966 		if ((vid == t->bge_vid) && (did == t->bge_did)) {
1967 			char model[64], buf[96];
1968 			const struct bge_revision *br;
1969 			const struct bge_vendor *v;
1970 			uint32_t id;
1971 
1972 			id = pci_read_config(dev, BGE_PCI_MISC_CTL, 4) >>
1973 			    BGE_PCIMISCCTL_ASICREV_SHIFT;
1974 			if (BGE_ASICREV(id) == BGE_ASICREV_USE_PRODID_REG)
1975 				id = pci_read_config(dev,
1976 				    BGE_PCI_PRODID_ASICREV, 4);
1977 			br = bge_lookup_rev(id);
1978 			v = bge_lookup_vendor(vid);
1979 			{
1980 #if __FreeBSD_version > 700024
1981 				const char *pname;
1982 
1983 				if (bge_has_eaddr(sc) &&
1984 				    pci_get_vpd_ident(dev, &pname) == 0)
1985 					snprintf(model, 64, "%s", pname);
1986 				else
1987 #endif
1988 					snprintf(model, 64, "%s %s",
1989 					    v->v_name,
1990 					    br != NULL ? br->br_name :
1991 					    "NetXtreme Ethernet Controller");
1992 			}
1993 			snprintf(buf, 96, "%s, %sASIC rev. %#08x", model,
1994 			    br != NULL ? "" : "unknown ", id);
1995 			device_set_desc_copy(dev, buf);
1996 			return (0);
1997 		}
1998 		t++;
1999 	}
2000 
2001 	return (ENXIO);
2002 }
2003 
2004 static void
2005 bge_dma_free(struct bge_softc *sc)
2006 {
2007 	int i;
2008 
2009 	/* Destroy DMA maps for RX buffers. */
2010 	for (i = 0; i < BGE_STD_RX_RING_CNT; i++) {
2011 		if (sc->bge_cdata.bge_rx_std_dmamap[i])
2012 			bus_dmamap_destroy(sc->bge_cdata.bge_rx_mtag,
2013 			    sc->bge_cdata.bge_rx_std_dmamap[i]);
2014 	}
2015 	if (sc->bge_cdata.bge_rx_std_sparemap)
2016 		bus_dmamap_destroy(sc->bge_cdata.bge_rx_mtag,
2017 		    sc->bge_cdata.bge_rx_std_sparemap);
2018 
2019 	/* Destroy DMA maps for jumbo RX buffers. */
2020 	for (i = 0; i < BGE_JUMBO_RX_RING_CNT; i++) {
2021 		if (sc->bge_cdata.bge_rx_jumbo_dmamap[i])
2022 			bus_dmamap_destroy(sc->bge_cdata.bge_mtag_jumbo,
2023 			    sc->bge_cdata.bge_rx_jumbo_dmamap[i]);
2024 	}
2025 	if (sc->bge_cdata.bge_rx_jumbo_sparemap)
2026 		bus_dmamap_destroy(sc->bge_cdata.bge_mtag_jumbo,
2027 		    sc->bge_cdata.bge_rx_jumbo_sparemap);
2028 
2029 	/* Destroy DMA maps for TX buffers. */
2030 	for (i = 0; i < BGE_TX_RING_CNT; i++) {
2031 		if (sc->bge_cdata.bge_tx_dmamap[i])
2032 			bus_dmamap_destroy(sc->bge_cdata.bge_tx_mtag,
2033 			    sc->bge_cdata.bge_tx_dmamap[i]);
2034 	}
2035 
2036 	if (sc->bge_cdata.bge_rx_mtag)
2037 		bus_dma_tag_destroy(sc->bge_cdata.bge_rx_mtag);
2038 	if (sc->bge_cdata.bge_tx_mtag)
2039 		bus_dma_tag_destroy(sc->bge_cdata.bge_tx_mtag);
2040 
2041 
2042 	/* Destroy standard RX ring. */
2043 	if (sc->bge_cdata.bge_rx_std_ring_map)
2044 		bus_dmamap_unload(sc->bge_cdata.bge_rx_std_ring_tag,
2045 		    sc->bge_cdata.bge_rx_std_ring_map);
2046 	if (sc->bge_cdata.bge_rx_std_ring_map && sc->bge_ldata.bge_rx_std_ring)
2047 		bus_dmamem_free(sc->bge_cdata.bge_rx_std_ring_tag,
2048 		    sc->bge_ldata.bge_rx_std_ring,
2049 		    sc->bge_cdata.bge_rx_std_ring_map);
2050 
2051 	if (sc->bge_cdata.bge_rx_std_ring_tag)
2052 		bus_dma_tag_destroy(sc->bge_cdata.bge_rx_std_ring_tag);
2053 
2054 	/* Destroy jumbo RX ring. */
2055 	if (sc->bge_cdata.bge_rx_jumbo_ring_map)
2056 		bus_dmamap_unload(sc->bge_cdata.bge_rx_jumbo_ring_tag,
2057 		    sc->bge_cdata.bge_rx_jumbo_ring_map);
2058 
2059 	if (sc->bge_cdata.bge_rx_jumbo_ring_map &&
2060 	    sc->bge_ldata.bge_rx_jumbo_ring)
2061 		bus_dmamem_free(sc->bge_cdata.bge_rx_jumbo_ring_tag,
2062 		    sc->bge_ldata.bge_rx_jumbo_ring,
2063 		    sc->bge_cdata.bge_rx_jumbo_ring_map);
2064 
2065 	if (sc->bge_cdata.bge_rx_jumbo_ring_tag)
2066 		bus_dma_tag_destroy(sc->bge_cdata.bge_rx_jumbo_ring_tag);
2067 
2068 	/* Destroy RX return ring. */
2069 	if (sc->bge_cdata.bge_rx_return_ring_map)
2070 		bus_dmamap_unload(sc->bge_cdata.bge_rx_return_ring_tag,
2071 		    sc->bge_cdata.bge_rx_return_ring_map);
2072 
2073 	if (sc->bge_cdata.bge_rx_return_ring_map &&
2074 	    sc->bge_ldata.bge_rx_return_ring)
2075 		bus_dmamem_free(sc->bge_cdata.bge_rx_return_ring_tag,
2076 		    sc->bge_ldata.bge_rx_return_ring,
2077 		    sc->bge_cdata.bge_rx_return_ring_map);
2078 
2079 	if (sc->bge_cdata.bge_rx_return_ring_tag)
2080 		bus_dma_tag_destroy(sc->bge_cdata.bge_rx_return_ring_tag);
2081 
2082 	/* Destroy TX ring. */
2083 	if (sc->bge_cdata.bge_tx_ring_map)
2084 		bus_dmamap_unload(sc->bge_cdata.bge_tx_ring_tag,
2085 		    sc->bge_cdata.bge_tx_ring_map);
2086 
2087 	if (sc->bge_cdata.bge_tx_ring_map && sc->bge_ldata.bge_tx_ring)
2088 		bus_dmamem_free(sc->bge_cdata.bge_tx_ring_tag,
2089 		    sc->bge_ldata.bge_tx_ring,
2090 		    sc->bge_cdata.bge_tx_ring_map);
2091 
2092 	if (sc->bge_cdata.bge_tx_ring_tag)
2093 		bus_dma_tag_destroy(sc->bge_cdata.bge_tx_ring_tag);
2094 
2095 	/* Destroy status block. */
2096 	if (sc->bge_cdata.bge_status_map)
2097 		bus_dmamap_unload(sc->bge_cdata.bge_status_tag,
2098 		    sc->bge_cdata.bge_status_map);
2099 
2100 	if (sc->bge_cdata.bge_status_map && sc->bge_ldata.bge_status_block)
2101 		bus_dmamem_free(sc->bge_cdata.bge_status_tag,
2102 		    sc->bge_ldata.bge_status_block,
2103 		    sc->bge_cdata.bge_status_map);
2104 
2105 	if (sc->bge_cdata.bge_status_tag)
2106 		bus_dma_tag_destroy(sc->bge_cdata.bge_status_tag);
2107 
2108 	/* Destroy statistics block. */
2109 	if (sc->bge_cdata.bge_stats_map)
2110 		bus_dmamap_unload(sc->bge_cdata.bge_stats_tag,
2111 		    sc->bge_cdata.bge_stats_map);
2112 
2113 	if (sc->bge_cdata.bge_stats_map && sc->bge_ldata.bge_stats)
2114 		bus_dmamem_free(sc->bge_cdata.bge_stats_tag,
2115 		    sc->bge_ldata.bge_stats,
2116 		    sc->bge_cdata.bge_stats_map);
2117 
2118 	if (sc->bge_cdata.bge_stats_tag)
2119 		bus_dma_tag_destroy(sc->bge_cdata.bge_stats_tag);
2120 
2121 	/* Destroy the parent tag. */
2122 	if (sc->bge_cdata.bge_parent_tag)
2123 		bus_dma_tag_destroy(sc->bge_cdata.bge_parent_tag);
2124 }
2125 
2126 static int
2127 bge_dma_alloc(device_t dev)
2128 {
2129 	struct bge_dmamap_arg ctx;
2130 	struct bge_softc *sc;
2131 	bus_addr_t lowaddr;
2132 	bus_size_t sbsz, txsegsz, txmaxsegsz;
2133 	int i, error;
2134 
2135 	sc = device_get_softc(dev);
2136 
2137 	lowaddr = BUS_SPACE_MAXADDR;
2138 	if ((sc->bge_flags & BGE_FLAG_40BIT_BUG) != 0)
2139 		lowaddr = BGE_DMA_MAXADDR;
2140 	if ((sc->bge_flags & BGE_FLAG_4G_BNDRY_BUG) != 0)
2141 		lowaddr = BUS_SPACE_MAXADDR_32BIT;
2142 	/*
2143 	 * Allocate the parent bus DMA tag appropriate for PCI.
2144 	 */
2145 	error = bus_dma_tag_create(bus_get_dma_tag(sc->bge_dev),
2146 	    1, 0, lowaddr, BUS_SPACE_MAXADDR, NULL,
2147 	    NULL, BUS_SPACE_MAXSIZE_32BIT, 0, BUS_SPACE_MAXSIZE_32BIT,
2148 	    0, NULL, NULL, &sc->bge_cdata.bge_parent_tag);
2149 
2150 	if (error != 0) {
2151 		device_printf(sc->bge_dev,
2152 		    "could not allocate parent dma tag\n");
2153 		return (ENOMEM);
2154 	}
2155 
2156 	/*
2157 	 * Create tag for Tx mbufs.
2158 	 */
2159 	if (sc->bge_flags & BGE_FLAG_TSO) {
2160 		txsegsz = BGE_TSOSEG_SZ;
2161 		txmaxsegsz = 65535 + sizeof(struct ether_vlan_header);
2162 	} else {
2163 		txsegsz = MCLBYTES;
2164 		txmaxsegsz = MCLBYTES * BGE_NSEG_NEW;
2165 	}
2166 	error = bus_dma_tag_create(sc->bge_cdata.bge_parent_tag, 1,
2167 	    0, BUS_SPACE_MAXADDR, BUS_SPACE_MAXADDR, NULL, NULL,
2168 	    txmaxsegsz, BGE_NSEG_NEW, txsegsz, 0, NULL, NULL,
2169 	    &sc->bge_cdata.bge_tx_mtag);
2170 
2171 	if (error) {
2172 		device_printf(sc->bge_dev, "could not allocate TX dma tag\n");
2173 		return (ENOMEM);
2174 	}
2175 
2176 	/*
2177 	 * Create tag for Rx mbufs.
2178 	 */
2179 	error = bus_dma_tag_create(sc->bge_cdata.bge_parent_tag, 1, 0,
2180 	    BUS_SPACE_MAXADDR, BUS_SPACE_MAXADDR, NULL, NULL, MCLBYTES, 1,
2181 	    MCLBYTES, 0, NULL, NULL, &sc->bge_cdata.bge_rx_mtag);
2182 
2183 	if (error) {
2184 		device_printf(sc->bge_dev, "could not allocate RX dma tag\n");
2185 		return (ENOMEM);
2186 	}
2187 
2188 	/* Create DMA maps for RX buffers. */
2189 	error = bus_dmamap_create(sc->bge_cdata.bge_rx_mtag, 0,
2190 	    &sc->bge_cdata.bge_rx_std_sparemap);
2191 	if (error) {
2192 		device_printf(sc->bge_dev,
2193 		    "can't create spare DMA map for RX\n");
2194 		return (ENOMEM);
2195 	}
2196 	for (i = 0; i < BGE_STD_RX_RING_CNT; i++) {
2197 		error = bus_dmamap_create(sc->bge_cdata.bge_rx_mtag, 0,
2198 			    &sc->bge_cdata.bge_rx_std_dmamap[i]);
2199 		if (error) {
2200 			device_printf(sc->bge_dev,
2201 			    "can't create DMA map for RX\n");
2202 			return (ENOMEM);
2203 		}
2204 	}
2205 
2206 	/* Create DMA maps for TX buffers. */
2207 	for (i = 0; i < BGE_TX_RING_CNT; i++) {
2208 		error = bus_dmamap_create(sc->bge_cdata.bge_tx_mtag, 0,
2209 			    &sc->bge_cdata.bge_tx_dmamap[i]);
2210 		if (error) {
2211 			device_printf(sc->bge_dev,
2212 			    "can't create DMA map for TX\n");
2213 			return (ENOMEM);
2214 		}
2215 	}
2216 
2217 	/* Create tag for standard RX ring. */
2218 	error = bus_dma_tag_create(sc->bge_cdata.bge_parent_tag,
2219 	    PAGE_SIZE, 0, BUS_SPACE_MAXADDR, BUS_SPACE_MAXADDR, NULL,
2220 	    NULL, BGE_STD_RX_RING_SZ, 1, BGE_STD_RX_RING_SZ, 0,
2221 	    NULL, NULL, &sc->bge_cdata.bge_rx_std_ring_tag);
2222 
2223 	if (error) {
2224 		device_printf(sc->bge_dev, "could not allocate dma tag\n");
2225 		return (ENOMEM);
2226 	}
2227 
2228 	/* Allocate DMA'able memory for standard RX ring. */
2229 	error = bus_dmamem_alloc(sc->bge_cdata.bge_rx_std_ring_tag,
2230 	    (void **)&sc->bge_ldata.bge_rx_std_ring, BUS_DMA_NOWAIT,
2231 	    &sc->bge_cdata.bge_rx_std_ring_map);
2232 	if (error)
2233 		return (ENOMEM);
2234 
2235 	bzero((char *)sc->bge_ldata.bge_rx_std_ring, BGE_STD_RX_RING_SZ);
2236 
2237 	/* Load the address of the standard RX ring. */
2238 	ctx.bge_maxsegs = 1;
2239 	ctx.sc = sc;
2240 
2241 	error = bus_dmamap_load(sc->bge_cdata.bge_rx_std_ring_tag,
2242 	    sc->bge_cdata.bge_rx_std_ring_map, sc->bge_ldata.bge_rx_std_ring,
2243 	    BGE_STD_RX_RING_SZ, bge_dma_map_addr, &ctx, BUS_DMA_NOWAIT);
2244 
2245 	if (error)
2246 		return (ENOMEM);
2247 
2248 	sc->bge_ldata.bge_rx_std_ring_paddr = ctx.bge_busaddr;
2249 
2250 	/* Create tags for jumbo mbufs. */
2251 	if (BGE_IS_JUMBO_CAPABLE(sc)) {
2252 		error = bus_dma_tag_create(sc->bge_cdata.bge_parent_tag,
2253 		    1, 0, BUS_SPACE_MAXADDR, BUS_SPACE_MAXADDR, NULL,
2254 		    NULL, MJUM9BYTES, BGE_NSEG_JUMBO, PAGE_SIZE,
2255 		    0, NULL, NULL, &sc->bge_cdata.bge_mtag_jumbo);
2256 		if (error) {
2257 			device_printf(sc->bge_dev,
2258 			    "could not allocate jumbo dma tag\n");
2259 			return (ENOMEM);
2260 		}
2261 
2262 		/* Create tag for jumbo RX ring. */
2263 		error = bus_dma_tag_create(sc->bge_cdata.bge_parent_tag,
2264 		    PAGE_SIZE, 0, BUS_SPACE_MAXADDR, BUS_SPACE_MAXADDR, NULL,
2265 		    NULL, BGE_JUMBO_RX_RING_SZ, 1, BGE_JUMBO_RX_RING_SZ, 0,
2266 		    NULL, NULL, &sc->bge_cdata.bge_rx_jumbo_ring_tag);
2267 
2268 		if (error) {
2269 			device_printf(sc->bge_dev,
2270 			    "could not allocate jumbo ring dma tag\n");
2271 			return (ENOMEM);
2272 		}
2273 
2274 		/* Allocate DMA'able memory for jumbo RX ring. */
2275 		error = bus_dmamem_alloc(sc->bge_cdata.bge_rx_jumbo_ring_tag,
2276 		    (void **)&sc->bge_ldata.bge_rx_jumbo_ring,
2277 		    BUS_DMA_NOWAIT | BUS_DMA_ZERO,
2278 		    &sc->bge_cdata.bge_rx_jumbo_ring_map);
2279 		if (error)
2280 			return (ENOMEM);
2281 
2282 		/* Load the address of the jumbo RX ring. */
2283 		ctx.bge_maxsegs = 1;
2284 		ctx.sc = sc;
2285 
2286 		error = bus_dmamap_load(sc->bge_cdata.bge_rx_jumbo_ring_tag,
2287 		    sc->bge_cdata.bge_rx_jumbo_ring_map,
2288 		    sc->bge_ldata.bge_rx_jumbo_ring, BGE_JUMBO_RX_RING_SZ,
2289 		    bge_dma_map_addr, &ctx, BUS_DMA_NOWAIT);
2290 
2291 		if (error)
2292 			return (ENOMEM);
2293 
2294 		sc->bge_ldata.bge_rx_jumbo_ring_paddr = ctx.bge_busaddr;
2295 
2296 		/* Create DMA maps for jumbo RX buffers. */
2297 		error = bus_dmamap_create(sc->bge_cdata.bge_mtag_jumbo,
2298 		    0, &sc->bge_cdata.bge_rx_jumbo_sparemap);
2299 		if (error) {
2300 			device_printf(sc->bge_dev,
2301 			    "can't create spare DMA map for jumbo RX\n");
2302 			return (ENOMEM);
2303 		}
2304 		for (i = 0; i < BGE_JUMBO_RX_RING_CNT; i++) {
2305 			error = bus_dmamap_create(sc->bge_cdata.bge_mtag_jumbo,
2306 				    0, &sc->bge_cdata.bge_rx_jumbo_dmamap[i]);
2307 			if (error) {
2308 				device_printf(sc->bge_dev,
2309 				    "can't create DMA map for jumbo RX\n");
2310 				return (ENOMEM);
2311 			}
2312 		}
2313 
2314 	}
2315 
2316 	/* Create tag for RX return ring. */
2317 	error = bus_dma_tag_create(sc->bge_cdata.bge_parent_tag,
2318 	    PAGE_SIZE, 0, BUS_SPACE_MAXADDR, BUS_SPACE_MAXADDR, NULL,
2319 	    NULL, BGE_RX_RTN_RING_SZ(sc), 1, BGE_RX_RTN_RING_SZ(sc), 0,
2320 	    NULL, NULL, &sc->bge_cdata.bge_rx_return_ring_tag);
2321 
2322 	if (error) {
2323 		device_printf(sc->bge_dev, "could not allocate dma tag\n");
2324 		return (ENOMEM);
2325 	}
2326 
2327 	/* Allocate DMA'able memory for RX return ring. */
2328 	error = bus_dmamem_alloc(sc->bge_cdata.bge_rx_return_ring_tag,
2329 	    (void **)&sc->bge_ldata.bge_rx_return_ring, BUS_DMA_NOWAIT,
2330 	    &sc->bge_cdata.bge_rx_return_ring_map);
2331 	if (error)
2332 		return (ENOMEM);
2333 
2334 	bzero((char *)sc->bge_ldata.bge_rx_return_ring,
2335 	    BGE_RX_RTN_RING_SZ(sc));
2336 
2337 	/* Load the address of the RX return ring. */
2338 	ctx.bge_maxsegs = 1;
2339 	ctx.sc = sc;
2340 
2341 	error = bus_dmamap_load(sc->bge_cdata.bge_rx_return_ring_tag,
2342 	    sc->bge_cdata.bge_rx_return_ring_map,
2343 	    sc->bge_ldata.bge_rx_return_ring, BGE_RX_RTN_RING_SZ(sc),
2344 	    bge_dma_map_addr, &ctx, BUS_DMA_NOWAIT);
2345 
2346 	if (error)
2347 		return (ENOMEM);
2348 
2349 	sc->bge_ldata.bge_rx_return_ring_paddr = ctx.bge_busaddr;
2350 
2351 	/* Create tag for TX ring. */
2352 	error = bus_dma_tag_create(sc->bge_cdata.bge_parent_tag,
2353 	    PAGE_SIZE, 0, BUS_SPACE_MAXADDR, BUS_SPACE_MAXADDR, NULL,
2354 	    NULL, BGE_TX_RING_SZ, 1, BGE_TX_RING_SZ, 0, NULL, NULL,
2355 	    &sc->bge_cdata.bge_tx_ring_tag);
2356 
2357 	if (error) {
2358 		device_printf(sc->bge_dev, "could not allocate dma tag\n");
2359 		return (ENOMEM);
2360 	}
2361 
2362 	/* Allocate DMA'able memory for TX ring. */
2363 	error = bus_dmamem_alloc(sc->bge_cdata.bge_tx_ring_tag,
2364 	    (void **)&sc->bge_ldata.bge_tx_ring, BUS_DMA_NOWAIT,
2365 	    &sc->bge_cdata.bge_tx_ring_map);
2366 	if (error)
2367 		return (ENOMEM);
2368 
2369 	bzero((char *)sc->bge_ldata.bge_tx_ring, BGE_TX_RING_SZ);
2370 
2371 	/* Load the address of the TX ring. */
2372 	ctx.bge_maxsegs = 1;
2373 	ctx.sc = sc;
2374 
2375 	error = bus_dmamap_load(sc->bge_cdata.bge_tx_ring_tag,
2376 	    sc->bge_cdata.bge_tx_ring_map, sc->bge_ldata.bge_tx_ring,
2377 	    BGE_TX_RING_SZ, bge_dma_map_addr, &ctx, BUS_DMA_NOWAIT);
2378 
2379 	if (error)
2380 		return (ENOMEM);
2381 
2382 	sc->bge_ldata.bge_tx_ring_paddr = ctx.bge_busaddr;
2383 
2384 	/*
2385 	 * Create tag for status block.
2386 	 * Because we only use single Tx/Rx/Rx return ring, use
2387 	 * minimum status block size except BCM5700 AX/BX which
2388 	 * seems to want to see full status block size regardless
2389 	 * of configured number of ring.
2390 	 */
2391 	if (sc->bge_asicrev == BGE_ASICREV_BCM5700 &&
2392 	    sc->bge_chipid != BGE_CHIPID_BCM5700_C0)
2393 		sbsz = BGE_STATUS_BLK_SZ;
2394 	else
2395 		sbsz = 32;
2396 	error = bus_dma_tag_create(sc->bge_cdata.bge_parent_tag,
2397 	    PAGE_SIZE, 0, BUS_SPACE_MAXADDR, BUS_SPACE_MAXADDR, NULL,
2398 	    NULL, sbsz, 1, sbsz, 0, NULL, NULL, &sc->bge_cdata.bge_status_tag);
2399 
2400 	if (error) {
2401 		device_printf(sc->bge_dev,
2402 		    "could not allocate status dma tag\n");
2403 		return (ENOMEM);
2404 	}
2405 
2406 	/* Allocate DMA'able memory for status block. */
2407 	error = bus_dmamem_alloc(sc->bge_cdata.bge_status_tag,
2408 	    (void **)&sc->bge_ldata.bge_status_block, BUS_DMA_NOWAIT,
2409 	    &sc->bge_cdata.bge_status_map);
2410 	if (error)
2411 		return (ENOMEM);
2412 
2413 	bzero((char *)sc->bge_ldata.bge_status_block, sbsz);
2414 
2415 	/* Load the address of the status block. */
2416 	ctx.sc = sc;
2417 	ctx.bge_maxsegs = 1;
2418 
2419 	error = bus_dmamap_load(sc->bge_cdata.bge_status_tag,
2420 	    sc->bge_cdata.bge_status_map, sc->bge_ldata.bge_status_block,
2421 	    sbsz, bge_dma_map_addr, &ctx, BUS_DMA_NOWAIT);
2422 
2423 	if (error)
2424 		return (ENOMEM);
2425 
2426 	sc->bge_ldata.bge_status_block_paddr = ctx.bge_busaddr;
2427 
2428 	/* Create tag for statistics block. */
2429 	error = bus_dma_tag_create(sc->bge_cdata.bge_parent_tag,
2430 	    PAGE_SIZE, 0, BUS_SPACE_MAXADDR, BUS_SPACE_MAXADDR, NULL,
2431 	    NULL, BGE_STATS_SZ, 1, BGE_STATS_SZ, 0, NULL, NULL,
2432 	    &sc->bge_cdata.bge_stats_tag);
2433 
2434 	if (error) {
2435 		device_printf(sc->bge_dev, "could not allocate dma tag\n");
2436 		return (ENOMEM);
2437 	}
2438 
2439 	/* Allocate DMA'able memory for statistics block. */
2440 	error = bus_dmamem_alloc(sc->bge_cdata.bge_stats_tag,
2441 	    (void **)&sc->bge_ldata.bge_stats, BUS_DMA_NOWAIT,
2442 	    &sc->bge_cdata.bge_stats_map);
2443 	if (error)
2444 		return (ENOMEM);
2445 
2446 	bzero((char *)sc->bge_ldata.bge_stats, BGE_STATS_SZ);
2447 
2448 	/* Load the address of the statstics block. */
2449 	ctx.sc = sc;
2450 	ctx.bge_maxsegs = 1;
2451 
2452 	error = bus_dmamap_load(sc->bge_cdata.bge_stats_tag,
2453 	    sc->bge_cdata.bge_stats_map, sc->bge_ldata.bge_stats,
2454 	    BGE_STATS_SZ, bge_dma_map_addr, &ctx, BUS_DMA_NOWAIT);
2455 
2456 	if (error)
2457 		return (ENOMEM);
2458 
2459 	sc->bge_ldata.bge_stats_paddr = ctx.bge_busaddr;
2460 
2461 	return (0);
2462 }
2463 
2464 /*
2465  * Return true if this device has more than one port.
2466  */
2467 static int
2468 bge_has_multiple_ports(struct bge_softc *sc)
2469 {
2470 	device_t dev = sc->bge_dev;
2471 	u_int b, d, f, fscan, s;
2472 
2473 	d = pci_get_domain(dev);
2474 	b = pci_get_bus(dev);
2475 	s = pci_get_slot(dev);
2476 	f = pci_get_function(dev);
2477 	for (fscan = 0; fscan <= PCI_FUNCMAX; fscan++)
2478 		if (fscan != f && pci_find_dbsf(d, b, s, fscan) != NULL)
2479 			return (1);
2480 	return (0);
2481 }
2482 
2483 /*
2484  * Return true if MSI can be used with this device.
2485  */
2486 static int
2487 bge_can_use_msi(struct bge_softc *sc)
2488 {
2489 	int can_use_msi = 0;
2490 
2491 	switch (sc->bge_asicrev) {
2492 	case BGE_ASICREV_BCM5714_A0:
2493 	case BGE_ASICREV_BCM5714:
2494 		/*
2495 		 * Apparently, MSI doesn't work when these chips are
2496 		 * configured in single-port mode.
2497 		 */
2498 		if (bge_has_multiple_ports(sc))
2499 			can_use_msi = 1;
2500 		break;
2501 	case BGE_ASICREV_BCM5750:
2502 		if (sc->bge_chiprev != BGE_CHIPREV_5750_AX &&
2503 		    sc->bge_chiprev != BGE_CHIPREV_5750_BX)
2504 			can_use_msi = 1;
2505 		break;
2506 	default:
2507 		if (BGE_IS_575X_PLUS(sc))
2508 			can_use_msi = 1;
2509 	}
2510 	return (can_use_msi);
2511 }
2512 
2513 static int
2514 bge_attach(device_t dev)
2515 {
2516 	struct ifnet *ifp;
2517 	struct bge_softc *sc;
2518 	uint32_t hwcfg = 0, misccfg;
2519 	u_char eaddr[ETHER_ADDR_LEN];
2520 	int error, msicount, reg, rid, trys;
2521 
2522 	sc = device_get_softc(dev);
2523 	sc->bge_dev = dev;
2524 
2525 	TASK_INIT(&sc->bge_intr_task, 0, bge_intr_task, sc);
2526 
2527 	/*
2528 	 * Map control/status registers.
2529 	 */
2530 	pci_enable_busmaster(dev);
2531 
2532 	rid = BGE_PCI_BAR0;
2533 	sc->bge_res = bus_alloc_resource_any(dev, SYS_RES_MEMORY, &rid,
2534 	    RF_ACTIVE);
2535 
2536 	if (sc->bge_res == NULL) {
2537 		device_printf (sc->bge_dev, "couldn't map memory\n");
2538 		error = ENXIO;
2539 		goto fail;
2540 	}
2541 
2542 	/* Save various chip information. */
2543 	sc->bge_chipid =
2544 	    pci_read_config(dev, BGE_PCI_MISC_CTL, 4) >>
2545 	    BGE_PCIMISCCTL_ASICREV_SHIFT;
2546 	if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_USE_PRODID_REG)
2547 		sc->bge_chipid = pci_read_config(dev, BGE_PCI_PRODID_ASICREV,
2548 		    4);
2549 	sc->bge_asicrev = BGE_ASICREV(sc->bge_chipid);
2550 	sc->bge_chiprev = BGE_CHIPREV(sc->bge_chipid);
2551 
2552 	/*
2553 	 * Don't enable Ethernet@WireSpeed for the 5700, 5906, or the
2554 	 * 5705 A0 and A1 chips.
2555 	 */
2556 	if (sc->bge_asicrev != BGE_ASICREV_BCM5700 &&
2557 	    sc->bge_asicrev != BGE_ASICREV_BCM5906 &&
2558 	    sc->bge_chipid != BGE_CHIPID_BCM5705_A0 &&
2559 	    sc->bge_chipid != BGE_CHIPID_BCM5705_A1)
2560 		sc->bge_flags |= BGE_FLAG_WIRESPEED;
2561 
2562 	if (bge_has_eaddr(sc))
2563 		sc->bge_flags |= BGE_FLAG_EADDR;
2564 
2565 	/* Save chipset family. */
2566 	switch (sc->bge_asicrev) {
2567 	case BGE_ASICREV_BCM5755:
2568 	case BGE_ASICREV_BCM5761:
2569 	case BGE_ASICREV_BCM5784:
2570 	case BGE_ASICREV_BCM5785:
2571 	case BGE_ASICREV_BCM5787:
2572 	case BGE_ASICREV_BCM57780:
2573 		sc->bge_flags |= BGE_FLAG_5755_PLUS | BGE_FLAG_575X_PLUS |
2574 		    BGE_FLAG_5705_PLUS;
2575 		break;
2576 	case BGE_ASICREV_BCM5700:
2577 	case BGE_ASICREV_BCM5701:
2578 	case BGE_ASICREV_BCM5703:
2579 	case BGE_ASICREV_BCM5704:
2580 		sc->bge_flags |= BGE_FLAG_5700_FAMILY | BGE_FLAG_JUMBO;
2581 		break;
2582 	case BGE_ASICREV_BCM5714_A0:
2583 	case BGE_ASICREV_BCM5780:
2584 	case BGE_ASICREV_BCM5714:
2585 		sc->bge_flags |= BGE_FLAG_5714_FAMILY /* | BGE_FLAG_JUMBO */;
2586 		/* FALLTHROUGH */
2587 	case BGE_ASICREV_BCM5750:
2588 	case BGE_ASICREV_BCM5752:
2589 	case BGE_ASICREV_BCM5906:
2590 		sc->bge_flags |= BGE_FLAG_575X_PLUS;
2591 		/* FALLTHROUGH */
2592 	case BGE_ASICREV_BCM5705:
2593 		sc->bge_flags |= BGE_FLAG_5705_PLUS;
2594 		break;
2595 	}
2596 
2597 	/* Set various bug flags. */
2598 	if (sc->bge_chipid == BGE_CHIPID_BCM5701_A0 ||
2599 	    sc->bge_chipid == BGE_CHIPID_BCM5701_B0)
2600 		sc->bge_flags |= BGE_FLAG_CRC_BUG;
2601 	if (sc->bge_chiprev == BGE_CHIPREV_5703_AX ||
2602 	    sc->bge_chiprev == BGE_CHIPREV_5704_AX)
2603 		sc->bge_flags |= BGE_FLAG_ADC_BUG;
2604 	if (sc->bge_chipid == BGE_CHIPID_BCM5704_A0)
2605 		sc->bge_flags |= BGE_FLAG_5704_A0_BUG;
2606 	if (pci_get_subvendor(dev) == DELL_VENDORID)
2607 		sc->bge_flags |= BGE_FLAG_NO_3LED;
2608 	if (pci_get_device(dev) == BCOM_DEVICEID_BCM5755M)
2609 		sc->bge_flags |= BGE_FLAG_ADJUST_TRIM;
2610 	if (BGE_IS_5705_PLUS(sc) &&
2611 	    !(sc->bge_flags & BGE_FLAG_ADJUST_TRIM)) {
2612 		if (sc->bge_asicrev == BGE_ASICREV_BCM5755 ||
2613 		    sc->bge_asicrev == BGE_ASICREV_BCM5761 ||
2614 		    sc->bge_asicrev == BGE_ASICREV_BCM5784 ||
2615 		    sc->bge_asicrev == BGE_ASICREV_BCM5787) {
2616 			if (pci_get_device(dev) != BCOM_DEVICEID_BCM5722 &&
2617 			    pci_get_device(dev) != BCOM_DEVICEID_BCM5756)
2618 				sc->bge_flags |= BGE_FLAG_JITTER_BUG;
2619 		} else if (sc->bge_asicrev != BGE_ASICREV_BCM5906)
2620 			sc->bge_flags |= BGE_FLAG_BER_BUG;
2621 	}
2622 
2623 	/*
2624 	 * All controllers that are not 5755 or higher have 4GB
2625 	 * boundary DMA bug.
2626 	 * Whenever an address crosses a multiple of the 4GB boundary
2627 	 * (including 4GB, 8Gb, 12Gb, etc.) and makes the transition
2628 	 * from 0xX_FFFF_FFFF to 0x(X+1)_0000_0000 an internal DMA
2629 	 * state machine will lockup and cause the device to hang.
2630 	 */
2631 	if (BGE_IS_5755_PLUS(sc) == 0)
2632 		sc->bge_flags |= BGE_FLAG_4G_BNDRY_BUG;
2633 
2634 	/*
2635 	 * We could possibly check for BCOM_DEVICEID_BCM5788 in bge_probe()
2636 	 * but I do not know the DEVICEID for the 5788M.
2637 	 */
2638 	misccfg = CSR_READ_4(sc, BGE_MISC_CFG) & BGE_MISCCFG_BOARD_ID;
2639 	if (misccfg == BGE_MISCCFG_BOARD_ID_5788 ||
2640 	    misccfg == BGE_MISCCFG_BOARD_ID_5788M)
2641 		sc->bge_flags |= BGE_FLAG_5788;
2642 
2643 	/*
2644 	 * Some controllers seem to require a special firmware to use
2645 	 * TSO. But the firmware is not available to FreeBSD and Linux
2646 	 * claims that the TSO performed by the firmware is slower than
2647 	 * hardware based TSO. Moreover the firmware based TSO has one
2648 	 * known bug which can't handle TSO if ethernet header + IP/TCP
2649 	 * header is greater than 80 bytes. The workaround for the TSO
2650 	 * bug exist but it seems it's too expensive than not using
2651 	 * TSO at all. Some hardwares also have the TSO bug so limit
2652 	 * the TSO to the controllers that are not affected TSO issues
2653 	 * (e.g. 5755 or higher).
2654 	 */
2655 	if (BGE_IS_5755_PLUS(sc)) {
2656 		/*
2657 		 * BCM5754 and BCM5787 shares the same ASIC id so
2658 		 * explicit device id check is required.
2659 		 * Due to unknown reason TSO does not work on BCM5755M.
2660 		 */
2661 		if (pci_get_device(dev) != BCOM_DEVICEID_BCM5754 &&
2662 		    pci_get_device(dev) != BCOM_DEVICEID_BCM5754M &&
2663 		    pci_get_device(dev) != BCOM_DEVICEID_BCM5755M)
2664 			sc->bge_flags |= BGE_FLAG_TSO;
2665 	}
2666 
2667   	/*
2668 	 * Check if this is a PCI-X or PCI Express device.
2669   	 */
2670 	if (pci_find_extcap(dev, PCIY_EXPRESS, &reg) == 0) {
2671 		/*
2672 		 * Found a PCI Express capabilities register, this
2673 		 * must be a PCI Express device.
2674 		 */
2675 		sc->bge_flags |= BGE_FLAG_PCIE;
2676 		sc->bge_expcap = reg;
2677 		bge_set_max_readrq(sc);
2678 	} else {
2679 		/*
2680 		 * Check if the device is in PCI-X Mode.
2681 		 * (This bit is not valid on PCI Express controllers.)
2682 		 */
2683 		if (pci_find_extcap(dev, PCIY_PCIX, &reg) == 0)
2684 			sc->bge_pcixcap = reg;
2685 		if ((pci_read_config(dev, BGE_PCI_PCISTATE, 4) &
2686 		    BGE_PCISTATE_PCI_BUSMODE) == 0)
2687 			sc->bge_flags |= BGE_FLAG_PCIX;
2688 	}
2689 
2690 	/*
2691 	 * The 40bit DMA bug applies to the 5714/5715 controllers and is
2692 	 * not actually a MAC controller bug but an issue with the embedded
2693 	 * PCIe to PCI-X bridge in the device. Use 40bit DMA workaround.
2694 	 */
2695 	if (BGE_IS_5714_FAMILY(sc) && (sc->bge_flags & BGE_FLAG_PCIX))
2696 		sc->bge_flags |= BGE_FLAG_40BIT_BUG;
2697 	/*
2698 	 * Allocate the interrupt, using MSI if possible.  These devices
2699 	 * support 8 MSI messages, but only the first one is used in
2700 	 * normal operation.
2701 	 */
2702 	rid = 0;
2703 	if (pci_find_extcap(sc->bge_dev, PCIY_MSI, &reg) == 0) {
2704 		sc->bge_msicap = reg;
2705 		if (bge_can_use_msi(sc)) {
2706 			msicount = pci_msi_count(dev);
2707 			if (msicount > 1)
2708 				msicount = 1;
2709 		} else
2710 			msicount = 0;
2711 		if (msicount == 1 && pci_alloc_msi(dev, &msicount) == 0) {
2712 			rid = 1;
2713 			sc->bge_flags |= BGE_FLAG_MSI;
2714 		}
2715 	}
2716 
2717 	sc->bge_irq = bus_alloc_resource_any(dev, SYS_RES_IRQ, &rid,
2718 	    RF_SHAREABLE | RF_ACTIVE);
2719 
2720 	if (sc->bge_irq == NULL) {
2721 		device_printf(sc->bge_dev, "couldn't map interrupt\n");
2722 		error = ENXIO;
2723 		goto fail;
2724 	}
2725 
2726 	if (bootverbose)
2727 		device_printf(dev,
2728 		    "CHIP ID 0x%08x; ASIC REV 0x%02x; CHIP REV 0x%02x; %s\n",
2729 		    sc->bge_chipid, sc->bge_asicrev, sc->bge_chiprev,
2730 		    (sc->bge_flags & BGE_FLAG_PCIX) ? "PCI-X" :
2731 		    ((sc->bge_flags & BGE_FLAG_PCIE) ? "PCI-E" : "PCI"));
2732 
2733 	BGE_LOCK_INIT(sc, device_get_nameunit(dev));
2734 
2735 	/* Try to reset the chip. */
2736 	if (bge_reset(sc)) {
2737 		device_printf(sc->bge_dev, "chip reset failed\n");
2738 		error = ENXIO;
2739 		goto fail;
2740 	}
2741 
2742 	sc->bge_asf_mode = 0;
2743 	if (bge_allow_asf && (bge_readmem_ind(sc, BGE_SOFTWARE_GENCOMM_SIG)
2744 	    == BGE_MAGIC_NUMBER)) {
2745 		if (bge_readmem_ind(sc, BGE_SOFTWARE_GENCOMM_NICCFG)
2746 		    & BGE_HWCFG_ASF) {
2747 			sc->bge_asf_mode |= ASF_ENABLE;
2748 			sc->bge_asf_mode |= ASF_STACKUP;
2749 			if (BGE_IS_575X_PLUS(sc))
2750 				sc->bge_asf_mode |= ASF_NEW_HANDSHAKE;
2751 		}
2752 	}
2753 
2754 	/* Try to reset the chip again the nice way. */
2755 	bge_stop_fw(sc);
2756 	bge_sig_pre_reset(sc, BGE_RESET_STOP);
2757 	if (bge_reset(sc)) {
2758 		device_printf(sc->bge_dev, "chip reset failed\n");
2759 		error = ENXIO;
2760 		goto fail;
2761 	}
2762 
2763 	bge_sig_legacy(sc, BGE_RESET_STOP);
2764 	bge_sig_post_reset(sc, BGE_RESET_STOP);
2765 
2766 	if (bge_chipinit(sc)) {
2767 		device_printf(sc->bge_dev, "chip initialization failed\n");
2768 		error = ENXIO;
2769 		goto fail;
2770 	}
2771 
2772 	error = bge_get_eaddr(sc, eaddr);
2773 	if (error) {
2774 		device_printf(sc->bge_dev,
2775 		    "failed to read station address\n");
2776 		error = ENXIO;
2777 		goto fail;
2778 	}
2779 
2780 	/* 5705 limits RX return ring to 512 entries. */
2781 	if (BGE_IS_5705_PLUS(sc))
2782 		sc->bge_return_ring_cnt = BGE_RETURN_RING_CNT_5705;
2783 	else
2784 		sc->bge_return_ring_cnt = BGE_RETURN_RING_CNT;
2785 
2786 	if (bge_dma_alloc(dev)) {
2787 		device_printf(sc->bge_dev,
2788 		    "failed to allocate DMA resources\n");
2789 		error = ENXIO;
2790 		goto fail;
2791 	}
2792 
2793 	/* Set default tuneable values. */
2794 	sc->bge_stat_ticks = BGE_TICKS_PER_SEC;
2795 	sc->bge_rx_coal_ticks = 150;
2796 	sc->bge_tx_coal_ticks = 150;
2797 	sc->bge_rx_max_coal_bds = 10;
2798 	sc->bge_tx_max_coal_bds = 10;
2799 
2800 	/* Set up ifnet structure */
2801 	ifp = sc->bge_ifp = if_alloc(IFT_ETHER);
2802 	if (ifp == NULL) {
2803 		device_printf(sc->bge_dev, "failed to if_alloc()\n");
2804 		error = ENXIO;
2805 		goto fail;
2806 	}
2807 	ifp->if_softc = sc;
2808 	if_initname(ifp, device_get_name(dev), device_get_unit(dev));
2809 	ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
2810 	ifp->if_ioctl = bge_ioctl;
2811 	ifp->if_start = bge_start;
2812 	ifp->if_init = bge_init;
2813 	ifp->if_snd.ifq_drv_maxlen = BGE_TX_RING_CNT - 1;
2814 	IFQ_SET_MAXLEN(&ifp->if_snd, ifp->if_snd.ifq_drv_maxlen);
2815 	IFQ_SET_READY(&ifp->if_snd);
2816 	ifp->if_hwassist = BGE_CSUM_FEATURES;
2817 	ifp->if_capabilities = IFCAP_HWCSUM | IFCAP_VLAN_HWTAGGING |
2818 	    IFCAP_VLAN_MTU;
2819 	if ((sc->bge_flags & BGE_FLAG_TSO) != 0) {
2820 		ifp->if_hwassist |= CSUM_TSO;
2821 		ifp->if_capabilities |= IFCAP_TSO4 | IFCAP_VLAN_HWTSO;
2822 	}
2823 #ifdef IFCAP_VLAN_HWCSUM
2824 	ifp->if_capabilities |= IFCAP_VLAN_HWCSUM;
2825 #endif
2826 	ifp->if_capenable = ifp->if_capabilities;
2827 #ifdef DEVICE_POLLING
2828 	ifp->if_capabilities |= IFCAP_POLLING;
2829 #endif
2830 
2831 	/*
2832 	 * 5700 B0 chips do not support checksumming correctly due
2833 	 * to hardware bugs.
2834 	 */
2835 	if (sc->bge_chipid == BGE_CHIPID_BCM5700_B0) {
2836 		ifp->if_capabilities &= ~IFCAP_HWCSUM;
2837 		ifp->if_capenable &= ~IFCAP_HWCSUM;
2838 		ifp->if_hwassist = 0;
2839 	}
2840 
2841 	/*
2842 	 * Figure out what sort of media we have by checking the
2843 	 * hardware config word in the first 32k of NIC internal memory,
2844 	 * or fall back to examining the EEPROM if necessary.
2845 	 * Note: on some BCM5700 cards, this value appears to be unset.
2846 	 * If that's the case, we have to rely on identifying the NIC
2847 	 * by its PCI subsystem ID, as we do below for the SysKonnect
2848 	 * SK-9D41.
2849 	 */
2850 	if (bge_readmem_ind(sc, BGE_SOFTWARE_GENCOMM_SIG) == BGE_MAGIC_NUMBER)
2851 		hwcfg = bge_readmem_ind(sc, BGE_SOFTWARE_GENCOMM_NICCFG);
2852 	else if ((sc->bge_flags & BGE_FLAG_EADDR) &&
2853 	    (sc->bge_asicrev != BGE_ASICREV_BCM5906)) {
2854 		if (bge_read_eeprom(sc, (caddr_t)&hwcfg, BGE_EE_HWCFG_OFFSET,
2855 		    sizeof(hwcfg))) {
2856 			device_printf(sc->bge_dev, "failed to read EEPROM\n");
2857 			error = ENXIO;
2858 			goto fail;
2859 		}
2860 		hwcfg = ntohl(hwcfg);
2861 	}
2862 
2863 	/* The SysKonnect SK-9D41 is a 1000baseSX card. */
2864 	if ((pci_read_config(dev, BGE_PCI_SUBSYS, 4) >> 16) ==
2865 	    SK_SUBSYSID_9D41 || (hwcfg & BGE_HWCFG_MEDIA) == BGE_MEDIA_FIBER) {
2866 		if (BGE_IS_5714_FAMILY(sc))
2867 			sc->bge_flags |= BGE_FLAG_MII_SERDES;
2868 		else
2869 			sc->bge_flags |= BGE_FLAG_TBI;
2870 	}
2871 
2872 	if (sc->bge_flags & BGE_FLAG_TBI) {
2873 		ifmedia_init(&sc->bge_ifmedia, IFM_IMASK, bge_ifmedia_upd,
2874 		    bge_ifmedia_sts);
2875 		ifmedia_add(&sc->bge_ifmedia, IFM_ETHER | IFM_1000_SX, 0, NULL);
2876 		ifmedia_add(&sc->bge_ifmedia, IFM_ETHER | IFM_1000_SX | IFM_FDX,
2877 		    0, NULL);
2878 		ifmedia_add(&sc->bge_ifmedia, IFM_ETHER | IFM_AUTO, 0, NULL);
2879 		ifmedia_set(&sc->bge_ifmedia, IFM_ETHER | IFM_AUTO);
2880 		sc->bge_ifmedia.ifm_media = sc->bge_ifmedia.ifm_cur->ifm_media;
2881 	} else {
2882 		/*
2883 		 * Do transceiver setup and tell the firmware the
2884 		 * driver is down so we can try to get access the
2885 		 * probe if ASF is running.  Retry a couple of times
2886 		 * if we get a conflict with the ASF firmware accessing
2887 		 * the PHY.
2888 		 */
2889 		trys = 0;
2890 		BGE_CLRBIT(sc, BGE_MODE_CTL, BGE_MODECTL_STACKUP);
2891 again:
2892 		bge_asf_driver_up(sc);
2893 
2894 		if (mii_phy_probe(dev, &sc->bge_miibus,
2895 		    bge_ifmedia_upd, bge_ifmedia_sts)) {
2896 			if (trys++ < 4) {
2897 				device_printf(sc->bge_dev, "Try again\n");
2898 				bge_miibus_writereg(sc->bge_dev, 1, MII_BMCR,
2899 				    BMCR_RESET);
2900 				goto again;
2901 			}
2902 
2903 			device_printf(sc->bge_dev, "MII without any PHY!\n");
2904 			error = ENXIO;
2905 			goto fail;
2906 		}
2907 
2908 		/*
2909 		 * Now tell the firmware we are going up after probing the PHY
2910 		 */
2911 		if (sc->bge_asf_mode & ASF_STACKUP)
2912 			BGE_SETBIT(sc, BGE_MODE_CTL, BGE_MODECTL_STACKUP);
2913 	}
2914 
2915 	/*
2916 	 * When using the BCM5701 in PCI-X mode, data corruption has
2917 	 * been observed in the first few bytes of some received packets.
2918 	 * Aligning the packet buffer in memory eliminates the corruption.
2919 	 * Unfortunately, this misaligns the packet payloads.  On platforms
2920 	 * which do not support unaligned accesses, we will realign the
2921 	 * payloads by copying the received packets.
2922 	 */
2923 	if (sc->bge_asicrev == BGE_ASICREV_BCM5701 &&
2924 	    sc->bge_flags & BGE_FLAG_PCIX)
2925                 sc->bge_flags |= BGE_FLAG_RX_ALIGNBUG;
2926 
2927 	/*
2928 	 * Call MI attach routine.
2929 	 */
2930 	ether_ifattach(ifp, eaddr);
2931 	callout_init_mtx(&sc->bge_stat_ch, &sc->bge_mtx, 0);
2932 
2933 	/* Tell upper layer we support long frames. */
2934 	ifp->if_data.ifi_hdrlen = sizeof(struct ether_vlan_header);
2935 
2936 	/*
2937 	 * Hookup IRQ last.
2938 	 */
2939 #if __FreeBSD_version > 700030
2940 	if (BGE_IS_5755_PLUS(sc) && sc->bge_flags & BGE_FLAG_MSI) {
2941 		/* Take advantage of single-shot MSI. */
2942 		CSR_WRITE_4(sc, BGE_MSI_MODE, CSR_READ_4(sc, BGE_MSI_MODE) &
2943 		    ~BGE_MSIMODE_ONE_SHOT_DISABLE);
2944 		sc->bge_tq = taskqueue_create_fast("bge_taskq", M_WAITOK,
2945 		    taskqueue_thread_enqueue, &sc->bge_tq);
2946 		if (sc->bge_tq == NULL) {
2947 			device_printf(dev, "could not create taskqueue.\n");
2948 			ether_ifdetach(ifp);
2949 			error = ENXIO;
2950 			goto fail;
2951 		}
2952 		taskqueue_start_threads(&sc->bge_tq, 1, PI_NET, "%s taskq",
2953 		    device_get_nameunit(sc->bge_dev));
2954 		error = bus_setup_intr(dev, sc->bge_irq,
2955 		    INTR_TYPE_NET | INTR_MPSAFE, bge_msi_intr, NULL, sc,
2956 		    &sc->bge_intrhand);
2957 		if (error)
2958 			ether_ifdetach(ifp);
2959 	} else
2960 		error = bus_setup_intr(dev, sc->bge_irq,
2961 		    INTR_TYPE_NET | INTR_MPSAFE, NULL, bge_intr, sc,
2962 		    &sc->bge_intrhand);
2963 #else
2964 	error = bus_setup_intr(dev, sc->bge_irq, INTR_TYPE_NET | INTR_MPSAFE,
2965 	   bge_intr, sc, &sc->bge_intrhand);
2966 #endif
2967 
2968 	if (error) {
2969 		bge_detach(dev);
2970 		device_printf(sc->bge_dev, "couldn't set up irq\n");
2971 	}
2972 
2973 	bge_add_sysctls(sc);
2974 
2975 	return (0);
2976 
2977 fail:
2978 	bge_release_resources(sc);
2979 
2980 	return (error);
2981 }
2982 
2983 static int
2984 bge_detach(device_t dev)
2985 {
2986 	struct bge_softc *sc;
2987 	struct ifnet *ifp;
2988 
2989 	sc = device_get_softc(dev);
2990 	ifp = sc->bge_ifp;
2991 
2992 #ifdef DEVICE_POLLING
2993 	if (ifp->if_capenable & IFCAP_POLLING)
2994 		ether_poll_deregister(ifp);
2995 #endif
2996 
2997 	BGE_LOCK(sc);
2998 	bge_stop(sc);
2999 	bge_reset(sc);
3000 	BGE_UNLOCK(sc);
3001 
3002 	callout_drain(&sc->bge_stat_ch);
3003 
3004 	if (sc->bge_tq)
3005 		taskqueue_drain(sc->bge_tq, &sc->bge_intr_task);
3006 	ether_ifdetach(ifp);
3007 
3008 	if (sc->bge_flags & BGE_FLAG_TBI) {
3009 		ifmedia_removeall(&sc->bge_ifmedia);
3010 	} else {
3011 		bus_generic_detach(dev);
3012 		device_delete_child(dev, sc->bge_miibus);
3013 	}
3014 
3015 	bge_release_resources(sc);
3016 
3017 	return (0);
3018 }
3019 
3020 static void
3021 bge_release_resources(struct bge_softc *sc)
3022 {
3023 	device_t dev;
3024 
3025 	dev = sc->bge_dev;
3026 
3027 	if (sc->bge_tq != NULL)
3028 		taskqueue_free(sc->bge_tq);
3029 
3030 	if (sc->bge_intrhand != NULL)
3031 		bus_teardown_intr(dev, sc->bge_irq, sc->bge_intrhand);
3032 
3033 	if (sc->bge_irq != NULL)
3034 		bus_release_resource(dev, SYS_RES_IRQ,
3035 		    sc->bge_flags & BGE_FLAG_MSI ? 1 : 0, sc->bge_irq);
3036 
3037 	if (sc->bge_flags & BGE_FLAG_MSI)
3038 		pci_release_msi(dev);
3039 
3040 	if (sc->bge_res != NULL)
3041 		bus_release_resource(dev, SYS_RES_MEMORY,
3042 		    BGE_PCI_BAR0, sc->bge_res);
3043 
3044 	if (sc->bge_ifp != NULL)
3045 		if_free(sc->bge_ifp);
3046 
3047 	bge_dma_free(sc);
3048 
3049 	if (mtx_initialized(&sc->bge_mtx))	/* XXX */
3050 		BGE_LOCK_DESTROY(sc);
3051 }
3052 
3053 static int
3054 bge_reset(struct bge_softc *sc)
3055 {
3056 	device_t dev;
3057 	uint32_t cachesize, command, pcistate, reset, val;
3058 	void (*write_op)(struct bge_softc *, int, int);
3059 	uint16_t devctl;
3060 	int i;
3061 
3062 	dev = sc->bge_dev;
3063 
3064 	if (BGE_IS_575X_PLUS(sc) && !BGE_IS_5714_FAMILY(sc) &&
3065 	    (sc->bge_asicrev != BGE_ASICREV_BCM5906)) {
3066 		if (sc->bge_flags & BGE_FLAG_PCIE)
3067 			write_op = bge_writemem_direct;
3068 		else
3069 			write_op = bge_writemem_ind;
3070 	} else
3071 		write_op = bge_writereg_ind;
3072 
3073 	/* Save some important PCI state. */
3074 	cachesize = pci_read_config(dev, BGE_PCI_CACHESZ, 4);
3075 	command = pci_read_config(dev, BGE_PCI_CMD, 4);
3076 	pcistate = pci_read_config(dev, BGE_PCI_PCISTATE, 4);
3077 
3078 	pci_write_config(dev, BGE_PCI_MISC_CTL,
3079 	    BGE_PCIMISCCTL_INDIRECT_ACCESS | BGE_PCIMISCCTL_MASK_PCI_INTR |
3080 	    BGE_HIF_SWAP_OPTIONS | BGE_PCIMISCCTL_PCISTATE_RW, 4);
3081 
3082 	/* Disable fastboot on controllers that support it. */
3083 	if (sc->bge_asicrev == BGE_ASICREV_BCM5752 ||
3084 	    BGE_IS_5755_PLUS(sc)) {
3085 		if (bootverbose)
3086 			device_printf(sc->bge_dev, "Disabling fastboot\n");
3087 		CSR_WRITE_4(sc, BGE_FASTBOOT_PC, 0x0);
3088 	}
3089 
3090 	/*
3091 	 * Write the magic number to SRAM at offset 0xB50.
3092 	 * When firmware finishes its initialization it will
3093 	 * write ~BGE_MAGIC_NUMBER to the same location.
3094 	 */
3095 	bge_writemem_ind(sc, BGE_SOFTWARE_GENCOMM, BGE_MAGIC_NUMBER);
3096 
3097 	reset = BGE_MISCCFG_RESET_CORE_CLOCKS | BGE_32BITTIME_66MHZ;
3098 
3099 	/* XXX: Broadcom Linux driver. */
3100 	if (sc->bge_flags & BGE_FLAG_PCIE) {
3101 		if (CSR_READ_4(sc, 0x7E2C) == 0x60)	/* PCIE 1.0 */
3102 			CSR_WRITE_4(sc, 0x7E2C, 0x20);
3103 		if (sc->bge_chipid != BGE_CHIPID_BCM5750_A0) {
3104 			/* Prevent PCIE link training during global reset */
3105 			CSR_WRITE_4(sc, BGE_MISC_CFG, 1 << 29);
3106 			reset |= 1 << 29;
3107 		}
3108 	}
3109 
3110 	/*
3111 	 * Set GPHY Power Down Override to leave GPHY
3112 	 * powered up in D0 uninitialized.
3113 	 */
3114 	if (BGE_IS_5705_PLUS(sc))
3115 		reset |= 0x04000000;
3116 
3117 	/* Issue global reset */
3118 	write_op(sc, BGE_MISC_CFG, reset);
3119 
3120 	if (sc->bge_asicrev == BGE_ASICREV_BCM5906) {
3121 		val = CSR_READ_4(sc, BGE_VCPU_STATUS);
3122 		CSR_WRITE_4(sc, BGE_VCPU_STATUS,
3123 		    val | BGE_VCPU_STATUS_DRV_RESET);
3124 		val = CSR_READ_4(sc, BGE_VCPU_EXT_CTRL);
3125 		CSR_WRITE_4(sc, BGE_VCPU_EXT_CTRL,
3126 		    val & ~BGE_VCPU_EXT_CTRL_HALT_CPU);
3127 	}
3128 
3129 	DELAY(1000);
3130 
3131 	/* XXX: Broadcom Linux driver. */
3132 	if (sc->bge_flags & BGE_FLAG_PCIE) {
3133 		if (sc->bge_chipid == BGE_CHIPID_BCM5750_A0) {
3134 			DELAY(500000); /* wait for link training to complete */
3135 			val = pci_read_config(dev, 0xC4, 4);
3136 			pci_write_config(dev, 0xC4, val | (1 << 15), 4);
3137 		}
3138 		devctl = pci_read_config(dev,
3139 		    sc->bge_expcap + PCIR_EXPRESS_DEVICE_CTL, 2);
3140 		/* Clear enable no snoop and disable relaxed ordering. */
3141 		devctl &= ~(PCIM_EXP_CTL_RELAXED_ORD_ENABLE |
3142 		    PCIM_EXP_CTL_NOSNOOP_ENABLE);
3143 		/* Set PCIE max payload size to 128. */
3144 		devctl &= ~PCIM_EXP_CTL_MAX_PAYLOAD;
3145 		pci_write_config(dev, sc->bge_expcap + PCIR_EXPRESS_DEVICE_CTL,
3146 		    devctl, 2);
3147 		/* Clear error status. */
3148 		pci_write_config(dev, sc->bge_expcap + PCIR_EXPRESS_DEVICE_STA,
3149 		    PCIM_EXP_STA_CORRECTABLE_ERROR |
3150 		    PCIM_EXP_STA_NON_FATAL_ERROR | PCIM_EXP_STA_FATAL_ERROR |
3151 		    PCIM_EXP_STA_UNSUPPORTED_REQ, 2);
3152 	}
3153 
3154 	/* Reset some of the PCI state that got zapped by reset. */
3155 	pci_write_config(dev, BGE_PCI_MISC_CTL,
3156 	    BGE_PCIMISCCTL_INDIRECT_ACCESS | BGE_PCIMISCCTL_MASK_PCI_INTR |
3157 	    BGE_HIF_SWAP_OPTIONS | BGE_PCIMISCCTL_PCISTATE_RW, 4);
3158 	pci_write_config(dev, BGE_PCI_CACHESZ, cachesize, 4);
3159 	pci_write_config(dev, BGE_PCI_CMD, command, 4);
3160 	write_op(sc, BGE_MISC_CFG, BGE_32BITTIME_66MHZ);
3161 
3162 	/* Re-enable MSI, if neccesary, and enable the memory arbiter. */
3163 	if (BGE_IS_5714_FAMILY(sc)) {
3164 		/* This chip disables MSI on reset. */
3165 		if (sc->bge_flags & BGE_FLAG_MSI) {
3166 			val = pci_read_config(dev,
3167 			    sc->bge_msicap + PCIR_MSI_CTRL, 2);
3168 			pci_write_config(dev,
3169 			    sc->bge_msicap + PCIR_MSI_CTRL,
3170 			    val | PCIM_MSICTRL_MSI_ENABLE, 2);
3171 			val = CSR_READ_4(sc, BGE_MSI_MODE);
3172 			CSR_WRITE_4(sc, BGE_MSI_MODE,
3173 			    val | BGE_MSIMODE_ENABLE);
3174 		}
3175 		val = CSR_READ_4(sc, BGE_MARB_MODE);
3176 		CSR_WRITE_4(sc, BGE_MARB_MODE, BGE_MARBMODE_ENABLE | val);
3177 	} else
3178 		CSR_WRITE_4(sc, BGE_MARB_MODE, BGE_MARBMODE_ENABLE);
3179 
3180 	if (sc->bge_asicrev == BGE_ASICREV_BCM5906) {
3181 		for (i = 0; i < BGE_TIMEOUT; i++) {
3182 			val = CSR_READ_4(sc, BGE_VCPU_STATUS);
3183 			if (val & BGE_VCPU_STATUS_INIT_DONE)
3184 				break;
3185 			DELAY(100);
3186 		}
3187 		if (i == BGE_TIMEOUT) {
3188 			device_printf(sc->bge_dev, "reset timed out\n");
3189 			return (1);
3190 		}
3191 	} else {
3192 		/*
3193 		 * Poll until we see the 1's complement of the magic number.
3194 		 * This indicates that the firmware initialization is complete.
3195 		 * We expect this to fail if no chip containing the Ethernet
3196 		 * address is fitted though.
3197 		 */
3198 		for (i = 0; i < BGE_TIMEOUT; i++) {
3199 			DELAY(10);
3200 			val = bge_readmem_ind(sc, BGE_SOFTWARE_GENCOMM);
3201 			if (val == ~BGE_MAGIC_NUMBER)
3202 				break;
3203 		}
3204 
3205 		if ((sc->bge_flags & BGE_FLAG_EADDR) && i == BGE_TIMEOUT)
3206 			device_printf(sc->bge_dev, "firmware handshake timed out, "
3207 			    "found 0x%08x\n", val);
3208 	}
3209 
3210 	/*
3211 	 * XXX Wait for the value of the PCISTATE register to
3212 	 * return to its original pre-reset state. This is a
3213 	 * fairly good indicator of reset completion. If we don't
3214 	 * wait for the reset to fully complete, trying to read
3215 	 * from the device's non-PCI registers may yield garbage
3216 	 * results.
3217 	 */
3218 	for (i = 0; i < BGE_TIMEOUT; i++) {
3219 		if (pci_read_config(dev, BGE_PCI_PCISTATE, 4) == pcistate)
3220 			break;
3221 		DELAY(10);
3222 	}
3223 
3224 	if (sc->bge_flags & BGE_FLAG_PCIE) {
3225 		reset = bge_readmem_ind(sc, 0x7C00);
3226 		bge_writemem_ind(sc, 0x7C00, reset | (1 << 25));
3227 	}
3228 
3229 	/* Fix up byte swapping. */
3230 	CSR_WRITE_4(sc, BGE_MODE_CTL, BGE_DMA_SWAP_OPTIONS |
3231 	    BGE_MODECTL_BYTESWAP_DATA);
3232 
3233 	/* Tell the ASF firmware we are up */
3234 	if (sc->bge_asf_mode & ASF_STACKUP)
3235 		BGE_SETBIT(sc, BGE_MODE_CTL, BGE_MODECTL_STACKUP);
3236 
3237 	CSR_WRITE_4(sc, BGE_MAC_MODE, 0);
3238 
3239 	/*
3240 	 * The 5704 in TBI mode apparently needs some special
3241 	 * adjustment to insure the SERDES drive level is set
3242 	 * to 1.2V.
3243 	 */
3244 	if (sc->bge_asicrev == BGE_ASICREV_BCM5704 &&
3245 	    sc->bge_flags & BGE_FLAG_TBI) {
3246 		val = CSR_READ_4(sc, BGE_SERDES_CFG);
3247 		val = (val & ~0xFFF) | 0x880;
3248 		CSR_WRITE_4(sc, BGE_SERDES_CFG, val);
3249 	}
3250 
3251 	/* XXX: Broadcom Linux driver. */
3252 	if (sc->bge_flags & BGE_FLAG_PCIE &&
3253 	    sc->bge_chipid != BGE_CHIPID_BCM5750_A0) {
3254 		val = CSR_READ_4(sc, 0x7C00);
3255 		CSR_WRITE_4(sc, 0x7C00, val | (1 << 25));
3256 	}
3257 	DELAY(10000);
3258 
3259 	return(0);
3260 }
3261 
3262 /*
3263  * Frame reception handling. This is called if there's a frame
3264  * on the receive return list.
3265  *
3266  * Note: we have to be able to handle two possibilities here:
3267  * 1) the frame is from the jumbo receive ring
3268  * 2) the frame is from the standard receive ring
3269  */
3270 
3271 static int
3272 bge_rxeof(struct bge_softc *sc, uint16_t rx_prod, int holdlck)
3273 {
3274 	struct ifnet *ifp;
3275 	int rx_npkts = 0, stdcnt = 0, jumbocnt = 0;
3276 	uint16_t rx_cons;
3277 
3278 	rx_cons = sc->bge_rx_saved_considx;
3279 
3280 	/* Nothing to do. */
3281 	if (rx_cons == rx_prod)
3282 		return (rx_npkts);
3283 
3284 	ifp = sc->bge_ifp;
3285 
3286 	bus_dmamap_sync(sc->bge_cdata.bge_rx_return_ring_tag,
3287 	    sc->bge_cdata.bge_rx_return_ring_map, BUS_DMASYNC_POSTREAD);
3288 	bus_dmamap_sync(sc->bge_cdata.bge_rx_std_ring_tag,
3289 	    sc->bge_cdata.bge_rx_std_ring_map, BUS_DMASYNC_POSTWRITE);
3290 	if (ifp->if_mtu + ETHER_HDR_LEN + ETHER_CRC_LEN + ETHER_VLAN_ENCAP_LEN >
3291 	    (MCLBYTES - ETHER_ALIGN))
3292 		bus_dmamap_sync(sc->bge_cdata.bge_rx_jumbo_ring_tag,
3293 		    sc->bge_cdata.bge_rx_jumbo_ring_map, BUS_DMASYNC_POSTWRITE);
3294 
3295 	while (rx_cons != rx_prod) {
3296 		struct bge_rx_bd	*cur_rx;
3297 		uint32_t		rxidx;
3298 		struct mbuf		*m = NULL;
3299 		uint16_t		vlan_tag = 0;
3300 		int			have_tag = 0;
3301 
3302 #ifdef DEVICE_POLLING
3303 		if (ifp->if_capenable & IFCAP_POLLING) {
3304 			if (sc->rxcycles <= 0)
3305 				break;
3306 			sc->rxcycles--;
3307 		}
3308 #endif
3309 
3310 		cur_rx = &sc->bge_ldata.bge_rx_return_ring[rx_cons];
3311 
3312 		rxidx = cur_rx->bge_idx;
3313 		BGE_INC(rx_cons, sc->bge_return_ring_cnt);
3314 
3315 		if (ifp->if_capenable & IFCAP_VLAN_HWTAGGING &&
3316 		    cur_rx->bge_flags & BGE_RXBDFLAG_VLAN_TAG) {
3317 			have_tag = 1;
3318 			vlan_tag = cur_rx->bge_vlan_tag;
3319 		}
3320 
3321 		if (cur_rx->bge_flags & BGE_RXBDFLAG_JUMBO_RING) {
3322 			jumbocnt++;
3323 			m = sc->bge_cdata.bge_rx_jumbo_chain[rxidx];
3324 			if (cur_rx->bge_flags & BGE_RXBDFLAG_ERROR) {
3325 				BGE_INC(sc->bge_jumbo, BGE_JUMBO_RX_RING_CNT);
3326 				continue;
3327 			}
3328 			if (bge_newbuf_jumbo(sc, rxidx) != 0) {
3329 				BGE_INC(sc->bge_jumbo, BGE_JUMBO_RX_RING_CNT);
3330 				ifp->if_iqdrops++;
3331 				continue;
3332 			}
3333 			BGE_INC(sc->bge_jumbo, BGE_JUMBO_RX_RING_CNT);
3334 		} else {
3335 			stdcnt++;
3336 			if (cur_rx->bge_flags & BGE_RXBDFLAG_ERROR) {
3337 				BGE_INC(sc->bge_std, BGE_STD_RX_RING_CNT);
3338 				continue;
3339 			}
3340 			m = sc->bge_cdata.bge_rx_std_chain[rxidx];
3341 			if (bge_newbuf_std(sc, rxidx) != 0) {
3342 				BGE_INC(sc->bge_std, BGE_STD_RX_RING_CNT);
3343 				ifp->if_iqdrops++;
3344 				continue;
3345 			}
3346 			BGE_INC(sc->bge_std, BGE_STD_RX_RING_CNT);
3347 		}
3348 
3349 		ifp->if_ipackets++;
3350 #ifndef __NO_STRICT_ALIGNMENT
3351 		/*
3352 		 * For architectures with strict alignment we must make sure
3353 		 * the payload is aligned.
3354 		 */
3355 		if (sc->bge_flags & BGE_FLAG_RX_ALIGNBUG) {
3356 			bcopy(m->m_data, m->m_data + ETHER_ALIGN,
3357 			    cur_rx->bge_len);
3358 			m->m_data += ETHER_ALIGN;
3359 		}
3360 #endif
3361 		m->m_pkthdr.len = m->m_len = cur_rx->bge_len - ETHER_CRC_LEN;
3362 		m->m_pkthdr.rcvif = ifp;
3363 
3364 		if (ifp->if_capenable & IFCAP_RXCSUM) {
3365 			if (cur_rx->bge_flags & BGE_RXBDFLAG_IP_CSUM) {
3366 				m->m_pkthdr.csum_flags |= CSUM_IP_CHECKED;
3367 				if ((cur_rx->bge_ip_csum ^ 0xFFFF) == 0)
3368 					m->m_pkthdr.csum_flags |= CSUM_IP_VALID;
3369 			}
3370 			if (cur_rx->bge_flags & BGE_RXBDFLAG_TCP_UDP_CSUM &&
3371 			    m->m_pkthdr.len >= ETHER_MIN_NOPAD) {
3372 				m->m_pkthdr.csum_data =
3373 				    cur_rx->bge_tcp_udp_csum;
3374 				m->m_pkthdr.csum_flags |=
3375 				    CSUM_DATA_VALID | CSUM_PSEUDO_HDR;
3376 			}
3377 		}
3378 
3379 		/*
3380 		 * If we received a packet with a vlan tag,
3381 		 * attach that information to the packet.
3382 		 */
3383 		if (have_tag) {
3384 #if __FreeBSD_version > 700022
3385 			m->m_pkthdr.ether_vtag = vlan_tag;
3386 			m->m_flags |= M_VLANTAG;
3387 #else
3388 			VLAN_INPUT_TAG_NEW(ifp, m, vlan_tag);
3389 			if (m == NULL)
3390 				continue;
3391 #endif
3392 		}
3393 
3394 		if (holdlck != 0) {
3395 			BGE_UNLOCK(sc);
3396 			(*ifp->if_input)(ifp, m);
3397 			BGE_LOCK(sc);
3398 		} else
3399 			(*ifp->if_input)(ifp, m);
3400 		rx_npkts++;
3401 
3402 		if (!(ifp->if_drv_flags & IFF_DRV_RUNNING))
3403 			return (rx_npkts);
3404 	}
3405 
3406 	bus_dmamap_sync(sc->bge_cdata.bge_rx_return_ring_tag,
3407 	    sc->bge_cdata.bge_rx_return_ring_map, BUS_DMASYNC_PREREAD);
3408 	if (stdcnt > 0)
3409 		bus_dmamap_sync(sc->bge_cdata.bge_rx_std_ring_tag,
3410 		    sc->bge_cdata.bge_rx_std_ring_map, BUS_DMASYNC_PREWRITE);
3411 
3412 	if (jumbocnt > 0)
3413 		bus_dmamap_sync(sc->bge_cdata.bge_rx_jumbo_ring_tag,
3414 		    sc->bge_cdata.bge_rx_jumbo_ring_map, BUS_DMASYNC_PREWRITE);
3415 
3416 	sc->bge_rx_saved_considx = rx_cons;
3417 	bge_writembx(sc, BGE_MBX_RX_CONS0_LO, sc->bge_rx_saved_considx);
3418 	if (stdcnt)
3419 		bge_writembx(sc, BGE_MBX_RX_STD_PROD_LO, sc->bge_std);
3420 	if (jumbocnt)
3421 		bge_writembx(sc, BGE_MBX_RX_JUMBO_PROD_LO, sc->bge_jumbo);
3422 #ifdef notyet
3423 	/*
3424 	 * This register wraps very quickly under heavy packet drops.
3425 	 * If you need correct statistics, you can enable this check.
3426 	 */
3427 	if (BGE_IS_5705_PLUS(sc))
3428 		ifp->if_ierrors += CSR_READ_4(sc, BGE_RXLP_LOCSTAT_IFIN_DROPS);
3429 #endif
3430 	return (rx_npkts);
3431 }
3432 
3433 static void
3434 bge_txeof(struct bge_softc *sc, uint16_t tx_cons)
3435 {
3436 	struct bge_tx_bd *cur_tx = NULL;
3437 	struct ifnet *ifp;
3438 
3439 	BGE_LOCK_ASSERT(sc);
3440 
3441 	/* Nothing to do. */
3442 	if (sc->bge_tx_saved_considx == tx_cons)
3443 		return;
3444 
3445 	ifp = sc->bge_ifp;
3446 
3447 	bus_dmamap_sync(sc->bge_cdata.bge_tx_ring_tag,
3448 	    sc->bge_cdata.bge_tx_ring_map, BUS_DMASYNC_POSTWRITE);
3449 	/*
3450 	 * Go through our tx ring and free mbufs for those
3451 	 * frames that have been sent.
3452 	 */
3453 	while (sc->bge_tx_saved_considx != tx_cons) {
3454 		uint32_t		idx = 0;
3455 
3456 		idx = sc->bge_tx_saved_considx;
3457 		cur_tx = &sc->bge_ldata.bge_tx_ring[idx];
3458 		if (cur_tx->bge_flags & BGE_TXBDFLAG_END)
3459 			ifp->if_opackets++;
3460 		if (sc->bge_cdata.bge_tx_chain[idx] != NULL) {
3461 			bus_dmamap_sync(sc->bge_cdata.bge_tx_mtag,
3462 			    sc->bge_cdata.bge_tx_dmamap[idx],
3463 			    BUS_DMASYNC_POSTWRITE);
3464 			bus_dmamap_unload(sc->bge_cdata.bge_tx_mtag,
3465 			    sc->bge_cdata.bge_tx_dmamap[idx]);
3466 			m_freem(sc->bge_cdata.bge_tx_chain[idx]);
3467 			sc->bge_cdata.bge_tx_chain[idx] = NULL;
3468 		}
3469 		sc->bge_txcnt--;
3470 		BGE_INC(sc->bge_tx_saved_considx, BGE_TX_RING_CNT);
3471 	}
3472 
3473 	if (cur_tx != NULL)
3474 		ifp->if_drv_flags &= ~IFF_DRV_OACTIVE;
3475 	if (sc->bge_txcnt == 0)
3476 		sc->bge_timer = 0;
3477 }
3478 
3479 #ifdef DEVICE_POLLING
3480 static int
3481 bge_poll(struct ifnet *ifp, enum poll_cmd cmd, int count)
3482 {
3483 	struct bge_softc *sc = ifp->if_softc;
3484 	uint16_t rx_prod, tx_cons;
3485 	uint32_t statusword;
3486 	int rx_npkts = 0;
3487 
3488 	BGE_LOCK(sc);
3489 	if (!(ifp->if_drv_flags & IFF_DRV_RUNNING)) {
3490 		BGE_UNLOCK(sc);
3491 		return (rx_npkts);
3492 	}
3493 
3494 	bus_dmamap_sync(sc->bge_cdata.bge_status_tag,
3495 	    sc->bge_cdata.bge_status_map,
3496 	    BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE);
3497 	rx_prod = sc->bge_ldata.bge_status_block->bge_idx[0].bge_rx_prod_idx;
3498 	tx_cons = sc->bge_ldata.bge_status_block->bge_idx[0].bge_tx_cons_idx;
3499 
3500 	statusword = atomic_readandclear_32(
3501 	    &sc->bge_ldata.bge_status_block->bge_status);
3502 
3503 	bus_dmamap_sync(sc->bge_cdata.bge_status_tag,
3504 	    sc->bge_cdata.bge_status_map,
3505 	    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
3506 
3507 	/* Note link event. It will be processed by POLL_AND_CHECK_STATUS. */
3508 	if (statusword & BGE_STATFLAG_LINKSTATE_CHANGED)
3509 		sc->bge_link_evt++;
3510 
3511 	if (cmd == POLL_AND_CHECK_STATUS)
3512 		if ((sc->bge_asicrev == BGE_ASICREV_BCM5700 &&
3513 		    sc->bge_chipid != BGE_CHIPID_BCM5700_B2) ||
3514 		    sc->bge_link_evt || (sc->bge_flags & BGE_FLAG_TBI))
3515 			bge_link_upd(sc);
3516 
3517 	sc->rxcycles = count;
3518 	rx_npkts = bge_rxeof(sc, rx_prod, 1);
3519 	if (!(ifp->if_drv_flags & IFF_DRV_RUNNING)) {
3520 		BGE_UNLOCK(sc);
3521 		return (rx_npkts);
3522 	}
3523 	bge_txeof(sc, tx_cons);
3524 	if (!IFQ_DRV_IS_EMPTY(&ifp->if_snd))
3525 		bge_start_locked(ifp);
3526 
3527 	BGE_UNLOCK(sc);
3528 	return (rx_npkts);
3529 }
3530 #endif /* DEVICE_POLLING */
3531 
3532 static int
3533 bge_msi_intr(void *arg)
3534 {
3535 	struct bge_softc *sc;
3536 
3537 	sc = (struct bge_softc *)arg;
3538 	/*
3539 	 * This interrupt is not shared and controller already
3540 	 * disabled further interrupt.
3541 	 */
3542 	taskqueue_enqueue(sc->bge_tq, &sc->bge_intr_task);
3543 	return (FILTER_HANDLED);
3544 }
3545 
3546 static void
3547 bge_intr_task(void *arg, int pending)
3548 {
3549 	struct bge_softc *sc;
3550 	struct ifnet *ifp;
3551 	uint32_t status;
3552 	uint16_t rx_prod, tx_cons;
3553 
3554 	sc = (struct bge_softc *)arg;
3555 	ifp = sc->bge_ifp;
3556 
3557 	if ((ifp->if_drv_flags & IFF_DRV_RUNNING) == 0)
3558 		return;
3559 
3560 	/* Get updated status block. */
3561 	bus_dmamap_sync(sc->bge_cdata.bge_status_tag,
3562 	    sc->bge_cdata.bge_status_map,
3563 	    BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE);
3564 
3565 	/* Save producer/consumer indexess. */
3566 	rx_prod = sc->bge_ldata.bge_status_block->bge_idx[0].bge_rx_prod_idx;
3567 	tx_cons = sc->bge_ldata.bge_status_block->bge_idx[0].bge_tx_cons_idx;
3568 	status = sc->bge_ldata.bge_status_block->bge_status;
3569 	sc->bge_ldata.bge_status_block->bge_status = 0;
3570 	bus_dmamap_sync(sc->bge_cdata.bge_status_tag,
3571 	    sc->bge_cdata.bge_status_map,
3572 	    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
3573 	/* Let controller work. */
3574 	bge_writembx(sc, BGE_MBX_IRQ0_LO, 0);
3575 
3576 	if ((status & BGE_STATFLAG_LINKSTATE_CHANGED) != 0) {
3577 		BGE_LOCK(sc);
3578 		bge_link_upd(sc);
3579 		BGE_UNLOCK(sc);
3580 	}
3581 	if (ifp->if_drv_flags & IFF_DRV_RUNNING) {
3582 		/* Check RX return ring producer/consumer. */
3583 		bge_rxeof(sc, rx_prod, 0);
3584 	}
3585 	if (ifp->if_drv_flags & IFF_DRV_RUNNING) {
3586 		BGE_LOCK(sc);
3587 		/* Check TX ring producer/consumer. */
3588 		bge_txeof(sc, tx_cons);
3589 	    	if (!IFQ_DRV_IS_EMPTY(&ifp->if_snd))
3590 			bge_start_locked(ifp);
3591 		BGE_UNLOCK(sc);
3592 	}
3593 }
3594 
3595 static void
3596 bge_intr(void *xsc)
3597 {
3598 	struct bge_softc *sc;
3599 	struct ifnet *ifp;
3600 	uint32_t statusword;
3601 	uint16_t rx_prod, tx_cons;
3602 
3603 	sc = xsc;
3604 
3605 	BGE_LOCK(sc);
3606 
3607 	ifp = sc->bge_ifp;
3608 
3609 #ifdef DEVICE_POLLING
3610 	if (ifp->if_capenable & IFCAP_POLLING) {
3611 		BGE_UNLOCK(sc);
3612 		return;
3613 	}
3614 #endif
3615 
3616 	/*
3617 	 * Ack the interrupt by writing something to BGE_MBX_IRQ0_LO.  Don't
3618 	 * disable interrupts by writing nonzero like we used to, since with
3619 	 * our current organization this just gives complications and
3620 	 * pessimizations for re-enabling interrupts.  We used to have races
3621 	 * instead of the necessary complications.  Disabling interrupts
3622 	 * would just reduce the chance of a status update while we are
3623 	 * running (by switching to the interrupt-mode coalescence
3624 	 * parameters), but this chance is already very low so it is more
3625 	 * efficient to get another interrupt than prevent it.
3626 	 *
3627 	 * We do the ack first to ensure another interrupt if there is a
3628 	 * status update after the ack.  We don't check for the status
3629 	 * changing later because it is more efficient to get another
3630 	 * interrupt than prevent it, not quite as above (not checking is
3631 	 * a smaller optimization than not toggling the interrupt enable,
3632 	 * since checking doesn't involve PCI accesses and toggling require
3633 	 * the status check).  So toggling would probably be a pessimization
3634 	 * even with MSI.  It would only be needed for using a task queue.
3635 	 */
3636 	bge_writembx(sc, BGE_MBX_IRQ0_LO, 0);
3637 
3638 	/*
3639 	 * Do the mandatory PCI flush as well as get the link status.
3640 	 */
3641 	statusword = CSR_READ_4(sc, BGE_MAC_STS) & BGE_MACSTAT_LINK_CHANGED;
3642 
3643 	/* Make sure the descriptor ring indexes are coherent. */
3644 	bus_dmamap_sync(sc->bge_cdata.bge_status_tag,
3645 	    sc->bge_cdata.bge_status_map,
3646 	    BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE);
3647 	rx_prod = sc->bge_ldata.bge_status_block->bge_idx[0].bge_rx_prod_idx;
3648 	tx_cons = sc->bge_ldata.bge_status_block->bge_idx[0].bge_tx_cons_idx;
3649 	sc->bge_ldata.bge_status_block->bge_status = 0;
3650 	bus_dmamap_sync(sc->bge_cdata.bge_status_tag,
3651 	    sc->bge_cdata.bge_status_map,
3652 	    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
3653 
3654 	if ((sc->bge_asicrev == BGE_ASICREV_BCM5700 &&
3655 	    sc->bge_chipid != BGE_CHIPID_BCM5700_B2) ||
3656 	    statusword || sc->bge_link_evt)
3657 		bge_link_upd(sc);
3658 
3659 	if (ifp->if_drv_flags & IFF_DRV_RUNNING) {
3660 		/* Check RX return ring producer/consumer. */
3661 		bge_rxeof(sc, rx_prod, 1);
3662 	}
3663 
3664 	if (ifp->if_drv_flags & IFF_DRV_RUNNING) {
3665 		/* Check TX ring producer/consumer. */
3666 		bge_txeof(sc, tx_cons);
3667 	}
3668 
3669 	if (ifp->if_drv_flags & IFF_DRV_RUNNING &&
3670 	    !IFQ_DRV_IS_EMPTY(&ifp->if_snd))
3671 		bge_start_locked(ifp);
3672 
3673 	BGE_UNLOCK(sc);
3674 }
3675 
3676 static void
3677 bge_asf_driver_up(struct bge_softc *sc)
3678 {
3679 	if (sc->bge_asf_mode & ASF_STACKUP) {
3680 		/* Send ASF heartbeat aprox. every 2s */
3681 		if (sc->bge_asf_count)
3682 			sc->bge_asf_count --;
3683 		else {
3684 			sc->bge_asf_count = 2;
3685 			bge_writemem_ind(sc, BGE_SOFTWARE_GENCOMM_FW,
3686 			    BGE_FW_DRV_ALIVE);
3687 			bge_writemem_ind(sc, BGE_SOFTWARE_GENNCOMM_FW_LEN, 4);
3688 			bge_writemem_ind(sc, BGE_SOFTWARE_GENNCOMM_FW_DATA, 3);
3689 			CSR_WRITE_4(sc, BGE_CPU_EVENT,
3690 			    CSR_READ_4(sc, BGE_CPU_EVENT) | (1 << 14));
3691 		}
3692 	}
3693 }
3694 
3695 static void
3696 bge_tick(void *xsc)
3697 {
3698 	struct bge_softc *sc = xsc;
3699 	struct mii_data *mii = NULL;
3700 
3701 	BGE_LOCK_ASSERT(sc);
3702 
3703 	/* Synchronize with possible callout reset/stop. */
3704 	if (callout_pending(&sc->bge_stat_ch) ||
3705 	    !callout_active(&sc->bge_stat_ch))
3706 	    	return;
3707 
3708 	if (BGE_IS_5705_PLUS(sc))
3709 		bge_stats_update_regs(sc);
3710 	else
3711 		bge_stats_update(sc);
3712 
3713 	if ((sc->bge_flags & BGE_FLAG_TBI) == 0) {
3714 		mii = device_get_softc(sc->bge_miibus);
3715 		/*
3716 		 * Do not touch PHY if we have link up. This could break
3717 		 * IPMI/ASF mode or produce extra input errors
3718 		 * (extra errors was reported for bcm5701 & bcm5704).
3719 		 */
3720 		if (!sc->bge_link)
3721 			mii_tick(mii);
3722 	} else {
3723 		/*
3724 		 * Since in TBI mode auto-polling can't be used we should poll
3725 		 * link status manually. Here we register pending link event
3726 		 * and trigger interrupt.
3727 		 */
3728 #ifdef DEVICE_POLLING
3729 		/* In polling mode we poll link state in bge_poll(). */
3730 		if (!(sc->bge_ifp->if_capenable & IFCAP_POLLING))
3731 #endif
3732 		{
3733 		sc->bge_link_evt++;
3734 		if (sc->bge_asicrev == BGE_ASICREV_BCM5700 ||
3735 		    sc->bge_flags & BGE_FLAG_5788)
3736 			BGE_SETBIT(sc, BGE_MISC_LOCAL_CTL, BGE_MLC_INTR_SET);
3737 		else
3738 			BGE_SETBIT(sc, BGE_HCC_MODE, BGE_HCCMODE_COAL_NOW);
3739 		}
3740 	}
3741 
3742 	bge_asf_driver_up(sc);
3743 	bge_watchdog(sc);
3744 
3745 	callout_reset(&sc->bge_stat_ch, hz, bge_tick, sc);
3746 }
3747 
3748 static void
3749 bge_stats_update_regs(struct bge_softc *sc)
3750 {
3751 	struct ifnet *ifp;
3752 
3753 	ifp = sc->bge_ifp;
3754 
3755 	ifp->if_collisions += CSR_READ_4(sc, BGE_MAC_STATS +
3756 	    offsetof(struct bge_mac_stats_regs, etherStatsCollisions));
3757 
3758 	ifp->if_ierrors += CSR_READ_4(sc, BGE_RXLP_LOCSTAT_OUT_OF_BDS);
3759 	ifp->if_ierrors += CSR_READ_4(sc, BGE_RXLP_LOCSTAT_IFIN_DROPS);
3760 	ifp->if_ierrors += CSR_READ_4(sc, BGE_RXLP_LOCSTAT_IFIN_ERRORS);
3761 }
3762 
3763 static void
3764 bge_stats_update(struct bge_softc *sc)
3765 {
3766 	struct ifnet *ifp;
3767 	bus_size_t stats;
3768 	uint32_t cnt;	/* current register value */
3769 
3770 	ifp = sc->bge_ifp;
3771 
3772 	stats = BGE_MEMWIN_START + BGE_STATS_BLOCK;
3773 
3774 #define	READ_STAT(sc, stats, stat) \
3775 	CSR_READ_4(sc, stats + offsetof(struct bge_stats, stat))
3776 
3777 	cnt = READ_STAT(sc, stats, txstats.etherStatsCollisions.bge_addr_lo);
3778 	ifp->if_collisions += (uint32_t)(cnt - sc->bge_tx_collisions);
3779 	sc->bge_tx_collisions = cnt;
3780 
3781 	cnt = READ_STAT(sc, stats, ifInDiscards.bge_addr_lo);
3782 	ifp->if_ierrors += (uint32_t)(cnt - sc->bge_rx_discards);
3783 	sc->bge_rx_discards = cnt;
3784 
3785 	cnt = READ_STAT(sc, stats, txstats.ifOutDiscards.bge_addr_lo);
3786 	ifp->if_oerrors += (uint32_t)(cnt - sc->bge_tx_discards);
3787 	sc->bge_tx_discards = cnt;
3788 
3789 #undef	READ_STAT
3790 }
3791 
3792 /*
3793  * Pad outbound frame to ETHER_MIN_NOPAD for an unusual reason.
3794  * The bge hardware will pad out Tx runts to ETHER_MIN_NOPAD,
3795  * but when such padded frames employ the bge IP/TCP checksum offload,
3796  * the hardware checksum assist gives incorrect results (possibly
3797  * from incorporating its own padding into the UDP/TCP checksum; who knows).
3798  * If we pad such runts with zeros, the onboard checksum comes out correct.
3799  */
3800 static __inline int
3801 bge_cksum_pad(struct mbuf *m)
3802 {
3803 	int padlen = ETHER_MIN_NOPAD - m->m_pkthdr.len;
3804 	struct mbuf *last;
3805 
3806 	/* If there's only the packet-header and we can pad there, use it. */
3807 	if (m->m_pkthdr.len == m->m_len && M_WRITABLE(m) &&
3808 	    M_TRAILINGSPACE(m) >= padlen) {
3809 		last = m;
3810 	} else {
3811 		/*
3812 		 * Walk packet chain to find last mbuf. We will either
3813 		 * pad there, or append a new mbuf and pad it.
3814 		 */
3815 		for (last = m; last->m_next != NULL; last = last->m_next);
3816 		if (!(M_WRITABLE(last) && M_TRAILINGSPACE(last) >= padlen)) {
3817 			/* Allocate new empty mbuf, pad it. Compact later. */
3818 			struct mbuf *n;
3819 
3820 			MGET(n, M_DONTWAIT, MT_DATA);
3821 			if (n == NULL)
3822 				return (ENOBUFS);
3823 			n->m_len = 0;
3824 			last->m_next = n;
3825 			last = n;
3826 		}
3827 	}
3828 
3829 	/* Now zero the pad area, to avoid the bge cksum-assist bug. */
3830 	memset(mtod(last, caddr_t) + last->m_len, 0, padlen);
3831 	last->m_len += padlen;
3832 	m->m_pkthdr.len += padlen;
3833 
3834 	return (0);
3835 }
3836 
3837 static struct mbuf *
3838 bge_setup_tso(struct bge_softc *sc, struct mbuf *m, uint16_t *mss)
3839 {
3840 	struct ip *ip;
3841 	struct tcphdr *tcp;
3842 	struct mbuf *n;
3843 	uint16_t hlen;
3844 	uint32_t poff;
3845 
3846 	if (M_WRITABLE(m) == 0) {
3847 		/* Get a writable copy. */
3848 		n = m_dup(m, M_DONTWAIT);
3849 		m_freem(m);
3850 		if (n == NULL)
3851 			return (NULL);
3852 		m = n;
3853 	}
3854 	m = m_pullup(m, sizeof(struct ether_header) + sizeof(struct ip));
3855 	if (m == NULL)
3856 		return (NULL);
3857 	ip = (struct ip *)(mtod(m, char *) + sizeof(struct ether_header));
3858 	poff = sizeof(struct ether_header) + (ip->ip_hl << 2);
3859 	m = m_pullup(m, poff + sizeof(struct tcphdr));
3860 	if (m == NULL)
3861 		return (NULL);
3862 	tcp = (struct tcphdr *)(mtod(m, char *) + poff);
3863 	m = m_pullup(m, poff + (tcp->th_off << 2));
3864 	if (m == NULL)
3865 		return (NULL);
3866 	/*
3867 	 * It seems controller doesn't modify IP length and TCP pseudo
3868 	 * checksum. These checksum computed by upper stack should be 0.
3869 	 */
3870 	*mss = m->m_pkthdr.tso_segsz;
3871 	ip->ip_sum = 0;
3872 	ip->ip_len = htons(*mss + (ip->ip_hl << 2) + (tcp->th_off << 2));
3873 	/* Clear pseudo checksum computed by TCP stack. */
3874 	tcp->th_sum = 0;
3875 	/*
3876 	 * Broadcom controllers uses different descriptor format for
3877 	 * TSO depending on ASIC revision. Due to TSO-capable firmware
3878 	 * license issue and lower performance of firmware based TSO
3879 	 * we only support hardware based TSO which is applicable for
3880 	 * BCM5755 or newer controllers. Hardware based TSO uses 11
3881 	 * bits to store MSS and upper 5 bits are used to store IP/TCP
3882 	 * header length(including IP/TCP options). The header length
3883 	 * is expressed as 32 bits unit.
3884 	 */
3885 	hlen = ((ip->ip_hl << 2) + (tcp->th_off << 2)) >> 2;
3886 	*mss |= (hlen << 11);
3887 	return (m);
3888 }
3889 
3890 /*
3891  * Encapsulate an mbuf chain in the tx ring  by coupling the mbuf data
3892  * pointers to descriptors.
3893  */
3894 static int
3895 bge_encap(struct bge_softc *sc, struct mbuf **m_head, uint32_t *txidx)
3896 {
3897 	bus_dma_segment_t	segs[BGE_NSEG_NEW];
3898 	bus_dmamap_t		map;
3899 	struct bge_tx_bd	*d;
3900 	struct mbuf		*m = *m_head;
3901 	uint32_t		idx = *txidx;
3902 	uint16_t		csum_flags, mss, vlan_tag;
3903 	int			nsegs, i, error;
3904 
3905 	csum_flags = 0;
3906 	mss = 0;
3907 	vlan_tag = 0;
3908 	if ((m->m_pkthdr.csum_flags & CSUM_TSO) != 0) {
3909 		*m_head = m = bge_setup_tso(sc, m, &mss);
3910 		if (*m_head == NULL)
3911 			return (ENOBUFS);
3912 		csum_flags |= BGE_TXBDFLAG_CPU_PRE_DMA |
3913 		    BGE_TXBDFLAG_CPU_POST_DMA;
3914 	} else if ((m->m_pkthdr.csum_flags & BGE_CSUM_FEATURES) != 0) {
3915 		if (m->m_pkthdr.csum_flags & CSUM_IP)
3916 			csum_flags |= BGE_TXBDFLAG_IP_CSUM;
3917 		if (m->m_pkthdr.csum_flags & (CSUM_TCP | CSUM_UDP)) {
3918 			csum_flags |= BGE_TXBDFLAG_TCP_UDP_CSUM;
3919 			if (m->m_pkthdr.len < ETHER_MIN_NOPAD &&
3920 			    (error = bge_cksum_pad(m)) != 0) {
3921 				m_freem(m);
3922 				*m_head = NULL;
3923 				return (error);
3924 			}
3925 		}
3926 		if (m->m_flags & M_LASTFRAG)
3927 			csum_flags |= BGE_TXBDFLAG_IP_FRAG_END;
3928 		else if (m->m_flags & M_FRAG)
3929 			csum_flags |= BGE_TXBDFLAG_IP_FRAG;
3930 	}
3931 
3932 	if ((m->m_pkthdr.csum_flags & CSUM_TSO) == 0 &&
3933 	    sc->bge_forced_collapse > 0 &&
3934 	    (sc->bge_flags & BGE_FLAG_PCIE) != 0 && m->m_next != NULL) {
3935 		/*
3936 		 * Forcedly collapse mbuf chains to overcome hardware
3937 		 * limitation which only support a single outstanding
3938 		 * DMA read operation.
3939 		 */
3940 		if (sc->bge_forced_collapse == 1)
3941 			m = m_defrag(m, M_DONTWAIT);
3942 		else
3943 			m = m_collapse(m, M_DONTWAIT, sc->bge_forced_collapse);
3944 		if (m == NULL)
3945 			m = *m_head;
3946 		*m_head = m;
3947 	}
3948 
3949 	map = sc->bge_cdata.bge_tx_dmamap[idx];
3950 	error = bus_dmamap_load_mbuf_sg(sc->bge_cdata.bge_tx_mtag, map, m, segs,
3951 	    &nsegs, BUS_DMA_NOWAIT);
3952 	if (error == EFBIG) {
3953 		m = m_collapse(m, M_DONTWAIT, BGE_NSEG_NEW);
3954 		if (m == NULL) {
3955 			m_freem(*m_head);
3956 			*m_head = NULL;
3957 			return (ENOBUFS);
3958 		}
3959 		*m_head = m;
3960 		error = bus_dmamap_load_mbuf_sg(sc->bge_cdata.bge_tx_mtag, map,
3961 		    m, segs, &nsegs, BUS_DMA_NOWAIT);
3962 		if (error) {
3963 			m_freem(m);
3964 			*m_head = NULL;
3965 			return (error);
3966 		}
3967 	} else if (error != 0)
3968 		return (error);
3969 
3970 	/* Check if we have enough free send BDs. */
3971 	if (sc->bge_txcnt + nsegs >= BGE_TX_RING_CNT) {
3972 		bus_dmamap_unload(sc->bge_cdata.bge_tx_mtag, map);
3973 		return (ENOBUFS);
3974 	}
3975 
3976 	bus_dmamap_sync(sc->bge_cdata.bge_tx_mtag, map, BUS_DMASYNC_PREWRITE);
3977 
3978 #if __FreeBSD_version > 700022
3979 	if (m->m_flags & M_VLANTAG) {
3980 		csum_flags |= BGE_TXBDFLAG_VLAN_TAG;
3981 		vlan_tag = m->m_pkthdr.ether_vtag;
3982 	}
3983 #else
3984 	{
3985 		struct m_tag		*mtag;
3986 
3987 		if ((mtag = VLAN_OUTPUT_TAG(sc->bge_ifp, m)) != NULL) {
3988 			csum_flags |= BGE_TXBDFLAG_VLAN_TAG;
3989 			vlan_tag = VLAN_TAG_VALUE(mtag);
3990 		}
3991 	}
3992 #endif
3993 	for (i = 0; ; i++) {
3994 		d = &sc->bge_ldata.bge_tx_ring[idx];
3995 		d->bge_addr.bge_addr_lo = BGE_ADDR_LO(segs[i].ds_addr);
3996 		d->bge_addr.bge_addr_hi = BGE_ADDR_HI(segs[i].ds_addr);
3997 		d->bge_len = segs[i].ds_len;
3998 		d->bge_flags = csum_flags;
3999 		d->bge_vlan_tag = vlan_tag;
4000 		d->bge_mss = mss;
4001 		if (i == nsegs - 1)
4002 			break;
4003 		BGE_INC(idx, BGE_TX_RING_CNT);
4004 	}
4005 
4006 	/* Mark the last segment as end of packet... */
4007 	d->bge_flags |= BGE_TXBDFLAG_END;
4008 
4009 	/*
4010 	 * Insure that the map for this transmission
4011 	 * is placed at the array index of the last descriptor
4012 	 * in this chain.
4013 	 */
4014 	sc->bge_cdata.bge_tx_dmamap[*txidx] = sc->bge_cdata.bge_tx_dmamap[idx];
4015 	sc->bge_cdata.bge_tx_dmamap[idx] = map;
4016 	sc->bge_cdata.bge_tx_chain[idx] = m;
4017 	sc->bge_txcnt += nsegs;
4018 
4019 	BGE_INC(idx, BGE_TX_RING_CNT);
4020 	*txidx = idx;
4021 
4022 	return (0);
4023 }
4024 
4025 /*
4026  * Main transmit routine. To avoid having to do mbuf copies, we put pointers
4027  * to the mbuf data regions directly in the transmit descriptors.
4028  */
4029 static void
4030 bge_start_locked(struct ifnet *ifp)
4031 {
4032 	struct bge_softc *sc;
4033 	struct mbuf *m_head;
4034 	uint32_t prodidx;
4035 	int count;
4036 
4037 	sc = ifp->if_softc;
4038 	BGE_LOCK_ASSERT(sc);
4039 
4040 	if (!sc->bge_link ||
4041 	    (ifp->if_drv_flags & (IFF_DRV_RUNNING | IFF_DRV_OACTIVE)) !=
4042 	    IFF_DRV_RUNNING)
4043 		return;
4044 
4045 	prodidx = sc->bge_tx_prodidx;
4046 
4047 	for (count = 0; !IFQ_DRV_IS_EMPTY(&ifp->if_snd);) {
4048 		if (sc->bge_txcnt > BGE_TX_RING_CNT - 16) {
4049 			ifp->if_drv_flags |= IFF_DRV_OACTIVE;
4050 			break;
4051 		}
4052 		IFQ_DRV_DEQUEUE(&ifp->if_snd, m_head);
4053 		if (m_head == NULL)
4054 			break;
4055 
4056 		/*
4057 		 * XXX
4058 		 * The code inside the if() block is never reached since we
4059 		 * must mark CSUM_IP_FRAGS in our if_hwassist to start getting
4060 		 * requests to checksum TCP/UDP in a fragmented packet.
4061 		 *
4062 		 * XXX
4063 		 * safety overkill.  If this is a fragmented packet chain
4064 		 * with delayed TCP/UDP checksums, then only encapsulate
4065 		 * it if we have enough descriptors to handle the entire
4066 		 * chain at once.
4067 		 * (paranoia -- may not actually be needed)
4068 		 */
4069 		if (m_head->m_flags & M_FIRSTFRAG &&
4070 		    m_head->m_pkthdr.csum_flags & (CSUM_DELAY_DATA)) {
4071 			if ((BGE_TX_RING_CNT - sc->bge_txcnt) <
4072 			    m_head->m_pkthdr.csum_data + 16) {
4073 				IFQ_DRV_PREPEND(&ifp->if_snd, m_head);
4074 				ifp->if_drv_flags |= IFF_DRV_OACTIVE;
4075 				break;
4076 			}
4077 		}
4078 
4079 		/*
4080 		 * Pack the data into the transmit ring. If we
4081 		 * don't have room, set the OACTIVE flag and wait
4082 		 * for the NIC to drain the ring.
4083 		 */
4084 		if (bge_encap(sc, &m_head, &prodidx)) {
4085 			if (m_head == NULL)
4086 				break;
4087 			IFQ_DRV_PREPEND(&ifp->if_snd, m_head);
4088 			ifp->if_drv_flags |= IFF_DRV_OACTIVE;
4089 			break;
4090 		}
4091 		++count;
4092 
4093 		/*
4094 		 * If there's a BPF listener, bounce a copy of this frame
4095 		 * to him.
4096 		 */
4097 #ifdef ETHER_BPF_MTAP
4098 		ETHER_BPF_MTAP(ifp, m_head);
4099 #else
4100 		BPF_MTAP(ifp, m_head);
4101 #endif
4102 	}
4103 
4104 	if (count > 0) {
4105 		bus_dmamap_sync(sc->bge_cdata.bge_tx_ring_tag,
4106 		    sc->bge_cdata.bge_tx_ring_map, BUS_DMASYNC_PREWRITE);
4107 		/* Transmit. */
4108 		bge_writembx(sc, BGE_MBX_TX_HOST_PROD0_LO, prodidx);
4109 		/* 5700 b2 errata */
4110 		if (sc->bge_chiprev == BGE_CHIPREV_5700_BX)
4111 			bge_writembx(sc, BGE_MBX_TX_HOST_PROD0_LO, prodidx);
4112 
4113 		sc->bge_tx_prodidx = prodidx;
4114 
4115 		/*
4116 		 * Set a timeout in case the chip goes out to lunch.
4117 		 */
4118 		sc->bge_timer = 5;
4119 	}
4120 }
4121 
4122 /*
4123  * Main transmit routine. To avoid having to do mbuf copies, we put pointers
4124  * to the mbuf data regions directly in the transmit descriptors.
4125  */
4126 static void
4127 bge_start(struct ifnet *ifp)
4128 {
4129 	struct bge_softc *sc;
4130 
4131 	sc = ifp->if_softc;
4132 	BGE_LOCK(sc);
4133 	bge_start_locked(ifp);
4134 	BGE_UNLOCK(sc);
4135 }
4136 
4137 static void
4138 bge_init_locked(struct bge_softc *sc)
4139 {
4140 	struct ifnet *ifp;
4141 	uint16_t *m;
4142 
4143 	BGE_LOCK_ASSERT(sc);
4144 
4145 	ifp = sc->bge_ifp;
4146 
4147 	if (ifp->if_drv_flags & IFF_DRV_RUNNING)
4148 		return;
4149 
4150 	/* Cancel pending I/O and flush buffers. */
4151 	bge_stop(sc);
4152 
4153 	bge_stop_fw(sc);
4154 	bge_sig_pre_reset(sc, BGE_RESET_START);
4155 	bge_reset(sc);
4156 	bge_sig_legacy(sc, BGE_RESET_START);
4157 	bge_sig_post_reset(sc, BGE_RESET_START);
4158 
4159 	bge_chipinit(sc);
4160 
4161 	/*
4162 	 * Init the various state machines, ring
4163 	 * control blocks and firmware.
4164 	 */
4165 	if (bge_blockinit(sc)) {
4166 		device_printf(sc->bge_dev, "initialization failure\n");
4167 		return;
4168 	}
4169 
4170 	ifp = sc->bge_ifp;
4171 
4172 	/* Specify MTU. */
4173 	CSR_WRITE_4(sc, BGE_RX_MTU, ifp->if_mtu +
4174 	    ETHER_HDR_LEN + ETHER_CRC_LEN +
4175 	    (ifp->if_capenable & IFCAP_VLAN_MTU ? ETHER_VLAN_ENCAP_LEN : 0));
4176 
4177 	/* Load our MAC address. */
4178 	m = (uint16_t *)IF_LLADDR(sc->bge_ifp);
4179 	CSR_WRITE_4(sc, BGE_MAC_ADDR1_LO, htons(m[0]));
4180 	CSR_WRITE_4(sc, BGE_MAC_ADDR1_HI, (htons(m[1]) << 16) | htons(m[2]));
4181 
4182 	/* Program promiscuous mode. */
4183 	bge_setpromisc(sc);
4184 
4185 	/* Program multicast filter. */
4186 	bge_setmulti(sc);
4187 
4188 	/* Program VLAN tag stripping. */
4189 	bge_setvlan(sc);
4190 
4191 	/* Init RX ring. */
4192 	if (bge_init_rx_ring_std(sc) != 0) {
4193 		device_printf(sc->bge_dev, "no memory for std Rx buffers.\n");
4194 		bge_stop(sc);
4195 		return;
4196 	}
4197 
4198 	/*
4199 	 * Workaround for a bug in 5705 ASIC rev A0. Poll the NIC's
4200 	 * memory to insure that the chip has in fact read the first
4201 	 * entry of the ring.
4202 	 */
4203 	if (sc->bge_chipid == BGE_CHIPID_BCM5705_A0) {
4204 		uint32_t		v, i;
4205 		for (i = 0; i < 10; i++) {
4206 			DELAY(20);
4207 			v = bge_readmem_ind(sc, BGE_STD_RX_RINGS + 8);
4208 			if (v == (MCLBYTES - ETHER_ALIGN))
4209 				break;
4210 		}
4211 		if (i == 10)
4212 			device_printf (sc->bge_dev,
4213 			    "5705 A0 chip failed to load RX ring\n");
4214 	}
4215 
4216 	/* Init jumbo RX ring. */
4217 	if (ifp->if_mtu + ETHER_HDR_LEN + ETHER_CRC_LEN + ETHER_VLAN_ENCAP_LEN >
4218 	    (MCLBYTES - ETHER_ALIGN)) {
4219 		if (bge_init_rx_ring_jumbo(sc) != 0) {
4220 			device_printf(sc->bge_dev, "no memory for std Rx buffers.\n");
4221 			bge_stop(sc);
4222 			return;
4223 		}
4224 	}
4225 
4226 	/* Init our RX return ring index. */
4227 	sc->bge_rx_saved_considx = 0;
4228 
4229 	/* Init our RX/TX stat counters. */
4230 	sc->bge_rx_discards = sc->bge_tx_discards = sc->bge_tx_collisions = 0;
4231 
4232 	/* Init TX ring. */
4233 	bge_init_tx_ring(sc);
4234 
4235 	/* Turn on transmitter. */
4236 	BGE_SETBIT(sc, BGE_TX_MODE, BGE_TXMODE_ENABLE);
4237 
4238 	/* Turn on receiver. */
4239 	BGE_SETBIT(sc, BGE_RX_MODE, BGE_RXMODE_ENABLE);
4240 
4241 	/* Tell firmware we're alive. */
4242 	BGE_SETBIT(sc, BGE_MODE_CTL, BGE_MODECTL_STACKUP);
4243 
4244 #ifdef DEVICE_POLLING
4245 	/* Disable interrupts if we are polling. */
4246 	if (ifp->if_capenable & IFCAP_POLLING) {
4247 		BGE_SETBIT(sc, BGE_PCI_MISC_CTL,
4248 		    BGE_PCIMISCCTL_MASK_PCI_INTR);
4249 		bge_writembx(sc, BGE_MBX_IRQ0_LO, 1);
4250 	} else
4251 #endif
4252 
4253 	/* Enable host interrupts. */
4254 	{
4255 	BGE_SETBIT(sc, BGE_PCI_MISC_CTL, BGE_PCIMISCCTL_CLEAR_INTA);
4256 	BGE_CLRBIT(sc, BGE_PCI_MISC_CTL, BGE_PCIMISCCTL_MASK_PCI_INTR);
4257 	bge_writembx(sc, BGE_MBX_IRQ0_LO, 0);
4258 	}
4259 
4260 	bge_ifmedia_upd_locked(ifp);
4261 
4262 	ifp->if_drv_flags |= IFF_DRV_RUNNING;
4263 	ifp->if_drv_flags &= ~IFF_DRV_OACTIVE;
4264 
4265 	callout_reset(&sc->bge_stat_ch, hz, bge_tick, sc);
4266 }
4267 
4268 static void
4269 bge_init(void *xsc)
4270 {
4271 	struct bge_softc *sc = xsc;
4272 
4273 	BGE_LOCK(sc);
4274 	bge_init_locked(sc);
4275 	BGE_UNLOCK(sc);
4276 }
4277 
4278 /*
4279  * Set media options.
4280  */
4281 static int
4282 bge_ifmedia_upd(struct ifnet *ifp)
4283 {
4284 	struct bge_softc *sc = ifp->if_softc;
4285 	int res;
4286 
4287 	BGE_LOCK(sc);
4288 	res = bge_ifmedia_upd_locked(ifp);
4289 	BGE_UNLOCK(sc);
4290 
4291 	return (res);
4292 }
4293 
4294 static int
4295 bge_ifmedia_upd_locked(struct ifnet *ifp)
4296 {
4297 	struct bge_softc *sc = ifp->if_softc;
4298 	struct mii_data *mii;
4299 	struct mii_softc *miisc;
4300 	struct ifmedia *ifm;
4301 
4302 	BGE_LOCK_ASSERT(sc);
4303 
4304 	ifm = &sc->bge_ifmedia;
4305 
4306 	/* If this is a 1000baseX NIC, enable the TBI port. */
4307 	if (sc->bge_flags & BGE_FLAG_TBI) {
4308 		if (IFM_TYPE(ifm->ifm_media) != IFM_ETHER)
4309 			return (EINVAL);
4310 		switch(IFM_SUBTYPE(ifm->ifm_media)) {
4311 		case IFM_AUTO:
4312 			/*
4313 			 * The BCM5704 ASIC appears to have a special
4314 			 * mechanism for programming the autoneg
4315 			 * advertisement registers in TBI mode.
4316 			 */
4317 			if (sc->bge_asicrev == BGE_ASICREV_BCM5704) {
4318 				uint32_t sgdig;
4319 				sgdig = CSR_READ_4(sc, BGE_SGDIG_STS);
4320 				if (sgdig & BGE_SGDIGSTS_DONE) {
4321 					CSR_WRITE_4(sc, BGE_TX_TBI_AUTONEG, 0);
4322 					sgdig = CSR_READ_4(sc, BGE_SGDIG_CFG);
4323 					sgdig |= BGE_SGDIGCFG_AUTO |
4324 					    BGE_SGDIGCFG_PAUSE_CAP |
4325 					    BGE_SGDIGCFG_ASYM_PAUSE;
4326 					CSR_WRITE_4(sc, BGE_SGDIG_CFG,
4327 					    sgdig | BGE_SGDIGCFG_SEND);
4328 					DELAY(5);
4329 					CSR_WRITE_4(sc, BGE_SGDIG_CFG, sgdig);
4330 				}
4331 			}
4332 			break;
4333 		case IFM_1000_SX:
4334 			if ((ifm->ifm_media & IFM_GMASK) == IFM_FDX) {
4335 				BGE_CLRBIT(sc, BGE_MAC_MODE,
4336 				    BGE_MACMODE_HALF_DUPLEX);
4337 			} else {
4338 				BGE_SETBIT(sc, BGE_MAC_MODE,
4339 				    BGE_MACMODE_HALF_DUPLEX);
4340 			}
4341 			break;
4342 		default:
4343 			return (EINVAL);
4344 		}
4345 		return (0);
4346 	}
4347 
4348 	sc->bge_link_evt++;
4349 	mii = device_get_softc(sc->bge_miibus);
4350 	if (mii->mii_instance)
4351 		LIST_FOREACH(miisc, &mii->mii_phys, mii_list)
4352 			mii_phy_reset(miisc);
4353 	mii_mediachg(mii);
4354 
4355 	/*
4356 	 * Force an interrupt so that we will call bge_link_upd
4357 	 * if needed and clear any pending link state attention.
4358 	 * Without this we are not getting any further interrupts
4359 	 * for link state changes and thus will not UP the link and
4360 	 * not be able to send in bge_start_locked. The only
4361 	 * way to get things working was to receive a packet and
4362 	 * get an RX intr.
4363 	 * bge_tick should help for fiber cards and we might not
4364 	 * need to do this here if BGE_FLAG_TBI is set but as
4365 	 * we poll for fiber anyway it should not harm.
4366 	 */
4367 	if (sc->bge_asicrev == BGE_ASICREV_BCM5700 ||
4368 	    sc->bge_flags & BGE_FLAG_5788)
4369 		BGE_SETBIT(sc, BGE_MISC_LOCAL_CTL, BGE_MLC_INTR_SET);
4370 	else
4371 		BGE_SETBIT(sc, BGE_HCC_MODE, BGE_HCCMODE_COAL_NOW);
4372 
4373 	return (0);
4374 }
4375 
4376 /*
4377  * Report current media status.
4378  */
4379 static void
4380 bge_ifmedia_sts(struct ifnet *ifp, struct ifmediareq *ifmr)
4381 {
4382 	struct bge_softc *sc = ifp->if_softc;
4383 	struct mii_data *mii;
4384 
4385 	BGE_LOCK(sc);
4386 
4387 	if (sc->bge_flags & BGE_FLAG_TBI) {
4388 		ifmr->ifm_status = IFM_AVALID;
4389 		ifmr->ifm_active = IFM_ETHER;
4390 		if (CSR_READ_4(sc, BGE_MAC_STS) &
4391 		    BGE_MACSTAT_TBI_PCS_SYNCHED)
4392 			ifmr->ifm_status |= IFM_ACTIVE;
4393 		else {
4394 			ifmr->ifm_active |= IFM_NONE;
4395 			BGE_UNLOCK(sc);
4396 			return;
4397 		}
4398 		ifmr->ifm_active |= IFM_1000_SX;
4399 		if (CSR_READ_4(sc, BGE_MAC_MODE) & BGE_MACMODE_HALF_DUPLEX)
4400 			ifmr->ifm_active |= IFM_HDX;
4401 		else
4402 			ifmr->ifm_active |= IFM_FDX;
4403 		BGE_UNLOCK(sc);
4404 		return;
4405 	}
4406 
4407 	mii = device_get_softc(sc->bge_miibus);
4408 	mii_pollstat(mii);
4409 	ifmr->ifm_active = mii->mii_media_active;
4410 	ifmr->ifm_status = mii->mii_media_status;
4411 
4412 	BGE_UNLOCK(sc);
4413 }
4414 
4415 static int
4416 bge_ioctl(struct ifnet *ifp, u_long command, caddr_t data)
4417 {
4418 	struct bge_softc *sc = ifp->if_softc;
4419 	struct ifreq *ifr = (struct ifreq *) data;
4420 	struct mii_data *mii;
4421 	int flags, mask, error = 0;
4422 
4423 	switch (command) {
4424 	case SIOCSIFMTU:
4425 		if (ifr->ifr_mtu < ETHERMIN ||
4426 		    ((BGE_IS_JUMBO_CAPABLE(sc)) &&
4427 		    ifr->ifr_mtu > BGE_JUMBO_MTU) ||
4428 		    ((!BGE_IS_JUMBO_CAPABLE(sc)) &&
4429 		    ifr->ifr_mtu > ETHERMTU))
4430 			error = EINVAL;
4431 		else if (ifp->if_mtu != ifr->ifr_mtu) {
4432 			ifp->if_mtu = ifr->ifr_mtu;
4433 			ifp->if_drv_flags &= ~IFF_DRV_RUNNING;
4434 			bge_init(sc);
4435 		}
4436 		break;
4437 	case SIOCSIFFLAGS:
4438 		BGE_LOCK(sc);
4439 		if (ifp->if_flags & IFF_UP) {
4440 			/*
4441 			 * If only the state of the PROMISC flag changed,
4442 			 * then just use the 'set promisc mode' command
4443 			 * instead of reinitializing the entire NIC. Doing
4444 			 * a full re-init means reloading the firmware and
4445 			 * waiting for it to start up, which may take a
4446 			 * second or two.  Similarly for ALLMULTI.
4447 			 */
4448 			if (ifp->if_drv_flags & IFF_DRV_RUNNING) {
4449 				flags = ifp->if_flags ^ sc->bge_if_flags;
4450 				if (flags & IFF_PROMISC)
4451 					bge_setpromisc(sc);
4452 				if (flags & IFF_ALLMULTI)
4453 					bge_setmulti(sc);
4454 			} else
4455 				bge_init_locked(sc);
4456 		} else {
4457 			if (ifp->if_drv_flags & IFF_DRV_RUNNING) {
4458 				bge_stop(sc);
4459 			}
4460 		}
4461 		sc->bge_if_flags = ifp->if_flags;
4462 		BGE_UNLOCK(sc);
4463 		error = 0;
4464 		break;
4465 	case SIOCADDMULTI:
4466 	case SIOCDELMULTI:
4467 		if (ifp->if_drv_flags & IFF_DRV_RUNNING) {
4468 			BGE_LOCK(sc);
4469 			bge_setmulti(sc);
4470 			BGE_UNLOCK(sc);
4471 			error = 0;
4472 		}
4473 		break;
4474 	case SIOCSIFMEDIA:
4475 	case SIOCGIFMEDIA:
4476 		if (sc->bge_flags & BGE_FLAG_TBI) {
4477 			error = ifmedia_ioctl(ifp, ifr,
4478 			    &sc->bge_ifmedia, command);
4479 		} else {
4480 			mii = device_get_softc(sc->bge_miibus);
4481 			error = ifmedia_ioctl(ifp, ifr,
4482 			    &mii->mii_media, command);
4483 		}
4484 		break;
4485 	case SIOCSIFCAP:
4486 		mask = ifr->ifr_reqcap ^ ifp->if_capenable;
4487 #ifdef DEVICE_POLLING
4488 		if (mask & IFCAP_POLLING) {
4489 			if (ifr->ifr_reqcap & IFCAP_POLLING) {
4490 				error = ether_poll_register(bge_poll, ifp);
4491 				if (error)
4492 					return (error);
4493 				BGE_LOCK(sc);
4494 				BGE_SETBIT(sc, BGE_PCI_MISC_CTL,
4495 				    BGE_PCIMISCCTL_MASK_PCI_INTR);
4496 				bge_writembx(sc, BGE_MBX_IRQ0_LO, 1);
4497 				ifp->if_capenable |= IFCAP_POLLING;
4498 				BGE_UNLOCK(sc);
4499 			} else {
4500 				error = ether_poll_deregister(ifp);
4501 				/* Enable interrupt even in error case */
4502 				BGE_LOCK(sc);
4503 				BGE_CLRBIT(sc, BGE_PCI_MISC_CTL,
4504 				    BGE_PCIMISCCTL_MASK_PCI_INTR);
4505 				bge_writembx(sc, BGE_MBX_IRQ0_LO, 0);
4506 				ifp->if_capenable &= ~IFCAP_POLLING;
4507 				BGE_UNLOCK(sc);
4508 			}
4509 		}
4510 #endif
4511 		if (mask & IFCAP_HWCSUM) {
4512 			ifp->if_capenable ^= IFCAP_HWCSUM;
4513 			if (IFCAP_HWCSUM & ifp->if_capenable &&
4514 			    IFCAP_HWCSUM & ifp->if_capabilities)
4515 				ifp->if_hwassist |= BGE_CSUM_FEATURES;
4516 			else
4517 				ifp->if_hwassist &= ~BGE_CSUM_FEATURES;
4518 		}
4519 
4520 		if ((mask & IFCAP_TSO4) != 0 &&
4521 		    (ifp->if_capabilities & IFCAP_TSO4) != 0) {
4522 			ifp->if_capenable ^= IFCAP_TSO4;
4523 			if ((ifp->if_capenable & IFCAP_TSO4) != 0)
4524 				ifp->if_hwassist |= CSUM_TSO;
4525 			else
4526 				ifp->if_hwassist &= ~CSUM_TSO;
4527 		}
4528 
4529 		if (mask & IFCAP_VLAN_MTU) {
4530 			ifp->if_capenable ^= IFCAP_VLAN_MTU;
4531 			ifp->if_drv_flags &= ~IFF_DRV_RUNNING;
4532 			bge_init(sc);
4533 		}
4534 
4535 		if ((mask & IFCAP_VLAN_HWTSO) != 0 &&
4536 		    (ifp->if_capabilities & IFCAP_VLAN_HWTSO) != 0)
4537 			ifp->if_capenable ^= IFCAP_VLAN_HWTSO;
4538 		if ((mask & IFCAP_VLAN_HWTAGGING) != 0 &&
4539 		    (ifp->if_capabilities & IFCAP_VLAN_HWTAGGING) != 0) {
4540 			ifp->if_capenable ^= IFCAP_VLAN_HWTAGGING;
4541 			if ((ifp->if_capenable & IFCAP_VLAN_HWTAGGING) == 0)
4542 				ifp->if_capenable &= ~IFCAP_VLAN_HWTSO;
4543 			BGE_LOCK(sc);
4544 			bge_setvlan(sc);
4545 			BGE_UNLOCK(sc);
4546 		}
4547 #ifdef VLAN_CAPABILITIES
4548 		VLAN_CAPABILITIES(ifp);
4549 #endif
4550 		break;
4551 	default:
4552 		error = ether_ioctl(ifp, command, data);
4553 		break;
4554 	}
4555 
4556 	return (error);
4557 }
4558 
4559 static void
4560 bge_watchdog(struct bge_softc *sc)
4561 {
4562 	struct ifnet *ifp;
4563 
4564 	BGE_LOCK_ASSERT(sc);
4565 
4566 	if (sc->bge_timer == 0 || --sc->bge_timer)
4567 		return;
4568 
4569 	ifp = sc->bge_ifp;
4570 
4571 	if_printf(ifp, "watchdog timeout -- resetting\n");
4572 
4573 	ifp->if_drv_flags &= ~IFF_DRV_RUNNING;
4574 	bge_init_locked(sc);
4575 
4576 	ifp->if_oerrors++;
4577 }
4578 
4579 /*
4580  * Stop the adapter and free any mbufs allocated to the
4581  * RX and TX lists.
4582  */
4583 static void
4584 bge_stop(struct bge_softc *sc)
4585 {
4586 	struct ifnet *ifp;
4587 
4588 	BGE_LOCK_ASSERT(sc);
4589 
4590 	ifp = sc->bge_ifp;
4591 
4592 	callout_stop(&sc->bge_stat_ch);
4593 
4594 	/* Disable host interrupts. */
4595 	BGE_SETBIT(sc, BGE_PCI_MISC_CTL, BGE_PCIMISCCTL_MASK_PCI_INTR);
4596 	bge_writembx(sc, BGE_MBX_IRQ0_LO, 1);
4597 
4598 	/*
4599 	 * Tell firmware we're shutting down.
4600 	 */
4601 	bge_stop_fw(sc);
4602 	bge_sig_pre_reset(sc, BGE_RESET_STOP);
4603 
4604 	/*
4605 	 * Disable all of the receiver blocks.
4606 	 */
4607 	BGE_CLRBIT(sc, BGE_RX_MODE, BGE_RXMODE_ENABLE);
4608 	BGE_CLRBIT(sc, BGE_RBDI_MODE, BGE_RBDIMODE_ENABLE);
4609 	BGE_CLRBIT(sc, BGE_RXLP_MODE, BGE_RXLPMODE_ENABLE);
4610 	if (!(BGE_IS_5705_PLUS(sc)))
4611 		BGE_CLRBIT(sc, BGE_RXLS_MODE, BGE_RXLSMODE_ENABLE);
4612 	BGE_CLRBIT(sc, BGE_RDBDI_MODE, BGE_RBDIMODE_ENABLE);
4613 	BGE_CLRBIT(sc, BGE_RDC_MODE, BGE_RDCMODE_ENABLE);
4614 	BGE_CLRBIT(sc, BGE_RBDC_MODE, BGE_RBDCMODE_ENABLE);
4615 
4616 	/*
4617 	 * Disable all of the transmit blocks.
4618 	 */
4619 	BGE_CLRBIT(sc, BGE_SRS_MODE, BGE_SRSMODE_ENABLE);
4620 	BGE_CLRBIT(sc, BGE_SBDI_MODE, BGE_SBDIMODE_ENABLE);
4621 	BGE_CLRBIT(sc, BGE_SDI_MODE, BGE_SDIMODE_ENABLE);
4622 	BGE_CLRBIT(sc, BGE_RDMA_MODE, BGE_RDMAMODE_ENABLE);
4623 	BGE_CLRBIT(sc, BGE_SDC_MODE, BGE_SDCMODE_ENABLE);
4624 	if (!(BGE_IS_5705_PLUS(sc)))
4625 		BGE_CLRBIT(sc, BGE_DMAC_MODE, BGE_DMACMODE_ENABLE);
4626 	BGE_CLRBIT(sc, BGE_SBDC_MODE, BGE_SBDCMODE_ENABLE);
4627 
4628 	/*
4629 	 * Shut down all of the memory managers and related
4630 	 * state machines.
4631 	 */
4632 	BGE_CLRBIT(sc, BGE_HCC_MODE, BGE_HCCMODE_ENABLE);
4633 	BGE_CLRBIT(sc, BGE_WDMA_MODE, BGE_WDMAMODE_ENABLE);
4634 	if (!(BGE_IS_5705_PLUS(sc)))
4635 		BGE_CLRBIT(sc, BGE_MBCF_MODE, BGE_MBCFMODE_ENABLE);
4636 	CSR_WRITE_4(sc, BGE_FTQ_RESET, 0xFFFFFFFF);
4637 	CSR_WRITE_4(sc, BGE_FTQ_RESET, 0);
4638 	if (!(BGE_IS_5705_PLUS(sc))) {
4639 		BGE_CLRBIT(sc, BGE_BMAN_MODE, BGE_BMANMODE_ENABLE);
4640 		BGE_CLRBIT(sc, BGE_MARB_MODE, BGE_MARBMODE_ENABLE);
4641 	}
4642 
4643 	bge_reset(sc);
4644 	bge_sig_legacy(sc, BGE_RESET_STOP);
4645 	bge_sig_post_reset(sc, BGE_RESET_STOP);
4646 
4647 	/*
4648 	 * Keep the ASF firmware running if up.
4649 	 */
4650 	if (sc->bge_asf_mode & ASF_STACKUP)
4651 		BGE_SETBIT(sc, BGE_MODE_CTL, BGE_MODECTL_STACKUP);
4652 	else
4653 		BGE_CLRBIT(sc, BGE_MODE_CTL, BGE_MODECTL_STACKUP);
4654 
4655 	/* Free the RX lists. */
4656 	bge_free_rx_ring_std(sc);
4657 
4658 	/* Free jumbo RX list. */
4659 	if (BGE_IS_JUMBO_CAPABLE(sc))
4660 		bge_free_rx_ring_jumbo(sc);
4661 
4662 	/* Free TX buffers. */
4663 	bge_free_tx_ring(sc);
4664 
4665 	sc->bge_tx_saved_considx = BGE_TXCONS_UNSET;
4666 
4667 	/* Clear MAC's link state (PHY may still have link UP). */
4668 	if (bootverbose && sc->bge_link)
4669 		if_printf(sc->bge_ifp, "link DOWN\n");
4670 	sc->bge_link = 0;
4671 
4672 	ifp->if_drv_flags &= ~(IFF_DRV_RUNNING | IFF_DRV_OACTIVE);
4673 }
4674 
4675 /*
4676  * Stop all chip I/O so that the kernel's probe routines don't
4677  * get confused by errant DMAs when rebooting.
4678  */
4679 static int
4680 bge_shutdown(device_t dev)
4681 {
4682 	struct bge_softc *sc;
4683 
4684 	sc = device_get_softc(dev);
4685 	BGE_LOCK(sc);
4686 	bge_stop(sc);
4687 	bge_reset(sc);
4688 	BGE_UNLOCK(sc);
4689 
4690 	return (0);
4691 }
4692 
4693 static int
4694 bge_suspend(device_t dev)
4695 {
4696 	struct bge_softc *sc;
4697 
4698 	sc = device_get_softc(dev);
4699 	BGE_LOCK(sc);
4700 	bge_stop(sc);
4701 	BGE_UNLOCK(sc);
4702 
4703 	return (0);
4704 }
4705 
4706 static int
4707 bge_resume(device_t dev)
4708 {
4709 	struct bge_softc *sc;
4710 	struct ifnet *ifp;
4711 
4712 	sc = device_get_softc(dev);
4713 	BGE_LOCK(sc);
4714 	ifp = sc->bge_ifp;
4715 	if (ifp->if_flags & IFF_UP) {
4716 		bge_init_locked(sc);
4717 		if (ifp->if_drv_flags & IFF_DRV_RUNNING)
4718 			bge_start_locked(ifp);
4719 	}
4720 	BGE_UNLOCK(sc);
4721 
4722 	return (0);
4723 }
4724 
4725 static void
4726 bge_link_upd(struct bge_softc *sc)
4727 {
4728 	struct mii_data *mii;
4729 	uint32_t link, status;
4730 
4731 	BGE_LOCK_ASSERT(sc);
4732 
4733 	/* Clear 'pending link event' flag. */
4734 	sc->bge_link_evt = 0;
4735 
4736 	/*
4737 	 * Process link state changes.
4738 	 * Grrr. The link status word in the status block does
4739 	 * not work correctly on the BCM5700 rev AX and BX chips,
4740 	 * according to all available information. Hence, we have
4741 	 * to enable MII interrupts in order to properly obtain
4742 	 * async link changes. Unfortunately, this also means that
4743 	 * we have to read the MAC status register to detect link
4744 	 * changes, thereby adding an additional register access to
4745 	 * the interrupt handler.
4746 	 *
4747 	 * XXX: perhaps link state detection procedure used for
4748 	 * BGE_CHIPID_BCM5700_B2 can be used for others BCM5700 revisions.
4749 	 */
4750 
4751 	if (sc->bge_asicrev == BGE_ASICREV_BCM5700 &&
4752 	    sc->bge_chipid != BGE_CHIPID_BCM5700_B2) {
4753 		status = CSR_READ_4(sc, BGE_MAC_STS);
4754 		if (status & BGE_MACSTAT_MI_INTERRUPT) {
4755 			mii = device_get_softc(sc->bge_miibus);
4756 			mii_pollstat(mii);
4757 			if (!sc->bge_link &&
4758 			    mii->mii_media_status & IFM_ACTIVE &&
4759 			    IFM_SUBTYPE(mii->mii_media_active) != IFM_NONE) {
4760 				sc->bge_link++;
4761 				if (bootverbose)
4762 					if_printf(sc->bge_ifp, "link UP\n");
4763 			} else if (sc->bge_link &&
4764 			    (!(mii->mii_media_status & IFM_ACTIVE) ||
4765 			    IFM_SUBTYPE(mii->mii_media_active) == IFM_NONE)) {
4766 				sc->bge_link = 0;
4767 				if (bootverbose)
4768 					if_printf(sc->bge_ifp, "link DOWN\n");
4769 			}
4770 
4771 			/* Clear the interrupt. */
4772 			CSR_WRITE_4(sc, BGE_MAC_EVT_ENB,
4773 			    BGE_EVTENB_MI_INTERRUPT);
4774 			bge_miibus_readreg(sc->bge_dev, 1, BRGPHY_MII_ISR);
4775 			bge_miibus_writereg(sc->bge_dev, 1, BRGPHY_MII_IMR,
4776 			    BRGPHY_INTRS);
4777 		}
4778 		return;
4779 	}
4780 
4781 	if (sc->bge_flags & BGE_FLAG_TBI) {
4782 		status = CSR_READ_4(sc, BGE_MAC_STS);
4783 		if (status & BGE_MACSTAT_TBI_PCS_SYNCHED) {
4784 			if (!sc->bge_link) {
4785 				sc->bge_link++;
4786 				if (sc->bge_asicrev == BGE_ASICREV_BCM5704)
4787 					BGE_CLRBIT(sc, BGE_MAC_MODE,
4788 					    BGE_MACMODE_TBI_SEND_CFGS);
4789 				CSR_WRITE_4(sc, BGE_MAC_STS, 0xFFFFFFFF);
4790 				if (bootverbose)
4791 					if_printf(sc->bge_ifp, "link UP\n");
4792 				if_link_state_change(sc->bge_ifp,
4793 				    LINK_STATE_UP);
4794 			}
4795 		} else if (sc->bge_link) {
4796 			sc->bge_link = 0;
4797 			if (bootverbose)
4798 				if_printf(sc->bge_ifp, "link DOWN\n");
4799 			if_link_state_change(sc->bge_ifp, LINK_STATE_DOWN);
4800 		}
4801 	} else if (CSR_READ_4(sc, BGE_MI_MODE) & BGE_MIMODE_AUTOPOLL) {
4802 		/*
4803 		 * Some broken BCM chips have BGE_STATFLAG_LINKSTATE_CHANGED bit
4804 		 * in status word always set. Workaround this bug by reading
4805 		 * PHY link status directly.
4806 		 */
4807 		link = (CSR_READ_4(sc, BGE_MI_STS) & BGE_MISTS_LINK) ? 1 : 0;
4808 
4809 		if (link != sc->bge_link ||
4810 		    sc->bge_asicrev == BGE_ASICREV_BCM5700) {
4811 			mii = device_get_softc(sc->bge_miibus);
4812 			mii_pollstat(mii);
4813 			if (!sc->bge_link &&
4814 			    mii->mii_media_status & IFM_ACTIVE &&
4815 			    IFM_SUBTYPE(mii->mii_media_active) != IFM_NONE) {
4816 				sc->bge_link++;
4817 				if (bootverbose)
4818 					if_printf(sc->bge_ifp, "link UP\n");
4819 			} else if (sc->bge_link &&
4820 			    (!(mii->mii_media_status & IFM_ACTIVE) ||
4821 			    IFM_SUBTYPE(mii->mii_media_active) == IFM_NONE)) {
4822 				sc->bge_link = 0;
4823 				if (bootverbose)
4824 					if_printf(sc->bge_ifp, "link DOWN\n");
4825 			}
4826 		}
4827 	} else {
4828 		/*
4829 		 * Discard link events for MII/GMII controllers
4830 		 * if MI auto-polling is disabled.
4831 		 */
4832 	}
4833 
4834 	/* Clear the attention. */
4835 	CSR_WRITE_4(sc, BGE_MAC_STS, BGE_MACSTAT_SYNC_CHANGED |
4836 	    BGE_MACSTAT_CFG_CHANGED | BGE_MACSTAT_MI_COMPLETE |
4837 	    BGE_MACSTAT_LINK_CHANGED);
4838 }
4839 
4840 #define BGE_SYSCTL_STAT(sc, ctx, desc, parent, node, oid) \
4841 	SYSCTL_ADD_PROC(ctx, parent, OID_AUTO, oid, CTLTYPE_UINT|CTLFLAG_RD, \
4842 	    sc, offsetof(struct bge_stats, node), bge_sysctl_stats, "IU", \
4843 	    desc)
4844 
4845 static void
4846 bge_add_sysctls(struct bge_softc *sc)
4847 {
4848 	struct sysctl_ctx_list *ctx;
4849 	struct sysctl_oid_list *children, *schildren;
4850 	struct sysctl_oid *tree;
4851 
4852 	ctx = device_get_sysctl_ctx(sc->bge_dev);
4853 	children = SYSCTL_CHILDREN(device_get_sysctl_tree(sc->bge_dev));
4854 
4855 #ifdef BGE_REGISTER_DEBUG
4856 	SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "debug_info",
4857 	    CTLTYPE_INT | CTLFLAG_RW, sc, 0, bge_sysctl_debug_info, "I",
4858 	    "Debug Information");
4859 
4860 	SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "reg_read",
4861 	    CTLTYPE_INT | CTLFLAG_RW, sc, 0, bge_sysctl_reg_read, "I",
4862 	    "Register Read");
4863 
4864 	SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "mem_read",
4865 	    CTLTYPE_INT | CTLFLAG_RW, sc, 0, bge_sysctl_mem_read, "I",
4866 	    "Memory Read");
4867 
4868 #endif
4869 
4870 	/*
4871 	 * A common design characteristic for many Broadcom client controllers
4872 	 * is that they only support a single outstanding DMA read operation
4873 	 * on the PCIe bus. This means that it will take twice as long to fetch
4874 	 * a TX frame that is split into header and payload buffers as it does
4875 	 * to fetch a single, contiguous TX frame (2 reads vs. 1 read). For
4876 	 * these controllers, coalescing buffers to reduce the number of memory
4877 	 * reads is effective way to get maximum performance(about 940Mbps).
4878 	 * Without collapsing TX buffers the maximum TCP bulk transfer
4879 	 * performance is about 850Mbps. However forcing coalescing mbufs
4880 	 * consumes a lot of CPU cycles, so leave it off by default.
4881 	 */
4882 	SYSCTL_ADD_INT(ctx, children, OID_AUTO, "forced_collapse",
4883 	    CTLFLAG_RW, &sc->bge_forced_collapse, 0,
4884 	    "Number of fragmented TX buffers of a frame allowed before "
4885 	    "forced collapsing");
4886 	resource_int_value(device_get_name(sc->bge_dev),
4887 	    device_get_unit(sc->bge_dev), "forced_collapse",
4888 	    &sc->bge_forced_collapse);
4889 
4890 	if (BGE_IS_5705_PLUS(sc))
4891 		return;
4892 
4893 	tree = SYSCTL_ADD_NODE(ctx, children, OID_AUTO, "stats", CTLFLAG_RD,
4894 	    NULL, "BGE Statistics");
4895 	schildren = children = SYSCTL_CHILDREN(tree);
4896 	BGE_SYSCTL_STAT(sc, ctx, "Frames Dropped Due To Filters",
4897 	    children, COSFramesDroppedDueToFilters,
4898 	    "FramesDroppedDueToFilters");
4899 	BGE_SYSCTL_STAT(sc, ctx, "NIC DMA Write Queue Full",
4900 	    children, nicDmaWriteQueueFull, "DmaWriteQueueFull");
4901 	BGE_SYSCTL_STAT(sc, ctx, "NIC DMA Write High Priority Queue Full",
4902 	    children, nicDmaWriteHighPriQueueFull, "DmaWriteHighPriQueueFull");
4903 	BGE_SYSCTL_STAT(sc, ctx, "NIC No More RX Buffer Descriptors",
4904 	    children, nicNoMoreRxBDs, "NoMoreRxBDs");
4905 	BGE_SYSCTL_STAT(sc, ctx, "Discarded Input Frames",
4906 	    children, ifInDiscards, "InputDiscards");
4907 	BGE_SYSCTL_STAT(sc, ctx, "Input Errors",
4908 	    children, ifInErrors, "InputErrors");
4909 	BGE_SYSCTL_STAT(sc, ctx, "NIC Recv Threshold Hit",
4910 	    children, nicRecvThresholdHit, "RecvThresholdHit");
4911 	BGE_SYSCTL_STAT(sc, ctx, "NIC DMA Read Queue Full",
4912 	    children, nicDmaReadQueueFull, "DmaReadQueueFull");
4913 	BGE_SYSCTL_STAT(sc, ctx, "NIC DMA Read High Priority Queue Full",
4914 	    children, nicDmaReadHighPriQueueFull, "DmaReadHighPriQueueFull");
4915 	BGE_SYSCTL_STAT(sc, ctx, "NIC Send Data Complete Queue Full",
4916 	    children, nicSendDataCompQueueFull, "SendDataCompQueueFull");
4917 	BGE_SYSCTL_STAT(sc, ctx, "NIC Ring Set Send Producer Index",
4918 	    children, nicRingSetSendProdIndex, "RingSetSendProdIndex");
4919 	BGE_SYSCTL_STAT(sc, ctx, "NIC Ring Status Update",
4920 	    children, nicRingStatusUpdate, "RingStatusUpdate");
4921 	BGE_SYSCTL_STAT(sc, ctx, "NIC Interrupts",
4922 	    children, nicInterrupts, "Interrupts");
4923 	BGE_SYSCTL_STAT(sc, ctx, "NIC Avoided Interrupts",
4924 	    children, nicAvoidedInterrupts, "AvoidedInterrupts");
4925 	BGE_SYSCTL_STAT(sc, ctx, "NIC Send Threshold Hit",
4926 	    children, nicSendThresholdHit, "SendThresholdHit");
4927 
4928 	tree = SYSCTL_ADD_NODE(ctx, schildren, OID_AUTO, "rx", CTLFLAG_RD,
4929 	    NULL, "BGE RX Statistics");
4930 	children = SYSCTL_CHILDREN(tree);
4931 	BGE_SYSCTL_STAT(sc, ctx, "Inbound Octets",
4932 	    children, rxstats.ifHCInOctets, "Octets");
4933 	BGE_SYSCTL_STAT(sc, ctx, "Fragments",
4934 	    children, rxstats.etherStatsFragments, "Fragments");
4935 	BGE_SYSCTL_STAT(sc, ctx, "Inbound Unicast Packets",
4936 	    children, rxstats.ifHCInUcastPkts, "UcastPkts");
4937 	BGE_SYSCTL_STAT(sc, ctx, "Inbound Multicast Packets",
4938 	    children, rxstats.ifHCInMulticastPkts, "MulticastPkts");
4939 	BGE_SYSCTL_STAT(sc, ctx, "FCS Errors",
4940 	    children, rxstats.dot3StatsFCSErrors, "FCSErrors");
4941 	BGE_SYSCTL_STAT(sc, ctx, "Alignment Errors",
4942 	    children, rxstats.dot3StatsAlignmentErrors, "AlignmentErrors");
4943 	BGE_SYSCTL_STAT(sc, ctx, "XON Pause Frames Received",
4944 	    children, rxstats.xonPauseFramesReceived, "xonPauseFramesReceived");
4945 	BGE_SYSCTL_STAT(sc, ctx, "XOFF Pause Frames Received",
4946 	    children, rxstats.xoffPauseFramesReceived,
4947 	    "xoffPauseFramesReceived");
4948 	BGE_SYSCTL_STAT(sc, ctx, "MAC Control Frames Received",
4949 	    children, rxstats.macControlFramesReceived,
4950 	    "ControlFramesReceived");
4951 	BGE_SYSCTL_STAT(sc, ctx, "XOFF State Entered",
4952 	    children, rxstats.xoffStateEntered, "xoffStateEntered");
4953 	BGE_SYSCTL_STAT(sc, ctx, "Frames Too Long",
4954 	    children, rxstats.dot3StatsFramesTooLong, "FramesTooLong");
4955 	BGE_SYSCTL_STAT(sc, ctx, "Jabbers",
4956 	    children, rxstats.etherStatsJabbers, "Jabbers");
4957 	BGE_SYSCTL_STAT(sc, ctx, "Undersized Packets",
4958 	    children, rxstats.etherStatsUndersizePkts, "UndersizePkts");
4959 	BGE_SYSCTL_STAT(sc, ctx, "Inbound Range Length Errors",
4960 	    children, rxstats.inRangeLengthError, "inRangeLengthError");
4961 	BGE_SYSCTL_STAT(sc, ctx, "Outbound Range Length Errors",
4962 	    children, rxstats.outRangeLengthError, "outRangeLengthError");
4963 
4964 	tree = SYSCTL_ADD_NODE(ctx, schildren, OID_AUTO, "tx", CTLFLAG_RD,
4965 	    NULL, "BGE TX Statistics");
4966 	children = SYSCTL_CHILDREN(tree);
4967 	BGE_SYSCTL_STAT(sc, ctx, "Outbound Octets",
4968 	    children, txstats.ifHCOutOctets, "Octets");
4969 	BGE_SYSCTL_STAT(sc, ctx, "TX Collisions",
4970 	    children, txstats.etherStatsCollisions, "Collisions");
4971 	BGE_SYSCTL_STAT(sc, ctx, "XON Sent",
4972 	    children, txstats.outXonSent, "XonSent");
4973 	BGE_SYSCTL_STAT(sc, ctx, "XOFF Sent",
4974 	    children, txstats.outXoffSent, "XoffSent");
4975 	BGE_SYSCTL_STAT(sc, ctx, "Flow Control Done",
4976 	    children, txstats.flowControlDone, "flowControlDone");
4977 	BGE_SYSCTL_STAT(sc, ctx, "Internal MAC TX errors",
4978 	    children, txstats.dot3StatsInternalMacTransmitErrors,
4979 	    "InternalMacTransmitErrors");
4980 	BGE_SYSCTL_STAT(sc, ctx, "Single Collision Frames",
4981 	    children, txstats.dot3StatsSingleCollisionFrames,
4982 	    "SingleCollisionFrames");
4983 	BGE_SYSCTL_STAT(sc, ctx, "Multiple Collision Frames",
4984 	    children, txstats.dot3StatsMultipleCollisionFrames,
4985 	    "MultipleCollisionFrames");
4986 	BGE_SYSCTL_STAT(sc, ctx, "Deferred Transmissions",
4987 	    children, txstats.dot3StatsDeferredTransmissions,
4988 	    "DeferredTransmissions");
4989 	BGE_SYSCTL_STAT(sc, ctx, "Excessive Collisions",
4990 	    children, txstats.dot3StatsExcessiveCollisions,
4991 	    "ExcessiveCollisions");
4992 	BGE_SYSCTL_STAT(sc, ctx, "Late Collisions",
4993 	    children, txstats.dot3StatsLateCollisions,
4994 	    "LateCollisions");
4995 	BGE_SYSCTL_STAT(sc, ctx, "Outbound Unicast Packets",
4996 	    children, txstats.ifHCOutUcastPkts, "UcastPkts");
4997 	BGE_SYSCTL_STAT(sc, ctx, "Outbound Multicast Packets",
4998 	    children, txstats.ifHCOutMulticastPkts, "MulticastPkts");
4999 	BGE_SYSCTL_STAT(sc, ctx, "Outbound Broadcast Packets",
5000 	    children, txstats.ifHCOutBroadcastPkts, "BroadcastPkts");
5001 	BGE_SYSCTL_STAT(sc, ctx, "Carrier Sense Errors",
5002 	    children, txstats.dot3StatsCarrierSenseErrors,
5003 	    "CarrierSenseErrors");
5004 	BGE_SYSCTL_STAT(sc, ctx, "Outbound Discards",
5005 	    children, txstats.ifOutDiscards, "Discards");
5006 	BGE_SYSCTL_STAT(sc, ctx, "Outbound Errors",
5007 	    children, txstats.ifOutErrors, "Errors");
5008 }
5009 
5010 static int
5011 bge_sysctl_stats(SYSCTL_HANDLER_ARGS)
5012 {
5013 	struct bge_softc *sc;
5014 	uint32_t result;
5015 	int offset;
5016 
5017 	sc = (struct bge_softc *)arg1;
5018 	offset = arg2;
5019 	result = CSR_READ_4(sc, BGE_MEMWIN_START + BGE_STATS_BLOCK + offset +
5020 	    offsetof(bge_hostaddr, bge_addr_lo));
5021 	return (sysctl_handle_int(oidp, &result, 0, req));
5022 }
5023 
5024 #ifdef BGE_REGISTER_DEBUG
5025 static int
5026 bge_sysctl_debug_info(SYSCTL_HANDLER_ARGS)
5027 {
5028 	struct bge_softc *sc;
5029 	uint16_t *sbdata;
5030 	int error;
5031 	int result;
5032 	int i, j;
5033 
5034 	result = -1;
5035 	error = sysctl_handle_int(oidp, &result, 0, req);
5036 	if (error || (req->newptr == NULL))
5037 		return (error);
5038 
5039 	if (result == 1) {
5040 		sc = (struct bge_softc *)arg1;
5041 
5042 		sbdata = (uint16_t *)sc->bge_ldata.bge_status_block;
5043 		printf("Status Block:\n");
5044 		for (i = 0x0; i < (BGE_STATUS_BLK_SZ / 4); ) {
5045 			printf("%06x:", i);
5046 			for (j = 0; j < 8; j++) {
5047 				printf(" %04x", sbdata[i]);
5048 				i += 4;
5049 			}
5050 			printf("\n");
5051 		}
5052 
5053 		printf("Registers:\n");
5054 		for (i = 0x800; i < 0xA00; ) {
5055 			printf("%06x:", i);
5056 			for (j = 0; j < 8; j++) {
5057 				printf(" %08x", CSR_READ_4(sc, i));
5058 				i += 4;
5059 			}
5060 			printf("\n");
5061 		}
5062 
5063 		printf("Hardware Flags:\n");
5064 		if (BGE_IS_5755_PLUS(sc))
5065 			printf(" - 5755 Plus\n");
5066 		if (BGE_IS_575X_PLUS(sc))
5067 			printf(" - 575X Plus\n");
5068 		if (BGE_IS_5705_PLUS(sc))
5069 			printf(" - 5705 Plus\n");
5070 		if (BGE_IS_5714_FAMILY(sc))
5071 			printf(" - 5714 Family\n");
5072 		if (BGE_IS_5700_FAMILY(sc))
5073 			printf(" - 5700 Family\n");
5074 		if (sc->bge_flags & BGE_FLAG_JUMBO)
5075 			printf(" - Supports Jumbo Frames\n");
5076 		if (sc->bge_flags & BGE_FLAG_PCIX)
5077 			printf(" - PCI-X Bus\n");
5078 		if (sc->bge_flags & BGE_FLAG_PCIE)
5079 			printf(" - PCI Express Bus\n");
5080 		if (sc->bge_flags & BGE_FLAG_NO_3LED)
5081 			printf(" - No 3 LEDs\n");
5082 		if (sc->bge_flags & BGE_FLAG_RX_ALIGNBUG)
5083 			printf(" - RX Alignment Bug\n");
5084 	}
5085 
5086 	return (error);
5087 }
5088 
5089 static int
5090 bge_sysctl_reg_read(SYSCTL_HANDLER_ARGS)
5091 {
5092 	struct bge_softc *sc;
5093 	int error;
5094 	uint16_t result;
5095 	uint32_t val;
5096 
5097 	result = -1;
5098 	error = sysctl_handle_int(oidp, &result, 0, req);
5099 	if (error || (req->newptr == NULL))
5100 		return (error);
5101 
5102 	if (result < 0x8000) {
5103 		sc = (struct bge_softc *)arg1;
5104 		val = CSR_READ_4(sc, result);
5105 		printf("reg 0x%06X = 0x%08X\n", result, val);
5106 	}
5107 
5108 	return (error);
5109 }
5110 
5111 static int
5112 bge_sysctl_mem_read(SYSCTL_HANDLER_ARGS)
5113 {
5114 	struct bge_softc *sc;
5115 	int error;
5116 	uint16_t result;
5117 	uint32_t val;
5118 
5119 	result = -1;
5120 	error = sysctl_handle_int(oidp, &result, 0, req);
5121 	if (error || (req->newptr == NULL))
5122 		return (error);
5123 
5124 	if (result < 0x8000) {
5125 		sc = (struct bge_softc *)arg1;
5126 		val = bge_readmem_ind(sc, result);
5127 		printf("mem 0x%06X = 0x%08X\n", result, val);
5128 	}
5129 
5130 	return (error);
5131 }
5132 #endif
5133 
5134 static int
5135 bge_get_eaddr_fw(struct bge_softc *sc, uint8_t ether_addr[])
5136 {
5137 
5138 	if (sc->bge_flags & BGE_FLAG_EADDR)
5139 		return (1);
5140 
5141 #ifdef __sparc64__
5142 	OF_getetheraddr(sc->bge_dev, ether_addr);
5143 	return (0);
5144 #endif
5145 	return (1);
5146 }
5147 
5148 static int
5149 bge_get_eaddr_mem(struct bge_softc *sc, uint8_t ether_addr[])
5150 {
5151 	uint32_t mac_addr;
5152 
5153 	mac_addr = bge_readmem_ind(sc, 0x0c14);
5154 	if ((mac_addr >> 16) == 0x484b) {
5155 		ether_addr[0] = (uint8_t)(mac_addr >> 8);
5156 		ether_addr[1] = (uint8_t)mac_addr;
5157 		mac_addr = bge_readmem_ind(sc, 0x0c18);
5158 		ether_addr[2] = (uint8_t)(mac_addr >> 24);
5159 		ether_addr[3] = (uint8_t)(mac_addr >> 16);
5160 		ether_addr[4] = (uint8_t)(mac_addr >> 8);
5161 		ether_addr[5] = (uint8_t)mac_addr;
5162 		return (0);
5163 	}
5164 	return (1);
5165 }
5166 
5167 static int
5168 bge_get_eaddr_nvram(struct bge_softc *sc, uint8_t ether_addr[])
5169 {
5170 	int mac_offset = BGE_EE_MAC_OFFSET;
5171 
5172 	if (sc->bge_asicrev == BGE_ASICREV_BCM5906)
5173 		mac_offset = BGE_EE_MAC_OFFSET_5906;
5174 
5175 	return (bge_read_nvram(sc, ether_addr, mac_offset + 2,
5176 	    ETHER_ADDR_LEN));
5177 }
5178 
5179 static int
5180 bge_get_eaddr_eeprom(struct bge_softc *sc, uint8_t ether_addr[])
5181 {
5182 
5183 	if (sc->bge_asicrev == BGE_ASICREV_BCM5906)
5184 		return (1);
5185 
5186 	return (bge_read_eeprom(sc, ether_addr, BGE_EE_MAC_OFFSET + 2,
5187 	   ETHER_ADDR_LEN));
5188 }
5189 
5190 static int
5191 bge_get_eaddr(struct bge_softc *sc, uint8_t eaddr[])
5192 {
5193 	static const bge_eaddr_fcn_t bge_eaddr_funcs[] = {
5194 		/* NOTE: Order is critical */
5195 		bge_get_eaddr_fw,
5196 		bge_get_eaddr_mem,
5197 		bge_get_eaddr_nvram,
5198 		bge_get_eaddr_eeprom,
5199 		NULL
5200 	};
5201 	const bge_eaddr_fcn_t *func;
5202 
5203 	for (func = bge_eaddr_funcs; *func != NULL; ++func) {
5204 		if ((*func)(sc, eaddr) == 0)
5205 			break;
5206 	}
5207 	return (*func == NULL ? ENXIO : 0);
5208 }
5209