xref: /freebsd/sys/dev/bge/if_bge.c (revision 13014ca04aad1931d41958b56f71a2c65b9a7a2c)
1 /*-
2  * Copyright (c) 2001 Wind River Systems
3  * Copyright (c) 1997, 1998, 1999, 2001
4  *	Bill Paul <wpaul@windriver.com>.  All rights reserved.
5  *
6  * Redistribution and use in source and binary forms, with or without
7  * modification, are permitted provided that the following conditions
8  * are met:
9  * 1. Redistributions of source code must retain the above copyright
10  *    notice, this list of conditions and the following disclaimer.
11  * 2. Redistributions in binary form must reproduce the above copyright
12  *    notice, this list of conditions and the following disclaimer in the
13  *    documentation and/or other materials provided with the distribution.
14  * 3. All advertising materials mentioning features or use of this software
15  *    must display the following acknowledgement:
16  *	This product includes software developed by Bill Paul.
17  * 4. Neither the name of the author nor the names of any co-contributors
18  *    may be used to endorse or promote products derived from this software
19  *    without specific prior written permission.
20  *
21  * THIS SOFTWARE IS PROVIDED BY Bill Paul AND CONTRIBUTORS ``AS IS'' AND
22  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
23  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
24  * ARE DISCLAIMED.  IN NO EVENT SHALL Bill Paul OR THE VOICES IN HIS HEAD
25  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
26  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
27  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
28  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
29  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
30  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF
31  * THE POSSIBILITY OF SUCH DAMAGE.
32  */
33 
34 #include <sys/cdefs.h>
35 __FBSDID("$FreeBSD$");
36 
37 /*
38  * Broadcom BCM570x family gigabit ethernet driver for FreeBSD.
39  *
40  * The Broadcom BCM5700 is based on technology originally developed by
41  * Alteon Networks as part of the Tigon I and Tigon II gigabit ethernet
42  * MAC chips. The BCM5700, sometimes refered to as the Tigon III, has
43  * two on-board MIPS R4000 CPUs and can have as much as 16MB of external
44  * SSRAM. The BCM5700 supports TCP, UDP and IP checksum offload, jumbo
45  * frames, highly configurable RX filtering, and 16 RX and TX queues
46  * (which, along with RX filter rules, can be used for QOS applications).
47  * Other features, such as TCP segmentation, may be available as part
48  * of value-added firmware updates. Unlike the Tigon I and Tigon II,
49  * firmware images can be stored in hardware and need not be compiled
50  * into the driver.
51  *
52  * The BCM5700 supports the PCI v2.2 and PCI-X v1.0 standards, and will
53  * function in a 32-bit/64-bit 33/66Mhz bus, or a 64-bit/133Mhz bus.
54  *
55  * The BCM5701 is a single-chip solution incorporating both the BCM5700
56  * MAC and a BCM5401 10/100/1000 PHY. Unlike the BCM5700, the BCM5701
57  * does not support external SSRAM.
58  *
59  * Broadcom also produces a variation of the BCM5700 under the "Altima"
60  * brand name, which is functionally similar but lacks PCI-X support.
61  *
62  * Without external SSRAM, you can only have at most 4 TX rings,
63  * and the use of the mini RX ring is disabled. This seems to imply
64  * that these features are simply not available on the BCM5701. As a
65  * result, this driver does not implement any support for the mini RX
66  * ring.
67  */
68 
69 #ifdef HAVE_KERNEL_OPTION_HEADERS
70 #include "opt_device_polling.h"
71 #endif
72 
73 #include <sys/param.h>
74 #include <sys/endian.h>
75 #include <sys/systm.h>
76 #include <sys/sockio.h>
77 #include <sys/mbuf.h>
78 #include <sys/malloc.h>
79 #include <sys/kernel.h>
80 #include <sys/module.h>
81 #include <sys/socket.h>
82 #include <sys/sysctl.h>
83 
84 #include <net/if.h>
85 #include <net/if_arp.h>
86 #include <net/ethernet.h>
87 #include <net/if_dl.h>
88 #include <net/if_media.h>
89 
90 #include <net/bpf.h>
91 
92 #include <net/if_types.h>
93 #include <net/if_vlan_var.h>
94 
95 #include <netinet/in_systm.h>
96 #include <netinet/in.h>
97 #include <netinet/ip.h>
98 
99 #include <machine/bus.h>
100 #include <machine/resource.h>
101 #include <sys/bus.h>
102 #include <sys/rman.h>
103 
104 #include <dev/mii/mii.h>
105 #include <dev/mii/miivar.h>
106 #include "miidevs.h"
107 #include <dev/mii/brgphyreg.h>
108 
109 #ifdef __sparc64__
110 #include <dev/ofw/ofw_bus.h>
111 #include <dev/ofw/openfirm.h>
112 #include <machine/ofw_machdep.h>
113 #include <machine/ver.h>
114 #endif
115 
116 #include <dev/pci/pcireg.h>
117 #include <dev/pci/pcivar.h>
118 
119 #include <dev/bge/if_bgereg.h>
120 
121 #define	BGE_CSUM_FEATURES	(CSUM_IP | CSUM_TCP | CSUM_UDP)
122 #define	ETHER_MIN_NOPAD		(ETHER_MIN_LEN - ETHER_CRC_LEN) /* i.e., 60 */
123 
124 MODULE_DEPEND(bge, pci, 1, 1, 1);
125 MODULE_DEPEND(bge, ether, 1, 1, 1);
126 MODULE_DEPEND(bge, miibus, 1, 1, 1);
127 
128 /* "device miibus" required.  See GENERIC if you get errors here. */
129 #include "miibus_if.h"
130 
131 /*
132  * Various supported device vendors/types and their names. Note: the
133  * spec seems to indicate that the hardware still has Alteon's vendor
134  * ID burned into it, though it will always be overriden by the vendor
135  * ID in the EEPROM. Just to be safe, we cover all possibilities.
136  */
137 static const struct bge_type {
138 	uint16_t	bge_vid;
139 	uint16_t	bge_did;
140 } bge_devs[] = {
141 	{ ALTEON_VENDORID,	ALTEON_DEVICEID_BCM5700 },
142 	{ ALTEON_VENDORID,	ALTEON_DEVICEID_BCM5701 },
143 
144 	{ ALTIMA_VENDORID,	ALTIMA_DEVICE_AC1000 },
145 	{ ALTIMA_VENDORID,	ALTIMA_DEVICE_AC1002 },
146 	{ ALTIMA_VENDORID,	ALTIMA_DEVICE_AC9100 },
147 
148 	{ APPLE_VENDORID,	APPLE_DEVICE_BCM5701 },
149 
150 	{ BCOM_VENDORID,	BCOM_DEVICEID_BCM5700 },
151 	{ BCOM_VENDORID,	BCOM_DEVICEID_BCM5701 },
152 	{ BCOM_VENDORID,	BCOM_DEVICEID_BCM5702 },
153 	{ BCOM_VENDORID,	BCOM_DEVICEID_BCM5702_ALT },
154 	{ BCOM_VENDORID,	BCOM_DEVICEID_BCM5702X },
155 	{ BCOM_VENDORID,	BCOM_DEVICEID_BCM5703 },
156 	{ BCOM_VENDORID,	BCOM_DEVICEID_BCM5703_ALT },
157 	{ BCOM_VENDORID,	BCOM_DEVICEID_BCM5703X },
158 	{ BCOM_VENDORID,	BCOM_DEVICEID_BCM5704C },
159 	{ BCOM_VENDORID,	BCOM_DEVICEID_BCM5704S },
160 	{ BCOM_VENDORID,	BCOM_DEVICEID_BCM5704S_ALT },
161 	{ BCOM_VENDORID,	BCOM_DEVICEID_BCM5705 },
162 	{ BCOM_VENDORID,	BCOM_DEVICEID_BCM5705F },
163 	{ BCOM_VENDORID,	BCOM_DEVICEID_BCM5705K },
164 	{ BCOM_VENDORID,	BCOM_DEVICEID_BCM5705M },
165 	{ BCOM_VENDORID,	BCOM_DEVICEID_BCM5705M_ALT },
166 	{ BCOM_VENDORID,	BCOM_DEVICEID_BCM5714C },
167 	{ BCOM_VENDORID,	BCOM_DEVICEID_BCM5714S },
168 	{ BCOM_VENDORID,	BCOM_DEVICEID_BCM5715 },
169 	{ BCOM_VENDORID,	BCOM_DEVICEID_BCM5715S },
170 	{ BCOM_VENDORID,	BCOM_DEVICEID_BCM5720 },
171 	{ BCOM_VENDORID,	BCOM_DEVICEID_BCM5721 },
172 	{ BCOM_VENDORID,	BCOM_DEVICEID_BCM5722 },
173 	{ BCOM_VENDORID,	BCOM_DEVICEID_BCM5750 },
174 	{ BCOM_VENDORID,	BCOM_DEVICEID_BCM5750M },
175 	{ BCOM_VENDORID,	BCOM_DEVICEID_BCM5751 },
176 	{ BCOM_VENDORID,	BCOM_DEVICEID_BCM5751F },
177 	{ BCOM_VENDORID,	BCOM_DEVICEID_BCM5751M },
178 	{ BCOM_VENDORID,	BCOM_DEVICEID_BCM5752 },
179 	{ BCOM_VENDORID,	BCOM_DEVICEID_BCM5752M },
180 	{ BCOM_VENDORID,	BCOM_DEVICEID_BCM5753 },
181 	{ BCOM_VENDORID,	BCOM_DEVICEID_BCM5753F },
182 	{ BCOM_VENDORID,	BCOM_DEVICEID_BCM5753M },
183 	{ BCOM_VENDORID,	BCOM_DEVICEID_BCM5754 },
184 	{ BCOM_VENDORID,	BCOM_DEVICEID_BCM5754M },
185 	{ BCOM_VENDORID,	BCOM_DEVICEID_BCM5755 },
186 	{ BCOM_VENDORID,	BCOM_DEVICEID_BCM5755M },
187 	{ BCOM_VENDORID,	BCOM_DEVICEID_BCM5780 },
188 	{ BCOM_VENDORID,	BCOM_DEVICEID_BCM5780S },
189 	{ BCOM_VENDORID,	BCOM_DEVICEID_BCM5781 },
190 	{ BCOM_VENDORID,	BCOM_DEVICEID_BCM5782 },
191 	{ BCOM_VENDORID,	BCOM_DEVICEID_BCM5786 },
192 	{ BCOM_VENDORID,	BCOM_DEVICEID_BCM5787 },
193 	{ BCOM_VENDORID,	BCOM_DEVICEID_BCM5787M },
194 	{ BCOM_VENDORID,	BCOM_DEVICEID_BCM5788 },
195 	{ BCOM_VENDORID,	BCOM_DEVICEID_BCM5789 },
196 	{ BCOM_VENDORID,	BCOM_DEVICEID_BCM5901 },
197 	{ BCOM_VENDORID,	BCOM_DEVICEID_BCM5901A2 },
198 	{ BCOM_VENDORID,	BCOM_DEVICEID_BCM5903M },
199 	{ BCOM_VENDORID,	BCOM_DEVICEID_BCM5906 },
200 	{ BCOM_VENDORID,	BCOM_DEVICEID_BCM5906M },
201 
202 	{ SK_VENDORID,		SK_DEVICEID_ALTIMA },
203 
204 	{ TC_VENDORID,		TC_DEVICEID_3C996 },
205 
206 	{ 0, 0 }
207 };
208 
209 static const struct bge_vendor {
210 	uint16_t	v_id;
211 	const char	*v_name;
212 } bge_vendors[] = {
213 	{ ALTEON_VENDORID,	"Alteon" },
214 	{ ALTIMA_VENDORID,	"Altima" },
215 	{ APPLE_VENDORID,	"Apple" },
216 	{ BCOM_VENDORID,	"Broadcom" },
217 	{ SK_VENDORID,		"SysKonnect" },
218 	{ TC_VENDORID,		"3Com" },
219 
220 	{ 0, NULL }
221 };
222 
223 static const struct bge_revision {
224 	uint32_t	br_chipid;
225 	const char	*br_name;
226 } bge_revisions[] = {
227 	{ BGE_CHIPID_BCM5700_A0,	"BCM5700 A0" },
228 	{ BGE_CHIPID_BCM5700_A1,	"BCM5700 A1" },
229 	{ BGE_CHIPID_BCM5700_B0,	"BCM5700 B0" },
230 	{ BGE_CHIPID_BCM5700_B1,	"BCM5700 B1" },
231 	{ BGE_CHIPID_BCM5700_B2,	"BCM5700 B2" },
232 	{ BGE_CHIPID_BCM5700_B3,	"BCM5700 B3" },
233 	{ BGE_CHIPID_BCM5700_ALTIMA,	"BCM5700 Altima" },
234 	{ BGE_CHIPID_BCM5700_C0,	"BCM5700 C0" },
235 	{ BGE_CHIPID_BCM5701_A0,	"BCM5701 A0" },
236 	{ BGE_CHIPID_BCM5701_B0,	"BCM5701 B0" },
237 	{ BGE_CHIPID_BCM5701_B2,	"BCM5701 B2" },
238 	{ BGE_CHIPID_BCM5701_B5,	"BCM5701 B5" },
239 	{ BGE_CHIPID_BCM5703_A0,	"BCM5703 A0" },
240 	{ BGE_CHIPID_BCM5703_A1,	"BCM5703 A1" },
241 	{ BGE_CHIPID_BCM5703_A2,	"BCM5703 A2" },
242 	{ BGE_CHIPID_BCM5703_A3,	"BCM5703 A3" },
243 	{ BGE_CHIPID_BCM5703_B0,	"BCM5703 B0" },
244 	{ BGE_CHIPID_BCM5704_A0,	"BCM5704 A0" },
245 	{ BGE_CHIPID_BCM5704_A1,	"BCM5704 A1" },
246 	{ BGE_CHIPID_BCM5704_A2,	"BCM5704 A2" },
247 	{ BGE_CHIPID_BCM5704_A3,	"BCM5704 A3" },
248 	{ BGE_CHIPID_BCM5704_B0,	"BCM5704 B0" },
249 	{ BGE_CHIPID_BCM5705_A0,	"BCM5705 A0" },
250 	{ BGE_CHIPID_BCM5705_A1,	"BCM5705 A1" },
251 	{ BGE_CHIPID_BCM5705_A2,	"BCM5705 A2" },
252 	{ BGE_CHIPID_BCM5705_A3,	"BCM5705 A3" },
253 	{ BGE_CHIPID_BCM5750_A0,	"BCM5750 A0" },
254 	{ BGE_CHIPID_BCM5750_A1,	"BCM5750 A1" },
255 	{ BGE_CHIPID_BCM5750_A3,	"BCM5750 A3" },
256 	{ BGE_CHIPID_BCM5750_B0,	"BCM5750 B0" },
257 	{ BGE_CHIPID_BCM5750_B1,	"BCM5750 B1" },
258 	{ BGE_CHIPID_BCM5750_C0,	"BCM5750 C0" },
259 	{ BGE_CHIPID_BCM5750_C1,	"BCM5750 C1" },
260 	{ BGE_CHIPID_BCM5750_C2,	"BCM5750 C2" },
261 	{ BGE_CHIPID_BCM5714_A0,	"BCM5714 A0" },
262 	{ BGE_CHIPID_BCM5752_A0,	"BCM5752 A0" },
263 	{ BGE_CHIPID_BCM5752_A1,	"BCM5752 A1" },
264 	{ BGE_CHIPID_BCM5752_A2,	"BCM5752 A2" },
265 	{ BGE_CHIPID_BCM5714_B0,	"BCM5714 B0" },
266 	{ BGE_CHIPID_BCM5714_B3,	"BCM5714 B3" },
267 	{ BGE_CHIPID_BCM5715_A0,	"BCM5715 A0" },
268 	{ BGE_CHIPID_BCM5715_A1,	"BCM5715 A1" },
269 	{ BGE_CHIPID_BCM5715_A3,	"BCM5715 A3" },
270 	{ BGE_CHIPID_BCM5755_A0,	"BCM5755 A0" },
271 	{ BGE_CHIPID_BCM5755_A1,	"BCM5755 A1" },
272 	{ BGE_CHIPID_BCM5755_A2,	"BCM5755 A2" },
273 	{ BGE_CHIPID_BCM5722_A0,	"BCM5722 A0" },
274 	/* 5754 and 5787 share the same ASIC ID */
275 	{ BGE_CHIPID_BCM5787_A0,	"BCM5754/5787 A0" },
276 	{ BGE_CHIPID_BCM5787_A1,	"BCM5754/5787 A1" },
277 	{ BGE_CHIPID_BCM5787_A2,	"BCM5754/5787 A2" },
278 	{ BGE_CHIPID_BCM5906_A1,	"BCM5906 A1" },
279 	{ BGE_CHIPID_BCM5906_A2,	"BCM5906 A2" },
280 
281 	{ 0, NULL }
282 };
283 
284 /*
285  * Some defaults for major revisions, so that newer steppings
286  * that we don't know about have a shot at working.
287  */
288 static const struct bge_revision bge_majorrevs[] = {
289 	{ BGE_ASICREV_BCM5700,		"unknown BCM5700" },
290 	{ BGE_ASICREV_BCM5701,		"unknown BCM5701" },
291 	{ BGE_ASICREV_BCM5703,		"unknown BCM5703" },
292 	{ BGE_ASICREV_BCM5704,		"unknown BCM5704" },
293 	{ BGE_ASICREV_BCM5705,		"unknown BCM5705" },
294 	{ BGE_ASICREV_BCM5750,		"unknown BCM5750" },
295 	{ BGE_ASICREV_BCM5714_A0,	"unknown BCM5714" },
296 	{ BGE_ASICREV_BCM5752,		"unknown BCM5752" },
297 	{ BGE_ASICREV_BCM5780,		"unknown BCM5780" },
298 	{ BGE_ASICREV_BCM5714,		"unknown BCM5714" },
299 	{ BGE_ASICREV_BCM5755,		"unknown BCM5755" },
300 	/* 5754 and 5787 share the same ASIC ID */
301 	{ BGE_ASICREV_BCM5787,		"unknown BCM5754/5787" },
302 	{ BGE_ASICREV_BCM5906,		"unknown BCM5906" },
303 
304 	{ 0, NULL }
305 };
306 
307 #define	BGE_IS_JUMBO_CAPABLE(sc)	((sc)->bge_flags & BGE_FLAG_JUMBO)
308 #define	BGE_IS_5700_FAMILY(sc)		((sc)->bge_flags & BGE_FLAG_5700_FAMILY)
309 #define	BGE_IS_5705_PLUS(sc)		((sc)->bge_flags & BGE_FLAG_5705_PLUS)
310 #define	BGE_IS_5714_FAMILY(sc)		((sc)->bge_flags & BGE_FLAG_5714_FAMILY)
311 #define	BGE_IS_575X_PLUS(sc)		((sc)->bge_flags & BGE_FLAG_575X_PLUS)
312 
313 const struct bge_revision * bge_lookup_rev(uint32_t);
314 const struct bge_vendor * bge_lookup_vendor(uint16_t);
315 
316 typedef int	(*bge_eaddr_fcn_t)(struct bge_softc *, uint8_t[]);
317 
318 static int bge_probe(device_t);
319 static int bge_attach(device_t);
320 static int bge_detach(device_t);
321 static int bge_suspend(device_t);
322 static int bge_resume(device_t);
323 static void bge_release_resources(struct bge_softc *);
324 static void bge_dma_map_addr(void *, bus_dma_segment_t *, int, int);
325 static int bge_dma_alloc(device_t);
326 static void bge_dma_free(struct bge_softc *);
327 
328 static int bge_get_eaddr_fw(struct bge_softc *sc, uint8_t ether_addr[]);
329 static int bge_get_eaddr_mem(struct bge_softc *, uint8_t[]);
330 static int bge_get_eaddr_nvram(struct bge_softc *, uint8_t[]);
331 static int bge_get_eaddr_eeprom(struct bge_softc *, uint8_t[]);
332 static int bge_get_eaddr(struct bge_softc *, uint8_t[]);
333 
334 static void bge_txeof(struct bge_softc *);
335 static void bge_rxeof(struct bge_softc *);
336 
337 static void bge_asf_driver_up (struct bge_softc *);
338 static void bge_tick(void *);
339 static void bge_stats_update(struct bge_softc *);
340 static void bge_stats_update_regs(struct bge_softc *);
341 static int bge_encap(struct bge_softc *, struct mbuf **, uint32_t *);
342 
343 static void bge_intr(void *);
344 static void bge_start_locked(struct ifnet *);
345 static void bge_start(struct ifnet *);
346 static int bge_ioctl(struct ifnet *, u_long, caddr_t);
347 static void bge_init_locked(struct bge_softc *);
348 static void bge_init(void *);
349 static void bge_stop(struct bge_softc *);
350 static void bge_watchdog(struct bge_softc *);
351 static void bge_shutdown(device_t);
352 static int bge_ifmedia_upd_locked(struct ifnet *);
353 static int bge_ifmedia_upd(struct ifnet *);
354 static void bge_ifmedia_sts(struct ifnet *, struct ifmediareq *);
355 
356 static uint8_t bge_nvram_getbyte(struct bge_softc *, int, uint8_t *);
357 static int bge_read_nvram(struct bge_softc *, caddr_t, int, int);
358 
359 static uint8_t bge_eeprom_getbyte(struct bge_softc *, int, uint8_t *);
360 static int bge_read_eeprom(struct bge_softc *, caddr_t, int, int);
361 
362 static void bge_setpromisc(struct bge_softc *);
363 static void bge_setmulti(struct bge_softc *);
364 static void bge_setvlan(struct bge_softc *);
365 
366 static int bge_newbuf_std(struct bge_softc *, int, struct mbuf *);
367 static int bge_newbuf_jumbo(struct bge_softc *, int, struct mbuf *);
368 static int bge_init_rx_ring_std(struct bge_softc *);
369 static void bge_free_rx_ring_std(struct bge_softc *);
370 static int bge_init_rx_ring_jumbo(struct bge_softc *);
371 static void bge_free_rx_ring_jumbo(struct bge_softc *);
372 static void bge_free_tx_ring(struct bge_softc *);
373 static int bge_init_tx_ring(struct bge_softc *);
374 
375 static int bge_chipinit(struct bge_softc *);
376 static int bge_blockinit(struct bge_softc *);
377 
378 static int bge_has_eaddr(struct bge_softc *);
379 static uint32_t bge_readmem_ind(struct bge_softc *, int);
380 static void bge_writemem_ind(struct bge_softc *, int, int);
381 static void bge_writembx(struct bge_softc *, int, int);
382 #ifdef notdef
383 static uint32_t bge_readreg_ind(struct bge_softc *, int);
384 #endif
385 static void bge_writemem_direct(struct bge_softc *, int, int);
386 static void bge_writereg_ind(struct bge_softc *, int, int);
387 
388 static int bge_miibus_readreg(device_t, int, int);
389 static int bge_miibus_writereg(device_t, int, int, int);
390 static void bge_miibus_statchg(device_t);
391 #ifdef DEVICE_POLLING
392 static void bge_poll(struct ifnet *ifp, enum poll_cmd cmd, int count);
393 #endif
394 
395 #define	BGE_RESET_START 1
396 #define	BGE_RESET_STOP  2
397 static void bge_sig_post_reset(struct bge_softc *, int);
398 static void bge_sig_legacy(struct bge_softc *, int);
399 static void bge_sig_pre_reset(struct bge_softc *, int);
400 static int bge_reset(struct bge_softc *);
401 static void bge_link_upd(struct bge_softc *);
402 
403 /*
404  * The BGE_REGISTER_DEBUG option is only for low-level debugging.  It may
405  * leak information to untrusted users.  It is also known to cause alignment
406  * traps on certain architectures.
407  */
408 #ifdef BGE_REGISTER_DEBUG
409 static int bge_sysctl_debug_info(SYSCTL_HANDLER_ARGS);
410 static int bge_sysctl_reg_read(SYSCTL_HANDLER_ARGS);
411 static int bge_sysctl_mem_read(SYSCTL_HANDLER_ARGS);
412 #endif
413 static void bge_add_sysctls(struct bge_softc *);
414 static int bge_sysctl_stats(SYSCTL_HANDLER_ARGS);
415 
416 static device_method_t bge_methods[] = {
417 	/* Device interface */
418 	DEVMETHOD(device_probe,		bge_probe),
419 	DEVMETHOD(device_attach,	bge_attach),
420 	DEVMETHOD(device_detach,	bge_detach),
421 	DEVMETHOD(device_shutdown,	bge_shutdown),
422 	DEVMETHOD(device_suspend,	bge_suspend),
423 	DEVMETHOD(device_resume,	bge_resume),
424 
425 	/* bus interface */
426 	DEVMETHOD(bus_print_child,	bus_generic_print_child),
427 	DEVMETHOD(bus_driver_added,	bus_generic_driver_added),
428 
429 	/* MII interface */
430 	DEVMETHOD(miibus_readreg,	bge_miibus_readreg),
431 	DEVMETHOD(miibus_writereg,	bge_miibus_writereg),
432 	DEVMETHOD(miibus_statchg,	bge_miibus_statchg),
433 
434 	{ 0, 0 }
435 };
436 
437 static driver_t bge_driver = {
438 	"bge",
439 	bge_methods,
440 	sizeof(struct bge_softc)
441 };
442 
443 static devclass_t bge_devclass;
444 
445 DRIVER_MODULE(bge, pci, bge_driver, bge_devclass, 0, 0);
446 DRIVER_MODULE(miibus, bge, miibus_driver, miibus_devclass, 0, 0);
447 
448 static int bge_allow_asf = 1;
449 
450 TUNABLE_INT("hw.bge.allow_asf", &bge_allow_asf);
451 
452 SYSCTL_NODE(_hw, OID_AUTO, bge, CTLFLAG_RD, 0, "BGE driver parameters");
453 SYSCTL_INT(_hw_bge, OID_AUTO, allow_asf, CTLFLAG_RD, &bge_allow_asf, 0,
454 	"Allow ASF mode if available");
455 
456 #define	SPARC64_BLADE_1500_MODEL	"SUNW,Sun-Blade-1500"
457 #define	SPARC64_BLADE_1500_PATH_BGE	"/pci@1f,700000/network@2"
458 #define	SPARC64_BLADE_2500_MODEL	"SUNW,Sun-Blade-2500"
459 #define	SPARC64_BLADE_2500_PATH_BGE	"/pci@1c,600000/network@3"
460 #define	SPARC64_OFW_SUBVENDOR		"subsystem-vendor-id"
461 
462 static int
463 bge_has_eaddr(struct bge_softc *sc)
464 {
465 #ifdef __sparc64__
466 	char buf[sizeof(SPARC64_BLADE_1500_PATH_BGE)];
467 	device_t dev;
468 	uint32_t subvendor;
469 
470 	dev = sc->bge_dev;
471 
472 	/*
473 	 * The on-board BGEs found in sun4u machines aren't fitted with
474 	 * an EEPROM which means that we have to obtain the MAC address
475 	 * via OFW and that some tests will always fail.  We distinguish
476 	 * such BGEs by the subvendor ID, which also has to be obtained
477 	 * from OFW instead of the PCI configuration space as the latter
478 	 * indicates Broadcom as the subvendor of the netboot interface.
479 	 * For early Blade 1500 and 2500 we even have to check the OFW
480 	 * device path as the subvendor ID always defaults to Broadcom
481 	 * there.
482 	 */
483 	if (OF_getprop(ofw_bus_get_node(dev), SPARC64_OFW_SUBVENDOR,
484 	    &subvendor, sizeof(subvendor)) == sizeof(subvendor) &&
485 	    subvendor == SUN_VENDORID)
486 		return (0);
487 	memset(buf, 0, sizeof(buf));
488 	if (OF_package_to_path(ofw_bus_get_node(dev), buf, sizeof(buf)) > 0) {
489 		if (strcmp(sparc64_model, SPARC64_BLADE_1500_MODEL) == 0 &&
490 		    strcmp(buf, SPARC64_BLADE_1500_PATH_BGE) == 0)
491 			return (0);
492 		if (strcmp(sparc64_model, SPARC64_BLADE_2500_MODEL) == 0 &&
493 		    strcmp(buf, SPARC64_BLADE_2500_PATH_BGE) == 0)
494 			return (0);
495 	}
496 #endif
497 	return (1);
498 }
499 
500 static uint32_t
501 bge_readmem_ind(struct bge_softc *sc, int off)
502 {
503 	device_t dev;
504 	uint32_t val;
505 
506 	dev = sc->bge_dev;
507 
508 	pci_write_config(dev, BGE_PCI_MEMWIN_BASEADDR, off, 4);
509 	val = pci_read_config(dev, BGE_PCI_MEMWIN_DATA, 4);
510 	pci_write_config(dev, BGE_PCI_MEMWIN_BASEADDR, 0, 4);
511 	return (val);
512 }
513 
514 static void
515 bge_writemem_ind(struct bge_softc *sc, int off, int val)
516 {
517 	device_t dev;
518 
519 	dev = sc->bge_dev;
520 
521 	pci_write_config(dev, BGE_PCI_MEMWIN_BASEADDR, off, 4);
522 	pci_write_config(dev, BGE_PCI_MEMWIN_DATA, val, 4);
523 	pci_write_config(dev, BGE_PCI_MEMWIN_BASEADDR, 0, 4);
524 }
525 
526 #ifdef notdef
527 static uint32_t
528 bge_readreg_ind(struct bge_softc *sc, int off)
529 {
530 	device_t dev;
531 
532 	dev = sc->bge_dev;
533 
534 	pci_write_config(dev, BGE_PCI_REG_BASEADDR, off, 4);
535 	return (pci_read_config(dev, BGE_PCI_REG_DATA, 4));
536 }
537 #endif
538 
539 static void
540 bge_writereg_ind(struct bge_softc *sc, int off, int val)
541 {
542 	device_t dev;
543 
544 	dev = sc->bge_dev;
545 
546 	pci_write_config(dev, BGE_PCI_REG_BASEADDR, off, 4);
547 	pci_write_config(dev, BGE_PCI_REG_DATA, val, 4);
548 }
549 
550 static void
551 bge_writemem_direct(struct bge_softc *sc, int off, int val)
552 {
553 	CSR_WRITE_4(sc, off, val);
554 }
555 
556 static void
557 bge_writembx(struct bge_softc *sc, int off, int val)
558 {
559 	if (sc->bge_asicrev == BGE_ASICREV_BCM5906)
560 		off += BGE_LPMBX_IRQ0_HI - BGE_MBX_IRQ0_HI;
561 
562 	CSR_WRITE_4(sc, off, val);
563 }
564 
565 /*
566  * Map a single buffer address.
567  */
568 
569 static void
570 bge_dma_map_addr(void *arg, bus_dma_segment_t *segs, int nseg, int error)
571 {
572 	struct bge_dmamap_arg *ctx;
573 
574 	if (error)
575 		return;
576 
577 	ctx = arg;
578 
579 	if (nseg > ctx->bge_maxsegs) {
580 		ctx->bge_maxsegs = 0;
581 		return;
582 	}
583 
584 	ctx->bge_busaddr = segs->ds_addr;
585 }
586 
587 static uint8_t
588 bge_nvram_getbyte(struct bge_softc *sc, int addr, uint8_t *dest)
589 {
590 	uint32_t access, byte = 0;
591 	int i;
592 
593 	/* Lock. */
594 	CSR_WRITE_4(sc, BGE_NVRAM_SWARB, BGE_NVRAMSWARB_SET1);
595 	for (i = 0; i < 8000; i++) {
596 		if (CSR_READ_4(sc, BGE_NVRAM_SWARB) & BGE_NVRAMSWARB_GNT1)
597 			break;
598 		DELAY(20);
599 	}
600 	if (i == 8000)
601 		return (1);
602 
603 	/* Enable access. */
604 	access = CSR_READ_4(sc, BGE_NVRAM_ACCESS);
605 	CSR_WRITE_4(sc, BGE_NVRAM_ACCESS, access | BGE_NVRAMACC_ENABLE);
606 
607 	CSR_WRITE_4(sc, BGE_NVRAM_ADDR, addr & 0xfffffffc);
608 	CSR_WRITE_4(sc, BGE_NVRAM_CMD, BGE_NVRAM_READCMD);
609 	for (i = 0; i < BGE_TIMEOUT * 10; i++) {
610 		DELAY(10);
611 		if (CSR_READ_4(sc, BGE_NVRAM_CMD) & BGE_NVRAMCMD_DONE) {
612 			DELAY(10);
613 			break;
614 		}
615 	}
616 
617 	if (i == BGE_TIMEOUT * 10) {
618 		if_printf(sc->bge_ifp, "nvram read timed out\n");
619 		return (1);
620 	}
621 
622 	/* Get result. */
623 	byte = CSR_READ_4(sc, BGE_NVRAM_RDDATA);
624 
625 	*dest = (bswap32(byte) >> ((addr % 4) * 8)) & 0xFF;
626 
627 	/* Disable access. */
628 	CSR_WRITE_4(sc, BGE_NVRAM_ACCESS, access);
629 
630 	/* Unlock. */
631 	CSR_WRITE_4(sc, BGE_NVRAM_SWARB, BGE_NVRAMSWARB_CLR1);
632 	CSR_READ_4(sc, BGE_NVRAM_SWARB);
633 
634 	return (0);
635 }
636 
637 /*
638  * Read a sequence of bytes from NVRAM.
639  */
640 static int
641 bge_read_nvram(struct bge_softc *sc, caddr_t dest, int off, int cnt)
642 {
643 	int err = 0, i;
644 	uint8_t byte = 0;
645 
646 	if (sc->bge_asicrev != BGE_ASICREV_BCM5906)
647 		return (1);
648 
649 	for (i = 0; i < cnt; i++) {
650 		err = bge_nvram_getbyte(sc, off + i, &byte);
651 		if (err)
652 			break;
653 		*(dest + i) = byte;
654 	}
655 
656 	return (err ? 1 : 0);
657 }
658 
659 /*
660  * Read a byte of data stored in the EEPROM at address 'addr.' The
661  * BCM570x supports both the traditional bitbang interface and an
662  * auto access interface for reading the EEPROM. We use the auto
663  * access method.
664  */
665 static uint8_t
666 bge_eeprom_getbyte(struct bge_softc *sc, int addr, uint8_t *dest)
667 {
668 	int i;
669 	uint32_t byte = 0;
670 
671 	/*
672 	 * Enable use of auto EEPROM access so we can avoid
673 	 * having to use the bitbang method.
674 	 */
675 	BGE_SETBIT(sc, BGE_MISC_LOCAL_CTL, BGE_MLC_AUTO_EEPROM);
676 
677 	/* Reset the EEPROM, load the clock period. */
678 	CSR_WRITE_4(sc, BGE_EE_ADDR,
679 	    BGE_EEADDR_RESET | BGE_EEHALFCLK(BGE_HALFCLK_384SCL));
680 	DELAY(20);
681 
682 	/* Issue the read EEPROM command. */
683 	CSR_WRITE_4(sc, BGE_EE_ADDR, BGE_EE_READCMD | addr);
684 
685 	/* Wait for completion */
686 	for(i = 0; i < BGE_TIMEOUT * 10; i++) {
687 		DELAY(10);
688 		if (CSR_READ_4(sc, BGE_EE_ADDR) & BGE_EEADDR_DONE)
689 			break;
690 	}
691 
692 	if (i == BGE_TIMEOUT * 10) {
693 		device_printf(sc->bge_dev, "EEPROM read timed out\n");
694 		return (1);
695 	}
696 
697 	/* Get result. */
698 	byte = CSR_READ_4(sc, BGE_EE_DATA);
699 
700 	*dest = (byte >> ((addr % 4) * 8)) & 0xFF;
701 
702 	return (0);
703 }
704 
705 /*
706  * Read a sequence of bytes from the EEPROM.
707  */
708 static int
709 bge_read_eeprom(struct bge_softc *sc, caddr_t dest, int off, int cnt)
710 {
711 	int i, error = 0;
712 	uint8_t byte = 0;
713 
714 	for (i = 0; i < cnt; i++) {
715 		error = bge_eeprom_getbyte(sc, off + i, &byte);
716 		if (error)
717 			break;
718 		*(dest + i) = byte;
719 	}
720 
721 	return (error ? 1 : 0);
722 }
723 
724 static int
725 bge_miibus_readreg(device_t dev, int phy, int reg)
726 {
727 	struct bge_softc *sc;
728 	uint32_t val, autopoll;
729 	int i;
730 
731 	sc = device_get_softc(dev);
732 
733 	/*
734 	 * Broadcom's own driver always assumes the internal
735 	 * PHY is at GMII address 1. On some chips, the PHY responds
736 	 * to accesses at all addresses, which could cause us to
737 	 * bogusly attach the PHY 32 times at probe type. Always
738 	 * restricting the lookup to address 1 is simpler than
739 	 * trying to figure out which chips revisions should be
740 	 * special-cased.
741 	 */
742 	if (phy != 1)
743 		return (0);
744 
745 	/* Reading with autopolling on may trigger PCI errors */
746 	autopoll = CSR_READ_4(sc, BGE_MI_MODE);
747 	if (autopoll & BGE_MIMODE_AUTOPOLL) {
748 		BGE_CLRBIT(sc, BGE_MI_MODE, BGE_MIMODE_AUTOPOLL);
749 		DELAY(40);
750 	}
751 
752 	CSR_WRITE_4(sc, BGE_MI_COMM, BGE_MICMD_READ | BGE_MICOMM_BUSY |
753 	    BGE_MIPHY(phy) | BGE_MIREG(reg));
754 
755 	for (i = 0; i < BGE_TIMEOUT; i++) {
756 		DELAY(10);
757 		val = CSR_READ_4(sc, BGE_MI_COMM);
758 		if (!(val & BGE_MICOMM_BUSY))
759 			break;
760 	}
761 
762 	if (i == BGE_TIMEOUT) {
763 		device_printf(sc->bge_dev,
764 		    "PHY read timed out (phy %d, reg %d, val 0x%08x)\n",
765 		    phy, reg, val);
766 		val = 0;
767 		goto done;
768 	}
769 
770 	DELAY(5);
771 	val = CSR_READ_4(sc, BGE_MI_COMM);
772 
773 done:
774 	if (autopoll & BGE_MIMODE_AUTOPOLL) {
775 		BGE_SETBIT(sc, BGE_MI_MODE, BGE_MIMODE_AUTOPOLL);
776 		DELAY(40);
777 	}
778 
779 	if (val & BGE_MICOMM_READFAIL)
780 		return (0);
781 
782 	return (val & 0xFFFF);
783 }
784 
785 static int
786 bge_miibus_writereg(device_t dev, int phy, int reg, int val)
787 {
788 	struct bge_softc *sc;
789 	uint32_t autopoll;
790 	int i;
791 
792 	sc = device_get_softc(dev);
793 
794 	if (sc->bge_asicrev == BGE_ASICREV_BCM5906 &&
795 	    (reg == BRGPHY_MII_1000CTL || reg == BRGPHY_MII_AUXCTL))
796 		return(0);
797 
798 	/* Reading with autopolling on may trigger PCI errors */
799 	autopoll = CSR_READ_4(sc, BGE_MI_MODE);
800 	if (autopoll & BGE_MIMODE_AUTOPOLL) {
801 		BGE_CLRBIT(sc, BGE_MI_MODE, BGE_MIMODE_AUTOPOLL);
802 		DELAY(40);
803 	}
804 
805 	CSR_WRITE_4(sc, BGE_MI_COMM, BGE_MICMD_WRITE | BGE_MICOMM_BUSY |
806 	    BGE_MIPHY(phy) | BGE_MIREG(reg) | val);
807 
808 	for (i = 0; i < BGE_TIMEOUT; i++) {
809 		DELAY(10);
810 		if (!(CSR_READ_4(sc, BGE_MI_COMM) & BGE_MICOMM_BUSY)) {
811 			DELAY(5);
812 			CSR_READ_4(sc, BGE_MI_COMM); /* dummy read */
813 			break;
814 		}
815 	}
816 
817 	if (i == BGE_TIMEOUT) {
818 		device_printf(sc->bge_dev,
819 		    "PHY write timed out (phy %d, reg %d, val %d)\n",
820 		    phy, reg, val);
821 		return (0);
822 	}
823 
824 	if (autopoll & BGE_MIMODE_AUTOPOLL) {
825 		BGE_SETBIT(sc, BGE_MI_MODE, BGE_MIMODE_AUTOPOLL);
826 		DELAY(40);
827 	}
828 
829 	return (0);
830 }
831 
832 static void
833 bge_miibus_statchg(device_t dev)
834 {
835 	struct bge_softc *sc;
836 	struct mii_data *mii;
837 	sc = device_get_softc(dev);
838 	mii = device_get_softc(sc->bge_miibus);
839 
840 	BGE_CLRBIT(sc, BGE_MAC_MODE, BGE_MACMODE_PORTMODE);
841 	if (IFM_SUBTYPE(mii->mii_media_active) == IFM_1000_T)
842 		BGE_SETBIT(sc, BGE_MAC_MODE, BGE_PORTMODE_GMII);
843 	else
844 		BGE_SETBIT(sc, BGE_MAC_MODE, BGE_PORTMODE_MII);
845 
846 	if ((mii->mii_media_active & IFM_GMASK) == IFM_FDX)
847 		BGE_CLRBIT(sc, BGE_MAC_MODE, BGE_MACMODE_HALF_DUPLEX);
848 	else
849 		BGE_SETBIT(sc, BGE_MAC_MODE, BGE_MACMODE_HALF_DUPLEX);
850 }
851 
852 /*
853  * Intialize a standard receive ring descriptor.
854  */
855 static int
856 bge_newbuf_std(struct bge_softc *sc, int i, struct mbuf *m)
857 {
858 	struct mbuf *m_new = NULL;
859 	struct bge_rx_bd *r;
860 	struct bge_dmamap_arg ctx;
861 	int error;
862 
863 	if (m == NULL) {
864 		m_new = m_getcl(M_DONTWAIT, MT_DATA, M_PKTHDR);
865 		if (m_new == NULL)
866 			return (ENOBUFS);
867 		m_new->m_len = m_new->m_pkthdr.len = MCLBYTES;
868 	} else {
869 		m_new = m;
870 		m_new->m_len = m_new->m_pkthdr.len = MCLBYTES;
871 		m_new->m_data = m_new->m_ext.ext_buf;
872 	}
873 
874 	if ((sc->bge_flags & BGE_FLAG_RX_ALIGNBUG) == 0)
875 		m_adj(m_new, ETHER_ALIGN);
876 	sc->bge_cdata.bge_rx_std_chain[i] = m_new;
877 	r = &sc->bge_ldata.bge_rx_std_ring[i];
878 	ctx.bge_maxsegs = 1;
879 	ctx.sc = sc;
880 	error = bus_dmamap_load(sc->bge_cdata.bge_mtag,
881 	    sc->bge_cdata.bge_rx_std_dmamap[i], mtod(m_new, void *),
882 	    m_new->m_len, bge_dma_map_addr, &ctx, BUS_DMA_NOWAIT);
883 	if (error || ctx.bge_maxsegs == 0) {
884 		if (m == NULL) {
885 			sc->bge_cdata.bge_rx_std_chain[i] = NULL;
886 			m_freem(m_new);
887 		}
888 		return (ENOMEM);
889 	}
890 	r->bge_addr.bge_addr_lo = BGE_ADDR_LO(ctx.bge_busaddr);
891 	r->bge_addr.bge_addr_hi = BGE_ADDR_HI(ctx.bge_busaddr);
892 	r->bge_flags = BGE_RXBDFLAG_END;
893 	r->bge_len = m_new->m_len;
894 	r->bge_idx = i;
895 
896 	bus_dmamap_sync(sc->bge_cdata.bge_mtag,
897 	    sc->bge_cdata.bge_rx_std_dmamap[i],
898 	    BUS_DMASYNC_PREREAD);
899 
900 	return (0);
901 }
902 
903 /*
904  * Initialize a jumbo receive ring descriptor. This allocates
905  * a jumbo buffer from the pool managed internally by the driver.
906  */
907 static int
908 bge_newbuf_jumbo(struct bge_softc *sc, int i, struct mbuf *m)
909 {
910 	bus_dma_segment_t segs[BGE_NSEG_JUMBO];
911 	struct bge_extrx_bd *r;
912 	struct mbuf *m_new = NULL;
913 	int nsegs;
914 	int error;
915 
916 	if (m == NULL) {
917 		MGETHDR(m_new, M_DONTWAIT, MT_DATA);
918 		if (m_new == NULL)
919 			return (ENOBUFS);
920 
921 		m_cljget(m_new, M_DONTWAIT, MJUM9BYTES);
922 		if (!(m_new->m_flags & M_EXT)) {
923 			m_freem(m_new);
924 			return (ENOBUFS);
925 		}
926 		m_new->m_len = m_new->m_pkthdr.len = MJUM9BYTES;
927 	} else {
928 		m_new = m;
929 		m_new->m_len = m_new->m_pkthdr.len = MJUM9BYTES;
930 		m_new->m_data = m_new->m_ext.ext_buf;
931 	}
932 
933 	if ((sc->bge_flags & BGE_FLAG_RX_ALIGNBUG) == 0)
934 		m_adj(m_new, ETHER_ALIGN);
935 
936 	error = bus_dmamap_load_mbuf_sg(sc->bge_cdata.bge_mtag_jumbo,
937 	    sc->bge_cdata.bge_rx_jumbo_dmamap[i],
938 	    m_new, segs, &nsegs, BUS_DMA_NOWAIT);
939 	if (error) {
940 		if (m == NULL)
941 			m_freem(m_new);
942 		return (error);
943 	}
944 	sc->bge_cdata.bge_rx_jumbo_chain[i] = m_new;
945 
946 	/*
947 	 * Fill in the extended RX buffer descriptor.
948 	 */
949 	r = &sc->bge_ldata.bge_rx_jumbo_ring[i];
950 	r->bge_flags = BGE_RXBDFLAG_JUMBO_RING | BGE_RXBDFLAG_END;
951 	r->bge_idx = i;
952 	r->bge_len3 = r->bge_len2 = r->bge_len1 = 0;
953 	switch (nsegs) {
954 	case 4:
955 		r->bge_addr3.bge_addr_lo = BGE_ADDR_LO(segs[3].ds_addr);
956 		r->bge_addr3.bge_addr_hi = BGE_ADDR_HI(segs[3].ds_addr);
957 		r->bge_len3 = segs[3].ds_len;
958 	case 3:
959 		r->bge_addr2.bge_addr_lo = BGE_ADDR_LO(segs[2].ds_addr);
960 		r->bge_addr2.bge_addr_hi = BGE_ADDR_HI(segs[2].ds_addr);
961 		r->bge_len2 = segs[2].ds_len;
962 	case 2:
963 		r->bge_addr1.bge_addr_lo = BGE_ADDR_LO(segs[1].ds_addr);
964 		r->bge_addr1.bge_addr_hi = BGE_ADDR_HI(segs[1].ds_addr);
965 		r->bge_len1 = segs[1].ds_len;
966 	case 1:
967 		r->bge_addr0.bge_addr_lo = BGE_ADDR_LO(segs[0].ds_addr);
968 		r->bge_addr0.bge_addr_hi = BGE_ADDR_HI(segs[0].ds_addr);
969 		r->bge_len0 = segs[0].ds_len;
970 		break;
971 	default:
972 		panic("%s: %d segments\n", __func__, nsegs);
973 	}
974 
975 	bus_dmamap_sync(sc->bge_cdata.bge_mtag,
976 	    sc->bge_cdata.bge_rx_jumbo_dmamap[i],
977 	    BUS_DMASYNC_PREREAD);
978 
979 	return (0);
980 }
981 
982 /*
983  * The standard receive ring has 512 entries in it. At 2K per mbuf cluster,
984  * that's 1MB or memory, which is a lot. For now, we fill only the first
985  * 256 ring entries and hope that our CPU is fast enough to keep up with
986  * the NIC.
987  */
988 static int
989 bge_init_rx_ring_std(struct bge_softc *sc)
990 {
991 	int i;
992 
993 	for (i = 0; i < BGE_SSLOTS; i++) {
994 		if (bge_newbuf_std(sc, i, NULL) == ENOBUFS)
995 			return (ENOBUFS);
996 	};
997 
998 	bus_dmamap_sync(sc->bge_cdata.bge_rx_std_ring_tag,
999 	    sc->bge_cdata.bge_rx_std_ring_map,
1000 	    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
1001 
1002 	sc->bge_std = i - 1;
1003 	bge_writembx(sc, BGE_MBX_RX_STD_PROD_LO, sc->bge_std);
1004 
1005 	return (0);
1006 }
1007 
1008 static void
1009 bge_free_rx_ring_std(struct bge_softc *sc)
1010 {
1011 	int i;
1012 
1013 	for (i = 0; i < BGE_STD_RX_RING_CNT; i++) {
1014 		if (sc->bge_cdata.bge_rx_std_chain[i] != NULL) {
1015 			bus_dmamap_sync(sc->bge_cdata.bge_mtag,
1016 			    sc->bge_cdata.bge_rx_std_dmamap[i],
1017 			    BUS_DMASYNC_POSTREAD);
1018 			bus_dmamap_unload(sc->bge_cdata.bge_mtag,
1019 			    sc->bge_cdata.bge_rx_std_dmamap[i]);
1020 			m_freem(sc->bge_cdata.bge_rx_std_chain[i]);
1021 			sc->bge_cdata.bge_rx_std_chain[i] = NULL;
1022 		}
1023 		bzero((char *)&sc->bge_ldata.bge_rx_std_ring[i],
1024 		    sizeof(struct bge_rx_bd));
1025 	}
1026 }
1027 
1028 static int
1029 bge_init_rx_ring_jumbo(struct bge_softc *sc)
1030 {
1031 	struct bge_rcb *rcb;
1032 	int i;
1033 
1034 	for (i = 0; i < BGE_JUMBO_RX_RING_CNT; i++) {
1035 		if (bge_newbuf_jumbo(sc, i, NULL) == ENOBUFS)
1036 			return (ENOBUFS);
1037 	};
1038 
1039 	bus_dmamap_sync(sc->bge_cdata.bge_rx_jumbo_ring_tag,
1040 	    sc->bge_cdata.bge_rx_jumbo_ring_map,
1041 	    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
1042 
1043 	sc->bge_jumbo = i - 1;
1044 
1045 	rcb = &sc->bge_ldata.bge_info.bge_jumbo_rx_rcb;
1046 	rcb->bge_maxlen_flags = BGE_RCB_MAXLEN_FLAGS(0,
1047 				    BGE_RCB_FLAG_USE_EXT_RX_BD);
1048 	CSR_WRITE_4(sc, BGE_RX_JUMBO_RCB_MAXLEN_FLAGS, rcb->bge_maxlen_flags);
1049 
1050 	bge_writembx(sc, BGE_MBX_RX_JUMBO_PROD_LO, sc->bge_jumbo);
1051 
1052 	return (0);
1053 }
1054 
1055 static void
1056 bge_free_rx_ring_jumbo(struct bge_softc *sc)
1057 {
1058 	int i;
1059 
1060 	for (i = 0; i < BGE_JUMBO_RX_RING_CNT; i++) {
1061 		if (sc->bge_cdata.bge_rx_jumbo_chain[i] != NULL) {
1062 			bus_dmamap_sync(sc->bge_cdata.bge_mtag_jumbo,
1063 			    sc->bge_cdata.bge_rx_jumbo_dmamap[i],
1064 			    BUS_DMASYNC_POSTREAD);
1065 			bus_dmamap_unload(sc->bge_cdata.bge_mtag_jumbo,
1066 			    sc->bge_cdata.bge_rx_jumbo_dmamap[i]);
1067 			m_freem(sc->bge_cdata.bge_rx_jumbo_chain[i]);
1068 			sc->bge_cdata.bge_rx_jumbo_chain[i] = NULL;
1069 		}
1070 		bzero((char *)&sc->bge_ldata.bge_rx_jumbo_ring[i],
1071 		    sizeof(struct bge_extrx_bd));
1072 	}
1073 }
1074 
1075 static void
1076 bge_free_tx_ring(struct bge_softc *sc)
1077 {
1078 	int i;
1079 
1080 	if (sc->bge_ldata.bge_tx_ring == NULL)
1081 		return;
1082 
1083 	for (i = 0; i < BGE_TX_RING_CNT; i++) {
1084 		if (sc->bge_cdata.bge_tx_chain[i] != NULL) {
1085 			bus_dmamap_sync(sc->bge_cdata.bge_mtag,
1086 			    sc->bge_cdata.bge_tx_dmamap[i],
1087 			    BUS_DMASYNC_POSTWRITE);
1088 			bus_dmamap_unload(sc->bge_cdata.bge_mtag,
1089 			    sc->bge_cdata.bge_tx_dmamap[i]);
1090 			m_freem(sc->bge_cdata.bge_tx_chain[i]);
1091 			sc->bge_cdata.bge_tx_chain[i] = NULL;
1092 		}
1093 		bzero((char *)&sc->bge_ldata.bge_tx_ring[i],
1094 		    sizeof(struct bge_tx_bd));
1095 	}
1096 }
1097 
1098 static int
1099 bge_init_tx_ring(struct bge_softc *sc)
1100 {
1101 	sc->bge_txcnt = 0;
1102 	sc->bge_tx_saved_considx = 0;
1103 
1104 	/* Initialize transmit producer index for host-memory send ring. */
1105 	sc->bge_tx_prodidx = 0;
1106 	bge_writembx(sc, BGE_MBX_TX_HOST_PROD0_LO, sc->bge_tx_prodidx);
1107 
1108 	/* 5700 b2 errata */
1109 	if (sc->bge_chiprev == BGE_CHIPREV_5700_BX)
1110 		bge_writembx(sc, BGE_MBX_TX_HOST_PROD0_LO, sc->bge_tx_prodidx);
1111 
1112 	/* NIC-memory send ring not used; initialize to zero. */
1113 	bge_writembx(sc, BGE_MBX_TX_NIC_PROD0_LO, 0);
1114 	/* 5700 b2 errata */
1115 	if (sc->bge_chiprev == BGE_CHIPREV_5700_BX)
1116 		bge_writembx(sc, BGE_MBX_TX_NIC_PROD0_LO, 0);
1117 
1118 	return (0);
1119 }
1120 
1121 static void
1122 bge_setpromisc(struct bge_softc *sc)
1123 {
1124 	struct ifnet *ifp;
1125 
1126 	BGE_LOCK_ASSERT(sc);
1127 
1128 	ifp = sc->bge_ifp;
1129 
1130 	/* Enable or disable promiscuous mode as needed. */
1131 	if (ifp->if_flags & IFF_PROMISC)
1132 		BGE_SETBIT(sc, BGE_RX_MODE, BGE_RXMODE_RX_PROMISC);
1133 	else
1134 		BGE_CLRBIT(sc, BGE_RX_MODE, BGE_RXMODE_RX_PROMISC);
1135 }
1136 
1137 static void
1138 bge_setmulti(struct bge_softc *sc)
1139 {
1140 	struct ifnet *ifp;
1141 	struct ifmultiaddr *ifma;
1142 	uint32_t hashes[4] = { 0, 0, 0, 0 };
1143 	int h, i;
1144 
1145 	BGE_LOCK_ASSERT(sc);
1146 
1147 	ifp = sc->bge_ifp;
1148 
1149 	if (ifp->if_flags & IFF_ALLMULTI || ifp->if_flags & IFF_PROMISC) {
1150 		for (i = 0; i < 4; i++)
1151 			CSR_WRITE_4(sc, BGE_MAR0 + (i * 4), 0xFFFFFFFF);
1152 		return;
1153 	}
1154 
1155 	/* First, zot all the existing filters. */
1156 	for (i = 0; i < 4; i++)
1157 		CSR_WRITE_4(sc, BGE_MAR0 + (i * 4), 0);
1158 
1159 	/* Now program new ones. */
1160 	IF_ADDR_LOCK(ifp);
1161 	TAILQ_FOREACH(ifma, &ifp->if_multiaddrs, ifma_link) {
1162 		if (ifma->ifma_addr->sa_family != AF_LINK)
1163 			continue;
1164 		h = ether_crc32_le(LLADDR((struct sockaddr_dl *)
1165 		    ifma->ifma_addr), ETHER_ADDR_LEN) & 0x7F;
1166 		hashes[(h & 0x60) >> 5] |= 1 << (h & 0x1F);
1167 	}
1168 	IF_ADDR_UNLOCK(ifp);
1169 
1170 	for (i = 0; i < 4; i++)
1171 		CSR_WRITE_4(sc, BGE_MAR0 + (i * 4), hashes[i]);
1172 }
1173 
1174 static void
1175 bge_setvlan(struct bge_softc *sc)
1176 {
1177 	struct ifnet *ifp;
1178 
1179 	BGE_LOCK_ASSERT(sc);
1180 
1181 	ifp = sc->bge_ifp;
1182 
1183 	/* Enable or disable VLAN tag stripping as needed. */
1184 	if (ifp->if_capenable & IFCAP_VLAN_HWTAGGING)
1185 		BGE_CLRBIT(sc, BGE_RX_MODE, BGE_RXMODE_RX_KEEP_VLAN_DIAG);
1186 	else
1187 		BGE_SETBIT(sc, BGE_RX_MODE, BGE_RXMODE_RX_KEEP_VLAN_DIAG);
1188 }
1189 
1190 static void
1191 bge_sig_pre_reset(sc, type)
1192 	struct bge_softc *sc;
1193 	int type;
1194 {
1195 	/*
1196 	 * Some chips don't like this so only do this if ASF is enabled
1197 	 */
1198 	if (sc->bge_asf_mode)
1199 		bge_writemem_ind(sc, BGE_SOFTWARE_GENCOMM, BGE_MAGIC_NUMBER);
1200 
1201 	if (sc->bge_asf_mode & ASF_NEW_HANDSHAKE) {
1202 		switch (type) {
1203 		case BGE_RESET_START:
1204 			bge_writemem_ind(sc, BGE_SDI_STATUS, 0x1); /* START */
1205 			break;
1206 		case BGE_RESET_STOP:
1207 			bge_writemem_ind(sc, BGE_SDI_STATUS, 0x2); /* UNLOAD */
1208 			break;
1209 		}
1210 	}
1211 }
1212 
1213 static void
1214 bge_sig_post_reset(sc, type)
1215 	struct bge_softc *sc;
1216 	int type;
1217 {
1218 	if (sc->bge_asf_mode & ASF_NEW_HANDSHAKE) {
1219 		switch (type) {
1220 		case BGE_RESET_START:
1221 			bge_writemem_ind(sc, BGE_SDI_STATUS, 0x80000001);
1222 			/* START DONE */
1223 			break;
1224 		case BGE_RESET_STOP:
1225 			bge_writemem_ind(sc, BGE_SDI_STATUS, 0x80000002);
1226 			break;
1227 		}
1228 	}
1229 }
1230 
1231 static void
1232 bge_sig_legacy(sc, type)
1233 	struct bge_softc *sc;
1234 	int type;
1235 {
1236 	if (sc->bge_asf_mode) {
1237 		switch (type) {
1238 		case BGE_RESET_START:
1239 			bge_writemem_ind(sc, BGE_SDI_STATUS, 0x1); /* START */
1240 			break;
1241 		case BGE_RESET_STOP:
1242 			bge_writemem_ind(sc, BGE_SDI_STATUS, 0x2); /* UNLOAD */
1243 			break;
1244 		}
1245 	}
1246 }
1247 
1248 void bge_stop_fw(struct bge_softc *);
1249 void
1250 bge_stop_fw(sc)
1251 	struct bge_softc *sc;
1252 {
1253 	int i;
1254 
1255 	if (sc->bge_asf_mode) {
1256 		bge_writemem_ind(sc, BGE_SOFTWARE_GENCOMM_FW, BGE_FW_PAUSE);
1257 		CSR_WRITE_4(sc, BGE_CPU_EVENT,
1258 		    CSR_READ_4(sc, BGE_CPU_EVENT) | (1 << 14));
1259 
1260 		for (i = 0; i < 100; i++ ) {
1261 			if (!(CSR_READ_4(sc, BGE_CPU_EVENT) & (1 << 14)))
1262 				break;
1263 			DELAY(10);
1264 		}
1265 	}
1266 }
1267 
1268 /*
1269  * Do endian, PCI and DMA initialization. Also check the on-board ROM
1270  * self-test results.
1271  */
1272 static int
1273 bge_chipinit(struct bge_softc *sc)
1274 {
1275 	uint32_t dma_rw_ctl;
1276 	int i;
1277 
1278 	/* Set endianness before we access any non-PCI registers. */
1279 	pci_write_config(sc->bge_dev, BGE_PCI_MISC_CTL, BGE_INIT, 4);
1280 
1281 	/*
1282 	 * Check the 'ROM failed' bit on the RX CPU to see if
1283 	 * self-tests passed. Skip this check when there's no
1284 	 * chip containing the Ethernet address fitted, since
1285 	 * in that case it will always fail.
1286 	 */
1287 	if ((sc->bge_flags & BGE_FLAG_EADDR) &&
1288 	    CSR_READ_4(sc, BGE_RXCPU_MODE) & BGE_RXCPUMODE_ROMFAIL) {
1289 		device_printf(sc->bge_dev, "RX CPU self-diagnostics failed!\n");
1290 		return (ENODEV);
1291 	}
1292 
1293 	/* Clear the MAC control register */
1294 	CSR_WRITE_4(sc, BGE_MAC_MODE, 0);
1295 
1296 	/*
1297 	 * Clear the MAC statistics block in the NIC's
1298 	 * internal memory.
1299 	 */
1300 	for (i = BGE_STATS_BLOCK;
1301 	    i < BGE_STATS_BLOCK_END + 1; i += sizeof(uint32_t))
1302 		BGE_MEMWIN_WRITE(sc, i, 0);
1303 
1304 	for (i = BGE_STATUS_BLOCK;
1305 	    i < BGE_STATUS_BLOCK_END + 1; i += sizeof(uint32_t))
1306 		BGE_MEMWIN_WRITE(sc, i, 0);
1307 
1308 	/*
1309 	 * Set up the PCI DMA control register.
1310 	 */
1311 	dma_rw_ctl = BGE_PCIDMARWCTL_RD_CMD_SHIFT(6) |
1312 	    BGE_PCIDMARWCTL_WR_CMD_SHIFT(7);
1313 	if (sc->bge_flags & BGE_FLAG_PCIE) {
1314 		/* Read watermark not used, 128 bytes for write. */
1315 		dma_rw_ctl |= BGE_PCIDMARWCTL_WR_WAT_SHIFT(3);
1316 	} else if (sc->bge_flags & BGE_FLAG_PCIX) {
1317 		if (BGE_IS_5714_FAMILY(sc)) {
1318 			/* 256 bytes for read and write. */
1319 			dma_rw_ctl |= BGE_PCIDMARWCTL_RD_WAT_SHIFT(2) |
1320 			    BGE_PCIDMARWCTL_WR_WAT_SHIFT(2);
1321 			dma_rw_ctl |= (sc->bge_asicrev == BGE_ASICREV_BCM5780) ?
1322 			    BGE_PCIDMARWCTL_ONEDMA_ATONCE_GLOBAL :
1323 			    BGE_PCIDMARWCTL_ONEDMA_ATONCE_LOCAL;
1324 		} else if (sc->bge_asicrev == BGE_ASICREV_BCM5704) {
1325 			/* 1536 bytes for read, 384 bytes for write. */
1326 			dma_rw_ctl |= BGE_PCIDMARWCTL_RD_WAT_SHIFT(7) |
1327 			    BGE_PCIDMARWCTL_WR_WAT_SHIFT(3);
1328 		} else {
1329 			/* 384 bytes for read and write. */
1330 			dma_rw_ctl |= BGE_PCIDMARWCTL_RD_WAT_SHIFT(3) |
1331 			    BGE_PCIDMARWCTL_WR_WAT_SHIFT(3) |
1332 			    0x0F;
1333 		}
1334 		if (sc->bge_asicrev == BGE_ASICREV_BCM5703 ||
1335 		    sc->bge_asicrev == BGE_ASICREV_BCM5704) {
1336 			uint32_t tmp;
1337 
1338 			/* Set ONE_DMA_AT_ONCE for hardware workaround. */
1339 			tmp = CSR_READ_4(sc, BGE_PCI_CLKCTL) & 0x1F;
1340 			if (tmp == 6 || tmp == 7)
1341 				dma_rw_ctl |=
1342 				    BGE_PCIDMARWCTL_ONEDMA_ATONCE_GLOBAL;
1343 
1344 			/* Set PCI-X DMA write workaround. */
1345 			dma_rw_ctl |= BGE_PCIDMARWCTL_ASRT_ALL_BE;
1346 		}
1347 	} else {
1348 		/* Conventional PCI bus: 256 bytes for read and write. */
1349 		dma_rw_ctl |= BGE_PCIDMARWCTL_RD_WAT_SHIFT(7) |
1350 		    BGE_PCIDMARWCTL_WR_WAT_SHIFT(7);
1351 
1352 		if (sc->bge_asicrev != BGE_ASICREV_BCM5705 &&
1353 		    sc->bge_asicrev != BGE_ASICREV_BCM5750)
1354 			dma_rw_ctl |= 0x0F;
1355 	}
1356 	if (sc->bge_asicrev == BGE_ASICREV_BCM5700 ||
1357 	    sc->bge_asicrev == BGE_ASICREV_BCM5701)
1358 		dma_rw_ctl |= BGE_PCIDMARWCTL_USE_MRM |
1359 		    BGE_PCIDMARWCTL_ASRT_ALL_BE;
1360 	if (sc->bge_asicrev == BGE_ASICREV_BCM5703 ||
1361 	    sc->bge_asicrev == BGE_ASICREV_BCM5704)
1362 		dma_rw_ctl &= ~BGE_PCIDMARWCTL_MINDMA;
1363 	pci_write_config(sc->bge_dev, BGE_PCI_DMA_RW_CTL, dma_rw_ctl, 4);
1364 
1365 	/*
1366 	 * Set up general mode register.
1367 	 */
1368 	CSR_WRITE_4(sc, BGE_MODE_CTL, BGE_DMA_SWAP_OPTIONS |
1369 	    BGE_MODECTL_MAC_ATTN_INTR | BGE_MODECTL_HOST_SEND_BDS |
1370 	    BGE_MODECTL_TX_NO_PHDR_CSUM);
1371 
1372 	/*
1373 	 * Tell the firmware the driver is running
1374 	 */
1375 	if (sc->bge_asf_mode & ASF_STACKUP)
1376 		BGE_SETBIT(sc, BGE_MODE_CTL, BGE_MODECTL_STACKUP);
1377 
1378 	/*
1379 	 * Disable memory write invalidate.  Apparently it is not supported
1380 	 * properly by these devices.
1381 	 */
1382 	PCI_CLRBIT(sc->bge_dev, BGE_PCI_CMD, PCIM_CMD_MWIEN, 4);
1383 
1384 	/* Set the timer prescaler (always 66Mhz) */
1385 	CSR_WRITE_4(sc, BGE_MISC_CFG, BGE_32BITTIME_66MHZ);
1386 
1387 	/* XXX: The Linux tg3 driver does this at the start of brgphy_reset. */
1388 	if (sc->bge_asicrev == BGE_ASICREV_BCM5906) {
1389 		DELAY(40);	/* XXX */
1390 
1391 		/* Put PHY into ready state */
1392 		BGE_CLRBIT(sc, BGE_MISC_CFG, BGE_MISCCFG_EPHY_IDDQ);
1393 		CSR_READ_4(sc, BGE_MISC_CFG); /* Flush */
1394 		DELAY(40);
1395 	}
1396 
1397 	return (0);
1398 }
1399 
1400 static int
1401 bge_blockinit(struct bge_softc *sc)
1402 {
1403 	struct bge_rcb *rcb;
1404 	bus_size_t vrcb;
1405 	bge_hostaddr taddr;
1406 	uint32_t val;
1407 	int i;
1408 
1409 	/*
1410 	 * Initialize the memory window pointer register so that
1411 	 * we can access the first 32K of internal NIC RAM. This will
1412 	 * allow us to set up the TX send ring RCBs and the RX return
1413 	 * ring RCBs, plus other things which live in NIC memory.
1414 	 */
1415 	CSR_WRITE_4(sc, BGE_PCI_MEMWIN_BASEADDR, 0);
1416 
1417 	/* Note: the BCM5704 has a smaller mbuf space than other chips. */
1418 
1419 	if (!(BGE_IS_5705_PLUS(sc))) {
1420 		/* Configure mbuf memory pool */
1421 		CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_BASEADDR, BGE_BUFFPOOL_1);
1422 		if (sc->bge_asicrev == BGE_ASICREV_BCM5704)
1423 			CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_LEN, 0x10000);
1424 		else
1425 			CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_LEN, 0x18000);
1426 
1427 		/* Configure DMA resource pool */
1428 		CSR_WRITE_4(sc, BGE_BMAN_DMA_DESCPOOL_BASEADDR,
1429 		    BGE_DMA_DESCRIPTORS);
1430 		CSR_WRITE_4(sc, BGE_BMAN_DMA_DESCPOOL_LEN, 0x2000);
1431 	}
1432 
1433 	/* Configure mbuf pool watermarks */
1434 	if (!BGE_IS_5705_PLUS(sc)) {
1435 		CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_READDMA_LOWAT, 0x50);
1436 		CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_MACRX_LOWAT, 0x20);
1437 		CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_HIWAT, 0x60);
1438 	} else if (sc->bge_asicrev == BGE_ASICREV_BCM5906) {
1439 		CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_READDMA_LOWAT, 0x0);
1440 		CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_MACRX_LOWAT, 0x04);
1441 		CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_HIWAT, 0x10);
1442 	} else {
1443 		CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_READDMA_LOWAT, 0x0);
1444 		CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_MACRX_LOWAT, 0x10);
1445 		CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_HIWAT, 0x60);
1446 	}
1447 
1448 	/* Configure DMA resource watermarks */
1449 	CSR_WRITE_4(sc, BGE_BMAN_DMA_DESCPOOL_LOWAT, 5);
1450 	CSR_WRITE_4(sc, BGE_BMAN_DMA_DESCPOOL_HIWAT, 10);
1451 
1452 	/* Enable buffer manager */
1453 	if (!(BGE_IS_5705_PLUS(sc))) {
1454 		CSR_WRITE_4(sc, BGE_BMAN_MODE,
1455 		    BGE_BMANMODE_ENABLE | BGE_BMANMODE_LOMBUF_ATTN);
1456 
1457 		/* Poll for buffer manager start indication */
1458 		for (i = 0; i < BGE_TIMEOUT; i++) {
1459 			DELAY(10);
1460 			if (CSR_READ_4(sc, BGE_BMAN_MODE) & BGE_BMANMODE_ENABLE)
1461 				break;
1462 		}
1463 
1464 		if (i == BGE_TIMEOUT) {
1465 			device_printf(sc->bge_dev,
1466 			    "buffer manager failed to start\n");
1467 			return (ENXIO);
1468 		}
1469 	}
1470 
1471 	/* Enable flow-through queues */
1472 	CSR_WRITE_4(sc, BGE_FTQ_RESET, 0xFFFFFFFF);
1473 	CSR_WRITE_4(sc, BGE_FTQ_RESET, 0);
1474 
1475 	/* Wait until queue initialization is complete */
1476 	for (i = 0; i < BGE_TIMEOUT; i++) {
1477 		DELAY(10);
1478 		if (CSR_READ_4(sc, BGE_FTQ_RESET) == 0)
1479 			break;
1480 	}
1481 
1482 	if (i == BGE_TIMEOUT) {
1483 		device_printf(sc->bge_dev, "flow-through queue init failed\n");
1484 		return (ENXIO);
1485 	}
1486 
1487 	/* Initialize the standard RX ring control block */
1488 	rcb = &sc->bge_ldata.bge_info.bge_std_rx_rcb;
1489 	rcb->bge_hostaddr.bge_addr_lo =
1490 	    BGE_ADDR_LO(sc->bge_ldata.bge_rx_std_ring_paddr);
1491 	rcb->bge_hostaddr.bge_addr_hi =
1492 	    BGE_ADDR_HI(sc->bge_ldata.bge_rx_std_ring_paddr);
1493 	bus_dmamap_sync(sc->bge_cdata.bge_rx_std_ring_tag,
1494 	    sc->bge_cdata.bge_rx_std_ring_map, BUS_DMASYNC_PREREAD);
1495 	if (BGE_IS_5705_PLUS(sc))
1496 		rcb->bge_maxlen_flags = BGE_RCB_MAXLEN_FLAGS(512, 0);
1497 	else
1498 		rcb->bge_maxlen_flags =
1499 		    BGE_RCB_MAXLEN_FLAGS(BGE_MAX_FRAMELEN, 0);
1500 	rcb->bge_nicaddr = BGE_STD_RX_RINGS;
1501 	CSR_WRITE_4(sc, BGE_RX_STD_RCB_HADDR_HI, rcb->bge_hostaddr.bge_addr_hi);
1502 	CSR_WRITE_4(sc, BGE_RX_STD_RCB_HADDR_LO, rcb->bge_hostaddr.bge_addr_lo);
1503 
1504 	CSR_WRITE_4(sc, BGE_RX_STD_RCB_MAXLEN_FLAGS, rcb->bge_maxlen_flags);
1505 	CSR_WRITE_4(sc, BGE_RX_STD_RCB_NICADDR, rcb->bge_nicaddr);
1506 
1507 	/*
1508 	 * Initialize the jumbo RX ring control block
1509 	 * We set the 'ring disabled' bit in the flags
1510 	 * field until we're actually ready to start
1511 	 * using this ring (i.e. once we set the MTU
1512 	 * high enough to require it).
1513 	 */
1514 	if (BGE_IS_JUMBO_CAPABLE(sc)) {
1515 		rcb = &sc->bge_ldata.bge_info.bge_jumbo_rx_rcb;
1516 
1517 		rcb->bge_hostaddr.bge_addr_lo =
1518 		    BGE_ADDR_LO(sc->bge_ldata.bge_rx_jumbo_ring_paddr);
1519 		rcb->bge_hostaddr.bge_addr_hi =
1520 		    BGE_ADDR_HI(sc->bge_ldata.bge_rx_jumbo_ring_paddr);
1521 		bus_dmamap_sync(sc->bge_cdata.bge_rx_jumbo_ring_tag,
1522 		    sc->bge_cdata.bge_rx_jumbo_ring_map,
1523 		    BUS_DMASYNC_PREREAD);
1524 		rcb->bge_maxlen_flags = BGE_RCB_MAXLEN_FLAGS(0,
1525 		    BGE_RCB_FLAG_USE_EXT_RX_BD | BGE_RCB_FLAG_RING_DISABLED);
1526 		rcb->bge_nicaddr = BGE_JUMBO_RX_RINGS;
1527 		CSR_WRITE_4(sc, BGE_RX_JUMBO_RCB_HADDR_HI,
1528 		    rcb->bge_hostaddr.bge_addr_hi);
1529 		CSR_WRITE_4(sc, BGE_RX_JUMBO_RCB_HADDR_LO,
1530 		    rcb->bge_hostaddr.bge_addr_lo);
1531 
1532 		CSR_WRITE_4(sc, BGE_RX_JUMBO_RCB_MAXLEN_FLAGS,
1533 		    rcb->bge_maxlen_flags);
1534 		CSR_WRITE_4(sc, BGE_RX_JUMBO_RCB_NICADDR, rcb->bge_nicaddr);
1535 
1536 		/* Set up dummy disabled mini ring RCB */
1537 		rcb = &sc->bge_ldata.bge_info.bge_mini_rx_rcb;
1538 		rcb->bge_maxlen_flags =
1539 		    BGE_RCB_MAXLEN_FLAGS(0, BGE_RCB_FLAG_RING_DISABLED);
1540 		CSR_WRITE_4(sc, BGE_RX_MINI_RCB_MAXLEN_FLAGS,
1541 		    rcb->bge_maxlen_flags);
1542 	}
1543 
1544 	/*
1545 	 * Set the BD ring replentish thresholds. The recommended
1546 	 * values are 1/8th the number of descriptors allocated to
1547 	 * each ring.
1548 	 * XXX The 5754 requires a lower threshold, so it might be a
1549 	 * requirement of all 575x family chips.  The Linux driver sets
1550 	 * the lower threshold for all 5705 family chips as well, but there
1551 	 * are reports that it might not need to be so strict.
1552 	 *
1553 	 * XXX Linux does some extra fiddling here for the 5906 parts as
1554 	 * well.
1555 	 */
1556 	if (BGE_IS_5705_PLUS(sc))
1557 		val = 8;
1558 	else
1559 		val = BGE_STD_RX_RING_CNT / 8;
1560 	CSR_WRITE_4(sc, BGE_RBDI_STD_REPL_THRESH, val);
1561 	CSR_WRITE_4(sc, BGE_RBDI_JUMBO_REPL_THRESH, BGE_JUMBO_RX_RING_CNT/8);
1562 
1563 	/*
1564 	 * Disable all unused send rings by setting the 'ring disabled'
1565 	 * bit in the flags field of all the TX send ring control blocks.
1566 	 * These are located in NIC memory.
1567 	 */
1568 	vrcb = BGE_MEMWIN_START + BGE_SEND_RING_RCB;
1569 	for (i = 0; i < BGE_TX_RINGS_EXTSSRAM_MAX; i++) {
1570 		RCB_WRITE_4(sc, vrcb, bge_maxlen_flags,
1571 		    BGE_RCB_MAXLEN_FLAGS(0, BGE_RCB_FLAG_RING_DISABLED));
1572 		RCB_WRITE_4(sc, vrcb, bge_nicaddr, 0);
1573 		vrcb += sizeof(struct bge_rcb);
1574 	}
1575 
1576 	/* Configure TX RCB 0 (we use only the first ring) */
1577 	vrcb = BGE_MEMWIN_START + BGE_SEND_RING_RCB;
1578 	BGE_HOSTADDR(taddr, sc->bge_ldata.bge_tx_ring_paddr);
1579 	RCB_WRITE_4(sc, vrcb, bge_hostaddr.bge_addr_hi, taddr.bge_addr_hi);
1580 	RCB_WRITE_4(sc, vrcb, bge_hostaddr.bge_addr_lo, taddr.bge_addr_lo);
1581 	RCB_WRITE_4(sc, vrcb, bge_nicaddr,
1582 	    BGE_NIC_TXRING_ADDR(0, BGE_TX_RING_CNT));
1583 	if (!(BGE_IS_5705_PLUS(sc)))
1584 		RCB_WRITE_4(sc, vrcb, bge_maxlen_flags,
1585 		    BGE_RCB_MAXLEN_FLAGS(BGE_TX_RING_CNT, 0));
1586 
1587 	/* Disable all unused RX return rings */
1588 	vrcb = BGE_MEMWIN_START + BGE_RX_RETURN_RING_RCB;
1589 	for (i = 0; i < BGE_RX_RINGS_MAX; i++) {
1590 		RCB_WRITE_4(sc, vrcb, bge_hostaddr.bge_addr_hi, 0);
1591 		RCB_WRITE_4(sc, vrcb, bge_hostaddr.bge_addr_lo, 0);
1592 		RCB_WRITE_4(sc, vrcb, bge_maxlen_flags,
1593 		    BGE_RCB_MAXLEN_FLAGS(sc->bge_return_ring_cnt,
1594 		    BGE_RCB_FLAG_RING_DISABLED));
1595 		RCB_WRITE_4(sc, vrcb, bge_nicaddr, 0);
1596 		bge_writembx(sc, BGE_MBX_RX_CONS0_LO +
1597 		    (i * (sizeof(uint64_t))), 0);
1598 		vrcb += sizeof(struct bge_rcb);
1599 	}
1600 
1601 	/* Initialize RX ring indexes */
1602 	bge_writembx(sc, BGE_MBX_RX_STD_PROD_LO, 0);
1603 	bge_writembx(sc, BGE_MBX_RX_JUMBO_PROD_LO, 0);
1604 	bge_writembx(sc, BGE_MBX_RX_MINI_PROD_LO, 0);
1605 
1606 	/*
1607 	 * Set up RX return ring 0
1608 	 * Note that the NIC address for RX return rings is 0x00000000.
1609 	 * The return rings live entirely within the host, so the
1610 	 * nicaddr field in the RCB isn't used.
1611 	 */
1612 	vrcb = BGE_MEMWIN_START + BGE_RX_RETURN_RING_RCB;
1613 	BGE_HOSTADDR(taddr, sc->bge_ldata.bge_rx_return_ring_paddr);
1614 	RCB_WRITE_4(sc, vrcb, bge_hostaddr.bge_addr_hi, taddr.bge_addr_hi);
1615 	RCB_WRITE_4(sc, vrcb, bge_hostaddr.bge_addr_lo, taddr.bge_addr_lo);
1616 	RCB_WRITE_4(sc, vrcb, bge_nicaddr, 0x00000000);
1617 	RCB_WRITE_4(sc, vrcb, bge_maxlen_flags,
1618 	    BGE_RCB_MAXLEN_FLAGS(sc->bge_return_ring_cnt, 0));
1619 
1620 	/* Set random backoff seed for TX */
1621 	CSR_WRITE_4(sc, BGE_TX_RANDOM_BACKOFF,
1622 	    IF_LLADDR(sc->bge_ifp)[0] + IF_LLADDR(sc->bge_ifp)[1] +
1623 	    IF_LLADDR(sc->bge_ifp)[2] + IF_LLADDR(sc->bge_ifp)[3] +
1624 	    IF_LLADDR(sc->bge_ifp)[4] + IF_LLADDR(sc->bge_ifp)[5] +
1625 	    BGE_TX_BACKOFF_SEED_MASK);
1626 
1627 	/* Set inter-packet gap */
1628 	CSR_WRITE_4(sc, BGE_TX_LENGTHS, 0x2620);
1629 
1630 	/*
1631 	 * Specify which ring to use for packets that don't match
1632 	 * any RX rules.
1633 	 */
1634 	CSR_WRITE_4(sc, BGE_RX_RULES_CFG, 0x08);
1635 
1636 	/*
1637 	 * Configure number of RX lists. One interrupt distribution
1638 	 * list, sixteen active lists, one bad frames class.
1639 	 */
1640 	CSR_WRITE_4(sc, BGE_RXLP_CFG, 0x181);
1641 
1642 	/* Inialize RX list placement stats mask. */
1643 	CSR_WRITE_4(sc, BGE_RXLP_STATS_ENABLE_MASK, 0x007FFFFF);
1644 	CSR_WRITE_4(sc, BGE_RXLP_STATS_CTL, 0x1);
1645 
1646 	/* Disable host coalescing until we get it set up */
1647 	CSR_WRITE_4(sc, BGE_HCC_MODE, 0x00000000);
1648 
1649 	/* Poll to make sure it's shut down. */
1650 	for (i = 0; i < BGE_TIMEOUT; i++) {
1651 		DELAY(10);
1652 		if (!(CSR_READ_4(sc, BGE_HCC_MODE) & BGE_HCCMODE_ENABLE))
1653 			break;
1654 	}
1655 
1656 	if (i == BGE_TIMEOUT) {
1657 		device_printf(sc->bge_dev,
1658 		    "host coalescing engine failed to idle\n");
1659 		return (ENXIO);
1660 	}
1661 
1662 	/* Set up host coalescing defaults */
1663 	CSR_WRITE_4(sc, BGE_HCC_RX_COAL_TICKS, sc->bge_rx_coal_ticks);
1664 	CSR_WRITE_4(sc, BGE_HCC_TX_COAL_TICKS, sc->bge_tx_coal_ticks);
1665 	CSR_WRITE_4(sc, BGE_HCC_RX_MAX_COAL_BDS, sc->bge_rx_max_coal_bds);
1666 	CSR_WRITE_4(sc, BGE_HCC_TX_MAX_COAL_BDS, sc->bge_tx_max_coal_bds);
1667 	if (!(BGE_IS_5705_PLUS(sc))) {
1668 		CSR_WRITE_4(sc, BGE_HCC_RX_COAL_TICKS_INT, 0);
1669 		CSR_WRITE_4(sc, BGE_HCC_TX_COAL_TICKS_INT, 0);
1670 	}
1671 	CSR_WRITE_4(sc, BGE_HCC_RX_MAX_COAL_BDS_INT, 1);
1672 	CSR_WRITE_4(sc, BGE_HCC_TX_MAX_COAL_BDS_INT, 1);
1673 
1674 	/* Set up address of statistics block */
1675 	if (!(BGE_IS_5705_PLUS(sc))) {
1676 		CSR_WRITE_4(sc, BGE_HCC_STATS_ADDR_HI,
1677 		    BGE_ADDR_HI(sc->bge_ldata.bge_stats_paddr));
1678 		CSR_WRITE_4(sc, BGE_HCC_STATS_ADDR_LO,
1679 		    BGE_ADDR_LO(sc->bge_ldata.bge_stats_paddr));
1680 		CSR_WRITE_4(sc, BGE_HCC_STATS_BASEADDR, BGE_STATS_BLOCK);
1681 		CSR_WRITE_4(sc, BGE_HCC_STATUSBLK_BASEADDR, BGE_STATUS_BLOCK);
1682 		CSR_WRITE_4(sc, BGE_HCC_STATS_TICKS, sc->bge_stat_ticks);
1683 	}
1684 
1685 	/* Set up address of status block */
1686 	CSR_WRITE_4(sc, BGE_HCC_STATUSBLK_ADDR_HI,
1687 	    BGE_ADDR_HI(sc->bge_ldata.bge_status_block_paddr));
1688 	CSR_WRITE_4(sc, BGE_HCC_STATUSBLK_ADDR_LO,
1689 	    BGE_ADDR_LO(sc->bge_ldata.bge_status_block_paddr));
1690 	sc->bge_ldata.bge_status_block->bge_idx[0].bge_rx_prod_idx = 0;
1691 	sc->bge_ldata.bge_status_block->bge_idx[0].bge_tx_cons_idx = 0;
1692 
1693 	/* Turn on host coalescing state machine */
1694 	CSR_WRITE_4(sc, BGE_HCC_MODE, BGE_HCCMODE_ENABLE);
1695 
1696 	/* Turn on RX BD completion state machine and enable attentions */
1697 	CSR_WRITE_4(sc, BGE_RBDC_MODE,
1698 	    BGE_RBDCMODE_ENABLE | BGE_RBDCMODE_ATTN);
1699 
1700 	/* Turn on RX list placement state machine */
1701 	CSR_WRITE_4(sc, BGE_RXLP_MODE, BGE_RXLPMODE_ENABLE);
1702 
1703 	/* Turn on RX list selector state machine. */
1704 	if (!(BGE_IS_5705_PLUS(sc)))
1705 		CSR_WRITE_4(sc, BGE_RXLS_MODE, BGE_RXLSMODE_ENABLE);
1706 
1707 	/* Turn on DMA, clear stats */
1708 	CSR_WRITE_4(sc, BGE_MAC_MODE, BGE_MACMODE_TXDMA_ENB |
1709 	    BGE_MACMODE_RXDMA_ENB | BGE_MACMODE_RX_STATS_CLEAR |
1710 	    BGE_MACMODE_TX_STATS_CLEAR | BGE_MACMODE_RX_STATS_ENB |
1711 	    BGE_MACMODE_TX_STATS_ENB | BGE_MACMODE_FRMHDR_DMA_ENB |
1712 	    ((sc->bge_flags & BGE_FLAG_TBI) ?
1713 	    BGE_PORTMODE_TBI : BGE_PORTMODE_MII));
1714 
1715 	/* Set misc. local control, enable interrupts on attentions */
1716 	CSR_WRITE_4(sc, BGE_MISC_LOCAL_CTL, BGE_MLC_INTR_ONATTN);
1717 
1718 #ifdef notdef
1719 	/* Assert GPIO pins for PHY reset */
1720 	BGE_SETBIT(sc, BGE_MISC_LOCAL_CTL, BGE_MLC_MISCIO_OUT0 |
1721 	    BGE_MLC_MISCIO_OUT1 | BGE_MLC_MISCIO_OUT2);
1722 	BGE_SETBIT(sc, BGE_MISC_LOCAL_CTL, BGE_MLC_MISCIO_OUTEN0 |
1723 	    BGE_MLC_MISCIO_OUTEN1 | BGE_MLC_MISCIO_OUTEN2);
1724 #endif
1725 
1726 	/* Turn on DMA completion state machine */
1727 	if (!(BGE_IS_5705_PLUS(sc)))
1728 		CSR_WRITE_4(sc, BGE_DMAC_MODE, BGE_DMACMODE_ENABLE);
1729 
1730 	val = BGE_WDMAMODE_ENABLE | BGE_WDMAMODE_ALL_ATTNS;
1731 
1732 	/* Enable host coalescing bug fix. */
1733 	if (sc->bge_asicrev == BGE_ASICREV_BCM5755 ||
1734 	    sc->bge_asicrev == BGE_ASICREV_BCM5787)
1735 			val |= 1 << 29;
1736 
1737 	/* Turn on write DMA state machine */
1738 	CSR_WRITE_4(sc, BGE_WDMA_MODE, val);
1739 
1740 	/* Turn on read DMA state machine */
1741 	CSR_WRITE_4(sc, BGE_RDMA_MODE,
1742 	    BGE_RDMAMODE_ENABLE | BGE_RDMAMODE_ALL_ATTNS);
1743 
1744 	/* Turn on RX data completion state machine */
1745 	CSR_WRITE_4(sc, BGE_RDC_MODE, BGE_RDCMODE_ENABLE);
1746 
1747 	/* Turn on RX BD initiator state machine */
1748 	CSR_WRITE_4(sc, BGE_RBDI_MODE, BGE_RBDIMODE_ENABLE);
1749 
1750 	/* Turn on RX data and RX BD initiator state machine */
1751 	CSR_WRITE_4(sc, BGE_RDBDI_MODE, BGE_RDBDIMODE_ENABLE);
1752 
1753 	/* Turn on Mbuf cluster free state machine */
1754 	if (!(BGE_IS_5705_PLUS(sc)))
1755 		CSR_WRITE_4(sc, BGE_MBCF_MODE, BGE_MBCFMODE_ENABLE);
1756 
1757 	/* Turn on send BD completion state machine */
1758 	CSR_WRITE_4(sc, BGE_SBDC_MODE, BGE_SBDCMODE_ENABLE);
1759 
1760 	/* Turn on send data completion state machine */
1761 	CSR_WRITE_4(sc, BGE_SDC_MODE, BGE_SDCMODE_ENABLE);
1762 
1763 	/* Turn on send data initiator state machine */
1764 	CSR_WRITE_4(sc, BGE_SDI_MODE, BGE_SDIMODE_ENABLE);
1765 
1766 	/* Turn on send BD initiator state machine */
1767 	CSR_WRITE_4(sc, BGE_SBDI_MODE, BGE_SBDIMODE_ENABLE);
1768 
1769 	/* Turn on send BD selector state machine */
1770 	CSR_WRITE_4(sc, BGE_SRS_MODE, BGE_SRSMODE_ENABLE);
1771 
1772 	CSR_WRITE_4(sc, BGE_SDI_STATS_ENABLE_MASK, 0x007FFFFF);
1773 	CSR_WRITE_4(sc, BGE_SDI_STATS_CTL,
1774 	    BGE_SDISTATSCTL_ENABLE | BGE_SDISTATSCTL_FASTER);
1775 
1776 	/* ack/clear link change events */
1777 	CSR_WRITE_4(sc, BGE_MAC_STS, BGE_MACSTAT_SYNC_CHANGED |
1778 	    BGE_MACSTAT_CFG_CHANGED | BGE_MACSTAT_MI_COMPLETE |
1779 	    BGE_MACSTAT_LINK_CHANGED);
1780 	CSR_WRITE_4(sc, BGE_MI_STS, 0);
1781 
1782 	/* Enable PHY auto polling (for MII/GMII only) */
1783 	if (sc->bge_flags & BGE_FLAG_TBI) {
1784 		CSR_WRITE_4(sc, BGE_MI_STS, BGE_MISTS_LINK);
1785 	} else {
1786 		BGE_SETBIT(sc, BGE_MI_MODE, BGE_MIMODE_AUTOPOLL | (10 << 16));
1787 		if (sc->bge_asicrev == BGE_ASICREV_BCM5700 &&
1788 		    sc->bge_chipid != BGE_CHIPID_BCM5700_B2)
1789 			CSR_WRITE_4(sc, BGE_MAC_EVT_ENB,
1790 			    BGE_EVTENB_MI_INTERRUPT);
1791 	}
1792 
1793 	/*
1794 	 * Clear any pending link state attention.
1795 	 * Otherwise some link state change events may be lost until attention
1796 	 * is cleared by bge_intr() -> bge_link_upd() sequence.
1797 	 * It's not necessary on newer BCM chips - perhaps enabling link
1798 	 * state change attentions implies clearing pending attention.
1799 	 */
1800 	CSR_WRITE_4(sc, BGE_MAC_STS, BGE_MACSTAT_SYNC_CHANGED |
1801 	    BGE_MACSTAT_CFG_CHANGED | BGE_MACSTAT_MI_COMPLETE |
1802 	    BGE_MACSTAT_LINK_CHANGED);
1803 
1804 	/* Enable link state change attentions. */
1805 	BGE_SETBIT(sc, BGE_MAC_EVT_ENB, BGE_EVTENB_LINK_CHANGED);
1806 
1807 	return (0);
1808 }
1809 
1810 const struct bge_revision *
1811 bge_lookup_rev(uint32_t chipid)
1812 {
1813 	const struct bge_revision *br;
1814 
1815 	for (br = bge_revisions; br->br_name != NULL; br++) {
1816 		if (br->br_chipid == chipid)
1817 			return (br);
1818 	}
1819 
1820 	for (br = bge_majorrevs; br->br_name != NULL; br++) {
1821 		if (br->br_chipid == BGE_ASICREV(chipid))
1822 			return (br);
1823 	}
1824 
1825 	return (NULL);
1826 }
1827 
1828 const struct bge_vendor *
1829 bge_lookup_vendor(uint16_t vid)
1830 {
1831 	const struct bge_vendor *v;
1832 
1833 	for (v = bge_vendors; v->v_name != NULL; v++)
1834 		if (v->v_id == vid)
1835 			return (v);
1836 
1837 	panic("%s: unknown vendor %d", __func__, vid);
1838 	return (NULL);
1839 }
1840 
1841 /*
1842  * Probe for a Broadcom chip. Check the PCI vendor and device IDs
1843  * against our list and return its name if we find a match.
1844  *
1845  * Note that since the Broadcom controller contains VPD support, we
1846  * try to get the device name string from the controller itself instead
1847  * of the compiled-in string. It guarantees we'll always announce the
1848  * right product name. We fall back to the compiled-in string when
1849  * VPD is unavailable or corrupt.
1850  */
1851 static int
1852 bge_probe(device_t dev)
1853 {
1854 	const struct bge_type *t = bge_devs;
1855 	struct bge_softc *sc = device_get_softc(dev);
1856 	uint16_t vid, did;
1857 
1858 	sc->bge_dev = dev;
1859 	vid = pci_get_vendor(dev);
1860 	did = pci_get_device(dev);
1861 	while(t->bge_vid != 0) {
1862 		if ((vid == t->bge_vid) && (did == t->bge_did)) {
1863 			char model[64], buf[96];
1864 			const struct bge_revision *br;
1865 			const struct bge_vendor *v;
1866 			uint32_t id;
1867 
1868 			id = pci_read_config(dev, BGE_PCI_MISC_CTL, 4) &
1869 			    BGE_PCIMISCCTL_ASICREV;
1870 			br = bge_lookup_rev(id);
1871 			v = bge_lookup_vendor(vid);
1872 			{
1873 #if __FreeBSD_version > 700024
1874 				const char *pname;
1875 
1876 				if (bge_has_eaddr(sc) &&
1877 				    pci_get_vpd_ident(dev, &pname) == 0)
1878 					snprintf(model, 64, "%s", pname);
1879 				else
1880 #endif
1881 					snprintf(model, 64, "%s %s",
1882 					    v->v_name,
1883 					    br != NULL ? br->br_name :
1884 					    "NetXtreme Ethernet Controller");
1885 			}
1886 			snprintf(buf, 96, "%s, %sASIC rev. %#04x", model,
1887 			    br != NULL ? "" : "unknown ", id >> 16);
1888 			device_set_desc_copy(dev, buf);
1889 			if (pci_get_subvendor(dev) == DELL_VENDORID)
1890 				sc->bge_flags |= BGE_FLAG_NO_3LED;
1891 			if (did == BCOM_DEVICEID_BCM5755M)
1892 				sc->bge_flags |= BGE_FLAG_ADJUST_TRIM;
1893 			return (0);
1894 		}
1895 		t++;
1896 	}
1897 
1898 	return (ENXIO);
1899 }
1900 
1901 static void
1902 bge_dma_free(struct bge_softc *sc)
1903 {
1904 	int i;
1905 
1906 	/* Destroy DMA maps for RX buffers. */
1907 	for (i = 0; i < BGE_STD_RX_RING_CNT; i++) {
1908 		if (sc->bge_cdata.bge_rx_std_dmamap[i])
1909 			bus_dmamap_destroy(sc->bge_cdata.bge_mtag,
1910 			    sc->bge_cdata.bge_rx_std_dmamap[i]);
1911 	}
1912 
1913 	/* Destroy DMA maps for jumbo RX buffers. */
1914 	for (i = 0; i < BGE_JUMBO_RX_RING_CNT; i++) {
1915 		if (sc->bge_cdata.bge_rx_jumbo_dmamap[i])
1916 			bus_dmamap_destroy(sc->bge_cdata.bge_mtag_jumbo,
1917 			    sc->bge_cdata.bge_rx_jumbo_dmamap[i]);
1918 	}
1919 
1920 	/* Destroy DMA maps for TX buffers. */
1921 	for (i = 0; i < BGE_TX_RING_CNT; i++) {
1922 		if (sc->bge_cdata.bge_tx_dmamap[i])
1923 			bus_dmamap_destroy(sc->bge_cdata.bge_mtag,
1924 			    sc->bge_cdata.bge_tx_dmamap[i]);
1925 	}
1926 
1927 	if (sc->bge_cdata.bge_mtag)
1928 		bus_dma_tag_destroy(sc->bge_cdata.bge_mtag);
1929 
1930 
1931 	/* Destroy standard RX ring. */
1932 	if (sc->bge_cdata.bge_rx_std_ring_map)
1933 		bus_dmamap_unload(sc->bge_cdata.bge_rx_std_ring_tag,
1934 		    sc->bge_cdata.bge_rx_std_ring_map);
1935 	if (sc->bge_cdata.bge_rx_std_ring_map && sc->bge_ldata.bge_rx_std_ring)
1936 		bus_dmamem_free(sc->bge_cdata.bge_rx_std_ring_tag,
1937 		    sc->bge_ldata.bge_rx_std_ring,
1938 		    sc->bge_cdata.bge_rx_std_ring_map);
1939 
1940 	if (sc->bge_cdata.bge_rx_std_ring_tag)
1941 		bus_dma_tag_destroy(sc->bge_cdata.bge_rx_std_ring_tag);
1942 
1943 	/* Destroy jumbo RX ring. */
1944 	if (sc->bge_cdata.bge_rx_jumbo_ring_map)
1945 		bus_dmamap_unload(sc->bge_cdata.bge_rx_jumbo_ring_tag,
1946 		    sc->bge_cdata.bge_rx_jumbo_ring_map);
1947 
1948 	if (sc->bge_cdata.bge_rx_jumbo_ring_map &&
1949 	    sc->bge_ldata.bge_rx_jumbo_ring)
1950 		bus_dmamem_free(sc->bge_cdata.bge_rx_jumbo_ring_tag,
1951 		    sc->bge_ldata.bge_rx_jumbo_ring,
1952 		    sc->bge_cdata.bge_rx_jumbo_ring_map);
1953 
1954 	if (sc->bge_cdata.bge_rx_jumbo_ring_tag)
1955 		bus_dma_tag_destroy(sc->bge_cdata.bge_rx_jumbo_ring_tag);
1956 
1957 	/* Destroy RX return ring. */
1958 	if (sc->bge_cdata.bge_rx_return_ring_map)
1959 		bus_dmamap_unload(sc->bge_cdata.bge_rx_return_ring_tag,
1960 		    sc->bge_cdata.bge_rx_return_ring_map);
1961 
1962 	if (sc->bge_cdata.bge_rx_return_ring_map &&
1963 	    sc->bge_ldata.bge_rx_return_ring)
1964 		bus_dmamem_free(sc->bge_cdata.bge_rx_return_ring_tag,
1965 		    sc->bge_ldata.bge_rx_return_ring,
1966 		    sc->bge_cdata.bge_rx_return_ring_map);
1967 
1968 	if (sc->bge_cdata.bge_rx_return_ring_tag)
1969 		bus_dma_tag_destroy(sc->bge_cdata.bge_rx_return_ring_tag);
1970 
1971 	/* Destroy TX ring. */
1972 	if (sc->bge_cdata.bge_tx_ring_map)
1973 		bus_dmamap_unload(sc->bge_cdata.bge_tx_ring_tag,
1974 		    sc->bge_cdata.bge_tx_ring_map);
1975 
1976 	if (sc->bge_cdata.bge_tx_ring_map && sc->bge_ldata.bge_tx_ring)
1977 		bus_dmamem_free(sc->bge_cdata.bge_tx_ring_tag,
1978 		    sc->bge_ldata.bge_tx_ring,
1979 		    sc->bge_cdata.bge_tx_ring_map);
1980 
1981 	if (sc->bge_cdata.bge_tx_ring_tag)
1982 		bus_dma_tag_destroy(sc->bge_cdata.bge_tx_ring_tag);
1983 
1984 	/* Destroy status block. */
1985 	if (sc->bge_cdata.bge_status_map)
1986 		bus_dmamap_unload(sc->bge_cdata.bge_status_tag,
1987 		    sc->bge_cdata.bge_status_map);
1988 
1989 	if (sc->bge_cdata.bge_status_map && sc->bge_ldata.bge_status_block)
1990 		bus_dmamem_free(sc->bge_cdata.bge_status_tag,
1991 		    sc->bge_ldata.bge_status_block,
1992 		    sc->bge_cdata.bge_status_map);
1993 
1994 	if (sc->bge_cdata.bge_status_tag)
1995 		bus_dma_tag_destroy(sc->bge_cdata.bge_status_tag);
1996 
1997 	/* Destroy statistics block. */
1998 	if (sc->bge_cdata.bge_stats_map)
1999 		bus_dmamap_unload(sc->bge_cdata.bge_stats_tag,
2000 		    sc->bge_cdata.bge_stats_map);
2001 
2002 	if (sc->bge_cdata.bge_stats_map && sc->bge_ldata.bge_stats)
2003 		bus_dmamem_free(sc->bge_cdata.bge_stats_tag,
2004 		    sc->bge_ldata.bge_stats,
2005 		    sc->bge_cdata.bge_stats_map);
2006 
2007 	if (sc->bge_cdata.bge_stats_tag)
2008 		bus_dma_tag_destroy(sc->bge_cdata.bge_stats_tag);
2009 
2010 	/* Destroy the parent tag. */
2011 	if (sc->bge_cdata.bge_parent_tag)
2012 		bus_dma_tag_destroy(sc->bge_cdata.bge_parent_tag);
2013 }
2014 
2015 static int
2016 bge_dma_alloc(device_t dev)
2017 {
2018 	struct bge_dmamap_arg ctx;
2019 	struct bge_softc *sc;
2020 	int i, error;
2021 
2022 	sc = device_get_softc(dev);
2023 
2024 	/*
2025 	 * Allocate the parent bus DMA tag appropriate for PCI.
2026 	 */
2027 	error = bus_dma_tag_create(bus_get_dma_tag(sc->bge_dev),
2028 	    1, 0, BUS_SPACE_MAXADDR, BUS_SPACE_MAXADDR,	NULL,
2029 	    NULL, BUS_SPACE_MAXSIZE_32BIT, 0, BUS_SPACE_MAXSIZE_32BIT,
2030 	    0, NULL, NULL, &sc->bge_cdata.bge_parent_tag);
2031 
2032 	if (error != 0) {
2033 		device_printf(sc->bge_dev,
2034 		    "could not allocate parent dma tag\n");
2035 		return (ENOMEM);
2036 	}
2037 
2038 	/*
2039 	 * Create tag for mbufs.
2040 	 */
2041 	error = bus_dma_tag_create(sc->bge_cdata.bge_parent_tag, 1,
2042 	    0, BUS_SPACE_MAXADDR, BUS_SPACE_MAXADDR, NULL,
2043 	    NULL, MCLBYTES * BGE_NSEG_NEW, BGE_NSEG_NEW, MCLBYTES,
2044 	    BUS_DMA_ALLOCNOW, NULL, NULL, &sc->bge_cdata.bge_mtag);
2045 
2046 	if (error) {
2047 		device_printf(sc->bge_dev, "could not allocate dma tag\n");
2048 		return (ENOMEM);
2049 	}
2050 
2051 	/* Create DMA maps for RX buffers. */
2052 	for (i = 0; i < BGE_STD_RX_RING_CNT; i++) {
2053 		error = bus_dmamap_create(sc->bge_cdata.bge_mtag, 0,
2054 			    &sc->bge_cdata.bge_rx_std_dmamap[i]);
2055 		if (error) {
2056 			device_printf(sc->bge_dev,
2057 			    "can't create DMA map for RX\n");
2058 			return (ENOMEM);
2059 		}
2060 	}
2061 
2062 	/* Create DMA maps for TX buffers. */
2063 	for (i = 0; i < BGE_TX_RING_CNT; i++) {
2064 		error = bus_dmamap_create(sc->bge_cdata.bge_mtag, 0,
2065 			    &sc->bge_cdata.bge_tx_dmamap[i]);
2066 		if (error) {
2067 			device_printf(sc->bge_dev,
2068 			    "can't create DMA map for RX\n");
2069 			return (ENOMEM);
2070 		}
2071 	}
2072 
2073 	/* Create tag for standard RX ring. */
2074 	error = bus_dma_tag_create(sc->bge_cdata.bge_parent_tag,
2075 	    PAGE_SIZE, 0, BUS_SPACE_MAXADDR, BUS_SPACE_MAXADDR, NULL,
2076 	    NULL, BGE_STD_RX_RING_SZ, 1, BGE_STD_RX_RING_SZ, 0,
2077 	    NULL, NULL, &sc->bge_cdata.bge_rx_std_ring_tag);
2078 
2079 	if (error) {
2080 		device_printf(sc->bge_dev, "could not allocate dma tag\n");
2081 		return (ENOMEM);
2082 	}
2083 
2084 	/* Allocate DMA'able memory for standard RX ring. */
2085 	error = bus_dmamem_alloc(sc->bge_cdata.bge_rx_std_ring_tag,
2086 	    (void **)&sc->bge_ldata.bge_rx_std_ring, BUS_DMA_NOWAIT,
2087 	    &sc->bge_cdata.bge_rx_std_ring_map);
2088 	if (error)
2089 		return (ENOMEM);
2090 
2091 	bzero((char *)sc->bge_ldata.bge_rx_std_ring, BGE_STD_RX_RING_SZ);
2092 
2093 	/* Load the address of the standard RX ring. */
2094 	ctx.bge_maxsegs = 1;
2095 	ctx.sc = sc;
2096 
2097 	error = bus_dmamap_load(sc->bge_cdata.bge_rx_std_ring_tag,
2098 	    sc->bge_cdata.bge_rx_std_ring_map, sc->bge_ldata.bge_rx_std_ring,
2099 	    BGE_STD_RX_RING_SZ, bge_dma_map_addr, &ctx, BUS_DMA_NOWAIT);
2100 
2101 	if (error)
2102 		return (ENOMEM);
2103 
2104 	sc->bge_ldata.bge_rx_std_ring_paddr = ctx.bge_busaddr;
2105 
2106 	/* Create tags for jumbo mbufs. */
2107 	if (BGE_IS_JUMBO_CAPABLE(sc)) {
2108 		error = bus_dma_tag_create(sc->bge_cdata.bge_parent_tag,
2109 		    1, 0, BUS_SPACE_MAXADDR, BUS_SPACE_MAXADDR, NULL,
2110 		    NULL, MJUM9BYTES, BGE_NSEG_JUMBO, PAGE_SIZE,
2111 		    0, NULL, NULL, &sc->bge_cdata.bge_mtag_jumbo);
2112 		if (error) {
2113 			device_printf(sc->bge_dev,
2114 			    "could not allocate jumbo dma tag\n");
2115 			return (ENOMEM);
2116 		}
2117 
2118 		/* Create tag for jumbo RX ring. */
2119 		error = bus_dma_tag_create(sc->bge_cdata.bge_parent_tag,
2120 		    PAGE_SIZE, 0, BUS_SPACE_MAXADDR, BUS_SPACE_MAXADDR, NULL,
2121 		    NULL, BGE_JUMBO_RX_RING_SZ, 1, BGE_JUMBO_RX_RING_SZ, 0,
2122 		    NULL, NULL, &sc->bge_cdata.bge_rx_jumbo_ring_tag);
2123 
2124 		if (error) {
2125 			device_printf(sc->bge_dev,
2126 			    "could not allocate jumbo ring dma tag\n");
2127 			return (ENOMEM);
2128 		}
2129 
2130 		/* Allocate DMA'able memory for jumbo RX ring. */
2131 		error = bus_dmamem_alloc(sc->bge_cdata.bge_rx_jumbo_ring_tag,
2132 		    (void **)&sc->bge_ldata.bge_rx_jumbo_ring,
2133 		    BUS_DMA_NOWAIT | BUS_DMA_ZERO,
2134 		    &sc->bge_cdata.bge_rx_jumbo_ring_map);
2135 		if (error)
2136 			return (ENOMEM);
2137 
2138 		/* Load the address of the jumbo RX ring. */
2139 		ctx.bge_maxsegs = 1;
2140 		ctx.sc = sc;
2141 
2142 		error = bus_dmamap_load(sc->bge_cdata.bge_rx_jumbo_ring_tag,
2143 		    sc->bge_cdata.bge_rx_jumbo_ring_map,
2144 		    sc->bge_ldata.bge_rx_jumbo_ring, BGE_JUMBO_RX_RING_SZ,
2145 		    bge_dma_map_addr, &ctx, BUS_DMA_NOWAIT);
2146 
2147 		if (error)
2148 			return (ENOMEM);
2149 
2150 		sc->bge_ldata.bge_rx_jumbo_ring_paddr = ctx.bge_busaddr;
2151 
2152 		/* Create DMA maps for jumbo RX buffers. */
2153 		for (i = 0; i < BGE_JUMBO_RX_RING_CNT; i++) {
2154 			error = bus_dmamap_create(sc->bge_cdata.bge_mtag_jumbo,
2155 				    0, &sc->bge_cdata.bge_rx_jumbo_dmamap[i]);
2156 			if (error) {
2157 				device_printf(sc->bge_dev,
2158 				    "can't create DMA map for jumbo RX\n");
2159 				return (ENOMEM);
2160 			}
2161 		}
2162 
2163 	}
2164 
2165 	/* Create tag for RX return ring. */
2166 	error = bus_dma_tag_create(sc->bge_cdata.bge_parent_tag,
2167 	    PAGE_SIZE, 0, BUS_SPACE_MAXADDR, BUS_SPACE_MAXADDR, NULL,
2168 	    NULL, BGE_RX_RTN_RING_SZ(sc), 1, BGE_RX_RTN_RING_SZ(sc), 0,
2169 	    NULL, NULL, &sc->bge_cdata.bge_rx_return_ring_tag);
2170 
2171 	if (error) {
2172 		device_printf(sc->bge_dev, "could not allocate dma tag\n");
2173 		return (ENOMEM);
2174 	}
2175 
2176 	/* Allocate DMA'able memory for RX return ring. */
2177 	error = bus_dmamem_alloc(sc->bge_cdata.bge_rx_return_ring_tag,
2178 	    (void **)&sc->bge_ldata.bge_rx_return_ring, BUS_DMA_NOWAIT,
2179 	    &sc->bge_cdata.bge_rx_return_ring_map);
2180 	if (error)
2181 		return (ENOMEM);
2182 
2183 	bzero((char *)sc->bge_ldata.bge_rx_return_ring,
2184 	    BGE_RX_RTN_RING_SZ(sc));
2185 
2186 	/* Load the address of the RX return ring. */
2187 	ctx.bge_maxsegs = 1;
2188 	ctx.sc = sc;
2189 
2190 	error = bus_dmamap_load(sc->bge_cdata.bge_rx_return_ring_tag,
2191 	    sc->bge_cdata.bge_rx_return_ring_map,
2192 	    sc->bge_ldata.bge_rx_return_ring, BGE_RX_RTN_RING_SZ(sc),
2193 	    bge_dma_map_addr, &ctx, BUS_DMA_NOWAIT);
2194 
2195 	if (error)
2196 		return (ENOMEM);
2197 
2198 	sc->bge_ldata.bge_rx_return_ring_paddr = ctx.bge_busaddr;
2199 
2200 	/* Create tag for TX ring. */
2201 	error = bus_dma_tag_create(sc->bge_cdata.bge_parent_tag,
2202 	    PAGE_SIZE, 0, BUS_SPACE_MAXADDR, BUS_SPACE_MAXADDR, NULL,
2203 	    NULL, BGE_TX_RING_SZ, 1, BGE_TX_RING_SZ, 0, NULL, NULL,
2204 	    &sc->bge_cdata.bge_tx_ring_tag);
2205 
2206 	if (error) {
2207 		device_printf(sc->bge_dev, "could not allocate dma tag\n");
2208 		return (ENOMEM);
2209 	}
2210 
2211 	/* Allocate DMA'able memory for TX ring. */
2212 	error = bus_dmamem_alloc(sc->bge_cdata.bge_tx_ring_tag,
2213 	    (void **)&sc->bge_ldata.bge_tx_ring, BUS_DMA_NOWAIT,
2214 	    &sc->bge_cdata.bge_tx_ring_map);
2215 	if (error)
2216 		return (ENOMEM);
2217 
2218 	bzero((char *)sc->bge_ldata.bge_tx_ring, BGE_TX_RING_SZ);
2219 
2220 	/* Load the address of the TX ring. */
2221 	ctx.bge_maxsegs = 1;
2222 	ctx.sc = sc;
2223 
2224 	error = bus_dmamap_load(sc->bge_cdata.bge_tx_ring_tag,
2225 	    sc->bge_cdata.bge_tx_ring_map, sc->bge_ldata.bge_tx_ring,
2226 	    BGE_TX_RING_SZ, bge_dma_map_addr, &ctx, BUS_DMA_NOWAIT);
2227 
2228 	if (error)
2229 		return (ENOMEM);
2230 
2231 	sc->bge_ldata.bge_tx_ring_paddr = ctx.bge_busaddr;
2232 
2233 	/* Create tag for status block. */
2234 	error = bus_dma_tag_create(sc->bge_cdata.bge_parent_tag,
2235 	    PAGE_SIZE, 0, BUS_SPACE_MAXADDR, BUS_SPACE_MAXADDR, NULL,
2236 	    NULL, BGE_STATUS_BLK_SZ, 1, BGE_STATUS_BLK_SZ, 0,
2237 	    NULL, NULL, &sc->bge_cdata.bge_status_tag);
2238 
2239 	if (error) {
2240 		device_printf(sc->bge_dev, "could not allocate dma tag\n");
2241 		return (ENOMEM);
2242 	}
2243 
2244 	/* Allocate DMA'able memory for status block. */
2245 	error = bus_dmamem_alloc(sc->bge_cdata.bge_status_tag,
2246 	    (void **)&sc->bge_ldata.bge_status_block, BUS_DMA_NOWAIT,
2247 	    &sc->bge_cdata.bge_status_map);
2248 	if (error)
2249 		return (ENOMEM);
2250 
2251 	bzero((char *)sc->bge_ldata.bge_status_block, BGE_STATUS_BLK_SZ);
2252 
2253 	/* Load the address of the status block. */
2254 	ctx.sc = sc;
2255 	ctx.bge_maxsegs = 1;
2256 
2257 	error = bus_dmamap_load(sc->bge_cdata.bge_status_tag,
2258 	    sc->bge_cdata.bge_status_map, sc->bge_ldata.bge_status_block,
2259 	    BGE_STATUS_BLK_SZ, bge_dma_map_addr, &ctx, BUS_DMA_NOWAIT);
2260 
2261 	if (error)
2262 		return (ENOMEM);
2263 
2264 	sc->bge_ldata.bge_status_block_paddr = ctx.bge_busaddr;
2265 
2266 	/* Create tag for statistics block. */
2267 	error = bus_dma_tag_create(sc->bge_cdata.bge_parent_tag,
2268 	    PAGE_SIZE, 0, BUS_SPACE_MAXADDR, BUS_SPACE_MAXADDR, NULL,
2269 	    NULL, BGE_STATS_SZ, 1, BGE_STATS_SZ, 0, NULL, NULL,
2270 	    &sc->bge_cdata.bge_stats_tag);
2271 
2272 	if (error) {
2273 		device_printf(sc->bge_dev, "could not allocate dma tag\n");
2274 		return (ENOMEM);
2275 	}
2276 
2277 	/* Allocate DMA'able memory for statistics block. */
2278 	error = bus_dmamem_alloc(sc->bge_cdata.bge_stats_tag,
2279 	    (void **)&sc->bge_ldata.bge_stats, BUS_DMA_NOWAIT,
2280 	    &sc->bge_cdata.bge_stats_map);
2281 	if (error)
2282 		return (ENOMEM);
2283 
2284 	bzero((char *)sc->bge_ldata.bge_stats, BGE_STATS_SZ);
2285 
2286 	/* Load the address of the statstics block. */
2287 	ctx.sc = sc;
2288 	ctx.bge_maxsegs = 1;
2289 
2290 	error = bus_dmamap_load(sc->bge_cdata.bge_stats_tag,
2291 	    sc->bge_cdata.bge_stats_map, sc->bge_ldata.bge_stats,
2292 	    BGE_STATS_SZ, bge_dma_map_addr, &ctx, BUS_DMA_NOWAIT);
2293 
2294 	if (error)
2295 		return (ENOMEM);
2296 
2297 	sc->bge_ldata.bge_stats_paddr = ctx.bge_busaddr;
2298 
2299 	return (0);
2300 }
2301 
2302 #if __FreeBSD_version > 602105
2303 /*
2304  * Return true if this device has more than one port.
2305  */
2306 static int
2307 bge_has_multiple_ports(struct bge_softc *sc)
2308 {
2309 	device_t dev = sc->bge_dev;
2310 	u_int b, d, f, fscan, s;
2311 
2312 	d = pci_get_domain(dev);
2313 	b = pci_get_bus(dev);
2314 	s = pci_get_slot(dev);
2315 	f = pci_get_function(dev);
2316 	for (fscan = 0; fscan <= PCI_FUNCMAX; fscan++)
2317 		if (fscan != f && pci_find_dbsf(d, b, s, fscan) != NULL)
2318 			return (1);
2319 	return (0);
2320 }
2321 
2322 /*
2323  * Return true if MSI can be used with this device.
2324  */
2325 static int
2326 bge_can_use_msi(struct bge_softc *sc)
2327 {
2328 	int can_use_msi = 0;
2329 
2330 	switch (sc->bge_asicrev) {
2331 	case BGE_ASICREV_BCM5714:
2332 		/*
2333 		 * Apparently, MSI doesn't work when this chip is configured
2334 		 * in single-port mode.
2335 		 */
2336 		if (bge_has_multiple_ports(sc))
2337 			can_use_msi = 1;
2338 		break;
2339 	case BGE_ASICREV_BCM5750:
2340 		if (sc->bge_chiprev != BGE_CHIPREV_5750_AX &&
2341 		    sc->bge_chiprev != BGE_CHIPREV_5750_BX)
2342 			can_use_msi = 1;
2343 		break;
2344 	case BGE_ASICREV_BCM5752:
2345 	case BGE_ASICREV_BCM5780:
2346 		can_use_msi = 1;
2347 		break;
2348 	}
2349 	return (can_use_msi);
2350 }
2351 #endif
2352 
2353 static int
2354 bge_attach(device_t dev)
2355 {
2356 	struct ifnet *ifp;
2357 	struct bge_softc *sc;
2358 	uint32_t hwcfg = 0, misccfg;
2359 	u_char eaddr[ETHER_ADDR_LEN];
2360 	int error, reg, rid, trys;
2361 
2362 	sc = device_get_softc(dev);
2363 	sc->bge_dev = dev;
2364 
2365 	/*
2366 	 * Map control/status registers.
2367 	 */
2368 	pci_enable_busmaster(dev);
2369 
2370 	rid = BGE_PCI_BAR0;
2371 	sc->bge_res = bus_alloc_resource_any(dev, SYS_RES_MEMORY, &rid,
2372 	    RF_ACTIVE);
2373 
2374 	if (sc->bge_res == NULL) {
2375 		device_printf (sc->bge_dev, "couldn't map memory\n");
2376 		error = ENXIO;
2377 		goto fail;
2378 	}
2379 
2380 	sc->bge_btag = rman_get_bustag(sc->bge_res);
2381 	sc->bge_bhandle = rman_get_bushandle(sc->bge_res);
2382 
2383 	/* Save ASIC rev. */
2384 
2385 	sc->bge_chipid =
2386 	    pci_read_config(dev, BGE_PCI_MISC_CTL, 4) &
2387 	    BGE_PCIMISCCTL_ASICREV;
2388 	sc->bge_asicrev = BGE_ASICREV(sc->bge_chipid);
2389 	sc->bge_chiprev = BGE_CHIPREV(sc->bge_chipid);
2390 
2391 	/*
2392 	 * Don't enable Ethernet@WireSpeed for the 5700, 5906, or the
2393 	 * 5705 A0 and A1 chips.
2394 	 */
2395 	if (sc->bge_asicrev != BGE_ASICREV_BCM5700 &&
2396 	    sc->bge_asicrev != BGE_ASICREV_BCM5906 &&
2397 	    sc->bge_chipid != BGE_CHIPID_BCM5705_A0 &&
2398 	    sc->bge_chipid != BGE_CHIPID_BCM5705_A1)
2399 		sc->bge_flags |= BGE_FLAG_WIRESPEED;
2400 
2401 	if (bge_has_eaddr(sc))
2402 		sc->bge_flags |= BGE_FLAG_EADDR;
2403 
2404 	/* Save chipset family. */
2405 	switch (sc->bge_asicrev) {
2406 	case BGE_ASICREV_BCM5700:
2407 	case BGE_ASICREV_BCM5701:
2408 	case BGE_ASICREV_BCM5703:
2409 	case BGE_ASICREV_BCM5704:
2410 		sc->bge_flags |= BGE_FLAG_5700_FAMILY | BGE_FLAG_JUMBO;
2411 		break;
2412 	case BGE_ASICREV_BCM5714_A0:
2413 	case BGE_ASICREV_BCM5780:
2414 	case BGE_ASICREV_BCM5714:
2415 		sc->bge_flags |= BGE_FLAG_5714_FAMILY /* | BGE_FLAG_JUMBO */;
2416 		/* FALLTHRU */
2417 	case BGE_ASICREV_BCM5750:
2418 	case BGE_ASICREV_BCM5752:
2419 	case BGE_ASICREV_BCM5755:
2420 	case BGE_ASICREV_BCM5787:
2421 	case BGE_ASICREV_BCM5906:
2422 		sc->bge_flags |= BGE_FLAG_575X_PLUS;
2423 		/* FALLTHRU */
2424 	case BGE_ASICREV_BCM5705:
2425 		sc->bge_flags |= BGE_FLAG_5705_PLUS;
2426 		break;
2427 	}
2428 
2429 	/* Set various bug flags. */
2430 	if (sc->bge_chipid == BGE_CHIPID_BCM5701_A0 ||
2431 	    sc->bge_chipid == BGE_CHIPID_BCM5701_B0)
2432 		sc->bge_flags |= BGE_FLAG_CRC_BUG;
2433 	if (sc->bge_chiprev == BGE_CHIPREV_5703_AX ||
2434 	    sc->bge_chiprev == BGE_CHIPREV_5704_AX)
2435 		sc->bge_flags |= BGE_FLAG_ADC_BUG;
2436 	if (sc->bge_chipid == BGE_CHIPID_BCM5704_A0)
2437 		sc->bge_flags |= BGE_FLAG_5704_A0_BUG;
2438 	if (BGE_IS_5705_PLUS(sc) &&
2439 	    !(sc->bge_flags & BGE_FLAG_ADJUST_TRIM)) {
2440 		if (sc->bge_asicrev == BGE_ASICREV_BCM5755 ||
2441 		    sc->bge_asicrev == BGE_ASICREV_BCM5787) {
2442 			if (sc->bge_chipid != BGE_CHIPID_BCM5722_A0)
2443 				sc->bge_flags |= BGE_FLAG_JITTER_BUG;
2444 		} else if (sc->bge_asicrev != BGE_ASICREV_BCM5906)
2445 			sc->bge_flags |= BGE_FLAG_BER_BUG;
2446 	}
2447 
2448 
2449 	/*
2450 	 * We could possibly check for BCOM_DEVICEID_BCM5788 in bge_probe()
2451 	 * but I do not know the DEVICEID for the 5788M.
2452 	 */
2453 	misccfg = CSR_READ_4(sc, BGE_MISC_CFG) & BGE_MISCCFG_BOARD_ID;
2454 	if (misccfg == BGE_MISCCFG_BOARD_ID_5788 ||
2455 	    misccfg == BGE_MISCCFG_BOARD_ID_5788M)
2456 		sc->bge_flags |= BGE_FLAG_5788;
2457 
2458   	/*
2459 	 * Check if this is a PCI-X or PCI Express device.
2460   	 */
2461 #if __FreeBSD_version > 602101
2462 	if (pci_find_extcap(dev, PCIY_EXPRESS, &reg) == 0) {
2463 		/*
2464 		 * Found a PCI Express capabilities register, this
2465 		 * must be a PCI Express device.
2466 		 */
2467 		if (reg != 0)
2468 			sc->bge_flags |= BGE_FLAG_PCIE;
2469 	} else if (pci_find_extcap(dev, PCIY_PCIX, &reg) == 0) {
2470 		if (reg != 0)
2471 			sc->bge_flags |= BGE_FLAG_PCIX;
2472 	}
2473 
2474 #else
2475 	if (BGE_IS_5705_PLUS(sc)) {
2476 		reg = pci_read_config(dev, BGE_PCIE_CAPID_REG, 4);
2477 		if ((reg & 0xFF) == BGE_PCIE_CAPID)
2478 			sc->bge_flags |= BGE_FLAG_PCIE;
2479 	} else {
2480 		/*
2481 		 * Check if the device is in PCI-X Mode.
2482 		 * (This bit is not valid on PCI Express controllers.)
2483 		 */
2484 		if ((pci_read_config(sc->bge_dev, BGE_PCI_PCISTATE, 4) &
2485 		    BGE_PCISTATE_PCI_BUSMODE) == 0)
2486 			sc->bge_flags |= BGE_FLAG_PCIX;
2487 	}
2488 #endif
2489 
2490 #if __FreeBSD_version > 602105
2491 	{
2492 		int msicount;
2493 
2494 		/*
2495 		 * Allocate the interrupt, using MSI if possible.  These devices
2496 		 * support 8 MSI messages, but only the first one is used in
2497 		 * normal operation.
2498 		 */
2499 		if (bge_can_use_msi(sc)) {
2500 			msicount = pci_msi_count(dev);
2501 			if (msicount > 1)
2502 				msicount = 1;
2503 		} else
2504 			msicount = 0;
2505 		if (msicount == 1 && pci_alloc_msi(dev, &msicount) == 0) {
2506 			rid = 1;
2507 			sc->bge_flags |= BGE_FLAG_MSI;
2508 		} else
2509 			rid = 0;
2510 	}
2511 #else
2512 	rid = 0;
2513 #endif
2514 
2515 	sc->bge_irq = bus_alloc_resource_any(dev, SYS_RES_IRQ, &rid,
2516 	    RF_SHAREABLE | RF_ACTIVE);
2517 
2518 	if (sc->bge_irq == NULL) {
2519 		device_printf(sc->bge_dev, "couldn't map interrupt\n");
2520 		error = ENXIO;
2521 		goto fail;
2522 	}
2523 
2524 	BGE_LOCK_INIT(sc, device_get_nameunit(dev));
2525 
2526 	/* Try to reset the chip. */
2527 	if (bge_reset(sc)) {
2528 		device_printf(sc->bge_dev, "chip reset failed\n");
2529 		error = ENXIO;
2530 		goto fail;
2531 	}
2532 
2533 	sc->bge_asf_mode = 0;
2534 	if (bge_allow_asf && (bge_readmem_ind(sc, BGE_SOFTWARE_GENCOMM_SIG)
2535 	    == BGE_MAGIC_NUMBER)) {
2536 		if (bge_readmem_ind(sc, BGE_SOFTWARE_GENCOMM_NICCFG)
2537 		    & BGE_HWCFG_ASF) {
2538 			sc->bge_asf_mode |= ASF_ENABLE;
2539 			sc->bge_asf_mode |= ASF_STACKUP;
2540 			if (sc->bge_asicrev == BGE_ASICREV_BCM5750) {
2541 				sc->bge_asf_mode |= ASF_NEW_HANDSHAKE;
2542 			}
2543 		}
2544 	}
2545 
2546 	/* Try to reset the chip again the nice way. */
2547 	bge_stop_fw(sc);
2548 	bge_sig_pre_reset(sc, BGE_RESET_STOP);
2549 	if (bge_reset(sc)) {
2550 		device_printf(sc->bge_dev, "chip reset failed\n");
2551 		error = ENXIO;
2552 		goto fail;
2553 	}
2554 
2555 	bge_sig_legacy(sc, BGE_RESET_STOP);
2556 	bge_sig_post_reset(sc, BGE_RESET_STOP);
2557 
2558 	if (bge_chipinit(sc)) {
2559 		device_printf(sc->bge_dev, "chip initialization failed\n");
2560 		error = ENXIO;
2561 		goto fail;
2562 	}
2563 
2564 	error = bge_get_eaddr(sc, eaddr);
2565 	if (error) {
2566 		device_printf(sc->bge_dev,
2567 		    "failed to read station address\n");
2568 		error = ENXIO;
2569 		goto fail;
2570 	}
2571 
2572 	/* 5705 limits RX return ring to 512 entries. */
2573 	if (BGE_IS_5705_PLUS(sc))
2574 		sc->bge_return_ring_cnt = BGE_RETURN_RING_CNT_5705;
2575 	else
2576 		sc->bge_return_ring_cnt = BGE_RETURN_RING_CNT;
2577 
2578 	if (bge_dma_alloc(dev)) {
2579 		device_printf(sc->bge_dev,
2580 		    "failed to allocate DMA resources\n");
2581 		error = ENXIO;
2582 		goto fail;
2583 	}
2584 
2585 	/* Set default tuneable values. */
2586 	sc->bge_stat_ticks = BGE_TICKS_PER_SEC;
2587 	sc->bge_rx_coal_ticks = 150;
2588 	sc->bge_tx_coal_ticks = 150;
2589 	sc->bge_rx_max_coal_bds = 10;
2590 	sc->bge_tx_max_coal_bds = 10;
2591 
2592 	/* Set up ifnet structure */
2593 	ifp = sc->bge_ifp = if_alloc(IFT_ETHER);
2594 	if (ifp == NULL) {
2595 		device_printf(sc->bge_dev, "failed to if_alloc()\n");
2596 		error = ENXIO;
2597 		goto fail;
2598 	}
2599 	ifp->if_softc = sc;
2600 	if_initname(ifp, device_get_name(dev), device_get_unit(dev));
2601 	ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
2602 	ifp->if_ioctl = bge_ioctl;
2603 	ifp->if_start = bge_start;
2604 	ifp->if_init = bge_init;
2605 	ifp->if_mtu = ETHERMTU;
2606 	ifp->if_snd.ifq_drv_maxlen = BGE_TX_RING_CNT - 1;
2607 	IFQ_SET_MAXLEN(&ifp->if_snd, ifp->if_snd.ifq_drv_maxlen);
2608 	IFQ_SET_READY(&ifp->if_snd);
2609 	ifp->if_hwassist = BGE_CSUM_FEATURES;
2610 	ifp->if_capabilities = IFCAP_HWCSUM | IFCAP_VLAN_HWTAGGING |
2611 	    IFCAP_VLAN_MTU;
2612 #ifdef IFCAP_VLAN_HWCSUM
2613 	ifp->if_capabilities |= IFCAP_VLAN_HWCSUM;
2614 #endif
2615 	ifp->if_capenable = ifp->if_capabilities;
2616 #ifdef DEVICE_POLLING
2617 	ifp->if_capabilities |= IFCAP_POLLING;
2618 #endif
2619 
2620 	/*
2621 	 * 5700 B0 chips do not support checksumming correctly due
2622 	 * to hardware bugs.
2623 	 */
2624 	if (sc->bge_chipid == BGE_CHIPID_BCM5700_B0) {
2625 		ifp->if_capabilities &= ~IFCAP_HWCSUM;
2626 		ifp->if_capenable &= IFCAP_HWCSUM;
2627 		ifp->if_hwassist = 0;
2628 	}
2629 
2630 	/*
2631 	 * Figure out what sort of media we have by checking the
2632 	 * hardware config word in the first 32k of NIC internal memory,
2633 	 * or fall back to examining the EEPROM if necessary.
2634 	 * Note: on some BCM5700 cards, this value appears to be unset.
2635 	 * If that's the case, we have to rely on identifying the NIC
2636 	 * by its PCI subsystem ID, as we do below for the SysKonnect
2637 	 * SK-9D41.
2638 	 */
2639 	if (bge_readmem_ind(sc, BGE_SOFTWARE_GENCOMM_SIG) == BGE_MAGIC_NUMBER)
2640 		hwcfg = bge_readmem_ind(sc, BGE_SOFTWARE_GENCOMM_NICCFG);
2641 	else if ((sc->bge_flags & BGE_FLAG_EADDR) &&
2642 	    (sc->bge_asicrev != BGE_ASICREV_BCM5906)) {
2643 		if (bge_read_eeprom(sc, (caddr_t)&hwcfg, BGE_EE_HWCFG_OFFSET,
2644 		    sizeof(hwcfg))) {
2645 			device_printf(sc->bge_dev, "failed to read EEPROM\n");
2646 			error = ENXIO;
2647 			goto fail;
2648 		}
2649 		hwcfg = ntohl(hwcfg);
2650 	}
2651 
2652 	if ((hwcfg & BGE_HWCFG_MEDIA) == BGE_MEDIA_FIBER)
2653 		sc->bge_flags |= BGE_FLAG_TBI;
2654 
2655 	/* The SysKonnect SK-9D41 is a 1000baseSX card. */
2656 	if ((pci_read_config(dev, BGE_PCI_SUBSYS, 4) >> 16) == SK_SUBSYSID_9D41)
2657 		sc->bge_flags |= BGE_FLAG_TBI;
2658 
2659 	if (sc->bge_flags & BGE_FLAG_TBI) {
2660 		ifmedia_init(&sc->bge_ifmedia, IFM_IMASK, bge_ifmedia_upd,
2661 		    bge_ifmedia_sts);
2662 		ifmedia_add(&sc->bge_ifmedia, IFM_ETHER | IFM_1000_SX, 0, NULL);
2663 		ifmedia_add(&sc->bge_ifmedia, IFM_ETHER | IFM_1000_SX | IFM_FDX,
2664 		    0, NULL);
2665 		ifmedia_add(&sc->bge_ifmedia, IFM_ETHER | IFM_AUTO, 0, NULL);
2666 		ifmedia_set(&sc->bge_ifmedia, IFM_ETHER | IFM_AUTO);
2667 		sc->bge_ifmedia.ifm_media = sc->bge_ifmedia.ifm_cur->ifm_media;
2668 	} else {
2669 		/*
2670 		 * Do transceiver setup and tell the firmware the
2671 		 * driver is down so we can try to get access the
2672 		 * probe if ASF is running.  Retry a couple of times
2673 		 * if we get a conflict with the ASF firmware accessing
2674 		 * the PHY.
2675 		 */
2676 		BGE_CLRBIT(sc, BGE_MODE_CTL, BGE_MODECTL_STACKUP);
2677 again:
2678 		bge_asf_driver_up(sc);
2679 
2680 		trys = 0;
2681 		if (mii_phy_probe(dev, &sc->bge_miibus,
2682 		    bge_ifmedia_upd, bge_ifmedia_sts)) {
2683 			if (trys++ < 4) {
2684 				device_printf(sc->bge_dev, "Try again\n");
2685 				bge_miibus_writereg(sc->bge_dev, 1, MII_BMCR,
2686 				    BMCR_RESET);
2687 				goto again;
2688 			}
2689 
2690 			device_printf(sc->bge_dev, "MII without any PHY!\n");
2691 			error = ENXIO;
2692 			goto fail;
2693 		}
2694 
2695 		/*
2696 		 * Now tell the firmware we are going up after probing the PHY
2697 		 */
2698 		if (sc->bge_asf_mode & ASF_STACKUP)
2699 			BGE_SETBIT(sc, BGE_MODE_CTL, BGE_MODECTL_STACKUP);
2700 	}
2701 
2702 	/*
2703 	 * When using the BCM5701 in PCI-X mode, data corruption has
2704 	 * been observed in the first few bytes of some received packets.
2705 	 * Aligning the packet buffer in memory eliminates the corruption.
2706 	 * Unfortunately, this misaligns the packet payloads.  On platforms
2707 	 * which do not support unaligned accesses, we will realign the
2708 	 * payloads by copying the received packets.
2709 	 */
2710 	if (sc->bge_asicrev == BGE_ASICREV_BCM5701 &&
2711 	    sc->bge_flags & BGE_FLAG_PCIX)
2712                 sc->bge_flags |= BGE_FLAG_RX_ALIGNBUG;
2713 
2714 	/*
2715 	 * Call MI attach routine.
2716 	 */
2717 	ether_ifattach(ifp, eaddr);
2718 	callout_init_mtx(&sc->bge_stat_ch, &sc->bge_mtx, 0);
2719 
2720 	/*
2721 	 * Hookup IRQ last.
2722 	 */
2723 #if __FreeBSD_version > 700030
2724 	error = bus_setup_intr(dev, sc->bge_irq, INTR_TYPE_NET | INTR_MPSAFE,
2725 	   NULL, bge_intr, sc, &sc->bge_intrhand);
2726 #else
2727 	error = bus_setup_intr(dev, sc->bge_irq, INTR_TYPE_NET | INTR_MPSAFE,
2728 	   bge_intr, sc, &sc->bge_intrhand);
2729 #endif
2730 
2731 	if (error) {
2732 		bge_detach(dev);
2733 		device_printf(sc->bge_dev, "couldn't set up irq\n");
2734 	}
2735 
2736 	bge_add_sysctls(sc);
2737 
2738 	return (0);
2739 
2740 fail:
2741 	bge_release_resources(sc);
2742 
2743 	return (error);
2744 }
2745 
2746 static int
2747 bge_detach(device_t dev)
2748 {
2749 	struct bge_softc *sc;
2750 	struct ifnet *ifp;
2751 
2752 	sc = device_get_softc(dev);
2753 	ifp = sc->bge_ifp;
2754 
2755 #ifdef DEVICE_POLLING
2756 	if (ifp->if_capenable & IFCAP_POLLING)
2757 		ether_poll_deregister(ifp);
2758 #endif
2759 
2760 	BGE_LOCK(sc);
2761 	bge_stop(sc);
2762 	bge_reset(sc);
2763 	BGE_UNLOCK(sc);
2764 
2765 	callout_drain(&sc->bge_stat_ch);
2766 
2767 	ether_ifdetach(ifp);
2768 
2769 	if (sc->bge_flags & BGE_FLAG_TBI) {
2770 		ifmedia_removeall(&sc->bge_ifmedia);
2771 	} else {
2772 		bus_generic_detach(dev);
2773 		device_delete_child(dev, sc->bge_miibus);
2774 	}
2775 
2776 	bge_release_resources(sc);
2777 
2778 	return (0);
2779 }
2780 
2781 static void
2782 bge_release_resources(struct bge_softc *sc)
2783 {
2784 	device_t dev;
2785 
2786 	dev = sc->bge_dev;
2787 
2788 	if (sc->bge_intrhand != NULL)
2789 		bus_teardown_intr(dev, sc->bge_irq, sc->bge_intrhand);
2790 
2791 	if (sc->bge_irq != NULL)
2792 		bus_release_resource(dev, SYS_RES_IRQ,
2793 		    sc->bge_flags & BGE_FLAG_MSI ? 1 : 0, sc->bge_irq);
2794 
2795 #if __FreeBSD_version > 602105
2796 	if (sc->bge_flags & BGE_FLAG_MSI)
2797 		pci_release_msi(dev);
2798 #endif
2799 
2800 	if (sc->bge_res != NULL)
2801 		bus_release_resource(dev, SYS_RES_MEMORY,
2802 		    BGE_PCI_BAR0, sc->bge_res);
2803 
2804 	if (sc->bge_ifp != NULL)
2805 		if_free(sc->bge_ifp);
2806 
2807 	bge_dma_free(sc);
2808 
2809 	if (mtx_initialized(&sc->bge_mtx))	/* XXX */
2810 		BGE_LOCK_DESTROY(sc);
2811 }
2812 
2813 static int
2814 bge_reset(struct bge_softc *sc)
2815 {
2816 	device_t dev;
2817 	uint32_t cachesize, command, pcistate, reset, val;
2818 	void (*write_op)(struct bge_softc *, int, int);
2819 	int i;
2820 
2821 	dev = sc->bge_dev;
2822 
2823 	if (BGE_IS_575X_PLUS(sc) && !BGE_IS_5714_FAMILY(sc) &&
2824 	    (sc->bge_asicrev != BGE_ASICREV_BCM5906)) {
2825 		if (sc->bge_flags & BGE_FLAG_PCIE)
2826 			write_op = bge_writemem_direct;
2827 		else
2828 			write_op = bge_writemem_ind;
2829 	} else
2830 		write_op = bge_writereg_ind;
2831 
2832 	/* Save some important PCI state. */
2833 	cachesize = pci_read_config(dev, BGE_PCI_CACHESZ, 4);
2834 	command = pci_read_config(dev, BGE_PCI_CMD, 4);
2835 	pcistate = pci_read_config(dev, BGE_PCI_PCISTATE, 4);
2836 
2837 	pci_write_config(dev, BGE_PCI_MISC_CTL,
2838 	    BGE_PCIMISCCTL_INDIRECT_ACCESS | BGE_PCIMISCCTL_MASK_PCI_INTR |
2839 	    BGE_HIF_SWAP_OPTIONS | BGE_PCIMISCCTL_PCISTATE_RW, 4);
2840 
2841 	/* Disable fastboot on controllers that support it. */
2842 	if (sc->bge_asicrev == BGE_ASICREV_BCM5752 ||
2843 	    sc->bge_asicrev == BGE_ASICREV_BCM5755 ||
2844 	    sc->bge_asicrev == BGE_ASICREV_BCM5787) {
2845 		if (bootverbose)
2846 			device_printf(sc->bge_dev, "Disabling fastboot\n");
2847 		CSR_WRITE_4(sc, BGE_FASTBOOT_PC, 0x0);
2848 	}
2849 
2850 	/*
2851 	 * Write the magic number to SRAM at offset 0xB50.
2852 	 * When firmware finishes its initialization it will
2853 	 * write ~BGE_MAGIC_NUMBER to the same location.
2854 	 */
2855 	bge_writemem_ind(sc, BGE_SOFTWARE_GENCOMM, BGE_MAGIC_NUMBER);
2856 
2857 	reset = BGE_MISCCFG_RESET_CORE_CLOCKS | BGE_32BITTIME_66MHZ;
2858 
2859 	/* XXX: Broadcom Linux driver. */
2860 	if (sc->bge_flags & BGE_FLAG_PCIE) {
2861 		if (CSR_READ_4(sc, 0x7E2C) == 0x60)	/* PCIE 1.0 */
2862 			CSR_WRITE_4(sc, 0x7E2C, 0x20);
2863 		if (sc->bge_chipid != BGE_CHIPID_BCM5750_A0) {
2864 			/* Prevent PCIE link training during global reset */
2865 			CSR_WRITE_4(sc, BGE_MISC_CFG, 1 << 29);
2866 			reset |= 1 << 29;
2867 		}
2868 	}
2869 
2870 	/*
2871 	 * Set GPHY Power Down Override to leave GPHY
2872 	 * powered up in D0 uninitialized.
2873 	 */
2874 	if (BGE_IS_5705_PLUS(sc))
2875 		reset |= 0x04000000;
2876 
2877 	/* Issue global reset */
2878 	write_op(sc, BGE_MISC_CFG, reset);
2879 
2880 	if (sc->bge_asicrev == BGE_ASICREV_BCM5906) {
2881 		val = CSR_READ_4(sc, BGE_VCPU_STATUS);
2882 		CSR_WRITE_4(sc, BGE_VCPU_STATUS,
2883 		    val | BGE_VCPU_STATUS_DRV_RESET);
2884 		val = CSR_READ_4(sc, BGE_VCPU_EXT_CTRL);
2885 		CSR_WRITE_4(sc, BGE_VCPU_EXT_CTRL,
2886 		    val & ~BGE_VCPU_EXT_CTRL_HALT_CPU);
2887 	}
2888 
2889 	DELAY(1000);
2890 
2891 	/* XXX: Broadcom Linux driver. */
2892 	if (sc->bge_flags & BGE_FLAG_PCIE) {
2893 		if (sc->bge_chipid == BGE_CHIPID_BCM5750_A0) {
2894 			DELAY(500000); /* wait for link training to complete */
2895 			val = pci_read_config(dev, 0xC4, 4);
2896 			pci_write_config(dev, 0xC4, val | (1 << 15), 4);
2897 		}
2898 		/*
2899 		 * Set PCIE max payload size to 128 bytes and clear error
2900 		 * status.
2901 		 */
2902 		pci_write_config(dev, 0xD8, 0xF5000, 4);
2903 	}
2904 
2905 	/* Reset some of the PCI state that got zapped by reset. */
2906 	pci_write_config(dev, BGE_PCI_MISC_CTL,
2907 	    BGE_PCIMISCCTL_INDIRECT_ACCESS | BGE_PCIMISCCTL_MASK_PCI_INTR |
2908 	    BGE_HIF_SWAP_OPTIONS | BGE_PCIMISCCTL_PCISTATE_RW, 4);
2909 	pci_write_config(dev, BGE_PCI_CACHESZ, cachesize, 4);
2910 	pci_write_config(dev, BGE_PCI_CMD, command, 4);
2911 	write_op(sc, BGE_MISC_CFG, BGE_32BITTIME_66MHZ);
2912 
2913 	/* Re-enable MSI, if neccesary, and enable the memory arbiter. */
2914 	if (BGE_IS_5714_FAMILY(sc)) {
2915 		/* This chip disables MSI on reset. */
2916 		if (sc->bge_flags & BGE_FLAG_MSI) {
2917 			val = pci_read_config(dev, BGE_PCI_MSI_CTL, 2);
2918 			pci_write_config(dev, BGE_PCI_MSI_CTL,
2919 			    val | PCIM_MSICTRL_MSI_ENABLE, 2);
2920 			val = CSR_READ_4(sc, BGE_MSI_MODE);
2921 			CSR_WRITE_4(sc, BGE_MSI_MODE,
2922 			    val | BGE_MSIMODE_ENABLE);
2923 		}
2924 		val = CSR_READ_4(sc, BGE_MARB_MODE);
2925 		CSR_WRITE_4(sc, BGE_MARB_MODE, BGE_MARBMODE_ENABLE | val);
2926 	} else
2927 		CSR_WRITE_4(sc, BGE_MARB_MODE, BGE_MARBMODE_ENABLE);
2928 
2929 	if (sc->bge_asicrev == BGE_ASICREV_BCM5906) {
2930 		for (i = 0; i < BGE_TIMEOUT; i++) {
2931 			val = CSR_READ_4(sc, BGE_VCPU_STATUS);
2932 			if (val & BGE_VCPU_STATUS_INIT_DONE)
2933 				break;
2934 			DELAY(100);
2935 		}
2936 		if (i == BGE_TIMEOUT) {
2937 			device_printf(sc->bge_dev, "reset timed out\n");
2938 			return (1);
2939 		}
2940 	} else {
2941 		/*
2942 		 * Poll until we see the 1's complement of the magic number.
2943 		 * This indicates that the firmware initialization is complete.
2944 		 * We expect this to fail if no chip containing the Ethernet
2945 		 * address is fitted though.
2946 		 */
2947 		for (i = 0; i < BGE_TIMEOUT; i++) {
2948 			DELAY(10);
2949 			val = bge_readmem_ind(sc, BGE_SOFTWARE_GENCOMM);
2950 			if (val == ~BGE_MAGIC_NUMBER)
2951 				break;
2952 		}
2953 
2954 		if ((sc->bge_flags & BGE_FLAG_EADDR) && i == BGE_TIMEOUT)
2955 			device_printf(sc->bge_dev, "firmware handshake timed out, "
2956 			    "found 0x%08x\n", val);
2957 	}
2958 
2959 	/*
2960 	 * XXX Wait for the value of the PCISTATE register to
2961 	 * return to its original pre-reset state. This is a
2962 	 * fairly good indicator of reset completion. If we don't
2963 	 * wait for the reset to fully complete, trying to read
2964 	 * from the device's non-PCI registers may yield garbage
2965 	 * results.
2966 	 */
2967 	for (i = 0; i < BGE_TIMEOUT; i++) {
2968 		if (pci_read_config(dev, BGE_PCI_PCISTATE, 4) == pcistate)
2969 			break;
2970 		DELAY(10);
2971 	}
2972 
2973 	if (sc->bge_flags & BGE_FLAG_PCIE) {
2974 		reset = bge_readmem_ind(sc, 0x7C00);
2975 		bge_writemem_ind(sc, 0x7C00, reset | (1 << 25));
2976 	}
2977 
2978 	/* Fix up byte swapping. */
2979 	CSR_WRITE_4(sc, BGE_MODE_CTL, BGE_DMA_SWAP_OPTIONS |
2980 	    BGE_MODECTL_BYTESWAP_DATA);
2981 
2982 	/* Tell the ASF firmware we are up */
2983 	if (sc->bge_asf_mode & ASF_STACKUP)
2984 		BGE_SETBIT(sc, BGE_MODE_CTL, BGE_MODECTL_STACKUP);
2985 
2986 	CSR_WRITE_4(sc, BGE_MAC_MODE, 0);
2987 
2988 	/*
2989 	 * The 5704 in TBI mode apparently needs some special
2990 	 * adjustment to insure the SERDES drive level is set
2991 	 * to 1.2V.
2992 	 */
2993 	if (sc->bge_asicrev == BGE_ASICREV_BCM5704 &&
2994 	    sc->bge_flags & BGE_FLAG_TBI) {
2995 		val = CSR_READ_4(sc, BGE_SERDES_CFG);
2996 		val = (val & ~0xFFF) | 0x880;
2997 		CSR_WRITE_4(sc, BGE_SERDES_CFG, val);
2998 	}
2999 
3000 	/* XXX: Broadcom Linux driver. */
3001 	if (sc->bge_flags & BGE_FLAG_PCIE &&
3002 	    sc->bge_chipid != BGE_CHIPID_BCM5750_A0) {
3003 		val = CSR_READ_4(sc, 0x7C00);
3004 		CSR_WRITE_4(sc, 0x7C00, val | (1 << 25));
3005 	}
3006 	DELAY(10000);
3007 
3008 	return(0);
3009 }
3010 
3011 /*
3012  * Frame reception handling. This is called if there's a frame
3013  * on the receive return list.
3014  *
3015  * Note: we have to be able to handle two possibilities here:
3016  * 1) the frame is from the jumbo receive ring
3017  * 2) the frame is from the standard receive ring
3018  */
3019 
3020 static void
3021 bge_rxeof(struct bge_softc *sc)
3022 {
3023 	struct ifnet *ifp;
3024 	int stdcnt = 0, jumbocnt = 0;
3025 
3026 	BGE_LOCK_ASSERT(sc);
3027 
3028 	/* Nothing to do. */
3029 	if (sc->bge_rx_saved_considx ==
3030 	    sc->bge_ldata.bge_status_block->bge_idx[0].bge_rx_prod_idx)
3031 		return;
3032 
3033 	ifp = sc->bge_ifp;
3034 
3035 	bus_dmamap_sync(sc->bge_cdata.bge_rx_return_ring_tag,
3036 	    sc->bge_cdata.bge_rx_return_ring_map, BUS_DMASYNC_POSTREAD);
3037 	bus_dmamap_sync(sc->bge_cdata.bge_rx_std_ring_tag,
3038 	    sc->bge_cdata.bge_rx_std_ring_map, BUS_DMASYNC_POSTREAD);
3039 	if (BGE_IS_JUMBO_CAPABLE(sc))
3040 		bus_dmamap_sync(sc->bge_cdata.bge_rx_jumbo_ring_tag,
3041 		    sc->bge_cdata.bge_rx_jumbo_ring_map, BUS_DMASYNC_POSTREAD);
3042 
3043 	while(sc->bge_rx_saved_considx !=
3044 	    sc->bge_ldata.bge_status_block->bge_idx[0].bge_rx_prod_idx) {
3045 		struct bge_rx_bd	*cur_rx;
3046 		uint32_t		rxidx;
3047 		struct mbuf		*m = NULL;
3048 		uint16_t		vlan_tag = 0;
3049 		int			have_tag = 0;
3050 
3051 #ifdef DEVICE_POLLING
3052 		if (ifp->if_capenable & IFCAP_POLLING) {
3053 			if (sc->rxcycles <= 0)
3054 				break;
3055 			sc->rxcycles--;
3056 		}
3057 #endif
3058 
3059 		cur_rx =
3060 	    &sc->bge_ldata.bge_rx_return_ring[sc->bge_rx_saved_considx];
3061 
3062 		rxidx = cur_rx->bge_idx;
3063 		BGE_INC(sc->bge_rx_saved_considx, sc->bge_return_ring_cnt);
3064 
3065 		if (ifp->if_capenable & IFCAP_VLAN_HWTAGGING &&
3066 		    cur_rx->bge_flags & BGE_RXBDFLAG_VLAN_TAG) {
3067 			have_tag = 1;
3068 			vlan_tag = cur_rx->bge_vlan_tag;
3069 		}
3070 
3071 		if (cur_rx->bge_flags & BGE_RXBDFLAG_JUMBO_RING) {
3072 			BGE_INC(sc->bge_jumbo, BGE_JUMBO_RX_RING_CNT);
3073 			bus_dmamap_sync(sc->bge_cdata.bge_mtag_jumbo,
3074 			    sc->bge_cdata.bge_rx_jumbo_dmamap[rxidx],
3075 			    BUS_DMASYNC_POSTREAD);
3076 			bus_dmamap_unload(sc->bge_cdata.bge_mtag_jumbo,
3077 			    sc->bge_cdata.bge_rx_jumbo_dmamap[rxidx]);
3078 			m = sc->bge_cdata.bge_rx_jumbo_chain[rxidx];
3079 			sc->bge_cdata.bge_rx_jumbo_chain[rxidx] = NULL;
3080 			jumbocnt++;
3081 			if (cur_rx->bge_flags & BGE_RXBDFLAG_ERROR) {
3082 				ifp->if_ierrors++;
3083 				bge_newbuf_jumbo(sc, sc->bge_jumbo, m);
3084 				continue;
3085 			}
3086 			if (bge_newbuf_jumbo(sc,
3087 			    sc->bge_jumbo, NULL) == ENOBUFS) {
3088 				ifp->if_ierrors++;
3089 				bge_newbuf_jumbo(sc, sc->bge_jumbo, m);
3090 				continue;
3091 			}
3092 		} else {
3093 			BGE_INC(sc->bge_std, BGE_STD_RX_RING_CNT);
3094 			bus_dmamap_sync(sc->bge_cdata.bge_mtag,
3095 			    sc->bge_cdata.bge_rx_std_dmamap[rxidx],
3096 			    BUS_DMASYNC_POSTREAD);
3097 			bus_dmamap_unload(sc->bge_cdata.bge_mtag,
3098 			    sc->bge_cdata.bge_rx_std_dmamap[rxidx]);
3099 			m = sc->bge_cdata.bge_rx_std_chain[rxidx];
3100 			sc->bge_cdata.bge_rx_std_chain[rxidx] = NULL;
3101 			stdcnt++;
3102 			if (cur_rx->bge_flags & BGE_RXBDFLAG_ERROR) {
3103 				ifp->if_ierrors++;
3104 				bge_newbuf_std(sc, sc->bge_std, m);
3105 				continue;
3106 			}
3107 			if (bge_newbuf_std(sc, sc->bge_std,
3108 			    NULL) == ENOBUFS) {
3109 				ifp->if_ierrors++;
3110 				bge_newbuf_std(sc, sc->bge_std, m);
3111 				continue;
3112 			}
3113 		}
3114 
3115 		ifp->if_ipackets++;
3116 #ifndef __NO_STRICT_ALIGNMENT
3117 		/*
3118 		 * For architectures with strict alignment we must make sure
3119 		 * the payload is aligned.
3120 		 */
3121 		if (sc->bge_flags & BGE_FLAG_RX_ALIGNBUG) {
3122 			bcopy(m->m_data, m->m_data + ETHER_ALIGN,
3123 			    cur_rx->bge_len);
3124 			m->m_data += ETHER_ALIGN;
3125 		}
3126 #endif
3127 		m->m_pkthdr.len = m->m_len = cur_rx->bge_len - ETHER_CRC_LEN;
3128 		m->m_pkthdr.rcvif = ifp;
3129 
3130 		if (ifp->if_capenable & IFCAP_RXCSUM) {
3131 			if (cur_rx->bge_flags & BGE_RXBDFLAG_IP_CSUM) {
3132 				m->m_pkthdr.csum_flags |= CSUM_IP_CHECKED;
3133 				if ((cur_rx->bge_ip_csum ^ 0xFFFF) == 0)
3134 					m->m_pkthdr.csum_flags |= CSUM_IP_VALID;
3135 			}
3136 			if (cur_rx->bge_flags & BGE_RXBDFLAG_TCP_UDP_CSUM &&
3137 			    m->m_pkthdr.len >= ETHER_MIN_NOPAD) {
3138 				m->m_pkthdr.csum_data =
3139 				    cur_rx->bge_tcp_udp_csum;
3140 				m->m_pkthdr.csum_flags |=
3141 				    CSUM_DATA_VALID | CSUM_PSEUDO_HDR;
3142 			}
3143 		}
3144 
3145 		/*
3146 		 * If we received a packet with a vlan tag,
3147 		 * attach that information to the packet.
3148 		 */
3149 		if (have_tag) {
3150 #if __FreeBSD_version > 700022
3151 			m->m_pkthdr.ether_vtag = vlan_tag;
3152 			m->m_flags |= M_VLANTAG;
3153 #else
3154 			VLAN_INPUT_TAG_NEW(ifp, m, vlan_tag);
3155 			if (m == NULL)
3156 				continue;
3157 #endif
3158 		}
3159 
3160 		BGE_UNLOCK(sc);
3161 		(*ifp->if_input)(ifp, m);
3162 		BGE_LOCK(sc);
3163 	}
3164 
3165 	if (stdcnt > 0)
3166 		bus_dmamap_sync(sc->bge_cdata.bge_rx_std_ring_tag,
3167 		    sc->bge_cdata.bge_rx_std_ring_map, BUS_DMASYNC_PREWRITE);
3168 
3169 	if (BGE_IS_JUMBO_CAPABLE(sc) && jumbocnt > 0)
3170 		bus_dmamap_sync(sc->bge_cdata.bge_rx_jumbo_ring_tag,
3171 		    sc->bge_cdata.bge_rx_jumbo_ring_map, BUS_DMASYNC_PREWRITE);
3172 
3173 	bge_writembx(sc, BGE_MBX_RX_CONS0_LO, sc->bge_rx_saved_considx);
3174 	if (stdcnt)
3175 		bge_writembx(sc, BGE_MBX_RX_STD_PROD_LO, sc->bge_std);
3176 	if (jumbocnt)
3177 		bge_writembx(sc, BGE_MBX_RX_JUMBO_PROD_LO, sc->bge_jumbo);
3178 #ifdef notyet
3179 	/*
3180 	 * This register wraps very quickly under heavy packet drops.
3181 	 * If you need correct statistics, you can enable this check.
3182 	 */
3183 	if (BGE_IS_5705_PLUS(sc))
3184 		ifp->if_ierrors += CSR_READ_4(sc, BGE_RXLP_LOCSTAT_IFIN_DROPS);
3185 #endif
3186 }
3187 
3188 static void
3189 bge_txeof(struct bge_softc *sc)
3190 {
3191 	struct bge_tx_bd *cur_tx = NULL;
3192 	struct ifnet *ifp;
3193 
3194 	BGE_LOCK_ASSERT(sc);
3195 
3196 	/* Nothing to do. */
3197 	if (sc->bge_tx_saved_considx ==
3198 	    sc->bge_ldata.bge_status_block->bge_idx[0].bge_tx_cons_idx)
3199 		return;
3200 
3201 	ifp = sc->bge_ifp;
3202 
3203 	bus_dmamap_sync(sc->bge_cdata.bge_tx_ring_tag,
3204 	    sc->bge_cdata.bge_tx_ring_map,
3205 	    BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE);
3206 	/*
3207 	 * Go through our tx ring and free mbufs for those
3208 	 * frames that have been sent.
3209 	 */
3210 	while (sc->bge_tx_saved_considx !=
3211 	    sc->bge_ldata.bge_status_block->bge_idx[0].bge_tx_cons_idx) {
3212 		uint32_t		idx = 0;
3213 
3214 		idx = sc->bge_tx_saved_considx;
3215 		cur_tx = &sc->bge_ldata.bge_tx_ring[idx];
3216 		if (cur_tx->bge_flags & BGE_TXBDFLAG_END)
3217 			ifp->if_opackets++;
3218 		if (sc->bge_cdata.bge_tx_chain[idx] != NULL) {
3219 			bus_dmamap_sync(sc->bge_cdata.bge_mtag,
3220 			    sc->bge_cdata.bge_tx_dmamap[idx],
3221 			    BUS_DMASYNC_POSTWRITE);
3222 			bus_dmamap_unload(sc->bge_cdata.bge_mtag,
3223 			    sc->bge_cdata.bge_tx_dmamap[idx]);
3224 			m_freem(sc->bge_cdata.bge_tx_chain[idx]);
3225 			sc->bge_cdata.bge_tx_chain[idx] = NULL;
3226 		}
3227 		sc->bge_txcnt--;
3228 		BGE_INC(sc->bge_tx_saved_considx, BGE_TX_RING_CNT);
3229 	}
3230 
3231 	if (cur_tx != NULL)
3232 		ifp->if_drv_flags &= ~IFF_DRV_OACTIVE;
3233 	if (sc->bge_txcnt == 0)
3234 		sc->bge_timer = 0;
3235 }
3236 
3237 #ifdef DEVICE_POLLING
3238 static void
3239 bge_poll(struct ifnet *ifp, enum poll_cmd cmd, int count)
3240 {
3241 	struct bge_softc *sc = ifp->if_softc;
3242 	uint32_t statusword;
3243 
3244 	BGE_LOCK(sc);
3245 	if (!(ifp->if_drv_flags & IFF_DRV_RUNNING)) {
3246 		BGE_UNLOCK(sc);
3247 		return;
3248 	}
3249 
3250 	bus_dmamap_sync(sc->bge_cdata.bge_status_tag,
3251 	    sc->bge_cdata.bge_status_map, BUS_DMASYNC_POSTREAD);
3252 
3253 	statusword = atomic_readandclear_32(
3254 	    &sc->bge_ldata.bge_status_block->bge_status);
3255 
3256 	bus_dmamap_sync(sc->bge_cdata.bge_status_tag,
3257 	    sc->bge_cdata.bge_status_map, BUS_DMASYNC_PREREAD);
3258 
3259 	/* Note link event. It will be processed by POLL_AND_CHECK_STATUS. */
3260 	if (statusword & BGE_STATFLAG_LINKSTATE_CHANGED)
3261 		sc->bge_link_evt++;
3262 
3263 	if (cmd == POLL_AND_CHECK_STATUS)
3264 		if ((sc->bge_asicrev == BGE_ASICREV_BCM5700 &&
3265 		    sc->bge_chipid != BGE_CHIPID_BCM5700_B2) ||
3266 		    sc->bge_link_evt || (sc->bge_flags & BGE_FLAG_TBI))
3267 			bge_link_upd(sc);
3268 
3269 	sc->rxcycles = count;
3270 	bge_rxeof(sc);
3271 	bge_txeof(sc);
3272 	if (!IFQ_DRV_IS_EMPTY(&ifp->if_snd))
3273 		bge_start_locked(ifp);
3274 
3275 	BGE_UNLOCK(sc);
3276 }
3277 #endif /* DEVICE_POLLING */
3278 
3279 static void
3280 bge_intr(void *xsc)
3281 {
3282 	struct bge_softc *sc;
3283 	struct ifnet *ifp;
3284 	uint32_t statusword;
3285 
3286 	sc = xsc;
3287 
3288 	BGE_LOCK(sc);
3289 
3290 	ifp = sc->bge_ifp;
3291 
3292 #ifdef DEVICE_POLLING
3293 	if (ifp->if_capenable & IFCAP_POLLING) {
3294 		BGE_UNLOCK(sc);
3295 		return;
3296 	}
3297 #endif
3298 
3299 	/*
3300 	 * Ack the interrupt by writing something to BGE_MBX_IRQ0_LO.  Don't
3301 	 * disable interrupts by writing nonzero like we used to, since with
3302 	 * our current organization this just gives complications and
3303 	 * pessimizations for re-enabling interrupts.  We used to have races
3304 	 * instead of the necessary complications.  Disabling interrupts
3305 	 * would just reduce the chance of a status update while we are
3306 	 * running (by switching to the interrupt-mode coalescence
3307 	 * parameters), but this chance is already very low so it is more
3308 	 * efficient to get another interrupt than prevent it.
3309 	 *
3310 	 * We do the ack first to ensure another interrupt if there is a
3311 	 * status update after the ack.  We don't check for the status
3312 	 * changing later because it is more efficient to get another
3313 	 * interrupt than prevent it, not quite as above (not checking is
3314 	 * a smaller optimization than not toggling the interrupt enable,
3315 	 * since checking doesn't involve PCI accesses and toggling require
3316 	 * the status check).  So toggling would probably be a pessimization
3317 	 * even with MSI.  It would only be needed for using a task queue.
3318 	 */
3319 	bge_writembx(sc, BGE_MBX_IRQ0_LO, 0);
3320 
3321 	/*
3322 	 * Do the mandatory PCI flush as well as get the link status.
3323 	 */
3324 	statusword = CSR_READ_4(sc, BGE_MAC_STS) & BGE_MACSTAT_LINK_CHANGED;
3325 
3326 	/* Make sure the descriptor ring indexes are coherent. */
3327 	bus_dmamap_sync(sc->bge_cdata.bge_status_tag,
3328 	    sc->bge_cdata.bge_status_map, BUS_DMASYNC_POSTREAD);
3329 	bus_dmamap_sync(sc->bge_cdata.bge_status_tag,
3330 	    sc->bge_cdata.bge_status_map, BUS_DMASYNC_PREREAD);
3331 
3332 	if ((sc->bge_asicrev == BGE_ASICREV_BCM5700 &&
3333 	    sc->bge_chipid != BGE_CHIPID_BCM5700_B2) ||
3334 	    statusword || sc->bge_link_evt)
3335 		bge_link_upd(sc);
3336 
3337 	if (ifp->if_drv_flags & IFF_DRV_RUNNING) {
3338 		/* Check RX return ring producer/consumer. */
3339 		bge_rxeof(sc);
3340 
3341 		/* Check TX ring producer/consumer. */
3342 		bge_txeof(sc);
3343 	}
3344 
3345 	if (ifp->if_drv_flags & IFF_DRV_RUNNING &&
3346 	    !IFQ_DRV_IS_EMPTY(&ifp->if_snd))
3347 		bge_start_locked(ifp);
3348 
3349 	BGE_UNLOCK(sc);
3350 }
3351 
3352 static void
3353 bge_asf_driver_up(struct bge_softc *sc)
3354 {
3355 	if (sc->bge_asf_mode & ASF_STACKUP) {
3356 		/* Send ASF heartbeat aprox. every 2s */
3357 		if (sc->bge_asf_count)
3358 			sc->bge_asf_count --;
3359 		else {
3360 			sc->bge_asf_count = 5;
3361 			bge_writemem_ind(sc, BGE_SOFTWARE_GENCOMM_FW,
3362 			    BGE_FW_DRV_ALIVE);
3363 			bge_writemem_ind(sc, BGE_SOFTWARE_GENNCOMM_FW_LEN, 4);
3364 			bge_writemem_ind(sc, BGE_SOFTWARE_GENNCOMM_FW_DATA, 3);
3365 			CSR_WRITE_4(sc, BGE_CPU_EVENT,
3366 			    CSR_READ_4(sc, BGE_CPU_EVENT) | (1 << 14));
3367 		}
3368 	}
3369 }
3370 
3371 static void
3372 bge_tick(void *xsc)
3373 {
3374 	struct bge_softc *sc = xsc;
3375 	struct mii_data *mii = NULL;
3376 
3377 	BGE_LOCK_ASSERT(sc);
3378 
3379 	/* Synchronize with possible callout reset/stop. */
3380 	if (callout_pending(&sc->bge_stat_ch) ||
3381 	    !callout_active(&sc->bge_stat_ch))
3382 	    	return;
3383 
3384 	if (BGE_IS_5705_PLUS(sc))
3385 		bge_stats_update_regs(sc);
3386 	else
3387 		bge_stats_update(sc);
3388 
3389 	if ((sc->bge_flags & BGE_FLAG_TBI) == 0) {
3390 		mii = device_get_softc(sc->bge_miibus);
3391 		/*
3392 		 * Do not touch PHY if we have link up. This could break
3393 		 * IPMI/ASF mode or produce extra input errors
3394 		 * (extra errors was reported for bcm5701 & bcm5704).
3395 		 */
3396 		if (!sc->bge_link)
3397 			mii_tick(mii);
3398 	} else {
3399 		/*
3400 		 * Since in TBI mode auto-polling can't be used we should poll
3401 		 * link status manually. Here we register pending link event
3402 		 * and trigger interrupt.
3403 		 */
3404 #ifdef DEVICE_POLLING
3405 		/* In polling mode we poll link state in bge_poll(). */
3406 		if (!(sc->bge_ifp->if_capenable & IFCAP_POLLING))
3407 #endif
3408 		{
3409 		sc->bge_link_evt++;
3410 		if (sc->bge_asicrev == BGE_ASICREV_BCM5700 ||
3411 		    sc->bge_flags & BGE_FLAG_5788)
3412 			BGE_SETBIT(sc, BGE_MISC_LOCAL_CTL, BGE_MLC_INTR_SET);
3413 		else
3414 			BGE_SETBIT(sc, BGE_HCC_MODE, BGE_HCCMODE_COAL_NOW);
3415 		}
3416 	}
3417 
3418 	bge_asf_driver_up(sc);
3419 	bge_watchdog(sc);
3420 
3421 	callout_reset(&sc->bge_stat_ch, hz, bge_tick, sc);
3422 }
3423 
3424 static void
3425 bge_stats_update_regs(struct bge_softc *sc)
3426 {
3427 	struct ifnet *ifp;
3428 
3429 	ifp = sc->bge_ifp;
3430 
3431 	ifp->if_collisions += CSR_READ_4(sc, BGE_MAC_STATS +
3432 	    offsetof(struct bge_mac_stats_regs, etherStatsCollisions));
3433 
3434 	ifp->if_ierrors += CSR_READ_4(sc, BGE_RXLP_LOCSTAT_IFIN_DROPS);
3435 }
3436 
3437 static void
3438 bge_stats_update(struct bge_softc *sc)
3439 {
3440 	struct ifnet *ifp;
3441 	bus_size_t stats;
3442 	uint32_t cnt;	/* current register value */
3443 
3444 	ifp = sc->bge_ifp;
3445 
3446 	stats = BGE_MEMWIN_START + BGE_STATS_BLOCK;
3447 
3448 #define	READ_STAT(sc, stats, stat) \
3449 	CSR_READ_4(sc, stats + offsetof(struct bge_stats, stat))
3450 
3451 	cnt = READ_STAT(sc, stats, txstats.etherStatsCollisions.bge_addr_lo);
3452 	ifp->if_collisions += (uint32_t)(cnt - sc->bge_tx_collisions);
3453 	sc->bge_tx_collisions = cnt;
3454 
3455 	cnt = READ_STAT(sc, stats, ifInDiscards.bge_addr_lo);
3456 	ifp->if_ierrors += (uint32_t)(cnt - sc->bge_rx_discards);
3457 	sc->bge_rx_discards = cnt;
3458 
3459 	cnt = READ_STAT(sc, stats, txstats.ifOutDiscards.bge_addr_lo);
3460 	ifp->if_oerrors += (uint32_t)(cnt - sc->bge_tx_discards);
3461 	sc->bge_tx_discards = cnt;
3462 
3463 #undef	READ_STAT
3464 }
3465 
3466 /*
3467  * Pad outbound frame to ETHER_MIN_NOPAD for an unusual reason.
3468  * The bge hardware will pad out Tx runts to ETHER_MIN_NOPAD,
3469  * but when such padded frames employ the bge IP/TCP checksum offload,
3470  * the hardware checksum assist gives incorrect results (possibly
3471  * from incorporating its own padding into the UDP/TCP checksum; who knows).
3472  * If we pad such runts with zeros, the onboard checksum comes out correct.
3473  */
3474 static __inline int
3475 bge_cksum_pad(struct mbuf *m)
3476 {
3477 	int padlen = ETHER_MIN_NOPAD - m->m_pkthdr.len;
3478 	struct mbuf *last;
3479 
3480 	/* If there's only the packet-header and we can pad there, use it. */
3481 	if (m->m_pkthdr.len == m->m_len && M_WRITABLE(m) &&
3482 	    M_TRAILINGSPACE(m) >= padlen) {
3483 		last = m;
3484 	} else {
3485 		/*
3486 		 * Walk packet chain to find last mbuf. We will either
3487 		 * pad there, or append a new mbuf and pad it.
3488 		 */
3489 		for (last = m; last->m_next != NULL; last = last->m_next);
3490 		if (!(M_WRITABLE(last) && M_TRAILINGSPACE(last) >= padlen)) {
3491 			/* Allocate new empty mbuf, pad it. Compact later. */
3492 			struct mbuf *n;
3493 
3494 			MGET(n, M_DONTWAIT, MT_DATA);
3495 			if (n == NULL)
3496 				return (ENOBUFS);
3497 			n->m_len = 0;
3498 			last->m_next = n;
3499 			last = n;
3500 		}
3501 	}
3502 
3503 	/* Now zero the pad area, to avoid the bge cksum-assist bug. */
3504 	memset(mtod(last, caddr_t) + last->m_len, 0, padlen);
3505 	last->m_len += padlen;
3506 	m->m_pkthdr.len += padlen;
3507 
3508 	return (0);
3509 }
3510 
3511 /*
3512  * Encapsulate an mbuf chain in the tx ring  by coupling the mbuf data
3513  * pointers to descriptors.
3514  */
3515 static int
3516 bge_encap(struct bge_softc *sc, struct mbuf **m_head, uint32_t *txidx)
3517 {
3518 	bus_dma_segment_t	segs[BGE_NSEG_NEW];
3519 	bus_dmamap_t		map;
3520 	struct bge_tx_bd	*d;
3521 	struct mbuf		*m = *m_head;
3522 	uint32_t		idx = *txidx;
3523 	uint16_t		csum_flags;
3524 	int			nsegs, i, error;
3525 
3526 	csum_flags = 0;
3527 	if (m->m_pkthdr.csum_flags) {
3528 		if (m->m_pkthdr.csum_flags & CSUM_IP)
3529 			csum_flags |= BGE_TXBDFLAG_IP_CSUM;
3530 		if (m->m_pkthdr.csum_flags & (CSUM_TCP | CSUM_UDP)) {
3531 			csum_flags |= BGE_TXBDFLAG_TCP_UDP_CSUM;
3532 			if (m->m_pkthdr.len < ETHER_MIN_NOPAD &&
3533 			    (error = bge_cksum_pad(m)) != 0) {
3534 				m_freem(m);
3535 				*m_head = NULL;
3536 				return (error);
3537 			}
3538 		}
3539 		if (m->m_flags & M_LASTFRAG)
3540 			csum_flags |= BGE_TXBDFLAG_IP_FRAG_END;
3541 		else if (m->m_flags & M_FRAG)
3542 			csum_flags |= BGE_TXBDFLAG_IP_FRAG;
3543 	}
3544 
3545 	map = sc->bge_cdata.bge_tx_dmamap[idx];
3546 	error = bus_dmamap_load_mbuf_sg(sc->bge_cdata.bge_mtag, map, m, segs,
3547 	    &nsegs, BUS_DMA_NOWAIT);
3548 	if (error == EFBIG) {
3549 		m = m_collapse(m, M_DONTWAIT, BGE_NSEG_NEW);
3550 		if (m == NULL) {
3551 			m_freem(*m_head);
3552 			*m_head = NULL;
3553 			return (ENOBUFS);
3554 		}
3555 		*m_head = m;
3556 		error = bus_dmamap_load_mbuf_sg(sc->bge_cdata.bge_mtag, map, m,
3557 		    segs, &nsegs, BUS_DMA_NOWAIT);
3558 		if (error) {
3559 			m_freem(m);
3560 			*m_head = NULL;
3561 			return (error);
3562 		}
3563 	} else if (error != 0)
3564 		return (error);
3565 
3566 	/*
3567 	 * Sanity check: avoid coming within 16 descriptors
3568 	 * of the end of the ring.
3569 	 */
3570 	if (nsegs > (BGE_TX_RING_CNT - sc->bge_txcnt - 16)) {
3571 		bus_dmamap_unload(sc->bge_cdata.bge_mtag, map);
3572 		return (ENOBUFS);
3573 	}
3574 
3575 	bus_dmamap_sync(sc->bge_cdata.bge_mtag, map, BUS_DMASYNC_PREWRITE);
3576 
3577 	for (i = 0; ; i++) {
3578 		d = &sc->bge_ldata.bge_tx_ring[idx];
3579 		d->bge_addr.bge_addr_lo = BGE_ADDR_LO(segs[i].ds_addr);
3580 		d->bge_addr.bge_addr_hi = BGE_ADDR_HI(segs[i].ds_addr);
3581 		d->bge_len = segs[i].ds_len;
3582 		d->bge_flags = csum_flags;
3583 		if (i == nsegs - 1)
3584 			break;
3585 		BGE_INC(idx, BGE_TX_RING_CNT);
3586 	}
3587 
3588 	/* Mark the last segment as end of packet... */
3589 	d->bge_flags |= BGE_TXBDFLAG_END;
3590 
3591 	/* ... and put VLAN tag into first segment.  */
3592 	d = &sc->bge_ldata.bge_tx_ring[*txidx];
3593 #if __FreeBSD_version > 700022
3594 	if (m->m_flags & M_VLANTAG) {
3595 		d->bge_flags |= BGE_TXBDFLAG_VLAN_TAG;
3596 		d->bge_vlan_tag = m->m_pkthdr.ether_vtag;
3597 	} else
3598 		d->bge_vlan_tag = 0;
3599 #else
3600 	{
3601 		struct m_tag		*mtag;
3602 
3603 		if ((mtag = VLAN_OUTPUT_TAG(sc->bge_ifp, m)) != NULL) {
3604 			d->bge_flags |= BGE_TXBDFLAG_VLAN_TAG;
3605 			d->bge_vlan_tag = VLAN_TAG_VALUE(mtag);
3606 		} else
3607 			d->bge_vlan_tag = 0;
3608 	}
3609 #endif
3610 
3611 	/*
3612 	 * Insure that the map for this transmission
3613 	 * is placed at the array index of the last descriptor
3614 	 * in this chain.
3615 	 */
3616 	sc->bge_cdata.bge_tx_dmamap[*txidx] = sc->bge_cdata.bge_tx_dmamap[idx];
3617 	sc->bge_cdata.bge_tx_dmamap[idx] = map;
3618 	sc->bge_cdata.bge_tx_chain[idx] = m;
3619 	sc->bge_txcnt += nsegs;
3620 
3621 	BGE_INC(idx, BGE_TX_RING_CNT);
3622 	*txidx = idx;
3623 
3624 	return (0);
3625 }
3626 
3627 /*
3628  * Main transmit routine. To avoid having to do mbuf copies, we put pointers
3629  * to the mbuf data regions directly in the transmit descriptors.
3630  */
3631 static void
3632 bge_start_locked(struct ifnet *ifp)
3633 {
3634 	struct bge_softc *sc;
3635 	struct mbuf *m_head = NULL;
3636 	uint32_t prodidx;
3637 	int count = 0;
3638 
3639 	sc = ifp->if_softc;
3640 
3641 	if (!sc->bge_link || IFQ_DRV_IS_EMPTY(&ifp->if_snd))
3642 		return;
3643 
3644 	prodidx = sc->bge_tx_prodidx;
3645 
3646 	while(sc->bge_cdata.bge_tx_chain[prodidx] == NULL) {
3647 		IFQ_DRV_DEQUEUE(&ifp->if_snd, m_head);
3648 		if (m_head == NULL)
3649 			break;
3650 
3651 		/*
3652 		 * XXX
3653 		 * The code inside the if() block is never reached since we
3654 		 * must mark CSUM_IP_FRAGS in our if_hwassist to start getting
3655 		 * requests to checksum TCP/UDP in a fragmented packet.
3656 		 *
3657 		 * XXX
3658 		 * safety overkill.  If this is a fragmented packet chain
3659 		 * with delayed TCP/UDP checksums, then only encapsulate
3660 		 * it if we have enough descriptors to handle the entire
3661 		 * chain at once.
3662 		 * (paranoia -- may not actually be needed)
3663 		 */
3664 		if (m_head->m_flags & M_FIRSTFRAG &&
3665 		    m_head->m_pkthdr.csum_flags & (CSUM_DELAY_DATA)) {
3666 			if ((BGE_TX_RING_CNT - sc->bge_txcnt) <
3667 			    m_head->m_pkthdr.csum_data + 16) {
3668 				IFQ_DRV_PREPEND(&ifp->if_snd, m_head);
3669 				ifp->if_drv_flags |= IFF_DRV_OACTIVE;
3670 				break;
3671 			}
3672 		}
3673 
3674 		/*
3675 		 * Pack the data into the transmit ring. If we
3676 		 * don't have room, set the OACTIVE flag and wait
3677 		 * for the NIC to drain the ring.
3678 		 */
3679 		if (bge_encap(sc, &m_head, &prodidx)) {
3680 			if (m_head == NULL)
3681 				break;
3682 			IFQ_DRV_PREPEND(&ifp->if_snd, m_head);
3683 			ifp->if_drv_flags |= IFF_DRV_OACTIVE;
3684 			break;
3685 		}
3686 		++count;
3687 
3688 		/*
3689 		 * If there's a BPF listener, bounce a copy of this frame
3690 		 * to him.
3691 		 */
3692 #ifdef ETHER_BPF_MTAP
3693 		ETHER_BPF_MTAP(ifp, m_head);
3694 #else
3695 		BPF_MTAP(ifp, m_head);
3696 #endif
3697 	}
3698 
3699 	if (count == 0)
3700 		/* No packets were dequeued. */
3701 		return;
3702 
3703 	/* Transmit. */
3704 	bge_writembx(sc, BGE_MBX_TX_HOST_PROD0_LO, prodidx);
3705 	/* 5700 b2 errata */
3706 	if (sc->bge_chiprev == BGE_CHIPREV_5700_BX)
3707 		bge_writembx(sc, BGE_MBX_TX_HOST_PROD0_LO, prodidx);
3708 
3709 	sc->bge_tx_prodidx = prodidx;
3710 
3711 	/*
3712 	 * Set a timeout in case the chip goes out to lunch.
3713 	 */
3714 	sc->bge_timer = 5;
3715 }
3716 
3717 /*
3718  * Main transmit routine. To avoid having to do mbuf copies, we put pointers
3719  * to the mbuf data regions directly in the transmit descriptors.
3720  */
3721 static void
3722 bge_start(struct ifnet *ifp)
3723 {
3724 	struct bge_softc *sc;
3725 
3726 	sc = ifp->if_softc;
3727 	BGE_LOCK(sc);
3728 	bge_start_locked(ifp);
3729 	BGE_UNLOCK(sc);
3730 }
3731 
3732 static void
3733 bge_init_locked(struct bge_softc *sc)
3734 {
3735 	struct ifnet *ifp;
3736 	uint16_t *m;
3737 
3738 	BGE_LOCK_ASSERT(sc);
3739 
3740 	ifp = sc->bge_ifp;
3741 
3742 	if (ifp->if_drv_flags & IFF_DRV_RUNNING)
3743 		return;
3744 
3745 	/* Cancel pending I/O and flush buffers. */
3746 	bge_stop(sc);
3747 
3748 	bge_stop_fw(sc);
3749 	bge_sig_pre_reset(sc, BGE_RESET_START);
3750 	bge_reset(sc);
3751 	bge_sig_legacy(sc, BGE_RESET_START);
3752 	bge_sig_post_reset(sc, BGE_RESET_START);
3753 
3754 	bge_chipinit(sc);
3755 
3756 	/*
3757 	 * Init the various state machines, ring
3758 	 * control blocks and firmware.
3759 	 */
3760 	if (bge_blockinit(sc)) {
3761 		device_printf(sc->bge_dev, "initialization failure\n");
3762 		return;
3763 	}
3764 
3765 	ifp = sc->bge_ifp;
3766 
3767 	/* Specify MTU. */
3768 	CSR_WRITE_4(sc, BGE_RX_MTU, ifp->if_mtu +
3769 	    ETHER_HDR_LEN + ETHER_CRC_LEN +
3770 	    (ifp->if_capenable & IFCAP_VLAN_MTU ? ETHER_VLAN_ENCAP_LEN : 0));
3771 
3772 	/* Load our MAC address. */
3773 	m = (uint16_t *)IF_LLADDR(sc->bge_ifp);
3774 	CSR_WRITE_4(sc, BGE_MAC_ADDR1_LO, htons(m[0]));
3775 	CSR_WRITE_4(sc, BGE_MAC_ADDR1_HI, (htons(m[1]) << 16) | htons(m[2]));
3776 
3777 	/* Program promiscuous mode. */
3778 	bge_setpromisc(sc);
3779 
3780 	/* Program multicast filter. */
3781 	bge_setmulti(sc);
3782 
3783 	/* Program VLAN tag stripping. */
3784 	bge_setvlan(sc);
3785 
3786 	/* Init RX ring. */
3787 	bge_init_rx_ring_std(sc);
3788 
3789 	/*
3790 	 * Workaround for a bug in 5705 ASIC rev A0. Poll the NIC's
3791 	 * memory to insure that the chip has in fact read the first
3792 	 * entry of the ring.
3793 	 */
3794 	if (sc->bge_chipid == BGE_CHIPID_BCM5705_A0) {
3795 		uint32_t		v, i;
3796 		for (i = 0; i < 10; i++) {
3797 			DELAY(20);
3798 			v = bge_readmem_ind(sc, BGE_STD_RX_RINGS + 8);
3799 			if (v == (MCLBYTES - ETHER_ALIGN))
3800 				break;
3801 		}
3802 		if (i == 10)
3803 			device_printf (sc->bge_dev,
3804 			    "5705 A0 chip failed to load RX ring\n");
3805 	}
3806 
3807 	/* Init jumbo RX ring. */
3808 	if (ifp->if_mtu > (ETHERMTU + ETHER_HDR_LEN + ETHER_CRC_LEN))
3809 		bge_init_rx_ring_jumbo(sc);
3810 
3811 	/* Init our RX return ring index. */
3812 	sc->bge_rx_saved_considx = 0;
3813 
3814 	/* Init our RX/TX stat counters. */
3815 	sc->bge_rx_discards = sc->bge_tx_discards = sc->bge_tx_collisions = 0;
3816 
3817 	/* Init TX ring. */
3818 	bge_init_tx_ring(sc);
3819 
3820 	/* Turn on transmitter. */
3821 	BGE_SETBIT(sc, BGE_TX_MODE, BGE_TXMODE_ENABLE);
3822 
3823 	/* Turn on receiver. */
3824 	BGE_SETBIT(sc, BGE_RX_MODE, BGE_RXMODE_ENABLE);
3825 
3826 	/* Tell firmware we're alive. */
3827 	BGE_SETBIT(sc, BGE_MODE_CTL, BGE_MODECTL_STACKUP);
3828 
3829 #ifdef DEVICE_POLLING
3830 	/* Disable interrupts if we are polling. */
3831 	if (ifp->if_capenable & IFCAP_POLLING) {
3832 		BGE_SETBIT(sc, BGE_PCI_MISC_CTL,
3833 		    BGE_PCIMISCCTL_MASK_PCI_INTR);
3834 		bge_writembx(sc, BGE_MBX_IRQ0_LO, 1);
3835 	} else
3836 #endif
3837 
3838 	/* Enable host interrupts. */
3839 	{
3840 	BGE_SETBIT(sc, BGE_PCI_MISC_CTL, BGE_PCIMISCCTL_CLEAR_INTA);
3841 	BGE_CLRBIT(sc, BGE_PCI_MISC_CTL, BGE_PCIMISCCTL_MASK_PCI_INTR);
3842 	bge_writembx(sc, BGE_MBX_IRQ0_LO, 0);
3843 	}
3844 
3845 	bge_ifmedia_upd_locked(ifp);
3846 
3847 	ifp->if_drv_flags |= IFF_DRV_RUNNING;
3848 	ifp->if_drv_flags &= ~IFF_DRV_OACTIVE;
3849 
3850 	callout_reset(&sc->bge_stat_ch, hz, bge_tick, sc);
3851 }
3852 
3853 static void
3854 bge_init(void *xsc)
3855 {
3856 	struct bge_softc *sc = xsc;
3857 
3858 	BGE_LOCK(sc);
3859 	bge_init_locked(sc);
3860 	BGE_UNLOCK(sc);
3861 }
3862 
3863 /*
3864  * Set media options.
3865  */
3866 static int
3867 bge_ifmedia_upd(struct ifnet *ifp)
3868 {
3869 	struct bge_softc *sc = ifp->if_softc;
3870 	int res;
3871 
3872 	BGE_LOCK(sc);
3873 	res = bge_ifmedia_upd_locked(ifp);
3874 	BGE_UNLOCK(sc);
3875 
3876 	return (res);
3877 }
3878 
3879 static int
3880 bge_ifmedia_upd_locked(struct ifnet *ifp)
3881 {
3882 	struct bge_softc *sc = ifp->if_softc;
3883 	struct mii_data *mii;
3884 	struct ifmedia *ifm;
3885 
3886 	BGE_LOCK_ASSERT(sc);
3887 
3888 	ifm = &sc->bge_ifmedia;
3889 
3890 	/* If this is a 1000baseX NIC, enable the TBI port. */
3891 	if (sc->bge_flags & BGE_FLAG_TBI) {
3892 		if (IFM_TYPE(ifm->ifm_media) != IFM_ETHER)
3893 			return (EINVAL);
3894 		switch(IFM_SUBTYPE(ifm->ifm_media)) {
3895 		case IFM_AUTO:
3896 			/*
3897 			 * The BCM5704 ASIC appears to have a special
3898 			 * mechanism for programming the autoneg
3899 			 * advertisement registers in TBI mode.
3900 			 */
3901 			if (sc->bge_asicrev == BGE_ASICREV_BCM5704) {
3902 				uint32_t sgdig;
3903 				sgdig = CSR_READ_4(sc, BGE_SGDIG_STS);
3904 				if (sgdig & BGE_SGDIGSTS_DONE) {
3905 					CSR_WRITE_4(sc, BGE_TX_TBI_AUTONEG, 0);
3906 					sgdig = CSR_READ_4(sc, BGE_SGDIG_CFG);
3907 					sgdig |= BGE_SGDIGCFG_AUTO |
3908 					    BGE_SGDIGCFG_PAUSE_CAP |
3909 					    BGE_SGDIGCFG_ASYM_PAUSE;
3910 					CSR_WRITE_4(sc, BGE_SGDIG_CFG,
3911 					    sgdig | BGE_SGDIGCFG_SEND);
3912 					DELAY(5);
3913 					CSR_WRITE_4(sc, BGE_SGDIG_CFG, sgdig);
3914 				}
3915 			}
3916 			break;
3917 		case IFM_1000_SX:
3918 			if ((ifm->ifm_media & IFM_GMASK) == IFM_FDX) {
3919 				BGE_CLRBIT(sc, BGE_MAC_MODE,
3920 				    BGE_MACMODE_HALF_DUPLEX);
3921 			} else {
3922 				BGE_SETBIT(sc, BGE_MAC_MODE,
3923 				    BGE_MACMODE_HALF_DUPLEX);
3924 			}
3925 			break;
3926 		default:
3927 			return (EINVAL);
3928 		}
3929 		return (0);
3930 	}
3931 
3932 	sc->bge_link_evt++;
3933 	mii = device_get_softc(sc->bge_miibus);
3934 	if (mii->mii_instance) {
3935 		struct mii_softc *miisc;
3936 		for (miisc = LIST_FIRST(&mii->mii_phys); miisc != NULL;
3937 		    miisc = LIST_NEXT(miisc, mii_list))
3938 			mii_phy_reset(miisc);
3939 	}
3940 	mii_mediachg(mii);
3941 
3942 	/*
3943 	 * Force an interrupt so that we will call bge_link_upd
3944 	 * if needed and clear any pending link state attention.
3945 	 * Without this we are not getting any further interrupts
3946 	 * for link state changes and thus will not UP the link and
3947 	 * not be able to send in bge_start_locked. The only
3948 	 * way to get things working was to receive a packet and
3949 	 * get an RX intr.
3950 	 * bge_tick should help for fiber cards and we might not
3951 	 * need to do this here if BGE_FLAG_TBI is set but as
3952 	 * we poll for fiber anyway it should not harm.
3953 	 */
3954 	if (sc->bge_asicrev == BGE_ASICREV_BCM5700 ||
3955 	    sc->bge_flags & BGE_FLAG_5788)
3956 		BGE_SETBIT(sc, BGE_MISC_LOCAL_CTL, BGE_MLC_INTR_SET);
3957 	else
3958 		BGE_SETBIT(sc, BGE_HCC_MODE, BGE_HCCMODE_COAL_NOW);
3959 
3960 	return (0);
3961 }
3962 
3963 /*
3964  * Report current media status.
3965  */
3966 static void
3967 bge_ifmedia_sts(struct ifnet *ifp, struct ifmediareq *ifmr)
3968 {
3969 	struct bge_softc *sc = ifp->if_softc;
3970 	struct mii_data *mii;
3971 
3972 	BGE_LOCK(sc);
3973 
3974 	if (sc->bge_flags & BGE_FLAG_TBI) {
3975 		ifmr->ifm_status = IFM_AVALID;
3976 		ifmr->ifm_active = IFM_ETHER;
3977 		if (CSR_READ_4(sc, BGE_MAC_STS) &
3978 		    BGE_MACSTAT_TBI_PCS_SYNCHED)
3979 			ifmr->ifm_status |= IFM_ACTIVE;
3980 		else {
3981 			ifmr->ifm_active |= IFM_NONE;
3982 			BGE_UNLOCK(sc);
3983 			return;
3984 		}
3985 		ifmr->ifm_active |= IFM_1000_SX;
3986 		if (CSR_READ_4(sc, BGE_MAC_MODE) & BGE_MACMODE_HALF_DUPLEX)
3987 			ifmr->ifm_active |= IFM_HDX;
3988 		else
3989 			ifmr->ifm_active |= IFM_FDX;
3990 		BGE_UNLOCK(sc);
3991 		return;
3992 	}
3993 
3994 	mii = device_get_softc(sc->bge_miibus);
3995 	mii_pollstat(mii);
3996 	ifmr->ifm_active = mii->mii_media_active;
3997 	ifmr->ifm_status = mii->mii_media_status;
3998 
3999 	BGE_UNLOCK(sc);
4000 }
4001 
4002 static int
4003 bge_ioctl(struct ifnet *ifp, u_long command, caddr_t data)
4004 {
4005 	struct bge_softc *sc = ifp->if_softc;
4006 	struct ifreq *ifr = (struct ifreq *) data;
4007 	struct mii_data *mii;
4008 	int flags, mask, error = 0;
4009 
4010 	switch (command) {
4011 	case SIOCSIFMTU:
4012 		if (ifr->ifr_mtu < ETHERMIN ||
4013 		    ((BGE_IS_JUMBO_CAPABLE(sc)) &&
4014 		    ifr->ifr_mtu > BGE_JUMBO_MTU) ||
4015 		    ((!BGE_IS_JUMBO_CAPABLE(sc)) &&
4016 		    ifr->ifr_mtu > ETHERMTU))
4017 			error = EINVAL;
4018 		else if (ifp->if_mtu != ifr->ifr_mtu) {
4019 			ifp->if_mtu = ifr->ifr_mtu;
4020 			ifp->if_drv_flags &= ~IFF_DRV_RUNNING;
4021 			bge_init(sc);
4022 		}
4023 		break;
4024 	case SIOCSIFFLAGS:
4025 		BGE_LOCK(sc);
4026 		if (ifp->if_flags & IFF_UP) {
4027 			/*
4028 			 * If only the state of the PROMISC flag changed,
4029 			 * then just use the 'set promisc mode' command
4030 			 * instead of reinitializing the entire NIC. Doing
4031 			 * a full re-init means reloading the firmware and
4032 			 * waiting for it to start up, which may take a
4033 			 * second or two.  Similarly for ALLMULTI.
4034 			 */
4035 			if (ifp->if_drv_flags & IFF_DRV_RUNNING) {
4036 				flags = ifp->if_flags ^ sc->bge_if_flags;
4037 				if (flags & IFF_PROMISC)
4038 					bge_setpromisc(sc);
4039 				if (flags & IFF_ALLMULTI)
4040 					bge_setmulti(sc);
4041 			} else
4042 				bge_init_locked(sc);
4043 		} else {
4044 			if (ifp->if_drv_flags & IFF_DRV_RUNNING) {
4045 				bge_stop(sc);
4046 			}
4047 		}
4048 		sc->bge_if_flags = ifp->if_flags;
4049 		BGE_UNLOCK(sc);
4050 		error = 0;
4051 		break;
4052 	case SIOCADDMULTI:
4053 	case SIOCDELMULTI:
4054 		if (ifp->if_drv_flags & IFF_DRV_RUNNING) {
4055 			BGE_LOCK(sc);
4056 			bge_setmulti(sc);
4057 			BGE_UNLOCK(sc);
4058 			error = 0;
4059 		}
4060 		break;
4061 	case SIOCSIFMEDIA:
4062 	case SIOCGIFMEDIA:
4063 		if (sc->bge_flags & BGE_FLAG_TBI) {
4064 			error = ifmedia_ioctl(ifp, ifr,
4065 			    &sc->bge_ifmedia, command);
4066 		} else {
4067 			mii = device_get_softc(sc->bge_miibus);
4068 			error = ifmedia_ioctl(ifp, ifr,
4069 			    &mii->mii_media, command);
4070 		}
4071 		break;
4072 	case SIOCSIFCAP:
4073 		mask = ifr->ifr_reqcap ^ ifp->if_capenable;
4074 #ifdef DEVICE_POLLING
4075 		if (mask & IFCAP_POLLING) {
4076 			if (ifr->ifr_reqcap & IFCAP_POLLING) {
4077 				error = ether_poll_register(bge_poll, ifp);
4078 				if (error)
4079 					return (error);
4080 				BGE_LOCK(sc);
4081 				BGE_SETBIT(sc, BGE_PCI_MISC_CTL,
4082 				    BGE_PCIMISCCTL_MASK_PCI_INTR);
4083 				bge_writembx(sc, BGE_MBX_IRQ0_LO, 1);
4084 				ifp->if_capenable |= IFCAP_POLLING;
4085 				BGE_UNLOCK(sc);
4086 			} else {
4087 				error = ether_poll_deregister(ifp);
4088 				/* Enable interrupt even in error case */
4089 				BGE_LOCK(sc);
4090 				BGE_CLRBIT(sc, BGE_PCI_MISC_CTL,
4091 				    BGE_PCIMISCCTL_MASK_PCI_INTR);
4092 				bge_writembx(sc, BGE_MBX_IRQ0_LO, 0);
4093 				ifp->if_capenable &= ~IFCAP_POLLING;
4094 				BGE_UNLOCK(sc);
4095 			}
4096 		}
4097 #endif
4098 		if (mask & IFCAP_HWCSUM) {
4099 			ifp->if_capenable ^= IFCAP_HWCSUM;
4100 			if (IFCAP_HWCSUM & ifp->if_capenable &&
4101 			    IFCAP_HWCSUM & ifp->if_capabilities)
4102 				ifp->if_hwassist = BGE_CSUM_FEATURES;
4103 			else
4104 				ifp->if_hwassist = 0;
4105 #ifdef VLAN_CAPABILITIES
4106 			VLAN_CAPABILITIES(ifp);
4107 #endif
4108 		}
4109 
4110 		if (mask & IFCAP_VLAN_MTU) {
4111 			ifp->if_capenable ^= IFCAP_VLAN_MTU;
4112 			ifp->if_drv_flags &= ~IFF_DRV_RUNNING;
4113 			bge_init(sc);
4114 		}
4115 
4116 		if (mask & IFCAP_VLAN_HWTAGGING) {
4117 			ifp->if_capenable ^= IFCAP_VLAN_HWTAGGING;
4118 			BGE_LOCK(sc);
4119 			bge_setvlan(sc);
4120 			BGE_UNLOCK(sc);
4121 #ifdef VLAN_CAPABILITIES
4122 			VLAN_CAPABILITIES(ifp);
4123 #endif
4124 		}
4125 
4126 		break;
4127 	default:
4128 		error = ether_ioctl(ifp, command, data);
4129 		break;
4130 	}
4131 
4132 	return (error);
4133 }
4134 
4135 static void
4136 bge_watchdog(struct bge_softc *sc)
4137 {
4138 	struct ifnet *ifp;
4139 
4140 	BGE_LOCK_ASSERT(sc);
4141 
4142 	if (sc->bge_timer == 0 || --sc->bge_timer)
4143 		return;
4144 
4145 	ifp = sc->bge_ifp;
4146 
4147 	if_printf(ifp, "watchdog timeout -- resetting\n");
4148 
4149 	ifp->if_drv_flags &= ~IFF_DRV_RUNNING;
4150 	bge_init_locked(sc);
4151 
4152 	ifp->if_oerrors++;
4153 }
4154 
4155 /*
4156  * Stop the adapter and free any mbufs allocated to the
4157  * RX and TX lists.
4158  */
4159 static void
4160 bge_stop(struct bge_softc *sc)
4161 {
4162 	struct ifnet *ifp;
4163 	struct ifmedia_entry *ifm;
4164 	struct mii_data *mii = NULL;
4165 	int mtmp, itmp;
4166 
4167 	BGE_LOCK_ASSERT(sc);
4168 
4169 	ifp = sc->bge_ifp;
4170 
4171 	if ((sc->bge_flags & BGE_FLAG_TBI) == 0)
4172 		mii = device_get_softc(sc->bge_miibus);
4173 
4174 	callout_stop(&sc->bge_stat_ch);
4175 
4176 	/*
4177 	 * Disable all of the receiver blocks.
4178 	 */
4179 	BGE_CLRBIT(sc, BGE_RX_MODE, BGE_RXMODE_ENABLE);
4180 	BGE_CLRBIT(sc, BGE_RBDI_MODE, BGE_RBDIMODE_ENABLE);
4181 	BGE_CLRBIT(sc, BGE_RXLP_MODE, BGE_RXLPMODE_ENABLE);
4182 	if (!(BGE_IS_5705_PLUS(sc)))
4183 		BGE_CLRBIT(sc, BGE_RXLS_MODE, BGE_RXLSMODE_ENABLE);
4184 	BGE_CLRBIT(sc, BGE_RDBDI_MODE, BGE_RBDIMODE_ENABLE);
4185 	BGE_CLRBIT(sc, BGE_RDC_MODE, BGE_RDCMODE_ENABLE);
4186 	BGE_CLRBIT(sc, BGE_RBDC_MODE, BGE_RBDCMODE_ENABLE);
4187 
4188 	/*
4189 	 * Disable all of the transmit blocks.
4190 	 */
4191 	BGE_CLRBIT(sc, BGE_SRS_MODE, BGE_SRSMODE_ENABLE);
4192 	BGE_CLRBIT(sc, BGE_SBDI_MODE, BGE_SBDIMODE_ENABLE);
4193 	BGE_CLRBIT(sc, BGE_SDI_MODE, BGE_SDIMODE_ENABLE);
4194 	BGE_CLRBIT(sc, BGE_RDMA_MODE, BGE_RDMAMODE_ENABLE);
4195 	BGE_CLRBIT(sc, BGE_SDC_MODE, BGE_SDCMODE_ENABLE);
4196 	if (!(BGE_IS_5705_PLUS(sc)))
4197 		BGE_CLRBIT(sc, BGE_DMAC_MODE, BGE_DMACMODE_ENABLE);
4198 	BGE_CLRBIT(sc, BGE_SBDC_MODE, BGE_SBDCMODE_ENABLE);
4199 
4200 	/*
4201 	 * Shut down all of the memory managers and related
4202 	 * state machines.
4203 	 */
4204 	BGE_CLRBIT(sc, BGE_HCC_MODE, BGE_HCCMODE_ENABLE);
4205 	BGE_CLRBIT(sc, BGE_WDMA_MODE, BGE_WDMAMODE_ENABLE);
4206 	if (!(BGE_IS_5705_PLUS(sc)))
4207 		BGE_CLRBIT(sc, BGE_MBCF_MODE, BGE_MBCFMODE_ENABLE);
4208 	CSR_WRITE_4(sc, BGE_FTQ_RESET, 0xFFFFFFFF);
4209 	CSR_WRITE_4(sc, BGE_FTQ_RESET, 0);
4210 	if (!(BGE_IS_5705_PLUS(sc))) {
4211 		BGE_CLRBIT(sc, BGE_BMAN_MODE, BGE_BMANMODE_ENABLE);
4212 		BGE_CLRBIT(sc, BGE_MARB_MODE, BGE_MARBMODE_ENABLE);
4213 	}
4214 
4215 	/* Disable host interrupts. */
4216 	BGE_SETBIT(sc, BGE_PCI_MISC_CTL, BGE_PCIMISCCTL_MASK_PCI_INTR);
4217 	bge_writembx(sc, BGE_MBX_IRQ0_LO, 1);
4218 
4219 	/*
4220 	 * Tell firmware we're shutting down.
4221 	 */
4222 
4223 	bge_stop_fw(sc);
4224 	bge_sig_pre_reset(sc, BGE_RESET_STOP);
4225 	bge_reset(sc);
4226 	bge_sig_legacy(sc, BGE_RESET_STOP);
4227 	bge_sig_post_reset(sc, BGE_RESET_STOP);
4228 
4229 	/*
4230 	 * Keep the ASF firmware running if up.
4231 	 */
4232 	if (sc->bge_asf_mode & ASF_STACKUP)
4233 		BGE_SETBIT(sc, BGE_MODE_CTL, BGE_MODECTL_STACKUP);
4234 	else
4235 		BGE_CLRBIT(sc, BGE_MODE_CTL, BGE_MODECTL_STACKUP);
4236 
4237 	/* Free the RX lists. */
4238 	bge_free_rx_ring_std(sc);
4239 
4240 	/* Free jumbo RX list. */
4241 	if (BGE_IS_JUMBO_CAPABLE(sc))
4242 		bge_free_rx_ring_jumbo(sc);
4243 
4244 	/* Free TX buffers. */
4245 	bge_free_tx_ring(sc);
4246 
4247 	/*
4248 	 * Isolate/power down the PHY, but leave the media selection
4249 	 * unchanged so that things will be put back to normal when
4250 	 * we bring the interface back up.
4251 	 */
4252 	if ((sc->bge_flags & BGE_FLAG_TBI) == 0) {
4253 		itmp = ifp->if_flags;
4254 		ifp->if_flags |= IFF_UP;
4255 		/*
4256 		 * If we are called from bge_detach(), mii is already NULL.
4257 		 */
4258 		if (mii != NULL) {
4259 			ifm = mii->mii_media.ifm_cur;
4260 			mtmp = ifm->ifm_media;
4261 			ifm->ifm_media = IFM_ETHER | IFM_NONE;
4262 			mii_mediachg(mii);
4263 			ifm->ifm_media = mtmp;
4264 		}
4265 		ifp->if_flags = itmp;
4266 	}
4267 
4268 	sc->bge_tx_saved_considx = BGE_TXCONS_UNSET;
4269 
4270 	/* Clear MAC's link state (PHY may still have link UP). */
4271 	if (bootverbose && sc->bge_link)
4272 		if_printf(sc->bge_ifp, "link DOWN\n");
4273 	sc->bge_link = 0;
4274 
4275 	ifp->if_drv_flags &= ~(IFF_DRV_RUNNING | IFF_DRV_OACTIVE);
4276 }
4277 
4278 /*
4279  * Stop all chip I/O so that the kernel's probe routines don't
4280  * get confused by errant DMAs when rebooting.
4281  */
4282 static void
4283 bge_shutdown(device_t dev)
4284 {
4285 	struct bge_softc *sc;
4286 
4287 	sc = device_get_softc(dev);
4288 
4289 	BGE_LOCK(sc);
4290 	bge_stop(sc);
4291 	bge_reset(sc);
4292 	BGE_UNLOCK(sc);
4293 }
4294 
4295 static int
4296 bge_suspend(device_t dev)
4297 {
4298 	struct bge_softc *sc;
4299 
4300 	sc = device_get_softc(dev);
4301 	BGE_LOCK(sc);
4302 	bge_stop(sc);
4303 	BGE_UNLOCK(sc);
4304 
4305 	return (0);
4306 }
4307 
4308 static int
4309 bge_resume(device_t dev)
4310 {
4311 	struct bge_softc *sc;
4312 	struct ifnet *ifp;
4313 
4314 	sc = device_get_softc(dev);
4315 	BGE_LOCK(sc);
4316 	ifp = sc->bge_ifp;
4317 	if (ifp->if_flags & IFF_UP) {
4318 		bge_init_locked(sc);
4319 		if (ifp->if_drv_flags & IFF_DRV_RUNNING)
4320 			bge_start_locked(ifp);
4321 	}
4322 	BGE_UNLOCK(sc);
4323 
4324 	return (0);
4325 }
4326 
4327 static void
4328 bge_link_upd(struct bge_softc *sc)
4329 {
4330 	struct mii_data *mii;
4331 	uint32_t link, status;
4332 
4333 	BGE_LOCK_ASSERT(sc);
4334 
4335 	/* Clear 'pending link event' flag. */
4336 	sc->bge_link_evt = 0;
4337 
4338 	/*
4339 	 * Process link state changes.
4340 	 * Grrr. The link status word in the status block does
4341 	 * not work correctly on the BCM5700 rev AX and BX chips,
4342 	 * according to all available information. Hence, we have
4343 	 * to enable MII interrupts in order to properly obtain
4344 	 * async link changes. Unfortunately, this also means that
4345 	 * we have to read the MAC status register to detect link
4346 	 * changes, thereby adding an additional register access to
4347 	 * the interrupt handler.
4348 	 *
4349 	 * XXX: perhaps link state detection procedure used for
4350 	 * BGE_CHIPID_BCM5700_B2 can be used for others BCM5700 revisions.
4351 	 */
4352 
4353 	if (sc->bge_asicrev == BGE_ASICREV_BCM5700 &&
4354 	    sc->bge_chipid != BGE_CHIPID_BCM5700_B2) {
4355 		status = CSR_READ_4(sc, BGE_MAC_STS);
4356 		if (status & BGE_MACSTAT_MI_INTERRUPT) {
4357 			mii = device_get_softc(sc->bge_miibus);
4358 			mii_pollstat(mii);
4359 			if (!sc->bge_link &&
4360 			    mii->mii_media_status & IFM_ACTIVE &&
4361 			    IFM_SUBTYPE(mii->mii_media_active) != IFM_NONE) {
4362 				sc->bge_link++;
4363 				if (bootverbose)
4364 					if_printf(sc->bge_ifp, "link UP\n");
4365 			} else if (sc->bge_link &&
4366 			    (!(mii->mii_media_status & IFM_ACTIVE) ||
4367 			    IFM_SUBTYPE(mii->mii_media_active) == IFM_NONE)) {
4368 				sc->bge_link = 0;
4369 				if (bootverbose)
4370 					if_printf(sc->bge_ifp, "link DOWN\n");
4371 			}
4372 
4373 			/* Clear the interrupt. */
4374 			CSR_WRITE_4(sc, BGE_MAC_EVT_ENB,
4375 			    BGE_EVTENB_MI_INTERRUPT);
4376 			bge_miibus_readreg(sc->bge_dev, 1, BRGPHY_MII_ISR);
4377 			bge_miibus_writereg(sc->bge_dev, 1, BRGPHY_MII_IMR,
4378 			    BRGPHY_INTRS);
4379 		}
4380 		return;
4381 	}
4382 
4383 	if (sc->bge_flags & BGE_FLAG_TBI) {
4384 		status = CSR_READ_4(sc, BGE_MAC_STS);
4385 		if (status & BGE_MACSTAT_TBI_PCS_SYNCHED) {
4386 			if (!sc->bge_link) {
4387 				sc->bge_link++;
4388 				if (sc->bge_asicrev == BGE_ASICREV_BCM5704)
4389 					BGE_CLRBIT(sc, BGE_MAC_MODE,
4390 					    BGE_MACMODE_TBI_SEND_CFGS);
4391 				CSR_WRITE_4(sc, BGE_MAC_STS, 0xFFFFFFFF);
4392 				if (bootverbose)
4393 					if_printf(sc->bge_ifp, "link UP\n");
4394 				if_link_state_change(sc->bge_ifp,
4395 				    LINK_STATE_UP);
4396 			}
4397 		} else if (sc->bge_link) {
4398 			sc->bge_link = 0;
4399 			if (bootverbose)
4400 				if_printf(sc->bge_ifp, "link DOWN\n");
4401 			if_link_state_change(sc->bge_ifp, LINK_STATE_DOWN);
4402 		}
4403 	} else if (CSR_READ_4(sc, BGE_MI_MODE) & BGE_MIMODE_AUTOPOLL) {
4404 		/*
4405 		 * Some broken BCM chips have BGE_STATFLAG_LINKSTATE_CHANGED bit
4406 		 * in status word always set. Workaround this bug by reading
4407 		 * PHY link status directly.
4408 		 */
4409 		link = (CSR_READ_4(sc, BGE_MI_STS) & BGE_MISTS_LINK) ? 1 : 0;
4410 
4411 		if (link != sc->bge_link ||
4412 		    sc->bge_asicrev == BGE_ASICREV_BCM5700) {
4413 			mii = device_get_softc(sc->bge_miibus);
4414 			mii_pollstat(mii);
4415 			if (!sc->bge_link &&
4416 			    mii->mii_media_status & IFM_ACTIVE &&
4417 			    IFM_SUBTYPE(mii->mii_media_active) != IFM_NONE) {
4418 				sc->bge_link++;
4419 				if (bootverbose)
4420 					if_printf(sc->bge_ifp, "link UP\n");
4421 			} else if (sc->bge_link &&
4422 			    (!(mii->mii_media_status & IFM_ACTIVE) ||
4423 			    IFM_SUBTYPE(mii->mii_media_active) == IFM_NONE)) {
4424 				sc->bge_link = 0;
4425 				if (bootverbose)
4426 					if_printf(sc->bge_ifp, "link DOWN\n");
4427 			}
4428 		}
4429 	} else {
4430 		/*
4431 		 * Discard link events for MII/GMII controllers
4432 		 * if MI auto-polling is disabled.
4433 		 */
4434 	}
4435 
4436 	/* Clear the attention. */
4437 	CSR_WRITE_4(sc, BGE_MAC_STS, BGE_MACSTAT_SYNC_CHANGED |
4438 	    BGE_MACSTAT_CFG_CHANGED | BGE_MACSTAT_MI_COMPLETE |
4439 	    BGE_MACSTAT_LINK_CHANGED);
4440 }
4441 
4442 #define BGE_SYSCTL_STAT(sc, ctx, desc, parent, node, oid) \
4443 	SYSCTL_ADD_PROC(ctx, parent, OID_AUTO, oid, CTLTYPE_UINT|CTLFLAG_RD, \
4444 	    sc, offsetof(struct bge_stats, node), bge_sysctl_stats, "IU", \
4445 	    desc)
4446 
4447 static void
4448 bge_add_sysctls(struct bge_softc *sc)
4449 {
4450 	struct sysctl_ctx_list *ctx;
4451 	struct sysctl_oid_list *children, *schildren;
4452 	struct sysctl_oid *tree;
4453 
4454 	ctx = device_get_sysctl_ctx(sc->bge_dev);
4455 	children = SYSCTL_CHILDREN(device_get_sysctl_tree(sc->bge_dev));
4456 
4457 #ifdef BGE_REGISTER_DEBUG
4458 	SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "debug_info",
4459 	    CTLTYPE_INT | CTLFLAG_RW, sc, 0, bge_sysctl_debug_info, "I",
4460 	    "Debug Information");
4461 
4462 	SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "reg_read",
4463 	    CTLTYPE_INT | CTLFLAG_RW, sc, 0, bge_sysctl_reg_read, "I",
4464 	    "Register Read");
4465 
4466 	SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "mem_read",
4467 	    CTLTYPE_INT | CTLFLAG_RW, sc, 0, bge_sysctl_mem_read, "I",
4468 	    "Memory Read");
4469 
4470 #endif
4471 
4472 	if (BGE_IS_5705_PLUS(sc))
4473 		return;
4474 
4475 	tree = SYSCTL_ADD_NODE(ctx, children, OID_AUTO, "stats", CTLFLAG_RD,
4476 	    NULL, "BGE Statistics");
4477 	schildren = children = SYSCTL_CHILDREN(tree);
4478 	BGE_SYSCTL_STAT(sc, ctx, "Frames Dropped Due To Filters",
4479 	    children, COSFramesDroppedDueToFilters,
4480 	    "FramesDroppedDueToFilters");
4481 	BGE_SYSCTL_STAT(sc, ctx, "NIC DMA Write Queue Full",
4482 	    children, nicDmaWriteQueueFull, "DmaWriteQueueFull");
4483 	BGE_SYSCTL_STAT(sc, ctx, "NIC DMA Write High Priority Queue Full",
4484 	    children, nicDmaWriteHighPriQueueFull, "DmaWriteHighPriQueueFull");
4485 	BGE_SYSCTL_STAT(sc, ctx, "NIC No More RX Buffer Descriptors",
4486 	    children, nicNoMoreRxBDs, "NoMoreRxBDs");
4487 	BGE_SYSCTL_STAT(sc, ctx, "Discarded Input Frames",
4488 	    children, ifInDiscards, "InputDiscards");
4489 	BGE_SYSCTL_STAT(sc, ctx, "Input Errors",
4490 	    children, ifInErrors, "InputErrors");
4491 	BGE_SYSCTL_STAT(sc, ctx, "NIC Recv Threshold Hit",
4492 	    children, nicRecvThresholdHit, "RecvThresholdHit");
4493 	BGE_SYSCTL_STAT(sc, ctx, "NIC DMA Read Queue Full",
4494 	    children, nicDmaReadQueueFull, "DmaReadQueueFull");
4495 	BGE_SYSCTL_STAT(sc, ctx, "NIC DMA Read High Priority Queue Full",
4496 	    children, nicDmaReadHighPriQueueFull, "DmaReadHighPriQueueFull");
4497 	BGE_SYSCTL_STAT(sc, ctx, "NIC Send Data Complete Queue Full",
4498 	    children, nicSendDataCompQueueFull, "SendDataCompQueueFull");
4499 	BGE_SYSCTL_STAT(sc, ctx, "NIC Ring Set Send Producer Index",
4500 	    children, nicRingSetSendProdIndex, "RingSetSendProdIndex");
4501 	BGE_SYSCTL_STAT(sc, ctx, "NIC Ring Status Update",
4502 	    children, nicRingStatusUpdate, "RingStatusUpdate");
4503 	BGE_SYSCTL_STAT(sc, ctx, "NIC Interrupts",
4504 	    children, nicInterrupts, "Interrupts");
4505 	BGE_SYSCTL_STAT(sc, ctx, "NIC Avoided Interrupts",
4506 	    children, nicAvoidedInterrupts, "AvoidedInterrupts");
4507 	BGE_SYSCTL_STAT(sc, ctx, "NIC Send Threshold Hit",
4508 	    children, nicSendThresholdHit, "SendThresholdHit");
4509 
4510 	tree = SYSCTL_ADD_NODE(ctx, schildren, OID_AUTO, "rx", CTLFLAG_RD,
4511 	    NULL, "BGE RX Statistics");
4512 	children = SYSCTL_CHILDREN(tree);
4513 	BGE_SYSCTL_STAT(sc, ctx, "Inbound Octets",
4514 	    children, rxstats.ifHCInOctets, "Octets");
4515 	BGE_SYSCTL_STAT(sc, ctx, "Fragments",
4516 	    children, rxstats.etherStatsFragments, "Fragments");
4517 	BGE_SYSCTL_STAT(sc, ctx, "Inbound Unicast Packets",
4518 	    children, rxstats.ifHCInUcastPkts, "UcastPkts");
4519 	BGE_SYSCTL_STAT(sc, ctx, "Inbound Multicast Packets",
4520 	    children, rxstats.ifHCInMulticastPkts, "MulticastPkts");
4521 	BGE_SYSCTL_STAT(sc, ctx, "FCS Errors",
4522 	    children, rxstats.dot3StatsFCSErrors, "FCSErrors");
4523 	BGE_SYSCTL_STAT(sc, ctx, "Alignment Errors",
4524 	    children, rxstats.dot3StatsAlignmentErrors, "AlignmentErrors");
4525 	BGE_SYSCTL_STAT(sc, ctx, "XON Pause Frames Received",
4526 	    children, rxstats.xonPauseFramesReceived, "xonPauseFramesReceived");
4527 	BGE_SYSCTL_STAT(sc, ctx, "XOFF Pause Frames Received",
4528 	    children, rxstats.xoffPauseFramesReceived,
4529 	    "xoffPauseFramesReceived");
4530 	BGE_SYSCTL_STAT(sc, ctx, "MAC Control Frames Received",
4531 	    children, rxstats.macControlFramesReceived,
4532 	    "ControlFramesReceived");
4533 	BGE_SYSCTL_STAT(sc, ctx, "XOFF State Entered",
4534 	    children, rxstats.xoffStateEntered, "xoffStateEntered");
4535 	BGE_SYSCTL_STAT(sc, ctx, "Frames Too Long",
4536 	    children, rxstats.dot3StatsFramesTooLong, "FramesTooLong");
4537 	BGE_SYSCTL_STAT(sc, ctx, "Jabbers",
4538 	    children, rxstats.etherStatsJabbers, "Jabbers");
4539 	BGE_SYSCTL_STAT(sc, ctx, "Undersized Packets",
4540 	    children, rxstats.etherStatsUndersizePkts, "UndersizePkts");
4541 	BGE_SYSCTL_STAT(sc, ctx, "Inbound Range Length Errors",
4542 	    children, rxstats.inRangeLengthError, "inRangeLengthError");
4543 	BGE_SYSCTL_STAT(sc, ctx, "Outbound Range Length Errors",
4544 	    children, rxstats.outRangeLengthError, "outRangeLengthError");
4545 
4546 	tree = SYSCTL_ADD_NODE(ctx, schildren, OID_AUTO, "tx", CTLFLAG_RD,
4547 	    NULL, "BGE TX Statistics");
4548 	children = SYSCTL_CHILDREN(tree);
4549 	BGE_SYSCTL_STAT(sc, ctx, "Outbound Octets",
4550 	    children, txstats.ifHCOutOctets, "Octets");
4551 	BGE_SYSCTL_STAT(sc, ctx, "TX Collisions",
4552 	    children, txstats.etherStatsCollisions, "Collisions");
4553 	BGE_SYSCTL_STAT(sc, ctx, "XON Sent",
4554 	    children, txstats.outXonSent, "XonSent");
4555 	BGE_SYSCTL_STAT(sc, ctx, "XOFF Sent",
4556 	    children, txstats.outXoffSent, "XoffSent");
4557 	BGE_SYSCTL_STAT(sc, ctx, "Flow Control Done",
4558 	    children, txstats.flowControlDone, "flowControlDone");
4559 	BGE_SYSCTL_STAT(sc, ctx, "Internal MAC TX errors",
4560 	    children, txstats.dot3StatsInternalMacTransmitErrors,
4561 	    "InternalMacTransmitErrors");
4562 	BGE_SYSCTL_STAT(sc, ctx, "Single Collision Frames",
4563 	    children, txstats.dot3StatsSingleCollisionFrames,
4564 	    "SingleCollisionFrames");
4565 	BGE_SYSCTL_STAT(sc, ctx, "Multiple Collision Frames",
4566 	    children, txstats.dot3StatsMultipleCollisionFrames,
4567 	    "MultipleCollisionFrames");
4568 	BGE_SYSCTL_STAT(sc, ctx, "Deferred Transmissions",
4569 	    children, txstats.dot3StatsDeferredTransmissions,
4570 	    "DeferredTransmissions");
4571 	BGE_SYSCTL_STAT(sc, ctx, "Excessive Collisions",
4572 	    children, txstats.dot3StatsExcessiveCollisions,
4573 	    "ExcessiveCollisions");
4574 	BGE_SYSCTL_STAT(sc, ctx, "Late Collisions",
4575 	    children, txstats.dot3StatsLateCollisions,
4576 	    "LateCollisions");
4577 	BGE_SYSCTL_STAT(sc, ctx, "Outbound Unicast Packets",
4578 	    children, txstats.ifHCOutUcastPkts, "UcastPkts");
4579 	BGE_SYSCTL_STAT(sc, ctx, "Outbound Multicast Packets",
4580 	    children, txstats.ifHCOutMulticastPkts, "MulticastPkts");
4581 	BGE_SYSCTL_STAT(sc, ctx, "Outbound Broadcast Packets",
4582 	    children, txstats.ifHCOutBroadcastPkts, "BroadcastPkts");
4583 	BGE_SYSCTL_STAT(sc, ctx, "Carrier Sense Errors",
4584 	    children, txstats.dot3StatsCarrierSenseErrors,
4585 	    "CarrierSenseErrors");
4586 	BGE_SYSCTL_STAT(sc, ctx, "Outbound Discards",
4587 	    children, txstats.ifOutDiscards, "Discards");
4588 	BGE_SYSCTL_STAT(sc, ctx, "Outbound Errors",
4589 	    children, txstats.ifOutErrors, "Errors");
4590 }
4591 
4592 static int
4593 bge_sysctl_stats(SYSCTL_HANDLER_ARGS)
4594 {
4595 	struct bge_softc *sc;
4596 	uint32_t result;
4597 	int offset;
4598 
4599 	sc = (struct bge_softc *)arg1;
4600 	offset = arg2;
4601 	result = CSR_READ_4(sc, BGE_MEMWIN_START + BGE_STATS_BLOCK + offset +
4602 	    offsetof(bge_hostaddr, bge_addr_lo));
4603 	return (sysctl_handle_int(oidp, &result, 0, req));
4604 }
4605 
4606 #ifdef BGE_REGISTER_DEBUG
4607 static int
4608 bge_sysctl_debug_info(SYSCTL_HANDLER_ARGS)
4609 {
4610 	struct bge_softc *sc;
4611 	uint16_t *sbdata;
4612 	int error;
4613 	int result;
4614 	int i, j;
4615 
4616 	result = -1;
4617 	error = sysctl_handle_int(oidp, &result, 0, req);
4618 	if (error || (req->newptr == NULL))
4619 		return (error);
4620 
4621 	if (result == 1) {
4622 		sc = (struct bge_softc *)arg1;
4623 
4624 		sbdata = (uint16_t *)sc->bge_ldata.bge_status_block;
4625 		printf("Status Block:\n");
4626 		for (i = 0x0; i < (BGE_STATUS_BLK_SZ / 4); ) {
4627 			printf("%06x:", i);
4628 			for (j = 0; j < 8; j++) {
4629 				printf(" %04x", sbdata[i]);
4630 				i += 4;
4631 			}
4632 			printf("\n");
4633 		}
4634 
4635 		printf("Registers:\n");
4636 		for (i = 0x800; i < 0xA00; ) {
4637 			printf("%06x:", i);
4638 			for (j = 0; j < 8; j++) {
4639 				printf(" %08x", CSR_READ_4(sc, i));
4640 				i += 4;
4641 			}
4642 			printf("\n");
4643 		}
4644 
4645 		printf("Hardware Flags:\n");
4646 		if (BGE_IS_575X_PLUS(sc))
4647 			printf(" - 575X Plus\n");
4648 		if (BGE_IS_5705_PLUS(sc))
4649 			printf(" - 5705 Plus\n");
4650 		if (BGE_IS_5714_FAMILY(sc))
4651 			printf(" - 5714 Family\n");
4652 		if (BGE_IS_5700_FAMILY(sc))
4653 			printf(" - 5700 Family\n");
4654 		if (sc->bge_flags & BGE_FLAG_JUMBO)
4655 			printf(" - Supports Jumbo Frames\n");
4656 		if (sc->bge_flags & BGE_FLAG_PCIX)
4657 			printf(" - PCI-X Bus\n");
4658 		if (sc->bge_flags & BGE_FLAG_PCIE)
4659 			printf(" - PCI Express Bus\n");
4660 		if (sc->bge_flags & BGE_FLAG_NO_3LED)
4661 			printf(" - No 3 LEDs\n");
4662 		if (sc->bge_flags & BGE_FLAG_RX_ALIGNBUG)
4663 			printf(" - RX Alignment Bug\n");
4664 	}
4665 
4666 	return (error);
4667 }
4668 
4669 static int
4670 bge_sysctl_reg_read(SYSCTL_HANDLER_ARGS)
4671 {
4672 	struct bge_softc *sc;
4673 	int error;
4674 	uint16_t result;
4675 	uint32_t val;
4676 
4677 	result = -1;
4678 	error = sysctl_handle_int(oidp, &result, 0, req);
4679 	if (error || (req->newptr == NULL))
4680 		return (error);
4681 
4682 	if (result < 0x8000) {
4683 		sc = (struct bge_softc *)arg1;
4684 		val = CSR_READ_4(sc, result);
4685 		printf("reg 0x%06X = 0x%08X\n", result, val);
4686 	}
4687 
4688 	return (error);
4689 }
4690 
4691 static int
4692 bge_sysctl_mem_read(SYSCTL_HANDLER_ARGS)
4693 {
4694 	struct bge_softc *sc;
4695 	int error;
4696 	uint16_t result;
4697 	uint32_t val;
4698 
4699 	result = -1;
4700 	error = sysctl_handle_int(oidp, &result, 0, req);
4701 	if (error || (req->newptr == NULL))
4702 		return (error);
4703 
4704 	if (result < 0x8000) {
4705 		sc = (struct bge_softc *)arg1;
4706 		val = bge_readmem_ind(sc, result);
4707 		printf("mem 0x%06X = 0x%08X\n", result, val);
4708 	}
4709 
4710 	return (error);
4711 }
4712 #endif
4713 
4714 static int
4715 bge_get_eaddr_fw(struct bge_softc *sc, uint8_t ether_addr[])
4716 {
4717 
4718 	if (sc->bge_flags & BGE_FLAG_EADDR)
4719 		return (1);
4720 
4721 #ifdef __sparc64__
4722 	OF_getetheraddr(sc->bge_dev, ether_addr);
4723 	return (0);
4724 #endif
4725 	return (1);
4726 }
4727 
4728 static int
4729 bge_get_eaddr_mem(struct bge_softc *sc, uint8_t ether_addr[])
4730 {
4731 	uint32_t mac_addr;
4732 
4733 	mac_addr = bge_readmem_ind(sc, 0x0c14);
4734 	if ((mac_addr >> 16) == 0x484b) {
4735 		ether_addr[0] = (uint8_t)(mac_addr >> 8);
4736 		ether_addr[1] = (uint8_t)mac_addr;
4737 		mac_addr = bge_readmem_ind(sc, 0x0c18);
4738 		ether_addr[2] = (uint8_t)(mac_addr >> 24);
4739 		ether_addr[3] = (uint8_t)(mac_addr >> 16);
4740 		ether_addr[4] = (uint8_t)(mac_addr >> 8);
4741 		ether_addr[5] = (uint8_t)mac_addr;
4742 		return (0);
4743 	}
4744 	return (1);
4745 }
4746 
4747 static int
4748 bge_get_eaddr_nvram(struct bge_softc *sc, uint8_t ether_addr[])
4749 {
4750 	int mac_offset = BGE_EE_MAC_OFFSET;
4751 
4752 	if (sc->bge_asicrev == BGE_ASICREV_BCM5906)
4753 		mac_offset = BGE_EE_MAC_OFFSET_5906;
4754 
4755 	return (bge_read_nvram(sc, ether_addr, mac_offset + 2,
4756 	    ETHER_ADDR_LEN));
4757 }
4758 
4759 static int
4760 bge_get_eaddr_eeprom(struct bge_softc *sc, uint8_t ether_addr[])
4761 {
4762 
4763 	if (sc->bge_asicrev == BGE_ASICREV_BCM5906)
4764 		return (1);
4765 
4766 	return (bge_read_eeprom(sc, ether_addr, BGE_EE_MAC_OFFSET + 2,
4767 	   ETHER_ADDR_LEN));
4768 }
4769 
4770 static int
4771 bge_get_eaddr(struct bge_softc *sc, uint8_t eaddr[])
4772 {
4773 	static const bge_eaddr_fcn_t bge_eaddr_funcs[] = {
4774 		/* NOTE: Order is critical */
4775 		bge_get_eaddr_fw,
4776 		bge_get_eaddr_mem,
4777 		bge_get_eaddr_nvram,
4778 		bge_get_eaddr_eeprom,
4779 		NULL
4780 	};
4781 	const bge_eaddr_fcn_t *func;
4782 
4783 	for (func = bge_eaddr_funcs; *func != NULL; ++func) {
4784 		if ((*func)(sc, eaddr) == 0)
4785 			break;
4786 	}
4787 	return (*func == NULL ? ENXIO : 0);
4788 }
4789