1 /*- 2 * Copyright (c) 2001 Wind River Systems 3 * Copyright (c) 1997, 1998, 1999, 2001 4 * Bill Paul <wpaul@windriver.com>. All rights reserved. 5 * 6 * Redistribution and use in source and binary forms, with or without 7 * modification, are permitted provided that the following conditions 8 * are met: 9 * 1. Redistributions of source code must retain the above copyright 10 * notice, this list of conditions and the following disclaimer. 11 * 2. Redistributions in binary form must reproduce the above copyright 12 * notice, this list of conditions and the following disclaimer in the 13 * documentation and/or other materials provided with the distribution. 14 * 3. All advertising materials mentioning features or use of this software 15 * must display the following acknowledgement: 16 * This product includes software developed by Bill Paul. 17 * 4. Neither the name of the author nor the names of any co-contributors 18 * may be used to endorse or promote products derived from this software 19 * without specific prior written permission. 20 * 21 * THIS SOFTWARE IS PROVIDED BY Bill Paul AND CONTRIBUTORS ``AS IS'' AND 22 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 23 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 24 * ARE DISCLAIMED. IN NO EVENT SHALL Bill Paul OR THE VOICES IN HIS HEAD 25 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR 26 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF 27 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS 28 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN 29 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) 30 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF 31 * THE POSSIBILITY OF SUCH DAMAGE. 32 */ 33 34 #include <sys/cdefs.h> 35 __FBSDID("$FreeBSD$"); 36 37 /* 38 * Broadcom BCM570x family gigabit ethernet driver for FreeBSD. 39 * 40 * The Broadcom BCM5700 is based on technology originally developed by 41 * Alteon Networks as part of the Tigon I and Tigon II gigabit ethernet 42 * MAC chips. The BCM5700, sometimes refered to as the Tigon III, has 43 * two on-board MIPS R4000 CPUs and can have as much as 16MB of external 44 * SSRAM. The BCM5700 supports TCP, UDP and IP checksum offload, jumbo 45 * frames, highly configurable RX filtering, and 16 RX and TX queues 46 * (which, along with RX filter rules, can be used for QOS applications). 47 * Other features, such as TCP segmentation, may be available as part 48 * of value-added firmware updates. Unlike the Tigon I and Tigon II, 49 * firmware images can be stored in hardware and need not be compiled 50 * into the driver. 51 * 52 * The BCM5700 supports the PCI v2.2 and PCI-X v1.0 standards, and will 53 * function in a 32-bit/64-bit 33/66Mhz bus, or a 64-bit/133Mhz bus. 54 * 55 * The BCM5701 is a single-chip solution incorporating both the BCM5700 56 * MAC and a BCM5401 10/100/1000 PHY. Unlike the BCM5700, the BCM5701 57 * does not support external SSRAM. 58 * 59 * Broadcom also produces a variation of the BCM5700 under the "Altima" 60 * brand name, which is functionally similar but lacks PCI-X support. 61 * 62 * Without external SSRAM, you can only have at most 4 TX rings, 63 * and the use of the mini RX ring is disabled. This seems to imply 64 * that these features are simply not available on the BCM5701. As a 65 * result, this driver does not implement any support for the mini RX 66 * ring. 67 */ 68 69 #ifdef HAVE_KERNEL_OPTION_HEADERS 70 #include "opt_device_polling.h" 71 #endif 72 73 #include <sys/param.h> 74 #include <sys/endian.h> 75 #include <sys/systm.h> 76 #include <sys/sockio.h> 77 #include <sys/mbuf.h> 78 #include <sys/malloc.h> 79 #include <sys/kernel.h> 80 #include <sys/module.h> 81 #include <sys/socket.h> 82 #include <sys/sysctl.h> 83 #include <sys/taskqueue.h> 84 85 #include <net/if.h> 86 #include <net/if_arp.h> 87 #include <net/ethernet.h> 88 #include <net/if_dl.h> 89 #include <net/if_media.h> 90 91 #include <net/bpf.h> 92 93 #include <net/if_types.h> 94 #include <net/if_vlan_var.h> 95 96 #include <netinet/in_systm.h> 97 #include <netinet/in.h> 98 #include <netinet/ip.h> 99 #include <netinet/tcp.h> 100 101 #include <machine/bus.h> 102 #include <machine/resource.h> 103 #include <sys/bus.h> 104 #include <sys/rman.h> 105 106 #include <dev/mii/mii.h> 107 #include <dev/mii/miivar.h> 108 #include "miidevs.h" 109 #include <dev/mii/brgphyreg.h> 110 111 #ifdef __sparc64__ 112 #include <dev/ofw/ofw_bus.h> 113 #include <dev/ofw/openfirm.h> 114 #include <machine/ofw_machdep.h> 115 #include <machine/ver.h> 116 #endif 117 118 #include <dev/pci/pcireg.h> 119 #include <dev/pci/pcivar.h> 120 121 #include <dev/bge/if_bgereg.h> 122 123 #define BGE_CSUM_FEATURES (CSUM_IP | CSUM_TCP) 124 #define ETHER_MIN_NOPAD (ETHER_MIN_LEN - ETHER_CRC_LEN) /* i.e., 60 */ 125 126 MODULE_DEPEND(bge, pci, 1, 1, 1); 127 MODULE_DEPEND(bge, ether, 1, 1, 1); 128 MODULE_DEPEND(bge, miibus, 1, 1, 1); 129 130 /* "device miibus" required. See GENERIC if you get errors here. */ 131 #include "miibus_if.h" 132 133 /* 134 * Various supported device vendors/types and their names. Note: the 135 * spec seems to indicate that the hardware still has Alteon's vendor 136 * ID burned into it, though it will always be overriden by the vendor 137 * ID in the EEPROM. Just to be safe, we cover all possibilities. 138 */ 139 static const struct bge_type { 140 uint16_t bge_vid; 141 uint16_t bge_did; 142 } const bge_devs[] = { 143 { ALTEON_VENDORID, ALTEON_DEVICEID_BCM5700 }, 144 { ALTEON_VENDORID, ALTEON_DEVICEID_BCM5701 }, 145 146 { ALTIMA_VENDORID, ALTIMA_DEVICE_AC1000 }, 147 { ALTIMA_VENDORID, ALTIMA_DEVICE_AC1002 }, 148 { ALTIMA_VENDORID, ALTIMA_DEVICE_AC9100 }, 149 150 { APPLE_VENDORID, APPLE_DEVICE_BCM5701 }, 151 152 { BCOM_VENDORID, BCOM_DEVICEID_BCM5700 }, 153 { BCOM_VENDORID, BCOM_DEVICEID_BCM5701 }, 154 { BCOM_VENDORID, BCOM_DEVICEID_BCM5702 }, 155 { BCOM_VENDORID, BCOM_DEVICEID_BCM5702_ALT }, 156 { BCOM_VENDORID, BCOM_DEVICEID_BCM5702X }, 157 { BCOM_VENDORID, BCOM_DEVICEID_BCM5703 }, 158 { BCOM_VENDORID, BCOM_DEVICEID_BCM5703_ALT }, 159 { BCOM_VENDORID, BCOM_DEVICEID_BCM5703X }, 160 { BCOM_VENDORID, BCOM_DEVICEID_BCM5704C }, 161 { BCOM_VENDORID, BCOM_DEVICEID_BCM5704S }, 162 { BCOM_VENDORID, BCOM_DEVICEID_BCM5704S_ALT }, 163 { BCOM_VENDORID, BCOM_DEVICEID_BCM5705 }, 164 { BCOM_VENDORID, BCOM_DEVICEID_BCM5705F }, 165 { BCOM_VENDORID, BCOM_DEVICEID_BCM5705K }, 166 { BCOM_VENDORID, BCOM_DEVICEID_BCM5705M }, 167 { BCOM_VENDORID, BCOM_DEVICEID_BCM5705M_ALT }, 168 { BCOM_VENDORID, BCOM_DEVICEID_BCM5714C }, 169 { BCOM_VENDORID, BCOM_DEVICEID_BCM5714S }, 170 { BCOM_VENDORID, BCOM_DEVICEID_BCM5715 }, 171 { BCOM_VENDORID, BCOM_DEVICEID_BCM5715S }, 172 { BCOM_VENDORID, BCOM_DEVICEID_BCM5717 }, 173 { BCOM_VENDORID, BCOM_DEVICEID_BCM5718 }, 174 { BCOM_VENDORID, BCOM_DEVICEID_BCM5720 }, 175 { BCOM_VENDORID, BCOM_DEVICEID_BCM5721 }, 176 { BCOM_VENDORID, BCOM_DEVICEID_BCM5722 }, 177 { BCOM_VENDORID, BCOM_DEVICEID_BCM5723 }, 178 { BCOM_VENDORID, BCOM_DEVICEID_BCM5750 }, 179 { BCOM_VENDORID, BCOM_DEVICEID_BCM5750M }, 180 { BCOM_VENDORID, BCOM_DEVICEID_BCM5751 }, 181 { BCOM_VENDORID, BCOM_DEVICEID_BCM5751F }, 182 { BCOM_VENDORID, BCOM_DEVICEID_BCM5751M }, 183 { BCOM_VENDORID, BCOM_DEVICEID_BCM5752 }, 184 { BCOM_VENDORID, BCOM_DEVICEID_BCM5752M }, 185 { BCOM_VENDORID, BCOM_DEVICEID_BCM5753 }, 186 { BCOM_VENDORID, BCOM_DEVICEID_BCM5753F }, 187 { BCOM_VENDORID, BCOM_DEVICEID_BCM5753M }, 188 { BCOM_VENDORID, BCOM_DEVICEID_BCM5754 }, 189 { BCOM_VENDORID, BCOM_DEVICEID_BCM5754M }, 190 { BCOM_VENDORID, BCOM_DEVICEID_BCM5755 }, 191 { BCOM_VENDORID, BCOM_DEVICEID_BCM5755M }, 192 { BCOM_VENDORID, BCOM_DEVICEID_BCM5756 }, 193 { BCOM_VENDORID, BCOM_DEVICEID_BCM5761 }, 194 { BCOM_VENDORID, BCOM_DEVICEID_BCM5761E }, 195 { BCOM_VENDORID, BCOM_DEVICEID_BCM5761S }, 196 { BCOM_VENDORID, BCOM_DEVICEID_BCM5761SE }, 197 { BCOM_VENDORID, BCOM_DEVICEID_BCM5764 }, 198 { BCOM_VENDORID, BCOM_DEVICEID_BCM5780 }, 199 { BCOM_VENDORID, BCOM_DEVICEID_BCM5780S }, 200 { BCOM_VENDORID, BCOM_DEVICEID_BCM5781 }, 201 { BCOM_VENDORID, BCOM_DEVICEID_BCM5782 }, 202 { BCOM_VENDORID, BCOM_DEVICEID_BCM5784 }, 203 { BCOM_VENDORID, BCOM_DEVICEID_BCM5785F }, 204 { BCOM_VENDORID, BCOM_DEVICEID_BCM5785G }, 205 { BCOM_VENDORID, BCOM_DEVICEID_BCM5786 }, 206 { BCOM_VENDORID, BCOM_DEVICEID_BCM5787 }, 207 { BCOM_VENDORID, BCOM_DEVICEID_BCM5787F }, 208 { BCOM_VENDORID, BCOM_DEVICEID_BCM5787M }, 209 { BCOM_VENDORID, BCOM_DEVICEID_BCM5788 }, 210 { BCOM_VENDORID, BCOM_DEVICEID_BCM5789 }, 211 { BCOM_VENDORID, BCOM_DEVICEID_BCM5901 }, 212 { BCOM_VENDORID, BCOM_DEVICEID_BCM5901A2 }, 213 { BCOM_VENDORID, BCOM_DEVICEID_BCM5903M }, 214 { BCOM_VENDORID, BCOM_DEVICEID_BCM5906 }, 215 { BCOM_VENDORID, BCOM_DEVICEID_BCM5906M }, 216 { BCOM_VENDORID, BCOM_DEVICEID_BCM57760 }, 217 { BCOM_VENDORID, BCOM_DEVICEID_BCM57780 }, 218 { BCOM_VENDORID, BCOM_DEVICEID_BCM57788 }, 219 { BCOM_VENDORID, BCOM_DEVICEID_BCM57790 }, 220 221 { SK_VENDORID, SK_DEVICEID_ALTIMA }, 222 223 { TC_VENDORID, TC_DEVICEID_3C996 }, 224 225 { FJTSU_VENDORID, FJTSU_DEVICEID_PW008GE4 }, 226 { FJTSU_VENDORID, FJTSU_DEVICEID_PW008GE5 }, 227 { FJTSU_VENDORID, FJTSU_DEVICEID_PP250450 }, 228 229 { 0, 0 } 230 }; 231 232 static const struct bge_vendor { 233 uint16_t v_id; 234 const char *v_name; 235 } const bge_vendors[] = { 236 { ALTEON_VENDORID, "Alteon" }, 237 { ALTIMA_VENDORID, "Altima" }, 238 { APPLE_VENDORID, "Apple" }, 239 { BCOM_VENDORID, "Broadcom" }, 240 { SK_VENDORID, "SysKonnect" }, 241 { TC_VENDORID, "3Com" }, 242 { FJTSU_VENDORID, "Fujitsu" }, 243 244 { 0, NULL } 245 }; 246 247 static const struct bge_revision { 248 uint32_t br_chipid; 249 const char *br_name; 250 } const bge_revisions[] = { 251 { BGE_CHIPID_BCM5700_A0, "BCM5700 A0" }, 252 { BGE_CHIPID_BCM5700_A1, "BCM5700 A1" }, 253 { BGE_CHIPID_BCM5700_B0, "BCM5700 B0" }, 254 { BGE_CHIPID_BCM5700_B1, "BCM5700 B1" }, 255 { BGE_CHIPID_BCM5700_B2, "BCM5700 B2" }, 256 { BGE_CHIPID_BCM5700_B3, "BCM5700 B3" }, 257 { BGE_CHIPID_BCM5700_ALTIMA, "BCM5700 Altima" }, 258 { BGE_CHIPID_BCM5700_C0, "BCM5700 C0" }, 259 { BGE_CHIPID_BCM5701_A0, "BCM5701 A0" }, 260 { BGE_CHIPID_BCM5701_B0, "BCM5701 B0" }, 261 { BGE_CHIPID_BCM5701_B2, "BCM5701 B2" }, 262 { BGE_CHIPID_BCM5701_B5, "BCM5701 B5" }, 263 { BGE_CHIPID_BCM5703_A0, "BCM5703 A0" }, 264 { BGE_CHIPID_BCM5703_A1, "BCM5703 A1" }, 265 { BGE_CHIPID_BCM5703_A2, "BCM5703 A2" }, 266 { BGE_CHIPID_BCM5703_A3, "BCM5703 A3" }, 267 { BGE_CHIPID_BCM5703_B0, "BCM5703 B0" }, 268 { BGE_CHIPID_BCM5704_A0, "BCM5704 A0" }, 269 { BGE_CHIPID_BCM5704_A1, "BCM5704 A1" }, 270 { BGE_CHIPID_BCM5704_A2, "BCM5704 A2" }, 271 { BGE_CHIPID_BCM5704_A3, "BCM5704 A3" }, 272 { BGE_CHIPID_BCM5704_B0, "BCM5704 B0" }, 273 { BGE_CHIPID_BCM5705_A0, "BCM5705 A0" }, 274 { BGE_CHIPID_BCM5705_A1, "BCM5705 A1" }, 275 { BGE_CHIPID_BCM5705_A2, "BCM5705 A2" }, 276 { BGE_CHIPID_BCM5705_A3, "BCM5705 A3" }, 277 { BGE_CHIPID_BCM5750_A0, "BCM5750 A0" }, 278 { BGE_CHIPID_BCM5750_A1, "BCM5750 A1" }, 279 { BGE_CHIPID_BCM5750_A3, "BCM5750 A3" }, 280 { BGE_CHIPID_BCM5750_B0, "BCM5750 B0" }, 281 { BGE_CHIPID_BCM5750_B1, "BCM5750 B1" }, 282 { BGE_CHIPID_BCM5750_C0, "BCM5750 C0" }, 283 { BGE_CHIPID_BCM5750_C1, "BCM5750 C1" }, 284 { BGE_CHIPID_BCM5750_C2, "BCM5750 C2" }, 285 { BGE_CHIPID_BCM5714_A0, "BCM5714 A0" }, 286 { BGE_CHIPID_BCM5752_A0, "BCM5752 A0" }, 287 { BGE_CHIPID_BCM5752_A1, "BCM5752 A1" }, 288 { BGE_CHIPID_BCM5752_A2, "BCM5752 A2" }, 289 { BGE_CHIPID_BCM5714_B0, "BCM5714 B0" }, 290 { BGE_CHIPID_BCM5714_B3, "BCM5714 B3" }, 291 { BGE_CHIPID_BCM5715_A0, "BCM5715 A0" }, 292 { BGE_CHIPID_BCM5715_A1, "BCM5715 A1" }, 293 { BGE_CHIPID_BCM5715_A3, "BCM5715 A3" }, 294 { BGE_CHIPID_BCM5717_A0, "BCM5717 A0" }, 295 { BGE_CHIPID_BCM5717_B0, "BCM5717 B0" }, 296 { BGE_CHIPID_BCM5755_A0, "BCM5755 A0" }, 297 { BGE_CHIPID_BCM5755_A1, "BCM5755 A1" }, 298 { BGE_CHIPID_BCM5755_A2, "BCM5755 A2" }, 299 { BGE_CHIPID_BCM5722_A0, "BCM5722 A0" }, 300 { BGE_CHIPID_BCM5761_A0, "BCM5761 A0" }, 301 { BGE_CHIPID_BCM5761_A1, "BCM5761 A1" }, 302 { BGE_CHIPID_BCM5784_A0, "BCM5784 A0" }, 303 { BGE_CHIPID_BCM5784_A1, "BCM5784 A1" }, 304 /* 5754 and 5787 share the same ASIC ID */ 305 { BGE_CHIPID_BCM5787_A0, "BCM5754/5787 A0" }, 306 { BGE_CHIPID_BCM5787_A1, "BCM5754/5787 A1" }, 307 { BGE_CHIPID_BCM5787_A2, "BCM5754/5787 A2" }, 308 { BGE_CHIPID_BCM5906_A1, "BCM5906 A1" }, 309 { BGE_CHIPID_BCM5906_A2, "BCM5906 A2" }, 310 { BGE_CHIPID_BCM57780_A0, "BCM57780 A0" }, 311 { BGE_CHIPID_BCM57780_A1, "BCM57780 A1" }, 312 313 { 0, NULL } 314 }; 315 316 /* 317 * Some defaults for major revisions, so that newer steppings 318 * that we don't know about have a shot at working. 319 */ 320 static const struct bge_revision const bge_majorrevs[] = { 321 { BGE_ASICREV_BCM5700, "unknown BCM5700" }, 322 { BGE_ASICREV_BCM5701, "unknown BCM5701" }, 323 { BGE_ASICREV_BCM5703, "unknown BCM5703" }, 324 { BGE_ASICREV_BCM5704, "unknown BCM5704" }, 325 { BGE_ASICREV_BCM5705, "unknown BCM5705" }, 326 { BGE_ASICREV_BCM5750, "unknown BCM5750" }, 327 { BGE_ASICREV_BCM5714_A0, "unknown BCM5714" }, 328 { BGE_ASICREV_BCM5752, "unknown BCM5752" }, 329 { BGE_ASICREV_BCM5780, "unknown BCM5780" }, 330 { BGE_ASICREV_BCM5714, "unknown BCM5714" }, 331 { BGE_ASICREV_BCM5755, "unknown BCM5755" }, 332 { BGE_ASICREV_BCM5761, "unknown BCM5761" }, 333 { BGE_ASICREV_BCM5784, "unknown BCM5784" }, 334 { BGE_ASICREV_BCM5785, "unknown BCM5785" }, 335 /* 5754 and 5787 share the same ASIC ID */ 336 { BGE_ASICREV_BCM5787, "unknown BCM5754/5787" }, 337 { BGE_ASICREV_BCM5906, "unknown BCM5906" }, 338 { BGE_ASICREV_BCM57780, "unknown BCM57780" }, 339 { BGE_ASICREV_BCM5717, "unknown BCM5717" }, 340 341 { 0, NULL } 342 }; 343 344 #define BGE_IS_JUMBO_CAPABLE(sc) ((sc)->bge_flags & BGE_FLAG_JUMBO) 345 #define BGE_IS_5700_FAMILY(sc) ((sc)->bge_flags & BGE_FLAG_5700_FAMILY) 346 #define BGE_IS_5705_PLUS(sc) ((sc)->bge_flags & BGE_FLAG_5705_PLUS) 347 #define BGE_IS_5714_FAMILY(sc) ((sc)->bge_flags & BGE_FLAG_5714_FAMILY) 348 #define BGE_IS_575X_PLUS(sc) ((sc)->bge_flags & BGE_FLAG_575X_PLUS) 349 #define BGE_IS_5755_PLUS(sc) ((sc)->bge_flags & BGE_FLAG_5755_PLUS) 350 #define BGE_IS_5717_PLUS(sc) ((sc)->bge_flags & BGE_FLAG_5717_PLUS) 351 352 const struct bge_revision * bge_lookup_rev(uint32_t); 353 const struct bge_vendor * bge_lookup_vendor(uint16_t); 354 355 typedef int (*bge_eaddr_fcn_t)(struct bge_softc *, uint8_t[]); 356 357 static int bge_probe(device_t); 358 static int bge_attach(device_t); 359 static int bge_detach(device_t); 360 static int bge_suspend(device_t); 361 static int bge_resume(device_t); 362 static void bge_release_resources(struct bge_softc *); 363 static void bge_dma_map_addr(void *, bus_dma_segment_t *, int, int); 364 static int bge_dma_alloc(struct bge_softc *); 365 static void bge_dma_free(struct bge_softc *); 366 static int bge_dma_ring_alloc(struct bge_softc *, bus_size_t, bus_size_t, 367 bus_dma_tag_t *, uint8_t **, bus_dmamap_t *, bus_addr_t *, const char *); 368 369 static int bge_get_eaddr_fw(struct bge_softc *sc, uint8_t ether_addr[]); 370 static int bge_get_eaddr_mem(struct bge_softc *, uint8_t[]); 371 static int bge_get_eaddr_nvram(struct bge_softc *, uint8_t[]); 372 static int bge_get_eaddr_eeprom(struct bge_softc *, uint8_t[]); 373 static int bge_get_eaddr(struct bge_softc *, uint8_t[]); 374 375 static void bge_txeof(struct bge_softc *, uint16_t); 376 static void bge_rxcsum(struct bge_softc *, struct bge_rx_bd *, struct mbuf *); 377 static int bge_rxeof(struct bge_softc *, uint16_t, int); 378 379 static void bge_asf_driver_up (struct bge_softc *); 380 static void bge_tick(void *); 381 static void bge_stats_clear_regs(struct bge_softc *); 382 static void bge_stats_update(struct bge_softc *); 383 static void bge_stats_update_regs(struct bge_softc *); 384 static struct mbuf *bge_check_short_dma(struct mbuf *); 385 static struct mbuf *bge_setup_tso(struct bge_softc *, struct mbuf *, 386 uint16_t *, uint16_t *); 387 static int bge_encap(struct bge_softc *, struct mbuf **, uint32_t *); 388 389 static void bge_intr(void *); 390 static int bge_msi_intr(void *); 391 static void bge_intr_task(void *, int); 392 static void bge_start_locked(struct ifnet *); 393 static void bge_start(struct ifnet *); 394 static int bge_ioctl(struct ifnet *, u_long, caddr_t); 395 static void bge_init_locked(struct bge_softc *); 396 static void bge_init(void *); 397 static void bge_stop(struct bge_softc *); 398 static void bge_watchdog(struct bge_softc *); 399 static int bge_shutdown(device_t); 400 static int bge_ifmedia_upd_locked(struct ifnet *); 401 static int bge_ifmedia_upd(struct ifnet *); 402 static void bge_ifmedia_sts(struct ifnet *, struct ifmediareq *); 403 404 static uint8_t bge_nvram_getbyte(struct bge_softc *, int, uint8_t *); 405 static int bge_read_nvram(struct bge_softc *, caddr_t, int, int); 406 407 static uint8_t bge_eeprom_getbyte(struct bge_softc *, int, uint8_t *); 408 static int bge_read_eeprom(struct bge_softc *, caddr_t, int, int); 409 410 static void bge_setpromisc(struct bge_softc *); 411 static void bge_setmulti(struct bge_softc *); 412 static void bge_setvlan(struct bge_softc *); 413 414 static __inline void bge_rxreuse_std(struct bge_softc *, int); 415 static __inline void bge_rxreuse_jumbo(struct bge_softc *, int); 416 static int bge_newbuf_std(struct bge_softc *, int); 417 static int bge_newbuf_jumbo(struct bge_softc *, int); 418 static int bge_init_rx_ring_std(struct bge_softc *); 419 static void bge_free_rx_ring_std(struct bge_softc *); 420 static int bge_init_rx_ring_jumbo(struct bge_softc *); 421 static void bge_free_rx_ring_jumbo(struct bge_softc *); 422 static void bge_free_tx_ring(struct bge_softc *); 423 static int bge_init_tx_ring(struct bge_softc *); 424 425 static int bge_chipinit(struct bge_softc *); 426 static int bge_blockinit(struct bge_softc *); 427 428 static int bge_has_eaddr(struct bge_softc *); 429 static uint32_t bge_readmem_ind(struct bge_softc *, int); 430 static void bge_writemem_ind(struct bge_softc *, int, int); 431 static void bge_writembx(struct bge_softc *, int, int); 432 #ifdef notdef 433 static uint32_t bge_readreg_ind(struct bge_softc *, int); 434 #endif 435 static void bge_writemem_direct(struct bge_softc *, int, int); 436 static void bge_writereg_ind(struct bge_softc *, int, int); 437 438 static int bge_miibus_readreg(device_t, int, int); 439 static int bge_miibus_writereg(device_t, int, int, int); 440 static void bge_miibus_statchg(device_t); 441 #ifdef DEVICE_POLLING 442 static int bge_poll(struct ifnet *ifp, enum poll_cmd cmd, int count); 443 #endif 444 445 #define BGE_RESET_START 1 446 #define BGE_RESET_STOP 2 447 static void bge_sig_post_reset(struct bge_softc *, int); 448 static void bge_sig_legacy(struct bge_softc *, int); 449 static void bge_sig_pre_reset(struct bge_softc *, int); 450 static void bge_stop_fw(struct bge_softc *); 451 static int bge_reset(struct bge_softc *); 452 static void bge_link_upd(struct bge_softc *); 453 454 /* 455 * The BGE_REGISTER_DEBUG option is only for low-level debugging. It may 456 * leak information to untrusted users. It is also known to cause alignment 457 * traps on certain architectures. 458 */ 459 #ifdef BGE_REGISTER_DEBUG 460 static int bge_sysctl_debug_info(SYSCTL_HANDLER_ARGS); 461 static int bge_sysctl_reg_read(SYSCTL_HANDLER_ARGS); 462 static int bge_sysctl_mem_read(SYSCTL_HANDLER_ARGS); 463 #endif 464 static void bge_add_sysctls(struct bge_softc *); 465 static void bge_add_sysctl_stats_regs(struct bge_softc *, 466 struct sysctl_ctx_list *, struct sysctl_oid_list *); 467 static void bge_add_sysctl_stats(struct bge_softc *, struct sysctl_ctx_list *, 468 struct sysctl_oid_list *); 469 static int bge_sysctl_stats(SYSCTL_HANDLER_ARGS); 470 471 static device_method_t bge_methods[] = { 472 /* Device interface */ 473 DEVMETHOD(device_probe, bge_probe), 474 DEVMETHOD(device_attach, bge_attach), 475 DEVMETHOD(device_detach, bge_detach), 476 DEVMETHOD(device_shutdown, bge_shutdown), 477 DEVMETHOD(device_suspend, bge_suspend), 478 DEVMETHOD(device_resume, bge_resume), 479 480 /* bus interface */ 481 DEVMETHOD(bus_print_child, bus_generic_print_child), 482 DEVMETHOD(bus_driver_added, bus_generic_driver_added), 483 484 /* MII interface */ 485 DEVMETHOD(miibus_readreg, bge_miibus_readreg), 486 DEVMETHOD(miibus_writereg, bge_miibus_writereg), 487 DEVMETHOD(miibus_statchg, bge_miibus_statchg), 488 489 { 0, 0 } 490 }; 491 492 static driver_t bge_driver = { 493 "bge", 494 bge_methods, 495 sizeof(struct bge_softc) 496 }; 497 498 static devclass_t bge_devclass; 499 500 DRIVER_MODULE(bge, pci, bge_driver, bge_devclass, 0, 0); 501 DRIVER_MODULE(miibus, bge, miibus_driver, miibus_devclass, 0, 0); 502 503 static int bge_allow_asf = 1; 504 505 TUNABLE_INT("hw.bge.allow_asf", &bge_allow_asf); 506 507 SYSCTL_NODE(_hw, OID_AUTO, bge, CTLFLAG_RD, 0, "BGE driver parameters"); 508 SYSCTL_INT(_hw_bge, OID_AUTO, allow_asf, CTLFLAG_RD, &bge_allow_asf, 0, 509 "Allow ASF mode if available"); 510 511 #define SPARC64_BLADE_1500_MODEL "SUNW,Sun-Blade-1500" 512 #define SPARC64_BLADE_1500_PATH_BGE "/pci@1f,700000/network@2" 513 #define SPARC64_BLADE_2500_MODEL "SUNW,Sun-Blade-2500" 514 #define SPARC64_BLADE_2500_PATH_BGE "/pci@1c,600000/network@3" 515 #define SPARC64_OFW_SUBVENDOR "subsystem-vendor-id" 516 517 static int 518 bge_has_eaddr(struct bge_softc *sc) 519 { 520 #ifdef __sparc64__ 521 char buf[sizeof(SPARC64_BLADE_1500_PATH_BGE)]; 522 device_t dev; 523 uint32_t subvendor; 524 525 dev = sc->bge_dev; 526 527 /* 528 * The on-board BGEs found in sun4u machines aren't fitted with 529 * an EEPROM which means that we have to obtain the MAC address 530 * via OFW and that some tests will always fail. We distinguish 531 * such BGEs by the subvendor ID, which also has to be obtained 532 * from OFW instead of the PCI configuration space as the latter 533 * indicates Broadcom as the subvendor of the netboot interface. 534 * For early Blade 1500 and 2500 we even have to check the OFW 535 * device path as the subvendor ID always defaults to Broadcom 536 * there. 537 */ 538 if (OF_getprop(ofw_bus_get_node(dev), SPARC64_OFW_SUBVENDOR, 539 &subvendor, sizeof(subvendor)) == sizeof(subvendor) && 540 (subvendor == FJTSU_VENDORID || subvendor == SUN_VENDORID)) 541 return (0); 542 memset(buf, 0, sizeof(buf)); 543 if (OF_package_to_path(ofw_bus_get_node(dev), buf, sizeof(buf)) > 0) { 544 if (strcmp(sparc64_model, SPARC64_BLADE_1500_MODEL) == 0 && 545 strcmp(buf, SPARC64_BLADE_1500_PATH_BGE) == 0) 546 return (0); 547 if (strcmp(sparc64_model, SPARC64_BLADE_2500_MODEL) == 0 && 548 strcmp(buf, SPARC64_BLADE_2500_PATH_BGE) == 0) 549 return (0); 550 } 551 #endif 552 return (1); 553 } 554 555 static uint32_t 556 bge_readmem_ind(struct bge_softc *sc, int off) 557 { 558 device_t dev; 559 uint32_t val; 560 561 if (sc->bge_asicrev == BGE_ASICREV_BCM5906 && 562 off >= BGE_STATS_BLOCK && off < BGE_SEND_RING_1_TO_4) 563 return (0); 564 565 dev = sc->bge_dev; 566 567 pci_write_config(dev, BGE_PCI_MEMWIN_BASEADDR, off, 4); 568 val = pci_read_config(dev, BGE_PCI_MEMWIN_DATA, 4); 569 pci_write_config(dev, BGE_PCI_MEMWIN_BASEADDR, 0, 4); 570 return (val); 571 } 572 573 static void 574 bge_writemem_ind(struct bge_softc *sc, int off, int val) 575 { 576 device_t dev; 577 578 if (sc->bge_asicrev == BGE_ASICREV_BCM5906 && 579 off >= BGE_STATS_BLOCK && off < BGE_SEND_RING_1_TO_4) 580 return; 581 582 dev = sc->bge_dev; 583 584 pci_write_config(dev, BGE_PCI_MEMWIN_BASEADDR, off, 4); 585 pci_write_config(dev, BGE_PCI_MEMWIN_DATA, val, 4); 586 pci_write_config(dev, BGE_PCI_MEMWIN_BASEADDR, 0, 4); 587 } 588 589 #ifdef notdef 590 static uint32_t 591 bge_readreg_ind(struct bge_softc *sc, int off) 592 { 593 device_t dev; 594 595 dev = sc->bge_dev; 596 597 pci_write_config(dev, BGE_PCI_REG_BASEADDR, off, 4); 598 return (pci_read_config(dev, BGE_PCI_REG_DATA, 4)); 599 } 600 #endif 601 602 static void 603 bge_writereg_ind(struct bge_softc *sc, int off, int val) 604 { 605 device_t dev; 606 607 dev = sc->bge_dev; 608 609 pci_write_config(dev, BGE_PCI_REG_BASEADDR, off, 4); 610 pci_write_config(dev, BGE_PCI_REG_DATA, val, 4); 611 } 612 613 static void 614 bge_writemem_direct(struct bge_softc *sc, int off, int val) 615 { 616 CSR_WRITE_4(sc, off, val); 617 } 618 619 static void 620 bge_writembx(struct bge_softc *sc, int off, int val) 621 { 622 if (sc->bge_asicrev == BGE_ASICREV_BCM5906) 623 off += BGE_LPMBX_IRQ0_HI - BGE_MBX_IRQ0_HI; 624 625 CSR_WRITE_4(sc, off, val); 626 } 627 628 /* 629 * Map a single buffer address. 630 */ 631 632 static void 633 bge_dma_map_addr(void *arg, bus_dma_segment_t *segs, int nseg, int error) 634 { 635 struct bge_dmamap_arg *ctx; 636 637 if (error) 638 return; 639 640 KASSERT(nseg == 1, ("%s: %d segments returned!", __func__, nseg)); 641 642 ctx = arg; 643 ctx->bge_busaddr = segs->ds_addr; 644 } 645 646 static uint8_t 647 bge_nvram_getbyte(struct bge_softc *sc, int addr, uint8_t *dest) 648 { 649 uint32_t access, byte = 0; 650 int i; 651 652 /* Lock. */ 653 CSR_WRITE_4(sc, BGE_NVRAM_SWARB, BGE_NVRAMSWARB_SET1); 654 for (i = 0; i < 8000; i++) { 655 if (CSR_READ_4(sc, BGE_NVRAM_SWARB) & BGE_NVRAMSWARB_GNT1) 656 break; 657 DELAY(20); 658 } 659 if (i == 8000) 660 return (1); 661 662 /* Enable access. */ 663 access = CSR_READ_4(sc, BGE_NVRAM_ACCESS); 664 CSR_WRITE_4(sc, BGE_NVRAM_ACCESS, access | BGE_NVRAMACC_ENABLE); 665 666 CSR_WRITE_4(sc, BGE_NVRAM_ADDR, addr & 0xfffffffc); 667 CSR_WRITE_4(sc, BGE_NVRAM_CMD, BGE_NVRAM_READCMD); 668 for (i = 0; i < BGE_TIMEOUT * 10; i++) { 669 DELAY(10); 670 if (CSR_READ_4(sc, BGE_NVRAM_CMD) & BGE_NVRAMCMD_DONE) { 671 DELAY(10); 672 break; 673 } 674 } 675 676 if (i == BGE_TIMEOUT * 10) { 677 if_printf(sc->bge_ifp, "nvram read timed out\n"); 678 return (1); 679 } 680 681 /* Get result. */ 682 byte = CSR_READ_4(sc, BGE_NVRAM_RDDATA); 683 684 *dest = (bswap32(byte) >> ((addr % 4) * 8)) & 0xFF; 685 686 /* Disable access. */ 687 CSR_WRITE_4(sc, BGE_NVRAM_ACCESS, access); 688 689 /* Unlock. */ 690 CSR_WRITE_4(sc, BGE_NVRAM_SWARB, BGE_NVRAMSWARB_CLR1); 691 CSR_READ_4(sc, BGE_NVRAM_SWARB); 692 693 return (0); 694 } 695 696 /* 697 * Read a sequence of bytes from NVRAM. 698 */ 699 static int 700 bge_read_nvram(struct bge_softc *sc, caddr_t dest, int off, int cnt) 701 { 702 int err = 0, i; 703 uint8_t byte = 0; 704 705 if (sc->bge_asicrev != BGE_ASICREV_BCM5906) 706 return (1); 707 708 for (i = 0; i < cnt; i++) { 709 err = bge_nvram_getbyte(sc, off + i, &byte); 710 if (err) 711 break; 712 *(dest + i) = byte; 713 } 714 715 return (err ? 1 : 0); 716 } 717 718 /* 719 * Read a byte of data stored in the EEPROM at address 'addr.' The 720 * BCM570x supports both the traditional bitbang interface and an 721 * auto access interface for reading the EEPROM. We use the auto 722 * access method. 723 */ 724 static uint8_t 725 bge_eeprom_getbyte(struct bge_softc *sc, int addr, uint8_t *dest) 726 { 727 int i; 728 uint32_t byte = 0; 729 730 /* 731 * Enable use of auto EEPROM access so we can avoid 732 * having to use the bitbang method. 733 */ 734 BGE_SETBIT(sc, BGE_MISC_LOCAL_CTL, BGE_MLC_AUTO_EEPROM); 735 736 /* Reset the EEPROM, load the clock period. */ 737 CSR_WRITE_4(sc, BGE_EE_ADDR, 738 BGE_EEADDR_RESET | BGE_EEHALFCLK(BGE_HALFCLK_384SCL)); 739 DELAY(20); 740 741 /* Issue the read EEPROM command. */ 742 CSR_WRITE_4(sc, BGE_EE_ADDR, BGE_EE_READCMD | addr); 743 744 /* Wait for completion */ 745 for(i = 0; i < BGE_TIMEOUT * 10; i++) { 746 DELAY(10); 747 if (CSR_READ_4(sc, BGE_EE_ADDR) & BGE_EEADDR_DONE) 748 break; 749 } 750 751 if (i == BGE_TIMEOUT * 10) { 752 device_printf(sc->bge_dev, "EEPROM read timed out\n"); 753 return (1); 754 } 755 756 /* Get result. */ 757 byte = CSR_READ_4(sc, BGE_EE_DATA); 758 759 *dest = (byte >> ((addr % 4) * 8)) & 0xFF; 760 761 return (0); 762 } 763 764 /* 765 * Read a sequence of bytes from the EEPROM. 766 */ 767 static int 768 bge_read_eeprom(struct bge_softc *sc, caddr_t dest, int off, int cnt) 769 { 770 int i, error = 0; 771 uint8_t byte = 0; 772 773 for (i = 0; i < cnt; i++) { 774 error = bge_eeprom_getbyte(sc, off + i, &byte); 775 if (error) 776 break; 777 *(dest + i) = byte; 778 } 779 780 return (error ? 1 : 0); 781 } 782 783 static int 784 bge_miibus_readreg(device_t dev, int phy, int reg) 785 { 786 struct bge_softc *sc; 787 uint32_t val; 788 int i; 789 790 sc = device_get_softc(dev); 791 792 /* Clear the autopoll bit if set, otherwise may trigger PCI errors. */ 793 if ((sc->bge_mi_mode & BGE_MIMODE_AUTOPOLL) != 0) { 794 CSR_WRITE_4(sc, BGE_MI_MODE, 795 sc->bge_mi_mode & ~BGE_MIMODE_AUTOPOLL); 796 DELAY(80); 797 } 798 799 CSR_WRITE_4(sc, BGE_MI_COMM, BGE_MICMD_READ | BGE_MICOMM_BUSY | 800 BGE_MIPHY(phy) | BGE_MIREG(reg)); 801 802 /* Poll for the PHY register access to complete. */ 803 for (i = 0; i < BGE_TIMEOUT; i++) { 804 DELAY(10); 805 val = CSR_READ_4(sc, BGE_MI_COMM); 806 if ((val & BGE_MICOMM_BUSY) == 0) { 807 DELAY(5); 808 val = CSR_READ_4(sc, BGE_MI_COMM); 809 break; 810 } 811 } 812 813 if (i == BGE_TIMEOUT) { 814 device_printf(sc->bge_dev, 815 "PHY read timed out (phy %d, reg %d, val 0x%08x)\n", 816 phy, reg, val); 817 val = 0; 818 } 819 820 /* Restore the autopoll bit if necessary. */ 821 if ((sc->bge_mi_mode & BGE_MIMODE_AUTOPOLL) != 0) { 822 CSR_WRITE_4(sc, BGE_MI_MODE, sc->bge_mi_mode); 823 DELAY(80); 824 } 825 826 if (val & BGE_MICOMM_READFAIL) 827 return (0); 828 829 return (val & 0xFFFF); 830 } 831 832 static int 833 bge_miibus_writereg(device_t dev, int phy, int reg, int val) 834 { 835 struct bge_softc *sc; 836 int i; 837 838 sc = device_get_softc(dev); 839 840 if (sc->bge_asicrev == BGE_ASICREV_BCM5906 && 841 (reg == BRGPHY_MII_1000CTL || reg == BRGPHY_MII_AUXCTL)) 842 return (0); 843 844 /* Clear the autopoll bit if set, otherwise may trigger PCI errors. */ 845 if ((sc->bge_mi_mode & BGE_MIMODE_AUTOPOLL) != 0) { 846 CSR_WRITE_4(sc, BGE_MI_MODE, 847 sc->bge_mi_mode & ~BGE_MIMODE_AUTOPOLL); 848 DELAY(80); 849 } 850 851 CSR_WRITE_4(sc, BGE_MI_COMM, BGE_MICMD_WRITE | BGE_MICOMM_BUSY | 852 BGE_MIPHY(phy) | BGE_MIREG(reg) | val); 853 854 for (i = 0; i < BGE_TIMEOUT; i++) { 855 DELAY(10); 856 if (!(CSR_READ_4(sc, BGE_MI_COMM) & BGE_MICOMM_BUSY)) { 857 DELAY(5); 858 CSR_READ_4(sc, BGE_MI_COMM); /* dummy read */ 859 break; 860 } 861 } 862 863 /* Restore the autopoll bit if necessary. */ 864 if ((sc->bge_mi_mode & BGE_MIMODE_AUTOPOLL) != 0) { 865 CSR_WRITE_4(sc, BGE_MI_MODE, sc->bge_mi_mode); 866 DELAY(80); 867 } 868 869 if (i == BGE_TIMEOUT) 870 device_printf(sc->bge_dev, 871 "PHY write timed out (phy %d, reg %d, val %d)\n", 872 phy, reg, val); 873 874 return (0); 875 } 876 877 static void 878 bge_miibus_statchg(device_t dev) 879 { 880 struct bge_softc *sc; 881 struct mii_data *mii; 882 sc = device_get_softc(dev); 883 mii = device_get_softc(sc->bge_miibus); 884 885 if ((mii->mii_media_status & (IFM_ACTIVE | IFM_AVALID)) == 886 (IFM_ACTIVE | IFM_AVALID)) { 887 switch (IFM_SUBTYPE(mii->mii_media_active)) { 888 case IFM_10_T: 889 case IFM_100_TX: 890 sc->bge_link = 1; 891 break; 892 case IFM_1000_T: 893 case IFM_1000_SX: 894 case IFM_2500_SX: 895 if (sc->bge_asicrev != BGE_ASICREV_BCM5906) 896 sc->bge_link = 1; 897 else 898 sc->bge_link = 0; 899 break; 900 default: 901 sc->bge_link = 0; 902 break; 903 } 904 } else 905 sc->bge_link = 0; 906 if (sc->bge_link == 0) 907 return; 908 BGE_CLRBIT(sc, BGE_MAC_MODE, BGE_MACMODE_PORTMODE); 909 if (IFM_SUBTYPE(mii->mii_media_active) == IFM_1000_T || 910 IFM_SUBTYPE(mii->mii_media_active) == IFM_1000_SX) 911 BGE_SETBIT(sc, BGE_MAC_MODE, BGE_PORTMODE_GMII); 912 else 913 BGE_SETBIT(sc, BGE_MAC_MODE, BGE_PORTMODE_MII); 914 915 if (IFM_OPTIONS(mii->mii_media_active & IFM_FDX) != 0) { 916 BGE_CLRBIT(sc, BGE_MAC_MODE, BGE_MACMODE_HALF_DUPLEX); 917 if ((IFM_OPTIONS(mii->mii_media_active) & 918 IFM_ETH_TXPAUSE) != 0) 919 BGE_SETBIT(sc, BGE_TX_MODE, BGE_TXMODE_FLOWCTL_ENABLE); 920 else 921 BGE_CLRBIT(sc, BGE_TX_MODE, BGE_TXMODE_FLOWCTL_ENABLE); 922 if ((IFM_OPTIONS(mii->mii_media_active) & 923 IFM_ETH_RXPAUSE) != 0) 924 BGE_SETBIT(sc, BGE_RX_MODE, BGE_RXMODE_FLOWCTL_ENABLE); 925 else 926 BGE_CLRBIT(sc, BGE_RX_MODE, BGE_RXMODE_FLOWCTL_ENABLE); 927 } else { 928 BGE_SETBIT(sc, BGE_MAC_MODE, BGE_MACMODE_HALF_DUPLEX); 929 BGE_CLRBIT(sc, BGE_TX_MODE, BGE_TXMODE_FLOWCTL_ENABLE); 930 BGE_CLRBIT(sc, BGE_RX_MODE, BGE_RXMODE_FLOWCTL_ENABLE); 931 } 932 } 933 934 /* 935 * Intialize a standard receive ring descriptor. 936 */ 937 static int 938 bge_newbuf_std(struct bge_softc *sc, int i) 939 { 940 struct mbuf *m; 941 struct bge_rx_bd *r; 942 bus_dma_segment_t segs[1]; 943 bus_dmamap_t map; 944 int error, nsegs; 945 946 m = m_getcl(M_DONTWAIT, MT_DATA, M_PKTHDR); 947 if (m == NULL) 948 return (ENOBUFS); 949 m->m_len = m->m_pkthdr.len = MCLBYTES; 950 if ((sc->bge_flags & BGE_FLAG_RX_ALIGNBUG) == 0) 951 m_adj(m, ETHER_ALIGN); 952 953 error = bus_dmamap_load_mbuf_sg(sc->bge_cdata.bge_rx_mtag, 954 sc->bge_cdata.bge_rx_std_sparemap, m, segs, &nsegs, 0); 955 if (error != 0) { 956 m_freem(m); 957 return (error); 958 } 959 if (sc->bge_cdata.bge_rx_std_chain[i] != NULL) { 960 bus_dmamap_sync(sc->bge_cdata.bge_rx_mtag, 961 sc->bge_cdata.bge_rx_std_dmamap[i], BUS_DMASYNC_POSTREAD); 962 bus_dmamap_unload(sc->bge_cdata.bge_rx_mtag, 963 sc->bge_cdata.bge_rx_std_dmamap[i]); 964 } 965 map = sc->bge_cdata.bge_rx_std_dmamap[i]; 966 sc->bge_cdata.bge_rx_std_dmamap[i] = sc->bge_cdata.bge_rx_std_sparemap; 967 sc->bge_cdata.bge_rx_std_sparemap = map; 968 sc->bge_cdata.bge_rx_std_chain[i] = m; 969 sc->bge_cdata.bge_rx_std_seglen[i] = segs[0].ds_len; 970 r = &sc->bge_ldata.bge_rx_std_ring[sc->bge_std]; 971 r->bge_addr.bge_addr_lo = BGE_ADDR_LO(segs[0].ds_addr); 972 r->bge_addr.bge_addr_hi = BGE_ADDR_HI(segs[0].ds_addr); 973 r->bge_flags = BGE_RXBDFLAG_END; 974 r->bge_len = segs[0].ds_len; 975 r->bge_idx = i; 976 977 bus_dmamap_sync(sc->bge_cdata.bge_rx_mtag, 978 sc->bge_cdata.bge_rx_std_dmamap[i], BUS_DMASYNC_PREREAD); 979 980 return (0); 981 } 982 983 /* 984 * Initialize a jumbo receive ring descriptor. This allocates 985 * a jumbo buffer from the pool managed internally by the driver. 986 */ 987 static int 988 bge_newbuf_jumbo(struct bge_softc *sc, int i) 989 { 990 bus_dma_segment_t segs[BGE_NSEG_JUMBO]; 991 bus_dmamap_t map; 992 struct bge_extrx_bd *r; 993 struct mbuf *m; 994 int error, nsegs; 995 996 MGETHDR(m, M_DONTWAIT, MT_DATA); 997 if (m == NULL) 998 return (ENOBUFS); 999 1000 m_cljget(m, M_DONTWAIT, MJUM9BYTES); 1001 if (!(m->m_flags & M_EXT)) { 1002 m_freem(m); 1003 return (ENOBUFS); 1004 } 1005 m->m_len = m->m_pkthdr.len = MJUM9BYTES; 1006 if ((sc->bge_flags & BGE_FLAG_RX_ALIGNBUG) == 0) 1007 m_adj(m, ETHER_ALIGN); 1008 1009 error = bus_dmamap_load_mbuf_sg(sc->bge_cdata.bge_mtag_jumbo, 1010 sc->bge_cdata.bge_rx_jumbo_sparemap, m, segs, &nsegs, 0); 1011 if (error != 0) { 1012 m_freem(m); 1013 return (error); 1014 } 1015 1016 if (sc->bge_cdata.bge_rx_jumbo_chain[i] == NULL) { 1017 bus_dmamap_sync(sc->bge_cdata.bge_mtag_jumbo, 1018 sc->bge_cdata.bge_rx_jumbo_dmamap[i], BUS_DMASYNC_POSTREAD); 1019 bus_dmamap_unload(sc->bge_cdata.bge_mtag_jumbo, 1020 sc->bge_cdata.bge_rx_jumbo_dmamap[i]); 1021 } 1022 map = sc->bge_cdata.bge_rx_jumbo_dmamap[i]; 1023 sc->bge_cdata.bge_rx_jumbo_dmamap[i] = 1024 sc->bge_cdata.bge_rx_jumbo_sparemap; 1025 sc->bge_cdata.bge_rx_jumbo_sparemap = map; 1026 sc->bge_cdata.bge_rx_jumbo_chain[i] = m; 1027 sc->bge_cdata.bge_rx_jumbo_seglen[i][0] = 0; 1028 sc->bge_cdata.bge_rx_jumbo_seglen[i][1] = 0; 1029 sc->bge_cdata.bge_rx_jumbo_seglen[i][2] = 0; 1030 sc->bge_cdata.bge_rx_jumbo_seglen[i][3] = 0; 1031 1032 /* 1033 * Fill in the extended RX buffer descriptor. 1034 */ 1035 r = &sc->bge_ldata.bge_rx_jumbo_ring[sc->bge_jumbo]; 1036 r->bge_flags = BGE_RXBDFLAG_JUMBO_RING | BGE_RXBDFLAG_END; 1037 r->bge_idx = i; 1038 r->bge_len3 = r->bge_len2 = r->bge_len1 = 0; 1039 switch (nsegs) { 1040 case 4: 1041 r->bge_addr3.bge_addr_lo = BGE_ADDR_LO(segs[3].ds_addr); 1042 r->bge_addr3.bge_addr_hi = BGE_ADDR_HI(segs[3].ds_addr); 1043 r->bge_len3 = segs[3].ds_len; 1044 sc->bge_cdata.bge_rx_jumbo_seglen[i][3] = segs[3].ds_len; 1045 case 3: 1046 r->bge_addr2.bge_addr_lo = BGE_ADDR_LO(segs[2].ds_addr); 1047 r->bge_addr2.bge_addr_hi = BGE_ADDR_HI(segs[2].ds_addr); 1048 r->bge_len2 = segs[2].ds_len; 1049 sc->bge_cdata.bge_rx_jumbo_seglen[i][2] = segs[2].ds_len; 1050 case 2: 1051 r->bge_addr1.bge_addr_lo = BGE_ADDR_LO(segs[1].ds_addr); 1052 r->bge_addr1.bge_addr_hi = BGE_ADDR_HI(segs[1].ds_addr); 1053 r->bge_len1 = segs[1].ds_len; 1054 sc->bge_cdata.bge_rx_jumbo_seglen[i][1] = segs[1].ds_len; 1055 case 1: 1056 r->bge_addr0.bge_addr_lo = BGE_ADDR_LO(segs[0].ds_addr); 1057 r->bge_addr0.bge_addr_hi = BGE_ADDR_HI(segs[0].ds_addr); 1058 r->bge_len0 = segs[0].ds_len; 1059 sc->bge_cdata.bge_rx_jumbo_seglen[i][0] = segs[0].ds_len; 1060 break; 1061 default: 1062 panic("%s: %d segments\n", __func__, nsegs); 1063 } 1064 1065 bus_dmamap_sync(sc->bge_cdata.bge_mtag_jumbo, 1066 sc->bge_cdata.bge_rx_jumbo_dmamap[i], BUS_DMASYNC_PREREAD); 1067 1068 return (0); 1069 } 1070 1071 static int 1072 bge_init_rx_ring_std(struct bge_softc *sc) 1073 { 1074 int error, i; 1075 1076 bzero(sc->bge_ldata.bge_rx_std_ring, BGE_STD_RX_RING_SZ); 1077 sc->bge_std = 0; 1078 for (i = 0; i < BGE_STD_RX_RING_CNT; i++) { 1079 if ((error = bge_newbuf_std(sc, i)) != 0) 1080 return (error); 1081 BGE_INC(sc->bge_std, BGE_STD_RX_RING_CNT); 1082 } 1083 1084 bus_dmamap_sync(sc->bge_cdata.bge_rx_std_ring_tag, 1085 sc->bge_cdata.bge_rx_std_ring_map, BUS_DMASYNC_PREWRITE); 1086 1087 sc->bge_std = 0; 1088 bge_writembx(sc, BGE_MBX_RX_STD_PROD_LO, BGE_STD_RX_RING_CNT - 1); 1089 1090 return (0); 1091 } 1092 1093 static void 1094 bge_free_rx_ring_std(struct bge_softc *sc) 1095 { 1096 int i; 1097 1098 for (i = 0; i < BGE_STD_RX_RING_CNT; i++) { 1099 if (sc->bge_cdata.bge_rx_std_chain[i] != NULL) { 1100 bus_dmamap_sync(sc->bge_cdata.bge_rx_mtag, 1101 sc->bge_cdata.bge_rx_std_dmamap[i], 1102 BUS_DMASYNC_POSTREAD); 1103 bus_dmamap_unload(sc->bge_cdata.bge_rx_mtag, 1104 sc->bge_cdata.bge_rx_std_dmamap[i]); 1105 m_freem(sc->bge_cdata.bge_rx_std_chain[i]); 1106 sc->bge_cdata.bge_rx_std_chain[i] = NULL; 1107 } 1108 bzero((char *)&sc->bge_ldata.bge_rx_std_ring[i], 1109 sizeof(struct bge_rx_bd)); 1110 } 1111 } 1112 1113 static int 1114 bge_init_rx_ring_jumbo(struct bge_softc *sc) 1115 { 1116 struct bge_rcb *rcb; 1117 int error, i; 1118 1119 bzero(sc->bge_ldata.bge_rx_jumbo_ring, BGE_JUMBO_RX_RING_SZ); 1120 sc->bge_jumbo = 0; 1121 for (i = 0; i < BGE_JUMBO_RX_RING_CNT; i++) { 1122 if ((error = bge_newbuf_jumbo(sc, i)) != 0) 1123 return (error); 1124 BGE_INC(sc->bge_jumbo, BGE_JUMBO_RX_RING_CNT); 1125 } 1126 1127 bus_dmamap_sync(sc->bge_cdata.bge_rx_jumbo_ring_tag, 1128 sc->bge_cdata.bge_rx_jumbo_ring_map, BUS_DMASYNC_PREWRITE); 1129 1130 sc->bge_jumbo = 0; 1131 1132 /* Enable the jumbo receive producer ring. */ 1133 rcb = &sc->bge_ldata.bge_info.bge_jumbo_rx_rcb; 1134 rcb->bge_maxlen_flags = 1135 BGE_RCB_MAXLEN_FLAGS(0, BGE_RCB_FLAG_USE_EXT_RX_BD); 1136 CSR_WRITE_4(sc, BGE_RX_JUMBO_RCB_MAXLEN_FLAGS, rcb->bge_maxlen_flags); 1137 1138 bge_writembx(sc, BGE_MBX_RX_JUMBO_PROD_LO, BGE_JUMBO_RX_RING_CNT - 1); 1139 1140 return (0); 1141 } 1142 1143 static void 1144 bge_free_rx_ring_jumbo(struct bge_softc *sc) 1145 { 1146 int i; 1147 1148 for (i = 0; i < BGE_JUMBO_RX_RING_CNT; i++) { 1149 if (sc->bge_cdata.bge_rx_jumbo_chain[i] != NULL) { 1150 bus_dmamap_sync(sc->bge_cdata.bge_mtag_jumbo, 1151 sc->bge_cdata.bge_rx_jumbo_dmamap[i], 1152 BUS_DMASYNC_POSTREAD); 1153 bus_dmamap_unload(sc->bge_cdata.bge_mtag_jumbo, 1154 sc->bge_cdata.bge_rx_jumbo_dmamap[i]); 1155 m_freem(sc->bge_cdata.bge_rx_jumbo_chain[i]); 1156 sc->bge_cdata.bge_rx_jumbo_chain[i] = NULL; 1157 } 1158 bzero((char *)&sc->bge_ldata.bge_rx_jumbo_ring[i], 1159 sizeof(struct bge_extrx_bd)); 1160 } 1161 } 1162 1163 static void 1164 bge_free_tx_ring(struct bge_softc *sc) 1165 { 1166 int i; 1167 1168 if (sc->bge_ldata.bge_tx_ring == NULL) 1169 return; 1170 1171 for (i = 0; i < BGE_TX_RING_CNT; i++) { 1172 if (sc->bge_cdata.bge_tx_chain[i] != NULL) { 1173 bus_dmamap_sync(sc->bge_cdata.bge_tx_mtag, 1174 sc->bge_cdata.bge_tx_dmamap[i], 1175 BUS_DMASYNC_POSTWRITE); 1176 bus_dmamap_unload(sc->bge_cdata.bge_tx_mtag, 1177 sc->bge_cdata.bge_tx_dmamap[i]); 1178 m_freem(sc->bge_cdata.bge_tx_chain[i]); 1179 sc->bge_cdata.bge_tx_chain[i] = NULL; 1180 } 1181 bzero((char *)&sc->bge_ldata.bge_tx_ring[i], 1182 sizeof(struct bge_tx_bd)); 1183 } 1184 } 1185 1186 static int 1187 bge_init_tx_ring(struct bge_softc *sc) 1188 { 1189 sc->bge_txcnt = 0; 1190 sc->bge_tx_saved_considx = 0; 1191 1192 bzero(sc->bge_ldata.bge_tx_ring, BGE_TX_RING_SZ); 1193 bus_dmamap_sync(sc->bge_cdata.bge_tx_ring_tag, 1194 sc->bge_cdata.bge_tx_ring_map, BUS_DMASYNC_PREWRITE); 1195 1196 /* Initialize transmit producer index for host-memory send ring. */ 1197 sc->bge_tx_prodidx = 0; 1198 bge_writembx(sc, BGE_MBX_TX_HOST_PROD0_LO, sc->bge_tx_prodidx); 1199 1200 /* 5700 b2 errata */ 1201 if (sc->bge_chiprev == BGE_CHIPREV_5700_BX) 1202 bge_writembx(sc, BGE_MBX_TX_HOST_PROD0_LO, sc->bge_tx_prodidx); 1203 1204 /* NIC-memory send ring not used; initialize to zero. */ 1205 bge_writembx(sc, BGE_MBX_TX_NIC_PROD0_LO, 0); 1206 /* 5700 b2 errata */ 1207 if (sc->bge_chiprev == BGE_CHIPREV_5700_BX) 1208 bge_writembx(sc, BGE_MBX_TX_NIC_PROD0_LO, 0); 1209 1210 return (0); 1211 } 1212 1213 static void 1214 bge_setpromisc(struct bge_softc *sc) 1215 { 1216 struct ifnet *ifp; 1217 1218 BGE_LOCK_ASSERT(sc); 1219 1220 ifp = sc->bge_ifp; 1221 1222 /* Enable or disable promiscuous mode as needed. */ 1223 if (ifp->if_flags & IFF_PROMISC) 1224 BGE_SETBIT(sc, BGE_RX_MODE, BGE_RXMODE_RX_PROMISC); 1225 else 1226 BGE_CLRBIT(sc, BGE_RX_MODE, BGE_RXMODE_RX_PROMISC); 1227 } 1228 1229 static void 1230 bge_setmulti(struct bge_softc *sc) 1231 { 1232 struct ifnet *ifp; 1233 struct ifmultiaddr *ifma; 1234 uint32_t hashes[4] = { 0, 0, 0, 0 }; 1235 int h, i; 1236 1237 BGE_LOCK_ASSERT(sc); 1238 1239 ifp = sc->bge_ifp; 1240 1241 if (ifp->if_flags & IFF_ALLMULTI || ifp->if_flags & IFF_PROMISC) { 1242 for (i = 0; i < 4; i++) 1243 CSR_WRITE_4(sc, BGE_MAR0 + (i * 4), 0xFFFFFFFF); 1244 return; 1245 } 1246 1247 /* First, zot all the existing filters. */ 1248 for (i = 0; i < 4; i++) 1249 CSR_WRITE_4(sc, BGE_MAR0 + (i * 4), 0); 1250 1251 /* Now program new ones. */ 1252 if_maddr_rlock(ifp); 1253 TAILQ_FOREACH(ifma, &ifp->if_multiaddrs, ifma_link) { 1254 if (ifma->ifma_addr->sa_family != AF_LINK) 1255 continue; 1256 h = ether_crc32_le(LLADDR((struct sockaddr_dl *) 1257 ifma->ifma_addr), ETHER_ADDR_LEN) & 0x7F; 1258 hashes[(h & 0x60) >> 5] |= 1 << (h & 0x1F); 1259 } 1260 if_maddr_runlock(ifp); 1261 1262 for (i = 0; i < 4; i++) 1263 CSR_WRITE_4(sc, BGE_MAR0 + (i * 4), hashes[i]); 1264 } 1265 1266 static void 1267 bge_setvlan(struct bge_softc *sc) 1268 { 1269 struct ifnet *ifp; 1270 1271 BGE_LOCK_ASSERT(sc); 1272 1273 ifp = sc->bge_ifp; 1274 1275 /* Enable or disable VLAN tag stripping as needed. */ 1276 if (ifp->if_capenable & IFCAP_VLAN_HWTAGGING) 1277 BGE_CLRBIT(sc, BGE_RX_MODE, BGE_RXMODE_RX_KEEP_VLAN_DIAG); 1278 else 1279 BGE_SETBIT(sc, BGE_RX_MODE, BGE_RXMODE_RX_KEEP_VLAN_DIAG); 1280 } 1281 1282 static void 1283 bge_sig_pre_reset(struct bge_softc *sc, int type) 1284 { 1285 1286 /* 1287 * Some chips don't like this so only do this if ASF is enabled 1288 */ 1289 if (sc->bge_asf_mode) 1290 bge_writemem_ind(sc, BGE_SOFTWARE_GENCOMM, BGE_MAGIC_NUMBER); 1291 1292 if (sc->bge_asf_mode & ASF_NEW_HANDSHAKE) { 1293 switch (type) { 1294 case BGE_RESET_START: 1295 bge_writemem_ind(sc, BGE_SDI_STATUS, 0x1); /* START */ 1296 break; 1297 case BGE_RESET_STOP: 1298 bge_writemem_ind(sc, BGE_SDI_STATUS, 0x2); /* UNLOAD */ 1299 break; 1300 } 1301 } 1302 } 1303 1304 static void 1305 bge_sig_post_reset(struct bge_softc *sc, int type) 1306 { 1307 1308 if (sc->bge_asf_mode & ASF_NEW_HANDSHAKE) { 1309 switch (type) { 1310 case BGE_RESET_START: 1311 bge_writemem_ind(sc, BGE_SDI_STATUS, 0x80000001); 1312 /* START DONE */ 1313 break; 1314 case BGE_RESET_STOP: 1315 bge_writemem_ind(sc, BGE_SDI_STATUS, 0x80000002); 1316 break; 1317 } 1318 } 1319 } 1320 1321 static void 1322 bge_sig_legacy(struct bge_softc *sc, int type) 1323 { 1324 1325 if (sc->bge_asf_mode) { 1326 switch (type) { 1327 case BGE_RESET_START: 1328 bge_writemem_ind(sc, BGE_SDI_STATUS, 0x1); /* START */ 1329 break; 1330 case BGE_RESET_STOP: 1331 bge_writemem_ind(sc, BGE_SDI_STATUS, 0x2); /* UNLOAD */ 1332 break; 1333 } 1334 } 1335 } 1336 1337 static void 1338 bge_stop_fw(struct bge_softc *sc) 1339 { 1340 int i; 1341 1342 if (sc->bge_asf_mode) { 1343 bge_writemem_ind(sc, BGE_SOFTWARE_GENCOMM_FW, BGE_FW_PAUSE); 1344 CSR_WRITE_4(sc, BGE_CPU_EVENT, 1345 CSR_READ_4(sc, BGE_CPU_EVENT) | (1 << 14)); 1346 1347 for (i = 0; i < 100; i++ ) { 1348 if (!(CSR_READ_4(sc, BGE_CPU_EVENT) & (1 << 14))) 1349 break; 1350 DELAY(10); 1351 } 1352 } 1353 } 1354 1355 /* 1356 * Do endian, PCI and DMA initialization. 1357 */ 1358 static int 1359 bge_chipinit(struct bge_softc *sc) 1360 { 1361 uint32_t dma_rw_ctl, misc_ctl; 1362 uint16_t val; 1363 int i; 1364 1365 /* Set endianness before we access any non-PCI registers. */ 1366 misc_ctl = BGE_INIT; 1367 if (sc->bge_flags & BGE_FLAG_TAGGED_STATUS) 1368 misc_ctl |= BGE_PCIMISCCTL_TAGGED_STATUS; 1369 pci_write_config(sc->bge_dev, BGE_PCI_MISC_CTL, misc_ctl, 4); 1370 1371 /* Clear the MAC control register */ 1372 CSR_WRITE_4(sc, BGE_MAC_MODE, 0); 1373 1374 /* 1375 * Clear the MAC statistics block in the NIC's 1376 * internal memory. 1377 */ 1378 for (i = BGE_STATS_BLOCK; 1379 i < BGE_STATS_BLOCK_END + 1; i += sizeof(uint32_t)) 1380 BGE_MEMWIN_WRITE(sc, i, 0); 1381 1382 for (i = BGE_STATUS_BLOCK; 1383 i < BGE_STATUS_BLOCK_END + 1; i += sizeof(uint32_t)) 1384 BGE_MEMWIN_WRITE(sc, i, 0); 1385 1386 if (sc->bge_chiprev == BGE_CHIPREV_5704_BX) { 1387 /* 1388 * Fix data corruption caused by non-qword write with WB. 1389 * Fix master abort in PCI mode. 1390 * Fix PCI latency timer. 1391 */ 1392 val = pci_read_config(sc->bge_dev, BGE_PCI_MSI_DATA + 2, 2); 1393 val |= (1 << 10) | (1 << 12) | (1 << 13); 1394 pci_write_config(sc->bge_dev, BGE_PCI_MSI_DATA + 2, val, 2); 1395 } 1396 1397 /* 1398 * Set up the PCI DMA control register. 1399 */ 1400 dma_rw_ctl = BGE_PCIDMARWCTL_RD_CMD_SHIFT(6) | 1401 BGE_PCIDMARWCTL_WR_CMD_SHIFT(7); 1402 if (sc->bge_flags & BGE_FLAG_PCIE) { 1403 /* Read watermark not used, 128 bytes for write. */ 1404 dma_rw_ctl |= BGE_PCIDMARWCTL_WR_WAT_SHIFT(3); 1405 } else if (sc->bge_flags & BGE_FLAG_PCIX) { 1406 if (BGE_IS_5714_FAMILY(sc)) { 1407 /* 256 bytes for read and write. */ 1408 dma_rw_ctl |= BGE_PCIDMARWCTL_RD_WAT_SHIFT(2) | 1409 BGE_PCIDMARWCTL_WR_WAT_SHIFT(2); 1410 dma_rw_ctl |= (sc->bge_asicrev == BGE_ASICREV_BCM5780) ? 1411 BGE_PCIDMARWCTL_ONEDMA_ATONCE_GLOBAL : 1412 BGE_PCIDMARWCTL_ONEDMA_ATONCE_LOCAL; 1413 } else if (sc->bge_asicrev == BGE_ASICREV_BCM5703) { 1414 /* 1415 * In the BCM5703, the DMA read watermark should 1416 * be set to less than or equal to the maximum 1417 * memory read byte count of the PCI-X command 1418 * register. 1419 */ 1420 dma_rw_ctl |= BGE_PCIDMARWCTL_RD_WAT_SHIFT(4) | 1421 BGE_PCIDMARWCTL_WR_WAT_SHIFT(3); 1422 } else if (sc->bge_asicrev == BGE_ASICREV_BCM5704) { 1423 /* 1536 bytes for read, 384 bytes for write. */ 1424 dma_rw_ctl |= BGE_PCIDMARWCTL_RD_WAT_SHIFT(7) | 1425 BGE_PCIDMARWCTL_WR_WAT_SHIFT(3); 1426 } else { 1427 /* 384 bytes for read and write. */ 1428 dma_rw_ctl |= BGE_PCIDMARWCTL_RD_WAT_SHIFT(3) | 1429 BGE_PCIDMARWCTL_WR_WAT_SHIFT(3) | 1430 0x0F; 1431 } 1432 if (sc->bge_asicrev == BGE_ASICREV_BCM5703 || 1433 sc->bge_asicrev == BGE_ASICREV_BCM5704) { 1434 uint32_t tmp; 1435 1436 /* Set ONE_DMA_AT_ONCE for hardware workaround. */ 1437 tmp = CSR_READ_4(sc, BGE_PCI_CLKCTL) & 0x1F; 1438 if (tmp == 6 || tmp == 7) 1439 dma_rw_ctl |= 1440 BGE_PCIDMARWCTL_ONEDMA_ATONCE_GLOBAL; 1441 1442 /* Set PCI-X DMA write workaround. */ 1443 dma_rw_ctl |= BGE_PCIDMARWCTL_ASRT_ALL_BE; 1444 } 1445 } else { 1446 /* Conventional PCI bus: 256 bytes for read and write. */ 1447 dma_rw_ctl |= BGE_PCIDMARWCTL_RD_WAT_SHIFT(7) | 1448 BGE_PCIDMARWCTL_WR_WAT_SHIFT(7); 1449 1450 if (sc->bge_asicrev != BGE_ASICREV_BCM5705 && 1451 sc->bge_asicrev != BGE_ASICREV_BCM5750) 1452 dma_rw_ctl |= 0x0F; 1453 } 1454 if (sc->bge_asicrev == BGE_ASICREV_BCM5700 || 1455 sc->bge_asicrev == BGE_ASICREV_BCM5701) 1456 dma_rw_ctl |= BGE_PCIDMARWCTL_USE_MRM | 1457 BGE_PCIDMARWCTL_ASRT_ALL_BE; 1458 if (sc->bge_asicrev == BGE_ASICREV_BCM5703 || 1459 sc->bge_asicrev == BGE_ASICREV_BCM5704) 1460 dma_rw_ctl &= ~BGE_PCIDMARWCTL_MINDMA; 1461 if (BGE_IS_5717_PLUS(sc)) 1462 dma_rw_ctl &= ~BGE_PCIDMARWCTL_DIS_CACHE_ALIGNMENT; 1463 pci_write_config(sc->bge_dev, BGE_PCI_DMA_RW_CTL, dma_rw_ctl, 4); 1464 1465 /* 1466 * Set up general mode register. 1467 */ 1468 CSR_WRITE_4(sc, BGE_MODE_CTL, BGE_DMA_SWAP_OPTIONS | 1469 BGE_MODECTL_MAC_ATTN_INTR | BGE_MODECTL_HOST_SEND_BDS | 1470 BGE_MODECTL_TX_NO_PHDR_CSUM); 1471 1472 /* 1473 * BCM5701 B5 have a bug causing data corruption when using 1474 * 64-bit DMA reads, which can be terminated early and then 1475 * completed later as 32-bit accesses, in combination with 1476 * certain bridges. 1477 */ 1478 if (sc->bge_asicrev == BGE_ASICREV_BCM5701 && 1479 sc->bge_chipid == BGE_CHIPID_BCM5701_B5) 1480 BGE_SETBIT(sc, BGE_MODE_CTL, BGE_MODECTL_FORCE_PCI32); 1481 1482 /* 1483 * Tell the firmware the driver is running 1484 */ 1485 if (sc->bge_asf_mode & ASF_STACKUP) 1486 BGE_SETBIT(sc, BGE_MODE_CTL, BGE_MODECTL_STACKUP); 1487 1488 /* 1489 * Disable memory write invalidate. Apparently it is not supported 1490 * properly by these devices. Also ensure that INTx isn't disabled, 1491 * as these chips need it even when using MSI. 1492 */ 1493 PCI_CLRBIT(sc->bge_dev, BGE_PCI_CMD, 1494 PCIM_CMD_INTxDIS | PCIM_CMD_MWIEN, 4); 1495 1496 /* Set the timer prescaler (always 66Mhz) */ 1497 CSR_WRITE_4(sc, BGE_MISC_CFG, BGE_32BITTIME_66MHZ); 1498 1499 /* XXX: The Linux tg3 driver does this at the start of brgphy_reset. */ 1500 if (sc->bge_asicrev == BGE_ASICREV_BCM5906) { 1501 DELAY(40); /* XXX */ 1502 1503 /* Put PHY into ready state */ 1504 BGE_CLRBIT(sc, BGE_MISC_CFG, BGE_MISCCFG_EPHY_IDDQ); 1505 CSR_READ_4(sc, BGE_MISC_CFG); /* Flush */ 1506 DELAY(40); 1507 } 1508 1509 return (0); 1510 } 1511 1512 static int 1513 bge_blockinit(struct bge_softc *sc) 1514 { 1515 struct bge_rcb *rcb; 1516 bus_size_t vrcb; 1517 bge_hostaddr taddr; 1518 uint32_t val; 1519 int i, limit; 1520 1521 /* 1522 * Initialize the memory window pointer register so that 1523 * we can access the first 32K of internal NIC RAM. This will 1524 * allow us to set up the TX send ring RCBs and the RX return 1525 * ring RCBs, plus other things which live in NIC memory. 1526 */ 1527 CSR_WRITE_4(sc, BGE_PCI_MEMWIN_BASEADDR, 0); 1528 1529 /* Note: the BCM5704 has a smaller mbuf space than other chips. */ 1530 1531 if (!(BGE_IS_5705_PLUS(sc))) { 1532 /* Configure mbuf memory pool */ 1533 CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_BASEADDR, BGE_BUFFPOOL_1); 1534 if (sc->bge_asicrev == BGE_ASICREV_BCM5704) 1535 CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_LEN, 0x10000); 1536 else 1537 CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_LEN, 0x18000); 1538 1539 /* Configure DMA resource pool */ 1540 CSR_WRITE_4(sc, BGE_BMAN_DMA_DESCPOOL_BASEADDR, 1541 BGE_DMA_DESCRIPTORS); 1542 CSR_WRITE_4(sc, BGE_BMAN_DMA_DESCPOOL_LEN, 0x2000); 1543 } 1544 1545 /* Configure mbuf pool watermarks */ 1546 if (sc->bge_asicrev == BGE_ASICREV_BCM5717) { 1547 CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_READDMA_LOWAT, 0x0); 1548 if (sc->bge_ifp->if_mtu > ETHERMTU) { 1549 CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_MACRX_LOWAT, 0x7e); 1550 CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_HIWAT, 0xea); 1551 } else { 1552 CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_MACRX_LOWAT, 0x2a); 1553 CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_HIWAT, 0xa0); 1554 } 1555 } else if (!BGE_IS_5705_PLUS(sc)) { 1556 CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_READDMA_LOWAT, 0x50); 1557 CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_MACRX_LOWAT, 0x20); 1558 CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_HIWAT, 0x60); 1559 } else if (sc->bge_asicrev == BGE_ASICREV_BCM5906) { 1560 CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_READDMA_LOWAT, 0x0); 1561 CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_MACRX_LOWAT, 0x04); 1562 CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_HIWAT, 0x10); 1563 } else { 1564 CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_READDMA_LOWAT, 0x0); 1565 CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_MACRX_LOWAT, 0x10); 1566 CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_HIWAT, 0x60); 1567 } 1568 1569 /* Configure DMA resource watermarks */ 1570 CSR_WRITE_4(sc, BGE_BMAN_DMA_DESCPOOL_LOWAT, 5); 1571 CSR_WRITE_4(sc, BGE_BMAN_DMA_DESCPOOL_HIWAT, 10); 1572 1573 /* Enable buffer manager */ 1574 if (!(BGE_IS_5705_PLUS(sc))) { 1575 CSR_WRITE_4(sc, BGE_BMAN_MODE, 1576 BGE_BMANMODE_ENABLE | BGE_BMANMODE_LOMBUF_ATTN); 1577 1578 /* Poll for buffer manager start indication */ 1579 for (i = 0; i < BGE_TIMEOUT; i++) { 1580 DELAY(10); 1581 if (CSR_READ_4(sc, BGE_BMAN_MODE) & BGE_BMANMODE_ENABLE) 1582 break; 1583 } 1584 1585 if (i == BGE_TIMEOUT) { 1586 device_printf(sc->bge_dev, 1587 "buffer manager failed to start\n"); 1588 return (ENXIO); 1589 } 1590 } 1591 1592 /* Enable flow-through queues */ 1593 CSR_WRITE_4(sc, BGE_FTQ_RESET, 0xFFFFFFFF); 1594 CSR_WRITE_4(sc, BGE_FTQ_RESET, 0); 1595 1596 /* Wait until queue initialization is complete */ 1597 for (i = 0; i < BGE_TIMEOUT; i++) { 1598 DELAY(10); 1599 if (CSR_READ_4(sc, BGE_FTQ_RESET) == 0) 1600 break; 1601 } 1602 1603 if (i == BGE_TIMEOUT) { 1604 device_printf(sc->bge_dev, "flow-through queue init failed\n"); 1605 return (ENXIO); 1606 } 1607 1608 /* 1609 * Summary of rings supported by the controller: 1610 * 1611 * Standard Receive Producer Ring 1612 * - This ring is used to feed receive buffers for "standard" 1613 * sized frames (typically 1536 bytes) to the controller. 1614 * 1615 * Jumbo Receive Producer Ring 1616 * - This ring is used to feed receive buffers for jumbo sized 1617 * frames (i.e. anything bigger than the "standard" frames) 1618 * to the controller. 1619 * 1620 * Mini Receive Producer Ring 1621 * - This ring is used to feed receive buffers for "mini" 1622 * sized frames to the controller. 1623 * - This feature required external memory for the controller 1624 * but was never used in a production system. Should always 1625 * be disabled. 1626 * 1627 * Receive Return Ring 1628 * - After the controller has placed an incoming frame into a 1629 * receive buffer that buffer is moved into a receive return 1630 * ring. The driver is then responsible to passing the 1631 * buffer up to the stack. Many versions of the controller 1632 * support multiple RR rings. 1633 * 1634 * Send Ring 1635 * - This ring is used for outgoing frames. Many versions of 1636 * the controller support multiple send rings. 1637 */ 1638 1639 /* Initialize the standard receive producer ring control block. */ 1640 rcb = &sc->bge_ldata.bge_info.bge_std_rx_rcb; 1641 rcb->bge_hostaddr.bge_addr_lo = 1642 BGE_ADDR_LO(sc->bge_ldata.bge_rx_std_ring_paddr); 1643 rcb->bge_hostaddr.bge_addr_hi = 1644 BGE_ADDR_HI(sc->bge_ldata.bge_rx_std_ring_paddr); 1645 bus_dmamap_sync(sc->bge_cdata.bge_rx_std_ring_tag, 1646 sc->bge_cdata.bge_rx_std_ring_map, BUS_DMASYNC_PREREAD); 1647 if (BGE_IS_5717_PLUS(sc)) { 1648 /* 1649 * Bits 31-16: Programmable ring size (2048, 1024, 512, .., 32) 1650 * Bits 15-2 : Maximum RX frame size 1651 * Bit 1 : 1 = Ring Disabled, 0 = Ring ENabled 1652 * Bit 0 : Reserved 1653 */ 1654 rcb->bge_maxlen_flags = 1655 BGE_RCB_MAXLEN_FLAGS(512, BGE_MAX_FRAMELEN << 2); 1656 } else if (BGE_IS_5705_PLUS(sc)) { 1657 /* 1658 * Bits 31-16: Programmable ring size (512, 256, 128, 64, 32) 1659 * Bits 15-2 : Reserved (should be 0) 1660 * Bit 1 : 1 = Ring Disabled, 0 = Ring Enabled 1661 * Bit 0 : Reserved 1662 */ 1663 rcb->bge_maxlen_flags = BGE_RCB_MAXLEN_FLAGS(512, 0); 1664 } else { 1665 /* 1666 * Ring size is always XXX entries 1667 * Bits 31-16: Maximum RX frame size 1668 * Bits 15-2 : Reserved (should be 0) 1669 * Bit 1 : 1 = Ring Disabled, 0 = Ring Enabled 1670 * Bit 0 : Reserved 1671 */ 1672 rcb->bge_maxlen_flags = 1673 BGE_RCB_MAXLEN_FLAGS(BGE_MAX_FRAMELEN, 0); 1674 } 1675 if (sc->bge_asicrev == BGE_ASICREV_BCM5717) 1676 rcb->bge_nicaddr = BGE_STD_RX_RINGS_5717; 1677 else 1678 rcb->bge_nicaddr = BGE_STD_RX_RINGS; 1679 /* Write the standard receive producer ring control block. */ 1680 CSR_WRITE_4(sc, BGE_RX_STD_RCB_HADDR_HI, rcb->bge_hostaddr.bge_addr_hi); 1681 CSR_WRITE_4(sc, BGE_RX_STD_RCB_HADDR_LO, rcb->bge_hostaddr.bge_addr_lo); 1682 CSR_WRITE_4(sc, BGE_RX_STD_RCB_MAXLEN_FLAGS, rcb->bge_maxlen_flags); 1683 CSR_WRITE_4(sc, BGE_RX_STD_RCB_NICADDR, rcb->bge_nicaddr); 1684 1685 /* Reset the standard receive producer ring producer index. */ 1686 bge_writembx(sc, BGE_MBX_RX_STD_PROD_LO, 0); 1687 1688 /* 1689 * Initialize the jumbo RX producer ring control 1690 * block. We set the 'ring disabled' bit in the 1691 * flags field until we're actually ready to start 1692 * using this ring (i.e. once we set the MTU 1693 * high enough to require it). 1694 */ 1695 if (BGE_IS_JUMBO_CAPABLE(sc)) { 1696 rcb = &sc->bge_ldata.bge_info.bge_jumbo_rx_rcb; 1697 /* Get the jumbo receive producer ring RCB parameters. */ 1698 rcb->bge_hostaddr.bge_addr_lo = 1699 BGE_ADDR_LO(sc->bge_ldata.bge_rx_jumbo_ring_paddr); 1700 rcb->bge_hostaddr.bge_addr_hi = 1701 BGE_ADDR_HI(sc->bge_ldata.bge_rx_jumbo_ring_paddr); 1702 bus_dmamap_sync(sc->bge_cdata.bge_rx_jumbo_ring_tag, 1703 sc->bge_cdata.bge_rx_jumbo_ring_map, 1704 BUS_DMASYNC_PREREAD); 1705 rcb->bge_maxlen_flags = BGE_RCB_MAXLEN_FLAGS(0, 1706 BGE_RCB_FLAG_USE_EXT_RX_BD | BGE_RCB_FLAG_RING_DISABLED); 1707 if (sc->bge_asicrev == BGE_ASICREV_BCM5717) 1708 rcb->bge_nicaddr = BGE_JUMBO_RX_RINGS_5717; 1709 else 1710 rcb->bge_nicaddr = BGE_JUMBO_RX_RINGS; 1711 CSR_WRITE_4(sc, BGE_RX_JUMBO_RCB_HADDR_HI, 1712 rcb->bge_hostaddr.bge_addr_hi); 1713 CSR_WRITE_4(sc, BGE_RX_JUMBO_RCB_HADDR_LO, 1714 rcb->bge_hostaddr.bge_addr_lo); 1715 /* Program the jumbo receive producer ring RCB parameters. */ 1716 CSR_WRITE_4(sc, BGE_RX_JUMBO_RCB_MAXLEN_FLAGS, 1717 rcb->bge_maxlen_flags); 1718 CSR_WRITE_4(sc, BGE_RX_JUMBO_RCB_NICADDR, rcb->bge_nicaddr); 1719 /* Reset the jumbo receive producer ring producer index. */ 1720 bge_writembx(sc, BGE_MBX_RX_JUMBO_PROD_LO, 0); 1721 } 1722 1723 /* Disable the mini receive producer ring RCB. */ 1724 if (BGE_IS_5700_FAMILY(sc)) { 1725 rcb = &sc->bge_ldata.bge_info.bge_mini_rx_rcb; 1726 rcb->bge_maxlen_flags = 1727 BGE_RCB_MAXLEN_FLAGS(0, BGE_RCB_FLAG_RING_DISABLED); 1728 CSR_WRITE_4(sc, BGE_RX_MINI_RCB_MAXLEN_FLAGS, 1729 rcb->bge_maxlen_flags); 1730 /* Reset the mini receive producer ring producer index. */ 1731 bge_writembx(sc, BGE_MBX_RX_MINI_PROD_LO, 0); 1732 } 1733 1734 /* Choose de-pipeline mode for BCM5906 A0, A1 and A2. */ 1735 if (sc->bge_asicrev == BGE_ASICREV_BCM5906) { 1736 if (sc->bge_chipid == BGE_CHIPID_BCM5906_A0 || 1737 sc->bge_chipid == BGE_CHIPID_BCM5906_A1 || 1738 sc->bge_chipid == BGE_CHIPID_BCM5906_A2) 1739 CSR_WRITE_4(sc, BGE_ISO_PKT_TX, 1740 (CSR_READ_4(sc, BGE_ISO_PKT_TX) & ~3) | 2); 1741 } 1742 /* 1743 * The BD ring replenish thresholds control how often the 1744 * hardware fetches new BD's from the producer rings in host 1745 * memory. Setting the value too low on a busy system can 1746 * starve the hardware and recue the throughpout. 1747 * 1748 * Set the BD ring replentish thresholds. The recommended 1749 * values are 1/8th the number of descriptors allocated to 1750 * each ring. 1751 * XXX The 5754 requires a lower threshold, so it might be a 1752 * requirement of all 575x family chips. The Linux driver sets 1753 * the lower threshold for all 5705 family chips as well, but there 1754 * are reports that it might not need to be so strict. 1755 * 1756 * XXX Linux does some extra fiddling here for the 5906 parts as 1757 * well. 1758 */ 1759 if (BGE_IS_5705_PLUS(sc)) 1760 val = 8; 1761 else 1762 val = BGE_STD_RX_RING_CNT / 8; 1763 CSR_WRITE_4(sc, BGE_RBDI_STD_REPL_THRESH, val); 1764 if (BGE_IS_JUMBO_CAPABLE(sc)) 1765 CSR_WRITE_4(sc, BGE_RBDI_JUMBO_REPL_THRESH, 1766 BGE_JUMBO_RX_RING_CNT/8); 1767 if (BGE_IS_5717_PLUS(sc)) { 1768 CSR_WRITE_4(sc, BGE_STD_REPLENISH_LWM, 32); 1769 CSR_WRITE_4(sc, BGE_JMB_REPLENISH_LWM, 16); 1770 } 1771 1772 /* 1773 * Disable all send rings by setting the 'ring disabled' bit 1774 * in the flags field of all the TX send ring control blocks, 1775 * located in NIC memory. 1776 */ 1777 if (!BGE_IS_5705_PLUS(sc)) 1778 /* 5700 to 5704 had 16 send rings. */ 1779 limit = BGE_TX_RINGS_EXTSSRAM_MAX; 1780 else 1781 limit = 1; 1782 vrcb = BGE_MEMWIN_START + BGE_SEND_RING_RCB; 1783 for (i = 0; i < limit; i++) { 1784 RCB_WRITE_4(sc, vrcb, bge_maxlen_flags, 1785 BGE_RCB_MAXLEN_FLAGS(0, BGE_RCB_FLAG_RING_DISABLED)); 1786 RCB_WRITE_4(sc, vrcb, bge_nicaddr, 0); 1787 vrcb += sizeof(struct bge_rcb); 1788 } 1789 1790 /* Configure send ring RCB 0 (we use only the first ring) */ 1791 vrcb = BGE_MEMWIN_START + BGE_SEND_RING_RCB; 1792 BGE_HOSTADDR(taddr, sc->bge_ldata.bge_tx_ring_paddr); 1793 RCB_WRITE_4(sc, vrcb, bge_hostaddr.bge_addr_hi, taddr.bge_addr_hi); 1794 RCB_WRITE_4(sc, vrcb, bge_hostaddr.bge_addr_lo, taddr.bge_addr_lo); 1795 if (sc->bge_asicrev == BGE_ASICREV_BCM5717) 1796 RCB_WRITE_4(sc, vrcb, bge_nicaddr, BGE_SEND_RING_5717); 1797 else 1798 RCB_WRITE_4(sc, vrcb, bge_nicaddr, 1799 BGE_NIC_TXRING_ADDR(0, BGE_TX_RING_CNT)); 1800 RCB_WRITE_4(sc, vrcb, bge_maxlen_flags, 1801 BGE_RCB_MAXLEN_FLAGS(BGE_TX_RING_CNT, 0)); 1802 1803 /* 1804 * Disable all receive return rings by setting the 1805 * 'ring diabled' bit in the flags field of all the receive 1806 * return ring control blocks, located in NIC memory. 1807 */ 1808 if (sc->bge_asicrev == BGE_ASICREV_BCM5717) { 1809 /* Should be 17, use 16 until we get an SRAM map. */ 1810 limit = 16; 1811 } else if (!BGE_IS_5705_PLUS(sc)) 1812 limit = BGE_RX_RINGS_MAX; 1813 else if (sc->bge_asicrev == BGE_ASICREV_BCM5755) 1814 limit = 4; 1815 else 1816 limit = 1; 1817 /* Disable all receive return rings. */ 1818 vrcb = BGE_MEMWIN_START + BGE_RX_RETURN_RING_RCB; 1819 for (i = 0; i < limit; i++) { 1820 RCB_WRITE_4(sc, vrcb, bge_hostaddr.bge_addr_hi, 0); 1821 RCB_WRITE_4(sc, vrcb, bge_hostaddr.bge_addr_lo, 0); 1822 RCB_WRITE_4(sc, vrcb, bge_maxlen_flags, 1823 BGE_RCB_FLAG_RING_DISABLED); 1824 RCB_WRITE_4(sc, vrcb, bge_nicaddr, 0); 1825 bge_writembx(sc, BGE_MBX_RX_CONS0_LO + 1826 (i * (sizeof(uint64_t))), 0); 1827 vrcb += sizeof(struct bge_rcb); 1828 } 1829 1830 /* 1831 * Set up receive return ring 0. Note that the NIC address 1832 * for RX return rings is 0x0. The return rings live entirely 1833 * within the host, so the nicaddr field in the RCB isn't used. 1834 */ 1835 vrcb = BGE_MEMWIN_START + BGE_RX_RETURN_RING_RCB; 1836 BGE_HOSTADDR(taddr, sc->bge_ldata.bge_rx_return_ring_paddr); 1837 RCB_WRITE_4(sc, vrcb, bge_hostaddr.bge_addr_hi, taddr.bge_addr_hi); 1838 RCB_WRITE_4(sc, vrcb, bge_hostaddr.bge_addr_lo, taddr.bge_addr_lo); 1839 RCB_WRITE_4(sc, vrcb, bge_nicaddr, 0); 1840 RCB_WRITE_4(sc, vrcb, bge_maxlen_flags, 1841 BGE_RCB_MAXLEN_FLAGS(sc->bge_return_ring_cnt, 0)); 1842 1843 /* Set random backoff seed for TX */ 1844 CSR_WRITE_4(sc, BGE_TX_RANDOM_BACKOFF, 1845 IF_LLADDR(sc->bge_ifp)[0] + IF_LLADDR(sc->bge_ifp)[1] + 1846 IF_LLADDR(sc->bge_ifp)[2] + IF_LLADDR(sc->bge_ifp)[3] + 1847 IF_LLADDR(sc->bge_ifp)[4] + IF_LLADDR(sc->bge_ifp)[5] + 1848 BGE_TX_BACKOFF_SEED_MASK); 1849 1850 /* Set inter-packet gap */ 1851 CSR_WRITE_4(sc, BGE_TX_LENGTHS, 0x2620); 1852 1853 /* 1854 * Specify which ring to use for packets that don't match 1855 * any RX rules. 1856 */ 1857 CSR_WRITE_4(sc, BGE_RX_RULES_CFG, 0x08); 1858 1859 /* 1860 * Configure number of RX lists. One interrupt distribution 1861 * list, sixteen active lists, one bad frames class. 1862 */ 1863 CSR_WRITE_4(sc, BGE_RXLP_CFG, 0x181); 1864 1865 /* Inialize RX list placement stats mask. */ 1866 CSR_WRITE_4(sc, BGE_RXLP_STATS_ENABLE_MASK, 0x007FFFFF); 1867 CSR_WRITE_4(sc, BGE_RXLP_STATS_CTL, 0x1); 1868 1869 /* Disable host coalescing until we get it set up */ 1870 CSR_WRITE_4(sc, BGE_HCC_MODE, 0x00000000); 1871 1872 /* Poll to make sure it's shut down. */ 1873 for (i = 0; i < BGE_TIMEOUT; i++) { 1874 DELAY(10); 1875 if (!(CSR_READ_4(sc, BGE_HCC_MODE) & BGE_HCCMODE_ENABLE)) 1876 break; 1877 } 1878 1879 if (i == BGE_TIMEOUT) { 1880 device_printf(sc->bge_dev, 1881 "host coalescing engine failed to idle\n"); 1882 return (ENXIO); 1883 } 1884 1885 /* Set up host coalescing defaults */ 1886 CSR_WRITE_4(sc, BGE_HCC_RX_COAL_TICKS, sc->bge_rx_coal_ticks); 1887 CSR_WRITE_4(sc, BGE_HCC_TX_COAL_TICKS, sc->bge_tx_coal_ticks); 1888 CSR_WRITE_4(sc, BGE_HCC_RX_MAX_COAL_BDS, sc->bge_rx_max_coal_bds); 1889 CSR_WRITE_4(sc, BGE_HCC_TX_MAX_COAL_BDS, sc->bge_tx_max_coal_bds); 1890 if (!(BGE_IS_5705_PLUS(sc))) { 1891 CSR_WRITE_4(sc, BGE_HCC_RX_COAL_TICKS_INT, 0); 1892 CSR_WRITE_4(sc, BGE_HCC_TX_COAL_TICKS_INT, 0); 1893 } 1894 CSR_WRITE_4(sc, BGE_HCC_RX_MAX_COAL_BDS_INT, 1); 1895 CSR_WRITE_4(sc, BGE_HCC_TX_MAX_COAL_BDS_INT, 1); 1896 1897 /* Set up address of statistics block */ 1898 if (!(BGE_IS_5705_PLUS(sc))) { 1899 CSR_WRITE_4(sc, BGE_HCC_STATS_ADDR_HI, 1900 BGE_ADDR_HI(sc->bge_ldata.bge_stats_paddr)); 1901 CSR_WRITE_4(sc, BGE_HCC_STATS_ADDR_LO, 1902 BGE_ADDR_LO(sc->bge_ldata.bge_stats_paddr)); 1903 CSR_WRITE_4(sc, BGE_HCC_STATS_BASEADDR, BGE_STATS_BLOCK); 1904 CSR_WRITE_4(sc, BGE_HCC_STATUSBLK_BASEADDR, BGE_STATUS_BLOCK); 1905 CSR_WRITE_4(sc, BGE_HCC_STATS_TICKS, sc->bge_stat_ticks); 1906 } 1907 1908 /* Set up address of status block */ 1909 CSR_WRITE_4(sc, BGE_HCC_STATUSBLK_ADDR_HI, 1910 BGE_ADDR_HI(sc->bge_ldata.bge_status_block_paddr)); 1911 CSR_WRITE_4(sc, BGE_HCC_STATUSBLK_ADDR_LO, 1912 BGE_ADDR_LO(sc->bge_ldata.bge_status_block_paddr)); 1913 1914 /* Set up status block size. */ 1915 if (sc->bge_asicrev == BGE_ASICREV_BCM5700 && 1916 sc->bge_chipid != BGE_CHIPID_BCM5700_C0) { 1917 val = BGE_STATBLKSZ_FULL; 1918 bzero(sc->bge_ldata.bge_status_block, BGE_STATUS_BLK_SZ); 1919 } else { 1920 val = BGE_STATBLKSZ_32BYTE; 1921 bzero(sc->bge_ldata.bge_status_block, 32); 1922 } 1923 bus_dmamap_sync(sc->bge_cdata.bge_status_tag, 1924 sc->bge_cdata.bge_status_map, 1925 BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE); 1926 1927 /* Turn on host coalescing state machine */ 1928 CSR_WRITE_4(sc, BGE_HCC_MODE, val | BGE_HCCMODE_ENABLE); 1929 1930 /* Turn on RX BD completion state machine and enable attentions */ 1931 CSR_WRITE_4(sc, BGE_RBDC_MODE, 1932 BGE_RBDCMODE_ENABLE | BGE_RBDCMODE_ATTN); 1933 1934 /* Turn on RX list placement state machine */ 1935 CSR_WRITE_4(sc, BGE_RXLP_MODE, BGE_RXLPMODE_ENABLE); 1936 1937 /* Turn on RX list selector state machine. */ 1938 if (!(BGE_IS_5705_PLUS(sc))) 1939 CSR_WRITE_4(sc, BGE_RXLS_MODE, BGE_RXLSMODE_ENABLE); 1940 1941 val = BGE_MACMODE_TXDMA_ENB | BGE_MACMODE_RXDMA_ENB | 1942 BGE_MACMODE_RX_STATS_CLEAR | BGE_MACMODE_TX_STATS_CLEAR | 1943 BGE_MACMODE_RX_STATS_ENB | BGE_MACMODE_TX_STATS_ENB | 1944 BGE_MACMODE_FRMHDR_DMA_ENB; 1945 1946 if (sc->bge_flags & BGE_FLAG_TBI) 1947 val |= BGE_PORTMODE_TBI; 1948 else if (sc->bge_flags & BGE_FLAG_MII_SERDES) 1949 val |= BGE_PORTMODE_GMII; 1950 else 1951 val |= BGE_PORTMODE_MII; 1952 1953 /* Turn on DMA, clear stats */ 1954 CSR_WRITE_4(sc, BGE_MAC_MODE, val); 1955 1956 /* Set misc. local control, enable interrupts on attentions */ 1957 CSR_WRITE_4(sc, BGE_MISC_LOCAL_CTL, BGE_MLC_INTR_ONATTN); 1958 1959 #ifdef notdef 1960 /* Assert GPIO pins for PHY reset */ 1961 BGE_SETBIT(sc, BGE_MISC_LOCAL_CTL, BGE_MLC_MISCIO_OUT0 | 1962 BGE_MLC_MISCIO_OUT1 | BGE_MLC_MISCIO_OUT2); 1963 BGE_SETBIT(sc, BGE_MISC_LOCAL_CTL, BGE_MLC_MISCIO_OUTEN0 | 1964 BGE_MLC_MISCIO_OUTEN1 | BGE_MLC_MISCIO_OUTEN2); 1965 #endif 1966 1967 /* Turn on DMA completion state machine */ 1968 if (!(BGE_IS_5705_PLUS(sc))) 1969 CSR_WRITE_4(sc, BGE_DMAC_MODE, BGE_DMACMODE_ENABLE); 1970 1971 val = BGE_WDMAMODE_ENABLE | BGE_WDMAMODE_ALL_ATTNS; 1972 1973 /* Enable host coalescing bug fix. */ 1974 if (BGE_IS_5755_PLUS(sc)) 1975 val |= BGE_WDMAMODE_STATUS_TAG_FIX; 1976 1977 /* Request larger DMA burst size to get better performance. */ 1978 if (sc->bge_asicrev == BGE_ASICREV_BCM5785) 1979 val |= BGE_WDMAMODE_BURST_ALL_DATA; 1980 1981 /* Turn on write DMA state machine */ 1982 CSR_WRITE_4(sc, BGE_WDMA_MODE, val); 1983 DELAY(40); 1984 1985 /* Turn on read DMA state machine */ 1986 val = BGE_RDMAMODE_ENABLE | BGE_RDMAMODE_ALL_ATTNS; 1987 1988 if (sc->bge_asicrev == BGE_ASICREV_BCM5717) 1989 val |= BGE_RDMAMODE_MULT_DMA_RD_DIS; 1990 1991 if (sc->bge_asicrev == BGE_ASICREV_BCM5784 || 1992 sc->bge_asicrev == BGE_ASICREV_BCM5785 || 1993 sc->bge_asicrev == BGE_ASICREV_BCM57780) 1994 val |= BGE_RDMAMODE_BD_SBD_CRPT_ATTN | 1995 BGE_RDMAMODE_MBUF_RBD_CRPT_ATTN | 1996 BGE_RDMAMODE_MBUF_SBD_CRPT_ATTN; 1997 if (sc->bge_flags & BGE_FLAG_PCIE) 1998 val |= BGE_RDMAMODE_FIFO_LONG_BURST; 1999 if (sc->bge_flags & (BGE_FLAG_TSO | BGE_FLAG_TSO3)) { 2000 val |= BGE_RDMAMODE_TSO4_ENABLE; 2001 if (sc->bge_flags & BGE_FLAG_TSO3 || 2002 sc->bge_asicrev == BGE_ASICREV_BCM5785 || 2003 sc->bge_asicrev == BGE_ASICREV_BCM57780) 2004 val |= BGE_RDMAMODE_TSO6_ENABLE; 2005 } 2006 if (sc->bge_asicrev == BGE_ASICREV_BCM5761 || 2007 sc->bge_asicrev == BGE_ASICREV_BCM5784 || 2008 sc->bge_asicrev == BGE_ASICREV_BCM5785 || 2009 sc->bge_asicrev == BGE_ASICREV_BCM57780 || 2010 BGE_IS_5717_PLUS(sc)) { 2011 /* 2012 * Enable fix for read DMA FIFO overruns. 2013 * The fix is to limit the number of RX BDs 2014 * the hardware would fetch at a fime. 2015 */ 2016 CSR_WRITE_4(sc, BGE_RDMA_RSRVCTRL, 2017 CSR_READ_4(sc, BGE_RDMA_RSRVCTRL) | 2018 BGE_RDMA_RSRVCTRL_FIFO_OFLW_FIX); 2019 } 2020 CSR_WRITE_4(sc, BGE_RDMA_MODE, val); 2021 DELAY(40); 2022 2023 /* Turn on RX data completion state machine */ 2024 CSR_WRITE_4(sc, BGE_RDC_MODE, BGE_RDCMODE_ENABLE); 2025 2026 /* Turn on RX BD initiator state machine */ 2027 CSR_WRITE_4(sc, BGE_RBDI_MODE, BGE_RBDIMODE_ENABLE); 2028 2029 /* Turn on RX data and RX BD initiator state machine */ 2030 CSR_WRITE_4(sc, BGE_RDBDI_MODE, BGE_RDBDIMODE_ENABLE); 2031 2032 /* Turn on Mbuf cluster free state machine */ 2033 if (!(BGE_IS_5705_PLUS(sc))) 2034 CSR_WRITE_4(sc, BGE_MBCF_MODE, BGE_MBCFMODE_ENABLE); 2035 2036 /* Turn on send BD completion state machine */ 2037 CSR_WRITE_4(sc, BGE_SBDC_MODE, BGE_SBDCMODE_ENABLE); 2038 2039 /* Turn on send data completion state machine */ 2040 val = BGE_SDCMODE_ENABLE; 2041 if (sc->bge_asicrev == BGE_ASICREV_BCM5761) 2042 val |= BGE_SDCMODE_CDELAY; 2043 CSR_WRITE_4(sc, BGE_SDC_MODE, val); 2044 2045 /* Turn on send data initiator state machine */ 2046 if (sc->bge_flags & (BGE_FLAG_TSO | BGE_FLAG_TSO3)) 2047 CSR_WRITE_4(sc, BGE_SDI_MODE, BGE_SDIMODE_ENABLE | 2048 BGE_SDIMODE_HW_LSO_PRE_DMA); 2049 else 2050 CSR_WRITE_4(sc, BGE_SDI_MODE, BGE_SDIMODE_ENABLE); 2051 2052 /* Turn on send BD initiator state machine */ 2053 CSR_WRITE_4(sc, BGE_SBDI_MODE, BGE_SBDIMODE_ENABLE); 2054 2055 /* Turn on send BD selector state machine */ 2056 CSR_WRITE_4(sc, BGE_SRS_MODE, BGE_SRSMODE_ENABLE); 2057 2058 CSR_WRITE_4(sc, BGE_SDI_STATS_ENABLE_MASK, 0x007FFFFF); 2059 CSR_WRITE_4(sc, BGE_SDI_STATS_CTL, 2060 BGE_SDISTATSCTL_ENABLE | BGE_SDISTATSCTL_FASTER); 2061 2062 /* ack/clear link change events */ 2063 CSR_WRITE_4(sc, BGE_MAC_STS, BGE_MACSTAT_SYNC_CHANGED | 2064 BGE_MACSTAT_CFG_CHANGED | BGE_MACSTAT_MI_COMPLETE | 2065 BGE_MACSTAT_LINK_CHANGED); 2066 CSR_WRITE_4(sc, BGE_MI_STS, 0); 2067 2068 /* 2069 * Enable attention when the link has changed state for 2070 * devices that use auto polling. 2071 */ 2072 if (sc->bge_flags & BGE_FLAG_TBI) { 2073 CSR_WRITE_4(sc, BGE_MI_STS, BGE_MISTS_LINK); 2074 } else { 2075 if (sc->bge_mi_mode & BGE_MIMODE_AUTOPOLL) { 2076 CSR_WRITE_4(sc, BGE_MI_MODE, sc->bge_mi_mode); 2077 DELAY(80); 2078 } 2079 if (sc->bge_asicrev == BGE_ASICREV_BCM5700 && 2080 sc->bge_chipid != BGE_CHIPID_BCM5700_B2) 2081 CSR_WRITE_4(sc, BGE_MAC_EVT_ENB, 2082 BGE_EVTENB_MI_INTERRUPT); 2083 } 2084 2085 /* 2086 * Clear any pending link state attention. 2087 * Otherwise some link state change events may be lost until attention 2088 * is cleared by bge_intr() -> bge_link_upd() sequence. 2089 * It's not necessary on newer BCM chips - perhaps enabling link 2090 * state change attentions implies clearing pending attention. 2091 */ 2092 CSR_WRITE_4(sc, BGE_MAC_STS, BGE_MACSTAT_SYNC_CHANGED | 2093 BGE_MACSTAT_CFG_CHANGED | BGE_MACSTAT_MI_COMPLETE | 2094 BGE_MACSTAT_LINK_CHANGED); 2095 2096 /* Enable link state change attentions. */ 2097 BGE_SETBIT(sc, BGE_MAC_EVT_ENB, BGE_EVTENB_LINK_CHANGED); 2098 2099 return (0); 2100 } 2101 2102 const struct bge_revision * 2103 bge_lookup_rev(uint32_t chipid) 2104 { 2105 const struct bge_revision *br; 2106 2107 for (br = bge_revisions; br->br_name != NULL; br++) { 2108 if (br->br_chipid == chipid) 2109 return (br); 2110 } 2111 2112 for (br = bge_majorrevs; br->br_name != NULL; br++) { 2113 if (br->br_chipid == BGE_ASICREV(chipid)) 2114 return (br); 2115 } 2116 2117 return (NULL); 2118 } 2119 2120 const struct bge_vendor * 2121 bge_lookup_vendor(uint16_t vid) 2122 { 2123 const struct bge_vendor *v; 2124 2125 for (v = bge_vendors; v->v_name != NULL; v++) 2126 if (v->v_id == vid) 2127 return (v); 2128 2129 panic("%s: unknown vendor %d", __func__, vid); 2130 return (NULL); 2131 } 2132 2133 /* 2134 * Probe for a Broadcom chip. Check the PCI vendor and device IDs 2135 * against our list and return its name if we find a match. 2136 * 2137 * Note that since the Broadcom controller contains VPD support, we 2138 * try to get the device name string from the controller itself instead 2139 * of the compiled-in string. It guarantees we'll always announce the 2140 * right product name. We fall back to the compiled-in string when 2141 * VPD is unavailable or corrupt. 2142 */ 2143 static int 2144 bge_probe(device_t dev) 2145 { 2146 char buf[96]; 2147 char model[64]; 2148 const struct bge_revision *br; 2149 const char *pname; 2150 struct bge_softc *sc = device_get_softc(dev); 2151 const struct bge_type *t = bge_devs; 2152 const struct bge_vendor *v; 2153 uint32_t id; 2154 uint16_t did, vid; 2155 2156 sc->bge_dev = dev; 2157 vid = pci_get_vendor(dev); 2158 did = pci_get_device(dev); 2159 while(t->bge_vid != 0) { 2160 if ((vid == t->bge_vid) && (did == t->bge_did)) { 2161 id = pci_read_config(dev, BGE_PCI_MISC_CTL, 4) >> 2162 BGE_PCIMISCCTL_ASICREV_SHIFT; 2163 if (BGE_ASICREV(id) == BGE_ASICREV_USE_PRODID_REG) { 2164 /* 2165 * Find the ASCI revision. Different chips 2166 * use different registers. 2167 */ 2168 switch (pci_get_device(dev)) { 2169 case BCOM_DEVICEID_BCM5717: 2170 case BCOM_DEVICEID_BCM5718: 2171 id = pci_read_config(dev, 2172 BGE_PCI_GEN2_PRODID_ASICREV, 4); 2173 break; 2174 default: 2175 id = pci_read_config(dev, 2176 BGE_PCI_PRODID_ASICREV, 4); 2177 } 2178 } 2179 br = bge_lookup_rev(id); 2180 v = bge_lookup_vendor(vid); 2181 if (bge_has_eaddr(sc) && 2182 pci_get_vpd_ident(dev, &pname) == 0) 2183 snprintf(model, 64, "%s", pname); 2184 else 2185 snprintf(model, 64, "%s %s", v->v_name, 2186 br != NULL ? br->br_name : 2187 "NetXtreme Ethernet Controller"); 2188 snprintf(buf, 96, "%s, %sASIC rev. %#08x", model, 2189 br != NULL ? "" : "unknown ", id); 2190 device_set_desc_copy(dev, buf); 2191 return (0); 2192 } 2193 t++; 2194 } 2195 2196 return (ENXIO); 2197 } 2198 2199 static void 2200 bge_dma_free(struct bge_softc *sc) 2201 { 2202 int i; 2203 2204 /* Destroy DMA maps for RX buffers. */ 2205 for (i = 0; i < BGE_STD_RX_RING_CNT; i++) { 2206 if (sc->bge_cdata.bge_rx_std_dmamap[i]) 2207 bus_dmamap_destroy(sc->bge_cdata.bge_rx_mtag, 2208 sc->bge_cdata.bge_rx_std_dmamap[i]); 2209 } 2210 if (sc->bge_cdata.bge_rx_std_sparemap) 2211 bus_dmamap_destroy(sc->bge_cdata.bge_rx_mtag, 2212 sc->bge_cdata.bge_rx_std_sparemap); 2213 2214 /* Destroy DMA maps for jumbo RX buffers. */ 2215 for (i = 0; i < BGE_JUMBO_RX_RING_CNT; i++) { 2216 if (sc->bge_cdata.bge_rx_jumbo_dmamap[i]) 2217 bus_dmamap_destroy(sc->bge_cdata.bge_mtag_jumbo, 2218 sc->bge_cdata.bge_rx_jumbo_dmamap[i]); 2219 } 2220 if (sc->bge_cdata.bge_rx_jumbo_sparemap) 2221 bus_dmamap_destroy(sc->bge_cdata.bge_mtag_jumbo, 2222 sc->bge_cdata.bge_rx_jumbo_sparemap); 2223 2224 /* Destroy DMA maps for TX buffers. */ 2225 for (i = 0; i < BGE_TX_RING_CNT; i++) { 2226 if (sc->bge_cdata.bge_tx_dmamap[i]) 2227 bus_dmamap_destroy(sc->bge_cdata.bge_tx_mtag, 2228 sc->bge_cdata.bge_tx_dmamap[i]); 2229 } 2230 2231 if (sc->bge_cdata.bge_rx_mtag) 2232 bus_dma_tag_destroy(sc->bge_cdata.bge_rx_mtag); 2233 if (sc->bge_cdata.bge_tx_mtag) 2234 bus_dma_tag_destroy(sc->bge_cdata.bge_tx_mtag); 2235 2236 2237 /* Destroy standard RX ring. */ 2238 if (sc->bge_cdata.bge_rx_std_ring_map) 2239 bus_dmamap_unload(sc->bge_cdata.bge_rx_std_ring_tag, 2240 sc->bge_cdata.bge_rx_std_ring_map); 2241 if (sc->bge_cdata.bge_rx_std_ring_map && sc->bge_ldata.bge_rx_std_ring) 2242 bus_dmamem_free(sc->bge_cdata.bge_rx_std_ring_tag, 2243 sc->bge_ldata.bge_rx_std_ring, 2244 sc->bge_cdata.bge_rx_std_ring_map); 2245 2246 if (sc->bge_cdata.bge_rx_std_ring_tag) 2247 bus_dma_tag_destroy(sc->bge_cdata.bge_rx_std_ring_tag); 2248 2249 /* Destroy jumbo RX ring. */ 2250 if (sc->bge_cdata.bge_rx_jumbo_ring_map) 2251 bus_dmamap_unload(sc->bge_cdata.bge_rx_jumbo_ring_tag, 2252 sc->bge_cdata.bge_rx_jumbo_ring_map); 2253 2254 if (sc->bge_cdata.bge_rx_jumbo_ring_map && 2255 sc->bge_ldata.bge_rx_jumbo_ring) 2256 bus_dmamem_free(sc->bge_cdata.bge_rx_jumbo_ring_tag, 2257 sc->bge_ldata.bge_rx_jumbo_ring, 2258 sc->bge_cdata.bge_rx_jumbo_ring_map); 2259 2260 if (sc->bge_cdata.bge_rx_jumbo_ring_tag) 2261 bus_dma_tag_destroy(sc->bge_cdata.bge_rx_jumbo_ring_tag); 2262 2263 /* Destroy RX return ring. */ 2264 if (sc->bge_cdata.bge_rx_return_ring_map) 2265 bus_dmamap_unload(sc->bge_cdata.bge_rx_return_ring_tag, 2266 sc->bge_cdata.bge_rx_return_ring_map); 2267 2268 if (sc->bge_cdata.bge_rx_return_ring_map && 2269 sc->bge_ldata.bge_rx_return_ring) 2270 bus_dmamem_free(sc->bge_cdata.bge_rx_return_ring_tag, 2271 sc->bge_ldata.bge_rx_return_ring, 2272 sc->bge_cdata.bge_rx_return_ring_map); 2273 2274 if (sc->bge_cdata.bge_rx_return_ring_tag) 2275 bus_dma_tag_destroy(sc->bge_cdata.bge_rx_return_ring_tag); 2276 2277 /* Destroy TX ring. */ 2278 if (sc->bge_cdata.bge_tx_ring_map) 2279 bus_dmamap_unload(sc->bge_cdata.bge_tx_ring_tag, 2280 sc->bge_cdata.bge_tx_ring_map); 2281 2282 if (sc->bge_cdata.bge_tx_ring_map && sc->bge_ldata.bge_tx_ring) 2283 bus_dmamem_free(sc->bge_cdata.bge_tx_ring_tag, 2284 sc->bge_ldata.bge_tx_ring, 2285 sc->bge_cdata.bge_tx_ring_map); 2286 2287 if (sc->bge_cdata.bge_tx_ring_tag) 2288 bus_dma_tag_destroy(sc->bge_cdata.bge_tx_ring_tag); 2289 2290 /* Destroy status block. */ 2291 if (sc->bge_cdata.bge_status_map) 2292 bus_dmamap_unload(sc->bge_cdata.bge_status_tag, 2293 sc->bge_cdata.bge_status_map); 2294 2295 if (sc->bge_cdata.bge_status_map && sc->bge_ldata.bge_status_block) 2296 bus_dmamem_free(sc->bge_cdata.bge_status_tag, 2297 sc->bge_ldata.bge_status_block, 2298 sc->bge_cdata.bge_status_map); 2299 2300 if (sc->bge_cdata.bge_status_tag) 2301 bus_dma_tag_destroy(sc->bge_cdata.bge_status_tag); 2302 2303 /* Destroy statistics block. */ 2304 if (sc->bge_cdata.bge_stats_map) 2305 bus_dmamap_unload(sc->bge_cdata.bge_stats_tag, 2306 sc->bge_cdata.bge_stats_map); 2307 2308 if (sc->bge_cdata.bge_stats_map && sc->bge_ldata.bge_stats) 2309 bus_dmamem_free(sc->bge_cdata.bge_stats_tag, 2310 sc->bge_ldata.bge_stats, 2311 sc->bge_cdata.bge_stats_map); 2312 2313 if (sc->bge_cdata.bge_stats_tag) 2314 bus_dma_tag_destroy(sc->bge_cdata.bge_stats_tag); 2315 2316 if (sc->bge_cdata.bge_buffer_tag) 2317 bus_dma_tag_destroy(sc->bge_cdata.bge_buffer_tag); 2318 2319 /* Destroy the parent tag. */ 2320 if (sc->bge_cdata.bge_parent_tag) 2321 bus_dma_tag_destroy(sc->bge_cdata.bge_parent_tag); 2322 } 2323 2324 static int 2325 bge_dma_ring_alloc(struct bge_softc *sc, bus_size_t alignment, 2326 bus_size_t maxsize, bus_dma_tag_t *tag, uint8_t **ring, bus_dmamap_t *map, 2327 bus_addr_t *paddr, const char *msg) 2328 { 2329 struct bge_dmamap_arg ctx; 2330 bus_addr_t lowaddr; 2331 bus_size_t ring_end; 2332 int error; 2333 2334 lowaddr = BUS_SPACE_MAXADDR; 2335 again: 2336 error = bus_dma_tag_create(sc->bge_cdata.bge_parent_tag, 2337 alignment, 0, lowaddr, BUS_SPACE_MAXADDR, NULL, 2338 NULL, maxsize, 1, maxsize, 0, NULL, NULL, tag); 2339 if (error != 0) { 2340 device_printf(sc->bge_dev, 2341 "could not create %s dma tag\n", msg); 2342 return (ENOMEM); 2343 } 2344 /* Allocate DMA'able memory for ring. */ 2345 error = bus_dmamem_alloc(*tag, (void **)ring, 2346 BUS_DMA_NOWAIT | BUS_DMA_ZERO | BUS_DMA_COHERENT, map); 2347 if (error != 0) { 2348 device_printf(sc->bge_dev, 2349 "could not allocate DMA'able memory for %s\n", msg); 2350 return (ENOMEM); 2351 } 2352 /* Load the address of the ring. */ 2353 ctx.bge_busaddr = 0; 2354 error = bus_dmamap_load(*tag, *map, *ring, maxsize, bge_dma_map_addr, 2355 &ctx, BUS_DMA_NOWAIT); 2356 if (error != 0) { 2357 device_printf(sc->bge_dev, 2358 "could not load DMA'able memory for %s\n", msg); 2359 return (ENOMEM); 2360 } 2361 *paddr = ctx.bge_busaddr; 2362 ring_end = *paddr + maxsize; 2363 if ((sc->bge_flags & BGE_FLAG_4G_BNDRY_BUG) != 0 && 2364 BGE_ADDR_HI(*paddr) != BGE_ADDR_HI(ring_end)) { 2365 /* 2366 * 4GB boundary crossed. Limit maximum allowable DMA 2367 * address space to 32bit and try again. 2368 */ 2369 bus_dmamap_unload(*tag, *map); 2370 bus_dmamem_free(*tag, *ring, *map); 2371 bus_dma_tag_destroy(*tag); 2372 if (bootverbose) 2373 device_printf(sc->bge_dev, "4GB boundary crossed, " 2374 "limit DMA address space to 32bit for %s\n", msg); 2375 *ring = NULL; 2376 *tag = NULL; 2377 *map = NULL; 2378 lowaddr = BUS_SPACE_MAXADDR_32BIT; 2379 goto again; 2380 } 2381 return (0); 2382 } 2383 2384 static int 2385 bge_dma_alloc(struct bge_softc *sc) 2386 { 2387 bus_addr_t lowaddr; 2388 bus_size_t boundary, sbsz, txsegsz, txmaxsegsz; 2389 int i, error; 2390 2391 lowaddr = BUS_SPACE_MAXADDR; 2392 if ((sc->bge_flags & BGE_FLAG_40BIT_BUG) != 0) 2393 lowaddr = BGE_DMA_MAXADDR; 2394 /* 2395 * Allocate the parent bus DMA tag appropriate for PCI. 2396 */ 2397 error = bus_dma_tag_create(bus_get_dma_tag(sc->bge_dev), 2398 1, 0, lowaddr, BUS_SPACE_MAXADDR, NULL, 2399 NULL, BUS_SPACE_MAXSIZE_32BIT, 0, BUS_SPACE_MAXSIZE_32BIT, 2400 0, NULL, NULL, &sc->bge_cdata.bge_parent_tag); 2401 if (error != 0) { 2402 device_printf(sc->bge_dev, 2403 "could not allocate parent dma tag\n"); 2404 return (ENOMEM); 2405 } 2406 2407 /* Create tag for standard RX ring. */ 2408 error = bge_dma_ring_alloc(sc, PAGE_SIZE, BGE_STD_RX_RING_SZ, 2409 &sc->bge_cdata.bge_rx_std_ring_tag, 2410 (uint8_t **)&sc->bge_ldata.bge_rx_std_ring, 2411 &sc->bge_cdata.bge_rx_std_ring_map, 2412 &sc->bge_ldata.bge_rx_std_ring_paddr, "RX ring"); 2413 if (error) 2414 return (error); 2415 2416 /* Create tag for RX return ring. */ 2417 error = bge_dma_ring_alloc(sc, PAGE_SIZE, BGE_RX_RTN_RING_SZ(sc), 2418 &sc->bge_cdata.bge_rx_return_ring_tag, 2419 (uint8_t **)&sc->bge_ldata.bge_rx_return_ring, 2420 &sc->bge_cdata.bge_rx_return_ring_map, 2421 &sc->bge_ldata.bge_rx_return_ring_paddr, "RX return ring"); 2422 if (error) 2423 return (error); 2424 2425 /* Create tag for TX ring. */ 2426 error = bge_dma_ring_alloc(sc, PAGE_SIZE, BGE_TX_RING_SZ, 2427 &sc->bge_cdata.bge_tx_ring_tag, 2428 (uint8_t **)&sc->bge_ldata.bge_tx_ring, 2429 &sc->bge_cdata.bge_tx_ring_map, 2430 &sc->bge_ldata.bge_tx_ring_paddr, "TX ring"); 2431 if (error) 2432 return (error); 2433 2434 /* 2435 * Create tag for status block. 2436 * Because we only use single Tx/Rx/Rx return ring, use 2437 * minimum status block size except BCM5700 AX/BX which 2438 * seems to want to see full status block size regardless 2439 * of configured number of ring. 2440 */ 2441 if (sc->bge_asicrev == BGE_ASICREV_BCM5700 && 2442 sc->bge_chipid != BGE_CHIPID_BCM5700_C0) 2443 sbsz = BGE_STATUS_BLK_SZ; 2444 else 2445 sbsz = 32; 2446 error = bge_dma_ring_alloc(sc, PAGE_SIZE, sbsz, 2447 &sc->bge_cdata.bge_status_tag, 2448 (uint8_t **)&sc->bge_ldata.bge_status_block, 2449 &sc->bge_cdata.bge_status_map, 2450 &sc->bge_ldata.bge_status_block_paddr, "status block"); 2451 if (error) 2452 return (error); 2453 2454 /* Create tag for statistics block. */ 2455 error = bge_dma_ring_alloc(sc, PAGE_SIZE, BGE_STATS_SZ, 2456 &sc->bge_cdata.bge_stats_tag, 2457 (uint8_t **)&sc->bge_ldata.bge_stats, 2458 &sc->bge_cdata.bge_stats_map, 2459 &sc->bge_ldata.bge_stats_paddr, "statistics block"); 2460 if (error) 2461 return (error); 2462 2463 /* Create tag for jumbo RX ring. */ 2464 if (BGE_IS_JUMBO_CAPABLE(sc)) { 2465 error = bge_dma_ring_alloc(sc, PAGE_SIZE, BGE_JUMBO_RX_RING_SZ, 2466 &sc->bge_cdata.bge_rx_jumbo_ring_tag, 2467 (uint8_t **)&sc->bge_ldata.bge_rx_jumbo_ring, 2468 &sc->bge_cdata.bge_rx_jumbo_ring_map, 2469 &sc->bge_ldata.bge_rx_jumbo_ring_paddr, "jumbo RX ring"); 2470 if (error) 2471 return (error); 2472 } 2473 2474 /* Create parent tag for buffers. */ 2475 boundary = 0; 2476 if ((sc->bge_flags & BGE_FLAG_4G_BNDRY_BUG) != 0) 2477 boundary = BGE_DMA_BNDRY; 2478 error = bus_dma_tag_create(bus_get_dma_tag(sc->bge_dev), 2479 1, boundary, lowaddr, BUS_SPACE_MAXADDR, NULL, 2480 NULL, BUS_SPACE_MAXSIZE_32BIT, 0, BUS_SPACE_MAXSIZE_32BIT, 2481 0, NULL, NULL, &sc->bge_cdata.bge_buffer_tag); 2482 if (error != 0) { 2483 device_printf(sc->bge_dev, 2484 "could not allocate buffer dma tag\n"); 2485 return (ENOMEM); 2486 } 2487 /* Create tag for Tx mbufs. */ 2488 if (sc->bge_flags & (BGE_FLAG_TSO | BGE_FLAG_TSO3)) { 2489 txsegsz = BGE_TSOSEG_SZ; 2490 txmaxsegsz = 65535 + sizeof(struct ether_vlan_header); 2491 } else { 2492 txsegsz = MCLBYTES; 2493 txmaxsegsz = MCLBYTES * BGE_NSEG_NEW; 2494 } 2495 error = bus_dma_tag_create(sc->bge_cdata.bge_buffer_tag, 1, 2496 0, BUS_SPACE_MAXADDR, BUS_SPACE_MAXADDR, NULL, NULL, 2497 txmaxsegsz, BGE_NSEG_NEW, txsegsz, 0, NULL, NULL, 2498 &sc->bge_cdata.bge_tx_mtag); 2499 2500 if (error) { 2501 device_printf(sc->bge_dev, "could not allocate TX dma tag\n"); 2502 return (ENOMEM); 2503 } 2504 2505 /* Create tag for Rx mbufs. */ 2506 error = bus_dma_tag_create(sc->bge_cdata.bge_buffer_tag, 1, 0, 2507 BUS_SPACE_MAXADDR, BUS_SPACE_MAXADDR, NULL, NULL, MCLBYTES, 1, 2508 MCLBYTES, 0, NULL, NULL, &sc->bge_cdata.bge_rx_mtag); 2509 2510 if (error) { 2511 device_printf(sc->bge_dev, "could not allocate RX dma tag\n"); 2512 return (ENOMEM); 2513 } 2514 2515 /* Create DMA maps for RX buffers. */ 2516 error = bus_dmamap_create(sc->bge_cdata.bge_rx_mtag, 0, 2517 &sc->bge_cdata.bge_rx_std_sparemap); 2518 if (error) { 2519 device_printf(sc->bge_dev, 2520 "can't create spare DMA map for RX\n"); 2521 return (ENOMEM); 2522 } 2523 for (i = 0; i < BGE_STD_RX_RING_CNT; i++) { 2524 error = bus_dmamap_create(sc->bge_cdata.bge_rx_mtag, 0, 2525 &sc->bge_cdata.bge_rx_std_dmamap[i]); 2526 if (error) { 2527 device_printf(sc->bge_dev, 2528 "can't create DMA map for RX\n"); 2529 return (ENOMEM); 2530 } 2531 } 2532 2533 /* Create DMA maps for TX buffers. */ 2534 for (i = 0; i < BGE_TX_RING_CNT; i++) { 2535 error = bus_dmamap_create(sc->bge_cdata.bge_tx_mtag, 0, 2536 &sc->bge_cdata.bge_tx_dmamap[i]); 2537 if (error) { 2538 device_printf(sc->bge_dev, 2539 "can't create DMA map for TX\n"); 2540 return (ENOMEM); 2541 } 2542 } 2543 2544 /* Create tags for jumbo RX buffers. */ 2545 if (BGE_IS_JUMBO_CAPABLE(sc)) { 2546 error = bus_dma_tag_create(sc->bge_cdata.bge_buffer_tag, 2547 1, 0, BUS_SPACE_MAXADDR, BUS_SPACE_MAXADDR, NULL, 2548 NULL, MJUM9BYTES, BGE_NSEG_JUMBO, PAGE_SIZE, 2549 0, NULL, NULL, &sc->bge_cdata.bge_mtag_jumbo); 2550 if (error) { 2551 device_printf(sc->bge_dev, 2552 "could not allocate jumbo dma tag\n"); 2553 return (ENOMEM); 2554 } 2555 /* Create DMA maps for jumbo RX buffers. */ 2556 error = bus_dmamap_create(sc->bge_cdata.bge_mtag_jumbo, 2557 0, &sc->bge_cdata.bge_rx_jumbo_sparemap); 2558 if (error) { 2559 device_printf(sc->bge_dev, 2560 "can't create spare DMA map for jumbo RX\n"); 2561 return (ENOMEM); 2562 } 2563 for (i = 0; i < BGE_JUMBO_RX_RING_CNT; i++) { 2564 error = bus_dmamap_create(sc->bge_cdata.bge_mtag_jumbo, 2565 0, &sc->bge_cdata.bge_rx_jumbo_dmamap[i]); 2566 if (error) { 2567 device_printf(sc->bge_dev, 2568 "can't create DMA map for jumbo RX\n"); 2569 return (ENOMEM); 2570 } 2571 } 2572 } 2573 2574 return (0); 2575 } 2576 2577 /* 2578 * Return true if this device has more than one port. 2579 */ 2580 static int 2581 bge_has_multiple_ports(struct bge_softc *sc) 2582 { 2583 device_t dev = sc->bge_dev; 2584 u_int b, d, f, fscan, s; 2585 2586 d = pci_get_domain(dev); 2587 b = pci_get_bus(dev); 2588 s = pci_get_slot(dev); 2589 f = pci_get_function(dev); 2590 for (fscan = 0; fscan <= PCI_FUNCMAX; fscan++) 2591 if (fscan != f && pci_find_dbsf(d, b, s, fscan) != NULL) 2592 return (1); 2593 return (0); 2594 } 2595 2596 /* 2597 * Return true if MSI can be used with this device. 2598 */ 2599 static int 2600 bge_can_use_msi(struct bge_softc *sc) 2601 { 2602 int can_use_msi = 0; 2603 2604 /* Disable MSI for polling(4). */ 2605 #ifdef DEVICE_POLLING 2606 return (0); 2607 #endif 2608 switch (sc->bge_asicrev) { 2609 case BGE_ASICREV_BCM5714_A0: 2610 case BGE_ASICREV_BCM5714: 2611 /* 2612 * Apparently, MSI doesn't work when these chips are 2613 * configured in single-port mode. 2614 */ 2615 if (bge_has_multiple_ports(sc)) 2616 can_use_msi = 1; 2617 break; 2618 case BGE_ASICREV_BCM5750: 2619 if (sc->bge_chiprev != BGE_CHIPREV_5750_AX && 2620 sc->bge_chiprev != BGE_CHIPREV_5750_BX) 2621 can_use_msi = 1; 2622 break; 2623 default: 2624 if (BGE_IS_575X_PLUS(sc)) 2625 can_use_msi = 1; 2626 } 2627 return (can_use_msi); 2628 } 2629 2630 static int 2631 bge_attach(device_t dev) 2632 { 2633 struct ifnet *ifp; 2634 struct bge_softc *sc; 2635 uint32_t hwcfg = 0, misccfg; 2636 u_char eaddr[ETHER_ADDR_LEN]; 2637 int capmask, error, f, msicount, phy_addr, reg, rid, trys; 2638 2639 sc = device_get_softc(dev); 2640 sc->bge_dev = dev; 2641 2642 TASK_INIT(&sc->bge_intr_task, 0, bge_intr_task, sc); 2643 2644 /* 2645 * Map control/status registers. 2646 */ 2647 pci_enable_busmaster(dev); 2648 2649 rid = PCIR_BAR(0); 2650 sc->bge_res = bus_alloc_resource_any(dev, SYS_RES_MEMORY, &rid, 2651 RF_ACTIVE); 2652 2653 if (sc->bge_res == NULL) { 2654 device_printf (sc->bge_dev, "couldn't map memory\n"); 2655 error = ENXIO; 2656 goto fail; 2657 } 2658 2659 /* Save various chip information. */ 2660 sc->bge_chipid = 2661 pci_read_config(dev, BGE_PCI_MISC_CTL, 4) >> 2662 BGE_PCIMISCCTL_ASICREV_SHIFT; 2663 if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_USE_PRODID_REG) { 2664 /* 2665 * Find the ASCI revision. Different chips use different 2666 * registers. 2667 */ 2668 switch (pci_get_device(dev)) { 2669 case BCOM_DEVICEID_BCM5717: 2670 case BCOM_DEVICEID_BCM5718: 2671 sc->bge_chipid = pci_read_config(dev, 2672 BGE_PCI_GEN2_PRODID_ASICREV, 4); 2673 break; 2674 default: 2675 sc->bge_chipid = pci_read_config(dev, 2676 BGE_PCI_PRODID_ASICREV, 4); 2677 } 2678 } 2679 sc->bge_asicrev = BGE_ASICREV(sc->bge_chipid); 2680 sc->bge_chiprev = BGE_CHIPREV(sc->bge_chipid); 2681 2682 /* Set default PHY address. */ 2683 phy_addr = 1; 2684 /* 2685 * PHY address mapping for various devices. 2686 * 2687 * | F0 Cu | F0 Sr | F1 Cu | F1 Sr | 2688 * ---------+-------+-------+-------+-------+ 2689 * BCM57XX | 1 | X | X | X | 2690 * BCM5704 | 1 | X | 1 | X | 2691 * BCM5717 | 1 | 8 | 2 | 9 | 2692 * 2693 * Other addresses may respond but they are not 2694 * IEEE compliant PHYs and should be ignored. 2695 */ 2696 if (sc->bge_asicrev == BGE_ASICREV_BCM5717) { 2697 f = pci_get_function(dev); 2698 if (sc->bge_chipid == BGE_CHIPID_BCM5717_A0) { 2699 if (CSR_READ_4(sc, BGE_SGDIG_STS) & 2700 BGE_SGDIGSTS_IS_SERDES) 2701 phy_addr = f + 8; 2702 else 2703 phy_addr = f + 1; 2704 } else if (sc->bge_chipid == BGE_CHIPID_BCM5717_B0) { 2705 if (CSR_READ_4(sc, BGE_CPMU_PHY_STRAP) & 2706 BGE_CPMU_PHY_STRAP_IS_SERDES) 2707 phy_addr = f + 8; 2708 else 2709 phy_addr = f + 1; 2710 } 2711 } 2712 2713 /* 2714 * Don't enable Ethernet@WireSpeed for the 5700, 5906, or the 2715 * 5705 A0 and A1 chips. 2716 */ 2717 if (sc->bge_asicrev != BGE_ASICREV_BCM5700 && 2718 sc->bge_asicrev != BGE_ASICREV_BCM5906 && 2719 sc->bge_chipid != BGE_CHIPID_BCM5705_A0 && 2720 sc->bge_chipid != BGE_CHIPID_BCM5705_A1 && 2721 !BGE_IS_5717_PLUS(sc)) 2722 sc->bge_phy_flags |= BGE_PHY_WIRESPEED; 2723 2724 if (bge_has_eaddr(sc)) 2725 sc->bge_flags |= BGE_FLAG_EADDR; 2726 2727 /* Save chipset family. */ 2728 switch (sc->bge_asicrev) { 2729 case BGE_ASICREV_BCM5717: 2730 sc->bge_flags |= BGE_FLAG_5717_PLUS | BGE_FLAG_5755_PLUS | 2731 BGE_FLAG_575X_PLUS | BGE_FLAG_5705_PLUS | BGE_FLAG_JUMBO | 2732 BGE_FLAG_SHORT_DMA_BUG | BGE_FLAG_JUMBO_FRAME; 2733 break; 2734 case BGE_ASICREV_BCM5755: 2735 case BGE_ASICREV_BCM5761: 2736 case BGE_ASICREV_BCM5784: 2737 case BGE_ASICREV_BCM5785: 2738 case BGE_ASICREV_BCM5787: 2739 case BGE_ASICREV_BCM57780: 2740 sc->bge_flags |= BGE_FLAG_5755_PLUS | BGE_FLAG_575X_PLUS | 2741 BGE_FLAG_5705_PLUS; 2742 break; 2743 case BGE_ASICREV_BCM5700: 2744 case BGE_ASICREV_BCM5701: 2745 case BGE_ASICREV_BCM5703: 2746 case BGE_ASICREV_BCM5704: 2747 sc->bge_flags |= BGE_FLAG_5700_FAMILY | BGE_FLAG_JUMBO; 2748 break; 2749 case BGE_ASICREV_BCM5714_A0: 2750 case BGE_ASICREV_BCM5780: 2751 case BGE_ASICREV_BCM5714: 2752 sc->bge_flags |= BGE_FLAG_5714_FAMILY /* | BGE_FLAG_JUMBO */; 2753 /* FALLTHROUGH */ 2754 case BGE_ASICREV_BCM5750: 2755 case BGE_ASICREV_BCM5752: 2756 case BGE_ASICREV_BCM5906: 2757 sc->bge_flags |= BGE_FLAG_575X_PLUS; 2758 if (sc->bge_asicrev == BGE_ASICREV_BCM5906) 2759 sc->bge_flags |= BGE_FLAG_SHORT_DMA_BUG; 2760 /* FALLTHROUGH */ 2761 case BGE_ASICREV_BCM5705: 2762 sc->bge_flags |= BGE_FLAG_5705_PLUS; 2763 break; 2764 } 2765 2766 /* Set various PHY bug flags. */ 2767 if (sc->bge_chipid == BGE_CHIPID_BCM5701_A0 || 2768 sc->bge_chipid == BGE_CHIPID_BCM5701_B0) 2769 sc->bge_phy_flags |= BGE_PHY_CRC_BUG; 2770 if (sc->bge_chiprev == BGE_CHIPREV_5703_AX || 2771 sc->bge_chiprev == BGE_CHIPREV_5704_AX) 2772 sc->bge_phy_flags |= BGE_PHY_ADC_BUG; 2773 if (sc->bge_chipid == BGE_CHIPID_BCM5704_A0) 2774 sc->bge_phy_flags |= BGE_PHY_5704_A0_BUG; 2775 if (pci_get_subvendor(dev) == DELL_VENDORID) 2776 sc->bge_phy_flags |= BGE_PHY_NO_3LED; 2777 if ((BGE_IS_5705_PLUS(sc)) && 2778 sc->bge_asicrev != BGE_ASICREV_BCM5906 && 2779 sc->bge_asicrev != BGE_ASICREV_BCM5717 && 2780 sc->bge_asicrev != BGE_ASICREV_BCM5785 && 2781 sc->bge_asicrev != BGE_ASICREV_BCM57780) { 2782 if (sc->bge_asicrev == BGE_ASICREV_BCM5755 || 2783 sc->bge_asicrev == BGE_ASICREV_BCM5761 || 2784 sc->bge_asicrev == BGE_ASICREV_BCM5784 || 2785 sc->bge_asicrev == BGE_ASICREV_BCM5787) { 2786 if (pci_get_device(dev) != BCOM_DEVICEID_BCM5722 && 2787 pci_get_device(dev) != BCOM_DEVICEID_BCM5756) 2788 sc->bge_phy_flags |= BGE_PHY_JITTER_BUG; 2789 if (pci_get_device(dev) == BCOM_DEVICEID_BCM5755M) 2790 sc->bge_phy_flags |= BGE_PHY_ADJUST_TRIM; 2791 } else 2792 sc->bge_phy_flags |= BGE_PHY_BER_BUG; 2793 } 2794 2795 /* Identify the chips that use an CPMU. */ 2796 if (BGE_IS_5717_PLUS(sc) || 2797 sc->bge_asicrev == BGE_ASICREV_BCM5784 || 2798 sc->bge_asicrev == BGE_ASICREV_BCM5761 || 2799 sc->bge_asicrev == BGE_ASICREV_BCM5785 || 2800 sc->bge_asicrev == BGE_ASICREV_BCM57780) 2801 sc->bge_flags |= BGE_FLAG_CPMU_PRESENT; 2802 if ((sc->bge_flags & BGE_FLAG_CPMU_PRESENT) != 0) 2803 sc->bge_mi_mode = BGE_MIMODE_500KHZ_CONST; 2804 else 2805 sc->bge_mi_mode = BGE_MIMODE_BASE; 2806 /* Enable auto polling for BCM570[0-5]. */ 2807 if (BGE_IS_5700_FAMILY(sc) || sc->bge_asicrev == BGE_ASICREV_BCM5705) 2808 sc->bge_mi_mode |= BGE_MIMODE_AUTOPOLL; 2809 2810 /* 2811 * All controllers that are not 5755 or higher have 4GB 2812 * boundary DMA bug. 2813 * Whenever an address crosses a multiple of the 4GB boundary 2814 * (including 4GB, 8Gb, 12Gb, etc.) and makes the transition 2815 * from 0xX_FFFF_FFFF to 0x(X+1)_0000_0000 an internal DMA 2816 * state machine will lockup and cause the device to hang. 2817 */ 2818 if (BGE_IS_5755_PLUS(sc) == 0) 2819 sc->bge_flags |= BGE_FLAG_4G_BNDRY_BUG; 2820 2821 misccfg = CSR_READ_4(sc, BGE_MISC_CFG) & BGE_MISCCFG_BOARD_ID; 2822 if (sc->bge_asicrev == BGE_ASICREV_BCM5705) { 2823 if (misccfg == BGE_MISCCFG_BOARD_ID_5788 || 2824 misccfg == BGE_MISCCFG_BOARD_ID_5788M) 2825 sc->bge_flags |= BGE_FLAG_5788; 2826 } 2827 2828 capmask = BMSR_DEFCAPMASK; 2829 if ((sc->bge_asicrev == BGE_ASICREV_BCM5703 && 2830 (misccfg == 0x4000 || misccfg == 0x8000)) || 2831 (sc->bge_asicrev == BGE_ASICREV_BCM5705 && 2832 pci_get_vendor(dev) == BCOM_VENDORID && 2833 (pci_get_device(dev) == BCOM_DEVICEID_BCM5901 || 2834 pci_get_device(dev) == BCOM_DEVICEID_BCM5901A2 || 2835 pci_get_device(dev) == BCOM_DEVICEID_BCM5705F)) || 2836 (pci_get_vendor(dev) == BCOM_VENDORID && 2837 (pci_get_device(dev) == BCOM_DEVICEID_BCM5751F || 2838 pci_get_device(dev) == BCOM_DEVICEID_BCM5753F || 2839 pci_get_device(dev) == BCOM_DEVICEID_BCM5787F)) || 2840 pci_get_device(dev) == BCOM_DEVICEID_BCM57790 || 2841 sc->bge_asicrev == BGE_ASICREV_BCM5906) { 2842 /* These chips are 10/100 only. */ 2843 capmask &= ~BMSR_EXTSTAT; 2844 } 2845 2846 /* 2847 * Some controllers seem to require a special firmware to use 2848 * TSO. But the firmware is not available to FreeBSD and Linux 2849 * claims that the TSO performed by the firmware is slower than 2850 * hardware based TSO. Moreover the firmware based TSO has one 2851 * known bug which can't handle TSO if ethernet header + IP/TCP 2852 * header is greater than 80 bytes. The workaround for the TSO 2853 * bug exist but it seems it's too expensive than not using 2854 * TSO at all. Some hardwares also have the TSO bug so limit 2855 * the TSO to the controllers that are not affected TSO issues 2856 * (e.g. 5755 or higher). 2857 */ 2858 if (BGE_IS_5717_PLUS(sc)) { 2859 /* BCM5717 requires different TSO configuration. */ 2860 sc->bge_flags |= BGE_FLAG_TSO3; 2861 } else if (BGE_IS_5755_PLUS(sc)) { 2862 /* 2863 * BCM5754 and BCM5787 shares the same ASIC id so 2864 * explicit device id check is required. 2865 * Due to unknown reason TSO does not work on BCM5755M. 2866 */ 2867 if (pci_get_device(dev) != BCOM_DEVICEID_BCM5754 && 2868 pci_get_device(dev) != BCOM_DEVICEID_BCM5754M && 2869 pci_get_device(dev) != BCOM_DEVICEID_BCM5755M) 2870 sc->bge_flags |= BGE_FLAG_TSO; 2871 } 2872 2873 /* 2874 * Check if this is a PCI-X or PCI Express device. 2875 */ 2876 if (pci_find_extcap(dev, PCIY_EXPRESS, ®) == 0) { 2877 /* 2878 * Found a PCI Express capabilities register, this 2879 * must be a PCI Express device. 2880 */ 2881 sc->bge_flags |= BGE_FLAG_PCIE; 2882 sc->bge_expcap = reg; 2883 if (pci_get_max_read_req(dev) != 4096) 2884 pci_set_max_read_req(dev, 4096); 2885 } else { 2886 /* 2887 * Check if the device is in PCI-X Mode. 2888 * (This bit is not valid on PCI Express controllers.) 2889 */ 2890 if (pci_find_extcap(dev, PCIY_PCIX, ®) == 0) 2891 sc->bge_pcixcap = reg; 2892 if ((pci_read_config(dev, BGE_PCI_PCISTATE, 4) & 2893 BGE_PCISTATE_PCI_BUSMODE) == 0) 2894 sc->bge_flags |= BGE_FLAG_PCIX; 2895 } 2896 2897 /* 2898 * The 40bit DMA bug applies to the 5714/5715 controllers and is 2899 * not actually a MAC controller bug but an issue with the embedded 2900 * PCIe to PCI-X bridge in the device. Use 40bit DMA workaround. 2901 */ 2902 if (BGE_IS_5714_FAMILY(sc) && (sc->bge_flags & BGE_FLAG_PCIX)) 2903 sc->bge_flags |= BGE_FLAG_40BIT_BUG; 2904 /* 2905 * Allocate the interrupt, using MSI if possible. These devices 2906 * support 8 MSI messages, but only the first one is used in 2907 * normal operation. 2908 */ 2909 rid = 0; 2910 if (pci_find_extcap(sc->bge_dev, PCIY_MSI, ®) == 0) { 2911 sc->bge_msicap = reg; 2912 if (bge_can_use_msi(sc)) { 2913 msicount = pci_msi_count(dev); 2914 if (msicount > 1) 2915 msicount = 1; 2916 } else 2917 msicount = 0; 2918 if (msicount == 1 && pci_alloc_msi(dev, &msicount) == 0) { 2919 rid = 1; 2920 sc->bge_flags |= BGE_FLAG_MSI; 2921 } 2922 } 2923 2924 /* 2925 * All controllers except BCM5700 supports tagged status but 2926 * we use tagged status only for MSI case on BCM5717. Otherwise 2927 * MSI on BCM5717 does not work. 2928 */ 2929 #ifndef DEVICE_POLLING 2930 if (sc->bge_flags & BGE_FLAG_MSI && BGE_IS_5717_PLUS(sc)) 2931 sc->bge_flags |= BGE_FLAG_TAGGED_STATUS; 2932 #endif 2933 2934 sc->bge_irq = bus_alloc_resource_any(dev, SYS_RES_IRQ, &rid, 2935 RF_SHAREABLE | RF_ACTIVE); 2936 2937 if (sc->bge_irq == NULL) { 2938 device_printf(sc->bge_dev, "couldn't map interrupt\n"); 2939 error = ENXIO; 2940 goto fail; 2941 } 2942 2943 device_printf(dev, 2944 "CHIP ID 0x%08x; ASIC REV 0x%02x; CHIP REV 0x%02x; %s\n", 2945 sc->bge_chipid, sc->bge_asicrev, sc->bge_chiprev, 2946 (sc->bge_flags & BGE_FLAG_PCIX) ? "PCI-X" : 2947 ((sc->bge_flags & BGE_FLAG_PCIE) ? "PCI-E" : "PCI")); 2948 2949 BGE_LOCK_INIT(sc, device_get_nameunit(dev)); 2950 2951 /* Try to reset the chip. */ 2952 if (bge_reset(sc)) { 2953 device_printf(sc->bge_dev, "chip reset failed\n"); 2954 error = ENXIO; 2955 goto fail; 2956 } 2957 2958 sc->bge_asf_mode = 0; 2959 if (bge_allow_asf && (bge_readmem_ind(sc, BGE_SOFTWARE_GENCOMM_SIG) 2960 == BGE_MAGIC_NUMBER)) { 2961 if (bge_readmem_ind(sc, BGE_SOFTWARE_GENCOMM_NICCFG) 2962 & BGE_HWCFG_ASF) { 2963 sc->bge_asf_mode |= ASF_ENABLE; 2964 sc->bge_asf_mode |= ASF_STACKUP; 2965 if (BGE_IS_575X_PLUS(sc)) 2966 sc->bge_asf_mode |= ASF_NEW_HANDSHAKE; 2967 } 2968 } 2969 2970 /* Try to reset the chip again the nice way. */ 2971 bge_stop_fw(sc); 2972 bge_sig_pre_reset(sc, BGE_RESET_STOP); 2973 if (bge_reset(sc)) { 2974 device_printf(sc->bge_dev, "chip reset failed\n"); 2975 error = ENXIO; 2976 goto fail; 2977 } 2978 2979 bge_sig_legacy(sc, BGE_RESET_STOP); 2980 bge_sig_post_reset(sc, BGE_RESET_STOP); 2981 2982 if (bge_chipinit(sc)) { 2983 device_printf(sc->bge_dev, "chip initialization failed\n"); 2984 error = ENXIO; 2985 goto fail; 2986 } 2987 2988 error = bge_get_eaddr(sc, eaddr); 2989 if (error) { 2990 device_printf(sc->bge_dev, 2991 "failed to read station address\n"); 2992 error = ENXIO; 2993 goto fail; 2994 } 2995 2996 /* 5705 limits RX return ring to 512 entries. */ 2997 if (BGE_IS_5717_PLUS(sc)) 2998 sc->bge_return_ring_cnt = BGE_RETURN_RING_CNT; 2999 else if (BGE_IS_5705_PLUS(sc)) 3000 sc->bge_return_ring_cnt = BGE_RETURN_RING_CNT_5705; 3001 else 3002 sc->bge_return_ring_cnt = BGE_RETURN_RING_CNT; 3003 3004 if (bge_dma_alloc(sc)) { 3005 device_printf(sc->bge_dev, 3006 "failed to allocate DMA resources\n"); 3007 error = ENXIO; 3008 goto fail; 3009 } 3010 3011 bge_add_sysctls(sc); 3012 3013 /* Set default tuneable values. */ 3014 sc->bge_stat_ticks = BGE_TICKS_PER_SEC; 3015 sc->bge_rx_coal_ticks = 150; 3016 sc->bge_tx_coal_ticks = 150; 3017 sc->bge_rx_max_coal_bds = 10; 3018 sc->bge_tx_max_coal_bds = 10; 3019 3020 /* Initialize checksum features to use. */ 3021 sc->bge_csum_features = BGE_CSUM_FEATURES; 3022 if (sc->bge_forced_udpcsum != 0) 3023 sc->bge_csum_features |= CSUM_UDP; 3024 3025 /* Set up ifnet structure */ 3026 ifp = sc->bge_ifp = if_alloc(IFT_ETHER); 3027 if (ifp == NULL) { 3028 device_printf(sc->bge_dev, "failed to if_alloc()\n"); 3029 error = ENXIO; 3030 goto fail; 3031 } 3032 ifp->if_softc = sc; 3033 if_initname(ifp, device_get_name(dev), device_get_unit(dev)); 3034 ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST; 3035 ifp->if_ioctl = bge_ioctl; 3036 ifp->if_start = bge_start; 3037 ifp->if_init = bge_init; 3038 ifp->if_snd.ifq_drv_maxlen = BGE_TX_RING_CNT - 1; 3039 IFQ_SET_MAXLEN(&ifp->if_snd, ifp->if_snd.ifq_drv_maxlen); 3040 IFQ_SET_READY(&ifp->if_snd); 3041 ifp->if_hwassist = sc->bge_csum_features; 3042 ifp->if_capabilities = IFCAP_HWCSUM | IFCAP_VLAN_HWTAGGING | 3043 IFCAP_VLAN_MTU; 3044 if ((sc->bge_flags & (BGE_FLAG_TSO | BGE_FLAG_TSO3)) != 0) { 3045 ifp->if_hwassist |= CSUM_TSO; 3046 ifp->if_capabilities |= IFCAP_TSO4 | IFCAP_VLAN_HWTSO; 3047 } 3048 #ifdef IFCAP_VLAN_HWCSUM 3049 ifp->if_capabilities |= IFCAP_VLAN_HWCSUM; 3050 #endif 3051 ifp->if_capenable = ifp->if_capabilities; 3052 #ifdef DEVICE_POLLING 3053 ifp->if_capabilities |= IFCAP_POLLING; 3054 #endif 3055 3056 /* 3057 * 5700 B0 chips do not support checksumming correctly due 3058 * to hardware bugs. 3059 */ 3060 if (sc->bge_chipid == BGE_CHIPID_BCM5700_B0) { 3061 ifp->if_capabilities &= ~IFCAP_HWCSUM; 3062 ifp->if_capenable &= ~IFCAP_HWCSUM; 3063 ifp->if_hwassist = 0; 3064 } 3065 3066 /* 3067 * Figure out what sort of media we have by checking the 3068 * hardware config word in the first 32k of NIC internal memory, 3069 * or fall back to examining the EEPROM if necessary. 3070 * Note: on some BCM5700 cards, this value appears to be unset. 3071 * If that's the case, we have to rely on identifying the NIC 3072 * by its PCI subsystem ID, as we do below for the SysKonnect 3073 * SK-9D41. 3074 */ 3075 if (bge_readmem_ind(sc, BGE_SOFTWARE_GENCOMM_SIG) == BGE_MAGIC_NUMBER) 3076 hwcfg = bge_readmem_ind(sc, BGE_SOFTWARE_GENCOMM_NICCFG); 3077 else if ((sc->bge_flags & BGE_FLAG_EADDR) && 3078 (sc->bge_asicrev != BGE_ASICREV_BCM5906)) { 3079 if (bge_read_eeprom(sc, (caddr_t)&hwcfg, BGE_EE_HWCFG_OFFSET, 3080 sizeof(hwcfg))) { 3081 device_printf(sc->bge_dev, "failed to read EEPROM\n"); 3082 error = ENXIO; 3083 goto fail; 3084 } 3085 hwcfg = ntohl(hwcfg); 3086 } 3087 3088 /* The SysKonnect SK-9D41 is a 1000baseSX card. */ 3089 if ((pci_read_config(dev, BGE_PCI_SUBSYS, 4) >> 16) == 3090 SK_SUBSYSID_9D41 || (hwcfg & BGE_HWCFG_MEDIA) == BGE_MEDIA_FIBER) { 3091 if (BGE_IS_5714_FAMILY(sc)) 3092 sc->bge_flags |= BGE_FLAG_MII_SERDES; 3093 else 3094 sc->bge_flags |= BGE_FLAG_TBI; 3095 } 3096 3097 if (sc->bge_flags & BGE_FLAG_TBI) { 3098 ifmedia_init(&sc->bge_ifmedia, IFM_IMASK, bge_ifmedia_upd, 3099 bge_ifmedia_sts); 3100 ifmedia_add(&sc->bge_ifmedia, IFM_ETHER | IFM_1000_SX, 0, NULL); 3101 ifmedia_add(&sc->bge_ifmedia, IFM_ETHER | IFM_1000_SX | IFM_FDX, 3102 0, NULL); 3103 ifmedia_add(&sc->bge_ifmedia, IFM_ETHER | IFM_AUTO, 0, NULL); 3104 ifmedia_set(&sc->bge_ifmedia, IFM_ETHER | IFM_AUTO); 3105 sc->bge_ifmedia.ifm_media = sc->bge_ifmedia.ifm_cur->ifm_media; 3106 } else { 3107 /* 3108 * Do transceiver setup and tell the firmware the 3109 * driver is down so we can try to get access the 3110 * probe if ASF is running. Retry a couple of times 3111 * if we get a conflict with the ASF firmware accessing 3112 * the PHY. 3113 */ 3114 trys = 0; 3115 BGE_CLRBIT(sc, BGE_MODE_CTL, BGE_MODECTL_STACKUP); 3116 again: 3117 bge_asf_driver_up(sc); 3118 3119 error = mii_attach(dev, &sc->bge_miibus, ifp, bge_ifmedia_upd, 3120 bge_ifmedia_sts, capmask, phy_addr, MII_OFFSET_ANY, 3121 MIIF_DOPAUSE); 3122 if (error != 0) { 3123 if (trys++ < 4) { 3124 device_printf(sc->bge_dev, "Try again\n"); 3125 bge_miibus_writereg(sc->bge_dev, 1, MII_BMCR, 3126 BMCR_RESET); 3127 goto again; 3128 } 3129 device_printf(sc->bge_dev, "attaching PHYs failed\n"); 3130 goto fail; 3131 } 3132 3133 /* 3134 * Now tell the firmware we are going up after probing the PHY 3135 */ 3136 if (sc->bge_asf_mode & ASF_STACKUP) 3137 BGE_SETBIT(sc, BGE_MODE_CTL, BGE_MODECTL_STACKUP); 3138 } 3139 3140 /* 3141 * When using the BCM5701 in PCI-X mode, data corruption has 3142 * been observed in the first few bytes of some received packets. 3143 * Aligning the packet buffer in memory eliminates the corruption. 3144 * Unfortunately, this misaligns the packet payloads. On platforms 3145 * which do not support unaligned accesses, we will realign the 3146 * payloads by copying the received packets. 3147 */ 3148 if (sc->bge_asicrev == BGE_ASICREV_BCM5701 && 3149 sc->bge_flags & BGE_FLAG_PCIX) 3150 sc->bge_flags |= BGE_FLAG_RX_ALIGNBUG; 3151 3152 /* 3153 * Call MI attach routine. 3154 */ 3155 ether_ifattach(ifp, eaddr); 3156 callout_init_mtx(&sc->bge_stat_ch, &sc->bge_mtx, 0); 3157 3158 /* Tell upper layer we support long frames. */ 3159 ifp->if_data.ifi_hdrlen = sizeof(struct ether_vlan_header); 3160 3161 /* 3162 * Hookup IRQ last. 3163 */ 3164 if (BGE_IS_5755_PLUS(sc) && sc->bge_flags & BGE_FLAG_MSI) { 3165 /* Take advantage of single-shot MSI. */ 3166 CSR_WRITE_4(sc, BGE_MSI_MODE, CSR_READ_4(sc, BGE_MSI_MODE) & 3167 ~BGE_MSIMODE_ONE_SHOT_DISABLE); 3168 sc->bge_tq = taskqueue_create_fast("bge_taskq", M_WAITOK, 3169 taskqueue_thread_enqueue, &sc->bge_tq); 3170 if (sc->bge_tq == NULL) { 3171 device_printf(dev, "could not create taskqueue.\n"); 3172 ether_ifdetach(ifp); 3173 error = ENXIO; 3174 goto fail; 3175 } 3176 taskqueue_start_threads(&sc->bge_tq, 1, PI_NET, "%s taskq", 3177 device_get_nameunit(sc->bge_dev)); 3178 error = bus_setup_intr(dev, sc->bge_irq, 3179 INTR_TYPE_NET | INTR_MPSAFE, bge_msi_intr, NULL, sc, 3180 &sc->bge_intrhand); 3181 if (error) 3182 ether_ifdetach(ifp); 3183 } else 3184 error = bus_setup_intr(dev, sc->bge_irq, 3185 INTR_TYPE_NET | INTR_MPSAFE, NULL, bge_intr, sc, 3186 &sc->bge_intrhand); 3187 3188 if (error) { 3189 bge_detach(dev); 3190 device_printf(sc->bge_dev, "couldn't set up irq\n"); 3191 } 3192 3193 return (0); 3194 3195 fail: 3196 bge_release_resources(sc); 3197 3198 return (error); 3199 } 3200 3201 static int 3202 bge_detach(device_t dev) 3203 { 3204 struct bge_softc *sc; 3205 struct ifnet *ifp; 3206 3207 sc = device_get_softc(dev); 3208 ifp = sc->bge_ifp; 3209 3210 #ifdef DEVICE_POLLING 3211 if (ifp->if_capenable & IFCAP_POLLING) 3212 ether_poll_deregister(ifp); 3213 #endif 3214 3215 BGE_LOCK(sc); 3216 bge_stop(sc); 3217 bge_reset(sc); 3218 BGE_UNLOCK(sc); 3219 3220 callout_drain(&sc->bge_stat_ch); 3221 3222 if (sc->bge_tq) 3223 taskqueue_drain(sc->bge_tq, &sc->bge_intr_task); 3224 ether_ifdetach(ifp); 3225 3226 if (sc->bge_flags & BGE_FLAG_TBI) { 3227 ifmedia_removeall(&sc->bge_ifmedia); 3228 } else { 3229 bus_generic_detach(dev); 3230 device_delete_child(dev, sc->bge_miibus); 3231 } 3232 3233 bge_release_resources(sc); 3234 3235 return (0); 3236 } 3237 3238 static void 3239 bge_release_resources(struct bge_softc *sc) 3240 { 3241 device_t dev; 3242 3243 dev = sc->bge_dev; 3244 3245 if (sc->bge_tq != NULL) 3246 taskqueue_free(sc->bge_tq); 3247 3248 if (sc->bge_intrhand != NULL) 3249 bus_teardown_intr(dev, sc->bge_irq, sc->bge_intrhand); 3250 3251 if (sc->bge_irq != NULL) 3252 bus_release_resource(dev, SYS_RES_IRQ, 3253 sc->bge_flags & BGE_FLAG_MSI ? 1 : 0, sc->bge_irq); 3254 3255 if (sc->bge_flags & BGE_FLAG_MSI) 3256 pci_release_msi(dev); 3257 3258 if (sc->bge_res != NULL) 3259 bus_release_resource(dev, SYS_RES_MEMORY, 3260 PCIR_BAR(0), sc->bge_res); 3261 3262 if (sc->bge_ifp != NULL) 3263 if_free(sc->bge_ifp); 3264 3265 bge_dma_free(sc); 3266 3267 if (mtx_initialized(&sc->bge_mtx)) /* XXX */ 3268 BGE_LOCK_DESTROY(sc); 3269 } 3270 3271 static int 3272 bge_reset(struct bge_softc *sc) 3273 { 3274 device_t dev; 3275 uint32_t cachesize, command, pcistate, reset, val; 3276 void (*write_op)(struct bge_softc *, int, int); 3277 uint16_t devctl; 3278 int i; 3279 3280 dev = sc->bge_dev; 3281 3282 if (BGE_IS_575X_PLUS(sc) && !BGE_IS_5714_FAMILY(sc) && 3283 (sc->bge_asicrev != BGE_ASICREV_BCM5906)) { 3284 if (sc->bge_flags & BGE_FLAG_PCIE) 3285 write_op = bge_writemem_direct; 3286 else 3287 write_op = bge_writemem_ind; 3288 } else 3289 write_op = bge_writereg_ind; 3290 3291 /* Save some important PCI state. */ 3292 cachesize = pci_read_config(dev, BGE_PCI_CACHESZ, 4); 3293 command = pci_read_config(dev, BGE_PCI_CMD, 4); 3294 pcistate = pci_read_config(dev, BGE_PCI_PCISTATE, 4); 3295 3296 pci_write_config(dev, BGE_PCI_MISC_CTL, 3297 BGE_PCIMISCCTL_INDIRECT_ACCESS | BGE_PCIMISCCTL_MASK_PCI_INTR | 3298 BGE_HIF_SWAP_OPTIONS | BGE_PCIMISCCTL_PCISTATE_RW, 4); 3299 3300 /* Disable fastboot on controllers that support it. */ 3301 if (sc->bge_asicrev == BGE_ASICREV_BCM5752 || 3302 BGE_IS_5755_PLUS(sc)) { 3303 if (bootverbose) 3304 device_printf(dev, "Disabling fastboot\n"); 3305 CSR_WRITE_4(sc, BGE_FASTBOOT_PC, 0x0); 3306 } 3307 3308 /* 3309 * Write the magic number to SRAM at offset 0xB50. 3310 * When firmware finishes its initialization it will 3311 * write ~BGE_MAGIC_NUMBER to the same location. 3312 */ 3313 bge_writemem_ind(sc, BGE_SOFTWARE_GENCOMM, BGE_MAGIC_NUMBER); 3314 3315 reset = BGE_MISCCFG_RESET_CORE_CLOCKS | BGE_32BITTIME_66MHZ; 3316 3317 /* XXX: Broadcom Linux driver. */ 3318 if (sc->bge_flags & BGE_FLAG_PCIE) { 3319 if (CSR_READ_4(sc, 0x7E2C) == 0x60) /* PCIE 1.0 */ 3320 CSR_WRITE_4(sc, 0x7E2C, 0x20); 3321 if (sc->bge_chipid != BGE_CHIPID_BCM5750_A0) { 3322 /* Prevent PCIE link training during global reset */ 3323 CSR_WRITE_4(sc, BGE_MISC_CFG, 1 << 29); 3324 reset |= 1 << 29; 3325 } 3326 } 3327 3328 /* 3329 * Set GPHY Power Down Override to leave GPHY 3330 * powered up in D0 uninitialized. 3331 */ 3332 if (BGE_IS_5705_PLUS(sc)) 3333 reset |= BGE_MISCCFG_GPHY_PD_OVERRIDE; 3334 3335 /* Issue global reset */ 3336 write_op(sc, BGE_MISC_CFG, reset); 3337 3338 if (sc->bge_asicrev == BGE_ASICREV_BCM5906) { 3339 val = CSR_READ_4(sc, BGE_VCPU_STATUS); 3340 CSR_WRITE_4(sc, BGE_VCPU_STATUS, 3341 val | BGE_VCPU_STATUS_DRV_RESET); 3342 val = CSR_READ_4(sc, BGE_VCPU_EXT_CTRL); 3343 CSR_WRITE_4(sc, BGE_VCPU_EXT_CTRL, 3344 val & ~BGE_VCPU_EXT_CTRL_HALT_CPU); 3345 } 3346 3347 DELAY(1000); 3348 3349 /* XXX: Broadcom Linux driver. */ 3350 if (sc->bge_flags & BGE_FLAG_PCIE) { 3351 if (sc->bge_chipid == BGE_CHIPID_BCM5750_A0) { 3352 DELAY(500000); /* wait for link training to complete */ 3353 val = pci_read_config(dev, 0xC4, 4); 3354 pci_write_config(dev, 0xC4, val | (1 << 15), 4); 3355 } 3356 devctl = pci_read_config(dev, 3357 sc->bge_expcap + PCIR_EXPRESS_DEVICE_CTL, 2); 3358 /* Clear enable no snoop and disable relaxed ordering. */ 3359 devctl &= ~(PCIM_EXP_CTL_RELAXED_ORD_ENABLE | 3360 PCIM_EXP_CTL_NOSNOOP_ENABLE); 3361 /* Set PCIE max payload size to 128. */ 3362 devctl &= ~PCIM_EXP_CTL_MAX_PAYLOAD; 3363 pci_write_config(dev, sc->bge_expcap + PCIR_EXPRESS_DEVICE_CTL, 3364 devctl, 2); 3365 /* Clear error status. */ 3366 pci_write_config(dev, sc->bge_expcap + PCIR_EXPRESS_DEVICE_STA, 3367 PCIM_EXP_STA_CORRECTABLE_ERROR | 3368 PCIM_EXP_STA_NON_FATAL_ERROR | PCIM_EXP_STA_FATAL_ERROR | 3369 PCIM_EXP_STA_UNSUPPORTED_REQ, 2); 3370 } 3371 3372 /* Reset some of the PCI state that got zapped by reset. */ 3373 pci_write_config(dev, BGE_PCI_MISC_CTL, 3374 BGE_PCIMISCCTL_INDIRECT_ACCESS | BGE_PCIMISCCTL_MASK_PCI_INTR | 3375 BGE_HIF_SWAP_OPTIONS | BGE_PCIMISCCTL_PCISTATE_RW, 4); 3376 pci_write_config(dev, BGE_PCI_CACHESZ, cachesize, 4); 3377 pci_write_config(dev, BGE_PCI_CMD, command, 4); 3378 write_op(sc, BGE_MISC_CFG, BGE_32BITTIME_66MHZ); 3379 /* 3380 * Disable PCI-X relaxed ordering to ensure status block update 3381 * comes first then packet buffer DMA. Otherwise driver may 3382 * read stale status block. 3383 */ 3384 if (sc->bge_flags & BGE_FLAG_PCIX) { 3385 devctl = pci_read_config(dev, 3386 sc->bge_pcixcap + PCIXR_COMMAND, 2); 3387 devctl &= ~PCIXM_COMMAND_ERO; 3388 if (sc->bge_asicrev == BGE_ASICREV_BCM5703) { 3389 devctl &= ~PCIXM_COMMAND_MAX_READ; 3390 devctl |= PCIXM_COMMAND_MAX_READ_2048; 3391 } else if (sc->bge_asicrev == BGE_ASICREV_BCM5704) { 3392 devctl &= ~(PCIXM_COMMAND_MAX_SPLITS | 3393 PCIXM_COMMAND_MAX_READ); 3394 devctl |= PCIXM_COMMAND_MAX_READ_2048; 3395 } 3396 pci_write_config(dev, sc->bge_pcixcap + PCIXR_COMMAND, 3397 devctl, 2); 3398 } 3399 /* Re-enable MSI, if neccesary, and enable the memory arbiter. */ 3400 if (BGE_IS_5714_FAMILY(sc)) { 3401 /* This chip disables MSI on reset. */ 3402 if (sc->bge_flags & BGE_FLAG_MSI) { 3403 val = pci_read_config(dev, 3404 sc->bge_msicap + PCIR_MSI_CTRL, 2); 3405 pci_write_config(dev, 3406 sc->bge_msicap + PCIR_MSI_CTRL, 3407 val | PCIM_MSICTRL_MSI_ENABLE, 2); 3408 val = CSR_READ_4(sc, BGE_MSI_MODE); 3409 CSR_WRITE_4(sc, BGE_MSI_MODE, 3410 val | BGE_MSIMODE_ENABLE); 3411 } 3412 val = CSR_READ_4(sc, BGE_MARB_MODE); 3413 CSR_WRITE_4(sc, BGE_MARB_MODE, BGE_MARBMODE_ENABLE | val); 3414 } else 3415 CSR_WRITE_4(sc, BGE_MARB_MODE, BGE_MARBMODE_ENABLE); 3416 3417 if (sc->bge_asicrev == BGE_ASICREV_BCM5906) { 3418 for (i = 0; i < BGE_TIMEOUT; i++) { 3419 val = CSR_READ_4(sc, BGE_VCPU_STATUS); 3420 if (val & BGE_VCPU_STATUS_INIT_DONE) 3421 break; 3422 DELAY(100); 3423 } 3424 if (i == BGE_TIMEOUT) { 3425 device_printf(dev, "reset timed out\n"); 3426 return (1); 3427 } 3428 } else { 3429 /* 3430 * Poll until we see the 1's complement of the magic number. 3431 * This indicates that the firmware initialization is complete. 3432 * We expect this to fail if no chip containing the Ethernet 3433 * address is fitted though. 3434 */ 3435 for (i = 0; i < BGE_TIMEOUT; i++) { 3436 DELAY(10); 3437 val = bge_readmem_ind(sc, BGE_SOFTWARE_GENCOMM); 3438 if (val == ~BGE_MAGIC_NUMBER) 3439 break; 3440 } 3441 3442 if ((sc->bge_flags & BGE_FLAG_EADDR) && i == BGE_TIMEOUT) 3443 device_printf(dev, 3444 "firmware handshake timed out, found 0x%08x\n", 3445 val); 3446 } 3447 3448 /* 3449 * XXX Wait for the value of the PCISTATE register to 3450 * return to its original pre-reset state. This is a 3451 * fairly good indicator of reset completion. If we don't 3452 * wait for the reset to fully complete, trying to read 3453 * from the device's non-PCI registers may yield garbage 3454 * results. 3455 */ 3456 for (i = 0; i < BGE_TIMEOUT; i++) { 3457 if (pci_read_config(dev, BGE_PCI_PCISTATE, 4) == pcistate) 3458 break; 3459 DELAY(10); 3460 } 3461 3462 /* Fix up byte swapping. */ 3463 CSR_WRITE_4(sc, BGE_MODE_CTL, BGE_DMA_SWAP_OPTIONS | 3464 BGE_MODECTL_BYTESWAP_DATA); 3465 3466 /* Tell the ASF firmware we are up */ 3467 if (sc->bge_asf_mode & ASF_STACKUP) 3468 BGE_SETBIT(sc, BGE_MODE_CTL, BGE_MODECTL_STACKUP); 3469 3470 CSR_WRITE_4(sc, BGE_MAC_MODE, 0); 3471 3472 /* 3473 * The 5704 in TBI mode apparently needs some special 3474 * adjustment to insure the SERDES drive level is set 3475 * to 1.2V. 3476 */ 3477 if (sc->bge_asicrev == BGE_ASICREV_BCM5704 && 3478 sc->bge_flags & BGE_FLAG_TBI) { 3479 val = CSR_READ_4(sc, BGE_SERDES_CFG); 3480 val = (val & ~0xFFF) | 0x880; 3481 CSR_WRITE_4(sc, BGE_SERDES_CFG, val); 3482 } 3483 3484 /* XXX: Broadcom Linux driver. */ 3485 if (sc->bge_flags & BGE_FLAG_PCIE && 3486 sc->bge_asicrev != BGE_ASICREV_BCM5717 && 3487 sc->bge_chipid != BGE_CHIPID_BCM5750_A0 && 3488 sc->bge_asicrev != BGE_ASICREV_BCM5785) { 3489 /* Enable Data FIFO protection. */ 3490 val = CSR_READ_4(sc, 0x7C00); 3491 CSR_WRITE_4(sc, 0x7C00, val | (1 << 25)); 3492 } 3493 DELAY(10000); 3494 3495 return (0); 3496 } 3497 3498 static __inline void 3499 bge_rxreuse_std(struct bge_softc *sc, int i) 3500 { 3501 struct bge_rx_bd *r; 3502 3503 r = &sc->bge_ldata.bge_rx_std_ring[sc->bge_std]; 3504 r->bge_flags = BGE_RXBDFLAG_END; 3505 r->bge_len = sc->bge_cdata.bge_rx_std_seglen[i]; 3506 r->bge_idx = i; 3507 BGE_INC(sc->bge_std, BGE_STD_RX_RING_CNT); 3508 } 3509 3510 static __inline void 3511 bge_rxreuse_jumbo(struct bge_softc *sc, int i) 3512 { 3513 struct bge_extrx_bd *r; 3514 3515 r = &sc->bge_ldata.bge_rx_jumbo_ring[sc->bge_jumbo]; 3516 r->bge_flags = BGE_RXBDFLAG_JUMBO_RING | BGE_RXBDFLAG_END; 3517 r->bge_len0 = sc->bge_cdata.bge_rx_jumbo_seglen[i][0]; 3518 r->bge_len1 = sc->bge_cdata.bge_rx_jumbo_seglen[i][1]; 3519 r->bge_len2 = sc->bge_cdata.bge_rx_jumbo_seglen[i][2]; 3520 r->bge_len3 = sc->bge_cdata.bge_rx_jumbo_seglen[i][3]; 3521 r->bge_idx = i; 3522 BGE_INC(sc->bge_jumbo, BGE_JUMBO_RX_RING_CNT); 3523 } 3524 3525 /* 3526 * Frame reception handling. This is called if there's a frame 3527 * on the receive return list. 3528 * 3529 * Note: we have to be able to handle two possibilities here: 3530 * 1) the frame is from the jumbo receive ring 3531 * 2) the frame is from the standard receive ring 3532 */ 3533 3534 static int 3535 bge_rxeof(struct bge_softc *sc, uint16_t rx_prod, int holdlck) 3536 { 3537 struct ifnet *ifp; 3538 int rx_npkts = 0, stdcnt = 0, jumbocnt = 0; 3539 uint16_t rx_cons; 3540 3541 rx_cons = sc->bge_rx_saved_considx; 3542 3543 /* Nothing to do. */ 3544 if (rx_cons == rx_prod) 3545 return (rx_npkts); 3546 3547 ifp = sc->bge_ifp; 3548 3549 bus_dmamap_sync(sc->bge_cdata.bge_rx_return_ring_tag, 3550 sc->bge_cdata.bge_rx_return_ring_map, BUS_DMASYNC_POSTREAD); 3551 bus_dmamap_sync(sc->bge_cdata.bge_rx_std_ring_tag, 3552 sc->bge_cdata.bge_rx_std_ring_map, BUS_DMASYNC_POSTWRITE); 3553 if (ifp->if_mtu + ETHER_HDR_LEN + ETHER_CRC_LEN + ETHER_VLAN_ENCAP_LEN > 3554 (MCLBYTES - ETHER_ALIGN)) 3555 bus_dmamap_sync(sc->bge_cdata.bge_rx_jumbo_ring_tag, 3556 sc->bge_cdata.bge_rx_jumbo_ring_map, BUS_DMASYNC_POSTWRITE); 3557 3558 while (rx_cons != rx_prod) { 3559 struct bge_rx_bd *cur_rx; 3560 uint32_t rxidx; 3561 struct mbuf *m = NULL; 3562 uint16_t vlan_tag = 0; 3563 int have_tag = 0; 3564 3565 #ifdef DEVICE_POLLING 3566 if (ifp->if_capenable & IFCAP_POLLING) { 3567 if (sc->rxcycles <= 0) 3568 break; 3569 sc->rxcycles--; 3570 } 3571 #endif 3572 3573 cur_rx = &sc->bge_ldata.bge_rx_return_ring[rx_cons]; 3574 3575 rxidx = cur_rx->bge_idx; 3576 BGE_INC(rx_cons, sc->bge_return_ring_cnt); 3577 3578 if (ifp->if_capenable & IFCAP_VLAN_HWTAGGING && 3579 cur_rx->bge_flags & BGE_RXBDFLAG_VLAN_TAG) { 3580 have_tag = 1; 3581 vlan_tag = cur_rx->bge_vlan_tag; 3582 } 3583 3584 if (cur_rx->bge_flags & BGE_RXBDFLAG_JUMBO_RING) { 3585 jumbocnt++; 3586 m = sc->bge_cdata.bge_rx_jumbo_chain[rxidx]; 3587 if (cur_rx->bge_flags & BGE_RXBDFLAG_ERROR) { 3588 bge_rxreuse_jumbo(sc, rxidx); 3589 continue; 3590 } 3591 if (bge_newbuf_jumbo(sc, rxidx) != 0) { 3592 bge_rxreuse_jumbo(sc, rxidx); 3593 ifp->if_iqdrops++; 3594 continue; 3595 } 3596 BGE_INC(sc->bge_jumbo, BGE_JUMBO_RX_RING_CNT); 3597 } else { 3598 stdcnt++; 3599 m = sc->bge_cdata.bge_rx_std_chain[rxidx]; 3600 if (cur_rx->bge_flags & BGE_RXBDFLAG_ERROR) { 3601 bge_rxreuse_std(sc, rxidx); 3602 continue; 3603 } 3604 if (bge_newbuf_std(sc, rxidx) != 0) { 3605 bge_rxreuse_std(sc, rxidx); 3606 ifp->if_iqdrops++; 3607 continue; 3608 } 3609 BGE_INC(sc->bge_std, BGE_STD_RX_RING_CNT); 3610 } 3611 3612 ifp->if_ipackets++; 3613 #ifndef __NO_STRICT_ALIGNMENT 3614 /* 3615 * For architectures with strict alignment we must make sure 3616 * the payload is aligned. 3617 */ 3618 if (sc->bge_flags & BGE_FLAG_RX_ALIGNBUG) { 3619 bcopy(m->m_data, m->m_data + ETHER_ALIGN, 3620 cur_rx->bge_len); 3621 m->m_data += ETHER_ALIGN; 3622 } 3623 #endif 3624 m->m_pkthdr.len = m->m_len = cur_rx->bge_len - ETHER_CRC_LEN; 3625 m->m_pkthdr.rcvif = ifp; 3626 3627 if (ifp->if_capenable & IFCAP_RXCSUM) 3628 bge_rxcsum(sc, cur_rx, m); 3629 3630 /* 3631 * If we received a packet with a vlan tag, 3632 * attach that information to the packet. 3633 */ 3634 if (have_tag) { 3635 m->m_pkthdr.ether_vtag = vlan_tag; 3636 m->m_flags |= M_VLANTAG; 3637 } 3638 3639 if (holdlck != 0) { 3640 BGE_UNLOCK(sc); 3641 (*ifp->if_input)(ifp, m); 3642 BGE_LOCK(sc); 3643 } else 3644 (*ifp->if_input)(ifp, m); 3645 rx_npkts++; 3646 3647 if (!(ifp->if_drv_flags & IFF_DRV_RUNNING)) 3648 return (rx_npkts); 3649 } 3650 3651 bus_dmamap_sync(sc->bge_cdata.bge_rx_return_ring_tag, 3652 sc->bge_cdata.bge_rx_return_ring_map, BUS_DMASYNC_PREREAD); 3653 if (stdcnt > 0) 3654 bus_dmamap_sync(sc->bge_cdata.bge_rx_std_ring_tag, 3655 sc->bge_cdata.bge_rx_std_ring_map, BUS_DMASYNC_PREWRITE); 3656 3657 if (jumbocnt > 0) 3658 bus_dmamap_sync(sc->bge_cdata.bge_rx_jumbo_ring_tag, 3659 sc->bge_cdata.bge_rx_jumbo_ring_map, BUS_DMASYNC_PREWRITE); 3660 3661 sc->bge_rx_saved_considx = rx_cons; 3662 bge_writembx(sc, BGE_MBX_RX_CONS0_LO, sc->bge_rx_saved_considx); 3663 if (stdcnt) 3664 bge_writembx(sc, BGE_MBX_RX_STD_PROD_LO, (sc->bge_std + 3665 BGE_STD_RX_RING_CNT - 1) % BGE_STD_RX_RING_CNT); 3666 if (jumbocnt) 3667 bge_writembx(sc, BGE_MBX_RX_JUMBO_PROD_LO, (sc->bge_jumbo + 3668 BGE_JUMBO_RX_RING_CNT - 1) % BGE_JUMBO_RX_RING_CNT); 3669 #ifdef notyet 3670 /* 3671 * This register wraps very quickly under heavy packet drops. 3672 * If you need correct statistics, you can enable this check. 3673 */ 3674 if (BGE_IS_5705_PLUS(sc)) 3675 ifp->if_ierrors += CSR_READ_4(sc, BGE_RXLP_LOCSTAT_IFIN_DROPS); 3676 #endif 3677 return (rx_npkts); 3678 } 3679 3680 static void 3681 bge_rxcsum(struct bge_softc *sc, struct bge_rx_bd *cur_rx, struct mbuf *m) 3682 { 3683 3684 if (BGE_IS_5717_PLUS(sc)) { 3685 if ((cur_rx->bge_flags & BGE_RXBDFLAG_IPV6) == 0) { 3686 if (cur_rx->bge_flags & BGE_RXBDFLAG_IP_CSUM) { 3687 m->m_pkthdr.csum_flags |= CSUM_IP_CHECKED; 3688 if ((cur_rx->bge_error_flag & 3689 BGE_RXERRFLAG_IP_CSUM_NOK) == 0) 3690 m->m_pkthdr.csum_flags |= CSUM_IP_VALID; 3691 } 3692 if (cur_rx->bge_flags & BGE_RXBDFLAG_TCP_UDP_CSUM) { 3693 m->m_pkthdr.csum_data = 3694 cur_rx->bge_tcp_udp_csum; 3695 m->m_pkthdr.csum_flags |= CSUM_DATA_VALID | 3696 CSUM_PSEUDO_HDR; 3697 } 3698 } 3699 } else { 3700 if (cur_rx->bge_flags & BGE_RXBDFLAG_IP_CSUM) { 3701 m->m_pkthdr.csum_flags |= CSUM_IP_CHECKED; 3702 if ((cur_rx->bge_ip_csum ^ 0xFFFF) == 0) 3703 m->m_pkthdr.csum_flags |= CSUM_IP_VALID; 3704 } 3705 if (cur_rx->bge_flags & BGE_RXBDFLAG_TCP_UDP_CSUM && 3706 m->m_pkthdr.len >= ETHER_MIN_NOPAD) { 3707 m->m_pkthdr.csum_data = 3708 cur_rx->bge_tcp_udp_csum; 3709 m->m_pkthdr.csum_flags |= CSUM_DATA_VALID | 3710 CSUM_PSEUDO_HDR; 3711 } 3712 } 3713 } 3714 3715 static void 3716 bge_txeof(struct bge_softc *sc, uint16_t tx_cons) 3717 { 3718 struct bge_tx_bd *cur_tx; 3719 struct ifnet *ifp; 3720 3721 BGE_LOCK_ASSERT(sc); 3722 3723 /* Nothing to do. */ 3724 if (sc->bge_tx_saved_considx == tx_cons) 3725 return; 3726 3727 ifp = sc->bge_ifp; 3728 3729 bus_dmamap_sync(sc->bge_cdata.bge_tx_ring_tag, 3730 sc->bge_cdata.bge_tx_ring_map, BUS_DMASYNC_POSTWRITE); 3731 /* 3732 * Go through our tx ring and free mbufs for those 3733 * frames that have been sent. 3734 */ 3735 while (sc->bge_tx_saved_considx != tx_cons) { 3736 uint32_t idx; 3737 3738 idx = sc->bge_tx_saved_considx; 3739 cur_tx = &sc->bge_ldata.bge_tx_ring[idx]; 3740 if (cur_tx->bge_flags & BGE_TXBDFLAG_END) 3741 ifp->if_opackets++; 3742 if (sc->bge_cdata.bge_tx_chain[idx] != NULL) { 3743 bus_dmamap_sync(sc->bge_cdata.bge_tx_mtag, 3744 sc->bge_cdata.bge_tx_dmamap[idx], 3745 BUS_DMASYNC_POSTWRITE); 3746 bus_dmamap_unload(sc->bge_cdata.bge_tx_mtag, 3747 sc->bge_cdata.bge_tx_dmamap[idx]); 3748 m_freem(sc->bge_cdata.bge_tx_chain[idx]); 3749 sc->bge_cdata.bge_tx_chain[idx] = NULL; 3750 } 3751 sc->bge_txcnt--; 3752 BGE_INC(sc->bge_tx_saved_considx, BGE_TX_RING_CNT); 3753 } 3754 3755 ifp->if_drv_flags &= ~IFF_DRV_OACTIVE; 3756 if (sc->bge_txcnt == 0) 3757 sc->bge_timer = 0; 3758 } 3759 3760 #ifdef DEVICE_POLLING 3761 static int 3762 bge_poll(struct ifnet *ifp, enum poll_cmd cmd, int count) 3763 { 3764 struct bge_softc *sc = ifp->if_softc; 3765 uint16_t rx_prod, tx_cons; 3766 uint32_t statusword; 3767 int rx_npkts = 0; 3768 3769 BGE_LOCK(sc); 3770 if (!(ifp->if_drv_flags & IFF_DRV_RUNNING)) { 3771 BGE_UNLOCK(sc); 3772 return (rx_npkts); 3773 } 3774 3775 bus_dmamap_sync(sc->bge_cdata.bge_status_tag, 3776 sc->bge_cdata.bge_status_map, 3777 BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE); 3778 rx_prod = sc->bge_ldata.bge_status_block->bge_idx[0].bge_rx_prod_idx; 3779 tx_cons = sc->bge_ldata.bge_status_block->bge_idx[0].bge_tx_cons_idx; 3780 3781 statusword = sc->bge_ldata.bge_status_block->bge_status; 3782 sc->bge_ldata.bge_status_block->bge_status = 0; 3783 3784 bus_dmamap_sync(sc->bge_cdata.bge_status_tag, 3785 sc->bge_cdata.bge_status_map, 3786 BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE); 3787 3788 /* Note link event. It will be processed by POLL_AND_CHECK_STATUS. */ 3789 if (statusword & BGE_STATFLAG_LINKSTATE_CHANGED) 3790 sc->bge_link_evt++; 3791 3792 if (cmd == POLL_AND_CHECK_STATUS) 3793 if ((sc->bge_asicrev == BGE_ASICREV_BCM5700 && 3794 sc->bge_chipid != BGE_CHIPID_BCM5700_B2) || 3795 sc->bge_link_evt || (sc->bge_flags & BGE_FLAG_TBI)) 3796 bge_link_upd(sc); 3797 3798 sc->rxcycles = count; 3799 rx_npkts = bge_rxeof(sc, rx_prod, 1); 3800 if (!(ifp->if_drv_flags & IFF_DRV_RUNNING)) { 3801 BGE_UNLOCK(sc); 3802 return (rx_npkts); 3803 } 3804 bge_txeof(sc, tx_cons); 3805 if (!IFQ_DRV_IS_EMPTY(&ifp->if_snd)) 3806 bge_start_locked(ifp); 3807 3808 BGE_UNLOCK(sc); 3809 return (rx_npkts); 3810 } 3811 #endif /* DEVICE_POLLING */ 3812 3813 static int 3814 bge_msi_intr(void *arg) 3815 { 3816 struct bge_softc *sc; 3817 3818 sc = (struct bge_softc *)arg; 3819 /* 3820 * This interrupt is not shared and controller already 3821 * disabled further interrupt. 3822 */ 3823 taskqueue_enqueue(sc->bge_tq, &sc->bge_intr_task); 3824 return (FILTER_HANDLED); 3825 } 3826 3827 static void 3828 bge_intr_task(void *arg, int pending) 3829 { 3830 struct bge_softc *sc; 3831 struct ifnet *ifp; 3832 uint32_t status, status_tag; 3833 uint16_t rx_prod, tx_cons; 3834 3835 sc = (struct bge_softc *)arg; 3836 ifp = sc->bge_ifp; 3837 3838 BGE_LOCK(sc); 3839 if ((ifp->if_drv_flags & IFF_DRV_RUNNING) == 0) { 3840 BGE_UNLOCK(sc); 3841 return; 3842 } 3843 3844 /* Get updated status block. */ 3845 bus_dmamap_sync(sc->bge_cdata.bge_status_tag, 3846 sc->bge_cdata.bge_status_map, 3847 BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE); 3848 3849 /* Save producer/consumer indexess. */ 3850 rx_prod = sc->bge_ldata.bge_status_block->bge_idx[0].bge_rx_prod_idx; 3851 tx_cons = sc->bge_ldata.bge_status_block->bge_idx[0].bge_tx_cons_idx; 3852 status = sc->bge_ldata.bge_status_block->bge_status; 3853 status_tag = sc->bge_ldata.bge_status_block->bge_status_tag << 24; 3854 sc->bge_ldata.bge_status_block->bge_status = 0; 3855 bus_dmamap_sync(sc->bge_cdata.bge_status_tag, 3856 sc->bge_cdata.bge_status_map, 3857 BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE); 3858 if ((sc->bge_flags & BGE_FLAG_TAGGED_STATUS) == 0) 3859 status_tag = 0; 3860 3861 if ((status & BGE_STATFLAG_LINKSTATE_CHANGED) != 0) 3862 bge_link_upd(sc); 3863 3864 /* Let controller work. */ 3865 bge_writembx(sc, BGE_MBX_IRQ0_LO, status_tag); 3866 3867 if (ifp->if_drv_flags & IFF_DRV_RUNNING && 3868 sc->bge_rx_saved_considx != rx_prod) { 3869 /* Check RX return ring producer/consumer. */ 3870 BGE_UNLOCK(sc); 3871 bge_rxeof(sc, rx_prod, 0); 3872 BGE_LOCK(sc); 3873 } 3874 if (ifp->if_drv_flags & IFF_DRV_RUNNING) { 3875 /* Check TX ring producer/consumer. */ 3876 bge_txeof(sc, tx_cons); 3877 if (!IFQ_DRV_IS_EMPTY(&ifp->if_snd)) 3878 bge_start_locked(ifp); 3879 } 3880 BGE_UNLOCK(sc); 3881 } 3882 3883 static void 3884 bge_intr(void *xsc) 3885 { 3886 struct bge_softc *sc; 3887 struct ifnet *ifp; 3888 uint32_t statusword; 3889 uint16_t rx_prod, tx_cons; 3890 3891 sc = xsc; 3892 3893 BGE_LOCK(sc); 3894 3895 ifp = sc->bge_ifp; 3896 3897 #ifdef DEVICE_POLLING 3898 if (ifp->if_capenable & IFCAP_POLLING) { 3899 BGE_UNLOCK(sc); 3900 return; 3901 } 3902 #endif 3903 3904 /* 3905 * Ack the interrupt by writing something to BGE_MBX_IRQ0_LO. Don't 3906 * disable interrupts by writing nonzero like we used to, since with 3907 * our current organization this just gives complications and 3908 * pessimizations for re-enabling interrupts. We used to have races 3909 * instead of the necessary complications. Disabling interrupts 3910 * would just reduce the chance of a status update while we are 3911 * running (by switching to the interrupt-mode coalescence 3912 * parameters), but this chance is already very low so it is more 3913 * efficient to get another interrupt than prevent it. 3914 * 3915 * We do the ack first to ensure another interrupt if there is a 3916 * status update after the ack. We don't check for the status 3917 * changing later because it is more efficient to get another 3918 * interrupt than prevent it, not quite as above (not checking is 3919 * a smaller optimization than not toggling the interrupt enable, 3920 * since checking doesn't involve PCI accesses and toggling require 3921 * the status check). So toggling would probably be a pessimization 3922 * even with MSI. It would only be needed for using a task queue. 3923 */ 3924 bge_writembx(sc, BGE_MBX_IRQ0_LO, 0); 3925 3926 /* 3927 * Do the mandatory PCI flush as well as get the link status. 3928 */ 3929 statusword = CSR_READ_4(sc, BGE_MAC_STS) & BGE_MACSTAT_LINK_CHANGED; 3930 3931 /* Make sure the descriptor ring indexes are coherent. */ 3932 bus_dmamap_sync(sc->bge_cdata.bge_status_tag, 3933 sc->bge_cdata.bge_status_map, 3934 BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE); 3935 rx_prod = sc->bge_ldata.bge_status_block->bge_idx[0].bge_rx_prod_idx; 3936 tx_cons = sc->bge_ldata.bge_status_block->bge_idx[0].bge_tx_cons_idx; 3937 sc->bge_ldata.bge_status_block->bge_status = 0; 3938 bus_dmamap_sync(sc->bge_cdata.bge_status_tag, 3939 sc->bge_cdata.bge_status_map, 3940 BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE); 3941 3942 if ((sc->bge_asicrev == BGE_ASICREV_BCM5700 && 3943 sc->bge_chipid != BGE_CHIPID_BCM5700_B2) || 3944 statusword || sc->bge_link_evt) 3945 bge_link_upd(sc); 3946 3947 if (ifp->if_drv_flags & IFF_DRV_RUNNING) { 3948 /* Check RX return ring producer/consumer. */ 3949 bge_rxeof(sc, rx_prod, 1); 3950 } 3951 3952 if (ifp->if_drv_flags & IFF_DRV_RUNNING) { 3953 /* Check TX ring producer/consumer. */ 3954 bge_txeof(sc, tx_cons); 3955 } 3956 3957 if (ifp->if_drv_flags & IFF_DRV_RUNNING && 3958 !IFQ_DRV_IS_EMPTY(&ifp->if_snd)) 3959 bge_start_locked(ifp); 3960 3961 BGE_UNLOCK(sc); 3962 } 3963 3964 static void 3965 bge_asf_driver_up(struct bge_softc *sc) 3966 { 3967 if (sc->bge_asf_mode & ASF_STACKUP) { 3968 /* Send ASF heartbeat aprox. every 2s */ 3969 if (sc->bge_asf_count) 3970 sc->bge_asf_count --; 3971 else { 3972 sc->bge_asf_count = 2; 3973 bge_writemem_ind(sc, BGE_SOFTWARE_GENCOMM_FW, 3974 BGE_FW_DRV_ALIVE); 3975 bge_writemem_ind(sc, BGE_SOFTWARE_GENNCOMM_FW_LEN, 4); 3976 bge_writemem_ind(sc, BGE_SOFTWARE_GENNCOMM_FW_DATA, 3); 3977 CSR_WRITE_4(sc, BGE_CPU_EVENT, 3978 CSR_READ_4(sc, BGE_CPU_EVENT) | (1 << 14)); 3979 } 3980 } 3981 } 3982 3983 static void 3984 bge_tick(void *xsc) 3985 { 3986 struct bge_softc *sc = xsc; 3987 struct mii_data *mii = NULL; 3988 3989 BGE_LOCK_ASSERT(sc); 3990 3991 /* Synchronize with possible callout reset/stop. */ 3992 if (callout_pending(&sc->bge_stat_ch) || 3993 !callout_active(&sc->bge_stat_ch)) 3994 return; 3995 3996 if (BGE_IS_5705_PLUS(sc)) 3997 bge_stats_update_regs(sc); 3998 else 3999 bge_stats_update(sc); 4000 4001 if ((sc->bge_flags & BGE_FLAG_TBI) == 0) { 4002 mii = device_get_softc(sc->bge_miibus); 4003 /* 4004 * Do not touch PHY if we have link up. This could break 4005 * IPMI/ASF mode or produce extra input errors 4006 * (extra errors was reported for bcm5701 & bcm5704). 4007 */ 4008 if (!sc->bge_link) 4009 mii_tick(mii); 4010 } else { 4011 /* 4012 * Since in TBI mode auto-polling can't be used we should poll 4013 * link status manually. Here we register pending link event 4014 * and trigger interrupt. 4015 */ 4016 #ifdef DEVICE_POLLING 4017 /* In polling mode we poll link state in bge_poll(). */ 4018 if (!(sc->bge_ifp->if_capenable & IFCAP_POLLING)) 4019 #endif 4020 { 4021 sc->bge_link_evt++; 4022 if (sc->bge_asicrev == BGE_ASICREV_BCM5700 || 4023 sc->bge_flags & BGE_FLAG_5788) 4024 BGE_SETBIT(sc, BGE_MISC_LOCAL_CTL, BGE_MLC_INTR_SET); 4025 else 4026 BGE_SETBIT(sc, BGE_HCC_MODE, BGE_HCCMODE_COAL_NOW); 4027 } 4028 } 4029 4030 bge_asf_driver_up(sc); 4031 bge_watchdog(sc); 4032 4033 callout_reset(&sc->bge_stat_ch, hz, bge_tick, sc); 4034 } 4035 4036 static void 4037 bge_stats_update_regs(struct bge_softc *sc) 4038 { 4039 struct ifnet *ifp; 4040 struct bge_mac_stats *stats; 4041 4042 ifp = sc->bge_ifp; 4043 stats = &sc->bge_mac_stats; 4044 4045 stats->ifHCOutOctets += 4046 CSR_READ_4(sc, BGE_TX_MAC_STATS_OCTETS); 4047 stats->etherStatsCollisions += 4048 CSR_READ_4(sc, BGE_TX_MAC_STATS_COLLS); 4049 stats->outXonSent += 4050 CSR_READ_4(sc, BGE_TX_MAC_STATS_XON_SENT); 4051 stats->outXoffSent += 4052 CSR_READ_4(sc, BGE_TX_MAC_STATS_XOFF_SENT); 4053 stats->dot3StatsInternalMacTransmitErrors += 4054 CSR_READ_4(sc, BGE_TX_MAC_STATS_ERRORS); 4055 stats->dot3StatsSingleCollisionFrames += 4056 CSR_READ_4(sc, BGE_TX_MAC_STATS_SINGLE_COLL); 4057 stats->dot3StatsMultipleCollisionFrames += 4058 CSR_READ_4(sc, BGE_TX_MAC_STATS_MULTI_COLL); 4059 stats->dot3StatsDeferredTransmissions += 4060 CSR_READ_4(sc, BGE_TX_MAC_STATS_DEFERRED); 4061 stats->dot3StatsExcessiveCollisions += 4062 CSR_READ_4(sc, BGE_TX_MAC_STATS_EXCESS_COLL); 4063 stats->dot3StatsLateCollisions += 4064 CSR_READ_4(sc, BGE_TX_MAC_STATS_LATE_COLL); 4065 stats->ifHCOutUcastPkts += 4066 CSR_READ_4(sc, BGE_TX_MAC_STATS_UCAST); 4067 stats->ifHCOutMulticastPkts += 4068 CSR_READ_4(sc, BGE_TX_MAC_STATS_MCAST); 4069 stats->ifHCOutBroadcastPkts += 4070 CSR_READ_4(sc, BGE_TX_MAC_STATS_BCAST); 4071 4072 stats->ifHCInOctets += 4073 CSR_READ_4(sc, BGE_RX_MAC_STATS_OCTESTS); 4074 stats->etherStatsFragments += 4075 CSR_READ_4(sc, BGE_RX_MAC_STATS_FRAGMENTS); 4076 stats->ifHCInUcastPkts += 4077 CSR_READ_4(sc, BGE_RX_MAC_STATS_UCAST); 4078 stats->ifHCInMulticastPkts += 4079 CSR_READ_4(sc, BGE_RX_MAC_STATS_MCAST); 4080 stats->ifHCInBroadcastPkts += 4081 CSR_READ_4(sc, BGE_RX_MAC_STATS_BCAST); 4082 stats->dot3StatsFCSErrors += 4083 CSR_READ_4(sc, BGE_RX_MAC_STATS_FCS_ERRORS); 4084 stats->dot3StatsAlignmentErrors += 4085 CSR_READ_4(sc, BGE_RX_MAC_STATS_ALGIN_ERRORS); 4086 stats->xonPauseFramesReceived += 4087 CSR_READ_4(sc, BGE_RX_MAC_STATS_XON_RCVD); 4088 stats->xoffPauseFramesReceived += 4089 CSR_READ_4(sc, BGE_RX_MAC_STATS_XOFF_RCVD); 4090 stats->macControlFramesReceived += 4091 CSR_READ_4(sc, BGE_RX_MAC_STATS_CTRL_RCVD); 4092 stats->xoffStateEntered += 4093 CSR_READ_4(sc, BGE_RX_MAC_STATS_XOFF_ENTERED); 4094 stats->dot3StatsFramesTooLong += 4095 CSR_READ_4(sc, BGE_RX_MAC_STATS_FRAME_TOO_LONG); 4096 stats->etherStatsJabbers += 4097 CSR_READ_4(sc, BGE_RX_MAC_STATS_JABBERS); 4098 stats->etherStatsUndersizePkts += 4099 CSR_READ_4(sc, BGE_RX_MAC_STATS_UNDERSIZE); 4100 4101 stats->FramesDroppedDueToFilters += 4102 CSR_READ_4(sc, BGE_RXLP_LOCSTAT_FILTDROP); 4103 stats->DmaWriteQueueFull += 4104 CSR_READ_4(sc, BGE_RXLP_LOCSTAT_DMA_WRQ_FULL); 4105 stats->DmaWriteHighPriQueueFull += 4106 CSR_READ_4(sc, BGE_RXLP_LOCSTAT_DMA_HPWRQ_FULL); 4107 stats->NoMoreRxBDs += 4108 CSR_READ_4(sc, BGE_RXLP_LOCSTAT_OUT_OF_BDS); 4109 stats->InputDiscards += 4110 CSR_READ_4(sc, BGE_RXLP_LOCSTAT_IFIN_DROPS); 4111 stats->InputErrors += 4112 CSR_READ_4(sc, BGE_RXLP_LOCSTAT_IFIN_ERRORS); 4113 stats->RecvThresholdHit += 4114 CSR_READ_4(sc, BGE_RXLP_LOCSTAT_RXTHRESH_HIT); 4115 4116 ifp->if_collisions = (u_long)stats->etherStatsCollisions; 4117 ifp->if_ierrors = (u_long)(stats->NoMoreRxBDs + stats->InputDiscards + 4118 stats->InputErrors); 4119 } 4120 4121 static void 4122 bge_stats_clear_regs(struct bge_softc *sc) 4123 { 4124 4125 CSR_READ_4(sc, BGE_TX_MAC_STATS_OCTETS); 4126 CSR_READ_4(sc, BGE_TX_MAC_STATS_COLLS); 4127 CSR_READ_4(sc, BGE_TX_MAC_STATS_XON_SENT); 4128 CSR_READ_4(sc, BGE_TX_MAC_STATS_XOFF_SENT); 4129 CSR_READ_4(sc, BGE_TX_MAC_STATS_ERRORS); 4130 CSR_READ_4(sc, BGE_TX_MAC_STATS_SINGLE_COLL); 4131 CSR_READ_4(sc, BGE_TX_MAC_STATS_MULTI_COLL); 4132 CSR_READ_4(sc, BGE_TX_MAC_STATS_DEFERRED); 4133 CSR_READ_4(sc, BGE_TX_MAC_STATS_EXCESS_COLL); 4134 CSR_READ_4(sc, BGE_TX_MAC_STATS_LATE_COLL); 4135 CSR_READ_4(sc, BGE_TX_MAC_STATS_UCAST); 4136 CSR_READ_4(sc, BGE_TX_MAC_STATS_MCAST); 4137 CSR_READ_4(sc, BGE_TX_MAC_STATS_BCAST); 4138 4139 CSR_READ_4(sc, BGE_RX_MAC_STATS_OCTESTS); 4140 CSR_READ_4(sc, BGE_RX_MAC_STATS_FRAGMENTS); 4141 CSR_READ_4(sc, BGE_RX_MAC_STATS_UCAST); 4142 CSR_READ_4(sc, BGE_RX_MAC_STATS_MCAST); 4143 CSR_READ_4(sc, BGE_RX_MAC_STATS_BCAST); 4144 CSR_READ_4(sc, BGE_RX_MAC_STATS_FCS_ERRORS); 4145 CSR_READ_4(sc, BGE_RX_MAC_STATS_ALGIN_ERRORS); 4146 CSR_READ_4(sc, BGE_RX_MAC_STATS_XON_RCVD); 4147 CSR_READ_4(sc, BGE_RX_MAC_STATS_XOFF_RCVD); 4148 CSR_READ_4(sc, BGE_RX_MAC_STATS_CTRL_RCVD); 4149 CSR_READ_4(sc, BGE_RX_MAC_STATS_XOFF_ENTERED); 4150 CSR_READ_4(sc, BGE_RX_MAC_STATS_FRAME_TOO_LONG); 4151 CSR_READ_4(sc, BGE_RX_MAC_STATS_JABBERS); 4152 CSR_READ_4(sc, BGE_RX_MAC_STATS_UNDERSIZE); 4153 4154 CSR_READ_4(sc, BGE_RXLP_LOCSTAT_FILTDROP); 4155 CSR_READ_4(sc, BGE_RXLP_LOCSTAT_DMA_WRQ_FULL); 4156 CSR_READ_4(sc, BGE_RXLP_LOCSTAT_DMA_HPWRQ_FULL); 4157 CSR_READ_4(sc, BGE_RXLP_LOCSTAT_OUT_OF_BDS); 4158 CSR_READ_4(sc, BGE_RXLP_LOCSTAT_IFIN_DROPS); 4159 CSR_READ_4(sc, BGE_RXLP_LOCSTAT_IFIN_ERRORS); 4160 CSR_READ_4(sc, BGE_RXLP_LOCSTAT_RXTHRESH_HIT); 4161 } 4162 4163 static void 4164 bge_stats_update(struct bge_softc *sc) 4165 { 4166 struct ifnet *ifp; 4167 bus_size_t stats; 4168 uint32_t cnt; /* current register value */ 4169 4170 ifp = sc->bge_ifp; 4171 4172 stats = BGE_MEMWIN_START + BGE_STATS_BLOCK; 4173 4174 #define READ_STAT(sc, stats, stat) \ 4175 CSR_READ_4(sc, stats + offsetof(struct bge_stats, stat)) 4176 4177 cnt = READ_STAT(sc, stats, txstats.etherStatsCollisions.bge_addr_lo); 4178 ifp->if_collisions += (uint32_t)(cnt - sc->bge_tx_collisions); 4179 sc->bge_tx_collisions = cnt; 4180 4181 cnt = READ_STAT(sc, stats, ifInDiscards.bge_addr_lo); 4182 ifp->if_ierrors += (uint32_t)(cnt - sc->bge_rx_discards); 4183 sc->bge_rx_discards = cnt; 4184 4185 cnt = READ_STAT(sc, stats, txstats.ifOutDiscards.bge_addr_lo); 4186 ifp->if_oerrors += (uint32_t)(cnt - sc->bge_tx_discards); 4187 sc->bge_tx_discards = cnt; 4188 4189 #undef READ_STAT 4190 } 4191 4192 /* 4193 * Pad outbound frame to ETHER_MIN_NOPAD for an unusual reason. 4194 * The bge hardware will pad out Tx runts to ETHER_MIN_NOPAD, 4195 * but when such padded frames employ the bge IP/TCP checksum offload, 4196 * the hardware checksum assist gives incorrect results (possibly 4197 * from incorporating its own padding into the UDP/TCP checksum; who knows). 4198 * If we pad such runts with zeros, the onboard checksum comes out correct. 4199 */ 4200 static __inline int 4201 bge_cksum_pad(struct mbuf *m) 4202 { 4203 int padlen = ETHER_MIN_NOPAD - m->m_pkthdr.len; 4204 struct mbuf *last; 4205 4206 /* If there's only the packet-header and we can pad there, use it. */ 4207 if (m->m_pkthdr.len == m->m_len && M_WRITABLE(m) && 4208 M_TRAILINGSPACE(m) >= padlen) { 4209 last = m; 4210 } else { 4211 /* 4212 * Walk packet chain to find last mbuf. We will either 4213 * pad there, or append a new mbuf and pad it. 4214 */ 4215 for (last = m; last->m_next != NULL; last = last->m_next); 4216 if (!(M_WRITABLE(last) && M_TRAILINGSPACE(last) >= padlen)) { 4217 /* Allocate new empty mbuf, pad it. Compact later. */ 4218 struct mbuf *n; 4219 4220 MGET(n, M_DONTWAIT, MT_DATA); 4221 if (n == NULL) 4222 return (ENOBUFS); 4223 n->m_len = 0; 4224 last->m_next = n; 4225 last = n; 4226 } 4227 } 4228 4229 /* Now zero the pad area, to avoid the bge cksum-assist bug. */ 4230 memset(mtod(last, caddr_t) + last->m_len, 0, padlen); 4231 last->m_len += padlen; 4232 m->m_pkthdr.len += padlen; 4233 4234 return (0); 4235 } 4236 4237 static struct mbuf * 4238 bge_check_short_dma(struct mbuf *m) 4239 { 4240 struct mbuf *n; 4241 int found; 4242 4243 /* 4244 * If device receive two back-to-back send BDs with less than 4245 * or equal to 8 total bytes then the device may hang. The two 4246 * back-to-back send BDs must in the same frame for this failure 4247 * to occur. Scan mbuf chains and see whether two back-to-back 4248 * send BDs are there. If this is the case, allocate new mbuf 4249 * and copy the frame to workaround the silicon bug. 4250 */ 4251 for (n = m, found = 0; n != NULL; n = n->m_next) { 4252 if (n->m_len < 8) { 4253 found++; 4254 if (found > 1) 4255 break; 4256 continue; 4257 } 4258 found = 0; 4259 } 4260 4261 if (found > 1) { 4262 n = m_defrag(m, M_DONTWAIT); 4263 if (n == NULL) 4264 m_freem(m); 4265 } else 4266 n = m; 4267 return (n); 4268 } 4269 4270 static struct mbuf * 4271 bge_setup_tso(struct bge_softc *sc, struct mbuf *m, uint16_t *mss, 4272 uint16_t *flags) 4273 { 4274 struct ip *ip; 4275 struct tcphdr *tcp; 4276 struct mbuf *n; 4277 uint16_t hlen; 4278 uint32_t poff; 4279 4280 if (M_WRITABLE(m) == 0) { 4281 /* Get a writable copy. */ 4282 n = m_dup(m, M_DONTWAIT); 4283 m_freem(m); 4284 if (n == NULL) 4285 return (NULL); 4286 m = n; 4287 } 4288 m = m_pullup(m, sizeof(struct ether_header) + sizeof(struct ip)); 4289 if (m == NULL) 4290 return (NULL); 4291 ip = (struct ip *)(mtod(m, char *) + sizeof(struct ether_header)); 4292 poff = sizeof(struct ether_header) + (ip->ip_hl << 2); 4293 m = m_pullup(m, poff + sizeof(struct tcphdr)); 4294 if (m == NULL) 4295 return (NULL); 4296 tcp = (struct tcphdr *)(mtod(m, char *) + poff); 4297 m = m_pullup(m, poff + (tcp->th_off << 2)); 4298 if (m == NULL) 4299 return (NULL); 4300 /* 4301 * It seems controller doesn't modify IP length and TCP pseudo 4302 * checksum. These checksum computed by upper stack should be 0. 4303 */ 4304 *mss = m->m_pkthdr.tso_segsz; 4305 ip = (struct ip *)(mtod(m, char *) + sizeof(struct ether_header)); 4306 ip->ip_sum = 0; 4307 ip->ip_len = htons(*mss + (ip->ip_hl << 2) + (tcp->th_off << 2)); 4308 /* Clear pseudo checksum computed by TCP stack. */ 4309 tcp = (struct tcphdr *)(mtod(m, char *) + poff); 4310 tcp->th_sum = 0; 4311 /* 4312 * Broadcom controllers uses different descriptor format for 4313 * TSO depending on ASIC revision. Due to TSO-capable firmware 4314 * license issue and lower performance of firmware based TSO 4315 * we only support hardware based TSO. 4316 */ 4317 /* Calculate header length, incl. TCP/IP options, in 32 bit units. */ 4318 hlen = ((ip->ip_hl << 2) + (tcp->th_off << 2)) >> 2; 4319 if (sc->bge_flags & BGE_FLAG_TSO3) { 4320 /* 4321 * For BCM5717 and newer controllers, hardware based TSO 4322 * uses the 14 lower bits of the bge_mss field to store the 4323 * MSS and the upper 2 bits to store the lowest 2 bits of 4324 * the IP/TCP header length. The upper 6 bits of the header 4325 * length are stored in the bge_flags[14:10,4] field. Jumbo 4326 * frames are supported. 4327 */ 4328 *mss |= ((hlen & 0x3) << 14); 4329 *flags |= ((hlen & 0xF8) << 7) | ((hlen & 0x4) << 2); 4330 } else { 4331 /* 4332 * For BCM5755 and newer controllers, hardware based TSO uses 4333 * the lower 11 bits to store the MSS and the upper 5 bits to 4334 * store the IP/TCP header length. Jumbo frames are not 4335 * supported. 4336 */ 4337 *mss |= (hlen << 11); 4338 } 4339 return (m); 4340 } 4341 4342 /* 4343 * Encapsulate an mbuf chain in the tx ring by coupling the mbuf data 4344 * pointers to descriptors. 4345 */ 4346 static int 4347 bge_encap(struct bge_softc *sc, struct mbuf **m_head, uint32_t *txidx) 4348 { 4349 bus_dma_segment_t segs[BGE_NSEG_NEW]; 4350 bus_dmamap_t map; 4351 struct bge_tx_bd *d; 4352 struct mbuf *m = *m_head; 4353 uint32_t idx = *txidx; 4354 uint16_t csum_flags, mss, vlan_tag; 4355 int nsegs, i, error; 4356 4357 csum_flags = 0; 4358 mss = 0; 4359 vlan_tag = 0; 4360 if ((sc->bge_flags & BGE_FLAG_SHORT_DMA_BUG) != 0 && 4361 m->m_next != NULL) { 4362 *m_head = bge_check_short_dma(m); 4363 if (*m_head == NULL) 4364 return (ENOBUFS); 4365 m = *m_head; 4366 } 4367 if ((m->m_pkthdr.csum_flags & CSUM_TSO) != 0) { 4368 *m_head = m = bge_setup_tso(sc, m, &mss, &csum_flags); 4369 if (*m_head == NULL) 4370 return (ENOBUFS); 4371 csum_flags |= BGE_TXBDFLAG_CPU_PRE_DMA | 4372 BGE_TXBDFLAG_CPU_POST_DMA; 4373 } else if ((m->m_pkthdr.csum_flags & sc->bge_csum_features) != 0) { 4374 if (m->m_pkthdr.csum_flags & CSUM_IP) 4375 csum_flags |= BGE_TXBDFLAG_IP_CSUM; 4376 if (m->m_pkthdr.csum_flags & (CSUM_TCP | CSUM_UDP)) { 4377 csum_flags |= BGE_TXBDFLAG_TCP_UDP_CSUM; 4378 if (m->m_pkthdr.len < ETHER_MIN_NOPAD && 4379 (error = bge_cksum_pad(m)) != 0) { 4380 m_freem(m); 4381 *m_head = NULL; 4382 return (error); 4383 } 4384 } 4385 if (m->m_flags & M_LASTFRAG) 4386 csum_flags |= BGE_TXBDFLAG_IP_FRAG_END; 4387 else if (m->m_flags & M_FRAG) 4388 csum_flags |= BGE_TXBDFLAG_IP_FRAG; 4389 } 4390 4391 if ((m->m_pkthdr.csum_flags & CSUM_TSO) == 0) { 4392 if (sc->bge_flags & BGE_FLAG_JUMBO_FRAME && 4393 m->m_pkthdr.len > ETHER_MAX_LEN) 4394 csum_flags |= BGE_TXBDFLAG_JUMBO_FRAME; 4395 if (sc->bge_forced_collapse > 0 && 4396 (sc->bge_flags & BGE_FLAG_PCIE) != 0 && m->m_next != NULL) { 4397 /* 4398 * Forcedly collapse mbuf chains to overcome hardware 4399 * limitation which only support a single outstanding 4400 * DMA read operation. 4401 */ 4402 if (sc->bge_forced_collapse == 1) 4403 m = m_defrag(m, M_DONTWAIT); 4404 else 4405 m = m_collapse(m, M_DONTWAIT, 4406 sc->bge_forced_collapse); 4407 if (m == NULL) 4408 m = *m_head; 4409 *m_head = m; 4410 } 4411 } 4412 4413 map = sc->bge_cdata.bge_tx_dmamap[idx]; 4414 error = bus_dmamap_load_mbuf_sg(sc->bge_cdata.bge_tx_mtag, map, m, segs, 4415 &nsegs, BUS_DMA_NOWAIT); 4416 if (error == EFBIG) { 4417 m = m_collapse(m, M_DONTWAIT, BGE_NSEG_NEW); 4418 if (m == NULL) { 4419 m_freem(*m_head); 4420 *m_head = NULL; 4421 return (ENOBUFS); 4422 } 4423 *m_head = m; 4424 error = bus_dmamap_load_mbuf_sg(sc->bge_cdata.bge_tx_mtag, map, 4425 m, segs, &nsegs, BUS_DMA_NOWAIT); 4426 if (error) { 4427 m_freem(m); 4428 *m_head = NULL; 4429 return (error); 4430 } 4431 } else if (error != 0) 4432 return (error); 4433 4434 /* Check if we have enough free send BDs. */ 4435 if (sc->bge_txcnt + nsegs >= BGE_TX_RING_CNT) { 4436 bus_dmamap_unload(sc->bge_cdata.bge_tx_mtag, map); 4437 return (ENOBUFS); 4438 } 4439 4440 bus_dmamap_sync(sc->bge_cdata.bge_tx_mtag, map, BUS_DMASYNC_PREWRITE); 4441 4442 if (m->m_flags & M_VLANTAG) { 4443 csum_flags |= BGE_TXBDFLAG_VLAN_TAG; 4444 vlan_tag = m->m_pkthdr.ether_vtag; 4445 } 4446 for (i = 0; ; i++) { 4447 d = &sc->bge_ldata.bge_tx_ring[idx]; 4448 d->bge_addr.bge_addr_lo = BGE_ADDR_LO(segs[i].ds_addr); 4449 d->bge_addr.bge_addr_hi = BGE_ADDR_HI(segs[i].ds_addr); 4450 d->bge_len = segs[i].ds_len; 4451 d->bge_flags = csum_flags; 4452 d->bge_vlan_tag = vlan_tag; 4453 d->bge_mss = mss; 4454 if (i == nsegs - 1) 4455 break; 4456 BGE_INC(idx, BGE_TX_RING_CNT); 4457 } 4458 4459 /* Mark the last segment as end of packet... */ 4460 d->bge_flags |= BGE_TXBDFLAG_END; 4461 4462 /* 4463 * Insure that the map for this transmission 4464 * is placed at the array index of the last descriptor 4465 * in this chain. 4466 */ 4467 sc->bge_cdata.bge_tx_dmamap[*txidx] = sc->bge_cdata.bge_tx_dmamap[idx]; 4468 sc->bge_cdata.bge_tx_dmamap[idx] = map; 4469 sc->bge_cdata.bge_tx_chain[idx] = m; 4470 sc->bge_txcnt += nsegs; 4471 4472 BGE_INC(idx, BGE_TX_RING_CNT); 4473 *txidx = idx; 4474 4475 return (0); 4476 } 4477 4478 /* 4479 * Main transmit routine. To avoid having to do mbuf copies, we put pointers 4480 * to the mbuf data regions directly in the transmit descriptors. 4481 */ 4482 static void 4483 bge_start_locked(struct ifnet *ifp) 4484 { 4485 struct bge_softc *sc; 4486 struct mbuf *m_head; 4487 uint32_t prodidx; 4488 int count; 4489 4490 sc = ifp->if_softc; 4491 BGE_LOCK_ASSERT(sc); 4492 4493 if (!sc->bge_link || 4494 (ifp->if_drv_flags & (IFF_DRV_RUNNING | IFF_DRV_OACTIVE)) != 4495 IFF_DRV_RUNNING) 4496 return; 4497 4498 prodidx = sc->bge_tx_prodidx; 4499 4500 for (count = 0; !IFQ_DRV_IS_EMPTY(&ifp->if_snd);) { 4501 if (sc->bge_txcnt > BGE_TX_RING_CNT - 16) { 4502 ifp->if_drv_flags |= IFF_DRV_OACTIVE; 4503 break; 4504 } 4505 IFQ_DRV_DEQUEUE(&ifp->if_snd, m_head); 4506 if (m_head == NULL) 4507 break; 4508 4509 /* 4510 * XXX 4511 * The code inside the if() block is never reached since we 4512 * must mark CSUM_IP_FRAGS in our if_hwassist to start getting 4513 * requests to checksum TCP/UDP in a fragmented packet. 4514 * 4515 * XXX 4516 * safety overkill. If this is a fragmented packet chain 4517 * with delayed TCP/UDP checksums, then only encapsulate 4518 * it if we have enough descriptors to handle the entire 4519 * chain at once. 4520 * (paranoia -- may not actually be needed) 4521 */ 4522 if (m_head->m_flags & M_FIRSTFRAG && 4523 m_head->m_pkthdr.csum_flags & (CSUM_DELAY_DATA)) { 4524 if ((BGE_TX_RING_CNT - sc->bge_txcnt) < 4525 m_head->m_pkthdr.csum_data + 16) { 4526 IFQ_DRV_PREPEND(&ifp->if_snd, m_head); 4527 ifp->if_drv_flags |= IFF_DRV_OACTIVE; 4528 break; 4529 } 4530 } 4531 4532 /* 4533 * Pack the data into the transmit ring. If we 4534 * don't have room, set the OACTIVE flag and wait 4535 * for the NIC to drain the ring. 4536 */ 4537 if (bge_encap(sc, &m_head, &prodidx)) { 4538 if (m_head == NULL) 4539 break; 4540 IFQ_DRV_PREPEND(&ifp->if_snd, m_head); 4541 ifp->if_drv_flags |= IFF_DRV_OACTIVE; 4542 break; 4543 } 4544 ++count; 4545 4546 /* 4547 * If there's a BPF listener, bounce a copy of this frame 4548 * to him. 4549 */ 4550 #ifdef ETHER_BPF_MTAP 4551 ETHER_BPF_MTAP(ifp, m_head); 4552 #else 4553 BPF_MTAP(ifp, m_head); 4554 #endif 4555 } 4556 4557 if (count > 0) { 4558 bus_dmamap_sync(sc->bge_cdata.bge_tx_ring_tag, 4559 sc->bge_cdata.bge_tx_ring_map, BUS_DMASYNC_PREWRITE); 4560 /* Transmit. */ 4561 bge_writembx(sc, BGE_MBX_TX_HOST_PROD0_LO, prodidx); 4562 /* 5700 b2 errata */ 4563 if (sc->bge_chiprev == BGE_CHIPREV_5700_BX) 4564 bge_writembx(sc, BGE_MBX_TX_HOST_PROD0_LO, prodidx); 4565 4566 sc->bge_tx_prodidx = prodidx; 4567 4568 /* 4569 * Set a timeout in case the chip goes out to lunch. 4570 */ 4571 sc->bge_timer = 5; 4572 } 4573 } 4574 4575 /* 4576 * Main transmit routine. To avoid having to do mbuf copies, we put pointers 4577 * to the mbuf data regions directly in the transmit descriptors. 4578 */ 4579 static void 4580 bge_start(struct ifnet *ifp) 4581 { 4582 struct bge_softc *sc; 4583 4584 sc = ifp->if_softc; 4585 BGE_LOCK(sc); 4586 bge_start_locked(ifp); 4587 BGE_UNLOCK(sc); 4588 } 4589 4590 static void 4591 bge_init_locked(struct bge_softc *sc) 4592 { 4593 struct ifnet *ifp; 4594 uint16_t *m; 4595 uint32_t mode; 4596 4597 BGE_LOCK_ASSERT(sc); 4598 4599 ifp = sc->bge_ifp; 4600 4601 if (ifp->if_drv_flags & IFF_DRV_RUNNING) 4602 return; 4603 4604 /* Cancel pending I/O and flush buffers. */ 4605 bge_stop(sc); 4606 4607 bge_stop_fw(sc); 4608 bge_sig_pre_reset(sc, BGE_RESET_START); 4609 bge_reset(sc); 4610 bge_sig_legacy(sc, BGE_RESET_START); 4611 bge_sig_post_reset(sc, BGE_RESET_START); 4612 4613 bge_chipinit(sc); 4614 4615 /* 4616 * Init the various state machines, ring 4617 * control blocks and firmware. 4618 */ 4619 if (bge_blockinit(sc)) { 4620 device_printf(sc->bge_dev, "initialization failure\n"); 4621 return; 4622 } 4623 4624 ifp = sc->bge_ifp; 4625 4626 /* Specify MTU. */ 4627 CSR_WRITE_4(sc, BGE_RX_MTU, ifp->if_mtu + 4628 ETHER_HDR_LEN + ETHER_CRC_LEN + 4629 (ifp->if_capenable & IFCAP_VLAN_MTU ? ETHER_VLAN_ENCAP_LEN : 0)); 4630 4631 /* Load our MAC address. */ 4632 m = (uint16_t *)IF_LLADDR(sc->bge_ifp); 4633 CSR_WRITE_4(sc, BGE_MAC_ADDR1_LO, htons(m[0])); 4634 CSR_WRITE_4(sc, BGE_MAC_ADDR1_HI, (htons(m[1]) << 16) | htons(m[2])); 4635 4636 /* Program promiscuous mode. */ 4637 bge_setpromisc(sc); 4638 4639 /* Program multicast filter. */ 4640 bge_setmulti(sc); 4641 4642 /* Program VLAN tag stripping. */ 4643 bge_setvlan(sc); 4644 4645 /* Override UDP checksum offloading. */ 4646 if (sc->bge_forced_udpcsum == 0) 4647 sc->bge_csum_features &= ~CSUM_UDP; 4648 else 4649 sc->bge_csum_features |= CSUM_UDP; 4650 if (ifp->if_capabilities & IFCAP_TXCSUM && 4651 ifp->if_capenable & IFCAP_TXCSUM) { 4652 ifp->if_hwassist &= ~(BGE_CSUM_FEATURES | CSUM_UDP); 4653 ifp->if_hwassist |= sc->bge_csum_features; 4654 } 4655 4656 /* Init RX ring. */ 4657 if (bge_init_rx_ring_std(sc) != 0) { 4658 device_printf(sc->bge_dev, "no memory for std Rx buffers.\n"); 4659 bge_stop(sc); 4660 return; 4661 } 4662 4663 /* 4664 * Workaround for a bug in 5705 ASIC rev A0. Poll the NIC's 4665 * memory to insure that the chip has in fact read the first 4666 * entry of the ring. 4667 */ 4668 if (sc->bge_chipid == BGE_CHIPID_BCM5705_A0) { 4669 uint32_t v, i; 4670 for (i = 0; i < 10; i++) { 4671 DELAY(20); 4672 v = bge_readmem_ind(sc, BGE_STD_RX_RINGS + 8); 4673 if (v == (MCLBYTES - ETHER_ALIGN)) 4674 break; 4675 } 4676 if (i == 10) 4677 device_printf (sc->bge_dev, 4678 "5705 A0 chip failed to load RX ring\n"); 4679 } 4680 4681 /* Init jumbo RX ring. */ 4682 if (ifp->if_mtu + ETHER_HDR_LEN + ETHER_CRC_LEN + ETHER_VLAN_ENCAP_LEN > 4683 (MCLBYTES - ETHER_ALIGN)) { 4684 if (bge_init_rx_ring_jumbo(sc) != 0) { 4685 device_printf(sc->bge_dev, 4686 "no memory for jumbo Rx buffers.\n"); 4687 bge_stop(sc); 4688 return; 4689 } 4690 } 4691 4692 /* Init our RX return ring index. */ 4693 sc->bge_rx_saved_considx = 0; 4694 4695 /* Init our RX/TX stat counters. */ 4696 sc->bge_rx_discards = sc->bge_tx_discards = sc->bge_tx_collisions = 0; 4697 4698 /* Init TX ring. */ 4699 bge_init_tx_ring(sc); 4700 4701 /* Enable TX MAC state machine lockup fix. */ 4702 mode = CSR_READ_4(sc, BGE_TX_MODE); 4703 if (BGE_IS_5755_PLUS(sc) || sc->bge_asicrev == BGE_ASICREV_BCM5906) 4704 mode |= BGE_TXMODE_MBUF_LOCKUP_FIX; 4705 /* Turn on transmitter. */ 4706 CSR_WRITE_4(sc, BGE_TX_MODE, mode | BGE_TXMODE_ENABLE); 4707 4708 /* Turn on receiver. */ 4709 BGE_SETBIT(sc, BGE_RX_MODE, BGE_RXMODE_ENABLE); 4710 4711 /* 4712 * Set the number of good frames to receive after RX MBUF 4713 * Low Watermark has been reached. After the RX MAC receives 4714 * this number of frames, it will drop subsequent incoming 4715 * frames until the MBUF High Watermark is reached. 4716 */ 4717 CSR_WRITE_4(sc, BGE_MAX_RX_FRAME_LOWAT, 2); 4718 4719 /* Clear MAC statistics. */ 4720 if (BGE_IS_5705_PLUS(sc)) 4721 bge_stats_clear_regs(sc); 4722 4723 /* Tell firmware we're alive. */ 4724 BGE_SETBIT(sc, BGE_MODE_CTL, BGE_MODECTL_STACKUP); 4725 4726 #ifdef DEVICE_POLLING 4727 /* Disable interrupts if we are polling. */ 4728 if (ifp->if_capenable & IFCAP_POLLING) { 4729 BGE_SETBIT(sc, BGE_PCI_MISC_CTL, 4730 BGE_PCIMISCCTL_MASK_PCI_INTR); 4731 bge_writembx(sc, BGE_MBX_IRQ0_LO, 1); 4732 } else 4733 #endif 4734 4735 /* Enable host interrupts. */ 4736 { 4737 BGE_SETBIT(sc, BGE_PCI_MISC_CTL, BGE_PCIMISCCTL_CLEAR_INTA); 4738 BGE_CLRBIT(sc, BGE_PCI_MISC_CTL, BGE_PCIMISCCTL_MASK_PCI_INTR); 4739 bge_writembx(sc, BGE_MBX_IRQ0_LO, 0); 4740 } 4741 4742 bge_ifmedia_upd_locked(ifp); 4743 4744 ifp->if_drv_flags |= IFF_DRV_RUNNING; 4745 ifp->if_drv_flags &= ~IFF_DRV_OACTIVE; 4746 4747 callout_reset(&sc->bge_stat_ch, hz, bge_tick, sc); 4748 } 4749 4750 static void 4751 bge_init(void *xsc) 4752 { 4753 struct bge_softc *sc = xsc; 4754 4755 BGE_LOCK(sc); 4756 bge_init_locked(sc); 4757 BGE_UNLOCK(sc); 4758 } 4759 4760 /* 4761 * Set media options. 4762 */ 4763 static int 4764 bge_ifmedia_upd(struct ifnet *ifp) 4765 { 4766 struct bge_softc *sc = ifp->if_softc; 4767 int res; 4768 4769 BGE_LOCK(sc); 4770 res = bge_ifmedia_upd_locked(ifp); 4771 BGE_UNLOCK(sc); 4772 4773 return (res); 4774 } 4775 4776 static int 4777 bge_ifmedia_upd_locked(struct ifnet *ifp) 4778 { 4779 struct bge_softc *sc = ifp->if_softc; 4780 struct mii_data *mii; 4781 struct mii_softc *miisc; 4782 struct ifmedia *ifm; 4783 4784 BGE_LOCK_ASSERT(sc); 4785 4786 ifm = &sc->bge_ifmedia; 4787 4788 /* If this is a 1000baseX NIC, enable the TBI port. */ 4789 if (sc->bge_flags & BGE_FLAG_TBI) { 4790 if (IFM_TYPE(ifm->ifm_media) != IFM_ETHER) 4791 return (EINVAL); 4792 switch(IFM_SUBTYPE(ifm->ifm_media)) { 4793 case IFM_AUTO: 4794 /* 4795 * The BCM5704 ASIC appears to have a special 4796 * mechanism for programming the autoneg 4797 * advertisement registers in TBI mode. 4798 */ 4799 if (sc->bge_asicrev == BGE_ASICREV_BCM5704) { 4800 uint32_t sgdig; 4801 sgdig = CSR_READ_4(sc, BGE_SGDIG_STS); 4802 if (sgdig & BGE_SGDIGSTS_DONE) { 4803 CSR_WRITE_4(sc, BGE_TX_TBI_AUTONEG, 0); 4804 sgdig = CSR_READ_4(sc, BGE_SGDIG_CFG); 4805 sgdig |= BGE_SGDIGCFG_AUTO | 4806 BGE_SGDIGCFG_PAUSE_CAP | 4807 BGE_SGDIGCFG_ASYM_PAUSE; 4808 CSR_WRITE_4(sc, BGE_SGDIG_CFG, 4809 sgdig | BGE_SGDIGCFG_SEND); 4810 DELAY(5); 4811 CSR_WRITE_4(sc, BGE_SGDIG_CFG, sgdig); 4812 } 4813 } 4814 break; 4815 case IFM_1000_SX: 4816 if ((ifm->ifm_media & IFM_GMASK) == IFM_FDX) { 4817 BGE_CLRBIT(sc, BGE_MAC_MODE, 4818 BGE_MACMODE_HALF_DUPLEX); 4819 } else { 4820 BGE_SETBIT(sc, BGE_MAC_MODE, 4821 BGE_MACMODE_HALF_DUPLEX); 4822 } 4823 break; 4824 default: 4825 return (EINVAL); 4826 } 4827 return (0); 4828 } 4829 4830 sc->bge_link_evt++; 4831 mii = device_get_softc(sc->bge_miibus); 4832 if (mii->mii_instance) 4833 LIST_FOREACH(miisc, &mii->mii_phys, mii_list) 4834 mii_phy_reset(miisc); 4835 mii_mediachg(mii); 4836 4837 /* 4838 * Force an interrupt so that we will call bge_link_upd 4839 * if needed and clear any pending link state attention. 4840 * Without this we are not getting any further interrupts 4841 * for link state changes and thus will not UP the link and 4842 * not be able to send in bge_start_locked. The only 4843 * way to get things working was to receive a packet and 4844 * get an RX intr. 4845 * bge_tick should help for fiber cards and we might not 4846 * need to do this here if BGE_FLAG_TBI is set but as 4847 * we poll for fiber anyway it should not harm. 4848 */ 4849 if (sc->bge_asicrev == BGE_ASICREV_BCM5700 || 4850 sc->bge_flags & BGE_FLAG_5788) 4851 BGE_SETBIT(sc, BGE_MISC_LOCAL_CTL, BGE_MLC_INTR_SET); 4852 else 4853 BGE_SETBIT(sc, BGE_HCC_MODE, BGE_HCCMODE_COAL_NOW); 4854 4855 return (0); 4856 } 4857 4858 /* 4859 * Report current media status. 4860 */ 4861 static void 4862 bge_ifmedia_sts(struct ifnet *ifp, struct ifmediareq *ifmr) 4863 { 4864 struct bge_softc *sc = ifp->if_softc; 4865 struct mii_data *mii; 4866 4867 BGE_LOCK(sc); 4868 4869 if (sc->bge_flags & BGE_FLAG_TBI) { 4870 ifmr->ifm_status = IFM_AVALID; 4871 ifmr->ifm_active = IFM_ETHER; 4872 if (CSR_READ_4(sc, BGE_MAC_STS) & 4873 BGE_MACSTAT_TBI_PCS_SYNCHED) 4874 ifmr->ifm_status |= IFM_ACTIVE; 4875 else { 4876 ifmr->ifm_active |= IFM_NONE; 4877 BGE_UNLOCK(sc); 4878 return; 4879 } 4880 ifmr->ifm_active |= IFM_1000_SX; 4881 if (CSR_READ_4(sc, BGE_MAC_MODE) & BGE_MACMODE_HALF_DUPLEX) 4882 ifmr->ifm_active |= IFM_HDX; 4883 else 4884 ifmr->ifm_active |= IFM_FDX; 4885 BGE_UNLOCK(sc); 4886 return; 4887 } 4888 4889 mii = device_get_softc(sc->bge_miibus); 4890 mii_pollstat(mii); 4891 ifmr->ifm_active = mii->mii_media_active; 4892 ifmr->ifm_status = mii->mii_media_status; 4893 4894 BGE_UNLOCK(sc); 4895 } 4896 4897 static int 4898 bge_ioctl(struct ifnet *ifp, u_long command, caddr_t data) 4899 { 4900 struct bge_softc *sc = ifp->if_softc; 4901 struct ifreq *ifr = (struct ifreq *) data; 4902 struct mii_data *mii; 4903 int flags, mask, error = 0; 4904 4905 switch (command) { 4906 case SIOCSIFMTU: 4907 BGE_LOCK(sc); 4908 if (ifr->ifr_mtu < ETHERMIN || 4909 ((BGE_IS_JUMBO_CAPABLE(sc)) && 4910 ifr->ifr_mtu > BGE_JUMBO_MTU) || 4911 ((!BGE_IS_JUMBO_CAPABLE(sc)) && 4912 ifr->ifr_mtu > ETHERMTU)) 4913 error = EINVAL; 4914 else if (ifp->if_mtu != ifr->ifr_mtu) { 4915 ifp->if_mtu = ifr->ifr_mtu; 4916 if (ifp->if_drv_flags & IFF_DRV_RUNNING) { 4917 ifp->if_drv_flags &= ~IFF_DRV_RUNNING; 4918 bge_init_locked(sc); 4919 } 4920 } 4921 BGE_UNLOCK(sc); 4922 break; 4923 case SIOCSIFFLAGS: 4924 BGE_LOCK(sc); 4925 if (ifp->if_flags & IFF_UP) { 4926 /* 4927 * If only the state of the PROMISC flag changed, 4928 * then just use the 'set promisc mode' command 4929 * instead of reinitializing the entire NIC. Doing 4930 * a full re-init means reloading the firmware and 4931 * waiting for it to start up, which may take a 4932 * second or two. Similarly for ALLMULTI. 4933 */ 4934 if (ifp->if_drv_flags & IFF_DRV_RUNNING) { 4935 flags = ifp->if_flags ^ sc->bge_if_flags; 4936 if (flags & IFF_PROMISC) 4937 bge_setpromisc(sc); 4938 if (flags & IFF_ALLMULTI) 4939 bge_setmulti(sc); 4940 } else 4941 bge_init_locked(sc); 4942 } else { 4943 if (ifp->if_drv_flags & IFF_DRV_RUNNING) { 4944 bge_stop(sc); 4945 } 4946 } 4947 sc->bge_if_flags = ifp->if_flags; 4948 BGE_UNLOCK(sc); 4949 error = 0; 4950 break; 4951 case SIOCADDMULTI: 4952 case SIOCDELMULTI: 4953 if (ifp->if_drv_flags & IFF_DRV_RUNNING) { 4954 BGE_LOCK(sc); 4955 bge_setmulti(sc); 4956 BGE_UNLOCK(sc); 4957 error = 0; 4958 } 4959 break; 4960 case SIOCSIFMEDIA: 4961 case SIOCGIFMEDIA: 4962 if (sc->bge_flags & BGE_FLAG_TBI) { 4963 error = ifmedia_ioctl(ifp, ifr, 4964 &sc->bge_ifmedia, command); 4965 } else { 4966 mii = device_get_softc(sc->bge_miibus); 4967 error = ifmedia_ioctl(ifp, ifr, 4968 &mii->mii_media, command); 4969 } 4970 break; 4971 case SIOCSIFCAP: 4972 mask = ifr->ifr_reqcap ^ ifp->if_capenable; 4973 #ifdef DEVICE_POLLING 4974 if (mask & IFCAP_POLLING) { 4975 if (ifr->ifr_reqcap & IFCAP_POLLING) { 4976 error = ether_poll_register(bge_poll, ifp); 4977 if (error) 4978 return (error); 4979 BGE_LOCK(sc); 4980 BGE_SETBIT(sc, BGE_PCI_MISC_CTL, 4981 BGE_PCIMISCCTL_MASK_PCI_INTR); 4982 bge_writembx(sc, BGE_MBX_IRQ0_LO, 1); 4983 ifp->if_capenable |= IFCAP_POLLING; 4984 BGE_UNLOCK(sc); 4985 } else { 4986 error = ether_poll_deregister(ifp); 4987 /* Enable interrupt even in error case */ 4988 BGE_LOCK(sc); 4989 BGE_CLRBIT(sc, BGE_PCI_MISC_CTL, 4990 BGE_PCIMISCCTL_MASK_PCI_INTR); 4991 bge_writembx(sc, BGE_MBX_IRQ0_LO, 0); 4992 ifp->if_capenable &= ~IFCAP_POLLING; 4993 BGE_UNLOCK(sc); 4994 } 4995 } 4996 #endif 4997 if ((mask & IFCAP_TXCSUM) != 0 && 4998 (ifp->if_capabilities & IFCAP_TXCSUM) != 0) { 4999 ifp->if_capenable ^= IFCAP_TXCSUM; 5000 if ((ifp->if_capenable & IFCAP_TXCSUM) != 0) 5001 ifp->if_hwassist |= sc->bge_csum_features; 5002 else 5003 ifp->if_hwassist &= ~sc->bge_csum_features; 5004 } 5005 5006 if ((mask & IFCAP_RXCSUM) != 0 && 5007 (ifp->if_capabilities & IFCAP_RXCSUM) != 0) 5008 ifp->if_capenable ^= IFCAP_RXCSUM; 5009 5010 if ((mask & IFCAP_TSO4) != 0 && 5011 (ifp->if_capabilities & IFCAP_TSO4) != 0) { 5012 ifp->if_capenable ^= IFCAP_TSO4; 5013 if ((ifp->if_capenable & IFCAP_TSO4) != 0) 5014 ifp->if_hwassist |= CSUM_TSO; 5015 else 5016 ifp->if_hwassist &= ~CSUM_TSO; 5017 } 5018 5019 if (mask & IFCAP_VLAN_MTU) { 5020 ifp->if_capenable ^= IFCAP_VLAN_MTU; 5021 ifp->if_drv_flags &= ~IFF_DRV_RUNNING; 5022 bge_init(sc); 5023 } 5024 5025 if ((mask & IFCAP_VLAN_HWTSO) != 0 && 5026 (ifp->if_capabilities & IFCAP_VLAN_HWTSO) != 0) 5027 ifp->if_capenable ^= IFCAP_VLAN_HWTSO; 5028 if ((mask & IFCAP_VLAN_HWTAGGING) != 0 && 5029 (ifp->if_capabilities & IFCAP_VLAN_HWTAGGING) != 0) { 5030 ifp->if_capenable ^= IFCAP_VLAN_HWTAGGING; 5031 if ((ifp->if_capenable & IFCAP_VLAN_HWTAGGING) == 0) 5032 ifp->if_capenable &= ~IFCAP_VLAN_HWTSO; 5033 BGE_LOCK(sc); 5034 bge_setvlan(sc); 5035 BGE_UNLOCK(sc); 5036 } 5037 #ifdef VLAN_CAPABILITIES 5038 VLAN_CAPABILITIES(ifp); 5039 #endif 5040 break; 5041 default: 5042 error = ether_ioctl(ifp, command, data); 5043 break; 5044 } 5045 5046 return (error); 5047 } 5048 5049 static void 5050 bge_watchdog(struct bge_softc *sc) 5051 { 5052 struct ifnet *ifp; 5053 5054 BGE_LOCK_ASSERT(sc); 5055 5056 if (sc->bge_timer == 0 || --sc->bge_timer) 5057 return; 5058 5059 ifp = sc->bge_ifp; 5060 5061 if_printf(ifp, "watchdog timeout -- resetting\n"); 5062 5063 ifp->if_drv_flags &= ~IFF_DRV_RUNNING; 5064 bge_init_locked(sc); 5065 5066 ifp->if_oerrors++; 5067 } 5068 5069 /* 5070 * Stop the adapter and free any mbufs allocated to the 5071 * RX and TX lists. 5072 */ 5073 static void 5074 bge_stop(struct bge_softc *sc) 5075 { 5076 struct ifnet *ifp; 5077 5078 BGE_LOCK_ASSERT(sc); 5079 5080 ifp = sc->bge_ifp; 5081 5082 callout_stop(&sc->bge_stat_ch); 5083 5084 /* Disable host interrupts. */ 5085 BGE_SETBIT(sc, BGE_PCI_MISC_CTL, BGE_PCIMISCCTL_MASK_PCI_INTR); 5086 bge_writembx(sc, BGE_MBX_IRQ0_LO, 1); 5087 5088 /* 5089 * Tell firmware we're shutting down. 5090 */ 5091 bge_stop_fw(sc); 5092 bge_sig_pre_reset(sc, BGE_RESET_STOP); 5093 5094 /* 5095 * Disable all of the receiver blocks. 5096 */ 5097 BGE_CLRBIT(sc, BGE_RX_MODE, BGE_RXMODE_ENABLE); 5098 BGE_CLRBIT(sc, BGE_RBDI_MODE, BGE_RBDIMODE_ENABLE); 5099 BGE_CLRBIT(sc, BGE_RXLP_MODE, BGE_RXLPMODE_ENABLE); 5100 if (!(BGE_IS_5705_PLUS(sc))) 5101 BGE_CLRBIT(sc, BGE_RXLS_MODE, BGE_RXLSMODE_ENABLE); 5102 BGE_CLRBIT(sc, BGE_RDBDI_MODE, BGE_RBDIMODE_ENABLE); 5103 BGE_CLRBIT(sc, BGE_RDC_MODE, BGE_RDCMODE_ENABLE); 5104 BGE_CLRBIT(sc, BGE_RBDC_MODE, BGE_RBDCMODE_ENABLE); 5105 5106 /* 5107 * Disable all of the transmit blocks. 5108 */ 5109 BGE_CLRBIT(sc, BGE_SRS_MODE, BGE_SRSMODE_ENABLE); 5110 BGE_CLRBIT(sc, BGE_SBDI_MODE, BGE_SBDIMODE_ENABLE); 5111 BGE_CLRBIT(sc, BGE_SDI_MODE, BGE_SDIMODE_ENABLE); 5112 BGE_CLRBIT(sc, BGE_RDMA_MODE, BGE_RDMAMODE_ENABLE); 5113 BGE_CLRBIT(sc, BGE_SDC_MODE, BGE_SDCMODE_ENABLE); 5114 if (!(BGE_IS_5705_PLUS(sc))) 5115 BGE_CLRBIT(sc, BGE_DMAC_MODE, BGE_DMACMODE_ENABLE); 5116 BGE_CLRBIT(sc, BGE_SBDC_MODE, BGE_SBDCMODE_ENABLE); 5117 5118 /* 5119 * Shut down all of the memory managers and related 5120 * state machines. 5121 */ 5122 BGE_CLRBIT(sc, BGE_HCC_MODE, BGE_HCCMODE_ENABLE); 5123 BGE_CLRBIT(sc, BGE_WDMA_MODE, BGE_WDMAMODE_ENABLE); 5124 if (!(BGE_IS_5705_PLUS(sc))) 5125 BGE_CLRBIT(sc, BGE_MBCF_MODE, BGE_MBCFMODE_ENABLE); 5126 CSR_WRITE_4(sc, BGE_FTQ_RESET, 0xFFFFFFFF); 5127 CSR_WRITE_4(sc, BGE_FTQ_RESET, 0); 5128 if (!(BGE_IS_5705_PLUS(sc))) { 5129 BGE_CLRBIT(sc, BGE_BMAN_MODE, BGE_BMANMODE_ENABLE); 5130 BGE_CLRBIT(sc, BGE_MARB_MODE, BGE_MARBMODE_ENABLE); 5131 } 5132 /* Update MAC statistics. */ 5133 if (BGE_IS_5705_PLUS(sc)) 5134 bge_stats_update_regs(sc); 5135 5136 bge_reset(sc); 5137 bge_sig_legacy(sc, BGE_RESET_STOP); 5138 bge_sig_post_reset(sc, BGE_RESET_STOP); 5139 5140 /* 5141 * Keep the ASF firmware running if up. 5142 */ 5143 if (sc->bge_asf_mode & ASF_STACKUP) 5144 BGE_SETBIT(sc, BGE_MODE_CTL, BGE_MODECTL_STACKUP); 5145 else 5146 BGE_CLRBIT(sc, BGE_MODE_CTL, BGE_MODECTL_STACKUP); 5147 5148 /* Free the RX lists. */ 5149 bge_free_rx_ring_std(sc); 5150 5151 /* Free jumbo RX list. */ 5152 if (BGE_IS_JUMBO_CAPABLE(sc)) 5153 bge_free_rx_ring_jumbo(sc); 5154 5155 /* Free TX buffers. */ 5156 bge_free_tx_ring(sc); 5157 5158 sc->bge_tx_saved_considx = BGE_TXCONS_UNSET; 5159 5160 /* Clear MAC's link state (PHY may still have link UP). */ 5161 if (bootverbose && sc->bge_link) 5162 if_printf(sc->bge_ifp, "link DOWN\n"); 5163 sc->bge_link = 0; 5164 5165 ifp->if_drv_flags &= ~(IFF_DRV_RUNNING | IFF_DRV_OACTIVE); 5166 } 5167 5168 /* 5169 * Stop all chip I/O so that the kernel's probe routines don't 5170 * get confused by errant DMAs when rebooting. 5171 */ 5172 static int 5173 bge_shutdown(device_t dev) 5174 { 5175 struct bge_softc *sc; 5176 5177 sc = device_get_softc(dev); 5178 BGE_LOCK(sc); 5179 bge_stop(sc); 5180 bge_reset(sc); 5181 BGE_UNLOCK(sc); 5182 5183 return (0); 5184 } 5185 5186 static int 5187 bge_suspend(device_t dev) 5188 { 5189 struct bge_softc *sc; 5190 5191 sc = device_get_softc(dev); 5192 BGE_LOCK(sc); 5193 bge_stop(sc); 5194 BGE_UNLOCK(sc); 5195 5196 return (0); 5197 } 5198 5199 static int 5200 bge_resume(device_t dev) 5201 { 5202 struct bge_softc *sc; 5203 struct ifnet *ifp; 5204 5205 sc = device_get_softc(dev); 5206 BGE_LOCK(sc); 5207 ifp = sc->bge_ifp; 5208 if (ifp->if_flags & IFF_UP) { 5209 bge_init_locked(sc); 5210 if (ifp->if_drv_flags & IFF_DRV_RUNNING) 5211 bge_start_locked(ifp); 5212 } 5213 BGE_UNLOCK(sc); 5214 5215 return (0); 5216 } 5217 5218 static void 5219 bge_link_upd(struct bge_softc *sc) 5220 { 5221 struct mii_data *mii; 5222 uint32_t link, status; 5223 5224 BGE_LOCK_ASSERT(sc); 5225 5226 /* Clear 'pending link event' flag. */ 5227 sc->bge_link_evt = 0; 5228 5229 /* 5230 * Process link state changes. 5231 * Grrr. The link status word in the status block does 5232 * not work correctly on the BCM5700 rev AX and BX chips, 5233 * according to all available information. Hence, we have 5234 * to enable MII interrupts in order to properly obtain 5235 * async link changes. Unfortunately, this also means that 5236 * we have to read the MAC status register to detect link 5237 * changes, thereby adding an additional register access to 5238 * the interrupt handler. 5239 * 5240 * XXX: perhaps link state detection procedure used for 5241 * BGE_CHIPID_BCM5700_B2 can be used for others BCM5700 revisions. 5242 */ 5243 5244 if (sc->bge_asicrev == BGE_ASICREV_BCM5700 && 5245 sc->bge_chipid != BGE_CHIPID_BCM5700_B2) { 5246 status = CSR_READ_4(sc, BGE_MAC_STS); 5247 if (status & BGE_MACSTAT_MI_INTERRUPT) { 5248 mii = device_get_softc(sc->bge_miibus); 5249 mii_pollstat(mii); 5250 if (!sc->bge_link && 5251 mii->mii_media_status & IFM_ACTIVE && 5252 IFM_SUBTYPE(mii->mii_media_active) != IFM_NONE) { 5253 sc->bge_link++; 5254 if (bootverbose) 5255 if_printf(sc->bge_ifp, "link UP\n"); 5256 } else if (sc->bge_link && 5257 (!(mii->mii_media_status & IFM_ACTIVE) || 5258 IFM_SUBTYPE(mii->mii_media_active) == IFM_NONE)) { 5259 sc->bge_link = 0; 5260 if (bootverbose) 5261 if_printf(sc->bge_ifp, "link DOWN\n"); 5262 } 5263 5264 /* Clear the interrupt. */ 5265 CSR_WRITE_4(sc, BGE_MAC_EVT_ENB, 5266 BGE_EVTENB_MI_INTERRUPT); 5267 bge_miibus_readreg(sc->bge_dev, 1, BRGPHY_MII_ISR); 5268 bge_miibus_writereg(sc->bge_dev, 1, BRGPHY_MII_IMR, 5269 BRGPHY_INTRS); 5270 } 5271 return; 5272 } 5273 5274 if (sc->bge_flags & BGE_FLAG_TBI) { 5275 status = CSR_READ_4(sc, BGE_MAC_STS); 5276 if (status & BGE_MACSTAT_TBI_PCS_SYNCHED) { 5277 if (!sc->bge_link) { 5278 sc->bge_link++; 5279 if (sc->bge_asicrev == BGE_ASICREV_BCM5704) 5280 BGE_CLRBIT(sc, BGE_MAC_MODE, 5281 BGE_MACMODE_TBI_SEND_CFGS); 5282 CSR_WRITE_4(sc, BGE_MAC_STS, 0xFFFFFFFF); 5283 if (bootverbose) 5284 if_printf(sc->bge_ifp, "link UP\n"); 5285 if_link_state_change(sc->bge_ifp, 5286 LINK_STATE_UP); 5287 } 5288 } else if (sc->bge_link) { 5289 sc->bge_link = 0; 5290 if (bootverbose) 5291 if_printf(sc->bge_ifp, "link DOWN\n"); 5292 if_link_state_change(sc->bge_ifp, LINK_STATE_DOWN); 5293 } 5294 } else if ((sc->bge_mi_mode & BGE_MIMODE_AUTOPOLL) != 0) { 5295 /* 5296 * Some broken BCM chips have BGE_STATFLAG_LINKSTATE_CHANGED bit 5297 * in status word always set. Workaround this bug by reading 5298 * PHY link status directly. 5299 */ 5300 link = (CSR_READ_4(sc, BGE_MI_STS) & BGE_MISTS_LINK) ? 1 : 0; 5301 5302 if (link != sc->bge_link || 5303 sc->bge_asicrev == BGE_ASICREV_BCM5700) { 5304 mii = device_get_softc(sc->bge_miibus); 5305 mii_pollstat(mii); 5306 if (!sc->bge_link && 5307 mii->mii_media_status & IFM_ACTIVE && 5308 IFM_SUBTYPE(mii->mii_media_active) != IFM_NONE) { 5309 sc->bge_link++; 5310 if (bootverbose) 5311 if_printf(sc->bge_ifp, "link UP\n"); 5312 } else if (sc->bge_link && 5313 (!(mii->mii_media_status & IFM_ACTIVE) || 5314 IFM_SUBTYPE(mii->mii_media_active) == IFM_NONE)) { 5315 sc->bge_link = 0; 5316 if (bootverbose) 5317 if_printf(sc->bge_ifp, "link DOWN\n"); 5318 } 5319 } 5320 } else { 5321 /* 5322 * For controllers that call mii_tick, we have to poll 5323 * link status. 5324 */ 5325 mii = device_get_softc(sc->bge_miibus); 5326 mii_pollstat(mii); 5327 bge_miibus_statchg(sc->bge_dev); 5328 } 5329 5330 /* Clear the attention. */ 5331 CSR_WRITE_4(sc, BGE_MAC_STS, BGE_MACSTAT_SYNC_CHANGED | 5332 BGE_MACSTAT_CFG_CHANGED | BGE_MACSTAT_MI_COMPLETE | 5333 BGE_MACSTAT_LINK_CHANGED); 5334 } 5335 5336 static void 5337 bge_add_sysctls(struct bge_softc *sc) 5338 { 5339 struct sysctl_ctx_list *ctx; 5340 struct sysctl_oid_list *children; 5341 char tn[32]; 5342 int unit; 5343 5344 ctx = device_get_sysctl_ctx(sc->bge_dev); 5345 children = SYSCTL_CHILDREN(device_get_sysctl_tree(sc->bge_dev)); 5346 5347 #ifdef BGE_REGISTER_DEBUG 5348 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "debug_info", 5349 CTLTYPE_INT | CTLFLAG_RW, sc, 0, bge_sysctl_debug_info, "I", 5350 "Debug Information"); 5351 5352 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "reg_read", 5353 CTLTYPE_INT | CTLFLAG_RW, sc, 0, bge_sysctl_reg_read, "I", 5354 "Register Read"); 5355 5356 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "mem_read", 5357 CTLTYPE_INT | CTLFLAG_RW, sc, 0, bge_sysctl_mem_read, "I", 5358 "Memory Read"); 5359 5360 #endif 5361 5362 unit = device_get_unit(sc->bge_dev); 5363 /* 5364 * A common design characteristic for many Broadcom client controllers 5365 * is that they only support a single outstanding DMA read operation 5366 * on the PCIe bus. This means that it will take twice as long to fetch 5367 * a TX frame that is split into header and payload buffers as it does 5368 * to fetch a single, contiguous TX frame (2 reads vs. 1 read). For 5369 * these controllers, coalescing buffers to reduce the number of memory 5370 * reads is effective way to get maximum performance(about 940Mbps). 5371 * Without collapsing TX buffers the maximum TCP bulk transfer 5372 * performance is about 850Mbps. However forcing coalescing mbufs 5373 * consumes a lot of CPU cycles, so leave it off by default. 5374 */ 5375 sc->bge_forced_collapse = 0; 5376 snprintf(tn, sizeof(tn), "dev.bge.%d.forced_collapse", unit); 5377 TUNABLE_INT_FETCH(tn, &sc->bge_forced_collapse); 5378 SYSCTL_ADD_INT(ctx, children, OID_AUTO, "forced_collapse", 5379 CTLFLAG_RW, &sc->bge_forced_collapse, 0, 5380 "Number of fragmented TX buffers of a frame allowed before " 5381 "forced collapsing"); 5382 5383 /* 5384 * It seems all Broadcom controllers have a bug that can generate UDP 5385 * datagrams with checksum value 0 when TX UDP checksum offloading is 5386 * enabled. Generating UDP checksum value 0 is RFC 768 violation. 5387 * Even though the probability of generating such UDP datagrams is 5388 * low, I don't want to see FreeBSD boxes to inject such datagrams 5389 * into network so disable UDP checksum offloading by default. Users 5390 * still override this behavior by setting a sysctl variable, 5391 * dev.bge.0.forced_udpcsum. 5392 */ 5393 sc->bge_forced_udpcsum = 0; 5394 snprintf(tn, sizeof(tn), "dev.bge.%d.bge_forced_udpcsum", unit); 5395 TUNABLE_INT_FETCH(tn, &sc->bge_forced_udpcsum); 5396 SYSCTL_ADD_INT(ctx, children, OID_AUTO, "forced_udpcsum", 5397 CTLFLAG_RW, &sc->bge_forced_udpcsum, 0, 5398 "Enable UDP checksum offloading even if controller can " 5399 "generate UDP checksum value 0"); 5400 5401 if (BGE_IS_5705_PLUS(sc)) 5402 bge_add_sysctl_stats_regs(sc, ctx, children); 5403 else 5404 bge_add_sysctl_stats(sc, ctx, children); 5405 } 5406 5407 #define BGE_SYSCTL_STAT(sc, ctx, desc, parent, node, oid) \ 5408 SYSCTL_ADD_PROC(ctx, parent, OID_AUTO, oid, CTLTYPE_UINT|CTLFLAG_RD, \ 5409 sc, offsetof(struct bge_stats, node), bge_sysctl_stats, "IU", \ 5410 desc) 5411 5412 static void 5413 bge_add_sysctl_stats(struct bge_softc *sc, struct sysctl_ctx_list *ctx, 5414 struct sysctl_oid_list *parent) 5415 { 5416 struct sysctl_oid *tree; 5417 struct sysctl_oid_list *children, *schildren; 5418 5419 tree = SYSCTL_ADD_NODE(ctx, parent, OID_AUTO, "stats", CTLFLAG_RD, 5420 NULL, "BGE Statistics"); 5421 schildren = children = SYSCTL_CHILDREN(tree); 5422 BGE_SYSCTL_STAT(sc, ctx, "Frames Dropped Due To Filters", 5423 children, COSFramesDroppedDueToFilters, 5424 "FramesDroppedDueToFilters"); 5425 BGE_SYSCTL_STAT(sc, ctx, "NIC DMA Write Queue Full", 5426 children, nicDmaWriteQueueFull, "DmaWriteQueueFull"); 5427 BGE_SYSCTL_STAT(sc, ctx, "NIC DMA Write High Priority Queue Full", 5428 children, nicDmaWriteHighPriQueueFull, "DmaWriteHighPriQueueFull"); 5429 BGE_SYSCTL_STAT(sc, ctx, "NIC No More RX Buffer Descriptors", 5430 children, nicNoMoreRxBDs, "NoMoreRxBDs"); 5431 BGE_SYSCTL_STAT(sc, ctx, "Discarded Input Frames", 5432 children, ifInDiscards, "InputDiscards"); 5433 BGE_SYSCTL_STAT(sc, ctx, "Input Errors", 5434 children, ifInErrors, "InputErrors"); 5435 BGE_SYSCTL_STAT(sc, ctx, "NIC Recv Threshold Hit", 5436 children, nicRecvThresholdHit, "RecvThresholdHit"); 5437 BGE_SYSCTL_STAT(sc, ctx, "NIC DMA Read Queue Full", 5438 children, nicDmaReadQueueFull, "DmaReadQueueFull"); 5439 BGE_SYSCTL_STAT(sc, ctx, "NIC DMA Read High Priority Queue Full", 5440 children, nicDmaReadHighPriQueueFull, "DmaReadHighPriQueueFull"); 5441 BGE_SYSCTL_STAT(sc, ctx, "NIC Send Data Complete Queue Full", 5442 children, nicSendDataCompQueueFull, "SendDataCompQueueFull"); 5443 BGE_SYSCTL_STAT(sc, ctx, "NIC Ring Set Send Producer Index", 5444 children, nicRingSetSendProdIndex, "RingSetSendProdIndex"); 5445 BGE_SYSCTL_STAT(sc, ctx, "NIC Ring Status Update", 5446 children, nicRingStatusUpdate, "RingStatusUpdate"); 5447 BGE_SYSCTL_STAT(sc, ctx, "NIC Interrupts", 5448 children, nicInterrupts, "Interrupts"); 5449 BGE_SYSCTL_STAT(sc, ctx, "NIC Avoided Interrupts", 5450 children, nicAvoidedInterrupts, "AvoidedInterrupts"); 5451 BGE_SYSCTL_STAT(sc, ctx, "NIC Send Threshold Hit", 5452 children, nicSendThresholdHit, "SendThresholdHit"); 5453 5454 tree = SYSCTL_ADD_NODE(ctx, schildren, OID_AUTO, "rx", CTLFLAG_RD, 5455 NULL, "BGE RX Statistics"); 5456 children = SYSCTL_CHILDREN(tree); 5457 BGE_SYSCTL_STAT(sc, ctx, "Inbound Octets", 5458 children, rxstats.ifHCInOctets, "ifHCInOctets"); 5459 BGE_SYSCTL_STAT(sc, ctx, "Fragments", 5460 children, rxstats.etherStatsFragments, "Fragments"); 5461 BGE_SYSCTL_STAT(sc, ctx, "Inbound Unicast Packets", 5462 children, rxstats.ifHCInUcastPkts, "UnicastPkts"); 5463 BGE_SYSCTL_STAT(sc, ctx, "Inbound Multicast Packets", 5464 children, rxstats.ifHCInMulticastPkts, "MulticastPkts"); 5465 BGE_SYSCTL_STAT(sc, ctx, "FCS Errors", 5466 children, rxstats.dot3StatsFCSErrors, "FCSErrors"); 5467 BGE_SYSCTL_STAT(sc, ctx, "Alignment Errors", 5468 children, rxstats.dot3StatsAlignmentErrors, "AlignmentErrors"); 5469 BGE_SYSCTL_STAT(sc, ctx, "XON Pause Frames Received", 5470 children, rxstats.xonPauseFramesReceived, "xonPauseFramesReceived"); 5471 BGE_SYSCTL_STAT(sc, ctx, "XOFF Pause Frames Received", 5472 children, rxstats.xoffPauseFramesReceived, 5473 "xoffPauseFramesReceived"); 5474 BGE_SYSCTL_STAT(sc, ctx, "MAC Control Frames Received", 5475 children, rxstats.macControlFramesReceived, 5476 "ControlFramesReceived"); 5477 BGE_SYSCTL_STAT(sc, ctx, "XOFF State Entered", 5478 children, rxstats.xoffStateEntered, "xoffStateEntered"); 5479 BGE_SYSCTL_STAT(sc, ctx, "Frames Too Long", 5480 children, rxstats.dot3StatsFramesTooLong, "FramesTooLong"); 5481 BGE_SYSCTL_STAT(sc, ctx, "Jabbers", 5482 children, rxstats.etherStatsJabbers, "Jabbers"); 5483 BGE_SYSCTL_STAT(sc, ctx, "Undersized Packets", 5484 children, rxstats.etherStatsUndersizePkts, "UndersizePkts"); 5485 BGE_SYSCTL_STAT(sc, ctx, "Inbound Range Length Errors", 5486 children, rxstats.inRangeLengthError, "inRangeLengthError"); 5487 BGE_SYSCTL_STAT(sc, ctx, "Outbound Range Length Errors", 5488 children, rxstats.outRangeLengthError, "outRangeLengthError"); 5489 5490 tree = SYSCTL_ADD_NODE(ctx, schildren, OID_AUTO, "tx", CTLFLAG_RD, 5491 NULL, "BGE TX Statistics"); 5492 children = SYSCTL_CHILDREN(tree); 5493 BGE_SYSCTL_STAT(sc, ctx, "Outbound Octets", 5494 children, txstats.ifHCOutOctets, "ifHCOutOctets"); 5495 BGE_SYSCTL_STAT(sc, ctx, "TX Collisions", 5496 children, txstats.etherStatsCollisions, "Collisions"); 5497 BGE_SYSCTL_STAT(sc, ctx, "XON Sent", 5498 children, txstats.outXonSent, "XonSent"); 5499 BGE_SYSCTL_STAT(sc, ctx, "XOFF Sent", 5500 children, txstats.outXoffSent, "XoffSent"); 5501 BGE_SYSCTL_STAT(sc, ctx, "Flow Control Done", 5502 children, txstats.flowControlDone, "flowControlDone"); 5503 BGE_SYSCTL_STAT(sc, ctx, "Internal MAC TX errors", 5504 children, txstats.dot3StatsInternalMacTransmitErrors, 5505 "InternalMacTransmitErrors"); 5506 BGE_SYSCTL_STAT(sc, ctx, "Single Collision Frames", 5507 children, txstats.dot3StatsSingleCollisionFrames, 5508 "SingleCollisionFrames"); 5509 BGE_SYSCTL_STAT(sc, ctx, "Multiple Collision Frames", 5510 children, txstats.dot3StatsMultipleCollisionFrames, 5511 "MultipleCollisionFrames"); 5512 BGE_SYSCTL_STAT(sc, ctx, "Deferred Transmissions", 5513 children, txstats.dot3StatsDeferredTransmissions, 5514 "DeferredTransmissions"); 5515 BGE_SYSCTL_STAT(sc, ctx, "Excessive Collisions", 5516 children, txstats.dot3StatsExcessiveCollisions, 5517 "ExcessiveCollisions"); 5518 BGE_SYSCTL_STAT(sc, ctx, "Late Collisions", 5519 children, txstats.dot3StatsLateCollisions, 5520 "LateCollisions"); 5521 BGE_SYSCTL_STAT(sc, ctx, "Outbound Unicast Packets", 5522 children, txstats.ifHCOutUcastPkts, "UnicastPkts"); 5523 BGE_SYSCTL_STAT(sc, ctx, "Outbound Multicast Packets", 5524 children, txstats.ifHCOutMulticastPkts, "MulticastPkts"); 5525 BGE_SYSCTL_STAT(sc, ctx, "Outbound Broadcast Packets", 5526 children, txstats.ifHCOutBroadcastPkts, "BroadcastPkts"); 5527 BGE_SYSCTL_STAT(sc, ctx, "Carrier Sense Errors", 5528 children, txstats.dot3StatsCarrierSenseErrors, 5529 "CarrierSenseErrors"); 5530 BGE_SYSCTL_STAT(sc, ctx, "Outbound Discards", 5531 children, txstats.ifOutDiscards, "Discards"); 5532 BGE_SYSCTL_STAT(sc, ctx, "Outbound Errors", 5533 children, txstats.ifOutErrors, "Errors"); 5534 } 5535 5536 #undef BGE_SYSCTL_STAT 5537 5538 #define BGE_SYSCTL_STAT_ADD64(c, h, n, p, d) \ 5539 SYSCTL_ADD_QUAD(c, h, OID_AUTO, n, CTLFLAG_RD, p, d) 5540 5541 static void 5542 bge_add_sysctl_stats_regs(struct bge_softc *sc, struct sysctl_ctx_list *ctx, 5543 struct sysctl_oid_list *parent) 5544 { 5545 struct sysctl_oid *tree; 5546 struct sysctl_oid_list *child, *schild; 5547 struct bge_mac_stats *stats; 5548 5549 stats = &sc->bge_mac_stats; 5550 tree = SYSCTL_ADD_NODE(ctx, parent, OID_AUTO, "stats", CTLFLAG_RD, 5551 NULL, "BGE Statistics"); 5552 schild = child = SYSCTL_CHILDREN(tree); 5553 BGE_SYSCTL_STAT_ADD64(ctx, child, "FramesDroppedDueToFilters", 5554 &stats->FramesDroppedDueToFilters, "Frames Dropped Due to Filters"); 5555 BGE_SYSCTL_STAT_ADD64(ctx, child, "DmaWriteQueueFull", 5556 &stats->DmaWriteQueueFull, "NIC DMA Write Queue Full"); 5557 BGE_SYSCTL_STAT_ADD64(ctx, child, "DmaWriteHighPriQueueFull", 5558 &stats->DmaWriteHighPriQueueFull, 5559 "NIC DMA Write High Priority Queue Full"); 5560 BGE_SYSCTL_STAT_ADD64(ctx, child, "NoMoreRxBDs", 5561 &stats->NoMoreRxBDs, "NIC No More RX Buffer Descriptors"); 5562 BGE_SYSCTL_STAT_ADD64(ctx, child, "InputDiscards", 5563 &stats->InputDiscards, "Discarded Input Frames"); 5564 BGE_SYSCTL_STAT_ADD64(ctx, child, "InputErrors", 5565 &stats->InputErrors, "Input Errors"); 5566 BGE_SYSCTL_STAT_ADD64(ctx, child, "RecvThresholdHit", 5567 &stats->RecvThresholdHit, "NIC Recv Threshold Hit"); 5568 5569 tree = SYSCTL_ADD_NODE(ctx, schild, OID_AUTO, "rx", CTLFLAG_RD, 5570 NULL, "BGE RX Statistics"); 5571 child = SYSCTL_CHILDREN(tree); 5572 BGE_SYSCTL_STAT_ADD64(ctx, child, "ifHCInOctets", 5573 &stats->ifHCInOctets, "Inbound Octets"); 5574 BGE_SYSCTL_STAT_ADD64(ctx, child, "Fragments", 5575 &stats->etherStatsFragments, "Fragments"); 5576 BGE_SYSCTL_STAT_ADD64(ctx, child, "UnicastPkts", 5577 &stats->ifHCInUcastPkts, "Inbound Unicast Packets"); 5578 BGE_SYSCTL_STAT_ADD64(ctx, child, "MulticastPkts", 5579 &stats->ifHCInMulticastPkts, "Inbound Multicast Packets"); 5580 BGE_SYSCTL_STAT_ADD64(ctx, child, "BroadcastPkts", 5581 &stats->ifHCInBroadcastPkts, "Inbound Broadcast Packets"); 5582 BGE_SYSCTL_STAT_ADD64(ctx, child, "FCSErrors", 5583 &stats->dot3StatsFCSErrors, "FCS Errors"); 5584 BGE_SYSCTL_STAT_ADD64(ctx, child, "AlignmentErrors", 5585 &stats->dot3StatsAlignmentErrors, "Alignment Errors"); 5586 BGE_SYSCTL_STAT_ADD64(ctx, child, "xonPauseFramesReceived", 5587 &stats->xonPauseFramesReceived, "XON Pause Frames Received"); 5588 BGE_SYSCTL_STAT_ADD64(ctx, child, "xoffPauseFramesReceived", 5589 &stats->xoffPauseFramesReceived, "XOFF Pause Frames Received"); 5590 BGE_SYSCTL_STAT_ADD64(ctx, child, "ControlFramesReceived", 5591 &stats->macControlFramesReceived, "MAC Control Frames Received"); 5592 BGE_SYSCTL_STAT_ADD64(ctx, child, "xoffStateEntered", 5593 &stats->xoffStateEntered, "XOFF State Entered"); 5594 BGE_SYSCTL_STAT_ADD64(ctx, child, "FramesTooLong", 5595 &stats->dot3StatsFramesTooLong, "Frames Too Long"); 5596 BGE_SYSCTL_STAT_ADD64(ctx, child, "Jabbers", 5597 &stats->etherStatsJabbers, "Jabbers"); 5598 BGE_SYSCTL_STAT_ADD64(ctx, child, "UndersizePkts", 5599 &stats->etherStatsUndersizePkts, "Undersized Packets"); 5600 5601 tree = SYSCTL_ADD_NODE(ctx, schild, OID_AUTO, "tx", CTLFLAG_RD, 5602 NULL, "BGE TX Statistics"); 5603 child = SYSCTL_CHILDREN(tree); 5604 BGE_SYSCTL_STAT_ADD64(ctx, child, "ifHCOutOctets", 5605 &stats->ifHCOutOctets, "Outbound Octets"); 5606 BGE_SYSCTL_STAT_ADD64(ctx, child, "Collisions", 5607 &stats->etherStatsCollisions, "TX Collisions"); 5608 BGE_SYSCTL_STAT_ADD64(ctx, child, "XonSent", 5609 &stats->outXonSent, "XON Sent"); 5610 BGE_SYSCTL_STAT_ADD64(ctx, child, "XoffSent", 5611 &stats->outXoffSent, "XOFF Sent"); 5612 BGE_SYSCTL_STAT_ADD64(ctx, child, "InternalMacTransmitErrors", 5613 &stats->dot3StatsInternalMacTransmitErrors, 5614 "Internal MAC TX Errors"); 5615 BGE_SYSCTL_STAT_ADD64(ctx, child, "SingleCollisionFrames", 5616 &stats->dot3StatsSingleCollisionFrames, "Single Collision Frames"); 5617 BGE_SYSCTL_STAT_ADD64(ctx, child, "MultipleCollisionFrames", 5618 &stats->dot3StatsMultipleCollisionFrames, 5619 "Multiple Collision Frames"); 5620 BGE_SYSCTL_STAT_ADD64(ctx, child, "DeferredTransmissions", 5621 &stats->dot3StatsDeferredTransmissions, "Deferred Transmissions"); 5622 BGE_SYSCTL_STAT_ADD64(ctx, child, "ExcessiveCollisions", 5623 &stats->dot3StatsExcessiveCollisions, "Excessive Collisions"); 5624 BGE_SYSCTL_STAT_ADD64(ctx, child, "LateCollisions", 5625 &stats->dot3StatsLateCollisions, "Late Collisions"); 5626 BGE_SYSCTL_STAT_ADD64(ctx, child, "UnicastPkts", 5627 &stats->ifHCOutUcastPkts, "Outbound Unicast Packets"); 5628 BGE_SYSCTL_STAT_ADD64(ctx, child, "MulticastPkts", 5629 &stats->ifHCOutMulticastPkts, "Outbound Multicast Packets"); 5630 BGE_SYSCTL_STAT_ADD64(ctx, child, "BroadcastPkts", 5631 &stats->ifHCOutBroadcastPkts, "Outbound Broadcast Packets"); 5632 } 5633 5634 #undef BGE_SYSCTL_STAT_ADD64 5635 5636 static int 5637 bge_sysctl_stats(SYSCTL_HANDLER_ARGS) 5638 { 5639 struct bge_softc *sc; 5640 uint32_t result; 5641 int offset; 5642 5643 sc = (struct bge_softc *)arg1; 5644 offset = arg2; 5645 result = CSR_READ_4(sc, BGE_MEMWIN_START + BGE_STATS_BLOCK + offset + 5646 offsetof(bge_hostaddr, bge_addr_lo)); 5647 return (sysctl_handle_int(oidp, &result, 0, req)); 5648 } 5649 5650 #ifdef BGE_REGISTER_DEBUG 5651 static int 5652 bge_sysctl_debug_info(SYSCTL_HANDLER_ARGS) 5653 { 5654 struct bge_softc *sc; 5655 uint16_t *sbdata; 5656 int error; 5657 int result; 5658 int i, j; 5659 5660 result = -1; 5661 error = sysctl_handle_int(oidp, &result, 0, req); 5662 if (error || (req->newptr == NULL)) 5663 return (error); 5664 5665 if (result == 1) { 5666 sc = (struct bge_softc *)arg1; 5667 5668 sbdata = (uint16_t *)sc->bge_ldata.bge_status_block; 5669 printf("Status Block:\n"); 5670 for (i = 0x0; i < (BGE_STATUS_BLK_SZ / 4); ) { 5671 printf("%06x:", i); 5672 for (j = 0; j < 8; j++) { 5673 printf(" %04x", sbdata[i]); 5674 i += 4; 5675 } 5676 printf("\n"); 5677 } 5678 5679 printf("Registers:\n"); 5680 for (i = 0x800; i < 0xA00; ) { 5681 printf("%06x:", i); 5682 for (j = 0; j < 8; j++) { 5683 printf(" %08x", CSR_READ_4(sc, i)); 5684 i += 4; 5685 } 5686 printf("\n"); 5687 } 5688 5689 printf("Hardware Flags:\n"); 5690 if (BGE_IS_5755_PLUS(sc)) 5691 printf(" - 5755 Plus\n"); 5692 if (BGE_IS_575X_PLUS(sc)) 5693 printf(" - 575X Plus\n"); 5694 if (BGE_IS_5705_PLUS(sc)) 5695 printf(" - 5705 Plus\n"); 5696 if (BGE_IS_5714_FAMILY(sc)) 5697 printf(" - 5714 Family\n"); 5698 if (BGE_IS_5700_FAMILY(sc)) 5699 printf(" - 5700 Family\n"); 5700 if (sc->bge_flags & BGE_FLAG_JUMBO) 5701 printf(" - Supports Jumbo Frames\n"); 5702 if (sc->bge_flags & BGE_FLAG_PCIX) 5703 printf(" - PCI-X Bus\n"); 5704 if (sc->bge_flags & BGE_FLAG_PCIE) 5705 printf(" - PCI Express Bus\n"); 5706 if (sc->bge_phy_flags & BGE_PHY_NO_3LED) 5707 printf(" - No 3 LEDs\n"); 5708 if (sc->bge_flags & BGE_FLAG_RX_ALIGNBUG) 5709 printf(" - RX Alignment Bug\n"); 5710 } 5711 5712 return (error); 5713 } 5714 5715 static int 5716 bge_sysctl_reg_read(SYSCTL_HANDLER_ARGS) 5717 { 5718 struct bge_softc *sc; 5719 int error; 5720 uint16_t result; 5721 uint32_t val; 5722 5723 result = -1; 5724 error = sysctl_handle_int(oidp, &result, 0, req); 5725 if (error || (req->newptr == NULL)) 5726 return (error); 5727 5728 if (result < 0x8000) { 5729 sc = (struct bge_softc *)arg1; 5730 val = CSR_READ_4(sc, result); 5731 printf("reg 0x%06X = 0x%08X\n", result, val); 5732 } 5733 5734 return (error); 5735 } 5736 5737 static int 5738 bge_sysctl_mem_read(SYSCTL_HANDLER_ARGS) 5739 { 5740 struct bge_softc *sc; 5741 int error; 5742 uint16_t result; 5743 uint32_t val; 5744 5745 result = -1; 5746 error = sysctl_handle_int(oidp, &result, 0, req); 5747 if (error || (req->newptr == NULL)) 5748 return (error); 5749 5750 if (result < 0x8000) { 5751 sc = (struct bge_softc *)arg1; 5752 val = bge_readmem_ind(sc, result); 5753 printf("mem 0x%06X = 0x%08X\n", result, val); 5754 } 5755 5756 return (error); 5757 } 5758 #endif 5759 5760 static int 5761 bge_get_eaddr_fw(struct bge_softc *sc, uint8_t ether_addr[]) 5762 { 5763 5764 if (sc->bge_flags & BGE_FLAG_EADDR) 5765 return (1); 5766 5767 #ifdef __sparc64__ 5768 OF_getetheraddr(sc->bge_dev, ether_addr); 5769 return (0); 5770 #endif 5771 return (1); 5772 } 5773 5774 static int 5775 bge_get_eaddr_mem(struct bge_softc *sc, uint8_t ether_addr[]) 5776 { 5777 uint32_t mac_addr; 5778 5779 mac_addr = bge_readmem_ind(sc, 0x0c14); 5780 if ((mac_addr >> 16) == 0x484b) { 5781 ether_addr[0] = (uint8_t)(mac_addr >> 8); 5782 ether_addr[1] = (uint8_t)mac_addr; 5783 mac_addr = bge_readmem_ind(sc, 0x0c18); 5784 ether_addr[2] = (uint8_t)(mac_addr >> 24); 5785 ether_addr[3] = (uint8_t)(mac_addr >> 16); 5786 ether_addr[4] = (uint8_t)(mac_addr >> 8); 5787 ether_addr[5] = (uint8_t)mac_addr; 5788 return (0); 5789 } 5790 return (1); 5791 } 5792 5793 static int 5794 bge_get_eaddr_nvram(struct bge_softc *sc, uint8_t ether_addr[]) 5795 { 5796 int mac_offset = BGE_EE_MAC_OFFSET; 5797 5798 if (sc->bge_asicrev == BGE_ASICREV_BCM5906) 5799 mac_offset = BGE_EE_MAC_OFFSET_5906; 5800 5801 return (bge_read_nvram(sc, ether_addr, mac_offset + 2, 5802 ETHER_ADDR_LEN)); 5803 } 5804 5805 static int 5806 bge_get_eaddr_eeprom(struct bge_softc *sc, uint8_t ether_addr[]) 5807 { 5808 5809 if (sc->bge_asicrev == BGE_ASICREV_BCM5906) 5810 return (1); 5811 5812 return (bge_read_eeprom(sc, ether_addr, BGE_EE_MAC_OFFSET + 2, 5813 ETHER_ADDR_LEN)); 5814 } 5815 5816 static int 5817 bge_get_eaddr(struct bge_softc *sc, uint8_t eaddr[]) 5818 { 5819 static const bge_eaddr_fcn_t bge_eaddr_funcs[] = { 5820 /* NOTE: Order is critical */ 5821 bge_get_eaddr_fw, 5822 bge_get_eaddr_mem, 5823 bge_get_eaddr_nvram, 5824 bge_get_eaddr_eeprom, 5825 NULL 5826 }; 5827 const bge_eaddr_fcn_t *func; 5828 5829 for (func = bge_eaddr_funcs; *func != NULL; ++func) { 5830 if ((*func)(sc, eaddr) == 0) 5831 break; 5832 } 5833 return (*func == NULL ? ENXIO : 0); 5834 } 5835