xref: /freebsd/sys/dev/bge/if_bge.c (revision 09e8dea79366f1e5b3a73e8a271b26e4b6bf2e6a)
1 /*
2  * Copyright (c) 2001 Wind River Systems
3  * Copyright (c) 1997, 1998, 1999, 2001
4  *	Bill Paul <wpaul@windriver.com>.  All rights reserved.
5  *
6  * Redistribution and use in source and binary forms, with or without
7  * modification, are permitted provided that the following conditions
8  * are met:
9  * 1. Redistributions of source code must retain the above copyright
10  *    notice, this list of conditions and the following disclaimer.
11  * 2. Redistributions in binary form must reproduce the above copyright
12  *    notice, this list of conditions and the following disclaimer in the
13  *    documentation and/or other materials provided with the distribution.
14  * 3. All advertising materials mentioning features or use of this software
15  *    must display the following acknowledgement:
16  *	This product includes software developed by Bill Paul.
17  * 4. Neither the name of the author nor the names of any co-contributors
18  *    may be used to endorse or promote products derived from this software
19  *    without specific prior written permission.
20  *
21  * THIS SOFTWARE IS PROVIDED BY Bill Paul AND CONTRIBUTORS ``AS IS'' AND
22  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
23  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
24  * ARE DISCLAIMED.  IN NO EVENT SHALL Bill Paul OR THE VOICES IN HIS HEAD
25  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
26  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
27  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
28  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
29  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
30  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF
31  * THE POSSIBILITY OF SUCH DAMAGE.
32  *
33  * $FreeBSD$
34  */
35 
36 /*
37  * Broadcom BCM570x family gigabit ethernet driver for FreeBSD.
38  *
39  * Written by Bill Paul <wpaul@windriver.com>
40  * Senior Engineer, Wind River Systems
41  */
42 
43 /*
44  * The Broadcom BCM5700 is based on technology originally developed by
45  * Alteon Networks as part of the Tigon I and Tigon II gigabit ethernet
46  * MAC chips. The BCM5700, sometimes refered to as the Tigon III, has
47  * two on-board MIPS R4000 CPUs and can have as much as 16MB of external
48  * SSRAM. The BCM5700 supports TCP, UDP and IP checksum offload, jumbo
49  * frames, highly configurable RX filtering, and 16 RX and TX queues
50  * (which, along with RX filter rules, can be used for QOS applications).
51  * Other features, such as TCP segmentation, may be available as part
52  * of value-added firmware updates. Unlike the Tigon I and Tigon II,
53  * firmware images can be stored in hardware and need not be compiled
54  * into the driver.
55  *
56  * The BCM5700 supports the PCI v2.2 and PCI-X v1.0 standards, and will
57  * function in a 32-bit/64-bit 33/66Mhz bus, or a 64-bit/133Mhz bus.
58  *
59  * The BCM5701 is a single-chip solution incorporating both the BCM5700
60  * MAC and a BCM5401 10/100/1000 PHY. Unlike the BCM5700, the BCM5701
61  * does not support external SSRAM.
62  *
63  * Broadcom also produces a variation of the BCM5700 under the "Altima"
64  * brand name, which is functionally similar but lacks PCI-X support.
65  *
66  * Without external SSRAM, you can only have at most 4 TX rings,
67  * and the use of the mini RX ring is disabled. This seems to imply
68  * that these features are simply not available on the BCM5701. As a
69  * result, this driver does not implement any support for the mini RX
70  * ring.
71  */
72 
73 #include <sys/param.h>
74 #include <sys/systm.h>
75 #include <sys/sockio.h>
76 #include <sys/mbuf.h>
77 #include <sys/malloc.h>
78 #include <sys/kernel.h>
79 #include <sys/socket.h>
80 #include <sys/queue.h>
81 
82 #include <net/if.h>
83 #include <net/if_arp.h>
84 #include <net/ethernet.h>
85 #include <net/if_dl.h>
86 #include <net/if_media.h>
87 
88 #include <net/bpf.h>
89 
90 #include <net/if_types.h>
91 #include <net/if_vlan_var.h>
92 
93 #include <netinet/in_systm.h>
94 #include <netinet/in.h>
95 #include <netinet/ip.h>
96 
97 #include <vm/vm.h>              /* for vtophys */
98 #include <vm/pmap.h>            /* for vtophys */
99 #include <machine/clock.h>      /* for DELAY */
100 #include <machine/bus_memio.h>
101 #include <machine/bus.h>
102 #include <machine/resource.h>
103 #include <sys/bus.h>
104 #include <sys/rman.h>
105 
106 #include <dev/mii/mii.h>
107 #include <dev/mii/miivar.h>
108 #include <dev/mii/miidevs.h>
109 #include <dev/mii/brgphyreg.h>
110 
111 #include <pci/pcireg.h>
112 #include <pci/pcivar.h>
113 
114 #include <dev/bge/if_bgereg.h>
115 
116 #define BGE_CSUM_FEATURES	(CSUM_IP | CSUM_TCP | CSUM_UDP | CSUM_IP_FRAGS)
117 
118 MODULE_DEPEND(bge, miibus, 1, 1, 1);
119 
120 /* "controller miibus0" required.  See GENERIC if you get errors here. */
121 #include "miibus_if.h"
122 
123 #if !defined(lint)
124 static const char rcsid[] =
125   "$FreeBSD$";
126 #endif
127 
128 /*
129  * Various supported device vendors/types and their names. Note: the
130  * spec seems to indicate that the hardware still has Alteon's vendor
131  * ID burned into it, though it will always be overriden by the vendor
132  * ID in the EEPROM. Just to be safe, we cover all possibilities.
133  */
134 
135 static struct bge_type bge_devs[] = {
136 	{ ALT_VENDORID,	ALT_DEVICEID_BCM5700,
137 		"Broadcom BCM5700 Gigabit Ethernet" },
138 	{ ALT_VENDORID,	ALT_DEVICEID_BCM5701,
139 		"Broadcom BCM5701 Gigabit Ethernet" },
140 	{ BCOM_VENDORID, BCOM_DEVICEID_BCM5700,
141 		"Broadcom BCM5700 Gigabit Ethernet" },
142 	{ BCOM_VENDORID, BCOM_DEVICEID_BCM5701,
143 		"Broadcom BCM5701 Gigabit Ethernet" },
144 	{ SK_VENDORID, SK_DEVICEID_ALTIMA,
145 		"SysKonnect Gigabit Ethernet" },
146 	{ ALTIMA_VENDORID, ALTIMA_DEVICE_AC1000,
147 		"Altima AC1000 Gigabit Ethernet" },
148 	{ 0, 0, NULL }
149 };
150 
151 static int bge_probe		(device_t);
152 static int bge_attach		(device_t);
153 static int bge_detach		(device_t);
154 static void bge_release_resources
155 				(struct bge_softc *);
156 static void bge_txeof		(struct bge_softc *);
157 static void bge_rxeof		(struct bge_softc *);
158 
159 static void bge_tick		(void *);
160 static void bge_stats_update	(struct bge_softc *);
161 static int bge_encap		(struct bge_softc *, struct mbuf *,
162 					u_int32_t *);
163 
164 static void bge_intr		(void *);
165 static void bge_start		(struct ifnet *);
166 static int bge_ioctl		(struct ifnet *, u_long, caddr_t);
167 static void bge_init		(void *);
168 static void bge_stop		(struct bge_softc *);
169 static void bge_watchdog		(struct ifnet *);
170 static void bge_shutdown		(device_t);
171 static int bge_ifmedia_upd	(struct ifnet *);
172 static void bge_ifmedia_sts	(struct ifnet *, struct ifmediareq *);
173 
174 static u_int8_t	bge_eeprom_getbyte	(struct bge_softc *, int, u_int8_t *);
175 static int bge_read_eeprom	(struct bge_softc *, caddr_t, int, int);
176 
177 static u_int32_t bge_crc	(caddr_t);
178 static void bge_setmulti	(struct bge_softc *);
179 
180 static void bge_handle_events	(struct bge_softc *);
181 static int bge_alloc_jumbo_mem	(struct bge_softc *);
182 static void bge_free_jumbo_mem	(struct bge_softc *);
183 static void *bge_jalloc		(struct bge_softc *);
184 static void bge_jfree		(caddr_t, void *);
185 static int bge_newbuf_std	(struct bge_softc *, int, struct mbuf *);
186 static int bge_newbuf_jumbo	(struct bge_softc *, int, struct mbuf *);
187 static int bge_init_rx_ring_std	(struct bge_softc *);
188 static void bge_free_rx_ring_std	(struct bge_softc *);
189 static int bge_init_rx_ring_jumbo	(struct bge_softc *);
190 static void bge_free_rx_ring_jumbo	(struct bge_softc *);
191 static void bge_free_tx_ring	(struct bge_softc *);
192 static int bge_init_tx_ring	(struct bge_softc *);
193 
194 static int bge_chipinit		(struct bge_softc *);
195 static int bge_blockinit	(struct bge_softc *);
196 
197 #ifdef notdef
198 static u_int8_t bge_vpd_readbyte(struct bge_softc *, int);
199 static void bge_vpd_read_res	(struct bge_softc *, struct vpd_res *, int);
200 static void bge_vpd_read	(struct bge_softc *);
201 #endif
202 
203 static u_int32_t bge_readmem_ind
204 				(struct bge_softc *, int);
205 static void bge_writemem_ind	(struct bge_softc *, int, int);
206 #ifdef notdef
207 static u_int32_t bge_readreg_ind
208 				(struct bge_softc *, int);
209 #endif
210 static void bge_writereg_ind	(struct bge_softc *, int, int);
211 
212 static int bge_miibus_readreg	(device_t, int, int);
213 static int bge_miibus_writereg	(device_t, int, int, int);
214 static void bge_miibus_statchg	(device_t);
215 
216 static void bge_reset		(struct bge_softc *);
217 static void bge_phy_hack	(struct bge_softc *);
218 
219 static device_method_t bge_methods[] = {
220 	/* Device interface */
221 	DEVMETHOD(device_probe,		bge_probe),
222 	DEVMETHOD(device_attach,	bge_attach),
223 	DEVMETHOD(device_detach,	bge_detach),
224 	DEVMETHOD(device_shutdown,	bge_shutdown),
225 
226 	/* bus interface */
227 	DEVMETHOD(bus_print_child,	bus_generic_print_child),
228 	DEVMETHOD(bus_driver_added,	bus_generic_driver_added),
229 
230 	/* MII interface */
231 	DEVMETHOD(miibus_readreg,	bge_miibus_readreg),
232 	DEVMETHOD(miibus_writereg,	bge_miibus_writereg),
233 	DEVMETHOD(miibus_statchg,	bge_miibus_statchg),
234 
235 	{ 0, 0 }
236 };
237 
238 static driver_t bge_driver = {
239 	"bge",
240 	bge_methods,
241 	sizeof(struct bge_softc)
242 };
243 
244 static devclass_t bge_devclass;
245 
246 DRIVER_MODULE(if_bge, pci, bge_driver, bge_devclass, 0, 0);
247 DRIVER_MODULE(miibus, bge, miibus_driver, miibus_devclass, 0, 0);
248 
249 static u_int32_t
250 bge_readmem_ind(sc, off)
251 	struct bge_softc *sc;
252 	int off;
253 {
254 	device_t dev;
255 
256 	dev = sc->bge_dev;
257 
258 	pci_write_config(dev, BGE_PCI_MEMWIN_BASEADDR, off, 4);
259 	return(pci_read_config(dev, BGE_PCI_MEMWIN_DATA, 4));
260 }
261 
262 static void
263 bge_writemem_ind(sc, off, val)
264 	struct bge_softc *sc;
265 	int off, val;
266 {
267 	device_t dev;
268 
269 	dev = sc->bge_dev;
270 
271 	pci_write_config(dev, BGE_PCI_MEMWIN_BASEADDR, off, 4);
272 	pci_write_config(dev, BGE_PCI_MEMWIN_DATA, val, 4);
273 
274 	return;
275 }
276 
277 #ifdef notdef
278 static u_int32_t
279 bge_readreg_ind(sc, off)
280 	struct bge_softc *sc;
281 	int off;
282 {
283 	device_t dev;
284 
285 	dev = sc->bge_dev;
286 
287 	pci_write_config(dev, BGE_PCI_REG_BASEADDR, off, 4);
288 	return(pci_read_config(dev, BGE_PCI_REG_DATA, 4));
289 }
290 #endif
291 
292 static void
293 bge_writereg_ind(sc, off, val)
294 	struct bge_softc *sc;
295 	int off, val;
296 {
297 	device_t dev;
298 
299 	dev = sc->bge_dev;
300 
301 	pci_write_config(dev, BGE_PCI_REG_BASEADDR, off, 4);
302 	pci_write_config(dev, BGE_PCI_REG_DATA, val, 4);
303 
304 	return;
305 }
306 
307 #ifdef notdef
308 static u_int8_t
309 bge_vpd_readbyte(sc, addr)
310 	struct bge_softc *sc;
311 	int addr;
312 {
313 	int i;
314 	device_t dev;
315 	u_int32_t val;
316 
317 	dev = sc->bge_dev;
318 	pci_write_config(dev, BGE_PCI_VPD_ADDR, addr, 2);
319 	for (i = 0; i < BGE_TIMEOUT * 10; i++) {
320 		DELAY(10);
321 		if (pci_read_config(dev, BGE_PCI_VPD_ADDR, 2) & BGE_VPD_FLAG)
322 			break;
323 	}
324 
325 	if (i == BGE_TIMEOUT) {
326 		printf("bge%d: VPD read timed out\n", sc->bge_unit);
327 		return(0);
328 	}
329 
330 	val = pci_read_config(dev, BGE_PCI_VPD_DATA, 4);
331 
332 	return((val >> ((addr % 4) * 8)) & 0xFF);
333 }
334 
335 static void
336 bge_vpd_read_res(sc, res, addr)
337 	struct bge_softc *sc;
338 	struct vpd_res *res;
339 	int addr;
340 {
341 	int i;
342 	u_int8_t *ptr;
343 
344 	ptr = (u_int8_t *)res;
345 	for (i = 0; i < sizeof(struct vpd_res); i++)
346 		ptr[i] = bge_vpd_readbyte(sc, i + addr);
347 
348 	return;
349 }
350 
351 static void
352 bge_vpd_read(sc)
353 	struct bge_softc *sc;
354 {
355 	int pos = 0, i;
356 	struct vpd_res res;
357 
358 	if (sc->bge_vpd_prodname != NULL)
359 		free(sc->bge_vpd_prodname, M_DEVBUF);
360 	if (sc->bge_vpd_readonly != NULL)
361 		free(sc->bge_vpd_readonly, M_DEVBUF);
362 	sc->bge_vpd_prodname = NULL;
363 	sc->bge_vpd_readonly = NULL;
364 
365 	bge_vpd_read_res(sc, &res, pos);
366 
367 	if (res.vr_id != VPD_RES_ID) {
368 		printf("bge%d: bad VPD resource id: expected %x got %x\n",
369 			sc->bge_unit, VPD_RES_ID, res.vr_id);
370                 return;
371         }
372 
373 	pos += sizeof(res);
374 	sc->bge_vpd_prodname = malloc(res.vr_len + 1, M_DEVBUF, M_NOWAIT);
375 	for (i = 0; i < res.vr_len; i++)
376 		sc->bge_vpd_prodname[i] = bge_vpd_readbyte(sc, i + pos);
377 	sc->bge_vpd_prodname[i] = '\0';
378 	pos += i;
379 
380 	bge_vpd_read_res(sc, &res, pos);
381 
382 	if (res.vr_id != VPD_RES_READ) {
383 		printf("bge%d: bad VPD resource id: expected %x got %x\n",
384 		    sc->bge_unit, VPD_RES_READ, res.vr_id);
385 		return;
386 	}
387 
388 	pos += sizeof(res);
389 	sc->bge_vpd_readonly = malloc(res.vr_len, M_DEVBUF, M_NOWAIT);
390 	for (i = 0; i < res.vr_len + 1; i++)
391 		sc->bge_vpd_readonly[i] = bge_vpd_readbyte(sc, i + pos);
392 
393 	return;
394 }
395 #endif
396 
397 /*
398  * Read a byte of data stored in the EEPROM at address 'addr.' The
399  * BCM570x supports both the traditional bitbang interface and an
400  * auto access interface for reading the EEPROM. We use the auto
401  * access method.
402  */
403 static u_int8_t
404 bge_eeprom_getbyte(sc, addr, dest)
405 	struct bge_softc *sc;
406 	int addr;
407 	u_int8_t *dest;
408 {
409 	int i;
410 	u_int32_t byte = 0;
411 
412 	/*
413 	 * Enable use of auto EEPROM access so we can avoid
414 	 * having to use the bitbang method.
415 	 */
416 	BGE_SETBIT(sc, BGE_MISC_LOCAL_CTL, BGE_MLC_AUTO_EEPROM);
417 
418 	/* Reset the EEPROM, load the clock period. */
419 	CSR_WRITE_4(sc, BGE_EE_ADDR,
420 	    BGE_EEADDR_RESET|BGE_EEHALFCLK(BGE_HALFCLK_384SCL));
421 	DELAY(20);
422 
423 	/* Issue the read EEPROM command. */
424 	CSR_WRITE_4(sc, BGE_EE_ADDR, BGE_EE_READCMD | addr);
425 
426 	/* Wait for completion */
427 	for(i = 0; i < BGE_TIMEOUT * 10; i++) {
428 		DELAY(10);
429 		if (CSR_READ_4(sc, BGE_EE_ADDR) & BGE_EEADDR_DONE)
430 			break;
431 	}
432 
433 	if (i == BGE_TIMEOUT) {
434 		printf("bge%d: eeprom read timed out\n", sc->bge_unit);
435 		return(0);
436 	}
437 
438 	/* Get result. */
439 	byte = CSR_READ_4(sc, BGE_EE_DATA);
440 
441         *dest = (byte >> ((addr % 4) * 8)) & 0xFF;
442 
443 	return(0);
444 }
445 
446 /*
447  * Read a sequence of bytes from the EEPROM.
448  */
449 static int
450 bge_read_eeprom(sc, dest, off, cnt)
451 	struct bge_softc *sc;
452 	caddr_t dest;
453 	int off;
454 	int cnt;
455 {
456 	int err = 0, i;
457 	u_int8_t byte = 0;
458 
459 	for (i = 0; i < cnt; i++) {
460 		err = bge_eeprom_getbyte(sc, off + i, &byte);
461 		if (err)
462 			break;
463 		*(dest + i) = byte;
464 	}
465 
466 	return(err ? 1 : 0);
467 }
468 
469 static int
470 bge_miibus_readreg(dev, phy, reg)
471 	device_t dev;
472 	int phy, reg;
473 {
474 	struct bge_softc *sc;
475 	struct ifnet *ifp;
476 	u_int32_t val;
477 	int i;
478 
479 	sc = device_get_softc(dev);
480 	ifp = &sc->arpcom.ac_if;
481 
482 	if (sc->bge_asicrev == BGE_ASICREV_BCM5701_B5 && phy != 1)
483 		return(0);
484 
485 	CSR_WRITE_4(sc, BGE_MI_COMM, BGE_MICMD_READ|BGE_MICOMM_BUSY|
486 	    BGE_MIPHY(phy)|BGE_MIREG(reg));
487 
488 	for (i = 0; i < BGE_TIMEOUT; i++) {
489 		val = CSR_READ_4(sc, BGE_MI_COMM);
490 		if (!(val & BGE_MICOMM_BUSY))
491 			break;
492 	}
493 
494 	if (i == BGE_TIMEOUT) {
495 		printf("bge%d: PHY read timed out\n", sc->bge_unit);
496 		return(0);
497 	}
498 
499 	val = CSR_READ_4(sc, BGE_MI_COMM);
500 
501 	if (val & BGE_MICOMM_READFAIL)
502 		return(0);
503 
504 	return(val & 0xFFFF);
505 }
506 
507 static int
508 bge_miibus_writereg(dev, phy, reg, val)
509 	device_t dev;
510 	int phy, reg, val;
511 {
512 	struct bge_softc *sc;
513 	int i;
514 
515 	sc = device_get_softc(dev);
516 
517 	CSR_WRITE_4(sc, BGE_MI_COMM, BGE_MICMD_WRITE|BGE_MICOMM_BUSY|
518 	    BGE_MIPHY(phy)|BGE_MIREG(reg)|val);
519 
520 	for (i = 0; i < BGE_TIMEOUT; i++) {
521 		if (!(CSR_READ_4(sc, BGE_MI_COMM) & BGE_MICOMM_BUSY))
522 			break;
523 	}
524 
525 	if (i == BGE_TIMEOUT) {
526 		printf("bge%d: PHY read timed out\n", sc->bge_unit);
527 		return(0);
528 	}
529 
530 	return(0);
531 }
532 
533 static void
534 bge_miibus_statchg(dev)
535 	device_t dev;
536 {
537 	struct bge_softc *sc;
538 	struct mii_data *mii;
539 
540 	sc = device_get_softc(dev);
541 	mii = device_get_softc(sc->bge_miibus);
542 
543 	BGE_CLRBIT(sc, BGE_MAC_MODE, BGE_MACMODE_PORTMODE);
544 	if (IFM_SUBTYPE(mii->mii_media_active) == IFM_1000_T) {
545 		BGE_SETBIT(sc, BGE_MAC_MODE, BGE_PORTMODE_GMII);
546 	} else {
547 		BGE_SETBIT(sc, BGE_MAC_MODE, BGE_PORTMODE_MII);
548 	}
549 
550 	if ((mii->mii_media_active & IFM_GMASK) == IFM_FDX) {
551 		BGE_CLRBIT(sc, BGE_MAC_MODE, BGE_MACMODE_HALF_DUPLEX);
552 	} else {
553 		BGE_SETBIT(sc, BGE_MAC_MODE, BGE_MACMODE_HALF_DUPLEX);
554 	}
555 
556 	bge_phy_hack(sc);
557 
558 	return;
559 }
560 
561 /*
562  * Handle events that have triggered interrupts.
563  */
564 static void
565 bge_handle_events(sc)
566 	struct bge_softc		*sc;
567 {
568 
569 	return;
570 }
571 
572 /*
573  * Memory management for jumbo frames.
574  */
575 
576 static int
577 bge_alloc_jumbo_mem(sc)
578 	struct bge_softc		*sc;
579 {
580 	caddr_t			ptr;
581 	register int		i;
582 	struct bge_jpool_entry   *entry;
583 
584 	/* Grab a big chunk o' storage. */
585 	sc->bge_cdata.bge_jumbo_buf = contigmalloc(BGE_JMEM, M_DEVBUF,
586 		M_NOWAIT, 0, 0xffffffff, PAGE_SIZE, 0);
587 
588 	if (sc->bge_cdata.bge_jumbo_buf == NULL) {
589 		printf("bge%d: no memory for jumbo buffers!\n", sc->bge_unit);
590 		return(ENOBUFS);
591 	}
592 
593 	SLIST_INIT(&sc->bge_jfree_listhead);
594 	SLIST_INIT(&sc->bge_jinuse_listhead);
595 
596 	/*
597 	 * Now divide it up into 9K pieces and save the addresses
598 	 * in an array.
599 	 */
600 	ptr = sc->bge_cdata.bge_jumbo_buf;
601 	for (i = 0; i < BGE_JSLOTS; i++) {
602 		sc->bge_cdata.bge_jslots[i] = ptr;
603 		ptr += BGE_JLEN;
604 		entry = malloc(sizeof(struct bge_jpool_entry),
605 		    M_DEVBUF, M_NOWAIT);
606 		if (entry == NULL) {
607 			contigfree(sc->bge_cdata.bge_jumbo_buf,
608 			    BGE_JMEM, M_DEVBUF);
609 			sc->bge_cdata.bge_jumbo_buf = NULL;
610 			printf("bge%d: no memory for jumbo "
611 			    "buffer queue!\n", sc->bge_unit);
612 			return(ENOBUFS);
613 		}
614 		entry->slot = i;
615 		SLIST_INSERT_HEAD(&sc->bge_jfree_listhead,
616 		    entry, jpool_entries);
617 	}
618 
619 	return(0);
620 }
621 
622 static void
623 bge_free_jumbo_mem(sc)
624         struct bge_softc *sc;
625 {
626         int i;
627         struct bge_jpool_entry *entry;
628 
629 	for (i = 0; i < BGE_JSLOTS; i++) {
630 		entry = SLIST_FIRST(&sc->bge_jfree_listhead);
631 		SLIST_REMOVE_HEAD(&sc->bge_jfree_listhead, jpool_entries);
632 		free(entry, M_DEVBUF);
633 	}
634 
635 	contigfree(sc->bge_cdata.bge_jumbo_buf, BGE_JMEM, M_DEVBUF);
636 
637         return;
638 }
639 
640 /*
641  * Allocate a jumbo buffer.
642  */
643 static void *
644 bge_jalloc(sc)
645 	struct bge_softc		*sc;
646 {
647 	struct bge_jpool_entry   *entry;
648 
649 	entry = SLIST_FIRST(&sc->bge_jfree_listhead);
650 
651 	if (entry == NULL) {
652 		printf("bge%d: no free jumbo buffers\n", sc->bge_unit);
653 		return(NULL);
654 	}
655 
656 	SLIST_REMOVE_HEAD(&sc->bge_jfree_listhead, jpool_entries);
657 	SLIST_INSERT_HEAD(&sc->bge_jinuse_listhead, entry, jpool_entries);
658 	return(sc->bge_cdata.bge_jslots[entry->slot]);
659 }
660 
661 /*
662  * Release a jumbo buffer.
663  */
664 static void
665 bge_jfree(buf, args)
666 	caddr_t buf;
667 	void *args;
668 {
669 	struct bge_jpool_entry *entry;
670 	struct bge_softc *sc;
671 	int i;
672 
673 	/* Extract the softc struct pointer. */
674 	sc = (struct bge_softc *)args;
675 
676 	if (sc == NULL)
677 		panic("bge_jfree: can't find softc pointer!");
678 
679 	/* calculate the slot this buffer belongs to */
680 
681 	i = ((vm_offset_t)buf
682 	     - (vm_offset_t)sc->bge_cdata.bge_jumbo_buf) / BGE_JLEN;
683 
684 	if ((i < 0) || (i >= BGE_JSLOTS))
685 		panic("bge_jfree: asked to free buffer that we don't manage!");
686 
687 	entry = SLIST_FIRST(&sc->bge_jinuse_listhead);
688 	if (entry == NULL)
689 		panic("bge_jfree: buffer not in use!");
690 	entry->slot = i;
691 	SLIST_REMOVE_HEAD(&sc->bge_jinuse_listhead, jpool_entries);
692 	SLIST_INSERT_HEAD(&sc->bge_jfree_listhead, entry, jpool_entries);
693 
694 	return;
695 }
696 
697 
698 /*
699  * Intialize a standard receive ring descriptor.
700  */
701 static int
702 bge_newbuf_std(sc, i, m)
703 	struct bge_softc	*sc;
704 	int			i;
705 	struct mbuf		*m;
706 {
707 	struct mbuf		*m_new = NULL;
708 	struct bge_rx_bd	*r;
709 
710 	if (m == NULL) {
711 		MGETHDR(m_new, M_DONTWAIT, MT_DATA);
712 		if (m_new == NULL) {
713 			return(ENOBUFS);
714 		}
715 
716 		MCLGET(m_new, M_DONTWAIT);
717 		if (!(m_new->m_flags & M_EXT)) {
718 			m_freem(m_new);
719 			return(ENOBUFS);
720 		}
721 		m_new->m_len = m_new->m_pkthdr.len = MCLBYTES;
722 	} else {
723 		m_new = m;
724 		m_new->m_len = m_new->m_pkthdr.len = MCLBYTES;
725 		m_new->m_data = m_new->m_ext.ext_buf;
726 	}
727 
728 	if (!sc->bge_rx_alignment_bug)
729 		m_adj(m_new, ETHER_ALIGN);
730 	sc->bge_cdata.bge_rx_std_chain[i] = m_new;
731 	r = &sc->bge_rdata->bge_rx_std_ring[i];
732 	BGE_HOSTADDR(r->bge_addr) = vtophys(mtod(m_new, caddr_t));
733 	r->bge_flags = BGE_RXBDFLAG_END;
734 	r->bge_len = m_new->m_len;
735 	r->bge_idx = i;
736 
737 	return(0);
738 }
739 
740 /*
741  * Initialize a jumbo receive ring descriptor. This allocates
742  * a jumbo buffer from the pool managed internally by the driver.
743  */
744 static int
745 bge_newbuf_jumbo(sc, i, m)
746 	struct bge_softc *sc;
747 	int i;
748 	struct mbuf *m;
749 {
750 	struct mbuf *m_new = NULL;
751 	struct bge_rx_bd *r;
752 
753 	if (m == NULL) {
754 		caddr_t			*buf = NULL;
755 
756 		/* Allocate the mbuf. */
757 		MGETHDR(m_new, M_DONTWAIT, MT_DATA);
758 		if (m_new == NULL) {
759 			return(ENOBUFS);
760 		}
761 
762 		/* Allocate the jumbo buffer */
763 		buf = bge_jalloc(sc);
764 		if (buf == NULL) {
765 			m_freem(m_new);
766 			printf("bge%d: jumbo allocation failed "
767 			    "-- packet dropped!\n", sc->bge_unit);
768 			return(ENOBUFS);
769 		}
770 
771 		/* Attach the buffer to the mbuf. */
772 		m_new->m_data = (void *) buf;
773 		m_new->m_len = m_new->m_pkthdr.len = BGE_JUMBO_FRAMELEN;
774 		MEXTADD(m_new, buf, BGE_JUMBO_FRAMELEN, bge_jfree,
775 		    (struct bge_softc *)sc, 0, EXT_NET_DRV);
776 	} else {
777 		m_new = m;
778 		m_new->m_data = m_new->m_ext.ext_buf;
779 		m_new->m_ext.ext_size = BGE_JUMBO_FRAMELEN;
780 	}
781 
782 	if (!sc->bge_rx_alignment_bug)
783 		m_adj(m_new, ETHER_ALIGN);
784 	/* Set up the descriptor. */
785 	r = &sc->bge_rdata->bge_rx_jumbo_ring[i];
786 	sc->bge_cdata.bge_rx_jumbo_chain[i] = m_new;
787 	BGE_HOSTADDR(r->bge_addr) = vtophys(mtod(m_new, caddr_t));
788 	r->bge_flags = BGE_RXBDFLAG_END|BGE_RXBDFLAG_JUMBO_RING;
789 	r->bge_len = m_new->m_len;
790 	r->bge_idx = i;
791 
792 	return(0);
793 }
794 
795 /*
796  * The standard receive ring has 512 entries in it. At 2K per mbuf cluster,
797  * that's 1MB or memory, which is a lot. For now, we fill only the first
798  * 256 ring entries and hope that our CPU is fast enough to keep up with
799  * the NIC.
800  */
801 static int
802 bge_init_rx_ring_std(sc)
803 	struct bge_softc *sc;
804 {
805 	int i;
806 
807 	for (i = 0; i < BGE_SSLOTS; i++) {
808 		if (bge_newbuf_std(sc, i, NULL) == ENOBUFS)
809 			return(ENOBUFS);
810 	};
811 
812 	sc->bge_std = i - 1;
813 	CSR_WRITE_4(sc, BGE_MBX_RX_STD_PROD_LO, sc->bge_std);
814 
815 	return(0);
816 }
817 
818 static void
819 bge_free_rx_ring_std(sc)
820 	struct bge_softc *sc;
821 {
822 	int i;
823 
824 	for (i = 0; i < BGE_STD_RX_RING_CNT; i++) {
825 		if (sc->bge_cdata.bge_rx_std_chain[i] != NULL) {
826 			m_freem(sc->bge_cdata.bge_rx_std_chain[i]);
827 			sc->bge_cdata.bge_rx_std_chain[i] = NULL;
828 		}
829 		bzero((char *)&sc->bge_rdata->bge_rx_std_ring[i],
830 		    sizeof(struct bge_rx_bd));
831 	}
832 
833 	return;
834 }
835 
836 static int
837 bge_init_rx_ring_jumbo(sc)
838 	struct bge_softc *sc;
839 {
840 	int i;
841 	struct bge_rcb *rcb;
842 	struct bge_rcb_opaque *rcbo;
843 
844 	for (i = 0; i < BGE_JUMBO_RX_RING_CNT; i++) {
845 		if (bge_newbuf_jumbo(sc, i, NULL) == ENOBUFS)
846 			return(ENOBUFS);
847 	};
848 
849 	sc->bge_jumbo = i - 1;
850 
851 	rcb = &sc->bge_rdata->bge_info.bge_jumbo_rx_rcb;
852 	rcbo = (struct bge_rcb_opaque *)rcb;
853 	rcb->bge_flags = 0;
854 	CSR_WRITE_4(sc, BGE_RX_JUMBO_RCB_MAXLEN_FLAGS, rcbo->bge_reg2);
855 
856 	CSR_WRITE_4(sc, BGE_MBX_RX_JUMBO_PROD_LO, sc->bge_jumbo);
857 
858 	return(0);
859 }
860 
861 static void
862 bge_free_rx_ring_jumbo(sc)
863 	struct bge_softc *sc;
864 {
865 	int i;
866 
867 	for (i = 0; i < BGE_JUMBO_RX_RING_CNT; i++) {
868 		if (sc->bge_cdata.bge_rx_jumbo_chain[i] != NULL) {
869 			m_freem(sc->bge_cdata.bge_rx_jumbo_chain[i]);
870 			sc->bge_cdata.bge_rx_jumbo_chain[i] = NULL;
871 		}
872 		bzero((char *)&sc->bge_rdata->bge_rx_jumbo_ring[i],
873 		    sizeof(struct bge_rx_bd));
874 	}
875 
876 	return;
877 }
878 
879 static void
880 bge_free_tx_ring(sc)
881 	struct bge_softc *sc;
882 {
883 	int i;
884 
885 	if (sc->bge_rdata->bge_tx_ring == NULL)
886 		return;
887 
888 	for (i = 0; i < BGE_TX_RING_CNT; i++) {
889 		if (sc->bge_cdata.bge_tx_chain[i] != NULL) {
890 			m_freem(sc->bge_cdata.bge_tx_chain[i]);
891 			sc->bge_cdata.bge_tx_chain[i] = NULL;
892 		}
893 		bzero((char *)&sc->bge_rdata->bge_tx_ring[i],
894 		    sizeof(struct bge_tx_bd));
895 	}
896 
897 	return;
898 }
899 
900 static int
901 bge_init_tx_ring(sc)
902 	struct bge_softc *sc;
903 {
904 	sc->bge_txcnt = 0;
905 	sc->bge_tx_saved_considx = 0;
906 	CSR_WRITE_4(sc, BGE_MBX_TX_HOST_PROD0_LO, 0);
907 	CSR_WRITE_4(sc, BGE_MBX_TX_NIC_PROD0_LO, 0);
908 
909 	return(0);
910 }
911 
912 #define BGE_POLY	0xEDB88320
913 
914 static u_int32_t
915 bge_crc(addr)
916 	caddr_t addr;
917 {
918 	u_int32_t idx, bit, data, crc;
919 
920 	/* Compute CRC for the address value. */
921 	crc = 0xFFFFFFFF; /* initial value */
922 
923 	for (idx = 0; idx < 6; idx++) {
924 		for (data = *addr++, bit = 0; bit < 8; bit++, data >>= 1)
925 			crc = (crc >> 1) ^ (((crc ^ data) & 1) ? BGE_POLY : 0);
926 	}
927 
928 	return(crc & 0x7F);
929 }
930 
931 static void
932 bge_setmulti(sc)
933 	struct bge_softc *sc;
934 {
935 	struct ifnet *ifp;
936 	struct ifmultiaddr *ifma;
937 	u_int32_t hashes[4] = { 0, 0, 0, 0 };
938 	int h, i;
939 
940 	ifp = &sc->arpcom.ac_if;
941 
942 	if (ifp->if_flags & IFF_ALLMULTI || ifp->if_flags & IFF_PROMISC) {
943 		for (i = 0; i < 4; i++)
944 			CSR_WRITE_4(sc, BGE_MAR0 + (i * 4), 0xFFFFFFFF);
945 		return;
946 	}
947 
948 	/* First, zot all the existing filters. */
949 	for (i = 0; i < 4; i++)
950 		CSR_WRITE_4(sc, BGE_MAR0 + (i * 4), 0);
951 
952 	/* Now program new ones. */
953 	TAILQ_FOREACH(ifma, &ifp->if_multiaddrs, ifma_link) {
954 		if (ifma->ifma_addr->sa_family != AF_LINK)
955 			continue;
956 		h = bge_crc(LLADDR((struct sockaddr_dl *)ifma->ifma_addr));
957 		hashes[(h & 0x60) >> 5] |= 1 << (h & 0x1F);
958 	}
959 
960 	for (i = 0; i < 4; i++)
961 		CSR_WRITE_4(sc, BGE_MAR0 + (i * 4), hashes[i]);
962 
963 	return;
964 }
965 
966 /*
967  * Do endian, PCI and DMA initialization. Also check the on-board ROM
968  * self-test results.
969  */
970 static int
971 bge_chipinit(sc)
972 	struct bge_softc *sc;
973 {
974 	u_int32_t		cachesize;
975 	int			i;
976 
977 	/* Set endianness before we access any non-PCI registers. */
978 #if BYTE_ORDER == BIG_ENDIAN
979 	pci_write_config(sc->bge_dev, BGE_PCI_MISC_CTL,
980 	    BGE_BIGENDIAN_INIT, 4);
981 #else
982 	pci_write_config(sc->bge_dev, BGE_PCI_MISC_CTL,
983 	    BGE_LITTLEENDIAN_INIT, 4);
984 #endif
985 
986 	/*
987 	 * Check the 'ROM failed' bit on the RX CPU to see if
988 	 * self-tests passed.
989 	 */
990 	if (CSR_READ_4(sc, BGE_RXCPU_MODE) & BGE_RXCPUMODE_ROMFAIL) {
991 		printf("bge%d: RX CPU self-diagnostics failed!\n",
992 		    sc->bge_unit);
993 		return(ENODEV);
994 	}
995 
996 	/* Clear the MAC control register */
997 	CSR_WRITE_4(sc, BGE_MAC_MODE, 0);
998 
999 	/*
1000 	 * Clear the MAC statistics block in the NIC's
1001 	 * internal memory.
1002 	 */
1003 	for (i = BGE_STATS_BLOCK;
1004 	    i < BGE_STATS_BLOCK_END + 1; i += sizeof(u_int32_t))
1005 		BGE_MEMWIN_WRITE(sc, i, 0);
1006 
1007 	for (i = BGE_STATUS_BLOCK;
1008 	    i < BGE_STATUS_BLOCK_END + 1; i += sizeof(u_int32_t))
1009 		BGE_MEMWIN_WRITE(sc, i, 0);
1010 
1011 	/* Set up the PCI DMA control register. */
1012 	pci_write_config(sc->bge_dev, BGE_PCI_DMA_RW_CTL,
1013 	    BGE_PCI_READ_CMD|BGE_PCI_WRITE_CMD|0x0F, 4);
1014 
1015 	/*
1016 	 * Set up general mode register.
1017 	 */
1018 	CSR_WRITE_4(sc, BGE_MODE_CTL, BGE_MODECTL_WORDSWAP_NONFRAME|
1019 	    BGE_MODECTL_BYTESWAP_DATA|BGE_MODECTL_WORDSWAP_DATA|
1020 	    BGE_MODECTL_MAC_ATTN_INTR|BGE_MODECTL_HOST_SEND_BDS|
1021 	    BGE_MODECTL_NO_RX_CRC|BGE_MODECTL_TX_NO_PHDR_CSUM|
1022 	    BGE_MODECTL_RX_NO_PHDR_CSUM);
1023 
1024 	/* Get cache line size. */
1025 	cachesize = pci_read_config(sc->bge_dev, BGE_PCI_CACHESZ, 1);
1026 
1027 	/*
1028 	 * Avoid violating PCI spec on certain chip revs.
1029 	 */
1030 	if (pci_read_config(sc->bge_dev, BGE_PCI_CMD, 4) & PCIM_CMD_MWIEN) {
1031 		switch(cachesize) {
1032 		case 1:
1033 			PCI_SETBIT(sc->bge_dev, BGE_PCI_DMA_RW_CTL,
1034 			    BGE_PCI_WRITE_BNDRY_16BYTES, 4);
1035 			break;
1036 		case 2:
1037 			PCI_SETBIT(sc->bge_dev, BGE_PCI_DMA_RW_CTL,
1038 			    BGE_PCI_WRITE_BNDRY_32BYTES, 4);
1039 			break;
1040 		case 4:
1041 			PCI_SETBIT(sc->bge_dev, BGE_PCI_DMA_RW_CTL,
1042 			    BGE_PCI_WRITE_BNDRY_64BYTES, 4);
1043 			break;
1044 		case 8:
1045 			PCI_SETBIT(sc->bge_dev, BGE_PCI_DMA_RW_CTL,
1046 			    BGE_PCI_WRITE_BNDRY_128BYTES, 4);
1047 			break;
1048 		case 16:
1049 			PCI_SETBIT(sc->bge_dev, BGE_PCI_DMA_RW_CTL,
1050 			    BGE_PCI_WRITE_BNDRY_256BYTES, 4);
1051 			break;
1052 		case 32:
1053 			PCI_SETBIT(sc->bge_dev, BGE_PCI_DMA_RW_CTL,
1054 			    BGE_PCI_WRITE_BNDRY_512BYTES, 4);
1055 			break;
1056 		case 64:
1057 			PCI_SETBIT(sc->bge_dev, BGE_PCI_DMA_RW_CTL,
1058 			    BGE_PCI_WRITE_BNDRY_1024BYTES, 4);
1059 			break;
1060 		default:
1061 		/* Disable PCI memory write and invalidate. */
1062 			if (bootverbose)
1063 				printf("bge%d: cache line size %d not "
1064 				    "supported; disabling PCI MWI\n",
1065 				    sc->bge_unit, cachesize);
1066 			PCI_CLRBIT(sc->bge_dev, BGE_PCI_CMD,
1067 			    PCIM_CMD_MWIEN, 4);
1068 			break;
1069 		}
1070 	}
1071 
1072 #ifdef __brokenalpha__
1073 	/*
1074 	 * Must insure that we do not cross an 8K (bytes) boundary
1075 	 * for DMA reads.  Our highest limit is 1K bytes.  This is a
1076 	 * restriction on some ALPHA platforms with early revision
1077 	 * 21174 PCI chipsets, such as the AlphaPC 164lx
1078 	 */
1079 	PCI_SETBIT(sc, BGE_PCI_DMA_RW_CTL, BGE_PCI_READ_BNDRY_1024, 4);
1080 #endif
1081 
1082 	/* Set the timer prescaler (always 66Mhz) */
1083 	CSR_WRITE_4(sc, BGE_MISC_CFG, 65 << 1/*BGE_32BITTIME_66MHZ*/);
1084 
1085 	return(0);
1086 }
1087 
1088 static int
1089 bge_blockinit(sc)
1090 	struct bge_softc *sc;
1091 {
1092 	struct bge_rcb *rcb;
1093 	struct bge_rcb_opaque *rcbo;
1094 	int i;
1095 
1096 	/*
1097 	 * Initialize the memory window pointer register so that
1098 	 * we can access the first 32K of internal NIC RAM. This will
1099 	 * allow us to set up the TX send ring RCBs and the RX return
1100 	 * ring RCBs, plus other things which live in NIC memory.
1101 	 */
1102 	CSR_WRITE_4(sc, BGE_PCI_MEMWIN_BASEADDR, 0);
1103 
1104 	/* Configure mbuf memory pool */
1105 	if (sc->bge_extram) {
1106 		CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_BASEADDR, BGE_EXT_SSRAM);
1107 		CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_LEN, 0x18000);
1108 	} else {
1109 		CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_BASEADDR, BGE_BUFFPOOL_1);
1110 		CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_LEN, 0x18000);
1111 	}
1112 
1113 	/* Configure DMA resource pool */
1114 	CSR_WRITE_4(sc, BGE_BMAN_DMA_DESCPOOL_BASEADDR, BGE_DMA_DESCRIPTORS);
1115 	CSR_WRITE_4(sc, BGE_BMAN_DMA_DESCPOOL_LEN, 0x2000);
1116 
1117 	/* Configure mbuf pool watermarks */
1118 	CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_READDMA_LOWAT, 24);
1119 	CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_MACRX_LOWAT, 24);
1120 	CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_HIWAT, 48);
1121 
1122 	/* Configure DMA resource watermarks */
1123 	CSR_WRITE_4(sc, BGE_BMAN_DMA_DESCPOOL_LOWAT, 5);
1124 	CSR_WRITE_4(sc, BGE_BMAN_DMA_DESCPOOL_HIWAT, 10);
1125 
1126 	/* Enable buffer manager */
1127 	CSR_WRITE_4(sc, BGE_BMAN_MODE,
1128 	    BGE_BMANMODE_ENABLE|BGE_BMANMODE_LOMBUF_ATTN);
1129 
1130 	/* Poll for buffer manager start indication */
1131 	for (i = 0; i < BGE_TIMEOUT; i++) {
1132 		if (CSR_READ_4(sc, BGE_BMAN_MODE) & BGE_BMANMODE_ENABLE)
1133 			break;
1134 		DELAY(10);
1135 	}
1136 
1137 	if (i == BGE_TIMEOUT) {
1138 		printf("bge%d: buffer manager failed to start\n",
1139 		    sc->bge_unit);
1140 		return(ENXIO);
1141 	}
1142 
1143 	/* Enable flow-through queues */
1144 	CSR_WRITE_4(sc, BGE_FTQ_RESET, 0xFFFFFFFF);
1145 	CSR_WRITE_4(sc, BGE_FTQ_RESET, 0);
1146 
1147 	/* Wait until queue initialization is complete */
1148 	for (i = 0; i < BGE_TIMEOUT; i++) {
1149 		if (CSR_READ_4(sc, BGE_FTQ_RESET) == 0)
1150 			break;
1151 		DELAY(10);
1152 	}
1153 
1154 	if (i == BGE_TIMEOUT) {
1155 		printf("bge%d: flow-through queue init failed\n",
1156 		    sc->bge_unit);
1157 		return(ENXIO);
1158 	}
1159 
1160 	/* Initialize the standard RX ring control block */
1161 	rcb = &sc->bge_rdata->bge_info.bge_std_rx_rcb;
1162 	BGE_HOSTADDR(rcb->bge_hostaddr) =
1163 	    vtophys(&sc->bge_rdata->bge_rx_std_ring);
1164 	rcb->bge_max_len = BGE_MAX_FRAMELEN;
1165 	if (sc->bge_extram)
1166 		rcb->bge_nicaddr = BGE_EXT_STD_RX_RINGS;
1167 	else
1168 		rcb->bge_nicaddr = BGE_STD_RX_RINGS;
1169 	rcb->bge_flags = 0;
1170 	rcbo = (struct bge_rcb_opaque *)rcb;
1171 	CSR_WRITE_4(sc, BGE_RX_STD_RCB_HADDR_HI, rcbo->bge_reg0);
1172 	CSR_WRITE_4(sc, BGE_RX_STD_RCB_HADDR_LO, rcbo->bge_reg1);
1173 	CSR_WRITE_4(sc, BGE_RX_STD_RCB_MAXLEN_FLAGS, rcbo->bge_reg2);
1174 	CSR_WRITE_4(sc, BGE_RX_STD_RCB_NICADDR, rcbo->bge_reg3);
1175 
1176 	/*
1177 	 * Initialize the jumbo RX ring control block
1178 	 * We set the 'ring disabled' bit in the flags
1179 	 * field until we're actually ready to start
1180 	 * using this ring (i.e. once we set the MTU
1181 	 * high enough to require it).
1182 	 */
1183 	rcb = &sc->bge_rdata->bge_info.bge_jumbo_rx_rcb;
1184 	BGE_HOSTADDR(rcb->bge_hostaddr) =
1185 	    vtophys(&sc->bge_rdata->bge_rx_jumbo_ring);
1186 	rcb->bge_max_len = BGE_MAX_FRAMELEN;
1187 	if (sc->bge_extram)
1188 		rcb->bge_nicaddr = BGE_EXT_JUMBO_RX_RINGS;
1189 	else
1190 		rcb->bge_nicaddr = BGE_JUMBO_RX_RINGS;
1191 	rcb->bge_flags = BGE_RCB_FLAG_RING_DISABLED;
1192 
1193 	rcbo = (struct bge_rcb_opaque *)rcb;
1194 	CSR_WRITE_4(sc, BGE_RX_JUMBO_RCB_HADDR_HI, rcbo->bge_reg0);
1195 	CSR_WRITE_4(sc, BGE_RX_JUMBO_RCB_HADDR_LO, rcbo->bge_reg1);
1196 	CSR_WRITE_4(sc, BGE_RX_JUMBO_RCB_MAXLEN_FLAGS, rcbo->bge_reg2);
1197 	CSR_WRITE_4(sc, BGE_RX_JUMBO_RCB_NICADDR, rcbo->bge_reg3);
1198 
1199 	/* Set up dummy disabled mini ring RCB */
1200 	rcb = &sc->bge_rdata->bge_info.bge_mini_rx_rcb;
1201 	rcb->bge_flags = BGE_RCB_FLAG_RING_DISABLED;
1202 	rcbo = (struct bge_rcb_opaque *)rcb;
1203 	CSR_WRITE_4(sc, BGE_RX_MINI_RCB_MAXLEN_FLAGS, rcbo->bge_reg2);
1204 
1205 	/*
1206 	 * Set the BD ring replentish thresholds. The recommended
1207 	 * values are 1/8th the number of descriptors allocated to
1208 	 * each ring.
1209 	 */
1210 	CSR_WRITE_4(sc, BGE_RBDI_STD_REPL_THRESH, BGE_STD_RX_RING_CNT/8);
1211 	CSR_WRITE_4(sc, BGE_RBDI_JUMBO_REPL_THRESH, BGE_JUMBO_RX_RING_CNT/8);
1212 
1213 	/*
1214 	 * Disable all unused send rings by setting the 'ring disabled'
1215 	 * bit in the flags field of all the TX send ring control blocks.
1216 	 * These are located in NIC memory.
1217 	 */
1218 	rcb = (struct bge_rcb *)(sc->bge_vhandle + BGE_MEMWIN_START +
1219 	    BGE_SEND_RING_RCB);
1220 	for (i = 0; i < BGE_TX_RINGS_EXTSSRAM_MAX; i++) {
1221 		rcb->bge_flags = BGE_RCB_FLAG_RING_DISABLED;
1222 		rcb->bge_max_len = 0;
1223 		rcb->bge_nicaddr = 0;
1224 		rcb++;
1225 	}
1226 
1227 	/* Configure TX RCB 0 (we use only the first ring) */
1228 	rcb = (struct bge_rcb *)(sc->bge_vhandle + BGE_MEMWIN_START +
1229 	    BGE_SEND_RING_RCB);
1230 	rcb->bge_hostaddr.bge_addr_hi = 0;
1231 	BGE_HOSTADDR(rcb->bge_hostaddr) =
1232 	    vtophys(&sc->bge_rdata->bge_tx_ring);
1233 	rcb->bge_nicaddr = BGE_NIC_TXRING_ADDR(0, BGE_TX_RING_CNT);
1234 	rcb->bge_max_len = BGE_TX_RING_CNT;
1235 	rcb->bge_flags = 0;
1236 
1237 	/* Disable all unused RX return rings */
1238 	rcb = (struct bge_rcb *)(sc->bge_vhandle + BGE_MEMWIN_START +
1239 	    BGE_RX_RETURN_RING_RCB);
1240 	for (i = 0; i < BGE_RX_RINGS_MAX; i++) {
1241 		rcb->bge_hostaddr.bge_addr_hi = 0;
1242 		rcb->bge_hostaddr.bge_addr_lo = 0;
1243 		rcb->bge_flags = BGE_RCB_FLAG_RING_DISABLED;
1244 		rcb->bge_max_len = BGE_RETURN_RING_CNT;
1245 		rcb->bge_nicaddr = 0;
1246 		CSR_WRITE_4(sc, BGE_MBX_RX_CONS0_LO +
1247 		    (i * (sizeof(u_int64_t))), 0);
1248 		rcb++;
1249 	}
1250 
1251 	/* Initialize RX ring indexes */
1252 	CSR_WRITE_4(sc, BGE_MBX_RX_STD_PROD_LO, 0);
1253 	CSR_WRITE_4(sc, BGE_MBX_RX_JUMBO_PROD_LO, 0);
1254 	CSR_WRITE_4(sc, BGE_MBX_RX_MINI_PROD_LO, 0);
1255 
1256 	/*
1257 	 * Set up RX return ring 0
1258 	 * Note that the NIC address for RX return rings is 0x00000000.
1259 	 * The return rings live entirely within the host, so the
1260 	 * nicaddr field in the RCB isn't used.
1261 	 */
1262 	rcb = (struct bge_rcb *)(sc->bge_vhandle + BGE_MEMWIN_START +
1263 	    BGE_RX_RETURN_RING_RCB);
1264 	rcb->bge_hostaddr.bge_addr_hi = 0;
1265 	BGE_HOSTADDR(rcb->bge_hostaddr) =
1266 	    vtophys(&sc->bge_rdata->bge_rx_return_ring);
1267 	rcb->bge_nicaddr = 0x00000000;
1268 	rcb->bge_max_len = BGE_RETURN_RING_CNT;
1269 	rcb->bge_flags = 0;
1270 
1271 	/* Set random backoff seed for TX */
1272 	CSR_WRITE_4(sc, BGE_TX_RANDOM_BACKOFF,
1273 	    sc->arpcom.ac_enaddr[0] + sc->arpcom.ac_enaddr[1] +
1274 	    sc->arpcom.ac_enaddr[2] + sc->arpcom.ac_enaddr[3] +
1275 	    sc->arpcom.ac_enaddr[4] + sc->arpcom.ac_enaddr[5] +
1276 	    BGE_TX_BACKOFF_SEED_MASK);
1277 
1278 	/* Set inter-packet gap */
1279 	CSR_WRITE_4(sc, BGE_TX_LENGTHS, 0x2620);
1280 
1281 	/*
1282 	 * Specify which ring to use for packets that don't match
1283 	 * any RX rules.
1284 	 */
1285 	CSR_WRITE_4(sc, BGE_RX_RULES_CFG, 0x08);
1286 
1287 	/*
1288 	 * Configure number of RX lists. One interrupt distribution
1289 	 * list, sixteen active lists, one bad frames class.
1290 	 */
1291 	CSR_WRITE_4(sc, BGE_RXLP_CFG, 0x181);
1292 
1293 	/* Inialize RX list placement stats mask. */
1294 	CSR_WRITE_4(sc, BGE_RXLP_STATS_ENABLE_MASK, 0x007FFFFF);
1295 	CSR_WRITE_4(sc, BGE_RXLP_STATS_CTL, 0x1);
1296 
1297 	/* Disable host coalescing until we get it set up */
1298 	CSR_WRITE_4(sc, BGE_HCC_MODE, 0x00000000);
1299 
1300 	/* Poll to make sure it's shut down. */
1301 	for (i = 0; i < BGE_TIMEOUT; i++) {
1302 		if (!(CSR_READ_4(sc, BGE_HCC_MODE) & BGE_HCCMODE_ENABLE))
1303 			break;
1304 		DELAY(10);
1305 	}
1306 
1307 	if (i == BGE_TIMEOUT) {
1308 		printf("bge%d: host coalescing engine failed to idle\n",
1309 		    sc->bge_unit);
1310 		return(ENXIO);
1311 	}
1312 
1313 	/* Set up host coalescing defaults */
1314 	CSR_WRITE_4(sc, BGE_HCC_RX_COAL_TICKS, sc->bge_rx_coal_ticks);
1315 	CSR_WRITE_4(sc, BGE_HCC_TX_COAL_TICKS, sc->bge_tx_coal_ticks);
1316 	CSR_WRITE_4(sc, BGE_HCC_RX_MAX_COAL_BDS, sc->bge_rx_max_coal_bds);
1317 	CSR_WRITE_4(sc, BGE_HCC_TX_MAX_COAL_BDS, sc->bge_tx_max_coal_bds);
1318 	CSR_WRITE_4(sc, BGE_HCC_RX_COAL_TICKS_INT, 0);
1319 	CSR_WRITE_4(sc, BGE_HCC_TX_COAL_TICKS_INT, 0);
1320 	CSR_WRITE_4(sc, BGE_HCC_RX_MAX_COAL_BDS_INT, 0);
1321 	CSR_WRITE_4(sc, BGE_HCC_TX_MAX_COAL_BDS_INT, 0);
1322 	CSR_WRITE_4(sc, BGE_HCC_STATS_TICKS, sc->bge_stat_ticks);
1323 
1324 	/* Set up address of statistics block */
1325 	CSR_WRITE_4(sc, BGE_HCC_STATS_BASEADDR, BGE_STATS_BLOCK);
1326 	CSR_WRITE_4(sc, BGE_HCC_STATS_ADDR_HI, 0);
1327 	CSR_WRITE_4(sc, BGE_HCC_STATS_ADDR_LO,
1328 	    vtophys(&sc->bge_rdata->bge_info.bge_stats));
1329 
1330 	/* Set up address of status block */
1331 	CSR_WRITE_4(sc, BGE_HCC_STATUSBLK_BASEADDR, BGE_STATUS_BLOCK);
1332 	CSR_WRITE_4(sc, BGE_HCC_STATUSBLK_ADDR_HI, 0);
1333 	CSR_WRITE_4(sc, BGE_HCC_STATUSBLK_ADDR_LO,
1334 	    vtophys(&sc->bge_rdata->bge_status_block));
1335 	sc->bge_rdata->bge_status_block.bge_idx[0].bge_rx_prod_idx = 0;
1336 	sc->bge_rdata->bge_status_block.bge_idx[0].bge_tx_cons_idx = 0;
1337 
1338 	/* Turn on host coalescing state machine */
1339 	CSR_WRITE_4(sc, BGE_HCC_MODE, BGE_HCCMODE_ENABLE);
1340 
1341 	/* Turn on RX BD completion state machine and enable attentions */
1342 	CSR_WRITE_4(sc, BGE_RBDC_MODE,
1343 	    BGE_RBDCMODE_ENABLE|BGE_RBDCMODE_ATTN);
1344 
1345 	/* Turn on RX list placement state machine */
1346 	CSR_WRITE_4(sc, BGE_RXLP_MODE, BGE_RXLPMODE_ENABLE);
1347 
1348 	/* Turn on RX list selector state machine. */
1349 	CSR_WRITE_4(sc, BGE_RXLS_MODE, BGE_RXLSMODE_ENABLE);
1350 
1351 	/* Turn on DMA, clear stats */
1352 	CSR_WRITE_4(sc, BGE_MAC_MODE, BGE_MACMODE_TXDMA_ENB|
1353 	    BGE_MACMODE_RXDMA_ENB|BGE_MACMODE_RX_STATS_CLEAR|
1354 	    BGE_MACMODE_TX_STATS_CLEAR|BGE_MACMODE_RX_STATS_ENB|
1355 	    BGE_MACMODE_TX_STATS_ENB|BGE_MACMODE_FRMHDR_DMA_ENB|
1356 	    (sc->bge_tbi ? BGE_PORTMODE_TBI : BGE_PORTMODE_MII));
1357 
1358 	/* Set misc. local control, enable interrupts on attentions */
1359 	CSR_WRITE_4(sc, BGE_MISC_LOCAL_CTL, BGE_MLC_INTR_ONATTN);
1360 
1361 #ifdef notdef
1362 	/* Assert GPIO pins for PHY reset */
1363 	BGE_SETBIT(sc, BGE_MISC_LOCAL_CTL, BGE_MLC_MISCIO_OUT0|
1364 	    BGE_MLC_MISCIO_OUT1|BGE_MLC_MISCIO_OUT2);
1365 	BGE_SETBIT(sc, BGE_MISC_LOCAL_CTL, BGE_MLC_MISCIO_OUTEN0|
1366 	    BGE_MLC_MISCIO_OUTEN1|BGE_MLC_MISCIO_OUTEN2);
1367 #endif
1368 
1369 	/* Turn on DMA completion state machine */
1370 	CSR_WRITE_4(sc, BGE_DMAC_MODE, BGE_DMACMODE_ENABLE);
1371 
1372 	/* Turn on write DMA state machine */
1373 	CSR_WRITE_4(sc, BGE_WDMA_MODE,
1374 	    BGE_WDMAMODE_ENABLE|BGE_WDMAMODE_ALL_ATTNS);
1375 
1376 	/* Turn on read DMA state machine */
1377 	CSR_WRITE_4(sc, BGE_RDMA_MODE,
1378 	    BGE_RDMAMODE_ENABLE|BGE_RDMAMODE_ALL_ATTNS);
1379 
1380 	/* Turn on RX data completion state machine */
1381 	CSR_WRITE_4(sc, BGE_RDC_MODE, BGE_RDCMODE_ENABLE);
1382 
1383 	/* Turn on RX BD initiator state machine */
1384 	CSR_WRITE_4(sc, BGE_RBDI_MODE, BGE_RBDIMODE_ENABLE);
1385 
1386 	/* Turn on RX data and RX BD initiator state machine */
1387 	CSR_WRITE_4(sc, BGE_RDBDI_MODE, BGE_RDBDIMODE_ENABLE);
1388 
1389 	/* Turn on Mbuf cluster free state machine */
1390 	CSR_WRITE_4(sc, BGE_MBCF_MODE, BGE_MBCFMODE_ENABLE);
1391 
1392 	/* Turn on send BD completion state machine */
1393 	CSR_WRITE_4(sc, BGE_SBDC_MODE, BGE_SBDCMODE_ENABLE);
1394 
1395 	/* Turn on send data completion state machine */
1396 	CSR_WRITE_4(sc, BGE_SDC_MODE, BGE_SDCMODE_ENABLE);
1397 
1398 	/* Turn on send data initiator state machine */
1399 	CSR_WRITE_4(sc, BGE_SDI_MODE, BGE_SDIMODE_ENABLE);
1400 
1401 	/* Turn on send BD initiator state machine */
1402 	CSR_WRITE_4(sc, BGE_SBDI_MODE, BGE_SBDIMODE_ENABLE);
1403 
1404 	/* Turn on send BD selector state machine */
1405 	CSR_WRITE_4(sc, BGE_SRS_MODE, BGE_SRSMODE_ENABLE);
1406 
1407 	CSR_WRITE_4(sc, BGE_SDI_STATS_ENABLE_MASK, 0x007FFFFF);
1408 	CSR_WRITE_4(sc, BGE_SDI_STATS_CTL,
1409 	    BGE_SDISTATSCTL_ENABLE|BGE_SDISTATSCTL_FASTER);
1410 
1411 	/* init LED register */
1412 	CSR_WRITE_4(sc, BGE_MAC_LED_CTL, 0x00000000);
1413 
1414 	/* ack/clear link change events */
1415 	CSR_WRITE_4(sc, BGE_MAC_STS, BGE_MACSTAT_SYNC_CHANGED|
1416 	    BGE_MACSTAT_CFG_CHANGED);
1417 	CSR_WRITE_4(sc, BGE_MI_STS, 0);
1418 
1419 	/* Enable PHY auto polling (for MII/GMII only) */
1420 	if (sc->bge_tbi) {
1421 		CSR_WRITE_4(sc, BGE_MI_STS, BGE_MISTS_LINK);
1422  	} else {
1423 		BGE_SETBIT(sc, BGE_MI_MODE, BGE_MIMODE_AUTOPOLL|10<<16);
1424 		if (sc->bge_asicrev == BGE_ASICREV_BCM5700)
1425 			CSR_WRITE_4(sc, BGE_MAC_EVT_ENB,
1426 			    BGE_EVTENB_MI_INTERRUPT);
1427 	}
1428 
1429 	/* Enable link state change attentions. */
1430 	BGE_SETBIT(sc, BGE_MAC_EVT_ENB, BGE_EVTENB_LINK_CHANGED);
1431 
1432 	return(0);
1433 }
1434 
1435 /*
1436  * Probe for a Broadcom chip. Check the PCI vendor and device IDs
1437  * against our list and return its name if we find a match. Note
1438  * that since the Broadcom controller contains VPD support, we
1439  * can get the device name string from the controller itself instead
1440  * of the compiled-in string. This is a little slow, but it guarantees
1441  * we'll always announce the right product name.
1442  */
1443 static int
1444 bge_probe(dev)
1445 	device_t dev;
1446 {
1447 	struct bge_type *t;
1448 	struct bge_softc *sc;
1449 
1450 	t = bge_devs;
1451 
1452 	sc = device_get_softc(dev);
1453 	bzero(sc, sizeof(struct bge_softc));
1454 	sc->bge_unit = device_get_unit(dev);
1455 	sc->bge_dev = dev;
1456 
1457 	while(t->bge_name != NULL) {
1458 		if ((pci_get_vendor(dev) == t->bge_vid) &&
1459 		    (pci_get_device(dev) == t->bge_did)) {
1460 #ifdef notdef
1461 			bge_vpd_read(sc);
1462 			device_set_desc(dev, sc->bge_vpd_prodname);
1463 #endif
1464 			device_set_desc(dev, t->bge_name);
1465 			return(0);
1466 		}
1467 		t++;
1468 	}
1469 
1470 	return(ENXIO);
1471 }
1472 
1473 static int
1474 bge_attach(dev)
1475 	device_t dev;
1476 {
1477 	int s;
1478 	u_int32_t command;
1479 	struct ifnet *ifp;
1480 	struct bge_softc *sc;
1481 	u_int32_t hwcfg = 0;
1482 	int unit, error = 0, rid;
1483 
1484 	s = splimp();
1485 
1486 	sc = device_get_softc(dev);
1487 	unit = device_get_unit(dev);
1488 	sc->bge_dev = dev;
1489 	sc->bge_unit = unit;
1490 
1491 	/*
1492 	 * Map control/status registers.
1493 	 */
1494 	pci_enable_busmaster(dev);
1495 	pci_enable_io(dev, SYS_RES_MEMORY);
1496 	command = pci_read_config(dev, PCIR_COMMAND, 4);
1497 
1498 	if (!(command & PCIM_CMD_MEMEN)) {
1499 		printf("bge%d: failed to enable memory mapping!\n", unit);
1500 		error = ENXIO;
1501 		goto fail;
1502 	}
1503 
1504 	rid = BGE_PCI_BAR0;
1505 	sc->bge_res = bus_alloc_resource(dev, SYS_RES_MEMORY, &rid,
1506 	    0, ~0, 1, RF_ACTIVE);
1507 
1508 	if (sc->bge_res == NULL) {
1509 		printf ("bge%d: couldn't map memory\n", unit);
1510 		error = ENXIO;
1511 		goto fail;
1512 	}
1513 
1514 	sc->bge_btag = rman_get_bustag(sc->bge_res);
1515 	sc->bge_bhandle = rman_get_bushandle(sc->bge_res);
1516 	sc->bge_vhandle = (vm_offset_t)rman_get_virtual(sc->bge_res);
1517 
1518 	/*
1519 	 * XXX FIXME: rman_get_virtual() on the alpha is currently
1520 	 * broken and returns a physical address instead of a kernel
1521 	 * virtual address. Consequently, we need to do a little
1522 	 * extra mangling of the vhandle on the alpha. This should
1523 	 * eventually be fixed! The whole idea here is to get rid
1524 	 * of platform dependencies.
1525 	 */
1526 #ifdef __alpha__
1527 	if (pci_cvt_to_bwx(sc->bge_vhandle))
1528 		sc->bge_vhandle = pci_cvt_to_bwx(sc->bge_vhandle);
1529 	else
1530 		sc->bge_vhandle = pci_cvt_to_dense(sc->bge_vhandle);
1531 	sc->bge_vhandle = ALPHA_PHYS_TO_K0SEG(sc->bge_vhandle);
1532 #endif
1533 
1534 	/* Allocate interrupt */
1535 	rid = 0;
1536 
1537 	sc->bge_irq = bus_alloc_resource(dev, SYS_RES_IRQ, &rid, 0, ~0, 1,
1538 	    RF_SHAREABLE | RF_ACTIVE);
1539 
1540 	if (sc->bge_irq == NULL) {
1541 		printf("bge%d: couldn't map interrupt\n", unit);
1542 		error = ENXIO;
1543 		goto fail;
1544 	}
1545 
1546 	error = bus_setup_intr(dev, sc->bge_irq, INTR_TYPE_NET,
1547 	   bge_intr, sc, &sc->bge_intrhand);
1548 
1549 	if (error) {
1550 		bge_release_resources(sc);
1551 		printf("bge%d: couldn't set up irq\n", unit);
1552 		goto fail;
1553 	}
1554 
1555 	sc->bge_unit = unit;
1556 
1557 	/* Try to reset the chip. */
1558 	bge_reset(sc);
1559 
1560 	if (bge_chipinit(sc)) {
1561 		printf("bge%d: chip initialization failed\n", sc->bge_unit);
1562 		bge_release_resources(sc);
1563 		error = ENXIO;
1564 		goto fail;
1565 	}
1566 
1567 	/*
1568 	 * Get station address from the EEPROM.
1569 	 */
1570 	if (bge_read_eeprom(sc, (caddr_t)&sc->arpcom.ac_enaddr,
1571 	    BGE_EE_MAC_OFFSET + 2, ETHER_ADDR_LEN)) {
1572 		printf("bge%d: failed to read station address\n", unit);
1573 		bge_release_resources(sc);
1574 		error = ENXIO;
1575 		goto fail;
1576 	}
1577 
1578 	/*
1579 	 * A Broadcom chip was detected. Inform the world.
1580 	 */
1581 	printf("bge%d: Ethernet address: %6D\n", unit,
1582 	    sc->arpcom.ac_enaddr, ":");
1583 
1584 	/* Allocate the general information block and ring buffers. */
1585 	sc->bge_rdata = contigmalloc(sizeof(struct bge_ring_data), M_DEVBUF,
1586 	    M_NOWAIT, 0, 0xffffffff, PAGE_SIZE, 0);
1587 
1588 	if (sc->bge_rdata == NULL) {
1589 		bge_release_resources(sc);
1590 		error = ENXIO;
1591 		printf("bge%d: no memory for list buffers!\n", sc->bge_unit);
1592 		goto fail;
1593 	}
1594 
1595 	bzero(sc->bge_rdata, sizeof(struct bge_ring_data));
1596 
1597 	/* Try to allocate memory for jumbo buffers. */
1598 	if (bge_alloc_jumbo_mem(sc)) {
1599 		printf("bge%d: jumbo buffer allocation "
1600 		    "failed\n", sc->bge_unit);
1601 		bge_release_resources(sc);
1602 		error = ENXIO;
1603 		goto fail;
1604 	}
1605 
1606 	/* Set default tuneable values. */
1607 	sc->bge_stat_ticks = BGE_TICKS_PER_SEC;
1608 	sc->bge_rx_coal_ticks = 150;
1609 	sc->bge_tx_coal_ticks = 150;
1610 	sc->bge_rx_max_coal_bds = 64;
1611 	sc->bge_tx_max_coal_bds = 128;
1612 
1613 	/* Set up ifnet structure */
1614 	ifp = &sc->arpcom.ac_if;
1615 	ifp->if_softc = sc;
1616 	ifp->if_unit = sc->bge_unit;
1617 	ifp->if_name = "bge";
1618 	ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
1619 	ifp->if_ioctl = bge_ioctl;
1620 	ifp->if_output = ether_output;
1621 	ifp->if_start = bge_start;
1622 	ifp->if_watchdog = bge_watchdog;
1623 	ifp->if_init = bge_init;
1624 	ifp->if_mtu = ETHERMTU;
1625 	ifp->if_snd.ifq_maxlen = BGE_TX_RING_CNT - 1;
1626 	ifp->if_hwassist = BGE_CSUM_FEATURES;
1627 	ifp->if_capabilities = IFCAP_HWCSUM;
1628 	ifp->if_capenable = ifp->if_capabilities;
1629 
1630 	/* Save ASIC rev. */
1631 
1632 	sc->bge_asicrev =
1633 	    pci_read_config(dev, BGE_PCI_MISC_CTL, 4) &
1634 	    BGE_PCIMISCCTL_ASICREV;
1635 
1636 	/* Pretend all 5700s are the same */
1637 	if ((sc->bge_asicrev & 0xFF000000) == BGE_ASICREV_BCM5700)
1638 		sc->bge_asicrev = BGE_ASICREV_BCM5700;
1639 
1640 	/*
1641 	 * Figure out what sort of media we have by checking the
1642 	 * hardware config word in the EEPROM. Note: on some BCM5700
1643 	 * cards, this value appears to be unset. If that's the
1644 	 * case, we have to rely on identifying the NIC by its PCI
1645 	 * subsystem ID, as we do below for the SysKonnect SK-9D41.
1646 	 */
1647 	bge_read_eeprom(sc, (caddr_t)&hwcfg,
1648 		    BGE_EE_HWCFG_OFFSET, sizeof(hwcfg));
1649 	if ((ntohl(hwcfg) & BGE_HWCFG_MEDIA) == BGE_MEDIA_FIBER)
1650 		sc->bge_tbi = 1;
1651 
1652 	/* The SysKonnect SK-9D41 is a 1000baseSX card. */
1653 	if ((pci_read_config(dev, BGE_PCI_SUBSYS, 4) >> 16) == SK_SUBSYSID_9D41)
1654 		sc->bge_tbi = 1;
1655 
1656 	if (sc->bge_tbi) {
1657 		ifmedia_init(&sc->bge_ifmedia, IFM_IMASK,
1658 		    bge_ifmedia_upd, bge_ifmedia_sts);
1659 		ifmedia_add(&sc->bge_ifmedia, IFM_ETHER|IFM_1000_SX, 0, NULL);
1660 		ifmedia_add(&sc->bge_ifmedia,
1661 		    IFM_ETHER|IFM_1000_SX|IFM_FDX, 0, NULL);
1662 		ifmedia_add(&sc->bge_ifmedia, IFM_ETHER|IFM_AUTO, 0, NULL);
1663 		ifmedia_set(&sc->bge_ifmedia, IFM_ETHER|IFM_AUTO);
1664 	} else {
1665 		/*
1666 		 * Do transceiver setup.
1667 		 */
1668 		if (mii_phy_probe(dev, &sc->bge_miibus,
1669 		    bge_ifmedia_upd, bge_ifmedia_sts)) {
1670 			printf("bge%d: MII without any PHY!\n", sc->bge_unit);
1671 			bge_release_resources(sc);
1672 			bge_free_jumbo_mem(sc);
1673 			error = ENXIO;
1674 			goto fail;
1675 		}
1676 	}
1677 
1678 	/*
1679 	 * When using the BCM5701 in PCI-X mode, data corruption has
1680 	 * been observed in the first few bytes of some received packets.
1681 	 * Aligning the packet buffer in memory eliminates the corruption.
1682 	 * Unfortunately, this misaligns the packet payloads.  On platforms
1683 	 * which do not support unaligned accesses, we will realign the
1684 	 * payloads by copying the received packets.
1685 	 */
1686 	switch (sc->bge_asicrev) {
1687 	case BGE_ASICREV_BCM5701_A0:
1688 	case BGE_ASICREV_BCM5701_B0:
1689 	case BGE_ASICREV_BCM5701_B2:
1690 	case BGE_ASICREV_BCM5701_B5:
1691 		/* If in PCI-X mode, work around the alignment bug. */
1692 		if ((pci_read_config(dev, BGE_PCI_PCISTATE, 4) &
1693 		    (BGE_PCISTATE_PCI_BUSMODE | BGE_PCISTATE_PCI_BUSSPEED)) ==
1694 		    BGE_PCISTATE_PCI_BUSSPEED)
1695 			sc->bge_rx_alignment_bug = 1;
1696 		break;
1697 	}
1698 
1699 	/*
1700 	 * Call MI attach routine.
1701 	 */
1702 	ether_ifattach(ifp, ETHER_BPF_SUPPORTED);
1703 	callout_handle_init(&sc->bge_stat_ch);
1704 
1705 fail:
1706 	splx(s);
1707 
1708 	return(error);
1709 }
1710 
1711 static int
1712 bge_detach(dev)
1713 	device_t dev;
1714 {
1715 	struct bge_softc *sc;
1716 	struct ifnet *ifp;
1717 	int s;
1718 
1719 	s = splimp();
1720 
1721 	sc = device_get_softc(dev);
1722 	ifp = &sc->arpcom.ac_if;
1723 
1724 	ether_ifdetach(ifp, ETHER_BPF_SUPPORTED);
1725 	bge_stop(sc);
1726 	bge_reset(sc);
1727 
1728 	if (sc->bge_tbi) {
1729 		ifmedia_removeall(&sc->bge_ifmedia);
1730 	} else {
1731 		bus_generic_detach(dev);
1732 		device_delete_child(dev, sc->bge_miibus);
1733 	}
1734 
1735 	bge_release_resources(sc);
1736 	bge_free_jumbo_mem(sc);
1737 
1738 	splx(s);
1739 
1740 	return(0);
1741 }
1742 
1743 static void
1744 bge_release_resources(sc)
1745 	struct bge_softc *sc;
1746 {
1747         device_t dev;
1748 
1749         dev = sc->bge_dev;
1750 
1751 	if (sc->bge_vpd_prodname != NULL)
1752 		free(sc->bge_vpd_prodname, M_DEVBUF);
1753 
1754 	if (sc->bge_vpd_readonly != NULL)
1755 		free(sc->bge_vpd_readonly, M_DEVBUF);
1756 
1757         if (sc->bge_intrhand != NULL)
1758                 bus_teardown_intr(dev, sc->bge_irq, sc->bge_intrhand);
1759 
1760         if (sc->bge_irq != NULL)
1761 		bus_release_resource(dev, SYS_RES_IRQ, 0, sc->bge_irq);
1762 
1763         if (sc->bge_res != NULL)
1764 		bus_release_resource(dev, SYS_RES_MEMORY,
1765 		    BGE_PCI_BAR0, sc->bge_res);
1766 
1767         if (sc->bge_rdata != NULL)
1768 		contigfree(sc->bge_rdata,
1769 		    sizeof(struct bge_ring_data), M_DEVBUF);
1770 
1771         return;
1772 }
1773 
1774 static void
1775 bge_reset(sc)
1776 	struct bge_softc *sc;
1777 {
1778 	device_t dev;
1779 	u_int32_t cachesize, command, pcistate;
1780 	int i, val = 0;
1781 
1782 	dev = sc->bge_dev;
1783 
1784 	/* Save some important PCI state. */
1785 	cachesize = pci_read_config(dev, BGE_PCI_CACHESZ, 4);
1786 	command = pci_read_config(dev, BGE_PCI_CMD, 4);
1787 	pcistate = pci_read_config(dev, BGE_PCI_PCISTATE, 4);
1788 
1789 	pci_write_config(dev, BGE_PCI_MISC_CTL,
1790 	    BGE_PCIMISCCTL_INDIRECT_ACCESS|BGE_PCIMISCCTL_MASK_PCI_INTR|
1791 	    BGE_PCIMISCCTL_ENDIAN_WORDSWAP|BGE_PCIMISCCTL_PCISTATE_RW, 4);
1792 
1793 	/* Issue global reset */
1794 	bge_writereg_ind(sc, BGE_MISC_CFG,
1795 	    BGE_MISCCFG_RESET_CORE_CLOCKS|(65<<1));
1796 
1797 	DELAY(1000);
1798 
1799 	/* Reset some of the PCI state that got zapped by reset */
1800 	pci_write_config(dev, BGE_PCI_MISC_CTL,
1801 	    BGE_PCIMISCCTL_INDIRECT_ACCESS|BGE_PCIMISCCTL_MASK_PCI_INTR|
1802 	    BGE_PCIMISCCTL_ENDIAN_WORDSWAP|BGE_PCIMISCCTL_PCISTATE_RW, 4);
1803 	pci_write_config(dev, BGE_PCI_CACHESZ, cachesize, 4);
1804 	pci_write_config(dev, BGE_PCI_CMD, command, 4);
1805 	bge_writereg_ind(sc, BGE_MISC_CFG, (65 << 1));
1806 
1807 	/*
1808 	 * Prevent PXE restart: write a magic number to the
1809 	 * general communications memory at 0xB50.
1810 	 */
1811 	bge_writemem_ind(sc, BGE_SOFTWARE_GENCOMM, BGE_MAGIC_NUMBER);
1812 	/*
1813 	 * Poll the value location we just wrote until
1814 	 * we see the 1's complement of the magic number.
1815 	 * This indicates that the firmware initialization
1816 	 * is complete.
1817 	 */
1818 	for (i = 0; i < BGE_TIMEOUT; i++) {
1819 		val = bge_readmem_ind(sc, BGE_SOFTWARE_GENCOMM);
1820 		if (val == ~BGE_MAGIC_NUMBER)
1821 			break;
1822 		DELAY(10);
1823 	}
1824 
1825 	if (i == BGE_TIMEOUT) {
1826 		printf("bge%d: firmware handshake timed out\n", sc->bge_unit);
1827 		return;
1828 	}
1829 
1830 	/*
1831 	 * XXX Wait for the value of the PCISTATE register to
1832 	 * return to its original pre-reset state. This is a
1833 	 * fairly good indicator of reset completion. If we don't
1834 	 * wait for the reset to fully complete, trying to read
1835 	 * from the device's non-PCI registers may yield garbage
1836 	 * results.
1837 	 */
1838 	for (i = 0; i < BGE_TIMEOUT; i++) {
1839 		if (pci_read_config(dev, BGE_PCI_PCISTATE, 4) == pcistate)
1840 			break;
1841 		DELAY(10);
1842 	}
1843 
1844 	/* Enable memory arbiter. */
1845 	CSR_WRITE_4(sc, BGE_MARB_MODE, BGE_MARBMODE_ENABLE);
1846 
1847 	/* Fix up byte swapping */
1848 	CSR_WRITE_4(sc, BGE_MODE_CTL, BGE_MODECTL_BYTESWAP_NONFRAME|
1849 	    BGE_MODECTL_BYTESWAP_DATA);
1850 
1851 	CSR_WRITE_4(sc, BGE_MAC_MODE, 0);
1852 
1853 	DELAY(10000);
1854 
1855 	return;
1856 }
1857 
1858 /*
1859  * Frame reception handling. This is called if there's a frame
1860  * on the receive return list.
1861  *
1862  * Note: we have to be able to handle two possibilities here:
1863  * 1) the frame is from the jumbo recieve ring
1864  * 2) the frame is from the standard receive ring
1865  */
1866 
1867 static void
1868 bge_rxeof(sc)
1869 	struct bge_softc *sc;
1870 {
1871 	struct ifnet *ifp;
1872 	int stdcnt = 0, jumbocnt = 0;
1873 
1874 	ifp = &sc->arpcom.ac_if;
1875 
1876 	while(sc->bge_rx_saved_considx !=
1877 	    sc->bge_rdata->bge_status_block.bge_idx[0].bge_rx_prod_idx) {
1878 		struct bge_rx_bd	*cur_rx;
1879 		u_int32_t		rxidx;
1880 		struct ether_header	*eh;
1881 		struct mbuf		*m = NULL;
1882 		u_int16_t		vlan_tag = 0;
1883 		int			have_tag = 0;
1884 
1885 		cur_rx =
1886 	    &sc->bge_rdata->bge_rx_return_ring[sc->bge_rx_saved_considx];
1887 
1888 		rxidx = cur_rx->bge_idx;
1889 		BGE_INC(sc->bge_rx_saved_considx, BGE_RETURN_RING_CNT);
1890 
1891 		if (cur_rx->bge_flags & BGE_RXBDFLAG_VLAN_TAG) {
1892 			have_tag = 1;
1893 			vlan_tag = cur_rx->bge_vlan_tag;
1894 		}
1895 
1896 		if (cur_rx->bge_flags & BGE_RXBDFLAG_JUMBO_RING) {
1897 			BGE_INC(sc->bge_jumbo, BGE_JUMBO_RX_RING_CNT);
1898 			m = sc->bge_cdata.bge_rx_jumbo_chain[rxidx];
1899 			sc->bge_cdata.bge_rx_jumbo_chain[rxidx] = NULL;
1900 			jumbocnt++;
1901 			if (cur_rx->bge_flags & BGE_RXBDFLAG_ERROR) {
1902 				ifp->if_ierrors++;
1903 				bge_newbuf_jumbo(sc, sc->bge_jumbo, m);
1904 				continue;
1905 			}
1906 			if (bge_newbuf_jumbo(sc,
1907 			    sc->bge_jumbo, NULL) == ENOBUFS) {
1908 				ifp->if_ierrors++;
1909 				bge_newbuf_jumbo(sc, sc->bge_jumbo, m);
1910 				continue;
1911 			}
1912 		} else {
1913 			BGE_INC(sc->bge_std, BGE_STD_RX_RING_CNT);
1914 			m = sc->bge_cdata.bge_rx_std_chain[rxidx];
1915 			sc->bge_cdata.bge_rx_std_chain[rxidx] = NULL;
1916 			stdcnt++;
1917 			if (cur_rx->bge_flags & BGE_RXBDFLAG_ERROR) {
1918 				ifp->if_ierrors++;
1919 				bge_newbuf_std(sc, sc->bge_std, m);
1920 				continue;
1921 			}
1922 			if (bge_newbuf_std(sc, sc->bge_std,
1923 			    NULL) == ENOBUFS) {
1924 				ifp->if_ierrors++;
1925 				bge_newbuf_std(sc, sc->bge_std, m);
1926 				continue;
1927 			}
1928 		}
1929 
1930 		ifp->if_ipackets++;
1931 #ifndef __i386__
1932 		/*
1933 		 * The i386 allows unaligned accesses, but for other
1934 		 * platforms we must make sure the payload is aligned.
1935 		 */
1936 		if (sc->bge_rx_alignment_bug) {
1937 			bcopy(m->m_data, m->m_data + ETHER_ALIGN,
1938 			    cur_rx->bge_len);
1939 			m->m_data += ETHER_ALIGN;
1940 		}
1941 #endif
1942 		eh = mtod(m, struct ether_header *);
1943 		m->m_pkthdr.len = m->m_len = cur_rx->bge_len;
1944 		m->m_pkthdr.rcvif = ifp;
1945 
1946 		/* Remove header from mbuf and pass it on. */
1947 		m_adj(m, sizeof(struct ether_header));
1948 
1949 #if 0 /* currently broken for some packets, possibly related to TCP options */
1950 		if (ifp->if_hwassist) {
1951 			m->m_pkthdr.csum_flags |= CSUM_IP_CHECKED;
1952 			if ((cur_rx->bge_ip_csum ^ 0xffff) == 0)
1953 				m->m_pkthdr.csum_flags |= CSUM_IP_VALID;
1954 			if (cur_rx->bge_flags & BGE_RXBDFLAG_TCP_UDP_CSUM) {
1955 				m->m_pkthdr.csum_data =
1956 				    cur_rx->bge_tcp_udp_csum;
1957 				m->m_pkthdr.csum_flags |= CSUM_DATA_VALID;
1958 			}
1959 		}
1960 #endif
1961 
1962 		/*
1963 		 * If we received a packet with a vlan tag, pass it
1964 		 * to vlan_input() instead of ether_input().
1965 		 */
1966 		if (have_tag) {
1967 			VLAN_INPUT_TAG(eh, m, vlan_tag);
1968 			have_tag = vlan_tag = 0;
1969 			continue;
1970 		}
1971 
1972 		ether_input(ifp, eh, m);
1973 	}
1974 
1975 	CSR_WRITE_4(sc, BGE_MBX_RX_CONS0_LO, sc->bge_rx_saved_considx);
1976 	if (stdcnt)
1977 		CSR_WRITE_4(sc, BGE_MBX_RX_STD_PROD_LO, sc->bge_std);
1978 	if (jumbocnt)
1979 		CSR_WRITE_4(sc, BGE_MBX_RX_JUMBO_PROD_LO, sc->bge_jumbo);
1980 
1981 	return;
1982 }
1983 
1984 static void
1985 bge_txeof(sc)
1986 	struct bge_softc *sc;
1987 {
1988 	struct bge_tx_bd *cur_tx = NULL;
1989 	struct ifnet *ifp;
1990 
1991 	ifp = &sc->arpcom.ac_if;
1992 
1993 	/*
1994 	 * Go through our tx ring and free mbufs for those
1995 	 * frames that have been sent.
1996 	 */
1997 	while (sc->bge_tx_saved_considx !=
1998 	    sc->bge_rdata->bge_status_block.bge_idx[0].bge_tx_cons_idx) {
1999 		u_int32_t		idx = 0;
2000 
2001 		idx = sc->bge_tx_saved_considx;
2002 		cur_tx = &sc->bge_rdata->bge_tx_ring[idx];
2003 		if (cur_tx->bge_flags & BGE_TXBDFLAG_END)
2004 			ifp->if_opackets++;
2005 		if (sc->bge_cdata.bge_tx_chain[idx] != NULL) {
2006 			m_freem(sc->bge_cdata.bge_tx_chain[idx]);
2007 			sc->bge_cdata.bge_tx_chain[idx] = NULL;
2008 		}
2009 		sc->bge_txcnt--;
2010 		BGE_INC(sc->bge_tx_saved_considx, BGE_TX_RING_CNT);
2011 		ifp->if_timer = 0;
2012 	}
2013 
2014 	if (cur_tx != NULL)
2015 		ifp->if_flags &= ~IFF_OACTIVE;
2016 
2017 	return;
2018 }
2019 
2020 static void
2021 bge_intr(xsc)
2022 	void *xsc;
2023 {
2024 	struct bge_softc *sc;
2025 	struct ifnet *ifp;
2026 
2027 	sc = xsc;
2028 	ifp = &sc->arpcom.ac_if;
2029 
2030 #ifdef notdef
2031 	/* Avoid this for now -- checking this register is expensive. */
2032 	/* Make sure this is really our interrupt. */
2033 	if (!(CSR_READ_4(sc, BGE_MISC_LOCAL_CTL) & BGE_MLC_INTR_STATE))
2034 		return;
2035 #endif
2036 	/* Ack interrupt and stop others from occuring. */
2037 	CSR_WRITE_4(sc, BGE_MBX_IRQ0_LO, 1);
2038 
2039 	/*
2040 	 * Process link state changes.
2041 	 * Grrr. The link status word in the status block does
2042 	 * not work correctly on the BCM5700 rev AX and BX chips,
2043 	 * according to all avaibable information. Hence, we have
2044 	 * to enable MII interrupts in order to properly obtain
2045 	 * async link changes. Unfortunately, this also means that
2046 	 * we have to read the MAC status register to detect link
2047 	 * changes, thereby adding an additional register access to
2048 	 * the interrupt handler.
2049 	 */
2050 
2051 	if (sc->bge_asicrev == BGE_ASICREV_BCM5700) {
2052 		u_int32_t		status;
2053 
2054 		status = CSR_READ_4(sc, BGE_MAC_STS);
2055 		if (status & BGE_MACSTAT_MI_INTERRUPT) {
2056 			sc->bge_link = 0;
2057 			untimeout(bge_tick, sc, sc->bge_stat_ch);
2058 			bge_tick(sc);
2059 			/* Clear the interrupt */
2060 			CSR_WRITE_4(sc, BGE_MAC_EVT_ENB,
2061 			    BGE_EVTENB_MI_INTERRUPT);
2062 			bge_miibus_readreg(sc->bge_dev, 1, BRGPHY_MII_ISR);
2063 			bge_miibus_writereg(sc->bge_dev, 1, BRGPHY_MII_IMR,
2064 			    BRGPHY_INTRS);
2065 		}
2066 	} else {
2067 		if (sc->bge_rdata->bge_status_block.bge_status &
2068 		    BGE_STATFLAG_LINKSTATE_CHANGED) {
2069 			sc->bge_link = 0;
2070 			untimeout(bge_tick, sc, sc->bge_stat_ch);
2071 			bge_tick(sc);
2072 			/* Clear the interrupt */
2073 			CSR_WRITE_4(sc, BGE_MAC_STS, BGE_MACSTAT_SYNC_CHANGED|
2074 			    BGE_MACSTAT_CFG_CHANGED);
2075 		}
2076 	}
2077 
2078 	if (ifp->if_flags & IFF_RUNNING) {
2079 		/* Check RX return ring producer/consumer */
2080 		bge_rxeof(sc);
2081 
2082 		/* Check TX ring producer/consumer */
2083 		bge_txeof(sc);
2084 	}
2085 
2086 	bge_handle_events(sc);
2087 
2088 	/* Re-enable interrupts. */
2089 	CSR_WRITE_4(sc, BGE_MBX_IRQ0_LO, 0);
2090 
2091 	if (ifp->if_flags & IFF_RUNNING && ifp->if_snd.ifq_head != NULL)
2092 		bge_start(ifp);
2093 
2094 	return;
2095 }
2096 
2097 static void
2098 bge_tick(xsc)
2099 	void *xsc;
2100 {
2101 	struct bge_softc *sc;
2102 	struct mii_data *mii = NULL;
2103 	struct ifmedia *ifm = NULL;
2104 	struct ifnet *ifp;
2105 	int s;
2106 
2107 	sc = xsc;
2108 	ifp = &sc->arpcom.ac_if;
2109 
2110 	s = splimp();
2111 
2112 	bge_stats_update(sc);
2113 	sc->bge_stat_ch = timeout(bge_tick, sc, hz);
2114 	if (sc->bge_link) {
2115 		splx(s);
2116 		return;
2117 	}
2118 
2119 	if (sc->bge_tbi) {
2120 		ifm = &sc->bge_ifmedia;
2121 		if (CSR_READ_4(sc, BGE_MAC_STS) &
2122 		    BGE_MACSTAT_TBI_PCS_SYNCHED) {
2123 			sc->bge_link++;
2124 			CSR_WRITE_4(sc, BGE_MAC_STS, 0xFFFFFFFF);
2125 			printf("bge%d: gigabit link up\n", sc->bge_unit);
2126 			if (ifp->if_snd.ifq_head != NULL)
2127 				bge_start(ifp);
2128 		}
2129 		splx(s);
2130 		return;
2131 	}
2132 
2133 	mii = device_get_softc(sc->bge_miibus);
2134 	mii_tick(mii);
2135 
2136 	if (!sc->bge_link && mii->mii_media_status & IFM_ACTIVE &&
2137 	    IFM_SUBTYPE(mii->mii_media_active) != IFM_NONE) {
2138 		sc->bge_link++;
2139 		if (IFM_SUBTYPE(mii->mii_media_active) == IFM_1000_T ||
2140 		    IFM_SUBTYPE(mii->mii_media_active) == IFM_1000_SX)
2141 			printf("bge%d: gigabit link up\n",
2142 			   sc->bge_unit);
2143 		if (ifp->if_snd.ifq_head != NULL)
2144 			bge_start(ifp);
2145 	}
2146 
2147 	splx(s);
2148 
2149 	return;
2150 }
2151 
2152 static void
2153 bge_stats_update(sc)
2154 	struct bge_softc *sc;
2155 {
2156 	struct ifnet *ifp;
2157 	struct bge_stats *stats;
2158 
2159 	ifp = &sc->arpcom.ac_if;
2160 
2161 	stats = (struct bge_stats *)(sc->bge_vhandle +
2162 	    BGE_MEMWIN_START + BGE_STATS_BLOCK);
2163 
2164 	ifp->if_collisions +=
2165 	   (stats->dot3StatsSingleCollisionFrames.bge_addr_lo +
2166 	   stats->dot3StatsMultipleCollisionFrames.bge_addr_lo +
2167 	   stats->dot3StatsExcessiveCollisions.bge_addr_lo +
2168 	   stats->dot3StatsLateCollisions.bge_addr_lo) -
2169 	   ifp->if_collisions;
2170 
2171 #ifdef notdef
2172 	ifp->if_collisions +=
2173 	   (sc->bge_rdata->bge_info.bge_stats.dot3StatsSingleCollisionFrames +
2174 	   sc->bge_rdata->bge_info.bge_stats.dot3StatsMultipleCollisionFrames +
2175 	   sc->bge_rdata->bge_info.bge_stats.dot3StatsExcessiveCollisions +
2176 	   sc->bge_rdata->bge_info.bge_stats.dot3StatsLateCollisions) -
2177 	   ifp->if_collisions;
2178 #endif
2179 
2180 	return;
2181 }
2182 
2183 /*
2184  * Encapsulate an mbuf chain in the tx ring  by coupling the mbuf data
2185  * pointers to descriptors.
2186  */
2187 static int
2188 bge_encap(sc, m_head, txidx)
2189 	struct bge_softc *sc;
2190 	struct mbuf *m_head;
2191 	u_int32_t *txidx;
2192 {
2193 	struct bge_tx_bd	*f = NULL;
2194 	struct mbuf		*m;
2195 	u_int32_t		frag, cur, cnt = 0;
2196 	u_int16_t		csum_flags = 0;
2197 	struct ifvlan		*ifv = NULL;
2198 
2199 	if ((m_head->m_flags & (M_PROTO1|M_PKTHDR)) == (M_PROTO1|M_PKTHDR) &&
2200 	    m_head->m_pkthdr.rcvif != NULL &&
2201 	    m_head->m_pkthdr.rcvif->if_type == IFT_L2VLAN)
2202 		ifv = m_head->m_pkthdr.rcvif->if_softc;
2203 
2204 	m = m_head;
2205 	cur = frag = *txidx;
2206 
2207 	if (m_head->m_pkthdr.csum_flags) {
2208 		if (m_head->m_pkthdr.csum_flags & CSUM_IP)
2209 			csum_flags |= BGE_TXBDFLAG_IP_CSUM;
2210 		if (m_head->m_pkthdr.csum_flags & (CSUM_TCP | CSUM_UDP))
2211 			csum_flags |= BGE_TXBDFLAG_TCP_UDP_CSUM;
2212 		if (m_head->m_flags & M_LASTFRAG)
2213 			csum_flags |= BGE_TXBDFLAG_IP_FRAG_END;
2214 		else if (m_head->m_flags & M_FRAG)
2215 			csum_flags |= BGE_TXBDFLAG_IP_FRAG;
2216 	}
2217 
2218 	/*
2219  	 * Start packing the mbufs in this chain into
2220 	 * the fragment pointers. Stop when we run out
2221  	 * of fragments or hit the end of the mbuf chain.
2222 	 */
2223 	for (m = m_head; m != NULL; m = m->m_next) {
2224 		if (m->m_len != 0) {
2225 			f = &sc->bge_rdata->bge_tx_ring[frag];
2226 			if (sc->bge_cdata.bge_tx_chain[frag] != NULL)
2227 				break;
2228 			BGE_HOSTADDR(f->bge_addr) =
2229 			   vtophys(mtod(m, vm_offset_t));
2230 			f->bge_len = m->m_len;
2231 			f->bge_flags = csum_flags;
2232 			if (ifv != NULL) {
2233 				f->bge_flags |= BGE_TXBDFLAG_VLAN_TAG;
2234 				f->bge_vlan_tag = ifv->ifv_tag;
2235 			} else {
2236 				f->bge_vlan_tag = 0;
2237 			}
2238 			/*
2239 			 * Sanity check: avoid coming within 16 descriptors
2240 			 * of the end of the ring.
2241 			 */
2242 			if ((BGE_TX_RING_CNT - (sc->bge_txcnt + cnt)) < 16)
2243 				return(ENOBUFS);
2244 			cur = frag;
2245 			BGE_INC(frag, BGE_TX_RING_CNT);
2246 			cnt++;
2247 		}
2248 	}
2249 
2250 	if (m != NULL)
2251 		return(ENOBUFS);
2252 
2253 	if (frag == sc->bge_tx_saved_considx)
2254 		return(ENOBUFS);
2255 
2256 	sc->bge_rdata->bge_tx_ring[cur].bge_flags |= BGE_TXBDFLAG_END;
2257 	sc->bge_cdata.bge_tx_chain[cur] = m_head;
2258 	sc->bge_txcnt += cnt;
2259 
2260 	*txidx = frag;
2261 
2262 	return(0);
2263 }
2264 
2265 /*
2266  * Main transmit routine. To avoid having to do mbuf copies, we put pointers
2267  * to the mbuf data regions directly in the transmit descriptors.
2268  */
2269 static void
2270 bge_start(ifp)
2271 	struct ifnet *ifp;
2272 {
2273 	struct bge_softc *sc;
2274 	struct mbuf *m_head = NULL;
2275 	u_int32_t prodidx = 0;
2276 
2277 	sc = ifp->if_softc;
2278 
2279 	if (!sc->bge_link && ifp->if_snd.ifq_len < 10)
2280 		return;
2281 
2282 	prodidx = CSR_READ_4(sc, BGE_MBX_TX_HOST_PROD0_LO);
2283 
2284 	while(sc->bge_cdata.bge_tx_chain[prodidx] == NULL) {
2285 		IF_DEQUEUE(&ifp->if_snd, m_head);
2286 		if (m_head == NULL)
2287 			break;
2288 
2289 		/*
2290 		 * XXX
2291 		 * safety overkill.  If this is a fragmented packet chain
2292 		 * with delayed TCP/UDP checksums, then only encapsulate
2293 		 * it if we have enough descriptors to handle the entire
2294 		 * chain at once.
2295 		 * (paranoia -- may not actually be needed)
2296 		 */
2297 		if (m_head->m_flags & M_FIRSTFRAG &&
2298 		    m_head->m_pkthdr.csum_flags & (CSUM_DELAY_DATA)) {
2299 			if ((BGE_TX_RING_CNT - sc->bge_txcnt) <
2300 			    m_head->m_pkthdr.csum_data + 16) {
2301 				IF_PREPEND(&ifp->if_snd, m_head);
2302 				ifp->if_flags |= IFF_OACTIVE;
2303 				break;
2304 			}
2305 		}
2306 
2307 		/*
2308 		 * Pack the data into the transmit ring. If we
2309 		 * don't have room, set the OACTIVE flag and wait
2310 		 * for the NIC to drain the ring.
2311 		 */
2312 		if (bge_encap(sc, m_head, &prodidx)) {
2313 			IF_PREPEND(&ifp->if_snd, m_head);
2314 			ifp->if_flags |= IFF_OACTIVE;
2315 			break;
2316 		}
2317 
2318 		/*
2319 		 * If there's a BPF listener, bounce a copy of this frame
2320 		 * to him.
2321 		 */
2322 		if (ifp->if_bpf)
2323 			bpf_mtap(ifp, m_head);
2324 	}
2325 
2326 	/* Transmit */
2327 	CSR_WRITE_4(sc, BGE_MBX_TX_HOST_PROD0_LO, prodidx);
2328 
2329 	/*
2330 	 * Set a timeout in case the chip goes out to lunch.
2331 	 */
2332 	ifp->if_timer = 5;
2333 
2334 	return;
2335 }
2336 
2337 /*
2338  * If we have a BCM5400 or BCM5401 PHY, we need to properly
2339  * program its internal DSP. Failing to do this can result in
2340  * massive packet loss at 1Gb speeds.
2341  */
2342 static void
2343 bge_phy_hack(sc)
2344 	struct bge_softc *sc;
2345 {
2346 	struct bge_bcom_hack bhack[] = {
2347 	{ BRGPHY_MII_AUXCTL, 0x4C20 },
2348 	{ BRGPHY_MII_DSP_ADDR_REG, 0x0012 },
2349 	{ BRGPHY_MII_DSP_RW_PORT, 0x1804 },
2350 	{ BRGPHY_MII_DSP_ADDR_REG, 0x0013 },
2351 	{ BRGPHY_MII_DSP_RW_PORT, 0x1204 },
2352 	{ BRGPHY_MII_DSP_ADDR_REG, 0x8006 },
2353 	{ BRGPHY_MII_DSP_RW_PORT, 0x0132 },
2354 	{ BRGPHY_MII_DSP_ADDR_REG, 0x8006 },
2355 	{ BRGPHY_MII_DSP_RW_PORT, 0x0232 },
2356 	{ BRGPHY_MII_DSP_ADDR_REG, 0x201F },
2357 	{ BRGPHY_MII_DSP_RW_PORT, 0x0A20 },
2358 	{ 0, 0 } };
2359 	u_int16_t vid, did;
2360 	int i;
2361 
2362 	vid = bge_miibus_readreg(sc->bge_dev, 1, MII_PHYIDR1);
2363 	did = bge_miibus_readreg(sc->bge_dev, 1, MII_PHYIDR2);
2364 
2365 	if (MII_OUI(vid, did) == MII_OUI_xxBROADCOM &&
2366 	    (MII_MODEL(did) == MII_MODEL_xxBROADCOM_BCM5400 ||
2367 	    MII_MODEL(did) == MII_MODEL_xxBROADCOM_BCM5401)) {
2368 		i = 0;
2369 		while(bhack[i].reg) {
2370 			bge_miibus_writereg(sc->bge_dev, 1, bhack[i].reg,
2371 			    bhack[i].val);
2372 			i++;
2373 		}
2374 	}
2375 
2376 	return;
2377 }
2378 
2379 static void
2380 bge_init(xsc)
2381 	void *xsc;
2382 {
2383 	struct bge_softc *sc = xsc;
2384 	struct ifnet *ifp;
2385 	u_int16_t *m;
2386         int s;
2387 
2388 	s = splimp();
2389 
2390 	ifp = &sc->arpcom.ac_if;
2391 
2392 	if (ifp->if_flags & IFF_RUNNING) {
2393 		splx(s);
2394 		return;
2395 	}
2396 
2397 	/* Cancel pending I/O and flush buffers. */
2398 	bge_stop(sc);
2399 	bge_reset(sc);
2400 	bge_chipinit(sc);
2401 
2402 	/*
2403 	 * Init the various state machines, ring
2404 	 * control blocks and firmware.
2405 	 */
2406 	if (bge_blockinit(sc)) {
2407 		printf("bge%d: initialization failure\n", sc->bge_unit);
2408 		splx(s);
2409 		return;
2410 	}
2411 
2412 	ifp = &sc->arpcom.ac_if;
2413 
2414 	/* Specify MTU. */
2415 	CSR_WRITE_4(sc, BGE_RX_MTU, ifp->if_mtu +
2416 	    ETHER_HDR_LEN + ETHER_CRC_LEN);
2417 
2418 	/* Load our MAC address. */
2419 	m = (u_int16_t *)&sc->arpcom.ac_enaddr[0];
2420 	CSR_WRITE_4(sc, BGE_MAC_ADDR1_LO, htons(m[0]));
2421 	CSR_WRITE_4(sc, BGE_MAC_ADDR1_HI, (htons(m[1]) << 16) | htons(m[2]));
2422 
2423 	/* Enable or disable promiscuous mode as needed. */
2424 	if (ifp->if_flags & IFF_PROMISC) {
2425 		BGE_SETBIT(sc, BGE_RX_MODE, BGE_RXMODE_RX_PROMISC);
2426 	} else {
2427 		BGE_CLRBIT(sc, BGE_RX_MODE, BGE_RXMODE_RX_PROMISC);
2428 	}
2429 
2430 	/* Program multicast filter. */
2431 	bge_setmulti(sc);
2432 
2433 	/* Init RX ring. */
2434 	bge_init_rx_ring_std(sc);
2435 
2436 	/* Init jumbo RX ring. */
2437 	if (ifp->if_mtu > (ETHERMTU + ETHER_HDR_LEN + ETHER_CRC_LEN))
2438 		bge_init_rx_ring_jumbo(sc);
2439 
2440 	/* Init our RX return ring index */
2441 	sc->bge_rx_saved_considx = 0;
2442 
2443 	/* Init TX ring. */
2444 	bge_init_tx_ring(sc);
2445 
2446 	/* Turn on transmitter */
2447 	BGE_SETBIT(sc, BGE_TX_MODE, BGE_TXMODE_ENABLE);
2448 
2449 	/* Turn on receiver */
2450 	BGE_SETBIT(sc, BGE_RX_MODE, BGE_RXMODE_ENABLE);
2451 
2452 	/* Tell firmware we're alive. */
2453 	BGE_SETBIT(sc, BGE_MODE_CTL, BGE_MODECTL_STACKUP);
2454 
2455 	/* Enable host interrupts. */
2456 	BGE_SETBIT(sc, BGE_PCI_MISC_CTL, BGE_PCIMISCCTL_CLEAR_INTA);
2457 	BGE_CLRBIT(sc, BGE_PCI_MISC_CTL, BGE_PCIMISCCTL_MASK_PCI_INTR);
2458 	CSR_WRITE_4(sc, BGE_MBX_IRQ0_LO, 0);
2459 
2460 	bge_ifmedia_upd(ifp);
2461 
2462 	ifp->if_flags |= IFF_RUNNING;
2463 	ifp->if_flags &= ~IFF_OACTIVE;
2464 
2465 	splx(s);
2466 
2467 	sc->bge_stat_ch = timeout(bge_tick, sc, hz);
2468 
2469 	return;
2470 }
2471 
2472 /*
2473  * Set media options.
2474  */
2475 static int
2476 bge_ifmedia_upd(ifp)
2477 	struct ifnet *ifp;
2478 {
2479 	struct bge_softc *sc;
2480 	struct mii_data *mii;
2481 	struct ifmedia *ifm;
2482 
2483 	sc = ifp->if_softc;
2484 	ifm = &sc->bge_ifmedia;
2485 
2486 	/* If this is a 1000baseX NIC, enable the TBI port. */
2487 	if (sc->bge_tbi) {
2488 		if (IFM_TYPE(ifm->ifm_media) != IFM_ETHER)
2489 			return(EINVAL);
2490 		switch(IFM_SUBTYPE(ifm->ifm_media)) {
2491 		case IFM_AUTO:
2492 			break;
2493 		case IFM_1000_SX:
2494 			if ((ifm->ifm_media & IFM_GMASK) == IFM_FDX) {
2495 				BGE_CLRBIT(sc, BGE_MAC_MODE,
2496 				    BGE_MACMODE_HALF_DUPLEX);
2497 			} else {
2498 				BGE_SETBIT(sc, BGE_MAC_MODE,
2499 				    BGE_MACMODE_HALF_DUPLEX);
2500 			}
2501 			break;
2502 		default:
2503 			return(EINVAL);
2504 		}
2505 		return(0);
2506 	}
2507 
2508 	mii = device_get_softc(sc->bge_miibus);
2509 	sc->bge_link = 0;
2510 	if (mii->mii_instance) {
2511 		struct mii_softc *miisc;
2512 		for (miisc = LIST_FIRST(&mii->mii_phys); miisc != NULL;
2513 		    miisc = LIST_NEXT(miisc, mii_list))
2514 			mii_phy_reset(miisc);
2515 	}
2516 	bge_phy_hack(sc);
2517 	mii_mediachg(mii);
2518 
2519 	return(0);
2520 }
2521 
2522 /*
2523  * Report current media status.
2524  */
2525 static void
2526 bge_ifmedia_sts(ifp, ifmr)
2527 	struct ifnet *ifp;
2528 	struct ifmediareq *ifmr;
2529 {
2530 	struct bge_softc *sc;
2531 	struct mii_data *mii;
2532 
2533 	sc = ifp->if_softc;
2534 
2535 	if (sc->bge_tbi) {
2536 		ifmr->ifm_status = IFM_AVALID;
2537 		ifmr->ifm_active = IFM_ETHER;
2538 		if (CSR_READ_4(sc, BGE_MAC_STS) &
2539 		    BGE_MACSTAT_TBI_PCS_SYNCHED)
2540 			ifmr->ifm_status |= IFM_ACTIVE;
2541 		ifmr->ifm_active |= IFM_1000_SX;
2542 		if (CSR_READ_4(sc, BGE_MAC_MODE) & BGE_MACMODE_HALF_DUPLEX)
2543 			ifmr->ifm_active |= IFM_HDX;
2544 		else
2545 			ifmr->ifm_active |= IFM_FDX;
2546 		return;
2547 	}
2548 
2549 	mii = device_get_softc(sc->bge_miibus);
2550 	mii_pollstat(mii);
2551 	ifmr->ifm_active = mii->mii_media_active;
2552 	ifmr->ifm_status = mii->mii_media_status;
2553 
2554 	return;
2555 }
2556 
2557 static int
2558 bge_ioctl(ifp, command, data)
2559 	struct ifnet *ifp;
2560 	u_long command;
2561 	caddr_t data;
2562 {
2563 	struct bge_softc *sc = ifp->if_softc;
2564 	struct ifreq *ifr = (struct ifreq *) data;
2565 	int s, mask, error = 0;
2566 	struct mii_data *mii;
2567 
2568 	s = splimp();
2569 
2570 	switch(command) {
2571 	case SIOCSIFADDR:
2572 	case SIOCGIFADDR:
2573 		error = ether_ioctl(ifp, command, data);
2574 		break;
2575 	case SIOCSIFMTU:
2576 		if (ifr->ifr_mtu > BGE_JUMBO_MTU)
2577 			error = EINVAL;
2578 		else {
2579 			ifp->if_mtu = ifr->ifr_mtu;
2580 			ifp->if_flags &= ~IFF_RUNNING;
2581 			bge_init(sc);
2582 		}
2583 		break;
2584 	case SIOCSIFFLAGS:
2585 		if (ifp->if_flags & IFF_UP) {
2586 			/*
2587 			 * If only the state of the PROMISC flag changed,
2588 			 * then just use the 'set promisc mode' command
2589 			 * instead of reinitializing the entire NIC. Doing
2590 			 * a full re-init means reloading the firmware and
2591 			 * waiting for it to start up, which may take a
2592 			 * second or two.
2593 			 */
2594 			if (ifp->if_flags & IFF_RUNNING &&
2595 			    ifp->if_flags & IFF_PROMISC &&
2596 			    !(sc->bge_if_flags & IFF_PROMISC)) {
2597 				BGE_SETBIT(sc, BGE_RX_MODE,
2598 				    BGE_RXMODE_RX_PROMISC);
2599 			} else if (ifp->if_flags & IFF_RUNNING &&
2600 			    !(ifp->if_flags & IFF_PROMISC) &&
2601 			    sc->bge_if_flags & IFF_PROMISC) {
2602 				BGE_CLRBIT(sc, BGE_RX_MODE,
2603 				    BGE_RXMODE_RX_PROMISC);
2604 			} else
2605 				bge_init(sc);
2606 		} else {
2607 			if (ifp->if_flags & IFF_RUNNING) {
2608 				bge_stop(sc);
2609 			}
2610 		}
2611 		sc->bge_if_flags = ifp->if_flags;
2612 		error = 0;
2613 		break;
2614 	case SIOCADDMULTI:
2615 	case SIOCDELMULTI:
2616 		if (ifp->if_flags & IFF_RUNNING) {
2617 			bge_setmulti(sc);
2618 			error = 0;
2619 		}
2620 		break;
2621 	case SIOCSIFMEDIA:
2622 	case SIOCGIFMEDIA:
2623 		if (sc->bge_tbi) {
2624 			error = ifmedia_ioctl(ifp, ifr,
2625 			    &sc->bge_ifmedia, command);
2626 		} else {
2627 			mii = device_get_softc(sc->bge_miibus);
2628 			error = ifmedia_ioctl(ifp, ifr,
2629 			    &mii->mii_media, command);
2630 		}
2631 		break;
2632         case SIOCSIFCAP:
2633 		mask = ifr->ifr_reqcap ^ ifp->if_capenable;
2634 		if (mask & IFCAP_HWCSUM) {
2635 			if (IFCAP_HWCSUM & ifp->if_capenable)
2636 				ifp->if_capenable &= ~IFCAP_HWCSUM;
2637 			else
2638 				ifp->if_capenable |= IFCAP_HWCSUM;
2639 		}
2640 		error = 0;
2641 		break;
2642 	default:
2643 		error = EINVAL;
2644 		break;
2645 	}
2646 
2647 	(void)splx(s);
2648 
2649 	return(error);
2650 }
2651 
2652 static void
2653 bge_watchdog(ifp)
2654 	struct ifnet *ifp;
2655 {
2656 	struct bge_softc *sc;
2657 
2658 	sc = ifp->if_softc;
2659 
2660 	printf("bge%d: watchdog timeout -- resetting\n", sc->bge_unit);
2661 
2662 	ifp->if_flags &= ~IFF_RUNNING;
2663 	bge_init(sc);
2664 
2665 	ifp->if_oerrors++;
2666 
2667 	return;
2668 }
2669 
2670 /*
2671  * Stop the adapter and free any mbufs allocated to the
2672  * RX and TX lists.
2673  */
2674 static void
2675 bge_stop(sc)
2676 	struct bge_softc *sc;
2677 {
2678 	struct ifnet *ifp;
2679 	struct ifmedia_entry *ifm;
2680 	struct mii_data *mii = NULL;
2681 	int mtmp, itmp;
2682 
2683 	ifp = &sc->arpcom.ac_if;
2684 
2685 	if (!sc->bge_tbi)
2686 		mii = device_get_softc(sc->bge_miibus);
2687 
2688 	untimeout(bge_tick, sc, sc->bge_stat_ch);
2689 
2690 	/*
2691 	 * Disable all of the receiver blocks
2692 	 */
2693 	BGE_CLRBIT(sc, BGE_RX_MODE, BGE_RXMODE_ENABLE);
2694 	BGE_CLRBIT(sc, BGE_RBDI_MODE, BGE_RBDIMODE_ENABLE);
2695 	BGE_CLRBIT(sc, BGE_RXLP_MODE, BGE_RXLPMODE_ENABLE);
2696 	BGE_CLRBIT(sc, BGE_RXLS_MODE, BGE_RXLSMODE_ENABLE);
2697 	BGE_CLRBIT(sc, BGE_RDBDI_MODE, BGE_RBDIMODE_ENABLE);
2698 	BGE_CLRBIT(sc, BGE_RDC_MODE, BGE_RDCMODE_ENABLE);
2699 	BGE_CLRBIT(sc, BGE_RBDC_MODE, BGE_RBDCMODE_ENABLE);
2700 
2701 	/*
2702 	 * Disable all of the transmit blocks
2703 	 */
2704 	BGE_CLRBIT(sc, BGE_SRS_MODE, BGE_SRSMODE_ENABLE);
2705 	BGE_CLRBIT(sc, BGE_SBDI_MODE, BGE_SBDIMODE_ENABLE);
2706 	BGE_CLRBIT(sc, BGE_SDI_MODE, BGE_SDIMODE_ENABLE);
2707 	BGE_CLRBIT(sc, BGE_RDMA_MODE, BGE_RDMAMODE_ENABLE);
2708 	BGE_CLRBIT(sc, BGE_SDC_MODE, BGE_SDCMODE_ENABLE);
2709 	BGE_CLRBIT(sc, BGE_DMAC_MODE, BGE_DMACMODE_ENABLE);
2710 	BGE_CLRBIT(sc, BGE_SBDC_MODE, BGE_SBDCMODE_ENABLE);
2711 
2712 	/*
2713 	 * Shut down all of the memory managers and related
2714 	 * state machines.
2715 	 */
2716 	BGE_CLRBIT(sc, BGE_HCC_MODE, BGE_HCCMODE_ENABLE);
2717 	BGE_CLRBIT(sc, BGE_WDMA_MODE, BGE_WDMAMODE_ENABLE);
2718 	BGE_CLRBIT(sc, BGE_MBCF_MODE, BGE_MBCFMODE_ENABLE);
2719 	CSR_WRITE_4(sc, BGE_FTQ_RESET, 0xFFFFFFFF);
2720 	CSR_WRITE_4(sc, BGE_FTQ_RESET, 0);
2721 	BGE_CLRBIT(sc, BGE_BMAN_MODE, BGE_BMANMODE_ENABLE);
2722 	BGE_CLRBIT(sc, BGE_MARB_MODE, BGE_MARBMODE_ENABLE);
2723 
2724 	/* Disable host interrupts. */
2725 	BGE_SETBIT(sc, BGE_PCI_MISC_CTL, BGE_PCIMISCCTL_MASK_PCI_INTR);
2726 	CSR_WRITE_4(sc, BGE_MBX_IRQ0_LO, 1);
2727 
2728 	/*
2729 	 * Tell firmware we're shutting down.
2730 	 */
2731 	BGE_CLRBIT(sc, BGE_MODE_CTL, BGE_MODECTL_STACKUP);
2732 
2733 	/* Free the RX lists. */
2734 	bge_free_rx_ring_std(sc);
2735 
2736 	/* Free jumbo RX list. */
2737 	bge_free_rx_ring_jumbo(sc);
2738 
2739 	/* Free TX buffers. */
2740 	bge_free_tx_ring(sc);
2741 
2742 	/*
2743 	 * Isolate/power down the PHY, but leave the media selection
2744 	 * unchanged so that things will be put back to normal when
2745 	 * we bring the interface back up.
2746 	 */
2747 	if (!sc->bge_tbi) {
2748 		itmp = ifp->if_flags;
2749 		ifp->if_flags |= IFF_UP;
2750 		ifm = mii->mii_media.ifm_cur;
2751 		mtmp = ifm->ifm_media;
2752 		ifm->ifm_media = IFM_ETHER|IFM_NONE;
2753 		mii_mediachg(mii);
2754 		ifm->ifm_media = mtmp;
2755 		ifp->if_flags = itmp;
2756 	}
2757 
2758 	sc->bge_link = 0;
2759 
2760 	sc->bge_tx_saved_considx = BGE_TXCONS_UNSET;
2761 
2762 	ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE);
2763 
2764 	return;
2765 }
2766 
2767 /*
2768  * Stop all chip I/O so that the kernel's probe routines don't
2769  * get confused by errant DMAs when rebooting.
2770  */
2771 static void
2772 bge_shutdown(dev)
2773 	device_t dev;
2774 {
2775 	struct bge_softc *sc;
2776 
2777 	sc = device_get_softc(dev);
2778 
2779 	bge_stop(sc);
2780 	bge_reset(sc);
2781 
2782 	return;
2783 }
2784