1 /* 2 * Copyright (c) 2001 Wind River Systems 3 * Copyright (c) 1997, 1998, 1999, 2001 4 * Bill Paul <wpaul@windriver.com>. All rights reserved. 5 * 6 * Redistribution and use in source and binary forms, with or without 7 * modification, are permitted provided that the following conditions 8 * are met: 9 * 1. Redistributions of source code must retain the above copyright 10 * notice, this list of conditions and the following disclaimer. 11 * 2. Redistributions in binary form must reproduce the above copyright 12 * notice, this list of conditions and the following disclaimer in the 13 * documentation and/or other materials provided with the distribution. 14 * 3. All advertising materials mentioning features or use of this software 15 * must display the following acknowledgement: 16 * This product includes software developed by Bill Paul. 17 * 4. Neither the name of the author nor the names of any co-contributors 18 * may be used to endorse or promote products derived from this software 19 * without specific prior written permission. 20 * 21 * THIS SOFTWARE IS PROVIDED BY Bill Paul AND CONTRIBUTORS ``AS IS'' AND 22 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 23 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 24 * ARE DISCLAIMED. IN NO EVENT SHALL Bill Paul OR THE VOICES IN HIS HEAD 25 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR 26 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF 27 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS 28 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN 29 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) 30 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF 31 * THE POSSIBILITY OF SUCH DAMAGE. 32 * 33 * $FreeBSD$ 34 */ 35 36 /* 37 * Broadcom BCM570x family gigabit ethernet driver for FreeBSD. 38 * 39 * Written by Bill Paul <wpaul@windriver.com> 40 * Senior Engineer, Wind River Systems 41 */ 42 43 /* 44 * The Broadcom BCM5700 is based on technology originally developed by 45 * Alteon Networks as part of the Tigon I and Tigon II gigabit ethernet 46 * MAC chips. The BCM5700, sometimes refered to as the Tigon III, has 47 * two on-board MIPS R4000 CPUs and can have as much as 16MB of external 48 * SSRAM. The BCM5700 supports TCP, UDP and IP checksum offload, jumbo 49 * frames, highly configurable RX filtering, and 16 RX and TX queues 50 * (which, along with RX filter rules, can be used for QOS applications). 51 * Other features, such as TCP segmentation, may be available as part 52 * of value-added firmware updates. Unlike the Tigon I and Tigon II, 53 * firmware images can be stored in hardware and need not be compiled 54 * into the driver. 55 * 56 * The BCM5700 supports the PCI v2.2 and PCI-X v1.0 standards, and will 57 * function in a 32-bit/64-bit 33/66Mhz bus, or a 64-bit/133Mhz bus. 58 * 59 * The BCM5701 is a single-chip solution incorporating both the BCM5700 60 * MAC and a BCM5401 10/100/1000 PHY. Unlike the BCM5700, the BCM5701 61 * does not support external SSRAM. 62 * 63 * Broadcom also produces a variation of the BCM5700 under the "Altima" 64 * brand name, which is functionally similar but lacks PCI-X support. 65 * 66 * Without external SSRAM, you can only have at most 4 TX rings, 67 * and the use of the mini RX ring is disabled. This seems to imply 68 * that these features are simply not available on the BCM5701. As a 69 * result, this driver does not implement any support for the mini RX 70 * ring. 71 */ 72 73 #include <sys/param.h> 74 #include <sys/systm.h> 75 #include <sys/sockio.h> 76 #include <sys/mbuf.h> 77 #include <sys/malloc.h> 78 #include <sys/kernel.h> 79 #include <sys/socket.h> 80 #include <sys/queue.h> 81 82 #include <net/if.h> 83 #include <net/if_arp.h> 84 #include <net/ethernet.h> 85 #include <net/if_dl.h> 86 #include <net/if_media.h> 87 88 #include <net/bpf.h> 89 90 #include <net/if_types.h> 91 #include <net/if_vlan_var.h> 92 93 #include <netinet/in_systm.h> 94 #include <netinet/in.h> 95 #include <netinet/ip.h> 96 97 #include <vm/vm.h> /* for vtophys */ 98 #include <vm/pmap.h> /* for vtophys */ 99 #include <machine/clock.h> /* for DELAY */ 100 #include <machine/bus_memio.h> 101 #include <machine/bus.h> 102 #include <machine/resource.h> 103 #include <sys/bus.h> 104 #include <sys/rman.h> 105 106 #include <dev/mii/mii.h> 107 #include <dev/mii/miivar.h> 108 #include <dev/mii/miidevs.h> 109 #include <dev/mii/brgphyreg.h> 110 111 #include <pci/pcireg.h> 112 #include <pci/pcivar.h> 113 114 #include <dev/bge/if_bgereg.h> 115 116 #define BGE_CSUM_FEATURES (CSUM_IP | CSUM_TCP | CSUM_UDP | CSUM_IP_FRAGS) 117 118 MODULE_DEPEND(bge, miibus, 1, 1, 1); 119 120 /* "controller miibus0" required. See GENERIC if you get errors here. */ 121 #include "miibus_if.h" 122 123 #if !defined(lint) 124 static const char rcsid[] = 125 "$FreeBSD$"; 126 #endif 127 128 /* 129 * Various supported device vendors/types and their names. Note: the 130 * spec seems to indicate that the hardware still has Alteon's vendor 131 * ID burned into it, though it will always be overriden by the vendor 132 * ID in the EEPROM. Just to be safe, we cover all possibilities. 133 */ 134 135 static struct bge_type bge_devs[] = { 136 { ALT_VENDORID, ALT_DEVICEID_BCM5700, 137 "Broadcom BCM5700 Gigabit Ethernet" }, 138 { ALT_VENDORID, ALT_DEVICEID_BCM5701, 139 "Broadcom BCM5701 Gigabit Ethernet" }, 140 { BCOM_VENDORID, BCOM_DEVICEID_BCM5700, 141 "Broadcom BCM5700 Gigabit Ethernet" }, 142 { BCOM_VENDORID, BCOM_DEVICEID_BCM5701, 143 "Broadcom BCM5701 Gigabit Ethernet" }, 144 { SK_VENDORID, SK_DEVICEID_ALTIMA, 145 "SysKonnect Gigabit Ethernet" }, 146 { ALTIMA_VENDORID, ALTIMA_DEVICE_AC1000, 147 "Altima AC1000 Gigabit Ethernet" }, 148 { 0, 0, NULL } 149 }; 150 151 static int bge_probe (device_t); 152 static int bge_attach (device_t); 153 static int bge_detach (device_t); 154 static void bge_release_resources 155 (struct bge_softc *); 156 static void bge_txeof (struct bge_softc *); 157 static void bge_rxeof (struct bge_softc *); 158 159 static void bge_tick (void *); 160 static void bge_stats_update (struct bge_softc *); 161 static int bge_encap (struct bge_softc *, struct mbuf *, 162 u_int32_t *); 163 164 static void bge_intr (void *); 165 static void bge_start (struct ifnet *); 166 static int bge_ioctl (struct ifnet *, u_long, caddr_t); 167 static void bge_init (void *); 168 static void bge_stop (struct bge_softc *); 169 static void bge_watchdog (struct ifnet *); 170 static void bge_shutdown (device_t); 171 static int bge_ifmedia_upd (struct ifnet *); 172 static void bge_ifmedia_sts (struct ifnet *, struct ifmediareq *); 173 174 static u_int8_t bge_eeprom_getbyte (struct bge_softc *, int, u_int8_t *); 175 static int bge_read_eeprom (struct bge_softc *, caddr_t, int, int); 176 177 static u_int32_t bge_crc (caddr_t); 178 static void bge_setmulti (struct bge_softc *); 179 180 static void bge_handle_events (struct bge_softc *); 181 static int bge_alloc_jumbo_mem (struct bge_softc *); 182 static void bge_free_jumbo_mem (struct bge_softc *); 183 static void *bge_jalloc (struct bge_softc *); 184 static void bge_jfree (caddr_t, void *); 185 static int bge_newbuf_std (struct bge_softc *, int, struct mbuf *); 186 static int bge_newbuf_jumbo (struct bge_softc *, int, struct mbuf *); 187 static int bge_init_rx_ring_std (struct bge_softc *); 188 static void bge_free_rx_ring_std (struct bge_softc *); 189 static int bge_init_rx_ring_jumbo (struct bge_softc *); 190 static void bge_free_rx_ring_jumbo (struct bge_softc *); 191 static void bge_free_tx_ring (struct bge_softc *); 192 static int bge_init_tx_ring (struct bge_softc *); 193 194 static int bge_chipinit (struct bge_softc *); 195 static int bge_blockinit (struct bge_softc *); 196 197 #ifdef notdef 198 static u_int8_t bge_vpd_readbyte(struct bge_softc *, int); 199 static void bge_vpd_read_res (struct bge_softc *, struct vpd_res *, int); 200 static void bge_vpd_read (struct bge_softc *); 201 #endif 202 203 static u_int32_t bge_readmem_ind 204 (struct bge_softc *, int); 205 static void bge_writemem_ind (struct bge_softc *, int, int); 206 #ifdef notdef 207 static u_int32_t bge_readreg_ind 208 (struct bge_softc *, int); 209 #endif 210 static void bge_writereg_ind (struct bge_softc *, int, int); 211 212 static int bge_miibus_readreg (device_t, int, int); 213 static int bge_miibus_writereg (device_t, int, int, int); 214 static void bge_miibus_statchg (device_t); 215 216 static void bge_reset (struct bge_softc *); 217 static void bge_phy_hack (struct bge_softc *); 218 219 static device_method_t bge_methods[] = { 220 /* Device interface */ 221 DEVMETHOD(device_probe, bge_probe), 222 DEVMETHOD(device_attach, bge_attach), 223 DEVMETHOD(device_detach, bge_detach), 224 DEVMETHOD(device_shutdown, bge_shutdown), 225 226 /* bus interface */ 227 DEVMETHOD(bus_print_child, bus_generic_print_child), 228 DEVMETHOD(bus_driver_added, bus_generic_driver_added), 229 230 /* MII interface */ 231 DEVMETHOD(miibus_readreg, bge_miibus_readreg), 232 DEVMETHOD(miibus_writereg, bge_miibus_writereg), 233 DEVMETHOD(miibus_statchg, bge_miibus_statchg), 234 235 { 0, 0 } 236 }; 237 238 static driver_t bge_driver = { 239 "bge", 240 bge_methods, 241 sizeof(struct bge_softc) 242 }; 243 244 static devclass_t bge_devclass; 245 246 DRIVER_MODULE(if_bge, pci, bge_driver, bge_devclass, 0, 0); 247 DRIVER_MODULE(miibus, bge, miibus_driver, miibus_devclass, 0, 0); 248 249 static u_int32_t 250 bge_readmem_ind(sc, off) 251 struct bge_softc *sc; 252 int off; 253 { 254 device_t dev; 255 256 dev = sc->bge_dev; 257 258 pci_write_config(dev, BGE_PCI_MEMWIN_BASEADDR, off, 4); 259 return(pci_read_config(dev, BGE_PCI_MEMWIN_DATA, 4)); 260 } 261 262 static void 263 bge_writemem_ind(sc, off, val) 264 struct bge_softc *sc; 265 int off, val; 266 { 267 device_t dev; 268 269 dev = sc->bge_dev; 270 271 pci_write_config(dev, BGE_PCI_MEMWIN_BASEADDR, off, 4); 272 pci_write_config(dev, BGE_PCI_MEMWIN_DATA, val, 4); 273 274 return; 275 } 276 277 #ifdef notdef 278 static u_int32_t 279 bge_readreg_ind(sc, off) 280 struct bge_softc *sc; 281 int off; 282 { 283 device_t dev; 284 285 dev = sc->bge_dev; 286 287 pci_write_config(dev, BGE_PCI_REG_BASEADDR, off, 4); 288 return(pci_read_config(dev, BGE_PCI_REG_DATA, 4)); 289 } 290 #endif 291 292 static void 293 bge_writereg_ind(sc, off, val) 294 struct bge_softc *sc; 295 int off, val; 296 { 297 device_t dev; 298 299 dev = sc->bge_dev; 300 301 pci_write_config(dev, BGE_PCI_REG_BASEADDR, off, 4); 302 pci_write_config(dev, BGE_PCI_REG_DATA, val, 4); 303 304 return; 305 } 306 307 #ifdef notdef 308 static u_int8_t 309 bge_vpd_readbyte(sc, addr) 310 struct bge_softc *sc; 311 int addr; 312 { 313 int i; 314 device_t dev; 315 u_int32_t val; 316 317 dev = sc->bge_dev; 318 pci_write_config(dev, BGE_PCI_VPD_ADDR, addr, 2); 319 for (i = 0; i < BGE_TIMEOUT * 10; i++) { 320 DELAY(10); 321 if (pci_read_config(dev, BGE_PCI_VPD_ADDR, 2) & BGE_VPD_FLAG) 322 break; 323 } 324 325 if (i == BGE_TIMEOUT) { 326 printf("bge%d: VPD read timed out\n", sc->bge_unit); 327 return(0); 328 } 329 330 val = pci_read_config(dev, BGE_PCI_VPD_DATA, 4); 331 332 return((val >> ((addr % 4) * 8)) & 0xFF); 333 } 334 335 static void 336 bge_vpd_read_res(sc, res, addr) 337 struct bge_softc *sc; 338 struct vpd_res *res; 339 int addr; 340 { 341 int i; 342 u_int8_t *ptr; 343 344 ptr = (u_int8_t *)res; 345 for (i = 0; i < sizeof(struct vpd_res); i++) 346 ptr[i] = bge_vpd_readbyte(sc, i + addr); 347 348 return; 349 } 350 351 static void 352 bge_vpd_read(sc) 353 struct bge_softc *sc; 354 { 355 int pos = 0, i; 356 struct vpd_res res; 357 358 if (sc->bge_vpd_prodname != NULL) 359 free(sc->bge_vpd_prodname, M_DEVBUF); 360 if (sc->bge_vpd_readonly != NULL) 361 free(sc->bge_vpd_readonly, M_DEVBUF); 362 sc->bge_vpd_prodname = NULL; 363 sc->bge_vpd_readonly = NULL; 364 365 bge_vpd_read_res(sc, &res, pos); 366 367 if (res.vr_id != VPD_RES_ID) { 368 printf("bge%d: bad VPD resource id: expected %x got %x\n", 369 sc->bge_unit, VPD_RES_ID, res.vr_id); 370 return; 371 } 372 373 pos += sizeof(res); 374 sc->bge_vpd_prodname = malloc(res.vr_len + 1, M_DEVBUF, M_NOWAIT); 375 for (i = 0; i < res.vr_len; i++) 376 sc->bge_vpd_prodname[i] = bge_vpd_readbyte(sc, i + pos); 377 sc->bge_vpd_prodname[i] = '\0'; 378 pos += i; 379 380 bge_vpd_read_res(sc, &res, pos); 381 382 if (res.vr_id != VPD_RES_READ) { 383 printf("bge%d: bad VPD resource id: expected %x got %x\n", 384 sc->bge_unit, VPD_RES_READ, res.vr_id); 385 return; 386 } 387 388 pos += sizeof(res); 389 sc->bge_vpd_readonly = malloc(res.vr_len, M_DEVBUF, M_NOWAIT); 390 for (i = 0; i < res.vr_len + 1; i++) 391 sc->bge_vpd_readonly[i] = bge_vpd_readbyte(sc, i + pos); 392 393 return; 394 } 395 #endif 396 397 /* 398 * Read a byte of data stored in the EEPROM at address 'addr.' The 399 * BCM570x supports both the traditional bitbang interface and an 400 * auto access interface for reading the EEPROM. We use the auto 401 * access method. 402 */ 403 static u_int8_t 404 bge_eeprom_getbyte(sc, addr, dest) 405 struct bge_softc *sc; 406 int addr; 407 u_int8_t *dest; 408 { 409 int i; 410 u_int32_t byte = 0; 411 412 /* 413 * Enable use of auto EEPROM access so we can avoid 414 * having to use the bitbang method. 415 */ 416 BGE_SETBIT(sc, BGE_MISC_LOCAL_CTL, BGE_MLC_AUTO_EEPROM); 417 418 /* Reset the EEPROM, load the clock period. */ 419 CSR_WRITE_4(sc, BGE_EE_ADDR, 420 BGE_EEADDR_RESET|BGE_EEHALFCLK(BGE_HALFCLK_384SCL)); 421 DELAY(20); 422 423 /* Issue the read EEPROM command. */ 424 CSR_WRITE_4(sc, BGE_EE_ADDR, BGE_EE_READCMD | addr); 425 426 /* Wait for completion */ 427 for(i = 0; i < BGE_TIMEOUT * 10; i++) { 428 DELAY(10); 429 if (CSR_READ_4(sc, BGE_EE_ADDR) & BGE_EEADDR_DONE) 430 break; 431 } 432 433 if (i == BGE_TIMEOUT) { 434 printf("bge%d: eeprom read timed out\n", sc->bge_unit); 435 return(0); 436 } 437 438 /* Get result. */ 439 byte = CSR_READ_4(sc, BGE_EE_DATA); 440 441 *dest = (byte >> ((addr % 4) * 8)) & 0xFF; 442 443 return(0); 444 } 445 446 /* 447 * Read a sequence of bytes from the EEPROM. 448 */ 449 static int 450 bge_read_eeprom(sc, dest, off, cnt) 451 struct bge_softc *sc; 452 caddr_t dest; 453 int off; 454 int cnt; 455 { 456 int err = 0, i; 457 u_int8_t byte = 0; 458 459 for (i = 0; i < cnt; i++) { 460 err = bge_eeprom_getbyte(sc, off + i, &byte); 461 if (err) 462 break; 463 *(dest + i) = byte; 464 } 465 466 return(err ? 1 : 0); 467 } 468 469 static int 470 bge_miibus_readreg(dev, phy, reg) 471 device_t dev; 472 int phy, reg; 473 { 474 struct bge_softc *sc; 475 struct ifnet *ifp; 476 u_int32_t val; 477 int i; 478 479 sc = device_get_softc(dev); 480 ifp = &sc->arpcom.ac_if; 481 482 if (sc->bge_asicrev == BGE_ASICREV_BCM5701_B5 && phy != 1) 483 return(0); 484 485 CSR_WRITE_4(sc, BGE_MI_COMM, BGE_MICMD_READ|BGE_MICOMM_BUSY| 486 BGE_MIPHY(phy)|BGE_MIREG(reg)); 487 488 for (i = 0; i < BGE_TIMEOUT; i++) { 489 val = CSR_READ_4(sc, BGE_MI_COMM); 490 if (!(val & BGE_MICOMM_BUSY)) 491 break; 492 } 493 494 if (i == BGE_TIMEOUT) { 495 printf("bge%d: PHY read timed out\n", sc->bge_unit); 496 return(0); 497 } 498 499 val = CSR_READ_4(sc, BGE_MI_COMM); 500 501 if (val & BGE_MICOMM_READFAIL) 502 return(0); 503 504 return(val & 0xFFFF); 505 } 506 507 static int 508 bge_miibus_writereg(dev, phy, reg, val) 509 device_t dev; 510 int phy, reg, val; 511 { 512 struct bge_softc *sc; 513 int i; 514 515 sc = device_get_softc(dev); 516 517 CSR_WRITE_4(sc, BGE_MI_COMM, BGE_MICMD_WRITE|BGE_MICOMM_BUSY| 518 BGE_MIPHY(phy)|BGE_MIREG(reg)|val); 519 520 for (i = 0; i < BGE_TIMEOUT; i++) { 521 if (!(CSR_READ_4(sc, BGE_MI_COMM) & BGE_MICOMM_BUSY)) 522 break; 523 } 524 525 if (i == BGE_TIMEOUT) { 526 printf("bge%d: PHY read timed out\n", sc->bge_unit); 527 return(0); 528 } 529 530 return(0); 531 } 532 533 static void 534 bge_miibus_statchg(dev) 535 device_t dev; 536 { 537 struct bge_softc *sc; 538 struct mii_data *mii; 539 540 sc = device_get_softc(dev); 541 mii = device_get_softc(sc->bge_miibus); 542 543 BGE_CLRBIT(sc, BGE_MAC_MODE, BGE_MACMODE_PORTMODE); 544 if (IFM_SUBTYPE(mii->mii_media_active) == IFM_1000_T) { 545 BGE_SETBIT(sc, BGE_MAC_MODE, BGE_PORTMODE_GMII); 546 } else { 547 BGE_SETBIT(sc, BGE_MAC_MODE, BGE_PORTMODE_MII); 548 } 549 550 if ((mii->mii_media_active & IFM_GMASK) == IFM_FDX) { 551 BGE_CLRBIT(sc, BGE_MAC_MODE, BGE_MACMODE_HALF_DUPLEX); 552 } else { 553 BGE_SETBIT(sc, BGE_MAC_MODE, BGE_MACMODE_HALF_DUPLEX); 554 } 555 556 bge_phy_hack(sc); 557 558 return; 559 } 560 561 /* 562 * Handle events that have triggered interrupts. 563 */ 564 static void 565 bge_handle_events(sc) 566 struct bge_softc *sc; 567 { 568 569 return; 570 } 571 572 /* 573 * Memory management for jumbo frames. 574 */ 575 576 static int 577 bge_alloc_jumbo_mem(sc) 578 struct bge_softc *sc; 579 { 580 caddr_t ptr; 581 register int i; 582 struct bge_jpool_entry *entry; 583 584 /* Grab a big chunk o' storage. */ 585 sc->bge_cdata.bge_jumbo_buf = contigmalloc(BGE_JMEM, M_DEVBUF, 586 M_NOWAIT, 0, 0xffffffff, PAGE_SIZE, 0); 587 588 if (sc->bge_cdata.bge_jumbo_buf == NULL) { 589 printf("bge%d: no memory for jumbo buffers!\n", sc->bge_unit); 590 return(ENOBUFS); 591 } 592 593 SLIST_INIT(&sc->bge_jfree_listhead); 594 SLIST_INIT(&sc->bge_jinuse_listhead); 595 596 /* 597 * Now divide it up into 9K pieces and save the addresses 598 * in an array. 599 */ 600 ptr = sc->bge_cdata.bge_jumbo_buf; 601 for (i = 0; i < BGE_JSLOTS; i++) { 602 sc->bge_cdata.bge_jslots[i] = ptr; 603 ptr += BGE_JLEN; 604 entry = malloc(sizeof(struct bge_jpool_entry), 605 M_DEVBUF, M_NOWAIT); 606 if (entry == NULL) { 607 contigfree(sc->bge_cdata.bge_jumbo_buf, 608 BGE_JMEM, M_DEVBUF); 609 sc->bge_cdata.bge_jumbo_buf = NULL; 610 printf("bge%d: no memory for jumbo " 611 "buffer queue!\n", sc->bge_unit); 612 return(ENOBUFS); 613 } 614 entry->slot = i; 615 SLIST_INSERT_HEAD(&sc->bge_jfree_listhead, 616 entry, jpool_entries); 617 } 618 619 return(0); 620 } 621 622 static void 623 bge_free_jumbo_mem(sc) 624 struct bge_softc *sc; 625 { 626 int i; 627 struct bge_jpool_entry *entry; 628 629 for (i = 0; i < BGE_JSLOTS; i++) { 630 entry = SLIST_FIRST(&sc->bge_jfree_listhead); 631 SLIST_REMOVE_HEAD(&sc->bge_jfree_listhead, jpool_entries); 632 free(entry, M_DEVBUF); 633 } 634 635 contigfree(sc->bge_cdata.bge_jumbo_buf, BGE_JMEM, M_DEVBUF); 636 637 return; 638 } 639 640 /* 641 * Allocate a jumbo buffer. 642 */ 643 static void * 644 bge_jalloc(sc) 645 struct bge_softc *sc; 646 { 647 struct bge_jpool_entry *entry; 648 649 entry = SLIST_FIRST(&sc->bge_jfree_listhead); 650 651 if (entry == NULL) { 652 printf("bge%d: no free jumbo buffers\n", sc->bge_unit); 653 return(NULL); 654 } 655 656 SLIST_REMOVE_HEAD(&sc->bge_jfree_listhead, jpool_entries); 657 SLIST_INSERT_HEAD(&sc->bge_jinuse_listhead, entry, jpool_entries); 658 return(sc->bge_cdata.bge_jslots[entry->slot]); 659 } 660 661 /* 662 * Release a jumbo buffer. 663 */ 664 static void 665 bge_jfree(buf, args) 666 caddr_t buf; 667 void *args; 668 { 669 struct bge_jpool_entry *entry; 670 struct bge_softc *sc; 671 int i; 672 673 /* Extract the softc struct pointer. */ 674 sc = (struct bge_softc *)args; 675 676 if (sc == NULL) 677 panic("bge_jfree: can't find softc pointer!"); 678 679 /* calculate the slot this buffer belongs to */ 680 681 i = ((vm_offset_t)buf 682 - (vm_offset_t)sc->bge_cdata.bge_jumbo_buf) / BGE_JLEN; 683 684 if ((i < 0) || (i >= BGE_JSLOTS)) 685 panic("bge_jfree: asked to free buffer that we don't manage!"); 686 687 entry = SLIST_FIRST(&sc->bge_jinuse_listhead); 688 if (entry == NULL) 689 panic("bge_jfree: buffer not in use!"); 690 entry->slot = i; 691 SLIST_REMOVE_HEAD(&sc->bge_jinuse_listhead, jpool_entries); 692 SLIST_INSERT_HEAD(&sc->bge_jfree_listhead, entry, jpool_entries); 693 694 return; 695 } 696 697 698 /* 699 * Intialize a standard receive ring descriptor. 700 */ 701 static int 702 bge_newbuf_std(sc, i, m) 703 struct bge_softc *sc; 704 int i; 705 struct mbuf *m; 706 { 707 struct mbuf *m_new = NULL; 708 struct bge_rx_bd *r; 709 710 if (m == NULL) { 711 MGETHDR(m_new, M_DONTWAIT, MT_DATA); 712 if (m_new == NULL) { 713 return(ENOBUFS); 714 } 715 716 MCLGET(m_new, M_DONTWAIT); 717 if (!(m_new->m_flags & M_EXT)) { 718 m_freem(m_new); 719 return(ENOBUFS); 720 } 721 m_new->m_len = m_new->m_pkthdr.len = MCLBYTES; 722 } else { 723 m_new = m; 724 m_new->m_len = m_new->m_pkthdr.len = MCLBYTES; 725 m_new->m_data = m_new->m_ext.ext_buf; 726 } 727 728 if (!sc->bge_rx_alignment_bug) 729 m_adj(m_new, ETHER_ALIGN); 730 sc->bge_cdata.bge_rx_std_chain[i] = m_new; 731 r = &sc->bge_rdata->bge_rx_std_ring[i]; 732 BGE_HOSTADDR(r->bge_addr) = vtophys(mtod(m_new, caddr_t)); 733 r->bge_flags = BGE_RXBDFLAG_END; 734 r->bge_len = m_new->m_len; 735 r->bge_idx = i; 736 737 return(0); 738 } 739 740 /* 741 * Initialize a jumbo receive ring descriptor. This allocates 742 * a jumbo buffer from the pool managed internally by the driver. 743 */ 744 static int 745 bge_newbuf_jumbo(sc, i, m) 746 struct bge_softc *sc; 747 int i; 748 struct mbuf *m; 749 { 750 struct mbuf *m_new = NULL; 751 struct bge_rx_bd *r; 752 753 if (m == NULL) { 754 caddr_t *buf = NULL; 755 756 /* Allocate the mbuf. */ 757 MGETHDR(m_new, M_DONTWAIT, MT_DATA); 758 if (m_new == NULL) { 759 return(ENOBUFS); 760 } 761 762 /* Allocate the jumbo buffer */ 763 buf = bge_jalloc(sc); 764 if (buf == NULL) { 765 m_freem(m_new); 766 printf("bge%d: jumbo allocation failed " 767 "-- packet dropped!\n", sc->bge_unit); 768 return(ENOBUFS); 769 } 770 771 /* Attach the buffer to the mbuf. */ 772 m_new->m_data = (void *) buf; 773 m_new->m_len = m_new->m_pkthdr.len = BGE_JUMBO_FRAMELEN; 774 MEXTADD(m_new, buf, BGE_JUMBO_FRAMELEN, bge_jfree, 775 (struct bge_softc *)sc, 0, EXT_NET_DRV); 776 } else { 777 m_new = m; 778 m_new->m_data = m_new->m_ext.ext_buf; 779 m_new->m_ext.ext_size = BGE_JUMBO_FRAMELEN; 780 } 781 782 if (!sc->bge_rx_alignment_bug) 783 m_adj(m_new, ETHER_ALIGN); 784 /* Set up the descriptor. */ 785 r = &sc->bge_rdata->bge_rx_jumbo_ring[i]; 786 sc->bge_cdata.bge_rx_jumbo_chain[i] = m_new; 787 BGE_HOSTADDR(r->bge_addr) = vtophys(mtod(m_new, caddr_t)); 788 r->bge_flags = BGE_RXBDFLAG_END|BGE_RXBDFLAG_JUMBO_RING; 789 r->bge_len = m_new->m_len; 790 r->bge_idx = i; 791 792 return(0); 793 } 794 795 /* 796 * The standard receive ring has 512 entries in it. At 2K per mbuf cluster, 797 * that's 1MB or memory, which is a lot. For now, we fill only the first 798 * 256 ring entries and hope that our CPU is fast enough to keep up with 799 * the NIC. 800 */ 801 static int 802 bge_init_rx_ring_std(sc) 803 struct bge_softc *sc; 804 { 805 int i; 806 807 for (i = 0; i < BGE_SSLOTS; i++) { 808 if (bge_newbuf_std(sc, i, NULL) == ENOBUFS) 809 return(ENOBUFS); 810 }; 811 812 sc->bge_std = i - 1; 813 CSR_WRITE_4(sc, BGE_MBX_RX_STD_PROD_LO, sc->bge_std); 814 815 return(0); 816 } 817 818 static void 819 bge_free_rx_ring_std(sc) 820 struct bge_softc *sc; 821 { 822 int i; 823 824 for (i = 0; i < BGE_STD_RX_RING_CNT; i++) { 825 if (sc->bge_cdata.bge_rx_std_chain[i] != NULL) { 826 m_freem(sc->bge_cdata.bge_rx_std_chain[i]); 827 sc->bge_cdata.bge_rx_std_chain[i] = NULL; 828 } 829 bzero((char *)&sc->bge_rdata->bge_rx_std_ring[i], 830 sizeof(struct bge_rx_bd)); 831 } 832 833 return; 834 } 835 836 static int 837 bge_init_rx_ring_jumbo(sc) 838 struct bge_softc *sc; 839 { 840 int i; 841 struct bge_rcb *rcb; 842 struct bge_rcb_opaque *rcbo; 843 844 for (i = 0; i < BGE_JUMBO_RX_RING_CNT; i++) { 845 if (bge_newbuf_jumbo(sc, i, NULL) == ENOBUFS) 846 return(ENOBUFS); 847 }; 848 849 sc->bge_jumbo = i - 1; 850 851 rcb = &sc->bge_rdata->bge_info.bge_jumbo_rx_rcb; 852 rcbo = (struct bge_rcb_opaque *)rcb; 853 rcb->bge_flags = 0; 854 CSR_WRITE_4(sc, BGE_RX_JUMBO_RCB_MAXLEN_FLAGS, rcbo->bge_reg2); 855 856 CSR_WRITE_4(sc, BGE_MBX_RX_JUMBO_PROD_LO, sc->bge_jumbo); 857 858 return(0); 859 } 860 861 static void 862 bge_free_rx_ring_jumbo(sc) 863 struct bge_softc *sc; 864 { 865 int i; 866 867 for (i = 0; i < BGE_JUMBO_RX_RING_CNT; i++) { 868 if (sc->bge_cdata.bge_rx_jumbo_chain[i] != NULL) { 869 m_freem(sc->bge_cdata.bge_rx_jumbo_chain[i]); 870 sc->bge_cdata.bge_rx_jumbo_chain[i] = NULL; 871 } 872 bzero((char *)&sc->bge_rdata->bge_rx_jumbo_ring[i], 873 sizeof(struct bge_rx_bd)); 874 } 875 876 return; 877 } 878 879 static void 880 bge_free_tx_ring(sc) 881 struct bge_softc *sc; 882 { 883 int i; 884 885 if (sc->bge_rdata->bge_tx_ring == NULL) 886 return; 887 888 for (i = 0; i < BGE_TX_RING_CNT; i++) { 889 if (sc->bge_cdata.bge_tx_chain[i] != NULL) { 890 m_freem(sc->bge_cdata.bge_tx_chain[i]); 891 sc->bge_cdata.bge_tx_chain[i] = NULL; 892 } 893 bzero((char *)&sc->bge_rdata->bge_tx_ring[i], 894 sizeof(struct bge_tx_bd)); 895 } 896 897 return; 898 } 899 900 static int 901 bge_init_tx_ring(sc) 902 struct bge_softc *sc; 903 { 904 sc->bge_txcnt = 0; 905 sc->bge_tx_saved_considx = 0; 906 CSR_WRITE_4(sc, BGE_MBX_TX_HOST_PROD0_LO, 0); 907 CSR_WRITE_4(sc, BGE_MBX_TX_NIC_PROD0_LO, 0); 908 909 return(0); 910 } 911 912 #define BGE_POLY 0xEDB88320 913 914 static u_int32_t 915 bge_crc(addr) 916 caddr_t addr; 917 { 918 u_int32_t idx, bit, data, crc; 919 920 /* Compute CRC for the address value. */ 921 crc = 0xFFFFFFFF; /* initial value */ 922 923 for (idx = 0; idx < 6; idx++) { 924 for (data = *addr++, bit = 0; bit < 8; bit++, data >>= 1) 925 crc = (crc >> 1) ^ (((crc ^ data) & 1) ? BGE_POLY : 0); 926 } 927 928 return(crc & 0x7F); 929 } 930 931 static void 932 bge_setmulti(sc) 933 struct bge_softc *sc; 934 { 935 struct ifnet *ifp; 936 struct ifmultiaddr *ifma; 937 u_int32_t hashes[4] = { 0, 0, 0, 0 }; 938 int h, i; 939 940 ifp = &sc->arpcom.ac_if; 941 942 if (ifp->if_flags & IFF_ALLMULTI || ifp->if_flags & IFF_PROMISC) { 943 for (i = 0; i < 4; i++) 944 CSR_WRITE_4(sc, BGE_MAR0 + (i * 4), 0xFFFFFFFF); 945 return; 946 } 947 948 /* First, zot all the existing filters. */ 949 for (i = 0; i < 4; i++) 950 CSR_WRITE_4(sc, BGE_MAR0 + (i * 4), 0); 951 952 /* Now program new ones. */ 953 TAILQ_FOREACH(ifma, &ifp->if_multiaddrs, ifma_link) { 954 if (ifma->ifma_addr->sa_family != AF_LINK) 955 continue; 956 h = bge_crc(LLADDR((struct sockaddr_dl *)ifma->ifma_addr)); 957 hashes[(h & 0x60) >> 5] |= 1 << (h & 0x1F); 958 } 959 960 for (i = 0; i < 4; i++) 961 CSR_WRITE_4(sc, BGE_MAR0 + (i * 4), hashes[i]); 962 963 return; 964 } 965 966 /* 967 * Do endian, PCI and DMA initialization. Also check the on-board ROM 968 * self-test results. 969 */ 970 static int 971 bge_chipinit(sc) 972 struct bge_softc *sc; 973 { 974 u_int32_t cachesize; 975 int i; 976 977 /* Set endianness before we access any non-PCI registers. */ 978 #if BYTE_ORDER == BIG_ENDIAN 979 pci_write_config(sc->bge_dev, BGE_PCI_MISC_CTL, 980 BGE_BIGENDIAN_INIT, 4); 981 #else 982 pci_write_config(sc->bge_dev, BGE_PCI_MISC_CTL, 983 BGE_LITTLEENDIAN_INIT, 4); 984 #endif 985 986 /* 987 * Check the 'ROM failed' bit on the RX CPU to see if 988 * self-tests passed. 989 */ 990 if (CSR_READ_4(sc, BGE_RXCPU_MODE) & BGE_RXCPUMODE_ROMFAIL) { 991 printf("bge%d: RX CPU self-diagnostics failed!\n", 992 sc->bge_unit); 993 return(ENODEV); 994 } 995 996 /* Clear the MAC control register */ 997 CSR_WRITE_4(sc, BGE_MAC_MODE, 0); 998 999 /* 1000 * Clear the MAC statistics block in the NIC's 1001 * internal memory. 1002 */ 1003 for (i = BGE_STATS_BLOCK; 1004 i < BGE_STATS_BLOCK_END + 1; i += sizeof(u_int32_t)) 1005 BGE_MEMWIN_WRITE(sc, i, 0); 1006 1007 for (i = BGE_STATUS_BLOCK; 1008 i < BGE_STATUS_BLOCK_END + 1; i += sizeof(u_int32_t)) 1009 BGE_MEMWIN_WRITE(sc, i, 0); 1010 1011 /* Set up the PCI DMA control register. */ 1012 pci_write_config(sc->bge_dev, BGE_PCI_DMA_RW_CTL, 1013 BGE_PCI_READ_CMD|BGE_PCI_WRITE_CMD|0x0F, 4); 1014 1015 /* 1016 * Set up general mode register. 1017 */ 1018 CSR_WRITE_4(sc, BGE_MODE_CTL, BGE_MODECTL_WORDSWAP_NONFRAME| 1019 BGE_MODECTL_BYTESWAP_DATA|BGE_MODECTL_WORDSWAP_DATA| 1020 BGE_MODECTL_MAC_ATTN_INTR|BGE_MODECTL_HOST_SEND_BDS| 1021 BGE_MODECTL_NO_RX_CRC|BGE_MODECTL_TX_NO_PHDR_CSUM| 1022 BGE_MODECTL_RX_NO_PHDR_CSUM); 1023 1024 /* Get cache line size. */ 1025 cachesize = pci_read_config(sc->bge_dev, BGE_PCI_CACHESZ, 1); 1026 1027 /* 1028 * Avoid violating PCI spec on certain chip revs. 1029 */ 1030 if (pci_read_config(sc->bge_dev, BGE_PCI_CMD, 4) & PCIM_CMD_MWIEN) { 1031 switch(cachesize) { 1032 case 1: 1033 PCI_SETBIT(sc->bge_dev, BGE_PCI_DMA_RW_CTL, 1034 BGE_PCI_WRITE_BNDRY_16BYTES, 4); 1035 break; 1036 case 2: 1037 PCI_SETBIT(sc->bge_dev, BGE_PCI_DMA_RW_CTL, 1038 BGE_PCI_WRITE_BNDRY_32BYTES, 4); 1039 break; 1040 case 4: 1041 PCI_SETBIT(sc->bge_dev, BGE_PCI_DMA_RW_CTL, 1042 BGE_PCI_WRITE_BNDRY_64BYTES, 4); 1043 break; 1044 case 8: 1045 PCI_SETBIT(sc->bge_dev, BGE_PCI_DMA_RW_CTL, 1046 BGE_PCI_WRITE_BNDRY_128BYTES, 4); 1047 break; 1048 case 16: 1049 PCI_SETBIT(sc->bge_dev, BGE_PCI_DMA_RW_CTL, 1050 BGE_PCI_WRITE_BNDRY_256BYTES, 4); 1051 break; 1052 case 32: 1053 PCI_SETBIT(sc->bge_dev, BGE_PCI_DMA_RW_CTL, 1054 BGE_PCI_WRITE_BNDRY_512BYTES, 4); 1055 break; 1056 case 64: 1057 PCI_SETBIT(sc->bge_dev, BGE_PCI_DMA_RW_CTL, 1058 BGE_PCI_WRITE_BNDRY_1024BYTES, 4); 1059 break; 1060 default: 1061 /* Disable PCI memory write and invalidate. */ 1062 if (bootverbose) 1063 printf("bge%d: cache line size %d not " 1064 "supported; disabling PCI MWI\n", 1065 sc->bge_unit, cachesize); 1066 PCI_CLRBIT(sc->bge_dev, BGE_PCI_CMD, 1067 PCIM_CMD_MWIEN, 4); 1068 break; 1069 } 1070 } 1071 1072 #ifdef __brokenalpha__ 1073 /* 1074 * Must insure that we do not cross an 8K (bytes) boundary 1075 * for DMA reads. Our highest limit is 1K bytes. This is a 1076 * restriction on some ALPHA platforms with early revision 1077 * 21174 PCI chipsets, such as the AlphaPC 164lx 1078 */ 1079 PCI_SETBIT(sc, BGE_PCI_DMA_RW_CTL, BGE_PCI_READ_BNDRY_1024, 4); 1080 #endif 1081 1082 /* Set the timer prescaler (always 66Mhz) */ 1083 CSR_WRITE_4(sc, BGE_MISC_CFG, 65 << 1/*BGE_32BITTIME_66MHZ*/); 1084 1085 return(0); 1086 } 1087 1088 static int 1089 bge_blockinit(sc) 1090 struct bge_softc *sc; 1091 { 1092 struct bge_rcb *rcb; 1093 struct bge_rcb_opaque *rcbo; 1094 int i; 1095 1096 /* 1097 * Initialize the memory window pointer register so that 1098 * we can access the first 32K of internal NIC RAM. This will 1099 * allow us to set up the TX send ring RCBs and the RX return 1100 * ring RCBs, plus other things which live in NIC memory. 1101 */ 1102 CSR_WRITE_4(sc, BGE_PCI_MEMWIN_BASEADDR, 0); 1103 1104 /* Configure mbuf memory pool */ 1105 if (sc->bge_extram) { 1106 CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_BASEADDR, BGE_EXT_SSRAM); 1107 CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_LEN, 0x18000); 1108 } else { 1109 CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_BASEADDR, BGE_BUFFPOOL_1); 1110 CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_LEN, 0x18000); 1111 } 1112 1113 /* Configure DMA resource pool */ 1114 CSR_WRITE_4(sc, BGE_BMAN_DMA_DESCPOOL_BASEADDR, BGE_DMA_DESCRIPTORS); 1115 CSR_WRITE_4(sc, BGE_BMAN_DMA_DESCPOOL_LEN, 0x2000); 1116 1117 /* Configure mbuf pool watermarks */ 1118 CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_READDMA_LOWAT, 24); 1119 CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_MACRX_LOWAT, 24); 1120 CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_HIWAT, 48); 1121 1122 /* Configure DMA resource watermarks */ 1123 CSR_WRITE_4(sc, BGE_BMAN_DMA_DESCPOOL_LOWAT, 5); 1124 CSR_WRITE_4(sc, BGE_BMAN_DMA_DESCPOOL_HIWAT, 10); 1125 1126 /* Enable buffer manager */ 1127 CSR_WRITE_4(sc, BGE_BMAN_MODE, 1128 BGE_BMANMODE_ENABLE|BGE_BMANMODE_LOMBUF_ATTN); 1129 1130 /* Poll for buffer manager start indication */ 1131 for (i = 0; i < BGE_TIMEOUT; i++) { 1132 if (CSR_READ_4(sc, BGE_BMAN_MODE) & BGE_BMANMODE_ENABLE) 1133 break; 1134 DELAY(10); 1135 } 1136 1137 if (i == BGE_TIMEOUT) { 1138 printf("bge%d: buffer manager failed to start\n", 1139 sc->bge_unit); 1140 return(ENXIO); 1141 } 1142 1143 /* Enable flow-through queues */ 1144 CSR_WRITE_4(sc, BGE_FTQ_RESET, 0xFFFFFFFF); 1145 CSR_WRITE_4(sc, BGE_FTQ_RESET, 0); 1146 1147 /* Wait until queue initialization is complete */ 1148 for (i = 0; i < BGE_TIMEOUT; i++) { 1149 if (CSR_READ_4(sc, BGE_FTQ_RESET) == 0) 1150 break; 1151 DELAY(10); 1152 } 1153 1154 if (i == BGE_TIMEOUT) { 1155 printf("bge%d: flow-through queue init failed\n", 1156 sc->bge_unit); 1157 return(ENXIO); 1158 } 1159 1160 /* Initialize the standard RX ring control block */ 1161 rcb = &sc->bge_rdata->bge_info.bge_std_rx_rcb; 1162 BGE_HOSTADDR(rcb->bge_hostaddr) = 1163 vtophys(&sc->bge_rdata->bge_rx_std_ring); 1164 rcb->bge_max_len = BGE_MAX_FRAMELEN; 1165 if (sc->bge_extram) 1166 rcb->bge_nicaddr = BGE_EXT_STD_RX_RINGS; 1167 else 1168 rcb->bge_nicaddr = BGE_STD_RX_RINGS; 1169 rcb->bge_flags = 0; 1170 rcbo = (struct bge_rcb_opaque *)rcb; 1171 CSR_WRITE_4(sc, BGE_RX_STD_RCB_HADDR_HI, rcbo->bge_reg0); 1172 CSR_WRITE_4(sc, BGE_RX_STD_RCB_HADDR_LO, rcbo->bge_reg1); 1173 CSR_WRITE_4(sc, BGE_RX_STD_RCB_MAXLEN_FLAGS, rcbo->bge_reg2); 1174 CSR_WRITE_4(sc, BGE_RX_STD_RCB_NICADDR, rcbo->bge_reg3); 1175 1176 /* 1177 * Initialize the jumbo RX ring control block 1178 * We set the 'ring disabled' bit in the flags 1179 * field until we're actually ready to start 1180 * using this ring (i.e. once we set the MTU 1181 * high enough to require it). 1182 */ 1183 rcb = &sc->bge_rdata->bge_info.bge_jumbo_rx_rcb; 1184 BGE_HOSTADDR(rcb->bge_hostaddr) = 1185 vtophys(&sc->bge_rdata->bge_rx_jumbo_ring); 1186 rcb->bge_max_len = BGE_MAX_FRAMELEN; 1187 if (sc->bge_extram) 1188 rcb->bge_nicaddr = BGE_EXT_JUMBO_RX_RINGS; 1189 else 1190 rcb->bge_nicaddr = BGE_JUMBO_RX_RINGS; 1191 rcb->bge_flags = BGE_RCB_FLAG_RING_DISABLED; 1192 1193 rcbo = (struct bge_rcb_opaque *)rcb; 1194 CSR_WRITE_4(sc, BGE_RX_JUMBO_RCB_HADDR_HI, rcbo->bge_reg0); 1195 CSR_WRITE_4(sc, BGE_RX_JUMBO_RCB_HADDR_LO, rcbo->bge_reg1); 1196 CSR_WRITE_4(sc, BGE_RX_JUMBO_RCB_MAXLEN_FLAGS, rcbo->bge_reg2); 1197 CSR_WRITE_4(sc, BGE_RX_JUMBO_RCB_NICADDR, rcbo->bge_reg3); 1198 1199 /* Set up dummy disabled mini ring RCB */ 1200 rcb = &sc->bge_rdata->bge_info.bge_mini_rx_rcb; 1201 rcb->bge_flags = BGE_RCB_FLAG_RING_DISABLED; 1202 rcbo = (struct bge_rcb_opaque *)rcb; 1203 CSR_WRITE_4(sc, BGE_RX_MINI_RCB_MAXLEN_FLAGS, rcbo->bge_reg2); 1204 1205 /* 1206 * Set the BD ring replentish thresholds. The recommended 1207 * values are 1/8th the number of descriptors allocated to 1208 * each ring. 1209 */ 1210 CSR_WRITE_4(sc, BGE_RBDI_STD_REPL_THRESH, BGE_STD_RX_RING_CNT/8); 1211 CSR_WRITE_4(sc, BGE_RBDI_JUMBO_REPL_THRESH, BGE_JUMBO_RX_RING_CNT/8); 1212 1213 /* 1214 * Disable all unused send rings by setting the 'ring disabled' 1215 * bit in the flags field of all the TX send ring control blocks. 1216 * These are located in NIC memory. 1217 */ 1218 rcb = (struct bge_rcb *)(sc->bge_vhandle + BGE_MEMWIN_START + 1219 BGE_SEND_RING_RCB); 1220 for (i = 0; i < BGE_TX_RINGS_EXTSSRAM_MAX; i++) { 1221 rcb->bge_flags = BGE_RCB_FLAG_RING_DISABLED; 1222 rcb->bge_max_len = 0; 1223 rcb->bge_nicaddr = 0; 1224 rcb++; 1225 } 1226 1227 /* Configure TX RCB 0 (we use only the first ring) */ 1228 rcb = (struct bge_rcb *)(sc->bge_vhandle + BGE_MEMWIN_START + 1229 BGE_SEND_RING_RCB); 1230 rcb->bge_hostaddr.bge_addr_hi = 0; 1231 BGE_HOSTADDR(rcb->bge_hostaddr) = 1232 vtophys(&sc->bge_rdata->bge_tx_ring); 1233 rcb->bge_nicaddr = BGE_NIC_TXRING_ADDR(0, BGE_TX_RING_CNT); 1234 rcb->bge_max_len = BGE_TX_RING_CNT; 1235 rcb->bge_flags = 0; 1236 1237 /* Disable all unused RX return rings */ 1238 rcb = (struct bge_rcb *)(sc->bge_vhandle + BGE_MEMWIN_START + 1239 BGE_RX_RETURN_RING_RCB); 1240 for (i = 0; i < BGE_RX_RINGS_MAX; i++) { 1241 rcb->bge_hostaddr.bge_addr_hi = 0; 1242 rcb->bge_hostaddr.bge_addr_lo = 0; 1243 rcb->bge_flags = BGE_RCB_FLAG_RING_DISABLED; 1244 rcb->bge_max_len = BGE_RETURN_RING_CNT; 1245 rcb->bge_nicaddr = 0; 1246 CSR_WRITE_4(sc, BGE_MBX_RX_CONS0_LO + 1247 (i * (sizeof(u_int64_t))), 0); 1248 rcb++; 1249 } 1250 1251 /* Initialize RX ring indexes */ 1252 CSR_WRITE_4(sc, BGE_MBX_RX_STD_PROD_LO, 0); 1253 CSR_WRITE_4(sc, BGE_MBX_RX_JUMBO_PROD_LO, 0); 1254 CSR_WRITE_4(sc, BGE_MBX_RX_MINI_PROD_LO, 0); 1255 1256 /* 1257 * Set up RX return ring 0 1258 * Note that the NIC address for RX return rings is 0x00000000. 1259 * The return rings live entirely within the host, so the 1260 * nicaddr field in the RCB isn't used. 1261 */ 1262 rcb = (struct bge_rcb *)(sc->bge_vhandle + BGE_MEMWIN_START + 1263 BGE_RX_RETURN_RING_RCB); 1264 rcb->bge_hostaddr.bge_addr_hi = 0; 1265 BGE_HOSTADDR(rcb->bge_hostaddr) = 1266 vtophys(&sc->bge_rdata->bge_rx_return_ring); 1267 rcb->bge_nicaddr = 0x00000000; 1268 rcb->bge_max_len = BGE_RETURN_RING_CNT; 1269 rcb->bge_flags = 0; 1270 1271 /* Set random backoff seed for TX */ 1272 CSR_WRITE_4(sc, BGE_TX_RANDOM_BACKOFF, 1273 sc->arpcom.ac_enaddr[0] + sc->arpcom.ac_enaddr[1] + 1274 sc->arpcom.ac_enaddr[2] + sc->arpcom.ac_enaddr[3] + 1275 sc->arpcom.ac_enaddr[4] + sc->arpcom.ac_enaddr[5] + 1276 BGE_TX_BACKOFF_SEED_MASK); 1277 1278 /* Set inter-packet gap */ 1279 CSR_WRITE_4(sc, BGE_TX_LENGTHS, 0x2620); 1280 1281 /* 1282 * Specify which ring to use for packets that don't match 1283 * any RX rules. 1284 */ 1285 CSR_WRITE_4(sc, BGE_RX_RULES_CFG, 0x08); 1286 1287 /* 1288 * Configure number of RX lists. One interrupt distribution 1289 * list, sixteen active lists, one bad frames class. 1290 */ 1291 CSR_WRITE_4(sc, BGE_RXLP_CFG, 0x181); 1292 1293 /* Inialize RX list placement stats mask. */ 1294 CSR_WRITE_4(sc, BGE_RXLP_STATS_ENABLE_MASK, 0x007FFFFF); 1295 CSR_WRITE_4(sc, BGE_RXLP_STATS_CTL, 0x1); 1296 1297 /* Disable host coalescing until we get it set up */ 1298 CSR_WRITE_4(sc, BGE_HCC_MODE, 0x00000000); 1299 1300 /* Poll to make sure it's shut down. */ 1301 for (i = 0; i < BGE_TIMEOUT; i++) { 1302 if (!(CSR_READ_4(sc, BGE_HCC_MODE) & BGE_HCCMODE_ENABLE)) 1303 break; 1304 DELAY(10); 1305 } 1306 1307 if (i == BGE_TIMEOUT) { 1308 printf("bge%d: host coalescing engine failed to idle\n", 1309 sc->bge_unit); 1310 return(ENXIO); 1311 } 1312 1313 /* Set up host coalescing defaults */ 1314 CSR_WRITE_4(sc, BGE_HCC_RX_COAL_TICKS, sc->bge_rx_coal_ticks); 1315 CSR_WRITE_4(sc, BGE_HCC_TX_COAL_TICKS, sc->bge_tx_coal_ticks); 1316 CSR_WRITE_4(sc, BGE_HCC_RX_MAX_COAL_BDS, sc->bge_rx_max_coal_bds); 1317 CSR_WRITE_4(sc, BGE_HCC_TX_MAX_COAL_BDS, sc->bge_tx_max_coal_bds); 1318 CSR_WRITE_4(sc, BGE_HCC_RX_COAL_TICKS_INT, 0); 1319 CSR_WRITE_4(sc, BGE_HCC_TX_COAL_TICKS_INT, 0); 1320 CSR_WRITE_4(sc, BGE_HCC_RX_MAX_COAL_BDS_INT, 0); 1321 CSR_WRITE_4(sc, BGE_HCC_TX_MAX_COAL_BDS_INT, 0); 1322 CSR_WRITE_4(sc, BGE_HCC_STATS_TICKS, sc->bge_stat_ticks); 1323 1324 /* Set up address of statistics block */ 1325 CSR_WRITE_4(sc, BGE_HCC_STATS_BASEADDR, BGE_STATS_BLOCK); 1326 CSR_WRITE_4(sc, BGE_HCC_STATS_ADDR_HI, 0); 1327 CSR_WRITE_4(sc, BGE_HCC_STATS_ADDR_LO, 1328 vtophys(&sc->bge_rdata->bge_info.bge_stats)); 1329 1330 /* Set up address of status block */ 1331 CSR_WRITE_4(sc, BGE_HCC_STATUSBLK_BASEADDR, BGE_STATUS_BLOCK); 1332 CSR_WRITE_4(sc, BGE_HCC_STATUSBLK_ADDR_HI, 0); 1333 CSR_WRITE_4(sc, BGE_HCC_STATUSBLK_ADDR_LO, 1334 vtophys(&sc->bge_rdata->bge_status_block)); 1335 sc->bge_rdata->bge_status_block.bge_idx[0].bge_rx_prod_idx = 0; 1336 sc->bge_rdata->bge_status_block.bge_idx[0].bge_tx_cons_idx = 0; 1337 1338 /* Turn on host coalescing state machine */ 1339 CSR_WRITE_4(sc, BGE_HCC_MODE, BGE_HCCMODE_ENABLE); 1340 1341 /* Turn on RX BD completion state machine and enable attentions */ 1342 CSR_WRITE_4(sc, BGE_RBDC_MODE, 1343 BGE_RBDCMODE_ENABLE|BGE_RBDCMODE_ATTN); 1344 1345 /* Turn on RX list placement state machine */ 1346 CSR_WRITE_4(sc, BGE_RXLP_MODE, BGE_RXLPMODE_ENABLE); 1347 1348 /* Turn on RX list selector state machine. */ 1349 CSR_WRITE_4(sc, BGE_RXLS_MODE, BGE_RXLSMODE_ENABLE); 1350 1351 /* Turn on DMA, clear stats */ 1352 CSR_WRITE_4(sc, BGE_MAC_MODE, BGE_MACMODE_TXDMA_ENB| 1353 BGE_MACMODE_RXDMA_ENB|BGE_MACMODE_RX_STATS_CLEAR| 1354 BGE_MACMODE_TX_STATS_CLEAR|BGE_MACMODE_RX_STATS_ENB| 1355 BGE_MACMODE_TX_STATS_ENB|BGE_MACMODE_FRMHDR_DMA_ENB| 1356 (sc->bge_tbi ? BGE_PORTMODE_TBI : BGE_PORTMODE_MII)); 1357 1358 /* Set misc. local control, enable interrupts on attentions */ 1359 CSR_WRITE_4(sc, BGE_MISC_LOCAL_CTL, BGE_MLC_INTR_ONATTN); 1360 1361 #ifdef notdef 1362 /* Assert GPIO pins for PHY reset */ 1363 BGE_SETBIT(sc, BGE_MISC_LOCAL_CTL, BGE_MLC_MISCIO_OUT0| 1364 BGE_MLC_MISCIO_OUT1|BGE_MLC_MISCIO_OUT2); 1365 BGE_SETBIT(sc, BGE_MISC_LOCAL_CTL, BGE_MLC_MISCIO_OUTEN0| 1366 BGE_MLC_MISCIO_OUTEN1|BGE_MLC_MISCIO_OUTEN2); 1367 #endif 1368 1369 /* Turn on DMA completion state machine */ 1370 CSR_WRITE_4(sc, BGE_DMAC_MODE, BGE_DMACMODE_ENABLE); 1371 1372 /* Turn on write DMA state machine */ 1373 CSR_WRITE_4(sc, BGE_WDMA_MODE, 1374 BGE_WDMAMODE_ENABLE|BGE_WDMAMODE_ALL_ATTNS); 1375 1376 /* Turn on read DMA state machine */ 1377 CSR_WRITE_4(sc, BGE_RDMA_MODE, 1378 BGE_RDMAMODE_ENABLE|BGE_RDMAMODE_ALL_ATTNS); 1379 1380 /* Turn on RX data completion state machine */ 1381 CSR_WRITE_4(sc, BGE_RDC_MODE, BGE_RDCMODE_ENABLE); 1382 1383 /* Turn on RX BD initiator state machine */ 1384 CSR_WRITE_4(sc, BGE_RBDI_MODE, BGE_RBDIMODE_ENABLE); 1385 1386 /* Turn on RX data and RX BD initiator state machine */ 1387 CSR_WRITE_4(sc, BGE_RDBDI_MODE, BGE_RDBDIMODE_ENABLE); 1388 1389 /* Turn on Mbuf cluster free state machine */ 1390 CSR_WRITE_4(sc, BGE_MBCF_MODE, BGE_MBCFMODE_ENABLE); 1391 1392 /* Turn on send BD completion state machine */ 1393 CSR_WRITE_4(sc, BGE_SBDC_MODE, BGE_SBDCMODE_ENABLE); 1394 1395 /* Turn on send data completion state machine */ 1396 CSR_WRITE_4(sc, BGE_SDC_MODE, BGE_SDCMODE_ENABLE); 1397 1398 /* Turn on send data initiator state machine */ 1399 CSR_WRITE_4(sc, BGE_SDI_MODE, BGE_SDIMODE_ENABLE); 1400 1401 /* Turn on send BD initiator state machine */ 1402 CSR_WRITE_4(sc, BGE_SBDI_MODE, BGE_SBDIMODE_ENABLE); 1403 1404 /* Turn on send BD selector state machine */ 1405 CSR_WRITE_4(sc, BGE_SRS_MODE, BGE_SRSMODE_ENABLE); 1406 1407 CSR_WRITE_4(sc, BGE_SDI_STATS_ENABLE_MASK, 0x007FFFFF); 1408 CSR_WRITE_4(sc, BGE_SDI_STATS_CTL, 1409 BGE_SDISTATSCTL_ENABLE|BGE_SDISTATSCTL_FASTER); 1410 1411 /* init LED register */ 1412 CSR_WRITE_4(sc, BGE_MAC_LED_CTL, 0x00000000); 1413 1414 /* ack/clear link change events */ 1415 CSR_WRITE_4(sc, BGE_MAC_STS, BGE_MACSTAT_SYNC_CHANGED| 1416 BGE_MACSTAT_CFG_CHANGED); 1417 CSR_WRITE_4(sc, BGE_MI_STS, 0); 1418 1419 /* Enable PHY auto polling (for MII/GMII only) */ 1420 if (sc->bge_tbi) { 1421 CSR_WRITE_4(sc, BGE_MI_STS, BGE_MISTS_LINK); 1422 } else { 1423 BGE_SETBIT(sc, BGE_MI_MODE, BGE_MIMODE_AUTOPOLL|10<<16); 1424 if (sc->bge_asicrev == BGE_ASICREV_BCM5700) 1425 CSR_WRITE_4(sc, BGE_MAC_EVT_ENB, 1426 BGE_EVTENB_MI_INTERRUPT); 1427 } 1428 1429 /* Enable link state change attentions. */ 1430 BGE_SETBIT(sc, BGE_MAC_EVT_ENB, BGE_EVTENB_LINK_CHANGED); 1431 1432 return(0); 1433 } 1434 1435 /* 1436 * Probe for a Broadcom chip. Check the PCI vendor and device IDs 1437 * against our list and return its name if we find a match. Note 1438 * that since the Broadcom controller contains VPD support, we 1439 * can get the device name string from the controller itself instead 1440 * of the compiled-in string. This is a little slow, but it guarantees 1441 * we'll always announce the right product name. 1442 */ 1443 static int 1444 bge_probe(dev) 1445 device_t dev; 1446 { 1447 struct bge_type *t; 1448 struct bge_softc *sc; 1449 1450 t = bge_devs; 1451 1452 sc = device_get_softc(dev); 1453 bzero(sc, sizeof(struct bge_softc)); 1454 sc->bge_unit = device_get_unit(dev); 1455 sc->bge_dev = dev; 1456 1457 while(t->bge_name != NULL) { 1458 if ((pci_get_vendor(dev) == t->bge_vid) && 1459 (pci_get_device(dev) == t->bge_did)) { 1460 #ifdef notdef 1461 bge_vpd_read(sc); 1462 device_set_desc(dev, sc->bge_vpd_prodname); 1463 #endif 1464 device_set_desc(dev, t->bge_name); 1465 return(0); 1466 } 1467 t++; 1468 } 1469 1470 return(ENXIO); 1471 } 1472 1473 static int 1474 bge_attach(dev) 1475 device_t dev; 1476 { 1477 int s; 1478 u_int32_t command; 1479 struct ifnet *ifp; 1480 struct bge_softc *sc; 1481 u_int32_t hwcfg = 0; 1482 int unit, error = 0, rid; 1483 1484 s = splimp(); 1485 1486 sc = device_get_softc(dev); 1487 unit = device_get_unit(dev); 1488 sc->bge_dev = dev; 1489 sc->bge_unit = unit; 1490 1491 /* 1492 * Map control/status registers. 1493 */ 1494 pci_enable_busmaster(dev); 1495 pci_enable_io(dev, SYS_RES_MEMORY); 1496 command = pci_read_config(dev, PCIR_COMMAND, 4); 1497 1498 if (!(command & PCIM_CMD_MEMEN)) { 1499 printf("bge%d: failed to enable memory mapping!\n", unit); 1500 error = ENXIO; 1501 goto fail; 1502 } 1503 1504 rid = BGE_PCI_BAR0; 1505 sc->bge_res = bus_alloc_resource(dev, SYS_RES_MEMORY, &rid, 1506 0, ~0, 1, RF_ACTIVE); 1507 1508 if (sc->bge_res == NULL) { 1509 printf ("bge%d: couldn't map memory\n", unit); 1510 error = ENXIO; 1511 goto fail; 1512 } 1513 1514 sc->bge_btag = rman_get_bustag(sc->bge_res); 1515 sc->bge_bhandle = rman_get_bushandle(sc->bge_res); 1516 sc->bge_vhandle = (vm_offset_t)rman_get_virtual(sc->bge_res); 1517 1518 /* 1519 * XXX FIXME: rman_get_virtual() on the alpha is currently 1520 * broken and returns a physical address instead of a kernel 1521 * virtual address. Consequently, we need to do a little 1522 * extra mangling of the vhandle on the alpha. This should 1523 * eventually be fixed! The whole idea here is to get rid 1524 * of platform dependencies. 1525 */ 1526 #ifdef __alpha__ 1527 if (pci_cvt_to_bwx(sc->bge_vhandle)) 1528 sc->bge_vhandle = pci_cvt_to_bwx(sc->bge_vhandle); 1529 else 1530 sc->bge_vhandle = pci_cvt_to_dense(sc->bge_vhandle); 1531 sc->bge_vhandle = ALPHA_PHYS_TO_K0SEG(sc->bge_vhandle); 1532 #endif 1533 1534 /* Allocate interrupt */ 1535 rid = 0; 1536 1537 sc->bge_irq = bus_alloc_resource(dev, SYS_RES_IRQ, &rid, 0, ~0, 1, 1538 RF_SHAREABLE | RF_ACTIVE); 1539 1540 if (sc->bge_irq == NULL) { 1541 printf("bge%d: couldn't map interrupt\n", unit); 1542 error = ENXIO; 1543 goto fail; 1544 } 1545 1546 error = bus_setup_intr(dev, sc->bge_irq, INTR_TYPE_NET, 1547 bge_intr, sc, &sc->bge_intrhand); 1548 1549 if (error) { 1550 bge_release_resources(sc); 1551 printf("bge%d: couldn't set up irq\n", unit); 1552 goto fail; 1553 } 1554 1555 sc->bge_unit = unit; 1556 1557 /* Try to reset the chip. */ 1558 bge_reset(sc); 1559 1560 if (bge_chipinit(sc)) { 1561 printf("bge%d: chip initialization failed\n", sc->bge_unit); 1562 bge_release_resources(sc); 1563 error = ENXIO; 1564 goto fail; 1565 } 1566 1567 /* 1568 * Get station address from the EEPROM. 1569 */ 1570 if (bge_read_eeprom(sc, (caddr_t)&sc->arpcom.ac_enaddr, 1571 BGE_EE_MAC_OFFSET + 2, ETHER_ADDR_LEN)) { 1572 printf("bge%d: failed to read station address\n", unit); 1573 bge_release_resources(sc); 1574 error = ENXIO; 1575 goto fail; 1576 } 1577 1578 /* 1579 * A Broadcom chip was detected. Inform the world. 1580 */ 1581 printf("bge%d: Ethernet address: %6D\n", unit, 1582 sc->arpcom.ac_enaddr, ":"); 1583 1584 /* Allocate the general information block and ring buffers. */ 1585 sc->bge_rdata = contigmalloc(sizeof(struct bge_ring_data), M_DEVBUF, 1586 M_NOWAIT, 0, 0xffffffff, PAGE_SIZE, 0); 1587 1588 if (sc->bge_rdata == NULL) { 1589 bge_release_resources(sc); 1590 error = ENXIO; 1591 printf("bge%d: no memory for list buffers!\n", sc->bge_unit); 1592 goto fail; 1593 } 1594 1595 bzero(sc->bge_rdata, sizeof(struct bge_ring_data)); 1596 1597 /* Try to allocate memory for jumbo buffers. */ 1598 if (bge_alloc_jumbo_mem(sc)) { 1599 printf("bge%d: jumbo buffer allocation " 1600 "failed\n", sc->bge_unit); 1601 bge_release_resources(sc); 1602 error = ENXIO; 1603 goto fail; 1604 } 1605 1606 /* Set default tuneable values. */ 1607 sc->bge_stat_ticks = BGE_TICKS_PER_SEC; 1608 sc->bge_rx_coal_ticks = 150; 1609 sc->bge_tx_coal_ticks = 150; 1610 sc->bge_rx_max_coal_bds = 64; 1611 sc->bge_tx_max_coal_bds = 128; 1612 1613 /* Set up ifnet structure */ 1614 ifp = &sc->arpcom.ac_if; 1615 ifp->if_softc = sc; 1616 ifp->if_unit = sc->bge_unit; 1617 ifp->if_name = "bge"; 1618 ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST; 1619 ifp->if_ioctl = bge_ioctl; 1620 ifp->if_output = ether_output; 1621 ifp->if_start = bge_start; 1622 ifp->if_watchdog = bge_watchdog; 1623 ifp->if_init = bge_init; 1624 ifp->if_mtu = ETHERMTU; 1625 ifp->if_snd.ifq_maxlen = BGE_TX_RING_CNT - 1; 1626 ifp->if_hwassist = BGE_CSUM_FEATURES; 1627 ifp->if_capabilities = IFCAP_HWCSUM; 1628 ifp->if_capenable = ifp->if_capabilities; 1629 1630 /* Save ASIC rev. */ 1631 1632 sc->bge_asicrev = 1633 pci_read_config(dev, BGE_PCI_MISC_CTL, 4) & 1634 BGE_PCIMISCCTL_ASICREV; 1635 1636 /* Pretend all 5700s are the same */ 1637 if ((sc->bge_asicrev & 0xFF000000) == BGE_ASICREV_BCM5700) 1638 sc->bge_asicrev = BGE_ASICREV_BCM5700; 1639 1640 /* 1641 * Figure out what sort of media we have by checking the 1642 * hardware config word in the EEPROM. Note: on some BCM5700 1643 * cards, this value appears to be unset. If that's the 1644 * case, we have to rely on identifying the NIC by its PCI 1645 * subsystem ID, as we do below for the SysKonnect SK-9D41. 1646 */ 1647 bge_read_eeprom(sc, (caddr_t)&hwcfg, 1648 BGE_EE_HWCFG_OFFSET, sizeof(hwcfg)); 1649 if ((ntohl(hwcfg) & BGE_HWCFG_MEDIA) == BGE_MEDIA_FIBER) 1650 sc->bge_tbi = 1; 1651 1652 /* The SysKonnect SK-9D41 is a 1000baseSX card. */ 1653 if ((pci_read_config(dev, BGE_PCI_SUBSYS, 4) >> 16) == SK_SUBSYSID_9D41) 1654 sc->bge_tbi = 1; 1655 1656 if (sc->bge_tbi) { 1657 ifmedia_init(&sc->bge_ifmedia, IFM_IMASK, 1658 bge_ifmedia_upd, bge_ifmedia_sts); 1659 ifmedia_add(&sc->bge_ifmedia, IFM_ETHER|IFM_1000_SX, 0, NULL); 1660 ifmedia_add(&sc->bge_ifmedia, 1661 IFM_ETHER|IFM_1000_SX|IFM_FDX, 0, NULL); 1662 ifmedia_add(&sc->bge_ifmedia, IFM_ETHER|IFM_AUTO, 0, NULL); 1663 ifmedia_set(&sc->bge_ifmedia, IFM_ETHER|IFM_AUTO); 1664 } else { 1665 /* 1666 * Do transceiver setup. 1667 */ 1668 if (mii_phy_probe(dev, &sc->bge_miibus, 1669 bge_ifmedia_upd, bge_ifmedia_sts)) { 1670 printf("bge%d: MII without any PHY!\n", sc->bge_unit); 1671 bge_release_resources(sc); 1672 bge_free_jumbo_mem(sc); 1673 error = ENXIO; 1674 goto fail; 1675 } 1676 } 1677 1678 /* 1679 * When using the BCM5701 in PCI-X mode, data corruption has 1680 * been observed in the first few bytes of some received packets. 1681 * Aligning the packet buffer in memory eliminates the corruption. 1682 * Unfortunately, this misaligns the packet payloads. On platforms 1683 * which do not support unaligned accesses, we will realign the 1684 * payloads by copying the received packets. 1685 */ 1686 switch (sc->bge_asicrev) { 1687 case BGE_ASICREV_BCM5701_A0: 1688 case BGE_ASICREV_BCM5701_B0: 1689 case BGE_ASICREV_BCM5701_B2: 1690 case BGE_ASICREV_BCM5701_B5: 1691 /* If in PCI-X mode, work around the alignment bug. */ 1692 if ((pci_read_config(dev, BGE_PCI_PCISTATE, 4) & 1693 (BGE_PCISTATE_PCI_BUSMODE | BGE_PCISTATE_PCI_BUSSPEED)) == 1694 BGE_PCISTATE_PCI_BUSSPEED) 1695 sc->bge_rx_alignment_bug = 1; 1696 break; 1697 } 1698 1699 /* 1700 * Call MI attach routine. 1701 */ 1702 ether_ifattach(ifp, ETHER_BPF_SUPPORTED); 1703 callout_handle_init(&sc->bge_stat_ch); 1704 1705 fail: 1706 splx(s); 1707 1708 return(error); 1709 } 1710 1711 static int 1712 bge_detach(dev) 1713 device_t dev; 1714 { 1715 struct bge_softc *sc; 1716 struct ifnet *ifp; 1717 int s; 1718 1719 s = splimp(); 1720 1721 sc = device_get_softc(dev); 1722 ifp = &sc->arpcom.ac_if; 1723 1724 ether_ifdetach(ifp, ETHER_BPF_SUPPORTED); 1725 bge_stop(sc); 1726 bge_reset(sc); 1727 1728 if (sc->bge_tbi) { 1729 ifmedia_removeall(&sc->bge_ifmedia); 1730 } else { 1731 bus_generic_detach(dev); 1732 device_delete_child(dev, sc->bge_miibus); 1733 } 1734 1735 bge_release_resources(sc); 1736 bge_free_jumbo_mem(sc); 1737 1738 splx(s); 1739 1740 return(0); 1741 } 1742 1743 static void 1744 bge_release_resources(sc) 1745 struct bge_softc *sc; 1746 { 1747 device_t dev; 1748 1749 dev = sc->bge_dev; 1750 1751 if (sc->bge_vpd_prodname != NULL) 1752 free(sc->bge_vpd_prodname, M_DEVBUF); 1753 1754 if (sc->bge_vpd_readonly != NULL) 1755 free(sc->bge_vpd_readonly, M_DEVBUF); 1756 1757 if (sc->bge_intrhand != NULL) 1758 bus_teardown_intr(dev, sc->bge_irq, sc->bge_intrhand); 1759 1760 if (sc->bge_irq != NULL) 1761 bus_release_resource(dev, SYS_RES_IRQ, 0, sc->bge_irq); 1762 1763 if (sc->bge_res != NULL) 1764 bus_release_resource(dev, SYS_RES_MEMORY, 1765 BGE_PCI_BAR0, sc->bge_res); 1766 1767 if (sc->bge_rdata != NULL) 1768 contigfree(sc->bge_rdata, 1769 sizeof(struct bge_ring_data), M_DEVBUF); 1770 1771 return; 1772 } 1773 1774 static void 1775 bge_reset(sc) 1776 struct bge_softc *sc; 1777 { 1778 device_t dev; 1779 u_int32_t cachesize, command, pcistate; 1780 int i, val = 0; 1781 1782 dev = sc->bge_dev; 1783 1784 /* Save some important PCI state. */ 1785 cachesize = pci_read_config(dev, BGE_PCI_CACHESZ, 4); 1786 command = pci_read_config(dev, BGE_PCI_CMD, 4); 1787 pcistate = pci_read_config(dev, BGE_PCI_PCISTATE, 4); 1788 1789 pci_write_config(dev, BGE_PCI_MISC_CTL, 1790 BGE_PCIMISCCTL_INDIRECT_ACCESS|BGE_PCIMISCCTL_MASK_PCI_INTR| 1791 BGE_PCIMISCCTL_ENDIAN_WORDSWAP|BGE_PCIMISCCTL_PCISTATE_RW, 4); 1792 1793 /* Issue global reset */ 1794 bge_writereg_ind(sc, BGE_MISC_CFG, 1795 BGE_MISCCFG_RESET_CORE_CLOCKS|(65<<1)); 1796 1797 DELAY(1000); 1798 1799 /* Reset some of the PCI state that got zapped by reset */ 1800 pci_write_config(dev, BGE_PCI_MISC_CTL, 1801 BGE_PCIMISCCTL_INDIRECT_ACCESS|BGE_PCIMISCCTL_MASK_PCI_INTR| 1802 BGE_PCIMISCCTL_ENDIAN_WORDSWAP|BGE_PCIMISCCTL_PCISTATE_RW, 4); 1803 pci_write_config(dev, BGE_PCI_CACHESZ, cachesize, 4); 1804 pci_write_config(dev, BGE_PCI_CMD, command, 4); 1805 bge_writereg_ind(sc, BGE_MISC_CFG, (65 << 1)); 1806 1807 /* 1808 * Prevent PXE restart: write a magic number to the 1809 * general communications memory at 0xB50. 1810 */ 1811 bge_writemem_ind(sc, BGE_SOFTWARE_GENCOMM, BGE_MAGIC_NUMBER); 1812 /* 1813 * Poll the value location we just wrote until 1814 * we see the 1's complement of the magic number. 1815 * This indicates that the firmware initialization 1816 * is complete. 1817 */ 1818 for (i = 0; i < BGE_TIMEOUT; i++) { 1819 val = bge_readmem_ind(sc, BGE_SOFTWARE_GENCOMM); 1820 if (val == ~BGE_MAGIC_NUMBER) 1821 break; 1822 DELAY(10); 1823 } 1824 1825 if (i == BGE_TIMEOUT) { 1826 printf("bge%d: firmware handshake timed out\n", sc->bge_unit); 1827 return; 1828 } 1829 1830 /* 1831 * XXX Wait for the value of the PCISTATE register to 1832 * return to its original pre-reset state. This is a 1833 * fairly good indicator of reset completion. If we don't 1834 * wait for the reset to fully complete, trying to read 1835 * from the device's non-PCI registers may yield garbage 1836 * results. 1837 */ 1838 for (i = 0; i < BGE_TIMEOUT; i++) { 1839 if (pci_read_config(dev, BGE_PCI_PCISTATE, 4) == pcistate) 1840 break; 1841 DELAY(10); 1842 } 1843 1844 /* Enable memory arbiter. */ 1845 CSR_WRITE_4(sc, BGE_MARB_MODE, BGE_MARBMODE_ENABLE); 1846 1847 /* Fix up byte swapping */ 1848 CSR_WRITE_4(sc, BGE_MODE_CTL, BGE_MODECTL_BYTESWAP_NONFRAME| 1849 BGE_MODECTL_BYTESWAP_DATA); 1850 1851 CSR_WRITE_4(sc, BGE_MAC_MODE, 0); 1852 1853 DELAY(10000); 1854 1855 return; 1856 } 1857 1858 /* 1859 * Frame reception handling. This is called if there's a frame 1860 * on the receive return list. 1861 * 1862 * Note: we have to be able to handle two possibilities here: 1863 * 1) the frame is from the jumbo recieve ring 1864 * 2) the frame is from the standard receive ring 1865 */ 1866 1867 static void 1868 bge_rxeof(sc) 1869 struct bge_softc *sc; 1870 { 1871 struct ifnet *ifp; 1872 int stdcnt = 0, jumbocnt = 0; 1873 1874 ifp = &sc->arpcom.ac_if; 1875 1876 while(sc->bge_rx_saved_considx != 1877 sc->bge_rdata->bge_status_block.bge_idx[0].bge_rx_prod_idx) { 1878 struct bge_rx_bd *cur_rx; 1879 u_int32_t rxidx; 1880 struct ether_header *eh; 1881 struct mbuf *m = NULL; 1882 u_int16_t vlan_tag = 0; 1883 int have_tag = 0; 1884 1885 cur_rx = 1886 &sc->bge_rdata->bge_rx_return_ring[sc->bge_rx_saved_considx]; 1887 1888 rxidx = cur_rx->bge_idx; 1889 BGE_INC(sc->bge_rx_saved_considx, BGE_RETURN_RING_CNT); 1890 1891 if (cur_rx->bge_flags & BGE_RXBDFLAG_VLAN_TAG) { 1892 have_tag = 1; 1893 vlan_tag = cur_rx->bge_vlan_tag; 1894 } 1895 1896 if (cur_rx->bge_flags & BGE_RXBDFLAG_JUMBO_RING) { 1897 BGE_INC(sc->bge_jumbo, BGE_JUMBO_RX_RING_CNT); 1898 m = sc->bge_cdata.bge_rx_jumbo_chain[rxidx]; 1899 sc->bge_cdata.bge_rx_jumbo_chain[rxidx] = NULL; 1900 jumbocnt++; 1901 if (cur_rx->bge_flags & BGE_RXBDFLAG_ERROR) { 1902 ifp->if_ierrors++; 1903 bge_newbuf_jumbo(sc, sc->bge_jumbo, m); 1904 continue; 1905 } 1906 if (bge_newbuf_jumbo(sc, 1907 sc->bge_jumbo, NULL) == ENOBUFS) { 1908 ifp->if_ierrors++; 1909 bge_newbuf_jumbo(sc, sc->bge_jumbo, m); 1910 continue; 1911 } 1912 } else { 1913 BGE_INC(sc->bge_std, BGE_STD_RX_RING_CNT); 1914 m = sc->bge_cdata.bge_rx_std_chain[rxidx]; 1915 sc->bge_cdata.bge_rx_std_chain[rxidx] = NULL; 1916 stdcnt++; 1917 if (cur_rx->bge_flags & BGE_RXBDFLAG_ERROR) { 1918 ifp->if_ierrors++; 1919 bge_newbuf_std(sc, sc->bge_std, m); 1920 continue; 1921 } 1922 if (bge_newbuf_std(sc, sc->bge_std, 1923 NULL) == ENOBUFS) { 1924 ifp->if_ierrors++; 1925 bge_newbuf_std(sc, sc->bge_std, m); 1926 continue; 1927 } 1928 } 1929 1930 ifp->if_ipackets++; 1931 #ifndef __i386__ 1932 /* 1933 * The i386 allows unaligned accesses, but for other 1934 * platforms we must make sure the payload is aligned. 1935 */ 1936 if (sc->bge_rx_alignment_bug) { 1937 bcopy(m->m_data, m->m_data + ETHER_ALIGN, 1938 cur_rx->bge_len); 1939 m->m_data += ETHER_ALIGN; 1940 } 1941 #endif 1942 eh = mtod(m, struct ether_header *); 1943 m->m_pkthdr.len = m->m_len = cur_rx->bge_len; 1944 m->m_pkthdr.rcvif = ifp; 1945 1946 /* Remove header from mbuf and pass it on. */ 1947 m_adj(m, sizeof(struct ether_header)); 1948 1949 #if 0 /* currently broken for some packets, possibly related to TCP options */ 1950 if (ifp->if_hwassist) { 1951 m->m_pkthdr.csum_flags |= CSUM_IP_CHECKED; 1952 if ((cur_rx->bge_ip_csum ^ 0xffff) == 0) 1953 m->m_pkthdr.csum_flags |= CSUM_IP_VALID; 1954 if (cur_rx->bge_flags & BGE_RXBDFLAG_TCP_UDP_CSUM) { 1955 m->m_pkthdr.csum_data = 1956 cur_rx->bge_tcp_udp_csum; 1957 m->m_pkthdr.csum_flags |= CSUM_DATA_VALID; 1958 } 1959 } 1960 #endif 1961 1962 /* 1963 * If we received a packet with a vlan tag, pass it 1964 * to vlan_input() instead of ether_input(). 1965 */ 1966 if (have_tag) { 1967 VLAN_INPUT_TAG(eh, m, vlan_tag); 1968 have_tag = vlan_tag = 0; 1969 continue; 1970 } 1971 1972 ether_input(ifp, eh, m); 1973 } 1974 1975 CSR_WRITE_4(sc, BGE_MBX_RX_CONS0_LO, sc->bge_rx_saved_considx); 1976 if (stdcnt) 1977 CSR_WRITE_4(sc, BGE_MBX_RX_STD_PROD_LO, sc->bge_std); 1978 if (jumbocnt) 1979 CSR_WRITE_4(sc, BGE_MBX_RX_JUMBO_PROD_LO, sc->bge_jumbo); 1980 1981 return; 1982 } 1983 1984 static void 1985 bge_txeof(sc) 1986 struct bge_softc *sc; 1987 { 1988 struct bge_tx_bd *cur_tx = NULL; 1989 struct ifnet *ifp; 1990 1991 ifp = &sc->arpcom.ac_if; 1992 1993 /* 1994 * Go through our tx ring and free mbufs for those 1995 * frames that have been sent. 1996 */ 1997 while (sc->bge_tx_saved_considx != 1998 sc->bge_rdata->bge_status_block.bge_idx[0].bge_tx_cons_idx) { 1999 u_int32_t idx = 0; 2000 2001 idx = sc->bge_tx_saved_considx; 2002 cur_tx = &sc->bge_rdata->bge_tx_ring[idx]; 2003 if (cur_tx->bge_flags & BGE_TXBDFLAG_END) 2004 ifp->if_opackets++; 2005 if (sc->bge_cdata.bge_tx_chain[idx] != NULL) { 2006 m_freem(sc->bge_cdata.bge_tx_chain[idx]); 2007 sc->bge_cdata.bge_tx_chain[idx] = NULL; 2008 } 2009 sc->bge_txcnt--; 2010 BGE_INC(sc->bge_tx_saved_considx, BGE_TX_RING_CNT); 2011 ifp->if_timer = 0; 2012 } 2013 2014 if (cur_tx != NULL) 2015 ifp->if_flags &= ~IFF_OACTIVE; 2016 2017 return; 2018 } 2019 2020 static void 2021 bge_intr(xsc) 2022 void *xsc; 2023 { 2024 struct bge_softc *sc; 2025 struct ifnet *ifp; 2026 2027 sc = xsc; 2028 ifp = &sc->arpcom.ac_if; 2029 2030 #ifdef notdef 2031 /* Avoid this for now -- checking this register is expensive. */ 2032 /* Make sure this is really our interrupt. */ 2033 if (!(CSR_READ_4(sc, BGE_MISC_LOCAL_CTL) & BGE_MLC_INTR_STATE)) 2034 return; 2035 #endif 2036 /* Ack interrupt and stop others from occuring. */ 2037 CSR_WRITE_4(sc, BGE_MBX_IRQ0_LO, 1); 2038 2039 /* 2040 * Process link state changes. 2041 * Grrr. The link status word in the status block does 2042 * not work correctly on the BCM5700 rev AX and BX chips, 2043 * according to all avaibable information. Hence, we have 2044 * to enable MII interrupts in order to properly obtain 2045 * async link changes. Unfortunately, this also means that 2046 * we have to read the MAC status register to detect link 2047 * changes, thereby adding an additional register access to 2048 * the interrupt handler. 2049 */ 2050 2051 if (sc->bge_asicrev == BGE_ASICREV_BCM5700) { 2052 u_int32_t status; 2053 2054 status = CSR_READ_4(sc, BGE_MAC_STS); 2055 if (status & BGE_MACSTAT_MI_INTERRUPT) { 2056 sc->bge_link = 0; 2057 untimeout(bge_tick, sc, sc->bge_stat_ch); 2058 bge_tick(sc); 2059 /* Clear the interrupt */ 2060 CSR_WRITE_4(sc, BGE_MAC_EVT_ENB, 2061 BGE_EVTENB_MI_INTERRUPT); 2062 bge_miibus_readreg(sc->bge_dev, 1, BRGPHY_MII_ISR); 2063 bge_miibus_writereg(sc->bge_dev, 1, BRGPHY_MII_IMR, 2064 BRGPHY_INTRS); 2065 } 2066 } else { 2067 if (sc->bge_rdata->bge_status_block.bge_status & 2068 BGE_STATFLAG_LINKSTATE_CHANGED) { 2069 sc->bge_link = 0; 2070 untimeout(bge_tick, sc, sc->bge_stat_ch); 2071 bge_tick(sc); 2072 /* Clear the interrupt */ 2073 CSR_WRITE_4(sc, BGE_MAC_STS, BGE_MACSTAT_SYNC_CHANGED| 2074 BGE_MACSTAT_CFG_CHANGED); 2075 } 2076 } 2077 2078 if (ifp->if_flags & IFF_RUNNING) { 2079 /* Check RX return ring producer/consumer */ 2080 bge_rxeof(sc); 2081 2082 /* Check TX ring producer/consumer */ 2083 bge_txeof(sc); 2084 } 2085 2086 bge_handle_events(sc); 2087 2088 /* Re-enable interrupts. */ 2089 CSR_WRITE_4(sc, BGE_MBX_IRQ0_LO, 0); 2090 2091 if (ifp->if_flags & IFF_RUNNING && ifp->if_snd.ifq_head != NULL) 2092 bge_start(ifp); 2093 2094 return; 2095 } 2096 2097 static void 2098 bge_tick(xsc) 2099 void *xsc; 2100 { 2101 struct bge_softc *sc; 2102 struct mii_data *mii = NULL; 2103 struct ifmedia *ifm = NULL; 2104 struct ifnet *ifp; 2105 int s; 2106 2107 sc = xsc; 2108 ifp = &sc->arpcom.ac_if; 2109 2110 s = splimp(); 2111 2112 bge_stats_update(sc); 2113 sc->bge_stat_ch = timeout(bge_tick, sc, hz); 2114 if (sc->bge_link) { 2115 splx(s); 2116 return; 2117 } 2118 2119 if (sc->bge_tbi) { 2120 ifm = &sc->bge_ifmedia; 2121 if (CSR_READ_4(sc, BGE_MAC_STS) & 2122 BGE_MACSTAT_TBI_PCS_SYNCHED) { 2123 sc->bge_link++; 2124 CSR_WRITE_4(sc, BGE_MAC_STS, 0xFFFFFFFF); 2125 printf("bge%d: gigabit link up\n", sc->bge_unit); 2126 if (ifp->if_snd.ifq_head != NULL) 2127 bge_start(ifp); 2128 } 2129 splx(s); 2130 return; 2131 } 2132 2133 mii = device_get_softc(sc->bge_miibus); 2134 mii_tick(mii); 2135 2136 if (!sc->bge_link && mii->mii_media_status & IFM_ACTIVE && 2137 IFM_SUBTYPE(mii->mii_media_active) != IFM_NONE) { 2138 sc->bge_link++; 2139 if (IFM_SUBTYPE(mii->mii_media_active) == IFM_1000_T || 2140 IFM_SUBTYPE(mii->mii_media_active) == IFM_1000_SX) 2141 printf("bge%d: gigabit link up\n", 2142 sc->bge_unit); 2143 if (ifp->if_snd.ifq_head != NULL) 2144 bge_start(ifp); 2145 } 2146 2147 splx(s); 2148 2149 return; 2150 } 2151 2152 static void 2153 bge_stats_update(sc) 2154 struct bge_softc *sc; 2155 { 2156 struct ifnet *ifp; 2157 struct bge_stats *stats; 2158 2159 ifp = &sc->arpcom.ac_if; 2160 2161 stats = (struct bge_stats *)(sc->bge_vhandle + 2162 BGE_MEMWIN_START + BGE_STATS_BLOCK); 2163 2164 ifp->if_collisions += 2165 (stats->dot3StatsSingleCollisionFrames.bge_addr_lo + 2166 stats->dot3StatsMultipleCollisionFrames.bge_addr_lo + 2167 stats->dot3StatsExcessiveCollisions.bge_addr_lo + 2168 stats->dot3StatsLateCollisions.bge_addr_lo) - 2169 ifp->if_collisions; 2170 2171 #ifdef notdef 2172 ifp->if_collisions += 2173 (sc->bge_rdata->bge_info.bge_stats.dot3StatsSingleCollisionFrames + 2174 sc->bge_rdata->bge_info.bge_stats.dot3StatsMultipleCollisionFrames + 2175 sc->bge_rdata->bge_info.bge_stats.dot3StatsExcessiveCollisions + 2176 sc->bge_rdata->bge_info.bge_stats.dot3StatsLateCollisions) - 2177 ifp->if_collisions; 2178 #endif 2179 2180 return; 2181 } 2182 2183 /* 2184 * Encapsulate an mbuf chain in the tx ring by coupling the mbuf data 2185 * pointers to descriptors. 2186 */ 2187 static int 2188 bge_encap(sc, m_head, txidx) 2189 struct bge_softc *sc; 2190 struct mbuf *m_head; 2191 u_int32_t *txidx; 2192 { 2193 struct bge_tx_bd *f = NULL; 2194 struct mbuf *m; 2195 u_int32_t frag, cur, cnt = 0; 2196 u_int16_t csum_flags = 0; 2197 struct ifvlan *ifv = NULL; 2198 2199 if ((m_head->m_flags & (M_PROTO1|M_PKTHDR)) == (M_PROTO1|M_PKTHDR) && 2200 m_head->m_pkthdr.rcvif != NULL && 2201 m_head->m_pkthdr.rcvif->if_type == IFT_L2VLAN) 2202 ifv = m_head->m_pkthdr.rcvif->if_softc; 2203 2204 m = m_head; 2205 cur = frag = *txidx; 2206 2207 if (m_head->m_pkthdr.csum_flags) { 2208 if (m_head->m_pkthdr.csum_flags & CSUM_IP) 2209 csum_flags |= BGE_TXBDFLAG_IP_CSUM; 2210 if (m_head->m_pkthdr.csum_flags & (CSUM_TCP | CSUM_UDP)) 2211 csum_flags |= BGE_TXBDFLAG_TCP_UDP_CSUM; 2212 if (m_head->m_flags & M_LASTFRAG) 2213 csum_flags |= BGE_TXBDFLAG_IP_FRAG_END; 2214 else if (m_head->m_flags & M_FRAG) 2215 csum_flags |= BGE_TXBDFLAG_IP_FRAG; 2216 } 2217 2218 /* 2219 * Start packing the mbufs in this chain into 2220 * the fragment pointers. Stop when we run out 2221 * of fragments or hit the end of the mbuf chain. 2222 */ 2223 for (m = m_head; m != NULL; m = m->m_next) { 2224 if (m->m_len != 0) { 2225 f = &sc->bge_rdata->bge_tx_ring[frag]; 2226 if (sc->bge_cdata.bge_tx_chain[frag] != NULL) 2227 break; 2228 BGE_HOSTADDR(f->bge_addr) = 2229 vtophys(mtod(m, vm_offset_t)); 2230 f->bge_len = m->m_len; 2231 f->bge_flags = csum_flags; 2232 if (ifv != NULL) { 2233 f->bge_flags |= BGE_TXBDFLAG_VLAN_TAG; 2234 f->bge_vlan_tag = ifv->ifv_tag; 2235 } else { 2236 f->bge_vlan_tag = 0; 2237 } 2238 /* 2239 * Sanity check: avoid coming within 16 descriptors 2240 * of the end of the ring. 2241 */ 2242 if ((BGE_TX_RING_CNT - (sc->bge_txcnt + cnt)) < 16) 2243 return(ENOBUFS); 2244 cur = frag; 2245 BGE_INC(frag, BGE_TX_RING_CNT); 2246 cnt++; 2247 } 2248 } 2249 2250 if (m != NULL) 2251 return(ENOBUFS); 2252 2253 if (frag == sc->bge_tx_saved_considx) 2254 return(ENOBUFS); 2255 2256 sc->bge_rdata->bge_tx_ring[cur].bge_flags |= BGE_TXBDFLAG_END; 2257 sc->bge_cdata.bge_tx_chain[cur] = m_head; 2258 sc->bge_txcnt += cnt; 2259 2260 *txidx = frag; 2261 2262 return(0); 2263 } 2264 2265 /* 2266 * Main transmit routine. To avoid having to do mbuf copies, we put pointers 2267 * to the mbuf data regions directly in the transmit descriptors. 2268 */ 2269 static void 2270 bge_start(ifp) 2271 struct ifnet *ifp; 2272 { 2273 struct bge_softc *sc; 2274 struct mbuf *m_head = NULL; 2275 u_int32_t prodidx = 0; 2276 2277 sc = ifp->if_softc; 2278 2279 if (!sc->bge_link && ifp->if_snd.ifq_len < 10) 2280 return; 2281 2282 prodidx = CSR_READ_4(sc, BGE_MBX_TX_HOST_PROD0_LO); 2283 2284 while(sc->bge_cdata.bge_tx_chain[prodidx] == NULL) { 2285 IF_DEQUEUE(&ifp->if_snd, m_head); 2286 if (m_head == NULL) 2287 break; 2288 2289 /* 2290 * XXX 2291 * safety overkill. If this is a fragmented packet chain 2292 * with delayed TCP/UDP checksums, then only encapsulate 2293 * it if we have enough descriptors to handle the entire 2294 * chain at once. 2295 * (paranoia -- may not actually be needed) 2296 */ 2297 if (m_head->m_flags & M_FIRSTFRAG && 2298 m_head->m_pkthdr.csum_flags & (CSUM_DELAY_DATA)) { 2299 if ((BGE_TX_RING_CNT - sc->bge_txcnt) < 2300 m_head->m_pkthdr.csum_data + 16) { 2301 IF_PREPEND(&ifp->if_snd, m_head); 2302 ifp->if_flags |= IFF_OACTIVE; 2303 break; 2304 } 2305 } 2306 2307 /* 2308 * Pack the data into the transmit ring. If we 2309 * don't have room, set the OACTIVE flag and wait 2310 * for the NIC to drain the ring. 2311 */ 2312 if (bge_encap(sc, m_head, &prodidx)) { 2313 IF_PREPEND(&ifp->if_snd, m_head); 2314 ifp->if_flags |= IFF_OACTIVE; 2315 break; 2316 } 2317 2318 /* 2319 * If there's a BPF listener, bounce a copy of this frame 2320 * to him. 2321 */ 2322 if (ifp->if_bpf) 2323 bpf_mtap(ifp, m_head); 2324 } 2325 2326 /* Transmit */ 2327 CSR_WRITE_4(sc, BGE_MBX_TX_HOST_PROD0_LO, prodidx); 2328 2329 /* 2330 * Set a timeout in case the chip goes out to lunch. 2331 */ 2332 ifp->if_timer = 5; 2333 2334 return; 2335 } 2336 2337 /* 2338 * If we have a BCM5400 or BCM5401 PHY, we need to properly 2339 * program its internal DSP. Failing to do this can result in 2340 * massive packet loss at 1Gb speeds. 2341 */ 2342 static void 2343 bge_phy_hack(sc) 2344 struct bge_softc *sc; 2345 { 2346 struct bge_bcom_hack bhack[] = { 2347 { BRGPHY_MII_AUXCTL, 0x4C20 }, 2348 { BRGPHY_MII_DSP_ADDR_REG, 0x0012 }, 2349 { BRGPHY_MII_DSP_RW_PORT, 0x1804 }, 2350 { BRGPHY_MII_DSP_ADDR_REG, 0x0013 }, 2351 { BRGPHY_MII_DSP_RW_PORT, 0x1204 }, 2352 { BRGPHY_MII_DSP_ADDR_REG, 0x8006 }, 2353 { BRGPHY_MII_DSP_RW_PORT, 0x0132 }, 2354 { BRGPHY_MII_DSP_ADDR_REG, 0x8006 }, 2355 { BRGPHY_MII_DSP_RW_PORT, 0x0232 }, 2356 { BRGPHY_MII_DSP_ADDR_REG, 0x201F }, 2357 { BRGPHY_MII_DSP_RW_PORT, 0x0A20 }, 2358 { 0, 0 } }; 2359 u_int16_t vid, did; 2360 int i; 2361 2362 vid = bge_miibus_readreg(sc->bge_dev, 1, MII_PHYIDR1); 2363 did = bge_miibus_readreg(sc->bge_dev, 1, MII_PHYIDR2); 2364 2365 if (MII_OUI(vid, did) == MII_OUI_xxBROADCOM && 2366 (MII_MODEL(did) == MII_MODEL_xxBROADCOM_BCM5400 || 2367 MII_MODEL(did) == MII_MODEL_xxBROADCOM_BCM5401)) { 2368 i = 0; 2369 while(bhack[i].reg) { 2370 bge_miibus_writereg(sc->bge_dev, 1, bhack[i].reg, 2371 bhack[i].val); 2372 i++; 2373 } 2374 } 2375 2376 return; 2377 } 2378 2379 static void 2380 bge_init(xsc) 2381 void *xsc; 2382 { 2383 struct bge_softc *sc = xsc; 2384 struct ifnet *ifp; 2385 u_int16_t *m; 2386 int s; 2387 2388 s = splimp(); 2389 2390 ifp = &sc->arpcom.ac_if; 2391 2392 if (ifp->if_flags & IFF_RUNNING) { 2393 splx(s); 2394 return; 2395 } 2396 2397 /* Cancel pending I/O and flush buffers. */ 2398 bge_stop(sc); 2399 bge_reset(sc); 2400 bge_chipinit(sc); 2401 2402 /* 2403 * Init the various state machines, ring 2404 * control blocks and firmware. 2405 */ 2406 if (bge_blockinit(sc)) { 2407 printf("bge%d: initialization failure\n", sc->bge_unit); 2408 splx(s); 2409 return; 2410 } 2411 2412 ifp = &sc->arpcom.ac_if; 2413 2414 /* Specify MTU. */ 2415 CSR_WRITE_4(sc, BGE_RX_MTU, ifp->if_mtu + 2416 ETHER_HDR_LEN + ETHER_CRC_LEN); 2417 2418 /* Load our MAC address. */ 2419 m = (u_int16_t *)&sc->arpcom.ac_enaddr[0]; 2420 CSR_WRITE_4(sc, BGE_MAC_ADDR1_LO, htons(m[0])); 2421 CSR_WRITE_4(sc, BGE_MAC_ADDR1_HI, (htons(m[1]) << 16) | htons(m[2])); 2422 2423 /* Enable or disable promiscuous mode as needed. */ 2424 if (ifp->if_flags & IFF_PROMISC) { 2425 BGE_SETBIT(sc, BGE_RX_MODE, BGE_RXMODE_RX_PROMISC); 2426 } else { 2427 BGE_CLRBIT(sc, BGE_RX_MODE, BGE_RXMODE_RX_PROMISC); 2428 } 2429 2430 /* Program multicast filter. */ 2431 bge_setmulti(sc); 2432 2433 /* Init RX ring. */ 2434 bge_init_rx_ring_std(sc); 2435 2436 /* Init jumbo RX ring. */ 2437 if (ifp->if_mtu > (ETHERMTU + ETHER_HDR_LEN + ETHER_CRC_LEN)) 2438 bge_init_rx_ring_jumbo(sc); 2439 2440 /* Init our RX return ring index */ 2441 sc->bge_rx_saved_considx = 0; 2442 2443 /* Init TX ring. */ 2444 bge_init_tx_ring(sc); 2445 2446 /* Turn on transmitter */ 2447 BGE_SETBIT(sc, BGE_TX_MODE, BGE_TXMODE_ENABLE); 2448 2449 /* Turn on receiver */ 2450 BGE_SETBIT(sc, BGE_RX_MODE, BGE_RXMODE_ENABLE); 2451 2452 /* Tell firmware we're alive. */ 2453 BGE_SETBIT(sc, BGE_MODE_CTL, BGE_MODECTL_STACKUP); 2454 2455 /* Enable host interrupts. */ 2456 BGE_SETBIT(sc, BGE_PCI_MISC_CTL, BGE_PCIMISCCTL_CLEAR_INTA); 2457 BGE_CLRBIT(sc, BGE_PCI_MISC_CTL, BGE_PCIMISCCTL_MASK_PCI_INTR); 2458 CSR_WRITE_4(sc, BGE_MBX_IRQ0_LO, 0); 2459 2460 bge_ifmedia_upd(ifp); 2461 2462 ifp->if_flags |= IFF_RUNNING; 2463 ifp->if_flags &= ~IFF_OACTIVE; 2464 2465 splx(s); 2466 2467 sc->bge_stat_ch = timeout(bge_tick, sc, hz); 2468 2469 return; 2470 } 2471 2472 /* 2473 * Set media options. 2474 */ 2475 static int 2476 bge_ifmedia_upd(ifp) 2477 struct ifnet *ifp; 2478 { 2479 struct bge_softc *sc; 2480 struct mii_data *mii; 2481 struct ifmedia *ifm; 2482 2483 sc = ifp->if_softc; 2484 ifm = &sc->bge_ifmedia; 2485 2486 /* If this is a 1000baseX NIC, enable the TBI port. */ 2487 if (sc->bge_tbi) { 2488 if (IFM_TYPE(ifm->ifm_media) != IFM_ETHER) 2489 return(EINVAL); 2490 switch(IFM_SUBTYPE(ifm->ifm_media)) { 2491 case IFM_AUTO: 2492 break; 2493 case IFM_1000_SX: 2494 if ((ifm->ifm_media & IFM_GMASK) == IFM_FDX) { 2495 BGE_CLRBIT(sc, BGE_MAC_MODE, 2496 BGE_MACMODE_HALF_DUPLEX); 2497 } else { 2498 BGE_SETBIT(sc, BGE_MAC_MODE, 2499 BGE_MACMODE_HALF_DUPLEX); 2500 } 2501 break; 2502 default: 2503 return(EINVAL); 2504 } 2505 return(0); 2506 } 2507 2508 mii = device_get_softc(sc->bge_miibus); 2509 sc->bge_link = 0; 2510 if (mii->mii_instance) { 2511 struct mii_softc *miisc; 2512 for (miisc = LIST_FIRST(&mii->mii_phys); miisc != NULL; 2513 miisc = LIST_NEXT(miisc, mii_list)) 2514 mii_phy_reset(miisc); 2515 } 2516 bge_phy_hack(sc); 2517 mii_mediachg(mii); 2518 2519 return(0); 2520 } 2521 2522 /* 2523 * Report current media status. 2524 */ 2525 static void 2526 bge_ifmedia_sts(ifp, ifmr) 2527 struct ifnet *ifp; 2528 struct ifmediareq *ifmr; 2529 { 2530 struct bge_softc *sc; 2531 struct mii_data *mii; 2532 2533 sc = ifp->if_softc; 2534 2535 if (sc->bge_tbi) { 2536 ifmr->ifm_status = IFM_AVALID; 2537 ifmr->ifm_active = IFM_ETHER; 2538 if (CSR_READ_4(sc, BGE_MAC_STS) & 2539 BGE_MACSTAT_TBI_PCS_SYNCHED) 2540 ifmr->ifm_status |= IFM_ACTIVE; 2541 ifmr->ifm_active |= IFM_1000_SX; 2542 if (CSR_READ_4(sc, BGE_MAC_MODE) & BGE_MACMODE_HALF_DUPLEX) 2543 ifmr->ifm_active |= IFM_HDX; 2544 else 2545 ifmr->ifm_active |= IFM_FDX; 2546 return; 2547 } 2548 2549 mii = device_get_softc(sc->bge_miibus); 2550 mii_pollstat(mii); 2551 ifmr->ifm_active = mii->mii_media_active; 2552 ifmr->ifm_status = mii->mii_media_status; 2553 2554 return; 2555 } 2556 2557 static int 2558 bge_ioctl(ifp, command, data) 2559 struct ifnet *ifp; 2560 u_long command; 2561 caddr_t data; 2562 { 2563 struct bge_softc *sc = ifp->if_softc; 2564 struct ifreq *ifr = (struct ifreq *) data; 2565 int s, mask, error = 0; 2566 struct mii_data *mii; 2567 2568 s = splimp(); 2569 2570 switch(command) { 2571 case SIOCSIFADDR: 2572 case SIOCGIFADDR: 2573 error = ether_ioctl(ifp, command, data); 2574 break; 2575 case SIOCSIFMTU: 2576 if (ifr->ifr_mtu > BGE_JUMBO_MTU) 2577 error = EINVAL; 2578 else { 2579 ifp->if_mtu = ifr->ifr_mtu; 2580 ifp->if_flags &= ~IFF_RUNNING; 2581 bge_init(sc); 2582 } 2583 break; 2584 case SIOCSIFFLAGS: 2585 if (ifp->if_flags & IFF_UP) { 2586 /* 2587 * If only the state of the PROMISC flag changed, 2588 * then just use the 'set promisc mode' command 2589 * instead of reinitializing the entire NIC. Doing 2590 * a full re-init means reloading the firmware and 2591 * waiting for it to start up, which may take a 2592 * second or two. 2593 */ 2594 if (ifp->if_flags & IFF_RUNNING && 2595 ifp->if_flags & IFF_PROMISC && 2596 !(sc->bge_if_flags & IFF_PROMISC)) { 2597 BGE_SETBIT(sc, BGE_RX_MODE, 2598 BGE_RXMODE_RX_PROMISC); 2599 } else if (ifp->if_flags & IFF_RUNNING && 2600 !(ifp->if_flags & IFF_PROMISC) && 2601 sc->bge_if_flags & IFF_PROMISC) { 2602 BGE_CLRBIT(sc, BGE_RX_MODE, 2603 BGE_RXMODE_RX_PROMISC); 2604 } else 2605 bge_init(sc); 2606 } else { 2607 if (ifp->if_flags & IFF_RUNNING) { 2608 bge_stop(sc); 2609 } 2610 } 2611 sc->bge_if_flags = ifp->if_flags; 2612 error = 0; 2613 break; 2614 case SIOCADDMULTI: 2615 case SIOCDELMULTI: 2616 if (ifp->if_flags & IFF_RUNNING) { 2617 bge_setmulti(sc); 2618 error = 0; 2619 } 2620 break; 2621 case SIOCSIFMEDIA: 2622 case SIOCGIFMEDIA: 2623 if (sc->bge_tbi) { 2624 error = ifmedia_ioctl(ifp, ifr, 2625 &sc->bge_ifmedia, command); 2626 } else { 2627 mii = device_get_softc(sc->bge_miibus); 2628 error = ifmedia_ioctl(ifp, ifr, 2629 &mii->mii_media, command); 2630 } 2631 break; 2632 case SIOCSIFCAP: 2633 mask = ifr->ifr_reqcap ^ ifp->if_capenable; 2634 if (mask & IFCAP_HWCSUM) { 2635 if (IFCAP_HWCSUM & ifp->if_capenable) 2636 ifp->if_capenable &= ~IFCAP_HWCSUM; 2637 else 2638 ifp->if_capenable |= IFCAP_HWCSUM; 2639 } 2640 error = 0; 2641 break; 2642 default: 2643 error = EINVAL; 2644 break; 2645 } 2646 2647 (void)splx(s); 2648 2649 return(error); 2650 } 2651 2652 static void 2653 bge_watchdog(ifp) 2654 struct ifnet *ifp; 2655 { 2656 struct bge_softc *sc; 2657 2658 sc = ifp->if_softc; 2659 2660 printf("bge%d: watchdog timeout -- resetting\n", sc->bge_unit); 2661 2662 ifp->if_flags &= ~IFF_RUNNING; 2663 bge_init(sc); 2664 2665 ifp->if_oerrors++; 2666 2667 return; 2668 } 2669 2670 /* 2671 * Stop the adapter and free any mbufs allocated to the 2672 * RX and TX lists. 2673 */ 2674 static void 2675 bge_stop(sc) 2676 struct bge_softc *sc; 2677 { 2678 struct ifnet *ifp; 2679 struct ifmedia_entry *ifm; 2680 struct mii_data *mii = NULL; 2681 int mtmp, itmp; 2682 2683 ifp = &sc->arpcom.ac_if; 2684 2685 if (!sc->bge_tbi) 2686 mii = device_get_softc(sc->bge_miibus); 2687 2688 untimeout(bge_tick, sc, sc->bge_stat_ch); 2689 2690 /* 2691 * Disable all of the receiver blocks 2692 */ 2693 BGE_CLRBIT(sc, BGE_RX_MODE, BGE_RXMODE_ENABLE); 2694 BGE_CLRBIT(sc, BGE_RBDI_MODE, BGE_RBDIMODE_ENABLE); 2695 BGE_CLRBIT(sc, BGE_RXLP_MODE, BGE_RXLPMODE_ENABLE); 2696 BGE_CLRBIT(sc, BGE_RXLS_MODE, BGE_RXLSMODE_ENABLE); 2697 BGE_CLRBIT(sc, BGE_RDBDI_MODE, BGE_RBDIMODE_ENABLE); 2698 BGE_CLRBIT(sc, BGE_RDC_MODE, BGE_RDCMODE_ENABLE); 2699 BGE_CLRBIT(sc, BGE_RBDC_MODE, BGE_RBDCMODE_ENABLE); 2700 2701 /* 2702 * Disable all of the transmit blocks 2703 */ 2704 BGE_CLRBIT(sc, BGE_SRS_MODE, BGE_SRSMODE_ENABLE); 2705 BGE_CLRBIT(sc, BGE_SBDI_MODE, BGE_SBDIMODE_ENABLE); 2706 BGE_CLRBIT(sc, BGE_SDI_MODE, BGE_SDIMODE_ENABLE); 2707 BGE_CLRBIT(sc, BGE_RDMA_MODE, BGE_RDMAMODE_ENABLE); 2708 BGE_CLRBIT(sc, BGE_SDC_MODE, BGE_SDCMODE_ENABLE); 2709 BGE_CLRBIT(sc, BGE_DMAC_MODE, BGE_DMACMODE_ENABLE); 2710 BGE_CLRBIT(sc, BGE_SBDC_MODE, BGE_SBDCMODE_ENABLE); 2711 2712 /* 2713 * Shut down all of the memory managers and related 2714 * state machines. 2715 */ 2716 BGE_CLRBIT(sc, BGE_HCC_MODE, BGE_HCCMODE_ENABLE); 2717 BGE_CLRBIT(sc, BGE_WDMA_MODE, BGE_WDMAMODE_ENABLE); 2718 BGE_CLRBIT(sc, BGE_MBCF_MODE, BGE_MBCFMODE_ENABLE); 2719 CSR_WRITE_4(sc, BGE_FTQ_RESET, 0xFFFFFFFF); 2720 CSR_WRITE_4(sc, BGE_FTQ_RESET, 0); 2721 BGE_CLRBIT(sc, BGE_BMAN_MODE, BGE_BMANMODE_ENABLE); 2722 BGE_CLRBIT(sc, BGE_MARB_MODE, BGE_MARBMODE_ENABLE); 2723 2724 /* Disable host interrupts. */ 2725 BGE_SETBIT(sc, BGE_PCI_MISC_CTL, BGE_PCIMISCCTL_MASK_PCI_INTR); 2726 CSR_WRITE_4(sc, BGE_MBX_IRQ0_LO, 1); 2727 2728 /* 2729 * Tell firmware we're shutting down. 2730 */ 2731 BGE_CLRBIT(sc, BGE_MODE_CTL, BGE_MODECTL_STACKUP); 2732 2733 /* Free the RX lists. */ 2734 bge_free_rx_ring_std(sc); 2735 2736 /* Free jumbo RX list. */ 2737 bge_free_rx_ring_jumbo(sc); 2738 2739 /* Free TX buffers. */ 2740 bge_free_tx_ring(sc); 2741 2742 /* 2743 * Isolate/power down the PHY, but leave the media selection 2744 * unchanged so that things will be put back to normal when 2745 * we bring the interface back up. 2746 */ 2747 if (!sc->bge_tbi) { 2748 itmp = ifp->if_flags; 2749 ifp->if_flags |= IFF_UP; 2750 ifm = mii->mii_media.ifm_cur; 2751 mtmp = ifm->ifm_media; 2752 ifm->ifm_media = IFM_ETHER|IFM_NONE; 2753 mii_mediachg(mii); 2754 ifm->ifm_media = mtmp; 2755 ifp->if_flags = itmp; 2756 } 2757 2758 sc->bge_link = 0; 2759 2760 sc->bge_tx_saved_considx = BGE_TXCONS_UNSET; 2761 2762 ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE); 2763 2764 return; 2765 } 2766 2767 /* 2768 * Stop all chip I/O so that the kernel's probe routines don't 2769 * get confused by errant DMAs when rebooting. 2770 */ 2771 static void 2772 bge_shutdown(dev) 2773 device_t dev; 2774 { 2775 struct bge_softc *sc; 2776 2777 sc = device_get_softc(dev); 2778 2779 bge_stop(sc); 2780 bge_reset(sc); 2781 2782 return; 2783 } 2784