xref: /freebsd/sys/dev/bge/if_bge.c (revision 0677dfd1c4dadb62482e2c72fa4c6720902128a4)
1 /*-
2  * Copyright (c) 2001 Wind River Systems
3  * Copyright (c) 1997, 1998, 1999, 2001
4  *	Bill Paul <wpaul@windriver.com>.  All rights reserved.
5  *
6  * Redistribution and use in source and binary forms, with or without
7  * modification, are permitted provided that the following conditions
8  * are met:
9  * 1. Redistributions of source code must retain the above copyright
10  *    notice, this list of conditions and the following disclaimer.
11  * 2. Redistributions in binary form must reproduce the above copyright
12  *    notice, this list of conditions and the following disclaimer in the
13  *    documentation and/or other materials provided with the distribution.
14  * 3. All advertising materials mentioning features or use of this software
15  *    must display the following acknowledgement:
16  *	This product includes software developed by Bill Paul.
17  * 4. Neither the name of the author nor the names of any co-contributors
18  *    may be used to endorse or promote products derived from this software
19  *    without specific prior written permission.
20  *
21  * THIS SOFTWARE IS PROVIDED BY Bill Paul AND CONTRIBUTORS ``AS IS'' AND
22  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
23  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
24  * ARE DISCLAIMED.  IN NO EVENT SHALL Bill Paul OR THE VOICES IN HIS HEAD
25  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
26  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
27  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
28  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
29  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
30  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF
31  * THE POSSIBILITY OF SUCH DAMAGE.
32  */
33 
34 #include <sys/cdefs.h>
35 __FBSDID("$FreeBSD$");
36 
37 /*
38  * Broadcom BCM57xx(x)/BCM590x NetXtreme and NetLink family Ethernet driver
39  *
40  * The Broadcom BCM5700 is based on technology originally developed by
41  * Alteon Networks as part of the Tigon I and Tigon II Gigabit Ethernet
42  * MAC chips. The BCM5700, sometimes referred to as the Tigon III, has
43  * two on-board MIPS R4000 CPUs and can have as much as 16MB of external
44  * SSRAM. The BCM5700 supports TCP, UDP and IP checksum offload, jumbo
45  * frames, highly configurable RX filtering, and 16 RX and TX queues
46  * (which, along with RX filter rules, can be used for QOS applications).
47  * Other features, such as TCP segmentation, may be available as part
48  * of value-added firmware updates. Unlike the Tigon I and Tigon II,
49  * firmware images can be stored in hardware and need not be compiled
50  * into the driver.
51  *
52  * The BCM5700 supports the PCI v2.2 and PCI-X v1.0 standards, and will
53  * function in a 32-bit/64-bit 33/66Mhz bus, or a 64-bit/133Mhz bus.
54  *
55  * The BCM5701 is a single-chip solution incorporating both the BCM5700
56  * MAC and a BCM5401 10/100/1000 PHY. Unlike the BCM5700, the BCM5701
57  * does not support external SSRAM.
58  *
59  * Broadcom also produces a variation of the BCM5700 under the "Altima"
60  * brand name, which is functionally similar but lacks PCI-X support.
61  *
62  * Without external SSRAM, you can only have at most 4 TX rings,
63  * and the use of the mini RX ring is disabled. This seems to imply
64  * that these features are simply not available on the BCM5701. As a
65  * result, this driver does not implement any support for the mini RX
66  * ring.
67  */
68 
69 #ifdef HAVE_KERNEL_OPTION_HEADERS
70 #include "opt_device_polling.h"
71 #endif
72 
73 #include <sys/param.h>
74 #include <sys/endian.h>
75 #include <sys/systm.h>
76 #include <sys/sockio.h>
77 #include <sys/mbuf.h>
78 #include <sys/malloc.h>
79 #include <sys/kernel.h>
80 #include <sys/module.h>
81 #include <sys/socket.h>
82 #include <sys/sysctl.h>
83 #include <sys/taskqueue.h>
84 
85 #include <net/if.h>
86 #include <net/if_var.h>
87 #include <net/if_arp.h>
88 #include <net/ethernet.h>
89 #include <net/if_dl.h>
90 #include <net/if_media.h>
91 
92 #include <net/bpf.h>
93 
94 #include <net/if_types.h>
95 #include <net/if_vlan_var.h>
96 
97 #include <netinet/in_systm.h>
98 #include <netinet/in.h>
99 #include <netinet/ip.h>
100 #include <netinet/tcp.h>
101 
102 #include <machine/bus.h>
103 #include <machine/resource.h>
104 #include <sys/bus.h>
105 #include <sys/rman.h>
106 
107 #include <dev/mii/mii.h>
108 #include <dev/mii/miivar.h>
109 #include "miidevs.h"
110 #include <dev/mii/brgphyreg.h>
111 
112 #ifdef __sparc64__
113 #include <dev/ofw/ofw_bus.h>
114 #include <dev/ofw/openfirm.h>
115 #include <machine/ofw_machdep.h>
116 #include <machine/ver.h>
117 #endif
118 
119 #include <dev/pci/pcireg.h>
120 #include <dev/pci/pcivar.h>
121 
122 #include <dev/bge/if_bgereg.h>
123 
124 #define	BGE_CSUM_FEATURES	(CSUM_IP | CSUM_TCP)
125 #define	ETHER_MIN_NOPAD		(ETHER_MIN_LEN - ETHER_CRC_LEN) /* i.e., 60 */
126 
127 MODULE_DEPEND(bge, pci, 1, 1, 1);
128 MODULE_DEPEND(bge, ether, 1, 1, 1);
129 MODULE_DEPEND(bge, miibus, 1, 1, 1);
130 
131 /* "device miibus" required.  See GENERIC if you get errors here. */
132 #include "miibus_if.h"
133 
134 /*
135  * Various supported device vendors/types and their names. Note: the
136  * spec seems to indicate that the hardware still has Alteon's vendor
137  * ID burned into it, though it will always be overriden by the vendor
138  * ID in the EEPROM. Just to be safe, we cover all possibilities.
139  */
140 static const struct bge_type {
141 	uint16_t	bge_vid;
142 	uint16_t	bge_did;
143 } bge_devs[] = {
144 	{ ALTEON_VENDORID,	ALTEON_DEVICEID_BCM5700 },
145 	{ ALTEON_VENDORID,	ALTEON_DEVICEID_BCM5701 },
146 
147 	{ ALTIMA_VENDORID,	ALTIMA_DEVICE_AC1000 },
148 	{ ALTIMA_VENDORID,	ALTIMA_DEVICE_AC1002 },
149 	{ ALTIMA_VENDORID,	ALTIMA_DEVICE_AC9100 },
150 
151 	{ APPLE_VENDORID,	APPLE_DEVICE_BCM5701 },
152 
153 	{ BCOM_VENDORID,	BCOM_DEVICEID_BCM5700 },
154 	{ BCOM_VENDORID,	BCOM_DEVICEID_BCM5701 },
155 	{ BCOM_VENDORID,	BCOM_DEVICEID_BCM5702 },
156 	{ BCOM_VENDORID,	BCOM_DEVICEID_BCM5702_ALT },
157 	{ BCOM_VENDORID,	BCOM_DEVICEID_BCM5702X },
158 	{ BCOM_VENDORID,	BCOM_DEVICEID_BCM5703 },
159 	{ BCOM_VENDORID,	BCOM_DEVICEID_BCM5703_ALT },
160 	{ BCOM_VENDORID,	BCOM_DEVICEID_BCM5703X },
161 	{ BCOM_VENDORID,	BCOM_DEVICEID_BCM5704C },
162 	{ BCOM_VENDORID,	BCOM_DEVICEID_BCM5704S },
163 	{ BCOM_VENDORID,	BCOM_DEVICEID_BCM5704S_ALT },
164 	{ BCOM_VENDORID,	BCOM_DEVICEID_BCM5705 },
165 	{ BCOM_VENDORID,	BCOM_DEVICEID_BCM5705F },
166 	{ BCOM_VENDORID,	BCOM_DEVICEID_BCM5705K },
167 	{ BCOM_VENDORID,	BCOM_DEVICEID_BCM5705M },
168 	{ BCOM_VENDORID,	BCOM_DEVICEID_BCM5705M_ALT },
169 	{ BCOM_VENDORID,	BCOM_DEVICEID_BCM5714C },
170 	{ BCOM_VENDORID,	BCOM_DEVICEID_BCM5714S },
171 	{ BCOM_VENDORID,	BCOM_DEVICEID_BCM5715 },
172 	{ BCOM_VENDORID,	BCOM_DEVICEID_BCM5715S },
173 	{ BCOM_VENDORID,	BCOM_DEVICEID_BCM5717 },
174 	{ BCOM_VENDORID,	BCOM_DEVICEID_BCM5718 },
175 	{ BCOM_VENDORID,	BCOM_DEVICEID_BCM5719 },
176 	{ BCOM_VENDORID,	BCOM_DEVICEID_BCM5720 },
177 	{ BCOM_VENDORID,	BCOM_DEVICEID_BCM5721 },
178 	{ BCOM_VENDORID,	BCOM_DEVICEID_BCM5722 },
179 	{ BCOM_VENDORID,	BCOM_DEVICEID_BCM5723 },
180 	{ BCOM_VENDORID,	BCOM_DEVICEID_BCM5725 },
181 	{ BCOM_VENDORID,	BCOM_DEVICEID_BCM5727 },
182 	{ BCOM_VENDORID,	BCOM_DEVICEID_BCM5750 },
183 	{ BCOM_VENDORID,	BCOM_DEVICEID_BCM5750M },
184 	{ BCOM_VENDORID,	BCOM_DEVICEID_BCM5751 },
185 	{ BCOM_VENDORID,	BCOM_DEVICEID_BCM5751F },
186 	{ BCOM_VENDORID,	BCOM_DEVICEID_BCM5751M },
187 	{ BCOM_VENDORID,	BCOM_DEVICEID_BCM5752 },
188 	{ BCOM_VENDORID,	BCOM_DEVICEID_BCM5752M },
189 	{ BCOM_VENDORID,	BCOM_DEVICEID_BCM5753 },
190 	{ BCOM_VENDORID,	BCOM_DEVICEID_BCM5753F },
191 	{ BCOM_VENDORID,	BCOM_DEVICEID_BCM5753M },
192 	{ BCOM_VENDORID,	BCOM_DEVICEID_BCM5754 },
193 	{ BCOM_VENDORID,	BCOM_DEVICEID_BCM5754M },
194 	{ BCOM_VENDORID,	BCOM_DEVICEID_BCM5755 },
195 	{ BCOM_VENDORID,	BCOM_DEVICEID_BCM5755M },
196 	{ BCOM_VENDORID,	BCOM_DEVICEID_BCM5756 },
197 	{ BCOM_VENDORID,	BCOM_DEVICEID_BCM5761 },
198 	{ BCOM_VENDORID,	BCOM_DEVICEID_BCM5761E },
199 	{ BCOM_VENDORID,	BCOM_DEVICEID_BCM5761S },
200 	{ BCOM_VENDORID,	BCOM_DEVICEID_BCM5761SE },
201 	{ BCOM_VENDORID,	BCOM_DEVICEID_BCM5762 },
202 	{ BCOM_VENDORID,	BCOM_DEVICEID_BCM5764 },
203 	{ BCOM_VENDORID,	BCOM_DEVICEID_BCM5780 },
204 	{ BCOM_VENDORID,	BCOM_DEVICEID_BCM5780S },
205 	{ BCOM_VENDORID,	BCOM_DEVICEID_BCM5781 },
206 	{ BCOM_VENDORID,	BCOM_DEVICEID_BCM5782 },
207 	{ BCOM_VENDORID,	BCOM_DEVICEID_BCM5784 },
208 	{ BCOM_VENDORID,	BCOM_DEVICEID_BCM5785F },
209 	{ BCOM_VENDORID,	BCOM_DEVICEID_BCM5785G },
210 	{ BCOM_VENDORID,	BCOM_DEVICEID_BCM5786 },
211 	{ BCOM_VENDORID,	BCOM_DEVICEID_BCM5787 },
212 	{ BCOM_VENDORID,	BCOM_DEVICEID_BCM5787F },
213 	{ BCOM_VENDORID,	BCOM_DEVICEID_BCM5787M },
214 	{ BCOM_VENDORID,	BCOM_DEVICEID_BCM5788 },
215 	{ BCOM_VENDORID,	BCOM_DEVICEID_BCM5789 },
216 	{ BCOM_VENDORID,	BCOM_DEVICEID_BCM5901 },
217 	{ BCOM_VENDORID,	BCOM_DEVICEID_BCM5901A2 },
218 	{ BCOM_VENDORID,	BCOM_DEVICEID_BCM5903M },
219 	{ BCOM_VENDORID,	BCOM_DEVICEID_BCM5906 },
220 	{ BCOM_VENDORID,	BCOM_DEVICEID_BCM5906M },
221 	{ BCOM_VENDORID,	BCOM_DEVICEID_BCM57760 },
222 	{ BCOM_VENDORID,	BCOM_DEVICEID_BCM57761 },
223 	{ BCOM_VENDORID,	BCOM_DEVICEID_BCM57762 },
224 	{ BCOM_VENDORID,	BCOM_DEVICEID_BCM57764 },
225 	{ BCOM_VENDORID,	BCOM_DEVICEID_BCM57765 },
226 	{ BCOM_VENDORID,	BCOM_DEVICEID_BCM57766 },
227 	{ BCOM_VENDORID,	BCOM_DEVICEID_BCM57767 },
228 	{ BCOM_VENDORID,	BCOM_DEVICEID_BCM57780 },
229 	{ BCOM_VENDORID,	BCOM_DEVICEID_BCM57781 },
230 	{ BCOM_VENDORID,	BCOM_DEVICEID_BCM57782 },
231 	{ BCOM_VENDORID,	BCOM_DEVICEID_BCM57785 },
232 	{ BCOM_VENDORID,	BCOM_DEVICEID_BCM57786 },
233 	{ BCOM_VENDORID,	BCOM_DEVICEID_BCM57787 },
234 	{ BCOM_VENDORID,	BCOM_DEVICEID_BCM57788 },
235 	{ BCOM_VENDORID,	BCOM_DEVICEID_BCM57790 },
236 	{ BCOM_VENDORID,	BCOM_DEVICEID_BCM57791 },
237 	{ BCOM_VENDORID,	BCOM_DEVICEID_BCM57795 },
238 
239 	{ SK_VENDORID,		SK_DEVICEID_ALTIMA },
240 
241 	{ TC_VENDORID,		TC_DEVICEID_3C996 },
242 
243 	{ FJTSU_VENDORID,	FJTSU_DEVICEID_PW008GE4 },
244 	{ FJTSU_VENDORID,	FJTSU_DEVICEID_PW008GE5 },
245 	{ FJTSU_VENDORID,	FJTSU_DEVICEID_PP250450 },
246 
247 	{ 0, 0 }
248 };
249 
250 static const struct bge_vendor {
251 	uint16_t	v_id;
252 	const char	*v_name;
253 } bge_vendors[] = {
254 	{ ALTEON_VENDORID,	"Alteon" },
255 	{ ALTIMA_VENDORID,	"Altima" },
256 	{ APPLE_VENDORID,	"Apple" },
257 	{ BCOM_VENDORID,	"Broadcom" },
258 	{ SK_VENDORID,		"SysKonnect" },
259 	{ TC_VENDORID,		"3Com" },
260 	{ FJTSU_VENDORID,	"Fujitsu" },
261 
262 	{ 0, NULL }
263 };
264 
265 static const struct bge_revision {
266 	uint32_t	br_chipid;
267 	const char	*br_name;
268 } bge_revisions[] = {
269 	{ BGE_CHIPID_BCM5700_A0,	"BCM5700 A0" },
270 	{ BGE_CHIPID_BCM5700_A1,	"BCM5700 A1" },
271 	{ BGE_CHIPID_BCM5700_B0,	"BCM5700 B0" },
272 	{ BGE_CHIPID_BCM5700_B1,	"BCM5700 B1" },
273 	{ BGE_CHIPID_BCM5700_B2,	"BCM5700 B2" },
274 	{ BGE_CHIPID_BCM5700_B3,	"BCM5700 B3" },
275 	{ BGE_CHIPID_BCM5700_ALTIMA,	"BCM5700 Altima" },
276 	{ BGE_CHIPID_BCM5700_C0,	"BCM5700 C0" },
277 	{ BGE_CHIPID_BCM5701_A0,	"BCM5701 A0" },
278 	{ BGE_CHIPID_BCM5701_B0,	"BCM5701 B0" },
279 	{ BGE_CHIPID_BCM5701_B2,	"BCM5701 B2" },
280 	{ BGE_CHIPID_BCM5701_B5,	"BCM5701 B5" },
281 	{ BGE_CHIPID_BCM5703_A0,	"BCM5703 A0" },
282 	{ BGE_CHIPID_BCM5703_A1,	"BCM5703 A1" },
283 	{ BGE_CHIPID_BCM5703_A2,	"BCM5703 A2" },
284 	{ BGE_CHIPID_BCM5703_A3,	"BCM5703 A3" },
285 	{ BGE_CHIPID_BCM5703_B0,	"BCM5703 B0" },
286 	{ BGE_CHIPID_BCM5704_A0,	"BCM5704 A0" },
287 	{ BGE_CHIPID_BCM5704_A1,	"BCM5704 A1" },
288 	{ BGE_CHIPID_BCM5704_A2,	"BCM5704 A2" },
289 	{ BGE_CHIPID_BCM5704_A3,	"BCM5704 A3" },
290 	{ BGE_CHIPID_BCM5704_B0,	"BCM5704 B0" },
291 	{ BGE_CHIPID_BCM5705_A0,	"BCM5705 A0" },
292 	{ BGE_CHIPID_BCM5705_A1,	"BCM5705 A1" },
293 	{ BGE_CHIPID_BCM5705_A2,	"BCM5705 A2" },
294 	{ BGE_CHIPID_BCM5705_A3,	"BCM5705 A3" },
295 	{ BGE_CHIPID_BCM5750_A0,	"BCM5750 A0" },
296 	{ BGE_CHIPID_BCM5750_A1,	"BCM5750 A1" },
297 	{ BGE_CHIPID_BCM5750_A3,	"BCM5750 A3" },
298 	{ BGE_CHIPID_BCM5750_B0,	"BCM5750 B0" },
299 	{ BGE_CHIPID_BCM5750_B1,	"BCM5750 B1" },
300 	{ BGE_CHIPID_BCM5750_C0,	"BCM5750 C0" },
301 	{ BGE_CHIPID_BCM5750_C1,	"BCM5750 C1" },
302 	{ BGE_CHIPID_BCM5750_C2,	"BCM5750 C2" },
303 	{ BGE_CHIPID_BCM5714_A0,	"BCM5714 A0" },
304 	{ BGE_CHIPID_BCM5752_A0,	"BCM5752 A0" },
305 	{ BGE_CHIPID_BCM5752_A1,	"BCM5752 A1" },
306 	{ BGE_CHIPID_BCM5752_A2,	"BCM5752 A2" },
307 	{ BGE_CHIPID_BCM5714_B0,	"BCM5714 B0" },
308 	{ BGE_CHIPID_BCM5714_B3,	"BCM5714 B3" },
309 	{ BGE_CHIPID_BCM5715_A0,	"BCM5715 A0" },
310 	{ BGE_CHIPID_BCM5715_A1,	"BCM5715 A1" },
311 	{ BGE_CHIPID_BCM5715_A3,	"BCM5715 A3" },
312 	{ BGE_CHIPID_BCM5717_A0,	"BCM5717 A0" },
313 	{ BGE_CHIPID_BCM5717_B0,	"BCM5717 B0" },
314 	{ BGE_CHIPID_BCM5719_A0,	"BCM5719 A0" },
315 	{ BGE_CHIPID_BCM5720_A0,	"BCM5720 A0" },
316 	{ BGE_CHIPID_BCM5755_A0,	"BCM5755 A0" },
317 	{ BGE_CHIPID_BCM5755_A1,	"BCM5755 A1" },
318 	{ BGE_CHIPID_BCM5755_A2,	"BCM5755 A2" },
319 	{ BGE_CHIPID_BCM5722_A0,	"BCM5722 A0" },
320 	{ BGE_CHIPID_BCM5761_A0,	"BCM5761 A0" },
321 	{ BGE_CHIPID_BCM5761_A1,	"BCM5761 A1" },
322 	{ BGE_CHIPID_BCM5762_A0,	"BCM5762 A0" },
323 	{ BGE_CHIPID_BCM5784_A0,	"BCM5784 A0" },
324 	{ BGE_CHIPID_BCM5784_A1,	"BCM5784 A1" },
325 	/* 5754 and 5787 share the same ASIC ID */
326 	{ BGE_CHIPID_BCM5787_A0,	"BCM5754/5787 A0" },
327 	{ BGE_CHIPID_BCM5787_A1,	"BCM5754/5787 A1" },
328 	{ BGE_CHIPID_BCM5787_A2,	"BCM5754/5787 A2" },
329 	{ BGE_CHIPID_BCM5906_A1,	"BCM5906 A1" },
330 	{ BGE_CHIPID_BCM5906_A2,	"BCM5906 A2" },
331 	{ BGE_CHIPID_BCM57765_A0,	"BCM57765 A0" },
332 	{ BGE_CHIPID_BCM57765_B0,	"BCM57765 B0" },
333 	{ BGE_CHIPID_BCM57780_A0,	"BCM57780 A0" },
334 	{ BGE_CHIPID_BCM57780_A1,	"BCM57780 A1" },
335 
336 	{ 0, NULL }
337 };
338 
339 /*
340  * Some defaults for major revisions, so that newer steppings
341  * that we don't know about have a shot at working.
342  */
343 static const struct bge_revision bge_majorrevs[] = {
344 	{ BGE_ASICREV_BCM5700,		"unknown BCM5700" },
345 	{ BGE_ASICREV_BCM5701,		"unknown BCM5701" },
346 	{ BGE_ASICREV_BCM5703,		"unknown BCM5703" },
347 	{ BGE_ASICREV_BCM5704,		"unknown BCM5704" },
348 	{ BGE_ASICREV_BCM5705,		"unknown BCM5705" },
349 	{ BGE_ASICREV_BCM5750,		"unknown BCM5750" },
350 	{ BGE_ASICREV_BCM5714_A0,	"unknown BCM5714" },
351 	{ BGE_ASICREV_BCM5752,		"unknown BCM5752" },
352 	{ BGE_ASICREV_BCM5780,		"unknown BCM5780" },
353 	{ BGE_ASICREV_BCM5714,		"unknown BCM5714" },
354 	{ BGE_ASICREV_BCM5755,		"unknown BCM5755" },
355 	{ BGE_ASICREV_BCM5761,		"unknown BCM5761" },
356 	{ BGE_ASICREV_BCM5784,		"unknown BCM5784" },
357 	{ BGE_ASICREV_BCM5785,		"unknown BCM5785" },
358 	/* 5754 and 5787 share the same ASIC ID */
359 	{ BGE_ASICREV_BCM5787,		"unknown BCM5754/5787" },
360 	{ BGE_ASICREV_BCM5906,		"unknown BCM5906" },
361 	{ BGE_ASICREV_BCM57765,		"unknown BCM57765" },
362 	{ BGE_ASICREV_BCM57766,		"unknown BCM57766" },
363 	{ BGE_ASICREV_BCM57780,		"unknown BCM57780" },
364 	{ BGE_ASICREV_BCM5717,		"unknown BCM5717" },
365 	{ BGE_ASICREV_BCM5719,		"unknown BCM5719" },
366 	{ BGE_ASICREV_BCM5720,		"unknown BCM5720" },
367 	{ BGE_ASICREV_BCM5762,		"unknown BCM5762" },
368 
369 	{ 0, NULL }
370 };
371 
372 #define	BGE_IS_JUMBO_CAPABLE(sc)	((sc)->bge_flags & BGE_FLAG_JUMBO)
373 #define	BGE_IS_5700_FAMILY(sc)		((sc)->bge_flags & BGE_FLAG_5700_FAMILY)
374 #define	BGE_IS_5705_PLUS(sc)		((sc)->bge_flags & BGE_FLAG_5705_PLUS)
375 #define	BGE_IS_5714_FAMILY(sc)		((sc)->bge_flags & BGE_FLAG_5714_FAMILY)
376 #define	BGE_IS_575X_PLUS(sc)		((sc)->bge_flags & BGE_FLAG_575X_PLUS)
377 #define	BGE_IS_5755_PLUS(sc)		((sc)->bge_flags & BGE_FLAG_5755_PLUS)
378 #define	BGE_IS_5717_PLUS(sc)		((sc)->bge_flags & BGE_FLAG_5717_PLUS)
379 #define	BGE_IS_57765_PLUS(sc)		((sc)->bge_flags & BGE_FLAG_57765_PLUS)
380 
381 static uint32_t bge_chipid(device_t);
382 static const struct bge_vendor * bge_lookup_vendor(uint16_t);
383 static const struct bge_revision * bge_lookup_rev(uint32_t);
384 
385 typedef int	(*bge_eaddr_fcn_t)(struct bge_softc *, uint8_t[]);
386 
387 static int bge_probe(device_t);
388 static int bge_attach(device_t);
389 static int bge_detach(device_t);
390 static int bge_suspend(device_t);
391 static int bge_resume(device_t);
392 static void bge_release_resources(struct bge_softc *);
393 static void bge_dma_map_addr(void *, bus_dma_segment_t *, int, int);
394 static int bge_dma_alloc(struct bge_softc *);
395 static void bge_dma_free(struct bge_softc *);
396 static int bge_dma_ring_alloc(struct bge_softc *, bus_size_t, bus_size_t,
397     bus_dma_tag_t *, uint8_t **, bus_dmamap_t *, bus_addr_t *, const char *);
398 
399 static void bge_devinfo(struct bge_softc *);
400 static int bge_mbox_reorder(struct bge_softc *);
401 
402 static int bge_get_eaddr_fw(struct bge_softc *sc, uint8_t ether_addr[]);
403 static int bge_get_eaddr_mem(struct bge_softc *, uint8_t[]);
404 static int bge_get_eaddr_nvram(struct bge_softc *, uint8_t[]);
405 static int bge_get_eaddr_eeprom(struct bge_softc *, uint8_t[]);
406 static int bge_get_eaddr(struct bge_softc *, uint8_t[]);
407 
408 static void bge_txeof(struct bge_softc *, uint16_t);
409 static void bge_rxcsum(struct bge_softc *, struct bge_rx_bd *, struct mbuf *);
410 static int bge_rxeof(struct bge_softc *, uint16_t, int);
411 
412 static void bge_asf_driver_up (struct bge_softc *);
413 static void bge_tick(void *);
414 static void bge_stats_clear_regs(struct bge_softc *);
415 static void bge_stats_update(struct bge_softc *);
416 static void bge_stats_update_regs(struct bge_softc *);
417 static struct mbuf *bge_check_short_dma(struct mbuf *);
418 static struct mbuf *bge_setup_tso(struct bge_softc *, struct mbuf *,
419     uint16_t *, uint16_t *);
420 static int bge_encap(struct bge_softc *, struct mbuf **, uint32_t *);
421 
422 static void bge_intr(void *);
423 static int bge_msi_intr(void *);
424 static void bge_intr_task(void *, int);
425 static void bge_start_locked(if_t);
426 static void bge_start(if_t);
427 static int bge_ioctl(if_t, u_long, caddr_t);
428 static void bge_init_locked(struct bge_softc *);
429 static void bge_init(void *);
430 static void bge_stop_block(struct bge_softc *, bus_size_t, uint32_t);
431 static void bge_stop(struct bge_softc *);
432 static void bge_watchdog(struct bge_softc *);
433 static int bge_shutdown(device_t);
434 static int bge_ifmedia_upd_locked(if_t);
435 static int bge_ifmedia_upd(if_t);
436 static void bge_ifmedia_sts(if_t, struct ifmediareq *);
437 static uint64_t bge_get_counter(if_t, ift_counter);
438 
439 static uint8_t bge_nvram_getbyte(struct bge_softc *, int, uint8_t *);
440 static int bge_read_nvram(struct bge_softc *, caddr_t, int, int);
441 
442 static uint8_t bge_eeprom_getbyte(struct bge_softc *, int, uint8_t *);
443 static int bge_read_eeprom(struct bge_softc *, caddr_t, int, int);
444 
445 static void bge_setpromisc(struct bge_softc *);
446 static void bge_setmulti(struct bge_softc *);
447 static void bge_setvlan(struct bge_softc *);
448 
449 static __inline void bge_rxreuse_std(struct bge_softc *, int);
450 static __inline void bge_rxreuse_jumbo(struct bge_softc *, int);
451 static int bge_newbuf_std(struct bge_softc *, int);
452 static int bge_newbuf_jumbo(struct bge_softc *, int);
453 static int bge_init_rx_ring_std(struct bge_softc *);
454 static void bge_free_rx_ring_std(struct bge_softc *);
455 static int bge_init_rx_ring_jumbo(struct bge_softc *);
456 static void bge_free_rx_ring_jumbo(struct bge_softc *);
457 static void bge_free_tx_ring(struct bge_softc *);
458 static int bge_init_tx_ring(struct bge_softc *);
459 
460 static int bge_chipinit(struct bge_softc *);
461 static int bge_blockinit(struct bge_softc *);
462 static uint32_t bge_dma_swap_options(struct bge_softc *);
463 
464 static int bge_has_eaddr(struct bge_softc *);
465 static uint32_t bge_readmem_ind(struct bge_softc *, int);
466 static void bge_writemem_ind(struct bge_softc *, int, int);
467 static void bge_writembx(struct bge_softc *, int, int);
468 #ifdef notdef
469 static uint32_t bge_readreg_ind(struct bge_softc *, int);
470 #endif
471 static void bge_writemem_direct(struct bge_softc *, int, int);
472 static void bge_writereg_ind(struct bge_softc *, int, int);
473 
474 static int bge_miibus_readreg(device_t, int, int);
475 static int bge_miibus_writereg(device_t, int, int, int);
476 static void bge_miibus_statchg(device_t);
477 #ifdef DEVICE_POLLING
478 static int bge_poll(if_t ifp, enum poll_cmd cmd, int count);
479 #endif
480 
481 #define	BGE_RESET_SHUTDOWN	0
482 #define	BGE_RESET_START		1
483 #define	BGE_RESET_SUSPEND	2
484 static void bge_sig_post_reset(struct bge_softc *, int);
485 static void bge_sig_legacy(struct bge_softc *, int);
486 static void bge_sig_pre_reset(struct bge_softc *, int);
487 static void bge_stop_fw(struct bge_softc *);
488 static int bge_reset(struct bge_softc *);
489 static void bge_link_upd(struct bge_softc *);
490 
491 static void bge_ape_lock_init(struct bge_softc *);
492 static void bge_ape_read_fw_ver(struct bge_softc *);
493 static int bge_ape_lock(struct bge_softc *, int);
494 static void bge_ape_unlock(struct bge_softc *, int);
495 static void bge_ape_send_event(struct bge_softc *, uint32_t);
496 static void bge_ape_driver_state_change(struct bge_softc *, int);
497 
498 /*
499  * The BGE_REGISTER_DEBUG option is only for low-level debugging.  It may
500  * leak information to untrusted users.  It is also known to cause alignment
501  * traps on certain architectures.
502  */
503 #ifdef BGE_REGISTER_DEBUG
504 static int bge_sysctl_debug_info(SYSCTL_HANDLER_ARGS);
505 static int bge_sysctl_reg_read(SYSCTL_HANDLER_ARGS);
506 static int bge_sysctl_ape_read(SYSCTL_HANDLER_ARGS);
507 static int bge_sysctl_mem_read(SYSCTL_HANDLER_ARGS);
508 #endif
509 static void bge_add_sysctls(struct bge_softc *);
510 static void bge_add_sysctl_stats_regs(struct bge_softc *,
511     struct sysctl_ctx_list *, struct sysctl_oid_list *);
512 static void bge_add_sysctl_stats(struct bge_softc *, struct sysctl_ctx_list *,
513     struct sysctl_oid_list *);
514 static int bge_sysctl_stats(SYSCTL_HANDLER_ARGS);
515 
516 static device_method_t bge_methods[] = {
517 	/* Device interface */
518 	DEVMETHOD(device_probe,		bge_probe),
519 	DEVMETHOD(device_attach,	bge_attach),
520 	DEVMETHOD(device_detach,	bge_detach),
521 	DEVMETHOD(device_shutdown,	bge_shutdown),
522 	DEVMETHOD(device_suspend,	bge_suspend),
523 	DEVMETHOD(device_resume,	bge_resume),
524 
525 	/* MII interface */
526 	DEVMETHOD(miibus_readreg,	bge_miibus_readreg),
527 	DEVMETHOD(miibus_writereg,	bge_miibus_writereg),
528 	DEVMETHOD(miibus_statchg,	bge_miibus_statchg),
529 
530 	DEVMETHOD_END
531 };
532 
533 static driver_t bge_driver = {
534 	"bge",
535 	bge_methods,
536 	sizeof(struct bge_softc)
537 };
538 
539 static devclass_t bge_devclass;
540 
541 DRIVER_MODULE(bge, pci, bge_driver, bge_devclass, 0, 0);
542 DRIVER_MODULE(miibus, bge, miibus_driver, miibus_devclass, 0, 0);
543 
544 static int bge_allow_asf = 1;
545 
546 static SYSCTL_NODE(_hw, OID_AUTO, bge, CTLFLAG_RD, 0, "BGE driver parameters");
547 SYSCTL_INT(_hw_bge, OID_AUTO, allow_asf, CTLFLAG_RDTUN, &bge_allow_asf, 0,
548 	"Allow ASF mode if available");
549 
550 #define	SPARC64_BLADE_1500_MODEL	"SUNW,Sun-Blade-1500"
551 #define	SPARC64_BLADE_1500_PATH_BGE	"/pci@1f,700000/network@2"
552 #define	SPARC64_BLADE_2500_MODEL	"SUNW,Sun-Blade-2500"
553 #define	SPARC64_BLADE_2500_PATH_BGE	"/pci@1c,600000/network@3"
554 #define	SPARC64_OFW_SUBVENDOR		"subsystem-vendor-id"
555 
556 static int
557 bge_has_eaddr(struct bge_softc *sc)
558 {
559 #ifdef __sparc64__
560 	char buf[sizeof(SPARC64_BLADE_1500_PATH_BGE)];
561 	device_t dev;
562 	uint32_t subvendor;
563 
564 	dev = sc->bge_dev;
565 
566 	/*
567 	 * The on-board BGEs found in sun4u machines aren't fitted with
568 	 * an EEPROM which means that we have to obtain the MAC address
569 	 * via OFW and that some tests will always fail.  We distinguish
570 	 * such BGEs by the subvendor ID, which also has to be obtained
571 	 * from OFW instead of the PCI configuration space as the latter
572 	 * indicates Broadcom as the subvendor of the netboot interface.
573 	 * For early Blade 1500 and 2500 we even have to check the OFW
574 	 * device path as the subvendor ID always defaults to Broadcom
575 	 * there.
576 	 */
577 	if (OF_getprop(ofw_bus_get_node(dev), SPARC64_OFW_SUBVENDOR,
578 	    &subvendor, sizeof(subvendor)) == sizeof(subvendor) &&
579 	    (subvendor == FJTSU_VENDORID || subvendor == SUN_VENDORID))
580 		return (0);
581 	memset(buf, 0, sizeof(buf));
582 	if (OF_package_to_path(ofw_bus_get_node(dev), buf, sizeof(buf)) > 0) {
583 		if (strcmp(sparc64_model, SPARC64_BLADE_1500_MODEL) == 0 &&
584 		    strcmp(buf, SPARC64_BLADE_1500_PATH_BGE) == 0)
585 			return (0);
586 		if (strcmp(sparc64_model, SPARC64_BLADE_2500_MODEL) == 0 &&
587 		    strcmp(buf, SPARC64_BLADE_2500_PATH_BGE) == 0)
588 			return (0);
589 	}
590 #endif
591 	return (1);
592 }
593 
594 static uint32_t
595 bge_readmem_ind(struct bge_softc *sc, int off)
596 {
597 	device_t dev;
598 	uint32_t val;
599 
600 	if (sc->bge_asicrev == BGE_ASICREV_BCM5906 &&
601 	    off >= BGE_STATS_BLOCK && off < BGE_SEND_RING_1_TO_4)
602 		return (0);
603 
604 	dev = sc->bge_dev;
605 
606 	pci_write_config(dev, BGE_PCI_MEMWIN_BASEADDR, off, 4);
607 	val = pci_read_config(dev, BGE_PCI_MEMWIN_DATA, 4);
608 	pci_write_config(dev, BGE_PCI_MEMWIN_BASEADDR, 0, 4);
609 	return (val);
610 }
611 
612 static void
613 bge_writemem_ind(struct bge_softc *sc, int off, int val)
614 {
615 	device_t dev;
616 
617 	if (sc->bge_asicrev == BGE_ASICREV_BCM5906 &&
618 	    off >= BGE_STATS_BLOCK && off < BGE_SEND_RING_1_TO_4)
619 		return;
620 
621 	dev = sc->bge_dev;
622 
623 	pci_write_config(dev, BGE_PCI_MEMWIN_BASEADDR, off, 4);
624 	pci_write_config(dev, BGE_PCI_MEMWIN_DATA, val, 4);
625 	pci_write_config(dev, BGE_PCI_MEMWIN_BASEADDR, 0, 4);
626 }
627 
628 #ifdef notdef
629 static uint32_t
630 bge_readreg_ind(struct bge_softc *sc, int off)
631 {
632 	device_t dev;
633 
634 	dev = sc->bge_dev;
635 
636 	pci_write_config(dev, BGE_PCI_REG_BASEADDR, off, 4);
637 	return (pci_read_config(dev, BGE_PCI_REG_DATA, 4));
638 }
639 #endif
640 
641 static void
642 bge_writereg_ind(struct bge_softc *sc, int off, int val)
643 {
644 	device_t dev;
645 
646 	dev = sc->bge_dev;
647 
648 	pci_write_config(dev, BGE_PCI_REG_BASEADDR, off, 4);
649 	pci_write_config(dev, BGE_PCI_REG_DATA, val, 4);
650 }
651 
652 static void
653 bge_writemem_direct(struct bge_softc *sc, int off, int val)
654 {
655 	CSR_WRITE_4(sc, off, val);
656 }
657 
658 static void
659 bge_writembx(struct bge_softc *sc, int off, int val)
660 {
661 	if (sc->bge_asicrev == BGE_ASICREV_BCM5906)
662 		off += BGE_LPMBX_IRQ0_HI - BGE_MBX_IRQ0_HI;
663 
664 	CSR_WRITE_4(sc, off, val);
665 	if ((sc->bge_flags & BGE_FLAG_MBOX_REORDER) != 0)
666 		CSR_READ_4(sc, off);
667 }
668 
669 /*
670  * Clear all stale locks and select the lock for this driver instance.
671  */
672 static void
673 bge_ape_lock_init(struct bge_softc *sc)
674 {
675 	uint32_t bit, regbase;
676 	int i;
677 
678 	if (sc->bge_asicrev == BGE_ASICREV_BCM5761)
679 		regbase = BGE_APE_LOCK_GRANT;
680 	else
681 		regbase = BGE_APE_PER_LOCK_GRANT;
682 
683 	/* Clear any stale locks. */
684 	for (i = BGE_APE_LOCK_PHY0; i <= BGE_APE_LOCK_GPIO; i++) {
685 		switch (i) {
686 		case BGE_APE_LOCK_PHY0:
687 		case BGE_APE_LOCK_PHY1:
688 		case BGE_APE_LOCK_PHY2:
689 		case BGE_APE_LOCK_PHY3:
690 			bit = BGE_APE_LOCK_GRANT_DRIVER0;
691 			break;
692 		default:
693 			if (sc->bge_func_addr == 0)
694 				bit = BGE_APE_LOCK_GRANT_DRIVER0;
695 			else
696 				bit = (1 << sc->bge_func_addr);
697 		}
698 		APE_WRITE_4(sc, regbase + 4 * i, bit);
699 	}
700 
701 	/* Select the PHY lock based on the device's function number. */
702 	switch (sc->bge_func_addr) {
703 	case 0:
704 		sc->bge_phy_ape_lock = BGE_APE_LOCK_PHY0;
705 		break;
706 	case 1:
707 		sc->bge_phy_ape_lock = BGE_APE_LOCK_PHY1;
708 		break;
709 	case 2:
710 		sc->bge_phy_ape_lock = BGE_APE_LOCK_PHY2;
711 		break;
712 	case 3:
713 		sc->bge_phy_ape_lock = BGE_APE_LOCK_PHY3;
714 		break;
715 	default:
716 		device_printf(sc->bge_dev,
717 		    "PHY lock not supported on this function\n");
718 	}
719 }
720 
721 /*
722  * Check for APE firmware, set flags, and print version info.
723  */
724 static void
725 bge_ape_read_fw_ver(struct bge_softc *sc)
726 {
727 	const char *fwtype;
728 	uint32_t apedata, features;
729 
730 	/* Check for a valid APE signature in shared memory. */
731 	apedata = APE_READ_4(sc, BGE_APE_SEG_SIG);
732 	if (apedata != BGE_APE_SEG_SIG_MAGIC) {
733 		sc->bge_mfw_flags &= ~ BGE_MFW_ON_APE;
734 		return;
735 	}
736 
737 	/* Check if APE firmware is running. */
738 	apedata = APE_READ_4(sc, BGE_APE_FW_STATUS);
739 	if ((apedata & BGE_APE_FW_STATUS_READY) == 0) {
740 		device_printf(sc->bge_dev, "APE signature found "
741 		    "but FW status not ready! 0x%08x\n", apedata);
742 		return;
743 	}
744 
745 	sc->bge_mfw_flags |= BGE_MFW_ON_APE;
746 
747 	/* Fetch the APE firwmare type and version. */
748 	apedata = APE_READ_4(sc, BGE_APE_FW_VERSION);
749 	features = APE_READ_4(sc, BGE_APE_FW_FEATURES);
750 	if ((features & BGE_APE_FW_FEATURE_NCSI) != 0) {
751 		sc->bge_mfw_flags |= BGE_MFW_TYPE_NCSI;
752 		fwtype = "NCSI";
753 	} else if ((features & BGE_APE_FW_FEATURE_DASH) != 0) {
754 		sc->bge_mfw_flags |= BGE_MFW_TYPE_DASH;
755 		fwtype = "DASH";
756 	} else
757 		fwtype = "UNKN";
758 
759 	/* Print the APE firmware version. */
760 	device_printf(sc->bge_dev, "APE FW version: %s v%d.%d.%d.%d\n",
761 	    fwtype,
762 	    (apedata & BGE_APE_FW_VERSION_MAJMSK) >> BGE_APE_FW_VERSION_MAJSFT,
763 	    (apedata & BGE_APE_FW_VERSION_MINMSK) >> BGE_APE_FW_VERSION_MINSFT,
764 	    (apedata & BGE_APE_FW_VERSION_REVMSK) >> BGE_APE_FW_VERSION_REVSFT,
765 	    (apedata & BGE_APE_FW_VERSION_BLDMSK));
766 }
767 
768 static int
769 bge_ape_lock(struct bge_softc *sc, int locknum)
770 {
771 	uint32_t bit, gnt, req, status;
772 	int i, off;
773 
774 	if ((sc->bge_mfw_flags & BGE_MFW_ON_APE) == 0)
775 		return (0);
776 
777 	/* Lock request/grant registers have different bases. */
778 	if (sc->bge_asicrev == BGE_ASICREV_BCM5761) {
779 		req = BGE_APE_LOCK_REQ;
780 		gnt = BGE_APE_LOCK_GRANT;
781 	} else {
782 		req = BGE_APE_PER_LOCK_REQ;
783 		gnt = BGE_APE_PER_LOCK_GRANT;
784 	}
785 
786 	off = 4 * locknum;
787 
788 	switch (locknum) {
789 	case BGE_APE_LOCK_GPIO:
790 		/* Lock required when using GPIO. */
791 		if (sc->bge_asicrev == BGE_ASICREV_BCM5761)
792 			return (0);
793 		if (sc->bge_func_addr == 0)
794 			bit = BGE_APE_LOCK_REQ_DRIVER0;
795 		else
796 			bit = (1 << sc->bge_func_addr);
797 		break;
798 	case BGE_APE_LOCK_GRC:
799 		/* Lock required to reset the device. */
800 		if (sc->bge_func_addr == 0)
801 			bit = BGE_APE_LOCK_REQ_DRIVER0;
802 		else
803 			bit = (1 << sc->bge_func_addr);
804 		break;
805 	case BGE_APE_LOCK_MEM:
806 		/* Lock required when accessing certain APE memory. */
807 		if (sc->bge_func_addr == 0)
808 			bit = BGE_APE_LOCK_REQ_DRIVER0;
809 		else
810 			bit = (1 << sc->bge_func_addr);
811 		break;
812 	case BGE_APE_LOCK_PHY0:
813 	case BGE_APE_LOCK_PHY1:
814 	case BGE_APE_LOCK_PHY2:
815 	case BGE_APE_LOCK_PHY3:
816 		/* Lock required when accessing PHYs. */
817 		bit = BGE_APE_LOCK_REQ_DRIVER0;
818 		break;
819 	default:
820 		return (EINVAL);
821 	}
822 
823 	/* Request a lock. */
824 	APE_WRITE_4(sc, req + off, bit);
825 
826 	/* Wait up to 1 second to acquire lock. */
827 	for (i = 0; i < 20000; i++) {
828 		status = APE_READ_4(sc, gnt + off);
829 		if (status == bit)
830 			break;
831 		DELAY(50);
832 	}
833 
834 	/* Handle any errors. */
835 	if (status != bit) {
836 		device_printf(sc->bge_dev, "APE lock %d request failed! "
837 		    "request = 0x%04x[0x%04x], status = 0x%04x[0x%04x]\n",
838 		    locknum, req + off, bit & 0xFFFF, gnt + off,
839 		    status & 0xFFFF);
840 		/* Revoke the lock request. */
841 		APE_WRITE_4(sc, gnt + off, bit);
842 		return (EBUSY);
843 	}
844 
845 	return (0);
846 }
847 
848 static void
849 bge_ape_unlock(struct bge_softc *sc, int locknum)
850 {
851 	uint32_t bit, gnt;
852 	int off;
853 
854 	if ((sc->bge_mfw_flags & BGE_MFW_ON_APE) == 0)
855 		return;
856 
857 	if (sc->bge_asicrev == BGE_ASICREV_BCM5761)
858 		gnt = BGE_APE_LOCK_GRANT;
859 	else
860 		gnt = BGE_APE_PER_LOCK_GRANT;
861 
862 	off = 4 * locknum;
863 
864 	switch (locknum) {
865 	case BGE_APE_LOCK_GPIO:
866 		if (sc->bge_asicrev == BGE_ASICREV_BCM5761)
867 			return;
868 		if (sc->bge_func_addr == 0)
869 			bit = BGE_APE_LOCK_GRANT_DRIVER0;
870 		else
871 			bit = (1 << sc->bge_func_addr);
872 		break;
873 	case BGE_APE_LOCK_GRC:
874 		if (sc->bge_func_addr == 0)
875 			bit = BGE_APE_LOCK_GRANT_DRIVER0;
876 		else
877 			bit = (1 << sc->bge_func_addr);
878 		break;
879 	case BGE_APE_LOCK_MEM:
880 		if (sc->bge_func_addr == 0)
881 			bit = BGE_APE_LOCK_GRANT_DRIVER0;
882 		else
883 			bit = (1 << sc->bge_func_addr);
884 		break;
885 	case BGE_APE_LOCK_PHY0:
886 	case BGE_APE_LOCK_PHY1:
887 	case BGE_APE_LOCK_PHY2:
888 	case BGE_APE_LOCK_PHY3:
889 		bit = BGE_APE_LOCK_GRANT_DRIVER0;
890 		break;
891 	default:
892 		return;
893 	}
894 
895 	APE_WRITE_4(sc, gnt + off, bit);
896 }
897 
898 /*
899  * Send an event to the APE firmware.
900  */
901 static void
902 bge_ape_send_event(struct bge_softc *sc, uint32_t event)
903 {
904 	uint32_t apedata;
905 	int i;
906 
907 	/* NCSI does not support APE events. */
908 	if ((sc->bge_mfw_flags & BGE_MFW_ON_APE) == 0)
909 		return;
910 
911 	/* Wait up to 1ms for APE to service previous event. */
912 	for (i = 10; i > 0; i--) {
913 		if (bge_ape_lock(sc, BGE_APE_LOCK_MEM) != 0)
914 			break;
915 		apedata = APE_READ_4(sc, BGE_APE_EVENT_STATUS);
916 		if ((apedata & BGE_APE_EVENT_STATUS_EVENT_PENDING) == 0) {
917 			APE_WRITE_4(sc, BGE_APE_EVENT_STATUS, event |
918 			    BGE_APE_EVENT_STATUS_EVENT_PENDING);
919 			bge_ape_unlock(sc, BGE_APE_LOCK_MEM);
920 			APE_WRITE_4(sc, BGE_APE_EVENT, BGE_APE_EVENT_1);
921 			break;
922 		}
923 		bge_ape_unlock(sc, BGE_APE_LOCK_MEM);
924 		DELAY(100);
925 	}
926 	if (i == 0)
927 		device_printf(sc->bge_dev, "APE event 0x%08x send timed out\n",
928 		    event);
929 }
930 
931 static void
932 bge_ape_driver_state_change(struct bge_softc *sc, int kind)
933 {
934 	uint32_t apedata, event;
935 
936 	if ((sc->bge_mfw_flags & BGE_MFW_ON_APE) == 0)
937 		return;
938 
939 	switch (kind) {
940 	case BGE_RESET_START:
941 		/* If this is the first load, clear the load counter. */
942 		apedata = APE_READ_4(sc, BGE_APE_HOST_SEG_SIG);
943 		if (apedata != BGE_APE_HOST_SEG_SIG_MAGIC)
944 			APE_WRITE_4(sc, BGE_APE_HOST_INIT_COUNT, 0);
945 		else {
946 			apedata = APE_READ_4(sc, BGE_APE_HOST_INIT_COUNT);
947 			APE_WRITE_4(sc, BGE_APE_HOST_INIT_COUNT, ++apedata);
948 		}
949 		APE_WRITE_4(sc, BGE_APE_HOST_SEG_SIG,
950 		    BGE_APE_HOST_SEG_SIG_MAGIC);
951 		APE_WRITE_4(sc, BGE_APE_HOST_SEG_LEN,
952 		    BGE_APE_HOST_SEG_LEN_MAGIC);
953 
954 		/* Add some version info if bge(4) supports it. */
955 		APE_WRITE_4(sc, BGE_APE_HOST_DRIVER_ID,
956 		    BGE_APE_HOST_DRIVER_ID_MAGIC(1, 0));
957 		APE_WRITE_4(sc, BGE_APE_HOST_BEHAVIOR,
958 		    BGE_APE_HOST_BEHAV_NO_PHYLOCK);
959 		APE_WRITE_4(sc, BGE_APE_HOST_HEARTBEAT_INT_MS,
960 		    BGE_APE_HOST_HEARTBEAT_INT_DISABLE);
961 		APE_WRITE_4(sc, BGE_APE_HOST_DRVR_STATE,
962 		    BGE_APE_HOST_DRVR_STATE_START);
963 		event = BGE_APE_EVENT_STATUS_STATE_START;
964 		break;
965 	case BGE_RESET_SHUTDOWN:
966 		APE_WRITE_4(sc, BGE_APE_HOST_DRVR_STATE,
967 		    BGE_APE_HOST_DRVR_STATE_UNLOAD);
968 		event = BGE_APE_EVENT_STATUS_STATE_UNLOAD;
969 		break;
970 	case BGE_RESET_SUSPEND:
971 		event = BGE_APE_EVENT_STATUS_STATE_SUSPEND;
972 		break;
973 	default:
974 		return;
975 	}
976 
977 	bge_ape_send_event(sc, event | BGE_APE_EVENT_STATUS_DRIVER_EVNT |
978 	    BGE_APE_EVENT_STATUS_STATE_CHNGE);
979 }
980 
981 /*
982  * Map a single buffer address.
983  */
984 
985 static void
986 bge_dma_map_addr(void *arg, bus_dma_segment_t *segs, int nseg, int error)
987 {
988 	struct bge_dmamap_arg *ctx;
989 
990 	if (error)
991 		return;
992 
993 	KASSERT(nseg == 1, ("%s: %d segments returned!", __func__, nseg));
994 
995 	ctx = arg;
996 	ctx->bge_busaddr = segs->ds_addr;
997 }
998 
999 static uint8_t
1000 bge_nvram_getbyte(struct bge_softc *sc, int addr, uint8_t *dest)
1001 {
1002 	uint32_t access, byte = 0;
1003 	int i;
1004 
1005 	/* Lock. */
1006 	CSR_WRITE_4(sc, BGE_NVRAM_SWARB, BGE_NVRAMSWARB_SET1);
1007 	for (i = 0; i < 8000; i++) {
1008 		if (CSR_READ_4(sc, BGE_NVRAM_SWARB) & BGE_NVRAMSWARB_GNT1)
1009 			break;
1010 		DELAY(20);
1011 	}
1012 	if (i == 8000)
1013 		return (1);
1014 
1015 	/* Enable access. */
1016 	access = CSR_READ_4(sc, BGE_NVRAM_ACCESS);
1017 	CSR_WRITE_4(sc, BGE_NVRAM_ACCESS, access | BGE_NVRAMACC_ENABLE);
1018 
1019 	CSR_WRITE_4(sc, BGE_NVRAM_ADDR, addr & 0xfffffffc);
1020 	CSR_WRITE_4(sc, BGE_NVRAM_CMD, BGE_NVRAM_READCMD);
1021 	for (i = 0; i < BGE_TIMEOUT * 10; i++) {
1022 		DELAY(10);
1023 		if (CSR_READ_4(sc, BGE_NVRAM_CMD) & BGE_NVRAMCMD_DONE) {
1024 			DELAY(10);
1025 			break;
1026 		}
1027 	}
1028 
1029 	if (i == BGE_TIMEOUT * 10) {
1030 		if_printf(sc->bge_ifp, "nvram read timed out\n");
1031 		return (1);
1032 	}
1033 
1034 	/* Get result. */
1035 	byte = CSR_READ_4(sc, BGE_NVRAM_RDDATA);
1036 
1037 	*dest = (bswap32(byte) >> ((addr % 4) * 8)) & 0xFF;
1038 
1039 	/* Disable access. */
1040 	CSR_WRITE_4(sc, BGE_NVRAM_ACCESS, access);
1041 
1042 	/* Unlock. */
1043 	CSR_WRITE_4(sc, BGE_NVRAM_SWARB, BGE_NVRAMSWARB_CLR1);
1044 	CSR_READ_4(sc, BGE_NVRAM_SWARB);
1045 
1046 	return (0);
1047 }
1048 
1049 /*
1050  * Read a sequence of bytes from NVRAM.
1051  */
1052 static int
1053 bge_read_nvram(struct bge_softc *sc, caddr_t dest, int off, int cnt)
1054 {
1055 	int err = 0, i;
1056 	uint8_t byte = 0;
1057 
1058 	if (sc->bge_asicrev != BGE_ASICREV_BCM5906)
1059 		return (1);
1060 
1061 	for (i = 0; i < cnt; i++) {
1062 		err = bge_nvram_getbyte(sc, off + i, &byte);
1063 		if (err)
1064 			break;
1065 		*(dest + i) = byte;
1066 	}
1067 
1068 	return (err ? 1 : 0);
1069 }
1070 
1071 /*
1072  * Read a byte of data stored in the EEPROM at address 'addr.' The
1073  * BCM570x supports both the traditional bitbang interface and an
1074  * auto access interface for reading the EEPROM. We use the auto
1075  * access method.
1076  */
1077 static uint8_t
1078 bge_eeprom_getbyte(struct bge_softc *sc, int addr, uint8_t *dest)
1079 {
1080 	int i;
1081 	uint32_t byte = 0;
1082 
1083 	/*
1084 	 * Enable use of auto EEPROM access so we can avoid
1085 	 * having to use the bitbang method.
1086 	 */
1087 	BGE_SETBIT(sc, BGE_MISC_LOCAL_CTL, BGE_MLC_AUTO_EEPROM);
1088 
1089 	/* Reset the EEPROM, load the clock period. */
1090 	CSR_WRITE_4(sc, BGE_EE_ADDR,
1091 	    BGE_EEADDR_RESET | BGE_EEHALFCLK(BGE_HALFCLK_384SCL));
1092 	DELAY(20);
1093 
1094 	/* Issue the read EEPROM command. */
1095 	CSR_WRITE_4(sc, BGE_EE_ADDR, BGE_EE_READCMD | addr);
1096 
1097 	/* Wait for completion */
1098 	for(i = 0; i < BGE_TIMEOUT * 10; i++) {
1099 		DELAY(10);
1100 		if (CSR_READ_4(sc, BGE_EE_ADDR) & BGE_EEADDR_DONE)
1101 			break;
1102 	}
1103 
1104 	if (i == BGE_TIMEOUT * 10) {
1105 		device_printf(sc->bge_dev, "EEPROM read timed out\n");
1106 		return (1);
1107 	}
1108 
1109 	/* Get result. */
1110 	byte = CSR_READ_4(sc, BGE_EE_DATA);
1111 
1112 	*dest = (byte >> ((addr % 4) * 8)) & 0xFF;
1113 
1114 	return (0);
1115 }
1116 
1117 /*
1118  * Read a sequence of bytes from the EEPROM.
1119  */
1120 static int
1121 bge_read_eeprom(struct bge_softc *sc, caddr_t dest, int off, int cnt)
1122 {
1123 	int i, error = 0;
1124 	uint8_t byte = 0;
1125 
1126 	for (i = 0; i < cnt; i++) {
1127 		error = bge_eeprom_getbyte(sc, off + i, &byte);
1128 		if (error)
1129 			break;
1130 		*(dest + i) = byte;
1131 	}
1132 
1133 	return (error ? 1 : 0);
1134 }
1135 
1136 static int
1137 bge_miibus_readreg(device_t dev, int phy, int reg)
1138 {
1139 	struct bge_softc *sc;
1140 	uint32_t val;
1141 	int i;
1142 
1143 	sc = device_get_softc(dev);
1144 
1145 	if (bge_ape_lock(sc, sc->bge_phy_ape_lock) != 0)
1146 		return (0);
1147 
1148 	/* Clear the autopoll bit if set, otherwise may trigger PCI errors. */
1149 	if ((sc->bge_mi_mode & BGE_MIMODE_AUTOPOLL) != 0) {
1150 		CSR_WRITE_4(sc, BGE_MI_MODE,
1151 		    sc->bge_mi_mode & ~BGE_MIMODE_AUTOPOLL);
1152 		DELAY(80);
1153 	}
1154 
1155 	CSR_WRITE_4(sc, BGE_MI_COMM, BGE_MICMD_READ | BGE_MICOMM_BUSY |
1156 	    BGE_MIPHY(phy) | BGE_MIREG(reg));
1157 
1158 	/* Poll for the PHY register access to complete. */
1159 	for (i = 0; i < BGE_TIMEOUT; i++) {
1160 		DELAY(10);
1161 		val = CSR_READ_4(sc, BGE_MI_COMM);
1162 		if ((val & BGE_MICOMM_BUSY) == 0) {
1163 			DELAY(5);
1164 			val = CSR_READ_4(sc, BGE_MI_COMM);
1165 			break;
1166 		}
1167 	}
1168 
1169 	if (i == BGE_TIMEOUT) {
1170 		device_printf(sc->bge_dev,
1171 		    "PHY read timed out (phy %d, reg %d, val 0x%08x)\n",
1172 		    phy, reg, val);
1173 		val = 0;
1174 	}
1175 
1176 	/* Restore the autopoll bit if necessary. */
1177 	if ((sc->bge_mi_mode & BGE_MIMODE_AUTOPOLL) != 0) {
1178 		CSR_WRITE_4(sc, BGE_MI_MODE, sc->bge_mi_mode);
1179 		DELAY(80);
1180 	}
1181 
1182 	bge_ape_unlock(sc, sc->bge_phy_ape_lock);
1183 
1184 	if (val & BGE_MICOMM_READFAIL)
1185 		return (0);
1186 
1187 	return (val & 0xFFFF);
1188 }
1189 
1190 static int
1191 bge_miibus_writereg(device_t dev, int phy, int reg, int val)
1192 {
1193 	struct bge_softc *sc;
1194 	int i;
1195 
1196 	sc = device_get_softc(dev);
1197 
1198 	if (sc->bge_asicrev == BGE_ASICREV_BCM5906 &&
1199 	    (reg == BRGPHY_MII_1000CTL || reg == BRGPHY_MII_AUXCTL))
1200 		return (0);
1201 
1202 	if (bge_ape_lock(sc, sc->bge_phy_ape_lock) != 0)
1203 		return (0);
1204 
1205 	/* Clear the autopoll bit if set, otherwise may trigger PCI errors. */
1206 	if ((sc->bge_mi_mode & BGE_MIMODE_AUTOPOLL) != 0) {
1207 		CSR_WRITE_4(sc, BGE_MI_MODE,
1208 		    sc->bge_mi_mode & ~BGE_MIMODE_AUTOPOLL);
1209 		DELAY(80);
1210 	}
1211 
1212 	CSR_WRITE_4(sc, BGE_MI_COMM, BGE_MICMD_WRITE | BGE_MICOMM_BUSY |
1213 	    BGE_MIPHY(phy) | BGE_MIREG(reg) | val);
1214 
1215 	for (i = 0; i < BGE_TIMEOUT; i++) {
1216 		DELAY(10);
1217 		if (!(CSR_READ_4(sc, BGE_MI_COMM) & BGE_MICOMM_BUSY)) {
1218 			DELAY(5);
1219 			CSR_READ_4(sc, BGE_MI_COMM); /* dummy read */
1220 			break;
1221 		}
1222 	}
1223 
1224 	/* Restore the autopoll bit if necessary. */
1225 	if ((sc->bge_mi_mode & BGE_MIMODE_AUTOPOLL) != 0) {
1226 		CSR_WRITE_4(sc, BGE_MI_MODE, sc->bge_mi_mode);
1227 		DELAY(80);
1228 	}
1229 
1230 	bge_ape_unlock(sc, sc->bge_phy_ape_lock);
1231 
1232 	if (i == BGE_TIMEOUT)
1233 		device_printf(sc->bge_dev,
1234 		    "PHY write timed out (phy %d, reg %d, val 0x%04x)\n",
1235 		    phy, reg, val);
1236 
1237 	return (0);
1238 }
1239 
1240 static void
1241 bge_miibus_statchg(device_t dev)
1242 {
1243 	struct bge_softc *sc;
1244 	struct mii_data *mii;
1245 	uint32_t mac_mode, rx_mode, tx_mode;
1246 
1247 	sc = device_get_softc(dev);
1248 	if ((if_getdrvflags(sc->bge_ifp) & IFF_DRV_RUNNING) == 0)
1249 		return;
1250 	mii = device_get_softc(sc->bge_miibus);
1251 
1252 	if ((mii->mii_media_status & (IFM_ACTIVE | IFM_AVALID)) ==
1253 	    (IFM_ACTIVE | IFM_AVALID)) {
1254 		switch (IFM_SUBTYPE(mii->mii_media_active)) {
1255 		case IFM_10_T:
1256 		case IFM_100_TX:
1257 			sc->bge_link = 1;
1258 			break;
1259 		case IFM_1000_T:
1260 		case IFM_1000_SX:
1261 		case IFM_2500_SX:
1262 			if (sc->bge_asicrev != BGE_ASICREV_BCM5906)
1263 				sc->bge_link = 1;
1264 			else
1265 				sc->bge_link = 0;
1266 			break;
1267 		default:
1268 			sc->bge_link = 0;
1269 			break;
1270 		}
1271 	} else
1272 		sc->bge_link = 0;
1273 	if (sc->bge_link == 0)
1274 		return;
1275 
1276 	/*
1277 	 * APE firmware touches these registers to keep the MAC
1278 	 * connected to the outside world.  Try to keep the
1279 	 * accesses atomic.
1280 	 */
1281 
1282 	/* Set the port mode (MII/GMII) to match the link speed. */
1283 	mac_mode = CSR_READ_4(sc, BGE_MAC_MODE) &
1284 	    ~(BGE_MACMODE_PORTMODE | BGE_MACMODE_HALF_DUPLEX);
1285 	tx_mode = CSR_READ_4(sc, BGE_TX_MODE);
1286 	rx_mode = CSR_READ_4(sc, BGE_RX_MODE);
1287 
1288 	if (IFM_SUBTYPE(mii->mii_media_active) == IFM_1000_T ||
1289 	    IFM_SUBTYPE(mii->mii_media_active) == IFM_1000_SX)
1290 		mac_mode |= BGE_PORTMODE_GMII;
1291 	else
1292 		mac_mode |= BGE_PORTMODE_MII;
1293 
1294 	/* Set MAC flow control behavior to match link flow control settings. */
1295 	tx_mode &= ~BGE_TXMODE_FLOWCTL_ENABLE;
1296 	rx_mode &= ~BGE_RXMODE_FLOWCTL_ENABLE;
1297 	if ((IFM_OPTIONS(mii->mii_media_active) & IFM_FDX) != 0) {
1298 		if ((IFM_OPTIONS(mii->mii_media_active) & IFM_ETH_TXPAUSE) != 0)
1299 			tx_mode |= BGE_TXMODE_FLOWCTL_ENABLE;
1300 		if ((IFM_OPTIONS(mii->mii_media_active) & IFM_ETH_RXPAUSE) != 0)
1301 			rx_mode |= BGE_RXMODE_FLOWCTL_ENABLE;
1302 	} else
1303 		mac_mode |= BGE_MACMODE_HALF_DUPLEX;
1304 
1305 	CSR_WRITE_4(sc, BGE_MAC_MODE, mac_mode);
1306 	DELAY(40);
1307 	CSR_WRITE_4(sc, BGE_TX_MODE, tx_mode);
1308 	CSR_WRITE_4(sc, BGE_RX_MODE, rx_mode);
1309 }
1310 
1311 /*
1312  * Intialize a standard receive ring descriptor.
1313  */
1314 static int
1315 bge_newbuf_std(struct bge_softc *sc, int i)
1316 {
1317 	struct mbuf *m;
1318 	struct bge_rx_bd *r;
1319 	bus_dma_segment_t segs[1];
1320 	bus_dmamap_t map;
1321 	int error, nsegs;
1322 
1323 	if (sc->bge_flags & BGE_FLAG_JUMBO_STD &&
1324 	    (if_getmtu(sc->bge_ifp) + ETHER_HDR_LEN + ETHER_CRC_LEN +
1325 	    ETHER_VLAN_ENCAP_LEN > (MCLBYTES - ETHER_ALIGN))) {
1326 		m = m_getjcl(M_NOWAIT, MT_DATA, M_PKTHDR, MJUM9BYTES);
1327 		if (m == NULL)
1328 			return (ENOBUFS);
1329 		m->m_len = m->m_pkthdr.len = MJUM9BYTES;
1330 	} else {
1331 		m = m_getcl(M_NOWAIT, MT_DATA, M_PKTHDR);
1332 		if (m == NULL)
1333 			return (ENOBUFS);
1334 		m->m_len = m->m_pkthdr.len = MCLBYTES;
1335 	}
1336 	if ((sc->bge_flags & BGE_FLAG_RX_ALIGNBUG) == 0)
1337 		m_adj(m, ETHER_ALIGN);
1338 
1339 	error = bus_dmamap_load_mbuf_sg(sc->bge_cdata.bge_rx_mtag,
1340 	    sc->bge_cdata.bge_rx_std_sparemap, m, segs, &nsegs, 0);
1341 	if (error != 0) {
1342 		m_freem(m);
1343 		return (error);
1344 	}
1345 	if (sc->bge_cdata.bge_rx_std_chain[i] != NULL) {
1346 		bus_dmamap_sync(sc->bge_cdata.bge_rx_mtag,
1347 		    sc->bge_cdata.bge_rx_std_dmamap[i], BUS_DMASYNC_POSTREAD);
1348 		bus_dmamap_unload(sc->bge_cdata.bge_rx_mtag,
1349 		    sc->bge_cdata.bge_rx_std_dmamap[i]);
1350 	}
1351 	map = sc->bge_cdata.bge_rx_std_dmamap[i];
1352 	sc->bge_cdata.bge_rx_std_dmamap[i] = sc->bge_cdata.bge_rx_std_sparemap;
1353 	sc->bge_cdata.bge_rx_std_sparemap = map;
1354 	sc->bge_cdata.bge_rx_std_chain[i] = m;
1355 	sc->bge_cdata.bge_rx_std_seglen[i] = segs[0].ds_len;
1356 	r = &sc->bge_ldata.bge_rx_std_ring[sc->bge_std];
1357 	r->bge_addr.bge_addr_lo = BGE_ADDR_LO(segs[0].ds_addr);
1358 	r->bge_addr.bge_addr_hi = BGE_ADDR_HI(segs[0].ds_addr);
1359 	r->bge_flags = BGE_RXBDFLAG_END;
1360 	r->bge_len = segs[0].ds_len;
1361 	r->bge_idx = i;
1362 
1363 	bus_dmamap_sync(sc->bge_cdata.bge_rx_mtag,
1364 	    sc->bge_cdata.bge_rx_std_dmamap[i], BUS_DMASYNC_PREREAD);
1365 
1366 	return (0);
1367 }
1368 
1369 /*
1370  * Initialize a jumbo receive ring descriptor. This allocates
1371  * a jumbo buffer from the pool managed internally by the driver.
1372  */
1373 static int
1374 bge_newbuf_jumbo(struct bge_softc *sc, int i)
1375 {
1376 	bus_dma_segment_t segs[BGE_NSEG_JUMBO];
1377 	bus_dmamap_t map;
1378 	struct bge_extrx_bd *r;
1379 	struct mbuf *m;
1380 	int error, nsegs;
1381 
1382 	MGETHDR(m, M_NOWAIT, MT_DATA);
1383 	if (m == NULL)
1384 		return (ENOBUFS);
1385 
1386 	m_cljget(m, M_NOWAIT, MJUM9BYTES);
1387 	if (!(m->m_flags & M_EXT)) {
1388 		m_freem(m);
1389 		return (ENOBUFS);
1390 	}
1391 	m->m_len = m->m_pkthdr.len = MJUM9BYTES;
1392 	if ((sc->bge_flags & BGE_FLAG_RX_ALIGNBUG) == 0)
1393 		m_adj(m, ETHER_ALIGN);
1394 
1395 	error = bus_dmamap_load_mbuf_sg(sc->bge_cdata.bge_mtag_jumbo,
1396 	    sc->bge_cdata.bge_rx_jumbo_sparemap, m, segs, &nsegs, 0);
1397 	if (error != 0) {
1398 		m_freem(m);
1399 		return (error);
1400 	}
1401 
1402 	if (sc->bge_cdata.bge_rx_jumbo_chain[i] != NULL) {
1403 		bus_dmamap_sync(sc->bge_cdata.bge_mtag_jumbo,
1404 		    sc->bge_cdata.bge_rx_jumbo_dmamap[i], BUS_DMASYNC_POSTREAD);
1405 		bus_dmamap_unload(sc->bge_cdata.bge_mtag_jumbo,
1406 		    sc->bge_cdata.bge_rx_jumbo_dmamap[i]);
1407 	}
1408 	map = sc->bge_cdata.bge_rx_jumbo_dmamap[i];
1409 	sc->bge_cdata.bge_rx_jumbo_dmamap[i] =
1410 	    sc->bge_cdata.bge_rx_jumbo_sparemap;
1411 	sc->bge_cdata.bge_rx_jumbo_sparemap = map;
1412 	sc->bge_cdata.bge_rx_jumbo_chain[i] = m;
1413 	sc->bge_cdata.bge_rx_jumbo_seglen[i][0] = 0;
1414 	sc->bge_cdata.bge_rx_jumbo_seglen[i][1] = 0;
1415 	sc->bge_cdata.bge_rx_jumbo_seglen[i][2] = 0;
1416 	sc->bge_cdata.bge_rx_jumbo_seglen[i][3] = 0;
1417 
1418 	/*
1419 	 * Fill in the extended RX buffer descriptor.
1420 	 */
1421 	r = &sc->bge_ldata.bge_rx_jumbo_ring[sc->bge_jumbo];
1422 	r->bge_flags = BGE_RXBDFLAG_JUMBO_RING | BGE_RXBDFLAG_END;
1423 	r->bge_idx = i;
1424 	r->bge_len3 = r->bge_len2 = r->bge_len1 = 0;
1425 	switch (nsegs) {
1426 	case 4:
1427 		r->bge_addr3.bge_addr_lo = BGE_ADDR_LO(segs[3].ds_addr);
1428 		r->bge_addr3.bge_addr_hi = BGE_ADDR_HI(segs[3].ds_addr);
1429 		r->bge_len3 = segs[3].ds_len;
1430 		sc->bge_cdata.bge_rx_jumbo_seglen[i][3] = segs[3].ds_len;
1431 	case 3:
1432 		r->bge_addr2.bge_addr_lo = BGE_ADDR_LO(segs[2].ds_addr);
1433 		r->bge_addr2.bge_addr_hi = BGE_ADDR_HI(segs[2].ds_addr);
1434 		r->bge_len2 = segs[2].ds_len;
1435 		sc->bge_cdata.bge_rx_jumbo_seglen[i][2] = segs[2].ds_len;
1436 	case 2:
1437 		r->bge_addr1.bge_addr_lo = BGE_ADDR_LO(segs[1].ds_addr);
1438 		r->bge_addr1.bge_addr_hi = BGE_ADDR_HI(segs[1].ds_addr);
1439 		r->bge_len1 = segs[1].ds_len;
1440 		sc->bge_cdata.bge_rx_jumbo_seglen[i][1] = segs[1].ds_len;
1441 	case 1:
1442 		r->bge_addr0.bge_addr_lo = BGE_ADDR_LO(segs[0].ds_addr);
1443 		r->bge_addr0.bge_addr_hi = BGE_ADDR_HI(segs[0].ds_addr);
1444 		r->bge_len0 = segs[0].ds_len;
1445 		sc->bge_cdata.bge_rx_jumbo_seglen[i][0] = segs[0].ds_len;
1446 		break;
1447 	default:
1448 		panic("%s: %d segments\n", __func__, nsegs);
1449 	}
1450 
1451 	bus_dmamap_sync(sc->bge_cdata.bge_mtag_jumbo,
1452 	    sc->bge_cdata.bge_rx_jumbo_dmamap[i], BUS_DMASYNC_PREREAD);
1453 
1454 	return (0);
1455 }
1456 
1457 static int
1458 bge_init_rx_ring_std(struct bge_softc *sc)
1459 {
1460 	int error, i;
1461 
1462 	bzero(sc->bge_ldata.bge_rx_std_ring, BGE_STD_RX_RING_SZ);
1463 	sc->bge_std = 0;
1464 	for (i = 0; i < BGE_STD_RX_RING_CNT; i++) {
1465 		if ((error = bge_newbuf_std(sc, i)) != 0)
1466 			return (error);
1467 		BGE_INC(sc->bge_std, BGE_STD_RX_RING_CNT);
1468 	}
1469 
1470 	bus_dmamap_sync(sc->bge_cdata.bge_rx_std_ring_tag,
1471 	    sc->bge_cdata.bge_rx_std_ring_map, BUS_DMASYNC_PREWRITE);
1472 
1473 	sc->bge_std = 0;
1474 	bge_writembx(sc, BGE_MBX_RX_STD_PROD_LO, BGE_STD_RX_RING_CNT - 1);
1475 
1476 	return (0);
1477 }
1478 
1479 static void
1480 bge_free_rx_ring_std(struct bge_softc *sc)
1481 {
1482 	int i;
1483 
1484 	for (i = 0; i < BGE_STD_RX_RING_CNT; i++) {
1485 		if (sc->bge_cdata.bge_rx_std_chain[i] != NULL) {
1486 			bus_dmamap_sync(sc->bge_cdata.bge_rx_mtag,
1487 			    sc->bge_cdata.bge_rx_std_dmamap[i],
1488 			    BUS_DMASYNC_POSTREAD);
1489 			bus_dmamap_unload(sc->bge_cdata.bge_rx_mtag,
1490 			    sc->bge_cdata.bge_rx_std_dmamap[i]);
1491 			m_freem(sc->bge_cdata.bge_rx_std_chain[i]);
1492 			sc->bge_cdata.bge_rx_std_chain[i] = NULL;
1493 		}
1494 		bzero((char *)&sc->bge_ldata.bge_rx_std_ring[i],
1495 		    sizeof(struct bge_rx_bd));
1496 	}
1497 }
1498 
1499 static int
1500 bge_init_rx_ring_jumbo(struct bge_softc *sc)
1501 {
1502 	struct bge_rcb *rcb;
1503 	int error, i;
1504 
1505 	bzero(sc->bge_ldata.bge_rx_jumbo_ring, BGE_JUMBO_RX_RING_SZ);
1506 	sc->bge_jumbo = 0;
1507 	for (i = 0; i < BGE_JUMBO_RX_RING_CNT; i++) {
1508 		if ((error = bge_newbuf_jumbo(sc, i)) != 0)
1509 			return (error);
1510 		BGE_INC(sc->bge_jumbo, BGE_JUMBO_RX_RING_CNT);
1511 	}
1512 
1513 	bus_dmamap_sync(sc->bge_cdata.bge_rx_jumbo_ring_tag,
1514 	    sc->bge_cdata.bge_rx_jumbo_ring_map, BUS_DMASYNC_PREWRITE);
1515 
1516 	sc->bge_jumbo = 0;
1517 
1518 	/* Enable the jumbo receive producer ring. */
1519 	rcb = &sc->bge_ldata.bge_info.bge_jumbo_rx_rcb;
1520 	rcb->bge_maxlen_flags =
1521 	    BGE_RCB_MAXLEN_FLAGS(0, BGE_RCB_FLAG_USE_EXT_RX_BD);
1522 	CSR_WRITE_4(sc, BGE_RX_JUMBO_RCB_MAXLEN_FLAGS, rcb->bge_maxlen_flags);
1523 
1524 	bge_writembx(sc, BGE_MBX_RX_JUMBO_PROD_LO, BGE_JUMBO_RX_RING_CNT - 1);
1525 
1526 	return (0);
1527 }
1528 
1529 static void
1530 bge_free_rx_ring_jumbo(struct bge_softc *sc)
1531 {
1532 	int i;
1533 
1534 	for (i = 0; i < BGE_JUMBO_RX_RING_CNT; i++) {
1535 		if (sc->bge_cdata.bge_rx_jumbo_chain[i] != NULL) {
1536 			bus_dmamap_sync(sc->bge_cdata.bge_mtag_jumbo,
1537 			    sc->bge_cdata.bge_rx_jumbo_dmamap[i],
1538 			    BUS_DMASYNC_POSTREAD);
1539 			bus_dmamap_unload(sc->bge_cdata.bge_mtag_jumbo,
1540 			    sc->bge_cdata.bge_rx_jumbo_dmamap[i]);
1541 			m_freem(sc->bge_cdata.bge_rx_jumbo_chain[i]);
1542 			sc->bge_cdata.bge_rx_jumbo_chain[i] = NULL;
1543 		}
1544 		bzero((char *)&sc->bge_ldata.bge_rx_jumbo_ring[i],
1545 		    sizeof(struct bge_extrx_bd));
1546 	}
1547 }
1548 
1549 static void
1550 bge_free_tx_ring(struct bge_softc *sc)
1551 {
1552 	int i;
1553 
1554 	if (sc->bge_ldata.bge_tx_ring == NULL)
1555 		return;
1556 
1557 	for (i = 0; i < BGE_TX_RING_CNT; i++) {
1558 		if (sc->bge_cdata.bge_tx_chain[i] != NULL) {
1559 			bus_dmamap_sync(sc->bge_cdata.bge_tx_mtag,
1560 			    sc->bge_cdata.bge_tx_dmamap[i],
1561 			    BUS_DMASYNC_POSTWRITE);
1562 			bus_dmamap_unload(sc->bge_cdata.bge_tx_mtag,
1563 			    sc->bge_cdata.bge_tx_dmamap[i]);
1564 			m_freem(sc->bge_cdata.bge_tx_chain[i]);
1565 			sc->bge_cdata.bge_tx_chain[i] = NULL;
1566 		}
1567 		bzero((char *)&sc->bge_ldata.bge_tx_ring[i],
1568 		    sizeof(struct bge_tx_bd));
1569 	}
1570 }
1571 
1572 static int
1573 bge_init_tx_ring(struct bge_softc *sc)
1574 {
1575 	sc->bge_txcnt = 0;
1576 	sc->bge_tx_saved_considx = 0;
1577 
1578 	bzero(sc->bge_ldata.bge_tx_ring, BGE_TX_RING_SZ);
1579 	bus_dmamap_sync(sc->bge_cdata.bge_tx_ring_tag,
1580 	    sc->bge_cdata.bge_tx_ring_map, BUS_DMASYNC_PREWRITE);
1581 
1582 	/* Initialize transmit producer index for host-memory send ring. */
1583 	sc->bge_tx_prodidx = 0;
1584 	bge_writembx(sc, BGE_MBX_TX_HOST_PROD0_LO, sc->bge_tx_prodidx);
1585 
1586 	/* 5700 b2 errata */
1587 	if (sc->bge_chiprev == BGE_CHIPREV_5700_BX)
1588 		bge_writembx(sc, BGE_MBX_TX_HOST_PROD0_LO, sc->bge_tx_prodidx);
1589 
1590 	/* NIC-memory send ring not used; initialize to zero. */
1591 	bge_writembx(sc, BGE_MBX_TX_NIC_PROD0_LO, 0);
1592 	/* 5700 b2 errata */
1593 	if (sc->bge_chiprev == BGE_CHIPREV_5700_BX)
1594 		bge_writembx(sc, BGE_MBX_TX_NIC_PROD0_LO, 0);
1595 
1596 	return (0);
1597 }
1598 
1599 static void
1600 bge_setpromisc(struct bge_softc *sc)
1601 {
1602 	if_t ifp;
1603 
1604 	BGE_LOCK_ASSERT(sc);
1605 
1606 	ifp = sc->bge_ifp;
1607 
1608 	/* Enable or disable promiscuous mode as needed. */
1609 	if (if_getflags(ifp) & IFF_PROMISC)
1610 		BGE_SETBIT(sc, BGE_RX_MODE, BGE_RXMODE_RX_PROMISC);
1611 	else
1612 		BGE_CLRBIT(sc, BGE_RX_MODE, BGE_RXMODE_RX_PROMISC);
1613 }
1614 
1615 static void
1616 bge_setmulti(struct bge_softc *sc)
1617 {
1618 	if_t ifp;
1619 	int mc_count = 0;
1620 	uint32_t hashes[4] = { 0, 0, 0, 0 };
1621 	int h, i, mcnt;
1622 	unsigned char *mta;
1623 
1624 	BGE_LOCK_ASSERT(sc);
1625 
1626 	ifp = sc->bge_ifp;
1627 
1628 	mc_count = if_multiaddr_count(ifp, -1);
1629 	mta = malloc(sizeof(unsigned char) *  ETHER_ADDR_LEN *
1630 	    mc_count, M_DEVBUF, M_NOWAIT);
1631 
1632 	if(mta == NULL) {
1633 		device_printf(sc->bge_dev,
1634 		    "Failed to allocated temp mcast list\n");
1635 		return;
1636 	}
1637 
1638 	if (if_getflags(ifp) & IFF_ALLMULTI || if_getflags(ifp) & IFF_PROMISC) {
1639 		for (i = 0; i < 4; i++)
1640 			CSR_WRITE_4(sc, BGE_MAR0 + (i * 4), 0xFFFFFFFF);
1641 		return;
1642 	}
1643 
1644 	/* First, zot all the existing filters. */
1645 	for (i = 0; i < 4; i++)
1646 		CSR_WRITE_4(sc, BGE_MAR0 + (i * 4), 0);
1647 
1648 	if_multiaddr_array(ifp, mta, &mcnt, mc_count);
1649 	for(i = 0; i < mcnt; i++) {
1650 		h = ether_crc32_le(mta + (i * ETHER_ADDR_LEN),
1651 		    ETHER_ADDR_LEN) & 0x7F;
1652 		hashes[(h & 0x60) >> 5] |= 1 << (h & 0x1F);
1653 	}
1654 
1655 	for (i = 0; i < 4; i++)
1656 		CSR_WRITE_4(sc, BGE_MAR0 + (i * 4), hashes[i]);
1657 
1658 	free(mta, M_DEVBUF);
1659 }
1660 
1661 static void
1662 bge_setvlan(struct bge_softc *sc)
1663 {
1664 	if_t ifp;
1665 
1666 	BGE_LOCK_ASSERT(sc);
1667 
1668 	ifp = sc->bge_ifp;
1669 
1670 	/* Enable or disable VLAN tag stripping as needed. */
1671 	if (if_getcapenable(ifp) & IFCAP_VLAN_HWTAGGING)
1672 		BGE_CLRBIT(sc, BGE_RX_MODE, BGE_RXMODE_RX_KEEP_VLAN_DIAG);
1673 	else
1674 		BGE_SETBIT(sc, BGE_RX_MODE, BGE_RXMODE_RX_KEEP_VLAN_DIAG);
1675 }
1676 
1677 static void
1678 bge_sig_pre_reset(struct bge_softc *sc, int type)
1679 {
1680 
1681 	/*
1682 	 * Some chips don't like this so only do this if ASF is enabled
1683 	 */
1684 	if (sc->bge_asf_mode)
1685 		bge_writemem_ind(sc, BGE_SRAM_FW_MB, BGE_SRAM_FW_MB_MAGIC);
1686 
1687 	if (sc->bge_asf_mode & ASF_NEW_HANDSHAKE) {
1688 		switch (type) {
1689 		case BGE_RESET_START:
1690 			bge_writemem_ind(sc, BGE_SRAM_FW_DRV_STATE_MB,
1691 			    BGE_FW_DRV_STATE_START);
1692 			break;
1693 		case BGE_RESET_SHUTDOWN:
1694 			bge_writemem_ind(sc, BGE_SRAM_FW_DRV_STATE_MB,
1695 			    BGE_FW_DRV_STATE_UNLOAD);
1696 			break;
1697 		case BGE_RESET_SUSPEND:
1698 			bge_writemem_ind(sc, BGE_SRAM_FW_DRV_STATE_MB,
1699 			    BGE_FW_DRV_STATE_SUSPEND);
1700 			break;
1701 		}
1702 	}
1703 
1704 	if (type == BGE_RESET_START || type == BGE_RESET_SUSPEND)
1705 		bge_ape_driver_state_change(sc, type);
1706 }
1707 
1708 static void
1709 bge_sig_post_reset(struct bge_softc *sc, int type)
1710 {
1711 
1712 	if (sc->bge_asf_mode & ASF_NEW_HANDSHAKE) {
1713 		switch (type) {
1714 		case BGE_RESET_START:
1715 			bge_writemem_ind(sc, BGE_SRAM_FW_DRV_STATE_MB,
1716 			    BGE_FW_DRV_STATE_START_DONE);
1717 			/* START DONE */
1718 			break;
1719 		case BGE_RESET_SHUTDOWN:
1720 			bge_writemem_ind(sc, BGE_SRAM_FW_DRV_STATE_MB,
1721 			    BGE_FW_DRV_STATE_UNLOAD_DONE);
1722 			break;
1723 		}
1724 	}
1725 	if (type == BGE_RESET_SHUTDOWN)
1726 		bge_ape_driver_state_change(sc, type);
1727 }
1728 
1729 static void
1730 bge_sig_legacy(struct bge_softc *sc, int type)
1731 {
1732 
1733 	if (sc->bge_asf_mode) {
1734 		switch (type) {
1735 		case BGE_RESET_START:
1736 			bge_writemem_ind(sc, BGE_SRAM_FW_DRV_STATE_MB,
1737 			    BGE_FW_DRV_STATE_START);
1738 			break;
1739 		case BGE_RESET_SHUTDOWN:
1740 			bge_writemem_ind(sc, BGE_SRAM_FW_DRV_STATE_MB,
1741 			    BGE_FW_DRV_STATE_UNLOAD);
1742 			break;
1743 		}
1744 	}
1745 }
1746 
1747 static void
1748 bge_stop_fw(struct bge_softc *sc)
1749 {
1750 	int i;
1751 
1752 	if (sc->bge_asf_mode) {
1753 		bge_writemem_ind(sc, BGE_SRAM_FW_CMD_MB, BGE_FW_CMD_PAUSE);
1754 		CSR_WRITE_4(sc, BGE_RX_CPU_EVENT,
1755 		    CSR_READ_4(sc, BGE_RX_CPU_EVENT) | BGE_RX_CPU_DRV_EVENT);
1756 
1757 		for (i = 0; i < 100; i++ ) {
1758 			if (!(CSR_READ_4(sc, BGE_RX_CPU_EVENT) &
1759 			    BGE_RX_CPU_DRV_EVENT))
1760 				break;
1761 			DELAY(10);
1762 		}
1763 	}
1764 }
1765 
1766 static uint32_t
1767 bge_dma_swap_options(struct bge_softc *sc)
1768 {
1769 	uint32_t dma_options;
1770 
1771 	dma_options = BGE_MODECTL_WORDSWAP_NONFRAME |
1772 	    BGE_MODECTL_BYTESWAP_DATA | BGE_MODECTL_WORDSWAP_DATA;
1773 #if BYTE_ORDER == BIG_ENDIAN
1774 	dma_options |= BGE_MODECTL_BYTESWAP_NONFRAME;
1775 #endif
1776 	return (dma_options);
1777 }
1778 
1779 /*
1780  * Do endian, PCI and DMA initialization.
1781  */
1782 static int
1783 bge_chipinit(struct bge_softc *sc)
1784 {
1785 	uint32_t dma_rw_ctl, misc_ctl, mode_ctl;
1786 	uint16_t val;
1787 	int i;
1788 
1789 	/* Set endianness before we access any non-PCI registers. */
1790 	misc_ctl = BGE_INIT;
1791 	if (sc->bge_flags & BGE_FLAG_TAGGED_STATUS)
1792 		misc_ctl |= BGE_PCIMISCCTL_TAGGED_STATUS;
1793 	pci_write_config(sc->bge_dev, BGE_PCI_MISC_CTL, misc_ctl, 4);
1794 
1795 	/*
1796 	 * Clear the MAC statistics block in the NIC's
1797 	 * internal memory.
1798 	 */
1799 	for (i = BGE_STATS_BLOCK;
1800 	    i < BGE_STATS_BLOCK_END + 1; i += sizeof(uint32_t))
1801 		BGE_MEMWIN_WRITE(sc, i, 0);
1802 
1803 	for (i = BGE_STATUS_BLOCK;
1804 	    i < BGE_STATUS_BLOCK_END + 1; i += sizeof(uint32_t))
1805 		BGE_MEMWIN_WRITE(sc, i, 0);
1806 
1807 	if (sc->bge_chiprev == BGE_CHIPREV_5704_BX) {
1808 		/*
1809 		 *  Fix data corruption caused by non-qword write with WB.
1810 		 *  Fix master abort in PCI mode.
1811 		 *  Fix PCI latency timer.
1812 		 */
1813 		val = pci_read_config(sc->bge_dev, BGE_PCI_MSI_DATA + 2, 2);
1814 		val |= (1 << 10) | (1 << 12) | (1 << 13);
1815 		pci_write_config(sc->bge_dev, BGE_PCI_MSI_DATA + 2, val, 2);
1816 	}
1817 
1818 	if (sc->bge_asicrev == BGE_ASICREV_BCM57765 ||
1819 	    sc->bge_asicrev == BGE_ASICREV_BCM57766) {
1820 		/*
1821 		 * For the 57766 and non Ax versions of 57765, bootcode
1822 		 * needs to setup the PCIE Fast Training Sequence (FTS)
1823 		 * value to prevent transmit hangs.
1824 		 */
1825 		if (sc->bge_chiprev != BGE_CHIPREV_57765_AX) {
1826 			CSR_WRITE_4(sc, BGE_CPMU_PADRNG_CTL,
1827 			    CSR_READ_4(sc, BGE_CPMU_PADRNG_CTL) |
1828 			    BGE_CPMU_PADRNG_CTL_RDIV2);
1829 		}
1830 	}
1831 
1832 	/*
1833 	 * Set up the PCI DMA control register.
1834 	 */
1835 	dma_rw_ctl = BGE_PCIDMARWCTL_RD_CMD_SHIFT(6) |
1836 	    BGE_PCIDMARWCTL_WR_CMD_SHIFT(7);
1837 	if (sc->bge_flags & BGE_FLAG_PCIE) {
1838 		if (sc->bge_mps >= 256)
1839 			dma_rw_ctl |= BGE_PCIDMARWCTL_WR_WAT_SHIFT(7);
1840 		else
1841 			dma_rw_ctl |= BGE_PCIDMARWCTL_WR_WAT_SHIFT(3);
1842 	} else if (sc->bge_flags & BGE_FLAG_PCIX) {
1843 		if (BGE_IS_5714_FAMILY(sc)) {
1844 			/* 256 bytes for read and write. */
1845 			dma_rw_ctl |= BGE_PCIDMARWCTL_RD_WAT_SHIFT(2) |
1846 			    BGE_PCIDMARWCTL_WR_WAT_SHIFT(2);
1847 			dma_rw_ctl |= (sc->bge_asicrev == BGE_ASICREV_BCM5780) ?
1848 			    BGE_PCIDMARWCTL_ONEDMA_ATONCE_GLOBAL :
1849 			    BGE_PCIDMARWCTL_ONEDMA_ATONCE_LOCAL;
1850 		} else if (sc->bge_asicrev == BGE_ASICREV_BCM5703) {
1851 			/*
1852 			 * In the BCM5703, the DMA read watermark should
1853 			 * be set to less than or equal to the maximum
1854 			 * memory read byte count of the PCI-X command
1855 			 * register.
1856 			 */
1857 			dma_rw_ctl |= BGE_PCIDMARWCTL_RD_WAT_SHIFT(4) |
1858 			    BGE_PCIDMARWCTL_WR_WAT_SHIFT(3);
1859 		} else if (sc->bge_asicrev == BGE_ASICREV_BCM5704) {
1860 			/* 1536 bytes for read, 384 bytes for write. */
1861 			dma_rw_ctl |= BGE_PCIDMARWCTL_RD_WAT_SHIFT(7) |
1862 			    BGE_PCIDMARWCTL_WR_WAT_SHIFT(3);
1863 		} else {
1864 			/* 384 bytes for read and write. */
1865 			dma_rw_ctl |= BGE_PCIDMARWCTL_RD_WAT_SHIFT(3) |
1866 			    BGE_PCIDMARWCTL_WR_WAT_SHIFT(3) |
1867 			    0x0F;
1868 		}
1869 		if (sc->bge_asicrev == BGE_ASICREV_BCM5703 ||
1870 		    sc->bge_asicrev == BGE_ASICREV_BCM5704) {
1871 			uint32_t tmp;
1872 
1873 			/* Set ONE_DMA_AT_ONCE for hardware workaround. */
1874 			tmp = CSR_READ_4(sc, BGE_PCI_CLKCTL) & 0x1F;
1875 			if (tmp == 6 || tmp == 7)
1876 				dma_rw_ctl |=
1877 				    BGE_PCIDMARWCTL_ONEDMA_ATONCE_GLOBAL;
1878 
1879 			/* Set PCI-X DMA write workaround. */
1880 			dma_rw_ctl |= BGE_PCIDMARWCTL_ASRT_ALL_BE;
1881 		}
1882 	} else {
1883 		/* Conventional PCI bus: 256 bytes for read and write. */
1884 		dma_rw_ctl |= BGE_PCIDMARWCTL_RD_WAT_SHIFT(7) |
1885 		    BGE_PCIDMARWCTL_WR_WAT_SHIFT(7);
1886 
1887 		if (sc->bge_asicrev != BGE_ASICREV_BCM5705 &&
1888 		    sc->bge_asicrev != BGE_ASICREV_BCM5750)
1889 			dma_rw_ctl |= 0x0F;
1890 	}
1891 	if (sc->bge_asicrev == BGE_ASICREV_BCM5700 ||
1892 	    sc->bge_asicrev == BGE_ASICREV_BCM5701)
1893 		dma_rw_ctl |= BGE_PCIDMARWCTL_USE_MRM |
1894 		    BGE_PCIDMARWCTL_ASRT_ALL_BE;
1895 	if (sc->bge_asicrev == BGE_ASICREV_BCM5703 ||
1896 	    sc->bge_asicrev == BGE_ASICREV_BCM5704)
1897 		dma_rw_ctl &= ~BGE_PCIDMARWCTL_MINDMA;
1898 	if (BGE_IS_5717_PLUS(sc)) {
1899 		dma_rw_ctl &= ~BGE_PCIDMARWCTL_DIS_CACHE_ALIGNMENT;
1900 		if (sc->bge_chipid == BGE_CHIPID_BCM57765_A0)
1901 			dma_rw_ctl &= ~BGE_PCIDMARWCTL_CRDRDR_RDMA_MRRS_MSK;
1902 		/*
1903 		 * Enable HW workaround for controllers that misinterpret
1904 		 * a status tag update and leave interrupts permanently
1905 		 * disabled.
1906 		 */
1907 		if (!BGE_IS_57765_PLUS(sc) &&
1908 		    sc->bge_asicrev != BGE_ASICREV_BCM5717 &&
1909 		    sc->bge_asicrev != BGE_ASICREV_BCM5762)
1910 			dma_rw_ctl |= BGE_PCIDMARWCTL_TAGGED_STATUS_WA;
1911 	}
1912 	pci_write_config(sc->bge_dev, BGE_PCI_DMA_RW_CTL, dma_rw_ctl, 4);
1913 
1914 	/*
1915 	 * Set up general mode register.
1916 	 */
1917 	mode_ctl = bge_dma_swap_options(sc);
1918 	if (sc->bge_asicrev == BGE_ASICREV_BCM5720 ||
1919 	    sc->bge_asicrev == BGE_ASICREV_BCM5762) {
1920 		/* Retain Host-2-BMC settings written by APE firmware. */
1921 		mode_ctl |= CSR_READ_4(sc, BGE_MODE_CTL) &
1922 		    (BGE_MODECTL_BYTESWAP_B2HRX_DATA |
1923 		    BGE_MODECTL_WORDSWAP_B2HRX_DATA |
1924 		    BGE_MODECTL_B2HRX_ENABLE | BGE_MODECTL_HTX2B_ENABLE);
1925 	}
1926 	mode_ctl |= BGE_MODECTL_MAC_ATTN_INTR | BGE_MODECTL_HOST_SEND_BDS |
1927 	    BGE_MODECTL_TX_NO_PHDR_CSUM;
1928 
1929 	/*
1930 	 * BCM5701 B5 have a bug causing data corruption when using
1931 	 * 64-bit DMA reads, which can be terminated early and then
1932 	 * completed later as 32-bit accesses, in combination with
1933 	 * certain bridges.
1934 	 */
1935 	if (sc->bge_asicrev == BGE_ASICREV_BCM5701 &&
1936 	    sc->bge_chipid == BGE_CHIPID_BCM5701_B5)
1937 		mode_ctl |= BGE_MODECTL_FORCE_PCI32;
1938 
1939 	/*
1940 	 * Tell the firmware the driver is running
1941 	 */
1942 	if (sc->bge_asf_mode & ASF_STACKUP)
1943 		mode_ctl |= BGE_MODECTL_STACKUP;
1944 
1945 	CSR_WRITE_4(sc, BGE_MODE_CTL, mode_ctl);
1946 
1947 	/*
1948 	 * Disable memory write invalidate.  Apparently it is not supported
1949 	 * properly by these devices.  Also ensure that INTx isn't disabled,
1950 	 * as these chips need it even when using MSI.
1951 	 */
1952 	PCI_CLRBIT(sc->bge_dev, BGE_PCI_CMD,
1953 	    PCIM_CMD_INTxDIS | PCIM_CMD_MWIEN, 4);
1954 
1955 	/* Set the timer prescaler (always 66 MHz). */
1956 	CSR_WRITE_4(sc, BGE_MISC_CFG, BGE_32BITTIME_66MHZ);
1957 
1958 	/* XXX: The Linux tg3 driver does this at the start of brgphy_reset. */
1959 	if (sc->bge_asicrev == BGE_ASICREV_BCM5906) {
1960 		DELAY(40);	/* XXX */
1961 
1962 		/* Put PHY into ready state */
1963 		BGE_CLRBIT(sc, BGE_MISC_CFG, BGE_MISCCFG_EPHY_IDDQ);
1964 		CSR_READ_4(sc, BGE_MISC_CFG); /* Flush */
1965 		DELAY(40);
1966 	}
1967 
1968 	return (0);
1969 }
1970 
1971 static int
1972 bge_blockinit(struct bge_softc *sc)
1973 {
1974 	struct bge_rcb *rcb;
1975 	bus_size_t vrcb;
1976 	bge_hostaddr taddr;
1977 	uint32_t dmactl, rdmareg, val;
1978 	int i, limit;
1979 
1980 	/*
1981 	 * Initialize the memory window pointer register so that
1982 	 * we can access the first 32K of internal NIC RAM. This will
1983 	 * allow us to set up the TX send ring RCBs and the RX return
1984 	 * ring RCBs, plus other things which live in NIC memory.
1985 	 */
1986 	CSR_WRITE_4(sc, BGE_PCI_MEMWIN_BASEADDR, 0);
1987 
1988 	/* Note: the BCM5704 has a smaller mbuf space than other chips. */
1989 
1990 	if (!(BGE_IS_5705_PLUS(sc))) {
1991 		/* Configure mbuf memory pool */
1992 		CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_BASEADDR, BGE_BUFFPOOL_1);
1993 		if (sc->bge_asicrev == BGE_ASICREV_BCM5704)
1994 			CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_LEN, 0x10000);
1995 		else
1996 			CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_LEN, 0x18000);
1997 
1998 		/* Configure DMA resource pool */
1999 		CSR_WRITE_4(sc, BGE_BMAN_DMA_DESCPOOL_BASEADDR,
2000 		    BGE_DMA_DESCRIPTORS);
2001 		CSR_WRITE_4(sc, BGE_BMAN_DMA_DESCPOOL_LEN, 0x2000);
2002 	}
2003 
2004 	/* Configure mbuf pool watermarks */
2005 	if (BGE_IS_5717_PLUS(sc)) {
2006 		CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_READDMA_LOWAT, 0x0);
2007 		if (if_getmtu(sc->bge_ifp) > ETHERMTU) {
2008 			CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_MACRX_LOWAT, 0x7e);
2009 			CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_HIWAT, 0xea);
2010 		} else {
2011 			CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_MACRX_LOWAT, 0x2a);
2012 			CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_HIWAT, 0xa0);
2013 		}
2014 	} else if (!BGE_IS_5705_PLUS(sc)) {
2015 		CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_READDMA_LOWAT, 0x50);
2016 		CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_MACRX_LOWAT, 0x20);
2017 		CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_HIWAT, 0x60);
2018 	} else if (sc->bge_asicrev == BGE_ASICREV_BCM5906) {
2019 		CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_READDMA_LOWAT, 0x0);
2020 		CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_MACRX_LOWAT, 0x04);
2021 		CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_HIWAT, 0x10);
2022 	} else {
2023 		CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_READDMA_LOWAT, 0x0);
2024 		CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_MACRX_LOWAT, 0x10);
2025 		CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_HIWAT, 0x60);
2026 	}
2027 
2028 	/* Configure DMA resource watermarks */
2029 	CSR_WRITE_4(sc, BGE_BMAN_DMA_DESCPOOL_LOWAT, 5);
2030 	CSR_WRITE_4(sc, BGE_BMAN_DMA_DESCPOOL_HIWAT, 10);
2031 
2032 	/* Enable buffer manager */
2033 	val = BGE_BMANMODE_ENABLE | BGE_BMANMODE_LOMBUF_ATTN;
2034 	/*
2035 	 * Change the arbitration algorithm of TXMBUF read request to
2036 	 * round-robin instead of priority based for BCM5719.  When
2037 	 * TXFIFO is almost empty, RDMA will hold its request until
2038 	 * TXFIFO is not almost empty.
2039 	 */
2040 	if (sc->bge_asicrev == BGE_ASICREV_BCM5719)
2041 		val |= BGE_BMANMODE_NO_TX_UNDERRUN;
2042 	CSR_WRITE_4(sc, BGE_BMAN_MODE, val);
2043 
2044 	/* Poll for buffer manager start indication */
2045 	for (i = 0; i < BGE_TIMEOUT; i++) {
2046 		DELAY(10);
2047 		if (CSR_READ_4(sc, BGE_BMAN_MODE) & BGE_BMANMODE_ENABLE)
2048 			break;
2049 	}
2050 
2051 	if (i == BGE_TIMEOUT) {
2052 		device_printf(sc->bge_dev, "buffer manager failed to start\n");
2053 		return (ENXIO);
2054 	}
2055 
2056 	/* Enable flow-through queues */
2057 	CSR_WRITE_4(sc, BGE_FTQ_RESET, 0xFFFFFFFF);
2058 	CSR_WRITE_4(sc, BGE_FTQ_RESET, 0);
2059 
2060 	/* Wait until queue initialization is complete */
2061 	for (i = 0; i < BGE_TIMEOUT; i++) {
2062 		DELAY(10);
2063 		if (CSR_READ_4(sc, BGE_FTQ_RESET) == 0)
2064 			break;
2065 	}
2066 
2067 	if (i == BGE_TIMEOUT) {
2068 		device_printf(sc->bge_dev, "flow-through queue init failed\n");
2069 		return (ENXIO);
2070 	}
2071 
2072 	/*
2073 	 * Summary of rings supported by the controller:
2074 	 *
2075 	 * Standard Receive Producer Ring
2076 	 * - This ring is used to feed receive buffers for "standard"
2077 	 *   sized frames (typically 1536 bytes) to the controller.
2078 	 *
2079 	 * Jumbo Receive Producer Ring
2080 	 * - This ring is used to feed receive buffers for jumbo sized
2081 	 *   frames (i.e. anything bigger than the "standard" frames)
2082 	 *   to the controller.
2083 	 *
2084 	 * Mini Receive Producer Ring
2085 	 * - This ring is used to feed receive buffers for "mini"
2086 	 *   sized frames to the controller.
2087 	 * - This feature required external memory for the controller
2088 	 *   but was never used in a production system.  Should always
2089 	 *   be disabled.
2090 	 *
2091 	 * Receive Return Ring
2092 	 * - After the controller has placed an incoming frame into a
2093 	 *   receive buffer that buffer is moved into a receive return
2094 	 *   ring.  The driver is then responsible to passing the
2095 	 *   buffer up to the stack.  Many versions of the controller
2096 	 *   support multiple RR rings.
2097 	 *
2098 	 * Send Ring
2099 	 * - This ring is used for outgoing frames.  Many versions of
2100 	 *   the controller support multiple send rings.
2101 	 */
2102 
2103 	/* Initialize the standard receive producer ring control block. */
2104 	rcb = &sc->bge_ldata.bge_info.bge_std_rx_rcb;
2105 	rcb->bge_hostaddr.bge_addr_lo =
2106 	    BGE_ADDR_LO(sc->bge_ldata.bge_rx_std_ring_paddr);
2107 	rcb->bge_hostaddr.bge_addr_hi =
2108 	    BGE_ADDR_HI(sc->bge_ldata.bge_rx_std_ring_paddr);
2109 	bus_dmamap_sync(sc->bge_cdata.bge_rx_std_ring_tag,
2110 	    sc->bge_cdata.bge_rx_std_ring_map, BUS_DMASYNC_PREREAD);
2111 	if (BGE_IS_5717_PLUS(sc)) {
2112 		/*
2113 		 * Bits 31-16: Programmable ring size (2048, 1024, 512, .., 32)
2114 		 * Bits 15-2 : Maximum RX frame size
2115 		 * Bit 1     : 1 = Ring Disabled, 0 = Ring ENabled
2116 		 * Bit 0     : Reserved
2117 		 */
2118 		rcb->bge_maxlen_flags =
2119 		    BGE_RCB_MAXLEN_FLAGS(512, BGE_MAX_FRAMELEN << 2);
2120 	} else if (BGE_IS_5705_PLUS(sc)) {
2121 		/*
2122 		 * Bits 31-16: Programmable ring size (512, 256, 128, 64, 32)
2123 		 * Bits 15-2 : Reserved (should be 0)
2124 		 * Bit 1     : 1 = Ring Disabled, 0 = Ring Enabled
2125 		 * Bit 0     : Reserved
2126 		 */
2127 		rcb->bge_maxlen_flags = BGE_RCB_MAXLEN_FLAGS(512, 0);
2128 	} else {
2129 		/*
2130 		 * Ring size is always XXX entries
2131 		 * Bits 31-16: Maximum RX frame size
2132 		 * Bits 15-2 : Reserved (should be 0)
2133 		 * Bit 1     : 1 = Ring Disabled, 0 = Ring Enabled
2134 		 * Bit 0     : Reserved
2135 		 */
2136 		rcb->bge_maxlen_flags =
2137 		    BGE_RCB_MAXLEN_FLAGS(BGE_MAX_FRAMELEN, 0);
2138 	}
2139 	if (sc->bge_asicrev == BGE_ASICREV_BCM5717 ||
2140 	    sc->bge_asicrev == BGE_ASICREV_BCM5719 ||
2141 	    sc->bge_asicrev == BGE_ASICREV_BCM5720)
2142 		rcb->bge_nicaddr = BGE_STD_RX_RINGS_5717;
2143 	else
2144 		rcb->bge_nicaddr = BGE_STD_RX_RINGS;
2145 	/* Write the standard receive producer ring control block. */
2146 	CSR_WRITE_4(sc, BGE_RX_STD_RCB_HADDR_HI, rcb->bge_hostaddr.bge_addr_hi);
2147 	CSR_WRITE_4(sc, BGE_RX_STD_RCB_HADDR_LO, rcb->bge_hostaddr.bge_addr_lo);
2148 	CSR_WRITE_4(sc, BGE_RX_STD_RCB_MAXLEN_FLAGS, rcb->bge_maxlen_flags);
2149 	CSR_WRITE_4(sc, BGE_RX_STD_RCB_NICADDR, rcb->bge_nicaddr);
2150 
2151 	/* Reset the standard receive producer ring producer index. */
2152 	bge_writembx(sc, BGE_MBX_RX_STD_PROD_LO, 0);
2153 
2154 	/*
2155 	 * Initialize the jumbo RX producer ring control
2156 	 * block.  We set the 'ring disabled' bit in the
2157 	 * flags field until we're actually ready to start
2158 	 * using this ring (i.e. once we set the MTU
2159 	 * high enough to require it).
2160 	 */
2161 	if (BGE_IS_JUMBO_CAPABLE(sc)) {
2162 		rcb = &sc->bge_ldata.bge_info.bge_jumbo_rx_rcb;
2163 		/* Get the jumbo receive producer ring RCB parameters. */
2164 		rcb->bge_hostaddr.bge_addr_lo =
2165 		    BGE_ADDR_LO(sc->bge_ldata.bge_rx_jumbo_ring_paddr);
2166 		rcb->bge_hostaddr.bge_addr_hi =
2167 		    BGE_ADDR_HI(sc->bge_ldata.bge_rx_jumbo_ring_paddr);
2168 		bus_dmamap_sync(sc->bge_cdata.bge_rx_jumbo_ring_tag,
2169 		    sc->bge_cdata.bge_rx_jumbo_ring_map,
2170 		    BUS_DMASYNC_PREREAD);
2171 		rcb->bge_maxlen_flags = BGE_RCB_MAXLEN_FLAGS(0,
2172 		    BGE_RCB_FLAG_USE_EXT_RX_BD | BGE_RCB_FLAG_RING_DISABLED);
2173 		if (sc->bge_asicrev == BGE_ASICREV_BCM5717 ||
2174 		    sc->bge_asicrev == BGE_ASICREV_BCM5719 ||
2175 		    sc->bge_asicrev == BGE_ASICREV_BCM5720)
2176 			rcb->bge_nicaddr = BGE_JUMBO_RX_RINGS_5717;
2177 		else
2178 			rcb->bge_nicaddr = BGE_JUMBO_RX_RINGS;
2179 		CSR_WRITE_4(sc, BGE_RX_JUMBO_RCB_HADDR_HI,
2180 		    rcb->bge_hostaddr.bge_addr_hi);
2181 		CSR_WRITE_4(sc, BGE_RX_JUMBO_RCB_HADDR_LO,
2182 		    rcb->bge_hostaddr.bge_addr_lo);
2183 		/* Program the jumbo receive producer ring RCB parameters. */
2184 		CSR_WRITE_4(sc, BGE_RX_JUMBO_RCB_MAXLEN_FLAGS,
2185 		    rcb->bge_maxlen_flags);
2186 		CSR_WRITE_4(sc, BGE_RX_JUMBO_RCB_NICADDR, rcb->bge_nicaddr);
2187 		/* Reset the jumbo receive producer ring producer index. */
2188 		bge_writembx(sc, BGE_MBX_RX_JUMBO_PROD_LO, 0);
2189 	}
2190 
2191 	/* Disable the mini receive producer ring RCB. */
2192 	if (BGE_IS_5700_FAMILY(sc)) {
2193 		rcb = &sc->bge_ldata.bge_info.bge_mini_rx_rcb;
2194 		rcb->bge_maxlen_flags =
2195 		    BGE_RCB_MAXLEN_FLAGS(0, BGE_RCB_FLAG_RING_DISABLED);
2196 		CSR_WRITE_4(sc, BGE_RX_MINI_RCB_MAXLEN_FLAGS,
2197 		    rcb->bge_maxlen_flags);
2198 		/* Reset the mini receive producer ring producer index. */
2199 		bge_writembx(sc, BGE_MBX_RX_MINI_PROD_LO, 0);
2200 	}
2201 
2202 	/* Choose de-pipeline mode for BCM5906 A0, A1 and A2. */
2203 	if (sc->bge_asicrev == BGE_ASICREV_BCM5906) {
2204 		if (sc->bge_chipid == BGE_CHIPID_BCM5906_A0 ||
2205 		    sc->bge_chipid == BGE_CHIPID_BCM5906_A1 ||
2206 		    sc->bge_chipid == BGE_CHIPID_BCM5906_A2)
2207 			CSR_WRITE_4(sc, BGE_ISO_PKT_TX,
2208 			    (CSR_READ_4(sc, BGE_ISO_PKT_TX) & ~3) | 2);
2209 	}
2210 	/*
2211 	 * The BD ring replenish thresholds control how often the
2212 	 * hardware fetches new BD's from the producer rings in host
2213 	 * memory.  Setting the value too low on a busy system can
2214 	 * starve the hardware and recue the throughpout.
2215 	 *
2216 	 * Set the BD ring replentish thresholds. The recommended
2217 	 * values are 1/8th the number of descriptors allocated to
2218 	 * each ring.
2219 	 * XXX The 5754 requires a lower threshold, so it might be a
2220 	 * requirement of all 575x family chips.  The Linux driver sets
2221 	 * the lower threshold for all 5705 family chips as well, but there
2222 	 * are reports that it might not need to be so strict.
2223 	 *
2224 	 * XXX Linux does some extra fiddling here for the 5906 parts as
2225 	 * well.
2226 	 */
2227 	if (BGE_IS_5705_PLUS(sc))
2228 		val = 8;
2229 	else
2230 		val = BGE_STD_RX_RING_CNT / 8;
2231 	CSR_WRITE_4(sc, BGE_RBDI_STD_REPL_THRESH, val);
2232 	if (BGE_IS_JUMBO_CAPABLE(sc))
2233 		CSR_WRITE_4(sc, BGE_RBDI_JUMBO_REPL_THRESH,
2234 		    BGE_JUMBO_RX_RING_CNT/8);
2235 	if (BGE_IS_5717_PLUS(sc)) {
2236 		CSR_WRITE_4(sc, BGE_STD_REPLENISH_LWM, 32);
2237 		CSR_WRITE_4(sc, BGE_JMB_REPLENISH_LWM, 16);
2238 	}
2239 
2240 	/*
2241 	 * Disable all send rings by setting the 'ring disabled' bit
2242 	 * in the flags field of all the TX send ring control blocks,
2243 	 * located in NIC memory.
2244 	 */
2245 	if (!BGE_IS_5705_PLUS(sc))
2246 		/* 5700 to 5704 had 16 send rings. */
2247 		limit = BGE_TX_RINGS_EXTSSRAM_MAX;
2248 	else if (BGE_IS_57765_PLUS(sc) ||
2249 	    sc->bge_asicrev == BGE_ASICREV_BCM5762)
2250 		limit = 2;
2251 	else if (BGE_IS_5717_PLUS(sc))
2252 		limit = 4;
2253 	else
2254 		limit = 1;
2255 	vrcb = BGE_MEMWIN_START + BGE_SEND_RING_RCB;
2256 	for (i = 0; i < limit; i++) {
2257 		RCB_WRITE_4(sc, vrcb, bge_maxlen_flags,
2258 		    BGE_RCB_MAXLEN_FLAGS(0, BGE_RCB_FLAG_RING_DISABLED));
2259 		RCB_WRITE_4(sc, vrcb, bge_nicaddr, 0);
2260 		vrcb += sizeof(struct bge_rcb);
2261 	}
2262 
2263 	/* Configure send ring RCB 0 (we use only the first ring) */
2264 	vrcb = BGE_MEMWIN_START + BGE_SEND_RING_RCB;
2265 	BGE_HOSTADDR(taddr, sc->bge_ldata.bge_tx_ring_paddr);
2266 	RCB_WRITE_4(sc, vrcb, bge_hostaddr.bge_addr_hi, taddr.bge_addr_hi);
2267 	RCB_WRITE_4(sc, vrcb, bge_hostaddr.bge_addr_lo, taddr.bge_addr_lo);
2268 	if (sc->bge_asicrev == BGE_ASICREV_BCM5717 ||
2269 	    sc->bge_asicrev == BGE_ASICREV_BCM5719 ||
2270 	    sc->bge_asicrev == BGE_ASICREV_BCM5720)
2271 		RCB_WRITE_4(sc, vrcb, bge_nicaddr, BGE_SEND_RING_5717);
2272 	else
2273 		RCB_WRITE_4(sc, vrcb, bge_nicaddr,
2274 		    BGE_NIC_TXRING_ADDR(0, BGE_TX_RING_CNT));
2275 	RCB_WRITE_4(sc, vrcb, bge_maxlen_flags,
2276 	    BGE_RCB_MAXLEN_FLAGS(BGE_TX_RING_CNT, 0));
2277 
2278 	/*
2279 	 * Disable all receive return rings by setting the
2280 	 * 'ring diabled' bit in the flags field of all the receive
2281 	 * return ring control blocks, located in NIC memory.
2282 	 */
2283 	if (sc->bge_asicrev == BGE_ASICREV_BCM5717 ||
2284 	    sc->bge_asicrev == BGE_ASICREV_BCM5719 ||
2285 	    sc->bge_asicrev == BGE_ASICREV_BCM5720) {
2286 		/* Should be 17, use 16 until we get an SRAM map. */
2287 		limit = 16;
2288 	} else if (!BGE_IS_5705_PLUS(sc))
2289 		limit = BGE_RX_RINGS_MAX;
2290 	else if (sc->bge_asicrev == BGE_ASICREV_BCM5755 ||
2291 	    sc->bge_asicrev == BGE_ASICREV_BCM5762 ||
2292 	    BGE_IS_57765_PLUS(sc))
2293 		limit = 4;
2294 	else
2295 		limit = 1;
2296 	/* Disable all receive return rings. */
2297 	vrcb = BGE_MEMWIN_START + BGE_RX_RETURN_RING_RCB;
2298 	for (i = 0; i < limit; i++) {
2299 		RCB_WRITE_4(sc, vrcb, bge_hostaddr.bge_addr_hi, 0);
2300 		RCB_WRITE_4(sc, vrcb, bge_hostaddr.bge_addr_lo, 0);
2301 		RCB_WRITE_4(sc, vrcb, bge_maxlen_flags,
2302 		    BGE_RCB_FLAG_RING_DISABLED);
2303 		RCB_WRITE_4(sc, vrcb, bge_nicaddr, 0);
2304 		bge_writembx(sc, BGE_MBX_RX_CONS0_LO +
2305 		    (i * (sizeof(uint64_t))), 0);
2306 		vrcb += sizeof(struct bge_rcb);
2307 	}
2308 
2309 	/*
2310 	 * Set up receive return ring 0.  Note that the NIC address
2311 	 * for RX return rings is 0x0.  The return rings live entirely
2312 	 * within the host, so the nicaddr field in the RCB isn't used.
2313 	 */
2314 	vrcb = BGE_MEMWIN_START + BGE_RX_RETURN_RING_RCB;
2315 	BGE_HOSTADDR(taddr, sc->bge_ldata.bge_rx_return_ring_paddr);
2316 	RCB_WRITE_4(sc, vrcb, bge_hostaddr.bge_addr_hi, taddr.bge_addr_hi);
2317 	RCB_WRITE_4(sc, vrcb, bge_hostaddr.bge_addr_lo, taddr.bge_addr_lo);
2318 	RCB_WRITE_4(sc, vrcb, bge_nicaddr, 0);
2319 	RCB_WRITE_4(sc, vrcb, bge_maxlen_flags,
2320 	    BGE_RCB_MAXLEN_FLAGS(sc->bge_return_ring_cnt, 0));
2321 
2322 	/* Set random backoff seed for TX */
2323 	CSR_WRITE_4(sc, BGE_TX_RANDOM_BACKOFF,
2324 	    (IF_LLADDR(sc->bge_ifp)[0] + IF_LLADDR(sc->bge_ifp)[1] +
2325 	    IF_LLADDR(sc->bge_ifp)[2] + IF_LLADDR(sc->bge_ifp)[3] +
2326 	    IF_LLADDR(sc->bge_ifp)[4] + IF_LLADDR(sc->bge_ifp)[5]) &
2327 	    BGE_TX_BACKOFF_SEED_MASK);
2328 
2329 	/* Set inter-packet gap */
2330 	val = 0x2620;
2331 	if (sc->bge_asicrev == BGE_ASICREV_BCM5720 ||
2332 	    sc->bge_asicrev == BGE_ASICREV_BCM5762)
2333 		val |= CSR_READ_4(sc, BGE_TX_LENGTHS) &
2334 		    (BGE_TXLEN_JMB_FRM_LEN_MSK | BGE_TXLEN_CNT_DN_VAL_MSK);
2335 	CSR_WRITE_4(sc, BGE_TX_LENGTHS, val);
2336 
2337 	/*
2338 	 * Specify which ring to use for packets that don't match
2339 	 * any RX rules.
2340 	 */
2341 	CSR_WRITE_4(sc, BGE_RX_RULES_CFG, 0x08);
2342 
2343 	/*
2344 	 * Configure number of RX lists. One interrupt distribution
2345 	 * list, sixteen active lists, one bad frames class.
2346 	 */
2347 	CSR_WRITE_4(sc, BGE_RXLP_CFG, 0x181);
2348 
2349 	/* Inialize RX list placement stats mask. */
2350 	CSR_WRITE_4(sc, BGE_RXLP_STATS_ENABLE_MASK, 0x007FFFFF);
2351 	CSR_WRITE_4(sc, BGE_RXLP_STATS_CTL, 0x1);
2352 
2353 	/* Disable host coalescing until we get it set up */
2354 	CSR_WRITE_4(sc, BGE_HCC_MODE, 0x00000000);
2355 
2356 	/* Poll to make sure it's shut down. */
2357 	for (i = 0; i < BGE_TIMEOUT; i++) {
2358 		DELAY(10);
2359 		if (!(CSR_READ_4(sc, BGE_HCC_MODE) & BGE_HCCMODE_ENABLE))
2360 			break;
2361 	}
2362 
2363 	if (i == BGE_TIMEOUT) {
2364 		device_printf(sc->bge_dev,
2365 		    "host coalescing engine failed to idle\n");
2366 		return (ENXIO);
2367 	}
2368 
2369 	/* Set up host coalescing defaults */
2370 	CSR_WRITE_4(sc, BGE_HCC_RX_COAL_TICKS, sc->bge_rx_coal_ticks);
2371 	CSR_WRITE_4(sc, BGE_HCC_TX_COAL_TICKS, sc->bge_tx_coal_ticks);
2372 	CSR_WRITE_4(sc, BGE_HCC_RX_MAX_COAL_BDS, sc->bge_rx_max_coal_bds);
2373 	CSR_WRITE_4(sc, BGE_HCC_TX_MAX_COAL_BDS, sc->bge_tx_max_coal_bds);
2374 	if (!(BGE_IS_5705_PLUS(sc))) {
2375 		CSR_WRITE_4(sc, BGE_HCC_RX_COAL_TICKS_INT, 0);
2376 		CSR_WRITE_4(sc, BGE_HCC_TX_COAL_TICKS_INT, 0);
2377 	}
2378 	CSR_WRITE_4(sc, BGE_HCC_RX_MAX_COAL_BDS_INT, 1);
2379 	CSR_WRITE_4(sc, BGE_HCC_TX_MAX_COAL_BDS_INT, 1);
2380 
2381 	/* Set up address of statistics block */
2382 	if (!(BGE_IS_5705_PLUS(sc))) {
2383 		CSR_WRITE_4(sc, BGE_HCC_STATS_ADDR_HI,
2384 		    BGE_ADDR_HI(sc->bge_ldata.bge_stats_paddr));
2385 		CSR_WRITE_4(sc, BGE_HCC_STATS_ADDR_LO,
2386 		    BGE_ADDR_LO(sc->bge_ldata.bge_stats_paddr));
2387 		CSR_WRITE_4(sc, BGE_HCC_STATS_BASEADDR, BGE_STATS_BLOCK);
2388 		CSR_WRITE_4(sc, BGE_HCC_STATUSBLK_BASEADDR, BGE_STATUS_BLOCK);
2389 		CSR_WRITE_4(sc, BGE_HCC_STATS_TICKS, sc->bge_stat_ticks);
2390 	}
2391 
2392 	/* Set up address of status block */
2393 	CSR_WRITE_4(sc, BGE_HCC_STATUSBLK_ADDR_HI,
2394 	    BGE_ADDR_HI(sc->bge_ldata.bge_status_block_paddr));
2395 	CSR_WRITE_4(sc, BGE_HCC_STATUSBLK_ADDR_LO,
2396 	    BGE_ADDR_LO(sc->bge_ldata.bge_status_block_paddr));
2397 
2398 	/* Set up status block size. */
2399 	if (sc->bge_asicrev == BGE_ASICREV_BCM5700 &&
2400 	    sc->bge_chipid != BGE_CHIPID_BCM5700_C0) {
2401 		val = BGE_STATBLKSZ_FULL;
2402 		bzero(sc->bge_ldata.bge_status_block, BGE_STATUS_BLK_SZ);
2403 	} else {
2404 		val = BGE_STATBLKSZ_32BYTE;
2405 		bzero(sc->bge_ldata.bge_status_block, 32);
2406 	}
2407 	bus_dmamap_sync(sc->bge_cdata.bge_status_tag,
2408 	    sc->bge_cdata.bge_status_map,
2409 	    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
2410 
2411 	/* Turn on host coalescing state machine */
2412 	CSR_WRITE_4(sc, BGE_HCC_MODE, val | BGE_HCCMODE_ENABLE);
2413 
2414 	/* Turn on RX BD completion state machine and enable attentions */
2415 	CSR_WRITE_4(sc, BGE_RBDC_MODE,
2416 	    BGE_RBDCMODE_ENABLE | BGE_RBDCMODE_ATTN);
2417 
2418 	/* Turn on RX list placement state machine */
2419 	CSR_WRITE_4(sc, BGE_RXLP_MODE, BGE_RXLPMODE_ENABLE);
2420 
2421 	/* Turn on RX list selector state machine. */
2422 	if (!(BGE_IS_5705_PLUS(sc)))
2423 		CSR_WRITE_4(sc, BGE_RXLS_MODE, BGE_RXLSMODE_ENABLE);
2424 
2425 	/* Turn on DMA, clear stats. */
2426 	val = BGE_MACMODE_TXDMA_ENB | BGE_MACMODE_RXDMA_ENB |
2427 	    BGE_MACMODE_RX_STATS_CLEAR | BGE_MACMODE_TX_STATS_CLEAR |
2428 	    BGE_MACMODE_RX_STATS_ENB | BGE_MACMODE_TX_STATS_ENB |
2429 	    BGE_MACMODE_FRMHDR_DMA_ENB;
2430 
2431 	if (sc->bge_flags & BGE_FLAG_TBI)
2432 		val |= BGE_PORTMODE_TBI;
2433 	else if (sc->bge_flags & BGE_FLAG_MII_SERDES)
2434 		val |= BGE_PORTMODE_GMII;
2435 	else
2436 		val |= BGE_PORTMODE_MII;
2437 
2438 	/* Allow APE to send/receive frames. */
2439 	if ((sc->bge_mfw_flags & BGE_MFW_ON_APE) != 0)
2440 		val |= BGE_MACMODE_APE_RX_EN | BGE_MACMODE_APE_TX_EN;
2441 
2442 	CSR_WRITE_4(sc, BGE_MAC_MODE, val);
2443 	DELAY(40);
2444 
2445 	/* Set misc. local control, enable interrupts on attentions */
2446 	BGE_SETBIT(sc, BGE_MISC_LOCAL_CTL, BGE_MLC_INTR_ONATTN);
2447 
2448 #ifdef notdef
2449 	/* Assert GPIO pins for PHY reset */
2450 	BGE_SETBIT(sc, BGE_MISC_LOCAL_CTL, BGE_MLC_MISCIO_OUT0 |
2451 	    BGE_MLC_MISCIO_OUT1 | BGE_MLC_MISCIO_OUT2);
2452 	BGE_SETBIT(sc, BGE_MISC_LOCAL_CTL, BGE_MLC_MISCIO_OUTEN0 |
2453 	    BGE_MLC_MISCIO_OUTEN1 | BGE_MLC_MISCIO_OUTEN2);
2454 #endif
2455 
2456 	/* Turn on DMA completion state machine */
2457 	if (!(BGE_IS_5705_PLUS(sc)))
2458 		CSR_WRITE_4(sc, BGE_DMAC_MODE, BGE_DMACMODE_ENABLE);
2459 
2460 	val = BGE_WDMAMODE_ENABLE | BGE_WDMAMODE_ALL_ATTNS;
2461 
2462 	/* Enable host coalescing bug fix. */
2463 	if (BGE_IS_5755_PLUS(sc))
2464 		val |= BGE_WDMAMODE_STATUS_TAG_FIX;
2465 
2466 	/* Request larger DMA burst size to get better performance. */
2467 	if (sc->bge_asicrev == BGE_ASICREV_BCM5785)
2468 		val |= BGE_WDMAMODE_BURST_ALL_DATA;
2469 
2470 	/* Turn on write DMA state machine */
2471 	CSR_WRITE_4(sc, BGE_WDMA_MODE, val);
2472 	DELAY(40);
2473 
2474 	/* Turn on read DMA state machine */
2475 	val = BGE_RDMAMODE_ENABLE | BGE_RDMAMODE_ALL_ATTNS;
2476 
2477 	if (sc->bge_asicrev == BGE_ASICREV_BCM5717)
2478 		val |= BGE_RDMAMODE_MULT_DMA_RD_DIS;
2479 
2480 	if (sc->bge_asicrev == BGE_ASICREV_BCM5784 ||
2481 	    sc->bge_asicrev == BGE_ASICREV_BCM5785 ||
2482 	    sc->bge_asicrev == BGE_ASICREV_BCM57780)
2483 		val |= BGE_RDMAMODE_BD_SBD_CRPT_ATTN |
2484 		    BGE_RDMAMODE_MBUF_RBD_CRPT_ATTN |
2485 		    BGE_RDMAMODE_MBUF_SBD_CRPT_ATTN;
2486 	if (sc->bge_flags & BGE_FLAG_PCIE)
2487 		val |= BGE_RDMAMODE_FIFO_LONG_BURST;
2488 	if (sc->bge_flags & (BGE_FLAG_TSO | BGE_FLAG_TSO3)) {
2489 		val |= BGE_RDMAMODE_TSO4_ENABLE;
2490 		if (sc->bge_flags & BGE_FLAG_TSO3 ||
2491 		    sc->bge_asicrev == BGE_ASICREV_BCM5785 ||
2492 		    sc->bge_asicrev == BGE_ASICREV_BCM57780)
2493 			val |= BGE_RDMAMODE_TSO6_ENABLE;
2494 	}
2495 
2496 	if (sc->bge_asicrev == BGE_ASICREV_BCM5720 ||
2497 	    sc->bge_asicrev == BGE_ASICREV_BCM5762) {
2498 		val |= CSR_READ_4(sc, BGE_RDMA_MODE) &
2499 			BGE_RDMAMODE_H2BNC_VLAN_DET;
2500 		/*
2501 		 * Allow multiple outstanding read requests from
2502 		 * non-LSO read DMA engine.
2503 		 */
2504 		val &= ~BGE_RDMAMODE_MULT_DMA_RD_DIS;
2505 	}
2506 
2507 	if (sc->bge_asicrev == BGE_ASICREV_BCM5761 ||
2508 	    sc->bge_asicrev == BGE_ASICREV_BCM5784 ||
2509 	    sc->bge_asicrev == BGE_ASICREV_BCM5785 ||
2510 	    sc->bge_asicrev == BGE_ASICREV_BCM57780 ||
2511 	    BGE_IS_5717_PLUS(sc) || BGE_IS_57765_PLUS(sc)) {
2512 		if (sc->bge_asicrev == BGE_ASICREV_BCM5762)
2513 			rdmareg = BGE_RDMA_RSRVCTRL_REG2;
2514 		else
2515 			rdmareg = BGE_RDMA_RSRVCTRL;
2516 		dmactl = CSR_READ_4(sc, rdmareg);
2517 		/*
2518 		 * Adjust tx margin to prevent TX data corruption and
2519 		 * fix internal FIFO overflow.
2520 		 */
2521 		if (sc->bge_chipid == BGE_CHIPID_BCM5719_A0 ||
2522 		    sc->bge_asicrev == BGE_ASICREV_BCM5762) {
2523 			dmactl &= ~(BGE_RDMA_RSRVCTRL_FIFO_LWM_MASK |
2524 			    BGE_RDMA_RSRVCTRL_FIFO_HWM_MASK |
2525 			    BGE_RDMA_RSRVCTRL_TXMRGN_MASK);
2526 			dmactl |= BGE_RDMA_RSRVCTRL_FIFO_LWM_1_5K |
2527 			    BGE_RDMA_RSRVCTRL_FIFO_HWM_1_5K |
2528 			    BGE_RDMA_RSRVCTRL_TXMRGN_320B;
2529 		}
2530 		/*
2531 		 * Enable fix for read DMA FIFO overruns.
2532 		 * The fix is to limit the number of RX BDs
2533 		 * the hardware would fetch at a fime.
2534 		 */
2535 		CSR_WRITE_4(sc, rdmareg, dmactl |
2536 		    BGE_RDMA_RSRVCTRL_FIFO_OFLW_FIX);
2537 	}
2538 
2539 	if (sc->bge_asicrev == BGE_ASICREV_BCM5719) {
2540 		CSR_WRITE_4(sc, BGE_RDMA_LSO_CRPTEN_CTRL,
2541 		    CSR_READ_4(sc, BGE_RDMA_LSO_CRPTEN_CTRL) |
2542 		    BGE_RDMA_LSO_CRPTEN_CTRL_BLEN_BD_4K |
2543 		    BGE_RDMA_LSO_CRPTEN_CTRL_BLEN_LSO_4K);
2544 	} else if (sc->bge_asicrev == BGE_ASICREV_BCM5720) {
2545 		/*
2546 		 * Allow 4KB burst length reads for non-LSO frames.
2547 		 * Enable 512B burst length reads for buffer descriptors.
2548 		 */
2549 		CSR_WRITE_4(sc, BGE_RDMA_LSO_CRPTEN_CTRL,
2550 		    CSR_READ_4(sc, BGE_RDMA_LSO_CRPTEN_CTRL) |
2551 		    BGE_RDMA_LSO_CRPTEN_CTRL_BLEN_BD_512 |
2552 		    BGE_RDMA_LSO_CRPTEN_CTRL_BLEN_LSO_4K);
2553 	} else if (sc->bge_asicrev == BGE_ASICREV_BCM5762) {
2554 		CSR_WRITE_4(sc, BGE_RDMA_LSO_CRPTEN_CTRL_REG2,
2555 		    CSR_READ_4(sc, BGE_RDMA_LSO_CRPTEN_CTRL_REG2) |
2556 		    BGE_RDMA_LSO_CRPTEN_CTRL_BLEN_BD_4K |
2557 		    BGE_RDMA_LSO_CRPTEN_CTRL_BLEN_LSO_4K);
2558 	}
2559 
2560 	CSR_WRITE_4(sc, BGE_RDMA_MODE, val);
2561 	DELAY(40);
2562 
2563 	if (sc->bge_flags & BGE_FLAG_RDMA_BUG) {
2564 		for (i = 0; i < BGE_NUM_RDMA_CHANNELS / 2; i++) {
2565 			val = CSR_READ_4(sc, BGE_RDMA_LENGTH + i * 4);
2566 			if ((val & 0xFFFF) > BGE_FRAMELEN)
2567 				break;
2568 			if (((val >> 16) & 0xFFFF) > BGE_FRAMELEN)
2569 				break;
2570 		}
2571 		if (i != BGE_NUM_RDMA_CHANNELS / 2) {
2572 			val = CSR_READ_4(sc, BGE_RDMA_LSO_CRPTEN_CTRL);
2573 			if (sc->bge_asicrev == BGE_ASICREV_BCM5719)
2574 				val |= BGE_RDMA_TX_LENGTH_WA_5719;
2575 			else
2576 				val |= BGE_RDMA_TX_LENGTH_WA_5720;
2577 			CSR_WRITE_4(sc, BGE_RDMA_LSO_CRPTEN_CTRL, val);
2578 		}
2579 	}
2580 
2581 	/* Turn on RX data completion state machine */
2582 	CSR_WRITE_4(sc, BGE_RDC_MODE, BGE_RDCMODE_ENABLE);
2583 
2584 	/* Turn on RX BD initiator state machine */
2585 	CSR_WRITE_4(sc, BGE_RBDI_MODE, BGE_RBDIMODE_ENABLE);
2586 
2587 	/* Turn on RX data and RX BD initiator state machine */
2588 	CSR_WRITE_4(sc, BGE_RDBDI_MODE, BGE_RDBDIMODE_ENABLE);
2589 
2590 	/* Turn on Mbuf cluster free state machine */
2591 	if (!(BGE_IS_5705_PLUS(sc)))
2592 		CSR_WRITE_4(sc, BGE_MBCF_MODE, BGE_MBCFMODE_ENABLE);
2593 
2594 	/* Turn on send BD completion state machine */
2595 	CSR_WRITE_4(sc, BGE_SBDC_MODE, BGE_SBDCMODE_ENABLE);
2596 
2597 	/* Turn on send data completion state machine */
2598 	val = BGE_SDCMODE_ENABLE;
2599 	if (sc->bge_asicrev == BGE_ASICREV_BCM5761)
2600 		val |= BGE_SDCMODE_CDELAY;
2601 	CSR_WRITE_4(sc, BGE_SDC_MODE, val);
2602 
2603 	/* Turn on send data initiator state machine */
2604 	if (sc->bge_flags & (BGE_FLAG_TSO | BGE_FLAG_TSO3))
2605 		CSR_WRITE_4(sc, BGE_SDI_MODE, BGE_SDIMODE_ENABLE |
2606 		    BGE_SDIMODE_HW_LSO_PRE_DMA);
2607 	else
2608 		CSR_WRITE_4(sc, BGE_SDI_MODE, BGE_SDIMODE_ENABLE);
2609 
2610 	/* Turn on send BD initiator state machine */
2611 	CSR_WRITE_4(sc, BGE_SBDI_MODE, BGE_SBDIMODE_ENABLE);
2612 
2613 	/* Turn on send BD selector state machine */
2614 	CSR_WRITE_4(sc, BGE_SRS_MODE, BGE_SRSMODE_ENABLE);
2615 
2616 	CSR_WRITE_4(sc, BGE_SDI_STATS_ENABLE_MASK, 0x007FFFFF);
2617 	CSR_WRITE_4(sc, BGE_SDI_STATS_CTL,
2618 	    BGE_SDISTATSCTL_ENABLE | BGE_SDISTATSCTL_FASTER);
2619 
2620 	/* ack/clear link change events */
2621 	CSR_WRITE_4(sc, BGE_MAC_STS, BGE_MACSTAT_SYNC_CHANGED |
2622 	    BGE_MACSTAT_CFG_CHANGED | BGE_MACSTAT_MI_COMPLETE |
2623 	    BGE_MACSTAT_LINK_CHANGED);
2624 	CSR_WRITE_4(sc, BGE_MI_STS, 0);
2625 
2626 	/*
2627 	 * Enable attention when the link has changed state for
2628 	 * devices that use auto polling.
2629 	 */
2630 	if (sc->bge_flags & BGE_FLAG_TBI) {
2631 		CSR_WRITE_4(sc, BGE_MI_STS, BGE_MISTS_LINK);
2632 	} else {
2633 		if (sc->bge_mi_mode & BGE_MIMODE_AUTOPOLL) {
2634 			CSR_WRITE_4(sc, BGE_MI_MODE, sc->bge_mi_mode);
2635 			DELAY(80);
2636 		}
2637 		if (sc->bge_asicrev == BGE_ASICREV_BCM5700 &&
2638 		    sc->bge_chipid != BGE_CHIPID_BCM5700_B2)
2639 			CSR_WRITE_4(sc, BGE_MAC_EVT_ENB,
2640 			    BGE_EVTENB_MI_INTERRUPT);
2641 	}
2642 
2643 	/*
2644 	 * Clear any pending link state attention.
2645 	 * Otherwise some link state change events may be lost until attention
2646 	 * is cleared by bge_intr() -> bge_link_upd() sequence.
2647 	 * It's not necessary on newer BCM chips - perhaps enabling link
2648 	 * state change attentions implies clearing pending attention.
2649 	 */
2650 	CSR_WRITE_4(sc, BGE_MAC_STS, BGE_MACSTAT_SYNC_CHANGED |
2651 	    BGE_MACSTAT_CFG_CHANGED | BGE_MACSTAT_MI_COMPLETE |
2652 	    BGE_MACSTAT_LINK_CHANGED);
2653 
2654 	/* Enable link state change attentions. */
2655 	BGE_SETBIT(sc, BGE_MAC_EVT_ENB, BGE_EVTENB_LINK_CHANGED);
2656 
2657 	return (0);
2658 }
2659 
2660 static const struct bge_revision *
2661 bge_lookup_rev(uint32_t chipid)
2662 {
2663 	const struct bge_revision *br;
2664 
2665 	for (br = bge_revisions; br->br_name != NULL; br++) {
2666 		if (br->br_chipid == chipid)
2667 			return (br);
2668 	}
2669 
2670 	for (br = bge_majorrevs; br->br_name != NULL; br++) {
2671 		if (br->br_chipid == BGE_ASICREV(chipid))
2672 			return (br);
2673 	}
2674 
2675 	return (NULL);
2676 }
2677 
2678 static const struct bge_vendor *
2679 bge_lookup_vendor(uint16_t vid)
2680 {
2681 	const struct bge_vendor *v;
2682 
2683 	for (v = bge_vendors; v->v_name != NULL; v++)
2684 		if (v->v_id == vid)
2685 			return (v);
2686 
2687 	return (NULL);
2688 }
2689 
2690 static uint32_t
2691 bge_chipid(device_t dev)
2692 {
2693 	uint32_t id;
2694 
2695 	id = pci_read_config(dev, BGE_PCI_MISC_CTL, 4) >>
2696 	    BGE_PCIMISCCTL_ASICREV_SHIFT;
2697 	if (BGE_ASICREV(id) == BGE_ASICREV_USE_PRODID_REG) {
2698 		/*
2699 		 * Find the ASCI revision.  Different chips use different
2700 		 * registers.
2701 		 */
2702 		switch (pci_get_device(dev)) {
2703 		case BCOM_DEVICEID_BCM5717:
2704 		case BCOM_DEVICEID_BCM5718:
2705 		case BCOM_DEVICEID_BCM5719:
2706 		case BCOM_DEVICEID_BCM5720:
2707 		case BCOM_DEVICEID_BCM5725:
2708 		case BCOM_DEVICEID_BCM5727:
2709 		case BCOM_DEVICEID_BCM5762:
2710 		case BCOM_DEVICEID_BCM57764:
2711 		case BCOM_DEVICEID_BCM57767:
2712 		case BCOM_DEVICEID_BCM57787:
2713 			id = pci_read_config(dev,
2714 			    BGE_PCI_GEN2_PRODID_ASICREV, 4);
2715 			break;
2716 		case BCOM_DEVICEID_BCM57761:
2717 		case BCOM_DEVICEID_BCM57762:
2718 		case BCOM_DEVICEID_BCM57765:
2719 		case BCOM_DEVICEID_BCM57766:
2720 		case BCOM_DEVICEID_BCM57781:
2721 		case BCOM_DEVICEID_BCM57782:
2722 		case BCOM_DEVICEID_BCM57785:
2723 		case BCOM_DEVICEID_BCM57786:
2724 		case BCOM_DEVICEID_BCM57791:
2725 		case BCOM_DEVICEID_BCM57795:
2726 			id = pci_read_config(dev,
2727 			    BGE_PCI_GEN15_PRODID_ASICREV, 4);
2728 			break;
2729 		default:
2730 			id = pci_read_config(dev, BGE_PCI_PRODID_ASICREV, 4);
2731 		}
2732 	}
2733 	return (id);
2734 }
2735 
2736 /*
2737  * Probe for a Broadcom chip. Check the PCI vendor and device IDs
2738  * against our list and return its name if we find a match.
2739  *
2740  * Note that since the Broadcom controller contains VPD support, we
2741  * try to get the device name string from the controller itself instead
2742  * of the compiled-in string. It guarantees we'll always announce the
2743  * right product name. We fall back to the compiled-in string when
2744  * VPD is unavailable or corrupt.
2745  */
2746 static int
2747 bge_probe(device_t dev)
2748 {
2749 	char buf[96];
2750 	char model[64];
2751 	const struct bge_revision *br;
2752 	const char *pname;
2753 	struct bge_softc *sc;
2754 	const struct bge_type *t = bge_devs;
2755 	const struct bge_vendor *v;
2756 	uint32_t id;
2757 	uint16_t did, vid;
2758 
2759 	sc = device_get_softc(dev);
2760 	sc->bge_dev = dev;
2761 	vid = pci_get_vendor(dev);
2762 	did = pci_get_device(dev);
2763 	while(t->bge_vid != 0) {
2764 		if ((vid == t->bge_vid) && (did == t->bge_did)) {
2765 			id = bge_chipid(dev);
2766 			br = bge_lookup_rev(id);
2767 			if (bge_has_eaddr(sc) &&
2768 			    pci_get_vpd_ident(dev, &pname) == 0)
2769 				snprintf(model, sizeof(model), "%s", pname);
2770 			else {
2771 				v = bge_lookup_vendor(vid);
2772 				snprintf(model, sizeof(model), "%s %s",
2773 				    v != NULL ? v->v_name : "Unknown",
2774 				    br != NULL ? br->br_name :
2775 				    "NetXtreme/NetLink Ethernet Controller");
2776 			}
2777 			snprintf(buf, sizeof(buf), "%s, %sASIC rev. %#08x",
2778 			    model, br != NULL ? "" : "unknown ", id);
2779 			device_set_desc_copy(dev, buf);
2780 			return (BUS_PROBE_DEFAULT);
2781 		}
2782 		t++;
2783 	}
2784 
2785 	return (ENXIO);
2786 }
2787 
2788 static void
2789 bge_dma_free(struct bge_softc *sc)
2790 {
2791 	int i;
2792 
2793 	/* Destroy DMA maps for RX buffers. */
2794 	for (i = 0; i < BGE_STD_RX_RING_CNT; i++) {
2795 		if (sc->bge_cdata.bge_rx_std_dmamap[i])
2796 			bus_dmamap_destroy(sc->bge_cdata.bge_rx_mtag,
2797 			    sc->bge_cdata.bge_rx_std_dmamap[i]);
2798 	}
2799 	if (sc->bge_cdata.bge_rx_std_sparemap)
2800 		bus_dmamap_destroy(sc->bge_cdata.bge_rx_mtag,
2801 		    sc->bge_cdata.bge_rx_std_sparemap);
2802 
2803 	/* Destroy DMA maps for jumbo RX buffers. */
2804 	for (i = 0; i < BGE_JUMBO_RX_RING_CNT; i++) {
2805 		if (sc->bge_cdata.bge_rx_jumbo_dmamap[i])
2806 			bus_dmamap_destroy(sc->bge_cdata.bge_mtag_jumbo,
2807 			    sc->bge_cdata.bge_rx_jumbo_dmamap[i]);
2808 	}
2809 	if (sc->bge_cdata.bge_rx_jumbo_sparemap)
2810 		bus_dmamap_destroy(sc->bge_cdata.bge_mtag_jumbo,
2811 		    sc->bge_cdata.bge_rx_jumbo_sparemap);
2812 
2813 	/* Destroy DMA maps for TX buffers. */
2814 	for (i = 0; i < BGE_TX_RING_CNT; i++) {
2815 		if (sc->bge_cdata.bge_tx_dmamap[i])
2816 			bus_dmamap_destroy(sc->bge_cdata.bge_tx_mtag,
2817 			    sc->bge_cdata.bge_tx_dmamap[i]);
2818 	}
2819 
2820 	if (sc->bge_cdata.bge_rx_mtag)
2821 		bus_dma_tag_destroy(sc->bge_cdata.bge_rx_mtag);
2822 	if (sc->bge_cdata.bge_mtag_jumbo)
2823 		bus_dma_tag_destroy(sc->bge_cdata.bge_mtag_jumbo);
2824 	if (sc->bge_cdata.bge_tx_mtag)
2825 		bus_dma_tag_destroy(sc->bge_cdata.bge_tx_mtag);
2826 
2827 	/* Destroy standard RX ring. */
2828 	if (sc->bge_ldata.bge_rx_std_ring_paddr)
2829 		bus_dmamap_unload(sc->bge_cdata.bge_rx_std_ring_tag,
2830 		    sc->bge_cdata.bge_rx_std_ring_map);
2831 	if (sc->bge_ldata.bge_rx_std_ring)
2832 		bus_dmamem_free(sc->bge_cdata.bge_rx_std_ring_tag,
2833 		    sc->bge_ldata.bge_rx_std_ring,
2834 		    sc->bge_cdata.bge_rx_std_ring_map);
2835 
2836 	if (sc->bge_cdata.bge_rx_std_ring_tag)
2837 		bus_dma_tag_destroy(sc->bge_cdata.bge_rx_std_ring_tag);
2838 
2839 	/* Destroy jumbo RX ring. */
2840 	if (sc->bge_ldata.bge_rx_jumbo_ring_paddr)
2841 		bus_dmamap_unload(sc->bge_cdata.bge_rx_jumbo_ring_tag,
2842 		    sc->bge_cdata.bge_rx_jumbo_ring_map);
2843 
2844 	if (sc->bge_ldata.bge_rx_jumbo_ring)
2845 		bus_dmamem_free(sc->bge_cdata.bge_rx_jumbo_ring_tag,
2846 		    sc->bge_ldata.bge_rx_jumbo_ring,
2847 		    sc->bge_cdata.bge_rx_jumbo_ring_map);
2848 
2849 	if (sc->bge_cdata.bge_rx_jumbo_ring_tag)
2850 		bus_dma_tag_destroy(sc->bge_cdata.bge_rx_jumbo_ring_tag);
2851 
2852 	/* Destroy RX return ring. */
2853 	if (sc->bge_ldata.bge_rx_return_ring_paddr)
2854 		bus_dmamap_unload(sc->bge_cdata.bge_rx_return_ring_tag,
2855 		    sc->bge_cdata.bge_rx_return_ring_map);
2856 
2857 	if (sc->bge_ldata.bge_rx_return_ring)
2858 		bus_dmamem_free(sc->bge_cdata.bge_rx_return_ring_tag,
2859 		    sc->bge_ldata.bge_rx_return_ring,
2860 		    sc->bge_cdata.bge_rx_return_ring_map);
2861 
2862 	if (sc->bge_cdata.bge_rx_return_ring_tag)
2863 		bus_dma_tag_destroy(sc->bge_cdata.bge_rx_return_ring_tag);
2864 
2865 	/* Destroy TX ring. */
2866 	if (sc->bge_ldata.bge_tx_ring_paddr)
2867 		bus_dmamap_unload(sc->bge_cdata.bge_tx_ring_tag,
2868 		    sc->bge_cdata.bge_tx_ring_map);
2869 
2870 	if (sc->bge_ldata.bge_tx_ring)
2871 		bus_dmamem_free(sc->bge_cdata.bge_tx_ring_tag,
2872 		    sc->bge_ldata.bge_tx_ring,
2873 		    sc->bge_cdata.bge_tx_ring_map);
2874 
2875 	if (sc->bge_cdata.bge_tx_ring_tag)
2876 		bus_dma_tag_destroy(sc->bge_cdata.bge_tx_ring_tag);
2877 
2878 	/* Destroy status block. */
2879 	if (sc->bge_ldata.bge_status_block_paddr)
2880 		bus_dmamap_unload(sc->bge_cdata.bge_status_tag,
2881 		    sc->bge_cdata.bge_status_map);
2882 
2883 	if (sc->bge_ldata.bge_status_block)
2884 		bus_dmamem_free(sc->bge_cdata.bge_status_tag,
2885 		    sc->bge_ldata.bge_status_block,
2886 		    sc->bge_cdata.bge_status_map);
2887 
2888 	if (sc->bge_cdata.bge_status_tag)
2889 		bus_dma_tag_destroy(sc->bge_cdata.bge_status_tag);
2890 
2891 	/* Destroy statistics block. */
2892 	if (sc->bge_ldata.bge_stats_paddr)
2893 		bus_dmamap_unload(sc->bge_cdata.bge_stats_tag,
2894 		    sc->bge_cdata.bge_stats_map);
2895 
2896 	if (sc->bge_ldata.bge_stats)
2897 		bus_dmamem_free(sc->bge_cdata.bge_stats_tag,
2898 		    sc->bge_ldata.bge_stats,
2899 		    sc->bge_cdata.bge_stats_map);
2900 
2901 	if (sc->bge_cdata.bge_stats_tag)
2902 		bus_dma_tag_destroy(sc->bge_cdata.bge_stats_tag);
2903 
2904 	if (sc->bge_cdata.bge_buffer_tag)
2905 		bus_dma_tag_destroy(sc->bge_cdata.bge_buffer_tag);
2906 
2907 	/* Destroy the parent tag. */
2908 	if (sc->bge_cdata.bge_parent_tag)
2909 		bus_dma_tag_destroy(sc->bge_cdata.bge_parent_tag);
2910 }
2911 
2912 static int
2913 bge_dma_ring_alloc(struct bge_softc *sc, bus_size_t alignment,
2914     bus_size_t maxsize, bus_dma_tag_t *tag, uint8_t **ring, bus_dmamap_t *map,
2915     bus_addr_t *paddr, const char *msg)
2916 {
2917 	struct bge_dmamap_arg ctx;
2918 	int error;
2919 
2920 	error = bus_dma_tag_create(sc->bge_cdata.bge_parent_tag,
2921 	    alignment, 0, BUS_SPACE_MAXADDR, BUS_SPACE_MAXADDR, NULL,
2922 	    NULL, maxsize, 1, maxsize, 0, NULL, NULL, tag);
2923 	if (error != 0) {
2924 		device_printf(sc->bge_dev,
2925 		    "could not create %s dma tag\n", msg);
2926 		return (ENOMEM);
2927 	}
2928 	/* Allocate DMA'able memory for ring. */
2929 	error = bus_dmamem_alloc(*tag, (void **)ring,
2930 	    BUS_DMA_NOWAIT | BUS_DMA_ZERO | BUS_DMA_COHERENT, map);
2931 	if (error != 0) {
2932 		device_printf(sc->bge_dev,
2933 		    "could not allocate DMA'able memory for %s\n", msg);
2934 		return (ENOMEM);
2935 	}
2936 	/* Load the address of the ring. */
2937 	ctx.bge_busaddr = 0;
2938 	error = bus_dmamap_load(*tag, *map, *ring, maxsize, bge_dma_map_addr,
2939 	    &ctx, BUS_DMA_NOWAIT);
2940 	if (error != 0) {
2941 		device_printf(sc->bge_dev,
2942 		    "could not load DMA'able memory for %s\n", msg);
2943 		return (ENOMEM);
2944 	}
2945 	*paddr = ctx.bge_busaddr;
2946 	return (0);
2947 }
2948 
2949 static int
2950 bge_dma_alloc(struct bge_softc *sc)
2951 {
2952 	bus_addr_t lowaddr;
2953 	bus_size_t rxmaxsegsz, sbsz, txsegsz, txmaxsegsz;
2954 	int i, error;
2955 
2956 	lowaddr = BUS_SPACE_MAXADDR;
2957 	if ((sc->bge_flags & BGE_FLAG_40BIT_BUG) != 0)
2958 		lowaddr = BGE_DMA_MAXADDR;
2959 	/*
2960 	 * Allocate the parent bus DMA tag appropriate for PCI.
2961 	 */
2962 	error = bus_dma_tag_create(bus_get_dma_tag(sc->bge_dev),
2963 	    1, 0, lowaddr, BUS_SPACE_MAXADDR, NULL,
2964 	    NULL, BUS_SPACE_MAXSIZE_32BIT, 0, BUS_SPACE_MAXSIZE_32BIT,
2965 	    0, NULL, NULL, &sc->bge_cdata.bge_parent_tag);
2966 	if (error != 0) {
2967 		device_printf(sc->bge_dev,
2968 		    "could not allocate parent dma tag\n");
2969 		return (ENOMEM);
2970 	}
2971 
2972 	/* Create tag for standard RX ring. */
2973 	error = bge_dma_ring_alloc(sc, PAGE_SIZE, BGE_STD_RX_RING_SZ,
2974 	    &sc->bge_cdata.bge_rx_std_ring_tag,
2975 	    (uint8_t **)&sc->bge_ldata.bge_rx_std_ring,
2976 	    &sc->bge_cdata.bge_rx_std_ring_map,
2977 	    &sc->bge_ldata.bge_rx_std_ring_paddr, "RX ring");
2978 	if (error)
2979 		return (error);
2980 
2981 	/* Create tag for RX return ring. */
2982 	error = bge_dma_ring_alloc(sc, PAGE_SIZE, BGE_RX_RTN_RING_SZ(sc),
2983 	    &sc->bge_cdata.bge_rx_return_ring_tag,
2984 	    (uint8_t **)&sc->bge_ldata.bge_rx_return_ring,
2985 	    &sc->bge_cdata.bge_rx_return_ring_map,
2986 	    &sc->bge_ldata.bge_rx_return_ring_paddr, "RX return ring");
2987 	if (error)
2988 		return (error);
2989 
2990 	/* Create tag for TX ring. */
2991 	error = bge_dma_ring_alloc(sc, PAGE_SIZE, BGE_TX_RING_SZ,
2992 	    &sc->bge_cdata.bge_tx_ring_tag,
2993 	    (uint8_t **)&sc->bge_ldata.bge_tx_ring,
2994 	    &sc->bge_cdata.bge_tx_ring_map,
2995 	    &sc->bge_ldata.bge_tx_ring_paddr, "TX ring");
2996 	if (error)
2997 		return (error);
2998 
2999 	/*
3000 	 * Create tag for status block.
3001 	 * Because we only use single Tx/Rx/Rx return ring, use
3002 	 * minimum status block size except BCM5700 AX/BX which
3003 	 * seems to want to see full status block size regardless
3004 	 * of configured number of ring.
3005 	 */
3006 	if (sc->bge_asicrev == BGE_ASICREV_BCM5700 &&
3007 	    sc->bge_chipid != BGE_CHIPID_BCM5700_C0)
3008 		sbsz = BGE_STATUS_BLK_SZ;
3009 	else
3010 		sbsz = 32;
3011 	error = bge_dma_ring_alloc(sc, PAGE_SIZE, sbsz,
3012 	    &sc->bge_cdata.bge_status_tag,
3013 	    (uint8_t **)&sc->bge_ldata.bge_status_block,
3014 	    &sc->bge_cdata.bge_status_map,
3015 	    &sc->bge_ldata.bge_status_block_paddr, "status block");
3016 	if (error)
3017 		return (error);
3018 
3019 	/* Create tag for statistics block. */
3020 	error = bge_dma_ring_alloc(sc, PAGE_SIZE, BGE_STATS_SZ,
3021 	    &sc->bge_cdata.bge_stats_tag,
3022 	    (uint8_t **)&sc->bge_ldata.bge_stats,
3023 	    &sc->bge_cdata.bge_stats_map,
3024 	    &sc->bge_ldata.bge_stats_paddr, "statistics block");
3025 	if (error)
3026 		return (error);
3027 
3028 	/* Create tag for jumbo RX ring. */
3029 	if (BGE_IS_JUMBO_CAPABLE(sc)) {
3030 		error = bge_dma_ring_alloc(sc, PAGE_SIZE, BGE_JUMBO_RX_RING_SZ,
3031 		    &sc->bge_cdata.bge_rx_jumbo_ring_tag,
3032 		    (uint8_t **)&sc->bge_ldata.bge_rx_jumbo_ring,
3033 		    &sc->bge_cdata.bge_rx_jumbo_ring_map,
3034 		    &sc->bge_ldata.bge_rx_jumbo_ring_paddr, "jumbo RX ring");
3035 		if (error)
3036 			return (error);
3037 	}
3038 
3039 	/* Create parent tag for buffers. */
3040 	if ((sc->bge_flags & BGE_FLAG_4G_BNDRY_BUG) != 0) {
3041 		/*
3042 		 * XXX
3043 		 * watchdog timeout issue was observed on BCM5704 which
3044 		 * lives behind PCI-X bridge(e.g AMD 8131 PCI-X bridge).
3045 		 * Both limiting DMA address space to 32bits and flushing
3046 		 * mailbox write seem to address the issue.
3047 		 */
3048 		if (sc->bge_pcixcap != 0)
3049 			lowaddr = BUS_SPACE_MAXADDR_32BIT;
3050 	}
3051 	error = bus_dma_tag_create(bus_get_dma_tag(sc->bge_dev), 1, 0, lowaddr,
3052 	    BUS_SPACE_MAXADDR, NULL, NULL, BUS_SPACE_MAXSIZE_32BIT, 0,
3053 	    BUS_SPACE_MAXSIZE_32BIT, 0, NULL, NULL,
3054 	    &sc->bge_cdata.bge_buffer_tag);
3055 	if (error != 0) {
3056 		device_printf(sc->bge_dev,
3057 		    "could not allocate buffer dma tag\n");
3058 		return (ENOMEM);
3059 	}
3060 	/* Create tag for Tx mbufs. */
3061 	if (sc->bge_flags & (BGE_FLAG_TSO | BGE_FLAG_TSO3)) {
3062 		txsegsz = BGE_TSOSEG_SZ;
3063 		txmaxsegsz = 65535 + sizeof(struct ether_vlan_header);
3064 	} else {
3065 		txsegsz = MCLBYTES;
3066 		txmaxsegsz = MCLBYTES * BGE_NSEG_NEW;
3067 	}
3068 	error = bus_dma_tag_create(sc->bge_cdata.bge_buffer_tag, 1,
3069 	    0, BUS_SPACE_MAXADDR, BUS_SPACE_MAXADDR, NULL, NULL,
3070 	    txmaxsegsz, BGE_NSEG_NEW, txsegsz, 0, NULL, NULL,
3071 	    &sc->bge_cdata.bge_tx_mtag);
3072 
3073 	if (error) {
3074 		device_printf(sc->bge_dev, "could not allocate TX dma tag\n");
3075 		return (ENOMEM);
3076 	}
3077 
3078 	/* Create tag for Rx mbufs. */
3079 	if (sc->bge_flags & BGE_FLAG_JUMBO_STD)
3080 		rxmaxsegsz = MJUM9BYTES;
3081 	else
3082 		rxmaxsegsz = MCLBYTES;
3083 	error = bus_dma_tag_create(sc->bge_cdata.bge_buffer_tag, 1, 0,
3084 	    BUS_SPACE_MAXADDR, BUS_SPACE_MAXADDR, NULL, NULL, rxmaxsegsz, 1,
3085 	    rxmaxsegsz, 0, NULL, NULL, &sc->bge_cdata.bge_rx_mtag);
3086 
3087 	if (error) {
3088 		device_printf(sc->bge_dev, "could not allocate RX dma tag\n");
3089 		return (ENOMEM);
3090 	}
3091 
3092 	/* Create DMA maps for RX buffers. */
3093 	error = bus_dmamap_create(sc->bge_cdata.bge_rx_mtag, 0,
3094 	    &sc->bge_cdata.bge_rx_std_sparemap);
3095 	if (error) {
3096 		device_printf(sc->bge_dev,
3097 		    "can't create spare DMA map for RX\n");
3098 		return (ENOMEM);
3099 	}
3100 	for (i = 0; i < BGE_STD_RX_RING_CNT; i++) {
3101 		error = bus_dmamap_create(sc->bge_cdata.bge_rx_mtag, 0,
3102 			    &sc->bge_cdata.bge_rx_std_dmamap[i]);
3103 		if (error) {
3104 			device_printf(sc->bge_dev,
3105 			    "can't create DMA map for RX\n");
3106 			return (ENOMEM);
3107 		}
3108 	}
3109 
3110 	/* Create DMA maps for TX buffers. */
3111 	for (i = 0; i < BGE_TX_RING_CNT; i++) {
3112 		error = bus_dmamap_create(sc->bge_cdata.bge_tx_mtag, 0,
3113 			    &sc->bge_cdata.bge_tx_dmamap[i]);
3114 		if (error) {
3115 			device_printf(sc->bge_dev,
3116 			    "can't create DMA map for TX\n");
3117 			return (ENOMEM);
3118 		}
3119 	}
3120 
3121 	/* Create tags for jumbo RX buffers. */
3122 	if (BGE_IS_JUMBO_CAPABLE(sc)) {
3123 		error = bus_dma_tag_create(sc->bge_cdata.bge_buffer_tag,
3124 		    1, 0, BUS_SPACE_MAXADDR, BUS_SPACE_MAXADDR, NULL,
3125 		    NULL, MJUM9BYTES, BGE_NSEG_JUMBO, PAGE_SIZE,
3126 		    0, NULL, NULL, &sc->bge_cdata.bge_mtag_jumbo);
3127 		if (error) {
3128 			device_printf(sc->bge_dev,
3129 			    "could not allocate jumbo dma tag\n");
3130 			return (ENOMEM);
3131 		}
3132 		/* Create DMA maps for jumbo RX buffers. */
3133 		error = bus_dmamap_create(sc->bge_cdata.bge_mtag_jumbo,
3134 		    0, &sc->bge_cdata.bge_rx_jumbo_sparemap);
3135 		if (error) {
3136 			device_printf(sc->bge_dev,
3137 			    "can't create spare DMA map for jumbo RX\n");
3138 			return (ENOMEM);
3139 		}
3140 		for (i = 0; i < BGE_JUMBO_RX_RING_CNT; i++) {
3141 			error = bus_dmamap_create(sc->bge_cdata.bge_mtag_jumbo,
3142 				    0, &sc->bge_cdata.bge_rx_jumbo_dmamap[i]);
3143 			if (error) {
3144 				device_printf(sc->bge_dev,
3145 				    "can't create DMA map for jumbo RX\n");
3146 				return (ENOMEM);
3147 			}
3148 		}
3149 	}
3150 
3151 	return (0);
3152 }
3153 
3154 /*
3155  * Return true if this device has more than one port.
3156  */
3157 static int
3158 bge_has_multiple_ports(struct bge_softc *sc)
3159 {
3160 	device_t dev = sc->bge_dev;
3161 	u_int b, d, f, fscan, s;
3162 
3163 	d = pci_get_domain(dev);
3164 	b = pci_get_bus(dev);
3165 	s = pci_get_slot(dev);
3166 	f = pci_get_function(dev);
3167 	for (fscan = 0; fscan <= PCI_FUNCMAX; fscan++)
3168 		if (fscan != f && pci_find_dbsf(d, b, s, fscan) != NULL)
3169 			return (1);
3170 	return (0);
3171 }
3172 
3173 /*
3174  * Return true if MSI can be used with this device.
3175  */
3176 static int
3177 bge_can_use_msi(struct bge_softc *sc)
3178 {
3179 	int can_use_msi = 0;
3180 
3181 	if (sc->bge_msi == 0)
3182 		return (0);
3183 
3184 	/* Disable MSI for polling(4). */
3185 #ifdef DEVICE_POLLING
3186 	return (0);
3187 #endif
3188 	switch (sc->bge_asicrev) {
3189 	case BGE_ASICREV_BCM5714_A0:
3190 	case BGE_ASICREV_BCM5714:
3191 		/*
3192 		 * Apparently, MSI doesn't work when these chips are
3193 		 * configured in single-port mode.
3194 		 */
3195 		if (bge_has_multiple_ports(sc))
3196 			can_use_msi = 1;
3197 		break;
3198 	case BGE_ASICREV_BCM5750:
3199 		if (sc->bge_chiprev != BGE_CHIPREV_5750_AX &&
3200 		    sc->bge_chiprev != BGE_CHIPREV_5750_BX)
3201 			can_use_msi = 1;
3202 		break;
3203 	default:
3204 		if (BGE_IS_575X_PLUS(sc))
3205 			can_use_msi = 1;
3206 	}
3207 	return (can_use_msi);
3208 }
3209 
3210 static int
3211 bge_mbox_reorder(struct bge_softc *sc)
3212 {
3213 	/* Lists of PCI bridges that are known to reorder mailbox writes. */
3214 	static const struct mbox_reorder {
3215 		const uint16_t vendor;
3216 		const uint16_t device;
3217 		const char *desc;
3218 	} mbox_reorder_lists[] = {
3219 		{ 0x1022, 0x7450, "AMD-8131 PCI-X Bridge" },
3220 	};
3221 	devclass_t pci, pcib;
3222 	device_t bus, dev;
3223 	int i;
3224 
3225 	pci = devclass_find("pci");
3226 	pcib = devclass_find("pcib");
3227 	dev = sc->bge_dev;
3228 	bus = device_get_parent(dev);
3229 	for (;;) {
3230 		dev = device_get_parent(bus);
3231 		bus = device_get_parent(dev);
3232 		if (device_get_devclass(dev) != pcib)
3233 			break;
3234 		for (i = 0; i < nitems(mbox_reorder_lists); i++) {
3235 			if (pci_get_vendor(dev) ==
3236 			    mbox_reorder_lists[i].vendor &&
3237 			    pci_get_device(dev) ==
3238 			    mbox_reorder_lists[i].device) {
3239 				device_printf(sc->bge_dev,
3240 				    "enabling MBOX workaround for %s\n",
3241 				    mbox_reorder_lists[i].desc);
3242 				return (1);
3243 			}
3244 		}
3245 		if (device_get_devclass(bus) != pci)
3246 			break;
3247 	}
3248 	return (0);
3249 }
3250 
3251 static void
3252 bge_devinfo(struct bge_softc *sc)
3253 {
3254 	uint32_t cfg, clk;
3255 
3256 	device_printf(sc->bge_dev,
3257 	    "CHIP ID 0x%08x; ASIC REV 0x%02x; CHIP REV 0x%02x; ",
3258 	    sc->bge_chipid, sc->bge_asicrev, sc->bge_chiprev);
3259 	if (sc->bge_flags & BGE_FLAG_PCIE)
3260 		printf("PCI-E\n");
3261 	else if (sc->bge_flags & BGE_FLAG_PCIX) {
3262 		printf("PCI-X ");
3263 		cfg = CSR_READ_4(sc, BGE_MISC_CFG) & BGE_MISCCFG_BOARD_ID_MASK;
3264 		if (cfg == BGE_MISCCFG_BOARD_ID_5704CIOBE)
3265 			clk = 133;
3266 		else {
3267 			clk = CSR_READ_4(sc, BGE_PCI_CLKCTL) & 0x1F;
3268 			switch (clk) {
3269 			case 0:
3270 				clk = 33;
3271 				break;
3272 			case 2:
3273 				clk = 50;
3274 				break;
3275 			case 4:
3276 				clk = 66;
3277 				break;
3278 			case 6:
3279 				clk = 100;
3280 				break;
3281 			case 7:
3282 				clk = 133;
3283 				break;
3284 			}
3285 		}
3286 		printf("%u MHz\n", clk);
3287 	} else {
3288 		if (sc->bge_pcixcap != 0)
3289 			printf("PCI on PCI-X ");
3290 		else
3291 			printf("PCI ");
3292 		cfg = pci_read_config(sc->bge_dev, BGE_PCI_PCISTATE, 4);
3293 		if (cfg & BGE_PCISTATE_PCI_BUSSPEED)
3294 			clk = 66;
3295 		else
3296 			clk = 33;
3297 		if (cfg & BGE_PCISTATE_32BIT_BUS)
3298 			printf("%u MHz; 32bit\n", clk);
3299 		else
3300 			printf("%u MHz; 64bit\n", clk);
3301 	}
3302 }
3303 
3304 static int
3305 bge_attach(device_t dev)
3306 {
3307 	if_t ifp;
3308 	struct bge_softc *sc;
3309 	uint32_t hwcfg = 0, misccfg, pcistate;
3310 	u_char eaddr[ETHER_ADDR_LEN];
3311 	int capmask, error, reg, rid, trys;
3312 
3313 	sc = device_get_softc(dev);
3314 	sc->bge_dev = dev;
3315 
3316 	BGE_LOCK_INIT(sc, device_get_nameunit(dev));
3317 	TASK_INIT(&sc->bge_intr_task, 0, bge_intr_task, sc);
3318 	callout_init_mtx(&sc->bge_stat_ch, &sc->bge_mtx, 0);
3319 
3320 	pci_enable_busmaster(dev);
3321 
3322 	/*
3323 	 * Allocate control/status registers.
3324 	 */
3325 	rid = PCIR_BAR(0);
3326 	sc->bge_res = bus_alloc_resource_any(dev, SYS_RES_MEMORY, &rid,
3327 	    RF_ACTIVE);
3328 
3329 	if (sc->bge_res == NULL) {
3330 		device_printf (sc->bge_dev, "couldn't map BAR0 memory\n");
3331 		error = ENXIO;
3332 		goto fail;
3333 	}
3334 
3335 	/* Save various chip information. */
3336 	sc->bge_func_addr = pci_get_function(dev);
3337 	sc->bge_chipid = bge_chipid(dev);
3338 	sc->bge_asicrev = BGE_ASICREV(sc->bge_chipid);
3339 	sc->bge_chiprev = BGE_CHIPREV(sc->bge_chipid);
3340 
3341 	/* Set default PHY address. */
3342 	sc->bge_phy_addr = 1;
3343 	 /*
3344 	  * PHY address mapping for various devices.
3345 	  *
3346 	  *          | F0 Cu | F0 Sr | F1 Cu | F1 Sr |
3347 	  * ---------+-------+-------+-------+-------+
3348 	  * BCM57XX  |   1   |   X   |   X   |   X   |
3349 	  * BCM5704  |   1   |   X   |   1   |   X   |
3350 	  * BCM5717  |   1   |   8   |   2   |   9   |
3351 	  * BCM5719  |   1   |   8   |   2   |   9   |
3352 	  * BCM5720  |   1   |   8   |   2   |   9   |
3353 	  *
3354 	  *          | F2 Cu | F2 Sr | F3 Cu | F3 Sr |
3355 	  * ---------+-------+-------+-------+-------+
3356 	  * BCM57XX  |   X   |   X   |   X   |   X   |
3357 	  * BCM5704  |   X   |   X   |   X   |   X   |
3358 	  * BCM5717  |   X   |   X   |   X   |   X   |
3359 	  * BCM5719  |   3   |   10  |   4   |   11  |
3360 	  * BCM5720  |   X   |   X   |   X   |   X   |
3361 	  *
3362 	  * Other addresses may respond but they are not
3363 	  * IEEE compliant PHYs and should be ignored.
3364 	  */
3365 	if (sc->bge_asicrev == BGE_ASICREV_BCM5717 ||
3366 	    sc->bge_asicrev == BGE_ASICREV_BCM5719 ||
3367 	    sc->bge_asicrev == BGE_ASICREV_BCM5720) {
3368 		if (sc->bge_chipid != BGE_CHIPID_BCM5717_A0) {
3369 			if (CSR_READ_4(sc, BGE_SGDIG_STS) &
3370 			    BGE_SGDIGSTS_IS_SERDES)
3371 				sc->bge_phy_addr = sc->bge_func_addr + 8;
3372 			else
3373 				sc->bge_phy_addr = sc->bge_func_addr + 1;
3374 		} else {
3375 			if (CSR_READ_4(sc, BGE_CPMU_PHY_STRAP) &
3376 			    BGE_CPMU_PHY_STRAP_IS_SERDES)
3377 				sc->bge_phy_addr = sc->bge_func_addr + 8;
3378 			else
3379 				sc->bge_phy_addr = sc->bge_func_addr + 1;
3380 		}
3381 	}
3382 
3383 	if (bge_has_eaddr(sc))
3384 		sc->bge_flags |= BGE_FLAG_EADDR;
3385 
3386 	/* Save chipset family. */
3387 	switch (sc->bge_asicrev) {
3388 	case BGE_ASICREV_BCM5762:
3389 	case BGE_ASICREV_BCM57765:
3390 	case BGE_ASICREV_BCM57766:
3391 		sc->bge_flags |= BGE_FLAG_57765_PLUS;
3392 		/* FALLTHROUGH */
3393 	case BGE_ASICREV_BCM5717:
3394 	case BGE_ASICREV_BCM5719:
3395 	case BGE_ASICREV_BCM5720:
3396 		sc->bge_flags |= BGE_FLAG_5717_PLUS | BGE_FLAG_5755_PLUS |
3397 		    BGE_FLAG_575X_PLUS | BGE_FLAG_5705_PLUS | BGE_FLAG_JUMBO |
3398 		    BGE_FLAG_JUMBO_FRAME;
3399 		if (sc->bge_asicrev == BGE_ASICREV_BCM5719 ||
3400 		    sc->bge_asicrev == BGE_ASICREV_BCM5720) {
3401 			/*
3402 			 * Enable work around for DMA engine miscalculation
3403 			 * of TXMBUF available space.
3404 			 */
3405 			sc->bge_flags |= BGE_FLAG_RDMA_BUG;
3406 			if (sc->bge_asicrev == BGE_ASICREV_BCM5719 &&
3407 			    sc->bge_chipid == BGE_CHIPID_BCM5719_A0) {
3408 				/* Jumbo frame on BCM5719 A0 does not work. */
3409 				sc->bge_flags &= ~BGE_FLAG_JUMBO;
3410 			}
3411 		}
3412 		break;
3413 	case BGE_ASICREV_BCM5755:
3414 	case BGE_ASICREV_BCM5761:
3415 	case BGE_ASICREV_BCM5784:
3416 	case BGE_ASICREV_BCM5785:
3417 	case BGE_ASICREV_BCM5787:
3418 	case BGE_ASICREV_BCM57780:
3419 		sc->bge_flags |= BGE_FLAG_5755_PLUS | BGE_FLAG_575X_PLUS |
3420 		    BGE_FLAG_5705_PLUS;
3421 		break;
3422 	case BGE_ASICREV_BCM5700:
3423 	case BGE_ASICREV_BCM5701:
3424 	case BGE_ASICREV_BCM5703:
3425 	case BGE_ASICREV_BCM5704:
3426 		sc->bge_flags |= BGE_FLAG_5700_FAMILY | BGE_FLAG_JUMBO;
3427 		break;
3428 	case BGE_ASICREV_BCM5714_A0:
3429 	case BGE_ASICREV_BCM5780:
3430 	case BGE_ASICREV_BCM5714:
3431 		sc->bge_flags |= BGE_FLAG_5714_FAMILY | BGE_FLAG_JUMBO_STD;
3432 		/* FALLTHROUGH */
3433 	case BGE_ASICREV_BCM5750:
3434 	case BGE_ASICREV_BCM5752:
3435 	case BGE_ASICREV_BCM5906:
3436 		sc->bge_flags |= BGE_FLAG_575X_PLUS;
3437 		/* FALLTHROUGH */
3438 	case BGE_ASICREV_BCM5705:
3439 		sc->bge_flags |= BGE_FLAG_5705_PLUS;
3440 		break;
3441 	}
3442 
3443 	/* Identify chips with APE processor. */
3444 	switch (sc->bge_asicrev) {
3445 	case BGE_ASICREV_BCM5717:
3446 	case BGE_ASICREV_BCM5719:
3447 	case BGE_ASICREV_BCM5720:
3448 	case BGE_ASICREV_BCM5761:
3449 	case BGE_ASICREV_BCM5762:
3450 		sc->bge_flags |= BGE_FLAG_APE;
3451 		break;
3452 	}
3453 
3454 	/* Chips with APE need BAR2 access for APE registers/memory. */
3455 	if ((sc->bge_flags & BGE_FLAG_APE) != 0) {
3456 		rid = PCIR_BAR(2);
3457 		sc->bge_res2 = bus_alloc_resource_any(dev, SYS_RES_MEMORY, &rid,
3458 		    RF_ACTIVE);
3459 		if (sc->bge_res2 == NULL) {
3460 			device_printf (sc->bge_dev,
3461 			    "couldn't map BAR2 memory\n");
3462 			error = ENXIO;
3463 			goto fail;
3464 		}
3465 
3466 		/* Enable APE register/memory access by host driver. */
3467 		pcistate = pci_read_config(dev, BGE_PCI_PCISTATE, 4);
3468 		pcistate |= BGE_PCISTATE_ALLOW_APE_CTLSPC_WR |
3469 		    BGE_PCISTATE_ALLOW_APE_SHMEM_WR |
3470 		    BGE_PCISTATE_ALLOW_APE_PSPACE_WR;
3471 		pci_write_config(dev, BGE_PCI_PCISTATE, pcistate, 4);
3472 
3473 		bge_ape_lock_init(sc);
3474 		bge_ape_read_fw_ver(sc);
3475 	}
3476 
3477 	/* Add SYSCTLs, requires the chipset family to be set. */
3478 	bge_add_sysctls(sc);
3479 
3480 	/* Identify the chips that use an CPMU. */
3481 	if (BGE_IS_5717_PLUS(sc) ||
3482 	    sc->bge_asicrev == BGE_ASICREV_BCM5784 ||
3483 	    sc->bge_asicrev == BGE_ASICREV_BCM5761 ||
3484 	    sc->bge_asicrev == BGE_ASICREV_BCM5785 ||
3485 	    sc->bge_asicrev == BGE_ASICREV_BCM57780)
3486 		sc->bge_flags |= BGE_FLAG_CPMU_PRESENT;
3487 	if ((sc->bge_flags & BGE_FLAG_CPMU_PRESENT) != 0)
3488 		sc->bge_mi_mode = BGE_MIMODE_500KHZ_CONST;
3489 	else
3490 		sc->bge_mi_mode = BGE_MIMODE_BASE;
3491 	/* Enable auto polling for BCM570[0-5]. */
3492 	if (BGE_IS_5700_FAMILY(sc) || sc->bge_asicrev == BGE_ASICREV_BCM5705)
3493 		sc->bge_mi_mode |= BGE_MIMODE_AUTOPOLL;
3494 
3495 	/*
3496 	 * All Broadcom controllers have 4GB boundary DMA bug.
3497 	 * Whenever an address crosses a multiple of the 4GB boundary
3498 	 * (including 4GB, 8Gb, 12Gb, etc.) and makes the transition
3499 	 * from 0xX_FFFF_FFFF to 0x(X+1)_0000_0000 an internal DMA
3500 	 * state machine will lockup and cause the device to hang.
3501 	 */
3502 	sc->bge_flags |= BGE_FLAG_4G_BNDRY_BUG;
3503 
3504 	/* BCM5755 or higher and BCM5906 have short DMA bug. */
3505 	if (BGE_IS_5755_PLUS(sc) || sc->bge_asicrev == BGE_ASICREV_BCM5906)
3506 		sc->bge_flags |= BGE_FLAG_SHORT_DMA_BUG;
3507 
3508 	/*
3509 	 * BCM5719 cannot handle DMA requests for DMA segments that
3510 	 * have larger than 4KB in size.  However the maximum DMA
3511 	 * segment size created in DMA tag is 4KB for TSO, so we
3512 	 * wouldn't encounter the issue here.
3513 	 */
3514 	if (sc->bge_asicrev == BGE_ASICREV_BCM5719)
3515 		sc->bge_flags |= BGE_FLAG_4K_RDMA_BUG;
3516 
3517 	misccfg = CSR_READ_4(sc, BGE_MISC_CFG) & BGE_MISCCFG_BOARD_ID_MASK;
3518 	if (sc->bge_asicrev == BGE_ASICREV_BCM5705) {
3519 		if (misccfg == BGE_MISCCFG_BOARD_ID_5788 ||
3520 		    misccfg == BGE_MISCCFG_BOARD_ID_5788M)
3521 			sc->bge_flags |= BGE_FLAG_5788;
3522 	}
3523 
3524 	capmask = BMSR_DEFCAPMASK;
3525 	if ((sc->bge_asicrev == BGE_ASICREV_BCM5703 &&
3526 	    (misccfg == 0x4000 || misccfg == 0x8000)) ||
3527 	    (sc->bge_asicrev == BGE_ASICREV_BCM5705 &&
3528 	    pci_get_vendor(dev) == BCOM_VENDORID &&
3529 	    (pci_get_device(dev) == BCOM_DEVICEID_BCM5901 ||
3530 	    pci_get_device(dev) == BCOM_DEVICEID_BCM5901A2 ||
3531 	    pci_get_device(dev) == BCOM_DEVICEID_BCM5705F)) ||
3532 	    (pci_get_vendor(dev) == BCOM_VENDORID &&
3533 	    (pci_get_device(dev) == BCOM_DEVICEID_BCM5751F ||
3534 	    pci_get_device(dev) == BCOM_DEVICEID_BCM5753F ||
3535 	    pci_get_device(dev) == BCOM_DEVICEID_BCM5787F)) ||
3536 	    pci_get_device(dev) == BCOM_DEVICEID_BCM57790 ||
3537 	    pci_get_device(dev) == BCOM_DEVICEID_BCM57791 ||
3538 	    pci_get_device(dev) == BCOM_DEVICEID_BCM57795 ||
3539 	    sc->bge_asicrev == BGE_ASICREV_BCM5906) {
3540 		/* These chips are 10/100 only. */
3541 		capmask &= ~BMSR_EXTSTAT;
3542 		sc->bge_phy_flags |= BGE_PHY_NO_WIRESPEED;
3543 	}
3544 
3545 	/*
3546 	 * Some controllers seem to require a special firmware to use
3547 	 * TSO. But the firmware is not available to FreeBSD and Linux
3548 	 * claims that the TSO performed by the firmware is slower than
3549 	 * hardware based TSO. Moreover the firmware based TSO has one
3550 	 * known bug which can't handle TSO if Ethernet header + IP/TCP
3551 	 * header is greater than 80 bytes. A workaround for the TSO
3552 	 * bug exist but it seems it's too expensive than not using
3553 	 * TSO at all. Some hardwares also have the TSO bug so limit
3554 	 * the TSO to the controllers that are not affected TSO issues
3555 	 * (e.g. 5755 or higher).
3556 	 */
3557 	if (BGE_IS_5717_PLUS(sc)) {
3558 		/* BCM5717 requires different TSO configuration. */
3559 		sc->bge_flags |= BGE_FLAG_TSO3;
3560 		if (sc->bge_asicrev == BGE_ASICREV_BCM5719 &&
3561 		    sc->bge_chipid == BGE_CHIPID_BCM5719_A0) {
3562 			/* TSO on BCM5719 A0 does not work. */
3563 			sc->bge_flags &= ~BGE_FLAG_TSO3;
3564 		}
3565 	} else if (BGE_IS_5755_PLUS(sc)) {
3566 		/*
3567 		 * BCM5754 and BCM5787 shares the same ASIC id so
3568 		 * explicit device id check is required.
3569 		 * Due to unknown reason TSO does not work on BCM5755M.
3570 		 */
3571 		if (pci_get_device(dev) != BCOM_DEVICEID_BCM5754 &&
3572 		    pci_get_device(dev) != BCOM_DEVICEID_BCM5754M &&
3573 		    pci_get_device(dev) != BCOM_DEVICEID_BCM5755M)
3574 			sc->bge_flags |= BGE_FLAG_TSO;
3575 	}
3576 
3577 	/*
3578 	 * Check if this is a PCI-X or PCI Express device.
3579 	 */
3580 	if (pci_find_cap(dev, PCIY_EXPRESS, &reg) == 0) {
3581 		/*
3582 		 * Found a PCI Express capabilities register, this
3583 		 * must be a PCI Express device.
3584 		 */
3585 		sc->bge_flags |= BGE_FLAG_PCIE;
3586 		sc->bge_expcap = reg;
3587 		/* Extract supported maximum payload size. */
3588 		sc->bge_mps = pci_read_config(dev, sc->bge_expcap +
3589 		    PCIER_DEVICE_CAP, 2);
3590 		sc->bge_mps = 128 << (sc->bge_mps & PCIEM_CAP_MAX_PAYLOAD);
3591 		if (sc->bge_asicrev == BGE_ASICREV_BCM5719 ||
3592 		    sc->bge_asicrev == BGE_ASICREV_BCM5720)
3593 			sc->bge_expmrq = 2048;
3594 		else
3595 			sc->bge_expmrq = 4096;
3596 		pci_set_max_read_req(dev, sc->bge_expmrq);
3597 	} else {
3598 		/*
3599 		 * Check if the device is in PCI-X Mode.
3600 		 * (This bit is not valid on PCI Express controllers.)
3601 		 */
3602 		if (pci_find_cap(dev, PCIY_PCIX, &reg) == 0)
3603 			sc->bge_pcixcap = reg;
3604 		if ((pci_read_config(dev, BGE_PCI_PCISTATE, 4) &
3605 		    BGE_PCISTATE_PCI_BUSMODE) == 0)
3606 			sc->bge_flags |= BGE_FLAG_PCIX;
3607 	}
3608 
3609 	/*
3610 	 * The 40bit DMA bug applies to the 5714/5715 controllers and is
3611 	 * not actually a MAC controller bug but an issue with the embedded
3612 	 * PCIe to PCI-X bridge in the device. Use 40bit DMA workaround.
3613 	 */
3614 	if (BGE_IS_5714_FAMILY(sc) && (sc->bge_flags & BGE_FLAG_PCIX))
3615 		sc->bge_flags |= BGE_FLAG_40BIT_BUG;
3616 	/*
3617 	 * Some PCI-X bridges are known to trigger write reordering to
3618 	 * the mailbox registers. Typical phenomena is watchdog timeouts
3619 	 * caused by out-of-order TX completions.  Enable workaround for
3620 	 * PCI-X devices that live behind these bridges.
3621 	 * Note, PCI-X controllers can run in PCI mode so we can't use
3622 	 * BGE_FLAG_PCIX flag to detect PCI-X controllers.
3623 	 */
3624 	if (sc->bge_pcixcap != 0 && bge_mbox_reorder(sc) != 0)
3625 		sc->bge_flags |= BGE_FLAG_MBOX_REORDER;
3626 	/*
3627 	 * Allocate the interrupt, using MSI if possible.  These devices
3628 	 * support 8 MSI messages, but only the first one is used in
3629 	 * normal operation.
3630 	 */
3631 	rid = 0;
3632 	if (pci_find_cap(sc->bge_dev, PCIY_MSI, &reg) == 0) {
3633 		sc->bge_msicap = reg;
3634 		reg = 1;
3635 		if (bge_can_use_msi(sc) && pci_alloc_msi(dev, &reg) == 0) {
3636 			rid = 1;
3637 			sc->bge_flags |= BGE_FLAG_MSI;
3638 		}
3639 	}
3640 
3641 	/*
3642 	 * All controllers except BCM5700 supports tagged status but
3643 	 * we use tagged status only for MSI case on BCM5717. Otherwise
3644 	 * MSI on BCM5717 does not work.
3645 	 */
3646 #ifndef DEVICE_POLLING
3647 	if (sc->bge_flags & BGE_FLAG_MSI && BGE_IS_5717_PLUS(sc))
3648 		sc->bge_flags |= BGE_FLAG_TAGGED_STATUS;
3649 #endif
3650 
3651 	sc->bge_irq = bus_alloc_resource_any(dev, SYS_RES_IRQ, &rid,
3652 	    RF_ACTIVE | (rid != 0 ? 0 : RF_SHAREABLE));
3653 
3654 	if (sc->bge_irq == NULL) {
3655 		device_printf(sc->bge_dev, "couldn't map interrupt\n");
3656 		error = ENXIO;
3657 		goto fail;
3658 	}
3659 
3660 	bge_devinfo(sc);
3661 
3662 	sc->bge_asf_mode = 0;
3663 	/* No ASF if APE present. */
3664 	if ((sc->bge_flags & BGE_FLAG_APE) == 0) {
3665 		if (bge_allow_asf && (bge_readmem_ind(sc, BGE_SRAM_DATA_SIG) ==
3666 		    BGE_SRAM_DATA_SIG_MAGIC)) {
3667 			if (bge_readmem_ind(sc, BGE_SRAM_DATA_CFG) &
3668 			    BGE_HWCFG_ASF) {
3669 				sc->bge_asf_mode |= ASF_ENABLE;
3670 				sc->bge_asf_mode |= ASF_STACKUP;
3671 				if (BGE_IS_575X_PLUS(sc))
3672 					sc->bge_asf_mode |= ASF_NEW_HANDSHAKE;
3673 			}
3674 		}
3675 	}
3676 
3677 	bge_stop_fw(sc);
3678 	bge_sig_pre_reset(sc, BGE_RESET_SHUTDOWN);
3679 	if (bge_reset(sc)) {
3680 		device_printf(sc->bge_dev, "chip reset failed\n");
3681 		error = ENXIO;
3682 		goto fail;
3683 	}
3684 
3685 	bge_sig_legacy(sc, BGE_RESET_SHUTDOWN);
3686 	bge_sig_post_reset(sc, BGE_RESET_SHUTDOWN);
3687 
3688 	if (bge_chipinit(sc)) {
3689 		device_printf(sc->bge_dev, "chip initialization failed\n");
3690 		error = ENXIO;
3691 		goto fail;
3692 	}
3693 
3694 	error = bge_get_eaddr(sc, eaddr);
3695 	if (error) {
3696 		device_printf(sc->bge_dev,
3697 		    "failed to read station address\n");
3698 		error = ENXIO;
3699 		goto fail;
3700 	}
3701 
3702 	/* 5705 limits RX return ring to 512 entries. */
3703 	if (BGE_IS_5717_PLUS(sc))
3704 		sc->bge_return_ring_cnt = BGE_RETURN_RING_CNT;
3705 	else if (BGE_IS_5705_PLUS(sc))
3706 		sc->bge_return_ring_cnt = BGE_RETURN_RING_CNT_5705;
3707 	else
3708 		sc->bge_return_ring_cnt = BGE_RETURN_RING_CNT;
3709 
3710 	if (bge_dma_alloc(sc)) {
3711 		device_printf(sc->bge_dev,
3712 		    "failed to allocate DMA resources\n");
3713 		error = ENXIO;
3714 		goto fail;
3715 	}
3716 
3717 	/* Set default tuneable values. */
3718 	sc->bge_stat_ticks = BGE_TICKS_PER_SEC;
3719 	sc->bge_rx_coal_ticks = 150;
3720 	sc->bge_tx_coal_ticks = 150;
3721 	sc->bge_rx_max_coal_bds = 10;
3722 	sc->bge_tx_max_coal_bds = 10;
3723 
3724 	/* Initialize checksum features to use. */
3725 	sc->bge_csum_features = BGE_CSUM_FEATURES;
3726 	if (sc->bge_forced_udpcsum != 0)
3727 		sc->bge_csum_features |= CSUM_UDP;
3728 
3729 	/* Set up ifnet structure */
3730 	ifp = sc->bge_ifp = if_alloc(IFT_ETHER);
3731 	if (ifp == NULL) {
3732 		device_printf(sc->bge_dev, "failed to if_alloc()\n");
3733 		error = ENXIO;
3734 		goto fail;
3735 	}
3736 	if_setsoftc(ifp, sc);
3737 	if_initname(ifp, device_get_name(dev), device_get_unit(dev));
3738 	if_setflags(ifp, IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST);
3739 	if_setioctlfn(ifp, bge_ioctl);
3740 	if_setstartfn(ifp, bge_start);
3741 	if_setinitfn(ifp, bge_init);
3742 	if_setgetcounterfn(ifp, bge_get_counter);
3743 	if_setsendqlen(ifp, BGE_TX_RING_CNT - 1);
3744 	if_setsendqready(ifp);
3745 	if_sethwassist(ifp, sc->bge_csum_features);
3746 	if_setcapabilities(ifp, IFCAP_HWCSUM | IFCAP_VLAN_HWTAGGING |
3747 	    IFCAP_VLAN_MTU);
3748 	if ((sc->bge_flags & (BGE_FLAG_TSO | BGE_FLAG_TSO3)) != 0) {
3749 		if_sethwassistbits(ifp, CSUM_TSO, 0);
3750 		if_setcapabilitiesbit(ifp, IFCAP_TSO4 | IFCAP_VLAN_HWTSO, 0);
3751 	}
3752 #ifdef IFCAP_VLAN_HWCSUM
3753 	if_setcapabilitiesbit(ifp, IFCAP_VLAN_HWCSUM, 0);
3754 #endif
3755 	if_setcapenable(ifp, if_getcapabilities(ifp));
3756 #ifdef DEVICE_POLLING
3757 	if_setcapabilitiesbit(ifp, IFCAP_POLLING, 0);
3758 #endif
3759 
3760 	/*
3761 	 * 5700 B0 chips do not support checksumming correctly due
3762 	 * to hardware bugs.
3763 	 */
3764 	if (sc->bge_chipid == BGE_CHIPID_BCM5700_B0) {
3765 		if_setcapabilitiesbit(ifp, 0, IFCAP_HWCSUM);
3766 		if_setcapenablebit(ifp, 0, IFCAP_HWCSUM);
3767 		if_sethwassist(ifp, 0);
3768 	}
3769 
3770 	/*
3771 	 * Figure out what sort of media we have by checking the
3772 	 * hardware config word in the first 32k of NIC internal memory,
3773 	 * or fall back to examining the EEPROM if necessary.
3774 	 * Note: on some BCM5700 cards, this value appears to be unset.
3775 	 * If that's the case, we have to rely on identifying the NIC
3776 	 * by its PCI subsystem ID, as we do below for the SysKonnect
3777 	 * SK-9D41.
3778 	 */
3779 	if (bge_readmem_ind(sc, BGE_SRAM_DATA_SIG) == BGE_SRAM_DATA_SIG_MAGIC)
3780 		hwcfg = bge_readmem_ind(sc, BGE_SRAM_DATA_CFG);
3781 	else if ((sc->bge_flags & BGE_FLAG_EADDR) &&
3782 	    (sc->bge_asicrev != BGE_ASICREV_BCM5906)) {
3783 		if (bge_read_eeprom(sc, (caddr_t)&hwcfg, BGE_EE_HWCFG_OFFSET,
3784 		    sizeof(hwcfg))) {
3785 			device_printf(sc->bge_dev, "failed to read EEPROM\n");
3786 			error = ENXIO;
3787 			goto fail;
3788 		}
3789 		hwcfg = ntohl(hwcfg);
3790 	}
3791 
3792 	/* The SysKonnect SK-9D41 is a 1000baseSX card. */
3793 	if ((pci_read_config(dev, BGE_PCI_SUBSYS, 4) >> 16) ==
3794 	    SK_SUBSYSID_9D41 || (hwcfg & BGE_HWCFG_MEDIA) == BGE_MEDIA_FIBER) {
3795 		if (BGE_IS_5705_PLUS(sc)) {
3796 			sc->bge_flags |= BGE_FLAG_MII_SERDES;
3797 			sc->bge_phy_flags |= BGE_PHY_NO_WIRESPEED;
3798 		} else
3799 			sc->bge_flags |= BGE_FLAG_TBI;
3800 	}
3801 
3802 	/* Set various PHY bug flags. */
3803 	if (sc->bge_chipid == BGE_CHIPID_BCM5701_A0 ||
3804 	    sc->bge_chipid == BGE_CHIPID_BCM5701_B0)
3805 		sc->bge_phy_flags |= BGE_PHY_CRC_BUG;
3806 	if (sc->bge_chiprev == BGE_CHIPREV_5703_AX ||
3807 	    sc->bge_chiprev == BGE_CHIPREV_5704_AX)
3808 		sc->bge_phy_flags |= BGE_PHY_ADC_BUG;
3809 	if (sc->bge_chipid == BGE_CHIPID_BCM5704_A0)
3810 		sc->bge_phy_flags |= BGE_PHY_5704_A0_BUG;
3811 	if (pci_get_subvendor(dev) == DELL_VENDORID)
3812 		sc->bge_phy_flags |= BGE_PHY_NO_3LED;
3813 	if ((BGE_IS_5705_PLUS(sc)) &&
3814 	    sc->bge_asicrev != BGE_ASICREV_BCM5906 &&
3815 	    sc->bge_asicrev != BGE_ASICREV_BCM5785 &&
3816 	    sc->bge_asicrev != BGE_ASICREV_BCM57780 &&
3817 	    !BGE_IS_5717_PLUS(sc)) {
3818 		if (sc->bge_asicrev == BGE_ASICREV_BCM5755 ||
3819 		    sc->bge_asicrev == BGE_ASICREV_BCM5761 ||
3820 		    sc->bge_asicrev == BGE_ASICREV_BCM5784 ||
3821 		    sc->bge_asicrev == BGE_ASICREV_BCM5787) {
3822 			if (pci_get_device(dev) != BCOM_DEVICEID_BCM5722 &&
3823 			    pci_get_device(dev) != BCOM_DEVICEID_BCM5756)
3824 				sc->bge_phy_flags |= BGE_PHY_JITTER_BUG;
3825 			if (pci_get_device(dev) == BCOM_DEVICEID_BCM5755M)
3826 				sc->bge_phy_flags |= BGE_PHY_ADJUST_TRIM;
3827 		} else
3828 			sc->bge_phy_flags |= BGE_PHY_BER_BUG;
3829 	}
3830 
3831 	/*
3832 	 * Don't enable Ethernet@WireSpeed for the 5700 or the
3833 	 * 5705 A0 and A1 chips.
3834 	 */
3835 	if (sc->bge_asicrev == BGE_ASICREV_BCM5700 ||
3836 	    (sc->bge_asicrev == BGE_ASICREV_BCM5705 &&
3837 	    (sc->bge_chipid != BGE_CHIPID_BCM5705_A0 &&
3838 	    sc->bge_chipid != BGE_CHIPID_BCM5705_A1)))
3839 		sc->bge_phy_flags |= BGE_PHY_NO_WIRESPEED;
3840 
3841 	if (sc->bge_flags & BGE_FLAG_TBI) {
3842 		ifmedia_init(&sc->bge_ifmedia, IFM_IMASK, bge_ifmedia_upd,
3843 		    bge_ifmedia_sts);
3844 		ifmedia_add(&sc->bge_ifmedia, IFM_ETHER | IFM_1000_SX, 0, NULL);
3845 		ifmedia_add(&sc->bge_ifmedia, IFM_ETHER | IFM_1000_SX | IFM_FDX,
3846 		    0, NULL);
3847 		ifmedia_add(&sc->bge_ifmedia, IFM_ETHER | IFM_AUTO, 0, NULL);
3848 		ifmedia_set(&sc->bge_ifmedia, IFM_ETHER | IFM_AUTO);
3849 		sc->bge_ifmedia.ifm_media = sc->bge_ifmedia.ifm_cur->ifm_media;
3850 	} else {
3851 		/*
3852 		 * Do transceiver setup and tell the firmware the
3853 		 * driver is down so we can try to get access the
3854 		 * probe if ASF is running.  Retry a couple of times
3855 		 * if we get a conflict with the ASF firmware accessing
3856 		 * the PHY.
3857 		 */
3858 		trys = 0;
3859 		BGE_CLRBIT(sc, BGE_MODE_CTL, BGE_MODECTL_STACKUP);
3860 again:
3861 		bge_asf_driver_up(sc);
3862 
3863 		error = mii_attach(dev, &sc->bge_miibus, ifp,
3864 		    (ifm_change_cb_t)bge_ifmedia_upd,
3865 		    (ifm_stat_cb_t)bge_ifmedia_sts, capmask, sc->bge_phy_addr,
3866 		    MII_OFFSET_ANY, MIIF_DOPAUSE);
3867 		if (error != 0) {
3868 			if (trys++ < 4) {
3869 				device_printf(sc->bge_dev, "Try again\n");
3870 				bge_miibus_writereg(sc->bge_dev,
3871 				    sc->bge_phy_addr, MII_BMCR, BMCR_RESET);
3872 				goto again;
3873 			}
3874 			device_printf(sc->bge_dev, "attaching PHYs failed\n");
3875 			goto fail;
3876 		}
3877 
3878 		/*
3879 		 * Now tell the firmware we are going up after probing the PHY
3880 		 */
3881 		if (sc->bge_asf_mode & ASF_STACKUP)
3882 			BGE_SETBIT(sc, BGE_MODE_CTL, BGE_MODECTL_STACKUP);
3883 	}
3884 
3885 	/*
3886 	 * When using the BCM5701 in PCI-X mode, data corruption has
3887 	 * been observed in the first few bytes of some received packets.
3888 	 * Aligning the packet buffer in memory eliminates the corruption.
3889 	 * Unfortunately, this misaligns the packet payloads.  On platforms
3890 	 * which do not support unaligned accesses, we will realign the
3891 	 * payloads by copying the received packets.
3892 	 */
3893 	if (sc->bge_asicrev == BGE_ASICREV_BCM5701 &&
3894 	    sc->bge_flags & BGE_FLAG_PCIX)
3895                 sc->bge_flags |= BGE_FLAG_RX_ALIGNBUG;
3896 
3897 	/*
3898 	 * Call MI attach routine.
3899 	 */
3900 	ether_ifattach(ifp, eaddr);
3901 
3902 	/* Tell upper layer we support long frames. */
3903 	if_setifheaderlen(ifp, sizeof(struct ether_vlan_header));
3904 
3905 	/*
3906 	 * Hookup IRQ last.
3907 	 */
3908 	if (BGE_IS_5755_PLUS(sc) && sc->bge_flags & BGE_FLAG_MSI) {
3909 		/* Take advantage of single-shot MSI. */
3910 		CSR_WRITE_4(sc, BGE_MSI_MODE, CSR_READ_4(sc, BGE_MSI_MODE) &
3911 		    ~BGE_MSIMODE_ONE_SHOT_DISABLE);
3912 		sc->bge_tq = taskqueue_create_fast("bge_taskq", M_WAITOK,
3913 		    taskqueue_thread_enqueue, &sc->bge_tq);
3914 		if (sc->bge_tq == NULL) {
3915 			device_printf(dev, "could not create taskqueue.\n");
3916 			ether_ifdetach(ifp);
3917 			error = ENOMEM;
3918 			goto fail;
3919 		}
3920 		error = taskqueue_start_threads(&sc->bge_tq, 1, PI_NET,
3921 		    "%s taskq", device_get_nameunit(sc->bge_dev));
3922 		if (error != 0) {
3923 			device_printf(dev, "could not start threads.\n");
3924 			ether_ifdetach(ifp);
3925 			goto fail;
3926 		}
3927 		error = bus_setup_intr(dev, sc->bge_irq,
3928 		    INTR_TYPE_NET | INTR_MPSAFE, bge_msi_intr, NULL, sc,
3929 		    &sc->bge_intrhand);
3930 	} else
3931 		error = bus_setup_intr(dev, sc->bge_irq,
3932 		    INTR_TYPE_NET | INTR_MPSAFE, NULL, bge_intr, sc,
3933 		    &sc->bge_intrhand);
3934 
3935 	if (error) {
3936 		ether_ifdetach(ifp);
3937 		device_printf(sc->bge_dev, "couldn't set up irq\n");
3938 	}
3939 
3940 fail:
3941 	if (error)
3942 		bge_detach(dev);
3943 	return (error);
3944 }
3945 
3946 static int
3947 bge_detach(device_t dev)
3948 {
3949 	struct bge_softc *sc;
3950 	if_t ifp;
3951 
3952 	sc = device_get_softc(dev);
3953 	ifp = sc->bge_ifp;
3954 
3955 #ifdef DEVICE_POLLING
3956 	if (if_getcapenable(ifp) & IFCAP_POLLING)
3957 		ether_poll_deregister(ifp);
3958 #endif
3959 
3960 	if (device_is_attached(dev)) {
3961 		ether_ifdetach(ifp);
3962 		BGE_LOCK(sc);
3963 		bge_stop(sc);
3964 		BGE_UNLOCK(sc);
3965 		callout_drain(&sc->bge_stat_ch);
3966 	}
3967 
3968 	if (sc->bge_tq)
3969 		taskqueue_drain(sc->bge_tq, &sc->bge_intr_task);
3970 
3971 	if (sc->bge_flags & BGE_FLAG_TBI)
3972 		ifmedia_removeall(&sc->bge_ifmedia);
3973 	else if (sc->bge_miibus != NULL) {
3974 		bus_generic_detach(dev);
3975 		device_delete_child(dev, sc->bge_miibus);
3976 	}
3977 
3978 	bge_release_resources(sc);
3979 
3980 	return (0);
3981 }
3982 
3983 static void
3984 bge_release_resources(struct bge_softc *sc)
3985 {
3986 	device_t dev;
3987 
3988 	dev = sc->bge_dev;
3989 
3990 	if (sc->bge_tq != NULL)
3991 		taskqueue_free(sc->bge_tq);
3992 
3993 	if (sc->bge_intrhand != NULL)
3994 		bus_teardown_intr(dev, sc->bge_irq, sc->bge_intrhand);
3995 
3996 	if (sc->bge_irq != NULL) {
3997 		bus_release_resource(dev, SYS_RES_IRQ,
3998 		    rman_get_rid(sc->bge_irq), sc->bge_irq);
3999 		pci_release_msi(dev);
4000 	}
4001 
4002 	if (sc->bge_res != NULL)
4003 		bus_release_resource(dev, SYS_RES_MEMORY,
4004 		    rman_get_rid(sc->bge_res), sc->bge_res);
4005 
4006 	if (sc->bge_res2 != NULL)
4007 		bus_release_resource(dev, SYS_RES_MEMORY,
4008 		    rman_get_rid(sc->bge_res2), sc->bge_res2);
4009 
4010 	if (sc->bge_ifp != NULL)
4011 		if_free(sc->bge_ifp);
4012 
4013 	bge_dma_free(sc);
4014 
4015 	if (mtx_initialized(&sc->bge_mtx))	/* XXX */
4016 		BGE_LOCK_DESTROY(sc);
4017 }
4018 
4019 static int
4020 bge_reset(struct bge_softc *sc)
4021 {
4022 	device_t dev;
4023 	uint32_t cachesize, command, mac_mode, mac_mode_mask, reset, val;
4024 	void (*write_op)(struct bge_softc *, int, int);
4025 	uint16_t devctl;
4026 	int i;
4027 
4028 	dev = sc->bge_dev;
4029 
4030 	mac_mode_mask = BGE_MACMODE_HALF_DUPLEX | BGE_MACMODE_PORTMODE;
4031 	if ((sc->bge_mfw_flags & BGE_MFW_ON_APE) != 0)
4032 		mac_mode_mask |= BGE_MACMODE_APE_RX_EN | BGE_MACMODE_APE_TX_EN;
4033 	mac_mode = CSR_READ_4(sc, BGE_MAC_MODE) & mac_mode_mask;
4034 
4035 	if (BGE_IS_575X_PLUS(sc) && !BGE_IS_5714_FAMILY(sc) &&
4036 	    (sc->bge_asicrev != BGE_ASICREV_BCM5906)) {
4037 		if (sc->bge_flags & BGE_FLAG_PCIE)
4038 			write_op = bge_writemem_direct;
4039 		else
4040 			write_op = bge_writemem_ind;
4041 	} else
4042 		write_op = bge_writereg_ind;
4043 
4044 	if (sc->bge_asicrev != BGE_ASICREV_BCM5700 &&
4045 	    sc->bge_asicrev != BGE_ASICREV_BCM5701) {
4046 		CSR_WRITE_4(sc, BGE_NVRAM_SWARB, BGE_NVRAMSWARB_SET1);
4047 		for (i = 0; i < 8000; i++) {
4048 			if (CSR_READ_4(sc, BGE_NVRAM_SWARB) &
4049 			    BGE_NVRAMSWARB_GNT1)
4050 				break;
4051 			DELAY(20);
4052 		}
4053 		if (i == 8000) {
4054 			if (bootverbose)
4055 				device_printf(dev, "NVRAM lock timedout!\n");
4056 		}
4057 	}
4058 	/* Take APE lock when performing reset. */
4059 	bge_ape_lock(sc, BGE_APE_LOCK_GRC);
4060 
4061 	/* Save some important PCI state. */
4062 	cachesize = pci_read_config(dev, BGE_PCI_CACHESZ, 4);
4063 	command = pci_read_config(dev, BGE_PCI_CMD, 4);
4064 
4065 	pci_write_config(dev, BGE_PCI_MISC_CTL,
4066 	    BGE_PCIMISCCTL_INDIRECT_ACCESS | BGE_PCIMISCCTL_MASK_PCI_INTR |
4067 	    BGE_HIF_SWAP_OPTIONS | BGE_PCIMISCCTL_PCISTATE_RW, 4);
4068 
4069 	/* Disable fastboot on controllers that support it. */
4070 	if (sc->bge_asicrev == BGE_ASICREV_BCM5752 ||
4071 	    BGE_IS_5755_PLUS(sc)) {
4072 		if (bootverbose)
4073 			device_printf(dev, "Disabling fastboot\n");
4074 		CSR_WRITE_4(sc, BGE_FASTBOOT_PC, 0x0);
4075 	}
4076 
4077 	/*
4078 	 * Write the magic number to SRAM at offset 0xB50.
4079 	 * When firmware finishes its initialization it will
4080 	 * write ~BGE_SRAM_FW_MB_MAGIC to the same location.
4081 	 */
4082 	bge_writemem_ind(sc, BGE_SRAM_FW_MB, BGE_SRAM_FW_MB_MAGIC);
4083 
4084 	reset = BGE_MISCCFG_RESET_CORE_CLOCKS | BGE_32BITTIME_66MHZ;
4085 
4086 	/* XXX: Broadcom Linux driver. */
4087 	if (sc->bge_flags & BGE_FLAG_PCIE) {
4088 		if (sc->bge_asicrev != BGE_ASICREV_BCM5785 &&
4089 		    (sc->bge_flags & BGE_FLAG_5717_PLUS) == 0) {
4090 			if (CSR_READ_4(sc, 0x7E2C) == 0x60)	/* PCIE 1.0 */
4091 				CSR_WRITE_4(sc, 0x7E2C, 0x20);
4092 		}
4093 		if (sc->bge_chipid != BGE_CHIPID_BCM5750_A0) {
4094 			/* Prevent PCIE link training during global reset */
4095 			CSR_WRITE_4(sc, BGE_MISC_CFG, 1 << 29);
4096 			reset |= 1 << 29;
4097 		}
4098 	}
4099 
4100 	if (sc->bge_asicrev == BGE_ASICREV_BCM5906) {
4101 		val = CSR_READ_4(sc, BGE_VCPU_STATUS);
4102 		CSR_WRITE_4(sc, BGE_VCPU_STATUS,
4103 		    val | BGE_VCPU_STATUS_DRV_RESET);
4104 		val = CSR_READ_4(sc, BGE_VCPU_EXT_CTRL);
4105 		CSR_WRITE_4(sc, BGE_VCPU_EXT_CTRL,
4106 		    val & ~BGE_VCPU_EXT_CTRL_HALT_CPU);
4107 	}
4108 
4109 	/*
4110 	 * Set GPHY Power Down Override to leave GPHY
4111 	 * powered up in D0 uninitialized.
4112 	 */
4113 	if (BGE_IS_5705_PLUS(sc) &&
4114 	    (sc->bge_flags & BGE_FLAG_CPMU_PRESENT) == 0)
4115 		reset |= BGE_MISCCFG_GPHY_PD_OVERRIDE;
4116 
4117 	/* Issue global reset */
4118 	write_op(sc, BGE_MISC_CFG, reset);
4119 
4120 	if (sc->bge_flags & BGE_FLAG_PCIE)
4121 		DELAY(100 * 1000);
4122 	else
4123 		DELAY(1000);
4124 
4125 	/* XXX: Broadcom Linux driver. */
4126 	if (sc->bge_flags & BGE_FLAG_PCIE) {
4127 		if (sc->bge_chipid == BGE_CHIPID_BCM5750_A0) {
4128 			DELAY(500000); /* wait for link training to complete */
4129 			val = pci_read_config(dev, 0xC4, 4);
4130 			pci_write_config(dev, 0xC4, val | (1 << 15), 4);
4131 		}
4132 		devctl = pci_read_config(dev,
4133 		    sc->bge_expcap + PCIER_DEVICE_CTL, 2);
4134 		/* Clear enable no snoop and disable relaxed ordering. */
4135 		devctl &= ~(PCIEM_CTL_RELAXED_ORD_ENABLE |
4136 		    PCIEM_CTL_NOSNOOP_ENABLE);
4137 		pci_write_config(dev, sc->bge_expcap + PCIER_DEVICE_CTL,
4138 		    devctl, 2);
4139 		pci_set_max_read_req(dev, sc->bge_expmrq);
4140 		/* Clear error status. */
4141 		pci_write_config(dev, sc->bge_expcap + PCIER_DEVICE_STA,
4142 		    PCIEM_STA_CORRECTABLE_ERROR |
4143 		    PCIEM_STA_NON_FATAL_ERROR | PCIEM_STA_FATAL_ERROR |
4144 		    PCIEM_STA_UNSUPPORTED_REQ, 2);
4145 	}
4146 
4147 	/* Reset some of the PCI state that got zapped by reset. */
4148 	pci_write_config(dev, BGE_PCI_MISC_CTL,
4149 	    BGE_PCIMISCCTL_INDIRECT_ACCESS | BGE_PCIMISCCTL_MASK_PCI_INTR |
4150 	    BGE_HIF_SWAP_OPTIONS | BGE_PCIMISCCTL_PCISTATE_RW, 4);
4151 	val = BGE_PCISTATE_ROM_ENABLE | BGE_PCISTATE_ROM_RETRY_ENABLE;
4152 	if (sc->bge_chipid == BGE_CHIPID_BCM5704_A0 &&
4153 	    (sc->bge_flags & BGE_FLAG_PCIX) != 0)
4154 		val |= BGE_PCISTATE_RETRY_SAME_DMA;
4155 	if ((sc->bge_mfw_flags & BGE_MFW_ON_APE) != 0)
4156 		val |= BGE_PCISTATE_ALLOW_APE_CTLSPC_WR |
4157 		    BGE_PCISTATE_ALLOW_APE_SHMEM_WR |
4158 		    BGE_PCISTATE_ALLOW_APE_PSPACE_WR;
4159 	pci_write_config(dev, BGE_PCI_PCISTATE, val, 4);
4160 	pci_write_config(dev, BGE_PCI_CACHESZ, cachesize, 4);
4161 	pci_write_config(dev, BGE_PCI_CMD, command, 4);
4162 	/*
4163 	 * Disable PCI-X relaxed ordering to ensure status block update
4164 	 * comes first then packet buffer DMA. Otherwise driver may
4165 	 * read stale status block.
4166 	 */
4167 	if (sc->bge_flags & BGE_FLAG_PCIX) {
4168 		devctl = pci_read_config(dev,
4169 		    sc->bge_pcixcap + PCIXR_COMMAND, 2);
4170 		devctl &= ~PCIXM_COMMAND_ERO;
4171 		if (sc->bge_asicrev == BGE_ASICREV_BCM5703) {
4172 			devctl &= ~PCIXM_COMMAND_MAX_READ;
4173 			devctl |= PCIXM_COMMAND_MAX_READ_2048;
4174 		} else if (sc->bge_asicrev == BGE_ASICREV_BCM5704) {
4175 			devctl &= ~(PCIXM_COMMAND_MAX_SPLITS |
4176 			    PCIXM_COMMAND_MAX_READ);
4177 			devctl |= PCIXM_COMMAND_MAX_READ_2048;
4178 		}
4179 		pci_write_config(dev, sc->bge_pcixcap + PCIXR_COMMAND,
4180 		    devctl, 2);
4181 	}
4182 	/* Re-enable MSI, if necessary, and enable the memory arbiter. */
4183 	if (BGE_IS_5714_FAMILY(sc)) {
4184 		/* This chip disables MSI on reset. */
4185 		if (sc->bge_flags & BGE_FLAG_MSI) {
4186 			val = pci_read_config(dev,
4187 			    sc->bge_msicap + PCIR_MSI_CTRL, 2);
4188 			pci_write_config(dev,
4189 			    sc->bge_msicap + PCIR_MSI_CTRL,
4190 			    val | PCIM_MSICTRL_MSI_ENABLE, 2);
4191 			val = CSR_READ_4(sc, BGE_MSI_MODE);
4192 			CSR_WRITE_4(sc, BGE_MSI_MODE,
4193 			    val | BGE_MSIMODE_ENABLE);
4194 		}
4195 		val = CSR_READ_4(sc, BGE_MARB_MODE);
4196 		CSR_WRITE_4(sc, BGE_MARB_MODE, BGE_MARBMODE_ENABLE | val);
4197 	} else
4198 		CSR_WRITE_4(sc, BGE_MARB_MODE, BGE_MARBMODE_ENABLE);
4199 
4200 	/* Fix up byte swapping. */
4201 	CSR_WRITE_4(sc, BGE_MODE_CTL, bge_dma_swap_options(sc));
4202 
4203 	val = CSR_READ_4(sc, BGE_MAC_MODE);
4204 	val = (val & ~mac_mode_mask) | mac_mode;
4205 	CSR_WRITE_4(sc, BGE_MAC_MODE, val);
4206 	DELAY(40);
4207 
4208 	bge_ape_unlock(sc, BGE_APE_LOCK_GRC);
4209 
4210 	if (sc->bge_asicrev == BGE_ASICREV_BCM5906) {
4211 		for (i = 0; i < BGE_TIMEOUT; i++) {
4212 			val = CSR_READ_4(sc, BGE_VCPU_STATUS);
4213 			if (val & BGE_VCPU_STATUS_INIT_DONE)
4214 				break;
4215 			DELAY(100);
4216 		}
4217 		if (i == BGE_TIMEOUT) {
4218 			device_printf(dev, "reset timed out\n");
4219 			return (1);
4220 		}
4221 	} else {
4222 		/*
4223 		 * Poll until we see the 1's complement of the magic number.
4224 		 * This indicates that the firmware initialization is complete.
4225 		 * We expect this to fail if no chip containing the Ethernet
4226 		 * address is fitted though.
4227 		 */
4228 		for (i = 0; i < BGE_TIMEOUT; i++) {
4229 			DELAY(10);
4230 			val = bge_readmem_ind(sc, BGE_SRAM_FW_MB);
4231 			if (val == ~BGE_SRAM_FW_MB_MAGIC)
4232 				break;
4233 		}
4234 
4235 		if ((sc->bge_flags & BGE_FLAG_EADDR) && i == BGE_TIMEOUT)
4236 			device_printf(dev,
4237 			    "firmware handshake timed out, found 0x%08x\n",
4238 			    val);
4239 		/* BCM57765 A0 needs additional time before accessing. */
4240 		if (sc->bge_chipid == BGE_CHIPID_BCM57765_A0)
4241 			DELAY(10 * 1000);	/* XXX */
4242 	}
4243 
4244 	/*
4245 	 * The 5704 in TBI mode apparently needs some special
4246 	 * adjustment to insure the SERDES drive level is set
4247 	 * to 1.2V.
4248 	 */
4249 	if (sc->bge_asicrev == BGE_ASICREV_BCM5704 &&
4250 	    sc->bge_flags & BGE_FLAG_TBI) {
4251 		val = CSR_READ_4(sc, BGE_SERDES_CFG);
4252 		val = (val & ~0xFFF) | 0x880;
4253 		CSR_WRITE_4(sc, BGE_SERDES_CFG, val);
4254 	}
4255 
4256 	/* XXX: Broadcom Linux driver. */
4257 	if (sc->bge_flags & BGE_FLAG_PCIE &&
4258 	    !BGE_IS_5717_PLUS(sc) &&
4259 	    sc->bge_chipid != BGE_CHIPID_BCM5750_A0 &&
4260 	    sc->bge_asicrev != BGE_ASICREV_BCM5785) {
4261 		/* Enable Data FIFO protection. */
4262 		val = CSR_READ_4(sc, 0x7C00);
4263 		CSR_WRITE_4(sc, 0x7C00, val | (1 << 25));
4264 	}
4265 
4266 	if (sc->bge_asicrev == BGE_ASICREV_BCM5720)
4267 		BGE_CLRBIT(sc, BGE_CPMU_CLCK_ORIDE,
4268 		    CPMU_CLCK_ORIDE_MAC_ORIDE_EN);
4269 
4270 	return (0);
4271 }
4272 
4273 static __inline void
4274 bge_rxreuse_std(struct bge_softc *sc, int i)
4275 {
4276 	struct bge_rx_bd *r;
4277 
4278 	r = &sc->bge_ldata.bge_rx_std_ring[sc->bge_std];
4279 	r->bge_flags = BGE_RXBDFLAG_END;
4280 	r->bge_len = sc->bge_cdata.bge_rx_std_seglen[i];
4281 	r->bge_idx = i;
4282 	BGE_INC(sc->bge_std, BGE_STD_RX_RING_CNT);
4283 }
4284 
4285 static __inline void
4286 bge_rxreuse_jumbo(struct bge_softc *sc, int i)
4287 {
4288 	struct bge_extrx_bd *r;
4289 
4290 	r = &sc->bge_ldata.bge_rx_jumbo_ring[sc->bge_jumbo];
4291 	r->bge_flags = BGE_RXBDFLAG_JUMBO_RING | BGE_RXBDFLAG_END;
4292 	r->bge_len0 = sc->bge_cdata.bge_rx_jumbo_seglen[i][0];
4293 	r->bge_len1 = sc->bge_cdata.bge_rx_jumbo_seglen[i][1];
4294 	r->bge_len2 = sc->bge_cdata.bge_rx_jumbo_seglen[i][2];
4295 	r->bge_len3 = sc->bge_cdata.bge_rx_jumbo_seglen[i][3];
4296 	r->bge_idx = i;
4297 	BGE_INC(sc->bge_jumbo, BGE_JUMBO_RX_RING_CNT);
4298 }
4299 
4300 /*
4301  * Frame reception handling. This is called if there's a frame
4302  * on the receive return list.
4303  *
4304  * Note: we have to be able to handle two possibilities here:
4305  * 1) the frame is from the jumbo receive ring
4306  * 2) the frame is from the standard receive ring
4307  */
4308 
4309 static int
4310 bge_rxeof(struct bge_softc *sc, uint16_t rx_prod, int holdlck)
4311 {
4312 	if_t ifp;
4313 	int rx_npkts = 0, stdcnt = 0, jumbocnt = 0;
4314 	uint16_t rx_cons;
4315 
4316 	rx_cons = sc->bge_rx_saved_considx;
4317 
4318 	/* Nothing to do. */
4319 	if (rx_cons == rx_prod)
4320 		return (rx_npkts);
4321 
4322 	ifp = sc->bge_ifp;
4323 
4324 	bus_dmamap_sync(sc->bge_cdata.bge_rx_return_ring_tag,
4325 	    sc->bge_cdata.bge_rx_return_ring_map, BUS_DMASYNC_POSTREAD);
4326 	bus_dmamap_sync(sc->bge_cdata.bge_rx_std_ring_tag,
4327 	    sc->bge_cdata.bge_rx_std_ring_map, BUS_DMASYNC_POSTWRITE);
4328 	if (BGE_IS_JUMBO_CAPABLE(sc) &&
4329 	    if_getmtu(ifp) + ETHER_HDR_LEN + ETHER_CRC_LEN +
4330 	    ETHER_VLAN_ENCAP_LEN > (MCLBYTES - ETHER_ALIGN))
4331 		bus_dmamap_sync(sc->bge_cdata.bge_rx_jumbo_ring_tag,
4332 		    sc->bge_cdata.bge_rx_jumbo_ring_map, BUS_DMASYNC_POSTWRITE);
4333 
4334 	while (rx_cons != rx_prod) {
4335 		struct bge_rx_bd	*cur_rx;
4336 		uint32_t		rxidx;
4337 		struct mbuf		*m = NULL;
4338 		uint16_t		vlan_tag = 0;
4339 		int			have_tag = 0;
4340 
4341 #ifdef DEVICE_POLLING
4342 		if (if_getcapenable(ifp) & IFCAP_POLLING) {
4343 			if (sc->rxcycles <= 0)
4344 				break;
4345 			sc->rxcycles--;
4346 		}
4347 #endif
4348 
4349 		cur_rx = &sc->bge_ldata.bge_rx_return_ring[rx_cons];
4350 
4351 		rxidx = cur_rx->bge_idx;
4352 		BGE_INC(rx_cons, sc->bge_return_ring_cnt);
4353 
4354 		if (if_getcapenable(ifp) & IFCAP_VLAN_HWTAGGING &&
4355 		    cur_rx->bge_flags & BGE_RXBDFLAG_VLAN_TAG) {
4356 			have_tag = 1;
4357 			vlan_tag = cur_rx->bge_vlan_tag;
4358 		}
4359 
4360 		if (cur_rx->bge_flags & BGE_RXBDFLAG_JUMBO_RING) {
4361 			jumbocnt++;
4362 			m = sc->bge_cdata.bge_rx_jumbo_chain[rxidx];
4363 			if (cur_rx->bge_flags & BGE_RXBDFLAG_ERROR) {
4364 				bge_rxreuse_jumbo(sc, rxidx);
4365 				continue;
4366 			}
4367 			if (bge_newbuf_jumbo(sc, rxidx) != 0) {
4368 				bge_rxreuse_jumbo(sc, rxidx);
4369 				if_inc_counter(ifp, IFCOUNTER_IQDROPS, 1);
4370 				continue;
4371 			}
4372 			BGE_INC(sc->bge_jumbo, BGE_JUMBO_RX_RING_CNT);
4373 		} else {
4374 			stdcnt++;
4375 			m = sc->bge_cdata.bge_rx_std_chain[rxidx];
4376 			if (cur_rx->bge_flags & BGE_RXBDFLAG_ERROR) {
4377 				bge_rxreuse_std(sc, rxidx);
4378 				continue;
4379 			}
4380 			if (bge_newbuf_std(sc, rxidx) != 0) {
4381 				bge_rxreuse_std(sc, rxidx);
4382 				if_inc_counter(ifp, IFCOUNTER_IQDROPS, 1);
4383 				continue;
4384 			}
4385 			BGE_INC(sc->bge_std, BGE_STD_RX_RING_CNT);
4386 		}
4387 
4388 		if_inc_counter(ifp, IFCOUNTER_IPACKETS, 1);
4389 #ifndef __NO_STRICT_ALIGNMENT
4390 		/*
4391 		 * For architectures with strict alignment we must make sure
4392 		 * the payload is aligned.
4393 		 */
4394 		if (sc->bge_flags & BGE_FLAG_RX_ALIGNBUG) {
4395 			bcopy(m->m_data, m->m_data + ETHER_ALIGN,
4396 			    cur_rx->bge_len);
4397 			m->m_data += ETHER_ALIGN;
4398 		}
4399 #endif
4400 		m->m_pkthdr.len = m->m_len = cur_rx->bge_len - ETHER_CRC_LEN;
4401 		m->m_pkthdr.rcvif = ifp;
4402 
4403 		if (if_getcapenable(ifp) & IFCAP_RXCSUM)
4404 			bge_rxcsum(sc, cur_rx, m);
4405 
4406 		/*
4407 		 * If we received a packet with a vlan tag,
4408 		 * attach that information to the packet.
4409 		 */
4410 		if (have_tag) {
4411 			m->m_pkthdr.ether_vtag = vlan_tag;
4412 			m->m_flags |= M_VLANTAG;
4413 		}
4414 
4415 		if (holdlck != 0) {
4416 			BGE_UNLOCK(sc);
4417 			if_input(ifp, m);
4418 			BGE_LOCK(sc);
4419 		} else
4420 			if_input(ifp, m);
4421 		rx_npkts++;
4422 
4423 		if (!(if_getdrvflags(ifp) & IFF_DRV_RUNNING))
4424 			return (rx_npkts);
4425 	}
4426 
4427 	bus_dmamap_sync(sc->bge_cdata.bge_rx_return_ring_tag,
4428 	    sc->bge_cdata.bge_rx_return_ring_map, BUS_DMASYNC_PREREAD);
4429 	if (stdcnt > 0)
4430 		bus_dmamap_sync(sc->bge_cdata.bge_rx_std_ring_tag,
4431 		    sc->bge_cdata.bge_rx_std_ring_map, BUS_DMASYNC_PREWRITE);
4432 
4433 	if (jumbocnt > 0)
4434 		bus_dmamap_sync(sc->bge_cdata.bge_rx_jumbo_ring_tag,
4435 		    sc->bge_cdata.bge_rx_jumbo_ring_map, BUS_DMASYNC_PREWRITE);
4436 
4437 	sc->bge_rx_saved_considx = rx_cons;
4438 	bge_writembx(sc, BGE_MBX_RX_CONS0_LO, sc->bge_rx_saved_considx);
4439 	if (stdcnt)
4440 		bge_writembx(sc, BGE_MBX_RX_STD_PROD_LO, (sc->bge_std +
4441 		    BGE_STD_RX_RING_CNT - 1) % BGE_STD_RX_RING_CNT);
4442 	if (jumbocnt)
4443 		bge_writembx(sc, BGE_MBX_RX_JUMBO_PROD_LO, (sc->bge_jumbo +
4444 		    BGE_JUMBO_RX_RING_CNT - 1) % BGE_JUMBO_RX_RING_CNT);
4445 #ifdef notyet
4446 	/*
4447 	 * This register wraps very quickly under heavy packet drops.
4448 	 * If you need correct statistics, you can enable this check.
4449 	 */
4450 	if (BGE_IS_5705_PLUS(sc))
4451 		if_incierrors(ifp, CSR_READ_4(sc, BGE_RXLP_LOCSTAT_IFIN_DROPS));
4452 #endif
4453 	return (rx_npkts);
4454 }
4455 
4456 static void
4457 bge_rxcsum(struct bge_softc *sc, struct bge_rx_bd *cur_rx, struct mbuf *m)
4458 {
4459 
4460 	if (BGE_IS_5717_PLUS(sc)) {
4461 		if ((cur_rx->bge_flags & BGE_RXBDFLAG_IPV6) == 0) {
4462 			if (cur_rx->bge_flags & BGE_RXBDFLAG_IP_CSUM) {
4463 				m->m_pkthdr.csum_flags |= CSUM_IP_CHECKED;
4464 				if ((cur_rx->bge_error_flag &
4465 				    BGE_RXERRFLAG_IP_CSUM_NOK) == 0)
4466 					m->m_pkthdr.csum_flags |= CSUM_IP_VALID;
4467 			}
4468 			if (cur_rx->bge_flags & BGE_RXBDFLAG_TCP_UDP_CSUM) {
4469 				m->m_pkthdr.csum_data =
4470 				    cur_rx->bge_tcp_udp_csum;
4471 				m->m_pkthdr.csum_flags |= CSUM_DATA_VALID |
4472 				    CSUM_PSEUDO_HDR;
4473 			}
4474 		}
4475 	} else {
4476 		if (cur_rx->bge_flags & BGE_RXBDFLAG_IP_CSUM) {
4477 			m->m_pkthdr.csum_flags |= CSUM_IP_CHECKED;
4478 			if ((cur_rx->bge_ip_csum ^ 0xFFFF) == 0)
4479 				m->m_pkthdr.csum_flags |= CSUM_IP_VALID;
4480 		}
4481 		if (cur_rx->bge_flags & BGE_RXBDFLAG_TCP_UDP_CSUM &&
4482 		    m->m_pkthdr.len >= ETHER_MIN_NOPAD) {
4483 			m->m_pkthdr.csum_data =
4484 			    cur_rx->bge_tcp_udp_csum;
4485 			m->m_pkthdr.csum_flags |= CSUM_DATA_VALID |
4486 			    CSUM_PSEUDO_HDR;
4487 		}
4488 	}
4489 }
4490 
4491 static void
4492 bge_txeof(struct bge_softc *sc, uint16_t tx_cons)
4493 {
4494 	struct bge_tx_bd *cur_tx;
4495 	if_t ifp;
4496 
4497 	BGE_LOCK_ASSERT(sc);
4498 
4499 	/* Nothing to do. */
4500 	if (sc->bge_tx_saved_considx == tx_cons)
4501 		return;
4502 
4503 	ifp = sc->bge_ifp;
4504 
4505 	bus_dmamap_sync(sc->bge_cdata.bge_tx_ring_tag,
4506 	    sc->bge_cdata.bge_tx_ring_map, BUS_DMASYNC_POSTWRITE);
4507 	/*
4508 	 * Go through our tx ring and free mbufs for those
4509 	 * frames that have been sent.
4510 	 */
4511 	while (sc->bge_tx_saved_considx != tx_cons) {
4512 		uint32_t		idx;
4513 
4514 		idx = sc->bge_tx_saved_considx;
4515 		cur_tx = &sc->bge_ldata.bge_tx_ring[idx];
4516 		if (cur_tx->bge_flags & BGE_TXBDFLAG_END)
4517 			if_inc_counter(ifp, IFCOUNTER_OPACKETS, 1);
4518 		if (sc->bge_cdata.bge_tx_chain[idx] != NULL) {
4519 			bus_dmamap_sync(sc->bge_cdata.bge_tx_mtag,
4520 			    sc->bge_cdata.bge_tx_dmamap[idx],
4521 			    BUS_DMASYNC_POSTWRITE);
4522 			bus_dmamap_unload(sc->bge_cdata.bge_tx_mtag,
4523 			    sc->bge_cdata.bge_tx_dmamap[idx]);
4524 			m_freem(sc->bge_cdata.bge_tx_chain[idx]);
4525 			sc->bge_cdata.bge_tx_chain[idx] = NULL;
4526 		}
4527 		sc->bge_txcnt--;
4528 		BGE_INC(sc->bge_tx_saved_considx, BGE_TX_RING_CNT);
4529 	}
4530 
4531 	if_setdrvflagbits(ifp, 0, IFF_DRV_OACTIVE);
4532 	if (sc->bge_txcnt == 0)
4533 		sc->bge_timer = 0;
4534 }
4535 
4536 #ifdef DEVICE_POLLING
4537 static int
4538 bge_poll(if_t ifp, enum poll_cmd cmd, int count)
4539 {
4540 	struct bge_softc *sc = if_getsoftc(ifp);
4541 	uint16_t rx_prod, tx_cons;
4542 	uint32_t statusword;
4543 	int rx_npkts = 0;
4544 
4545 	BGE_LOCK(sc);
4546 	if (!(if_getdrvflags(ifp) & IFF_DRV_RUNNING)) {
4547 		BGE_UNLOCK(sc);
4548 		return (rx_npkts);
4549 	}
4550 
4551 	bus_dmamap_sync(sc->bge_cdata.bge_status_tag,
4552 	    sc->bge_cdata.bge_status_map,
4553 	    BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE);
4554 	/* Fetch updates from the status block. */
4555 	rx_prod = sc->bge_ldata.bge_status_block->bge_idx[0].bge_rx_prod_idx;
4556 	tx_cons = sc->bge_ldata.bge_status_block->bge_idx[0].bge_tx_cons_idx;
4557 
4558 	statusword = sc->bge_ldata.bge_status_block->bge_status;
4559 	/* Clear the status so the next pass only sees the changes. */
4560 	sc->bge_ldata.bge_status_block->bge_status = 0;
4561 
4562 	bus_dmamap_sync(sc->bge_cdata.bge_status_tag,
4563 	    sc->bge_cdata.bge_status_map,
4564 	    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
4565 
4566 	/* Note link event. It will be processed by POLL_AND_CHECK_STATUS. */
4567 	if (statusword & BGE_STATFLAG_LINKSTATE_CHANGED)
4568 		sc->bge_link_evt++;
4569 
4570 	if (cmd == POLL_AND_CHECK_STATUS)
4571 		if ((sc->bge_asicrev == BGE_ASICREV_BCM5700 &&
4572 		    sc->bge_chipid != BGE_CHIPID_BCM5700_B2) ||
4573 		    sc->bge_link_evt || (sc->bge_flags & BGE_FLAG_TBI))
4574 			bge_link_upd(sc);
4575 
4576 	sc->rxcycles = count;
4577 	rx_npkts = bge_rxeof(sc, rx_prod, 1);
4578 	if (!(if_getdrvflags(ifp) & IFF_DRV_RUNNING)) {
4579 		BGE_UNLOCK(sc);
4580 		return (rx_npkts);
4581 	}
4582 	bge_txeof(sc, tx_cons);
4583 	if (!if_sendq_empty(ifp))
4584 		bge_start_locked(ifp);
4585 
4586 	BGE_UNLOCK(sc);
4587 	return (rx_npkts);
4588 }
4589 #endif /* DEVICE_POLLING */
4590 
4591 static int
4592 bge_msi_intr(void *arg)
4593 {
4594 	struct bge_softc *sc;
4595 
4596 	sc = (struct bge_softc *)arg;
4597 	/*
4598 	 * This interrupt is not shared and controller already
4599 	 * disabled further interrupt.
4600 	 */
4601 	taskqueue_enqueue(sc->bge_tq, &sc->bge_intr_task);
4602 	return (FILTER_HANDLED);
4603 }
4604 
4605 static void
4606 bge_intr_task(void *arg, int pending)
4607 {
4608 	struct bge_softc *sc;
4609 	if_t ifp;
4610 	uint32_t status, status_tag;
4611 	uint16_t rx_prod, tx_cons;
4612 
4613 	sc = (struct bge_softc *)arg;
4614 	ifp = sc->bge_ifp;
4615 
4616 	BGE_LOCK(sc);
4617 	if ((if_getdrvflags(ifp) & IFF_DRV_RUNNING) == 0) {
4618 		BGE_UNLOCK(sc);
4619 		return;
4620 	}
4621 
4622 	/* Get updated status block. */
4623 	bus_dmamap_sync(sc->bge_cdata.bge_status_tag,
4624 	    sc->bge_cdata.bge_status_map,
4625 	    BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE);
4626 
4627 	/* Save producer/consumer indices. */
4628 	rx_prod = sc->bge_ldata.bge_status_block->bge_idx[0].bge_rx_prod_idx;
4629 	tx_cons = sc->bge_ldata.bge_status_block->bge_idx[0].bge_tx_cons_idx;
4630 	status = sc->bge_ldata.bge_status_block->bge_status;
4631 	status_tag = sc->bge_ldata.bge_status_block->bge_status_tag << 24;
4632 	/* Dirty the status flag. */
4633 	sc->bge_ldata.bge_status_block->bge_status = 0;
4634 	bus_dmamap_sync(sc->bge_cdata.bge_status_tag,
4635 	    sc->bge_cdata.bge_status_map,
4636 	    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
4637 	if ((sc->bge_flags & BGE_FLAG_TAGGED_STATUS) == 0)
4638 		status_tag = 0;
4639 
4640 	if ((status & BGE_STATFLAG_LINKSTATE_CHANGED) != 0)
4641 		bge_link_upd(sc);
4642 
4643 	/* Let controller work. */
4644 	bge_writembx(sc, BGE_MBX_IRQ0_LO, status_tag);
4645 
4646 	if (if_getdrvflags(ifp) & IFF_DRV_RUNNING &&
4647 	    sc->bge_rx_saved_considx != rx_prod) {
4648 		/* Check RX return ring producer/consumer. */
4649 		BGE_UNLOCK(sc);
4650 		bge_rxeof(sc, rx_prod, 0);
4651 		BGE_LOCK(sc);
4652 	}
4653 	if (if_getdrvflags(ifp) & IFF_DRV_RUNNING) {
4654 		/* Check TX ring producer/consumer. */
4655 		bge_txeof(sc, tx_cons);
4656 		if (!if_sendq_empty(ifp))
4657 			bge_start_locked(ifp);
4658 	}
4659 	BGE_UNLOCK(sc);
4660 }
4661 
4662 static void
4663 bge_intr(void *xsc)
4664 {
4665 	struct bge_softc *sc;
4666 	if_t ifp;
4667 	uint32_t statusword;
4668 	uint16_t rx_prod, tx_cons;
4669 
4670 	sc = xsc;
4671 
4672 	BGE_LOCK(sc);
4673 
4674 	ifp = sc->bge_ifp;
4675 
4676 #ifdef DEVICE_POLLING
4677 	if (if_getcapenable(ifp) & IFCAP_POLLING) {
4678 		BGE_UNLOCK(sc);
4679 		return;
4680 	}
4681 #endif
4682 
4683 	/*
4684 	 * Ack the interrupt by writing something to BGE_MBX_IRQ0_LO.  Don't
4685 	 * disable interrupts by writing nonzero like we used to, since with
4686 	 * our current organization this just gives complications and
4687 	 * pessimizations for re-enabling interrupts.  We used to have races
4688 	 * instead of the necessary complications.  Disabling interrupts
4689 	 * would just reduce the chance of a status update while we are
4690 	 * running (by switching to the interrupt-mode coalescence
4691 	 * parameters), but this chance is already very low so it is more
4692 	 * efficient to get another interrupt than prevent it.
4693 	 *
4694 	 * We do the ack first to ensure another interrupt if there is a
4695 	 * status update after the ack.  We don't check for the status
4696 	 * changing later because it is more efficient to get another
4697 	 * interrupt than prevent it, not quite as above (not checking is
4698 	 * a smaller optimization than not toggling the interrupt enable,
4699 	 * since checking doesn't involve PCI accesses and toggling require
4700 	 * the status check).  So toggling would probably be a pessimization
4701 	 * even with MSI.  It would only be needed for using a task queue.
4702 	 */
4703 	bge_writembx(sc, BGE_MBX_IRQ0_LO, 0);
4704 
4705 	/*
4706 	 * Do the mandatory PCI flush as well as get the link status.
4707 	 */
4708 	statusword = CSR_READ_4(sc, BGE_MAC_STS) & BGE_MACSTAT_LINK_CHANGED;
4709 
4710 	/* Make sure the descriptor ring indexes are coherent. */
4711 	bus_dmamap_sync(sc->bge_cdata.bge_status_tag,
4712 	    sc->bge_cdata.bge_status_map,
4713 	    BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE);
4714 	rx_prod = sc->bge_ldata.bge_status_block->bge_idx[0].bge_rx_prod_idx;
4715 	tx_cons = sc->bge_ldata.bge_status_block->bge_idx[0].bge_tx_cons_idx;
4716 	sc->bge_ldata.bge_status_block->bge_status = 0;
4717 	bus_dmamap_sync(sc->bge_cdata.bge_status_tag,
4718 	    sc->bge_cdata.bge_status_map,
4719 	    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
4720 
4721 	if ((sc->bge_asicrev == BGE_ASICREV_BCM5700 &&
4722 	    sc->bge_chipid != BGE_CHIPID_BCM5700_B2) ||
4723 	    statusword || sc->bge_link_evt)
4724 		bge_link_upd(sc);
4725 
4726 	if (if_getdrvflags(ifp) & IFF_DRV_RUNNING) {
4727 		/* Check RX return ring producer/consumer. */
4728 		bge_rxeof(sc, rx_prod, 1);
4729 	}
4730 
4731 	if (if_getdrvflags(ifp) & IFF_DRV_RUNNING) {
4732 		/* Check TX ring producer/consumer. */
4733 		bge_txeof(sc, tx_cons);
4734 	}
4735 
4736 	if (if_getdrvflags(ifp) & IFF_DRV_RUNNING &&
4737 	    !if_sendq_empty(ifp))
4738 		bge_start_locked(ifp);
4739 
4740 	BGE_UNLOCK(sc);
4741 }
4742 
4743 static void
4744 bge_asf_driver_up(struct bge_softc *sc)
4745 {
4746 	if (sc->bge_asf_mode & ASF_STACKUP) {
4747 		/* Send ASF heartbeat aprox. every 2s */
4748 		if (sc->bge_asf_count)
4749 			sc->bge_asf_count --;
4750 		else {
4751 			sc->bge_asf_count = 2;
4752 			bge_writemem_ind(sc, BGE_SRAM_FW_CMD_MB,
4753 			    BGE_FW_CMD_DRV_ALIVE);
4754 			bge_writemem_ind(sc, BGE_SRAM_FW_CMD_LEN_MB, 4);
4755 			bge_writemem_ind(sc, BGE_SRAM_FW_CMD_DATA_MB,
4756 			    BGE_FW_HB_TIMEOUT_SEC);
4757 			CSR_WRITE_4(sc, BGE_RX_CPU_EVENT,
4758 			    CSR_READ_4(sc, BGE_RX_CPU_EVENT) |
4759 			    BGE_RX_CPU_DRV_EVENT);
4760 		}
4761 	}
4762 }
4763 
4764 static void
4765 bge_tick(void *xsc)
4766 {
4767 	struct bge_softc *sc = xsc;
4768 	struct mii_data *mii = NULL;
4769 
4770 	BGE_LOCK_ASSERT(sc);
4771 
4772 	/* Synchronize with possible callout reset/stop. */
4773 	if (callout_pending(&sc->bge_stat_ch) ||
4774 	    !callout_active(&sc->bge_stat_ch))
4775 		return;
4776 
4777 	if (BGE_IS_5705_PLUS(sc))
4778 		bge_stats_update_regs(sc);
4779 	else
4780 		bge_stats_update(sc);
4781 
4782 	/* XXX Add APE heartbeat check here? */
4783 
4784 	if ((sc->bge_flags & BGE_FLAG_TBI) == 0) {
4785 		mii = device_get_softc(sc->bge_miibus);
4786 		/*
4787 		 * Do not touch PHY if we have link up. This could break
4788 		 * IPMI/ASF mode or produce extra input errors
4789 		 * (extra errors was reported for bcm5701 & bcm5704).
4790 		 */
4791 		if (!sc->bge_link)
4792 			mii_tick(mii);
4793 	} else {
4794 		/*
4795 		 * Since in TBI mode auto-polling can't be used we should poll
4796 		 * link status manually. Here we register pending link event
4797 		 * and trigger interrupt.
4798 		 */
4799 #ifdef DEVICE_POLLING
4800 		/* In polling mode we poll link state in bge_poll(). */
4801 		if (!(if_getcapenable(sc->bge_ifp) & IFCAP_POLLING))
4802 #endif
4803 		{
4804 		sc->bge_link_evt++;
4805 		if (sc->bge_asicrev == BGE_ASICREV_BCM5700 ||
4806 		    sc->bge_flags & BGE_FLAG_5788)
4807 			BGE_SETBIT(sc, BGE_MISC_LOCAL_CTL, BGE_MLC_INTR_SET);
4808 		else
4809 			BGE_SETBIT(sc, BGE_HCC_MODE, BGE_HCCMODE_COAL_NOW);
4810 		}
4811 	}
4812 
4813 	bge_asf_driver_up(sc);
4814 	bge_watchdog(sc);
4815 
4816 	callout_reset(&sc->bge_stat_ch, hz, bge_tick, sc);
4817 }
4818 
4819 static void
4820 bge_stats_update_regs(struct bge_softc *sc)
4821 {
4822 	if_t ifp;
4823 	struct bge_mac_stats *stats;
4824 	uint32_t val;
4825 
4826 	ifp = sc->bge_ifp;
4827 	stats = &sc->bge_mac_stats;
4828 
4829 	stats->ifHCOutOctets +=
4830 	    CSR_READ_4(sc, BGE_TX_MAC_STATS_OCTETS);
4831 	stats->etherStatsCollisions +=
4832 	    CSR_READ_4(sc, BGE_TX_MAC_STATS_COLLS);
4833 	stats->outXonSent +=
4834 	    CSR_READ_4(sc, BGE_TX_MAC_STATS_XON_SENT);
4835 	stats->outXoffSent +=
4836 	    CSR_READ_4(sc, BGE_TX_MAC_STATS_XOFF_SENT);
4837 	stats->dot3StatsInternalMacTransmitErrors +=
4838 	    CSR_READ_4(sc, BGE_TX_MAC_STATS_ERRORS);
4839 	stats->dot3StatsSingleCollisionFrames +=
4840 	    CSR_READ_4(sc, BGE_TX_MAC_STATS_SINGLE_COLL);
4841 	stats->dot3StatsMultipleCollisionFrames +=
4842 	    CSR_READ_4(sc, BGE_TX_MAC_STATS_MULTI_COLL);
4843 	stats->dot3StatsDeferredTransmissions +=
4844 	    CSR_READ_4(sc, BGE_TX_MAC_STATS_DEFERRED);
4845 	stats->dot3StatsExcessiveCollisions +=
4846 	    CSR_READ_4(sc, BGE_TX_MAC_STATS_EXCESS_COLL);
4847 	stats->dot3StatsLateCollisions +=
4848 	    CSR_READ_4(sc, BGE_TX_MAC_STATS_LATE_COLL);
4849 	stats->ifHCOutUcastPkts +=
4850 	    CSR_READ_4(sc, BGE_TX_MAC_STATS_UCAST);
4851 	stats->ifHCOutMulticastPkts +=
4852 	    CSR_READ_4(sc, BGE_TX_MAC_STATS_MCAST);
4853 	stats->ifHCOutBroadcastPkts +=
4854 	    CSR_READ_4(sc, BGE_TX_MAC_STATS_BCAST);
4855 
4856 	stats->ifHCInOctets +=
4857 	    CSR_READ_4(sc, BGE_RX_MAC_STATS_OCTESTS);
4858 	stats->etherStatsFragments +=
4859 	    CSR_READ_4(sc, BGE_RX_MAC_STATS_FRAGMENTS);
4860 	stats->ifHCInUcastPkts +=
4861 	    CSR_READ_4(sc, BGE_RX_MAC_STATS_UCAST);
4862 	stats->ifHCInMulticastPkts +=
4863 	    CSR_READ_4(sc, BGE_RX_MAC_STATS_MCAST);
4864 	stats->ifHCInBroadcastPkts +=
4865 	    CSR_READ_4(sc, BGE_RX_MAC_STATS_BCAST);
4866 	stats->dot3StatsFCSErrors +=
4867 	    CSR_READ_4(sc, BGE_RX_MAC_STATS_FCS_ERRORS);
4868 	stats->dot3StatsAlignmentErrors +=
4869 	    CSR_READ_4(sc, BGE_RX_MAC_STATS_ALGIN_ERRORS);
4870 	stats->xonPauseFramesReceived +=
4871 	    CSR_READ_4(sc, BGE_RX_MAC_STATS_XON_RCVD);
4872 	stats->xoffPauseFramesReceived +=
4873 	    CSR_READ_4(sc, BGE_RX_MAC_STATS_XOFF_RCVD);
4874 	stats->macControlFramesReceived +=
4875 	    CSR_READ_4(sc, BGE_RX_MAC_STATS_CTRL_RCVD);
4876 	stats->xoffStateEntered +=
4877 	    CSR_READ_4(sc, BGE_RX_MAC_STATS_XOFF_ENTERED);
4878 	stats->dot3StatsFramesTooLong +=
4879 	    CSR_READ_4(sc, BGE_RX_MAC_STATS_FRAME_TOO_LONG);
4880 	stats->etherStatsJabbers +=
4881 	    CSR_READ_4(sc, BGE_RX_MAC_STATS_JABBERS);
4882 	stats->etherStatsUndersizePkts +=
4883 	    CSR_READ_4(sc, BGE_RX_MAC_STATS_UNDERSIZE);
4884 
4885 	stats->FramesDroppedDueToFilters +=
4886 	    CSR_READ_4(sc, BGE_RXLP_LOCSTAT_FILTDROP);
4887 	stats->DmaWriteQueueFull +=
4888 	    CSR_READ_4(sc, BGE_RXLP_LOCSTAT_DMA_WRQ_FULL);
4889 	stats->DmaWriteHighPriQueueFull +=
4890 	    CSR_READ_4(sc, BGE_RXLP_LOCSTAT_DMA_HPWRQ_FULL);
4891 	stats->NoMoreRxBDs +=
4892 	    CSR_READ_4(sc, BGE_RXLP_LOCSTAT_OUT_OF_BDS);
4893 	/*
4894 	 * XXX
4895 	 * Unlike other controllers, BGE_RXLP_LOCSTAT_IFIN_DROPS
4896 	 * counter of BCM5717, BCM5718, BCM5719 A0 and BCM5720 A0
4897 	 * includes number of unwanted multicast frames.  This comes
4898 	 * from silicon bug and known workaround to get rough(not
4899 	 * exact) counter is to enable interrupt on MBUF low water
4900 	 * attention.  This can be accomplished by setting
4901 	 * BGE_HCCMODE_ATTN bit of BGE_HCC_MODE,
4902 	 * BGE_BMANMODE_LOMBUF_ATTN bit of BGE_BMAN_MODE and
4903 	 * BGE_MODECTL_FLOWCTL_ATTN_INTR bit of BGE_MODE_CTL.
4904 	 * However that change would generate more interrupts and
4905 	 * there are still possibilities of losing multiple frames
4906 	 * during BGE_MODECTL_FLOWCTL_ATTN_INTR interrupt handling.
4907 	 * Given that the workaround still would not get correct
4908 	 * counter I don't think it's worth to implement it.  So
4909 	 * ignore reading the counter on controllers that have the
4910 	 * silicon bug.
4911 	 */
4912 	if (sc->bge_asicrev != BGE_ASICREV_BCM5717 &&
4913 	    sc->bge_chipid != BGE_CHIPID_BCM5719_A0 &&
4914 	    sc->bge_chipid != BGE_CHIPID_BCM5720_A0)
4915 		stats->InputDiscards +=
4916 		    CSR_READ_4(sc, BGE_RXLP_LOCSTAT_IFIN_DROPS);
4917 	stats->InputErrors +=
4918 	    CSR_READ_4(sc, BGE_RXLP_LOCSTAT_IFIN_ERRORS);
4919 	stats->RecvThresholdHit +=
4920 	    CSR_READ_4(sc, BGE_RXLP_LOCSTAT_RXTHRESH_HIT);
4921 
4922 	if (sc->bge_flags & BGE_FLAG_RDMA_BUG) {
4923 		/*
4924 		 * If controller transmitted more than BGE_NUM_RDMA_CHANNELS
4925 		 * frames, it's safe to disable workaround for DMA engine's
4926 		 * miscalculation of TXMBUF space.
4927 		 */
4928 		if (stats->ifHCOutUcastPkts + stats->ifHCOutMulticastPkts +
4929 		    stats->ifHCOutBroadcastPkts > BGE_NUM_RDMA_CHANNELS) {
4930 			val = CSR_READ_4(sc, BGE_RDMA_LSO_CRPTEN_CTRL);
4931 			if (sc->bge_asicrev == BGE_ASICREV_BCM5719)
4932 				val &= ~BGE_RDMA_TX_LENGTH_WA_5719;
4933 			else
4934 				val &= ~BGE_RDMA_TX_LENGTH_WA_5720;
4935 			CSR_WRITE_4(sc, BGE_RDMA_LSO_CRPTEN_CTRL, val);
4936 			sc->bge_flags &= ~BGE_FLAG_RDMA_BUG;
4937 		}
4938 	}
4939 }
4940 
4941 static void
4942 bge_stats_clear_regs(struct bge_softc *sc)
4943 {
4944 
4945 	CSR_READ_4(sc, BGE_TX_MAC_STATS_OCTETS);
4946 	CSR_READ_4(sc, BGE_TX_MAC_STATS_COLLS);
4947 	CSR_READ_4(sc, BGE_TX_MAC_STATS_XON_SENT);
4948 	CSR_READ_4(sc, BGE_TX_MAC_STATS_XOFF_SENT);
4949 	CSR_READ_4(sc, BGE_TX_MAC_STATS_ERRORS);
4950 	CSR_READ_4(sc, BGE_TX_MAC_STATS_SINGLE_COLL);
4951 	CSR_READ_4(sc, BGE_TX_MAC_STATS_MULTI_COLL);
4952 	CSR_READ_4(sc, BGE_TX_MAC_STATS_DEFERRED);
4953 	CSR_READ_4(sc, BGE_TX_MAC_STATS_EXCESS_COLL);
4954 	CSR_READ_4(sc, BGE_TX_MAC_STATS_LATE_COLL);
4955 	CSR_READ_4(sc, BGE_TX_MAC_STATS_UCAST);
4956 	CSR_READ_4(sc, BGE_TX_MAC_STATS_MCAST);
4957 	CSR_READ_4(sc, BGE_TX_MAC_STATS_BCAST);
4958 
4959 	CSR_READ_4(sc, BGE_RX_MAC_STATS_OCTESTS);
4960 	CSR_READ_4(sc, BGE_RX_MAC_STATS_FRAGMENTS);
4961 	CSR_READ_4(sc, BGE_RX_MAC_STATS_UCAST);
4962 	CSR_READ_4(sc, BGE_RX_MAC_STATS_MCAST);
4963 	CSR_READ_4(sc, BGE_RX_MAC_STATS_BCAST);
4964 	CSR_READ_4(sc, BGE_RX_MAC_STATS_FCS_ERRORS);
4965 	CSR_READ_4(sc, BGE_RX_MAC_STATS_ALGIN_ERRORS);
4966 	CSR_READ_4(sc, BGE_RX_MAC_STATS_XON_RCVD);
4967 	CSR_READ_4(sc, BGE_RX_MAC_STATS_XOFF_RCVD);
4968 	CSR_READ_4(sc, BGE_RX_MAC_STATS_CTRL_RCVD);
4969 	CSR_READ_4(sc, BGE_RX_MAC_STATS_XOFF_ENTERED);
4970 	CSR_READ_4(sc, BGE_RX_MAC_STATS_FRAME_TOO_LONG);
4971 	CSR_READ_4(sc, BGE_RX_MAC_STATS_JABBERS);
4972 	CSR_READ_4(sc, BGE_RX_MAC_STATS_UNDERSIZE);
4973 
4974 	CSR_READ_4(sc, BGE_RXLP_LOCSTAT_FILTDROP);
4975 	CSR_READ_4(sc, BGE_RXLP_LOCSTAT_DMA_WRQ_FULL);
4976 	CSR_READ_4(sc, BGE_RXLP_LOCSTAT_DMA_HPWRQ_FULL);
4977 	CSR_READ_4(sc, BGE_RXLP_LOCSTAT_OUT_OF_BDS);
4978 	CSR_READ_4(sc, BGE_RXLP_LOCSTAT_IFIN_DROPS);
4979 	CSR_READ_4(sc, BGE_RXLP_LOCSTAT_IFIN_ERRORS);
4980 	CSR_READ_4(sc, BGE_RXLP_LOCSTAT_RXTHRESH_HIT);
4981 }
4982 
4983 static void
4984 bge_stats_update(struct bge_softc *sc)
4985 {
4986 	if_t ifp;
4987 	bus_size_t stats;
4988 	uint32_t cnt;	/* current register value */
4989 
4990 	ifp = sc->bge_ifp;
4991 
4992 	stats = BGE_MEMWIN_START + BGE_STATS_BLOCK;
4993 
4994 #define	READ_STAT(sc, stats, stat) \
4995 	CSR_READ_4(sc, stats + offsetof(struct bge_stats, stat))
4996 
4997 	cnt = READ_STAT(sc, stats, txstats.etherStatsCollisions.bge_addr_lo);
4998 	if_inc_counter(ifp, IFCOUNTER_COLLISIONS, cnt - sc->bge_tx_collisions);
4999 	sc->bge_tx_collisions = cnt;
5000 
5001 	cnt = READ_STAT(sc, stats, nicNoMoreRxBDs.bge_addr_lo);
5002 	if_inc_counter(ifp, IFCOUNTER_IERRORS, cnt - sc->bge_rx_nobds);
5003 	sc->bge_rx_nobds = cnt;
5004 	cnt = READ_STAT(sc, stats, ifInErrors.bge_addr_lo);
5005 	if_inc_counter(ifp, IFCOUNTER_IERRORS, cnt - sc->bge_rx_inerrs);
5006 	sc->bge_rx_inerrs = cnt;
5007 	cnt = READ_STAT(sc, stats, ifInDiscards.bge_addr_lo);
5008 	if_inc_counter(ifp, IFCOUNTER_IERRORS, cnt - sc->bge_rx_discards);
5009 	sc->bge_rx_discards = cnt;
5010 
5011 	cnt = READ_STAT(sc, stats, txstats.ifOutDiscards.bge_addr_lo);
5012 	if_inc_counter(ifp, IFCOUNTER_OERRORS, cnt - sc->bge_tx_discards);
5013 	sc->bge_tx_discards = cnt;
5014 
5015 #undef	READ_STAT
5016 }
5017 
5018 /*
5019  * Pad outbound frame to ETHER_MIN_NOPAD for an unusual reason.
5020  * The bge hardware will pad out Tx runts to ETHER_MIN_NOPAD,
5021  * but when such padded frames employ the bge IP/TCP checksum offload,
5022  * the hardware checksum assist gives incorrect results (possibly
5023  * from incorporating its own padding into the UDP/TCP checksum; who knows).
5024  * If we pad such runts with zeros, the onboard checksum comes out correct.
5025  */
5026 static __inline int
5027 bge_cksum_pad(struct mbuf *m)
5028 {
5029 	int padlen = ETHER_MIN_NOPAD - m->m_pkthdr.len;
5030 	struct mbuf *last;
5031 
5032 	/* If there's only the packet-header and we can pad there, use it. */
5033 	if (m->m_pkthdr.len == m->m_len && M_WRITABLE(m) &&
5034 	    M_TRAILINGSPACE(m) >= padlen) {
5035 		last = m;
5036 	} else {
5037 		/*
5038 		 * Walk packet chain to find last mbuf. We will either
5039 		 * pad there, or append a new mbuf and pad it.
5040 		 */
5041 		for (last = m; last->m_next != NULL; last = last->m_next);
5042 		if (!(M_WRITABLE(last) && M_TRAILINGSPACE(last) >= padlen)) {
5043 			/* Allocate new empty mbuf, pad it. Compact later. */
5044 			struct mbuf *n;
5045 
5046 			MGET(n, M_NOWAIT, MT_DATA);
5047 			if (n == NULL)
5048 				return (ENOBUFS);
5049 			n->m_len = 0;
5050 			last->m_next = n;
5051 			last = n;
5052 		}
5053 	}
5054 
5055 	/* Now zero the pad area, to avoid the bge cksum-assist bug. */
5056 	memset(mtod(last, caddr_t) + last->m_len, 0, padlen);
5057 	last->m_len += padlen;
5058 	m->m_pkthdr.len += padlen;
5059 
5060 	return (0);
5061 }
5062 
5063 static struct mbuf *
5064 bge_check_short_dma(struct mbuf *m)
5065 {
5066 	struct mbuf *n;
5067 	int found;
5068 
5069 	/*
5070 	 * If device receive two back-to-back send BDs with less than
5071 	 * or equal to 8 total bytes then the device may hang.  The two
5072 	 * back-to-back send BDs must in the same frame for this failure
5073 	 * to occur.  Scan mbuf chains and see whether two back-to-back
5074 	 * send BDs are there. If this is the case, allocate new mbuf
5075 	 * and copy the frame to workaround the silicon bug.
5076 	 */
5077 	for (n = m, found = 0; n != NULL; n = n->m_next) {
5078 		if (n->m_len < 8) {
5079 			found++;
5080 			if (found > 1)
5081 				break;
5082 			continue;
5083 		}
5084 		found = 0;
5085 	}
5086 
5087 	if (found > 1) {
5088 		n = m_defrag(m, M_NOWAIT);
5089 		if (n == NULL)
5090 			m_freem(m);
5091 	} else
5092 		n = m;
5093 	return (n);
5094 }
5095 
5096 static struct mbuf *
5097 bge_setup_tso(struct bge_softc *sc, struct mbuf *m, uint16_t *mss,
5098     uint16_t *flags)
5099 {
5100 	struct ip *ip;
5101 	struct tcphdr *tcp;
5102 	struct mbuf *n;
5103 	uint16_t hlen;
5104 	uint32_t poff;
5105 
5106 	if (M_WRITABLE(m) == 0) {
5107 		/* Get a writable copy. */
5108 		n = m_dup(m, M_NOWAIT);
5109 		m_freem(m);
5110 		if (n == NULL)
5111 			return (NULL);
5112 		m = n;
5113 	}
5114 	m = m_pullup(m, sizeof(struct ether_header) + sizeof(struct ip));
5115 	if (m == NULL)
5116 		return (NULL);
5117 	ip = (struct ip *)(mtod(m, char *) + sizeof(struct ether_header));
5118 	poff = sizeof(struct ether_header) + (ip->ip_hl << 2);
5119 	m = m_pullup(m, poff + sizeof(struct tcphdr));
5120 	if (m == NULL)
5121 		return (NULL);
5122 	tcp = (struct tcphdr *)(mtod(m, char *) + poff);
5123 	m = m_pullup(m, poff + (tcp->th_off << 2));
5124 	if (m == NULL)
5125 		return (NULL);
5126 	/*
5127 	 * It seems controller doesn't modify IP length and TCP pseudo
5128 	 * checksum. These checksum computed by upper stack should be 0.
5129 	 */
5130 	*mss = m->m_pkthdr.tso_segsz;
5131 	ip = (struct ip *)(mtod(m, char *) + sizeof(struct ether_header));
5132 	ip->ip_sum = 0;
5133 	ip->ip_len = htons(*mss + (ip->ip_hl << 2) + (tcp->th_off << 2));
5134 	/* Clear pseudo checksum computed by TCP stack. */
5135 	tcp = (struct tcphdr *)(mtod(m, char *) + poff);
5136 	tcp->th_sum = 0;
5137 	/*
5138 	 * Broadcom controllers uses different descriptor format for
5139 	 * TSO depending on ASIC revision. Due to TSO-capable firmware
5140 	 * license issue and lower performance of firmware based TSO
5141 	 * we only support hardware based TSO.
5142 	 */
5143 	/* Calculate header length, incl. TCP/IP options, in 32 bit units. */
5144 	hlen = ((ip->ip_hl << 2) + (tcp->th_off << 2)) >> 2;
5145 	if (sc->bge_flags & BGE_FLAG_TSO3) {
5146 		/*
5147 		 * For BCM5717 and newer controllers, hardware based TSO
5148 		 * uses the 14 lower bits of the bge_mss field to store the
5149 		 * MSS and the upper 2 bits to store the lowest 2 bits of
5150 		 * the IP/TCP header length.  The upper 6 bits of the header
5151 		 * length are stored in the bge_flags[14:10,4] field.  Jumbo
5152 		 * frames are supported.
5153 		 */
5154 		*mss |= ((hlen & 0x3) << 14);
5155 		*flags |= ((hlen & 0xF8) << 7) | ((hlen & 0x4) << 2);
5156 	} else {
5157 		/*
5158 		 * For BCM5755 and newer controllers, hardware based TSO uses
5159 		 * the lower 11	bits to store the MSS and the upper 5 bits to
5160 		 * store the IP/TCP header length. Jumbo frames are not
5161 		 * supported.
5162 		 */
5163 		*mss |= (hlen << 11);
5164 	}
5165 	return (m);
5166 }
5167 
5168 /*
5169  * Encapsulate an mbuf chain in the tx ring  by coupling the mbuf data
5170  * pointers to descriptors.
5171  */
5172 static int
5173 bge_encap(struct bge_softc *sc, struct mbuf **m_head, uint32_t *txidx)
5174 {
5175 	bus_dma_segment_t	segs[BGE_NSEG_NEW];
5176 	bus_dmamap_t		map;
5177 	struct bge_tx_bd	*d;
5178 	struct mbuf		*m = *m_head;
5179 	uint32_t		idx = *txidx;
5180 	uint16_t		csum_flags, mss, vlan_tag;
5181 	int			nsegs, i, error;
5182 
5183 	csum_flags = 0;
5184 	mss = 0;
5185 	vlan_tag = 0;
5186 	if ((sc->bge_flags & BGE_FLAG_SHORT_DMA_BUG) != 0 &&
5187 	    m->m_next != NULL) {
5188 		*m_head = bge_check_short_dma(m);
5189 		if (*m_head == NULL)
5190 			return (ENOBUFS);
5191 		m = *m_head;
5192 	}
5193 	if ((m->m_pkthdr.csum_flags & CSUM_TSO) != 0) {
5194 		*m_head = m = bge_setup_tso(sc, m, &mss, &csum_flags);
5195 		if (*m_head == NULL)
5196 			return (ENOBUFS);
5197 		csum_flags |= BGE_TXBDFLAG_CPU_PRE_DMA |
5198 		    BGE_TXBDFLAG_CPU_POST_DMA;
5199 	} else if ((m->m_pkthdr.csum_flags & sc->bge_csum_features) != 0) {
5200 		if (m->m_pkthdr.csum_flags & CSUM_IP)
5201 			csum_flags |= BGE_TXBDFLAG_IP_CSUM;
5202 		if (m->m_pkthdr.csum_flags & (CSUM_TCP | CSUM_UDP)) {
5203 			csum_flags |= BGE_TXBDFLAG_TCP_UDP_CSUM;
5204 			if (m->m_pkthdr.len < ETHER_MIN_NOPAD &&
5205 			    (error = bge_cksum_pad(m)) != 0) {
5206 				m_freem(m);
5207 				*m_head = NULL;
5208 				return (error);
5209 			}
5210 		}
5211 	}
5212 
5213 	if ((m->m_pkthdr.csum_flags & CSUM_TSO) == 0) {
5214 		if (sc->bge_flags & BGE_FLAG_JUMBO_FRAME &&
5215 		    m->m_pkthdr.len > ETHER_MAX_LEN)
5216 			csum_flags |= BGE_TXBDFLAG_JUMBO_FRAME;
5217 		if (sc->bge_forced_collapse > 0 &&
5218 		    (sc->bge_flags & BGE_FLAG_PCIE) != 0 && m->m_next != NULL) {
5219 			/*
5220 			 * Forcedly collapse mbuf chains to overcome hardware
5221 			 * limitation which only support a single outstanding
5222 			 * DMA read operation.
5223 			 */
5224 			if (sc->bge_forced_collapse == 1)
5225 				m = m_defrag(m, M_NOWAIT);
5226 			else
5227 				m = m_collapse(m, M_NOWAIT,
5228 				    sc->bge_forced_collapse);
5229 			if (m == NULL)
5230 				m = *m_head;
5231 			*m_head = m;
5232 		}
5233 	}
5234 
5235 	map = sc->bge_cdata.bge_tx_dmamap[idx];
5236 	error = bus_dmamap_load_mbuf_sg(sc->bge_cdata.bge_tx_mtag, map, m, segs,
5237 	    &nsegs, BUS_DMA_NOWAIT);
5238 	if (error == EFBIG) {
5239 		m = m_collapse(m, M_NOWAIT, BGE_NSEG_NEW);
5240 		if (m == NULL) {
5241 			m_freem(*m_head);
5242 			*m_head = NULL;
5243 			return (ENOBUFS);
5244 		}
5245 		*m_head = m;
5246 		error = bus_dmamap_load_mbuf_sg(sc->bge_cdata.bge_tx_mtag, map,
5247 		    m, segs, &nsegs, BUS_DMA_NOWAIT);
5248 		if (error) {
5249 			m_freem(m);
5250 			*m_head = NULL;
5251 			return (error);
5252 		}
5253 	} else if (error != 0)
5254 		return (error);
5255 
5256 	/* Check if we have enough free send BDs. */
5257 	if (sc->bge_txcnt + nsegs >= BGE_TX_RING_CNT) {
5258 		bus_dmamap_unload(sc->bge_cdata.bge_tx_mtag, map);
5259 		return (ENOBUFS);
5260 	}
5261 
5262 	bus_dmamap_sync(sc->bge_cdata.bge_tx_mtag, map, BUS_DMASYNC_PREWRITE);
5263 
5264 	if (m->m_flags & M_VLANTAG) {
5265 		csum_flags |= BGE_TXBDFLAG_VLAN_TAG;
5266 		vlan_tag = m->m_pkthdr.ether_vtag;
5267 	}
5268 
5269 	if (sc->bge_asicrev == BGE_ASICREV_BCM5762 &&
5270 	    (m->m_pkthdr.csum_flags & CSUM_TSO) != 0) {
5271 		/*
5272 		 * 5725 family of devices corrupts TSO packets when TSO DMA
5273 		 * buffers cross into regions which are within MSS bytes of
5274 		 * a 4GB boundary.  If we encounter the condition, drop the
5275 		 * packet.
5276 		 */
5277 		for (i = 0; ; i++) {
5278 			d = &sc->bge_ldata.bge_tx_ring[idx];
5279 			d->bge_addr.bge_addr_lo = BGE_ADDR_LO(segs[i].ds_addr);
5280 			d->bge_addr.bge_addr_hi = BGE_ADDR_HI(segs[i].ds_addr);
5281 			d->bge_len = segs[i].ds_len;
5282 			if (d->bge_addr.bge_addr_lo + segs[i].ds_len + mss <
5283 			    d->bge_addr.bge_addr_lo)
5284 				break;
5285 			d->bge_flags = csum_flags;
5286 			d->bge_vlan_tag = vlan_tag;
5287 			d->bge_mss = mss;
5288 			if (i == nsegs - 1)
5289 				break;
5290 			BGE_INC(idx, BGE_TX_RING_CNT);
5291 		}
5292 		if (i != nsegs - 1) {
5293 			bus_dmamap_sync(sc->bge_cdata.bge_tx_mtag, map,
5294 			    BUS_DMASYNC_POSTWRITE);
5295 			bus_dmamap_unload(sc->bge_cdata.bge_tx_mtag, map);
5296 			m_freem(*m_head);
5297 			*m_head = NULL;
5298 			return (EIO);
5299 		}
5300 	} else {
5301 		for (i = 0; ; i++) {
5302 			d = &sc->bge_ldata.bge_tx_ring[idx];
5303 			d->bge_addr.bge_addr_lo = BGE_ADDR_LO(segs[i].ds_addr);
5304 			d->bge_addr.bge_addr_hi = BGE_ADDR_HI(segs[i].ds_addr);
5305 			d->bge_len = segs[i].ds_len;
5306 			d->bge_flags = csum_flags;
5307 			d->bge_vlan_tag = vlan_tag;
5308 			d->bge_mss = mss;
5309 			if (i == nsegs - 1)
5310 				break;
5311 			BGE_INC(idx, BGE_TX_RING_CNT);
5312 		}
5313 	}
5314 
5315 	/* Mark the last segment as end of packet... */
5316 	d->bge_flags |= BGE_TXBDFLAG_END;
5317 
5318 	/*
5319 	 * Insure that the map for this transmission
5320 	 * is placed at the array index of the last descriptor
5321 	 * in this chain.
5322 	 */
5323 	sc->bge_cdata.bge_tx_dmamap[*txidx] = sc->bge_cdata.bge_tx_dmamap[idx];
5324 	sc->bge_cdata.bge_tx_dmamap[idx] = map;
5325 	sc->bge_cdata.bge_tx_chain[idx] = m;
5326 	sc->bge_txcnt += nsegs;
5327 
5328 	BGE_INC(idx, BGE_TX_RING_CNT);
5329 	*txidx = idx;
5330 
5331 	return (0);
5332 }
5333 
5334 /*
5335  * Main transmit routine. To avoid having to do mbuf copies, we put pointers
5336  * to the mbuf data regions directly in the transmit descriptors.
5337  */
5338 static void
5339 bge_start_locked(if_t ifp)
5340 {
5341 	struct bge_softc *sc;
5342 	struct mbuf *m_head;
5343 	uint32_t prodidx;
5344 	int count;
5345 
5346 	sc = if_getsoftc(ifp);
5347 	BGE_LOCK_ASSERT(sc);
5348 
5349 	if (!sc->bge_link ||
5350 	    (if_getdrvflags(ifp) & (IFF_DRV_RUNNING | IFF_DRV_OACTIVE)) !=
5351 	    IFF_DRV_RUNNING)
5352 		return;
5353 
5354 	prodidx = sc->bge_tx_prodidx;
5355 
5356 	for (count = 0; !if_sendq_empty(ifp);) {
5357 		if (sc->bge_txcnt > BGE_TX_RING_CNT - 16) {
5358 			if_setdrvflagbits(ifp, IFF_DRV_OACTIVE, 0);
5359 			break;
5360 		}
5361 		m_head = if_dequeue(ifp);
5362 		if (m_head == NULL)
5363 			break;
5364 
5365 		/*
5366 		 * Pack the data into the transmit ring. If we
5367 		 * don't have room, set the OACTIVE flag and wait
5368 		 * for the NIC to drain the ring.
5369 		 */
5370 		if (bge_encap(sc, &m_head, &prodidx)) {
5371 			if (m_head == NULL)
5372 				break;
5373 			if_sendq_prepend(ifp, m_head);
5374 			if_setdrvflagbits(ifp, IFF_DRV_OACTIVE, 0);
5375 			break;
5376 		}
5377 		++count;
5378 
5379 		/*
5380 		 * If there's a BPF listener, bounce a copy of this frame
5381 		 * to him.
5382 		 */
5383 		if_bpfmtap(ifp, m_head);
5384 	}
5385 
5386 	if (count > 0) {
5387 		bus_dmamap_sync(sc->bge_cdata.bge_tx_ring_tag,
5388 		    sc->bge_cdata.bge_tx_ring_map, BUS_DMASYNC_PREWRITE);
5389 		/* Transmit. */
5390 		bge_writembx(sc, BGE_MBX_TX_HOST_PROD0_LO, prodidx);
5391 		/* 5700 b2 errata */
5392 		if (sc->bge_chiprev == BGE_CHIPREV_5700_BX)
5393 			bge_writembx(sc, BGE_MBX_TX_HOST_PROD0_LO, prodidx);
5394 
5395 		sc->bge_tx_prodidx = prodidx;
5396 
5397 		/*
5398 		 * Set a timeout in case the chip goes out to lunch.
5399 		 */
5400 		sc->bge_timer = BGE_TX_TIMEOUT;
5401 	}
5402 }
5403 
5404 /*
5405  * Main transmit routine. To avoid having to do mbuf copies, we put pointers
5406  * to the mbuf data regions directly in the transmit descriptors.
5407  */
5408 static void
5409 bge_start(if_t ifp)
5410 {
5411 	struct bge_softc *sc;
5412 
5413 	sc = if_getsoftc(ifp);
5414 	BGE_LOCK(sc);
5415 	bge_start_locked(ifp);
5416 	BGE_UNLOCK(sc);
5417 }
5418 
5419 static void
5420 bge_init_locked(struct bge_softc *sc)
5421 {
5422 	if_t ifp;
5423 	uint16_t *m;
5424 	uint32_t mode;
5425 
5426 	BGE_LOCK_ASSERT(sc);
5427 
5428 	ifp = sc->bge_ifp;
5429 
5430 	if (if_getdrvflags(ifp) & IFF_DRV_RUNNING)
5431 		return;
5432 
5433 	/* Cancel pending I/O and flush buffers. */
5434 	bge_stop(sc);
5435 
5436 	bge_stop_fw(sc);
5437 	bge_sig_pre_reset(sc, BGE_RESET_START);
5438 	bge_reset(sc);
5439 	bge_sig_legacy(sc, BGE_RESET_START);
5440 	bge_sig_post_reset(sc, BGE_RESET_START);
5441 
5442 	bge_chipinit(sc);
5443 
5444 	/*
5445 	 * Init the various state machines, ring
5446 	 * control blocks and firmware.
5447 	 */
5448 	if (bge_blockinit(sc)) {
5449 		device_printf(sc->bge_dev, "initialization failure\n");
5450 		return;
5451 	}
5452 
5453 	ifp = sc->bge_ifp;
5454 
5455 	/* Specify MTU. */
5456 	CSR_WRITE_4(sc, BGE_RX_MTU, if_getmtu(ifp) +
5457 	    ETHER_HDR_LEN + ETHER_CRC_LEN +
5458 	    (if_getcapenable(ifp) & IFCAP_VLAN_MTU ? ETHER_VLAN_ENCAP_LEN : 0));
5459 
5460 	/* Load our MAC address. */
5461 	m = (uint16_t *)IF_LLADDR(sc->bge_ifp);
5462 	CSR_WRITE_4(sc, BGE_MAC_ADDR1_LO, htons(m[0]));
5463 	CSR_WRITE_4(sc, BGE_MAC_ADDR1_HI, (htons(m[1]) << 16) | htons(m[2]));
5464 
5465 	/* Program promiscuous mode. */
5466 	bge_setpromisc(sc);
5467 
5468 	/* Program multicast filter. */
5469 	bge_setmulti(sc);
5470 
5471 	/* Program VLAN tag stripping. */
5472 	bge_setvlan(sc);
5473 
5474 	/* Override UDP checksum offloading. */
5475 	if (sc->bge_forced_udpcsum == 0)
5476 		sc->bge_csum_features &= ~CSUM_UDP;
5477 	else
5478 		sc->bge_csum_features |= CSUM_UDP;
5479 	if (if_getcapabilities(ifp) & IFCAP_TXCSUM &&
5480 	    if_getcapenable(ifp) & IFCAP_TXCSUM) {
5481 		if_sethwassistbits(ifp, 0, (BGE_CSUM_FEATURES | CSUM_UDP));
5482 		if_sethwassistbits(ifp, sc->bge_csum_features, 0);
5483 	}
5484 
5485 	/* Init RX ring. */
5486 	if (bge_init_rx_ring_std(sc) != 0) {
5487 		device_printf(sc->bge_dev, "no memory for std Rx buffers.\n");
5488 		bge_stop(sc);
5489 		return;
5490 	}
5491 
5492 	/*
5493 	 * Workaround for a bug in 5705 ASIC rev A0. Poll the NIC's
5494 	 * memory to insure that the chip has in fact read the first
5495 	 * entry of the ring.
5496 	 */
5497 	if (sc->bge_chipid == BGE_CHIPID_BCM5705_A0) {
5498 		uint32_t		v, i;
5499 		for (i = 0; i < 10; i++) {
5500 			DELAY(20);
5501 			v = bge_readmem_ind(sc, BGE_STD_RX_RINGS + 8);
5502 			if (v == (MCLBYTES - ETHER_ALIGN))
5503 				break;
5504 		}
5505 		if (i == 10)
5506 			device_printf (sc->bge_dev,
5507 			    "5705 A0 chip failed to load RX ring\n");
5508 	}
5509 
5510 	/* Init jumbo RX ring. */
5511 	if (BGE_IS_JUMBO_CAPABLE(sc) &&
5512 	    if_getmtu(ifp) + ETHER_HDR_LEN + ETHER_CRC_LEN +
5513      	    ETHER_VLAN_ENCAP_LEN > (MCLBYTES - ETHER_ALIGN)) {
5514 		if (bge_init_rx_ring_jumbo(sc) != 0) {
5515 			device_printf(sc->bge_dev,
5516 			    "no memory for jumbo Rx buffers.\n");
5517 			bge_stop(sc);
5518 			return;
5519 		}
5520 	}
5521 
5522 	/* Init our RX return ring index. */
5523 	sc->bge_rx_saved_considx = 0;
5524 
5525 	/* Init our RX/TX stat counters. */
5526 	sc->bge_rx_discards = sc->bge_tx_discards = sc->bge_tx_collisions = 0;
5527 
5528 	/* Init TX ring. */
5529 	bge_init_tx_ring(sc);
5530 
5531 	/* Enable TX MAC state machine lockup fix. */
5532 	mode = CSR_READ_4(sc, BGE_TX_MODE);
5533 	if (BGE_IS_5755_PLUS(sc) || sc->bge_asicrev == BGE_ASICREV_BCM5906)
5534 		mode |= BGE_TXMODE_MBUF_LOCKUP_FIX;
5535 	if (sc->bge_asicrev == BGE_ASICREV_BCM5720 ||
5536 	    sc->bge_asicrev == BGE_ASICREV_BCM5762) {
5537 		mode &= ~(BGE_TXMODE_JMB_FRM_LEN | BGE_TXMODE_CNT_DN_MODE);
5538 		mode |= CSR_READ_4(sc, BGE_TX_MODE) &
5539 		    (BGE_TXMODE_JMB_FRM_LEN | BGE_TXMODE_CNT_DN_MODE);
5540 	}
5541 	/* Turn on transmitter. */
5542 	CSR_WRITE_4(sc, BGE_TX_MODE, mode | BGE_TXMODE_ENABLE);
5543 	DELAY(100);
5544 
5545 	/* Turn on receiver. */
5546 	mode = CSR_READ_4(sc, BGE_RX_MODE);
5547 	if (BGE_IS_5755_PLUS(sc))
5548 		mode |= BGE_RXMODE_IPV6_ENABLE;
5549 	if (sc->bge_asicrev == BGE_ASICREV_BCM5762)
5550 		mode |= BGE_RXMODE_IPV4_FRAG_FIX;
5551 	CSR_WRITE_4(sc,BGE_RX_MODE, mode | BGE_RXMODE_ENABLE);
5552 	DELAY(10);
5553 
5554 	/*
5555 	 * Set the number of good frames to receive after RX MBUF
5556 	 * Low Watermark has been reached. After the RX MAC receives
5557 	 * this number of frames, it will drop subsequent incoming
5558 	 * frames until the MBUF High Watermark is reached.
5559 	 */
5560 	if (BGE_IS_57765_PLUS(sc))
5561 		CSR_WRITE_4(sc, BGE_MAX_RX_FRAME_LOWAT, 1);
5562 	else
5563 		CSR_WRITE_4(sc, BGE_MAX_RX_FRAME_LOWAT, 2);
5564 
5565 	/* Clear MAC statistics. */
5566 	if (BGE_IS_5705_PLUS(sc))
5567 		bge_stats_clear_regs(sc);
5568 
5569 	/* Tell firmware we're alive. */
5570 	BGE_SETBIT(sc, BGE_MODE_CTL, BGE_MODECTL_STACKUP);
5571 
5572 #ifdef DEVICE_POLLING
5573 	/* Disable interrupts if we are polling. */
5574 	if (if_getcapenable(ifp) & IFCAP_POLLING) {
5575 		BGE_SETBIT(sc, BGE_PCI_MISC_CTL,
5576 		    BGE_PCIMISCCTL_MASK_PCI_INTR);
5577 		bge_writembx(sc, BGE_MBX_IRQ0_LO, 1);
5578 	} else
5579 #endif
5580 
5581 	/* Enable host interrupts. */
5582 	{
5583 	BGE_SETBIT(sc, BGE_PCI_MISC_CTL, BGE_PCIMISCCTL_CLEAR_INTA);
5584 	BGE_CLRBIT(sc, BGE_PCI_MISC_CTL, BGE_PCIMISCCTL_MASK_PCI_INTR);
5585 	bge_writembx(sc, BGE_MBX_IRQ0_LO, 0);
5586 	}
5587 
5588 	if_setdrvflagbits(ifp, IFF_DRV_RUNNING, 0);
5589 	if_setdrvflagbits(ifp, 0, IFF_DRV_OACTIVE);
5590 
5591 	bge_ifmedia_upd_locked(ifp);
5592 
5593 	callout_reset(&sc->bge_stat_ch, hz, bge_tick, sc);
5594 }
5595 
5596 static void
5597 bge_init(void *xsc)
5598 {
5599 	struct bge_softc *sc = xsc;
5600 
5601 	BGE_LOCK(sc);
5602 	bge_init_locked(sc);
5603 	BGE_UNLOCK(sc);
5604 }
5605 
5606 /*
5607  * Set media options.
5608  */
5609 static int
5610 bge_ifmedia_upd(if_t ifp)
5611 {
5612 	struct bge_softc *sc = if_getsoftc(ifp);
5613 	int res;
5614 
5615 	BGE_LOCK(sc);
5616 	res = bge_ifmedia_upd_locked(ifp);
5617 	BGE_UNLOCK(sc);
5618 
5619 	return (res);
5620 }
5621 
5622 static int
5623 bge_ifmedia_upd_locked(if_t ifp)
5624 {
5625 	struct bge_softc *sc = if_getsoftc(ifp);
5626 	struct mii_data *mii;
5627 	struct mii_softc *miisc;
5628 	struct ifmedia *ifm;
5629 
5630 	BGE_LOCK_ASSERT(sc);
5631 
5632 	ifm = &sc->bge_ifmedia;
5633 
5634 	/* If this is a 1000baseX NIC, enable the TBI port. */
5635 	if (sc->bge_flags & BGE_FLAG_TBI) {
5636 		if (IFM_TYPE(ifm->ifm_media) != IFM_ETHER)
5637 			return (EINVAL);
5638 		switch(IFM_SUBTYPE(ifm->ifm_media)) {
5639 		case IFM_AUTO:
5640 			/*
5641 			 * The BCM5704 ASIC appears to have a special
5642 			 * mechanism for programming the autoneg
5643 			 * advertisement registers in TBI mode.
5644 			 */
5645 			if (sc->bge_asicrev == BGE_ASICREV_BCM5704) {
5646 				uint32_t sgdig;
5647 				sgdig = CSR_READ_4(sc, BGE_SGDIG_STS);
5648 				if (sgdig & BGE_SGDIGSTS_DONE) {
5649 					CSR_WRITE_4(sc, BGE_TX_TBI_AUTONEG, 0);
5650 					sgdig = CSR_READ_4(sc, BGE_SGDIG_CFG);
5651 					sgdig |= BGE_SGDIGCFG_AUTO |
5652 					    BGE_SGDIGCFG_PAUSE_CAP |
5653 					    BGE_SGDIGCFG_ASYM_PAUSE;
5654 					CSR_WRITE_4(sc, BGE_SGDIG_CFG,
5655 					    sgdig | BGE_SGDIGCFG_SEND);
5656 					DELAY(5);
5657 					CSR_WRITE_4(sc, BGE_SGDIG_CFG, sgdig);
5658 				}
5659 			}
5660 			break;
5661 		case IFM_1000_SX:
5662 			if ((ifm->ifm_media & IFM_GMASK) == IFM_FDX) {
5663 				BGE_CLRBIT(sc, BGE_MAC_MODE,
5664 				    BGE_MACMODE_HALF_DUPLEX);
5665 			} else {
5666 				BGE_SETBIT(sc, BGE_MAC_MODE,
5667 				    BGE_MACMODE_HALF_DUPLEX);
5668 			}
5669 			DELAY(40);
5670 			break;
5671 		default:
5672 			return (EINVAL);
5673 		}
5674 		return (0);
5675 	}
5676 
5677 	sc->bge_link_evt++;
5678 	mii = device_get_softc(sc->bge_miibus);
5679 	LIST_FOREACH(miisc, &mii->mii_phys, mii_list)
5680 		PHY_RESET(miisc);
5681 	mii_mediachg(mii);
5682 
5683 	/*
5684 	 * Force an interrupt so that we will call bge_link_upd
5685 	 * if needed and clear any pending link state attention.
5686 	 * Without this we are not getting any further interrupts
5687 	 * for link state changes and thus will not UP the link and
5688 	 * not be able to send in bge_start_locked. The only
5689 	 * way to get things working was to receive a packet and
5690 	 * get an RX intr.
5691 	 * bge_tick should help for fiber cards and we might not
5692 	 * need to do this here if BGE_FLAG_TBI is set but as
5693 	 * we poll for fiber anyway it should not harm.
5694 	 */
5695 	if (sc->bge_asicrev == BGE_ASICREV_BCM5700 ||
5696 	    sc->bge_flags & BGE_FLAG_5788)
5697 		BGE_SETBIT(sc, BGE_MISC_LOCAL_CTL, BGE_MLC_INTR_SET);
5698 	else
5699 		BGE_SETBIT(sc, BGE_HCC_MODE, BGE_HCCMODE_COAL_NOW);
5700 
5701 	return (0);
5702 }
5703 
5704 /*
5705  * Report current media status.
5706  */
5707 static void
5708 bge_ifmedia_sts(if_t ifp, struct ifmediareq *ifmr)
5709 {
5710 	struct bge_softc *sc = if_getsoftc(ifp);
5711 	struct mii_data *mii;
5712 
5713 	BGE_LOCK(sc);
5714 
5715 	if ((if_getflags(ifp) & IFF_UP) == 0) {
5716 		BGE_UNLOCK(sc);
5717 		return;
5718 	}
5719 	if (sc->bge_flags & BGE_FLAG_TBI) {
5720 		ifmr->ifm_status = IFM_AVALID;
5721 		ifmr->ifm_active = IFM_ETHER;
5722 		if (CSR_READ_4(sc, BGE_MAC_STS) &
5723 		    BGE_MACSTAT_TBI_PCS_SYNCHED)
5724 			ifmr->ifm_status |= IFM_ACTIVE;
5725 		else {
5726 			ifmr->ifm_active |= IFM_NONE;
5727 			BGE_UNLOCK(sc);
5728 			return;
5729 		}
5730 		ifmr->ifm_active |= IFM_1000_SX;
5731 		if (CSR_READ_4(sc, BGE_MAC_MODE) & BGE_MACMODE_HALF_DUPLEX)
5732 			ifmr->ifm_active |= IFM_HDX;
5733 		else
5734 			ifmr->ifm_active |= IFM_FDX;
5735 		BGE_UNLOCK(sc);
5736 		return;
5737 	}
5738 
5739 	mii = device_get_softc(sc->bge_miibus);
5740 	mii_pollstat(mii);
5741 	ifmr->ifm_active = mii->mii_media_active;
5742 	ifmr->ifm_status = mii->mii_media_status;
5743 
5744 	BGE_UNLOCK(sc);
5745 }
5746 
5747 static int
5748 bge_ioctl(if_t ifp, u_long command, caddr_t data)
5749 {
5750 	struct bge_softc *sc = if_getsoftc(ifp);
5751 	struct ifreq *ifr = (struct ifreq *) data;
5752 	struct mii_data *mii;
5753 	int flags, mask, error = 0;
5754 
5755 	switch (command) {
5756 	case SIOCSIFMTU:
5757 		if (BGE_IS_JUMBO_CAPABLE(sc) ||
5758 		    (sc->bge_flags & BGE_FLAG_JUMBO_STD)) {
5759 			if (ifr->ifr_mtu < ETHERMIN ||
5760 			    ifr->ifr_mtu > BGE_JUMBO_MTU) {
5761 				error = EINVAL;
5762 				break;
5763 			}
5764 		} else if (ifr->ifr_mtu < ETHERMIN || ifr->ifr_mtu > ETHERMTU) {
5765 			error = EINVAL;
5766 			break;
5767 		}
5768 		BGE_LOCK(sc);
5769 		if (if_getmtu(ifp) != ifr->ifr_mtu) {
5770 			if_setmtu(ifp, ifr->ifr_mtu);
5771 			if (if_getdrvflags(ifp) & IFF_DRV_RUNNING) {
5772 				if_setdrvflagbits(ifp, 0, IFF_DRV_RUNNING);
5773 				bge_init_locked(sc);
5774 			}
5775 		}
5776 		BGE_UNLOCK(sc);
5777 		break;
5778 	case SIOCSIFFLAGS:
5779 		BGE_LOCK(sc);
5780 		if (if_getflags(ifp) & IFF_UP) {
5781 			/*
5782 			 * If only the state of the PROMISC flag changed,
5783 			 * then just use the 'set promisc mode' command
5784 			 * instead of reinitializing the entire NIC. Doing
5785 			 * a full re-init means reloading the firmware and
5786 			 * waiting for it to start up, which may take a
5787 			 * second or two.  Similarly for ALLMULTI.
5788 			 */
5789 			if (if_getdrvflags(ifp) & IFF_DRV_RUNNING) {
5790 				flags = if_getflags(ifp) ^ sc->bge_if_flags;
5791 				if (flags & IFF_PROMISC)
5792 					bge_setpromisc(sc);
5793 				if (flags & IFF_ALLMULTI)
5794 					bge_setmulti(sc);
5795 			} else
5796 				bge_init_locked(sc);
5797 		} else {
5798 			if (if_getdrvflags(ifp) & IFF_DRV_RUNNING) {
5799 				bge_stop(sc);
5800 			}
5801 		}
5802 		sc->bge_if_flags = if_getflags(ifp);
5803 		BGE_UNLOCK(sc);
5804 		error = 0;
5805 		break;
5806 	case SIOCADDMULTI:
5807 	case SIOCDELMULTI:
5808 		if (if_getdrvflags(ifp) & IFF_DRV_RUNNING) {
5809 			BGE_LOCK(sc);
5810 			bge_setmulti(sc);
5811 			BGE_UNLOCK(sc);
5812 			error = 0;
5813 		}
5814 		break;
5815 	case SIOCSIFMEDIA:
5816 	case SIOCGIFMEDIA:
5817 		if (sc->bge_flags & BGE_FLAG_TBI) {
5818 			error = ifmedia_ioctl(ifp, ifr,
5819 			    &sc->bge_ifmedia, command);
5820 		} else {
5821 			mii = device_get_softc(sc->bge_miibus);
5822 			error = ifmedia_ioctl(ifp, ifr,
5823 			    &mii->mii_media, command);
5824 		}
5825 		break;
5826 	case SIOCSIFCAP:
5827 		mask = ifr->ifr_reqcap ^ if_getcapenable(ifp);
5828 #ifdef DEVICE_POLLING
5829 		if (mask & IFCAP_POLLING) {
5830 			if (ifr->ifr_reqcap & IFCAP_POLLING) {
5831 				error = ether_poll_register(bge_poll, ifp);
5832 				if (error)
5833 					return (error);
5834 				BGE_LOCK(sc);
5835 				BGE_SETBIT(sc, BGE_PCI_MISC_CTL,
5836 				    BGE_PCIMISCCTL_MASK_PCI_INTR);
5837 				bge_writembx(sc, BGE_MBX_IRQ0_LO, 1);
5838 				if_setcapenablebit(ifp, IFCAP_POLLING, 0);
5839 				BGE_UNLOCK(sc);
5840 			} else {
5841 				error = ether_poll_deregister(ifp);
5842 				/* Enable interrupt even in error case */
5843 				BGE_LOCK(sc);
5844 				BGE_CLRBIT(sc, BGE_PCI_MISC_CTL,
5845 				    BGE_PCIMISCCTL_MASK_PCI_INTR);
5846 				bge_writembx(sc, BGE_MBX_IRQ0_LO, 0);
5847 				if_setcapenablebit(ifp, 0, IFCAP_POLLING);
5848 				BGE_UNLOCK(sc);
5849 			}
5850 		}
5851 #endif
5852 		if ((mask & IFCAP_TXCSUM) != 0 &&
5853 		    (if_getcapabilities(ifp) & IFCAP_TXCSUM) != 0) {
5854 			if_togglecapenable(ifp, IFCAP_TXCSUM);
5855 			if ((if_getcapenable(ifp) & IFCAP_TXCSUM) != 0)
5856 				if_sethwassistbits(ifp,
5857 				    sc->bge_csum_features, 0);
5858 			else
5859 				if_sethwassistbits(ifp, 0,
5860 				    sc->bge_csum_features);
5861 		}
5862 
5863 		if ((mask & IFCAP_RXCSUM) != 0 &&
5864 		    (if_getcapabilities(ifp) & IFCAP_RXCSUM) != 0)
5865 			if_togglecapenable(ifp, IFCAP_RXCSUM);
5866 
5867 		if ((mask & IFCAP_TSO4) != 0 &&
5868 		    (if_getcapabilities(ifp) & IFCAP_TSO4) != 0) {
5869 			if_togglecapenable(ifp, IFCAP_TSO4);
5870 			if ((if_getcapenable(ifp) & IFCAP_TSO4) != 0)
5871 				if_sethwassistbits(ifp, CSUM_TSO, 0);
5872 			else
5873 				if_sethwassistbits(ifp, 0, CSUM_TSO);
5874 		}
5875 
5876 		if (mask & IFCAP_VLAN_MTU) {
5877 			if_togglecapenable(ifp, IFCAP_VLAN_MTU);
5878 			if_setdrvflagbits(ifp, 0, IFF_DRV_RUNNING);
5879 			bge_init(sc);
5880 		}
5881 
5882 		if ((mask & IFCAP_VLAN_HWTSO) != 0 &&
5883 		    (if_getcapabilities(ifp) & IFCAP_VLAN_HWTSO) != 0)
5884 			if_togglecapenable(ifp, IFCAP_VLAN_HWTSO);
5885 		if ((mask & IFCAP_VLAN_HWTAGGING) != 0 &&
5886 		    (if_getcapabilities(ifp) & IFCAP_VLAN_HWTAGGING) != 0) {
5887 			if_togglecapenable(ifp, IFCAP_VLAN_HWTAGGING);
5888 			if ((if_getcapenable(ifp) & IFCAP_VLAN_HWTAGGING) == 0)
5889 				if_setcapenablebit(ifp, 0, IFCAP_VLAN_HWTSO);
5890 			BGE_LOCK(sc);
5891 			bge_setvlan(sc);
5892 			BGE_UNLOCK(sc);
5893 		}
5894 #ifdef VLAN_CAPABILITIES
5895 		if_vlancap(ifp);
5896 #endif
5897 		break;
5898 	default:
5899 		error = ether_ioctl(ifp, command, data);
5900 		break;
5901 	}
5902 
5903 	return (error);
5904 }
5905 
5906 static void
5907 bge_watchdog(struct bge_softc *sc)
5908 {
5909 	if_t ifp;
5910 	uint32_t status;
5911 
5912 	BGE_LOCK_ASSERT(sc);
5913 
5914 	if (sc->bge_timer == 0 || --sc->bge_timer)
5915 		return;
5916 
5917 	/* If pause frames are active then don't reset the hardware. */
5918 	if ((CSR_READ_4(sc, BGE_RX_MODE) & BGE_RXMODE_FLOWCTL_ENABLE) != 0) {
5919 		status = CSR_READ_4(sc, BGE_RX_STS);
5920 		if ((status & BGE_RXSTAT_REMOTE_XOFFED) != 0) {
5921 			/*
5922 			 * If link partner has us in XOFF state then wait for
5923 			 * the condition to clear.
5924 			 */
5925 			CSR_WRITE_4(sc, BGE_RX_STS, status);
5926 			sc->bge_timer = BGE_TX_TIMEOUT;
5927 			return;
5928 		} else if ((status & BGE_RXSTAT_RCVD_XOFF) != 0 &&
5929 		    (status & BGE_RXSTAT_RCVD_XON) != 0) {
5930 			/*
5931 			 * If link partner has us in XOFF state then wait for
5932 			 * the condition to clear.
5933 			 */
5934 			CSR_WRITE_4(sc, BGE_RX_STS, status);
5935 			sc->bge_timer = BGE_TX_TIMEOUT;
5936 			return;
5937 		}
5938 		/*
5939 		 * Any other condition is unexpected and the controller
5940 		 * should be reset.
5941 		 */
5942 	}
5943 
5944 	ifp = sc->bge_ifp;
5945 
5946 	if_printf(ifp, "watchdog timeout -- resetting\n");
5947 
5948 	if_setdrvflagbits(ifp, 0, IFF_DRV_RUNNING);
5949 	bge_init_locked(sc);
5950 
5951 	if_inc_counter(ifp, IFCOUNTER_OERRORS, 1);
5952 }
5953 
5954 static void
5955 bge_stop_block(struct bge_softc *sc, bus_size_t reg, uint32_t bit)
5956 {
5957 	int i;
5958 
5959 	BGE_CLRBIT(sc, reg, bit);
5960 
5961 	for (i = 0; i < BGE_TIMEOUT; i++) {
5962 		if ((CSR_READ_4(sc, reg) & bit) == 0)
5963 			return;
5964 		DELAY(100);
5965         }
5966 }
5967 
5968 /*
5969  * Stop the adapter and free any mbufs allocated to the
5970  * RX and TX lists.
5971  */
5972 static void
5973 bge_stop(struct bge_softc *sc)
5974 {
5975 	if_t ifp;
5976 
5977 	BGE_LOCK_ASSERT(sc);
5978 
5979 	ifp = sc->bge_ifp;
5980 
5981 	callout_stop(&sc->bge_stat_ch);
5982 
5983 	/* Disable host interrupts. */
5984 	BGE_SETBIT(sc, BGE_PCI_MISC_CTL, BGE_PCIMISCCTL_MASK_PCI_INTR);
5985 	bge_writembx(sc, BGE_MBX_IRQ0_LO, 1);
5986 
5987 	/*
5988 	 * Tell firmware we're shutting down.
5989 	 */
5990 	bge_stop_fw(sc);
5991 	bge_sig_pre_reset(sc, BGE_RESET_SHUTDOWN);
5992 
5993 	/*
5994 	 * Disable all of the receiver blocks.
5995 	 */
5996 	bge_stop_block(sc, BGE_RX_MODE, BGE_RXMODE_ENABLE);
5997 	bge_stop_block(sc, BGE_RBDI_MODE, BGE_RBDIMODE_ENABLE);
5998 	bge_stop_block(sc, BGE_RXLP_MODE, BGE_RXLPMODE_ENABLE);
5999 	if (BGE_IS_5700_FAMILY(sc))
6000 		bge_stop_block(sc, BGE_RXLS_MODE, BGE_RXLSMODE_ENABLE);
6001 	bge_stop_block(sc, BGE_RDBDI_MODE, BGE_RBDIMODE_ENABLE);
6002 	bge_stop_block(sc, BGE_RDC_MODE, BGE_RDCMODE_ENABLE);
6003 	bge_stop_block(sc, BGE_RBDC_MODE, BGE_RBDCMODE_ENABLE);
6004 
6005 	/*
6006 	 * Disable all of the transmit blocks.
6007 	 */
6008 	bge_stop_block(sc, BGE_SRS_MODE, BGE_SRSMODE_ENABLE);
6009 	bge_stop_block(sc, BGE_SBDI_MODE, BGE_SBDIMODE_ENABLE);
6010 	bge_stop_block(sc, BGE_SDI_MODE, BGE_SDIMODE_ENABLE);
6011 	bge_stop_block(sc, BGE_RDMA_MODE, BGE_RDMAMODE_ENABLE);
6012 	bge_stop_block(sc, BGE_SDC_MODE, BGE_SDCMODE_ENABLE);
6013 	if (BGE_IS_5700_FAMILY(sc))
6014 		bge_stop_block(sc, BGE_DMAC_MODE, BGE_DMACMODE_ENABLE);
6015 	bge_stop_block(sc, BGE_SBDC_MODE, BGE_SBDCMODE_ENABLE);
6016 
6017 	/*
6018 	 * Shut down all of the memory managers and related
6019 	 * state machines.
6020 	 */
6021 	bge_stop_block(sc, BGE_HCC_MODE, BGE_HCCMODE_ENABLE);
6022 	bge_stop_block(sc, BGE_WDMA_MODE, BGE_WDMAMODE_ENABLE);
6023 	if (BGE_IS_5700_FAMILY(sc))
6024 		bge_stop_block(sc, BGE_MBCF_MODE, BGE_MBCFMODE_ENABLE);
6025 
6026 	CSR_WRITE_4(sc, BGE_FTQ_RESET, 0xFFFFFFFF);
6027 	CSR_WRITE_4(sc, BGE_FTQ_RESET, 0);
6028 	if (!(BGE_IS_5705_PLUS(sc))) {
6029 		BGE_CLRBIT(sc, BGE_BMAN_MODE, BGE_BMANMODE_ENABLE);
6030 		BGE_CLRBIT(sc, BGE_MARB_MODE, BGE_MARBMODE_ENABLE);
6031 	}
6032 	/* Update MAC statistics. */
6033 	if (BGE_IS_5705_PLUS(sc))
6034 		bge_stats_update_regs(sc);
6035 
6036 	bge_reset(sc);
6037 	bge_sig_legacy(sc, BGE_RESET_SHUTDOWN);
6038 	bge_sig_post_reset(sc, BGE_RESET_SHUTDOWN);
6039 
6040 	/*
6041 	 * Keep the ASF firmware running if up.
6042 	 */
6043 	if (sc->bge_asf_mode & ASF_STACKUP)
6044 		BGE_SETBIT(sc, BGE_MODE_CTL, BGE_MODECTL_STACKUP);
6045 	else
6046 		BGE_CLRBIT(sc, BGE_MODE_CTL, BGE_MODECTL_STACKUP);
6047 
6048 	/* Free the RX lists. */
6049 	bge_free_rx_ring_std(sc);
6050 
6051 	/* Free jumbo RX list. */
6052 	if (BGE_IS_JUMBO_CAPABLE(sc))
6053 		bge_free_rx_ring_jumbo(sc);
6054 
6055 	/* Free TX buffers. */
6056 	bge_free_tx_ring(sc);
6057 
6058 	sc->bge_tx_saved_considx = BGE_TXCONS_UNSET;
6059 
6060 	/* Clear MAC's link state (PHY may still have link UP). */
6061 	if (bootverbose && sc->bge_link)
6062 		if_printf(sc->bge_ifp, "link DOWN\n");
6063 	sc->bge_link = 0;
6064 
6065 	if_setdrvflagbits(ifp, 0, (IFF_DRV_RUNNING | IFF_DRV_OACTIVE));
6066 }
6067 
6068 /*
6069  * Stop all chip I/O so that the kernel's probe routines don't
6070  * get confused by errant DMAs when rebooting.
6071  */
6072 static int
6073 bge_shutdown(device_t dev)
6074 {
6075 	struct bge_softc *sc;
6076 
6077 	sc = device_get_softc(dev);
6078 	BGE_LOCK(sc);
6079 	bge_stop(sc);
6080 	BGE_UNLOCK(sc);
6081 
6082 	return (0);
6083 }
6084 
6085 static int
6086 bge_suspend(device_t dev)
6087 {
6088 	struct bge_softc *sc;
6089 
6090 	sc = device_get_softc(dev);
6091 	BGE_LOCK(sc);
6092 	bge_stop(sc);
6093 	BGE_UNLOCK(sc);
6094 
6095 	return (0);
6096 }
6097 
6098 static int
6099 bge_resume(device_t dev)
6100 {
6101 	struct bge_softc *sc;
6102 	if_t ifp;
6103 
6104 	sc = device_get_softc(dev);
6105 	BGE_LOCK(sc);
6106 	ifp = sc->bge_ifp;
6107 	if (if_getflags(ifp) & IFF_UP) {
6108 		bge_init_locked(sc);
6109 		if (if_getdrvflags(ifp) & IFF_DRV_RUNNING)
6110 			bge_start_locked(ifp);
6111 	}
6112 	BGE_UNLOCK(sc);
6113 
6114 	return (0);
6115 }
6116 
6117 static void
6118 bge_link_upd(struct bge_softc *sc)
6119 {
6120 	struct mii_data *mii;
6121 	uint32_t link, status;
6122 
6123 	BGE_LOCK_ASSERT(sc);
6124 
6125 	/* Clear 'pending link event' flag. */
6126 	sc->bge_link_evt = 0;
6127 
6128 	/*
6129 	 * Process link state changes.
6130 	 * Grrr. The link status word in the status block does
6131 	 * not work correctly on the BCM5700 rev AX and BX chips,
6132 	 * according to all available information. Hence, we have
6133 	 * to enable MII interrupts in order to properly obtain
6134 	 * async link changes. Unfortunately, this also means that
6135 	 * we have to read the MAC status register to detect link
6136 	 * changes, thereby adding an additional register access to
6137 	 * the interrupt handler.
6138 	 *
6139 	 * XXX: perhaps link state detection procedure used for
6140 	 * BGE_CHIPID_BCM5700_B2 can be used for others BCM5700 revisions.
6141 	 */
6142 
6143 	if (sc->bge_asicrev == BGE_ASICREV_BCM5700 &&
6144 	    sc->bge_chipid != BGE_CHIPID_BCM5700_B2) {
6145 		status = CSR_READ_4(sc, BGE_MAC_STS);
6146 		if (status & BGE_MACSTAT_MI_INTERRUPT) {
6147 			mii = device_get_softc(sc->bge_miibus);
6148 			mii_pollstat(mii);
6149 			if (!sc->bge_link &&
6150 			    mii->mii_media_status & IFM_ACTIVE &&
6151 			    IFM_SUBTYPE(mii->mii_media_active) != IFM_NONE) {
6152 				sc->bge_link++;
6153 				if (bootverbose)
6154 					if_printf(sc->bge_ifp, "link UP\n");
6155 			} else if (sc->bge_link &&
6156 			    (!(mii->mii_media_status & IFM_ACTIVE) ||
6157 			    IFM_SUBTYPE(mii->mii_media_active) == IFM_NONE)) {
6158 				sc->bge_link = 0;
6159 				if (bootverbose)
6160 					if_printf(sc->bge_ifp, "link DOWN\n");
6161 			}
6162 
6163 			/* Clear the interrupt. */
6164 			CSR_WRITE_4(sc, BGE_MAC_EVT_ENB,
6165 			    BGE_EVTENB_MI_INTERRUPT);
6166 			bge_miibus_readreg(sc->bge_dev, sc->bge_phy_addr,
6167 			    BRGPHY_MII_ISR);
6168 			bge_miibus_writereg(sc->bge_dev, sc->bge_phy_addr,
6169 			    BRGPHY_MII_IMR, BRGPHY_INTRS);
6170 		}
6171 		return;
6172 	}
6173 
6174 	if (sc->bge_flags & BGE_FLAG_TBI) {
6175 		status = CSR_READ_4(sc, BGE_MAC_STS);
6176 		if (status & BGE_MACSTAT_TBI_PCS_SYNCHED) {
6177 			if (!sc->bge_link) {
6178 				sc->bge_link++;
6179 				if (sc->bge_asicrev == BGE_ASICREV_BCM5704) {
6180 					BGE_CLRBIT(sc, BGE_MAC_MODE,
6181 					    BGE_MACMODE_TBI_SEND_CFGS);
6182 					DELAY(40);
6183 				}
6184 				CSR_WRITE_4(sc, BGE_MAC_STS, 0xFFFFFFFF);
6185 				if (bootverbose)
6186 					if_printf(sc->bge_ifp, "link UP\n");
6187 				if_link_state_change(sc->bge_ifp,
6188 				    LINK_STATE_UP);
6189 			}
6190 		} else if (sc->bge_link) {
6191 			sc->bge_link = 0;
6192 			if (bootverbose)
6193 				if_printf(sc->bge_ifp, "link DOWN\n");
6194 			if_link_state_change(sc->bge_ifp, LINK_STATE_DOWN);
6195 		}
6196 	} else if ((sc->bge_mi_mode & BGE_MIMODE_AUTOPOLL) != 0) {
6197 		/*
6198 		 * Some broken BCM chips have BGE_STATFLAG_LINKSTATE_CHANGED bit
6199 		 * in status word always set. Workaround this bug by reading
6200 		 * PHY link status directly.
6201 		 */
6202 		link = (CSR_READ_4(sc, BGE_MI_STS) & BGE_MISTS_LINK) ? 1 : 0;
6203 
6204 		if (link != sc->bge_link ||
6205 		    sc->bge_asicrev == BGE_ASICREV_BCM5700) {
6206 			mii = device_get_softc(sc->bge_miibus);
6207 			mii_pollstat(mii);
6208 			if (!sc->bge_link &&
6209 			    mii->mii_media_status & IFM_ACTIVE &&
6210 			    IFM_SUBTYPE(mii->mii_media_active) != IFM_NONE) {
6211 				sc->bge_link++;
6212 				if (bootverbose)
6213 					if_printf(sc->bge_ifp, "link UP\n");
6214 			} else if (sc->bge_link &&
6215 			    (!(mii->mii_media_status & IFM_ACTIVE) ||
6216 			    IFM_SUBTYPE(mii->mii_media_active) == IFM_NONE)) {
6217 				sc->bge_link = 0;
6218 				if (bootverbose)
6219 					if_printf(sc->bge_ifp, "link DOWN\n");
6220 			}
6221 		}
6222 	} else {
6223 		/*
6224 		 * For controllers that call mii_tick, we have to poll
6225 		 * link status.
6226 		 */
6227 		mii = device_get_softc(sc->bge_miibus);
6228 		mii_pollstat(mii);
6229 		bge_miibus_statchg(sc->bge_dev);
6230 	}
6231 
6232 	/* Disable MAC attention when link is up. */
6233 	CSR_WRITE_4(sc, BGE_MAC_STS, BGE_MACSTAT_SYNC_CHANGED |
6234 	    BGE_MACSTAT_CFG_CHANGED | BGE_MACSTAT_MI_COMPLETE |
6235 	    BGE_MACSTAT_LINK_CHANGED);
6236 }
6237 
6238 static void
6239 bge_add_sysctls(struct bge_softc *sc)
6240 {
6241 	struct sysctl_ctx_list *ctx;
6242 	struct sysctl_oid_list *children;
6243 	int unit;
6244 
6245 	ctx = device_get_sysctl_ctx(sc->bge_dev);
6246 	children = SYSCTL_CHILDREN(device_get_sysctl_tree(sc->bge_dev));
6247 
6248 #ifdef BGE_REGISTER_DEBUG
6249 	SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "debug_info",
6250 	    CTLTYPE_INT | CTLFLAG_RW, sc, 0, bge_sysctl_debug_info, "I",
6251 	    "Debug Information");
6252 
6253 	SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "reg_read",
6254 	    CTLTYPE_INT | CTLFLAG_RW, sc, 0, bge_sysctl_reg_read, "I",
6255 	    "MAC Register Read");
6256 
6257 	SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "ape_read",
6258 	    CTLTYPE_INT | CTLFLAG_RW, sc, 0, bge_sysctl_ape_read, "I",
6259 	    "APE Register Read");
6260 
6261 	SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "mem_read",
6262 	    CTLTYPE_INT | CTLFLAG_RW, sc, 0, bge_sysctl_mem_read, "I",
6263 	    "Memory Read");
6264 
6265 #endif
6266 
6267 	unit = device_get_unit(sc->bge_dev);
6268 	/*
6269 	 * A common design characteristic for many Broadcom client controllers
6270 	 * is that they only support a single outstanding DMA read operation
6271 	 * on the PCIe bus. This means that it will take twice as long to fetch
6272 	 * a TX frame that is split into header and payload buffers as it does
6273 	 * to fetch a single, contiguous TX frame (2 reads vs. 1 read). For
6274 	 * these controllers, coalescing buffers to reduce the number of memory
6275 	 * reads is effective way to get maximum performance(about 940Mbps).
6276 	 * Without collapsing TX buffers the maximum TCP bulk transfer
6277 	 * performance is about 850Mbps. However forcing coalescing mbufs
6278 	 * consumes a lot of CPU cycles, so leave it off by default.
6279 	 */
6280 	sc->bge_forced_collapse = 0;
6281 	SYSCTL_ADD_INT(ctx, children, OID_AUTO, "forced_collapse",
6282 	    CTLFLAG_RWTUN, &sc->bge_forced_collapse, 0,
6283 	    "Number of fragmented TX buffers of a frame allowed before "
6284 	    "forced collapsing");
6285 
6286 	sc->bge_msi = 1;
6287 	SYSCTL_ADD_INT(ctx, children, OID_AUTO, "msi",
6288 	    CTLFLAG_RDTUN, &sc->bge_msi, 0, "Enable MSI");
6289 
6290 	/*
6291 	 * It seems all Broadcom controllers have a bug that can generate UDP
6292 	 * datagrams with checksum value 0 when TX UDP checksum offloading is
6293 	 * enabled.  Generating UDP checksum value 0 is RFC 768 violation.
6294 	 * Even though the probability of generating such UDP datagrams is
6295 	 * low, I don't want to see FreeBSD boxes to inject such datagrams
6296 	 * into network so disable UDP checksum offloading by default.  Users
6297 	 * still override this behavior by setting a sysctl variable,
6298 	 * dev.bge.0.forced_udpcsum.
6299 	 */
6300 	sc->bge_forced_udpcsum = 0;
6301 	SYSCTL_ADD_INT(ctx, children, OID_AUTO, "forced_udpcsum",
6302 	    CTLFLAG_RWTUN, &sc->bge_forced_udpcsum, 0,
6303 	    "Enable UDP checksum offloading even if controller can "
6304 	    "generate UDP checksum value 0");
6305 
6306 	if (BGE_IS_5705_PLUS(sc))
6307 		bge_add_sysctl_stats_regs(sc, ctx, children);
6308 	else
6309 		bge_add_sysctl_stats(sc, ctx, children);
6310 }
6311 
6312 #define BGE_SYSCTL_STAT(sc, ctx, desc, parent, node, oid) \
6313 	SYSCTL_ADD_PROC(ctx, parent, OID_AUTO, oid, CTLTYPE_UINT|CTLFLAG_RD, \
6314 	    sc, offsetof(struct bge_stats, node), bge_sysctl_stats, "IU", \
6315 	    desc)
6316 
6317 static void
6318 bge_add_sysctl_stats(struct bge_softc *sc, struct sysctl_ctx_list *ctx,
6319     struct sysctl_oid_list *parent)
6320 {
6321 	struct sysctl_oid *tree;
6322 	struct sysctl_oid_list *children, *schildren;
6323 
6324 	tree = SYSCTL_ADD_NODE(ctx, parent, OID_AUTO, "stats", CTLFLAG_RD,
6325 	    NULL, "BGE Statistics");
6326 	schildren = children = SYSCTL_CHILDREN(tree);
6327 	BGE_SYSCTL_STAT(sc, ctx, "Frames Dropped Due To Filters",
6328 	    children, COSFramesDroppedDueToFilters,
6329 	    "FramesDroppedDueToFilters");
6330 	BGE_SYSCTL_STAT(sc, ctx, "NIC DMA Write Queue Full",
6331 	    children, nicDmaWriteQueueFull, "DmaWriteQueueFull");
6332 	BGE_SYSCTL_STAT(sc, ctx, "NIC DMA Write High Priority Queue Full",
6333 	    children, nicDmaWriteHighPriQueueFull, "DmaWriteHighPriQueueFull");
6334 	BGE_SYSCTL_STAT(sc, ctx, "NIC No More RX Buffer Descriptors",
6335 	    children, nicNoMoreRxBDs, "NoMoreRxBDs");
6336 	BGE_SYSCTL_STAT(sc, ctx, "Discarded Input Frames",
6337 	    children, ifInDiscards, "InputDiscards");
6338 	BGE_SYSCTL_STAT(sc, ctx, "Input Errors",
6339 	    children, ifInErrors, "InputErrors");
6340 	BGE_SYSCTL_STAT(sc, ctx, "NIC Recv Threshold Hit",
6341 	    children, nicRecvThresholdHit, "RecvThresholdHit");
6342 	BGE_SYSCTL_STAT(sc, ctx, "NIC DMA Read Queue Full",
6343 	    children, nicDmaReadQueueFull, "DmaReadQueueFull");
6344 	BGE_SYSCTL_STAT(sc, ctx, "NIC DMA Read High Priority Queue Full",
6345 	    children, nicDmaReadHighPriQueueFull, "DmaReadHighPriQueueFull");
6346 	BGE_SYSCTL_STAT(sc, ctx, "NIC Send Data Complete Queue Full",
6347 	    children, nicSendDataCompQueueFull, "SendDataCompQueueFull");
6348 	BGE_SYSCTL_STAT(sc, ctx, "NIC Ring Set Send Producer Index",
6349 	    children, nicRingSetSendProdIndex, "RingSetSendProdIndex");
6350 	BGE_SYSCTL_STAT(sc, ctx, "NIC Ring Status Update",
6351 	    children, nicRingStatusUpdate, "RingStatusUpdate");
6352 	BGE_SYSCTL_STAT(sc, ctx, "NIC Interrupts",
6353 	    children, nicInterrupts, "Interrupts");
6354 	BGE_SYSCTL_STAT(sc, ctx, "NIC Avoided Interrupts",
6355 	    children, nicAvoidedInterrupts, "AvoidedInterrupts");
6356 	BGE_SYSCTL_STAT(sc, ctx, "NIC Send Threshold Hit",
6357 	    children, nicSendThresholdHit, "SendThresholdHit");
6358 
6359 	tree = SYSCTL_ADD_NODE(ctx, schildren, OID_AUTO, "rx", CTLFLAG_RD,
6360 	    NULL, "BGE RX Statistics");
6361 	children = SYSCTL_CHILDREN(tree);
6362 	BGE_SYSCTL_STAT(sc, ctx, "Inbound Octets",
6363 	    children, rxstats.ifHCInOctets, "ifHCInOctets");
6364 	BGE_SYSCTL_STAT(sc, ctx, "Fragments",
6365 	    children, rxstats.etherStatsFragments, "Fragments");
6366 	BGE_SYSCTL_STAT(sc, ctx, "Inbound Unicast Packets",
6367 	    children, rxstats.ifHCInUcastPkts, "UnicastPkts");
6368 	BGE_SYSCTL_STAT(sc, ctx, "Inbound Multicast Packets",
6369 	    children, rxstats.ifHCInMulticastPkts, "MulticastPkts");
6370 	BGE_SYSCTL_STAT(sc, ctx, "FCS Errors",
6371 	    children, rxstats.dot3StatsFCSErrors, "FCSErrors");
6372 	BGE_SYSCTL_STAT(sc, ctx, "Alignment Errors",
6373 	    children, rxstats.dot3StatsAlignmentErrors, "AlignmentErrors");
6374 	BGE_SYSCTL_STAT(sc, ctx, "XON Pause Frames Received",
6375 	    children, rxstats.xonPauseFramesReceived, "xonPauseFramesReceived");
6376 	BGE_SYSCTL_STAT(sc, ctx, "XOFF Pause Frames Received",
6377 	    children, rxstats.xoffPauseFramesReceived,
6378 	    "xoffPauseFramesReceived");
6379 	BGE_SYSCTL_STAT(sc, ctx, "MAC Control Frames Received",
6380 	    children, rxstats.macControlFramesReceived,
6381 	    "ControlFramesReceived");
6382 	BGE_SYSCTL_STAT(sc, ctx, "XOFF State Entered",
6383 	    children, rxstats.xoffStateEntered, "xoffStateEntered");
6384 	BGE_SYSCTL_STAT(sc, ctx, "Frames Too Long",
6385 	    children, rxstats.dot3StatsFramesTooLong, "FramesTooLong");
6386 	BGE_SYSCTL_STAT(sc, ctx, "Jabbers",
6387 	    children, rxstats.etherStatsJabbers, "Jabbers");
6388 	BGE_SYSCTL_STAT(sc, ctx, "Undersized Packets",
6389 	    children, rxstats.etherStatsUndersizePkts, "UndersizePkts");
6390 	BGE_SYSCTL_STAT(sc, ctx, "Inbound Range Length Errors",
6391 	    children, rxstats.inRangeLengthError, "inRangeLengthError");
6392 	BGE_SYSCTL_STAT(sc, ctx, "Outbound Range Length Errors",
6393 	    children, rxstats.outRangeLengthError, "outRangeLengthError");
6394 
6395 	tree = SYSCTL_ADD_NODE(ctx, schildren, OID_AUTO, "tx", CTLFLAG_RD,
6396 	    NULL, "BGE TX Statistics");
6397 	children = SYSCTL_CHILDREN(tree);
6398 	BGE_SYSCTL_STAT(sc, ctx, "Outbound Octets",
6399 	    children, txstats.ifHCOutOctets, "ifHCOutOctets");
6400 	BGE_SYSCTL_STAT(sc, ctx, "TX Collisions",
6401 	    children, txstats.etherStatsCollisions, "Collisions");
6402 	BGE_SYSCTL_STAT(sc, ctx, "XON Sent",
6403 	    children, txstats.outXonSent, "XonSent");
6404 	BGE_SYSCTL_STAT(sc, ctx, "XOFF Sent",
6405 	    children, txstats.outXoffSent, "XoffSent");
6406 	BGE_SYSCTL_STAT(sc, ctx, "Flow Control Done",
6407 	    children, txstats.flowControlDone, "flowControlDone");
6408 	BGE_SYSCTL_STAT(sc, ctx, "Internal MAC TX errors",
6409 	    children, txstats.dot3StatsInternalMacTransmitErrors,
6410 	    "InternalMacTransmitErrors");
6411 	BGE_SYSCTL_STAT(sc, ctx, "Single Collision Frames",
6412 	    children, txstats.dot3StatsSingleCollisionFrames,
6413 	    "SingleCollisionFrames");
6414 	BGE_SYSCTL_STAT(sc, ctx, "Multiple Collision Frames",
6415 	    children, txstats.dot3StatsMultipleCollisionFrames,
6416 	    "MultipleCollisionFrames");
6417 	BGE_SYSCTL_STAT(sc, ctx, "Deferred Transmissions",
6418 	    children, txstats.dot3StatsDeferredTransmissions,
6419 	    "DeferredTransmissions");
6420 	BGE_SYSCTL_STAT(sc, ctx, "Excessive Collisions",
6421 	    children, txstats.dot3StatsExcessiveCollisions,
6422 	    "ExcessiveCollisions");
6423 	BGE_SYSCTL_STAT(sc, ctx, "Late Collisions",
6424 	    children, txstats.dot3StatsLateCollisions,
6425 	    "LateCollisions");
6426 	BGE_SYSCTL_STAT(sc, ctx, "Outbound Unicast Packets",
6427 	    children, txstats.ifHCOutUcastPkts, "UnicastPkts");
6428 	BGE_SYSCTL_STAT(sc, ctx, "Outbound Multicast Packets",
6429 	    children, txstats.ifHCOutMulticastPkts, "MulticastPkts");
6430 	BGE_SYSCTL_STAT(sc, ctx, "Outbound Broadcast Packets",
6431 	    children, txstats.ifHCOutBroadcastPkts, "BroadcastPkts");
6432 	BGE_SYSCTL_STAT(sc, ctx, "Carrier Sense Errors",
6433 	    children, txstats.dot3StatsCarrierSenseErrors,
6434 	    "CarrierSenseErrors");
6435 	BGE_SYSCTL_STAT(sc, ctx, "Outbound Discards",
6436 	    children, txstats.ifOutDiscards, "Discards");
6437 	BGE_SYSCTL_STAT(sc, ctx, "Outbound Errors",
6438 	    children, txstats.ifOutErrors, "Errors");
6439 }
6440 
6441 #undef BGE_SYSCTL_STAT
6442 
6443 #define	BGE_SYSCTL_STAT_ADD64(c, h, n, p, d)	\
6444 	    SYSCTL_ADD_UQUAD(c, h, OID_AUTO, n, CTLFLAG_RD, p, d)
6445 
6446 static void
6447 bge_add_sysctl_stats_regs(struct bge_softc *sc, struct sysctl_ctx_list *ctx,
6448     struct sysctl_oid_list *parent)
6449 {
6450 	struct sysctl_oid *tree;
6451 	struct sysctl_oid_list *child, *schild;
6452 	struct bge_mac_stats *stats;
6453 
6454 	stats = &sc->bge_mac_stats;
6455 	tree = SYSCTL_ADD_NODE(ctx, parent, OID_AUTO, "stats", CTLFLAG_RD,
6456 	    NULL, "BGE Statistics");
6457 	schild = child = SYSCTL_CHILDREN(tree);
6458 	BGE_SYSCTL_STAT_ADD64(ctx, child, "FramesDroppedDueToFilters",
6459 	    &stats->FramesDroppedDueToFilters, "Frames Dropped Due to Filters");
6460 	BGE_SYSCTL_STAT_ADD64(ctx, child, "DmaWriteQueueFull",
6461 	    &stats->DmaWriteQueueFull, "NIC DMA Write Queue Full");
6462 	BGE_SYSCTL_STAT_ADD64(ctx, child, "DmaWriteHighPriQueueFull",
6463 	    &stats->DmaWriteHighPriQueueFull,
6464 	    "NIC DMA Write High Priority Queue Full");
6465 	BGE_SYSCTL_STAT_ADD64(ctx, child, "NoMoreRxBDs",
6466 	    &stats->NoMoreRxBDs, "NIC No More RX Buffer Descriptors");
6467 	BGE_SYSCTL_STAT_ADD64(ctx, child, "InputDiscards",
6468 	    &stats->InputDiscards, "Discarded Input Frames");
6469 	BGE_SYSCTL_STAT_ADD64(ctx, child, "InputErrors",
6470 	    &stats->InputErrors, "Input Errors");
6471 	BGE_SYSCTL_STAT_ADD64(ctx, child, "RecvThresholdHit",
6472 	    &stats->RecvThresholdHit, "NIC Recv Threshold Hit");
6473 
6474 	tree = SYSCTL_ADD_NODE(ctx, schild, OID_AUTO, "rx", CTLFLAG_RD,
6475 	    NULL, "BGE RX Statistics");
6476 	child = SYSCTL_CHILDREN(tree);
6477 	BGE_SYSCTL_STAT_ADD64(ctx, child, "ifHCInOctets",
6478 	    &stats->ifHCInOctets, "Inbound Octets");
6479 	BGE_SYSCTL_STAT_ADD64(ctx, child, "Fragments",
6480 	    &stats->etherStatsFragments, "Fragments");
6481 	BGE_SYSCTL_STAT_ADD64(ctx, child, "UnicastPkts",
6482 	    &stats->ifHCInUcastPkts, "Inbound Unicast Packets");
6483 	BGE_SYSCTL_STAT_ADD64(ctx, child, "MulticastPkts",
6484 	    &stats->ifHCInMulticastPkts, "Inbound Multicast Packets");
6485 	BGE_SYSCTL_STAT_ADD64(ctx, child, "BroadcastPkts",
6486 	    &stats->ifHCInBroadcastPkts, "Inbound Broadcast Packets");
6487 	BGE_SYSCTL_STAT_ADD64(ctx, child, "FCSErrors",
6488 	    &stats->dot3StatsFCSErrors, "FCS Errors");
6489 	BGE_SYSCTL_STAT_ADD64(ctx, child, "AlignmentErrors",
6490 	    &stats->dot3StatsAlignmentErrors, "Alignment Errors");
6491 	BGE_SYSCTL_STAT_ADD64(ctx, child, "xonPauseFramesReceived",
6492 	    &stats->xonPauseFramesReceived, "XON Pause Frames Received");
6493 	BGE_SYSCTL_STAT_ADD64(ctx, child, "xoffPauseFramesReceived",
6494 	    &stats->xoffPauseFramesReceived, "XOFF Pause Frames Received");
6495 	BGE_SYSCTL_STAT_ADD64(ctx, child, "ControlFramesReceived",
6496 	    &stats->macControlFramesReceived, "MAC Control Frames Received");
6497 	BGE_SYSCTL_STAT_ADD64(ctx, child, "xoffStateEntered",
6498 	    &stats->xoffStateEntered, "XOFF State Entered");
6499 	BGE_SYSCTL_STAT_ADD64(ctx, child, "FramesTooLong",
6500 	    &stats->dot3StatsFramesTooLong, "Frames Too Long");
6501 	BGE_SYSCTL_STAT_ADD64(ctx, child, "Jabbers",
6502 	    &stats->etherStatsJabbers, "Jabbers");
6503 	BGE_SYSCTL_STAT_ADD64(ctx, child, "UndersizePkts",
6504 	    &stats->etherStatsUndersizePkts, "Undersized Packets");
6505 
6506 	tree = SYSCTL_ADD_NODE(ctx, schild, OID_AUTO, "tx", CTLFLAG_RD,
6507 	    NULL, "BGE TX Statistics");
6508 	child = SYSCTL_CHILDREN(tree);
6509 	BGE_SYSCTL_STAT_ADD64(ctx, child, "ifHCOutOctets",
6510 	    &stats->ifHCOutOctets, "Outbound Octets");
6511 	BGE_SYSCTL_STAT_ADD64(ctx, child, "Collisions",
6512 	    &stats->etherStatsCollisions, "TX Collisions");
6513 	BGE_SYSCTL_STAT_ADD64(ctx, child, "XonSent",
6514 	    &stats->outXonSent, "XON Sent");
6515 	BGE_SYSCTL_STAT_ADD64(ctx, child, "XoffSent",
6516 	    &stats->outXoffSent, "XOFF Sent");
6517 	BGE_SYSCTL_STAT_ADD64(ctx, child, "InternalMacTransmitErrors",
6518 	    &stats->dot3StatsInternalMacTransmitErrors,
6519 	    "Internal MAC TX Errors");
6520 	BGE_SYSCTL_STAT_ADD64(ctx, child, "SingleCollisionFrames",
6521 	    &stats->dot3StatsSingleCollisionFrames, "Single Collision Frames");
6522 	BGE_SYSCTL_STAT_ADD64(ctx, child, "MultipleCollisionFrames",
6523 	    &stats->dot3StatsMultipleCollisionFrames,
6524 	    "Multiple Collision Frames");
6525 	BGE_SYSCTL_STAT_ADD64(ctx, child, "DeferredTransmissions",
6526 	    &stats->dot3StatsDeferredTransmissions, "Deferred Transmissions");
6527 	BGE_SYSCTL_STAT_ADD64(ctx, child, "ExcessiveCollisions",
6528 	    &stats->dot3StatsExcessiveCollisions, "Excessive Collisions");
6529 	BGE_SYSCTL_STAT_ADD64(ctx, child, "LateCollisions",
6530 	    &stats->dot3StatsLateCollisions, "Late Collisions");
6531 	BGE_SYSCTL_STAT_ADD64(ctx, child, "UnicastPkts",
6532 	    &stats->ifHCOutUcastPkts, "Outbound Unicast Packets");
6533 	BGE_SYSCTL_STAT_ADD64(ctx, child, "MulticastPkts",
6534 	    &stats->ifHCOutMulticastPkts, "Outbound Multicast Packets");
6535 	BGE_SYSCTL_STAT_ADD64(ctx, child, "BroadcastPkts",
6536 	    &stats->ifHCOutBroadcastPkts, "Outbound Broadcast Packets");
6537 }
6538 
6539 #undef	BGE_SYSCTL_STAT_ADD64
6540 
6541 static int
6542 bge_sysctl_stats(SYSCTL_HANDLER_ARGS)
6543 {
6544 	struct bge_softc *sc;
6545 	uint32_t result;
6546 	int offset;
6547 
6548 	sc = (struct bge_softc *)arg1;
6549 	offset = arg2;
6550 	result = CSR_READ_4(sc, BGE_MEMWIN_START + BGE_STATS_BLOCK + offset +
6551 	    offsetof(bge_hostaddr, bge_addr_lo));
6552 	return (sysctl_handle_int(oidp, &result, 0, req));
6553 }
6554 
6555 #ifdef BGE_REGISTER_DEBUG
6556 static int
6557 bge_sysctl_debug_info(SYSCTL_HANDLER_ARGS)
6558 {
6559 	struct bge_softc *sc;
6560 	uint16_t *sbdata;
6561 	int error, result, sbsz;
6562 	int i, j;
6563 
6564 	result = -1;
6565 	error = sysctl_handle_int(oidp, &result, 0, req);
6566 	if (error || (req->newptr == NULL))
6567 		return (error);
6568 
6569 	if (result == 1) {
6570 		sc = (struct bge_softc *)arg1;
6571 
6572 		if (sc->bge_asicrev == BGE_ASICREV_BCM5700 &&
6573 		    sc->bge_chipid != BGE_CHIPID_BCM5700_C0)
6574 			sbsz = BGE_STATUS_BLK_SZ;
6575 		else
6576 			sbsz = 32;
6577 		sbdata = (uint16_t *)sc->bge_ldata.bge_status_block;
6578 		printf("Status Block:\n");
6579 		BGE_LOCK(sc);
6580 		bus_dmamap_sync(sc->bge_cdata.bge_status_tag,
6581 		    sc->bge_cdata.bge_status_map,
6582 		    BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE);
6583 		for (i = 0x0; i < sbsz / sizeof(uint16_t); ) {
6584 			printf("%06x:", i);
6585 			for (j = 0; j < 8; j++)
6586 				printf(" %04x", sbdata[i++]);
6587 			printf("\n");
6588 		}
6589 
6590 		printf("Registers:\n");
6591 		for (i = 0x800; i < 0xA00; ) {
6592 			printf("%06x:", i);
6593 			for (j = 0; j < 8; j++) {
6594 				printf(" %08x", CSR_READ_4(sc, i));
6595 				i += 4;
6596 			}
6597 			printf("\n");
6598 		}
6599 		BGE_UNLOCK(sc);
6600 
6601 		printf("Hardware Flags:\n");
6602 		if (BGE_IS_5717_PLUS(sc))
6603 			printf(" - 5717 Plus\n");
6604 		if (BGE_IS_5755_PLUS(sc))
6605 			printf(" - 5755 Plus\n");
6606 		if (BGE_IS_575X_PLUS(sc))
6607 			printf(" - 575X Plus\n");
6608 		if (BGE_IS_5705_PLUS(sc))
6609 			printf(" - 5705 Plus\n");
6610 		if (BGE_IS_5714_FAMILY(sc))
6611 			printf(" - 5714 Family\n");
6612 		if (BGE_IS_5700_FAMILY(sc))
6613 			printf(" - 5700 Family\n");
6614 		if (sc->bge_flags & BGE_FLAG_JUMBO)
6615 			printf(" - Supports Jumbo Frames\n");
6616 		if (sc->bge_flags & BGE_FLAG_PCIX)
6617 			printf(" - PCI-X Bus\n");
6618 		if (sc->bge_flags & BGE_FLAG_PCIE)
6619 			printf(" - PCI Express Bus\n");
6620 		if (sc->bge_phy_flags & BGE_PHY_NO_3LED)
6621 			printf(" - No 3 LEDs\n");
6622 		if (sc->bge_flags & BGE_FLAG_RX_ALIGNBUG)
6623 			printf(" - RX Alignment Bug\n");
6624 	}
6625 
6626 	return (error);
6627 }
6628 
6629 static int
6630 bge_sysctl_reg_read(SYSCTL_HANDLER_ARGS)
6631 {
6632 	struct bge_softc *sc;
6633 	int error;
6634 	uint16_t result;
6635 	uint32_t val;
6636 
6637 	result = -1;
6638 	error = sysctl_handle_int(oidp, &result, 0, req);
6639 	if (error || (req->newptr == NULL))
6640 		return (error);
6641 
6642 	if (result < 0x8000) {
6643 		sc = (struct bge_softc *)arg1;
6644 		val = CSR_READ_4(sc, result);
6645 		printf("reg 0x%06X = 0x%08X\n", result, val);
6646 	}
6647 
6648 	return (error);
6649 }
6650 
6651 static int
6652 bge_sysctl_ape_read(SYSCTL_HANDLER_ARGS)
6653 {
6654 	struct bge_softc *sc;
6655 	int error;
6656 	uint16_t result;
6657 	uint32_t val;
6658 
6659 	result = -1;
6660 	error = sysctl_handle_int(oidp, &result, 0, req);
6661 	if (error || (req->newptr == NULL))
6662 		return (error);
6663 
6664 	if (result < 0x8000) {
6665 		sc = (struct bge_softc *)arg1;
6666 		val = APE_READ_4(sc, result);
6667 		printf("reg 0x%06X = 0x%08X\n", result, val);
6668 	}
6669 
6670 	return (error);
6671 }
6672 
6673 static int
6674 bge_sysctl_mem_read(SYSCTL_HANDLER_ARGS)
6675 {
6676 	struct bge_softc *sc;
6677 	int error;
6678 	uint16_t result;
6679 	uint32_t val;
6680 
6681 	result = -1;
6682 	error = sysctl_handle_int(oidp, &result, 0, req);
6683 	if (error || (req->newptr == NULL))
6684 		return (error);
6685 
6686 	if (result < 0x8000) {
6687 		sc = (struct bge_softc *)arg1;
6688 		val = bge_readmem_ind(sc, result);
6689 		printf("mem 0x%06X = 0x%08X\n", result, val);
6690 	}
6691 
6692 	return (error);
6693 }
6694 #endif
6695 
6696 static int
6697 bge_get_eaddr_fw(struct bge_softc *sc, uint8_t ether_addr[])
6698 {
6699 
6700 	if (sc->bge_flags & BGE_FLAG_EADDR)
6701 		return (1);
6702 
6703 #ifdef __sparc64__
6704 	OF_getetheraddr(sc->bge_dev, ether_addr);
6705 	return (0);
6706 #endif
6707 	return (1);
6708 }
6709 
6710 static int
6711 bge_get_eaddr_mem(struct bge_softc *sc, uint8_t ether_addr[])
6712 {
6713 	uint32_t mac_addr;
6714 
6715 	mac_addr = bge_readmem_ind(sc, BGE_SRAM_MAC_ADDR_HIGH_MB);
6716 	if ((mac_addr >> 16) == 0x484b) {
6717 		ether_addr[0] = (uint8_t)(mac_addr >> 8);
6718 		ether_addr[1] = (uint8_t)mac_addr;
6719 		mac_addr = bge_readmem_ind(sc, BGE_SRAM_MAC_ADDR_LOW_MB);
6720 		ether_addr[2] = (uint8_t)(mac_addr >> 24);
6721 		ether_addr[3] = (uint8_t)(mac_addr >> 16);
6722 		ether_addr[4] = (uint8_t)(mac_addr >> 8);
6723 		ether_addr[5] = (uint8_t)mac_addr;
6724 		return (0);
6725 	}
6726 	return (1);
6727 }
6728 
6729 static int
6730 bge_get_eaddr_nvram(struct bge_softc *sc, uint8_t ether_addr[])
6731 {
6732 	int mac_offset = BGE_EE_MAC_OFFSET;
6733 
6734 	if (sc->bge_asicrev == BGE_ASICREV_BCM5906)
6735 		mac_offset = BGE_EE_MAC_OFFSET_5906;
6736 
6737 	return (bge_read_nvram(sc, ether_addr, mac_offset + 2,
6738 	    ETHER_ADDR_LEN));
6739 }
6740 
6741 static int
6742 bge_get_eaddr_eeprom(struct bge_softc *sc, uint8_t ether_addr[])
6743 {
6744 
6745 	if (sc->bge_asicrev == BGE_ASICREV_BCM5906)
6746 		return (1);
6747 
6748 	return (bge_read_eeprom(sc, ether_addr, BGE_EE_MAC_OFFSET + 2,
6749 	   ETHER_ADDR_LEN));
6750 }
6751 
6752 static int
6753 bge_get_eaddr(struct bge_softc *sc, uint8_t eaddr[])
6754 {
6755 	static const bge_eaddr_fcn_t bge_eaddr_funcs[] = {
6756 		/* NOTE: Order is critical */
6757 		bge_get_eaddr_fw,
6758 		bge_get_eaddr_mem,
6759 		bge_get_eaddr_nvram,
6760 		bge_get_eaddr_eeprom,
6761 		NULL
6762 	};
6763 	const bge_eaddr_fcn_t *func;
6764 
6765 	for (func = bge_eaddr_funcs; *func != NULL; ++func) {
6766 		if ((*func)(sc, eaddr) == 0)
6767 			break;
6768 	}
6769 	return (*func == NULL ? ENXIO : 0);
6770 }
6771 
6772 static uint64_t
6773 bge_get_counter(if_t ifp, ift_counter cnt)
6774 {
6775 	struct bge_softc *sc;
6776 	struct bge_mac_stats *stats;
6777 
6778 	sc = if_getsoftc(ifp);
6779 	if (!BGE_IS_5705_PLUS(sc))
6780 		return (if_get_counter_default(ifp, cnt));
6781 	stats = &sc->bge_mac_stats;
6782 
6783 	switch (cnt) {
6784 	case IFCOUNTER_IERRORS:
6785 		return (stats->NoMoreRxBDs + stats->InputDiscards +
6786 		    stats->InputErrors);
6787 	case IFCOUNTER_COLLISIONS:
6788 		return (stats->etherStatsCollisions);
6789 	default:
6790 		return (if_get_counter_default(ifp, cnt));
6791 	}
6792 }
6793