1 /*- 2 * SPDX-License-Identifier: BSD-2-Clause 3 * 4 * Copyright (c) 2006-2014 QLogic Corporation 5 * 6 * Redistribution and use in source and binary forms, with or without 7 * modification, are permitted provided that the following conditions 8 * are met: 9 * 10 * 1. Redistributions of source code must retain the above copyright 11 * notice, this list of conditions and the following disclaimer. 12 * 2. Redistributions in binary form must reproduce the above copyright 13 * notice, this list of conditions and the following disclaimer in the 14 * documentation and/or other materials provided with the distribution. 15 * 16 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS' 17 * AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 18 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 19 * ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS 20 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR 21 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF 22 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS 23 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN 24 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) 25 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF 26 * THE POSSIBILITY OF SUCH DAMAGE. 27 */ 28 29 #include <sys/cdefs.h> 30 __FBSDID("$FreeBSD$"); 31 32 /* 33 * The following controllers are supported by this driver: 34 * BCM5706C A2, A3 35 * BCM5706S A2, A3 36 * BCM5708C B1, B2 37 * BCM5708S B1, B2 38 * BCM5709C A1, C0 39 * BCM5709S A1, C0 40 * BCM5716C C0 41 * BCM5716S C0 42 * 43 * The following controllers are not supported by this driver: 44 * BCM5706C A0, A1 (pre-production) 45 * BCM5706S A0, A1 (pre-production) 46 * BCM5708C A0, B0 (pre-production) 47 * BCM5708S A0, B0 (pre-production) 48 * BCM5709C A0 B0, B1, B2 (pre-production) 49 * BCM5709S A0, B0, B1, B2 (pre-production) 50 */ 51 52 #include "opt_bce.h" 53 54 #include <sys/param.h> 55 #include <sys/endian.h> 56 #include <sys/systm.h> 57 #include <sys/sockio.h> 58 #include <sys/lock.h> 59 #include <sys/mbuf.h> 60 #include <sys/malloc.h> 61 #include <sys/mutex.h> 62 #include <sys/kernel.h> 63 #include <sys/module.h> 64 #include <sys/socket.h> 65 #include <sys/sysctl.h> 66 #include <sys/queue.h> 67 68 #include <net/bpf.h> 69 #include <net/ethernet.h> 70 #include <net/if.h> 71 #include <net/if_var.h> 72 #include <net/if_arp.h> 73 #include <net/if_dl.h> 74 #include <net/if_media.h> 75 76 #include <net/if_types.h> 77 #include <net/if_vlan_var.h> 78 79 #include <netinet/in_systm.h> 80 #include <netinet/in.h> 81 #include <netinet/if_ether.h> 82 #include <netinet/ip.h> 83 #include <netinet/ip6.h> 84 #include <netinet/tcp.h> 85 #include <netinet/udp.h> 86 87 #include <machine/bus.h> 88 #include <machine/resource.h> 89 #include <sys/bus.h> 90 #include <sys/rman.h> 91 92 #include <dev/mii/mii.h> 93 #include <dev/mii/miivar.h> 94 #include "miidevs.h" 95 #include <dev/mii/brgphyreg.h> 96 97 #include <dev/pci/pcireg.h> 98 #include <dev/pci/pcivar.h> 99 100 #include "miibus_if.h" 101 102 #include <dev/bce/if_bcereg.h> 103 #include <dev/bce/if_bcefw.h> 104 105 /****************************************************************************/ 106 /* BCE Debug Options */ 107 /****************************************************************************/ 108 #ifdef BCE_DEBUG 109 u32 bce_debug = BCE_WARN; 110 111 /* 0 = Never */ 112 /* 1 = 1 in 2,147,483,648 */ 113 /* 256 = 1 in 8,388,608 */ 114 /* 2048 = 1 in 1,048,576 */ 115 /* 65536 = 1 in 32,768 */ 116 /* 1048576 = 1 in 2,048 */ 117 /* 268435456 = 1 in 8 */ 118 /* 536870912 = 1 in 4 */ 119 /* 1073741824 = 1 in 2 */ 120 121 /* Controls how often the l2_fhdr frame error check will fail. */ 122 int l2fhdr_error_sim_control = 0; 123 124 /* Controls how often the unexpected attention check will fail. */ 125 int unexpected_attention_sim_control = 0; 126 127 /* Controls how often to simulate an mbuf allocation failure. */ 128 int mbuf_alloc_failed_sim_control = 0; 129 130 /* Controls how often to simulate a DMA mapping failure. */ 131 int dma_map_addr_failed_sim_control = 0; 132 133 /* Controls how often to simulate a bootcode failure. */ 134 int bootcode_running_failure_sim_control = 0; 135 #endif 136 137 /****************************************************************************/ 138 /* PCI Device ID Table */ 139 /* */ 140 /* Used by bce_probe() to identify the devices supported by this driver. */ 141 /****************************************************************************/ 142 #define BCE_DEVDESC_MAX 64 143 144 static const struct bce_type bce_devs[] = { 145 /* BCM5706C Controllers and OEM boards. */ 146 { BRCM_VENDORID, BRCM_DEVICEID_BCM5706, HP_VENDORID, 0x3101, 147 "HP NC370T Multifunction Gigabit Server Adapter" }, 148 { BRCM_VENDORID, BRCM_DEVICEID_BCM5706, HP_VENDORID, 0x3106, 149 "HP NC370i Multifunction Gigabit Server Adapter" }, 150 { BRCM_VENDORID, BRCM_DEVICEID_BCM5706, HP_VENDORID, 0x3070, 151 "HP NC380T PCIe DP Multifunc Gig Server Adapter" }, 152 { BRCM_VENDORID, BRCM_DEVICEID_BCM5706, HP_VENDORID, 0x1709, 153 "HP NC371i Multifunction Gigabit Server Adapter" }, 154 { BRCM_VENDORID, BRCM_DEVICEID_BCM5706, PCI_ANY_ID, PCI_ANY_ID, 155 "QLogic NetXtreme II BCM5706 1000Base-T" }, 156 157 /* BCM5706S controllers and OEM boards. */ 158 { BRCM_VENDORID, BRCM_DEVICEID_BCM5706S, HP_VENDORID, 0x3102, 159 "HP NC370F Multifunction Gigabit Server Adapter" }, 160 { BRCM_VENDORID, BRCM_DEVICEID_BCM5706S, PCI_ANY_ID, PCI_ANY_ID, 161 "QLogic NetXtreme II BCM5706 1000Base-SX" }, 162 163 /* BCM5708C controllers and OEM boards. */ 164 { BRCM_VENDORID, BRCM_DEVICEID_BCM5708, HP_VENDORID, 0x7037, 165 "HP NC373T PCIe Multifunction Gig Server Adapter" }, 166 { BRCM_VENDORID, BRCM_DEVICEID_BCM5708, HP_VENDORID, 0x7038, 167 "HP NC373i Multifunction Gigabit Server Adapter" }, 168 { BRCM_VENDORID, BRCM_DEVICEID_BCM5708, HP_VENDORID, 0x7045, 169 "HP NC374m PCIe Multifunction Adapter" }, 170 { BRCM_VENDORID, BRCM_DEVICEID_BCM5708, PCI_ANY_ID, PCI_ANY_ID, 171 "QLogic NetXtreme II BCM5708 1000Base-T" }, 172 173 /* BCM5708S controllers and OEM boards. */ 174 { BRCM_VENDORID, BRCM_DEVICEID_BCM5708S, HP_VENDORID, 0x1706, 175 "HP NC373m Multifunction Gigabit Server Adapter" }, 176 { BRCM_VENDORID, BRCM_DEVICEID_BCM5708S, HP_VENDORID, 0x703b, 177 "HP NC373i Multifunction Gigabit Server Adapter" }, 178 { BRCM_VENDORID, BRCM_DEVICEID_BCM5708S, HP_VENDORID, 0x703d, 179 "HP NC373F PCIe Multifunc Giga Server Adapter" }, 180 { BRCM_VENDORID, BRCM_DEVICEID_BCM5708S, PCI_ANY_ID, PCI_ANY_ID, 181 "QLogic NetXtreme II BCM5708 1000Base-SX" }, 182 183 /* BCM5709C controllers and OEM boards. */ 184 { BRCM_VENDORID, BRCM_DEVICEID_BCM5709, HP_VENDORID, 0x7055, 185 "HP NC382i DP Multifunction Gigabit Server Adapter" }, 186 { BRCM_VENDORID, BRCM_DEVICEID_BCM5709, HP_VENDORID, 0x7059, 187 "HP NC382T PCIe DP Multifunction Gigabit Server Adapter" }, 188 { BRCM_VENDORID, BRCM_DEVICEID_BCM5709, PCI_ANY_ID, PCI_ANY_ID, 189 "QLogic NetXtreme II BCM5709 1000Base-T" }, 190 191 /* BCM5709S controllers and OEM boards. */ 192 { BRCM_VENDORID, BRCM_DEVICEID_BCM5709S, HP_VENDORID, 0x171d, 193 "HP NC382m DP 1GbE Multifunction BL-c Adapter" }, 194 { BRCM_VENDORID, BRCM_DEVICEID_BCM5709S, HP_VENDORID, 0x7056, 195 "HP NC382i DP Multifunction Gigabit Server Adapter" }, 196 { BRCM_VENDORID, BRCM_DEVICEID_BCM5709S, PCI_ANY_ID, PCI_ANY_ID, 197 "QLogic NetXtreme II BCM5709 1000Base-SX" }, 198 199 /* BCM5716 controllers and OEM boards. */ 200 { BRCM_VENDORID, BRCM_DEVICEID_BCM5716, PCI_ANY_ID, PCI_ANY_ID, 201 "QLogic NetXtreme II BCM5716 1000Base-T" }, 202 203 { 0, 0, 0, 0, NULL } 204 }; 205 206 207 /****************************************************************************/ 208 /* Supported Flash NVRAM device data. */ 209 /****************************************************************************/ 210 static const struct flash_spec flash_table[] = 211 { 212 #define BUFFERED_FLAGS (BCE_NV_BUFFERED | BCE_NV_TRANSLATE) 213 #define NONBUFFERED_FLAGS (BCE_NV_WREN) 214 215 /* Slow EEPROM */ 216 {0x00000000, 0x40830380, 0x009f0081, 0xa184a053, 0xaf000400, 217 BUFFERED_FLAGS, SEEPROM_PAGE_BITS, SEEPROM_PAGE_SIZE, 218 SEEPROM_BYTE_ADDR_MASK, SEEPROM_TOTAL_SIZE, 219 "EEPROM - slow"}, 220 /* Expansion entry 0001 */ 221 {0x08000002, 0x4b808201, 0x00050081, 0x03840253, 0xaf020406, 222 NONBUFFERED_FLAGS, SAIFUN_FLASH_PAGE_BITS, SAIFUN_FLASH_PAGE_SIZE, 223 SAIFUN_FLASH_BYTE_ADDR_MASK, 0, 224 "Entry 0001"}, 225 /* Saifun SA25F010 (non-buffered flash) */ 226 /* strap, cfg1, & write1 need updates */ 227 {0x04000001, 0x47808201, 0x00050081, 0x03840253, 0xaf020406, 228 NONBUFFERED_FLAGS, SAIFUN_FLASH_PAGE_BITS, SAIFUN_FLASH_PAGE_SIZE, 229 SAIFUN_FLASH_BYTE_ADDR_MASK, SAIFUN_FLASH_BASE_TOTAL_SIZE*2, 230 "Non-buffered flash (128kB)"}, 231 /* Saifun SA25F020 (non-buffered flash) */ 232 /* strap, cfg1, & write1 need updates */ 233 {0x0c000003, 0x4f808201, 0x00050081, 0x03840253, 0xaf020406, 234 NONBUFFERED_FLAGS, SAIFUN_FLASH_PAGE_BITS, SAIFUN_FLASH_PAGE_SIZE, 235 SAIFUN_FLASH_BYTE_ADDR_MASK, SAIFUN_FLASH_BASE_TOTAL_SIZE*4, 236 "Non-buffered flash (256kB)"}, 237 /* Expansion entry 0100 */ 238 {0x11000000, 0x53808201, 0x00050081, 0x03840253, 0xaf020406, 239 NONBUFFERED_FLAGS, SAIFUN_FLASH_PAGE_BITS, SAIFUN_FLASH_PAGE_SIZE, 240 SAIFUN_FLASH_BYTE_ADDR_MASK, 0, 241 "Entry 0100"}, 242 /* Entry 0101: ST M45PE10 (non-buffered flash, TetonII B0) */ 243 {0x19000002, 0x5b808201, 0x000500db, 0x03840253, 0xaf020406, 244 NONBUFFERED_FLAGS, ST_MICRO_FLASH_PAGE_BITS, ST_MICRO_FLASH_PAGE_SIZE, 245 ST_MICRO_FLASH_BYTE_ADDR_MASK, ST_MICRO_FLASH_BASE_TOTAL_SIZE*2, 246 "Entry 0101: ST M45PE10 (128kB non-bufferred)"}, 247 /* Entry 0110: ST M45PE20 (non-buffered flash)*/ 248 {0x15000001, 0x57808201, 0x000500db, 0x03840253, 0xaf020406, 249 NONBUFFERED_FLAGS, ST_MICRO_FLASH_PAGE_BITS, ST_MICRO_FLASH_PAGE_SIZE, 250 ST_MICRO_FLASH_BYTE_ADDR_MASK, ST_MICRO_FLASH_BASE_TOTAL_SIZE*4, 251 "Entry 0110: ST M45PE20 (256kB non-bufferred)"}, 252 /* Saifun SA25F005 (non-buffered flash) */ 253 /* strap, cfg1, & write1 need updates */ 254 {0x1d000003, 0x5f808201, 0x00050081, 0x03840253, 0xaf020406, 255 NONBUFFERED_FLAGS, SAIFUN_FLASH_PAGE_BITS, SAIFUN_FLASH_PAGE_SIZE, 256 SAIFUN_FLASH_BYTE_ADDR_MASK, SAIFUN_FLASH_BASE_TOTAL_SIZE, 257 "Non-buffered flash (64kB)"}, 258 /* Fast EEPROM */ 259 {0x22000000, 0x62808380, 0x009f0081, 0xa184a053, 0xaf000400, 260 BUFFERED_FLAGS, SEEPROM_PAGE_BITS, SEEPROM_PAGE_SIZE, 261 SEEPROM_BYTE_ADDR_MASK, SEEPROM_TOTAL_SIZE, 262 "EEPROM - fast"}, 263 /* Expansion entry 1001 */ 264 {0x2a000002, 0x6b808201, 0x00050081, 0x03840253, 0xaf020406, 265 NONBUFFERED_FLAGS, SAIFUN_FLASH_PAGE_BITS, SAIFUN_FLASH_PAGE_SIZE, 266 SAIFUN_FLASH_BYTE_ADDR_MASK, 0, 267 "Entry 1001"}, 268 /* Expansion entry 1010 */ 269 {0x26000001, 0x67808201, 0x00050081, 0x03840253, 0xaf020406, 270 NONBUFFERED_FLAGS, SAIFUN_FLASH_PAGE_BITS, SAIFUN_FLASH_PAGE_SIZE, 271 SAIFUN_FLASH_BYTE_ADDR_MASK, 0, 272 "Entry 1010"}, 273 /* ATMEL AT45DB011B (buffered flash) */ 274 {0x2e000003, 0x6e808273, 0x00570081, 0x68848353, 0xaf000400, 275 BUFFERED_FLAGS, BUFFERED_FLASH_PAGE_BITS, BUFFERED_FLASH_PAGE_SIZE, 276 BUFFERED_FLASH_BYTE_ADDR_MASK, BUFFERED_FLASH_TOTAL_SIZE, 277 "Buffered flash (128kB)"}, 278 /* Expansion entry 1100 */ 279 {0x33000000, 0x73808201, 0x00050081, 0x03840253, 0xaf020406, 280 NONBUFFERED_FLAGS, SAIFUN_FLASH_PAGE_BITS, SAIFUN_FLASH_PAGE_SIZE, 281 SAIFUN_FLASH_BYTE_ADDR_MASK, 0, 282 "Entry 1100"}, 283 /* Expansion entry 1101 */ 284 {0x3b000002, 0x7b808201, 0x00050081, 0x03840253, 0xaf020406, 285 NONBUFFERED_FLAGS, SAIFUN_FLASH_PAGE_BITS, SAIFUN_FLASH_PAGE_SIZE, 286 SAIFUN_FLASH_BYTE_ADDR_MASK, 0, 287 "Entry 1101"}, 288 /* Ateml Expansion entry 1110 */ 289 {0x37000001, 0x76808273, 0x00570081, 0x68848353, 0xaf000400, 290 BUFFERED_FLAGS, BUFFERED_FLASH_PAGE_BITS, BUFFERED_FLASH_PAGE_SIZE, 291 BUFFERED_FLASH_BYTE_ADDR_MASK, 0, 292 "Entry 1110 (Atmel)"}, 293 /* ATMEL AT45DB021B (buffered flash) */ 294 {0x3f000003, 0x7e808273, 0x00570081, 0x68848353, 0xaf000400, 295 BUFFERED_FLAGS, BUFFERED_FLASH_PAGE_BITS, BUFFERED_FLASH_PAGE_SIZE, 296 BUFFERED_FLASH_BYTE_ADDR_MASK, BUFFERED_FLASH_TOTAL_SIZE*2, 297 "Buffered flash (256kB)"}, 298 }; 299 300 /* 301 * The BCM5709 controllers transparently handle the 302 * differences between Atmel 264 byte pages and all 303 * flash devices which use 256 byte pages, so no 304 * logical-to-physical mapping is required in the 305 * driver. 306 */ 307 static const struct flash_spec flash_5709 = { 308 .flags = BCE_NV_BUFFERED, 309 .page_bits = BCM5709_FLASH_PAGE_BITS, 310 .page_size = BCM5709_FLASH_PAGE_SIZE, 311 .addr_mask = BCM5709_FLASH_BYTE_ADDR_MASK, 312 .total_size = BUFFERED_FLASH_TOTAL_SIZE * 2, 313 .name = "5709/5716 buffered flash (256kB)", 314 }; 315 316 317 /****************************************************************************/ 318 /* FreeBSD device entry points. */ 319 /****************************************************************************/ 320 static int bce_probe (device_t); 321 static int bce_attach (device_t); 322 static int bce_detach (device_t); 323 static int bce_shutdown (device_t); 324 325 326 /****************************************************************************/ 327 /* BCE Debug Data Structure Dump Routines */ 328 /****************************************************************************/ 329 #ifdef BCE_DEBUG 330 static u32 bce_reg_rd (struct bce_softc *, u32); 331 static void bce_reg_wr (struct bce_softc *, u32, u32); 332 static void bce_reg_wr16 (struct bce_softc *, u32, u16); 333 static u32 bce_ctx_rd (struct bce_softc *, u32, u32); 334 static void bce_dump_enet (struct bce_softc *, struct mbuf *); 335 static void bce_dump_mbuf (struct bce_softc *, struct mbuf *); 336 static void bce_dump_tx_mbuf_chain (struct bce_softc *, u16, int); 337 static void bce_dump_rx_mbuf_chain (struct bce_softc *, u16, int); 338 static void bce_dump_pg_mbuf_chain (struct bce_softc *, u16, int); 339 static void bce_dump_txbd (struct bce_softc *, 340 int, struct tx_bd *); 341 static void bce_dump_rxbd (struct bce_softc *, 342 int, struct rx_bd *); 343 static void bce_dump_pgbd (struct bce_softc *, 344 int, struct rx_bd *); 345 static void bce_dump_l2fhdr (struct bce_softc *, 346 int, struct l2_fhdr *); 347 static void bce_dump_ctx (struct bce_softc *, u16); 348 static void bce_dump_ftqs (struct bce_softc *); 349 static void bce_dump_tx_chain (struct bce_softc *, u16, int); 350 static void bce_dump_rx_bd_chain (struct bce_softc *, u16, int); 351 static void bce_dump_pg_chain (struct bce_softc *, u16, int); 352 static void bce_dump_status_block (struct bce_softc *); 353 static void bce_dump_stats_block (struct bce_softc *); 354 static void bce_dump_driver_state (struct bce_softc *); 355 static void bce_dump_hw_state (struct bce_softc *); 356 static void bce_dump_shmem_state (struct bce_softc *); 357 static void bce_dump_mq_regs (struct bce_softc *); 358 static void bce_dump_bc_state (struct bce_softc *); 359 static void bce_dump_txp_state (struct bce_softc *, int); 360 static void bce_dump_rxp_state (struct bce_softc *, int); 361 static void bce_dump_tpat_state (struct bce_softc *, int); 362 static void bce_dump_cp_state (struct bce_softc *, int); 363 static void bce_dump_com_state (struct bce_softc *, int); 364 static void bce_dump_rv2p_state (struct bce_softc *); 365 static void bce_breakpoint (struct bce_softc *); 366 #endif /*BCE_DEBUG */ 367 368 369 /****************************************************************************/ 370 /* BCE Register/Memory Access Routines */ 371 /****************************************************************************/ 372 static u32 bce_reg_rd_ind (struct bce_softc *, u32); 373 static void bce_reg_wr_ind (struct bce_softc *, u32, u32); 374 static void bce_shmem_wr (struct bce_softc *, u32, u32); 375 static u32 bce_shmem_rd (struct bce_softc *, u32); 376 static void bce_ctx_wr (struct bce_softc *, u32, u32, u32); 377 static int bce_miibus_read_reg (device_t, int, int); 378 static int bce_miibus_write_reg (device_t, int, int, int); 379 static void bce_miibus_statchg (device_t); 380 381 #ifdef BCE_DEBUG 382 static int bce_sysctl_nvram_dump(SYSCTL_HANDLER_ARGS); 383 #ifdef BCE_NVRAM_WRITE_SUPPORT 384 static int bce_sysctl_nvram_write(SYSCTL_HANDLER_ARGS); 385 #endif 386 #endif 387 388 /****************************************************************************/ 389 /* BCE NVRAM Access Routines */ 390 /****************************************************************************/ 391 static int bce_acquire_nvram_lock (struct bce_softc *); 392 static int bce_release_nvram_lock (struct bce_softc *); 393 static void bce_enable_nvram_access(struct bce_softc *); 394 static void bce_disable_nvram_access(struct bce_softc *); 395 static int bce_nvram_read_dword (struct bce_softc *, u32, u8 *, u32); 396 static int bce_init_nvram (struct bce_softc *); 397 static int bce_nvram_read (struct bce_softc *, u32, u8 *, int); 398 static int bce_nvram_test (struct bce_softc *); 399 #ifdef BCE_NVRAM_WRITE_SUPPORT 400 static int bce_enable_nvram_write (struct bce_softc *); 401 static void bce_disable_nvram_write(struct bce_softc *); 402 static int bce_nvram_erase_page (struct bce_softc *, u32); 403 static int bce_nvram_write_dword (struct bce_softc *, u32, u8 *, u32); 404 static int bce_nvram_write (struct bce_softc *, u32, u8 *, int); 405 #endif 406 407 /****************************************************************************/ 408 /* */ 409 /****************************************************************************/ 410 static void bce_get_rx_buffer_sizes(struct bce_softc *, int); 411 static void bce_get_media (struct bce_softc *); 412 static void bce_init_media (struct bce_softc *); 413 static u32 bce_get_rphy_link (struct bce_softc *); 414 static void bce_dma_map_addr (void *, bus_dma_segment_t *, int, int); 415 static int bce_dma_alloc (device_t); 416 static void bce_dma_free (struct bce_softc *); 417 static void bce_release_resources (struct bce_softc *); 418 419 /****************************************************************************/ 420 /* BCE Firmware Synchronization and Load */ 421 /****************************************************************************/ 422 static void bce_fw_cap_init (struct bce_softc *); 423 static int bce_fw_sync (struct bce_softc *, u32); 424 static void bce_load_rv2p_fw (struct bce_softc *, const u32 *, u32, 425 u32); 426 static void bce_load_cpu_fw (struct bce_softc *, 427 struct cpu_reg *, struct fw_info *); 428 static void bce_start_cpu (struct bce_softc *, struct cpu_reg *); 429 static void bce_halt_cpu (struct bce_softc *, struct cpu_reg *); 430 static void bce_start_rxp_cpu (struct bce_softc *); 431 static void bce_init_rxp_cpu (struct bce_softc *); 432 static void bce_init_txp_cpu (struct bce_softc *); 433 static void bce_init_tpat_cpu (struct bce_softc *); 434 static void bce_init_cp_cpu (struct bce_softc *); 435 static void bce_init_com_cpu (struct bce_softc *); 436 static void bce_init_cpus (struct bce_softc *); 437 438 static void bce_print_adapter_info (struct bce_softc *); 439 static void bce_probe_pci_caps (device_t, struct bce_softc *); 440 static void bce_stop (struct bce_softc *); 441 static int bce_reset (struct bce_softc *, u32); 442 static int bce_chipinit (struct bce_softc *); 443 static int bce_blockinit (struct bce_softc *); 444 445 static int bce_init_tx_chain (struct bce_softc *); 446 static void bce_free_tx_chain (struct bce_softc *); 447 448 static int bce_get_rx_buf (struct bce_softc *, u16, u16, u32 *); 449 static int bce_init_rx_chain (struct bce_softc *); 450 static void bce_fill_rx_chain (struct bce_softc *); 451 static void bce_free_rx_chain (struct bce_softc *); 452 453 static int bce_get_pg_buf (struct bce_softc *, u16, u16); 454 static int bce_init_pg_chain (struct bce_softc *); 455 static void bce_fill_pg_chain (struct bce_softc *); 456 static void bce_free_pg_chain (struct bce_softc *); 457 458 static struct mbuf *bce_tso_setup (struct bce_softc *, 459 struct mbuf **, u16 *); 460 static int bce_tx_encap (struct bce_softc *, struct mbuf **); 461 static void bce_start_locked (struct ifnet *); 462 static void bce_start (struct ifnet *); 463 static int bce_ioctl (struct ifnet *, u_long, caddr_t); 464 static uint64_t bce_get_counter (struct ifnet *, ift_counter); 465 static void bce_watchdog (struct bce_softc *); 466 static int bce_ifmedia_upd (struct ifnet *); 467 static int bce_ifmedia_upd_locked (struct ifnet *); 468 static void bce_ifmedia_sts (struct ifnet *, struct ifmediareq *); 469 static void bce_ifmedia_sts_rphy (struct bce_softc *, struct ifmediareq *); 470 static void bce_init_locked (struct bce_softc *); 471 static void bce_init (void *); 472 static void bce_mgmt_init_locked (struct bce_softc *sc); 473 474 static int bce_init_ctx (struct bce_softc *); 475 static void bce_get_mac_addr (struct bce_softc *); 476 static void bce_set_mac_addr (struct bce_softc *); 477 static void bce_phy_intr (struct bce_softc *); 478 static inline u16 bce_get_hw_rx_cons (struct bce_softc *); 479 static void bce_rx_intr (struct bce_softc *); 480 static void bce_tx_intr (struct bce_softc *); 481 static void bce_disable_intr (struct bce_softc *); 482 static void bce_enable_intr (struct bce_softc *, int); 483 484 static void bce_intr (void *); 485 static void bce_set_rx_mode (struct bce_softc *); 486 static void bce_stats_update (struct bce_softc *); 487 static void bce_tick (void *); 488 static void bce_pulse (void *); 489 static void bce_add_sysctls (struct bce_softc *); 490 491 492 /****************************************************************************/ 493 /* FreeBSD device dispatch table. */ 494 /****************************************************************************/ 495 static device_method_t bce_methods[] = { 496 /* Device interface (device_if.h) */ 497 DEVMETHOD(device_probe, bce_probe), 498 DEVMETHOD(device_attach, bce_attach), 499 DEVMETHOD(device_detach, bce_detach), 500 DEVMETHOD(device_shutdown, bce_shutdown), 501 /* Supported by device interface but not used here. */ 502 /* DEVMETHOD(device_identify, bce_identify), */ 503 /* DEVMETHOD(device_suspend, bce_suspend), */ 504 /* DEVMETHOD(device_resume, bce_resume), */ 505 /* DEVMETHOD(device_quiesce, bce_quiesce), */ 506 507 /* MII interface (miibus_if.h) */ 508 DEVMETHOD(miibus_readreg, bce_miibus_read_reg), 509 DEVMETHOD(miibus_writereg, bce_miibus_write_reg), 510 DEVMETHOD(miibus_statchg, bce_miibus_statchg), 511 /* Supported by MII interface but not used here. */ 512 /* DEVMETHOD(miibus_linkchg, bce_miibus_linkchg), */ 513 /* DEVMETHOD(miibus_mediainit, bce_miibus_mediainit), */ 514 515 DEVMETHOD_END 516 }; 517 518 static driver_t bce_driver = { 519 "bce", 520 bce_methods, 521 sizeof(struct bce_softc) 522 }; 523 524 static devclass_t bce_devclass; 525 526 MODULE_DEPEND(bce, pci, 1, 1, 1); 527 MODULE_DEPEND(bce, ether, 1, 1, 1); 528 MODULE_DEPEND(bce, miibus, 1, 1, 1); 529 530 DRIVER_MODULE(bce, pci, bce_driver, bce_devclass, NULL, NULL); 531 DRIVER_MODULE(miibus, bce, miibus_driver, miibus_devclass, NULL, NULL); 532 MODULE_PNP_INFO("U16:vendor;U16:device;U16:#;U16:#;D:#", pci, bce, 533 bce_devs, nitems(bce_devs) - 1); 534 535 /****************************************************************************/ 536 /* Tunable device values */ 537 /****************************************************************************/ 538 static SYSCTL_NODE(_hw, OID_AUTO, bce, CTLFLAG_RD, 0, "bce driver parameters"); 539 540 /* Allowable values are TRUE or FALSE */ 541 static int bce_verbose = TRUE; 542 SYSCTL_INT(_hw_bce, OID_AUTO, verbose, CTLFLAG_RDTUN, &bce_verbose, 0, 543 "Verbose output enable/disable"); 544 545 /* Allowable values are TRUE or FALSE */ 546 static int bce_tso_enable = TRUE; 547 SYSCTL_INT(_hw_bce, OID_AUTO, tso_enable, CTLFLAG_RDTUN, &bce_tso_enable, 0, 548 "TSO Enable/Disable"); 549 550 /* Allowable values are 0 (IRQ), 1 (MSI/IRQ), and 2 (MSI-X/MSI/IRQ) */ 551 /* ToDo: Add MSI-X support. */ 552 static int bce_msi_enable = 1; 553 SYSCTL_INT(_hw_bce, OID_AUTO, msi_enable, CTLFLAG_RDTUN, &bce_msi_enable, 0, 554 "MSI-X|MSI|INTx selector"); 555 556 /* Allowable values are 1, 2, 4, 8. */ 557 static int bce_rx_pages = DEFAULT_RX_PAGES; 558 SYSCTL_UINT(_hw_bce, OID_AUTO, rx_pages, CTLFLAG_RDTUN, &bce_rx_pages, 0, 559 "Receive buffer descriptor pages (1 page = 255 buffer descriptors)"); 560 561 /* Allowable values are 1, 2, 4, 8. */ 562 static int bce_tx_pages = DEFAULT_TX_PAGES; 563 SYSCTL_UINT(_hw_bce, OID_AUTO, tx_pages, CTLFLAG_RDTUN, &bce_tx_pages, 0, 564 "Transmit buffer descriptor pages (1 page = 255 buffer descriptors)"); 565 566 /* Allowable values are TRUE or FALSE. */ 567 static int bce_hdr_split = TRUE; 568 SYSCTL_UINT(_hw_bce, OID_AUTO, hdr_split, CTLFLAG_RDTUN, &bce_hdr_split, 0, 569 "Frame header/payload splitting Enable/Disable"); 570 571 /* Allowable values are TRUE or FALSE. */ 572 static int bce_strict_rx_mtu = FALSE; 573 SYSCTL_UINT(_hw_bce, OID_AUTO, strict_rx_mtu, CTLFLAG_RDTUN, 574 &bce_strict_rx_mtu, 0, 575 "Enable/Disable strict RX frame size checking"); 576 577 /* Allowable values are 0 ... 100 */ 578 #ifdef BCE_DEBUG 579 /* Generate 1 interrupt for every transmit completion. */ 580 static int bce_tx_quick_cons_trip_int = 1; 581 #else 582 /* Generate 1 interrupt for every 20 transmit completions. */ 583 static int bce_tx_quick_cons_trip_int = DEFAULT_TX_QUICK_CONS_TRIP_INT; 584 #endif 585 SYSCTL_UINT(_hw_bce, OID_AUTO, tx_quick_cons_trip_int, CTLFLAG_RDTUN, 586 &bce_tx_quick_cons_trip_int, 0, 587 "Transmit BD trip point during interrupts"); 588 589 /* Allowable values are 0 ... 100 */ 590 /* Generate 1 interrupt for every transmit completion. */ 591 #ifdef BCE_DEBUG 592 static int bce_tx_quick_cons_trip = 1; 593 #else 594 /* Generate 1 interrupt for every 20 transmit completions. */ 595 static int bce_tx_quick_cons_trip = DEFAULT_TX_QUICK_CONS_TRIP; 596 #endif 597 SYSCTL_UINT(_hw_bce, OID_AUTO, tx_quick_cons_trip, CTLFLAG_RDTUN, 598 &bce_tx_quick_cons_trip, 0, 599 "Transmit BD trip point"); 600 601 /* Allowable values are 0 ... 100 */ 602 #ifdef BCE_DEBUG 603 /* Generate an interrupt if 0us have elapsed since the last TX completion. */ 604 static int bce_tx_ticks_int = 0; 605 #else 606 /* Generate an interrupt if 80us have elapsed since the last TX completion. */ 607 static int bce_tx_ticks_int = DEFAULT_TX_TICKS_INT; 608 #endif 609 SYSCTL_UINT(_hw_bce, OID_AUTO, tx_ticks_int, CTLFLAG_RDTUN, 610 &bce_tx_ticks_int, 0, "Transmit ticks count during interrupt"); 611 612 /* Allowable values are 0 ... 100 */ 613 #ifdef BCE_DEBUG 614 /* Generate an interrupt if 0us have elapsed since the last TX completion. */ 615 static int bce_tx_ticks = 0; 616 #else 617 /* Generate an interrupt if 80us have elapsed since the last TX completion. */ 618 static int bce_tx_ticks = DEFAULT_TX_TICKS; 619 #endif 620 SYSCTL_UINT(_hw_bce, OID_AUTO, tx_ticks, CTLFLAG_RDTUN, 621 &bce_tx_ticks, 0, "Transmit ticks count"); 622 623 /* Allowable values are 1 ... 100 */ 624 #ifdef BCE_DEBUG 625 /* Generate 1 interrupt for every received frame. */ 626 static int bce_rx_quick_cons_trip_int = 1; 627 #else 628 /* Generate 1 interrupt for every 6 received frames. */ 629 static int bce_rx_quick_cons_trip_int = DEFAULT_RX_QUICK_CONS_TRIP_INT; 630 #endif 631 SYSCTL_UINT(_hw_bce, OID_AUTO, rx_quick_cons_trip_int, CTLFLAG_RDTUN, 632 &bce_rx_quick_cons_trip_int, 0, 633 "Receive BD trip point duirng interrupts"); 634 635 /* Allowable values are 1 ... 100 */ 636 #ifdef BCE_DEBUG 637 /* Generate 1 interrupt for every received frame. */ 638 static int bce_rx_quick_cons_trip = 1; 639 #else 640 /* Generate 1 interrupt for every 6 received frames. */ 641 static int bce_rx_quick_cons_trip = DEFAULT_RX_QUICK_CONS_TRIP; 642 #endif 643 SYSCTL_UINT(_hw_bce, OID_AUTO, rx_quick_cons_trip, CTLFLAG_RDTUN, 644 &bce_rx_quick_cons_trip, 0, 645 "Receive BD trip point"); 646 647 /* Allowable values are 0 ... 100 */ 648 #ifdef BCE_DEBUG 649 /* Generate an int. if 0us have elapsed since the last received frame. */ 650 static int bce_rx_ticks_int = 0; 651 #else 652 /* Generate an int. if 18us have elapsed since the last received frame. */ 653 static int bce_rx_ticks_int = DEFAULT_RX_TICKS_INT; 654 #endif 655 SYSCTL_UINT(_hw_bce, OID_AUTO, rx_ticks_int, CTLFLAG_RDTUN, 656 &bce_rx_ticks_int, 0, "Receive ticks count during interrupt"); 657 658 /* Allowable values are 0 ... 100 */ 659 #ifdef BCE_DEBUG 660 /* Generate an int. if 0us have elapsed since the last received frame. */ 661 static int bce_rx_ticks = 0; 662 #else 663 /* Generate an int. if 18us have elapsed since the last received frame. */ 664 static int bce_rx_ticks = DEFAULT_RX_TICKS; 665 #endif 666 SYSCTL_UINT(_hw_bce, OID_AUTO, rx_ticks, CTLFLAG_RDTUN, 667 &bce_rx_ticks, 0, "Receive ticks count"); 668 669 670 /****************************************************************************/ 671 /* Device probe function. */ 672 /* */ 673 /* Compares the device to the driver's list of supported devices and */ 674 /* reports back to the OS whether this is the right driver for the device. */ 675 /* */ 676 /* Returns: */ 677 /* BUS_PROBE_DEFAULT on success, positive value on failure. */ 678 /****************************************************************************/ 679 static int 680 bce_probe(device_t dev) 681 { 682 const struct bce_type *t; 683 struct bce_softc *sc; 684 char *descbuf; 685 u16 vid = 0, did = 0, svid = 0, sdid = 0; 686 687 t = bce_devs; 688 689 sc = device_get_softc(dev); 690 sc->bce_unit = device_get_unit(dev); 691 sc->bce_dev = dev; 692 693 /* Get the data for the device to be probed. */ 694 vid = pci_get_vendor(dev); 695 did = pci_get_device(dev); 696 svid = pci_get_subvendor(dev); 697 sdid = pci_get_subdevice(dev); 698 699 DBPRINT(sc, BCE_EXTREME_LOAD, 700 "%s(); VID = 0x%04X, DID = 0x%04X, SVID = 0x%04X, " 701 "SDID = 0x%04X\n", __FUNCTION__, vid, did, svid, sdid); 702 703 /* Look through the list of known devices for a match. */ 704 while(t->bce_name != NULL) { 705 706 if ((vid == t->bce_vid) && (did == t->bce_did) && 707 ((svid == t->bce_svid) || (t->bce_svid == PCI_ANY_ID)) && 708 ((sdid == t->bce_sdid) || (t->bce_sdid == PCI_ANY_ID))) { 709 710 descbuf = malloc(BCE_DEVDESC_MAX, M_TEMP, M_NOWAIT); 711 712 if (descbuf == NULL) 713 return(ENOMEM); 714 715 /* Print out the device identity. */ 716 snprintf(descbuf, BCE_DEVDESC_MAX, "%s (%c%d)", 717 t->bce_name, (((pci_read_config(dev, 718 PCIR_REVID, 4) & 0xf0) >> 4) + 'A'), 719 (pci_read_config(dev, PCIR_REVID, 4) & 0xf)); 720 721 device_set_desc_copy(dev, descbuf); 722 free(descbuf, M_TEMP); 723 return(BUS_PROBE_DEFAULT); 724 } 725 t++; 726 } 727 728 return(ENXIO); 729 } 730 731 732 /****************************************************************************/ 733 /* PCI Capabilities Probe Function. */ 734 /* */ 735 /* Walks the PCI capabiites list for the device to find what features are */ 736 /* supported. */ 737 /* */ 738 /* Returns: */ 739 /* None. */ 740 /****************************************************************************/ 741 static void 742 bce_print_adapter_info(struct bce_softc *sc) 743 { 744 int i = 0; 745 746 DBENTER(BCE_VERBOSE_LOAD); 747 748 if (bce_verbose || bootverbose) { 749 BCE_PRINTF("ASIC (0x%08X); ", sc->bce_chipid); 750 printf("Rev (%c%d); ", ((BCE_CHIP_ID(sc) & 0xf000) >> 751 12) + 'A', ((BCE_CHIP_ID(sc) & 0x0ff0) >> 4)); 752 753 754 /* Bus info. */ 755 if (sc->bce_flags & BCE_PCIE_FLAG) { 756 printf("Bus (PCIe x%d, ", sc->link_width); 757 switch (sc->link_speed) { 758 case 1: printf("2.5Gbps); "); break; 759 case 2: printf("5Gbps); "); break; 760 default: printf("Unknown link speed); "); 761 } 762 } else { 763 printf("Bus (PCI%s, %s, %dMHz); ", 764 ((sc->bce_flags & BCE_PCIX_FLAG) ? "-X" : ""), 765 ((sc->bce_flags & BCE_PCI_32BIT_FLAG) ? 766 "32-bit" : "64-bit"), sc->bus_speed_mhz); 767 } 768 769 /* Firmware version and device features. */ 770 printf("B/C (%s); Bufs (RX:%d;TX:%d;PG:%d); Flags (", 771 sc->bce_bc_ver, sc->rx_pages, sc->tx_pages, 772 (bce_hdr_split == TRUE ? sc->pg_pages: 0)); 773 774 if (bce_hdr_split == TRUE) { 775 printf("SPLT"); 776 i++; 777 } 778 779 if (sc->bce_flags & BCE_USING_MSI_FLAG) { 780 if (i > 0) printf("|"); 781 printf("MSI"); i++; 782 } 783 784 if (sc->bce_flags & BCE_USING_MSIX_FLAG) { 785 if (i > 0) printf("|"); 786 printf("MSI-X"); i++; 787 } 788 789 if (sc->bce_phy_flags & BCE_PHY_2_5G_CAPABLE_FLAG) { 790 if (i > 0) printf("|"); 791 printf("2.5G"); i++; 792 } 793 794 if (sc->bce_phy_flags & BCE_PHY_REMOTE_CAP_FLAG) { 795 if (i > 0) printf("|"); 796 printf("Remote PHY(%s)", 797 sc->bce_phy_flags & BCE_PHY_REMOTE_PORT_FIBER_FLAG ? 798 "FIBER" : "TP"); i++; 799 } 800 801 if (sc->bce_flags & BCE_MFW_ENABLE_FLAG) { 802 if (i > 0) printf("|"); 803 printf("MFW); MFW (%s)\n", sc->bce_mfw_ver); 804 } else { 805 printf(")\n"); 806 } 807 808 printf("Coal (RX:%d,%d,%d,%d; TX:%d,%d,%d,%d)\n", 809 sc->bce_rx_quick_cons_trip_int, 810 sc->bce_rx_quick_cons_trip, 811 sc->bce_rx_ticks_int, 812 sc->bce_rx_ticks, 813 sc->bce_tx_quick_cons_trip_int, 814 sc->bce_tx_quick_cons_trip, 815 sc->bce_tx_ticks_int, 816 sc->bce_tx_ticks); 817 818 } 819 820 DBEXIT(BCE_VERBOSE_LOAD); 821 } 822 823 824 /****************************************************************************/ 825 /* PCI Capabilities Probe Function. */ 826 /* */ 827 /* Walks the PCI capabiites list for the device to find what features are */ 828 /* supported. */ 829 /* */ 830 /* Returns: */ 831 /* None. */ 832 /****************************************************************************/ 833 static void 834 bce_probe_pci_caps(device_t dev, struct bce_softc *sc) 835 { 836 u32 reg; 837 838 DBENTER(BCE_VERBOSE_LOAD); 839 840 /* Check if PCI-X capability is enabled. */ 841 if (pci_find_cap(dev, PCIY_PCIX, ®) == 0) { 842 if (reg != 0) 843 sc->bce_cap_flags |= BCE_PCIX_CAPABLE_FLAG; 844 } 845 846 /* Check if PCIe capability is enabled. */ 847 if (pci_find_cap(dev, PCIY_EXPRESS, ®) == 0) { 848 if (reg != 0) { 849 u16 link_status = pci_read_config(dev, reg + 0x12, 2); 850 DBPRINT(sc, BCE_INFO_LOAD, "PCIe link_status = " 851 "0x%08X\n", link_status); 852 sc->link_speed = link_status & 0xf; 853 sc->link_width = (link_status >> 4) & 0x3f; 854 sc->bce_cap_flags |= BCE_PCIE_CAPABLE_FLAG; 855 sc->bce_flags |= BCE_PCIE_FLAG; 856 } 857 } 858 859 /* Check if MSI capability is enabled. */ 860 if (pci_find_cap(dev, PCIY_MSI, ®) == 0) { 861 if (reg != 0) 862 sc->bce_cap_flags |= BCE_MSI_CAPABLE_FLAG; 863 } 864 865 /* Check if MSI-X capability is enabled. */ 866 if (pci_find_cap(dev, PCIY_MSIX, ®) == 0) { 867 if (reg != 0) 868 sc->bce_cap_flags |= BCE_MSIX_CAPABLE_FLAG; 869 } 870 871 DBEXIT(BCE_VERBOSE_LOAD); 872 } 873 874 875 /****************************************************************************/ 876 /* Load and validate user tunable settings. */ 877 /* */ 878 /* Returns: */ 879 /* Nothing. */ 880 /****************************************************************************/ 881 static void 882 bce_set_tunables(struct bce_softc *sc) 883 { 884 /* Set sysctl values for RX page count. */ 885 switch (bce_rx_pages) { 886 case 1: 887 /* fall-through */ 888 case 2: 889 /* fall-through */ 890 case 4: 891 /* fall-through */ 892 case 8: 893 sc->rx_pages = bce_rx_pages; 894 break; 895 default: 896 sc->rx_pages = DEFAULT_RX_PAGES; 897 BCE_PRINTF("%s(%d): Illegal value (%d) specified for " 898 "hw.bce.rx_pages! Setting default of %d.\n", 899 __FILE__, __LINE__, bce_rx_pages, DEFAULT_RX_PAGES); 900 } 901 902 /* ToDo: Consider allowing user setting for pg_pages. */ 903 sc->pg_pages = min((sc->rx_pages * 4), MAX_PG_PAGES); 904 905 /* Set sysctl values for TX page count. */ 906 switch (bce_tx_pages) { 907 case 1: 908 /* fall-through */ 909 case 2: 910 /* fall-through */ 911 case 4: 912 /* fall-through */ 913 case 8: 914 sc->tx_pages = bce_tx_pages; 915 break; 916 default: 917 sc->tx_pages = DEFAULT_TX_PAGES; 918 BCE_PRINTF("%s(%d): Illegal value (%d) specified for " 919 "hw.bce.tx_pages! Setting default of %d.\n", 920 __FILE__, __LINE__, bce_tx_pages, DEFAULT_TX_PAGES); 921 } 922 923 /* 924 * Validate the TX trip point (i.e. the number of 925 * TX completions before a status block update is 926 * generated and an interrupt is asserted. 927 */ 928 if (bce_tx_quick_cons_trip_int <= 100) { 929 sc->bce_tx_quick_cons_trip_int = 930 bce_tx_quick_cons_trip_int; 931 } else { 932 BCE_PRINTF("%s(%d): Illegal value (%d) specified for " 933 "hw.bce.tx_quick_cons_trip_int! Setting default of %d.\n", 934 __FILE__, __LINE__, bce_tx_quick_cons_trip_int, 935 DEFAULT_TX_QUICK_CONS_TRIP_INT); 936 sc->bce_tx_quick_cons_trip_int = 937 DEFAULT_TX_QUICK_CONS_TRIP_INT; 938 } 939 940 if (bce_tx_quick_cons_trip <= 100) { 941 sc->bce_tx_quick_cons_trip = 942 bce_tx_quick_cons_trip; 943 } else { 944 BCE_PRINTF("%s(%d): Illegal value (%d) specified for " 945 "hw.bce.tx_quick_cons_trip! Setting default of %d.\n", 946 __FILE__, __LINE__, bce_tx_quick_cons_trip, 947 DEFAULT_TX_QUICK_CONS_TRIP); 948 sc->bce_tx_quick_cons_trip = 949 DEFAULT_TX_QUICK_CONS_TRIP; 950 } 951 952 /* 953 * Validate the TX ticks count (i.e. the maximum amount 954 * of time to wait after the last TX completion has 955 * occurred before a status block update is generated 956 * and an interrupt is asserted. 957 */ 958 if (bce_tx_ticks_int <= 100) { 959 sc->bce_tx_ticks_int = 960 bce_tx_ticks_int; 961 } else { 962 BCE_PRINTF("%s(%d): Illegal value (%d) specified for " 963 "hw.bce.tx_ticks_int! Setting default of %d.\n", 964 __FILE__, __LINE__, bce_tx_ticks_int, 965 DEFAULT_TX_TICKS_INT); 966 sc->bce_tx_ticks_int = 967 DEFAULT_TX_TICKS_INT; 968 } 969 970 if (bce_tx_ticks <= 100) { 971 sc->bce_tx_ticks = 972 bce_tx_ticks; 973 } else { 974 BCE_PRINTF("%s(%d): Illegal value (%d) specified for " 975 "hw.bce.tx_ticks! Setting default of %d.\n", 976 __FILE__, __LINE__, bce_tx_ticks, 977 DEFAULT_TX_TICKS); 978 sc->bce_tx_ticks = 979 DEFAULT_TX_TICKS; 980 } 981 982 /* 983 * Validate the RX trip point (i.e. the number of 984 * RX frames received before a status block update is 985 * generated and an interrupt is asserted. 986 */ 987 if (bce_rx_quick_cons_trip_int <= 100) { 988 sc->bce_rx_quick_cons_trip_int = 989 bce_rx_quick_cons_trip_int; 990 } else { 991 BCE_PRINTF("%s(%d): Illegal value (%d) specified for " 992 "hw.bce.rx_quick_cons_trip_int! Setting default of %d.\n", 993 __FILE__, __LINE__, bce_rx_quick_cons_trip_int, 994 DEFAULT_RX_QUICK_CONS_TRIP_INT); 995 sc->bce_rx_quick_cons_trip_int = 996 DEFAULT_RX_QUICK_CONS_TRIP_INT; 997 } 998 999 if (bce_rx_quick_cons_trip <= 100) { 1000 sc->bce_rx_quick_cons_trip = 1001 bce_rx_quick_cons_trip; 1002 } else { 1003 BCE_PRINTF("%s(%d): Illegal value (%d) specified for " 1004 "hw.bce.rx_quick_cons_trip! Setting default of %d.\n", 1005 __FILE__, __LINE__, bce_rx_quick_cons_trip, 1006 DEFAULT_RX_QUICK_CONS_TRIP); 1007 sc->bce_rx_quick_cons_trip = 1008 DEFAULT_RX_QUICK_CONS_TRIP; 1009 } 1010 1011 /* 1012 * Validate the RX ticks count (i.e. the maximum amount 1013 * of time to wait after the last RX frame has been 1014 * received before a status block update is generated 1015 * and an interrupt is asserted. 1016 */ 1017 if (bce_rx_ticks_int <= 100) { 1018 sc->bce_rx_ticks_int = bce_rx_ticks_int; 1019 } else { 1020 BCE_PRINTF("%s(%d): Illegal value (%d) specified for " 1021 "hw.bce.rx_ticks_int! Setting default of %d.\n", 1022 __FILE__, __LINE__, bce_rx_ticks_int, 1023 DEFAULT_RX_TICKS_INT); 1024 sc->bce_rx_ticks_int = DEFAULT_RX_TICKS_INT; 1025 } 1026 1027 if (bce_rx_ticks <= 100) { 1028 sc->bce_rx_ticks = bce_rx_ticks; 1029 } else { 1030 BCE_PRINTF("%s(%d): Illegal value (%d) specified for " 1031 "hw.bce.rx_ticks! Setting default of %d.\n", 1032 __FILE__, __LINE__, bce_rx_ticks, 1033 DEFAULT_RX_TICKS); 1034 sc->bce_rx_ticks = DEFAULT_RX_TICKS; 1035 } 1036 1037 /* Disabling both RX ticks and RX trips will prevent interrupts. */ 1038 if ((bce_rx_quick_cons_trip == 0) && (bce_rx_ticks == 0)) { 1039 BCE_PRINTF("%s(%d): Cannot set both hw.bce.rx_ticks and " 1040 "hw.bce.rx_quick_cons_trip to 0. Setting default values.\n", 1041 __FILE__, __LINE__); 1042 sc->bce_rx_ticks = DEFAULT_RX_TICKS; 1043 sc->bce_rx_quick_cons_trip = DEFAULT_RX_QUICK_CONS_TRIP; 1044 } 1045 1046 /* Disabling both TX ticks and TX trips will prevent interrupts. */ 1047 if ((bce_tx_quick_cons_trip == 0) && (bce_tx_ticks == 0)) { 1048 BCE_PRINTF("%s(%d): Cannot set both hw.bce.tx_ticks and " 1049 "hw.bce.tx_quick_cons_trip to 0. Setting default values.\n", 1050 __FILE__, __LINE__); 1051 sc->bce_tx_ticks = DEFAULT_TX_TICKS; 1052 sc->bce_tx_quick_cons_trip = DEFAULT_TX_QUICK_CONS_TRIP; 1053 } 1054 } 1055 1056 1057 /****************************************************************************/ 1058 /* Device attach function. */ 1059 /* */ 1060 /* Allocates device resources, performs secondary chip identification, */ 1061 /* resets and initializes the hardware, and initializes driver instance */ 1062 /* variables. */ 1063 /* */ 1064 /* Returns: */ 1065 /* 0 on success, positive value on failure. */ 1066 /****************************************************************************/ 1067 static int 1068 bce_attach(device_t dev) 1069 { 1070 struct bce_softc *sc; 1071 struct ifnet *ifp; 1072 u32 val; 1073 int count, error, rc = 0, rid; 1074 1075 sc = device_get_softc(dev); 1076 sc->bce_dev = dev; 1077 1078 DBENTER(BCE_VERBOSE_LOAD | BCE_VERBOSE_RESET); 1079 1080 sc->bce_unit = device_get_unit(dev); 1081 1082 /* Set initial device and PHY flags */ 1083 sc->bce_flags = 0; 1084 sc->bce_phy_flags = 0; 1085 1086 bce_set_tunables(sc); 1087 1088 pci_enable_busmaster(dev); 1089 1090 /* Allocate PCI memory resources. */ 1091 rid = PCIR_BAR(0); 1092 sc->bce_res_mem = bus_alloc_resource_any(dev, SYS_RES_MEMORY, 1093 &rid, RF_ACTIVE); 1094 1095 if (sc->bce_res_mem == NULL) { 1096 BCE_PRINTF("%s(%d): PCI memory allocation failed\n", 1097 __FILE__, __LINE__); 1098 rc = ENXIO; 1099 goto bce_attach_fail; 1100 } 1101 1102 /* Get various resource handles. */ 1103 sc->bce_btag = rman_get_bustag(sc->bce_res_mem); 1104 sc->bce_bhandle = rman_get_bushandle(sc->bce_res_mem); 1105 sc->bce_vhandle = (vm_offset_t) rman_get_virtual(sc->bce_res_mem); 1106 1107 bce_probe_pci_caps(dev, sc); 1108 1109 rid = 1; 1110 count = 0; 1111 #if 0 1112 /* Try allocating MSI-X interrupts. */ 1113 if ((sc->bce_cap_flags & BCE_MSIX_CAPABLE_FLAG) && 1114 (bce_msi_enable >= 2) && 1115 ((sc->bce_res_irq = bus_alloc_resource_any(dev, SYS_RES_MEMORY, 1116 &rid, RF_ACTIVE)) != NULL)) { 1117 1118 msi_needed = count = 1; 1119 1120 if (((error = pci_alloc_msix(dev, &count)) != 0) || 1121 (count != msi_needed)) { 1122 BCE_PRINTF("%s(%d): MSI-X allocation failed! Requested = %d," 1123 "Received = %d, error = %d\n", __FILE__, __LINE__, 1124 msi_needed, count, error); 1125 count = 0; 1126 pci_release_msi(dev); 1127 bus_release_resource(dev, SYS_RES_MEMORY, rid, 1128 sc->bce_res_irq); 1129 sc->bce_res_irq = NULL; 1130 } else { 1131 DBPRINT(sc, BCE_INFO_LOAD, "%s(): Using MSI-X interrupt.\n", 1132 __FUNCTION__); 1133 sc->bce_flags |= BCE_USING_MSIX_FLAG; 1134 } 1135 } 1136 #endif 1137 1138 /* Try allocating a MSI interrupt. */ 1139 if ((sc->bce_cap_flags & BCE_MSI_CAPABLE_FLAG) && 1140 (bce_msi_enable >= 1) && (count == 0)) { 1141 count = 1; 1142 if ((error = pci_alloc_msi(dev, &count)) != 0) { 1143 BCE_PRINTF("%s(%d): MSI allocation failed! " 1144 "error = %d\n", __FILE__, __LINE__, error); 1145 count = 0; 1146 pci_release_msi(dev); 1147 } else { 1148 DBPRINT(sc, BCE_INFO_LOAD, "%s(): Using MSI " 1149 "interrupt.\n", __FUNCTION__); 1150 sc->bce_flags |= BCE_USING_MSI_FLAG; 1151 if (BCE_CHIP_NUM(sc) == BCE_CHIP_NUM_5709) 1152 sc->bce_flags |= BCE_ONE_SHOT_MSI_FLAG; 1153 rid = 1; 1154 } 1155 } 1156 1157 /* Try allocating a legacy interrupt. */ 1158 if (count == 0) { 1159 DBPRINT(sc, BCE_INFO_LOAD, "%s(): Using INTx interrupt.\n", 1160 __FUNCTION__); 1161 rid = 0; 1162 } 1163 1164 sc->bce_res_irq = bus_alloc_resource_any(dev, SYS_RES_IRQ, 1165 &rid, RF_ACTIVE | (count != 0 ? 0 : RF_SHAREABLE)); 1166 1167 /* Report any IRQ allocation errors. */ 1168 if (sc->bce_res_irq == NULL) { 1169 BCE_PRINTF("%s(%d): PCI map interrupt failed!\n", 1170 __FILE__, __LINE__); 1171 rc = ENXIO; 1172 goto bce_attach_fail; 1173 } 1174 1175 /* Initialize mutex for the current device instance. */ 1176 BCE_LOCK_INIT(sc, device_get_nameunit(dev)); 1177 1178 /* 1179 * Configure byte swap and enable indirect register access. 1180 * Rely on CPU to do target byte swapping on big endian systems. 1181 * Access to registers outside of PCI configurtion space are not 1182 * valid until this is done. 1183 */ 1184 pci_write_config(dev, BCE_PCICFG_MISC_CONFIG, 1185 BCE_PCICFG_MISC_CONFIG_REG_WINDOW_ENA | 1186 BCE_PCICFG_MISC_CONFIG_TARGET_MB_WORD_SWAP, 4); 1187 1188 /* Save ASIC revsion info. */ 1189 sc->bce_chipid = REG_RD(sc, BCE_MISC_ID); 1190 1191 /* Weed out any non-production controller revisions. */ 1192 switch(BCE_CHIP_ID(sc)) { 1193 case BCE_CHIP_ID_5706_A0: 1194 case BCE_CHIP_ID_5706_A1: 1195 case BCE_CHIP_ID_5708_A0: 1196 case BCE_CHIP_ID_5708_B0: 1197 case BCE_CHIP_ID_5709_A0: 1198 case BCE_CHIP_ID_5709_B0: 1199 case BCE_CHIP_ID_5709_B1: 1200 case BCE_CHIP_ID_5709_B2: 1201 BCE_PRINTF("%s(%d): Unsupported controller " 1202 "revision (%c%d)!\n", __FILE__, __LINE__, 1203 (((pci_read_config(dev, PCIR_REVID, 4) & 1204 0xf0) >> 4) + 'A'), (pci_read_config(dev, 1205 PCIR_REVID, 4) & 0xf)); 1206 rc = ENODEV; 1207 goto bce_attach_fail; 1208 } 1209 1210 /* 1211 * The embedded PCIe to PCI-X bridge (EPB) 1212 * in the 5708 cannot address memory above 1213 * 40 bits (E7_5708CB1_23043 & E6_5708SB1_23043). 1214 */ 1215 if (BCE_CHIP_NUM(sc) == BCE_CHIP_NUM_5708) 1216 sc->max_bus_addr = BCE_BUS_SPACE_MAXADDR; 1217 else 1218 sc->max_bus_addr = BUS_SPACE_MAXADDR; 1219 1220 /* 1221 * Find the base address for shared memory access. 1222 * Newer versions of bootcode use a signature and offset 1223 * while older versions use a fixed address. 1224 */ 1225 val = REG_RD_IND(sc, BCE_SHM_HDR_SIGNATURE); 1226 if ((val & BCE_SHM_HDR_SIGNATURE_SIG_MASK) == BCE_SHM_HDR_SIGNATURE_SIG) 1227 /* Multi-port devices use different offsets in shared memory. */ 1228 sc->bce_shmem_base = REG_RD_IND(sc, BCE_SHM_HDR_ADDR_0 + 1229 (pci_get_function(sc->bce_dev) << 2)); 1230 else 1231 sc->bce_shmem_base = HOST_VIEW_SHMEM_BASE; 1232 1233 DBPRINT(sc, BCE_VERBOSE_FIRMWARE, "%s(): bce_shmem_base = 0x%08X\n", 1234 __FUNCTION__, sc->bce_shmem_base); 1235 1236 /* Fetch the bootcode revision. */ 1237 val = bce_shmem_rd(sc, BCE_DEV_INFO_BC_REV); 1238 for (int i = 0, j = 0; i < 3; i++) { 1239 u8 num; 1240 1241 num = (u8) (val >> (24 - (i * 8))); 1242 for (int k = 100, skip0 = 1; k >= 1; num %= k, k /= 10) { 1243 if (num >= k || !skip0 || k == 1) { 1244 sc->bce_bc_ver[j++] = (num / k) + '0'; 1245 skip0 = 0; 1246 } 1247 } 1248 1249 if (i != 2) 1250 sc->bce_bc_ver[j++] = '.'; 1251 } 1252 1253 /* Check if any management firwmare is enabled. */ 1254 val = bce_shmem_rd(sc, BCE_PORT_FEATURE); 1255 if (val & BCE_PORT_FEATURE_ASF_ENABLED) { 1256 sc->bce_flags |= BCE_MFW_ENABLE_FLAG; 1257 1258 /* Allow time for firmware to enter the running state. */ 1259 for (int i = 0; i < 30; i++) { 1260 val = bce_shmem_rd(sc, BCE_BC_STATE_CONDITION); 1261 if (val & BCE_CONDITION_MFW_RUN_MASK) 1262 break; 1263 DELAY(10000); 1264 } 1265 1266 /* Check if management firmware is running. */ 1267 val = bce_shmem_rd(sc, BCE_BC_STATE_CONDITION); 1268 val &= BCE_CONDITION_MFW_RUN_MASK; 1269 if ((val != BCE_CONDITION_MFW_RUN_UNKNOWN) && 1270 (val != BCE_CONDITION_MFW_RUN_NONE)) { 1271 u32 addr = bce_shmem_rd(sc, BCE_MFW_VER_PTR); 1272 int i = 0; 1273 1274 /* Read the management firmware version string. */ 1275 for (int j = 0; j < 3; j++) { 1276 val = bce_reg_rd_ind(sc, addr + j * 4); 1277 val = bswap32(val); 1278 memcpy(&sc->bce_mfw_ver[i], &val, 4); 1279 i += 4; 1280 } 1281 } else { 1282 /* May cause firmware synchronization timeouts. */ 1283 BCE_PRINTF("%s(%d): Management firmware enabled " 1284 "but not running!\n", __FILE__, __LINE__); 1285 strcpy(sc->bce_mfw_ver, "NOT RUNNING!"); 1286 1287 /* ToDo: Any action the driver should take? */ 1288 } 1289 } 1290 1291 /* Get PCI bus information (speed and type). */ 1292 val = REG_RD(sc, BCE_PCICFG_MISC_STATUS); 1293 if (val & BCE_PCICFG_MISC_STATUS_PCIX_DET) { 1294 u32 clkreg; 1295 1296 sc->bce_flags |= BCE_PCIX_FLAG; 1297 1298 clkreg = REG_RD(sc, BCE_PCICFG_PCI_CLOCK_CONTROL_BITS); 1299 1300 clkreg &= BCE_PCICFG_PCI_CLOCK_CONTROL_BITS_PCI_CLK_SPD_DET; 1301 switch (clkreg) { 1302 case BCE_PCICFG_PCI_CLOCK_CONTROL_BITS_PCI_CLK_SPD_DET_133MHZ: 1303 sc->bus_speed_mhz = 133; 1304 break; 1305 1306 case BCE_PCICFG_PCI_CLOCK_CONTROL_BITS_PCI_CLK_SPD_DET_95MHZ: 1307 sc->bus_speed_mhz = 100; 1308 break; 1309 1310 case BCE_PCICFG_PCI_CLOCK_CONTROL_BITS_PCI_CLK_SPD_DET_66MHZ: 1311 case BCE_PCICFG_PCI_CLOCK_CONTROL_BITS_PCI_CLK_SPD_DET_80MHZ: 1312 sc->bus_speed_mhz = 66; 1313 break; 1314 1315 case BCE_PCICFG_PCI_CLOCK_CONTROL_BITS_PCI_CLK_SPD_DET_48MHZ: 1316 case BCE_PCICFG_PCI_CLOCK_CONTROL_BITS_PCI_CLK_SPD_DET_55MHZ: 1317 sc->bus_speed_mhz = 50; 1318 break; 1319 1320 case BCE_PCICFG_PCI_CLOCK_CONTROL_BITS_PCI_CLK_SPD_DET_LOW: 1321 case BCE_PCICFG_PCI_CLOCK_CONTROL_BITS_PCI_CLK_SPD_DET_32MHZ: 1322 case BCE_PCICFG_PCI_CLOCK_CONTROL_BITS_PCI_CLK_SPD_DET_38MHZ: 1323 sc->bus_speed_mhz = 33; 1324 break; 1325 } 1326 } else { 1327 if (val & BCE_PCICFG_MISC_STATUS_M66EN) 1328 sc->bus_speed_mhz = 66; 1329 else 1330 sc->bus_speed_mhz = 33; 1331 } 1332 1333 if (val & BCE_PCICFG_MISC_STATUS_32BIT_DET) 1334 sc->bce_flags |= BCE_PCI_32BIT_FLAG; 1335 1336 /* Find the media type for the adapter. */ 1337 bce_get_media(sc); 1338 1339 /* Reset controller and announce to bootcode that driver is present. */ 1340 if (bce_reset(sc, BCE_DRV_MSG_CODE_RESET)) { 1341 BCE_PRINTF("%s(%d): Controller reset failed!\n", 1342 __FILE__, __LINE__); 1343 rc = ENXIO; 1344 goto bce_attach_fail; 1345 } 1346 1347 /* Initialize the controller. */ 1348 if (bce_chipinit(sc)) { 1349 BCE_PRINTF("%s(%d): Controller initialization failed!\n", 1350 __FILE__, __LINE__); 1351 rc = ENXIO; 1352 goto bce_attach_fail; 1353 } 1354 1355 /* Perform NVRAM test. */ 1356 if (bce_nvram_test(sc)) { 1357 BCE_PRINTF("%s(%d): NVRAM test failed!\n", 1358 __FILE__, __LINE__); 1359 rc = ENXIO; 1360 goto bce_attach_fail; 1361 } 1362 1363 /* Fetch the permanent Ethernet MAC address. */ 1364 bce_get_mac_addr(sc); 1365 1366 /* Update statistics once every second. */ 1367 sc->bce_stats_ticks = 1000000 & 0xffff00; 1368 1369 /* Store data needed by PHY driver for backplane applications */ 1370 sc->bce_shared_hw_cfg = bce_shmem_rd(sc, BCE_SHARED_HW_CFG_CONFIG); 1371 sc->bce_port_hw_cfg = bce_shmem_rd(sc, BCE_PORT_HW_CFG_CONFIG); 1372 1373 /* Allocate DMA memory resources. */ 1374 if (bce_dma_alloc(dev)) { 1375 BCE_PRINTF("%s(%d): DMA resource allocation failed!\n", 1376 __FILE__, __LINE__); 1377 rc = ENXIO; 1378 goto bce_attach_fail; 1379 } 1380 1381 /* Allocate an ifnet structure. */ 1382 ifp = sc->bce_ifp = if_alloc(IFT_ETHER); 1383 if (ifp == NULL) { 1384 BCE_PRINTF("%s(%d): Interface allocation failed!\n", 1385 __FILE__, __LINE__); 1386 rc = ENXIO; 1387 goto bce_attach_fail; 1388 } 1389 1390 /* Initialize the ifnet interface. */ 1391 ifp->if_softc = sc; 1392 if_initname(ifp, device_get_name(dev), device_get_unit(dev)); 1393 ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST; 1394 ifp->if_ioctl = bce_ioctl; 1395 ifp->if_start = bce_start; 1396 ifp->if_get_counter = bce_get_counter; 1397 ifp->if_init = bce_init; 1398 ifp->if_mtu = ETHERMTU; 1399 1400 if (bce_tso_enable) { 1401 ifp->if_hwassist = BCE_IF_HWASSIST | CSUM_TSO; 1402 ifp->if_capabilities = BCE_IF_CAPABILITIES | IFCAP_TSO4 | 1403 IFCAP_VLAN_HWTSO; 1404 } else { 1405 ifp->if_hwassist = BCE_IF_HWASSIST; 1406 ifp->if_capabilities = BCE_IF_CAPABILITIES; 1407 } 1408 1409 #if __FreeBSD_version >= 800505 1410 /* 1411 * Introducing IFCAP_LINKSTATE didn't bump __FreeBSD_version 1412 * so it's approximate value. 1413 */ 1414 if ((sc->bce_phy_flags & BCE_PHY_REMOTE_CAP_FLAG) != 0) 1415 ifp->if_capabilities |= IFCAP_LINKSTATE; 1416 #endif 1417 1418 ifp->if_capenable = ifp->if_capabilities; 1419 1420 /* 1421 * Assume standard mbuf sizes for buffer allocation. 1422 * This may change later if the MTU size is set to 1423 * something other than 1500. 1424 */ 1425 bce_get_rx_buffer_sizes(sc, 1426 (ETHER_MAX_LEN - ETHER_HDR_LEN - ETHER_CRC_LEN)); 1427 1428 /* Recalculate our buffer allocation sizes. */ 1429 ifp->if_snd.ifq_drv_maxlen = USABLE_TX_BD_ALLOC; 1430 IFQ_SET_MAXLEN(&ifp->if_snd, ifp->if_snd.ifq_drv_maxlen); 1431 IFQ_SET_READY(&ifp->if_snd); 1432 1433 if (sc->bce_phy_flags & BCE_PHY_2_5G_CAPABLE_FLAG) 1434 ifp->if_baudrate = IF_Mbps(2500ULL); 1435 else 1436 ifp->if_baudrate = IF_Mbps(1000); 1437 1438 /* Handle any special PHY initialization for SerDes PHYs. */ 1439 bce_init_media(sc); 1440 1441 if ((sc->bce_phy_flags & BCE_PHY_REMOTE_CAP_FLAG) != 0) { 1442 ifmedia_init(&sc->bce_ifmedia, IFM_IMASK, bce_ifmedia_upd, 1443 bce_ifmedia_sts); 1444 /* 1445 * We can't manually override remote PHY's link and assume 1446 * PHY port configuration(Fiber or TP) is not changed after 1447 * device attach. This may not be correct though. 1448 */ 1449 if ((sc->bce_phy_flags & BCE_PHY_REMOTE_PORT_FIBER_FLAG) != 0) { 1450 if (sc->bce_phy_flags & BCE_PHY_2_5G_CAPABLE_FLAG) { 1451 ifmedia_add(&sc->bce_ifmedia, 1452 IFM_ETHER | IFM_2500_SX, 0, NULL); 1453 ifmedia_add(&sc->bce_ifmedia, 1454 IFM_ETHER | IFM_2500_SX | IFM_FDX, 0, NULL); 1455 } 1456 ifmedia_add(&sc->bce_ifmedia, 1457 IFM_ETHER | IFM_1000_SX, 0, NULL); 1458 ifmedia_add(&sc->bce_ifmedia, 1459 IFM_ETHER | IFM_1000_SX | IFM_FDX, 0, NULL); 1460 } else { 1461 ifmedia_add(&sc->bce_ifmedia, 1462 IFM_ETHER | IFM_10_T, 0, NULL); 1463 ifmedia_add(&sc->bce_ifmedia, 1464 IFM_ETHER | IFM_10_T | IFM_FDX, 0, NULL); 1465 ifmedia_add(&sc->bce_ifmedia, 1466 IFM_ETHER | IFM_100_TX, 0, NULL); 1467 ifmedia_add(&sc->bce_ifmedia, 1468 IFM_ETHER | IFM_100_TX | IFM_FDX, 0, NULL); 1469 ifmedia_add(&sc->bce_ifmedia, 1470 IFM_ETHER | IFM_1000_T, 0, NULL); 1471 ifmedia_add(&sc->bce_ifmedia, 1472 IFM_ETHER | IFM_1000_T | IFM_FDX, 0, NULL); 1473 } 1474 ifmedia_add(&sc->bce_ifmedia, IFM_ETHER | IFM_AUTO, 0, NULL); 1475 ifmedia_set(&sc->bce_ifmedia, IFM_ETHER | IFM_AUTO); 1476 sc->bce_ifmedia.ifm_media = sc->bce_ifmedia.ifm_cur->ifm_media; 1477 } else { 1478 /* MII child bus by attaching the PHY. */ 1479 rc = mii_attach(dev, &sc->bce_miibus, ifp, bce_ifmedia_upd, 1480 bce_ifmedia_sts, BMSR_DEFCAPMASK, sc->bce_phy_addr, 1481 MII_OFFSET_ANY, MIIF_DOPAUSE); 1482 if (rc != 0) { 1483 BCE_PRINTF("%s(%d): attaching PHYs failed\n", __FILE__, 1484 __LINE__); 1485 goto bce_attach_fail; 1486 } 1487 } 1488 1489 /* Attach to the Ethernet interface list. */ 1490 ether_ifattach(ifp, sc->eaddr); 1491 1492 #if __FreeBSD_version < 500000 1493 callout_init(&sc->bce_tick_callout); 1494 callout_init(&sc->bce_pulse_callout); 1495 #else 1496 callout_init_mtx(&sc->bce_tick_callout, &sc->bce_mtx, 0); 1497 callout_init_mtx(&sc->bce_pulse_callout, &sc->bce_mtx, 0); 1498 #endif 1499 1500 /* Hookup IRQ last. */ 1501 rc = bus_setup_intr(dev, sc->bce_res_irq, INTR_TYPE_NET | INTR_MPSAFE, 1502 NULL, bce_intr, sc, &sc->bce_intrhand); 1503 1504 if (rc) { 1505 BCE_PRINTF("%s(%d): Failed to setup IRQ!\n", 1506 __FILE__, __LINE__); 1507 bce_detach(dev); 1508 goto bce_attach_exit; 1509 } 1510 1511 /* 1512 * At this point we've acquired all the resources 1513 * we need to run so there's no turning back, we're 1514 * cleared for launch. 1515 */ 1516 1517 /* Print some important debugging info. */ 1518 DBRUNMSG(BCE_INFO, bce_dump_driver_state(sc)); 1519 1520 /* Add the supported sysctls to the kernel. */ 1521 bce_add_sysctls(sc); 1522 1523 BCE_LOCK(sc); 1524 1525 /* 1526 * The chip reset earlier notified the bootcode that 1527 * a driver is present. We now need to start our pulse 1528 * routine so that the bootcode is reminded that we're 1529 * still running. 1530 */ 1531 bce_pulse(sc); 1532 1533 bce_mgmt_init_locked(sc); 1534 BCE_UNLOCK(sc); 1535 1536 /* Finally, print some useful adapter info */ 1537 bce_print_adapter_info(sc); 1538 DBPRINT(sc, BCE_FATAL, "%s(): sc = %p\n", 1539 __FUNCTION__, sc); 1540 1541 goto bce_attach_exit; 1542 1543 bce_attach_fail: 1544 bce_release_resources(sc); 1545 1546 bce_attach_exit: 1547 1548 DBEXIT(BCE_VERBOSE_LOAD | BCE_VERBOSE_RESET); 1549 1550 return(rc); 1551 } 1552 1553 1554 /****************************************************************************/ 1555 /* Device detach function. */ 1556 /* */ 1557 /* Stops the controller, resets the controller, and releases resources. */ 1558 /* */ 1559 /* Returns: */ 1560 /* 0 on success, positive value on failure. */ 1561 /****************************************************************************/ 1562 static int 1563 bce_detach(device_t dev) 1564 { 1565 struct bce_softc *sc = device_get_softc(dev); 1566 struct ifnet *ifp; 1567 u32 msg; 1568 1569 DBENTER(BCE_VERBOSE_UNLOAD | BCE_VERBOSE_RESET); 1570 1571 ifp = sc->bce_ifp; 1572 1573 /* Stop and reset the controller. */ 1574 BCE_LOCK(sc); 1575 1576 /* Stop the pulse so the bootcode can go to driver absent state. */ 1577 callout_stop(&sc->bce_pulse_callout); 1578 1579 bce_stop(sc); 1580 if (sc->bce_flags & BCE_NO_WOL_FLAG) 1581 msg = BCE_DRV_MSG_CODE_UNLOAD_LNK_DN; 1582 else 1583 msg = BCE_DRV_MSG_CODE_UNLOAD; 1584 bce_reset(sc, msg); 1585 1586 BCE_UNLOCK(sc); 1587 1588 ether_ifdetach(ifp); 1589 1590 /* If we have a child device on the MII bus remove it too. */ 1591 if ((sc->bce_phy_flags & BCE_PHY_REMOTE_CAP_FLAG) != 0) 1592 ifmedia_removeall(&sc->bce_ifmedia); 1593 else { 1594 bus_generic_detach(dev); 1595 device_delete_child(dev, sc->bce_miibus); 1596 } 1597 1598 /* Release all remaining resources. */ 1599 bce_release_resources(sc); 1600 1601 DBEXIT(BCE_VERBOSE_UNLOAD | BCE_VERBOSE_RESET); 1602 1603 return(0); 1604 } 1605 1606 1607 /****************************************************************************/ 1608 /* Device shutdown function. */ 1609 /* */ 1610 /* Stops and resets the controller. */ 1611 /* */ 1612 /* Returns: */ 1613 /* 0 on success, positive value on failure. */ 1614 /****************************************************************************/ 1615 static int 1616 bce_shutdown(device_t dev) 1617 { 1618 struct bce_softc *sc = device_get_softc(dev); 1619 u32 msg; 1620 1621 DBENTER(BCE_VERBOSE); 1622 1623 BCE_LOCK(sc); 1624 bce_stop(sc); 1625 if (sc->bce_flags & BCE_NO_WOL_FLAG) 1626 msg = BCE_DRV_MSG_CODE_UNLOAD_LNK_DN; 1627 else 1628 msg = BCE_DRV_MSG_CODE_UNLOAD; 1629 bce_reset(sc, msg); 1630 BCE_UNLOCK(sc); 1631 1632 DBEXIT(BCE_VERBOSE); 1633 1634 return (0); 1635 } 1636 1637 1638 #ifdef BCE_DEBUG 1639 /****************************************************************************/ 1640 /* Register read. */ 1641 /* */ 1642 /* Returns: */ 1643 /* The value of the register. */ 1644 /****************************************************************************/ 1645 static u32 1646 bce_reg_rd(struct bce_softc *sc, u32 offset) 1647 { 1648 u32 val = REG_RD(sc, offset); 1649 DBPRINT(sc, BCE_INSANE_REG, "%s(); offset = 0x%08X, val = 0x%08X\n", 1650 __FUNCTION__, offset, val); 1651 return val; 1652 } 1653 1654 1655 /****************************************************************************/ 1656 /* Register write (16 bit). */ 1657 /* */ 1658 /* Returns: */ 1659 /* Nothing. */ 1660 /****************************************************************************/ 1661 static void 1662 bce_reg_wr16(struct bce_softc *sc, u32 offset, u16 val) 1663 { 1664 DBPRINT(sc, BCE_INSANE_REG, "%s(); offset = 0x%08X, val = 0x%04X\n", 1665 __FUNCTION__, offset, val); 1666 REG_WR16(sc, offset, val); 1667 } 1668 1669 1670 /****************************************************************************/ 1671 /* Register write. */ 1672 /* */ 1673 /* Returns: */ 1674 /* Nothing. */ 1675 /****************************************************************************/ 1676 static void 1677 bce_reg_wr(struct bce_softc *sc, u32 offset, u32 val) 1678 { 1679 DBPRINT(sc, BCE_INSANE_REG, "%s(); offset = 0x%08X, val = 0x%08X\n", 1680 __FUNCTION__, offset, val); 1681 REG_WR(sc, offset, val); 1682 } 1683 #endif 1684 1685 /****************************************************************************/ 1686 /* Indirect register read. */ 1687 /* */ 1688 /* Reads NetXtreme II registers using an index/data register pair in PCI */ 1689 /* configuration space. Using this mechanism avoids issues with posted */ 1690 /* reads but is much slower than memory-mapped I/O. */ 1691 /* */ 1692 /* Returns: */ 1693 /* The value of the register. */ 1694 /****************************************************************************/ 1695 static u32 1696 bce_reg_rd_ind(struct bce_softc *sc, u32 offset) 1697 { 1698 device_t dev; 1699 dev = sc->bce_dev; 1700 1701 pci_write_config(dev, BCE_PCICFG_REG_WINDOW_ADDRESS, offset, 4); 1702 #ifdef BCE_DEBUG 1703 { 1704 u32 val; 1705 val = pci_read_config(dev, BCE_PCICFG_REG_WINDOW, 4); 1706 DBPRINT(sc, BCE_INSANE_REG, "%s(); offset = 0x%08X, val = 0x%08X\n", 1707 __FUNCTION__, offset, val); 1708 return val; 1709 } 1710 #else 1711 return pci_read_config(dev, BCE_PCICFG_REG_WINDOW, 4); 1712 #endif 1713 } 1714 1715 1716 /****************************************************************************/ 1717 /* Indirect register write. */ 1718 /* */ 1719 /* Writes NetXtreme II registers using an index/data register pair in PCI */ 1720 /* configuration space. Using this mechanism avoids issues with posted */ 1721 /* writes but is muchh slower than memory-mapped I/O. */ 1722 /* */ 1723 /* Returns: */ 1724 /* Nothing. */ 1725 /****************************************************************************/ 1726 static void 1727 bce_reg_wr_ind(struct bce_softc *sc, u32 offset, u32 val) 1728 { 1729 device_t dev; 1730 dev = sc->bce_dev; 1731 1732 DBPRINT(sc, BCE_INSANE_REG, "%s(); offset = 0x%08X, val = 0x%08X\n", 1733 __FUNCTION__, offset, val); 1734 1735 pci_write_config(dev, BCE_PCICFG_REG_WINDOW_ADDRESS, offset, 4); 1736 pci_write_config(dev, BCE_PCICFG_REG_WINDOW, val, 4); 1737 } 1738 1739 1740 /****************************************************************************/ 1741 /* Shared memory write. */ 1742 /* */ 1743 /* Writes NetXtreme II shared memory region. */ 1744 /* */ 1745 /* Returns: */ 1746 /* Nothing. */ 1747 /****************************************************************************/ 1748 static void 1749 bce_shmem_wr(struct bce_softc *sc, u32 offset, u32 val) 1750 { 1751 DBPRINT(sc, BCE_VERBOSE_FIRMWARE, "%s(): Writing 0x%08X to " 1752 "0x%08X\n", __FUNCTION__, val, offset); 1753 1754 bce_reg_wr_ind(sc, sc->bce_shmem_base + offset, val); 1755 } 1756 1757 1758 /****************************************************************************/ 1759 /* Shared memory read. */ 1760 /* */ 1761 /* Reads NetXtreme II shared memory region. */ 1762 /* */ 1763 /* Returns: */ 1764 /* The 32 bit value read. */ 1765 /****************************************************************************/ 1766 static u32 1767 bce_shmem_rd(struct bce_softc *sc, u32 offset) 1768 { 1769 u32 val = bce_reg_rd_ind(sc, sc->bce_shmem_base + offset); 1770 1771 DBPRINT(sc, BCE_VERBOSE_FIRMWARE, "%s(): Reading 0x%08X from " 1772 "0x%08X\n", __FUNCTION__, val, offset); 1773 1774 return val; 1775 } 1776 1777 1778 #ifdef BCE_DEBUG 1779 /****************************************************************************/ 1780 /* Context memory read. */ 1781 /* */ 1782 /* The NetXtreme II controller uses context memory to track connection */ 1783 /* information for L2 and higher network protocols. */ 1784 /* */ 1785 /* Returns: */ 1786 /* The requested 32 bit value of context memory. */ 1787 /****************************************************************************/ 1788 static u32 1789 bce_ctx_rd(struct bce_softc *sc, u32 cid_addr, u32 ctx_offset) 1790 { 1791 u32 idx, offset, retry_cnt = 5, val; 1792 1793 DBRUNIF((cid_addr > MAX_CID_ADDR || ctx_offset & 0x3 || 1794 cid_addr & CTX_MASK), BCE_PRINTF("%s(): Invalid CID " 1795 "address: 0x%08X.\n", __FUNCTION__, cid_addr)); 1796 1797 offset = ctx_offset + cid_addr; 1798 1799 if (BCE_CHIP_NUM(sc) == BCE_CHIP_NUM_5709) { 1800 1801 REG_WR(sc, BCE_CTX_CTX_CTRL, (offset | BCE_CTX_CTX_CTRL_READ_REQ)); 1802 1803 for (idx = 0; idx < retry_cnt; idx++) { 1804 val = REG_RD(sc, BCE_CTX_CTX_CTRL); 1805 if ((val & BCE_CTX_CTX_CTRL_READ_REQ) == 0) 1806 break; 1807 DELAY(5); 1808 } 1809 1810 if (val & BCE_CTX_CTX_CTRL_READ_REQ) 1811 BCE_PRINTF("%s(%d); Unable to read CTX memory: " 1812 "cid_addr = 0x%08X, offset = 0x%08X!\n", 1813 __FILE__, __LINE__, cid_addr, ctx_offset); 1814 1815 val = REG_RD(sc, BCE_CTX_CTX_DATA); 1816 } else { 1817 REG_WR(sc, BCE_CTX_DATA_ADR, offset); 1818 val = REG_RD(sc, BCE_CTX_DATA); 1819 } 1820 1821 DBPRINT(sc, BCE_EXTREME_CTX, "%s(); cid_addr = 0x%08X, offset = 0x%08X, " 1822 "val = 0x%08X\n", __FUNCTION__, cid_addr, ctx_offset, val); 1823 1824 return(val); 1825 } 1826 #endif 1827 1828 1829 /****************************************************************************/ 1830 /* Context memory write. */ 1831 /* */ 1832 /* The NetXtreme II controller uses context memory to track connection */ 1833 /* information for L2 and higher network protocols. */ 1834 /* */ 1835 /* Returns: */ 1836 /* Nothing. */ 1837 /****************************************************************************/ 1838 static void 1839 bce_ctx_wr(struct bce_softc *sc, u32 cid_addr, u32 ctx_offset, u32 ctx_val) 1840 { 1841 u32 idx, offset = ctx_offset + cid_addr; 1842 u32 val, retry_cnt = 5; 1843 1844 DBPRINT(sc, BCE_EXTREME_CTX, "%s(); cid_addr = 0x%08X, offset = 0x%08X, " 1845 "val = 0x%08X\n", __FUNCTION__, cid_addr, ctx_offset, ctx_val); 1846 1847 DBRUNIF((cid_addr > MAX_CID_ADDR || ctx_offset & 0x3 || cid_addr & CTX_MASK), 1848 BCE_PRINTF("%s(): Invalid CID address: 0x%08X.\n", 1849 __FUNCTION__, cid_addr)); 1850 1851 if (BCE_CHIP_NUM(sc) == BCE_CHIP_NUM_5709) { 1852 1853 REG_WR(sc, BCE_CTX_CTX_DATA, ctx_val); 1854 REG_WR(sc, BCE_CTX_CTX_CTRL, (offset | BCE_CTX_CTX_CTRL_WRITE_REQ)); 1855 1856 for (idx = 0; idx < retry_cnt; idx++) { 1857 val = REG_RD(sc, BCE_CTX_CTX_CTRL); 1858 if ((val & BCE_CTX_CTX_CTRL_WRITE_REQ) == 0) 1859 break; 1860 DELAY(5); 1861 } 1862 1863 if (val & BCE_CTX_CTX_CTRL_WRITE_REQ) 1864 BCE_PRINTF("%s(%d); Unable to write CTX memory: " 1865 "cid_addr = 0x%08X, offset = 0x%08X!\n", 1866 __FILE__, __LINE__, cid_addr, ctx_offset); 1867 1868 } else { 1869 REG_WR(sc, BCE_CTX_DATA_ADR, offset); 1870 REG_WR(sc, BCE_CTX_DATA, ctx_val); 1871 } 1872 } 1873 1874 1875 /****************************************************************************/ 1876 /* PHY register read. */ 1877 /* */ 1878 /* Implements register reads on the MII bus. */ 1879 /* */ 1880 /* Returns: */ 1881 /* The value of the register. */ 1882 /****************************************************************************/ 1883 static int 1884 bce_miibus_read_reg(device_t dev, int phy, int reg) 1885 { 1886 struct bce_softc *sc; 1887 u32 val; 1888 int i; 1889 1890 sc = device_get_softc(dev); 1891 1892 /* 1893 * The 5709S PHY is an IEEE Clause 45 PHY 1894 * with special mappings to work with IEEE 1895 * Clause 22 register accesses. 1896 */ 1897 if ((sc->bce_phy_flags & BCE_PHY_IEEE_CLAUSE_45_FLAG) != 0) { 1898 if (reg >= MII_BMCR && reg <= MII_ANLPRNP) 1899 reg += 0x10; 1900 } 1901 1902 if (sc->bce_phy_flags & BCE_PHY_INT_MODE_AUTO_POLLING_FLAG) { 1903 val = REG_RD(sc, BCE_EMAC_MDIO_MODE); 1904 val &= ~BCE_EMAC_MDIO_MODE_AUTO_POLL; 1905 1906 REG_WR(sc, BCE_EMAC_MDIO_MODE, val); 1907 REG_RD(sc, BCE_EMAC_MDIO_MODE); 1908 1909 DELAY(40); 1910 } 1911 1912 1913 val = BCE_MIPHY(phy) | BCE_MIREG(reg) | 1914 BCE_EMAC_MDIO_COMM_COMMAND_READ | BCE_EMAC_MDIO_COMM_DISEXT | 1915 BCE_EMAC_MDIO_COMM_START_BUSY; 1916 REG_WR(sc, BCE_EMAC_MDIO_COMM, val); 1917 1918 for (i = 0; i < BCE_PHY_TIMEOUT; i++) { 1919 DELAY(10); 1920 1921 val = REG_RD(sc, BCE_EMAC_MDIO_COMM); 1922 if (!(val & BCE_EMAC_MDIO_COMM_START_BUSY)) { 1923 DELAY(5); 1924 1925 val = REG_RD(sc, BCE_EMAC_MDIO_COMM); 1926 val &= BCE_EMAC_MDIO_COMM_DATA; 1927 1928 break; 1929 } 1930 } 1931 1932 if (val & BCE_EMAC_MDIO_COMM_START_BUSY) { 1933 BCE_PRINTF("%s(%d): Error: PHY read timeout! phy = %d, " 1934 "reg = 0x%04X\n", __FILE__, __LINE__, phy, reg); 1935 val = 0x0; 1936 } else { 1937 val = REG_RD(sc, BCE_EMAC_MDIO_COMM); 1938 } 1939 1940 1941 if (sc->bce_phy_flags & BCE_PHY_INT_MODE_AUTO_POLLING_FLAG) { 1942 val = REG_RD(sc, BCE_EMAC_MDIO_MODE); 1943 val |= BCE_EMAC_MDIO_MODE_AUTO_POLL; 1944 1945 REG_WR(sc, BCE_EMAC_MDIO_MODE, val); 1946 REG_RD(sc, BCE_EMAC_MDIO_MODE); 1947 1948 DELAY(40); 1949 } 1950 1951 DB_PRINT_PHY_REG(reg, val); 1952 return (val & 0xffff); 1953 } 1954 1955 1956 /****************************************************************************/ 1957 /* PHY register write. */ 1958 /* */ 1959 /* Implements register writes on the MII bus. */ 1960 /* */ 1961 /* Returns: */ 1962 /* The value of the register. */ 1963 /****************************************************************************/ 1964 static int 1965 bce_miibus_write_reg(device_t dev, int phy, int reg, int val) 1966 { 1967 struct bce_softc *sc; 1968 u32 val1; 1969 int i; 1970 1971 sc = device_get_softc(dev); 1972 1973 DB_PRINT_PHY_REG(reg, val); 1974 1975 /* 1976 * The 5709S PHY is an IEEE Clause 45 PHY 1977 * with special mappings to work with IEEE 1978 * Clause 22 register accesses. 1979 */ 1980 if ((sc->bce_phy_flags & BCE_PHY_IEEE_CLAUSE_45_FLAG) != 0) { 1981 if (reg >= MII_BMCR && reg <= MII_ANLPRNP) 1982 reg += 0x10; 1983 } 1984 1985 if (sc->bce_phy_flags & BCE_PHY_INT_MODE_AUTO_POLLING_FLAG) { 1986 val1 = REG_RD(sc, BCE_EMAC_MDIO_MODE); 1987 val1 &= ~BCE_EMAC_MDIO_MODE_AUTO_POLL; 1988 1989 REG_WR(sc, BCE_EMAC_MDIO_MODE, val1); 1990 REG_RD(sc, BCE_EMAC_MDIO_MODE); 1991 1992 DELAY(40); 1993 } 1994 1995 val1 = BCE_MIPHY(phy) | BCE_MIREG(reg) | val | 1996 BCE_EMAC_MDIO_COMM_COMMAND_WRITE | 1997 BCE_EMAC_MDIO_COMM_START_BUSY | BCE_EMAC_MDIO_COMM_DISEXT; 1998 REG_WR(sc, BCE_EMAC_MDIO_COMM, val1); 1999 2000 for (i = 0; i < BCE_PHY_TIMEOUT; i++) { 2001 DELAY(10); 2002 2003 val1 = REG_RD(sc, BCE_EMAC_MDIO_COMM); 2004 if (!(val1 & BCE_EMAC_MDIO_COMM_START_BUSY)) { 2005 DELAY(5); 2006 break; 2007 } 2008 } 2009 2010 if (val1 & BCE_EMAC_MDIO_COMM_START_BUSY) 2011 BCE_PRINTF("%s(%d): PHY write timeout!\n", 2012 __FILE__, __LINE__); 2013 2014 if (sc->bce_phy_flags & BCE_PHY_INT_MODE_AUTO_POLLING_FLAG) { 2015 val1 = REG_RD(sc, BCE_EMAC_MDIO_MODE); 2016 val1 |= BCE_EMAC_MDIO_MODE_AUTO_POLL; 2017 2018 REG_WR(sc, BCE_EMAC_MDIO_MODE, val1); 2019 REG_RD(sc, BCE_EMAC_MDIO_MODE); 2020 2021 DELAY(40); 2022 } 2023 2024 return 0; 2025 } 2026 2027 2028 /****************************************************************************/ 2029 /* MII bus status change. */ 2030 /* */ 2031 /* Called by the MII bus driver when the PHY establishes link to set the */ 2032 /* MAC interface registers. */ 2033 /* */ 2034 /* Returns: */ 2035 /* Nothing. */ 2036 /****************************************************************************/ 2037 static void 2038 bce_miibus_statchg(device_t dev) 2039 { 2040 struct bce_softc *sc; 2041 struct mii_data *mii; 2042 struct ifmediareq ifmr; 2043 int media_active, media_status, val; 2044 2045 sc = device_get_softc(dev); 2046 2047 DBENTER(BCE_VERBOSE_PHY); 2048 2049 if ((sc->bce_phy_flags & BCE_PHY_REMOTE_CAP_FLAG) != 0) { 2050 bzero(&ifmr, sizeof(ifmr)); 2051 bce_ifmedia_sts_rphy(sc, &ifmr); 2052 media_active = ifmr.ifm_active; 2053 media_status = ifmr.ifm_status; 2054 } else { 2055 mii = device_get_softc(sc->bce_miibus); 2056 media_active = mii->mii_media_active; 2057 media_status = mii->mii_media_status; 2058 } 2059 2060 /* Ignore invalid media status. */ 2061 if ((media_status & (IFM_ACTIVE | IFM_AVALID)) != 2062 (IFM_ACTIVE | IFM_AVALID)) 2063 goto bce_miibus_statchg_exit; 2064 2065 val = REG_RD(sc, BCE_EMAC_MODE); 2066 val &= ~(BCE_EMAC_MODE_PORT | BCE_EMAC_MODE_HALF_DUPLEX | 2067 BCE_EMAC_MODE_MAC_LOOP | BCE_EMAC_MODE_FORCE_LINK | 2068 BCE_EMAC_MODE_25G); 2069 2070 /* Set MII or GMII interface based on the PHY speed. */ 2071 switch (IFM_SUBTYPE(media_active)) { 2072 case IFM_10_T: 2073 if (BCE_CHIP_NUM(sc) != BCE_CHIP_NUM_5706) { 2074 DBPRINT(sc, BCE_INFO_PHY, 2075 "Enabling 10Mb interface.\n"); 2076 val |= BCE_EMAC_MODE_PORT_MII_10; 2077 break; 2078 } 2079 /* fall-through */ 2080 case IFM_100_TX: 2081 DBPRINT(sc, BCE_INFO_PHY, "Enabling MII interface.\n"); 2082 val |= BCE_EMAC_MODE_PORT_MII; 2083 break; 2084 case IFM_2500_SX: 2085 DBPRINT(sc, BCE_INFO_PHY, "Enabling 2.5G MAC mode.\n"); 2086 val |= BCE_EMAC_MODE_25G; 2087 /* fall-through */ 2088 case IFM_1000_T: 2089 case IFM_1000_SX: 2090 DBPRINT(sc, BCE_INFO_PHY, "Enabling GMII interface.\n"); 2091 val |= BCE_EMAC_MODE_PORT_GMII; 2092 break; 2093 default: 2094 DBPRINT(sc, BCE_INFO_PHY, "Unknown link speed, enabling " 2095 "default GMII interface.\n"); 2096 val |= BCE_EMAC_MODE_PORT_GMII; 2097 } 2098 2099 /* Set half or full duplex based on PHY settings. */ 2100 if ((IFM_OPTIONS(media_active) & IFM_FDX) == 0) { 2101 DBPRINT(sc, BCE_INFO_PHY, 2102 "Setting Half-Duplex interface.\n"); 2103 val |= BCE_EMAC_MODE_HALF_DUPLEX; 2104 } else 2105 DBPRINT(sc, BCE_INFO_PHY, 2106 "Setting Full-Duplex interface.\n"); 2107 2108 REG_WR(sc, BCE_EMAC_MODE, val); 2109 2110 if ((IFM_OPTIONS(media_active) & IFM_ETH_RXPAUSE) != 0) { 2111 DBPRINT(sc, BCE_INFO_PHY, 2112 "%s(): Enabling RX flow control.\n", __FUNCTION__); 2113 BCE_SETBIT(sc, BCE_EMAC_RX_MODE, BCE_EMAC_RX_MODE_FLOW_EN); 2114 sc->bce_flags |= BCE_USING_RX_FLOW_CONTROL; 2115 } else { 2116 DBPRINT(sc, BCE_INFO_PHY, 2117 "%s(): Disabling RX flow control.\n", __FUNCTION__); 2118 BCE_CLRBIT(sc, BCE_EMAC_RX_MODE, BCE_EMAC_RX_MODE_FLOW_EN); 2119 sc->bce_flags &= ~BCE_USING_RX_FLOW_CONTROL; 2120 } 2121 2122 if ((IFM_OPTIONS(media_active) & IFM_ETH_TXPAUSE) != 0) { 2123 DBPRINT(sc, BCE_INFO_PHY, 2124 "%s(): Enabling TX flow control.\n", __FUNCTION__); 2125 BCE_SETBIT(sc, BCE_EMAC_TX_MODE, BCE_EMAC_TX_MODE_FLOW_EN); 2126 sc->bce_flags |= BCE_USING_TX_FLOW_CONTROL; 2127 } else { 2128 DBPRINT(sc, BCE_INFO_PHY, 2129 "%s(): Disabling TX flow control.\n", __FUNCTION__); 2130 BCE_CLRBIT(sc, BCE_EMAC_TX_MODE, BCE_EMAC_TX_MODE_FLOW_EN); 2131 sc->bce_flags &= ~BCE_USING_TX_FLOW_CONTROL; 2132 } 2133 2134 /* ToDo: Update watermarks in bce_init_rx_context(). */ 2135 2136 bce_miibus_statchg_exit: 2137 DBEXIT(BCE_VERBOSE_PHY); 2138 } 2139 2140 2141 /****************************************************************************/ 2142 /* Acquire NVRAM lock. */ 2143 /* */ 2144 /* Before the NVRAM can be accessed the caller must acquire an NVRAM lock. */ 2145 /* Locks 0 and 2 are reserved, lock 1 is used by firmware and lock 2 is */ 2146 /* for use by the driver. */ 2147 /* */ 2148 /* Returns: */ 2149 /* 0 on success, positive value on failure. */ 2150 /****************************************************************************/ 2151 static int 2152 bce_acquire_nvram_lock(struct bce_softc *sc) 2153 { 2154 u32 val; 2155 int j, rc = 0; 2156 2157 DBENTER(BCE_VERBOSE_NVRAM); 2158 2159 /* Request access to the flash interface. */ 2160 REG_WR(sc, BCE_NVM_SW_ARB, BCE_NVM_SW_ARB_ARB_REQ_SET2); 2161 for (j = 0; j < NVRAM_TIMEOUT_COUNT; j++) { 2162 val = REG_RD(sc, BCE_NVM_SW_ARB); 2163 if (val & BCE_NVM_SW_ARB_ARB_ARB2) 2164 break; 2165 2166 DELAY(5); 2167 } 2168 2169 if (j >= NVRAM_TIMEOUT_COUNT) { 2170 DBPRINT(sc, BCE_WARN, "Timeout acquiring NVRAM lock!\n"); 2171 rc = EBUSY; 2172 } 2173 2174 DBEXIT(BCE_VERBOSE_NVRAM); 2175 return (rc); 2176 } 2177 2178 2179 /****************************************************************************/ 2180 /* Release NVRAM lock. */ 2181 /* */ 2182 /* When the caller is finished accessing NVRAM the lock must be released. */ 2183 /* Locks 0 and 2 are reserved, lock 1 is used by firmware and lock 2 is */ 2184 /* for use by the driver. */ 2185 /* */ 2186 /* Returns: */ 2187 /* 0 on success, positive value on failure. */ 2188 /****************************************************************************/ 2189 static int 2190 bce_release_nvram_lock(struct bce_softc *sc) 2191 { 2192 u32 val; 2193 int j, rc = 0; 2194 2195 DBENTER(BCE_VERBOSE_NVRAM); 2196 2197 /* 2198 * Relinquish nvram interface. 2199 */ 2200 REG_WR(sc, BCE_NVM_SW_ARB, BCE_NVM_SW_ARB_ARB_REQ_CLR2); 2201 2202 for (j = 0; j < NVRAM_TIMEOUT_COUNT; j++) { 2203 val = REG_RD(sc, BCE_NVM_SW_ARB); 2204 if (!(val & BCE_NVM_SW_ARB_ARB_ARB2)) 2205 break; 2206 2207 DELAY(5); 2208 } 2209 2210 if (j >= NVRAM_TIMEOUT_COUNT) { 2211 DBPRINT(sc, BCE_WARN, "Timeout releasing NVRAM lock!\n"); 2212 rc = EBUSY; 2213 } 2214 2215 DBEXIT(BCE_VERBOSE_NVRAM); 2216 return (rc); 2217 } 2218 2219 2220 #ifdef BCE_NVRAM_WRITE_SUPPORT 2221 /****************************************************************************/ 2222 /* Enable NVRAM write access. */ 2223 /* */ 2224 /* Before writing to NVRAM the caller must enable NVRAM writes. */ 2225 /* */ 2226 /* Returns: */ 2227 /* 0 on success, positive value on failure. */ 2228 /****************************************************************************/ 2229 static int 2230 bce_enable_nvram_write(struct bce_softc *sc) 2231 { 2232 u32 val; 2233 int rc = 0; 2234 2235 DBENTER(BCE_VERBOSE_NVRAM); 2236 2237 val = REG_RD(sc, BCE_MISC_CFG); 2238 REG_WR(sc, BCE_MISC_CFG, val | BCE_MISC_CFG_NVM_WR_EN_PCI); 2239 2240 if (!(sc->bce_flash_info->flags & BCE_NV_BUFFERED)) { 2241 int j; 2242 2243 REG_WR(sc, BCE_NVM_COMMAND, BCE_NVM_COMMAND_DONE); 2244 REG_WR(sc, BCE_NVM_COMMAND, BCE_NVM_COMMAND_WREN | BCE_NVM_COMMAND_DOIT); 2245 2246 for (j = 0; j < NVRAM_TIMEOUT_COUNT; j++) { 2247 DELAY(5); 2248 2249 val = REG_RD(sc, BCE_NVM_COMMAND); 2250 if (val & BCE_NVM_COMMAND_DONE) 2251 break; 2252 } 2253 2254 if (j >= NVRAM_TIMEOUT_COUNT) { 2255 DBPRINT(sc, BCE_WARN, "Timeout writing NVRAM!\n"); 2256 rc = EBUSY; 2257 } 2258 } 2259 2260 DBENTER(BCE_VERBOSE_NVRAM); 2261 return (rc); 2262 } 2263 2264 2265 /****************************************************************************/ 2266 /* Disable NVRAM write access. */ 2267 /* */ 2268 /* When the caller is finished writing to NVRAM write access must be */ 2269 /* disabled. */ 2270 /* */ 2271 /* Returns: */ 2272 /* Nothing. */ 2273 /****************************************************************************/ 2274 static void 2275 bce_disable_nvram_write(struct bce_softc *sc) 2276 { 2277 u32 val; 2278 2279 DBENTER(BCE_VERBOSE_NVRAM); 2280 2281 val = REG_RD(sc, BCE_MISC_CFG); 2282 REG_WR(sc, BCE_MISC_CFG, val & ~BCE_MISC_CFG_NVM_WR_EN); 2283 2284 DBEXIT(BCE_VERBOSE_NVRAM); 2285 2286 } 2287 #endif 2288 2289 2290 /****************************************************************************/ 2291 /* Enable NVRAM access. */ 2292 /* */ 2293 /* Before accessing NVRAM for read or write operations the caller must */ 2294 /* enabled NVRAM access. */ 2295 /* */ 2296 /* Returns: */ 2297 /* Nothing. */ 2298 /****************************************************************************/ 2299 static void 2300 bce_enable_nvram_access(struct bce_softc *sc) 2301 { 2302 u32 val; 2303 2304 DBENTER(BCE_VERBOSE_NVRAM); 2305 2306 val = REG_RD(sc, BCE_NVM_ACCESS_ENABLE); 2307 /* Enable both bits, even on read. */ 2308 REG_WR(sc, BCE_NVM_ACCESS_ENABLE, val | 2309 BCE_NVM_ACCESS_ENABLE_EN | BCE_NVM_ACCESS_ENABLE_WR_EN); 2310 2311 DBEXIT(BCE_VERBOSE_NVRAM); 2312 } 2313 2314 2315 /****************************************************************************/ 2316 /* Disable NVRAM access. */ 2317 /* */ 2318 /* When the caller is finished accessing NVRAM access must be disabled. */ 2319 /* */ 2320 /* Returns: */ 2321 /* Nothing. */ 2322 /****************************************************************************/ 2323 static void 2324 bce_disable_nvram_access(struct bce_softc *sc) 2325 { 2326 u32 val; 2327 2328 DBENTER(BCE_VERBOSE_NVRAM); 2329 2330 val = REG_RD(sc, BCE_NVM_ACCESS_ENABLE); 2331 2332 /* Disable both bits, even after read. */ 2333 REG_WR(sc, BCE_NVM_ACCESS_ENABLE, val & 2334 ~(BCE_NVM_ACCESS_ENABLE_EN | BCE_NVM_ACCESS_ENABLE_WR_EN)); 2335 2336 DBEXIT(BCE_VERBOSE_NVRAM); 2337 } 2338 2339 2340 #ifdef BCE_NVRAM_WRITE_SUPPORT 2341 /****************************************************************************/ 2342 /* Erase NVRAM page before writing. */ 2343 /* */ 2344 /* Non-buffered flash parts require that a page be erased before it is */ 2345 /* written. */ 2346 /* */ 2347 /* Returns: */ 2348 /* 0 on success, positive value on failure. */ 2349 /****************************************************************************/ 2350 static int 2351 bce_nvram_erase_page(struct bce_softc *sc, u32 offset) 2352 { 2353 u32 cmd; 2354 int j, rc = 0; 2355 2356 DBENTER(BCE_VERBOSE_NVRAM); 2357 2358 /* Buffered flash doesn't require an erase. */ 2359 if (sc->bce_flash_info->flags & BCE_NV_BUFFERED) 2360 goto bce_nvram_erase_page_exit; 2361 2362 /* Build an erase command. */ 2363 cmd = BCE_NVM_COMMAND_ERASE | BCE_NVM_COMMAND_WR | 2364 BCE_NVM_COMMAND_DOIT; 2365 2366 /* 2367 * Clear the DONE bit separately, set the NVRAM address to erase, 2368 * and issue the erase command. 2369 */ 2370 REG_WR(sc, BCE_NVM_COMMAND, BCE_NVM_COMMAND_DONE); 2371 REG_WR(sc, BCE_NVM_ADDR, offset & BCE_NVM_ADDR_NVM_ADDR_VALUE); 2372 REG_WR(sc, BCE_NVM_COMMAND, cmd); 2373 2374 /* Wait for completion. */ 2375 for (j = 0; j < NVRAM_TIMEOUT_COUNT; j++) { 2376 u32 val; 2377 2378 DELAY(5); 2379 2380 val = REG_RD(sc, BCE_NVM_COMMAND); 2381 if (val & BCE_NVM_COMMAND_DONE) 2382 break; 2383 } 2384 2385 if (j >= NVRAM_TIMEOUT_COUNT) { 2386 DBPRINT(sc, BCE_WARN, "Timeout erasing NVRAM.\n"); 2387 rc = EBUSY; 2388 } 2389 2390 bce_nvram_erase_page_exit: 2391 DBEXIT(BCE_VERBOSE_NVRAM); 2392 return (rc); 2393 } 2394 #endif /* BCE_NVRAM_WRITE_SUPPORT */ 2395 2396 2397 /****************************************************************************/ 2398 /* Read a dword (32 bits) from NVRAM. */ 2399 /* */ 2400 /* Read a 32 bit word from NVRAM. The caller is assumed to have already */ 2401 /* obtained the NVRAM lock and enabled the controller for NVRAM access. */ 2402 /* */ 2403 /* Returns: */ 2404 /* 0 on success and the 32 bit value read, positive value on failure. */ 2405 /****************************************************************************/ 2406 static int 2407 bce_nvram_read_dword(struct bce_softc *sc, 2408 u32 offset, u8 *ret_val, u32 cmd_flags) 2409 { 2410 u32 cmd; 2411 int i, rc = 0; 2412 2413 DBENTER(BCE_EXTREME_NVRAM); 2414 2415 /* Build the command word. */ 2416 cmd = BCE_NVM_COMMAND_DOIT | cmd_flags; 2417 2418 /* Calculate the offset for buffered flash if translation is used. */ 2419 if (sc->bce_flash_info->flags & BCE_NV_TRANSLATE) { 2420 offset = ((offset / sc->bce_flash_info->page_size) << 2421 sc->bce_flash_info->page_bits) + 2422 (offset % sc->bce_flash_info->page_size); 2423 } 2424 2425 /* 2426 * Clear the DONE bit separately, set the address to read, 2427 * and issue the read. 2428 */ 2429 REG_WR(sc, BCE_NVM_COMMAND, BCE_NVM_COMMAND_DONE); 2430 REG_WR(sc, BCE_NVM_ADDR, offset & BCE_NVM_ADDR_NVM_ADDR_VALUE); 2431 REG_WR(sc, BCE_NVM_COMMAND, cmd); 2432 2433 /* Wait for completion. */ 2434 for (i = 0; i < NVRAM_TIMEOUT_COUNT; i++) { 2435 u32 val; 2436 2437 DELAY(5); 2438 2439 val = REG_RD(sc, BCE_NVM_COMMAND); 2440 if (val & BCE_NVM_COMMAND_DONE) { 2441 val = REG_RD(sc, BCE_NVM_READ); 2442 2443 val = bce_be32toh(val); 2444 memcpy(ret_val, &val, 4); 2445 break; 2446 } 2447 } 2448 2449 /* Check for errors. */ 2450 if (i >= NVRAM_TIMEOUT_COUNT) { 2451 BCE_PRINTF("%s(%d): Timeout error reading NVRAM at " 2452 "offset 0x%08X!\n", __FILE__, __LINE__, offset); 2453 rc = EBUSY; 2454 } 2455 2456 DBEXIT(BCE_EXTREME_NVRAM); 2457 return(rc); 2458 } 2459 2460 2461 #ifdef BCE_NVRAM_WRITE_SUPPORT 2462 /****************************************************************************/ 2463 /* Write a dword (32 bits) to NVRAM. */ 2464 /* */ 2465 /* Write a 32 bit word to NVRAM. The caller is assumed to have already */ 2466 /* obtained the NVRAM lock, enabled the controller for NVRAM access, and */ 2467 /* enabled NVRAM write access. */ 2468 /* */ 2469 /* Returns: */ 2470 /* 0 on success, positive value on failure. */ 2471 /****************************************************************************/ 2472 static int 2473 bce_nvram_write_dword(struct bce_softc *sc, u32 offset, u8 *val, 2474 u32 cmd_flags) 2475 { 2476 u32 cmd, val32; 2477 int j, rc = 0; 2478 2479 DBENTER(BCE_VERBOSE_NVRAM); 2480 2481 /* Build the command word. */ 2482 cmd = BCE_NVM_COMMAND_DOIT | BCE_NVM_COMMAND_WR | cmd_flags; 2483 2484 /* Calculate the offset for buffered flash if translation is used. */ 2485 if (sc->bce_flash_info->flags & BCE_NV_TRANSLATE) { 2486 offset = ((offset / sc->bce_flash_info->page_size) << 2487 sc->bce_flash_info->page_bits) + 2488 (offset % sc->bce_flash_info->page_size); 2489 } 2490 2491 /* 2492 * Clear the DONE bit separately, convert NVRAM data to big-endian, 2493 * set the NVRAM address to write, and issue the write command 2494 */ 2495 REG_WR(sc, BCE_NVM_COMMAND, BCE_NVM_COMMAND_DONE); 2496 memcpy(&val32, val, 4); 2497 val32 = htobe32(val32); 2498 REG_WR(sc, BCE_NVM_WRITE, val32); 2499 REG_WR(sc, BCE_NVM_ADDR, offset & BCE_NVM_ADDR_NVM_ADDR_VALUE); 2500 REG_WR(sc, BCE_NVM_COMMAND, cmd); 2501 2502 /* Wait for completion. */ 2503 for (j = 0; j < NVRAM_TIMEOUT_COUNT; j++) { 2504 DELAY(5); 2505 2506 if (REG_RD(sc, BCE_NVM_COMMAND) & BCE_NVM_COMMAND_DONE) 2507 break; 2508 } 2509 if (j >= NVRAM_TIMEOUT_COUNT) { 2510 BCE_PRINTF("%s(%d): Timeout error writing NVRAM at " 2511 "offset 0x%08X\n", __FILE__, __LINE__, offset); 2512 rc = EBUSY; 2513 } 2514 2515 DBEXIT(BCE_VERBOSE_NVRAM); 2516 return (rc); 2517 } 2518 #endif /* BCE_NVRAM_WRITE_SUPPORT */ 2519 2520 2521 /****************************************************************************/ 2522 /* Initialize NVRAM access. */ 2523 /* */ 2524 /* Identify the NVRAM device in use and prepare the NVRAM interface to */ 2525 /* access that device. */ 2526 /* */ 2527 /* Returns: */ 2528 /* 0 on success, positive value on failure. */ 2529 /****************************************************************************/ 2530 static int 2531 bce_init_nvram(struct bce_softc *sc) 2532 { 2533 u32 val; 2534 int j, entry_count, rc = 0; 2535 const struct flash_spec *flash; 2536 2537 DBENTER(BCE_VERBOSE_NVRAM); 2538 2539 if (BCE_CHIP_NUM(sc) == BCE_CHIP_NUM_5709) { 2540 sc->bce_flash_info = &flash_5709; 2541 goto bce_init_nvram_get_flash_size; 2542 } 2543 2544 /* Determine the selected interface. */ 2545 val = REG_RD(sc, BCE_NVM_CFG1); 2546 2547 entry_count = sizeof(flash_table) / sizeof(struct flash_spec); 2548 2549 /* 2550 * Flash reconfiguration is required to support additional 2551 * NVRAM devices not directly supported in hardware. 2552 * Check if the flash interface was reconfigured 2553 * by the bootcode. 2554 */ 2555 2556 if (val & 0x40000000) { 2557 /* Flash interface reconfigured by bootcode. */ 2558 2559 DBPRINT(sc,BCE_INFO_LOAD, 2560 "bce_init_nvram(): Flash WAS reconfigured.\n"); 2561 2562 for (j = 0, flash = &flash_table[0]; j < entry_count; 2563 j++, flash++) { 2564 if ((val & FLASH_BACKUP_STRAP_MASK) == 2565 (flash->config1 & FLASH_BACKUP_STRAP_MASK)) { 2566 sc->bce_flash_info = flash; 2567 break; 2568 } 2569 } 2570 } else { 2571 /* Flash interface not yet reconfigured. */ 2572 u32 mask; 2573 2574 DBPRINT(sc, BCE_INFO_LOAD, "%s(): Flash was NOT reconfigured.\n", 2575 __FUNCTION__); 2576 2577 if (val & (1 << 23)) 2578 mask = FLASH_BACKUP_STRAP_MASK; 2579 else 2580 mask = FLASH_STRAP_MASK; 2581 2582 /* Look for the matching NVRAM device configuration data. */ 2583 for (j = 0, flash = &flash_table[0]; j < entry_count; j++, flash++) { 2584 2585 /* Check if the device matches any of the known devices. */ 2586 if ((val & mask) == (flash->strapping & mask)) { 2587 /* Found a device match. */ 2588 sc->bce_flash_info = flash; 2589 2590 /* Request access to the flash interface. */ 2591 if ((rc = bce_acquire_nvram_lock(sc)) != 0) 2592 return rc; 2593 2594 /* Reconfigure the flash interface. */ 2595 bce_enable_nvram_access(sc); 2596 REG_WR(sc, BCE_NVM_CFG1, flash->config1); 2597 REG_WR(sc, BCE_NVM_CFG2, flash->config2); 2598 REG_WR(sc, BCE_NVM_CFG3, flash->config3); 2599 REG_WR(sc, BCE_NVM_WRITE1, flash->write1); 2600 bce_disable_nvram_access(sc); 2601 bce_release_nvram_lock(sc); 2602 2603 break; 2604 } 2605 } 2606 } 2607 2608 /* Check if a matching device was found. */ 2609 if (j == entry_count) { 2610 sc->bce_flash_info = NULL; 2611 BCE_PRINTF("%s(%d): Unknown Flash NVRAM found!\n", 2612 __FILE__, __LINE__); 2613 DBEXIT(BCE_VERBOSE_NVRAM); 2614 return (ENODEV); 2615 } 2616 2617 bce_init_nvram_get_flash_size: 2618 /* Write the flash config data to the shared memory interface. */ 2619 val = bce_shmem_rd(sc, BCE_SHARED_HW_CFG_CONFIG2); 2620 val &= BCE_SHARED_HW_CFG2_NVM_SIZE_MASK; 2621 if (val) 2622 sc->bce_flash_size = val; 2623 else 2624 sc->bce_flash_size = sc->bce_flash_info->total_size; 2625 2626 DBPRINT(sc, BCE_INFO_LOAD, "%s(): Found %s, size = 0x%08X\n", 2627 __FUNCTION__, sc->bce_flash_info->name, 2628 sc->bce_flash_info->total_size); 2629 2630 DBEXIT(BCE_VERBOSE_NVRAM); 2631 return rc; 2632 } 2633 2634 2635 /****************************************************************************/ 2636 /* Read an arbitrary range of data from NVRAM. */ 2637 /* */ 2638 /* Prepares the NVRAM interface for access and reads the requested data */ 2639 /* into the supplied buffer. */ 2640 /* */ 2641 /* Returns: */ 2642 /* 0 on success and the data read, positive value on failure. */ 2643 /****************************************************************************/ 2644 static int 2645 bce_nvram_read(struct bce_softc *sc, u32 offset, u8 *ret_buf, 2646 int buf_size) 2647 { 2648 int rc = 0; 2649 u32 cmd_flags, offset32, len32, extra; 2650 2651 DBENTER(BCE_VERBOSE_NVRAM); 2652 2653 if (buf_size == 0) 2654 goto bce_nvram_read_exit; 2655 2656 /* Request access to the flash interface. */ 2657 if ((rc = bce_acquire_nvram_lock(sc)) != 0) 2658 goto bce_nvram_read_exit; 2659 2660 /* Enable access to flash interface */ 2661 bce_enable_nvram_access(sc); 2662 2663 len32 = buf_size; 2664 offset32 = offset; 2665 extra = 0; 2666 2667 cmd_flags = 0; 2668 2669 if (offset32 & 3) { 2670 u8 buf[4]; 2671 u32 pre_len; 2672 2673 offset32 &= ~3; 2674 pre_len = 4 - (offset & 3); 2675 2676 if (pre_len >= len32) { 2677 pre_len = len32; 2678 cmd_flags = BCE_NVM_COMMAND_FIRST | BCE_NVM_COMMAND_LAST; 2679 } 2680 else { 2681 cmd_flags = BCE_NVM_COMMAND_FIRST; 2682 } 2683 2684 rc = bce_nvram_read_dword(sc, offset32, buf, cmd_flags); 2685 2686 if (rc) 2687 return rc; 2688 2689 memcpy(ret_buf, buf + (offset & 3), pre_len); 2690 2691 offset32 += 4; 2692 ret_buf += pre_len; 2693 len32 -= pre_len; 2694 } 2695 2696 if (len32 & 3) { 2697 extra = 4 - (len32 & 3); 2698 len32 = (len32 + 4) & ~3; 2699 } 2700 2701 if (len32 == 4) { 2702 u8 buf[4]; 2703 2704 if (cmd_flags) 2705 cmd_flags = BCE_NVM_COMMAND_LAST; 2706 else 2707 cmd_flags = BCE_NVM_COMMAND_FIRST | 2708 BCE_NVM_COMMAND_LAST; 2709 2710 rc = bce_nvram_read_dword(sc, offset32, buf, cmd_flags); 2711 2712 memcpy(ret_buf, buf, 4 - extra); 2713 } 2714 else if (len32 > 0) { 2715 u8 buf[4]; 2716 2717 /* Read the first word. */ 2718 if (cmd_flags) 2719 cmd_flags = 0; 2720 else 2721 cmd_flags = BCE_NVM_COMMAND_FIRST; 2722 2723 rc = bce_nvram_read_dword(sc, offset32, ret_buf, cmd_flags); 2724 2725 /* Advance to the next dword. */ 2726 offset32 += 4; 2727 ret_buf += 4; 2728 len32 -= 4; 2729 2730 while (len32 > 4 && rc == 0) { 2731 rc = bce_nvram_read_dword(sc, offset32, ret_buf, 0); 2732 2733 /* Advance to the next dword. */ 2734 offset32 += 4; 2735 ret_buf += 4; 2736 len32 -= 4; 2737 } 2738 2739 if (rc) 2740 goto bce_nvram_read_locked_exit; 2741 2742 cmd_flags = BCE_NVM_COMMAND_LAST; 2743 rc = bce_nvram_read_dword(sc, offset32, buf, cmd_flags); 2744 2745 memcpy(ret_buf, buf, 4 - extra); 2746 } 2747 2748 bce_nvram_read_locked_exit: 2749 /* Disable access to flash interface and release the lock. */ 2750 bce_disable_nvram_access(sc); 2751 bce_release_nvram_lock(sc); 2752 2753 bce_nvram_read_exit: 2754 DBEXIT(BCE_VERBOSE_NVRAM); 2755 return rc; 2756 } 2757 2758 2759 #ifdef BCE_NVRAM_WRITE_SUPPORT 2760 /****************************************************************************/ 2761 /* Write an arbitrary range of data from NVRAM. */ 2762 /* */ 2763 /* Prepares the NVRAM interface for write access and writes the requested */ 2764 /* data from the supplied buffer. The caller is responsible for */ 2765 /* calculating any appropriate CRCs. */ 2766 /* */ 2767 /* Returns: */ 2768 /* 0 on success, positive value on failure. */ 2769 /****************************************************************************/ 2770 static int 2771 bce_nvram_write(struct bce_softc *sc, u32 offset, u8 *data_buf, 2772 int buf_size) 2773 { 2774 u32 written, offset32, len32; 2775 u8 *buf, start[4], end[4]; 2776 int rc = 0; 2777 int align_start, align_end; 2778 2779 DBENTER(BCE_VERBOSE_NVRAM); 2780 2781 buf = data_buf; 2782 offset32 = offset; 2783 len32 = buf_size; 2784 align_start = align_end = 0; 2785 2786 if ((align_start = (offset32 & 3))) { 2787 offset32 &= ~3; 2788 len32 += align_start; 2789 if ((rc = bce_nvram_read(sc, offset32, start, 4))) 2790 goto bce_nvram_write_exit; 2791 } 2792 2793 if (len32 & 3) { 2794 if ((len32 > 4) || !align_start) { 2795 align_end = 4 - (len32 & 3); 2796 len32 += align_end; 2797 if ((rc = bce_nvram_read(sc, offset32 + len32 - 4, 2798 end, 4))) { 2799 goto bce_nvram_write_exit; 2800 } 2801 } 2802 } 2803 2804 if (align_start || align_end) { 2805 buf = malloc(len32, M_DEVBUF, M_NOWAIT); 2806 if (buf == NULL) { 2807 rc = ENOMEM; 2808 goto bce_nvram_write_exit; 2809 } 2810 2811 if (align_start) { 2812 memcpy(buf, start, 4); 2813 } 2814 2815 if (align_end) { 2816 memcpy(buf + len32 - 4, end, 4); 2817 } 2818 memcpy(buf + align_start, data_buf, buf_size); 2819 } 2820 2821 written = 0; 2822 while ((written < len32) && (rc == 0)) { 2823 u32 page_start, page_end, data_start, data_end; 2824 u32 addr, cmd_flags; 2825 int i; 2826 u8 flash_buffer[264]; 2827 2828 /* Find the page_start addr */ 2829 page_start = offset32 + written; 2830 page_start -= (page_start % sc->bce_flash_info->page_size); 2831 /* Find the page_end addr */ 2832 page_end = page_start + sc->bce_flash_info->page_size; 2833 /* Find the data_start addr */ 2834 data_start = (written == 0) ? offset32 : page_start; 2835 /* Find the data_end addr */ 2836 data_end = (page_end > offset32 + len32) ? 2837 (offset32 + len32) : page_end; 2838 2839 /* Request access to the flash interface. */ 2840 if ((rc = bce_acquire_nvram_lock(sc)) != 0) 2841 goto bce_nvram_write_exit; 2842 2843 /* Enable access to flash interface */ 2844 bce_enable_nvram_access(sc); 2845 2846 cmd_flags = BCE_NVM_COMMAND_FIRST; 2847 if (!(sc->bce_flash_info->flags & BCE_NV_BUFFERED)) { 2848 int j; 2849 2850 /* Read the whole page into the buffer 2851 * (non-buffer flash only) */ 2852 for (j = 0; j < sc->bce_flash_info->page_size; j += 4) { 2853 if (j == (sc->bce_flash_info->page_size - 4)) { 2854 cmd_flags |= BCE_NVM_COMMAND_LAST; 2855 } 2856 rc = bce_nvram_read_dword(sc, 2857 page_start + j, 2858 &flash_buffer[j], 2859 cmd_flags); 2860 2861 if (rc) 2862 goto bce_nvram_write_locked_exit; 2863 2864 cmd_flags = 0; 2865 } 2866 } 2867 2868 /* Enable writes to flash interface (unlock write-protect) */ 2869 if ((rc = bce_enable_nvram_write(sc)) != 0) 2870 goto bce_nvram_write_locked_exit; 2871 2872 /* Erase the page */ 2873 if ((rc = bce_nvram_erase_page(sc, page_start)) != 0) 2874 goto bce_nvram_write_locked_exit; 2875 2876 /* Re-enable the write again for the actual write */ 2877 bce_enable_nvram_write(sc); 2878 2879 /* Loop to write back the buffer data from page_start to 2880 * data_start */ 2881 i = 0; 2882 if (!(sc->bce_flash_info->flags & BCE_NV_BUFFERED)) { 2883 for (addr = page_start; addr < data_start; 2884 addr += 4, i += 4) { 2885 2886 rc = bce_nvram_write_dword(sc, addr, 2887 &flash_buffer[i], cmd_flags); 2888 2889 if (rc != 0) 2890 goto bce_nvram_write_locked_exit; 2891 2892 cmd_flags = 0; 2893 } 2894 } 2895 2896 /* Loop to write the new data from data_start to data_end */ 2897 for (addr = data_start; addr < data_end; addr += 4, i++) { 2898 if ((addr == page_end - 4) || 2899 ((sc->bce_flash_info->flags & BCE_NV_BUFFERED) && 2900 (addr == data_end - 4))) { 2901 2902 cmd_flags |= BCE_NVM_COMMAND_LAST; 2903 } 2904 rc = bce_nvram_write_dword(sc, addr, buf, 2905 cmd_flags); 2906 2907 if (rc != 0) 2908 goto bce_nvram_write_locked_exit; 2909 2910 cmd_flags = 0; 2911 buf += 4; 2912 } 2913 2914 /* Loop to write back the buffer data from data_end 2915 * to page_end */ 2916 if (!(sc->bce_flash_info->flags & BCE_NV_BUFFERED)) { 2917 for (addr = data_end; addr < page_end; 2918 addr += 4, i += 4) { 2919 2920 if (addr == page_end-4) { 2921 cmd_flags = BCE_NVM_COMMAND_LAST; 2922 } 2923 rc = bce_nvram_write_dword(sc, addr, 2924 &flash_buffer[i], cmd_flags); 2925 2926 if (rc != 0) 2927 goto bce_nvram_write_locked_exit; 2928 2929 cmd_flags = 0; 2930 } 2931 } 2932 2933 /* Disable writes to flash interface (lock write-protect) */ 2934 bce_disable_nvram_write(sc); 2935 2936 /* Disable access to flash interface */ 2937 bce_disable_nvram_access(sc); 2938 bce_release_nvram_lock(sc); 2939 2940 /* Increment written */ 2941 written += data_end - data_start; 2942 } 2943 2944 goto bce_nvram_write_exit; 2945 2946 bce_nvram_write_locked_exit: 2947 bce_disable_nvram_write(sc); 2948 bce_disable_nvram_access(sc); 2949 bce_release_nvram_lock(sc); 2950 2951 bce_nvram_write_exit: 2952 if (align_start || align_end) 2953 free(buf, M_DEVBUF); 2954 2955 DBEXIT(BCE_VERBOSE_NVRAM); 2956 return (rc); 2957 } 2958 #endif /* BCE_NVRAM_WRITE_SUPPORT */ 2959 2960 2961 /****************************************************************************/ 2962 /* Verifies that NVRAM is accessible and contains valid data. */ 2963 /* */ 2964 /* Reads the configuration data from NVRAM and verifies that the CRC is */ 2965 /* correct. */ 2966 /* */ 2967 /* Returns: */ 2968 /* 0 on success, positive value on failure. */ 2969 /****************************************************************************/ 2970 static int 2971 bce_nvram_test(struct bce_softc *sc) 2972 { 2973 u32 buf[BCE_NVRAM_SIZE / 4]; 2974 u8 *data = (u8 *) buf; 2975 int rc = 0; 2976 u32 magic, csum; 2977 2978 DBENTER(BCE_VERBOSE_NVRAM | BCE_VERBOSE_LOAD | BCE_VERBOSE_RESET); 2979 2980 /* 2981 * Check that the device NVRAM is valid by reading 2982 * the magic value at offset 0. 2983 */ 2984 if ((rc = bce_nvram_read(sc, 0, data, 4)) != 0) { 2985 BCE_PRINTF("%s(%d): Unable to read NVRAM!\n", 2986 __FILE__, __LINE__); 2987 goto bce_nvram_test_exit; 2988 } 2989 2990 /* 2991 * Verify that offset 0 of the NVRAM contains 2992 * a valid magic number. 2993 */ 2994 magic = bce_be32toh(buf[0]); 2995 if (magic != BCE_NVRAM_MAGIC) { 2996 rc = ENODEV; 2997 BCE_PRINTF("%s(%d): Invalid NVRAM magic value! " 2998 "Expected: 0x%08X, Found: 0x%08X\n", 2999 __FILE__, __LINE__, BCE_NVRAM_MAGIC, magic); 3000 goto bce_nvram_test_exit; 3001 } 3002 3003 /* 3004 * Verify that the device NVRAM includes valid 3005 * configuration data. 3006 */ 3007 if ((rc = bce_nvram_read(sc, 0x100, data, BCE_NVRAM_SIZE)) != 0) { 3008 BCE_PRINTF("%s(%d): Unable to read manufacturing " 3009 "Information from NVRAM!\n", __FILE__, __LINE__); 3010 goto bce_nvram_test_exit; 3011 } 3012 3013 csum = ether_crc32_le(data, 0x100); 3014 if (csum != BCE_CRC32_RESIDUAL) { 3015 rc = ENODEV; 3016 BCE_PRINTF("%s(%d): Invalid manufacturing information " 3017 "NVRAM CRC! Expected: 0x%08X, Found: 0x%08X\n", 3018 __FILE__, __LINE__, BCE_CRC32_RESIDUAL, csum); 3019 goto bce_nvram_test_exit; 3020 } 3021 3022 csum = ether_crc32_le(data + 0x100, 0x100); 3023 if (csum != BCE_CRC32_RESIDUAL) { 3024 rc = ENODEV; 3025 BCE_PRINTF("%s(%d): Invalid feature configuration " 3026 "information NVRAM CRC! Expected: 0x%08X, " 3027 "Found: 08%08X\n", __FILE__, __LINE__, 3028 BCE_CRC32_RESIDUAL, csum); 3029 } 3030 3031 bce_nvram_test_exit: 3032 DBEXIT(BCE_VERBOSE_NVRAM | BCE_VERBOSE_LOAD | BCE_VERBOSE_RESET); 3033 return rc; 3034 } 3035 3036 3037 /****************************************************************************/ 3038 /* Calculates the size of the buffers to allocate based on the MTU. */ 3039 /* */ 3040 /* Returns: */ 3041 /* Nothing. */ 3042 /****************************************************************************/ 3043 static void 3044 bce_get_rx_buffer_sizes(struct bce_softc *sc, int mtu) 3045 { 3046 DBENTER(BCE_VERBOSE_LOAD); 3047 3048 /* Use a single allocation type when header splitting enabled. */ 3049 if (bce_hdr_split == TRUE) { 3050 sc->rx_bd_mbuf_alloc_size = MHLEN; 3051 /* Make sure offset is 16 byte aligned for hardware. */ 3052 sc->rx_bd_mbuf_align_pad = 3053 roundup2(MSIZE - MHLEN, 16) - (MSIZE - MHLEN); 3054 sc->rx_bd_mbuf_data_len = sc->rx_bd_mbuf_alloc_size - 3055 sc->rx_bd_mbuf_align_pad; 3056 } else { 3057 if ((mtu + ETHER_HDR_LEN + ETHER_VLAN_ENCAP_LEN + 3058 ETHER_CRC_LEN) > MCLBYTES) { 3059 /* Setup for jumbo RX buffer allocations. */ 3060 sc->rx_bd_mbuf_alloc_size = MJUM9BYTES; 3061 sc->rx_bd_mbuf_align_pad = 3062 roundup2(MJUM9BYTES, 16) - MJUM9BYTES; 3063 sc->rx_bd_mbuf_data_len = 3064 sc->rx_bd_mbuf_alloc_size - 3065 sc->rx_bd_mbuf_align_pad; 3066 } else { 3067 /* Setup for standard RX buffer allocations. */ 3068 sc->rx_bd_mbuf_alloc_size = MCLBYTES; 3069 sc->rx_bd_mbuf_align_pad = 3070 roundup2(MCLBYTES, 16) - MCLBYTES; 3071 sc->rx_bd_mbuf_data_len = 3072 sc->rx_bd_mbuf_alloc_size - 3073 sc->rx_bd_mbuf_align_pad; 3074 } 3075 } 3076 3077 // DBPRINT(sc, BCE_INFO_LOAD, 3078 DBPRINT(sc, BCE_WARN, 3079 "%s(): rx_bd_mbuf_alloc_size = %d, rx_bd_mbuf_data_len = %d, " 3080 "rx_bd_mbuf_align_pad = %d\n", __FUNCTION__, 3081 sc->rx_bd_mbuf_alloc_size, sc->rx_bd_mbuf_data_len, 3082 sc->rx_bd_mbuf_align_pad); 3083 3084 DBEXIT(BCE_VERBOSE_LOAD); 3085 } 3086 3087 /****************************************************************************/ 3088 /* Identifies the current media type of the controller and sets the PHY */ 3089 /* address. */ 3090 /* */ 3091 /* Returns: */ 3092 /* Nothing. */ 3093 /****************************************************************************/ 3094 static void 3095 bce_get_media(struct bce_softc *sc) 3096 { 3097 u32 val; 3098 3099 DBENTER(BCE_VERBOSE_PHY); 3100 3101 /* Assume PHY address for copper controllers. */ 3102 sc->bce_phy_addr = 1; 3103 3104 if (BCE_CHIP_NUM(sc) == BCE_CHIP_NUM_5709) { 3105 u32 val = REG_RD(sc, BCE_MISC_DUAL_MEDIA_CTRL); 3106 u32 bond_id = val & BCE_MISC_DUAL_MEDIA_CTRL_BOND_ID; 3107 u32 strap; 3108 3109 /* 3110 * The BCM5709S is software configurable 3111 * for Copper or SerDes operation. 3112 */ 3113 if (bond_id == BCE_MISC_DUAL_MEDIA_CTRL_BOND_ID_C) { 3114 DBPRINT(sc, BCE_INFO_LOAD, "5709 bonded " 3115 "for copper.\n"); 3116 goto bce_get_media_exit; 3117 } else if (bond_id == BCE_MISC_DUAL_MEDIA_CTRL_BOND_ID_S) { 3118 DBPRINT(sc, BCE_INFO_LOAD, "5709 bonded " 3119 "for dual media.\n"); 3120 sc->bce_phy_flags |= BCE_PHY_SERDES_FLAG; 3121 goto bce_get_media_exit; 3122 } 3123 3124 if (val & BCE_MISC_DUAL_MEDIA_CTRL_STRAP_OVERRIDE) 3125 strap = (val & 3126 BCE_MISC_DUAL_MEDIA_CTRL_PHY_CTRL) >> 21; 3127 else 3128 strap = (val & 3129 BCE_MISC_DUAL_MEDIA_CTRL_PHY_CTRL_STRAP) >> 8; 3130 3131 if (pci_get_function(sc->bce_dev) == 0) { 3132 switch (strap) { 3133 case 0x4: 3134 case 0x5: 3135 case 0x6: 3136 DBPRINT(sc, BCE_INFO_LOAD, 3137 "BCM5709 s/w configured for SerDes.\n"); 3138 sc->bce_phy_flags |= BCE_PHY_SERDES_FLAG; 3139 break; 3140 default: 3141 DBPRINT(sc, BCE_INFO_LOAD, 3142 "BCM5709 s/w configured for Copper.\n"); 3143 break; 3144 } 3145 } else { 3146 switch (strap) { 3147 case 0x1: 3148 case 0x2: 3149 case 0x4: 3150 DBPRINT(sc, BCE_INFO_LOAD, 3151 "BCM5709 s/w configured for SerDes.\n"); 3152 sc->bce_phy_flags |= BCE_PHY_SERDES_FLAG; 3153 break; 3154 default: 3155 DBPRINT(sc, BCE_INFO_LOAD, 3156 "BCM5709 s/w configured for Copper.\n"); 3157 break; 3158 } 3159 } 3160 3161 } else if (BCE_CHIP_BOND_ID(sc) & BCE_CHIP_BOND_ID_SERDES_BIT) 3162 sc->bce_phy_flags |= BCE_PHY_SERDES_FLAG; 3163 3164 if (sc->bce_phy_flags & BCE_PHY_SERDES_FLAG) { 3165 3166 sc->bce_flags |= BCE_NO_WOL_FLAG; 3167 3168 if (BCE_CHIP_NUM(sc) == BCE_CHIP_NUM_5709) 3169 sc->bce_phy_flags |= BCE_PHY_IEEE_CLAUSE_45_FLAG; 3170 3171 if (BCE_CHIP_NUM(sc) != BCE_CHIP_NUM_5706) { 3172 /* 5708S/09S/16S use a separate PHY for SerDes. */ 3173 sc->bce_phy_addr = 2; 3174 3175 val = bce_shmem_rd(sc, BCE_SHARED_HW_CFG_CONFIG); 3176 if (val & BCE_SHARED_HW_CFG_PHY_2_5G) { 3177 sc->bce_phy_flags |= 3178 BCE_PHY_2_5G_CAPABLE_FLAG; 3179 DBPRINT(sc, BCE_INFO_LOAD, "Found 2.5Gb " 3180 "capable adapter\n"); 3181 } 3182 } 3183 } else if ((BCE_CHIP_NUM(sc) == BCE_CHIP_NUM_5706) || 3184 (BCE_CHIP_NUM(sc) == BCE_CHIP_NUM_5708)) 3185 sc->bce_phy_flags |= BCE_PHY_CRC_FIX_FLAG; 3186 3187 bce_get_media_exit: 3188 DBPRINT(sc, (BCE_INFO_LOAD | BCE_INFO_PHY), 3189 "Using PHY address %d.\n", sc->bce_phy_addr); 3190 3191 DBEXIT(BCE_VERBOSE_PHY); 3192 } 3193 3194 3195 /****************************************************************************/ 3196 /* Performs PHY initialization required before MII drivers access the */ 3197 /* device. */ 3198 /* */ 3199 /* Returns: */ 3200 /* Nothing. */ 3201 /****************************************************************************/ 3202 static void 3203 bce_init_media(struct bce_softc *sc) 3204 { 3205 if ((sc->bce_phy_flags & (BCE_PHY_IEEE_CLAUSE_45_FLAG | 3206 BCE_PHY_REMOTE_CAP_FLAG)) == BCE_PHY_IEEE_CLAUSE_45_FLAG) { 3207 /* 3208 * Configure 5709S/5716S PHYs to use traditional IEEE 3209 * Clause 22 method. Otherwise we have no way to attach 3210 * the PHY in mii(4) layer. PHY specific configuration 3211 * is done in mii layer. 3212 */ 3213 3214 /* Select auto-negotiation MMD of the PHY. */ 3215 bce_miibus_write_reg(sc->bce_dev, sc->bce_phy_addr, 3216 BRGPHY_BLOCK_ADDR, BRGPHY_BLOCK_ADDR_ADDR_EXT); 3217 bce_miibus_write_reg(sc->bce_dev, sc->bce_phy_addr, 3218 BRGPHY_ADDR_EXT, BRGPHY_ADDR_EXT_AN_MMD); 3219 3220 /* Set IEEE0 block of AN MMD (assumed in brgphy(4) code). */ 3221 bce_miibus_write_reg(sc->bce_dev, sc->bce_phy_addr, 3222 BRGPHY_BLOCK_ADDR, BRGPHY_BLOCK_ADDR_COMBO_IEEE0); 3223 } 3224 } 3225 3226 3227 /****************************************************************************/ 3228 /* Free any DMA memory owned by the driver. */ 3229 /* */ 3230 /* Scans through each data structre that requires DMA memory and frees */ 3231 /* the memory if allocated. */ 3232 /* */ 3233 /* Returns: */ 3234 /* Nothing. */ 3235 /****************************************************************************/ 3236 static void 3237 bce_dma_free(struct bce_softc *sc) 3238 { 3239 int i; 3240 3241 DBENTER(BCE_VERBOSE_RESET | BCE_VERBOSE_UNLOAD | BCE_VERBOSE_CTX); 3242 3243 /* Free, unmap, and destroy the status block. */ 3244 if (sc->status_block_paddr != 0) { 3245 bus_dmamap_unload( 3246 sc->status_tag, 3247 sc->status_map); 3248 sc->status_block_paddr = 0; 3249 } 3250 3251 if (sc->status_block != NULL) { 3252 bus_dmamem_free( 3253 sc->status_tag, 3254 sc->status_block, 3255 sc->status_map); 3256 sc->status_block = NULL; 3257 } 3258 3259 if (sc->status_tag != NULL) { 3260 bus_dma_tag_destroy(sc->status_tag); 3261 sc->status_tag = NULL; 3262 } 3263 3264 3265 /* Free, unmap, and destroy the statistics block. */ 3266 if (sc->stats_block_paddr != 0) { 3267 bus_dmamap_unload( 3268 sc->stats_tag, 3269 sc->stats_map); 3270 sc->stats_block_paddr = 0; 3271 } 3272 3273 if (sc->stats_block != NULL) { 3274 bus_dmamem_free( 3275 sc->stats_tag, 3276 sc->stats_block, 3277 sc->stats_map); 3278 sc->stats_block = NULL; 3279 } 3280 3281 if (sc->stats_tag != NULL) { 3282 bus_dma_tag_destroy(sc->stats_tag); 3283 sc->stats_tag = NULL; 3284 } 3285 3286 3287 /* Free, unmap and destroy all context memory pages. */ 3288 if (BCE_CHIP_NUM(sc) == BCE_CHIP_NUM_5709) { 3289 for (i = 0; i < sc->ctx_pages; i++ ) { 3290 if (sc->ctx_paddr[i] != 0) { 3291 bus_dmamap_unload( 3292 sc->ctx_tag, 3293 sc->ctx_map[i]); 3294 sc->ctx_paddr[i] = 0; 3295 } 3296 3297 if (sc->ctx_block[i] != NULL) { 3298 bus_dmamem_free( 3299 sc->ctx_tag, 3300 sc->ctx_block[i], 3301 sc->ctx_map[i]); 3302 sc->ctx_block[i] = NULL; 3303 } 3304 } 3305 3306 /* Destroy the context memory tag. */ 3307 if (sc->ctx_tag != NULL) { 3308 bus_dma_tag_destroy(sc->ctx_tag); 3309 sc->ctx_tag = NULL; 3310 } 3311 } 3312 3313 3314 /* Free, unmap and destroy all TX buffer descriptor chain pages. */ 3315 for (i = 0; i < sc->tx_pages; i++ ) { 3316 if (sc->tx_bd_chain_paddr[i] != 0) { 3317 bus_dmamap_unload( 3318 sc->tx_bd_chain_tag, 3319 sc->tx_bd_chain_map[i]); 3320 sc->tx_bd_chain_paddr[i] = 0; 3321 } 3322 3323 if (sc->tx_bd_chain[i] != NULL) { 3324 bus_dmamem_free( 3325 sc->tx_bd_chain_tag, 3326 sc->tx_bd_chain[i], 3327 sc->tx_bd_chain_map[i]); 3328 sc->tx_bd_chain[i] = NULL; 3329 } 3330 } 3331 3332 /* Destroy the TX buffer descriptor tag. */ 3333 if (sc->tx_bd_chain_tag != NULL) { 3334 bus_dma_tag_destroy(sc->tx_bd_chain_tag); 3335 sc->tx_bd_chain_tag = NULL; 3336 } 3337 3338 3339 /* Free, unmap and destroy all RX buffer descriptor chain pages. */ 3340 for (i = 0; i < sc->rx_pages; i++ ) { 3341 if (sc->rx_bd_chain_paddr[i] != 0) { 3342 bus_dmamap_unload( 3343 sc->rx_bd_chain_tag, 3344 sc->rx_bd_chain_map[i]); 3345 sc->rx_bd_chain_paddr[i] = 0; 3346 } 3347 3348 if (sc->rx_bd_chain[i] != NULL) { 3349 bus_dmamem_free( 3350 sc->rx_bd_chain_tag, 3351 sc->rx_bd_chain[i], 3352 sc->rx_bd_chain_map[i]); 3353 sc->rx_bd_chain[i] = NULL; 3354 } 3355 } 3356 3357 /* Destroy the RX buffer descriptor tag. */ 3358 if (sc->rx_bd_chain_tag != NULL) { 3359 bus_dma_tag_destroy(sc->rx_bd_chain_tag); 3360 sc->rx_bd_chain_tag = NULL; 3361 } 3362 3363 3364 /* Free, unmap and destroy all page buffer descriptor chain pages. */ 3365 if (bce_hdr_split == TRUE) { 3366 for (i = 0; i < sc->pg_pages; i++ ) { 3367 if (sc->pg_bd_chain_paddr[i] != 0) { 3368 bus_dmamap_unload( 3369 sc->pg_bd_chain_tag, 3370 sc->pg_bd_chain_map[i]); 3371 sc->pg_bd_chain_paddr[i] = 0; 3372 } 3373 3374 if (sc->pg_bd_chain[i] != NULL) { 3375 bus_dmamem_free( 3376 sc->pg_bd_chain_tag, 3377 sc->pg_bd_chain[i], 3378 sc->pg_bd_chain_map[i]); 3379 sc->pg_bd_chain[i] = NULL; 3380 } 3381 } 3382 3383 /* Destroy the page buffer descriptor tag. */ 3384 if (sc->pg_bd_chain_tag != NULL) { 3385 bus_dma_tag_destroy(sc->pg_bd_chain_tag); 3386 sc->pg_bd_chain_tag = NULL; 3387 } 3388 } 3389 3390 3391 /* Unload and destroy the TX mbuf maps. */ 3392 for (i = 0; i < MAX_TX_BD_AVAIL; i++) { 3393 if (sc->tx_mbuf_map[i] != NULL) { 3394 bus_dmamap_unload(sc->tx_mbuf_tag, 3395 sc->tx_mbuf_map[i]); 3396 bus_dmamap_destroy(sc->tx_mbuf_tag, 3397 sc->tx_mbuf_map[i]); 3398 sc->tx_mbuf_map[i] = NULL; 3399 } 3400 } 3401 3402 /* Destroy the TX mbuf tag. */ 3403 if (sc->tx_mbuf_tag != NULL) { 3404 bus_dma_tag_destroy(sc->tx_mbuf_tag); 3405 sc->tx_mbuf_tag = NULL; 3406 } 3407 3408 /* Unload and destroy the RX mbuf maps. */ 3409 for (i = 0; i < MAX_RX_BD_AVAIL; i++) { 3410 if (sc->rx_mbuf_map[i] != NULL) { 3411 bus_dmamap_unload(sc->rx_mbuf_tag, 3412 sc->rx_mbuf_map[i]); 3413 bus_dmamap_destroy(sc->rx_mbuf_tag, 3414 sc->rx_mbuf_map[i]); 3415 sc->rx_mbuf_map[i] = NULL; 3416 } 3417 } 3418 3419 /* Destroy the RX mbuf tag. */ 3420 if (sc->rx_mbuf_tag != NULL) { 3421 bus_dma_tag_destroy(sc->rx_mbuf_tag); 3422 sc->rx_mbuf_tag = NULL; 3423 } 3424 3425 /* Unload and destroy the page mbuf maps. */ 3426 if (bce_hdr_split == TRUE) { 3427 for (i = 0; i < MAX_PG_BD_AVAIL; i++) { 3428 if (sc->pg_mbuf_map[i] != NULL) { 3429 bus_dmamap_unload(sc->pg_mbuf_tag, 3430 sc->pg_mbuf_map[i]); 3431 bus_dmamap_destroy(sc->pg_mbuf_tag, 3432 sc->pg_mbuf_map[i]); 3433 sc->pg_mbuf_map[i] = NULL; 3434 } 3435 } 3436 3437 /* Destroy the page mbuf tag. */ 3438 if (sc->pg_mbuf_tag != NULL) { 3439 bus_dma_tag_destroy(sc->pg_mbuf_tag); 3440 sc->pg_mbuf_tag = NULL; 3441 } 3442 } 3443 3444 /* Destroy the parent tag */ 3445 if (sc->parent_tag != NULL) { 3446 bus_dma_tag_destroy(sc->parent_tag); 3447 sc->parent_tag = NULL; 3448 } 3449 3450 DBEXIT(BCE_VERBOSE_RESET | BCE_VERBOSE_UNLOAD | BCE_VERBOSE_CTX); 3451 } 3452 3453 3454 /****************************************************************************/ 3455 /* Get DMA memory from the OS. */ 3456 /* */ 3457 /* Validates that the OS has provided DMA buffers in response to a */ 3458 /* bus_dmamap_load() call and saves the physical address of those buffers. */ 3459 /* When the callback is used the OS will return 0 for the mapping function */ 3460 /* (bus_dmamap_load()) so we use the value of map_arg->maxsegs to pass any */ 3461 /* failures back to the caller. */ 3462 /* */ 3463 /* Returns: */ 3464 /* Nothing. */ 3465 /****************************************************************************/ 3466 static void 3467 bce_dma_map_addr(void *arg, bus_dma_segment_t *segs, int nseg, int error) 3468 { 3469 bus_addr_t *busaddr = arg; 3470 3471 KASSERT(nseg == 1, ("%s(): Too many segments returned (%d)!", 3472 __FUNCTION__, nseg)); 3473 /* Simulate a mapping failure. */ 3474 DBRUNIF(DB_RANDOMTRUE(dma_map_addr_failed_sim_control), 3475 error = ENOMEM); 3476 3477 /* ToDo: How to increment debug sim_count variable here? */ 3478 3479 /* Check for an error and signal the caller that an error occurred. */ 3480 if (error) { 3481 *busaddr = 0; 3482 } else { 3483 *busaddr = segs->ds_addr; 3484 } 3485 } 3486 3487 3488 /****************************************************************************/ 3489 /* Allocate any DMA memory needed by the driver. */ 3490 /* */ 3491 /* Allocates DMA memory needed for the various global structures needed by */ 3492 /* hardware. */ 3493 /* */ 3494 /* Memory alignment requirements: */ 3495 /* +-----------------+----------+----------+----------+----------+ */ 3496 /* | | 5706 | 5708 | 5709 | 5716 | */ 3497 /* +-----------------+----------+----------+----------+----------+ */ 3498 /* |Status Block | 8 bytes | 8 bytes | 16 bytes | 16 bytes | */ 3499 /* |Statistics Block | 8 bytes | 8 bytes | 16 bytes | 16 bytes | */ 3500 /* |RX Buffers | 16 bytes | 16 bytes | 16 bytes | 16 bytes | */ 3501 /* |PG Buffers | none | none | none | none | */ 3502 /* |TX Buffers | none | none | none | none | */ 3503 /* |Chain Pages(1) | 4KiB | 4KiB | 4KiB | 4KiB | */ 3504 /* |Context Memory | | | | | */ 3505 /* +-----------------+----------+----------+----------+----------+ */ 3506 /* */ 3507 /* (1) Must align with CPU page size (BCM_PAGE_SZIE). */ 3508 /* */ 3509 /* Returns: */ 3510 /* 0 for success, positive value for failure. */ 3511 /****************************************************************************/ 3512 static int 3513 bce_dma_alloc(device_t dev) 3514 { 3515 struct bce_softc *sc; 3516 int i, error, rc = 0; 3517 bus_size_t max_size, max_seg_size; 3518 int max_segments; 3519 3520 sc = device_get_softc(dev); 3521 3522 DBENTER(BCE_VERBOSE_RESET | BCE_VERBOSE_CTX); 3523 3524 /* 3525 * Allocate the parent bus DMA tag appropriate for PCI. 3526 */ 3527 if (bus_dma_tag_create(bus_get_dma_tag(dev), 1, BCE_DMA_BOUNDARY, 3528 sc->max_bus_addr, BUS_SPACE_MAXADDR, NULL, NULL, 3529 BUS_SPACE_MAXSIZE_32BIT, 0, BUS_SPACE_MAXSIZE_32BIT, 0, NULL, NULL, 3530 &sc->parent_tag)) { 3531 BCE_PRINTF("%s(%d): Could not allocate parent DMA tag!\n", 3532 __FILE__, __LINE__); 3533 rc = ENOMEM; 3534 goto bce_dma_alloc_exit; 3535 } 3536 3537 /* 3538 * Create a DMA tag for the status block, allocate and clear the 3539 * memory, map the memory into DMA space, and fetch the physical 3540 * address of the block. 3541 */ 3542 if (bus_dma_tag_create(sc->parent_tag, BCE_DMA_ALIGN, 3543 BCE_DMA_BOUNDARY, sc->max_bus_addr, BUS_SPACE_MAXADDR, 3544 NULL, NULL, BCE_STATUS_BLK_SZ, 1, BCE_STATUS_BLK_SZ, 3545 0, NULL, NULL, &sc->status_tag)) { 3546 BCE_PRINTF("%s(%d): Could not allocate status block " 3547 "DMA tag!\n", __FILE__, __LINE__); 3548 rc = ENOMEM; 3549 goto bce_dma_alloc_exit; 3550 } 3551 3552 if(bus_dmamem_alloc(sc->status_tag, (void **)&sc->status_block, 3553 BUS_DMA_NOWAIT | BUS_DMA_ZERO | BUS_DMA_COHERENT, 3554 &sc->status_map)) { 3555 BCE_PRINTF("%s(%d): Could not allocate status block " 3556 "DMA memory!\n", __FILE__, __LINE__); 3557 rc = ENOMEM; 3558 goto bce_dma_alloc_exit; 3559 } 3560 3561 error = bus_dmamap_load(sc->status_tag, sc->status_map, 3562 sc->status_block, BCE_STATUS_BLK_SZ, bce_dma_map_addr, 3563 &sc->status_block_paddr, BUS_DMA_NOWAIT); 3564 3565 if (error || sc->status_block_paddr == 0) { 3566 BCE_PRINTF("%s(%d): Could not map status block " 3567 "DMA memory!\n", __FILE__, __LINE__); 3568 rc = ENOMEM; 3569 goto bce_dma_alloc_exit; 3570 } 3571 3572 DBPRINT(sc, BCE_INFO_LOAD, "%s(): status_block_paddr = 0x%jX\n", 3573 __FUNCTION__, (uintmax_t) sc->status_block_paddr); 3574 3575 /* 3576 * Create a DMA tag for the statistics block, allocate and clear the 3577 * memory, map the memory into DMA space, and fetch the physical 3578 * address of the block. 3579 */ 3580 if (bus_dma_tag_create(sc->parent_tag, BCE_DMA_ALIGN, 3581 BCE_DMA_BOUNDARY, sc->max_bus_addr, BUS_SPACE_MAXADDR, 3582 NULL, NULL, BCE_STATS_BLK_SZ, 1, BCE_STATS_BLK_SZ, 3583 0, NULL, NULL, &sc->stats_tag)) { 3584 BCE_PRINTF("%s(%d): Could not allocate statistics block " 3585 "DMA tag!\n", __FILE__, __LINE__); 3586 rc = ENOMEM; 3587 goto bce_dma_alloc_exit; 3588 } 3589 3590 if (bus_dmamem_alloc(sc->stats_tag, (void **)&sc->stats_block, 3591 BUS_DMA_NOWAIT | BUS_DMA_ZERO | BUS_DMA_COHERENT, &sc->stats_map)) { 3592 BCE_PRINTF("%s(%d): Could not allocate statistics block " 3593 "DMA memory!\n", __FILE__, __LINE__); 3594 rc = ENOMEM; 3595 goto bce_dma_alloc_exit; 3596 } 3597 3598 error = bus_dmamap_load(sc->stats_tag, sc->stats_map, 3599 sc->stats_block, BCE_STATS_BLK_SZ, bce_dma_map_addr, 3600 &sc->stats_block_paddr, BUS_DMA_NOWAIT); 3601 3602 if (error || sc->stats_block_paddr == 0) { 3603 BCE_PRINTF("%s(%d): Could not map statistics block " 3604 "DMA memory!\n", __FILE__, __LINE__); 3605 rc = ENOMEM; 3606 goto bce_dma_alloc_exit; 3607 } 3608 3609 DBPRINT(sc, BCE_INFO_LOAD, "%s(): stats_block_paddr = 0x%jX\n", 3610 __FUNCTION__, (uintmax_t) sc->stats_block_paddr); 3611 3612 /* BCM5709 uses host memory as cache for context memory. */ 3613 if (BCE_CHIP_NUM(sc) == BCE_CHIP_NUM_5709) { 3614 sc->ctx_pages = 0x2000 / BCM_PAGE_SIZE; 3615 if (sc->ctx_pages == 0) 3616 sc->ctx_pages = 1; 3617 3618 DBRUNIF((sc->ctx_pages > 512), 3619 BCE_PRINTF("%s(%d): Too many CTX pages! %d > 512\n", 3620 __FILE__, __LINE__, sc->ctx_pages)); 3621 3622 /* 3623 * Create a DMA tag for the context pages, 3624 * allocate and clear the memory, map the 3625 * memory into DMA space, and fetch the 3626 * physical address of the block. 3627 */ 3628 if(bus_dma_tag_create(sc->parent_tag, BCM_PAGE_SIZE, 3629 BCE_DMA_BOUNDARY, sc->max_bus_addr, BUS_SPACE_MAXADDR, 3630 NULL, NULL, BCM_PAGE_SIZE, 1, BCM_PAGE_SIZE, 3631 0, NULL, NULL, &sc->ctx_tag)) { 3632 BCE_PRINTF("%s(%d): Could not allocate CTX " 3633 "DMA tag!\n", __FILE__, __LINE__); 3634 rc = ENOMEM; 3635 goto bce_dma_alloc_exit; 3636 } 3637 3638 for (i = 0; i < sc->ctx_pages; i++) { 3639 3640 if(bus_dmamem_alloc(sc->ctx_tag, 3641 (void **)&sc->ctx_block[i], 3642 BUS_DMA_NOWAIT | BUS_DMA_ZERO | BUS_DMA_COHERENT, 3643 &sc->ctx_map[i])) { 3644 BCE_PRINTF("%s(%d): Could not allocate CTX " 3645 "DMA memory!\n", __FILE__, __LINE__); 3646 rc = ENOMEM; 3647 goto bce_dma_alloc_exit; 3648 } 3649 3650 error = bus_dmamap_load(sc->ctx_tag, sc->ctx_map[i], 3651 sc->ctx_block[i], BCM_PAGE_SIZE, bce_dma_map_addr, 3652 &sc->ctx_paddr[i], BUS_DMA_NOWAIT); 3653 3654 if (error || sc->ctx_paddr[i] == 0) { 3655 BCE_PRINTF("%s(%d): Could not map CTX " 3656 "DMA memory!\n", __FILE__, __LINE__); 3657 rc = ENOMEM; 3658 goto bce_dma_alloc_exit; 3659 } 3660 3661 DBPRINT(sc, BCE_INFO_LOAD, "%s(): ctx_paddr[%d] " 3662 "= 0x%jX\n", __FUNCTION__, i, 3663 (uintmax_t) sc->ctx_paddr[i]); 3664 } 3665 } 3666 3667 /* 3668 * Create a DMA tag for the TX buffer descriptor chain, 3669 * allocate and clear the memory, and fetch the 3670 * physical address of the block. 3671 */ 3672 if(bus_dma_tag_create(sc->parent_tag, BCM_PAGE_SIZE, BCE_DMA_BOUNDARY, 3673 sc->max_bus_addr, BUS_SPACE_MAXADDR, NULL, NULL, 3674 BCE_TX_CHAIN_PAGE_SZ, 1, BCE_TX_CHAIN_PAGE_SZ, 0, 3675 NULL, NULL, &sc->tx_bd_chain_tag)) { 3676 BCE_PRINTF("%s(%d): Could not allocate TX descriptor " 3677 "chain DMA tag!\n", __FILE__, __LINE__); 3678 rc = ENOMEM; 3679 goto bce_dma_alloc_exit; 3680 } 3681 3682 for (i = 0; i < sc->tx_pages; i++) { 3683 3684 if(bus_dmamem_alloc(sc->tx_bd_chain_tag, 3685 (void **)&sc->tx_bd_chain[i], 3686 BUS_DMA_NOWAIT | BUS_DMA_ZERO | BUS_DMA_COHERENT, 3687 &sc->tx_bd_chain_map[i])) { 3688 BCE_PRINTF("%s(%d): Could not allocate TX descriptor " 3689 "chain DMA memory!\n", __FILE__, __LINE__); 3690 rc = ENOMEM; 3691 goto bce_dma_alloc_exit; 3692 } 3693 3694 error = bus_dmamap_load(sc->tx_bd_chain_tag, 3695 sc->tx_bd_chain_map[i], sc->tx_bd_chain[i], 3696 BCE_TX_CHAIN_PAGE_SZ, bce_dma_map_addr, 3697 &sc->tx_bd_chain_paddr[i], BUS_DMA_NOWAIT); 3698 3699 if (error || sc->tx_bd_chain_paddr[i] == 0) { 3700 BCE_PRINTF("%s(%d): Could not map TX descriptor " 3701 "chain DMA memory!\n", __FILE__, __LINE__); 3702 rc = ENOMEM; 3703 goto bce_dma_alloc_exit; 3704 } 3705 3706 DBPRINT(sc, BCE_INFO_LOAD, "%s(): tx_bd_chain_paddr[%d] = " 3707 "0x%jX\n", __FUNCTION__, i, 3708 (uintmax_t) sc->tx_bd_chain_paddr[i]); 3709 } 3710 3711 /* Check the required size before mapping to conserve resources. */ 3712 if (bce_tso_enable) { 3713 max_size = BCE_TSO_MAX_SIZE; 3714 max_segments = BCE_MAX_SEGMENTS; 3715 max_seg_size = BCE_TSO_MAX_SEG_SIZE; 3716 } else { 3717 max_size = MCLBYTES * BCE_MAX_SEGMENTS; 3718 max_segments = BCE_MAX_SEGMENTS; 3719 max_seg_size = MCLBYTES; 3720 } 3721 3722 /* Create a DMA tag for TX mbufs. */ 3723 if (bus_dma_tag_create(sc->parent_tag, 1, BCE_DMA_BOUNDARY, 3724 sc->max_bus_addr, BUS_SPACE_MAXADDR, NULL, NULL, max_size, 3725 max_segments, max_seg_size, 0, NULL, NULL, &sc->tx_mbuf_tag)) { 3726 BCE_PRINTF("%s(%d): Could not allocate TX mbuf DMA tag!\n", 3727 __FILE__, __LINE__); 3728 rc = ENOMEM; 3729 goto bce_dma_alloc_exit; 3730 } 3731 3732 /* Create DMA maps for the TX mbufs clusters. */ 3733 for (i = 0; i < TOTAL_TX_BD_ALLOC; i++) { 3734 if (bus_dmamap_create(sc->tx_mbuf_tag, BUS_DMA_NOWAIT, 3735 &sc->tx_mbuf_map[i])) { 3736 BCE_PRINTF("%s(%d): Unable to create TX mbuf DMA " 3737 "map!\n", __FILE__, __LINE__); 3738 rc = ENOMEM; 3739 goto bce_dma_alloc_exit; 3740 } 3741 } 3742 3743 /* 3744 * Create a DMA tag for the RX buffer descriptor chain, 3745 * allocate and clear the memory, and fetch the physical 3746 * address of the blocks. 3747 */ 3748 if (bus_dma_tag_create(sc->parent_tag, BCM_PAGE_SIZE, 3749 BCE_DMA_BOUNDARY, BUS_SPACE_MAXADDR, 3750 sc->max_bus_addr, NULL, NULL, 3751 BCE_RX_CHAIN_PAGE_SZ, 1, BCE_RX_CHAIN_PAGE_SZ, 3752 0, NULL, NULL, &sc->rx_bd_chain_tag)) { 3753 BCE_PRINTF("%s(%d): Could not allocate RX descriptor chain " 3754 "DMA tag!\n", __FILE__, __LINE__); 3755 rc = ENOMEM; 3756 goto bce_dma_alloc_exit; 3757 } 3758 3759 for (i = 0; i < sc->rx_pages; i++) { 3760 3761 if (bus_dmamem_alloc(sc->rx_bd_chain_tag, 3762 (void **)&sc->rx_bd_chain[i], 3763 BUS_DMA_NOWAIT | BUS_DMA_ZERO | BUS_DMA_COHERENT, 3764 &sc->rx_bd_chain_map[i])) { 3765 BCE_PRINTF("%s(%d): Could not allocate RX descriptor " 3766 "chain DMA memory!\n", __FILE__, __LINE__); 3767 rc = ENOMEM; 3768 goto bce_dma_alloc_exit; 3769 } 3770 3771 error = bus_dmamap_load(sc->rx_bd_chain_tag, 3772 sc->rx_bd_chain_map[i], sc->rx_bd_chain[i], 3773 BCE_RX_CHAIN_PAGE_SZ, bce_dma_map_addr, 3774 &sc->rx_bd_chain_paddr[i], BUS_DMA_NOWAIT); 3775 3776 if (error || sc->rx_bd_chain_paddr[i] == 0) { 3777 BCE_PRINTF("%s(%d): Could not map RX descriptor " 3778 "chain DMA memory!\n", __FILE__, __LINE__); 3779 rc = ENOMEM; 3780 goto bce_dma_alloc_exit; 3781 } 3782 3783 DBPRINT(sc, BCE_INFO_LOAD, "%s(): rx_bd_chain_paddr[%d] = " 3784 "0x%jX\n", __FUNCTION__, i, 3785 (uintmax_t) sc->rx_bd_chain_paddr[i]); 3786 } 3787 3788 /* 3789 * Create a DMA tag for RX mbufs. 3790 */ 3791 if (bce_hdr_split == TRUE) 3792 max_size = ((sc->rx_bd_mbuf_alloc_size < MCLBYTES) ? 3793 MCLBYTES : sc->rx_bd_mbuf_alloc_size); 3794 else 3795 max_size = MJUM9BYTES; 3796 3797 DBPRINT(sc, BCE_INFO_LOAD, "%s(): Creating rx_mbuf_tag " 3798 "(max size = 0x%jX)\n", __FUNCTION__, (uintmax_t)max_size); 3799 3800 if (bus_dma_tag_create(sc->parent_tag, BCE_RX_BUF_ALIGN, 3801 BCE_DMA_BOUNDARY, sc->max_bus_addr, BUS_SPACE_MAXADDR, NULL, NULL, 3802 max_size, 1, max_size, 0, NULL, NULL, &sc->rx_mbuf_tag)) { 3803 BCE_PRINTF("%s(%d): Could not allocate RX mbuf DMA tag!\n", 3804 __FILE__, __LINE__); 3805 rc = ENOMEM; 3806 goto bce_dma_alloc_exit; 3807 } 3808 3809 /* Create DMA maps for the RX mbuf clusters. */ 3810 for (i = 0; i < TOTAL_RX_BD_ALLOC; i++) { 3811 if (bus_dmamap_create(sc->rx_mbuf_tag, BUS_DMA_NOWAIT, 3812 &sc->rx_mbuf_map[i])) { 3813 BCE_PRINTF("%s(%d): Unable to create RX mbuf " 3814 "DMA map!\n", __FILE__, __LINE__); 3815 rc = ENOMEM; 3816 goto bce_dma_alloc_exit; 3817 } 3818 } 3819 3820 if (bce_hdr_split == TRUE) { 3821 /* 3822 * Create a DMA tag for the page buffer descriptor chain, 3823 * allocate and clear the memory, and fetch the physical 3824 * address of the blocks. 3825 */ 3826 if (bus_dma_tag_create(sc->parent_tag, BCM_PAGE_SIZE, 3827 BCE_DMA_BOUNDARY, BUS_SPACE_MAXADDR, sc->max_bus_addr, 3828 NULL, NULL, BCE_PG_CHAIN_PAGE_SZ, 1, BCE_PG_CHAIN_PAGE_SZ, 3829 0, NULL, NULL, &sc->pg_bd_chain_tag)) { 3830 BCE_PRINTF("%s(%d): Could not allocate page descriptor " 3831 "chain DMA tag!\n", __FILE__, __LINE__); 3832 rc = ENOMEM; 3833 goto bce_dma_alloc_exit; 3834 } 3835 3836 for (i = 0; i < sc->pg_pages; i++) { 3837 if (bus_dmamem_alloc(sc->pg_bd_chain_tag, 3838 (void **)&sc->pg_bd_chain[i], 3839 BUS_DMA_NOWAIT | BUS_DMA_ZERO | BUS_DMA_COHERENT, 3840 &sc->pg_bd_chain_map[i])) { 3841 BCE_PRINTF("%s(%d): Could not allocate page " 3842 "descriptor chain DMA memory!\n", 3843 __FILE__, __LINE__); 3844 rc = ENOMEM; 3845 goto bce_dma_alloc_exit; 3846 } 3847 3848 error = bus_dmamap_load(sc->pg_bd_chain_tag, 3849 sc->pg_bd_chain_map[i], sc->pg_bd_chain[i], 3850 BCE_PG_CHAIN_PAGE_SZ, bce_dma_map_addr, 3851 &sc->pg_bd_chain_paddr[i], BUS_DMA_NOWAIT); 3852 3853 if (error || sc->pg_bd_chain_paddr[i] == 0) { 3854 BCE_PRINTF("%s(%d): Could not map page descriptor " 3855 "chain DMA memory!\n", __FILE__, __LINE__); 3856 rc = ENOMEM; 3857 goto bce_dma_alloc_exit; 3858 } 3859 3860 DBPRINT(sc, BCE_INFO_LOAD, "%s(): pg_bd_chain_paddr[%d] = " 3861 "0x%jX\n", __FUNCTION__, i, 3862 (uintmax_t) sc->pg_bd_chain_paddr[i]); 3863 } 3864 3865 /* 3866 * Create a DMA tag for page mbufs. 3867 */ 3868 if (bus_dma_tag_create(sc->parent_tag, 1, BCE_DMA_BOUNDARY, 3869 sc->max_bus_addr, BUS_SPACE_MAXADDR, NULL, NULL, MCLBYTES, 3870 1, MCLBYTES, 0, NULL, NULL, &sc->pg_mbuf_tag)) { 3871 BCE_PRINTF("%s(%d): Could not allocate page mbuf " 3872 "DMA tag!\n", __FILE__, __LINE__); 3873 rc = ENOMEM; 3874 goto bce_dma_alloc_exit; 3875 } 3876 3877 /* Create DMA maps for the page mbuf clusters. */ 3878 for (i = 0; i < TOTAL_PG_BD_ALLOC; i++) { 3879 if (bus_dmamap_create(sc->pg_mbuf_tag, BUS_DMA_NOWAIT, 3880 &sc->pg_mbuf_map[i])) { 3881 BCE_PRINTF("%s(%d): Unable to create page mbuf " 3882 "DMA map!\n", __FILE__, __LINE__); 3883 rc = ENOMEM; 3884 goto bce_dma_alloc_exit; 3885 } 3886 } 3887 } 3888 3889 bce_dma_alloc_exit: 3890 DBEXIT(BCE_VERBOSE_RESET | BCE_VERBOSE_CTX); 3891 return(rc); 3892 } 3893 3894 3895 /****************************************************************************/ 3896 /* Release all resources used by the driver. */ 3897 /* */ 3898 /* Releases all resources acquired by the driver including interrupts, */ 3899 /* interrupt handler, interfaces, mutexes, and DMA memory. */ 3900 /* */ 3901 /* Returns: */ 3902 /* Nothing. */ 3903 /****************************************************************************/ 3904 static void 3905 bce_release_resources(struct bce_softc *sc) 3906 { 3907 device_t dev; 3908 3909 DBENTER(BCE_VERBOSE_RESET); 3910 3911 dev = sc->bce_dev; 3912 3913 bce_dma_free(sc); 3914 3915 if (sc->bce_intrhand != NULL) { 3916 DBPRINT(sc, BCE_INFO_RESET, "Removing interrupt handler.\n"); 3917 bus_teardown_intr(dev, sc->bce_res_irq, sc->bce_intrhand); 3918 } 3919 3920 if (sc->bce_res_irq != NULL) { 3921 DBPRINT(sc, BCE_INFO_RESET, "Releasing IRQ.\n"); 3922 bus_release_resource(dev, SYS_RES_IRQ, 3923 rman_get_rid(sc->bce_res_irq), sc->bce_res_irq); 3924 } 3925 3926 if (sc->bce_flags & (BCE_USING_MSI_FLAG | BCE_USING_MSIX_FLAG)) { 3927 DBPRINT(sc, BCE_INFO_RESET, "Releasing MSI/MSI-X vector.\n"); 3928 pci_release_msi(dev); 3929 } 3930 3931 if (sc->bce_res_mem != NULL) { 3932 DBPRINT(sc, BCE_INFO_RESET, "Releasing PCI memory.\n"); 3933 bus_release_resource(dev, SYS_RES_MEMORY, PCIR_BAR(0), 3934 sc->bce_res_mem); 3935 } 3936 3937 if (sc->bce_ifp != NULL) { 3938 DBPRINT(sc, BCE_INFO_RESET, "Releasing IF.\n"); 3939 if_free(sc->bce_ifp); 3940 } 3941 3942 if (mtx_initialized(&sc->bce_mtx)) 3943 BCE_LOCK_DESTROY(sc); 3944 3945 DBEXIT(BCE_VERBOSE_RESET); 3946 } 3947 3948 3949 /****************************************************************************/ 3950 /* Firmware synchronization. */ 3951 /* */ 3952 /* Before performing certain events such as a chip reset, synchronize with */ 3953 /* the firmware first. */ 3954 /* */ 3955 /* Returns: */ 3956 /* 0 for success, positive value for failure. */ 3957 /****************************************************************************/ 3958 static int 3959 bce_fw_sync(struct bce_softc *sc, u32 msg_data) 3960 { 3961 int i, rc = 0; 3962 u32 val; 3963 3964 DBENTER(BCE_VERBOSE_RESET); 3965 3966 /* Don't waste any time if we've timed out before. */ 3967 if (sc->bce_fw_timed_out == TRUE) { 3968 rc = EBUSY; 3969 goto bce_fw_sync_exit; 3970 } 3971 3972 /* Increment the message sequence number. */ 3973 sc->bce_fw_wr_seq++; 3974 msg_data |= sc->bce_fw_wr_seq; 3975 3976 DBPRINT(sc, BCE_VERBOSE_FIRMWARE, "bce_fw_sync(): msg_data = " 3977 "0x%08X\n", msg_data); 3978 3979 /* Send the message to the bootcode driver mailbox. */ 3980 bce_shmem_wr(sc, BCE_DRV_MB, msg_data); 3981 3982 /* Wait for the bootcode to acknowledge the message. */ 3983 for (i = 0; i < FW_ACK_TIME_OUT_MS; i++) { 3984 /* Check for a response in the bootcode firmware mailbox. */ 3985 val = bce_shmem_rd(sc, BCE_FW_MB); 3986 if ((val & BCE_FW_MSG_ACK) == (msg_data & BCE_DRV_MSG_SEQ)) 3987 break; 3988 DELAY(1000); 3989 } 3990 3991 /* If we've timed out, tell bootcode that we've stopped waiting. */ 3992 if (((val & BCE_FW_MSG_ACK) != (msg_data & BCE_DRV_MSG_SEQ)) && 3993 ((msg_data & BCE_DRV_MSG_DATA) != BCE_DRV_MSG_DATA_WAIT0)) { 3994 3995 BCE_PRINTF("%s(%d): Firmware synchronization timeout! " 3996 "msg_data = 0x%08X\n", __FILE__, __LINE__, msg_data); 3997 3998 msg_data &= ~BCE_DRV_MSG_CODE; 3999 msg_data |= BCE_DRV_MSG_CODE_FW_TIMEOUT; 4000 4001 bce_shmem_wr(sc, BCE_DRV_MB, msg_data); 4002 4003 sc->bce_fw_timed_out = TRUE; 4004 rc = EBUSY; 4005 } 4006 4007 bce_fw_sync_exit: 4008 DBEXIT(BCE_VERBOSE_RESET); 4009 return (rc); 4010 } 4011 4012 4013 /****************************************************************************/ 4014 /* Load Receive Virtual 2 Physical (RV2P) processor firmware. */ 4015 /* */ 4016 /* Returns: */ 4017 /* Nothing. */ 4018 /****************************************************************************/ 4019 static void 4020 bce_load_rv2p_fw(struct bce_softc *sc, const u32 *rv2p_code, 4021 u32 rv2p_code_len, u32 rv2p_proc) 4022 { 4023 int i; 4024 u32 val; 4025 4026 DBENTER(BCE_VERBOSE_RESET); 4027 4028 /* Set the page size used by RV2P. */ 4029 if (rv2p_proc == RV2P_PROC2) { 4030 BCE_RV2P_PROC2_CHG_MAX_BD_PAGE(USABLE_RX_BD_PER_PAGE); 4031 } 4032 4033 for (i = 0; i < rv2p_code_len; i += 8) { 4034 REG_WR(sc, BCE_RV2P_INSTR_HIGH, *rv2p_code); 4035 rv2p_code++; 4036 REG_WR(sc, BCE_RV2P_INSTR_LOW, *rv2p_code); 4037 rv2p_code++; 4038 4039 if (rv2p_proc == RV2P_PROC1) { 4040 val = (i / 8) | BCE_RV2P_PROC1_ADDR_CMD_RDWR; 4041 REG_WR(sc, BCE_RV2P_PROC1_ADDR_CMD, val); 4042 } 4043 else { 4044 val = (i / 8) | BCE_RV2P_PROC2_ADDR_CMD_RDWR; 4045 REG_WR(sc, BCE_RV2P_PROC2_ADDR_CMD, val); 4046 } 4047 } 4048 4049 /* Reset the processor, un-stall is done later. */ 4050 if (rv2p_proc == RV2P_PROC1) { 4051 REG_WR(sc, BCE_RV2P_COMMAND, BCE_RV2P_COMMAND_PROC1_RESET); 4052 } 4053 else { 4054 REG_WR(sc, BCE_RV2P_COMMAND, BCE_RV2P_COMMAND_PROC2_RESET); 4055 } 4056 4057 DBEXIT(BCE_VERBOSE_RESET); 4058 } 4059 4060 4061 /****************************************************************************/ 4062 /* Load RISC processor firmware. */ 4063 /* */ 4064 /* Loads firmware from the file if_bcefw.h into the scratchpad memory */ 4065 /* associated with a particular processor. */ 4066 /* */ 4067 /* Returns: */ 4068 /* Nothing. */ 4069 /****************************************************************************/ 4070 static void 4071 bce_load_cpu_fw(struct bce_softc *sc, struct cpu_reg *cpu_reg, 4072 struct fw_info *fw) 4073 { 4074 u32 offset; 4075 4076 DBENTER(BCE_VERBOSE_RESET); 4077 4078 bce_halt_cpu(sc, cpu_reg); 4079 4080 /* Load the Text area. */ 4081 offset = cpu_reg->spad_base + (fw->text_addr - cpu_reg->mips_view_base); 4082 if (fw->text) { 4083 int j; 4084 4085 for (j = 0; j < (fw->text_len / 4); j++, offset += 4) { 4086 REG_WR_IND(sc, offset, fw->text[j]); 4087 } 4088 } 4089 4090 /* Load the Data area. */ 4091 offset = cpu_reg->spad_base + (fw->data_addr - cpu_reg->mips_view_base); 4092 if (fw->data) { 4093 int j; 4094 4095 for (j = 0; j < (fw->data_len / 4); j++, offset += 4) { 4096 REG_WR_IND(sc, offset, fw->data[j]); 4097 } 4098 } 4099 4100 /* Load the SBSS area. */ 4101 offset = cpu_reg->spad_base + (fw->sbss_addr - cpu_reg->mips_view_base); 4102 if (fw->sbss) { 4103 int j; 4104 4105 for (j = 0; j < (fw->sbss_len / 4); j++, offset += 4) { 4106 REG_WR_IND(sc, offset, fw->sbss[j]); 4107 } 4108 } 4109 4110 /* Load the BSS area. */ 4111 offset = cpu_reg->spad_base + (fw->bss_addr - cpu_reg->mips_view_base); 4112 if (fw->bss) { 4113 int j; 4114 4115 for (j = 0; j < (fw->bss_len/4); j++, offset += 4) { 4116 REG_WR_IND(sc, offset, fw->bss[j]); 4117 } 4118 } 4119 4120 /* Load the Read-Only area. */ 4121 offset = cpu_reg->spad_base + 4122 (fw->rodata_addr - cpu_reg->mips_view_base); 4123 if (fw->rodata) { 4124 int j; 4125 4126 for (j = 0; j < (fw->rodata_len / 4); j++, offset += 4) { 4127 REG_WR_IND(sc, offset, fw->rodata[j]); 4128 } 4129 } 4130 4131 /* Clear the pre-fetch instruction and set the FW start address. */ 4132 REG_WR_IND(sc, cpu_reg->inst, 0); 4133 REG_WR_IND(sc, cpu_reg->pc, fw->start_addr); 4134 4135 DBEXIT(BCE_VERBOSE_RESET); 4136 } 4137 4138 4139 /****************************************************************************/ 4140 /* Starts the RISC processor. */ 4141 /* */ 4142 /* Assumes the CPU starting address has already been set. */ 4143 /* */ 4144 /* Returns: */ 4145 /* Nothing. */ 4146 /****************************************************************************/ 4147 static void 4148 bce_start_cpu(struct bce_softc *sc, struct cpu_reg *cpu_reg) 4149 { 4150 u32 val; 4151 4152 DBENTER(BCE_VERBOSE_RESET); 4153 4154 /* Start the CPU. */ 4155 val = REG_RD_IND(sc, cpu_reg->mode); 4156 val &= ~cpu_reg->mode_value_halt; 4157 REG_WR_IND(sc, cpu_reg->state, cpu_reg->state_value_clear); 4158 REG_WR_IND(sc, cpu_reg->mode, val); 4159 4160 DBEXIT(BCE_VERBOSE_RESET); 4161 } 4162 4163 4164 /****************************************************************************/ 4165 /* Halts the RISC processor. */ 4166 /* */ 4167 /* Returns: */ 4168 /* Nothing. */ 4169 /****************************************************************************/ 4170 static void 4171 bce_halt_cpu(struct bce_softc *sc, struct cpu_reg *cpu_reg) 4172 { 4173 u32 val; 4174 4175 DBENTER(BCE_VERBOSE_RESET); 4176 4177 /* Halt the CPU. */ 4178 val = REG_RD_IND(sc, cpu_reg->mode); 4179 val |= cpu_reg->mode_value_halt; 4180 REG_WR_IND(sc, cpu_reg->mode, val); 4181 REG_WR_IND(sc, cpu_reg->state, cpu_reg->state_value_clear); 4182 4183 DBEXIT(BCE_VERBOSE_RESET); 4184 } 4185 4186 4187 /****************************************************************************/ 4188 /* Initialize the RX CPU. */ 4189 /* */ 4190 /* Returns: */ 4191 /* Nothing. */ 4192 /****************************************************************************/ 4193 static void 4194 bce_start_rxp_cpu(struct bce_softc *sc) 4195 { 4196 struct cpu_reg cpu_reg; 4197 4198 DBENTER(BCE_VERBOSE_RESET); 4199 4200 cpu_reg.mode = BCE_RXP_CPU_MODE; 4201 cpu_reg.mode_value_halt = BCE_RXP_CPU_MODE_SOFT_HALT; 4202 cpu_reg.mode_value_sstep = BCE_RXP_CPU_MODE_STEP_ENA; 4203 cpu_reg.state = BCE_RXP_CPU_STATE; 4204 cpu_reg.state_value_clear = 0xffffff; 4205 cpu_reg.gpr0 = BCE_RXP_CPU_REG_FILE; 4206 cpu_reg.evmask = BCE_RXP_CPU_EVENT_MASK; 4207 cpu_reg.pc = BCE_RXP_CPU_PROGRAM_COUNTER; 4208 cpu_reg.inst = BCE_RXP_CPU_INSTRUCTION; 4209 cpu_reg.bp = BCE_RXP_CPU_HW_BREAKPOINT; 4210 cpu_reg.spad_base = BCE_RXP_SCRATCH; 4211 cpu_reg.mips_view_base = 0x8000000; 4212 4213 DBPRINT(sc, BCE_INFO_RESET, "Starting RX firmware.\n"); 4214 bce_start_cpu(sc, &cpu_reg); 4215 4216 DBEXIT(BCE_VERBOSE_RESET); 4217 } 4218 4219 4220 /****************************************************************************/ 4221 /* Initialize the RX CPU. */ 4222 /* */ 4223 /* Returns: */ 4224 /* Nothing. */ 4225 /****************************************************************************/ 4226 static void 4227 bce_init_rxp_cpu(struct bce_softc *sc) 4228 { 4229 struct cpu_reg cpu_reg; 4230 struct fw_info fw; 4231 4232 DBENTER(BCE_VERBOSE_RESET); 4233 4234 cpu_reg.mode = BCE_RXP_CPU_MODE; 4235 cpu_reg.mode_value_halt = BCE_RXP_CPU_MODE_SOFT_HALT; 4236 cpu_reg.mode_value_sstep = BCE_RXP_CPU_MODE_STEP_ENA; 4237 cpu_reg.state = BCE_RXP_CPU_STATE; 4238 cpu_reg.state_value_clear = 0xffffff; 4239 cpu_reg.gpr0 = BCE_RXP_CPU_REG_FILE; 4240 cpu_reg.evmask = BCE_RXP_CPU_EVENT_MASK; 4241 cpu_reg.pc = BCE_RXP_CPU_PROGRAM_COUNTER; 4242 cpu_reg.inst = BCE_RXP_CPU_INSTRUCTION; 4243 cpu_reg.bp = BCE_RXP_CPU_HW_BREAKPOINT; 4244 cpu_reg.spad_base = BCE_RXP_SCRATCH; 4245 cpu_reg.mips_view_base = 0x8000000; 4246 4247 if (BCE_CHIP_NUM(sc) == BCE_CHIP_NUM_5709) { 4248 fw.ver_major = bce_RXP_b09FwReleaseMajor; 4249 fw.ver_minor = bce_RXP_b09FwReleaseMinor; 4250 fw.ver_fix = bce_RXP_b09FwReleaseFix; 4251 fw.start_addr = bce_RXP_b09FwStartAddr; 4252 4253 fw.text_addr = bce_RXP_b09FwTextAddr; 4254 fw.text_len = bce_RXP_b09FwTextLen; 4255 fw.text_index = 0; 4256 fw.text = bce_RXP_b09FwText; 4257 4258 fw.data_addr = bce_RXP_b09FwDataAddr; 4259 fw.data_len = bce_RXP_b09FwDataLen; 4260 fw.data_index = 0; 4261 fw.data = bce_RXP_b09FwData; 4262 4263 fw.sbss_addr = bce_RXP_b09FwSbssAddr; 4264 fw.sbss_len = bce_RXP_b09FwSbssLen; 4265 fw.sbss_index = 0; 4266 fw.sbss = bce_RXP_b09FwSbss; 4267 4268 fw.bss_addr = bce_RXP_b09FwBssAddr; 4269 fw.bss_len = bce_RXP_b09FwBssLen; 4270 fw.bss_index = 0; 4271 fw.bss = bce_RXP_b09FwBss; 4272 4273 fw.rodata_addr = bce_RXP_b09FwRodataAddr; 4274 fw.rodata_len = bce_RXP_b09FwRodataLen; 4275 fw.rodata_index = 0; 4276 fw.rodata = bce_RXP_b09FwRodata; 4277 } else { 4278 fw.ver_major = bce_RXP_b06FwReleaseMajor; 4279 fw.ver_minor = bce_RXP_b06FwReleaseMinor; 4280 fw.ver_fix = bce_RXP_b06FwReleaseFix; 4281 fw.start_addr = bce_RXP_b06FwStartAddr; 4282 4283 fw.text_addr = bce_RXP_b06FwTextAddr; 4284 fw.text_len = bce_RXP_b06FwTextLen; 4285 fw.text_index = 0; 4286 fw.text = bce_RXP_b06FwText; 4287 4288 fw.data_addr = bce_RXP_b06FwDataAddr; 4289 fw.data_len = bce_RXP_b06FwDataLen; 4290 fw.data_index = 0; 4291 fw.data = bce_RXP_b06FwData; 4292 4293 fw.sbss_addr = bce_RXP_b06FwSbssAddr; 4294 fw.sbss_len = bce_RXP_b06FwSbssLen; 4295 fw.sbss_index = 0; 4296 fw.sbss = bce_RXP_b06FwSbss; 4297 4298 fw.bss_addr = bce_RXP_b06FwBssAddr; 4299 fw.bss_len = bce_RXP_b06FwBssLen; 4300 fw.bss_index = 0; 4301 fw.bss = bce_RXP_b06FwBss; 4302 4303 fw.rodata_addr = bce_RXP_b06FwRodataAddr; 4304 fw.rodata_len = bce_RXP_b06FwRodataLen; 4305 fw.rodata_index = 0; 4306 fw.rodata = bce_RXP_b06FwRodata; 4307 } 4308 4309 DBPRINT(sc, BCE_INFO_RESET, "Loading RX firmware.\n"); 4310 bce_load_cpu_fw(sc, &cpu_reg, &fw); 4311 4312 /* Delay RXP start until initialization is complete. */ 4313 4314 DBEXIT(BCE_VERBOSE_RESET); 4315 } 4316 4317 4318 /****************************************************************************/ 4319 /* Initialize the TX CPU. */ 4320 /* */ 4321 /* Returns: */ 4322 /* Nothing. */ 4323 /****************************************************************************/ 4324 static void 4325 bce_init_txp_cpu(struct bce_softc *sc) 4326 { 4327 struct cpu_reg cpu_reg; 4328 struct fw_info fw; 4329 4330 DBENTER(BCE_VERBOSE_RESET); 4331 4332 cpu_reg.mode = BCE_TXP_CPU_MODE; 4333 cpu_reg.mode_value_halt = BCE_TXP_CPU_MODE_SOFT_HALT; 4334 cpu_reg.mode_value_sstep = BCE_TXP_CPU_MODE_STEP_ENA; 4335 cpu_reg.state = BCE_TXP_CPU_STATE; 4336 cpu_reg.state_value_clear = 0xffffff; 4337 cpu_reg.gpr0 = BCE_TXP_CPU_REG_FILE; 4338 cpu_reg.evmask = BCE_TXP_CPU_EVENT_MASK; 4339 cpu_reg.pc = BCE_TXP_CPU_PROGRAM_COUNTER; 4340 cpu_reg.inst = BCE_TXP_CPU_INSTRUCTION; 4341 cpu_reg.bp = BCE_TXP_CPU_HW_BREAKPOINT; 4342 cpu_reg.spad_base = BCE_TXP_SCRATCH; 4343 cpu_reg.mips_view_base = 0x8000000; 4344 4345 if (BCE_CHIP_NUM(sc) == BCE_CHIP_NUM_5709) { 4346 fw.ver_major = bce_TXP_b09FwReleaseMajor; 4347 fw.ver_minor = bce_TXP_b09FwReleaseMinor; 4348 fw.ver_fix = bce_TXP_b09FwReleaseFix; 4349 fw.start_addr = bce_TXP_b09FwStartAddr; 4350 4351 fw.text_addr = bce_TXP_b09FwTextAddr; 4352 fw.text_len = bce_TXP_b09FwTextLen; 4353 fw.text_index = 0; 4354 fw.text = bce_TXP_b09FwText; 4355 4356 fw.data_addr = bce_TXP_b09FwDataAddr; 4357 fw.data_len = bce_TXP_b09FwDataLen; 4358 fw.data_index = 0; 4359 fw.data = bce_TXP_b09FwData; 4360 4361 fw.sbss_addr = bce_TXP_b09FwSbssAddr; 4362 fw.sbss_len = bce_TXP_b09FwSbssLen; 4363 fw.sbss_index = 0; 4364 fw.sbss = bce_TXP_b09FwSbss; 4365 4366 fw.bss_addr = bce_TXP_b09FwBssAddr; 4367 fw.bss_len = bce_TXP_b09FwBssLen; 4368 fw.bss_index = 0; 4369 fw.bss = bce_TXP_b09FwBss; 4370 4371 fw.rodata_addr = bce_TXP_b09FwRodataAddr; 4372 fw.rodata_len = bce_TXP_b09FwRodataLen; 4373 fw.rodata_index = 0; 4374 fw.rodata = bce_TXP_b09FwRodata; 4375 } else { 4376 fw.ver_major = bce_TXP_b06FwReleaseMajor; 4377 fw.ver_minor = bce_TXP_b06FwReleaseMinor; 4378 fw.ver_fix = bce_TXP_b06FwReleaseFix; 4379 fw.start_addr = bce_TXP_b06FwStartAddr; 4380 4381 fw.text_addr = bce_TXP_b06FwTextAddr; 4382 fw.text_len = bce_TXP_b06FwTextLen; 4383 fw.text_index = 0; 4384 fw.text = bce_TXP_b06FwText; 4385 4386 fw.data_addr = bce_TXP_b06FwDataAddr; 4387 fw.data_len = bce_TXP_b06FwDataLen; 4388 fw.data_index = 0; 4389 fw.data = bce_TXP_b06FwData; 4390 4391 fw.sbss_addr = bce_TXP_b06FwSbssAddr; 4392 fw.sbss_len = bce_TXP_b06FwSbssLen; 4393 fw.sbss_index = 0; 4394 fw.sbss = bce_TXP_b06FwSbss; 4395 4396 fw.bss_addr = bce_TXP_b06FwBssAddr; 4397 fw.bss_len = bce_TXP_b06FwBssLen; 4398 fw.bss_index = 0; 4399 fw.bss = bce_TXP_b06FwBss; 4400 4401 fw.rodata_addr = bce_TXP_b06FwRodataAddr; 4402 fw.rodata_len = bce_TXP_b06FwRodataLen; 4403 fw.rodata_index = 0; 4404 fw.rodata = bce_TXP_b06FwRodata; 4405 } 4406 4407 DBPRINT(sc, BCE_INFO_RESET, "Loading TX firmware.\n"); 4408 bce_load_cpu_fw(sc, &cpu_reg, &fw); 4409 bce_start_cpu(sc, &cpu_reg); 4410 4411 DBEXIT(BCE_VERBOSE_RESET); 4412 } 4413 4414 4415 /****************************************************************************/ 4416 /* Initialize the TPAT CPU. */ 4417 /* */ 4418 /* Returns: */ 4419 /* Nothing. */ 4420 /****************************************************************************/ 4421 static void 4422 bce_init_tpat_cpu(struct bce_softc *sc) 4423 { 4424 struct cpu_reg cpu_reg; 4425 struct fw_info fw; 4426 4427 DBENTER(BCE_VERBOSE_RESET); 4428 4429 cpu_reg.mode = BCE_TPAT_CPU_MODE; 4430 cpu_reg.mode_value_halt = BCE_TPAT_CPU_MODE_SOFT_HALT; 4431 cpu_reg.mode_value_sstep = BCE_TPAT_CPU_MODE_STEP_ENA; 4432 cpu_reg.state = BCE_TPAT_CPU_STATE; 4433 cpu_reg.state_value_clear = 0xffffff; 4434 cpu_reg.gpr0 = BCE_TPAT_CPU_REG_FILE; 4435 cpu_reg.evmask = BCE_TPAT_CPU_EVENT_MASK; 4436 cpu_reg.pc = BCE_TPAT_CPU_PROGRAM_COUNTER; 4437 cpu_reg.inst = BCE_TPAT_CPU_INSTRUCTION; 4438 cpu_reg.bp = BCE_TPAT_CPU_HW_BREAKPOINT; 4439 cpu_reg.spad_base = BCE_TPAT_SCRATCH; 4440 cpu_reg.mips_view_base = 0x8000000; 4441 4442 if (BCE_CHIP_NUM(sc) == BCE_CHIP_NUM_5709) { 4443 fw.ver_major = bce_TPAT_b09FwReleaseMajor; 4444 fw.ver_minor = bce_TPAT_b09FwReleaseMinor; 4445 fw.ver_fix = bce_TPAT_b09FwReleaseFix; 4446 fw.start_addr = bce_TPAT_b09FwStartAddr; 4447 4448 fw.text_addr = bce_TPAT_b09FwTextAddr; 4449 fw.text_len = bce_TPAT_b09FwTextLen; 4450 fw.text_index = 0; 4451 fw.text = bce_TPAT_b09FwText; 4452 4453 fw.data_addr = bce_TPAT_b09FwDataAddr; 4454 fw.data_len = bce_TPAT_b09FwDataLen; 4455 fw.data_index = 0; 4456 fw.data = bce_TPAT_b09FwData; 4457 4458 fw.sbss_addr = bce_TPAT_b09FwSbssAddr; 4459 fw.sbss_len = bce_TPAT_b09FwSbssLen; 4460 fw.sbss_index = 0; 4461 fw.sbss = bce_TPAT_b09FwSbss; 4462 4463 fw.bss_addr = bce_TPAT_b09FwBssAddr; 4464 fw.bss_len = bce_TPAT_b09FwBssLen; 4465 fw.bss_index = 0; 4466 fw.bss = bce_TPAT_b09FwBss; 4467 4468 fw.rodata_addr = bce_TPAT_b09FwRodataAddr; 4469 fw.rodata_len = bce_TPAT_b09FwRodataLen; 4470 fw.rodata_index = 0; 4471 fw.rodata = bce_TPAT_b09FwRodata; 4472 } else { 4473 fw.ver_major = bce_TPAT_b06FwReleaseMajor; 4474 fw.ver_minor = bce_TPAT_b06FwReleaseMinor; 4475 fw.ver_fix = bce_TPAT_b06FwReleaseFix; 4476 fw.start_addr = bce_TPAT_b06FwStartAddr; 4477 4478 fw.text_addr = bce_TPAT_b06FwTextAddr; 4479 fw.text_len = bce_TPAT_b06FwTextLen; 4480 fw.text_index = 0; 4481 fw.text = bce_TPAT_b06FwText; 4482 4483 fw.data_addr = bce_TPAT_b06FwDataAddr; 4484 fw.data_len = bce_TPAT_b06FwDataLen; 4485 fw.data_index = 0; 4486 fw.data = bce_TPAT_b06FwData; 4487 4488 fw.sbss_addr = bce_TPAT_b06FwSbssAddr; 4489 fw.sbss_len = bce_TPAT_b06FwSbssLen; 4490 fw.sbss_index = 0; 4491 fw.sbss = bce_TPAT_b06FwSbss; 4492 4493 fw.bss_addr = bce_TPAT_b06FwBssAddr; 4494 fw.bss_len = bce_TPAT_b06FwBssLen; 4495 fw.bss_index = 0; 4496 fw.bss = bce_TPAT_b06FwBss; 4497 4498 fw.rodata_addr = bce_TPAT_b06FwRodataAddr; 4499 fw.rodata_len = bce_TPAT_b06FwRodataLen; 4500 fw.rodata_index = 0; 4501 fw.rodata = bce_TPAT_b06FwRodata; 4502 } 4503 4504 DBPRINT(sc, BCE_INFO_RESET, "Loading TPAT firmware.\n"); 4505 bce_load_cpu_fw(sc, &cpu_reg, &fw); 4506 bce_start_cpu(sc, &cpu_reg); 4507 4508 DBEXIT(BCE_VERBOSE_RESET); 4509 } 4510 4511 4512 /****************************************************************************/ 4513 /* Initialize the CP CPU. */ 4514 /* */ 4515 /* Returns: */ 4516 /* Nothing. */ 4517 /****************************************************************************/ 4518 static void 4519 bce_init_cp_cpu(struct bce_softc *sc) 4520 { 4521 struct cpu_reg cpu_reg; 4522 struct fw_info fw; 4523 4524 DBENTER(BCE_VERBOSE_RESET); 4525 4526 cpu_reg.mode = BCE_CP_CPU_MODE; 4527 cpu_reg.mode_value_halt = BCE_CP_CPU_MODE_SOFT_HALT; 4528 cpu_reg.mode_value_sstep = BCE_CP_CPU_MODE_STEP_ENA; 4529 cpu_reg.state = BCE_CP_CPU_STATE; 4530 cpu_reg.state_value_clear = 0xffffff; 4531 cpu_reg.gpr0 = BCE_CP_CPU_REG_FILE; 4532 cpu_reg.evmask = BCE_CP_CPU_EVENT_MASK; 4533 cpu_reg.pc = BCE_CP_CPU_PROGRAM_COUNTER; 4534 cpu_reg.inst = BCE_CP_CPU_INSTRUCTION; 4535 cpu_reg.bp = BCE_CP_CPU_HW_BREAKPOINT; 4536 cpu_reg.spad_base = BCE_CP_SCRATCH; 4537 cpu_reg.mips_view_base = 0x8000000; 4538 4539 if (BCE_CHIP_NUM(sc) == BCE_CHIP_NUM_5709) { 4540 fw.ver_major = bce_CP_b09FwReleaseMajor; 4541 fw.ver_minor = bce_CP_b09FwReleaseMinor; 4542 fw.ver_fix = bce_CP_b09FwReleaseFix; 4543 fw.start_addr = bce_CP_b09FwStartAddr; 4544 4545 fw.text_addr = bce_CP_b09FwTextAddr; 4546 fw.text_len = bce_CP_b09FwTextLen; 4547 fw.text_index = 0; 4548 fw.text = bce_CP_b09FwText; 4549 4550 fw.data_addr = bce_CP_b09FwDataAddr; 4551 fw.data_len = bce_CP_b09FwDataLen; 4552 fw.data_index = 0; 4553 fw.data = bce_CP_b09FwData; 4554 4555 fw.sbss_addr = bce_CP_b09FwSbssAddr; 4556 fw.sbss_len = bce_CP_b09FwSbssLen; 4557 fw.sbss_index = 0; 4558 fw.sbss = bce_CP_b09FwSbss; 4559 4560 fw.bss_addr = bce_CP_b09FwBssAddr; 4561 fw.bss_len = bce_CP_b09FwBssLen; 4562 fw.bss_index = 0; 4563 fw.bss = bce_CP_b09FwBss; 4564 4565 fw.rodata_addr = bce_CP_b09FwRodataAddr; 4566 fw.rodata_len = bce_CP_b09FwRodataLen; 4567 fw.rodata_index = 0; 4568 fw.rodata = bce_CP_b09FwRodata; 4569 } else { 4570 fw.ver_major = bce_CP_b06FwReleaseMajor; 4571 fw.ver_minor = bce_CP_b06FwReleaseMinor; 4572 fw.ver_fix = bce_CP_b06FwReleaseFix; 4573 fw.start_addr = bce_CP_b06FwStartAddr; 4574 4575 fw.text_addr = bce_CP_b06FwTextAddr; 4576 fw.text_len = bce_CP_b06FwTextLen; 4577 fw.text_index = 0; 4578 fw.text = bce_CP_b06FwText; 4579 4580 fw.data_addr = bce_CP_b06FwDataAddr; 4581 fw.data_len = bce_CP_b06FwDataLen; 4582 fw.data_index = 0; 4583 fw.data = bce_CP_b06FwData; 4584 4585 fw.sbss_addr = bce_CP_b06FwSbssAddr; 4586 fw.sbss_len = bce_CP_b06FwSbssLen; 4587 fw.sbss_index = 0; 4588 fw.sbss = bce_CP_b06FwSbss; 4589 4590 fw.bss_addr = bce_CP_b06FwBssAddr; 4591 fw.bss_len = bce_CP_b06FwBssLen; 4592 fw.bss_index = 0; 4593 fw.bss = bce_CP_b06FwBss; 4594 4595 fw.rodata_addr = bce_CP_b06FwRodataAddr; 4596 fw.rodata_len = bce_CP_b06FwRodataLen; 4597 fw.rodata_index = 0; 4598 fw.rodata = bce_CP_b06FwRodata; 4599 } 4600 4601 DBPRINT(sc, BCE_INFO_RESET, "Loading CP firmware.\n"); 4602 bce_load_cpu_fw(sc, &cpu_reg, &fw); 4603 bce_start_cpu(sc, &cpu_reg); 4604 4605 DBEXIT(BCE_VERBOSE_RESET); 4606 } 4607 4608 4609 /****************************************************************************/ 4610 /* Initialize the COM CPU. */ 4611 /* */ 4612 /* Returns: */ 4613 /* Nothing. */ 4614 /****************************************************************************/ 4615 static void 4616 bce_init_com_cpu(struct bce_softc *sc) 4617 { 4618 struct cpu_reg cpu_reg; 4619 struct fw_info fw; 4620 4621 DBENTER(BCE_VERBOSE_RESET); 4622 4623 cpu_reg.mode = BCE_COM_CPU_MODE; 4624 cpu_reg.mode_value_halt = BCE_COM_CPU_MODE_SOFT_HALT; 4625 cpu_reg.mode_value_sstep = BCE_COM_CPU_MODE_STEP_ENA; 4626 cpu_reg.state = BCE_COM_CPU_STATE; 4627 cpu_reg.state_value_clear = 0xffffff; 4628 cpu_reg.gpr0 = BCE_COM_CPU_REG_FILE; 4629 cpu_reg.evmask = BCE_COM_CPU_EVENT_MASK; 4630 cpu_reg.pc = BCE_COM_CPU_PROGRAM_COUNTER; 4631 cpu_reg.inst = BCE_COM_CPU_INSTRUCTION; 4632 cpu_reg.bp = BCE_COM_CPU_HW_BREAKPOINT; 4633 cpu_reg.spad_base = BCE_COM_SCRATCH; 4634 cpu_reg.mips_view_base = 0x8000000; 4635 4636 if (BCE_CHIP_NUM(sc) == BCE_CHIP_NUM_5709) { 4637 fw.ver_major = bce_COM_b09FwReleaseMajor; 4638 fw.ver_minor = bce_COM_b09FwReleaseMinor; 4639 fw.ver_fix = bce_COM_b09FwReleaseFix; 4640 fw.start_addr = bce_COM_b09FwStartAddr; 4641 4642 fw.text_addr = bce_COM_b09FwTextAddr; 4643 fw.text_len = bce_COM_b09FwTextLen; 4644 fw.text_index = 0; 4645 fw.text = bce_COM_b09FwText; 4646 4647 fw.data_addr = bce_COM_b09FwDataAddr; 4648 fw.data_len = bce_COM_b09FwDataLen; 4649 fw.data_index = 0; 4650 fw.data = bce_COM_b09FwData; 4651 4652 fw.sbss_addr = bce_COM_b09FwSbssAddr; 4653 fw.sbss_len = bce_COM_b09FwSbssLen; 4654 fw.sbss_index = 0; 4655 fw.sbss = bce_COM_b09FwSbss; 4656 4657 fw.bss_addr = bce_COM_b09FwBssAddr; 4658 fw.bss_len = bce_COM_b09FwBssLen; 4659 fw.bss_index = 0; 4660 fw.bss = bce_COM_b09FwBss; 4661 4662 fw.rodata_addr = bce_COM_b09FwRodataAddr; 4663 fw.rodata_len = bce_COM_b09FwRodataLen; 4664 fw.rodata_index = 0; 4665 fw.rodata = bce_COM_b09FwRodata; 4666 } else { 4667 fw.ver_major = bce_COM_b06FwReleaseMajor; 4668 fw.ver_minor = bce_COM_b06FwReleaseMinor; 4669 fw.ver_fix = bce_COM_b06FwReleaseFix; 4670 fw.start_addr = bce_COM_b06FwStartAddr; 4671 4672 fw.text_addr = bce_COM_b06FwTextAddr; 4673 fw.text_len = bce_COM_b06FwTextLen; 4674 fw.text_index = 0; 4675 fw.text = bce_COM_b06FwText; 4676 4677 fw.data_addr = bce_COM_b06FwDataAddr; 4678 fw.data_len = bce_COM_b06FwDataLen; 4679 fw.data_index = 0; 4680 fw.data = bce_COM_b06FwData; 4681 4682 fw.sbss_addr = bce_COM_b06FwSbssAddr; 4683 fw.sbss_len = bce_COM_b06FwSbssLen; 4684 fw.sbss_index = 0; 4685 fw.sbss = bce_COM_b06FwSbss; 4686 4687 fw.bss_addr = bce_COM_b06FwBssAddr; 4688 fw.bss_len = bce_COM_b06FwBssLen; 4689 fw.bss_index = 0; 4690 fw.bss = bce_COM_b06FwBss; 4691 4692 fw.rodata_addr = bce_COM_b06FwRodataAddr; 4693 fw.rodata_len = bce_COM_b06FwRodataLen; 4694 fw.rodata_index = 0; 4695 fw.rodata = bce_COM_b06FwRodata; 4696 } 4697 4698 DBPRINT(sc, BCE_INFO_RESET, "Loading COM firmware.\n"); 4699 bce_load_cpu_fw(sc, &cpu_reg, &fw); 4700 bce_start_cpu(sc, &cpu_reg); 4701 4702 DBEXIT(BCE_VERBOSE_RESET); 4703 } 4704 4705 4706 /****************************************************************************/ 4707 /* Initialize the RV2P, RX, TX, TPAT, COM, and CP CPUs. */ 4708 /* */ 4709 /* Loads the firmware for each CPU and starts the CPU. */ 4710 /* */ 4711 /* Returns: */ 4712 /* Nothing. */ 4713 /****************************************************************************/ 4714 static void 4715 bce_init_cpus(struct bce_softc *sc) 4716 { 4717 DBENTER(BCE_VERBOSE_RESET); 4718 4719 if (BCE_CHIP_NUM(sc) == BCE_CHIP_NUM_5709) { 4720 4721 if ((BCE_CHIP_REV(sc) == BCE_CHIP_REV_Ax)) { 4722 bce_load_rv2p_fw(sc, bce_xi90_rv2p_proc1, 4723 sizeof(bce_xi90_rv2p_proc1), RV2P_PROC1); 4724 bce_load_rv2p_fw(sc, bce_xi90_rv2p_proc2, 4725 sizeof(bce_xi90_rv2p_proc2), RV2P_PROC2); 4726 } else { 4727 bce_load_rv2p_fw(sc, bce_xi_rv2p_proc1, 4728 sizeof(bce_xi_rv2p_proc1), RV2P_PROC1); 4729 bce_load_rv2p_fw(sc, bce_xi_rv2p_proc2, 4730 sizeof(bce_xi_rv2p_proc2), RV2P_PROC2); 4731 } 4732 4733 } else { 4734 bce_load_rv2p_fw(sc, bce_rv2p_proc1, 4735 sizeof(bce_rv2p_proc1), RV2P_PROC1); 4736 bce_load_rv2p_fw(sc, bce_rv2p_proc2, 4737 sizeof(bce_rv2p_proc2), RV2P_PROC2); 4738 } 4739 4740 bce_init_rxp_cpu(sc); 4741 bce_init_txp_cpu(sc); 4742 bce_init_tpat_cpu(sc); 4743 bce_init_com_cpu(sc); 4744 bce_init_cp_cpu(sc); 4745 4746 DBEXIT(BCE_VERBOSE_RESET); 4747 } 4748 4749 4750 /****************************************************************************/ 4751 /* Initialize context memory. */ 4752 /* */ 4753 /* Clears the memory associated with each Context ID (CID). */ 4754 /* */ 4755 /* Returns: */ 4756 /* Nothing. */ 4757 /****************************************************************************/ 4758 static int 4759 bce_init_ctx(struct bce_softc *sc) 4760 { 4761 u32 offset, val, vcid_addr; 4762 int i, j, rc, retry_cnt; 4763 4764 rc = 0; 4765 DBENTER(BCE_VERBOSE_RESET | BCE_VERBOSE_CTX); 4766 4767 if (BCE_CHIP_NUM(sc) == BCE_CHIP_NUM_5709) { 4768 retry_cnt = CTX_INIT_RETRY_COUNT; 4769 4770 DBPRINT(sc, BCE_INFO_CTX, "Initializing 5709 context.\n"); 4771 4772 /* 4773 * BCM5709 context memory may be cached 4774 * in host memory so prepare the host memory 4775 * for access. 4776 */ 4777 val = BCE_CTX_COMMAND_ENABLED | 4778 BCE_CTX_COMMAND_MEM_INIT | (1 << 12); 4779 val |= (BCM_PAGE_BITS - 8) << 16; 4780 REG_WR(sc, BCE_CTX_COMMAND, val); 4781 4782 /* Wait for mem init command to complete. */ 4783 for (i = 0; i < retry_cnt; i++) { 4784 val = REG_RD(sc, BCE_CTX_COMMAND); 4785 if (!(val & BCE_CTX_COMMAND_MEM_INIT)) 4786 break; 4787 DELAY(2); 4788 } 4789 if ((val & BCE_CTX_COMMAND_MEM_INIT) != 0) { 4790 BCE_PRINTF("%s(): Context memory initialization failed!\n", 4791 __FUNCTION__); 4792 rc = EBUSY; 4793 goto init_ctx_fail; 4794 } 4795 4796 for (i = 0; i < sc->ctx_pages; i++) { 4797 /* Set the physical address of the context memory. */ 4798 REG_WR(sc, BCE_CTX_HOST_PAGE_TBL_DATA0, 4799 BCE_ADDR_LO(sc->ctx_paddr[i] & 0xfffffff0) | 4800 BCE_CTX_HOST_PAGE_TBL_DATA0_VALID); 4801 REG_WR(sc, BCE_CTX_HOST_PAGE_TBL_DATA1, 4802 BCE_ADDR_HI(sc->ctx_paddr[i])); 4803 REG_WR(sc, BCE_CTX_HOST_PAGE_TBL_CTRL, i | 4804 BCE_CTX_HOST_PAGE_TBL_CTRL_WRITE_REQ); 4805 4806 /* Verify the context memory write was successful. */ 4807 for (j = 0; j < retry_cnt; j++) { 4808 val = REG_RD(sc, BCE_CTX_HOST_PAGE_TBL_CTRL); 4809 if ((val & 4810 BCE_CTX_HOST_PAGE_TBL_CTRL_WRITE_REQ) == 0) 4811 break; 4812 DELAY(5); 4813 } 4814 if ((val & BCE_CTX_HOST_PAGE_TBL_CTRL_WRITE_REQ) != 0) { 4815 BCE_PRINTF("%s(): Failed to initialize " 4816 "context page %d!\n", __FUNCTION__, i); 4817 rc = EBUSY; 4818 goto init_ctx_fail; 4819 } 4820 } 4821 } else { 4822 4823 DBPRINT(sc, BCE_INFO, "Initializing 5706/5708 context.\n"); 4824 4825 /* 4826 * For the 5706/5708, context memory is local to 4827 * the controller, so initialize the controller 4828 * context memory. 4829 */ 4830 4831 vcid_addr = GET_CID_ADDR(96); 4832 while (vcid_addr) { 4833 4834 vcid_addr -= PHY_CTX_SIZE; 4835 4836 REG_WR(sc, BCE_CTX_VIRT_ADDR, 0); 4837 REG_WR(sc, BCE_CTX_PAGE_TBL, vcid_addr); 4838 4839 for(offset = 0; offset < PHY_CTX_SIZE; offset += 4) { 4840 CTX_WR(sc, 0x00, offset, 0); 4841 } 4842 4843 REG_WR(sc, BCE_CTX_VIRT_ADDR, vcid_addr); 4844 REG_WR(sc, BCE_CTX_PAGE_TBL, vcid_addr); 4845 } 4846 4847 } 4848 init_ctx_fail: 4849 DBEXIT(BCE_VERBOSE_RESET | BCE_VERBOSE_CTX); 4850 return (rc); 4851 } 4852 4853 4854 /****************************************************************************/ 4855 /* Fetch the permanent MAC address of the controller. */ 4856 /* */ 4857 /* Returns: */ 4858 /* Nothing. */ 4859 /****************************************************************************/ 4860 static void 4861 bce_get_mac_addr(struct bce_softc *sc) 4862 { 4863 u32 mac_lo = 0, mac_hi = 0; 4864 4865 DBENTER(BCE_VERBOSE_RESET); 4866 4867 /* 4868 * The NetXtreme II bootcode populates various NIC 4869 * power-on and runtime configuration items in a 4870 * shared memory area. The factory configured MAC 4871 * address is available from both NVRAM and the 4872 * shared memory area so we'll read the value from 4873 * shared memory for speed. 4874 */ 4875 4876 mac_hi = bce_shmem_rd(sc, BCE_PORT_HW_CFG_MAC_UPPER); 4877 mac_lo = bce_shmem_rd(sc, BCE_PORT_HW_CFG_MAC_LOWER); 4878 4879 if ((mac_lo == 0) && (mac_hi == 0)) { 4880 BCE_PRINTF("%s(%d): Invalid Ethernet address!\n", 4881 __FILE__, __LINE__); 4882 } else { 4883 sc->eaddr[0] = (u_char)(mac_hi >> 8); 4884 sc->eaddr[1] = (u_char)(mac_hi >> 0); 4885 sc->eaddr[2] = (u_char)(mac_lo >> 24); 4886 sc->eaddr[3] = (u_char)(mac_lo >> 16); 4887 sc->eaddr[4] = (u_char)(mac_lo >> 8); 4888 sc->eaddr[5] = (u_char)(mac_lo >> 0); 4889 } 4890 4891 DBPRINT(sc, BCE_INFO_MISC, "Permanent Ethernet " 4892 "address = %6D\n", sc->eaddr, ":"); 4893 DBEXIT(BCE_VERBOSE_RESET); 4894 } 4895 4896 4897 /****************************************************************************/ 4898 /* Program the MAC address. */ 4899 /* */ 4900 /* Returns: */ 4901 /* Nothing. */ 4902 /****************************************************************************/ 4903 static void 4904 bce_set_mac_addr(struct bce_softc *sc) 4905 { 4906 u32 val; 4907 u8 *mac_addr = sc->eaddr; 4908 4909 /* ToDo: Add support for setting multiple MAC addresses. */ 4910 4911 DBENTER(BCE_VERBOSE_RESET); 4912 DBPRINT(sc, BCE_INFO_MISC, "Setting Ethernet address = " 4913 "%6D\n", sc->eaddr, ":"); 4914 4915 val = (mac_addr[0] << 8) | mac_addr[1]; 4916 4917 REG_WR(sc, BCE_EMAC_MAC_MATCH0, val); 4918 4919 val = (mac_addr[2] << 24) | (mac_addr[3] << 16) | 4920 (mac_addr[4] << 8) | mac_addr[5]; 4921 4922 REG_WR(sc, BCE_EMAC_MAC_MATCH1, val); 4923 4924 DBEXIT(BCE_VERBOSE_RESET); 4925 } 4926 4927 4928 /****************************************************************************/ 4929 /* Stop the controller. */ 4930 /* */ 4931 /* Returns: */ 4932 /* Nothing. */ 4933 /****************************************************************************/ 4934 static void 4935 bce_stop(struct bce_softc *sc) 4936 { 4937 struct ifnet *ifp; 4938 4939 DBENTER(BCE_VERBOSE_RESET); 4940 4941 BCE_LOCK_ASSERT(sc); 4942 4943 ifp = sc->bce_ifp; 4944 4945 callout_stop(&sc->bce_tick_callout); 4946 4947 /* Disable the transmit/receive blocks. */ 4948 REG_WR(sc, BCE_MISC_ENABLE_CLR_BITS, BCE_MISC_ENABLE_CLR_DEFAULT); 4949 REG_RD(sc, BCE_MISC_ENABLE_CLR_BITS); 4950 DELAY(20); 4951 4952 bce_disable_intr(sc); 4953 4954 /* Free RX buffers. */ 4955 if (bce_hdr_split == TRUE) { 4956 bce_free_pg_chain(sc); 4957 } 4958 bce_free_rx_chain(sc); 4959 4960 /* Free TX buffers. */ 4961 bce_free_tx_chain(sc); 4962 4963 sc->watchdog_timer = 0; 4964 4965 sc->bce_link_up = FALSE; 4966 4967 ifp->if_drv_flags &= ~(IFF_DRV_RUNNING | IFF_DRV_OACTIVE); 4968 4969 DBEXIT(BCE_VERBOSE_RESET); 4970 } 4971 4972 4973 static int 4974 bce_reset(struct bce_softc *sc, u32 reset_code) 4975 { 4976 u32 emac_mode_save, val; 4977 int i, rc = 0; 4978 static const u32 emac_mode_mask = BCE_EMAC_MODE_PORT | 4979 BCE_EMAC_MODE_HALF_DUPLEX | BCE_EMAC_MODE_25G; 4980 4981 DBENTER(BCE_VERBOSE_RESET); 4982 4983 DBPRINT(sc, BCE_VERBOSE_RESET, "%s(): reset_code = 0x%08X\n", 4984 __FUNCTION__, reset_code); 4985 4986 /* 4987 * If ASF/IPMI is operational, then the EMAC Mode register already 4988 * contains appropriate values for the link settings that have 4989 * been auto-negotiated. Resetting the chip will clobber those 4990 * values. Save the important bits so we can restore them after 4991 * the reset. 4992 */ 4993 emac_mode_save = REG_RD(sc, BCE_EMAC_MODE) & emac_mode_mask; 4994 4995 /* Wait for pending PCI transactions to complete. */ 4996 REG_WR(sc, BCE_MISC_ENABLE_CLR_BITS, 4997 BCE_MISC_ENABLE_CLR_BITS_TX_DMA_ENABLE | 4998 BCE_MISC_ENABLE_CLR_BITS_DMA_ENGINE_ENABLE | 4999 BCE_MISC_ENABLE_CLR_BITS_RX_DMA_ENABLE | 5000 BCE_MISC_ENABLE_CLR_BITS_HOST_COALESCE_ENABLE); 5001 val = REG_RD(sc, BCE_MISC_ENABLE_CLR_BITS); 5002 DELAY(5); 5003 5004 /* Disable DMA */ 5005 if (BCE_CHIP_NUM(sc) == BCE_CHIP_NUM_5709) { 5006 val = REG_RD(sc, BCE_MISC_NEW_CORE_CTL); 5007 val &= ~BCE_MISC_NEW_CORE_CTL_DMA_ENABLE; 5008 REG_WR(sc, BCE_MISC_NEW_CORE_CTL, val); 5009 } 5010 5011 /* Assume bootcode is running. */ 5012 sc->bce_fw_timed_out = FALSE; 5013 sc->bce_drv_cardiac_arrest = FALSE; 5014 5015 /* Give the firmware a chance to prepare for the reset. */ 5016 rc = bce_fw_sync(sc, BCE_DRV_MSG_DATA_WAIT0 | reset_code); 5017 if (rc) 5018 goto bce_reset_exit; 5019 5020 /* Set a firmware reminder that this is a soft reset. */ 5021 bce_shmem_wr(sc, BCE_DRV_RESET_SIGNATURE, BCE_DRV_RESET_SIGNATURE_MAGIC); 5022 5023 /* Dummy read to force the chip to complete all current transactions. */ 5024 val = REG_RD(sc, BCE_MISC_ID); 5025 5026 /* Chip reset. */ 5027 if (BCE_CHIP_NUM(sc) == BCE_CHIP_NUM_5709) { 5028 REG_WR(sc, BCE_MISC_COMMAND, BCE_MISC_COMMAND_SW_RESET); 5029 REG_RD(sc, BCE_MISC_COMMAND); 5030 DELAY(5); 5031 5032 val = BCE_PCICFG_MISC_CONFIG_REG_WINDOW_ENA | 5033 BCE_PCICFG_MISC_CONFIG_TARGET_MB_WORD_SWAP; 5034 5035 pci_write_config(sc->bce_dev, BCE_PCICFG_MISC_CONFIG, val, 4); 5036 } else { 5037 val = BCE_PCICFG_MISC_CONFIG_CORE_RST_REQ | 5038 BCE_PCICFG_MISC_CONFIG_REG_WINDOW_ENA | 5039 BCE_PCICFG_MISC_CONFIG_TARGET_MB_WORD_SWAP; 5040 REG_WR(sc, BCE_PCICFG_MISC_CONFIG, val); 5041 5042 /* Allow up to 30us for reset to complete. */ 5043 for (i = 0; i < 10; i++) { 5044 val = REG_RD(sc, BCE_PCICFG_MISC_CONFIG); 5045 if ((val & (BCE_PCICFG_MISC_CONFIG_CORE_RST_REQ | 5046 BCE_PCICFG_MISC_CONFIG_CORE_RST_BSY)) == 0) { 5047 break; 5048 } 5049 DELAY(10); 5050 } 5051 5052 /* Check that reset completed successfully. */ 5053 if (val & (BCE_PCICFG_MISC_CONFIG_CORE_RST_REQ | 5054 BCE_PCICFG_MISC_CONFIG_CORE_RST_BSY)) { 5055 BCE_PRINTF("%s(%d): Reset failed!\n", 5056 __FILE__, __LINE__); 5057 rc = EBUSY; 5058 goto bce_reset_exit; 5059 } 5060 } 5061 5062 /* Make sure byte swapping is properly configured. */ 5063 val = REG_RD(sc, BCE_PCI_SWAP_DIAG0); 5064 if (val != 0x01020304) { 5065 BCE_PRINTF("%s(%d): Byte swap is incorrect!\n", 5066 __FILE__, __LINE__); 5067 rc = ENODEV; 5068 goto bce_reset_exit; 5069 } 5070 5071 /* Just completed a reset, assume that firmware is running again. */ 5072 sc->bce_fw_timed_out = FALSE; 5073 sc->bce_drv_cardiac_arrest = FALSE; 5074 5075 /* Wait for the firmware to finish its initialization. */ 5076 rc = bce_fw_sync(sc, BCE_DRV_MSG_DATA_WAIT1 | reset_code); 5077 if (rc) 5078 BCE_PRINTF("%s(%d): Firmware did not complete " 5079 "initialization!\n", __FILE__, __LINE__); 5080 /* Get firmware capabilities. */ 5081 bce_fw_cap_init(sc); 5082 5083 bce_reset_exit: 5084 /* Restore EMAC Mode bits needed to keep ASF/IPMI running. */ 5085 if (reset_code == BCE_DRV_MSG_CODE_RESET) { 5086 val = REG_RD(sc, BCE_EMAC_MODE); 5087 val = (val & ~emac_mode_mask) | emac_mode_save; 5088 REG_WR(sc, BCE_EMAC_MODE, val); 5089 } 5090 5091 DBEXIT(BCE_VERBOSE_RESET); 5092 return (rc); 5093 } 5094 5095 5096 static int 5097 bce_chipinit(struct bce_softc *sc) 5098 { 5099 u32 val; 5100 int rc = 0; 5101 5102 DBENTER(BCE_VERBOSE_RESET); 5103 5104 bce_disable_intr(sc); 5105 5106 /* 5107 * Initialize DMA byte/word swapping, configure the number of DMA 5108 * channels and PCI clock compensation delay. 5109 */ 5110 val = BCE_DMA_CONFIG_DATA_BYTE_SWAP | 5111 BCE_DMA_CONFIG_DATA_WORD_SWAP | 5112 #if BYTE_ORDER == BIG_ENDIAN 5113 BCE_DMA_CONFIG_CNTL_BYTE_SWAP | 5114 #endif 5115 BCE_DMA_CONFIG_CNTL_WORD_SWAP | 5116 DMA_READ_CHANS << 12 | 5117 DMA_WRITE_CHANS << 16; 5118 5119 val |= (0x2 << 20) | BCE_DMA_CONFIG_CNTL_PCI_COMP_DLY; 5120 5121 if ((sc->bce_flags & BCE_PCIX_FLAG) && (sc->bus_speed_mhz == 133)) 5122 val |= BCE_DMA_CONFIG_PCI_FAST_CLK_CMP; 5123 5124 /* 5125 * This setting resolves a problem observed on certain Intel PCI 5126 * chipsets that cannot handle multiple outstanding DMA operations. 5127 * See errata E9_5706A1_65. 5128 */ 5129 if ((BCE_CHIP_NUM(sc) == BCE_CHIP_NUM_5706) && 5130 (BCE_CHIP_ID(sc) != BCE_CHIP_ID_5706_A0) && 5131 !(sc->bce_flags & BCE_PCIX_FLAG)) 5132 val |= BCE_DMA_CONFIG_CNTL_PING_PONG_DMA; 5133 5134 REG_WR(sc, BCE_DMA_CONFIG, val); 5135 5136 /* Enable the RX_V2P and Context state machines before access. */ 5137 REG_WR(sc, BCE_MISC_ENABLE_SET_BITS, 5138 BCE_MISC_ENABLE_SET_BITS_HOST_COALESCE_ENABLE | 5139 BCE_MISC_ENABLE_STATUS_BITS_RX_V2P_ENABLE | 5140 BCE_MISC_ENABLE_STATUS_BITS_CONTEXT_ENABLE); 5141 5142 /* Initialize context mapping and zero out the quick contexts. */ 5143 if ((rc = bce_init_ctx(sc)) != 0) 5144 goto bce_chipinit_exit; 5145 5146 /* Initialize the on-boards CPUs */ 5147 bce_init_cpus(sc); 5148 5149 /* Enable management frames (NC-SI) to flow to the MCP. */ 5150 if (sc->bce_flags & BCE_MFW_ENABLE_FLAG) { 5151 val = REG_RD(sc, BCE_RPM_MGMT_PKT_CTRL) | BCE_RPM_MGMT_PKT_CTRL_MGMT_EN; 5152 REG_WR(sc, BCE_RPM_MGMT_PKT_CTRL, val); 5153 } 5154 5155 /* Prepare NVRAM for access. */ 5156 if ((rc = bce_init_nvram(sc)) != 0) 5157 goto bce_chipinit_exit; 5158 5159 /* Set the kernel bypass block size */ 5160 val = REG_RD(sc, BCE_MQ_CONFIG); 5161 val &= ~BCE_MQ_CONFIG_KNL_BYP_BLK_SIZE; 5162 val |= BCE_MQ_CONFIG_KNL_BYP_BLK_SIZE_256; 5163 5164 /* Enable bins used on the 5709. */ 5165 if (BCE_CHIP_NUM(sc) == BCE_CHIP_NUM_5709) { 5166 val |= BCE_MQ_CONFIG_BIN_MQ_MODE; 5167 if (BCE_CHIP_ID(sc) == BCE_CHIP_ID_5709_A1) 5168 val |= BCE_MQ_CONFIG_HALT_DIS; 5169 } 5170 5171 REG_WR(sc, BCE_MQ_CONFIG, val); 5172 5173 val = 0x10000 + (MAX_CID_CNT * MB_KERNEL_CTX_SIZE); 5174 REG_WR(sc, BCE_MQ_KNL_BYP_WIND_START, val); 5175 REG_WR(sc, BCE_MQ_KNL_WIND_END, val); 5176 5177 /* Set the page size and clear the RV2P processor stall bits. */ 5178 val = (BCM_PAGE_BITS - 8) << 24; 5179 REG_WR(sc, BCE_RV2P_CONFIG, val); 5180 5181 /* Configure page size. */ 5182 val = REG_RD(sc, BCE_TBDR_CONFIG); 5183 val &= ~BCE_TBDR_CONFIG_PAGE_SIZE; 5184 val |= (BCM_PAGE_BITS - 8) << 24 | 0x40; 5185 REG_WR(sc, BCE_TBDR_CONFIG, val); 5186 5187 /* Set the perfect match control register to default. */ 5188 REG_WR_IND(sc, BCE_RXP_PM_CTRL, 0); 5189 5190 bce_chipinit_exit: 5191 DBEXIT(BCE_VERBOSE_RESET); 5192 5193 return(rc); 5194 } 5195 5196 5197 /****************************************************************************/ 5198 /* Initialize the controller in preparation to send/receive traffic. */ 5199 /* */ 5200 /* Returns: */ 5201 /* 0 for success, positive value for failure. */ 5202 /****************************************************************************/ 5203 static int 5204 bce_blockinit(struct bce_softc *sc) 5205 { 5206 u32 reg, val; 5207 int rc = 0; 5208 5209 DBENTER(BCE_VERBOSE_RESET); 5210 5211 /* Load the hardware default MAC address. */ 5212 bce_set_mac_addr(sc); 5213 5214 /* Set the Ethernet backoff seed value */ 5215 val = sc->eaddr[0] + (sc->eaddr[1] << 8) + 5216 (sc->eaddr[2] << 16) + (sc->eaddr[3] ) + 5217 (sc->eaddr[4] << 8) + (sc->eaddr[5] << 16); 5218 REG_WR(sc, BCE_EMAC_BACKOFF_SEED, val); 5219 5220 sc->last_status_idx = 0; 5221 sc->rx_mode = BCE_EMAC_RX_MODE_SORT_MODE; 5222 5223 /* Set up link change interrupt generation. */ 5224 REG_WR(sc, BCE_EMAC_ATTENTION_ENA, BCE_EMAC_ATTENTION_ENA_LINK); 5225 5226 /* Program the physical address of the status block. */ 5227 REG_WR(sc, BCE_HC_STATUS_ADDR_L, 5228 BCE_ADDR_LO(sc->status_block_paddr)); 5229 REG_WR(sc, BCE_HC_STATUS_ADDR_H, 5230 BCE_ADDR_HI(sc->status_block_paddr)); 5231 5232 /* Program the physical address of the statistics block. */ 5233 REG_WR(sc, BCE_HC_STATISTICS_ADDR_L, 5234 BCE_ADDR_LO(sc->stats_block_paddr)); 5235 REG_WR(sc, BCE_HC_STATISTICS_ADDR_H, 5236 BCE_ADDR_HI(sc->stats_block_paddr)); 5237 5238 /* 5239 * Program various host coalescing parameters. 5240 * Trip points control how many BDs should be ready before generating 5241 * an interrupt while ticks control how long a BD can sit in the chain 5242 * before generating an interrupt. 5243 */ 5244 REG_WR(sc, BCE_HC_TX_QUICK_CONS_TRIP, 5245 (sc->bce_tx_quick_cons_trip_int << 16) | 5246 sc->bce_tx_quick_cons_trip); 5247 REG_WR(sc, BCE_HC_RX_QUICK_CONS_TRIP, 5248 (sc->bce_rx_quick_cons_trip_int << 16) | 5249 sc->bce_rx_quick_cons_trip); 5250 REG_WR(sc, BCE_HC_TX_TICKS, 5251 (sc->bce_tx_ticks_int << 16) | sc->bce_tx_ticks); 5252 REG_WR(sc, BCE_HC_RX_TICKS, 5253 (sc->bce_rx_ticks_int << 16) | sc->bce_rx_ticks); 5254 REG_WR(sc, BCE_HC_STATS_TICKS, sc->bce_stats_ticks & 0xffff00); 5255 REG_WR(sc, BCE_HC_STAT_COLLECT_TICKS, 0xbb8); /* 3ms */ 5256 /* Not used for L2. */ 5257 REG_WR(sc, BCE_HC_COMP_PROD_TRIP, 0); 5258 REG_WR(sc, BCE_HC_COM_TICKS, 0); 5259 REG_WR(sc, BCE_HC_CMD_TICKS, 0); 5260 5261 /* Configure the Host Coalescing block. */ 5262 val = BCE_HC_CONFIG_RX_TMR_MODE | BCE_HC_CONFIG_TX_TMR_MODE | 5263 BCE_HC_CONFIG_COLLECT_STATS; 5264 5265 #if 0 5266 /* ToDo: Add MSI-X support. */ 5267 if (sc->bce_flags & BCE_USING_MSIX_FLAG) { 5268 u32 base = ((BCE_TX_VEC - 1) * BCE_HC_SB_CONFIG_SIZE) + 5269 BCE_HC_SB_CONFIG_1; 5270 5271 REG_WR(sc, BCE_HC_MSIX_BIT_VECTOR, BCE_HC_MSIX_BIT_VECTOR_VAL); 5272 5273 REG_WR(sc, base, BCE_HC_SB_CONFIG_1_TX_TMR_MODE | 5274 BCE_HC_SB_CONFIG_1_ONE_SHOT); 5275 5276 REG_WR(sc, base + BCE_HC_TX_QUICK_CONS_TRIP_OFF, 5277 (sc->tx_quick_cons_trip_int << 16) | 5278 sc->tx_quick_cons_trip); 5279 5280 REG_WR(sc, base + BCE_HC_TX_TICKS_OFF, 5281 (sc->tx_ticks_int << 16) | sc->tx_ticks); 5282 5283 val |= BCE_HC_CONFIG_SB_ADDR_INC_128B; 5284 } 5285 5286 /* 5287 * Tell the HC block to automatically set the 5288 * INT_MASK bit after an MSI/MSI-X interrupt 5289 * is generated so the driver doesn't have to. 5290 */ 5291 if (sc->bce_flags & BCE_ONE_SHOT_MSI_FLAG) 5292 val |= BCE_HC_CONFIG_ONE_SHOT; 5293 5294 /* Set the MSI-X status blocks to 128 byte boundaries. */ 5295 if (sc->bce_flags & BCE_USING_MSIX_FLAG) 5296 val |= BCE_HC_CONFIG_SB_ADDR_INC_128B; 5297 #endif 5298 5299 REG_WR(sc, BCE_HC_CONFIG, val); 5300 5301 /* Clear the internal statistics counters. */ 5302 REG_WR(sc, BCE_HC_COMMAND, BCE_HC_COMMAND_CLR_STAT_NOW); 5303 5304 /* Verify that bootcode is running. */ 5305 reg = bce_shmem_rd(sc, BCE_DEV_INFO_SIGNATURE); 5306 5307 DBRUNIF(DB_RANDOMTRUE(bootcode_running_failure_sim_control), 5308 BCE_PRINTF("%s(%d): Simulating bootcode failure.\n", 5309 __FILE__, __LINE__); 5310 reg = 0); 5311 5312 if ((reg & BCE_DEV_INFO_SIGNATURE_MAGIC_MASK) != 5313 BCE_DEV_INFO_SIGNATURE_MAGIC) { 5314 BCE_PRINTF("%s(%d): Bootcode not running! Found: 0x%08X, " 5315 "Expected: 08%08X\n", __FILE__, __LINE__, 5316 (reg & BCE_DEV_INFO_SIGNATURE_MAGIC_MASK), 5317 BCE_DEV_INFO_SIGNATURE_MAGIC); 5318 rc = ENODEV; 5319 goto bce_blockinit_exit; 5320 } 5321 5322 /* Enable DMA */ 5323 if (BCE_CHIP_NUM(sc) == BCE_CHIP_NUM_5709) { 5324 val = REG_RD(sc, BCE_MISC_NEW_CORE_CTL); 5325 val |= BCE_MISC_NEW_CORE_CTL_DMA_ENABLE; 5326 REG_WR(sc, BCE_MISC_NEW_CORE_CTL, val); 5327 } 5328 5329 /* Allow bootcode to apply additional fixes before enabling MAC. */ 5330 rc = bce_fw_sync(sc, BCE_DRV_MSG_DATA_WAIT2 | 5331 BCE_DRV_MSG_CODE_RESET); 5332 5333 /* Enable link state change interrupt generation. */ 5334 REG_WR(sc, BCE_HC_ATTN_BITS_ENABLE, STATUS_ATTN_BITS_LINK_STATE); 5335 5336 /* Enable the RXP. */ 5337 bce_start_rxp_cpu(sc); 5338 5339 /* Disable management frames (NC-SI) from flowing to the MCP. */ 5340 if (sc->bce_flags & BCE_MFW_ENABLE_FLAG) { 5341 val = REG_RD(sc, BCE_RPM_MGMT_PKT_CTRL) & 5342 ~BCE_RPM_MGMT_PKT_CTRL_MGMT_EN; 5343 REG_WR(sc, BCE_RPM_MGMT_PKT_CTRL, val); 5344 } 5345 5346 /* Enable all remaining blocks in the MAC. */ 5347 if (BCE_CHIP_NUM(sc) == BCE_CHIP_NUM_5709) 5348 REG_WR(sc, BCE_MISC_ENABLE_SET_BITS, 5349 BCE_MISC_ENABLE_DEFAULT_XI); 5350 else 5351 REG_WR(sc, BCE_MISC_ENABLE_SET_BITS, 5352 BCE_MISC_ENABLE_DEFAULT); 5353 5354 REG_RD(sc, BCE_MISC_ENABLE_SET_BITS); 5355 DELAY(20); 5356 5357 /* Save the current host coalescing block settings. */ 5358 sc->hc_command = REG_RD(sc, BCE_HC_COMMAND); 5359 5360 bce_blockinit_exit: 5361 DBEXIT(BCE_VERBOSE_RESET); 5362 5363 return (rc); 5364 } 5365 5366 5367 /****************************************************************************/ 5368 /* Encapsulate an mbuf into the rx_bd chain. */ 5369 /* */ 5370 /* Returns: */ 5371 /* 0 for success, positive value for failure. */ 5372 /****************************************************************************/ 5373 static int 5374 bce_get_rx_buf(struct bce_softc *sc, u16 prod, u16 chain_prod, u32 *prod_bseq) 5375 { 5376 bus_dma_segment_t segs[1]; 5377 struct mbuf *m_new = NULL; 5378 struct rx_bd *rxbd; 5379 int nsegs, error, rc = 0; 5380 #ifdef BCE_DEBUG 5381 u16 debug_chain_prod = chain_prod; 5382 #endif 5383 5384 DBENTER(BCE_EXTREME_RESET | BCE_EXTREME_RECV | BCE_EXTREME_LOAD); 5385 5386 /* Make sure the inputs are valid. */ 5387 DBRUNIF((chain_prod > MAX_RX_BD_ALLOC), 5388 BCE_PRINTF("%s(%d): RX producer out of range: " 5389 "0x%04X > 0x%04X\n", __FILE__, __LINE__, 5390 chain_prod, (u16)MAX_RX_BD_ALLOC)); 5391 5392 DBPRINT(sc, BCE_EXTREME_RECV, "%s(enter): prod = 0x%04X, " 5393 "chain_prod = 0x%04X, prod_bseq = 0x%08X\n", __FUNCTION__, 5394 prod, chain_prod, *prod_bseq); 5395 5396 /* Update some debug statistic counters */ 5397 DBRUNIF((sc->free_rx_bd < sc->rx_low_watermark), 5398 sc->rx_low_watermark = sc->free_rx_bd); 5399 DBRUNIF((sc->free_rx_bd == sc->max_rx_bd), 5400 sc->rx_empty_count++); 5401 5402 /* Simulate an mbuf allocation failure. */ 5403 DBRUNIF(DB_RANDOMTRUE(mbuf_alloc_failed_sim_control), 5404 sc->mbuf_alloc_failed_count++; 5405 sc->mbuf_alloc_failed_sim_count++; 5406 rc = ENOBUFS; 5407 goto bce_get_rx_buf_exit); 5408 5409 /* This is a new mbuf allocation. */ 5410 if (bce_hdr_split == TRUE) 5411 MGETHDR(m_new, M_NOWAIT, MT_DATA); 5412 else 5413 m_new = m_getjcl(M_NOWAIT, MT_DATA, M_PKTHDR, 5414 sc->rx_bd_mbuf_alloc_size); 5415 5416 if (m_new == NULL) { 5417 sc->mbuf_alloc_failed_count++; 5418 rc = ENOBUFS; 5419 goto bce_get_rx_buf_exit; 5420 } 5421 5422 DBRUN(sc->debug_rx_mbuf_alloc++); 5423 5424 /* Make sure we have a valid packet header. */ 5425 M_ASSERTPKTHDR(m_new); 5426 5427 /* Initialize the mbuf size and pad if necessary for alignment. */ 5428 m_new->m_pkthdr.len = m_new->m_len = sc->rx_bd_mbuf_alloc_size; 5429 m_adj(m_new, sc->rx_bd_mbuf_align_pad); 5430 5431 /* ToDo: Consider calling m_fragment() to test error handling. */ 5432 5433 /* Map the mbuf cluster into device memory. */ 5434 error = bus_dmamap_load_mbuf_sg(sc->rx_mbuf_tag, 5435 sc->rx_mbuf_map[chain_prod], m_new, segs, &nsegs, BUS_DMA_NOWAIT); 5436 5437 /* Handle any mapping errors. */ 5438 if (error) { 5439 BCE_PRINTF("%s(%d): Error mapping mbuf into RX " 5440 "chain (%d)!\n", __FILE__, __LINE__, error); 5441 5442 sc->dma_map_addr_rx_failed_count++; 5443 m_freem(m_new); 5444 5445 DBRUN(sc->debug_rx_mbuf_alloc--); 5446 5447 rc = ENOBUFS; 5448 goto bce_get_rx_buf_exit; 5449 } 5450 5451 /* All mbufs must map to a single segment. */ 5452 KASSERT(nsegs == 1, ("%s(): Too many segments returned (%d)!", 5453 __FUNCTION__, nsegs)); 5454 5455 /* Setup the rx_bd for the segment. */ 5456 rxbd = &sc->rx_bd_chain[RX_PAGE(chain_prod)][RX_IDX(chain_prod)]; 5457 5458 rxbd->rx_bd_haddr_lo = htole32(BCE_ADDR_LO(segs[0].ds_addr)); 5459 rxbd->rx_bd_haddr_hi = htole32(BCE_ADDR_HI(segs[0].ds_addr)); 5460 rxbd->rx_bd_len = htole32(segs[0].ds_len); 5461 rxbd->rx_bd_flags = htole32(RX_BD_FLAGS_START | RX_BD_FLAGS_END); 5462 *prod_bseq += segs[0].ds_len; 5463 5464 /* Save the mbuf and update our counter. */ 5465 sc->rx_mbuf_ptr[chain_prod] = m_new; 5466 sc->free_rx_bd -= nsegs; 5467 5468 DBRUNMSG(BCE_INSANE_RECV, 5469 bce_dump_rx_mbuf_chain(sc, debug_chain_prod, nsegs)); 5470 5471 DBPRINT(sc, BCE_EXTREME_RECV, "%s(exit): prod = 0x%04X, " 5472 "chain_prod = 0x%04X, prod_bseq = 0x%08X\n", __FUNCTION__, prod, 5473 chain_prod, *prod_bseq); 5474 5475 bce_get_rx_buf_exit: 5476 DBEXIT(BCE_EXTREME_RESET | BCE_EXTREME_RECV | BCE_EXTREME_LOAD); 5477 5478 return(rc); 5479 } 5480 5481 5482 /****************************************************************************/ 5483 /* Encapsulate an mbuf cluster into the page chain. */ 5484 /* */ 5485 /* Returns: */ 5486 /* 0 for success, positive value for failure. */ 5487 /****************************************************************************/ 5488 static int 5489 bce_get_pg_buf(struct bce_softc *sc, u16 prod, u16 prod_idx) 5490 { 5491 bus_dma_segment_t segs[1]; 5492 struct mbuf *m_new = NULL; 5493 struct rx_bd *pgbd; 5494 int error, nsegs, rc = 0; 5495 #ifdef BCE_DEBUG 5496 u16 debug_prod_idx = prod_idx; 5497 #endif 5498 5499 DBENTER(BCE_EXTREME_RESET | BCE_EXTREME_RECV | BCE_EXTREME_LOAD); 5500 5501 /* Make sure the inputs are valid. */ 5502 DBRUNIF((prod_idx > MAX_PG_BD_ALLOC), 5503 BCE_PRINTF("%s(%d): page producer out of range: " 5504 "0x%04X > 0x%04X\n", __FILE__, __LINE__, 5505 prod_idx, (u16)MAX_PG_BD_ALLOC)); 5506 5507 DBPRINT(sc, BCE_EXTREME_RECV, "%s(enter): prod = 0x%04X, " 5508 "chain_prod = 0x%04X\n", __FUNCTION__, prod, prod_idx); 5509 5510 /* Update counters if we've hit a new low or run out of pages. */ 5511 DBRUNIF((sc->free_pg_bd < sc->pg_low_watermark), 5512 sc->pg_low_watermark = sc->free_pg_bd); 5513 DBRUNIF((sc->free_pg_bd == sc->max_pg_bd), sc->pg_empty_count++); 5514 5515 /* Simulate an mbuf allocation failure. */ 5516 DBRUNIF(DB_RANDOMTRUE(mbuf_alloc_failed_sim_control), 5517 sc->mbuf_alloc_failed_count++; 5518 sc->mbuf_alloc_failed_sim_count++; 5519 rc = ENOBUFS; 5520 goto bce_get_pg_buf_exit); 5521 5522 /* This is a new mbuf allocation. */ 5523 m_new = m_getcl(M_NOWAIT, MT_DATA, 0); 5524 if (m_new == NULL) { 5525 sc->mbuf_alloc_failed_count++; 5526 rc = ENOBUFS; 5527 goto bce_get_pg_buf_exit; 5528 } 5529 5530 DBRUN(sc->debug_pg_mbuf_alloc++); 5531 5532 m_new->m_len = MCLBYTES; 5533 5534 /* ToDo: Consider calling m_fragment() to test error handling. */ 5535 5536 /* Map the mbuf cluster into device memory. */ 5537 error = bus_dmamap_load_mbuf_sg(sc->pg_mbuf_tag, 5538 sc->pg_mbuf_map[prod_idx], m_new, segs, &nsegs, BUS_DMA_NOWAIT); 5539 5540 /* Handle any mapping errors. */ 5541 if (error) { 5542 BCE_PRINTF("%s(%d): Error mapping mbuf into page chain!\n", 5543 __FILE__, __LINE__); 5544 5545 m_freem(m_new); 5546 DBRUN(sc->debug_pg_mbuf_alloc--); 5547 5548 rc = ENOBUFS; 5549 goto bce_get_pg_buf_exit; 5550 } 5551 5552 /* All mbufs must map to a single segment. */ 5553 KASSERT(nsegs == 1, ("%s(): Too many segments returned (%d)!", 5554 __FUNCTION__, nsegs)); 5555 5556 /* ToDo: Do we need bus_dmamap_sync(,,BUS_DMASYNC_PREREAD) here? */ 5557 5558 /* 5559 * The page chain uses the same rx_bd data structure 5560 * as the receive chain but doesn't require a byte sequence (bseq). 5561 */ 5562 pgbd = &sc->pg_bd_chain[PG_PAGE(prod_idx)][PG_IDX(prod_idx)]; 5563 5564 pgbd->rx_bd_haddr_lo = htole32(BCE_ADDR_LO(segs[0].ds_addr)); 5565 pgbd->rx_bd_haddr_hi = htole32(BCE_ADDR_HI(segs[0].ds_addr)); 5566 pgbd->rx_bd_len = htole32(MCLBYTES); 5567 pgbd->rx_bd_flags = htole32(RX_BD_FLAGS_START | RX_BD_FLAGS_END); 5568 5569 /* Save the mbuf and update our counter. */ 5570 sc->pg_mbuf_ptr[prod_idx] = m_new; 5571 sc->free_pg_bd--; 5572 5573 DBRUNMSG(BCE_INSANE_RECV, 5574 bce_dump_pg_mbuf_chain(sc, debug_prod_idx, 1)); 5575 5576 DBPRINT(sc, BCE_EXTREME_RECV, "%s(exit): prod = 0x%04X, " 5577 "prod_idx = 0x%04X\n", __FUNCTION__, prod, prod_idx); 5578 5579 bce_get_pg_buf_exit: 5580 DBEXIT(BCE_EXTREME_RESET | BCE_EXTREME_RECV | BCE_EXTREME_LOAD); 5581 5582 return(rc); 5583 } 5584 5585 5586 /****************************************************************************/ 5587 /* Initialize the TX context memory. */ 5588 /* */ 5589 /* Returns: */ 5590 /* Nothing */ 5591 /****************************************************************************/ 5592 static void 5593 bce_init_tx_context(struct bce_softc *sc) 5594 { 5595 u32 val; 5596 5597 DBENTER(BCE_VERBOSE_RESET | BCE_VERBOSE_SEND | BCE_VERBOSE_CTX); 5598 5599 /* Initialize the context ID for an L2 TX chain. */ 5600 if (BCE_CHIP_NUM(sc) == BCE_CHIP_NUM_5709) { 5601 /* Set the CID type to support an L2 connection. */ 5602 val = BCE_L2CTX_TX_TYPE_TYPE_L2_XI | 5603 BCE_L2CTX_TX_TYPE_SIZE_L2_XI; 5604 CTX_WR(sc, GET_CID_ADDR(TX_CID), BCE_L2CTX_TX_TYPE_XI, val); 5605 val = BCE_L2CTX_TX_CMD_TYPE_TYPE_L2_XI | (8 << 16); 5606 CTX_WR(sc, GET_CID_ADDR(TX_CID), 5607 BCE_L2CTX_TX_CMD_TYPE_XI, val); 5608 5609 /* Point the hardware to the first page in the chain. */ 5610 val = BCE_ADDR_HI(sc->tx_bd_chain_paddr[0]); 5611 CTX_WR(sc, GET_CID_ADDR(TX_CID), 5612 BCE_L2CTX_TX_TBDR_BHADDR_HI_XI, val); 5613 val = BCE_ADDR_LO(sc->tx_bd_chain_paddr[0]); 5614 CTX_WR(sc, GET_CID_ADDR(TX_CID), 5615 BCE_L2CTX_TX_TBDR_BHADDR_LO_XI, val); 5616 } else { 5617 /* Set the CID type to support an L2 connection. */ 5618 val = BCE_L2CTX_TX_TYPE_TYPE_L2 | BCE_L2CTX_TX_TYPE_SIZE_L2; 5619 CTX_WR(sc, GET_CID_ADDR(TX_CID), BCE_L2CTX_TX_TYPE, val); 5620 val = BCE_L2CTX_TX_CMD_TYPE_TYPE_L2 | (8 << 16); 5621 CTX_WR(sc, GET_CID_ADDR(TX_CID), BCE_L2CTX_TX_CMD_TYPE, val); 5622 5623 /* Point the hardware to the first page in the chain. */ 5624 val = BCE_ADDR_HI(sc->tx_bd_chain_paddr[0]); 5625 CTX_WR(sc, GET_CID_ADDR(TX_CID), 5626 BCE_L2CTX_TX_TBDR_BHADDR_HI, val); 5627 val = BCE_ADDR_LO(sc->tx_bd_chain_paddr[0]); 5628 CTX_WR(sc, GET_CID_ADDR(TX_CID), 5629 BCE_L2CTX_TX_TBDR_BHADDR_LO, val); 5630 } 5631 5632 DBEXIT(BCE_VERBOSE_RESET | BCE_VERBOSE_SEND | BCE_VERBOSE_CTX); 5633 } 5634 5635 5636 /****************************************************************************/ 5637 /* Allocate memory and initialize the TX data structures. */ 5638 /* */ 5639 /* Returns: */ 5640 /* 0 for success, positive value for failure. */ 5641 /****************************************************************************/ 5642 static int 5643 bce_init_tx_chain(struct bce_softc *sc) 5644 { 5645 struct tx_bd *txbd; 5646 int i, rc = 0; 5647 5648 DBENTER(BCE_VERBOSE_RESET | BCE_VERBOSE_SEND | BCE_VERBOSE_LOAD); 5649 5650 /* Set the initial TX producer/consumer indices. */ 5651 sc->tx_prod = 0; 5652 sc->tx_cons = 0; 5653 sc->tx_prod_bseq = 0; 5654 sc->used_tx_bd = 0; 5655 sc->max_tx_bd = USABLE_TX_BD_ALLOC; 5656 DBRUN(sc->tx_hi_watermark = 0); 5657 DBRUN(sc->tx_full_count = 0); 5658 5659 /* 5660 * The NetXtreme II supports a linked-list structre called 5661 * a Buffer Descriptor Chain (or BD chain). A BD chain 5662 * consists of a series of 1 or more chain pages, each of which 5663 * consists of a fixed number of BD entries. 5664 * The last BD entry on each page is a pointer to the next page 5665 * in the chain, and the last pointer in the BD chain 5666 * points back to the beginning of the chain. 5667 */ 5668 5669 /* Set the TX next pointer chain entries. */ 5670 for (i = 0; i < sc->tx_pages; i++) { 5671 int j; 5672 5673 txbd = &sc->tx_bd_chain[i][USABLE_TX_BD_PER_PAGE]; 5674 5675 /* Check if we've reached the last page. */ 5676 if (i == (sc->tx_pages - 1)) 5677 j = 0; 5678 else 5679 j = i + 1; 5680 5681 txbd->tx_bd_haddr_hi = 5682 htole32(BCE_ADDR_HI(sc->tx_bd_chain_paddr[j])); 5683 txbd->tx_bd_haddr_lo = 5684 htole32(BCE_ADDR_LO(sc->tx_bd_chain_paddr[j])); 5685 } 5686 5687 bce_init_tx_context(sc); 5688 5689 DBRUNMSG(BCE_INSANE_SEND, bce_dump_tx_chain(sc, 0, TOTAL_TX_BD_ALLOC)); 5690 DBEXIT(BCE_VERBOSE_RESET | BCE_VERBOSE_SEND | BCE_VERBOSE_LOAD); 5691 5692 return(rc); 5693 } 5694 5695 5696 /****************************************************************************/ 5697 /* Free memory and clear the TX data structures. */ 5698 /* */ 5699 /* Returns: */ 5700 /* Nothing. */ 5701 /****************************************************************************/ 5702 static void 5703 bce_free_tx_chain(struct bce_softc *sc) 5704 { 5705 int i; 5706 5707 DBENTER(BCE_VERBOSE_RESET | BCE_VERBOSE_SEND | BCE_VERBOSE_UNLOAD); 5708 5709 /* Unmap, unload, and free any mbufs still in the TX mbuf chain. */ 5710 for (i = 0; i < MAX_TX_BD_AVAIL; i++) { 5711 if (sc->tx_mbuf_ptr[i] != NULL) { 5712 if (sc->tx_mbuf_map[i] != NULL) 5713 bus_dmamap_sync(sc->tx_mbuf_tag, 5714 sc->tx_mbuf_map[i], 5715 BUS_DMASYNC_POSTWRITE); 5716 m_freem(sc->tx_mbuf_ptr[i]); 5717 sc->tx_mbuf_ptr[i] = NULL; 5718 DBRUN(sc->debug_tx_mbuf_alloc--); 5719 } 5720 } 5721 5722 /* Clear each TX chain page. */ 5723 for (i = 0; i < sc->tx_pages; i++) 5724 bzero((char *)sc->tx_bd_chain[i], BCE_TX_CHAIN_PAGE_SZ); 5725 5726 sc->used_tx_bd = 0; 5727 5728 /* Check if we lost any mbufs in the process. */ 5729 DBRUNIF((sc->debug_tx_mbuf_alloc), 5730 BCE_PRINTF("%s(%d): Memory leak! Lost %d mbufs " 5731 "from tx chain!\n", __FILE__, __LINE__, 5732 sc->debug_tx_mbuf_alloc)); 5733 5734 DBEXIT(BCE_VERBOSE_RESET | BCE_VERBOSE_SEND | BCE_VERBOSE_UNLOAD); 5735 } 5736 5737 5738 /****************************************************************************/ 5739 /* Initialize the RX context memory. */ 5740 /* */ 5741 /* Returns: */ 5742 /* Nothing */ 5743 /****************************************************************************/ 5744 static void 5745 bce_init_rx_context(struct bce_softc *sc) 5746 { 5747 u32 val; 5748 5749 DBENTER(BCE_VERBOSE_RESET | BCE_VERBOSE_RECV | BCE_VERBOSE_CTX); 5750 5751 /* Init the type, size, and BD cache levels for the RX context. */ 5752 val = BCE_L2CTX_RX_CTX_TYPE_CTX_BD_CHN_TYPE_VALUE | 5753 BCE_L2CTX_RX_CTX_TYPE_SIZE_L2 | 5754 (0x02 << BCE_L2CTX_RX_BD_PRE_READ_SHIFT); 5755 5756 /* 5757 * Set the level for generating pause frames 5758 * when the number of available rx_bd's gets 5759 * too low (the low watermark) and the level 5760 * when pause frames can be stopped (the high 5761 * watermark). 5762 */ 5763 if (BCE_CHIP_NUM(sc) == BCE_CHIP_NUM_5709) { 5764 u32 lo_water, hi_water; 5765 5766 if (sc->bce_flags & BCE_USING_TX_FLOW_CONTROL) { 5767 lo_water = BCE_L2CTX_RX_LO_WATER_MARK_DEFAULT; 5768 } else { 5769 lo_water = 0; 5770 } 5771 5772 if (lo_water >= USABLE_RX_BD_ALLOC) { 5773 lo_water = 0; 5774 } 5775 5776 hi_water = USABLE_RX_BD_ALLOC / 4; 5777 5778 if (hi_water <= lo_water) { 5779 lo_water = 0; 5780 } 5781 5782 lo_water /= BCE_L2CTX_RX_LO_WATER_MARK_SCALE; 5783 hi_water /= BCE_L2CTX_RX_HI_WATER_MARK_SCALE; 5784 5785 if (hi_water > 0xf) 5786 hi_water = 0xf; 5787 else if (hi_water == 0) 5788 lo_water = 0; 5789 5790 val |= (lo_water << BCE_L2CTX_RX_LO_WATER_MARK_SHIFT) | 5791 (hi_water << BCE_L2CTX_RX_HI_WATER_MARK_SHIFT); 5792 } 5793 5794 CTX_WR(sc, GET_CID_ADDR(RX_CID), BCE_L2CTX_RX_CTX_TYPE, val); 5795 5796 /* Setup the MQ BIN mapping for l2_ctx_host_bseq. */ 5797 if (BCE_CHIP_NUM(sc) == BCE_CHIP_NUM_5709) { 5798 val = REG_RD(sc, BCE_MQ_MAP_L2_5); 5799 REG_WR(sc, BCE_MQ_MAP_L2_5, val | BCE_MQ_MAP_L2_5_ARM); 5800 } 5801 5802 /* Point the hardware to the first page in the chain. */ 5803 val = BCE_ADDR_HI(sc->rx_bd_chain_paddr[0]); 5804 CTX_WR(sc, GET_CID_ADDR(RX_CID), BCE_L2CTX_RX_NX_BDHADDR_HI, val); 5805 val = BCE_ADDR_LO(sc->rx_bd_chain_paddr[0]); 5806 CTX_WR(sc, GET_CID_ADDR(RX_CID), BCE_L2CTX_RX_NX_BDHADDR_LO, val); 5807 5808 DBEXIT(BCE_VERBOSE_RESET | BCE_VERBOSE_RECV | BCE_VERBOSE_CTX); 5809 } 5810 5811 5812 /****************************************************************************/ 5813 /* Allocate memory and initialize the RX data structures. */ 5814 /* */ 5815 /* Returns: */ 5816 /* 0 for success, positive value for failure. */ 5817 /****************************************************************************/ 5818 static int 5819 bce_init_rx_chain(struct bce_softc *sc) 5820 { 5821 struct rx_bd *rxbd; 5822 int i, rc = 0; 5823 5824 DBENTER(BCE_VERBOSE_RESET | BCE_VERBOSE_RECV | BCE_VERBOSE_LOAD | 5825 BCE_VERBOSE_CTX); 5826 5827 /* Initialize the RX producer and consumer indices. */ 5828 sc->rx_prod = 0; 5829 sc->rx_cons = 0; 5830 sc->rx_prod_bseq = 0; 5831 sc->free_rx_bd = USABLE_RX_BD_ALLOC; 5832 sc->max_rx_bd = USABLE_RX_BD_ALLOC; 5833 5834 /* Initialize the RX next pointer chain entries. */ 5835 for (i = 0; i < sc->rx_pages; i++) { 5836 int j; 5837 5838 rxbd = &sc->rx_bd_chain[i][USABLE_RX_BD_PER_PAGE]; 5839 5840 /* Check if we've reached the last page. */ 5841 if (i == (sc->rx_pages - 1)) 5842 j = 0; 5843 else 5844 j = i + 1; 5845 5846 /* Setup the chain page pointers. */ 5847 rxbd->rx_bd_haddr_hi = 5848 htole32(BCE_ADDR_HI(sc->rx_bd_chain_paddr[j])); 5849 rxbd->rx_bd_haddr_lo = 5850 htole32(BCE_ADDR_LO(sc->rx_bd_chain_paddr[j])); 5851 } 5852 5853 /* Fill up the RX chain. */ 5854 bce_fill_rx_chain(sc); 5855 5856 DBRUN(sc->rx_low_watermark = USABLE_RX_BD_ALLOC); 5857 DBRUN(sc->rx_empty_count = 0); 5858 for (i = 0; i < sc->rx_pages; i++) { 5859 bus_dmamap_sync(sc->rx_bd_chain_tag, sc->rx_bd_chain_map[i], 5860 BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE); 5861 } 5862 5863 bce_init_rx_context(sc); 5864 5865 DBRUNMSG(BCE_EXTREME_RECV, 5866 bce_dump_rx_bd_chain(sc, 0, TOTAL_RX_BD_ALLOC)); 5867 DBEXIT(BCE_VERBOSE_RESET | BCE_VERBOSE_RECV | BCE_VERBOSE_LOAD | 5868 BCE_VERBOSE_CTX); 5869 5870 /* ToDo: Are there possible failure modes here? */ 5871 5872 return(rc); 5873 } 5874 5875 5876 /****************************************************************************/ 5877 /* Add mbufs to the RX chain until its full or an mbuf allocation error */ 5878 /* occurs. */ 5879 /* */ 5880 /* Returns: */ 5881 /* Nothing */ 5882 /****************************************************************************/ 5883 static void 5884 bce_fill_rx_chain(struct bce_softc *sc) 5885 { 5886 u16 prod, prod_idx; 5887 u32 prod_bseq; 5888 5889 DBENTER(BCE_VERBOSE_RESET | BCE_EXTREME_RECV | BCE_VERBOSE_LOAD | 5890 BCE_VERBOSE_CTX); 5891 5892 /* Get the RX chain producer indices. */ 5893 prod = sc->rx_prod; 5894 prod_bseq = sc->rx_prod_bseq; 5895 5896 /* Keep filling the RX chain until it's full. */ 5897 while (sc->free_rx_bd > 0) { 5898 prod_idx = RX_CHAIN_IDX(prod); 5899 if (bce_get_rx_buf(sc, prod, prod_idx, &prod_bseq)) { 5900 /* Bail out if we can't add an mbuf to the chain. */ 5901 break; 5902 } 5903 prod = NEXT_RX_BD(prod); 5904 } 5905 5906 /* Save the RX chain producer indices. */ 5907 sc->rx_prod = prod; 5908 sc->rx_prod_bseq = prod_bseq; 5909 5910 /* We should never end up pointing to a next page pointer. */ 5911 DBRUNIF(((prod & USABLE_RX_BD_PER_PAGE) == USABLE_RX_BD_PER_PAGE), 5912 BCE_PRINTF("%s(): Invalid rx_prod value: 0x%04X\n", 5913 __FUNCTION__, rx_prod)); 5914 5915 /* Write the mailbox and tell the chip about the waiting rx_bd's. */ 5916 REG_WR16(sc, MB_GET_CID_ADDR(RX_CID) + BCE_L2MQ_RX_HOST_BDIDX, prod); 5917 REG_WR(sc, MB_GET_CID_ADDR(RX_CID) + BCE_L2MQ_RX_HOST_BSEQ, prod_bseq); 5918 5919 DBEXIT(BCE_VERBOSE_RESET | BCE_EXTREME_RECV | BCE_VERBOSE_LOAD | 5920 BCE_VERBOSE_CTX); 5921 } 5922 5923 5924 /****************************************************************************/ 5925 /* Free memory and clear the RX data structures. */ 5926 /* */ 5927 /* Returns: */ 5928 /* Nothing. */ 5929 /****************************************************************************/ 5930 static void 5931 bce_free_rx_chain(struct bce_softc *sc) 5932 { 5933 int i; 5934 5935 DBENTER(BCE_VERBOSE_RESET | BCE_VERBOSE_RECV | BCE_VERBOSE_UNLOAD); 5936 5937 /* Free any mbufs still in the RX mbuf chain. */ 5938 for (i = 0; i < MAX_RX_BD_AVAIL; i++) { 5939 if (sc->rx_mbuf_ptr[i] != NULL) { 5940 if (sc->rx_mbuf_map[i] != NULL) 5941 bus_dmamap_sync(sc->rx_mbuf_tag, 5942 sc->rx_mbuf_map[i], 5943 BUS_DMASYNC_POSTREAD); 5944 m_freem(sc->rx_mbuf_ptr[i]); 5945 sc->rx_mbuf_ptr[i] = NULL; 5946 DBRUN(sc->debug_rx_mbuf_alloc--); 5947 } 5948 } 5949 5950 /* Clear each RX chain page. */ 5951 for (i = 0; i < sc->rx_pages; i++) 5952 if (sc->rx_bd_chain[i] != NULL) 5953 bzero((char *)sc->rx_bd_chain[i], 5954 BCE_RX_CHAIN_PAGE_SZ); 5955 5956 sc->free_rx_bd = sc->max_rx_bd; 5957 5958 /* Check if we lost any mbufs in the process. */ 5959 DBRUNIF((sc->debug_rx_mbuf_alloc), 5960 BCE_PRINTF("%s(): Memory leak! Lost %d mbufs from rx chain!\n", 5961 __FUNCTION__, sc->debug_rx_mbuf_alloc)); 5962 5963 DBEXIT(BCE_VERBOSE_RESET | BCE_VERBOSE_RECV | BCE_VERBOSE_UNLOAD); 5964 } 5965 5966 5967 /****************************************************************************/ 5968 /* Allocate memory and initialize the page data structures. */ 5969 /* Assumes that bce_init_rx_chain() has not already been called. */ 5970 /* */ 5971 /* Returns: */ 5972 /* 0 for success, positive value for failure. */ 5973 /****************************************************************************/ 5974 static int 5975 bce_init_pg_chain(struct bce_softc *sc) 5976 { 5977 struct rx_bd *pgbd; 5978 int i, rc = 0; 5979 u32 val; 5980 5981 DBENTER(BCE_VERBOSE_RESET | BCE_VERBOSE_RECV | BCE_VERBOSE_LOAD | 5982 BCE_VERBOSE_CTX); 5983 5984 /* Initialize the page producer and consumer indices. */ 5985 sc->pg_prod = 0; 5986 sc->pg_cons = 0; 5987 sc->free_pg_bd = USABLE_PG_BD_ALLOC; 5988 sc->max_pg_bd = USABLE_PG_BD_ALLOC; 5989 DBRUN(sc->pg_low_watermark = sc->max_pg_bd); 5990 DBRUN(sc->pg_empty_count = 0); 5991 5992 /* Initialize the page next pointer chain entries. */ 5993 for (i = 0; i < sc->pg_pages; i++) { 5994 int j; 5995 5996 pgbd = &sc->pg_bd_chain[i][USABLE_PG_BD_PER_PAGE]; 5997 5998 /* Check if we've reached the last page. */ 5999 if (i == (sc->pg_pages - 1)) 6000 j = 0; 6001 else 6002 j = i + 1; 6003 6004 /* Setup the chain page pointers. */ 6005 pgbd->rx_bd_haddr_hi = 6006 htole32(BCE_ADDR_HI(sc->pg_bd_chain_paddr[j])); 6007 pgbd->rx_bd_haddr_lo = 6008 htole32(BCE_ADDR_LO(sc->pg_bd_chain_paddr[j])); 6009 } 6010 6011 /* Setup the MQ BIN mapping for host_pg_bidx. */ 6012 if (BCE_CHIP_NUM(sc) == BCE_CHIP_NUM_5709) 6013 REG_WR(sc, BCE_MQ_MAP_L2_3, BCE_MQ_MAP_L2_3_DEFAULT); 6014 6015 CTX_WR(sc, GET_CID_ADDR(RX_CID), BCE_L2CTX_RX_PG_BUF_SIZE, 0); 6016 6017 /* Configure the rx_bd and page chain mbuf cluster size. */ 6018 val = (sc->rx_bd_mbuf_data_len << 16) | MCLBYTES; 6019 CTX_WR(sc, GET_CID_ADDR(RX_CID), BCE_L2CTX_RX_PG_BUF_SIZE, val); 6020 6021 /* Configure the context reserved for jumbo support. */ 6022 CTX_WR(sc, GET_CID_ADDR(RX_CID), BCE_L2CTX_RX_RBDC_KEY, 6023 BCE_L2CTX_RX_RBDC_JUMBO_KEY); 6024 6025 /* Point the hardware to the first page in the page chain. */ 6026 val = BCE_ADDR_HI(sc->pg_bd_chain_paddr[0]); 6027 CTX_WR(sc, GET_CID_ADDR(RX_CID), BCE_L2CTX_RX_NX_PG_BDHADDR_HI, val); 6028 val = BCE_ADDR_LO(sc->pg_bd_chain_paddr[0]); 6029 CTX_WR(sc, GET_CID_ADDR(RX_CID), BCE_L2CTX_RX_NX_PG_BDHADDR_LO, val); 6030 6031 /* Fill up the page chain. */ 6032 bce_fill_pg_chain(sc); 6033 6034 for (i = 0; i < sc->pg_pages; i++) { 6035 bus_dmamap_sync(sc->pg_bd_chain_tag, sc->pg_bd_chain_map[i], 6036 BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE); 6037 } 6038 6039 DBRUNMSG(BCE_EXTREME_RECV, 6040 bce_dump_pg_chain(sc, 0, TOTAL_PG_BD_ALLOC)); 6041 DBEXIT(BCE_VERBOSE_RESET | BCE_VERBOSE_RECV | BCE_VERBOSE_LOAD | 6042 BCE_VERBOSE_CTX); 6043 return(rc); 6044 } 6045 6046 6047 /****************************************************************************/ 6048 /* Add mbufs to the page chain until its full or an mbuf allocation error */ 6049 /* occurs. */ 6050 /* */ 6051 /* Returns: */ 6052 /* Nothing */ 6053 /****************************************************************************/ 6054 static void 6055 bce_fill_pg_chain(struct bce_softc *sc) 6056 { 6057 u16 prod, prod_idx; 6058 6059 DBENTER(BCE_VERBOSE_RESET | BCE_EXTREME_RECV | BCE_VERBOSE_LOAD | 6060 BCE_VERBOSE_CTX); 6061 6062 /* Get the page chain prodcuer index. */ 6063 prod = sc->pg_prod; 6064 6065 /* Keep filling the page chain until it's full. */ 6066 while (sc->free_pg_bd > 0) { 6067 prod_idx = PG_CHAIN_IDX(prod); 6068 if (bce_get_pg_buf(sc, prod, prod_idx)) { 6069 /* Bail out if we can't add an mbuf to the chain. */ 6070 break; 6071 } 6072 prod = NEXT_PG_BD(prod); 6073 } 6074 6075 /* Save the page chain producer index. */ 6076 sc->pg_prod = prod; 6077 6078 DBRUNIF(((prod & USABLE_RX_BD_PER_PAGE) == USABLE_RX_BD_PER_PAGE), 6079 BCE_PRINTF("%s(): Invalid pg_prod value: 0x%04X\n", 6080 __FUNCTION__, pg_prod)); 6081 6082 /* 6083 * Write the mailbox and tell the chip about 6084 * the new rx_bd's in the page chain. 6085 */ 6086 REG_WR16(sc, MB_GET_CID_ADDR(RX_CID) + BCE_L2MQ_RX_HOST_PG_BDIDX, 6087 prod); 6088 6089 DBEXIT(BCE_VERBOSE_RESET | BCE_EXTREME_RECV | BCE_VERBOSE_LOAD | 6090 BCE_VERBOSE_CTX); 6091 } 6092 6093 6094 /****************************************************************************/ 6095 /* Free memory and clear the RX data structures. */ 6096 /* */ 6097 /* Returns: */ 6098 /* Nothing. */ 6099 /****************************************************************************/ 6100 static void 6101 bce_free_pg_chain(struct bce_softc *sc) 6102 { 6103 int i; 6104 6105 DBENTER(BCE_VERBOSE_RESET | BCE_VERBOSE_RECV | BCE_VERBOSE_UNLOAD); 6106 6107 /* Free any mbufs still in the mbuf page chain. */ 6108 for (i = 0; i < MAX_PG_BD_AVAIL; i++) { 6109 if (sc->pg_mbuf_ptr[i] != NULL) { 6110 if (sc->pg_mbuf_map[i] != NULL) 6111 bus_dmamap_sync(sc->pg_mbuf_tag, 6112 sc->pg_mbuf_map[i], 6113 BUS_DMASYNC_POSTREAD); 6114 m_freem(sc->pg_mbuf_ptr[i]); 6115 sc->pg_mbuf_ptr[i] = NULL; 6116 DBRUN(sc->debug_pg_mbuf_alloc--); 6117 } 6118 } 6119 6120 /* Clear each page chain pages. */ 6121 for (i = 0; i < sc->pg_pages; i++) 6122 bzero((char *)sc->pg_bd_chain[i], BCE_PG_CHAIN_PAGE_SZ); 6123 6124 sc->free_pg_bd = sc->max_pg_bd; 6125 6126 /* Check if we lost any mbufs in the process. */ 6127 DBRUNIF((sc->debug_pg_mbuf_alloc), 6128 BCE_PRINTF("%s(): Memory leak! Lost %d mbufs from page chain!\n", 6129 __FUNCTION__, sc->debug_pg_mbuf_alloc)); 6130 6131 DBEXIT(BCE_VERBOSE_RESET | BCE_VERBOSE_RECV | BCE_VERBOSE_UNLOAD); 6132 } 6133 6134 6135 static u32 6136 bce_get_rphy_link(struct bce_softc *sc) 6137 { 6138 u32 advertise, link; 6139 int fdpx; 6140 6141 advertise = 0; 6142 fdpx = 0; 6143 if ((sc->bce_phy_flags & BCE_PHY_REMOTE_PORT_FIBER_FLAG) != 0) 6144 link = bce_shmem_rd(sc, BCE_RPHY_SERDES_LINK); 6145 else 6146 link = bce_shmem_rd(sc, BCE_RPHY_COPPER_LINK); 6147 if (link & BCE_NETLINK_ANEG_ENB) 6148 advertise |= BCE_NETLINK_ANEG_ENB; 6149 if (link & BCE_NETLINK_SPEED_10HALF) 6150 advertise |= BCE_NETLINK_SPEED_10HALF; 6151 if (link & BCE_NETLINK_SPEED_10FULL) { 6152 advertise |= BCE_NETLINK_SPEED_10FULL; 6153 fdpx++; 6154 } 6155 if (link & BCE_NETLINK_SPEED_100HALF) 6156 advertise |= BCE_NETLINK_SPEED_100HALF; 6157 if (link & BCE_NETLINK_SPEED_100FULL) { 6158 advertise |= BCE_NETLINK_SPEED_100FULL; 6159 fdpx++; 6160 } 6161 if (link & BCE_NETLINK_SPEED_1000HALF) 6162 advertise |= BCE_NETLINK_SPEED_1000HALF; 6163 if (link & BCE_NETLINK_SPEED_1000FULL) { 6164 advertise |= BCE_NETLINK_SPEED_1000FULL; 6165 fdpx++; 6166 } 6167 if (link & BCE_NETLINK_SPEED_2500HALF) 6168 advertise |= BCE_NETLINK_SPEED_2500HALF; 6169 if (link & BCE_NETLINK_SPEED_2500FULL) { 6170 advertise |= BCE_NETLINK_SPEED_2500FULL; 6171 fdpx++; 6172 } 6173 if (fdpx) 6174 advertise |= BCE_NETLINK_FC_PAUSE_SYM | 6175 BCE_NETLINK_FC_PAUSE_ASYM; 6176 if ((sc->bce_phy_flags & BCE_PHY_REMOTE_PORT_FIBER_FLAG) == 0) 6177 advertise |= BCE_NETLINK_PHY_APP_REMOTE | 6178 BCE_NETLINK_ETH_AT_WIRESPEED; 6179 6180 return (advertise); 6181 } 6182 6183 6184 /****************************************************************************/ 6185 /* Set media options. */ 6186 /* */ 6187 /* Returns: */ 6188 /* 0 for success, positive value for failure. */ 6189 /****************************************************************************/ 6190 static int 6191 bce_ifmedia_upd(struct ifnet *ifp) 6192 { 6193 struct bce_softc *sc = ifp->if_softc; 6194 int error; 6195 6196 DBENTER(BCE_VERBOSE); 6197 6198 BCE_LOCK(sc); 6199 error = bce_ifmedia_upd_locked(ifp); 6200 BCE_UNLOCK(sc); 6201 6202 DBEXIT(BCE_VERBOSE); 6203 return (error); 6204 } 6205 6206 6207 /****************************************************************************/ 6208 /* Set media options. */ 6209 /* */ 6210 /* Returns: */ 6211 /* Nothing. */ 6212 /****************************************************************************/ 6213 static int 6214 bce_ifmedia_upd_locked(struct ifnet *ifp) 6215 { 6216 struct bce_softc *sc = ifp->if_softc; 6217 struct mii_data *mii; 6218 struct mii_softc *miisc; 6219 struct ifmedia *ifm; 6220 u32 link; 6221 int error, fdx; 6222 6223 DBENTER(BCE_VERBOSE_PHY); 6224 6225 error = 0; 6226 BCE_LOCK_ASSERT(sc); 6227 6228 sc->bce_link_up = FALSE; 6229 if ((sc->bce_phy_flags & BCE_PHY_REMOTE_CAP_FLAG) != 0) { 6230 ifm = &sc->bce_ifmedia; 6231 if (IFM_TYPE(ifm->ifm_media) != IFM_ETHER) 6232 return (EINVAL); 6233 link = 0; 6234 fdx = IFM_OPTIONS(ifm->ifm_media) & IFM_FDX; 6235 switch(IFM_SUBTYPE(ifm->ifm_media)) { 6236 case IFM_AUTO: 6237 /* 6238 * Check advertised link of remote PHY by reading 6239 * BCE_RPHY_SERDES_LINK or BCE_RPHY_COPPER_LINK. 6240 * Always use the same link type of remote PHY. 6241 */ 6242 link = bce_get_rphy_link(sc); 6243 break; 6244 case IFM_2500_SX: 6245 if ((sc->bce_phy_flags & 6246 (BCE_PHY_REMOTE_PORT_FIBER_FLAG | 6247 BCE_PHY_2_5G_CAPABLE_FLAG)) == 0) 6248 return (EINVAL); 6249 /* 6250 * XXX 6251 * Have to enable forced 2.5Gbps configuration. 6252 */ 6253 if (fdx != 0) 6254 link |= BCE_NETLINK_SPEED_2500FULL; 6255 else 6256 link |= BCE_NETLINK_SPEED_2500HALF; 6257 break; 6258 case IFM_1000_SX: 6259 if ((sc->bce_phy_flags & 6260 BCE_PHY_REMOTE_PORT_FIBER_FLAG) == 0) 6261 return (EINVAL); 6262 /* 6263 * XXX 6264 * Have to disable 2.5Gbps configuration. 6265 */ 6266 if (fdx != 0) 6267 link = BCE_NETLINK_SPEED_1000FULL; 6268 else 6269 link = BCE_NETLINK_SPEED_1000HALF; 6270 break; 6271 case IFM_1000_T: 6272 if (sc->bce_phy_flags & BCE_PHY_REMOTE_PORT_FIBER_FLAG) 6273 return (EINVAL); 6274 if (fdx != 0) 6275 link = BCE_NETLINK_SPEED_1000FULL; 6276 else 6277 link = BCE_NETLINK_SPEED_1000HALF; 6278 break; 6279 case IFM_100_TX: 6280 if (sc->bce_phy_flags & BCE_PHY_REMOTE_PORT_FIBER_FLAG) 6281 return (EINVAL); 6282 if (fdx != 0) 6283 link = BCE_NETLINK_SPEED_100FULL; 6284 else 6285 link = BCE_NETLINK_SPEED_100HALF; 6286 break; 6287 case IFM_10_T: 6288 if (sc->bce_phy_flags & BCE_PHY_REMOTE_PORT_FIBER_FLAG) 6289 return (EINVAL); 6290 if (fdx != 0) 6291 link = BCE_NETLINK_SPEED_10FULL; 6292 else 6293 link = BCE_NETLINK_SPEED_10HALF; 6294 break; 6295 default: 6296 return (EINVAL); 6297 } 6298 if (IFM_SUBTYPE(ifm->ifm_media) != IFM_AUTO) { 6299 /* 6300 * XXX 6301 * Advertise pause capability for full-duplex media. 6302 */ 6303 if (fdx != 0) 6304 link |= BCE_NETLINK_FC_PAUSE_SYM | 6305 BCE_NETLINK_FC_PAUSE_ASYM; 6306 if ((sc->bce_phy_flags & 6307 BCE_PHY_REMOTE_PORT_FIBER_FLAG) == 0) 6308 link |= BCE_NETLINK_PHY_APP_REMOTE | 6309 BCE_NETLINK_ETH_AT_WIRESPEED; 6310 } 6311 6312 bce_shmem_wr(sc, BCE_MB_ARGS_0, link); 6313 error = bce_fw_sync(sc, BCE_DRV_MSG_CODE_CMD_SET_LINK); 6314 } else { 6315 mii = device_get_softc(sc->bce_miibus); 6316 6317 /* Make sure the MII bus has been enumerated. */ 6318 if (mii) { 6319 LIST_FOREACH(miisc, &mii->mii_phys, mii_list) 6320 PHY_RESET(miisc); 6321 error = mii_mediachg(mii); 6322 } 6323 } 6324 6325 DBEXIT(BCE_VERBOSE_PHY); 6326 return (error); 6327 } 6328 6329 6330 static void 6331 bce_ifmedia_sts_rphy(struct bce_softc *sc, struct ifmediareq *ifmr) 6332 { 6333 struct ifnet *ifp; 6334 u32 link; 6335 6336 ifp = sc->bce_ifp; 6337 BCE_LOCK_ASSERT(sc); 6338 6339 ifmr->ifm_status = IFM_AVALID; 6340 ifmr->ifm_active = IFM_ETHER; 6341 link = bce_shmem_rd(sc, BCE_LINK_STATUS); 6342 /* XXX Handle heart beat status? */ 6343 if ((link & BCE_LINK_STATUS_LINK_UP) != 0) 6344 ifmr->ifm_status |= IFM_ACTIVE; 6345 else { 6346 ifmr->ifm_active |= IFM_NONE; 6347 ifp->if_baudrate = 0; 6348 return; 6349 } 6350 switch (link & BCE_LINK_STATUS_SPEED_MASK) { 6351 case BCE_LINK_STATUS_10HALF: 6352 ifmr->ifm_active |= IFM_10_T | IFM_HDX; 6353 ifp->if_baudrate = IF_Mbps(10UL); 6354 break; 6355 case BCE_LINK_STATUS_10FULL: 6356 ifmr->ifm_active |= IFM_10_T | IFM_FDX; 6357 ifp->if_baudrate = IF_Mbps(10UL); 6358 break; 6359 case BCE_LINK_STATUS_100HALF: 6360 ifmr->ifm_active |= IFM_100_TX | IFM_HDX; 6361 ifp->if_baudrate = IF_Mbps(100UL); 6362 break; 6363 case BCE_LINK_STATUS_100FULL: 6364 ifmr->ifm_active |= IFM_100_TX | IFM_FDX; 6365 ifp->if_baudrate = IF_Mbps(100UL); 6366 break; 6367 case BCE_LINK_STATUS_1000HALF: 6368 if ((sc->bce_phy_flags & BCE_PHY_REMOTE_PORT_FIBER_FLAG) == 0) 6369 ifmr->ifm_active |= IFM_1000_T | IFM_HDX; 6370 else 6371 ifmr->ifm_active |= IFM_1000_SX | IFM_HDX; 6372 ifp->if_baudrate = IF_Mbps(1000UL); 6373 break; 6374 case BCE_LINK_STATUS_1000FULL: 6375 if ((sc->bce_phy_flags & BCE_PHY_REMOTE_PORT_FIBER_FLAG) == 0) 6376 ifmr->ifm_active |= IFM_1000_T | IFM_FDX; 6377 else 6378 ifmr->ifm_active |= IFM_1000_SX | IFM_FDX; 6379 ifp->if_baudrate = IF_Mbps(1000UL); 6380 break; 6381 case BCE_LINK_STATUS_2500HALF: 6382 if ((sc->bce_phy_flags & BCE_PHY_REMOTE_PORT_FIBER_FLAG) == 0) { 6383 ifmr->ifm_active |= IFM_NONE; 6384 return; 6385 } else 6386 ifmr->ifm_active |= IFM_2500_SX | IFM_HDX; 6387 ifp->if_baudrate = IF_Mbps(2500UL); 6388 break; 6389 case BCE_LINK_STATUS_2500FULL: 6390 if ((sc->bce_phy_flags & BCE_PHY_REMOTE_PORT_FIBER_FLAG) == 0) { 6391 ifmr->ifm_active |= IFM_NONE; 6392 return; 6393 } else 6394 ifmr->ifm_active |= IFM_2500_SX | IFM_FDX; 6395 ifp->if_baudrate = IF_Mbps(2500UL); 6396 break; 6397 default: 6398 ifmr->ifm_active |= IFM_NONE; 6399 return; 6400 } 6401 6402 if ((link & BCE_LINK_STATUS_RX_FC_ENABLED) != 0) 6403 ifmr->ifm_active |= IFM_ETH_RXPAUSE; 6404 if ((link & BCE_LINK_STATUS_TX_FC_ENABLED) != 0) 6405 ifmr->ifm_active |= IFM_ETH_TXPAUSE; 6406 } 6407 6408 6409 /****************************************************************************/ 6410 /* Reports current media status. */ 6411 /* */ 6412 /* Returns: */ 6413 /* Nothing. */ 6414 /****************************************************************************/ 6415 static void 6416 bce_ifmedia_sts(struct ifnet *ifp, struct ifmediareq *ifmr) 6417 { 6418 struct bce_softc *sc = ifp->if_softc; 6419 struct mii_data *mii; 6420 6421 DBENTER(BCE_VERBOSE_PHY); 6422 6423 BCE_LOCK(sc); 6424 6425 if ((ifp->if_flags & IFF_UP) == 0) { 6426 BCE_UNLOCK(sc); 6427 return; 6428 } 6429 6430 if ((sc->bce_phy_flags & BCE_PHY_REMOTE_CAP_FLAG) != 0) 6431 bce_ifmedia_sts_rphy(sc, ifmr); 6432 else { 6433 mii = device_get_softc(sc->bce_miibus); 6434 mii_pollstat(mii); 6435 ifmr->ifm_active = mii->mii_media_active; 6436 ifmr->ifm_status = mii->mii_media_status; 6437 } 6438 6439 BCE_UNLOCK(sc); 6440 6441 DBEXIT(BCE_VERBOSE_PHY); 6442 } 6443 6444 6445 /****************************************************************************/ 6446 /* Handles PHY generated interrupt events. */ 6447 /* */ 6448 /* Returns: */ 6449 /* Nothing. */ 6450 /****************************************************************************/ 6451 static void 6452 bce_phy_intr(struct bce_softc *sc) 6453 { 6454 u32 new_link_state, old_link_state; 6455 6456 DBENTER(BCE_VERBOSE_PHY | BCE_VERBOSE_INTR); 6457 6458 DBRUN(sc->phy_interrupts++); 6459 6460 new_link_state = sc->status_block->status_attn_bits & 6461 STATUS_ATTN_BITS_LINK_STATE; 6462 old_link_state = sc->status_block->status_attn_bits_ack & 6463 STATUS_ATTN_BITS_LINK_STATE; 6464 6465 /* Handle any changes if the link state has changed. */ 6466 if (new_link_state != old_link_state) { 6467 6468 /* Update the status_attn_bits_ack field. */ 6469 if (new_link_state) { 6470 REG_WR(sc, BCE_PCICFG_STATUS_BIT_SET_CMD, 6471 STATUS_ATTN_BITS_LINK_STATE); 6472 DBPRINT(sc, BCE_INFO_PHY, "%s(): Link is now UP.\n", 6473 __FUNCTION__); 6474 } else { 6475 REG_WR(sc, BCE_PCICFG_STATUS_BIT_CLEAR_CMD, 6476 STATUS_ATTN_BITS_LINK_STATE); 6477 DBPRINT(sc, BCE_INFO_PHY, "%s(): Link is now DOWN.\n", 6478 __FUNCTION__); 6479 } 6480 6481 if ((sc->bce_phy_flags & BCE_PHY_REMOTE_CAP_FLAG) != 0) { 6482 if (new_link_state) { 6483 if (bootverbose) 6484 if_printf(sc->bce_ifp, "link UP\n"); 6485 if_link_state_change(sc->bce_ifp, 6486 LINK_STATE_UP); 6487 } else { 6488 if (bootverbose) 6489 if_printf(sc->bce_ifp, "link DOWN\n"); 6490 if_link_state_change(sc->bce_ifp, 6491 LINK_STATE_DOWN); 6492 } 6493 } 6494 /* 6495 * Assume link is down and allow 6496 * tick routine to update the state 6497 * based on the actual media state. 6498 */ 6499 sc->bce_link_up = FALSE; 6500 callout_stop(&sc->bce_tick_callout); 6501 bce_tick(sc); 6502 } 6503 6504 /* Acknowledge the link change interrupt. */ 6505 REG_WR(sc, BCE_EMAC_STATUS, BCE_EMAC_STATUS_LINK_CHANGE); 6506 6507 DBEXIT(BCE_VERBOSE_PHY | BCE_VERBOSE_INTR); 6508 } 6509 6510 6511 /****************************************************************************/ 6512 /* Reads the receive consumer value from the status block (skipping over */ 6513 /* chain page pointer if necessary). */ 6514 /* */ 6515 /* Returns: */ 6516 /* hw_cons */ 6517 /****************************************************************************/ 6518 static inline u16 6519 bce_get_hw_rx_cons(struct bce_softc *sc) 6520 { 6521 u16 hw_cons; 6522 6523 rmb(); 6524 hw_cons = sc->status_block->status_rx_quick_consumer_index0; 6525 if ((hw_cons & USABLE_RX_BD_PER_PAGE) == USABLE_RX_BD_PER_PAGE) 6526 hw_cons++; 6527 6528 return hw_cons; 6529 } 6530 6531 /****************************************************************************/ 6532 /* Handles received frame interrupt events. */ 6533 /* */ 6534 /* Returns: */ 6535 /* Nothing. */ 6536 /****************************************************************************/ 6537 static void 6538 bce_rx_intr(struct bce_softc *sc) 6539 { 6540 struct ifnet *ifp = sc->bce_ifp; 6541 struct l2_fhdr *l2fhdr; 6542 struct ether_vlan_header *vh; 6543 unsigned int pkt_len; 6544 u16 sw_rx_cons, sw_rx_cons_idx, hw_rx_cons; 6545 u32 status; 6546 unsigned int rem_len; 6547 u16 sw_pg_cons, sw_pg_cons_idx; 6548 6549 DBENTER(BCE_VERBOSE_RECV | BCE_VERBOSE_INTR); 6550 DBRUN(sc->interrupts_rx++); 6551 DBPRINT(sc, BCE_EXTREME_RECV, "%s(enter): rx_prod = 0x%04X, " 6552 "rx_cons = 0x%04X, rx_prod_bseq = 0x%08X\n", 6553 __FUNCTION__, sc->rx_prod, sc->rx_cons, sc->rx_prod_bseq); 6554 6555 /* Prepare the RX chain pages to be accessed by the host CPU. */ 6556 for (int i = 0; i < sc->rx_pages; i++) 6557 bus_dmamap_sync(sc->rx_bd_chain_tag, 6558 sc->rx_bd_chain_map[i], BUS_DMASYNC_POSTREAD); 6559 6560 /* Prepare the page chain pages to be accessed by the host CPU. */ 6561 if (bce_hdr_split == TRUE) { 6562 for (int i = 0; i < sc->pg_pages; i++) 6563 bus_dmamap_sync(sc->pg_bd_chain_tag, 6564 sc->pg_bd_chain_map[i], BUS_DMASYNC_POSTREAD); 6565 } 6566 6567 /* Get the hardware's view of the RX consumer index. */ 6568 hw_rx_cons = sc->hw_rx_cons = bce_get_hw_rx_cons(sc); 6569 6570 /* Get working copies of the driver's view of the consumer indices. */ 6571 sw_rx_cons = sc->rx_cons; 6572 sw_pg_cons = sc->pg_cons; 6573 6574 /* Update some debug statistics counters */ 6575 DBRUNIF((sc->free_rx_bd < sc->rx_low_watermark), 6576 sc->rx_low_watermark = sc->free_rx_bd); 6577 DBRUNIF((sc->free_rx_bd == sc->max_rx_bd), 6578 sc->rx_empty_count++); 6579 6580 /* Scan through the receive chain as long as there is work to do */ 6581 /* ToDo: Consider setting a limit on the number of packets processed. */ 6582 rmb(); 6583 while (sw_rx_cons != hw_rx_cons) { 6584 struct mbuf *m0; 6585 6586 /* Convert the producer/consumer indices to an actual rx_bd index. */ 6587 sw_rx_cons_idx = RX_CHAIN_IDX(sw_rx_cons); 6588 6589 /* Unmap the mbuf from DMA space. */ 6590 bus_dmamap_sync(sc->rx_mbuf_tag, 6591 sc->rx_mbuf_map[sw_rx_cons_idx], 6592 BUS_DMASYNC_POSTREAD); 6593 bus_dmamap_unload(sc->rx_mbuf_tag, 6594 sc->rx_mbuf_map[sw_rx_cons_idx]); 6595 6596 /* Remove the mbuf from the RX chain. */ 6597 m0 = sc->rx_mbuf_ptr[sw_rx_cons_idx]; 6598 sc->rx_mbuf_ptr[sw_rx_cons_idx] = NULL; 6599 DBRUN(sc->debug_rx_mbuf_alloc--); 6600 sc->free_rx_bd++; 6601 6602 /* 6603 * Frames received on the NetXteme II are prepended 6604 * with an l2_fhdr structure which provides status 6605 * information about the received frame (including 6606 * VLAN tags and checksum info). The frames are 6607 * also automatically adjusted to word align the IP 6608 * header (i.e. two null bytes are inserted before 6609 * the Ethernet header). As a result the data 6610 * DMA'd by the controller into the mbuf looks 6611 * like this: 6612 * 6613 * +---------+-----+---------------------+-----+ 6614 * | l2_fhdr | pad | packet data | FCS | 6615 * +---------+-----+---------------------+-----+ 6616 * 6617 * The l2_fhdr needs to be checked and skipped and 6618 * the FCS needs to be stripped before sending the 6619 * packet up the stack. 6620 */ 6621 l2fhdr = mtod(m0, struct l2_fhdr *); 6622 6623 /* Get the packet data + FCS length and the status. */ 6624 pkt_len = l2fhdr->l2_fhdr_pkt_len; 6625 status = l2fhdr->l2_fhdr_status; 6626 6627 /* 6628 * Skip over the l2_fhdr and pad, resulting in the 6629 * following data in the mbuf: 6630 * +---------------------+-----+ 6631 * | packet data | FCS | 6632 * +---------------------+-----+ 6633 */ 6634 m_adj(m0, sizeof(struct l2_fhdr) + ETHER_ALIGN); 6635 6636 /* 6637 * When split header mode is used, an ethernet frame 6638 * may be split across the receive chain and the 6639 * page chain. If that occurs an mbuf cluster must be 6640 * reassembled from the individual mbuf pieces. 6641 */ 6642 if (bce_hdr_split == TRUE) { 6643 /* 6644 * Check whether the received frame fits in a single 6645 * mbuf or not (i.e. packet data + FCS <= 6646 * sc->rx_bd_mbuf_data_len bytes). 6647 */ 6648 if (pkt_len > m0->m_len) { 6649 /* 6650 * The received frame is larger than a single mbuf. 6651 * If the frame was a TCP frame then only the TCP 6652 * header is placed in the mbuf, the remaining 6653 * payload (including FCS) is placed in the page 6654 * chain, the SPLIT flag is set, and the header 6655 * length is placed in the IP checksum field. 6656 * If the frame is not a TCP frame then the mbuf 6657 * is filled and the remaining bytes are placed 6658 * in the page chain. 6659 */ 6660 6661 DBPRINT(sc, BCE_INFO_RECV, "%s(): Found a large " 6662 "packet.\n", __FUNCTION__); 6663 DBRUN(sc->split_header_frames_rcvd++); 6664 6665 /* 6666 * When the page chain is enabled and the TCP 6667 * header has been split from the TCP payload, 6668 * the ip_xsum structure will reflect the length 6669 * of the TCP header, not the IP checksum. Set 6670 * the packet length of the mbuf accordingly. 6671 */ 6672 if (status & L2_FHDR_STATUS_SPLIT) { 6673 m0->m_len = l2fhdr->l2_fhdr_ip_xsum; 6674 DBRUN(sc->split_header_tcp_frames_rcvd++); 6675 } 6676 6677 rem_len = pkt_len - m0->m_len; 6678 6679 /* Pull mbufs off the page chain for any remaining data. */ 6680 while (rem_len > 0) { 6681 struct mbuf *m_pg; 6682 6683 sw_pg_cons_idx = PG_CHAIN_IDX(sw_pg_cons); 6684 6685 /* Remove the mbuf from the page chain. */ 6686 m_pg = sc->pg_mbuf_ptr[sw_pg_cons_idx]; 6687 sc->pg_mbuf_ptr[sw_pg_cons_idx] = NULL; 6688 DBRUN(sc->debug_pg_mbuf_alloc--); 6689 sc->free_pg_bd++; 6690 6691 /* Unmap the page chain mbuf from DMA space. */ 6692 bus_dmamap_sync(sc->pg_mbuf_tag, 6693 sc->pg_mbuf_map[sw_pg_cons_idx], 6694 BUS_DMASYNC_POSTREAD); 6695 bus_dmamap_unload(sc->pg_mbuf_tag, 6696 sc->pg_mbuf_map[sw_pg_cons_idx]); 6697 6698 /* Adjust the mbuf length. */ 6699 if (rem_len < m_pg->m_len) { 6700 /* The mbuf chain is complete. */ 6701 m_pg->m_len = rem_len; 6702 rem_len = 0; 6703 } else { 6704 /* More packet data is waiting. */ 6705 rem_len -= m_pg->m_len; 6706 } 6707 6708 /* Concatenate the mbuf cluster to the mbuf. */ 6709 m_cat(m0, m_pg); 6710 6711 sw_pg_cons = NEXT_PG_BD(sw_pg_cons); 6712 } 6713 6714 /* Set the total packet length. */ 6715 m0->m_pkthdr.len = pkt_len; 6716 6717 } else { 6718 /* 6719 * The received packet is small and fits in a 6720 * single mbuf (i.e. the l2_fhdr + pad + packet + 6721 * FCS <= MHLEN). In other words, the packet is 6722 * 154 bytes or less in size. 6723 */ 6724 6725 DBPRINT(sc, BCE_INFO_RECV, "%s(): Found a small " 6726 "packet.\n", __FUNCTION__); 6727 6728 /* Set the total packet length. */ 6729 m0->m_pkthdr.len = m0->m_len = pkt_len; 6730 } 6731 } else 6732 /* Set the total packet length. */ 6733 m0->m_pkthdr.len = m0->m_len = pkt_len; 6734 6735 /* Remove the trailing Ethernet FCS. */ 6736 m_adj(m0, -ETHER_CRC_LEN); 6737 6738 /* Check that the resulting mbuf chain is valid. */ 6739 DBRUN(m_sanity(m0, FALSE)); 6740 DBRUNIF(((m0->m_len < ETHER_HDR_LEN) | 6741 (m0->m_pkthdr.len > BCE_MAX_JUMBO_ETHER_MTU_VLAN)), 6742 BCE_PRINTF("Invalid Ethernet frame size!\n"); 6743 m_print(m0, 128)); 6744 6745 DBRUNIF(DB_RANDOMTRUE(l2fhdr_error_sim_control), 6746 sc->l2fhdr_error_sim_count++; 6747 status = status | L2_FHDR_ERRORS_PHY_DECODE); 6748 6749 /* Check the received frame for errors. */ 6750 if (status & (L2_FHDR_ERRORS_BAD_CRC | 6751 L2_FHDR_ERRORS_PHY_DECODE | L2_FHDR_ERRORS_ALIGNMENT | 6752 L2_FHDR_ERRORS_TOO_SHORT | L2_FHDR_ERRORS_GIANT_FRAME)) { 6753 6754 /* Log the error and release the mbuf. */ 6755 sc->l2fhdr_error_count++; 6756 m_freem(m0); 6757 m0 = NULL; 6758 goto bce_rx_intr_next_rx; 6759 } 6760 6761 /* Send the packet to the appropriate interface. */ 6762 m0->m_pkthdr.rcvif = ifp; 6763 6764 /* Assume no hardware checksum. */ 6765 m0->m_pkthdr.csum_flags = 0; 6766 6767 /* Validate the checksum if offload enabled. */ 6768 if (ifp->if_capenable & IFCAP_RXCSUM) { 6769 /* Check for an IP datagram. */ 6770 if (!(status & L2_FHDR_STATUS_SPLIT) && 6771 (status & L2_FHDR_STATUS_IP_DATAGRAM)) { 6772 m0->m_pkthdr.csum_flags |= CSUM_IP_CHECKED; 6773 DBRUN(sc->csum_offload_ip++); 6774 /* Check if the IP checksum is valid. */ 6775 if ((l2fhdr->l2_fhdr_ip_xsum ^ 0xffff) == 0) 6776 m0->m_pkthdr.csum_flags |= 6777 CSUM_IP_VALID; 6778 } 6779 6780 /* Check for a valid TCP/UDP frame. */ 6781 if (status & (L2_FHDR_STATUS_TCP_SEGMENT | 6782 L2_FHDR_STATUS_UDP_DATAGRAM)) { 6783 6784 /* Check for a good TCP/UDP checksum. */ 6785 if ((status & (L2_FHDR_ERRORS_TCP_XSUM | 6786 L2_FHDR_ERRORS_UDP_XSUM)) == 0) { 6787 DBRUN(sc->csum_offload_tcp_udp++); 6788 m0->m_pkthdr.csum_data = 6789 l2fhdr->l2_fhdr_tcp_udp_xsum; 6790 m0->m_pkthdr.csum_flags |= 6791 (CSUM_DATA_VALID 6792 | CSUM_PSEUDO_HDR); 6793 } 6794 } 6795 } 6796 6797 /* Attach the VLAN tag. */ 6798 if ((status & L2_FHDR_STATUS_L2_VLAN_TAG) && 6799 !(sc->rx_mode & BCE_EMAC_RX_MODE_KEEP_VLAN_TAG)) { 6800 DBRUN(sc->vlan_tagged_frames_rcvd++); 6801 if (ifp->if_capenable & IFCAP_VLAN_HWTAGGING) { 6802 DBRUN(sc->vlan_tagged_frames_stripped++); 6803 #if __FreeBSD_version < 700000 6804 VLAN_INPUT_TAG(ifp, m0, 6805 l2fhdr->l2_fhdr_vlan_tag, continue); 6806 #else 6807 m0->m_pkthdr.ether_vtag = 6808 l2fhdr->l2_fhdr_vlan_tag; 6809 m0->m_flags |= M_VLANTAG; 6810 #endif 6811 } else { 6812 /* 6813 * bce(4) controllers can't disable VLAN 6814 * tag stripping if management firmware 6815 * (ASF/IPMI/UMP) is running. So we always 6816 * strip VLAN tag and manually reconstruct 6817 * the VLAN frame by appending stripped 6818 * VLAN tag in driver if VLAN tag stripping 6819 * was disabled. 6820 * 6821 * TODO: LLC SNAP handling. 6822 */ 6823 bcopy(mtod(m0, uint8_t *), 6824 mtod(m0, uint8_t *) - ETHER_VLAN_ENCAP_LEN, 6825 ETHER_ADDR_LEN * 2); 6826 m0->m_data -= ETHER_VLAN_ENCAP_LEN; 6827 vh = mtod(m0, struct ether_vlan_header *); 6828 vh->evl_encap_proto = htons(ETHERTYPE_VLAN); 6829 vh->evl_tag = htons(l2fhdr->l2_fhdr_vlan_tag); 6830 m0->m_pkthdr.len += ETHER_VLAN_ENCAP_LEN; 6831 m0->m_len += ETHER_VLAN_ENCAP_LEN; 6832 } 6833 } 6834 6835 /* Increment received packet statistics. */ 6836 if_inc_counter(ifp, IFCOUNTER_IPACKETS, 1); 6837 6838 bce_rx_intr_next_rx: 6839 sw_rx_cons = NEXT_RX_BD(sw_rx_cons); 6840 6841 /* If we have a packet, pass it up the stack */ 6842 if (m0) { 6843 /* Make sure we don't lose our place when we release the lock. */ 6844 sc->rx_cons = sw_rx_cons; 6845 sc->pg_cons = sw_pg_cons; 6846 6847 BCE_UNLOCK(sc); 6848 (*ifp->if_input)(ifp, m0); 6849 BCE_LOCK(sc); 6850 6851 /* Recover our place. */ 6852 sw_rx_cons = sc->rx_cons; 6853 sw_pg_cons = sc->pg_cons; 6854 } 6855 6856 /* Refresh hw_cons to see if there's new work */ 6857 if (sw_rx_cons == hw_rx_cons) 6858 hw_rx_cons = sc->hw_rx_cons = bce_get_hw_rx_cons(sc); 6859 } 6860 6861 /* No new packets. Refill the page chain. */ 6862 if (bce_hdr_split == TRUE) { 6863 sc->pg_cons = sw_pg_cons; 6864 bce_fill_pg_chain(sc); 6865 } 6866 6867 /* No new packets. Refill the RX chain. */ 6868 sc->rx_cons = sw_rx_cons; 6869 bce_fill_rx_chain(sc); 6870 6871 /* Prepare the page chain pages to be accessed by the NIC. */ 6872 for (int i = 0; i < sc->rx_pages; i++) 6873 bus_dmamap_sync(sc->rx_bd_chain_tag, 6874 sc->rx_bd_chain_map[i], BUS_DMASYNC_PREWRITE); 6875 6876 if (bce_hdr_split == TRUE) { 6877 for (int i = 0; i < sc->pg_pages; i++) 6878 bus_dmamap_sync(sc->pg_bd_chain_tag, 6879 sc->pg_bd_chain_map[i], BUS_DMASYNC_PREWRITE); 6880 } 6881 6882 DBPRINT(sc, BCE_EXTREME_RECV, "%s(exit): rx_prod = 0x%04X, " 6883 "rx_cons = 0x%04X, rx_prod_bseq = 0x%08X\n", 6884 __FUNCTION__, sc->rx_prod, sc->rx_cons, sc->rx_prod_bseq); 6885 DBEXIT(BCE_VERBOSE_RECV | BCE_VERBOSE_INTR); 6886 } 6887 6888 6889 /****************************************************************************/ 6890 /* Reads the transmit consumer value from the status block (skipping over */ 6891 /* chain page pointer if necessary). */ 6892 /* */ 6893 /* Returns: */ 6894 /* hw_cons */ 6895 /****************************************************************************/ 6896 static inline u16 6897 bce_get_hw_tx_cons(struct bce_softc *sc) 6898 { 6899 u16 hw_cons; 6900 6901 mb(); 6902 hw_cons = sc->status_block->status_tx_quick_consumer_index0; 6903 if ((hw_cons & USABLE_TX_BD_PER_PAGE) == USABLE_TX_BD_PER_PAGE) 6904 hw_cons++; 6905 6906 return hw_cons; 6907 } 6908 6909 6910 /****************************************************************************/ 6911 /* Handles transmit completion interrupt events. */ 6912 /* */ 6913 /* Returns: */ 6914 /* Nothing. */ 6915 /****************************************************************************/ 6916 static void 6917 bce_tx_intr(struct bce_softc *sc) 6918 { 6919 struct ifnet *ifp = sc->bce_ifp; 6920 u16 hw_tx_cons, sw_tx_cons, sw_tx_chain_cons; 6921 6922 DBENTER(BCE_VERBOSE_SEND | BCE_VERBOSE_INTR); 6923 DBRUN(sc->interrupts_tx++); 6924 DBPRINT(sc, BCE_EXTREME_SEND, "%s(enter): tx_prod = 0x%04X, " 6925 "tx_cons = 0x%04X, tx_prod_bseq = 0x%08X\n", 6926 __FUNCTION__, sc->tx_prod, sc->tx_cons, sc->tx_prod_bseq); 6927 6928 BCE_LOCK_ASSERT(sc); 6929 6930 /* Get the hardware's view of the TX consumer index. */ 6931 hw_tx_cons = sc->hw_tx_cons = bce_get_hw_tx_cons(sc); 6932 sw_tx_cons = sc->tx_cons; 6933 6934 /* Prevent speculative reads of the status block. */ 6935 bus_space_barrier(sc->bce_btag, sc->bce_bhandle, 0, 0, 6936 BUS_SPACE_BARRIER_READ); 6937 6938 /* Cycle through any completed TX chain page entries. */ 6939 while (sw_tx_cons != hw_tx_cons) { 6940 #ifdef BCE_DEBUG 6941 struct tx_bd *txbd = NULL; 6942 #endif 6943 sw_tx_chain_cons = TX_CHAIN_IDX(sw_tx_cons); 6944 6945 DBPRINT(sc, BCE_INFO_SEND, 6946 "%s(): hw_tx_cons = 0x%04X, sw_tx_cons = 0x%04X, " 6947 "sw_tx_chain_cons = 0x%04X\n", 6948 __FUNCTION__, hw_tx_cons, sw_tx_cons, sw_tx_chain_cons); 6949 6950 DBRUNIF((sw_tx_chain_cons > MAX_TX_BD_ALLOC), 6951 BCE_PRINTF("%s(%d): TX chain consumer out of range! " 6952 " 0x%04X > 0x%04X\n", __FILE__, __LINE__, sw_tx_chain_cons, 6953 (int) MAX_TX_BD_ALLOC); 6954 bce_breakpoint(sc)); 6955 6956 DBRUN(txbd = &sc->tx_bd_chain[TX_PAGE(sw_tx_chain_cons)] 6957 [TX_IDX(sw_tx_chain_cons)]); 6958 6959 DBRUNIF((txbd == NULL), 6960 BCE_PRINTF("%s(%d): Unexpected NULL tx_bd[0x%04X]!\n", 6961 __FILE__, __LINE__, sw_tx_chain_cons); 6962 bce_breakpoint(sc)); 6963 6964 DBRUNMSG(BCE_INFO_SEND, BCE_PRINTF("%s(): ", __FUNCTION__); 6965 bce_dump_txbd(sc, sw_tx_chain_cons, txbd)); 6966 6967 /* 6968 * Free the associated mbuf. Remember 6969 * that only the last tx_bd of a packet 6970 * has an mbuf pointer and DMA map. 6971 */ 6972 if (sc->tx_mbuf_ptr[sw_tx_chain_cons] != NULL) { 6973 6974 /* Validate that this is the last tx_bd. */ 6975 DBRUNIF((!(txbd->tx_bd_flags & TX_BD_FLAGS_END)), 6976 BCE_PRINTF("%s(%d): tx_bd END flag not set but " 6977 "txmbuf == NULL!\n", __FILE__, __LINE__); 6978 bce_breakpoint(sc)); 6979 6980 DBRUNMSG(BCE_INFO_SEND, 6981 BCE_PRINTF("%s(): Unloading map/freeing mbuf " 6982 "from tx_bd[0x%04X]\n", __FUNCTION__, 6983 sw_tx_chain_cons)); 6984 6985 /* Unmap the mbuf. */ 6986 bus_dmamap_unload(sc->tx_mbuf_tag, 6987 sc->tx_mbuf_map[sw_tx_chain_cons]); 6988 6989 /* Free the mbuf. */ 6990 m_freem(sc->tx_mbuf_ptr[sw_tx_chain_cons]); 6991 sc->tx_mbuf_ptr[sw_tx_chain_cons] = NULL; 6992 DBRUN(sc->debug_tx_mbuf_alloc--); 6993 6994 if_inc_counter(ifp, IFCOUNTER_OPACKETS, 1); 6995 } 6996 6997 sc->used_tx_bd--; 6998 sw_tx_cons = NEXT_TX_BD(sw_tx_cons); 6999 7000 /* Refresh hw_cons to see if there's new work. */ 7001 hw_tx_cons = sc->hw_tx_cons = bce_get_hw_tx_cons(sc); 7002 7003 /* Prevent speculative reads of the status block. */ 7004 bus_space_barrier(sc->bce_btag, sc->bce_bhandle, 0, 0, 7005 BUS_SPACE_BARRIER_READ); 7006 } 7007 7008 /* Clear the TX timeout timer. */ 7009 sc->watchdog_timer = 0; 7010 7011 /* Clear the tx hardware queue full flag. */ 7012 if (sc->used_tx_bd < sc->max_tx_bd) { 7013 DBRUNIF((ifp->if_drv_flags & IFF_DRV_OACTIVE), 7014 DBPRINT(sc, BCE_INFO_SEND, 7015 "%s(): Open TX chain! %d/%d (used/total)\n", 7016 __FUNCTION__, sc->used_tx_bd, sc->max_tx_bd)); 7017 ifp->if_drv_flags &= ~IFF_DRV_OACTIVE; 7018 } 7019 7020 sc->tx_cons = sw_tx_cons; 7021 7022 DBPRINT(sc, BCE_EXTREME_SEND, "%s(exit): tx_prod = 0x%04X, " 7023 "tx_cons = 0x%04X, tx_prod_bseq = 0x%08X\n", 7024 __FUNCTION__, sc->tx_prod, sc->tx_cons, sc->tx_prod_bseq); 7025 DBEXIT(BCE_VERBOSE_SEND | BCE_VERBOSE_INTR); 7026 } 7027 7028 7029 /****************************************************************************/ 7030 /* Disables interrupt generation. */ 7031 /* */ 7032 /* Returns: */ 7033 /* Nothing. */ 7034 /****************************************************************************/ 7035 static void 7036 bce_disable_intr(struct bce_softc *sc) 7037 { 7038 DBENTER(BCE_VERBOSE_INTR); 7039 7040 REG_WR(sc, BCE_PCICFG_INT_ACK_CMD, BCE_PCICFG_INT_ACK_CMD_MASK_INT); 7041 REG_RD(sc, BCE_PCICFG_INT_ACK_CMD); 7042 7043 DBEXIT(BCE_VERBOSE_INTR); 7044 } 7045 7046 7047 /****************************************************************************/ 7048 /* Enables interrupt generation. */ 7049 /* */ 7050 /* Returns: */ 7051 /* Nothing. */ 7052 /****************************************************************************/ 7053 static void 7054 bce_enable_intr(struct bce_softc *sc, int coal_now) 7055 { 7056 DBENTER(BCE_VERBOSE_INTR); 7057 7058 REG_WR(sc, BCE_PCICFG_INT_ACK_CMD, 7059 BCE_PCICFG_INT_ACK_CMD_INDEX_VALID | 7060 BCE_PCICFG_INT_ACK_CMD_MASK_INT | sc->last_status_idx); 7061 7062 REG_WR(sc, BCE_PCICFG_INT_ACK_CMD, 7063 BCE_PCICFG_INT_ACK_CMD_INDEX_VALID | sc->last_status_idx); 7064 7065 /* Force an immediate interrupt (whether there is new data or not). */ 7066 if (coal_now) 7067 REG_WR(sc, BCE_HC_COMMAND, sc->hc_command | BCE_HC_COMMAND_COAL_NOW); 7068 7069 DBEXIT(BCE_VERBOSE_INTR); 7070 } 7071 7072 7073 /****************************************************************************/ 7074 /* Handles controller initialization. */ 7075 /* */ 7076 /* Returns: */ 7077 /* Nothing. */ 7078 /****************************************************************************/ 7079 static void 7080 bce_init_locked(struct bce_softc *sc) 7081 { 7082 struct ifnet *ifp; 7083 u32 ether_mtu = 0; 7084 7085 DBENTER(BCE_VERBOSE_RESET); 7086 7087 BCE_LOCK_ASSERT(sc); 7088 7089 ifp = sc->bce_ifp; 7090 7091 /* Check if the driver is still running and bail out if it is. */ 7092 if (ifp->if_drv_flags & IFF_DRV_RUNNING) 7093 goto bce_init_locked_exit; 7094 7095 bce_stop(sc); 7096 7097 if (bce_reset(sc, BCE_DRV_MSG_CODE_RESET)) { 7098 BCE_PRINTF("%s(%d): Controller reset failed!\n", 7099 __FILE__, __LINE__); 7100 goto bce_init_locked_exit; 7101 } 7102 7103 if (bce_chipinit(sc)) { 7104 BCE_PRINTF("%s(%d): Controller initialization failed!\n", 7105 __FILE__, __LINE__); 7106 goto bce_init_locked_exit; 7107 } 7108 7109 if (bce_blockinit(sc)) { 7110 BCE_PRINTF("%s(%d): Block initialization failed!\n", 7111 __FILE__, __LINE__); 7112 goto bce_init_locked_exit; 7113 } 7114 7115 /* Load our MAC address. */ 7116 bcopy(IF_LLADDR(sc->bce_ifp), sc->eaddr, ETHER_ADDR_LEN); 7117 bce_set_mac_addr(sc); 7118 7119 if (bce_hdr_split == FALSE) 7120 bce_get_rx_buffer_sizes(sc, ifp->if_mtu); 7121 /* 7122 * Calculate and program the hardware Ethernet MTU 7123 * size. Be generous on the receive if we have room 7124 * and allowed by the user. 7125 */ 7126 if (bce_strict_rx_mtu == TRUE) 7127 ether_mtu = ifp->if_mtu; 7128 else { 7129 if (bce_hdr_split == TRUE) { 7130 if (ifp->if_mtu <= sc->rx_bd_mbuf_data_len + MCLBYTES) 7131 ether_mtu = sc->rx_bd_mbuf_data_len + 7132 MCLBYTES; 7133 else 7134 ether_mtu = ifp->if_mtu; 7135 } else { 7136 if (ifp->if_mtu <= sc->rx_bd_mbuf_data_len) 7137 ether_mtu = sc->rx_bd_mbuf_data_len; 7138 else 7139 ether_mtu = ifp->if_mtu; 7140 } 7141 } 7142 7143 ether_mtu += ETHER_HDR_LEN + ETHER_VLAN_ENCAP_LEN + ETHER_CRC_LEN; 7144 7145 DBPRINT(sc, BCE_INFO_MISC, "%s(): setting h/w mtu = %d\n", 7146 __FUNCTION__, ether_mtu); 7147 7148 /* Program the mtu, enabling jumbo frame support if necessary. */ 7149 if (ether_mtu > (ETHER_MAX_LEN + ETHER_VLAN_ENCAP_LEN)) 7150 REG_WR(sc, BCE_EMAC_RX_MTU_SIZE, 7151 min(ether_mtu, BCE_MAX_JUMBO_ETHER_MTU) | 7152 BCE_EMAC_RX_MTU_SIZE_JUMBO_ENA); 7153 else 7154 REG_WR(sc, BCE_EMAC_RX_MTU_SIZE, ether_mtu); 7155 7156 /* Program appropriate promiscuous/multicast filtering. */ 7157 bce_set_rx_mode(sc); 7158 7159 if (bce_hdr_split == TRUE) { 7160 /* Init page buffer descriptor chain. */ 7161 bce_init_pg_chain(sc); 7162 } 7163 7164 /* Init RX buffer descriptor chain. */ 7165 bce_init_rx_chain(sc); 7166 7167 /* Init TX buffer descriptor chain. */ 7168 bce_init_tx_chain(sc); 7169 7170 /* Enable host interrupts. */ 7171 bce_enable_intr(sc, 1); 7172 7173 bce_ifmedia_upd_locked(ifp); 7174 7175 /* Let the OS know the driver is up and running. */ 7176 ifp->if_drv_flags |= IFF_DRV_RUNNING; 7177 ifp->if_drv_flags &= ~IFF_DRV_OACTIVE; 7178 7179 callout_reset(&sc->bce_tick_callout, hz, bce_tick, sc); 7180 7181 bce_init_locked_exit: 7182 DBEXIT(BCE_VERBOSE_RESET); 7183 } 7184 7185 7186 /****************************************************************************/ 7187 /* Initialize the controller just enough so that any management firmware */ 7188 /* running on the device will continue to operate correctly. */ 7189 /* */ 7190 /* Returns: */ 7191 /* Nothing. */ 7192 /****************************************************************************/ 7193 static void 7194 bce_mgmt_init_locked(struct bce_softc *sc) 7195 { 7196 struct ifnet *ifp; 7197 7198 DBENTER(BCE_VERBOSE_RESET); 7199 7200 BCE_LOCK_ASSERT(sc); 7201 7202 /* Bail out if management firmware is not running. */ 7203 if (!(sc->bce_flags & BCE_MFW_ENABLE_FLAG)) { 7204 DBPRINT(sc, BCE_VERBOSE_SPECIAL, 7205 "No management firmware running...\n"); 7206 goto bce_mgmt_init_locked_exit; 7207 } 7208 7209 ifp = sc->bce_ifp; 7210 7211 /* Enable all critical blocks in the MAC. */ 7212 REG_WR(sc, BCE_MISC_ENABLE_SET_BITS, BCE_MISC_ENABLE_DEFAULT); 7213 REG_RD(sc, BCE_MISC_ENABLE_SET_BITS); 7214 DELAY(20); 7215 7216 bce_ifmedia_upd_locked(ifp); 7217 7218 bce_mgmt_init_locked_exit: 7219 DBEXIT(BCE_VERBOSE_RESET); 7220 } 7221 7222 7223 /****************************************************************************/ 7224 /* Handles controller initialization when called from an unlocked routine. */ 7225 /* */ 7226 /* Returns: */ 7227 /* Nothing. */ 7228 /****************************************************************************/ 7229 static void 7230 bce_init(void *xsc) 7231 { 7232 struct bce_softc *sc = xsc; 7233 7234 DBENTER(BCE_VERBOSE_RESET); 7235 7236 BCE_LOCK(sc); 7237 bce_init_locked(sc); 7238 BCE_UNLOCK(sc); 7239 7240 DBEXIT(BCE_VERBOSE_RESET); 7241 } 7242 7243 7244 /****************************************************************************/ 7245 /* Modifies an mbuf for TSO on the hardware. */ 7246 /* */ 7247 /* Returns: */ 7248 /* Pointer to a modified mbuf. */ 7249 /****************************************************************************/ 7250 static struct mbuf * 7251 bce_tso_setup(struct bce_softc *sc, struct mbuf **m_head, u16 *flags) 7252 { 7253 struct mbuf *m; 7254 struct ether_header *eh; 7255 struct ip *ip; 7256 struct tcphdr *th; 7257 u16 etype; 7258 int hdr_len, ip_hlen = 0, tcp_hlen = 0, ip_len = 0; 7259 7260 DBRUN(sc->tso_frames_requested++); 7261 7262 /* Controller may modify mbuf chains. */ 7263 if (M_WRITABLE(*m_head) == 0) { 7264 m = m_dup(*m_head, M_NOWAIT); 7265 m_freem(*m_head); 7266 if (m == NULL) { 7267 sc->mbuf_alloc_failed_count++; 7268 *m_head = NULL; 7269 return (NULL); 7270 } 7271 *m_head = m; 7272 } 7273 7274 /* 7275 * For TSO the controller needs two pieces of info, 7276 * the MSS and the IP+TCP options length. 7277 */ 7278 m = m_pullup(*m_head, sizeof(struct ether_header) + sizeof(struct ip)); 7279 if (m == NULL) { 7280 *m_head = NULL; 7281 return (NULL); 7282 } 7283 eh = mtod(m, struct ether_header *); 7284 etype = ntohs(eh->ether_type); 7285 7286 /* Check for supported TSO Ethernet types (only IPv4 for now) */ 7287 switch (etype) { 7288 case ETHERTYPE_IP: 7289 ip = (struct ip *)(m->m_data + sizeof(struct ether_header)); 7290 /* TSO only supported for TCP protocol. */ 7291 if (ip->ip_p != IPPROTO_TCP) { 7292 BCE_PRINTF("%s(%d): TSO enabled for non-TCP frame!.\n", 7293 __FILE__, __LINE__); 7294 m_freem(*m_head); 7295 *m_head = NULL; 7296 return (NULL); 7297 } 7298 7299 /* Get IP header length in bytes (min 20) */ 7300 ip_hlen = ip->ip_hl << 2; 7301 m = m_pullup(*m_head, sizeof(struct ether_header) + ip_hlen + 7302 sizeof(struct tcphdr)); 7303 if (m == NULL) { 7304 *m_head = NULL; 7305 return (NULL); 7306 } 7307 7308 /* Get the TCP header length in bytes (min 20) */ 7309 ip = (struct ip *)(m->m_data + sizeof(struct ether_header)); 7310 th = (struct tcphdr *)((caddr_t)ip + ip_hlen); 7311 tcp_hlen = (th->th_off << 2); 7312 7313 /* Make sure all IP/TCP options live in the same buffer. */ 7314 m = m_pullup(*m_head, sizeof(struct ether_header)+ ip_hlen + 7315 tcp_hlen); 7316 if (m == NULL) { 7317 *m_head = NULL; 7318 return (NULL); 7319 } 7320 7321 /* Clear IP header length and checksum, will be calc'd by h/w. */ 7322 ip = (struct ip *)(m->m_data + sizeof(struct ether_header)); 7323 ip_len = ip->ip_len; 7324 ip->ip_len = 0; 7325 ip->ip_sum = 0; 7326 break; 7327 case ETHERTYPE_IPV6: 7328 BCE_PRINTF("%s(%d): TSO over IPv6 not supported!.\n", 7329 __FILE__, __LINE__); 7330 m_freem(*m_head); 7331 *m_head = NULL; 7332 return (NULL); 7333 /* NOT REACHED */ 7334 default: 7335 BCE_PRINTF("%s(%d): TSO enabled for unsupported protocol!.\n", 7336 __FILE__, __LINE__); 7337 m_freem(*m_head); 7338 *m_head = NULL; 7339 return (NULL); 7340 } 7341 7342 hdr_len = sizeof(struct ether_header) + ip_hlen + tcp_hlen; 7343 7344 DBPRINT(sc, BCE_EXTREME_SEND, "%s(): hdr_len = %d, e_hlen = %d, " 7345 "ip_hlen = %d, tcp_hlen = %d, ip_len = %d\n", 7346 __FUNCTION__, hdr_len, (int) sizeof(struct ether_header), ip_hlen, 7347 tcp_hlen, ip_len); 7348 7349 /* Set the LSO flag in the TX BD */ 7350 *flags |= TX_BD_FLAGS_SW_LSO; 7351 7352 /* Set the length of IP + TCP options (in 32 bit words) */ 7353 *flags |= (((ip_hlen + tcp_hlen - sizeof(struct ip) - 7354 sizeof(struct tcphdr)) >> 2) << 8); 7355 7356 DBRUN(sc->tso_frames_completed++); 7357 return (*m_head); 7358 } 7359 7360 7361 /****************************************************************************/ 7362 /* Encapsultes an mbuf cluster into the tx_bd chain structure and makes the */ 7363 /* memory visible to the controller. */ 7364 /* */ 7365 /* Returns: */ 7366 /* 0 for success, positive value for failure. */ 7367 /* Modified: */ 7368 /* m_head: May be set to NULL if MBUF is excessively fragmented. */ 7369 /****************************************************************************/ 7370 static int 7371 bce_tx_encap(struct bce_softc *sc, struct mbuf **m_head) 7372 { 7373 bus_dma_segment_t segs[BCE_MAX_SEGMENTS]; 7374 bus_dmamap_t map; 7375 struct tx_bd *txbd = NULL; 7376 struct mbuf *m0; 7377 u16 prod, chain_prod, mss = 0, vlan_tag = 0, flags = 0; 7378 u32 prod_bseq; 7379 7380 #ifdef BCE_DEBUG 7381 u16 debug_prod; 7382 #endif 7383 7384 int i, error, nsegs, rc = 0; 7385 7386 DBENTER(BCE_VERBOSE_SEND); 7387 7388 /* Make sure we have room in the TX chain. */ 7389 if (sc->used_tx_bd >= sc->max_tx_bd) 7390 goto bce_tx_encap_exit; 7391 7392 /* Transfer any checksum offload flags to the bd. */ 7393 m0 = *m_head; 7394 if (m0->m_pkthdr.csum_flags) { 7395 if (m0->m_pkthdr.csum_flags & CSUM_TSO) { 7396 m0 = bce_tso_setup(sc, m_head, &flags); 7397 if (m0 == NULL) { 7398 DBRUN(sc->tso_frames_failed++); 7399 goto bce_tx_encap_exit; 7400 } 7401 mss = htole16(m0->m_pkthdr.tso_segsz); 7402 } else { 7403 if (m0->m_pkthdr.csum_flags & CSUM_IP) 7404 flags |= TX_BD_FLAGS_IP_CKSUM; 7405 if (m0->m_pkthdr.csum_flags & (CSUM_TCP | CSUM_UDP)) 7406 flags |= TX_BD_FLAGS_TCP_UDP_CKSUM; 7407 } 7408 } 7409 7410 /* Transfer any VLAN tags to the bd. */ 7411 if (m0->m_flags & M_VLANTAG) { 7412 flags |= TX_BD_FLAGS_VLAN_TAG; 7413 vlan_tag = m0->m_pkthdr.ether_vtag; 7414 } 7415 7416 /* Map the mbuf into DMAable memory. */ 7417 prod = sc->tx_prod; 7418 chain_prod = TX_CHAIN_IDX(prod); 7419 map = sc->tx_mbuf_map[chain_prod]; 7420 7421 /* Map the mbuf into our DMA address space. */ 7422 error = bus_dmamap_load_mbuf_sg(sc->tx_mbuf_tag, map, m0, 7423 segs, &nsegs, BUS_DMA_NOWAIT); 7424 7425 /* Check if the DMA mapping was successful */ 7426 if (error == EFBIG) { 7427 sc->mbuf_frag_count++; 7428 7429 /* Try to defrag the mbuf. */ 7430 m0 = m_collapse(*m_head, M_NOWAIT, BCE_MAX_SEGMENTS); 7431 if (m0 == NULL) { 7432 /* Defrag was unsuccessful */ 7433 m_freem(*m_head); 7434 *m_head = NULL; 7435 sc->mbuf_alloc_failed_count++; 7436 rc = ENOBUFS; 7437 goto bce_tx_encap_exit; 7438 } 7439 7440 /* Defrag was successful, try mapping again */ 7441 *m_head = m0; 7442 error = bus_dmamap_load_mbuf_sg(sc->tx_mbuf_tag, 7443 map, m0, segs, &nsegs, BUS_DMA_NOWAIT); 7444 7445 /* Still getting an error after a defrag. */ 7446 if (error == ENOMEM) { 7447 /* Insufficient DMA buffers available. */ 7448 sc->dma_map_addr_tx_failed_count++; 7449 rc = error; 7450 goto bce_tx_encap_exit; 7451 } else if (error != 0) { 7452 /* Release it and return an error. */ 7453 BCE_PRINTF("%s(%d): Unknown error mapping mbuf into " 7454 "TX chain!\n", __FILE__, __LINE__); 7455 m_freem(m0); 7456 *m_head = NULL; 7457 sc->dma_map_addr_tx_failed_count++; 7458 rc = ENOBUFS; 7459 goto bce_tx_encap_exit; 7460 } 7461 } else if (error == ENOMEM) { 7462 /* Insufficient DMA buffers available. */ 7463 sc->dma_map_addr_tx_failed_count++; 7464 rc = error; 7465 goto bce_tx_encap_exit; 7466 } else if (error != 0) { 7467 m_freem(m0); 7468 *m_head = NULL; 7469 sc->dma_map_addr_tx_failed_count++; 7470 rc = error; 7471 goto bce_tx_encap_exit; 7472 } 7473 7474 /* Make sure there's room in the chain */ 7475 if (nsegs > (sc->max_tx_bd - sc->used_tx_bd)) { 7476 bus_dmamap_unload(sc->tx_mbuf_tag, map); 7477 rc = ENOBUFS; 7478 goto bce_tx_encap_exit; 7479 } 7480 7481 /* prod points to an empty tx_bd at this point. */ 7482 prod_bseq = sc->tx_prod_bseq; 7483 7484 #ifdef BCE_DEBUG 7485 debug_prod = chain_prod; 7486 #endif 7487 7488 DBPRINT(sc, BCE_INFO_SEND, 7489 "%s(start): prod = 0x%04X, chain_prod = 0x%04X, " 7490 "prod_bseq = 0x%08X\n", 7491 __FUNCTION__, prod, chain_prod, prod_bseq); 7492 7493 /* 7494 * Cycle through each mbuf segment that makes up 7495 * the outgoing frame, gathering the mapping info 7496 * for that segment and creating a tx_bd for 7497 * the mbuf. 7498 */ 7499 for (i = 0; i < nsegs ; i++) { 7500 7501 chain_prod = TX_CHAIN_IDX(prod); 7502 txbd= &sc->tx_bd_chain[TX_PAGE(chain_prod)] 7503 [TX_IDX(chain_prod)]; 7504 7505 txbd->tx_bd_haddr_lo = 7506 htole32(BCE_ADDR_LO(segs[i].ds_addr)); 7507 txbd->tx_bd_haddr_hi = 7508 htole32(BCE_ADDR_HI(segs[i].ds_addr)); 7509 txbd->tx_bd_mss_nbytes = htole32(mss << 16) | 7510 htole16(segs[i].ds_len); 7511 txbd->tx_bd_vlan_tag = htole16(vlan_tag); 7512 txbd->tx_bd_flags = htole16(flags); 7513 prod_bseq += segs[i].ds_len; 7514 if (i == 0) 7515 txbd->tx_bd_flags |= htole16(TX_BD_FLAGS_START); 7516 prod = NEXT_TX_BD(prod); 7517 } 7518 7519 /* Set the END flag on the last TX buffer descriptor. */ 7520 txbd->tx_bd_flags |= htole16(TX_BD_FLAGS_END); 7521 7522 DBRUNMSG(BCE_EXTREME_SEND, 7523 bce_dump_tx_chain(sc, debug_prod, nsegs)); 7524 7525 /* 7526 * Ensure that the mbuf pointer for this transmission 7527 * is placed at the array index of the last 7528 * descriptor in this chain. This is done 7529 * because a single map is used for all 7530 * segments of the mbuf and we don't want to 7531 * unload the map before all of the segments 7532 * have been freed. 7533 */ 7534 sc->tx_mbuf_ptr[chain_prod] = m0; 7535 sc->used_tx_bd += nsegs; 7536 7537 /* Update some debug statistic counters */ 7538 DBRUNIF((sc->used_tx_bd > sc->tx_hi_watermark), 7539 sc->tx_hi_watermark = sc->used_tx_bd); 7540 DBRUNIF((sc->used_tx_bd == sc->max_tx_bd), sc->tx_full_count++); 7541 DBRUNIF(sc->debug_tx_mbuf_alloc++); 7542 7543 DBRUNMSG(BCE_EXTREME_SEND, bce_dump_tx_mbuf_chain(sc, chain_prod, 1)); 7544 7545 /* prod points to the next free tx_bd at this point. */ 7546 sc->tx_prod = prod; 7547 sc->tx_prod_bseq = prod_bseq; 7548 7549 /* Tell the chip about the waiting TX frames. */ 7550 REG_WR16(sc, MB_GET_CID_ADDR(TX_CID) + 7551 BCE_L2MQ_TX_HOST_BIDX, sc->tx_prod); 7552 REG_WR(sc, MB_GET_CID_ADDR(TX_CID) + 7553 BCE_L2MQ_TX_HOST_BSEQ, sc->tx_prod_bseq); 7554 7555 bce_tx_encap_exit: 7556 DBEXIT(BCE_VERBOSE_SEND); 7557 return(rc); 7558 } 7559 7560 7561 /****************************************************************************/ 7562 /* Main transmit routine when called from another routine with a lock. */ 7563 /* */ 7564 /* Returns: */ 7565 /* Nothing. */ 7566 /****************************************************************************/ 7567 static void 7568 bce_start_locked(struct ifnet *ifp) 7569 { 7570 struct bce_softc *sc = ifp->if_softc; 7571 struct mbuf *m_head = NULL; 7572 int count = 0; 7573 u16 tx_prod, tx_chain_prod; 7574 7575 DBENTER(BCE_VERBOSE_SEND | BCE_VERBOSE_CTX); 7576 7577 BCE_LOCK_ASSERT(sc); 7578 7579 /* prod points to the next free tx_bd. */ 7580 tx_prod = sc->tx_prod; 7581 tx_chain_prod = TX_CHAIN_IDX(tx_prod); 7582 7583 DBPRINT(sc, BCE_INFO_SEND, 7584 "%s(enter): tx_prod = 0x%04X, tx_chain_prod = 0x%04X, " 7585 "tx_prod_bseq = 0x%08X\n", 7586 __FUNCTION__, tx_prod, tx_chain_prod, sc->tx_prod_bseq); 7587 7588 /* If there's no link or the transmit queue is empty then just exit. */ 7589 if (sc->bce_link_up == FALSE) { 7590 DBPRINT(sc, BCE_INFO_SEND, "%s(): No link.\n", 7591 __FUNCTION__); 7592 goto bce_start_locked_exit; 7593 } 7594 7595 if (IFQ_DRV_IS_EMPTY(&ifp->if_snd)) { 7596 DBPRINT(sc, BCE_INFO_SEND, "%s(): Transmit queue empty.\n", 7597 __FUNCTION__); 7598 goto bce_start_locked_exit; 7599 } 7600 7601 /* 7602 * Keep adding entries while there is space in the ring. 7603 */ 7604 while (sc->used_tx_bd < sc->max_tx_bd) { 7605 7606 /* Check for any frames to send. */ 7607 IFQ_DRV_DEQUEUE(&ifp->if_snd, m_head); 7608 7609 /* Stop when the transmit queue is empty. */ 7610 if (m_head == NULL) 7611 break; 7612 7613 /* 7614 * Pack the data into the transmit ring. If we 7615 * don't have room, place the mbuf back at the 7616 * head of the queue and set the OACTIVE flag 7617 * to wait for the NIC to drain the chain. 7618 */ 7619 if (bce_tx_encap(sc, &m_head)) { 7620 if (m_head != NULL) 7621 IFQ_DRV_PREPEND(&ifp->if_snd, m_head); 7622 ifp->if_drv_flags |= IFF_DRV_OACTIVE; 7623 DBPRINT(sc, BCE_INFO_SEND, 7624 "TX chain is closed for business! Total " 7625 "tx_bd used = %d\n", sc->used_tx_bd); 7626 break; 7627 } 7628 7629 count++; 7630 7631 /* Send a copy of the frame to any BPF listeners. */ 7632 ETHER_BPF_MTAP(ifp, m_head); 7633 } 7634 7635 /* Exit if no packets were dequeued. */ 7636 if (count == 0) { 7637 DBPRINT(sc, BCE_VERBOSE_SEND, "%s(): No packets were " 7638 "dequeued\n", __FUNCTION__); 7639 goto bce_start_locked_exit; 7640 } 7641 7642 DBPRINT(sc, BCE_VERBOSE_SEND, "%s(): Inserted %d frames into " 7643 "send queue.\n", __FUNCTION__, count); 7644 7645 /* Set the tx timeout. */ 7646 sc->watchdog_timer = BCE_TX_TIMEOUT; 7647 7648 DBRUNMSG(BCE_VERBOSE_SEND, bce_dump_ctx(sc, TX_CID)); 7649 DBRUNMSG(BCE_VERBOSE_SEND, bce_dump_mq_regs(sc)); 7650 7651 bce_start_locked_exit: 7652 DBEXIT(BCE_VERBOSE_SEND | BCE_VERBOSE_CTX); 7653 } 7654 7655 7656 /****************************************************************************/ 7657 /* Main transmit routine when called from another routine without a lock. */ 7658 /* */ 7659 /* Returns: */ 7660 /* Nothing. */ 7661 /****************************************************************************/ 7662 static void 7663 bce_start(struct ifnet *ifp) 7664 { 7665 struct bce_softc *sc = ifp->if_softc; 7666 7667 DBENTER(BCE_VERBOSE_SEND); 7668 7669 BCE_LOCK(sc); 7670 bce_start_locked(ifp); 7671 BCE_UNLOCK(sc); 7672 7673 DBEXIT(BCE_VERBOSE_SEND); 7674 } 7675 7676 7677 /****************************************************************************/ 7678 /* Handles any IOCTL calls from the operating system. */ 7679 /* */ 7680 /* Returns: */ 7681 /* 0 for success, positive value for failure. */ 7682 /****************************************************************************/ 7683 static int 7684 bce_ioctl(struct ifnet *ifp, u_long command, caddr_t data) 7685 { 7686 struct bce_softc *sc = ifp->if_softc; 7687 struct ifreq *ifr = (struct ifreq *) data; 7688 struct mii_data *mii; 7689 int mask, error = 0; 7690 7691 DBENTER(BCE_VERBOSE_MISC); 7692 7693 switch(command) { 7694 7695 /* Set the interface MTU. */ 7696 case SIOCSIFMTU: 7697 /* Check that the MTU setting is supported. */ 7698 if ((ifr->ifr_mtu < BCE_MIN_MTU) || 7699 (ifr->ifr_mtu > BCE_MAX_JUMBO_MTU)) { 7700 error = EINVAL; 7701 break; 7702 } 7703 7704 DBPRINT(sc, BCE_INFO_MISC, 7705 "SIOCSIFMTU: Changing MTU from %d to %d\n", 7706 (int) ifp->if_mtu, (int) ifr->ifr_mtu); 7707 7708 BCE_LOCK(sc); 7709 ifp->if_mtu = ifr->ifr_mtu; 7710 if (ifp->if_drv_flags & IFF_DRV_RUNNING) { 7711 ifp->if_drv_flags &= ~IFF_DRV_RUNNING; 7712 bce_init_locked(sc); 7713 } 7714 BCE_UNLOCK(sc); 7715 break; 7716 7717 /* Set interface flags. */ 7718 case SIOCSIFFLAGS: 7719 DBPRINT(sc, BCE_VERBOSE_SPECIAL, "Received SIOCSIFFLAGS\n"); 7720 7721 BCE_LOCK(sc); 7722 7723 /* Check if the interface is up. */ 7724 if (ifp->if_flags & IFF_UP) { 7725 if (ifp->if_drv_flags & IFF_DRV_RUNNING) { 7726 /* Change promiscuous/multicast flags as necessary. */ 7727 bce_set_rx_mode(sc); 7728 } else { 7729 /* Start the HW */ 7730 bce_init_locked(sc); 7731 } 7732 } else { 7733 /* The interface is down, check if driver is running. */ 7734 if (ifp->if_drv_flags & IFF_DRV_RUNNING) { 7735 bce_stop(sc); 7736 7737 /* If MFW is running, restart the controller a bit. */ 7738 if (sc->bce_flags & BCE_MFW_ENABLE_FLAG) { 7739 bce_reset(sc, BCE_DRV_MSG_CODE_RESET); 7740 bce_chipinit(sc); 7741 bce_mgmt_init_locked(sc); 7742 } 7743 } 7744 } 7745 7746 BCE_UNLOCK(sc); 7747 break; 7748 7749 /* Add/Delete multicast address */ 7750 case SIOCADDMULTI: 7751 case SIOCDELMULTI: 7752 DBPRINT(sc, BCE_VERBOSE_MISC, 7753 "Received SIOCADDMULTI/SIOCDELMULTI\n"); 7754 7755 BCE_LOCK(sc); 7756 if (ifp->if_drv_flags & IFF_DRV_RUNNING) 7757 bce_set_rx_mode(sc); 7758 BCE_UNLOCK(sc); 7759 7760 break; 7761 7762 /* Set/Get Interface media */ 7763 case SIOCSIFMEDIA: 7764 case SIOCGIFMEDIA: 7765 DBPRINT(sc, BCE_VERBOSE_MISC, 7766 "Received SIOCSIFMEDIA/SIOCGIFMEDIA\n"); 7767 if ((sc->bce_phy_flags & BCE_PHY_REMOTE_CAP_FLAG) != 0) 7768 error = ifmedia_ioctl(ifp, ifr, &sc->bce_ifmedia, 7769 command); 7770 else { 7771 mii = device_get_softc(sc->bce_miibus); 7772 error = ifmedia_ioctl(ifp, ifr, &mii->mii_media, 7773 command); 7774 } 7775 break; 7776 7777 /* Set interface capability */ 7778 case SIOCSIFCAP: 7779 mask = ifr->ifr_reqcap ^ ifp->if_capenable; 7780 DBPRINT(sc, BCE_INFO_MISC, 7781 "Received SIOCSIFCAP = 0x%08X\n", (u32) mask); 7782 7783 /* Toggle the TX checksum capabilities enable flag. */ 7784 if (mask & IFCAP_TXCSUM && 7785 ifp->if_capabilities & IFCAP_TXCSUM) { 7786 ifp->if_capenable ^= IFCAP_TXCSUM; 7787 if (IFCAP_TXCSUM & ifp->if_capenable) 7788 ifp->if_hwassist |= BCE_IF_HWASSIST; 7789 else 7790 ifp->if_hwassist &= ~BCE_IF_HWASSIST; 7791 } 7792 7793 /* Toggle the RX checksum capabilities enable flag. */ 7794 if (mask & IFCAP_RXCSUM && 7795 ifp->if_capabilities & IFCAP_RXCSUM) 7796 ifp->if_capenable ^= IFCAP_RXCSUM; 7797 7798 /* Toggle the TSO capabilities enable flag. */ 7799 if (bce_tso_enable && (mask & IFCAP_TSO4) && 7800 ifp->if_capabilities & IFCAP_TSO4) { 7801 ifp->if_capenable ^= IFCAP_TSO4; 7802 if (IFCAP_TSO4 & ifp->if_capenable) 7803 ifp->if_hwassist |= CSUM_TSO; 7804 else 7805 ifp->if_hwassist &= ~CSUM_TSO; 7806 } 7807 7808 if (mask & IFCAP_VLAN_HWCSUM && 7809 ifp->if_capabilities & IFCAP_VLAN_HWCSUM) 7810 ifp->if_capenable ^= IFCAP_VLAN_HWCSUM; 7811 7812 if ((mask & IFCAP_VLAN_HWTSO) != 0 && 7813 (ifp->if_capabilities & IFCAP_VLAN_HWTSO) != 0) 7814 ifp->if_capenable ^= IFCAP_VLAN_HWTSO; 7815 /* 7816 * Don't actually disable VLAN tag stripping as 7817 * management firmware (ASF/IPMI/UMP) requires the 7818 * feature. If VLAN tag stripping is disabled driver 7819 * will manually reconstruct the VLAN frame by 7820 * appending stripped VLAN tag. 7821 */ 7822 if ((mask & IFCAP_VLAN_HWTAGGING) != 0 && 7823 (ifp->if_capabilities & IFCAP_VLAN_HWTAGGING)) { 7824 ifp->if_capenable ^= IFCAP_VLAN_HWTAGGING; 7825 if ((ifp->if_capenable & IFCAP_VLAN_HWTAGGING) 7826 == 0) 7827 ifp->if_capenable &= ~IFCAP_VLAN_HWTSO; 7828 } 7829 VLAN_CAPABILITIES(ifp); 7830 break; 7831 default: 7832 /* We don't know how to handle the IOCTL, pass it on. */ 7833 error = ether_ioctl(ifp, command, data); 7834 break; 7835 } 7836 7837 DBEXIT(BCE_VERBOSE_MISC); 7838 return(error); 7839 } 7840 7841 7842 /****************************************************************************/ 7843 /* Transmit timeout handler. */ 7844 /* */ 7845 /* Returns: */ 7846 /* Nothing. */ 7847 /****************************************************************************/ 7848 static void 7849 bce_watchdog(struct bce_softc *sc) 7850 { 7851 uint32_t status; 7852 7853 DBENTER(BCE_EXTREME_SEND); 7854 7855 BCE_LOCK_ASSERT(sc); 7856 7857 status = 0; 7858 /* If the watchdog timer hasn't expired then just exit. */ 7859 if (sc->watchdog_timer == 0 || --sc->watchdog_timer) 7860 goto bce_watchdog_exit; 7861 7862 status = REG_RD(sc, BCE_EMAC_RX_STATUS); 7863 /* If pause frames are active then don't reset the hardware. */ 7864 if ((sc->bce_flags & BCE_USING_RX_FLOW_CONTROL) != 0) { 7865 if ((status & BCE_EMAC_RX_STATUS_FFED) != 0) { 7866 /* 7867 * If link partner has us in XOFF state then wait for 7868 * the condition to clear. 7869 */ 7870 sc->watchdog_timer = BCE_TX_TIMEOUT; 7871 goto bce_watchdog_exit; 7872 } else if ((status & BCE_EMAC_RX_STATUS_FF_RECEIVED) != 0 && 7873 (status & BCE_EMAC_RX_STATUS_N_RECEIVED) != 0) { 7874 /* 7875 * If we're not currently XOFF'ed but have recently 7876 * been XOFF'd/XON'd then assume that's delaying TX 7877 * this time around. 7878 */ 7879 sc->watchdog_timer = BCE_TX_TIMEOUT; 7880 goto bce_watchdog_exit; 7881 } 7882 /* 7883 * Any other condition is unexpected and the controller 7884 * should be reset. 7885 */ 7886 } 7887 7888 BCE_PRINTF("%s(%d): Watchdog timeout occurred, resetting!\n", 7889 __FILE__, __LINE__); 7890 7891 DBRUNMSG(BCE_INFO, 7892 bce_dump_driver_state(sc); 7893 bce_dump_status_block(sc); 7894 bce_dump_stats_block(sc); 7895 bce_dump_ftqs(sc); 7896 bce_dump_txp_state(sc, 0); 7897 bce_dump_rxp_state(sc, 0); 7898 bce_dump_tpat_state(sc, 0); 7899 bce_dump_cp_state(sc, 0); 7900 bce_dump_com_state(sc, 0)); 7901 7902 DBRUN(bce_breakpoint(sc)); 7903 7904 sc->bce_ifp->if_drv_flags &= ~IFF_DRV_RUNNING; 7905 7906 bce_init_locked(sc); 7907 sc->watchdog_timeouts++; 7908 7909 bce_watchdog_exit: 7910 REG_WR(sc, BCE_EMAC_RX_STATUS, status); 7911 DBEXIT(BCE_EXTREME_SEND); 7912 } 7913 7914 7915 /* 7916 * Interrupt handler. 7917 */ 7918 /****************************************************************************/ 7919 /* Main interrupt entry point. Verifies that the controller generated the */ 7920 /* interrupt and then calls a separate routine for handle the various */ 7921 /* interrupt causes (PHY, TX, RX). */ 7922 /* */ 7923 /* Returns: */ 7924 /* Nothing. */ 7925 /****************************************************************************/ 7926 static void 7927 bce_intr(void *xsc) 7928 { 7929 struct bce_softc *sc; 7930 struct ifnet *ifp; 7931 u32 status_attn_bits; 7932 u16 hw_rx_cons, hw_tx_cons; 7933 7934 sc = xsc; 7935 ifp = sc->bce_ifp; 7936 7937 DBENTER(BCE_VERBOSE_SEND | BCE_VERBOSE_RECV | BCE_VERBOSE_INTR); 7938 DBRUNMSG(BCE_VERBOSE_INTR, bce_dump_status_block(sc)); 7939 DBRUNMSG(BCE_VERBOSE_INTR, bce_dump_stats_block(sc)); 7940 7941 BCE_LOCK(sc); 7942 7943 DBRUN(sc->interrupts_generated++); 7944 7945 /* Synchnorize before we read from interface's status block */ 7946 bus_dmamap_sync(sc->status_tag, sc->status_map, BUS_DMASYNC_POSTREAD); 7947 7948 /* 7949 * If the hardware status block index matches the last value read 7950 * by the driver and we haven't asserted our interrupt then there's 7951 * nothing to do. This may only happen in case of INTx due to the 7952 * interrupt arriving at the CPU before the status block is updated. 7953 */ 7954 if ((sc->bce_flags & (BCE_USING_MSI_FLAG | BCE_USING_MSIX_FLAG)) == 0 && 7955 sc->status_block->status_idx == sc->last_status_idx && 7956 (REG_RD(sc, BCE_PCICFG_MISC_STATUS) & 7957 BCE_PCICFG_MISC_STATUS_INTA_VALUE)) { 7958 DBPRINT(sc, BCE_VERBOSE_INTR, "%s(): Spurious interrupt.\n", 7959 __FUNCTION__); 7960 goto bce_intr_exit; 7961 } 7962 7963 /* Ack the interrupt and stop others from occurring. */ 7964 REG_WR(sc, BCE_PCICFG_INT_ACK_CMD, 7965 BCE_PCICFG_INT_ACK_CMD_USE_INT_HC_PARAM | 7966 BCE_PCICFG_INT_ACK_CMD_MASK_INT); 7967 7968 /* Check if the hardware has finished any work. */ 7969 hw_rx_cons = bce_get_hw_rx_cons(sc); 7970 hw_tx_cons = bce_get_hw_tx_cons(sc); 7971 7972 /* Keep processing data as long as there is work to do. */ 7973 for (;;) { 7974 7975 status_attn_bits = sc->status_block->status_attn_bits; 7976 7977 DBRUNIF(DB_RANDOMTRUE(unexpected_attention_sim_control), 7978 BCE_PRINTF("Simulating unexpected status attention " 7979 "bit set."); 7980 sc->unexpected_attention_sim_count++; 7981 status_attn_bits = status_attn_bits | 7982 STATUS_ATTN_BITS_PARITY_ERROR); 7983 7984 /* Was it a link change interrupt? */ 7985 if ((status_attn_bits & STATUS_ATTN_BITS_LINK_STATE) != 7986 (sc->status_block->status_attn_bits_ack & 7987 STATUS_ATTN_BITS_LINK_STATE)) { 7988 bce_phy_intr(sc); 7989 7990 /* Clear transient updates during link state change. */ 7991 REG_WR(sc, BCE_HC_COMMAND, sc->hc_command | 7992 BCE_HC_COMMAND_COAL_NOW_WO_INT); 7993 REG_RD(sc, BCE_HC_COMMAND); 7994 } 7995 7996 /* If any other attention is asserted, the chip is toast. */ 7997 if (((status_attn_bits & ~STATUS_ATTN_BITS_LINK_STATE) != 7998 (sc->status_block->status_attn_bits_ack & 7999 ~STATUS_ATTN_BITS_LINK_STATE))) { 8000 8001 sc->unexpected_attention_count++; 8002 8003 BCE_PRINTF("%s(%d): Fatal attention detected: " 8004 "0x%08X\n", __FILE__, __LINE__, 8005 sc->status_block->status_attn_bits); 8006 8007 DBRUNMSG(BCE_FATAL, 8008 if (unexpected_attention_sim_control == 0) 8009 bce_breakpoint(sc)); 8010 8011 bce_init_locked(sc); 8012 goto bce_intr_exit; 8013 } 8014 8015 /* Check for any completed RX frames. */ 8016 if (hw_rx_cons != sc->hw_rx_cons) 8017 bce_rx_intr(sc); 8018 8019 /* Check for any completed TX frames. */ 8020 if (hw_tx_cons != sc->hw_tx_cons) 8021 bce_tx_intr(sc); 8022 8023 /* Save status block index value for the next interrupt. */ 8024 sc->last_status_idx = sc->status_block->status_idx; 8025 8026 /* 8027 * Prevent speculative reads from getting 8028 * ahead of the status block. 8029 */ 8030 bus_space_barrier(sc->bce_btag, sc->bce_bhandle, 0, 0, 8031 BUS_SPACE_BARRIER_READ); 8032 8033 /* 8034 * If there's no work left then exit the 8035 * interrupt service routine. 8036 */ 8037 hw_rx_cons = bce_get_hw_rx_cons(sc); 8038 hw_tx_cons = bce_get_hw_tx_cons(sc); 8039 8040 if ((hw_rx_cons == sc->hw_rx_cons) && 8041 (hw_tx_cons == sc->hw_tx_cons)) 8042 break; 8043 } 8044 8045 bus_dmamap_sync(sc->status_tag, sc->status_map, BUS_DMASYNC_PREREAD); 8046 8047 /* Re-enable interrupts. */ 8048 bce_enable_intr(sc, 0); 8049 8050 /* Handle any frames that arrived while handling the interrupt. */ 8051 if (ifp->if_drv_flags & IFF_DRV_RUNNING && 8052 !IFQ_DRV_IS_EMPTY(&ifp->if_snd)) 8053 bce_start_locked(ifp); 8054 8055 bce_intr_exit: 8056 BCE_UNLOCK(sc); 8057 8058 DBEXIT(BCE_VERBOSE_SEND | BCE_VERBOSE_RECV | BCE_VERBOSE_INTR); 8059 } 8060 8061 8062 /****************************************************************************/ 8063 /* Programs the various packet receive modes (broadcast and multicast). */ 8064 /* */ 8065 /* Returns: */ 8066 /* Nothing. */ 8067 /****************************************************************************/ 8068 static u_int 8069 bce_hash_maddr(void *arg, struct sockaddr_dl *sdl, u_int cnt) 8070 { 8071 u32 *hashes = arg; 8072 int h; 8073 8074 h = ether_crc32_le(LLADDR(sdl), ETHER_ADDR_LEN) & 0xFF; 8075 hashes[(h & 0xE0) >> 5] |= 1 << (h & 0x1F); 8076 8077 return (1); 8078 } 8079 8080 static void 8081 bce_set_rx_mode(struct bce_softc *sc) 8082 { 8083 struct ifnet *ifp; 8084 u32 hashes[NUM_MC_HASH_REGISTERS] = { 0, 0, 0, 0, 0, 0, 0, 0 }; 8085 u32 rx_mode, sort_mode; 8086 int i; 8087 8088 DBENTER(BCE_VERBOSE_MISC); 8089 8090 BCE_LOCK_ASSERT(sc); 8091 8092 ifp = sc->bce_ifp; 8093 8094 /* Initialize receive mode default settings. */ 8095 rx_mode = sc->rx_mode & ~(BCE_EMAC_RX_MODE_PROMISCUOUS | 8096 BCE_EMAC_RX_MODE_KEEP_VLAN_TAG); 8097 sort_mode = 1 | BCE_RPM_SORT_USER0_BC_EN; 8098 8099 /* 8100 * ASF/IPMI/UMP firmware requires that VLAN tag stripping 8101 * be enbled. 8102 */ 8103 if (!(BCE_IF_CAPABILITIES & IFCAP_VLAN_HWTAGGING) && 8104 (!(sc->bce_flags & BCE_MFW_ENABLE_FLAG))) 8105 rx_mode |= BCE_EMAC_RX_MODE_KEEP_VLAN_TAG; 8106 8107 /* 8108 * Check for promiscuous, all multicast, or selected 8109 * multicast address filtering. 8110 */ 8111 if (ifp->if_flags & IFF_PROMISC) { 8112 DBPRINT(sc, BCE_INFO_MISC, "Enabling promiscuous mode.\n"); 8113 8114 /* Enable promiscuous mode. */ 8115 rx_mode |= BCE_EMAC_RX_MODE_PROMISCUOUS; 8116 sort_mode |= BCE_RPM_SORT_USER0_PROM_EN; 8117 } else if (ifp->if_flags & IFF_ALLMULTI) { 8118 DBPRINT(sc, BCE_INFO_MISC, "Enabling all multicast mode.\n"); 8119 8120 /* Enable all multicast addresses. */ 8121 for (i = 0; i < NUM_MC_HASH_REGISTERS; i++) { 8122 REG_WR(sc, BCE_EMAC_MULTICAST_HASH0 + (i * 4), 8123 0xffffffff); 8124 } 8125 sort_mode |= BCE_RPM_SORT_USER0_MC_EN; 8126 } else { 8127 /* Accept one or more multicast(s). */ 8128 DBPRINT(sc, BCE_INFO_MISC, "Enabling selective multicast mode.\n"); 8129 if_foreach_llmaddr(ifp, bce_hash_maddr, hashes); 8130 8131 for (i = 0; i < NUM_MC_HASH_REGISTERS; i++) 8132 REG_WR(sc, BCE_EMAC_MULTICAST_HASH0 + (i * 4), hashes[i]); 8133 8134 sort_mode |= BCE_RPM_SORT_USER0_MC_HSH_EN; 8135 } 8136 8137 /* Only make changes if the recive mode has actually changed. */ 8138 if (rx_mode != sc->rx_mode) { 8139 DBPRINT(sc, BCE_VERBOSE_MISC, "Enabling new receive mode: " 8140 "0x%08X\n", rx_mode); 8141 8142 sc->rx_mode = rx_mode; 8143 REG_WR(sc, BCE_EMAC_RX_MODE, rx_mode); 8144 } 8145 8146 /* Disable and clear the exisitng sort before enabling a new sort. */ 8147 REG_WR(sc, BCE_RPM_SORT_USER0, 0x0); 8148 REG_WR(sc, BCE_RPM_SORT_USER0, sort_mode); 8149 REG_WR(sc, BCE_RPM_SORT_USER0, sort_mode | BCE_RPM_SORT_USER0_ENA); 8150 8151 DBEXIT(BCE_VERBOSE_MISC); 8152 } 8153 8154 8155 /****************************************************************************/ 8156 /* Called periodically to updates statistics from the controllers */ 8157 /* statistics block. */ 8158 /* */ 8159 /* Returns: */ 8160 /* Nothing. */ 8161 /****************************************************************************/ 8162 static void 8163 bce_stats_update(struct bce_softc *sc) 8164 { 8165 struct statistics_block *stats; 8166 8167 DBENTER(BCE_EXTREME_MISC); 8168 8169 bus_dmamap_sync(sc->stats_tag, sc->stats_map, BUS_DMASYNC_POSTREAD); 8170 8171 stats = (struct statistics_block *) sc->stats_block; 8172 8173 /* 8174 * Update the sysctl statistics from the 8175 * hardware statistics. 8176 */ 8177 sc->stat_IfHCInOctets = 8178 ((u64) stats->stat_IfHCInOctets_hi << 32) + 8179 (u64) stats->stat_IfHCInOctets_lo; 8180 8181 sc->stat_IfHCInBadOctets = 8182 ((u64) stats->stat_IfHCInBadOctets_hi << 32) + 8183 (u64) stats->stat_IfHCInBadOctets_lo; 8184 8185 sc->stat_IfHCOutOctets = 8186 ((u64) stats->stat_IfHCOutOctets_hi << 32) + 8187 (u64) stats->stat_IfHCOutOctets_lo; 8188 8189 sc->stat_IfHCOutBadOctets = 8190 ((u64) stats->stat_IfHCOutBadOctets_hi << 32) + 8191 (u64) stats->stat_IfHCOutBadOctets_lo; 8192 8193 sc->stat_IfHCInUcastPkts = 8194 ((u64) stats->stat_IfHCInUcastPkts_hi << 32) + 8195 (u64) stats->stat_IfHCInUcastPkts_lo; 8196 8197 sc->stat_IfHCInMulticastPkts = 8198 ((u64) stats->stat_IfHCInMulticastPkts_hi << 32) + 8199 (u64) stats->stat_IfHCInMulticastPkts_lo; 8200 8201 sc->stat_IfHCInBroadcastPkts = 8202 ((u64) stats->stat_IfHCInBroadcastPkts_hi << 32) + 8203 (u64) stats->stat_IfHCInBroadcastPkts_lo; 8204 8205 sc->stat_IfHCOutUcastPkts = 8206 ((u64) stats->stat_IfHCOutUcastPkts_hi << 32) + 8207 (u64) stats->stat_IfHCOutUcastPkts_lo; 8208 8209 sc->stat_IfHCOutMulticastPkts = 8210 ((u64) stats->stat_IfHCOutMulticastPkts_hi << 32) + 8211 (u64) stats->stat_IfHCOutMulticastPkts_lo; 8212 8213 sc->stat_IfHCOutBroadcastPkts = 8214 ((u64) stats->stat_IfHCOutBroadcastPkts_hi << 32) + 8215 (u64) stats->stat_IfHCOutBroadcastPkts_lo; 8216 8217 /* ToDo: Preserve counters beyond 32 bits? */ 8218 /* ToDo: Read the statistics from auto-clear regs? */ 8219 8220 sc->stat_emac_tx_stat_dot3statsinternalmactransmiterrors = 8221 stats->stat_emac_tx_stat_dot3statsinternalmactransmiterrors; 8222 8223 sc->stat_Dot3StatsCarrierSenseErrors = 8224 stats->stat_Dot3StatsCarrierSenseErrors; 8225 8226 sc->stat_Dot3StatsFCSErrors = 8227 stats->stat_Dot3StatsFCSErrors; 8228 8229 sc->stat_Dot3StatsAlignmentErrors = 8230 stats->stat_Dot3StatsAlignmentErrors; 8231 8232 sc->stat_Dot3StatsSingleCollisionFrames = 8233 stats->stat_Dot3StatsSingleCollisionFrames; 8234 8235 sc->stat_Dot3StatsMultipleCollisionFrames = 8236 stats->stat_Dot3StatsMultipleCollisionFrames; 8237 8238 sc->stat_Dot3StatsDeferredTransmissions = 8239 stats->stat_Dot3StatsDeferredTransmissions; 8240 8241 sc->stat_Dot3StatsExcessiveCollisions = 8242 stats->stat_Dot3StatsExcessiveCollisions; 8243 8244 sc->stat_Dot3StatsLateCollisions = 8245 stats->stat_Dot3StatsLateCollisions; 8246 8247 sc->stat_EtherStatsCollisions = 8248 stats->stat_EtherStatsCollisions; 8249 8250 sc->stat_EtherStatsFragments = 8251 stats->stat_EtherStatsFragments; 8252 8253 sc->stat_EtherStatsJabbers = 8254 stats->stat_EtherStatsJabbers; 8255 8256 sc->stat_EtherStatsUndersizePkts = 8257 stats->stat_EtherStatsUndersizePkts; 8258 8259 sc->stat_EtherStatsOversizePkts = 8260 stats->stat_EtherStatsOversizePkts; 8261 8262 sc->stat_EtherStatsPktsRx64Octets = 8263 stats->stat_EtherStatsPktsRx64Octets; 8264 8265 sc->stat_EtherStatsPktsRx65Octetsto127Octets = 8266 stats->stat_EtherStatsPktsRx65Octetsto127Octets; 8267 8268 sc->stat_EtherStatsPktsRx128Octetsto255Octets = 8269 stats->stat_EtherStatsPktsRx128Octetsto255Octets; 8270 8271 sc->stat_EtherStatsPktsRx256Octetsto511Octets = 8272 stats->stat_EtherStatsPktsRx256Octetsto511Octets; 8273 8274 sc->stat_EtherStatsPktsRx512Octetsto1023Octets = 8275 stats->stat_EtherStatsPktsRx512Octetsto1023Octets; 8276 8277 sc->stat_EtherStatsPktsRx1024Octetsto1522Octets = 8278 stats->stat_EtherStatsPktsRx1024Octetsto1522Octets; 8279 8280 sc->stat_EtherStatsPktsRx1523Octetsto9022Octets = 8281 stats->stat_EtherStatsPktsRx1523Octetsto9022Octets; 8282 8283 sc->stat_EtherStatsPktsTx64Octets = 8284 stats->stat_EtherStatsPktsTx64Octets; 8285 8286 sc->stat_EtherStatsPktsTx65Octetsto127Octets = 8287 stats->stat_EtherStatsPktsTx65Octetsto127Octets; 8288 8289 sc->stat_EtherStatsPktsTx128Octetsto255Octets = 8290 stats->stat_EtherStatsPktsTx128Octetsto255Octets; 8291 8292 sc->stat_EtherStatsPktsTx256Octetsto511Octets = 8293 stats->stat_EtherStatsPktsTx256Octetsto511Octets; 8294 8295 sc->stat_EtherStatsPktsTx512Octetsto1023Octets = 8296 stats->stat_EtherStatsPktsTx512Octetsto1023Octets; 8297 8298 sc->stat_EtherStatsPktsTx1024Octetsto1522Octets = 8299 stats->stat_EtherStatsPktsTx1024Octetsto1522Octets; 8300 8301 sc->stat_EtherStatsPktsTx1523Octetsto9022Octets = 8302 stats->stat_EtherStatsPktsTx1523Octetsto9022Octets; 8303 8304 sc->stat_XonPauseFramesReceived = 8305 stats->stat_XonPauseFramesReceived; 8306 8307 sc->stat_XoffPauseFramesReceived = 8308 stats->stat_XoffPauseFramesReceived; 8309 8310 sc->stat_OutXonSent = 8311 stats->stat_OutXonSent; 8312 8313 sc->stat_OutXoffSent = 8314 stats->stat_OutXoffSent; 8315 8316 sc->stat_FlowControlDone = 8317 stats->stat_FlowControlDone; 8318 8319 sc->stat_MacControlFramesReceived = 8320 stats->stat_MacControlFramesReceived; 8321 8322 sc->stat_XoffStateEntered = 8323 stats->stat_XoffStateEntered; 8324 8325 sc->stat_IfInFramesL2FilterDiscards = 8326 stats->stat_IfInFramesL2FilterDiscards; 8327 8328 sc->stat_IfInRuleCheckerDiscards = 8329 stats->stat_IfInRuleCheckerDiscards; 8330 8331 sc->stat_IfInFTQDiscards = 8332 stats->stat_IfInFTQDiscards; 8333 8334 sc->stat_IfInMBUFDiscards = 8335 stats->stat_IfInMBUFDiscards; 8336 8337 sc->stat_IfInRuleCheckerP4Hit = 8338 stats->stat_IfInRuleCheckerP4Hit; 8339 8340 sc->stat_CatchupInRuleCheckerDiscards = 8341 stats->stat_CatchupInRuleCheckerDiscards; 8342 8343 sc->stat_CatchupInFTQDiscards = 8344 stats->stat_CatchupInFTQDiscards; 8345 8346 sc->stat_CatchupInMBUFDiscards = 8347 stats->stat_CatchupInMBUFDiscards; 8348 8349 sc->stat_CatchupInRuleCheckerP4Hit = 8350 stats->stat_CatchupInRuleCheckerP4Hit; 8351 8352 sc->com_no_buffers = REG_RD_IND(sc, 0x120084); 8353 8354 /* ToDo: Add additional statistics? */ 8355 8356 DBEXIT(BCE_EXTREME_MISC); 8357 } 8358 8359 static uint64_t 8360 bce_get_counter(struct ifnet *ifp, ift_counter cnt) 8361 { 8362 struct bce_softc *sc; 8363 uint64_t rv; 8364 8365 sc = if_getsoftc(ifp); 8366 8367 switch (cnt) { 8368 case IFCOUNTER_COLLISIONS: 8369 return (sc->stat_EtherStatsCollisions); 8370 case IFCOUNTER_IERRORS: 8371 return (sc->stat_EtherStatsUndersizePkts + 8372 sc->stat_EtherStatsOversizePkts + 8373 sc->stat_IfInMBUFDiscards + 8374 sc->stat_Dot3StatsAlignmentErrors + 8375 sc->stat_Dot3StatsFCSErrors + 8376 sc->stat_IfInRuleCheckerDiscards + 8377 sc->stat_IfInFTQDiscards + 8378 sc->l2fhdr_error_count + 8379 sc->com_no_buffers); 8380 case IFCOUNTER_OERRORS: 8381 rv = sc->stat_Dot3StatsExcessiveCollisions + 8382 sc->stat_emac_tx_stat_dot3statsinternalmactransmiterrors + 8383 sc->stat_Dot3StatsLateCollisions + 8384 sc->watchdog_timeouts; 8385 /* 8386 * Certain controllers don't report 8387 * carrier sense errors correctly. 8388 * See errata E11_5708CA0_1165. 8389 */ 8390 if (!(BCE_CHIP_NUM(sc) == BCE_CHIP_NUM_5706) && 8391 !(BCE_CHIP_ID(sc) == BCE_CHIP_ID_5708_A0)) 8392 rv += sc->stat_Dot3StatsCarrierSenseErrors; 8393 return (rv); 8394 default: 8395 return (if_get_counter_default(ifp, cnt)); 8396 } 8397 } 8398 8399 8400 /****************************************************************************/ 8401 /* Periodic function to notify the bootcode that the driver is still */ 8402 /* present. */ 8403 /* */ 8404 /* Returns: */ 8405 /* Nothing. */ 8406 /****************************************************************************/ 8407 static void 8408 bce_pulse(void *xsc) 8409 { 8410 struct bce_softc *sc = xsc; 8411 u32 msg; 8412 8413 DBENTER(BCE_EXTREME_MISC); 8414 8415 BCE_LOCK_ASSERT(sc); 8416 8417 /* Tell the firmware that the driver is still running. */ 8418 msg = (u32) ++sc->bce_fw_drv_pulse_wr_seq; 8419 bce_shmem_wr(sc, BCE_DRV_PULSE_MB, msg); 8420 8421 /* Update the bootcode condition. */ 8422 sc->bc_state = bce_shmem_rd(sc, BCE_BC_STATE_CONDITION); 8423 8424 /* Report whether the bootcode still knows the driver is running. */ 8425 if (bce_verbose || bootverbose) { 8426 if (sc->bce_drv_cardiac_arrest == FALSE) { 8427 if (!(sc->bc_state & BCE_CONDITION_DRV_PRESENT)) { 8428 sc->bce_drv_cardiac_arrest = TRUE; 8429 BCE_PRINTF("%s(): Warning: bootcode " 8430 "thinks driver is absent! " 8431 "(bc_state = 0x%08X)\n", 8432 __FUNCTION__, sc->bc_state); 8433 } 8434 } else { 8435 /* 8436 * Not supported by all bootcode versions. 8437 * (v5.0.11+ and v5.2.1+) Older bootcode 8438 * will require the driver to reset the 8439 * controller to clear this condition. 8440 */ 8441 if (sc->bc_state & BCE_CONDITION_DRV_PRESENT) { 8442 sc->bce_drv_cardiac_arrest = FALSE; 8443 BCE_PRINTF("%s(): Bootcode found the " 8444 "driver pulse! (bc_state = 0x%08X)\n", 8445 __FUNCTION__, sc->bc_state); 8446 } 8447 } 8448 } 8449 8450 8451 /* Schedule the next pulse. */ 8452 callout_reset(&sc->bce_pulse_callout, hz, bce_pulse, sc); 8453 8454 DBEXIT(BCE_EXTREME_MISC); 8455 } 8456 8457 8458 /****************************************************************************/ 8459 /* Periodic function to perform maintenance tasks. */ 8460 /* */ 8461 /* Returns: */ 8462 /* Nothing. */ 8463 /****************************************************************************/ 8464 static void 8465 bce_tick(void *xsc) 8466 { 8467 struct bce_softc *sc = xsc; 8468 struct mii_data *mii; 8469 struct ifnet *ifp; 8470 struct ifmediareq ifmr; 8471 8472 ifp = sc->bce_ifp; 8473 8474 DBENTER(BCE_EXTREME_MISC); 8475 8476 BCE_LOCK_ASSERT(sc); 8477 8478 /* Schedule the next tick. */ 8479 callout_reset(&sc->bce_tick_callout, hz, bce_tick, sc); 8480 8481 /* Update the statistics from the hardware statistics block. */ 8482 bce_stats_update(sc); 8483 8484 /* Ensure page and RX chains get refilled in low-memory situations. */ 8485 if (bce_hdr_split == TRUE) 8486 bce_fill_pg_chain(sc); 8487 bce_fill_rx_chain(sc); 8488 8489 /* Check that chip hasn't hung. */ 8490 bce_watchdog(sc); 8491 8492 /* If link is up already up then we're done. */ 8493 if (sc->bce_link_up == TRUE) 8494 goto bce_tick_exit; 8495 8496 /* Link is down. Check what the PHY's doing. */ 8497 if ((sc->bce_phy_flags & BCE_PHY_REMOTE_CAP_FLAG) != 0) { 8498 bzero(&ifmr, sizeof(ifmr)); 8499 bce_ifmedia_sts_rphy(sc, &ifmr); 8500 if ((ifmr.ifm_status & (IFM_ACTIVE | IFM_AVALID)) == 8501 (IFM_ACTIVE | IFM_AVALID)) { 8502 sc->bce_link_up = TRUE; 8503 bce_miibus_statchg(sc->bce_dev); 8504 } 8505 } else { 8506 mii = device_get_softc(sc->bce_miibus); 8507 mii_tick(mii); 8508 /* Check if the link has come up. */ 8509 if ((mii->mii_media_status & IFM_ACTIVE) && 8510 (IFM_SUBTYPE(mii->mii_media_active) != IFM_NONE)) { 8511 DBPRINT(sc, BCE_VERBOSE_MISC, "%s(): Link up!\n", 8512 __FUNCTION__); 8513 sc->bce_link_up = TRUE; 8514 if ((IFM_SUBTYPE(mii->mii_media_active) == IFM_1000_T || 8515 IFM_SUBTYPE(mii->mii_media_active) == IFM_1000_SX || 8516 IFM_SUBTYPE(mii->mii_media_active) == IFM_2500_SX) && 8517 (bce_verbose || bootverbose)) 8518 BCE_PRINTF("Gigabit link up!\n"); 8519 } 8520 8521 } 8522 if (sc->bce_link_up == TRUE) { 8523 /* Now that link is up, handle any outstanding TX traffic. */ 8524 if (!IFQ_DRV_IS_EMPTY(&ifp->if_snd)) { 8525 DBPRINT(sc, BCE_VERBOSE_MISC, "%s(): Found " 8526 "pending TX traffic.\n", __FUNCTION__); 8527 bce_start_locked(ifp); 8528 } 8529 } 8530 8531 bce_tick_exit: 8532 DBEXIT(BCE_EXTREME_MISC); 8533 } 8534 8535 static void 8536 bce_fw_cap_init(struct bce_softc *sc) 8537 { 8538 u32 ack, cap, link; 8539 8540 ack = 0; 8541 cap = bce_shmem_rd(sc, BCE_FW_CAP_MB); 8542 if ((cap & BCE_FW_CAP_SIGNATURE_MAGIC_MASK) != 8543 BCE_FW_CAP_SIGNATURE_MAGIC) 8544 return; 8545 if ((cap & (BCE_FW_CAP_MFW_KEEP_VLAN | BCE_FW_CAP_BC_KEEP_VLAN)) == 8546 (BCE_FW_CAP_MFW_KEEP_VLAN | BCE_FW_CAP_BC_KEEP_VLAN)) 8547 ack |= BCE_DRV_ACK_CAP_SIGNATURE_MAGIC | 8548 BCE_FW_CAP_MFW_KEEP_VLAN | BCE_FW_CAP_BC_KEEP_VLAN; 8549 if ((sc->bce_phy_flags & BCE_PHY_SERDES_FLAG) != 0 && 8550 (cap & BCE_FW_CAP_REMOTE_PHY_CAP) != 0) { 8551 sc->bce_phy_flags &= ~BCE_PHY_REMOTE_PORT_FIBER_FLAG; 8552 sc->bce_phy_flags |= BCE_PHY_REMOTE_CAP_FLAG; 8553 link = bce_shmem_rd(sc, BCE_LINK_STATUS); 8554 if ((link & BCE_LINK_STATUS_SERDES_LINK) != 0) 8555 sc->bce_phy_flags |= BCE_PHY_REMOTE_PORT_FIBER_FLAG; 8556 ack |= BCE_DRV_ACK_CAP_SIGNATURE_MAGIC | 8557 BCE_FW_CAP_REMOTE_PHY_CAP; 8558 } 8559 8560 if (ack != 0) 8561 bce_shmem_wr(sc, BCE_DRV_ACK_CAP_MB, ack); 8562 } 8563 8564 8565 #ifdef BCE_DEBUG 8566 /****************************************************************************/ 8567 /* Allows the driver state to be dumped through the sysctl interface. */ 8568 /* */ 8569 /* Returns: */ 8570 /* 0 for success, positive value for failure. */ 8571 /****************************************************************************/ 8572 static int 8573 bce_sysctl_driver_state(SYSCTL_HANDLER_ARGS) 8574 { 8575 int error; 8576 int result; 8577 struct bce_softc *sc; 8578 8579 result = -1; 8580 error = sysctl_handle_int(oidp, &result, 0, req); 8581 8582 if (error || !req->newptr) 8583 return (error); 8584 8585 if (result == 1) { 8586 sc = (struct bce_softc *)arg1; 8587 bce_dump_driver_state(sc); 8588 } 8589 8590 return error; 8591 } 8592 8593 8594 /****************************************************************************/ 8595 /* Allows the hardware state to be dumped through the sysctl interface. */ 8596 /* */ 8597 /* Returns: */ 8598 /* 0 for success, positive value for failure. */ 8599 /****************************************************************************/ 8600 static int 8601 bce_sysctl_hw_state(SYSCTL_HANDLER_ARGS) 8602 { 8603 int error; 8604 int result; 8605 struct bce_softc *sc; 8606 8607 result = -1; 8608 error = sysctl_handle_int(oidp, &result, 0, req); 8609 8610 if (error || !req->newptr) 8611 return (error); 8612 8613 if (result == 1) { 8614 sc = (struct bce_softc *)arg1; 8615 bce_dump_hw_state(sc); 8616 } 8617 8618 return error; 8619 } 8620 8621 8622 /****************************************************************************/ 8623 /* Allows the status block to be dumped through the sysctl interface. */ 8624 /* */ 8625 /* Returns: */ 8626 /* 0 for success, positive value for failure. */ 8627 /****************************************************************************/ 8628 static int 8629 bce_sysctl_status_block(SYSCTL_HANDLER_ARGS) 8630 { 8631 int error; 8632 int result; 8633 struct bce_softc *sc; 8634 8635 result = -1; 8636 error = sysctl_handle_int(oidp, &result, 0, req); 8637 8638 if (error || !req->newptr) 8639 return (error); 8640 8641 if (result == 1) { 8642 sc = (struct bce_softc *)arg1; 8643 bce_dump_status_block(sc); 8644 } 8645 8646 return error; 8647 } 8648 8649 8650 /****************************************************************************/ 8651 /* Allows the stats block to be dumped through the sysctl interface. */ 8652 /* */ 8653 /* Returns: */ 8654 /* 0 for success, positive value for failure. */ 8655 /****************************************************************************/ 8656 static int 8657 bce_sysctl_stats_block(SYSCTL_HANDLER_ARGS) 8658 { 8659 int error; 8660 int result; 8661 struct bce_softc *sc; 8662 8663 result = -1; 8664 error = sysctl_handle_int(oidp, &result, 0, req); 8665 8666 if (error || !req->newptr) 8667 return (error); 8668 8669 if (result == 1) { 8670 sc = (struct bce_softc *)arg1; 8671 bce_dump_stats_block(sc); 8672 } 8673 8674 return error; 8675 } 8676 8677 8678 /****************************************************************************/ 8679 /* Allows the stat counters to be cleared without unloading/reloading the */ 8680 /* driver. */ 8681 /* */ 8682 /* Returns: */ 8683 /* 0 for success, positive value for failure. */ 8684 /****************************************************************************/ 8685 static int 8686 bce_sysctl_stats_clear(SYSCTL_HANDLER_ARGS) 8687 { 8688 int error; 8689 int result; 8690 struct bce_softc *sc; 8691 8692 result = -1; 8693 error = sysctl_handle_int(oidp, &result, 0, req); 8694 8695 if (error || !req->newptr) 8696 return (error); 8697 8698 if (result == 1) { 8699 sc = (struct bce_softc *)arg1; 8700 struct statistics_block *stats; 8701 8702 stats = (struct statistics_block *) sc->stats_block; 8703 bzero(stats, sizeof(struct statistics_block)); 8704 bus_dmamap_sync(sc->stats_tag, sc->stats_map, 8705 BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE); 8706 8707 /* Clear the internal H/W statistics counters. */ 8708 REG_WR(sc, BCE_HC_COMMAND, BCE_HC_COMMAND_CLR_STAT_NOW); 8709 8710 /* Reset the driver maintained statistics. */ 8711 sc->interrupts_rx = 8712 sc->interrupts_tx = 0; 8713 sc->tso_frames_requested = 8714 sc->tso_frames_completed = 8715 sc->tso_frames_failed = 0; 8716 sc->rx_empty_count = 8717 sc->tx_full_count = 0; 8718 sc->rx_low_watermark = USABLE_RX_BD_ALLOC; 8719 sc->tx_hi_watermark = 0; 8720 sc->l2fhdr_error_count = 8721 sc->l2fhdr_error_sim_count = 0; 8722 sc->mbuf_alloc_failed_count = 8723 sc->mbuf_alloc_failed_sim_count = 0; 8724 sc->dma_map_addr_rx_failed_count = 8725 sc->dma_map_addr_tx_failed_count = 0; 8726 sc->mbuf_frag_count = 0; 8727 sc->csum_offload_tcp_udp = 8728 sc->csum_offload_ip = 0; 8729 sc->vlan_tagged_frames_rcvd = 8730 sc->vlan_tagged_frames_stripped = 0; 8731 sc->split_header_frames_rcvd = 8732 sc->split_header_tcp_frames_rcvd = 0; 8733 8734 /* Clear firmware maintained statistics. */ 8735 REG_WR_IND(sc, 0x120084, 0); 8736 } 8737 8738 return error; 8739 } 8740 8741 8742 /****************************************************************************/ 8743 /* Allows the shared memory contents to be dumped through the sysctl . */ 8744 /* interface. */ 8745 /* */ 8746 /* Returns: */ 8747 /* 0 for success, positive value for failure. */ 8748 /****************************************************************************/ 8749 static int 8750 bce_sysctl_shmem_state(SYSCTL_HANDLER_ARGS) 8751 { 8752 int error; 8753 int result; 8754 struct bce_softc *sc; 8755 8756 result = -1; 8757 error = sysctl_handle_int(oidp, &result, 0, req); 8758 8759 if (error || !req->newptr) 8760 return (error); 8761 8762 if (result == 1) { 8763 sc = (struct bce_softc *)arg1; 8764 bce_dump_shmem_state(sc); 8765 } 8766 8767 return error; 8768 } 8769 8770 8771 /****************************************************************************/ 8772 /* Allows the bootcode state to be dumped through the sysctl interface. */ 8773 /* */ 8774 /* Returns: */ 8775 /* 0 for success, positive value for failure. */ 8776 /****************************************************************************/ 8777 static int 8778 bce_sysctl_bc_state(SYSCTL_HANDLER_ARGS) 8779 { 8780 int error; 8781 int result; 8782 struct bce_softc *sc; 8783 8784 result = -1; 8785 error = sysctl_handle_int(oidp, &result, 0, req); 8786 8787 if (error || !req->newptr) 8788 return (error); 8789 8790 if (result == 1) { 8791 sc = (struct bce_softc *)arg1; 8792 bce_dump_bc_state(sc); 8793 } 8794 8795 return error; 8796 } 8797 8798 8799 /****************************************************************************/ 8800 /* Provides a sysctl interface to allow dumping the RX BD chain. */ 8801 /* */ 8802 /* Returns: */ 8803 /* 0 for success, positive value for failure. */ 8804 /****************************************************************************/ 8805 static int 8806 bce_sysctl_dump_rx_bd_chain(SYSCTL_HANDLER_ARGS) 8807 { 8808 int error; 8809 int result; 8810 struct bce_softc *sc; 8811 8812 result = -1; 8813 error = sysctl_handle_int(oidp, &result, 0, req); 8814 8815 if (error || !req->newptr) 8816 return (error); 8817 8818 if (result == 1) { 8819 sc = (struct bce_softc *)arg1; 8820 bce_dump_rx_bd_chain(sc, 0, TOTAL_RX_BD_ALLOC); 8821 } 8822 8823 return error; 8824 } 8825 8826 8827 /****************************************************************************/ 8828 /* Provides a sysctl interface to allow dumping the RX MBUF chain. */ 8829 /* */ 8830 /* Returns: */ 8831 /* 0 for success, positive value for failure. */ 8832 /****************************************************************************/ 8833 static int 8834 bce_sysctl_dump_rx_mbuf_chain(SYSCTL_HANDLER_ARGS) 8835 { 8836 int error; 8837 int result; 8838 struct bce_softc *sc; 8839 8840 result = -1; 8841 error = sysctl_handle_int(oidp, &result, 0, req); 8842 8843 if (error || !req->newptr) 8844 return (error); 8845 8846 if (result == 1) { 8847 sc = (struct bce_softc *)arg1; 8848 bce_dump_rx_mbuf_chain(sc, 0, USABLE_RX_BD_ALLOC); 8849 } 8850 8851 return error; 8852 } 8853 8854 8855 /****************************************************************************/ 8856 /* Provides a sysctl interface to allow dumping the TX chain. */ 8857 /* */ 8858 /* Returns: */ 8859 /* 0 for success, positive value for failure. */ 8860 /****************************************************************************/ 8861 static int 8862 bce_sysctl_dump_tx_chain(SYSCTL_HANDLER_ARGS) 8863 { 8864 int error; 8865 int result; 8866 struct bce_softc *sc; 8867 8868 result = -1; 8869 error = sysctl_handle_int(oidp, &result, 0, req); 8870 8871 if (error || !req->newptr) 8872 return (error); 8873 8874 if (result == 1) { 8875 sc = (struct bce_softc *)arg1; 8876 bce_dump_tx_chain(sc, 0, TOTAL_TX_BD_ALLOC); 8877 } 8878 8879 return error; 8880 } 8881 8882 8883 /****************************************************************************/ 8884 /* Provides a sysctl interface to allow dumping the page chain. */ 8885 /* */ 8886 /* Returns: */ 8887 /* 0 for success, positive value for failure. */ 8888 /****************************************************************************/ 8889 static int 8890 bce_sysctl_dump_pg_chain(SYSCTL_HANDLER_ARGS) 8891 { 8892 int error; 8893 int result; 8894 struct bce_softc *sc; 8895 8896 result = -1; 8897 error = sysctl_handle_int(oidp, &result, 0, req); 8898 8899 if (error || !req->newptr) 8900 return (error); 8901 8902 if (result == 1) { 8903 sc = (struct bce_softc *)arg1; 8904 bce_dump_pg_chain(sc, 0, TOTAL_PG_BD_ALLOC); 8905 } 8906 8907 return error; 8908 } 8909 8910 /****************************************************************************/ 8911 /* Provides a sysctl interface to allow reading arbitrary NVRAM offsets in */ 8912 /* the device. DO NOT ENABLE ON PRODUCTION SYSTEMS! */ 8913 /* */ 8914 /* Returns: */ 8915 /* 0 for success, positive value for failure. */ 8916 /****************************************************************************/ 8917 static int 8918 bce_sysctl_nvram_read(SYSCTL_HANDLER_ARGS) 8919 { 8920 struct bce_softc *sc = (struct bce_softc *)arg1; 8921 int error; 8922 u32 result; 8923 u32 val[1]; 8924 u8 *data = (u8 *) val; 8925 8926 result = -1; 8927 error = sysctl_handle_int(oidp, &result, 0, req); 8928 if (error || (req->newptr == NULL)) 8929 return (error); 8930 8931 error = bce_nvram_read(sc, result, data, 4); 8932 8933 BCE_PRINTF("offset 0x%08X = 0x%08X\n", result, bce_be32toh(val[0])); 8934 8935 return (error); 8936 } 8937 8938 8939 /****************************************************************************/ 8940 /* Provides a sysctl interface to allow reading arbitrary registers in the */ 8941 /* device. DO NOT ENABLE ON PRODUCTION SYSTEMS! */ 8942 /* */ 8943 /* Returns: */ 8944 /* 0 for success, positive value for failure. */ 8945 /****************************************************************************/ 8946 static int 8947 bce_sysctl_reg_read(SYSCTL_HANDLER_ARGS) 8948 { 8949 struct bce_softc *sc = (struct bce_softc *)arg1; 8950 int error; 8951 u32 val, result; 8952 8953 result = -1; 8954 error = sysctl_handle_int(oidp, &result, 0, req); 8955 if (error || (req->newptr == NULL)) 8956 return (error); 8957 8958 /* Make sure the register is accessible. */ 8959 if (result < 0x8000) { 8960 val = REG_RD(sc, result); 8961 BCE_PRINTF("reg 0x%08X = 0x%08X\n", result, val); 8962 } else if (result < 0x0280000) { 8963 val = REG_RD_IND(sc, result); 8964 BCE_PRINTF("reg 0x%08X = 0x%08X\n", result, val); 8965 } 8966 8967 return (error); 8968 } 8969 8970 8971 /****************************************************************************/ 8972 /* Provides a sysctl interface to allow reading arbitrary PHY registers in */ 8973 /* the device. DO NOT ENABLE ON PRODUCTION SYSTEMS! */ 8974 /* */ 8975 /* Returns: */ 8976 /* 0 for success, positive value for failure. */ 8977 /****************************************************************************/ 8978 static int 8979 bce_sysctl_phy_read(SYSCTL_HANDLER_ARGS) 8980 { 8981 struct bce_softc *sc; 8982 device_t dev; 8983 int error, result; 8984 u16 val; 8985 8986 result = -1; 8987 error = sysctl_handle_int(oidp, &result, 0, req); 8988 if (error || (req->newptr == NULL)) 8989 return (error); 8990 8991 /* Make sure the register is accessible. */ 8992 if (result < 0x20) { 8993 sc = (struct bce_softc *)arg1; 8994 dev = sc->bce_dev; 8995 val = bce_miibus_read_reg(dev, sc->bce_phy_addr, result); 8996 BCE_PRINTF("phy 0x%02X = 0x%04X\n", result, val); 8997 } 8998 return (error); 8999 } 9000 9001 9002 /****************************************************************************/ 9003 /* Provides a sysctl interface for dumping the nvram contents. */ 9004 /* DO NOT ENABLE ON PRODUCTION SYSTEMS! */ 9005 /* */ 9006 /* Returns: */ 9007 /* 0 for success, positive errno for failure. */ 9008 /****************************************************************************/ 9009 static int 9010 bce_sysctl_nvram_dump(SYSCTL_HANDLER_ARGS) 9011 { 9012 struct bce_softc *sc = (struct bce_softc *)arg1; 9013 int error, i; 9014 9015 if (sc->nvram_buf == NULL) 9016 sc->nvram_buf = malloc(sc->bce_flash_size, 9017 M_TEMP, M_ZERO | M_WAITOK); 9018 9019 error = 0; 9020 if (req->oldlen == sc->bce_flash_size) { 9021 for (i = 0; i < sc->bce_flash_size && error == 0; i++) 9022 error = bce_nvram_read(sc, i, &sc->nvram_buf[i], 1); 9023 } 9024 9025 if (error == 0) 9026 error = SYSCTL_OUT(req, sc->nvram_buf, sc->bce_flash_size); 9027 9028 return error; 9029 } 9030 9031 #ifdef BCE_NVRAM_WRITE_SUPPORT 9032 /****************************************************************************/ 9033 /* Provides a sysctl interface for writing to nvram. */ 9034 /* DO NOT ENABLE ON PRODUCTION SYSTEMS! */ 9035 /* */ 9036 /* Returns: */ 9037 /* 0 for success, positive errno for failure. */ 9038 /****************************************************************************/ 9039 static int 9040 bce_sysctl_nvram_write(SYSCTL_HANDLER_ARGS) 9041 { 9042 struct bce_softc *sc = (struct bce_softc *)arg1; 9043 int error; 9044 9045 if (sc->nvram_buf == NULL) 9046 sc->nvram_buf = malloc(sc->bce_flash_size, 9047 M_TEMP, M_ZERO | M_WAITOK); 9048 else 9049 bzero(sc->nvram_buf, sc->bce_flash_size); 9050 9051 error = SYSCTL_IN(req, sc->nvram_buf, sc->bce_flash_size); 9052 if (error == 0) 9053 return (error); 9054 9055 if (req->newlen == sc->bce_flash_size) 9056 error = bce_nvram_write(sc, 0, sc->nvram_buf, 9057 sc->bce_flash_size); 9058 9059 9060 return error; 9061 } 9062 #endif 9063 9064 9065 /****************************************************************************/ 9066 /* Provides a sysctl interface to allow reading a CID. */ 9067 /* */ 9068 /* Returns: */ 9069 /* 0 for success, positive value for failure. */ 9070 /****************************************************************************/ 9071 static int 9072 bce_sysctl_dump_ctx(SYSCTL_HANDLER_ARGS) 9073 { 9074 struct bce_softc *sc; 9075 int error, result; 9076 9077 result = -1; 9078 error = sysctl_handle_int(oidp, &result, 0, req); 9079 if (error || (req->newptr == NULL)) 9080 return (error); 9081 9082 /* Make sure the register is accessible. */ 9083 if (result <= TX_CID) { 9084 sc = (struct bce_softc *)arg1; 9085 bce_dump_ctx(sc, result); 9086 } 9087 9088 return (error); 9089 } 9090 9091 9092 /****************************************************************************/ 9093 /* Provides a sysctl interface to forcing the driver to dump state and */ 9094 /* enter the debugger. DO NOT ENABLE ON PRODUCTION SYSTEMS! */ 9095 /* */ 9096 /* Returns: */ 9097 /* 0 for success, positive value for failure. */ 9098 /****************************************************************************/ 9099 static int 9100 bce_sysctl_breakpoint(SYSCTL_HANDLER_ARGS) 9101 { 9102 int error; 9103 int result; 9104 struct bce_softc *sc; 9105 9106 result = -1; 9107 error = sysctl_handle_int(oidp, &result, 0, req); 9108 9109 if (error || !req->newptr) 9110 return (error); 9111 9112 if (result == 1) { 9113 sc = (struct bce_softc *)arg1; 9114 bce_breakpoint(sc); 9115 } 9116 9117 return error; 9118 } 9119 #endif 9120 9121 /****************************************************************************/ 9122 /* Adds any sysctl parameters for tuning or debugging purposes. */ 9123 /* */ 9124 /* Returns: */ 9125 /* 0 for success, positive value for failure. */ 9126 /****************************************************************************/ 9127 static void 9128 bce_add_sysctls(struct bce_softc *sc) 9129 { 9130 struct sysctl_ctx_list *ctx; 9131 struct sysctl_oid_list *children; 9132 9133 DBENTER(BCE_VERBOSE_MISC); 9134 9135 ctx = device_get_sysctl_ctx(sc->bce_dev); 9136 children = SYSCTL_CHILDREN(device_get_sysctl_tree(sc->bce_dev)); 9137 9138 #ifdef BCE_DEBUG 9139 SYSCTL_ADD_INT(ctx, children, OID_AUTO, 9140 "l2fhdr_error_sim_control", 9141 CTLFLAG_RW, &l2fhdr_error_sim_control, 9142 0, "Debug control to force l2fhdr errors"); 9143 9144 SYSCTL_ADD_INT(ctx, children, OID_AUTO, 9145 "l2fhdr_error_sim_count", 9146 CTLFLAG_RD, &sc->l2fhdr_error_sim_count, 9147 0, "Number of simulated l2_fhdr errors"); 9148 #endif 9149 9150 SYSCTL_ADD_UINT(ctx, children, OID_AUTO, 9151 "l2fhdr_error_count", 9152 CTLFLAG_RD, &sc->l2fhdr_error_count, 9153 0, "Number of l2_fhdr errors"); 9154 9155 #ifdef BCE_DEBUG 9156 SYSCTL_ADD_INT(ctx, children, OID_AUTO, 9157 "mbuf_alloc_failed_sim_control", 9158 CTLFLAG_RW, &mbuf_alloc_failed_sim_control, 9159 0, "Debug control to force mbuf allocation failures"); 9160 9161 SYSCTL_ADD_UINT(ctx, children, OID_AUTO, 9162 "mbuf_alloc_failed_sim_count", 9163 CTLFLAG_RD, &sc->mbuf_alloc_failed_sim_count, 9164 0, "Number of simulated mbuf cluster allocation failures"); 9165 #endif 9166 9167 SYSCTL_ADD_UINT(ctx, children, OID_AUTO, 9168 "mbuf_alloc_failed_count", 9169 CTLFLAG_RD, &sc->mbuf_alloc_failed_count, 9170 0, "Number of mbuf allocation failures"); 9171 9172 SYSCTL_ADD_UINT(ctx, children, OID_AUTO, 9173 "mbuf_frag_count", 9174 CTLFLAG_RD, &sc->mbuf_frag_count, 9175 0, "Number of fragmented mbufs"); 9176 9177 #ifdef BCE_DEBUG 9178 SYSCTL_ADD_INT(ctx, children, OID_AUTO, 9179 "dma_map_addr_failed_sim_control", 9180 CTLFLAG_RW, &dma_map_addr_failed_sim_control, 9181 0, "Debug control to force DMA mapping failures"); 9182 9183 /* ToDo: Figure out how to update this value in bce_dma_map_addr(). */ 9184 SYSCTL_ADD_UINT(ctx, children, OID_AUTO, 9185 "dma_map_addr_failed_sim_count", 9186 CTLFLAG_RD, &sc->dma_map_addr_failed_sim_count, 9187 0, "Number of simulated DMA mapping failures"); 9188 9189 #endif 9190 9191 SYSCTL_ADD_UINT(ctx, children, OID_AUTO, 9192 "dma_map_addr_rx_failed_count", 9193 CTLFLAG_RD, &sc->dma_map_addr_rx_failed_count, 9194 0, "Number of RX DMA mapping failures"); 9195 9196 SYSCTL_ADD_UINT(ctx, children, OID_AUTO, 9197 "dma_map_addr_tx_failed_count", 9198 CTLFLAG_RD, &sc->dma_map_addr_tx_failed_count, 9199 0, "Number of TX DMA mapping failures"); 9200 9201 #ifdef BCE_DEBUG 9202 SYSCTL_ADD_INT(ctx, children, OID_AUTO, 9203 "unexpected_attention_sim_control", 9204 CTLFLAG_RW, &unexpected_attention_sim_control, 9205 0, "Debug control to simulate unexpected attentions"); 9206 9207 SYSCTL_ADD_UINT(ctx, children, OID_AUTO, 9208 "unexpected_attention_sim_count", 9209 CTLFLAG_RW, &sc->unexpected_attention_sim_count, 9210 0, "Number of simulated unexpected attentions"); 9211 #endif 9212 9213 SYSCTL_ADD_UINT(ctx, children, OID_AUTO, 9214 "unexpected_attention_count", 9215 CTLFLAG_RW, &sc->unexpected_attention_count, 9216 0, "Number of unexpected attentions"); 9217 9218 #ifdef BCE_DEBUG 9219 SYSCTL_ADD_INT(ctx, children, OID_AUTO, 9220 "debug_bootcode_running_failure", 9221 CTLFLAG_RW, &bootcode_running_failure_sim_control, 9222 0, "Debug control to force bootcode running failures"); 9223 9224 SYSCTL_ADD_INT(ctx, children, OID_AUTO, 9225 "rx_low_watermark", 9226 CTLFLAG_RD, &sc->rx_low_watermark, 9227 0, "Lowest level of free rx_bd's"); 9228 9229 SYSCTL_ADD_QUAD(ctx, children, OID_AUTO, 9230 "rx_empty_count", 9231 CTLFLAG_RD, &sc->rx_empty_count, 9232 "Number of times the RX chain was empty"); 9233 9234 SYSCTL_ADD_INT(ctx, children, OID_AUTO, 9235 "tx_hi_watermark", 9236 CTLFLAG_RD, &sc->tx_hi_watermark, 9237 0, "Highest level of used tx_bd's"); 9238 9239 SYSCTL_ADD_QUAD(ctx, children, OID_AUTO, 9240 "tx_full_count", 9241 CTLFLAG_RD, &sc->tx_full_count, 9242 "Number of times the TX chain was full"); 9243 9244 SYSCTL_ADD_QUAD(ctx, children, OID_AUTO, 9245 "tso_frames_requested", 9246 CTLFLAG_RD, &sc->tso_frames_requested, 9247 "Number of TSO frames requested"); 9248 9249 SYSCTL_ADD_QUAD(ctx, children, OID_AUTO, 9250 "tso_frames_completed", 9251 CTLFLAG_RD, &sc->tso_frames_completed, 9252 "Number of TSO frames completed"); 9253 9254 SYSCTL_ADD_QUAD(ctx, children, OID_AUTO, 9255 "tso_frames_failed", 9256 CTLFLAG_RD, &sc->tso_frames_failed, 9257 "Number of TSO frames failed"); 9258 9259 SYSCTL_ADD_QUAD(ctx, children, OID_AUTO, 9260 "csum_offload_ip", 9261 CTLFLAG_RD, &sc->csum_offload_ip, 9262 "Number of IP checksum offload frames"); 9263 9264 SYSCTL_ADD_QUAD(ctx, children, OID_AUTO, 9265 "csum_offload_tcp_udp", 9266 CTLFLAG_RD, &sc->csum_offload_tcp_udp, 9267 "Number of TCP/UDP checksum offload frames"); 9268 9269 SYSCTL_ADD_QUAD(ctx, children, OID_AUTO, 9270 "vlan_tagged_frames_rcvd", 9271 CTLFLAG_RD, &sc->vlan_tagged_frames_rcvd, 9272 "Number of VLAN tagged frames received"); 9273 9274 SYSCTL_ADD_QUAD(ctx, children, OID_AUTO, 9275 "vlan_tagged_frames_stripped", 9276 CTLFLAG_RD, &sc->vlan_tagged_frames_stripped, 9277 "Number of VLAN tagged frames stripped"); 9278 9279 SYSCTL_ADD_QUAD(ctx, children, OID_AUTO, 9280 "interrupts_rx", 9281 CTLFLAG_RD, &sc->interrupts_rx, 9282 "Number of RX interrupts"); 9283 9284 SYSCTL_ADD_QUAD(ctx, children, OID_AUTO, 9285 "interrupts_tx", 9286 CTLFLAG_RD, &sc->interrupts_tx, 9287 "Number of TX interrupts"); 9288 9289 if (bce_hdr_split == TRUE) { 9290 SYSCTL_ADD_QUAD(ctx, children, OID_AUTO, 9291 "split_header_frames_rcvd", 9292 CTLFLAG_RD, &sc->split_header_frames_rcvd, 9293 "Number of split header frames received"); 9294 9295 SYSCTL_ADD_QUAD(ctx, children, OID_AUTO, 9296 "split_header_tcp_frames_rcvd", 9297 CTLFLAG_RD, &sc->split_header_tcp_frames_rcvd, 9298 "Number of split header TCP frames received"); 9299 } 9300 9301 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, 9302 "nvram_dump", CTLTYPE_OPAQUE | CTLFLAG_RD, 9303 (void *)sc, 0, 9304 bce_sysctl_nvram_dump, "S", ""); 9305 9306 #ifdef BCE_NVRAM_WRITE_SUPPORT 9307 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, 9308 "nvram_write", CTLTYPE_OPAQUE | CTLFLAG_WR, 9309 (void *)sc, 0, 9310 bce_sysctl_nvram_write, "S", ""); 9311 #endif 9312 #endif /* BCE_DEBUG */ 9313 9314 SYSCTL_ADD_QUAD(ctx, children, OID_AUTO, 9315 "stat_IfHcInOctets", 9316 CTLFLAG_RD, &sc->stat_IfHCInOctets, 9317 "Bytes received"); 9318 9319 SYSCTL_ADD_QUAD(ctx, children, OID_AUTO, 9320 "stat_IfHCInBadOctets", 9321 CTLFLAG_RD, &sc->stat_IfHCInBadOctets, 9322 "Bad bytes received"); 9323 9324 SYSCTL_ADD_QUAD(ctx, children, OID_AUTO, 9325 "stat_IfHCOutOctets", 9326 CTLFLAG_RD, &sc->stat_IfHCOutOctets, 9327 "Bytes sent"); 9328 9329 SYSCTL_ADD_QUAD(ctx, children, OID_AUTO, 9330 "stat_IfHCOutBadOctets", 9331 CTLFLAG_RD, &sc->stat_IfHCOutBadOctets, 9332 "Bad bytes sent"); 9333 9334 SYSCTL_ADD_QUAD(ctx, children, OID_AUTO, 9335 "stat_IfHCInUcastPkts", 9336 CTLFLAG_RD, &sc->stat_IfHCInUcastPkts, 9337 "Unicast packets received"); 9338 9339 SYSCTL_ADD_QUAD(ctx, children, OID_AUTO, 9340 "stat_IfHCInMulticastPkts", 9341 CTLFLAG_RD, &sc->stat_IfHCInMulticastPkts, 9342 "Multicast packets received"); 9343 9344 SYSCTL_ADD_QUAD(ctx, children, OID_AUTO, 9345 "stat_IfHCInBroadcastPkts", 9346 CTLFLAG_RD, &sc->stat_IfHCInBroadcastPkts, 9347 "Broadcast packets received"); 9348 9349 SYSCTL_ADD_QUAD(ctx, children, OID_AUTO, 9350 "stat_IfHCOutUcastPkts", 9351 CTLFLAG_RD, &sc->stat_IfHCOutUcastPkts, 9352 "Unicast packets sent"); 9353 9354 SYSCTL_ADD_QUAD(ctx, children, OID_AUTO, 9355 "stat_IfHCOutMulticastPkts", 9356 CTLFLAG_RD, &sc->stat_IfHCOutMulticastPkts, 9357 "Multicast packets sent"); 9358 9359 SYSCTL_ADD_QUAD(ctx, children, OID_AUTO, 9360 "stat_IfHCOutBroadcastPkts", 9361 CTLFLAG_RD, &sc->stat_IfHCOutBroadcastPkts, 9362 "Broadcast packets sent"); 9363 9364 SYSCTL_ADD_UINT(ctx, children, OID_AUTO, 9365 "stat_emac_tx_stat_dot3statsinternalmactransmiterrors", 9366 CTLFLAG_RD, &sc->stat_emac_tx_stat_dot3statsinternalmactransmiterrors, 9367 0, "Internal MAC transmit errors"); 9368 9369 SYSCTL_ADD_UINT(ctx, children, OID_AUTO, 9370 "stat_Dot3StatsCarrierSenseErrors", 9371 CTLFLAG_RD, &sc->stat_Dot3StatsCarrierSenseErrors, 9372 0, "Carrier sense errors"); 9373 9374 SYSCTL_ADD_UINT(ctx, children, OID_AUTO, 9375 "stat_Dot3StatsFCSErrors", 9376 CTLFLAG_RD, &sc->stat_Dot3StatsFCSErrors, 9377 0, "Frame check sequence errors"); 9378 9379 SYSCTL_ADD_UINT(ctx, children, OID_AUTO, 9380 "stat_Dot3StatsAlignmentErrors", 9381 CTLFLAG_RD, &sc->stat_Dot3StatsAlignmentErrors, 9382 0, "Alignment errors"); 9383 9384 SYSCTL_ADD_UINT(ctx, children, OID_AUTO, 9385 "stat_Dot3StatsSingleCollisionFrames", 9386 CTLFLAG_RD, &sc->stat_Dot3StatsSingleCollisionFrames, 9387 0, "Single Collision Frames"); 9388 9389 SYSCTL_ADD_UINT(ctx, children, OID_AUTO, 9390 "stat_Dot3StatsMultipleCollisionFrames", 9391 CTLFLAG_RD, &sc->stat_Dot3StatsMultipleCollisionFrames, 9392 0, "Multiple Collision Frames"); 9393 9394 SYSCTL_ADD_UINT(ctx, children, OID_AUTO, 9395 "stat_Dot3StatsDeferredTransmissions", 9396 CTLFLAG_RD, &sc->stat_Dot3StatsDeferredTransmissions, 9397 0, "Deferred Transmissions"); 9398 9399 SYSCTL_ADD_UINT(ctx, children, OID_AUTO, 9400 "stat_Dot3StatsExcessiveCollisions", 9401 CTLFLAG_RD, &sc->stat_Dot3StatsExcessiveCollisions, 9402 0, "Excessive Collisions"); 9403 9404 SYSCTL_ADD_UINT(ctx, children, OID_AUTO, 9405 "stat_Dot3StatsLateCollisions", 9406 CTLFLAG_RD, &sc->stat_Dot3StatsLateCollisions, 9407 0, "Late Collisions"); 9408 9409 SYSCTL_ADD_UINT(ctx, children, OID_AUTO, 9410 "stat_EtherStatsCollisions", 9411 CTLFLAG_RD, &sc->stat_EtherStatsCollisions, 9412 0, "Collisions"); 9413 9414 SYSCTL_ADD_UINT(ctx, children, OID_AUTO, 9415 "stat_EtherStatsFragments", 9416 CTLFLAG_RD, &sc->stat_EtherStatsFragments, 9417 0, "Fragments"); 9418 9419 SYSCTL_ADD_UINT(ctx, children, OID_AUTO, 9420 "stat_EtherStatsJabbers", 9421 CTLFLAG_RD, &sc->stat_EtherStatsJabbers, 9422 0, "Jabbers"); 9423 9424 SYSCTL_ADD_UINT(ctx, children, OID_AUTO, 9425 "stat_EtherStatsUndersizePkts", 9426 CTLFLAG_RD, &sc->stat_EtherStatsUndersizePkts, 9427 0, "Undersize packets"); 9428 9429 SYSCTL_ADD_UINT(ctx, children, OID_AUTO, 9430 "stat_EtherStatsOversizePkts", 9431 CTLFLAG_RD, &sc->stat_EtherStatsOversizePkts, 9432 0, "stat_EtherStatsOversizePkts"); 9433 9434 SYSCTL_ADD_UINT(ctx, children, OID_AUTO, 9435 "stat_EtherStatsPktsRx64Octets", 9436 CTLFLAG_RD, &sc->stat_EtherStatsPktsRx64Octets, 9437 0, "Bytes received in 64 byte packets"); 9438 9439 SYSCTL_ADD_UINT(ctx, children, OID_AUTO, 9440 "stat_EtherStatsPktsRx65Octetsto127Octets", 9441 CTLFLAG_RD, &sc->stat_EtherStatsPktsRx65Octetsto127Octets, 9442 0, "Bytes received in 65 to 127 byte packets"); 9443 9444 SYSCTL_ADD_UINT(ctx, children, OID_AUTO, 9445 "stat_EtherStatsPktsRx128Octetsto255Octets", 9446 CTLFLAG_RD, &sc->stat_EtherStatsPktsRx128Octetsto255Octets, 9447 0, "Bytes received in 128 to 255 byte packets"); 9448 9449 SYSCTL_ADD_UINT(ctx, children, OID_AUTO, 9450 "stat_EtherStatsPktsRx256Octetsto511Octets", 9451 CTLFLAG_RD, &sc->stat_EtherStatsPktsRx256Octetsto511Octets, 9452 0, "Bytes received in 256 to 511 byte packets"); 9453 9454 SYSCTL_ADD_UINT(ctx, children, OID_AUTO, 9455 "stat_EtherStatsPktsRx512Octetsto1023Octets", 9456 CTLFLAG_RD, &sc->stat_EtherStatsPktsRx512Octetsto1023Octets, 9457 0, "Bytes received in 512 to 1023 byte packets"); 9458 9459 SYSCTL_ADD_UINT(ctx, children, OID_AUTO, 9460 "stat_EtherStatsPktsRx1024Octetsto1522Octets", 9461 CTLFLAG_RD, &sc->stat_EtherStatsPktsRx1024Octetsto1522Octets, 9462 0, "Bytes received in 1024 t0 1522 byte packets"); 9463 9464 SYSCTL_ADD_UINT(ctx, children, OID_AUTO, 9465 "stat_EtherStatsPktsRx1523Octetsto9022Octets", 9466 CTLFLAG_RD, &sc->stat_EtherStatsPktsRx1523Octetsto9022Octets, 9467 0, "Bytes received in 1523 to 9022 byte packets"); 9468 9469 SYSCTL_ADD_UINT(ctx, children, OID_AUTO, 9470 "stat_EtherStatsPktsTx64Octets", 9471 CTLFLAG_RD, &sc->stat_EtherStatsPktsTx64Octets, 9472 0, "Bytes sent in 64 byte packets"); 9473 9474 SYSCTL_ADD_UINT(ctx, children, OID_AUTO, 9475 "stat_EtherStatsPktsTx65Octetsto127Octets", 9476 CTLFLAG_RD, &sc->stat_EtherStatsPktsTx65Octetsto127Octets, 9477 0, "Bytes sent in 65 to 127 byte packets"); 9478 9479 SYSCTL_ADD_UINT(ctx, children, OID_AUTO, 9480 "stat_EtherStatsPktsTx128Octetsto255Octets", 9481 CTLFLAG_RD, &sc->stat_EtherStatsPktsTx128Octetsto255Octets, 9482 0, "Bytes sent in 128 to 255 byte packets"); 9483 9484 SYSCTL_ADD_UINT(ctx, children, OID_AUTO, 9485 "stat_EtherStatsPktsTx256Octetsto511Octets", 9486 CTLFLAG_RD, &sc->stat_EtherStatsPktsTx256Octetsto511Octets, 9487 0, "Bytes sent in 256 to 511 byte packets"); 9488 9489 SYSCTL_ADD_UINT(ctx, children, OID_AUTO, 9490 "stat_EtherStatsPktsTx512Octetsto1023Octets", 9491 CTLFLAG_RD, &sc->stat_EtherStatsPktsTx512Octetsto1023Octets, 9492 0, "Bytes sent in 512 to 1023 byte packets"); 9493 9494 SYSCTL_ADD_UINT(ctx, children, OID_AUTO, 9495 "stat_EtherStatsPktsTx1024Octetsto1522Octets", 9496 CTLFLAG_RD, &sc->stat_EtherStatsPktsTx1024Octetsto1522Octets, 9497 0, "Bytes sent in 1024 to 1522 byte packets"); 9498 9499 SYSCTL_ADD_UINT(ctx, children, OID_AUTO, 9500 "stat_EtherStatsPktsTx1523Octetsto9022Octets", 9501 CTLFLAG_RD, &sc->stat_EtherStatsPktsTx1523Octetsto9022Octets, 9502 0, "Bytes sent in 1523 to 9022 byte packets"); 9503 9504 SYSCTL_ADD_UINT(ctx, children, OID_AUTO, 9505 "stat_XonPauseFramesReceived", 9506 CTLFLAG_RD, &sc->stat_XonPauseFramesReceived, 9507 0, "XON pause frames receved"); 9508 9509 SYSCTL_ADD_UINT(ctx, children, OID_AUTO, 9510 "stat_XoffPauseFramesReceived", 9511 CTLFLAG_RD, &sc->stat_XoffPauseFramesReceived, 9512 0, "XOFF pause frames received"); 9513 9514 SYSCTL_ADD_UINT(ctx, children, OID_AUTO, 9515 "stat_OutXonSent", 9516 CTLFLAG_RD, &sc->stat_OutXonSent, 9517 0, "XON pause frames sent"); 9518 9519 SYSCTL_ADD_UINT(ctx, children, OID_AUTO, 9520 "stat_OutXoffSent", 9521 CTLFLAG_RD, &sc->stat_OutXoffSent, 9522 0, "XOFF pause frames sent"); 9523 9524 SYSCTL_ADD_UINT(ctx, children, OID_AUTO, 9525 "stat_FlowControlDone", 9526 CTLFLAG_RD, &sc->stat_FlowControlDone, 9527 0, "Flow control done"); 9528 9529 SYSCTL_ADD_UINT(ctx, children, OID_AUTO, 9530 "stat_MacControlFramesReceived", 9531 CTLFLAG_RD, &sc->stat_MacControlFramesReceived, 9532 0, "MAC control frames received"); 9533 9534 SYSCTL_ADD_UINT(ctx, children, OID_AUTO, 9535 "stat_XoffStateEntered", 9536 CTLFLAG_RD, &sc->stat_XoffStateEntered, 9537 0, "XOFF state entered"); 9538 9539 SYSCTL_ADD_UINT(ctx, children, OID_AUTO, 9540 "stat_IfInFramesL2FilterDiscards", 9541 CTLFLAG_RD, &sc->stat_IfInFramesL2FilterDiscards, 9542 0, "Received L2 packets discarded"); 9543 9544 SYSCTL_ADD_UINT(ctx, children, OID_AUTO, 9545 "stat_IfInRuleCheckerDiscards", 9546 CTLFLAG_RD, &sc->stat_IfInRuleCheckerDiscards, 9547 0, "Received packets discarded by rule"); 9548 9549 SYSCTL_ADD_UINT(ctx, children, OID_AUTO, 9550 "stat_IfInFTQDiscards", 9551 CTLFLAG_RD, &sc->stat_IfInFTQDiscards, 9552 0, "Received packet FTQ discards"); 9553 9554 SYSCTL_ADD_UINT(ctx, children, OID_AUTO, 9555 "stat_IfInMBUFDiscards", 9556 CTLFLAG_RD, &sc->stat_IfInMBUFDiscards, 9557 0, "Received packets discarded due to lack " 9558 "of controller buffer memory"); 9559 9560 SYSCTL_ADD_UINT(ctx, children, OID_AUTO, 9561 "stat_IfInRuleCheckerP4Hit", 9562 CTLFLAG_RD, &sc->stat_IfInRuleCheckerP4Hit, 9563 0, "Received packets rule checker hits"); 9564 9565 SYSCTL_ADD_UINT(ctx, children, OID_AUTO, 9566 "stat_CatchupInRuleCheckerDiscards", 9567 CTLFLAG_RD, &sc->stat_CatchupInRuleCheckerDiscards, 9568 0, "Received packets discarded in Catchup path"); 9569 9570 SYSCTL_ADD_UINT(ctx, children, OID_AUTO, 9571 "stat_CatchupInFTQDiscards", 9572 CTLFLAG_RD, &sc->stat_CatchupInFTQDiscards, 9573 0, "Received packets discarded in FTQ in Catchup path"); 9574 9575 SYSCTL_ADD_UINT(ctx, children, OID_AUTO, 9576 "stat_CatchupInMBUFDiscards", 9577 CTLFLAG_RD, &sc->stat_CatchupInMBUFDiscards, 9578 0, "Received packets discarded in controller " 9579 "buffer memory in Catchup path"); 9580 9581 SYSCTL_ADD_UINT(ctx, children, OID_AUTO, 9582 "stat_CatchupInRuleCheckerP4Hit", 9583 CTLFLAG_RD, &sc->stat_CatchupInRuleCheckerP4Hit, 9584 0, "Received packets rule checker hits in Catchup path"); 9585 9586 SYSCTL_ADD_UINT(ctx, children, OID_AUTO, 9587 "com_no_buffers", 9588 CTLFLAG_RD, &sc->com_no_buffers, 9589 0, "Valid packets received but no RX buffers available"); 9590 9591 #ifdef BCE_DEBUG 9592 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, 9593 "driver_state", CTLTYPE_INT | CTLFLAG_RW, 9594 (void *)sc, 0, 9595 bce_sysctl_driver_state, "I", "Drive state information"); 9596 9597 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, 9598 "hw_state", CTLTYPE_INT | CTLFLAG_RW, 9599 (void *)sc, 0, 9600 bce_sysctl_hw_state, "I", "Hardware state information"); 9601 9602 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, 9603 "status_block", CTLTYPE_INT | CTLFLAG_RW, 9604 (void *)sc, 0, 9605 bce_sysctl_status_block, "I", "Dump status block"); 9606 9607 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, 9608 "stats_block", CTLTYPE_INT | CTLFLAG_RW, 9609 (void *)sc, 0, 9610 bce_sysctl_stats_block, "I", "Dump statistics block"); 9611 9612 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, 9613 "stats_clear", CTLTYPE_INT | CTLFLAG_RW, 9614 (void *)sc, 0, 9615 bce_sysctl_stats_clear, "I", "Clear statistics block"); 9616 9617 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, 9618 "shmem_state", CTLTYPE_INT | CTLFLAG_RW, 9619 (void *)sc, 0, 9620 bce_sysctl_shmem_state, "I", "Shared memory state information"); 9621 9622 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, 9623 "bc_state", CTLTYPE_INT | CTLFLAG_RW, 9624 (void *)sc, 0, 9625 bce_sysctl_bc_state, "I", "Bootcode state information"); 9626 9627 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, 9628 "dump_rx_bd_chain", CTLTYPE_INT | CTLFLAG_RW, 9629 (void *)sc, 0, 9630 bce_sysctl_dump_rx_bd_chain, "I", "Dump RX BD chain"); 9631 9632 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, 9633 "dump_rx_mbuf_chain", CTLTYPE_INT | CTLFLAG_RW, 9634 (void *)sc, 0, 9635 bce_sysctl_dump_rx_mbuf_chain, "I", "Dump RX MBUF chain"); 9636 9637 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, 9638 "dump_tx_chain", CTLTYPE_INT | CTLFLAG_RW, 9639 (void *)sc, 0, 9640 bce_sysctl_dump_tx_chain, "I", "Dump tx_bd chain"); 9641 9642 if (bce_hdr_split == TRUE) { 9643 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, 9644 "dump_pg_chain", CTLTYPE_INT | CTLFLAG_RW, 9645 (void *)sc, 0, 9646 bce_sysctl_dump_pg_chain, "I", "Dump page chain"); 9647 } 9648 9649 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, 9650 "dump_ctx", CTLTYPE_INT | CTLFLAG_RW, 9651 (void *)sc, 0, 9652 bce_sysctl_dump_ctx, "I", "Dump context memory"); 9653 9654 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, 9655 "breakpoint", CTLTYPE_INT | CTLFLAG_RW, 9656 (void *)sc, 0, 9657 bce_sysctl_breakpoint, "I", "Driver breakpoint"); 9658 9659 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, 9660 "reg_read", CTLTYPE_INT | CTLFLAG_RW, 9661 (void *)sc, 0, 9662 bce_sysctl_reg_read, "I", "Register read"); 9663 9664 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, 9665 "nvram_read", CTLTYPE_INT | CTLFLAG_RW, 9666 (void *)sc, 0, 9667 bce_sysctl_nvram_read, "I", "NVRAM read"); 9668 9669 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, 9670 "phy_read", CTLTYPE_INT | CTLFLAG_RW, 9671 (void *)sc, 0, 9672 bce_sysctl_phy_read, "I", "PHY register read"); 9673 9674 #endif 9675 9676 DBEXIT(BCE_VERBOSE_MISC); 9677 } 9678 9679 9680 /****************************************************************************/ 9681 /* BCE Debug Routines */ 9682 /****************************************************************************/ 9683 #ifdef BCE_DEBUG 9684 9685 /****************************************************************************/ 9686 /* Freezes the controller to allow for a cohesive state dump. */ 9687 /* */ 9688 /* Returns: */ 9689 /* Nothing. */ 9690 /****************************************************************************/ 9691 static __attribute__ ((noinline)) void 9692 bce_freeze_controller(struct bce_softc *sc) 9693 { 9694 u32 val; 9695 val = REG_RD(sc, BCE_MISC_COMMAND); 9696 val |= BCE_MISC_COMMAND_DISABLE_ALL; 9697 REG_WR(sc, BCE_MISC_COMMAND, val); 9698 } 9699 9700 9701 /****************************************************************************/ 9702 /* Unfreezes the controller after a freeze operation. This may not always */ 9703 /* work and the controller will require a reset! */ 9704 /* */ 9705 /* Returns: */ 9706 /* Nothing. */ 9707 /****************************************************************************/ 9708 static __attribute__ ((noinline)) void 9709 bce_unfreeze_controller(struct bce_softc *sc) 9710 { 9711 u32 val; 9712 val = REG_RD(sc, BCE_MISC_COMMAND); 9713 val |= BCE_MISC_COMMAND_ENABLE_ALL; 9714 REG_WR(sc, BCE_MISC_COMMAND, val); 9715 } 9716 9717 9718 /****************************************************************************/ 9719 /* Prints out Ethernet frame information from an mbuf. */ 9720 /* */ 9721 /* Partially decode an Ethernet frame to look at some important headers. */ 9722 /* */ 9723 /* Returns: */ 9724 /* Nothing. */ 9725 /****************************************************************************/ 9726 static __attribute__ ((noinline)) void 9727 bce_dump_enet(struct bce_softc *sc, struct mbuf *m) 9728 { 9729 struct ether_vlan_header *eh; 9730 u16 etype; 9731 int ehlen; 9732 struct ip *ip; 9733 struct tcphdr *th; 9734 struct udphdr *uh; 9735 struct arphdr *ah; 9736 9737 BCE_PRINTF( 9738 "-----------------------------" 9739 " Frame Decode " 9740 "-----------------------------\n"); 9741 9742 eh = mtod(m, struct ether_vlan_header *); 9743 9744 /* Handle VLAN encapsulation if present. */ 9745 if (eh->evl_encap_proto == htons(ETHERTYPE_VLAN)) { 9746 etype = ntohs(eh->evl_proto); 9747 ehlen = ETHER_HDR_LEN + ETHER_VLAN_ENCAP_LEN; 9748 } else { 9749 etype = ntohs(eh->evl_encap_proto); 9750 ehlen = ETHER_HDR_LEN; 9751 } 9752 9753 /* ToDo: Add VLAN output. */ 9754 BCE_PRINTF("enet: dest = %6D, src = %6D, type = 0x%04X, hlen = %d\n", 9755 eh->evl_dhost, ":", eh->evl_shost, ":", etype, ehlen); 9756 9757 switch (etype) { 9758 case ETHERTYPE_IP: 9759 ip = (struct ip *)(m->m_data + ehlen); 9760 BCE_PRINTF("--ip: dest = 0x%08X , src = 0x%08X, " 9761 "len = %d bytes, protocol = 0x%02X, xsum = 0x%04X\n", 9762 ntohl(ip->ip_dst.s_addr), ntohl(ip->ip_src.s_addr), 9763 ntohs(ip->ip_len), ip->ip_p, ntohs(ip->ip_sum)); 9764 9765 switch (ip->ip_p) { 9766 case IPPROTO_TCP: 9767 th = (struct tcphdr *)((caddr_t)ip + (ip->ip_hl << 2)); 9768 BCE_PRINTF("-tcp: dest = %d, src = %d, hlen = " 9769 "%d bytes, flags = 0x%b, csum = 0x%04X\n", 9770 ntohs(th->th_dport), ntohs(th->th_sport), 9771 (th->th_off << 2), th->th_flags, 9772 "\20\10CWR\07ECE\06URG\05ACK\04PSH\03RST" 9773 "\02SYN\01FIN", ntohs(th->th_sum)); 9774 break; 9775 case IPPROTO_UDP: 9776 uh = (struct udphdr *)((caddr_t)ip + (ip->ip_hl << 2)); 9777 BCE_PRINTF("-udp: dest = %d, src = %d, len = %d " 9778 "bytes, csum = 0x%04X\n", ntohs(uh->uh_dport), 9779 ntohs(uh->uh_sport), ntohs(uh->uh_ulen), 9780 ntohs(uh->uh_sum)); 9781 break; 9782 case IPPROTO_ICMP: 9783 BCE_PRINTF("icmp:\n"); 9784 break; 9785 default: 9786 BCE_PRINTF("----: Other IP protocol.\n"); 9787 } 9788 break; 9789 case ETHERTYPE_IPV6: 9790 BCE_PRINTF("ipv6: No decode supported.\n"); 9791 break; 9792 case ETHERTYPE_ARP: 9793 BCE_PRINTF("-arp: "); 9794 ah = (struct arphdr *) (m->m_data + ehlen); 9795 switch (ntohs(ah->ar_op)) { 9796 case ARPOP_REVREQUEST: 9797 printf("reverse ARP request\n"); 9798 break; 9799 case ARPOP_REVREPLY: 9800 printf("reverse ARP reply\n"); 9801 break; 9802 case ARPOP_REQUEST: 9803 printf("ARP request\n"); 9804 break; 9805 case ARPOP_REPLY: 9806 printf("ARP reply\n"); 9807 break; 9808 default: 9809 printf("other ARP operation\n"); 9810 } 9811 break; 9812 default: 9813 BCE_PRINTF("----: Other protocol.\n"); 9814 } 9815 9816 BCE_PRINTF( 9817 "-----------------------------" 9818 "--------------" 9819 "-----------------------------\n"); 9820 } 9821 9822 9823 /****************************************************************************/ 9824 /* Prints out information about an mbuf. */ 9825 /* */ 9826 /* Returns: */ 9827 /* Nothing. */ 9828 /****************************************************************************/ 9829 static __attribute__ ((noinline)) void 9830 bce_dump_mbuf(struct bce_softc *sc, struct mbuf *m) 9831 { 9832 struct mbuf *mp = m; 9833 9834 if (m == NULL) { 9835 BCE_PRINTF("mbuf: null pointer\n"); 9836 return; 9837 } 9838 9839 while (mp) { 9840 BCE_PRINTF("mbuf: %p, m_len = %d, m_flags = 0x%b, " 9841 "m_data = %p\n", mp, mp->m_len, mp->m_flags, 9842 "\20\1M_EXT\2M_PKTHDR\3M_EOR\4M_RDONLY", mp->m_data); 9843 9844 if (mp->m_flags & M_PKTHDR) { 9845 BCE_PRINTF("- m_pkthdr: len = %d, flags = 0x%b, " 9846 "csum_flags = %b\n", mp->m_pkthdr.len, 9847 mp->m_flags, M_FLAG_PRINTF, 9848 mp->m_pkthdr.csum_flags, CSUM_BITS); 9849 } 9850 9851 if (mp->m_flags & M_EXT) { 9852 BCE_PRINTF("- m_ext: %p, ext_size = %d, type = ", 9853 mp->m_ext.ext_buf, mp->m_ext.ext_size); 9854 switch (mp->m_ext.ext_type) { 9855 case EXT_CLUSTER: 9856 printf("EXT_CLUSTER\n"); break; 9857 case EXT_SFBUF: 9858 printf("EXT_SFBUF\n"); break; 9859 case EXT_JUMBO9: 9860 printf("EXT_JUMBO9\n"); break; 9861 case EXT_JUMBO16: 9862 printf("EXT_JUMBO16\n"); break; 9863 case EXT_PACKET: 9864 printf("EXT_PACKET\n"); break; 9865 case EXT_MBUF: 9866 printf("EXT_MBUF\n"); break; 9867 case EXT_NET_DRV: 9868 printf("EXT_NET_DRV\n"); break; 9869 case EXT_MOD_TYPE: 9870 printf("EXT_MDD_TYPE\n"); break; 9871 case EXT_DISPOSABLE: 9872 printf("EXT_DISPOSABLE\n"); break; 9873 case EXT_EXTREF: 9874 printf("EXT_EXTREF\n"); break; 9875 default: 9876 printf("UNKNOWN\n"); 9877 } 9878 } 9879 9880 mp = mp->m_next; 9881 } 9882 } 9883 9884 9885 /****************************************************************************/ 9886 /* Prints out the mbufs in the TX mbuf chain. */ 9887 /* */ 9888 /* Returns: */ 9889 /* Nothing. */ 9890 /****************************************************************************/ 9891 static __attribute__ ((noinline)) void 9892 bce_dump_tx_mbuf_chain(struct bce_softc *sc, u16 chain_prod, int count) 9893 { 9894 struct mbuf *m; 9895 9896 BCE_PRINTF( 9897 "----------------------------" 9898 " tx mbuf data " 9899 "----------------------------\n"); 9900 9901 for (int i = 0; i < count; i++) { 9902 m = sc->tx_mbuf_ptr[chain_prod]; 9903 BCE_PRINTF("txmbuf[0x%04X]\n", chain_prod); 9904 bce_dump_mbuf(sc, m); 9905 chain_prod = TX_CHAIN_IDX(NEXT_TX_BD(chain_prod)); 9906 } 9907 9908 BCE_PRINTF( 9909 "----------------------------" 9910 "----------------" 9911 "----------------------------\n"); 9912 } 9913 9914 9915 /****************************************************************************/ 9916 /* Prints out the mbufs in the RX mbuf chain. */ 9917 /* */ 9918 /* Returns: */ 9919 /* Nothing. */ 9920 /****************************************************************************/ 9921 static __attribute__ ((noinline)) void 9922 bce_dump_rx_mbuf_chain(struct bce_softc *sc, u16 chain_prod, int count) 9923 { 9924 struct mbuf *m; 9925 9926 BCE_PRINTF( 9927 "----------------------------" 9928 " rx mbuf data " 9929 "----------------------------\n"); 9930 9931 for (int i = 0; i < count; i++) { 9932 m = sc->rx_mbuf_ptr[chain_prod]; 9933 BCE_PRINTF("rxmbuf[0x%04X]\n", chain_prod); 9934 bce_dump_mbuf(sc, m); 9935 chain_prod = RX_CHAIN_IDX(NEXT_RX_BD(chain_prod)); 9936 } 9937 9938 9939 BCE_PRINTF( 9940 "----------------------------" 9941 "----------------" 9942 "----------------------------\n"); 9943 } 9944 9945 9946 /****************************************************************************/ 9947 /* Prints out the mbufs in the mbuf page chain. */ 9948 /* */ 9949 /* Returns: */ 9950 /* Nothing. */ 9951 /****************************************************************************/ 9952 static __attribute__ ((noinline)) void 9953 bce_dump_pg_mbuf_chain(struct bce_softc *sc, u16 chain_prod, int count) 9954 { 9955 struct mbuf *m; 9956 9957 BCE_PRINTF( 9958 "----------------------------" 9959 " pg mbuf data " 9960 "----------------------------\n"); 9961 9962 for (int i = 0; i < count; i++) { 9963 m = sc->pg_mbuf_ptr[chain_prod]; 9964 BCE_PRINTF("pgmbuf[0x%04X]\n", chain_prod); 9965 bce_dump_mbuf(sc, m); 9966 chain_prod = PG_CHAIN_IDX(NEXT_PG_BD(chain_prod)); 9967 } 9968 9969 9970 BCE_PRINTF( 9971 "----------------------------" 9972 "----------------" 9973 "----------------------------\n"); 9974 } 9975 9976 9977 /****************************************************************************/ 9978 /* Prints out a tx_bd structure. */ 9979 /* */ 9980 /* Returns: */ 9981 /* Nothing. */ 9982 /****************************************************************************/ 9983 static __attribute__ ((noinline)) void 9984 bce_dump_txbd(struct bce_softc *sc, int idx, struct tx_bd *txbd) 9985 { 9986 int i = 0; 9987 9988 if (idx > MAX_TX_BD_ALLOC) 9989 /* Index out of range. */ 9990 BCE_PRINTF("tx_bd[0x%04X]: Invalid tx_bd index!\n", idx); 9991 else if ((idx & USABLE_TX_BD_PER_PAGE) == USABLE_TX_BD_PER_PAGE) 9992 /* TX Chain page pointer. */ 9993 BCE_PRINTF("tx_bd[0x%04X]: haddr = 0x%08X:%08X, chain page " 9994 "pointer\n", idx, txbd->tx_bd_haddr_hi, 9995 txbd->tx_bd_haddr_lo); 9996 else { 9997 /* Normal tx_bd entry. */ 9998 BCE_PRINTF("tx_bd[0x%04X]: haddr = 0x%08X:%08X, " 9999 "mss_nbytes = 0x%08X, vlan tag = 0x%04X, flags = " 10000 "0x%04X (", idx, txbd->tx_bd_haddr_hi, 10001 txbd->tx_bd_haddr_lo, txbd->tx_bd_mss_nbytes, 10002 txbd->tx_bd_vlan_tag, txbd->tx_bd_flags); 10003 10004 if (txbd->tx_bd_flags & TX_BD_FLAGS_CONN_FAULT) { 10005 if (i>0) 10006 printf("|"); 10007 printf("CONN_FAULT"); 10008 i++; 10009 } 10010 10011 if (txbd->tx_bd_flags & TX_BD_FLAGS_TCP_UDP_CKSUM) { 10012 if (i>0) 10013 printf("|"); 10014 printf("TCP_UDP_CKSUM"); 10015 i++; 10016 } 10017 10018 if (txbd->tx_bd_flags & TX_BD_FLAGS_IP_CKSUM) { 10019 if (i>0) 10020 printf("|"); 10021 printf("IP_CKSUM"); 10022 i++; 10023 } 10024 10025 if (txbd->tx_bd_flags & TX_BD_FLAGS_VLAN_TAG) { 10026 if (i>0) 10027 printf("|"); 10028 printf("VLAN"); 10029 i++; 10030 } 10031 10032 if (txbd->tx_bd_flags & TX_BD_FLAGS_COAL_NOW) { 10033 if (i>0) 10034 printf("|"); 10035 printf("COAL_NOW"); 10036 i++; 10037 } 10038 10039 if (txbd->tx_bd_flags & TX_BD_FLAGS_DONT_GEN_CRC) { 10040 if (i>0) 10041 printf("|"); 10042 printf("DONT_GEN_CRC"); 10043 i++; 10044 } 10045 10046 if (txbd->tx_bd_flags & TX_BD_FLAGS_START) { 10047 if (i>0) 10048 printf("|"); 10049 printf("START"); 10050 i++; 10051 } 10052 10053 if (txbd->tx_bd_flags & TX_BD_FLAGS_END) { 10054 if (i>0) 10055 printf("|"); 10056 printf("END"); 10057 i++; 10058 } 10059 10060 if (txbd->tx_bd_flags & TX_BD_FLAGS_SW_LSO) { 10061 if (i>0) 10062 printf("|"); 10063 printf("LSO"); 10064 i++; 10065 } 10066 10067 if (txbd->tx_bd_flags & TX_BD_FLAGS_SW_OPTION_WORD) { 10068 if (i>0) 10069 printf("|"); 10070 printf("SW_OPTION=%d", ((txbd->tx_bd_flags & 10071 TX_BD_FLAGS_SW_OPTION_WORD) >> 8)); i++; 10072 } 10073 10074 if (txbd->tx_bd_flags & TX_BD_FLAGS_SW_FLAGS) { 10075 if (i>0) 10076 printf("|"); 10077 printf("SW_FLAGS"); 10078 i++; 10079 } 10080 10081 if (txbd->tx_bd_flags & TX_BD_FLAGS_SW_SNAP) { 10082 if (i>0) 10083 printf("|"); 10084 printf("SNAP)"); 10085 } else { 10086 printf(")\n"); 10087 } 10088 } 10089 } 10090 10091 10092 /****************************************************************************/ 10093 /* Prints out a rx_bd structure. */ 10094 /* */ 10095 /* Returns: */ 10096 /* Nothing. */ 10097 /****************************************************************************/ 10098 static __attribute__ ((noinline)) void 10099 bce_dump_rxbd(struct bce_softc *sc, int idx, struct rx_bd *rxbd) 10100 { 10101 if (idx > MAX_RX_BD_ALLOC) 10102 /* Index out of range. */ 10103 BCE_PRINTF("rx_bd[0x%04X]: Invalid rx_bd index!\n", idx); 10104 else if ((idx & USABLE_RX_BD_PER_PAGE) == USABLE_RX_BD_PER_PAGE) 10105 /* RX Chain page pointer. */ 10106 BCE_PRINTF("rx_bd[0x%04X]: haddr = 0x%08X:%08X, chain page " 10107 "pointer\n", idx, rxbd->rx_bd_haddr_hi, 10108 rxbd->rx_bd_haddr_lo); 10109 else 10110 /* Normal rx_bd entry. */ 10111 BCE_PRINTF("rx_bd[0x%04X]: haddr = 0x%08X:%08X, nbytes = " 10112 "0x%08X, flags = 0x%08X\n", idx, rxbd->rx_bd_haddr_hi, 10113 rxbd->rx_bd_haddr_lo, rxbd->rx_bd_len, 10114 rxbd->rx_bd_flags); 10115 } 10116 10117 10118 /****************************************************************************/ 10119 /* Prints out a rx_bd structure in the page chain. */ 10120 /* */ 10121 /* Returns: */ 10122 /* Nothing. */ 10123 /****************************************************************************/ 10124 static __attribute__ ((noinline)) void 10125 bce_dump_pgbd(struct bce_softc *sc, int idx, struct rx_bd *pgbd) 10126 { 10127 if (idx > MAX_PG_BD_ALLOC) 10128 /* Index out of range. */ 10129 BCE_PRINTF("pg_bd[0x%04X]: Invalid pg_bd index!\n", idx); 10130 else if ((idx & USABLE_PG_BD_PER_PAGE) == USABLE_PG_BD_PER_PAGE) 10131 /* Page Chain page pointer. */ 10132 BCE_PRINTF("px_bd[0x%04X]: haddr = 0x%08X:%08X, chain page pointer\n", 10133 idx, pgbd->rx_bd_haddr_hi, pgbd->rx_bd_haddr_lo); 10134 else 10135 /* Normal rx_bd entry. */ 10136 BCE_PRINTF("pg_bd[0x%04X]: haddr = 0x%08X:%08X, nbytes = 0x%08X, " 10137 "flags = 0x%08X\n", idx, 10138 pgbd->rx_bd_haddr_hi, pgbd->rx_bd_haddr_lo, 10139 pgbd->rx_bd_len, pgbd->rx_bd_flags); 10140 } 10141 10142 10143 /****************************************************************************/ 10144 /* Prints out a l2_fhdr structure. */ 10145 /* */ 10146 /* Returns: */ 10147 /* Nothing. */ 10148 /****************************************************************************/ 10149 static __attribute__ ((noinline)) void 10150 bce_dump_l2fhdr(struct bce_softc *sc, int idx, struct l2_fhdr *l2fhdr) 10151 { 10152 BCE_PRINTF("l2_fhdr[0x%04X]: status = 0x%b, " 10153 "pkt_len = %d, vlan = 0x%04x, ip_xsum/hdr_len = 0x%04X, " 10154 "tcp_udp_xsum = 0x%04X\n", idx, 10155 l2fhdr->l2_fhdr_status, BCE_L2FHDR_PRINTFB, 10156 l2fhdr->l2_fhdr_pkt_len, l2fhdr->l2_fhdr_vlan_tag, 10157 l2fhdr->l2_fhdr_ip_xsum, l2fhdr->l2_fhdr_tcp_udp_xsum); 10158 } 10159 10160 10161 /****************************************************************************/ 10162 /* Prints out context memory info. (Only useful for CID 0 to 16.) */ 10163 /* */ 10164 /* Returns: */ 10165 /* Nothing. */ 10166 /****************************************************************************/ 10167 static __attribute__ ((noinline)) void 10168 bce_dump_ctx(struct bce_softc *sc, u16 cid) 10169 { 10170 if (cid > TX_CID) { 10171 BCE_PRINTF(" Unknown CID\n"); 10172 return; 10173 } 10174 10175 BCE_PRINTF( 10176 "----------------------------" 10177 " CTX Data " 10178 "----------------------------\n"); 10179 10180 BCE_PRINTF(" 0x%04X - (CID) Context ID\n", cid); 10181 10182 if (cid == RX_CID) { 10183 BCE_PRINTF(" 0x%08X - (L2CTX_RX_HOST_BDIDX) host rx " 10184 "producer index\n", 10185 CTX_RD(sc, GET_CID_ADDR(cid), BCE_L2CTX_RX_HOST_BDIDX)); 10186 BCE_PRINTF(" 0x%08X - (L2CTX_RX_HOST_BSEQ) host " 10187 "byte sequence\n", CTX_RD(sc, GET_CID_ADDR(cid), 10188 BCE_L2CTX_RX_HOST_BSEQ)); 10189 BCE_PRINTF(" 0x%08X - (L2CTX_RX_NX_BSEQ) h/w byte sequence\n", 10190 CTX_RD(sc, GET_CID_ADDR(cid), BCE_L2CTX_RX_NX_BSEQ)); 10191 BCE_PRINTF(" 0x%08X - (L2CTX_RX_NX_BDHADDR_HI) h/w buffer " 10192 "descriptor address\n", 10193 CTX_RD(sc, GET_CID_ADDR(cid), BCE_L2CTX_RX_NX_BDHADDR_HI)); 10194 BCE_PRINTF(" 0x%08X - (L2CTX_RX_NX_BDHADDR_LO) h/w buffer " 10195 "descriptor address\n", 10196 CTX_RD(sc, GET_CID_ADDR(cid), BCE_L2CTX_RX_NX_BDHADDR_LO)); 10197 BCE_PRINTF(" 0x%08X - (L2CTX_RX_NX_BDIDX) h/w rx consumer " 10198 "index\n", CTX_RD(sc, GET_CID_ADDR(cid), 10199 BCE_L2CTX_RX_NX_BDIDX)); 10200 BCE_PRINTF(" 0x%08X - (L2CTX_RX_HOST_PG_BDIDX) host page " 10201 "producer index\n", CTX_RD(sc, GET_CID_ADDR(cid), 10202 BCE_L2CTX_RX_HOST_PG_BDIDX)); 10203 BCE_PRINTF(" 0x%08X - (L2CTX_RX_PG_BUF_SIZE) host rx_bd/page " 10204 "buffer size\n", CTX_RD(sc, GET_CID_ADDR(cid), 10205 BCE_L2CTX_RX_PG_BUF_SIZE)); 10206 BCE_PRINTF(" 0x%08X - (L2CTX_RX_NX_PG_BDHADDR_HI) h/w page " 10207 "chain address\n", CTX_RD(sc, GET_CID_ADDR(cid), 10208 BCE_L2CTX_RX_NX_PG_BDHADDR_HI)); 10209 BCE_PRINTF(" 0x%08X - (L2CTX_RX_NX_PG_BDHADDR_LO) h/w page " 10210 "chain address\n", CTX_RD(sc, GET_CID_ADDR(cid), 10211 BCE_L2CTX_RX_NX_PG_BDHADDR_LO)); 10212 BCE_PRINTF(" 0x%08X - (L2CTX_RX_NX_PG_BDIDX) h/w page " 10213 "consumer index\n", CTX_RD(sc, GET_CID_ADDR(cid), 10214 BCE_L2CTX_RX_NX_PG_BDIDX)); 10215 } else if (cid == TX_CID) { 10216 if (BCE_CHIP_NUM(sc) == BCE_CHIP_NUM_5709) { 10217 BCE_PRINTF(" 0x%08X - (L2CTX_TX_TYPE_XI) ctx type\n", 10218 CTX_RD(sc, GET_CID_ADDR(cid), 10219 BCE_L2CTX_TX_TYPE_XI)); 10220 BCE_PRINTF(" 0x%08X - (L2CTX_CMD_TX_TYPE_XI) ctx " 10221 "cmd\n", CTX_RD(sc, GET_CID_ADDR(cid), 10222 BCE_L2CTX_TX_CMD_TYPE_XI)); 10223 BCE_PRINTF(" 0x%08X - (L2CTX_TX_TBDR_BDHADDR_HI_XI) " 10224 "h/w buffer descriptor address\n", 10225 CTX_RD(sc, GET_CID_ADDR(cid), 10226 BCE_L2CTX_TX_TBDR_BHADDR_HI_XI)); 10227 BCE_PRINTF(" 0x%08X - (L2CTX_TX_TBDR_BHADDR_LO_XI) " 10228 "h/w buffer descriptor address\n", 10229 CTX_RD(sc, GET_CID_ADDR(cid), 10230 BCE_L2CTX_TX_TBDR_BHADDR_LO_XI)); 10231 BCE_PRINTF(" 0x%08X - (L2CTX_TX_HOST_BIDX_XI) " 10232 "host producer index\n", 10233 CTX_RD(sc, GET_CID_ADDR(cid), 10234 BCE_L2CTX_TX_HOST_BIDX_XI)); 10235 BCE_PRINTF(" 0x%08X - (L2CTX_TX_HOST_BSEQ_XI) " 10236 "host byte sequence\n", 10237 CTX_RD(sc, GET_CID_ADDR(cid), 10238 BCE_L2CTX_TX_HOST_BSEQ_XI)); 10239 } else { 10240 BCE_PRINTF(" 0x%08X - (L2CTX_TX_TYPE) ctx type\n", 10241 CTX_RD(sc, GET_CID_ADDR(cid), BCE_L2CTX_TX_TYPE)); 10242 BCE_PRINTF(" 0x%08X - (L2CTX_TX_CMD_TYPE) ctx cmd\n", 10243 CTX_RD(sc, GET_CID_ADDR(cid), 10244 BCE_L2CTX_TX_CMD_TYPE)); 10245 BCE_PRINTF(" 0x%08X - (L2CTX_TX_TBDR_BDHADDR_HI) " 10246 "h/w buffer descriptor address\n", 10247 CTX_RD(sc, GET_CID_ADDR(cid), 10248 BCE_L2CTX_TX_TBDR_BHADDR_HI)); 10249 BCE_PRINTF(" 0x%08X - (L2CTX_TX_TBDR_BHADDR_LO) " 10250 "h/w buffer descriptor address\n", 10251 CTX_RD(sc, GET_CID_ADDR(cid), 10252 BCE_L2CTX_TX_TBDR_BHADDR_LO)); 10253 BCE_PRINTF(" 0x%08X - (L2CTX_TX_HOST_BIDX) host " 10254 "producer index\n", CTX_RD(sc, GET_CID_ADDR(cid), 10255 BCE_L2CTX_TX_HOST_BIDX)); 10256 BCE_PRINTF(" 0x%08X - (L2CTX_TX_HOST_BSEQ) host byte " 10257 "sequence\n", CTX_RD(sc, GET_CID_ADDR(cid), 10258 BCE_L2CTX_TX_HOST_BSEQ)); 10259 } 10260 } 10261 10262 BCE_PRINTF( 10263 "----------------------------" 10264 " Raw CTX " 10265 "----------------------------\n"); 10266 10267 for (int i = 0x0; i < 0x300; i += 0x10) { 10268 BCE_PRINTF("0x%04X: 0x%08X 0x%08X 0x%08X 0x%08X\n", i, 10269 CTX_RD(sc, GET_CID_ADDR(cid), i), 10270 CTX_RD(sc, GET_CID_ADDR(cid), i + 0x4), 10271 CTX_RD(sc, GET_CID_ADDR(cid), i + 0x8), 10272 CTX_RD(sc, GET_CID_ADDR(cid), i + 0xc)); 10273 } 10274 10275 10276 BCE_PRINTF( 10277 "----------------------------" 10278 "----------------" 10279 "----------------------------\n"); 10280 } 10281 10282 10283 /****************************************************************************/ 10284 /* Prints out the FTQ data. */ 10285 /* */ 10286 /* Returns: */ 10287 /* Nothing. */ 10288 /****************************************************************************/ 10289 static __attribute__ ((noinline)) void 10290 bce_dump_ftqs(struct bce_softc *sc) 10291 { 10292 u32 cmd, ctl, cur_depth, max_depth, valid_cnt, val; 10293 10294 BCE_PRINTF( 10295 "----------------------------" 10296 " FTQ Data " 10297 "----------------------------\n"); 10298 10299 BCE_PRINTF(" FTQ Command Control Depth_Now " 10300 "Max_Depth Valid_Cnt \n"); 10301 BCE_PRINTF(" ------- ---------- ---------- ---------- " 10302 "---------- ----------\n"); 10303 10304 /* Setup the generic statistic counters for the FTQ valid count. */ 10305 val = (BCE_HC_STAT_GEN_SEL_0_GEN_SEL_0_RV2PPQ_VALID_CNT << 24) | 10306 (BCE_HC_STAT_GEN_SEL_0_GEN_SEL_0_RXPCQ_VALID_CNT << 16) | 10307 (BCE_HC_STAT_GEN_SEL_0_GEN_SEL_0_RXPQ_VALID_CNT << 8) | 10308 (BCE_HC_STAT_GEN_SEL_0_GEN_SEL_0_RLUPQ_VALID_CNT); 10309 REG_WR(sc, BCE_HC_STAT_GEN_SEL_0, val); 10310 10311 val = (BCE_HC_STAT_GEN_SEL_0_GEN_SEL_0_TSCHQ_VALID_CNT << 24) | 10312 (BCE_HC_STAT_GEN_SEL_0_GEN_SEL_0_RDMAQ_VALID_CNT << 16) | 10313 (BCE_HC_STAT_GEN_SEL_0_GEN_SEL_0_RV2PTQ_VALID_CNT << 8) | 10314 (BCE_HC_STAT_GEN_SEL_0_GEN_SEL_0_RV2PMQ_VALID_CNT); 10315 REG_WR(sc, BCE_HC_STAT_GEN_SEL_1, val); 10316 10317 val = (BCE_HC_STAT_GEN_SEL_0_GEN_SEL_0_TPATQ_VALID_CNT << 24) | 10318 (BCE_HC_STAT_GEN_SEL_0_GEN_SEL_0_TDMAQ_VALID_CNT << 16) | 10319 (BCE_HC_STAT_GEN_SEL_0_GEN_SEL_0_TXPQ_VALID_CNT << 8) | 10320 (BCE_HC_STAT_GEN_SEL_0_GEN_SEL_0_TBDRQ_VALID_CNT); 10321 REG_WR(sc, BCE_HC_STAT_GEN_SEL_2, val); 10322 10323 val = (BCE_HC_STAT_GEN_SEL_0_GEN_SEL_0_COMQ_VALID_CNT << 24) | 10324 (BCE_HC_STAT_GEN_SEL_0_GEN_SEL_0_COMTQ_VALID_CNT << 16) | 10325 (BCE_HC_STAT_GEN_SEL_0_GEN_SEL_0_COMXQ_VALID_CNT << 8) | 10326 (BCE_HC_STAT_GEN_SEL_0_GEN_SEL_0_TASQ_VALID_CNT); 10327 REG_WR(sc, BCE_HC_STAT_GEN_SEL_3, val); 10328 10329 /* Input queue to the Receive Lookup state machine */ 10330 cmd = REG_RD(sc, BCE_RLUP_FTQ_CMD); 10331 ctl = REG_RD(sc, BCE_RLUP_FTQ_CTL); 10332 cur_depth = (ctl & BCE_RLUP_FTQ_CTL_CUR_DEPTH) >> 22; 10333 max_depth = (ctl & BCE_RLUP_FTQ_CTL_MAX_DEPTH) >> 12; 10334 valid_cnt = REG_RD(sc, BCE_HC_STAT_GEN_STAT0); 10335 BCE_PRINTF(" RLUP 0x%08X 0x%08X 0x%08X 0x%08X 0x%08X\n", 10336 cmd, ctl, cur_depth, max_depth, valid_cnt); 10337 10338 /* Input queue to the Receive Processor */ 10339 cmd = REG_RD_IND(sc, BCE_RXP_FTQ_CMD); 10340 ctl = REG_RD_IND(sc, BCE_RXP_FTQ_CTL); 10341 cur_depth = (ctl & BCE_RXP_FTQ_CTL_CUR_DEPTH) >> 22; 10342 max_depth = (ctl & BCE_RXP_FTQ_CTL_MAX_DEPTH) >> 12; 10343 valid_cnt = REG_RD(sc, BCE_HC_STAT_GEN_STAT1); 10344 BCE_PRINTF(" RXP 0x%08X 0x%08X 0x%08X 0x%08X 0x%08X\n", 10345 cmd, ctl, cur_depth, max_depth, valid_cnt); 10346 10347 /* Input queue to the Recevie Processor */ 10348 cmd = REG_RD_IND(sc, BCE_RXP_CFTQ_CMD); 10349 ctl = REG_RD_IND(sc, BCE_RXP_CFTQ_CTL); 10350 cur_depth = (ctl & BCE_RXP_CFTQ_CTL_CUR_DEPTH) >> 22; 10351 max_depth = (ctl & BCE_RXP_CFTQ_CTL_MAX_DEPTH) >> 12; 10352 valid_cnt = REG_RD(sc, BCE_HC_STAT_GEN_STAT2); 10353 BCE_PRINTF(" RXPC 0x%08X 0x%08X 0x%08X 0x%08X 0x%08X\n", 10354 cmd, ctl, cur_depth, max_depth, valid_cnt); 10355 10356 /* Input queue to the Receive Virtual to Physical state machine */ 10357 cmd = REG_RD(sc, BCE_RV2P_PFTQ_CMD); 10358 ctl = REG_RD(sc, BCE_RV2P_PFTQ_CTL); 10359 cur_depth = (ctl & BCE_RV2P_PFTQ_CTL_CUR_DEPTH) >> 22; 10360 max_depth = (ctl & BCE_RV2P_PFTQ_CTL_MAX_DEPTH) >> 12; 10361 valid_cnt = REG_RD(sc, BCE_HC_STAT_GEN_STAT3); 10362 BCE_PRINTF(" RV2PP 0x%08X 0x%08X 0x%08X 0x%08X 0x%08X\n", 10363 cmd, ctl, cur_depth, max_depth, valid_cnt); 10364 10365 /* Input queue to the Recevie Virtual to Physical state machine */ 10366 cmd = REG_RD(sc, BCE_RV2P_MFTQ_CMD); 10367 ctl = REG_RD(sc, BCE_RV2P_MFTQ_CTL); 10368 cur_depth = (ctl & BCE_RV2P_MFTQ_CTL_CUR_DEPTH) >> 22; 10369 max_depth = (ctl & BCE_RV2P_MFTQ_CTL_MAX_DEPTH) >> 12; 10370 valid_cnt = REG_RD(sc, BCE_HC_STAT_GEN_STAT4); 10371 BCE_PRINTF(" RV2PM 0x%08X 0x%08X 0x%08X 0x%08X 0x%08X\n", 10372 cmd, ctl, cur_depth, max_depth, valid_cnt); 10373 10374 /* Input queue to the Receive Virtual to Physical state machine */ 10375 cmd = REG_RD(sc, BCE_RV2P_TFTQ_CMD); 10376 ctl = REG_RD(sc, BCE_RV2P_TFTQ_CTL); 10377 cur_depth = (ctl & BCE_RV2P_TFTQ_CTL_CUR_DEPTH) >> 22; 10378 max_depth = (ctl & BCE_RV2P_TFTQ_CTL_MAX_DEPTH) >> 12; 10379 valid_cnt = REG_RD(sc, BCE_HC_STAT_GEN_STAT5); 10380 BCE_PRINTF(" RV2PT 0x%08X 0x%08X 0x%08X 0x%08X 0x%08X\n", 10381 cmd, ctl, cur_depth, max_depth, valid_cnt); 10382 10383 /* Input queue to the Receive DMA state machine */ 10384 cmd = REG_RD(sc, BCE_RDMA_FTQ_CMD); 10385 ctl = REG_RD(sc, BCE_RDMA_FTQ_CTL); 10386 cur_depth = (ctl & BCE_RDMA_FTQ_CTL_CUR_DEPTH) >> 22; 10387 max_depth = (ctl & BCE_RDMA_FTQ_CTL_MAX_DEPTH) >> 12; 10388 valid_cnt = REG_RD(sc, BCE_HC_STAT_GEN_STAT6); 10389 BCE_PRINTF(" RDMA 0x%08X 0x%08X 0x%08X 0x%08X 0x%08X\n", 10390 cmd, ctl, cur_depth, max_depth, valid_cnt); 10391 10392 /* Input queue to the Transmit Scheduler state machine */ 10393 cmd = REG_RD(sc, BCE_TSCH_FTQ_CMD); 10394 ctl = REG_RD(sc, BCE_TSCH_FTQ_CTL); 10395 cur_depth = (ctl & BCE_TSCH_FTQ_CTL_CUR_DEPTH) >> 22; 10396 max_depth = (ctl & BCE_TSCH_FTQ_CTL_MAX_DEPTH) >> 12; 10397 valid_cnt = REG_RD(sc, BCE_HC_STAT_GEN_STAT7); 10398 BCE_PRINTF(" TSCH 0x%08X 0x%08X 0x%08X 0x%08X 0x%08X\n", 10399 cmd, ctl, cur_depth, max_depth, valid_cnt); 10400 10401 /* Input queue to the Transmit Buffer Descriptor state machine */ 10402 cmd = REG_RD(sc, BCE_TBDR_FTQ_CMD); 10403 ctl = REG_RD(sc, BCE_TBDR_FTQ_CTL); 10404 cur_depth = (ctl & BCE_TBDR_FTQ_CTL_CUR_DEPTH) >> 22; 10405 max_depth = (ctl & BCE_TBDR_FTQ_CTL_MAX_DEPTH) >> 12; 10406 valid_cnt = REG_RD(sc, BCE_HC_STAT_GEN_STAT8); 10407 BCE_PRINTF(" TBDR 0x%08X 0x%08X 0x%08X 0x%08X 0x%08X\n", 10408 cmd, ctl, cur_depth, max_depth, valid_cnt); 10409 10410 /* Input queue to the Transmit Processor */ 10411 cmd = REG_RD_IND(sc, BCE_TXP_FTQ_CMD); 10412 ctl = REG_RD_IND(sc, BCE_TXP_FTQ_CTL); 10413 cur_depth = (ctl & BCE_TXP_FTQ_CTL_CUR_DEPTH) >> 22; 10414 max_depth = (ctl & BCE_TXP_FTQ_CTL_MAX_DEPTH) >> 12; 10415 valid_cnt = REG_RD(sc, BCE_HC_STAT_GEN_STAT9); 10416 BCE_PRINTF(" TXP 0x%08X 0x%08X 0x%08X 0x%08X 0x%08X\n", 10417 cmd, ctl, cur_depth, max_depth, valid_cnt); 10418 10419 /* Input queue to the Transmit DMA state machine */ 10420 cmd = REG_RD(sc, BCE_TDMA_FTQ_CMD); 10421 ctl = REG_RD(sc, BCE_TDMA_FTQ_CTL); 10422 cur_depth = (ctl & BCE_TDMA_FTQ_CTL_CUR_DEPTH) >> 22; 10423 max_depth = (ctl & BCE_TDMA_FTQ_CTL_MAX_DEPTH) >> 12; 10424 valid_cnt = REG_RD(sc, BCE_HC_STAT_GEN_STAT10); 10425 BCE_PRINTF(" TDMA 0x%08X 0x%08X 0x%08X 0x%08X 0x%08X\n", 10426 cmd, ctl, cur_depth, max_depth, valid_cnt); 10427 10428 /* Input queue to the Transmit Patch-Up Processor */ 10429 cmd = REG_RD_IND(sc, BCE_TPAT_FTQ_CMD); 10430 ctl = REG_RD_IND(sc, BCE_TPAT_FTQ_CTL); 10431 cur_depth = (ctl & BCE_TPAT_FTQ_CTL_CUR_DEPTH) >> 22; 10432 max_depth = (ctl & BCE_TPAT_FTQ_CTL_MAX_DEPTH) >> 12; 10433 valid_cnt = REG_RD(sc, BCE_HC_STAT_GEN_STAT11); 10434 BCE_PRINTF(" TPAT 0x%08X 0x%08X 0x%08X 0x%08X 0x%08X\n", 10435 cmd, ctl, cur_depth, max_depth, valid_cnt); 10436 10437 /* Input queue to the Transmit Assembler state machine */ 10438 cmd = REG_RD_IND(sc, BCE_TAS_FTQ_CMD); 10439 ctl = REG_RD_IND(sc, BCE_TAS_FTQ_CTL); 10440 cur_depth = (ctl & BCE_TAS_FTQ_CTL_CUR_DEPTH) >> 22; 10441 max_depth = (ctl & BCE_TAS_FTQ_CTL_MAX_DEPTH) >> 12; 10442 valid_cnt = REG_RD(sc, BCE_HC_STAT_GEN_STAT12); 10443 BCE_PRINTF(" TAS 0x%08X 0x%08X 0x%08X 0x%08X 0x%08X\n", 10444 cmd, ctl, cur_depth, max_depth, valid_cnt); 10445 10446 /* Input queue to the Completion Processor */ 10447 cmd = REG_RD_IND(sc, BCE_COM_COMXQ_FTQ_CMD); 10448 ctl = REG_RD_IND(sc, BCE_COM_COMXQ_FTQ_CTL); 10449 cur_depth = (ctl & BCE_COM_COMXQ_FTQ_CTL_CUR_DEPTH) >> 22; 10450 max_depth = (ctl & BCE_COM_COMXQ_FTQ_CTL_MAX_DEPTH) >> 12; 10451 valid_cnt = REG_RD(sc, BCE_HC_STAT_GEN_STAT13); 10452 BCE_PRINTF(" COMX 0x%08X 0x%08X 0x%08X 0x%08X 0x%08X\n", 10453 cmd, ctl, cur_depth, max_depth, valid_cnt); 10454 10455 /* Input queue to the Completion Processor */ 10456 cmd = REG_RD_IND(sc, BCE_COM_COMTQ_FTQ_CMD); 10457 ctl = REG_RD_IND(sc, BCE_COM_COMTQ_FTQ_CTL); 10458 cur_depth = (ctl & BCE_COM_COMTQ_FTQ_CTL_CUR_DEPTH) >> 22; 10459 max_depth = (ctl & BCE_COM_COMTQ_FTQ_CTL_MAX_DEPTH) >> 12; 10460 valid_cnt = REG_RD(sc, BCE_HC_STAT_GEN_STAT14); 10461 BCE_PRINTF(" COMT 0x%08X 0x%08X 0x%08X 0x%08X 0x%08X\n", 10462 cmd, ctl, cur_depth, max_depth, valid_cnt); 10463 10464 /* Input queue to the Completion Processor */ 10465 cmd = REG_RD_IND(sc, BCE_COM_COMQ_FTQ_CMD); 10466 ctl = REG_RD_IND(sc, BCE_COM_COMQ_FTQ_CTL); 10467 cur_depth = (ctl & BCE_COM_COMQ_FTQ_CTL_CUR_DEPTH) >> 22; 10468 max_depth = (ctl & BCE_COM_COMQ_FTQ_CTL_MAX_DEPTH) >> 12; 10469 valid_cnt = REG_RD(sc, BCE_HC_STAT_GEN_STAT15); 10470 BCE_PRINTF(" COMX 0x%08X 0x%08X 0x%08X 0x%08X 0x%08X\n", 10471 cmd, ctl, cur_depth, max_depth, valid_cnt); 10472 10473 /* Setup the generic statistic counters for the FTQ valid count. */ 10474 val = (BCE_HC_STAT_GEN_SEL_0_GEN_SEL_0_CSQ_VALID_CNT << 16) | 10475 (BCE_HC_STAT_GEN_SEL_0_GEN_SEL_0_CPQ_VALID_CNT << 8) | 10476 (BCE_HC_STAT_GEN_SEL_0_GEN_SEL_0_MGMQ_VALID_CNT); 10477 10478 if (BCE_CHIP_NUM(sc) == BCE_CHIP_NUM_5709) 10479 val = val | 10480 (BCE_HC_STAT_GEN_SEL_0_GEN_SEL_0_RV2PCSQ_VALID_CNT_XI << 10481 24); 10482 REG_WR(sc, BCE_HC_STAT_GEN_SEL_0, val); 10483 10484 /* Input queue to the Management Control Processor */ 10485 cmd = REG_RD_IND(sc, BCE_MCP_MCPQ_FTQ_CMD); 10486 ctl = REG_RD_IND(sc, BCE_MCP_MCPQ_FTQ_CTL); 10487 cur_depth = (ctl & BCE_MCP_MCPQ_FTQ_CTL_CUR_DEPTH) >> 22; 10488 max_depth = (ctl & BCE_MCP_MCPQ_FTQ_CTL_MAX_DEPTH) >> 12; 10489 valid_cnt = REG_RD(sc, BCE_HC_STAT_GEN_STAT0); 10490 BCE_PRINTF(" MCP 0x%08X 0x%08X 0x%08X 0x%08X 0x%08X\n", 10491 cmd, ctl, cur_depth, max_depth, valid_cnt); 10492 10493 /* Input queue to the Command Processor */ 10494 cmd = REG_RD_IND(sc, BCE_CP_CPQ_FTQ_CMD); 10495 ctl = REG_RD_IND(sc, BCE_CP_CPQ_FTQ_CTL); 10496 cur_depth = (ctl & BCE_CP_CPQ_FTQ_CTL_CUR_DEPTH) >> 22; 10497 max_depth = (ctl & BCE_CP_CPQ_FTQ_CTL_MAX_DEPTH) >> 12; 10498 valid_cnt = REG_RD(sc, BCE_HC_STAT_GEN_STAT1); 10499 BCE_PRINTF(" CP 0x%08X 0x%08X 0x%08X 0x%08X 0x%08X\n", 10500 cmd, ctl, cur_depth, max_depth, valid_cnt); 10501 10502 /* Input queue to the Completion Scheduler state machine */ 10503 cmd = REG_RD(sc, BCE_CSCH_CH_FTQ_CMD); 10504 ctl = REG_RD(sc, BCE_CSCH_CH_FTQ_CTL); 10505 cur_depth = (ctl & BCE_CSCH_CH_FTQ_CTL_CUR_DEPTH) >> 22; 10506 max_depth = (ctl & BCE_CSCH_CH_FTQ_CTL_MAX_DEPTH) >> 12; 10507 valid_cnt = REG_RD(sc, BCE_HC_STAT_GEN_STAT2); 10508 BCE_PRINTF(" CS 0x%08X 0x%08X 0x%08X 0x%08X 0x%08X\n", 10509 cmd, ctl, cur_depth, max_depth, valid_cnt); 10510 10511 if (BCE_CHIP_NUM(sc) == BCE_CHIP_NUM_5709) { 10512 /* Input queue to the RV2P Command Scheduler */ 10513 cmd = REG_RD(sc, BCE_RV2PCSR_FTQ_CMD); 10514 ctl = REG_RD(sc, BCE_RV2PCSR_FTQ_CTL); 10515 cur_depth = (ctl & 0xFFC00000) >> 22; 10516 max_depth = (ctl & 0x003FF000) >> 12; 10517 valid_cnt = REG_RD(sc, BCE_HC_STAT_GEN_STAT3); 10518 BCE_PRINTF(" RV2PCSR 0x%08X 0x%08X 0x%08X 0x%08X 0x%08X\n", 10519 cmd, ctl, cur_depth, max_depth, valid_cnt); 10520 } 10521 10522 BCE_PRINTF( 10523 "----------------------------" 10524 "----------------" 10525 "----------------------------\n"); 10526 } 10527 10528 10529 /****************************************************************************/ 10530 /* Prints out the TX chain. */ 10531 /* */ 10532 /* Returns: */ 10533 /* Nothing. */ 10534 /****************************************************************************/ 10535 static __attribute__ ((noinline)) void 10536 bce_dump_tx_chain(struct bce_softc *sc, u16 tx_prod, int count) 10537 { 10538 struct tx_bd *txbd; 10539 10540 /* First some info about the tx_bd chain structure. */ 10541 BCE_PRINTF( 10542 "----------------------------" 10543 " tx_bd chain " 10544 "----------------------------\n"); 10545 10546 BCE_PRINTF("page size = 0x%08X, tx chain pages = 0x%08X\n", 10547 (u32) BCM_PAGE_SIZE, (u32) sc->tx_pages); 10548 BCE_PRINTF("tx_bd per page = 0x%08X, usable tx_bd per page = 0x%08X\n", 10549 (u32) TOTAL_TX_BD_PER_PAGE, (u32) USABLE_TX_BD_PER_PAGE); 10550 BCE_PRINTF("total tx_bd = 0x%08X\n", (u32) TOTAL_TX_BD_ALLOC); 10551 10552 BCE_PRINTF( 10553 "----------------------------" 10554 " tx_bd data " 10555 "----------------------------\n"); 10556 10557 /* Now print out a decoded list of TX buffer descriptors. */ 10558 for (int i = 0; i < count; i++) { 10559 txbd = &sc->tx_bd_chain[TX_PAGE(tx_prod)][TX_IDX(tx_prod)]; 10560 bce_dump_txbd(sc, tx_prod, txbd); 10561 tx_prod++; 10562 } 10563 10564 BCE_PRINTF( 10565 "----------------------------" 10566 "----------------" 10567 "----------------------------\n"); 10568 } 10569 10570 10571 /****************************************************************************/ 10572 /* Prints out the RX chain. */ 10573 /* */ 10574 /* Returns: */ 10575 /* Nothing. */ 10576 /****************************************************************************/ 10577 static __attribute__ ((noinline)) void 10578 bce_dump_rx_bd_chain(struct bce_softc *sc, u16 rx_prod, int count) 10579 { 10580 struct rx_bd *rxbd; 10581 10582 /* First some info about the rx_bd chain structure. */ 10583 BCE_PRINTF( 10584 "----------------------------" 10585 " rx_bd chain " 10586 "----------------------------\n"); 10587 10588 BCE_PRINTF("page size = 0x%08X, rx chain pages = 0x%08X\n", 10589 (u32) BCM_PAGE_SIZE, (u32) sc->rx_pages); 10590 10591 BCE_PRINTF("rx_bd per page = 0x%08X, usable rx_bd per page = 0x%08X\n", 10592 (u32) TOTAL_RX_BD_PER_PAGE, (u32) USABLE_RX_BD_PER_PAGE); 10593 10594 BCE_PRINTF("total rx_bd = 0x%08X\n", (u32) TOTAL_RX_BD_ALLOC); 10595 10596 BCE_PRINTF( 10597 "----------------------------" 10598 " rx_bd data " 10599 "----------------------------\n"); 10600 10601 /* Now print out the rx_bd's themselves. */ 10602 for (int i = 0; i < count; i++) { 10603 rxbd = &sc->rx_bd_chain[RX_PAGE(rx_prod)][RX_IDX(rx_prod)]; 10604 bce_dump_rxbd(sc, rx_prod, rxbd); 10605 rx_prod = RX_CHAIN_IDX(rx_prod + 1); 10606 } 10607 10608 BCE_PRINTF( 10609 "----------------------------" 10610 "----------------" 10611 "----------------------------\n"); 10612 } 10613 10614 10615 /****************************************************************************/ 10616 /* Prints out the page chain. */ 10617 /* */ 10618 /* Returns: */ 10619 /* Nothing. */ 10620 /****************************************************************************/ 10621 static __attribute__ ((noinline)) void 10622 bce_dump_pg_chain(struct bce_softc *sc, u16 pg_prod, int count) 10623 { 10624 struct rx_bd *pgbd; 10625 10626 /* First some info about the page chain structure. */ 10627 BCE_PRINTF( 10628 "----------------------------" 10629 " page chain " 10630 "----------------------------\n"); 10631 10632 BCE_PRINTF("page size = 0x%08X, pg chain pages = 0x%08X\n", 10633 (u32) BCM_PAGE_SIZE, (u32) sc->pg_pages); 10634 10635 BCE_PRINTF("rx_bd per page = 0x%08X, usable rx_bd per page = 0x%08X\n", 10636 (u32) TOTAL_PG_BD_PER_PAGE, (u32) USABLE_PG_BD_PER_PAGE); 10637 10638 BCE_PRINTF("total pg_bd = 0x%08X\n", (u32) TOTAL_PG_BD_ALLOC); 10639 10640 BCE_PRINTF( 10641 "----------------------------" 10642 " page data " 10643 "----------------------------\n"); 10644 10645 /* Now print out the rx_bd's themselves. */ 10646 for (int i = 0; i < count; i++) { 10647 pgbd = &sc->pg_bd_chain[PG_PAGE(pg_prod)][PG_IDX(pg_prod)]; 10648 bce_dump_pgbd(sc, pg_prod, pgbd); 10649 pg_prod = PG_CHAIN_IDX(pg_prod + 1); 10650 } 10651 10652 BCE_PRINTF( 10653 "----------------------------" 10654 "----------------" 10655 "----------------------------\n"); 10656 } 10657 10658 10659 #define BCE_PRINT_RX_CONS(arg) \ 10660 if (sblk->status_rx_quick_consumer_index##arg) \ 10661 BCE_PRINTF("0x%04X(0x%04X) - rx_quick_consumer_index%d\n", \ 10662 sblk->status_rx_quick_consumer_index##arg, (u16) \ 10663 RX_CHAIN_IDX(sblk->status_rx_quick_consumer_index##arg), \ 10664 arg); 10665 10666 10667 #define BCE_PRINT_TX_CONS(arg) \ 10668 if (sblk->status_tx_quick_consumer_index##arg) \ 10669 BCE_PRINTF("0x%04X(0x%04X) - tx_quick_consumer_index%d\n", \ 10670 sblk->status_tx_quick_consumer_index##arg, (u16) \ 10671 TX_CHAIN_IDX(sblk->status_tx_quick_consumer_index##arg), \ 10672 arg); 10673 10674 /****************************************************************************/ 10675 /* Prints out the status block from host memory. */ 10676 /* */ 10677 /* Returns: */ 10678 /* Nothing. */ 10679 /****************************************************************************/ 10680 static __attribute__ ((noinline)) void 10681 bce_dump_status_block(struct bce_softc *sc) 10682 { 10683 struct status_block *sblk; 10684 10685 bus_dmamap_sync(sc->status_tag, sc->status_map, BUS_DMASYNC_POSTREAD); 10686 10687 sblk = sc->status_block; 10688 10689 BCE_PRINTF( 10690 "----------------------------" 10691 " Status Block " 10692 "----------------------------\n"); 10693 10694 /* Theses indices are used for normal L2 drivers. */ 10695 BCE_PRINTF(" 0x%08X - attn_bits\n", 10696 sblk->status_attn_bits); 10697 10698 BCE_PRINTF(" 0x%08X - attn_bits_ack\n", 10699 sblk->status_attn_bits_ack); 10700 10701 BCE_PRINT_RX_CONS(0); 10702 BCE_PRINT_TX_CONS(0) 10703 10704 BCE_PRINTF(" 0x%04X - status_idx\n", sblk->status_idx); 10705 10706 /* Theses indices are not used for normal L2 drivers. */ 10707 BCE_PRINT_RX_CONS(1); BCE_PRINT_RX_CONS(2); BCE_PRINT_RX_CONS(3); 10708 BCE_PRINT_RX_CONS(4); BCE_PRINT_RX_CONS(5); BCE_PRINT_RX_CONS(6); 10709 BCE_PRINT_RX_CONS(7); BCE_PRINT_RX_CONS(8); BCE_PRINT_RX_CONS(9); 10710 BCE_PRINT_RX_CONS(10); BCE_PRINT_RX_CONS(11); BCE_PRINT_RX_CONS(12); 10711 BCE_PRINT_RX_CONS(13); BCE_PRINT_RX_CONS(14); BCE_PRINT_RX_CONS(15); 10712 10713 BCE_PRINT_TX_CONS(1); BCE_PRINT_TX_CONS(2); BCE_PRINT_TX_CONS(3); 10714 10715 if (sblk->status_completion_producer_index || 10716 sblk->status_cmd_consumer_index) 10717 BCE_PRINTF("com_prod = 0x%08X, cmd_cons = 0x%08X\n", 10718 sblk->status_completion_producer_index, 10719 sblk->status_cmd_consumer_index); 10720 10721 BCE_PRINTF( 10722 "----------------------------" 10723 "----------------" 10724 "----------------------------\n"); 10725 } 10726 10727 10728 #define BCE_PRINT_64BIT_STAT(arg) \ 10729 if (sblk->arg##_lo || sblk->arg##_hi) \ 10730 BCE_PRINTF("0x%08X:%08X : %s\n", sblk->arg##_hi, \ 10731 sblk->arg##_lo, #arg); 10732 10733 #define BCE_PRINT_32BIT_STAT(arg) \ 10734 if (sblk->arg) \ 10735 BCE_PRINTF(" 0x%08X : %s\n", \ 10736 sblk->arg, #arg); 10737 10738 /****************************************************************************/ 10739 /* Prints out the statistics block from host memory. */ 10740 /* */ 10741 /* Returns: */ 10742 /* Nothing. */ 10743 /****************************************************************************/ 10744 static __attribute__ ((noinline)) void 10745 bce_dump_stats_block(struct bce_softc *sc) 10746 { 10747 struct statistics_block *sblk; 10748 10749 bus_dmamap_sync(sc->stats_tag, sc->stats_map, BUS_DMASYNC_POSTREAD); 10750 10751 sblk = sc->stats_block; 10752 10753 BCE_PRINTF( 10754 "---------------" 10755 " Stats Block (All Stats Not Shown Are 0) " 10756 "---------------\n"); 10757 10758 BCE_PRINT_64BIT_STAT(stat_IfHCInOctets); 10759 BCE_PRINT_64BIT_STAT(stat_IfHCInBadOctets); 10760 BCE_PRINT_64BIT_STAT(stat_IfHCOutOctets); 10761 BCE_PRINT_64BIT_STAT(stat_IfHCOutBadOctets); 10762 BCE_PRINT_64BIT_STAT(stat_IfHCInUcastPkts); 10763 BCE_PRINT_64BIT_STAT(stat_IfHCInBroadcastPkts); 10764 BCE_PRINT_64BIT_STAT(stat_IfHCInMulticastPkts); 10765 BCE_PRINT_64BIT_STAT(stat_IfHCOutUcastPkts); 10766 BCE_PRINT_64BIT_STAT(stat_IfHCOutBroadcastPkts); 10767 BCE_PRINT_64BIT_STAT(stat_IfHCOutMulticastPkts); 10768 BCE_PRINT_32BIT_STAT( 10769 stat_emac_tx_stat_dot3statsinternalmactransmiterrors); 10770 BCE_PRINT_32BIT_STAT(stat_Dot3StatsCarrierSenseErrors); 10771 BCE_PRINT_32BIT_STAT(stat_Dot3StatsFCSErrors); 10772 BCE_PRINT_32BIT_STAT(stat_Dot3StatsAlignmentErrors); 10773 BCE_PRINT_32BIT_STAT(stat_Dot3StatsSingleCollisionFrames); 10774 BCE_PRINT_32BIT_STAT(stat_Dot3StatsMultipleCollisionFrames); 10775 BCE_PRINT_32BIT_STAT(stat_Dot3StatsDeferredTransmissions); 10776 BCE_PRINT_32BIT_STAT(stat_Dot3StatsExcessiveCollisions); 10777 BCE_PRINT_32BIT_STAT(stat_Dot3StatsLateCollisions); 10778 BCE_PRINT_32BIT_STAT(stat_EtherStatsCollisions); 10779 BCE_PRINT_32BIT_STAT(stat_EtherStatsFragments); 10780 BCE_PRINT_32BIT_STAT(stat_EtherStatsJabbers); 10781 BCE_PRINT_32BIT_STAT(stat_EtherStatsUndersizePkts); 10782 BCE_PRINT_32BIT_STAT(stat_EtherStatsOversizePkts); 10783 BCE_PRINT_32BIT_STAT(stat_EtherStatsPktsRx64Octets); 10784 BCE_PRINT_32BIT_STAT(stat_EtherStatsPktsRx65Octetsto127Octets); 10785 BCE_PRINT_32BIT_STAT(stat_EtherStatsPktsRx128Octetsto255Octets); 10786 BCE_PRINT_32BIT_STAT(stat_EtherStatsPktsRx256Octetsto511Octets); 10787 BCE_PRINT_32BIT_STAT(stat_EtherStatsPktsRx512Octetsto1023Octets); 10788 BCE_PRINT_32BIT_STAT(stat_EtherStatsPktsRx1024Octetsto1522Octets); 10789 BCE_PRINT_32BIT_STAT(stat_EtherStatsPktsRx1523Octetsto9022Octets); 10790 BCE_PRINT_32BIT_STAT(stat_EtherStatsPktsTx64Octets); 10791 BCE_PRINT_32BIT_STAT(stat_EtherStatsPktsTx65Octetsto127Octets); 10792 BCE_PRINT_32BIT_STAT(stat_EtherStatsPktsTx128Octetsto255Octets); 10793 BCE_PRINT_32BIT_STAT(stat_EtherStatsPktsTx256Octetsto511Octets); 10794 BCE_PRINT_32BIT_STAT(stat_EtherStatsPktsTx512Octetsto1023Octets); 10795 BCE_PRINT_32BIT_STAT(stat_EtherStatsPktsTx1024Octetsto1522Octets); 10796 BCE_PRINT_32BIT_STAT(stat_EtherStatsPktsTx1523Octetsto9022Octets); 10797 BCE_PRINT_32BIT_STAT(stat_XonPauseFramesReceived); 10798 BCE_PRINT_32BIT_STAT(stat_XoffPauseFramesReceived); 10799 BCE_PRINT_32BIT_STAT(stat_OutXonSent); 10800 BCE_PRINT_32BIT_STAT(stat_OutXoffSent); 10801 BCE_PRINT_32BIT_STAT(stat_FlowControlDone); 10802 BCE_PRINT_32BIT_STAT(stat_MacControlFramesReceived); 10803 BCE_PRINT_32BIT_STAT(stat_XoffStateEntered); 10804 BCE_PRINT_32BIT_STAT(stat_IfInFramesL2FilterDiscards); 10805 BCE_PRINT_32BIT_STAT(stat_IfInRuleCheckerDiscards); 10806 BCE_PRINT_32BIT_STAT(stat_IfInFTQDiscards); 10807 BCE_PRINT_32BIT_STAT(stat_IfInMBUFDiscards); 10808 BCE_PRINT_32BIT_STAT(stat_IfInRuleCheckerP4Hit); 10809 BCE_PRINT_32BIT_STAT(stat_CatchupInRuleCheckerDiscards); 10810 BCE_PRINT_32BIT_STAT(stat_CatchupInFTQDiscards); 10811 BCE_PRINT_32BIT_STAT(stat_CatchupInMBUFDiscards); 10812 BCE_PRINT_32BIT_STAT(stat_CatchupInRuleCheckerP4Hit); 10813 10814 BCE_PRINTF( 10815 "----------------------------" 10816 "----------------" 10817 "----------------------------\n"); 10818 } 10819 10820 10821 /****************************************************************************/ 10822 /* Prints out a summary of the driver state. */ 10823 /* */ 10824 /* Returns: */ 10825 /* Nothing. */ 10826 /****************************************************************************/ 10827 static __attribute__ ((noinline)) void 10828 bce_dump_driver_state(struct bce_softc *sc) 10829 { 10830 u32 val_hi, val_lo; 10831 10832 BCE_PRINTF( 10833 "-----------------------------" 10834 " Driver State " 10835 "-----------------------------\n"); 10836 10837 val_hi = BCE_ADDR_HI(sc); 10838 val_lo = BCE_ADDR_LO(sc); 10839 BCE_PRINTF("0x%08X:%08X - (sc) driver softc structure virtual " 10840 "address\n", val_hi, val_lo); 10841 10842 val_hi = BCE_ADDR_HI(sc->bce_vhandle); 10843 val_lo = BCE_ADDR_LO(sc->bce_vhandle); 10844 BCE_PRINTF("0x%08X:%08X - (sc->bce_vhandle) PCI BAR virtual " 10845 "address\n", val_hi, val_lo); 10846 10847 val_hi = BCE_ADDR_HI(sc->status_block); 10848 val_lo = BCE_ADDR_LO(sc->status_block); 10849 BCE_PRINTF("0x%08X:%08X - (sc->status_block) status block " 10850 "virtual address\n", val_hi, val_lo); 10851 10852 val_hi = BCE_ADDR_HI(sc->stats_block); 10853 val_lo = BCE_ADDR_LO(sc->stats_block); 10854 BCE_PRINTF("0x%08X:%08X - (sc->stats_block) statistics block " 10855 "virtual address\n", val_hi, val_lo); 10856 10857 val_hi = BCE_ADDR_HI(sc->tx_bd_chain); 10858 val_lo = BCE_ADDR_LO(sc->tx_bd_chain); 10859 BCE_PRINTF("0x%08X:%08X - (sc->tx_bd_chain) tx_bd chain " 10860 "virtual adddress\n", val_hi, val_lo); 10861 10862 val_hi = BCE_ADDR_HI(sc->rx_bd_chain); 10863 val_lo = BCE_ADDR_LO(sc->rx_bd_chain); 10864 BCE_PRINTF("0x%08X:%08X - (sc->rx_bd_chain) rx_bd chain " 10865 "virtual address\n", val_hi, val_lo); 10866 10867 if (bce_hdr_split == TRUE) { 10868 val_hi = BCE_ADDR_HI(sc->pg_bd_chain); 10869 val_lo = BCE_ADDR_LO(sc->pg_bd_chain); 10870 BCE_PRINTF("0x%08X:%08X - (sc->pg_bd_chain) page chain " 10871 "virtual address\n", val_hi, val_lo); 10872 } 10873 10874 val_hi = BCE_ADDR_HI(sc->tx_mbuf_ptr); 10875 val_lo = BCE_ADDR_LO(sc->tx_mbuf_ptr); 10876 BCE_PRINTF("0x%08X:%08X - (sc->tx_mbuf_ptr) tx mbuf chain " 10877 "virtual address\n", val_hi, val_lo); 10878 10879 val_hi = BCE_ADDR_HI(sc->rx_mbuf_ptr); 10880 val_lo = BCE_ADDR_LO(sc->rx_mbuf_ptr); 10881 BCE_PRINTF("0x%08X:%08X - (sc->rx_mbuf_ptr) rx mbuf chain " 10882 "virtual address\n", val_hi, val_lo); 10883 10884 if (bce_hdr_split == TRUE) { 10885 val_hi = BCE_ADDR_HI(sc->pg_mbuf_ptr); 10886 val_lo = BCE_ADDR_LO(sc->pg_mbuf_ptr); 10887 BCE_PRINTF("0x%08X:%08X - (sc->pg_mbuf_ptr) page mbuf chain " 10888 "virtual address\n", val_hi, val_lo); 10889 } 10890 10891 BCE_PRINTF(" 0x%016llX - (sc->interrupts_generated) " 10892 "h/w intrs\n", 10893 (long long unsigned int) sc->interrupts_generated); 10894 10895 BCE_PRINTF(" 0x%016llX - (sc->interrupts_rx) " 10896 "rx interrupts handled\n", 10897 (long long unsigned int) sc->interrupts_rx); 10898 10899 BCE_PRINTF(" 0x%016llX - (sc->interrupts_tx) " 10900 "tx interrupts handled\n", 10901 (long long unsigned int) sc->interrupts_tx); 10902 10903 BCE_PRINTF(" 0x%016llX - (sc->phy_interrupts) " 10904 "phy interrupts handled\n", 10905 (long long unsigned int) sc->phy_interrupts); 10906 10907 BCE_PRINTF(" 0x%08X - (sc->last_status_idx) " 10908 "status block index\n", sc->last_status_idx); 10909 10910 BCE_PRINTF(" 0x%04X(0x%04X) - (sc->tx_prod) tx producer " 10911 "index\n", sc->tx_prod, (u16) TX_CHAIN_IDX(sc->tx_prod)); 10912 10913 BCE_PRINTF(" 0x%04X(0x%04X) - (sc->tx_cons) tx consumer " 10914 "index\n", sc->tx_cons, (u16) TX_CHAIN_IDX(sc->tx_cons)); 10915 10916 BCE_PRINTF(" 0x%08X - (sc->tx_prod_bseq) tx producer " 10917 "byte seq index\n", sc->tx_prod_bseq); 10918 10919 BCE_PRINTF(" 0x%08X - (sc->debug_tx_mbuf_alloc) tx " 10920 "mbufs allocated\n", sc->debug_tx_mbuf_alloc); 10921 10922 BCE_PRINTF(" 0x%08X - (sc->used_tx_bd) used " 10923 "tx_bd's\n", sc->used_tx_bd); 10924 10925 BCE_PRINTF(" 0x%04X/0x%04X - (sc->tx_hi_watermark)/" 10926 "(sc->max_tx_bd)\n", sc->tx_hi_watermark, sc->max_tx_bd); 10927 10928 BCE_PRINTF(" 0x%04X(0x%04X) - (sc->rx_prod) rx producer " 10929 "index\n", sc->rx_prod, (u16) RX_CHAIN_IDX(sc->rx_prod)); 10930 10931 BCE_PRINTF(" 0x%04X(0x%04X) - (sc->rx_cons) rx consumer " 10932 "index\n", sc->rx_cons, (u16) RX_CHAIN_IDX(sc->rx_cons)); 10933 10934 BCE_PRINTF(" 0x%08X - (sc->rx_prod_bseq) rx producer " 10935 "byte seq index\n", sc->rx_prod_bseq); 10936 10937 BCE_PRINTF(" 0x%04X/0x%04X - (sc->rx_low_watermark)/" 10938 "(sc->max_rx_bd)\n", sc->rx_low_watermark, sc->max_rx_bd); 10939 10940 BCE_PRINTF(" 0x%08X - (sc->debug_rx_mbuf_alloc) rx " 10941 "mbufs allocated\n", sc->debug_rx_mbuf_alloc); 10942 10943 BCE_PRINTF(" 0x%08X - (sc->free_rx_bd) free " 10944 "rx_bd's\n", sc->free_rx_bd); 10945 10946 if (bce_hdr_split == TRUE) { 10947 BCE_PRINTF(" 0x%04X(0x%04X) - (sc->pg_prod) page producer " 10948 "index\n", sc->pg_prod, (u16) PG_CHAIN_IDX(sc->pg_prod)); 10949 10950 BCE_PRINTF(" 0x%04X(0x%04X) - (sc->pg_cons) page consumer " 10951 "index\n", sc->pg_cons, (u16) PG_CHAIN_IDX(sc->pg_cons)); 10952 10953 BCE_PRINTF(" 0x%08X - (sc->debug_pg_mbuf_alloc) page " 10954 "mbufs allocated\n", sc->debug_pg_mbuf_alloc); 10955 } 10956 10957 BCE_PRINTF(" 0x%08X - (sc->free_pg_bd) free page " 10958 "rx_bd's\n", sc->free_pg_bd); 10959 10960 BCE_PRINTF(" 0x%04X/0x%04X - (sc->pg_low_watermark)/" 10961 "(sc->max_pg_bd)\n", sc->pg_low_watermark, sc->max_pg_bd); 10962 10963 BCE_PRINTF(" 0x%08X - (sc->mbuf_alloc_failed_count) " 10964 "mbuf alloc failures\n", sc->mbuf_alloc_failed_count); 10965 10966 BCE_PRINTF(" 0x%08X - (sc->bce_flags) " 10967 "bce mac flags\n", sc->bce_flags); 10968 10969 BCE_PRINTF(" 0x%08X - (sc->bce_phy_flags) " 10970 "bce phy flags\n", sc->bce_phy_flags); 10971 10972 BCE_PRINTF( 10973 "----------------------------" 10974 "----------------" 10975 "----------------------------\n"); 10976 } 10977 10978 10979 /****************************************************************************/ 10980 /* Prints out the hardware state through a summary of important register, */ 10981 /* followed by a complete register dump. */ 10982 /* */ 10983 /* Returns: */ 10984 /* Nothing. */ 10985 /****************************************************************************/ 10986 static __attribute__ ((noinline)) void 10987 bce_dump_hw_state(struct bce_softc *sc) 10988 { 10989 u32 val; 10990 10991 BCE_PRINTF( 10992 "----------------------------" 10993 " Hardware State " 10994 "----------------------------\n"); 10995 10996 BCE_PRINTF("%s - bootcode version\n", sc->bce_bc_ver); 10997 10998 val = REG_RD(sc, BCE_MISC_ENABLE_STATUS_BITS); 10999 BCE_PRINTF("0x%08X - (0x%06X) misc_enable_status_bits\n", 11000 val, BCE_MISC_ENABLE_STATUS_BITS); 11001 11002 val = REG_RD(sc, BCE_DMA_STATUS); 11003 BCE_PRINTF("0x%08X - (0x%06X) dma_status\n", 11004 val, BCE_DMA_STATUS); 11005 11006 val = REG_RD(sc, BCE_CTX_STATUS); 11007 BCE_PRINTF("0x%08X - (0x%06X) ctx_status\n", 11008 val, BCE_CTX_STATUS); 11009 11010 val = REG_RD(sc, BCE_EMAC_STATUS); 11011 BCE_PRINTF("0x%08X - (0x%06X) emac_status\n", 11012 val, BCE_EMAC_STATUS); 11013 11014 val = REG_RD(sc, BCE_RPM_STATUS); 11015 BCE_PRINTF("0x%08X - (0x%06X) rpm_status\n", 11016 val, BCE_RPM_STATUS); 11017 11018 /* ToDo: Create a #define for this constant. */ 11019 val = REG_RD(sc, 0x2004); 11020 BCE_PRINTF("0x%08X - (0x%06X) rlup_status\n", 11021 val, 0x2004); 11022 11023 val = REG_RD(sc, BCE_RV2P_STATUS); 11024 BCE_PRINTF("0x%08X - (0x%06X) rv2p_status\n", 11025 val, BCE_RV2P_STATUS); 11026 11027 /* ToDo: Create a #define for this constant. */ 11028 val = REG_RD(sc, 0x2c04); 11029 BCE_PRINTF("0x%08X - (0x%06X) rdma_status\n", 11030 val, 0x2c04); 11031 11032 val = REG_RD(sc, BCE_TBDR_STATUS); 11033 BCE_PRINTF("0x%08X - (0x%06X) tbdr_status\n", 11034 val, BCE_TBDR_STATUS); 11035 11036 val = REG_RD(sc, BCE_TDMA_STATUS); 11037 BCE_PRINTF("0x%08X - (0x%06X) tdma_status\n", 11038 val, BCE_TDMA_STATUS); 11039 11040 val = REG_RD(sc, BCE_HC_STATUS); 11041 BCE_PRINTF("0x%08X - (0x%06X) hc_status\n", 11042 val, BCE_HC_STATUS); 11043 11044 val = REG_RD_IND(sc, BCE_TXP_CPU_STATE); 11045 BCE_PRINTF("0x%08X - (0x%06X) txp_cpu_state\n", 11046 val, BCE_TXP_CPU_STATE); 11047 11048 val = REG_RD_IND(sc, BCE_TPAT_CPU_STATE); 11049 BCE_PRINTF("0x%08X - (0x%06X) tpat_cpu_state\n", 11050 val, BCE_TPAT_CPU_STATE); 11051 11052 val = REG_RD_IND(sc, BCE_RXP_CPU_STATE); 11053 BCE_PRINTF("0x%08X - (0x%06X) rxp_cpu_state\n", 11054 val, BCE_RXP_CPU_STATE); 11055 11056 val = REG_RD_IND(sc, BCE_COM_CPU_STATE); 11057 BCE_PRINTF("0x%08X - (0x%06X) com_cpu_state\n", 11058 val, BCE_COM_CPU_STATE); 11059 11060 val = REG_RD_IND(sc, BCE_MCP_CPU_STATE); 11061 BCE_PRINTF("0x%08X - (0x%06X) mcp_cpu_state\n", 11062 val, BCE_MCP_CPU_STATE); 11063 11064 val = REG_RD_IND(sc, BCE_CP_CPU_STATE); 11065 BCE_PRINTF("0x%08X - (0x%06X) cp_cpu_state\n", 11066 val, BCE_CP_CPU_STATE); 11067 11068 BCE_PRINTF( 11069 "----------------------------" 11070 "----------------" 11071 "----------------------------\n"); 11072 11073 BCE_PRINTF( 11074 "----------------------------" 11075 " Register Dump " 11076 "----------------------------\n"); 11077 11078 for (int i = 0x400; i < 0x8000; i += 0x10) { 11079 BCE_PRINTF("0x%04X: 0x%08X 0x%08X 0x%08X 0x%08X\n", 11080 i, REG_RD(sc, i), REG_RD(sc, i + 0x4), 11081 REG_RD(sc, i + 0x8), REG_RD(sc, i + 0xC)); 11082 } 11083 11084 BCE_PRINTF( 11085 "----------------------------" 11086 "----------------" 11087 "----------------------------\n"); 11088 } 11089 11090 11091 /****************************************************************************/ 11092 /* Prints out the contentst of shared memory which is used for host driver */ 11093 /* to bootcode firmware communication. */ 11094 /* */ 11095 /* Returns: */ 11096 /* Nothing. */ 11097 /****************************************************************************/ 11098 static __attribute__ ((noinline)) void 11099 bce_dump_shmem_state(struct bce_softc *sc) 11100 { 11101 BCE_PRINTF( 11102 "----------------------------" 11103 " Hardware State " 11104 "----------------------------\n"); 11105 11106 BCE_PRINTF("0x%08X - Shared memory base address\n", 11107 sc->bce_shmem_base); 11108 BCE_PRINTF("%s - bootcode version\n", 11109 sc->bce_bc_ver); 11110 11111 BCE_PRINTF( 11112 "----------------------------" 11113 " Shared Mem " 11114 "----------------------------\n"); 11115 11116 for (int i = 0x0; i < 0x200; i += 0x10) { 11117 BCE_PRINTF("0x%04X: 0x%08X 0x%08X 0x%08X 0x%08X\n", 11118 i, bce_shmem_rd(sc, i), bce_shmem_rd(sc, i + 0x4), 11119 bce_shmem_rd(sc, i + 0x8), bce_shmem_rd(sc, i + 0xC)); 11120 } 11121 11122 BCE_PRINTF( 11123 "----------------------------" 11124 "----------------" 11125 "----------------------------\n"); 11126 } 11127 11128 11129 /****************************************************************************/ 11130 /* Prints out the mailbox queue registers. */ 11131 /* */ 11132 /* Returns: */ 11133 /* Nothing. */ 11134 /****************************************************************************/ 11135 static __attribute__ ((noinline)) void 11136 bce_dump_mq_regs(struct bce_softc *sc) 11137 { 11138 BCE_PRINTF( 11139 "----------------------------" 11140 " MQ Regs " 11141 "----------------------------\n"); 11142 11143 BCE_PRINTF( 11144 "----------------------------" 11145 "----------------" 11146 "----------------------------\n"); 11147 11148 for (int i = 0x3c00; i < 0x4000; i += 0x10) { 11149 BCE_PRINTF("0x%04X: 0x%08X 0x%08X 0x%08X 0x%08X\n", 11150 i, REG_RD(sc, i), REG_RD(sc, i + 0x4), 11151 REG_RD(sc, i + 0x8), REG_RD(sc, i + 0xC)); 11152 } 11153 11154 BCE_PRINTF( 11155 "----------------------------" 11156 "----------------" 11157 "----------------------------\n"); 11158 } 11159 11160 11161 /****************************************************************************/ 11162 /* Prints out the bootcode state. */ 11163 /* */ 11164 /* Returns: */ 11165 /* Nothing. */ 11166 /****************************************************************************/ 11167 static __attribute__ ((noinline)) void 11168 bce_dump_bc_state(struct bce_softc *sc) 11169 { 11170 u32 val; 11171 11172 BCE_PRINTF( 11173 "----------------------------" 11174 " Bootcode State " 11175 "----------------------------\n"); 11176 11177 BCE_PRINTF("%s - bootcode version\n", sc->bce_bc_ver); 11178 11179 val = bce_shmem_rd(sc, BCE_BC_RESET_TYPE); 11180 BCE_PRINTF("0x%08X - (0x%06X) reset_type\n", 11181 val, BCE_BC_RESET_TYPE); 11182 11183 val = bce_shmem_rd(sc, BCE_BC_STATE); 11184 BCE_PRINTF("0x%08X - (0x%06X) state\n", 11185 val, BCE_BC_STATE); 11186 11187 val = bce_shmem_rd(sc, BCE_BC_STATE_CONDITION); 11188 BCE_PRINTF("0x%08X - (0x%06X) condition\n", 11189 val, BCE_BC_STATE_CONDITION); 11190 11191 val = bce_shmem_rd(sc, BCE_BC_STATE_DEBUG_CMD); 11192 BCE_PRINTF("0x%08X - (0x%06X) debug_cmd\n", 11193 val, BCE_BC_STATE_DEBUG_CMD); 11194 11195 BCE_PRINTF( 11196 "----------------------------" 11197 "----------------" 11198 "----------------------------\n"); 11199 } 11200 11201 11202 /****************************************************************************/ 11203 /* Prints out the TXP processor state. */ 11204 /* */ 11205 /* Returns: */ 11206 /* Nothing. */ 11207 /****************************************************************************/ 11208 static __attribute__ ((noinline)) void 11209 bce_dump_txp_state(struct bce_softc *sc, int regs) 11210 { 11211 u32 val; 11212 u32 fw_version[3]; 11213 11214 BCE_PRINTF( 11215 "----------------------------" 11216 " TXP State " 11217 "----------------------------\n"); 11218 11219 for (int i = 0; i < 3; i++) 11220 fw_version[i] = htonl(REG_RD_IND(sc, 11221 (BCE_TXP_SCRATCH + 0x10 + i * 4))); 11222 BCE_PRINTF("Firmware version - %s\n", (char *) fw_version); 11223 11224 val = REG_RD_IND(sc, BCE_TXP_CPU_MODE); 11225 BCE_PRINTF("0x%08X - (0x%06X) txp_cpu_mode\n", 11226 val, BCE_TXP_CPU_MODE); 11227 11228 val = REG_RD_IND(sc, BCE_TXP_CPU_STATE); 11229 BCE_PRINTF("0x%08X - (0x%06X) txp_cpu_state\n", 11230 val, BCE_TXP_CPU_STATE); 11231 11232 val = REG_RD_IND(sc, BCE_TXP_CPU_EVENT_MASK); 11233 BCE_PRINTF("0x%08X - (0x%06X) txp_cpu_event_mask\n", 11234 val, BCE_TXP_CPU_EVENT_MASK); 11235 11236 if (regs) { 11237 BCE_PRINTF( 11238 "----------------------------" 11239 " Register Dump " 11240 "----------------------------\n"); 11241 11242 for (int i = BCE_TXP_CPU_MODE; i < 0x68000; i += 0x10) { 11243 /* Skip the big blank spaces */ 11244 if (i < 0x454000 && i > 0x5ffff) 11245 BCE_PRINTF("0x%04X: 0x%08X 0x%08X " 11246 "0x%08X 0x%08X\n", i, 11247 REG_RD_IND(sc, i), 11248 REG_RD_IND(sc, i + 0x4), 11249 REG_RD_IND(sc, i + 0x8), 11250 REG_RD_IND(sc, i + 0xC)); 11251 } 11252 } 11253 11254 BCE_PRINTF( 11255 "----------------------------" 11256 "----------------" 11257 "----------------------------\n"); 11258 } 11259 11260 11261 /****************************************************************************/ 11262 /* Prints out the RXP processor state. */ 11263 /* */ 11264 /* Returns: */ 11265 /* Nothing. */ 11266 /****************************************************************************/ 11267 static __attribute__ ((noinline)) void 11268 bce_dump_rxp_state(struct bce_softc *sc, int regs) 11269 { 11270 u32 val; 11271 u32 fw_version[3]; 11272 11273 BCE_PRINTF( 11274 "----------------------------" 11275 " RXP State " 11276 "----------------------------\n"); 11277 11278 for (int i = 0; i < 3; i++) 11279 fw_version[i] = htonl(REG_RD_IND(sc, 11280 (BCE_RXP_SCRATCH + 0x10 + i * 4))); 11281 11282 BCE_PRINTF("Firmware version - %s\n", (char *) fw_version); 11283 11284 val = REG_RD_IND(sc, BCE_RXP_CPU_MODE); 11285 BCE_PRINTF("0x%08X - (0x%06X) rxp_cpu_mode\n", 11286 val, BCE_RXP_CPU_MODE); 11287 11288 val = REG_RD_IND(sc, BCE_RXP_CPU_STATE); 11289 BCE_PRINTF("0x%08X - (0x%06X) rxp_cpu_state\n", 11290 val, BCE_RXP_CPU_STATE); 11291 11292 val = REG_RD_IND(sc, BCE_RXP_CPU_EVENT_MASK); 11293 BCE_PRINTF("0x%08X - (0x%06X) rxp_cpu_event_mask\n", 11294 val, BCE_RXP_CPU_EVENT_MASK); 11295 11296 if (regs) { 11297 BCE_PRINTF( 11298 "----------------------------" 11299 " Register Dump " 11300 "----------------------------\n"); 11301 11302 for (int i = BCE_RXP_CPU_MODE; i < 0xe8fff; i += 0x10) { 11303 /* Skip the big blank sapces */ 11304 if (i < 0xc5400 && i > 0xdffff) 11305 BCE_PRINTF("0x%04X: 0x%08X 0x%08X " 11306 "0x%08X 0x%08X\n", i, 11307 REG_RD_IND(sc, i), 11308 REG_RD_IND(sc, i + 0x4), 11309 REG_RD_IND(sc, i + 0x8), 11310 REG_RD_IND(sc, i + 0xC)); 11311 } 11312 } 11313 11314 BCE_PRINTF( 11315 "----------------------------" 11316 "----------------" 11317 "----------------------------\n"); 11318 } 11319 11320 11321 /****************************************************************************/ 11322 /* Prints out the TPAT processor state. */ 11323 /* */ 11324 /* Returns: */ 11325 /* Nothing. */ 11326 /****************************************************************************/ 11327 static __attribute__ ((noinline)) void 11328 bce_dump_tpat_state(struct bce_softc *sc, int regs) 11329 { 11330 u32 val; 11331 u32 fw_version[3]; 11332 11333 BCE_PRINTF( 11334 "----------------------------" 11335 " TPAT State " 11336 "----------------------------\n"); 11337 11338 for (int i = 0; i < 3; i++) 11339 fw_version[i] = htonl(REG_RD_IND(sc, 11340 (BCE_TPAT_SCRATCH + 0x410 + i * 4))); 11341 11342 BCE_PRINTF("Firmware version - %s\n", (char *) fw_version); 11343 11344 val = REG_RD_IND(sc, BCE_TPAT_CPU_MODE); 11345 BCE_PRINTF("0x%08X - (0x%06X) tpat_cpu_mode\n", 11346 val, BCE_TPAT_CPU_MODE); 11347 11348 val = REG_RD_IND(sc, BCE_TPAT_CPU_STATE); 11349 BCE_PRINTF("0x%08X - (0x%06X) tpat_cpu_state\n", 11350 val, BCE_TPAT_CPU_STATE); 11351 11352 val = REG_RD_IND(sc, BCE_TPAT_CPU_EVENT_MASK); 11353 BCE_PRINTF("0x%08X - (0x%06X) tpat_cpu_event_mask\n", 11354 val, BCE_TPAT_CPU_EVENT_MASK); 11355 11356 if (regs) { 11357 BCE_PRINTF( 11358 "----------------------------" 11359 " Register Dump " 11360 "----------------------------\n"); 11361 11362 for (int i = BCE_TPAT_CPU_MODE; i < 0xa3fff; i += 0x10) { 11363 /* Skip the big blank spaces */ 11364 if (i < 0x854000 && i > 0x9ffff) 11365 BCE_PRINTF("0x%04X: 0x%08X 0x%08X " 11366 "0x%08X 0x%08X\n", i, 11367 REG_RD_IND(sc, i), 11368 REG_RD_IND(sc, i + 0x4), 11369 REG_RD_IND(sc, i + 0x8), 11370 REG_RD_IND(sc, i + 0xC)); 11371 } 11372 } 11373 11374 BCE_PRINTF( 11375 "----------------------------" 11376 "----------------" 11377 "----------------------------\n"); 11378 } 11379 11380 11381 /****************************************************************************/ 11382 /* Prints out the Command Procesor (CP) state. */ 11383 /* */ 11384 /* Returns: */ 11385 /* Nothing. */ 11386 /****************************************************************************/ 11387 static __attribute__ ((noinline)) void 11388 bce_dump_cp_state(struct bce_softc *sc, int regs) 11389 { 11390 u32 val; 11391 u32 fw_version[3]; 11392 11393 BCE_PRINTF( 11394 "----------------------------" 11395 " CP State " 11396 "----------------------------\n"); 11397 11398 for (int i = 0; i < 3; i++) 11399 fw_version[i] = htonl(REG_RD_IND(sc, 11400 (BCE_CP_SCRATCH + 0x10 + i * 4))); 11401 11402 BCE_PRINTF("Firmware version - %s\n", (char *) fw_version); 11403 11404 val = REG_RD_IND(sc, BCE_CP_CPU_MODE); 11405 BCE_PRINTF("0x%08X - (0x%06X) cp_cpu_mode\n", 11406 val, BCE_CP_CPU_MODE); 11407 11408 val = REG_RD_IND(sc, BCE_CP_CPU_STATE); 11409 BCE_PRINTF("0x%08X - (0x%06X) cp_cpu_state\n", 11410 val, BCE_CP_CPU_STATE); 11411 11412 val = REG_RD_IND(sc, BCE_CP_CPU_EVENT_MASK); 11413 BCE_PRINTF("0x%08X - (0x%06X) cp_cpu_event_mask\n", val, 11414 BCE_CP_CPU_EVENT_MASK); 11415 11416 if (regs) { 11417 BCE_PRINTF( 11418 "----------------------------" 11419 " Register Dump " 11420 "----------------------------\n"); 11421 11422 for (int i = BCE_CP_CPU_MODE; i < 0x1aa000; i += 0x10) { 11423 /* Skip the big blank spaces */ 11424 if (i < 0x185400 && i > 0x19ffff) 11425 BCE_PRINTF("0x%04X: 0x%08X 0x%08X " 11426 "0x%08X 0x%08X\n", i, 11427 REG_RD_IND(sc, i), 11428 REG_RD_IND(sc, i + 0x4), 11429 REG_RD_IND(sc, i + 0x8), 11430 REG_RD_IND(sc, i + 0xC)); 11431 } 11432 } 11433 11434 BCE_PRINTF( 11435 "----------------------------" 11436 "----------------" 11437 "----------------------------\n"); 11438 } 11439 11440 11441 /****************************************************************************/ 11442 /* Prints out the Completion Procesor (COM) state. */ 11443 /* */ 11444 /* Returns: */ 11445 /* Nothing. */ 11446 /****************************************************************************/ 11447 static __attribute__ ((noinline)) void 11448 bce_dump_com_state(struct bce_softc *sc, int regs) 11449 { 11450 u32 val; 11451 u32 fw_version[4]; 11452 11453 BCE_PRINTF( 11454 "----------------------------" 11455 " COM State " 11456 "----------------------------\n"); 11457 11458 for (int i = 0; i < 3; i++) 11459 fw_version[i] = htonl(REG_RD_IND(sc, 11460 (BCE_COM_SCRATCH + 0x10 + i * 4))); 11461 11462 BCE_PRINTF("Firmware version - %s\n", (char *) fw_version); 11463 11464 val = REG_RD_IND(sc, BCE_COM_CPU_MODE); 11465 BCE_PRINTF("0x%08X - (0x%06X) com_cpu_mode\n", 11466 val, BCE_COM_CPU_MODE); 11467 11468 val = REG_RD_IND(sc, BCE_COM_CPU_STATE); 11469 BCE_PRINTF("0x%08X - (0x%06X) com_cpu_state\n", 11470 val, BCE_COM_CPU_STATE); 11471 11472 val = REG_RD_IND(sc, BCE_COM_CPU_EVENT_MASK); 11473 BCE_PRINTF("0x%08X - (0x%06X) com_cpu_event_mask\n", val, 11474 BCE_COM_CPU_EVENT_MASK); 11475 11476 if (regs) { 11477 BCE_PRINTF( 11478 "----------------------------" 11479 " Register Dump " 11480 "----------------------------\n"); 11481 11482 for (int i = BCE_COM_CPU_MODE; i < 0x1053e8; i += 0x10) { 11483 BCE_PRINTF("0x%04X: 0x%08X 0x%08X " 11484 "0x%08X 0x%08X\n", i, 11485 REG_RD_IND(sc, i), 11486 REG_RD_IND(sc, i + 0x4), 11487 REG_RD_IND(sc, i + 0x8), 11488 REG_RD_IND(sc, i + 0xC)); 11489 } 11490 } 11491 11492 BCE_PRINTF( 11493 "----------------------------" 11494 "----------------" 11495 "----------------------------\n"); 11496 } 11497 11498 11499 /****************************************************************************/ 11500 /* Prints out the Receive Virtual 2 Physical (RV2P) state. */ 11501 /* */ 11502 /* Returns: */ 11503 /* Nothing. */ 11504 /****************************************************************************/ 11505 static __attribute__ ((noinline)) void 11506 bce_dump_rv2p_state(struct bce_softc *sc) 11507 { 11508 u32 val, pc1, pc2, fw_ver_high, fw_ver_low; 11509 11510 BCE_PRINTF( 11511 "----------------------------" 11512 " RV2P State " 11513 "----------------------------\n"); 11514 11515 /* Stall the RV2P processors. */ 11516 val = REG_RD_IND(sc, BCE_RV2P_CONFIG); 11517 val |= BCE_RV2P_CONFIG_STALL_PROC1 | BCE_RV2P_CONFIG_STALL_PROC2; 11518 REG_WR_IND(sc, BCE_RV2P_CONFIG, val); 11519 11520 /* Read the firmware version. */ 11521 val = 0x00000001; 11522 REG_WR_IND(sc, BCE_RV2P_PROC1_ADDR_CMD, val); 11523 fw_ver_low = REG_RD_IND(sc, BCE_RV2P_INSTR_LOW); 11524 fw_ver_high = REG_RD_IND(sc, BCE_RV2P_INSTR_HIGH) & 11525 BCE_RV2P_INSTR_HIGH_HIGH; 11526 BCE_PRINTF("RV2P1 Firmware version - 0x%08X:0x%08X\n", 11527 fw_ver_high, fw_ver_low); 11528 11529 val = 0x00000001; 11530 REG_WR_IND(sc, BCE_RV2P_PROC2_ADDR_CMD, val); 11531 fw_ver_low = REG_RD_IND(sc, BCE_RV2P_INSTR_LOW); 11532 fw_ver_high = REG_RD_IND(sc, BCE_RV2P_INSTR_HIGH) & 11533 BCE_RV2P_INSTR_HIGH_HIGH; 11534 BCE_PRINTF("RV2P2 Firmware version - 0x%08X:0x%08X\n", 11535 fw_ver_high, fw_ver_low); 11536 11537 /* Resume the RV2P processors. */ 11538 val = REG_RD_IND(sc, BCE_RV2P_CONFIG); 11539 val &= ~(BCE_RV2P_CONFIG_STALL_PROC1 | BCE_RV2P_CONFIG_STALL_PROC2); 11540 REG_WR_IND(sc, BCE_RV2P_CONFIG, val); 11541 11542 /* Fetch the program counter value. */ 11543 val = 0x68007800; 11544 REG_WR_IND(sc, BCE_RV2P_DEBUG_VECT_PEEK, val); 11545 val = REG_RD_IND(sc, BCE_RV2P_DEBUG_VECT_PEEK); 11546 pc1 = (val & BCE_RV2P_DEBUG_VECT_PEEK_1_VALUE); 11547 pc2 = (val & BCE_RV2P_DEBUG_VECT_PEEK_2_VALUE) >> 16; 11548 BCE_PRINTF("0x%08X - RV2P1 program counter (1st read)\n", pc1); 11549 BCE_PRINTF("0x%08X - RV2P2 program counter (1st read)\n", pc2); 11550 11551 /* Fetch the program counter value again to see if it is advancing. */ 11552 val = 0x68007800; 11553 REG_WR_IND(sc, BCE_RV2P_DEBUG_VECT_PEEK, val); 11554 val = REG_RD_IND(sc, BCE_RV2P_DEBUG_VECT_PEEK); 11555 pc1 = (val & BCE_RV2P_DEBUG_VECT_PEEK_1_VALUE); 11556 pc2 = (val & BCE_RV2P_DEBUG_VECT_PEEK_2_VALUE) >> 16; 11557 BCE_PRINTF("0x%08X - RV2P1 program counter (2nd read)\n", pc1); 11558 BCE_PRINTF("0x%08X - RV2P2 program counter (2nd read)\n", pc2); 11559 11560 BCE_PRINTF( 11561 "----------------------------" 11562 "----------------" 11563 "----------------------------\n"); 11564 } 11565 11566 11567 /****************************************************************************/ 11568 /* Prints out the driver state and then enters the debugger. */ 11569 /* */ 11570 /* Returns: */ 11571 /* Nothing. */ 11572 /****************************************************************************/ 11573 static __attribute__ ((noinline)) void 11574 bce_breakpoint(struct bce_softc *sc) 11575 { 11576 11577 /* 11578 * Unreachable code to silence compiler warnings 11579 * about unused functions. 11580 */ 11581 if (0) { 11582 bce_freeze_controller(sc); 11583 bce_unfreeze_controller(sc); 11584 bce_dump_enet(sc, NULL); 11585 bce_dump_txbd(sc, 0, NULL); 11586 bce_dump_rxbd(sc, 0, NULL); 11587 bce_dump_tx_mbuf_chain(sc, 0, USABLE_TX_BD_ALLOC); 11588 bce_dump_rx_mbuf_chain(sc, 0, USABLE_RX_BD_ALLOC); 11589 bce_dump_pg_mbuf_chain(sc, 0, USABLE_PG_BD_ALLOC); 11590 bce_dump_l2fhdr(sc, 0, NULL); 11591 bce_dump_ctx(sc, RX_CID); 11592 bce_dump_ftqs(sc); 11593 bce_dump_tx_chain(sc, 0, USABLE_TX_BD_ALLOC); 11594 bce_dump_rx_bd_chain(sc, 0, USABLE_RX_BD_ALLOC); 11595 bce_dump_pg_chain(sc, 0, USABLE_PG_BD_ALLOC); 11596 bce_dump_status_block(sc); 11597 bce_dump_stats_block(sc); 11598 bce_dump_driver_state(sc); 11599 bce_dump_hw_state(sc); 11600 bce_dump_bc_state(sc); 11601 bce_dump_txp_state(sc, 0); 11602 bce_dump_rxp_state(sc, 0); 11603 bce_dump_tpat_state(sc, 0); 11604 bce_dump_cp_state(sc, 0); 11605 bce_dump_com_state(sc, 0); 11606 bce_dump_rv2p_state(sc); 11607 bce_dump_pgbd(sc, 0, NULL); 11608 } 11609 11610 bce_dump_status_block(sc); 11611 bce_dump_driver_state(sc); 11612 11613 /* Call the debugger. */ 11614 breakpoint(); 11615 } 11616 #endif 11617