xref: /freebsd/sys/dev/bce/if_bce.c (revision f5f7c05209ca2c3748fd8b27c5e80ffad49120eb)
1 /*-
2  * Copyright (c) 2006-2010 Broadcom Corporation
3  *	David Christensen <davidch@broadcom.com>.  All rights reserved.
4  *
5  * Redistribution and use in source and binary forms, with or without
6  * modification, are permitted provided that the following conditions
7  * are met:
8  *
9  * 1. Redistributions of source code must retain the above copyright
10  *    notice, this list of conditions and the following disclaimer.
11  * 2. Redistributions in binary form must reproduce the above copyright
12  *    notice, this list of conditions and the following disclaimer in the
13  *    documentation and/or other materials provided with the distribution.
14  * 3. Neither the name of Broadcom Corporation nor the name of its contributors
15  *    may be used to endorse or promote products derived from this software
16  *    without specific prior written consent.
17  *
18  * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS'
19  * AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
20  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
21  * ARE DISCLAIMED.  IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS
22  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
23  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
24  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
25  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
26  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
27  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF
28  * THE POSSIBILITY OF SUCH DAMAGE.
29  */
30 
31 #include <sys/cdefs.h>
32 __FBSDID("$FreeBSD$");
33 
34 /*
35  * The following controllers are supported by this driver:
36  *   BCM5706C A2, A3
37  *   BCM5706S A2, A3
38  *   BCM5708C B1, B2
39  *   BCM5708S B1, B2
40  *   BCM5709C A1, C0
41  *   BCM5709S A1, C0
42  *   BCM5716C C0
43  *   BCM5716S C0
44  *
45  * The following controllers are not supported by this driver:
46  *   BCM5706C A0, A1 (pre-production)
47  *   BCM5706S A0, A1 (pre-production)
48  *   BCM5708C A0, B0 (pre-production)
49  *   BCM5708S A0, B0 (pre-production)
50  *   BCM5709C A0  B0, B1, B2 (pre-production)
51  *   BCM5709S A0, B0, B1, B2 (pre-production)
52  */
53 
54 #include "opt_bce.h"
55 
56 #include <dev/bce/if_bcereg.h>
57 #include <dev/bce/if_bcefw.h>
58 
59 /****************************************************************************/
60 /* BCE Debug Options                                                        */
61 /****************************************************************************/
62 #ifdef BCE_DEBUG
63 	u32 bce_debug = BCE_WARN;
64 
65 	/*          0 = Never              */
66 	/*          1 = 1 in 2,147,483,648 */
67 	/*        256 = 1 in     8,388,608 */
68 	/*       2048 = 1 in     1,048,576 */
69 	/*      65536 = 1 in        32,768 */
70 	/*    1048576 = 1 in         2,048 */
71 	/*  268435456 =	1 in             8 */
72 	/*  536870912 = 1 in             4 */
73 	/* 1073741824 = 1 in             2 */
74 
75 	/* Controls how often the l2_fhdr frame error check will fail. */
76 	int l2fhdr_error_sim_control = 0;
77 
78 	/* Controls how often the unexpected attention check will fail. */
79 	int unexpected_attention_sim_control = 0;
80 
81 	/* Controls how often to simulate an mbuf allocation failure. */
82 	int mbuf_alloc_failed_sim_control = 0;
83 
84 	/* Controls how often to simulate a DMA mapping failure. */
85 	int dma_map_addr_failed_sim_control = 0;
86 
87 	/* Controls how often to simulate a bootcode failure. */
88 	int bootcode_running_failure_sim_control = 0;
89 #endif
90 
91 /****************************************************************************/
92 /* PCI Device ID Table                                                      */
93 /*                                                                          */
94 /* Used by bce_probe() to identify the devices supported by this driver.    */
95 /****************************************************************************/
96 #define BCE_DEVDESC_MAX		64
97 
98 static struct bce_type bce_devs[] = {
99 	/* BCM5706C Controllers and OEM boards. */
100 	{ BRCM_VENDORID, BRCM_DEVICEID_BCM5706,  HP_VENDORID, 0x3101,
101 		"HP NC370T Multifunction Gigabit Server Adapter" },
102 	{ BRCM_VENDORID, BRCM_DEVICEID_BCM5706,  HP_VENDORID, 0x3106,
103 		"HP NC370i Multifunction Gigabit Server Adapter" },
104 	{ BRCM_VENDORID, BRCM_DEVICEID_BCM5706,  HP_VENDORID, 0x3070,
105 		"HP NC380T PCIe DP Multifunc Gig Server Adapter" },
106 	{ BRCM_VENDORID, BRCM_DEVICEID_BCM5706,  HP_VENDORID, 0x1709,
107 		"HP NC371i Multifunction Gigabit Server Adapter" },
108 	{ BRCM_VENDORID, BRCM_DEVICEID_BCM5706,  PCI_ANY_ID,  PCI_ANY_ID,
109 		"Broadcom NetXtreme II BCM5706 1000Base-T" },
110 
111 	/* BCM5706S controllers and OEM boards. */
112 	{ BRCM_VENDORID, BRCM_DEVICEID_BCM5706S, HP_VENDORID, 0x3102,
113 		"HP NC370F Multifunction Gigabit Server Adapter" },
114 	{ BRCM_VENDORID, BRCM_DEVICEID_BCM5706S, PCI_ANY_ID,  PCI_ANY_ID,
115 		"Broadcom NetXtreme II BCM5706 1000Base-SX" },
116 
117 	/* BCM5708C controllers and OEM boards. */
118 	{ BRCM_VENDORID, BRCM_DEVICEID_BCM5708,  HP_VENDORID, 0x7037,
119 		"HP NC373T PCIe Multifunction Gig Server Adapter" },
120 	{ BRCM_VENDORID, BRCM_DEVICEID_BCM5708,  HP_VENDORID, 0x7038,
121 		"HP NC373i Multifunction Gigabit Server Adapter" },
122 	{ BRCM_VENDORID, BRCM_DEVICEID_BCM5708,  HP_VENDORID, 0x7045,
123 		"HP NC374m PCIe Multifunction Adapter" },
124 	{ BRCM_VENDORID, BRCM_DEVICEID_BCM5708,  PCI_ANY_ID,  PCI_ANY_ID,
125 		"Broadcom NetXtreme II BCM5708 1000Base-T" },
126 
127 	/* BCM5708S controllers and OEM boards. */
128 	{ BRCM_VENDORID, BRCM_DEVICEID_BCM5708S,  HP_VENDORID, 0x1706,
129 		"HP NC373m Multifunction Gigabit Server Adapter" },
130 	{ BRCM_VENDORID, BRCM_DEVICEID_BCM5708S,  HP_VENDORID, 0x703b,
131 		"HP NC373i Multifunction Gigabit Server Adapter" },
132 	{ BRCM_VENDORID, BRCM_DEVICEID_BCM5708S,  HP_VENDORID, 0x703d,
133 		"HP NC373F PCIe Multifunc Giga Server Adapter" },
134 	{ BRCM_VENDORID, BRCM_DEVICEID_BCM5708S,  PCI_ANY_ID,  PCI_ANY_ID,
135 		"Broadcom NetXtreme II BCM5708 1000Base-SX" },
136 
137 	/* BCM5709C controllers and OEM boards. */
138 	{ BRCM_VENDORID, BRCM_DEVICEID_BCM5709,  HP_VENDORID, 0x7055,
139 		"HP NC382i DP Multifunction Gigabit Server Adapter" },
140 	{ BRCM_VENDORID, BRCM_DEVICEID_BCM5709,  HP_VENDORID, 0x7059,
141 		"HP NC382T PCIe DP Multifunction Gigabit Server Adapter" },
142 	{ BRCM_VENDORID, BRCM_DEVICEID_BCM5709,  PCI_ANY_ID,  PCI_ANY_ID,
143 		"Broadcom NetXtreme II BCM5709 1000Base-T" },
144 
145 	/* BCM5709S controllers and OEM boards. */
146 	{ BRCM_VENDORID, BRCM_DEVICEID_BCM5709S,  HP_VENDORID, 0x171d,
147 		"HP NC382m DP 1GbE Multifunction BL-c Adapter" },
148 	{ BRCM_VENDORID, BRCM_DEVICEID_BCM5709S,  HP_VENDORID, 0x7056,
149 		"HP NC382i DP Multifunction Gigabit Server Adapter" },
150 	{ BRCM_VENDORID, BRCM_DEVICEID_BCM5709S,  PCI_ANY_ID,  PCI_ANY_ID,
151 		"Broadcom NetXtreme II BCM5709 1000Base-SX" },
152 
153 	/* BCM5716 controllers and OEM boards. */
154 	{ BRCM_VENDORID, BRCM_DEVICEID_BCM5716,  PCI_ANY_ID,  PCI_ANY_ID,
155 		"Broadcom NetXtreme II BCM5716 1000Base-T" },
156 
157 	{ 0, 0, 0, 0, NULL }
158 };
159 
160 
161 /****************************************************************************/
162 /* Supported Flash NVRAM device data.                                       */
163 /****************************************************************************/
164 static struct flash_spec flash_table[] =
165 {
166 #define BUFFERED_FLAGS		(BCE_NV_BUFFERED | BCE_NV_TRANSLATE)
167 #define NONBUFFERED_FLAGS	(BCE_NV_WREN)
168 
169 	/* Slow EEPROM */
170 	{0x00000000, 0x40830380, 0x009f0081, 0xa184a053, 0xaf000400,
171 	 BUFFERED_FLAGS, SEEPROM_PAGE_BITS, SEEPROM_PAGE_SIZE,
172 	 SEEPROM_BYTE_ADDR_MASK, SEEPROM_TOTAL_SIZE,
173 	 "EEPROM - slow"},
174 	/* Expansion entry 0001 */
175 	{0x08000002, 0x4b808201, 0x00050081, 0x03840253, 0xaf020406,
176 	 NONBUFFERED_FLAGS, SAIFUN_FLASH_PAGE_BITS, SAIFUN_FLASH_PAGE_SIZE,
177 	 SAIFUN_FLASH_BYTE_ADDR_MASK, 0,
178 	 "Entry 0001"},
179 	/* Saifun SA25F010 (non-buffered flash) */
180 	/* strap, cfg1, & write1 need updates */
181 	{0x04000001, 0x47808201, 0x00050081, 0x03840253, 0xaf020406,
182 	 NONBUFFERED_FLAGS, SAIFUN_FLASH_PAGE_BITS, SAIFUN_FLASH_PAGE_SIZE,
183 	 SAIFUN_FLASH_BYTE_ADDR_MASK, SAIFUN_FLASH_BASE_TOTAL_SIZE*2,
184 	 "Non-buffered flash (128kB)"},
185 	/* Saifun SA25F020 (non-buffered flash) */
186 	/* strap, cfg1, & write1 need updates */
187 	{0x0c000003, 0x4f808201, 0x00050081, 0x03840253, 0xaf020406,
188 	 NONBUFFERED_FLAGS, SAIFUN_FLASH_PAGE_BITS, SAIFUN_FLASH_PAGE_SIZE,
189 	 SAIFUN_FLASH_BYTE_ADDR_MASK, SAIFUN_FLASH_BASE_TOTAL_SIZE*4,
190 	 "Non-buffered flash (256kB)"},
191 	/* Expansion entry 0100 */
192 	{0x11000000, 0x53808201, 0x00050081, 0x03840253, 0xaf020406,
193 	 NONBUFFERED_FLAGS, SAIFUN_FLASH_PAGE_BITS, SAIFUN_FLASH_PAGE_SIZE,
194 	 SAIFUN_FLASH_BYTE_ADDR_MASK, 0,
195 	 "Entry 0100"},
196 	/* Entry 0101: ST M45PE10 (non-buffered flash, TetonII B0) */
197 	{0x19000002, 0x5b808201, 0x000500db, 0x03840253, 0xaf020406,
198 	 NONBUFFERED_FLAGS, ST_MICRO_FLASH_PAGE_BITS, ST_MICRO_FLASH_PAGE_SIZE,
199 	 ST_MICRO_FLASH_BYTE_ADDR_MASK, ST_MICRO_FLASH_BASE_TOTAL_SIZE*2,
200 	 "Entry 0101: ST M45PE10 (128kB non-bufferred)"},
201 	/* Entry 0110: ST M45PE20 (non-buffered flash)*/
202 	{0x15000001, 0x57808201, 0x000500db, 0x03840253, 0xaf020406,
203 	 NONBUFFERED_FLAGS, ST_MICRO_FLASH_PAGE_BITS, ST_MICRO_FLASH_PAGE_SIZE,
204 	 ST_MICRO_FLASH_BYTE_ADDR_MASK, ST_MICRO_FLASH_BASE_TOTAL_SIZE*4,
205 	 "Entry 0110: ST M45PE20 (256kB non-bufferred)"},
206 	/* Saifun SA25F005 (non-buffered flash) */
207 	/* strap, cfg1, & write1 need updates */
208 	{0x1d000003, 0x5f808201, 0x00050081, 0x03840253, 0xaf020406,
209 	 NONBUFFERED_FLAGS, SAIFUN_FLASH_PAGE_BITS, SAIFUN_FLASH_PAGE_SIZE,
210 	 SAIFUN_FLASH_BYTE_ADDR_MASK, SAIFUN_FLASH_BASE_TOTAL_SIZE,
211 	 "Non-buffered flash (64kB)"},
212 	/* Fast EEPROM */
213 	{0x22000000, 0x62808380, 0x009f0081, 0xa184a053, 0xaf000400,
214 	 BUFFERED_FLAGS, SEEPROM_PAGE_BITS, SEEPROM_PAGE_SIZE,
215 	 SEEPROM_BYTE_ADDR_MASK, SEEPROM_TOTAL_SIZE,
216 	 "EEPROM - fast"},
217 	/* Expansion entry 1001 */
218 	{0x2a000002, 0x6b808201, 0x00050081, 0x03840253, 0xaf020406,
219 	 NONBUFFERED_FLAGS, SAIFUN_FLASH_PAGE_BITS, SAIFUN_FLASH_PAGE_SIZE,
220 	 SAIFUN_FLASH_BYTE_ADDR_MASK, 0,
221 	 "Entry 1001"},
222 	/* Expansion entry 1010 */
223 	{0x26000001, 0x67808201, 0x00050081, 0x03840253, 0xaf020406,
224 	 NONBUFFERED_FLAGS, SAIFUN_FLASH_PAGE_BITS, SAIFUN_FLASH_PAGE_SIZE,
225 	 SAIFUN_FLASH_BYTE_ADDR_MASK, 0,
226 	 "Entry 1010"},
227 	/* ATMEL AT45DB011B (buffered flash) */
228 	{0x2e000003, 0x6e808273, 0x00570081, 0x68848353, 0xaf000400,
229 	 BUFFERED_FLAGS, BUFFERED_FLASH_PAGE_BITS, BUFFERED_FLASH_PAGE_SIZE,
230 	 BUFFERED_FLASH_BYTE_ADDR_MASK, BUFFERED_FLASH_TOTAL_SIZE,
231 	 "Buffered flash (128kB)"},
232 	/* Expansion entry 1100 */
233 	{0x33000000, 0x73808201, 0x00050081, 0x03840253, 0xaf020406,
234 	 NONBUFFERED_FLAGS, SAIFUN_FLASH_PAGE_BITS, SAIFUN_FLASH_PAGE_SIZE,
235 	 SAIFUN_FLASH_BYTE_ADDR_MASK, 0,
236 	 "Entry 1100"},
237 	/* Expansion entry 1101 */
238 	{0x3b000002, 0x7b808201, 0x00050081, 0x03840253, 0xaf020406,
239 	 NONBUFFERED_FLAGS, SAIFUN_FLASH_PAGE_BITS, SAIFUN_FLASH_PAGE_SIZE,
240 	 SAIFUN_FLASH_BYTE_ADDR_MASK, 0,
241 	 "Entry 1101"},
242 	/* Ateml Expansion entry 1110 */
243 	{0x37000001, 0x76808273, 0x00570081, 0x68848353, 0xaf000400,
244 	 BUFFERED_FLAGS, BUFFERED_FLASH_PAGE_BITS, BUFFERED_FLASH_PAGE_SIZE,
245 	 BUFFERED_FLASH_BYTE_ADDR_MASK, 0,
246 	 "Entry 1110 (Atmel)"},
247 	/* ATMEL AT45DB021B (buffered flash) */
248 	{0x3f000003, 0x7e808273, 0x00570081, 0x68848353, 0xaf000400,
249 	 BUFFERED_FLAGS, BUFFERED_FLASH_PAGE_BITS, BUFFERED_FLASH_PAGE_SIZE,
250 	 BUFFERED_FLASH_BYTE_ADDR_MASK, BUFFERED_FLASH_TOTAL_SIZE*2,
251 	 "Buffered flash (256kB)"},
252 };
253 
254 /*
255  * The BCM5709 controllers transparently handle the
256  * differences between Atmel 264 byte pages and all
257  * flash devices which use 256 byte pages, so no
258  * logical-to-physical mapping is required in the
259  * driver.
260  */
261 static struct flash_spec flash_5709 = {
262 	.flags		= BCE_NV_BUFFERED,
263 	.page_bits	= BCM5709_FLASH_PAGE_BITS,
264 	.page_size	= BCM5709_FLASH_PAGE_SIZE,
265 	.addr_mask	= BCM5709_FLASH_BYTE_ADDR_MASK,
266 	.total_size	= BUFFERED_FLASH_TOTAL_SIZE * 2,
267 	.name		= "5709/5716 buffered flash (256kB)",
268 };
269 
270 
271 /****************************************************************************/
272 /* FreeBSD device entry points.                                             */
273 /****************************************************************************/
274 static int  bce_probe			(device_t);
275 static int  bce_attach			(device_t);
276 static int  bce_detach			(device_t);
277 static int  bce_shutdown		(device_t);
278 
279 
280 /****************************************************************************/
281 /* BCE Debug Data Structure Dump Routines                                   */
282 /****************************************************************************/
283 #ifdef BCE_DEBUG
284 static u32  bce_reg_rd				(struct bce_softc *, u32);
285 static void bce_reg_wr				(struct bce_softc *, u32, u32);
286 static void bce_reg_wr16			(struct bce_softc *, u32, u16);
287 static u32  bce_ctx_rd				(struct bce_softc *, u32, u32);
288 static void bce_dump_enet			(struct bce_softc *, struct mbuf *);
289 static void bce_dump_mbuf			(struct bce_softc *, struct mbuf *);
290 static void bce_dump_tx_mbuf_chain	(struct bce_softc *, u16, int);
291 static void bce_dump_rx_mbuf_chain	(struct bce_softc *, u16, int);
292 static void bce_dump_pg_mbuf_chain	(struct bce_softc *, u16, int);
293 static void bce_dump_txbd			(struct bce_softc *,
294     int, struct tx_bd *);
295 static void bce_dump_rxbd			(struct bce_softc *,
296     int, struct rx_bd *);
297 static void bce_dump_pgbd			(struct bce_softc *,
298     int, struct rx_bd *);
299 static void bce_dump_l2fhdr		(struct bce_softc *,
300     int, struct l2_fhdr *);
301 static void bce_dump_ctx			(struct bce_softc *, u16);
302 static void bce_dump_ftqs			(struct bce_softc *);
303 static void bce_dump_tx_chain		(struct bce_softc *, u16, int);
304 static void bce_dump_rx_bd_chain	(struct bce_softc *, u16, int);
305 static void bce_dump_pg_chain		(struct bce_softc *, u16, int);
306 static void bce_dump_status_block	(struct bce_softc *);
307 static void bce_dump_stats_block	(struct bce_softc *);
308 static void bce_dump_driver_state	(struct bce_softc *);
309 static void bce_dump_hw_state		(struct bce_softc *);
310 static void bce_dump_shmem_state	(struct bce_softc *);
311 static void bce_dump_mq_regs		(struct bce_softc *);
312 static void bce_dump_bc_state		(struct bce_softc *);
313 static void bce_dump_txp_state		(struct bce_softc *, int);
314 static void bce_dump_rxp_state		(struct bce_softc *, int);
315 static void bce_dump_tpat_state	(struct bce_softc *, int);
316 static void bce_dump_cp_state		(struct bce_softc *, int);
317 static void bce_dump_com_state		(struct bce_softc *, int);
318 static void bce_dump_rv2p_state	(struct bce_softc *);
319 static void bce_breakpoint			(struct bce_softc *);
320 #endif /*BCE_DEBUG */
321 
322 
323 /****************************************************************************/
324 /* BCE Register/Memory Access Routines                                      */
325 /****************************************************************************/
326 static u32  bce_reg_rd_ind		(struct bce_softc *, u32);
327 static void bce_reg_wr_ind		(struct bce_softc *, u32, u32);
328 static void bce_shmem_wr		(struct bce_softc *, u32, u32);
329 static u32  bce_shmem_rd		(struct bce_softc *, u32);
330 static void bce_ctx_wr			(struct bce_softc *, u32, u32, u32);
331 static int  bce_miibus_read_reg		(device_t, int, int);
332 static int  bce_miibus_write_reg	(device_t, int, int, int);
333 static void bce_miibus_statchg		(device_t);
334 
335 #ifdef BCE_DEBUG
336 static int bce_sysctl_nvram_dump(SYSCTL_HANDLER_ARGS);
337 #ifdef BCE_NVRAM_WRITE_SUPPORT
338 static int bce_sysctl_nvram_write(SYSCTL_HANDLER_ARGS);
339 #endif
340 #endif
341 
342 /****************************************************************************/
343 /* BCE NVRAM Access Routines                                                */
344 /****************************************************************************/
345 static int  bce_acquire_nvram_lock	(struct bce_softc *);
346 static int  bce_release_nvram_lock	(struct bce_softc *);
347 static void bce_enable_nvram_access(struct bce_softc *);
348 static void bce_disable_nvram_access(struct bce_softc *);
349 static int  bce_nvram_read_dword	(struct bce_softc *, u32, u8 *, u32);
350 static int  bce_init_nvram			(struct bce_softc *);
351 static int  bce_nvram_read			(struct bce_softc *, u32, u8 *, int);
352 static int  bce_nvram_test			(struct bce_softc *);
353 #ifdef BCE_NVRAM_WRITE_SUPPORT
354 static int  bce_enable_nvram_write	(struct bce_softc *);
355 static void bce_disable_nvram_write(struct bce_softc *);
356 static int  bce_nvram_erase_page	(struct bce_softc *, u32);
357 static int  bce_nvram_write_dword	(struct bce_softc *, u32, u8 *, u32);
358 static int  bce_nvram_write		(struct bce_softc *, u32, u8 *, int);
359 #endif
360 
361 /****************************************************************************/
362 /*                                                                          */
363 /****************************************************************************/
364 static void bce_get_rx_buffer_sizes(struct bce_softc *, int);
365 static void bce_get_media			(struct bce_softc *);
366 static void bce_init_media			(struct bce_softc *);
367 static u32 bce_get_rphy_link		(struct bce_softc *);
368 static void bce_dma_map_addr		(void *, bus_dma_segment_t *, int, int);
369 static int  bce_dma_alloc			(device_t);
370 static void bce_dma_free			(struct bce_softc *);
371 static void bce_release_resources	(struct bce_softc *);
372 
373 /****************************************************************************/
374 /* BCE Firmware Synchronization and Load                                    */
375 /****************************************************************************/
376 static void bce_fw_cap_init			(struct bce_softc *);
377 static int  bce_fw_sync			(struct bce_softc *, u32);
378 static void bce_load_rv2p_fw		(struct bce_softc *, u32 *, u32, u32);
379 static void bce_load_cpu_fw		(struct bce_softc *,
380     struct cpu_reg *, struct fw_info *);
381 static void bce_start_cpu			(struct bce_softc *, struct cpu_reg *);
382 static void bce_halt_cpu			(struct bce_softc *, struct cpu_reg *);
383 static void bce_start_rxp_cpu		(struct bce_softc *);
384 static void bce_init_rxp_cpu		(struct bce_softc *);
385 static void bce_init_txp_cpu 		(struct bce_softc *);
386 static void bce_init_tpat_cpu		(struct bce_softc *);
387 static void bce_init_cp_cpu	  	(struct bce_softc *);
388 static void bce_init_com_cpu	  	(struct bce_softc *);
389 static void bce_init_cpus			(struct bce_softc *);
390 
391 static void bce_print_adapter_info	(struct bce_softc *);
392 static void bce_probe_pci_caps		(device_t, struct bce_softc *);
393 static void bce_stop				(struct bce_softc *);
394 static int  bce_reset				(struct bce_softc *, u32);
395 static int  bce_chipinit 			(struct bce_softc *);
396 static int  bce_blockinit 			(struct bce_softc *);
397 
398 static int  bce_init_tx_chain		(struct bce_softc *);
399 static void bce_free_tx_chain		(struct bce_softc *);
400 
401 static int  bce_get_rx_buf			(struct bce_softc *,
402     struct mbuf *, u16 *, u16 *, u32 *);
403 static int  bce_init_rx_chain		(struct bce_softc *);
404 static void bce_fill_rx_chain		(struct bce_softc *);
405 static void bce_free_rx_chain		(struct bce_softc *);
406 
407 static int  bce_get_pg_buf			(struct bce_softc *,
408     struct mbuf *, u16 *, u16 *);
409 static int  bce_init_pg_chain		(struct bce_softc *);
410 static void bce_fill_pg_chain		(struct bce_softc *);
411 static void bce_free_pg_chain		(struct bce_softc *);
412 
413 static struct mbuf *bce_tso_setup	(struct bce_softc *,
414     struct mbuf **, u16 *);
415 static int  bce_tx_encap			(struct bce_softc *, struct mbuf **);
416 static void bce_start_locked		(struct ifnet *);
417 static void bce_start				(struct ifnet *);
418 static int  bce_ioctl				(struct ifnet *, u_long, caddr_t);
419 static void bce_watchdog			(struct bce_softc *);
420 static int  bce_ifmedia_upd		(struct ifnet *);
421 static int  bce_ifmedia_upd_locked	(struct ifnet *);
422 static void bce_ifmedia_sts		(struct ifnet *, struct ifmediareq *);
423 static void bce_ifmedia_sts_rphy	(struct bce_softc *, struct ifmediareq *);
424 static void bce_init_locked		(struct bce_softc *);
425 static void bce_init				(void *);
426 static void bce_mgmt_init_locked	(struct bce_softc *sc);
427 
428 static int  bce_init_ctx			(struct bce_softc *);
429 static void bce_get_mac_addr		(struct bce_softc *);
430 static void bce_set_mac_addr		(struct bce_softc *);
431 static void bce_phy_intr			(struct bce_softc *);
432 static inline u16 bce_get_hw_rx_cons	(struct bce_softc *);
433 static void bce_rx_intr			(struct bce_softc *);
434 static void bce_tx_intr			(struct bce_softc *);
435 static void bce_disable_intr		(struct bce_softc *);
436 static void bce_enable_intr		(struct bce_softc *, int);
437 
438 static void bce_intr				(void *);
439 static void bce_set_rx_mode		(struct bce_softc *);
440 static void bce_stats_update		(struct bce_softc *);
441 static void bce_tick				(void *);
442 static void bce_pulse				(void *);
443 static void bce_add_sysctls		(struct bce_softc *);
444 
445 
446 /****************************************************************************/
447 /* FreeBSD device dispatch table.                                           */
448 /****************************************************************************/
449 static device_method_t bce_methods[] = {
450 	/* Device interface (device_if.h) */
451 	DEVMETHOD(device_probe,		bce_probe),
452 	DEVMETHOD(device_attach,	bce_attach),
453 	DEVMETHOD(device_detach,	bce_detach),
454 	DEVMETHOD(device_shutdown,	bce_shutdown),
455 /* Supported by device interface but not used here. */
456 /*	DEVMETHOD(device_identify,	bce_identify),      */
457 /*	DEVMETHOD(device_suspend,	bce_suspend),       */
458 /*	DEVMETHOD(device_resume,	bce_resume),        */
459 /*	DEVMETHOD(device_quiesce,	bce_quiesce),       */
460 
461 	/* MII interface (miibus_if.h) */
462 	DEVMETHOD(miibus_readreg,	bce_miibus_read_reg),
463 	DEVMETHOD(miibus_writereg,	bce_miibus_write_reg),
464 	DEVMETHOD(miibus_statchg,	bce_miibus_statchg),
465 /* Supported by MII interface but not used here.       */
466 /*	DEVMETHOD(miibus_linkchg,	bce_miibus_linkchg),   */
467 /*	DEVMETHOD(miibus_mediainit,	bce_miibus_mediainit), */
468 
469 	DEVMETHOD_END
470 };
471 
472 static driver_t bce_driver = {
473 	"bce",
474 	bce_methods,
475 	sizeof(struct bce_softc)
476 };
477 
478 static devclass_t bce_devclass;
479 
480 MODULE_DEPEND(bce, pci, 1, 1, 1);
481 MODULE_DEPEND(bce, ether, 1, 1, 1);
482 MODULE_DEPEND(bce, miibus, 1, 1, 1);
483 
484 DRIVER_MODULE(bce, pci, bce_driver, bce_devclass, 0, 0);
485 DRIVER_MODULE(miibus, bce, miibus_driver, miibus_devclass, 0, 0);
486 
487 
488 /****************************************************************************/
489 /* Tunable device values                                                    */
490 /****************************************************************************/
491 static SYSCTL_NODE(_hw, OID_AUTO, bce, CTLFLAG_RD, 0, "bce driver parameters");
492 
493 /* Allowable values are TRUE or FALSE */
494 static int bce_verbose = TRUE;
495 TUNABLE_INT("hw.bce.verbose", &bce_verbose);
496 SYSCTL_INT(_hw_bce, OID_AUTO, verbose, CTLFLAG_RDTUN, &bce_verbose, 0,
497     "Verbose output enable/disable");
498 
499 /* Allowable values are TRUE or FALSE */
500 static int bce_tso_enable = TRUE;
501 TUNABLE_INT("hw.bce.tso_enable", &bce_tso_enable);
502 SYSCTL_INT(_hw_bce, OID_AUTO, tso_enable, CTLFLAG_RDTUN, &bce_tso_enable, 0,
503     "TSO Enable/Disable");
504 
505 /* Allowable values are 0 (IRQ), 1 (MSI/IRQ), and 2 (MSI-X/MSI/IRQ) */
506 /* ToDo: Add MSI-X support. */
507 static int bce_msi_enable = 1;
508 TUNABLE_INT("hw.bce.msi_enable", &bce_msi_enable);
509 SYSCTL_INT(_hw_bce, OID_AUTO, msi_enable, CTLFLAG_RDTUN, &bce_msi_enable, 0,
510     "MSI-X|MSI|INTx selector");
511 
512 /* Allowable values are 1, 2, 4, 8. */
513 static int bce_rx_pages = DEFAULT_RX_PAGES;
514 TUNABLE_INT("hw.bce.rx_pages", &bce_rx_pages);
515 SYSCTL_UINT(_hw_bce, OID_AUTO, rx_pages, CTLFLAG_RDTUN, &bce_rx_pages, 0,
516     "Receive buffer descriptor pages (1 page = 255 buffer descriptors)");
517 
518 /* Allowable values are 1, 2, 4, 8. */
519 static int bce_tx_pages = DEFAULT_TX_PAGES;
520 TUNABLE_INT("hw.bce.tx_pages", &bce_tx_pages);
521 SYSCTL_UINT(_hw_bce, OID_AUTO, tx_pages, CTLFLAG_RDTUN, &bce_tx_pages, 0,
522     "Transmit buffer descriptor pages (1 page = 255 buffer descriptors)");
523 
524 /* Allowable values are TRUE or FALSE. */
525 static int bce_hdr_split = TRUE;
526 TUNABLE_INT("hw.bce.hdr_split", &bce_hdr_split);
527 SYSCTL_UINT(_hw_bce, OID_AUTO, hdr_split, CTLFLAG_RDTUN, &bce_hdr_split, 0,
528     "Frame header/payload splitting Enable/Disable");
529 
530 /* Allowable values are TRUE or FALSE. */
531 static int bce_strict_rx_mtu = FALSE;
532 TUNABLE_INT("hw.bce.strict_rx_mtu", &bce_strict_rx_mtu);
533 SYSCTL_UINT(_hw_bce, OID_AUTO, strict_rx_mtu, CTLFLAG_RDTUN,
534     &bce_strict_rx_mtu, 0,
535     "Enable/Disable strict RX frame size checking");
536 
537 /* Allowable values are 0 ... 100 */
538 #ifdef BCE_DEBUG
539 /* Generate 1 interrupt for every transmit completion. */
540 static int bce_tx_quick_cons_trip_int = 1;
541 #else
542 /* Generate 1 interrupt for every 20 transmit completions. */
543 static int bce_tx_quick_cons_trip_int = DEFAULT_TX_QUICK_CONS_TRIP_INT;
544 #endif
545 TUNABLE_INT("hw.bce.tx_quick_cons_trip_int", &bce_tx_quick_cons_trip_int);
546 SYSCTL_UINT(_hw_bce, OID_AUTO, tx_quick_cons_trip_int, CTLFLAG_RDTUN,
547     &bce_tx_quick_cons_trip_int, 0,
548     "Transmit BD trip point during interrupts");
549 
550 /* Allowable values are 0 ... 100 */
551 /* Generate 1 interrupt for every transmit completion. */
552 #ifdef BCE_DEBUG
553 static int bce_tx_quick_cons_trip = 1;
554 #else
555 /* Generate 1 interrupt for every 20 transmit completions. */
556 static int bce_tx_quick_cons_trip = DEFAULT_TX_QUICK_CONS_TRIP;
557 #endif
558 TUNABLE_INT("hw.bce.tx_quick_cons_trip", &bce_tx_quick_cons_trip);
559 SYSCTL_UINT(_hw_bce, OID_AUTO, tx_quick_cons_trip, CTLFLAG_RDTUN,
560     &bce_tx_quick_cons_trip, 0,
561     "Transmit BD trip point");
562 
563 /* Allowable values are 0 ... 100 */
564 #ifdef BCE_DEBUG
565 /* Generate an interrupt if 0us have elapsed since the last TX completion. */
566 static int bce_tx_ticks_int = 0;
567 #else
568 /* Generate an interrupt if 80us have elapsed since the last TX completion. */
569 static int bce_tx_ticks_int = DEFAULT_TX_TICKS_INT;
570 #endif
571 TUNABLE_INT("hw.bce.tx_ticks_int", &bce_tx_ticks_int);
572 SYSCTL_UINT(_hw_bce, OID_AUTO, tx_ticks_int, CTLFLAG_RDTUN,
573     &bce_tx_ticks_int, 0, "Transmit ticks count during interrupt");
574 
575 /* Allowable values are 0 ... 100 */
576 #ifdef BCE_DEBUG
577 /* Generate an interrupt if 0us have elapsed since the last TX completion. */
578 static int bce_tx_ticks = 0;
579 #else
580 /* Generate an interrupt if 80us have elapsed since the last TX completion. */
581 static int bce_tx_ticks = DEFAULT_TX_TICKS;
582 #endif
583 TUNABLE_INT("hw.bce.tx_ticks", &bce_tx_ticks);
584 SYSCTL_UINT(_hw_bce, OID_AUTO, tx_ticks, CTLFLAG_RDTUN,
585     &bce_tx_ticks, 0, "Transmit ticks count");
586 
587 /* Allowable values are 1 ... 100 */
588 #ifdef BCE_DEBUG
589 /* Generate 1 interrupt for every received frame. */
590 static int bce_rx_quick_cons_trip_int = 1;
591 #else
592 /* Generate 1 interrupt for every 6 received frames. */
593 static int bce_rx_quick_cons_trip_int = DEFAULT_RX_QUICK_CONS_TRIP_INT;
594 #endif
595 TUNABLE_INT("hw.bce.rx_quick_cons_trip_int", &bce_rx_quick_cons_trip_int);
596 SYSCTL_UINT(_hw_bce, OID_AUTO, rx_quick_cons_trip_int, CTLFLAG_RDTUN,
597     &bce_rx_quick_cons_trip_int, 0,
598     "Receive BD trip point duirng interrupts");
599 
600 /* Allowable values are 1 ... 100 */
601 #ifdef BCE_DEBUG
602 /* Generate 1 interrupt for every received frame. */
603 static int bce_rx_quick_cons_trip = 1;
604 #else
605 /* Generate 1 interrupt for every 6 received frames. */
606 static int bce_rx_quick_cons_trip = DEFAULT_RX_QUICK_CONS_TRIP;
607 #endif
608 TUNABLE_INT("hw.bce.rx_quick_cons_trip", &bce_rx_quick_cons_trip);
609 SYSCTL_UINT(_hw_bce, OID_AUTO, rx_quick_cons_trip, CTLFLAG_RDTUN,
610     &bce_rx_quick_cons_trip, 0,
611     "Receive BD trip point");
612 
613 /* Allowable values are 0 ... 100 */
614 #ifdef BCE_DEBUG
615 /* Generate an int. if 0us have elapsed since the last received frame. */
616 static int bce_rx_ticks_int = 0;
617 #else
618 /* Generate an int. if 18us have elapsed since the last received frame. */
619 static int bce_rx_ticks_int = DEFAULT_RX_TICKS_INT;
620 #endif
621 TUNABLE_INT("hw.bce.rx_ticks_int", &bce_rx_ticks_int);
622 SYSCTL_UINT(_hw_bce, OID_AUTO, rx_ticks_int, CTLFLAG_RDTUN,
623     &bce_rx_ticks_int, 0, "Receive ticks count during interrupt");
624 
625 /* Allowable values are 0 ... 100 */
626 #ifdef BCE_DEBUG
627 /* Generate an int. if 0us have elapsed since the last received frame. */
628 static int bce_rx_ticks = 0;
629 #else
630 /* Generate an int. if 18us have elapsed since the last received frame. */
631 static int bce_rx_ticks = DEFAULT_RX_TICKS;
632 #endif
633 TUNABLE_INT("hw.bce.rx_ticks", &bce_rx_ticks);
634 SYSCTL_UINT(_hw_bce, OID_AUTO, rx_ticks, CTLFLAG_RDTUN,
635     &bce_rx_ticks, 0, "Receive ticks count");
636 
637 
638 /****************************************************************************/
639 /* Device probe function.                                                   */
640 /*                                                                          */
641 /* Compares the device to the driver's list of supported devices and        */
642 /* reports back to the OS whether this is the right driver for the device.  */
643 /*                                                                          */
644 /* Returns:                                                                 */
645 /*   BUS_PROBE_DEFAULT on success, positive value on failure.               */
646 /****************************************************************************/
647 static int
648 bce_probe(device_t dev)
649 {
650 	struct bce_type *t;
651 	struct bce_softc *sc;
652 	char *descbuf;
653 	u16 vid = 0, did = 0, svid = 0, sdid = 0;
654 
655 	t = bce_devs;
656 
657 	sc = device_get_softc(dev);
658 	bzero(sc, sizeof(struct bce_softc));
659 	sc->bce_unit = device_get_unit(dev);
660 	sc->bce_dev = dev;
661 
662 	/* Get the data for the device to be probed. */
663 	vid  = pci_get_vendor(dev);
664 	did  = pci_get_device(dev);
665 	svid = pci_get_subvendor(dev);
666 	sdid = pci_get_subdevice(dev);
667 
668 	DBPRINT(sc, BCE_EXTREME_LOAD,
669 	    "%s(); VID = 0x%04X, DID = 0x%04X, SVID = 0x%04X, "
670 	    "SDID = 0x%04X\n", __FUNCTION__, vid, did, svid, sdid);
671 
672 	/* Look through the list of known devices for a match. */
673 	while(t->bce_name != NULL) {
674 
675 		if ((vid == t->bce_vid) && (did == t->bce_did) &&
676 		    ((svid == t->bce_svid) || (t->bce_svid == PCI_ANY_ID)) &&
677 		    ((sdid == t->bce_sdid) || (t->bce_sdid == PCI_ANY_ID))) {
678 
679 			descbuf = malloc(BCE_DEVDESC_MAX, M_TEMP, M_NOWAIT);
680 
681 			if (descbuf == NULL)
682 				return(ENOMEM);
683 
684 			/* Print out the device identity. */
685 			snprintf(descbuf, BCE_DEVDESC_MAX, "%s (%c%d)",
686 			    t->bce_name, (((pci_read_config(dev,
687 			    PCIR_REVID, 4) & 0xf0) >> 4) + 'A'),
688 			    (pci_read_config(dev, PCIR_REVID, 4) & 0xf));
689 
690 			device_set_desc_copy(dev, descbuf);
691 			free(descbuf, M_TEMP);
692 			return(BUS_PROBE_DEFAULT);
693 		}
694 		t++;
695 	}
696 
697 	return(ENXIO);
698 }
699 
700 
701 /****************************************************************************/
702 /* PCI Capabilities Probe Function.                                         */
703 /*                                                                          */
704 /* Walks the PCI capabiites list for the device to find what features are   */
705 /* supported.                                                               */
706 /*                                                                          */
707 /* Returns:                                                                 */
708 /*   None.                                                                  */
709 /****************************************************************************/
710 static void
711 bce_print_adapter_info(struct bce_softc *sc)
712 {
713 	int i = 0;
714 
715 	DBENTER(BCE_VERBOSE_LOAD);
716 
717 	if (bce_verbose || bootverbose) {
718 		BCE_PRINTF("ASIC (0x%08X); ", sc->bce_chipid);
719 		printf("Rev (%c%d); ", ((BCE_CHIP_ID(sc) & 0xf000) >>
720 		    12) + 'A', ((BCE_CHIP_ID(sc) & 0x0ff0) >> 4));
721 
722 
723 		/* Bus info. */
724 		if (sc->bce_flags & BCE_PCIE_FLAG) {
725 			printf("Bus (PCIe x%d, ", sc->link_width);
726 			switch (sc->link_speed) {
727 			case 1: printf("2.5Gbps); "); break;
728 			case 2:	printf("5Gbps); "); break;
729 			default: printf("Unknown link speed); ");
730 			}
731 		} else {
732 			printf("Bus (PCI%s, %s, %dMHz); ",
733 			    ((sc->bce_flags & BCE_PCIX_FLAG) ? "-X" : ""),
734 			    ((sc->bce_flags & BCE_PCI_32BIT_FLAG) ?
735 			    "32-bit" : "64-bit"), sc->bus_speed_mhz);
736 		}
737 
738 		/* Firmware version and device features. */
739 		printf("B/C (%s); Bufs (RX:%d;TX:%d;PG:%d); Flags (",
740 		    sc->bce_bc_ver,	sc->rx_pages, sc->tx_pages,
741 		    (bce_hdr_split == TRUE ? sc->pg_pages: 0));
742 
743 		if (bce_hdr_split == TRUE) {
744 			printf("SPLT");
745 			i++;
746 		}
747 
748 		if (sc->bce_flags & BCE_USING_MSI_FLAG) {
749 			if (i > 0) printf("|");
750 			printf("MSI"); i++;
751 		}
752 
753 		if (sc->bce_flags & BCE_USING_MSIX_FLAG) {
754 			if (i > 0) printf("|");
755 			printf("MSI-X"); i++;
756 		}
757 
758 		if (sc->bce_phy_flags & BCE_PHY_2_5G_CAPABLE_FLAG) {
759 			if (i > 0) printf("|");
760 			printf("2.5G"); i++;
761 		}
762 
763 		if (sc->bce_phy_flags & BCE_PHY_REMOTE_CAP_FLAG) {
764 			if (i > 0) printf("|");
765 			printf("Remote PHY(%s)",
766 			    sc->bce_phy_flags & BCE_PHY_REMOTE_PORT_FIBER_FLAG ?
767 			    "FIBER" : "TP"); i++;
768 		}
769 
770 		if (sc->bce_flags & BCE_MFW_ENABLE_FLAG) {
771 			if (i > 0) printf("|");
772 			printf("MFW); MFW (%s)\n", sc->bce_mfw_ver);
773 		} else {
774 			printf(")\n");
775 		}
776 
777 		printf("Coal (RX:%d,%d,%d,%d; TX:%d,%d,%d,%d)\n",
778 		    sc->bce_rx_quick_cons_trip_int,
779 		    sc->bce_rx_quick_cons_trip,
780 		    sc->bce_rx_ticks_int,
781 		    sc->bce_rx_ticks,
782 		    sc->bce_tx_quick_cons_trip_int,
783 		    sc->bce_tx_quick_cons_trip,
784 		    sc->bce_tx_ticks_int,
785 		    sc->bce_tx_ticks);
786 
787 	}
788 
789 	DBEXIT(BCE_VERBOSE_LOAD);
790 }
791 
792 
793 /****************************************************************************/
794 /* PCI Capabilities Probe Function.                                         */
795 /*                                                                          */
796 /* Walks the PCI capabiites list for the device to find what features are   */
797 /* supported.                                                               */
798 /*                                                                          */
799 /* Returns:                                                                 */
800 /*   None.                                                                  */
801 /****************************************************************************/
802 static void
803 bce_probe_pci_caps(device_t dev, struct bce_softc *sc)
804 {
805 	u32 reg;
806 
807 	DBENTER(BCE_VERBOSE_LOAD);
808 
809 	/* Check if PCI-X capability is enabled. */
810 	if (pci_find_cap(dev, PCIY_PCIX, &reg) == 0) {
811 		if (reg != 0)
812 			sc->bce_cap_flags |= BCE_PCIX_CAPABLE_FLAG;
813 	}
814 
815 	/* Check if PCIe capability is enabled. */
816 	if (pci_find_cap(dev, PCIY_EXPRESS, &reg) == 0) {
817 		if (reg != 0) {
818 			u16 link_status = pci_read_config(dev, reg + 0x12, 2);
819 			DBPRINT(sc, BCE_INFO_LOAD, "PCIe link_status = "
820 			    "0x%08X\n",	link_status);
821 			sc->link_speed = link_status & 0xf;
822 			sc->link_width = (link_status >> 4) & 0x3f;
823 			sc->bce_cap_flags |= BCE_PCIE_CAPABLE_FLAG;
824 			sc->bce_flags |= BCE_PCIE_FLAG;
825 		}
826 	}
827 
828 	/* Check if MSI capability is enabled. */
829 	if (pci_find_cap(dev, PCIY_MSI, &reg) == 0) {
830 		if (reg != 0)
831 			sc->bce_cap_flags |= BCE_MSI_CAPABLE_FLAG;
832 	}
833 
834 	/* Check if MSI-X capability is enabled. */
835 	if (pci_find_cap(dev, PCIY_MSIX, &reg) == 0) {
836 		if (reg != 0)
837 			sc->bce_cap_flags |= BCE_MSIX_CAPABLE_FLAG;
838 	}
839 
840 	DBEXIT(BCE_VERBOSE_LOAD);
841 }
842 
843 
844 /****************************************************************************/
845 /* Load and validate user tunable settings.                                 */
846 /*                                                                          */
847 /* Returns:                                                                 */
848 /*   Nothing.                                                               */
849 /****************************************************************************/
850 static void
851 bce_set_tunables(struct bce_softc *sc)
852 {
853 	/* Set sysctl values for RX page count. */
854 	switch (bce_rx_pages) {
855 	case 1:
856 		/* fall-through */
857 	case 2:
858 		/* fall-through */
859 	case 4:
860 		/* fall-through */
861 	case 8:
862 		sc->rx_pages = bce_rx_pages;
863 		break;
864 	default:
865 		sc->rx_pages = DEFAULT_RX_PAGES;
866 		BCE_PRINTF("%s(%d): Illegal value (%d) specified for "
867 		    "hw.bce.rx_pages!  Setting default of %d.\n",
868 		    __FILE__, __LINE__, bce_rx_pages, DEFAULT_RX_PAGES);
869 	}
870 
871 	/* ToDo: Consider allowing user setting for pg_pages. */
872 	sc->pg_pages = min((sc->rx_pages * 4), MAX_PG_PAGES);
873 
874 	/* Set sysctl values for TX page count. */
875 	switch (bce_tx_pages) {
876 	case 1:
877 		/* fall-through */
878 	case 2:
879 		/* fall-through */
880 	case 4:
881 		/* fall-through */
882 	case 8:
883 		sc->tx_pages = bce_tx_pages;
884 		break;
885 	default:
886 		sc->tx_pages = DEFAULT_TX_PAGES;
887 		BCE_PRINTF("%s(%d): Illegal value (%d) specified for "
888 		    "hw.bce.tx_pages!  Setting default of %d.\n",
889 		    __FILE__, __LINE__, bce_tx_pages, DEFAULT_TX_PAGES);
890 	}
891 
892 	/*
893 	 * Validate the TX trip point (i.e. the number of
894 	 * TX completions before a status block update is
895 	 * generated and an interrupt is asserted.
896 	 */
897 	if (bce_tx_quick_cons_trip_int <= 100) {
898 		sc->bce_tx_quick_cons_trip_int =
899 		    bce_tx_quick_cons_trip_int;
900 	} else {
901 		BCE_PRINTF("%s(%d): Illegal value (%d) specified for "
902 		    "hw.bce.tx_quick_cons_trip_int!  Setting default of %d.\n",
903 		    __FILE__, __LINE__, bce_tx_quick_cons_trip_int,
904 		    DEFAULT_TX_QUICK_CONS_TRIP_INT);
905 		sc->bce_tx_quick_cons_trip_int =
906 		    DEFAULT_TX_QUICK_CONS_TRIP_INT;
907 	}
908 
909 	if (bce_tx_quick_cons_trip <= 100) {
910 		sc->bce_tx_quick_cons_trip =
911 		    bce_tx_quick_cons_trip;
912 	} else {
913 		BCE_PRINTF("%s(%d): Illegal value (%d) specified for "
914 		    "hw.bce.tx_quick_cons_trip!  Setting default of %d.\n",
915 		    __FILE__, __LINE__, bce_tx_quick_cons_trip,
916 		    DEFAULT_TX_QUICK_CONS_TRIP);
917 		sc->bce_tx_quick_cons_trip =
918 		    DEFAULT_TX_QUICK_CONS_TRIP;
919 	}
920 
921 	/*
922 	 * Validate the TX ticks count (i.e. the maximum amount
923 	 * of time to wait after the last TX completion has
924 	 * occurred before a status block update is generated
925 	 * and an interrupt is asserted.
926 	 */
927 	if (bce_tx_ticks_int <= 100) {
928 		sc->bce_tx_ticks_int =
929 		    bce_tx_ticks_int;
930 	} else {
931 		BCE_PRINTF("%s(%d): Illegal value (%d) specified for "
932 		    "hw.bce.tx_ticks_int!  Setting default of %d.\n",
933 		    __FILE__, __LINE__, bce_tx_ticks_int,
934 		    DEFAULT_TX_TICKS_INT);
935 		sc->bce_tx_ticks_int =
936 		    DEFAULT_TX_TICKS_INT;
937 	   }
938 
939 	if (bce_tx_ticks <= 100) {
940 		sc->bce_tx_ticks =
941 		    bce_tx_ticks;
942 	} else {
943 		BCE_PRINTF("%s(%d): Illegal value (%d) specified for "
944 		    "hw.bce.tx_ticks!  Setting default of %d.\n",
945 		    __FILE__, __LINE__, bce_tx_ticks,
946 		    DEFAULT_TX_TICKS);
947 		sc->bce_tx_ticks =
948 		    DEFAULT_TX_TICKS;
949 	}
950 
951 	/*
952 	 * Validate the RX trip point (i.e. the number of
953 	 * RX frames received before a status block update is
954 	 * generated and an interrupt is asserted.
955 	 */
956 	if (bce_rx_quick_cons_trip_int <= 100) {
957 		sc->bce_rx_quick_cons_trip_int =
958 		    bce_rx_quick_cons_trip_int;
959 	} else {
960 		BCE_PRINTF("%s(%d): Illegal value (%d) specified for "
961 		    "hw.bce.rx_quick_cons_trip_int!  Setting default of %d.\n",
962 		    __FILE__, __LINE__, bce_rx_quick_cons_trip_int,
963 		    DEFAULT_RX_QUICK_CONS_TRIP_INT);
964 		sc->bce_rx_quick_cons_trip_int =
965 		    DEFAULT_RX_QUICK_CONS_TRIP_INT;
966 	}
967 
968 	if (bce_rx_quick_cons_trip <= 100) {
969 		sc->bce_rx_quick_cons_trip =
970 		    bce_rx_quick_cons_trip;
971 	} else {
972 		BCE_PRINTF("%s(%d): Illegal value (%d) specified for "
973 		    "hw.bce.rx_quick_cons_trip!  Setting default of %d.\n",
974 		    __FILE__, __LINE__, bce_rx_quick_cons_trip,
975 		    DEFAULT_RX_QUICK_CONS_TRIP);
976 		sc->bce_rx_quick_cons_trip =
977 		    DEFAULT_RX_QUICK_CONS_TRIP;
978 	}
979 
980 	/*
981 	 * Validate the RX ticks count (i.e. the maximum amount
982 	 * of time to wait after the last RX frame has been
983 	 * received before a status block update is generated
984 	 * and an interrupt is asserted.
985 	 */
986 	if (bce_rx_ticks_int <= 100) {
987 		sc->bce_rx_ticks_int = bce_rx_ticks_int;
988 	} else {
989 		BCE_PRINTF("%s(%d): Illegal value (%d) specified for "
990 		    "hw.bce.rx_ticks_int!  Setting default of %d.\n",
991 		    __FILE__, __LINE__, bce_rx_ticks_int,
992 		    DEFAULT_RX_TICKS_INT);
993 		sc->bce_rx_ticks_int = DEFAULT_RX_TICKS_INT;
994 	}
995 
996 	if (bce_rx_ticks <= 100) {
997 		sc->bce_rx_ticks = bce_rx_ticks;
998 	} else {
999 		BCE_PRINTF("%s(%d): Illegal value (%d) specified for "
1000 		    "hw.bce.rx_ticks!  Setting default of %d.\n",
1001 		    __FILE__, __LINE__, bce_rx_ticks,
1002 		    DEFAULT_RX_TICKS);
1003 		sc->bce_rx_ticks = DEFAULT_RX_TICKS;
1004 	}
1005 
1006 	/* Disabling both RX ticks and RX trips will prevent interrupts. */
1007 	if ((bce_rx_quick_cons_trip == 0) && (bce_rx_ticks == 0)) {
1008 		BCE_PRINTF("%s(%d): Cannot set both hw.bce.rx_ticks and "
1009 		    "hw.bce.rx_quick_cons_trip to 0. Setting default values.\n",
1010 		   __FILE__, __LINE__);
1011 		sc->bce_rx_ticks = DEFAULT_RX_TICKS;
1012 		sc->bce_rx_quick_cons_trip = DEFAULT_RX_QUICK_CONS_TRIP;
1013 	}
1014 
1015 	/* Disabling both TX ticks and TX trips will prevent interrupts. */
1016 	if ((bce_tx_quick_cons_trip == 0) && (bce_tx_ticks == 0)) {
1017 		BCE_PRINTF("%s(%d): Cannot set both hw.bce.tx_ticks and "
1018 		    "hw.bce.tx_quick_cons_trip to 0. Setting default values.\n",
1019 		   __FILE__, __LINE__);
1020 		sc->bce_tx_ticks = DEFAULT_TX_TICKS;
1021 		sc->bce_tx_quick_cons_trip = DEFAULT_TX_QUICK_CONS_TRIP;
1022 	}
1023 
1024 }
1025 
1026 
1027 /****************************************************************************/
1028 /* Device attach function.                                                  */
1029 /*                                                                          */
1030 /* Allocates device resources, performs secondary chip identification,      */
1031 /* resets and initializes the hardware, and initializes driver instance     */
1032 /* variables.                                                               */
1033 /*                                                                          */
1034 /* Returns:                                                                 */
1035 /*   0 on success, positive value on failure.                               */
1036 /****************************************************************************/
1037 static int
1038 bce_attach(device_t dev)
1039 {
1040 	struct bce_softc *sc;
1041 	struct ifnet *ifp;
1042 	u32 val;
1043 	int error, rid, rc = 0;
1044 
1045 	sc = device_get_softc(dev);
1046 	sc->bce_dev = dev;
1047 
1048 	DBENTER(BCE_VERBOSE_LOAD | BCE_VERBOSE_RESET);
1049 
1050 	sc->bce_unit = device_get_unit(dev);
1051 
1052 	/* Set initial device and PHY flags */
1053 	sc->bce_flags = 0;
1054 	sc->bce_phy_flags = 0;
1055 
1056 	bce_set_tunables(sc);
1057 
1058 	pci_enable_busmaster(dev);
1059 
1060 	/* Allocate PCI memory resources. */
1061 	rid = PCIR_BAR(0);
1062 	sc->bce_res_mem = bus_alloc_resource_any(dev, SYS_RES_MEMORY,
1063 		&rid, RF_ACTIVE);
1064 
1065 	if (sc->bce_res_mem == NULL) {
1066 		BCE_PRINTF("%s(%d): PCI memory allocation failed\n",
1067 		    __FILE__, __LINE__);
1068 		rc = ENXIO;
1069 		goto bce_attach_fail;
1070 	}
1071 
1072 	/* Get various resource handles. */
1073 	sc->bce_btag    = rman_get_bustag(sc->bce_res_mem);
1074 	sc->bce_bhandle = rman_get_bushandle(sc->bce_res_mem);
1075 	sc->bce_vhandle = (vm_offset_t) rman_get_virtual(sc->bce_res_mem);
1076 
1077 	bce_probe_pci_caps(dev, sc);
1078 
1079 	rid = 1;
1080 #if 0
1081 	/* Try allocating MSI-X interrupts. */
1082 	if ((sc->bce_cap_flags & BCE_MSIX_CAPABLE_FLAG) &&
1083 		(bce_msi_enable >= 2) &&
1084 		((sc->bce_res_irq = bus_alloc_resource_any(dev, SYS_RES_MEMORY,
1085 		&rid, RF_ACTIVE)) != NULL)) {
1086 
1087 		msi_needed = sc->bce_msi_count = 1;
1088 
1089 		if (((error = pci_alloc_msix(dev, &sc->bce_msi_count)) != 0) ||
1090 			(sc->bce_msi_count != msi_needed)) {
1091 			BCE_PRINTF("%s(%d): MSI-X allocation failed! Requested = %d,"
1092 				"Received = %d, error = %d\n", __FILE__, __LINE__,
1093 				msi_needed, sc->bce_msi_count, error);
1094 			sc->bce_msi_count = 0;
1095 			pci_release_msi(dev);
1096 			bus_release_resource(dev, SYS_RES_MEMORY, rid,
1097 				sc->bce_res_irq);
1098 			sc->bce_res_irq = NULL;
1099 		} else {
1100 			DBPRINT(sc, BCE_INFO_LOAD, "%s(): Using MSI-X interrupt.\n",
1101 				__FUNCTION__);
1102 			sc->bce_flags |= BCE_USING_MSIX_FLAG;
1103 			sc->bce_intr = bce_intr;
1104 		}
1105 	}
1106 #endif
1107 
1108 	/* Try allocating a MSI interrupt. */
1109 	if ((sc->bce_cap_flags & BCE_MSI_CAPABLE_FLAG) &&
1110 		(bce_msi_enable >= 1) && (sc->bce_msi_count == 0)) {
1111 		sc->bce_msi_count = 1;
1112 		if ((error = pci_alloc_msi(dev, &sc->bce_msi_count)) != 0) {
1113 			BCE_PRINTF("%s(%d): MSI allocation failed! "
1114 			    "error = %d\n", __FILE__, __LINE__, error);
1115 			sc->bce_msi_count = 0;
1116 			pci_release_msi(dev);
1117 		} else {
1118 			DBPRINT(sc, BCE_INFO_LOAD, "%s(): Using MSI "
1119 			    "interrupt.\n", __FUNCTION__);
1120 			sc->bce_flags |= BCE_USING_MSI_FLAG;
1121 			if (BCE_CHIP_NUM(sc) == BCE_CHIP_NUM_5709)
1122 				sc->bce_flags |= BCE_ONE_SHOT_MSI_FLAG;
1123 			sc->bce_irq_rid = 1;
1124 			sc->bce_intr = bce_intr;
1125 		}
1126 	}
1127 
1128 	/* Try allocating a legacy interrupt. */
1129 	if (sc->bce_msi_count == 0) {
1130 		DBPRINT(sc, BCE_INFO_LOAD, "%s(): Using INTx interrupt.\n",
1131 			__FUNCTION__);
1132 		rid = 0;
1133 		sc->bce_intr = bce_intr;
1134 	}
1135 
1136 	sc->bce_res_irq = bus_alloc_resource_any(dev, SYS_RES_IRQ,
1137 	    &rid, RF_SHAREABLE | RF_ACTIVE);
1138 
1139 	sc->bce_irq_rid = rid;
1140 
1141 	/* Report any IRQ allocation errors. */
1142 	if (sc->bce_res_irq == NULL) {
1143 		BCE_PRINTF("%s(%d): PCI map interrupt failed!\n",
1144 		    __FILE__, __LINE__);
1145 		rc = ENXIO;
1146 		goto bce_attach_fail;
1147 	}
1148 
1149 	/* Initialize mutex for the current device instance. */
1150 	BCE_LOCK_INIT(sc, device_get_nameunit(dev));
1151 
1152 	/*
1153 	 * Configure byte swap and enable indirect register access.
1154 	 * Rely on CPU to do target byte swapping on big endian systems.
1155 	 * Access to registers outside of PCI configurtion space are not
1156 	 * valid until this is done.
1157 	 */
1158 	pci_write_config(dev, BCE_PCICFG_MISC_CONFIG,
1159 	    BCE_PCICFG_MISC_CONFIG_REG_WINDOW_ENA |
1160 	    BCE_PCICFG_MISC_CONFIG_TARGET_MB_WORD_SWAP, 4);
1161 
1162 	/* Save ASIC revsion info. */
1163 	sc->bce_chipid =  REG_RD(sc, BCE_MISC_ID);
1164 
1165 	/* Weed out any non-production controller revisions. */
1166 	switch(BCE_CHIP_ID(sc)) {
1167 	case BCE_CHIP_ID_5706_A0:
1168 	case BCE_CHIP_ID_5706_A1:
1169 	case BCE_CHIP_ID_5708_A0:
1170 	case BCE_CHIP_ID_5708_B0:
1171 	case BCE_CHIP_ID_5709_A0:
1172 	case BCE_CHIP_ID_5709_B0:
1173 	case BCE_CHIP_ID_5709_B1:
1174 	case BCE_CHIP_ID_5709_B2:
1175 		BCE_PRINTF("%s(%d): Unsupported controller "
1176 		    "revision (%c%d)!\n", __FILE__, __LINE__,
1177 		    (((pci_read_config(dev, PCIR_REVID, 4) &
1178 		    0xf0) >> 4) + 'A'), (pci_read_config(dev,
1179 		    PCIR_REVID, 4) & 0xf));
1180 		rc = ENODEV;
1181 		goto bce_attach_fail;
1182 	}
1183 
1184 	/*
1185 	 * The embedded PCIe to PCI-X bridge (EPB)
1186 	 * in the 5708 cannot address memory above
1187 	 * 40 bits (E7_5708CB1_23043 & E6_5708SB1_23043).
1188 	 */
1189 	if (BCE_CHIP_NUM(sc) == BCE_CHIP_NUM_5708)
1190 		sc->max_bus_addr = BCE_BUS_SPACE_MAXADDR;
1191 	else
1192 		sc->max_bus_addr = BUS_SPACE_MAXADDR;
1193 
1194 	/*
1195 	 * Find the base address for shared memory access.
1196 	 * Newer versions of bootcode use a signature and offset
1197 	 * while older versions use a fixed address.
1198 	 */
1199 	val = REG_RD_IND(sc, BCE_SHM_HDR_SIGNATURE);
1200 	if ((val & BCE_SHM_HDR_SIGNATURE_SIG_MASK) == BCE_SHM_HDR_SIGNATURE_SIG)
1201 		/* Multi-port devices use different offsets in shared memory. */
1202 		sc->bce_shmem_base = REG_RD_IND(sc, BCE_SHM_HDR_ADDR_0 +
1203 		    (pci_get_function(sc->bce_dev) << 2));
1204 	else
1205 		sc->bce_shmem_base = HOST_VIEW_SHMEM_BASE;
1206 
1207 	DBPRINT(sc, BCE_VERBOSE_FIRMWARE, "%s(): bce_shmem_base = 0x%08X\n",
1208 	    __FUNCTION__, sc->bce_shmem_base);
1209 
1210 	/* Fetch the bootcode revision. */
1211 	val = bce_shmem_rd(sc, BCE_DEV_INFO_BC_REV);
1212 	for (int i = 0, j = 0; i < 3; i++) {
1213 		u8 num;
1214 
1215 		num = (u8) (val >> (24 - (i * 8)));
1216 		for (int k = 100, skip0 = 1; k >= 1; num %= k, k /= 10) {
1217 			if (num >= k || !skip0 || k == 1) {
1218 				sc->bce_bc_ver[j++] = (num / k) + '0';
1219 				skip0 = 0;
1220 			}
1221 		}
1222 
1223 		if (i != 2)
1224 			sc->bce_bc_ver[j++] = '.';
1225 	}
1226 
1227 	/* Check if any management firwmare is enabled. */
1228 	val = bce_shmem_rd(sc, BCE_PORT_FEATURE);
1229 	if (val & BCE_PORT_FEATURE_ASF_ENABLED) {
1230 		sc->bce_flags |= BCE_MFW_ENABLE_FLAG;
1231 
1232 		/* Allow time for firmware to enter the running state. */
1233 		for (int i = 0; i < 30; i++) {
1234 			val = bce_shmem_rd(sc, BCE_BC_STATE_CONDITION);
1235 			if (val & BCE_CONDITION_MFW_RUN_MASK)
1236 				break;
1237 			DELAY(10000);
1238 		}
1239 
1240 		/* Check if management firmware is running. */
1241 		val = bce_shmem_rd(sc, BCE_BC_STATE_CONDITION);
1242 		val &= BCE_CONDITION_MFW_RUN_MASK;
1243 		if ((val != BCE_CONDITION_MFW_RUN_UNKNOWN) &&
1244 		    (val != BCE_CONDITION_MFW_RUN_NONE)) {
1245 			u32 addr = bce_shmem_rd(sc, BCE_MFW_VER_PTR);
1246 			int i = 0;
1247 
1248 			/* Read the management firmware version string. */
1249 			for (int j = 0; j < 3; j++) {
1250 				val = bce_reg_rd_ind(sc, addr + j * 4);
1251 				val = bswap32(val);
1252 				memcpy(&sc->bce_mfw_ver[i], &val, 4);
1253 				i += 4;
1254 			}
1255 		} else {
1256 			/* May cause firmware synchronization timeouts. */
1257 			BCE_PRINTF("%s(%d): Management firmware enabled "
1258 			    "but not running!\n", __FILE__, __LINE__);
1259 			strcpy(sc->bce_mfw_ver, "NOT RUNNING!");
1260 
1261 			/* ToDo: Any action the driver should take? */
1262 		}
1263 	}
1264 
1265 	/* Get PCI bus information (speed and type). */
1266 	val = REG_RD(sc, BCE_PCICFG_MISC_STATUS);
1267 	if (val & BCE_PCICFG_MISC_STATUS_PCIX_DET) {
1268 		u32 clkreg;
1269 
1270 		sc->bce_flags |= BCE_PCIX_FLAG;
1271 
1272 		clkreg = REG_RD(sc, BCE_PCICFG_PCI_CLOCK_CONTROL_BITS);
1273 
1274 		clkreg &= BCE_PCICFG_PCI_CLOCK_CONTROL_BITS_PCI_CLK_SPD_DET;
1275 		switch (clkreg) {
1276 		case BCE_PCICFG_PCI_CLOCK_CONTROL_BITS_PCI_CLK_SPD_DET_133MHZ:
1277 			sc->bus_speed_mhz = 133;
1278 			break;
1279 
1280 		case BCE_PCICFG_PCI_CLOCK_CONTROL_BITS_PCI_CLK_SPD_DET_95MHZ:
1281 			sc->bus_speed_mhz = 100;
1282 			break;
1283 
1284 		case BCE_PCICFG_PCI_CLOCK_CONTROL_BITS_PCI_CLK_SPD_DET_66MHZ:
1285 		case BCE_PCICFG_PCI_CLOCK_CONTROL_BITS_PCI_CLK_SPD_DET_80MHZ:
1286 			sc->bus_speed_mhz = 66;
1287 			break;
1288 
1289 		case BCE_PCICFG_PCI_CLOCK_CONTROL_BITS_PCI_CLK_SPD_DET_48MHZ:
1290 		case BCE_PCICFG_PCI_CLOCK_CONTROL_BITS_PCI_CLK_SPD_DET_55MHZ:
1291 			sc->bus_speed_mhz = 50;
1292 			break;
1293 
1294 		case BCE_PCICFG_PCI_CLOCK_CONTROL_BITS_PCI_CLK_SPD_DET_LOW:
1295 		case BCE_PCICFG_PCI_CLOCK_CONTROL_BITS_PCI_CLK_SPD_DET_32MHZ:
1296 		case BCE_PCICFG_PCI_CLOCK_CONTROL_BITS_PCI_CLK_SPD_DET_38MHZ:
1297 			sc->bus_speed_mhz = 33;
1298 			break;
1299 		}
1300 	} else {
1301 		if (val & BCE_PCICFG_MISC_STATUS_M66EN)
1302 			sc->bus_speed_mhz = 66;
1303 		else
1304 			sc->bus_speed_mhz = 33;
1305 	}
1306 
1307 	if (val & BCE_PCICFG_MISC_STATUS_32BIT_DET)
1308 		sc->bce_flags |= BCE_PCI_32BIT_FLAG;
1309 
1310 	/* Find the media type for the adapter. */
1311 	bce_get_media(sc);
1312 
1313 	/* Reset controller and announce to bootcode that driver is present. */
1314 	if (bce_reset(sc, BCE_DRV_MSG_CODE_RESET)) {
1315 		BCE_PRINTF("%s(%d): Controller reset failed!\n",
1316 		    __FILE__, __LINE__);
1317 		rc = ENXIO;
1318 		goto bce_attach_fail;
1319 	}
1320 
1321 	/* Initialize the controller. */
1322 	if (bce_chipinit(sc)) {
1323 		BCE_PRINTF("%s(%d): Controller initialization failed!\n",
1324 		    __FILE__, __LINE__);
1325 		rc = ENXIO;
1326 		goto bce_attach_fail;
1327 	}
1328 
1329 	/* Perform NVRAM test. */
1330 	if (bce_nvram_test(sc)) {
1331 		BCE_PRINTF("%s(%d): NVRAM test failed!\n",
1332 		    __FILE__, __LINE__);
1333 		rc = ENXIO;
1334 		goto bce_attach_fail;
1335 	}
1336 
1337 	/* Fetch the permanent Ethernet MAC address. */
1338 	bce_get_mac_addr(sc);
1339 
1340 	/*
1341 	 * Trip points control how many BDs
1342 	 * should be ready before generating an
1343 	 * interrupt while ticks control how long
1344 	 * a BD can sit in the chain before
1345 	 * generating an interrupt.  Set the default
1346 	 * values for the RX and TX chains.
1347 	 */
1348 
1349 	/* Not used for L2. */
1350 	sc->bce_comp_prod_trip_int     = 0;
1351 	sc->bce_comp_prod_trip         = 0;
1352 	sc->bce_com_ticks_int          = 0;
1353 	sc->bce_com_ticks              = 0;
1354 	sc->bce_cmd_ticks_int          = 0;
1355 	sc->bce_cmd_ticks              = 0;
1356 
1357 	/* Update statistics once every second. */
1358 	sc->bce_stats_ticks = 1000000 & 0xffff00;
1359 
1360 	/* Store data needed by PHY driver for backplane applications */
1361 	sc->bce_shared_hw_cfg = bce_shmem_rd(sc, BCE_SHARED_HW_CFG_CONFIG);
1362 	sc->bce_port_hw_cfg   = bce_shmem_rd(sc, BCE_PORT_HW_CFG_CONFIG);
1363 
1364 	/* Allocate DMA memory resources. */
1365 	if (bce_dma_alloc(dev)) {
1366 		BCE_PRINTF("%s(%d): DMA resource allocation failed!\n",
1367 		    __FILE__, __LINE__);
1368 		rc = ENXIO;
1369 		goto bce_attach_fail;
1370 	}
1371 
1372 	/* Allocate an ifnet structure. */
1373 	ifp = sc->bce_ifp = if_alloc(IFT_ETHER);
1374 	if (ifp == NULL) {
1375 		BCE_PRINTF("%s(%d): Interface allocation failed!\n",
1376 		    __FILE__, __LINE__);
1377 		rc = ENXIO;
1378 		goto bce_attach_fail;
1379 	}
1380 
1381 	/* Initialize the ifnet interface. */
1382 	ifp->if_softc	= sc;
1383 	if_initname(ifp, device_get_name(dev), device_get_unit(dev));
1384 	ifp->if_flags	= IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
1385 	ifp->if_ioctl	= bce_ioctl;
1386 	ifp->if_start	= bce_start;
1387 	ifp->if_init	= bce_init;
1388 	ifp->if_mtu	= ETHERMTU;
1389 
1390 	if (bce_tso_enable) {
1391 		ifp->if_hwassist = BCE_IF_HWASSIST | CSUM_TSO;
1392 		ifp->if_capabilities = BCE_IF_CAPABILITIES | IFCAP_TSO4 |
1393 		    IFCAP_VLAN_HWTSO;
1394 	} else {
1395 		ifp->if_hwassist = BCE_IF_HWASSIST;
1396 		ifp->if_capabilities = BCE_IF_CAPABILITIES;
1397 	}
1398 
1399 #if __FreeBSD_version >= 800505
1400 	/*
1401 	 * Introducing IFCAP_LINKSTATE didn't bump __FreeBSD_version
1402 	 * so it's approximate value.
1403 	 */
1404 	if ((sc->bce_phy_flags & BCE_PHY_REMOTE_CAP_FLAG) != 0)
1405 		ifp->if_capabilities |= IFCAP_LINKSTATE;
1406 #endif
1407 
1408 	ifp->if_capenable = ifp->if_capabilities;
1409 
1410 	/*
1411 	 * Assume standard mbuf sizes for buffer allocation.
1412 	 * This may change later if the MTU size is set to
1413 	 * something other than 1500.
1414 	 */
1415 	bce_get_rx_buffer_sizes(sc,
1416 	    (ETHER_MAX_LEN - ETHER_HDR_LEN - ETHER_CRC_LEN));
1417 
1418 	/* Recalculate our buffer allocation sizes. */
1419 	ifp->if_snd.ifq_drv_maxlen = USABLE_TX_BD_ALLOC;
1420 	IFQ_SET_MAXLEN(&ifp->if_snd, ifp->if_snd.ifq_drv_maxlen);
1421 	IFQ_SET_READY(&ifp->if_snd);
1422 
1423 	if (sc->bce_phy_flags & BCE_PHY_2_5G_CAPABLE_FLAG)
1424 		ifp->if_baudrate = IF_Mbps(2500ULL);
1425 	else
1426 		ifp->if_baudrate = IF_Mbps(1000);
1427 
1428 	/* Handle any special PHY initialization for SerDes PHYs. */
1429 	bce_init_media(sc);
1430 
1431 	if ((sc->bce_phy_flags & BCE_PHY_REMOTE_CAP_FLAG) != 0) {
1432 		ifmedia_init(&sc->bce_ifmedia, IFM_IMASK, bce_ifmedia_upd,
1433 		    bce_ifmedia_sts);
1434 		/*
1435 		 * We can't manually override remote PHY's link and assume
1436 		 * PHY port configuration(Fiber or TP) is not changed after
1437 		 * device attach.  This may not be correct though.
1438 		 */
1439 		if ((sc->bce_phy_flags & BCE_PHY_REMOTE_PORT_FIBER_FLAG) != 0) {
1440 			if (sc->bce_phy_flags & BCE_PHY_2_5G_CAPABLE_FLAG) {
1441 				ifmedia_add(&sc->bce_ifmedia,
1442 				    IFM_ETHER | IFM_2500_SX, 0, NULL);
1443 				ifmedia_add(&sc->bce_ifmedia,
1444 				    IFM_ETHER | IFM_2500_SX | IFM_FDX, 0, NULL);
1445 			}
1446 			ifmedia_add(&sc->bce_ifmedia,
1447 			    IFM_ETHER | IFM_1000_SX, 0, NULL);
1448 			ifmedia_add(&sc->bce_ifmedia,
1449 			    IFM_ETHER | IFM_1000_SX | IFM_FDX, 0, NULL);
1450 		} else {
1451 			ifmedia_add(&sc->bce_ifmedia,
1452 			    IFM_ETHER | IFM_10_T, 0, NULL);
1453 			ifmedia_add(&sc->bce_ifmedia,
1454 			    IFM_ETHER | IFM_10_T | IFM_FDX, 0, NULL);
1455 			ifmedia_add(&sc->bce_ifmedia,
1456 			    IFM_ETHER | IFM_100_TX, 0, NULL);
1457 			ifmedia_add(&sc->bce_ifmedia,
1458 			    IFM_ETHER | IFM_100_TX | IFM_FDX, 0, NULL);
1459 			ifmedia_add(&sc->bce_ifmedia,
1460 			    IFM_ETHER | IFM_1000_T, 0, NULL);
1461 			ifmedia_add(&sc->bce_ifmedia,
1462 			    IFM_ETHER | IFM_1000_T | IFM_FDX, 0, NULL);
1463 		}
1464 		ifmedia_add(&sc->bce_ifmedia, IFM_ETHER | IFM_AUTO, 0, NULL);
1465 		ifmedia_set(&sc->bce_ifmedia, IFM_ETHER | IFM_AUTO);
1466 		sc->bce_ifmedia.ifm_media = sc->bce_ifmedia.ifm_cur->ifm_media;
1467 	} else {
1468 		/* MII child bus by attaching the PHY. */
1469 		rc = mii_attach(dev, &sc->bce_miibus, ifp, bce_ifmedia_upd,
1470 		    bce_ifmedia_sts, BMSR_DEFCAPMASK, sc->bce_phy_addr,
1471 		    MII_OFFSET_ANY, MIIF_DOPAUSE);
1472 		if (rc != 0) {
1473 			BCE_PRINTF("%s(%d): attaching PHYs failed\n", __FILE__,
1474 			    __LINE__);
1475 			goto bce_attach_fail;
1476 		}
1477 	}
1478 
1479 	/* Attach to the Ethernet interface list. */
1480 	ether_ifattach(ifp, sc->eaddr);
1481 
1482 #if __FreeBSD_version < 500000
1483 	callout_init(&sc->bce_tick_callout);
1484 	callout_init(&sc->bce_pulse_callout);
1485 #else
1486 	callout_init_mtx(&sc->bce_tick_callout, &sc->bce_mtx, 0);
1487 	callout_init_mtx(&sc->bce_pulse_callout, &sc->bce_mtx, 0);
1488 #endif
1489 
1490 	/* Hookup IRQ last. */
1491 	rc = bus_setup_intr(dev, sc->bce_res_irq, INTR_TYPE_NET | INTR_MPSAFE,
1492 		NULL, bce_intr, sc, &sc->bce_intrhand);
1493 
1494 	if (rc) {
1495 		BCE_PRINTF("%s(%d): Failed to setup IRQ!\n",
1496 		    __FILE__, __LINE__);
1497 		bce_detach(dev);
1498 		goto bce_attach_exit;
1499 	}
1500 
1501 	/*
1502 	 * At this point we've acquired all the resources
1503 	 * we need to run so there's no turning back, we're
1504 	 * cleared for launch.
1505 	 */
1506 
1507 	/* Print some important debugging info. */
1508 	DBRUNMSG(BCE_INFO, bce_dump_driver_state(sc));
1509 
1510 	/* Add the supported sysctls to the kernel. */
1511 	bce_add_sysctls(sc);
1512 
1513 	BCE_LOCK(sc);
1514 
1515 	/*
1516 	 * The chip reset earlier notified the bootcode that
1517 	 * a driver is present.  We now need to start our pulse
1518 	 * routine so that the bootcode is reminded that we're
1519 	 * still running.
1520 	 */
1521 	bce_pulse(sc);
1522 
1523 	bce_mgmt_init_locked(sc);
1524 	BCE_UNLOCK(sc);
1525 
1526 	/* Finally, print some useful adapter info */
1527 	bce_print_adapter_info(sc);
1528 	DBPRINT(sc, BCE_FATAL, "%s(): sc = %p\n",
1529 		__FUNCTION__, sc);
1530 
1531 	goto bce_attach_exit;
1532 
1533 bce_attach_fail:
1534 	bce_release_resources(sc);
1535 
1536 bce_attach_exit:
1537 
1538 	DBEXIT(BCE_VERBOSE_LOAD | BCE_VERBOSE_RESET);
1539 
1540 	return(rc);
1541 }
1542 
1543 
1544 /****************************************************************************/
1545 /* Device detach function.                                                  */
1546 /*                                                                          */
1547 /* Stops the controller, resets the controller, and releases resources.     */
1548 /*                                                                          */
1549 /* Returns:                                                                 */
1550 /*   0 on success, positive value on failure.                               */
1551 /****************************************************************************/
1552 static int
1553 bce_detach(device_t dev)
1554 {
1555 	struct bce_softc *sc = device_get_softc(dev);
1556 	struct ifnet *ifp;
1557 	u32 msg;
1558 
1559 	DBENTER(BCE_VERBOSE_UNLOAD | BCE_VERBOSE_RESET);
1560 
1561 	ifp = sc->bce_ifp;
1562 
1563 	/* Stop and reset the controller. */
1564 	BCE_LOCK(sc);
1565 
1566 	/* Stop the pulse so the bootcode can go to driver absent state. */
1567 	callout_stop(&sc->bce_pulse_callout);
1568 
1569 	bce_stop(sc);
1570 	if (sc->bce_flags & BCE_NO_WOL_FLAG)
1571 		msg = BCE_DRV_MSG_CODE_UNLOAD_LNK_DN;
1572 	else
1573 		msg = BCE_DRV_MSG_CODE_UNLOAD;
1574 	bce_reset(sc, msg);
1575 
1576 	BCE_UNLOCK(sc);
1577 
1578 	ether_ifdetach(ifp);
1579 
1580 	/* If we have a child device on the MII bus remove it too. */
1581 	if ((sc->bce_phy_flags & BCE_PHY_REMOTE_CAP_FLAG) != 0)
1582 		ifmedia_removeall(&sc->bce_ifmedia);
1583 	else {
1584 		bus_generic_detach(dev);
1585 		device_delete_child(dev, sc->bce_miibus);
1586 	}
1587 
1588 	/* Release all remaining resources. */
1589 	bce_release_resources(sc);
1590 
1591 	DBEXIT(BCE_VERBOSE_UNLOAD | BCE_VERBOSE_RESET);
1592 
1593 	return(0);
1594 }
1595 
1596 
1597 /****************************************************************************/
1598 /* Device shutdown function.                                                */
1599 /*                                                                          */
1600 /* Stops and resets the controller.                                         */
1601 /*                                                                          */
1602 /* Returns:                                                                 */
1603 /*   0 on success, positive value on failure.                               */
1604 /****************************************************************************/
1605 static int
1606 bce_shutdown(device_t dev)
1607 {
1608 	struct bce_softc *sc = device_get_softc(dev);
1609 	u32 msg;
1610 
1611 	DBENTER(BCE_VERBOSE);
1612 
1613 	BCE_LOCK(sc);
1614 	bce_stop(sc);
1615 	if (sc->bce_flags & BCE_NO_WOL_FLAG)
1616 		msg = BCE_DRV_MSG_CODE_UNLOAD_LNK_DN;
1617 	else
1618 		msg = BCE_DRV_MSG_CODE_UNLOAD;
1619 	bce_reset(sc, msg);
1620 	BCE_UNLOCK(sc);
1621 
1622 	DBEXIT(BCE_VERBOSE);
1623 
1624 	return (0);
1625 }
1626 
1627 
1628 #ifdef BCE_DEBUG
1629 /****************************************************************************/
1630 /* Register read.                                                           */
1631 /*                                                                          */
1632 /* Returns:                                                                 */
1633 /*   The value of the register.                                             */
1634 /****************************************************************************/
1635 static u32
1636 bce_reg_rd(struct bce_softc *sc, u32 offset)
1637 {
1638 	u32 val = bus_space_read_4(sc->bce_btag, sc->bce_bhandle, offset);
1639 	DBPRINT(sc, BCE_INSANE_REG, "%s(); offset = 0x%08X, val = 0x%08X\n",
1640 		__FUNCTION__, offset, val);
1641 	return val;
1642 }
1643 
1644 
1645 /****************************************************************************/
1646 /* Register write (16 bit).                                                 */
1647 /*                                                                          */
1648 /* Returns:                                                                 */
1649 /*   Nothing.                                                               */
1650 /****************************************************************************/
1651 static void
1652 bce_reg_wr16(struct bce_softc *sc, u32 offset, u16 val)
1653 {
1654 	DBPRINT(sc, BCE_INSANE_REG, "%s(); offset = 0x%08X, val = 0x%04X\n",
1655 		__FUNCTION__, offset, val);
1656 	bus_space_write_2(sc->bce_btag, sc->bce_bhandle, offset, val);
1657 }
1658 
1659 
1660 /****************************************************************************/
1661 /* Register write.                                                          */
1662 /*                                                                          */
1663 /* Returns:                                                                 */
1664 /*   Nothing.                                                               */
1665 /****************************************************************************/
1666 static void
1667 bce_reg_wr(struct bce_softc *sc, u32 offset, u32 val)
1668 {
1669 	DBPRINT(sc, BCE_INSANE_REG, "%s(); offset = 0x%08X, val = 0x%08X\n",
1670 		__FUNCTION__, offset, val);
1671 	bus_space_write_4(sc->bce_btag, sc->bce_bhandle, offset, val);
1672 }
1673 #endif
1674 
1675 /****************************************************************************/
1676 /* Indirect register read.                                                  */
1677 /*                                                                          */
1678 /* Reads NetXtreme II registers using an index/data register pair in PCI    */
1679 /* configuration space.  Using this mechanism avoids issues with posted     */
1680 /* reads but is much slower than memory-mapped I/O.                         */
1681 /*                                                                          */
1682 /* Returns:                                                                 */
1683 /*   The value of the register.                                             */
1684 /****************************************************************************/
1685 static u32
1686 bce_reg_rd_ind(struct bce_softc *sc, u32 offset)
1687 {
1688 	device_t dev;
1689 	dev = sc->bce_dev;
1690 
1691 	pci_write_config(dev, BCE_PCICFG_REG_WINDOW_ADDRESS, offset, 4);
1692 #ifdef BCE_DEBUG
1693 	{
1694 		u32 val;
1695 		val = pci_read_config(dev, BCE_PCICFG_REG_WINDOW, 4);
1696 		DBPRINT(sc, BCE_INSANE_REG, "%s(); offset = 0x%08X, val = 0x%08X\n",
1697 			__FUNCTION__, offset, val);
1698 		return val;
1699 	}
1700 #else
1701 	return pci_read_config(dev, BCE_PCICFG_REG_WINDOW, 4);
1702 #endif
1703 }
1704 
1705 
1706 /****************************************************************************/
1707 /* Indirect register write.                                                 */
1708 /*                                                                          */
1709 /* Writes NetXtreme II registers using an index/data register pair in PCI   */
1710 /* configuration space.  Using this mechanism avoids issues with posted     */
1711 /* writes but is muchh slower than memory-mapped I/O.                       */
1712 /*                                                                          */
1713 /* Returns:                                                                 */
1714 /*   Nothing.                                                               */
1715 /****************************************************************************/
1716 static void
1717 bce_reg_wr_ind(struct bce_softc *sc, u32 offset, u32 val)
1718 {
1719 	device_t dev;
1720 	dev = sc->bce_dev;
1721 
1722 	DBPRINT(sc, BCE_INSANE_REG, "%s(); offset = 0x%08X, val = 0x%08X\n",
1723 		__FUNCTION__, offset, val);
1724 
1725 	pci_write_config(dev, BCE_PCICFG_REG_WINDOW_ADDRESS, offset, 4);
1726 	pci_write_config(dev, BCE_PCICFG_REG_WINDOW, val, 4);
1727 }
1728 
1729 
1730 /****************************************************************************/
1731 /* Shared memory write.                                                     */
1732 /*                                                                          */
1733 /* Writes NetXtreme II shared memory region.                                */
1734 /*                                                                          */
1735 /* Returns:                                                                 */
1736 /*   Nothing.                                                               */
1737 /****************************************************************************/
1738 static void
1739 bce_shmem_wr(struct bce_softc *sc, u32 offset, u32 val)
1740 {
1741 	DBPRINT(sc, BCE_VERBOSE_FIRMWARE, "%s(): Writing 0x%08X  to  "
1742 	    "0x%08X\n",	__FUNCTION__, val, offset);
1743 
1744 	bce_reg_wr_ind(sc, sc->bce_shmem_base + offset, val);
1745 }
1746 
1747 
1748 /****************************************************************************/
1749 /* Shared memory read.                                                      */
1750 /*                                                                          */
1751 /* Reads NetXtreme II shared memory region.                                 */
1752 /*                                                                          */
1753 /* Returns:                                                                 */
1754 /*   The 32 bit value read.                                                 */
1755 /****************************************************************************/
1756 static u32
1757 bce_shmem_rd(struct bce_softc *sc, u32 offset)
1758 {
1759 	u32 val = bce_reg_rd_ind(sc, sc->bce_shmem_base + offset);
1760 
1761 	DBPRINT(sc, BCE_VERBOSE_FIRMWARE, "%s(): Reading 0x%08X from "
1762 	    "0x%08X\n",	__FUNCTION__, val, offset);
1763 
1764 	return val;
1765 }
1766 
1767 
1768 #ifdef BCE_DEBUG
1769 /****************************************************************************/
1770 /* Context memory read.                                                     */
1771 /*                                                                          */
1772 /* The NetXtreme II controller uses context memory to track connection      */
1773 /* information for L2 and higher network protocols.                         */
1774 /*                                                                          */
1775 /* Returns:                                                                 */
1776 /*   The requested 32 bit value of context memory.                          */
1777 /****************************************************************************/
1778 static u32
1779 bce_ctx_rd(struct bce_softc *sc, u32 cid_addr, u32 ctx_offset)
1780 {
1781 	u32 idx, offset, retry_cnt = 5, val;
1782 
1783 	DBRUNIF((cid_addr > MAX_CID_ADDR || ctx_offset & 0x3 ||
1784 	    cid_addr & CTX_MASK), BCE_PRINTF("%s(): Invalid CID "
1785 	    "address: 0x%08X.\n", __FUNCTION__, cid_addr));
1786 
1787 	offset = ctx_offset + cid_addr;
1788 
1789 	if (BCE_CHIP_NUM(sc) == BCE_CHIP_NUM_5709) {
1790 
1791 		REG_WR(sc, BCE_CTX_CTX_CTRL, (offset | BCE_CTX_CTX_CTRL_READ_REQ));
1792 
1793 		for (idx = 0; idx < retry_cnt; idx++) {
1794 			val = REG_RD(sc, BCE_CTX_CTX_CTRL);
1795 			if ((val & BCE_CTX_CTX_CTRL_READ_REQ) == 0)
1796 				break;
1797 			DELAY(5);
1798 		}
1799 
1800 		if (val & BCE_CTX_CTX_CTRL_READ_REQ)
1801 			BCE_PRINTF("%s(%d); Unable to read CTX memory: "
1802 			    "cid_addr = 0x%08X, offset = 0x%08X!\n",
1803 			    __FILE__, __LINE__, cid_addr, ctx_offset);
1804 
1805 		val = REG_RD(sc, BCE_CTX_CTX_DATA);
1806 	} else {
1807 		REG_WR(sc, BCE_CTX_DATA_ADR, offset);
1808 		val = REG_RD(sc, BCE_CTX_DATA);
1809 	}
1810 
1811 	DBPRINT(sc, BCE_EXTREME_CTX, "%s(); cid_addr = 0x%08X, offset = 0x%08X, "
1812 		"val = 0x%08X\n", __FUNCTION__, cid_addr, ctx_offset, val);
1813 
1814 	return(val);
1815 }
1816 #endif
1817 
1818 
1819 /****************************************************************************/
1820 /* Context memory write.                                                    */
1821 /*                                                                          */
1822 /* The NetXtreme II controller uses context memory to track connection      */
1823 /* information for L2 and higher network protocols.                         */
1824 /*                                                                          */
1825 /* Returns:                                                                 */
1826 /*   Nothing.                                                               */
1827 /****************************************************************************/
1828 static void
1829 bce_ctx_wr(struct bce_softc *sc, u32 cid_addr, u32 ctx_offset, u32 ctx_val)
1830 {
1831 	u32 idx, offset = ctx_offset + cid_addr;
1832 	u32 val, retry_cnt = 5;
1833 
1834 	DBPRINT(sc, BCE_EXTREME_CTX, "%s(); cid_addr = 0x%08X, offset = 0x%08X, "
1835 		"val = 0x%08X\n", __FUNCTION__, cid_addr, ctx_offset, ctx_val);
1836 
1837 	DBRUNIF((cid_addr > MAX_CID_ADDR || ctx_offset & 0x3 || cid_addr & CTX_MASK),
1838 		BCE_PRINTF("%s(): Invalid CID address: 0x%08X.\n",
1839 		    __FUNCTION__, cid_addr));
1840 
1841 	if (BCE_CHIP_NUM(sc) == BCE_CHIP_NUM_5709) {
1842 
1843 		REG_WR(sc, BCE_CTX_CTX_DATA, ctx_val);
1844 		REG_WR(sc, BCE_CTX_CTX_CTRL, (offset | BCE_CTX_CTX_CTRL_WRITE_REQ));
1845 
1846 		for (idx = 0; idx < retry_cnt; idx++) {
1847 			val = REG_RD(sc, BCE_CTX_CTX_CTRL);
1848 			if ((val & BCE_CTX_CTX_CTRL_WRITE_REQ) == 0)
1849 				break;
1850 			DELAY(5);
1851 		}
1852 
1853 		if (val & BCE_CTX_CTX_CTRL_WRITE_REQ)
1854 			BCE_PRINTF("%s(%d); Unable to write CTX memory: "
1855 			    "cid_addr = 0x%08X, offset = 0x%08X!\n",
1856 			    __FILE__, __LINE__, cid_addr, ctx_offset);
1857 
1858 	} else {
1859 		REG_WR(sc, BCE_CTX_DATA_ADR, offset);
1860 		REG_WR(sc, BCE_CTX_DATA, ctx_val);
1861 	}
1862 }
1863 
1864 
1865 /****************************************************************************/
1866 /* PHY register read.                                                       */
1867 /*                                                                          */
1868 /* Implements register reads on the MII bus.                                */
1869 /*                                                                          */
1870 /* Returns:                                                                 */
1871 /*   The value of the register.                                             */
1872 /****************************************************************************/
1873 static int
1874 bce_miibus_read_reg(device_t dev, int phy, int reg)
1875 {
1876 	struct bce_softc *sc;
1877 	u32 val;
1878 	int i;
1879 
1880 	sc = device_get_softc(dev);
1881 
1882 	/* Make sure we are accessing the correct PHY address. */
1883 	if (phy != sc->bce_phy_addr) {
1884 		DBPRINT(sc, BCE_INSANE_PHY, "Invalid PHY address %d "
1885 		    "for PHY read!\n", phy);
1886 		return(0);
1887 	}
1888 
1889     /*
1890      * The 5709S PHY is an IEEE Clause 45 PHY
1891      * with special mappings to work with IEEE
1892      * Clause 22 register accesses.
1893      */
1894 	if ((sc->bce_phy_flags & BCE_PHY_IEEE_CLAUSE_45_FLAG) != 0) {
1895 		if (reg >= MII_BMCR && reg <= MII_ANLPRNP)
1896 			reg += 0x10;
1897 	}
1898 
1899     if (sc->bce_phy_flags & BCE_PHY_INT_MODE_AUTO_POLLING_FLAG) {
1900 		val = REG_RD(sc, BCE_EMAC_MDIO_MODE);
1901 		val &= ~BCE_EMAC_MDIO_MODE_AUTO_POLL;
1902 
1903 		REG_WR(sc, BCE_EMAC_MDIO_MODE, val);
1904 		REG_RD(sc, BCE_EMAC_MDIO_MODE);
1905 
1906 		DELAY(40);
1907 	}
1908 
1909 
1910 	val = BCE_MIPHY(phy) | BCE_MIREG(reg) |
1911 	    BCE_EMAC_MDIO_COMM_COMMAND_READ | BCE_EMAC_MDIO_COMM_DISEXT |
1912 	    BCE_EMAC_MDIO_COMM_START_BUSY;
1913 	REG_WR(sc, BCE_EMAC_MDIO_COMM, val);
1914 
1915 	for (i = 0; i < BCE_PHY_TIMEOUT; i++) {
1916 		DELAY(10);
1917 
1918 		val = REG_RD(sc, BCE_EMAC_MDIO_COMM);
1919 		if (!(val & BCE_EMAC_MDIO_COMM_START_BUSY)) {
1920 			DELAY(5);
1921 
1922 			val = REG_RD(sc, BCE_EMAC_MDIO_COMM);
1923 			val &= BCE_EMAC_MDIO_COMM_DATA;
1924 
1925 			break;
1926 		}
1927 	}
1928 
1929 	if (val & BCE_EMAC_MDIO_COMM_START_BUSY) {
1930 		BCE_PRINTF("%s(%d): Error: PHY read timeout! phy = %d, "
1931 		    "reg = 0x%04X\n", __FILE__, __LINE__, phy, reg);
1932 		val = 0x0;
1933 	} else {
1934 		val = REG_RD(sc, BCE_EMAC_MDIO_COMM);
1935 	}
1936 
1937 
1938 	if (sc->bce_phy_flags & BCE_PHY_INT_MODE_AUTO_POLLING_FLAG) {
1939 		val = REG_RD(sc, BCE_EMAC_MDIO_MODE);
1940 		val |= BCE_EMAC_MDIO_MODE_AUTO_POLL;
1941 
1942 		REG_WR(sc, BCE_EMAC_MDIO_MODE, val);
1943 		REG_RD(sc, BCE_EMAC_MDIO_MODE);
1944 
1945 		DELAY(40);
1946 	}
1947 
1948 	DB_PRINT_PHY_REG(reg, val);
1949 	return (val & 0xffff);
1950 
1951 }
1952 
1953 
1954 /****************************************************************************/
1955 /* PHY register write.                                                      */
1956 /*                                                                          */
1957 /* Implements register writes on the MII bus.                               */
1958 /*                                                                          */
1959 /* Returns:                                                                 */
1960 /*   The value of the register.                                             */
1961 /****************************************************************************/
1962 static int
1963 bce_miibus_write_reg(device_t dev, int phy, int reg, int val)
1964 {
1965 	struct bce_softc *sc;
1966 	u32 val1;
1967 	int i;
1968 
1969 	sc = device_get_softc(dev);
1970 
1971 	/* Make sure we are accessing the correct PHY address. */
1972 	if (phy != sc->bce_phy_addr) {
1973 		DBPRINT(sc, BCE_INSANE_PHY, "Invalid PHY address %d "
1974 		    "for PHY write!\n", phy);
1975 		return(0);
1976 	}
1977 
1978 	DB_PRINT_PHY_REG(reg, val);
1979 
1980 	/*
1981 	 * The 5709S PHY is an IEEE Clause 45 PHY
1982 	 * with special mappings to work with IEEE
1983 	 * Clause 22 register accesses.
1984 	 */
1985 	if ((sc->bce_phy_flags & BCE_PHY_IEEE_CLAUSE_45_FLAG) != 0) {
1986 		if (reg >= MII_BMCR && reg <= MII_ANLPRNP)
1987 			reg += 0x10;
1988 	}
1989 
1990 	if (sc->bce_phy_flags & BCE_PHY_INT_MODE_AUTO_POLLING_FLAG) {
1991 		val1 = REG_RD(sc, BCE_EMAC_MDIO_MODE);
1992 		val1 &= ~BCE_EMAC_MDIO_MODE_AUTO_POLL;
1993 
1994 		REG_WR(sc, BCE_EMAC_MDIO_MODE, val1);
1995 		REG_RD(sc, BCE_EMAC_MDIO_MODE);
1996 
1997 		DELAY(40);
1998 	}
1999 
2000 	val1 = BCE_MIPHY(phy) | BCE_MIREG(reg) | val |
2001 	    BCE_EMAC_MDIO_COMM_COMMAND_WRITE |
2002 	    BCE_EMAC_MDIO_COMM_START_BUSY | BCE_EMAC_MDIO_COMM_DISEXT;
2003 	REG_WR(sc, BCE_EMAC_MDIO_COMM, val1);
2004 
2005 	for (i = 0; i < BCE_PHY_TIMEOUT; i++) {
2006 		DELAY(10);
2007 
2008 		val1 = REG_RD(sc, BCE_EMAC_MDIO_COMM);
2009 		if (!(val1 & BCE_EMAC_MDIO_COMM_START_BUSY)) {
2010 			DELAY(5);
2011 			break;
2012 		}
2013 	}
2014 
2015 	if (val1 & BCE_EMAC_MDIO_COMM_START_BUSY)
2016 		BCE_PRINTF("%s(%d): PHY write timeout!\n",
2017 		    __FILE__, __LINE__);
2018 
2019 	if (sc->bce_phy_flags & BCE_PHY_INT_MODE_AUTO_POLLING_FLAG) {
2020 		val1 = REG_RD(sc, BCE_EMAC_MDIO_MODE);
2021 		val1 |= BCE_EMAC_MDIO_MODE_AUTO_POLL;
2022 
2023 		REG_WR(sc, BCE_EMAC_MDIO_MODE, val1);
2024 		REG_RD(sc, BCE_EMAC_MDIO_MODE);
2025 
2026 		DELAY(40);
2027 	}
2028 
2029 	return 0;
2030 }
2031 
2032 
2033 /****************************************************************************/
2034 /* MII bus status change.                                                   */
2035 /*                                                                          */
2036 /* Called by the MII bus driver when the PHY establishes link to set the    */
2037 /* MAC interface registers.                                                 */
2038 /*                                                                          */
2039 /* Returns:                                                                 */
2040 /*   Nothing.                                                               */
2041 /****************************************************************************/
2042 static void
2043 bce_miibus_statchg(device_t dev)
2044 {
2045 	struct bce_softc *sc;
2046 	struct mii_data *mii;
2047 	struct ifmediareq ifmr;
2048 	int media_active, media_status, val;
2049 
2050 	sc = device_get_softc(dev);
2051 
2052 	DBENTER(BCE_VERBOSE_PHY);
2053 
2054 	if ((sc->bce_phy_flags & BCE_PHY_REMOTE_CAP_FLAG) != 0) {
2055 		bzero(&ifmr, sizeof(ifmr));
2056 		bce_ifmedia_sts_rphy(sc, &ifmr);
2057 		media_active = ifmr.ifm_active;
2058 		media_status = ifmr.ifm_status;
2059 	} else {
2060 		mii = device_get_softc(sc->bce_miibus);
2061 		media_active = mii->mii_media_active;
2062 		media_status = mii->mii_media_status;
2063 	}
2064 
2065 	/* Ignore invalid media status. */
2066 	if ((media_status & (IFM_ACTIVE | IFM_AVALID)) !=
2067 	    (IFM_ACTIVE | IFM_AVALID))
2068 		goto bce_miibus_statchg_exit;
2069 
2070 	val = REG_RD(sc, BCE_EMAC_MODE);
2071 	val &= ~(BCE_EMAC_MODE_PORT | BCE_EMAC_MODE_HALF_DUPLEX |
2072 	    BCE_EMAC_MODE_MAC_LOOP | BCE_EMAC_MODE_FORCE_LINK |
2073 	    BCE_EMAC_MODE_25G);
2074 
2075 	/* Set MII or GMII interface based on the PHY speed. */
2076 	switch (IFM_SUBTYPE(media_active)) {
2077 	case IFM_10_T:
2078 		if (BCE_CHIP_NUM(sc) != BCE_CHIP_NUM_5706) {
2079 			DBPRINT(sc, BCE_INFO_PHY,
2080 			    "Enabling 10Mb interface.\n");
2081 			val |= BCE_EMAC_MODE_PORT_MII_10;
2082 			break;
2083 		}
2084 		/* fall-through */
2085 	case IFM_100_TX:
2086 		DBPRINT(sc, BCE_INFO_PHY, "Enabling MII interface.\n");
2087 		val |= BCE_EMAC_MODE_PORT_MII;
2088 		break;
2089 	case IFM_2500_SX:
2090 		DBPRINT(sc, BCE_INFO_PHY, "Enabling 2.5G MAC mode.\n");
2091 		val |= BCE_EMAC_MODE_25G;
2092 		/* fall-through */
2093 	case IFM_1000_T:
2094 	case IFM_1000_SX:
2095 		DBPRINT(sc, BCE_INFO_PHY, "Enabling GMII interface.\n");
2096 		val |= BCE_EMAC_MODE_PORT_GMII;
2097 		break;
2098 	default:
2099 		DBPRINT(sc, BCE_INFO_PHY, "Unknown link speed, enabling "
2100 		    "default GMII interface.\n");
2101 		val |= BCE_EMAC_MODE_PORT_GMII;
2102 	}
2103 
2104 	/* Set half or full duplex based on PHY settings. */
2105 	if ((IFM_OPTIONS(media_active) & IFM_FDX) == 0) {
2106 		DBPRINT(sc, BCE_INFO_PHY,
2107 		    "Setting Half-Duplex interface.\n");
2108 		val |= BCE_EMAC_MODE_HALF_DUPLEX;
2109 	} else
2110 		DBPRINT(sc, BCE_INFO_PHY,
2111 		    "Setting Full-Duplex interface.\n");
2112 
2113 	REG_WR(sc, BCE_EMAC_MODE, val);
2114 
2115 	if ((IFM_OPTIONS(media_active) & IFM_ETH_RXPAUSE) != 0) {
2116 		DBPRINT(sc, BCE_INFO_PHY,
2117 		    "%s(): Enabling RX flow control.\n", __FUNCTION__);
2118 		BCE_SETBIT(sc, BCE_EMAC_RX_MODE, BCE_EMAC_RX_MODE_FLOW_EN);
2119 	} else {
2120 		DBPRINT(sc, BCE_INFO_PHY,
2121 		    "%s(): Disabling RX flow control.\n", __FUNCTION__);
2122 		BCE_CLRBIT(sc, BCE_EMAC_RX_MODE, BCE_EMAC_RX_MODE_FLOW_EN);
2123 	}
2124 
2125 	if ((IFM_OPTIONS(media_active) & IFM_ETH_TXPAUSE) != 0) {
2126 		DBPRINT(sc, BCE_INFO_PHY,
2127 		    "%s(): Enabling TX flow control.\n", __FUNCTION__);
2128 		BCE_SETBIT(sc, BCE_EMAC_TX_MODE, BCE_EMAC_TX_MODE_FLOW_EN);
2129 		sc->bce_flags |= BCE_USING_TX_FLOW_CONTROL;
2130 	} else {
2131 		DBPRINT(sc, BCE_INFO_PHY,
2132 		    "%s(): Disabling TX flow control.\n", __FUNCTION__);
2133 		BCE_CLRBIT(sc, BCE_EMAC_TX_MODE, BCE_EMAC_TX_MODE_FLOW_EN);
2134 		sc->bce_flags &= ~BCE_USING_TX_FLOW_CONTROL;
2135 	}
2136 
2137 	/* ToDo: Update watermarks in bce_init_rx_context(). */
2138 
2139 bce_miibus_statchg_exit:
2140 	DBEXIT(BCE_VERBOSE_PHY);
2141 }
2142 
2143 
2144 /****************************************************************************/
2145 /* Acquire NVRAM lock.                                                      */
2146 /*                                                                          */
2147 /* Before the NVRAM can be accessed the caller must acquire an NVRAM lock.  */
2148 /* Locks 0 and 2 are reserved, lock 1 is used by firmware and lock 2 is     */
2149 /* for use by the driver.                                                   */
2150 /*                                                                          */
2151 /* Returns:                                                                 */
2152 /*   0 on success, positive value on failure.                               */
2153 /****************************************************************************/
2154 static int
2155 bce_acquire_nvram_lock(struct bce_softc *sc)
2156 {
2157 	u32 val;
2158 	int j, rc = 0;
2159 
2160 	DBENTER(BCE_VERBOSE_NVRAM);
2161 
2162 	/* Request access to the flash interface. */
2163 	REG_WR(sc, BCE_NVM_SW_ARB, BCE_NVM_SW_ARB_ARB_REQ_SET2);
2164 	for (j = 0; j < NVRAM_TIMEOUT_COUNT; j++) {
2165 		val = REG_RD(sc, BCE_NVM_SW_ARB);
2166 		if (val & BCE_NVM_SW_ARB_ARB_ARB2)
2167 			break;
2168 
2169 		DELAY(5);
2170 	}
2171 
2172 	if (j >= NVRAM_TIMEOUT_COUNT) {
2173 		DBPRINT(sc, BCE_WARN, "Timeout acquiring NVRAM lock!\n");
2174 		rc = EBUSY;
2175 	}
2176 
2177 	DBEXIT(BCE_VERBOSE_NVRAM);
2178 	return (rc);
2179 }
2180 
2181 
2182 /****************************************************************************/
2183 /* Release NVRAM lock.                                                      */
2184 /*                                                                          */
2185 /* When the caller is finished accessing NVRAM the lock must be released.   */
2186 /* Locks 0 and 2 are reserved, lock 1 is used by firmware and lock 2 is     */
2187 /* for use by the driver.                                                   */
2188 /*                                                                          */
2189 /* Returns:                                                                 */
2190 /*   0 on success, positive value on failure.                               */
2191 /****************************************************************************/
2192 static int
2193 bce_release_nvram_lock(struct bce_softc *sc)
2194 {
2195 	u32 val;
2196 	int j, rc = 0;
2197 
2198 	DBENTER(BCE_VERBOSE_NVRAM);
2199 
2200 	/*
2201 	 * Relinquish nvram interface.
2202 	 */
2203 	REG_WR(sc, BCE_NVM_SW_ARB, BCE_NVM_SW_ARB_ARB_REQ_CLR2);
2204 
2205 	for (j = 0; j < NVRAM_TIMEOUT_COUNT; j++) {
2206 		val = REG_RD(sc, BCE_NVM_SW_ARB);
2207 		if (!(val & BCE_NVM_SW_ARB_ARB_ARB2))
2208 			break;
2209 
2210 		DELAY(5);
2211 	}
2212 
2213 	if (j >= NVRAM_TIMEOUT_COUNT) {
2214 		DBPRINT(sc, BCE_WARN, "Timeout releasing NVRAM lock!\n");
2215 		rc = EBUSY;
2216 	}
2217 
2218 	DBEXIT(BCE_VERBOSE_NVRAM);
2219 	return (rc);
2220 }
2221 
2222 
2223 #ifdef BCE_NVRAM_WRITE_SUPPORT
2224 /****************************************************************************/
2225 /* Enable NVRAM write access.                                               */
2226 /*                                                                          */
2227 /* Before writing to NVRAM the caller must enable NVRAM writes.             */
2228 /*                                                                          */
2229 /* Returns:                                                                 */
2230 /*   0 on success, positive value on failure.                               */
2231 /****************************************************************************/
2232 static int
2233 bce_enable_nvram_write(struct bce_softc *sc)
2234 {
2235 	u32 val;
2236 	int rc = 0;
2237 
2238 	DBENTER(BCE_VERBOSE_NVRAM);
2239 
2240 	val = REG_RD(sc, BCE_MISC_CFG);
2241 	REG_WR(sc, BCE_MISC_CFG, val | BCE_MISC_CFG_NVM_WR_EN_PCI);
2242 
2243 	if (!(sc->bce_flash_info->flags & BCE_NV_BUFFERED)) {
2244 		int j;
2245 
2246 		REG_WR(sc, BCE_NVM_COMMAND, BCE_NVM_COMMAND_DONE);
2247 		REG_WR(sc, BCE_NVM_COMMAND,	BCE_NVM_COMMAND_WREN | BCE_NVM_COMMAND_DOIT);
2248 
2249 		for (j = 0; j < NVRAM_TIMEOUT_COUNT; j++) {
2250 			DELAY(5);
2251 
2252 			val = REG_RD(sc, BCE_NVM_COMMAND);
2253 			if (val & BCE_NVM_COMMAND_DONE)
2254 				break;
2255 		}
2256 
2257 		if (j >= NVRAM_TIMEOUT_COUNT) {
2258 			DBPRINT(sc, BCE_WARN, "Timeout writing NVRAM!\n");
2259 			rc = EBUSY;
2260 		}
2261 	}
2262 
2263 	DBENTER(BCE_VERBOSE_NVRAM);
2264 	return (rc);
2265 }
2266 
2267 
2268 /****************************************************************************/
2269 /* Disable NVRAM write access.                                              */
2270 /*                                                                          */
2271 /* When the caller is finished writing to NVRAM write access must be        */
2272 /* disabled.                                                                */
2273 /*                                                                          */
2274 /* Returns:                                                                 */
2275 /*   Nothing.                                                               */
2276 /****************************************************************************/
2277 static void
2278 bce_disable_nvram_write(struct bce_softc *sc)
2279 {
2280 	u32 val;
2281 
2282 	DBENTER(BCE_VERBOSE_NVRAM);
2283 
2284 	val = REG_RD(sc, BCE_MISC_CFG);
2285 	REG_WR(sc, BCE_MISC_CFG, val & ~BCE_MISC_CFG_NVM_WR_EN);
2286 
2287 	DBEXIT(BCE_VERBOSE_NVRAM);
2288 
2289 }
2290 #endif
2291 
2292 
2293 /****************************************************************************/
2294 /* Enable NVRAM access.                                                     */
2295 /*                                                                          */
2296 /* Before accessing NVRAM for read or write operations the caller must      */
2297 /* enabled NVRAM access.                                                    */
2298 /*                                                                          */
2299 /* Returns:                                                                 */
2300 /*   Nothing.                                                               */
2301 /****************************************************************************/
2302 static void
2303 bce_enable_nvram_access(struct bce_softc *sc)
2304 {
2305 	u32 val;
2306 
2307 	DBENTER(BCE_VERBOSE_NVRAM);
2308 
2309 	val = REG_RD(sc, BCE_NVM_ACCESS_ENABLE);
2310 	/* Enable both bits, even on read. */
2311 	REG_WR(sc, BCE_NVM_ACCESS_ENABLE, val |
2312 	    BCE_NVM_ACCESS_ENABLE_EN | BCE_NVM_ACCESS_ENABLE_WR_EN);
2313 
2314 	DBEXIT(BCE_VERBOSE_NVRAM);
2315 }
2316 
2317 
2318 /****************************************************************************/
2319 /* Disable NVRAM access.                                                    */
2320 /*                                                                          */
2321 /* When the caller is finished accessing NVRAM access must be disabled.     */
2322 /*                                                                          */
2323 /* Returns:                                                                 */
2324 /*   Nothing.                                                               */
2325 /****************************************************************************/
2326 static void
2327 bce_disable_nvram_access(struct bce_softc *sc)
2328 {
2329 	u32 val;
2330 
2331 	DBENTER(BCE_VERBOSE_NVRAM);
2332 
2333 	val = REG_RD(sc, BCE_NVM_ACCESS_ENABLE);
2334 
2335 	/* Disable both bits, even after read. */
2336 	REG_WR(sc, BCE_NVM_ACCESS_ENABLE, val &
2337 	    ~(BCE_NVM_ACCESS_ENABLE_EN | BCE_NVM_ACCESS_ENABLE_WR_EN));
2338 
2339 	DBEXIT(BCE_VERBOSE_NVRAM);
2340 }
2341 
2342 
2343 #ifdef BCE_NVRAM_WRITE_SUPPORT
2344 /****************************************************************************/
2345 /* Erase NVRAM page before writing.                                         */
2346 /*                                                                          */
2347 /* Non-buffered flash parts require that a page be erased before it is      */
2348 /* written.                                                                 */
2349 /*                                                                          */
2350 /* Returns:                                                                 */
2351 /*   0 on success, positive value on failure.                               */
2352 /****************************************************************************/
2353 static int
2354 bce_nvram_erase_page(struct bce_softc *sc, u32 offset)
2355 {
2356 	u32 cmd;
2357 	int j, rc = 0;
2358 
2359 	DBENTER(BCE_VERBOSE_NVRAM);
2360 
2361 	/* Buffered flash doesn't require an erase. */
2362 	if (sc->bce_flash_info->flags & BCE_NV_BUFFERED)
2363 		goto bce_nvram_erase_page_exit;
2364 
2365 	/* Build an erase command. */
2366 	cmd = BCE_NVM_COMMAND_ERASE | BCE_NVM_COMMAND_WR |
2367 	    BCE_NVM_COMMAND_DOIT;
2368 
2369 	/*
2370 	 * Clear the DONE bit separately, set the NVRAM adress to erase,
2371 	 * and issue the erase command.
2372 	 */
2373 	REG_WR(sc, BCE_NVM_COMMAND, BCE_NVM_COMMAND_DONE);
2374 	REG_WR(sc, BCE_NVM_ADDR, offset & BCE_NVM_ADDR_NVM_ADDR_VALUE);
2375 	REG_WR(sc, BCE_NVM_COMMAND, cmd);
2376 
2377 	/* Wait for completion. */
2378 	for (j = 0; j < NVRAM_TIMEOUT_COUNT; j++) {
2379 		u32 val;
2380 
2381 		DELAY(5);
2382 
2383 		val = REG_RD(sc, BCE_NVM_COMMAND);
2384 		if (val & BCE_NVM_COMMAND_DONE)
2385 			break;
2386 	}
2387 
2388 	if (j >= NVRAM_TIMEOUT_COUNT) {
2389 		DBPRINT(sc, BCE_WARN, "Timeout erasing NVRAM.\n");
2390 		rc = EBUSY;
2391 	}
2392 
2393 bce_nvram_erase_page_exit:
2394 	DBEXIT(BCE_VERBOSE_NVRAM);
2395 	return (rc);
2396 }
2397 #endif /* BCE_NVRAM_WRITE_SUPPORT */
2398 
2399 
2400 /****************************************************************************/
2401 /* Read a dword (32 bits) from NVRAM.                                       */
2402 /*                                                                          */
2403 /* Read a 32 bit word from NVRAM.  The caller is assumed to have already    */
2404 /* obtained the NVRAM lock and enabled the controller for NVRAM access.     */
2405 /*                                                                          */
2406 /* Returns:                                                                 */
2407 /*   0 on success and the 32 bit value read, positive value on failure.     */
2408 /****************************************************************************/
2409 static int
2410 bce_nvram_read_dword(struct bce_softc *sc,
2411     u32 offset, u8 *ret_val, u32 cmd_flags)
2412 {
2413 	u32 cmd;
2414 	int i, rc = 0;
2415 
2416 	DBENTER(BCE_EXTREME_NVRAM);
2417 
2418 	/* Build the command word. */
2419 	cmd = BCE_NVM_COMMAND_DOIT | cmd_flags;
2420 
2421 	/* Calculate the offset for buffered flash if translation is used. */
2422 	if (sc->bce_flash_info->flags & BCE_NV_TRANSLATE) {
2423 		offset = ((offset / sc->bce_flash_info->page_size) <<
2424 		    sc->bce_flash_info->page_bits) +
2425 		    (offset % sc->bce_flash_info->page_size);
2426 	}
2427 
2428 	/*
2429 	 * Clear the DONE bit separately, set the address to read,
2430 	 * and issue the read.
2431 	 */
2432 	REG_WR(sc, BCE_NVM_COMMAND, BCE_NVM_COMMAND_DONE);
2433 	REG_WR(sc, BCE_NVM_ADDR, offset & BCE_NVM_ADDR_NVM_ADDR_VALUE);
2434 	REG_WR(sc, BCE_NVM_COMMAND, cmd);
2435 
2436 	/* Wait for completion. */
2437 	for (i = 0; i < NVRAM_TIMEOUT_COUNT; i++) {
2438 		u32 val;
2439 
2440 		DELAY(5);
2441 
2442 		val = REG_RD(sc, BCE_NVM_COMMAND);
2443 		if (val & BCE_NVM_COMMAND_DONE) {
2444 			val = REG_RD(sc, BCE_NVM_READ);
2445 
2446 			val = bce_be32toh(val);
2447 			memcpy(ret_val, &val, 4);
2448 			break;
2449 		}
2450 	}
2451 
2452 	/* Check for errors. */
2453 	if (i >= NVRAM_TIMEOUT_COUNT) {
2454 		BCE_PRINTF("%s(%d): Timeout error reading NVRAM at "
2455 		    "offset 0x%08X!\n",	__FILE__, __LINE__, offset);
2456 		rc = EBUSY;
2457 	}
2458 
2459 	DBEXIT(BCE_EXTREME_NVRAM);
2460 	return(rc);
2461 }
2462 
2463 
2464 #ifdef BCE_NVRAM_WRITE_SUPPORT
2465 /****************************************************************************/
2466 /* Write a dword (32 bits) to NVRAM.                                        */
2467 /*                                                                          */
2468 /* Write a 32 bit word to NVRAM.  The caller is assumed to have already     */
2469 /* obtained the NVRAM lock, enabled the controller for NVRAM access, and    */
2470 /* enabled NVRAM write access.                                              */
2471 /*                                                                          */
2472 /* Returns:                                                                 */
2473 /*   0 on success, positive value on failure.                               */
2474 /****************************************************************************/
2475 static int
2476 bce_nvram_write_dword(struct bce_softc *sc, u32 offset, u8 *val,
2477 	u32 cmd_flags)
2478 {
2479 	u32 cmd, val32;
2480 	int j, rc = 0;
2481 
2482 	DBENTER(BCE_VERBOSE_NVRAM);
2483 
2484 	/* Build the command word. */
2485 	cmd = BCE_NVM_COMMAND_DOIT | BCE_NVM_COMMAND_WR | cmd_flags;
2486 
2487 	/* Calculate the offset for buffered flash if translation is used. */
2488 	if (sc->bce_flash_info->flags & BCE_NV_TRANSLATE) {
2489 		offset = ((offset / sc->bce_flash_info->page_size) <<
2490 		    sc->bce_flash_info->page_bits) +
2491 		    (offset % sc->bce_flash_info->page_size);
2492 	}
2493 
2494 	/*
2495 	 * Clear the DONE bit separately, convert NVRAM data to big-endian,
2496 	 * set the NVRAM address to write, and issue the write command
2497 	 */
2498 	REG_WR(sc, BCE_NVM_COMMAND, BCE_NVM_COMMAND_DONE);
2499 	memcpy(&val32, val, 4);
2500 	val32 = htobe32(val32);
2501 	REG_WR(sc, BCE_NVM_WRITE, val32);
2502 	REG_WR(sc, BCE_NVM_ADDR, offset & BCE_NVM_ADDR_NVM_ADDR_VALUE);
2503 	REG_WR(sc, BCE_NVM_COMMAND, cmd);
2504 
2505 	/* Wait for completion. */
2506 	for (j = 0; j < NVRAM_TIMEOUT_COUNT; j++) {
2507 		DELAY(5);
2508 
2509 		if (REG_RD(sc, BCE_NVM_COMMAND) & BCE_NVM_COMMAND_DONE)
2510 			break;
2511 	}
2512 	if (j >= NVRAM_TIMEOUT_COUNT) {
2513 		BCE_PRINTF("%s(%d): Timeout error writing NVRAM at "
2514 		    "offset 0x%08X\n", __FILE__, __LINE__, offset);
2515 		rc = EBUSY;
2516 	}
2517 
2518 	DBEXIT(BCE_VERBOSE_NVRAM);
2519 	return (rc);
2520 }
2521 #endif /* BCE_NVRAM_WRITE_SUPPORT */
2522 
2523 
2524 /****************************************************************************/
2525 /* Initialize NVRAM access.                                                 */
2526 /*                                                                          */
2527 /* Identify the NVRAM device in use and prepare the NVRAM interface to      */
2528 /* access that device.                                                      */
2529 /*                                                                          */
2530 /* Returns:                                                                 */
2531 /*   0 on success, positive value on failure.                               */
2532 /****************************************************************************/
2533 static int
2534 bce_init_nvram(struct bce_softc *sc)
2535 {
2536 	u32 val;
2537 	int j, entry_count, rc = 0;
2538 	struct flash_spec *flash;
2539 
2540 	DBENTER(BCE_VERBOSE_NVRAM);
2541 
2542 	if (BCE_CHIP_NUM(sc) == BCE_CHIP_NUM_5709) {
2543 		sc->bce_flash_info = &flash_5709;
2544 		goto bce_init_nvram_get_flash_size;
2545 	}
2546 
2547 	/* Determine the selected interface. */
2548 	val = REG_RD(sc, BCE_NVM_CFG1);
2549 
2550 	entry_count = sizeof(flash_table) / sizeof(struct flash_spec);
2551 
2552 	/*
2553 	 * Flash reconfiguration is required to support additional
2554 	 * NVRAM devices not directly supported in hardware.
2555 	 * Check if the flash interface was reconfigured
2556 	 * by the bootcode.
2557 	 */
2558 
2559 	if (val & 0x40000000) {
2560 		/* Flash interface reconfigured by bootcode. */
2561 
2562 		DBPRINT(sc,BCE_INFO_LOAD,
2563 			"bce_init_nvram(): Flash WAS reconfigured.\n");
2564 
2565 		for (j = 0, flash = &flash_table[0]; j < entry_count;
2566 		     j++, flash++) {
2567 			if ((val & FLASH_BACKUP_STRAP_MASK) ==
2568 			    (flash->config1 & FLASH_BACKUP_STRAP_MASK)) {
2569 				sc->bce_flash_info = flash;
2570 				break;
2571 			}
2572 		}
2573 	} else {
2574 		/* Flash interface not yet reconfigured. */
2575 		u32 mask;
2576 
2577 		DBPRINT(sc, BCE_INFO_LOAD, "%s(): Flash was NOT reconfigured.\n",
2578 			__FUNCTION__);
2579 
2580 		if (val & (1 << 23))
2581 			mask = FLASH_BACKUP_STRAP_MASK;
2582 		else
2583 			mask = FLASH_STRAP_MASK;
2584 
2585 		/* Look for the matching NVRAM device configuration data. */
2586 		for (j = 0, flash = &flash_table[0]; j < entry_count; j++, flash++) {
2587 
2588 			/* Check if the device matches any of the known devices. */
2589 			if ((val & mask) == (flash->strapping & mask)) {
2590 				/* Found a device match. */
2591 				sc->bce_flash_info = flash;
2592 
2593 				/* Request access to the flash interface. */
2594 				if ((rc = bce_acquire_nvram_lock(sc)) != 0)
2595 					return rc;
2596 
2597 				/* Reconfigure the flash interface. */
2598 				bce_enable_nvram_access(sc);
2599 				REG_WR(sc, BCE_NVM_CFG1, flash->config1);
2600 				REG_WR(sc, BCE_NVM_CFG2, flash->config2);
2601 				REG_WR(sc, BCE_NVM_CFG3, flash->config3);
2602 				REG_WR(sc, BCE_NVM_WRITE1, flash->write1);
2603 				bce_disable_nvram_access(sc);
2604 				bce_release_nvram_lock(sc);
2605 
2606 				break;
2607 			}
2608 		}
2609 	}
2610 
2611 	/* Check if a matching device was found. */
2612 	if (j == entry_count) {
2613 		sc->bce_flash_info = NULL;
2614 		BCE_PRINTF("%s(%d): Unknown Flash NVRAM found!\n",
2615 		    __FILE__, __LINE__);
2616 		DBEXIT(BCE_VERBOSE_NVRAM);
2617 		return (ENODEV);
2618 	}
2619 
2620 bce_init_nvram_get_flash_size:
2621 	/* Write the flash config data to the shared memory interface. */
2622 	val = bce_shmem_rd(sc, BCE_SHARED_HW_CFG_CONFIG2);
2623 	val &= BCE_SHARED_HW_CFG2_NVM_SIZE_MASK;
2624 	if (val)
2625 		sc->bce_flash_size = val;
2626 	else
2627 		sc->bce_flash_size = sc->bce_flash_info->total_size;
2628 
2629 	DBPRINT(sc, BCE_INFO_LOAD, "%s(): Found %s, size = 0x%08X\n",
2630 	    __FUNCTION__, sc->bce_flash_info->name,
2631 	    sc->bce_flash_info->total_size);
2632 
2633 	DBEXIT(BCE_VERBOSE_NVRAM);
2634 	return rc;
2635 }
2636 
2637 
2638 /****************************************************************************/
2639 /* Read an arbitrary range of data from NVRAM.                              */
2640 /*                                                                          */
2641 /* Prepares the NVRAM interface for access and reads the requested data     */
2642 /* into the supplied buffer.                                                */
2643 /*                                                                          */
2644 /* Returns:                                                                 */
2645 /*   0 on success and the data read, positive value on failure.             */
2646 /****************************************************************************/
2647 static int
2648 bce_nvram_read(struct bce_softc *sc, u32 offset, u8 *ret_buf,
2649 	int buf_size)
2650 {
2651 	int rc = 0;
2652 	u32 cmd_flags, offset32, len32, extra;
2653 
2654 	DBENTER(BCE_VERBOSE_NVRAM);
2655 
2656 	if (buf_size == 0)
2657 		goto bce_nvram_read_exit;
2658 
2659 	/* Request access to the flash interface. */
2660 	if ((rc = bce_acquire_nvram_lock(sc)) != 0)
2661 		goto bce_nvram_read_exit;
2662 
2663 	/* Enable access to flash interface */
2664 	bce_enable_nvram_access(sc);
2665 
2666 	len32 = buf_size;
2667 	offset32 = offset;
2668 	extra = 0;
2669 
2670 	cmd_flags = 0;
2671 
2672 	if (offset32 & 3) {
2673 		u8 buf[4];
2674 		u32 pre_len;
2675 
2676 		offset32 &= ~3;
2677 		pre_len = 4 - (offset & 3);
2678 
2679 		if (pre_len >= len32) {
2680 			pre_len = len32;
2681 			cmd_flags = BCE_NVM_COMMAND_FIRST | BCE_NVM_COMMAND_LAST;
2682 		}
2683 		else {
2684 			cmd_flags = BCE_NVM_COMMAND_FIRST;
2685 		}
2686 
2687 		rc = bce_nvram_read_dword(sc, offset32, buf, cmd_flags);
2688 
2689 		if (rc)
2690 			return rc;
2691 
2692 		memcpy(ret_buf, buf + (offset & 3), pre_len);
2693 
2694 		offset32 += 4;
2695 		ret_buf += pre_len;
2696 		len32 -= pre_len;
2697 	}
2698 
2699 	if (len32 & 3) {
2700 		extra = 4 - (len32 & 3);
2701 		len32 = (len32 + 4) & ~3;
2702 	}
2703 
2704 	if (len32 == 4) {
2705 		u8 buf[4];
2706 
2707 		if (cmd_flags)
2708 			cmd_flags = BCE_NVM_COMMAND_LAST;
2709 		else
2710 			cmd_flags = BCE_NVM_COMMAND_FIRST |
2711 				    BCE_NVM_COMMAND_LAST;
2712 
2713 		rc = bce_nvram_read_dword(sc, offset32, buf, cmd_flags);
2714 
2715 		memcpy(ret_buf, buf, 4 - extra);
2716 	}
2717 	else if (len32 > 0) {
2718 		u8 buf[4];
2719 
2720 		/* Read the first word. */
2721 		if (cmd_flags)
2722 			cmd_flags = 0;
2723 		else
2724 			cmd_flags = BCE_NVM_COMMAND_FIRST;
2725 
2726 		rc = bce_nvram_read_dword(sc, offset32, ret_buf, cmd_flags);
2727 
2728 		/* Advance to the next dword. */
2729 		offset32 += 4;
2730 		ret_buf += 4;
2731 		len32 -= 4;
2732 
2733 		while (len32 > 4 && rc == 0) {
2734 			rc = bce_nvram_read_dword(sc, offset32, ret_buf, 0);
2735 
2736 			/* Advance to the next dword. */
2737 			offset32 += 4;
2738 			ret_buf += 4;
2739 			len32 -= 4;
2740 		}
2741 
2742 		if (rc)
2743 			goto bce_nvram_read_locked_exit;
2744 
2745 		cmd_flags = BCE_NVM_COMMAND_LAST;
2746 		rc = bce_nvram_read_dword(sc, offset32, buf, cmd_flags);
2747 
2748 		memcpy(ret_buf, buf, 4 - extra);
2749 	}
2750 
2751 bce_nvram_read_locked_exit:
2752 	/* Disable access to flash interface and release the lock. */
2753 	bce_disable_nvram_access(sc);
2754 	bce_release_nvram_lock(sc);
2755 
2756 bce_nvram_read_exit:
2757 	DBEXIT(BCE_VERBOSE_NVRAM);
2758 	return rc;
2759 }
2760 
2761 
2762 #ifdef BCE_NVRAM_WRITE_SUPPORT
2763 /****************************************************************************/
2764 /* Write an arbitrary range of data from NVRAM.                             */
2765 /*                                                                          */
2766 /* Prepares the NVRAM interface for write access and writes the requested   */
2767 /* data from the supplied buffer.  The caller is responsible for            */
2768 /* calculating any appropriate CRCs.                                        */
2769 /*                                                                          */
2770 /* Returns:                                                                 */
2771 /*   0 on success, positive value on failure.                               */
2772 /****************************************************************************/
2773 static int
2774 bce_nvram_write(struct bce_softc *sc, u32 offset, u8 *data_buf,
2775 	int buf_size)
2776 {
2777 	u32 written, offset32, len32;
2778 	u8 *buf, start[4], end[4];
2779 	int rc = 0;
2780 	int align_start, align_end;
2781 
2782 	DBENTER(BCE_VERBOSE_NVRAM);
2783 
2784 	buf = data_buf;
2785 	offset32 = offset;
2786 	len32 = buf_size;
2787 	align_start = align_end = 0;
2788 
2789 	if ((align_start = (offset32 & 3))) {
2790 		offset32 &= ~3;
2791 		len32 += align_start;
2792 		if ((rc = bce_nvram_read(sc, offset32, start, 4)))
2793 			goto bce_nvram_write_exit;
2794 	}
2795 
2796 	if (len32 & 3) {
2797 	       	if ((len32 > 4) || !align_start) {
2798 			align_end = 4 - (len32 & 3);
2799 			len32 += align_end;
2800 			if ((rc = bce_nvram_read(sc, offset32 + len32 - 4,
2801 				end, 4))) {
2802 				goto bce_nvram_write_exit;
2803 			}
2804 		}
2805 	}
2806 
2807 	if (align_start || align_end) {
2808 		buf = malloc(len32, M_DEVBUF, M_NOWAIT);
2809 		if (buf == 0) {
2810 			rc = ENOMEM;
2811 			goto bce_nvram_write_exit;
2812 		}
2813 
2814 		if (align_start) {
2815 			memcpy(buf, start, 4);
2816 		}
2817 
2818 		if (align_end) {
2819 			memcpy(buf + len32 - 4, end, 4);
2820 		}
2821 		memcpy(buf + align_start, data_buf, buf_size);
2822 	}
2823 
2824 	written = 0;
2825 	while ((written < len32) && (rc == 0)) {
2826 		u32 page_start, page_end, data_start, data_end;
2827 		u32 addr, cmd_flags;
2828 		int i;
2829 		u8 flash_buffer[264];
2830 
2831 	    /* Find the page_start addr */
2832 		page_start = offset32 + written;
2833 		page_start -= (page_start % sc->bce_flash_info->page_size);
2834 		/* Find the page_end addr */
2835 		page_end = page_start + sc->bce_flash_info->page_size;
2836 		/* Find the data_start addr */
2837 		data_start = (written == 0) ? offset32 : page_start;
2838 		/* Find the data_end addr */
2839 		data_end = (page_end > offset32 + len32) ?
2840 			(offset32 + len32) : page_end;
2841 
2842 		/* Request access to the flash interface. */
2843 		if ((rc = bce_acquire_nvram_lock(sc)) != 0)
2844 			goto bce_nvram_write_exit;
2845 
2846 		/* Enable access to flash interface */
2847 		bce_enable_nvram_access(sc);
2848 
2849 		cmd_flags = BCE_NVM_COMMAND_FIRST;
2850 		if (!(sc->bce_flash_info->flags & BCE_NV_BUFFERED)) {
2851 			int j;
2852 
2853 			/* Read the whole page into the buffer
2854 			 * (non-buffer flash only) */
2855 			for (j = 0; j < sc->bce_flash_info->page_size; j += 4) {
2856 				if (j == (sc->bce_flash_info->page_size - 4)) {
2857 					cmd_flags |= BCE_NVM_COMMAND_LAST;
2858 				}
2859 				rc = bce_nvram_read_dword(sc,
2860 					page_start + j,
2861 					&flash_buffer[j],
2862 					cmd_flags);
2863 
2864 				if (rc)
2865 					goto bce_nvram_write_locked_exit;
2866 
2867 				cmd_flags = 0;
2868 			}
2869 		}
2870 
2871 		/* Enable writes to flash interface (unlock write-protect) */
2872 		if ((rc = bce_enable_nvram_write(sc)) != 0)
2873 			goto bce_nvram_write_locked_exit;
2874 
2875 		/* Erase the page */
2876 		if ((rc = bce_nvram_erase_page(sc, page_start)) != 0)
2877 			goto bce_nvram_write_locked_exit;
2878 
2879 		/* Re-enable the write again for the actual write */
2880 		bce_enable_nvram_write(sc);
2881 
2882 		/* Loop to write back the buffer data from page_start to
2883 		 * data_start */
2884 		i = 0;
2885 		if (!(sc->bce_flash_info->flags & BCE_NV_BUFFERED)) {
2886 			for (addr = page_start; addr < data_start;
2887 				addr += 4, i += 4) {
2888 
2889 				rc = bce_nvram_write_dword(sc, addr,
2890 					&flash_buffer[i], cmd_flags);
2891 
2892 				if (rc != 0)
2893 					goto bce_nvram_write_locked_exit;
2894 
2895 				cmd_flags = 0;
2896 			}
2897 		}
2898 
2899 		/* Loop to write the new data from data_start to data_end */
2900 		for (addr = data_start; addr < data_end; addr += 4, i++) {
2901 			if ((addr == page_end - 4) ||
2902 				((sc->bce_flash_info->flags & BCE_NV_BUFFERED) &&
2903 				(addr == data_end - 4))) {
2904 
2905 				cmd_flags |= BCE_NVM_COMMAND_LAST;
2906 			}
2907 			rc = bce_nvram_write_dword(sc, addr, buf,
2908 				cmd_flags);
2909 
2910 			if (rc != 0)
2911 				goto bce_nvram_write_locked_exit;
2912 
2913 			cmd_flags = 0;
2914 			buf += 4;
2915 		}
2916 
2917 		/* Loop to write back the buffer data from data_end
2918 		 * to page_end */
2919 		if (!(sc->bce_flash_info->flags & BCE_NV_BUFFERED)) {
2920 			for (addr = data_end; addr < page_end;
2921 				addr += 4, i += 4) {
2922 
2923 				if (addr == page_end-4) {
2924 					cmd_flags = BCE_NVM_COMMAND_LAST;
2925                 		}
2926 				rc = bce_nvram_write_dword(sc, addr,
2927 					&flash_buffer[i], cmd_flags);
2928 
2929 				if (rc != 0)
2930 					goto bce_nvram_write_locked_exit;
2931 
2932 				cmd_flags = 0;
2933 			}
2934 		}
2935 
2936 		/* Disable writes to flash interface (lock write-protect) */
2937 		bce_disable_nvram_write(sc);
2938 
2939 		/* Disable access to flash interface */
2940 		bce_disable_nvram_access(sc);
2941 		bce_release_nvram_lock(sc);
2942 
2943 		/* Increment written */
2944 		written += data_end - data_start;
2945 	}
2946 
2947 	goto bce_nvram_write_exit;
2948 
2949 bce_nvram_write_locked_exit:
2950 	bce_disable_nvram_write(sc);
2951 	bce_disable_nvram_access(sc);
2952 	bce_release_nvram_lock(sc);
2953 
2954 bce_nvram_write_exit:
2955 	if (align_start || align_end)
2956 		free(buf, M_DEVBUF);
2957 
2958 	DBEXIT(BCE_VERBOSE_NVRAM);
2959 	return (rc);
2960 }
2961 #endif /* BCE_NVRAM_WRITE_SUPPORT */
2962 
2963 
2964 /****************************************************************************/
2965 /* Verifies that NVRAM is accessible and contains valid data.               */
2966 /*                                                                          */
2967 /* Reads the configuration data from NVRAM and verifies that the CRC is     */
2968 /* correct.                                                                 */
2969 /*                                                                          */
2970 /* Returns:                                                                 */
2971 /*   0 on success, positive value on failure.                               */
2972 /****************************************************************************/
2973 static int
2974 bce_nvram_test(struct bce_softc *sc)
2975 {
2976 	u32 buf[BCE_NVRAM_SIZE / 4];
2977 	u8 *data = (u8 *) buf;
2978 	int rc = 0;
2979 	u32 magic, csum;
2980 
2981 	DBENTER(BCE_VERBOSE_NVRAM | BCE_VERBOSE_LOAD | BCE_VERBOSE_RESET);
2982 
2983 	/*
2984 	 * Check that the device NVRAM is valid by reading
2985 	 * the magic value at offset 0.
2986 	 */
2987 	if ((rc = bce_nvram_read(sc, 0, data, 4)) != 0) {
2988 		BCE_PRINTF("%s(%d): Unable to read NVRAM!\n",
2989 		    __FILE__, __LINE__);
2990 		goto bce_nvram_test_exit;
2991 	}
2992 
2993 	/*
2994 	 * Verify that offset 0 of the NVRAM contains
2995 	 * a valid magic number.
2996 	 */
2997 	magic = bce_be32toh(buf[0]);
2998 	if (magic != BCE_NVRAM_MAGIC) {
2999 		rc = ENODEV;
3000 		BCE_PRINTF("%s(%d): Invalid NVRAM magic value! "
3001 		    "Expected: 0x%08X, Found: 0x%08X\n",
3002 		    __FILE__, __LINE__, BCE_NVRAM_MAGIC, magic);
3003 		goto bce_nvram_test_exit;
3004 	}
3005 
3006 	/*
3007 	 * Verify that the device NVRAM includes valid
3008 	 * configuration data.
3009 	 */
3010 	if ((rc = bce_nvram_read(sc, 0x100, data, BCE_NVRAM_SIZE)) != 0) {
3011 		BCE_PRINTF("%s(%d): Unable to read manufacturing "
3012 		    "Information from  NVRAM!\n", __FILE__, __LINE__);
3013 		goto bce_nvram_test_exit;
3014 	}
3015 
3016 	csum = ether_crc32_le(data, 0x100);
3017 	if (csum != BCE_CRC32_RESIDUAL) {
3018 		rc = ENODEV;
3019 		BCE_PRINTF("%s(%d): Invalid manufacturing information "
3020 		    "NVRAM CRC!	Expected: 0x%08X, Found: 0x%08X\n",
3021 		    __FILE__, __LINE__, BCE_CRC32_RESIDUAL, csum);
3022 		goto bce_nvram_test_exit;
3023 	}
3024 
3025 	csum = ether_crc32_le(data + 0x100, 0x100);
3026 	if (csum != BCE_CRC32_RESIDUAL) {
3027 		rc = ENODEV;
3028 		BCE_PRINTF("%s(%d): Invalid feature configuration "
3029 		    "information NVRAM CRC! Expected: 0x%08X, "
3030 		    "Found: 08%08X\n", __FILE__, __LINE__,
3031 		    BCE_CRC32_RESIDUAL, csum);
3032 	}
3033 
3034 bce_nvram_test_exit:
3035 	DBEXIT(BCE_VERBOSE_NVRAM | BCE_VERBOSE_LOAD | BCE_VERBOSE_RESET);
3036 	return rc;
3037 }
3038 
3039 
3040 /****************************************************************************/
3041 /* Calculates the size of the buffers to allocate based on the MTU.         */
3042 /*                                                                          */
3043 /* Returns:                                                                 */
3044 /*   Nothing.                                                               */
3045 /****************************************************************************/
3046 static void
3047 bce_get_rx_buffer_sizes(struct bce_softc *sc, int mtu)
3048 {
3049 	DBENTER(BCE_VERBOSE_LOAD);
3050 
3051 	/* Use a single allocation type when header splitting enabled. */
3052 	if (bce_hdr_split == TRUE) {
3053 		sc->rx_bd_mbuf_alloc_size = MHLEN;
3054 		/* Make sure offset is 16 byte aligned for hardware. */
3055 		sc->rx_bd_mbuf_align_pad =
3056 			roundup2((MSIZE - MHLEN), 16) - (MSIZE - MHLEN);
3057 		sc->rx_bd_mbuf_data_len = sc->rx_bd_mbuf_alloc_size -
3058 			sc->rx_bd_mbuf_align_pad;
3059 		sc->pg_bd_mbuf_alloc_size = MCLBYTES;
3060 	} else {
3061 		if ((mtu + ETHER_HDR_LEN + ETHER_VLAN_ENCAP_LEN +
3062 		    ETHER_CRC_LEN) > MCLBYTES) {
3063 			/* Setup for jumbo RX buffer allocations. */
3064 			sc->rx_bd_mbuf_alloc_size = MJUM9BYTES;
3065 			sc->rx_bd_mbuf_align_pad  =
3066 				roundup2(MJUM9BYTES, 16) - MJUM9BYTES;
3067 			sc->rx_bd_mbuf_data_len =
3068 			    sc->rx_bd_mbuf_alloc_size -
3069 			    sc->rx_bd_mbuf_align_pad;
3070 		} else {
3071 			/* Setup for standard RX buffer allocations. */
3072 			sc->rx_bd_mbuf_alloc_size = MCLBYTES;
3073 			sc->rx_bd_mbuf_align_pad  =
3074 			    roundup2(MCLBYTES, 16) - MCLBYTES;
3075 			sc->rx_bd_mbuf_data_len =
3076 			    sc->rx_bd_mbuf_alloc_size -
3077 			    sc->rx_bd_mbuf_align_pad;
3078 		}
3079 	}
3080 
3081 //	DBPRINT(sc, BCE_INFO_LOAD,
3082 	DBPRINT(sc, BCE_WARN,
3083 	   "%s(): rx_bd_mbuf_alloc_size = %d, rx_bd_mbuf_data_len = %d, "
3084 	   "rx_bd_mbuf_align_pad = %d\n", __FUNCTION__,
3085 	   sc->rx_bd_mbuf_alloc_size, sc->rx_bd_mbuf_data_len,
3086 	   sc->rx_bd_mbuf_align_pad);
3087 
3088 	DBEXIT(BCE_VERBOSE_LOAD);
3089 
3090 }
3091 
3092 /****************************************************************************/
3093 /* Identifies the current media type of the controller and sets the PHY     */
3094 /* address.                                                                 */
3095 /*                                                                          */
3096 /* Returns:                                                                 */
3097 /*   Nothing.                                                               */
3098 /****************************************************************************/
3099 static void
3100 bce_get_media(struct bce_softc *sc)
3101 {
3102 	u32 val;
3103 
3104 	DBENTER(BCE_VERBOSE_PHY);
3105 
3106 	/* Assume PHY address for copper controllers. */
3107 	sc->bce_phy_addr = 1;
3108 
3109 	if (BCE_CHIP_NUM(sc) == BCE_CHIP_NUM_5709) {
3110  		u32 val = REG_RD(sc, BCE_MISC_DUAL_MEDIA_CTRL);
3111 		u32 bond_id = val & BCE_MISC_DUAL_MEDIA_CTRL_BOND_ID;
3112 		u32 strap;
3113 
3114 		/*
3115 		 * The BCM5709S is software configurable
3116 		 * for Copper or SerDes operation.
3117 		 */
3118 		if (bond_id == BCE_MISC_DUAL_MEDIA_CTRL_BOND_ID_C) {
3119 			DBPRINT(sc, BCE_INFO_LOAD, "5709 bonded "
3120 			    "for copper.\n");
3121 			goto bce_get_media_exit;
3122 		} else if (bond_id == BCE_MISC_DUAL_MEDIA_CTRL_BOND_ID_S) {
3123 			DBPRINT(sc, BCE_INFO_LOAD, "5709 bonded "
3124 			    "for dual media.\n");
3125 			sc->bce_phy_flags |= BCE_PHY_SERDES_FLAG;
3126 			goto bce_get_media_exit;
3127 		}
3128 
3129 		if (val & BCE_MISC_DUAL_MEDIA_CTRL_STRAP_OVERRIDE)
3130 			strap = (val &
3131 			    BCE_MISC_DUAL_MEDIA_CTRL_PHY_CTRL) >> 21;
3132 		else
3133 			strap = (val &
3134 			    BCE_MISC_DUAL_MEDIA_CTRL_PHY_CTRL_STRAP) >> 8;
3135 
3136 		if (pci_get_function(sc->bce_dev) == 0) {
3137 			switch (strap) {
3138 			case 0x4:
3139 			case 0x5:
3140 			case 0x6:
3141 				DBPRINT(sc, BCE_INFO_LOAD,
3142 				    "BCM5709 s/w configured for SerDes.\n");
3143 				sc->bce_phy_flags |= BCE_PHY_SERDES_FLAG;
3144 				break;
3145 			default:
3146 				DBPRINT(sc, BCE_INFO_LOAD,
3147 				    "BCM5709 s/w configured for Copper.\n");
3148 				break;
3149 			}
3150 		} else {
3151 			switch (strap) {
3152 			case 0x1:
3153 			case 0x2:
3154 			case 0x4:
3155 				DBPRINT(sc, BCE_INFO_LOAD,
3156 				    "BCM5709 s/w configured for SerDes.\n");
3157 				sc->bce_phy_flags |= BCE_PHY_SERDES_FLAG;
3158 				break;
3159 			default:
3160 				DBPRINT(sc, BCE_INFO_LOAD,
3161 				    "BCM5709 s/w configured for Copper.\n");
3162 				break;
3163 			}
3164 		}
3165 
3166 	} else if (BCE_CHIP_BOND_ID(sc) & BCE_CHIP_BOND_ID_SERDES_BIT)
3167 		sc->bce_phy_flags |= BCE_PHY_SERDES_FLAG;
3168 
3169 	if (sc->bce_phy_flags & BCE_PHY_SERDES_FLAG) {
3170 
3171 		sc->bce_flags |= BCE_NO_WOL_FLAG;
3172 
3173 		if (BCE_CHIP_NUM(sc) == BCE_CHIP_NUM_5709)
3174 			sc->bce_phy_flags |= BCE_PHY_IEEE_CLAUSE_45_FLAG;
3175 
3176 		if (BCE_CHIP_NUM(sc) != BCE_CHIP_NUM_5706) {
3177 			/* 5708S/09S/16S use a separate PHY for SerDes. */
3178 			sc->bce_phy_addr = 2;
3179 
3180 			val = bce_shmem_rd(sc, BCE_SHARED_HW_CFG_CONFIG);
3181 			if (val & BCE_SHARED_HW_CFG_PHY_2_5G) {
3182 				sc->bce_phy_flags |=
3183 				    BCE_PHY_2_5G_CAPABLE_FLAG;
3184 				DBPRINT(sc, BCE_INFO_LOAD, "Found 2.5Gb "
3185 				    "capable adapter\n");
3186 			}
3187 		}
3188 	} else if ((BCE_CHIP_NUM(sc) == BCE_CHIP_NUM_5706) ||
3189 	    (BCE_CHIP_NUM(sc) == BCE_CHIP_NUM_5708))
3190 		sc->bce_phy_flags |= BCE_PHY_CRC_FIX_FLAG;
3191 
3192 bce_get_media_exit:
3193 	DBPRINT(sc, (BCE_INFO_LOAD | BCE_INFO_PHY),
3194 		"Using PHY address %d.\n", sc->bce_phy_addr);
3195 
3196 	DBEXIT(BCE_VERBOSE_PHY);
3197 }
3198 
3199 
3200 /****************************************************************************/
3201 /* Performs PHY initialization required before MII drivers access the       */
3202 /* device.                                                                  */
3203 /*                                                                          */
3204 /* Returns:                                                                 */
3205 /*   Nothing.                                                               */
3206 /****************************************************************************/
3207 static void
3208 bce_init_media(struct bce_softc *sc)
3209 {
3210 	if ((sc->bce_phy_flags & (BCE_PHY_IEEE_CLAUSE_45_FLAG |
3211 	    BCE_PHY_REMOTE_CAP_FLAG)) == BCE_PHY_IEEE_CLAUSE_45_FLAG) {
3212 		/*
3213 		 * Configure 5709S/5716S PHYs to use traditional IEEE
3214 		 * Clause 22 method. Otherwise we have no way to attach
3215 		 * the PHY in mii(4) layer. PHY specific configuration
3216 		 * is done in mii layer.
3217 		 */
3218 
3219 		/* Select auto-negotiation MMD of the PHY. */
3220 		bce_miibus_write_reg(sc->bce_dev, sc->bce_phy_addr,
3221 		    BRGPHY_BLOCK_ADDR, BRGPHY_BLOCK_ADDR_ADDR_EXT);
3222 		bce_miibus_write_reg(sc->bce_dev, sc->bce_phy_addr,
3223 		    BRGPHY_ADDR_EXT, BRGPHY_ADDR_EXT_AN_MMD);
3224 
3225 		/* Set IEEE0 block of AN MMD (assumed in brgphy(4) code). */
3226 		bce_miibus_write_reg(sc->bce_dev, sc->bce_phy_addr,
3227 		    BRGPHY_BLOCK_ADDR, BRGPHY_BLOCK_ADDR_COMBO_IEEE0);
3228 	}
3229 }
3230 
3231 
3232 /****************************************************************************/
3233 /* Free any DMA memory owned by the driver.                                 */
3234 /*                                                                          */
3235 /* Scans through each data structre that requires DMA memory and frees      */
3236 /* the memory if allocated.                                                 */
3237 /*                                                                          */
3238 /* Returns:                                                                 */
3239 /*   Nothing.                                                               */
3240 /****************************************************************************/
3241 static void
3242 bce_dma_free(struct bce_softc *sc)
3243 {
3244 	int i;
3245 
3246 	DBENTER(BCE_VERBOSE_RESET | BCE_VERBOSE_UNLOAD | BCE_VERBOSE_CTX);
3247 
3248 	/* Free, unmap, and destroy the status block. */
3249 	if (sc->status_block != NULL) {
3250 		bus_dmamem_free(
3251 		   sc->status_tag,
3252 		    sc->status_block,
3253 		    sc->status_map);
3254 		sc->status_block = NULL;
3255 	}
3256 
3257 	if (sc->status_map != NULL) {
3258 		bus_dmamap_unload(
3259 		    sc->status_tag,
3260 		    sc->status_map);
3261 		bus_dmamap_destroy(sc->status_tag,
3262 		    sc->status_map);
3263 		sc->status_map = NULL;
3264 	}
3265 
3266 	if (sc->status_tag != NULL) {
3267 		bus_dma_tag_destroy(sc->status_tag);
3268 		sc->status_tag = NULL;
3269 	}
3270 
3271 
3272 	/* Free, unmap, and destroy the statistics block. */
3273 	if (sc->stats_block != NULL) {
3274 		bus_dmamem_free(
3275 		    sc->stats_tag,
3276 		    sc->stats_block,
3277 		    sc->stats_map);
3278 		sc->stats_block = NULL;
3279 	}
3280 
3281 	if (sc->stats_map != NULL) {
3282 		bus_dmamap_unload(
3283 		    sc->stats_tag,
3284 		    sc->stats_map);
3285 		bus_dmamap_destroy(sc->stats_tag,
3286 		    sc->stats_map);
3287 		sc->stats_map = NULL;
3288 	}
3289 
3290 	if (sc->stats_tag != NULL) {
3291 		bus_dma_tag_destroy(sc->stats_tag);
3292 		sc->stats_tag = NULL;
3293 	}
3294 
3295 
3296 	/* Free, unmap and destroy all context memory pages. */
3297 	if (BCE_CHIP_NUM(sc) == BCE_CHIP_NUM_5709) {
3298 		for (i = 0; i < sc->ctx_pages; i++ ) {
3299 			if (sc->ctx_block[i] != NULL) {
3300 				bus_dmamem_free(
3301 				    sc->ctx_tag,
3302 				    sc->ctx_block[i],
3303 				    sc->ctx_map[i]);
3304 				sc->ctx_block[i] = NULL;
3305 			}
3306 
3307 			if (sc->ctx_map[i] != NULL) {
3308 				bus_dmamap_unload(
3309 				    sc->ctx_tag,
3310 				    sc->ctx_map[i]);
3311 				bus_dmamap_destroy(
3312 				    sc->ctx_tag,
3313 				    sc->ctx_map[i]);
3314 				sc->ctx_map[i] = NULL;
3315 			}
3316 		}
3317 
3318 		/* Destroy the context memory tag. */
3319 		if (sc->ctx_tag != NULL) {
3320 			bus_dma_tag_destroy(sc->ctx_tag);
3321 			sc->ctx_tag = NULL;
3322 		}
3323 	}
3324 
3325 
3326 	/* Free, unmap and destroy all TX buffer descriptor chain pages. */
3327 	for (i = 0; i < sc->tx_pages; i++ ) {
3328 		if (sc->tx_bd_chain[i] != NULL) {
3329 			bus_dmamem_free(
3330 			    sc->tx_bd_chain_tag,
3331 			    sc->tx_bd_chain[i],
3332 			    sc->tx_bd_chain_map[i]);
3333 			sc->tx_bd_chain[i] = NULL;
3334 		}
3335 
3336 		if (sc->tx_bd_chain_map[i] != NULL) {
3337 			bus_dmamap_unload(
3338 			    sc->tx_bd_chain_tag,
3339 			    sc->tx_bd_chain_map[i]);
3340 			bus_dmamap_destroy(
3341 			    sc->tx_bd_chain_tag,
3342 			    sc->tx_bd_chain_map[i]);
3343 			sc->tx_bd_chain_map[i] = NULL;
3344 		}
3345 	}
3346 
3347 	/* Destroy the TX buffer descriptor tag. */
3348 	if (sc->tx_bd_chain_tag != NULL) {
3349 		bus_dma_tag_destroy(sc->tx_bd_chain_tag);
3350 		sc->tx_bd_chain_tag = NULL;
3351 	}
3352 
3353 
3354 	/* Free, unmap and destroy all RX buffer descriptor chain pages. */
3355 	for (i = 0; i < sc->rx_pages; i++ ) {
3356 		if (sc->rx_bd_chain[i] != NULL) {
3357 			bus_dmamem_free(
3358 			    sc->rx_bd_chain_tag,
3359 			    sc->rx_bd_chain[i],
3360 			    sc->rx_bd_chain_map[i]);
3361 			sc->rx_bd_chain[i] = NULL;
3362 		}
3363 
3364 		if (sc->rx_bd_chain_map[i] != NULL) {
3365 			bus_dmamap_unload(
3366 			    sc->rx_bd_chain_tag,
3367 			    sc->rx_bd_chain_map[i]);
3368 			bus_dmamap_destroy(
3369 			    sc->rx_bd_chain_tag,
3370 			    sc->rx_bd_chain_map[i]);
3371 			sc->rx_bd_chain_map[i] = NULL;
3372 		}
3373 	}
3374 
3375 	/* Destroy the RX buffer descriptor tag. */
3376 	if (sc->rx_bd_chain_tag != NULL) {
3377 		bus_dma_tag_destroy(sc->rx_bd_chain_tag);
3378 		sc->rx_bd_chain_tag = NULL;
3379 	}
3380 
3381 
3382 	/* Free, unmap and destroy all page buffer descriptor chain pages. */
3383 	if (bce_hdr_split == TRUE) {
3384 		for (i = 0; i < sc->pg_pages; i++ ) {
3385 			if (sc->pg_bd_chain[i] != NULL) {
3386 				bus_dmamem_free(
3387 				    sc->pg_bd_chain_tag,
3388 				    sc->pg_bd_chain[i],
3389 				    sc->pg_bd_chain_map[i]);
3390 				sc->pg_bd_chain[i] = NULL;
3391 			}
3392 
3393 			if (sc->pg_bd_chain_map[i] != NULL) {
3394 				bus_dmamap_unload(
3395 				    sc->pg_bd_chain_tag,
3396 				    sc->pg_bd_chain_map[i]);
3397 				bus_dmamap_destroy(
3398 				    sc->pg_bd_chain_tag,
3399 				    sc->pg_bd_chain_map[i]);
3400 				sc->pg_bd_chain_map[i] = NULL;
3401 			}
3402 		}
3403 
3404 		/* Destroy the page buffer descriptor tag. */
3405 		if (sc->pg_bd_chain_tag != NULL) {
3406 			bus_dma_tag_destroy(sc->pg_bd_chain_tag);
3407 			sc->pg_bd_chain_tag = NULL;
3408 		}
3409 	}
3410 
3411 
3412 	/* Unload and destroy the TX mbuf maps. */
3413 	for (i = 0; i < MAX_TX_BD_AVAIL; i++) {
3414 		if (sc->tx_mbuf_map[i] != NULL) {
3415 			bus_dmamap_unload(sc->tx_mbuf_tag,
3416 			    sc->tx_mbuf_map[i]);
3417 			bus_dmamap_destroy(sc->tx_mbuf_tag,
3418 	 		    sc->tx_mbuf_map[i]);
3419 			sc->tx_mbuf_map[i] = NULL;
3420 		}
3421 	}
3422 
3423 	/* Destroy the TX mbuf tag. */
3424 	if (sc->tx_mbuf_tag != NULL) {
3425 		bus_dma_tag_destroy(sc->tx_mbuf_tag);
3426 		sc->tx_mbuf_tag = NULL;
3427 	}
3428 
3429 	/* Unload and destroy the RX mbuf maps. */
3430 	for (i = 0; i < MAX_RX_BD_AVAIL; i++) {
3431 		if (sc->rx_mbuf_map[i] != NULL) {
3432 			bus_dmamap_unload(sc->rx_mbuf_tag,
3433 			    sc->rx_mbuf_map[i]);
3434 			bus_dmamap_destroy(sc->rx_mbuf_tag,
3435 	 		    sc->rx_mbuf_map[i]);
3436 			sc->rx_mbuf_map[i] = NULL;
3437 		}
3438 	}
3439 
3440 	/* Destroy the RX mbuf tag. */
3441 	if (sc->rx_mbuf_tag != NULL) {
3442 		bus_dma_tag_destroy(sc->rx_mbuf_tag);
3443 		sc->rx_mbuf_tag = NULL;
3444 	}
3445 
3446 	/* Unload and destroy the page mbuf maps. */
3447 	if (bce_hdr_split == TRUE) {
3448 		for (i = 0; i < MAX_PG_BD_AVAIL; i++) {
3449 			if (sc->pg_mbuf_map[i] != NULL) {
3450 				bus_dmamap_unload(sc->pg_mbuf_tag,
3451 				    sc->pg_mbuf_map[i]);
3452 				bus_dmamap_destroy(sc->pg_mbuf_tag,
3453 				    sc->pg_mbuf_map[i]);
3454 				sc->pg_mbuf_map[i] = NULL;
3455 			}
3456 		}
3457 
3458 		/* Destroy the page mbuf tag. */
3459 		if (sc->pg_mbuf_tag != NULL) {
3460 			bus_dma_tag_destroy(sc->pg_mbuf_tag);
3461 			sc->pg_mbuf_tag = NULL;
3462 		}
3463 	}
3464 
3465 	/* Destroy the parent tag */
3466 	if (sc->parent_tag != NULL) {
3467 		bus_dma_tag_destroy(sc->parent_tag);
3468 		sc->parent_tag = NULL;
3469 	}
3470 
3471 	DBEXIT(BCE_VERBOSE_RESET | BCE_VERBOSE_UNLOAD | BCE_VERBOSE_CTX);
3472 }
3473 
3474 
3475 /****************************************************************************/
3476 /* Get DMA memory from the OS.                                              */
3477 /*                                                                          */
3478 /* Validates that the OS has provided DMA buffers in response to a          */
3479 /* bus_dmamap_load() call and saves the physical address of those buffers.  */
3480 /* When the callback is used the OS will return 0 for the mapping function  */
3481 /* (bus_dmamap_load()) so we use the value of map_arg->maxsegs to pass any  */
3482 /* failures back to the caller.                                             */
3483 /*                                                                          */
3484 /* Returns:                                                                 */
3485 /*   Nothing.                                                               */
3486 /****************************************************************************/
3487 static void
3488 bce_dma_map_addr(void *arg, bus_dma_segment_t *segs, int nseg, int error)
3489 {
3490 	bus_addr_t *busaddr = arg;
3491 
3492 	KASSERT(nseg == 1, ("%s(): Too many segments returned (%d)!",
3493 	    __FUNCTION__, nseg));
3494 	/* Simulate a mapping failure. */
3495 	DBRUNIF(DB_RANDOMTRUE(dma_map_addr_failed_sim_control),
3496 	    error = ENOMEM);
3497 
3498 	/* ToDo: How to increment debug sim_count variable here? */
3499 
3500 	/* Check for an error and signal the caller that an error occurred. */
3501 	if (error) {
3502 		*busaddr = 0;
3503 	} else {
3504 		*busaddr = segs->ds_addr;
3505 	}
3506 
3507 	return;
3508 }
3509 
3510 
3511 /****************************************************************************/
3512 /* Allocate any DMA memory needed by the driver.                            */
3513 /*                                                                          */
3514 /* Allocates DMA memory needed for the various global structures needed by  */
3515 /* hardware.                                                                */
3516 /*                                                                          */
3517 /* Memory alignment requirements:                                           */
3518 /* +-----------------+----------+----------+----------+----------+          */
3519 /* |                 |   5706   |   5708   |   5709   |   5716   |          */
3520 /* +-----------------+----------+----------+----------+----------+          */
3521 /* |Status Block     | 8 bytes  | 8 bytes  | 16 bytes | 16 bytes |          */
3522 /* |Statistics Block | 8 bytes  | 8 bytes  | 16 bytes | 16 bytes |          */
3523 /* |RX Buffers       | 16 bytes | 16 bytes | 16 bytes | 16 bytes |          */
3524 /* |PG Buffers       |   none   |   none   |   none   |   none   |          */
3525 /* |TX Buffers       |   none   |   none   |   none   |   none   |          */
3526 /* |Chain Pages(1)   |   4KiB   |   4KiB   |   4KiB   |   4KiB   |          */
3527 /* |Context Memory   |          |          |          |          |          */
3528 /* +-----------------+----------+----------+----------+----------+          */
3529 /*                                                                          */
3530 /* (1) Must align with CPU page size (BCM_PAGE_SZIE).                       */
3531 /*                                                                          */
3532 /* Returns:                                                                 */
3533 /*   0 for success, positive value for failure.                             */
3534 /****************************************************************************/
3535 static int
3536 bce_dma_alloc(device_t dev)
3537 {
3538 	struct bce_softc *sc;
3539 	int i, error, rc = 0;
3540 	bus_size_t max_size, max_seg_size;
3541 	int max_segments;
3542 
3543 	sc = device_get_softc(dev);
3544 
3545 	DBENTER(BCE_VERBOSE_RESET | BCE_VERBOSE_CTX);
3546 
3547 	/*
3548 	 * Allocate the parent bus DMA tag appropriate for PCI.
3549 	 */
3550 	if (bus_dma_tag_create(bus_get_dma_tag(dev), 1, BCE_DMA_BOUNDARY,
3551 	    sc->max_bus_addr, BUS_SPACE_MAXADDR, NULL, NULL,
3552 	    BUS_SPACE_MAXSIZE_32BIT, 0, BUS_SPACE_MAXSIZE_32BIT, 0, NULL, NULL,
3553 	    &sc->parent_tag)) {
3554 		BCE_PRINTF("%s(%d): Could not allocate parent DMA tag!\n",
3555 		    __FILE__, __LINE__);
3556 		rc = ENOMEM;
3557 		goto bce_dma_alloc_exit;
3558 	}
3559 
3560 	/*
3561 	 * Create a DMA tag for the status block, allocate and clear the
3562 	 * memory, map the memory into DMA space, and fetch the physical
3563 	 * address of the block.
3564 	 */
3565 	if (bus_dma_tag_create(sc->parent_tag, BCE_DMA_ALIGN,
3566 	    BCE_DMA_BOUNDARY, sc->max_bus_addr,	BUS_SPACE_MAXADDR,
3567 	    NULL, NULL,	BCE_STATUS_BLK_SZ, 1, BCE_STATUS_BLK_SZ,
3568 	    0, NULL, NULL, &sc->status_tag)) {
3569 		BCE_PRINTF("%s(%d): Could not allocate status block "
3570 		    "DMA tag!\n", __FILE__, __LINE__);
3571 		rc = ENOMEM;
3572 		goto bce_dma_alloc_exit;
3573 	}
3574 
3575 	if(bus_dmamem_alloc(sc->status_tag, (void **)&sc->status_block,
3576 	    BUS_DMA_NOWAIT | BUS_DMA_ZERO | BUS_DMA_COHERENT,
3577 	    &sc->status_map)) {
3578 		BCE_PRINTF("%s(%d): Could not allocate status block "
3579 		    "DMA memory!\n", __FILE__, __LINE__);
3580 		rc = ENOMEM;
3581 		goto bce_dma_alloc_exit;
3582 	}
3583 
3584 	error = bus_dmamap_load(sc->status_tag,	sc->status_map,
3585 	    sc->status_block, BCE_STATUS_BLK_SZ, bce_dma_map_addr,
3586 	    &sc->status_block_paddr, BUS_DMA_NOWAIT);
3587 
3588 	if (error) {
3589 		BCE_PRINTF("%s(%d): Could not map status block "
3590 		    "DMA memory!\n", __FILE__, __LINE__);
3591 		rc = ENOMEM;
3592 		goto bce_dma_alloc_exit;
3593 	}
3594 
3595 	DBPRINT(sc, BCE_INFO_LOAD, "%s(): status_block_paddr = 0x%jX\n",
3596 	    __FUNCTION__, (uintmax_t) sc->status_block_paddr);
3597 
3598 	/*
3599 	 * Create a DMA tag for the statistics block, allocate and clear the
3600 	 * memory, map the memory into DMA space, and fetch the physical
3601 	 * address of the block.
3602 	 */
3603 	if (bus_dma_tag_create(sc->parent_tag, BCE_DMA_ALIGN,
3604 	    BCE_DMA_BOUNDARY, sc->max_bus_addr,	BUS_SPACE_MAXADDR,
3605 	    NULL, NULL,	BCE_STATS_BLK_SZ, 1, BCE_STATS_BLK_SZ,
3606 	    0, NULL, NULL, &sc->stats_tag)) {
3607 		BCE_PRINTF("%s(%d): Could not allocate statistics block "
3608 		    "DMA tag!\n", __FILE__, __LINE__);
3609 		rc = ENOMEM;
3610 		goto bce_dma_alloc_exit;
3611 	}
3612 
3613 	if (bus_dmamem_alloc(sc->stats_tag, (void **)&sc->stats_block,
3614 	    BUS_DMA_NOWAIT | BUS_DMA_ZERO | BUS_DMA_COHERENT, &sc->stats_map)) {
3615 		BCE_PRINTF("%s(%d): Could not allocate statistics block "
3616 		    "DMA memory!\n", __FILE__, __LINE__);
3617 		rc = ENOMEM;
3618 		goto bce_dma_alloc_exit;
3619 	}
3620 
3621 	error = bus_dmamap_load(sc->stats_tag, sc->stats_map,
3622 	    sc->stats_block, BCE_STATS_BLK_SZ, bce_dma_map_addr,
3623 	    &sc->stats_block_paddr, BUS_DMA_NOWAIT);
3624 
3625 	if(error) {
3626 		BCE_PRINTF("%s(%d): Could not map statistics block "
3627 		    "DMA memory!\n", __FILE__, __LINE__);
3628 		rc = ENOMEM;
3629 		goto bce_dma_alloc_exit;
3630 	}
3631 
3632 	DBPRINT(sc, BCE_INFO_LOAD, "%s(): stats_block_paddr = 0x%jX\n",
3633 	    __FUNCTION__, (uintmax_t) sc->stats_block_paddr);
3634 
3635 	/* BCM5709 uses host memory as cache for context memory. */
3636 	if (BCE_CHIP_NUM(sc) == BCE_CHIP_NUM_5709) {
3637 		sc->ctx_pages = 0x2000 / BCM_PAGE_SIZE;
3638 		if (sc->ctx_pages == 0)
3639 			sc->ctx_pages = 1;
3640 
3641 		DBRUNIF((sc->ctx_pages > 512),
3642 		    BCE_PRINTF("%s(%d): Too many CTX pages! %d > 512\n",
3643 		    __FILE__, __LINE__, sc->ctx_pages));
3644 
3645 		/*
3646 		 * Create a DMA tag for the context pages,
3647 		 * allocate and clear the memory, map the
3648 		 * memory into DMA space, and fetch the
3649 		 * physical address of the block.
3650 		 */
3651 		if(bus_dma_tag_create(sc->parent_tag, BCM_PAGE_SIZE,
3652 		    BCE_DMA_BOUNDARY, sc->max_bus_addr,	BUS_SPACE_MAXADDR,
3653 		    NULL, NULL,	BCM_PAGE_SIZE, 1, BCM_PAGE_SIZE,
3654 		    0, NULL, NULL, &sc->ctx_tag)) {
3655 			BCE_PRINTF("%s(%d): Could not allocate CTX "
3656 			    "DMA tag!\n", __FILE__, __LINE__);
3657 			rc = ENOMEM;
3658 			goto bce_dma_alloc_exit;
3659 		}
3660 
3661 		for (i = 0; i < sc->ctx_pages; i++) {
3662 
3663 			if(bus_dmamem_alloc(sc->ctx_tag,
3664 			    (void **)&sc->ctx_block[i],
3665 			    BUS_DMA_NOWAIT | BUS_DMA_ZERO | BUS_DMA_COHERENT,
3666 			    &sc->ctx_map[i])) {
3667 				BCE_PRINTF("%s(%d): Could not allocate CTX "
3668 				    "DMA memory!\n", __FILE__, __LINE__);
3669 				rc = ENOMEM;
3670 				goto bce_dma_alloc_exit;
3671 			}
3672 
3673 			error = bus_dmamap_load(sc->ctx_tag, sc->ctx_map[i],
3674 			    sc->ctx_block[i], BCM_PAGE_SIZE, bce_dma_map_addr,
3675 			    &sc->ctx_paddr[i], BUS_DMA_NOWAIT);
3676 
3677 			if (error) {
3678 				BCE_PRINTF("%s(%d): Could not map CTX "
3679 				    "DMA memory!\n", __FILE__, __LINE__);
3680 				rc = ENOMEM;
3681 				goto bce_dma_alloc_exit;
3682 			}
3683 
3684 			DBPRINT(sc, BCE_INFO_LOAD, "%s(): ctx_paddr[%d] "
3685 			    "= 0x%jX\n", __FUNCTION__, i,
3686 			    (uintmax_t) sc->ctx_paddr[i]);
3687 		}
3688 	}
3689 
3690 	/*
3691 	 * Create a DMA tag for the TX buffer descriptor chain,
3692 	 * allocate and clear the  memory, and fetch the
3693 	 * physical address of the block.
3694 	 */
3695 	if(bus_dma_tag_create(sc->parent_tag, BCM_PAGE_SIZE, BCE_DMA_BOUNDARY,
3696 	    sc->max_bus_addr, BUS_SPACE_MAXADDR, NULL, NULL,
3697 	    BCE_TX_CHAIN_PAGE_SZ, 1, BCE_TX_CHAIN_PAGE_SZ, 0,
3698 	    NULL, NULL,	&sc->tx_bd_chain_tag)) {
3699 		BCE_PRINTF("%s(%d): Could not allocate TX descriptor "
3700 		    "chain DMA tag!\n", __FILE__, __LINE__);
3701 		rc = ENOMEM;
3702 		goto bce_dma_alloc_exit;
3703 	}
3704 
3705 	for (i = 0; i < sc->tx_pages; i++) {
3706 
3707 		if(bus_dmamem_alloc(sc->tx_bd_chain_tag,
3708 		    (void **)&sc->tx_bd_chain[i],
3709 		    BUS_DMA_NOWAIT | BUS_DMA_ZERO | BUS_DMA_COHERENT,
3710 		    &sc->tx_bd_chain_map[i])) {
3711 			BCE_PRINTF("%s(%d): Could not allocate TX descriptor "
3712 			    "chain DMA memory!\n", __FILE__, __LINE__);
3713 			rc = ENOMEM;
3714 			goto bce_dma_alloc_exit;
3715 		}
3716 
3717 		error = bus_dmamap_load(sc->tx_bd_chain_tag,
3718 		    sc->tx_bd_chain_map[i], sc->tx_bd_chain[i],
3719 		    BCE_TX_CHAIN_PAGE_SZ, bce_dma_map_addr,
3720 		    &sc->tx_bd_chain_paddr[i], BUS_DMA_NOWAIT);
3721 
3722 		if (error) {
3723 			BCE_PRINTF("%s(%d): Could not map TX descriptor "
3724 			    "chain DMA memory!\n", __FILE__, __LINE__);
3725 			rc = ENOMEM;
3726 			goto bce_dma_alloc_exit;
3727 		}
3728 
3729 		DBPRINT(sc, BCE_INFO_LOAD, "%s(): tx_bd_chain_paddr[%d] = "
3730 		    "0x%jX\n", __FUNCTION__, i,
3731 		    (uintmax_t) sc->tx_bd_chain_paddr[i]);
3732 	}
3733 
3734 	/* Check the required size before mapping to conserve resources. */
3735 	if (bce_tso_enable) {
3736 		max_size     = BCE_TSO_MAX_SIZE;
3737 		max_segments = BCE_MAX_SEGMENTS;
3738 		max_seg_size = BCE_TSO_MAX_SEG_SIZE;
3739 	} else {
3740 		max_size     = MCLBYTES * BCE_MAX_SEGMENTS;
3741 		max_segments = BCE_MAX_SEGMENTS;
3742 		max_seg_size = MCLBYTES;
3743 	}
3744 
3745 	/* Create a DMA tag for TX mbufs. */
3746 	if (bus_dma_tag_create(sc->parent_tag, 1, BCE_DMA_BOUNDARY,
3747 	    sc->max_bus_addr, BUS_SPACE_MAXADDR, NULL, NULL, max_size,
3748 	    max_segments, max_seg_size,	0, NULL, NULL, &sc->tx_mbuf_tag)) {
3749 		BCE_PRINTF("%s(%d): Could not allocate TX mbuf DMA tag!\n",
3750 		    __FILE__, __LINE__);
3751 		rc = ENOMEM;
3752 		goto bce_dma_alloc_exit;
3753 	}
3754 
3755 	/* Create DMA maps for the TX mbufs clusters. */
3756 	for (i = 0; i < TOTAL_TX_BD_ALLOC; i++) {
3757 		if (bus_dmamap_create(sc->tx_mbuf_tag, BUS_DMA_NOWAIT,
3758 			&sc->tx_mbuf_map[i])) {
3759 			BCE_PRINTF("%s(%d): Unable to create TX mbuf DMA "
3760 			    "map!\n", __FILE__, __LINE__);
3761 			rc = ENOMEM;
3762 			goto bce_dma_alloc_exit;
3763 		}
3764 	}
3765 
3766 	/*
3767 	 * Create a DMA tag for the RX buffer descriptor chain,
3768 	 * allocate and clear the memory, and fetch the physical
3769 	 * address of the blocks.
3770 	 */
3771 	if (bus_dma_tag_create(sc->parent_tag, BCM_PAGE_SIZE,
3772 			BCE_DMA_BOUNDARY, BUS_SPACE_MAXADDR,
3773 			sc->max_bus_addr, NULL, NULL,
3774 			BCE_RX_CHAIN_PAGE_SZ, 1, BCE_RX_CHAIN_PAGE_SZ,
3775 			0, NULL, NULL, &sc->rx_bd_chain_tag)) {
3776 		BCE_PRINTF("%s(%d): Could not allocate RX descriptor chain "
3777 		    "DMA tag!\n", __FILE__, __LINE__);
3778 		rc = ENOMEM;
3779 		goto bce_dma_alloc_exit;
3780 	}
3781 
3782 	for (i = 0; i < sc->rx_pages; i++) {
3783 
3784 		if (bus_dmamem_alloc(sc->rx_bd_chain_tag,
3785 		    (void **)&sc->rx_bd_chain[i],
3786 		    BUS_DMA_NOWAIT | BUS_DMA_ZERO | BUS_DMA_COHERENT,
3787 		    &sc->rx_bd_chain_map[i])) {
3788 			BCE_PRINTF("%s(%d): Could not allocate RX descriptor "
3789 			    "chain DMA memory!\n", __FILE__, __LINE__);
3790 			rc = ENOMEM;
3791 			goto bce_dma_alloc_exit;
3792 		}
3793 
3794 		error = bus_dmamap_load(sc->rx_bd_chain_tag,
3795 		    sc->rx_bd_chain_map[i], sc->rx_bd_chain[i],
3796 		    BCE_RX_CHAIN_PAGE_SZ, bce_dma_map_addr,
3797 		    &sc->rx_bd_chain_paddr[i], BUS_DMA_NOWAIT);
3798 
3799 		if (error) {
3800 			BCE_PRINTF("%s(%d): Could not map RX descriptor "
3801 			    "chain DMA memory!\n", __FILE__, __LINE__);
3802 			rc = ENOMEM;
3803 			goto bce_dma_alloc_exit;
3804 		}
3805 
3806 		DBPRINT(sc, BCE_INFO_LOAD, "%s(): rx_bd_chain_paddr[%d] = "
3807 		    "0x%jX\n", __FUNCTION__, i,
3808 		    (uintmax_t) sc->rx_bd_chain_paddr[i]);
3809 	}
3810 
3811 	/*
3812 	 * Create a DMA tag for RX mbufs.
3813 	 */
3814 	if (bce_hdr_split == TRUE)
3815 		max_size = max_seg_size = ((sc->rx_bd_mbuf_alloc_size < MCLBYTES) ?
3816 		    MCLBYTES : sc->rx_bd_mbuf_alloc_size);
3817 	else
3818 		max_size = max_seg_size = MJUM9BYTES;
3819 	max_segments = 1;
3820 
3821 	DBPRINT(sc, BCE_INFO_LOAD, "%s(): Creating rx_mbuf_tag "
3822 	    "(max size = 0x%jX max segments = %d, max segment "
3823 	    "size = 0x%jX)\n", __FUNCTION__, (uintmax_t) max_size,
3824 	     max_segments, (uintmax_t) max_seg_size);
3825 
3826 	if (bus_dma_tag_create(sc->parent_tag, BCE_RX_BUF_ALIGN,
3827 	    BCE_DMA_BOUNDARY, sc->max_bus_addr, BUS_SPACE_MAXADDR, NULL, NULL,
3828 	    max_size, max_segments, max_seg_size, 0, NULL, NULL,
3829 	    &sc->rx_mbuf_tag)) {
3830 		BCE_PRINTF("%s(%d): Could not allocate RX mbuf DMA tag!\n",
3831 		    __FILE__, __LINE__);
3832 		rc = ENOMEM;
3833 		goto bce_dma_alloc_exit;
3834 	}
3835 
3836 	/* Create DMA maps for the RX mbuf clusters. */
3837 	for (i = 0; i < TOTAL_RX_BD_ALLOC; i++) {
3838 		if (bus_dmamap_create(sc->rx_mbuf_tag, BUS_DMA_NOWAIT,
3839 		    &sc->rx_mbuf_map[i])) {
3840 			BCE_PRINTF("%s(%d): Unable to create RX mbuf "
3841 			    "DMA map!\n", __FILE__, __LINE__);
3842 			rc = ENOMEM;
3843 			goto bce_dma_alloc_exit;
3844 		}
3845 	}
3846 
3847 	if (bce_hdr_split == TRUE) {
3848 		/*
3849 		 * Create a DMA tag for the page buffer descriptor chain,
3850 		 * allocate and clear the memory, and fetch the physical
3851 		 * address of the blocks.
3852 		 */
3853 		if (bus_dma_tag_create(sc->parent_tag, BCM_PAGE_SIZE,
3854 			    BCE_DMA_BOUNDARY, BUS_SPACE_MAXADDR, sc->max_bus_addr,
3855 			    NULL, NULL,	BCE_PG_CHAIN_PAGE_SZ, 1, BCE_PG_CHAIN_PAGE_SZ,
3856 			    0, NULL, NULL, &sc->pg_bd_chain_tag)) {
3857 			BCE_PRINTF("%s(%d): Could not allocate page descriptor "
3858 			    "chain DMA tag!\n",	__FILE__, __LINE__);
3859 			rc = ENOMEM;
3860 			goto bce_dma_alloc_exit;
3861 		}
3862 
3863 		for (i = 0; i < sc->pg_pages; i++) {
3864 			if (bus_dmamem_alloc(sc->pg_bd_chain_tag,
3865 			    (void **)&sc->pg_bd_chain[i],
3866 			    BUS_DMA_NOWAIT | BUS_DMA_ZERO | BUS_DMA_COHERENT,
3867 			    &sc->pg_bd_chain_map[i])) {
3868 				BCE_PRINTF("%s(%d): Could not allocate page "
3869 				    "descriptor chain DMA memory!\n",
3870 				    __FILE__, __LINE__);
3871 				rc = ENOMEM;
3872 				goto bce_dma_alloc_exit;
3873 			}
3874 
3875 			error = bus_dmamap_load(sc->pg_bd_chain_tag,
3876 			    sc->pg_bd_chain_map[i], sc->pg_bd_chain[i],
3877 			    BCE_PG_CHAIN_PAGE_SZ, bce_dma_map_addr,
3878 			    &sc->pg_bd_chain_paddr[i], BUS_DMA_NOWAIT);
3879 
3880 			if (error) {
3881 				BCE_PRINTF("%s(%d): Could not map page descriptor "
3882 					"chain DMA memory!\n", __FILE__, __LINE__);
3883 				rc = ENOMEM;
3884 				goto bce_dma_alloc_exit;
3885 			}
3886 
3887 			DBPRINT(sc, BCE_INFO_LOAD, "%s(): pg_bd_chain_paddr[%d] = "
3888 				"0x%jX\n", __FUNCTION__, i,
3889 				(uintmax_t) sc->pg_bd_chain_paddr[i]);
3890 		}
3891 
3892 		/*
3893 		 * Create a DMA tag for page mbufs.
3894 		 */
3895 		max_size = max_seg_size = ((sc->pg_bd_mbuf_alloc_size < MCLBYTES) ?
3896 			MCLBYTES : sc->pg_bd_mbuf_alloc_size);
3897 
3898 		if (bus_dma_tag_create(sc->parent_tag, 1, BCE_DMA_BOUNDARY,
3899 			sc->max_bus_addr, BUS_SPACE_MAXADDR, NULL, NULL,
3900 			max_size, 1, max_seg_size, 0, NULL, NULL, &sc->pg_mbuf_tag)) {
3901 			BCE_PRINTF("%s(%d): Could not allocate page mbuf "
3902 				"DMA tag!\n", __FILE__, __LINE__);
3903 			rc = ENOMEM;
3904 			goto bce_dma_alloc_exit;
3905 		}
3906 
3907 		/* Create DMA maps for the page mbuf clusters. */
3908 		for (i = 0; i < TOTAL_PG_BD_ALLOC; i++) {
3909 			if (bus_dmamap_create(sc->pg_mbuf_tag, BUS_DMA_NOWAIT,
3910 				&sc->pg_mbuf_map[i])) {
3911 				BCE_PRINTF("%s(%d): Unable to create page mbuf "
3912 					"DMA map!\n", __FILE__, __LINE__);
3913 				rc = ENOMEM;
3914 				goto bce_dma_alloc_exit;
3915 			}
3916 		}
3917 	}
3918 
3919 bce_dma_alloc_exit:
3920 	DBEXIT(BCE_VERBOSE_RESET | BCE_VERBOSE_CTX);
3921 	return(rc);
3922 }
3923 
3924 
3925 /****************************************************************************/
3926 /* Release all resources used by the driver.                                */
3927 /*                                                                          */
3928 /* Releases all resources acquired by the driver including interrupts,      */
3929 /* interrupt handler, interfaces, mutexes, and DMA memory.                  */
3930 /*                                                                          */
3931 /* Returns:                                                                 */
3932 /*   Nothing.                                                               */
3933 /****************************************************************************/
3934 static void
3935 bce_release_resources(struct bce_softc *sc)
3936 {
3937 	device_t dev;
3938 
3939 	DBENTER(BCE_VERBOSE_RESET);
3940 
3941 	dev = sc->bce_dev;
3942 
3943 	bce_dma_free(sc);
3944 
3945 	if (sc->bce_intrhand != NULL) {
3946 		DBPRINT(sc, BCE_INFO_RESET, "Removing interrupt handler.\n");
3947 		bus_teardown_intr(dev, sc->bce_res_irq, sc->bce_intrhand);
3948 	}
3949 
3950 	if (sc->bce_res_irq != NULL) {
3951 		DBPRINT(sc, BCE_INFO_RESET, "Releasing IRQ.\n");
3952 		bus_release_resource(dev, SYS_RES_IRQ, sc->bce_irq_rid,
3953 		    sc->bce_res_irq);
3954 	}
3955 
3956 	if (sc->bce_flags & (BCE_USING_MSI_FLAG | BCE_USING_MSIX_FLAG)) {
3957 		DBPRINT(sc, BCE_INFO_RESET, "Releasing MSI/MSI-X vector.\n");
3958 		pci_release_msi(dev);
3959 	}
3960 
3961 	if (sc->bce_res_mem != NULL) {
3962 		DBPRINT(sc, BCE_INFO_RESET, "Releasing PCI memory.\n");
3963 		    bus_release_resource(dev, SYS_RES_MEMORY, PCIR_BAR(0),
3964 		    sc->bce_res_mem);
3965 	}
3966 
3967 	if (sc->bce_ifp != NULL) {
3968 		DBPRINT(sc, BCE_INFO_RESET, "Releasing IF.\n");
3969 		if_free(sc->bce_ifp);
3970 	}
3971 
3972 	if (mtx_initialized(&sc->bce_mtx))
3973 		BCE_LOCK_DESTROY(sc);
3974 
3975 	DBEXIT(BCE_VERBOSE_RESET);
3976 }
3977 
3978 
3979 /****************************************************************************/
3980 /* Firmware synchronization.                                                */
3981 /*                                                                          */
3982 /* Before performing certain events such as a chip reset, synchronize with  */
3983 /* the firmware first.                                                      */
3984 /*                                                                          */
3985 /* Returns:                                                                 */
3986 /*   0 for success, positive value for failure.                             */
3987 /****************************************************************************/
3988 static int
3989 bce_fw_sync(struct bce_softc *sc, u32 msg_data)
3990 {
3991 	int i, rc = 0;
3992 	u32 val;
3993 
3994 	DBENTER(BCE_VERBOSE_RESET);
3995 
3996 	/* Don't waste any time if we've timed out before. */
3997 	if (sc->bce_fw_timed_out == TRUE) {
3998 		rc = EBUSY;
3999 		goto bce_fw_sync_exit;
4000 	}
4001 
4002 	/* Increment the message sequence number. */
4003 	sc->bce_fw_wr_seq++;
4004 	msg_data |= sc->bce_fw_wr_seq;
4005 
4006  	DBPRINT(sc, BCE_VERBOSE_FIRMWARE, "bce_fw_sync(): msg_data = "
4007 	    "0x%08X\n",	msg_data);
4008 
4009 	/* Send the message to the bootcode driver mailbox. */
4010 	bce_shmem_wr(sc, BCE_DRV_MB, msg_data);
4011 
4012 	/* Wait for the bootcode to acknowledge the message. */
4013 	for (i = 0; i < FW_ACK_TIME_OUT_MS; i++) {
4014 		/* Check for a response in the bootcode firmware mailbox. */
4015 		val = bce_shmem_rd(sc, BCE_FW_MB);
4016 		if ((val & BCE_FW_MSG_ACK) == (msg_data & BCE_DRV_MSG_SEQ))
4017 			break;
4018 		DELAY(1000);
4019 	}
4020 
4021 	/* If we've timed out, tell bootcode that we've stopped waiting. */
4022 	if (((val & BCE_FW_MSG_ACK) != (msg_data & BCE_DRV_MSG_SEQ)) &&
4023 	    ((msg_data & BCE_DRV_MSG_DATA) != BCE_DRV_MSG_DATA_WAIT0)) {
4024 
4025 		BCE_PRINTF("%s(%d): Firmware synchronization timeout! "
4026 		    "msg_data = 0x%08X\n", __FILE__, __LINE__, msg_data);
4027 
4028 		msg_data &= ~BCE_DRV_MSG_CODE;
4029 		msg_data |= BCE_DRV_MSG_CODE_FW_TIMEOUT;
4030 
4031 		bce_shmem_wr(sc, BCE_DRV_MB, msg_data);
4032 
4033 		sc->bce_fw_timed_out = TRUE;
4034 		rc = EBUSY;
4035 	}
4036 
4037 bce_fw_sync_exit:
4038 	DBEXIT(BCE_VERBOSE_RESET);
4039 	return (rc);
4040 }
4041 
4042 
4043 /****************************************************************************/
4044 /* Load Receive Virtual 2 Physical (RV2P) processor firmware.               */
4045 /*                                                                          */
4046 /* Returns:                                                                 */
4047 /*   Nothing.                                                               */
4048 /****************************************************************************/
4049 static void
4050 bce_load_rv2p_fw(struct bce_softc *sc, u32 *rv2p_code,
4051 	u32 rv2p_code_len, u32 rv2p_proc)
4052 {
4053 	int i;
4054 	u32 val;
4055 
4056 	DBENTER(BCE_VERBOSE_RESET);
4057 
4058 	/* Set the page size used by RV2P. */
4059 	if (rv2p_proc == RV2P_PROC2) {
4060 		BCE_RV2P_PROC2_CHG_MAX_BD_PAGE(USABLE_RX_BD_PER_PAGE);
4061 	}
4062 
4063 	for (i = 0; i < rv2p_code_len; i += 8) {
4064 		REG_WR(sc, BCE_RV2P_INSTR_HIGH, *rv2p_code);
4065 		rv2p_code++;
4066 		REG_WR(sc, BCE_RV2P_INSTR_LOW, *rv2p_code);
4067 		rv2p_code++;
4068 
4069 		if (rv2p_proc == RV2P_PROC1) {
4070 			val = (i / 8) | BCE_RV2P_PROC1_ADDR_CMD_RDWR;
4071 			REG_WR(sc, BCE_RV2P_PROC1_ADDR_CMD, val);
4072 		}
4073 		else {
4074 			val = (i / 8) | BCE_RV2P_PROC2_ADDR_CMD_RDWR;
4075 			REG_WR(sc, BCE_RV2P_PROC2_ADDR_CMD, val);
4076 		}
4077 	}
4078 
4079 	/* Reset the processor, un-stall is done later. */
4080 	if (rv2p_proc == RV2P_PROC1) {
4081 		REG_WR(sc, BCE_RV2P_COMMAND, BCE_RV2P_COMMAND_PROC1_RESET);
4082 	}
4083 	else {
4084 		REG_WR(sc, BCE_RV2P_COMMAND, BCE_RV2P_COMMAND_PROC2_RESET);
4085 	}
4086 
4087 	DBEXIT(BCE_VERBOSE_RESET);
4088 }
4089 
4090 
4091 /****************************************************************************/
4092 /* Load RISC processor firmware.                                            */
4093 /*                                                                          */
4094 /* Loads firmware from the file if_bcefw.h into the scratchpad memory       */
4095 /* associated with a particular processor.                                  */
4096 /*                                                                          */
4097 /* Returns:                                                                 */
4098 /*   Nothing.                                                               */
4099 /****************************************************************************/
4100 static void
4101 bce_load_cpu_fw(struct bce_softc *sc, struct cpu_reg *cpu_reg,
4102 	struct fw_info *fw)
4103 {
4104 	u32 offset;
4105 
4106 	DBENTER(BCE_VERBOSE_RESET);
4107 
4108     bce_halt_cpu(sc, cpu_reg);
4109 
4110 	/* Load the Text area. */
4111 	offset = cpu_reg->spad_base + (fw->text_addr - cpu_reg->mips_view_base);
4112 	if (fw->text) {
4113 		int j;
4114 
4115 		for (j = 0; j < (fw->text_len / 4); j++, offset += 4) {
4116 			REG_WR_IND(sc, offset, fw->text[j]);
4117 	        }
4118 	}
4119 
4120 	/* Load the Data area. */
4121 	offset = cpu_reg->spad_base + (fw->data_addr - cpu_reg->mips_view_base);
4122 	if (fw->data) {
4123 		int j;
4124 
4125 		for (j = 0; j < (fw->data_len / 4); j++, offset += 4) {
4126 			REG_WR_IND(sc, offset, fw->data[j]);
4127 		}
4128 	}
4129 
4130 	/* Load the SBSS area. */
4131 	offset = cpu_reg->spad_base + (fw->sbss_addr - cpu_reg->mips_view_base);
4132 	if (fw->sbss) {
4133 		int j;
4134 
4135 		for (j = 0; j < (fw->sbss_len / 4); j++, offset += 4) {
4136 			REG_WR_IND(sc, offset, fw->sbss[j]);
4137 		}
4138 	}
4139 
4140 	/* Load the BSS area. */
4141 	offset = cpu_reg->spad_base + (fw->bss_addr - cpu_reg->mips_view_base);
4142 	if (fw->bss) {
4143 		int j;
4144 
4145 		for (j = 0; j < (fw->bss_len/4); j++, offset += 4) {
4146 			REG_WR_IND(sc, offset, fw->bss[j]);
4147 		}
4148 	}
4149 
4150 	/* Load the Read-Only area. */
4151 	offset = cpu_reg->spad_base +
4152 		(fw->rodata_addr - cpu_reg->mips_view_base);
4153 	if (fw->rodata) {
4154 		int j;
4155 
4156 		for (j = 0; j < (fw->rodata_len / 4); j++, offset += 4) {
4157 			REG_WR_IND(sc, offset, fw->rodata[j]);
4158 		}
4159 	}
4160 
4161 	/* Clear the pre-fetch instruction and set the FW start address. */
4162 	REG_WR_IND(sc, cpu_reg->inst, 0);
4163 	REG_WR_IND(sc, cpu_reg->pc, fw->start_addr);
4164 
4165 	DBEXIT(BCE_VERBOSE_RESET);
4166 }
4167 
4168 
4169 /****************************************************************************/
4170 /* Starts the RISC processor.                                               */
4171 /*                                                                          */
4172 /* Assumes the CPU starting address has already been set.                   */
4173 /*                                                                          */
4174 /* Returns:                                                                 */
4175 /*   Nothing.                                                               */
4176 /****************************************************************************/
4177 static void
4178 bce_start_cpu(struct bce_softc *sc, struct cpu_reg *cpu_reg)
4179 {
4180 	u32 val;
4181 
4182 	DBENTER(BCE_VERBOSE_RESET);
4183 
4184 	/* Start the CPU. */
4185 	val = REG_RD_IND(sc, cpu_reg->mode);
4186 	val &= ~cpu_reg->mode_value_halt;
4187 	REG_WR_IND(sc, cpu_reg->state, cpu_reg->state_value_clear);
4188 	REG_WR_IND(sc, cpu_reg->mode, val);
4189 
4190 	DBEXIT(BCE_VERBOSE_RESET);
4191 }
4192 
4193 
4194 /****************************************************************************/
4195 /* Halts the RISC processor.                                                */
4196 /*                                                                          */
4197 /* Returns:                                                                 */
4198 /*   Nothing.                                                               */
4199 /****************************************************************************/
4200 static void
4201 bce_halt_cpu(struct bce_softc *sc, struct cpu_reg *cpu_reg)
4202 {
4203 	u32 val;
4204 
4205 	DBENTER(BCE_VERBOSE_RESET);
4206 
4207 	/* Halt the CPU. */
4208 	val = REG_RD_IND(sc, cpu_reg->mode);
4209 	val |= cpu_reg->mode_value_halt;
4210 	REG_WR_IND(sc, cpu_reg->mode, val);
4211 	REG_WR_IND(sc, cpu_reg->state, cpu_reg->state_value_clear);
4212 
4213 	DBEXIT(BCE_VERBOSE_RESET);
4214 }
4215 
4216 
4217 /****************************************************************************/
4218 /* Initialize the RX CPU.                                                   */
4219 /*                                                                          */
4220 /* Returns:                                                                 */
4221 /*   Nothing.                                                               */
4222 /****************************************************************************/
4223 static void
4224 bce_start_rxp_cpu(struct bce_softc *sc)
4225 {
4226 	struct cpu_reg cpu_reg;
4227 
4228 	DBENTER(BCE_VERBOSE_RESET);
4229 
4230 	cpu_reg.mode = BCE_RXP_CPU_MODE;
4231 	cpu_reg.mode_value_halt = BCE_RXP_CPU_MODE_SOFT_HALT;
4232 	cpu_reg.mode_value_sstep = BCE_RXP_CPU_MODE_STEP_ENA;
4233 	cpu_reg.state = BCE_RXP_CPU_STATE;
4234 	cpu_reg.state_value_clear = 0xffffff;
4235 	cpu_reg.gpr0 = BCE_RXP_CPU_REG_FILE;
4236 	cpu_reg.evmask = BCE_RXP_CPU_EVENT_MASK;
4237 	cpu_reg.pc = BCE_RXP_CPU_PROGRAM_COUNTER;
4238 	cpu_reg.inst = BCE_RXP_CPU_INSTRUCTION;
4239 	cpu_reg.bp = BCE_RXP_CPU_HW_BREAKPOINT;
4240 	cpu_reg.spad_base = BCE_RXP_SCRATCH;
4241 	cpu_reg.mips_view_base = 0x8000000;
4242 
4243 	DBPRINT(sc, BCE_INFO_RESET, "Starting RX firmware.\n");
4244 	bce_start_cpu(sc, &cpu_reg);
4245 
4246 	DBEXIT(BCE_VERBOSE_RESET);
4247 }
4248 
4249 
4250 /****************************************************************************/
4251 /* Initialize the RX CPU.                                                   */
4252 /*                                                                          */
4253 /* Returns:                                                                 */
4254 /*   Nothing.                                                               */
4255 /****************************************************************************/
4256 static void
4257 bce_init_rxp_cpu(struct bce_softc *sc)
4258 {
4259 	struct cpu_reg cpu_reg;
4260 	struct fw_info fw;
4261 
4262 	DBENTER(BCE_VERBOSE_RESET);
4263 
4264 	cpu_reg.mode = BCE_RXP_CPU_MODE;
4265 	cpu_reg.mode_value_halt = BCE_RXP_CPU_MODE_SOFT_HALT;
4266 	cpu_reg.mode_value_sstep = BCE_RXP_CPU_MODE_STEP_ENA;
4267 	cpu_reg.state = BCE_RXP_CPU_STATE;
4268 	cpu_reg.state_value_clear = 0xffffff;
4269 	cpu_reg.gpr0 = BCE_RXP_CPU_REG_FILE;
4270 	cpu_reg.evmask = BCE_RXP_CPU_EVENT_MASK;
4271 	cpu_reg.pc = BCE_RXP_CPU_PROGRAM_COUNTER;
4272 	cpu_reg.inst = BCE_RXP_CPU_INSTRUCTION;
4273 	cpu_reg.bp = BCE_RXP_CPU_HW_BREAKPOINT;
4274 	cpu_reg.spad_base = BCE_RXP_SCRATCH;
4275 	cpu_reg.mips_view_base = 0x8000000;
4276 
4277 	if (BCE_CHIP_NUM(sc) == BCE_CHIP_NUM_5709) {
4278  		fw.ver_major = bce_RXP_b09FwReleaseMajor;
4279 		fw.ver_minor = bce_RXP_b09FwReleaseMinor;
4280 		fw.ver_fix = bce_RXP_b09FwReleaseFix;
4281 		fw.start_addr = bce_RXP_b09FwStartAddr;
4282 
4283 		fw.text_addr = bce_RXP_b09FwTextAddr;
4284 		fw.text_len = bce_RXP_b09FwTextLen;
4285 		fw.text_index = 0;
4286 		fw.text = bce_RXP_b09FwText;
4287 
4288 		fw.data_addr = bce_RXP_b09FwDataAddr;
4289 		fw.data_len = bce_RXP_b09FwDataLen;
4290 		fw.data_index = 0;
4291 		fw.data = bce_RXP_b09FwData;
4292 
4293 		fw.sbss_addr = bce_RXP_b09FwSbssAddr;
4294 		fw.sbss_len = bce_RXP_b09FwSbssLen;
4295 		fw.sbss_index = 0;
4296 		fw.sbss = bce_RXP_b09FwSbss;
4297 
4298 		fw.bss_addr = bce_RXP_b09FwBssAddr;
4299 		fw.bss_len = bce_RXP_b09FwBssLen;
4300 		fw.bss_index = 0;
4301 		fw.bss = bce_RXP_b09FwBss;
4302 
4303 		fw.rodata_addr = bce_RXP_b09FwRodataAddr;
4304 		fw.rodata_len = bce_RXP_b09FwRodataLen;
4305 		fw.rodata_index = 0;
4306 		fw.rodata = bce_RXP_b09FwRodata;
4307 	} else {
4308 		fw.ver_major = bce_RXP_b06FwReleaseMajor;
4309 		fw.ver_minor = bce_RXP_b06FwReleaseMinor;
4310 		fw.ver_fix = bce_RXP_b06FwReleaseFix;
4311 		fw.start_addr = bce_RXP_b06FwStartAddr;
4312 
4313 		fw.text_addr = bce_RXP_b06FwTextAddr;
4314 		fw.text_len = bce_RXP_b06FwTextLen;
4315 		fw.text_index = 0;
4316 		fw.text = bce_RXP_b06FwText;
4317 
4318 		fw.data_addr = bce_RXP_b06FwDataAddr;
4319 		fw.data_len = bce_RXP_b06FwDataLen;
4320 		fw.data_index = 0;
4321 		fw.data = bce_RXP_b06FwData;
4322 
4323 		fw.sbss_addr = bce_RXP_b06FwSbssAddr;
4324 		fw.sbss_len = bce_RXP_b06FwSbssLen;
4325 		fw.sbss_index = 0;
4326 		fw.sbss = bce_RXP_b06FwSbss;
4327 
4328 		fw.bss_addr = bce_RXP_b06FwBssAddr;
4329 		fw.bss_len = bce_RXP_b06FwBssLen;
4330 		fw.bss_index = 0;
4331 		fw.bss = bce_RXP_b06FwBss;
4332 
4333 		fw.rodata_addr = bce_RXP_b06FwRodataAddr;
4334 		fw.rodata_len = bce_RXP_b06FwRodataLen;
4335 		fw.rodata_index = 0;
4336 		fw.rodata = bce_RXP_b06FwRodata;
4337 	}
4338 
4339 	DBPRINT(sc, BCE_INFO_RESET, "Loading RX firmware.\n");
4340 	bce_load_cpu_fw(sc, &cpu_reg, &fw);
4341 
4342     /* Delay RXP start until initialization is complete. */
4343 
4344 	DBEXIT(BCE_VERBOSE_RESET);
4345 }
4346 
4347 
4348 /****************************************************************************/
4349 /* Initialize the TX CPU.                                                   */
4350 /*                                                                          */
4351 /* Returns:                                                                 */
4352 /*   Nothing.                                                               */
4353 /****************************************************************************/
4354 static void
4355 bce_init_txp_cpu(struct bce_softc *sc)
4356 {
4357 	struct cpu_reg cpu_reg;
4358 	struct fw_info fw;
4359 
4360 	DBENTER(BCE_VERBOSE_RESET);
4361 
4362 	cpu_reg.mode = BCE_TXP_CPU_MODE;
4363 	cpu_reg.mode_value_halt = BCE_TXP_CPU_MODE_SOFT_HALT;
4364 	cpu_reg.mode_value_sstep = BCE_TXP_CPU_MODE_STEP_ENA;
4365 	cpu_reg.state = BCE_TXP_CPU_STATE;
4366 	cpu_reg.state_value_clear = 0xffffff;
4367 	cpu_reg.gpr0 = BCE_TXP_CPU_REG_FILE;
4368 	cpu_reg.evmask = BCE_TXP_CPU_EVENT_MASK;
4369 	cpu_reg.pc = BCE_TXP_CPU_PROGRAM_COUNTER;
4370 	cpu_reg.inst = BCE_TXP_CPU_INSTRUCTION;
4371 	cpu_reg.bp = BCE_TXP_CPU_HW_BREAKPOINT;
4372 	cpu_reg.spad_base = BCE_TXP_SCRATCH;
4373 	cpu_reg.mips_view_base = 0x8000000;
4374 
4375 	if (BCE_CHIP_NUM(sc) == BCE_CHIP_NUM_5709) {
4376 		fw.ver_major = bce_TXP_b09FwReleaseMajor;
4377 		fw.ver_minor = bce_TXP_b09FwReleaseMinor;
4378 		fw.ver_fix = bce_TXP_b09FwReleaseFix;
4379 		fw.start_addr = bce_TXP_b09FwStartAddr;
4380 
4381 		fw.text_addr = bce_TXP_b09FwTextAddr;
4382 		fw.text_len = bce_TXP_b09FwTextLen;
4383 		fw.text_index = 0;
4384 		fw.text = bce_TXP_b09FwText;
4385 
4386 		fw.data_addr = bce_TXP_b09FwDataAddr;
4387 		fw.data_len = bce_TXP_b09FwDataLen;
4388 		fw.data_index = 0;
4389 		fw.data = bce_TXP_b09FwData;
4390 
4391 		fw.sbss_addr = bce_TXP_b09FwSbssAddr;
4392 		fw.sbss_len = bce_TXP_b09FwSbssLen;
4393 		fw.sbss_index = 0;
4394 		fw.sbss = bce_TXP_b09FwSbss;
4395 
4396 		fw.bss_addr = bce_TXP_b09FwBssAddr;
4397 		fw.bss_len = bce_TXP_b09FwBssLen;
4398 		fw.bss_index = 0;
4399 		fw.bss = bce_TXP_b09FwBss;
4400 
4401 		fw.rodata_addr = bce_TXP_b09FwRodataAddr;
4402 		fw.rodata_len = bce_TXP_b09FwRodataLen;
4403 		fw.rodata_index = 0;
4404 		fw.rodata = bce_TXP_b09FwRodata;
4405 	} else {
4406 		fw.ver_major = bce_TXP_b06FwReleaseMajor;
4407 		fw.ver_minor = bce_TXP_b06FwReleaseMinor;
4408 		fw.ver_fix = bce_TXP_b06FwReleaseFix;
4409 		fw.start_addr = bce_TXP_b06FwStartAddr;
4410 
4411 		fw.text_addr = bce_TXP_b06FwTextAddr;
4412 		fw.text_len = bce_TXP_b06FwTextLen;
4413 		fw.text_index = 0;
4414 		fw.text = bce_TXP_b06FwText;
4415 
4416 		fw.data_addr = bce_TXP_b06FwDataAddr;
4417 		fw.data_len = bce_TXP_b06FwDataLen;
4418 		fw.data_index = 0;
4419 		fw.data = bce_TXP_b06FwData;
4420 
4421 		fw.sbss_addr = bce_TXP_b06FwSbssAddr;
4422 		fw.sbss_len = bce_TXP_b06FwSbssLen;
4423 		fw.sbss_index = 0;
4424 		fw.sbss = bce_TXP_b06FwSbss;
4425 
4426 		fw.bss_addr = bce_TXP_b06FwBssAddr;
4427 		fw.bss_len = bce_TXP_b06FwBssLen;
4428 		fw.bss_index = 0;
4429 		fw.bss = bce_TXP_b06FwBss;
4430 
4431 		fw.rodata_addr = bce_TXP_b06FwRodataAddr;
4432 		fw.rodata_len = bce_TXP_b06FwRodataLen;
4433 		fw.rodata_index = 0;
4434 		fw.rodata = bce_TXP_b06FwRodata;
4435 	}
4436 
4437 	DBPRINT(sc, BCE_INFO_RESET, "Loading TX firmware.\n");
4438 	bce_load_cpu_fw(sc, &cpu_reg, &fw);
4439     bce_start_cpu(sc, &cpu_reg);
4440 
4441 	DBEXIT(BCE_VERBOSE_RESET);
4442 }
4443 
4444 
4445 /****************************************************************************/
4446 /* Initialize the TPAT CPU.                                                 */
4447 /*                                                                          */
4448 /* Returns:                                                                 */
4449 /*   Nothing.                                                               */
4450 /****************************************************************************/
4451 static void
4452 bce_init_tpat_cpu(struct bce_softc *sc)
4453 {
4454 	struct cpu_reg cpu_reg;
4455 	struct fw_info fw;
4456 
4457 	DBENTER(BCE_VERBOSE_RESET);
4458 
4459 	cpu_reg.mode = BCE_TPAT_CPU_MODE;
4460 	cpu_reg.mode_value_halt = BCE_TPAT_CPU_MODE_SOFT_HALT;
4461 	cpu_reg.mode_value_sstep = BCE_TPAT_CPU_MODE_STEP_ENA;
4462 	cpu_reg.state = BCE_TPAT_CPU_STATE;
4463 	cpu_reg.state_value_clear = 0xffffff;
4464 	cpu_reg.gpr0 = BCE_TPAT_CPU_REG_FILE;
4465 	cpu_reg.evmask = BCE_TPAT_CPU_EVENT_MASK;
4466 	cpu_reg.pc = BCE_TPAT_CPU_PROGRAM_COUNTER;
4467 	cpu_reg.inst = BCE_TPAT_CPU_INSTRUCTION;
4468 	cpu_reg.bp = BCE_TPAT_CPU_HW_BREAKPOINT;
4469 	cpu_reg.spad_base = BCE_TPAT_SCRATCH;
4470 	cpu_reg.mips_view_base = 0x8000000;
4471 
4472 	if (BCE_CHIP_NUM(sc) == BCE_CHIP_NUM_5709) {
4473 		fw.ver_major = bce_TPAT_b09FwReleaseMajor;
4474 		fw.ver_minor = bce_TPAT_b09FwReleaseMinor;
4475 		fw.ver_fix = bce_TPAT_b09FwReleaseFix;
4476 		fw.start_addr = bce_TPAT_b09FwStartAddr;
4477 
4478 		fw.text_addr = bce_TPAT_b09FwTextAddr;
4479 		fw.text_len = bce_TPAT_b09FwTextLen;
4480 		fw.text_index = 0;
4481 		fw.text = bce_TPAT_b09FwText;
4482 
4483 		fw.data_addr = bce_TPAT_b09FwDataAddr;
4484 		fw.data_len = bce_TPAT_b09FwDataLen;
4485 		fw.data_index = 0;
4486 		fw.data = bce_TPAT_b09FwData;
4487 
4488 		fw.sbss_addr = bce_TPAT_b09FwSbssAddr;
4489 		fw.sbss_len = bce_TPAT_b09FwSbssLen;
4490 		fw.sbss_index = 0;
4491 		fw.sbss = bce_TPAT_b09FwSbss;
4492 
4493 		fw.bss_addr = bce_TPAT_b09FwBssAddr;
4494 		fw.bss_len = bce_TPAT_b09FwBssLen;
4495 		fw.bss_index = 0;
4496 		fw.bss = bce_TPAT_b09FwBss;
4497 
4498 		fw.rodata_addr = bce_TPAT_b09FwRodataAddr;
4499 		fw.rodata_len = bce_TPAT_b09FwRodataLen;
4500 		fw.rodata_index = 0;
4501 		fw.rodata = bce_TPAT_b09FwRodata;
4502 	} else {
4503 		fw.ver_major = bce_TPAT_b06FwReleaseMajor;
4504 		fw.ver_minor = bce_TPAT_b06FwReleaseMinor;
4505 		fw.ver_fix = bce_TPAT_b06FwReleaseFix;
4506 		fw.start_addr = bce_TPAT_b06FwStartAddr;
4507 
4508 		fw.text_addr = bce_TPAT_b06FwTextAddr;
4509 		fw.text_len = bce_TPAT_b06FwTextLen;
4510 		fw.text_index = 0;
4511 		fw.text = bce_TPAT_b06FwText;
4512 
4513 		fw.data_addr = bce_TPAT_b06FwDataAddr;
4514 		fw.data_len = bce_TPAT_b06FwDataLen;
4515 		fw.data_index = 0;
4516 		fw.data = bce_TPAT_b06FwData;
4517 
4518 		fw.sbss_addr = bce_TPAT_b06FwSbssAddr;
4519 		fw.sbss_len = bce_TPAT_b06FwSbssLen;
4520 		fw.sbss_index = 0;
4521 		fw.sbss = bce_TPAT_b06FwSbss;
4522 
4523 		fw.bss_addr = bce_TPAT_b06FwBssAddr;
4524 		fw.bss_len = bce_TPAT_b06FwBssLen;
4525 		fw.bss_index = 0;
4526 		fw.bss = bce_TPAT_b06FwBss;
4527 
4528 		fw.rodata_addr = bce_TPAT_b06FwRodataAddr;
4529 		fw.rodata_len = bce_TPAT_b06FwRodataLen;
4530 		fw.rodata_index = 0;
4531 		fw.rodata = bce_TPAT_b06FwRodata;
4532 	}
4533 
4534 	DBPRINT(sc, BCE_INFO_RESET, "Loading TPAT firmware.\n");
4535 	bce_load_cpu_fw(sc, &cpu_reg, &fw);
4536 	bce_start_cpu(sc, &cpu_reg);
4537 
4538 	DBEXIT(BCE_VERBOSE_RESET);
4539 }
4540 
4541 
4542 /****************************************************************************/
4543 /* Initialize the CP CPU.                                                   */
4544 /*                                                                          */
4545 /* Returns:                                                                 */
4546 /*   Nothing.                                                               */
4547 /****************************************************************************/
4548 static void
4549 bce_init_cp_cpu(struct bce_softc *sc)
4550 {
4551 	struct cpu_reg cpu_reg;
4552 	struct fw_info fw;
4553 
4554 	DBENTER(BCE_VERBOSE_RESET);
4555 
4556 	cpu_reg.mode = BCE_CP_CPU_MODE;
4557 	cpu_reg.mode_value_halt = BCE_CP_CPU_MODE_SOFT_HALT;
4558 	cpu_reg.mode_value_sstep = BCE_CP_CPU_MODE_STEP_ENA;
4559 	cpu_reg.state = BCE_CP_CPU_STATE;
4560 	cpu_reg.state_value_clear = 0xffffff;
4561 	cpu_reg.gpr0 = BCE_CP_CPU_REG_FILE;
4562 	cpu_reg.evmask = BCE_CP_CPU_EVENT_MASK;
4563 	cpu_reg.pc = BCE_CP_CPU_PROGRAM_COUNTER;
4564 	cpu_reg.inst = BCE_CP_CPU_INSTRUCTION;
4565 	cpu_reg.bp = BCE_CP_CPU_HW_BREAKPOINT;
4566 	cpu_reg.spad_base = BCE_CP_SCRATCH;
4567 	cpu_reg.mips_view_base = 0x8000000;
4568 
4569 	if (BCE_CHIP_NUM(sc) == BCE_CHIP_NUM_5709) {
4570 		fw.ver_major = bce_CP_b09FwReleaseMajor;
4571 		fw.ver_minor = bce_CP_b09FwReleaseMinor;
4572 		fw.ver_fix = bce_CP_b09FwReleaseFix;
4573 		fw.start_addr = bce_CP_b09FwStartAddr;
4574 
4575 		fw.text_addr = bce_CP_b09FwTextAddr;
4576 		fw.text_len = bce_CP_b09FwTextLen;
4577 		fw.text_index = 0;
4578 		fw.text = bce_CP_b09FwText;
4579 
4580 		fw.data_addr = bce_CP_b09FwDataAddr;
4581 		fw.data_len = bce_CP_b09FwDataLen;
4582 		fw.data_index = 0;
4583 		fw.data = bce_CP_b09FwData;
4584 
4585 		fw.sbss_addr = bce_CP_b09FwSbssAddr;
4586 		fw.sbss_len = bce_CP_b09FwSbssLen;
4587 		fw.sbss_index = 0;
4588 		fw.sbss = bce_CP_b09FwSbss;
4589 
4590 		fw.bss_addr = bce_CP_b09FwBssAddr;
4591 		fw.bss_len = bce_CP_b09FwBssLen;
4592 		fw.bss_index = 0;
4593 		fw.bss = bce_CP_b09FwBss;
4594 
4595 		fw.rodata_addr = bce_CP_b09FwRodataAddr;
4596 		fw.rodata_len = bce_CP_b09FwRodataLen;
4597 		fw.rodata_index = 0;
4598 		fw.rodata = bce_CP_b09FwRodata;
4599 	} else {
4600 		fw.ver_major = bce_CP_b06FwReleaseMajor;
4601 		fw.ver_minor = bce_CP_b06FwReleaseMinor;
4602 		fw.ver_fix = bce_CP_b06FwReleaseFix;
4603 		fw.start_addr = bce_CP_b06FwStartAddr;
4604 
4605 		fw.text_addr = bce_CP_b06FwTextAddr;
4606 		fw.text_len = bce_CP_b06FwTextLen;
4607 		fw.text_index = 0;
4608 		fw.text = bce_CP_b06FwText;
4609 
4610 		fw.data_addr = bce_CP_b06FwDataAddr;
4611 		fw.data_len = bce_CP_b06FwDataLen;
4612 		fw.data_index = 0;
4613 		fw.data = bce_CP_b06FwData;
4614 
4615 		fw.sbss_addr = bce_CP_b06FwSbssAddr;
4616 		fw.sbss_len = bce_CP_b06FwSbssLen;
4617 		fw.sbss_index = 0;
4618 		fw.sbss = bce_CP_b06FwSbss;
4619 
4620 		fw.bss_addr = bce_CP_b06FwBssAddr;
4621 		fw.bss_len = bce_CP_b06FwBssLen;
4622 		fw.bss_index = 0;
4623 		fw.bss = bce_CP_b06FwBss;
4624 
4625 		fw.rodata_addr = bce_CP_b06FwRodataAddr;
4626 		fw.rodata_len = bce_CP_b06FwRodataLen;
4627 		fw.rodata_index = 0;
4628 		fw.rodata = bce_CP_b06FwRodata;
4629 	}
4630 
4631 	DBPRINT(sc, BCE_INFO_RESET, "Loading CP firmware.\n");
4632 	bce_load_cpu_fw(sc, &cpu_reg, &fw);
4633 	bce_start_cpu(sc, &cpu_reg);
4634 
4635 	DBEXIT(BCE_VERBOSE_RESET);
4636 }
4637 
4638 
4639 /****************************************************************************/
4640 /* Initialize the COM CPU.                                                 */
4641 /*                                                                          */
4642 /* Returns:                                                                 */
4643 /*   Nothing.                                                               */
4644 /****************************************************************************/
4645 static void
4646 bce_init_com_cpu(struct bce_softc *sc)
4647 {
4648 	struct cpu_reg cpu_reg;
4649 	struct fw_info fw;
4650 
4651 	DBENTER(BCE_VERBOSE_RESET);
4652 
4653 	cpu_reg.mode = BCE_COM_CPU_MODE;
4654 	cpu_reg.mode_value_halt = BCE_COM_CPU_MODE_SOFT_HALT;
4655 	cpu_reg.mode_value_sstep = BCE_COM_CPU_MODE_STEP_ENA;
4656 	cpu_reg.state = BCE_COM_CPU_STATE;
4657 	cpu_reg.state_value_clear = 0xffffff;
4658 	cpu_reg.gpr0 = BCE_COM_CPU_REG_FILE;
4659 	cpu_reg.evmask = BCE_COM_CPU_EVENT_MASK;
4660 	cpu_reg.pc = BCE_COM_CPU_PROGRAM_COUNTER;
4661 	cpu_reg.inst = BCE_COM_CPU_INSTRUCTION;
4662 	cpu_reg.bp = BCE_COM_CPU_HW_BREAKPOINT;
4663 	cpu_reg.spad_base = BCE_COM_SCRATCH;
4664 	cpu_reg.mips_view_base = 0x8000000;
4665 
4666 	if (BCE_CHIP_NUM(sc) == BCE_CHIP_NUM_5709) {
4667 		fw.ver_major = bce_COM_b09FwReleaseMajor;
4668 		fw.ver_minor = bce_COM_b09FwReleaseMinor;
4669 		fw.ver_fix = bce_COM_b09FwReleaseFix;
4670 		fw.start_addr = bce_COM_b09FwStartAddr;
4671 
4672 		fw.text_addr = bce_COM_b09FwTextAddr;
4673 		fw.text_len = bce_COM_b09FwTextLen;
4674 		fw.text_index = 0;
4675 		fw.text = bce_COM_b09FwText;
4676 
4677 		fw.data_addr = bce_COM_b09FwDataAddr;
4678 		fw.data_len = bce_COM_b09FwDataLen;
4679 		fw.data_index = 0;
4680 		fw.data = bce_COM_b09FwData;
4681 
4682 		fw.sbss_addr = bce_COM_b09FwSbssAddr;
4683 		fw.sbss_len = bce_COM_b09FwSbssLen;
4684 		fw.sbss_index = 0;
4685 		fw.sbss = bce_COM_b09FwSbss;
4686 
4687 		fw.bss_addr = bce_COM_b09FwBssAddr;
4688 		fw.bss_len = bce_COM_b09FwBssLen;
4689 		fw.bss_index = 0;
4690 		fw.bss = bce_COM_b09FwBss;
4691 
4692 		fw.rodata_addr = bce_COM_b09FwRodataAddr;
4693 		fw.rodata_len = bce_COM_b09FwRodataLen;
4694 		fw.rodata_index = 0;
4695 		fw.rodata = bce_COM_b09FwRodata;
4696 	} else {
4697 		fw.ver_major = bce_COM_b06FwReleaseMajor;
4698 		fw.ver_minor = bce_COM_b06FwReleaseMinor;
4699 		fw.ver_fix = bce_COM_b06FwReleaseFix;
4700 		fw.start_addr = bce_COM_b06FwStartAddr;
4701 
4702 		fw.text_addr = bce_COM_b06FwTextAddr;
4703 		fw.text_len = bce_COM_b06FwTextLen;
4704 		fw.text_index = 0;
4705 		fw.text = bce_COM_b06FwText;
4706 
4707 		fw.data_addr = bce_COM_b06FwDataAddr;
4708 		fw.data_len = bce_COM_b06FwDataLen;
4709 		fw.data_index = 0;
4710 		fw.data = bce_COM_b06FwData;
4711 
4712 		fw.sbss_addr = bce_COM_b06FwSbssAddr;
4713 		fw.sbss_len = bce_COM_b06FwSbssLen;
4714 		fw.sbss_index = 0;
4715 		fw.sbss = bce_COM_b06FwSbss;
4716 
4717 		fw.bss_addr = bce_COM_b06FwBssAddr;
4718 		fw.bss_len = bce_COM_b06FwBssLen;
4719 		fw.bss_index = 0;
4720 		fw.bss = bce_COM_b06FwBss;
4721 
4722 		fw.rodata_addr = bce_COM_b06FwRodataAddr;
4723 		fw.rodata_len = bce_COM_b06FwRodataLen;
4724 		fw.rodata_index = 0;
4725 		fw.rodata = bce_COM_b06FwRodata;
4726 	}
4727 
4728 	DBPRINT(sc, BCE_INFO_RESET, "Loading COM firmware.\n");
4729 	bce_load_cpu_fw(sc, &cpu_reg, &fw);
4730 	bce_start_cpu(sc, &cpu_reg);
4731 
4732 	DBEXIT(BCE_VERBOSE_RESET);
4733 }
4734 
4735 
4736 /****************************************************************************/
4737 /* Initialize the RV2P, RX, TX, TPAT, COM, and CP CPUs.                     */
4738 /*                                                                          */
4739 /* Loads the firmware for each CPU and starts the CPU.                      */
4740 /*                                                                          */
4741 /* Returns:                                                                 */
4742 /*   Nothing.                                                               */
4743 /****************************************************************************/
4744 static void
4745 bce_init_cpus(struct bce_softc *sc)
4746 {
4747 	DBENTER(BCE_VERBOSE_RESET);
4748 
4749 	if (BCE_CHIP_NUM(sc) == BCE_CHIP_NUM_5709) {
4750 
4751 		if ((BCE_CHIP_REV(sc) == BCE_CHIP_REV_Ax)) {
4752 			bce_load_rv2p_fw(sc, bce_xi90_rv2p_proc1,
4753 			    sizeof(bce_xi90_rv2p_proc1), RV2P_PROC1);
4754 			bce_load_rv2p_fw(sc, bce_xi90_rv2p_proc2,
4755 			    sizeof(bce_xi90_rv2p_proc2), RV2P_PROC2);
4756 		} else {
4757 			bce_load_rv2p_fw(sc, bce_xi_rv2p_proc1,
4758 			    sizeof(bce_xi_rv2p_proc1), RV2P_PROC1);
4759 			bce_load_rv2p_fw(sc, bce_xi_rv2p_proc2,
4760 			    sizeof(bce_xi_rv2p_proc2), RV2P_PROC2);
4761 		}
4762 
4763 	} else {
4764 		bce_load_rv2p_fw(sc, bce_rv2p_proc1,
4765 		    sizeof(bce_rv2p_proc1), RV2P_PROC1);
4766 		bce_load_rv2p_fw(sc, bce_rv2p_proc2,
4767 		    sizeof(bce_rv2p_proc2), RV2P_PROC2);
4768 	}
4769 
4770 	bce_init_rxp_cpu(sc);
4771 	bce_init_txp_cpu(sc);
4772 	bce_init_tpat_cpu(sc);
4773 	bce_init_com_cpu(sc);
4774 	bce_init_cp_cpu(sc);
4775 
4776 	DBEXIT(BCE_VERBOSE_RESET);
4777 }
4778 
4779 
4780 /****************************************************************************/
4781 /* Initialize context memory.                                               */
4782 /*                                                                          */
4783 /* Clears the memory associated with each Context ID (CID).                 */
4784 /*                                                                          */
4785 /* Returns:                                                                 */
4786 /*   Nothing.                                                               */
4787 /****************************************************************************/
4788 static int
4789 bce_init_ctx(struct bce_softc *sc)
4790 {
4791 	u32 offset, val, vcid_addr;
4792 	int i, j, rc, retry_cnt;
4793 
4794 	rc = 0;
4795 	DBENTER(BCE_VERBOSE_RESET | BCE_VERBOSE_CTX);
4796 
4797 	if (BCE_CHIP_NUM(sc) == BCE_CHIP_NUM_5709) {
4798 		retry_cnt = CTX_INIT_RETRY_COUNT;
4799 
4800 		DBPRINT(sc, BCE_INFO_CTX, "Initializing 5709 context.\n");
4801 
4802 		/*
4803 		 * BCM5709 context memory may be cached
4804 		 * in host memory so prepare the host memory
4805 		 * for access.
4806 		 */
4807 		val = BCE_CTX_COMMAND_ENABLED |
4808 		    BCE_CTX_COMMAND_MEM_INIT | (1 << 12);
4809 		val |= (BCM_PAGE_BITS - 8) << 16;
4810 		REG_WR(sc, BCE_CTX_COMMAND, val);
4811 
4812 		/* Wait for mem init command to complete. */
4813 		for (i = 0; i < retry_cnt; i++) {
4814 			val = REG_RD(sc, BCE_CTX_COMMAND);
4815 			if (!(val & BCE_CTX_COMMAND_MEM_INIT))
4816 				break;
4817 			DELAY(2);
4818 		}
4819 		if ((val & BCE_CTX_COMMAND_MEM_INIT) != 0) {
4820 			BCE_PRINTF("%s(): Context memory initialization failed!\n",
4821 			    __FUNCTION__);
4822 			rc = EBUSY;
4823 			goto init_ctx_fail;
4824 		}
4825 
4826 		for (i = 0; i < sc->ctx_pages; i++) {
4827 			/* Set the physical address of the context memory. */
4828 			REG_WR(sc, BCE_CTX_HOST_PAGE_TBL_DATA0,
4829 			    BCE_ADDR_LO(sc->ctx_paddr[i] & 0xfffffff0) |
4830 			    BCE_CTX_HOST_PAGE_TBL_DATA0_VALID);
4831 			REG_WR(sc, BCE_CTX_HOST_PAGE_TBL_DATA1,
4832 			    BCE_ADDR_HI(sc->ctx_paddr[i]));
4833 			REG_WR(sc, BCE_CTX_HOST_PAGE_TBL_CTRL, i |
4834 			    BCE_CTX_HOST_PAGE_TBL_CTRL_WRITE_REQ);
4835 
4836 			/* Verify the context memory write was successful. */
4837 			for (j = 0; j < retry_cnt; j++) {
4838 				val = REG_RD(sc, BCE_CTX_HOST_PAGE_TBL_CTRL);
4839 				if ((val &
4840 				    BCE_CTX_HOST_PAGE_TBL_CTRL_WRITE_REQ) == 0)
4841 					break;
4842 				DELAY(5);
4843 			}
4844 			if ((val & BCE_CTX_HOST_PAGE_TBL_CTRL_WRITE_REQ) != 0) {
4845 				BCE_PRINTF("%s(): Failed to initialize "
4846 				    "context page %d!\n", __FUNCTION__, i);
4847 				rc = EBUSY;
4848 				goto init_ctx_fail;
4849 			}
4850 		}
4851 	} else {
4852 
4853 		DBPRINT(sc, BCE_INFO, "Initializing 5706/5708 context.\n");
4854 
4855 		/*
4856 		 * For the 5706/5708, context memory is local to
4857 		 * the controller, so initialize the controller
4858 		 * context memory.
4859 		 */
4860 
4861 		vcid_addr = GET_CID_ADDR(96);
4862 		while (vcid_addr) {
4863 
4864 			vcid_addr -= PHY_CTX_SIZE;
4865 
4866 			REG_WR(sc, BCE_CTX_VIRT_ADDR, 0);
4867 			REG_WR(sc, BCE_CTX_PAGE_TBL, vcid_addr);
4868 
4869 			for(offset = 0; offset < PHY_CTX_SIZE; offset += 4) {
4870 				CTX_WR(sc, 0x00, offset, 0);
4871 			}
4872 
4873 			REG_WR(sc, BCE_CTX_VIRT_ADDR, vcid_addr);
4874 			REG_WR(sc, BCE_CTX_PAGE_TBL, vcid_addr);
4875 		}
4876 
4877 	}
4878 init_ctx_fail:
4879 	DBEXIT(BCE_VERBOSE_RESET | BCE_VERBOSE_CTX);
4880 	return (rc);
4881 }
4882 
4883 
4884 /****************************************************************************/
4885 /* Fetch the permanent MAC address of the controller.                       */
4886 /*                                                                          */
4887 /* Returns:                                                                 */
4888 /*   Nothing.                                                               */
4889 /****************************************************************************/
4890 static void
4891 bce_get_mac_addr(struct bce_softc *sc)
4892 {
4893 	u32 mac_lo = 0, mac_hi = 0;
4894 
4895 	DBENTER(BCE_VERBOSE_RESET);
4896 
4897 	/*
4898 	 * The NetXtreme II bootcode populates various NIC
4899 	 * power-on and runtime configuration items in a
4900 	 * shared memory area.  The factory configured MAC
4901 	 * address is available from both NVRAM and the
4902 	 * shared memory area so we'll read the value from
4903 	 * shared memory for speed.
4904 	 */
4905 
4906 	mac_hi = bce_shmem_rd(sc, BCE_PORT_HW_CFG_MAC_UPPER);
4907 	mac_lo = bce_shmem_rd(sc, BCE_PORT_HW_CFG_MAC_LOWER);
4908 
4909 	if ((mac_lo == 0) && (mac_hi == 0)) {
4910 		BCE_PRINTF("%s(%d): Invalid Ethernet address!\n",
4911 		    __FILE__, __LINE__);
4912 	} else {
4913 		sc->eaddr[0] = (u_char)(mac_hi >> 8);
4914 		sc->eaddr[1] = (u_char)(mac_hi >> 0);
4915 		sc->eaddr[2] = (u_char)(mac_lo >> 24);
4916 		sc->eaddr[3] = (u_char)(mac_lo >> 16);
4917 		sc->eaddr[4] = (u_char)(mac_lo >> 8);
4918 		sc->eaddr[5] = (u_char)(mac_lo >> 0);
4919 	}
4920 
4921 	DBPRINT(sc, BCE_INFO_MISC, "Permanent Ethernet "
4922 	    "address = %6D\n", sc->eaddr, ":");
4923 	DBEXIT(BCE_VERBOSE_RESET);
4924 }
4925 
4926 
4927 /****************************************************************************/
4928 /* Program the MAC address.                                                 */
4929 /*                                                                          */
4930 /* Returns:                                                                 */
4931 /*   Nothing.                                                               */
4932 /****************************************************************************/
4933 static void
4934 bce_set_mac_addr(struct bce_softc *sc)
4935 {
4936 	u32 val;
4937 	u8 *mac_addr = sc->eaddr;
4938 
4939 	/* ToDo: Add support for setting multiple MAC addresses. */
4940 
4941 	DBENTER(BCE_VERBOSE_RESET);
4942 	DBPRINT(sc, BCE_INFO_MISC, "Setting Ethernet address = "
4943 	    "%6D\n", sc->eaddr, ":");
4944 
4945 	val = (mac_addr[0] << 8) | mac_addr[1];
4946 
4947 	REG_WR(sc, BCE_EMAC_MAC_MATCH0, val);
4948 
4949 	val = (mac_addr[2] << 24) | (mac_addr[3] << 16) |
4950 	    (mac_addr[4] << 8) | mac_addr[5];
4951 
4952 	REG_WR(sc, BCE_EMAC_MAC_MATCH1, val);
4953 
4954 	DBEXIT(BCE_VERBOSE_RESET);
4955 }
4956 
4957 
4958 /****************************************************************************/
4959 /* Stop the controller.                                                     */
4960 /*                                                                          */
4961 /* Returns:                                                                 */
4962 /*   Nothing.                                                               */
4963 /****************************************************************************/
4964 static void
4965 bce_stop(struct bce_softc *sc)
4966 {
4967 	struct ifnet *ifp;
4968 
4969 	DBENTER(BCE_VERBOSE_RESET);
4970 
4971 	BCE_LOCK_ASSERT(sc);
4972 
4973 	ifp = sc->bce_ifp;
4974 
4975 	callout_stop(&sc->bce_tick_callout);
4976 
4977 	/* Disable the transmit/receive blocks. */
4978 	REG_WR(sc, BCE_MISC_ENABLE_CLR_BITS, BCE_MISC_ENABLE_CLR_DEFAULT);
4979 	REG_RD(sc, BCE_MISC_ENABLE_CLR_BITS);
4980 	DELAY(20);
4981 
4982 	bce_disable_intr(sc);
4983 
4984 	/* Free RX buffers. */
4985 	if (bce_hdr_split == TRUE) {
4986 		bce_free_pg_chain(sc);
4987 	}
4988 	bce_free_rx_chain(sc);
4989 
4990 	/* Free TX buffers. */
4991 	bce_free_tx_chain(sc);
4992 
4993 	sc->watchdog_timer = 0;
4994 
4995 	sc->bce_link_up = FALSE;
4996 
4997 	ifp->if_drv_flags &= ~(IFF_DRV_RUNNING | IFF_DRV_OACTIVE);
4998 
4999 	DBEXIT(BCE_VERBOSE_RESET);
5000 }
5001 
5002 
5003 static int
5004 bce_reset(struct bce_softc *sc, u32 reset_code)
5005 {
5006 	u32 emac_mode_save, val;
5007 	int i, rc = 0;
5008 	static const u32 emac_mode_mask = BCE_EMAC_MODE_PORT |
5009 	    BCE_EMAC_MODE_HALF_DUPLEX | BCE_EMAC_MODE_25G;
5010 
5011 	DBENTER(BCE_VERBOSE_RESET);
5012 
5013 	DBPRINT(sc, BCE_VERBOSE_RESET, "%s(): reset_code = 0x%08X\n",
5014 	    __FUNCTION__, reset_code);
5015 
5016 	/*
5017 	 * If ASF/IPMI is operational, then the EMAC Mode register already
5018 	 * contains appropriate values for the link settings that have
5019 	 * been auto-negotiated.  Resetting the chip will clobber those
5020 	 * values.  Save the important bits so we can restore them after
5021 	 * the reset.
5022 	 */
5023 	emac_mode_save = REG_RD(sc, BCE_EMAC_MODE) & emac_mode_mask;
5024 
5025 	/* Wait for pending PCI transactions to complete. */
5026 	REG_WR(sc, BCE_MISC_ENABLE_CLR_BITS,
5027 	    BCE_MISC_ENABLE_CLR_BITS_TX_DMA_ENABLE |
5028 	    BCE_MISC_ENABLE_CLR_BITS_DMA_ENGINE_ENABLE |
5029 	    BCE_MISC_ENABLE_CLR_BITS_RX_DMA_ENABLE |
5030 	    BCE_MISC_ENABLE_CLR_BITS_HOST_COALESCE_ENABLE);
5031 	val = REG_RD(sc, BCE_MISC_ENABLE_CLR_BITS);
5032 	DELAY(5);
5033 
5034 	/* Disable DMA */
5035 	if (BCE_CHIP_NUM(sc) == BCE_CHIP_NUM_5709) {
5036 		val = REG_RD(sc, BCE_MISC_NEW_CORE_CTL);
5037 		val &= ~BCE_MISC_NEW_CORE_CTL_DMA_ENABLE;
5038 		REG_WR(sc, BCE_MISC_NEW_CORE_CTL, val);
5039 	}
5040 
5041 	/* Assume bootcode is running. */
5042 	sc->bce_fw_timed_out = FALSE;
5043 	sc->bce_drv_cardiac_arrest = FALSE;
5044 
5045 	/* Give the firmware a chance to prepare for the reset. */
5046 	rc = bce_fw_sync(sc, BCE_DRV_MSG_DATA_WAIT0 | reset_code);
5047 	if (rc)
5048 		goto bce_reset_exit;
5049 
5050 	/* Set a firmware reminder that this is a soft reset. */
5051 	bce_shmem_wr(sc, BCE_DRV_RESET_SIGNATURE, BCE_DRV_RESET_SIGNATURE_MAGIC);
5052 
5053 	/* Dummy read to force the chip to complete all current transactions. */
5054 	val = REG_RD(sc, BCE_MISC_ID);
5055 
5056 	/* Chip reset. */
5057 	if (BCE_CHIP_NUM(sc) == BCE_CHIP_NUM_5709) {
5058 		REG_WR(sc, BCE_MISC_COMMAND, BCE_MISC_COMMAND_SW_RESET);
5059 		REG_RD(sc, BCE_MISC_COMMAND);
5060 		DELAY(5);
5061 
5062 		val = BCE_PCICFG_MISC_CONFIG_REG_WINDOW_ENA |
5063 		    BCE_PCICFG_MISC_CONFIG_TARGET_MB_WORD_SWAP;
5064 
5065 		pci_write_config(sc->bce_dev, BCE_PCICFG_MISC_CONFIG, val, 4);
5066 	} else {
5067 		val = BCE_PCICFG_MISC_CONFIG_CORE_RST_REQ |
5068 		    BCE_PCICFG_MISC_CONFIG_REG_WINDOW_ENA |
5069 		    BCE_PCICFG_MISC_CONFIG_TARGET_MB_WORD_SWAP;
5070 		REG_WR(sc, BCE_PCICFG_MISC_CONFIG, val);
5071 
5072 		/* Allow up to 30us for reset to complete. */
5073 		for (i = 0; i < 10; i++) {
5074 			val = REG_RD(sc, BCE_PCICFG_MISC_CONFIG);
5075 			if ((val & (BCE_PCICFG_MISC_CONFIG_CORE_RST_REQ |
5076 			    BCE_PCICFG_MISC_CONFIG_CORE_RST_BSY)) == 0) {
5077 				break;
5078 			}
5079 			DELAY(10);
5080 		}
5081 
5082 		/* Check that reset completed successfully. */
5083 		if (val & (BCE_PCICFG_MISC_CONFIG_CORE_RST_REQ |
5084 		    BCE_PCICFG_MISC_CONFIG_CORE_RST_BSY)) {
5085 			BCE_PRINTF("%s(%d): Reset failed!\n",
5086 			    __FILE__, __LINE__);
5087 			rc = EBUSY;
5088 			goto bce_reset_exit;
5089 		}
5090 	}
5091 
5092 	/* Make sure byte swapping is properly configured. */
5093 	val = REG_RD(sc, BCE_PCI_SWAP_DIAG0);
5094 	if (val != 0x01020304) {
5095 		BCE_PRINTF("%s(%d): Byte swap is incorrect!\n",
5096 		    __FILE__, __LINE__);
5097 		rc = ENODEV;
5098 		goto bce_reset_exit;
5099 	}
5100 
5101 	/* Just completed a reset, assume that firmware is running again. */
5102 	sc->bce_fw_timed_out = FALSE;
5103 	sc->bce_drv_cardiac_arrest = FALSE;
5104 
5105 	/* Wait for the firmware to finish its initialization. */
5106 	rc = bce_fw_sync(sc, BCE_DRV_MSG_DATA_WAIT1 | reset_code);
5107 	if (rc)
5108 		BCE_PRINTF("%s(%d): Firmware did not complete "
5109 		    "initialization!\n", __FILE__, __LINE__);
5110 	/* Get firmware capabilities. */
5111 	bce_fw_cap_init(sc);
5112 
5113 bce_reset_exit:
5114 	/* Restore EMAC Mode bits needed to keep ASF/IPMI running. */
5115 	val = REG_RD(sc, BCE_EMAC_MODE);
5116 	val = (val & ~emac_mode_mask) | emac_mode_save;
5117 	REG_WR(sc, BCE_EMAC_MODE, val);
5118 
5119 	DBEXIT(BCE_VERBOSE_RESET);
5120 	return (rc);
5121 }
5122 
5123 
5124 static int
5125 bce_chipinit(struct bce_softc *sc)
5126 {
5127 	u32 val;
5128 	int rc = 0;
5129 
5130 	DBENTER(BCE_VERBOSE_RESET);
5131 
5132 	bce_disable_intr(sc);
5133 
5134 	/*
5135 	 * Initialize DMA byte/word swapping, configure the number of DMA
5136 	 * channels and PCI clock compensation delay.
5137 	 */
5138 	val = BCE_DMA_CONFIG_DATA_BYTE_SWAP |
5139 	    BCE_DMA_CONFIG_DATA_WORD_SWAP |
5140 #if BYTE_ORDER == BIG_ENDIAN
5141 	    BCE_DMA_CONFIG_CNTL_BYTE_SWAP |
5142 #endif
5143 	    BCE_DMA_CONFIG_CNTL_WORD_SWAP |
5144 	    DMA_READ_CHANS << 12 |
5145 	    DMA_WRITE_CHANS << 16;
5146 
5147 	val |= (0x2 << 20) | BCE_DMA_CONFIG_CNTL_PCI_COMP_DLY;
5148 
5149 	if ((sc->bce_flags & BCE_PCIX_FLAG) && (sc->bus_speed_mhz == 133))
5150 		val |= BCE_DMA_CONFIG_PCI_FAST_CLK_CMP;
5151 
5152 	/*
5153 	 * This setting resolves a problem observed on certain Intel PCI
5154 	 * chipsets that cannot handle multiple outstanding DMA operations.
5155 	 * See errata E9_5706A1_65.
5156 	 */
5157 	if ((BCE_CHIP_NUM(sc) == BCE_CHIP_NUM_5706) &&
5158 	    (BCE_CHIP_ID(sc) != BCE_CHIP_ID_5706_A0) &&
5159 	    !(sc->bce_flags & BCE_PCIX_FLAG))
5160 		val |= BCE_DMA_CONFIG_CNTL_PING_PONG_DMA;
5161 
5162 	REG_WR(sc, BCE_DMA_CONFIG, val);
5163 
5164 	/* Enable the RX_V2P and Context state machines before access. */
5165 	REG_WR(sc, BCE_MISC_ENABLE_SET_BITS,
5166 	    BCE_MISC_ENABLE_SET_BITS_HOST_COALESCE_ENABLE |
5167 	    BCE_MISC_ENABLE_STATUS_BITS_RX_V2P_ENABLE |
5168 	    BCE_MISC_ENABLE_STATUS_BITS_CONTEXT_ENABLE);
5169 
5170 	/* Initialize context mapping and zero out the quick contexts. */
5171 	if ((rc = bce_init_ctx(sc)) != 0)
5172 		goto bce_chipinit_exit;
5173 
5174 	/* Initialize the on-boards CPUs */
5175 	bce_init_cpus(sc);
5176 
5177 	/* Enable management frames (NC-SI) to flow to the MCP. */
5178 	if (sc->bce_flags & BCE_MFW_ENABLE_FLAG) {
5179 		val = REG_RD(sc, BCE_RPM_MGMT_PKT_CTRL) | BCE_RPM_MGMT_PKT_CTRL_MGMT_EN;
5180 		REG_WR(sc, BCE_RPM_MGMT_PKT_CTRL, val);
5181 	}
5182 
5183 	/* Prepare NVRAM for access. */
5184 	if ((rc = bce_init_nvram(sc)) != 0)
5185 		goto bce_chipinit_exit;
5186 
5187 	/* Set the kernel bypass block size */
5188 	val = REG_RD(sc, BCE_MQ_CONFIG);
5189 	val &= ~BCE_MQ_CONFIG_KNL_BYP_BLK_SIZE;
5190 	val |= BCE_MQ_CONFIG_KNL_BYP_BLK_SIZE_256;
5191 
5192 	/* Enable bins used on the 5709. */
5193 	if (BCE_CHIP_NUM(sc) == BCE_CHIP_NUM_5709) {
5194 		val |= BCE_MQ_CONFIG_BIN_MQ_MODE;
5195 		if (BCE_CHIP_ID(sc) == BCE_CHIP_ID_5709_A1)
5196 			val |= BCE_MQ_CONFIG_HALT_DIS;
5197 	}
5198 
5199 	REG_WR(sc, BCE_MQ_CONFIG, val);
5200 
5201 	val = 0x10000 + (MAX_CID_CNT * MB_KERNEL_CTX_SIZE);
5202 	REG_WR(sc, BCE_MQ_KNL_BYP_WIND_START, val);
5203 	REG_WR(sc, BCE_MQ_KNL_WIND_END, val);
5204 
5205 	/* Set the page size and clear the RV2P processor stall bits. */
5206 	val = (BCM_PAGE_BITS - 8) << 24;
5207 	REG_WR(sc, BCE_RV2P_CONFIG, val);
5208 
5209 	/* Configure page size. */
5210 	val = REG_RD(sc, BCE_TBDR_CONFIG);
5211 	val &= ~BCE_TBDR_CONFIG_PAGE_SIZE;
5212 	val |= (BCM_PAGE_BITS - 8) << 24 | 0x40;
5213 	REG_WR(sc, BCE_TBDR_CONFIG, val);
5214 
5215 	/* Set the perfect match control register to default. */
5216 	REG_WR_IND(sc, BCE_RXP_PM_CTRL, 0);
5217 
5218 bce_chipinit_exit:
5219 	DBEXIT(BCE_VERBOSE_RESET);
5220 
5221 	return(rc);
5222 }
5223 
5224 
5225 /****************************************************************************/
5226 /* Initialize the controller in preparation to send/receive traffic.        */
5227 /*                                                                          */
5228 /* Returns:                                                                 */
5229 /*   0 for success, positive value for failure.                             */
5230 /****************************************************************************/
5231 static int
5232 bce_blockinit(struct bce_softc *sc)
5233 {
5234 	u32 reg, val;
5235 	int rc = 0;
5236 
5237 	DBENTER(BCE_VERBOSE_RESET);
5238 
5239 	/* Load the hardware default MAC address. */
5240 	bce_set_mac_addr(sc);
5241 
5242 	/* Set the Ethernet backoff seed value */
5243 	val = sc->eaddr[0]         + (sc->eaddr[1] << 8) +
5244 	      (sc->eaddr[2] << 16) + (sc->eaddr[3]     ) +
5245 	      (sc->eaddr[4] << 8)  + (sc->eaddr[5] << 16);
5246 	REG_WR(sc, BCE_EMAC_BACKOFF_SEED, val);
5247 
5248 	sc->last_status_idx = 0;
5249 	sc->rx_mode = BCE_EMAC_RX_MODE_SORT_MODE;
5250 
5251 	/* Set up link change interrupt generation. */
5252 	REG_WR(sc, BCE_EMAC_ATTENTION_ENA, BCE_EMAC_ATTENTION_ENA_LINK);
5253 
5254 	/* Program the physical address of the status block. */
5255 	REG_WR(sc, BCE_HC_STATUS_ADDR_L,
5256 	    BCE_ADDR_LO(sc->status_block_paddr));
5257 	REG_WR(sc, BCE_HC_STATUS_ADDR_H,
5258 	    BCE_ADDR_HI(sc->status_block_paddr));
5259 
5260 	/* Program the physical address of the statistics block. */
5261 	REG_WR(sc, BCE_HC_STATISTICS_ADDR_L,
5262 	    BCE_ADDR_LO(sc->stats_block_paddr));
5263 	REG_WR(sc, BCE_HC_STATISTICS_ADDR_H,
5264 	    BCE_ADDR_HI(sc->stats_block_paddr));
5265 
5266 	/* Program various host coalescing parameters. */
5267 	REG_WR(sc, BCE_HC_TX_QUICK_CONS_TRIP,
5268 	    (sc->bce_tx_quick_cons_trip_int << 16) | sc->bce_tx_quick_cons_trip);
5269 	REG_WR(sc, BCE_HC_RX_QUICK_CONS_TRIP,
5270 	    (sc->bce_rx_quick_cons_trip_int << 16) | sc->bce_rx_quick_cons_trip);
5271 	REG_WR(sc, BCE_HC_COMP_PROD_TRIP,
5272 	    (sc->bce_comp_prod_trip_int << 16) | sc->bce_comp_prod_trip);
5273 	REG_WR(sc, BCE_HC_TX_TICKS,
5274 	    (sc->bce_tx_ticks_int << 16) | sc->bce_tx_ticks);
5275 	REG_WR(sc, BCE_HC_RX_TICKS,
5276 	    (sc->bce_rx_ticks_int << 16) | sc->bce_rx_ticks);
5277 	REG_WR(sc, BCE_HC_COM_TICKS,
5278 	    (sc->bce_com_ticks_int << 16) | sc->bce_com_ticks);
5279 	REG_WR(sc, BCE_HC_CMD_TICKS,
5280 	    (sc->bce_cmd_ticks_int << 16) | sc->bce_cmd_ticks);
5281 	REG_WR(sc, BCE_HC_STATS_TICKS,
5282 	    (sc->bce_stats_ticks & 0xffff00));
5283 	REG_WR(sc, BCE_HC_STAT_COLLECT_TICKS, 0xbb8);  /* 3ms */
5284 
5285 	/* Configure the Host Coalescing block. */
5286 	val = BCE_HC_CONFIG_RX_TMR_MODE | BCE_HC_CONFIG_TX_TMR_MODE |
5287 	    BCE_HC_CONFIG_COLLECT_STATS;
5288 
5289 #if 0
5290 	/* ToDo: Add MSI-X support. */
5291 	if (sc->bce_flags & BCE_USING_MSIX_FLAG) {
5292 		u32 base = ((BCE_TX_VEC - 1) * BCE_HC_SB_CONFIG_SIZE) +
5293 		    BCE_HC_SB_CONFIG_1;
5294 
5295 		REG_WR(sc, BCE_HC_MSIX_BIT_VECTOR, BCE_HC_MSIX_BIT_VECTOR_VAL);
5296 
5297 		REG_WR(sc, base, BCE_HC_SB_CONFIG_1_TX_TMR_MODE |
5298 		    BCE_HC_SB_CONFIG_1_ONE_SHOT);
5299 
5300 		REG_WR(sc, base + BCE_HC_TX_QUICK_CONS_TRIP_OFF,
5301 		    (sc->tx_quick_cons_trip_int << 16) |
5302 		     sc->tx_quick_cons_trip);
5303 
5304 		REG_WR(sc, base + BCE_HC_TX_TICKS_OFF,
5305 		    (sc->tx_ticks_int << 16) | sc->tx_ticks);
5306 
5307 		val |= BCE_HC_CONFIG_SB_ADDR_INC_128B;
5308 	}
5309 
5310 	/*
5311 	 * Tell the HC block to automatically set the
5312 	 * INT_MASK bit after an MSI/MSI-X interrupt
5313 	 * is generated so the driver doesn't have to.
5314 	 */
5315 	if (sc->bce_flags & BCE_ONE_SHOT_MSI_FLAG)
5316 		val |= BCE_HC_CONFIG_ONE_SHOT;
5317 
5318 	/* Set the MSI-X status blocks to 128 byte boundaries. */
5319 	if (sc->bce_flags & BCE_USING_MSIX_FLAG)
5320 		val |= BCE_HC_CONFIG_SB_ADDR_INC_128B;
5321 #endif
5322 
5323 	REG_WR(sc, BCE_HC_CONFIG, val);
5324 
5325 	/* Clear the internal statistics counters. */
5326 	REG_WR(sc, BCE_HC_COMMAND, BCE_HC_COMMAND_CLR_STAT_NOW);
5327 
5328 	/* Verify that bootcode is running. */
5329 	reg = bce_shmem_rd(sc, BCE_DEV_INFO_SIGNATURE);
5330 
5331 	DBRUNIF(DB_RANDOMTRUE(bootcode_running_failure_sim_control),
5332 	    BCE_PRINTF("%s(%d): Simulating bootcode failure.\n",
5333 	    __FILE__, __LINE__);
5334 	    reg = 0);
5335 
5336 	if ((reg & BCE_DEV_INFO_SIGNATURE_MAGIC_MASK) !=
5337 	    BCE_DEV_INFO_SIGNATURE_MAGIC) {
5338 		BCE_PRINTF("%s(%d): Bootcode not running! Found: 0x%08X, "
5339 		    "Expected: 08%08X\n", __FILE__, __LINE__,
5340 		    (reg & BCE_DEV_INFO_SIGNATURE_MAGIC_MASK),
5341 		    BCE_DEV_INFO_SIGNATURE_MAGIC);
5342 		rc = ENODEV;
5343 		goto bce_blockinit_exit;
5344 	}
5345 
5346 	/* Enable DMA */
5347 	if (BCE_CHIP_NUM(sc) == BCE_CHIP_NUM_5709) {
5348 		val = REG_RD(sc, BCE_MISC_NEW_CORE_CTL);
5349 		val |= BCE_MISC_NEW_CORE_CTL_DMA_ENABLE;
5350 		REG_WR(sc, BCE_MISC_NEW_CORE_CTL, val);
5351 	}
5352 
5353 	/* Allow bootcode to apply additional fixes before enabling MAC. */
5354 	rc = bce_fw_sync(sc, BCE_DRV_MSG_DATA_WAIT2 |
5355 	    BCE_DRV_MSG_CODE_RESET);
5356 
5357 	/* Enable link state change interrupt generation. */
5358 	REG_WR(sc, BCE_HC_ATTN_BITS_ENABLE, STATUS_ATTN_BITS_LINK_STATE);
5359 
5360 	/* Enable the RXP. */
5361 	bce_start_rxp_cpu(sc);
5362 
5363 	/* Disable management frames (NC-SI) from flowing to the MCP. */
5364 	if (sc->bce_flags & BCE_MFW_ENABLE_FLAG) {
5365 		val = REG_RD(sc, BCE_RPM_MGMT_PKT_CTRL) &
5366 		    ~BCE_RPM_MGMT_PKT_CTRL_MGMT_EN;
5367 		REG_WR(sc, BCE_RPM_MGMT_PKT_CTRL, val);
5368 	}
5369 
5370 	/* Enable all remaining blocks in the MAC. */
5371 	if (BCE_CHIP_NUM(sc) == BCE_CHIP_NUM_5709)
5372 		REG_WR(sc, BCE_MISC_ENABLE_SET_BITS,
5373 		    BCE_MISC_ENABLE_DEFAULT_XI);
5374 	else
5375 		REG_WR(sc, BCE_MISC_ENABLE_SET_BITS,
5376 		    BCE_MISC_ENABLE_DEFAULT);
5377 
5378 	REG_RD(sc, BCE_MISC_ENABLE_SET_BITS);
5379 	DELAY(20);
5380 
5381 	/* Save the current host coalescing block settings. */
5382 	sc->hc_command = REG_RD(sc, BCE_HC_COMMAND);
5383 
5384 bce_blockinit_exit:
5385 	DBEXIT(BCE_VERBOSE_RESET);
5386 
5387 	return (rc);
5388 }
5389 
5390 
5391 /****************************************************************************/
5392 /* Encapsulate an mbuf into the rx_bd chain.                                */
5393 /*                                                                          */
5394 /* Returns:                                                                 */
5395 /*   0 for success, positive value for failure.                             */
5396 /****************************************************************************/
5397 static int
5398 bce_get_rx_buf(struct bce_softc *sc, struct mbuf *m, u16 *prod,
5399     u16 *chain_prod, u32 *prod_bseq)
5400 {
5401 	bus_dmamap_t map;
5402 	bus_dma_segment_t segs[BCE_MAX_SEGMENTS];
5403 	struct mbuf *m_new = NULL;
5404 	struct rx_bd *rxbd;
5405 	int nsegs, error, rc = 0;
5406 #ifdef BCE_DEBUG
5407 	u16 debug_chain_prod = *chain_prod;
5408 #endif
5409 
5410 	DBENTER(BCE_EXTREME_RESET | BCE_EXTREME_RECV | BCE_EXTREME_LOAD);
5411 
5412 	/* Make sure the inputs are valid. */
5413 	DBRUNIF((*chain_prod > MAX_RX_BD_ALLOC),
5414 	    BCE_PRINTF("%s(%d): RX producer out of range: "
5415 	    "0x%04X > 0x%04X\n", __FILE__, __LINE__,
5416 	    *chain_prod, (u16) MAX_RX_BD_ALLOC));
5417 
5418 	DBPRINT(sc, BCE_EXTREME_RECV, "%s(enter): prod = 0x%04X, "
5419 	    "chain_prod = 0x%04X, prod_bseq = 0x%08X\n", __FUNCTION__,
5420 	    *prod, *chain_prod, *prod_bseq);
5421 
5422 	/* Update some debug statistic counters */
5423 	DBRUNIF((sc->free_rx_bd < sc->rx_low_watermark),
5424 	    sc->rx_low_watermark = sc->free_rx_bd);
5425 	DBRUNIF((sc->free_rx_bd == sc->max_rx_bd),
5426 	    sc->rx_empty_count++);
5427 
5428 	/* Check whether this is a new mbuf allocation. */
5429 	if (m == NULL) {
5430 
5431 		/* Simulate an mbuf allocation failure. */
5432 		DBRUNIF(DB_RANDOMTRUE(mbuf_alloc_failed_sim_control),
5433 		    sc->mbuf_alloc_failed_count++;
5434 		    sc->mbuf_alloc_failed_sim_count++;
5435 		    rc = ENOBUFS;
5436 		    goto bce_get_rx_buf_exit);
5437 
5438 		/* This is a new mbuf allocation. */
5439 		if (bce_hdr_split == TRUE)
5440 			MGETHDR(m_new, M_NOWAIT, MT_DATA);
5441 		else
5442 			m_new = m_getjcl(M_NOWAIT, MT_DATA, M_PKTHDR,
5443 			    sc->rx_bd_mbuf_alloc_size);
5444 
5445 		if (m_new == NULL) {
5446 			sc->mbuf_alloc_failed_count++;
5447 			rc = ENOBUFS;
5448 			goto bce_get_rx_buf_exit;
5449 		}
5450 
5451 		DBRUN(sc->debug_rx_mbuf_alloc++);
5452 	} else {
5453 		/* Reuse an existing mbuf. */
5454 		m_new = m;
5455 	}
5456 
5457 	/* Make sure we have a valid packet header. */
5458 	M_ASSERTPKTHDR(m_new);
5459 
5460 	/* Initialize the mbuf size and pad if necessary for alignment. */
5461 	m_new->m_pkthdr.len = m_new->m_len = sc->rx_bd_mbuf_alloc_size;
5462 	m_adj(m_new, sc->rx_bd_mbuf_align_pad);
5463 
5464 	/* ToDo: Consider calling m_fragment() to test error handling. */
5465 
5466 	/* Map the mbuf cluster into device memory. */
5467 	map = sc->rx_mbuf_map[*chain_prod];
5468 	error = bus_dmamap_load_mbuf_sg(sc->rx_mbuf_tag, map, m_new,
5469 	    segs, &nsegs, BUS_DMA_NOWAIT);
5470 
5471 	/* Handle any mapping errors. */
5472 	if (error) {
5473 		BCE_PRINTF("%s(%d): Error mapping mbuf into RX "
5474 		    "chain (%d)!\n", __FILE__, __LINE__, error);
5475 
5476 		sc->dma_map_addr_rx_failed_count++;
5477 		m_freem(m_new);
5478 
5479 		DBRUN(sc->debug_rx_mbuf_alloc--);
5480 
5481 		rc = ENOBUFS;
5482 		goto bce_get_rx_buf_exit;
5483 	}
5484 
5485 	/* All mbufs must map to a single segment. */
5486 	KASSERT(nsegs == 1, ("%s(): Too many segments returned (%d)!",
5487 	    __FUNCTION__, nsegs));
5488 
5489 	/* Setup the rx_bd for the segment. */
5490 	rxbd = &sc->rx_bd_chain[RX_PAGE(*chain_prod)][RX_IDX(*chain_prod)];
5491 
5492 	rxbd->rx_bd_haddr_lo  = htole32(BCE_ADDR_LO(segs[0].ds_addr));
5493 	rxbd->rx_bd_haddr_hi  = htole32(BCE_ADDR_HI(segs[0].ds_addr));
5494 	rxbd->rx_bd_len       = htole32(segs[0].ds_len);
5495 	rxbd->rx_bd_flags     = htole32(RX_BD_FLAGS_START | RX_BD_FLAGS_END);
5496 	*prod_bseq += segs[0].ds_len;
5497 
5498 	/* Save the mbuf and update our counter. */
5499 	sc->rx_mbuf_ptr[*chain_prod] = m_new;
5500 	sc->free_rx_bd -= nsegs;
5501 
5502 	DBRUNMSG(BCE_INSANE_RECV,
5503 	    bce_dump_rx_mbuf_chain(sc, debug_chain_prod, nsegs));
5504 
5505 	DBPRINT(sc, BCE_EXTREME_RECV, "%s(exit): prod = 0x%04X, "
5506 	    "chain_prod = 0x%04X, prod_bseq = 0x%08X\n",
5507 	    __FUNCTION__, *prod, *chain_prod, *prod_bseq);
5508 
5509 bce_get_rx_buf_exit:
5510 	DBEXIT(BCE_EXTREME_RESET | BCE_EXTREME_RECV | BCE_EXTREME_LOAD);
5511 
5512 	return(rc);
5513 }
5514 
5515 
5516 /****************************************************************************/
5517 /* Encapsulate an mbuf cluster into the page chain.                         */
5518 /*                                                                          */
5519 /* Returns:                                                                 */
5520 /*   0 for success, positive value for failure.                             */
5521 /****************************************************************************/
5522 static int
5523 bce_get_pg_buf(struct bce_softc *sc, struct mbuf *m, u16 *prod,
5524 	u16 *prod_idx)
5525 {
5526 	bus_dmamap_t map;
5527 	bus_addr_t busaddr;
5528 	struct mbuf *m_new = NULL;
5529 	struct rx_bd *pgbd;
5530 	int error, rc = 0;
5531 #ifdef BCE_DEBUG
5532 	u16 debug_prod_idx = *prod_idx;
5533 #endif
5534 
5535 	DBENTER(BCE_EXTREME_RESET | BCE_EXTREME_RECV | BCE_EXTREME_LOAD);
5536 
5537 	/* Make sure the inputs are valid. */
5538 	DBRUNIF((*prod_idx > MAX_PG_BD_ALLOC),
5539 	    BCE_PRINTF("%s(%d): page producer out of range: "
5540 	    "0x%04X > 0x%04X\n", __FILE__, __LINE__,
5541 	    *prod_idx, (u16) MAX_PG_BD_ALLOC));
5542 
5543 	DBPRINT(sc, BCE_EXTREME_RECV, "%s(enter): prod = 0x%04X, "
5544 	    "chain_prod = 0x%04X\n", __FUNCTION__, *prod, *prod_idx);
5545 
5546 	/* Update counters if we've hit a new low or run out of pages. */
5547 	DBRUNIF((sc->free_pg_bd < sc->pg_low_watermark),
5548 	    sc->pg_low_watermark = sc->free_pg_bd);
5549 	DBRUNIF((sc->free_pg_bd == sc->max_pg_bd), sc->pg_empty_count++);
5550 
5551 	/* Check whether this is a new mbuf allocation. */
5552 	if (m == NULL) {
5553 
5554 		/* Simulate an mbuf allocation failure. */
5555 		DBRUNIF(DB_RANDOMTRUE(mbuf_alloc_failed_sim_control),
5556 		    sc->mbuf_alloc_failed_count++;
5557 		    sc->mbuf_alloc_failed_sim_count++;
5558 		    rc = ENOBUFS;
5559 		    goto bce_get_pg_buf_exit);
5560 
5561 		/* This is a new mbuf allocation. */
5562 		m_new = m_getcl(M_NOWAIT, MT_DATA, 0);
5563 		if (m_new == NULL) {
5564 			sc->mbuf_alloc_failed_count++;
5565 			rc = ENOBUFS;
5566 			goto bce_get_pg_buf_exit;
5567 		}
5568 
5569 		DBRUN(sc->debug_pg_mbuf_alloc++);
5570 	} else {
5571 		/* Reuse an existing mbuf. */
5572 		m_new = m;
5573 		m_new->m_data = m_new->m_ext.ext_buf;
5574 	}
5575 
5576 	m_new->m_len = sc->pg_bd_mbuf_alloc_size;
5577 
5578 	/* ToDo: Consider calling m_fragment() to test error handling. */
5579 
5580 	/* Map the mbuf cluster into device memory. */
5581 	map = sc->pg_mbuf_map[*prod_idx];
5582 	error = bus_dmamap_load(sc->pg_mbuf_tag, map, mtod(m_new, void *),
5583 	    sc->pg_bd_mbuf_alloc_size, bce_dma_map_addr,
5584 	    &busaddr, BUS_DMA_NOWAIT);
5585 
5586 	/* Handle any mapping errors. */
5587 	if (error) {
5588 		BCE_PRINTF("%s(%d): Error mapping mbuf into page chain!\n",
5589 		    __FILE__, __LINE__);
5590 
5591 		m_freem(m_new);
5592 		DBRUN(sc->debug_pg_mbuf_alloc--);
5593 
5594 		rc = ENOBUFS;
5595 		goto bce_get_pg_buf_exit;
5596 	}
5597 
5598 	/* ToDo: Do we need bus_dmamap_sync(,,BUS_DMASYNC_PREREAD) here? */
5599 
5600 	/*
5601 	 * The page chain uses the same rx_bd data structure
5602 	 * as the receive chain but doesn't require a byte sequence (bseq).
5603 	 */
5604 	pgbd = &sc->pg_bd_chain[PG_PAGE(*prod_idx)][PG_IDX(*prod_idx)];
5605 
5606 	pgbd->rx_bd_haddr_lo  = htole32(BCE_ADDR_LO(busaddr));
5607 	pgbd->rx_bd_haddr_hi  = htole32(BCE_ADDR_HI(busaddr));
5608 	pgbd->rx_bd_len       = htole32(sc->pg_bd_mbuf_alloc_size);
5609 	pgbd->rx_bd_flags     = htole32(RX_BD_FLAGS_START | RX_BD_FLAGS_END);
5610 
5611 	/* Save the mbuf and update our counter. */
5612 	sc->pg_mbuf_ptr[*prod_idx] = m_new;
5613 	sc->free_pg_bd--;
5614 
5615 	DBRUNMSG(BCE_INSANE_RECV,
5616 	    bce_dump_pg_mbuf_chain(sc, debug_prod_idx, 1));
5617 
5618 	DBPRINT(sc, BCE_EXTREME_RECV, "%s(exit): prod = 0x%04X, "
5619 	    "prod_idx = 0x%04X\n", __FUNCTION__, *prod, *prod_idx);
5620 
5621 bce_get_pg_buf_exit:
5622 	DBEXIT(BCE_EXTREME_RESET | BCE_EXTREME_RECV | BCE_EXTREME_LOAD);
5623 
5624 	return(rc);
5625 }
5626 
5627 
5628 /****************************************************************************/
5629 /* Initialize the TX context memory.                                        */
5630 /*                                                                          */
5631 /* Returns:                                                                 */
5632 /*   Nothing                                                                */
5633 /****************************************************************************/
5634 static void
5635 bce_init_tx_context(struct bce_softc *sc)
5636 {
5637 	u32 val;
5638 
5639 	DBENTER(BCE_VERBOSE_RESET | BCE_VERBOSE_SEND | BCE_VERBOSE_CTX);
5640 
5641 	/* Initialize the context ID for an L2 TX chain. */
5642 	if (BCE_CHIP_NUM(sc) == BCE_CHIP_NUM_5709) {
5643 		/* Set the CID type to support an L2 connection. */
5644 		val = BCE_L2CTX_TX_TYPE_TYPE_L2_XI |
5645 		    BCE_L2CTX_TX_TYPE_SIZE_L2_XI;
5646 		CTX_WR(sc, GET_CID_ADDR(TX_CID), BCE_L2CTX_TX_TYPE_XI, val);
5647 		val = BCE_L2CTX_TX_CMD_TYPE_TYPE_L2_XI | (8 << 16);
5648 		CTX_WR(sc, GET_CID_ADDR(TX_CID),
5649 		    BCE_L2CTX_TX_CMD_TYPE_XI, val);
5650 
5651 		/* Point the hardware to the first page in the chain. */
5652 		val = BCE_ADDR_HI(sc->tx_bd_chain_paddr[0]);
5653 		CTX_WR(sc, GET_CID_ADDR(TX_CID),
5654 		    BCE_L2CTX_TX_TBDR_BHADDR_HI_XI, val);
5655 		val = BCE_ADDR_LO(sc->tx_bd_chain_paddr[0]);
5656 		CTX_WR(sc, GET_CID_ADDR(TX_CID),
5657 		    BCE_L2CTX_TX_TBDR_BHADDR_LO_XI, val);
5658 	} else {
5659 		/* Set the CID type to support an L2 connection. */
5660 		val = BCE_L2CTX_TX_TYPE_TYPE_L2 | BCE_L2CTX_TX_TYPE_SIZE_L2;
5661 		CTX_WR(sc, GET_CID_ADDR(TX_CID), BCE_L2CTX_TX_TYPE, val);
5662 		val = BCE_L2CTX_TX_CMD_TYPE_TYPE_L2 | (8 << 16);
5663 		CTX_WR(sc, GET_CID_ADDR(TX_CID), BCE_L2CTX_TX_CMD_TYPE, val);
5664 
5665 		/* Point the hardware to the first page in the chain. */
5666 		val = BCE_ADDR_HI(sc->tx_bd_chain_paddr[0]);
5667 		CTX_WR(sc, GET_CID_ADDR(TX_CID),
5668 		    BCE_L2CTX_TX_TBDR_BHADDR_HI, val);
5669 		val = BCE_ADDR_LO(sc->tx_bd_chain_paddr[0]);
5670 		CTX_WR(sc, GET_CID_ADDR(TX_CID),
5671 		    BCE_L2CTX_TX_TBDR_BHADDR_LO, val);
5672 	}
5673 
5674 	DBEXIT(BCE_VERBOSE_RESET | BCE_VERBOSE_SEND | BCE_VERBOSE_CTX);
5675 }
5676 
5677 
5678 /****************************************************************************/
5679 /* Allocate memory and initialize the TX data structures.                   */
5680 /*                                                                          */
5681 /* Returns:                                                                 */
5682 /*   0 for success, positive value for failure.                             */
5683 /****************************************************************************/
5684 static int
5685 bce_init_tx_chain(struct bce_softc *sc)
5686 {
5687 	struct tx_bd *txbd;
5688 	int i, rc = 0;
5689 
5690 	DBENTER(BCE_VERBOSE_RESET | BCE_VERBOSE_SEND | BCE_VERBOSE_LOAD);
5691 
5692 	/* Set the initial TX producer/consumer indices. */
5693 	sc->tx_prod        = 0;
5694 	sc->tx_cons        = 0;
5695 	sc->tx_prod_bseq   = 0;
5696 	sc->used_tx_bd     = 0;
5697 	sc->max_tx_bd      = USABLE_TX_BD_ALLOC;
5698 	DBRUN(sc->tx_hi_watermark = 0);
5699 	DBRUN(sc->tx_full_count = 0);
5700 
5701 	/*
5702 	 * The NetXtreme II supports a linked-list structre called
5703 	 * a Buffer Descriptor Chain (or BD chain).  A BD chain
5704 	 * consists of a series of 1 or more chain pages, each of which
5705 	 * consists of a fixed number of BD entries.
5706 	 * The last BD entry on each page is a pointer to the next page
5707 	 * in the chain, and the last pointer in the BD chain
5708 	 * points back to the beginning of the chain.
5709 	 */
5710 
5711 	/* Set the TX next pointer chain entries. */
5712 	for (i = 0; i < sc->tx_pages; i++) {
5713 		int j;
5714 
5715 		txbd = &sc->tx_bd_chain[i][USABLE_TX_BD_PER_PAGE];
5716 
5717 		/* Check if we've reached the last page. */
5718 		if (i == (sc->tx_pages - 1))
5719 			j = 0;
5720 		else
5721 			j = i + 1;
5722 
5723 		txbd->tx_bd_haddr_hi =
5724 		    htole32(BCE_ADDR_HI(sc->tx_bd_chain_paddr[j]));
5725 		txbd->tx_bd_haddr_lo =
5726 		    htole32(BCE_ADDR_LO(sc->tx_bd_chain_paddr[j]));
5727 	}
5728 
5729 	bce_init_tx_context(sc);
5730 
5731 	DBRUNMSG(BCE_INSANE_SEND, bce_dump_tx_chain(sc, 0, TOTAL_TX_BD_ALLOC));
5732 	DBEXIT(BCE_VERBOSE_RESET | BCE_VERBOSE_SEND | BCE_VERBOSE_LOAD);
5733 
5734 	return(rc);
5735 }
5736 
5737 
5738 /****************************************************************************/
5739 /* Free memory and clear the TX data structures.                            */
5740 /*                                                                          */
5741 /* Returns:                                                                 */
5742 /*   Nothing.                                                               */
5743 /****************************************************************************/
5744 static void
5745 bce_free_tx_chain(struct bce_softc *sc)
5746 {
5747 	int i;
5748 
5749 	DBENTER(BCE_VERBOSE_RESET | BCE_VERBOSE_SEND | BCE_VERBOSE_UNLOAD);
5750 
5751 	/* Unmap, unload, and free any mbufs still in the TX mbuf chain. */
5752 	for (i = 0; i < MAX_TX_BD_AVAIL; i++) {
5753 		if (sc->tx_mbuf_ptr[i] != NULL) {
5754 			if (sc->tx_mbuf_map[i] != NULL)
5755 				bus_dmamap_sync(sc->tx_mbuf_tag,
5756 				    sc->tx_mbuf_map[i],
5757 				    BUS_DMASYNC_POSTWRITE);
5758 			m_freem(sc->tx_mbuf_ptr[i]);
5759 			sc->tx_mbuf_ptr[i] = NULL;
5760 			DBRUN(sc->debug_tx_mbuf_alloc--);
5761 		}
5762 	}
5763 
5764 	/* Clear each TX chain page. */
5765 	for (i = 0; i < sc->tx_pages; i++)
5766 		bzero((char *)sc->tx_bd_chain[i], BCE_TX_CHAIN_PAGE_SZ);
5767 
5768 	sc->used_tx_bd = 0;
5769 
5770 	/* Check if we lost any mbufs in the process. */
5771 	DBRUNIF((sc->debug_tx_mbuf_alloc),
5772 	    BCE_PRINTF("%s(%d): Memory leak! Lost %d mbufs "
5773 	    "from tx chain!\n",	__FILE__, __LINE__,
5774 	    sc->debug_tx_mbuf_alloc));
5775 
5776 	DBEXIT(BCE_VERBOSE_RESET | BCE_VERBOSE_SEND | BCE_VERBOSE_UNLOAD);
5777 }
5778 
5779 
5780 /****************************************************************************/
5781 /* Initialize the RX context memory.                                        */
5782 /*                                                                          */
5783 /* Returns:                                                                 */
5784 /*   Nothing                                                                */
5785 /****************************************************************************/
5786 static void
5787 bce_init_rx_context(struct bce_softc *sc)
5788 {
5789 	u32 val;
5790 
5791 	DBENTER(BCE_VERBOSE_RESET | BCE_VERBOSE_RECV | BCE_VERBOSE_CTX);
5792 
5793 	/* Init the type, size, and BD cache levels for the RX context. */
5794 	val = BCE_L2CTX_RX_CTX_TYPE_CTX_BD_CHN_TYPE_VALUE |
5795 	    BCE_L2CTX_RX_CTX_TYPE_SIZE_L2 |
5796 	    (0x02 << BCE_L2CTX_RX_BD_PRE_READ_SHIFT);
5797 
5798 	/*
5799 	 * Set the level for generating pause frames
5800 	 * when the number of available rx_bd's gets
5801 	 * too low (the low watermark) and the level
5802 	 * when pause frames can be stopped (the high
5803 	 * watermark).
5804 	 */
5805 	if (BCE_CHIP_NUM(sc) == BCE_CHIP_NUM_5709) {
5806 		u32 lo_water, hi_water;
5807 
5808 		if (sc->bce_flags & BCE_USING_TX_FLOW_CONTROL) {
5809 			lo_water = BCE_L2CTX_RX_LO_WATER_MARK_DEFAULT;
5810 		} else {
5811 			lo_water = 0;
5812 		}
5813 
5814 		if (lo_water >= USABLE_RX_BD_ALLOC) {
5815 			lo_water = 0;
5816 		}
5817 
5818 		hi_water = USABLE_RX_BD_ALLOC / 4;
5819 
5820 		if (hi_water <= lo_water) {
5821 			lo_water = 0;
5822 		}
5823 
5824 		lo_water /= BCE_L2CTX_RX_LO_WATER_MARK_SCALE;
5825 		hi_water /= BCE_L2CTX_RX_HI_WATER_MARK_SCALE;
5826 
5827 		if (hi_water > 0xf)
5828 			hi_water = 0xf;
5829 		else if (hi_water == 0)
5830 			lo_water = 0;
5831 
5832 		val |= (lo_water << BCE_L2CTX_RX_LO_WATER_MARK_SHIFT) |
5833 		    (hi_water << BCE_L2CTX_RX_HI_WATER_MARK_SHIFT);
5834 	}
5835 
5836 	CTX_WR(sc, GET_CID_ADDR(RX_CID), BCE_L2CTX_RX_CTX_TYPE, val);
5837 
5838 	/* Setup the MQ BIN mapping for l2_ctx_host_bseq. */
5839 	if (BCE_CHIP_NUM(sc) == BCE_CHIP_NUM_5709) {
5840 		val = REG_RD(sc, BCE_MQ_MAP_L2_5);
5841 		REG_WR(sc, BCE_MQ_MAP_L2_5, val | BCE_MQ_MAP_L2_5_ARM);
5842 	}
5843 
5844 	/* Point the hardware to the first page in the chain. */
5845 	val = BCE_ADDR_HI(sc->rx_bd_chain_paddr[0]);
5846 	CTX_WR(sc, GET_CID_ADDR(RX_CID), BCE_L2CTX_RX_NX_BDHADDR_HI, val);
5847 	val = BCE_ADDR_LO(sc->rx_bd_chain_paddr[0]);
5848 	CTX_WR(sc, GET_CID_ADDR(RX_CID), BCE_L2CTX_RX_NX_BDHADDR_LO, val);
5849 
5850 	DBEXIT(BCE_VERBOSE_RESET | BCE_VERBOSE_RECV | BCE_VERBOSE_CTX);
5851 }
5852 
5853 
5854 /****************************************************************************/
5855 /* Allocate memory and initialize the RX data structures.                   */
5856 /*                                                                          */
5857 /* Returns:                                                                 */
5858 /*   0 for success, positive value for failure.                             */
5859 /****************************************************************************/
5860 static int
5861 bce_init_rx_chain(struct bce_softc *sc)
5862 {
5863 	struct rx_bd *rxbd;
5864 	int i, rc = 0;
5865 
5866 	DBENTER(BCE_VERBOSE_RESET | BCE_VERBOSE_RECV | BCE_VERBOSE_LOAD |
5867 	    BCE_VERBOSE_CTX);
5868 
5869 	/* Initialize the RX producer and consumer indices. */
5870 	sc->rx_prod        = 0;
5871 	sc->rx_cons        = 0;
5872 	sc->rx_prod_bseq   = 0;
5873 	sc->free_rx_bd     = USABLE_RX_BD_ALLOC;
5874 	sc->max_rx_bd      = USABLE_RX_BD_ALLOC;
5875 
5876 	/* Initialize the RX next pointer chain entries. */
5877 	for (i = 0; i < sc->rx_pages; i++) {
5878 		int j;
5879 
5880 		rxbd = &sc->rx_bd_chain[i][USABLE_RX_BD_PER_PAGE];
5881 
5882 		/* Check if we've reached the last page. */
5883 		if (i == (sc->rx_pages - 1))
5884 			j = 0;
5885 		else
5886 			j = i + 1;
5887 
5888 		/* Setup the chain page pointers. */
5889 		rxbd->rx_bd_haddr_hi =
5890 		    htole32(BCE_ADDR_HI(sc->rx_bd_chain_paddr[j]));
5891 		rxbd->rx_bd_haddr_lo =
5892 		    htole32(BCE_ADDR_LO(sc->rx_bd_chain_paddr[j]));
5893 	}
5894 
5895 	/* Fill up the RX chain. */
5896 	bce_fill_rx_chain(sc);
5897 
5898 	DBRUN(sc->rx_low_watermark = USABLE_RX_BD_ALLOC);
5899 	DBRUN(sc->rx_empty_count = 0);
5900 	for (i = 0; i < sc->rx_pages; i++) {
5901 		bus_dmamap_sync(sc->rx_bd_chain_tag, sc->rx_bd_chain_map[i],
5902 		    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
5903 	}
5904 
5905 	bce_init_rx_context(sc);
5906 
5907 	DBRUNMSG(BCE_EXTREME_RECV,
5908 	    bce_dump_rx_bd_chain(sc, 0, TOTAL_RX_BD_ALLOC));
5909 	DBEXIT(BCE_VERBOSE_RESET | BCE_VERBOSE_RECV | BCE_VERBOSE_LOAD |
5910 	    BCE_VERBOSE_CTX);
5911 
5912 	/* ToDo: Are there possible failure modes here? */
5913 
5914 	return(rc);
5915 }
5916 
5917 
5918 /****************************************************************************/
5919 /* Add mbufs to the RX chain until its full or an mbuf allocation error     */
5920 /* occurs.                                                                  */
5921 /*                                                                          */
5922 /* Returns:                                                                 */
5923 /*   Nothing                                                                */
5924 /****************************************************************************/
5925 static void
5926 bce_fill_rx_chain(struct bce_softc *sc)
5927 {
5928 	u16 prod, prod_idx;
5929 	u32 prod_bseq;
5930 
5931 	DBENTER(BCE_VERBOSE_RESET | BCE_EXTREME_RECV | BCE_VERBOSE_LOAD |
5932 	    BCE_VERBOSE_CTX);
5933 
5934 	/* Get the RX chain producer indices. */
5935 	prod      = sc->rx_prod;
5936 	prod_bseq = sc->rx_prod_bseq;
5937 
5938 	/* Keep filling the RX chain until it's full. */
5939 	while (sc->free_rx_bd > 0) {
5940 		prod_idx = RX_CHAIN_IDX(prod);
5941 		if (bce_get_rx_buf(sc, NULL, &prod, &prod_idx, &prod_bseq)) {
5942 			/* Bail out if we can't add an mbuf to the chain. */
5943 			break;
5944 		}
5945 		prod = NEXT_RX_BD(prod);
5946 	}
5947 
5948 	/* Save the RX chain producer indices. */
5949 	sc->rx_prod      = prod;
5950 	sc->rx_prod_bseq = prod_bseq;
5951 
5952 	/* We should never end up pointing to a next page pointer. */
5953 	DBRUNIF(((prod & USABLE_RX_BD_PER_PAGE) == USABLE_RX_BD_PER_PAGE),
5954 	    BCE_PRINTF("%s(): Invalid rx_prod value: 0x%04X\n",
5955 	    __FUNCTION__, sc->rx_prod));
5956 
5957 	/* Write the mailbox and tell the chip about the waiting rx_bd's. */
5958 	REG_WR16(sc, MB_GET_CID_ADDR(RX_CID) +
5959 	    BCE_L2MQ_RX_HOST_BDIDX, sc->rx_prod);
5960 	REG_WR(sc, MB_GET_CID_ADDR(RX_CID) +
5961 	    BCE_L2MQ_RX_HOST_BSEQ, sc->rx_prod_bseq);
5962 
5963 	DBEXIT(BCE_VERBOSE_RESET | BCE_EXTREME_RECV | BCE_VERBOSE_LOAD |
5964 	    BCE_VERBOSE_CTX);
5965 }
5966 
5967 
5968 /****************************************************************************/
5969 /* Free memory and clear the RX data structures.                            */
5970 /*                                                                          */
5971 /* Returns:                                                                 */
5972 /*   Nothing.                                                               */
5973 /****************************************************************************/
5974 static void
5975 bce_free_rx_chain(struct bce_softc *sc)
5976 {
5977 	int i;
5978 
5979 	DBENTER(BCE_VERBOSE_RESET | BCE_VERBOSE_RECV | BCE_VERBOSE_UNLOAD);
5980 
5981 	/* Free any mbufs still in the RX mbuf chain. */
5982 	for (i = 0; i < MAX_RX_BD_AVAIL; i++) {
5983 		if (sc->rx_mbuf_ptr[i] != NULL) {
5984 			if (sc->rx_mbuf_map[i] != NULL)
5985 				bus_dmamap_sync(sc->rx_mbuf_tag,
5986 				    sc->rx_mbuf_map[i],
5987 				    BUS_DMASYNC_POSTREAD);
5988 			m_freem(sc->rx_mbuf_ptr[i]);
5989 			sc->rx_mbuf_ptr[i] = NULL;
5990 			DBRUN(sc->debug_rx_mbuf_alloc--);
5991 		}
5992 	}
5993 
5994 	/* Clear each RX chain page. */
5995 	for (i = 0; i < sc->rx_pages; i++)
5996 		if (sc->rx_bd_chain[i] != NULL) {
5997 			bzero((char *)sc->rx_bd_chain[i],
5998 			    BCE_RX_CHAIN_PAGE_SZ);
5999 		}
6000 
6001 	sc->free_rx_bd = sc->max_rx_bd;
6002 
6003 	/* Check if we lost any mbufs in the process. */
6004 	DBRUNIF((sc->debug_rx_mbuf_alloc),
6005 	    BCE_PRINTF("%s(): Memory leak! Lost %d mbufs from rx chain!\n",
6006 	    __FUNCTION__, sc->debug_rx_mbuf_alloc));
6007 
6008 	DBEXIT(BCE_VERBOSE_RESET | BCE_VERBOSE_RECV | BCE_VERBOSE_UNLOAD);
6009 }
6010 
6011 
6012 /****************************************************************************/
6013 /* Allocate memory and initialize the page data structures.                 */
6014 /* Assumes that bce_init_rx_chain() has not already been called.            */
6015 /*                                                                          */
6016 /* Returns:                                                                 */
6017 /*   0 for success, positive value for failure.                             */
6018 /****************************************************************************/
6019 static int
6020 bce_init_pg_chain(struct bce_softc *sc)
6021 {
6022 	struct rx_bd *pgbd;
6023 	int i, rc = 0;
6024 	u32 val;
6025 
6026 	DBENTER(BCE_VERBOSE_RESET | BCE_VERBOSE_RECV | BCE_VERBOSE_LOAD |
6027 		BCE_VERBOSE_CTX);
6028 
6029 	/* Initialize the page producer and consumer indices. */
6030 	sc->pg_prod        = 0;
6031 	sc->pg_cons        = 0;
6032 	sc->free_pg_bd     = USABLE_PG_BD_ALLOC;
6033 	sc->max_pg_bd      = USABLE_PG_BD_ALLOC;
6034 	DBRUN(sc->pg_low_watermark = sc->max_pg_bd);
6035 	DBRUN(sc->pg_empty_count = 0);
6036 
6037 	/* Initialize the page next pointer chain entries. */
6038 	for (i = 0; i < sc->pg_pages; i++) {
6039 		int j;
6040 
6041 		pgbd = &sc->pg_bd_chain[i][USABLE_PG_BD_PER_PAGE];
6042 
6043 		/* Check if we've reached the last page. */
6044 		if (i == (sc->pg_pages - 1))
6045 			j = 0;
6046 		else
6047 			j = i + 1;
6048 
6049 		/* Setup the chain page pointers. */
6050 		pgbd->rx_bd_haddr_hi =
6051 		    htole32(BCE_ADDR_HI(sc->pg_bd_chain_paddr[j]));
6052 		pgbd->rx_bd_haddr_lo =
6053 		    htole32(BCE_ADDR_LO(sc->pg_bd_chain_paddr[j]));
6054 	}
6055 
6056 	/* Setup the MQ BIN mapping for host_pg_bidx. */
6057 	if (BCE_CHIP_NUM(sc) == BCE_CHIP_NUM_5709)
6058 		REG_WR(sc, BCE_MQ_MAP_L2_3, BCE_MQ_MAP_L2_3_DEFAULT);
6059 
6060 	CTX_WR(sc, GET_CID_ADDR(RX_CID), BCE_L2CTX_RX_PG_BUF_SIZE, 0);
6061 
6062 	/* Configure the rx_bd and page chain mbuf cluster size. */
6063 	val = (sc->rx_bd_mbuf_data_len << 16) | sc->pg_bd_mbuf_alloc_size;
6064 	CTX_WR(sc, GET_CID_ADDR(RX_CID), BCE_L2CTX_RX_PG_BUF_SIZE, val);
6065 
6066 	/* Configure the context reserved for jumbo support. */
6067 	CTX_WR(sc, GET_CID_ADDR(RX_CID), BCE_L2CTX_RX_RBDC_KEY,
6068 		BCE_L2CTX_RX_RBDC_JUMBO_KEY);
6069 
6070 	/* Point the hardware to the first page in the page chain. */
6071 	val = BCE_ADDR_HI(sc->pg_bd_chain_paddr[0]);
6072 	CTX_WR(sc, GET_CID_ADDR(RX_CID), BCE_L2CTX_RX_NX_PG_BDHADDR_HI, val);
6073 	val = BCE_ADDR_LO(sc->pg_bd_chain_paddr[0]);
6074 	CTX_WR(sc, GET_CID_ADDR(RX_CID), BCE_L2CTX_RX_NX_PG_BDHADDR_LO, val);
6075 
6076 	/* Fill up the page chain. */
6077 	bce_fill_pg_chain(sc);
6078 
6079 	for (i = 0; i < sc->pg_pages; i++) {
6080 		bus_dmamap_sync(sc->pg_bd_chain_tag, sc->pg_bd_chain_map[i],
6081 		    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
6082 	}
6083 
6084 	DBRUNMSG(BCE_EXTREME_RECV,
6085 	    bce_dump_pg_chain(sc, 0, TOTAL_PG_BD_ALLOC));
6086 	DBEXIT(BCE_VERBOSE_RESET | BCE_VERBOSE_RECV | BCE_VERBOSE_LOAD |
6087 		BCE_VERBOSE_CTX);
6088 	return(rc);
6089 }
6090 
6091 
6092 /****************************************************************************/
6093 /* Add mbufs to the page chain until its full or an mbuf allocation error   */
6094 /* occurs.                                                                  */
6095 /*                                                                          */
6096 /* Returns:                                                                 */
6097 /*   Nothing                                                                */
6098 /****************************************************************************/
6099 static void
6100 bce_fill_pg_chain(struct bce_softc *sc)
6101 {
6102 	u16 prod, prod_idx;
6103 
6104 	DBENTER(BCE_VERBOSE_RESET | BCE_EXTREME_RECV | BCE_VERBOSE_LOAD |
6105 	    BCE_VERBOSE_CTX);
6106 
6107 	/* Get the page chain prodcuer index. */
6108 	prod = sc->pg_prod;
6109 
6110 	/* Keep filling the page chain until it's full. */
6111 	while (sc->free_pg_bd > 0) {
6112 		prod_idx = PG_CHAIN_IDX(prod);
6113 		if (bce_get_pg_buf(sc, NULL, &prod, &prod_idx)) {
6114 			/* Bail out if we can't add an mbuf to the chain. */
6115 			break;
6116 		}
6117 		prod = NEXT_PG_BD(prod);
6118 	}
6119 
6120 	/* Save the page chain producer index. */
6121 	sc->pg_prod = prod;
6122 
6123 	DBRUNIF(((prod & USABLE_RX_BD_PER_PAGE) == USABLE_RX_BD_PER_PAGE),
6124 	    BCE_PRINTF("%s(): Invalid pg_prod value: 0x%04X\n",
6125 	    __FUNCTION__, sc->pg_prod));
6126 
6127 	/*
6128 	 * Write the mailbox and tell the chip about
6129 	 * the new rx_bd's in the page chain.
6130 	 */
6131 	REG_WR16(sc, MB_GET_CID_ADDR(RX_CID) +
6132 	    BCE_L2MQ_RX_HOST_PG_BDIDX, sc->pg_prod);
6133 
6134 	DBEXIT(BCE_VERBOSE_RESET | BCE_EXTREME_RECV | BCE_VERBOSE_LOAD |
6135 	    BCE_VERBOSE_CTX);
6136 }
6137 
6138 
6139 /****************************************************************************/
6140 /* Free memory and clear the RX data structures.                            */
6141 /*                                                                          */
6142 /* Returns:                                                                 */
6143 /*   Nothing.                                                               */
6144 /****************************************************************************/
6145 static void
6146 bce_free_pg_chain(struct bce_softc *sc)
6147 {
6148 	int i;
6149 
6150 	DBENTER(BCE_VERBOSE_RESET | BCE_VERBOSE_RECV | BCE_VERBOSE_UNLOAD);
6151 
6152 	/* Free any mbufs still in the mbuf page chain. */
6153 	for (i = 0; i < MAX_PG_BD_AVAIL; i++) {
6154 		if (sc->pg_mbuf_ptr[i] != NULL) {
6155 			if (sc->pg_mbuf_map[i] != NULL)
6156 				bus_dmamap_sync(sc->pg_mbuf_tag,
6157 				    sc->pg_mbuf_map[i],
6158 				    BUS_DMASYNC_POSTREAD);
6159 			m_freem(sc->pg_mbuf_ptr[i]);
6160 			sc->pg_mbuf_ptr[i] = NULL;
6161 			DBRUN(sc->debug_pg_mbuf_alloc--);
6162 		}
6163 	}
6164 
6165 	/* Clear each page chain pages. */
6166 	for (i = 0; i < sc->pg_pages; i++)
6167 		bzero((char *)sc->pg_bd_chain[i], BCE_PG_CHAIN_PAGE_SZ);
6168 
6169 	sc->free_pg_bd = sc->max_pg_bd;
6170 
6171 	/* Check if we lost any mbufs in the process. */
6172 	DBRUNIF((sc->debug_pg_mbuf_alloc),
6173 	    BCE_PRINTF("%s(): Memory leak! Lost %d mbufs from page chain!\n",
6174 	    __FUNCTION__, sc->debug_pg_mbuf_alloc));
6175 
6176 	DBEXIT(BCE_VERBOSE_RESET | BCE_VERBOSE_RECV | BCE_VERBOSE_UNLOAD);
6177 }
6178 
6179 
6180 static u32
6181 bce_get_rphy_link(struct bce_softc *sc)
6182 {
6183 	u32 advertise, link;
6184 	int fdpx;
6185 
6186 	advertise = 0;
6187 	fdpx = 0;
6188 	if ((sc->bce_phy_flags & BCE_PHY_REMOTE_PORT_FIBER_FLAG) != 0)
6189 		link = bce_shmem_rd(sc, BCE_RPHY_SERDES_LINK);
6190 	else
6191 		link = bce_shmem_rd(sc, BCE_RPHY_COPPER_LINK);
6192 	if (link & BCE_NETLINK_ANEG_ENB)
6193 		advertise |= BCE_NETLINK_ANEG_ENB;
6194 	if (link & BCE_NETLINK_SPEED_10HALF)
6195 		advertise |= BCE_NETLINK_SPEED_10HALF;
6196 	if (link & BCE_NETLINK_SPEED_10FULL) {
6197 		advertise |= BCE_NETLINK_SPEED_10FULL;
6198 		fdpx++;
6199 	}
6200 	if (link & BCE_NETLINK_SPEED_100HALF)
6201 		advertise |= BCE_NETLINK_SPEED_100HALF;
6202 	if (link & BCE_NETLINK_SPEED_100FULL) {
6203 		advertise |= BCE_NETLINK_SPEED_100FULL;
6204 		fdpx++;
6205 	}
6206 	if (link & BCE_NETLINK_SPEED_1000HALF)
6207 		advertise |= BCE_NETLINK_SPEED_1000HALF;
6208 	if (link & BCE_NETLINK_SPEED_1000FULL) {
6209 		advertise |= BCE_NETLINK_SPEED_1000FULL;
6210 		fdpx++;
6211 	}
6212 	if (link & BCE_NETLINK_SPEED_2500HALF)
6213 		advertise |= BCE_NETLINK_SPEED_2500HALF;
6214 	if (link & BCE_NETLINK_SPEED_2500FULL) {
6215 		advertise |= BCE_NETLINK_SPEED_2500FULL;
6216 		fdpx++;
6217 	}
6218 	if (fdpx)
6219 		advertise |= BCE_NETLINK_FC_PAUSE_SYM |
6220 		    BCE_NETLINK_FC_PAUSE_ASYM;
6221 	if ((sc->bce_phy_flags & BCE_PHY_REMOTE_PORT_FIBER_FLAG) == 0)
6222 		advertise |= BCE_NETLINK_PHY_APP_REMOTE |
6223 		    BCE_NETLINK_ETH_AT_WIRESPEED;
6224 
6225 	return (advertise);
6226 }
6227 
6228 
6229 /****************************************************************************/
6230 /* Set media options.                                                       */
6231 /*                                                                          */
6232 /* Returns:                                                                 */
6233 /*   0 for success, positive value for failure.                             */
6234 /****************************************************************************/
6235 static int
6236 bce_ifmedia_upd(struct ifnet *ifp)
6237 {
6238 	struct bce_softc *sc = ifp->if_softc;
6239 	int error;
6240 
6241 	DBENTER(BCE_VERBOSE);
6242 
6243 	BCE_LOCK(sc);
6244 	error = bce_ifmedia_upd_locked(ifp);
6245 	BCE_UNLOCK(sc);
6246 
6247 	DBEXIT(BCE_VERBOSE);
6248 	return (error);
6249 }
6250 
6251 
6252 /****************************************************************************/
6253 /* Set media options.                                                       */
6254 /*                                                                          */
6255 /* Returns:                                                                 */
6256 /*   Nothing.                                                               */
6257 /****************************************************************************/
6258 static int
6259 bce_ifmedia_upd_locked(struct ifnet *ifp)
6260 {
6261 	struct bce_softc *sc = ifp->if_softc;
6262 	struct mii_data *mii;
6263 	struct mii_softc *miisc;
6264 	struct ifmedia *ifm;
6265 	u32 link;
6266 	int error, fdx;
6267 
6268 	DBENTER(BCE_VERBOSE_PHY);
6269 
6270 	error = 0;
6271 	BCE_LOCK_ASSERT(sc);
6272 
6273 	sc->bce_link_up = FALSE;
6274 	if ((sc->bce_phy_flags & BCE_PHY_REMOTE_CAP_FLAG) != 0) {
6275 		ifm = &sc->bce_ifmedia;
6276 		if (IFM_TYPE(ifm->ifm_media) != IFM_ETHER)
6277 			return (EINVAL);
6278 		link = 0;
6279 		fdx = IFM_OPTIONS(ifm->ifm_media) & IFM_FDX;
6280 		switch(IFM_SUBTYPE(ifm->ifm_media)) {
6281 		case IFM_AUTO:
6282 			/*
6283 			 * Check advertised link of remote PHY by reading
6284 			 * BCE_RPHY_SERDES_LINK or BCE_RPHY_COPPER_LINK.
6285 			 * Always use the same link type of remote PHY.
6286 			 */
6287 			link = bce_get_rphy_link(sc);
6288 			break;
6289 		case IFM_2500_SX:
6290 			if ((sc->bce_phy_flags &
6291 			    (BCE_PHY_REMOTE_PORT_FIBER_FLAG |
6292 			    BCE_PHY_2_5G_CAPABLE_FLAG)) == 0)
6293 				return (EINVAL);
6294 			/*
6295 			 * XXX
6296 			 * Have to enable forced 2.5Gbps configuration.
6297 			 */
6298 			if (fdx != 0)
6299 				link |= BCE_NETLINK_SPEED_2500FULL;
6300 			else
6301 				link |= BCE_NETLINK_SPEED_2500HALF;
6302 			break;
6303 		case IFM_1000_SX:
6304 			if ((sc->bce_phy_flags &
6305 			    BCE_PHY_REMOTE_PORT_FIBER_FLAG) == 0)
6306 				return (EINVAL);
6307 			/*
6308 			 * XXX
6309 			 * Have to disable 2.5Gbps configuration.
6310 			 */
6311 			if (fdx != 0)
6312 				link = BCE_NETLINK_SPEED_1000FULL;
6313 			else
6314 				link = BCE_NETLINK_SPEED_1000HALF;
6315 			break;
6316 		case IFM_1000_T:
6317 			if (sc->bce_phy_flags & BCE_PHY_REMOTE_PORT_FIBER_FLAG)
6318 				return (EINVAL);
6319 			if (fdx != 0)
6320 				link = BCE_NETLINK_SPEED_1000FULL;
6321 			else
6322 				link = BCE_NETLINK_SPEED_1000HALF;
6323 			break;
6324 		case IFM_100_TX:
6325 			if (sc->bce_phy_flags & BCE_PHY_REMOTE_PORT_FIBER_FLAG)
6326 				return (EINVAL);
6327 			if (fdx != 0)
6328 				link = BCE_NETLINK_SPEED_100FULL;
6329 			else
6330 				link = BCE_NETLINK_SPEED_100HALF;
6331 			break;
6332 		case IFM_10_T:
6333 			if (sc->bce_phy_flags & BCE_PHY_REMOTE_PORT_FIBER_FLAG)
6334 				return (EINVAL);
6335 			if (fdx != 0)
6336 				link = BCE_NETLINK_SPEED_10FULL;
6337 			else
6338 				link = BCE_NETLINK_SPEED_10HALF;
6339 			break;
6340 		default:
6341 			return (EINVAL);
6342 		}
6343 		if (IFM_SUBTYPE(ifm->ifm_media) != IFM_AUTO) {
6344 			/*
6345 			 * XXX
6346 			 * Advertise pause capability for full-duplex media.
6347 			 */
6348 			if (fdx != 0)
6349 				link |= BCE_NETLINK_FC_PAUSE_SYM |
6350 				    BCE_NETLINK_FC_PAUSE_ASYM;
6351 			if ((sc->bce_phy_flags &
6352 			    BCE_PHY_REMOTE_PORT_FIBER_FLAG) == 0)
6353 				link |= BCE_NETLINK_PHY_APP_REMOTE |
6354 				    BCE_NETLINK_ETH_AT_WIRESPEED;
6355 		}
6356 
6357 		bce_shmem_wr(sc, BCE_MB_ARGS_0, link);
6358 		error = bce_fw_sync(sc, BCE_DRV_MSG_CODE_CMD_SET_LINK);
6359 	} else {
6360 		mii = device_get_softc(sc->bce_miibus);
6361 
6362 		/* Make sure the MII bus has been enumerated. */
6363 		if (mii) {
6364 			LIST_FOREACH(miisc, &mii->mii_phys, mii_list)
6365 				PHY_RESET(miisc);
6366 			error = mii_mediachg(mii);
6367 		}
6368 	}
6369 
6370 	DBEXIT(BCE_VERBOSE_PHY);
6371 	return (error);
6372 }
6373 
6374 
6375 static void
6376 bce_ifmedia_sts_rphy(struct bce_softc *sc, struct ifmediareq *ifmr)
6377 {
6378 	struct ifnet *ifp;
6379 	u32 link;
6380 
6381 	ifp = sc->bce_ifp;
6382 	BCE_LOCK_ASSERT(sc);
6383 
6384 	ifmr->ifm_status = IFM_AVALID;
6385 	ifmr->ifm_active = IFM_ETHER;
6386 	link = bce_shmem_rd(sc, BCE_LINK_STATUS);
6387 	/* XXX Handle heart beat status? */
6388 	if ((link & BCE_LINK_STATUS_LINK_UP) != 0)
6389 		ifmr->ifm_status |= IFM_ACTIVE;
6390 	else {
6391 		ifmr->ifm_active |= IFM_NONE;
6392 		ifp->if_baudrate = 0;
6393 		return;
6394 	}
6395 	switch (link & BCE_LINK_STATUS_SPEED_MASK) {
6396 	case BCE_LINK_STATUS_10HALF:
6397 		ifmr->ifm_active |= IFM_10_T | IFM_HDX;
6398 		ifp->if_baudrate = IF_Mbps(10UL);
6399 		break;
6400 	case BCE_LINK_STATUS_10FULL:
6401 		ifmr->ifm_active |= IFM_10_T | IFM_FDX;
6402 		ifp->if_baudrate = IF_Mbps(10UL);
6403 		break;
6404 	case BCE_LINK_STATUS_100HALF:
6405 		ifmr->ifm_active |= IFM_100_TX | IFM_HDX;
6406 		ifp->if_baudrate = IF_Mbps(100UL);
6407 		break;
6408 	case BCE_LINK_STATUS_100FULL:
6409 		ifmr->ifm_active |= IFM_100_TX | IFM_FDX;
6410 		ifp->if_baudrate = IF_Mbps(100UL);
6411 		break;
6412 	case BCE_LINK_STATUS_1000HALF:
6413 		if ((sc->bce_phy_flags & BCE_PHY_REMOTE_PORT_FIBER_FLAG) == 0)
6414 			ifmr->ifm_active |= IFM_1000_T | IFM_HDX;
6415 		else
6416 			ifmr->ifm_active |= IFM_1000_SX | IFM_HDX;
6417 		ifp->if_baudrate = IF_Mbps(1000UL);
6418 		break;
6419 	case BCE_LINK_STATUS_1000FULL:
6420 		if ((sc->bce_phy_flags & BCE_PHY_REMOTE_PORT_FIBER_FLAG) == 0)
6421 			ifmr->ifm_active |= IFM_1000_T | IFM_FDX;
6422 		else
6423 			ifmr->ifm_active |= IFM_1000_SX | IFM_FDX;
6424 		ifp->if_baudrate = IF_Mbps(1000UL);
6425 		break;
6426 	case BCE_LINK_STATUS_2500HALF:
6427 		if ((sc->bce_phy_flags & BCE_PHY_REMOTE_PORT_FIBER_FLAG) == 0) {
6428 			ifmr->ifm_active |= IFM_NONE;
6429 			return;
6430 		} else
6431 			ifmr->ifm_active |= IFM_2500_SX | IFM_HDX;
6432 		ifp->if_baudrate = IF_Mbps(2500UL);
6433 		break;
6434 	case BCE_LINK_STATUS_2500FULL:
6435 		if ((sc->bce_phy_flags & BCE_PHY_REMOTE_PORT_FIBER_FLAG) == 0) {
6436 			ifmr->ifm_active |= IFM_NONE;
6437 			return;
6438 		} else
6439 			ifmr->ifm_active |= IFM_2500_SX | IFM_FDX;
6440 		ifp->if_baudrate = IF_Mbps(2500UL);
6441 		break;
6442 	default:
6443 		ifmr->ifm_active |= IFM_NONE;
6444 		return;
6445 	}
6446 
6447 	if ((link & BCE_LINK_STATUS_RX_FC_ENABLED) != 0)
6448 		ifmr->ifm_active |= IFM_ETH_RXPAUSE;
6449 	if ((link & BCE_LINK_STATUS_TX_FC_ENABLED) != 0)
6450 		ifmr->ifm_active |= IFM_ETH_TXPAUSE;
6451 }
6452 
6453 
6454 /****************************************************************************/
6455 /* Reports current media status.                                            */
6456 /*                                                                          */
6457 /* Returns:                                                                 */
6458 /*   Nothing.                                                               */
6459 /****************************************************************************/
6460 static void
6461 bce_ifmedia_sts(struct ifnet *ifp, struct ifmediareq *ifmr)
6462 {
6463 	struct bce_softc *sc = ifp->if_softc;
6464 	struct mii_data *mii;
6465 
6466 	DBENTER(BCE_VERBOSE_PHY);
6467 
6468 	BCE_LOCK(sc);
6469 
6470 	if ((ifp->if_flags & IFF_UP) == 0) {
6471 		BCE_UNLOCK(sc);
6472 		return;
6473 	}
6474 
6475 	if ((sc->bce_phy_flags & BCE_PHY_REMOTE_CAP_FLAG) != 0)
6476 		bce_ifmedia_sts_rphy(sc, ifmr);
6477 	else {
6478 		mii = device_get_softc(sc->bce_miibus);
6479 		mii_pollstat(mii);
6480 		ifmr->ifm_active = mii->mii_media_active;
6481 		ifmr->ifm_status = mii->mii_media_status;
6482 	}
6483 
6484 	BCE_UNLOCK(sc);
6485 
6486 	DBEXIT(BCE_VERBOSE_PHY);
6487 }
6488 
6489 
6490 /****************************************************************************/
6491 /* Handles PHY generated interrupt events.                                  */
6492 /*                                                                          */
6493 /* Returns:                                                                 */
6494 /*   Nothing.                                                               */
6495 /****************************************************************************/
6496 static void
6497 bce_phy_intr(struct bce_softc *sc)
6498 {
6499 	u32 new_link_state, old_link_state;
6500 
6501 	DBENTER(BCE_VERBOSE_PHY | BCE_VERBOSE_INTR);
6502 
6503 	DBRUN(sc->phy_interrupts++);
6504 
6505 	new_link_state = sc->status_block->status_attn_bits &
6506 	    STATUS_ATTN_BITS_LINK_STATE;
6507 	old_link_state = sc->status_block->status_attn_bits_ack &
6508 	    STATUS_ATTN_BITS_LINK_STATE;
6509 
6510 	/* Handle any changes if the link state has changed. */
6511 	if (new_link_state != old_link_state) {
6512 
6513 		/* Update the status_attn_bits_ack field. */
6514 		if (new_link_state) {
6515 			REG_WR(sc, BCE_PCICFG_STATUS_BIT_SET_CMD,
6516 			    STATUS_ATTN_BITS_LINK_STATE);
6517 			DBPRINT(sc, BCE_INFO_PHY, "%s(): Link is now UP.\n",
6518 			    __FUNCTION__);
6519 		} else {
6520 			REG_WR(sc, BCE_PCICFG_STATUS_BIT_CLEAR_CMD,
6521 			    STATUS_ATTN_BITS_LINK_STATE);
6522 			DBPRINT(sc, BCE_INFO_PHY, "%s(): Link is now DOWN.\n",
6523 			    __FUNCTION__);
6524 		}
6525 
6526 		if ((sc->bce_phy_flags & BCE_PHY_REMOTE_CAP_FLAG) != 0) {
6527 			if (new_link_state) {
6528 				if (bootverbose)
6529 					if_printf(sc->bce_ifp, "link UP\n");
6530 				if_link_state_change(sc->bce_ifp,
6531 				    LINK_STATE_UP);
6532 			} else {
6533 				if (bootverbose)
6534 					if_printf(sc->bce_ifp, "link DOWN\n");
6535 				if_link_state_change(sc->bce_ifp,
6536 				    LINK_STATE_DOWN);
6537 			}
6538 		}
6539 		/*
6540 		 * Assume link is down and allow
6541 		 * tick routine to update the state
6542 		 * based on the actual media state.
6543 		 */
6544 		sc->bce_link_up = FALSE;
6545 		callout_stop(&sc->bce_tick_callout);
6546 		bce_tick(sc);
6547 	}
6548 
6549 	/* Acknowledge the link change interrupt. */
6550 	REG_WR(sc, BCE_EMAC_STATUS, BCE_EMAC_STATUS_LINK_CHANGE);
6551 
6552 	DBEXIT(BCE_VERBOSE_PHY | BCE_VERBOSE_INTR);
6553 }
6554 
6555 
6556 /****************************************************************************/
6557 /* Reads the receive consumer value from the status block (skipping over    */
6558 /* chain page pointer if necessary).                                        */
6559 /*                                                                          */
6560 /* Returns:                                                                 */
6561 /*   hw_cons                                                                */
6562 /****************************************************************************/
6563 static inline u16
6564 bce_get_hw_rx_cons(struct bce_softc *sc)
6565 {
6566 	u16 hw_cons;
6567 
6568 	rmb();
6569 	hw_cons = sc->status_block->status_rx_quick_consumer_index0;
6570 	if ((hw_cons & USABLE_RX_BD_PER_PAGE) == USABLE_RX_BD_PER_PAGE)
6571 		hw_cons++;
6572 
6573 	return hw_cons;
6574 }
6575 
6576 /****************************************************************************/
6577 /* Handles received frame interrupt events.                                 */
6578 /*                                                                          */
6579 /* Returns:                                                                 */
6580 /*   Nothing.                                                               */
6581 /****************************************************************************/
6582 static void
6583 bce_rx_intr(struct bce_softc *sc)
6584 {
6585 	struct ifnet *ifp = sc->bce_ifp;
6586 	struct l2_fhdr *l2fhdr;
6587 	struct ether_vlan_header *vh;
6588 	unsigned int pkt_len;
6589 	u16 sw_rx_cons, sw_rx_cons_idx, hw_rx_cons;
6590 	u32 status;
6591 	unsigned int rem_len;
6592 	u16 sw_pg_cons, sw_pg_cons_idx;
6593 
6594 	DBENTER(BCE_VERBOSE_RECV | BCE_VERBOSE_INTR);
6595 	DBRUN(sc->interrupts_rx++);
6596 	DBPRINT(sc, BCE_EXTREME_RECV, "%s(enter): rx_prod = 0x%04X, "
6597 	    "rx_cons = 0x%04X, rx_prod_bseq = 0x%08X\n",
6598 	    __FUNCTION__, sc->rx_prod, sc->rx_cons, sc->rx_prod_bseq);
6599 
6600 	/* Prepare the RX chain pages to be accessed by the host CPU. */
6601 	for (int i = 0; i < sc->rx_pages; i++)
6602 		bus_dmamap_sync(sc->rx_bd_chain_tag,
6603 		    sc->rx_bd_chain_map[i], BUS_DMASYNC_POSTREAD);
6604 
6605 	/* Prepare the page chain pages to be accessed by the host CPU. */
6606 	if (bce_hdr_split == TRUE) {
6607 		for (int i = 0; i < sc->pg_pages; i++)
6608 			bus_dmamap_sync(sc->pg_bd_chain_tag,
6609 			    sc->pg_bd_chain_map[i], BUS_DMASYNC_POSTREAD);
6610 	}
6611 
6612 	/* Get the hardware's view of the RX consumer index. */
6613 	hw_rx_cons = sc->hw_rx_cons = bce_get_hw_rx_cons(sc);
6614 
6615 	/* Get working copies of the driver's view of the consumer indices. */
6616 	sw_rx_cons = sc->rx_cons;
6617 	sw_pg_cons = sc->pg_cons;
6618 
6619 	/* Update some debug statistics counters */
6620 	DBRUNIF((sc->free_rx_bd < sc->rx_low_watermark),
6621 	    sc->rx_low_watermark = sc->free_rx_bd);
6622 	DBRUNIF((sc->free_rx_bd == sc->max_rx_bd),
6623 	    sc->rx_empty_count++);
6624 
6625 	/* Scan through the receive chain as long as there is work to do */
6626 	/* ToDo: Consider setting a limit on the number of packets processed. */
6627 	rmb();
6628 	while (sw_rx_cons != hw_rx_cons) {
6629 		struct mbuf *m0;
6630 
6631 		/* Convert the producer/consumer indices to an actual rx_bd index. */
6632 		sw_rx_cons_idx = RX_CHAIN_IDX(sw_rx_cons);
6633 
6634 		/* Unmap the mbuf from DMA space. */
6635 		bus_dmamap_sync(sc->rx_mbuf_tag,
6636 		    sc->rx_mbuf_map[sw_rx_cons_idx],
6637 		    BUS_DMASYNC_POSTREAD);
6638 		bus_dmamap_unload(sc->rx_mbuf_tag,
6639 		    sc->rx_mbuf_map[sw_rx_cons_idx]);
6640 
6641 		/* Remove the mbuf from the RX chain. */
6642 		m0 = sc->rx_mbuf_ptr[sw_rx_cons_idx];
6643 		sc->rx_mbuf_ptr[sw_rx_cons_idx] = NULL;
6644 		DBRUN(sc->debug_rx_mbuf_alloc--);
6645 		sc->free_rx_bd++;
6646 
6647 		if(m0 == NULL) {
6648 			DBPRINT(sc, BCE_EXTREME_RECV,
6649 			    "%s(): Oops! Empty mbuf pointer "
6650 			    "found in sc->rx_mbuf_ptr[0x%04X]!\n",
6651 			    __FUNCTION__, sw_rx_cons_idx);
6652 			goto bce_rx_int_next_rx;
6653 		}
6654 
6655 		/*
6656  		 * Frames received on the NetXteme II are prepended
6657  		 * with an l2_fhdr structure which provides status
6658  		 * information about the received frame (including
6659  		 * VLAN tags and checksum info).  The frames are
6660 		 * also automatically adjusted to word align the IP
6661  		 * header (i.e. two null bytes are inserted before
6662  		 * the Ethernet	header).  As a result the data
6663  		 * DMA'd by the controller into	the mbuf looks
6664 		 * like this:
6665 		 *
6666 		 * +---------+-----+---------------------+-----+
6667 		 * | l2_fhdr | pad | packet data         | FCS |
6668 		 * +---------+-----+---------------------+-----+
6669 		 *
6670  		 * The l2_fhdr needs to be checked and skipped and
6671  		 * the FCS needs to be stripped before sending the
6672 		 * packet up the stack.
6673 		 */
6674 		l2fhdr  = mtod(m0, struct l2_fhdr *);
6675 
6676 		/* Get the packet data + FCS length and the status. */
6677 		pkt_len = l2fhdr->l2_fhdr_pkt_len;
6678 		status  = l2fhdr->l2_fhdr_status;
6679 
6680 		/*
6681 		 * Skip over the l2_fhdr and pad, resulting in the
6682 		 * following data in the mbuf:
6683 		 * +---------------------+-----+
6684 		 * | packet data         | FCS |
6685 		 * +---------------------+-----+
6686 		 */
6687 		m_adj(m0, sizeof(struct l2_fhdr) + ETHER_ALIGN);
6688 
6689 		/*
6690  		 * When split header mode is used, an ethernet frame
6691  		 * may be split across the receive chain and the
6692  		 * page chain. If that occurs an mbuf cluster must be
6693  		 * reassembled from the individual mbuf pieces.
6694 		 */
6695 		if (bce_hdr_split == TRUE) {
6696 			/*
6697 			 * Check whether the received frame fits in a single
6698 			 * mbuf or not (i.e. packet data + FCS <=
6699 			 * sc->rx_bd_mbuf_data_len bytes).
6700 			 */
6701 			if (pkt_len > m0->m_len) {
6702 				/*
6703 				 * The received frame is larger than a single mbuf.
6704 				 * If the frame was a TCP frame then only the TCP
6705 				 * header is placed in the mbuf, the remaining
6706 				 * payload (including FCS) is placed in the page
6707 				 * chain, the SPLIT flag is set, and the header
6708 				 * length is placed in the IP checksum field.
6709 				 * If the frame is not a TCP frame then the mbuf
6710 				 * is filled and the remaining bytes are placed
6711 				 * in the page chain.
6712 				 */
6713 
6714 				DBPRINT(sc, BCE_INFO_RECV, "%s(): Found a large "
6715 					"packet.\n", __FUNCTION__);
6716 				DBRUN(sc->split_header_frames_rcvd++);
6717 
6718 				/*
6719 				 * When the page chain is enabled and the TCP
6720 				 * header has been split from the TCP payload,
6721 				 * the ip_xsum structure will reflect the length
6722 				 * of the TCP header, not the IP checksum.  Set
6723 				 * the packet length of the mbuf accordingly.
6724 				 */
6725 				if (status & L2_FHDR_STATUS_SPLIT) {
6726 					m0->m_len = l2fhdr->l2_fhdr_ip_xsum;
6727 					DBRUN(sc->split_header_tcp_frames_rcvd++);
6728 				}
6729 
6730 				rem_len = pkt_len - m0->m_len;
6731 
6732 				/* Pull mbufs off the page chain for any remaining data. */
6733 				while (rem_len > 0) {
6734 					struct mbuf *m_pg;
6735 
6736 					sw_pg_cons_idx = PG_CHAIN_IDX(sw_pg_cons);
6737 
6738 					/* Remove the mbuf from the page chain. */
6739 					m_pg = sc->pg_mbuf_ptr[sw_pg_cons_idx];
6740 					sc->pg_mbuf_ptr[sw_pg_cons_idx] = NULL;
6741 					DBRUN(sc->debug_pg_mbuf_alloc--);
6742 					sc->free_pg_bd++;
6743 
6744 					/* Unmap the page chain mbuf from DMA space. */
6745 					bus_dmamap_sync(sc->pg_mbuf_tag,
6746 						sc->pg_mbuf_map[sw_pg_cons_idx],
6747 						BUS_DMASYNC_POSTREAD);
6748 					bus_dmamap_unload(sc->pg_mbuf_tag,
6749 						sc->pg_mbuf_map[sw_pg_cons_idx]);
6750 
6751 					/* Adjust the mbuf length. */
6752 					if (rem_len < m_pg->m_len) {
6753 						/* The mbuf chain is complete. */
6754 						m_pg->m_len = rem_len;
6755 						rem_len = 0;
6756 					} else {
6757 						/* More packet data is waiting. */
6758 						rem_len -= m_pg->m_len;
6759 					}
6760 
6761 					/* Concatenate the mbuf cluster to the mbuf. */
6762 					m_cat(m0, m_pg);
6763 
6764 					sw_pg_cons = NEXT_PG_BD(sw_pg_cons);
6765 				}
6766 
6767 				/* Set the total packet length. */
6768 				m0->m_pkthdr.len = pkt_len;
6769 
6770 			} else {
6771 				/*
6772 				 * The received packet is small and fits in a
6773 				 * single mbuf (i.e. the l2_fhdr + pad + packet +
6774 				 * FCS <= MHLEN).  In other words, the packet is
6775 				 * 154 bytes or less in size.
6776 				 */
6777 
6778 				DBPRINT(sc, BCE_INFO_RECV, "%s(): Found a small "
6779 					"packet.\n", __FUNCTION__);
6780 
6781 				/* Set the total packet length. */
6782 				m0->m_pkthdr.len = m0->m_len = pkt_len;
6783 			}
6784 		} else
6785 			/* Set the total packet length. */
6786 			m0->m_pkthdr.len = m0->m_len = pkt_len;
6787 
6788 		/* Remove the trailing Ethernet FCS. */
6789 		m_adj(m0, -ETHER_CRC_LEN);
6790 
6791 		/* Check that the resulting mbuf chain is valid. */
6792 		DBRUN(m_sanity(m0, FALSE));
6793 		DBRUNIF(((m0->m_len < ETHER_HDR_LEN) |
6794 		    (m0->m_pkthdr.len > BCE_MAX_JUMBO_ETHER_MTU_VLAN)),
6795 		    BCE_PRINTF("Invalid Ethernet frame size!\n");
6796 		    m_print(m0, 128));
6797 
6798 		DBRUNIF(DB_RANDOMTRUE(l2fhdr_error_sim_control),
6799 		    sc->l2fhdr_error_sim_count++;
6800 		    status = status | L2_FHDR_ERRORS_PHY_DECODE);
6801 
6802 		/* Check the received frame for errors. */
6803 		if (status & (L2_FHDR_ERRORS_BAD_CRC |
6804 		    L2_FHDR_ERRORS_PHY_DECODE | L2_FHDR_ERRORS_ALIGNMENT |
6805 		    L2_FHDR_ERRORS_TOO_SHORT  | L2_FHDR_ERRORS_GIANT_FRAME)) {
6806 
6807 			/* Log the error and release the mbuf. */
6808 			ifp->if_ierrors++;
6809 			sc->l2fhdr_error_count++;
6810 
6811 			m_freem(m0);
6812 			m0 = NULL;
6813 			goto bce_rx_int_next_rx;
6814 		}
6815 
6816 		/* Send the packet to the appropriate interface. */
6817 		m0->m_pkthdr.rcvif = ifp;
6818 
6819 		/* Assume no hardware checksum. */
6820 		m0->m_pkthdr.csum_flags = 0;
6821 
6822 		/* Validate the checksum if offload enabled. */
6823 		if (ifp->if_capenable & IFCAP_RXCSUM) {
6824 
6825 			/* Check for an IP datagram. */
6826 		 	if (!(status & L2_FHDR_STATUS_SPLIT) &&
6827 			    (status & L2_FHDR_STATUS_IP_DATAGRAM)) {
6828 				m0->m_pkthdr.csum_flags |= CSUM_IP_CHECKED;
6829 				DBRUN(sc->csum_offload_ip++);
6830 				/* Check if the IP checksum is valid. */
6831 				if ((l2fhdr->l2_fhdr_ip_xsum ^ 0xffff) == 0)
6832 					m0->m_pkthdr.csum_flags |=
6833 					    CSUM_IP_VALID;
6834 			}
6835 
6836 			/* Check for a valid TCP/UDP frame. */
6837 			if (status & (L2_FHDR_STATUS_TCP_SEGMENT |
6838 			    L2_FHDR_STATUS_UDP_DATAGRAM)) {
6839 
6840 				/* Check for a good TCP/UDP checksum. */
6841 				if ((status & (L2_FHDR_ERRORS_TCP_XSUM |
6842 				    L2_FHDR_ERRORS_UDP_XSUM)) == 0) {
6843 					DBRUN(sc->csum_offload_tcp_udp++);
6844 					m0->m_pkthdr.csum_data =
6845 					    l2fhdr->l2_fhdr_tcp_udp_xsum;
6846 					m0->m_pkthdr.csum_flags |=
6847 					    (CSUM_DATA_VALID
6848 					    | CSUM_PSEUDO_HDR);
6849 				}
6850 			}
6851 		}
6852 
6853 		/* Attach the VLAN tag.	*/
6854 		if (status & L2_FHDR_STATUS_L2_VLAN_TAG) {
6855 			DBRUN(sc->vlan_tagged_frames_rcvd++);
6856 			if (ifp->if_capenable & IFCAP_VLAN_HWTAGGING) {
6857 				DBRUN(sc->vlan_tagged_frames_stripped++);
6858 #if __FreeBSD_version < 700000
6859 				VLAN_INPUT_TAG(ifp, m0,
6860 				    l2fhdr->l2_fhdr_vlan_tag, continue);
6861 #else
6862 				m0->m_pkthdr.ether_vtag =
6863 				    l2fhdr->l2_fhdr_vlan_tag;
6864 				m0->m_flags |= M_VLANTAG;
6865 #endif
6866 			} else {
6867 				/*
6868 				 * bce(4) controllers can't disable VLAN
6869 				 * tag stripping if management firmware
6870 				 * (ASF/IPMI/UMP) is running. So we always
6871 				 * strip VLAN tag and manually reconstruct
6872 				 * the VLAN frame by appending stripped
6873 				 * VLAN tag in driver if VLAN tag stripping
6874 				 * was disabled.
6875 				 *
6876 				 * TODO: LLC SNAP handling.
6877 				 */
6878 				bcopy(mtod(m0, uint8_t *),
6879 				    mtod(m0, uint8_t *) - ETHER_VLAN_ENCAP_LEN,
6880 				    ETHER_ADDR_LEN * 2);
6881 				m0->m_data -= ETHER_VLAN_ENCAP_LEN;
6882 				vh = mtod(m0, struct ether_vlan_header *);
6883 				vh->evl_encap_proto = htons(ETHERTYPE_VLAN);
6884 				vh->evl_tag = htons(l2fhdr->l2_fhdr_vlan_tag);
6885 				m0->m_pkthdr.len += ETHER_VLAN_ENCAP_LEN;
6886 				m0->m_len += ETHER_VLAN_ENCAP_LEN;
6887 			}
6888 		}
6889 
6890 		/* Increment received packet statistics. */
6891 		ifp->if_ipackets++;
6892 
6893 bce_rx_int_next_rx:
6894 		sw_rx_cons = NEXT_RX_BD(sw_rx_cons);
6895 
6896 		/* If we have a packet, pass it up the stack */
6897 		if (m0) {
6898 			/* Make sure we don't lose our place when we release the lock. */
6899 			sc->rx_cons = sw_rx_cons;
6900 			sc->pg_cons = sw_pg_cons;
6901 
6902 			BCE_UNLOCK(sc);
6903 			(*ifp->if_input)(ifp, m0);
6904 			BCE_LOCK(sc);
6905 
6906 			/* Recover our place. */
6907 			sw_rx_cons = sc->rx_cons;
6908 			sw_pg_cons = sc->pg_cons;
6909 		}
6910 
6911 		/* Refresh hw_cons to see if there's new work */
6912 		if (sw_rx_cons == hw_rx_cons)
6913 			hw_rx_cons = sc->hw_rx_cons = bce_get_hw_rx_cons(sc);
6914 	}
6915 
6916 	/* No new packets.  Refill the page chain. */
6917 	if (bce_hdr_split == TRUE) {
6918 		sc->pg_cons = sw_pg_cons;
6919 		bce_fill_pg_chain(sc);
6920 	}
6921 
6922 	/* No new packets.  Refill the RX chain. */
6923 	sc->rx_cons = sw_rx_cons;
6924 	bce_fill_rx_chain(sc);
6925 
6926 	/* Prepare the page chain pages to be accessed by the NIC. */
6927 	for (int i = 0; i < sc->rx_pages; i++)
6928 		bus_dmamap_sync(sc->rx_bd_chain_tag,
6929 		    sc->rx_bd_chain_map[i], BUS_DMASYNC_PREWRITE);
6930 
6931 	if (bce_hdr_split == TRUE) {
6932 		for (int i = 0; i < sc->pg_pages; i++)
6933 			bus_dmamap_sync(sc->pg_bd_chain_tag,
6934 			    sc->pg_bd_chain_map[i], BUS_DMASYNC_PREWRITE);
6935 	}
6936 
6937 	DBPRINT(sc, BCE_EXTREME_RECV, "%s(exit): rx_prod = 0x%04X, "
6938 	    "rx_cons = 0x%04X, rx_prod_bseq = 0x%08X\n",
6939 	    __FUNCTION__, sc->rx_prod, sc->rx_cons, sc->rx_prod_bseq);
6940 	DBEXIT(BCE_VERBOSE_RECV | BCE_VERBOSE_INTR);
6941 }
6942 
6943 
6944 /****************************************************************************/
6945 /* Reads the transmit consumer value from the status block (skipping over   */
6946 /* chain page pointer if necessary).                                        */
6947 /*                                                                          */
6948 /* Returns:                                                                 */
6949 /*   hw_cons                                                                */
6950 /****************************************************************************/
6951 static inline u16
6952 bce_get_hw_tx_cons(struct bce_softc *sc)
6953 {
6954 	u16 hw_cons;
6955 
6956 	mb();
6957 	hw_cons = sc->status_block->status_tx_quick_consumer_index0;
6958 	if ((hw_cons & USABLE_TX_BD_PER_PAGE) == USABLE_TX_BD_PER_PAGE)
6959 		hw_cons++;
6960 
6961 	return hw_cons;
6962 }
6963 
6964 
6965 /****************************************************************************/
6966 /* Handles transmit completion interrupt events.                            */
6967 /*                                                                          */
6968 /* Returns:                                                                 */
6969 /*   Nothing.                                                               */
6970 /****************************************************************************/
6971 static void
6972 bce_tx_intr(struct bce_softc *sc)
6973 {
6974 	struct ifnet *ifp = sc->bce_ifp;
6975 	u16 hw_tx_cons, sw_tx_cons, sw_tx_chain_cons;
6976 
6977 	DBENTER(BCE_VERBOSE_SEND | BCE_VERBOSE_INTR);
6978 	DBRUN(sc->interrupts_tx++);
6979 	DBPRINT(sc, BCE_EXTREME_SEND, "%s(enter): tx_prod = 0x%04X, "
6980 	    "tx_cons = 0x%04X, tx_prod_bseq = 0x%08X\n",
6981 	    __FUNCTION__, sc->tx_prod, sc->tx_cons, sc->tx_prod_bseq);
6982 
6983 	BCE_LOCK_ASSERT(sc);
6984 
6985 	/* Get the hardware's view of the TX consumer index. */
6986 	hw_tx_cons = sc->hw_tx_cons = bce_get_hw_tx_cons(sc);
6987 	sw_tx_cons = sc->tx_cons;
6988 
6989 	/* Prevent speculative reads of the status block. */
6990 	bus_space_barrier(sc->bce_btag, sc->bce_bhandle, 0, 0,
6991 	    BUS_SPACE_BARRIER_READ);
6992 
6993 	/* Cycle through any completed TX chain page entries. */
6994 	while (sw_tx_cons != hw_tx_cons) {
6995 #ifdef BCE_DEBUG
6996 		struct tx_bd *txbd = NULL;
6997 #endif
6998 		sw_tx_chain_cons = TX_CHAIN_IDX(sw_tx_cons);
6999 
7000 		DBPRINT(sc, BCE_INFO_SEND,
7001 		    "%s(): hw_tx_cons = 0x%04X, sw_tx_cons = 0x%04X, "
7002 		    "sw_tx_chain_cons = 0x%04X\n",
7003 		    __FUNCTION__, hw_tx_cons, sw_tx_cons, sw_tx_chain_cons);
7004 
7005 		DBRUNIF((sw_tx_chain_cons > MAX_TX_BD_ALLOC),
7006 		    BCE_PRINTF("%s(%d): TX chain consumer out of range! "
7007 		    " 0x%04X > 0x%04X\n", __FILE__, __LINE__, sw_tx_chain_cons,
7008 		    (int) MAX_TX_BD_ALLOC);
7009 		    bce_breakpoint(sc));
7010 
7011 		DBRUN(txbd = &sc->tx_bd_chain[TX_PAGE(sw_tx_chain_cons)]
7012 		    [TX_IDX(sw_tx_chain_cons)]);
7013 
7014 		DBRUNIF((txbd == NULL),
7015 		    BCE_PRINTF("%s(%d): Unexpected NULL tx_bd[0x%04X]!\n",
7016 		    __FILE__, __LINE__, sw_tx_chain_cons);
7017 		    bce_breakpoint(sc));
7018 
7019 		DBRUNMSG(BCE_INFO_SEND, BCE_PRINTF("%s(): ", __FUNCTION__);
7020 		    bce_dump_txbd(sc, sw_tx_chain_cons, txbd));
7021 
7022 		/*
7023 		 * Free the associated mbuf. Remember
7024 		 * that only the last tx_bd of a packet
7025 		 * has an mbuf pointer and DMA map.
7026 		 */
7027 		if (sc->tx_mbuf_ptr[sw_tx_chain_cons] != NULL) {
7028 
7029 			/* Validate that this is the last tx_bd. */
7030 			DBRUNIF((!(txbd->tx_bd_flags & TX_BD_FLAGS_END)),
7031 			    BCE_PRINTF("%s(%d): tx_bd END flag not set but "
7032 			    "txmbuf == NULL!\n", __FILE__, __LINE__);
7033 			    bce_breakpoint(sc));
7034 
7035 			DBRUNMSG(BCE_INFO_SEND,
7036 			    BCE_PRINTF("%s(): Unloading map/freeing mbuf "
7037 			    "from tx_bd[0x%04X]\n", __FUNCTION__,
7038 			    sw_tx_chain_cons));
7039 
7040 			/* Unmap the mbuf. */
7041 			bus_dmamap_unload(sc->tx_mbuf_tag,
7042 			    sc->tx_mbuf_map[sw_tx_chain_cons]);
7043 
7044 			/* Free the mbuf. */
7045 			m_freem(sc->tx_mbuf_ptr[sw_tx_chain_cons]);
7046 			sc->tx_mbuf_ptr[sw_tx_chain_cons] = NULL;
7047 			DBRUN(sc->debug_tx_mbuf_alloc--);
7048 
7049 			ifp->if_opackets++;
7050 		}
7051 
7052 		sc->used_tx_bd--;
7053 		sw_tx_cons = NEXT_TX_BD(sw_tx_cons);
7054 
7055 		/* Refresh hw_cons to see if there's new work. */
7056 		hw_tx_cons = sc->hw_tx_cons = bce_get_hw_tx_cons(sc);
7057 
7058 		/* Prevent speculative reads of the status block. */
7059 		bus_space_barrier(sc->bce_btag, sc->bce_bhandle, 0, 0,
7060 		    BUS_SPACE_BARRIER_READ);
7061 	}
7062 
7063 	/* Clear the TX timeout timer. */
7064 	sc->watchdog_timer = 0;
7065 
7066 	/* Clear the tx hardware queue full flag. */
7067 	if (sc->used_tx_bd < sc->max_tx_bd) {
7068 		DBRUNIF((ifp->if_drv_flags & IFF_DRV_OACTIVE),
7069 		    DBPRINT(sc, BCE_INFO_SEND,
7070 		    "%s(): Open TX chain! %d/%d (used/total)\n",
7071 		    __FUNCTION__, sc->used_tx_bd, sc->max_tx_bd));
7072 		ifp->if_drv_flags &= ~IFF_DRV_OACTIVE;
7073 	}
7074 
7075 	sc->tx_cons = sw_tx_cons;
7076 
7077 	DBPRINT(sc, BCE_EXTREME_SEND, "%s(exit): tx_prod = 0x%04X, "
7078 	    "tx_cons = 0x%04X, tx_prod_bseq = 0x%08X\n",
7079 	    __FUNCTION__, sc->tx_prod, sc->tx_cons, sc->tx_prod_bseq);
7080 	DBEXIT(BCE_VERBOSE_SEND | BCE_VERBOSE_INTR);
7081 }
7082 
7083 
7084 /****************************************************************************/
7085 /* Disables interrupt generation.                                           */
7086 /*                                                                          */
7087 /* Returns:                                                                 */
7088 /*   Nothing.                                                               */
7089 /****************************************************************************/
7090 static void
7091 bce_disable_intr(struct bce_softc *sc)
7092 {
7093 	DBENTER(BCE_VERBOSE_INTR);
7094 
7095 	REG_WR(sc, BCE_PCICFG_INT_ACK_CMD, BCE_PCICFG_INT_ACK_CMD_MASK_INT);
7096 	REG_RD(sc, BCE_PCICFG_INT_ACK_CMD);
7097 
7098 	DBEXIT(BCE_VERBOSE_INTR);
7099 }
7100 
7101 
7102 /****************************************************************************/
7103 /* Enables interrupt generation.                                            */
7104 /*                                                                          */
7105 /* Returns:                                                                 */
7106 /*   Nothing.                                                               */
7107 /****************************************************************************/
7108 static void
7109 bce_enable_intr(struct bce_softc *sc, int coal_now)
7110 {
7111 	DBENTER(BCE_VERBOSE_INTR);
7112 
7113 	REG_WR(sc, BCE_PCICFG_INT_ACK_CMD,
7114 	    BCE_PCICFG_INT_ACK_CMD_INDEX_VALID |
7115 	    BCE_PCICFG_INT_ACK_CMD_MASK_INT | sc->last_status_idx);
7116 
7117 	REG_WR(sc, BCE_PCICFG_INT_ACK_CMD,
7118 	    BCE_PCICFG_INT_ACK_CMD_INDEX_VALID | sc->last_status_idx);
7119 
7120 	/* Force an immediate interrupt (whether there is new data or not). */
7121 	if (coal_now)
7122 		REG_WR(sc, BCE_HC_COMMAND, sc->hc_command | BCE_HC_COMMAND_COAL_NOW);
7123 
7124 	DBEXIT(BCE_VERBOSE_INTR);
7125 }
7126 
7127 
7128 /****************************************************************************/
7129 /* Handles controller initialization.                                       */
7130 /*                                                                          */
7131 /* Returns:                                                                 */
7132 /*   Nothing.                                                               */
7133 /****************************************************************************/
7134 static void
7135 bce_init_locked(struct bce_softc *sc)
7136 {
7137 	struct ifnet *ifp;
7138 	u32 ether_mtu = 0;
7139 
7140 	DBENTER(BCE_VERBOSE_RESET);
7141 
7142 	BCE_LOCK_ASSERT(sc);
7143 
7144 	ifp = sc->bce_ifp;
7145 
7146 	/* Check if the driver is still running and bail out if it is. */
7147 	if (ifp->if_drv_flags & IFF_DRV_RUNNING)
7148 		goto bce_init_locked_exit;
7149 
7150 	bce_stop(sc);
7151 
7152 	if (bce_reset(sc, BCE_DRV_MSG_CODE_RESET)) {
7153 		BCE_PRINTF("%s(%d): Controller reset failed!\n",
7154 		    __FILE__, __LINE__);
7155 		goto bce_init_locked_exit;
7156 	}
7157 
7158 	if (bce_chipinit(sc)) {
7159 		BCE_PRINTF("%s(%d): Controller initialization failed!\n",
7160 		    __FILE__, __LINE__);
7161 		goto bce_init_locked_exit;
7162 	}
7163 
7164 	if (bce_blockinit(sc)) {
7165 		BCE_PRINTF("%s(%d): Block initialization failed!\n",
7166 		    __FILE__, __LINE__);
7167 		goto bce_init_locked_exit;
7168 	}
7169 
7170 	/* Load our MAC address. */
7171 	bcopy(IF_LLADDR(sc->bce_ifp), sc->eaddr, ETHER_ADDR_LEN);
7172 	bce_set_mac_addr(sc);
7173 
7174 	if (bce_hdr_split == FALSE)
7175 		bce_get_rx_buffer_sizes(sc, ifp->if_mtu);
7176 	/*
7177 	 * Calculate and program the hardware Ethernet MTU
7178  	 * size. Be generous on the receive if we have room
7179  	 * and allowed by the user.
7180 	 */
7181 	if (bce_strict_rx_mtu == TRUE)
7182 		ether_mtu = ifp->if_mtu;
7183 	else {
7184 		if (bce_hdr_split == TRUE) {
7185 			if (ifp->if_mtu <= (sc->rx_bd_mbuf_data_len +
7186 				   sc->pg_bd_mbuf_alloc_size))
7187 					ether_mtu = sc->rx_bd_mbuf_data_len +
7188 					   sc->pg_bd_mbuf_alloc_size;
7189 			else
7190 				ether_mtu = ifp->if_mtu;
7191 		} else {
7192 			if (ifp->if_mtu <= sc->rx_bd_mbuf_data_len)
7193 				ether_mtu = sc->rx_bd_mbuf_data_len;
7194 			else
7195 				ether_mtu = ifp->if_mtu;
7196 		}
7197 	}
7198 
7199 	ether_mtu += ETHER_HDR_LEN + ETHER_VLAN_ENCAP_LEN + ETHER_CRC_LEN;
7200 
7201 	DBPRINT(sc, BCE_INFO_MISC, "%s(): setting h/w mtu = %d\n",
7202 	    __FUNCTION__, ether_mtu);
7203 
7204 	/* Program the mtu, enabling jumbo frame support if necessary. */
7205 	if (ether_mtu > (ETHER_MAX_LEN + ETHER_VLAN_ENCAP_LEN))
7206 		REG_WR(sc, BCE_EMAC_RX_MTU_SIZE,
7207 		    min(ether_mtu, BCE_MAX_JUMBO_ETHER_MTU) |
7208 		    BCE_EMAC_RX_MTU_SIZE_JUMBO_ENA);
7209 	else
7210 		REG_WR(sc, BCE_EMAC_RX_MTU_SIZE, ether_mtu);
7211 
7212 	/* Program appropriate promiscuous/multicast filtering. */
7213 	bce_set_rx_mode(sc);
7214 
7215 	if (bce_hdr_split == TRUE) {
7216 		DBPRINT(sc, BCE_INFO_LOAD, "%s(): pg_bd_mbuf_alloc_size = %d\n",
7217 			__FUNCTION__, sc->pg_bd_mbuf_alloc_size);
7218 
7219 		/* Init page buffer descriptor chain. */
7220 		bce_init_pg_chain(sc);
7221 	}
7222 
7223 	/* Init RX buffer descriptor chain. */
7224 	bce_init_rx_chain(sc);
7225 
7226 	/* Init TX buffer descriptor chain. */
7227 	bce_init_tx_chain(sc);
7228 
7229 	/* Enable host interrupts. */
7230 	bce_enable_intr(sc, 1);
7231 
7232 	bce_ifmedia_upd_locked(ifp);
7233 
7234 	/* Let the OS know the driver is up and running. */
7235 	ifp->if_drv_flags |= IFF_DRV_RUNNING;
7236 	ifp->if_drv_flags &= ~IFF_DRV_OACTIVE;
7237 
7238 	callout_reset(&sc->bce_tick_callout, hz, bce_tick, sc);
7239 
7240 bce_init_locked_exit:
7241 	DBEXIT(BCE_VERBOSE_RESET);
7242 }
7243 
7244 
7245 /****************************************************************************/
7246 /* Initialize the controller just enough so that any management firmware    */
7247 /* running on the device will continue to operate correctly.                */
7248 /*                                                                          */
7249 /* Returns:                                                                 */
7250 /*   Nothing.                                                               */
7251 /****************************************************************************/
7252 static void
7253 bce_mgmt_init_locked(struct bce_softc *sc)
7254 {
7255 	struct ifnet *ifp;
7256 
7257 	DBENTER(BCE_VERBOSE_RESET);
7258 
7259 	BCE_LOCK_ASSERT(sc);
7260 
7261 	/* Bail out if management firmware is not running. */
7262 	if (!(sc->bce_flags & BCE_MFW_ENABLE_FLAG)) {
7263 		DBPRINT(sc, BCE_VERBOSE_SPECIAL,
7264 		    "No management firmware running...\n");
7265 		goto bce_mgmt_init_locked_exit;
7266 	}
7267 
7268 	ifp = sc->bce_ifp;
7269 
7270 	/* Enable all critical blocks in the MAC. */
7271 	REG_WR(sc, BCE_MISC_ENABLE_SET_BITS, BCE_MISC_ENABLE_DEFAULT);
7272 	REG_RD(sc, BCE_MISC_ENABLE_SET_BITS);
7273 	DELAY(20);
7274 
7275 	bce_ifmedia_upd_locked(ifp);
7276 
7277 bce_mgmt_init_locked_exit:
7278 	DBEXIT(BCE_VERBOSE_RESET);
7279 }
7280 
7281 
7282 /****************************************************************************/
7283 /* Handles controller initialization when called from an unlocked routine.  */
7284 /*                                                                          */
7285 /* Returns:                                                                 */
7286 /*   Nothing.                                                               */
7287 /****************************************************************************/
7288 static void
7289 bce_init(void *xsc)
7290 {
7291 	struct bce_softc *sc = xsc;
7292 
7293 	DBENTER(BCE_VERBOSE_RESET);
7294 
7295 	BCE_LOCK(sc);
7296 	bce_init_locked(sc);
7297 	BCE_UNLOCK(sc);
7298 
7299 	DBEXIT(BCE_VERBOSE_RESET);
7300 }
7301 
7302 
7303 /****************************************************************************/
7304 /* Modifies an mbuf for TSO on the hardware.                                */
7305 /*                                                                          */
7306 /* Returns:                                                                 */
7307 /*   Pointer to a modified mbuf.                                            */
7308 /****************************************************************************/
7309 static struct mbuf *
7310 bce_tso_setup(struct bce_softc *sc, struct mbuf **m_head, u16 *flags)
7311 {
7312 	struct mbuf *m;
7313 	struct ether_header *eh;
7314 	struct ip *ip;
7315 	struct tcphdr *th;
7316 	u16 etype;
7317 	int hdr_len, ip_hlen = 0, tcp_hlen = 0, ip_len = 0;
7318 
7319 	DBRUN(sc->tso_frames_requested++);
7320 
7321 	/* Controller may modify mbuf chains. */
7322 	if (M_WRITABLE(*m_head) == 0) {
7323 		m = m_dup(*m_head, M_NOWAIT);
7324 		m_freem(*m_head);
7325 		if (m == NULL) {
7326 			sc->mbuf_alloc_failed_count++;
7327 			*m_head = NULL;
7328 			return (NULL);
7329 		}
7330 		*m_head = m;
7331 	}
7332 
7333 	/*
7334 	 * For TSO the controller needs two pieces of info,
7335 	 * the MSS and the IP+TCP options length.
7336 	 */
7337 	m = m_pullup(*m_head, sizeof(struct ether_header) + sizeof(struct ip));
7338 	if (m == NULL) {
7339 		*m_head = NULL;
7340 		return (NULL);
7341 	}
7342 	eh = mtod(m, struct ether_header *);
7343 	etype = ntohs(eh->ether_type);
7344 
7345 	/* Check for supported TSO Ethernet types (only IPv4 for now) */
7346 	switch (etype) {
7347 	case ETHERTYPE_IP:
7348 		ip = (struct ip *)(m->m_data + sizeof(struct ether_header));
7349 		/* TSO only supported for TCP protocol. */
7350 		if (ip->ip_p != IPPROTO_TCP) {
7351 			BCE_PRINTF("%s(%d): TSO enabled for non-TCP frame!.\n",
7352 			    __FILE__, __LINE__);
7353 			m_freem(*m_head);
7354 			*m_head = NULL;
7355 			return (NULL);
7356 		}
7357 
7358 		/* Get IP header length in bytes (min 20) */
7359 		ip_hlen = ip->ip_hl << 2;
7360 		m = m_pullup(*m_head, sizeof(struct ether_header) + ip_hlen +
7361 		    sizeof(struct tcphdr));
7362 		if (m == NULL) {
7363 			*m_head = NULL;
7364 			return (NULL);
7365 		}
7366 
7367 		/* Get the TCP header length in bytes (min 20) */
7368 		ip = (struct ip *)(m->m_data + sizeof(struct ether_header));
7369 		th = (struct tcphdr *)((caddr_t)ip + ip_hlen);
7370 		tcp_hlen = (th->th_off << 2);
7371 
7372 		/* Make sure all IP/TCP options live in the same buffer. */
7373 		m = m_pullup(*m_head,  sizeof(struct ether_header)+ ip_hlen +
7374 		    tcp_hlen);
7375 		if (m == NULL) {
7376 			*m_head = NULL;
7377 			return (NULL);
7378 		}
7379 
7380 		/* Clear IP header length and checksum, will be calc'd by h/w. */
7381 		ip = (struct ip *)(m->m_data + sizeof(struct ether_header));
7382 		ip_len = ip->ip_len;
7383 		ip->ip_len = 0;
7384 		ip->ip_sum = 0;
7385 		break;
7386 	case ETHERTYPE_IPV6:
7387 		BCE_PRINTF("%s(%d): TSO over IPv6 not supported!.\n",
7388 		    __FILE__, __LINE__);
7389 		m_freem(*m_head);
7390 		*m_head = NULL;
7391 		return (NULL);
7392 		/* NOT REACHED */
7393 	default:
7394 		BCE_PRINTF("%s(%d): TSO enabled for unsupported protocol!.\n",
7395 		    __FILE__, __LINE__);
7396 		m_freem(*m_head);
7397 		*m_head = NULL;
7398 		return (NULL);
7399 	}
7400 
7401 	hdr_len = sizeof(struct ether_header) + ip_hlen + tcp_hlen;
7402 
7403 	DBPRINT(sc, BCE_EXTREME_SEND, "%s(): hdr_len = %d, e_hlen = %d, "
7404 	    "ip_hlen = %d, tcp_hlen = %d, ip_len = %d\n",
7405 	    __FUNCTION__, hdr_len, (int) sizeof(struct ether_header), ip_hlen,
7406 	    tcp_hlen, ip_len);
7407 
7408 	/* Set the LSO flag in the TX BD */
7409 	*flags |= TX_BD_FLAGS_SW_LSO;
7410 
7411 	/* Set the length of IP + TCP options (in 32 bit words) */
7412 	*flags |= (((ip_hlen + tcp_hlen - sizeof(struct ip) -
7413 	    sizeof(struct tcphdr)) >> 2) << 8);
7414 
7415 	DBRUN(sc->tso_frames_completed++);
7416 	return (*m_head);
7417 }
7418 
7419 
7420 /****************************************************************************/
7421 /* Encapsultes an mbuf cluster into the tx_bd chain structure and makes the */
7422 /* memory visible to the controller.                                        */
7423 /*                                                                          */
7424 /* Returns:                                                                 */
7425 /*   0 for success, positive value for failure.                             */
7426 /* Modified:                                                                */
7427 /*   m_head: May be set to NULL if MBUF is excessively fragmented.          */
7428 /****************************************************************************/
7429 static int
7430 bce_tx_encap(struct bce_softc *sc, struct mbuf **m_head)
7431 {
7432 	bus_dma_segment_t segs[BCE_MAX_SEGMENTS];
7433 	bus_dmamap_t map;
7434 	struct tx_bd *txbd = NULL;
7435 	struct mbuf *m0;
7436 	u16 prod, chain_prod, mss = 0, vlan_tag = 0, flags = 0;
7437 	u32 prod_bseq;
7438 
7439 #ifdef BCE_DEBUG
7440 	u16 debug_prod;
7441 #endif
7442 
7443 	int i, error, nsegs, rc = 0;
7444 
7445 	DBENTER(BCE_VERBOSE_SEND);
7446 
7447 	/* Make sure we have room in the TX chain. */
7448 	if (sc->used_tx_bd >= sc->max_tx_bd)
7449 		goto bce_tx_encap_exit;
7450 
7451 	/* Transfer any checksum offload flags to the bd. */
7452 	m0 = *m_head;
7453 	if (m0->m_pkthdr.csum_flags) {
7454 		if (m0->m_pkthdr.csum_flags & CSUM_TSO) {
7455 			m0 = bce_tso_setup(sc, m_head, &flags);
7456 			if (m0 == NULL) {
7457 				DBRUN(sc->tso_frames_failed++);
7458 				goto bce_tx_encap_exit;
7459 			}
7460 			mss = htole16(m0->m_pkthdr.tso_segsz);
7461 		} else {
7462 			if (m0->m_pkthdr.csum_flags & CSUM_IP)
7463 				flags |= TX_BD_FLAGS_IP_CKSUM;
7464 			if (m0->m_pkthdr.csum_flags & (CSUM_TCP | CSUM_UDP))
7465 				flags |= TX_BD_FLAGS_TCP_UDP_CKSUM;
7466 		}
7467 	}
7468 
7469 	/* Transfer any VLAN tags to the bd. */
7470 	if (m0->m_flags & M_VLANTAG) {
7471 		flags |= TX_BD_FLAGS_VLAN_TAG;
7472 		vlan_tag = m0->m_pkthdr.ether_vtag;
7473 	}
7474 
7475 	/* Map the mbuf into DMAable memory. */
7476 	prod = sc->tx_prod;
7477 	chain_prod = TX_CHAIN_IDX(prod);
7478 	map = sc->tx_mbuf_map[chain_prod];
7479 
7480 	/* Map the mbuf into our DMA address space. */
7481 	error = bus_dmamap_load_mbuf_sg(sc->tx_mbuf_tag, map, m0,
7482 	    segs, &nsegs, BUS_DMA_NOWAIT);
7483 
7484 	/* Check if the DMA mapping was successful */
7485 	if (error == EFBIG) {
7486 		sc->mbuf_frag_count++;
7487 
7488 		/* Try to defrag the mbuf. */
7489 		m0 = m_collapse(*m_head, M_NOWAIT, BCE_MAX_SEGMENTS);
7490 		if (m0 == NULL) {
7491 			/* Defrag was unsuccessful */
7492 			m_freem(*m_head);
7493 			*m_head = NULL;
7494 			sc->mbuf_alloc_failed_count++;
7495 			rc = ENOBUFS;
7496 			goto bce_tx_encap_exit;
7497 		}
7498 
7499 		/* Defrag was successful, try mapping again */
7500 		*m_head = m0;
7501 		error = bus_dmamap_load_mbuf_sg(sc->tx_mbuf_tag,
7502 		    map, m0, segs, &nsegs, BUS_DMA_NOWAIT);
7503 
7504 		/* Still getting an error after a defrag. */
7505 		if (error == ENOMEM) {
7506 			/* Insufficient DMA buffers available. */
7507 			sc->dma_map_addr_tx_failed_count++;
7508 			rc = error;
7509 			goto bce_tx_encap_exit;
7510 		} else if (error != 0) {
7511 			/* Release it and return an error. */
7512 			BCE_PRINTF("%s(%d): Unknown error mapping mbuf into "
7513 			    "TX chain!\n", __FILE__, __LINE__);
7514 			m_freem(m0);
7515 			*m_head = NULL;
7516 			sc->dma_map_addr_tx_failed_count++;
7517 			rc = ENOBUFS;
7518 			goto bce_tx_encap_exit;
7519 		}
7520 	} else if (error == ENOMEM) {
7521 		/* Insufficient DMA buffers available. */
7522 		sc->dma_map_addr_tx_failed_count++;
7523 		rc = error;
7524 		goto bce_tx_encap_exit;
7525 	} else if (error != 0) {
7526 		m_freem(m0);
7527 		*m_head = NULL;
7528 		sc->dma_map_addr_tx_failed_count++;
7529 		rc = error;
7530 		goto bce_tx_encap_exit;
7531 	}
7532 
7533 	/* Make sure there's room in the chain */
7534 	if (nsegs > (sc->max_tx_bd - sc->used_tx_bd)) {
7535 		bus_dmamap_unload(sc->tx_mbuf_tag, map);
7536 		rc = ENOBUFS;
7537 		goto bce_tx_encap_exit;
7538 	}
7539 
7540 	/* prod points to an empty tx_bd at this point. */
7541 	prod_bseq  = sc->tx_prod_bseq;
7542 
7543 #ifdef BCE_DEBUG
7544 	debug_prod = chain_prod;
7545 #endif
7546 
7547 	DBPRINT(sc, BCE_INFO_SEND,
7548 	    "%s(start): prod = 0x%04X, chain_prod = 0x%04X, "
7549 	    "prod_bseq = 0x%08X\n",
7550 	    __FUNCTION__, prod, chain_prod, prod_bseq);
7551 
7552 	/*
7553 	 * Cycle through each mbuf segment that makes up
7554 	 * the outgoing frame, gathering the mapping info
7555 	 * for that segment and creating a tx_bd for
7556 	 * the mbuf.
7557 	 */
7558 	for (i = 0; i < nsegs ; i++) {
7559 
7560 		chain_prod = TX_CHAIN_IDX(prod);
7561 		txbd= &sc->tx_bd_chain[TX_PAGE(chain_prod)]
7562 		    [TX_IDX(chain_prod)];
7563 
7564 		txbd->tx_bd_haddr_lo =
7565 		    htole32(BCE_ADDR_LO(segs[i].ds_addr));
7566 		txbd->tx_bd_haddr_hi =
7567 		    htole32(BCE_ADDR_HI(segs[i].ds_addr));
7568 		txbd->tx_bd_mss_nbytes = htole32(mss << 16) |
7569 		    htole16(segs[i].ds_len);
7570 		txbd->tx_bd_vlan_tag = htole16(vlan_tag);
7571 		txbd->tx_bd_flags = htole16(flags);
7572 		prod_bseq += segs[i].ds_len;
7573 		if (i == 0)
7574 			txbd->tx_bd_flags |= htole16(TX_BD_FLAGS_START);
7575 		prod = NEXT_TX_BD(prod);
7576 	}
7577 
7578 	/* Set the END flag on the last TX buffer descriptor. */
7579 	txbd->tx_bd_flags |= htole16(TX_BD_FLAGS_END);
7580 
7581 	DBRUNMSG(BCE_EXTREME_SEND,
7582 	    bce_dump_tx_chain(sc, debug_prod, nsegs));
7583 
7584 	/*
7585 	 * Ensure that the mbuf pointer for this transmission
7586 	 * is placed at the array index of the last
7587 	 * descriptor in this chain.  This is done
7588 	 * because a single map is used for all
7589 	 * segments of the mbuf and we don't want to
7590 	 * unload the map before all of the segments
7591 	 * have been freed.
7592 	 */
7593 	sc->tx_mbuf_ptr[chain_prod] = m0;
7594 	sc->used_tx_bd += nsegs;
7595 
7596 	/* Update some debug statistic counters */
7597 	DBRUNIF((sc->used_tx_bd > sc->tx_hi_watermark),
7598 	    sc->tx_hi_watermark = sc->used_tx_bd);
7599 	DBRUNIF((sc->used_tx_bd == sc->max_tx_bd), sc->tx_full_count++);
7600 	DBRUNIF(sc->debug_tx_mbuf_alloc++);
7601 
7602 	DBRUNMSG(BCE_EXTREME_SEND, bce_dump_tx_mbuf_chain(sc, chain_prod, 1));
7603 
7604 	/* prod points to the next free tx_bd at this point. */
7605 	sc->tx_prod = prod;
7606 	sc->tx_prod_bseq = prod_bseq;
7607 
7608 	/* Tell the chip about the waiting TX frames. */
7609 	REG_WR16(sc, MB_GET_CID_ADDR(TX_CID) +
7610 	    BCE_L2MQ_TX_HOST_BIDX, sc->tx_prod);
7611 	REG_WR(sc, MB_GET_CID_ADDR(TX_CID) +
7612 	    BCE_L2MQ_TX_HOST_BSEQ, sc->tx_prod_bseq);
7613 
7614 bce_tx_encap_exit:
7615 	DBEXIT(BCE_VERBOSE_SEND);
7616 	return(rc);
7617 }
7618 
7619 
7620 /****************************************************************************/
7621 /* Main transmit routine when called from another routine with a lock.      */
7622 /*                                                                          */
7623 /* Returns:                                                                 */
7624 /*   Nothing.                                                               */
7625 /****************************************************************************/
7626 static void
7627 bce_start_locked(struct ifnet *ifp)
7628 {
7629 	struct bce_softc *sc = ifp->if_softc;
7630 	struct mbuf *m_head = NULL;
7631 	int count = 0;
7632 	u16 tx_prod, tx_chain_prod;
7633 
7634 	DBENTER(BCE_VERBOSE_SEND | BCE_VERBOSE_CTX);
7635 
7636 	BCE_LOCK_ASSERT(sc);
7637 
7638 	/* prod points to the next free tx_bd. */
7639 	tx_prod = sc->tx_prod;
7640 	tx_chain_prod = TX_CHAIN_IDX(tx_prod);
7641 
7642 	DBPRINT(sc, BCE_INFO_SEND,
7643 	    "%s(enter): tx_prod = 0x%04X, tx_chain_prod = 0x%04X, "
7644 	    "tx_prod_bseq = 0x%08X\n",
7645 	    __FUNCTION__, tx_prod, tx_chain_prod, sc->tx_prod_bseq);
7646 
7647 	/* If there's no link or the transmit queue is empty then just exit. */
7648 	if (sc->bce_link_up == FALSE) {
7649 		DBPRINT(sc, BCE_INFO_SEND, "%s(): No link.\n",
7650 		    __FUNCTION__);
7651 		goto bce_start_locked_exit;
7652 	}
7653 
7654 	if (IFQ_DRV_IS_EMPTY(&ifp->if_snd)) {
7655 		DBPRINT(sc, BCE_INFO_SEND, "%s(): Transmit queue empty.\n",
7656 		    __FUNCTION__);
7657 		goto bce_start_locked_exit;
7658 	}
7659 
7660 	/*
7661 	 * Keep adding entries while there is space in the ring.
7662 	 */
7663 	while (sc->used_tx_bd < sc->max_tx_bd) {
7664 
7665 		/* Check for any frames to send. */
7666 		IFQ_DRV_DEQUEUE(&ifp->if_snd, m_head);
7667 
7668 		/* Stop when the transmit queue is empty. */
7669 		if (m_head == NULL)
7670 			break;
7671 
7672 		/*
7673 		 * Pack the data into the transmit ring. If we
7674 		 * don't have room, place the mbuf back at the
7675 		 * head of the queue and set the OACTIVE flag
7676 		 * to wait for the NIC to drain the chain.
7677 		 */
7678 		if (bce_tx_encap(sc, &m_head)) {
7679 			if (m_head != NULL)
7680 				IFQ_DRV_PREPEND(&ifp->if_snd, m_head);
7681 			ifp->if_drv_flags |= IFF_DRV_OACTIVE;
7682 			DBPRINT(sc, BCE_INFO_SEND,
7683 			    "TX chain is closed for business! Total "
7684 			    "tx_bd used = %d\n", sc->used_tx_bd);
7685 			break;
7686 		}
7687 
7688 		count++;
7689 
7690 		/* Send a copy of the frame to any BPF listeners. */
7691 		ETHER_BPF_MTAP(ifp, m_head);
7692 	}
7693 
7694 	/* Exit if no packets were dequeued. */
7695 	if (count == 0) {
7696 		DBPRINT(sc, BCE_VERBOSE_SEND, "%s(): No packets were "
7697 		    "dequeued\n", __FUNCTION__);
7698 		goto bce_start_locked_exit;
7699 	}
7700 
7701 	DBPRINT(sc, BCE_VERBOSE_SEND, "%s(): Inserted %d frames into "
7702 	    "send queue.\n", __FUNCTION__, count);
7703 
7704 	/* Set the tx timeout. */
7705 	sc->watchdog_timer = BCE_TX_TIMEOUT;
7706 
7707 	DBRUNMSG(BCE_VERBOSE_SEND, bce_dump_ctx(sc, TX_CID));
7708 	DBRUNMSG(BCE_VERBOSE_SEND, bce_dump_mq_regs(sc));
7709 
7710 bce_start_locked_exit:
7711 	DBEXIT(BCE_VERBOSE_SEND | BCE_VERBOSE_CTX);
7712 	return;
7713 }
7714 
7715 
7716 /****************************************************************************/
7717 /* Main transmit routine when called from another routine without a lock.   */
7718 /*                                                                          */
7719 /* Returns:                                                                 */
7720 /*   Nothing.                                                               */
7721 /****************************************************************************/
7722 static void
7723 bce_start(struct ifnet *ifp)
7724 {
7725 	struct bce_softc *sc = ifp->if_softc;
7726 
7727 	DBENTER(BCE_VERBOSE_SEND);
7728 
7729 	BCE_LOCK(sc);
7730 	bce_start_locked(ifp);
7731 	BCE_UNLOCK(sc);
7732 
7733 	DBEXIT(BCE_VERBOSE_SEND);
7734 }
7735 
7736 
7737 /****************************************************************************/
7738 /* Handles any IOCTL calls from the operating system.                       */
7739 /*                                                                          */
7740 /* Returns:                                                                 */
7741 /*   0 for success, positive value for failure.                             */
7742 /****************************************************************************/
7743 static int
7744 bce_ioctl(struct ifnet *ifp, u_long command, caddr_t data)
7745 {
7746 	struct bce_softc *sc = ifp->if_softc;
7747 	struct ifreq *ifr = (struct ifreq *) data;
7748 	struct mii_data *mii;
7749 	int mask, error = 0;
7750 
7751 	DBENTER(BCE_VERBOSE_MISC);
7752 
7753 	switch(command) {
7754 
7755 	/* Set the interface MTU. */
7756 	case SIOCSIFMTU:
7757 		/* Check that the MTU setting is supported. */
7758 		if ((ifr->ifr_mtu < BCE_MIN_MTU) ||
7759 			(ifr->ifr_mtu > BCE_MAX_JUMBO_MTU)) {
7760 			error = EINVAL;
7761 			break;
7762 		}
7763 
7764 		DBPRINT(sc, BCE_INFO_MISC,
7765 		    "SIOCSIFMTU: Changing MTU from %d to %d\n",
7766 		    (int) ifp->if_mtu, (int) ifr->ifr_mtu);
7767 
7768 		BCE_LOCK(sc);
7769 		ifp->if_mtu = ifr->ifr_mtu;
7770 		if (ifp->if_drv_flags & IFF_DRV_RUNNING) {
7771 			ifp->if_drv_flags &= ~IFF_DRV_RUNNING;
7772 			bce_init_locked(sc);
7773 		}
7774 		BCE_UNLOCK(sc);
7775 		break;
7776 
7777 	/* Set interface flags. */
7778 	case SIOCSIFFLAGS:
7779 		DBPRINT(sc, BCE_VERBOSE_SPECIAL, "Received SIOCSIFFLAGS\n");
7780 
7781 		BCE_LOCK(sc);
7782 
7783 		/* Check if the interface is up. */
7784 		if (ifp->if_flags & IFF_UP) {
7785 			if (ifp->if_drv_flags & IFF_DRV_RUNNING) {
7786 				/* Change promiscuous/multicast flags as necessary. */
7787 				bce_set_rx_mode(sc);
7788 			} else {
7789 				/* Start the HW */
7790 				bce_init_locked(sc);
7791 			}
7792 		} else {
7793 			/* The interface is down, check if driver is running. */
7794 			if (ifp->if_drv_flags & IFF_DRV_RUNNING) {
7795 				bce_stop(sc);
7796 
7797 				/* If MFW is running, restart the controller a bit. */
7798 				if (sc->bce_flags & BCE_MFW_ENABLE_FLAG) {
7799 					bce_reset(sc, BCE_DRV_MSG_CODE_RESET);
7800 					bce_chipinit(sc);
7801 					bce_mgmt_init_locked(sc);
7802 				}
7803 			}
7804 		}
7805 
7806 		BCE_UNLOCK(sc);
7807 		break;
7808 
7809 	/* Add/Delete multicast address */
7810 	case SIOCADDMULTI:
7811 	case SIOCDELMULTI:
7812 		DBPRINT(sc, BCE_VERBOSE_MISC,
7813 		    "Received SIOCADDMULTI/SIOCDELMULTI\n");
7814 
7815 		BCE_LOCK(sc);
7816 		if (ifp->if_drv_flags & IFF_DRV_RUNNING)
7817 			bce_set_rx_mode(sc);
7818 		BCE_UNLOCK(sc);
7819 
7820 		break;
7821 
7822 	/* Set/Get Interface media */
7823 	case SIOCSIFMEDIA:
7824 	case SIOCGIFMEDIA:
7825 		DBPRINT(sc, BCE_VERBOSE_MISC,
7826 		    "Received SIOCSIFMEDIA/SIOCGIFMEDIA\n");
7827 		if ((sc->bce_phy_flags & BCE_PHY_REMOTE_CAP_FLAG) != 0)
7828 			error = ifmedia_ioctl(ifp, ifr, &sc->bce_ifmedia,
7829 			    command);
7830 		else {
7831 			mii = device_get_softc(sc->bce_miibus);
7832 			error = ifmedia_ioctl(ifp, ifr, &mii->mii_media,
7833 			    command);
7834 		}
7835 		break;
7836 
7837 	/* Set interface capability */
7838 	case SIOCSIFCAP:
7839 		mask = ifr->ifr_reqcap ^ ifp->if_capenable;
7840 		DBPRINT(sc, BCE_INFO_MISC,
7841 		    "Received SIOCSIFCAP = 0x%08X\n", (u32) mask);
7842 
7843 		/* Toggle the TX checksum capabilities enable flag. */
7844 		if (mask & IFCAP_TXCSUM &&
7845 		    ifp->if_capabilities & IFCAP_TXCSUM) {
7846 			ifp->if_capenable ^= IFCAP_TXCSUM;
7847 			if (IFCAP_TXCSUM & ifp->if_capenable)
7848 				ifp->if_hwassist |= BCE_IF_HWASSIST;
7849 			else
7850 				ifp->if_hwassist &= ~BCE_IF_HWASSIST;
7851 		}
7852 
7853 		/* Toggle the RX checksum capabilities enable flag. */
7854 		if (mask & IFCAP_RXCSUM &&
7855 		    ifp->if_capabilities & IFCAP_RXCSUM)
7856 			ifp->if_capenable ^= IFCAP_RXCSUM;
7857 
7858 		/* Toggle the TSO capabilities enable flag. */
7859 		if (bce_tso_enable && (mask & IFCAP_TSO4) &&
7860 		    ifp->if_capabilities & IFCAP_TSO4) {
7861 			ifp->if_capenable ^= IFCAP_TSO4;
7862 			if (IFCAP_TSO4 & ifp->if_capenable)
7863 				ifp->if_hwassist |= CSUM_TSO;
7864 			else
7865 				ifp->if_hwassist &= ~CSUM_TSO;
7866 		}
7867 
7868 		if (mask & IFCAP_VLAN_HWCSUM &&
7869 		    ifp->if_capabilities & IFCAP_VLAN_HWCSUM)
7870 			ifp->if_capenable ^= IFCAP_VLAN_HWCSUM;
7871 
7872 		if ((mask & IFCAP_VLAN_HWTSO) != 0 &&
7873 		    (ifp->if_capabilities & IFCAP_VLAN_HWTSO) != 0)
7874 			ifp->if_capenable ^= IFCAP_VLAN_HWTSO;
7875 		/*
7876 		 * Don't actually disable VLAN tag stripping as
7877 		 * management firmware (ASF/IPMI/UMP) requires the
7878 		 * feature. If VLAN tag stripping is disabled driver
7879 		 * will manually reconstruct the VLAN frame by
7880 		 * appending stripped VLAN tag.
7881 		 */
7882 		if ((mask & IFCAP_VLAN_HWTAGGING) != 0 &&
7883 		    (ifp->if_capabilities & IFCAP_VLAN_HWTAGGING)) {
7884 			ifp->if_capenable ^= IFCAP_VLAN_HWTAGGING;
7885 			if ((ifp->if_capenable & IFCAP_VLAN_HWTAGGING)
7886 			    == 0)
7887 				ifp->if_capenable &= ~IFCAP_VLAN_HWTSO;
7888 		}
7889 		VLAN_CAPABILITIES(ifp);
7890 		break;
7891 	default:
7892 		/* We don't know how to handle the IOCTL, pass it on. */
7893 		error = ether_ioctl(ifp, command, data);
7894 		break;
7895 	}
7896 
7897 	DBEXIT(BCE_VERBOSE_MISC);
7898 	return(error);
7899 }
7900 
7901 
7902 /****************************************************************************/
7903 /* Transmit timeout handler.                                                */
7904 /*                                                                          */
7905 /* Returns:                                                                 */
7906 /*   Nothing.                                                               */
7907 /****************************************************************************/
7908 static void
7909 bce_watchdog(struct bce_softc *sc)
7910 {
7911 	DBENTER(BCE_EXTREME_SEND);
7912 
7913 	BCE_LOCK_ASSERT(sc);
7914 
7915 	/* If the watchdog timer hasn't expired then just exit. */
7916 	if (sc->watchdog_timer == 0 || --sc->watchdog_timer)
7917 		goto bce_watchdog_exit;
7918 
7919 	/* If pause frames are active then don't reset the hardware. */
7920 	/* ToDo: Should we reset the timer here? */
7921 	if (REG_RD(sc, BCE_EMAC_TX_STATUS) & BCE_EMAC_TX_STATUS_XOFFED)
7922 		goto bce_watchdog_exit;
7923 
7924 	BCE_PRINTF("%s(%d): Watchdog timeout occurred, resetting!\n",
7925 	    __FILE__, __LINE__);
7926 
7927 	DBRUNMSG(BCE_INFO,
7928 	    bce_dump_driver_state(sc);
7929 	    bce_dump_status_block(sc);
7930 	    bce_dump_stats_block(sc);
7931 	    bce_dump_ftqs(sc);
7932 	    bce_dump_txp_state(sc, 0);
7933 	    bce_dump_rxp_state(sc, 0);
7934 	    bce_dump_tpat_state(sc, 0);
7935 	    bce_dump_cp_state(sc, 0);
7936 	    bce_dump_com_state(sc, 0));
7937 
7938 	DBRUN(bce_breakpoint(sc));
7939 
7940 	sc->bce_ifp->if_drv_flags &= ~IFF_DRV_RUNNING;
7941 
7942 	bce_init_locked(sc);
7943 	sc->bce_ifp->if_oerrors++;
7944 
7945 bce_watchdog_exit:
7946 	DBEXIT(BCE_EXTREME_SEND);
7947 }
7948 
7949 
7950 /*
7951  * Interrupt handler.
7952  */
7953 /****************************************************************************/
7954 /* Main interrupt entry point.  Verifies that the controller generated the  */
7955 /* interrupt and then calls a separate routine for handle the various       */
7956 /* interrupt causes (PHY, TX, RX).                                          */
7957 /*                                                                          */
7958 /* Returns:                                                                 */
7959 /*   0 for success, positive value for failure.                             */
7960 /****************************************************************************/
7961 static void
7962 bce_intr(void *xsc)
7963 {
7964 	struct bce_softc *sc;
7965 	struct ifnet *ifp;
7966 	u32 status_attn_bits;
7967 	u16 hw_rx_cons, hw_tx_cons;
7968 
7969 	sc = xsc;
7970 	ifp = sc->bce_ifp;
7971 
7972 	DBENTER(BCE_VERBOSE_SEND | BCE_VERBOSE_RECV | BCE_VERBOSE_INTR);
7973 	DBRUNMSG(BCE_VERBOSE_INTR, bce_dump_status_block(sc));
7974 	DBRUNMSG(BCE_VERBOSE_INTR, bce_dump_stats_block(sc));
7975 
7976 	BCE_LOCK(sc);
7977 
7978 	DBRUN(sc->interrupts_generated++);
7979 
7980 	/* Synchnorize before we read from interface's status block */
7981 	bus_dmamap_sync(sc->status_tag, sc->status_map,
7982 	    BUS_DMASYNC_POSTREAD);
7983 
7984 	/*
7985 	 * If the hardware status block index
7986 	 * matches the last value read by the
7987 	 * driver and we haven't asserted our
7988 	 * interrupt then there's nothing to do.
7989 	 */
7990 	if ((sc->status_block->status_idx == sc->last_status_idx) &&
7991 	    (REG_RD(sc, BCE_PCICFG_MISC_STATUS) &
7992 	     BCE_PCICFG_MISC_STATUS_INTA_VALUE)) {
7993 		DBPRINT(sc, BCE_VERBOSE_INTR, "%s(): Spurious interrupt.\n",
7994 		    __FUNCTION__);
7995 		goto bce_intr_exit;
7996 	}
7997 
7998 	/* Ack the interrupt and stop others from occuring. */
7999 	REG_WR(sc, BCE_PCICFG_INT_ACK_CMD,
8000 	    BCE_PCICFG_INT_ACK_CMD_USE_INT_HC_PARAM |
8001 	    BCE_PCICFG_INT_ACK_CMD_MASK_INT);
8002 
8003 	/* Check if the hardware has finished any work. */
8004 	hw_rx_cons = bce_get_hw_rx_cons(sc);
8005 	hw_tx_cons = bce_get_hw_tx_cons(sc);
8006 
8007 	/* Keep processing data as long as there is work to do. */
8008 	for (;;) {
8009 
8010 		status_attn_bits = sc->status_block->status_attn_bits;
8011 
8012 		DBRUNIF(DB_RANDOMTRUE(unexpected_attention_sim_control),
8013 		    BCE_PRINTF("Simulating unexpected status attention "
8014 		    "bit set.");
8015 		    sc->unexpected_attention_sim_count++;
8016 		    status_attn_bits = status_attn_bits |
8017 		    STATUS_ATTN_BITS_PARITY_ERROR);
8018 
8019 		/* Was it a link change interrupt? */
8020 		if ((status_attn_bits & STATUS_ATTN_BITS_LINK_STATE) !=
8021 		    (sc->status_block->status_attn_bits_ack &
8022 		     STATUS_ATTN_BITS_LINK_STATE)) {
8023 			bce_phy_intr(sc);
8024 
8025 			/* Clear transient updates during link state change. */
8026 			REG_WR(sc, BCE_HC_COMMAND, sc->hc_command |
8027 			    BCE_HC_COMMAND_COAL_NOW_WO_INT);
8028 			REG_RD(sc, BCE_HC_COMMAND);
8029 		}
8030 
8031 		/* If any other attention is asserted, the chip is toast. */
8032 		if (((status_attn_bits & ~STATUS_ATTN_BITS_LINK_STATE) !=
8033 		    (sc->status_block->status_attn_bits_ack &
8034 		    ~STATUS_ATTN_BITS_LINK_STATE))) {
8035 
8036 			sc->unexpected_attention_count++;
8037 
8038 			BCE_PRINTF("%s(%d): Fatal attention detected: "
8039 			    "0x%08X\n",	__FILE__, __LINE__,
8040 			    sc->status_block->status_attn_bits);
8041 
8042 			DBRUNMSG(BCE_FATAL,
8043 			    if (unexpected_attention_sim_control == 0)
8044 				bce_breakpoint(sc));
8045 
8046 			bce_init_locked(sc);
8047 			goto bce_intr_exit;
8048 		}
8049 
8050 		/* Check for any completed RX frames. */
8051 		if (hw_rx_cons != sc->hw_rx_cons)
8052 			bce_rx_intr(sc);
8053 
8054 		/* Check for any completed TX frames. */
8055 		if (hw_tx_cons != sc->hw_tx_cons)
8056 			bce_tx_intr(sc);
8057 
8058 		/* Save status block index value for the next interrupt. */
8059 		sc->last_status_idx = sc->status_block->status_idx;
8060 
8061  		/*
8062  		 * Prevent speculative reads from getting
8063  		 * ahead of the status block.
8064 		 */
8065 		bus_space_barrier(sc->bce_btag, sc->bce_bhandle, 0, 0,
8066 		    BUS_SPACE_BARRIER_READ);
8067 
8068  		/*
8069  		 * If there's no work left then exit the
8070  		 * interrupt service routine.
8071 		 */
8072 		hw_rx_cons = bce_get_hw_rx_cons(sc);
8073 		hw_tx_cons = bce_get_hw_tx_cons(sc);
8074 
8075 		if ((hw_rx_cons == sc->hw_rx_cons) &&
8076 		    (hw_tx_cons == sc->hw_tx_cons))
8077 			break;
8078 
8079 	}
8080 
8081 	bus_dmamap_sync(sc->status_tag,	sc->status_map,
8082 	    BUS_DMASYNC_PREREAD);
8083 
8084 	/* Re-enable interrupts. */
8085 	bce_enable_intr(sc, 0);
8086 
8087 	/* Handle any frames that arrived while handling the interrupt. */
8088 	if (ifp->if_drv_flags & IFF_DRV_RUNNING &&
8089 	    !IFQ_DRV_IS_EMPTY(&ifp->if_snd))
8090 		bce_start_locked(ifp);
8091 
8092 bce_intr_exit:
8093 	BCE_UNLOCK(sc);
8094 
8095 	DBEXIT(BCE_VERBOSE_SEND | BCE_VERBOSE_RECV | BCE_VERBOSE_INTR);
8096 }
8097 
8098 
8099 /****************************************************************************/
8100 /* Programs the various packet receive modes (broadcast and multicast).     */
8101 /*                                                                          */
8102 /* Returns:                                                                 */
8103 /*   Nothing.                                                               */
8104 /****************************************************************************/
8105 static void
8106 bce_set_rx_mode(struct bce_softc *sc)
8107 {
8108 	struct ifnet *ifp;
8109 	struct ifmultiaddr *ifma;
8110 	u32 hashes[NUM_MC_HASH_REGISTERS] = { 0, 0, 0, 0, 0, 0, 0, 0 };
8111 	u32 rx_mode, sort_mode;
8112 	int h, i;
8113 
8114 	DBENTER(BCE_VERBOSE_MISC);
8115 
8116 	BCE_LOCK_ASSERT(sc);
8117 
8118 	ifp = sc->bce_ifp;
8119 
8120 	/* Initialize receive mode default settings. */
8121 	rx_mode   = sc->rx_mode & ~(BCE_EMAC_RX_MODE_PROMISCUOUS |
8122 	    BCE_EMAC_RX_MODE_KEEP_VLAN_TAG);
8123 	sort_mode = 1 | BCE_RPM_SORT_USER0_BC_EN;
8124 
8125 	/*
8126 	 * ASF/IPMI/UMP firmware requires that VLAN tag stripping
8127 	 * be enbled.
8128 	 */
8129 	if (!(BCE_IF_CAPABILITIES & IFCAP_VLAN_HWTAGGING) &&
8130 	    (!(sc->bce_flags & BCE_MFW_ENABLE_FLAG)))
8131 		rx_mode |= BCE_EMAC_RX_MODE_KEEP_VLAN_TAG;
8132 
8133 	/*
8134 	 * Check for promiscuous, all multicast, or selected
8135 	 * multicast address filtering.
8136 	 */
8137 	if (ifp->if_flags & IFF_PROMISC) {
8138 		DBPRINT(sc, BCE_INFO_MISC, "Enabling promiscuous mode.\n");
8139 
8140 		/* Enable promiscuous mode. */
8141 		rx_mode |= BCE_EMAC_RX_MODE_PROMISCUOUS;
8142 		sort_mode |= BCE_RPM_SORT_USER0_PROM_EN;
8143 	} else if (ifp->if_flags & IFF_ALLMULTI) {
8144 		DBPRINT(sc, BCE_INFO_MISC, "Enabling all multicast mode.\n");
8145 
8146 		/* Enable all multicast addresses. */
8147 		for (i = 0; i < NUM_MC_HASH_REGISTERS; i++) {
8148 			REG_WR(sc, BCE_EMAC_MULTICAST_HASH0 + (i * 4), 0xffffffff);
8149        	}
8150 		sort_mode |= BCE_RPM_SORT_USER0_MC_EN;
8151 	} else {
8152 		/* Accept one or more multicast(s). */
8153 		DBPRINT(sc, BCE_INFO_MISC, "Enabling selective multicast mode.\n");
8154 
8155 		if_maddr_rlock(ifp);
8156 		TAILQ_FOREACH(ifma, &ifp->if_multiaddrs, ifma_link) {
8157 			if (ifma->ifma_addr->sa_family != AF_LINK)
8158 				continue;
8159 			h = ether_crc32_le(LLADDR((struct sockaddr_dl *)
8160 			    ifma->ifma_addr), ETHER_ADDR_LEN) & 0xFF;
8161 			    hashes[(h & 0xE0) >> 5] |= 1 << (h & 0x1F);
8162 		}
8163 		if_maddr_runlock(ifp);
8164 
8165 		for (i = 0; i < NUM_MC_HASH_REGISTERS; i++)
8166 			REG_WR(sc, BCE_EMAC_MULTICAST_HASH0 + (i * 4), hashes[i]);
8167 
8168 		sort_mode |= BCE_RPM_SORT_USER0_MC_HSH_EN;
8169 	}
8170 
8171 	/* Only make changes if the recive mode has actually changed. */
8172 	if (rx_mode != sc->rx_mode) {
8173 		DBPRINT(sc, BCE_VERBOSE_MISC, "Enabling new receive mode: "
8174 		    "0x%08X\n", rx_mode);
8175 
8176 		sc->rx_mode = rx_mode;
8177 		REG_WR(sc, BCE_EMAC_RX_MODE, rx_mode);
8178 	}
8179 
8180 	/* Disable and clear the exisitng sort before enabling a new sort. */
8181 	REG_WR(sc, BCE_RPM_SORT_USER0, 0x0);
8182 	REG_WR(sc, BCE_RPM_SORT_USER0, sort_mode);
8183 	REG_WR(sc, BCE_RPM_SORT_USER0, sort_mode | BCE_RPM_SORT_USER0_ENA);
8184 
8185 	DBEXIT(BCE_VERBOSE_MISC);
8186 }
8187 
8188 
8189 /****************************************************************************/
8190 /* Called periodically to updates statistics from the controllers           */
8191 /* statistics block.                                                        */
8192 /*                                                                          */
8193 /* Returns:                                                                 */
8194 /*   Nothing.                                                               */
8195 /****************************************************************************/
8196 static void
8197 bce_stats_update(struct bce_softc *sc)
8198 {
8199 	struct ifnet *ifp;
8200 	struct statistics_block *stats;
8201 
8202 	DBENTER(BCE_EXTREME_MISC);
8203 
8204 	ifp = sc->bce_ifp;
8205 
8206 	stats = (struct statistics_block *) sc->stats_block;
8207 
8208 	/*
8209 	 * Certain controllers don't report
8210 	 * carrier sense errors correctly.
8211 	 * See errata E11_5708CA0_1165.
8212 	 */
8213 	if (!(BCE_CHIP_NUM(sc) == BCE_CHIP_NUM_5706) &&
8214 	    !(BCE_CHIP_ID(sc) == BCE_CHIP_ID_5708_A0))
8215 		ifp->if_oerrors +=
8216 		    (u_long) stats->stat_Dot3StatsCarrierSenseErrors;
8217 
8218 	/*
8219 	 * Update the sysctl statistics from the
8220 	 * hardware statistics.
8221 	 */
8222 	sc->stat_IfHCInOctets =
8223 	    ((u64) stats->stat_IfHCInOctets_hi << 32) +
8224 	     (u64) stats->stat_IfHCInOctets_lo;
8225 
8226 	sc->stat_IfHCInBadOctets =
8227 	    ((u64) stats->stat_IfHCInBadOctets_hi << 32) +
8228 	     (u64) stats->stat_IfHCInBadOctets_lo;
8229 
8230 	sc->stat_IfHCOutOctets =
8231 	    ((u64) stats->stat_IfHCOutOctets_hi << 32) +
8232 	     (u64) stats->stat_IfHCOutOctets_lo;
8233 
8234 	sc->stat_IfHCOutBadOctets =
8235 	    ((u64) stats->stat_IfHCOutBadOctets_hi << 32) +
8236 	     (u64) stats->stat_IfHCOutBadOctets_lo;
8237 
8238 	sc->stat_IfHCInUcastPkts =
8239 	    ((u64) stats->stat_IfHCInUcastPkts_hi << 32) +
8240 	     (u64) stats->stat_IfHCInUcastPkts_lo;
8241 
8242 	sc->stat_IfHCInMulticastPkts =
8243 	    ((u64) stats->stat_IfHCInMulticastPkts_hi << 32) +
8244 	     (u64) stats->stat_IfHCInMulticastPkts_lo;
8245 
8246 	sc->stat_IfHCInBroadcastPkts =
8247 	    ((u64) stats->stat_IfHCInBroadcastPkts_hi << 32) +
8248 	     (u64) stats->stat_IfHCInBroadcastPkts_lo;
8249 
8250 	sc->stat_IfHCOutUcastPkts =
8251 	    ((u64) stats->stat_IfHCOutUcastPkts_hi << 32) +
8252 	     (u64) stats->stat_IfHCOutUcastPkts_lo;
8253 
8254 	sc->stat_IfHCOutMulticastPkts =
8255 	    ((u64) stats->stat_IfHCOutMulticastPkts_hi << 32) +
8256 	     (u64) stats->stat_IfHCOutMulticastPkts_lo;
8257 
8258 	sc->stat_IfHCOutBroadcastPkts =
8259 	    ((u64) stats->stat_IfHCOutBroadcastPkts_hi << 32) +
8260 	     (u64) stats->stat_IfHCOutBroadcastPkts_lo;
8261 
8262 	/* ToDo: Preserve counters beyond 32 bits? */
8263 	/* ToDo: Read the statistics from auto-clear regs? */
8264 
8265 	sc->stat_emac_tx_stat_dot3statsinternalmactransmiterrors =
8266 	    stats->stat_emac_tx_stat_dot3statsinternalmactransmiterrors;
8267 
8268 	sc->stat_Dot3StatsCarrierSenseErrors =
8269 	    stats->stat_Dot3StatsCarrierSenseErrors;
8270 
8271 	sc->stat_Dot3StatsFCSErrors =
8272 	    stats->stat_Dot3StatsFCSErrors;
8273 
8274 	sc->stat_Dot3StatsAlignmentErrors =
8275 	    stats->stat_Dot3StatsAlignmentErrors;
8276 
8277 	sc->stat_Dot3StatsSingleCollisionFrames =
8278 	    stats->stat_Dot3StatsSingleCollisionFrames;
8279 
8280 	sc->stat_Dot3StatsMultipleCollisionFrames =
8281 	    stats->stat_Dot3StatsMultipleCollisionFrames;
8282 
8283 	sc->stat_Dot3StatsDeferredTransmissions =
8284 	    stats->stat_Dot3StatsDeferredTransmissions;
8285 
8286 	sc->stat_Dot3StatsExcessiveCollisions =
8287 	    stats->stat_Dot3StatsExcessiveCollisions;
8288 
8289 	sc->stat_Dot3StatsLateCollisions =
8290 	    stats->stat_Dot3StatsLateCollisions;
8291 
8292 	sc->stat_EtherStatsCollisions =
8293 	    stats->stat_EtherStatsCollisions;
8294 
8295 	sc->stat_EtherStatsFragments =
8296 	    stats->stat_EtherStatsFragments;
8297 
8298 	sc->stat_EtherStatsJabbers =
8299 	    stats->stat_EtherStatsJabbers;
8300 
8301 	sc->stat_EtherStatsUndersizePkts =
8302 	    stats->stat_EtherStatsUndersizePkts;
8303 
8304 	sc->stat_EtherStatsOversizePkts =
8305 	     stats->stat_EtherStatsOversizePkts;
8306 
8307 	sc->stat_EtherStatsPktsRx64Octets =
8308 	    stats->stat_EtherStatsPktsRx64Octets;
8309 
8310 	sc->stat_EtherStatsPktsRx65Octetsto127Octets =
8311 	    stats->stat_EtherStatsPktsRx65Octetsto127Octets;
8312 
8313 	sc->stat_EtherStatsPktsRx128Octetsto255Octets =
8314 	    stats->stat_EtherStatsPktsRx128Octetsto255Octets;
8315 
8316 	sc->stat_EtherStatsPktsRx256Octetsto511Octets =
8317 	    stats->stat_EtherStatsPktsRx256Octetsto511Octets;
8318 
8319 	sc->stat_EtherStatsPktsRx512Octetsto1023Octets =
8320 	    stats->stat_EtherStatsPktsRx512Octetsto1023Octets;
8321 
8322 	sc->stat_EtherStatsPktsRx1024Octetsto1522Octets =
8323 	    stats->stat_EtherStatsPktsRx1024Octetsto1522Octets;
8324 
8325 	sc->stat_EtherStatsPktsRx1523Octetsto9022Octets =
8326 	    stats->stat_EtherStatsPktsRx1523Octetsto9022Octets;
8327 
8328 	sc->stat_EtherStatsPktsTx64Octets =
8329 	    stats->stat_EtherStatsPktsTx64Octets;
8330 
8331 	sc->stat_EtherStatsPktsTx65Octetsto127Octets =
8332 	    stats->stat_EtherStatsPktsTx65Octetsto127Octets;
8333 
8334 	sc->stat_EtherStatsPktsTx128Octetsto255Octets =
8335 	    stats->stat_EtherStatsPktsTx128Octetsto255Octets;
8336 
8337 	sc->stat_EtherStatsPktsTx256Octetsto511Octets =
8338 	    stats->stat_EtherStatsPktsTx256Octetsto511Octets;
8339 
8340 	sc->stat_EtherStatsPktsTx512Octetsto1023Octets =
8341 	    stats->stat_EtherStatsPktsTx512Octetsto1023Octets;
8342 
8343 	sc->stat_EtherStatsPktsTx1024Octetsto1522Octets =
8344 	    stats->stat_EtherStatsPktsTx1024Octetsto1522Octets;
8345 
8346 	sc->stat_EtherStatsPktsTx1523Octetsto9022Octets =
8347 	    stats->stat_EtherStatsPktsTx1523Octetsto9022Octets;
8348 
8349 	sc->stat_XonPauseFramesReceived =
8350 	    stats->stat_XonPauseFramesReceived;
8351 
8352 	sc->stat_XoffPauseFramesReceived =
8353 	    stats->stat_XoffPauseFramesReceived;
8354 
8355 	sc->stat_OutXonSent =
8356 	    stats->stat_OutXonSent;
8357 
8358 	sc->stat_OutXoffSent =
8359 	    stats->stat_OutXoffSent;
8360 
8361 	sc->stat_FlowControlDone =
8362 	    stats->stat_FlowControlDone;
8363 
8364 	sc->stat_MacControlFramesReceived =
8365 	    stats->stat_MacControlFramesReceived;
8366 
8367 	sc->stat_XoffStateEntered =
8368 	    stats->stat_XoffStateEntered;
8369 
8370 	sc->stat_IfInFramesL2FilterDiscards =
8371 	    stats->stat_IfInFramesL2FilterDiscards;
8372 
8373 	sc->stat_IfInRuleCheckerDiscards =
8374 	    stats->stat_IfInRuleCheckerDiscards;
8375 
8376 	sc->stat_IfInFTQDiscards =
8377 	    stats->stat_IfInFTQDiscards;
8378 
8379 	sc->stat_IfInMBUFDiscards =
8380 	    stats->stat_IfInMBUFDiscards;
8381 
8382 	sc->stat_IfInRuleCheckerP4Hit =
8383 	    stats->stat_IfInRuleCheckerP4Hit;
8384 
8385 	sc->stat_CatchupInRuleCheckerDiscards =
8386 	    stats->stat_CatchupInRuleCheckerDiscards;
8387 
8388 	sc->stat_CatchupInFTQDiscards =
8389 	    stats->stat_CatchupInFTQDiscards;
8390 
8391 	sc->stat_CatchupInMBUFDiscards =
8392 	    stats->stat_CatchupInMBUFDiscards;
8393 
8394 	sc->stat_CatchupInRuleCheckerP4Hit =
8395 	    stats->stat_CatchupInRuleCheckerP4Hit;
8396 
8397 	sc->com_no_buffers = REG_RD_IND(sc, 0x120084);
8398 
8399 	/*
8400 	 * Update the interface statistics from the
8401 	 * hardware statistics.
8402 	 */
8403 	ifp->if_collisions =
8404 	    (u_long) sc->stat_EtherStatsCollisions;
8405 
8406 	/* ToDo: This method loses soft errors. */
8407 	ifp->if_ierrors =
8408 	    (u_long) sc->stat_EtherStatsUndersizePkts +
8409 	    (u_long) sc->stat_EtherStatsOversizePkts +
8410 	    (u_long) sc->stat_IfInMBUFDiscards +
8411 	    (u_long) sc->stat_Dot3StatsAlignmentErrors +
8412 	    (u_long) sc->stat_Dot3StatsFCSErrors +
8413 	    (u_long) sc->stat_IfInRuleCheckerDiscards +
8414 	    (u_long) sc->stat_IfInFTQDiscards +
8415 	    (u_long) sc->com_no_buffers;
8416 
8417 	/* ToDo: This method loses soft errors. */
8418 	ifp->if_oerrors =
8419 	    (u_long) sc->stat_emac_tx_stat_dot3statsinternalmactransmiterrors +
8420 	    (u_long) sc->stat_Dot3StatsExcessiveCollisions +
8421 	    (u_long) sc->stat_Dot3StatsLateCollisions;
8422 
8423 	/* ToDo: Add additional statistics? */
8424 
8425 	DBEXIT(BCE_EXTREME_MISC);
8426 }
8427 
8428 
8429 /****************************************************************************/
8430 /* Periodic function to notify the bootcode that the driver is still        */
8431 /* present.                                                                 */
8432 /*                                                                          */
8433 /* Returns:                                                                 */
8434 /*   Nothing.                                                               */
8435 /****************************************************************************/
8436 static void
8437 bce_pulse(void *xsc)
8438 {
8439 	struct bce_softc *sc = xsc;
8440 	u32 msg;
8441 
8442 	DBENTER(BCE_EXTREME_MISC);
8443 
8444 	BCE_LOCK_ASSERT(sc);
8445 
8446 	/* Tell the firmware that the driver is still running. */
8447 	msg = (u32) ++sc->bce_fw_drv_pulse_wr_seq;
8448 	bce_shmem_wr(sc, BCE_DRV_PULSE_MB, msg);
8449 
8450 	/* Update the bootcode condition. */
8451 	sc->bc_state = bce_shmem_rd(sc, BCE_BC_STATE_CONDITION);
8452 
8453 	/* Report whether the bootcode still knows the driver is running. */
8454 	if (bce_verbose || bootverbose) {
8455 		if (sc->bce_drv_cardiac_arrest == FALSE) {
8456 			if (!(sc->bc_state & BCE_CONDITION_DRV_PRESENT)) {
8457 				sc->bce_drv_cardiac_arrest = TRUE;
8458 				BCE_PRINTF("%s(): Warning: bootcode "
8459 				    "thinks driver is absent! "
8460 				    "(bc_state = 0x%08X)\n",
8461 				    __FUNCTION__, sc->bc_state);
8462 			}
8463 		} else {
8464 			/*
8465 			 * Not supported by all bootcode versions.
8466 			 * (v5.0.11+ and v5.2.1+)  Older bootcode
8467 			 * will require the driver to reset the
8468 			 * controller to clear this condition.
8469 			 */
8470 			if (sc->bc_state & BCE_CONDITION_DRV_PRESENT) {
8471 				sc->bce_drv_cardiac_arrest = FALSE;
8472 				BCE_PRINTF("%s(): Bootcode found the "
8473 				    "driver pulse! (bc_state = 0x%08X)\n",
8474 				    __FUNCTION__, sc->bc_state);
8475 			}
8476 		}
8477 	}
8478 
8479 
8480 	/* Schedule the next pulse. */
8481 	callout_reset(&sc->bce_pulse_callout, hz, bce_pulse, sc);
8482 
8483 	DBEXIT(BCE_EXTREME_MISC);
8484 }
8485 
8486 
8487 /****************************************************************************/
8488 /* Periodic function to perform maintenance tasks.                          */
8489 /*                                                                          */
8490 /* Returns:                                                                 */
8491 /*   Nothing.                                                               */
8492 /****************************************************************************/
8493 static void
8494 bce_tick(void *xsc)
8495 {
8496 	struct bce_softc *sc = xsc;
8497 	struct mii_data *mii;
8498 	struct ifnet *ifp;
8499 	struct ifmediareq ifmr;
8500 
8501 	ifp = sc->bce_ifp;
8502 
8503 	DBENTER(BCE_EXTREME_MISC);
8504 
8505 	BCE_LOCK_ASSERT(sc);
8506 
8507 	/* Schedule the next tick. */
8508 	callout_reset(&sc->bce_tick_callout, hz, bce_tick, sc);
8509 
8510 	/* Update the statistics from the hardware statistics block. */
8511 	bce_stats_update(sc);
8512 
8513  	/*
8514  	 * ToDo: This is a safety measure.  Need to re-evaluate
8515  	 * high	level processing logic and eliminate this code.
8516  	 */
8517 	/* Top off the receive and page chains. */
8518 	if (bce_hdr_split == TRUE)
8519 		bce_fill_pg_chain(sc);
8520 	bce_fill_rx_chain(sc);
8521 
8522 	/* Check that chip hasn't hung. */
8523 	bce_watchdog(sc);
8524 
8525 	/* If link is up already up then we're done. */
8526 	if (sc->bce_link_up == TRUE)
8527 		goto bce_tick_exit;
8528 
8529 	/* Link is down.  Check what the PHY's doing. */
8530 	if ((sc->bce_phy_flags & BCE_PHY_REMOTE_CAP_FLAG) != 0) {
8531 		bzero(&ifmr, sizeof(ifmr));
8532 		bce_ifmedia_sts_rphy(sc, &ifmr);
8533 		if ((ifmr.ifm_status & (IFM_ACTIVE | IFM_AVALID)) ==
8534 		    (IFM_ACTIVE | IFM_AVALID)) {
8535 			sc->bce_link_up = TRUE;
8536 			bce_miibus_statchg(sc->bce_dev);
8537 		}
8538 	} else {
8539 		mii = device_get_softc(sc->bce_miibus);
8540 		mii_tick(mii);
8541 		/* Check if the link has come up. */
8542 		if ((mii->mii_media_status & IFM_ACTIVE) &&
8543 		    (IFM_SUBTYPE(mii->mii_media_active) != IFM_NONE)) {
8544 			DBPRINT(sc, BCE_VERBOSE_MISC, "%s(): Link up!\n",
8545 			    __FUNCTION__);
8546 			sc->bce_link_up = TRUE;
8547 			if ((IFM_SUBTYPE(mii->mii_media_active) == IFM_1000_T ||
8548 			    IFM_SUBTYPE(mii->mii_media_active) == IFM_1000_SX ||
8549 			    IFM_SUBTYPE(mii->mii_media_active) == IFM_2500_SX) &&
8550 			    (bce_verbose || bootverbose))
8551 				BCE_PRINTF("Gigabit link up!\n");
8552 		}
8553 
8554 	}
8555 	if (sc->bce_link_up == TRUE) {
8556 		/* Now that link is up, handle any outstanding TX traffic. */
8557 		if (!IFQ_DRV_IS_EMPTY(&ifp->if_snd)) {
8558 			DBPRINT(sc, BCE_VERBOSE_MISC, "%s(): Found "
8559 			    "pending TX traffic.\n", __FUNCTION__);
8560 			bce_start_locked(ifp);
8561 		}
8562 	}
8563 
8564 bce_tick_exit:
8565 	DBEXIT(BCE_EXTREME_MISC);
8566 	return;
8567 }
8568 
8569 static void
8570 bce_fw_cap_init(struct bce_softc *sc)
8571 {
8572 	u32 ack, cap, link;
8573 
8574 	ack = 0;
8575 	cap = bce_shmem_rd(sc, BCE_FW_CAP_MB);
8576 	if ((cap & BCE_FW_CAP_SIGNATURE_MAGIC_MASK) !=
8577 	    BCE_FW_CAP_SIGNATURE_MAGIC)
8578 		return;
8579 	if ((cap & (BCE_FW_CAP_MFW_KEEP_VLAN | BCE_FW_CAP_BC_KEEP_VLAN)) ==
8580 	    (BCE_FW_CAP_MFW_KEEP_VLAN | BCE_FW_CAP_BC_KEEP_VLAN))
8581 		ack |= BCE_DRV_ACK_CAP_SIGNATURE_MAGIC |
8582 		    BCE_FW_CAP_MFW_KEEP_VLAN | BCE_FW_CAP_BC_KEEP_VLAN;
8583 	if ((sc->bce_phy_flags & BCE_PHY_SERDES_FLAG) != 0 &&
8584 	    (cap & BCE_FW_CAP_REMOTE_PHY_CAP) != 0) {
8585 		sc->bce_phy_flags &= ~BCE_PHY_REMOTE_PORT_FIBER_FLAG;
8586 		sc->bce_phy_flags |= BCE_PHY_REMOTE_CAP_FLAG;
8587 		link = bce_shmem_rd(sc, BCE_LINK_STATUS);
8588 		if ((link & BCE_LINK_STATUS_SERDES_LINK) != 0)
8589 			sc->bce_phy_flags |= BCE_PHY_REMOTE_PORT_FIBER_FLAG;
8590 		ack |= BCE_DRV_ACK_CAP_SIGNATURE_MAGIC |
8591 		    BCE_FW_CAP_REMOTE_PHY_CAP;
8592 	}
8593 
8594 	if (ack != 0)
8595 		bce_shmem_wr(sc, BCE_DRV_ACK_CAP_MB, ack);
8596 }
8597 
8598 
8599 #ifdef BCE_DEBUG
8600 /****************************************************************************/
8601 /* Allows the driver state to be dumped through the sysctl interface.       */
8602 /*                                                                          */
8603 /* Returns:                                                                 */
8604 /*   0 for success, positive value for failure.                             */
8605 /****************************************************************************/
8606 static int
8607 bce_sysctl_driver_state(SYSCTL_HANDLER_ARGS)
8608 {
8609 	int error;
8610 	int result;
8611 	struct bce_softc *sc;
8612 
8613 	result = -1;
8614 	error = sysctl_handle_int(oidp, &result, 0, req);
8615 
8616 	if (error || !req->newptr)
8617 		return (error);
8618 
8619 	if (result == 1) {
8620 		sc = (struct bce_softc *)arg1;
8621 		bce_dump_driver_state(sc);
8622 	}
8623 
8624 	return error;
8625 }
8626 
8627 
8628 /****************************************************************************/
8629 /* Allows the hardware state to be dumped through the sysctl interface.     */
8630 /*                                                                          */
8631 /* Returns:                                                                 */
8632 /*   0 for success, positive value for failure.                             */
8633 /****************************************************************************/
8634 static int
8635 bce_sysctl_hw_state(SYSCTL_HANDLER_ARGS)
8636 {
8637 	int error;
8638 	int result;
8639 	struct bce_softc *sc;
8640 
8641 	result = -1;
8642 	error = sysctl_handle_int(oidp, &result, 0, req);
8643 
8644 	if (error || !req->newptr)
8645 		return (error);
8646 
8647 	if (result == 1) {
8648 		sc = (struct bce_softc *)arg1;
8649 		bce_dump_hw_state(sc);
8650 	}
8651 
8652 	return error;
8653 }
8654 
8655 
8656 /****************************************************************************/
8657 /* Allows the status block to be dumped through the sysctl interface.       */
8658 /*                                                                          */
8659 /* Returns:                                                                 */
8660 /*   0 for success, positive value for failure.                             */
8661 /****************************************************************************/
8662 static int
8663 bce_sysctl_status_block(SYSCTL_HANDLER_ARGS)
8664 {
8665 	int error;
8666 	int result;
8667 	struct bce_softc *sc;
8668 
8669 	result = -1;
8670 	error = sysctl_handle_int(oidp, &result, 0, req);
8671 
8672 	if (error || !req->newptr)
8673 		return (error);
8674 
8675 	if (result == 1) {
8676 		sc = (struct bce_softc *)arg1;
8677 		bce_dump_status_block(sc);
8678 	}
8679 
8680 	return error;
8681 }
8682 
8683 
8684 /****************************************************************************/
8685 /* Allows the stats block to be dumped through the sysctl interface.        */
8686 /*                                                                          */
8687 /* Returns:                                                                 */
8688 /*   0 for success, positive value for failure.                             */
8689 /****************************************************************************/
8690 static int
8691 bce_sysctl_stats_block(SYSCTL_HANDLER_ARGS)
8692 {
8693 	int error;
8694 	int result;
8695 	struct bce_softc *sc;
8696 
8697 	result = -1;
8698 	error = sysctl_handle_int(oidp, &result, 0, req);
8699 
8700 	if (error || !req->newptr)
8701 		return (error);
8702 
8703 	if (result == 1) {
8704 		sc = (struct bce_softc *)arg1;
8705 		bce_dump_stats_block(sc);
8706 	}
8707 
8708 	return error;
8709 }
8710 
8711 
8712 /****************************************************************************/
8713 /* Allows the stat counters to be cleared without unloading/reloading the   */
8714 /* driver.                                                                  */
8715 /*                                                                          */
8716 /* Returns:                                                                 */
8717 /*   0 for success, positive value for failure.                             */
8718 /****************************************************************************/
8719 static int
8720 bce_sysctl_stats_clear(SYSCTL_HANDLER_ARGS)
8721 {
8722 	int error;
8723 	int result;
8724 	struct bce_softc *sc;
8725 
8726 	result = -1;
8727 	error = sysctl_handle_int(oidp, &result, 0, req);
8728 
8729 	if (error || !req->newptr)
8730 		return (error);
8731 
8732 	if (result == 1) {
8733 		sc = (struct bce_softc *)arg1;
8734 		struct statistics_block *stats;
8735 
8736 		stats = (struct statistics_block *) sc->stats_block;
8737 		bzero(stats, sizeof(struct statistics_block));
8738 
8739 		/* Clear the internal H/W statistics counters. */
8740 		REG_WR(sc, BCE_HC_COMMAND, BCE_HC_COMMAND_CLR_STAT_NOW);
8741 
8742 		/* Reset the driver maintained statistics. */
8743 		sc->interrupts_rx =
8744 		    sc->interrupts_tx = 0;
8745 		sc->tso_frames_requested =
8746 		    sc->tso_frames_completed =
8747 		    sc->tso_frames_failed = 0;
8748 		sc->rx_empty_count =
8749 		    sc->tx_full_count = 0;
8750 		sc->rx_low_watermark = USABLE_RX_BD_ALLOC;
8751 		sc->tx_hi_watermark = 0;
8752 		sc->l2fhdr_error_count =
8753 		    sc->l2fhdr_error_sim_count = 0;
8754 		sc->mbuf_alloc_failed_count =
8755 		    sc->mbuf_alloc_failed_sim_count = 0;
8756 		sc->dma_map_addr_rx_failed_count =
8757 		    sc->dma_map_addr_tx_failed_count = 0;
8758 		sc->mbuf_frag_count = 0;
8759 		sc->csum_offload_tcp_udp =
8760 		    sc->csum_offload_ip = 0;
8761 		sc->vlan_tagged_frames_rcvd =
8762 		    sc->vlan_tagged_frames_stripped = 0;
8763 		sc->split_header_frames_rcvd =
8764 		    sc->split_header_tcp_frames_rcvd = 0;
8765 
8766 		/* Clear firmware maintained statistics. */
8767 		REG_WR_IND(sc, 0x120084, 0);
8768 	}
8769 
8770 	return error;
8771 }
8772 
8773 
8774 /****************************************************************************/
8775 /* Allows the shared memory contents to be dumped through the sysctl  .     */
8776 /* interface.                                                               */
8777 /*                                                                          */
8778 /* Returns:                                                                 */
8779 /*   0 for success, positive value for failure.                             */
8780 /****************************************************************************/
8781 static int
8782 bce_sysctl_shmem_state(SYSCTL_HANDLER_ARGS)
8783 {
8784 	int error;
8785 	int result;
8786 	struct bce_softc *sc;
8787 
8788 	result = -1;
8789 	error = sysctl_handle_int(oidp, &result, 0, req);
8790 
8791 	if (error || !req->newptr)
8792 		return (error);
8793 
8794 	if (result == 1) {
8795 		sc = (struct bce_softc *)arg1;
8796 		bce_dump_shmem_state(sc);
8797 	}
8798 
8799 	return error;
8800 }
8801 
8802 
8803 /****************************************************************************/
8804 /* Allows the bootcode state to be dumped through the sysctl interface.     */
8805 /*                                                                          */
8806 /* Returns:                                                                 */
8807 /*   0 for success, positive value for failure.                             */
8808 /****************************************************************************/
8809 static int
8810 bce_sysctl_bc_state(SYSCTL_HANDLER_ARGS)
8811 {
8812 	int error;
8813 	int result;
8814 	struct bce_softc *sc;
8815 
8816 	result = -1;
8817 	error = sysctl_handle_int(oidp, &result, 0, req);
8818 
8819 	if (error || !req->newptr)
8820 		return (error);
8821 
8822 	if (result == 1) {
8823 		sc = (struct bce_softc *)arg1;
8824 		bce_dump_bc_state(sc);
8825 	}
8826 
8827 	return error;
8828 }
8829 
8830 
8831 /****************************************************************************/
8832 /* Provides a sysctl interface to allow dumping the RX BD chain.            */
8833 /*                                                                          */
8834 /* Returns:                                                                 */
8835 /*   0 for success, positive value for failure.                             */
8836 /****************************************************************************/
8837 static int
8838 bce_sysctl_dump_rx_bd_chain(SYSCTL_HANDLER_ARGS)
8839 {
8840 	int error;
8841 	int result;
8842 	struct bce_softc *sc;
8843 
8844 	result = -1;
8845 	error = sysctl_handle_int(oidp, &result, 0, req);
8846 
8847 	if (error || !req->newptr)
8848 		return (error);
8849 
8850 	if (result == 1) {
8851 		sc = (struct bce_softc *)arg1;
8852 		bce_dump_rx_bd_chain(sc, 0, TOTAL_RX_BD_ALLOC);
8853 	}
8854 
8855 	return error;
8856 }
8857 
8858 
8859 /****************************************************************************/
8860 /* Provides a sysctl interface to allow dumping the RX MBUF chain.          */
8861 /*                                                                          */
8862 /* Returns:                                                                 */
8863 /*   0 for success, positive value for failure.                             */
8864 /****************************************************************************/
8865 static int
8866 bce_sysctl_dump_rx_mbuf_chain(SYSCTL_HANDLER_ARGS)
8867 {
8868 	int error;
8869 	int result;
8870 	struct bce_softc *sc;
8871 
8872 	result = -1;
8873 	error = sysctl_handle_int(oidp, &result, 0, req);
8874 
8875 	if (error || !req->newptr)
8876 		return (error);
8877 
8878 	if (result == 1) {
8879 		sc = (struct bce_softc *)arg1;
8880 		bce_dump_rx_mbuf_chain(sc, 0, USABLE_RX_BD_ALLOC);
8881 	}
8882 
8883 	return error;
8884 }
8885 
8886 
8887 /****************************************************************************/
8888 /* Provides a sysctl interface to allow dumping the TX chain.               */
8889 /*                                                                          */
8890 /* Returns:                                                                 */
8891 /*   0 for success, positive value for failure.                             */
8892 /****************************************************************************/
8893 static int
8894 bce_sysctl_dump_tx_chain(SYSCTL_HANDLER_ARGS)
8895 {
8896 	int error;
8897 	int result;
8898 	struct bce_softc *sc;
8899 
8900 	result = -1;
8901 	error = sysctl_handle_int(oidp, &result, 0, req);
8902 
8903 	if (error || !req->newptr)
8904 		return (error);
8905 
8906 	if (result == 1) {
8907 		sc = (struct bce_softc *)arg1;
8908 		bce_dump_tx_chain(sc, 0, TOTAL_TX_BD_ALLOC);
8909 	}
8910 
8911 	return error;
8912 }
8913 
8914 
8915 /****************************************************************************/
8916 /* Provides a sysctl interface to allow dumping the page chain.             */
8917 /*                                                                          */
8918 /* Returns:                                                                 */
8919 /*   0 for success, positive value for failure.                             */
8920 /****************************************************************************/
8921 static int
8922 bce_sysctl_dump_pg_chain(SYSCTL_HANDLER_ARGS)
8923 {
8924 	int error;
8925 	int result;
8926 	struct bce_softc *sc;
8927 
8928 	result = -1;
8929 	error = sysctl_handle_int(oidp, &result, 0, req);
8930 
8931 	if (error || !req->newptr)
8932 		return (error);
8933 
8934 	if (result == 1) {
8935 		sc = (struct bce_softc *)arg1;
8936 		bce_dump_pg_chain(sc, 0, TOTAL_PG_BD_ALLOC);
8937 	}
8938 
8939 	return error;
8940 }
8941 
8942 /****************************************************************************/
8943 /* Provides a sysctl interface to allow reading arbitrary NVRAM offsets in  */
8944 /* the device.  DO NOT ENABLE ON PRODUCTION SYSTEMS!                        */
8945 /*                                                                          */
8946 /* Returns:                                                                 */
8947 /*   0 for success, positive value for failure.                             */
8948 /****************************************************************************/
8949 static int
8950 bce_sysctl_nvram_read(SYSCTL_HANDLER_ARGS)
8951 {
8952 	struct bce_softc *sc = (struct bce_softc *)arg1;
8953 	int error;
8954 	u32 result;
8955 	u32 val[1];
8956 	u8 *data = (u8 *) val;
8957 
8958 	result = -1;
8959 	error = sysctl_handle_int(oidp, &result, 0, req);
8960 	if (error || (req->newptr == NULL))
8961 		return (error);
8962 
8963 	error = bce_nvram_read(sc, result, data, 4);
8964 
8965 	BCE_PRINTF("offset 0x%08X = 0x%08X\n", result, bce_be32toh(val[0]));
8966 
8967 	return (error);
8968 }
8969 
8970 
8971 /****************************************************************************/
8972 /* Provides a sysctl interface to allow reading arbitrary registers in the  */
8973 /* device.  DO NOT ENABLE ON PRODUCTION SYSTEMS!                            */
8974 /*                                                                          */
8975 /* Returns:                                                                 */
8976 /*   0 for success, positive value for failure.                             */
8977 /****************************************************************************/
8978 static int
8979 bce_sysctl_reg_read(SYSCTL_HANDLER_ARGS)
8980 {
8981 	struct bce_softc *sc = (struct bce_softc *)arg1;
8982 	int error;
8983 	u32 val, result;
8984 
8985 	result = -1;
8986 	error = sysctl_handle_int(oidp, &result, 0, req);
8987 	if (error || (req->newptr == NULL))
8988 		return (error);
8989 
8990 	/* Make sure the register is accessible. */
8991 	if (result < 0x8000) {
8992 		val = REG_RD(sc, result);
8993 		BCE_PRINTF("reg 0x%08X = 0x%08X\n", result, val);
8994 	} else if (result < 0x0280000) {
8995 		val = REG_RD_IND(sc, result);
8996 		BCE_PRINTF("reg 0x%08X = 0x%08X\n", result, val);
8997 	}
8998 
8999 	return (error);
9000 }
9001 
9002 
9003 /****************************************************************************/
9004 /* Provides a sysctl interface to allow reading arbitrary PHY registers in  */
9005 /* the device.  DO NOT ENABLE ON PRODUCTION SYSTEMS!                        */
9006 /*                                                                          */
9007 /* Returns:                                                                 */
9008 /*   0 for success, positive value for failure.                             */
9009 /****************************************************************************/
9010 static int
9011 bce_sysctl_phy_read(SYSCTL_HANDLER_ARGS)
9012 {
9013 	struct bce_softc *sc;
9014 	device_t dev;
9015 	int error, result;
9016 	u16 val;
9017 
9018 	result = -1;
9019 	error = sysctl_handle_int(oidp, &result, 0, req);
9020 	if (error || (req->newptr == NULL))
9021 		return (error);
9022 
9023 	/* Make sure the register is accessible. */
9024 	if (result < 0x20) {
9025 		sc = (struct bce_softc *)arg1;
9026 		dev = sc->bce_dev;
9027 		val = bce_miibus_read_reg(dev, sc->bce_phy_addr, result);
9028 		BCE_PRINTF("phy 0x%02X = 0x%04X\n", result, val);
9029 	}
9030 	return (error);
9031 }
9032 
9033 
9034 /****************************************************************************/
9035 /* Provides a sysctl interface for dumping the nvram contents.              */
9036 /* DO NOT ENABLE ON PRODUCTION SYSTEMS!					    */
9037 /*									    */
9038 /* Returns:								    */
9039 /*   0 for success, positive errno for failure.				    */
9040 /****************************************************************************/
9041 static int
9042 bce_sysctl_nvram_dump(SYSCTL_HANDLER_ARGS)
9043 {
9044 	struct bce_softc *sc = (struct bce_softc *)arg1;
9045 	int error, i;
9046 
9047 	if (sc->nvram_buf == NULL)
9048 		sc->nvram_buf = malloc(sc->bce_flash_size,
9049 				    M_TEMP, M_ZERO | M_WAITOK);
9050 
9051 	error = 0;
9052 	if (req->oldlen == sc->bce_flash_size) {
9053 		for (i = 0; i < sc->bce_flash_size && error == 0; i++)
9054 			error = bce_nvram_read(sc, i, &sc->nvram_buf[i], 1);
9055 	}
9056 
9057 	if (error == 0)
9058 		error = SYSCTL_OUT(req, sc->nvram_buf, sc->bce_flash_size);
9059 
9060 	return error;
9061 }
9062 
9063 #ifdef BCE_NVRAM_WRITE_SUPPORT
9064 /****************************************************************************/
9065 /* Provides a sysctl interface for writing to nvram.                        */
9066 /* DO NOT ENABLE ON PRODUCTION SYSTEMS!					    */
9067 /*									    */
9068 /* Returns:								    */
9069 /*   0 for success, positive errno for failure.				    */
9070 /****************************************************************************/
9071 static int
9072 bce_sysctl_nvram_write(SYSCTL_HANDLER_ARGS)
9073 {
9074 	struct bce_softc *sc = (struct bce_softc *)arg1;
9075 	int error;
9076 
9077 	if (sc->nvram_buf == NULL)
9078 		sc->nvram_buf = malloc(sc->bce_flash_size,
9079 				    M_TEMP, M_ZERO | M_WAITOK);
9080 	else
9081 		bzero(sc->nvram_buf, sc->bce_flash_size);
9082 
9083 	error = SYSCTL_IN(req, sc->nvram_buf, sc->bce_flash_size);
9084 	if (error == 0)
9085 		return (error);
9086 
9087 	if (req->newlen == sc->bce_flash_size)
9088 		error = bce_nvram_write(sc, 0, sc->nvram_buf,
9089 			    sc->bce_flash_size);
9090 
9091 
9092 	return error;
9093 }
9094 #endif
9095 
9096 
9097 /****************************************************************************/
9098 /* Provides a sysctl interface to allow reading a CID.                      */
9099 /*                                                                          */
9100 /* Returns:                                                                 */
9101 /*   0 for success, positive value for failure.                             */
9102 /****************************************************************************/
9103 static int
9104 bce_sysctl_dump_ctx(SYSCTL_HANDLER_ARGS)
9105 {
9106 	struct bce_softc *sc;
9107 	int error, result;
9108 
9109 	result = -1;
9110 	error = sysctl_handle_int(oidp, &result, 0, req);
9111 	if (error || (req->newptr == NULL))
9112 		return (error);
9113 
9114 	/* Make sure the register is accessible. */
9115 	if (result <= TX_CID) {
9116 		sc = (struct bce_softc *)arg1;
9117 		bce_dump_ctx(sc, result);
9118 	}
9119 
9120 	return (error);
9121 }
9122 
9123 
9124 /****************************************************************************/
9125 /* Provides a sysctl interface to forcing the driver to dump state and      */
9126 /* enter the debugger.  DO NOT ENABLE ON PRODUCTION SYSTEMS!                */
9127 /*                                                                          */
9128 /* Returns:                                                                 */
9129 /*   0 for success, positive value for failure.                             */
9130 /****************************************************************************/
9131 static int
9132 bce_sysctl_breakpoint(SYSCTL_HANDLER_ARGS)
9133 {
9134 	int error;
9135 	int result;
9136 	struct bce_softc *sc;
9137 
9138 	result = -1;
9139 	error = sysctl_handle_int(oidp, &result, 0, req);
9140 
9141 	if (error || !req->newptr)
9142 		return (error);
9143 
9144 	if (result == 1) {
9145 		sc = (struct bce_softc *)arg1;
9146 		bce_breakpoint(sc);
9147 	}
9148 
9149 	return error;
9150 }
9151 #endif
9152 
9153 /****************************************************************************/
9154 /* Adds any sysctl parameters for tuning or debugging purposes.             */
9155 /*                                                                          */
9156 /* Returns:                                                                 */
9157 /*   0 for success, positive value for failure.                             */
9158 /****************************************************************************/
9159 static void
9160 bce_add_sysctls(struct bce_softc *sc)
9161 {
9162 	struct sysctl_ctx_list *ctx;
9163 	struct sysctl_oid_list *children;
9164 
9165 	DBENTER(BCE_VERBOSE_MISC);
9166 
9167 	ctx = device_get_sysctl_ctx(sc->bce_dev);
9168 	children = SYSCTL_CHILDREN(device_get_sysctl_tree(sc->bce_dev));
9169 
9170 #ifdef BCE_DEBUG
9171 	SYSCTL_ADD_INT(ctx, children, OID_AUTO,
9172 	    "l2fhdr_error_sim_control",
9173 	    CTLFLAG_RW, &l2fhdr_error_sim_control,
9174 	    0, "Debug control to force l2fhdr errors");
9175 
9176 	SYSCTL_ADD_INT(ctx, children, OID_AUTO,
9177 	    "l2fhdr_error_sim_count",
9178 	    CTLFLAG_RD, &sc->l2fhdr_error_sim_count,
9179 	    0, "Number of simulated l2_fhdr errors");
9180 #endif
9181 
9182 	SYSCTL_ADD_UINT(ctx, children, OID_AUTO,
9183 	    "l2fhdr_error_count",
9184 	    CTLFLAG_RD, &sc->l2fhdr_error_count,
9185 	    0, "Number of l2_fhdr errors");
9186 
9187 #ifdef BCE_DEBUG
9188 	SYSCTL_ADD_INT(ctx, children, OID_AUTO,
9189 	    "mbuf_alloc_failed_sim_control",
9190 	    CTLFLAG_RW, &mbuf_alloc_failed_sim_control,
9191 	    0, "Debug control to force mbuf allocation failures");
9192 
9193 	SYSCTL_ADD_UINT(ctx, children, OID_AUTO,
9194 	    "mbuf_alloc_failed_sim_count",
9195 	    CTLFLAG_RD, &sc->mbuf_alloc_failed_sim_count,
9196 	    0, "Number of simulated mbuf cluster allocation failures");
9197 #endif
9198 
9199 	SYSCTL_ADD_UINT(ctx, children, OID_AUTO,
9200 	    "mbuf_alloc_failed_count",
9201 	    CTLFLAG_RD, &sc->mbuf_alloc_failed_count,
9202 	    0, "Number of mbuf allocation failures");
9203 
9204 	SYSCTL_ADD_UINT(ctx, children, OID_AUTO,
9205 	    "mbuf_frag_count",
9206 	    CTLFLAG_RD, &sc->mbuf_frag_count,
9207 	    0, "Number of fragmented mbufs");
9208 
9209 #ifdef BCE_DEBUG
9210 	SYSCTL_ADD_INT(ctx, children, OID_AUTO,
9211 	    "dma_map_addr_failed_sim_control",
9212 	    CTLFLAG_RW, &dma_map_addr_failed_sim_control,
9213 	    0, "Debug control to force DMA mapping failures");
9214 
9215 	/* ToDo: Figure out how to update this value in bce_dma_map_addr(). */
9216 	SYSCTL_ADD_UINT(ctx, children, OID_AUTO,
9217 	    "dma_map_addr_failed_sim_count",
9218 	    CTLFLAG_RD, &sc->dma_map_addr_failed_sim_count,
9219 	    0, "Number of simulated DMA mapping failures");
9220 
9221 #endif
9222 
9223 	SYSCTL_ADD_UINT(ctx, children, OID_AUTO,
9224 	    "dma_map_addr_rx_failed_count",
9225 	    CTLFLAG_RD, &sc->dma_map_addr_rx_failed_count,
9226 	    0, "Number of RX DMA mapping failures");
9227 
9228 	SYSCTL_ADD_UINT(ctx, children, OID_AUTO,
9229 	    "dma_map_addr_tx_failed_count",
9230 	    CTLFLAG_RD, &sc->dma_map_addr_tx_failed_count,
9231 	    0, "Number of TX DMA mapping failures");
9232 
9233 #ifdef BCE_DEBUG
9234 	SYSCTL_ADD_INT(ctx, children, OID_AUTO,
9235 	    "unexpected_attention_sim_control",
9236 	    CTLFLAG_RW, &unexpected_attention_sim_control,
9237 	    0, "Debug control to simulate unexpected attentions");
9238 
9239 	SYSCTL_ADD_UINT(ctx, children, OID_AUTO,
9240 	    "unexpected_attention_sim_count",
9241 	    CTLFLAG_RW, &sc->unexpected_attention_sim_count,
9242 	    0, "Number of simulated unexpected attentions");
9243 #endif
9244 
9245 	SYSCTL_ADD_UINT(ctx, children, OID_AUTO,
9246 	    "unexpected_attention_count",
9247 	    CTLFLAG_RW, &sc->unexpected_attention_count,
9248 	    0, "Number of unexpected attentions");
9249 
9250 #ifdef BCE_DEBUG
9251 	SYSCTL_ADD_INT(ctx, children, OID_AUTO,
9252 	    "debug_bootcode_running_failure",
9253 	    CTLFLAG_RW, &bootcode_running_failure_sim_control,
9254 	    0, "Debug control to force bootcode running failures");
9255 
9256 	SYSCTL_ADD_INT(ctx, children, OID_AUTO,
9257 	    "rx_low_watermark",
9258 	    CTLFLAG_RD, &sc->rx_low_watermark,
9259 	    0, "Lowest level of free rx_bd's");
9260 
9261 	SYSCTL_ADD_QUAD(ctx, children, OID_AUTO,
9262 	    "rx_empty_count",
9263 	    CTLFLAG_RD, &sc->rx_empty_count,
9264 	    "Number of times the RX chain was empty");
9265 
9266 	SYSCTL_ADD_INT(ctx, children, OID_AUTO,
9267 	    "tx_hi_watermark",
9268 	    CTLFLAG_RD, &sc->tx_hi_watermark,
9269 	    0, "Highest level of used tx_bd's");
9270 
9271 	SYSCTL_ADD_QUAD(ctx, children, OID_AUTO,
9272 	    "tx_full_count",
9273 	    CTLFLAG_RD, &sc->tx_full_count,
9274 	    "Number of times the TX chain was full");
9275 
9276 	SYSCTL_ADD_QUAD(ctx, children, OID_AUTO,
9277 	    "tso_frames_requested",
9278 	    CTLFLAG_RD, &sc->tso_frames_requested,
9279 	    "Number of TSO frames requested");
9280 
9281 	SYSCTL_ADD_QUAD(ctx, children, OID_AUTO,
9282 	    "tso_frames_completed",
9283 	    CTLFLAG_RD, &sc->tso_frames_completed,
9284 	    "Number of TSO frames completed");
9285 
9286 	SYSCTL_ADD_QUAD(ctx, children, OID_AUTO,
9287 	    "tso_frames_failed",
9288 	    CTLFLAG_RD, &sc->tso_frames_failed,
9289 	    "Number of TSO frames failed");
9290 
9291 	SYSCTL_ADD_QUAD(ctx, children, OID_AUTO,
9292 	    "csum_offload_ip",
9293 	    CTLFLAG_RD, &sc->csum_offload_ip,
9294 	    "Number of IP checksum offload frames");
9295 
9296 	SYSCTL_ADD_QUAD(ctx, children, OID_AUTO,
9297 	    "csum_offload_tcp_udp",
9298 	    CTLFLAG_RD, &sc->csum_offload_tcp_udp,
9299 	    "Number of TCP/UDP checksum offload frames");
9300 
9301 	SYSCTL_ADD_QUAD(ctx, children, OID_AUTO,
9302 	    "vlan_tagged_frames_rcvd",
9303 	    CTLFLAG_RD, &sc->vlan_tagged_frames_rcvd,
9304 	    "Number of VLAN tagged frames received");
9305 
9306 	SYSCTL_ADD_QUAD(ctx, children, OID_AUTO,
9307 	    "vlan_tagged_frames_stripped",
9308 	    CTLFLAG_RD, &sc->vlan_tagged_frames_stripped,
9309 	    "Number of VLAN tagged frames stripped");
9310 
9311 	SYSCTL_ADD_QUAD(ctx, children, OID_AUTO,
9312 	    "interrupts_rx",
9313 	    CTLFLAG_RD, &sc->interrupts_rx,
9314 	    "Number of RX interrupts");
9315 
9316 	SYSCTL_ADD_QUAD(ctx, children, OID_AUTO,
9317 	    "interrupts_tx",
9318 	    CTLFLAG_RD, &sc->interrupts_tx,
9319 	    "Number of TX interrupts");
9320 
9321 	if (bce_hdr_split == TRUE) {
9322 		SYSCTL_ADD_QUAD(ctx, children, OID_AUTO,
9323 		    "split_header_frames_rcvd",
9324 		    CTLFLAG_RD, &sc->split_header_frames_rcvd,
9325 		    "Number of split header frames received");
9326 
9327 		SYSCTL_ADD_QUAD(ctx, children, OID_AUTO,
9328 		    "split_header_tcp_frames_rcvd",
9329 		    CTLFLAG_RD, &sc->split_header_tcp_frames_rcvd,
9330 		    "Number of split header TCP frames received");
9331 	}
9332 
9333 	SYSCTL_ADD_PROC(ctx, children, OID_AUTO,
9334 	    "nvram_dump", CTLTYPE_OPAQUE | CTLFLAG_RD,
9335 	    (void *)sc, 0,
9336 	    bce_sysctl_nvram_dump, "S", "");
9337 
9338 #ifdef BCE_NVRAM_WRITE_SUPPORT
9339 	SYSCTL_ADD_PROC(ctx, children, OID_AUTO,
9340 	    "nvram_write", CTLTYPE_OPAQUE | CTLFLAG_WR,
9341 	    (void *)sc, 0,
9342 	    bce_sysctl_nvram_write, "S", "");
9343 #endif
9344 #endif /* BCE_DEBUG */
9345 
9346 	SYSCTL_ADD_QUAD(ctx, children, OID_AUTO,
9347 	    "stat_IfHcInOctets",
9348 	    CTLFLAG_RD, &sc->stat_IfHCInOctets,
9349 	    "Bytes received");
9350 
9351 	SYSCTL_ADD_QUAD(ctx, children, OID_AUTO,
9352 	    "stat_IfHCInBadOctets",
9353 	    CTLFLAG_RD, &sc->stat_IfHCInBadOctets,
9354 	    "Bad bytes received");
9355 
9356 	SYSCTL_ADD_QUAD(ctx, children, OID_AUTO,
9357 	    "stat_IfHCOutOctets",
9358 	    CTLFLAG_RD, &sc->stat_IfHCOutOctets,
9359 	    "Bytes sent");
9360 
9361 	SYSCTL_ADD_QUAD(ctx, children, OID_AUTO,
9362 	    "stat_IfHCOutBadOctets",
9363 	    CTLFLAG_RD, &sc->stat_IfHCOutBadOctets,
9364 	    "Bad bytes sent");
9365 
9366 	SYSCTL_ADD_QUAD(ctx, children, OID_AUTO,
9367 	    "stat_IfHCInUcastPkts",
9368 	    CTLFLAG_RD, &sc->stat_IfHCInUcastPkts,
9369 	    "Unicast packets received");
9370 
9371 	SYSCTL_ADD_QUAD(ctx, children, OID_AUTO,
9372 	    "stat_IfHCInMulticastPkts",
9373 	    CTLFLAG_RD, &sc->stat_IfHCInMulticastPkts,
9374 	    "Multicast packets received");
9375 
9376 	SYSCTL_ADD_QUAD(ctx, children, OID_AUTO,
9377 	    "stat_IfHCInBroadcastPkts",
9378 	    CTLFLAG_RD, &sc->stat_IfHCInBroadcastPkts,
9379 	    "Broadcast packets received");
9380 
9381 	SYSCTL_ADD_QUAD(ctx, children, OID_AUTO,
9382 	    "stat_IfHCOutUcastPkts",
9383 	    CTLFLAG_RD, &sc->stat_IfHCOutUcastPkts,
9384 	    "Unicast packets sent");
9385 
9386 	SYSCTL_ADD_QUAD(ctx, children, OID_AUTO,
9387 	    "stat_IfHCOutMulticastPkts",
9388 	    CTLFLAG_RD, &sc->stat_IfHCOutMulticastPkts,
9389 	    "Multicast packets sent");
9390 
9391 	SYSCTL_ADD_QUAD(ctx, children, OID_AUTO,
9392 	    "stat_IfHCOutBroadcastPkts",
9393 	    CTLFLAG_RD, &sc->stat_IfHCOutBroadcastPkts,
9394 	    "Broadcast packets sent");
9395 
9396 	SYSCTL_ADD_UINT(ctx, children, OID_AUTO,
9397 	    "stat_emac_tx_stat_dot3statsinternalmactransmiterrors",
9398 	    CTLFLAG_RD, &sc->stat_emac_tx_stat_dot3statsinternalmactransmiterrors,
9399 	    0, "Internal MAC transmit errors");
9400 
9401 	SYSCTL_ADD_UINT(ctx, children, OID_AUTO,
9402 	    "stat_Dot3StatsCarrierSenseErrors",
9403 	    CTLFLAG_RD, &sc->stat_Dot3StatsCarrierSenseErrors,
9404 	    0, "Carrier sense errors");
9405 
9406 	SYSCTL_ADD_UINT(ctx, children, OID_AUTO,
9407 	    "stat_Dot3StatsFCSErrors",
9408 	    CTLFLAG_RD, &sc->stat_Dot3StatsFCSErrors,
9409 	    0, "Frame check sequence errors");
9410 
9411 	SYSCTL_ADD_UINT(ctx, children, OID_AUTO,
9412 	    "stat_Dot3StatsAlignmentErrors",
9413 	    CTLFLAG_RD, &sc->stat_Dot3StatsAlignmentErrors,
9414 	    0, "Alignment errors");
9415 
9416 	SYSCTL_ADD_UINT(ctx, children, OID_AUTO,
9417 	    "stat_Dot3StatsSingleCollisionFrames",
9418 	    CTLFLAG_RD, &sc->stat_Dot3StatsSingleCollisionFrames,
9419 	    0, "Single Collision Frames");
9420 
9421 	SYSCTL_ADD_UINT(ctx, children, OID_AUTO,
9422 	    "stat_Dot3StatsMultipleCollisionFrames",
9423 	    CTLFLAG_RD, &sc->stat_Dot3StatsMultipleCollisionFrames,
9424 	    0, "Multiple Collision Frames");
9425 
9426 	SYSCTL_ADD_UINT(ctx, children, OID_AUTO,
9427 	    "stat_Dot3StatsDeferredTransmissions",
9428 	    CTLFLAG_RD, &sc->stat_Dot3StatsDeferredTransmissions,
9429 	    0, "Deferred Transmissions");
9430 
9431 	SYSCTL_ADD_UINT(ctx, children, OID_AUTO,
9432 	    "stat_Dot3StatsExcessiveCollisions",
9433 	    CTLFLAG_RD, &sc->stat_Dot3StatsExcessiveCollisions,
9434 	    0, "Excessive Collisions");
9435 
9436 	SYSCTL_ADD_UINT(ctx, children, OID_AUTO,
9437 	    "stat_Dot3StatsLateCollisions",
9438 	    CTLFLAG_RD, &sc->stat_Dot3StatsLateCollisions,
9439 	    0, "Late Collisions");
9440 
9441 	SYSCTL_ADD_UINT(ctx, children, OID_AUTO,
9442 	    "stat_EtherStatsCollisions",
9443 	    CTLFLAG_RD, &sc->stat_EtherStatsCollisions,
9444 	    0, "Collisions");
9445 
9446 	SYSCTL_ADD_UINT(ctx, children, OID_AUTO,
9447 	    "stat_EtherStatsFragments",
9448 	    CTLFLAG_RD, &sc->stat_EtherStatsFragments,
9449 	    0, "Fragments");
9450 
9451 	SYSCTL_ADD_UINT(ctx, children, OID_AUTO,
9452 	    "stat_EtherStatsJabbers",
9453 	    CTLFLAG_RD, &sc->stat_EtherStatsJabbers,
9454 	    0, "Jabbers");
9455 
9456 	SYSCTL_ADD_UINT(ctx, children, OID_AUTO,
9457 	    "stat_EtherStatsUndersizePkts",
9458 	    CTLFLAG_RD, &sc->stat_EtherStatsUndersizePkts,
9459 	    0, "Undersize packets");
9460 
9461 	SYSCTL_ADD_UINT(ctx, children, OID_AUTO,
9462 	    "stat_EtherStatsOversizePkts",
9463 	    CTLFLAG_RD, &sc->stat_EtherStatsOversizePkts,
9464 	    0, "stat_EtherStatsOversizePkts");
9465 
9466 	SYSCTL_ADD_UINT(ctx, children, OID_AUTO,
9467 	    "stat_EtherStatsPktsRx64Octets",
9468 	    CTLFLAG_RD, &sc->stat_EtherStatsPktsRx64Octets,
9469 	    0, "Bytes received in 64 byte packets");
9470 
9471 	SYSCTL_ADD_UINT(ctx, children, OID_AUTO,
9472 	    "stat_EtherStatsPktsRx65Octetsto127Octets",
9473 	    CTLFLAG_RD, &sc->stat_EtherStatsPktsRx65Octetsto127Octets,
9474 	    0, "Bytes received in 65 to 127 byte packets");
9475 
9476 	SYSCTL_ADD_UINT(ctx, children, OID_AUTO,
9477 	    "stat_EtherStatsPktsRx128Octetsto255Octets",
9478 	    CTLFLAG_RD, &sc->stat_EtherStatsPktsRx128Octetsto255Octets,
9479 	    0, "Bytes received in 128 to 255 byte packets");
9480 
9481 	SYSCTL_ADD_UINT(ctx, children, OID_AUTO,
9482 	    "stat_EtherStatsPktsRx256Octetsto511Octets",
9483 	    CTLFLAG_RD, &sc->stat_EtherStatsPktsRx256Octetsto511Octets,
9484 	    0, "Bytes received in 256 to 511 byte packets");
9485 
9486 	SYSCTL_ADD_UINT(ctx, children, OID_AUTO,
9487 	    "stat_EtherStatsPktsRx512Octetsto1023Octets",
9488 	    CTLFLAG_RD, &sc->stat_EtherStatsPktsRx512Octetsto1023Octets,
9489 	    0, "Bytes received in 512 to 1023 byte packets");
9490 
9491 	SYSCTL_ADD_UINT(ctx, children, OID_AUTO,
9492 	    "stat_EtherStatsPktsRx1024Octetsto1522Octets",
9493 	    CTLFLAG_RD, &sc->stat_EtherStatsPktsRx1024Octetsto1522Octets,
9494 	    0, "Bytes received in 1024 t0 1522 byte packets");
9495 
9496 	SYSCTL_ADD_UINT(ctx, children, OID_AUTO,
9497 	    "stat_EtherStatsPktsRx1523Octetsto9022Octets",
9498 	    CTLFLAG_RD, &sc->stat_EtherStatsPktsRx1523Octetsto9022Octets,
9499 	    0, "Bytes received in 1523 to 9022 byte packets");
9500 
9501 	SYSCTL_ADD_UINT(ctx, children, OID_AUTO,
9502 	    "stat_EtherStatsPktsTx64Octets",
9503 	    CTLFLAG_RD, &sc->stat_EtherStatsPktsTx64Octets,
9504 	    0, "Bytes sent in 64 byte packets");
9505 
9506 	SYSCTL_ADD_UINT(ctx, children, OID_AUTO,
9507 	    "stat_EtherStatsPktsTx65Octetsto127Octets",
9508 	    CTLFLAG_RD, &sc->stat_EtherStatsPktsTx65Octetsto127Octets,
9509 	    0, "Bytes sent in 65 to 127 byte packets");
9510 
9511 	SYSCTL_ADD_UINT(ctx, children, OID_AUTO,
9512 	    "stat_EtherStatsPktsTx128Octetsto255Octets",
9513 	    CTLFLAG_RD, &sc->stat_EtherStatsPktsTx128Octetsto255Octets,
9514 	    0, "Bytes sent in 128 to 255 byte packets");
9515 
9516 	SYSCTL_ADD_UINT(ctx, children, OID_AUTO,
9517 	    "stat_EtherStatsPktsTx256Octetsto511Octets",
9518 	    CTLFLAG_RD, &sc->stat_EtherStatsPktsTx256Octetsto511Octets,
9519 	    0, "Bytes sent in 256 to 511 byte packets");
9520 
9521 	SYSCTL_ADD_UINT(ctx, children, OID_AUTO,
9522 	    "stat_EtherStatsPktsTx512Octetsto1023Octets",
9523 	    CTLFLAG_RD, &sc->stat_EtherStatsPktsTx512Octetsto1023Octets,
9524 	    0, "Bytes sent in 512 to 1023 byte packets");
9525 
9526 	SYSCTL_ADD_UINT(ctx, children, OID_AUTO,
9527 	    "stat_EtherStatsPktsTx1024Octetsto1522Octets",
9528 	    CTLFLAG_RD, &sc->stat_EtherStatsPktsTx1024Octetsto1522Octets,
9529 	    0, "Bytes sent in 1024 to 1522 byte packets");
9530 
9531 	SYSCTL_ADD_UINT(ctx, children, OID_AUTO,
9532 	    "stat_EtherStatsPktsTx1523Octetsto9022Octets",
9533 	    CTLFLAG_RD, &sc->stat_EtherStatsPktsTx1523Octetsto9022Octets,
9534 	    0, "Bytes sent in 1523 to 9022 byte packets");
9535 
9536 	SYSCTL_ADD_UINT(ctx, children, OID_AUTO,
9537 	    "stat_XonPauseFramesReceived",
9538 	    CTLFLAG_RD, &sc->stat_XonPauseFramesReceived,
9539 	    0, "XON pause frames receved");
9540 
9541 	SYSCTL_ADD_UINT(ctx, children, OID_AUTO,
9542 	    "stat_XoffPauseFramesReceived",
9543 	    CTLFLAG_RD, &sc->stat_XoffPauseFramesReceived,
9544 	    0, "XOFF pause frames received");
9545 
9546 	SYSCTL_ADD_UINT(ctx, children, OID_AUTO,
9547 	    "stat_OutXonSent",
9548 	    CTLFLAG_RD, &sc->stat_OutXonSent,
9549 	    0, "XON pause frames sent");
9550 
9551 	SYSCTL_ADD_UINT(ctx, children, OID_AUTO,
9552 	    "stat_OutXoffSent",
9553 	    CTLFLAG_RD, &sc->stat_OutXoffSent,
9554 	    0, "XOFF pause frames sent");
9555 
9556 	SYSCTL_ADD_UINT(ctx, children, OID_AUTO,
9557 	    "stat_FlowControlDone",
9558 	    CTLFLAG_RD, &sc->stat_FlowControlDone,
9559 	    0, "Flow control done");
9560 
9561 	SYSCTL_ADD_UINT(ctx, children, OID_AUTO,
9562 	    "stat_MacControlFramesReceived",
9563 	    CTLFLAG_RD, &sc->stat_MacControlFramesReceived,
9564 	    0, "MAC control frames received");
9565 
9566 	SYSCTL_ADD_UINT(ctx, children, OID_AUTO,
9567 	    "stat_XoffStateEntered",
9568 	    CTLFLAG_RD, &sc->stat_XoffStateEntered,
9569 	    0, "XOFF state entered");
9570 
9571 	SYSCTL_ADD_UINT(ctx, children, OID_AUTO,
9572 	    "stat_IfInFramesL2FilterDiscards",
9573 	    CTLFLAG_RD, &sc->stat_IfInFramesL2FilterDiscards,
9574 	    0, "Received L2 packets discarded");
9575 
9576 	SYSCTL_ADD_UINT(ctx, children, OID_AUTO,
9577 	    "stat_IfInRuleCheckerDiscards",
9578 	    CTLFLAG_RD, &sc->stat_IfInRuleCheckerDiscards,
9579 	    0, "Received packets discarded by rule");
9580 
9581 	SYSCTL_ADD_UINT(ctx, children, OID_AUTO,
9582 	    "stat_IfInFTQDiscards",
9583 	    CTLFLAG_RD, &sc->stat_IfInFTQDiscards,
9584 	    0, "Received packet FTQ discards");
9585 
9586 	SYSCTL_ADD_UINT(ctx, children, OID_AUTO,
9587 	    "stat_IfInMBUFDiscards",
9588 	    CTLFLAG_RD, &sc->stat_IfInMBUFDiscards,
9589 	    0, "Received packets discarded due to lack "
9590 	    "of controller buffer memory");
9591 
9592 	SYSCTL_ADD_UINT(ctx, children, OID_AUTO,
9593 	    "stat_IfInRuleCheckerP4Hit",
9594 	    CTLFLAG_RD, &sc->stat_IfInRuleCheckerP4Hit,
9595 	    0, "Received packets rule checker hits");
9596 
9597 	SYSCTL_ADD_UINT(ctx, children, OID_AUTO,
9598 	    "stat_CatchupInRuleCheckerDiscards",
9599 	    CTLFLAG_RD, &sc->stat_CatchupInRuleCheckerDiscards,
9600 	    0, "Received packets discarded in Catchup path");
9601 
9602 	SYSCTL_ADD_UINT(ctx, children, OID_AUTO,
9603 	    "stat_CatchupInFTQDiscards",
9604 	    CTLFLAG_RD, &sc->stat_CatchupInFTQDiscards,
9605 	    0, "Received packets discarded in FTQ in Catchup path");
9606 
9607 	SYSCTL_ADD_UINT(ctx, children, OID_AUTO,
9608 	    "stat_CatchupInMBUFDiscards",
9609 	    CTLFLAG_RD, &sc->stat_CatchupInMBUFDiscards,
9610 	    0, "Received packets discarded in controller "
9611 	    "buffer memory in Catchup path");
9612 
9613 	SYSCTL_ADD_UINT(ctx, children, OID_AUTO,
9614 	    "stat_CatchupInRuleCheckerP4Hit",
9615 	    CTLFLAG_RD, &sc->stat_CatchupInRuleCheckerP4Hit,
9616 	    0, "Received packets rule checker hits in Catchup path");
9617 
9618 	SYSCTL_ADD_UINT(ctx, children, OID_AUTO,
9619 	    "com_no_buffers",
9620 	    CTLFLAG_RD, &sc->com_no_buffers,
9621 	    0, "Valid packets received but no RX buffers available");
9622 
9623 #ifdef BCE_DEBUG
9624 	SYSCTL_ADD_PROC(ctx, children, OID_AUTO,
9625 	    "driver_state", CTLTYPE_INT | CTLFLAG_RW,
9626 	    (void *)sc, 0,
9627 	    bce_sysctl_driver_state, "I", "Drive state information");
9628 
9629 	SYSCTL_ADD_PROC(ctx, children, OID_AUTO,
9630 	    "hw_state", CTLTYPE_INT | CTLFLAG_RW,
9631 	    (void *)sc, 0,
9632 	    bce_sysctl_hw_state, "I", "Hardware state information");
9633 
9634 	SYSCTL_ADD_PROC(ctx, children, OID_AUTO,
9635 	    "status_block", CTLTYPE_INT | CTLFLAG_RW,
9636 	    (void *)sc, 0,
9637 	    bce_sysctl_status_block, "I", "Dump status block");
9638 
9639 	SYSCTL_ADD_PROC(ctx, children, OID_AUTO,
9640 	    "stats_block", CTLTYPE_INT | CTLFLAG_RW,
9641 	    (void *)sc, 0,
9642 	    bce_sysctl_stats_block, "I", "Dump statistics block");
9643 
9644 	SYSCTL_ADD_PROC(ctx, children, OID_AUTO,
9645 	    "stats_clear", CTLTYPE_INT | CTLFLAG_RW,
9646 	    (void *)sc, 0,
9647 	    bce_sysctl_stats_clear, "I", "Clear statistics block");
9648 
9649 	SYSCTL_ADD_PROC(ctx, children, OID_AUTO,
9650 	    "shmem_state", CTLTYPE_INT | CTLFLAG_RW,
9651 	    (void *)sc, 0,
9652 	    bce_sysctl_shmem_state, "I", "Shared memory state information");
9653 
9654 	SYSCTL_ADD_PROC(ctx, children, OID_AUTO,
9655 	    "bc_state", CTLTYPE_INT | CTLFLAG_RW,
9656 	    (void *)sc, 0,
9657 	    bce_sysctl_bc_state, "I", "Bootcode state information");
9658 
9659 	SYSCTL_ADD_PROC(ctx, children, OID_AUTO,
9660 	    "dump_rx_bd_chain", CTLTYPE_INT | CTLFLAG_RW,
9661 	    (void *)sc, 0,
9662 	    bce_sysctl_dump_rx_bd_chain, "I", "Dump RX BD chain");
9663 
9664 	SYSCTL_ADD_PROC(ctx, children, OID_AUTO,
9665 	    "dump_rx_mbuf_chain", CTLTYPE_INT | CTLFLAG_RW,
9666 	    (void *)sc, 0,
9667 	    bce_sysctl_dump_rx_mbuf_chain, "I", "Dump RX MBUF chain");
9668 
9669 	SYSCTL_ADD_PROC(ctx, children, OID_AUTO,
9670 	    "dump_tx_chain", CTLTYPE_INT | CTLFLAG_RW,
9671 	    (void *)sc, 0,
9672 	    bce_sysctl_dump_tx_chain, "I", "Dump tx_bd chain");
9673 
9674 	if (bce_hdr_split == TRUE) {
9675 		SYSCTL_ADD_PROC(ctx, children, OID_AUTO,
9676 		    "dump_pg_chain", CTLTYPE_INT | CTLFLAG_RW,
9677 		    (void *)sc, 0,
9678 		    bce_sysctl_dump_pg_chain, "I", "Dump page chain");
9679 	}
9680 
9681 	SYSCTL_ADD_PROC(ctx, children, OID_AUTO,
9682 	    "dump_ctx", CTLTYPE_INT | CTLFLAG_RW,
9683 	    (void *)sc, 0,
9684 	    bce_sysctl_dump_ctx, "I", "Dump context memory");
9685 
9686 	SYSCTL_ADD_PROC(ctx, children, OID_AUTO,
9687 	    "breakpoint", CTLTYPE_INT | CTLFLAG_RW,
9688 	    (void *)sc, 0,
9689 	    bce_sysctl_breakpoint, "I", "Driver breakpoint");
9690 
9691 	SYSCTL_ADD_PROC(ctx, children, OID_AUTO,
9692 	    "reg_read", CTLTYPE_INT | CTLFLAG_RW,
9693 	    (void *)sc, 0,
9694 	    bce_sysctl_reg_read, "I", "Register read");
9695 
9696 	SYSCTL_ADD_PROC(ctx, children, OID_AUTO,
9697 	    "nvram_read", CTLTYPE_INT | CTLFLAG_RW,
9698 	    (void *)sc, 0,
9699 	    bce_sysctl_nvram_read, "I", "NVRAM read");
9700 
9701 	SYSCTL_ADD_PROC(ctx, children, OID_AUTO,
9702 	    "phy_read", CTLTYPE_INT | CTLFLAG_RW,
9703 	    (void *)sc, 0,
9704 	    bce_sysctl_phy_read, "I", "PHY register read");
9705 
9706 #endif
9707 
9708 	DBEXIT(BCE_VERBOSE_MISC);
9709 }
9710 
9711 
9712 /****************************************************************************/
9713 /* BCE Debug Routines                                                       */
9714 /****************************************************************************/
9715 #ifdef BCE_DEBUG
9716 
9717 /****************************************************************************/
9718 /* Freezes the controller to allow for a cohesive state dump.               */
9719 /*                                                                          */
9720 /* Returns:                                                                 */
9721 /*   Nothing.                                                               */
9722 /****************************************************************************/
9723 static __attribute__ ((noinline)) void
9724 bce_freeze_controller(struct bce_softc *sc)
9725 {
9726 	u32 val;
9727 	val = REG_RD(sc, BCE_MISC_COMMAND);
9728 	val |= BCE_MISC_COMMAND_DISABLE_ALL;
9729 	REG_WR(sc, BCE_MISC_COMMAND, val);
9730 }
9731 
9732 
9733 /****************************************************************************/
9734 /* Unfreezes the controller after a freeze operation.  This may not always  */
9735 /* work and the controller will require a reset!                            */
9736 /*                                                                          */
9737 /* Returns:                                                                 */
9738 /*   Nothing.                                                               */
9739 /****************************************************************************/
9740 static __attribute__ ((noinline)) void
9741 bce_unfreeze_controller(struct bce_softc *sc)
9742 {
9743 	u32 val;
9744 	val = REG_RD(sc, BCE_MISC_COMMAND);
9745 	val |= BCE_MISC_COMMAND_ENABLE_ALL;
9746 	REG_WR(sc, BCE_MISC_COMMAND, val);
9747 }
9748 
9749 
9750 /****************************************************************************/
9751 /* Prints out Ethernet frame information from an mbuf.                      */
9752 /*                                                                          */
9753 /* Partially decode an Ethernet frame to look at some important headers.    */
9754 /*                                                                          */
9755 /* Returns:                                                                 */
9756 /*   Nothing.                                                               */
9757 /****************************************************************************/
9758 static __attribute__ ((noinline)) void
9759 bce_dump_enet(struct bce_softc *sc, struct mbuf *m)
9760 {
9761 	struct ether_vlan_header *eh;
9762 	u16 etype;
9763 	int ehlen;
9764 	struct ip *ip;
9765 	struct tcphdr *th;
9766 	struct udphdr *uh;
9767 	struct arphdr *ah;
9768 
9769 	BCE_PRINTF(
9770 	    "-----------------------------"
9771 	    " Frame Decode "
9772 	    "-----------------------------\n");
9773 
9774 	eh = mtod(m, struct ether_vlan_header *);
9775 
9776 	/* Handle VLAN encapsulation if present. */
9777 	if (eh->evl_encap_proto == htons(ETHERTYPE_VLAN)) {
9778 		etype = ntohs(eh->evl_proto);
9779 		ehlen = ETHER_HDR_LEN + ETHER_VLAN_ENCAP_LEN;
9780 	} else {
9781 		etype = ntohs(eh->evl_encap_proto);
9782 		ehlen = ETHER_HDR_LEN;
9783 	}
9784 
9785 	/* ToDo: Add VLAN output. */
9786 	BCE_PRINTF("enet: dest = %6D, src = %6D, type = 0x%04X, hlen = %d\n",
9787 	    eh->evl_dhost, ":", eh->evl_shost, ":", etype, ehlen);
9788 
9789 	switch (etype) {
9790 	case ETHERTYPE_IP:
9791 		ip = (struct ip *)(m->m_data + ehlen);
9792 		BCE_PRINTF("--ip: dest = 0x%08X , src = 0x%08X, "
9793 		    "len = %d bytes, protocol = 0x%02X, xsum = 0x%04X\n",
9794 		    ntohl(ip->ip_dst.s_addr), ntohl(ip->ip_src.s_addr),
9795 		    ntohs(ip->ip_len), ip->ip_p, ntohs(ip->ip_sum));
9796 
9797 		switch (ip->ip_p) {
9798 		case IPPROTO_TCP:
9799 			th = (struct tcphdr *)((caddr_t)ip + (ip->ip_hl << 2));
9800 			BCE_PRINTF("-tcp: dest = %d, src = %d, hlen = "
9801 			    "%d bytes, flags = 0x%b, csum = 0x%04X\n",
9802 			    ntohs(th->th_dport), ntohs(th->th_sport),
9803 			    (th->th_off << 2), th->th_flags,
9804 			    "\20\10CWR\07ECE\06URG\05ACK\04PSH\03RST"
9805 			    "\02SYN\01FIN", ntohs(th->th_sum));
9806 			break;
9807 		case IPPROTO_UDP:
9808 			uh = (struct udphdr *)((caddr_t)ip + (ip->ip_hl << 2));
9809 			BCE_PRINTF("-udp: dest = %d, src = %d, len = %d "
9810 			    "bytes, csum = 0x%04X\n", ntohs(uh->uh_dport),
9811 			    ntohs(uh->uh_sport), ntohs(uh->uh_ulen),
9812 			    ntohs(uh->uh_sum));
9813 			break;
9814 		case IPPROTO_ICMP:
9815 			BCE_PRINTF("icmp:\n");
9816 			break;
9817 		default:
9818 			BCE_PRINTF("----: Other IP protocol.\n");
9819 			}
9820 		break;
9821 	case ETHERTYPE_IPV6:
9822 		BCE_PRINTF("ipv6: No decode supported.\n");
9823 		break;
9824 	case ETHERTYPE_ARP:
9825 		BCE_PRINTF("-arp: ");
9826 		ah = (struct arphdr *) (m->m_data + ehlen);
9827 		switch (ntohs(ah->ar_op)) {
9828 		case ARPOP_REVREQUEST:
9829 			printf("reverse ARP request\n");
9830 			break;
9831 		case ARPOP_REVREPLY:
9832 			printf("reverse ARP reply\n");
9833 			break;
9834 		case ARPOP_REQUEST:
9835 			printf("ARP request\n");
9836 			break;
9837 		case ARPOP_REPLY:
9838 			printf("ARP reply\n");
9839 			break;
9840 		default:
9841 			printf("other ARP operation\n");
9842 		}
9843 		break;
9844 	default:
9845 		BCE_PRINTF("----: Other protocol.\n");
9846 	}
9847 
9848 	BCE_PRINTF(
9849 		"-----------------------------"
9850 		"--------------"
9851 		"-----------------------------\n");
9852 }
9853 
9854 
9855 /****************************************************************************/
9856 /* Prints out information about an mbuf.                                    */
9857 /*                                                                          */
9858 /* Returns:                                                                 */
9859 /*   Nothing.                                                               */
9860 /****************************************************************************/
9861 static __attribute__ ((noinline)) void
9862 bce_dump_mbuf(struct bce_softc *sc, struct mbuf *m)
9863 {
9864 	struct mbuf *mp = m;
9865 
9866 	if (m == NULL) {
9867 		BCE_PRINTF("mbuf: null pointer\n");
9868 		return;
9869 	}
9870 
9871 	while (mp) {
9872 		BCE_PRINTF("mbuf: %p, m_len = %d, m_flags = 0x%b, "
9873 		    "m_data = %p\n", mp, mp->m_len, mp->m_flags,
9874 		    "\20\1M_EXT\2M_PKTHDR\3M_EOR\4M_RDONLY", mp->m_data);
9875 
9876 		if (mp->m_flags & M_PKTHDR) {
9877 			BCE_PRINTF("- m_pkthdr: len = %d, flags = 0x%b, "
9878 			    "csum_flags = %b\n", mp->m_pkthdr.len,
9879 			    mp->m_flags, "\20\12M_BCAST\13M_MCAST\14M_FRAG"
9880 			    "\15M_FIRSTFRAG\16M_LASTFRAG\21M_VLANTAG"
9881 			    "\22M_PROMISC\23M_NOFREE",
9882 			    mp->m_pkthdr.csum_flags,
9883 			    "\20\1CSUM_IP\2CSUM_TCP\3CSUM_UDP"
9884 			    "\5CSUM_FRAGMENT\6CSUM_TSO\11CSUM_IP_CHECKED"
9885 			    "\12CSUM_IP_VALID\13CSUM_DATA_VALID"
9886 			    "\14CSUM_PSEUDO_HDR");
9887 		}
9888 
9889 		if (mp->m_flags & M_EXT) {
9890 			BCE_PRINTF("- m_ext: %p, ext_size = %d, type = ",
9891 			    mp->m_ext.ext_buf, mp->m_ext.ext_size);
9892 			switch (mp->m_ext.ext_type) {
9893 			case EXT_CLUSTER:
9894 				printf("EXT_CLUSTER\n"); break;
9895 			case EXT_SFBUF:
9896 				printf("EXT_SFBUF\n"); break;
9897 			case EXT_JUMBO9:
9898 				printf("EXT_JUMBO9\n"); break;
9899 			case EXT_JUMBO16:
9900 				printf("EXT_JUMBO16\n"); break;
9901 			case EXT_PACKET:
9902 				printf("EXT_PACKET\n"); break;
9903 			case EXT_MBUF:
9904 				printf("EXT_MBUF\n"); break;
9905 			case EXT_NET_DRV:
9906 				printf("EXT_NET_DRV\n"); break;
9907 			case EXT_MOD_TYPE:
9908 				printf("EXT_MDD_TYPE\n"); break;
9909 			case EXT_DISPOSABLE:
9910 				printf("EXT_DISPOSABLE\n"); break;
9911 			case EXT_EXTREF:
9912 				printf("EXT_EXTREF\n"); break;
9913 			default:
9914 				printf("UNKNOWN\n");
9915 			}
9916 		}
9917 
9918 		mp = mp->m_next;
9919 	}
9920 }
9921 
9922 
9923 /****************************************************************************/
9924 /* Prints out the mbufs in the TX mbuf chain.                               */
9925 /*                                                                          */
9926 /* Returns:                                                                 */
9927 /*   Nothing.                                                               */
9928 /****************************************************************************/
9929 static __attribute__ ((noinline)) void
9930 bce_dump_tx_mbuf_chain(struct bce_softc *sc, u16 chain_prod, int count)
9931 {
9932 	struct mbuf *m;
9933 
9934 	BCE_PRINTF(
9935 		"----------------------------"
9936 		"  tx mbuf data  "
9937 		"----------------------------\n");
9938 
9939 	for (int i = 0; i < count; i++) {
9940 	 	m = sc->tx_mbuf_ptr[chain_prod];
9941 		BCE_PRINTF("txmbuf[0x%04X]\n", chain_prod);
9942 		bce_dump_mbuf(sc, m);
9943 		chain_prod = TX_CHAIN_IDX(NEXT_TX_BD(chain_prod));
9944 	}
9945 
9946 	BCE_PRINTF(
9947 		"----------------------------"
9948 		"----------------"
9949 		"----------------------------\n");
9950 }
9951 
9952 
9953 /****************************************************************************/
9954 /* Prints out the mbufs in the RX mbuf chain.                               */
9955 /*                                                                          */
9956 /* Returns:                                                                 */
9957 /*   Nothing.                                                               */
9958 /****************************************************************************/
9959 static __attribute__ ((noinline)) void
9960 bce_dump_rx_mbuf_chain(struct bce_softc *sc, u16 chain_prod, int count)
9961 {
9962 	struct mbuf *m;
9963 
9964 	BCE_PRINTF(
9965 		"----------------------------"
9966 		"  rx mbuf data  "
9967 		"----------------------------\n");
9968 
9969 	for (int i = 0; i < count; i++) {
9970 	 	m = sc->rx_mbuf_ptr[chain_prod];
9971 		BCE_PRINTF("rxmbuf[0x%04X]\n", chain_prod);
9972 		bce_dump_mbuf(sc, m);
9973 		chain_prod = RX_CHAIN_IDX(NEXT_RX_BD(chain_prod));
9974 	}
9975 
9976 
9977 	BCE_PRINTF(
9978 		"----------------------------"
9979 		"----------------"
9980 		"----------------------------\n");
9981 }
9982 
9983 
9984 /****************************************************************************/
9985 /* Prints out the mbufs in the mbuf page chain.                             */
9986 /*                                                                          */
9987 /* Returns:                                                                 */
9988 /*   Nothing.                                                               */
9989 /****************************************************************************/
9990 static __attribute__ ((noinline)) void
9991 bce_dump_pg_mbuf_chain(struct bce_softc *sc, u16 chain_prod, int count)
9992 {
9993 	struct mbuf *m;
9994 
9995 	BCE_PRINTF(
9996 		"----------------------------"
9997 		"  pg mbuf data  "
9998 		"----------------------------\n");
9999 
10000 	for (int i = 0; i < count; i++) {
10001 	 	m = sc->pg_mbuf_ptr[chain_prod];
10002 		BCE_PRINTF("pgmbuf[0x%04X]\n", chain_prod);
10003 		bce_dump_mbuf(sc, m);
10004 		chain_prod = PG_CHAIN_IDX(NEXT_PG_BD(chain_prod));
10005 	}
10006 
10007 
10008 	BCE_PRINTF(
10009 		"----------------------------"
10010 		"----------------"
10011 		"----------------------------\n");
10012 }
10013 
10014 
10015 /****************************************************************************/
10016 /* Prints out a tx_bd structure.                                            */
10017 /*                                                                          */
10018 /* Returns:                                                                 */
10019 /*   Nothing.                                                               */
10020 /****************************************************************************/
10021 static __attribute__ ((noinline)) void
10022 bce_dump_txbd(struct bce_softc *sc, int idx, struct tx_bd *txbd)
10023 {
10024 	int i = 0;
10025 
10026 	if (idx > MAX_TX_BD_ALLOC)
10027 		/* Index out of range. */
10028 		BCE_PRINTF("tx_bd[0x%04X]: Invalid tx_bd index!\n", idx);
10029 	else if ((idx & USABLE_TX_BD_PER_PAGE) == USABLE_TX_BD_PER_PAGE)
10030 		/* TX Chain page pointer. */
10031 		BCE_PRINTF("tx_bd[0x%04X]: haddr = 0x%08X:%08X, chain page "
10032 		    "pointer\n", idx, txbd->tx_bd_haddr_hi,
10033 		    txbd->tx_bd_haddr_lo);
10034 	else {
10035 		/* Normal tx_bd entry. */
10036 		BCE_PRINTF("tx_bd[0x%04X]: haddr = 0x%08X:%08X, "
10037 		    "mss_nbytes = 0x%08X, vlan tag = 0x%04X, flags = "
10038 		    "0x%04X (", idx, txbd->tx_bd_haddr_hi,
10039 		    txbd->tx_bd_haddr_lo, txbd->tx_bd_mss_nbytes,
10040 		    txbd->tx_bd_vlan_tag, txbd->tx_bd_flags);
10041 
10042 		if (txbd->tx_bd_flags & TX_BD_FLAGS_CONN_FAULT) {
10043 			if (i>0)
10044 				printf("|");
10045 			printf("CONN_FAULT");
10046 			i++;
10047 		}
10048 
10049 		if (txbd->tx_bd_flags & TX_BD_FLAGS_TCP_UDP_CKSUM) {
10050 			if (i>0)
10051 				printf("|");
10052 			printf("TCP_UDP_CKSUM");
10053 			i++;
10054 		}
10055 
10056 		if (txbd->tx_bd_flags & TX_BD_FLAGS_IP_CKSUM) {
10057 			if (i>0)
10058 				printf("|");
10059 			printf("IP_CKSUM");
10060 			i++;
10061 		}
10062 
10063 		if (txbd->tx_bd_flags & TX_BD_FLAGS_VLAN_TAG) {
10064 			if (i>0)
10065 				printf("|");
10066 			printf("VLAN");
10067 			i++;
10068 		}
10069 
10070 		if (txbd->tx_bd_flags & TX_BD_FLAGS_COAL_NOW) {
10071 			if (i>0)
10072 				printf("|");
10073 			printf("COAL_NOW");
10074 			i++;
10075 		}
10076 
10077 		if (txbd->tx_bd_flags & TX_BD_FLAGS_DONT_GEN_CRC) {
10078 			if (i>0)
10079 				printf("|");
10080 			printf("DONT_GEN_CRC");
10081 			i++;
10082 		}
10083 
10084 		if (txbd->tx_bd_flags & TX_BD_FLAGS_START) {
10085 			if (i>0)
10086 				printf("|");
10087 			printf("START");
10088 			i++;
10089 		}
10090 
10091 		if (txbd->tx_bd_flags & TX_BD_FLAGS_END) {
10092 			if (i>0)
10093 				printf("|");
10094 			printf("END");
10095 			i++;
10096 		}
10097 
10098 		if (txbd->tx_bd_flags & TX_BD_FLAGS_SW_LSO) {
10099 			if (i>0)
10100 				printf("|");
10101 			printf("LSO");
10102 			i++;
10103 		}
10104 
10105 		if (txbd->tx_bd_flags & TX_BD_FLAGS_SW_OPTION_WORD) {
10106 			if (i>0)
10107 				printf("|");
10108 			printf("SW_OPTION=%d", ((txbd->tx_bd_flags &
10109 			    TX_BD_FLAGS_SW_OPTION_WORD) >> 8)); i++;
10110 		}
10111 
10112 		if (txbd->tx_bd_flags & TX_BD_FLAGS_SW_FLAGS) {
10113 			if (i>0)
10114 				printf("|");
10115 			printf("SW_FLAGS");
10116 			i++;
10117 		}
10118 
10119 		if (txbd->tx_bd_flags & TX_BD_FLAGS_SW_SNAP) {
10120 			if (i>0)
10121 				printf("|");
10122 			printf("SNAP)");
10123 		} else {
10124 			printf(")\n");
10125 		}
10126 	}
10127 }
10128 
10129 
10130 /****************************************************************************/
10131 /* Prints out a rx_bd structure.                                            */
10132 /*                                                                          */
10133 /* Returns:                                                                 */
10134 /*   Nothing.                                                               */
10135 /****************************************************************************/
10136 static __attribute__ ((noinline)) void
10137 bce_dump_rxbd(struct bce_softc *sc, int idx, struct rx_bd *rxbd)
10138 {
10139 	if (idx > MAX_RX_BD_ALLOC)
10140 		/* Index out of range. */
10141 		BCE_PRINTF("rx_bd[0x%04X]: Invalid rx_bd index!\n", idx);
10142 	else if ((idx & USABLE_RX_BD_PER_PAGE) == USABLE_RX_BD_PER_PAGE)
10143 		/* RX Chain page pointer. */
10144 		BCE_PRINTF("rx_bd[0x%04X]: haddr = 0x%08X:%08X, chain page "
10145 		    "pointer\n", idx, rxbd->rx_bd_haddr_hi,
10146 		    rxbd->rx_bd_haddr_lo);
10147 	else
10148 		/* Normal rx_bd entry. */
10149 		BCE_PRINTF("rx_bd[0x%04X]: haddr = 0x%08X:%08X, nbytes = "
10150 		    "0x%08X, flags = 0x%08X\n", idx, rxbd->rx_bd_haddr_hi,
10151 		    rxbd->rx_bd_haddr_lo, rxbd->rx_bd_len,
10152 		    rxbd->rx_bd_flags);
10153 }
10154 
10155 
10156 /****************************************************************************/
10157 /* Prints out a rx_bd structure in the page chain.                          */
10158 /*                                                                          */
10159 /* Returns:                                                                 */
10160 /*   Nothing.                                                               */
10161 /****************************************************************************/
10162 static __attribute__ ((noinline)) void
10163 bce_dump_pgbd(struct bce_softc *sc, int idx, struct rx_bd *pgbd)
10164 {
10165 	if (idx > MAX_PG_BD_ALLOC)
10166 		/* Index out of range. */
10167 		BCE_PRINTF("pg_bd[0x%04X]: Invalid pg_bd index!\n", idx);
10168 	else if ((idx & USABLE_PG_BD_PER_PAGE) == USABLE_PG_BD_PER_PAGE)
10169 		/* Page Chain page pointer. */
10170 		BCE_PRINTF("px_bd[0x%04X]: haddr = 0x%08X:%08X, chain page pointer\n",
10171 			idx, pgbd->rx_bd_haddr_hi, pgbd->rx_bd_haddr_lo);
10172 	else
10173 		/* Normal rx_bd entry. */
10174 		BCE_PRINTF("pg_bd[0x%04X]: haddr = 0x%08X:%08X, nbytes = 0x%08X, "
10175 			"flags = 0x%08X\n", idx,
10176 			pgbd->rx_bd_haddr_hi, pgbd->rx_bd_haddr_lo,
10177 			pgbd->rx_bd_len, pgbd->rx_bd_flags);
10178 }
10179 
10180 
10181 /****************************************************************************/
10182 /* Prints out a l2_fhdr structure.                                          */
10183 /*                                                                          */
10184 /* Returns:                                                                 */
10185 /*   Nothing.                                                               */
10186 /****************************************************************************/
10187 static __attribute__ ((noinline)) void
10188 bce_dump_l2fhdr(struct bce_softc *sc, int idx, struct l2_fhdr *l2fhdr)
10189 {
10190 	BCE_PRINTF("l2_fhdr[0x%04X]: status = 0x%b, "
10191 		"pkt_len = %d, vlan = 0x%04x, ip_xsum/hdr_len = 0x%04X, "
10192 		"tcp_udp_xsum = 0x%04X\n", idx,
10193 		l2fhdr->l2_fhdr_status, BCE_L2FHDR_PRINTFB,
10194 		l2fhdr->l2_fhdr_pkt_len, l2fhdr->l2_fhdr_vlan_tag,
10195 		l2fhdr->l2_fhdr_ip_xsum, l2fhdr->l2_fhdr_tcp_udp_xsum);
10196 }
10197 
10198 
10199 /****************************************************************************/
10200 /* Prints out context memory info.  (Only useful for CID 0 to 16.)          */
10201 /*                                                                          */
10202 /* Returns:                                                                 */
10203 /*   Nothing.                                                               */
10204 /****************************************************************************/
10205 static __attribute__ ((noinline)) void
10206 bce_dump_ctx(struct bce_softc *sc, u16 cid)
10207 {
10208 	if (cid > TX_CID) {
10209 		BCE_PRINTF(" Unknown CID\n");
10210 		return;
10211 	}
10212 
10213 	BCE_PRINTF(
10214 	    "----------------------------"
10215 	    "    CTX Data    "
10216 	    "----------------------------\n");
10217 
10218 	BCE_PRINTF("     0x%04X - (CID) Context ID\n", cid);
10219 
10220 	if (cid == RX_CID) {
10221 		BCE_PRINTF(" 0x%08X - (L2CTX_RX_HOST_BDIDX) host rx "
10222 		   "producer index\n",
10223 		    CTX_RD(sc, GET_CID_ADDR(cid), BCE_L2CTX_RX_HOST_BDIDX));
10224 		BCE_PRINTF(" 0x%08X - (L2CTX_RX_HOST_BSEQ) host "
10225 		    "byte sequence\n", CTX_RD(sc, GET_CID_ADDR(cid),
10226 		    BCE_L2CTX_RX_HOST_BSEQ));
10227 		BCE_PRINTF(" 0x%08X - (L2CTX_RX_NX_BSEQ) h/w byte sequence\n",
10228 		    CTX_RD(sc, GET_CID_ADDR(cid), BCE_L2CTX_RX_NX_BSEQ));
10229 		BCE_PRINTF(" 0x%08X - (L2CTX_RX_NX_BDHADDR_HI) h/w buffer "
10230 		    "descriptor address\n",
10231  		    CTX_RD(sc, GET_CID_ADDR(cid), BCE_L2CTX_RX_NX_BDHADDR_HI));
10232 		BCE_PRINTF(" 0x%08X - (L2CTX_RX_NX_BDHADDR_LO) h/w buffer "
10233 		    "descriptor address\n",
10234 		    CTX_RD(sc, GET_CID_ADDR(cid), BCE_L2CTX_RX_NX_BDHADDR_LO));
10235 		BCE_PRINTF(" 0x%08X - (L2CTX_RX_NX_BDIDX) h/w rx consumer "
10236 		    "index\n", CTX_RD(sc, GET_CID_ADDR(cid),
10237 		    BCE_L2CTX_RX_NX_BDIDX));
10238 		BCE_PRINTF(" 0x%08X - (L2CTX_RX_HOST_PG_BDIDX) host page "
10239 		    "producer index\n", CTX_RD(sc, GET_CID_ADDR(cid),
10240 		    BCE_L2CTX_RX_HOST_PG_BDIDX));
10241 		BCE_PRINTF(" 0x%08X - (L2CTX_RX_PG_BUF_SIZE) host rx_bd/page "
10242 		    "buffer size\n", CTX_RD(sc, GET_CID_ADDR(cid),
10243 		    BCE_L2CTX_RX_PG_BUF_SIZE));
10244 		BCE_PRINTF(" 0x%08X - (L2CTX_RX_NX_PG_BDHADDR_HI) h/w page "
10245 		    "chain address\n", CTX_RD(sc, GET_CID_ADDR(cid),
10246 		    BCE_L2CTX_RX_NX_PG_BDHADDR_HI));
10247 		BCE_PRINTF(" 0x%08X - (L2CTX_RX_NX_PG_BDHADDR_LO) h/w page "
10248 		    "chain address\n", CTX_RD(sc, GET_CID_ADDR(cid),
10249 		    BCE_L2CTX_RX_NX_PG_BDHADDR_LO));
10250 		BCE_PRINTF(" 0x%08X - (L2CTX_RX_NX_PG_BDIDX) h/w page "
10251 		    "consumer index\n",	CTX_RD(sc, GET_CID_ADDR(cid),
10252 		    BCE_L2CTX_RX_NX_PG_BDIDX));
10253 	} else if (cid == TX_CID) {
10254 		if (BCE_CHIP_NUM(sc) == BCE_CHIP_NUM_5709) {
10255 			BCE_PRINTF(" 0x%08X - (L2CTX_TX_TYPE_XI) ctx type\n",
10256 			    CTX_RD(sc, GET_CID_ADDR(cid),
10257 			    BCE_L2CTX_TX_TYPE_XI));
10258 			BCE_PRINTF(" 0x%08X - (L2CTX_CMD_TX_TYPE_XI) ctx "
10259 			    "cmd\n", CTX_RD(sc, GET_CID_ADDR(cid),
10260 			    BCE_L2CTX_TX_CMD_TYPE_XI));
10261 			BCE_PRINTF(" 0x%08X - (L2CTX_TX_TBDR_BDHADDR_HI_XI) "
10262 			    "h/w buffer descriptor address\n",
10263 			    CTX_RD(sc, GET_CID_ADDR(cid),
10264 			    BCE_L2CTX_TX_TBDR_BHADDR_HI_XI));
10265 			BCE_PRINTF(" 0x%08X - (L2CTX_TX_TBDR_BHADDR_LO_XI) "
10266 			    "h/w buffer	descriptor address\n",
10267 			    CTX_RD(sc, GET_CID_ADDR(cid),
10268 			    BCE_L2CTX_TX_TBDR_BHADDR_LO_XI));
10269 			BCE_PRINTF(" 0x%08X - (L2CTX_TX_HOST_BIDX_XI) "
10270 			    "host producer index\n",
10271 			    CTX_RD(sc, GET_CID_ADDR(cid),
10272 			    BCE_L2CTX_TX_HOST_BIDX_XI));
10273 			BCE_PRINTF(" 0x%08X - (L2CTX_TX_HOST_BSEQ_XI) "
10274 			    "host byte sequence\n",
10275 			    CTX_RD(sc, GET_CID_ADDR(cid),
10276 			    BCE_L2CTX_TX_HOST_BSEQ_XI));
10277 		} else {
10278 			BCE_PRINTF(" 0x%08X - (L2CTX_TX_TYPE) ctx type\n",
10279 			    CTX_RD(sc, GET_CID_ADDR(cid), BCE_L2CTX_TX_TYPE));
10280 			BCE_PRINTF(" 0x%08X - (L2CTX_TX_CMD_TYPE) ctx cmd\n",
10281 			    CTX_RD(sc, GET_CID_ADDR(cid),
10282 			    BCE_L2CTX_TX_CMD_TYPE));
10283 			BCE_PRINTF(" 0x%08X - (L2CTX_TX_TBDR_BDHADDR_HI) "
10284 			    "h/w buffer	descriptor address\n",
10285 			    CTX_RD(sc, GET_CID_ADDR(cid),
10286 			    BCE_L2CTX_TX_TBDR_BHADDR_HI));
10287 			BCE_PRINTF(" 0x%08X - (L2CTX_TX_TBDR_BHADDR_LO) "
10288 			    "h/w buffer	descriptor address\n",
10289 			    CTX_RD(sc, GET_CID_ADDR(cid),
10290 			    BCE_L2CTX_TX_TBDR_BHADDR_LO));
10291 			BCE_PRINTF(" 0x%08X - (L2CTX_TX_HOST_BIDX) host "
10292 			    "producer index\n", CTX_RD(sc, GET_CID_ADDR(cid),
10293 			    BCE_L2CTX_TX_HOST_BIDX));
10294 			BCE_PRINTF(" 0x%08X - (L2CTX_TX_HOST_BSEQ) host byte "
10295 			    "sequence\n", CTX_RD(sc, GET_CID_ADDR(cid),
10296 			    BCE_L2CTX_TX_HOST_BSEQ));
10297 		}
10298 	}
10299 
10300 	BCE_PRINTF(
10301 	   "----------------------------"
10302 	   "    Raw CTX     "
10303 	   "----------------------------\n");
10304 
10305 	for (int i = 0x0; i < 0x300; i += 0x10) {
10306 		BCE_PRINTF("0x%04X: 0x%08X 0x%08X 0x%08X 0x%08X\n", i,
10307 		   CTX_RD(sc, GET_CID_ADDR(cid), i),
10308 		   CTX_RD(sc, GET_CID_ADDR(cid), i + 0x4),
10309 		   CTX_RD(sc, GET_CID_ADDR(cid), i + 0x8),
10310 		   CTX_RD(sc, GET_CID_ADDR(cid), i + 0xc));
10311 	}
10312 
10313 
10314 	BCE_PRINTF(
10315 	   "----------------------------"
10316 	   "----------------"
10317 	   "----------------------------\n");
10318 }
10319 
10320 
10321 /****************************************************************************/
10322 /* Prints out the FTQ data.                                                 */
10323 /*                                                                          */
10324 /* Returns:                                                                */
10325 /*   Nothing.                                                               */
10326 /****************************************************************************/
10327 static __attribute__ ((noinline)) void
10328 bce_dump_ftqs(struct bce_softc *sc)
10329 {
10330 	u32 cmd, ctl, cur_depth, max_depth, valid_cnt, val;
10331 
10332 	BCE_PRINTF(
10333 	    "----------------------------"
10334 	    "    FTQ Data    "
10335 	    "----------------------------\n");
10336 
10337 	BCE_PRINTF("   FTQ    Command    Control   Depth_Now  "
10338 	    "Max_Depth  Valid_Cnt \n");
10339 	BCE_PRINTF(" ------- ---------- ---------- ---------- "
10340 	    "---------- ----------\n");
10341 
10342 	/* Setup the generic statistic counters for the FTQ valid count. */
10343 	val = (BCE_HC_STAT_GEN_SEL_0_GEN_SEL_0_RV2PPQ_VALID_CNT << 24) |
10344 	    (BCE_HC_STAT_GEN_SEL_0_GEN_SEL_0_RXPCQ_VALID_CNT  << 16) |
10345 	    (BCE_HC_STAT_GEN_SEL_0_GEN_SEL_0_RXPQ_VALID_CNT   <<  8) |
10346 	    (BCE_HC_STAT_GEN_SEL_0_GEN_SEL_0_RLUPQ_VALID_CNT);
10347 	REG_WR(sc, BCE_HC_STAT_GEN_SEL_0, val);
10348 
10349 	val = (BCE_HC_STAT_GEN_SEL_0_GEN_SEL_0_TSCHQ_VALID_CNT  << 24) |
10350 	    (BCE_HC_STAT_GEN_SEL_0_GEN_SEL_0_RDMAQ_VALID_CNT  << 16) |
10351 	    (BCE_HC_STAT_GEN_SEL_0_GEN_SEL_0_RV2PTQ_VALID_CNT <<  8) |
10352 	    (BCE_HC_STAT_GEN_SEL_0_GEN_SEL_0_RV2PMQ_VALID_CNT);
10353 	REG_WR(sc, BCE_HC_STAT_GEN_SEL_1, val);
10354 
10355 	val = (BCE_HC_STAT_GEN_SEL_0_GEN_SEL_0_TPATQ_VALID_CNT  << 24) |
10356 	    (BCE_HC_STAT_GEN_SEL_0_GEN_SEL_0_TDMAQ_VALID_CNT  << 16) |
10357 	    (BCE_HC_STAT_GEN_SEL_0_GEN_SEL_0_TXPQ_VALID_CNT   <<  8) |
10358 	    (BCE_HC_STAT_GEN_SEL_0_GEN_SEL_0_TBDRQ_VALID_CNT);
10359 	REG_WR(sc, BCE_HC_STAT_GEN_SEL_2, val);
10360 
10361 	val = (BCE_HC_STAT_GEN_SEL_0_GEN_SEL_0_COMQ_VALID_CNT   << 24) |
10362 	    (BCE_HC_STAT_GEN_SEL_0_GEN_SEL_0_COMTQ_VALID_CNT  << 16) |
10363 	    (BCE_HC_STAT_GEN_SEL_0_GEN_SEL_0_COMXQ_VALID_CNT  <<  8) |
10364 	    (BCE_HC_STAT_GEN_SEL_0_GEN_SEL_0_TASQ_VALID_CNT);
10365 	REG_WR(sc, BCE_HC_STAT_GEN_SEL_3, val);
10366 
10367 	/* Input queue to the Receive Lookup state machine */
10368 	cmd = REG_RD(sc, BCE_RLUP_FTQ_CMD);
10369 	ctl = REG_RD(sc, BCE_RLUP_FTQ_CTL);
10370 	cur_depth = (ctl & BCE_RLUP_FTQ_CTL_CUR_DEPTH) >> 22;
10371 	max_depth = (ctl & BCE_RLUP_FTQ_CTL_MAX_DEPTH) >> 12;
10372 	valid_cnt = REG_RD(sc, BCE_HC_STAT_GEN_STAT0);
10373 	BCE_PRINTF(" RLUP    0x%08X 0x%08X 0x%08X 0x%08X 0x%08X\n",
10374 	    cmd, ctl, cur_depth, max_depth, valid_cnt);
10375 
10376 	/* Input queue to the Receive Processor */
10377 	cmd = REG_RD_IND(sc, BCE_RXP_FTQ_CMD);
10378 	ctl = REG_RD_IND(sc, BCE_RXP_FTQ_CTL);
10379 	cur_depth = (ctl & BCE_RXP_FTQ_CTL_CUR_DEPTH) >> 22;
10380 	max_depth = (ctl & BCE_RXP_FTQ_CTL_MAX_DEPTH) >> 12;
10381 	valid_cnt = REG_RD(sc, BCE_HC_STAT_GEN_STAT1);
10382 	BCE_PRINTF(" RXP     0x%08X 0x%08X 0x%08X 0x%08X 0x%08X\n",
10383 	    cmd, ctl, cur_depth, max_depth, valid_cnt);
10384 
10385 	/* Input queue to the Recevie Processor */
10386 	cmd = REG_RD_IND(sc, BCE_RXP_CFTQ_CMD);
10387 	ctl = REG_RD_IND(sc, BCE_RXP_CFTQ_CTL);
10388 	cur_depth = (ctl & BCE_RXP_CFTQ_CTL_CUR_DEPTH) >> 22;
10389 	max_depth = (ctl & BCE_RXP_CFTQ_CTL_MAX_DEPTH) >> 12;
10390 	valid_cnt = REG_RD(sc, BCE_HC_STAT_GEN_STAT2);
10391 	BCE_PRINTF(" RXPC    0x%08X 0x%08X 0x%08X 0x%08X 0x%08X\n",
10392 	    cmd, ctl, cur_depth, max_depth, valid_cnt);
10393 
10394 	/* Input queue to the Receive Virtual to Physical state machine */
10395 	cmd = REG_RD(sc, BCE_RV2P_PFTQ_CMD);
10396 	ctl = REG_RD(sc, BCE_RV2P_PFTQ_CTL);
10397 	cur_depth = (ctl & BCE_RV2P_PFTQ_CTL_CUR_DEPTH) >> 22;
10398 	max_depth = (ctl & BCE_RV2P_PFTQ_CTL_MAX_DEPTH) >> 12;
10399 	valid_cnt = REG_RD(sc, BCE_HC_STAT_GEN_STAT3);
10400 	BCE_PRINTF(" RV2PP   0x%08X 0x%08X 0x%08X 0x%08X 0x%08X\n",
10401 	    cmd, ctl, cur_depth, max_depth, valid_cnt);
10402 
10403 	/* Input queue to the Recevie Virtual to Physical state machine */
10404 	cmd = REG_RD(sc, BCE_RV2P_MFTQ_CMD);
10405 	ctl = REG_RD(sc, BCE_RV2P_MFTQ_CTL);
10406 	cur_depth = (ctl & BCE_RV2P_MFTQ_CTL_CUR_DEPTH) >> 22;
10407 	max_depth = (ctl & BCE_RV2P_MFTQ_CTL_MAX_DEPTH) >> 12;
10408 	valid_cnt = REG_RD(sc, BCE_HC_STAT_GEN_STAT4);
10409 	BCE_PRINTF(" RV2PM   0x%08X 0x%08X 0x%08X 0x%08X 0x%08X\n",
10410 	    cmd, ctl, cur_depth, max_depth, valid_cnt);
10411 
10412 	/* Input queue to the Receive Virtual to Physical state machine */
10413 	cmd = REG_RD(sc, BCE_RV2P_TFTQ_CMD);
10414 	ctl = REG_RD(sc, BCE_RV2P_TFTQ_CTL);
10415 	cur_depth = (ctl & BCE_RV2P_TFTQ_CTL_CUR_DEPTH) >> 22;
10416 	max_depth = (ctl & BCE_RV2P_TFTQ_CTL_MAX_DEPTH) >> 12;
10417 	valid_cnt = REG_RD(sc, BCE_HC_STAT_GEN_STAT5);
10418 	BCE_PRINTF(" RV2PT   0x%08X 0x%08X 0x%08X 0x%08X 0x%08X\n",
10419 	    cmd, ctl, cur_depth, max_depth, valid_cnt);
10420 
10421 	/* Input queue to the Receive DMA state machine */
10422 	cmd = REG_RD(sc, BCE_RDMA_FTQ_CMD);
10423 	ctl = REG_RD(sc, BCE_RDMA_FTQ_CTL);
10424 	cur_depth = (ctl & BCE_RDMA_FTQ_CTL_CUR_DEPTH) >> 22;
10425 	max_depth = (ctl & BCE_RDMA_FTQ_CTL_MAX_DEPTH) >> 12;
10426 	valid_cnt = REG_RD(sc, BCE_HC_STAT_GEN_STAT6);
10427 	BCE_PRINTF(" RDMA    0x%08X 0x%08X 0x%08X 0x%08X 0x%08X\n",
10428 	    cmd, ctl, cur_depth, max_depth, valid_cnt);
10429 
10430 	/* Input queue to the Transmit Scheduler state machine */
10431 	cmd = REG_RD(sc, BCE_TSCH_FTQ_CMD);
10432 	ctl = REG_RD(sc, BCE_TSCH_FTQ_CTL);
10433 	cur_depth = (ctl & BCE_TSCH_FTQ_CTL_CUR_DEPTH) >> 22;
10434 	max_depth = (ctl & BCE_TSCH_FTQ_CTL_MAX_DEPTH) >> 12;
10435 	valid_cnt = REG_RD(sc, BCE_HC_STAT_GEN_STAT7);
10436 	BCE_PRINTF(" TSCH    0x%08X 0x%08X 0x%08X 0x%08X 0x%08X\n",
10437 	    cmd, ctl, cur_depth, max_depth, valid_cnt);
10438 
10439 	/* Input queue to the Transmit Buffer Descriptor state machine */
10440 	cmd = REG_RD(sc, BCE_TBDR_FTQ_CMD);
10441 	ctl = REG_RD(sc, BCE_TBDR_FTQ_CTL);
10442 	cur_depth = (ctl & BCE_TBDR_FTQ_CTL_CUR_DEPTH) >> 22;
10443 	max_depth = (ctl & BCE_TBDR_FTQ_CTL_MAX_DEPTH) >> 12;
10444 	valid_cnt = REG_RD(sc, BCE_HC_STAT_GEN_STAT8);
10445 	BCE_PRINTF(" TBDR    0x%08X 0x%08X 0x%08X 0x%08X 0x%08X\n",
10446 	    cmd, ctl, cur_depth, max_depth, valid_cnt);
10447 
10448 	/* Input queue to the Transmit Processor */
10449 	cmd = REG_RD_IND(sc, BCE_TXP_FTQ_CMD);
10450 	ctl = REG_RD_IND(sc, BCE_TXP_FTQ_CTL);
10451 	cur_depth = (ctl & BCE_TXP_FTQ_CTL_CUR_DEPTH) >> 22;
10452 	max_depth = (ctl & BCE_TXP_FTQ_CTL_MAX_DEPTH) >> 12;
10453 	valid_cnt = REG_RD(sc, BCE_HC_STAT_GEN_STAT9);
10454 	BCE_PRINTF(" TXP     0x%08X 0x%08X 0x%08X 0x%08X 0x%08X\n",
10455 	    cmd, ctl, cur_depth, max_depth, valid_cnt);
10456 
10457 	/* Input queue to the Transmit DMA state machine */
10458 	cmd = REG_RD(sc, BCE_TDMA_FTQ_CMD);
10459 	ctl = REG_RD(sc, BCE_TDMA_FTQ_CTL);
10460 	cur_depth = (ctl & BCE_TDMA_FTQ_CTL_CUR_DEPTH) >> 22;
10461 	max_depth = (ctl & BCE_TDMA_FTQ_CTL_MAX_DEPTH) >> 12;
10462 	valid_cnt = REG_RD(sc, BCE_HC_STAT_GEN_STAT10);
10463 	BCE_PRINTF(" TDMA    0x%08X 0x%08X 0x%08X 0x%08X 0x%08X\n",
10464 	    cmd, ctl, cur_depth, max_depth, valid_cnt);
10465 
10466 	/* Input queue to the Transmit Patch-Up Processor */
10467 	cmd = REG_RD_IND(sc, BCE_TPAT_FTQ_CMD);
10468 	ctl = REG_RD_IND(sc, BCE_TPAT_FTQ_CTL);
10469 	cur_depth = (ctl & BCE_TPAT_FTQ_CTL_CUR_DEPTH) >> 22;
10470 	max_depth = (ctl & BCE_TPAT_FTQ_CTL_MAX_DEPTH) >> 12;
10471 	valid_cnt = REG_RD(sc, BCE_HC_STAT_GEN_STAT11);
10472 	BCE_PRINTF(" TPAT    0x%08X 0x%08X 0x%08X 0x%08X 0x%08X\n",
10473 	    cmd, ctl, cur_depth, max_depth, valid_cnt);
10474 
10475 	/* Input queue to the Transmit Assembler state machine */
10476 	cmd = REG_RD_IND(sc, BCE_TAS_FTQ_CMD);
10477 	ctl = REG_RD_IND(sc, BCE_TAS_FTQ_CTL);
10478 	cur_depth = (ctl & BCE_TAS_FTQ_CTL_CUR_DEPTH) >> 22;
10479 	max_depth = (ctl & BCE_TAS_FTQ_CTL_MAX_DEPTH) >> 12;
10480 	valid_cnt = REG_RD(sc, BCE_HC_STAT_GEN_STAT12);
10481 	BCE_PRINTF(" TAS     0x%08X 0x%08X 0x%08X 0x%08X 0x%08X\n",
10482 	    cmd, ctl, cur_depth, max_depth, valid_cnt);
10483 
10484 	/* Input queue to the Completion Processor */
10485 	cmd = REG_RD_IND(sc, BCE_COM_COMXQ_FTQ_CMD);
10486 	ctl = REG_RD_IND(sc, BCE_COM_COMXQ_FTQ_CTL);
10487 	cur_depth = (ctl & BCE_COM_COMXQ_FTQ_CTL_CUR_DEPTH) >> 22;
10488 	max_depth = (ctl & BCE_COM_COMXQ_FTQ_CTL_MAX_DEPTH) >> 12;
10489 	valid_cnt = REG_RD(sc, BCE_HC_STAT_GEN_STAT13);
10490 	BCE_PRINTF(" COMX    0x%08X 0x%08X 0x%08X 0x%08X 0x%08X\n",
10491 	    cmd, ctl, cur_depth, max_depth, valid_cnt);
10492 
10493 	/* Input queue to the Completion Processor */
10494 	cmd = REG_RD_IND(sc, BCE_COM_COMTQ_FTQ_CMD);
10495 	ctl = REG_RD_IND(sc, BCE_COM_COMTQ_FTQ_CTL);
10496 	cur_depth = (ctl & BCE_COM_COMTQ_FTQ_CTL_CUR_DEPTH) >> 22;
10497 	max_depth = (ctl & BCE_COM_COMTQ_FTQ_CTL_MAX_DEPTH) >> 12;
10498 	valid_cnt = REG_RD(sc, BCE_HC_STAT_GEN_STAT14);
10499 	BCE_PRINTF(" COMT    0x%08X 0x%08X 0x%08X 0x%08X 0x%08X\n",
10500 	    cmd, ctl, cur_depth, max_depth, valid_cnt);
10501 
10502 	/* Input queue to the Completion Processor */
10503 	cmd = REG_RD_IND(sc, BCE_COM_COMQ_FTQ_CMD);
10504 	ctl = REG_RD_IND(sc, BCE_COM_COMQ_FTQ_CTL);
10505 	cur_depth = (ctl & BCE_COM_COMQ_FTQ_CTL_CUR_DEPTH) >> 22;
10506 	max_depth = (ctl & BCE_COM_COMQ_FTQ_CTL_MAX_DEPTH) >> 12;
10507 	valid_cnt = REG_RD(sc, BCE_HC_STAT_GEN_STAT15);
10508 	BCE_PRINTF(" COMX    0x%08X 0x%08X 0x%08X 0x%08X 0x%08X\n",
10509 	    cmd, ctl, cur_depth, max_depth, valid_cnt);
10510 
10511 	/* Setup the generic statistic counters for the FTQ valid count. */
10512 	val = (BCE_HC_STAT_GEN_SEL_0_GEN_SEL_0_CSQ_VALID_CNT  << 16) |
10513 	    (BCE_HC_STAT_GEN_SEL_0_GEN_SEL_0_CPQ_VALID_CNT  <<  8) |
10514 	    (BCE_HC_STAT_GEN_SEL_0_GEN_SEL_0_MGMQ_VALID_CNT);
10515 
10516 	if (BCE_CHIP_NUM(sc) == BCE_CHIP_NUM_5709)
10517 		val = val |
10518 		    (BCE_HC_STAT_GEN_SEL_0_GEN_SEL_0_RV2PCSQ_VALID_CNT_XI <<
10519 		     24);
10520 	REG_WR(sc, BCE_HC_STAT_GEN_SEL_0, val);
10521 
10522 	/* Input queue to the Management Control Processor */
10523 	cmd = REG_RD_IND(sc, BCE_MCP_MCPQ_FTQ_CMD);
10524 	ctl = REG_RD_IND(sc, BCE_MCP_MCPQ_FTQ_CTL);
10525 	cur_depth = (ctl & BCE_MCP_MCPQ_FTQ_CTL_CUR_DEPTH) >> 22;
10526 	max_depth = (ctl & BCE_MCP_MCPQ_FTQ_CTL_MAX_DEPTH) >> 12;
10527 	valid_cnt = REG_RD(sc, BCE_HC_STAT_GEN_STAT0);
10528 	BCE_PRINTF(" MCP     0x%08X 0x%08X 0x%08X 0x%08X 0x%08X\n",
10529 	    cmd, ctl, cur_depth, max_depth, valid_cnt);
10530 
10531 	/* Input queue to the Command Processor */
10532 	cmd = REG_RD_IND(sc, BCE_CP_CPQ_FTQ_CMD);
10533 	ctl = REG_RD_IND(sc, BCE_CP_CPQ_FTQ_CTL);
10534 	cur_depth = (ctl & BCE_CP_CPQ_FTQ_CTL_CUR_DEPTH) >> 22;
10535 	max_depth = (ctl & BCE_CP_CPQ_FTQ_CTL_MAX_DEPTH) >> 12;
10536 	valid_cnt = REG_RD(sc, BCE_HC_STAT_GEN_STAT1);
10537 	BCE_PRINTF(" CP      0x%08X 0x%08X 0x%08X 0x%08X 0x%08X\n",
10538 	    cmd, ctl, cur_depth, max_depth, valid_cnt);
10539 
10540 	/* Input queue to the Completion Scheduler state machine */
10541 	cmd = REG_RD(sc, BCE_CSCH_CH_FTQ_CMD);
10542 	ctl = REG_RD(sc, BCE_CSCH_CH_FTQ_CTL);
10543 	cur_depth = (ctl & BCE_CSCH_CH_FTQ_CTL_CUR_DEPTH) >> 22;
10544 	max_depth = (ctl & BCE_CSCH_CH_FTQ_CTL_MAX_DEPTH) >> 12;
10545 	valid_cnt = REG_RD(sc, BCE_HC_STAT_GEN_STAT2);
10546 	BCE_PRINTF(" CS      0x%08X 0x%08X 0x%08X 0x%08X 0x%08X\n",
10547 	    cmd, ctl, cur_depth, max_depth, valid_cnt);
10548 
10549 	if (BCE_CHIP_NUM(sc) == BCE_CHIP_NUM_5709) {
10550 		/* Input queue to the RV2P Command Scheduler */
10551 		cmd = REG_RD(sc, BCE_RV2PCSR_FTQ_CMD);
10552 		ctl = REG_RD(sc, BCE_RV2PCSR_FTQ_CTL);
10553 		cur_depth = (ctl & 0xFFC00000) >> 22;
10554 		max_depth = (ctl & 0x003FF000) >> 12;
10555 		valid_cnt = REG_RD(sc, BCE_HC_STAT_GEN_STAT3);
10556 		BCE_PRINTF(" RV2PCSR 0x%08X 0x%08X 0x%08X 0x%08X 0x%08X\n",
10557 		    cmd, ctl, cur_depth, max_depth, valid_cnt);
10558 	}
10559 
10560 	BCE_PRINTF(
10561 	    "----------------------------"
10562 	    "----------------"
10563 	    "----------------------------\n");
10564 }
10565 
10566 
10567 /****************************************************************************/
10568 /* Prints out the TX chain.                                                 */
10569 /*                                                                          */
10570 /* Returns:                                                                 */
10571 /*   Nothing.                                                               */
10572 /****************************************************************************/
10573 static __attribute__ ((noinline)) void
10574 bce_dump_tx_chain(struct bce_softc *sc, u16 tx_prod, int count)
10575 {
10576 	struct tx_bd *txbd;
10577 
10578 	/* First some info about the tx_bd chain structure. */
10579 	BCE_PRINTF(
10580 	    "----------------------------"
10581 	    "  tx_bd  chain  "
10582 	    "----------------------------\n");
10583 
10584 	BCE_PRINTF("page size      = 0x%08X, tx chain pages        = 0x%08X\n",
10585 	    (u32) BCM_PAGE_SIZE, (u32) sc->tx_pages);
10586 	BCE_PRINTF("tx_bd per page = 0x%08X, usable tx_bd per page = 0x%08X\n",
10587 	    (u32) TOTAL_TX_BD_PER_PAGE, (u32) USABLE_TX_BD_PER_PAGE);
10588 	BCE_PRINTF("total tx_bd    = 0x%08X\n", (u32) TOTAL_TX_BD_ALLOC);
10589 
10590 	BCE_PRINTF(
10591 	    "----------------------------"
10592 	    "   tx_bd data   "
10593 	    "----------------------------\n");
10594 
10595 	/* Now print out a decoded list of TX buffer descriptors. */
10596 	for (int i = 0; i < count; i++) {
10597 	 	txbd = &sc->tx_bd_chain[TX_PAGE(tx_prod)][TX_IDX(tx_prod)];
10598 		bce_dump_txbd(sc, tx_prod, txbd);
10599 		tx_prod++;
10600 	}
10601 
10602 	BCE_PRINTF(
10603 	    "----------------------------"
10604 	    "----------------"
10605 	    "----------------------------\n");
10606 }
10607 
10608 
10609 /****************************************************************************/
10610 /* Prints out the RX chain.                                                 */
10611 /*                                                                          */
10612 /* Returns:                                                                 */
10613 /*   Nothing.                                                               */
10614 /****************************************************************************/
10615 static __attribute__ ((noinline)) void
10616 bce_dump_rx_bd_chain(struct bce_softc *sc, u16 rx_prod, int count)
10617 {
10618 	struct rx_bd *rxbd;
10619 
10620 	/* First some info about the rx_bd chain structure. */
10621 	BCE_PRINTF(
10622 	    "----------------------------"
10623 	    "  rx_bd  chain  "
10624 	    "----------------------------\n");
10625 
10626 	BCE_PRINTF("page size      = 0x%08X, rx chain pages        = 0x%08X\n",
10627 	    (u32) BCM_PAGE_SIZE, (u32) sc->rx_pages);
10628 
10629 	BCE_PRINTF("rx_bd per page = 0x%08X, usable rx_bd per page = 0x%08X\n",
10630 	    (u32) TOTAL_RX_BD_PER_PAGE, (u32) USABLE_RX_BD_PER_PAGE);
10631 
10632 	BCE_PRINTF("total rx_bd    = 0x%08X\n", (u32) TOTAL_RX_BD_ALLOC);
10633 
10634 	BCE_PRINTF(
10635 	    "----------------------------"
10636 	    "   rx_bd data   "
10637 	    "----------------------------\n");
10638 
10639 	/* Now print out the rx_bd's themselves. */
10640 	for (int i = 0; i < count; i++) {
10641 		rxbd = &sc->rx_bd_chain[RX_PAGE(rx_prod)][RX_IDX(rx_prod)];
10642 		bce_dump_rxbd(sc, rx_prod, rxbd);
10643 		rx_prod = RX_CHAIN_IDX(rx_prod + 1);
10644 	}
10645 
10646 	BCE_PRINTF(
10647 	    "----------------------------"
10648 	    "----------------"
10649 	    "----------------------------\n");
10650 }
10651 
10652 
10653 /****************************************************************************/
10654 /* Prints out the page chain.                                               */
10655 /*                                                                          */
10656 /* Returns:                                                                 */
10657 /*   Nothing.                                                               */
10658 /****************************************************************************/
10659 static __attribute__ ((noinline)) void
10660 bce_dump_pg_chain(struct bce_softc *sc, u16 pg_prod, int count)
10661 {
10662 	struct rx_bd *pgbd;
10663 
10664 	/* First some info about the page chain structure. */
10665 	BCE_PRINTF(
10666 	    "----------------------------"
10667 	    "   page chain   "
10668 	    "----------------------------\n");
10669 
10670 	BCE_PRINTF("page size      = 0x%08X, pg chain pages        = 0x%08X\n",
10671 	    (u32) BCM_PAGE_SIZE, (u32) sc->pg_pages);
10672 
10673 	BCE_PRINTF("rx_bd per page = 0x%08X, usable rx_bd per page = 0x%08X\n",
10674 	    (u32) TOTAL_PG_BD_PER_PAGE, (u32) USABLE_PG_BD_PER_PAGE);
10675 
10676 	BCE_PRINTF("total pg_bd             = 0x%08X\n", (u32) TOTAL_PG_BD_ALLOC);
10677 
10678 	BCE_PRINTF(
10679 	    "----------------------------"
10680 	    "   page data    "
10681 	    "----------------------------\n");
10682 
10683 	/* Now print out the rx_bd's themselves. */
10684 	for (int i = 0; i < count; i++) {
10685 		pgbd = &sc->pg_bd_chain[PG_PAGE(pg_prod)][PG_IDX(pg_prod)];
10686 		bce_dump_pgbd(sc, pg_prod, pgbd);
10687 		pg_prod = PG_CHAIN_IDX(pg_prod + 1);
10688 	}
10689 
10690 	BCE_PRINTF(
10691 	    "----------------------------"
10692 	    "----------------"
10693 	    "----------------------------\n");
10694 }
10695 
10696 
10697 #define BCE_PRINT_RX_CONS(arg)						\
10698 if (sblk->status_rx_quick_consumer_index##arg)				\
10699 	BCE_PRINTF("0x%04X(0x%04X) - rx_quick_consumer_index%d\n",	\
10700 	    sblk->status_rx_quick_consumer_index##arg, (u16)		\
10701 	    RX_CHAIN_IDX(sblk->status_rx_quick_consumer_index##arg),	\
10702 	    arg);
10703 
10704 
10705 #define BCE_PRINT_TX_CONS(arg)						\
10706 if (sblk->status_tx_quick_consumer_index##arg)				\
10707 	BCE_PRINTF("0x%04X(0x%04X) - tx_quick_consumer_index%d\n",	\
10708 	    sblk->status_tx_quick_consumer_index##arg, (u16)		\
10709 	    TX_CHAIN_IDX(sblk->status_tx_quick_consumer_index##arg),	\
10710 	    arg);
10711 
10712 /****************************************************************************/
10713 /* Prints out the status block from host memory.                            */
10714 /*                                                                          */
10715 /* Returns:                                                                 */
10716 /*   Nothing.                                                               */
10717 /****************************************************************************/
10718 static __attribute__ ((noinline)) void
10719 bce_dump_status_block(struct bce_softc *sc)
10720 {
10721 	struct status_block *sblk;
10722 
10723 	sblk = sc->status_block;
10724 
10725 	BCE_PRINTF(
10726 	    "----------------------------"
10727 	    "  Status Block  "
10728 	    "----------------------------\n");
10729 
10730 	/* Theses indices are used for normal L2 drivers. */
10731 	BCE_PRINTF("    0x%08X - attn_bits\n",
10732 	    sblk->status_attn_bits);
10733 
10734 	BCE_PRINTF("    0x%08X - attn_bits_ack\n",
10735 	    sblk->status_attn_bits_ack);
10736 
10737 	BCE_PRINT_RX_CONS(0);
10738 	BCE_PRINT_TX_CONS(0)
10739 
10740 	BCE_PRINTF("        0x%04X - status_idx\n", sblk->status_idx);
10741 
10742 	/* Theses indices are not used for normal L2 drivers. */
10743 	BCE_PRINT_RX_CONS(1);   BCE_PRINT_RX_CONS(2);   BCE_PRINT_RX_CONS(3);
10744 	BCE_PRINT_RX_CONS(4);   BCE_PRINT_RX_CONS(5);   BCE_PRINT_RX_CONS(6);
10745 	BCE_PRINT_RX_CONS(7);   BCE_PRINT_RX_CONS(8);   BCE_PRINT_RX_CONS(9);
10746 	BCE_PRINT_RX_CONS(10);  BCE_PRINT_RX_CONS(11);  BCE_PRINT_RX_CONS(12);
10747 	BCE_PRINT_RX_CONS(13);  BCE_PRINT_RX_CONS(14);  BCE_PRINT_RX_CONS(15);
10748 
10749 	BCE_PRINT_TX_CONS(1);   BCE_PRINT_TX_CONS(2);   BCE_PRINT_TX_CONS(3);
10750 
10751 	if (sblk->status_completion_producer_index ||
10752 	    sblk->status_cmd_consumer_index)
10753 		BCE_PRINTF("com_prod  = 0x%08X, cmd_cons      = 0x%08X\n",
10754 		    sblk->status_completion_producer_index,
10755 		    sblk->status_cmd_consumer_index);
10756 
10757 	BCE_PRINTF(
10758 	    "----------------------------"
10759 	    "----------------"
10760 	    "----------------------------\n");
10761 }
10762 
10763 
10764 #define BCE_PRINT_64BIT_STAT(arg) 				\
10765 if (sblk->arg##_lo || sblk->arg##_hi)				\
10766 	BCE_PRINTF("0x%08X:%08X : %s\n", sblk->arg##_hi,	\
10767 	    sblk->arg##_lo, #arg);
10768 
10769 #define BCE_PRINT_32BIT_STAT(arg)				\
10770 if (sblk->arg)							\
10771 	BCE_PRINTF("         0x%08X : %s\n", 			\
10772 	    sblk->arg, #arg);
10773 
10774 /****************************************************************************/
10775 /* Prints out the statistics block from host memory.                        */
10776 /*                                                                          */
10777 /* Returns:                                                                 */
10778 /*   Nothing.                                                               */
10779 /****************************************************************************/
10780 static __attribute__ ((noinline)) void
10781 bce_dump_stats_block(struct bce_softc *sc)
10782 {
10783 	struct statistics_block *sblk;
10784 
10785 	sblk = sc->stats_block;
10786 
10787 	BCE_PRINTF(
10788 	    "---------------"
10789 	    " Stats Block  (All Stats Not Shown Are 0) "
10790 	    "---------------\n");
10791 
10792 	BCE_PRINT_64BIT_STAT(stat_IfHCInOctets);
10793 	BCE_PRINT_64BIT_STAT(stat_IfHCInBadOctets);
10794 	BCE_PRINT_64BIT_STAT(stat_IfHCOutOctets);
10795 	BCE_PRINT_64BIT_STAT(stat_IfHCOutBadOctets);
10796 	BCE_PRINT_64BIT_STAT(stat_IfHCInUcastPkts);
10797 	BCE_PRINT_64BIT_STAT(stat_IfHCInBroadcastPkts);
10798 	BCE_PRINT_64BIT_STAT(stat_IfHCInMulticastPkts);
10799 	BCE_PRINT_64BIT_STAT(stat_IfHCOutUcastPkts);
10800 	BCE_PRINT_64BIT_STAT(stat_IfHCOutBroadcastPkts);
10801 	BCE_PRINT_64BIT_STAT(stat_IfHCOutMulticastPkts);
10802 	BCE_PRINT_32BIT_STAT(
10803 	    stat_emac_tx_stat_dot3statsinternalmactransmiterrors);
10804 	BCE_PRINT_32BIT_STAT(stat_Dot3StatsCarrierSenseErrors);
10805 	BCE_PRINT_32BIT_STAT(stat_Dot3StatsFCSErrors);
10806 	BCE_PRINT_32BIT_STAT(stat_Dot3StatsAlignmentErrors);
10807 	BCE_PRINT_32BIT_STAT(stat_Dot3StatsSingleCollisionFrames);
10808 	BCE_PRINT_32BIT_STAT(stat_Dot3StatsMultipleCollisionFrames);
10809 	BCE_PRINT_32BIT_STAT(stat_Dot3StatsDeferredTransmissions);
10810 	BCE_PRINT_32BIT_STAT(stat_Dot3StatsExcessiveCollisions);
10811 	BCE_PRINT_32BIT_STAT(stat_Dot3StatsLateCollisions);
10812 	BCE_PRINT_32BIT_STAT(stat_EtherStatsCollisions);
10813 	BCE_PRINT_32BIT_STAT(stat_EtherStatsFragments);
10814 	BCE_PRINT_32BIT_STAT(stat_EtherStatsJabbers);
10815 	BCE_PRINT_32BIT_STAT(stat_EtherStatsUndersizePkts);
10816 	BCE_PRINT_32BIT_STAT(stat_EtherStatsOversizePkts);
10817 	BCE_PRINT_32BIT_STAT(stat_EtherStatsPktsRx64Octets);
10818 	BCE_PRINT_32BIT_STAT(stat_EtherStatsPktsRx65Octetsto127Octets);
10819 	BCE_PRINT_32BIT_STAT(stat_EtherStatsPktsRx128Octetsto255Octets);
10820 	BCE_PRINT_32BIT_STAT(stat_EtherStatsPktsRx256Octetsto511Octets);
10821 	BCE_PRINT_32BIT_STAT(stat_EtherStatsPktsRx512Octetsto1023Octets);
10822 	BCE_PRINT_32BIT_STAT(stat_EtherStatsPktsRx1024Octetsto1522Octets);
10823 	BCE_PRINT_32BIT_STAT(stat_EtherStatsPktsRx1523Octetsto9022Octets);
10824 	BCE_PRINT_32BIT_STAT(stat_EtherStatsPktsTx64Octets);
10825 	BCE_PRINT_32BIT_STAT(stat_EtherStatsPktsTx65Octetsto127Octets);
10826 	BCE_PRINT_32BIT_STAT(stat_EtherStatsPktsTx128Octetsto255Octets);
10827 	BCE_PRINT_32BIT_STAT(stat_EtherStatsPktsTx256Octetsto511Octets);
10828 	BCE_PRINT_32BIT_STAT(stat_EtherStatsPktsTx512Octetsto1023Octets);
10829 	BCE_PRINT_32BIT_STAT(stat_EtherStatsPktsTx1024Octetsto1522Octets);
10830 	BCE_PRINT_32BIT_STAT(stat_EtherStatsPktsTx1523Octetsto9022Octets);
10831 	BCE_PRINT_32BIT_STAT(stat_XonPauseFramesReceived);
10832 	BCE_PRINT_32BIT_STAT(stat_XoffPauseFramesReceived);
10833 	BCE_PRINT_32BIT_STAT(stat_OutXonSent);
10834 	BCE_PRINT_32BIT_STAT(stat_OutXoffSent);
10835 	BCE_PRINT_32BIT_STAT(stat_FlowControlDone);
10836 	BCE_PRINT_32BIT_STAT(stat_MacControlFramesReceived);
10837 	BCE_PRINT_32BIT_STAT(stat_XoffStateEntered);
10838 	BCE_PRINT_32BIT_STAT(stat_IfInFramesL2FilterDiscards);
10839 	BCE_PRINT_32BIT_STAT(stat_IfInRuleCheckerDiscards);
10840 	BCE_PRINT_32BIT_STAT(stat_IfInFTQDiscards);
10841 	BCE_PRINT_32BIT_STAT(stat_IfInMBUFDiscards);
10842 	BCE_PRINT_32BIT_STAT(stat_IfInRuleCheckerP4Hit);
10843 	BCE_PRINT_32BIT_STAT(stat_CatchupInRuleCheckerDiscards);
10844 	BCE_PRINT_32BIT_STAT(stat_CatchupInFTQDiscards);
10845 	BCE_PRINT_32BIT_STAT(stat_CatchupInMBUFDiscards);
10846 	BCE_PRINT_32BIT_STAT(stat_CatchupInRuleCheckerP4Hit);
10847 
10848 	BCE_PRINTF(
10849 	    "----------------------------"
10850 	    "----------------"
10851 	    "----------------------------\n");
10852 }
10853 
10854 
10855 /****************************************************************************/
10856 /* Prints out a summary of the driver state.                                */
10857 /*                                                                          */
10858 /* Returns:                                                                 */
10859 /*   Nothing.                                                               */
10860 /****************************************************************************/
10861 static __attribute__ ((noinline)) void
10862 bce_dump_driver_state(struct bce_softc *sc)
10863 {
10864 	u32 val_hi, val_lo;
10865 
10866 	BCE_PRINTF(
10867 	    "-----------------------------"
10868 	    " Driver State "
10869 	    "-----------------------------\n");
10870 
10871 	val_hi = BCE_ADDR_HI(sc);
10872 	val_lo = BCE_ADDR_LO(sc);
10873 	BCE_PRINTF("0x%08X:%08X - (sc) driver softc structure virtual "
10874 	    "address\n", val_hi, val_lo);
10875 
10876 	val_hi = BCE_ADDR_HI(sc->bce_vhandle);
10877 	val_lo = BCE_ADDR_LO(sc->bce_vhandle);
10878 	BCE_PRINTF("0x%08X:%08X - (sc->bce_vhandle) PCI BAR virtual "
10879 	    "address\n", val_hi, val_lo);
10880 
10881 	val_hi = BCE_ADDR_HI(sc->status_block);
10882 	val_lo = BCE_ADDR_LO(sc->status_block);
10883 	BCE_PRINTF("0x%08X:%08X - (sc->status_block) status block "
10884 	    "virtual address\n",	val_hi, val_lo);
10885 
10886 	val_hi = BCE_ADDR_HI(sc->stats_block);
10887 	val_lo = BCE_ADDR_LO(sc->stats_block);
10888 	BCE_PRINTF("0x%08X:%08X - (sc->stats_block) statistics block "
10889 	    "virtual address\n", val_hi, val_lo);
10890 
10891 	val_hi = BCE_ADDR_HI(sc->tx_bd_chain);
10892 	val_lo = BCE_ADDR_LO(sc->tx_bd_chain);
10893 	BCE_PRINTF("0x%08X:%08X - (sc->tx_bd_chain) tx_bd chain "
10894 	    "virtual adddress\n", val_hi, val_lo);
10895 
10896 	val_hi = BCE_ADDR_HI(sc->rx_bd_chain);
10897 	val_lo = BCE_ADDR_LO(sc->rx_bd_chain);
10898 	BCE_PRINTF("0x%08X:%08X - (sc->rx_bd_chain) rx_bd chain "
10899 	    "virtual address\n", val_hi, val_lo);
10900 
10901 	if (bce_hdr_split == TRUE) {
10902 		val_hi = BCE_ADDR_HI(sc->pg_bd_chain);
10903 		val_lo = BCE_ADDR_LO(sc->pg_bd_chain);
10904 		BCE_PRINTF("0x%08X:%08X - (sc->pg_bd_chain) page chain "
10905 		    "virtual address\n", val_hi, val_lo);
10906 	}
10907 
10908 	val_hi = BCE_ADDR_HI(sc->tx_mbuf_ptr);
10909 	val_lo = BCE_ADDR_LO(sc->tx_mbuf_ptr);
10910 	BCE_PRINTF("0x%08X:%08X - (sc->tx_mbuf_ptr) tx mbuf chain "
10911 	    "virtual address\n",	val_hi, val_lo);
10912 
10913 	val_hi = BCE_ADDR_HI(sc->rx_mbuf_ptr);
10914 	val_lo = BCE_ADDR_LO(sc->rx_mbuf_ptr);
10915 	BCE_PRINTF("0x%08X:%08X - (sc->rx_mbuf_ptr) rx mbuf chain "
10916 	    "virtual address\n", val_hi, val_lo);
10917 
10918 	if (bce_hdr_split == TRUE) {
10919 		val_hi = BCE_ADDR_HI(sc->pg_mbuf_ptr);
10920 		val_lo = BCE_ADDR_LO(sc->pg_mbuf_ptr);
10921 		BCE_PRINTF("0x%08X:%08X - (sc->pg_mbuf_ptr) page mbuf chain "
10922 		    "virtual address\n", val_hi, val_lo);
10923 	}
10924 
10925 	BCE_PRINTF(" 0x%016llX - (sc->interrupts_generated) "
10926 	    "h/w intrs\n",
10927 	    (long long unsigned int) sc->interrupts_generated);
10928 
10929 	BCE_PRINTF(" 0x%016llX - (sc->interrupts_rx) "
10930 	    "rx interrupts handled\n",
10931 	    (long long unsigned int) sc->interrupts_rx);
10932 
10933 	BCE_PRINTF(" 0x%016llX - (sc->interrupts_tx) "
10934 	    "tx interrupts handled\n",
10935 	    (long long unsigned int) sc->interrupts_tx);
10936 
10937 	BCE_PRINTF(" 0x%016llX - (sc->phy_interrupts) "
10938 	    "phy interrupts handled\n",
10939 	    (long long unsigned int) sc->phy_interrupts);
10940 
10941 	BCE_PRINTF("         0x%08X - (sc->last_status_idx) "
10942 	    "status block index\n", sc->last_status_idx);
10943 
10944 	BCE_PRINTF("     0x%04X(0x%04X) - (sc->tx_prod) tx producer "
10945 	    "index\n", sc->tx_prod, (u16) TX_CHAIN_IDX(sc->tx_prod));
10946 
10947 	BCE_PRINTF("     0x%04X(0x%04X) - (sc->tx_cons) tx consumer "
10948 	    "index\n", sc->tx_cons, (u16) TX_CHAIN_IDX(sc->tx_cons));
10949 
10950 	BCE_PRINTF("         0x%08X - (sc->tx_prod_bseq) tx producer "
10951 	    "byte seq index\n",	sc->tx_prod_bseq);
10952 
10953 	BCE_PRINTF("         0x%08X - (sc->debug_tx_mbuf_alloc) tx "
10954 	    "mbufs allocated\n", sc->debug_tx_mbuf_alloc);
10955 
10956 	BCE_PRINTF("         0x%08X - (sc->used_tx_bd) used "
10957 	    "tx_bd's\n", sc->used_tx_bd);
10958 
10959 	BCE_PRINTF("      0x%04X/0x%04X - (sc->tx_hi_watermark)/"
10960 	    "(sc->max_tx_bd)\n", sc->tx_hi_watermark, sc->max_tx_bd);
10961 
10962 	BCE_PRINTF("     0x%04X(0x%04X) - (sc->rx_prod) rx producer "
10963 	    "index\n", sc->rx_prod, (u16) RX_CHAIN_IDX(sc->rx_prod));
10964 
10965 	BCE_PRINTF("     0x%04X(0x%04X) - (sc->rx_cons) rx consumer "
10966 	    "index\n", sc->rx_cons, (u16) RX_CHAIN_IDX(sc->rx_cons));
10967 
10968 	BCE_PRINTF("         0x%08X - (sc->rx_prod_bseq) rx producer "
10969 	    "byte seq index\n",	sc->rx_prod_bseq);
10970 
10971 	BCE_PRINTF("      0x%04X/0x%04X - (sc->rx_low_watermark)/"
10972 		   "(sc->max_rx_bd)\n", sc->rx_low_watermark, sc->max_rx_bd);
10973 
10974 	BCE_PRINTF("         0x%08X - (sc->debug_rx_mbuf_alloc) rx "
10975 	    "mbufs allocated\n", sc->debug_rx_mbuf_alloc);
10976 
10977 	BCE_PRINTF("         0x%08X - (sc->free_rx_bd) free "
10978 	    "rx_bd's\n", sc->free_rx_bd);
10979 
10980 	if (bce_hdr_split == TRUE) {
10981 		BCE_PRINTF("     0x%04X(0x%04X) - (sc->pg_prod) page producer "
10982 		    "index\n", sc->pg_prod, (u16) PG_CHAIN_IDX(sc->pg_prod));
10983 
10984 		BCE_PRINTF("     0x%04X(0x%04X) - (sc->pg_cons) page consumer "
10985 		    "index\n", sc->pg_cons, (u16) PG_CHAIN_IDX(sc->pg_cons));
10986 
10987 		BCE_PRINTF("         0x%08X - (sc->debug_pg_mbuf_alloc) page "
10988 		    "mbufs allocated\n", sc->debug_pg_mbuf_alloc);
10989 	}
10990 
10991 	BCE_PRINTF("         0x%08X - (sc->free_pg_bd) free page "
10992 	    "rx_bd's\n", sc->free_pg_bd);
10993 
10994 	BCE_PRINTF("      0x%04X/0x%04X - (sc->pg_low_watermark)/"
10995 	    "(sc->max_pg_bd)\n", sc->pg_low_watermark, sc->max_pg_bd);
10996 
10997 	BCE_PRINTF("         0x%08X - (sc->mbuf_alloc_failed_count) "
10998 	    "mbuf alloc failures\n", sc->mbuf_alloc_failed_count);
10999 
11000 	BCE_PRINTF("         0x%08X - (sc->bce_flags) "
11001 	    "bce mac flags\n", sc->bce_flags);
11002 
11003 	BCE_PRINTF("         0x%08X - (sc->bce_phy_flags) "
11004 	    "bce phy flags\n", sc->bce_phy_flags);
11005 
11006 	BCE_PRINTF(
11007 	    "----------------------------"
11008 	    "----------------"
11009 	    "----------------------------\n");
11010 }
11011 
11012 
11013 /****************************************************************************/
11014 /* Prints out the hardware state through a summary of important register,   */
11015 /* followed by a complete register dump.                                    */
11016 /*                                                                          */
11017 /* Returns:                                                                 */
11018 /*   Nothing.                                                               */
11019 /****************************************************************************/
11020 static __attribute__ ((noinline)) void
11021 bce_dump_hw_state(struct bce_softc *sc)
11022 {
11023 	u32 val;
11024 
11025 	BCE_PRINTF(
11026 	    "----------------------------"
11027 	    " Hardware State "
11028 	    "----------------------------\n");
11029 
11030 	BCE_PRINTF("%s - bootcode version\n", sc->bce_bc_ver);
11031 
11032 	val = REG_RD(sc, BCE_MISC_ENABLE_STATUS_BITS);
11033 	BCE_PRINTF("0x%08X - (0x%06X) misc_enable_status_bits\n",
11034 	    val, BCE_MISC_ENABLE_STATUS_BITS);
11035 
11036 	val = REG_RD(sc, BCE_DMA_STATUS);
11037 	BCE_PRINTF("0x%08X - (0x%06X) dma_status\n",
11038 	    val, BCE_DMA_STATUS);
11039 
11040 	val = REG_RD(sc, BCE_CTX_STATUS);
11041 	BCE_PRINTF("0x%08X - (0x%06X) ctx_status\n",
11042 	    val, BCE_CTX_STATUS);
11043 
11044 	val = REG_RD(sc, BCE_EMAC_STATUS);
11045 	BCE_PRINTF("0x%08X - (0x%06X) emac_status\n",
11046 	    val, BCE_EMAC_STATUS);
11047 
11048 	val = REG_RD(sc, BCE_RPM_STATUS);
11049 	BCE_PRINTF("0x%08X - (0x%06X) rpm_status\n",
11050 	    val, BCE_RPM_STATUS);
11051 
11052 	/* ToDo: Create a #define for this constant. */
11053 	val = REG_RD(sc, 0x2004);
11054 	BCE_PRINTF("0x%08X - (0x%06X) rlup_status\n",
11055 	    val, 0x2004);
11056 
11057 	val = REG_RD(sc, BCE_RV2P_STATUS);
11058 	BCE_PRINTF("0x%08X - (0x%06X) rv2p_status\n",
11059 	    val, BCE_RV2P_STATUS);
11060 
11061 	/* ToDo: Create a #define for this constant. */
11062 	val = REG_RD(sc, 0x2c04);
11063 	BCE_PRINTF("0x%08X - (0x%06X) rdma_status\n",
11064 	    val, 0x2c04);
11065 
11066 	val = REG_RD(sc, BCE_TBDR_STATUS);
11067 	BCE_PRINTF("0x%08X - (0x%06X) tbdr_status\n",
11068 	    val, BCE_TBDR_STATUS);
11069 
11070 	val = REG_RD(sc, BCE_TDMA_STATUS);
11071 	BCE_PRINTF("0x%08X - (0x%06X) tdma_status\n",
11072 	    val, BCE_TDMA_STATUS);
11073 
11074 	val = REG_RD(sc, BCE_HC_STATUS);
11075 	BCE_PRINTF("0x%08X - (0x%06X) hc_status\n",
11076 	    val, BCE_HC_STATUS);
11077 
11078 	val = REG_RD_IND(sc, BCE_TXP_CPU_STATE);
11079 	BCE_PRINTF("0x%08X - (0x%06X) txp_cpu_state\n",
11080 	    val, BCE_TXP_CPU_STATE);
11081 
11082 	val = REG_RD_IND(sc, BCE_TPAT_CPU_STATE);
11083 	BCE_PRINTF("0x%08X - (0x%06X) tpat_cpu_state\n",
11084 	    val, BCE_TPAT_CPU_STATE);
11085 
11086 	val = REG_RD_IND(sc, BCE_RXP_CPU_STATE);
11087 	BCE_PRINTF("0x%08X - (0x%06X) rxp_cpu_state\n",
11088 	    val, BCE_RXP_CPU_STATE);
11089 
11090 	val = REG_RD_IND(sc, BCE_COM_CPU_STATE);
11091 	BCE_PRINTF("0x%08X - (0x%06X) com_cpu_state\n",
11092 	    val, BCE_COM_CPU_STATE);
11093 
11094 	val = REG_RD_IND(sc, BCE_MCP_CPU_STATE);
11095 	BCE_PRINTF("0x%08X - (0x%06X) mcp_cpu_state\n",
11096 	    val, BCE_MCP_CPU_STATE);
11097 
11098 	val = REG_RD_IND(sc, BCE_CP_CPU_STATE);
11099 	BCE_PRINTF("0x%08X - (0x%06X) cp_cpu_state\n",
11100 	    val, BCE_CP_CPU_STATE);
11101 
11102 	BCE_PRINTF(
11103 	    "----------------------------"
11104 	    "----------------"
11105 	    "----------------------------\n");
11106 
11107 	BCE_PRINTF(
11108 	    "----------------------------"
11109 	    " Register  Dump "
11110 	    "----------------------------\n");
11111 
11112 	for (int i = 0x400; i < 0x8000; i += 0x10) {
11113 		BCE_PRINTF("0x%04X: 0x%08X 0x%08X 0x%08X 0x%08X\n",
11114 		    i, REG_RD(sc, i), REG_RD(sc, i + 0x4),
11115 		    REG_RD(sc, i + 0x8), REG_RD(sc, i + 0xC));
11116 	}
11117 
11118 	BCE_PRINTF(
11119 	    "----------------------------"
11120 	    "----------------"
11121 	    "----------------------------\n");
11122 }
11123 
11124 
11125 /****************************************************************************/
11126 /* Prints out the contentst of shared memory which is used for host driver  */
11127 /* to bootcode firmware communication.                                      */
11128 /*                                                                          */
11129 /* Returns:                                                                 */
11130 /*   Nothing.                                                               */
11131 /****************************************************************************/
11132 static __attribute__ ((noinline)) void
11133 bce_dump_shmem_state(struct bce_softc *sc)
11134 {
11135 	BCE_PRINTF(
11136 	    "----------------------------"
11137 	    " Hardware State "
11138 	    "----------------------------\n");
11139 
11140 	BCE_PRINTF("0x%08X - Shared memory base address\n",
11141 	    sc->bce_shmem_base);
11142 	BCE_PRINTF("%s - bootcode version\n",
11143 	    sc->bce_bc_ver);
11144 
11145 	BCE_PRINTF(
11146 	    "----------------------------"
11147 	    "   Shared Mem   "
11148 	    "----------------------------\n");
11149 
11150 	for (int i = 0x0; i < 0x200; i += 0x10) {
11151 		BCE_PRINTF("0x%04X: 0x%08X 0x%08X 0x%08X 0x%08X\n",
11152 		    i, bce_shmem_rd(sc, i), bce_shmem_rd(sc, i + 0x4),
11153 		    bce_shmem_rd(sc, i + 0x8), bce_shmem_rd(sc, i + 0xC));
11154 	}
11155 
11156 	BCE_PRINTF(
11157 	    "----------------------------"
11158 	    "----------------"
11159 	    "----------------------------\n");
11160 }
11161 
11162 
11163 /****************************************************************************/
11164 /* Prints out the mailbox queue registers.                                  */
11165 /*                                                                          */
11166 /* Returns:                                                                 */
11167 /*   Nothing.                                                               */
11168 /****************************************************************************/
11169 static __attribute__ ((noinline)) void
11170 bce_dump_mq_regs(struct bce_softc *sc)
11171 {
11172 	BCE_PRINTF(
11173 	    "----------------------------"
11174 	    "    MQ Regs     "
11175 	    "----------------------------\n");
11176 
11177 	BCE_PRINTF(
11178 	    "----------------------------"
11179 	    "----------------"
11180 	    "----------------------------\n");
11181 
11182 	for (int i = 0x3c00; i < 0x4000; i += 0x10) {
11183 		BCE_PRINTF("0x%04X: 0x%08X 0x%08X 0x%08X 0x%08X\n",
11184 		    i, REG_RD(sc, i), REG_RD(sc, i + 0x4),
11185 		    REG_RD(sc, i + 0x8), REG_RD(sc, i + 0xC));
11186 	}
11187 
11188 	BCE_PRINTF(
11189 	    "----------------------------"
11190 	    "----------------"
11191 	    "----------------------------\n");
11192 }
11193 
11194 
11195 /****************************************************************************/
11196 /* Prints out the bootcode state.                                           */
11197 /*                                                                          */
11198 /* Returns:                                                                 */
11199 /*   Nothing.                                                               */
11200 /****************************************************************************/
11201 static __attribute__ ((noinline)) void
11202 bce_dump_bc_state(struct bce_softc *sc)
11203 {
11204 	u32 val;
11205 
11206 	BCE_PRINTF(
11207 	    "----------------------------"
11208 	    " Bootcode State "
11209 	    "----------------------------\n");
11210 
11211 	BCE_PRINTF("%s - bootcode version\n", sc->bce_bc_ver);
11212 
11213 	val = bce_shmem_rd(sc, BCE_BC_RESET_TYPE);
11214 	BCE_PRINTF("0x%08X - (0x%06X) reset_type\n",
11215 	    val, BCE_BC_RESET_TYPE);
11216 
11217 	val = bce_shmem_rd(sc, BCE_BC_STATE);
11218 	BCE_PRINTF("0x%08X - (0x%06X) state\n",
11219 	    val, BCE_BC_STATE);
11220 
11221 	val = bce_shmem_rd(sc, BCE_BC_STATE_CONDITION);
11222 	BCE_PRINTF("0x%08X - (0x%06X) condition\n",
11223 	    val, BCE_BC_STATE_CONDITION);
11224 
11225 	val = bce_shmem_rd(sc, BCE_BC_STATE_DEBUG_CMD);
11226 	BCE_PRINTF("0x%08X - (0x%06X) debug_cmd\n",
11227 	    val, BCE_BC_STATE_DEBUG_CMD);
11228 
11229 	BCE_PRINTF(
11230 	    "----------------------------"
11231 	    "----------------"
11232 	    "----------------------------\n");
11233 }
11234 
11235 
11236 /****************************************************************************/
11237 /* Prints out the TXP processor state.                                      */
11238 /*                                                                          */
11239 /* Returns:                                                                 */
11240 /*   Nothing.                                                               */
11241 /****************************************************************************/
11242 static __attribute__ ((noinline)) void
11243 bce_dump_txp_state(struct bce_softc *sc, int regs)
11244 {
11245 	u32 val;
11246 	u32 fw_version[3];
11247 
11248 	BCE_PRINTF(
11249 	    "----------------------------"
11250 	    "   TXP  State   "
11251 	    "----------------------------\n");
11252 
11253 	for (int i = 0; i < 3; i++)
11254 		fw_version[i] = htonl(REG_RD_IND(sc,
11255 		    (BCE_TXP_SCRATCH + 0x10 + i * 4)));
11256 	BCE_PRINTF("Firmware version - %s\n", (char *) fw_version);
11257 
11258 	val = REG_RD_IND(sc, BCE_TXP_CPU_MODE);
11259 	BCE_PRINTF("0x%08X - (0x%06X) txp_cpu_mode\n",
11260 	    val, BCE_TXP_CPU_MODE);
11261 
11262 	val = REG_RD_IND(sc, BCE_TXP_CPU_STATE);
11263 	BCE_PRINTF("0x%08X - (0x%06X) txp_cpu_state\n",
11264 	    val, BCE_TXP_CPU_STATE);
11265 
11266 	val = REG_RD_IND(sc, BCE_TXP_CPU_EVENT_MASK);
11267 	BCE_PRINTF("0x%08X - (0x%06X) txp_cpu_event_mask\n",
11268 	    val, BCE_TXP_CPU_EVENT_MASK);
11269 
11270 	if (regs) {
11271 		BCE_PRINTF(
11272 		    "----------------------------"
11273 		    " Register  Dump "
11274 		    "----------------------------\n");
11275 
11276 		for (int i = BCE_TXP_CPU_MODE; i < 0x68000; i += 0x10) {
11277 			/* Skip the big blank spaces */
11278 			if (i < 0x454000 && i > 0x5ffff)
11279 				BCE_PRINTF("0x%04X: 0x%08X 0x%08X "
11280 				    "0x%08X 0x%08X\n", i,
11281 				    REG_RD_IND(sc, i),
11282 				    REG_RD_IND(sc, i + 0x4),
11283 				    REG_RD_IND(sc, i + 0x8),
11284 				    REG_RD_IND(sc, i + 0xC));
11285 		}
11286 	}
11287 
11288 	BCE_PRINTF(
11289 	    "----------------------------"
11290 	    "----------------"
11291 	    "----------------------------\n");
11292 }
11293 
11294 
11295 /****************************************************************************/
11296 /* Prints out the RXP processor state.                                      */
11297 /*                                                                          */
11298 /* Returns:                                                                 */
11299 /*   Nothing.                                                               */
11300 /****************************************************************************/
11301 static __attribute__ ((noinline)) void
11302 bce_dump_rxp_state(struct bce_softc *sc, int regs)
11303 {
11304 	u32 val;
11305 	u32 fw_version[3];
11306 
11307 	BCE_PRINTF(
11308 	    "----------------------------"
11309 	    "   RXP  State   "
11310 	    "----------------------------\n");
11311 
11312 	for (int i = 0; i < 3; i++)
11313 		fw_version[i] = htonl(REG_RD_IND(sc,
11314 		    (BCE_RXP_SCRATCH + 0x10 + i * 4)));
11315 
11316 	BCE_PRINTF("Firmware version - %s\n", (char *) fw_version);
11317 
11318 	val = REG_RD_IND(sc, BCE_RXP_CPU_MODE);
11319 	BCE_PRINTF("0x%08X - (0x%06X) rxp_cpu_mode\n",
11320 	    val, BCE_RXP_CPU_MODE);
11321 
11322 	val = REG_RD_IND(sc, BCE_RXP_CPU_STATE);
11323 	BCE_PRINTF("0x%08X - (0x%06X) rxp_cpu_state\n",
11324 	    val, BCE_RXP_CPU_STATE);
11325 
11326 	val = REG_RD_IND(sc, BCE_RXP_CPU_EVENT_MASK);
11327 	BCE_PRINTF("0x%08X - (0x%06X) rxp_cpu_event_mask\n",
11328 	    val, BCE_RXP_CPU_EVENT_MASK);
11329 
11330 	if (regs) {
11331 		BCE_PRINTF(
11332 		    "----------------------------"
11333 		    " Register  Dump "
11334 		    "----------------------------\n");
11335 
11336 		for (int i = BCE_RXP_CPU_MODE; i < 0xe8fff; i += 0x10) {
11337 			/* Skip the big blank sapces */
11338 			if (i < 0xc5400 && i > 0xdffff)
11339 				BCE_PRINTF("0x%04X: 0x%08X 0x%08X "
11340 				    "0x%08X 0x%08X\n", i,
11341 				    REG_RD_IND(sc, i),
11342 				    REG_RD_IND(sc, i + 0x4),
11343 				    REG_RD_IND(sc, i + 0x8),
11344 				    REG_RD_IND(sc, i + 0xC));
11345 		}
11346 	}
11347 
11348 	BCE_PRINTF(
11349 	    "----------------------------"
11350 	    "----------------"
11351 	    "----------------------------\n");
11352 }
11353 
11354 
11355 /****************************************************************************/
11356 /* Prints out the TPAT processor state.                                     */
11357 /*                                                                          */
11358 /* Returns:                                                                 */
11359 /*   Nothing.                                                               */
11360 /****************************************************************************/
11361 static __attribute__ ((noinline)) void
11362 bce_dump_tpat_state(struct bce_softc *sc, int regs)
11363 {
11364 	u32 val;
11365 	u32 fw_version[3];
11366 
11367 	BCE_PRINTF(
11368 	    "----------------------------"
11369 	    "   TPAT State   "
11370 	    "----------------------------\n");
11371 
11372 	for (int i = 0; i < 3; i++)
11373 		fw_version[i] = htonl(REG_RD_IND(sc,
11374 		    (BCE_TPAT_SCRATCH + 0x410 + i * 4)));
11375 
11376 	BCE_PRINTF("Firmware version - %s\n", (char *) fw_version);
11377 
11378 	val = REG_RD_IND(sc, BCE_TPAT_CPU_MODE);
11379 	BCE_PRINTF("0x%08X - (0x%06X) tpat_cpu_mode\n",
11380 	    val, BCE_TPAT_CPU_MODE);
11381 
11382 	val = REG_RD_IND(sc, BCE_TPAT_CPU_STATE);
11383 	BCE_PRINTF("0x%08X - (0x%06X) tpat_cpu_state\n",
11384 	    val, BCE_TPAT_CPU_STATE);
11385 
11386 	val = REG_RD_IND(sc, BCE_TPAT_CPU_EVENT_MASK);
11387 	BCE_PRINTF("0x%08X - (0x%06X) tpat_cpu_event_mask\n",
11388 	    val, BCE_TPAT_CPU_EVENT_MASK);
11389 
11390 	if (regs) {
11391 		BCE_PRINTF(
11392 		    "----------------------------"
11393 		    " Register  Dump "
11394 		    "----------------------------\n");
11395 
11396 		for (int i = BCE_TPAT_CPU_MODE; i < 0xa3fff; i += 0x10) {
11397 			/* Skip the big blank spaces */
11398 			if (i < 0x854000 && i > 0x9ffff)
11399 				BCE_PRINTF("0x%04X: 0x%08X 0x%08X "
11400 				    "0x%08X 0x%08X\n", i,
11401 				    REG_RD_IND(sc, i),
11402 				    REG_RD_IND(sc, i + 0x4),
11403 				    REG_RD_IND(sc, i + 0x8),
11404 				    REG_RD_IND(sc, i + 0xC));
11405 		}
11406 	}
11407 
11408 	BCE_PRINTF(
11409 		"----------------------------"
11410 		"----------------"
11411 		"----------------------------\n");
11412 }
11413 
11414 
11415 /****************************************************************************/
11416 /* Prints out the Command Procesor (CP) state.                              */
11417 /*                                                                          */
11418 /* Returns:                                                                 */
11419 /*   Nothing.                                                               */
11420 /****************************************************************************/
11421 static __attribute__ ((noinline)) void
11422 bce_dump_cp_state(struct bce_softc *sc, int regs)
11423 {
11424 	u32 val;
11425 	u32 fw_version[3];
11426 
11427 	BCE_PRINTF(
11428 	    "----------------------------"
11429 	    "    CP State    "
11430 	    "----------------------------\n");
11431 
11432 	for (int i = 0; i < 3; i++)
11433 		fw_version[i] = htonl(REG_RD_IND(sc,
11434 		    (BCE_CP_SCRATCH + 0x10 + i * 4)));
11435 
11436 	BCE_PRINTF("Firmware version - %s\n", (char *) fw_version);
11437 
11438 	val = REG_RD_IND(sc, BCE_CP_CPU_MODE);
11439 	BCE_PRINTF("0x%08X - (0x%06X) cp_cpu_mode\n",
11440 	    val, BCE_CP_CPU_MODE);
11441 
11442 	val = REG_RD_IND(sc, BCE_CP_CPU_STATE);
11443 	BCE_PRINTF("0x%08X - (0x%06X) cp_cpu_state\n",
11444 	    val, BCE_CP_CPU_STATE);
11445 
11446 	val = REG_RD_IND(sc, BCE_CP_CPU_EVENT_MASK);
11447 	BCE_PRINTF("0x%08X - (0x%06X) cp_cpu_event_mask\n", val,
11448 	    BCE_CP_CPU_EVENT_MASK);
11449 
11450 	if (regs) {
11451 		BCE_PRINTF(
11452 		    "----------------------------"
11453 		    " Register  Dump "
11454 		    "----------------------------\n");
11455 
11456 		for (int i = BCE_CP_CPU_MODE; i < 0x1aa000; i += 0x10) {
11457 			/* Skip the big blank spaces */
11458 			if (i < 0x185400 && i > 0x19ffff)
11459 				BCE_PRINTF("0x%04X: 0x%08X 0x%08X "
11460 				    "0x%08X 0x%08X\n", i,
11461 				    REG_RD_IND(sc, i),
11462 				    REG_RD_IND(sc, i + 0x4),
11463 				    REG_RD_IND(sc, i + 0x8),
11464 				    REG_RD_IND(sc, i + 0xC));
11465 		}
11466 	}
11467 
11468 	BCE_PRINTF(
11469 	    "----------------------------"
11470 	    "----------------"
11471 	    "----------------------------\n");
11472 }
11473 
11474 
11475 /****************************************************************************/
11476 /* Prints out the Completion Procesor (COM) state.                          */
11477 /*                                                                          */
11478 /* Returns:                                                                 */
11479 /*   Nothing.                                                               */
11480 /****************************************************************************/
11481 static __attribute__ ((noinline)) void
11482 bce_dump_com_state(struct bce_softc *sc, int regs)
11483 {
11484 	u32 val;
11485 	u32 fw_version[4];
11486 
11487 	BCE_PRINTF(
11488 	    "----------------------------"
11489 	    "   COM State    "
11490 	    "----------------------------\n");
11491 
11492 	for (int i = 0; i < 3; i++)
11493 		fw_version[i] = htonl(REG_RD_IND(sc,
11494 		    (BCE_COM_SCRATCH + 0x10 + i * 4)));
11495 
11496 	BCE_PRINTF("Firmware version - %s\n", (char *) fw_version);
11497 
11498 	val = REG_RD_IND(sc, BCE_COM_CPU_MODE);
11499 	BCE_PRINTF("0x%08X - (0x%06X) com_cpu_mode\n",
11500 	    val, BCE_COM_CPU_MODE);
11501 
11502 	val = REG_RD_IND(sc, BCE_COM_CPU_STATE);
11503 	BCE_PRINTF("0x%08X - (0x%06X) com_cpu_state\n",
11504 	    val, BCE_COM_CPU_STATE);
11505 
11506 	val = REG_RD_IND(sc, BCE_COM_CPU_EVENT_MASK);
11507 	BCE_PRINTF("0x%08X - (0x%06X) com_cpu_event_mask\n", val,
11508 	    BCE_COM_CPU_EVENT_MASK);
11509 
11510 	if (regs) {
11511 		BCE_PRINTF(
11512 		    "----------------------------"
11513 		    " Register  Dump "
11514 		    "----------------------------\n");
11515 
11516 		for (int i = BCE_COM_CPU_MODE; i < 0x1053e8; i += 0x10) {
11517 			BCE_PRINTF("0x%04X: 0x%08X 0x%08X "
11518 			    "0x%08X 0x%08X\n", i,
11519 			    REG_RD_IND(sc, i),
11520 			    REG_RD_IND(sc, i + 0x4),
11521 			    REG_RD_IND(sc, i + 0x8),
11522 			    REG_RD_IND(sc, i + 0xC));
11523 		}
11524 	}
11525 
11526 	BCE_PRINTF(
11527 		"----------------------------"
11528 		"----------------"
11529 		"----------------------------\n");
11530 }
11531 
11532 
11533 /****************************************************************************/
11534 /* Prints out the Receive Virtual 2 Physical (RV2P) state.                  */
11535 /*                                                                          */
11536 /* Returns:                                                                 */
11537 /*   Nothing.                                                               */
11538 /****************************************************************************/
11539 static __attribute__ ((noinline)) void
11540 bce_dump_rv2p_state(struct bce_softc *sc)
11541 {
11542 	u32 val, pc1, pc2, fw_ver_high, fw_ver_low;
11543 
11544 	BCE_PRINTF(
11545 	    "----------------------------"
11546 	    "   RV2P State   "
11547 	    "----------------------------\n");
11548 
11549 	/* Stall the RV2P processors. */
11550 	val = REG_RD_IND(sc, BCE_RV2P_CONFIG);
11551 	val |= BCE_RV2P_CONFIG_STALL_PROC1 | BCE_RV2P_CONFIG_STALL_PROC2;
11552 	REG_WR_IND(sc, BCE_RV2P_CONFIG, val);
11553 
11554 	/* Read the firmware version. */
11555 	val = 0x00000001;
11556 	REG_WR_IND(sc, BCE_RV2P_PROC1_ADDR_CMD, val);
11557 	fw_ver_low = REG_RD_IND(sc, BCE_RV2P_INSTR_LOW);
11558 	fw_ver_high = REG_RD_IND(sc, BCE_RV2P_INSTR_HIGH) &
11559 	    BCE_RV2P_INSTR_HIGH_HIGH;
11560 	BCE_PRINTF("RV2P1 Firmware version - 0x%08X:0x%08X\n",
11561 	    fw_ver_high, fw_ver_low);
11562 
11563 	val = 0x00000001;
11564 	REG_WR_IND(sc, BCE_RV2P_PROC2_ADDR_CMD, val);
11565 	fw_ver_low = REG_RD_IND(sc, BCE_RV2P_INSTR_LOW);
11566 	fw_ver_high = REG_RD_IND(sc, BCE_RV2P_INSTR_HIGH) &
11567 	    BCE_RV2P_INSTR_HIGH_HIGH;
11568 	BCE_PRINTF("RV2P2 Firmware version - 0x%08X:0x%08X\n",
11569 	    fw_ver_high, fw_ver_low);
11570 
11571 	/* Resume the RV2P processors. */
11572 	val = REG_RD_IND(sc, BCE_RV2P_CONFIG);
11573 	val &= ~(BCE_RV2P_CONFIG_STALL_PROC1 | BCE_RV2P_CONFIG_STALL_PROC2);
11574 	REG_WR_IND(sc, BCE_RV2P_CONFIG, val);
11575 
11576 	/* Fetch the program counter value. */
11577 	val = 0x68007800;
11578 	REG_WR_IND(sc, BCE_RV2P_DEBUG_VECT_PEEK, val);
11579 	val = REG_RD_IND(sc, BCE_RV2P_DEBUG_VECT_PEEK);
11580 	pc1 = (val & BCE_RV2P_DEBUG_VECT_PEEK_1_VALUE);
11581 	pc2 = (val & BCE_RV2P_DEBUG_VECT_PEEK_2_VALUE) >> 16;
11582 	BCE_PRINTF("0x%08X - RV2P1 program counter (1st read)\n", pc1);
11583 	BCE_PRINTF("0x%08X - RV2P2 program counter (1st read)\n", pc2);
11584 
11585 	/* Fetch the program counter value again to see if it is advancing. */
11586 	val = 0x68007800;
11587 	REG_WR_IND(sc, BCE_RV2P_DEBUG_VECT_PEEK, val);
11588 	val = REG_RD_IND(sc, BCE_RV2P_DEBUG_VECT_PEEK);
11589 	pc1 = (val & BCE_RV2P_DEBUG_VECT_PEEK_1_VALUE);
11590 	pc2 = (val & BCE_RV2P_DEBUG_VECT_PEEK_2_VALUE) >> 16;
11591 	BCE_PRINTF("0x%08X - RV2P1 program counter (2nd read)\n", pc1);
11592 	BCE_PRINTF("0x%08X - RV2P2 program counter (2nd read)\n", pc2);
11593 
11594 	BCE_PRINTF(
11595 	    "----------------------------"
11596 	    "----------------"
11597 	    "----------------------------\n");
11598 }
11599 
11600 
11601 /****************************************************************************/
11602 /* Prints out the driver state and then enters the debugger.                */
11603 /*                                                                          */
11604 /* Returns:                                                                 */
11605 /*   Nothing.                                                               */
11606 /****************************************************************************/
11607 static __attribute__ ((noinline)) void
11608 bce_breakpoint(struct bce_softc *sc)
11609 {
11610 
11611 	/*
11612 	 * Unreachable code to silence compiler warnings
11613 	 * about unused functions.
11614 	 */
11615 	if (0) {
11616 		bce_freeze_controller(sc);
11617 		bce_unfreeze_controller(sc);
11618 		bce_dump_enet(sc, NULL);
11619 		bce_dump_txbd(sc, 0, NULL);
11620 		bce_dump_rxbd(sc, 0, NULL);
11621 		bce_dump_tx_mbuf_chain(sc, 0, USABLE_TX_BD_ALLOC);
11622 		bce_dump_rx_mbuf_chain(sc, 0, USABLE_RX_BD_ALLOC);
11623 		bce_dump_pg_mbuf_chain(sc, 0, USABLE_PG_BD_ALLOC);
11624 		bce_dump_l2fhdr(sc, 0, NULL);
11625 		bce_dump_ctx(sc, RX_CID);
11626 		bce_dump_ftqs(sc);
11627 		bce_dump_tx_chain(sc, 0, USABLE_TX_BD_ALLOC);
11628 		bce_dump_rx_bd_chain(sc, 0, USABLE_RX_BD_ALLOC);
11629 		bce_dump_pg_chain(sc, 0, USABLE_PG_BD_ALLOC);
11630 		bce_dump_status_block(sc);
11631 		bce_dump_stats_block(sc);
11632 		bce_dump_driver_state(sc);
11633 		bce_dump_hw_state(sc);
11634 		bce_dump_bc_state(sc);
11635 		bce_dump_txp_state(sc, 0);
11636 		bce_dump_rxp_state(sc, 0);
11637 		bce_dump_tpat_state(sc, 0);
11638 		bce_dump_cp_state(sc, 0);
11639 		bce_dump_com_state(sc, 0);
11640 		bce_dump_rv2p_state(sc);
11641 		bce_dump_pgbd(sc, 0, NULL);
11642 	}
11643 
11644 	bce_dump_status_block(sc);
11645 	bce_dump_driver_state(sc);
11646 
11647 	/* Call the debugger. */
11648 	breakpoint();
11649 
11650 	return;
11651 }
11652 #endif
11653 
11654