1 /*- 2 * Copyright (c) 2006-2009 Broadcom Corporation 3 * David Christensen <davidch@broadcom.com>. All rights reserved. 4 * 5 * Redistribution and use in source and binary forms, with or without 6 * modification, are permitted provided that the following conditions 7 * are met: 8 * 9 * 1. Redistributions of source code must retain the above copyright 10 * notice, this list of conditions and the following disclaimer. 11 * 2. Redistributions in binary form must reproduce the above copyright 12 * notice, this list of conditions and the following disclaimer in the 13 * documentation and/or other materials provided with the distribution. 14 * 3. Neither the name of Broadcom Corporation nor the name of its contributors 15 * may be used to endorse or promote products derived from this software 16 * without specific prior written consent. 17 * 18 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS' 19 * AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 20 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 21 * ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS 22 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR 23 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF 24 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS 25 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN 26 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) 27 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF 28 * THE POSSIBILITY OF SUCH DAMAGE. 29 */ 30 31 #include <sys/cdefs.h> 32 __FBSDID("$FreeBSD$"); 33 34 /* 35 * The following controllers are supported by this driver: 36 * BCM5706C A2, A3 37 * BCM5706S A2, A3 38 * BCM5708C B1, B2 39 * BCM5708S B1, B2 40 * BCM5709C A1, C0 41 * BCM5716C C0 42 * 43 * The following controllers are not supported by this driver: 44 * BCM5706C A0, A1 (pre-production) 45 * BCM5706S A0, A1 (pre-production) 46 * BCM5708C A0, B0 (pre-production) 47 * BCM5708S A0, B0 (pre-production) 48 * BCM5709C A0 B0, B1, B2 (pre-production) 49 * BCM5709S A0, A1, B0, B1, B2, C0 (pre-production) 50 */ 51 52 #include "opt_bce.h" 53 54 #include <dev/bce/if_bcereg.h> 55 #include <dev/bce/if_bcefw.h> 56 57 /****************************************************************************/ 58 /* BCE Debug Options */ 59 /****************************************************************************/ 60 #ifdef BCE_DEBUG 61 u32 bce_debug = BCE_WARN; 62 63 /* 0 = Never */ 64 /* 1 = 1 in 2,147,483,648 */ 65 /* 256 = 1 in 8,388,608 */ 66 /* 2048 = 1 in 1,048,576 */ 67 /* 65536 = 1 in 32,768 */ 68 /* 1048576 = 1 in 2,048 */ 69 /* 268435456 = 1 in 8 */ 70 /* 536870912 = 1 in 4 */ 71 /* 1073741824 = 1 in 2 */ 72 73 /* Controls how often the l2_fhdr frame error check will fail. */ 74 int l2fhdr_error_sim_control = 0; 75 76 /* Controls how often the unexpected attention check will fail. */ 77 int unexpected_attention_sim_control = 0; 78 79 /* Controls how often to simulate an mbuf allocation failure. */ 80 int mbuf_alloc_failed_sim_control = 0; 81 82 /* Controls how often to simulate a DMA mapping failure. */ 83 int dma_map_addr_failed_sim_control = 0; 84 85 /* Controls how often to simulate a bootcode failure. */ 86 int bootcode_running_failure_sim_control = 0; 87 #endif 88 89 /****************************************************************************/ 90 /* BCE Build Time Options */ 91 /****************************************************************************/ 92 /* #define BCE_NVRAM_WRITE_SUPPORT 1 */ 93 94 95 /****************************************************************************/ 96 /* PCI Device ID Table */ 97 /* */ 98 /* Used by bce_probe() to identify the devices supported by this driver. */ 99 /****************************************************************************/ 100 #define BCE_DEVDESC_MAX 64 101 102 static struct bce_type bce_devs[] = { 103 /* BCM5706C Controllers and OEM boards. */ 104 { BRCM_VENDORID, BRCM_DEVICEID_BCM5706, HP_VENDORID, 0x3101, 105 "HP NC370T Multifunction Gigabit Server Adapter" }, 106 { BRCM_VENDORID, BRCM_DEVICEID_BCM5706, HP_VENDORID, 0x3106, 107 "HP NC370i Multifunction Gigabit Server Adapter" }, 108 { BRCM_VENDORID, BRCM_DEVICEID_BCM5706, HP_VENDORID, 0x3070, 109 "HP NC380T PCIe DP Multifunc Gig Server Adapter" }, 110 { BRCM_VENDORID, BRCM_DEVICEID_BCM5706, HP_VENDORID, 0x1709, 111 "HP NC371i Multifunction Gigabit Server Adapter" }, 112 { BRCM_VENDORID, BRCM_DEVICEID_BCM5706, PCI_ANY_ID, PCI_ANY_ID, 113 "Broadcom NetXtreme II BCM5706 1000Base-T" }, 114 115 /* BCM5706S controllers and OEM boards. */ 116 { BRCM_VENDORID, BRCM_DEVICEID_BCM5706S, HP_VENDORID, 0x3102, 117 "HP NC370F Multifunction Gigabit Server Adapter" }, 118 { BRCM_VENDORID, BRCM_DEVICEID_BCM5706S, PCI_ANY_ID, PCI_ANY_ID, 119 "Broadcom NetXtreme II BCM5706 1000Base-SX" }, 120 121 /* BCM5708C controllers and OEM boards. */ 122 { BRCM_VENDORID, BRCM_DEVICEID_BCM5708, HP_VENDORID, 0x7037, 123 "HP NC373T PCIe Multifunction Gig Server Adapter" }, 124 { BRCM_VENDORID, BRCM_DEVICEID_BCM5708, HP_VENDORID, 0x7038, 125 "HP NC373i Multifunction Gigabit Server Adapter" }, 126 { BRCM_VENDORID, BRCM_DEVICEID_BCM5708, HP_VENDORID, 0x7045, 127 "HP NC374m PCIe Multifunction Adapter" }, 128 { BRCM_VENDORID, BRCM_DEVICEID_BCM5708, PCI_ANY_ID, PCI_ANY_ID, 129 "Broadcom NetXtreme II BCM5708 1000Base-T" }, 130 131 /* BCM5708S controllers and OEM boards. */ 132 { BRCM_VENDORID, BRCM_DEVICEID_BCM5708S, HP_VENDORID, 0x1706, 133 "HP NC373m Multifunction Gigabit Server Adapter" }, 134 { BRCM_VENDORID, BRCM_DEVICEID_BCM5708S, HP_VENDORID, 0x703b, 135 "HP NC373i Multifunction Gigabit Server Adapter" }, 136 { BRCM_VENDORID, BRCM_DEVICEID_BCM5708S, HP_VENDORID, 0x703d, 137 "HP NC373F PCIe Multifunc Giga Server Adapter" }, 138 { BRCM_VENDORID, BRCM_DEVICEID_BCM5708S, PCI_ANY_ID, PCI_ANY_ID, 139 "Broadcom NetXtreme II BCM5708 1000Base-SX" }, 140 141 /* BCM5709C controllers and OEM boards. */ 142 { BRCM_VENDORID, BRCM_DEVICEID_BCM5709, HP_VENDORID, 0x7055, 143 "HP NC382i DP Multifunction Gigabit Server Adapter" }, 144 { BRCM_VENDORID, BRCM_DEVICEID_BCM5709, HP_VENDORID, 0x7059, 145 "HP NC382T PCIe DP Multifunction Gigabit Server Adapter" }, 146 { BRCM_VENDORID, BRCM_DEVICEID_BCM5709, PCI_ANY_ID, PCI_ANY_ID, 147 "Broadcom NetXtreme II BCM5709 1000Base-T" }, 148 149 /* BCM5709S controllers and OEM boards. */ 150 { BRCM_VENDORID, BRCM_DEVICEID_BCM5709S, HP_VENDORID, 0x171d, 151 "HP NC382m DP 1GbE Multifunction BL-c Adapter" }, 152 { BRCM_VENDORID, BRCM_DEVICEID_BCM5709S, HP_VENDORID, 0x7056, 153 "HP NC382i DP Multifunction Gigabit Server Adapter" }, 154 { BRCM_VENDORID, BRCM_DEVICEID_BCM5709S, PCI_ANY_ID, PCI_ANY_ID, 155 "Broadcom NetXtreme II BCM5709 1000Base-SX" }, 156 157 /* BCM5716 controllers and OEM boards. */ 158 { BRCM_VENDORID, BRCM_DEVICEID_BCM5716, PCI_ANY_ID, PCI_ANY_ID, 159 "Broadcom NetXtreme II BCM5716 1000Base-T" }, 160 161 { 0, 0, 0, 0, NULL } 162 }; 163 164 165 /****************************************************************************/ 166 /* Supported Flash NVRAM device data. */ 167 /****************************************************************************/ 168 static struct flash_spec flash_table[] = 169 { 170 #define BUFFERED_FLAGS (BCE_NV_BUFFERED | BCE_NV_TRANSLATE) 171 #define NONBUFFERED_FLAGS (BCE_NV_WREN) 172 173 /* Slow EEPROM */ 174 {0x00000000, 0x40830380, 0x009f0081, 0xa184a053, 0xaf000400, 175 BUFFERED_FLAGS, SEEPROM_PAGE_BITS, SEEPROM_PAGE_SIZE, 176 SEEPROM_BYTE_ADDR_MASK, SEEPROM_TOTAL_SIZE, 177 "EEPROM - slow"}, 178 /* Expansion entry 0001 */ 179 {0x08000002, 0x4b808201, 0x00050081, 0x03840253, 0xaf020406, 180 NONBUFFERED_FLAGS, SAIFUN_FLASH_PAGE_BITS, SAIFUN_FLASH_PAGE_SIZE, 181 SAIFUN_FLASH_BYTE_ADDR_MASK, 0, 182 "Entry 0001"}, 183 /* Saifun SA25F010 (non-buffered flash) */ 184 /* strap, cfg1, & write1 need updates */ 185 {0x04000001, 0x47808201, 0x00050081, 0x03840253, 0xaf020406, 186 NONBUFFERED_FLAGS, SAIFUN_FLASH_PAGE_BITS, SAIFUN_FLASH_PAGE_SIZE, 187 SAIFUN_FLASH_BYTE_ADDR_MASK, SAIFUN_FLASH_BASE_TOTAL_SIZE*2, 188 "Non-buffered flash (128kB)"}, 189 /* Saifun SA25F020 (non-buffered flash) */ 190 /* strap, cfg1, & write1 need updates */ 191 {0x0c000003, 0x4f808201, 0x00050081, 0x03840253, 0xaf020406, 192 NONBUFFERED_FLAGS, SAIFUN_FLASH_PAGE_BITS, SAIFUN_FLASH_PAGE_SIZE, 193 SAIFUN_FLASH_BYTE_ADDR_MASK, SAIFUN_FLASH_BASE_TOTAL_SIZE*4, 194 "Non-buffered flash (256kB)"}, 195 /* Expansion entry 0100 */ 196 {0x11000000, 0x53808201, 0x00050081, 0x03840253, 0xaf020406, 197 NONBUFFERED_FLAGS, SAIFUN_FLASH_PAGE_BITS, SAIFUN_FLASH_PAGE_SIZE, 198 SAIFUN_FLASH_BYTE_ADDR_MASK, 0, 199 "Entry 0100"}, 200 /* Entry 0101: ST M45PE10 (non-buffered flash, TetonII B0) */ 201 {0x19000002, 0x5b808201, 0x000500db, 0x03840253, 0xaf020406, 202 NONBUFFERED_FLAGS, ST_MICRO_FLASH_PAGE_BITS, ST_MICRO_FLASH_PAGE_SIZE, 203 ST_MICRO_FLASH_BYTE_ADDR_MASK, ST_MICRO_FLASH_BASE_TOTAL_SIZE*2, 204 "Entry 0101: ST M45PE10 (128kB non-bufferred)"}, 205 /* Entry 0110: ST M45PE20 (non-buffered flash)*/ 206 {0x15000001, 0x57808201, 0x000500db, 0x03840253, 0xaf020406, 207 NONBUFFERED_FLAGS, ST_MICRO_FLASH_PAGE_BITS, ST_MICRO_FLASH_PAGE_SIZE, 208 ST_MICRO_FLASH_BYTE_ADDR_MASK, ST_MICRO_FLASH_BASE_TOTAL_SIZE*4, 209 "Entry 0110: ST M45PE20 (256kB non-bufferred)"}, 210 /* Saifun SA25F005 (non-buffered flash) */ 211 /* strap, cfg1, & write1 need updates */ 212 {0x1d000003, 0x5f808201, 0x00050081, 0x03840253, 0xaf020406, 213 NONBUFFERED_FLAGS, SAIFUN_FLASH_PAGE_BITS, SAIFUN_FLASH_PAGE_SIZE, 214 SAIFUN_FLASH_BYTE_ADDR_MASK, SAIFUN_FLASH_BASE_TOTAL_SIZE, 215 "Non-buffered flash (64kB)"}, 216 /* Fast EEPROM */ 217 {0x22000000, 0x62808380, 0x009f0081, 0xa184a053, 0xaf000400, 218 BUFFERED_FLAGS, SEEPROM_PAGE_BITS, SEEPROM_PAGE_SIZE, 219 SEEPROM_BYTE_ADDR_MASK, SEEPROM_TOTAL_SIZE, 220 "EEPROM - fast"}, 221 /* Expansion entry 1001 */ 222 {0x2a000002, 0x6b808201, 0x00050081, 0x03840253, 0xaf020406, 223 NONBUFFERED_FLAGS, SAIFUN_FLASH_PAGE_BITS, SAIFUN_FLASH_PAGE_SIZE, 224 SAIFUN_FLASH_BYTE_ADDR_MASK, 0, 225 "Entry 1001"}, 226 /* Expansion entry 1010 */ 227 {0x26000001, 0x67808201, 0x00050081, 0x03840253, 0xaf020406, 228 NONBUFFERED_FLAGS, SAIFUN_FLASH_PAGE_BITS, SAIFUN_FLASH_PAGE_SIZE, 229 SAIFUN_FLASH_BYTE_ADDR_MASK, 0, 230 "Entry 1010"}, 231 /* ATMEL AT45DB011B (buffered flash) */ 232 {0x2e000003, 0x6e808273, 0x00570081, 0x68848353, 0xaf000400, 233 BUFFERED_FLAGS, BUFFERED_FLASH_PAGE_BITS, BUFFERED_FLASH_PAGE_SIZE, 234 BUFFERED_FLASH_BYTE_ADDR_MASK, BUFFERED_FLASH_TOTAL_SIZE, 235 "Buffered flash (128kB)"}, 236 /* Expansion entry 1100 */ 237 {0x33000000, 0x73808201, 0x00050081, 0x03840253, 0xaf020406, 238 NONBUFFERED_FLAGS, SAIFUN_FLASH_PAGE_BITS, SAIFUN_FLASH_PAGE_SIZE, 239 SAIFUN_FLASH_BYTE_ADDR_MASK, 0, 240 "Entry 1100"}, 241 /* Expansion entry 1101 */ 242 {0x3b000002, 0x7b808201, 0x00050081, 0x03840253, 0xaf020406, 243 NONBUFFERED_FLAGS, SAIFUN_FLASH_PAGE_BITS, SAIFUN_FLASH_PAGE_SIZE, 244 SAIFUN_FLASH_BYTE_ADDR_MASK, 0, 245 "Entry 1101"}, 246 /* Ateml Expansion entry 1110 */ 247 {0x37000001, 0x76808273, 0x00570081, 0x68848353, 0xaf000400, 248 BUFFERED_FLAGS, BUFFERED_FLASH_PAGE_BITS, BUFFERED_FLASH_PAGE_SIZE, 249 BUFFERED_FLASH_BYTE_ADDR_MASK, 0, 250 "Entry 1110 (Atmel)"}, 251 /* ATMEL AT45DB021B (buffered flash) */ 252 {0x3f000003, 0x7e808273, 0x00570081, 0x68848353, 0xaf000400, 253 BUFFERED_FLAGS, BUFFERED_FLASH_PAGE_BITS, BUFFERED_FLASH_PAGE_SIZE, 254 BUFFERED_FLASH_BYTE_ADDR_MASK, BUFFERED_FLASH_TOTAL_SIZE*2, 255 "Buffered flash (256kB)"}, 256 }; 257 258 /* 259 * The BCM5709 controllers transparently handle the 260 * differences between Atmel 264 byte pages and all 261 * flash devices which use 256 byte pages, so no 262 * logical-to-physical mapping is required in the 263 * driver. 264 */ 265 static struct flash_spec flash_5709 = { 266 .flags = BCE_NV_BUFFERED, 267 .page_bits = BCM5709_FLASH_PAGE_BITS, 268 .page_size = BCM5709_FLASH_PAGE_SIZE, 269 .addr_mask = BCM5709_FLASH_BYTE_ADDR_MASK, 270 .total_size = BUFFERED_FLASH_TOTAL_SIZE * 2, 271 .name = "5709/5716 buffered flash (256kB)", 272 }; 273 274 275 /****************************************************************************/ 276 /* FreeBSD device entry points. */ 277 /****************************************************************************/ 278 static int bce_probe (device_t); 279 static int bce_attach (device_t); 280 static int bce_detach (device_t); 281 static int bce_shutdown (device_t); 282 283 284 /****************************************************************************/ 285 /* BCE Debug Data Structure Dump Routines */ 286 /****************************************************************************/ 287 #ifdef BCE_DEBUG 288 static u32 bce_reg_rd (struct bce_softc *, u32); 289 static void bce_reg_wr (struct bce_softc *, u32, u32); 290 static void bce_reg_wr16 (struct bce_softc *, u32, u16); 291 static u32 bce_ctx_rd (struct bce_softc *, u32, u32); 292 static void bce_dump_enet (struct bce_softc *, struct mbuf *); 293 static void bce_dump_mbuf (struct bce_softc *, struct mbuf *); 294 static void bce_dump_tx_mbuf_chain (struct bce_softc *, u16, int); 295 static void bce_dump_rx_mbuf_chain (struct bce_softc *, u16, int); 296 #ifdef BCE_JUMBO_HDRSPLIT 297 static void bce_dump_pg_mbuf_chain (struct bce_softc *, u16, int); 298 #endif 299 static void bce_dump_txbd (struct bce_softc *, int, struct tx_bd *); 300 static void bce_dump_rxbd (struct bce_softc *, int, struct rx_bd *); 301 #ifdef BCE_JUMBO_HDRSPLIT 302 static void bce_dump_pgbd (struct bce_softc *, int, struct rx_bd *); 303 #endif 304 static void bce_dump_l2fhdr (struct bce_softc *, int, struct l2_fhdr *); 305 static void bce_dump_ctx (struct bce_softc *, u16); 306 static void bce_dump_ftqs (struct bce_softc *); 307 static void bce_dump_tx_chain (struct bce_softc *, u16, int); 308 static void bce_dump_rx_chain (struct bce_softc *, u16, int); 309 #ifdef BCE_JUMBO_HDRSPLIT 310 static void bce_dump_pg_chain (struct bce_softc *, u16, int); 311 #endif 312 static void bce_dump_status_block (struct bce_softc *); 313 static void bce_dump_stats_block (struct bce_softc *); 314 static void bce_dump_driver_state (struct bce_softc *); 315 static void bce_dump_hw_state (struct bce_softc *); 316 static void bce_dump_mq_regs (struct bce_softc *); 317 static void bce_dump_bc_state (struct bce_softc *); 318 static void bce_dump_txp_state (struct bce_softc *, int); 319 static void bce_dump_rxp_state (struct bce_softc *, int); 320 static void bce_dump_tpat_state (struct bce_softc *, int); 321 static void bce_dump_cp_state (struct bce_softc *, int); 322 static void bce_dump_com_state (struct bce_softc *, int); 323 static void bce_breakpoint (struct bce_softc *); 324 #endif 325 326 327 /****************************************************************************/ 328 /* BCE Register/Memory Access Routines */ 329 /****************************************************************************/ 330 static u32 bce_reg_rd_ind (struct bce_softc *, u32); 331 static void bce_reg_wr_ind (struct bce_softc *, u32, u32); 332 static void bce_shmem_wr (struct bce_softc *, u32, u32); 333 static u32 bce_shmem_rd (struct bce_softc *, u32); 334 static void bce_ctx_wr (struct bce_softc *, u32, u32, u32); 335 static int bce_miibus_read_reg (device_t, int, int); 336 static int bce_miibus_write_reg (device_t, int, int, int); 337 static void bce_miibus_statchg (device_t); 338 339 340 /****************************************************************************/ 341 /* BCE NVRAM Access Routines */ 342 /****************************************************************************/ 343 static int bce_acquire_nvram_lock (struct bce_softc *); 344 static int bce_release_nvram_lock (struct bce_softc *); 345 static void bce_enable_nvram_access (struct bce_softc *); 346 static void bce_disable_nvram_access(struct bce_softc *); 347 static int bce_nvram_read_dword (struct bce_softc *, u32, u8 *, u32); 348 static int bce_init_nvram (struct bce_softc *); 349 static int bce_nvram_read (struct bce_softc *, u32, u8 *, int); 350 static int bce_nvram_test (struct bce_softc *); 351 #ifdef BCE_NVRAM_WRITE_SUPPORT 352 static int bce_enable_nvram_write (struct bce_softc *); 353 static void bce_disable_nvram_write (struct bce_softc *); 354 static int bce_nvram_erase_page (struct bce_softc *, u32); 355 static int bce_nvram_write_dword (struct bce_softc *, u32, u8 *, u32); 356 static int bce_nvram_write (struct bce_softc *, u32, u8 *, int); 357 #endif 358 359 /****************************************************************************/ 360 /* */ 361 /****************************************************************************/ 362 static void bce_get_media (struct bce_softc *); 363 static void bce_dma_map_addr (void *, bus_dma_segment_t *, int, int); 364 static int bce_dma_alloc (device_t); 365 static void bce_dma_free (struct bce_softc *); 366 static void bce_release_resources (struct bce_softc *); 367 368 /****************************************************************************/ 369 /* BCE Firmware Synchronization and Load */ 370 /****************************************************************************/ 371 static int bce_fw_sync (struct bce_softc *, u32); 372 static void bce_load_rv2p_fw (struct bce_softc *, u32 *, u32, u32); 373 static void bce_load_cpu_fw (struct bce_softc *, struct cpu_reg *, struct fw_info *); 374 static void bce_init_rxp_cpu (struct bce_softc *); 375 static void bce_init_txp_cpu (struct bce_softc *); 376 static void bce_init_tpat_cpu (struct bce_softc *); 377 static void bce_init_cp_cpu (struct bce_softc *); 378 static void bce_init_com_cpu (struct bce_softc *); 379 static void bce_init_cpus (struct bce_softc *); 380 381 static void bce_print_adapter_info (struct bce_softc *); 382 static void bce_probe_pci_caps (device_t, struct bce_softc *); 383 static void bce_stop (struct bce_softc *); 384 static int bce_reset (struct bce_softc *, u32); 385 static int bce_chipinit (struct bce_softc *); 386 static int bce_blockinit (struct bce_softc *); 387 388 static int bce_init_tx_chain (struct bce_softc *); 389 static void bce_free_tx_chain (struct bce_softc *); 390 391 static int bce_get_rx_buf (struct bce_softc *, struct mbuf *, u16 *, u16 *, u32 *); 392 static int bce_init_rx_chain (struct bce_softc *); 393 static void bce_fill_rx_chain (struct bce_softc *); 394 static void bce_free_rx_chain (struct bce_softc *); 395 396 #ifdef BCE_JUMBO_HDRSPLIT 397 static int bce_get_pg_buf (struct bce_softc *, struct mbuf *, u16 *, u16 *); 398 static int bce_init_pg_chain (struct bce_softc *); 399 static void bce_fill_pg_chain (struct bce_softc *); 400 static void bce_free_pg_chain (struct bce_softc *); 401 #endif 402 403 static int bce_tx_encap (struct bce_softc *, struct mbuf **); 404 static void bce_start_locked (struct ifnet *); 405 static void bce_start (struct ifnet *); 406 static int bce_ioctl (struct ifnet *, u_long, caddr_t); 407 static void bce_watchdog (struct bce_softc *); 408 static int bce_ifmedia_upd (struct ifnet *); 409 static void bce_ifmedia_upd_locked (struct ifnet *); 410 static void bce_ifmedia_sts (struct ifnet *, struct ifmediareq *); 411 static void bce_init_locked (struct bce_softc *); 412 static void bce_init (void *); 413 static void bce_mgmt_init_locked (struct bce_softc *sc); 414 415 static void bce_init_ctx (struct bce_softc *); 416 static void bce_get_mac_addr (struct bce_softc *); 417 static void bce_set_mac_addr (struct bce_softc *); 418 static void bce_phy_intr (struct bce_softc *); 419 static inline u16 bce_get_hw_rx_cons(struct bce_softc *); 420 static void bce_rx_intr (struct bce_softc *); 421 static void bce_tx_intr (struct bce_softc *); 422 static void bce_disable_intr (struct bce_softc *); 423 static void bce_enable_intr (struct bce_softc *, int); 424 425 static void bce_intr (void *); 426 static void bce_set_rx_mode (struct bce_softc *); 427 static void bce_stats_update (struct bce_softc *); 428 static void bce_tick (void *); 429 static void bce_pulse (void *); 430 static void bce_add_sysctls (struct bce_softc *); 431 432 433 /****************************************************************************/ 434 /* FreeBSD device dispatch table. */ 435 /****************************************************************************/ 436 static device_method_t bce_methods[] = { 437 /* Device interface (device_if.h) */ 438 DEVMETHOD(device_probe, bce_probe), 439 DEVMETHOD(device_attach, bce_attach), 440 DEVMETHOD(device_detach, bce_detach), 441 DEVMETHOD(device_shutdown, bce_shutdown), 442 /* Supported by device interface but not used here. */ 443 /* DEVMETHOD(device_identify, bce_identify), */ 444 /* DEVMETHOD(device_suspend, bce_suspend), */ 445 /* DEVMETHOD(device_resume, bce_resume), */ 446 /* DEVMETHOD(device_quiesce, bce_quiesce), */ 447 448 /* Bus interface (bus_if.h) */ 449 DEVMETHOD(bus_print_child, bus_generic_print_child), 450 DEVMETHOD(bus_driver_added, bus_generic_driver_added), 451 452 /* MII interface (miibus_if.h) */ 453 DEVMETHOD(miibus_readreg, bce_miibus_read_reg), 454 DEVMETHOD(miibus_writereg, bce_miibus_write_reg), 455 DEVMETHOD(miibus_statchg, bce_miibus_statchg), 456 /* Supported by MII interface but not used here. */ 457 /* DEVMETHOD(miibus_linkchg, bce_miibus_linkchg), */ 458 /* DEVMETHOD(miibus_mediainit, bce_miibus_mediainit), */ 459 460 { 0, 0 } 461 }; 462 463 static driver_t bce_driver = { 464 "bce", 465 bce_methods, 466 sizeof(struct bce_softc) 467 }; 468 469 static devclass_t bce_devclass; 470 471 MODULE_DEPEND(bce, pci, 1, 1, 1); 472 MODULE_DEPEND(bce, ether, 1, 1, 1); 473 MODULE_DEPEND(bce, miibus, 1, 1, 1); 474 475 DRIVER_MODULE(bce, pci, bce_driver, bce_devclass, 0, 0); 476 DRIVER_MODULE(miibus, bce, miibus_driver, miibus_devclass, 0, 0); 477 478 479 /****************************************************************************/ 480 /* Tunable device values */ 481 /****************************************************************************/ 482 SYSCTL_NODE(_hw, OID_AUTO, bce, CTLFLAG_RD, 0, "bce driver parameters"); 483 484 /* Allowable values are TRUE or FALSE */ 485 static int bce_tso_enable = TRUE; 486 TUNABLE_INT("hw.bce.tso_enable", &bce_tso_enable); 487 SYSCTL_UINT(_hw_bce, OID_AUTO, tso_enable, CTLFLAG_RDTUN, &bce_tso_enable, 0, 488 "TSO Enable/Disable"); 489 490 /* Allowable values are 0 (IRQ), 1 (MSI/IRQ), and 2 (MSI-X/MSI/IRQ) */ 491 /* ToDo: Add MSI-X support. */ 492 static int bce_msi_enable = 1; 493 TUNABLE_INT("hw.bce.msi_enable", &bce_msi_enable); 494 SYSCTL_UINT(_hw_bce, OID_AUTO, msi_enable, CTLFLAG_RDTUN, &bce_msi_enable, 0, 495 "MSI-X|MSI|INTx selector"); 496 497 /* ToDo: Add tunable to enable/disable strict MTU handling. */ 498 /* Currently allows "loose" RX MTU checking (i.e. sets the */ 499 /* H/W RX MTU to the size of the largest receive buffer, or */ 500 /* 2048 bytes). This will cause a UNH failure but is more */ 501 /* desireable from a functional perspective. */ 502 503 504 /****************************************************************************/ 505 /* Device probe function. */ 506 /* */ 507 /* Compares the device to the driver's list of supported devices and */ 508 /* reports back to the OS whether this is the right driver for the device. */ 509 /* */ 510 /* Returns: */ 511 /* BUS_PROBE_DEFAULT on success, positive value on failure. */ 512 /****************************************************************************/ 513 static int 514 bce_probe(device_t dev) 515 { 516 struct bce_type *t; 517 struct bce_softc *sc; 518 char *descbuf; 519 u16 vid = 0, did = 0, svid = 0, sdid = 0; 520 521 t = bce_devs; 522 523 sc = device_get_softc(dev); 524 bzero(sc, sizeof(struct bce_softc)); 525 sc->bce_unit = device_get_unit(dev); 526 sc->bce_dev = dev; 527 528 /* Get the data for the device to be probed. */ 529 vid = pci_get_vendor(dev); 530 did = pci_get_device(dev); 531 svid = pci_get_subvendor(dev); 532 sdid = pci_get_subdevice(dev); 533 534 DBPRINT(sc, BCE_EXTREME_LOAD, 535 "%s(); VID = 0x%04X, DID = 0x%04X, SVID = 0x%04X, " 536 "SDID = 0x%04X\n", __FUNCTION__, vid, did, svid, sdid); 537 538 /* Look through the list of known devices for a match. */ 539 while(t->bce_name != NULL) { 540 541 if ((vid == t->bce_vid) && (did == t->bce_did) && 542 ((svid == t->bce_svid) || (t->bce_svid == PCI_ANY_ID)) && 543 ((sdid == t->bce_sdid) || (t->bce_sdid == PCI_ANY_ID))) { 544 545 descbuf = malloc(BCE_DEVDESC_MAX, M_TEMP, M_NOWAIT); 546 547 if (descbuf == NULL) 548 return(ENOMEM); 549 550 /* Print out the device identity. */ 551 snprintf(descbuf, BCE_DEVDESC_MAX, "%s (%c%d)", 552 t->bce_name, 553 (((pci_read_config(dev, PCIR_REVID, 4) & 0xf0) >> 4) + 'A'), 554 (pci_read_config(dev, PCIR_REVID, 4) & 0xf)); 555 556 device_set_desc_copy(dev, descbuf); 557 free(descbuf, M_TEMP); 558 return(BUS_PROBE_DEFAULT); 559 } 560 t++; 561 } 562 563 return(ENXIO); 564 } 565 566 567 /****************************************************************************/ 568 /* PCI Capabilities Probe Function. */ 569 /* */ 570 /* Walks the PCI capabiites list for the device to find what features are */ 571 /* supported. */ 572 /* */ 573 /* Returns: */ 574 /* None. */ 575 /****************************************************************************/ 576 static void 577 bce_print_adapter_info(struct bce_softc *sc) 578 { 579 int i = 0; 580 581 DBENTER(BCE_VERBOSE_LOAD); 582 583 BCE_PRINTF("ASIC (0x%08X); ", sc->bce_chipid); 584 printf("Rev (%c%d); ", ((BCE_CHIP_ID(sc) & 0xf000) >> 12) + 'A', 585 ((BCE_CHIP_ID(sc) & 0x0ff0) >> 4)); 586 587 /* Bus info. */ 588 if (sc->bce_flags & BCE_PCIE_FLAG) { 589 printf("Bus (PCIe x%d, ", sc->link_width); 590 switch (sc->link_speed) { 591 case 1: printf("2.5Gbps); "); break; 592 case 2: printf("5Gbps); "); break; 593 default: printf("Unknown link speed); "); 594 } 595 } else { 596 printf("Bus (PCI%s, %s, %dMHz); ", 597 ((sc->bce_flags & BCE_PCIX_FLAG) ? "-X" : ""), 598 ((sc->bce_flags & BCE_PCI_32BIT_FLAG) ? "32-bit" : "64-bit"), 599 sc->bus_speed_mhz); 600 } 601 602 /* Firmware version and device features. */ 603 printf("B/C (%s); Flags (", sc->bce_bc_ver); 604 605 #ifdef BCE_JUMBO_HDRSPLIT 606 printf("SPLT "); 607 i++; 608 #endif 609 if (sc->bce_flags & BCE_USING_MSI_FLAG) { 610 if (i > 0) printf("|"); 611 printf("MSI"); i++; 612 } 613 614 if (sc->bce_flags & BCE_USING_MSIX_FLAG) { 615 if (i > 0) printf("|"); 616 printf("MSI-X "); i++; 617 } 618 619 if (sc->bce_phy_flags & BCE_PHY_2_5G_CAPABLE_FLAG) { 620 if (i > 0) printf("|"); 621 printf("2.5G"); i++; 622 } 623 624 if (sc->bce_flags & BCE_MFW_ENABLE_FLAG) { 625 if (i > 0) printf("|"); 626 printf("MFW); MFW (%s)\n", sc->bce_mfw_ver); 627 } else { 628 printf(")\n"); 629 } 630 631 DBEXIT(BCE_VERBOSE_LOAD); 632 } 633 634 635 /****************************************************************************/ 636 /* PCI Capabilities Probe Function. */ 637 /* */ 638 /* Walks the PCI capabiites list for the device to find what features are */ 639 /* supported. */ 640 /* */ 641 /* Returns: */ 642 /* None. */ 643 /****************************************************************************/ 644 static void 645 bce_probe_pci_caps(device_t dev, struct bce_softc *sc) 646 { 647 u32 reg; 648 649 DBENTER(BCE_VERBOSE_LOAD); 650 651 /* Check if PCI-X capability is enabled. */ 652 if (pci_find_extcap(dev, PCIY_PCIX, ®) == 0) { 653 if (reg != 0) 654 sc->bce_cap_flags |= BCE_PCIX_CAPABLE_FLAG; 655 } 656 657 /* Check if PCIe capability is enabled. */ 658 if (pci_find_extcap(dev, PCIY_EXPRESS, ®) == 0) { 659 if (reg != 0) { 660 u16 link_status = pci_read_config(dev, reg + 0x12, 2); 661 DBPRINT(sc, BCE_INFO_LOAD, "PCIe link_status = 0x%08X\n", 662 link_status); 663 sc->link_speed = link_status & 0xf; 664 sc->link_width = (link_status >> 4) & 0x3f; 665 sc->bce_cap_flags |= BCE_PCIE_CAPABLE_FLAG; 666 sc->bce_flags |= BCE_PCIE_FLAG; 667 } 668 } 669 670 /* Check if MSI capability is enabled. */ 671 if (pci_find_extcap(dev, PCIY_MSI, ®) == 0) { 672 if (reg != 0) 673 sc->bce_cap_flags |= BCE_MSI_CAPABLE_FLAG; 674 } 675 676 /* Check if MSI-X capability is enabled. */ 677 if (pci_find_extcap(dev, PCIY_MSIX, ®) == 0) { 678 if (reg != 0) 679 sc->bce_cap_flags |= BCE_MSIX_CAPABLE_FLAG; 680 } 681 682 DBEXIT(BCE_VERBOSE_LOAD); 683 } 684 685 686 /****************************************************************************/ 687 /* Device attach function. */ 688 /* */ 689 /* Allocates device resources, performs secondary chip identification, */ 690 /* resets and initializes the hardware, and initializes driver instance */ 691 /* variables. */ 692 /* */ 693 /* Returns: */ 694 /* 0 on success, positive value on failure. */ 695 /****************************************************************************/ 696 static int 697 bce_attach(device_t dev) 698 { 699 struct bce_softc *sc; 700 struct ifnet *ifp; 701 u32 val; 702 int error, rid, rc = 0; 703 704 sc = device_get_softc(dev); 705 sc->bce_dev = dev; 706 707 DBENTER(BCE_VERBOSE_LOAD | BCE_VERBOSE_RESET); 708 709 sc->bce_unit = device_get_unit(dev); 710 711 /* Set initial device and PHY flags */ 712 sc->bce_flags = 0; 713 sc->bce_phy_flags = 0; 714 715 pci_enable_busmaster(dev); 716 717 /* Allocate PCI memory resources. */ 718 rid = PCIR_BAR(0); 719 sc->bce_res_mem = bus_alloc_resource_any(dev, SYS_RES_MEMORY, 720 &rid, RF_ACTIVE); 721 722 if (sc->bce_res_mem == NULL) { 723 BCE_PRINTF("%s(%d): PCI memory allocation failed\n", 724 __FILE__, __LINE__); 725 rc = ENXIO; 726 goto bce_attach_fail; 727 } 728 729 /* Get various resource handles. */ 730 sc->bce_btag = rman_get_bustag(sc->bce_res_mem); 731 sc->bce_bhandle = rman_get_bushandle(sc->bce_res_mem); 732 sc->bce_vhandle = (vm_offset_t) rman_get_virtual(sc->bce_res_mem); 733 734 bce_probe_pci_caps(dev, sc); 735 736 rid = 1; 737 #if 0 738 /* Try allocating MSI-X interrupts. */ 739 if ((sc->bce_cap_flags & BCE_MSIX_CAPABLE_FLAG) && 740 (bce_msi_enable >= 2) && 741 ((sc->bce_res_irq = bus_alloc_resource_any(dev, SYS_RES_MEMORY, 742 &rid, RF_ACTIVE)) != NULL)) { 743 744 msi_needed = sc->bce_msi_count = 1; 745 746 if (((error = pci_alloc_msix(dev, &sc->bce_msi_count)) != 0) || 747 (sc->bce_msi_count != msi_needed)) { 748 BCE_PRINTF("%s(%d): MSI-X allocation failed! Requested = %d," 749 "Received = %d, error = %d\n", __FILE__, __LINE__, 750 msi_needed, sc->bce_msi_count, error); 751 sc->bce_msi_count = 0; 752 pci_release_msi(dev); 753 bus_release_resource(dev, SYS_RES_MEMORY, rid, 754 sc->bce_res_irq); 755 sc->bce_res_irq = NULL; 756 } else { 757 DBPRINT(sc, BCE_INFO_LOAD, "%s(): Using MSI-X interrupt.\n", 758 __FUNCTION__); 759 sc->bce_flags |= BCE_USING_MSIX_FLAG; 760 sc->bce_intr = bce_intr; 761 } 762 } 763 #endif 764 765 /* Try allocating a MSI interrupt. */ 766 if ((sc->bce_cap_flags & BCE_MSI_CAPABLE_FLAG) && 767 (bce_msi_enable >= 1) && (sc->bce_msi_count == 0)) { 768 sc->bce_msi_count = 1; 769 if ((error = pci_alloc_msi(dev, &sc->bce_msi_count)) != 0) { 770 BCE_PRINTF("%s(%d): MSI allocation failed! error = %d\n", 771 __FILE__, __LINE__, error); 772 sc->bce_msi_count = 0; 773 pci_release_msi(dev); 774 } else { 775 DBPRINT(sc, BCE_INFO_LOAD, "%s(): Using MSI interrupt.\n", 776 __FUNCTION__); 777 sc->bce_flags |= BCE_USING_MSI_FLAG; 778 if ((BCE_CHIP_NUM(sc) == BCE_CHIP_NUM_5709) || 779 (BCE_CHIP_NUM(sc) == BCE_CHIP_NUM_5716)) 780 sc->bce_flags |= BCE_ONE_SHOT_MSI_FLAG; 781 sc->bce_irq_rid = 1; 782 sc->bce_intr = bce_intr; 783 } 784 } 785 786 /* Try allocating a legacy interrupt. */ 787 if (sc->bce_msi_count == 0) { 788 DBPRINT(sc, BCE_INFO_LOAD, "%s(): Using INTx interrupt.\n", 789 __FUNCTION__); 790 rid = 0; 791 sc->bce_intr = bce_intr; 792 } 793 794 sc->bce_res_irq = bus_alloc_resource_any(dev, SYS_RES_IRQ, 795 &rid, RF_SHAREABLE | RF_ACTIVE); 796 797 sc->bce_irq_rid = rid; 798 799 /* Report any IRQ allocation errors. */ 800 if (sc->bce_res_irq == NULL) { 801 BCE_PRINTF("%s(%d): PCI map interrupt failed!\n", 802 __FILE__, __LINE__); 803 rc = ENXIO; 804 goto bce_attach_fail; 805 } 806 807 /* Initialize mutex for the current device instance. */ 808 BCE_LOCK_INIT(sc, device_get_nameunit(dev)); 809 810 /* 811 * Configure byte swap and enable indirect register access. 812 * Rely on CPU to do target byte swapping on big endian systems. 813 * Access to registers outside of PCI configurtion space are not 814 * valid until this is done. 815 */ 816 pci_write_config(dev, BCE_PCICFG_MISC_CONFIG, 817 BCE_PCICFG_MISC_CONFIG_REG_WINDOW_ENA | 818 BCE_PCICFG_MISC_CONFIG_TARGET_MB_WORD_SWAP, 4); 819 820 /* Save ASIC revsion info. */ 821 sc->bce_chipid = REG_RD(sc, BCE_MISC_ID); 822 823 /* Weed out any non-production controller revisions. */ 824 switch(BCE_CHIP_ID(sc)) { 825 case BCE_CHIP_ID_5706_A0: 826 case BCE_CHIP_ID_5706_A1: 827 case BCE_CHIP_ID_5708_A0: 828 case BCE_CHIP_ID_5708_B0: 829 case BCE_CHIP_ID_5709_A0: 830 case BCE_CHIP_ID_5709_B0: 831 case BCE_CHIP_ID_5709_B1: 832 case BCE_CHIP_ID_5709_B2: 833 BCE_PRINTF("%s(%d): Unsupported controller revision (%c%d)!\n", 834 __FILE__, __LINE__, 835 (((pci_read_config(dev, PCIR_REVID, 4) & 0xf0) >> 4) + 'A'), 836 (pci_read_config(dev, PCIR_REVID, 4) & 0xf)); 837 rc = ENODEV; 838 goto bce_attach_fail; 839 } 840 841 /* 842 * The embedded PCIe to PCI-X bridge (EPB) 843 * in the 5708 cannot address memory above 844 * 40 bits (E7_5708CB1_23043 & E6_5708SB1_23043). 845 */ 846 if (BCE_CHIP_NUM(sc) == BCE_CHIP_NUM_5708) 847 sc->max_bus_addr = BCE_BUS_SPACE_MAXADDR; 848 else 849 sc->max_bus_addr = BUS_SPACE_MAXADDR; 850 851 /* 852 * Find the base address for shared memory access. 853 * Newer versions of bootcode use a signature and offset 854 * while older versions use a fixed address. 855 */ 856 val = REG_RD_IND(sc, BCE_SHM_HDR_SIGNATURE); 857 if ((val & BCE_SHM_HDR_SIGNATURE_SIG_MASK) == BCE_SHM_HDR_SIGNATURE_SIG) 858 /* Multi-port devices use different offsets in shared memory. */ 859 sc->bce_shmem_base = REG_RD_IND(sc, BCE_SHM_HDR_ADDR_0 + 860 (pci_get_function(sc->bce_dev) << 2)); 861 else 862 sc->bce_shmem_base = HOST_VIEW_SHMEM_BASE; 863 864 DBPRINT(sc, BCE_VERBOSE_FIRMWARE, "%s(): bce_shmem_base = 0x%08X\n", 865 __FUNCTION__, sc->bce_shmem_base); 866 867 /* Fetch the bootcode revision. */ 868 val = bce_shmem_rd(sc, BCE_DEV_INFO_BC_REV); 869 for (int i = 0, j = 0; i < 3; i++) { 870 u8 num; 871 872 num = (u8) (val >> (24 - (i * 8))); 873 for (int k = 100, skip0 = 1; k >= 1; num %= k, k /= 10) { 874 if (num >= k || !skip0 || k == 1) { 875 sc->bce_bc_ver[j++] = (num / k) + '0'; 876 skip0 = 0; 877 } 878 } 879 if (i != 2) 880 sc->bce_bc_ver[j++] = '.'; 881 } 882 883 /* Check if any management firwmare is running. */ 884 val = bce_shmem_rd(sc, BCE_PORT_FEATURE); 885 if (val & BCE_PORT_FEATURE_ASF_ENABLED) { 886 sc->bce_flags |= BCE_MFW_ENABLE_FLAG; 887 888 /* Allow time for firmware to enter the running state. */ 889 for (int i = 0; i < 30; i++) { 890 val = bce_shmem_rd(sc, BCE_BC_STATE_CONDITION); 891 if (val & BCE_CONDITION_MFW_RUN_MASK) 892 break; 893 DELAY(10000); 894 } 895 } 896 897 /* Check the current bootcode state. */ 898 val = bce_shmem_rd(sc, BCE_BC_STATE_CONDITION); 899 val &= BCE_CONDITION_MFW_RUN_MASK; 900 if (val != BCE_CONDITION_MFW_RUN_UNKNOWN && 901 val != BCE_CONDITION_MFW_RUN_NONE) { 902 u32 addr = bce_shmem_rd(sc, BCE_MFW_VER_PTR); 903 int i = 0; 904 905 for (int j = 0; j < 3; j++) { 906 val = bce_reg_rd_ind(sc, addr + j * 4); 907 val = bswap32(val); 908 memcpy(&sc->bce_mfw_ver[i], &val, 4); 909 i += 4; 910 } 911 } 912 913 /* Get PCI bus information (speed and type). */ 914 val = REG_RD(sc, BCE_PCICFG_MISC_STATUS); 915 if (val & BCE_PCICFG_MISC_STATUS_PCIX_DET) { 916 u32 clkreg; 917 918 sc->bce_flags |= BCE_PCIX_FLAG; 919 920 clkreg = REG_RD(sc, BCE_PCICFG_PCI_CLOCK_CONTROL_BITS); 921 922 clkreg &= BCE_PCICFG_PCI_CLOCK_CONTROL_BITS_PCI_CLK_SPD_DET; 923 switch (clkreg) { 924 case BCE_PCICFG_PCI_CLOCK_CONTROL_BITS_PCI_CLK_SPD_DET_133MHZ: 925 sc->bus_speed_mhz = 133; 926 break; 927 928 case BCE_PCICFG_PCI_CLOCK_CONTROL_BITS_PCI_CLK_SPD_DET_95MHZ: 929 sc->bus_speed_mhz = 100; 930 break; 931 932 case BCE_PCICFG_PCI_CLOCK_CONTROL_BITS_PCI_CLK_SPD_DET_66MHZ: 933 case BCE_PCICFG_PCI_CLOCK_CONTROL_BITS_PCI_CLK_SPD_DET_80MHZ: 934 sc->bus_speed_mhz = 66; 935 break; 936 937 case BCE_PCICFG_PCI_CLOCK_CONTROL_BITS_PCI_CLK_SPD_DET_48MHZ: 938 case BCE_PCICFG_PCI_CLOCK_CONTROL_BITS_PCI_CLK_SPD_DET_55MHZ: 939 sc->bus_speed_mhz = 50; 940 break; 941 942 case BCE_PCICFG_PCI_CLOCK_CONTROL_BITS_PCI_CLK_SPD_DET_LOW: 943 case BCE_PCICFG_PCI_CLOCK_CONTROL_BITS_PCI_CLK_SPD_DET_32MHZ: 944 case BCE_PCICFG_PCI_CLOCK_CONTROL_BITS_PCI_CLK_SPD_DET_38MHZ: 945 sc->bus_speed_mhz = 33; 946 break; 947 } 948 } else { 949 if (val & BCE_PCICFG_MISC_STATUS_M66EN) 950 sc->bus_speed_mhz = 66; 951 else 952 sc->bus_speed_mhz = 33; 953 } 954 955 if (val & BCE_PCICFG_MISC_STATUS_32BIT_DET) 956 sc->bce_flags |= BCE_PCI_32BIT_FLAG; 957 958 /* Reset the controller and announce to bootcode that driver is present. */ 959 if (bce_reset(sc, BCE_DRV_MSG_CODE_RESET)) { 960 BCE_PRINTF("%s(%d): Controller reset failed!\n", 961 __FILE__, __LINE__); 962 rc = ENXIO; 963 goto bce_attach_fail; 964 } 965 966 /* Initialize the controller. */ 967 if (bce_chipinit(sc)) { 968 BCE_PRINTF("%s(%d): Controller initialization failed!\n", 969 __FILE__, __LINE__); 970 rc = ENXIO; 971 goto bce_attach_fail; 972 } 973 974 /* Perform NVRAM test. */ 975 if (bce_nvram_test(sc)) { 976 BCE_PRINTF("%s(%d): NVRAM test failed!\n", 977 __FILE__, __LINE__); 978 rc = ENXIO; 979 goto bce_attach_fail; 980 } 981 982 /* Fetch the permanent Ethernet MAC address. */ 983 bce_get_mac_addr(sc); 984 985 /* 986 * Trip points control how many BDs 987 * should be ready before generating an 988 * interrupt while ticks control how long 989 * a BD can sit in the chain before 990 * generating an interrupt. Set the default 991 * values for the RX and TX chains. 992 */ 993 994 #ifdef BCE_DEBUG 995 /* Force more frequent interrupts. */ 996 sc->bce_tx_quick_cons_trip_int = 1; 997 sc->bce_tx_quick_cons_trip = 1; 998 sc->bce_tx_ticks_int = 0; 999 sc->bce_tx_ticks = 0; 1000 1001 sc->bce_rx_quick_cons_trip_int = 1; 1002 sc->bce_rx_quick_cons_trip = 1; 1003 sc->bce_rx_ticks_int = 0; 1004 sc->bce_rx_ticks = 0; 1005 #else 1006 /* Improve throughput at the expense of increased latency. */ 1007 sc->bce_tx_quick_cons_trip_int = 20; 1008 sc->bce_tx_quick_cons_trip = 20; 1009 sc->bce_tx_ticks_int = 80; 1010 sc->bce_tx_ticks = 80; 1011 1012 sc->bce_rx_quick_cons_trip_int = 6; 1013 sc->bce_rx_quick_cons_trip = 6; 1014 sc->bce_rx_ticks_int = 18; 1015 sc->bce_rx_ticks = 18; 1016 #endif 1017 1018 /* Update statistics once every second. */ 1019 sc->bce_stats_ticks = 1000000 & 0xffff00; 1020 1021 /* Find the media type for the adapter. */ 1022 bce_get_media(sc); 1023 1024 /* Store data needed by PHY driver for backplane applications */ 1025 sc->bce_shared_hw_cfg = bce_shmem_rd(sc, BCE_SHARED_HW_CFG_CONFIG); 1026 sc->bce_port_hw_cfg = bce_shmem_rd(sc, BCE_PORT_HW_CFG_CONFIG); 1027 1028 /* Allocate DMA memory resources. */ 1029 if (bce_dma_alloc(dev)) { 1030 BCE_PRINTF("%s(%d): DMA resource allocation failed!\n", 1031 __FILE__, __LINE__); 1032 rc = ENXIO; 1033 goto bce_attach_fail; 1034 } 1035 1036 /* Allocate an ifnet structure. */ 1037 ifp = sc->bce_ifp = if_alloc(IFT_ETHER); 1038 if (ifp == NULL) { 1039 BCE_PRINTF("%s(%d): Interface allocation failed!\n", 1040 __FILE__, __LINE__); 1041 rc = ENXIO; 1042 goto bce_attach_fail; 1043 } 1044 1045 /* Initialize the ifnet interface. */ 1046 ifp->if_softc = sc; 1047 if_initname(ifp, device_get_name(dev), device_get_unit(dev)); 1048 ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST; 1049 ifp->if_ioctl = bce_ioctl; 1050 ifp->if_start = bce_start; 1051 ifp->if_init = bce_init; 1052 ifp->if_mtu = ETHERMTU; 1053 1054 if (bce_tso_enable) { 1055 ifp->if_hwassist = BCE_IF_HWASSIST | CSUM_TSO; 1056 ifp->if_capabilities = BCE_IF_CAPABILITIES | IFCAP_TSO4; 1057 } else { 1058 ifp->if_hwassist = BCE_IF_HWASSIST; 1059 ifp->if_capabilities = BCE_IF_CAPABILITIES; 1060 } 1061 1062 ifp->if_capenable = ifp->if_capabilities; 1063 1064 /* 1065 * Assume standard mbuf sizes for buffer allocation. 1066 * This may change later if the MTU size is set to 1067 * something other than 1500. 1068 */ 1069 #ifdef BCE_JUMBO_HDRSPLIT 1070 sc->rx_bd_mbuf_alloc_size = MHLEN; 1071 /* Make sure offset is 16 byte aligned for hardware. */ 1072 sc->rx_bd_mbuf_align_pad = roundup2((MSIZE - MHLEN), 16) - 1073 (MSIZE - MHLEN); 1074 sc->rx_bd_mbuf_data_len = sc->rx_bd_mbuf_alloc_size - 1075 sc->rx_bd_mbuf_align_pad; 1076 sc->pg_bd_mbuf_alloc_size = MCLBYTES; 1077 #else 1078 sc->rx_bd_mbuf_alloc_size = MCLBYTES; 1079 sc->rx_bd_mbuf_align_pad = roundup2(MCLBYTES, 16) - MCLBYTES; 1080 sc->rx_bd_mbuf_data_len = sc->rx_bd_mbuf_alloc_size - 1081 sc->rx_bd_mbuf_align_pad; 1082 #endif 1083 1084 ifp->if_snd.ifq_drv_maxlen = USABLE_TX_BD; 1085 IFQ_SET_MAXLEN(&ifp->if_snd, ifp->if_snd.ifq_drv_maxlen); 1086 IFQ_SET_READY(&ifp->if_snd); 1087 1088 if (sc->bce_phy_flags & BCE_PHY_2_5G_CAPABLE_FLAG) 1089 ifp->if_baudrate = IF_Mbps(2500ULL); 1090 else 1091 ifp->if_baudrate = IF_Mbps(1000); 1092 1093 /* Check for an MII child bus by probing the PHY. */ 1094 if (mii_phy_probe(dev, &sc->bce_miibus, bce_ifmedia_upd, 1095 bce_ifmedia_sts)) { 1096 BCE_PRINTF("%s(%d): No PHY found on child MII bus!\n", 1097 __FILE__, __LINE__); 1098 rc = ENXIO; 1099 goto bce_attach_fail; 1100 } 1101 1102 /* Attach to the Ethernet interface list. */ 1103 ether_ifattach(ifp, sc->eaddr); 1104 1105 #if __FreeBSD_version < 500000 1106 callout_init(&sc->bce_tick_callout); 1107 callout_init(&sc->bce_pulse_callout); 1108 #else 1109 callout_init_mtx(&sc->bce_tick_callout, &sc->bce_mtx, 0); 1110 callout_init_mtx(&sc->bce_pulse_callout, &sc->bce_mtx, 0); 1111 #endif 1112 1113 /* Hookup IRQ last. */ 1114 rc = bus_setup_intr(dev, sc->bce_res_irq, INTR_TYPE_NET | INTR_MPSAFE, 1115 NULL, bce_intr, sc, &sc->bce_intrhand); 1116 1117 if (rc) { 1118 BCE_PRINTF("%s(%d): Failed to setup IRQ!\n", 1119 __FILE__, __LINE__); 1120 bce_detach(dev); 1121 goto bce_attach_exit; 1122 } 1123 1124 /* 1125 * At this point we've acquired all the resources 1126 * we need to run so there's no turning back, we're 1127 * cleared for launch. 1128 */ 1129 1130 /* Print some important debugging info. */ 1131 DBRUNMSG(BCE_INFO, bce_dump_driver_state(sc)); 1132 1133 /* Add the supported sysctls to the kernel. */ 1134 bce_add_sysctls(sc); 1135 1136 BCE_LOCK(sc); 1137 1138 /* 1139 * The chip reset earlier notified the bootcode that 1140 * a driver is present. We now need to start our pulse 1141 * routine so that the bootcode is reminded that we're 1142 * still running. 1143 */ 1144 bce_pulse(sc); 1145 1146 bce_mgmt_init_locked(sc); 1147 BCE_UNLOCK(sc); 1148 1149 /* Finally, print some useful adapter info */ 1150 bce_print_adapter_info(sc); 1151 DBPRINT(sc, BCE_FATAL, "%s(): sc = %p\n", 1152 __FUNCTION__, sc); 1153 1154 goto bce_attach_exit; 1155 1156 bce_attach_fail: 1157 bce_release_resources(sc); 1158 1159 bce_attach_exit: 1160 1161 DBEXIT(BCE_VERBOSE_LOAD | BCE_VERBOSE_RESET); 1162 1163 return(rc); 1164 } 1165 1166 1167 /****************************************************************************/ 1168 /* Device detach function. */ 1169 /* */ 1170 /* Stops the controller, resets the controller, and releases resources. */ 1171 /* */ 1172 /* Returns: */ 1173 /* 0 on success, positive value on failure. */ 1174 /****************************************************************************/ 1175 static int 1176 bce_detach(device_t dev) 1177 { 1178 struct bce_softc *sc = device_get_softc(dev); 1179 struct ifnet *ifp; 1180 u32 msg; 1181 1182 DBENTER(BCE_VERBOSE_UNLOAD | BCE_VERBOSE_RESET); 1183 1184 ifp = sc->bce_ifp; 1185 1186 /* Stop and reset the controller. */ 1187 BCE_LOCK(sc); 1188 1189 /* Stop the pulse so the bootcode can go to driver absent state. */ 1190 callout_stop(&sc->bce_pulse_callout); 1191 1192 bce_stop(sc); 1193 if (sc->bce_flags & BCE_NO_WOL_FLAG) 1194 msg = BCE_DRV_MSG_CODE_UNLOAD_LNK_DN; 1195 else 1196 msg = BCE_DRV_MSG_CODE_UNLOAD; 1197 bce_reset(sc, msg); 1198 1199 BCE_UNLOCK(sc); 1200 1201 ether_ifdetach(ifp); 1202 1203 /* If we have a child device on the MII bus remove it too. */ 1204 bus_generic_detach(dev); 1205 device_delete_child(dev, sc->bce_miibus); 1206 1207 /* Release all remaining resources. */ 1208 bce_release_resources(sc); 1209 1210 DBEXIT(BCE_VERBOSE_UNLOAD | BCE_VERBOSE_RESET); 1211 1212 return(0); 1213 } 1214 1215 1216 /****************************************************************************/ 1217 /* Device shutdown function. */ 1218 /* */ 1219 /* Stops and resets the controller. */ 1220 /* */ 1221 /* Returns: */ 1222 /* 0 on success, positive value on failure. */ 1223 /****************************************************************************/ 1224 static int 1225 bce_shutdown(device_t dev) 1226 { 1227 struct bce_softc *sc = device_get_softc(dev); 1228 u32 msg; 1229 1230 DBENTER(BCE_VERBOSE); 1231 1232 BCE_LOCK(sc); 1233 bce_stop(sc); 1234 if (sc->bce_flags & BCE_NO_WOL_FLAG) 1235 msg = BCE_DRV_MSG_CODE_UNLOAD_LNK_DN; 1236 else 1237 msg = BCE_DRV_MSG_CODE_UNLOAD; 1238 bce_reset(sc, msg); 1239 BCE_UNLOCK(sc); 1240 1241 DBEXIT(BCE_VERBOSE); 1242 1243 return (0); 1244 } 1245 1246 1247 #ifdef BCE_DEBUG 1248 /****************************************************************************/ 1249 /* Register read. */ 1250 /* */ 1251 /* Returns: */ 1252 /* The value of the register. */ 1253 /****************************************************************************/ 1254 static u32 1255 bce_reg_rd(struct bce_softc *sc, u32 offset) 1256 { 1257 u32 val = bus_space_read_4(sc->bce_btag, sc->bce_bhandle, offset); 1258 DBPRINT(sc, BCE_INSANE_REG, "%s(); offset = 0x%08X, val = 0x%08X\n", 1259 __FUNCTION__, offset, val); 1260 return val; 1261 } 1262 1263 1264 /****************************************************************************/ 1265 /* Register write (16 bit). */ 1266 /* */ 1267 /* Returns: */ 1268 /* Nothing. */ 1269 /****************************************************************************/ 1270 static void 1271 bce_reg_wr16(struct bce_softc *sc, u32 offset, u16 val) 1272 { 1273 DBPRINT(sc, BCE_INSANE_REG, "%s(); offset = 0x%08X, val = 0x%04X\n", 1274 __FUNCTION__, offset, val); 1275 bus_space_write_2(sc->bce_btag, sc->bce_bhandle, offset, val); 1276 } 1277 1278 1279 /****************************************************************************/ 1280 /* Register write. */ 1281 /* */ 1282 /* Returns: */ 1283 /* Nothing. */ 1284 /****************************************************************************/ 1285 static void 1286 bce_reg_wr(struct bce_softc *sc, u32 offset, u32 val) 1287 { 1288 DBPRINT(sc, BCE_INSANE_REG, "%s(); offset = 0x%08X, val = 0x%08X\n", 1289 __FUNCTION__, offset, val); 1290 bus_space_write_4(sc->bce_btag, sc->bce_bhandle, offset, val); 1291 } 1292 #endif 1293 1294 /****************************************************************************/ 1295 /* Indirect register read. */ 1296 /* */ 1297 /* Reads NetXtreme II registers using an index/data register pair in PCI */ 1298 /* configuration space. Using this mechanism avoids issues with posted */ 1299 /* reads but is much slower than memory-mapped I/O. */ 1300 /* */ 1301 /* Returns: */ 1302 /* The value of the register. */ 1303 /****************************************************************************/ 1304 static u32 1305 bce_reg_rd_ind(struct bce_softc *sc, u32 offset) 1306 { 1307 device_t dev; 1308 dev = sc->bce_dev; 1309 1310 pci_write_config(dev, BCE_PCICFG_REG_WINDOW_ADDRESS, offset, 4); 1311 #ifdef BCE_DEBUG 1312 { 1313 u32 val; 1314 val = pci_read_config(dev, BCE_PCICFG_REG_WINDOW, 4); 1315 DBPRINT(sc, BCE_INSANE_REG, "%s(); offset = 0x%08X, val = 0x%08X\n", 1316 __FUNCTION__, offset, val); 1317 return val; 1318 } 1319 #else 1320 return pci_read_config(dev, BCE_PCICFG_REG_WINDOW, 4); 1321 #endif 1322 } 1323 1324 1325 /****************************************************************************/ 1326 /* Indirect register write. */ 1327 /* */ 1328 /* Writes NetXtreme II registers using an index/data register pair in PCI */ 1329 /* configuration space. Using this mechanism avoids issues with posted */ 1330 /* writes but is muchh slower than memory-mapped I/O. */ 1331 /* */ 1332 /* Returns: */ 1333 /* Nothing. */ 1334 /****************************************************************************/ 1335 static void 1336 bce_reg_wr_ind(struct bce_softc *sc, u32 offset, u32 val) 1337 { 1338 device_t dev; 1339 dev = sc->bce_dev; 1340 1341 DBPRINT(sc, BCE_INSANE_REG, "%s(); offset = 0x%08X, val = 0x%08X\n", 1342 __FUNCTION__, offset, val); 1343 1344 pci_write_config(dev, BCE_PCICFG_REG_WINDOW_ADDRESS, offset, 4); 1345 pci_write_config(dev, BCE_PCICFG_REG_WINDOW, val, 4); 1346 } 1347 1348 1349 /****************************************************************************/ 1350 /* Shared memory write. */ 1351 /* */ 1352 /* Writes NetXtreme II shared memory region. */ 1353 /* */ 1354 /* Returns: */ 1355 /* Nothing. */ 1356 /****************************************************************************/ 1357 static void 1358 bce_shmem_wr(struct bce_softc *sc, u32 offset, u32 val) 1359 { 1360 bce_reg_wr_ind(sc, sc->bce_shmem_base + offset, val); 1361 } 1362 1363 1364 /****************************************************************************/ 1365 /* Shared memory read. */ 1366 /* */ 1367 /* Reads NetXtreme II shared memory region. */ 1368 /* */ 1369 /* Returns: */ 1370 /* The 32 bit value read. */ 1371 /****************************************************************************/ 1372 static u32 1373 bce_shmem_rd(struct bce_softc *sc, u32 offset) 1374 { 1375 return (bce_reg_rd_ind(sc, sc->bce_shmem_base + offset)); 1376 } 1377 1378 1379 #ifdef BCE_DEBUG 1380 /****************************************************************************/ 1381 /* Context memory read. */ 1382 /* */ 1383 /* The NetXtreme II controller uses context memory to track connection */ 1384 /* information for L2 and higher network protocols. */ 1385 /* */ 1386 /* Returns: */ 1387 /* The requested 32 bit value of context memory. */ 1388 /****************************************************************************/ 1389 static u32 1390 bce_ctx_rd(struct bce_softc *sc, u32 cid_addr, u32 ctx_offset) 1391 { 1392 u32 idx, offset, retry_cnt = 5, val; 1393 1394 DBRUNIF((cid_addr > MAX_CID_ADDR || ctx_offset & 0x3 || cid_addr & CTX_MASK), 1395 BCE_PRINTF("%s(): Invalid CID address: 0x%08X.\n", 1396 __FUNCTION__, cid_addr)); 1397 1398 offset = ctx_offset + cid_addr; 1399 1400 if ((BCE_CHIP_NUM(sc) == BCE_CHIP_NUM_5709) || 1401 (BCE_CHIP_NUM(sc) == BCE_CHIP_NUM_5716)) { 1402 1403 REG_WR(sc, BCE_CTX_CTX_CTRL, (offset | BCE_CTX_CTX_CTRL_READ_REQ)); 1404 1405 for (idx = 0; idx < retry_cnt; idx++) { 1406 val = REG_RD(sc, BCE_CTX_CTX_CTRL); 1407 if ((val & BCE_CTX_CTX_CTRL_READ_REQ) == 0) 1408 break; 1409 DELAY(5); 1410 } 1411 1412 if (val & BCE_CTX_CTX_CTRL_READ_REQ) 1413 BCE_PRINTF("%s(%d); Unable to read CTX memory: " 1414 "cid_addr = 0x%08X, offset = 0x%08X!\n", 1415 __FILE__, __LINE__, cid_addr, ctx_offset); 1416 1417 val = REG_RD(sc, BCE_CTX_CTX_DATA); 1418 } else { 1419 REG_WR(sc, BCE_CTX_DATA_ADR, offset); 1420 val = REG_RD(sc, BCE_CTX_DATA); 1421 } 1422 1423 DBPRINT(sc, BCE_EXTREME_CTX, "%s(); cid_addr = 0x%08X, offset = 0x%08X, " 1424 "val = 0x%08X\n", __FUNCTION__, cid_addr, ctx_offset, val); 1425 1426 return(val); 1427 } 1428 #endif 1429 1430 1431 /****************************************************************************/ 1432 /* Context memory write. */ 1433 /* */ 1434 /* The NetXtreme II controller uses context memory to track connection */ 1435 /* information for L2 and higher network protocols. */ 1436 /* */ 1437 /* Returns: */ 1438 /* Nothing. */ 1439 /****************************************************************************/ 1440 static void 1441 bce_ctx_wr(struct bce_softc *sc, u32 cid_addr, u32 ctx_offset, u32 ctx_val) 1442 { 1443 u32 idx, offset = ctx_offset + cid_addr; 1444 u32 val, retry_cnt = 5; 1445 1446 DBPRINT(sc, BCE_EXTREME_CTX, "%s(); cid_addr = 0x%08X, offset = 0x%08X, " 1447 "val = 0x%08X\n", __FUNCTION__, cid_addr, ctx_offset, ctx_val); 1448 1449 DBRUNIF((cid_addr > MAX_CID_ADDR || ctx_offset & 0x3 || cid_addr & CTX_MASK), 1450 BCE_PRINTF("%s(): Invalid CID address: 0x%08X.\n", 1451 __FUNCTION__, cid_addr)); 1452 1453 if ((BCE_CHIP_NUM(sc) == BCE_CHIP_NUM_5709) || 1454 (BCE_CHIP_NUM(sc) == BCE_CHIP_NUM_5716)) { 1455 1456 REG_WR(sc, BCE_CTX_CTX_DATA, ctx_val); 1457 REG_WR(sc, BCE_CTX_CTX_CTRL, (offset | BCE_CTX_CTX_CTRL_WRITE_REQ)); 1458 1459 for (idx = 0; idx < retry_cnt; idx++) { 1460 val = REG_RD(sc, BCE_CTX_CTX_CTRL); 1461 if ((val & BCE_CTX_CTX_CTRL_WRITE_REQ) == 0) 1462 break; 1463 DELAY(5); 1464 } 1465 1466 if (val & BCE_CTX_CTX_CTRL_WRITE_REQ) 1467 BCE_PRINTF("%s(%d); Unable to write CTX memory: " 1468 "cid_addr = 0x%08X, offset = 0x%08X!\n", 1469 __FILE__, __LINE__, cid_addr, ctx_offset); 1470 1471 } else { 1472 REG_WR(sc, BCE_CTX_DATA_ADR, offset); 1473 REG_WR(sc, BCE_CTX_DATA, ctx_val); 1474 } 1475 } 1476 1477 1478 /****************************************************************************/ 1479 /* PHY register read. */ 1480 /* */ 1481 /* Implements register reads on the MII bus. */ 1482 /* */ 1483 /* Returns: */ 1484 /* The value of the register. */ 1485 /****************************************************************************/ 1486 static int 1487 bce_miibus_read_reg(device_t dev, int phy, int reg) 1488 { 1489 struct bce_softc *sc; 1490 u32 val; 1491 int i; 1492 1493 sc = device_get_softc(dev); 1494 1495 /* Make sure we are accessing the correct PHY address. */ 1496 if (phy != sc->bce_phy_addr) { 1497 DBPRINT(sc, BCE_INSANE_PHY, "Invalid PHY address %d for PHY read!\n", phy); 1498 return(0); 1499 } 1500 1501 if (sc->bce_phy_flags & BCE_PHY_INT_MODE_AUTO_POLLING_FLAG) { 1502 val = REG_RD(sc, BCE_EMAC_MDIO_MODE); 1503 val &= ~BCE_EMAC_MDIO_MODE_AUTO_POLL; 1504 1505 REG_WR(sc, BCE_EMAC_MDIO_MODE, val); 1506 REG_RD(sc, BCE_EMAC_MDIO_MODE); 1507 1508 DELAY(40); 1509 } 1510 1511 1512 val = BCE_MIPHY(phy) | BCE_MIREG(reg) | 1513 BCE_EMAC_MDIO_COMM_COMMAND_READ | BCE_EMAC_MDIO_COMM_DISEXT | 1514 BCE_EMAC_MDIO_COMM_START_BUSY; 1515 REG_WR(sc, BCE_EMAC_MDIO_COMM, val); 1516 1517 for (i = 0; i < BCE_PHY_TIMEOUT; i++) { 1518 DELAY(10); 1519 1520 val = REG_RD(sc, BCE_EMAC_MDIO_COMM); 1521 if (!(val & BCE_EMAC_MDIO_COMM_START_BUSY)) { 1522 DELAY(5); 1523 1524 val = REG_RD(sc, BCE_EMAC_MDIO_COMM); 1525 val &= BCE_EMAC_MDIO_COMM_DATA; 1526 1527 break; 1528 } 1529 } 1530 1531 if (val & BCE_EMAC_MDIO_COMM_START_BUSY) { 1532 BCE_PRINTF("%s(%d): Error: PHY read timeout! phy = %d, reg = 0x%04X\n", 1533 __FILE__, __LINE__, phy, reg); 1534 val = 0x0; 1535 } else { 1536 val = REG_RD(sc, BCE_EMAC_MDIO_COMM); 1537 } 1538 1539 1540 if (sc->bce_phy_flags & BCE_PHY_INT_MODE_AUTO_POLLING_FLAG) { 1541 val = REG_RD(sc, BCE_EMAC_MDIO_MODE); 1542 val |= BCE_EMAC_MDIO_MODE_AUTO_POLL; 1543 1544 REG_WR(sc, BCE_EMAC_MDIO_MODE, val); 1545 REG_RD(sc, BCE_EMAC_MDIO_MODE); 1546 1547 DELAY(40); 1548 } 1549 1550 DB_PRINT_PHY_REG(reg, val); 1551 return (val & 0xffff); 1552 1553 } 1554 1555 1556 /****************************************************************************/ 1557 /* PHY register write. */ 1558 /* */ 1559 /* Implements register writes on the MII bus. */ 1560 /* */ 1561 /* Returns: */ 1562 /* The value of the register. */ 1563 /****************************************************************************/ 1564 static int 1565 bce_miibus_write_reg(device_t dev, int phy, int reg, int val) 1566 { 1567 struct bce_softc *sc; 1568 u32 val1; 1569 int i; 1570 1571 sc = device_get_softc(dev); 1572 1573 /* Make sure we are accessing the correct PHY address. */ 1574 if (phy != sc->bce_phy_addr) { 1575 DBPRINT(sc, BCE_INSANE_PHY, "Invalid PHY address %d for PHY write!\n", phy); 1576 return(0); 1577 } 1578 1579 DB_PRINT_PHY_REG(reg, val); 1580 1581 if (sc->bce_phy_flags & BCE_PHY_INT_MODE_AUTO_POLLING_FLAG) { 1582 val1 = REG_RD(sc, BCE_EMAC_MDIO_MODE); 1583 val1 &= ~BCE_EMAC_MDIO_MODE_AUTO_POLL; 1584 1585 REG_WR(sc, BCE_EMAC_MDIO_MODE, val1); 1586 REG_RD(sc, BCE_EMAC_MDIO_MODE); 1587 1588 DELAY(40); 1589 } 1590 1591 val1 = BCE_MIPHY(phy) | BCE_MIREG(reg) | val | 1592 BCE_EMAC_MDIO_COMM_COMMAND_WRITE | 1593 BCE_EMAC_MDIO_COMM_START_BUSY | BCE_EMAC_MDIO_COMM_DISEXT; 1594 REG_WR(sc, BCE_EMAC_MDIO_COMM, val1); 1595 1596 for (i = 0; i < BCE_PHY_TIMEOUT; i++) { 1597 DELAY(10); 1598 1599 val1 = REG_RD(sc, BCE_EMAC_MDIO_COMM); 1600 if (!(val1 & BCE_EMAC_MDIO_COMM_START_BUSY)) { 1601 DELAY(5); 1602 break; 1603 } 1604 } 1605 1606 if (val1 & BCE_EMAC_MDIO_COMM_START_BUSY) 1607 BCE_PRINTF("%s(%d): PHY write timeout!\n", 1608 __FILE__, __LINE__); 1609 1610 if (sc->bce_phy_flags & BCE_PHY_INT_MODE_AUTO_POLLING_FLAG) { 1611 val1 = REG_RD(sc, BCE_EMAC_MDIO_MODE); 1612 val1 |= BCE_EMAC_MDIO_MODE_AUTO_POLL; 1613 1614 REG_WR(sc, BCE_EMAC_MDIO_MODE, val1); 1615 REG_RD(sc, BCE_EMAC_MDIO_MODE); 1616 1617 DELAY(40); 1618 } 1619 1620 return 0; 1621 } 1622 1623 1624 /****************************************************************************/ 1625 /* MII bus status change. */ 1626 /* */ 1627 /* Called by the MII bus driver when the PHY establishes link to set the */ 1628 /* MAC interface registers. */ 1629 /* */ 1630 /* Returns: */ 1631 /* Nothing. */ 1632 /****************************************************************************/ 1633 static void 1634 bce_miibus_statchg(device_t dev) 1635 { 1636 struct bce_softc *sc; 1637 struct mii_data *mii; 1638 int val; 1639 1640 sc = device_get_softc(dev); 1641 1642 DBENTER(BCE_VERBOSE_PHY); 1643 1644 mii = device_get_softc(sc->bce_miibus); 1645 1646 val = REG_RD(sc, BCE_EMAC_MODE); 1647 val &= ~(BCE_EMAC_MODE_PORT | BCE_EMAC_MODE_HALF_DUPLEX | 1648 BCE_EMAC_MODE_MAC_LOOP | BCE_EMAC_MODE_FORCE_LINK | 1649 BCE_EMAC_MODE_25G); 1650 1651 /* Set MII or GMII interface based on the speed negotiated by the PHY. */ 1652 switch (IFM_SUBTYPE(mii->mii_media_active)) { 1653 case IFM_10_T: 1654 if (BCE_CHIP_NUM(sc) != BCE_CHIP_NUM_5706) { 1655 DBPRINT(sc, BCE_INFO, "Enabling 10Mb interface.\n"); 1656 val |= BCE_EMAC_MODE_PORT_MII_10; 1657 break; 1658 } 1659 /* fall-through */ 1660 case IFM_100_TX: 1661 DBPRINT(sc, BCE_INFO, "Enabling MII interface.\n"); 1662 val |= BCE_EMAC_MODE_PORT_MII; 1663 break; 1664 case IFM_2500_SX: 1665 DBPRINT(sc, BCE_INFO, "Enabling 2.5G MAC mode.\n"); 1666 val |= BCE_EMAC_MODE_25G; 1667 /* fall-through */ 1668 case IFM_1000_T: 1669 case IFM_1000_SX: 1670 DBPRINT(sc, BCE_INFO, "Enabling GMII interface.\n"); 1671 val |= BCE_EMAC_MODE_PORT_GMII; 1672 break; 1673 default: 1674 DBPRINT(sc, BCE_INFO, "Unknown speed, enabling default GMII " 1675 "interface.\n"); 1676 val |= BCE_EMAC_MODE_PORT_GMII; 1677 } 1678 1679 /* Set half or full duplex based on the duplicity negotiated by the PHY. */ 1680 if ((mii->mii_media_active & IFM_GMASK) == IFM_HDX) { 1681 DBPRINT(sc, BCE_INFO, "Setting Half-Duplex interface.\n"); 1682 val |= BCE_EMAC_MODE_HALF_DUPLEX; 1683 } else 1684 DBPRINT(sc, BCE_INFO, "Setting Full-Duplex interface.\n"); 1685 1686 REG_WR(sc, BCE_EMAC_MODE, val); 1687 1688 #if 0 1689 /* ToDo: Enable flow control support in brgphy and bge. */ 1690 /* FLAG0 is set if RX is enabled and FLAG1 if TX is enabled */ 1691 if (mii->mii_media_active & IFM_FLAG0) 1692 BCE_SETBIT(sc, BCE_EMAC_RX_MODE, BCE_EMAC_RX_MODE_FLOW_EN); 1693 if (mii->mii_media_active & IFM_FLAG1) 1694 BCE_SETBIT(sc, BCE_EMAC_RX_MODE, BCE_EMAC_TX_MODE_FLOW_EN); 1695 #endif 1696 1697 DBEXIT(BCE_VERBOSE_PHY); 1698 } 1699 1700 1701 /****************************************************************************/ 1702 /* Acquire NVRAM lock. */ 1703 /* */ 1704 /* Before the NVRAM can be accessed the caller must acquire an NVRAM lock. */ 1705 /* Locks 0 and 2 are reserved, lock 1 is used by firmware and lock 2 is */ 1706 /* for use by the driver. */ 1707 /* */ 1708 /* Returns: */ 1709 /* 0 on success, positive value on failure. */ 1710 /****************************************************************************/ 1711 static int 1712 bce_acquire_nvram_lock(struct bce_softc *sc) 1713 { 1714 u32 val; 1715 int j, rc = 0; 1716 1717 DBENTER(BCE_VERBOSE_NVRAM); 1718 1719 /* Request access to the flash interface. */ 1720 REG_WR(sc, BCE_NVM_SW_ARB, BCE_NVM_SW_ARB_ARB_REQ_SET2); 1721 for (j = 0; j < NVRAM_TIMEOUT_COUNT; j++) { 1722 val = REG_RD(sc, BCE_NVM_SW_ARB); 1723 if (val & BCE_NVM_SW_ARB_ARB_ARB2) 1724 break; 1725 1726 DELAY(5); 1727 } 1728 1729 if (j >= NVRAM_TIMEOUT_COUNT) { 1730 DBPRINT(sc, BCE_WARN, "Timeout acquiring NVRAM lock!\n"); 1731 rc = EBUSY; 1732 } 1733 1734 DBEXIT(BCE_VERBOSE_NVRAM); 1735 return (rc); 1736 } 1737 1738 1739 /****************************************************************************/ 1740 /* Release NVRAM lock. */ 1741 /* */ 1742 /* When the caller is finished accessing NVRAM the lock must be released. */ 1743 /* Locks 0 and 2 are reserved, lock 1 is used by firmware and lock 2 is */ 1744 /* for use by the driver. */ 1745 /* */ 1746 /* Returns: */ 1747 /* 0 on success, positive value on failure. */ 1748 /****************************************************************************/ 1749 static int 1750 bce_release_nvram_lock(struct bce_softc *sc) 1751 { 1752 u32 val; 1753 int j, rc = 0; 1754 1755 DBENTER(BCE_VERBOSE_NVRAM); 1756 1757 /* 1758 * Relinquish nvram interface. 1759 */ 1760 REG_WR(sc, BCE_NVM_SW_ARB, BCE_NVM_SW_ARB_ARB_REQ_CLR2); 1761 1762 for (j = 0; j < NVRAM_TIMEOUT_COUNT; j++) { 1763 val = REG_RD(sc, BCE_NVM_SW_ARB); 1764 if (!(val & BCE_NVM_SW_ARB_ARB_ARB2)) 1765 break; 1766 1767 DELAY(5); 1768 } 1769 1770 if (j >= NVRAM_TIMEOUT_COUNT) { 1771 DBPRINT(sc, BCE_WARN, "Timeout releasing NVRAM lock!\n"); 1772 rc = EBUSY; 1773 } 1774 1775 DBEXIT(BCE_VERBOSE_NVRAM); 1776 return (rc); 1777 } 1778 1779 1780 #ifdef BCE_NVRAM_WRITE_SUPPORT 1781 /****************************************************************************/ 1782 /* Enable NVRAM write access. */ 1783 /* */ 1784 /* Before writing to NVRAM the caller must enable NVRAM writes. */ 1785 /* */ 1786 /* Returns: */ 1787 /* 0 on success, positive value on failure. */ 1788 /****************************************************************************/ 1789 static int 1790 bce_enable_nvram_write(struct bce_softc *sc) 1791 { 1792 u32 val; 1793 int rc = 0; 1794 1795 DBENTER(BCE_VERBOSE_NVRAM); 1796 1797 val = REG_RD(sc, BCE_MISC_CFG); 1798 REG_WR(sc, BCE_MISC_CFG, val | BCE_MISC_CFG_NVM_WR_EN_PCI); 1799 1800 if (!(sc->bce_flash_info->flags & BCE_NV_BUFFERED)) { 1801 int j; 1802 1803 REG_WR(sc, BCE_NVM_COMMAND, BCE_NVM_COMMAND_DONE); 1804 REG_WR(sc, BCE_NVM_COMMAND, BCE_NVM_COMMAND_WREN | BCE_NVM_COMMAND_DOIT); 1805 1806 for (j = 0; j < NVRAM_TIMEOUT_COUNT; j++) { 1807 DELAY(5); 1808 1809 val = REG_RD(sc, BCE_NVM_COMMAND); 1810 if (val & BCE_NVM_COMMAND_DONE) 1811 break; 1812 } 1813 1814 if (j >= NVRAM_TIMEOUT_COUNT) { 1815 DBPRINT(sc, BCE_WARN, "Timeout writing NVRAM!\n"); 1816 rc = EBUSY; 1817 } 1818 } 1819 1820 DBENTER(BCE_VERBOSE_NVRAM); 1821 return (rc); 1822 } 1823 1824 1825 /****************************************************************************/ 1826 /* Disable NVRAM write access. */ 1827 /* */ 1828 /* When the caller is finished writing to NVRAM write access must be */ 1829 /* disabled. */ 1830 /* */ 1831 /* Returns: */ 1832 /* Nothing. */ 1833 /****************************************************************************/ 1834 static void 1835 bce_disable_nvram_write(struct bce_softc *sc) 1836 { 1837 u32 val; 1838 1839 DBENTER(BCE_VERBOSE_NVRAM); 1840 1841 val = REG_RD(sc, BCE_MISC_CFG); 1842 REG_WR(sc, BCE_MISC_CFG, val & ~BCE_MISC_CFG_NVM_WR_EN); 1843 1844 DBEXIT(BCE_VERBOSE_NVRAM); 1845 1846 } 1847 #endif 1848 1849 1850 /****************************************************************************/ 1851 /* Enable NVRAM access. */ 1852 /* */ 1853 /* Before accessing NVRAM for read or write operations the caller must */ 1854 /* enabled NVRAM access. */ 1855 /* */ 1856 /* Returns: */ 1857 /* Nothing. */ 1858 /****************************************************************************/ 1859 static void 1860 bce_enable_nvram_access(struct bce_softc *sc) 1861 { 1862 u32 val; 1863 1864 DBENTER(BCE_VERBOSE_NVRAM); 1865 1866 val = REG_RD(sc, BCE_NVM_ACCESS_ENABLE); 1867 /* Enable both bits, even on read. */ 1868 REG_WR(sc, BCE_NVM_ACCESS_ENABLE, 1869 val | BCE_NVM_ACCESS_ENABLE_EN | BCE_NVM_ACCESS_ENABLE_WR_EN); 1870 1871 DBEXIT(BCE_VERBOSE_NVRAM); 1872 } 1873 1874 1875 /****************************************************************************/ 1876 /* Disable NVRAM access. */ 1877 /* */ 1878 /* When the caller is finished accessing NVRAM access must be disabled. */ 1879 /* */ 1880 /* Returns: */ 1881 /* Nothing. */ 1882 /****************************************************************************/ 1883 static void 1884 bce_disable_nvram_access(struct bce_softc *sc) 1885 { 1886 u32 val; 1887 1888 DBENTER(BCE_VERBOSE_NVRAM); 1889 1890 val = REG_RD(sc, BCE_NVM_ACCESS_ENABLE); 1891 1892 /* Disable both bits, even after read. */ 1893 REG_WR(sc, BCE_NVM_ACCESS_ENABLE, 1894 val & ~(BCE_NVM_ACCESS_ENABLE_EN | 1895 BCE_NVM_ACCESS_ENABLE_WR_EN)); 1896 1897 DBEXIT(BCE_VERBOSE_NVRAM); 1898 } 1899 1900 1901 #ifdef BCE_NVRAM_WRITE_SUPPORT 1902 /****************************************************************************/ 1903 /* Erase NVRAM page before writing. */ 1904 /* */ 1905 /* Non-buffered flash parts require that a page be erased before it is */ 1906 /* written. */ 1907 /* */ 1908 /* Returns: */ 1909 /* 0 on success, positive value on failure. */ 1910 /****************************************************************************/ 1911 static int 1912 bce_nvram_erase_page(struct bce_softc *sc, u32 offset) 1913 { 1914 u32 cmd; 1915 int j, rc = 0; 1916 1917 DBENTER(BCE_VERBOSE_NVRAM); 1918 1919 /* Buffered flash doesn't require an erase. */ 1920 if (sc->bce_flash_info->flags & BCE_NV_BUFFERED) 1921 goto bce_nvram_erase_page_exit; 1922 1923 /* Build an erase command. */ 1924 cmd = BCE_NVM_COMMAND_ERASE | BCE_NVM_COMMAND_WR | 1925 BCE_NVM_COMMAND_DOIT; 1926 1927 /* 1928 * Clear the DONE bit separately, set the NVRAM adress to erase, 1929 * and issue the erase command. 1930 */ 1931 REG_WR(sc, BCE_NVM_COMMAND, BCE_NVM_COMMAND_DONE); 1932 REG_WR(sc, BCE_NVM_ADDR, offset & BCE_NVM_ADDR_NVM_ADDR_VALUE); 1933 REG_WR(sc, BCE_NVM_COMMAND, cmd); 1934 1935 /* Wait for completion. */ 1936 for (j = 0; j < NVRAM_TIMEOUT_COUNT; j++) { 1937 u32 val; 1938 1939 DELAY(5); 1940 1941 val = REG_RD(sc, BCE_NVM_COMMAND); 1942 if (val & BCE_NVM_COMMAND_DONE) 1943 break; 1944 } 1945 1946 if (j >= NVRAM_TIMEOUT_COUNT) { 1947 DBPRINT(sc, BCE_WARN, "Timeout erasing NVRAM.\n"); 1948 rc = EBUSY; 1949 } 1950 1951 bce_nvram_erase_page_exit: 1952 DBEXIT(BCE_VERBOSE_NVRAM); 1953 return (rc); 1954 } 1955 #endif /* BCE_NVRAM_WRITE_SUPPORT */ 1956 1957 1958 /****************************************************************************/ 1959 /* Read a dword (32 bits) from NVRAM. */ 1960 /* */ 1961 /* Read a 32 bit word from NVRAM. The caller is assumed to have already */ 1962 /* obtained the NVRAM lock and enabled the controller for NVRAM access. */ 1963 /* */ 1964 /* Returns: */ 1965 /* 0 on success and the 32 bit value read, positive value on failure. */ 1966 /****************************************************************************/ 1967 static int 1968 bce_nvram_read_dword(struct bce_softc *sc, u32 offset, u8 *ret_val, 1969 u32 cmd_flags) 1970 { 1971 u32 cmd; 1972 int i, rc = 0; 1973 1974 DBENTER(BCE_EXTREME_NVRAM); 1975 1976 /* Build the command word. */ 1977 cmd = BCE_NVM_COMMAND_DOIT | cmd_flags; 1978 1979 /* Calculate the offset for buffered flash if translation is used. */ 1980 if (sc->bce_flash_info->flags & BCE_NV_TRANSLATE) { 1981 offset = ((offset / sc->bce_flash_info->page_size) << 1982 sc->bce_flash_info->page_bits) + 1983 (offset % sc->bce_flash_info->page_size); 1984 } 1985 1986 /* 1987 * Clear the DONE bit separately, set the address to read, 1988 * and issue the read. 1989 */ 1990 REG_WR(sc, BCE_NVM_COMMAND, BCE_NVM_COMMAND_DONE); 1991 REG_WR(sc, BCE_NVM_ADDR, offset & BCE_NVM_ADDR_NVM_ADDR_VALUE); 1992 REG_WR(sc, BCE_NVM_COMMAND, cmd); 1993 1994 /* Wait for completion. */ 1995 for (i = 0; i < NVRAM_TIMEOUT_COUNT; i++) { 1996 u32 val; 1997 1998 DELAY(5); 1999 2000 val = REG_RD(sc, BCE_NVM_COMMAND); 2001 if (val & BCE_NVM_COMMAND_DONE) { 2002 val = REG_RD(sc, BCE_NVM_READ); 2003 2004 val = bce_be32toh(val); 2005 memcpy(ret_val, &val, 4); 2006 break; 2007 } 2008 } 2009 2010 /* Check for errors. */ 2011 if (i >= NVRAM_TIMEOUT_COUNT) { 2012 BCE_PRINTF("%s(%d): Timeout error reading NVRAM at offset 0x%08X!\n", 2013 __FILE__, __LINE__, offset); 2014 rc = EBUSY; 2015 } 2016 2017 DBEXIT(BCE_EXTREME_NVRAM); 2018 return(rc); 2019 } 2020 2021 2022 #ifdef BCE_NVRAM_WRITE_SUPPORT 2023 /****************************************************************************/ 2024 /* Write a dword (32 bits) to NVRAM. */ 2025 /* */ 2026 /* Write a 32 bit word to NVRAM. The caller is assumed to have already */ 2027 /* obtained the NVRAM lock, enabled the controller for NVRAM access, and */ 2028 /* enabled NVRAM write access. */ 2029 /* */ 2030 /* Returns: */ 2031 /* 0 on success, positive value on failure. */ 2032 /****************************************************************************/ 2033 static int 2034 bce_nvram_write_dword(struct bce_softc *sc, u32 offset, u8 *val, 2035 u32 cmd_flags) 2036 { 2037 u32 cmd, val32; 2038 int j, rc = 0; 2039 2040 DBENTER(BCE_VERBOSE_NVRAM); 2041 2042 /* Build the command word. */ 2043 cmd = BCE_NVM_COMMAND_DOIT | BCE_NVM_COMMAND_WR | cmd_flags; 2044 2045 /* Calculate the offset for buffered flash if translation is used. */ 2046 if (sc->bce_flash_info->flags & BCE_NV_TRANSLATE) { 2047 offset = ((offset / sc->bce_flash_info->page_size) << 2048 sc->bce_flash_info->page_bits) + 2049 (offset % sc->bce_flash_info->page_size); 2050 } 2051 2052 /* 2053 * Clear the DONE bit separately, convert NVRAM data to big-endian, 2054 * set the NVRAM address to write, and issue the write command 2055 */ 2056 REG_WR(sc, BCE_NVM_COMMAND, BCE_NVM_COMMAND_DONE); 2057 memcpy(&val32, val, 4); 2058 val32 = htobe32(val32); 2059 REG_WR(sc, BCE_NVM_WRITE, val32); 2060 REG_WR(sc, BCE_NVM_ADDR, offset & BCE_NVM_ADDR_NVM_ADDR_VALUE); 2061 REG_WR(sc, BCE_NVM_COMMAND, cmd); 2062 2063 /* Wait for completion. */ 2064 for (j = 0; j < NVRAM_TIMEOUT_COUNT; j++) { 2065 DELAY(5); 2066 2067 if (REG_RD(sc, BCE_NVM_COMMAND) & BCE_NVM_COMMAND_DONE) 2068 break; 2069 } 2070 if (j >= NVRAM_TIMEOUT_COUNT) { 2071 BCE_PRINTF("%s(%d): Timeout error writing NVRAM at offset 0x%08X\n", 2072 __FILE__, __LINE__, offset); 2073 rc = EBUSY; 2074 } 2075 2076 DBEXIT(BCE_VERBOSE_NVRAM); 2077 return (rc); 2078 } 2079 #endif /* BCE_NVRAM_WRITE_SUPPORT */ 2080 2081 2082 /****************************************************************************/ 2083 /* Initialize NVRAM access. */ 2084 /* */ 2085 /* Identify the NVRAM device in use and prepare the NVRAM interface to */ 2086 /* access that device. */ 2087 /* */ 2088 /* Returns: */ 2089 /* 0 on success, positive value on failure. */ 2090 /****************************************************************************/ 2091 static int 2092 bce_init_nvram(struct bce_softc *sc) 2093 { 2094 u32 val; 2095 int j, entry_count, rc = 0; 2096 struct flash_spec *flash; 2097 2098 DBENTER(BCE_VERBOSE_NVRAM); 2099 2100 if ((BCE_CHIP_NUM(sc) == BCE_CHIP_NUM_5709) || 2101 (BCE_CHIP_NUM(sc) == BCE_CHIP_NUM_5716)) { 2102 sc->bce_flash_info = &flash_5709; 2103 goto bce_init_nvram_get_flash_size; 2104 } 2105 2106 /* Determine the selected interface. */ 2107 val = REG_RD(sc, BCE_NVM_CFG1); 2108 2109 entry_count = sizeof(flash_table) / sizeof(struct flash_spec); 2110 2111 /* 2112 * Flash reconfiguration is required to support additional 2113 * NVRAM devices not directly supported in hardware. 2114 * Check if the flash interface was reconfigured 2115 * by the bootcode. 2116 */ 2117 2118 if (val & 0x40000000) { 2119 /* Flash interface reconfigured by bootcode. */ 2120 2121 DBPRINT(sc,BCE_INFO_LOAD, 2122 "bce_init_nvram(): Flash WAS reconfigured.\n"); 2123 2124 for (j = 0, flash = &flash_table[0]; j < entry_count; 2125 j++, flash++) { 2126 if ((val & FLASH_BACKUP_STRAP_MASK) == 2127 (flash->config1 & FLASH_BACKUP_STRAP_MASK)) { 2128 sc->bce_flash_info = flash; 2129 break; 2130 } 2131 } 2132 } else { 2133 /* Flash interface not yet reconfigured. */ 2134 u32 mask; 2135 2136 DBPRINT(sc, BCE_INFO_LOAD, "%s(): Flash was NOT reconfigured.\n", 2137 __FUNCTION__); 2138 2139 if (val & (1 << 23)) 2140 mask = FLASH_BACKUP_STRAP_MASK; 2141 else 2142 mask = FLASH_STRAP_MASK; 2143 2144 /* Look for the matching NVRAM device configuration data. */ 2145 for (j = 0, flash = &flash_table[0]; j < entry_count; j++, flash++) { 2146 2147 /* Check if the device matches any of the known devices. */ 2148 if ((val & mask) == (flash->strapping & mask)) { 2149 /* Found a device match. */ 2150 sc->bce_flash_info = flash; 2151 2152 /* Request access to the flash interface. */ 2153 if ((rc = bce_acquire_nvram_lock(sc)) != 0) 2154 return rc; 2155 2156 /* Reconfigure the flash interface. */ 2157 bce_enable_nvram_access(sc); 2158 REG_WR(sc, BCE_NVM_CFG1, flash->config1); 2159 REG_WR(sc, BCE_NVM_CFG2, flash->config2); 2160 REG_WR(sc, BCE_NVM_CFG3, flash->config3); 2161 REG_WR(sc, BCE_NVM_WRITE1, flash->write1); 2162 bce_disable_nvram_access(sc); 2163 bce_release_nvram_lock(sc); 2164 2165 break; 2166 } 2167 } 2168 } 2169 2170 /* Check if a matching device was found. */ 2171 if (j == entry_count) { 2172 sc->bce_flash_info = NULL; 2173 BCE_PRINTF("%s(%d): Unknown Flash NVRAM found!\n", 2174 __FILE__, __LINE__); 2175 rc = ENODEV; 2176 } 2177 2178 bce_init_nvram_get_flash_size: 2179 /* Write the flash config data to the shared memory interface. */ 2180 val = bce_shmem_rd(sc, BCE_SHARED_HW_CFG_CONFIG2); 2181 val &= BCE_SHARED_HW_CFG2_NVM_SIZE_MASK; 2182 if (val) 2183 sc->bce_flash_size = val; 2184 else 2185 sc->bce_flash_size = sc->bce_flash_info->total_size; 2186 2187 DBPRINT(sc, BCE_INFO_LOAD, "%s(): Found %s, size = 0x%08X\n", 2188 __FUNCTION__, sc->bce_flash_info->name, 2189 sc->bce_flash_info->total_size); 2190 2191 DBEXIT(BCE_VERBOSE_NVRAM); 2192 return rc; 2193 } 2194 2195 2196 /****************************************************************************/ 2197 /* Read an arbitrary range of data from NVRAM. */ 2198 /* */ 2199 /* Prepares the NVRAM interface for access and reads the requested data */ 2200 /* into the supplied buffer. */ 2201 /* */ 2202 /* Returns: */ 2203 /* 0 on success and the data read, positive value on failure. */ 2204 /****************************************************************************/ 2205 static int 2206 bce_nvram_read(struct bce_softc *sc, u32 offset, u8 *ret_buf, 2207 int buf_size) 2208 { 2209 int rc = 0; 2210 u32 cmd_flags, offset32, len32, extra; 2211 2212 DBENTER(BCE_VERBOSE_NVRAM); 2213 2214 if (buf_size == 0) 2215 goto bce_nvram_read_exit; 2216 2217 /* Request access to the flash interface. */ 2218 if ((rc = bce_acquire_nvram_lock(sc)) != 0) 2219 goto bce_nvram_read_exit; 2220 2221 /* Enable access to flash interface */ 2222 bce_enable_nvram_access(sc); 2223 2224 len32 = buf_size; 2225 offset32 = offset; 2226 extra = 0; 2227 2228 cmd_flags = 0; 2229 2230 if (offset32 & 3) { 2231 u8 buf[4]; 2232 u32 pre_len; 2233 2234 offset32 &= ~3; 2235 pre_len = 4 - (offset & 3); 2236 2237 if (pre_len >= len32) { 2238 pre_len = len32; 2239 cmd_flags = BCE_NVM_COMMAND_FIRST | BCE_NVM_COMMAND_LAST; 2240 } 2241 else { 2242 cmd_flags = BCE_NVM_COMMAND_FIRST; 2243 } 2244 2245 rc = bce_nvram_read_dword(sc, offset32, buf, cmd_flags); 2246 2247 if (rc) 2248 return rc; 2249 2250 memcpy(ret_buf, buf + (offset & 3), pre_len); 2251 2252 offset32 += 4; 2253 ret_buf += pre_len; 2254 len32 -= pre_len; 2255 } 2256 2257 if (len32 & 3) { 2258 extra = 4 - (len32 & 3); 2259 len32 = (len32 + 4) & ~3; 2260 } 2261 2262 if (len32 == 4) { 2263 u8 buf[4]; 2264 2265 if (cmd_flags) 2266 cmd_flags = BCE_NVM_COMMAND_LAST; 2267 else 2268 cmd_flags = BCE_NVM_COMMAND_FIRST | 2269 BCE_NVM_COMMAND_LAST; 2270 2271 rc = bce_nvram_read_dword(sc, offset32, buf, cmd_flags); 2272 2273 memcpy(ret_buf, buf, 4 - extra); 2274 } 2275 else if (len32 > 0) { 2276 u8 buf[4]; 2277 2278 /* Read the first word. */ 2279 if (cmd_flags) 2280 cmd_flags = 0; 2281 else 2282 cmd_flags = BCE_NVM_COMMAND_FIRST; 2283 2284 rc = bce_nvram_read_dword(sc, offset32, ret_buf, cmd_flags); 2285 2286 /* Advance to the next dword. */ 2287 offset32 += 4; 2288 ret_buf += 4; 2289 len32 -= 4; 2290 2291 while (len32 > 4 && rc == 0) { 2292 rc = bce_nvram_read_dword(sc, offset32, ret_buf, 0); 2293 2294 /* Advance to the next dword. */ 2295 offset32 += 4; 2296 ret_buf += 4; 2297 len32 -= 4; 2298 } 2299 2300 if (rc) 2301 goto bce_nvram_read_locked_exit; 2302 2303 cmd_flags = BCE_NVM_COMMAND_LAST; 2304 rc = bce_nvram_read_dword(sc, offset32, buf, cmd_flags); 2305 2306 memcpy(ret_buf, buf, 4 - extra); 2307 } 2308 2309 bce_nvram_read_locked_exit: 2310 /* Disable access to flash interface and release the lock. */ 2311 bce_disable_nvram_access(sc); 2312 bce_release_nvram_lock(sc); 2313 2314 bce_nvram_read_exit: 2315 DBEXIT(BCE_VERBOSE_NVRAM); 2316 return rc; 2317 } 2318 2319 2320 #ifdef BCE_NVRAM_WRITE_SUPPORT 2321 /****************************************************************************/ 2322 /* Write an arbitrary range of data from NVRAM. */ 2323 /* */ 2324 /* Prepares the NVRAM interface for write access and writes the requested */ 2325 /* data from the supplied buffer. The caller is responsible for */ 2326 /* calculating any appropriate CRCs. */ 2327 /* */ 2328 /* Returns: */ 2329 /* 0 on success, positive value on failure. */ 2330 /****************************************************************************/ 2331 static int 2332 bce_nvram_write(struct bce_softc *sc, u32 offset, u8 *data_buf, 2333 int buf_size) 2334 { 2335 u32 written, offset32, len32; 2336 u8 *buf, start[4], end[4]; 2337 int rc = 0; 2338 int align_start, align_end; 2339 2340 DBENTER(BCE_VERBOSE_NVRAM); 2341 2342 buf = data_buf; 2343 offset32 = offset; 2344 len32 = buf_size; 2345 align_start = align_end = 0; 2346 2347 if ((align_start = (offset32 & 3))) { 2348 offset32 &= ~3; 2349 len32 += align_start; 2350 if ((rc = bce_nvram_read(sc, offset32, start, 4))) 2351 goto bce_nvram_write_exit; 2352 } 2353 2354 if (len32 & 3) { 2355 if ((len32 > 4) || !align_start) { 2356 align_end = 4 - (len32 & 3); 2357 len32 += align_end; 2358 if ((rc = bce_nvram_read(sc, offset32 + len32 - 4, 2359 end, 4))) { 2360 goto bce_nvram_write_exit; 2361 } 2362 } 2363 } 2364 2365 if (align_start || align_end) { 2366 buf = malloc(len32, M_DEVBUF, M_NOWAIT); 2367 if (buf == 0) { 2368 rc = ENOMEM; 2369 goto bce_nvram_write_exit; 2370 } 2371 2372 if (align_start) { 2373 memcpy(buf, start, 4); 2374 } 2375 2376 if (align_end) { 2377 memcpy(buf + len32 - 4, end, 4); 2378 } 2379 memcpy(buf + align_start, data_buf, buf_size); 2380 } 2381 2382 written = 0; 2383 while ((written < len32) && (rc == 0)) { 2384 u32 page_start, page_end, data_start, data_end; 2385 u32 addr, cmd_flags; 2386 int i; 2387 u8 flash_buffer[264]; 2388 2389 /* Find the page_start addr */ 2390 page_start = offset32 + written; 2391 page_start -= (page_start % sc->bce_flash_info->page_size); 2392 /* Find the page_end addr */ 2393 page_end = page_start + sc->bce_flash_info->page_size; 2394 /* Find the data_start addr */ 2395 data_start = (written == 0) ? offset32 : page_start; 2396 /* Find the data_end addr */ 2397 data_end = (page_end > offset32 + len32) ? 2398 (offset32 + len32) : page_end; 2399 2400 /* Request access to the flash interface. */ 2401 if ((rc = bce_acquire_nvram_lock(sc)) != 0) 2402 goto bce_nvram_write_exit; 2403 2404 /* Enable access to flash interface */ 2405 bce_enable_nvram_access(sc); 2406 2407 cmd_flags = BCE_NVM_COMMAND_FIRST; 2408 if (!(sc->bce_flash_info->flags & BCE_NV_BUFFERED)) { 2409 int j; 2410 2411 /* Read the whole page into the buffer 2412 * (non-buffer flash only) */ 2413 for (j = 0; j < sc->bce_flash_info->page_size; j += 4) { 2414 if (j == (sc->bce_flash_info->page_size - 4)) { 2415 cmd_flags |= BCE_NVM_COMMAND_LAST; 2416 } 2417 rc = bce_nvram_read_dword(sc, 2418 page_start + j, 2419 &flash_buffer[j], 2420 cmd_flags); 2421 2422 if (rc) 2423 goto bce_nvram_write_locked_exit; 2424 2425 cmd_flags = 0; 2426 } 2427 } 2428 2429 /* Enable writes to flash interface (unlock write-protect) */ 2430 if ((rc = bce_enable_nvram_write(sc)) != 0) 2431 goto bce_nvram_write_locked_exit; 2432 2433 /* Erase the page */ 2434 if ((rc = bce_nvram_erase_page(sc, page_start)) != 0) 2435 goto bce_nvram_write_locked_exit; 2436 2437 /* Re-enable the write again for the actual write */ 2438 bce_enable_nvram_write(sc); 2439 2440 /* Loop to write back the buffer data from page_start to 2441 * data_start */ 2442 i = 0; 2443 if (!(sc->bce_flash_info->flags & BCE_NV_BUFFERED)) { 2444 for (addr = page_start; addr < data_start; 2445 addr += 4, i += 4) { 2446 2447 rc = bce_nvram_write_dword(sc, addr, 2448 &flash_buffer[i], cmd_flags); 2449 2450 if (rc != 0) 2451 goto bce_nvram_write_locked_exit; 2452 2453 cmd_flags = 0; 2454 } 2455 } 2456 2457 /* Loop to write the new data from data_start to data_end */ 2458 for (addr = data_start; addr < data_end; addr += 4, i++) { 2459 if ((addr == page_end - 4) || 2460 ((sc->bce_flash_info->flags & BCE_NV_BUFFERED) && 2461 (addr == data_end - 4))) { 2462 2463 cmd_flags |= BCE_NVM_COMMAND_LAST; 2464 } 2465 rc = bce_nvram_write_dword(sc, addr, buf, 2466 cmd_flags); 2467 2468 if (rc != 0) 2469 goto bce_nvram_write_locked_exit; 2470 2471 cmd_flags = 0; 2472 buf += 4; 2473 } 2474 2475 /* Loop to write back the buffer data from data_end 2476 * to page_end */ 2477 if (!(sc->bce_flash_info->flags & BCE_NV_BUFFERED)) { 2478 for (addr = data_end; addr < page_end; 2479 addr += 4, i += 4) { 2480 2481 if (addr == page_end-4) { 2482 cmd_flags = BCE_NVM_COMMAND_LAST; 2483 } 2484 rc = bce_nvram_write_dword(sc, addr, 2485 &flash_buffer[i], cmd_flags); 2486 2487 if (rc != 0) 2488 goto bce_nvram_write_locked_exit; 2489 2490 cmd_flags = 0; 2491 } 2492 } 2493 2494 /* Disable writes to flash interface (lock write-protect) */ 2495 bce_disable_nvram_write(sc); 2496 2497 /* Disable access to flash interface */ 2498 bce_disable_nvram_access(sc); 2499 bce_release_nvram_lock(sc); 2500 2501 /* Increment written */ 2502 written += data_end - data_start; 2503 } 2504 2505 goto bce_nvram_write_exit; 2506 2507 bce_nvram_write_locked_exit: 2508 bce_disable_nvram_write(sc); 2509 bce_disable_nvram_access(sc); 2510 bce_release_nvram_lock(sc); 2511 2512 bce_nvram_write_exit: 2513 if (align_start || align_end) 2514 free(buf, M_DEVBUF); 2515 2516 DBEXIT(BCE_VERBOSE_NVRAM); 2517 return (rc); 2518 } 2519 #endif /* BCE_NVRAM_WRITE_SUPPORT */ 2520 2521 2522 /****************************************************************************/ 2523 /* Verifies that NVRAM is accessible and contains valid data. */ 2524 /* */ 2525 /* Reads the configuration data from NVRAM and verifies that the CRC is */ 2526 /* correct. */ 2527 /* */ 2528 /* Returns: */ 2529 /* 0 on success, positive value on failure. */ 2530 /****************************************************************************/ 2531 static int 2532 bce_nvram_test(struct bce_softc *sc) 2533 { 2534 u32 buf[BCE_NVRAM_SIZE / 4]; 2535 u8 *data = (u8 *) buf; 2536 int rc = 0; 2537 u32 magic, csum; 2538 2539 DBENTER(BCE_VERBOSE_NVRAM | BCE_VERBOSE_LOAD | BCE_VERBOSE_RESET); 2540 2541 /* 2542 * Check that the device NVRAM is valid by reading 2543 * the magic value at offset 0. 2544 */ 2545 if ((rc = bce_nvram_read(sc, 0, data, 4)) != 0) { 2546 BCE_PRINTF("%s(%d): Unable to read NVRAM!\n", __FILE__, __LINE__); 2547 goto bce_nvram_test_exit; 2548 } 2549 2550 /* 2551 * Verify that offset 0 of the NVRAM contains 2552 * a valid magic number. 2553 */ 2554 magic = bce_be32toh(buf[0]); 2555 if (magic != BCE_NVRAM_MAGIC) { 2556 rc = ENODEV; 2557 BCE_PRINTF("%s(%d): Invalid NVRAM magic value! Expected: 0x%08X, " 2558 "Found: 0x%08X\n", 2559 __FILE__, __LINE__, BCE_NVRAM_MAGIC, magic); 2560 goto bce_nvram_test_exit; 2561 } 2562 2563 /* 2564 * Verify that the device NVRAM includes valid 2565 * configuration data. 2566 */ 2567 if ((rc = bce_nvram_read(sc, 0x100, data, BCE_NVRAM_SIZE)) != 0) { 2568 BCE_PRINTF("%s(%d): Unable to read Manufacturing Information from " 2569 "NVRAM!\n", __FILE__, __LINE__); 2570 goto bce_nvram_test_exit; 2571 } 2572 2573 csum = ether_crc32_le(data, 0x100); 2574 if (csum != BCE_CRC32_RESIDUAL) { 2575 rc = ENODEV; 2576 BCE_PRINTF("%s(%d): Invalid Manufacturing Information NVRAM CRC! " 2577 "Expected: 0x%08X, Found: 0x%08X\n", 2578 __FILE__, __LINE__, BCE_CRC32_RESIDUAL, csum); 2579 goto bce_nvram_test_exit; 2580 } 2581 2582 csum = ether_crc32_le(data + 0x100, 0x100); 2583 if (csum != BCE_CRC32_RESIDUAL) { 2584 rc = ENODEV; 2585 BCE_PRINTF("%s(%d): Invalid Feature Configuration Information " 2586 "NVRAM CRC! Expected: 0x%08X, Found: 08%08X\n", 2587 __FILE__, __LINE__, BCE_CRC32_RESIDUAL, csum); 2588 } 2589 2590 bce_nvram_test_exit: 2591 DBEXIT(BCE_VERBOSE_NVRAM | BCE_VERBOSE_LOAD | BCE_VERBOSE_RESET); 2592 return rc; 2593 } 2594 2595 2596 /****************************************************************************/ 2597 /* Identifies the current media type of the controller and sets the PHY */ 2598 /* address. */ 2599 /* */ 2600 /* Returns: */ 2601 /* Nothing. */ 2602 /****************************************************************************/ 2603 static void 2604 bce_get_media(struct bce_softc *sc) 2605 { 2606 u32 val; 2607 2608 DBENTER(BCE_VERBOSE); 2609 2610 /* Assume PHY address for copper controllers. */ 2611 sc->bce_phy_addr = 1; 2612 2613 if (BCE_CHIP_NUM(sc) == BCE_CHIP_NUM_5709) { 2614 u32 val = REG_RD(sc, BCE_MISC_DUAL_MEDIA_CTRL); 2615 u32 bond_id = val & BCE_MISC_DUAL_MEDIA_CTRL_BOND_ID; 2616 u32 strap; 2617 2618 /* 2619 * The BCM5709S is software configurable 2620 * for Copper or SerDes operation. 2621 */ 2622 if (bond_id == BCE_MISC_DUAL_MEDIA_CTRL_BOND_ID_C) { 2623 DBPRINT(sc, BCE_INFO_LOAD, "5709 bonded for copper.\n"); 2624 goto bce_get_media_exit; 2625 } else if (bond_id == BCE_MISC_DUAL_MEDIA_CTRL_BOND_ID_S) { 2626 DBPRINT(sc, BCE_INFO_LOAD, "5709 bonded for dual media.\n"); 2627 sc->bce_phy_flags |= BCE_PHY_SERDES_FLAG; 2628 goto bce_get_media_exit; 2629 } 2630 2631 if (val & BCE_MISC_DUAL_MEDIA_CTRL_STRAP_OVERRIDE) 2632 strap = (val & BCE_MISC_DUAL_MEDIA_CTRL_PHY_CTRL) >> 21; 2633 else 2634 strap = (val & BCE_MISC_DUAL_MEDIA_CTRL_PHY_CTRL_STRAP) >> 8; 2635 2636 if (pci_get_function(sc->bce_dev) == 0) { 2637 switch (strap) { 2638 case 0x4: 2639 case 0x5: 2640 case 0x6: 2641 DBPRINT(sc, BCE_INFO_LOAD, 2642 "BCM5709 s/w configured for SerDes.\n"); 2643 sc->bce_phy_flags |= BCE_PHY_SERDES_FLAG; 2644 default: 2645 DBPRINT(sc, BCE_INFO_LOAD, 2646 "BCM5709 s/w configured for Copper.\n"); 2647 } 2648 } else { 2649 switch (strap) { 2650 case 0x1: 2651 case 0x2: 2652 case 0x4: 2653 DBPRINT(sc, BCE_INFO_LOAD, 2654 "BCM5709 s/w configured for SerDes.\n"); 2655 sc->bce_phy_flags |= BCE_PHY_SERDES_FLAG; 2656 default: 2657 DBPRINT(sc, BCE_INFO_LOAD, 2658 "BCM5709 s/w configured for Copper.\n"); 2659 } 2660 } 2661 2662 } else if (BCE_CHIP_BOND_ID(sc) & BCE_CHIP_BOND_ID_SERDES_BIT) 2663 sc->bce_phy_flags |= BCE_PHY_SERDES_FLAG; 2664 2665 if (sc->bce_phy_flags & BCE_PHY_SERDES_FLAG) { 2666 sc->bce_flags |= BCE_NO_WOL_FLAG; 2667 if (BCE_CHIP_NUM(sc) != BCE_CHIP_NUM_5706) { 2668 sc->bce_phy_addr = 2; 2669 val = bce_shmem_rd(sc, BCE_SHARED_HW_CFG_CONFIG); 2670 if (val & BCE_SHARED_HW_CFG_PHY_2_5G) { 2671 sc->bce_phy_flags |= BCE_PHY_2_5G_CAPABLE_FLAG; 2672 DBPRINT(sc, BCE_INFO_LOAD, "Found 2.5Gb capable adapter\n"); 2673 } 2674 } 2675 } else if ((BCE_CHIP_NUM(sc) == BCE_CHIP_NUM_5706) || 2676 (BCE_CHIP_NUM(sc) == BCE_CHIP_NUM_5708)) 2677 sc->bce_phy_flags |= BCE_PHY_CRC_FIX_FLAG; 2678 2679 bce_get_media_exit: 2680 DBPRINT(sc, (BCE_INFO_LOAD | BCE_INFO_PHY), 2681 "Using PHY address %d.\n", sc->bce_phy_addr); 2682 2683 DBEXIT(BCE_VERBOSE); 2684 } 2685 2686 2687 /****************************************************************************/ 2688 /* Free any DMA memory owned by the driver. */ 2689 /* */ 2690 /* Scans through each data structre that requires DMA memory and frees */ 2691 /* the memory if allocated. */ 2692 /* */ 2693 /* Returns: */ 2694 /* Nothing. */ 2695 /****************************************************************************/ 2696 static void 2697 bce_dma_free(struct bce_softc *sc) 2698 { 2699 int i; 2700 2701 DBENTER(BCE_VERBOSE_RESET | BCE_VERBOSE_UNLOAD | BCE_VERBOSE_CTX); 2702 2703 /* Free, unmap, and destroy the status block. */ 2704 if (sc->status_block != NULL) { 2705 bus_dmamem_free( 2706 sc->status_tag, 2707 sc->status_block, 2708 sc->status_map); 2709 sc->status_block = NULL; 2710 } 2711 2712 if (sc->status_map != NULL) { 2713 bus_dmamap_unload( 2714 sc->status_tag, 2715 sc->status_map); 2716 bus_dmamap_destroy(sc->status_tag, 2717 sc->status_map); 2718 sc->status_map = NULL; 2719 } 2720 2721 if (sc->status_tag != NULL) { 2722 bus_dma_tag_destroy(sc->status_tag); 2723 sc->status_tag = NULL; 2724 } 2725 2726 2727 /* Free, unmap, and destroy the statistics block. */ 2728 if (sc->stats_block != NULL) { 2729 bus_dmamem_free( 2730 sc->stats_tag, 2731 sc->stats_block, 2732 sc->stats_map); 2733 sc->stats_block = NULL; 2734 } 2735 2736 if (sc->stats_map != NULL) { 2737 bus_dmamap_unload( 2738 sc->stats_tag, 2739 sc->stats_map); 2740 bus_dmamap_destroy(sc->stats_tag, 2741 sc->stats_map); 2742 sc->stats_map = NULL; 2743 } 2744 2745 if (sc->stats_tag != NULL) { 2746 bus_dma_tag_destroy(sc->stats_tag); 2747 sc->stats_tag = NULL; 2748 } 2749 2750 2751 /* Free, unmap and destroy all context memory pages. */ 2752 if ((BCE_CHIP_NUM(sc) == BCE_CHIP_NUM_5709) || 2753 (BCE_CHIP_NUM(sc) == BCE_CHIP_NUM_5716)) { 2754 for (i = 0; i < sc->ctx_pages; i++ ) { 2755 if (sc->ctx_block[i] != NULL) { 2756 bus_dmamem_free( 2757 sc->ctx_tag, 2758 sc->ctx_block[i], 2759 sc->ctx_map[i]); 2760 sc->ctx_block[i] = NULL; 2761 } 2762 2763 if (sc->ctx_map[i] != NULL) { 2764 bus_dmamap_unload( 2765 sc->ctx_tag, 2766 sc->ctx_map[i]); 2767 bus_dmamap_destroy( 2768 sc->ctx_tag, 2769 sc->ctx_map[i]); 2770 sc->ctx_map[i] = NULL; 2771 } 2772 } 2773 2774 /* Destroy the context memory tag. */ 2775 if (sc->ctx_tag != NULL) { 2776 bus_dma_tag_destroy(sc->ctx_tag); 2777 sc->ctx_tag = NULL; 2778 } 2779 } 2780 2781 2782 /* Free, unmap and destroy all TX buffer descriptor chain pages. */ 2783 for (i = 0; i < TX_PAGES; i++ ) { 2784 if (sc->tx_bd_chain[i] != NULL) { 2785 bus_dmamem_free( 2786 sc->tx_bd_chain_tag, 2787 sc->tx_bd_chain[i], 2788 sc->tx_bd_chain_map[i]); 2789 sc->tx_bd_chain[i] = NULL; 2790 } 2791 2792 if (sc->tx_bd_chain_map[i] != NULL) { 2793 bus_dmamap_unload( 2794 sc->tx_bd_chain_tag, 2795 sc->tx_bd_chain_map[i]); 2796 bus_dmamap_destroy( 2797 sc->tx_bd_chain_tag, 2798 sc->tx_bd_chain_map[i]); 2799 sc->tx_bd_chain_map[i] = NULL; 2800 } 2801 } 2802 2803 /* Destroy the TX buffer descriptor tag. */ 2804 if (sc->tx_bd_chain_tag != NULL) { 2805 bus_dma_tag_destroy(sc->tx_bd_chain_tag); 2806 sc->tx_bd_chain_tag = NULL; 2807 } 2808 2809 2810 /* Free, unmap and destroy all RX buffer descriptor chain pages. */ 2811 for (i = 0; i < RX_PAGES; i++ ) { 2812 if (sc->rx_bd_chain[i] != NULL) { 2813 bus_dmamem_free( 2814 sc->rx_bd_chain_tag, 2815 sc->rx_bd_chain[i], 2816 sc->rx_bd_chain_map[i]); 2817 sc->rx_bd_chain[i] = NULL; 2818 } 2819 2820 if (sc->rx_bd_chain_map[i] != NULL) { 2821 bus_dmamap_unload( 2822 sc->rx_bd_chain_tag, 2823 sc->rx_bd_chain_map[i]); 2824 bus_dmamap_destroy( 2825 sc->rx_bd_chain_tag, 2826 sc->rx_bd_chain_map[i]); 2827 sc->rx_bd_chain_map[i] = NULL; 2828 } 2829 } 2830 2831 /* Destroy the RX buffer descriptor tag. */ 2832 if (sc->rx_bd_chain_tag != NULL) { 2833 bus_dma_tag_destroy(sc->rx_bd_chain_tag); 2834 sc->rx_bd_chain_tag = NULL; 2835 } 2836 2837 2838 #ifdef BCE_JUMBO_HDRSPLIT 2839 /* Free, unmap and destroy all page buffer descriptor chain pages. */ 2840 for (i = 0; i < PG_PAGES; i++ ) { 2841 if (sc->pg_bd_chain[i] != NULL) { 2842 bus_dmamem_free( 2843 sc->pg_bd_chain_tag, 2844 sc->pg_bd_chain[i], 2845 sc->pg_bd_chain_map[i]); 2846 sc->pg_bd_chain[i] = NULL; 2847 } 2848 2849 if (sc->pg_bd_chain_map[i] != NULL) { 2850 bus_dmamap_unload( 2851 sc->pg_bd_chain_tag, 2852 sc->pg_bd_chain_map[i]); 2853 bus_dmamap_destroy( 2854 sc->pg_bd_chain_tag, 2855 sc->pg_bd_chain_map[i]); 2856 sc->pg_bd_chain_map[i] = NULL; 2857 } 2858 } 2859 2860 /* Destroy the page buffer descriptor tag. */ 2861 if (sc->pg_bd_chain_tag != NULL) { 2862 bus_dma_tag_destroy(sc->pg_bd_chain_tag); 2863 sc->pg_bd_chain_tag = NULL; 2864 } 2865 #endif 2866 2867 2868 /* Unload and destroy the TX mbuf maps. */ 2869 for (i = 0; i < TOTAL_TX_BD; i++) { 2870 if (sc->tx_mbuf_map[i] != NULL) { 2871 bus_dmamap_unload(sc->tx_mbuf_tag, 2872 sc->tx_mbuf_map[i]); 2873 bus_dmamap_destroy(sc->tx_mbuf_tag, 2874 sc->tx_mbuf_map[i]); 2875 sc->tx_mbuf_map[i] = NULL; 2876 } 2877 } 2878 2879 /* Destroy the TX mbuf tag. */ 2880 if (sc->tx_mbuf_tag != NULL) { 2881 bus_dma_tag_destroy(sc->tx_mbuf_tag); 2882 sc->tx_mbuf_tag = NULL; 2883 } 2884 2885 /* Unload and destroy the RX mbuf maps. */ 2886 for (i = 0; i < TOTAL_RX_BD; i++) { 2887 if (sc->rx_mbuf_map[i] != NULL) { 2888 bus_dmamap_unload(sc->rx_mbuf_tag, 2889 sc->rx_mbuf_map[i]); 2890 bus_dmamap_destroy(sc->rx_mbuf_tag, 2891 sc->rx_mbuf_map[i]); 2892 sc->rx_mbuf_map[i] = NULL; 2893 } 2894 } 2895 2896 /* Destroy the RX mbuf tag. */ 2897 if (sc->rx_mbuf_tag != NULL) { 2898 bus_dma_tag_destroy(sc->rx_mbuf_tag); 2899 sc->rx_mbuf_tag = NULL; 2900 } 2901 2902 #ifdef BCE_JUMBO_HDRSPLIT 2903 /* Unload and destroy the page mbuf maps. */ 2904 for (i = 0; i < TOTAL_PG_BD; i++) { 2905 if (sc->pg_mbuf_map[i] != NULL) { 2906 bus_dmamap_unload(sc->pg_mbuf_tag, 2907 sc->pg_mbuf_map[i]); 2908 bus_dmamap_destroy(sc->pg_mbuf_tag, 2909 sc->pg_mbuf_map[i]); 2910 sc->pg_mbuf_map[i] = NULL; 2911 } 2912 } 2913 2914 /* Destroy the page mbuf tag. */ 2915 if (sc->pg_mbuf_tag != NULL) { 2916 bus_dma_tag_destroy(sc->pg_mbuf_tag); 2917 sc->pg_mbuf_tag = NULL; 2918 } 2919 #endif 2920 2921 /* Destroy the parent tag */ 2922 if (sc->parent_tag != NULL) { 2923 bus_dma_tag_destroy(sc->parent_tag); 2924 sc->parent_tag = NULL; 2925 } 2926 2927 DBEXIT(BCE_VERBOSE_RESET | BCE_VERBOSE_UNLOAD | BCE_VERBOSE_CTX); 2928 } 2929 2930 2931 /****************************************************************************/ 2932 /* Get DMA memory from the OS. */ 2933 /* */ 2934 /* Validates that the OS has provided DMA buffers in response to a */ 2935 /* bus_dmamap_load() call and saves the physical address of those buffers. */ 2936 /* When the callback is used the OS will return 0 for the mapping function */ 2937 /* (bus_dmamap_load()) so we use the value of map_arg->maxsegs to pass any */ 2938 /* failures back to the caller. */ 2939 /* */ 2940 /* Returns: */ 2941 /* Nothing. */ 2942 /****************************************************************************/ 2943 static void 2944 bce_dma_map_addr(void *arg, bus_dma_segment_t *segs, int nseg, int error) 2945 { 2946 bus_addr_t *busaddr = arg; 2947 2948 /* Simulate a mapping failure. */ 2949 DBRUNIF(DB_RANDOMTRUE(dma_map_addr_failed_sim_control), 2950 error = ENOMEM); 2951 2952 /* Check for an error and signal the caller that an error occurred. */ 2953 if (error) { 2954 *busaddr = 0; 2955 } else { 2956 *busaddr = segs->ds_addr; 2957 } 2958 2959 return; 2960 } 2961 2962 2963 /****************************************************************************/ 2964 /* Allocate any DMA memory needed by the driver. */ 2965 /* */ 2966 /* Allocates DMA memory needed for the various global structures needed by */ 2967 /* hardware. */ 2968 /* */ 2969 /* Memory alignment requirements: */ 2970 /* +-----------------+----------+----------+----------+----------+ */ 2971 /* | | 5706 | 5708 | 5709 | 5716 | */ 2972 /* +-----------------+----------+----------+----------+----------+ */ 2973 /* |Status Block | 8 bytes | 8 bytes | 16 bytes | 16 bytes | */ 2974 /* |Statistics Block | 8 bytes | 8 bytes | 16 bytes | 16 bytes | */ 2975 /* |RX Buffers | 16 bytes | 16 bytes | 16 bytes | 16 bytes | */ 2976 /* |PG Buffers | none | none | none | none | */ 2977 /* |TX Buffers | none | none | none | none | */ 2978 /* |Chain Pages(1) | 4KiB | 4KiB | 4KiB | 4KiB | */ 2979 /* +-----------------+----------+----------+----------+----------+ */ 2980 /* */ 2981 /* (1) Must align with CPU page size (BCM_PAGE_SZIE). */ 2982 /* */ 2983 /* Returns: */ 2984 /* 0 for success, positive value for failure. */ 2985 /****************************************************************************/ 2986 static int 2987 bce_dma_alloc(device_t dev) 2988 { 2989 struct bce_softc *sc; 2990 int i, error, rc = 0; 2991 bus_size_t max_size, max_seg_size; 2992 int max_segments; 2993 2994 sc = device_get_softc(dev); 2995 2996 DBENTER(BCE_VERBOSE_RESET | BCE_VERBOSE_CTX); 2997 2998 /* 2999 * Allocate the parent bus DMA tag appropriate for PCI. 3000 */ 3001 if (bus_dma_tag_create(NULL, 3002 1, 3003 BCE_DMA_BOUNDARY, 3004 sc->max_bus_addr, 3005 BUS_SPACE_MAXADDR, 3006 NULL, NULL, 3007 MAXBSIZE, 3008 BUS_SPACE_UNRESTRICTED, 3009 BUS_SPACE_MAXSIZE_32BIT, 3010 0, 3011 NULL, NULL, 3012 &sc->parent_tag)) { 3013 BCE_PRINTF("%s(%d): Could not allocate parent DMA tag!\n", 3014 __FILE__, __LINE__); 3015 rc = ENOMEM; 3016 goto bce_dma_alloc_exit; 3017 } 3018 3019 /* 3020 * Create a DMA tag for the status block, allocate and clear the 3021 * memory, map the memory into DMA space, and fetch the physical 3022 * address of the block. 3023 */ 3024 if (bus_dma_tag_create(sc->parent_tag, 3025 BCE_DMA_ALIGN, 3026 BCE_DMA_BOUNDARY, 3027 sc->max_bus_addr, 3028 BUS_SPACE_MAXADDR, 3029 NULL, NULL, 3030 BCE_STATUS_BLK_SZ, 3031 1, 3032 BCE_STATUS_BLK_SZ, 3033 0, 3034 NULL, NULL, 3035 &sc->status_tag)) { 3036 BCE_PRINTF("%s(%d): Could not allocate status block DMA tag!\n", 3037 __FILE__, __LINE__); 3038 rc = ENOMEM; 3039 goto bce_dma_alloc_exit; 3040 } 3041 3042 if(bus_dmamem_alloc(sc->status_tag, 3043 (void **)&sc->status_block, 3044 BUS_DMA_NOWAIT, 3045 &sc->status_map)) { 3046 BCE_PRINTF("%s(%d): Could not allocate status block DMA memory!\n", 3047 __FILE__, __LINE__); 3048 rc = ENOMEM; 3049 goto bce_dma_alloc_exit; 3050 } 3051 3052 bzero((char *)sc->status_block, BCE_STATUS_BLK_SZ); 3053 3054 error = bus_dmamap_load(sc->status_tag, 3055 sc->status_map, 3056 sc->status_block, 3057 BCE_STATUS_BLK_SZ, 3058 bce_dma_map_addr, 3059 &sc->status_block_paddr, 3060 BUS_DMA_NOWAIT); 3061 3062 if (error) { 3063 BCE_PRINTF("%s(%d): Could not map status block DMA memory!\n", 3064 __FILE__, __LINE__); 3065 rc = ENOMEM; 3066 goto bce_dma_alloc_exit; 3067 } 3068 3069 DBPRINT(sc, BCE_INFO, "%s(): status_block_paddr = 0x%jX\n", 3070 __FUNCTION__, (uintmax_t) sc->status_block_paddr); 3071 3072 /* 3073 * Create a DMA tag for the statistics block, allocate and clear the 3074 * memory, map the memory into DMA space, and fetch the physical 3075 * address of the block. 3076 */ 3077 if (bus_dma_tag_create(sc->parent_tag, 3078 BCE_DMA_ALIGN, 3079 BCE_DMA_BOUNDARY, 3080 sc->max_bus_addr, 3081 BUS_SPACE_MAXADDR, 3082 NULL, NULL, 3083 BCE_STATS_BLK_SZ, 3084 1, 3085 BCE_STATS_BLK_SZ, 3086 0, 3087 NULL, NULL, 3088 &sc->stats_tag)) { 3089 BCE_PRINTF("%s(%d): Could not allocate statistics block DMA tag!\n", 3090 __FILE__, __LINE__); 3091 rc = ENOMEM; 3092 goto bce_dma_alloc_exit; 3093 } 3094 3095 if (bus_dmamem_alloc(sc->stats_tag, 3096 (void **)&sc->stats_block, 3097 BUS_DMA_NOWAIT, 3098 &sc->stats_map)) { 3099 BCE_PRINTF("%s(%d): Could not allocate statistics block DMA memory!\n", 3100 __FILE__, __LINE__); 3101 rc = ENOMEM; 3102 goto bce_dma_alloc_exit; 3103 } 3104 3105 bzero((char *)sc->stats_block, BCE_STATS_BLK_SZ); 3106 3107 error = bus_dmamap_load(sc->stats_tag, 3108 sc->stats_map, 3109 sc->stats_block, 3110 BCE_STATS_BLK_SZ, 3111 bce_dma_map_addr, 3112 &sc->stats_block_paddr, 3113 BUS_DMA_NOWAIT); 3114 3115 if(error) { 3116 BCE_PRINTF("%s(%d): Could not map statistics block DMA memory!\n", 3117 __FILE__, __LINE__); 3118 rc = ENOMEM; 3119 goto bce_dma_alloc_exit; 3120 } 3121 3122 DBPRINT(sc, BCE_INFO, "%s(): stats_block_paddr = 0x%jX\n", 3123 __FUNCTION__, (uintmax_t) sc->stats_block_paddr); 3124 3125 /* BCM5709 uses host memory as cache for context memory. */ 3126 if ((BCE_CHIP_NUM(sc) == BCE_CHIP_NUM_5709) || 3127 (BCE_CHIP_NUM(sc) == BCE_CHIP_NUM_5716)) { 3128 sc->ctx_pages = 0x2000 / BCM_PAGE_SIZE; 3129 if (sc->ctx_pages == 0) 3130 sc->ctx_pages = 1; 3131 3132 DBRUNIF((sc->ctx_pages > 512), 3133 BCE_PRINTF("%s(%d): Too many CTX pages! %d > 512\n", 3134 __FILE__, __LINE__, sc->ctx_pages)); 3135 3136 /* 3137 * Create a DMA tag for the context pages, 3138 * allocate and clear the memory, map the 3139 * memory into DMA space, and fetch the 3140 * physical address of the block. 3141 */ 3142 if(bus_dma_tag_create(sc->parent_tag, 3143 BCM_PAGE_SIZE, 3144 BCE_DMA_BOUNDARY, 3145 sc->max_bus_addr, 3146 BUS_SPACE_MAXADDR, 3147 NULL, NULL, 3148 BCM_PAGE_SIZE, 3149 1, 3150 BCM_PAGE_SIZE, 3151 0, 3152 NULL, NULL, 3153 &sc->ctx_tag)) { 3154 BCE_PRINTF("%s(%d): Could not allocate CTX DMA tag!\n", 3155 __FILE__, __LINE__); 3156 rc = ENOMEM; 3157 goto bce_dma_alloc_exit; 3158 } 3159 3160 for (i = 0; i < sc->ctx_pages; i++) { 3161 3162 if(bus_dmamem_alloc(sc->ctx_tag, 3163 (void **)&sc->ctx_block[i], 3164 BUS_DMA_NOWAIT, 3165 &sc->ctx_map[i])) { 3166 BCE_PRINTF("%s(%d): Could not allocate CTX " 3167 "DMA memory!\n", __FILE__, __LINE__); 3168 rc = ENOMEM; 3169 goto bce_dma_alloc_exit; 3170 } 3171 3172 bzero((char *)sc->ctx_block[i], BCM_PAGE_SIZE); 3173 3174 error = bus_dmamap_load(sc->ctx_tag, 3175 sc->ctx_map[i], 3176 sc->ctx_block[i], 3177 BCM_PAGE_SIZE, 3178 bce_dma_map_addr, 3179 &sc->ctx_paddr[i], 3180 BUS_DMA_NOWAIT); 3181 3182 if (error) { 3183 BCE_PRINTF("%s(%d): Could not map CTX DMA memory!\n", 3184 __FILE__, __LINE__); 3185 rc = ENOMEM; 3186 goto bce_dma_alloc_exit; 3187 } 3188 3189 DBPRINT(sc, BCE_INFO, "%s(): ctx_paddr[%d] = 0x%jX\n", 3190 __FUNCTION__, i, (uintmax_t) sc->ctx_paddr[i]); 3191 } 3192 } 3193 3194 /* 3195 * Create a DMA tag for the TX buffer descriptor chain, 3196 * allocate and clear the memory, and fetch the 3197 * physical address of the block. 3198 */ 3199 if(bus_dma_tag_create(sc->parent_tag, 3200 BCM_PAGE_SIZE, 3201 BCE_DMA_BOUNDARY, 3202 sc->max_bus_addr, 3203 BUS_SPACE_MAXADDR, 3204 NULL, NULL, 3205 BCE_TX_CHAIN_PAGE_SZ, 3206 1, 3207 BCE_TX_CHAIN_PAGE_SZ, 3208 0, 3209 NULL, NULL, 3210 &sc->tx_bd_chain_tag)) { 3211 BCE_PRINTF("%s(%d): Could not allocate TX descriptor chain DMA tag!\n", 3212 __FILE__, __LINE__); 3213 rc = ENOMEM; 3214 goto bce_dma_alloc_exit; 3215 } 3216 3217 for (i = 0; i < TX_PAGES; i++) { 3218 3219 if(bus_dmamem_alloc(sc->tx_bd_chain_tag, 3220 (void **)&sc->tx_bd_chain[i], 3221 BUS_DMA_NOWAIT, 3222 &sc->tx_bd_chain_map[i])) { 3223 BCE_PRINTF("%s(%d): Could not allocate TX descriptor " 3224 "chain DMA memory!\n", __FILE__, __LINE__); 3225 rc = ENOMEM; 3226 goto bce_dma_alloc_exit; 3227 } 3228 3229 error = bus_dmamap_load(sc->tx_bd_chain_tag, 3230 sc->tx_bd_chain_map[i], 3231 sc->tx_bd_chain[i], 3232 BCE_TX_CHAIN_PAGE_SZ, 3233 bce_dma_map_addr, 3234 &sc->tx_bd_chain_paddr[i], 3235 BUS_DMA_NOWAIT); 3236 3237 if (error) { 3238 BCE_PRINTF("%s(%d): Could not map TX descriptor chain DMA memory!\n", 3239 __FILE__, __LINE__); 3240 rc = ENOMEM; 3241 goto bce_dma_alloc_exit; 3242 } 3243 3244 DBPRINT(sc, BCE_INFO, "%s(): tx_bd_chain_paddr[%d] = 0x%jX\n", 3245 __FUNCTION__, i, (uintmax_t) sc->tx_bd_chain_paddr[i]); 3246 } 3247 3248 /* Check the required size before mapping to conserve resources. */ 3249 if (bce_tso_enable) { 3250 max_size = BCE_TSO_MAX_SIZE; 3251 max_segments = BCE_MAX_SEGMENTS; 3252 max_seg_size = BCE_TSO_MAX_SEG_SIZE; 3253 } else { 3254 max_size = MCLBYTES * BCE_MAX_SEGMENTS; 3255 max_segments = BCE_MAX_SEGMENTS; 3256 max_seg_size = MCLBYTES; 3257 } 3258 3259 /* Create a DMA tag for TX mbufs. */ 3260 if (bus_dma_tag_create(sc->parent_tag, 3261 1, 3262 BCE_DMA_BOUNDARY, 3263 sc->max_bus_addr, 3264 BUS_SPACE_MAXADDR, 3265 NULL, NULL, 3266 max_size, 3267 max_segments, 3268 max_seg_size, 3269 0, 3270 NULL, NULL, 3271 &sc->tx_mbuf_tag)) { 3272 BCE_PRINTF("%s(%d): Could not allocate TX mbuf DMA tag!\n", 3273 __FILE__, __LINE__); 3274 rc = ENOMEM; 3275 goto bce_dma_alloc_exit; 3276 } 3277 3278 /* Create DMA maps for the TX mbufs clusters. */ 3279 for (i = 0; i < TOTAL_TX_BD; i++) { 3280 if (bus_dmamap_create(sc->tx_mbuf_tag, BUS_DMA_NOWAIT, 3281 &sc->tx_mbuf_map[i])) { 3282 BCE_PRINTF("%s(%d): Unable to create TX mbuf DMA map!\n", 3283 __FILE__, __LINE__); 3284 rc = ENOMEM; 3285 goto bce_dma_alloc_exit; 3286 } 3287 } 3288 3289 /* 3290 * Create a DMA tag for the RX buffer descriptor chain, 3291 * allocate and clear the memory, and fetch the physical 3292 * address of the blocks. 3293 */ 3294 if (bus_dma_tag_create(sc->parent_tag, 3295 BCM_PAGE_SIZE, 3296 BCE_DMA_BOUNDARY, 3297 BUS_SPACE_MAXADDR, 3298 sc->max_bus_addr, 3299 NULL, NULL, 3300 BCE_RX_CHAIN_PAGE_SZ, 3301 1, 3302 BCE_RX_CHAIN_PAGE_SZ, 3303 0, 3304 NULL, NULL, 3305 &sc->rx_bd_chain_tag)) { 3306 BCE_PRINTF("%s(%d): Could not allocate RX descriptor chain DMA tag!\n", 3307 __FILE__, __LINE__); 3308 rc = ENOMEM; 3309 goto bce_dma_alloc_exit; 3310 } 3311 3312 for (i = 0; i < RX_PAGES; i++) { 3313 3314 if (bus_dmamem_alloc(sc->rx_bd_chain_tag, 3315 (void **)&sc->rx_bd_chain[i], 3316 BUS_DMA_NOWAIT, 3317 &sc->rx_bd_chain_map[i])) { 3318 BCE_PRINTF("%s(%d): Could not allocate RX descriptor chain " 3319 "DMA memory!\n", __FILE__, __LINE__); 3320 rc = ENOMEM; 3321 goto bce_dma_alloc_exit; 3322 } 3323 3324 bzero((char *)sc->rx_bd_chain[i], BCE_RX_CHAIN_PAGE_SZ); 3325 3326 error = bus_dmamap_load(sc->rx_bd_chain_tag, 3327 sc->rx_bd_chain_map[i], 3328 sc->rx_bd_chain[i], 3329 BCE_RX_CHAIN_PAGE_SZ, 3330 bce_dma_map_addr, 3331 &sc->rx_bd_chain_paddr[i], 3332 BUS_DMA_NOWAIT); 3333 3334 if (error) { 3335 BCE_PRINTF("%s(%d): Could not map RX descriptor chain DMA memory!\n", 3336 __FILE__, __LINE__); 3337 rc = ENOMEM; 3338 goto bce_dma_alloc_exit; 3339 } 3340 3341 DBPRINT(sc, BCE_INFO, "%s(): rx_bd_chain_paddr[%d] = 0x%jX\n", 3342 __FUNCTION__, i, (uintmax_t) sc->rx_bd_chain_paddr[i]); 3343 } 3344 3345 /* 3346 * Create a DMA tag for RX mbufs. 3347 */ 3348 #ifdef BCE_JUMBO_HDRSPLIT 3349 max_size = max_seg_size = ((sc->rx_bd_mbuf_alloc_size < MCLBYTES) ? 3350 MCLBYTES : sc->rx_bd_mbuf_alloc_size); 3351 #else 3352 max_size = max_seg_size = MJUM9BYTES; 3353 #endif 3354 max_segments = 1; 3355 3356 DBPRINT(sc, BCE_INFO, "%s(): Creating rx_mbuf_tag (max size = 0x%jX " 3357 "max segments = %d, max segment size = 0x%jX)\n", __FUNCTION__, 3358 (uintmax_t) max_size, max_segments, (uintmax_t) max_seg_size); 3359 3360 if (bus_dma_tag_create(sc->parent_tag, 3361 1, 3362 BCE_DMA_BOUNDARY, 3363 sc->max_bus_addr, 3364 BUS_SPACE_MAXADDR, 3365 NULL, NULL, 3366 max_size, 3367 max_segments, 3368 max_seg_size, 3369 0, 3370 NULL, NULL, 3371 &sc->rx_mbuf_tag)) { 3372 BCE_PRINTF("%s(%d): Could not allocate RX mbuf DMA tag!\n", 3373 __FILE__, __LINE__); 3374 rc = ENOMEM; 3375 goto bce_dma_alloc_exit; 3376 } 3377 3378 /* Create DMA maps for the RX mbuf clusters. */ 3379 for (i = 0; i < TOTAL_RX_BD; i++) { 3380 if (bus_dmamap_create(sc->rx_mbuf_tag, BUS_DMA_NOWAIT, 3381 &sc->rx_mbuf_map[i])) { 3382 BCE_PRINTF("%s(%d): Unable to create RX mbuf DMA map!\n", 3383 __FILE__, __LINE__); 3384 rc = ENOMEM; 3385 goto bce_dma_alloc_exit; 3386 } 3387 } 3388 3389 #ifdef BCE_JUMBO_HDRSPLIT 3390 /* 3391 * Create a DMA tag for the page buffer descriptor chain, 3392 * allocate and clear the memory, and fetch the physical 3393 * address of the blocks. 3394 */ 3395 if (bus_dma_tag_create(sc->parent_tag, 3396 BCM_PAGE_SIZE, 3397 BCE_DMA_BOUNDARY, 3398 BUS_SPACE_MAXADDR, 3399 sc->max_bus_addr, 3400 NULL, NULL, 3401 BCE_PG_CHAIN_PAGE_SZ, 3402 1, 3403 BCE_PG_CHAIN_PAGE_SZ, 3404 0, 3405 NULL, NULL, 3406 &sc->pg_bd_chain_tag)) { 3407 BCE_PRINTF("%s(%d): Could not allocate page descriptor chain DMA tag!\n", 3408 __FILE__, __LINE__); 3409 rc = ENOMEM; 3410 goto bce_dma_alloc_exit; 3411 } 3412 3413 for (i = 0; i < PG_PAGES; i++) { 3414 3415 if (bus_dmamem_alloc(sc->pg_bd_chain_tag, 3416 (void **)&sc->pg_bd_chain[i], 3417 BUS_DMA_NOWAIT, 3418 &sc->pg_bd_chain_map[i])) { 3419 BCE_PRINTF("%s(%d): Could not allocate page descriptor chain " 3420 "DMA memory!\n", __FILE__, __LINE__); 3421 rc = ENOMEM; 3422 goto bce_dma_alloc_exit; 3423 } 3424 3425 bzero((char *)sc->pg_bd_chain[i], BCE_PG_CHAIN_PAGE_SZ); 3426 3427 error = bus_dmamap_load(sc->pg_bd_chain_tag, 3428 sc->pg_bd_chain_map[i], 3429 sc->pg_bd_chain[i], 3430 BCE_PG_CHAIN_PAGE_SZ, 3431 bce_dma_map_addr, 3432 &sc->pg_bd_chain_paddr[i], 3433 BUS_DMA_NOWAIT); 3434 3435 if (error) { 3436 BCE_PRINTF("%s(%d): Could not map page descriptor chain DMA memory!\n", 3437 __FILE__, __LINE__); 3438 rc = ENOMEM; 3439 goto bce_dma_alloc_exit; 3440 } 3441 3442 DBPRINT(sc, BCE_INFO, "%s(): pg_bd_chain_paddr[%d] = 0x%jX\n", 3443 __FUNCTION__, i, (uintmax_t) sc->pg_bd_chain_paddr[i]); 3444 } 3445 3446 /* 3447 * Create a DMA tag for page mbufs. 3448 */ 3449 max_size = max_seg_size = ((sc->pg_bd_mbuf_alloc_size < MCLBYTES) ? 3450 MCLBYTES : sc->pg_bd_mbuf_alloc_size); 3451 3452 if (bus_dma_tag_create(sc->parent_tag, 3453 1, 3454 BCE_DMA_BOUNDARY, 3455 sc->max_bus_addr, 3456 BUS_SPACE_MAXADDR, 3457 NULL, NULL, 3458 max_size, 3459 1, 3460 max_seg_size, 3461 0, 3462 NULL, NULL, 3463 &sc->pg_mbuf_tag)) { 3464 BCE_PRINTF("%s(%d): Could not allocate page mbuf DMA tag!\n", 3465 __FILE__, __LINE__); 3466 rc = ENOMEM; 3467 goto bce_dma_alloc_exit; 3468 } 3469 3470 /* Create DMA maps for the page mbuf clusters. */ 3471 for (i = 0; i < TOTAL_PG_BD; i++) { 3472 if (bus_dmamap_create(sc->pg_mbuf_tag, BUS_DMA_NOWAIT, 3473 &sc->pg_mbuf_map[i])) { 3474 BCE_PRINTF("%s(%d): Unable to create page mbuf DMA map!\n", 3475 __FILE__, __LINE__); 3476 rc = ENOMEM; 3477 goto bce_dma_alloc_exit; 3478 } 3479 } 3480 #endif 3481 3482 bce_dma_alloc_exit: 3483 DBEXIT(BCE_VERBOSE_RESET | BCE_VERBOSE_CTX); 3484 return(rc); 3485 } 3486 3487 3488 /****************************************************************************/ 3489 /* Release all resources used by the driver. */ 3490 /* */ 3491 /* Releases all resources acquired by the driver including interrupts, */ 3492 /* interrupt handler, interfaces, mutexes, and DMA memory. */ 3493 /* */ 3494 /* Returns: */ 3495 /* Nothing. */ 3496 /****************************************************************************/ 3497 static void 3498 bce_release_resources(struct bce_softc *sc) 3499 { 3500 device_t dev; 3501 3502 DBENTER(BCE_VERBOSE_RESET); 3503 3504 dev = sc->bce_dev; 3505 3506 bce_dma_free(sc); 3507 3508 if (sc->bce_intrhand != NULL) { 3509 DBPRINT(sc, BCE_INFO_RESET, "Removing interrupt handler.\n"); 3510 bus_teardown_intr(dev, sc->bce_res_irq, sc->bce_intrhand); 3511 } 3512 3513 if (sc->bce_res_irq != NULL) { 3514 DBPRINT(sc, BCE_INFO_RESET, "Releasing IRQ.\n"); 3515 bus_release_resource(dev, SYS_RES_IRQ, sc->bce_irq_rid, 3516 sc->bce_res_irq); 3517 } 3518 3519 if (sc->bce_flags & (BCE_USING_MSI_FLAG | BCE_USING_MSIX_FLAG)) { 3520 DBPRINT(sc, BCE_INFO_RESET, "Releasing MSI/MSI-X vector.\n"); 3521 pci_release_msi(dev); 3522 } 3523 3524 if (sc->bce_res_mem != NULL) { 3525 DBPRINT(sc, BCE_INFO_RESET, "Releasing PCI memory.\n"); 3526 bus_release_resource(dev, SYS_RES_MEMORY, PCIR_BAR(0), sc->bce_res_mem); 3527 } 3528 3529 if (sc->bce_ifp != NULL) { 3530 DBPRINT(sc, BCE_INFO_RESET, "Releasing IF.\n"); 3531 if_free(sc->bce_ifp); 3532 } 3533 3534 if (mtx_initialized(&sc->bce_mtx)) 3535 BCE_LOCK_DESTROY(sc); 3536 3537 DBEXIT(BCE_VERBOSE_RESET); 3538 } 3539 3540 3541 /****************************************************************************/ 3542 /* Firmware synchronization. */ 3543 /* */ 3544 /* Before performing certain events such as a chip reset, synchronize with */ 3545 /* the firmware first. */ 3546 /* */ 3547 /* Returns: */ 3548 /* 0 for success, positive value for failure. */ 3549 /****************************************************************************/ 3550 static int 3551 bce_fw_sync(struct bce_softc *sc, u32 msg_data) 3552 { 3553 int i, rc = 0; 3554 u32 val; 3555 3556 DBENTER(BCE_VERBOSE_RESET); 3557 3558 /* Don't waste any time if we've timed out before. */ 3559 if (sc->bce_fw_timed_out) { 3560 rc = EBUSY; 3561 goto bce_fw_sync_exit; 3562 } 3563 3564 /* Increment the message sequence number. */ 3565 sc->bce_fw_wr_seq++; 3566 msg_data |= sc->bce_fw_wr_seq; 3567 3568 DBPRINT(sc, BCE_VERBOSE_FIRMWARE, "bce_fw_sync(): msg_data = 0x%08X\n", 3569 msg_data); 3570 3571 /* Send the message to the bootcode driver mailbox. */ 3572 bce_shmem_wr(sc, BCE_DRV_MB, msg_data); 3573 3574 /* Wait for the bootcode to acknowledge the message. */ 3575 for (i = 0; i < FW_ACK_TIME_OUT_MS; i++) { 3576 /* Check for a response in the bootcode firmware mailbox. */ 3577 val = bce_shmem_rd(sc, BCE_FW_MB); 3578 if ((val & BCE_FW_MSG_ACK) == (msg_data & BCE_DRV_MSG_SEQ)) 3579 break; 3580 DELAY(1000); 3581 } 3582 3583 /* If we've timed out, tell the bootcode that we've stopped waiting. */ 3584 if (((val & BCE_FW_MSG_ACK) != (msg_data & BCE_DRV_MSG_SEQ)) && 3585 ((msg_data & BCE_DRV_MSG_DATA) != BCE_DRV_MSG_DATA_WAIT0)) { 3586 3587 BCE_PRINTF("%s(%d): Firmware synchronization timeout! " 3588 "msg_data = 0x%08X\n", 3589 __FILE__, __LINE__, msg_data); 3590 3591 msg_data &= ~BCE_DRV_MSG_CODE; 3592 msg_data |= BCE_DRV_MSG_CODE_FW_TIMEOUT; 3593 3594 bce_shmem_wr(sc, BCE_DRV_MB, msg_data); 3595 3596 sc->bce_fw_timed_out = 1; 3597 rc = EBUSY; 3598 } 3599 3600 bce_fw_sync_exit: 3601 DBEXIT(BCE_VERBOSE_RESET); 3602 return (rc); 3603 } 3604 3605 3606 /****************************************************************************/ 3607 /* Load Receive Virtual 2 Physical (RV2P) processor firmware. */ 3608 /* */ 3609 /* Returns: */ 3610 /* Nothing. */ 3611 /****************************************************************************/ 3612 static void 3613 bce_load_rv2p_fw(struct bce_softc *sc, u32 *rv2p_code, 3614 u32 rv2p_code_len, u32 rv2p_proc) 3615 { 3616 int i; 3617 u32 val; 3618 3619 DBENTER(BCE_VERBOSE_RESET); 3620 3621 /* Set the page size used by RV2P. */ 3622 if (rv2p_proc == RV2P_PROC2) { 3623 BCE_RV2P_PROC2_CHG_MAX_BD_PAGE(USABLE_RX_BD_PER_PAGE); 3624 } 3625 3626 for (i = 0; i < rv2p_code_len; i += 8) { 3627 REG_WR(sc, BCE_RV2P_INSTR_HIGH, *rv2p_code); 3628 rv2p_code++; 3629 REG_WR(sc, BCE_RV2P_INSTR_LOW, *rv2p_code); 3630 rv2p_code++; 3631 3632 if (rv2p_proc == RV2P_PROC1) { 3633 val = (i / 8) | BCE_RV2P_PROC1_ADDR_CMD_RDWR; 3634 REG_WR(sc, BCE_RV2P_PROC1_ADDR_CMD, val); 3635 } 3636 else { 3637 val = (i / 8) | BCE_RV2P_PROC2_ADDR_CMD_RDWR; 3638 REG_WR(sc, BCE_RV2P_PROC2_ADDR_CMD, val); 3639 } 3640 } 3641 3642 /* Reset the processor, un-stall is done later. */ 3643 if (rv2p_proc == RV2P_PROC1) { 3644 REG_WR(sc, BCE_RV2P_COMMAND, BCE_RV2P_COMMAND_PROC1_RESET); 3645 } 3646 else { 3647 REG_WR(sc, BCE_RV2P_COMMAND, BCE_RV2P_COMMAND_PROC2_RESET); 3648 } 3649 3650 DBEXIT(BCE_VERBOSE_RESET); 3651 } 3652 3653 3654 /****************************************************************************/ 3655 /* Load RISC processor firmware. */ 3656 /* */ 3657 /* Loads firmware from the file if_bcefw.h into the scratchpad memory */ 3658 /* associated with a particular processor. */ 3659 /* */ 3660 /* Returns: */ 3661 /* Nothing. */ 3662 /****************************************************************************/ 3663 static void 3664 bce_load_cpu_fw(struct bce_softc *sc, struct cpu_reg *cpu_reg, 3665 struct fw_info *fw) 3666 { 3667 u32 offset; 3668 u32 val; 3669 3670 DBENTER(BCE_VERBOSE_RESET); 3671 3672 /* Halt the CPU. */ 3673 val = REG_RD_IND(sc, cpu_reg->mode); 3674 val |= cpu_reg->mode_value_halt; 3675 REG_WR_IND(sc, cpu_reg->mode, val); 3676 REG_WR_IND(sc, cpu_reg->state, cpu_reg->state_value_clear); 3677 3678 /* Load the Text area. */ 3679 offset = cpu_reg->spad_base + (fw->text_addr - cpu_reg->mips_view_base); 3680 if (fw->text) { 3681 int j; 3682 3683 for (j = 0; j < (fw->text_len / 4); j++, offset += 4) { 3684 REG_WR_IND(sc, offset, fw->text[j]); 3685 } 3686 } 3687 3688 /* Load the Data area. */ 3689 offset = cpu_reg->spad_base + (fw->data_addr - cpu_reg->mips_view_base); 3690 if (fw->data) { 3691 int j; 3692 3693 for (j = 0; j < (fw->data_len / 4); j++, offset += 4) { 3694 REG_WR_IND(sc, offset, fw->data[j]); 3695 } 3696 } 3697 3698 /* Load the SBSS area. */ 3699 offset = cpu_reg->spad_base + (fw->sbss_addr - cpu_reg->mips_view_base); 3700 if (fw->sbss) { 3701 int j; 3702 3703 for (j = 0; j < (fw->sbss_len / 4); j++, offset += 4) { 3704 REG_WR_IND(sc, offset, fw->sbss[j]); 3705 } 3706 } 3707 3708 /* Load the BSS area. */ 3709 offset = cpu_reg->spad_base + (fw->bss_addr - cpu_reg->mips_view_base); 3710 if (fw->bss) { 3711 int j; 3712 3713 for (j = 0; j < (fw->bss_len/4); j++, offset += 4) { 3714 REG_WR_IND(sc, offset, fw->bss[j]); 3715 } 3716 } 3717 3718 /* Load the Read-Only area. */ 3719 offset = cpu_reg->spad_base + 3720 (fw->rodata_addr - cpu_reg->mips_view_base); 3721 if (fw->rodata) { 3722 int j; 3723 3724 for (j = 0; j < (fw->rodata_len / 4); j++, offset += 4) { 3725 REG_WR_IND(sc, offset, fw->rodata[j]); 3726 } 3727 } 3728 3729 /* Clear the pre-fetch instruction. */ 3730 REG_WR_IND(sc, cpu_reg->inst, 0); 3731 REG_WR_IND(sc, cpu_reg->pc, fw->start_addr); 3732 3733 /* Start the CPU. */ 3734 val = REG_RD_IND(sc, cpu_reg->mode); 3735 val &= ~cpu_reg->mode_value_halt; 3736 REG_WR_IND(sc, cpu_reg->state, cpu_reg->state_value_clear); 3737 REG_WR_IND(sc, cpu_reg->mode, val); 3738 3739 DBEXIT(BCE_VERBOSE_RESET); 3740 } 3741 3742 3743 /****************************************************************************/ 3744 /* Initialize the RX CPU. */ 3745 /* */ 3746 /* Returns: */ 3747 /* Nothing. */ 3748 /****************************************************************************/ 3749 static void 3750 bce_init_rxp_cpu(struct bce_softc *sc) 3751 { 3752 struct cpu_reg cpu_reg; 3753 struct fw_info fw; 3754 3755 DBENTER(BCE_VERBOSE_RESET); 3756 3757 cpu_reg.mode = BCE_RXP_CPU_MODE; 3758 cpu_reg.mode_value_halt = BCE_RXP_CPU_MODE_SOFT_HALT; 3759 cpu_reg.mode_value_sstep = BCE_RXP_CPU_MODE_STEP_ENA; 3760 cpu_reg.state = BCE_RXP_CPU_STATE; 3761 cpu_reg.state_value_clear = 0xffffff; 3762 cpu_reg.gpr0 = BCE_RXP_CPU_REG_FILE; 3763 cpu_reg.evmask = BCE_RXP_CPU_EVENT_MASK; 3764 cpu_reg.pc = BCE_RXP_CPU_PROGRAM_COUNTER; 3765 cpu_reg.inst = BCE_RXP_CPU_INSTRUCTION; 3766 cpu_reg.bp = BCE_RXP_CPU_HW_BREAKPOINT; 3767 cpu_reg.spad_base = BCE_RXP_SCRATCH; 3768 cpu_reg.mips_view_base = 0x8000000; 3769 3770 if ((BCE_CHIP_NUM(sc) == BCE_CHIP_NUM_5709) || 3771 (BCE_CHIP_NUM(sc) == BCE_CHIP_NUM_5716)) { 3772 fw.ver_major = bce_RXP_b09FwReleaseMajor; 3773 fw.ver_minor = bce_RXP_b09FwReleaseMinor; 3774 fw.ver_fix = bce_RXP_b09FwReleaseFix; 3775 fw.start_addr = bce_RXP_b09FwStartAddr; 3776 3777 fw.text_addr = bce_RXP_b09FwTextAddr; 3778 fw.text_len = bce_RXP_b09FwTextLen; 3779 fw.text_index = 0; 3780 fw.text = bce_RXP_b09FwText; 3781 3782 fw.data_addr = bce_RXP_b09FwDataAddr; 3783 fw.data_len = bce_RXP_b09FwDataLen; 3784 fw.data_index = 0; 3785 fw.data = bce_RXP_b09FwData; 3786 3787 fw.sbss_addr = bce_RXP_b09FwSbssAddr; 3788 fw.sbss_len = bce_RXP_b09FwSbssLen; 3789 fw.sbss_index = 0; 3790 fw.sbss = bce_RXP_b09FwSbss; 3791 3792 fw.bss_addr = bce_RXP_b09FwBssAddr; 3793 fw.bss_len = bce_RXP_b09FwBssLen; 3794 fw.bss_index = 0; 3795 fw.bss = bce_RXP_b09FwBss; 3796 3797 fw.rodata_addr = bce_RXP_b09FwRodataAddr; 3798 fw.rodata_len = bce_RXP_b09FwRodataLen; 3799 fw.rodata_index = 0; 3800 fw.rodata = bce_RXP_b09FwRodata; 3801 } else { 3802 fw.ver_major = bce_RXP_b06FwReleaseMajor; 3803 fw.ver_minor = bce_RXP_b06FwReleaseMinor; 3804 fw.ver_fix = bce_RXP_b06FwReleaseFix; 3805 fw.start_addr = bce_RXP_b06FwStartAddr; 3806 3807 fw.text_addr = bce_RXP_b06FwTextAddr; 3808 fw.text_len = bce_RXP_b06FwTextLen; 3809 fw.text_index = 0; 3810 fw.text = bce_RXP_b06FwText; 3811 3812 fw.data_addr = bce_RXP_b06FwDataAddr; 3813 fw.data_len = bce_RXP_b06FwDataLen; 3814 fw.data_index = 0; 3815 fw.data = bce_RXP_b06FwData; 3816 3817 fw.sbss_addr = bce_RXP_b06FwSbssAddr; 3818 fw.sbss_len = bce_RXP_b06FwSbssLen; 3819 fw.sbss_index = 0; 3820 fw.sbss = bce_RXP_b06FwSbss; 3821 3822 fw.bss_addr = bce_RXP_b06FwBssAddr; 3823 fw.bss_len = bce_RXP_b06FwBssLen; 3824 fw.bss_index = 0; 3825 fw.bss = bce_RXP_b06FwBss; 3826 3827 fw.rodata_addr = bce_RXP_b06FwRodataAddr; 3828 fw.rodata_len = bce_RXP_b06FwRodataLen; 3829 fw.rodata_index = 0; 3830 fw.rodata = bce_RXP_b06FwRodata; 3831 } 3832 3833 DBPRINT(sc, BCE_INFO_RESET, "Loading RX firmware.\n"); 3834 bce_load_cpu_fw(sc, &cpu_reg, &fw); 3835 3836 DBEXIT(BCE_VERBOSE_RESET); 3837 } 3838 3839 3840 /****************************************************************************/ 3841 /* Initialize the TX CPU. */ 3842 /* */ 3843 /* Returns: */ 3844 /* Nothing. */ 3845 /****************************************************************************/ 3846 static void 3847 bce_init_txp_cpu(struct bce_softc *sc) 3848 { 3849 struct cpu_reg cpu_reg; 3850 struct fw_info fw; 3851 3852 DBENTER(BCE_VERBOSE_RESET); 3853 3854 cpu_reg.mode = BCE_TXP_CPU_MODE; 3855 cpu_reg.mode_value_halt = BCE_TXP_CPU_MODE_SOFT_HALT; 3856 cpu_reg.mode_value_sstep = BCE_TXP_CPU_MODE_STEP_ENA; 3857 cpu_reg.state = BCE_TXP_CPU_STATE; 3858 cpu_reg.state_value_clear = 0xffffff; 3859 cpu_reg.gpr0 = BCE_TXP_CPU_REG_FILE; 3860 cpu_reg.evmask = BCE_TXP_CPU_EVENT_MASK; 3861 cpu_reg.pc = BCE_TXP_CPU_PROGRAM_COUNTER; 3862 cpu_reg.inst = BCE_TXP_CPU_INSTRUCTION; 3863 cpu_reg.bp = BCE_TXP_CPU_HW_BREAKPOINT; 3864 cpu_reg.spad_base = BCE_TXP_SCRATCH; 3865 cpu_reg.mips_view_base = 0x8000000; 3866 3867 if ((BCE_CHIP_NUM(sc) == BCE_CHIP_NUM_5709) || 3868 (BCE_CHIP_NUM(sc) == BCE_CHIP_NUM_5716)) { 3869 fw.ver_major = bce_TXP_b09FwReleaseMajor; 3870 fw.ver_minor = bce_TXP_b09FwReleaseMinor; 3871 fw.ver_fix = bce_TXP_b09FwReleaseFix; 3872 fw.start_addr = bce_TXP_b09FwStartAddr; 3873 3874 fw.text_addr = bce_TXP_b09FwTextAddr; 3875 fw.text_len = bce_TXP_b09FwTextLen; 3876 fw.text_index = 0; 3877 fw.text = bce_TXP_b09FwText; 3878 3879 fw.data_addr = bce_TXP_b09FwDataAddr; 3880 fw.data_len = bce_TXP_b09FwDataLen; 3881 fw.data_index = 0; 3882 fw.data = bce_TXP_b09FwData; 3883 3884 fw.sbss_addr = bce_TXP_b09FwSbssAddr; 3885 fw.sbss_len = bce_TXP_b09FwSbssLen; 3886 fw.sbss_index = 0; 3887 fw.sbss = bce_TXP_b09FwSbss; 3888 3889 fw.bss_addr = bce_TXP_b09FwBssAddr; 3890 fw.bss_len = bce_TXP_b09FwBssLen; 3891 fw.bss_index = 0; 3892 fw.bss = bce_TXP_b09FwBss; 3893 3894 fw.rodata_addr = bce_TXP_b09FwRodataAddr; 3895 fw.rodata_len = bce_TXP_b09FwRodataLen; 3896 fw.rodata_index = 0; 3897 fw.rodata = bce_TXP_b09FwRodata; 3898 } else { 3899 fw.ver_major = bce_TXP_b06FwReleaseMajor; 3900 fw.ver_minor = bce_TXP_b06FwReleaseMinor; 3901 fw.ver_fix = bce_TXP_b06FwReleaseFix; 3902 fw.start_addr = bce_TXP_b06FwStartAddr; 3903 3904 fw.text_addr = bce_TXP_b06FwTextAddr; 3905 fw.text_len = bce_TXP_b06FwTextLen; 3906 fw.text_index = 0; 3907 fw.text = bce_TXP_b06FwText; 3908 3909 fw.data_addr = bce_TXP_b06FwDataAddr; 3910 fw.data_len = bce_TXP_b06FwDataLen; 3911 fw.data_index = 0; 3912 fw.data = bce_TXP_b06FwData; 3913 3914 fw.sbss_addr = bce_TXP_b06FwSbssAddr; 3915 fw.sbss_len = bce_TXP_b06FwSbssLen; 3916 fw.sbss_index = 0; 3917 fw.sbss = bce_TXP_b06FwSbss; 3918 3919 fw.bss_addr = bce_TXP_b06FwBssAddr; 3920 fw.bss_len = bce_TXP_b06FwBssLen; 3921 fw.bss_index = 0; 3922 fw.bss = bce_TXP_b06FwBss; 3923 3924 fw.rodata_addr = bce_TXP_b06FwRodataAddr; 3925 fw.rodata_len = bce_TXP_b06FwRodataLen; 3926 fw.rodata_index = 0; 3927 fw.rodata = bce_TXP_b06FwRodata; 3928 } 3929 3930 DBPRINT(sc, BCE_INFO_RESET, "Loading TX firmware.\n"); 3931 bce_load_cpu_fw(sc, &cpu_reg, &fw); 3932 3933 DBEXIT(BCE_VERBOSE_RESET); 3934 } 3935 3936 3937 /****************************************************************************/ 3938 /* Initialize the TPAT CPU. */ 3939 /* */ 3940 /* Returns: */ 3941 /* Nothing. */ 3942 /****************************************************************************/ 3943 static void 3944 bce_init_tpat_cpu(struct bce_softc *sc) 3945 { 3946 struct cpu_reg cpu_reg; 3947 struct fw_info fw; 3948 3949 DBENTER(BCE_VERBOSE_RESET); 3950 3951 cpu_reg.mode = BCE_TPAT_CPU_MODE; 3952 cpu_reg.mode_value_halt = BCE_TPAT_CPU_MODE_SOFT_HALT; 3953 cpu_reg.mode_value_sstep = BCE_TPAT_CPU_MODE_STEP_ENA; 3954 cpu_reg.state = BCE_TPAT_CPU_STATE; 3955 cpu_reg.state_value_clear = 0xffffff; 3956 cpu_reg.gpr0 = BCE_TPAT_CPU_REG_FILE; 3957 cpu_reg.evmask = BCE_TPAT_CPU_EVENT_MASK; 3958 cpu_reg.pc = BCE_TPAT_CPU_PROGRAM_COUNTER; 3959 cpu_reg.inst = BCE_TPAT_CPU_INSTRUCTION; 3960 cpu_reg.bp = BCE_TPAT_CPU_HW_BREAKPOINT; 3961 cpu_reg.spad_base = BCE_TPAT_SCRATCH; 3962 cpu_reg.mips_view_base = 0x8000000; 3963 3964 if ((BCE_CHIP_NUM(sc) == BCE_CHIP_NUM_5709) || 3965 (BCE_CHIP_NUM(sc) == BCE_CHIP_NUM_5716)) { 3966 fw.ver_major = bce_TPAT_b09FwReleaseMajor; 3967 fw.ver_minor = bce_TPAT_b09FwReleaseMinor; 3968 fw.ver_fix = bce_TPAT_b09FwReleaseFix; 3969 fw.start_addr = bce_TPAT_b09FwStartAddr; 3970 3971 fw.text_addr = bce_TPAT_b09FwTextAddr; 3972 fw.text_len = bce_TPAT_b09FwTextLen; 3973 fw.text_index = 0; 3974 fw.text = bce_TPAT_b09FwText; 3975 3976 fw.data_addr = bce_TPAT_b09FwDataAddr; 3977 fw.data_len = bce_TPAT_b09FwDataLen; 3978 fw.data_index = 0; 3979 fw.data = bce_TPAT_b09FwData; 3980 3981 fw.sbss_addr = bce_TPAT_b09FwSbssAddr; 3982 fw.sbss_len = bce_TPAT_b09FwSbssLen; 3983 fw.sbss_index = 0; 3984 fw.sbss = bce_TPAT_b09FwSbss; 3985 3986 fw.bss_addr = bce_TPAT_b09FwBssAddr; 3987 fw.bss_len = bce_TPAT_b09FwBssLen; 3988 fw.bss_index = 0; 3989 fw.bss = bce_TPAT_b09FwBss; 3990 3991 fw.rodata_addr = bce_TPAT_b09FwRodataAddr; 3992 fw.rodata_len = bce_TPAT_b09FwRodataLen; 3993 fw.rodata_index = 0; 3994 fw.rodata = bce_TPAT_b09FwRodata; 3995 } else { 3996 fw.ver_major = bce_TPAT_b06FwReleaseMajor; 3997 fw.ver_minor = bce_TPAT_b06FwReleaseMinor; 3998 fw.ver_fix = bce_TPAT_b06FwReleaseFix; 3999 fw.start_addr = bce_TPAT_b06FwStartAddr; 4000 4001 fw.text_addr = bce_TPAT_b06FwTextAddr; 4002 fw.text_len = bce_TPAT_b06FwTextLen; 4003 fw.text_index = 0; 4004 fw.text = bce_TPAT_b06FwText; 4005 4006 fw.data_addr = bce_TPAT_b06FwDataAddr; 4007 fw.data_len = bce_TPAT_b06FwDataLen; 4008 fw.data_index = 0; 4009 fw.data = bce_TPAT_b06FwData; 4010 4011 fw.sbss_addr = bce_TPAT_b06FwSbssAddr; 4012 fw.sbss_len = bce_TPAT_b06FwSbssLen; 4013 fw.sbss_index = 0; 4014 fw.sbss = bce_TPAT_b06FwSbss; 4015 4016 fw.bss_addr = bce_TPAT_b06FwBssAddr; 4017 fw.bss_len = bce_TPAT_b06FwBssLen; 4018 fw.bss_index = 0; 4019 fw.bss = bce_TPAT_b06FwBss; 4020 4021 fw.rodata_addr = bce_TPAT_b06FwRodataAddr; 4022 fw.rodata_len = bce_TPAT_b06FwRodataLen; 4023 fw.rodata_index = 0; 4024 fw.rodata = bce_TPAT_b06FwRodata; 4025 } 4026 4027 DBPRINT(sc, BCE_INFO_RESET, "Loading TPAT firmware.\n"); 4028 bce_load_cpu_fw(sc, &cpu_reg, &fw); 4029 4030 DBEXIT(BCE_VERBOSE_RESET); 4031 } 4032 4033 4034 /****************************************************************************/ 4035 /* Initialize the CP CPU. */ 4036 /* */ 4037 /* Returns: */ 4038 /* Nothing. */ 4039 /****************************************************************************/ 4040 static void 4041 bce_init_cp_cpu(struct bce_softc *sc) 4042 { 4043 struct cpu_reg cpu_reg; 4044 struct fw_info fw; 4045 4046 DBENTER(BCE_VERBOSE_RESET); 4047 4048 cpu_reg.mode = BCE_CP_CPU_MODE; 4049 cpu_reg.mode_value_halt = BCE_CP_CPU_MODE_SOFT_HALT; 4050 cpu_reg.mode_value_sstep = BCE_CP_CPU_MODE_STEP_ENA; 4051 cpu_reg.state = BCE_CP_CPU_STATE; 4052 cpu_reg.state_value_clear = 0xffffff; 4053 cpu_reg.gpr0 = BCE_CP_CPU_REG_FILE; 4054 cpu_reg.evmask = BCE_CP_CPU_EVENT_MASK; 4055 cpu_reg.pc = BCE_CP_CPU_PROGRAM_COUNTER; 4056 cpu_reg.inst = BCE_CP_CPU_INSTRUCTION; 4057 cpu_reg.bp = BCE_CP_CPU_HW_BREAKPOINT; 4058 cpu_reg.spad_base = BCE_CP_SCRATCH; 4059 cpu_reg.mips_view_base = 0x8000000; 4060 4061 if ((BCE_CHIP_NUM(sc) == BCE_CHIP_NUM_5709) || 4062 (BCE_CHIP_NUM(sc) == BCE_CHIP_NUM_5716)) { 4063 fw.ver_major = bce_CP_b09FwReleaseMajor; 4064 fw.ver_minor = bce_CP_b09FwReleaseMinor; 4065 fw.ver_fix = bce_CP_b09FwReleaseFix; 4066 fw.start_addr = bce_CP_b09FwStartAddr; 4067 4068 fw.text_addr = bce_CP_b09FwTextAddr; 4069 fw.text_len = bce_CP_b09FwTextLen; 4070 fw.text_index = 0; 4071 fw.text = bce_CP_b09FwText; 4072 4073 fw.data_addr = bce_CP_b09FwDataAddr; 4074 fw.data_len = bce_CP_b09FwDataLen; 4075 fw.data_index = 0; 4076 fw.data = bce_CP_b09FwData; 4077 4078 fw.sbss_addr = bce_CP_b09FwSbssAddr; 4079 fw.sbss_len = bce_CP_b09FwSbssLen; 4080 fw.sbss_index = 0; 4081 fw.sbss = bce_CP_b09FwSbss; 4082 4083 fw.bss_addr = bce_CP_b09FwBssAddr; 4084 fw.bss_len = bce_CP_b09FwBssLen; 4085 fw.bss_index = 0; 4086 fw.bss = bce_CP_b09FwBss; 4087 4088 fw.rodata_addr = bce_CP_b09FwRodataAddr; 4089 fw.rodata_len = bce_CP_b09FwRodataLen; 4090 fw.rodata_index = 0; 4091 fw.rodata = bce_CP_b09FwRodata; 4092 } else { 4093 fw.ver_major = bce_CP_b06FwReleaseMajor; 4094 fw.ver_minor = bce_CP_b06FwReleaseMinor; 4095 fw.ver_fix = bce_CP_b06FwReleaseFix; 4096 fw.start_addr = bce_CP_b06FwStartAddr; 4097 4098 fw.text_addr = bce_CP_b06FwTextAddr; 4099 fw.text_len = bce_CP_b06FwTextLen; 4100 fw.text_index = 0; 4101 fw.text = bce_CP_b06FwText; 4102 4103 fw.data_addr = bce_CP_b06FwDataAddr; 4104 fw.data_len = bce_CP_b06FwDataLen; 4105 fw.data_index = 0; 4106 fw.data = bce_CP_b06FwData; 4107 4108 fw.sbss_addr = bce_CP_b06FwSbssAddr; 4109 fw.sbss_len = bce_CP_b06FwSbssLen; 4110 fw.sbss_index = 0; 4111 fw.sbss = bce_CP_b06FwSbss; 4112 4113 fw.bss_addr = bce_CP_b06FwBssAddr; 4114 fw.bss_len = bce_CP_b06FwBssLen; 4115 fw.bss_index = 0; 4116 fw.bss = bce_CP_b06FwBss; 4117 4118 fw.rodata_addr = bce_CP_b06FwRodataAddr; 4119 fw.rodata_len = bce_CP_b06FwRodataLen; 4120 fw.rodata_index = 0; 4121 fw.rodata = bce_CP_b06FwRodata; 4122 } 4123 4124 DBPRINT(sc, BCE_INFO_RESET, "Loading CP firmware.\n"); 4125 bce_load_cpu_fw(sc, &cpu_reg, &fw); 4126 4127 DBEXIT(BCE_VERBOSE_RESET); 4128 } 4129 4130 4131 /****************************************************************************/ 4132 /* Initialize the COM CPU. */ 4133 /* */ 4134 /* Returns: */ 4135 /* Nothing. */ 4136 /****************************************************************************/ 4137 static void 4138 bce_init_com_cpu(struct bce_softc *sc) 4139 { 4140 struct cpu_reg cpu_reg; 4141 struct fw_info fw; 4142 4143 DBENTER(BCE_VERBOSE_RESET); 4144 4145 cpu_reg.mode = BCE_COM_CPU_MODE; 4146 cpu_reg.mode_value_halt = BCE_COM_CPU_MODE_SOFT_HALT; 4147 cpu_reg.mode_value_sstep = BCE_COM_CPU_MODE_STEP_ENA; 4148 cpu_reg.state = BCE_COM_CPU_STATE; 4149 cpu_reg.state_value_clear = 0xffffff; 4150 cpu_reg.gpr0 = BCE_COM_CPU_REG_FILE; 4151 cpu_reg.evmask = BCE_COM_CPU_EVENT_MASK; 4152 cpu_reg.pc = BCE_COM_CPU_PROGRAM_COUNTER; 4153 cpu_reg.inst = BCE_COM_CPU_INSTRUCTION; 4154 cpu_reg.bp = BCE_COM_CPU_HW_BREAKPOINT; 4155 cpu_reg.spad_base = BCE_COM_SCRATCH; 4156 cpu_reg.mips_view_base = 0x8000000; 4157 4158 if ((BCE_CHIP_NUM(sc) == BCE_CHIP_NUM_5709) || 4159 (BCE_CHIP_NUM(sc) == BCE_CHIP_NUM_5716)) { 4160 fw.ver_major = bce_COM_b09FwReleaseMajor; 4161 fw.ver_minor = bce_COM_b09FwReleaseMinor; 4162 fw.ver_fix = bce_COM_b09FwReleaseFix; 4163 fw.start_addr = bce_COM_b09FwStartAddr; 4164 4165 fw.text_addr = bce_COM_b09FwTextAddr; 4166 fw.text_len = bce_COM_b09FwTextLen; 4167 fw.text_index = 0; 4168 fw.text = bce_COM_b09FwText; 4169 4170 fw.data_addr = bce_COM_b09FwDataAddr; 4171 fw.data_len = bce_COM_b09FwDataLen; 4172 fw.data_index = 0; 4173 fw.data = bce_COM_b09FwData; 4174 4175 fw.sbss_addr = bce_COM_b09FwSbssAddr; 4176 fw.sbss_len = bce_COM_b09FwSbssLen; 4177 fw.sbss_index = 0; 4178 fw.sbss = bce_COM_b09FwSbss; 4179 4180 fw.bss_addr = bce_COM_b09FwBssAddr; 4181 fw.bss_len = bce_COM_b09FwBssLen; 4182 fw.bss_index = 0; 4183 fw.bss = bce_COM_b09FwBss; 4184 4185 fw.rodata_addr = bce_COM_b09FwRodataAddr; 4186 fw.rodata_len = bce_COM_b09FwRodataLen; 4187 fw.rodata_index = 0; 4188 fw.rodata = bce_COM_b09FwRodata; 4189 } else { 4190 fw.ver_major = bce_COM_b06FwReleaseMajor; 4191 fw.ver_minor = bce_COM_b06FwReleaseMinor; 4192 fw.ver_fix = bce_COM_b06FwReleaseFix; 4193 fw.start_addr = bce_COM_b06FwStartAddr; 4194 4195 fw.text_addr = bce_COM_b06FwTextAddr; 4196 fw.text_len = bce_COM_b06FwTextLen; 4197 fw.text_index = 0; 4198 fw.text = bce_COM_b06FwText; 4199 4200 fw.data_addr = bce_COM_b06FwDataAddr; 4201 fw.data_len = bce_COM_b06FwDataLen; 4202 fw.data_index = 0; 4203 fw.data = bce_COM_b06FwData; 4204 4205 fw.sbss_addr = bce_COM_b06FwSbssAddr; 4206 fw.sbss_len = bce_COM_b06FwSbssLen; 4207 fw.sbss_index = 0; 4208 fw.sbss = bce_COM_b06FwSbss; 4209 4210 fw.bss_addr = bce_COM_b06FwBssAddr; 4211 fw.bss_len = bce_COM_b06FwBssLen; 4212 fw.bss_index = 0; 4213 fw.bss = bce_COM_b06FwBss; 4214 4215 fw.rodata_addr = bce_COM_b06FwRodataAddr; 4216 fw.rodata_len = bce_COM_b06FwRodataLen; 4217 fw.rodata_index = 0; 4218 fw.rodata = bce_COM_b06FwRodata; 4219 } 4220 4221 DBPRINT(sc, BCE_INFO_RESET, "Loading COM firmware.\n"); 4222 bce_load_cpu_fw(sc, &cpu_reg, &fw); 4223 4224 DBEXIT(BCE_VERBOSE_RESET); 4225 } 4226 4227 4228 /****************************************************************************/ 4229 /* Initialize the RV2P, RX, TX, TPAT, COM, and CP CPUs. */ 4230 /* */ 4231 /* Loads the firmware for each CPU and starts the CPU. */ 4232 /* */ 4233 /* Returns: */ 4234 /* Nothing. */ 4235 /****************************************************************************/ 4236 static void 4237 bce_init_cpus(struct bce_softc *sc) 4238 { 4239 DBENTER(BCE_VERBOSE_RESET); 4240 4241 if ((BCE_CHIP_NUM(sc) == BCE_CHIP_NUM_5709) || 4242 (BCE_CHIP_NUM(sc) == BCE_CHIP_NUM_5716)) { 4243 4244 if ((BCE_CHIP_REV(sc) == BCE_CHIP_REV_Ax)) { 4245 bce_load_rv2p_fw(sc, bce_xi90_rv2p_proc1, 4246 sizeof(bce_xi90_rv2p_proc1), RV2P_PROC1); 4247 bce_load_rv2p_fw(sc, bce_xi90_rv2p_proc2, 4248 sizeof(bce_xi90_rv2p_proc2), RV2P_PROC2); 4249 } else { 4250 bce_load_rv2p_fw(sc, bce_xi_rv2p_proc1, 4251 sizeof(bce_xi_rv2p_proc1), RV2P_PROC1); 4252 bce_load_rv2p_fw(sc, bce_xi_rv2p_proc2, 4253 sizeof(bce_xi_rv2p_proc2), RV2P_PROC2); 4254 } 4255 4256 } else { 4257 bce_load_rv2p_fw(sc, bce_rv2p_proc1, 4258 sizeof(bce_rv2p_proc1), RV2P_PROC1); 4259 bce_load_rv2p_fw(sc, bce_rv2p_proc2, 4260 sizeof(bce_rv2p_proc2), RV2P_PROC2); 4261 } 4262 4263 bce_init_rxp_cpu(sc); 4264 bce_init_txp_cpu(sc); 4265 bce_init_tpat_cpu(sc); 4266 bce_init_com_cpu(sc); 4267 bce_init_cp_cpu(sc); 4268 4269 DBEXIT(BCE_VERBOSE_RESET); 4270 } 4271 4272 4273 /****************************************************************************/ 4274 /* Initialize context memory. */ 4275 /* */ 4276 /* Clears the memory associated with each Context ID (CID). */ 4277 /* */ 4278 /* Returns: */ 4279 /* Nothing. */ 4280 /****************************************************************************/ 4281 static void 4282 bce_init_ctx(struct bce_softc *sc) 4283 { 4284 4285 DBENTER(BCE_VERBOSE_RESET | BCE_VERBOSE_CTX); 4286 4287 if ((BCE_CHIP_NUM(sc) == BCE_CHIP_NUM_5709) || 4288 (BCE_CHIP_NUM(sc) == BCE_CHIP_NUM_5716)) { 4289 int i, retry_cnt = CTX_INIT_RETRY_COUNT; 4290 u32 val; 4291 4292 DBPRINT(sc, BCE_INFO_CTX, "Initializing 5709 context.\n"); 4293 4294 /* 4295 * BCM5709 context memory may be cached 4296 * in host memory so prepare the host memory 4297 * for access. 4298 */ 4299 val = BCE_CTX_COMMAND_ENABLED | BCE_CTX_COMMAND_MEM_INIT | (1 << 12); 4300 val |= (BCM_PAGE_BITS - 8) << 16; 4301 REG_WR(sc, BCE_CTX_COMMAND, val); 4302 4303 /* Wait for mem init command to complete. */ 4304 for (i = 0; i < retry_cnt; i++) { 4305 val = REG_RD(sc, BCE_CTX_COMMAND); 4306 if (!(val & BCE_CTX_COMMAND_MEM_INIT)) 4307 break; 4308 DELAY(2); 4309 } 4310 4311 /* ToDo: Consider returning an error here. */ 4312 DBRUNIF((val & BCE_CTX_COMMAND_MEM_INIT), 4313 BCE_PRINTF("%s(): Context memory initialization failed!\n", 4314 __FUNCTION__)); 4315 4316 for (i = 0; i < sc->ctx_pages; i++) { 4317 int j; 4318 4319 /* Set the physical address of the context memory cache. */ 4320 REG_WR(sc, BCE_CTX_HOST_PAGE_TBL_DATA0, 4321 BCE_ADDR_LO(sc->ctx_paddr[i] & 0xfffffff0) | 4322 BCE_CTX_HOST_PAGE_TBL_DATA0_VALID); 4323 REG_WR(sc, BCE_CTX_HOST_PAGE_TBL_DATA1, 4324 BCE_ADDR_HI(sc->ctx_paddr[i])); 4325 REG_WR(sc, BCE_CTX_HOST_PAGE_TBL_CTRL, i | 4326 BCE_CTX_HOST_PAGE_TBL_CTRL_WRITE_REQ); 4327 4328 /* Verify that the context memory write was successful. */ 4329 for (j = 0; j < retry_cnt; j++) { 4330 val = REG_RD(sc, BCE_CTX_HOST_PAGE_TBL_CTRL); 4331 if ((val & BCE_CTX_HOST_PAGE_TBL_CTRL_WRITE_REQ) == 0) 4332 break; 4333 DELAY(5); 4334 } 4335 4336 /* ToDo: Consider returning an error here. */ 4337 DBRUNIF((val & BCE_CTX_HOST_PAGE_TBL_CTRL_WRITE_REQ), 4338 BCE_PRINTF("%s(): Failed to initialize context page %d!\n", 4339 __FUNCTION__, i)); 4340 } 4341 } else { 4342 u32 vcid_addr, offset; 4343 4344 DBPRINT(sc, BCE_INFO, "Initializing 5706/5708 context.\n"); 4345 4346 /* 4347 * For the 5706/5708, context memory is local to 4348 * the controller, so initialize the controller 4349 * context memory. 4350 */ 4351 4352 vcid_addr = GET_CID_ADDR(96); 4353 while (vcid_addr) { 4354 4355 vcid_addr -= PHY_CTX_SIZE; 4356 4357 REG_WR(sc, BCE_CTX_VIRT_ADDR, 0); 4358 REG_WR(sc, BCE_CTX_PAGE_TBL, vcid_addr); 4359 4360 for(offset = 0; offset < PHY_CTX_SIZE; offset += 4) { 4361 CTX_WR(sc, 0x00, offset, 0); 4362 } 4363 4364 REG_WR(sc, BCE_CTX_VIRT_ADDR, vcid_addr); 4365 REG_WR(sc, BCE_CTX_PAGE_TBL, vcid_addr); 4366 } 4367 4368 } 4369 DBEXIT(BCE_VERBOSE_RESET | BCE_VERBOSE_CTX); 4370 } 4371 4372 4373 /****************************************************************************/ 4374 /* Fetch the permanent MAC address of the controller. */ 4375 /* */ 4376 /* Returns: */ 4377 /* Nothing. */ 4378 /****************************************************************************/ 4379 static void 4380 bce_get_mac_addr(struct bce_softc *sc) 4381 { 4382 u32 mac_lo = 0, mac_hi = 0; 4383 4384 DBENTER(BCE_VERBOSE_RESET); 4385 /* 4386 * The NetXtreme II bootcode populates various NIC 4387 * power-on and runtime configuration items in a 4388 * shared memory area. The factory configured MAC 4389 * address is available from both NVRAM and the 4390 * shared memory area so we'll read the value from 4391 * shared memory for speed. 4392 */ 4393 4394 mac_hi = bce_shmem_rd(sc, BCE_PORT_HW_CFG_MAC_UPPER); 4395 mac_lo = bce_shmem_rd(sc, BCE_PORT_HW_CFG_MAC_LOWER); 4396 4397 if ((mac_lo == 0) && (mac_hi == 0)) { 4398 BCE_PRINTF("%s(%d): Invalid Ethernet address!\n", 4399 __FILE__, __LINE__); 4400 } else { 4401 sc->eaddr[0] = (u_char)(mac_hi >> 8); 4402 sc->eaddr[1] = (u_char)(mac_hi >> 0); 4403 sc->eaddr[2] = (u_char)(mac_lo >> 24); 4404 sc->eaddr[3] = (u_char)(mac_lo >> 16); 4405 sc->eaddr[4] = (u_char)(mac_lo >> 8); 4406 sc->eaddr[5] = (u_char)(mac_lo >> 0); 4407 } 4408 4409 DBPRINT(sc, BCE_INFO_MISC, "Permanent Ethernet address = %6D\n", sc->eaddr, ":"); 4410 DBEXIT(BCE_VERBOSE_RESET); 4411 } 4412 4413 4414 /****************************************************************************/ 4415 /* Program the MAC address. */ 4416 /* */ 4417 /* Returns: */ 4418 /* Nothing. */ 4419 /****************************************************************************/ 4420 static void 4421 bce_set_mac_addr(struct bce_softc *sc) 4422 { 4423 u32 val; 4424 u8 *mac_addr = sc->eaddr; 4425 4426 /* ToDo: Add support for setting multiple MAC addresses. */ 4427 4428 DBENTER(BCE_VERBOSE_RESET); 4429 DBPRINT(sc, BCE_INFO_MISC, "Setting Ethernet address = %6D\n", sc->eaddr, ":"); 4430 4431 val = (mac_addr[0] << 8) | mac_addr[1]; 4432 4433 REG_WR(sc, BCE_EMAC_MAC_MATCH0, val); 4434 4435 val = (mac_addr[2] << 24) | (mac_addr[3] << 16) | 4436 (mac_addr[4] << 8) | mac_addr[5]; 4437 4438 REG_WR(sc, BCE_EMAC_MAC_MATCH1, val); 4439 4440 DBEXIT(BCE_VERBOSE_RESET); 4441 } 4442 4443 4444 /****************************************************************************/ 4445 /* Stop the controller. */ 4446 /* */ 4447 /* Returns: */ 4448 /* Nothing. */ 4449 /****************************************************************************/ 4450 static void 4451 bce_stop(struct bce_softc *sc) 4452 { 4453 struct ifnet *ifp; 4454 struct ifmedia_entry *ifm; 4455 struct mii_data *mii = NULL; 4456 int mtmp, itmp; 4457 4458 DBENTER(BCE_VERBOSE_RESET); 4459 4460 BCE_LOCK_ASSERT(sc); 4461 4462 ifp = sc->bce_ifp; 4463 4464 mii = device_get_softc(sc->bce_miibus); 4465 4466 callout_stop(&sc->bce_tick_callout); 4467 4468 /* Disable the transmit/receive blocks. */ 4469 REG_WR(sc, BCE_MISC_ENABLE_CLR_BITS, BCE_MISC_ENABLE_CLR_DEFAULT); 4470 REG_RD(sc, BCE_MISC_ENABLE_CLR_BITS); 4471 DELAY(20); 4472 4473 bce_disable_intr(sc); 4474 4475 /* Free RX buffers. */ 4476 #ifdef BCE_JUMBO_HDRSPLIT 4477 bce_free_pg_chain(sc); 4478 #endif 4479 bce_free_rx_chain(sc); 4480 4481 /* Free TX buffers. */ 4482 bce_free_tx_chain(sc); 4483 4484 /* 4485 * Isolate/power down the PHY, but leave the media selection 4486 * unchanged so that things will be put back to normal when 4487 * we bring the interface back up. 4488 */ 4489 4490 itmp = ifp->if_flags; 4491 ifp->if_flags |= IFF_UP; 4492 4493 /* If we are called from bce_detach(), mii is already NULL. */ 4494 if (mii != NULL) { 4495 ifm = mii->mii_media.ifm_cur; 4496 mtmp = ifm->ifm_media; 4497 ifm->ifm_media = IFM_ETHER | IFM_NONE; 4498 mii_mediachg(mii); 4499 ifm->ifm_media = mtmp; 4500 } 4501 4502 ifp->if_flags = itmp; 4503 sc->watchdog_timer = 0; 4504 4505 sc->bce_link = 0; 4506 4507 ifp->if_drv_flags &= ~(IFF_DRV_RUNNING | IFF_DRV_OACTIVE); 4508 4509 DBEXIT(BCE_VERBOSE_RESET); 4510 } 4511 4512 4513 static int 4514 bce_reset(struct bce_softc *sc, u32 reset_code) 4515 { 4516 u32 val; 4517 int i, rc = 0; 4518 4519 DBENTER(BCE_VERBOSE_RESET); 4520 4521 DBPRINT(sc, BCE_VERBOSE_RESET, "%s(): reset_code = 0x%08X\n", 4522 __FUNCTION__, reset_code); 4523 4524 /* Wait for pending PCI transactions to complete. */ 4525 REG_WR(sc, BCE_MISC_ENABLE_CLR_BITS, 4526 BCE_MISC_ENABLE_CLR_BITS_TX_DMA_ENABLE | 4527 BCE_MISC_ENABLE_CLR_BITS_DMA_ENGINE_ENABLE | 4528 BCE_MISC_ENABLE_CLR_BITS_RX_DMA_ENABLE | 4529 BCE_MISC_ENABLE_CLR_BITS_HOST_COALESCE_ENABLE); 4530 val = REG_RD(sc, BCE_MISC_ENABLE_CLR_BITS); 4531 DELAY(5); 4532 4533 /* Disable DMA */ 4534 if ((BCE_CHIP_NUM(sc) == BCE_CHIP_NUM_5709) || 4535 (BCE_CHIP_NUM(sc) == BCE_CHIP_NUM_5716)) { 4536 val = REG_RD(sc, BCE_MISC_NEW_CORE_CTL); 4537 val &= ~BCE_MISC_NEW_CORE_CTL_DMA_ENABLE; 4538 REG_WR(sc, BCE_MISC_NEW_CORE_CTL, val); 4539 } 4540 4541 /* Assume bootcode is running. */ 4542 sc->bce_fw_timed_out = 0; 4543 4544 /* Give the firmware a chance to prepare for the reset. */ 4545 rc = bce_fw_sync(sc, BCE_DRV_MSG_DATA_WAIT0 | reset_code); 4546 if (rc) 4547 goto bce_reset_exit; 4548 4549 /* Set a firmware reminder that this is a soft reset. */ 4550 bce_shmem_wr(sc, BCE_DRV_RESET_SIGNATURE, BCE_DRV_RESET_SIGNATURE_MAGIC); 4551 4552 /* Dummy read to force the chip to complete all current transactions. */ 4553 val = REG_RD(sc, BCE_MISC_ID); 4554 4555 /* Chip reset. */ 4556 if ((BCE_CHIP_NUM(sc) == BCE_CHIP_NUM_5709) || 4557 (BCE_CHIP_NUM(sc) == BCE_CHIP_NUM_5716)) { 4558 REG_WR(sc, BCE_MISC_COMMAND, BCE_MISC_COMMAND_SW_RESET); 4559 REG_RD(sc, BCE_MISC_COMMAND); 4560 DELAY(5); 4561 4562 val = BCE_PCICFG_MISC_CONFIG_REG_WINDOW_ENA | 4563 BCE_PCICFG_MISC_CONFIG_TARGET_MB_WORD_SWAP; 4564 4565 pci_write_config(sc->bce_dev, BCE_PCICFG_MISC_CONFIG, val, 4); 4566 } else { 4567 val = BCE_PCICFG_MISC_CONFIG_CORE_RST_REQ | 4568 BCE_PCICFG_MISC_CONFIG_REG_WINDOW_ENA | 4569 BCE_PCICFG_MISC_CONFIG_TARGET_MB_WORD_SWAP; 4570 REG_WR(sc, BCE_PCICFG_MISC_CONFIG, val); 4571 4572 /* Allow up to 30us for reset to complete. */ 4573 for (i = 0; i < 10; i++) { 4574 val = REG_RD(sc, BCE_PCICFG_MISC_CONFIG); 4575 if ((val & (BCE_PCICFG_MISC_CONFIG_CORE_RST_REQ | 4576 BCE_PCICFG_MISC_CONFIG_CORE_RST_BSY)) == 0) { 4577 break; 4578 } 4579 DELAY(10); 4580 } 4581 4582 /* Check that reset completed successfully. */ 4583 if (val & (BCE_PCICFG_MISC_CONFIG_CORE_RST_REQ | 4584 BCE_PCICFG_MISC_CONFIG_CORE_RST_BSY)) { 4585 BCE_PRINTF("%s(%d): Reset failed!\n", 4586 __FILE__, __LINE__); 4587 rc = EBUSY; 4588 goto bce_reset_exit; 4589 } 4590 } 4591 4592 /* Make sure byte swapping is properly configured. */ 4593 val = REG_RD(sc, BCE_PCI_SWAP_DIAG0); 4594 if (val != 0x01020304) { 4595 BCE_PRINTF("%s(%d): Byte swap is incorrect!\n", 4596 __FILE__, __LINE__); 4597 rc = ENODEV; 4598 goto bce_reset_exit; 4599 } 4600 4601 /* Just completed a reset, assume that firmware is running again. */ 4602 sc->bce_fw_timed_out = 0; 4603 4604 /* Wait for the firmware to finish its initialization. */ 4605 rc = bce_fw_sync(sc, BCE_DRV_MSG_DATA_WAIT1 | reset_code); 4606 if (rc) 4607 BCE_PRINTF("%s(%d): Firmware did not complete initialization!\n", 4608 __FILE__, __LINE__); 4609 4610 bce_reset_exit: 4611 DBEXIT(BCE_VERBOSE_RESET); 4612 return (rc); 4613 } 4614 4615 4616 static int 4617 bce_chipinit(struct bce_softc *sc) 4618 { 4619 u32 val; 4620 int rc = 0; 4621 4622 DBENTER(BCE_VERBOSE_RESET); 4623 4624 bce_disable_intr(sc); 4625 4626 /* 4627 * Initialize DMA byte/word swapping, configure the number of DMA 4628 * channels and PCI clock compensation delay. 4629 */ 4630 val = BCE_DMA_CONFIG_DATA_BYTE_SWAP | 4631 BCE_DMA_CONFIG_DATA_WORD_SWAP | 4632 #if BYTE_ORDER == BIG_ENDIAN 4633 BCE_DMA_CONFIG_CNTL_BYTE_SWAP | 4634 #endif 4635 BCE_DMA_CONFIG_CNTL_WORD_SWAP | 4636 DMA_READ_CHANS << 12 | 4637 DMA_WRITE_CHANS << 16; 4638 4639 val |= (0x2 << 20) | BCE_DMA_CONFIG_CNTL_PCI_COMP_DLY; 4640 4641 if ((sc->bce_flags & BCE_PCIX_FLAG) && (sc->bus_speed_mhz == 133)) 4642 val |= BCE_DMA_CONFIG_PCI_FAST_CLK_CMP; 4643 4644 /* 4645 * This setting resolves a problem observed on certain Intel PCI 4646 * chipsets that cannot handle multiple outstanding DMA operations. 4647 * See errata E9_5706A1_65. 4648 */ 4649 if ((BCE_CHIP_NUM(sc) == BCE_CHIP_NUM_5706) && 4650 (BCE_CHIP_ID(sc) != BCE_CHIP_ID_5706_A0) && 4651 !(sc->bce_flags & BCE_PCIX_FLAG)) 4652 val |= BCE_DMA_CONFIG_CNTL_PING_PONG_DMA; 4653 4654 REG_WR(sc, BCE_DMA_CONFIG, val); 4655 4656 /* Enable the RX_V2P and Context state machines before access. */ 4657 REG_WR(sc, BCE_MISC_ENABLE_SET_BITS, 4658 BCE_MISC_ENABLE_SET_BITS_HOST_COALESCE_ENABLE | 4659 BCE_MISC_ENABLE_STATUS_BITS_RX_V2P_ENABLE | 4660 BCE_MISC_ENABLE_STATUS_BITS_CONTEXT_ENABLE); 4661 4662 /* Initialize context mapping and zero out the quick contexts. */ 4663 bce_init_ctx(sc); 4664 4665 /* Initialize the on-boards CPUs */ 4666 bce_init_cpus(sc); 4667 4668 /* Prepare NVRAM for access. */ 4669 if (bce_init_nvram(sc)) { 4670 rc = ENODEV; 4671 goto bce_chipinit_exit; 4672 } 4673 4674 /* Set the kernel bypass block size */ 4675 val = REG_RD(sc, BCE_MQ_CONFIG); 4676 val &= ~BCE_MQ_CONFIG_KNL_BYP_BLK_SIZE; 4677 val |= BCE_MQ_CONFIG_KNL_BYP_BLK_SIZE_256; 4678 4679 /* Enable bins used on the 5709. */ 4680 if ((BCE_CHIP_NUM(sc) == BCE_CHIP_NUM_5709) || 4681 (BCE_CHIP_NUM(sc) == BCE_CHIP_NUM_5716)) { 4682 val |= BCE_MQ_CONFIG_BIN_MQ_MODE; 4683 if (BCE_CHIP_ID(sc) == BCE_CHIP_ID_5709_A1) 4684 val |= BCE_MQ_CONFIG_HALT_DIS; 4685 } 4686 4687 REG_WR(sc, BCE_MQ_CONFIG, val); 4688 4689 val = 0x10000 + (MAX_CID_CNT * MB_KERNEL_CTX_SIZE); 4690 REG_WR(sc, BCE_MQ_KNL_BYP_WIND_START, val); 4691 REG_WR(sc, BCE_MQ_KNL_WIND_END, val); 4692 4693 /* Set the page size and clear the RV2P processor stall bits. */ 4694 val = (BCM_PAGE_BITS - 8) << 24; 4695 REG_WR(sc, BCE_RV2P_CONFIG, val); 4696 4697 /* Configure page size. */ 4698 val = REG_RD(sc, BCE_TBDR_CONFIG); 4699 val &= ~BCE_TBDR_CONFIG_PAGE_SIZE; 4700 val |= (BCM_PAGE_BITS - 8) << 24 | 0x40; 4701 REG_WR(sc, BCE_TBDR_CONFIG, val); 4702 4703 /* Set the perfect match control register to default. */ 4704 REG_WR_IND(sc, BCE_RXP_PM_CTRL, 0); 4705 4706 bce_chipinit_exit: 4707 DBEXIT(BCE_VERBOSE_RESET); 4708 4709 return(rc); 4710 } 4711 4712 4713 /****************************************************************************/ 4714 /* Initialize the controller in preparation to send/receive traffic. */ 4715 /* */ 4716 /* Returns: */ 4717 /* 0 for success, positive value for failure. */ 4718 /****************************************************************************/ 4719 static int 4720 bce_blockinit(struct bce_softc *sc) 4721 { 4722 u32 reg, val; 4723 int rc = 0; 4724 4725 DBENTER(BCE_VERBOSE_RESET); 4726 4727 /* Load the hardware default MAC address. */ 4728 bce_set_mac_addr(sc); 4729 4730 /* Set the Ethernet backoff seed value */ 4731 val = sc->eaddr[0] + (sc->eaddr[1] << 8) + 4732 (sc->eaddr[2] << 16) + (sc->eaddr[3] ) + 4733 (sc->eaddr[4] << 8) + (sc->eaddr[5] << 16); 4734 REG_WR(sc, BCE_EMAC_BACKOFF_SEED, val); 4735 4736 sc->last_status_idx = 0; 4737 sc->rx_mode = BCE_EMAC_RX_MODE_SORT_MODE; 4738 4739 /* Set up link change interrupt generation. */ 4740 REG_WR(sc, BCE_EMAC_ATTENTION_ENA, BCE_EMAC_ATTENTION_ENA_LINK); 4741 4742 /* Program the physical address of the status block. */ 4743 REG_WR(sc, BCE_HC_STATUS_ADDR_L, 4744 BCE_ADDR_LO(sc->status_block_paddr)); 4745 REG_WR(sc, BCE_HC_STATUS_ADDR_H, 4746 BCE_ADDR_HI(sc->status_block_paddr)); 4747 4748 /* Program the physical address of the statistics block. */ 4749 REG_WR(sc, BCE_HC_STATISTICS_ADDR_L, 4750 BCE_ADDR_LO(sc->stats_block_paddr)); 4751 REG_WR(sc, BCE_HC_STATISTICS_ADDR_H, 4752 BCE_ADDR_HI(sc->stats_block_paddr)); 4753 4754 /* Program various host coalescing parameters. */ 4755 REG_WR(sc, BCE_HC_TX_QUICK_CONS_TRIP, 4756 (sc->bce_tx_quick_cons_trip_int << 16) | sc->bce_tx_quick_cons_trip); 4757 REG_WR(sc, BCE_HC_RX_QUICK_CONS_TRIP, 4758 (sc->bce_rx_quick_cons_trip_int << 16) | sc->bce_rx_quick_cons_trip); 4759 REG_WR(sc, BCE_HC_COMP_PROD_TRIP, 4760 (sc->bce_comp_prod_trip_int << 16) | sc->bce_comp_prod_trip); 4761 REG_WR(sc, BCE_HC_TX_TICKS, 4762 (sc->bce_tx_ticks_int << 16) | sc->bce_tx_ticks); 4763 REG_WR(sc, BCE_HC_RX_TICKS, 4764 (sc->bce_rx_ticks_int << 16) | sc->bce_rx_ticks); 4765 REG_WR(sc, BCE_HC_COM_TICKS, 4766 (sc->bce_com_ticks_int << 16) | sc->bce_com_ticks); 4767 REG_WR(sc, BCE_HC_CMD_TICKS, 4768 (sc->bce_cmd_ticks_int << 16) | sc->bce_cmd_ticks); 4769 REG_WR(sc, BCE_HC_STATS_TICKS, 4770 (sc->bce_stats_ticks & 0xffff00)); 4771 REG_WR(sc, BCE_HC_STAT_COLLECT_TICKS, 0xbb8); /* 3ms */ 4772 4773 /* Configure the Host Coalescing block. */ 4774 val = BCE_HC_CONFIG_RX_TMR_MODE | BCE_HC_CONFIG_TX_TMR_MODE | 4775 BCE_HC_CONFIG_COLLECT_STATS; 4776 4777 #if 0 4778 /* ToDo: Add MSI-X support. */ 4779 if (sc->bce_flags & BCE_USING_MSIX_FLAG) { 4780 u32 base = ((BCE_TX_VEC - 1) * BCE_HC_SB_CONFIG_SIZE) + 4781 BCE_HC_SB_CONFIG_1; 4782 4783 REG_WR(sc, BCE_HC_MSIX_BIT_VECTOR, BCE_HC_MSIX_BIT_VECTOR_VAL); 4784 4785 REG_WR(sc, base, BCE_HC_SB_CONFIG_1_TX_TMR_MODE | 4786 BCE_HC_SB_CONFIG_1_ONE_SHOT); 4787 4788 REG_WR(sc, base + BCE_HC_TX_QUICK_CONS_TRIP_OFF, 4789 (sc->tx_quick_cons_trip_int << 16) | 4790 sc->tx_quick_cons_trip); 4791 4792 REG_WR(sc, base + BCE_HC_TX_TICKS_OFF, 4793 (sc->tx_ticks_int << 16) | sc->tx_ticks); 4794 4795 val |= BCE_HC_CONFIG_SB_ADDR_INC_128B; 4796 } 4797 4798 /* 4799 * Tell the HC block to automatically set the 4800 * INT_MASK bit after an MSI/MSI-X interrupt 4801 * is generated so the driver doesn't have to. 4802 */ 4803 if (sc->bce_flags & BCE_ONE_SHOT_MSI_FLAG) 4804 val |= BCE_HC_CONFIG_ONE_SHOT; 4805 4806 /* Set the MSI-X status blocks to 128 byte boundaries. */ 4807 if (sc->bce_flags & BCE_USING_MSIX_FLAG) 4808 val |= BCE_HC_CONFIG_SB_ADDR_INC_128B; 4809 #endif 4810 4811 REG_WR(sc, BCE_HC_CONFIG, val); 4812 4813 /* Clear the internal statistics counters. */ 4814 REG_WR(sc, BCE_HC_COMMAND, BCE_HC_COMMAND_CLR_STAT_NOW); 4815 4816 /* Verify that bootcode is running. */ 4817 reg = bce_shmem_rd(sc, BCE_DEV_INFO_SIGNATURE); 4818 4819 DBRUNIF(DB_RANDOMTRUE(bootcode_running_failure_sim_control), 4820 BCE_PRINTF("%s(%d): Simulating bootcode failure.\n", 4821 __FILE__, __LINE__); 4822 reg = 0); 4823 4824 if ((reg & BCE_DEV_INFO_SIGNATURE_MAGIC_MASK) != 4825 BCE_DEV_INFO_SIGNATURE_MAGIC) { 4826 BCE_PRINTF("%s(%d): Bootcode not running! Found: 0x%08X, " 4827 "Expected: 08%08X\n", __FILE__, __LINE__, 4828 (reg & BCE_DEV_INFO_SIGNATURE_MAGIC_MASK), 4829 BCE_DEV_INFO_SIGNATURE_MAGIC); 4830 rc = ENODEV; 4831 goto bce_blockinit_exit; 4832 } 4833 4834 /* Enable DMA */ 4835 if ((BCE_CHIP_NUM(sc) == BCE_CHIP_NUM_5709) || 4836 (BCE_CHIP_NUM(sc) == BCE_CHIP_NUM_5716)) { 4837 val = REG_RD(sc, BCE_MISC_NEW_CORE_CTL); 4838 val |= BCE_MISC_NEW_CORE_CTL_DMA_ENABLE; 4839 REG_WR(sc, BCE_MISC_NEW_CORE_CTL, val); 4840 } 4841 4842 /* Allow bootcode to apply any additional fixes before enabling MAC. */ 4843 rc = bce_fw_sync(sc, BCE_DRV_MSG_DATA_WAIT2 | BCE_DRV_MSG_CODE_RESET); 4844 4845 /* Enable link state change interrupt generation. */ 4846 REG_WR(sc, BCE_HC_ATTN_BITS_ENABLE, STATUS_ATTN_BITS_LINK_STATE); 4847 4848 /* Enable all remaining blocks in the MAC. */ 4849 if ((BCE_CHIP_NUM(sc) == BCE_CHIP_NUM_5709) || 4850 (BCE_CHIP_NUM(sc) == BCE_CHIP_NUM_5716)) 4851 REG_WR(sc, BCE_MISC_ENABLE_SET_BITS, BCE_MISC_ENABLE_DEFAULT_XI); 4852 else 4853 REG_WR(sc, BCE_MISC_ENABLE_SET_BITS, BCE_MISC_ENABLE_DEFAULT); 4854 4855 REG_RD(sc, BCE_MISC_ENABLE_SET_BITS); 4856 DELAY(20); 4857 4858 /* Save the current host coalescing block settings. */ 4859 sc->hc_command = REG_RD(sc, BCE_HC_COMMAND); 4860 4861 bce_blockinit_exit: 4862 DBEXIT(BCE_VERBOSE_RESET); 4863 4864 return (rc); 4865 } 4866 4867 4868 /****************************************************************************/ 4869 /* Encapsulate an mbuf into the rx_bd chain. */ 4870 /* */ 4871 /* Returns: */ 4872 /* 0 for success, positive value for failure. */ 4873 /****************************************************************************/ 4874 static int 4875 bce_get_rx_buf(struct bce_softc *sc, struct mbuf *m, u16 *prod, 4876 u16 *chain_prod, u32 *prod_bseq) 4877 { 4878 bus_dmamap_t map; 4879 bus_dma_segment_t segs[BCE_MAX_SEGMENTS]; 4880 struct mbuf *m_new = NULL; 4881 struct rx_bd *rxbd; 4882 int nsegs, error, rc = 0; 4883 #ifdef BCE_DEBUG 4884 u16 debug_chain_prod = *chain_prod; 4885 #endif 4886 4887 DBENTER(BCE_EXTREME_RESET | BCE_EXTREME_RECV | BCE_EXTREME_LOAD); 4888 4889 /* Make sure the inputs are valid. */ 4890 DBRUNIF((*chain_prod > MAX_RX_BD), 4891 BCE_PRINTF("%s(%d): RX producer out of range: 0x%04X > 0x%04X\n", 4892 __FILE__, __LINE__, *chain_prod, (u16) MAX_RX_BD)); 4893 4894 DBPRINT(sc, BCE_EXTREME_RECV, "%s(enter): prod = 0x%04X, chain_prod = 0x%04X, " 4895 "prod_bseq = 0x%08X\n", __FUNCTION__, *prod, *chain_prod, *prod_bseq); 4896 4897 /* Update some debug statistic counters */ 4898 DBRUNIF((sc->free_rx_bd < sc->rx_low_watermark), 4899 sc->rx_low_watermark = sc->free_rx_bd); 4900 DBRUNIF((sc->free_rx_bd == sc->max_rx_bd), sc->rx_empty_count++); 4901 4902 /* Check whether this is a new mbuf allocation. */ 4903 if (m == NULL) { 4904 4905 /* Simulate an mbuf allocation failure. */ 4906 DBRUNIF(DB_RANDOMTRUE(mbuf_alloc_failed_sim_control), 4907 sc->mbuf_alloc_failed_count++; 4908 sc->mbuf_alloc_failed_sim_count++; 4909 rc = ENOBUFS; 4910 goto bce_get_rx_buf_exit); 4911 4912 /* This is a new mbuf allocation. */ 4913 #ifdef BCE_JUMBO_HDRSPLIT 4914 MGETHDR(m_new, M_DONTWAIT, MT_DATA); 4915 #else 4916 if (sc->rx_bd_mbuf_alloc_size <= MCLBYTES) 4917 m_new = m_getcl(M_DONTWAIT, MT_DATA, M_PKTHDR); 4918 else 4919 m_new = m_getjcl(M_DONTWAIT, MT_DATA, M_PKTHDR, sc->rx_bd_mbuf_alloc_size); 4920 #endif 4921 4922 if (m_new == NULL) { 4923 sc->mbuf_alloc_failed_count++; 4924 rc = ENOBUFS; 4925 goto bce_get_rx_buf_exit; 4926 } 4927 4928 DBRUN(sc->debug_rx_mbuf_alloc++); 4929 } else { 4930 /* Reuse an existing mbuf. */ 4931 m_new = m; 4932 } 4933 4934 /* Make sure we have a valid packet header. */ 4935 M_ASSERTPKTHDR(m_new); 4936 4937 /* Initialize the mbuf size and pad if necessary for alignment. */ 4938 m_new->m_pkthdr.len = m_new->m_len = sc->rx_bd_mbuf_alloc_size; 4939 m_adj(m_new, sc->rx_bd_mbuf_align_pad); 4940 4941 /* ToDo: Consider calling m_fragment() to test error handling. */ 4942 4943 /* Map the mbuf cluster into device memory. */ 4944 map = sc->rx_mbuf_map[*chain_prod]; 4945 error = bus_dmamap_load_mbuf_sg(sc->rx_mbuf_tag, map, m_new, 4946 segs, &nsegs, BUS_DMA_NOWAIT); 4947 4948 /* Handle any mapping errors. */ 4949 if (error) { 4950 BCE_PRINTF("%s(%d): Error mapping mbuf into RX chain (%d)!\n", 4951 __FILE__, __LINE__, error); 4952 4953 sc->dma_map_addr_rx_failed_count++; 4954 m_freem(m_new); 4955 4956 DBRUN(sc->debug_rx_mbuf_alloc--); 4957 4958 rc = ENOBUFS; 4959 goto bce_get_rx_buf_exit; 4960 } 4961 4962 /* All mbufs must map to a single segment. */ 4963 KASSERT(nsegs == 1, ("%s(): Too many segments returned (%d)!", 4964 __FUNCTION__, nsegs)); 4965 4966 /* ToDo: Do we need bus_dmamap_sync(,,BUS_DMASYNC_PREREAD) here? */ 4967 4968 /* Setup the rx_bd for the segment. */ 4969 rxbd = &sc->rx_bd_chain[RX_PAGE(*chain_prod)][RX_IDX(*chain_prod)]; 4970 4971 rxbd->rx_bd_haddr_lo = htole32(BCE_ADDR_LO(segs[0].ds_addr)); 4972 rxbd->rx_bd_haddr_hi = htole32(BCE_ADDR_HI(segs[0].ds_addr)); 4973 rxbd->rx_bd_len = htole32(segs[0].ds_len); 4974 rxbd->rx_bd_flags = htole32(RX_BD_FLAGS_START | RX_BD_FLAGS_END); 4975 *prod_bseq += segs[0].ds_len; 4976 4977 /* Save the mbuf and update our counter. */ 4978 sc->rx_mbuf_ptr[*chain_prod] = m_new; 4979 sc->free_rx_bd -= nsegs; 4980 4981 DBRUNMSG(BCE_INSANE_RECV, bce_dump_rx_mbuf_chain(sc, debug_chain_prod, 4982 nsegs)); 4983 4984 DBPRINT(sc, BCE_EXTREME_RECV, "%s(exit): prod = 0x%04X, chain_prod = 0x%04X, " 4985 "prod_bseq = 0x%08X\n", __FUNCTION__, *prod, *chain_prod, *prod_bseq); 4986 4987 bce_get_rx_buf_exit: 4988 DBEXIT(BCE_EXTREME_RESET | BCE_EXTREME_RECV | BCE_EXTREME_LOAD); 4989 4990 return(rc); 4991 } 4992 4993 4994 #ifdef BCE_JUMBO_HDRSPLIT 4995 /****************************************************************************/ 4996 /* Encapsulate an mbuf cluster into the page chain. */ 4997 /* */ 4998 /* Returns: */ 4999 /* 0 for success, positive value for failure. */ 5000 /****************************************************************************/ 5001 static int 5002 bce_get_pg_buf(struct bce_softc *sc, struct mbuf *m, u16 *prod, 5003 u16 *prod_idx) 5004 { 5005 bus_dmamap_t map; 5006 bus_addr_t busaddr; 5007 struct mbuf *m_new = NULL; 5008 struct rx_bd *pgbd; 5009 int error, rc = 0; 5010 #ifdef BCE_DEBUG 5011 u16 debug_prod_idx = *prod_idx; 5012 #endif 5013 5014 DBENTER(BCE_EXTREME_RESET | BCE_EXTREME_RECV | BCE_EXTREME_LOAD); 5015 5016 /* Make sure the inputs are valid. */ 5017 DBRUNIF((*prod_idx > MAX_PG_BD), 5018 BCE_PRINTF("%s(%d): page producer out of range: 0x%04X > 0x%04X\n", 5019 __FILE__, __LINE__, *prod_idx, (u16) MAX_PG_BD)); 5020 5021 DBPRINT(sc, BCE_EXTREME_RECV, "%s(enter): prod = 0x%04X, " 5022 "chain_prod = 0x%04X\n", __FUNCTION__, *prod, *prod_idx); 5023 5024 /* Update counters if we've hit a new low or run out of pages. */ 5025 DBRUNIF((sc->free_pg_bd < sc->pg_low_watermark), 5026 sc->pg_low_watermark = sc->free_pg_bd); 5027 DBRUNIF((sc->free_pg_bd == sc->max_pg_bd), sc->pg_empty_count++); 5028 5029 /* Check whether this is a new mbuf allocation. */ 5030 if (m == NULL) { 5031 5032 /* Simulate an mbuf allocation failure. */ 5033 DBRUNIF(DB_RANDOMTRUE(mbuf_alloc_failed_sim_control), 5034 sc->mbuf_alloc_failed_count++; 5035 sc->mbuf_alloc_failed_sim_count++; 5036 rc = ENOBUFS; 5037 goto bce_get_pg_buf_exit); 5038 5039 /* This is a new mbuf allocation. */ 5040 m_new = m_getcl(M_DONTWAIT, MT_DATA, 0); 5041 if (m_new == NULL) { 5042 sc->mbuf_alloc_failed_count++; 5043 rc = ENOBUFS; 5044 goto bce_get_pg_buf_exit; 5045 } 5046 5047 DBRUN(sc->debug_pg_mbuf_alloc++); 5048 } else { 5049 /* Reuse an existing mbuf. */ 5050 m_new = m; 5051 m_new->m_data = m_new->m_ext.ext_buf; 5052 } 5053 5054 m_new->m_len = sc->pg_bd_mbuf_alloc_size; 5055 5056 /* ToDo: Consider calling m_fragment() to test error handling. */ 5057 5058 /* Map the mbuf cluster into device memory. */ 5059 map = sc->pg_mbuf_map[*prod_idx]; 5060 error = bus_dmamap_load(sc->pg_mbuf_tag, map, mtod(m_new, void *), 5061 sc->pg_bd_mbuf_alloc_size, bce_dma_map_addr, &busaddr, BUS_DMA_NOWAIT); 5062 5063 /* Handle any mapping errors. */ 5064 if (error) { 5065 BCE_PRINTF("%s(%d): Error mapping mbuf into page chain!\n", 5066 __FILE__, __LINE__); 5067 5068 m_freem(m_new); 5069 DBRUN(sc->debug_pg_mbuf_alloc--); 5070 5071 rc = ENOBUFS; 5072 goto bce_get_pg_buf_exit; 5073 } 5074 5075 /* ToDo: Do we need bus_dmamap_sync(,,BUS_DMASYNC_PREREAD) here? */ 5076 5077 /* 5078 * The page chain uses the same rx_bd data structure 5079 * as the receive chain but doesn't require a byte sequence (bseq). 5080 */ 5081 pgbd = &sc->pg_bd_chain[PG_PAGE(*prod_idx)][PG_IDX(*prod_idx)]; 5082 5083 pgbd->rx_bd_haddr_lo = htole32(BCE_ADDR_LO(busaddr)); 5084 pgbd->rx_bd_haddr_hi = htole32(BCE_ADDR_HI(busaddr)); 5085 pgbd->rx_bd_len = htole32(sc->pg_bd_mbuf_alloc_size); 5086 pgbd->rx_bd_flags = htole32(RX_BD_FLAGS_START | RX_BD_FLAGS_END); 5087 5088 /* Save the mbuf and update our counter. */ 5089 sc->pg_mbuf_ptr[*prod_idx] = m_new; 5090 sc->free_pg_bd--; 5091 5092 DBRUNMSG(BCE_INSANE_RECV, bce_dump_pg_mbuf_chain(sc, debug_prod_idx, 5093 1)); 5094 5095 DBPRINT(sc, BCE_EXTREME_RECV, "%s(exit): prod = 0x%04X, " 5096 "prod_idx = 0x%04X\n", __FUNCTION__, *prod, *prod_idx); 5097 5098 bce_get_pg_buf_exit: 5099 DBEXIT(BCE_EXTREME_RESET | BCE_EXTREME_RECV | BCE_EXTREME_LOAD); 5100 5101 return(rc); 5102 } 5103 #endif /* BCE_JUMBO_HDRSPLIT */ 5104 5105 /****************************************************************************/ 5106 /* Initialize the TX context memory. */ 5107 /* */ 5108 /* Returns: */ 5109 /* Nothing */ 5110 /****************************************************************************/ 5111 static void 5112 bce_init_tx_context(struct bce_softc *sc) 5113 { 5114 u32 val; 5115 5116 DBENTER(BCE_VERBOSE_RESET | BCE_VERBOSE_SEND | BCE_VERBOSE_CTX); 5117 5118 /* Initialize the context ID for an L2 TX chain. */ 5119 if ((BCE_CHIP_NUM(sc) == BCE_CHIP_NUM_5709) || 5120 (BCE_CHIP_NUM(sc) == BCE_CHIP_NUM_5716)) { 5121 /* Set the CID type to support an L2 connection. */ 5122 val = BCE_L2CTX_TX_TYPE_TYPE_L2_XI | BCE_L2CTX_TX_TYPE_SIZE_L2_XI; 5123 CTX_WR(sc, GET_CID_ADDR(TX_CID), BCE_L2CTX_TX_TYPE_XI, val); 5124 val = BCE_L2CTX_TX_CMD_TYPE_TYPE_L2_XI | (8 << 16); 5125 CTX_WR(sc, GET_CID_ADDR(TX_CID), BCE_L2CTX_TX_CMD_TYPE_XI, val); 5126 5127 /* Point the hardware to the first page in the chain. */ 5128 val = BCE_ADDR_HI(sc->tx_bd_chain_paddr[0]); 5129 CTX_WR(sc, GET_CID_ADDR(TX_CID), BCE_L2CTX_TX_TBDR_BHADDR_HI_XI, val); 5130 val = BCE_ADDR_LO(sc->tx_bd_chain_paddr[0]); 5131 CTX_WR(sc, GET_CID_ADDR(TX_CID), BCE_L2CTX_TX_TBDR_BHADDR_LO_XI, val); 5132 } else { 5133 /* Set the CID type to support an L2 connection. */ 5134 val = BCE_L2CTX_TX_TYPE_TYPE_L2 | BCE_L2CTX_TX_TYPE_SIZE_L2; 5135 CTX_WR(sc, GET_CID_ADDR(TX_CID), BCE_L2CTX_TX_TYPE, val); 5136 val = BCE_L2CTX_TX_CMD_TYPE_TYPE_L2 | (8 << 16); 5137 CTX_WR(sc, GET_CID_ADDR(TX_CID), BCE_L2CTX_TX_CMD_TYPE, val); 5138 5139 /* Point the hardware to the first page in the chain. */ 5140 val = BCE_ADDR_HI(sc->tx_bd_chain_paddr[0]); 5141 CTX_WR(sc, GET_CID_ADDR(TX_CID), BCE_L2CTX_TX_TBDR_BHADDR_HI, val); 5142 val = BCE_ADDR_LO(sc->tx_bd_chain_paddr[0]); 5143 CTX_WR(sc, GET_CID_ADDR(TX_CID), BCE_L2CTX_TX_TBDR_BHADDR_LO, val); 5144 } 5145 5146 DBEXIT(BCE_VERBOSE_RESET | BCE_VERBOSE_SEND | BCE_VERBOSE_CTX); 5147 } 5148 5149 5150 /****************************************************************************/ 5151 /* Allocate memory and initialize the TX data structures. */ 5152 /* */ 5153 /* Returns: */ 5154 /* 0 for success, positive value for failure. */ 5155 /****************************************************************************/ 5156 static int 5157 bce_init_tx_chain(struct bce_softc *sc) 5158 { 5159 struct tx_bd *txbd; 5160 int i, rc = 0; 5161 5162 DBENTER(BCE_VERBOSE_RESET | BCE_VERBOSE_SEND | BCE_VERBOSE_LOAD); 5163 5164 /* Set the initial TX producer/consumer indices. */ 5165 sc->tx_prod = 0; 5166 sc->tx_cons = 0; 5167 sc->tx_prod_bseq = 0; 5168 sc->used_tx_bd = 0; 5169 sc->max_tx_bd = USABLE_TX_BD; 5170 DBRUN(sc->tx_hi_watermark = USABLE_TX_BD); 5171 DBRUN(sc->tx_full_count = 0); 5172 5173 /* 5174 * The NetXtreme II supports a linked-list structre called 5175 * a Buffer Descriptor Chain (or BD chain). A BD chain 5176 * consists of a series of 1 or more chain pages, each of which 5177 * consists of a fixed number of BD entries. 5178 * The last BD entry on each page is a pointer to the next page 5179 * in the chain, and the last pointer in the BD chain 5180 * points back to the beginning of the chain. 5181 */ 5182 5183 /* Set the TX next pointer chain entries. */ 5184 for (i = 0; i < TX_PAGES; i++) { 5185 int j; 5186 5187 txbd = &sc->tx_bd_chain[i][USABLE_TX_BD_PER_PAGE]; 5188 5189 /* Check if we've reached the last page. */ 5190 if (i == (TX_PAGES - 1)) 5191 j = 0; 5192 else 5193 j = i + 1; 5194 5195 txbd->tx_bd_haddr_hi = htole32(BCE_ADDR_HI(sc->tx_bd_chain_paddr[j])); 5196 txbd->tx_bd_haddr_lo = htole32(BCE_ADDR_LO(sc->tx_bd_chain_paddr[j])); 5197 } 5198 5199 bce_init_tx_context(sc); 5200 5201 DBRUNMSG(BCE_INSANE_SEND, bce_dump_tx_chain(sc, 0, TOTAL_TX_BD)); 5202 DBEXIT(BCE_VERBOSE_RESET | BCE_VERBOSE_SEND | BCE_VERBOSE_LOAD); 5203 5204 return(rc); 5205 } 5206 5207 5208 /****************************************************************************/ 5209 /* Free memory and clear the TX data structures. */ 5210 /* */ 5211 /* Returns: */ 5212 /* Nothing. */ 5213 /****************************************************************************/ 5214 static void 5215 bce_free_tx_chain(struct bce_softc *sc) 5216 { 5217 int i; 5218 5219 DBENTER(BCE_VERBOSE_RESET | BCE_VERBOSE_SEND | BCE_VERBOSE_UNLOAD); 5220 5221 /* Unmap, unload, and free any mbufs still in the TX mbuf chain. */ 5222 for (i = 0; i < TOTAL_TX_BD; i++) { 5223 if (sc->tx_mbuf_ptr[i] != NULL) { 5224 if (sc->tx_mbuf_map[i] != NULL) 5225 bus_dmamap_sync(sc->tx_mbuf_tag, sc->tx_mbuf_map[i], 5226 BUS_DMASYNC_POSTWRITE); 5227 m_freem(sc->tx_mbuf_ptr[i]); 5228 sc->tx_mbuf_ptr[i] = NULL; 5229 DBRUN(sc->debug_tx_mbuf_alloc--); 5230 } 5231 } 5232 5233 /* Clear each TX chain page. */ 5234 for (i = 0; i < TX_PAGES; i++) 5235 bzero((char *)sc->tx_bd_chain[i], BCE_TX_CHAIN_PAGE_SZ); 5236 5237 sc->used_tx_bd = 0; 5238 5239 /* Check if we lost any mbufs in the process. */ 5240 DBRUNIF((sc->debug_tx_mbuf_alloc), 5241 BCE_PRINTF("%s(%d): Memory leak! Lost %d mbufs " 5242 "from tx chain!\n", 5243 __FILE__, __LINE__, sc->debug_tx_mbuf_alloc)); 5244 5245 DBEXIT(BCE_VERBOSE_RESET | BCE_VERBOSE_SEND | BCE_VERBOSE_UNLOAD); 5246 } 5247 5248 5249 /****************************************************************************/ 5250 /* Initialize the RX context memory. */ 5251 /* */ 5252 /* Returns: */ 5253 /* Nothing */ 5254 /****************************************************************************/ 5255 static void 5256 bce_init_rx_context(struct bce_softc *sc) 5257 { 5258 u32 val; 5259 5260 DBENTER(BCE_VERBOSE_RESET | BCE_VERBOSE_RECV | BCE_VERBOSE_CTX); 5261 5262 /* Initialize the type, size, and BD cache levels for the RX context. */ 5263 val = BCE_L2CTX_RX_CTX_TYPE_CTX_BD_CHN_TYPE_VALUE | 5264 BCE_L2CTX_RX_CTX_TYPE_SIZE_L2 | 5265 (0x02 << BCE_L2CTX_RX_BD_PRE_READ_SHIFT); 5266 5267 /* 5268 * Set the level for generating pause frames 5269 * when the number of available rx_bd's gets 5270 * too low (the low watermark) and the level 5271 * when pause frames can be stopped (the high 5272 * watermark). 5273 */ 5274 if ((BCE_CHIP_NUM(sc) == BCE_CHIP_NUM_5709) || 5275 (BCE_CHIP_NUM(sc) == BCE_CHIP_NUM_5716)) { 5276 u32 lo_water, hi_water; 5277 5278 lo_water = BCE_L2CTX_RX_LO_WATER_MARK_DEFAULT; 5279 hi_water = USABLE_RX_BD / 4; 5280 5281 lo_water /= BCE_L2CTX_RX_LO_WATER_MARK_SCALE; 5282 hi_water /= BCE_L2CTX_RX_HI_WATER_MARK_SCALE; 5283 5284 if (hi_water > 0xf) 5285 hi_water = 0xf; 5286 else if (hi_water == 0) 5287 lo_water = 0; 5288 val |= (lo_water << BCE_L2CTX_RX_LO_WATER_MARK_SHIFT) | 5289 (hi_water << BCE_L2CTX_RX_HI_WATER_MARK_SHIFT); 5290 } 5291 5292 CTX_WR(sc, GET_CID_ADDR(RX_CID), BCE_L2CTX_RX_CTX_TYPE, val); 5293 5294 /* Setup the MQ BIN mapping for l2_ctx_host_bseq. */ 5295 if ((BCE_CHIP_NUM(sc) == BCE_CHIP_NUM_5709) || 5296 (BCE_CHIP_NUM(sc) == BCE_CHIP_NUM_5716)) { 5297 val = REG_RD(sc, BCE_MQ_MAP_L2_5); 5298 REG_WR(sc, BCE_MQ_MAP_L2_5, val | BCE_MQ_MAP_L2_5_ARM); 5299 } 5300 5301 /* Point the hardware to the first page in the chain. */ 5302 val = BCE_ADDR_HI(sc->rx_bd_chain_paddr[0]); 5303 CTX_WR(sc, GET_CID_ADDR(RX_CID), BCE_L2CTX_RX_NX_BDHADDR_HI, val); 5304 val = BCE_ADDR_LO(sc->rx_bd_chain_paddr[0]); 5305 CTX_WR(sc, GET_CID_ADDR(RX_CID), BCE_L2CTX_RX_NX_BDHADDR_LO, val); 5306 5307 DBEXIT(BCE_VERBOSE_RESET | BCE_VERBOSE_RECV | BCE_VERBOSE_CTX); 5308 } 5309 5310 5311 /****************************************************************************/ 5312 /* Allocate memory and initialize the RX data structures. */ 5313 /* */ 5314 /* Returns: */ 5315 /* 0 for success, positive value for failure. */ 5316 /****************************************************************************/ 5317 static int 5318 bce_init_rx_chain(struct bce_softc *sc) 5319 { 5320 struct rx_bd *rxbd; 5321 int i, rc = 0; 5322 5323 DBENTER(BCE_VERBOSE_RESET | BCE_VERBOSE_RECV | BCE_VERBOSE_LOAD | 5324 BCE_VERBOSE_CTX); 5325 5326 /* Initialize the RX producer and consumer indices. */ 5327 sc->rx_prod = 0; 5328 sc->rx_cons = 0; 5329 sc->rx_prod_bseq = 0; 5330 sc->free_rx_bd = USABLE_RX_BD; 5331 sc->max_rx_bd = USABLE_RX_BD; 5332 DBRUN(sc->rx_low_watermark = sc->max_rx_bd); 5333 DBRUN(sc->rx_empty_count = 0); 5334 5335 /* Initialize the RX next pointer chain entries. */ 5336 for (i = 0; i < RX_PAGES; i++) { 5337 int j; 5338 5339 rxbd = &sc->rx_bd_chain[i][USABLE_RX_BD_PER_PAGE]; 5340 5341 /* Check if we've reached the last page. */ 5342 if (i == (RX_PAGES - 1)) 5343 j = 0; 5344 else 5345 j = i + 1; 5346 5347 /* Setup the chain page pointers. */ 5348 rxbd->rx_bd_haddr_hi = htole32(BCE_ADDR_HI(sc->rx_bd_chain_paddr[j])); 5349 rxbd->rx_bd_haddr_lo = htole32(BCE_ADDR_LO(sc->rx_bd_chain_paddr[j])); 5350 } 5351 5352 /* Fill up the RX chain. */ 5353 bce_fill_rx_chain(sc); 5354 5355 for (i = 0; i < RX_PAGES; i++) { 5356 bus_dmamap_sync(sc->rx_bd_chain_tag, sc->rx_bd_chain_map[i], 5357 BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE); 5358 } 5359 5360 bce_init_rx_context(sc); 5361 5362 DBRUNMSG(BCE_EXTREME_RECV, bce_dump_rx_chain(sc, 0, TOTAL_RX_BD)); 5363 DBEXIT(BCE_VERBOSE_RESET | BCE_VERBOSE_RECV | BCE_VERBOSE_LOAD | 5364 BCE_VERBOSE_CTX); 5365 /* ToDo: Are there possible failure modes here? */ 5366 return(rc); 5367 } 5368 5369 5370 /****************************************************************************/ 5371 /* Add mbufs to the RX chain until its full or an mbuf allocation error */ 5372 /* occurs. */ 5373 /* */ 5374 /* Returns: */ 5375 /* Nothing */ 5376 /****************************************************************************/ 5377 static void 5378 bce_fill_rx_chain(struct bce_softc *sc) 5379 { 5380 u16 prod, prod_idx; 5381 u32 prod_bseq; 5382 5383 DBENTER(BCE_VERBOSE_RESET | BCE_EXTREME_RECV | BCE_VERBOSE_LOAD | 5384 BCE_VERBOSE_CTX); 5385 5386 /* Get the RX chain producer indices. */ 5387 prod = sc->rx_prod; 5388 prod_bseq = sc->rx_prod_bseq; 5389 5390 /* Keep filling the RX chain until it's full. */ 5391 while (sc->free_rx_bd > 0) { 5392 prod_idx = RX_CHAIN_IDX(prod); 5393 if (bce_get_rx_buf(sc, NULL, &prod, &prod_idx, &prod_bseq)) { 5394 /* Bail out if we can't add an mbuf to the chain. */ 5395 break; 5396 } 5397 prod = NEXT_RX_BD(prod); 5398 } 5399 5400 /* Save the RX chain producer indices. */ 5401 sc->rx_prod = prod; 5402 sc->rx_prod_bseq = prod_bseq; 5403 5404 DBRUNIF(((prod & USABLE_RX_BD_PER_PAGE) == USABLE_RX_BD_PER_PAGE), 5405 BCE_PRINTF("%s(): Invalid rx_prod value: 0x%04X\n", 5406 __FUNCTION__, sc->rx_prod)); 5407 5408 /* Write the mailbox and tell the chip about the waiting rx_bd's. */ 5409 REG_WR16(sc, MB_GET_CID_ADDR(RX_CID) + BCE_L2MQ_RX_HOST_BDIDX, 5410 sc->rx_prod); 5411 REG_WR(sc, MB_GET_CID_ADDR(RX_CID) + BCE_L2MQ_RX_HOST_BSEQ, 5412 sc->rx_prod_bseq); 5413 5414 DBEXIT(BCE_VERBOSE_RESET | BCE_EXTREME_RECV | BCE_VERBOSE_LOAD | 5415 BCE_VERBOSE_CTX); 5416 } 5417 5418 5419 /****************************************************************************/ 5420 /* Free memory and clear the RX data structures. */ 5421 /* */ 5422 /* Returns: */ 5423 /* Nothing. */ 5424 /****************************************************************************/ 5425 static void 5426 bce_free_rx_chain(struct bce_softc *sc) 5427 { 5428 int i; 5429 5430 DBENTER(BCE_VERBOSE_RESET | BCE_VERBOSE_RECV | BCE_VERBOSE_UNLOAD); 5431 5432 /* Free any mbufs still in the RX mbuf chain. */ 5433 for (i = 0; i < TOTAL_RX_BD; i++) { 5434 if (sc->rx_mbuf_ptr[i] != NULL) { 5435 if (sc->rx_mbuf_map[i] != NULL) 5436 bus_dmamap_sync(sc->rx_mbuf_tag, sc->rx_mbuf_map[i], 5437 BUS_DMASYNC_POSTREAD); 5438 m_freem(sc->rx_mbuf_ptr[i]); 5439 sc->rx_mbuf_ptr[i] = NULL; 5440 DBRUN(sc->debug_rx_mbuf_alloc--); 5441 } 5442 } 5443 5444 /* Clear each RX chain page. */ 5445 for (i = 0; i < RX_PAGES; i++) 5446 bzero((char *)sc->rx_bd_chain[i], BCE_RX_CHAIN_PAGE_SZ); 5447 5448 sc->free_rx_bd = sc->max_rx_bd; 5449 5450 /* Check if we lost any mbufs in the process. */ 5451 DBRUNIF((sc->debug_rx_mbuf_alloc), 5452 BCE_PRINTF("%s(): Memory leak! Lost %d mbufs from rx chain!\n", 5453 __FUNCTION__, sc->debug_rx_mbuf_alloc)); 5454 5455 DBEXIT(BCE_VERBOSE_RESET | BCE_VERBOSE_RECV | BCE_VERBOSE_UNLOAD); 5456 } 5457 5458 5459 #ifdef BCE_JUMBO_HDRSPLIT 5460 /****************************************************************************/ 5461 /* Allocate memory and initialize the page data structures. */ 5462 /* Assumes that bce_init_rx_chain() has not already been called. */ 5463 /* */ 5464 /* Returns: */ 5465 /* 0 for success, positive value for failure. */ 5466 /****************************************************************************/ 5467 static int 5468 bce_init_pg_chain(struct bce_softc *sc) 5469 { 5470 struct rx_bd *pgbd; 5471 int i, rc = 0; 5472 u32 val; 5473 5474 DBENTER(BCE_VERBOSE_RESET | BCE_VERBOSE_RECV | BCE_VERBOSE_LOAD | 5475 BCE_VERBOSE_CTX); 5476 5477 /* Initialize the page producer and consumer indices. */ 5478 sc->pg_prod = 0; 5479 sc->pg_cons = 0; 5480 sc->free_pg_bd = USABLE_PG_BD; 5481 sc->max_pg_bd = USABLE_PG_BD; 5482 DBRUN(sc->pg_low_watermark = sc->max_pg_bd); 5483 DBRUN(sc->pg_empty_count = 0); 5484 5485 /* Initialize the page next pointer chain entries. */ 5486 for (i = 0; i < PG_PAGES; i++) { 5487 int j; 5488 5489 pgbd = &sc->pg_bd_chain[i][USABLE_PG_BD_PER_PAGE]; 5490 5491 /* Check if we've reached the last page. */ 5492 if (i == (PG_PAGES - 1)) 5493 j = 0; 5494 else 5495 j = i + 1; 5496 5497 /* Setup the chain page pointers. */ 5498 pgbd->rx_bd_haddr_hi = htole32(BCE_ADDR_HI(sc->pg_bd_chain_paddr[j])); 5499 pgbd->rx_bd_haddr_lo = htole32(BCE_ADDR_LO(sc->pg_bd_chain_paddr[j])); 5500 } 5501 5502 /* Setup the MQ BIN mapping for host_pg_bidx. */ 5503 if ((BCE_CHIP_NUM(sc) == BCE_CHIP_NUM_5709) || 5504 (BCE_CHIP_NUM(sc) == BCE_CHIP_NUM_5716)) 5505 REG_WR(sc, BCE_MQ_MAP_L2_3, BCE_MQ_MAP_L2_3_DEFAULT); 5506 5507 CTX_WR(sc, GET_CID_ADDR(RX_CID), BCE_L2CTX_RX_PG_BUF_SIZE, 0); 5508 5509 /* Configure the rx_bd and page chain mbuf cluster size. */ 5510 val = (sc->rx_bd_mbuf_data_len << 16) | sc->pg_bd_mbuf_alloc_size; 5511 CTX_WR(sc, GET_CID_ADDR(RX_CID), BCE_L2CTX_RX_PG_BUF_SIZE, val); 5512 5513 /* Configure the context reserved for jumbo support. */ 5514 CTX_WR(sc, GET_CID_ADDR(RX_CID), BCE_L2CTX_RX_RBDC_KEY, 5515 BCE_L2CTX_RX_RBDC_JUMBO_KEY); 5516 5517 /* Point the hardware to the first page in the page chain. */ 5518 val = BCE_ADDR_HI(sc->pg_bd_chain_paddr[0]); 5519 CTX_WR(sc, GET_CID_ADDR(RX_CID), BCE_L2CTX_RX_NX_PG_BDHADDR_HI, val); 5520 val = BCE_ADDR_LO(sc->pg_bd_chain_paddr[0]); 5521 CTX_WR(sc, GET_CID_ADDR(RX_CID), BCE_L2CTX_RX_NX_PG_BDHADDR_LO, val); 5522 5523 /* Fill up the page chain. */ 5524 bce_fill_pg_chain(sc); 5525 5526 for (i = 0; i < PG_PAGES; i++) { 5527 bus_dmamap_sync(sc->pg_bd_chain_tag, sc->pg_bd_chain_map[i], 5528 BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE); 5529 } 5530 5531 DBRUNMSG(BCE_EXTREME_RECV, bce_dump_pg_chain(sc, 0, TOTAL_PG_BD)); 5532 DBEXIT(BCE_VERBOSE_RESET | BCE_VERBOSE_RECV | BCE_VERBOSE_LOAD | 5533 BCE_VERBOSE_CTX); 5534 return(rc); 5535 } 5536 5537 5538 /****************************************************************************/ 5539 /* Add mbufs to the page chain until its full or an mbuf allocation error */ 5540 /* occurs. */ 5541 /* */ 5542 /* Returns: */ 5543 /* Nothing */ 5544 /****************************************************************************/ 5545 static void 5546 bce_fill_pg_chain(struct bce_softc *sc) 5547 { 5548 u16 prod, prod_idx; 5549 5550 DBENTER(BCE_VERBOSE_RESET | BCE_EXTREME_RECV | BCE_VERBOSE_LOAD | 5551 BCE_VERBOSE_CTX); 5552 5553 /* Get the page chain prodcuer index. */ 5554 prod = sc->pg_prod; 5555 5556 /* Keep filling the page chain until it's full. */ 5557 while (sc->free_pg_bd > 0) { 5558 prod_idx = PG_CHAIN_IDX(prod); 5559 if (bce_get_pg_buf(sc, NULL, &prod, &prod_idx)) { 5560 /* Bail out if we can't add an mbuf to the chain. */ 5561 break; 5562 } 5563 prod = NEXT_PG_BD(prod); 5564 } 5565 5566 /* Save the page chain producer index. */ 5567 sc->pg_prod = prod; 5568 5569 DBRUNIF(((prod & USABLE_RX_BD_PER_PAGE) == USABLE_RX_BD_PER_PAGE), 5570 BCE_PRINTF("%s(): Invalid pg_prod value: 0x%04X\n", 5571 __FUNCTION__, sc->pg_prod)); 5572 5573 /* 5574 * Write the mailbox and tell the chip about 5575 * the new rx_bd's in the page chain. 5576 */ 5577 REG_WR16(sc, MB_GET_CID_ADDR(RX_CID) + BCE_L2MQ_RX_HOST_PG_BDIDX, 5578 sc->pg_prod); 5579 5580 DBEXIT(BCE_VERBOSE_RESET | BCE_EXTREME_RECV | BCE_VERBOSE_LOAD | 5581 BCE_VERBOSE_CTX); 5582 } 5583 5584 5585 /****************************************************************************/ 5586 /* Free memory and clear the RX data structures. */ 5587 /* */ 5588 /* Returns: */ 5589 /* Nothing. */ 5590 /****************************************************************************/ 5591 static void 5592 bce_free_pg_chain(struct bce_softc *sc) 5593 { 5594 int i; 5595 5596 DBENTER(BCE_VERBOSE_RESET | BCE_VERBOSE_RECV | BCE_VERBOSE_UNLOAD); 5597 5598 /* Free any mbufs still in the mbuf page chain. */ 5599 for (i = 0; i < TOTAL_PG_BD; i++) { 5600 if (sc->pg_mbuf_ptr[i] != NULL) { 5601 if (sc->pg_mbuf_map[i] != NULL) 5602 bus_dmamap_sync(sc->pg_mbuf_tag, sc->pg_mbuf_map[i], 5603 BUS_DMASYNC_POSTREAD); 5604 m_freem(sc->pg_mbuf_ptr[i]); 5605 sc->pg_mbuf_ptr[i] = NULL; 5606 DBRUN(sc->debug_pg_mbuf_alloc--); 5607 } 5608 } 5609 5610 /* Clear each page chain pages. */ 5611 for (i = 0; i < PG_PAGES; i++) 5612 bzero((char *)sc->pg_bd_chain[i], BCE_PG_CHAIN_PAGE_SZ); 5613 5614 sc->free_pg_bd = sc->max_pg_bd; 5615 5616 /* Check if we lost any mbufs in the process. */ 5617 DBRUNIF((sc->debug_pg_mbuf_alloc), 5618 BCE_PRINTF("%s(): Memory leak! Lost %d mbufs from page chain!\n", 5619 __FUNCTION__, sc->debug_pg_mbuf_alloc)); 5620 5621 DBEXIT(BCE_VERBOSE_RESET | BCE_VERBOSE_RECV | BCE_VERBOSE_UNLOAD); 5622 } 5623 #endif /* BCE_JUMBO_HDRSPLIT */ 5624 5625 5626 /****************************************************************************/ 5627 /* Set media options. */ 5628 /* */ 5629 /* Returns: */ 5630 /* 0 for success, positive value for failure. */ 5631 /****************************************************************************/ 5632 static int 5633 bce_ifmedia_upd(struct ifnet *ifp) 5634 { 5635 struct bce_softc *sc = ifp->if_softc; 5636 5637 DBENTER(BCE_VERBOSE); 5638 5639 BCE_LOCK(sc); 5640 bce_ifmedia_upd_locked(ifp); 5641 BCE_UNLOCK(sc); 5642 5643 DBEXIT(BCE_VERBOSE); 5644 return (0); 5645 } 5646 5647 5648 /****************************************************************************/ 5649 /* Set media options. */ 5650 /* */ 5651 /* Returns: */ 5652 /* Nothing. */ 5653 /****************************************************************************/ 5654 static void 5655 bce_ifmedia_upd_locked(struct ifnet *ifp) 5656 { 5657 struct bce_softc *sc = ifp->if_softc; 5658 struct mii_data *mii; 5659 5660 DBENTER(BCE_VERBOSE); 5661 5662 BCE_LOCK_ASSERT(sc); 5663 5664 mii = device_get_softc(sc->bce_miibus); 5665 5666 /* Make sure the MII bus has been enumerated. */ 5667 if (mii) { 5668 sc->bce_link = 0; 5669 if (mii->mii_instance) { 5670 struct mii_softc *miisc; 5671 5672 LIST_FOREACH(miisc, &mii->mii_phys, mii_list) 5673 mii_phy_reset(miisc); 5674 } 5675 mii_mediachg(mii); 5676 } 5677 5678 DBEXIT(BCE_VERBOSE); 5679 } 5680 5681 5682 /****************************************************************************/ 5683 /* Reports current media status. */ 5684 /* */ 5685 /* Returns: */ 5686 /* Nothing. */ 5687 /****************************************************************************/ 5688 static void 5689 bce_ifmedia_sts(struct ifnet *ifp, struct ifmediareq *ifmr) 5690 { 5691 struct bce_softc *sc = ifp->if_softc; 5692 struct mii_data *mii; 5693 5694 DBENTER(BCE_VERBOSE); 5695 5696 BCE_LOCK(sc); 5697 5698 mii = device_get_softc(sc->bce_miibus); 5699 5700 mii_pollstat(mii); 5701 ifmr->ifm_active = mii->mii_media_active; 5702 ifmr->ifm_status = mii->mii_media_status; 5703 5704 BCE_UNLOCK(sc); 5705 5706 DBEXIT(BCE_VERBOSE); 5707 } 5708 5709 5710 /****************************************************************************/ 5711 /* Handles PHY generated interrupt events. */ 5712 /* */ 5713 /* Returns: */ 5714 /* Nothing. */ 5715 /****************************************************************************/ 5716 static void 5717 bce_phy_intr(struct bce_softc *sc) 5718 { 5719 u32 new_link_state, old_link_state; 5720 5721 DBENTER(BCE_VERBOSE_PHY | BCE_VERBOSE_INTR); 5722 5723 new_link_state = sc->status_block->status_attn_bits & 5724 STATUS_ATTN_BITS_LINK_STATE; 5725 old_link_state = sc->status_block->status_attn_bits_ack & 5726 STATUS_ATTN_BITS_LINK_STATE; 5727 5728 /* Handle any changes if the link state has changed. */ 5729 if (new_link_state != old_link_state) { 5730 5731 /* Update the status_attn_bits_ack field in the status block. */ 5732 if (new_link_state) { 5733 REG_WR(sc, BCE_PCICFG_STATUS_BIT_SET_CMD, 5734 STATUS_ATTN_BITS_LINK_STATE); 5735 DBPRINT(sc, BCE_INFO_PHY, "%s(): Link is now UP.\n", 5736 __FUNCTION__); 5737 } 5738 else { 5739 REG_WR(sc, BCE_PCICFG_STATUS_BIT_CLEAR_CMD, 5740 STATUS_ATTN_BITS_LINK_STATE); 5741 DBPRINT(sc, BCE_INFO_PHY, "%s(): Link is now DOWN.\n", 5742 __FUNCTION__); 5743 } 5744 5745 /* 5746 * Assume link is down and allow 5747 * tick routine to update the state 5748 * based on the actual media state. 5749 */ 5750 sc->bce_link = 0; 5751 callout_stop(&sc->bce_tick_callout); 5752 bce_tick(sc); 5753 } 5754 5755 /* Acknowledge the link change interrupt. */ 5756 REG_WR(sc, BCE_EMAC_STATUS, BCE_EMAC_STATUS_LINK_CHANGE); 5757 5758 DBEXIT(BCE_VERBOSE_PHY | BCE_VERBOSE_INTR); 5759 } 5760 5761 5762 /****************************************************************************/ 5763 /* Reads the receive consumer value from the status block (skipping over */ 5764 /* chain page pointer if necessary). */ 5765 /* */ 5766 /* Returns: */ 5767 /* hw_cons */ 5768 /****************************************************************************/ 5769 static inline u16 5770 bce_get_hw_rx_cons(struct bce_softc *sc) 5771 { 5772 u16 hw_cons; 5773 5774 rmb(); 5775 hw_cons = sc->status_block->status_rx_quick_consumer_index0; 5776 if ((hw_cons & USABLE_RX_BD_PER_PAGE) == USABLE_RX_BD_PER_PAGE) 5777 hw_cons++; 5778 5779 return hw_cons; 5780 } 5781 5782 /****************************************************************************/ 5783 /* Handles received frame interrupt events. */ 5784 /* */ 5785 /* Returns: */ 5786 /* Nothing. */ 5787 /****************************************************************************/ 5788 static void 5789 bce_rx_intr(struct bce_softc *sc) 5790 { 5791 struct ifnet *ifp = sc->bce_ifp; 5792 struct l2_fhdr *l2fhdr; 5793 unsigned int pkt_len; 5794 u16 sw_rx_cons, sw_rx_cons_idx, hw_rx_cons; 5795 u32 status; 5796 #ifdef BCE_JUMBO_HDRSPLIT 5797 unsigned int rem_len; 5798 u16 sw_pg_cons, sw_pg_cons_idx; 5799 #endif 5800 5801 DBENTER(BCE_VERBOSE_RECV | BCE_VERBOSE_INTR); 5802 DBRUN(sc->rx_interrupts++); 5803 DBPRINT(sc, BCE_EXTREME_RECV, "%s(enter): rx_prod = 0x%04X, " 5804 "rx_cons = 0x%04X, rx_prod_bseq = 0x%08X\n", 5805 __FUNCTION__, sc->rx_prod, sc->rx_cons, sc->rx_prod_bseq); 5806 5807 /* Prepare the RX chain pages to be accessed by the host CPU. */ 5808 for (int i = 0; i < RX_PAGES; i++) 5809 bus_dmamap_sync(sc->rx_bd_chain_tag, 5810 sc->rx_bd_chain_map[i], BUS_DMASYNC_POSTREAD); 5811 5812 #ifdef BCE_JUMBO_HDRSPLIT 5813 /* Prepare the page chain pages to be accessed by the host CPU. */ 5814 for (int i = 0; i < PG_PAGES; i++) 5815 bus_dmamap_sync(sc->pg_bd_chain_tag, 5816 sc->pg_bd_chain_map[i], BUS_DMASYNC_POSTREAD); 5817 #endif 5818 5819 /* Get the hardware's view of the RX consumer index. */ 5820 hw_rx_cons = sc->hw_rx_cons = bce_get_hw_rx_cons(sc); 5821 5822 /* Get working copies of the driver's view of the consumer indices. */ 5823 sw_rx_cons = sc->rx_cons; 5824 #ifdef BCE_JUMBO_HDRSPLIT 5825 sw_pg_cons = sc->pg_cons; 5826 #endif 5827 5828 /* Update some debug statistics counters */ 5829 DBRUNIF((sc->free_rx_bd < sc->rx_low_watermark), 5830 sc->rx_low_watermark = sc->free_rx_bd); 5831 DBRUNIF((sc->free_rx_bd == sc->max_rx_bd), sc->rx_empty_count++); 5832 5833 /* Scan through the receive chain as long as there is work to do */ 5834 /* ToDo: Consider setting a limit on the number of packets processed. */ 5835 rmb(); 5836 while (sw_rx_cons != hw_rx_cons) { 5837 struct mbuf *m0; 5838 5839 /* Convert the producer/consumer indices to an actual rx_bd index. */ 5840 sw_rx_cons_idx = RX_CHAIN_IDX(sw_rx_cons); 5841 5842 /* Unmap the mbuf from DMA space. */ 5843 bus_dmamap_sync(sc->rx_mbuf_tag, sc->rx_mbuf_map[sw_rx_cons_idx], 5844 BUS_DMASYNC_POSTREAD); 5845 bus_dmamap_unload(sc->rx_mbuf_tag, 5846 sc->rx_mbuf_map[sw_rx_cons_idx]); 5847 5848 /* Remove the mbuf from the RX chain. */ 5849 m0 = sc->rx_mbuf_ptr[sw_rx_cons_idx]; 5850 sc->rx_mbuf_ptr[sw_rx_cons_idx] = NULL; 5851 DBRUN(sc->debug_rx_mbuf_alloc--); 5852 sc->free_rx_bd++; 5853 5854 /* 5855 * Frames received on the NetXteme II are prepended with an 5856 * l2_fhdr structure which provides status information about 5857 * the received frame (including VLAN tags and checksum info). 5858 * The frames are also automatically adjusted to align the IP 5859 * header (i.e. two null bytes are inserted before the Ethernet 5860 * header). As a result the data DMA'd by the controller into 5861 * the mbuf is as follows: 5862 * 5863 * +---------+-----+---------------------+-----+ 5864 * | l2_fhdr | pad | packet data | FCS | 5865 * +---------+-----+---------------------+-----+ 5866 * 5867 * The l2_fhdr needs to be checked and skipped and the FCS needs 5868 * to be stripped before sending the packet up the stack. 5869 */ 5870 l2fhdr = mtod(m0, struct l2_fhdr *); 5871 5872 /* Get the packet data + FCS length and the status. */ 5873 pkt_len = l2fhdr->l2_fhdr_pkt_len; 5874 status = l2fhdr->l2_fhdr_status; 5875 5876 /* 5877 * Skip over the l2_fhdr and pad, resulting in the 5878 * following data in the mbuf: 5879 * +---------------------+-----+ 5880 * | packet data | FCS | 5881 * +---------------------+-----+ 5882 */ 5883 m_adj(m0, sizeof(struct l2_fhdr) + ETHER_ALIGN); 5884 5885 #ifdef BCE_JUMBO_HDRSPLIT 5886 /* 5887 * Check whether the received frame fits in a single 5888 * mbuf or not (i.e. packet data + FCS <= 5889 * sc->rx_bd_mbuf_data_len bytes). 5890 */ 5891 if (pkt_len > m0->m_len) { 5892 /* 5893 * The received frame is larger than a single mbuf. 5894 * If the frame was a TCP frame then only the TCP 5895 * header is placed in the mbuf, the remaining 5896 * payload (including FCS) is placed in the page 5897 * chain, the SPLIT flag is set, and the header 5898 * length is placed in the IP checksum field. 5899 * If the frame is not a TCP frame then the mbuf 5900 * is filled and the remaining bytes are placed 5901 * in the page chain. 5902 */ 5903 5904 DBPRINT(sc, BCE_INFO_RECV, "%s(): Found a large packet.\n", 5905 __FUNCTION__); 5906 5907 /* 5908 * When the page chain is enabled and the TCP 5909 * header has been split from the TCP payload, 5910 * the ip_xsum structure will reflect the length 5911 * of the TCP header, not the IP checksum. Set 5912 * the packet length of the mbuf accordingly. 5913 */ 5914 if (status & L2_FHDR_STATUS_SPLIT) 5915 m0->m_len = l2fhdr->l2_fhdr_ip_xsum; 5916 5917 rem_len = pkt_len - m0->m_len; 5918 5919 /* Pull mbufs off the page chain for the remaining data. */ 5920 while (rem_len > 0) { 5921 struct mbuf *m_pg; 5922 5923 sw_pg_cons_idx = PG_CHAIN_IDX(sw_pg_cons); 5924 5925 /* Remove the mbuf from the page chain. */ 5926 m_pg = sc->pg_mbuf_ptr[sw_pg_cons_idx]; 5927 sc->pg_mbuf_ptr[sw_pg_cons_idx] = NULL; 5928 DBRUN(sc->debug_pg_mbuf_alloc--); 5929 sc->free_pg_bd++; 5930 5931 /* Unmap the page chain mbuf from DMA space. */ 5932 bus_dmamap_sync(sc->pg_mbuf_tag, 5933 sc->pg_mbuf_map[sw_pg_cons_idx], 5934 BUS_DMASYNC_POSTREAD); 5935 bus_dmamap_unload(sc->pg_mbuf_tag, 5936 sc->pg_mbuf_map[sw_pg_cons_idx]); 5937 5938 /* Adjust the mbuf length. */ 5939 if (rem_len < m_pg->m_len) { 5940 /* The mbuf chain is complete. */ 5941 m_pg->m_len = rem_len; 5942 rem_len = 0; 5943 } else { 5944 /* More packet data is waiting. */ 5945 rem_len -= m_pg->m_len; 5946 } 5947 5948 /* Concatenate the mbuf cluster to the mbuf. */ 5949 m_cat(m0, m_pg); 5950 5951 sw_pg_cons = NEXT_PG_BD(sw_pg_cons); 5952 } 5953 5954 /* Set the total packet length. */ 5955 m0->m_pkthdr.len = pkt_len; 5956 5957 } else { 5958 /* 5959 * The received packet is small and fits in a 5960 * single mbuf (i.e. the l2_fhdr + pad + packet + 5961 * FCS <= MHLEN). In other words, the packet is 5962 * 154 bytes or less in size. 5963 */ 5964 5965 DBPRINT(sc, BCE_INFO_RECV, "%s(): Found a small packet.\n", 5966 __FUNCTION__); 5967 5968 /* Set the total packet length. */ 5969 m0->m_pkthdr.len = m0->m_len = pkt_len; 5970 } 5971 #else 5972 /* Set the total packet length. */ 5973 m0->m_pkthdr.len = m0->m_len = pkt_len; 5974 #endif 5975 5976 /* Remove the trailing Ethernet FCS. */ 5977 m_adj(m0, -ETHER_CRC_LEN); 5978 5979 /* Check that the resulting mbuf chain is valid. */ 5980 DBRUN(m_sanity(m0, FALSE)); 5981 DBRUNIF(((m0->m_len < ETHER_HDR_LEN) | 5982 (m0->m_pkthdr.len > BCE_MAX_JUMBO_ETHER_MTU_VLAN)), 5983 BCE_PRINTF("Invalid Ethernet frame size!\n"); 5984 m_print(m0, 128)); 5985 5986 DBRUNIF(DB_RANDOMTRUE(l2fhdr_error_sim_control), 5987 BCE_PRINTF("Simulating l2_fhdr status error.\n"); 5988 sc->l2fhdr_error_sim_count++; 5989 status = status | L2_FHDR_ERRORS_PHY_DECODE); 5990 5991 /* Check the received frame for errors. */ 5992 if (status & (L2_FHDR_ERRORS_BAD_CRC | 5993 L2_FHDR_ERRORS_PHY_DECODE | L2_FHDR_ERRORS_ALIGNMENT | 5994 L2_FHDR_ERRORS_TOO_SHORT | L2_FHDR_ERRORS_GIANT_FRAME)) { 5995 5996 /* Log the error and release the mbuf. */ 5997 ifp->if_ierrors++; 5998 sc->l2fhdr_error_count++; 5999 6000 m_freem(m0); 6001 m0 = NULL; 6002 goto bce_rx_int_next_rx; 6003 } 6004 6005 /* Send the packet to the appropriate interface. */ 6006 m0->m_pkthdr.rcvif = ifp; 6007 6008 /* Assume no hardware checksum. */ 6009 m0->m_pkthdr.csum_flags = 0; 6010 6011 /* Validate the checksum if offload enabled. */ 6012 if (ifp->if_capenable & IFCAP_RXCSUM) { 6013 6014 /* Check for an IP datagram. */ 6015 if (!(status & L2_FHDR_STATUS_SPLIT) && 6016 (status & L2_FHDR_STATUS_IP_DATAGRAM)) { 6017 m0->m_pkthdr.csum_flags |= CSUM_IP_CHECKED; 6018 6019 /* Check if the IP checksum is valid. */ 6020 if ((l2fhdr->l2_fhdr_ip_xsum ^ 0xffff) == 0) 6021 m0->m_pkthdr.csum_flags |= CSUM_IP_VALID; 6022 } 6023 6024 /* Check for a valid TCP/UDP frame. */ 6025 if (status & (L2_FHDR_STATUS_TCP_SEGMENT | 6026 L2_FHDR_STATUS_UDP_DATAGRAM)) { 6027 6028 /* Check for a good TCP/UDP checksum. */ 6029 if ((status & (L2_FHDR_ERRORS_TCP_XSUM | 6030 L2_FHDR_ERRORS_UDP_XSUM)) == 0) { 6031 m0->m_pkthdr.csum_data = 6032 l2fhdr->l2_fhdr_tcp_udp_xsum; 6033 m0->m_pkthdr.csum_flags |= (CSUM_DATA_VALID 6034 | CSUM_PSEUDO_HDR); 6035 } 6036 } 6037 } 6038 6039 /* Attach the VLAN tag. */ 6040 if (status & L2_FHDR_STATUS_L2_VLAN_TAG) { 6041 #if __FreeBSD_version < 700000 6042 VLAN_INPUT_TAG(ifp, m0, l2fhdr->l2_fhdr_vlan_tag, continue); 6043 #else 6044 m0->m_pkthdr.ether_vtag = l2fhdr->l2_fhdr_vlan_tag; 6045 m0->m_flags |= M_VLANTAG; 6046 #endif 6047 } 6048 6049 /* Increment received packet statistics. */ 6050 ifp->if_ipackets++; 6051 6052 bce_rx_int_next_rx: 6053 sw_rx_cons = NEXT_RX_BD(sw_rx_cons); 6054 6055 /* If we have a packet, pass it up the stack */ 6056 if (m0) { 6057 /* Make sure we don't lose our place when we release the lock. */ 6058 sc->rx_cons = sw_rx_cons; 6059 #ifdef BCE_JUMBO_HDRSPLIT 6060 sc->pg_cons = sw_pg_cons; 6061 #endif 6062 6063 BCE_UNLOCK(sc); 6064 (*ifp->if_input)(ifp, m0); 6065 BCE_LOCK(sc); 6066 6067 /* Recover our place. */ 6068 sw_rx_cons = sc->rx_cons; 6069 #ifdef BCE_JUMBO_HDRSPLIT 6070 sw_pg_cons = sc->pg_cons; 6071 #endif 6072 } 6073 6074 /* Refresh hw_cons to see if there's new work */ 6075 if (sw_rx_cons == hw_rx_cons) 6076 hw_rx_cons = sc->hw_rx_cons = bce_get_hw_rx_cons(sc); 6077 } 6078 6079 /* No new packets to process. Refill the RX and page chains and exit. */ 6080 #ifdef BCE_JUMBO_HDRSPLIT 6081 sc->pg_cons = sw_pg_cons; 6082 bce_fill_pg_chain(sc); 6083 #endif 6084 6085 sc->rx_cons = sw_rx_cons; 6086 bce_fill_rx_chain(sc); 6087 6088 /* Prepare the page chain pages to be accessed by the NIC. */ 6089 for (int i = 0; i < RX_PAGES; i++) 6090 bus_dmamap_sync(sc->rx_bd_chain_tag, 6091 sc->rx_bd_chain_map[i], BUS_DMASYNC_PREWRITE); 6092 6093 #ifdef BCE_JUMBO_HDRSPLIT 6094 for (int i = 0; i < PG_PAGES; i++) 6095 bus_dmamap_sync(sc->pg_bd_chain_tag, 6096 sc->pg_bd_chain_map[i], BUS_DMASYNC_PREWRITE); 6097 #endif 6098 6099 DBPRINT(sc, BCE_EXTREME_RECV, "%s(exit): rx_prod = 0x%04X, " 6100 "rx_cons = 0x%04X, rx_prod_bseq = 0x%08X\n", 6101 __FUNCTION__, sc->rx_prod, sc->rx_cons, sc->rx_prod_bseq); 6102 DBEXIT(BCE_VERBOSE_RECV | BCE_VERBOSE_INTR); 6103 } 6104 6105 6106 /****************************************************************************/ 6107 /* Reads the transmit consumer value from the status block (skipping over */ 6108 /* chain page pointer if necessary). */ 6109 /* */ 6110 /* Returns: */ 6111 /* hw_cons */ 6112 /****************************************************************************/ 6113 static inline u16 6114 bce_get_hw_tx_cons(struct bce_softc *sc) 6115 { 6116 u16 hw_cons; 6117 6118 mb(); 6119 hw_cons = sc->status_block->status_tx_quick_consumer_index0; 6120 if ((hw_cons & USABLE_TX_BD_PER_PAGE) == USABLE_TX_BD_PER_PAGE) 6121 hw_cons++; 6122 6123 return hw_cons; 6124 } 6125 6126 6127 /****************************************************************************/ 6128 /* Handles transmit completion interrupt events. */ 6129 /* */ 6130 /* Returns: */ 6131 /* Nothing. */ 6132 /****************************************************************************/ 6133 static void 6134 bce_tx_intr(struct bce_softc *sc) 6135 { 6136 struct ifnet *ifp = sc->bce_ifp; 6137 u16 hw_tx_cons, sw_tx_cons, sw_tx_chain_cons; 6138 6139 DBENTER(BCE_VERBOSE_SEND | BCE_VERBOSE_INTR); 6140 DBRUN(sc->tx_interrupts++); 6141 DBPRINT(sc, BCE_EXTREME_SEND, "%s(enter): tx_prod = 0x%04X, " 6142 "tx_cons = 0x%04X, tx_prod_bseq = 0x%08X\n", 6143 __FUNCTION__, sc->tx_prod, sc->tx_cons, sc->tx_prod_bseq); 6144 6145 BCE_LOCK_ASSERT(sc); 6146 6147 /* Get the hardware's view of the TX consumer index. */ 6148 hw_tx_cons = sc->hw_tx_cons = bce_get_hw_tx_cons(sc); 6149 sw_tx_cons = sc->tx_cons; 6150 6151 /* Prevent speculative reads from getting ahead of the status block. */ 6152 bus_space_barrier(sc->bce_btag, sc->bce_bhandle, 0, 0, 6153 BUS_SPACE_BARRIER_READ); 6154 6155 /* Cycle through any completed TX chain page entries. */ 6156 while (sw_tx_cons != hw_tx_cons) { 6157 #ifdef BCE_DEBUG 6158 struct tx_bd *txbd = NULL; 6159 #endif 6160 sw_tx_chain_cons = TX_CHAIN_IDX(sw_tx_cons); 6161 6162 DBPRINT(sc, BCE_INFO_SEND, 6163 "%s(): hw_tx_cons = 0x%04X, sw_tx_cons = 0x%04X, " 6164 "sw_tx_chain_cons = 0x%04X\n", 6165 __FUNCTION__, hw_tx_cons, sw_tx_cons, sw_tx_chain_cons); 6166 6167 DBRUNIF((sw_tx_chain_cons > MAX_TX_BD), 6168 BCE_PRINTF("%s(%d): TX chain consumer out of range! " 6169 " 0x%04X > 0x%04X\n", __FILE__, __LINE__, sw_tx_chain_cons, 6170 (int) MAX_TX_BD); 6171 bce_breakpoint(sc)); 6172 6173 DBRUN(txbd = &sc->tx_bd_chain[TX_PAGE(sw_tx_chain_cons)] 6174 [TX_IDX(sw_tx_chain_cons)]); 6175 6176 DBRUNIF((txbd == NULL), 6177 BCE_PRINTF("%s(%d): Unexpected NULL tx_bd[0x%04X]!\n", 6178 __FILE__, __LINE__, sw_tx_chain_cons); 6179 bce_breakpoint(sc)); 6180 6181 DBRUNMSG(BCE_INFO_SEND, BCE_PRINTF("%s(): ", __FUNCTION__); 6182 bce_dump_txbd(sc, sw_tx_chain_cons, txbd)); 6183 6184 /* 6185 * Free the associated mbuf. Remember 6186 * that only the last tx_bd of a packet 6187 * has an mbuf pointer and DMA map. 6188 */ 6189 if (sc->tx_mbuf_ptr[sw_tx_chain_cons] != NULL) { 6190 6191 /* Validate that this is the last tx_bd. */ 6192 DBRUNIF((!(txbd->tx_bd_flags & TX_BD_FLAGS_END)), 6193 BCE_PRINTF("%s(%d): tx_bd END flag not set but " 6194 "txmbuf == NULL!\n", __FILE__, __LINE__); 6195 bce_breakpoint(sc)); 6196 6197 DBRUNMSG(BCE_INFO_SEND, 6198 BCE_PRINTF("%s(): Unloading map/freeing mbuf " 6199 "from tx_bd[0x%04X]\n", __FUNCTION__, sw_tx_chain_cons)); 6200 6201 /* Unmap the mbuf. */ 6202 bus_dmamap_unload(sc->tx_mbuf_tag, 6203 sc->tx_mbuf_map[sw_tx_chain_cons]); 6204 6205 /* Free the mbuf. */ 6206 m_freem(sc->tx_mbuf_ptr[sw_tx_chain_cons]); 6207 sc->tx_mbuf_ptr[sw_tx_chain_cons] = NULL; 6208 DBRUN(sc->debug_tx_mbuf_alloc--); 6209 6210 ifp->if_opackets++; 6211 } 6212 6213 sc->used_tx_bd--; 6214 sw_tx_cons = NEXT_TX_BD(sw_tx_cons); 6215 6216 /* Refresh hw_cons to see if there's new work. */ 6217 hw_tx_cons = sc->hw_tx_cons = bce_get_hw_tx_cons(sc); 6218 6219 /* Prevent speculative reads from getting ahead of the status block. */ 6220 bus_space_barrier(sc->bce_btag, sc->bce_bhandle, 0, 0, 6221 BUS_SPACE_BARRIER_READ); 6222 } 6223 6224 /* Clear the TX timeout timer. */ 6225 sc->watchdog_timer = 0; 6226 6227 /* Clear the tx hardware queue full flag. */ 6228 if (sc->used_tx_bd < sc->max_tx_bd) { 6229 DBRUNIF((ifp->if_drv_flags & IFF_DRV_OACTIVE), 6230 DBPRINT(sc, BCE_INFO_SEND, 6231 "%s(): Open TX chain! %d/%d (used/total)\n", 6232 __FUNCTION__, sc->used_tx_bd, sc->max_tx_bd)); 6233 ifp->if_drv_flags &= ~IFF_DRV_OACTIVE; 6234 } 6235 6236 sc->tx_cons = sw_tx_cons; 6237 6238 DBPRINT(sc, BCE_EXTREME_SEND, "%s(exit): tx_prod = 0x%04X, " 6239 "tx_cons = 0x%04X, tx_prod_bseq = 0x%08X\n", 6240 __FUNCTION__, sc->tx_prod, sc->tx_cons, sc->tx_prod_bseq); 6241 DBEXIT(BCE_VERBOSE_SEND | BCE_VERBOSE_INTR); 6242 } 6243 6244 6245 /****************************************************************************/ 6246 /* Disables interrupt generation. */ 6247 /* */ 6248 /* Returns: */ 6249 /* Nothing. */ 6250 /****************************************************************************/ 6251 static void 6252 bce_disable_intr(struct bce_softc *sc) 6253 { 6254 DBENTER(BCE_VERBOSE_INTR); 6255 6256 REG_WR(sc, BCE_PCICFG_INT_ACK_CMD, BCE_PCICFG_INT_ACK_CMD_MASK_INT); 6257 REG_RD(sc, BCE_PCICFG_INT_ACK_CMD); 6258 6259 DBEXIT(BCE_VERBOSE_INTR); 6260 } 6261 6262 6263 /****************************************************************************/ 6264 /* Enables interrupt generation. */ 6265 /* */ 6266 /* Returns: */ 6267 /* Nothing. */ 6268 /****************************************************************************/ 6269 static void 6270 bce_enable_intr(struct bce_softc *sc, int coal_now) 6271 { 6272 DBENTER(BCE_VERBOSE_INTR); 6273 6274 REG_WR(sc, BCE_PCICFG_INT_ACK_CMD, 6275 BCE_PCICFG_INT_ACK_CMD_INDEX_VALID | 6276 BCE_PCICFG_INT_ACK_CMD_MASK_INT | sc->last_status_idx); 6277 6278 REG_WR(sc, BCE_PCICFG_INT_ACK_CMD, 6279 BCE_PCICFG_INT_ACK_CMD_INDEX_VALID | sc->last_status_idx); 6280 6281 /* Force an immediate interrupt (whether there is new data or not). */ 6282 if (coal_now) 6283 REG_WR(sc, BCE_HC_COMMAND, sc->hc_command | BCE_HC_COMMAND_COAL_NOW); 6284 6285 DBEXIT(BCE_VERBOSE_INTR); 6286 } 6287 6288 6289 /****************************************************************************/ 6290 /* Handles controller initialization. */ 6291 /* */ 6292 /* Returns: */ 6293 /* Nothing. */ 6294 /****************************************************************************/ 6295 static void 6296 bce_init_locked(struct bce_softc *sc) 6297 { 6298 struct ifnet *ifp; 6299 u32 ether_mtu = 0; 6300 6301 DBENTER(BCE_VERBOSE_RESET); 6302 6303 BCE_LOCK_ASSERT(sc); 6304 6305 ifp = sc->bce_ifp; 6306 6307 /* Check if the driver is still running and bail out if it is. */ 6308 if (ifp->if_drv_flags & IFF_DRV_RUNNING) 6309 goto bce_init_locked_exit; 6310 6311 bce_stop(sc); 6312 6313 if (bce_reset(sc, BCE_DRV_MSG_CODE_RESET)) { 6314 BCE_PRINTF("%s(%d): Controller reset failed!\n", 6315 __FILE__, __LINE__); 6316 goto bce_init_locked_exit; 6317 } 6318 6319 if (bce_chipinit(sc)) { 6320 BCE_PRINTF("%s(%d): Controller initialization failed!\n", 6321 __FILE__, __LINE__); 6322 goto bce_init_locked_exit; 6323 } 6324 6325 if (bce_blockinit(sc)) { 6326 BCE_PRINTF("%s(%d): Block initialization failed!\n", 6327 __FILE__, __LINE__); 6328 goto bce_init_locked_exit; 6329 } 6330 6331 /* Load our MAC address. */ 6332 bcopy(IF_LLADDR(sc->bce_ifp), sc->eaddr, ETHER_ADDR_LEN); 6333 bce_set_mac_addr(sc); 6334 6335 /* 6336 * Calculate and program the hardware Ethernet MTU 6337 * size. Be generous on the receive if we have room. 6338 */ 6339 #ifdef BCE_JUMBO_HDRSPLIT 6340 if (ifp->if_mtu <= (sc->rx_bd_mbuf_data_len + sc->pg_bd_mbuf_alloc_size)) 6341 ether_mtu = sc->rx_bd_mbuf_data_len + sc->pg_bd_mbuf_alloc_size; 6342 #else 6343 if (ifp->if_mtu <= sc->rx_bd_mbuf_data_len) 6344 ether_mtu = sc->rx_bd_mbuf_data_len; 6345 #endif 6346 else 6347 ether_mtu = ifp->if_mtu; 6348 6349 ether_mtu += ETHER_HDR_LEN + ETHER_VLAN_ENCAP_LEN + ETHER_CRC_LEN; 6350 6351 DBPRINT(sc, BCE_INFO_MISC, "%s(): setting h/w mtu = %d\n", __FUNCTION__, 6352 ether_mtu); 6353 6354 /* Program the mtu, enabling jumbo frame support if necessary. */ 6355 if (ether_mtu > (ETHER_MAX_LEN + ETHER_VLAN_ENCAP_LEN)) 6356 REG_WR(sc, BCE_EMAC_RX_MTU_SIZE, 6357 min(ether_mtu, BCE_MAX_JUMBO_ETHER_MTU) | 6358 BCE_EMAC_RX_MTU_SIZE_JUMBO_ENA); 6359 else 6360 REG_WR(sc, BCE_EMAC_RX_MTU_SIZE, ether_mtu); 6361 6362 DBPRINT(sc, BCE_INFO_LOAD, 6363 "%s(): rx_bd_mbuf_alloc_size = %d, rx_bce_mbuf_data_len = %d, " 6364 "rx_bd_mbuf_align_pad = %d\n", __FUNCTION__, 6365 sc->rx_bd_mbuf_alloc_size, sc->rx_bd_mbuf_data_len, 6366 sc->rx_bd_mbuf_align_pad); 6367 6368 /* Program appropriate promiscuous/multicast filtering. */ 6369 bce_set_rx_mode(sc); 6370 6371 #ifdef BCE_JUMBO_HDRSPLIT 6372 DBPRINT(sc, BCE_INFO_LOAD, "%s(): pg_bd_mbuf_alloc_size = %d\n", 6373 __FUNCTION__, sc->pg_bd_mbuf_alloc_size); 6374 6375 /* Init page buffer descriptor chain. */ 6376 bce_init_pg_chain(sc); 6377 #endif 6378 6379 /* Init RX buffer descriptor chain. */ 6380 bce_init_rx_chain(sc); 6381 6382 /* Init TX buffer descriptor chain. */ 6383 bce_init_tx_chain(sc); 6384 6385 /* Enable host interrupts. */ 6386 bce_enable_intr(sc, 1); 6387 6388 bce_ifmedia_upd_locked(ifp); 6389 6390 ifp->if_drv_flags |= IFF_DRV_RUNNING; 6391 ifp->if_drv_flags &= ~IFF_DRV_OACTIVE; 6392 6393 callout_reset(&sc->bce_tick_callout, hz, bce_tick, sc); 6394 6395 bce_init_locked_exit: 6396 DBEXIT(BCE_VERBOSE_RESET); 6397 } 6398 6399 6400 /****************************************************************************/ 6401 /* Initialize the controller just enough so that any management firmware */ 6402 /* running on the device will continue to operate correctly. */ 6403 /* */ 6404 /* Returns: */ 6405 /* Nothing. */ 6406 /****************************************************************************/ 6407 static void 6408 bce_mgmt_init_locked(struct bce_softc *sc) 6409 { 6410 struct ifnet *ifp; 6411 6412 DBENTER(BCE_VERBOSE_RESET); 6413 6414 BCE_LOCK_ASSERT(sc); 6415 6416 /* Bail out if management firmware is not running. */ 6417 if (!(sc->bce_flags & BCE_MFW_ENABLE_FLAG)) { 6418 DBPRINT(sc, BCE_VERBOSE_SPECIAL, 6419 "No management firmware running...\n"); 6420 goto bce_mgmt_init_locked_exit; 6421 } 6422 6423 ifp = sc->bce_ifp; 6424 6425 /* Enable all critical blocks in the MAC. */ 6426 REG_WR(sc, BCE_MISC_ENABLE_SET_BITS, BCE_MISC_ENABLE_DEFAULT); 6427 REG_RD(sc, BCE_MISC_ENABLE_SET_BITS); 6428 DELAY(20); 6429 6430 bce_ifmedia_upd_locked(ifp); 6431 6432 bce_mgmt_init_locked_exit: 6433 DBEXIT(BCE_VERBOSE_RESET); 6434 } 6435 6436 6437 /****************************************************************************/ 6438 /* Handles controller initialization when called from an unlocked routine. */ 6439 /* */ 6440 /* Returns: */ 6441 /* Nothing. */ 6442 /****************************************************************************/ 6443 static void 6444 bce_init(void *xsc) 6445 { 6446 struct bce_softc *sc = xsc; 6447 6448 DBENTER(BCE_VERBOSE_RESET); 6449 6450 BCE_LOCK(sc); 6451 bce_init_locked(sc); 6452 BCE_UNLOCK(sc); 6453 6454 DBEXIT(BCE_VERBOSE_RESET); 6455 } 6456 6457 6458 /****************************************************************************/ 6459 /* Encapsultes an mbuf cluster into the tx_bd chain structure and makes the */ 6460 /* memory visible to the controller. */ 6461 /* */ 6462 /* Returns: */ 6463 /* 0 for success, positive value for failure. */ 6464 /* Modified: */ 6465 /* m_head: May be set to NULL if MBUF is excessively fragmented. */ 6466 /****************************************************************************/ 6467 static int 6468 bce_tx_encap(struct bce_softc *sc, struct mbuf **m_head) 6469 { 6470 bus_dma_segment_t segs[BCE_MAX_SEGMENTS]; 6471 bus_dmamap_t map; 6472 struct tx_bd *txbd = NULL; 6473 struct mbuf *m0; 6474 struct ether_vlan_header *eh; 6475 struct ip *ip; 6476 struct tcphdr *th; 6477 u16 prod, chain_prod, etype, mss = 0, vlan_tag = 0, flags = 0; 6478 u32 prod_bseq; 6479 int hdr_len = 0, e_hlen = 0, ip_hlen = 0, tcp_hlen = 0, ip_len = 0; 6480 6481 #ifdef BCE_DEBUG 6482 u16 debug_prod; 6483 #endif 6484 int i, error, nsegs, rc = 0; 6485 6486 DBENTER(BCE_VERBOSE_SEND); 6487 DBPRINT(sc, BCE_INFO_SEND, 6488 "%s(enter): tx_prod = 0x%04X, tx_chain_prod = %04X, " 6489 "tx_prod_bseq = 0x%08X\n", 6490 __FUNCTION__, sc->tx_prod, (u16) TX_CHAIN_IDX(sc->tx_prod), 6491 sc->tx_prod_bseq); 6492 6493 /* Transfer any checksum offload flags to the bd. */ 6494 m0 = *m_head; 6495 if (m0->m_pkthdr.csum_flags) { 6496 if (m0->m_pkthdr.csum_flags & CSUM_IP) 6497 flags |= TX_BD_FLAGS_IP_CKSUM; 6498 if (m0->m_pkthdr.csum_flags & (CSUM_TCP | CSUM_UDP)) 6499 flags |= TX_BD_FLAGS_TCP_UDP_CKSUM; 6500 if (m0->m_pkthdr.csum_flags & CSUM_TSO) { 6501 /* For TSO the controller needs two pieces of info, */ 6502 /* the MSS and the IP+TCP options length. */ 6503 mss = htole16(m0->m_pkthdr.tso_segsz); 6504 6505 /* Map the header and find the Ethernet type & header length */ 6506 eh = mtod(m0, struct ether_vlan_header *); 6507 if (eh->evl_encap_proto == htons(ETHERTYPE_VLAN)) { 6508 etype = ntohs(eh->evl_proto); 6509 e_hlen = ETHER_HDR_LEN + ETHER_VLAN_ENCAP_LEN; 6510 } else { 6511 etype = ntohs(eh->evl_encap_proto); 6512 e_hlen = ETHER_HDR_LEN; 6513 } 6514 6515 /* Check for supported TSO Ethernet types (only IPv4 for now) */ 6516 switch (etype) { 6517 case ETHERTYPE_IP: 6518 ip = (struct ip *)(m0->m_data + e_hlen); 6519 6520 /* TSO only supported for TCP protocol */ 6521 if (ip->ip_p != IPPROTO_TCP) { 6522 BCE_PRINTF("%s(%d): TSO enabled for non-TCP frame!.\n", 6523 __FILE__, __LINE__); 6524 goto bce_tx_encap_skip_tso; 6525 } 6526 6527 /* Get IP header length in bytes (min 20) */ 6528 ip_hlen = ip->ip_hl << 2; 6529 6530 /* Get the TCP header length in bytes (min 20) */ 6531 th = (struct tcphdr *)((caddr_t)ip + ip_hlen); 6532 tcp_hlen = (th->th_off << 2); 6533 6534 /* IP header length and checksum will be calc'd by hardware */ 6535 ip_len = ip->ip_len; 6536 ip->ip_len = 0; 6537 ip->ip_sum = 0; 6538 break; 6539 case ETHERTYPE_IPV6: 6540 BCE_PRINTF("%s(%d): TSO over IPv6 not supported!.\n", 6541 __FILE__, __LINE__); 6542 goto bce_tx_encap_skip_tso; 6543 default: 6544 BCE_PRINTF("%s(%d): TSO enabled for unsupported protocol!.\n", 6545 __FILE__, __LINE__); 6546 goto bce_tx_encap_skip_tso; 6547 } 6548 6549 hdr_len = e_hlen + ip_hlen + tcp_hlen; 6550 6551 DBPRINT(sc, BCE_EXTREME_SEND, 6552 "%s(): hdr_len = %d, e_hlen = %d, ip_hlen = %d, tcp_hlen = %d, ip_len = %d\n", 6553 __FUNCTION__, hdr_len, e_hlen, ip_hlen, tcp_hlen, ip_len); 6554 6555 /* Set the LSO flag in the TX BD */ 6556 flags |= TX_BD_FLAGS_SW_LSO; 6557 /* Set the length of IP + TCP options (in 32 bit words) */ 6558 flags |= (((ip_hlen + tcp_hlen - 40) >> 2) << 8); 6559 6560 bce_tx_encap_skip_tso: 6561 DBRUN(sc->requested_tso_frames++); 6562 } 6563 } 6564 6565 /* Transfer any VLAN tags to the bd. */ 6566 if (m0->m_flags & M_VLANTAG) { 6567 flags |= TX_BD_FLAGS_VLAN_TAG; 6568 vlan_tag = m0->m_pkthdr.ether_vtag; 6569 } 6570 6571 /* Map the mbuf into DMAable memory. */ 6572 prod = sc->tx_prod; 6573 chain_prod = TX_CHAIN_IDX(prod); 6574 map = sc->tx_mbuf_map[chain_prod]; 6575 6576 /* Map the mbuf into our DMA address space. */ 6577 error = bus_dmamap_load_mbuf_sg(sc->tx_mbuf_tag, map, m0, 6578 segs, &nsegs, BUS_DMA_NOWAIT); 6579 6580 /* Check if the DMA mapping was successful */ 6581 if (error == EFBIG) { 6582 6583 sc->fragmented_mbuf_count++; 6584 6585 /* Try to defrag the mbuf. */ 6586 m0 = m_defrag(*m_head, M_DONTWAIT); 6587 if (m0 == NULL) { 6588 /* Defrag was unsuccessful */ 6589 m_freem(*m_head); 6590 *m_head = NULL; 6591 sc->mbuf_alloc_failed_count++; 6592 rc = ENOBUFS; 6593 goto bce_tx_encap_exit; 6594 } 6595 6596 /* Defrag was successful, try mapping again */ 6597 *m_head = m0; 6598 error = bus_dmamap_load_mbuf_sg(sc->tx_mbuf_tag, map, m0, 6599 segs, &nsegs, BUS_DMA_NOWAIT); 6600 6601 /* Still getting an error after a defrag. */ 6602 if (error == ENOMEM) { 6603 /* Insufficient DMA buffers available. */ 6604 sc->dma_map_addr_tx_failed_count++; 6605 rc = error; 6606 goto bce_tx_encap_exit; 6607 } else if (error != 0) { 6608 /* Still can't map the mbuf, release it and return an error. */ 6609 BCE_PRINTF( 6610 "%s(%d): Unknown error mapping mbuf into TX chain!\n", 6611 __FILE__, __LINE__); 6612 m_freem(m0); 6613 *m_head = NULL; 6614 sc->dma_map_addr_tx_failed_count++; 6615 rc = ENOBUFS; 6616 goto bce_tx_encap_exit; 6617 } 6618 } else if (error == ENOMEM) { 6619 /* Insufficient DMA buffers available. */ 6620 sc->dma_map_addr_tx_failed_count++; 6621 rc = error; 6622 goto bce_tx_encap_exit; 6623 } else if (error != 0) { 6624 m_freem(m0); 6625 *m_head = NULL; 6626 sc->dma_map_addr_tx_failed_count++; 6627 rc = error; 6628 goto bce_tx_encap_exit; 6629 } 6630 6631 /* Make sure there's room in the chain */ 6632 if (nsegs > (sc->max_tx_bd - sc->used_tx_bd)) { 6633 bus_dmamap_unload(sc->tx_mbuf_tag, map); 6634 rc = ENOBUFS; 6635 goto bce_tx_encap_exit; 6636 } 6637 6638 /* prod points to an empty tx_bd at this point. */ 6639 prod_bseq = sc->tx_prod_bseq; 6640 6641 #ifdef BCE_DEBUG 6642 debug_prod = chain_prod; 6643 #endif 6644 6645 DBPRINT(sc, BCE_INFO_SEND, 6646 "%s(start): prod = 0x%04X, chain_prod = 0x%04X, " 6647 "prod_bseq = 0x%08X\n", 6648 __FUNCTION__, prod, chain_prod, prod_bseq); 6649 6650 /* 6651 * Cycle through each mbuf segment that makes up 6652 * the outgoing frame, gathering the mapping info 6653 * for that segment and creating a tx_bd for 6654 * the mbuf. 6655 */ 6656 for (i = 0; i < nsegs ; i++) { 6657 6658 chain_prod = TX_CHAIN_IDX(prod); 6659 txbd= &sc->tx_bd_chain[TX_PAGE(chain_prod)][TX_IDX(chain_prod)]; 6660 6661 txbd->tx_bd_haddr_lo = htole32(BCE_ADDR_LO(segs[i].ds_addr)); 6662 txbd->tx_bd_haddr_hi = htole32(BCE_ADDR_HI(segs[i].ds_addr)); 6663 txbd->tx_bd_mss_nbytes = htole32(mss << 16) | htole16(segs[i].ds_len); 6664 txbd->tx_bd_vlan_tag = htole16(vlan_tag); 6665 txbd->tx_bd_flags = htole16(flags); 6666 prod_bseq += segs[i].ds_len; 6667 if (i == 0) 6668 txbd->tx_bd_flags |= htole16(TX_BD_FLAGS_START); 6669 prod = NEXT_TX_BD(prod); 6670 } 6671 6672 /* Set the END flag on the last TX buffer descriptor. */ 6673 txbd->tx_bd_flags |= htole16(TX_BD_FLAGS_END); 6674 6675 DBRUNMSG(BCE_EXTREME_SEND, bce_dump_tx_chain(sc, debug_prod, nsegs)); 6676 6677 DBPRINT(sc, BCE_INFO_SEND, 6678 "%s( end ): prod = 0x%04X, chain_prod = 0x%04X, " 6679 "prod_bseq = 0x%08X\n", 6680 __FUNCTION__, prod, chain_prod, prod_bseq); 6681 6682 /* 6683 * Ensure that the mbuf pointer for this transmission 6684 * is placed at the array index of the last 6685 * descriptor in this chain. This is done 6686 * because a single map is used for all 6687 * segments of the mbuf and we don't want to 6688 * unload the map before all of the segments 6689 * have been freed. 6690 */ 6691 sc->tx_mbuf_ptr[chain_prod] = m0; 6692 sc->used_tx_bd += nsegs; 6693 6694 /* Update some debug statistic counters */ 6695 DBRUNIF((sc->used_tx_bd > sc->tx_hi_watermark), 6696 sc->tx_hi_watermark = sc->used_tx_bd); 6697 DBRUNIF((sc->used_tx_bd == sc->max_tx_bd), sc->tx_full_count++); 6698 DBRUNIF(sc->debug_tx_mbuf_alloc++); 6699 6700 DBRUNMSG(BCE_EXTREME_SEND, bce_dump_tx_mbuf_chain(sc, chain_prod, 1)); 6701 6702 /* prod points to the next free tx_bd at this point. */ 6703 sc->tx_prod = prod; 6704 sc->tx_prod_bseq = prod_bseq; 6705 6706 DBPRINT(sc, BCE_INFO_SEND, 6707 "%s(exit): prod = 0x%04X, chain_prod = %04X, " 6708 "prod_bseq = 0x%08X\n", 6709 __FUNCTION__, sc->tx_prod, (u16) TX_CHAIN_IDX(sc->tx_prod), 6710 sc->tx_prod_bseq); 6711 6712 bce_tx_encap_exit: 6713 DBEXIT(BCE_VERBOSE_SEND); 6714 return(rc); 6715 } 6716 6717 6718 /****************************************************************************/ 6719 /* Main transmit routine when called from another routine with a lock. */ 6720 /* */ 6721 /* Returns: */ 6722 /* Nothing. */ 6723 /****************************************************************************/ 6724 static void 6725 bce_start_locked(struct ifnet *ifp) 6726 { 6727 struct bce_softc *sc = ifp->if_softc; 6728 struct mbuf *m_head = NULL; 6729 int count = 0; 6730 u16 tx_prod, tx_chain_prod; 6731 6732 DBENTER(BCE_VERBOSE_SEND | BCE_VERBOSE_CTX); 6733 6734 BCE_LOCK_ASSERT(sc); 6735 6736 /* prod points to the next free tx_bd. */ 6737 tx_prod = sc->tx_prod; 6738 tx_chain_prod = TX_CHAIN_IDX(tx_prod); 6739 6740 DBPRINT(sc, BCE_INFO_SEND, 6741 "%s(enter): tx_prod = 0x%04X, tx_chain_prod = 0x%04X, " 6742 "tx_prod_bseq = 0x%08X\n", 6743 __FUNCTION__, tx_prod, tx_chain_prod, sc->tx_prod_bseq); 6744 6745 /* If there's no link or the transmit queue is empty then just exit. */ 6746 if (!sc->bce_link) { 6747 DBPRINT(sc, BCE_INFO_SEND, "%s(): No link.\n", 6748 __FUNCTION__); 6749 goto bce_start_locked_exit; 6750 } 6751 6752 if (IFQ_DRV_IS_EMPTY(&ifp->if_snd)) { 6753 DBPRINT(sc, BCE_INFO_SEND, "%s(): Transmit queue empty.\n", 6754 __FUNCTION__); 6755 goto bce_start_locked_exit; 6756 } 6757 6758 /* 6759 * Keep adding entries while there is space in the ring. 6760 */ 6761 while (sc->used_tx_bd < sc->max_tx_bd) { 6762 6763 /* Check for any frames to send. */ 6764 IFQ_DRV_DEQUEUE(&ifp->if_snd, m_head); 6765 6766 /* Stop when the transmit queue is empty. */ 6767 if (m_head == NULL) 6768 break; 6769 6770 /* 6771 * Pack the data into the transmit ring. If we 6772 * don't have room, place the mbuf back at the 6773 * head of the queue and set the OACTIVE flag 6774 * to wait for the NIC to drain the chain. 6775 */ 6776 if (bce_tx_encap(sc, &m_head)) { 6777 /* No room, put the frame back on the transmit queue. */ 6778 if (m_head != NULL) 6779 IFQ_DRV_PREPEND(&ifp->if_snd, m_head); 6780 ifp->if_drv_flags |= IFF_DRV_OACTIVE; 6781 DBPRINT(sc, BCE_INFO_SEND, 6782 "TX chain is closed for business! Total tx_bd used = %d\n", 6783 sc->used_tx_bd); 6784 break; 6785 } 6786 6787 count++; 6788 6789 /* Send a copy of the frame to any BPF listeners. */ 6790 ETHER_BPF_MTAP(ifp, m_head); 6791 } 6792 6793 /* Exit if no packets were dequeued. */ 6794 if (count == 0) { 6795 DBPRINT(sc, BCE_VERBOSE_SEND, "%s(): No packets were dequeued\n", 6796 __FUNCTION__); 6797 goto bce_start_locked_exit; 6798 } 6799 6800 DBPRINT(sc, BCE_VERBOSE_SEND, "%s(): Inserted %d frames into send queue.\n", 6801 __FUNCTION__, count); 6802 6803 REG_WR(sc, BCE_MQ_COMMAND, REG_RD(sc, BCE_MQ_COMMAND) | BCE_MQ_COMMAND_NO_MAP_ERROR); 6804 6805 /* Write the mailbox and tell the chip about the waiting tx_bd's. */ 6806 DBPRINT(sc, BCE_VERBOSE_SEND, "%s(): MB_GET_CID_ADDR(TX_CID) = 0x%08X; " 6807 "BCE_L2MQ_TX_HOST_BIDX = 0x%08X, sc->tx_prod = 0x%04X\n", 6808 __FUNCTION__, 6809 MB_GET_CID_ADDR(TX_CID), BCE_L2MQ_TX_HOST_BIDX, sc->tx_prod); 6810 REG_WR16(sc, MB_GET_CID_ADDR(TX_CID) + BCE_L2MQ_TX_HOST_BIDX, sc->tx_prod); 6811 DBPRINT(sc, BCE_VERBOSE_SEND, "%s(): MB_GET_CID_ADDR(TX_CID) = 0x%08X; " 6812 "BCE_L2MQ_TX_HOST_BSEQ = 0x%08X, sc->tx_prod_bseq = 0x%04X\n", 6813 __FUNCTION__, 6814 MB_GET_CID_ADDR(TX_CID), BCE_L2MQ_TX_HOST_BSEQ, sc->tx_prod_bseq); 6815 REG_WR(sc, MB_GET_CID_ADDR(TX_CID) + BCE_L2MQ_TX_HOST_BSEQ, sc->tx_prod_bseq); 6816 6817 /* Set the tx timeout. */ 6818 sc->watchdog_timer = BCE_TX_TIMEOUT; 6819 6820 DBRUNMSG(BCE_VERBOSE_SEND, bce_dump_ctx(sc, TX_CID)); 6821 DBRUNMSG(BCE_VERBOSE_SEND, bce_dump_mq_regs(sc)); 6822 6823 bce_start_locked_exit: 6824 DBEXIT(BCE_VERBOSE_SEND | BCE_VERBOSE_CTX); 6825 return; 6826 } 6827 6828 6829 /****************************************************************************/ 6830 /* Main transmit routine when called from another routine without a lock. */ 6831 /* */ 6832 /* Returns: */ 6833 /* Nothing. */ 6834 /****************************************************************************/ 6835 static void 6836 bce_start(struct ifnet *ifp) 6837 { 6838 struct bce_softc *sc = ifp->if_softc; 6839 6840 DBENTER(BCE_VERBOSE_SEND); 6841 6842 BCE_LOCK(sc); 6843 bce_start_locked(ifp); 6844 BCE_UNLOCK(sc); 6845 6846 DBEXIT(BCE_VERBOSE_SEND); 6847 } 6848 6849 6850 /****************************************************************************/ 6851 /* Handles any IOCTL calls from the operating system. */ 6852 /* */ 6853 /* Returns: */ 6854 /* 0 for success, positive value for failure. */ 6855 /****************************************************************************/ 6856 static int 6857 bce_ioctl(struct ifnet *ifp, u_long command, caddr_t data) 6858 { 6859 struct bce_softc *sc = ifp->if_softc; 6860 struct ifreq *ifr = (struct ifreq *) data; 6861 struct mii_data *mii; 6862 int mask, error = 0; 6863 6864 DBENTER(BCE_VERBOSE_MISC); 6865 6866 switch(command) { 6867 6868 /* Set the interface MTU. */ 6869 case SIOCSIFMTU: 6870 /* Check that the MTU setting is supported. */ 6871 if ((ifr->ifr_mtu < BCE_MIN_MTU) || 6872 (ifr->ifr_mtu > BCE_MAX_JUMBO_MTU)) { 6873 error = EINVAL; 6874 break; 6875 } 6876 6877 DBPRINT(sc, BCE_INFO_MISC, 6878 "SIOCSIFMTU: Changing MTU from %d to %d\n", 6879 (int) ifp->if_mtu, (int) ifr->ifr_mtu); 6880 6881 BCE_LOCK(sc); 6882 ifp->if_mtu = ifr->ifr_mtu; 6883 ifp->if_drv_flags &= ~IFF_DRV_RUNNING; 6884 #ifdef BCE_JUMBO_HDRSPLIT 6885 /* No buffer allocation size changes are necessary. */ 6886 #else 6887 /* Recalculate our buffer allocation sizes. */ 6888 if ((ifp->if_mtu + ETHER_HDR_LEN + ETHER_VLAN_ENCAP_LEN + ETHER_CRC_LEN) > MCLBYTES) { 6889 sc->rx_bd_mbuf_alloc_size = MJUM9BYTES; 6890 sc->rx_bd_mbuf_align_pad = roundup2(MJUM9BYTES, 16) - MJUM9BYTES; 6891 sc->rx_bd_mbuf_data_len = sc->rx_bd_mbuf_alloc_size - 6892 sc->rx_bd_mbuf_align_pad; 6893 } else { 6894 sc->rx_bd_mbuf_alloc_size = MCLBYTES; 6895 sc->rx_bd_mbuf_align_pad = roundup2(MCLBYTES, 16) - MCLBYTES; 6896 sc->rx_bd_mbuf_data_len = sc->rx_bd_mbuf_alloc_size - 6897 sc->rx_bd_mbuf_align_pad; 6898 } 6899 #endif 6900 6901 bce_init_locked(sc); 6902 BCE_UNLOCK(sc); 6903 break; 6904 6905 /* Set interface flags. */ 6906 case SIOCSIFFLAGS: 6907 DBPRINT(sc, BCE_VERBOSE_SPECIAL, "Received SIOCSIFFLAGS\n"); 6908 6909 BCE_LOCK(sc); 6910 6911 /* Check if the interface is up. */ 6912 if (ifp->if_flags & IFF_UP) { 6913 if (ifp->if_drv_flags & IFF_DRV_RUNNING) { 6914 /* Change promiscuous/multicast flags as necessary. */ 6915 bce_set_rx_mode(sc); 6916 } else { 6917 /* Start the HW */ 6918 bce_init_locked(sc); 6919 } 6920 } else { 6921 /* The interface is down, check if driver is running. */ 6922 if (ifp->if_drv_flags & IFF_DRV_RUNNING) { 6923 bce_stop(sc); 6924 6925 /* If MFW is running, restart the controller a bit. */ 6926 if (sc->bce_flags & BCE_MFW_ENABLE_FLAG) { 6927 bce_reset(sc, BCE_DRV_MSG_CODE_RESET); 6928 bce_chipinit(sc); 6929 bce_mgmt_init_locked(sc); 6930 } 6931 } 6932 } 6933 6934 BCE_UNLOCK(sc); 6935 error = 0; 6936 6937 break; 6938 6939 /* Add/Delete multicast address */ 6940 case SIOCADDMULTI: 6941 case SIOCDELMULTI: 6942 DBPRINT(sc, BCE_VERBOSE_MISC, "Received SIOCADDMULTI/SIOCDELMULTI\n"); 6943 6944 BCE_LOCK(sc); 6945 if (ifp->if_drv_flags & IFF_DRV_RUNNING) { 6946 bce_set_rx_mode(sc); 6947 error = 0; 6948 } 6949 BCE_UNLOCK(sc); 6950 6951 break; 6952 6953 /* Set/Get Interface media */ 6954 case SIOCSIFMEDIA: 6955 case SIOCGIFMEDIA: 6956 DBPRINT(sc, BCE_VERBOSE_MISC, "Received SIOCSIFMEDIA/SIOCGIFMEDIA\n"); 6957 6958 mii = device_get_softc(sc->bce_miibus); 6959 error = ifmedia_ioctl(ifp, ifr, 6960 &mii->mii_media, command); 6961 break; 6962 6963 /* Set interface capability */ 6964 case SIOCSIFCAP: 6965 mask = ifr->ifr_reqcap ^ ifp->if_capenable; 6966 DBPRINT(sc, BCE_INFO_MISC, "Received SIOCSIFCAP = 0x%08X\n", (u32) mask); 6967 6968 /* Toggle the TX checksum capabilites enable flag. */ 6969 if (mask & IFCAP_TXCSUM) { 6970 ifp->if_capenable ^= IFCAP_TXCSUM; 6971 if (IFCAP_TXCSUM & ifp->if_capenable) 6972 ifp->if_hwassist = BCE_IF_HWASSIST; 6973 else 6974 ifp->if_hwassist = 0; 6975 } 6976 6977 /* Toggle the RX checksum capabilities enable flag. */ 6978 if (mask & IFCAP_RXCSUM) { 6979 ifp->if_capenable ^= IFCAP_RXCSUM; 6980 if (IFCAP_RXCSUM & ifp->if_capenable) 6981 ifp->if_hwassist = BCE_IF_HWASSIST; 6982 else 6983 ifp->if_hwassist = 0; 6984 } 6985 6986 /* Toggle the TSO capabilities enable flag. */ 6987 if (bce_tso_enable && (mask & IFCAP_TSO4)) { 6988 ifp->if_capenable ^= IFCAP_TSO4; 6989 if (IFCAP_RXCSUM & ifp->if_capenable) 6990 ifp->if_hwassist = BCE_IF_HWASSIST; 6991 else 6992 ifp->if_hwassist = 0; 6993 } 6994 6995 /* Toggle VLAN_MTU capabilities enable flag. */ 6996 if (mask & IFCAP_VLAN_MTU) { 6997 BCE_PRINTF("%s(%d): Changing VLAN_MTU not supported.\n", 6998 __FILE__, __LINE__); 6999 } 7000 7001 /* Toggle VLANHWTAG capabilities enabled flag. */ 7002 if (mask & IFCAP_VLAN_HWTAGGING) { 7003 if (sc->bce_flags & BCE_MFW_ENABLE_FLAG) 7004 BCE_PRINTF("%s(%d): Cannot change VLAN_HWTAGGING while " 7005 "management firmware (ASF/IPMI/UMP) is running!\n", 7006 __FILE__, __LINE__); 7007 else 7008 BCE_PRINTF("%s(%d): Changing VLAN_HWTAGGING not supported!\n", 7009 __FILE__, __LINE__); 7010 } 7011 7012 break; 7013 default: 7014 /* We don't know how to handle the IOCTL, pass it on. */ 7015 error = ether_ioctl(ifp, command, data); 7016 break; 7017 } 7018 7019 DBEXIT(BCE_VERBOSE_MISC); 7020 return(error); 7021 } 7022 7023 7024 /****************************************************************************/ 7025 /* Transmit timeout handler. */ 7026 /* */ 7027 /* Returns: */ 7028 /* Nothing. */ 7029 /****************************************************************************/ 7030 static void 7031 bce_watchdog(struct bce_softc *sc) 7032 { 7033 DBENTER(BCE_EXTREME_SEND); 7034 7035 BCE_LOCK_ASSERT(sc); 7036 7037 /* If the watchdog timer hasn't expired then just exit. */ 7038 if (sc->watchdog_timer == 0 || --sc->watchdog_timer) 7039 goto bce_watchdog_exit; 7040 7041 /* If pause frames are active then don't reset the hardware. */ 7042 /* ToDo: Should we reset the timer here? */ 7043 if (REG_RD(sc, BCE_EMAC_TX_STATUS) & BCE_EMAC_TX_STATUS_XOFFED) 7044 goto bce_watchdog_exit; 7045 7046 BCE_PRINTF("%s(%d): Watchdog timeout occurred, resetting!\n", 7047 __FILE__, __LINE__); 7048 7049 DBRUNMSG(BCE_INFO, 7050 bce_dump_driver_state(sc); 7051 bce_dump_status_block(sc); 7052 bce_dump_stats_block(sc); 7053 bce_dump_ftqs(sc); 7054 bce_dump_txp_state(sc, 0); 7055 bce_dump_rxp_state(sc, 0); 7056 bce_dump_tpat_state(sc, 0); 7057 bce_dump_cp_state(sc, 0); 7058 bce_dump_com_state(sc, 0)); 7059 7060 DBRUN(bce_breakpoint(sc)); 7061 7062 sc->bce_ifp->if_drv_flags &= ~IFF_DRV_RUNNING; 7063 7064 bce_init_locked(sc); 7065 sc->bce_ifp->if_oerrors++; 7066 7067 bce_watchdog_exit: 7068 DBEXIT(BCE_EXTREME_SEND); 7069 } 7070 7071 7072 /* 7073 * Interrupt handler. 7074 */ 7075 /****************************************************************************/ 7076 /* Main interrupt entry point. Verifies that the controller generated the */ 7077 /* interrupt and then calls a separate routine for handle the various */ 7078 /* interrupt causes (PHY, TX, RX). */ 7079 /* */ 7080 /* Returns: */ 7081 /* 0 for success, positive value for failure. */ 7082 /****************************************************************************/ 7083 static void 7084 bce_intr(void *xsc) 7085 { 7086 struct bce_softc *sc; 7087 struct ifnet *ifp; 7088 u32 status_attn_bits; 7089 u16 hw_rx_cons, hw_tx_cons; 7090 7091 sc = xsc; 7092 ifp = sc->bce_ifp; 7093 7094 DBENTER(BCE_VERBOSE_SEND | BCE_VERBOSE_RECV | BCE_VERBOSE_INTR); 7095 DBRUNMSG(BCE_VERBOSE_INTR, bce_dump_status_block(sc)); 7096 7097 BCE_LOCK(sc); 7098 7099 DBRUN(sc->interrupts_generated++); 7100 7101 /* Synchnorize before we read from interface's status block */ 7102 bus_dmamap_sync(sc->status_tag, sc->status_map, 7103 BUS_DMASYNC_POSTREAD); 7104 7105 /* 7106 * If the hardware status block index 7107 * matches the last value read by the 7108 * driver and we haven't asserted our 7109 * interrupt then there's nothing to do. 7110 */ 7111 if ((sc->status_block->status_idx == sc->last_status_idx) && 7112 (REG_RD(sc, BCE_PCICFG_MISC_STATUS) & BCE_PCICFG_MISC_STATUS_INTA_VALUE)) { 7113 DBPRINT(sc, BCE_VERBOSE_INTR, "%s(): Spurious interrupt.\n", 7114 __FUNCTION__); 7115 goto bce_intr_exit; 7116 } 7117 7118 /* Ack the interrupt and stop others from occuring. */ 7119 REG_WR(sc, BCE_PCICFG_INT_ACK_CMD, 7120 BCE_PCICFG_INT_ACK_CMD_USE_INT_HC_PARAM | 7121 BCE_PCICFG_INT_ACK_CMD_MASK_INT); 7122 7123 /* Check if the hardware has finished any work. */ 7124 hw_rx_cons = bce_get_hw_rx_cons(sc); 7125 hw_tx_cons = bce_get_hw_tx_cons(sc); 7126 7127 /* Keep processing data as long as there is work to do. */ 7128 for (;;) { 7129 7130 status_attn_bits = sc->status_block->status_attn_bits; 7131 7132 DBRUNIF(DB_RANDOMTRUE(unexpected_attention_sim_control), 7133 BCE_PRINTF("Simulating unexpected status attention bit set."); 7134 sc->unexpected_attention_sim_count++; 7135 status_attn_bits = status_attn_bits | STATUS_ATTN_BITS_PARITY_ERROR); 7136 7137 /* Was it a link change interrupt? */ 7138 if ((status_attn_bits & STATUS_ATTN_BITS_LINK_STATE) != 7139 (sc->status_block->status_attn_bits_ack & STATUS_ATTN_BITS_LINK_STATE)) { 7140 bce_phy_intr(sc); 7141 7142 /* Clear any transient status updates during link state change. */ 7143 REG_WR(sc, BCE_HC_COMMAND, 7144 sc->hc_command | BCE_HC_COMMAND_COAL_NOW_WO_INT); 7145 REG_RD(sc, BCE_HC_COMMAND); 7146 } 7147 7148 /* If any other attention is asserted then the chip is toast. */ 7149 if (((status_attn_bits & ~STATUS_ATTN_BITS_LINK_STATE) != 7150 (sc->status_block->status_attn_bits_ack & 7151 ~STATUS_ATTN_BITS_LINK_STATE))) { 7152 7153 sc->unexpected_attention_count++; 7154 7155 BCE_PRINTF("%s(%d): Fatal attention detected: 0x%08X\n", 7156 __FILE__, __LINE__, sc->status_block->status_attn_bits); 7157 7158 DBRUNMSG(BCE_FATAL, 7159 if (unexpected_attention_sim_control == 0) 7160 bce_breakpoint(sc)); 7161 7162 bce_init_locked(sc); 7163 goto bce_intr_exit; 7164 } 7165 7166 /* Check for any completed RX frames. */ 7167 if (hw_rx_cons != sc->hw_rx_cons) 7168 bce_rx_intr(sc); 7169 7170 /* Check for any completed TX frames. */ 7171 if (hw_tx_cons != sc->hw_tx_cons) 7172 bce_tx_intr(sc); 7173 7174 /* Save the status block index value for use during the next interrupt. */ 7175 sc->last_status_idx = sc->status_block->status_idx; 7176 7177 /* Prevent speculative reads from getting ahead of the status block. */ 7178 bus_space_barrier(sc->bce_btag, sc->bce_bhandle, 0, 0, 7179 BUS_SPACE_BARRIER_READ); 7180 7181 /* If there's no work left then exit the interrupt service routine. */ 7182 hw_rx_cons = bce_get_hw_rx_cons(sc); 7183 hw_tx_cons = bce_get_hw_tx_cons(sc); 7184 7185 if ((hw_rx_cons == sc->hw_rx_cons) && (hw_tx_cons == sc->hw_tx_cons)) 7186 break; 7187 7188 } 7189 7190 bus_dmamap_sync(sc->status_tag, sc->status_map, 7191 BUS_DMASYNC_PREREAD); 7192 7193 /* Re-enable interrupts. */ 7194 bce_enable_intr(sc, 0); 7195 7196 /* Handle any frames that arrived while handling the interrupt. */ 7197 if (ifp->if_drv_flags & IFF_DRV_RUNNING && !IFQ_DRV_IS_EMPTY(&ifp->if_snd)) 7198 bce_start_locked(ifp); 7199 7200 bce_intr_exit: 7201 BCE_UNLOCK(sc); 7202 7203 DBEXIT(BCE_VERBOSE_SEND | BCE_VERBOSE_RECV | BCE_VERBOSE_INTR); 7204 } 7205 7206 7207 /****************************************************************************/ 7208 /* Programs the various packet receive modes (broadcast and multicast). */ 7209 /* */ 7210 /* Returns: */ 7211 /* Nothing. */ 7212 /****************************************************************************/ 7213 static void 7214 bce_set_rx_mode(struct bce_softc *sc) 7215 { 7216 struct ifnet *ifp; 7217 struct ifmultiaddr *ifma; 7218 u32 hashes[NUM_MC_HASH_REGISTERS] = { 0, 0, 0, 0, 0, 0, 0, 0 }; 7219 u32 rx_mode, sort_mode; 7220 int h, i; 7221 7222 DBENTER(BCE_VERBOSE_MISC); 7223 7224 BCE_LOCK_ASSERT(sc); 7225 7226 ifp = sc->bce_ifp; 7227 7228 /* Initialize receive mode default settings. */ 7229 rx_mode = sc->rx_mode & ~(BCE_EMAC_RX_MODE_PROMISCUOUS | 7230 BCE_EMAC_RX_MODE_KEEP_VLAN_TAG); 7231 sort_mode = 1 | BCE_RPM_SORT_USER0_BC_EN; 7232 7233 /* 7234 * ASF/IPMI/UMP firmware requires that VLAN tag stripping 7235 * be enbled. 7236 */ 7237 if (!(BCE_IF_CAPABILITIES & IFCAP_VLAN_HWTAGGING) && 7238 (!(sc->bce_flags & BCE_MFW_ENABLE_FLAG))) 7239 rx_mode |= BCE_EMAC_RX_MODE_KEEP_VLAN_TAG; 7240 7241 /* 7242 * Check for promiscuous, all multicast, or selected 7243 * multicast address filtering. 7244 */ 7245 if (ifp->if_flags & IFF_PROMISC) { 7246 DBPRINT(sc, BCE_INFO_MISC, "Enabling promiscuous mode.\n"); 7247 7248 /* Enable promiscuous mode. */ 7249 rx_mode |= BCE_EMAC_RX_MODE_PROMISCUOUS; 7250 sort_mode |= BCE_RPM_SORT_USER0_PROM_EN; 7251 } else if (ifp->if_flags & IFF_ALLMULTI) { 7252 DBPRINT(sc, BCE_INFO_MISC, "Enabling all multicast mode.\n"); 7253 7254 /* Enable all multicast addresses. */ 7255 for (i = 0; i < NUM_MC_HASH_REGISTERS; i++) { 7256 REG_WR(sc, BCE_EMAC_MULTICAST_HASH0 + (i * 4), 0xffffffff); 7257 } 7258 sort_mode |= BCE_RPM_SORT_USER0_MC_EN; 7259 } else { 7260 /* Accept one or more multicast(s). */ 7261 DBPRINT(sc, BCE_INFO_MISC, "Enabling selective multicast mode.\n"); 7262 7263 if_maddr_rlock(ifp); 7264 TAILQ_FOREACH(ifma, &ifp->if_multiaddrs, ifma_link) { 7265 if (ifma->ifma_addr->sa_family != AF_LINK) 7266 continue; 7267 h = ether_crc32_le(LLADDR((struct sockaddr_dl *) 7268 ifma->ifma_addr), ETHER_ADDR_LEN) & 0xFF; 7269 hashes[(h & 0xE0) >> 5] |= 1 << (h & 0x1F); 7270 } 7271 if_maddr_runlock(ifp); 7272 7273 for (i = 0; i < NUM_MC_HASH_REGISTERS; i++) 7274 REG_WR(sc, BCE_EMAC_MULTICAST_HASH0 + (i * 4), hashes[i]); 7275 7276 sort_mode |= BCE_RPM_SORT_USER0_MC_HSH_EN; 7277 } 7278 7279 /* Only make changes if the recive mode has actually changed. */ 7280 if (rx_mode != sc->rx_mode) { 7281 DBPRINT(sc, BCE_VERBOSE_MISC, "Enabling new receive mode: 0x%08X\n", 7282 rx_mode); 7283 7284 sc->rx_mode = rx_mode; 7285 REG_WR(sc, BCE_EMAC_RX_MODE, rx_mode); 7286 } 7287 7288 /* Disable and clear the exisitng sort before enabling a new sort. */ 7289 REG_WR(sc, BCE_RPM_SORT_USER0, 0x0); 7290 REG_WR(sc, BCE_RPM_SORT_USER0, sort_mode); 7291 REG_WR(sc, BCE_RPM_SORT_USER0, sort_mode | BCE_RPM_SORT_USER0_ENA); 7292 7293 DBEXIT(BCE_VERBOSE_MISC); 7294 } 7295 7296 7297 /****************************************************************************/ 7298 /* Called periodically to updates statistics from the controllers */ 7299 /* statistics block. */ 7300 /* */ 7301 /* Returns: */ 7302 /* Nothing. */ 7303 /****************************************************************************/ 7304 static void 7305 bce_stats_update(struct bce_softc *sc) 7306 { 7307 struct ifnet *ifp; 7308 struct statistics_block *stats; 7309 7310 DBENTER(BCE_EXTREME_MISC); 7311 7312 ifp = sc->bce_ifp; 7313 7314 stats = (struct statistics_block *) sc->stats_block; 7315 7316 /* 7317 * Certain controllers don't report 7318 * carrier sense errors correctly. 7319 * See errata E11_5708CA0_1165. 7320 */ 7321 if (!(BCE_CHIP_NUM(sc) == BCE_CHIP_NUM_5706) && 7322 !(BCE_CHIP_ID(sc) == BCE_CHIP_ID_5708_A0)) 7323 ifp->if_oerrors += (u_long) stats->stat_Dot3StatsCarrierSenseErrors; 7324 7325 /* 7326 * Update the sysctl statistics from the 7327 * hardware statistics. 7328 */ 7329 sc->stat_IfHCInOctets = 7330 ((u64) stats->stat_IfHCInOctets_hi << 32) + 7331 (u64) stats->stat_IfHCInOctets_lo; 7332 7333 sc->stat_IfHCInBadOctets = 7334 ((u64) stats->stat_IfHCInBadOctets_hi << 32) + 7335 (u64) stats->stat_IfHCInBadOctets_lo; 7336 7337 sc->stat_IfHCOutOctets = 7338 ((u64) stats->stat_IfHCOutOctets_hi << 32) + 7339 (u64) stats->stat_IfHCOutOctets_lo; 7340 7341 sc->stat_IfHCOutBadOctets = 7342 ((u64) stats->stat_IfHCOutBadOctets_hi << 32) + 7343 (u64) stats->stat_IfHCOutBadOctets_lo; 7344 7345 sc->stat_IfHCInUcastPkts = 7346 ((u64) stats->stat_IfHCInUcastPkts_hi << 32) + 7347 (u64) stats->stat_IfHCInUcastPkts_lo; 7348 7349 sc->stat_IfHCInMulticastPkts = 7350 ((u64) stats->stat_IfHCInMulticastPkts_hi << 32) + 7351 (u64) stats->stat_IfHCInMulticastPkts_lo; 7352 7353 sc->stat_IfHCInBroadcastPkts = 7354 ((u64) stats->stat_IfHCInBroadcastPkts_hi << 32) + 7355 (u64) stats->stat_IfHCInBroadcastPkts_lo; 7356 7357 sc->stat_IfHCOutUcastPkts = 7358 ((u64) stats->stat_IfHCOutUcastPkts_hi << 32) + 7359 (u64) stats->stat_IfHCOutUcastPkts_lo; 7360 7361 sc->stat_IfHCOutMulticastPkts = 7362 ((u64) stats->stat_IfHCOutMulticastPkts_hi << 32) + 7363 (u64) stats->stat_IfHCOutMulticastPkts_lo; 7364 7365 sc->stat_IfHCOutBroadcastPkts = 7366 ((u64) stats->stat_IfHCOutBroadcastPkts_hi << 32) + 7367 (u64) stats->stat_IfHCOutBroadcastPkts_lo; 7368 7369 sc->stat_emac_tx_stat_dot3statsinternalmactransmiterrors = 7370 stats->stat_emac_tx_stat_dot3statsinternalmactransmiterrors; 7371 7372 sc->stat_Dot3StatsCarrierSenseErrors = 7373 stats->stat_Dot3StatsCarrierSenseErrors; 7374 7375 sc->stat_Dot3StatsFCSErrors = 7376 stats->stat_Dot3StatsFCSErrors; 7377 7378 sc->stat_Dot3StatsAlignmentErrors = 7379 stats->stat_Dot3StatsAlignmentErrors; 7380 7381 sc->stat_Dot3StatsSingleCollisionFrames = 7382 stats->stat_Dot3StatsSingleCollisionFrames; 7383 7384 sc->stat_Dot3StatsMultipleCollisionFrames = 7385 stats->stat_Dot3StatsMultipleCollisionFrames; 7386 7387 sc->stat_Dot3StatsDeferredTransmissions = 7388 stats->stat_Dot3StatsDeferredTransmissions; 7389 7390 sc->stat_Dot3StatsExcessiveCollisions = 7391 stats->stat_Dot3StatsExcessiveCollisions; 7392 7393 sc->stat_Dot3StatsLateCollisions = 7394 stats->stat_Dot3StatsLateCollisions; 7395 7396 sc->stat_EtherStatsCollisions = 7397 stats->stat_EtherStatsCollisions; 7398 7399 sc->stat_EtherStatsFragments = 7400 stats->stat_EtherStatsFragments; 7401 7402 sc->stat_EtherStatsJabbers = 7403 stats->stat_EtherStatsJabbers; 7404 7405 sc->stat_EtherStatsUndersizePkts = 7406 stats->stat_EtherStatsUndersizePkts; 7407 7408 sc->stat_EtherStatsOversizePkts = 7409 stats->stat_EtherStatsOversizePkts; 7410 7411 sc->stat_EtherStatsPktsRx64Octets = 7412 stats->stat_EtherStatsPktsRx64Octets; 7413 7414 sc->stat_EtherStatsPktsRx65Octetsto127Octets = 7415 stats->stat_EtherStatsPktsRx65Octetsto127Octets; 7416 7417 sc->stat_EtherStatsPktsRx128Octetsto255Octets = 7418 stats->stat_EtherStatsPktsRx128Octetsto255Octets; 7419 7420 sc->stat_EtherStatsPktsRx256Octetsto511Octets = 7421 stats->stat_EtherStatsPktsRx256Octetsto511Octets; 7422 7423 sc->stat_EtherStatsPktsRx512Octetsto1023Octets = 7424 stats->stat_EtherStatsPktsRx512Octetsto1023Octets; 7425 7426 sc->stat_EtherStatsPktsRx1024Octetsto1522Octets = 7427 stats->stat_EtherStatsPktsRx1024Octetsto1522Octets; 7428 7429 sc->stat_EtherStatsPktsRx1523Octetsto9022Octets = 7430 stats->stat_EtherStatsPktsRx1523Octetsto9022Octets; 7431 7432 sc->stat_EtherStatsPktsTx64Octets = 7433 stats->stat_EtherStatsPktsTx64Octets; 7434 7435 sc->stat_EtherStatsPktsTx65Octetsto127Octets = 7436 stats->stat_EtherStatsPktsTx65Octetsto127Octets; 7437 7438 sc->stat_EtherStatsPktsTx128Octetsto255Octets = 7439 stats->stat_EtherStatsPktsTx128Octetsto255Octets; 7440 7441 sc->stat_EtherStatsPktsTx256Octetsto511Octets = 7442 stats->stat_EtherStatsPktsTx256Octetsto511Octets; 7443 7444 sc->stat_EtherStatsPktsTx512Octetsto1023Octets = 7445 stats->stat_EtherStatsPktsTx512Octetsto1023Octets; 7446 7447 sc->stat_EtherStatsPktsTx1024Octetsto1522Octets = 7448 stats->stat_EtherStatsPktsTx1024Octetsto1522Octets; 7449 7450 sc->stat_EtherStatsPktsTx1523Octetsto9022Octets = 7451 stats->stat_EtherStatsPktsTx1523Octetsto9022Octets; 7452 7453 sc->stat_XonPauseFramesReceived = 7454 stats->stat_XonPauseFramesReceived; 7455 7456 sc->stat_XoffPauseFramesReceived = 7457 stats->stat_XoffPauseFramesReceived; 7458 7459 sc->stat_OutXonSent = 7460 stats->stat_OutXonSent; 7461 7462 sc->stat_OutXoffSent = 7463 stats->stat_OutXoffSent; 7464 7465 sc->stat_FlowControlDone = 7466 stats->stat_FlowControlDone; 7467 7468 sc->stat_MacControlFramesReceived = 7469 stats->stat_MacControlFramesReceived; 7470 7471 sc->stat_XoffStateEntered = 7472 stats->stat_XoffStateEntered; 7473 7474 sc->stat_IfInFramesL2FilterDiscards = 7475 stats->stat_IfInFramesL2FilterDiscards; 7476 7477 sc->stat_IfInRuleCheckerDiscards = 7478 stats->stat_IfInRuleCheckerDiscards; 7479 7480 sc->stat_IfInFTQDiscards = 7481 stats->stat_IfInFTQDiscards; 7482 7483 sc->stat_IfInMBUFDiscards = 7484 stats->stat_IfInMBUFDiscards; 7485 7486 sc->stat_IfInRuleCheckerP4Hit = 7487 stats->stat_IfInRuleCheckerP4Hit; 7488 7489 sc->stat_CatchupInRuleCheckerDiscards = 7490 stats->stat_CatchupInRuleCheckerDiscards; 7491 7492 sc->stat_CatchupInFTQDiscards = 7493 stats->stat_CatchupInFTQDiscards; 7494 7495 sc->stat_CatchupInMBUFDiscards = 7496 stats->stat_CatchupInMBUFDiscards; 7497 7498 sc->stat_CatchupInRuleCheckerP4Hit = 7499 stats->stat_CatchupInRuleCheckerP4Hit; 7500 7501 sc->com_no_buffers = REG_RD_IND(sc, 0x120084); 7502 7503 /* 7504 * Update the interface statistics from the 7505 * hardware statistics. 7506 */ 7507 ifp->if_collisions = 7508 (u_long) sc->stat_EtherStatsCollisions; 7509 7510 /* ToDo: This method loses soft errors. */ 7511 ifp->if_ierrors = 7512 (u_long) sc->stat_EtherStatsUndersizePkts + 7513 (u_long) sc->stat_EtherStatsOversizePkts + 7514 (u_long) sc->stat_IfInMBUFDiscards + 7515 (u_long) sc->stat_Dot3StatsAlignmentErrors + 7516 (u_long) sc->stat_Dot3StatsFCSErrors + 7517 (u_long) sc->stat_IfInRuleCheckerDiscards + 7518 (u_long) sc->stat_IfInFTQDiscards + 7519 (u_long) sc->com_no_buffers; 7520 7521 /* ToDo: This method loses soft errors. */ 7522 ifp->if_oerrors = 7523 (u_long) sc->stat_emac_tx_stat_dot3statsinternalmactransmiterrors + 7524 (u_long) sc->stat_Dot3StatsExcessiveCollisions + 7525 (u_long) sc->stat_Dot3StatsLateCollisions; 7526 7527 /* ToDo: Add additional statistics. */ 7528 7529 DBEXIT(BCE_EXTREME_MISC); 7530 } 7531 7532 7533 /****************************************************************************/ 7534 /* Periodic function to notify the bootcode that the driver is still */ 7535 /* present. */ 7536 /* */ 7537 /* Returns: */ 7538 /* Nothing. */ 7539 /****************************************************************************/ 7540 static void 7541 bce_pulse(void *xsc) 7542 { 7543 struct bce_softc *sc = xsc; 7544 u32 msg; 7545 7546 DBENTER(BCE_EXTREME_MISC); 7547 7548 BCE_LOCK_ASSERT(sc); 7549 7550 /* Tell the firmware that the driver is still running. */ 7551 msg = (u32) ++sc->bce_fw_drv_pulse_wr_seq; 7552 bce_shmem_wr(sc, BCE_DRV_PULSE_MB, msg); 7553 7554 /* Schedule the next pulse. */ 7555 callout_reset(&sc->bce_pulse_callout, hz, bce_pulse, sc); 7556 7557 DBEXIT(BCE_EXTREME_MISC); 7558 } 7559 7560 7561 /****************************************************************************/ 7562 /* Periodic function to perform maintenance tasks. */ 7563 /* */ 7564 /* Returns: */ 7565 /* Nothing. */ 7566 /****************************************************************************/ 7567 static void 7568 bce_tick(void *xsc) 7569 { 7570 struct bce_softc *sc = xsc; 7571 struct mii_data *mii; 7572 struct ifnet *ifp; 7573 7574 ifp = sc->bce_ifp; 7575 7576 DBENTER(BCE_EXTREME_MISC); 7577 7578 BCE_LOCK_ASSERT(sc); 7579 7580 /* Schedule the next tick. */ 7581 callout_reset(&sc->bce_tick_callout, hz, bce_tick, sc); 7582 7583 /* Update the statistics from the hardware statistics block. */ 7584 bce_stats_update(sc); 7585 7586 /* Top off the receive and page chains. */ 7587 #ifdef BCE_JUMBO_HDRSPLIT 7588 bce_fill_pg_chain(sc); 7589 #endif 7590 bce_fill_rx_chain(sc); 7591 7592 /* Check that chip hasn't hung. */ 7593 bce_watchdog(sc); 7594 7595 /* If link is up already up then we're done. */ 7596 if (sc->bce_link) 7597 goto bce_tick_exit; 7598 7599 /* Link is down. Check what the PHY's doing. */ 7600 mii = device_get_softc(sc->bce_miibus); 7601 mii_tick(mii); 7602 7603 /* Check if the link has come up. */ 7604 if ((mii->mii_media_status & IFM_ACTIVE) && 7605 (IFM_SUBTYPE(mii->mii_media_active) != IFM_NONE)) { 7606 DBPRINT(sc, BCE_VERBOSE_MISC, "%s(): Link up!\n", __FUNCTION__); 7607 sc->bce_link++; 7608 if ((IFM_SUBTYPE(mii->mii_media_active) == IFM_1000_T || 7609 IFM_SUBTYPE(mii->mii_media_active) == IFM_1000_SX) && 7610 bootverbose) 7611 BCE_PRINTF("Gigabit link up!\n"); 7612 /* Now that link is up, handle any outstanding TX traffic. */ 7613 if (!IFQ_DRV_IS_EMPTY(&ifp->if_snd)) { 7614 DBPRINT(sc, BCE_VERBOSE_MISC, "%s(): Found pending TX traffic.\n", 7615 __FUNCTION__); 7616 bce_start_locked(ifp); 7617 } 7618 } 7619 7620 bce_tick_exit: 7621 DBEXIT(BCE_EXTREME_MISC); 7622 return; 7623 } 7624 7625 7626 #ifdef BCE_DEBUG 7627 /****************************************************************************/ 7628 /* Allows the driver state to be dumped through the sysctl interface. */ 7629 /* */ 7630 /* Returns: */ 7631 /* 0 for success, positive value for failure. */ 7632 /****************************************************************************/ 7633 static int 7634 bce_sysctl_driver_state(SYSCTL_HANDLER_ARGS) 7635 { 7636 int error; 7637 int result; 7638 struct bce_softc *sc; 7639 7640 result = -1; 7641 error = sysctl_handle_int(oidp, &result, 0, req); 7642 7643 if (error || !req->newptr) 7644 return (error); 7645 7646 if (result == 1) { 7647 sc = (struct bce_softc *)arg1; 7648 bce_dump_driver_state(sc); 7649 } 7650 7651 return error; 7652 } 7653 7654 7655 /****************************************************************************/ 7656 /* Allows the hardware state to be dumped through the sysctl interface. */ 7657 /* */ 7658 /* Returns: */ 7659 /* 0 for success, positive value for failure. */ 7660 /****************************************************************************/ 7661 static int 7662 bce_sysctl_hw_state(SYSCTL_HANDLER_ARGS) 7663 { 7664 int error; 7665 int result; 7666 struct bce_softc *sc; 7667 7668 result = -1; 7669 error = sysctl_handle_int(oidp, &result, 0, req); 7670 7671 if (error || !req->newptr) 7672 return (error); 7673 7674 if (result == 1) { 7675 sc = (struct bce_softc *)arg1; 7676 bce_dump_hw_state(sc); 7677 } 7678 7679 return error; 7680 } 7681 7682 7683 /****************************************************************************/ 7684 /* Allows the bootcode state to be dumped through the sysctl interface. */ 7685 /* */ 7686 /* Returns: */ 7687 /* 0 for success, positive value for failure. */ 7688 /****************************************************************************/ 7689 static int 7690 bce_sysctl_bc_state(SYSCTL_HANDLER_ARGS) 7691 { 7692 int error; 7693 int result; 7694 struct bce_softc *sc; 7695 7696 result = -1; 7697 error = sysctl_handle_int(oidp, &result, 0, req); 7698 7699 if (error || !req->newptr) 7700 return (error); 7701 7702 if (result == 1) { 7703 sc = (struct bce_softc *)arg1; 7704 bce_dump_bc_state(sc); 7705 } 7706 7707 return error; 7708 } 7709 7710 7711 /****************************************************************************/ 7712 /* Provides a sysctl interface to allow dumping the RX chain. */ 7713 /* */ 7714 /* Returns: */ 7715 /* 0 for success, positive value for failure. */ 7716 /****************************************************************************/ 7717 static int 7718 bce_sysctl_dump_rx_chain(SYSCTL_HANDLER_ARGS) 7719 { 7720 int error; 7721 int result; 7722 struct bce_softc *sc; 7723 7724 result = -1; 7725 error = sysctl_handle_int(oidp, &result, 0, req); 7726 7727 if (error || !req->newptr) 7728 return (error); 7729 7730 if (result == 1) { 7731 sc = (struct bce_softc *)arg1; 7732 bce_dump_rx_chain(sc, 0, TOTAL_RX_BD); 7733 } 7734 7735 return error; 7736 } 7737 7738 7739 /****************************************************************************/ 7740 /* Provides a sysctl interface to allow dumping the TX chain. */ 7741 /* */ 7742 /* Returns: */ 7743 /* 0 for success, positive value for failure. */ 7744 /****************************************************************************/ 7745 static int 7746 bce_sysctl_dump_tx_chain(SYSCTL_HANDLER_ARGS) 7747 { 7748 int error; 7749 int result; 7750 struct bce_softc *sc; 7751 7752 result = -1; 7753 error = sysctl_handle_int(oidp, &result, 0, req); 7754 7755 if (error || !req->newptr) 7756 return (error); 7757 7758 if (result == 1) { 7759 sc = (struct bce_softc *)arg1; 7760 bce_dump_tx_chain(sc, 0, USABLE_TX_BD); 7761 } 7762 7763 return error; 7764 } 7765 7766 7767 #ifdef BCE_JUMBO_HDRSPLIT 7768 /****************************************************************************/ 7769 /* Provides a sysctl interface to allow dumping the page chain. */ 7770 /* */ 7771 /* Returns: */ 7772 /* 0 for success, positive value for failure. */ 7773 /****************************************************************************/ 7774 static int 7775 bce_sysctl_dump_pg_chain(SYSCTL_HANDLER_ARGS) 7776 { 7777 int error; 7778 int result; 7779 struct bce_softc *sc; 7780 7781 result = -1; 7782 error = sysctl_handle_int(oidp, &result, 0, req); 7783 7784 if (error || !req->newptr) 7785 return (error); 7786 7787 if (result == 1) { 7788 sc = (struct bce_softc *)arg1; 7789 bce_dump_pg_chain(sc, 0, TOTAL_PG_BD); 7790 } 7791 7792 return error; 7793 } 7794 #endif 7795 7796 /****************************************************************************/ 7797 /* Provides a sysctl interface to allow reading arbitrary NVRAM offsets in */ 7798 /* the device. DO NOT ENABLE ON PRODUCTION SYSTEMS! */ 7799 /* */ 7800 /* Returns: */ 7801 /* 0 for success, positive value for failure. */ 7802 /****************************************************************************/ 7803 static int 7804 bce_sysctl_nvram_read(SYSCTL_HANDLER_ARGS) 7805 { 7806 struct bce_softc *sc = (struct bce_softc *)arg1; 7807 int error; 7808 u32 result; 7809 u32 val[1]; 7810 u8 *data = (u8 *) val; 7811 7812 result = -1; 7813 error = sysctl_handle_int(oidp, &result, 0, req); 7814 if (error || (req->newptr == NULL)) 7815 return (error); 7816 7817 bce_nvram_read(sc, result, data, 4); 7818 BCE_PRINTF("offset 0x%08X = 0x%08X\n", result, bce_be32toh(val[0])); 7819 7820 return (error); 7821 } 7822 7823 7824 /****************************************************************************/ 7825 /* Provides a sysctl interface to allow reading arbitrary registers in the */ 7826 /* device. DO NOT ENABLE ON PRODUCTION SYSTEMS! */ 7827 /* */ 7828 /* Returns: */ 7829 /* 0 for success, positive value for failure. */ 7830 /****************************************************************************/ 7831 static int 7832 bce_sysctl_reg_read(SYSCTL_HANDLER_ARGS) 7833 { 7834 struct bce_softc *sc = (struct bce_softc *)arg1; 7835 int error; 7836 u32 val, result; 7837 7838 result = -1; 7839 error = sysctl_handle_int(oidp, &result, 0, req); 7840 if (error || (req->newptr == NULL)) 7841 return (error); 7842 7843 /* Make sure the register is accessible. */ 7844 if (result < 0x8000) { 7845 val = REG_RD(sc, result); 7846 BCE_PRINTF("reg 0x%08X = 0x%08X\n", result, val); 7847 } else if (result < 0x0280000) { 7848 val = REG_RD_IND(sc, result); 7849 BCE_PRINTF("reg 0x%08X = 0x%08X\n", result, val); 7850 } 7851 7852 return (error); 7853 } 7854 7855 7856 /****************************************************************************/ 7857 /* Provides a sysctl interface to allow reading arbitrary PHY registers in */ 7858 /* the device. DO NOT ENABLE ON PRODUCTION SYSTEMS! */ 7859 /* */ 7860 /* Returns: */ 7861 /* 0 for success, positive value for failure. */ 7862 /****************************************************************************/ 7863 static int 7864 bce_sysctl_phy_read(SYSCTL_HANDLER_ARGS) 7865 { 7866 struct bce_softc *sc; 7867 device_t dev; 7868 int error, result; 7869 u16 val; 7870 7871 result = -1; 7872 error = sysctl_handle_int(oidp, &result, 0, req); 7873 if (error || (req->newptr == NULL)) 7874 return (error); 7875 7876 /* Make sure the register is accessible. */ 7877 if (result < 0x20) { 7878 sc = (struct bce_softc *)arg1; 7879 dev = sc->bce_dev; 7880 val = bce_miibus_read_reg(dev, sc->bce_phy_addr, result); 7881 BCE_PRINTF("phy 0x%02X = 0x%04X\n", result, val); 7882 } 7883 return (error); 7884 } 7885 7886 7887 /****************************************************************************/ 7888 /* Provides a sysctl interface to allow reading a CID. */ 7889 /* */ 7890 /* Returns: */ 7891 /* 0 for success, positive value for failure. */ 7892 /****************************************************************************/ 7893 static int 7894 bce_sysctl_dump_ctx(SYSCTL_HANDLER_ARGS) 7895 { 7896 struct bce_softc *sc; 7897 int error; 7898 u16 result; 7899 7900 result = -1; 7901 error = sysctl_handle_int(oidp, &result, 0, req); 7902 if (error || (req->newptr == NULL)) 7903 return (error); 7904 7905 /* Make sure the register is accessible. */ 7906 if (result <= TX_CID) { 7907 sc = (struct bce_softc *)arg1; 7908 bce_dump_ctx(sc, result); 7909 } 7910 7911 return (error); 7912 } 7913 7914 7915 /****************************************************************************/ 7916 /* Provides a sysctl interface to forcing the driver to dump state and */ 7917 /* enter the debugger. DO NOT ENABLE ON PRODUCTION SYSTEMS! */ 7918 /* */ 7919 /* Returns: */ 7920 /* 0 for success, positive value for failure. */ 7921 /****************************************************************************/ 7922 static int 7923 bce_sysctl_breakpoint(SYSCTL_HANDLER_ARGS) 7924 { 7925 int error; 7926 int result; 7927 struct bce_softc *sc; 7928 7929 result = -1; 7930 error = sysctl_handle_int(oidp, &result, 0, req); 7931 7932 if (error || !req->newptr) 7933 return (error); 7934 7935 if (result == 1) { 7936 sc = (struct bce_softc *)arg1; 7937 bce_breakpoint(sc); 7938 } 7939 7940 return error; 7941 } 7942 #endif 7943 7944 7945 /****************************************************************************/ 7946 /* Adds any sysctl parameters for tuning or debugging purposes. */ 7947 /* */ 7948 /* Returns: */ 7949 /* 0 for success, positive value for failure. */ 7950 /****************************************************************************/ 7951 static void 7952 bce_add_sysctls(struct bce_softc *sc) 7953 { 7954 struct sysctl_ctx_list *ctx; 7955 struct sysctl_oid_list *children; 7956 7957 DBENTER(BCE_VERBOSE_MISC); 7958 7959 ctx = device_get_sysctl_ctx(sc->bce_dev); 7960 children = SYSCTL_CHILDREN(device_get_sysctl_tree(sc->bce_dev)); 7961 7962 #ifdef BCE_DEBUG 7963 SYSCTL_ADD_INT(ctx, children, OID_AUTO, 7964 "l2fhdr_error_sim_control", 7965 CTLFLAG_RW, &l2fhdr_error_sim_control, 7966 0, "Debug control to force l2fhdr errors"); 7967 7968 SYSCTL_ADD_INT(ctx, children, OID_AUTO, 7969 "l2fhdr_error_sim_count", 7970 CTLFLAG_RD, &sc->l2fhdr_error_sim_count, 7971 0, "Number of simulated l2_fhdr errors"); 7972 #endif 7973 7974 SYSCTL_ADD_INT(ctx, children, OID_AUTO, 7975 "l2fhdr_error_count", 7976 CTLFLAG_RD, &sc->l2fhdr_error_count, 7977 0, "Number of l2_fhdr errors"); 7978 7979 #ifdef BCE_DEBUG 7980 SYSCTL_ADD_INT(ctx, children, OID_AUTO, 7981 "mbuf_alloc_failed_sim_control", 7982 CTLFLAG_RW, &mbuf_alloc_failed_sim_control, 7983 0, "Debug control to force mbuf allocation failures"); 7984 7985 SYSCTL_ADD_INT(ctx, children, OID_AUTO, 7986 "mbuf_alloc_failed_sim_count", 7987 CTLFLAG_RD, &sc->mbuf_alloc_failed_sim_count, 7988 0, "Number of simulated mbuf cluster allocation failures"); 7989 #endif 7990 7991 SYSCTL_ADD_INT(ctx, children, OID_AUTO, 7992 "mbuf_alloc_failed_count", 7993 CTLFLAG_RD, &sc->mbuf_alloc_failed_count, 7994 0, "Number of mbuf allocation failures"); 7995 7996 SYSCTL_ADD_INT(ctx, children, OID_AUTO, 7997 "fragmented_mbuf_count", 7998 CTLFLAG_RD, &sc->fragmented_mbuf_count, 7999 0, "Number of fragmented mbufs"); 8000 8001 #ifdef BCE_DEBUG 8002 SYSCTL_ADD_INT(ctx, children, OID_AUTO, 8003 "dma_map_addr_failed_sim_control", 8004 CTLFLAG_RW, &dma_map_addr_failed_sim_control, 8005 0, "Debug control to force DMA mapping failures"); 8006 8007 /* ToDo: Figure out how to update this value in bce_dma_map_addr(). */ 8008 SYSCTL_ADD_INT(ctx, children, OID_AUTO, 8009 "dma_map_addr_failed_sim_count", 8010 CTLFLAG_RD, &sc->dma_map_addr_failed_sim_count, 8011 0, "Number of simulated DMA mapping failures"); 8012 8013 #endif 8014 8015 SYSCTL_ADD_INT(ctx, children, OID_AUTO, 8016 "dma_map_addr_rx_failed_count", 8017 CTLFLAG_RD, &sc->dma_map_addr_rx_failed_count, 8018 0, "Number of RX DMA mapping failures"); 8019 8020 SYSCTL_ADD_INT(ctx, children, OID_AUTO, 8021 "dma_map_addr_tx_failed_count", 8022 CTLFLAG_RD, &sc->dma_map_addr_tx_failed_count, 8023 0, "Number of TX DMA mapping failures"); 8024 8025 #ifdef BCE_DEBUG 8026 SYSCTL_ADD_INT(ctx, children, OID_AUTO, 8027 "unexpected_attention_sim_control", 8028 CTLFLAG_RW, &unexpected_attention_sim_control, 8029 0, "Debug control to simulate unexpected attentions"); 8030 8031 SYSCTL_ADD_INT(ctx, children, OID_AUTO, 8032 "unexpected_attention_sim_count", 8033 CTLFLAG_RW, &sc->unexpected_attention_sim_count, 8034 0, "Number of simulated unexpected attentions"); 8035 #endif 8036 8037 SYSCTL_ADD_INT(ctx, children, OID_AUTO, 8038 "unexpected_attention_count", 8039 CTLFLAG_RW, &sc->unexpected_attention_count, 8040 0, "Number of unexpected attentions"); 8041 8042 #ifdef BCE_DEBUG 8043 SYSCTL_ADD_INT(ctx, children, OID_AUTO, 8044 "debug_bootcode_running_failure", 8045 CTLFLAG_RW, &bootcode_running_failure_sim_control, 8046 0, "Debug control to force bootcode running failures"); 8047 8048 SYSCTL_ADD_INT(ctx, children, OID_AUTO, 8049 "rx_low_watermark", 8050 CTLFLAG_RD, &sc->rx_low_watermark, 8051 0, "Lowest level of free rx_bd's"); 8052 8053 SYSCTL_ADD_INT(ctx, children, OID_AUTO, 8054 "rx_empty_count", 8055 CTLFLAG_RD, &sc->rx_empty_count, 8056 0, "Number of times the RX chain was empty"); 8057 8058 SYSCTL_ADD_INT(ctx, children, OID_AUTO, 8059 "tx_hi_watermark", 8060 CTLFLAG_RD, &sc->tx_hi_watermark, 8061 0, "Highest level of used tx_bd's"); 8062 8063 SYSCTL_ADD_INT(ctx, children, OID_AUTO, 8064 "tx_full_count", 8065 CTLFLAG_RD, &sc->tx_full_count, 8066 0, "Number of times the TX chain was full"); 8067 8068 SYSCTL_ADD_INT(ctx, children, OID_AUTO, 8069 "requested_tso_frames", 8070 CTLFLAG_RD, &sc->requested_tso_frames, 8071 0, "Number of TSO frames received"); 8072 8073 SYSCTL_ADD_UINT(ctx, children, OID_AUTO, 8074 "rx_interrupts", 8075 CTLFLAG_RD, &sc->rx_interrupts, 8076 0, "Number of RX interrupts"); 8077 8078 SYSCTL_ADD_UINT(ctx, children, OID_AUTO, 8079 "tx_interrupts", 8080 CTLFLAG_RD, &sc->tx_interrupts, 8081 0, "Number of TX interrupts"); 8082 8083 SYSCTL_ADD_ULONG(ctx, children, OID_AUTO, 8084 "rx_intr_time", 8085 CTLFLAG_RD, &sc->rx_intr_time, 8086 "RX interrupt time"); 8087 8088 SYSCTL_ADD_ULONG(ctx, children, OID_AUTO, 8089 "tx_intr_time", 8090 CTLFLAG_RD, &sc->tx_intr_time, 8091 "TX interrupt time"); 8092 #endif 8093 8094 SYSCTL_ADD_ULONG(ctx, children, OID_AUTO, 8095 "stat_IfHcInOctets", 8096 CTLFLAG_RD, &sc->stat_IfHCInOctets, 8097 "Bytes received"); 8098 8099 SYSCTL_ADD_ULONG(ctx, children, OID_AUTO, 8100 "stat_IfHCInBadOctets", 8101 CTLFLAG_RD, &sc->stat_IfHCInBadOctets, 8102 "Bad bytes received"); 8103 8104 SYSCTL_ADD_ULONG(ctx, children, OID_AUTO, 8105 "stat_IfHCOutOctets", 8106 CTLFLAG_RD, &sc->stat_IfHCOutOctets, 8107 "Bytes sent"); 8108 8109 SYSCTL_ADD_ULONG(ctx, children, OID_AUTO, 8110 "stat_IfHCOutBadOctets", 8111 CTLFLAG_RD, &sc->stat_IfHCOutBadOctets, 8112 "Bad bytes sent"); 8113 8114 SYSCTL_ADD_ULONG(ctx, children, OID_AUTO, 8115 "stat_IfHCInUcastPkts", 8116 CTLFLAG_RD, &sc->stat_IfHCInUcastPkts, 8117 "Unicast packets received"); 8118 8119 SYSCTL_ADD_ULONG(ctx, children, OID_AUTO, 8120 "stat_IfHCInMulticastPkts", 8121 CTLFLAG_RD, &sc->stat_IfHCInMulticastPkts, 8122 "Multicast packets received"); 8123 8124 SYSCTL_ADD_ULONG(ctx, children, OID_AUTO, 8125 "stat_IfHCInBroadcastPkts", 8126 CTLFLAG_RD, &sc->stat_IfHCInBroadcastPkts, 8127 "Broadcast packets received"); 8128 8129 SYSCTL_ADD_ULONG(ctx, children, OID_AUTO, 8130 "stat_IfHCOutUcastPkts", 8131 CTLFLAG_RD, &sc->stat_IfHCOutUcastPkts, 8132 "Unicast packets sent"); 8133 8134 SYSCTL_ADD_ULONG(ctx, children, OID_AUTO, 8135 "stat_IfHCOutMulticastPkts", 8136 CTLFLAG_RD, &sc->stat_IfHCOutMulticastPkts, 8137 "Multicast packets sent"); 8138 8139 SYSCTL_ADD_ULONG(ctx, children, OID_AUTO, 8140 "stat_IfHCOutBroadcastPkts", 8141 CTLFLAG_RD, &sc->stat_IfHCOutBroadcastPkts, 8142 "Broadcast packets sent"); 8143 8144 SYSCTL_ADD_UINT(ctx, children, OID_AUTO, 8145 "stat_emac_tx_stat_dot3statsinternalmactransmiterrors", 8146 CTLFLAG_RD, &sc->stat_emac_tx_stat_dot3statsinternalmactransmiterrors, 8147 0, "Internal MAC transmit errors"); 8148 8149 SYSCTL_ADD_UINT(ctx, children, OID_AUTO, 8150 "stat_Dot3StatsCarrierSenseErrors", 8151 CTLFLAG_RD, &sc->stat_Dot3StatsCarrierSenseErrors, 8152 0, "Carrier sense errors"); 8153 8154 SYSCTL_ADD_UINT(ctx, children, OID_AUTO, 8155 "stat_Dot3StatsFCSErrors", 8156 CTLFLAG_RD, &sc->stat_Dot3StatsFCSErrors, 8157 0, "Frame check sequence errors"); 8158 8159 SYSCTL_ADD_UINT(ctx, children, OID_AUTO, 8160 "stat_Dot3StatsAlignmentErrors", 8161 CTLFLAG_RD, &sc->stat_Dot3StatsAlignmentErrors, 8162 0, "Alignment errors"); 8163 8164 SYSCTL_ADD_UINT(ctx, children, OID_AUTO, 8165 "stat_Dot3StatsSingleCollisionFrames", 8166 CTLFLAG_RD, &sc->stat_Dot3StatsSingleCollisionFrames, 8167 0, "Single Collision Frames"); 8168 8169 SYSCTL_ADD_UINT(ctx, children, OID_AUTO, 8170 "stat_Dot3StatsMultipleCollisionFrames", 8171 CTLFLAG_RD, &sc->stat_Dot3StatsMultipleCollisionFrames, 8172 0, "Multiple Collision Frames"); 8173 8174 SYSCTL_ADD_UINT(ctx, children, OID_AUTO, 8175 "stat_Dot3StatsDeferredTransmissions", 8176 CTLFLAG_RD, &sc->stat_Dot3StatsDeferredTransmissions, 8177 0, "Deferred Transmissions"); 8178 8179 SYSCTL_ADD_UINT(ctx, children, OID_AUTO, 8180 "stat_Dot3StatsExcessiveCollisions", 8181 CTLFLAG_RD, &sc->stat_Dot3StatsExcessiveCollisions, 8182 0, "Excessive Collisions"); 8183 8184 SYSCTL_ADD_UINT(ctx, children, OID_AUTO, 8185 "stat_Dot3StatsLateCollisions", 8186 CTLFLAG_RD, &sc->stat_Dot3StatsLateCollisions, 8187 0, "Late Collisions"); 8188 8189 SYSCTL_ADD_UINT(ctx, children, OID_AUTO, 8190 "stat_EtherStatsCollisions", 8191 CTLFLAG_RD, &sc->stat_EtherStatsCollisions, 8192 0, "Collisions"); 8193 8194 SYSCTL_ADD_UINT(ctx, children, OID_AUTO, 8195 "stat_EtherStatsFragments", 8196 CTLFLAG_RD, &sc->stat_EtherStatsFragments, 8197 0, "Fragments"); 8198 8199 SYSCTL_ADD_UINT(ctx, children, OID_AUTO, 8200 "stat_EtherStatsJabbers", 8201 CTLFLAG_RD, &sc->stat_EtherStatsJabbers, 8202 0, "Jabbers"); 8203 8204 SYSCTL_ADD_UINT(ctx, children, OID_AUTO, 8205 "stat_EtherStatsUndersizePkts", 8206 CTLFLAG_RD, &sc->stat_EtherStatsUndersizePkts, 8207 0, "Undersize packets"); 8208 8209 SYSCTL_ADD_UINT(ctx, children, OID_AUTO, 8210 "stat_EtherStatsOversizePkts", 8211 CTLFLAG_RD, &sc->stat_EtherStatsOversizePkts, 8212 0, "stat_EtherStatsOversizePkts"); 8213 8214 SYSCTL_ADD_UINT(ctx, children, OID_AUTO, 8215 "stat_EtherStatsPktsRx64Octets", 8216 CTLFLAG_RD, &sc->stat_EtherStatsPktsRx64Octets, 8217 0, "Bytes received in 64 byte packets"); 8218 8219 SYSCTL_ADD_UINT(ctx, children, OID_AUTO, 8220 "stat_EtherStatsPktsRx65Octetsto127Octets", 8221 CTLFLAG_RD, &sc->stat_EtherStatsPktsRx65Octetsto127Octets, 8222 0, "Bytes received in 65 to 127 byte packets"); 8223 8224 SYSCTL_ADD_UINT(ctx, children, OID_AUTO, 8225 "stat_EtherStatsPktsRx128Octetsto255Octets", 8226 CTLFLAG_RD, &sc->stat_EtherStatsPktsRx128Octetsto255Octets, 8227 0, "Bytes received in 128 to 255 byte packets"); 8228 8229 SYSCTL_ADD_UINT(ctx, children, OID_AUTO, 8230 "stat_EtherStatsPktsRx256Octetsto511Octets", 8231 CTLFLAG_RD, &sc->stat_EtherStatsPktsRx256Octetsto511Octets, 8232 0, "Bytes received in 256 to 511 byte packets"); 8233 8234 SYSCTL_ADD_UINT(ctx, children, OID_AUTO, 8235 "stat_EtherStatsPktsRx512Octetsto1023Octets", 8236 CTLFLAG_RD, &sc->stat_EtherStatsPktsRx512Octetsto1023Octets, 8237 0, "Bytes received in 512 to 1023 byte packets"); 8238 8239 SYSCTL_ADD_UINT(ctx, children, OID_AUTO, 8240 "stat_EtherStatsPktsRx1024Octetsto1522Octets", 8241 CTLFLAG_RD, &sc->stat_EtherStatsPktsRx1024Octetsto1522Octets, 8242 0, "Bytes received in 1024 t0 1522 byte packets"); 8243 8244 SYSCTL_ADD_UINT(ctx, children, OID_AUTO, 8245 "stat_EtherStatsPktsRx1523Octetsto9022Octets", 8246 CTLFLAG_RD, &sc->stat_EtherStatsPktsRx1523Octetsto9022Octets, 8247 0, "Bytes received in 1523 to 9022 byte packets"); 8248 8249 SYSCTL_ADD_UINT(ctx, children, OID_AUTO, 8250 "stat_EtherStatsPktsTx64Octets", 8251 CTLFLAG_RD, &sc->stat_EtherStatsPktsTx64Octets, 8252 0, "Bytes sent in 64 byte packets"); 8253 8254 SYSCTL_ADD_UINT(ctx, children, OID_AUTO, 8255 "stat_EtherStatsPktsTx65Octetsto127Octets", 8256 CTLFLAG_RD, &sc->stat_EtherStatsPktsTx65Octetsto127Octets, 8257 0, "Bytes sent in 65 to 127 byte packets"); 8258 8259 SYSCTL_ADD_UINT(ctx, children, OID_AUTO, 8260 "stat_EtherStatsPktsTx128Octetsto255Octets", 8261 CTLFLAG_RD, &sc->stat_EtherStatsPktsTx128Octetsto255Octets, 8262 0, "Bytes sent in 128 to 255 byte packets"); 8263 8264 SYSCTL_ADD_UINT(ctx, children, OID_AUTO, 8265 "stat_EtherStatsPktsTx256Octetsto511Octets", 8266 CTLFLAG_RD, &sc->stat_EtherStatsPktsTx256Octetsto511Octets, 8267 0, "Bytes sent in 256 to 511 byte packets"); 8268 8269 SYSCTL_ADD_UINT(ctx, children, OID_AUTO, 8270 "stat_EtherStatsPktsTx512Octetsto1023Octets", 8271 CTLFLAG_RD, &sc->stat_EtherStatsPktsTx512Octetsto1023Octets, 8272 0, "Bytes sent in 512 to 1023 byte packets"); 8273 8274 SYSCTL_ADD_UINT(ctx, children, OID_AUTO, 8275 "stat_EtherStatsPktsTx1024Octetsto1522Octets", 8276 CTLFLAG_RD, &sc->stat_EtherStatsPktsTx1024Octetsto1522Octets, 8277 0, "Bytes sent in 1024 to 1522 byte packets"); 8278 8279 SYSCTL_ADD_UINT(ctx, children, OID_AUTO, 8280 "stat_EtherStatsPktsTx1523Octetsto9022Octets", 8281 CTLFLAG_RD, &sc->stat_EtherStatsPktsTx1523Octetsto9022Octets, 8282 0, "Bytes sent in 1523 to 9022 byte packets"); 8283 8284 SYSCTL_ADD_UINT(ctx, children, OID_AUTO, 8285 "stat_XonPauseFramesReceived", 8286 CTLFLAG_RD, &sc->stat_XonPauseFramesReceived, 8287 0, "XON pause frames receved"); 8288 8289 SYSCTL_ADD_UINT(ctx, children, OID_AUTO, 8290 "stat_XoffPauseFramesReceived", 8291 CTLFLAG_RD, &sc->stat_XoffPauseFramesReceived, 8292 0, "XOFF pause frames received"); 8293 8294 SYSCTL_ADD_UINT(ctx, children, OID_AUTO, 8295 "stat_OutXonSent", 8296 CTLFLAG_RD, &sc->stat_OutXonSent, 8297 0, "XON pause frames sent"); 8298 8299 SYSCTL_ADD_UINT(ctx, children, OID_AUTO, 8300 "stat_OutXoffSent", 8301 CTLFLAG_RD, &sc->stat_OutXoffSent, 8302 0, "XOFF pause frames sent"); 8303 8304 SYSCTL_ADD_UINT(ctx, children, OID_AUTO, 8305 "stat_FlowControlDone", 8306 CTLFLAG_RD, &sc->stat_FlowControlDone, 8307 0, "Flow control done"); 8308 8309 SYSCTL_ADD_UINT(ctx, children, OID_AUTO, 8310 "stat_MacControlFramesReceived", 8311 CTLFLAG_RD, &sc->stat_MacControlFramesReceived, 8312 0, "MAC control frames received"); 8313 8314 SYSCTL_ADD_UINT(ctx, children, OID_AUTO, 8315 "stat_XoffStateEntered", 8316 CTLFLAG_RD, &sc->stat_XoffStateEntered, 8317 0, "XOFF state entered"); 8318 8319 SYSCTL_ADD_UINT(ctx, children, OID_AUTO, 8320 "stat_IfInFramesL2FilterDiscards", 8321 CTLFLAG_RD, &sc->stat_IfInFramesL2FilterDiscards, 8322 0, "Received L2 packets discarded"); 8323 8324 SYSCTL_ADD_UINT(ctx, children, OID_AUTO, 8325 "stat_IfInRuleCheckerDiscards", 8326 CTLFLAG_RD, &sc->stat_IfInRuleCheckerDiscards, 8327 0, "Received packets discarded by rule"); 8328 8329 SYSCTL_ADD_UINT(ctx, children, OID_AUTO, 8330 "stat_IfInFTQDiscards", 8331 CTLFLAG_RD, &sc->stat_IfInFTQDiscards, 8332 0, "Received packet FTQ discards"); 8333 8334 SYSCTL_ADD_UINT(ctx, children, OID_AUTO, 8335 "stat_IfInMBUFDiscards", 8336 CTLFLAG_RD, &sc->stat_IfInMBUFDiscards, 8337 0, "Received packets discarded due to lack of controller buffer memory"); 8338 8339 SYSCTL_ADD_UINT(ctx, children, OID_AUTO, 8340 "stat_IfInRuleCheckerP4Hit", 8341 CTLFLAG_RD, &sc->stat_IfInRuleCheckerP4Hit, 8342 0, "Received packets rule checker hits"); 8343 8344 SYSCTL_ADD_UINT(ctx, children, OID_AUTO, 8345 "stat_CatchupInRuleCheckerDiscards", 8346 CTLFLAG_RD, &sc->stat_CatchupInRuleCheckerDiscards, 8347 0, "Received packets discarded in Catchup path"); 8348 8349 SYSCTL_ADD_UINT(ctx, children, OID_AUTO, 8350 "stat_CatchupInFTQDiscards", 8351 CTLFLAG_RD, &sc->stat_CatchupInFTQDiscards, 8352 0, "Received packets discarded in FTQ in Catchup path"); 8353 8354 SYSCTL_ADD_UINT(ctx, children, OID_AUTO, 8355 "stat_CatchupInMBUFDiscards", 8356 CTLFLAG_RD, &sc->stat_CatchupInMBUFDiscards, 8357 0, "Received packets discarded in controller buffer memory in Catchup path"); 8358 8359 SYSCTL_ADD_UINT(ctx, children, OID_AUTO, 8360 "stat_CatchupInRuleCheckerP4Hit", 8361 CTLFLAG_RD, &sc->stat_CatchupInRuleCheckerP4Hit, 8362 0, "Received packets rule checker hits in Catchup path"); 8363 8364 SYSCTL_ADD_UINT(ctx, children, OID_AUTO, 8365 "com_no_buffers", 8366 CTLFLAG_RD, &sc->com_no_buffers, 8367 0, "Valid packets received but no RX buffers available"); 8368 8369 #ifdef BCE_DEBUG 8370 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, 8371 "driver_state", CTLTYPE_INT | CTLFLAG_RW, 8372 (void *)sc, 0, 8373 bce_sysctl_driver_state, "I", "Drive state information"); 8374 8375 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, 8376 "hw_state", CTLTYPE_INT | CTLFLAG_RW, 8377 (void *)sc, 0, 8378 bce_sysctl_hw_state, "I", "Hardware state information"); 8379 8380 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, 8381 "bc_state", CTLTYPE_INT | CTLFLAG_RW, 8382 (void *)sc, 0, 8383 bce_sysctl_bc_state, "I", "Bootcode state information"); 8384 8385 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, 8386 "dump_rx_chain", CTLTYPE_INT | CTLFLAG_RW, 8387 (void *)sc, 0, 8388 bce_sysctl_dump_rx_chain, "I", "Dump rx_bd chain"); 8389 8390 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, 8391 "dump_tx_chain", CTLTYPE_INT | CTLFLAG_RW, 8392 (void *)sc, 0, 8393 bce_sysctl_dump_tx_chain, "I", "Dump tx_bd chain"); 8394 8395 #ifdef BCE_JUMBO_HDRSPLIT 8396 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, 8397 "dump_pg_chain", CTLTYPE_INT | CTLFLAG_RW, 8398 (void *)sc, 0, 8399 bce_sysctl_dump_pg_chain, "I", "Dump page chain"); 8400 #endif 8401 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, 8402 "dump_ctx", CTLTYPE_INT | CTLFLAG_RW, 8403 (void *)sc, 0, 8404 bce_sysctl_dump_ctx, "I", "Dump context memory"); 8405 8406 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, 8407 "breakpoint", CTLTYPE_INT | CTLFLAG_RW, 8408 (void *)sc, 0, 8409 bce_sysctl_breakpoint, "I", "Driver breakpoint"); 8410 8411 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, 8412 "reg_read", CTLTYPE_INT | CTLFLAG_RW, 8413 (void *)sc, 0, 8414 bce_sysctl_reg_read, "I", "Register read"); 8415 8416 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, 8417 "nvram_read", CTLTYPE_INT | CTLFLAG_RW, 8418 (void *)sc, 0, 8419 bce_sysctl_nvram_read, "I", "NVRAM read"); 8420 8421 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, 8422 "phy_read", CTLTYPE_INT | CTLFLAG_RW, 8423 (void *)sc, 0, 8424 bce_sysctl_phy_read, "I", "PHY register read"); 8425 8426 #endif 8427 8428 DBEXIT(BCE_VERBOSE_MISC); 8429 } 8430 8431 8432 /****************************************************************************/ 8433 /* BCE Debug Routines */ 8434 /****************************************************************************/ 8435 #ifdef BCE_DEBUG 8436 8437 /****************************************************************************/ 8438 /* Freezes the controller to allow for a cohesive state dump. */ 8439 /* */ 8440 /* Returns: */ 8441 /* Nothing. */ 8442 /****************************************************************************/ 8443 static void 8444 bce_freeze_controller(struct bce_softc *sc) 8445 { 8446 u32 val; 8447 val = REG_RD(sc, BCE_MISC_COMMAND); 8448 val |= BCE_MISC_COMMAND_DISABLE_ALL; 8449 REG_WR(sc, BCE_MISC_COMMAND, val); 8450 } 8451 8452 8453 /****************************************************************************/ 8454 /* Unfreezes the controller after a freeze operation. This may not always */ 8455 /* work and the controller will require a reset! */ 8456 /* */ 8457 /* Returns: */ 8458 /* Nothing. */ 8459 /****************************************************************************/ 8460 static void 8461 bce_unfreeze_controller(struct bce_softc *sc) 8462 { 8463 u32 val; 8464 val = REG_RD(sc, BCE_MISC_COMMAND); 8465 val |= BCE_MISC_COMMAND_ENABLE_ALL; 8466 REG_WR(sc, BCE_MISC_COMMAND, val); 8467 } 8468 8469 8470 /****************************************************************************/ 8471 /* Prints out Ethernet frame information from an mbuf. */ 8472 /* */ 8473 /* Partially decode an Ethernet frame to look at some important headers. */ 8474 /* */ 8475 /* Returns: */ 8476 /* Nothing. */ 8477 /****************************************************************************/ 8478 static void 8479 bce_dump_enet(struct bce_softc *sc, struct mbuf *m) 8480 { 8481 struct ether_vlan_header *eh; 8482 u16 etype; 8483 int ehlen; 8484 struct ip *ip; 8485 struct tcphdr *th; 8486 struct udphdr *uh; 8487 struct arphdr *ah; 8488 8489 BCE_PRINTF( 8490 "-----------------------------" 8491 " Frame Decode " 8492 "-----------------------------\n"); 8493 8494 eh = mtod(m, struct ether_vlan_header *); 8495 8496 /* Handle VLAN encapsulation if present. */ 8497 if (eh->evl_encap_proto == htons(ETHERTYPE_VLAN)) { 8498 etype = ntohs(eh->evl_proto); 8499 ehlen = ETHER_HDR_LEN + ETHER_VLAN_ENCAP_LEN; 8500 } else { 8501 etype = ntohs(eh->evl_encap_proto); 8502 ehlen = ETHER_HDR_LEN; 8503 } 8504 8505 /* ToDo: Add VLAN output. */ 8506 BCE_PRINTF("enet: dest = %6D, src = %6D, type = 0x%04X, hlen = %d\n", 8507 eh->evl_dhost, ":", eh->evl_shost, ":", etype, ehlen); 8508 8509 switch (etype) { 8510 case ETHERTYPE_IP: 8511 ip = (struct ip *)(m->m_data + ehlen); 8512 BCE_PRINTF("--ip: dest = 0x%08X , src = 0x%08X, len = %d bytes, " 8513 "protocol = 0x%02X, xsum = 0x%04X\n", 8514 ntohl(ip->ip_dst.s_addr), ntohl(ip->ip_src.s_addr), 8515 ntohs(ip->ip_len), ip->ip_p, ntohs(ip->ip_sum)); 8516 8517 switch (ip->ip_p) { 8518 case IPPROTO_TCP: 8519 th = (struct tcphdr *)((caddr_t)ip + (ip->ip_hl << 2)); 8520 BCE_PRINTF("-tcp: dest = %d, src = %d, hlen = %d bytes, " 8521 "flags = 0x%b, csum = 0x%04X\n", 8522 ntohs(th->th_dport), ntohs(th->th_sport), (th->th_off << 2), 8523 th->th_flags, "\20\10CWR\07ECE\06URG\05ACK\04PSH\03RST\02SYN\01FIN", 8524 ntohs(th->th_sum)); 8525 break; 8526 case IPPROTO_UDP: 8527 uh = (struct udphdr *)((caddr_t)ip + (ip->ip_hl << 2)); 8528 BCE_PRINTF("-udp: dest = %d, src = %d, len = %d bytes, " 8529 "csum = 0x%04X\n", ntohs(uh->uh_dport), ntohs(uh->uh_sport), 8530 ntohs(uh->uh_ulen), ntohs(uh->uh_sum)); 8531 break; 8532 case IPPROTO_ICMP: 8533 BCE_PRINTF("icmp:\n"); 8534 break; 8535 default: 8536 BCE_PRINTF("----: Other IP protocol.\n"); 8537 } 8538 break; 8539 case ETHERTYPE_IPV6: 8540 BCE_PRINTF("ipv6: No decode supported.\n"); 8541 break; 8542 case ETHERTYPE_ARP: 8543 BCE_PRINTF("-arp: "); 8544 ah = (struct arphdr *) (m->m_data + ehlen); 8545 switch (ntohs(ah->ar_op)) { 8546 case ARPOP_REVREQUEST: 8547 printf("reverse ARP request\n"); 8548 break; 8549 case ARPOP_REVREPLY: 8550 printf("reverse ARP reply\n"); 8551 break; 8552 case ARPOP_REQUEST: 8553 printf("ARP request\n"); 8554 break; 8555 case ARPOP_REPLY: 8556 printf("ARP reply\n"); 8557 break; 8558 default: 8559 printf("other ARP operation\n"); 8560 } 8561 break; 8562 default: 8563 BCE_PRINTF("----: Other protocol.\n"); 8564 } 8565 8566 BCE_PRINTF( 8567 "-----------------------------" 8568 "--------------" 8569 "-----------------------------\n"); 8570 } 8571 8572 8573 /****************************************************************************/ 8574 /* Prints out information about an mbuf. */ 8575 /* */ 8576 /* Returns: */ 8577 /* Nothing. */ 8578 /****************************************************************************/ 8579 static __attribute__ ((noinline)) void 8580 bce_dump_mbuf(struct bce_softc *sc, struct mbuf *m) 8581 { 8582 struct mbuf *mp = m; 8583 8584 if (m == NULL) { 8585 BCE_PRINTF("mbuf: null pointer\n"); 8586 return; 8587 } 8588 8589 while (mp) { 8590 BCE_PRINTF("mbuf: %p, m_len = %d, m_flags = 0x%b, m_data = %p\n", 8591 mp, mp->m_len, mp->m_flags, 8592 "\20\1M_EXT\2M_PKTHDR\3M_EOR\4M_RDONLY", 8593 mp->m_data); 8594 8595 if (mp->m_flags & M_PKTHDR) { 8596 BCE_PRINTF("- m_pkthdr: len = %d, flags = 0x%b, csum_flags = %b\n", 8597 mp->m_pkthdr.len, mp->m_flags, 8598 "\20\12M_BCAST\13M_MCAST\14M_FRAG\15M_FIRSTFRAG" 8599 "\16M_LASTFRAG\21M_VLANTAG\22M_PROMISC\23M_NOFREE", 8600 mp->m_pkthdr.csum_flags, 8601 "\20\1CSUM_IP\2CSUM_TCP\3CSUM_UDP\4CSUM_IP_FRAGS" 8602 "\5CSUM_FRAGMENT\6CSUM_TSO\11CSUM_IP_CHECKED" 8603 "\12CSUM_IP_VALID\13CSUM_DATA_VALID\14CSUM_PSEUDO_HDR"); 8604 } 8605 8606 if (mp->m_flags & M_EXT) { 8607 BCE_PRINTF("- m_ext: %p, ext_size = %d, type = ", 8608 mp->m_ext.ext_buf, mp->m_ext.ext_size); 8609 switch (mp->m_ext.ext_type) { 8610 case EXT_CLUSTER: printf("EXT_CLUSTER\n"); break; 8611 case EXT_SFBUF: printf("EXT_SFBUF\n"); break; 8612 case EXT_JUMBO9: printf("EXT_JUMBO9\n"); break; 8613 case EXT_JUMBO16: printf("EXT_JUMBO16\n"); break; 8614 case EXT_PACKET: printf("EXT_PACKET\n"); break; 8615 case EXT_MBUF: printf("EXT_MBUF\n"); break; 8616 case EXT_NET_DRV: printf("EXT_NET_DRV\n"); break; 8617 case EXT_MOD_TYPE: printf("EXT_MDD_TYPE\n"); break; 8618 case EXT_DISPOSABLE: printf("EXT_DISPOSABLE\n"); break; 8619 case EXT_EXTREF: printf("EXT_EXTREF\n"); break; 8620 default: printf("UNKNOWN\n"); 8621 } 8622 } 8623 8624 mp = mp->m_next; 8625 } 8626 } 8627 8628 8629 /****************************************************************************/ 8630 /* Prints out the mbufs in the TX mbuf chain. */ 8631 /* */ 8632 /* Returns: */ 8633 /* Nothing. */ 8634 /****************************************************************************/ 8635 static __attribute__ ((noinline)) void 8636 bce_dump_tx_mbuf_chain(struct bce_softc *sc, u16 chain_prod, int count) 8637 { 8638 struct mbuf *m; 8639 8640 BCE_PRINTF( 8641 "----------------------------" 8642 " tx mbuf data " 8643 "----------------------------\n"); 8644 8645 for (int i = 0; i < count; i++) { 8646 m = sc->tx_mbuf_ptr[chain_prod]; 8647 BCE_PRINTF("txmbuf[0x%04X]\n", chain_prod); 8648 bce_dump_mbuf(sc, m); 8649 chain_prod = TX_CHAIN_IDX(NEXT_TX_BD(chain_prod)); 8650 } 8651 8652 BCE_PRINTF( 8653 "----------------------------" 8654 "----------------" 8655 "----------------------------\n"); 8656 } 8657 8658 8659 /****************************************************************************/ 8660 /* Prints out the mbufs in the RX mbuf chain. */ 8661 /* */ 8662 /* Returns: */ 8663 /* Nothing. */ 8664 /****************************************************************************/ 8665 static __attribute__ ((noinline)) void 8666 bce_dump_rx_mbuf_chain(struct bce_softc *sc, u16 chain_prod, int count) 8667 { 8668 struct mbuf *m; 8669 8670 BCE_PRINTF( 8671 "----------------------------" 8672 " rx mbuf data " 8673 "----------------------------\n"); 8674 8675 for (int i = 0; i < count; i++) { 8676 m = sc->rx_mbuf_ptr[chain_prod]; 8677 BCE_PRINTF("rxmbuf[0x%04X]\n", chain_prod); 8678 bce_dump_mbuf(sc, m); 8679 chain_prod = RX_CHAIN_IDX(NEXT_RX_BD(chain_prod)); 8680 } 8681 8682 8683 BCE_PRINTF( 8684 "----------------------------" 8685 "----------------" 8686 "----------------------------\n"); 8687 } 8688 8689 8690 #ifdef BCE_JUMBO_HDRSPLIT 8691 /****************************************************************************/ 8692 /* Prints out the mbufs in the mbuf page chain. */ 8693 /* */ 8694 /* Returns: */ 8695 /* Nothing. */ 8696 /****************************************************************************/ 8697 static __attribute__ ((noinline)) void 8698 bce_dump_pg_mbuf_chain(struct bce_softc *sc, u16 chain_prod, int count) 8699 { 8700 struct mbuf *m; 8701 8702 BCE_PRINTF( 8703 "----------------------------" 8704 " pg mbuf data " 8705 "----------------------------\n"); 8706 8707 for (int i = 0; i < count; i++) { 8708 m = sc->pg_mbuf_ptr[chain_prod]; 8709 BCE_PRINTF("pgmbuf[0x%04X]\n", chain_prod); 8710 bce_dump_mbuf(sc, m); 8711 chain_prod = PG_CHAIN_IDX(NEXT_PG_BD(chain_prod)); 8712 } 8713 8714 8715 BCE_PRINTF( 8716 "----------------------------" 8717 "----------------" 8718 "----------------------------\n"); 8719 } 8720 #endif 8721 8722 8723 /****************************************************************************/ 8724 /* Prints out a tx_bd structure. */ 8725 /* */ 8726 /* Returns: */ 8727 /* Nothing. */ 8728 /****************************************************************************/ 8729 static __attribute__ ((noinline)) void 8730 bce_dump_txbd(struct bce_softc *sc, int idx, struct tx_bd *txbd) 8731 { 8732 if (idx > MAX_TX_BD) 8733 /* Index out of range. */ 8734 BCE_PRINTF("tx_bd[0x%04X]: Invalid tx_bd index!\n", idx); 8735 else if ((idx & USABLE_TX_BD_PER_PAGE) == USABLE_TX_BD_PER_PAGE) 8736 /* TX Chain page pointer. */ 8737 BCE_PRINTF("tx_bd[0x%04X]: haddr = 0x%08X:%08X, chain page pointer\n", 8738 idx, txbd->tx_bd_haddr_hi, txbd->tx_bd_haddr_lo); 8739 else { 8740 /* Normal tx_bd entry. */ 8741 BCE_PRINTF("tx_bd[0x%04X]: haddr = 0x%08X:%08X, nbytes = 0x%08X, " 8742 "vlan tag= 0x%04X, flags = 0x%04X (", idx, 8743 txbd->tx_bd_haddr_hi, txbd->tx_bd_haddr_lo, 8744 txbd->tx_bd_mss_nbytes, txbd->tx_bd_vlan_tag, 8745 txbd->tx_bd_flags); 8746 8747 if (txbd->tx_bd_flags & TX_BD_FLAGS_CONN_FAULT) 8748 printf(" CONN_FAULT"); 8749 8750 if (txbd->tx_bd_flags & TX_BD_FLAGS_TCP_UDP_CKSUM) 8751 printf(" TCP_UDP_CKSUM"); 8752 8753 if (txbd->tx_bd_flags & TX_BD_FLAGS_IP_CKSUM) 8754 printf(" IP_CKSUM"); 8755 8756 if (txbd->tx_bd_flags & TX_BD_FLAGS_VLAN_TAG) 8757 printf(" VLAN"); 8758 8759 if (txbd->tx_bd_flags & TX_BD_FLAGS_COAL_NOW) 8760 printf(" COAL_NOW"); 8761 8762 if (txbd->tx_bd_flags & TX_BD_FLAGS_DONT_GEN_CRC) 8763 printf(" DONT_GEN_CRC"); 8764 8765 if (txbd->tx_bd_flags & TX_BD_FLAGS_START) 8766 printf(" START"); 8767 8768 if (txbd->tx_bd_flags & TX_BD_FLAGS_END) 8769 printf(" END"); 8770 8771 if (txbd->tx_bd_flags & TX_BD_FLAGS_SW_LSO) 8772 printf(" LSO"); 8773 8774 if (txbd->tx_bd_flags & TX_BD_FLAGS_SW_OPTION_WORD) 8775 printf(" OPTION_WORD"); 8776 8777 if (txbd->tx_bd_flags & TX_BD_FLAGS_SW_FLAGS) 8778 printf(" FLAGS"); 8779 8780 if (txbd->tx_bd_flags & TX_BD_FLAGS_SW_SNAP) 8781 printf(" SNAP"); 8782 8783 printf(" )\n"); 8784 } 8785 8786 } 8787 8788 8789 /****************************************************************************/ 8790 /* Prints out a rx_bd structure. */ 8791 /* */ 8792 /* Returns: */ 8793 /* Nothing. */ 8794 /****************************************************************************/ 8795 static __attribute__ ((noinline)) void 8796 bce_dump_rxbd(struct bce_softc *sc, int idx, struct rx_bd *rxbd) 8797 { 8798 if (idx > MAX_RX_BD) 8799 /* Index out of range. */ 8800 BCE_PRINTF("rx_bd[0x%04X]: Invalid rx_bd index!\n", idx); 8801 else if ((idx & USABLE_RX_BD_PER_PAGE) == USABLE_RX_BD_PER_PAGE) 8802 /* RX Chain page pointer. */ 8803 BCE_PRINTF("rx_bd[0x%04X]: haddr = 0x%08X:%08X, chain page pointer\n", 8804 idx, rxbd->rx_bd_haddr_hi, rxbd->rx_bd_haddr_lo); 8805 else 8806 /* Normal rx_bd entry. */ 8807 BCE_PRINTF("rx_bd[0x%04X]: haddr = 0x%08X:%08X, nbytes = 0x%08X, " 8808 "flags = 0x%08X\n", idx, 8809 rxbd->rx_bd_haddr_hi, rxbd->rx_bd_haddr_lo, 8810 rxbd->rx_bd_len, rxbd->rx_bd_flags); 8811 } 8812 8813 8814 #ifdef BCE_JUMBO_HDRSPLIT 8815 /****************************************************************************/ 8816 /* Prints out a rx_bd structure in the page chain. */ 8817 /* */ 8818 /* Returns: */ 8819 /* Nothing. */ 8820 /****************************************************************************/ 8821 static __attribute__ ((noinline)) void 8822 bce_dump_pgbd(struct bce_softc *sc, int idx, struct rx_bd *pgbd) 8823 { 8824 if (idx > MAX_PG_BD) 8825 /* Index out of range. */ 8826 BCE_PRINTF("pg_bd[0x%04X]: Invalid pg_bd index!\n", idx); 8827 else if ((idx & USABLE_PG_BD_PER_PAGE) == USABLE_PG_BD_PER_PAGE) 8828 /* Page Chain page pointer. */ 8829 BCE_PRINTF("px_bd[0x%04X]: haddr = 0x%08X:%08X, chain page pointer\n", 8830 idx, pgbd->rx_bd_haddr_hi, pgbd->rx_bd_haddr_lo); 8831 else 8832 /* Normal rx_bd entry. */ 8833 BCE_PRINTF("pg_bd[0x%04X]: haddr = 0x%08X:%08X, nbytes = 0x%08X, " 8834 "flags = 0x%08X\n", idx, 8835 pgbd->rx_bd_haddr_hi, pgbd->rx_bd_haddr_lo, 8836 pgbd->rx_bd_len, pgbd->rx_bd_flags); 8837 } 8838 #endif 8839 8840 8841 /****************************************************************************/ 8842 /* Prints out a l2_fhdr structure. */ 8843 /* */ 8844 /* Returns: */ 8845 /* Nothing. */ 8846 /****************************************************************************/ 8847 static __attribute__ ((noinline)) void 8848 bce_dump_l2fhdr(struct bce_softc *sc, int idx, struct l2_fhdr *l2fhdr) 8849 { 8850 BCE_PRINTF("l2_fhdr[0x%04X]: status = 0x%b, " 8851 "pkt_len = %d, vlan = 0x%04x, ip_xsum/hdr_len = 0x%04X, " 8852 "tcp_udp_xsum = 0x%04X\n", idx, 8853 l2fhdr->l2_fhdr_status, BCE_L2FHDR_PRINTFB, 8854 l2fhdr->l2_fhdr_pkt_len, l2fhdr->l2_fhdr_vlan_tag, 8855 l2fhdr->l2_fhdr_ip_xsum, l2fhdr->l2_fhdr_tcp_udp_xsum); 8856 } 8857 8858 8859 /****************************************************************************/ 8860 /* Prints out context memory info. (Only useful for CID 0 to 16.) */ 8861 /* */ 8862 /* Returns: */ 8863 /* Nothing. */ 8864 /****************************************************************************/ 8865 static __attribute__ ((noinline)) void 8866 bce_dump_ctx(struct bce_softc *sc, u16 cid) 8867 { 8868 if (cid <= TX_CID) { 8869 BCE_PRINTF( 8870 "----------------------------" 8871 " CTX Data " 8872 "----------------------------\n"); 8873 8874 BCE_PRINTF(" 0x%04X - (CID) Context ID\n", cid); 8875 8876 if (cid == RX_CID) { 8877 BCE_PRINTF(" 0x%08X - (L2CTX_RX_HOST_BDIDX) host rx " 8878 "producer index\n", 8879 CTX_RD(sc, GET_CID_ADDR(cid), BCE_L2CTX_RX_HOST_BDIDX)); 8880 BCE_PRINTF(" 0x%08X - (L2CTX_RX_HOST_BSEQ) host byte sequence\n", 8881 CTX_RD(sc, GET_CID_ADDR(cid), BCE_L2CTX_RX_HOST_BSEQ)); 8882 BCE_PRINTF(" 0x%08X - (L2CTX_RX_NX_BSEQ) h/w byte sequence\n", 8883 CTX_RD(sc, GET_CID_ADDR(cid), BCE_L2CTX_RX_NX_BSEQ)); 8884 BCE_PRINTF(" 0x%08X - (L2CTX_RX_NX_BDHADDR_HI) h/w buffer " 8885 "descriptor address\n", 8886 CTX_RD(sc, GET_CID_ADDR(cid), BCE_L2CTX_RX_NX_BDHADDR_HI)); 8887 BCE_PRINTF(" 0x%08X - (L2CTX_RX_NX_BDHADDR_LO) h/w buffer " 8888 "descriptor address\n", 8889 CTX_RD(sc, GET_CID_ADDR(cid), BCE_L2CTX_RX_NX_BDHADDR_LO)); 8890 BCE_PRINTF(" 0x%08X - (L2CTX_RX_NX_BDIDX) h/w rx consumer index\n", 8891 CTX_RD(sc, GET_CID_ADDR(cid), BCE_L2CTX_RX_NX_BDIDX)); 8892 BCE_PRINTF(" 0x%08X - (L2CTX_RX_HOST_PG_BDIDX) host page " 8893 "producer index\n", 8894 CTX_RD(sc, GET_CID_ADDR(cid), BCE_L2CTX_RX_HOST_PG_BDIDX)); 8895 BCE_PRINTF(" 0x%08X - (L2CTX_RX_PG_BUF_SIZE) host rx_bd/page " 8896 "buffer size\n", 8897 CTX_RD(sc, GET_CID_ADDR(cid), BCE_L2CTX_RX_PG_BUF_SIZE)); 8898 BCE_PRINTF(" 0x%08X - (L2CTX_RX_NX_PG_BDHADDR_HI) h/w page " 8899 "chain address\n", 8900 CTX_RD(sc, GET_CID_ADDR(cid), BCE_L2CTX_RX_NX_PG_BDHADDR_HI)); 8901 BCE_PRINTF(" 0x%08X - (L2CTX_RX_NX_PG_BDHADDR_LO) h/w page " 8902 "chain address\n", 8903 CTX_RD(sc, GET_CID_ADDR(cid), BCE_L2CTX_RX_NX_PG_BDHADDR_LO)); 8904 BCE_PRINTF(" 0x%08X - (L2CTX_RX_NX_PG_BDIDX) h/w page " 8905 "consumer index\n", 8906 CTX_RD(sc, GET_CID_ADDR(cid), BCE_L2CTX_RX_NX_PG_BDIDX)); 8907 } else if (cid == TX_CID) { 8908 if ((BCE_CHIP_NUM(sc) == BCE_CHIP_NUM_5709) || 8909 (BCE_CHIP_NUM(sc) == BCE_CHIP_NUM_5716)) { 8910 BCE_PRINTF(" 0x%08X - (L2CTX_TX_TYPE_XI) ctx type\n", 8911 CTX_RD(sc, GET_CID_ADDR(cid), BCE_L2CTX_TX_TYPE_XI)); 8912 BCE_PRINTF(" 0x%08X - (L2CTX_CMD_TX_TYPE_XI) ctx cmd\n", 8913 CTX_RD(sc, GET_CID_ADDR(cid), BCE_L2CTX_TX_CMD_TYPE_XI)); 8914 BCE_PRINTF(" 0x%08X - (L2CTX_TX_TBDR_BDHADDR_HI_XI) h/w buffer " 8915 "descriptor address\n", CTX_RD(sc, 8916 GET_CID_ADDR(cid), BCE_L2CTX_TX_TBDR_BHADDR_HI_XI)); 8917 BCE_PRINTF(" 0x%08X - (L2CTX_TX_TBDR_BHADDR_LO_XI) h/w buffer " 8918 "descriptor address\n", CTX_RD(sc, 8919 GET_CID_ADDR(cid), BCE_L2CTX_TX_TBDR_BHADDR_LO_XI)); 8920 BCE_PRINTF(" 0x%08X - (L2CTX_TX_HOST_BIDX_XI) host producer " 8921 "index\n", CTX_RD(sc, GET_CID_ADDR(cid), 8922 BCE_L2CTX_TX_HOST_BIDX_XI)); 8923 BCE_PRINTF(" 0x%08X - (L2CTX_TX_HOST_BSEQ_XI) host byte " 8924 "sequence\n", CTX_RD(sc, GET_CID_ADDR(cid), 8925 BCE_L2CTX_TX_HOST_BSEQ_XI)); 8926 } else { 8927 BCE_PRINTF(" 0x%08X - (L2CTX_TX_TYPE) ctx type\n", 8928 CTX_RD(sc, GET_CID_ADDR(cid), BCE_L2CTX_TX_TYPE)); 8929 BCE_PRINTF(" 0x%08X - (L2CTX_TX_CMD_TYPE) ctx cmd\n", 8930 CTX_RD(sc, GET_CID_ADDR(cid), BCE_L2CTX_TX_CMD_TYPE)); 8931 BCE_PRINTF(" 0x%08X - (L2CTX_TX_TBDR_BDHADDR_HI) h/w buffer " 8932 "descriptor address\n", CTX_RD(sc, GET_CID_ADDR(cid), 8933 BCE_L2CTX_TX_TBDR_BHADDR_HI)); 8934 BCE_PRINTF(" 0x%08X - (L2CTX_TX_TBDR_BHADDR_LO) h/w buffer " 8935 "descriptor address\n", CTX_RD(sc, GET_CID_ADDR(cid), 8936 BCE_L2CTX_TX_TBDR_BHADDR_LO)); 8937 BCE_PRINTF(" 0x%08X - (L2CTX_TX_HOST_BIDX) host producer " 8938 "index\n", CTX_RD(sc, GET_CID_ADDR(cid), 8939 BCE_L2CTX_TX_HOST_BIDX)); 8940 BCE_PRINTF(" 0x%08X - (L2CTX_TX_HOST_BSEQ) host byte " 8941 "sequence\n", CTX_RD(sc, GET_CID_ADDR(cid), 8942 BCE_L2CTX_TX_HOST_BSEQ)); 8943 } 8944 } else 8945 BCE_PRINTF(" Unknown CID\n"); 8946 8947 BCE_PRINTF( 8948 "----------------------------" 8949 " Raw CTX " 8950 "----------------------------\n"); 8951 8952 for (int i = 0x0; i < 0x300; i += 0x10) { 8953 BCE_PRINTF("0x%04X: 0x%08X 0x%08X 0x%08X 0x%08X\n", i, 8954 CTX_RD(sc, GET_CID_ADDR(cid), i), 8955 CTX_RD(sc, GET_CID_ADDR(cid), i + 0x4), 8956 CTX_RD(sc, GET_CID_ADDR(cid), i + 0x8), 8957 CTX_RD(sc, GET_CID_ADDR(cid), i + 0xc)); 8958 } 8959 8960 8961 BCE_PRINTF( 8962 "----------------------------" 8963 "----------------" 8964 "----------------------------\n"); 8965 } 8966 } 8967 8968 8969 /****************************************************************************/ 8970 /* Prints out the FTQ data. */ 8971 /* */ 8972 /* Returns: */ 8973 /* Nothing. */ 8974 /****************************************************************************/ 8975 static __attribute__ ((noinline)) void 8976 bce_dump_ftqs(struct bce_softc *sc) 8977 { 8978 u32 cmd, ctl, cur_depth, max_depth, valid_cnt, val; 8979 8980 BCE_PRINTF( 8981 "----------------------------" 8982 " FTQ Data " 8983 "----------------------------\n"); 8984 8985 BCE_PRINTF(" FTQ Command Control Depth_Now Max_Depth Valid_Cnt \n"); 8986 BCE_PRINTF(" ------- ---------- ---------- ---------- ---------- ----------\n"); 8987 8988 /* Setup the generic statistic counters for the FTQ valid count. */ 8989 val = (BCE_HC_STAT_GEN_SEL_0_GEN_SEL_0_RV2PPQ_VALID_CNT << 24) | 8990 (BCE_HC_STAT_GEN_SEL_0_GEN_SEL_0_RXPCQ_VALID_CNT << 16) | 8991 (BCE_HC_STAT_GEN_SEL_0_GEN_SEL_0_RXPQ_VALID_CNT << 8) | 8992 (BCE_HC_STAT_GEN_SEL_0_GEN_SEL_0_RLUPQ_VALID_CNT); 8993 REG_WR(sc, BCE_HC_STAT_GEN_SEL_0, val); 8994 8995 val = (BCE_HC_STAT_GEN_SEL_0_GEN_SEL_0_TSCHQ_VALID_CNT << 24) | 8996 (BCE_HC_STAT_GEN_SEL_0_GEN_SEL_0_RDMAQ_VALID_CNT << 16) | 8997 (BCE_HC_STAT_GEN_SEL_0_GEN_SEL_0_RV2PTQ_VALID_CNT << 8) | 8998 (BCE_HC_STAT_GEN_SEL_0_GEN_SEL_0_RV2PMQ_VALID_CNT); 8999 REG_WR(sc, BCE_HC_STAT_GEN_SEL_1, val); 9000 9001 val = (BCE_HC_STAT_GEN_SEL_0_GEN_SEL_0_TPATQ_VALID_CNT << 24) | 9002 (BCE_HC_STAT_GEN_SEL_0_GEN_SEL_0_TDMAQ_VALID_CNT << 16) | 9003 (BCE_HC_STAT_GEN_SEL_0_GEN_SEL_0_TXPQ_VALID_CNT << 8) | 9004 (BCE_HC_STAT_GEN_SEL_0_GEN_SEL_0_TBDRQ_VALID_CNT); 9005 REG_WR(sc, BCE_HC_STAT_GEN_SEL_2, val); 9006 9007 val = (BCE_HC_STAT_GEN_SEL_0_GEN_SEL_0_COMQ_VALID_CNT << 24) | 9008 (BCE_HC_STAT_GEN_SEL_0_GEN_SEL_0_COMTQ_VALID_CNT << 16) | 9009 (BCE_HC_STAT_GEN_SEL_0_GEN_SEL_0_COMXQ_VALID_CNT << 8) | 9010 (BCE_HC_STAT_GEN_SEL_0_GEN_SEL_0_TASQ_VALID_CNT); 9011 REG_WR(sc, BCE_HC_STAT_GEN_SEL_3, val); 9012 9013 /* Input queue to the Receive Lookup state machine */ 9014 cmd = REG_RD(sc, BCE_RLUP_FTQ_CMD); 9015 ctl = REG_RD(sc, BCE_RLUP_FTQ_CTL); 9016 cur_depth = (ctl & BCE_RLUP_FTQ_CTL_CUR_DEPTH) >> 22; 9017 max_depth = (ctl & BCE_RLUP_FTQ_CTL_MAX_DEPTH) >> 12; 9018 valid_cnt = REG_RD(sc, BCE_HC_STAT_GEN_STAT0); 9019 BCE_PRINTF(" RLUP 0x%08X 0x%08X 0x%08X 0x%08X 0x%08X\n", 9020 cmd, ctl, cur_depth, max_depth, valid_cnt); 9021 9022 /* Input queue to the Receive Processor */ 9023 cmd = REG_RD_IND(sc, BCE_RXP_FTQ_CMD); 9024 ctl = REG_RD_IND(sc, BCE_RXP_FTQ_CTL); 9025 cur_depth = (ctl & BCE_RXP_FTQ_CTL_CUR_DEPTH) >> 22; 9026 max_depth = (ctl & BCE_RXP_FTQ_CTL_MAX_DEPTH) >> 12; 9027 valid_cnt = REG_RD(sc, BCE_HC_STAT_GEN_STAT1); 9028 BCE_PRINTF(" RXP 0x%08X 0x%08X 0x%08X 0x%08X 0x%08X\n", 9029 cmd, ctl, cur_depth, max_depth, valid_cnt); 9030 9031 /* Input queue to the Recevie Processor */ 9032 cmd = REG_RD_IND(sc, BCE_RXP_CFTQ_CMD); 9033 ctl = REG_RD_IND(sc, BCE_RXP_CFTQ_CTL); 9034 cur_depth = (ctl & BCE_RXP_CFTQ_CTL_CUR_DEPTH) >> 22; 9035 max_depth = (ctl & BCE_RXP_CFTQ_CTL_MAX_DEPTH) >> 12; 9036 valid_cnt = REG_RD(sc, BCE_HC_STAT_GEN_STAT2); 9037 BCE_PRINTF(" RXPC 0x%08X 0x%08X 0x%08X 0x%08X 0x%08X\n", 9038 cmd, ctl, cur_depth, max_depth, valid_cnt); 9039 9040 /* Input queue to the Receive Virtual to Physical state machine */ 9041 cmd = REG_RD(sc, BCE_RV2P_PFTQ_CMD); 9042 ctl = REG_RD(sc, BCE_RV2P_PFTQ_CTL); 9043 cur_depth = (ctl & BCE_RV2P_PFTQ_CTL_CUR_DEPTH) >> 22; 9044 max_depth = (ctl & BCE_RV2P_PFTQ_CTL_MAX_DEPTH) >> 12; 9045 valid_cnt = REG_RD(sc, BCE_HC_STAT_GEN_STAT3); 9046 BCE_PRINTF(" RV2PP 0x%08X 0x%08X 0x%08X 0x%08X 0x%08X\n", 9047 cmd, ctl, cur_depth, max_depth, valid_cnt); 9048 9049 /* Input queue to the Recevie Virtual to Physical state machine */ 9050 cmd = REG_RD(sc, BCE_RV2P_MFTQ_CMD); 9051 ctl = REG_RD(sc, BCE_RV2P_MFTQ_CTL); 9052 cur_depth = (ctl & BCE_RV2P_MFTQ_CTL_CUR_DEPTH) >> 22; 9053 max_depth = (ctl & BCE_RV2P_MFTQ_CTL_MAX_DEPTH) >> 12; 9054 valid_cnt = REG_RD(sc, BCE_HC_STAT_GEN_STAT4); 9055 BCE_PRINTF(" RV2PM 0x%08X 0x%08X 0x%08X 0x%08X 0x%08X\n", 9056 cmd, ctl, cur_depth, max_depth, valid_cnt); 9057 9058 /* Input queue to the Receive Virtual to Physical state machine */ 9059 cmd = REG_RD(sc, BCE_RV2P_TFTQ_CMD); 9060 ctl = REG_RD(sc, BCE_RV2P_TFTQ_CTL); 9061 cur_depth = (ctl & BCE_RV2P_TFTQ_CTL_CUR_DEPTH) >> 22; 9062 max_depth = (ctl & BCE_RV2P_TFTQ_CTL_MAX_DEPTH) >> 12; 9063 valid_cnt = REG_RD(sc, BCE_HC_STAT_GEN_STAT5); 9064 BCE_PRINTF(" RV2PT 0x%08X 0x%08X 0x%08X 0x%08X 0x%08X\n", 9065 cmd, ctl, cur_depth, max_depth, valid_cnt); 9066 9067 /* Input queue to the Receive DMA state machine */ 9068 cmd = REG_RD(sc, BCE_RDMA_FTQ_CMD); 9069 ctl = REG_RD(sc, BCE_RDMA_FTQ_CTL); 9070 cur_depth = (ctl & BCE_RDMA_FTQ_CTL_CUR_DEPTH) >> 22; 9071 max_depth = (ctl & BCE_RDMA_FTQ_CTL_MAX_DEPTH) >> 12; 9072 valid_cnt = REG_RD(sc, BCE_HC_STAT_GEN_STAT6); 9073 BCE_PRINTF(" RDMA 0x%08X 0x%08X 0x%08X 0x%08X 0x%08X\n", 9074 cmd, ctl, cur_depth, max_depth, valid_cnt); 9075 9076 /* Input queue to the Transmit Scheduler state machine */ 9077 cmd = REG_RD(sc, BCE_TSCH_FTQ_CMD); 9078 ctl = REG_RD(sc, BCE_TSCH_FTQ_CTL); 9079 cur_depth = (ctl & BCE_TSCH_FTQ_CTL_CUR_DEPTH) >> 22; 9080 max_depth = (ctl & BCE_TSCH_FTQ_CTL_MAX_DEPTH) >> 12; 9081 valid_cnt = REG_RD(sc, BCE_HC_STAT_GEN_STAT7); 9082 BCE_PRINTF(" TSCH 0x%08X 0x%08X 0x%08X 0x%08X 0x%08X\n", 9083 cmd, ctl, cur_depth, max_depth, valid_cnt); 9084 9085 /* Input queue to the Transmit Buffer Descriptor state machine */ 9086 cmd = REG_RD(sc, BCE_TBDR_FTQ_CMD); 9087 ctl = REG_RD(sc, BCE_TBDR_FTQ_CTL); 9088 cur_depth = (ctl & BCE_TBDR_FTQ_CTL_CUR_DEPTH) >> 22; 9089 max_depth = (ctl & BCE_TBDR_FTQ_CTL_MAX_DEPTH) >> 12; 9090 valid_cnt = REG_RD(sc, BCE_HC_STAT_GEN_STAT8); 9091 BCE_PRINTF(" TBDR 0x%08X 0x%08X 0x%08X 0x%08X 0x%08X\n", 9092 cmd, ctl, cur_depth, max_depth, valid_cnt); 9093 9094 /* Input queue to the Transmit Processor */ 9095 cmd = REG_RD_IND(sc, BCE_TXP_FTQ_CMD); 9096 ctl = REG_RD_IND(sc, BCE_TXP_FTQ_CTL); 9097 cur_depth = (ctl & BCE_TXP_FTQ_CTL_CUR_DEPTH) >> 22; 9098 max_depth = (ctl & BCE_TXP_FTQ_CTL_MAX_DEPTH) >> 12; 9099 valid_cnt = REG_RD(sc, BCE_HC_STAT_GEN_STAT9); 9100 BCE_PRINTF(" TXP 0x%08X 0x%08X 0x%08X 0x%08X 0x%08X\n", 9101 cmd, ctl, cur_depth, max_depth, valid_cnt); 9102 9103 /* Input queue to the Transmit DMA state machine */ 9104 cmd = REG_RD(sc, BCE_TDMA_FTQ_CMD); 9105 ctl = REG_RD(sc, BCE_TDMA_FTQ_CTL); 9106 cur_depth = (ctl & BCE_TDMA_FTQ_CTL_CUR_DEPTH) >> 22; 9107 max_depth = (ctl & BCE_TDMA_FTQ_CTL_MAX_DEPTH) >> 12; 9108 valid_cnt = REG_RD(sc, BCE_HC_STAT_GEN_STAT10); 9109 BCE_PRINTF(" TDMA 0x%08X 0x%08X 0x%08X 0x%08X 0x%08X\n", 9110 cmd, ctl, cur_depth, max_depth, valid_cnt); 9111 9112 /* Input queue to the Transmit Patch-Up Processor */ 9113 cmd = REG_RD_IND(sc, BCE_TPAT_FTQ_CMD); 9114 ctl = REG_RD_IND(sc, BCE_TPAT_FTQ_CTL); 9115 cur_depth = (ctl & BCE_TPAT_FTQ_CTL_CUR_DEPTH) >> 22; 9116 max_depth = (ctl & BCE_TPAT_FTQ_CTL_MAX_DEPTH) >> 12; 9117 valid_cnt = REG_RD(sc, BCE_HC_STAT_GEN_STAT11); 9118 BCE_PRINTF(" TPAT 0x%08X 0x%08X 0x%08X 0x%08X 0x%08X\n", 9119 cmd, ctl, cur_depth, max_depth, valid_cnt); 9120 9121 /* Input queue to the Transmit Assembler state machine */ 9122 cmd = REG_RD_IND(sc, BCE_TAS_FTQ_CMD); 9123 ctl = REG_RD_IND(sc, BCE_TAS_FTQ_CTL); 9124 cur_depth = (ctl & BCE_TAS_FTQ_CTL_CUR_DEPTH) >> 22; 9125 max_depth = (ctl & BCE_TAS_FTQ_CTL_MAX_DEPTH) >> 12; 9126 valid_cnt = REG_RD(sc, BCE_HC_STAT_GEN_STAT12); 9127 BCE_PRINTF(" TAS 0x%08X 0x%08X 0x%08X 0x%08X 0x%08X\n", 9128 cmd, ctl, cur_depth, max_depth, valid_cnt); 9129 9130 /* Input queue to the Completion Processor */ 9131 cmd = REG_RD_IND(sc, BCE_COM_COMXQ_FTQ_CMD); 9132 ctl = REG_RD_IND(sc, BCE_COM_COMXQ_FTQ_CTL); 9133 cur_depth = (ctl & BCE_COM_COMXQ_FTQ_CTL_CUR_DEPTH) >> 22; 9134 max_depth = (ctl & BCE_COM_COMXQ_FTQ_CTL_MAX_DEPTH) >> 12; 9135 valid_cnt = REG_RD(sc, BCE_HC_STAT_GEN_STAT13); 9136 BCE_PRINTF(" COMX 0x%08X 0x%08X 0x%08X 0x%08X 0x%08X\n", 9137 cmd, ctl, cur_depth, max_depth, valid_cnt); 9138 9139 /* Input queue to the Completion Processor */ 9140 cmd = REG_RD_IND(sc, BCE_COM_COMTQ_FTQ_CMD); 9141 ctl = REG_RD_IND(sc, BCE_COM_COMTQ_FTQ_CTL); 9142 cur_depth = (ctl & BCE_COM_COMTQ_FTQ_CTL_CUR_DEPTH) >> 22; 9143 max_depth = (ctl & BCE_COM_COMTQ_FTQ_CTL_MAX_DEPTH) >> 12; 9144 valid_cnt = REG_RD(sc, BCE_HC_STAT_GEN_STAT14); 9145 BCE_PRINTF(" COMT 0x%08X 0x%08X 0x%08X 0x%08X 0x%08X\n", 9146 cmd, ctl, cur_depth, max_depth, valid_cnt); 9147 9148 /* Input queue to the Completion Processor */ 9149 cmd = REG_RD_IND(sc, BCE_COM_COMQ_FTQ_CMD); 9150 ctl = REG_RD_IND(sc, BCE_COM_COMQ_FTQ_CTL); 9151 cur_depth = (ctl & BCE_COM_COMQ_FTQ_CTL_CUR_DEPTH) >> 22; 9152 max_depth = (ctl & BCE_COM_COMQ_FTQ_CTL_MAX_DEPTH) >> 12; 9153 valid_cnt = REG_RD(sc, BCE_HC_STAT_GEN_STAT15); 9154 BCE_PRINTF(" COMX 0x%08X 0x%08X 0x%08X 0x%08X 0x%08X\n", 9155 cmd, ctl, cur_depth, max_depth, valid_cnt); 9156 9157 /* Setup the generic statistic counters for the FTQ valid count. */ 9158 val = (BCE_HC_STAT_GEN_SEL_0_GEN_SEL_0_CSQ_VALID_CNT << 16) | 9159 (BCE_HC_STAT_GEN_SEL_0_GEN_SEL_0_CPQ_VALID_CNT << 8) | 9160 (BCE_HC_STAT_GEN_SEL_0_GEN_SEL_0_MGMQ_VALID_CNT); 9161 9162 if ((BCE_CHIP_NUM(sc) == BCE_CHIP_NUM_5709) || 9163 (BCE_CHIP_NUM(sc) == BCE_CHIP_NUM_5716)) 9164 val = val | (BCE_HC_STAT_GEN_SEL_0_GEN_SEL_0_RV2PCSQ_VALID_CNT_XI << 24); 9165 REG_WR(sc, BCE_HC_STAT_GEN_SEL_0, val); 9166 9167 /* Input queue to the Management Control Processor */ 9168 cmd = REG_RD_IND(sc, BCE_MCP_MCPQ_FTQ_CMD); 9169 ctl = REG_RD_IND(sc, BCE_MCP_MCPQ_FTQ_CTL); 9170 cur_depth = (ctl & BCE_MCP_MCPQ_FTQ_CTL_CUR_DEPTH) >> 22; 9171 max_depth = (ctl & BCE_MCP_MCPQ_FTQ_CTL_MAX_DEPTH) >> 12; 9172 valid_cnt = REG_RD(sc, BCE_HC_STAT_GEN_STAT0); 9173 BCE_PRINTF(" MCP 0x%08X 0x%08X 0x%08X 0x%08X 0x%08X\n", 9174 cmd, ctl, cur_depth, max_depth, valid_cnt); 9175 9176 /* Input queue to the Command Processor */ 9177 cmd = REG_RD_IND(sc, BCE_CP_CPQ_FTQ_CMD); 9178 ctl = REG_RD_IND(sc, BCE_CP_CPQ_FTQ_CTL); 9179 cur_depth = (ctl & BCE_CP_CPQ_FTQ_CTL_CUR_DEPTH) >> 22; 9180 max_depth = (ctl & BCE_CP_CPQ_FTQ_CTL_MAX_DEPTH) >> 12; 9181 valid_cnt = REG_RD(sc, BCE_HC_STAT_GEN_STAT1); 9182 BCE_PRINTF(" CP 0x%08X 0x%08X 0x%08X 0x%08X 0x%08X\n", 9183 cmd, ctl, cur_depth, max_depth, valid_cnt); 9184 9185 /* Input queue to the Completion Scheduler state machine */ 9186 cmd = REG_RD(sc, BCE_CSCH_CH_FTQ_CMD); 9187 ctl = REG_RD(sc, BCE_CSCH_CH_FTQ_CTL); 9188 cur_depth = (ctl & BCE_CSCH_CH_FTQ_CTL_CUR_DEPTH) >> 22; 9189 max_depth = (ctl & BCE_CSCH_CH_FTQ_CTL_MAX_DEPTH) >> 12; 9190 valid_cnt = REG_RD(sc, BCE_HC_STAT_GEN_STAT2); 9191 BCE_PRINTF(" CS 0x%08X 0x%08X 0x%08X 0x%08X 0x%08X\n", 9192 cmd, ctl, cur_depth, max_depth, valid_cnt); 9193 9194 if ((BCE_CHIP_NUM(sc) == BCE_CHIP_NUM_5709) || 9195 (BCE_CHIP_NUM(sc) == BCE_CHIP_NUM_5716)) { 9196 /* Input queue to the Receive Virtual to Physical Command Scheduler */ 9197 cmd = REG_RD(sc, BCE_RV2PCSR_FTQ_CMD); 9198 ctl = REG_RD(sc, BCE_RV2PCSR_FTQ_CTL); 9199 cur_depth = (ctl & 0xFFC00000) >> 22; 9200 max_depth = (ctl & 0x003FF000) >> 12; 9201 valid_cnt = REG_RD(sc, BCE_HC_STAT_GEN_STAT3); 9202 BCE_PRINTF(" RV2PCSR 0x%08X 0x%08X 0x%08X 0x%08X 0x%08X\n", 9203 cmd, ctl, cur_depth, max_depth, valid_cnt); 9204 } 9205 9206 BCE_PRINTF( 9207 "----------------------------" 9208 "----------------" 9209 "----------------------------\n"); 9210 } 9211 9212 9213 /****************************************************************************/ 9214 /* Prints out the TX chain. */ 9215 /* */ 9216 /* Returns: */ 9217 /* Nothing. */ 9218 /****************************************************************************/ 9219 static __attribute__ ((noinline)) void 9220 bce_dump_tx_chain(struct bce_softc *sc, u16 tx_prod, int count) 9221 { 9222 struct tx_bd *txbd; 9223 9224 /* First some info about the tx_bd chain structure. */ 9225 BCE_PRINTF( 9226 "----------------------------" 9227 " tx_bd chain " 9228 "----------------------------\n"); 9229 9230 BCE_PRINTF("page size = 0x%08X, tx chain pages = 0x%08X\n", 9231 (u32) BCM_PAGE_SIZE, (u32) TX_PAGES); 9232 9233 BCE_PRINTF("tx_bd per page = 0x%08X, usable tx_bd per page = 0x%08X\n", 9234 (u32) TOTAL_TX_BD_PER_PAGE, (u32) USABLE_TX_BD_PER_PAGE); 9235 9236 BCE_PRINTF("total tx_bd = 0x%08X\n", (u32) TOTAL_TX_BD); 9237 9238 BCE_PRINTF( 9239 "----------------------------" 9240 " tx_bd data " 9241 "----------------------------\n"); 9242 9243 /* Now print out the tx_bd's themselves. */ 9244 for (int i = 0; i < count; i++) { 9245 txbd = &sc->tx_bd_chain[TX_PAGE(tx_prod)][TX_IDX(tx_prod)]; 9246 bce_dump_txbd(sc, tx_prod, txbd); 9247 tx_prod = NEXT_TX_BD(tx_prod); 9248 } 9249 9250 BCE_PRINTF( 9251 "----------------------------" 9252 "----------------" 9253 "----------------------------\n"); 9254 } 9255 9256 9257 /****************************************************************************/ 9258 /* Prints out the RX chain. */ 9259 /* */ 9260 /* Returns: */ 9261 /* Nothing. */ 9262 /****************************************************************************/ 9263 static __attribute__ ((noinline)) void 9264 bce_dump_rx_chain(struct bce_softc *sc, u16 rx_prod, int count) 9265 { 9266 struct rx_bd *rxbd; 9267 9268 /* First some info about the rx_bd chain structure. */ 9269 BCE_PRINTF( 9270 "----------------------------" 9271 " rx_bd chain " 9272 "----------------------------\n"); 9273 9274 BCE_PRINTF("page size = 0x%08X, rx chain pages = 0x%08X\n", 9275 (u32) BCM_PAGE_SIZE, (u32) RX_PAGES); 9276 9277 BCE_PRINTF("rx_bd per page = 0x%08X, usable rx_bd per page = 0x%08X\n", 9278 (u32) TOTAL_RX_BD_PER_PAGE, (u32) USABLE_RX_BD_PER_PAGE); 9279 9280 BCE_PRINTF("total rx_bd = 0x%08X\n", (u32) TOTAL_RX_BD); 9281 9282 BCE_PRINTF( 9283 "----------------------------" 9284 " rx_bd data " 9285 "----------------------------\n"); 9286 9287 /* Now print out the rx_bd's themselves. */ 9288 for (int i = 0; i < count; i++) { 9289 rxbd = &sc->rx_bd_chain[RX_PAGE(rx_prod)][RX_IDX(rx_prod)]; 9290 bce_dump_rxbd(sc, rx_prod, rxbd); 9291 rx_prod = RX_CHAIN_IDX(rx_prod + 1); 9292 } 9293 9294 BCE_PRINTF( 9295 "----------------------------" 9296 "----------------" 9297 "----------------------------\n"); 9298 } 9299 9300 9301 #ifdef BCE_JUMBO_HDRSPLIT 9302 /****************************************************************************/ 9303 /* Prints out the page chain. */ 9304 /* */ 9305 /* Returns: */ 9306 /* Nothing. */ 9307 /****************************************************************************/ 9308 static __attribute__ ((noinline)) void 9309 bce_dump_pg_chain(struct bce_softc *sc, u16 pg_prod, int count) 9310 { 9311 struct rx_bd *pgbd; 9312 9313 /* First some info about the page chain structure. */ 9314 BCE_PRINTF( 9315 "----------------------------" 9316 " page chain " 9317 "----------------------------\n"); 9318 9319 BCE_PRINTF("page size = 0x%08X, pg chain pages = 0x%08X\n", 9320 (u32) BCM_PAGE_SIZE, (u32) PG_PAGES); 9321 9322 BCE_PRINTF("rx_bd per page = 0x%08X, usable rx_bd per page = 0x%08X\n", 9323 (u32) TOTAL_PG_BD_PER_PAGE, (u32) USABLE_PG_BD_PER_PAGE); 9324 9325 BCE_PRINTF("total rx_bd = 0x%08X, max_pg_bd = 0x%08X\n", 9326 (u32) TOTAL_PG_BD, (u32) MAX_PG_BD); 9327 9328 BCE_PRINTF( 9329 "----------------------------" 9330 " page data " 9331 "----------------------------\n"); 9332 9333 /* Now print out the rx_bd's themselves. */ 9334 for (int i = 0; i < count; i++) { 9335 pgbd = &sc->pg_bd_chain[PG_PAGE(pg_prod)][PG_IDX(pg_prod)]; 9336 bce_dump_pgbd(sc, pg_prod, pgbd); 9337 pg_prod = PG_CHAIN_IDX(pg_prod + 1); 9338 } 9339 9340 BCE_PRINTF( 9341 "----------------------------" 9342 "----------------" 9343 "----------------------------\n"); 9344 } 9345 #endif 9346 9347 9348 /****************************************************************************/ 9349 /* Prints out the status block from host memory. */ 9350 /* */ 9351 /* Returns: */ 9352 /* Nothing. */ 9353 /****************************************************************************/ 9354 static __attribute__ ((noinline)) void 9355 bce_dump_status_block(struct bce_softc *sc) 9356 { 9357 struct status_block *sblk; 9358 9359 sblk = sc->status_block; 9360 9361 BCE_PRINTF( 9362 "----------------------------" 9363 " Status Block " 9364 "----------------------------\n"); 9365 9366 BCE_PRINTF(" 0x%08X - attn_bits\n", 9367 sblk->status_attn_bits); 9368 9369 BCE_PRINTF(" 0x%08X - attn_bits_ack\n", 9370 sblk->status_attn_bits_ack); 9371 9372 BCE_PRINTF("0x%04X(0x%04X) - rx_cons0\n", 9373 sblk->status_rx_quick_consumer_index0, 9374 (u16) RX_CHAIN_IDX(sblk->status_rx_quick_consumer_index0)); 9375 9376 BCE_PRINTF("0x%04X(0x%04X) - tx_cons0\n", 9377 sblk->status_tx_quick_consumer_index0, 9378 (u16) TX_CHAIN_IDX(sblk->status_tx_quick_consumer_index0)); 9379 9380 BCE_PRINTF(" 0x%04X - status_idx\n", sblk->status_idx); 9381 9382 /* Theses indices are not used for normal L2 drivers. */ 9383 if (sblk->status_rx_quick_consumer_index1) 9384 BCE_PRINTF("0x%04X(0x%04X) - rx_cons1\n", 9385 sblk->status_rx_quick_consumer_index1, 9386 (u16) RX_CHAIN_IDX(sblk->status_rx_quick_consumer_index1)); 9387 9388 if (sblk->status_tx_quick_consumer_index1) 9389 BCE_PRINTF("0x%04X(0x%04X) - tx_cons1\n", 9390 sblk->status_tx_quick_consumer_index1, 9391 (u16) TX_CHAIN_IDX(sblk->status_tx_quick_consumer_index1)); 9392 9393 if (sblk->status_rx_quick_consumer_index2) 9394 BCE_PRINTF("0x%04X(0x%04X)- rx_cons2\n", 9395 sblk->status_rx_quick_consumer_index2, 9396 (u16) RX_CHAIN_IDX(sblk->status_rx_quick_consumer_index2)); 9397 9398 if (sblk->status_tx_quick_consumer_index2) 9399 BCE_PRINTF("0x%04X(0x%04X) - tx_cons2\n", 9400 sblk->status_tx_quick_consumer_index2, 9401 (u16) TX_CHAIN_IDX(sblk->status_tx_quick_consumer_index2)); 9402 9403 if (sblk->status_rx_quick_consumer_index3) 9404 BCE_PRINTF("0x%04X(0x%04X) - rx_cons3\n", 9405 sblk->status_rx_quick_consumer_index3, 9406 (u16) RX_CHAIN_IDX(sblk->status_rx_quick_consumer_index3)); 9407 9408 if (sblk->status_tx_quick_consumer_index3) 9409 BCE_PRINTF("0x%04X(0x%04X) - tx_cons3\n", 9410 sblk->status_tx_quick_consumer_index3, 9411 (u16) TX_CHAIN_IDX(sblk->status_tx_quick_consumer_index3)); 9412 9413 if (sblk->status_rx_quick_consumer_index4 || 9414 sblk->status_rx_quick_consumer_index5) 9415 BCE_PRINTF("rx_cons4 = 0x%08X, rx_cons5 = 0x%08X\n", 9416 sblk->status_rx_quick_consumer_index4, 9417 sblk->status_rx_quick_consumer_index5); 9418 9419 if (sblk->status_rx_quick_consumer_index6 || 9420 sblk->status_rx_quick_consumer_index7) 9421 BCE_PRINTF("rx_cons6 = 0x%08X, rx_cons7 = 0x%08X\n", 9422 sblk->status_rx_quick_consumer_index6, 9423 sblk->status_rx_quick_consumer_index7); 9424 9425 if (sblk->status_rx_quick_consumer_index8 || 9426 sblk->status_rx_quick_consumer_index9) 9427 BCE_PRINTF("rx_cons8 = 0x%08X, rx_cons9 = 0x%08X\n", 9428 sblk->status_rx_quick_consumer_index8, 9429 sblk->status_rx_quick_consumer_index9); 9430 9431 if (sblk->status_rx_quick_consumer_index10 || 9432 sblk->status_rx_quick_consumer_index11) 9433 BCE_PRINTF("rx_cons10 = 0x%08X, rx_cons11 = 0x%08X\n", 9434 sblk->status_rx_quick_consumer_index10, 9435 sblk->status_rx_quick_consumer_index11); 9436 9437 if (sblk->status_rx_quick_consumer_index12 || 9438 sblk->status_rx_quick_consumer_index13) 9439 BCE_PRINTF("rx_cons12 = 0x%08X, rx_cons13 = 0x%08X\n", 9440 sblk->status_rx_quick_consumer_index12, 9441 sblk->status_rx_quick_consumer_index13); 9442 9443 if (sblk->status_rx_quick_consumer_index14 || 9444 sblk->status_rx_quick_consumer_index15) 9445 BCE_PRINTF("rx_cons14 = 0x%08X, rx_cons15 = 0x%08X\n", 9446 sblk->status_rx_quick_consumer_index14, 9447 sblk->status_rx_quick_consumer_index15); 9448 9449 if (sblk->status_completion_producer_index || 9450 sblk->status_cmd_consumer_index) 9451 BCE_PRINTF("com_prod = 0x%08X, cmd_cons = 0x%08X\n", 9452 sblk->status_completion_producer_index, 9453 sblk->status_cmd_consumer_index); 9454 9455 BCE_PRINTF( 9456 "----------------------------" 9457 "----------------" 9458 "----------------------------\n"); 9459 } 9460 9461 9462 /****************************************************************************/ 9463 /* Prints out the statistics block from host memory. */ 9464 /* */ 9465 /* Returns: */ 9466 /* Nothing. */ 9467 /****************************************************************************/ 9468 static __attribute__ ((noinline)) void 9469 bce_dump_stats_block(struct bce_softc *sc) 9470 { 9471 struct statistics_block *sblk; 9472 9473 sblk = sc->stats_block; 9474 9475 BCE_PRINTF( 9476 "---------------" 9477 " Stats Block (All Stats Not Shown Are 0) " 9478 "---------------\n"); 9479 9480 if (sblk->stat_IfHCInOctets_hi 9481 || sblk->stat_IfHCInOctets_lo) 9482 BCE_PRINTF("0x%08X:%08X : " 9483 "IfHcInOctets\n", 9484 sblk->stat_IfHCInOctets_hi, 9485 sblk->stat_IfHCInOctets_lo); 9486 9487 if (sblk->stat_IfHCInBadOctets_hi 9488 || sblk->stat_IfHCInBadOctets_lo) 9489 BCE_PRINTF("0x%08X:%08X : " 9490 "IfHcInBadOctets\n", 9491 sblk->stat_IfHCInBadOctets_hi, 9492 sblk->stat_IfHCInBadOctets_lo); 9493 9494 if (sblk->stat_IfHCOutOctets_hi 9495 || sblk->stat_IfHCOutOctets_lo) 9496 BCE_PRINTF("0x%08X:%08X : " 9497 "IfHcOutOctets\n", 9498 sblk->stat_IfHCOutOctets_hi, 9499 sblk->stat_IfHCOutOctets_lo); 9500 9501 if (sblk->stat_IfHCOutBadOctets_hi 9502 || sblk->stat_IfHCOutBadOctets_lo) 9503 BCE_PRINTF("0x%08X:%08X : " 9504 "IfHcOutBadOctets\n", 9505 sblk->stat_IfHCOutBadOctets_hi, 9506 sblk->stat_IfHCOutBadOctets_lo); 9507 9508 if (sblk->stat_IfHCInUcastPkts_hi 9509 || sblk->stat_IfHCInUcastPkts_lo) 9510 BCE_PRINTF("0x%08X:%08X : " 9511 "IfHcInUcastPkts\n", 9512 sblk->stat_IfHCInUcastPkts_hi, 9513 sblk->stat_IfHCInUcastPkts_lo); 9514 9515 if (sblk->stat_IfHCInBroadcastPkts_hi 9516 || sblk->stat_IfHCInBroadcastPkts_lo) 9517 BCE_PRINTF("0x%08X:%08X : " 9518 "IfHcInBroadcastPkts\n", 9519 sblk->stat_IfHCInBroadcastPkts_hi, 9520 sblk->stat_IfHCInBroadcastPkts_lo); 9521 9522 if (sblk->stat_IfHCInMulticastPkts_hi 9523 || sblk->stat_IfHCInMulticastPkts_lo) 9524 BCE_PRINTF("0x%08X:%08X : " 9525 "IfHcInMulticastPkts\n", 9526 sblk->stat_IfHCInMulticastPkts_hi, 9527 sblk->stat_IfHCInMulticastPkts_lo); 9528 9529 if (sblk->stat_IfHCOutUcastPkts_hi 9530 || sblk->stat_IfHCOutUcastPkts_lo) 9531 BCE_PRINTF("0x%08X:%08X : " 9532 "IfHcOutUcastPkts\n", 9533 sblk->stat_IfHCOutUcastPkts_hi, 9534 sblk->stat_IfHCOutUcastPkts_lo); 9535 9536 if (sblk->stat_IfHCOutBroadcastPkts_hi 9537 || sblk->stat_IfHCOutBroadcastPkts_lo) 9538 BCE_PRINTF("0x%08X:%08X : " 9539 "IfHcOutBroadcastPkts\n", 9540 sblk->stat_IfHCOutBroadcastPkts_hi, 9541 sblk->stat_IfHCOutBroadcastPkts_lo); 9542 9543 if (sblk->stat_IfHCOutMulticastPkts_hi 9544 || sblk->stat_IfHCOutMulticastPkts_lo) 9545 BCE_PRINTF("0x%08X:%08X : " 9546 "IfHcOutMulticastPkts\n", 9547 sblk->stat_IfHCOutMulticastPkts_hi, 9548 sblk->stat_IfHCOutMulticastPkts_lo); 9549 9550 if (sblk->stat_emac_tx_stat_dot3statsinternalmactransmiterrors) 9551 BCE_PRINTF(" 0x%08X : " 9552 "emac_tx_stat_dot3statsinternalmactransmiterrors\n", 9553 sblk->stat_emac_tx_stat_dot3statsinternalmactransmiterrors); 9554 9555 if (sblk->stat_Dot3StatsCarrierSenseErrors) 9556 BCE_PRINTF(" 0x%08X : Dot3StatsCarrierSenseErrors\n", 9557 sblk->stat_Dot3StatsCarrierSenseErrors); 9558 9559 if (sblk->stat_Dot3StatsFCSErrors) 9560 BCE_PRINTF(" 0x%08X : Dot3StatsFCSErrors\n", 9561 sblk->stat_Dot3StatsFCSErrors); 9562 9563 if (sblk->stat_Dot3StatsAlignmentErrors) 9564 BCE_PRINTF(" 0x%08X : Dot3StatsAlignmentErrors\n", 9565 sblk->stat_Dot3StatsAlignmentErrors); 9566 9567 if (sblk->stat_Dot3StatsSingleCollisionFrames) 9568 BCE_PRINTF(" 0x%08X : Dot3StatsSingleCollisionFrames\n", 9569 sblk->stat_Dot3StatsSingleCollisionFrames); 9570 9571 if (sblk->stat_Dot3StatsMultipleCollisionFrames) 9572 BCE_PRINTF(" 0x%08X : Dot3StatsMultipleCollisionFrames\n", 9573 sblk->stat_Dot3StatsMultipleCollisionFrames); 9574 9575 if (sblk->stat_Dot3StatsDeferredTransmissions) 9576 BCE_PRINTF(" 0x%08X : Dot3StatsDeferredTransmissions\n", 9577 sblk->stat_Dot3StatsDeferredTransmissions); 9578 9579 if (sblk->stat_Dot3StatsExcessiveCollisions) 9580 BCE_PRINTF(" 0x%08X : Dot3StatsExcessiveCollisions\n", 9581 sblk->stat_Dot3StatsExcessiveCollisions); 9582 9583 if (sblk->stat_Dot3StatsLateCollisions) 9584 BCE_PRINTF(" 0x%08X : Dot3StatsLateCollisions\n", 9585 sblk->stat_Dot3StatsLateCollisions); 9586 9587 if (sblk->stat_EtherStatsCollisions) 9588 BCE_PRINTF(" 0x%08X : EtherStatsCollisions\n", 9589 sblk->stat_EtherStatsCollisions); 9590 9591 if (sblk->stat_EtherStatsFragments) 9592 BCE_PRINTF(" 0x%08X : EtherStatsFragments\n", 9593 sblk->stat_EtherStatsFragments); 9594 9595 if (sblk->stat_EtherStatsJabbers) 9596 BCE_PRINTF(" 0x%08X : EtherStatsJabbers\n", 9597 sblk->stat_EtherStatsJabbers); 9598 9599 if (sblk->stat_EtherStatsUndersizePkts) 9600 BCE_PRINTF(" 0x%08X : EtherStatsUndersizePkts\n", 9601 sblk->stat_EtherStatsUndersizePkts); 9602 9603 if (sblk->stat_EtherStatsOversizePkts) 9604 BCE_PRINTF(" 0x%08X : EtherStatsOverrsizePkts\n", 9605 sblk->stat_EtherStatsOversizePkts); 9606 9607 if (sblk->stat_EtherStatsPktsRx64Octets) 9608 BCE_PRINTF(" 0x%08X : EtherStatsPktsRx64Octets\n", 9609 sblk->stat_EtherStatsPktsRx64Octets); 9610 9611 if (sblk->stat_EtherStatsPktsRx65Octetsto127Octets) 9612 BCE_PRINTF(" 0x%08X : EtherStatsPktsRx65Octetsto127Octets\n", 9613 sblk->stat_EtherStatsPktsRx65Octetsto127Octets); 9614 9615 if (sblk->stat_EtherStatsPktsRx128Octetsto255Octets) 9616 BCE_PRINTF(" 0x%08X : EtherStatsPktsRx128Octetsto255Octets\n", 9617 sblk->stat_EtherStatsPktsRx128Octetsto255Octets); 9618 9619 if (sblk->stat_EtherStatsPktsRx256Octetsto511Octets) 9620 BCE_PRINTF(" 0x%08X : EtherStatsPktsRx256Octetsto511Octets\n", 9621 sblk->stat_EtherStatsPktsRx256Octetsto511Octets); 9622 9623 if (sblk->stat_EtherStatsPktsRx512Octetsto1023Octets) 9624 BCE_PRINTF(" 0x%08X : EtherStatsPktsRx512Octetsto1023Octets\n", 9625 sblk->stat_EtherStatsPktsRx512Octetsto1023Octets); 9626 9627 if (sblk->stat_EtherStatsPktsRx1024Octetsto1522Octets) 9628 BCE_PRINTF(" 0x%08X : EtherStatsPktsRx1024Octetsto1522Octets\n", 9629 sblk->stat_EtherStatsPktsRx1024Octetsto1522Octets); 9630 9631 if (sblk->stat_EtherStatsPktsRx1523Octetsto9022Octets) 9632 BCE_PRINTF(" 0x%08X : EtherStatsPktsRx1523Octetsto9022Octets\n", 9633 sblk->stat_EtherStatsPktsRx1523Octetsto9022Octets); 9634 9635 if (sblk->stat_EtherStatsPktsTx64Octets) 9636 BCE_PRINTF(" 0x%08X : EtherStatsPktsTx64Octets\n", 9637 sblk->stat_EtherStatsPktsTx64Octets); 9638 9639 if (sblk->stat_EtherStatsPktsTx65Octetsto127Octets) 9640 BCE_PRINTF(" 0x%08X : EtherStatsPktsTx65Octetsto127Octets\n", 9641 sblk->stat_EtherStatsPktsTx65Octetsto127Octets); 9642 9643 if (sblk->stat_EtherStatsPktsTx128Octetsto255Octets) 9644 BCE_PRINTF(" 0x%08X : EtherStatsPktsTx128Octetsto255Octets\n", 9645 sblk->stat_EtherStatsPktsTx128Octetsto255Octets); 9646 9647 if (sblk->stat_EtherStatsPktsTx256Octetsto511Octets) 9648 BCE_PRINTF(" 0x%08X : EtherStatsPktsTx256Octetsto511Octets\n", 9649 sblk->stat_EtherStatsPktsTx256Octetsto511Octets); 9650 9651 if (sblk->stat_EtherStatsPktsTx512Octetsto1023Octets) 9652 BCE_PRINTF(" 0x%08X : EtherStatsPktsTx512Octetsto1023Octets\n", 9653 sblk->stat_EtherStatsPktsTx512Octetsto1023Octets); 9654 9655 if (sblk->stat_EtherStatsPktsTx1024Octetsto1522Octets) 9656 BCE_PRINTF(" 0x%08X : EtherStatsPktsTx1024Octetsto1522Octets\n", 9657 sblk->stat_EtherStatsPktsTx1024Octetsto1522Octets); 9658 9659 if (sblk->stat_EtherStatsPktsTx1523Octetsto9022Octets) 9660 BCE_PRINTF(" 0x%08X : EtherStatsPktsTx1523Octetsto9022Octets\n", 9661 sblk->stat_EtherStatsPktsTx1523Octetsto9022Octets); 9662 9663 if (sblk->stat_XonPauseFramesReceived) 9664 BCE_PRINTF(" 0x%08X : XonPauseFramesReceived\n", 9665 sblk->stat_XonPauseFramesReceived); 9666 9667 if (sblk->stat_XoffPauseFramesReceived) 9668 BCE_PRINTF(" 0x%08X : XoffPauseFramesReceived\n", 9669 sblk->stat_XoffPauseFramesReceived); 9670 9671 if (sblk->stat_OutXonSent) 9672 BCE_PRINTF(" 0x%08X : OutXonSent\n", 9673 sblk->stat_OutXonSent); 9674 9675 if (sblk->stat_OutXoffSent) 9676 BCE_PRINTF(" 0x%08X : OutXoffSent\n", 9677 sblk->stat_OutXoffSent); 9678 9679 if (sblk->stat_FlowControlDone) 9680 BCE_PRINTF(" 0x%08X : FlowControlDone\n", 9681 sblk->stat_FlowControlDone); 9682 9683 if (sblk->stat_MacControlFramesReceived) 9684 BCE_PRINTF(" 0x%08X : MacControlFramesReceived\n", 9685 sblk->stat_MacControlFramesReceived); 9686 9687 if (sblk->stat_XoffStateEntered) 9688 BCE_PRINTF(" 0x%08X : XoffStateEntered\n", 9689 sblk->stat_XoffStateEntered); 9690 9691 if (sblk->stat_IfInFramesL2FilterDiscards) 9692 BCE_PRINTF(" 0x%08X : IfInFramesL2FilterDiscards\n", 9693 sblk->stat_IfInFramesL2FilterDiscards); 9694 9695 if (sblk->stat_IfInRuleCheckerDiscards) 9696 BCE_PRINTF(" 0x%08X : IfInRuleCheckerDiscards\n", 9697 sblk->stat_IfInRuleCheckerDiscards); 9698 9699 if (sblk->stat_IfInFTQDiscards) 9700 BCE_PRINTF(" 0x%08X : IfInFTQDiscards\n", 9701 sblk->stat_IfInFTQDiscards); 9702 9703 if (sblk->stat_IfInMBUFDiscards) 9704 BCE_PRINTF(" 0x%08X : IfInMBUFDiscards\n", 9705 sblk->stat_IfInMBUFDiscards); 9706 9707 if (sblk->stat_IfInRuleCheckerP4Hit) 9708 BCE_PRINTF(" 0x%08X : IfInRuleCheckerP4Hit\n", 9709 sblk->stat_IfInRuleCheckerP4Hit); 9710 9711 if (sblk->stat_CatchupInRuleCheckerDiscards) 9712 BCE_PRINTF(" 0x%08X : CatchupInRuleCheckerDiscards\n", 9713 sblk->stat_CatchupInRuleCheckerDiscards); 9714 9715 if (sblk->stat_CatchupInFTQDiscards) 9716 BCE_PRINTF(" 0x%08X : CatchupInFTQDiscards\n", 9717 sblk->stat_CatchupInFTQDiscards); 9718 9719 if (sblk->stat_CatchupInMBUFDiscards) 9720 BCE_PRINTF(" 0x%08X : CatchupInMBUFDiscards\n", 9721 sblk->stat_CatchupInMBUFDiscards); 9722 9723 if (sblk->stat_CatchupInRuleCheckerP4Hit) 9724 BCE_PRINTF(" 0x%08X : CatchupInRuleCheckerP4Hit\n", 9725 sblk->stat_CatchupInRuleCheckerP4Hit); 9726 9727 BCE_PRINTF( 9728 "----------------------------" 9729 "----------------" 9730 "----------------------------\n"); 9731 } 9732 9733 9734 /****************************************************************************/ 9735 /* Prints out a summary of the driver state. */ 9736 /* */ 9737 /* Returns: */ 9738 /* Nothing. */ 9739 /****************************************************************************/ 9740 static __attribute__ ((noinline)) void 9741 bce_dump_driver_state(struct bce_softc *sc) 9742 { 9743 u32 val_hi, val_lo; 9744 9745 BCE_PRINTF( 9746 "-----------------------------" 9747 " Driver State " 9748 "-----------------------------\n"); 9749 9750 val_hi = BCE_ADDR_HI(sc); 9751 val_lo = BCE_ADDR_LO(sc); 9752 BCE_PRINTF("0x%08X:%08X - (sc) driver softc structure virtual address\n", 9753 val_hi, val_lo); 9754 9755 val_hi = BCE_ADDR_HI(sc->bce_vhandle); 9756 val_lo = BCE_ADDR_LO(sc->bce_vhandle); 9757 BCE_PRINTF("0x%08X:%08X - (sc->bce_vhandle) PCI BAR virtual address\n", 9758 val_hi, val_lo); 9759 9760 val_hi = BCE_ADDR_HI(sc->status_block); 9761 val_lo = BCE_ADDR_LO(sc->status_block); 9762 BCE_PRINTF("0x%08X:%08X - (sc->status_block) status block virtual address\n", 9763 val_hi, val_lo); 9764 9765 val_hi = BCE_ADDR_HI(sc->stats_block); 9766 val_lo = BCE_ADDR_LO(sc->stats_block); 9767 BCE_PRINTF("0x%08X:%08X - (sc->stats_block) statistics block virtual address\n", 9768 val_hi, val_lo); 9769 9770 val_hi = BCE_ADDR_HI(sc->tx_bd_chain); 9771 val_lo = BCE_ADDR_LO(sc->tx_bd_chain); 9772 BCE_PRINTF( 9773 "0x%08X:%08X - (sc->tx_bd_chain) tx_bd chain virtual adddress\n", 9774 val_hi, val_lo); 9775 9776 val_hi = BCE_ADDR_HI(sc->rx_bd_chain); 9777 val_lo = BCE_ADDR_LO(sc->rx_bd_chain); 9778 BCE_PRINTF( 9779 "0x%08X:%08X - (sc->rx_bd_chain) rx_bd chain virtual address\n", 9780 val_hi, val_lo); 9781 9782 #ifdef BCE_JUMBO_HDRSPLIT 9783 val_hi = BCE_ADDR_HI(sc->pg_bd_chain); 9784 val_lo = BCE_ADDR_LO(sc->pg_bd_chain); 9785 BCE_PRINTF( 9786 "0x%08X:%08X - (sc->pg_bd_chain) page chain virtual address\n", 9787 val_hi, val_lo); 9788 #endif 9789 9790 val_hi = BCE_ADDR_HI(sc->tx_mbuf_ptr); 9791 val_lo = BCE_ADDR_LO(sc->tx_mbuf_ptr); 9792 BCE_PRINTF( 9793 "0x%08X:%08X - (sc->tx_mbuf_ptr) tx mbuf chain virtual address\n", 9794 val_hi, val_lo); 9795 9796 val_hi = BCE_ADDR_HI(sc->rx_mbuf_ptr); 9797 val_lo = BCE_ADDR_LO(sc->rx_mbuf_ptr); 9798 BCE_PRINTF( 9799 "0x%08X:%08X - (sc->rx_mbuf_ptr) rx mbuf chain virtual address\n", 9800 val_hi, val_lo); 9801 9802 #ifdef BCE_JUMBO_HDRSPLIT 9803 val_hi = BCE_ADDR_HI(sc->pg_mbuf_ptr); 9804 val_lo = BCE_ADDR_LO(sc->pg_mbuf_ptr); 9805 BCE_PRINTF( 9806 "0x%08X:%08X - (sc->pg_mbuf_ptr) page mbuf chain virtual address\n", 9807 val_hi, val_lo); 9808 #endif 9809 9810 BCE_PRINTF(" 0x%08X - (sc->interrupts_generated) h/w intrs\n", 9811 sc->interrupts_generated); 9812 9813 BCE_PRINTF(" 0x%08X - (sc->rx_interrupts) rx interrupts handled\n", 9814 sc->rx_interrupts); 9815 9816 BCE_PRINTF(" 0x%08X - (sc->tx_interrupts) tx interrupts handled\n", 9817 sc->tx_interrupts); 9818 9819 BCE_PRINTF(" 0x%08X - (sc->last_status_idx) status block index\n", 9820 sc->last_status_idx); 9821 9822 BCE_PRINTF(" 0x%04X(0x%04X) - (sc->tx_prod) tx producer index\n", 9823 sc->tx_prod, (u16) TX_CHAIN_IDX(sc->tx_prod)); 9824 9825 BCE_PRINTF(" 0x%04X(0x%04X) - (sc->tx_cons) tx consumer index\n", 9826 sc->tx_cons, (u16) TX_CHAIN_IDX(sc->tx_cons)); 9827 9828 BCE_PRINTF(" 0x%08X - (sc->tx_prod_bseq) tx producer bseq index\n", 9829 sc->tx_prod_bseq); 9830 9831 BCE_PRINTF(" 0x%08X - (sc->debug_tx_mbuf_alloc) tx mbufs allocated\n", 9832 sc->debug_tx_mbuf_alloc); 9833 9834 BCE_PRINTF(" 0x%08X - (sc->used_tx_bd) used tx_bd's\n", 9835 sc->used_tx_bd); 9836 9837 BCE_PRINTF("0x%08X/%08X - (sc->tx_hi_watermark) tx hi watermark\n", 9838 sc->tx_hi_watermark, sc->max_tx_bd); 9839 9840 BCE_PRINTF(" 0x%04X(0x%04X) - (sc->rx_prod) rx producer index\n", 9841 sc->rx_prod, (u16) RX_CHAIN_IDX(sc->rx_prod)); 9842 9843 BCE_PRINTF(" 0x%04X(0x%04X) - (sc->rx_cons) rx consumer index\n", 9844 sc->rx_cons, (u16) RX_CHAIN_IDX(sc->rx_cons)); 9845 9846 BCE_PRINTF(" 0x%08X - (sc->rx_prod_bseq) rx producer bseq index\n", 9847 sc->rx_prod_bseq); 9848 9849 BCE_PRINTF(" 0x%08X - (sc->debug_rx_mbuf_alloc) rx mbufs allocated\n", 9850 sc->debug_rx_mbuf_alloc); 9851 9852 BCE_PRINTF(" 0x%08X - (sc->free_rx_bd) free rx_bd's\n", 9853 sc->free_rx_bd); 9854 9855 #ifdef BCE_JUMBO_HDRSPLIT 9856 BCE_PRINTF(" 0x%04X(0x%04X) - (sc->pg_prod) page producer index\n", 9857 sc->pg_prod, (u16) PG_CHAIN_IDX(sc->pg_prod)); 9858 9859 BCE_PRINTF(" 0x%04X(0x%04X) - (sc->pg_cons) page consumer index\n", 9860 sc->pg_cons, (u16) PG_CHAIN_IDX(sc->pg_cons)); 9861 9862 BCE_PRINTF(" 0x%08X - (sc->debug_pg_mbuf_alloc) page mbufs allocated\n", 9863 sc->debug_pg_mbuf_alloc); 9864 9865 BCE_PRINTF(" 0x%08X - (sc->free_pg_bd) free page rx_bd's\n", 9866 sc->free_pg_bd); 9867 9868 BCE_PRINTF("0x%08X/%08X - (sc->pg_low_watermark) page low watermark\n", 9869 sc->pg_low_watermark, sc->max_pg_bd); 9870 #endif 9871 9872 BCE_PRINTF(" 0x%08X - (sc->mbuf_alloc_failed_count) " 9873 "mbuf alloc failures\n", 9874 sc->mbuf_alloc_failed_count); 9875 9876 BCE_PRINTF(" 0x%08X - (sc->bce_flags) bce mac flags\n", 9877 sc->bce_flags); 9878 9879 BCE_PRINTF(" 0x%08X - (sc->bce_phy_flags) bce phy flags\n", 9880 sc->bce_phy_flags); 9881 9882 BCE_PRINTF( 9883 "----------------------------" 9884 "----------------" 9885 "----------------------------\n"); 9886 } 9887 9888 9889 /****************************************************************************/ 9890 /* Prints out the hardware state through a summary of important register, */ 9891 /* followed by a complete register dump. */ 9892 /* */ 9893 /* Returns: */ 9894 /* Nothing. */ 9895 /****************************************************************************/ 9896 static __attribute__ ((noinline)) void 9897 bce_dump_hw_state(struct bce_softc *sc) 9898 { 9899 u32 val; 9900 9901 BCE_PRINTF( 9902 "----------------------------" 9903 " Hardware State " 9904 "----------------------------\n"); 9905 9906 BCE_PRINTF("%s - bootcode version\n", sc->bce_bc_ver); 9907 9908 val = REG_RD(sc, BCE_MISC_ENABLE_STATUS_BITS); 9909 BCE_PRINTF("0x%08X - (0x%06X) misc_enable_status_bits\n", 9910 val, BCE_MISC_ENABLE_STATUS_BITS); 9911 9912 val = REG_RD(sc, BCE_DMA_STATUS); 9913 BCE_PRINTF("0x%08X - (0x%06X) dma_status\n", val, BCE_DMA_STATUS); 9914 9915 val = REG_RD(sc, BCE_CTX_STATUS); 9916 BCE_PRINTF("0x%08X - (0x%06X) ctx_status\n", val, BCE_CTX_STATUS); 9917 9918 val = REG_RD(sc, BCE_EMAC_STATUS); 9919 BCE_PRINTF("0x%08X - (0x%06X) emac_status\n", val, BCE_EMAC_STATUS); 9920 9921 val = REG_RD(sc, BCE_RPM_STATUS); 9922 BCE_PRINTF("0x%08X - (0x%06X) rpm_status\n", val, BCE_RPM_STATUS); 9923 9924 val = REG_RD(sc, 0x2004); 9925 BCE_PRINTF("0x%08X - (0x%06X) rlup_status\n", val, 0x2004); 9926 9927 val = REG_RD(sc, BCE_RV2P_STATUS); 9928 BCE_PRINTF("0x%08X - (0x%06X) rv2p_status\n", val, BCE_RV2P_STATUS); 9929 9930 val = REG_RD(sc, 0x2c04); 9931 BCE_PRINTF("0x%08X - (0x%06X) rdma_status\n", val, 0x2c04); 9932 9933 val = REG_RD(sc, BCE_TBDR_STATUS); 9934 BCE_PRINTF("0x%08X - (0x%06X) tbdr_status\n", val, BCE_TBDR_STATUS); 9935 9936 val = REG_RD(sc, BCE_TDMA_STATUS); 9937 BCE_PRINTF("0x%08X - (0x%06X) tdma_status\n", val, BCE_TDMA_STATUS); 9938 9939 val = REG_RD(sc, BCE_HC_STATUS); 9940 BCE_PRINTF("0x%08X - (0x%06X) hc_status\n", val, BCE_HC_STATUS); 9941 9942 val = REG_RD_IND(sc, BCE_TXP_CPU_STATE); 9943 BCE_PRINTF("0x%08X - (0x%06X) txp_cpu_state\n", val, BCE_TXP_CPU_STATE); 9944 9945 val = REG_RD_IND(sc, BCE_TPAT_CPU_STATE); 9946 BCE_PRINTF("0x%08X - (0x%06X) tpat_cpu_state\n", val, BCE_TPAT_CPU_STATE); 9947 9948 val = REG_RD_IND(sc, BCE_RXP_CPU_STATE); 9949 BCE_PRINTF("0x%08X - (0x%06X) rxp_cpu_state\n", val, BCE_RXP_CPU_STATE); 9950 9951 val = REG_RD_IND(sc, BCE_COM_CPU_STATE); 9952 BCE_PRINTF("0x%08X - (0x%06X) com_cpu_state\n", val, BCE_COM_CPU_STATE); 9953 9954 val = REG_RD_IND(sc, BCE_MCP_CPU_STATE); 9955 BCE_PRINTF("0x%08X - (0x%06X) mcp_cpu_state\n", val, BCE_MCP_CPU_STATE); 9956 9957 val = REG_RD_IND(sc, BCE_CP_CPU_STATE); 9958 BCE_PRINTF("0x%08X - (0x%06X) cp_cpu_state\n", val, BCE_CP_CPU_STATE); 9959 9960 BCE_PRINTF( 9961 "----------------------------" 9962 "----------------" 9963 "----------------------------\n"); 9964 9965 BCE_PRINTF( 9966 "----------------------------" 9967 " Register Dump " 9968 "----------------------------\n"); 9969 9970 for (int i = 0x400; i < 0x8000; i += 0x10) { 9971 BCE_PRINTF("0x%04X: 0x%08X 0x%08X 0x%08X 0x%08X\n", 9972 i, REG_RD(sc, i), REG_RD(sc, i + 0x4), 9973 REG_RD(sc, i + 0x8), REG_RD(sc, i + 0xC)); 9974 } 9975 9976 BCE_PRINTF( 9977 "----------------------------" 9978 "----------------" 9979 "----------------------------\n"); 9980 } 9981 9982 9983 /****************************************************************************/ 9984 /* Prints out the mailbox queue registers. */ 9985 /* */ 9986 /* Returns: */ 9987 /* Nothing. */ 9988 /****************************************************************************/ 9989 static __attribute__ ((noinline)) void 9990 bce_dump_mq_regs(struct bce_softc *sc) 9991 { 9992 BCE_PRINTF( 9993 "----------------------------" 9994 " MQ Regs " 9995 "----------------------------\n"); 9996 9997 BCE_PRINTF( 9998 "----------------------------" 9999 "----------------" 10000 "----------------------------\n"); 10001 10002 for (int i = 0x3c00; i < 0x4000; i += 0x10) { 10003 BCE_PRINTF("0x%04X: 0x%08X 0x%08X 0x%08X 0x%08X\n", 10004 i, REG_RD(sc, i), REG_RD(sc, i + 0x4), 10005 REG_RD(sc, i + 0x8), REG_RD(sc, i + 0xC)); 10006 } 10007 10008 BCE_PRINTF( 10009 "----------------------------" 10010 "----------------" 10011 "----------------------------\n"); 10012 } 10013 10014 10015 /****************************************************************************/ 10016 /* Prints out the bootcode state. */ 10017 /* */ 10018 /* Returns: */ 10019 /* Nothing. */ 10020 /****************************************************************************/ 10021 static __attribute__ ((noinline)) void 10022 bce_dump_bc_state(struct bce_softc *sc) 10023 { 10024 u32 val; 10025 10026 BCE_PRINTF( 10027 "----------------------------" 10028 " Bootcode State " 10029 "----------------------------\n"); 10030 10031 BCE_PRINTF("%s - bootcode version\n", sc->bce_bc_ver); 10032 10033 val = bce_shmem_rd(sc, BCE_BC_RESET_TYPE); 10034 BCE_PRINTF("0x%08X - (0x%06X) reset_type\n", 10035 val, BCE_BC_RESET_TYPE); 10036 10037 val = bce_shmem_rd(sc, BCE_BC_STATE); 10038 BCE_PRINTF("0x%08X - (0x%06X) state\n", 10039 val, BCE_BC_STATE); 10040 10041 val = bce_shmem_rd(sc, BCE_BC_CONDITION); 10042 BCE_PRINTF("0x%08X - (0x%06X) condition\n", 10043 val, BCE_BC_CONDITION); 10044 10045 val = bce_shmem_rd(sc, BCE_BC_STATE_DEBUG_CMD); 10046 BCE_PRINTF("0x%08X - (0x%06X) debug_cmd\n", 10047 val, BCE_BC_STATE_DEBUG_CMD); 10048 10049 BCE_PRINTF( 10050 "----------------------------" 10051 "----------------" 10052 "----------------------------\n"); 10053 } 10054 10055 10056 /****************************************************************************/ 10057 /* Prints out the TXP processor state. */ 10058 /* */ 10059 /* Returns: */ 10060 /* Nothing. */ 10061 /****************************************************************************/ 10062 static __attribute__ ((noinline)) void 10063 bce_dump_txp_state(struct bce_softc *sc, int regs) 10064 { 10065 u32 val; 10066 u32 fw_version[3]; 10067 10068 BCE_PRINTF( 10069 "----------------------------" 10070 " TXP State " 10071 "----------------------------\n"); 10072 10073 for (int i = 0; i < 3; i++) 10074 fw_version[i] = htonl(REG_RD_IND(sc, 10075 (BCE_TXP_SCRATCH + 0x10 + i * 4))); 10076 BCE_PRINTF("Firmware version - %s\n", (char *) fw_version); 10077 10078 val = REG_RD_IND(sc, BCE_TXP_CPU_MODE); 10079 BCE_PRINTF("0x%08X - (0x%06X) txp_cpu_mode\n", val, BCE_TXP_CPU_MODE); 10080 10081 val = REG_RD_IND(sc, BCE_TXP_CPU_STATE); 10082 BCE_PRINTF("0x%08X - (0x%06X) txp_cpu_state\n", val, BCE_TXP_CPU_STATE); 10083 10084 val = REG_RD_IND(sc, BCE_TXP_CPU_EVENT_MASK); 10085 BCE_PRINTF("0x%08X - (0x%06X) txp_cpu_event_mask\n", val, 10086 BCE_TXP_CPU_EVENT_MASK); 10087 10088 if (regs) { 10089 BCE_PRINTF( 10090 "----------------------------" 10091 " Register Dump " 10092 "----------------------------\n"); 10093 10094 for (int i = BCE_TXP_CPU_MODE; i < 0x68000; i += 0x10) { 10095 /* Skip the big blank spaces */ 10096 if (i < 0x454000 && i > 0x5ffff) 10097 BCE_PRINTF("0x%04X: 0x%08X 0x%08X 0x%08X 0x%08X\n", 10098 i, REG_RD_IND(sc, i), REG_RD_IND(sc, i + 0x4), 10099 REG_RD_IND(sc, i + 0x8), REG_RD_IND(sc, i + 0xC)); 10100 } 10101 } 10102 10103 BCE_PRINTF( 10104 "----------------------------" 10105 "----------------" 10106 "----------------------------\n"); 10107 } 10108 10109 10110 /****************************************************************************/ 10111 /* Prints out the RXP processor state. */ 10112 /* */ 10113 /* Returns: */ 10114 /* Nothing. */ 10115 /****************************************************************************/ 10116 static __attribute__ ((noinline)) void 10117 bce_dump_rxp_state(struct bce_softc *sc, int regs) 10118 { 10119 u32 val; 10120 u32 fw_version[3]; 10121 10122 BCE_PRINTF( 10123 "----------------------------" 10124 " RXP State " 10125 "----------------------------\n"); 10126 10127 for (int i = 0; i < 3; i++) 10128 fw_version[i] = htonl(REG_RD_IND(sc, 10129 (BCE_RXP_SCRATCH + 0x10 + i * 4))); 10130 BCE_PRINTF("Firmware version - %s\n", (char *) fw_version); 10131 10132 val = REG_RD_IND(sc, BCE_RXP_CPU_MODE); 10133 BCE_PRINTF("0x%08X - (0x%06X) rxp_cpu_mode\n", val, BCE_RXP_CPU_MODE); 10134 10135 val = REG_RD_IND(sc, BCE_RXP_CPU_STATE); 10136 BCE_PRINTF("0x%08X - (0x%06X) rxp_cpu_state\n", val, BCE_RXP_CPU_STATE); 10137 10138 val = REG_RD_IND(sc, BCE_RXP_CPU_EVENT_MASK); 10139 BCE_PRINTF("0x%08X - (0x%06X) rxp_cpu_event_mask\n", val, 10140 BCE_RXP_CPU_EVENT_MASK); 10141 10142 if (regs) { 10143 BCE_PRINTF( 10144 "----------------------------" 10145 " Register Dump " 10146 "----------------------------\n"); 10147 10148 for (int i = BCE_RXP_CPU_MODE; i < 0xe8fff; i += 0x10) { 10149 /* Skip the big blank sapces */ 10150 if (i < 0xc5400 && i > 0xdffff) 10151 BCE_PRINTF("0x%04X: 0x%08X 0x%08X 0x%08X 0x%08X\n", 10152 i, REG_RD_IND(sc, i), REG_RD_IND(sc, i + 0x4), 10153 REG_RD_IND(sc, i + 0x8), REG_RD_IND(sc, i + 0xC)); 10154 } 10155 } 10156 10157 BCE_PRINTF( 10158 "----------------------------" 10159 "----------------" 10160 "----------------------------\n"); 10161 } 10162 10163 10164 /****************************************************************************/ 10165 /* Prints out the TPAT processor state. */ 10166 /* */ 10167 /* Returns: */ 10168 /* Nothing. */ 10169 /****************************************************************************/ 10170 static __attribute__ ((noinline)) void 10171 bce_dump_tpat_state(struct bce_softc *sc, int regs) 10172 { 10173 u32 val; 10174 u32 fw_version[3]; 10175 10176 BCE_PRINTF( 10177 "----------------------------" 10178 " TPAT State " 10179 "----------------------------\n"); 10180 10181 for (int i = 0; i < 3; i++) 10182 fw_version[i] = htonl(REG_RD_IND(sc, 10183 (BCE_TPAT_SCRATCH + 0x410 + i * 4))); 10184 BCE_PRINTF("Firmware version - %s\n", (char *) fw_version); 10185 10186 val = REG_RD_IND(sc, BCE_TPAT_CPU_MODE); 10187 BCE_PRINTF("0x%08X - (0x%06X) tpat_cpu_mode\n", val, BCE_TPAT_CPU_MODE); 10188 10189 val = REG_RD_IND(sc, BCE_TPAT_CPU_STATE); 10190 BCE_PRINTF("0x%08X - (0x%06X) tpat_cpu_state\n", val, BCE_TPAT_CPU_STATE); 10191 10192 val = REG_RD_IND(sc, BCE_TPAT_CPU_EVENT_MASK); 10193 BCE_PRINTF("0x%08X - (0x%06X) tpat_cpu_event_mask\n", val, 10194 BCE_TPAT_CPU_EVENT_MASK); 10195 10196 if (regs) { 10197 BCE_PRINTF( 10198 "----------------------------" 10199 " Register Dump " 10200 "----------------------------\n"); 10201 10202 for (int i = BCE_TPAT_CPU_MODE; i < 0xa3fff; i += 0x10) { 10203 /* Skip the big blank spaces */ 10204 if (i < 0x854000 && i > 0x9ffff) 10205 BCE_PRINTF("0x%04X: 0x%08X 0x%08X 0x%08X 0x%08X\n", 10206 i, REG_RD_IND(sc, i), REG_RD_IND(sc, i + 0x4), 10207 REG_RD_IND(sc, i + 0x8), REG_RD_IND(sc, i + 0xC)); 10208 } 10209 } 10210 10211 BCE_PRINTF( 10212 "----------------------------" 10213 "----------------" 10214 "----------------------------\n"); 10215 } 10216 10217 10218 /****************************************************************************/ 10219 /* Prints out the Command Procesor (CP) state. */ 10220 /* */ 10221 /* Returns: */ 10222 /* Nothing. */ 10223 /****************************************************************************/ 10224 static __attribute__ ((noinline)) void 10225 bce_dump_cp_state(struct bce_softc *sc, int regs) 10226 { 10227 u32 val; 10228 u32 fw_version[3]; 10229 10230 BCE_PRINTF( 10231 "----------------------------" 10232 " CP State " 10233 "----------------------------\n"); 10234 10235 for (int i = 0; i < 3; i++) 10236 fw_version[i] = htonl(REG_RD_IND(sc, 10237 (BCE_CP_SCRATCH + 0x10 + i * 4))); 10238 BCE_PRINTF("Firmware version - %s\n", (char *) fw_version); 10239 10240 val = REG_RD_IND(sc, BCE_CP_CPU_MODE); 10241 BCE_PRINTF("0x%08X - (0x%06X) cp_cpu_mode\n", val, BCE_CP_CPU_MODE); 10242 10243 val = REG_RD_IND(sc, BCE_CP_CPU_STATE); 10244 BCE_PRINTF("0x%08X - (0x%06X) cp_cpu_state\n", val, BCE_CP_CPU_STATE); 10245 10246 val = REG_RD_IND(sc, BCE_CP_CPU_EVENT_MASK); 10247 BCE_PRINTF("0x%08X - (0x%06X) cp_cpu_event_mask\n", val, 10248 BCE_CP_CPU_EVENT_MASK); 10249 10250 if (regs) { 10251 BCE_PRINTF( 10252 "----------------------------" 10253 " Register Dump " 10254 "----------------------------\n"); 10255 10256 for (int i = BCE_CP_CPU_MODE; i < 0x1aa000; i += 0x10) { 10257 /* Skip the big blank spaces */ 10258 if (i < 0x185400 && i > 0x19ffff) 10259 BCE_PRINTF("0x%04X: 0x%08X 0x%08X 0x%08X 0x%08X\n", 10260 i, REG_RD_IND(sc, i), REG_RD_IND(sc, i + 0x4), 10261 REG_RD_IND(sc, i + 0x8), REG_RD_IND(sc, i + 0xC)); 10262 } 10263 } 10264 10265 BCE_PRINTF( 10266 "----------------------------" 10267 "----------------" 10268 "----------------------------\n"); 10269 } 10270 10271 10272 /****************************************************************************/ 10273 /* Prints out the Completion Procesor (COM) state. */ 10274 /* */ 10275 /* Returns: */ 10276 /* Nothing. */ 10277 /****************************************************************************/ 10278 static __attribute__ ((noinline)) void 10279 bce_dump_com_state(struct bce_softc *sc, int regs) 10280 { 10281 u32 val; 10282 u32 fw_version[3]; 10283 10284 BCE_PRINTF( 10285 "----------------------------" 10286 " COM State " 10287 "----------------------------\n"); 10288 10289 for (int i = 0; i < 3; i++) 10290 fw_version[i] = htonl(REG_RD_IND(sc, 10291 (BCE_COM_SCRATCH + 0x10 + i * 4))); 10292 BCE_PRINTF("Firmware version - %s\n", (char *) fw_version); 10293 10294 val = REG_RD_IND(sc, BCE_COM_CPU_MODE); 10295 BCE_PRINTF("0x%08X - (0x%06X) com_cpu_mode\n", val, BCE_COM_CPU_MODE); 10296 10297 val = REG_RD_IND(sc, BCE_COM_CPU_STATE); 10298 BCE_PRINTF("0x%08X - (0x%06X) com_cpu_state\n", val, BCE_COM_CPU_STATE); 10299 10300 val = REG_RD_IND(sc, BCE_COM_CPU_EVENT_MASK); 10301 BCE_PRINTF("0x%08X - (0x%06X) com_cpu_event_mask\n", val, 10302 BCE_COM_CPU_EVENT_MASK); 10303 10304 if (regs) { 10305 BCE_PRINTF( 10306 "----------------------------" 10307 " Register Dump " 10308 "----------------------------\n"); 10309 10310 for (int i = BCE_COM_CPU_MODE; i < 0x1053e8; i += 0x10) { 10311 BCE_PRINTF("0x%04X: 0x%08X 0x%08X 0x%08X 0x%08X\n", 10312 i, REG_RD_IND(sc, i), REG_RD_IND(sc, i + 0x4), 10313 REG_RD_IND(sc, i + 0x8), REG_RD_IND(sc, i + 0xC)); 10314 } 10315 } 10316 10317 BCE_PRINTF( 10318 "----------------------------" 10319 "----------------" 10320 "----------------------------\n"); 10321 } 10322 10323 10324 /****************************************************************************/ 10325 /* Prints out the driver state and then enters the debugger. */ 10326 /* */ 10327 /* Returns: */ 10328 /* Nothing. */ 10329 /****************************************************************************/ 10330 static void 10331 bce_breakpoint(struct bce_softc *sc) 10332 { 10333 10334 /* 10335 * Unreachable code to silence compiler warnings 10336 * about unused functions. 10337 */ 10338 if (0) { 10339 bce_freeze_controller(sc); 10340 bce_unfreeze_controller(sc); 10341 bce_dump_enet(sc, NULL); 10342 bce_dump_txbd(sc, 0, NULL); 10343 bce_dump_rxbd(sc, 0, NULL); 10344 bce_dump_tx_mbuf_chain(sc, 0, USABLE_TX_BD); 10345 bce_dump_rx_mbuf_chain(sc, 0, USABLE_RX_BD); 10346 bce_dump_l2fhdr(sc, 0, NULL); 10347 bce_dump_ctx(sc, RX_CID); 10348 bce_dump_ftqs(sc); 10349 bce_dump_tx_chain(sc, 0, USABLE_TX_BD); 10350 bce_dump_rx_chain(sc, 0, USABLE_RX_BD); 10351 bce_dump_status_block(sc); 10352 bce_dump_stats_block(sc); 10353 bce_dump_driver_state(sc); 10354 bce_dump_hw_state(sc); 10355 bce_dump_bc_state(sc); 10356 bce_dump_txp_state(sc, 0); 10357 bce_dump_rxp_state(sc, 0); 10358 bce_dump_tpat_state(sc, 0); 10359 bce_dump_cp_state(sc, 0); 10360 bce_dump_com_state(sc, 0); 10361 #ifdef BCE_JUMBO_HDRSPLIT 10362 bce_dump_pgbd(sc, 0, NULL); 10363 bce_dump_pg_mbuf_chain(sc, 0, USABLE_PG_BD); 10364 bce_dump_pg_chain(sc, 0, USABLE_PG_BD); 10365 #endif 10366 } 10367 10368 bce_dump_status_block(sc); 10369 bce_dump_driver_state(sc); 10370 10371 /* Call the debugger. */ 10372 breakpoint(); 10373 10374 return; 10375 } 10376 #endif 10377 10378