xref: /freebsd/sys/dev/bce/if_bce.c (revision e92ffd9b626833ebdbf2742c8ffddc6cd94b963e)
1 /*-
2  * SPDX-License-Identifier: BSD-2-Clause
3  *
4  * Copyright (c) 2006-2014 QLogic Corporation
5  *
6  * Redistribution and use in source and binary forms, with or without
7  * modification, are permitted provided that the following conditions
8  * are met:
9  *
10  * 1. Redistributions of source code must retain the above copyright
11  *    notice, this list of conditions and the following disclaimer.
12  * 2. Redistributions in binary form must reproduce the above copyright
13  *    notice, this list of conditions and the following disclaimer in the
14  *    documentation and/or other materials provided with the distribution.
15  *
16  * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS'
17  * AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
18  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
19  * ARE DISCLAIMED.  IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS
20  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
21  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
22  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
23  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
24  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
25  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF
26  * THE POSSIBILITY OF SUCH DAMAGE.
27  */
28 
29 #include <sys/cdefs.h>
30 __FBSDID("$FreeBSD$");
31 
32 /*
33  * The following controllers are supported by this driver:
34  *   BCM5706C A2, A3
35  *   BCM5706S A2, A3
36  *   BCM5708C B1, B2
37  *   BCM5708S B1, B2
38  *   BCM5709C A1, C0
39  *   BCM5709S A1, C0
40  *   BCM5716C C0
41  *   BCM5716S C0
42  *
43  * The following controllers are not supported by this driver:
44  *   BCM5706C A0, A1 (pre-production)
45  *   BCM5706S A0, A1 (pre-production)
46  *   BCM5708C A0, B0 (pre-production)
47  *   BCM5708S A0, B0 (pre-production)
48  *   BCM5709C A0  B0, B1, B2 (pre-production)
49  *   BCM5709S A0, B0, B1, B2 (pre-production)
50  */
51 
52 #include "opt_bce.h"
53 
54 #include <sys/param.h>
55 #include <sys/endian.h>
56 #include <sys/systm.h>
57 #include <sys/sockio.h>
58 #include <sys/lock.h>
59 #include <sys/mbuf.h>
60 #include <sys/malloc.h>
61 #include <sys/mutex.h>
62 #include <sys/kernel.h>
63 #include <sys/module.h>
64 #include <sys/socket.h>
65 #include <sys/sysctl.h>
66 #include <sys/queue.h>
67 
68 #include <net/bpf.h>
69 #include <net/ethernet.h>
70 #include <net/if.h>
71 #include <net/if_var.h>
72 #include <net/if_arp.h>
73 #include <net/if_dl.h>
74 #include <net/if_media.h>
75 
76 #include <net/if_types.h>
77 #include <net/if_vlan_var.h>
78 
79 #include <netinet/in_systm.h>
80 #include <netinet/in.h>
81 #include <netinet/if_ether.h>
82 #include <netinet/ip.h>
83 #include <netinet/ip6.h>
84 #include <netinet/tcp.h>
85 #include <netinet/udp.h>
86 
87 #include <machine/bus.h>
88 #include <machine/resource.h>
89 #include <sys/bus.h>
90 #include <sys/rman.h>
91 
92 #include <dev/mii/mii.h>
93 #include <dev/mii/miivar.h>
94 #include "miidevs.h"
95 #include <dev/mii/brgphyreg.h>
96 
97 #include <dev/pci/pcireg.h>
98 #include <dev/pci/pcivar.h>
99 
100 #include "miibus_if.h"
101 
102 #include <dev/bce/if_bcereg.h>
103 #include <dev/bce/if_bcefw.h>
104 
105 /****************************************************************************/
106 /* BCE Debug Options                                                        */
107 /****************************************************************************/
108 #ifdef BCE_DEBUG
109 	u32 bce_debug = BCE_WARN;
110 
111 	/*          0 = Never              */
112 	/*          1 = 1 in 2,147,483,648 */
113 	/*        256 = 1 in     8,388,608 */
114 	/*       2048 = 1 in     1,048,576 */
115 	/*      65536 = 1 in        32,768 */
116 	/*    1048576 = 1 in         2,048 */
117 	/*  268435456 =	1 in             8 */
118 	/*  536870912 = 1 in             4 */
119 	/* 1073741824 = 1 in             2 */
120 
121 	/* Controls how often the l2_fhdr frame error check will fail. */
122 	int l2fhdr_error_sim_control = 0;
123 
124 	/* Controls how often the unexpected attention check will fail. */
125 	int unexpected_attention_sim_control = 0;
126 
127 	/* Controls how often to simulate an mbuf allocation failure. */
128 	int mbuf_alloc_failed_sim_control = 0;
129 
130 	/* Controls how often to simulate a DMA mapping failure. */
131 	int dma_map_addr_failed_sim_control = 0;
132 
133 	/* Controls how often to simulate a bootcode failure. */
134 	int bootcode_running_failure_sim_control = 0;
135 #endif
136 
137 /****************************************************************************/
138 /* PCI Device ID Table                                                      */
139 /*                                                                          */
140 /* Used by bce_probe() to identify the devices supported by this driver.    */
141 /****************************************************************************/
142 #define BCE_DEVDESC_MAX		64
143 
144 static const struct bce_type bce_devs[] = {
145 	/* BCM5706C Controllers and OEM boards. */
146 	{ BRCM_VENDORID, BRCM_DEVICEID_BCM5706,  HP_VENDORID, 0x3101,
147 		"HP NC370T Multifunction Gigabit Server Adapter" },
148 	{ BRCM_VENDORID, BRCM_DEVICEID_BCM5706,  HP_VENDORID, 0x3106,
149 		"HP NC370i Multifunction Gigabit Server Adapter" },
150 	{ BRCM_VENDORID, BRCM_DEVICEID_BCM5706,  HP_VENDORID, 0x3070,
151 		"HP NC380T PCIe DP Multifunc Gig Server Adapter" },
152 	{ BRCM_VENDORID, BRCM_DEVICEID_BCM5706,  HP_VENDORID, 0x1709,
153 		"HP NC371i Multifunction Gigabit Server Adapter" },
154 	{ BRCM_VENDORID, BRCM_DEVICEID_BCM5706,  PCI_ANY_ID,  PCI_ANY_ID,
155 		"QLogic NetXtreme II BCM5706 1000Base-T" },
156 
157 	/* BCM5706S controllers and OEM boards. */
158 	{ BRCM_VENDORID, BRCM_DEVICEID_BCM5706S, HP_VENDORID, 0x3102,
159 		"HP NC370F Multifunction Gigabit Server Adapter" },
160 	{ BRCM_VENDORID, BRCM_DEVICEID_BCM5706S, PCI_ANY_ID,  PCI_ANY_ID,
161 		"QLogic NetXtreme II BCM5706 1000Base-SX" },
162 
163 	/* BCM5708C controllers and OEM boards. */
164 	{ BRCM_VENDORID, BRCM_DEVICEID_BCM5708,  HP_VENDORID, 0x7037,
165 		"HP NC373T PCIe Multifunction Gig Server Adapter" },
166 	{ BRCM_VENDORID, BRCM_DEVICEID_BCM5708,  HP_VENDORID, 0x7038,
167 		"HP NC373i Multifunction Gigabit Server Adapter" },
168 	{ BRCM_VENDORID, BRCM_DEVICEID_BCM5708,  HP_VENDORID, 0x7045,
169 		"HP NC374m PCIe Multifunction Adapter" },
170 	{ BRCM_VENDORID, BRCM_DEVICEID_BCM5708,  PCI_ANY_ID,  PCI_ANY_ID,
171 		"QLogic NetXtreme II BCM5708 1000Base-T" },
172 
173 	/* BCM5708S controllers and OEM boards. */
174 	{ BRCM_VENDORID, BRCM_DEVICEID_BCM5708S,  HP_VENDORID, 0x1706,
175 		"HP NC373m Multifunction Gigabit Server Adapter" },
176 	{ BRCM_VENDORID, BRCM_DEVICEID_BCM5708S,  HP_VENDORID, 0x703b,
177 		"HP NC373i Multifunction Gigabit Server Adapter" },
178 	{ BRCM_VENDORID, BRCM_DEVICEID_BCM5708S,  HP_VENDORID, 0x703d,
179 		"HP NC373F PCIe Multifunc Giga Server Adapter" },
180 	{ BRCM_VENDORID, BRCM_DEVICEID_BCM5708S,  PCI_ANY_ID,  PCI_ANY_ID,
181 		"QLogic NetXtreme II BCM5708 1000Base-SX" },
182 
183 	/* BCM5709C controllers and OEM boards. */
184 	{ BRCM_VENDORID, BRCM_DEVICEID_BCM5709,  HP_VENDORID, 0x7055,
185 		"HP NC382i DP Multifunction Gigabit Server Adapter" },
186 	{ BRCM_VENDORID, BRCM_DEVICEID_BCM5709,  HP_VENDORID, 0x7059,
187 		"HP NC382T PCIe DP Multifunction Gigabit Server Adapter" },
188 	{ BRCM_VENDORID, BRCM_DEVICEID_BCM5709,  PCI_ANY_ID,  PCI_ANY_ID,
189 		"QLogic NetXtreme II BCM5709 1000Base-T" },
190 
191 	/* BCM5709S controllers and OEM boards. */
192 	{ BRCM_VENDORID, BRCM_DEVICEID_BCM5709S,  HP_VENDORID, 0x171d,
193 		"HP NC382m DP 1GbE Multifunction BL-c Adapter" },
194 	{ BRCM_VENDORID, BRCM_DEVICEID_BCM5709S,  HP_VENDORID, 0x7056,
195 		"HP NC382i DP Multifunction Gigabit Server Adapter" },
196 	{ BRCM_VENDORID, BRCM_DEVICEID_BCM5709S,  PCI_ANY_ID,  PCI_ANY_ID,
197 		"QLogic NetXtreme II BCM5709 1000Base-SX" },
198 
199 	/* BCM5716 controllers and OEM boards. */
200 	{ BRCM_VENDORID, BRCM_DEVICEID_BCM5716,  PCI_ANY_ID,  PCI_ANY_ID,
201 		"QLogic NetXtreme II BCM5716 1000Base-T" },
202 	{ 0, 0, 0, 0, NULL }
203 };
204 
205 /****************************************************************************/
206 /* Supported Flash NVRAM device data.                                       */
207 /****************************************************************************/
208 static const struct flash_spec flash_table[] =
209 {
210 #define BUFFERED_FLAGS		(BCE_NV_BUFFERED | BCE_NV_TRANSLATE)
211 #define NONBUFFERED_FLAGS	(BCE_NV_WREN)
212 
213 	/* Slow EEPROM */
214 	{0x00000000, 0x40830380, 0x009f0081, 0xa184a053, 0xaf000400,
215 	 BUFFERED_FLAGS, SEEPROM_PAGE_BITS, SEEPROM_PAGE_SIZE,
216 	 SEEPROM_BYTE_ADDR_MASK, SEEPROM_TOTAL_SIZE,
217 	 "EEPROM - slow"},
218 	/* Expansion entry 0001 */
219 	{0x08000002, 0x4b808201, 0x00050081, 0x03840253, 0xaf020406,
220 	 NONBUFFERED_FLAGS, SAIFUN_FLASH_PAGE_BITS, SAIFUN_FLASH_PAGE_SIZE,
221 	 SAIFUN_FLASH_BYTE_ADDR_MASK, 0,
222 	 "Entry 0001"},
223 	/* Saifun SA25F010 (non-buffered flash) */
224 	/* strap, cfg1, & write1 need updates */
225 	{0x04000001, 0x47808201, 0x00050081, 0x03840253, 0xaf020406,
226 	 NONBUFFERED_FLAGS, SAIFUN_FLASH_PAGE_BITS, SAIFUN_FLASH_PAGE_SIZE,
227 	 SAIFUN_FLASH_BYTE_ADDR_MASK, SAIFUN_FLASH_BASE_TOTAL_SIZE*2,
228 	 "Non-buffered flash (128kB)"},
229 	/* Saifun SA25F020 (non-buffered flash) */
230 	/* strap, cfg1, & write1 need updates */
231 	{0x0c000003, 0x4f808201, 0x00050081, 0x03840253, 0xaf020406,
232 	 NONBUFFERED_FLAGS, SAIFUN_FLASH_PAGE_BITS, SAIFUN_FLASH_PAGE_SIZE,
233 	 SAIFUN_FLASH_BYTE_ADDR_MASK, SAIFUN_FLASH_BASE_TOTAL_SIZE*4,
234 	 "Non-buffered flash (256kB)"},
235 	/* Expansion entry 0100 */
236 	{0x11000000, 0x53808201, 0x00050081, 0x03840253, 0xaf020406,
237 	 NONBUFFERED_FLAGS, SAIFUN_FLASH_PAGE_BITS, SAIFUN_FLASH_PAGE_SIZE,
238 	 SAIFUN_FLASH_BYTE_ADDR_MASK, 0,
239 	 "Entry 0100"},
240 	/* Entry 0101: ST M45PE10 (non-buffered flash, TetonII B0) */
241 	{0x19000002, 0x5b808201, 0x000500db, 0x03840253, 0xaf020406,
242 	 NONBUFFERED_FLAGS, ST_MICRO_FLASH_PAGE_BITS, ST_MICRO_FLASH_PAGE_SIZE,
243 	 ST_MICRO_FLASH_BYTE_ADDR_MASK, ST_MICRO_FLASH_BASE_TOTAL_SIZE*2,
244 	 "Entry 0101: ST M45PE10 (128kB non-bufferred)"},
245 	/* Entry 0110: ST M45PE20 (non-buffered flash)*/
246 	{0x15000001, 0x57808201, 0x000500db, 0x03840253, 0xaf020406,
247 	 NONBUFFERED_FLAGS, ST_MICRO_FLASH_PAGE_BITS, ST_MICRO_FLASH_PAGE_SIZE,
248 	 ST_MICRO_FLASH_BYTE_ADDR_MASK, ST_MICRO_FLASH_BASE_TOTAL_SIZE*4,
249 	 "Entry 0110: ST M45PE20 (256kB non-bufferred)"},
250 	/* Saifun SA25F005 (non-buffered flash) */
251 	/* strap, cfg1, & write1 need updates */
252 	{0x1d000003, 0x5f808201, 0x00050081, 0x03840253, 0xaf020406,
253 	 NONBUFFERED_FLAGS, SAIFUN_FLASH_PAGE_BITS, SAIFUN_FLASH_PAGE_SIZE,
254 	 SAIFUN_FLASH_BYTE_ADDR_MASK, SAIFUN_FLASH_BASE_TOTAL_SIZE,
255 	 "Non-buffered flash (64kB)"},
256 	/* Fast EEPROM */
257 	{0x22000000, 0x62808380, 0x009f0081, 0xa184a053, 0xaf000400,
258 	 BUFFERED_FLAGS, SEEPROM_PAGE_BITS, SEEPROM_PAGE_SIZE,
259 	 SEEPROM_BYTE_ADDR_MASK, SEEPROM_TOTAL_SIZE,
260 	 "EEPROM - fast"},
261 	/* Expansion entry 1001 */
262 	{0x2a000002, 0x6b808201, 0x00050081, 0x03840253, 0xaf020406,
263 	 NONBUFFERED_FLAGS, SAIFUN_FLASH_PAGE_BITS, SAIFUN_FLASH_PAGE_SIZE,
264 	 SAIFUN_FLASH_BYTE_ADDR_MASK, 0,
265 	 "Entry 1001"},
266 	/* Expansion entry 1010 */
267 	{0x26000001, 0x67808201, 0x00050081, 0x03840253, 0xaf020406,
268 	 NONBUFFERED_FLAGS, SAIFUN_FLASH_PAGE_BITS, SAIFUN_FLASH_PAGE_SIZE,
269 	 SAIFUN_FLASH_BYTE_ADDR_MASK, 0,
270 	 "Entry 1010"},
271 	/* ATMEL AT45DB011B (buffered flash) */
272 	{0x2e000003, 0x6e808273, 0x00570081, 0x68848353, 0xaf000400,
273 	 BUFFERED_FLAGS, BUFFERED_FLASH_PAGE_BITS, BUFFERED_FLASH_PAGE_SIZE,
274 	 BUFFERED_FLASH_BYTE_ADDR_MASK, BUFFERED_FLASH_TOTAL_SIZE,
275 	 "Buffered flash (128kB)"},
276 	/* Expansion entry 1100 */
277 	{0x33000000, 0x73808201, 0x00050081, 0x03840253, 0xaf020406,
278 	 NONBUFFERED_FLAGS, SAIFUN_FLASH_PAGE_BITS, SAIFUN_FLASH_PAGE_SIZE,
279 	 SAIFUN_FLASH_BYTE_ADDR_MASK, 0,
280 	 "Entry 1100"},
281 	/* Expansion entry 1101 */
282 	{0x3b000002, 0x7b808201, 0x00050081, 0x03840253, 0xaf020406,
283 	 NONBUFFERED_FLAGS, SAIFUN_FLASH_PAGE_BITS, SAIFUN_FLASH_PAGE_SIZE,
284 	 SAIFUN_FLASH_BYTE_ADDR_MASK, 0,
285 	 "Entry 1101"},
286 	/* Ateml Expansion entry 1110 */
287 	{0x37000001, 0x76808273, 0x00570081, 0x68848353, 0xaf000400,
288 	 BUFFERED_FLAGS, BUFFERED_FLASH_PAGE_BITS, BUFFERED_FLASH_PAGE_SIZE,
289 	 BUFFERED_FLASH_BYTE_ADDR_MASK, 0,
290 	 "Entry 1110 (Atmel)"},
291 	/* ATMEL AT45DB021B (buffered flash) */
292 	{0x3f000003, 0x7e808273, 0x00570081, 0x68848353, 0xaf000400,
293 	 BUFFERED_FLAGS, BUFFERED_FLASH_PAGE_BITS, BUFFERED_FLASH_PAGE_SIZE,
294 	 BUFFERED_FLASH_BYTE_ADDR_MASK, BUFFERED_FLASH_TOTAL_SIZE*2,
295 	 "Buffered flash (256kB)"},
296 };
297 
298 /*
299  * The BCM5709 controllers transparently handle the
300  * differences between Atmel 264 byte pages and all
301  * flash devices which use 256 byte pages, so no
302  * logical-to-physical mapping is required in the
303  * driver.
304  */
305 static const struct flash_spec flash_5709 = {
306 	.flags		= BCE_NV_BUFFERED,
307 	.page_bits	= BCM5709_FLASH_PAGE_BITS,
308 	.page_size	= BCM5709_FLASH_PAGE_SIZE,
309 	.addr_mask	= BCM5709_FLASH_BYTE_ADDR_MASK,
310 	.total_size	= BUFFERED_FLASH_TOTAL_SIZE * 2,
311 	.name		= "5709/5716 buffered flash (256kB)",
312 };
313 
314 /****************************************************************************/
315 /* FreeBSD device entry points.                                             */
316 /****************************************************************************/
317 static int  bce_probe			(device_t);
318 static int  bce_attach			(device_t);
319 static int  bce_detach			(device_t);
320 static int  bce_shutdown		(device_t);
321 
322 /****************************************************************************/
323 /* BCE Debug Data Structure Dump Routines                                   */
324 /****************************************************************************/
325 #ifdef BCE_DEBUG
326 static u32  bce_reg_rd				(struct bce_softc *, u32);
327 static void bce_reg_wr				(struct bce_softc *, u32, u32);
328 static void bce_reg_wr16			(struct bce_softc *, u32, u16);
329 static u32  bce_ctx_rd				(struct bce_softc *, u32, u32);
330 static void bce_dump_enet			(struct bce_softc *, struct mbuf *);
331 static void bce_dump_mbuf			(struct bce_softc *, struct mbuf *);
332 static void bce_dump_tx_mbuf_chain	(struct bce_softc *, u16, int);
333 static void bce_dump_rx_mbuf_chain	(struct bce_softc *, u16, int);
334 static void bce_dump_pg_mbuf_chain	(struct bce_softc *, u16, int);
335 static void bce_dump_txbd			(struct bce_softc *,
336     int, struct tx_bd *);
337 static void bce_dump_rxbd			(struct bce_softc *,
338     int, struct rx_bd *);
339 static void bce_dump_pgbd			(struct bce_softc *,
340     int, struct rx_bd *);
341 static void bce_dump_l2fhdr		(struct bce_softc *,
342     int, struct l2_fhdr *);
343 static void bce_dump_ctx			(struct bce_softc *, u16);
344 static void bce_dump_ftqs			(struct bce_softc *);
345 static void bce_dump_tx_chain		(struct bce_softc *, u16, int);
346 static void bce_dump_rx_bd_chain	(struct bce_softc *, u16, int);
347 static void bce_dump_pg_chain		(struct bce_softc *, u16, int);
348 static void bce_dump_status_block	(struct bce_softc *);
349 static void bce_dump_stats_block	(struct bce_softc *);
350 static void bce_dump_driver_state	(struct bce_softc *);
351 static void bce_dump_hw_state		(struct bce_softc *);
352 static void bce_dump_shmem_state	(struct bce_softc *);
353 static void bce_dump_mq_regs		(struct bce_softc *);
354 static void bce_dump_bc_state		(struct bce_softc *);
355 static void bce_dump_txp_state		(struct bce_softc *, int);
356 static void bce_dump_rxp_state		(struct bce_softc *, int);
357 static void bce_dump_tpat_state	(struct bce_softc *, int);
358 static void bce_dump_cp_state		(struct bce_softc *, int);
359 static void bce_dump_com_state		(struct bce_softc *, int);
360 static void bce_dump_rv2p_state	(struct bce_softc *);
361 static void bce_breakpoint			(struct bce_softc *);
362 #endif /*BCE_DEBUG */
363 
364 /****************************************************************************/
365 /* BCE Register/Memory Access Routines                                      */
366 /****************************************************************************/
367 static u32  bce_reg_rd_ind		(struct bce_softc *, u32);
368 static void bce_reg_wr_ind		(struct bce_softc *, u32, u32);
369 static void bce_shmem_wr		(struct bce_softc *, u32, u32);
370 static u32  bce_shmem_rd		(struct bce_softc *, u32);
371 static void bce_ctx_wr			(struct bce_softc *, u32, u32, u32);
372 static int  bce_miibus_read_reg		(device_t, int, int);
373 static int  bce_miibus_write_reg	(device_t, int, int, int);
374 static void bce_miibus_statchg		(device_t);
375 
376 #ifdef BCE_DEBUG
377 static int bce_sysctl_nvram_dump(SYSCTL_HANDLER_ARGS);
378 #ifdef BCE_NVRAM_WRITE_SUPPORT
379 static int bce_sysctl_nvram_write(SYSCTL_HANDLER_ARGS);
380 #endif
381 #endif
382 
383 /****************************************************************************/
384 /* BCE NVRAM Access Routines                                                */
385 /****************************************************************************/
386 static int  bce_acquire_nvram_lock	(struct bce_softc *);
387 static int  bce_release_nvram_lock	(struct bce_softc *);
388 static void bce_enable_nvram_access(struct bce_softc *);
389 static void bce_disable_nvram_access(struct bce_softc *);
390 static int  bce_nvram_read_dword	(struct bce_softc *, u32, u8 *, u32);
391 static int  bce_init_nvram			(struct bce_softc *);
392 static int  bce_nvram_read			(struct bce_softc *, u32, u8 *, int);
393 static int  bce_nvram_test			(struct bce_softc *);
394 #ifdef BCE_NVRAM_WRITE_SUPPORT
395 static int  bce_enable_nvram_write	(struct bce_softc *);
396 static void bce_disable_nvram_write(struct bce_softc *);
397 static int  bce_nvram_erase_page	(struct bce_softc *, u32);
398 static int  bce_nvram_write_dword	(struct bce_softc *, u32, u8 *, u32);
399 static int  bce_nvram_write		(struct bce_softc *, u32, u8 *, int);
400 #endif
401 
402 /****************************************************************************/
403 /*                                                                          */
404 /****************************************************************************/
405 static void bce_get_rx_buffer_sizes(struct bce_softc *, int);
406 static void bce_get_media			(struct bce_softc *);
407 static void bce_init_media			(struct bce_softc *);
408 static u32 bce_get_rphy_link		(struct bce_softc *);
409 static void bce_dma_map_addr		(void *, bus_dma_segment_t *, int, int);
410 static int  bce_dma_alloc			(device_t);
411 static void bce_dma_free			(struct bce_softc *);
412 static void bce_release_resources	(struct bce_softc *);
413 
414 /****************************************************************************/
415 /* BCE Firmware Synchronization and Load                                    */
416 /****************************************************************************/
417 static void bce_fw_cap_init			(struct bce_softc *);
418 static int  bce_fw_sync			(struct bce_softc *, u32);
419 static void bce_load_rv2p_fw		(struct bce_softc *, const u32 *, u32,
420     u32);
421 static void bce_load_cpu_fw		(struct bce_softc *,
422     struct cpu_reg *, struct fw_info *);
423 static void bce_start_cpu			(struct bce_softc *, struct cpu_reg *);
424 static void bce_halt_cpu			(struct bce_softc *, struct cpu_reg *);
425 static void bce_start_rxp_cpu		(struct bce_softc *);
426 static void bce_init_rxp_cpu		(struct bce_softc *);
427 static void bce_init_txp_cpu 		(struct bce_softc *);
428 static void bce_init_tpat_cpu		(struct bce_softc *);
429 static void bce_init_cp_cpu	  	(struct bce_softc *);
430 static void bce_init_com_cpu	  	(struct bce_softc *);
431 static void bce_init_cpus			(struct bce_softc *);
432 
433 static void bce_print_adapter_info	(struct bce_softc *);
434 static void bce_probe_pci_caps		(device_t, struct bce_softc *);
435 static void bce_stop				(struct bce_softc *);
436 static int  bce_reset				(struct bce_softc *, u32);
437 static int  bce_chipinit 			(struct bce_softc *);
438 static int  bce_blockinit 			(struct bce_softc *);
439 
440 static int  bce_init_tx_chain		(struct bce_softc *);
441 static void bce_free_tx_chain		(struct bce_softc *);
442 
443 static int  bce_get_rx_buf		(struct bce_softc *, u16, u16, u32 *);
444 static int  bce_init_rx_chain		(struct bce_softc *);
445 static void bce_fill_rx_chain		(struct bce_softc *);
446 static void bce_free_rx_chain		(struct bce_softc *);
447 
448 static int  bce_get_pg_buf		(struct bce_softc *, u16, u16);
449 static int  bce_init_pg_chain		(struct bce_softc *);
450 static void bce_fill_pg_chain		(struct bce_softc *);
451 static void bce_free_pg_chain		(struct bce_softc *);
452 
453 static struct mbuf *bce_tso_setup	(struct bce_softc *,
454     struct mbuf **, u16 *);
455 static int  bce_tx_encap			(struct bce_softc *, struct mbuf **);
456 static void bce_start_locked		(struct ifnet *);
457 static void bce_start			(struct ifnet *);
458 static int  bce_ioctl			(struct ifnet *, u_long, caddr_t);
459 static uint64_t bce_get_counter		(struct ifnet *, ift_counter);
460 static void bce_watchdog		(struct bce_softc *);
461 static int  bce_ifmedia_upd		(struct ifnet *);
462 static int  bce_ifmedia_upd_locked	(struct ifnet *);
463 static void bce_ifmedia_sts		(struct ifnet *, struct ifmediareq *);
464 static void bce_ifmedia_sts_rphy	(struct bce_softc *, struct ifmediareq *);
465 static void bce_init_locked		(struct bce_softc *);
466 static void bce_init				(void *);
467 static void bce_mgmt_init_locked	(struct bce_softc *sc);
468 
469 static int  bce_init_ctx			(struct bce_softc *);
470 static void bce_get_mac_addr		(struct bce_softc *);
471 static void bce_set_mac_addr		(struct bce_softc *);
472 static void bce_phy_intr			(struct bce_softc *);
473 static inline u16 bce_get_hw_rx_cons	(struct bce_softc *);
474 static void bce_rx_intr			(struct bce_softc *);
475 static void bce_tx_intr			(struct bce_softc *);
476 static void bce_disable_intr		(struct bce_softc *);
477 static void bce_enable_intr		(struct bce_softc *, int);
478 
479 static void bce_intr				(void *);
480 static void bce_set_rx_mode		(struct bce_softc *);
481 static void bce_stats_update		(struct bce_softc *);
482 static void bce_tick				(void *);
483 static void bce_pulse				(void *);
484 static void bce_add_sysctls		(struct bce_softc *);
485 
486 /****************************************************************************/
487 /* FreeBSD device dispatch table.                                           */
488 /****************************************************************************/
489 static device_method_t bce_methods[] = {
490 	/* Device interface (device_if.h) */
491 	DEVMETHOD(device_probe,		bce_probe),
492 	DEVMETHOD(device_attach,	bce_attach),
493 	DEVMETHOD(device_detach,	bce_detach),
494 	DEVMETHOD(device_shutdown,	bce_shutdown),
495 /* Supported by device interface but not used here. */
496 /*	DEVMETHOD(device_identify,	bce_identify),      */
497 /*	DEVMETHOD(device_suspend,	bce_suspend),       */
498 /*	DEVMETHOD(device_resume,	bce_resume),        */
499 /*	DEVMETHOD(device_quiesce,	bce_quiesce),       */
500 
501 	/* MII interface (miibus_if.h) */
502 	DEVMETHOD(miibus_readreg,	bce_miibus_read_reg),
503 	DEVMETHOD(miibus_writereg,	bce_miibus_write_reg),
504 	DEVMETHOD(miibus_statchg,	bce_miibus_statchg),
505 /* Supported by MII interface but not used here.       */
506 /*	DEVMETHOD(miibus_linkchg,	bce_miibus_linkchg),   */
507 /*	DEVMETHOD(miibus_mediainit,	bce_miibus_mediainit), */
508 
509 	DEVMETHOD_END
510 };
511 
512 static driver_t bce_driver = {
513 	"bce",
514 	bce_methods,
515 	sizeof(struct bce_softc)
516 };
517 
518 static devclass_t bce_devclass;
519 
520 MODULE_DEPEND(bce, pci, 1, 1, 1);
521 MODULE_DEPEND(bce, ether, 1, 1, 1);
522 MODULE_DEPEND(bce, miibus, 1, 1, 1);
523 
524 DRIVER_MODULE(bce, pci, bce_driver, bce_devclass, NULL, NULL);
525 DRIVER_MODULE(miibus, bce, miibus_driver, miibus_devclass, NULL, NULL);
526 MODULE_PNP_INFO("U16:vendor;U16:device;U16:#;U16:#;D:#", pci, bce,
527     bce_devs, nitems(bce_devs) - 1);
528 
529 /****************************************************************************/
530 /* Tunable device values                                                    */
531 /****************************************************************************/
532 static SYSCTL_NODE(_hw, OID_AUTO, bce, CTLFLAG_RD | CTLFLAG_MPSAFE, 0,
533     "bce driver parameters");
534 
535 /* Allowable values are TRUE or FALSE */
536 static int bce_verbose = TRUE;
537 SYSCTL_INT(_hw_bce, OID_AUTO, verbose, CTLFLAG_RDTUN, &bce_verbose, 0,
538     "Verbose output enable/disable");
539 
540 /* Allowable values are TRUE or FALSE */
541 static int bce_tso_enable = TRUE;
542 SYSCTL_INT(_hw_bce, OID_AUTO, tso_enable, CTLFLAG_RDTUN, &bce_tso_enable, 0,
543     "TSO Enable/Disable");
544 
545 /* Allowable values are 0 (IRQ), 1 (MSI/IRQ), and 2 (MSI-X/MSI/IRQ) */
546 /* ToDo: Add MSI-X support. */
547 static int bce_msi_enable = 1;
548 SYSCTL_INT(_hw_bce, OID_AUTO, msi_enable, CTLFLAG_RDTUN, &bce_msi_enable, 0,
549     "MSI-X|MSI|INTx selector");
550 
551 /* Allowable values are 1, 2, 4, 8. */
552 static int bce_rx_pages = DEFAULT_RX_PAGES;
553 SYSCTL_UINT(_hw_bce, OID_AUTO, rx_pages, CTLFLAG_RDTUN, &bce_rx_pages, 0,
554     "Receive buffer descriptor pages (1 page = 255 buffer descriptors)");
555 
556 /* Allowable values are 1, 2, 4, 8. */
557 static int bce_tx_pages = DEFAULT_TX_PAGES;
558 SYSCTL_UINT(_hw_bce, OID_AUTO, tx_pages, CTLFLAG_RDTUN, &bce_tx_pages, 0,
559     "Transmit buffer descriptor pages (1 page = 255 buffer descriptors)");
560 
561 /* Allowable values are TRUE or FALSE. */
562 static int bce_hdr_split = TRUE;
563 SYSCTL_UINT(_hw_bce, OID_AUTO, hdr_split, CTLFLAG_RDTUN, &bce_hdr_split, 0,
564     "Frame header/payload splitting Enable/Disable");
565 
566 /* Allowable values are TRUE or FALSE. */
567 static int bce_strict_rx_mtu = FALSE;
568 SYSCTL_UINT(_hw_bce, OID_AUTO, strict_rx_mtu, CTLFLAG_RDTUN,
569     &bce_strict_rx_mtu, 0,
570     "Enable/Disable strict RX frame size checking");
571 
572 /* Allowable values are 0 ... 100 */
573 #ifdef BCE_DEBUG
574 /* Generate 1 interrupt for every transmit completion. */
575 static int bce_tx_quick_cons_trip_int = 1;
576 #else
577 /* Generate 1 interrupt for every 20 transmit completions. */
578 static int bce_tx_quick_cons_trip_int = DEFAULT_TX_QUICK_CONS_TRIP_INT;
579 #endif
580 SYSCTL_UINT(_hw_bce, OID_AUTO, tx_quick_cons_trip_int, CTLFLAG_RDTUN,
581     &bce_tx_quick_cons_trip_int, 0,
582     "Transmit BD trip point during interrupts");
583 
584 /* Allowable values are 0 ... 100 */
585 /* Generate 1 interrupt for every transmit completion. */
586 #ifdef BCE_DEBUG
587 static int bce_tx_quick_cons_trip = 1;
588 #else
589 /* Generate 1 interrupt for every 20 transmit completions. */
590 static int bce_tx_quick_cons_trip = DEFAULT_TX_QUICK_CONS_TRIP;
591 #endif
592 SYSCTL_UINT(_hw_bce, OID_AUTO, tx_quick_cons_trip, CTLFLAG_RDTUN,
593     &bce_tx_quick_cons_trip, 0,
594     "Transmit BD trip point");
595 
596 /* Allowable values are 0 ... 100 */
597 #ifdef BCE_DEBUG
598 /* Generate an interrupt if 0us have elapsed since the last TX completion. */
599 static int bce_tx_ticks_int = 0;
600 #else
601 /* Generate an interrupt if 80us have elapsed since the last TX completion. */
602 static int bce_tx_ticks_int = DEFAULT_TX_TICKS_INT;
603 #endif
604 SYSCTL_UINT(_hw_bce, OID_AUTO, tx_ticks_int, CTLFLAG_RDTUN,
605     &bce_tx_ticks_int, 0, "Transmit ticks count during interrupt");
606 
607 /* Allowable values are 0 ... 100 */
608 #ifdef BCE_DEBUG
609 /* Generate an interrupt if 0us have elapsed since the last TX completion. */
610 static int bce_tx_ticks = 0;
611 #else
612 /* Generate an interrupt if 80us have elapsed since the last TX completion. */
613 static int bce_tx_ticks = DEFAULT_TX_TICKS;
614 #endif
615 SYSCTL_UINT(_hw_bce, OID_AUTO, tx_ticks, CTLFLAG_RDTUN,
616     &bce_tx_ticks, 0, "Transmit ticks count");
617 
618 /* Allowable values are 1 ... 100 */
619 #ifdef BCE_DEBUG
620 /* Generate 1 interrupt for every received frame. */
621 static int bce_rx_quick_cons_trip_int = 1;
622 #else
623 /* Generate 1 interrupt for every 6 received frames. */
624 static int bce_rx_quick_cons_trip_int = DEFAULT_RX_QUICK_CONS_TRIP_INT;
625 #endif
626 SYSCTL_UINT(_hw_bce, OID_AUTO, rx_quick_cons_trip_int, CTLFLAG_RDTUN,
627     &bce_rx_quick_cons_trip_int, 0,
628     "Receive BD trip point during interrupts");
629 
630 /* Allowable values are 1 ... 100 */
631 #ifdef BCE_DEBUG
632 /* Generate 1 interrupt for every received frame. */
633 static int bce_rx_quick_cons_trip = 1;
634 #else
635 /* Generate 1 interrupt for every 6 received frames. */
636 static int bce_rx_quick_cons_trip = DEFAULT_RX_QUICK_CONS_TRIP;
637 #endif
638 SYSCTL_UINT(_hw_bce, OID_AUTO, rx_quick_cons_trip, CTLFLAG_RDTUN,
639     &bce_rx_quick_cons_trip, 0,
640     "Receive BD trip point");
641 
642 /* Allowable values are 0 ... 100 */
643 #ifdef BCE_DEBUG
644 /* Generate an int. if 0us have elapsed since the last received frame. */
645 static int bce_rx_ticks_int = 0;
646 #else
647 /* Generate an int. if 18us have elapsed since the last received frame. */
648 static int bce_rx_ticks_int = DEFAULT_RX_TICKS_INT;
649 #endif
650 SYSCTL_UINT(_hw_bce, OID_AUTO, rx_ticks_int, CTLFLAG_RDTUN,
651     &bce_rx_ticks_int, 0, "Receive ticks count during interrupt");
652 
653 /* Allowable values are 0 ... 100 */
654 #ifdef BCE_DEBUG
655 /* Generate an int. if 0us have elapsed since the last received frame. */
656 static int bce_rx_ticks = 0;
657 #else
658 /* Generate an int. if 18us have elapsed since the last received frame. */
659 static int bce_rx_ticks = DEFAULT_RX_TICKS;
660 #endif
661 SYSCTL_UINT(_hw_bce, OID_AUTO, rx_ticks, CTLFLAG_RDTUN,
662     &bce_rx_ticks, 0, "Receive ticks count");
663 
664 /****************************************************************************/
665 /* Device probe function.                                                   */
666 /*                                                                          */
667 /* Compares the device to the driver's list of supported devices and        */
668 /* reports back to the OS whether this is the right driver for the device.  */
669 /*                                                                          */
670 /* Returns:                                                                 */
671 /*   BUS_PROBE_DEFAULT on success, positive value on failure.               */
672 /****************************************************************************/
673 static int
674 bce_probe(device_t dev)
675 {
676 	const struct bce_type *t;
677 	struct bce_softc *sc;
678 	char *descbuf;
679 	u16 vid = 0, did = 0, svid = 0, sdid = 0;
680 
681 	t = bce_devs;
682 
683 	sc = device_get_softc(dev);
684 	sc->bce_unit = device_get_unit(dev);
685 	sc->bce_dev = dev;
686 
687 	/* Get the data for the device to be probed. */
688 	vid  = pci_get_vendor(dev);
689 	did  = pci_get_device(dev);
690 	svid = pci_get_subvendor(dev);
691 	sdid = pci_get_subdevice(dev);
692 
693 	DBPRINT(sc, BCE_EXTREME_LOAD,
694 	    "%s(); VID = 0x%04X, DID = 0x%04X, SVID = 0x%04X, "
695 	    "SDID = 0x%04X\n", __FUNCTION__, vid, did, svid, sdid);
696 
697 	/* Look through the list of known devices for a match. */
698 	while(t->bce_name != NULL) {
699 		if ((vid == t->bce_vid) && (did == t->bce_did) &&
700 		    ((svid == t->bce_svid) || (t->bce_svid == PCI_ANY_ID)) &&
701 		    ((sdid == t->bce_sdid) || (t->bce_sdid == PCI_ANY_ID))) {
702 			descbuf = malloc(BCE_DEVDESC_MAX, M_TEMP, M_NOWAIT);
703 
704 			if (descbuf == NULL)
705 				return(ENOMEM);
706 
707 			/* Print out the device identity. */
708 			snprintf(descbuf, BCE_DEVDESC_MAX, "%s (%c%d)",
709 			    t->bce_name, (((pci_read_config(dev,
710 			    PCIR_REVID, 4) & 0xf0) >> 4) + 'A'),
711 			    (pci_read_config(dev, PCIR_REVID, 4) & 0xf));
712 
713 			device_set_desc_copy(dev, descbuf);
714 			free(descbuf, M_TEMP);
715 			return(BUS_PROBE_DEFAULT);
716 		}
717 		t++;
718 	}
719 
720 	return(ENXIO);
721 }
722 
723 /****************************************************************************/
724 /* PCI Capabilities Probe Function.                                         */
725 /*                                                                          */
726 /* Walks the PCI capabiites list for the device to find what features are   */
727 /* supported.                                                               */
728 /*                                                                          */
729 /* Returns:                                                                 */
730 /*   None.                                                                  */
731 /****************************************************************************/
732 static void
733 bce_print_adapter_info(struct bce_softc *sc)
734 {
735 	int i = 0;
736 
737 	DBENTER(BCE_VERBOSE_LOAD);
738 
739 	if (bce_verbose || bootverbose) {
740 		BCE_PRINTF("ASIC (0x%08X); ", sc->bce_chipid);
741 		printf("Rev (%c%d); ", ((BCE_CHIP_ID(sc) & 0xf000) >>
742 		    12) + 'A', ((BCE_CHIP_ID(sc) & 0x0ff0) >> 4));
743 
744 		/* Bus info. */
745 		if (sc->bce_flags & BCE_PCIE_FLAG) {
746 			printf("Bus (PCIe x%d, ", sc->link_width);
747 			switch (sc->link_speed) {
748 			case 1: printf("2.5Gbps); "); break;
749 			case 2:	printf("5Gbps); "); break;
750 			default: printf("Unknown link speed); ");
751 			}
752 		} else {
753 			printf("Bus (PCI%s, %s, %dMHz); ",
754 			    ((sc->bce_flags & BCE_PCIX_FLAG) ? "-X" : ""),
755 			    ((sc->bce_flags & BCE_PCI_32BIT_FLAG) ?
756 			    "32-bit" : "64-bit"), sc->bus_speed_mhz);
757 		}
758 
759 		/* Firmware version and device features. */
760 		printf("B/C (%s); Bufs (RX:%d;TX:%d;PG:%d); Flags (",
761 		    sc->bce_bc_ver,	sc->rx_pages, sc->tx_pages,
762 		    (bce_hdr_split == TRUE ? sc->pg_pages: 0));
763 
764 		if (bce_hdr_split == TRUE) {
765 			printf("SPLT");
766 			i++;
767 		}
768 
769 		if (sc->bce_flags & BCE_USING_MSI_FLAG) {
770 			if (i > 0) printf("|");
771 			printf("MSI"); i++;
772 		}
773 
774 		if (sc->bce_flags & BCE_USING_MSIX_FLAG) {
775 			if (i > 0) printf("|");
776 			printf("MSI-X"); i++;
777 		}
778 
779 		if (sc->bce_phy_flags & BCE_PHY_2_5G_CAPABLE_FLAG) {
780 			if (i > 0) printf("|");
781 			printf("2.5G"); i++;
782 		}
783 
784 		if (sc->bce_phy_flags & BCE_PHY_REMOTE_CAP_FLAG) {
785 			if (i > 0) printf("|");
786 			printf("Remote PHY(%s)",
787 			    sc->bce_phy_flags & BCE_PHY_REMOTE_PORT_FIBER_FLAG ?
788 			    "FIBER" : "TP"); i++;
789 		}
790 
791 		if (sc->bce_flags & BCE_MFW_ENABLE_FLAG) {
792 			if (i > 0) printf("|");
793 			printf("MFW); MFW (%s)\n", sc->bce_mfw_ver);
794 		} else {
795 			printf(")\n");
796 		}
797 
798 		printf("Coal (RX:%d,%d,%d,%d; TX:%d,%d,%d,%d)\n",
799 		    sc->bce_rx_quick_cons_trip_int,
800 		    sc->bce_rx_quick_cons_trip,
801 		    sc->bce_rx_ticks_int,
802 		    sc->bce_rx_ticks,
803 		    sc->bce_tx_quick_cons_trip_int,
804 		    sc->bce_tx_quick_cons_trip,
805 		    sc->bce_tx_ticks_int,
806 		    sc->bce_tx_ticks);
807 	}
808 
809 	DBEXIT(BCE_VERBOSE_LOAD);
810 }
811 
812 /****************************************************************************/
813 /* PCI Capabilities Probe Function.                                         */
814 /*                                                                          */
815 /* Walks the PCI capabiites list for the device to find what features are   */
816 /* supported.                                                               */
817 /*                                                                          */
818 /* Returns:                                                                 */
819 /*   None.                                                                  */
820 /****************************************************************************/
821 static void
822 bce_probe_pci_caps(device_t dev, struct bce_softc *sc)
823 {
824 	u32 reg;
825 
826 	DBENTER(BCE_VERBOSE_LOAD);
827 
828 	/* Check if PCI-X capability is enabled. */
829 	if (pci_find_cap(dev, PCIY_PCIX, &reg) == 0) {
830 		if (reg != 0)
831 			sc->bce_cap_flags |= BCE_PCIX_CAPABLE_FLAG;
832 	}
833 
834 	/* Check if PCIe capability is enabled. */
835 	if (pci_find_cap(dev, PCIY_EXPRESS, &reg) == 0) {
836 		if (reg != 0) {
837 			u16 link_status = pci_read_config(dev, reg + 0x12, 2);
838 			DBPRINT(sc, BCE_INFO_LOAD, "PCIe link_status = "
839 			    "0x%08X\n",	link_status);
840 			sc->link_speed = link_status & 0xf;
841 			sc->link_width = (link_status >> 4) & 0x3f;
842 			sc->bce_cap_flags |= BCE_PCIE_CAPABLE_FLAG;
843 			sc->bce_flags |= BCE_PCIE_FLAG;
844 		}
845 	}
846 
847 	/* Check if MSI capability is enabled. */
848 	if (pci_find_cap(dev, PCIY_MSI, &reg) == 0) {
849 		if (reg != 0)
850 			sc->bce_cap_flags |= BCE_MSI_CAPABLE_FLAG;
851 	}
852 
853 	/* Check if MSI-X capability is enabled. */
854 	if (pci_find_cap(dev, PCIY_MSIX, &reg) == 0) {
855 		if (reg != 0)
856 			sc->bce_cap_flags |= BCE_MSIX_CAPABLE_FLAG;
857 	}
858 
859 	DBEXIT(BCE_VERBOSE_LOAD);
860 }
861 
862 /****************************************************************************/
863 /* Load and validate user tunable settings.                                 */
864 /*                                                                          */
865 /* Returns:                                                                 */
866 /*   Nothing.                                                               */
867 /****************************************************************************/
868 static void
869 bce_set_tunables(struct bce_softc *sc)
870 {
871 	/* Set sysctl values for RX page count. */
872 	switch (bce_rx_pages) {
873 	case 1:
874 		/* fall-through */
875 	case 2:
876 		/* fall-through */
877 	case 4:
878 		/* fall-through */
879 	case 8:
880 		sc->rx_pages = bce_rx_pages;
881 		break;
882 	default:
883 		sc->rx_pages = DEFAULT_RX_PAGES;
884 		BCE_PRINTF("%s(%d): Illegal value (%d) specified for "
885 		    "hw.bce.rx_pages!  Setting default of %d.\n",
886 		    __FILE__, __LINE__, bce_rx_pages, DEFAULT_RX_PAGES);
887 	}
888 
889 	/* ToDo: Consider allowing user setting for pg_pages. */
890 	sc->pg_pages = min((sc->rx_pages * 4), MAX_PG_PAGES);
891 
892 	/* Set sysctl values for TX page count. */
893 	switch (bce_tx_pages) {
894 	case 1:
895 		/* fall-through */
896 	case 2:
897 		/* fall-through */
898 	case 4:
899 		/* fall-through */
900 	case 8:
901 		sc->tx_pages = bce_tx_pages;
902 		break;
903 	default:
904 		sc->tx_pages = DEFAULT_TX_PAGES;
905 		BCE_PRINTF("%s(%d): Illegal value (%d) specified for "
906 		    "hw.bce.tx_pages!  Setting default of %d.\n",
907 		    __FILE__, __LINE__, bce_tx_pages, DEFAULT_TX_PAGES);
908 	}
909 
910 	/*
911 	 * Validate the TX trip point (i.e. the number of
912 	 * TX completions before a status block update is
913 	 * generated and an interrupt is asserted.
914 	 */
915 	if (bce_tx_quick_cons_trip_int <= 100) {
916 		sc->bce_tx_quick_cons_trip_int =
917 		    bce_tx_quick_cons_trip_int;
918 	} else {
919 		BCE_PRINTF("%s(%d): Illegal value (%d) specified for "
920 		    "hw.bce.tx_quick_cons_trip_int!  Setting default of %d.\n",
921 		    __FILE__, __LINE__, bce_tx_quick_cons_trip_int,
922 		    DEFAULT_TX_QUICK_CONS_TRIP_INT);
923 		sc->bce_tx_quick_cons_trip_int =
924 		    DEFAULT_TX_QUICK_CONS_TRIP_INT;
925 	}
926 
927 	if (bce_tx_quick_cons_trip <= 100) {
928 		sc->bce_tx_quick_cons_trip =
929 		    bce_tx_quick_cons_trip;
930 	} else {
931 		BCE_PRINTF("%s(%d): Illegal value (%d) specified for "
932 		    "hw.bce.tx_quick_cons_trip!  Setting default of %d.\n",
933 		    __FILE__, __LINE__, bce_tx_quick_cons_trip,
934 		    DEFAULT_TX_QUICK_CONS_TRIP);
935 		sc->bce_tx_quick_cons_trip =
936 		    DEFAULT_TX_QUICK_CONS_TRIP;
937 	}
938 
939 	/*
940 	 * Validate the TX ticks count (i.e. the maximum amount
941 	 * of time to wait after the last TX completion has
942 	 * occurred before a status block update is generated
943 	 * and an interrupt is asserted.
944 	 */
945 	if (bce_tx_ticks_int <= 100) {
946 		sc->bce_tx_ticks_int =
947 		    bce_tx_ticks_int;
948 	} else {
949 		BCE_PRINTF("%s(%d): Illegal value (%d) specified for "
950 		    "hw.bce.tx_ticks_int!  Setting default of %d.\n",
951 		    __FILE__, __LINE__, bce_tx_ticks_int,
952 		    DEFAULT_TX_TICKS_INT);
953 		sc->bce_tx_ticks_int =
954 		    DEFAULT_TX_TICKS_INT;
955 	   }
956 
957 	if (bce_tx_ticks <= 100) {
958 		sc->bce_tx_ticks =
959 		    bce_tx_ticks;
960 	} else {
961 		BCE_PRINTF("%s(%d): Illegal value (%d) specified for "
962 		    "hw.bce.tx_ticks!  Setting default of %d.\n",
963 		    __FILE__, __LINE__, bce_tx_ticks,
964 		    DEFAULT_TX_TICKS);
965 		sc->bce_tx_ticks =
966 		    DEFAULT_TX_TICKS;
967 	}
968 
969 	/*
970 	 * Validate the RX trip point (i.e. the number of
971 	 * RX frames received before a status block update is
972 	 * generated and an interrupt is asserted.
973 	 */
974 	if (bce_rx_quick_cons_trip_int <= 100) {
975 		sc->bce_rx_quick_cons_trip_int =
976 		    bce_rx_quick_cons_trip_int;
977 	} else {
978 		BCE_PRINTF("%s(%d): Illegal value (%d) specified for "
979 		    "hw.bce.rx_quick_cons_trip_int!  Setting default of %d.\n",
980 		    __FILE__, __LINE__, bce_rx_quick_cons_trip_int,
981 		    DEFAULT_RX_QUICK_CONS_TRIP_INT);
982 		sc->bce_rx_quick_cons_trip_int =
983 		    DEFAULT_RX_QUICK_CONS_TRIP_INT;
984 	}
985 
986 	if (bce_rx_quick_cons_trip <= 100) {
987 		sc->bce_rx_quick_cons_trip =
988 		    bce_rx_quick_cons_trip;
989 	} else {
990 		BCE_PRINTF("%s(%d): Illegal value (%d) specified for "
991 		    "hw.bce.rx_quick_cons_trip!  Setting default of %d.\n",
992 		    __FILE__, __LINE__, bce_rx_quick_cons_trip,
993 		    DEFAULT_RX_QUICK_CONS_TRIP);
994 		sc->bce_rx_quick_cons_trip =
995 		    DEFAULT_RX_QUICK_CONS_TRIP;
996 	}
997 
998 	/*
999 	 * Validate the RX ticks count (i.e. the maximum amount
1000 	 * of time to wait after the last RX frame has been
1001 	 * received before a status block update is generated
1002 	 * and an interrupt is asserted.
1003 	 */
1004 	if (bce_rx_ticks_int <= 100) {
1005 		sc->bce_rx_ticks_int = bce_rx_ticks_int;
1006 	} else {
1007 		BCE_PRINTF("%s(%d): Illegal value (%d) specified for "
1008 		    "hw.bce.rx_ticks_int!  Setting default of %d.\n",
1009 		    __FILE__, __LINE__, bce_rx_ticks_int,
1010 		    DEFAULT_RX_TICKS_INT);
1011 		sc->bce_rx_ticks_int = DEFAULT_RX_TICKS_INT;
1012 	}
1013 
1014 	if (bce_rx_ticks <= 100) {
1015 		sc->bce_rx_ticks = bce_rx_ticks;
1016 	} else {
1017 		BCE_PRINTF("%s(%d): Illegal value (%d) specified for "
1018 		    "hw.bce.rx_ticks!  Setting default of %d.\n",
1019 		    __FILE__, __LINE__, bce_rx_ticks,
1020 		    DEFAULT_RX_TICKS);
1021 		sc->bce_rx_ticks = DEFAULT_RX_TICKS;
1022 	}
1023 
1024 	/* Disabling both RX ticks and RX trips will prevent interrupts. */
1025 	if ((bce_rx_quick_cons_trip == 0) && (bce_rx_ticks == 0)) {
1026 		BCE_PRINTF("%s(%d): Cannot set both hw.bce.rx_ticks and "
1027 		    "hw.bce.rx_quick_cons_trip to 0. Setting default values.\n",
1028 		   __FILE__, __LINE__);
1029 		sc->bce_rx_ticks = DEFAULT_RX_TICKS;
1030 		sc->bce_rx_quick_cons_trip = DEFAULT_RX_QUICK_CONS_TRIP;
1031 	}
1032 
1033 	/* Disabling both TX ticks and TX trips will prevent interrupts. */
1034 	if ((bce_tx_quick_cons_trip == 0) && (bce_tx_ticks == 0)) {
1035 		BCE_PRINTF("%s(%d): Cannot set both hw.bce.tx_ticks and "
1036 		    "hw.bce.tx_quick_cons_trip to 0. Setting default values.\n",
1037 		   __FILE__, __LINE__);
1038 		sc->bce_tx_ticks = DEFAULT_TX_TICKS;
1039 		sc->bce_tx_quick_cons_trip = DEFAULT_TX_QUICK_CONS_TRIP;
1040 	}
1041 }
1042 
1043 /****************************************************************************/
1044 /* Device attach function.                                                  */
1045 /*                                                                          */
1046 /* Allocates device resources, performs secondary chip identification,      */
1047 /* resets and initializes the hardware, and initializes driver instance     */
1048 /* variables.                                                               */
1049 /*                                                                          */
1050 /* Returns:                                                                 */
1051 /*   0 on success, positive value on failure.                               */
1052 /****************************************************************************/
1053 static int
1054 bce_attach(device_t dev)
1055 {
1056 	struct bce_softc *sc;
1057 	struct ifnet *ifp;
1058 	u32 val;
1059 	int count, error, rc = 0, rid;
1060 
1061 	sc = device_get_softc(dev);
1062 	sc->bce_dev = dev;
1063 
1064 	DBENTER(BCE_VERBOSE_LOAD | BCE_VERBOSE_RESET);
1065 
1066 	sc->bce_unit = device_get_unit(dev);
1067 
1068 	/* Set initial device and PHY flags */
1069 	sc->bce_flags = 0;
1070 	sc->bce_phy_flags = 0;
1071 
1072 	bce_set_tunables(sc);
1073 
1074 	pci_enable_busmaster(dev);
1075 
1076 	/* Allocate PCI memory resources. */
1077 	rid = PCIR_BAR(0);
1078 	sc->bce_res_mem = bus_alloc_resource_any(dev, SYS_RES_MEMORY,
1079 		&rid, RF_ACTIVE);
1080 
1081 	if (sc->bce_res_mem == NULL) {
1082 		BCE_PRINTF("%s(%d): PCI memory allocation failed\n",
1083 		    __FILE__, __LINE__);
1084 		rc = ENXIO;
1085 		goto bce_attach_fail;
1086 	}
1087 
1088 	/* Get various resource handles. */
1089 	sc->bce_btag    = rman_get_bustag(sc->bce_res_mem);
1090 	sc->bce_bhandle = rman_get_bushandle(sc->bce_res_mem);
1091 	sc->bce_vhandle = (vm_offset_t) rman_get_virtual(sc->bce_res_mem);
1092 
1093 	bce_probe_pci_caps(dev, sc);
1094 
1095 	rid = 1;
1096 	count = 0;
1097 #if 0
1098 	/* Try allocating MSI-X interrupts. */
1099 	if ((sc->bce_cap_flags & BCE_MSIX_CAPABLE_FLAG) &&
1100 		(bce_msi_enable >= 2) &&
1101 		((sc->bce_res_irq = bus_alloc_resource_any(dev, SYS_RES_MEMORY,
1102 		&rid, RF_ACTIVE)) != NULL)) {
1103 		msi_needed = count = 1;
1104 
1105 		if (((error = pci_alloc_msix(dev, &count)) != 0) ||
1106 			(count != msi_needed)) {
1107 			BCE_PRINTF("%s(%d): MSI-X allocation failed! Requested = %d,"
1108 				"Received = %d, error = %d\n", __FILE__, __LINE__,
1109 				msi_needed, count, error);
1110 			count = 0;
1111 			pci_release_msi(dev);
1112 			bus_release_resource(dev, SYS_RES_MEMORY, rid,
1113 				sc->bce_res_irq);
1114 			sc->bce_res_irq = NULL;
1115 		} else {
1116 			DBPRINT(sc, BCE_INFO_LOAD, "%s(): Using MSI-X interrupt.\n",
1117 				__FUNCTION__);
1118 			sc->bce_flags |= BCE_USING_MSIX_FLAG;
1119 		}
1120 	}
1121 #endif
1122 
1123 	/* Try allocating a MSI interrupt. */
1124 	if ((sc->bce_cap_flags & BCE_MSI_CAPABLE_FLAG) &&
1125 		(bce_msi_enable >= 1) && (count == 0)) {
1126 		count = 1;
1127 		if ((error = pci_alloc_msi(dev, &count)) != 0) {
1128 			BCE_PRINTF("%s(%d): MSI allocation failed! "
1129 			    "error = %d\n", __FILE__, __LINE__, error);
1130 			count = 0;
1131 			pci_release_msi(dev);
1132 		} else {
1133 			DBPRINT(sc, BCE_INFO_LOAD, "%s(): Using MSI "
1134 			    "interrupt.\n", __FUNCTION__);
1135 			sc->bce_flags |= BCE_USING_MSI_FLAG;
1136 			if (BCE_CHIP_NUM(sc) == BCE_CHIP_NUM_5709)
1137 				sc->bce_flags |= BCE_ONE_SHOT_MSI_FLAG;
1138 			rid = 1;
1139 		}
1140 	}
1141 
1142 	/* Try allocating a legacy interrupt. */
1143 	if (count == 0) {
1144 		DBPRINT(sc, BCE_INFO_LOAD, "%s(): Using INTx interrupt.\n",
1145 			__FUNCTION__);
1146 		rid = 0;
1147 	}
1148 
1149 	sc->bce_res_irq = bus_alloc_resource_any(dev, SYS_RES_IRQ,
1150 	    &rid, RF_ACTIVE | (count != 0 ? 0 : RF_SHAREABLE));
1151 
1152 	/* Report any IRQ allocation errors. */
1153 	if (sc->bce_res_irq == NULL) {
1154 		BCE_PRINTF("%s(%d): PCI map interrupt failed!\n",
1155 		    __FILE__, __LINE__);
1156 		rc = ENXIO;
1157 		goto bce_attach_fail;
1158 	}
1159 
1160 	/* Initialize mutex for the current device instance. */
1161 	BCE_LOCK_INIT(sc, device_get_nameunit(dev));
1162 
1163 	/*
1164 	 * Configure byte swap and enable indirect register access.
1165 	 * Rely on CPU to do target byte swapping on big endian systems.
1166 	 * Access to registers outside of PCI configurtion space are not
1167 	 * valid until this is done.
1168 	 */
1169 	pci_write_config(dev, BCE_PCICFG_MISC_CONFIG,
1170 	    BCE_PCICFG_MISC_CONFIG_REG_WINDOW_ENA |
1171 	    BCE_PCICFG_MISC_CONFIG_TARGET_MB_WORD_SWAP, 4);
1172 
1173 	/* Save ASIC revsion info. */
1174 	sc->bce_chipid =  REG_RD(sc, BCE_MISC_ID);
1175 
1176 	/* Weed out any non-production controller revisions. */
1177 	switch(BCE_CHIP_ID(sc)) {
1178 	case BCE_CHIP_ID_5706_A0:
1179 	case BCE_CHIP_ID_5706_A1:
1180 	case BCE_CHIP_ID_5708_A0:
1181 	case BCE_CHIP_ID_5708_B0:
1182 	case BCE_CHIP_ID_5709_A0:
1183 	case BCE_CHIP_ID_5709_B0:
1184 	case BCE_CHIP_ID_5709_B1:
1185 	case BCE_CHIP_ID_5709_B2:
1186 		BCE_PRINTF("%s(%d): Unsupported controller "
1187 		    "revision (%c%d)!\n", __FILE__, __LINE__,
1188 		    (((pci_read_config(dev, PCIR_REVID, 4) &
1189 		    0xf0) >> 4) + 'A'), (pci_read_config(dev,
1190 		    PCIR_REVID, 4) & 0xf));
1191 		rc = ENODEV;
1192 		goto bce_attach_fail;
1193 	}
1194 
1195 	/*
1196 	 * The embedded PCIe to PCI-X bridge (EPB)
1197 	 * in the 5708 cannot address memory above
1198 	 * 40 bits (E7_5708CB1_23043 & E6_5708SB1_23043).
1199 	 */
1200 	if (BCE_CHIP_NUM(sc) == BCE_CHIP_NUM_5708)
1201 		sc->max_bus_addr = BCE_BUS_SPACE_MAXADDR;
1202 	else
1203 		sc->max_bus_addr = BUS_SPACE_MAXADDR;
1204 
1205 	/*
1206 	 * Find the base address for shared memory access.
1207 	 * Newer versions of bootcode use a signature and offset
1208 	 * while older versions use a fixed address.
1209 	 */
1210 	val = REG_RD_IND(sc, BCE_SHM_HDR_SIGNATURE);
1211 	if ((val & BCE_SHM_HDR_SIGNATURE_SIG_MASK) == BCE_SHM_HDR_SIGNATURE_SIG)
1212 		/* Multi-port devices use different offsets in shared memory. */
1213 		sc->bce_shmem_base = REG_RD_IND(sc, BCE_SHM_HDR_ADDR_0 +
1214 		    (pci_get_function(sc->bce_dev) << 2));
1215 	else
1216 		sc->bce_shmem_base = HOST_VIEW_SHMEM_BASE;
1217 
1218 	DBPRINT(sc, BCE_VERBOSE_FIRMWARE, "%s(): bce_shmem_base = 0x%08X\n",
1219 	    __FUNCTION__, sc->bce_shmem_base);
1220 
1221 	/* Fetch the bootcode revision. */
1222 	val = bce_shmem_rd(sc, BCE_DEV_INFO_BC_REV);
1223 	for (int i = 0, j = 0; i < 3; i++) {
1224 		u8 num;
1225 
1226 		num = (u8) (val >> (24 - (i * 8)));
1227 		for (int k = 100, skip0 = 1; k >= 1; num %= k, k /= 10) {
1228 			if (num >= k || !skip0 || k == 1) {
1229 				sc->bce_bc_ver[j++] = (num / k) + '0';
1230 				skip0 = 0;
1231 			}
1232 		}
1233 
1234 		if (i != 2)
1235 			sc->bce_bc_ver[j++] = '.';
1236 	}
1237 
1238 	/* Check if any management firwmare is enabled. */
1239 	val = bce_shmem_rd(sc, BCE_PORT_FEATURE);
1240 	if (val & BCE_PORT_FEATURE_ASF_ENABLED) {
1241 		sc->bce_flags |= BCE_MFW_ENABLE_FLAG;
1242 
1243 		/* Allow time for firmware to enter the running state. */
1244 		for (int i = 0; i < 30; i++) {
1245 			val = bce_shmem_rd(sc, BCE_BC_STATE_CONDITION);
1246 			if (val & BCE_CONDITION_MFW_RUN_MASK)
1247 				break;
1248 			DELAY(10000);
1249 		}
1250 
1251 		/* Check if management firmware is running. */
1252 		val = bce_shmem_rd(sc, BCE_BC_STATE_CONDITION);
1253 		val &= BCE_CONDITION_MFW_RUN_MASK;
1254 		if ((val != BCE_CONDITION_MFW_RUN_UNKNOWN) &&
1255 		    (val != BCE_CONDITION_MFW_RUN_NONE)) {
1256 			u32 addr = bce_shmem_rd(sc, BCE_MFW_VER_PTR);
1257 			int i = 0;
1258 
1259 			/* Read the management firmware version string. */
1260 			for (int j = 0; j < 3; j++) {
1261 				val = bce_reg_rd_ind(sc, addr + j * 4);
1262 				val = bswap32(val);
1263 				memcpy(&sc->bce_mfw_ver[i], &val, 4);
1264 				i += 4;
1265 			}
1266 		} else {
1267 			/* May cause firmware synchronization timeouts. */
1268 			BCE_PRINTF("%s(%d): Management firmware enabled "
1269 			    "but not running!\n", __FILE__, __LINE__);
1270 			strcpy(sc->bce_mfw_ver, "NOT RUNNING!");
1271 
1272 			/* ToDo: Any action the driver should take? */
1273 		}
1274 	}
1275 
1276 	/* Get PCI bus information (speed and type). */
1277 	val = REG_RD(sc, BCE_PCICFG_MISC_STATUS);
1278 	if (val & BCE_PCICFG_MISC_STATUS_PCIX_DET) {
1279 		u32 clkreg;
1280 
1281 		sc->bce_flags |= BCE_PCIX_FLAG;
1282 
1283 		clkreg = REG_RD(sc, BCE_PCICFG_PCI_CLOCK_CONTROL_BITS);
1284 
1285 		clkreg &= BCE_PCICFG_PCI_CLOCK_CONTROL_BITS_PCI_CLK_SPD_DET;
1286 		switch (clkreg) {
1287 		case BCE_PCICFG_PCI_CLOCK_CONTROL_BITS_PCI_CLK_SPD_DET_133MHZ:
1288 			sc->bus_speed_mhz = 133;
1289 			break;
1290 
1291 		case BCE_PCICFG_PCI_CLOCK_CONTROL_BITS_PCI_CLK_SPD_DET_95MHZ:
1292 			sc->bus_speed_mhz = 100;
1293 			break;
1294 
1295 		case BCE_PCICFG_PCI_CLOCK_CONTROL_BITS_PCI_CLK_SPD_DET_66MHZ:
1296 		case BCE_PCICFG_PCI_CLOCK_CONTROL_BITS_PCI_CLK_SPD_DET_80MHZ:
1297 			sc->bus_speed_mhz = 66;
1298 			break;
1299 
1300 		case BCE_PCICFG_PCI_CLOCK_CONTROL_BITS_PCI_CLK_SPD_DET_48MHZ:
1301 		case BCE_PCICFG_PCI_CLOCK_CONTROL_BITS_PCI_CLK_SPD_DET_55MHZ:
1302 			sc->bus_speed_mhz = 50;
1303 			break;
1304 
1305 		case BCE_PCICFG_PCI_CLOCK_CONTROL_BITS_PCI_CLK_SPD_DET_LOW:
1306 		case BCE_PCICFG_PCI_CLOCK_CONTROL_BITS_PCI_CLK_SPD_DET_32MHZ:
1307 		case BCE_PCICFG_PCI_CLOCK_CONTROL_BITS_PCI_CLK_SPD_DET_38MHZ:
1308 			sc->bus_speed_mhz = 33;
1309 			break;
1310 		}
1311 	} else {
1312 		if (val & BCE_PCICFG_MISC_STATUS_M66EN)
1313 			sc->bus_speed_mhz = 66;
1314 		else
1315 			sc->bus_speed_mhz = 33;
1316 	}
1317 
1318 	if (val & BCE_PCICFG_MISC_STATUS_32BIT_DET)
1319 		sc->bce_flags |= BCE_PCI_32BIT_FLAG;
1320 
1321 	/* Find the media type for the adapter. */
1322 	bce_get_media(sc);
1323 
1324 	/* Reset controller and announce to bootcode that driver is present. */
1325 	if (bce_reset(sc, BCE_DRV_MSG_CODE_RESET)) {
1326 		BCE_PRINTF("%s(%d): Controller reset failed!\n",
1327 		    __FILE__, __LINE__);
1328 		rc = ENXIO;
1329 		goto bce_attach_fail;
1330 	}
1331 
1332 	/* Initialize the controller. */
1333 	if (bce_chipinit(sc)) {
1334 		BCE_PRINTF("%s(%d): Controller initialization failed!\n",
1335 		    __FILE__, __LINE__);
1336 		rc = ENXIO;
1337 		goto bce_attach_fail;
1338 	}
1339 
1340 	/* Perform NVRAM test. */
1341 	if (bce_nvram_test(sc)) {
1342 		BCE_PRINTF("%s(%d): NVRAM test failed!\n",
1343 		    __FILE__, __LINE__);
1344 		rc = ENXIO;
1345 		goto bce_attach_fail;
1346 	}
1347 
1348 	/* Fetch the permanent Ethernet MAC address. */
1349 	bce_get_mac_addr(sc);
1350 
1351 	/* Update statistics once every second. */
1352 	sc->bce_stats_ticks = 1000000 & 0xffff00;
1353 
1354 	/* Store data needed by PHY driver for backplane applications */
1355 	sc->bce_shared_hw_cfg = bce_shmem_rd(sc, BCE_SHARED_HW_CFG_CONFIG);
1356 	sc->bce_port_hw_cfg   = bce_shmem_rd(sc, BCE_PORT_HW_CFG_CONFIG);
1357 
1358 	/* Allocate DMA memory resources. */
1359 	if (bce_dma_alloc(dev)) {
1360 		BCE_PRINTF("%s(%d): DMA resource allocation failed!\n",
1361 		    __FILE__, __LINE__);
1362 		rc = ENXIO;
1363 		goto bce_attach_fail;
1364 	}
1365 
1366 	/* Allocate an ifnet structure. */
1367 	ifp = sc->bce_ifp = if_alloc(IFT_ETHER);
1368 	if (ifp == NULL) {
1369 		BCE_PRINTF("%s(%d): Interface allocation failed!\n",
1370 		    __FILE__, __LINE__);
1371 		rc = ENXIO;
1372 		goto bce_attach_fail;
1373 	}
1374 
1375 	/* Initialize the ifnet interface. */
1376 	ifp->if_softc	= sc;
1377 	if_initname(ifp, device_get_name(dev), device_get_unit(dev));
1378 	ifp->if_flags	= IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
1379 	ifp->if_ioctl	= bce_ioctl;
1380 	ifp->if_start	= bce_start;
1381 	ifp->if_get_counter = bce_get_counter;
1382 	ifp->if_init	= bce_init;
1383 	ifp->if_mtu	= ETHERMTU;
1384 
1385 	if (bce_tso_enable) {
1386 		ifp->if_hwassist = BCE_IF_HWASSIST | CSUM_TSO;
1387 		ifp->if_capabilities = BCE_IF_CAPABILITIES | IFCAP_TSO4 |
1388 		    IFCAP_VLAN_HWTSO;
1389 	} else {
1390 		ifp->if_hwassist = BCE_IF_HWASSIST;
1391 		ifp->if_capabilities = BCE_IF_CAPABILITIES;
1392 	}
1393 
1394 	if ((sc->bce_phy_flags & BCE_PHY_REMOTE_CAP_FLAG) != 0)
1395 		ifp->if_capabilities |= IFCAP_LINKSTATE;
1396 
1397 	ifp->if_capenable = ifp->if_capabilities;
1398 
1399 	/*
1400 	 * Assume standard mbuf sizes for buffer allocation.
1401 	 * This may change later if the MTU size is set to
1402 	 * something other than 1500.
1403 	 */
1404 	bce_get_rx_buffer_sizes(sc,
1405 	    (ETHER_MAX_LEN - ETHER_HDR_LEN - ETHER_CRC_LEN));
1406 
1407 	/* Recalculate our buffer allocation sizes. */
1408 	ifp->if_snd.ifq_drv_maxlen = USABLE_TX_BD_ALLOC;
1409 	IFQ_SET_MAXLEN(&ifp->if_snd, ifp->if_snd.ifq_drv_maxlen);
1410 	IFQ_SET_READY(&ifp->if_snd);
1411 
1412 	if (sc->bce_phy_flags & BCE_PHY_2_5G_CAPABLE_FLAG)
1413 		ifp->if_baudrate = IF_Mbps(2500ULL);
1414 	else
1415 		ifp->if_baudrate = IF_Mbps(1000);
1416 
1417 	/* Handle any special PHY initialization for SerDes PHYs. */
1418 	bce_init_media(sc);
1419 
1420 	if ((sc->bce_phy_flags & BCE_PHY_REMOTE_CAP_FLAG) != 0) {
1421 		ifmedia_init(&sc->bce_ifmedia, IFM_IMASK, bce_ifmedia_upd,
1422 		    bce_ifmedia_sts);
1423 		/*
1424 		 * We can't manually override remote PHY's link and assume
1425 		 * PHY port configuration(Fiber or TP) is not changed after
1426 		 * device attach.  This may not be correct though.
1427 		 */
1428 		if ((sc->bce_phy_flags & BCE_PHY_REMOTE_PORT_FIBER_FLAG) != 0) {
1429 			if (sc->bce_phy_flags & BCE_PHY_2_5G_CAPABLE_FLAG) {
1430 				ifmedia_add(&sc->bce_ifmedia,
1431 				    IFM_ETHER | IFM_2500_SX, 0, NULL);
1432 				ifmedia_add(&sc->bce_ifmedia,
1433 				    IFM_ETHER | IFM_2500_SX | IFM_FDX, 0, NULL);
1434 			}
1435 			ifmedia_add(&sc->bce_ifmedia,
1436 			    IFM_ETHER | IFM_1000_SX, 0, NULL);
1437 			ifmedia_add(&sc->bce_ifmedia,
1438 			    IFM_ETHER | IFM_1000_SX | IFM_FDX, 0, NULL);
1439 		} else {
1440 			ifmedia_add(&sc->bce_ifmedia,
1441 			    IFM_ETHER | IFM_10_T, 0, NULL);
1442 			ifmedia_add(&sc->bce_ifmedia,
1443 			    IFM_ETHER | IFM_10_T | IFM_FDX, 0, NULL);
1444 			ifmedia_add(&sc->bce_ifmedia,
1445 			    IFM_ETHER | IFM_100_TX, 0, NULL);
1446 			ifmedia_add(&sc->bce_ifmedia,
1447 			    IFM_ETHER | IFM_100_TX | IFM_FDX, 0, NULL);
1448 			ifmedia_add(&sc->bce_ifmedia,
1449 			    IFM_ETHER | IFM_1000_T, 0, NULL);
1450 			ifmedia_add(&sc->bce_ifmedia,
1451 			    IFM_ETHER | IFM_1000_T | IFM_FDX, 0, NULL);
1452 		}
1453 		ifmedia_add(&sc->bce_ifmedia, IFM_ETHER | IFM_AUTO, 0, NULL);
1454 		ifmedia_set(&sc->bce_ifmedia, IFM_ETHER | IFM_AUTO);
1455 		sc->bce_ifmedia.ifm_media = sc->bce_ifmedia.ifm_cur->ifm_media;
1456 	} else {
1457 		/* MII child bus by attaching the PHY. */
1458 		rc = mii_attach(dev, &sc->bce_miibus, ifp, bce_ifmedia_upd,
1459 		    bce_ifmedia_sts, BMSR_DEFCAPMASK, sc->bce_phy_addr,
1460 		    MII_OFFSET_ANY, MIIF_DOPAUSE);
1461 		if (rc != 0) {
1462 			BCE_PRINTF("%s(%d): attaching PHYs failed\n", __FILE__,
1463 			    __LINE__);
1464 			goto bce_attach_fail;
1465 		}
1466 	}
1467 
1468 	/* Attach to the Ethernet interface list. */
1469 	ether_ifattach(ifp, sc->eaddr);
1470 
1471 	callout_init_mtx(&sc->bce_tick_callout, &sc->bce_mtx, 0);
1472 	callout_init_mtx(&sc->bce_pulse_callout, &sc->bce_mtx, 0);
1473 
1474 	/* Hookup IRQ last. */
1475 	rc = bus_setup_intr(dev, sc->bce_res_irq, INTR_TYPE_NET | INTR_MPSAFE,
1476 		NULL, bce_intr, sc, &sc->bce_intrhand);
1477 
1478 	if (rc) {
1479 		BCE_PRINTF("%s(%d): Failed to setup IRQ!\n",
1480 		    __FILE__, __LINE__);
1481 		bce_detach(dev);
1482 		goto bce_attach_exit;
1483 	}
1484 
1485 	/*
1486 	 * At this point we've acquired all the resources
1487 	 * we need to run so there's no turning back, we're
1488 	 * cleared for launch.
1489 	 */
1490 
1491 	/* Print some important debugging info. */
1492 	DBRUNMSG(BCE_INFO, bce_dump_driver_state(sc));
1493 
1494 	/* Add the supported sysctls to the kernel. */
1495 	bce_add_sysctls(sc);
1496 
1497 	BCE_LOCK(sc);
1498 
1499 	/*
1500 	 * The chip reset earlier notified the bootcode that
1501 	 * a driver is present.  We now need to start our pulse
1502 	 * routine so that the bootcode is reminded that we're
1503 	 * still running.
1504 	 */
1505 	bce_pulse(sc);
1506 
1507 	bce_mgmt_init_locked(sc);
1508 	BCE_UNLOCK(sc);
1509 
1510 	/* Finally, print some useful adapter info */
1511 	bce_print_adapter_info(sc);
1512 	DBPRINT(sc, BCE_FATAL, "%s(): sc = %p\n",
1513 		__FUNCTION__, sc);
1514 
1515 	goto bce_attach_exit;
1516 
1517 bce_attach_fail:
1518 	bce_release_resources(sc);
1519 
1520 bce_attach_exit:
1521 
1522 	DBEXIT(BCE_VERBOSE_LOAD | BCE_VERBOSE_RESET);
1523 
1524 	return(rc);
1525 }
1526 
1527 /****************************************************************************/
1528 /* Device detach function.                                                  */
1529 /*                                                                          */
1530 /* Stops the controller, resets the controller, and releases resources.     */
1531 /*                                                                          */
1532 /* Returns:                                                                 */
1533 /*   0 on success, positive value on failure.                               */
1534 /****************************************************************************/
1535 static int
1536 bce_detach(device_t dev)
1537 {
1538 	struct bce_softc *sc = device_get_softc(dev);
1539 	struct ifnet *ifp;
1540 	u32 msg;
1541 
1542 	DBENTER(BCE_VERBOSE_UNLOAD | BCE_VERBOSE_RESET);
1543 
1544 	ifp = sc->bce_ifp;
1545 
1546 	/* Stop and reset the controller. */
1547 	BCE_LOCK(sc);
1548 
1549 	/* Stop the pulse so the bootcode can go to driver absent state. */
1550 	callout_stop(&sc->bce_pulse_callout);
1551 
1552 	bce_stop(sc);
1553 	if (sc->bce_flags & BCE_NO_WOL_FLAG)
1554 		msg = BCE_DRV_MSG_CODE_UNLOAD_LNK_DN;
1555 	else
1556 		msg = BCE_DRV_MSG_CODE_UNLOAD;
1557 	bce_reset(sc, msg);
1558 
1559 	BCE_UNLOCK(sc);
1560 
1561 	ether_ifdetach(ifp);
1562 
1563 	/* If we have a child device on the MII bus remove it too. */
1564 	if ((sc->bce_phy_flags & BCE_PHY_REMOTE_CAP_FLAG) != 0)
1565 		ifmedia_removeall(&sc->bce_ifmedia);
1566 	else {
1567 		bus_generic_detach(dev);
1568 		device_delete_child(dev, sc->bce_miibus);
1569 	}
1570 
1571 	/* Release all remaining resources. */
1572 	bce_release_resources(sc);
1573 
1574 	DBEXIT(BCE_VERBOSE_UNLOAD | BCE_VERBOSE_RESET);
1575 
1576 	return(0);
1577 }
1578 
1579 /****************************************************************************/
1580 /* Device shutdown function.                                                */
1581 /*                                                                          */
1582 /* Stops and resets the controller.                                         */
1583 /*                                                                          */
1584 /* Returns:                                                                 */
1585 /*   0 on success, positive value on failure.                               */
1586 /****************************************************************************/
1587 static int
1588 bce_shutdown(device_t dev)
1589 {
1590 	struct bce_softc *sc = device_get_softc(dev);
1591 	u32 msg;
1592 
1593 	DBENTER(BCE_VERBOSE);
1594 
1595 	BCE_LOCK(sc);
1596 	bce_stop(sc);
1597 	if (sc->bce_flags & BCE_NO_WOL_FLAG)
1598 		msg = BCE_DRV_MSG_CODE_UNLOAD_LNK_DN;
1599 	else
1600 		msg = BCE_DRV_MSG_CODE_UNLOAD;
1601 	bce_reset(sc, msg);
1602 	BCE_UNLOCK(sc);
1603 
1604 	DBEXIT(BCE_VERBOSE);
1605 
1606 	return (0);
1607 }
1608 
1609 #ifdef BCE_DEBUG
1610 /****************************************************************************/
1611 /* Register read.                                                           */
1612 /*                                                                          */
1613 /* Returns:                                                                 */
1614 /*   The value of the register.                                             */
1615 /****************************************************************************/
1616 static u32
1617 bce_reg_rd(struct bce_softc *sc, u32 offset)
1618 {
1619 	u32 val = REG_RD(sc, offset);
1620 	DBPRINT(sc, BCE_INSANE_REG, "%s(); offset = 0x%08X, val = 0x%08X\n",
1621 		__FUNCTION__, offset, val);
1622 	return val;
1623 }
1624 
1625 /****************************************************************************/
1626 /* Register write (16 bit).                                                 */
1627 /*                                                                          */
1628 /* Returns:                                                                 */
1629 /*   Nothing.                                                               */
1630 /****************************************************************************/
1631 static void
1632 bce_reg_wr16(struct bce_softc *sc, u32 offset, u16 val)
1633 {
1634 	DBPRINT(sc, BCE_INSANE_REG, "%s(); offset = 0x%08X, val = 0x%04X\n",
1635 		__FUNCTION__, offset, val);
1636 	REG_WR16(sc, offset, val);
1637 }
1638 
1639 /****************************************************************************/
1640 /* Register write.                                                          */
1641 /*                                                                          */
1642 /* Returns:                                                                 */
1643 /*   Nothing.                                                               */
1644 /****************************************************************************/
1645 static void
1646 bce_reg_wr(struct bce_softc *sc, u32 offset, u32 val)
1647 {
1648 	DBPRINT(sc, BCE_INSANE_REG, "%s(); offset = 0x%08X, val = 0x%08X\n",
1649 		__FUNCTION__, offset, val);
1650 	REG_WR(sc, offset, val);
1651 }
1652 #endif
1653 
1654 /****************************************************************************/
1655 /* Indirect register read.                                                  */
1656 /*                                                                          */
1657 /* Reads NetXtreme II registers using an index/data register pair in PCI    */
1658 /* configuration space.  Using this mechanism avoids issues with posted     */
1659 /* reads but is much slower than memory-mapped I/O.                         */
1660 /*                                                                          */
1661 /* Returns:                                                                 */
1662 /*   The value of the register.                                             */
1663 /****************************************************************************/
1664 static u32
1665 bce_reg_rd_ind(struct bce_softc *sc, u32 offset)
1666 {
1667 	device_t dev;
1668 	dev = sc->bce_dev;
1669 
1670 	pci_write_config(dev, BCE_PCICFG_REG_WINDOW_ADDRESS, offset, 4);
1671 #ifdef BCE_DEBUG
1672 	{
1673 		u32 val;
1674 		val = pci_read_config(dev, BCE_PCICFG_REG_WINDOW, 4);
1675 		DBPRINT(sc, BCE_INSANE_REG, "%s(); offset = 0x%08X, val = 0x%08X\n",
1676 			__FUNCTION__, offset, val);
1677 		return val;
1678 	}
1679 #else
1680 	return pci_read_config(dev, BCE_PCICFG_REG_WINDOW, 4);
1681 #endif
1682 }
1683 
1684 /****************************************************************************/
1685 /* Indirect register write.                                                 */
1686 /*                                                                          */
1687 /* Writes NetXtreme II registers using an index/data register pair in PCI   */
1688 /* configuration space.  Using this mechanism avoids issues with posted     */
1689 /* writes but is muchh slower than memory-mapped I/O.                       */
1690 /*                                                                          */
1691 /* Returns:                                                                 */
1692 /*   Nothing.                                                               */
1693 /****************************************************************************/
1694 static void
1695 bce_reg_wr_ind(struct bce_softc *sc, u32 offset, u32 val)
1696 {
1697 	device_t dev;
1698 	dev = sc->bce_dev;
1699 
1700 	DBPRINT(sc, BCE_INSANE_REG, "%s(); offset = 0x%08X, val = 0x%08X\n",
1701 		__FUNCTION__, offset, val);
1702 
1703 	pci_write_config(dev, BCE_PCICFG_REG_WINDOW_ADDRESS, offset, 4);
1704 	pci_write_config(dev, BCE_PCICFG_REG_WINDOW, val, 4);
1705 }
1706 
1707 /****************************************************************************/
1708 /* Shared memory write.                                                     */
1709 /*                                                                          */
1710 /* Writes NetXtreme II shared memory region.                                */
1711 /*                                                                          */
1712 /* Returns:                                                                 */
1713 /*   Nothing.                                                               */
1714 /****************************************************************************/
1715 static void
1716 bce_shmem_wr(struct bce_softc *sc, u32 offset, u32 val)
1717 {
1718 	DBPRINT(sc, BCE_VERBOSE_FIRMWARE, "%s(): Writing 0x%08X  to  "
1719 	    "0x%08X\n",	__FUNCTION__, val, offset);
1720 
1721 	bce_reg_wr_ind(sc, sc->bce_shmem_base + offset, val);
1722 }
1723 
1724 /****************************************************************************/
1725 /* Shared memory read.                                                      */
1726 /*                                                                          */
1727 /* Reads NetXtreme II shared memory region.                                 */
1728 /*                                                                          */
1729 /* Returns:                                                                 */
1730 /*   The 32 bit value read.                                                 */
1731 /****************************************************************************/
1732 static u32
1733 bce_shmem_rd(struct bce_softc *sc, u32 offset)
1734 {
1735 	u32 val = bce_reg_rd_ind(sc, sc->bce_shmem_base + offset);
1736 
1737 	DBPRINT(sc, BCE_VERBOSE_FIRMWARE, "%s(): Reading 0x%08X from "
1738 	    "0x%08X\n",	__FUNCTION__, val, offset);
1739 
1740 	return val;
1741 }
1742 
1743 #ifdef BCE_DEBUG
1744 /****************************************************************************/
1745 /* Context memory read.                                                     */
1746 /*                                                                          */
1747 /* The NetXtreme II controller uses context memory to track connection      */
1748 /* information for L2 and higher network protocols.                         */
1749 /*                                                                          */
1750 /* Returns:                                                                 */
1751 /*   The requested 32 bit value of context memory.                          */
1752 /****************************************************************************/
1753 static u32
1754 bce_ctx_rd(struct bce_softc *sc, u32 cid_addr, u32 ctx_offset)
1755 {
1756 	u32 idx, offset, retry_cnt = 5, val;
1757 
1758 	DBRUNIF((cid_addr > MAX_CID_ADDR || ctx_offset & 0x3 ||
1759 	    cid_addr & CTX_MASK), BCE_PRINTF("%s(): Invalid CID "
1760 	    "address: 0x%08X.\n", __FUNCTION__, cid_addr));
1761 
1762 	offset = ctx_offset + cid_addr;
1763 
1764 	if (BCE_CHIP_NUM(sc) == BCE_CHIP_NUM_5709) {
1765 		REG_WR(sc, BCE_CTX_CTX_CTRL, (offset | BCE_CTX_CTX_CTRL_READ_REQ));
1766 
1767 		for (idx = 0; idx < retry_cnt; idx++) {
1768 			val = REG_RD(sc, BCE_CTX_CTX_CTRL);
1769 			if ((val & BCE_CTX_CTX_CTRL_READ_REQ) == 0)
1770 				break;
1771 			DELAY(5);
1772 		}
1773 
1774 		if (val & BCE_CTX_CTX_CTRL_READ_REQ)
1775 			BCE_PRINTF("%s(%d); Unable to read CTX memory: "
1776 			    "cid_addr = 0x%08X, offset = 0x%08X!\n",
1777 			    __FILE__, __LINE__, cid_addr, ctx_offset);
1778 
1779 		val = REG_RD(sc, BCE_CTX_CTX_DATA);
1780 	} else {
1781 		REG_WR(sc, BCE_CTX_DATA_ADR, offset);
1782 		val = REG_RD(sc, BCE_CTX_DATA);
1783 	}
1784 
1785 	DBPRINT(sc, BCE_EXTREME_CTX, "%s(); cid_addr = 0x%08X, offset = 0x%08X, "
1786 		"val = 0x%08X\n", __FUNCTION__, cid_addr, ctx_offset, val);
1787 
1788 	return(val);
1789 }
1790 #endif
1791 
1792 /****************************************************************************/
1793 /* Context memory write.                                                    */
1794 /*                                                                          */
1795 /* The NetXtreme II controller uses context memory to track connection      */
1796 /* information for L2 and higher network protocols.                         */
1797 /*                                                                          */
1798 /* Returns:                                                                 */
1799 /*   Nothing.                                                               */
1800 /****************************************************************************/
1801 static void
1802 bce_ctx_wr(struct bce_softc *sc, u32 cid_addr, u32 ctx_offset, u32 ctx_val)
1803 {
1804 	u32 idx, offset = ctx_offset + cid_addr;
1805 	u32 val, retry_cnt = 5;
1806 
1807 	DBPRINT(sc, BCE_EXTREME_CTX, "%s(); cid_addr = 0x%08X, offset = 0x%08X, "
1808 		"val = 0x%08X\n", __FUNCTION__, cid_addr, ctx_offset, ctx_val);
1809 
1810 	DBRUNIF((cid_addr > MAX_CID_ADDR || ctx_offset & 0x3 || cid_addr & CTX_MASK),
1811 		BCE_PRINTF("%s(): Invalid CID address: 0x%08X.\n",
1812 		    __FUNCTION__, cid_addr));
1813 
1814 	if (BCE_CHIP_NUM(sc) == BCE_CHIP_NUM_5709) {
1815 		REG_WR(sc, BCE_CTX_CTX_DATA, ctx_val);
1816 		REG_WR(sc, BCE_CTX_CTX_CTRL, (offset | BCE_CTX_CTX_CTRL_WRITE_REQ));
1817 
1818 		for (idx = 0; idx < retry_cnt; idx++) {
1819 			val = REG_RD(sc, BCE_CTX_CTX_CTRL);
1820 			if ((val & BCE_CTX_CTX_CTRL_WRITE_REQ) == 0)
1821 				break;
1822 			DELAY(5);
1823 		}
1824 
1825 		if (val & BCE_CTX_CTX_CTRL_WRITE_REQ)
1826 			BCE_PRINTF("%s(%d); Unable to write CTX memory: "
1827 			    "cid_addr = 0x%08X, offset = 0x%08X!\n",
1828 			    __FILE__, __LINE__, cid_addr, ctx_offset);
1829 
1830 	} else {
1831 		REG_WR(sc, BCE_CTX_DATA_ADR, offset);
1832 		REG_WR(sc, BCE_CTX_DATA, ctx_val);
1833 	}
1834 }
1835 
1836 /****************************************************************************/
1837 /* PHY register read.                                                       */
1838 /*                                                                          */
1839 /* Implements register reads on the MII bus.                                */
1840 /*                                                                          */
1841 /* Returns:                                                                 */
1842 /*   The value of the register.                                             */
1843 /****************************************************************************/
1844 static int
1845 bce_miibus_read_reg(device_t dev, int phy, int reg)
1846 {
1847 	struct bce_softc *sc;
1848 	u32 val;
1849 	int i;
1850 
1851 	sc = device_get_softc(dev);
1852 
1853     /*
1854      * The 5709S PHY is an IEEE Clause 45 PHY
1855      * with special mappings to work with IEEE
1856      * Clause 22 register accesses.
1857      */
1858 	if ((sc->bce_phy_flags & BCE_PHY_IEEE_CLAUSE_45_FLAG) != 0) {
1859 		if (reg >= MII_BMCR && reg <= MII_ANLPRNP)
1860 			reg += 0x10;
1861 	}
1862 
1863     if (sc->bce_phy_flags & BCE_PHY_INT_MODE_AUTO_POLLING_FLAG) {
1864 		val = REG_RD(sc, BCE_EMAC_MDIO_MODE);
1865 		val &= ~BCE_EMAC_MDIO_MODE_AUTO_POLL;
1866 
1867 		REG_WR(sc, BCE_EMAC_MDIO_MODE, val);
1868 		REG_RD(sc, BCE_EMAC_MDIO_MODE);
1869 
1870 		DELAY(40);
1871 	}
1872 
1873 	val = BCE_MIPHY(phy) | BCE_MIREG(reg) |
1874 	    BCE_EMAC_MDIO_COMM_COMMAND_READ | BCE_EMAC_MDIO_COMM_DISEXT |
1875 	    BCE_EMAC_MDIO_COMM_START_BUSY;
1876 	REG_WR(sc, BCE_EMAC_MDIO_COMM, val);
1877 
1878 	for (i = 0; i < BCE_PHY_TIMEOUT; i++) {
1879 		DELAY(10);
1880 
1881 		val = REG_RD(sc, BCE_EMAC_MDIO_COMM);
1882 		if (!(val & BCE_EMAC_MDIO_COMM_START_BUSY)) {
1883 			DELAY(5);
1884 
1885 			val = REG_RD(sc, BCE_EMAC_MDIO_COMM);
1886 			val &= BCE_EMAC_MDIO_COMM_DATA;
1887 
1888 			break;
1889 		}
1890 	}
1891 
1892 	if (val & BCE_EMAC_MDIO_COMM_START_BUSY) {
1893 		BCE_PRINTF("%s(%d): Error: PHY read timeout! phy = %d, "
1894 		    "reg = 0x%04X\n", __FILE__, __LINE__, phy, reg);
1895 		val = 0x0;
1896 	} else {
1897 		val = REG_RD(sc, BCE_EMAC_MDIO_COMM);
1898 	}
1899 
1900 	if (sc->bce_phy_flags & BCE_PHY_INT_MODE_AUTO_POLLING_FLAG) {
1901 		val = REG_RD(sc, BCE_EMAC_MDIO_MODE);
1902 		val |= BCE_EMAC_MDIO_MODE_AUTO_POLL;
1903 
1904 		REG_WR(sc, BCE_EMAC_MDIO_MODE, val);
1905 		REG_RD(sc, BCE_EMAC_MDIO_MODE);
1906 
1907 		DELAY(40);
1908 	}
1909 
1910 	DB_PRINT_PHY_REG(reg, val);
1911 	return (val & 0xffff);
1912 }
1913 
1914 /****************************************************************************/
1915 /* PHY register write.                                                      */
1916 /*                                                                          */
1917 /* Implements register writes on the MII bus.                               */
1918 /*                                                                          */
1919 /* Returns:                                                                 */
1920 /*   The value of the register.                                             */
1921 /****************************************************************************/
1922 static int
1923 bce_miibus_write_reg(device_t dev, int phy, int reg, int val)
1924 {
1925 	struct bce_softc *sc;
1926 	u32 val1;
1927 	int i;
1928 
1929 	sc = device_get_softc(dev);
1930 
1931 	DB_PRINT_PHY_REG(reg, val);
1932 
1933 	/*
1934 	 * The 5709S PHY is an IEEE Clause 45 PHY
1935 	 * with special mappings to work with IEEE
1936 	 * Clause 22 register accesses.
1937 	 */
1938 	if ((sc->bce_phy_flags & BCE_PHY_IEEE_CLAUSE_45_FLAG) != 0) {
1939 		if (reg >= MII_BMCR && reg <= MII_ANLPRNP)
1940 			reg += 0x10;
1941 	}
1942 
1943 	if (sc->bce_phy_flags & BCE_PHY_INT_MODE_AUTO_POLLING_FLAG) {
1944 		val1 = REG_RD(sc, BCE_EMAC_MDIO_MODE);
1945 		val1 &= ~BCE_EMAC_MDIO_MODE_AUTO_POLL;
1946 
1947 		REG_WR(sc, BCE_EMAC_MDIO_MODE, val1);
1948 		REG_RD(sc, BCE_EMAC_MDIO_MODE);
1949 
1950 		DELAY(40);
1951 	}
1952 
1953 	val1 = BCE_MIPHY(phy) | BCE_MIREG(reg) | val |
1954 	    BCE_EMAC_MDIO_COMM_COMMAND_WRITE |
1955 	    BCE_EMAC_MDIO_COMM_START_BUSY | BCE_EMAC_MDIO_COMM_DISEXT;
1956 	REG_WR(sc, BCE_EMAC_MDIO_COMM, val1);
1957 
1958 	for (i = 0; i < BCE_PHY_TIMEOUT; i++) {
1959 		DELAY(10);
1960 
1961 		val1 = REG_RD(sc, BCE_EMAC_MDIO_COMM);
1962 		if (!(val1 & BCE_EMAC_MDIO_COMM_START_BUSY)) {
1963 			DELAY(5);
1964 			break;
1965 		}
1966 	}
1967 
1968 	if (val1 & BCE_EMAC_MDIO_COMM_START_BUSY)
1969 		BCE_PRINTF("%s(%d): PHY write timeout!\n",
1970 		    __FILE__, __LINE__);
1971 
1972 	if (sc->bce_phy_flags & BCE_PHY_INT_MODE_AUTO_POLLING_FLAG) {
1973 		val1 = REG_RD(sc, BCE_EMAC_MDIO_MODE);
1974 		val1 |= BCE_EMAC_MDIO_MODE_AUTO_POLL;
1975 
1976 		REG_WR(sc, BCE_EMAC_MDIO_MODE, val1);
1977 		REG_RD(sc, BCE_EMAC_MDIO_MODE);
1978 
1979 		DELAY(40);
1980 	}
1981 
1982 	return 0;
1983 }
1984 
1985 /****************************************************************************/
1986 /* MII bus status change.                                                   */
1987 /*                                                                          */
1988 /* Called by the MII bus driver when the PHY establishes link to set the    */
1989 /* MAC interface registers.                                                 */
1990 /*                                                                          */
1991 /* Returns:                                                                 */
1992 /*   Nothing.                                                               */
1993 /****************************************************************************/
1994 static void
1995 bce_miibus_statchg(device_t dev)
1996 {
1997 	struct bce_softc *sc;
1998 	struct mii_data *mii;
1999 	struct ifmediareq ifmr;
2000 	int media_active, media_status, val;
2001 
2002 	sc = device_get_softc(dev);
2003 
2004 	DBENTER(BCE_VERBOSE_PHY);
2005 
2006 	if ((sc->bce_phy_flags & BCE_PHY_REMOTE_CAP_FLAG) != 0) {
2007 		bzero(&ifmr, sizeof(ifmr));
2008 		bce_ifmedia_sts_rphy(sc, &ifmr);
2009 		media_active = ifmr.ifm_active;
2010 		media_status = ifmr.ifm_status;
2011 	} else {
2012 		mii = device_get_softc(sc->bce_miibus);
2013 		media_active = mii->mii_media_active;
2014 		media_status = mii->mii_media_status;
2015 	}
2016 
2017 	/* Ignore invalid media status. */
2018 	if ((media_status & (IFM_ACTIVE | IFM_AVALID)) !=
2019 	    (IFM_ACTIVE | IFM_AVALID))
2020 		goto bce_miibus_statchg_exit;
2021 
2022 	val = REG_RD(sc, BCE_EMAC_MODE);
2023 	val &= ~(BCE_EMAC_MODE_PORT | BCE_EMAC_MODE_HALF_DUPLEX |
2024 	    BCE_EMAC_MODE_MAC_LOOP | BCE_EMAC_MODE_FORCE_LINK |
2025 	    BCE_EMAC_MODE_25G);
2026 
2027 	/* Set MII or GMII interface based on the PHY speed. */
2028 	switch (IFM_SUBTYPE(media_active)) {
2029 	case IFM_10_T:
2030 		if (BCE_CHIP_NUM(sc) != BCE_CHIP_NUM_5706) {
2031 			DBPRINT(sc, BCE_INFO_PHY,
2032 			    "Enabling 10Mb interface.\n");
2033 			val |= BCE_EMAC_MODE_PORT_MII_10;
2034 			break;
2035 		}
2036 		/* fall-through */
2037 	case IFM_100_TX:
2038 		DBPRINT(sc, BCE_INFO_PHY, "Enabling MII interface.\n");
2039 		val |= BCE_EMAC_MODE_PORT_MII;
2040 		break;
2041 	case IFM_2500_SX:
2042 		DBPRINT(sc, BCE_INFO_PHY, "Enabling 2.5G MAC mode.\n");
2043 		val |= BCE_EMAC_MODE_25G;
2044 		/* fall-through */
2045 	case IFM_1000_T:
2046 	case IFM_1000_SX:
2047 		DBPRINT(sc, BCE_INFO_PHY, "Enabling GMII interface.\n");
2048 		val |= BCE_EMAC_MODE_PORT_GMII;
2049 		break;
2050 	default:
2051 		DBPRINT(sc, BCE_INFO_PHY, "Unknown link speed, enabling "
2052 		    "default GMII interface.\n");
2053 		val |= BCE_EMAC_MODE_PORT_GMII;
2054 	}
2055 
2056 	/* Set half or full duplex based on PHY settings. */
2057 	if ((IFM_OPTIONS(media_active) & IFM_FDX) == 0) {
2058 		DBPRINT(sc, BCE_INFO_PHY,
2059 		    "Setting Half-Duplex interface.\n");
2060 		val |= BCE_EMAC_MODE_HALF_DUPLEX;
2061 	} else
2062 		DBPRINT(sc, BCE_INFO_PHY,
2063 		    "Setting Full-Duplex interface.\n");
2064 
2065 	REG_WR(sc, BCE_EMAC_MODE, val);
2066 
2067 	if ((IFM_OPTIONS(media_active) & IFM_ETH_RXPAUSE) != 0) {
2068 		DBPRINT(sc, BCE_INFO_PHY,
2069 		    "%s(): Enabling RX flow control.\n", __FUNCTION__);
2070 		BCE_SETBIT(sc, BCE_EMAC_RX_MODE, BCE_EMAC_RX_MODE_FLOW_EN);
2071 		sc->bce_flags |= BCE_USING_RX_FLOW_CONTROL;
2072 	} else {
2073 		DBPRINT(sc, BCE_INFO_PHY,
2074 		    "%s(): Disabling RX flow control.\n", __FUNCTION__);
2075 		BCE_CLRBIT(sc, BCE_EMAC_RX_MODE, BCE_EMAC_RX_MODE_FLOW_EN);
2076 		sc->bce_flags &= ~BCE_USING_RX_FLOW_CONTROL;
2077 	}
2078 
2079 	if ((IFM_OPTIONS(media_active) & IFM_ETH_TXPAUSE) != 0) {
2080 		DBPRINT(sc, BCE_INFO_PHY,
2081 		    "%s(): Enabling TX flow control.\n", __FUNCTION__);
2082 		BCE_SETBIT(sc, BCE_EMAC_TX_MODE, BCE_EMAC_TX_MODE_FLOW_EN);
2083 		sc->bce_flags |= BCE_USING_TX_FLOW_CONTROL;
2084 	} else {
2085 		DBPRINT(sc, BCE_INFO_PHY,
2086 		    "%s(): Disabling TX flow control.\n", __FUNCTION__);
2087 		BCE_CLRBIT(sc, BCE_EMAC_TX_MODE, BCE_EMAC_TX_MODE_FLOW_EN);
2088 		sc->bce_flags &= ~BCE_USING_TX_FLOW_CONTROL;
2089 	}
2090 
2091 	/* ToDo: Update watermarks in bce_init_rx_context(). */
2092 
2093 bce_miibus_statchg_exit:
2094 	DBEXIT(BCE_VERBOSE_PHY);
2095 }
2096 
2097 /****************************************************************************/
2098 /* Acquire NVRAM lock.                                                      */
2099 /*                                                                          */
2100 /* Before the NVRAM can be accessed the caller must acquire an NVRAM lock.  */
2101 /* Locks 0 and 2 are reserved, lock 1 is used by firmware and lock 2 is     */
2102 /* for use by the driver.                                                   */
2103 /*                                                                          */
2104 /* Returns:                                                                 */
2105 /*   0 on success, positive value on failure.                               */
2106 /****************************************************************************/
2107 static int
2108 bce_acquire_nvram_lock(struct bce_softc *sc)
2109 {
2110 	u32 val;
2111 	int j, rc = 0;
2112 
2113 	DBENTER(BCE_VERBOSE_NVRAM);
2114 
2115 	/* Request access to the flash interface. */
2116 	REG_WR(sc, BCE_NVM_SW_ARB, BCE_NVM_SW_ARB_ARB_REQ_SET2);
2117 	for (j = 0; j < NVRAM_TIMEOUT_COUNT; j++) {
2118 		val = REG_RD(sc, BCE_NVM_SW_ARB);
2119 		if (val & BCE_NVM_SW_ARB_ARB_ARB2)
2120 			break;
2121 
2122 		DELAY(5);
2123 	}
2124 
2125 	if (j >= NVRAM_TIMEOUT_COUNT) {
2126 		DBPRINT(sc, BCE_WARN, "Timeout acquiring NVRAM lock!\n");
2127 		rc = EBUSY;
2128 	}
2129 
2130 	DBEXIT(BCE_VERBOSE_NVRAM);
2131 	return (rc);
2132 }
2133 
2134 /****************************************************************************/
2135 /* Release NVRAM lock.                                                      */
2136 /*                                                                          */
2137 /* When the caller is finished accessing NVRAM the lock must be released.   */
2138 /* Locks 0 and 2 are reserved, lock 1 is used by firmware and lock 2 is     */
2139 /* for use by the driver.                                                   */
2140 /*                                                                          */
2141 /* Returns:                                                                 */
2142 /*   0 on success, positive value on failure.                               */
2143 /****************************************************************************/
2144 static int
2145 bce_release_nvram_lock(struct bce_softc *sc)
2146 {
2147 	u32 val;
2148 	int j, rc = 0;
2149 
2150 	DBENTER(BCE_VERBOSE_NVRAM);
2151 
2152 	/*
2153 	 * Relinquish nvram interface.
2154 	 */
2155 	REG_WR(sc, BCE_NVM_SW_ARB, BCE_NVM_SW_ARB_ARB_REQ_CLR2);
2156 
2157 	for (j = 0; j < NVRAM_TIMEOUT_COUNT; j++) {
2158 		val = REG_RD(sc, BCE_NVM_SW_ARB);
2159 		if (!(val & BCE_NVM_SW_ARB_ARB_ARB2))
2160 			break;
2161 
2162 		DELAY(5);
2163 	}
2164 
2165 	if (j >= NVRAM_TIMEOUT_COUNT) {
2166 		DBPRINT(sc, BCE_WARN, "Timeout releasing NVRAM lock!\n");
2167 		rc = EBUSY;
2168 	}
2169 
2170 	DBEXIT(BCE_VERBOSE_NVRAM);
2171 	return (rc);
2172 }
2173 
2174 #ifdef BCE_NVRAM_WRITE_SUPPORT
2175 /****************************************************************************/
2176 /* Enable NVRAM write access.                                               */
2177 /*                                                                          */
2178 /* Before writing to NVRAM the caller must enable NVRAM writes.             */
2179 /*                                                                          */
2180 /* Returns:                                                                 */
2181 /*   0 on success, positive value on failure.                               */
2182 /****************************************************************************/
2183 static int
2184 bce_enable_nvram_write(struct bce_softc *sc)
2185 {
2186 	u32 val;
2187 	int rc = 0;
2188 
2189 	DBENTER(BCE_VERBOSE_NVRAM);
2190 
2191 	val = REG_RD(sc, BCE_MISC_CFG);
2192 	REG_WR(sc, BCE_MISC_CFG, val | BCE_MISC_CFG_NVM_WR_EN_PCI);
2193 
2194 	if (!(sc->bce_flash_info->flags & BCE_NV_BUFFERED)) {
2195 		int j;
2196 
2197 		REG_WR(sc, BCE_NVM_COMMAND, BCE_NVM_COMMAND_DONE);
2198 		REG_WR(sc, BCE_NVM_COMMAND,	BCE_NVM_COMMAND_WREN | BCE_NVM_COMMAND_DOIT);
2199 
2200 		for (j = 0; j < NVRAM_TIMEOUT_COUNT; j++) {
2201 			DELAY(5);
2202 
2203 			val = REG_RD(sc, BCE_NVM_COMMAND);
2204 			if (val & BCE_NVM_COMMAND_DONE)
2205 				break;
2206 		}
2207 
2208 		if (j >= NVRAM_TIMEOUT_COUNT) {
2209 			DBPRINT(sc, BCE_WARN, "Timeout writing NVRAM!\n");
2210 			rc = EBUSY;
2211 		}
2212 	}
2213 
2214 	DBENTER(BCE_VERBOSE_NVRAM);
2215 	return (rc);
2216 }
2217 
2218 /****************************************************************************/
2219 /* Disable NVRAM write access.                                              */
2220 /*                                                                          */
2221 /* When the caller is finished writing to NVRAM write access must be        */
2222 /* disabled.                                                                */
2223 /*                                                                          */
2224 /* Returns:                                                                 */
2225 /*   Nothing.                                                               */
2226 /****************************************************************************/
2227 static void
2228 bce_disable_nvram_write(struct bce_softc *sc)
2229 {
2230 	u32 val;
2231 
2232 	DBENTER(BCE_VERBOSE_NVRAM);
2233 
2234 	val = REG_RD(sc, BCE_MISC_CFG);
2235 	REG_WR(sc, BCE_MISC_CFG, val & ~BCE_MISC_CFG_NVM_WR_EN);
2236 
2237 	DBEXIT(BCE_VERBOSE_NVRAM);
2238 
2239 }
2240 #endif
2241 
2242 /****************************************************************************/
2243 /* Enable NVRAM access.                                                     */
2244 /*                                                                          */
2245 /* Before accessing NVRAM for read or write operations the caller must      */
2246 /* enabled NVRAM access.                                                    */
2247 /*                                                                          */
2248 /* Returns:                                                                 */
2249 /*   Nothing.                                                               */
2250 /****************************************************************************/
2251 static void
2252 bce_enable_nvram_access(struct bce_softc *sc)
2253 {
2254 	u32 val;
2255 
2256 	DBENTER(BCE_VERBOSE_NVRAM);
2257 
2258 	val = REG_RD(sc, BCE_NVM_ACCESS_ENABLE);
2259 	/* Enable both bits, even on read. */
2260 	REG_WR(sc, BCE_NVM_ACCESS_ENABLE, val |
2261 	    BCE_NVM_ACCESS_ENABLE_EN | BCE_NVM_ACCESS_ENABLE_WR_EN);
2262 
2263 	DBEXIT(BCE_VERBOSE_NVRAM);
2264 }
2265 
2266 /****************************************************************************/
2267 /* Disable NVRAM access.                                                    */
2268 /*                                                                          */
2269 /* When the caller is finished accessing NVRAM access must be disabled.     */
2270 /*                                                                          */
2271 /* Returns:                                                                 */
2272 /*   Nothing.                                                               */
2273 /****************************************************************************/
2274 static void
2275 bce_disable_nvram_access(struct bce_softc *sc)
2276 {
2277 	u32 val;
2278 
2279 	DBENTER(BCE_VERBOSE_NVRAM);
2280 
2281 	val = REG_RD(sc, BCE_NVM_ACCESS_ENABLE);
2282 
2283 	/* Disable both bits, even after read. */
2284 	REG_WR(sc, BCE_NVM_ACCESS_ENABLE, val &
2285 	    ~(BCE_NVM_ACCESS_ENABLE_EN | BCE_NVM_ACCESS_ENABLE_WR_EN));
2286 
2287 	DBEXIT(BCE_VERBOSE_NVRAM);
2288 }
2289 
2290 #ifdef BCE_NVRAM_WRITE_SUPPORT
2291 /****************************************************************************/
2292 /* Erase NVRAM page before writing.                                         */
2293 /*                                                                          */
2294 /* Non-buffered flash parts require that a page be erased before it is      */
2295 /* written.                                                                 */
2296 /*                                                                          */
2297 /* Returns:                                                                 */
2298 /*   0 on success, positive value on failure.                               */
2299 /****************************************************************************/
2300 static int
2301 bce_nvram_erase_page(struct bce_softc *sc, u32 offset)
2302 {
2303 	u32 cmd;
2304 	int j, rc = 0;
2305 
2306 	DBENTER(BCE_VERBOSE_NVRAM);
2307 
2308 	/* Buffered flash doesn't require an erase. */
2309 	if (sc->bce_flash_info->flags & BCE_NV_BUFFERED)
2310 		goto bce_nvram_erase_page_exit;
2311 
2312 	/* Build an erase command. */
2313 	cmd = BCE_NVM_COMMAND_ERASE | BCE_NVM_COMMAND_WR |
2314 	    BCE_NVM_COMMAND_DOIT;
2315 
2316 	/*
2317 	 * Clear the DONE bit separately, set the NVRAM address to erase,
2318 	 * and issue the erase command.
2319 	 */
2320 	REG_WR(sc, BCE_NVM_COMMAND, BCE_NVM_COMMAND_DONE);
2321 	REG_WR(sc, BCE_NVM_ADDR, offset & BCE_NVM_ADDR_NVM_ADDR_VALUE);
2322 	REG_WR(sc, BCE_NVM_COMMAND, cmd);
2323 
2324 	/* Wait for completion. */
2325 	for (j = 0; j < NVRAM_TIMEOUT_COUNT; j++) {
2326 		u32 val;
2327 
2328 		DELAY(5);
2329 
2330 		val = REG_RD(sc, BCE_NVM_COMMAND);
2331 		if (val & BCE_NVM_COMMAND_DONE)
2332 			break;
2333 	}
2334 
2335 	if (j >= NVRAM_TIMEOUT_COUNT) {
2336 		DBPRINT(sc, BCE_WARN, "Timeout erasing NVRAM.\n");
2337 		rc = EBUSY;
2338 	}
2339 
2340 bce_nvram_erase_page_exit:
2341 	DBEXIT(BCE_VERBOSE_NVRAM);
2342 	return (rc);
2343 }
2344 #endif /* BCE_NVRAM_WRITE_SUPPORT */
2345 
2346 /****************************************************************************/
2347 /* Read a dword (32 bits) from NVRAM.                                       */
2348 /*                                                                          */
2349 /* Read a 32 bit word from NVRAM.  The caller is assumed to have already    */
2350 /* obtained the NVRAM lock and enabled the controller for NVRAM access.     */
2351 /*                                                                          */
2352 /* Returns:                                                                 */
2353 /*   0 on success and the 32 bit value read, positive value on failure.     */
2354 /****************************************************************************/
2355 static int
2356 bce_nvram_read_dword(struct bce_softc *sc,
2357     u32 offset, u8 *ret_val, u32 cmd_flags)
2358 {
2359 	u32 cmd;
2360 	int i, rc = 0;
2361 
2362 	DBENTER(BCE_EXTREME_NVRAM);
2363 
2364 	/* Build the command word. */
2365 	cmd = BCE_NVM_COMMAND_DOIT | cmd_flags;
2366 
2367 	/* Calculate the offset for buffered flash if translation is used. */
2368 	if (sc->bce_flash_info->flags & BCE_NV_TRANSLATE) {
2369 		offset = ((offset / sc->bce_flash_info->page_size) <<
2370 		    sc->bce_flash_info->page_bits) +
2371 		    (offset % sc->bce_flash_info->page_size);
2372 	}
2373 
2374 	/*
2375 	 * Clear the DONE bit separately, set the address to read,
2376 	 * and issue the read.
2377 	 */
2378 	REG_WR(sc, BCE_NVM_COMMAND, BCE_NVM_COMMAND_DONE);
2379 	REG_WR(sc, BCE_NVM_ADDR, offset & BCE_NVM_ADDR_NVM_ADDR_VALUE);
2380 	REG_WR(sc, BCE_NVM_COMMAND, cmd);
2381 
2382 	/* Wait for completion. */
2383 	for (i = 0; i < NVRAM_TIMEOUT_COUNT; i++) {
2384 		u32 val;
2385 
2386 		DELAY(5);
2387 
2388 		val = REG_RD(sc, BCE_NVM_COMMAND);
2389 		if (val & BCE_NVM_COMMAND_DONE) {
2390 			val = REG_RD(sc, BCE_NVM_READ);
2391 
2392 			val = bce_be32toh(val);
2393 			memcpy(ret_val, &val, 4);
2394 			break;
2395 		}
2396 	}
2397 
2398 	/* Check for errors. */
2399 	if (i >= NVRAM_TIMEOUT_COUNT) {
2400 		BCE_PRINTF("%s(%d): Timeout error reading NVRAM at "
2401 		    "offset 0x%08X!\n",	__FILE__, __LINE__, offset);
2402 		rc = EBUSY;
2403 	}
2404 
2405 	DBEXIT(BCE_EXTREME_NVRAM);
2406 	return(rc);
2407 }
2408 
2409 #ifdef BCE_NVRAM_WRITE_SUPPORT
2410 /****************************************************************************/
2411 /* Write a dword (32 bits) to NVRAM.                                        */
2412 /*                                                                          */
2413 /* Write a 32 bit word to NVRAM.  The caller is assumed to have already     */
2414 /* obtained the NVRAM lock, enabled the controller for NVRAM access, and    */
2415 /* enabled NVRAM write access.                                              */
2416 /*                                                                          */
2417 /* Returns:                                                                 */
2418 /*   0 on success, positive value on failure.                               */
2419 /****************************************************************************/
2420 static int
2421 bce_nvram_write_dword(struct bce_softc *sc, u32 offset, u8 *val,
2422 	u32 cmd_flags)
2423 {
2424 	u32 cmd, val32;
2425 	int j, rc = 0;
2426 
2427 	DBENTER(BCE_VERBOSE_NVRAM);
2428 
2429 	/* Build the command word. */
2430 	cmd = BCE_NVM_COMMAND_DOIT | BCE_NVM_COMMAND_WR | cmd_flags;
2431 
2432 	/* Calculate the offset for buffered flash if translation is used. */
2433 	if (sc->bce_flash_info->flags & BCE_NV_TRANSLATE) {
2434 		offset = ((offset / sc->bce_flash_info->page_size) <<
2435 		    sc->bce_flash_info->page_bits) +
2436 		    (offset % sc->bce_flash_info->page_size);
2437 	}
2438 
2439 	/*
2440 	 * Clear the DONE bit separately, convert NVRAM data to big-endian,
2441 	 * set the NVRAM address to write, and issue the write command
2442 	 */
2443 	REG_WR(sc, BCE_NVM_COMMAND, BCE_NVM_COMMAND_DONE);
2444 	memcpy(&val32, val, 4);
2445 	val32 = htobe32(val32);
2446 	REG_WR(sc, BCE_NVM_WRITE, val32);
2447 	REG_WR(sc, BCE_NVM_ADDR, offset & BCE_NVM_ADDR_NVM_ADDR_VALUE);
2448 	REG_WR(sc, BCE_NVM_COMMAND, cmd);
2449 
2450 	/* Wait for completion. */
2451 	for (j = 0; j < NVRAM_TIMEOUT_COUNT; j++) {
2452 		DELAY(5);
2453 
2454 		if (REG_RD(sc, BCE_NVM_COMMAND) & BCE_NVM_COMMAND_DONE)
2455 			break;
2456 	}
2457 	if (j >= NVRAM_TIMEOUT_COUNT) {
2458 		BCE_PRINTF("%s(%d): Timeout error writing NVRAM at "
2459 		    "offset 0x%08X\n", __FILE__, __LINE__, offset);
2460 		rc = EBUSY;
2461 	}
2462 
2463 	DBEXIT(BCE_VERBOSE_NVRAM);
2464 	return (rc);
2465 }
2466 #endif /* BCE_NVRAM_WRITE_SUPPORT */
2467 
2468 /****************************************************************************/
2469 /* Initialize NVRAM access.                                                 */
2470 /*                                                                          */
2471 /* Identify the NVRAM device in use and prepare the NVRAM interface to      */
2472 /* access that device.                                                      */
2473 /*                                                                          */
2474 /* Returns:                                                                 */
2475 /*   0 on success, positive value on failure.                               */
2476 /****************************************************************************/
2477 static int
2478 bce_init_nvram(struct bce_softc *sc)
2479 {
2480 	u32 val;
2481 	int j, entry_count, rc = 0;
2482 	const struct flash_spec *flash;
2483 
2484 	DBENTER(BCE_VERBOSE_NVRAM);
2485 
2486 	if (BCE_CHIP_NUM(sc) == BCE_CHIP_NUM_5709) {
2487 		sc->bce_flash_info = &flash_5709;
2488 		goto bce_init_nvram_get_flash_size;
2489 	}
2490 
2491 	/* Determine the selected interface. */
2492 	val = REG_RD(sc, BCE_NVM_CFG1);
2493 
2494 	entry_count = sizeof(flash_table) / sizeof(struct flash_spec);
2495 
2496 	/*
2497 	 * Flash reconfiguration is required to support additional
2498 	 * NVRAM devices not directly supported in hardware.
2499 	 * Check if the flash interface was reconfigured
2500 	 * by the bootcode.
2501 	 */
2502 
2503 	if (val & 0x40000000) {
2504 		/* Flash interface reconfigured by bootcode. */
2505 
2506 		DBPRINT(sc,BCE_INFO_LOAD,
2507 			"bce_init_nvram(): Flash WAS reconfigured.\n");
2508 
2509 		for (j = 0, flash = &flash_table[0]; j < entry_count;
2510 		     j++, flash++) {
2511 			if ((val & FLASH_BACKUP_STRAP_MASK) ==
2512 			    (flash->config1 & FLASH_BACKUP_STRAP_MASK)) {
2513 				sc->bce_flash_info = flash;
2514 				break;
2515 			}
2516 		}
2517 	} else {
2518 		/* Flash interface not yet reconfigured. */
2519 		u32 mask;
2520 
2521 		DBPRINT(sc, BCE_INFO_LOAD, "%s(): Flash was NOT reconfigured.\n",
2522 			__FUNCTION__);
2523 
2524 		if (val & (1 << 23))
2525 			mask = FLASH_BACKUP_STRAP_MASK;
2526 		else
2527 			mask = FLASH_STRAP_MASK;
2528 
2529 		/* Look for the matching NVRAM device configuration data. */
2530 		for (j = 0, flash = &flash_table[0]; j < entry_count; j++, flash++) {
2531 			/* Check if the device matches any of the known devices. */
2532 			if ((val & mask) == (flash->strapping & mask)) {
2533 				/* Found a device match. */
2534 				sc->bce_flash_info = flash;
2535 
2536 				/* Request access to the flash interface. */
2537 				if ((rc = bce_acquire_nvram_lock(sc)) != 0)
2538 					return rc;
2539 
2540 				/* Reconfigure the flash interface. */
2541 				bce_enable_nvram_access(sc);
2542 				REG_WR(sc, BCE_NVM_CFG1, flash->config1);
2543 				REG_WR(sc, BCE_NVM_CFG2, flash->config2);
2544 				REG_WR(sc, BCE_NVM_CFG3, flash->config3);
2545 				REG_WR(sc, BCE_NVM_WRITE1, flash->write1);
2546 				bce_disable_nvram_access(sc);
2547 				bce_release_nvram_lock(sc);
2548 
2549 				break;
2550 			}
2551 		}
2552 	}
2553 
2554 	/* Check if a matching device was found. */
2555 	if (j == entry_count) {
2556 		sc->bce_flash_info = NULL;
2557 		BCE_PRINTF("%s(%d): Unknown Flash NVRAM found!\n",
2558 		    __FILE__, __LINE__);
2559 		DBEXIT(BCE_VERBOSE_NVRAM);
2560 		return (ENODEV);
2561 	}
2562 
2563 bce_init_nvram_get_flash_size:
2564 	/* Write the flash config data to the shared memory interface. */
2565 	val = bce_shmem_rd(sc, BCE_SHARED_HW_CFG_CONFIG2);
2566 	val &= BCE_SHARED_HW_CFG2_NVM_SIZE_MASK;
2567 	if (val)
2568 		sc->bce_flash_size = val;
2569 	else
2570 		sc->bce_flash_size = sc->bce_flash_info->total_size;
2571 
2572 	DBPRINT(sc, BCE_INFO_LOAD, "%s(): Found %s, size = 0x%08X\n",
2573 	    __FUNCTION__, sc->bce_flash_info->name,
2574 	    sc->bce_flash_info->total_size);
2575 
2576 	DBEXIT(BCE_VERBOSE_NVRAM);
2577 	return rc;
2578 }
2579 
2580 /****************************************************************************/
2581 /* Read an arbitrary range of data from NVRAM.                              */
2582 /*                                                                          */
2583 /* Prepares the NVRAM interface for access and reads the requested data     */
2584 /* into the supplied buffer.                                                */
2585 /*                                                                          */
2586 /* Returns:                                                                 */
2587 /*   0 on success and the data read, positive value on failure.             */
2588 /****************************************************************************/
2589 static int
2590 bce_nvram_read(struct bce_softc *sc, u32 offset, u8 *ret_buf,
2591 	int buf_size)
2592 {
2593 	int rc = 0;
2594 	u32 cmd_flags, offset32, len32, extra;
2595 
2596 	DBENTER(BCE_VERBOSE_NVRAM);
2597 
2598 	if (buf_size == 0)
2599 		goto bce_nvram_read_exit;
2600 
2601 	/* Request access to the flash interface. */
2602 	if ((rc = bce_acquire_nvram_lock(sc)) != 0)
2603 		goto bce_nvram_read_exit;
2604 
2605 	/* Enable access to flash interface */
2606 	bce_enable_nvram_access(sc);
2607 
2608 	len32 = buf_size;
2609 	offset32 = offset;
2610 	extra = 0;
2611 
2612 	cmd_flags = 0;
2613 
2614 	if (offset32 & 3) {
2615 		u8 buf[4];
2616 		u32 pre_len;
2617 
2618 		offset32 &= ~3;
2619 		pre_len = 4 - (offset & 3);
2620 
2621 		if (pre_len >= len32) {
2622 			pre_len = len32;
2623 			cmd_flags = BCE_NVM_COMMAND_FIRST | BCE_NVM_COMMAND_LAST;
2624 		}
2625 		else {
2626 			cmd_flags = BCE_NVM_COMMAND_FIRST;
2627 		}
2628 
2629 		rc = bce_nvram_read_dword(sc, offset32, buf, cmd_flags);
2630 
2631 		if (rc)
2632 			return rc;
2633 
2634 		memcpy(ret_buf, buf + (offset & 3), pre_len);
2635 
2636 		offset32 += 4;
2637 		ret_buf += pre_len;
2638 		len32 -= pre_len;
2639 	}
2640 
2641 	if (len32 & 3) {
2642 		extra = 4 - (len32 & 3);
2643 		len32 = (len32 + 4) & ~3;
2644 	}
2645 
2646 	if (len32 == 4) {
2647 		u8 buf[4];
2648 
2649 		if (cmd_flags)
2650 			cmd_flags = BCE_NVM_COMMAND_LAST;
2651 		else
2652 			cmd_flags = BCE_NVM_COMMAND_FIRST |
2653 				    BCE_NVM_COMMAND_LAST;
2654 
2655 		rc = bce_nvram_read_dword(sc, offset32, buf, cmd_flags);
2656 
2657 		memcpy(ret_buf, buf, 4 - extra);
2658 	}
2659 	else if (len32 > 0) {
2660 		u8 buf[4];
2661 
2662 		/* Read the first word. */
2663 		if (cmd_flags)
2664 			cmd_flags = 0;
2665 		else
2666 			cmd_flags = BCE_NVM_COMMAND_FIRST;
2667 
2668 		rc = bce_nvram_read_dword(sc, offset32, ret_buf, cmd_flags);
2669 
2670 		/* Advance to the next dword. */
2671 		offset32 += 4;
2672 		ret_buf += 4;
2673 		len32 -= 4;
2674 
2675 		while (len32 > 4 && rc == 0) {
2676 			rc = bce_nvram_read_dword(sc, offset32, ret_buf, 0);
2677 
2678 			/* Advance to the next dword. */
2679 			offset32 += 4;
2680 			ret_buf += 4;
2681 			len32 -= 4;
2682 		}
2683 
2684 		if (rc)
2685 			goto bce_nvram_read_locked_exit;
2686 
2687 		cmd_flags = BCE_NVM_COMMAND_LAST;
2688 		rc = bce_nvram_read_dword(sc, offset32, buf, cmd_flags);
2689 
2690 		memcpy(ret_buf, buf, 4 - extra);
2691 	}
2692 
2693 bce_nvram_read_locked_exit:
2694 	/* Disable access to flash interface and release the lock. */
2695 	bce_disable_nvram_access(sc);
2696 	bce_release_nvram_lock(sc);
2697 
2698 bce_nvram_read_exit:
2699 	DBEXIT(BCE_VERBOSE_NVRAM);
2700 	return rc;
2701 }
2702 
2703 #ifdef BCE_NVRAM_WRITE_SUPPORT
2704 /****************************************************************************/
2705 /* Write an arbitrary range of data from NVRAM.                             */
2706 /*                                                                          */
2707 /* Prepares the NVRAM interface for write access and writes the requested   */
2708 /* data from the supplied buffer.  The caller is responsible for            */
2709 /* calculating any appropriate CRCs.                                        */
2710 /*                                                                          */
2711 /* Returns:                                                                 */
2712 /*   0 on success, positive value on failure.                               */
2713 /****************************************************************************/
2714 static int
2715 bce_nvram_write(struct bce_softc *sc, u32 offset, u8 *data_buf,
2716 	int buf_size)
2717 {
2718 	u32 written, offset32, len32;
2719 	u8 *buf, start[4], end[4];
2720 	int rc = 0;
2721 	int align_start, align_end;
2722 
2723 	DBENTER(BCE_VERBOSE_NVRAM);
2724 
2725 	buf = data_buf;
2726 	offset32 = offset;
2727 	len32 = buf_size;
2728 	align_start = align_end = 0;
2729 
2730 	if ((align_start = (offset32 & 3))) {
2731 		offset32 &= ~3;
2732 		len32 += align_start;
2733 		if ((rc = bce_nvram_read(sc, offset32, start, 4)))
2734 			goto bce_nvram_write_exit;
2735 	}
2736 
2737 	if (len32 & 3) {
2738 	       	if ((len32 > 4) || !align_start) {
2739 			align_end = 4 - (len32 & 3);
2740 			len32 += align_end;
2741 			if ((rc = bce_nvram_read(sc, offset32 + len32 - 4,
2742 				end, 4))) {
2743 				goto bce_nvram_write_exit;
2744 			}
2745 		}
2746 	}
2747 
2748 	if (align_start || align_end) {
2749 		buf = malloc(len32, M_DEVBUF, M_NOWAIT);
2750 		if (buf == NULL) {
2751 			rc = ENOMEM;
2752 			goto bce_nvram_write_exit;
2753 		}
2754 
2755 		if (align_start) {
2756 			memcpy(buf, start, 4);
2757 		}
2758 
2759 		if (align_end) {
2760 			memcpy(buf + len32 - 4, end, 4);
2761 		}
2762 		memcpy(buf + align_start, data_buf, buf_size);
2763 	}
2764 
2765 	written = 0;
2766 	while ((written < len32) && (rc == 0)) {
2767 		u32 page_start, page_end, data_start, data_end;
2768 		u32 addr, cmd_flags;
2769 		int i;
2770 		u8 flash_buffer[264];
2771 
2772 	    /* Find the page_start addr */
2773 		page_start = offset32 + written;
2774 		page_start -= (page_start % sc->bce_flash_info->page_size);
2775 		/* Find the page_end addr */
2776 		page_end = page_start + sc->bce_flash_info->page_size;
2777 		/* Find the data_start addr */
2778 		data_start = (written == 0) ? offset32 : page_start;
2779 		/* Find the data_end addr */
2780 		data_end = (page_end > offset32 + len32) ?
2781 			(offset32 + len32) : page_end;
2782 
2783 		/* Request access to the flash interface. */
2784 		if ((rc = bce_acquire_nvram_lock(sc)) != 0)
2785 			goto bce_nvram_write_exit;
2786 
2787 		/* Enable access to flash interface */
2788 		bce_enable_nvram_access(sc);
2789 
2790 		cmd_flags = BCE_NVM_COMMAND_FIRST;
2791 		if (!(sc->bce_flash_info->flags & BCE_NV_BUFFERED)) {
2792 			int j;
2793 
2794 			/* Read the whole page into the buffer
2795 			 * (non-buffer flash only) */
2796 			for (j = 0; j < sc->bce_flash_info->page_size; j += 4) {
2797 				if (j == (sc->bce_flash_info->page_size - 4)) {
2798 					cmd_flags |= BCE_NVM_COMMAND_LAST;
2799 				}
2800 				rc = bce_nvram_read_dword(sc,
2801 					page_start + j,
2802 					&flash_buffer[j],
2803 					cmd_flags);
2804 
2805 				if (rc)
2806 					goto bce_nvram_write_locked_exit;
2807 
2808 				cmd_flags = 0;
2809 			}
2810 		}
2811 
2812 		/* Enable writes to flash interface (unlock write-protect) */
2813 		if ((rc = bce_enable_nvram_write(sc)) != 0)
2814 			goto bce_nvram_write_locked_exit;
2815 
2816 		/* Erase the page */
2817 		if ((rc = bce_nvram_erase_page(sc, page_start)) != 0)
2818 			goto bce_nvram_write_locked_exit;
2819 
2820 		/* Re-enable the write again for the actual write */
2821 		bce_enable_nvram_write(sc);
2822 
2823 		/* Loop to write back the buffer data from page_start to
2824 		 * data_start */
2825 		i = 0;
2826 		if (!(sc->bce_flash_info->flags & BCE_NV_BUFFERED)) {
2827 			for (addr = page_start; addr < data_start;
2828 				addr += 4, i += 4) {
2829 				rc = bce_nvram_write_dword(sc, addr,
2830 					&flash_buffer[i], cmd_flags);
2831 
2832 				if (rc != 0)
2833 					goto bce_nvram_write_locked_exit;
2834 
2835 				cmd_flags = 0;
2836 			}
2837 		}
2838 
2839 		/* Loop to write the new data from data_start to data_end */
2840 		for (addr = data_start; addr < data_end; addr += 4, i++) {
2841 			if ((addr == page_end - 4) ||
2842 				((sc->bce_flash_info->flags & BCE_NV_BUFFERED) &&
2843 				(addr == data_end - 4))) {
2844 				cmd_flags |= BCE_NVM_COMMAND_LAST;
2845 			}
2846 			rc = bce_nvram_write_dword(sc, addr, buf,
2847 				cmd_flags);
2848 
2849 			if (rc != 0)
2850 				goto bce_nvram_write_locked_exit;
2851 
2852 			cmd_flags = 0;
2853 			buf += 4;
2854 		}
2855 
2856 		/* Loop to write back the buffer data from data_end
2857 		 * to page_end */
2858 		if (!(sc->bce_flash_info->flags & BCE_NV_BUFFERED)) {
2859 			for (addr = data_end; addr < page_end;
2860 				addr += 4, i += 4) {
2861 				if (addr == page_end-4) {
2862 					cmd_flags = BCE_NVM_COMMAND_LAST;
2863                 		}
2864 				rc = bce_nvram_write_dword(sc, addr,
2865 					&flash_buffer[i], cmd_flags);
2866 
2867 				if (rc != 0)
2868 					goto bce_nvram_write_locked_exit;
2869 
2870 				cmd_flags = 0;
2871 			}
2872 		}
2873 
2874 		/* Disable writes to flash interface (lock write-protect) */
2875 		bce_disable_nvram_write(sc);
2876 
2877 		/* Disable access to flash interface */
2878 		bce_disable_nvram_access(sc);
2879 		bce_release_nvram_lock(sc);
2880 
2881 		/* Increment written */
2882 		written += data_end - data_start;
2883 	}
2884 
2885 	goto bce_nvram_write_exit;
2886 
2887 bce_nvram_write_locked_exit:
2888 	bce_disable_nvram_write(sc);
2889 	bce_disable_nvram_access(sc);
2890 	bce_release_nvram_lock(sc);
2891 
2892 bce_nvram_write_exit:
2893 	if (align_start || align_end)
2894 		free(buf, M_DEVBUF);
2895 
2896 	DBEXIT(BCE_VERBOSE_NVRAM);
2897 	return (rc);
2898 }
2899 #endif /* BCE_NVRAM_WRITE_SUPPORT */
2900 
2901 /****************************************************************************/
2902 /* Verifies that NVRAM is accessible and contains valid data.               */
2903 /*                                                                          */
2904 /* Reads the configuration data from NVRAM and verifies that the CRC is     */
2905 /* correct.                                                                 */
2906 /*                                                                          */
2907 /* Returns:                                                                 */
2908 /*   0 on success, positive value on failure.                               */
2909 /****************************************************************************/
2910 static int
2911 bce_nvram_test(struct bce_softc *sc)
2912 {
2913 	u32 buf[BCE_NVRAM_SIZE / 4];
2914 	u8 *data = (u8 *) buf;
2915 	int rc = 0;
2916 	u32 magic, csum;
2917 
2918 	DBENTER(BCE_VERBOSE_NVRAM | BCE_VERBOSE_LOAD | BCE_VERBOSE_RESET);
2919 
2920 	/*
2921 	 * Check that the device NVRAM is valid by reading
2922 	 * the magic value at offset 0.
2923 	 */
2924 	if ((rc = bce_nvram_read(sc, 0, data, 4)) != 0) {
2925 		BCE_PRINTF("%s(%d): Unable to read NVRAM!\n",
2926 		    __FILE__, __LINE__);
2927 		goto bce_nvram_test_exit;
2928 	}
2929 
2930 	/*
2931 	 * Verify that offset 0 of the NVRAM contains
2932 	 * a valid magic number.
2933 	 */
2934 	magic = bce_be32toh(buf[0]);
2935 	if (magic != BCE_NVRAM_MAGIC) {
2936 		rc = ENODEV;
2937 		BCE_PRINTF("%s(%d): Invalid NVRAM magic value! "
2938 		    "Expected: 0x%08X, Found: 0x%08X\n",
2939 		    __FILE__, __LINE__, BCE_NVRAM_MAGIC, magic);
2940 		goto bce_nvram_test_exit;
2941 	}
2942 
2943 	/*
2944 	 * Verify that the device NVRAM includes valid
2945 	 * configuration data.
2946 	 */
2947 	if ((rc = bce_nvram_read(sc, 0x100, data, BCE_NVRAM_SIZE)) != 0) {
2948 		BCE_PRINTF("%s(%d): Unable to read manufacturing "
2949 		    "Information from  NVRAM!\n", __FILE__, __LINE__);
2950 		goto bce_nvram_test_exit;
2951 	}
2952 
2953 	csum = ether_crc32_le(data, 0x100);
2954 	if (csum != BCE_CRC32_RESIDUAL) {
2955 		rc = ENODEV;
2956 		BCE_PRINTF("%s(%d): Invalid manufacturing information "
2957 		    "NVRAM CRC!	Expected: 0x%08X, Found: 0x%08X\n",
2958 		    __FILE__, __LINE__, BCE_CRC32_RESIDUAL, csum);
2959 		goto bce_nvram_test_exit;
2960 	}
2961 
2962 	csum = ether_crc32_le(data + 0x100, 0x100);
2963 	if (csum != BCE_CRC32_RESIDUAL) {
2964 		rc = ENODEV;
2965 		BCE_PRINTF("%s(%d): Invalid feature configuration "
2966 		    "information NVRAM CRC! Expected: 0x%08X, "
2967 		    "Found: 08%08X\n", __FILE__, __LINE__,
2968 		    BCE_CRC32_RESIDUAL, csum);
2969 	}
2970 
2971 bce_nvram_test_exit:
2972 	DBEXIT(BCE_VERBOSE_NVRAM | BCE_VERBOSE_LOAD | BCE_VERBOSE_RESET);
2973 	return rc;
2974 }
2975 
2976 /****************************************************************************/
2977 /* Calculates the size of the buffers to allocate based on the MTU.         */
2978 /*                                                                          */
2979 /* Returns:                                                                 */
2980 /*   Nothing.                                                               */
2981 /****************************************************************************/
2982 static void
2983 bce_get_rx_buffer_sizes(struct bce_softc *sc, int mtu)
2984 {
2985 	DBENTER(BCE_VERBOSE_LOAD);
2986 
2987 	/* Use a single allocation type when header splitting enabled. */
2988 	if (bce_hdr_split == TRUE) {
2989 		sc->rx_bd_mbuf_alloc_size = MHLEN;
2990 		/* Make sure offset is 16 byte aligned for hardware. */
2991 		sc->rx_bd_mbuf_align_pad =
2992 			roundup2(MSIZE - MHLEN, 16) - (MSIZE - MHLEN);
2993 		sc->rx_bd_mbuf_data_len = sc->rx_bd_mbuf_alloc_size -
2994 			sc->rx_bd_mbuf_align_pad;
2995 	} else {
2996 		if ((mtu + ETHER_HDR_LEN + ETHER_VLAN_ENCAP_LEN +
2997 		    ETHER_CRC_LEN) > MCLBYTES) {
2998 			/* Setup for jumbo RX buffer allocations. */
2999 			sc->rx_bd_mbuf_alloc_size = MJUM9BYTES;
3000 			sc->rx_bd_mbuf_align_pad  =
3001 				roundup2(MJUM9BYTES, 16) - MJUM9BYTES;
3002 			sc->rx_bd_mbuf_data_len =
3003 			    sc->rx_bd_mbuf_alloc_size -
3004 			    sc->rx_bd_mbuf_align_pad;
3005 		} else {
3006 			/* Setup for standard RX buffer allocations. */
3007 			sc->rx_bd_mbuf_alloc_size = MCLBYTES;
3008 			sc->rx_bd_mbuf_align_pad  =
3009 			    roundup2(MCLBYTES, 16) - MCLBYTES;
3010 			sc->rx_bd_mbuf_data_len =
3011 			    sc->rx_bd_mbuf_alloc_size -
3012 			    sc->rx_bd_mbuf_align_pad;
3013 		}
3014 	}
3015 
3016 //	DBPRINT(sc, BCE_INFO_LOAD,
3017 	DBPRINT(sc, BCE_WARN,
3018 	   "%s(): rx_bd_mbuf_alloc_size = %d, rx_bd_mbuf_data_len = %d, "
3019 	   "rx_bd_mbuf_align_pad = %d\n", __FUNCTION__,
3020 	   sc->rx_bd_mbuf_alloc_size, sc->rx_bd_mbuf_data_len,
3021 	   sc->rx_bd_mbuf_align_pad);
3022 
3023 	DBEXIT(BCE_VERBOSE_LOAD);
3024 }
3025 
3026 /****************************************************************************/
3027 /* Identifies the current media type of the controller and sets the PHY     */
3028 /* address.                                                                 */
3029 /*                                                                          */
3030 /* Returns:                                                                 */
3031 /*   Nothing.                                                               */
3032 /****************************************************************************/
3033 static void
3034 bce_get_media(struct bce_softc *sc)
3035 {
3036 	u32 val;
3037 
3038 	DBENTER(BCE_VERBOSE_PHY);
3039 
3040 	/* Assume PHY address for copper controllers. */
3041 	sc->bce_phy_addr = 1;
3042 
3043 	if (BCE_CHIP_NUM(sc) == BCE_CHIP_NUM_5709) {
3044  		u32 val = REG_RD(sc, BCE_MISC_DUAL_MEDIA_CTRL);
3045 		u32 bond_id = val & BCE_MISC_DUAL_MEDIA_CTRL_BOND_ID;
3046 		u32 strap;
3047 
3048 		/*
3049 		 * The BCM5709S is software configurable
3050 		 * for Copper or SerDes operation.
3051 		 */
3052 		if (bond_id == BCE_MISC_DUAL_MEDIA_CTRL_BOND_ID_C) {
3053 			DBPRINT(sc, BCE_INFO_LOAD, "5709 bonded "
3054 			    "for copper.\n");
3055 			goto bce_get_media_exit;
3056 		} else if (bond_id == BCE_MISC_DUAL_MEDIA_CTRL_BOND_ID_S) {
3057 			DBPRINT(sc, BCE_INFO_LOAD, "5709 bonded "
3058 			    "for dual media.\n");
3059 			sc->bce_phy_flags |= BCE_PHY_SERDES_FLAG;
3060 			goto bce_get_media_exit;
3061 		}
3062 
3063 		if (val & BCE_MISC_DUAL_MEDIA_CTRL_STRAP_OVERRIDE)
3064 			strap = (val &
3065 			    BCE_MISC_DUAL_MEDIA_CTRL_PHY_CTRL) >> 21;
3066 		else
3067 			strap = (val &
3068 			    BCE_MISC_DUAL_MEDIA_CTRL_PHY_CTRL_STRAP) >> 8;
3069 
3070 		if (pci_get_function(sc->bce_dev) == 0) {
3071 			switch (strap) {
3072 			case 0x4:
3073 			case 0x5:
3074 			case 0x6:
3075 				DBPRINT(sc, BCE_INFO_LOAD,
3076 				    "BCM5709 s/w configured for SerDes.\n");
3077 				sc->bce_phy_flags |= BCE_PHY_SERDES_FLAG;
3078 				break;
3079 			default:
3080 				DBPRINT(sc, BCE_INFO_LOAD,
3081 				    "BCM5709 s/w configured for Copper.\n");
3082 				break;
3083 			}
3084 		} else {
3085 			switch (strap) {
3086 			case 0x1:
3087 			case 0x2:
3088 			case 0x4:
3089 				DBPRINT(sc, BCE_INFO_LOAD,
3090 				    "BCM5709 s/w configured for SerDes.\n");
3091 				sc->bce_phy_flags |= BCE_PHY_SERDES_FLAG;
3092 				break;
3093 			default:
3094 				DBPRINT(sc, BCE_INFO_LOAD,
3095 				    "BCM5709 s/w configured for Copper.\n");
3096 				break;
3097 			}
3098 		}
3099 
3100 	} else if (BCE_CHIP_BOND_ID(sc) & BCE_CHIP_BOND_ID_SERDES_BIT)
3101 		sc->bce_phy_flags |= BCE_PHY_SERDES_FLAG;
3102 
3103 	if (sc->bce_phy_flags & BCE_PHY_SERDES_FLAG) {
3104 		sc->bce_flags |= BCE_NO_WOL_FLAG;
3105 
3106 		if (BCE_CHIP_NUM(sc) == BCE_CHIP_NUM_5709)
3107 			sc->bce_phy_flags |= BCE_PHY_IEEE_CLAUSE_45_FLAG;
3108 
3109 		if (BCE_CHIP_NUM(sc) != BCE_CHIP_NUM_5706) {
3110 			/* 5708S/09S/16S use a separate PHY for SerDes. */
3111 			sc->bce_phy_addr = 2;
3112 
3113 			val = bce_shmem_rd(sc, BCE_SHARED_HW_CFG_CONFIG);
3114 			if (val & BCE_SHARED_HW_CFG_PHY_2_5G) {
3115 				sc->bce_phy_flags |=
3116 				    BCE_PHY_2_5G_CAPABLE_FLAG;
3117 				DBPRINT(sc, BCE_INFO_LOAD, "Found 2.5Gb "
3118 				    "capable adapter\n");
3119 			}
3120 		}
3121 	} else if ((BCE_CHIP_NUM(sc) == BCE_CHIP_NUM_5706) ||
3122 	    (BCE_CHIP_NUM(sc) == BCE_CHIP_NUM_5708))
3123 		sc->bce_phy_flags |= BCE_PHY_CRC_FIX_FLAG;
3124 
3125 bce_get_media_exit:
3126 	DBPRINT(sc, (BCE_INFO_LOAD | BCE_INFO_PHY),
3127 		"Using PHY address %d.\n", sc->bce_phy_addr);
3128 
3129 	DBEXIT(BCE_VERBOSE_PHY);
3130 }
3131 
3132 /****************************************************************************/
3133 /* Performs PHY initialization required before MII drivers access the       */
3134 /* device.                                                                  */
3135 /*                                                                          */
3136 /* Returns:                                                                 */
3137 /*   Nothing.                                                               */
3138 /****************************************************************************/
3139 static void
3140 bce_init_media(struct bce_softc *sc)
3141 {
3142 	if ((sc->bce_phy_flags & (BCE_PHY_IEEE_CLAUSE_45_FLAG |
3143 	    BCE_PHY_REMOTE_CAP_FLAG)) == BCE_PHY_IEEE_CLAUSE_45_FLAG) {
3144 		/*
3145 		 * Configure 5709S/5716S PHYs to use traditional IEEE
3146 		 * Clause 22 method. Otherwise we have no way to attach
3147 		 * the PHY in mii(4) layer. PHY specific configuration
3148 		 * is done in mii layer.
3149 		 */
3150 
3151 		/* Select auto-negotiation MMD of the PHY. */
3152 		bce_miibus_write_reg(sc->bce_dev, sc->bce_phy_addr,
3153 		    BRGPHY_BLOCK_ADDR, BRGPHY_BLOCK_ADDR_ADDR_EXT);
3154 		bce_miibus_write_reg(sc->bce_dev, sc->bce_phy_addr,
3155 		    BRGPHY_ADDR_EXT, BRGPHY_ADDR_EXT_AN_MMD);
3156 
3157 		/* Set IEEE0 block of AN MMD (assumed in brgphy(4) code). */
3158 		bce_miibus_write_reg(sc->bce_dev, sc->bce_phy_addr,
3159 		    BRGPHY_BLOCK_ADDR, BRGPHY_BLOCK_ADDR_COMBO_IEEE0);
3160 	}
3161 }
3162 
3163 /****************************************************************************/
3164 /* Free any DMA memory owned by the driver.                                 */
3165 /*                                                                          */
3166 /* Scans through each data structure that requires DMA memory and frees     */
3167 /* the memory if allocated.                                                 */
3168 /*                                                                          */
3169 /* Returns:                                                                 */
3170 /*   Nothing.                                                               */
3171 /****************************************************************************/
3172 static void
3173 bce_dma_free(struct bce_softc *sc)
3174 {
3175 	int i;
3176 
3177 	DBENTER(BCE_VERBOSE_RESET | BCE_VERBOSE_UNLOAD | BCE_VERBOSE_CTX);
3178 
3179 	/* Free, unmap, and destroy the status block. */
3180 	if (sc->status_block_paddr != 0) {
3181 		bus_dmamap_unload(
3182 		    sc->status_tag,
3183 		    sc->status_map);
3184 		sc->status_block_paddr = 0;
3185 	}
3186 
3187 	if (sc->status_block != NULL) {
3188 		bus_dmamem_free(
3189 		   sc->status_tag,
3190 		    sc->status_block,
3191 		    sc->status_map);
3192 		sc->status_block = NULL;
3193 	}
3194 
3195 	if (sc->status_tag != NULL) {
3196 		bus_dma_tag_destroy(sc->status_tag);
3197 		sc->status_tag = NULL;
3198 	}
3199 
3200 	/* Free, unmap, and destroy the statistics block. */
3201 	if (sc->stats_block_paddr != 0) {
3202 		bus_dmamap_unload(
3203 		    sc->stats_tag,
3204 		    sc->stats_map);
3205 		sc->stats_block_paddr = 0;
3206 	}
3207 
3208 	if (sc->stats_block != NULL) {
3209 		bus_dmamem_free(
3210 		    sc->stats_tag,
3211 		    sc->stats_block,
3212 		    sc->stats_map);
3213 		sc->stats_block = NULL;
3214 	}
3215 
3216 	if (sc->stats_tag != NULL) {
3217 		bus_dma_tag_destroy(sc->stats_tag);
3218 		sc->stats_tag = NULL;
3219 	}
3220 
3221 	/* Free, unmap and destroy all context memory pages. */
3222 	if (BCE_CHIP_NUM(sc) == BCE_CHIP_NUM_5709) {
3223 		for (i = 0; i < sc->ctx_pages; i++ ) {
3224 			if (sc->ctx_paddr[i] != 0) {
3225 				bus_dmamap_unload(
3226 				    sc->ctx_tag,
3227 				    sc->ctx_map[i]);
3228 				sc->ctx_paddr[i] = 0;
3229 			}
3230 
3231 			if (sc->ctx_block[i] != NULL) {
3232 				bus_dmamem_free(
3233 				    sc->ctx_tag,
3234 				    sc->ctx_block[i],
3235 				    sc->ctx_map[i]);
3236 				sc->ctx_block[i] = NULL;
3237 			}
3238 		}
3239 
3240 		/* Destroy the context memory tag. */
3241 		if (sc->ctx_tag != NULL) {
3242 			bus_dma_tag_destroy(sc->ctx_tag);
3243 			sc->ctx_tag = NULL;
3244 		}
3245 	}
3246 
3247 	/* Free, unmap and destroy all TX buffer descriptor chain pages. */
3248 	for (i = 0; i < sc->tx_pages; i++ ) {
3249 		if (sc->tx_bd_chain_paddr[i] != 0) {
3250 			bus_dmamap_unload(
3251 			    sc->tx_bd_chain_tag,
3252 			    sc->tx_bd_chain_map[i]);
3253 			sc->tx_bd_chain_paddr[i] = 0;
3254 		}
3255 
3256 		if (sc->tx_bd_chain[i] != NULL) {
3257 			bus_dmamem_free(
3258 			    sc->tx_bd_chain_tag,
3259 			    sc->tx_bd_chain[i],
3260 			    sc->tx_bd_chain_map[i]);
3261 			sc->tx_bd_chain[i] = NULL;
3262 		}
3263 	}
3264 
3265 	/* Destroy the TX buffer descriptor tag. */
3266 	if (sc->tx_bd_chain_tag != NULL) {
3267 		bus_dma_tag_destroy(sc->tx_bd_chain_tag);
3268 		sc->tx_bd_chain_tag = NULL;
3269 	}
3270 
3271 	/* Free, unmap and destroy all RX buffer descriptor chain pages. */
3272 	for (i = 0; i < sc->rx_pages; i++ ) {
3273 		if (sc->rx_bd_chain_paddr[i] != 0) {
3274 			bus_dmamap_unload(
3275 			    sc->rx_bd_chain_tag,
3276 			    sc->rx_bd_chain_map[i]);
3277 			sc->rx_bd_chain_paddr[i] = 0;
3278 		}
3279 
3280 		if (sc->rx_bd_chain[i] != NULL) {
3281 			bus_dmamem_free(
3282 			    sc->rx_bd_chain_tag,
3283 			    sc->rx_bd_chain[i],
3284 			    sc->rx_bd_chain_map[i]);
3285 			sc->rx_bd_chain[i] = NULL;
3286 		}
3287 	}
3288 
3289 	/* Destroy the RX buffer descriptor tag. */
3290 	if (sc->rx_bd_chain_tag != NULL) {
3291 		bus_dma_tag_destroy(sc->rx_bd_chain_tag);
3292 		sc->rx_bd_chain_tag = NULL;
3293 	}
3294 
3295 	/* Free, unmap and destroy all page buffer descriptor chain pages. */
3296 	if (bce_hdr_split == TRUE) {
3297 		for (i = 0; i < sc->pg_pages; i++ ) {
3298 			if (sc->pg_bd_chain_paddr[i] != 0) {
3299 				bus_dmamap_unload(
3300 				    sc->pg_bd_chain_tag,
3301 				    sc->pg_bd_chain_map[i]);
3302 				sc->pg_bd_chain_paddr[i] = 0;
3303 			}
3304 
3305 			if (sc->pg_bd_chain[i] != NULL) {
3306 				bus_dmamem_free(
3307 				    sc->pg_bd_chain_tag,
3308 				    sc->pg_bd_chain[i],
3309 				    sc->pg_bd_chain_map[i]);
3310 				sc->pg_bd_chain[i] = NULL;
3311 			}
3312 		}
3313 
3314 		/* Destroy the page buffer descriptor tag. */
3315 		if (sc->pg_bd_chain_tag != NULL) {
3316 			bus_dma_tag_destroy(sc->pg_bd_chain_tag);
3317 			sc->pg_bd_chain_tag = NULL;
3318 		}
3319 	}
3320 
3321 	/* Unload and destroy the TX mbuf maps. */
3322 	for (i = 0; i < MAX_TX_BD_AVAIL; i++) {
3323 		if (sc->tx_mbuf_map[i] != NULL) {
3324 			bus_dmamap_unload(sc->tx_mbuf_tag,
3325 			    sc->tx_mbuf_map[i]);
3326 			bus_dmamap_destroy(sc->tx_mbuf_tag,
3327 	 		    sc->tx_mbuf_map[i]);
3328 			sc->tx_mbuf_map[i] = NULL;
3329 		}
3330 	}
3331 
3332 	/* Destroy the TX mbuf tag. */
3333 	if (sc->tx_mbuf_tag != NULL) {
3334 		bus_dma_tag_destroy(sc->tx_mbuf_tag);
3335 		sc->tx_mbuf_tag = NULL;
3336 	}
3337 
3338 	/* Unload and destroy the RX mbuf maps. */
3339 	for (i = 0; i < MAX_RX_BD_AVAIL; i++) {
3340 		if (sc->rx_mbuf_map[i] != NULL) {
3341 			bus_dmamap_unload(sc->rx_mbuf_tag,
3342 			    sc->rx_mbuf_map[i]);
3343 			bus_dmamap_destroy(sc->rx_mbuf_tag,
3344 	 		    sc->rx_mbuf_map[i]);
3345 			sc->rx_mbuf_map[i] = NULL;
3346 		}
3347 	}
3348 
3349 	/* Destroy the RX mbuf tag. */
3350 	if (sc->rx_mbuf_tag != NULL) {
3351 		bus_dma_tag_destroy(sc->rx_mbuf_tag);
3352 		sc->rx_mbuf_tag = NULL;
3353 	}
3354 
3355 	/* Unload and destroy the page mbuf maps. */
3356 	if (bce_hdr_split == TRUE) {
3357 		for (i = 0; i < MAX_PG_BD_AVAIL; i++) {
3358 			if (sc->pg_mbuf_map[i] != NULL) {
3359 				bus_dmamap_unload(sc->pg_mbuf_tag,
3360 				    sc->pg_mbuf_map[i]);
3361 				bus_dmamap_destroy(sc->pg_mbuf_tag,
3362 				    sc->pg_mbuf_map[i]);
3363 				sc->pg_mbuf_map[i] = NULL;
3364 			}
3365 		}
3366 
3367 		/* Destroy the page mbuf tag. */
3368 		if (sc->pg_mbuf_tag != NULL) {
3369 			bus_dma_tag_destroy(sc->pg_mbuf_tag);
3370 			sc->pg_mbuf_tag = NULL;
3371 		}
3372 	}
3373 
3374 	/* Destroy the parent tag */
3375 	if (sc->parent_tag != NULL) {
3376 		bus_dma_tag_destroy(sc->parent_tag);
3377 		sc->parent_tag = NULL;
3378 	}
3379 
3380 	DBEXIT(BCE_VERBOSE_RESET | BCE_VERBOSE_UNLOAD | BCE_VERBOSE_CTX);
3381 }
3382 
3383 /****************************************************************************/
3384 /* Get DMA memory from the OS.                                              */
3385 /*                                                                          */
3386 /* Validates that the OS has provided DMA buffers in response to a          */
3387 /* bus_dmamap_load() call and saves the physical address of those buffers.  */
3388 /* When the callback is used the OS will return 0 for the mapping function  */
3389 /* (bus_dmamap_load()) so we use the value of map_arg->maxsegs to pass any  */
3390 /* failures back to the caller.                                             */
3391 /*                                                                          */
3392 /* Returns:                                                                 */
3393 /*   Nothing.                                                               */
3394 /****************************************************************************/
3395 static void
3396 bce_dma_map_addr(void *arg, bus_dma_segment_t *segs, int nseg, int error)
3397 {
3398 	bus_addr_t *busaddr = arg;
3399 
3400 	KASSERT(nseg == 1, ("%s(): Too many segments returned (%d)!",
3401 	    __FUNCTION__, nseg));
3402 	/* Simulate a mapping failure. */
3403 	DBRUNIF(DB_RANDOMTRUE(dma_map_addr_failed_sim_control),
3404 	    error = ENOMEM);
3405 
3406 	/* ToDo: How to increment debug sim_count variable here? */
3407 
3408 	/* Check for an error and signal the caller that an error occurred. */
3409 	if (error) {
3410 		*busaddr = 0;
3411 	} else {
3412 		*busaddr = segs->ds_addr;
3413 	}
3414 }
3415 
3416 /****************************************************************************/
3417 /* Allocate any DMA memory needed by the driver.                            */
3418 /*                                                                          */
3419 /* Allocates DMA memory needed for the various global structures needed by  */
3420 /* hardware.                                                                */
3421 /*                                                                          */
3422 /* Memory alignment requirements:                                           */
3423 /* +-----------------+----------+----------+----------+----------+          */
3424 /* |                 |   5706   |   5708   |   5709   |   5716   |          */
3425 /* +-----------------+----------+----------+----------+----------+          */
3426 /* |Status Block     | 8 bytes  | 8 bytes  | 16 bytes | 16 bytes |          */
3427 /* |Statistics Block | 8 bytes  | 8 bytes  | 16 bytes | 16 bytes |          */
3428 /* |RX Buffers       | 16 bytes | 16 bytes | 16 bytes | 16 bytes |          */
3429 /* |PG Buffers       |   none   |   none   |   none   |   none   |          */
3430 /* |TX Buffers       |   none   |   none   |   none   |   none   |          */
3431 /* |Chain Pages(1)   |   4KiB   |   4KiB   |   4KiB   |   4KiB   |          */
3432 /* |Context Memory   |          |          |          |          |          */
3433 /* +-----------------+----------+----------+----------+----------+          */
3434 /*                                                                          */
3435 /* (1) Must align with CPU page size (BCM_PAGE_SZIE).                       */
3436 /*                                                                          */
3437 /* Returns:                                                                 */
3438 /*   0 for success, positive value for failure.                             */
3439 /****************************************************************************/
3440 static int
3441 bce_dma_alloc(device_t dev)
3442 {
3443 	struct bce_softc *sc;
3444 	int i, error, rc = 0;
3445 	bus_size_t max_size, max_seg_size;
3446 	int max_segments;
3447 
3448 	sc = device_get_softc(dev);
3449 
3450 	DBENTER(BCE_VERBOSE_RESET | BCE_VERBOSE_CTX);
3451 
3452 	/*
3453 	 * Allocate the parent bus DMA tag appropriate for PCI.
3454 	 */
3455 	if (bus_dma_tag_create(bus_get_dma_tag(dev), 1, BCE_DMA_BOUNDARY,
3456 	    sc->max_bus_addr, BUS_SPACE_MAXADDR, NULL, NULL,
3457 	    BUS_SPACE_MAXSIZE_32BIT, 0, BUS_SPACE_MAXSIZE_32BIT, 0, NULL, NULL,
3458 	    &sc->parent_tag)) {
3459 		BCE_PRINTF("%s(%d): Could not allocate parent DMA tag!\n",
3460 		    __FILE__, __LINE__);
3461 		rc = ENOMEM;
3462 		goto bce_dma_alloc_exit;
3463 	}
3464 
3465 	/*
3466 	 * Create a DMA tag for the status block, allocate and clear the
3467 	 * memory, map the memory into DMA space, and fetch the physical
3468 	 * address of the block.
3469 	 */
3470 	if (bus_dma_tag_create(sc->parent_tag, BCE_DMA_ALIGN,
3471 	    BCE_DMA_BOUNDARY, sc->max_bus_addr,	BUS_SPACE_MAXADDR,
3472 	    NULL, NULL,	BCE_STATUS_BLK_SZ, 1, BCE_STATUS_BLK_SZ,
3473 	    0, NULL, NULL, &sc->status_tag)) {
3474 		BCE_PRINTF("%s(%d): Could not allocate status block "
3475 		    "DMA tag!\n", __FILE__, __LINE__);
3476 		rc = ENOMEM;
3477 		goto bce_dma_alloc_exit;
3478 	}
3479 
3480 	if(bus_dmamem_alloc(sc->status_tag, (void **)&sc->status_block,
3481 	    BUS_DMA_NOWAIT | BUS_DMA_ZERO | BUS_DMA_COHERENT,
3482 	    &sc->status_map)) {
3483 		BCE_PRINTF("%s(%d): Could not allocate status block "
3484 		    "DMA memory!\n", __FILE__, __LINE__);
3485 		rc = ENOMEM;
3486 		goto bce_dma_alloc_exit;
3487 	}
3488 
3489 	error = bus_dmamap_load(sc->status_tag,	sc->status_map,
3490 	    sc->status_block, BCE_STATUS_BLK_SZ, bce_dma_map_addr,
3491 	    &sc->status_block_paddr, BUS_DMA_NOWAIT);
3492 
3493 	if (error || sc->status_block_paddr == 0) {
3494 		BCE_PRINTF("%s(%d): Could not map status block "
3495 		    "DMA memory!\n", __FILE__, __LINE__);
3496 		rc = ENOMEM;
3497 		goto bce_dma_alloc_exit;
3498 	}
3499 
3500 	DBPRINT(sc, BCE_INFO_LOAD, "%s(): status_block_paddr = 0x%jX\n",
3501 	    __FUNCTION__, (uintmax_t) sc->status_block_paddr);
3502 
3503 	/*
3504 	 * Create a DMA tag for the statistics block, allocate and clear the
3505 	 * memory, map the memory into DMA space, and fetch the physical
3506 	 * address of the block.
3507 	 */
3508 	if (bus_dma_tag_create(sc->parent_tag, BCE_DMA_ALIGN,
3509 	    BCE_DMA_BOUNDARY, sc->max_bus_addr,	BUS_SPACE_MAXADDR,
3510 	    NULL, NULL,	BCE_STATS_BLK_SZ, 1, BCE_STATS_BLK_SZ,
3511 	    0, NULL, NULL, &sc->stats_tag)) {
3512 		BCE_PRINTF("%s(%d): Could not allocate statistics block "
3513 		    "DMA tag!\n", __FILE__, __LINE__);
3514 		rc = ENOMEM;
3515 		goto bce_dma_alloc_exit;
3516 	}
3517 
3518 	if (bus_dmamem_alloc(sc->stats_tag, (void **)&sc->stats_block,
3519 	    BUS_DMA_NOWAIT | BUS_DMA_ZERO | BUS_DMA_COHERENT, &sc->stats_map)) {
3520 		BCE_PRINTF("%s(%d): Could not allocate statistics block "
3521 		    "DMA memory!\n", __FILE__, __LINE__);
3522 		rc = ENOMEM;
3523 		goto bce_dma_alloc_exit;
3524 	}
3525 
3526 	error = bus_dmamap_load(sc->stats_tag, sc->stats_map,
3527 	    sc->stats_block, BCE_STATS_BLK_SZ, bce_dma_map_addr,
3528 	    &sc->stats_block_paddr, BUS_DMA_NOWAIT);
3529 
3530 	if (error || sc->stats_block_paddr == 0) {
3531 		BCE_PRINTF("%s(%d): Could not map statistics block "
3532 		    "DMA memory!\n", __FILE__, __LINE__);
3533 		rc = ENOMEM;
3534 		goto bce_dma_alloc_exit;
3535 	}
3536 
3537 	DBPRINT(sc, BCE_INFO_LOAD, "%s(): stats_block_paddr = 0x%jX\n",
3538 	    __FUNCTION__, (uintmax_t) sc->stats_block_paddr);
3539 
3540 	/* BCM5709 uses host memory as cache for context memory. */
3541 	if (BCE_CHIP_NUM(sc) == BCE_CHIP_NUM_5709) {
3542 		sc->ctx_pages = 0x2000 / BCM_PAGE_SIZE;
3543 		if (sc->ctx_pages == 0)
3544 			sc->ctx_pages = 1;
3545 
3546 		DBRUNIF((sc->ctx_pages > 512),
3547 		    BCE_PRINTF("%s(%d): Too many CTX pages! %d > 512\n",
3548 		    __FILE__, __LINE__, sc->ctx_pages));
3549 
3550 		/*
3551 		 * Create a DMA tag for the context pages,
3552 		 * allocate and clear the memory, map the
3553 		 * memory into DMA space, and fetch the
3554 		 * physical address of the block.
3555 		 */
3556 		if(bus_dma_tag_create(sc->parent_tag, BCM_PAGE_SIZE,
3557 		    BCE_DMA_BOUNDARY, sc->max_bus_addr,	BUS_SPACE_MAXADDR,
3558 		    NULL, NULL,	BCM_PAGE_SIZE, 1, BCM_PAGE_SIZE,
3559 		    0, NULL, NULL, &sc->ctx_tag)) {
3560 			BCE_PRINTF("%s(%d): Could not allocate CTX "
3561 			    "DMA tag!\n", __FILE__, __LINE__);
3562 			rc = ENOMEM;
3563 			goto bce_dma_alloc_exit;
3564 		}
3565 
3566 		for (i = 0; i < sc->ctx_pages; i++) {
3567 			if(bus_dmamem_alloc(sc->ctx_tag,
3568 			    (void **)&sc->ctx_block[i],
3569 			    BUS_DMA_NOWAIT | BUS_DMA_ZERO | BUS_DMA_COHERENT,
3570 			    &sc->ctx_map[i])) {
3571 				BCE_PRINTF("%s(%d): Could not allocate CTX "
3572 				    "DMA memory!\n", __FILE__, __LINE__);
3573 				rc = ENOMEM;
3574 				goto bce_dma_alloc_exit;
3575 			}
3576 
3577 			error = bus_dmamap_load(sc->ctx_tag, sc->ctx_map[i],
3578 			    sc->ctx_block[i], BCM_PAGE_SIZE, bce_dma_map_addr,
3579 			    &sc->ctx_paddr[i], BUS_DMA_NOWAIT);
3580 
3581 			if (error || sc->ctx_paddr[i] == 0) {
3582 				BCE_PRINTF("%s(%d): Could not map CTX "
3583 				    "DMA memory!\n", __FILE__, __LINE__);
3584 				rc = ENOMEM;
3585 				goto bce_dma_alloc_exit;
3586 			}
3587 
3588 			DBPRINT(sc, BCE_INFO_LOAD, "%s(): ctx_paddr[%d] "
3589 			    "= 0x%jX\n", __FUNCTION__, i,
3590 			    (uintmax_t) sc->ctx_paddr[i]);
3591 		}
3592 	}
3593 
3594 	/*
3595 	 * Create a DMA tag for the TX buffer descriptor chain,
3596 	 * allocate and clear the  memory, and fetch the
3597 	 * physical address of the block.
3598 	 */
3599 	if(bus_dma_tag_create(sc->parent_tag, BCM_PAGE_SIZE, BCE_DMA_BOUNDARY,
3600 	    sc->max_bus_addr, BUS_SPACE_MAXADDR, NULL, NULL,
3601 	    BCE_TX_CHAIN_PAGE_SZ, 1, BCE_TX_CHAIN_PAGE_SZ, 0,
3602 	    NULL, NULL,	&sc->tx_bd_chain_tag)) {
3603 		BCE_PRINTF("%s(%d): Could not allocate TX descriptor "
3604 		    "chain DMA tag!\n", __FILE__, __LINE__);
3605 		rc = ENOMEM;
3606 		goto bce_dma_alloc_exit;
3607 	}
3608 
3609 	for (i = 0; i < sc->tx_pages; i++) {
3610 		if(bus_dmamem_alloc(sc->tx_bd_chain_tag,
3611 		    (void **)&sc->tx_bd_chain[i],
3612 		    BUS_DMA_NOWAIT | BUS_DMA_ZERO | BUS_DMA_COHERENT,
3613 		    &sc->tx_bd_chain_map[i])) {
3614 			BCE_PRINTF("%s(%d): Could not allocate TX descriptor "
3615 			    "chain DMA memory!\n", __FILE__, __LINE__);
3616 			rc = ENOMEM;
3617 			goto bce_dma_alloc_exit;
3618 		}
3619 
3620 		error = bus_dmamap_load(sc->tx_bd_chain_tag,
3621 		    sc->tx_bd_chain_map[i], sc->tx_bd_chain[i],
3622 		    BCE_TX_CHAIN_PAGE_SZ, bce_dma_map_addr,
3623 		    &sc->tx_bd_chain_paddr[i], BUS_DMA_NOWAIT);
3624 
3625 		if (error || sc->tx_bd_chain_paddr[i] == 0) {
3626 			BCE_PRINTF("%s(%d): Could not map TX descriptor "
3627 			    "chain DMA memory!\n", __FILE__, __LINE__);
3628 			rc = ENOMEM;
3629 			goto bce_dma_alloc_exit;
3630 		}
3631 
3632 		DBPRINT(sc, BCE_INFO_LOAD, "%s(): tx_bd_chain_paddr[%d] = "
3633 		    "0x%jX\n", __FUNCTION__, i,
3634 		    (uintmax_t) sc->tx_bd_chain_paddr[i]);
3635 	}
3636 
3637 	/* Check the required size before mapping to conserve resources. */
3638 	if (bce_tso_enable) {
3639 		max_size     = BCE_TSO_MAX_SIZE;
3640 		max_segments = BCE_MAX_SEGMENTS;
3641 		max_seg_size = BCE_TSO_MAX_SEG_SIZE;
3642 	} else {
3643 		max_size     = MCLBYTES * BCE_MAX_SEGMENTS;
3644 		max_segments = BCE_MAX_SEGMENTS;
3645 		max_seg_size = MCLBYTES;
3646 	}
3647 
3648 	/* Create a DMA tag for TX mbufs. */
3649 	if (bus_dma_tag_create(sc->parent_tag, 1, BCE_DMA_BOUNDARY,
3650 	    sc->max_bus_addr, BUS_SPACE_MAXADDR, NULL, NULL, max_size,
3651 	    max_segments, max_seg_size,	0, NULL, NULL, &sc->tx_mbuf_tag)) {
3652 		BCE_PRINTF("%s(%d): Could not allocate TX mbuf DMA tag!\n",
3653 		    __FILE__, __LINE__);
3654 		rc = ENOMEM;
3655 		goto bce_dma_alloc_exit;
3656 	}
3657 
3658 	/* Create DMA maps for the TX mbufs clusters. */
3659 	for (i = 0; i < TOTAL_TX_BD_ALLOC; i++) {
3660 		if (bus_dmamap_create(sc->tx_mbuf_tag, BUS_DMA_NOWAIT,
3661 			&sc->tx_mbuf_map[i])) {
3662 			BCE_PRINTF("%s(%d): Unable to create TX mbuf DMA "
3663 			    "map!\n", __FILE__, __LINE__);
3664 			rc = ENOMEM;
3665 			goto bce_dma_alloc_exit;
3666 		}
3667 	}
3668 
3669 	/*
3670 	 * Create a DMA tag for the RX buffer descriptor chain,
3671 	 * allocate and clear the memory, and fetch the physical
3672 	 * address of the blocks.
3673 	 */
3674 	if (bus_dma_tag_create(sc->parent_tag, BCM_PAGE_SIZE,
3675 			BCE_DMA_BOUNDARY, BUS_SPACE_MAXADDR,
3676 			sc->max_bus_addr, NULL, NULL,
3677 			BCE_RX_CHAIN_PAGE_SZ, 1, BCE_RX_CHAIN_PAGE_SZ,
3678 			0, NULL, NULL, &sc->rx_bd_chain_tag)) {
3679 		BCE_PRINTF("%s(%d): Could not allocate RX descriptor chain "
3680 		    "DMA tag!\n", __FILE__, __LINE__);
3681 		rc = ENOMEM;
3682 		goto bce_dma_alloc_exit;
3683 	}
3684 
3685 	for (i = 0; i < sc->rx_pages; i++) {
3686 		if (bus_dmamem_alloc(sc->rx_bd_chain_tag,
3687 		    (void **)&sc->rx_bd_chain[i],
3688 		    BUS_DMA_NOWAIT | BUS_DMA_ZERO | BUS_DMA_COHERENT,
3689 		    &sc->rx_bd_chain_map[i])) {
3690 			BCE_PRINTF("%s(%d): Could not allocate RX descriptor "
3691 			    "chain DMA memory!\n", __FILE__, __LINE__);
3692 			rc = ENOMEM;
3693 			goto bce_dma_alloc_exit;
3694 		}
3695 
3696 		error = bus_dmamap_load(sc->rx_bd_chain_tag,
3697 		    sc->rx_bd_chain_map[i], sc->rx_bd_chain[i],
3698 		    BCE_RX_CHAIN_PAGE_SZ, bce_dma_map_addr,
3699 		    &sc->rx_bd_chain_paddr[i], BUS_DMA_NOWAIT);
3700 
3701 		if (error || sc->rx_bd_chain_paddr[i] == 0) {
3702 			BCE_PRINTF("%s(%d): Could not map RX descriptor "
3703 			    "chain DMA memory!\n", __FILE__, __LINE__);
3704 			rc = ENOMEM;
3705 			goto bce_dma_alloc_exit;
3706 		}
3707 
3708 		DBPRINT(sc, BCE_INFO_LOAD, "%s(): rx_bd_chain_paddr[%d] = "
3709 		    "0x%jX\n", __FUNCTION__, i,
3710 		    (uintmax_t) sc->rx_bd_chain_paddr[i]);
3711 	}
3712 
3713 	/*
3714 	 * Create a DMA tag for RX mbufs.
3715 	 */
3716 	if (bce_hdr_split == TRUE)
3717 		max_size = ((sc->rx_bd_mbuf_alloc_size < MCLBYTES) ?
3718 		    MCLBYTES : sc->rx_bd_mbuf_alloc_size);
3719 	else
3720 		max_size = MJUM9BYTES;
3721 
3722 	DBPRINT(sc, BCE_INFO_LOAD, "%s(): Creating rx_mbuf_tag "
3723 	    "(max size = 0x%jX)\n", __FUNCTION__, (uintmax_t)max_size);
3724 
3725 	if (bus_dma_tag_create(sc->parent_tag, BCE_RX_BUF_ALIGN,
3726 	    BCE_DMA_BOUNDARY, sc->max_bus_addr, BUS_SPACE_MAXADDR, NULL, NULL,
3727 	    max_size, 1, max_size, 0, NULL, NULL, &sc->rx_mbuf_tag)) {
3728 		BCE_PRINTF("%s(%d): Could not allocate RX mbuf DMA tag!\n",
3729 		    __FILE__, __LINE__);
3730 		rc = ENOMEM;
3731 		goto bce_dma_alloc_exit;
3732 	}
3733 
3734 	/* Create DMA maps for the RX mbuf clusters. */
3735 	for (i = 0; i < TOTAL_RX_BD_ALLOC; i++) {
3736 		if (bus_dmamap_create(sc->rx_mbuf_tag, BUS_DMA_NOWAIT,
3737 		    &sc->rx_mbuf_map[i])) {
3738 			BCE_PRINTF("%s(%d): Unable to create RX mbuf "
3739 			    "DMA map!\n", __FILE__, __LINE__);
3740 			rc = ENOMEM;
3741 			goto bce_dma_alloc_exit;
3742 		}
3743 	}
3744 
3745 	if (bce_hdr_split == TRUE) {
3746 		/*
3747 		 * Create a DMA tag for the page buffer descriptor chain,
3748 		 * allocate and clear the memory, and fetch the physical
3749 		 * address of the blocks.
3750 		 */
3751 		if (bus_dma_tag_create(sc->parent_tag, BCM_PAGE_SIZE,
3752 			    BCE_DMA_BOUNDARY, BUS_SPACE_MAXADDR, sc->max_bus_addr,
3753 			    NULL, NULL,	BCE_PG_CHAIN_PAGE_SZ, 1, BCE_PG_CHAIN_PAGE_SZ,
3754 			    0, NULL, NULL, &sc->pg_bd_chain_tag)) {
3755 			BCE_PRINTF("%s(%d): Could not allocate page descriptor "
3756 			    "chain DMA tag!\n",	__FILE__, __LINE__);
3757 			rc = ENOMEM;
3758 			goto bce_dma_alloc_exit;
3759 		}
3760 
3761 		for (i = 0; i < sc->pg_pages; i++) {
3762 			if (bus_dmamem_alloc(sc->pg_bd_chain_tag,
3763 			    (void **)&sc->pg_bd_chain[i],
3764 			    BUS_DMA_NOWAIT | BUS_DMA_ZERO | BUS_DMA_COHERENT,
3765 			    &sc->pg_bd_chain_map[i])) {
3766 				BCE_PRINTF("%s(%d): Could not allocate page "
3767 				    "descriptor chain DMA memory!\n",
3768 				    __FILE__, __LINE__);
3769 				rc = ENOMEM;
3770 				goto bce_dma_alloc_exit;
3771 			}
3772 
3773 			error = bus_dmamap_load(sc->pg_bd_chain_tag,
3774 			    sc->pg_bd_chain_map[i], sc->pg_bd_chain[i],
3775 			    BCE_PG_CHAIN_PAGE_SZ, bce_dma_map_addr,
3776 			    &sc->pg_bd_chain_paddr[i], BUS_DMA_NOWAIT);
3777 
3778 			if (error || sc->pg_bd_chain_paddr[i] == 0) {
3779 				BCE_PRINTF("%s(%d): Could not map page descriptor "
3780 					"chain DMA memory!\n", __FILE__, __LINE__);
3781 				rc = ENOMEM;
3782 				goto bce_dma_alloc_exit;
3783 			}
3784 
3785 			DBPRINT(sc, BCE_INFO_LOAD, "%s(): pg_bd_chain_paddr[%d] = "
3786 				"0x%jX\n", __FUNCTION__, i,
3787 				(uintmax_t) sc->pg_bd_chain_paddr[i]);
3788 		}
3789 
3790 		/*
3791 		 * Create a DMA tag for page mbufs.
3792 		 */
3793 		if (bus_dma_tag_create(sc->parent_tag, 1, BCE_DMA_BOUNDARY,
3794 		    sc->max_bus_addr, BUS_SPACE_MAXADDR, NULL, NULL, MCLBYTES,
3795 		    1, MCLBYTES, 0, NULL, NULL, &sc->pg_mbuf_tag)) {
3796 			BCE_PRINTF("%s(%d): Could not allocate page mbuf "
3797 				"DMA tag!\n", __FILE__, __LINE__);
3798 			rc = ENOMEM;
3799 			goto bce_dma_alloc_exit;
3800 		}
3801 
3802 		/* Create DMA maps for the page mbuf clusters. */
3803 		for (i = 0; i < TOTAL_PG_BD_ALLOC; i++) {
3804 			if (bus_dmamap_create(sc->pg_mbuf_tag, BUS_DMA_NOWAIT,
3805 				&sc->pg_mbuf_map[i])) {
3806 				BCE_PRINTF("%s(%d): Unable to create page mbuf "
3807 					"DMA map!\n", __FILE__, __LINE__);
3808 				rc = ENOMEM;
3809 				goto bce_dma_alloc_exit;
3810 			}
3811 		}
3812 	}
3813 
3814 bce_dma_alloc_exit:
3815 	DBEXIT(BCE_VERBOSE_RESET | BCE_VERBOSE_CTX);
3816 	return(rc);
3817 }
3818 
3819 /****************************************************************************/
3820 /* Release all resources used by the driver.                                */
3821 /*                                                                          */
3822 /* Releases all resources acquired by the driver including interrupts,      */
3823 /* interrupt handler, interfaces, mutexes, and DMA memory.                  */
3824 /*                                                                          */
3825 /* Returns:                                                                 */
3826 /*   Nothing.                                                               */
3827 /****************************************************************************/
3828 static void
3829 bce_release_resources(struct bce_softc *sc)
3830 {
3831 	device_t dev;
3832 
3833 	DBENTER(BCE_VERBOSE_RESET);
3834 
3835 	dev = sc->bce_dev;
3836 
3837 	bce_dma_free(sc);
3838 
3839 	if (sc->bce_intrhand != NULL) {
3840 		DBPRINT(sc, BCE_INFO_RESET, "Removing interrupt handler.\n");
3841 		bus_teardown_intr(dev, sc->bce_res_irq, sc->bce_intrhand);
3842 	}
3843 
3844 	if (sc->bce_res_irq != NULL) {
3845 		DBPRINT(sc, BCE_INFO_RESET, "Releasing IRQ.\n");
3846 		bus_release_resource(dev, SYS_RES_IRQ,
3847 		    rman_get_rid(sc->bce_res_irq), sc->bce_res_irq);
3848 	}
3849 
3850 	if (sc->bce_flags & (BCE_USING_MSI_FLAG | BCE_USING_MSIX_FLAG)) {
3851 		DBPRINT(sc, BCE_INFO_RESET, "Releasing MSI/MSI-X vector.\n");
3852 		pci_release_msi(dev);
3853 	}
3854 
3855 	if (sc->bce_res_mem != NULL) {
3856 		DBPRINT(sc, BCE_INFO_RESET, "Releasing PCI memory.\n");
3857 		    bus_release_resource(dev, SYS_RES_MEMORY, PCIR_BAR(0),
3858 		    sc->bce_res_mem);
3859 	}
3860 
3861 	if (sc->bce_ifp != NULL) {
3862 		DBPRINT(sc, BCE_INFO_RESET, "Releasing IF.\n");
3863 		if_free(sc->bce_ifp);
3864 	}
3865 
3866 	if (mtx_initialized(&sc->bce_mtx))
3867 		BCE_LOCK_DESTROY(sc);
3868 
3869 	DBEXIT(BCE_VERBOSE_RESET);
3870 }
3871 
3872 /****************************************************************************/
3873 /* Firmware synchronization.                                                */
3874 /*                                                                          */
3875 /* Before performing certain events such as a chip reset, synchronize with  */
3876 /* the firmware first.                                                      */
3877 /*                                                                          */
3878 /* Returns:                                                                 */
3879 /*   0 for success, positive value for failure.                             */
3880 /****************************************************************************/
3881 static int
3882 bce_fw_sync(struct bce_softc *sc, u32 msg_data)
3883 {
3884 	int i, rc = 0;
3885 	u32 val;
3886 
3887 	DBENTER(BCE_VERBOSE_RESET);
3888 
3889 	/* Don't waste any time if we've timed out before. */
3890 	if (sc->bce_fw_timed_out == TRUE) {
3891 		rc = EBUSY;
3892 		goto bce_fw_sync_exit;
3893 	}
3894 
3895 	/* Increment the message sequence number. */
3896 	sc->bce_fw_wr_seq++;
3897 	msg_data |= sc->bce_fw_wr_seq;
3898 
3899  	DBPRINT(sc, BCE_VERBOSE_FIRMWARE, "bce_fw_sync(): msg_data = "
3900 	    "0x%08X\n",	msg_data);
3901 
3902 	/* Send the message to the bootcode driver mailbox. */
3903 	bce_shmem_wr(sc, BCE_DRV_MB, msg_data);
3904 
3905 	/* Wait for the bootcode to acknowledge the message. */
3906 	for (i = 0; i < FW_ACK_TIME_OUT_MS; i++) {
3907 		/* Check for a response in the bootcode firmware mailbox. */
3908 		val = bce_shmem_rd(sc, BCE_FW_MB);
3909 		if ((val & BCE_FW_MSG_ACK) == (msg_data & BCE_DRV_MSG_SEQ))
3910 			break;
3911 		DELAY(1000);
3912 	}
3913 
3914 	/* If we've timed out, tell bootcode that we've stopped waiting. */
3915 	if (((val & BCE_FW_MSG_ACK) != (msg_data & BCE_DRV_MSG_SEQ)) &&
3916 	    ((msg_data & BCE_DRV_MSG_DATA) != BCE_DRV_MSG_DATA_WAIT0)) {
3917 		BCE_PRINTF("%s(%d): Firmware synchronization timeout! "
3918 		    "msg_data = 0x%08X\n", __FILE__, __LINE__, msg_data);
3919 
3920 		msg_data &= ~BCE_DRV_MSG_CODE;
3921 		msg_data |= BCE_DRV_MSG_CODE_FW_TIMEOUT;
3922 
3923 		bce_shmem_wr(sc, BCE_DRV_MB, msg_data);
3924 
3925 		sc->bce_fw_timed_out = TRUE;
3926 		rc = EBUSY;
3927 	}
3928 
3929 bce_fw_sync_exit:
3930 	DBEXIT(BCE_VERBOSE_RESET);
3931 	return (rc);
3932 }
3933 
3934 /****************************************************************************/
3935 /* Load Receive Virtual 2 Physical (RV2P) processor firmware.               */
3936 /*                                                                          */
3937 /* Returns:                                                                 */
3938 /*   Nothing.                                                               */
3939 /****************************************************************************/
3940 static void
3941 bce_load_rv2p_fw(struct bce_softc *sc, const u32 *rv2p_code,
3942 	u32 rv2p_code_len, u32 rv2p_proc)
3943 {
3944 	int i;
3945 	u32 val;
3946 
3947 	DBENTER(BCE_VERBOSE_RESET);
3948 
3949 	/* Set the page size used by RV2P. */
3950 	if (rv2p_proc == RV2P_PROC2) {
3951 		BCE_RV2P_PROC2_CHG_MAX_BD_PAGE(USABLE_RX_BD_PER_PAGE);
3952 	}
3953 
3954 	for (i = 0; i < rv2p_code_len; i += 8) {
3955 		REG_WR(sc, BCE_RV2P_INSTR_HIGH, *rv2p_code);
3956 		rv2p_code++;
3957 		REG_WR(sc, BCE_RV2P_INSTR_LOW, *rv2p_code);
3958 		rv2p_code++;
3959 
3960 		if (rv2p_proc == RV2P_PROC1) {
3961 			val = (i / 8) | BCE_RV2P_PROC1_ADDR_CMD_RDWR;
3962 			REG_WR(sc, BCE_RV2P_PROC1_ADDR_CMD, val);
3963 		}
3964 		else {
3965 			val = (i / 8) | BCE_RV2P_PROC2_ADDR_CMD_RDWR;
3966 			REG_WR(sc, BCE_RV2P_PROC2_ADDR_CMD, val);
3967 		}
3968 	}
3969 
3970 	/* Reset the processor, un-stall is done later. */
3971 	if (rv2p_proc == RV2P_PROC1) {
3972 		REG_WR(sc, BCE_RV2P_COMMAND, BCE_RV2P_COMMAND_PROC1_RESET);
3973 	}
3974 	else {
3975 		REG_WR(sc, BCE_RV2P_COMMAND, BCE_RV2P_COMMAND_PROC2_RESET);
3976 	}
3977 
3978 	DBEXIT(BCE_VERBOSE_RESET);
3979 }
3980 
3981 /****************************************************************************/
3982 /* Load RISC processor firmware.                                            */
3983 /*                                                                          */
3984 /* Loads firmware from the file if_bcefw.h into the scratchpad memory       */
3985 /* associated with a particular processor.                                  */
3986 /*                                                                          */
3987 /* Returns:                                                                 */
3988 /*   Nothing.                                                               */
3989 /****************************************************************************/
3990 static void
3991 bce_load_cpu_fw(struct bce_softc *sc, struct cpu_reg *cpu_reg,
3992 	struct fw_info *fw)
3993 {
3994 	u32 offset;
3995 
3996 	DBENTER(BCE_VERBOSE_RESET);
3997 
3998     bce_halt_cpu(sc, cpu_reg);
3999 
4000 	/* Load the Text area. */
4001 	offset = cpu_reg->spad_base + (fw->text_addr - cpu_reg->mips_view_base);
4002 	if (fw->text) {
4003 		int j;
4004 
4005 		for (j = 0; j < (fw->text_len / 4); j++, offset += 4) {
4006 			REG_WR_IND(sc, offset, fw->text[j]);
4007 	        }
4008 	}
4009 
4010 	/* Load the Data area. */
4011 	offset = cpu_reg->spad_base + (fw->data_addr - cpu_reg->mips_view_base);
4012 	if (fw->data) {
4013 		int j;
4014 
4015 		for (j = 0; j < (fw->data_len / 4); j++, offset += 4) {
4016 			REG_WR_IND(sc, offset, fw->data[j]);
4017 		}
4018 	}
4019 
4020 	/* Load the SBSS area. */
4021 	offset = cpu_reg->spad_base + (fw->sbss_addr - cpu_reg->mips_view_base);
4022 	if (fw->sbss) {
4023 		int j;
4024 
4025 		for (j = 0; j < (fw->sbss_len / 4); j++, offset += 4) {
4026 			REG_WR_IND(sc, offset, fw->sbss[j]);
4027 		}
4028 	}
4029 
4030 	/* Load the BSS area. */
4031 	offset = cpu_reg->spad_base + (fw->bss_addr - cpu_reg->mips_view_base);
4032 	if (fw->bss) {
4033 		int j;
4034 
4035 		for (j = 0; j < (fw->bss_len/4); j++, offset += 4) {
4036 			REG_WR_IND(sc, offset, fw->bss[j]);
4037 		}
4038 	}
4039 
4040 	/* Load the Read-Only area. */
4041 	offset = cpu_reg->spad_base +
4042 		(fw->rodata_addr - cpu_reg->mips_view_base);
4043 	if (fw->rodata) {
4044 		int j;
4045 
4046 		for (j = 0; j < (fw->rodata_len / 4); j++, offset += 4) {
4047 			REG_WR_IND(sc, offset, fw->rodata[j]);
4048 		}
4049 	}
4050 
4051 	/* Clear the pre-fetch instruction and set the FW start address. */
4052 	REG_WR_IND(sc, cpu_reg->inst, 0);
4053 	REG_WR_IND(sc, cpu_reg->pc, fw->start_addr);
4054 
4055 	DBEXIT(BCE_VERBOSE_RESET);
4056 }
4057 
4058 /****************************************************************************/
4059 /* Starts the RISC processor.                                               */
4060 /*                                                                          */
4061 /* Assumes the CPU starting address has already been set.                   */
4062 /*                                                                          */
4063 /* Returns:                                                                 */
4064 /*   Nothing.                                                               */
4065 /****************************************************************************/
4066 static void
4067 bce_start_cpu(struct bce_softc *sc, struct cpu_reg *cpu_reg)
4068 {
4069 	u32 val;
4070 
4071 	DBENTER(BCE_VERBOSE_RESET);
4072 
4073 	/* Start the CPU. */
4074 	val = REG_RD_IND(sc, cpu_reg->mode);
4075 	val &= ~cpu_reg->mode_value_halt;
4076 	REG_WR_IND(sc, cpu_reg->state, cpu_reg->state_value_clear);
4077 	REG_WR_IND(sc, cpu_reg->mode, val);
4078 
4079 	DBEXIT(BCE_VERBOSE_RESET);
4080 }
4081 
4082 /****************************************************************************/
4083 /* Halts the RISC processor.                                                */
4084 /*                                                                          */
4085 /* Returns:                                                                 */
4086 /*   Nothing.                                                               */
4087 /****************************************************************************/
4088 static void
4089 bce_halt_cpu(struct bce_softc *sc, struct cpu_reg *cpu_reg)
4090 {
4091 	u32 val;
4092 
4093 	DBENTER(BCE_VERBOSE_RESET);
4094 
4095 	/* Halt the CPU. */
4096 	val = REG_RD_IND(sc, cpu_reg->mode);
4097 	val |= cpu_reg->mode_value_halt;
4098 	REG_WR_IND(sc, cpu_reg->mode, val);
4099 	REG_WR_IND(sc, cpu_reg->state, cpu_reg->state_value_clear);
4100 
4101 	DBEXIT(BCE_VERBOSE_RESET);
4102 }
4103 
4104 /****************************************************************************/
4105 /* Initialize the RX CPU.                                                   */
4106 /*                                                                          */
4107 /* Returns:                                                                 */
4108 /*   Nothing.                                                               */
4109 /****************************************************************************/
4110 static void
4111 bce_start_rxp_cpu(struct bce_softc *sc)
4112 {
4113 	struct cpu_reg cpu_reg;
4114 
4115 	DBENTER(BCE_VERBOSE_RESET);
4116 
4117 	cpu_reg.mode = BCE_RXP_CPU_MODE;
4118 	cpu_reg.mode_value_halt = BCE_RXP_CPU_MODE_SOFT_HALT;
4119 	cpu_reg.mode_value_sstep = BCE_RXP_CPU_MODE_STEP_ENA;
4120 	cpu_reg.state = BCE_RXP_CPU_STATE;
4121 	cpu_reg.state_value_clear = 0xffffff;
4122 	cpu_reg.gpr0 = BCE_RXP_CPU_REG_FILE;
4123 	cpu_reg.evmask = BCE_RXP_CPU_EVENT_MASK;
4124 	cpu_reg.pc = BCE_RXP_CPU_PROGRAM_COUNTER;
4125 	cpu_reg.inst = BCE_RXP_CPU_INSTRUCTION;
4126 	cpu_reg.bp = BCE_RXP_CPU_HW_BREAKPOINT;
4127 	cpu_reg.spad_base = BCE_RXP_SCRATCH;
4128 	cpu_reg.mips_view_base = 0x8000000;
4129 
4130 	DBPRINT(sc, BCE_INFO_RESET, "Starting RX firmware.\n");
4131 	bce_start_cpu(sc, &cpu_reg);
4132 
4133 	DBEXIT(BCE_VERBOSE_RESET);
4134 }
4135 
4136 /****************************************************************************/
4137 /* Initialize the RX CPU.                                                   */
4138 /*                                                                          */
4139 /* Returns:                                                                 */
4140 /*   Nothing.                                                               */
4141 /****************************************************************************/
4142 static void
4143 bce_init_rxp_cpu(struct bce_softc *sc)
4144 {
4145 	struct cpu_reg cpu_reg;
4146 	struct fw_info fw;
4147 
4148 	DBENTER(BCE_VERBOSE_RESET);
4149 
4150 	cpu_reg.mode = BCE_RXP_CPU_MODE;
4151 	cpu_reg.mode_value_halt = BCE_RXP_CPU_MODE_SOFT_HALT;
4152 	cpu_reg.mode_value_sstep = BCE_RXP_CPU_MODE_STEP_ENA;
4153 	cpu_reg.state = BCE_RXP_CPU_STATE;
4154 	cpu_reg.state_value_clear = 0xffffff;
4155 	cpu_reg.gpr0 = BCE_RXP_CPU_REG_FILE;
4156 	cpu_reg.evmask = BCE_RXP_CPU_EVENT_MASK;
4157 	cpu_reg.pc = BCE_RXP_CPU_PROGRAM_COUNTER;
4158 	cpu_reg.inst = BCE_RXP_CPU_INSTRUCTION;
4159 	cpu_reg.bp = BCE_RXP_CPU_HW_BREAKPOINT;
4160 	cpu_reg.spad_base = BCE_RXP_SCRATCH;
4161 	cpu_reg.mips_view_base = 0x8000000;
4162 
4163 	if (BCE_CHIP_NUM(sc) == BCE_CHIP_NUM_5709) {
4164  		fw.ver_major = bce_RXP_b09FwReleaseMajor;
4165 		fw.ver_minor = bce_RXP_b09FwReleaseMinor;
4166 		fw.ver_fix = bce_RXP_b09FwReleaseFix;
4167 		fw.start_addr = bce_RXP_b09FwStartAddr;
4168 
4169 		fw.text_addr = bce_RXP_b09FwTextAddr;
4170 		fw.text_len = bce_RXP_b09FwTextLen;
4171 		fw.text_index = 0;
4172 		fw.text = bce_RXP_b09FwText;
4173 
4174 		fw.data_addr = bce_RXP_b09FwDataAddr;
4175 		fw.data_len = bce_RXP_b09FwDataLen;
4176 		fw.data_index = 0;
4177 		fw.data = bce_RXP_b09FwData;
4178 
4179 		fw.sbss_addr = bce_RXP_b09FwSbssAddr;
4180 		fw.sbss_len = bce_RXP_b09FwSbssLen;
4181 		fw.sbss_index = 0;
4182 		fw.sbss = bce_RXP_b09FwSbss;
4183 
4184 		fw.bss_addr = bce_RXP_b09FwBssAddr;
4185 		fw.bss_len = bce_RXP_b09FwBssLen;
4186 		fw.bss_index = 0;
4187 		fw.bss = bce_RXP_b09FwBss;
4188 
4189 		fw.rodata_addr = bce_RXP_b09FwRodataAddr;
4190 		fw.rodata_len = bce_RXP_b09FwRodataLen;
4191 		fw.rodata_index = 0;
4192 		fw.rodata = bce_RXP_b09FwRodata;
4193 	} else {
4194 		fw.ver_major = bce_RXP_b06FwReleaseMajor;
4195 		fw.ver_minor = bce_RXP_b06FwReleaseMinor;
4196 		fw.ver_fix = bce_RXP_b06FwReleaseFix;
4197 		fw.start_addr = bce_RXP_b06FwStartAddr;
4198 
4199 		fw.text_addr = bce_RXP_b06FwTextAddr;
4200 		fw.text_len = bce_RXP_b06FwTextLen;
4201 		fw.text_index = 0;
4202 		fw.text = bce_RXP_b06FwText;
4203 
4204 		fw.data_addr = bce_RXP_b06FwDataAddr;
4205 		fw.data_len = bce_RXP_b06FwDataLen;
4206 		fw.data_index = 0;
4207 		fw.data = bce_RXP_b06FwData;
4208 
4209 		fw.sbss_addr = bce_RXP_b06FwSbssAddr;
4210 		fw.sbss_len = bce_RXP_b06FwSbssLen;
4211 		fw.sbss_index = 0;
4212 		fw.sbss = bce_RXP_b06FwSbss;
4213 
4214 		fw.bss_addr = bce_RXP_b06FwBssAddr;
4215 		fw.bss_len = bce_RXP_b06FwBssLen;
4216 		fw.bss_index = 0;
4217 		fw.bss = bce_RXP_b06FwBss;
4218 
4219 		fw.rodata_addr = bce_RXP_b06FwRodataAddr;
4220 		fw.rodata_len = bce_RXP_b06FwRodataLen;
4221 		fw.rodata_index = 0;
4222 		fw.rodata = bce_RXP_b06FwRodata;
4223 	}
4224 
4225 	DBPRINT(sc, BCE_INFO_RESET, "Loading RX firmware.\n");
4226 	bce_load_cpu_fw(sc, &cpu_reg, &fw);
4227 
4228     /* Delay RXP start until initialization is complete. */
4229 
4230 	DBEXIT(BCE_VERBOSE_RESET);
4231 }
4232 
4233 /****************************************************************************/
4234 /* Initialize the TX CPU.                                                   */
4235 /*                                                                          */
4236 /* Returns:                                                                 */
4237 /*   Nothing.                                                               */
4238 /****************************************************************************/
4239 static void
4240 bce_init_txp_cpu(struct bce_softc *sc)
4241 {
4242 	struct cpu_reg cpu_reg;
4243 	struct fw_info fw;
4244 
4245 	DBENTER(BCE_VERBOSE_RESET);
4246 
4247 	cpu_reg.mode = BCE_TXP_CPU_MODE;
4248 	cpu_reg.mode_value_halt = BCE_TXP_CPU_MODE_SOFT_HALT;
4249 	cpu_reg.mode_value_sstep = BCE_TXP_CPU_MODE_STEP_ENA;
4250 	cpu_reg.state = BCE_TXP_CPU_STATE;
4251 	cpu_reg.state_value_clear = 0xffffff;
4252 	cpu_reg.gpr0 = BCE_TXP_CPU_REG_FILE;
4253 	cpu_reg.evmask = BCE_TXP_CPU_EVENT_MASK;
4254 	cpu_reg.pc = BCE_TXP_CPU_PROGRAM_COUNTER;
4255 	cpu_reg.inst = BCE_TXP_CPU_INSTRUCTION;
4256 	cpu_reg.bp = BCE_TXP_CPU_HW_BREAKPOINT;
4257 	cpu_reg.spad_base = BCE_TXP_SCRATCH;
4258 	cpu_reg.mips_view_base = 0x8000000;
4259 
4260 	if (BCE_CHIP_NUM(sc) == BCE_CHIP_NUM_5709) {
4261 		fw.ver_major = bce_TXP_b09FwReleaseMajor;
4262 		fw.ver_minor = bce_TXP_b09FwReleaseMinor;
4263 		fw.ver_fix = bce_TXP_b09FwReleaseFix;
4264 		fw.start_addr = bce_TXP_b09FwStartAddr;
4265 
4266 		fw.text_addr = bce_TXP_b09FwTextAddr;
4267 		fw.text_len = bce_TXP_b09FwTextLen;
4268 		fw.text_index = 0;
4269 		fw.text = bce_TXP_b09FwText;
4270 
4271 		fw.data_addr = bce_TXP_b09FwDataAddr;
4272 		fw.data_len = bce_TXP_b09FwDataLen;
4273 		fw.data_index = 0;
4274 		fw.data = bce_TXP_b09FwData;
4275 
4276 		fw.sbss_addr = bce_TXP_b09FwSbssAddr;
4277 		fw.sbss_len = bce_TXP_b09FwSbssLen;
4278 		fw.sbss_index = 0;
4279 		fw.sbss = bce_TXP_b09FwSbss;
4280 
4281 		fw.bss_addr = bce_TXP_b09FwBssAddr;
4282 		fw.bss_len = bce_TXP_b09FwBssLen;
4283 		fw.bss_index = 0;
4284 		fw.bss = bce_TXP_b09FwBss;
4285 
4286 		fw.rodata_addr = bce_TXP_b09FwRodataAddr;
4287 		fw.rodata_len = bce_TXP_b09FwRodataLen;
4288 		fw.rodata_index = 0;
4289 		fw.rodata = bce_TXP_b09FwRodata;
4290 	} else {
4291 		fw.ver_major = bce_TXP_b06FwReleaseMajor;
4292 		fw.ver_minor = bce_TXP_b06FwReleaseMinor;
4293 		fw.ver_fix = bce_TXP_b06FwReleaseFix;
4294 		fw.start_addr = bce_TXP_b06FwStartAddr;
4295 
4296 		fw.text_addr = bce_TXP_b06FwTextAddr;
4297 		fw.text_len = bce_TXP_b06FwTextLen;
4298 		fw.text_index = 0;
4299 		fw.text = bce_TXP_b06FwText;
4300 
4301 		fw.data_addr = bce_TXP_b06FwDataAddr;
4302 		fw.data_len = bce_TXP_b06FwDataLen;
4303 		fw.data_index = 0;
4304 		fw.data = bce_TXP_b06FwData;
4305 
4306 		fw.sbss_addr = bce_TXP_b06FwSbssAddr;
4307 		fw.sbss_len = bce_TXP_b06FwSbssLen;
4308 		fw.sbss_index = 0;
4309 		fw.sbss = bce_TXP_b06FwSbss;
4310 
4311 		fw.bss_addr = bce_TXP_b06FwBssAddr;
4312 		fw.bss_len = bce_TXP_b06FwBssLen;
4313 		fw.bss_index = 0;
4314 		fw.bss = bce_TXP_b06FwBss;
4315 
4316 		fw.rodata_addr = bce_TXP_b06FwRodataAddr;
4317 		fw.rodata_len = bce_TXP_b06FwRodataLen;
4318 		fw.rodata_index = 0;
4319 		fw.rodata = bce_TXP_b06FwRodata;
4320 	}
4321 
4322 	DBPRINT(sc, BCE_INFO_RESET, "Loading TX firmware.\n");
4323 	bce_load_cpu_fw(sc, &cpu_reg, &fw);
4324     bce_start_cpu(sc, &cpu_reg);
4325 
4326 	DBEXIT(BCE_VERBOSE_RESET);
4327 }
4328 
4329 /****************************************************************************/
4330 /* Initialize the TPAT CPU.                                                 */
4331 /*                                                                          */
4332 /* Returns:                                                                 */
4333 /*   Nothing.                                                               */
4334 /****************************************************************************/
4335 static void
4336 bce_init_tpat_cpu(struct bce_softc *sc)
4337 {
4338 	struct cpu_reg cpu_reg;
4339 	struct fw_info fw;
4340 
4341 	DBENTER(BCE_VERBOSE_RESET);
4342 
4343 	cpu_reg.mode = BCE_TPAT_CPU_MODE;
4344 	cpu_reg.mode_value_halt = BCE_TPAT_CPU_MODE_SOFT_HALT;
4345 	cpu_reg.mode_value_sstep = BCE_TPAT_CPU_MODE_STEP_ENA;
4346 	cpu_reg.state = BCE_TPAT_CPU_STATE;
4347 	cpu_reg.state_value_clear = 0xffffff;
4348 	cpu_reg.gpr0 = BCE_TPAT_CPU_REG_FILE;
4349 	cpu_reg.evmask = BCE_TPAT_CPU_EVENT_MASK;
4350 	cpu_reg.pc = BCE_TPAT_CPU_PROGRAM_COUNTER;
4351 	cpu_reg.inst = BCE_TPAT_CPU_INSTRUCTION;
4352 	cpu_reg.bp = BCE_TPAT_CPU_HW_BREAKPOINT;
4353 	cpu_reg.spad_base = BCE_TPAT_SCRATCH;
4354 	cpu_reg.mips_view_base = 0x8000000;
4355 
4356 	if (BCE_CHIP_NUM(sc) == BCE_CHIP_NUM_5709) {
4357 		fw.ver_major = bce_TPAT_b09FwReleaseMajor;
4358 		fw.ver_minor = bce_TPAT_b09FwReleaseMinor;
4359 		fw.ver_fix = bce_TPAT_b09FwReleaseFix;
4360 		fw.start_addr = bce_TPAT_b09FwStartAddr;
4361 
4362 		fw.text_addr = bce_TPAT_b09FwTextAddr;
4363 		fw.text_len = bce_TPAT_b09FwTextLen;
4364 		fw.text_index = 0;
4365 		fw.text = bce_TPAT_b09FwText;
4366 
4367 		fw.data_addr = bce_TPAT_b09FwDataAddr;
4368 		fw.data_len = bce_TPAT_b09FwDataLen;
4369 		fw.data_index = 0;
4370 		fw.data = bce_TPAT_b09FwData;
4371 
4372 		fw.sbss_addr = bce_TPAT_b09FwSbssAddr;
4373 		fw.sbss_len = bce_TPAT_b09FwSbssLen;
4374 		fw.sbss_index = 0;
4375 		fw.sbss = bce_TPAT_b09FwSbss;
4376 
4377 		fw.bss_addr = bce_TPAT_b09FwBssAddr;
4378 		fw.bss_len = bce_TPAT_b09FwBssLen;
4379 		fw.bss_index = 0;
4380 		fw.bss = bce_TPAT_b09FwBss;
4381 
4382 		fw.rodata_addr = bce_TPAT_b09FwRodataAddr;
4383 		fw.rodata_len = bce_TPAT_b09FwRodataLen;
4384 		fw.rodata_index = 0;
4385 		fw.rodata = bce_TPAT_b09FwRodata;
4386 	} else {
4387 		fw.ver_major = bce_TPAT_b06FwReleaseMajor;
4388 		fw.ver_minor = bce_TPAT_b06FwReleaseMinor;
4389 		fw.ver_fix = bce_TPAT_b06FwReleaseFix;
4390 		fw.start_addr = bce_TPAT_b06FwStartAddr;
4391 
4392 		fw.text_addr = bce_TPAT_b06FwTextAddr;
4393 		fw.text_len = bce_TPAT_b06FwTextLen;
4394 		fw.text_index = 0;
4395 		fw.text = bce_TPAT_b06FwText;
4396 
4397 		fw.data_addr = bce_TPAT_b06FwDataAddr;
4398 		fw.data_len = bce_TPAT_b06FwDataLen;
4399 		fw.data_index = 0;
4400 		fw.data = bce_TPAT_b06FwData;
4401 
4402 		fw.sbss_addr = bce_TPAT_b06FwSbssAddr;
4403 		fw.sbss_len = bce_TPAT_b06FwSbssLen;
4404 		fw.sbss_index = 0;
4405 		fw.sbss = bce_TPAT_b06FwSbss;
4406 
4407 		fw.bss_addr = bce_TPAT_b06FwBssAddr;
4408 		fw.bss_len = bce_TPAT_b06FwBssLen;
4409 		fw.bss_index = 0;
4410 		fw.bss = bce_TPAT_b06FwBss;
4411 
4412 		fw.rodata_addr = bce_TPAT_b06FwRodataAddr;
4413 		fw.rodata_len = bce_TPAT_b06FwRodataLen;
4414 		fw.rodata_index = 0;
4415 		fw.rodata = bce_TPAT_b06FwRodata;
4416 	}
4417 
4418 	DBPRINT(sc, BCE_INFO_RESET, "Loading TPAT firmware.\n");
4419 	bce_load_cpu_fw(sc, &cpu_reg, &fw);
4420 	bce_start_cpu(sc, &cpu_reg);
4421 
4422 	DBEXIT(BCE_VERBOSE_RESET);
4423 }
4424 
4425 /****************************************************************************/
4426 /* Initialize the CP CPU.                                                   */
4427 /*                                                                          */
4428 /* Returns:                                                                 */
4429 /*   Nothing.                                                               */
4430 /****************************************************************************/
4431 static void
4432 bce_init_cp_cpu(struct bce_softc *sc)
4433 {
4434 	struct cpu_reg cpu_reg;
4435 	struct fw_info fw;
4436 
4437 	DBENTER(BCE_VERBOSE_RESET);
4438 
4439 	cpu_reg.mode = BCE_CP_CPU_MODE;
4440 	cpu_reg.mode_value_halt = BCE_CP_CPU_MODE_SOFT_HALT;
4441 	cpu_reg.mode_value_sstep = BCE_CP_CPU_MODE_STEP_ENA;
4442 	cpu_reg.state = BCE_CP_CPU_STATE;
4443 	cpu_reg.state_value_clear = 0xffffff;
4444 	cpu_reg.gpr0 = BCE_CP_CPU_REG_FILE;
4445 	cpu_reg.evmask = BCE_CP_CPU_EVENT_MASK;
4446 	cpu_reg.pc = BCE_CP_CPU_PROGRAM_COUNTER;
4447 	cpu_reg.inst = BCE_CP_CPU_INSTRUCTION;
4448 	cpu_reg.bp = BCE_CP_CPU_HW_BREAKPOINT;
4449 	cpu_reg.spad_base = BCE_CP_SCRATCH;
4450 	cpu_reg.mips_view_base = 0x8000000;
4451 
4452 	if (BCE_CHIP_NUM(sc) == BCE_CHIP_NUM_5709) {
4453 		fw.ver_major = bce_CP_b09FwReleaseMajor;
4454 		fw.ver_minor = bce_CP_b09FwReleaseMinor;
4455 		fw.ver_fix = bce_CP_b09FwReleaseFix;
4456 		fw.start_addr = bce_CP_b09FwStartAddr;
4457 
4458 		fw.text_addr = bce_CP_b09FwTextAddr;
4459 		fw.text_len = bce_CP_b09FwTextLen;
4460 		fw.text_index = 0;
4461 		fw.text = bce_CP_b09FwText;
4462 
4463 		fw.data_addr = bce_CP_b09FwDataAddr;
4464 		fw.data_len = bce_CP_b09FwDataLen;
4465 		fw.data_index = 0;
4466 		fw.data = bce_CP_b09FwData;
4467 
4468 		fw.sbss_addr = bce_CP_b09FwSbssAddr;
4469 		fw.sbss_len = bce_CP_b09FwSbssLen;
4470 		fw.sbss_index = 0;
4471 		fw.sbss = bce_CP_b09FwSbss;
4472 
4473 		fw.bss_addr = bce_CP_b09FwBssAddr;
4474 		fw.bss_len = bce_CP_b09FwBssLen;
4475 		fw.bss_index = 0;
4476 		fw.bss = bce_CP_b09FwBss;
4477 
4478 		fw.rodata_addr = bce_CP_b09FwRodataAddr;
4479 		fw.rodata_len = bce_CP_b09FwRodataLen;
4480 		fw.rodata_index = 0;
4481 		fw.rodata = bce_CP_b09FwRodata;
4482 	} else {
4483 		fw.ver_major = bce_CP_b06FwReleaseMajor;
4484 		fw.ver_minor = bce_CP_b06FwReleaseMinor;
4485 		fw.ver_fix = bce_CP_b06FwReleaseFix;
4486 		fw.start_addr = bce_CP_b06FwStartAddr;
4487 
4488 		fw.text_addr = bce_CP_b06FwTextAddr;
4489 		fw.text_len = bce_CP_b06FwTextLen;
4490 		fw.text_index = 0;
4491 		fw.text = bce_CP_b06FwText;
4492 
4493 		fw.data_addr = bce_CP_b06FwDataAddr;
4494 		fw.data_len = bce_CP_b06FwDataLen;
4495 		fw.data_index = 0;
4496 		fw.data = bce_CP_b06FwData;
4497 
4498 		fw.sbss_addr = bce_CP_b06FwSbssAddr;
4499 		fw.sbss_len = bce_CP_b06FwSbssLen;
4500 		fw.sbss_index = 0;
4501 		fw.sbss = bce_CP_b06FwSbss;
4502 
4503 		fw.bss_addr = bce_CP_b06FwBssAddr;
4504 		fw.bss_len = bce_CP_b06FwBssLen;
4505 		fw.bss_index = 0;
4506 		fw.bss = bce_CP_b06FwBss;
4507 
4508 		fw.rodata_addr = bce_CP_b06FwRodataAddr;
4509 		fw.rodata_len = bce_CP_b06FwRodataLen;
4510 		fw.rodata_index = 0;
4511 		fw.rodata = bce_CP_b06FwRodata;
4512 	}
4513 
4514 	DBPRINT(sc, BCE_INFO_RESET, "Loading CP firmware.\n");
4515 	bce_load_cpu_fw(sc, &cpu_reg, &fw);
4516 	bce_start_cpu(sc, &cpu_reg);
4517 
4518 	DBEXIT(BCE_VERBOSE_RESET);
4519 }
4520 
4521 /****************************************************************************/
4522 /* Initialize the COM CPU.                                                 */
4523 /*                                                                          */
4524 /* Returns:                                                                 */
4525 /*   Nothing.                                                               */
4526 /****************************************************************************/
4527 static void
4528 bce_init_com_cpu(struct bce_softc *sc)
4529 {
4530 	struct cpu_reg cpu_reg;
4531 	struct fw_info fw;
4532 
4533 	DBENTER(BCE_VERBOSE_RESET);
4534 
4535 	cpu_reg.mode = BCE_COM_CPU_MODE;
4536 	cpu_reg.mode_value_halt = BCE_COM_CPU_MODE_SOFT_HALT;
4537 	cpu_reg.mode_value_sstep = BCE_COM_CPU_MODE_STEP_ENA;
4538 	cpu_reg.state = BCE_COM_CPU_STATE;
4539 	cpu_reg.state_value_clear = 0xffffff;
4540 	cpu_reg.gpr0 = BCE_COM_CPU_REG_FILE;
4541 	cpu_reg.evmask = BCE_COM_CPU_EVENT_MASK;
4542 	cpu_reg.pc = BCE_COM_CPU_PROGRAM_COUNTER;
4543 	cpu_reg.inst = BCE_COM_CPU_INSTRUCTION;
4544 	cpu_reg.bp = BCE_COM_CPU_HW_BREAKPOINT;
4545 	cpu_reg.spad_base = BCE_COM_SCRATCH;
4546 	cpu_reg.mips_view_base = 0x8000000;
4547 
4548 	if (BCE_CHIP_NUM(sc) == BCE_CHIP_NUM_5709) {
4549 		fw.ver_major = bce_COM_b09FwReleaseMajor;
4550 		fw.ver_minor = bce_COM_b09FwReleaseMinor;
4551 		fw.ver_fix = bce_COM_b09FwReleaseFix;
4552 		fw.start_addr = bce_COM_b09FwStartAddr;
4553 
4554 		fw.text_addr = bce_COM_b09FwTextAddr;
4555 		fw.text_len = bce_COM_b09FwTextLen;
4556 		fw.text_index = 0;
4557 		fw.text = bce_COM_b09FwText;
4558 
4559 		fw.data_addr = bce_COM_b09FwDataAddr;
4560 		fw.data_len = bce_COM_b09FwDataLen;
4561 		fw.data_index = 0;
4562 		fw.data = bce_COM_b09FwData;
4563 
4564 		fw.sbss_addr = bce_COM_b09FwSbssAddr;
4565 		fw.sbss_len = bce_COM_b09FwSbssLen;
4566 		fw.sbss_index = 0;
4567 		fw.sbss = bce_COM_b09FwSbss;
4568 
4569 		fw.bss_addr = bce_COM_b09FwBssAddr;
4570 		fw.bss_len = bce_COM_b09FwBssLen;
4571 		fw.bss_index = 0;
4572 		fw.bss = bce_COM_b09FwBss;
4573 
4574 		fw.rodata_addr = bce_COM_b09FwRodataAddr;
4575 		fw.rodata_len = bce_COM_b09FwRodataLen;
4576 		fw.rodata_index = 0;
4577 		fw.rodata = bce_COM_b09FwRodata;
4578 	} else {
4579 		fw.ver_major = bce_COM_b06FwReleaseMajor;
4580 		fw.ver_minor = bce_COM_b06FwReleaseMinor;
4581 		fw.ver_fix = bce_COM_b06FwReleaseFix;
4582 		fw.start_addr = bce_COM_b06FwStartAddr;
4583 
4584 		fw.text_addr = bce_COM_b06FwTextAddr;
4585 		fw.text_len = bce_COM_b06FwTextLen;
4586 		fw.text_index = 0;
4587 		fw.text = bce_COM_b06FwText;
4588 
4589 		fw.data_addr = bce_COM_b06FwDataAddr;
4590 		fw.data_len = bce_COM_b06FwDataLen;
4591 		fw.data_index = 0;
4592 		fw.data = bce_COM_b06FwData;
4593 
4594 		fw.sbss_addr = bce_COM_b06FwSbssAddr;
4595 		fw.sbss_len = bce_COM_b06FwSbssLen;
4596 		fw.sbss_index = 0;
4597 		fw.sbss = bce_COM_b06FwSbss;
4598 
4599 		fw.bss_addr = bce_COM_b06FwBssAddr;
4600 		fw.bss_len = bce_COM_b06FwBssLen;
4601 		fw.bss_index = 0;
4602 		fw.bss = bce_COM_b06FwBss;
4603 
4604 		fw.rodata_addr = bce_COM_b06FwRodataAddr;
4605 		fw.rodata_len = bce_COM_b06FwRodataLen;
4606 		fw.rodata_index = 0;
4607 		fw.rodata = bce_COM_b06FwRodata;
4608 	}
4609 
4610 	DBPRINT(sc, BCE_INFO_RESET, "Loading COM firmware.\n");
4611 	bce_load_cpu_fw(sc, &cpu_reg, &fw);
4612 	bce_start_cpu(sc, &cpu_reg);
4613 
4614 	DBEXIT(BCE_VERBOSE_RESET);
4615 }
4616 
4617 /****************************************************************************/
4618 /* Initialize the RV2P, RX, TX, TPAT, COM, and CP CPUs.                     */
4619 /*                                                                          */
4620 /* Loads the firmware for each CPU and starts the CPU.                      */
4621 /*                                                                          */
4622 /* Returns:                                                                 */
4623 /*   Nothing.                                                               */
4624 /****************************************************************************/
4625 static void
4626 bce_init_cpus(struct bce_softc *sc)
4627 {
4628 	DBENTER(BCE_VERBOSE_RESET);
4629 
4630 	if (BCE_CHIP_NUM(sc) == BCE_CHIP_NUM_5709) {
4631 		if ((BCE_CHIP_REV(sc) == BCE_CHIP_REV_Ax)) {
4632 			bce_load_rv2p_fw(sc, bce_xi90_rv2p_proc1,
4633 			    sizeof(bce_xi90_rv2p_proc1), RV2P_PROC1);
4634 			bce_load_rv2p_fw(sc, bce_xi90_rv2p_proc2,
4635 			    sizeof(bce_xi90_rv2p_proc2), RV2P_PROC2);
4636 		} else {
4637 			bce_load_rv2p_fw(sc, bce_xi_rv2p_proc1,
4638 			    sizeof(bce_xi_rv2p_proc1), RV2P_PROC1);
4639 			bce_load_rv2p_fw(sc, bce_xi_rv2p_proc2,
4640 			    sizeof(bce_xi_rv2p_proc2), RV2P_PROC2);
4641 		}
4642 
4643 	} else {
4644 		bce_load_rv2p_fw(sc, bce_rv2p_proc1,
4645 		    sizeof(bce_rv2p_proc1), RV2P_PROC1);
4646 		bce_load_rv2p_fw(sc, bce_rv2p_proc2,
4647 		    sizeof(bce_rv2p_proc2), RV2P_PROC2);
4648 	}
4649 
4650 	bce_init_rxp_cpu(sc);
4651 	bce_init_txp_cpu(sc);
4652 	bce_init_tpat_cpu(sc);
4653 	bce_init_com_cpu(sc);
4654 	bce_init_cp_cpu(sc);
4655 
4656 	DBEXIT(BCE_VERBOSE_RESET);
4657 }
4658 
4659 /****************************************************************************/
4660 /* Initialize context memory.                                               */
4661 /*                                                                          */
4662 /* Clears the memory associated with each Context ID (CID).                 */
4663 /*                                                                          */
4664 /* Returns:                                                                 */
4665 /*   Nothing.                                                               */
4666 /****************************************************************************/
4667 static int
4668 bce_init_ctx(struct bce_softc *sc)
4669 {
4670 	u32 offset, val, vcid_addr;
4671 	int i, j, rc, retry_cnt;
4672 
4673 	rc = 0;
4674 	DBENTER(BCE_VERBOSE_RESET | BCE_VERBOSE_CTX);
4675 
4676 	if (BCE_CHIP_NUM(sc) == BCE_CHIP_NUM_5709) {
4677 		retry_cnt = CTX_INIT_RETRY_COUNT;
4678 
4679 		DBPRINT(sc, BCE_INFO_CTX, "Initializing 5709 context.\n");
4680 
4681 		/*
4682 		 * BCM5709 context memory may be cached
4683 		 * in host memory so prepare the host memory
4684 		 * for access.
4685 		 */
4686 		val = BCE_CTX_COMMAND_ENABLED |
4687 		    BCE_CTX_COMMAND_MEM_INIT | (1 << 12);
4688 		val |= (BCM_PAGE_BITS - 8) << 16;
4689 		REG_WR(sc, BCE_CTX_COMMAND, val);
4690 
4691 		/* Wait for mem init command to complete. */
4692 		for (i = 0; i < retry_cnt; i++) {
4693 			val = REG_RD(sc, BCE_CTX_COMMAND);
4694 			if (!(val & BCE_CTX_COMMAND_MEM_INIT))
4695 				break;
4696 			DELAY(2);
4697 		}
4698 		if ((val & BCE_CTX_COMMAND_MEM_INIT) != 0) {
4699 			BCE_PRINTF("%s(): Context memory initialization failed!\n",
4700 			    __FUNCTION__);
4701 			rc = EBUSY;
4702 			goto init_ctx_fail;
4703 		}
4704 
4705 		for (i = 0; i < sc->ctx_pages; i++) {
4706 			/* Set the physical address of the context memory. */
4707 			REG_WR(sc, BCE_CTX_HOST_PAGE_TBL_DATA0,
4708 			    BCE_ADDR_LO(sc->ctx_paddr[i] & 0xfffffff0) |
4709 			    BCE_CTX_HOST_PAGE_TBL_DATA0_VALID);
4710 			REG_WR(sc, BCE_CTX_HOST_PAGE_TBL_DATA1,
4711 			    BCE_ADDR_HI(sc->ctx_paddr[i]));
4712 			REG_WR(sc, BCE_CTX_HOST_PAGE_TBL_CTRL, i |
4713 			    BCE_CTX_HOST_PAGE_TBL_CTRL_WRITE_REQ);
4714 
4715 			/* Verify the context memory write was successful. */
4716 			for (j = 0; j < retry_cnt; j++) {
4717 				val = REG_RD(sc, BCE_CTX_HOST_PAGE_TBL_CTRL);
4718 				if ((val &
4719 				    BCE_CTX_HOST_PAGE_TBL_CTRL_WRITE_REQ) == 0)
4720 					break;
4721 				DELAY(5);
4722 			}
4723 			if ((val & BCE_CTX_HOST_PAGE_TBL_CTRL_WRITE_REQ) != 0) {
4724 				BCE_PRINTF("%s(): Failed to initialize "
4725 				    "context page %d!\n", __FUNCTION__, i);
4726 				rc = EBUSY;
4727 				goto init_ctx_fail;
4728 			}
4729 		}
4730 	} else {
4731 		DBPRINT(sc, BCE_INFO, "Initializing 5706/5708 context.\n");
4732 
4733 		/*
4734 		 * For the 5706/5708, context memory is local to
4735 		 * the controller, so initialize the controller
4736 		 * context memory.
4737 		 */
4738 
4739 		vcid_addr = GET_CID_ADDR(96);
4740 		while (vcid_addr) {
4741 			vcid_addr -= PHY_CTX_SIZE;
4742 
4743 			REG_WR(sc, BCE_CTX_VIRT_ADDR, 0);
4744 			REG_WR(sc, BCE_CTX_PAGE_TBL, vcid_addr);
4745 
4746 			for(offset = 0; offset < PHY_CTX_SIZE; offset += 4) {
4747 				CTX_WR(sc, 0x00, offset, 0);
4748 			}
4749 
4750 			REG_WR(sc, BCE_CTX_VIRT_ADDR, vcid_addr);
4751 			REG_WR(sc, BCE_CTX_PAGE_TBL, vcid_addr);
4752 		}
4753 	}
4754 init_ctx_fail:
4755 	DBEXIT(BCE_VERBOSE_RESET | BCE_VERBOSE_CTX);
4756 	return (rc);
4757 }
4758 
4759 /****************************************************************************/
4760 /* Fetch the permanent MAC address of the controller.                       */
4761 /*                                                                          */
4762 /* Returns:                                                                 */
4763 /*   Nothing.                                                               */
4764 /****************************************************************************/
4765 static void
4766 bce_get_mac_addr(struct bce_softc *sc)
4767 {
4768 	u32 mac_lo = 0, mac_hi = 0;
4769 
4770 	DBENTER(BCE_VERBOSE_RESET);
4771 
4772 	/*
4773 	 * The NetXtreme II bootcode populates various NIC
4774 	 * power-on and runtime configuration items in a
4775 	 * shared memory area.  The factory configured MAC
4776 	 * address is available from both NVRAM and the
4777 	 * shared memory area so we'll read the value from
4778 	 * shared memory for speed.
4779 	 */
4780 
4781 	mac_hi = bce_shmem_rd(sc, BCE_PORT_HW_CFG_MAC_UPPER);
4782 	mac_lo = bce_shmem_rd(sc, BCE_PORT_HW_CFG_MAC_LOWER);
4783 
4784 	if ((mac_lo == 0) && (mac_hi == 0)) {
4785 		BCE_PRINTF("%s(%d): Invalid Ethernet address!\n",
4786 		    __FILE__, __LINE__);
4787 	} else {
4788 		sc->eaddr[0] = (u_char)(mac_hi >> 8);
4789 		sc->eaddr[1] = (u_char)(mac_hi >> 0);
4790 		sc->eaddr[2] = (u_char)(mac_lo >> 24);
4791 		sc->eaddr[3] = (u_char)(mac_lo >> 16);
4792 		sc->eaddr[4] = (u_char)(mac_lo >> 8);
4793 		sc->eaddr[5] = (u_char)(mac_lo >> 0);
4794 	}
4795 
4796 	DBPRINT(sc, BCE_INFO_MISC, "Permanent Ethernet "
4797 	    "address = %6D\n", sc->eaddr, ":");
4798 	DBEXIT(BCE_VERBOSE_RESET);
4799 }
4800 
4801 /****************************************************************************/
4802 /* Program the MAC address.                                                 */
4803 /*                                                                          */
4804 /* Returns:                                                                 */
4805 /*   Nothing.                                                               */
4806 /****************************************************************************/
4807 static void
4808 bce_set_mac_addr(struct bce_softc *sc)
4809 {
4810 	u32 val;
4811 	u8 *mac_addr = sc->eaddr;
4812 
4813 	/* ToDo: Add support for setting multiple MAC addresses. */
4814 
4815 	DBENTER(BCE_VERBOSE_RESET);
4816 	DBPRINT(sc, BCE_INFO_MISC, "Setting Ethernet address = "
4817 	    "%6D\n", sc->eaddr, ":");
4818 
4819 	val = (mac_addr[0] << 8) | mac_addr[1];
4820 
4821 	REG_WR(sc, BCE_EMAC_MAC_MATCH0, val);
4822 
4823 	val = (mac_addr[2] << 24) | (mac_addr[3] << 16) |
4824 	    (mac_addr[4] << 8) | mac_addr[5];
4825 
4826 	REG_WR(sc, BCE_EMAC_MAC_MATCH1, val);
4827 
4828 	DBEXIT(BCE_VERBOSE_RESET);
4829 }
4830 
4831 /****************************************************************************/
4832 /* Stop the controller.                                                     */
4833 /*                                                                          */
4834 /* Returns:                                                                 */
4835 /*   Nothing.                                                               */
4836 /****************************************************************************/
4837 static void
4838 bce_stop(struct bce_softc *sc)
4839 {
4840 	struct ifnet *ifp;
4841 
4842 	DBENTER(BCE_VERBOSE_RESET);
4843 
4844 	BCE_LOCK_ASSERT(sc);
4845 
4846 	ifp = sc->bce_ifp;
4847 
4848 	callout_stop(&sc->bce_tick_callout);
4849 
4850 	/* Disable the transmit/receive blocks. */
4851 	REG_WR(sc, BCE_MISC_ENABLE_CLR_BITS, BCE_MISC_ENABLE_CLR_DEFAULT);
4852 	REG_RD(sc, BCE_MISC_ENABLE_CLR_BITS);
4853 	DELAY(20);
4854 
4855 	bce_disable_intr(sc);
4856 
4857 	/* Free RX buffers. */
4858 	if (bce_hdr_split == TRUE) {
4859 		bce_free_pg_chain(sc);
4860 	}
4861 	bce_free_rx_chain(sc);
4862 
4863 	/* Free TX buffers. */
4864 	bce_free_tx_chain(sc);
4865 
4866 	sc->watchdog_timer = 0;
4867 
4868 	sc->bce_link_up = FALSE;
4869 
4870 	ifp->if_drv_flags &= ~(IFF_DRV_RUNNING | IFF_DRV_OACTIVE);
4871 
4872 	DBEXIT(BCE_VERBOSE_RESET);
4873 }
4874 
4875 static int
4876 bce_reset(struct bce_softc *sc, u32 reset_code)
4877 {
4878 	u32 emac_mode_save, val;
4879 	int i, rc = 0;
4880 	static const u32 emac_mode_mask = BCE_EMAC_MODE_PORT |
4881 	    BCE_EMAC_MODE_HALF_DUPLEX | BCE_EMAC_MODE_25G;
4882 
4883 	DBENTER(BCE_VERBOSE_RESET);
4884 
4885 	DBPRINT(sc, BCE_VERBOSE_RESET, "%s(): reset_code = 0x%08X\n",
4886 	    __FUNCTION__, reset_code);
4887 
4888 	/*
4889 	 * If ASF/IPMI is operational, then the EMAC Mode register already
4890 	 * contains appropriate values for the link settings that have
4891 	 * been auto-negotiated.  Resetting the chip will clobber those
4892 	 * values.  Save the important bits so we can restore them after
4893 	 * the reset.
4894 	 */
4895 	emac_mode_save = REG_RD(sc, BCE_EMAC_MODE) & emac_mode_mask;
4896 
4897 	/* Wait for pending PCI transactions to complete. */
4898 	REG_WR(sc, BCE_MISC_ENABLE_CLR_BITS,
4899 	    BCE_MISC_ENABLE_CLR_BITS_TX_DMA_ENABLE |
4900 	    BCE_MISC_ENABLE_CLR_BITS_DMA_ENGINE_ENABLE |
4901 	    BCE_MISC_ENABLE_CLR_BITS_RX_DMA_ENABLE |
4902 	    BCE_MISC_ENABLE_CLR_BITS_HOST_COALESCE_ENABLE);
4903 	val = REG_RD(sc, BCE_MISC_ENABLE_CLR_BITS);
4904 	DELAY(5);
4905 
4906 	/* Disable DMA */
4907 	if (BCE_CHIP_NUM(sc) == BCE_CHIP_NUM_5709) {
4908 		val = REG_RD(sc, BCE_MISC_NEW_CORE_CTL);
4909 		val &= ~BCE_MISC_NEW_CORE_CTL_DMA_ENABLE;
4910 		REG_WR(sc, BCE_MISC_NEW_CORE_CTL, val);
4911 	}
4912 
4913 	/* Assume bootcode is running. */
4914 	sc->bce_fw_timed_out = FALSE;
4915 	sc->bce_drv_cardiac_arrest = FALSE;
4916 
4917 	/* Give the firmware a chance to prepare for the reset. */
4918 	rc = bce_fw_sync(sc, BCE_DRV_MSG_DATA_WAIT0 | reset_code);
4919 	if (rc)
4920 		goto bce_reset_exit;
4921 
4922 	/* Set a firmware reminder that this is a soft reset. */
4923 	bce_shmem_wr(sc, BCE_DRV_RESET_SIGNATURE, BCE_DRV_RESET_SIGNATURE_MAGIC);
4924 
4925 	/* Dummy read to force the chip to complete all current transactions. */
4926 	val = REG_RD(sc, BCE_MISC_ID);
4927 
4928 	/* Chip reset. */
4929 	if (BCE_CHIP_NUM(sc) == BCE_CHIP_NUM_5709) {
4930 		REG_WR(sc, BCE_MISC_COMMAND, BCE_MISC_COMMAND_SW_RESET);
4931 		REG_RD(sc, BCE_MISC_COMMAND);
4932 		DELAY(5);
4933 
4934 		val = BCE_PCICFG_MISC_CONFIG_REG_WINDOW_ENA |
4935 		    BCE_PCICFG_MISC_CONFIG_TARGET_MB_WORD_SWAP;
4936 
4937 		pci_write_config(sc->bce_dev, BCE_PCICFG_MISC_CONFIG, val, 4);
4938 	} else {
4939 		val = BCE_PCICFG_MISC_CONFIG_CORE_RST_REQ |
4940 		    BCE_PCICFG_MISC_CONFIG_REG_WINDOW_ENA |
4941 		    BCE_PCICFG_MISC_CONFIG_TARGET_MB_WORD_SWAP;
4942 		REG_WR(sc, BCE_PCICFG_MISC_CONFIG, val);
4943 
4944 		/* Allow up to 30us for reset to complete. */
4945 		for (i = 0; i < 10; i++) {
4946 			val = REG_RD(sc, BCE_PCICFG_MISC_CONFIG);
4947 			if ((val & (BCE_PCICFG_MISC_CONFIG_CORE_RST_REQ |
4948 			    BCE_PCICFG_MISC_CONFIG_CORE_RST_BSY)) == 0) {
4949 				break;
4950 			}
4951 			DELAY(10);
4952 		}
4953 
4954 		/* Check that reset completed successfully. */
4955 		if (val & (BCE_PCICFG_MISC_CONFIG_CORE_RST_REQ |
4956 		    BCE_PCICFG_MISC_CONFIG_CORE_RST_BSY)) {
4957 			BCE_PRINTF("%s(%d): Reset failed!\n",
4958 			    __FILE__, __LINE__);
4959 			rc = EBUSY;
4960 			goto bce_reset_exit;
4961 		}
4962 	}
4963 
4964 	/* Make sure byte swapping is properly configured. */
4965 	val = REG_RD(sc, BCE_PCI_SWAP_DIAG0);
4966 	if (val != 0x01020304) {
4967 		BCE_PRINTF("%s(%d): Byte swap is incorrect!\n",
4968 		    __FILE__, __LINE__);
4969 		rc = ENODEV;
4970 		goto bce_reset_exit;
4971 	}
4972 
4973 	/* Just completed a reset, assume that firmware is running again. */
4974 	sc->bce_fw_timed_out = FALSE;
4975 	sc->bce_drv_cardiac_arrest = FALSE;
4976 
4977 	/* Wait for the firmware to finish its initialization. */
4978 	rc = bce_fw_sync(sc, BCE_DRV_MSG_DATA_WAIT1 | reset_code);
4979 	if (rc)
4980 		BCE_PRINTF("%s(%d): Firmware did not complete "
4981 		    "initialization!\n", __FILE__, __LINE__);
4982 	/* Get firmware capabilities. */
4983 	bce_fw_cap_init(sc);
4984 
4985 bce_reset_exit:
4986 	/* Restore EMAC Mode bits needed to keep ASF/IPMI running. */
4987 	if (reset_code == BCE_DRV_MSG_CODE_RESET) {
4988 		val = REG_RD(sc, BCE_EMAC_MODE);
4989 		val = (val & ~emac_mode_mask) | emac_mode_save;
4990 		REG_WR(sc, BCE_EMAC_MODE, val);
4991 	}
4992 
4993 	DBEXIT(BCE_VERBOSE_RESET);
4994 	return (rc);
4995 }
4996 
4997 static int
4998 bce_chipinit(struct bce_softc *sc)
4999 {
5000 	u32 val;
5001 	int rc = 0;
5002 
5003 	DBENTER(BCE_VERBOSE_RESET);
5004 
5005 	bce_disable_intr(sc);
5006 
5007 	/*
5008 	 * Initialize DMA byte/word swapping, configure the number of DMA
5009 	 * channels and PCI clock compensation delay.
5010 	 */
5011 	val = BCE_DMA_CONFIG_DATA_BYTE_SWAP |
5012 	    BCE_DMA_CONFIG_DATA_WORD_SWAP |
5013 #if BYTE_ORDER == BIG_ENDIAN
5014 	    BCE_DMA_CONFIG_CNTL_BYTE_SWAP |
5015 #endif
5016 	    BCE_DMA_CONFIG_CNTL_WORD_SWAP |
5017 	    DMA_READ_CHANS << 12 |
5018 	    DMA_WRITE_CHANS << 16;
5019 
5020 	val |= (0x2 << 20) | BCE_DMA_CONFIG_CNTL_PCI_COMP_DLY;
5021 
5022 	if ((sc->bce_flags & BCE_PCIX_FLAG) && (sc->bus_speed_mhz == 133))
5023 		val |= BCE_DMA_CONFIG_PCI_FAST_CLK_CMP;
5024 
5025 	/*
5026 	 * This setting resolves a problem observed on certain Intel PCI
5027 	 * chipsets that cannot handle multiple outstanding DMA operations.
5028 	 * See errata E9_5706A1_65.
5029 	 */
5030 	if ((BCE_CHIP_NUM(sc) == BCE_CHIP_NUM_5706) &&
5031 	    (BCE_CHIP_ID(sc) != BCE_CHIP_ID_5706_A0) &&
5032 	    !(sc->bce_flags & BCE_PCIX_FLAG))
5033 		val |= BCE_DMA_CONFIG_CNTL_PING_PONG_DMA;
5034 
5035 	REG_WR(sc, BCE_DMA_CONFIG, val);
5036 
5037 	/* Enable the RX_V2P and Context state machines before access. */
5038 	REG_WR(sc, BCE_MISC_ENABLE_SET_BITS,
5039 	    BCE_MISC_ENABLE_SET_BITS_HOST_COALESCE_ENABLE |
5040 	    BCE_MISC_ENABLE_STATUS_BITS_RX_V2P_ENABLE |
5041 	    BCE_MISC_ENABLE_STATUS_BITS_CONTEXT_ENABLE);
5042 
5043 	/* Initialize context mapping and zero out the quick contexts. */
5044 	if ((rc = bce_init_ctx(sc)) != 0)
5045 		goto bce_chipinit_exit;
5046 
5047 	/* Initialize the on-boards CPUs */
5048 	bce_init_cpus(sc);
5049 
5050 	/* Enable management frames (NC-SI) to flow to the MCP. */
5051 	if (sc->bce_flags & BCE_MFW_ENABLE_FLAG) {
5052 		val = REG_RD(sc, BCE_RPM_MGMT_PKT_CTRL) | BCE_RPM_MGMT_PKT_CTRL_MGMT_EN;
5053 		REG_WR(sc, BCE_RPM_MGMT_PKT_CTRL, val);
5054 	}
5055 
5056 	/* Prepare NVRAM for access. */
5057 	if ((rc = bce_init_nvram(sc)) != 0)
5058 		goto bce_chipinit_exit;
5059 
5060 	/* Set the kernel bypass block size */
5061 	val = REG_RD(sc, BCE_MQ_CONFIG);
5062 	val &= ~BCE_MQ_CONFIG_KNL_BYP_BLK_SIZE;
5063 	val |= BCE_MQ_CONFIG_KNL_BYP_BLK_SIZE_256;
5064 
5065 	/* Enable bins used on the 5709. */
5066 	if (BCE_CHIP_NUM(sc) == BCE_CHIP_NUM_5709) {
5067 		val |= BCE_MQ_CONFIG_BIN_MQ_MODE;
5068 		if (BCE_CHIP_ID(sc) == BCE_CHIP_ID_5709_A1)
5069 			val |= BCE_MQ_CONFIG_HALT_DIS;
5070 	}
5071 
5072 	REG_WR(sc, BCE_MQ_CONFIG, val);
5073 
5074 	val = 0x10000 + (MAX_CID_CNT * MB_KERNEL_CTX_SIZE);
5075 	REG_WR(sc, BCE_MQ_KNL_BYP_WIND_START, val);
5076 	REG_WR(sc, BCE_MQ_KNL_WIND_END, val);
5077 
5078 	/* Set the page size and clear the RV2P processor stall bits. */
5079 	val = (BCM_PAGE_BITS - 8) << 24;
5080 	REG_WR(sc, BCE_RV2P_CONFIG, val);
5081 
5082 	/* Configure page size. */
5083 	val = REG_RD(sc, BCE_TBDR_CONFIG);
5084 	val &= ~BCE_TBDR_CONFIG_PAGE_SIZE;
5085 	val |= (BCM_PAGE_BITS - 8) << 24 | 0x40;
5086 	REG_WR(sc, BCE_TBDR_CONFIG, val);
5087 
5088 	/* Set the perfect match control register to default. */
5089 	REG_WR_IND(sc, BCE_RXP_PM_CTRL, 0);
5090 
5091 bce_chipinit_exit:
5092 	DBEXIT(BCE_VERBOSE_RESET);
5093 
5094 	return(rc);
5095 }
5096 
5097 /****************************************************************************/
5098 /* Initialize the controller in preparation to send/receive traffic.        */
5099 /*                                                                          */
5100 /* Returns:                                                                 */
5101 /*   0 for success, positive value for failure.                             */
5102 /****************************************************************************/
5103 static int
5104 bce_blockinit(struct bce_softc *sc)
5105 {
5106 	u32 reg, val;
5107 	int rc = 0;
5108 
5109 	DBENTER(BCE_VERBOSE_RESET);
5110 
5111 	/* Load the hardware default MAC address. */
5112 	bce_set_mac_addr(sc);
5113 
5114 	/* Set the Ethernet backoff seed value */
5115 	val = sc->eaddr[0]         + (sc->eaddr[1] << 8) +
5116 	      (sc->eaddr[2] << 16) + (sc->eaddr[3]     ) +
5117 	      (sc->eaddr[4] << 8)  + (sc->eaddr[5] << 16);
5118 	REG_WR(sc, BCE_EMAC_BACKOFF_SEED, val);
5119 
5120 	sc->last_status_idx = 0;
5121 	sc->rx_mode = BCE_EMAC_RX_MODE_SORT_MODE;
5122 
5123 	/* Set up link change interrupt generation. */
5124 	REG_WR(sc, BCE_EMAC_ATTENTION_ENA, BCE_EMAC_ATTENTION_ENA_LINK);
5125 
5126 	/* Program the physical address of the status block. */
5127 	REG_WR(sc, BCE_HC_STATUS_ADDR_L,
5128 	    BCE_ADDR_LO(sc->status_block_paddr));
5129 	REG_WR(sc, BCE_HC_STATUS_ADDR_H,
5130 	    BCE_ADDR_HI(sc->status_block_paddr));
5131 
5132 	/* Program the physical address of the statistics block. */
5133 	REG_WR(sc, BCE_HC_STATISTICS_ADDR_L,
5134 	    BCE_ADDR_LO(sc->stats_block_paddr));
5135 	REG_WR(sc, BCE_HC_STATISTICS_ADDR_H,
5136 	    BCE_ADDR_HI(sc->stats_block_paddr));
5137 
5138 	/*
5139 	 * Program various host coalescing parameters.
5140 	 * Trip points control how many BDs should be ready before generating
5141 	 * an interrupt while ticks control how long a BD can sit in the chain
5142 	 * before generating an interrupt.
5143 	 */
5144 	REG_WR(sc, BCE_HC_TX_QUICK_CONS_TRIP,
5145 	    (sc->bce_tx_quick_cons_trip_int << 16) |
5146 	    sc->bce_tx_quick_cons_trip);
5147 	REG_WR(sc, BCE_HC_RX_QUICK_CONS_TRIP,
5148 	    (sc->bce_rx_quick_cons_trip_int << 16) |
5149 	    sc->bce_rx_quick_cons_trip);
5150 	REG_WR(sc, BCE_HC_TX_TICKS,
5151 	    (sc->bce_tx_ticks_int << 16) | sc->bce_tx_ticks);
5152 	REG_WR(sc, BCE_HC_RX_TICKS,
5153 	    (sc->bce_rx_ticks_int << 16) | sc->bce_rx_ticks);
5154 	REG_WR(sc, BCE_HC_STATS_TICKS, sc->bce_stats_ticks & 0xffff00);
5155 	REG_WR(sc, BCE_HC_STAT_COLLECT_TICKS, 0xbb8);  /* 3ms */
5156 	/* Not used for L2. */
5157 	REG_WR(sc, BCE_HC_COMP_PROD_TRIP, 0);
5158 	REG_WR(sc, BCE_HC_COM_TICKS, 0);
5159 	REG_WR(sc, BCE_HC_CMD_TICKS, 0);
5160 
5161 	/* Configure the Host Coalescing block. */
5162 	val = BCE_HC_CONFIG_RX_TMR_MODE | BCE_HC_CONFIG_TX_TMR_MODE |
5163 	    BCE_HC_CONFIG_COLLECT_STATS;
5164 
5165 #if 0
5166 	/* ToDo: Add MSI-X support. */
5167 	if (sc->bce_flags & BCE_USING_MSIX_FLAG) {
5168 		u32 base = ((BCE_TX_VEC - 1) * BCE_HC_SB_CONFIG_SIZE) +
5169 		    BCE_HC_SB_CONFIG_1;
5170 
5171 		REG_WR(sc, BCE_HC_MSIX_BIT_VECTOR, BCE_HC_MSIX_BIT_VECTOR_VAL);
5172 
5173 		REG_WR(sc, base, BCE_HC_SB_CONFIG_1_TX_TMR_MODE |
5174 		    BCE_HC_SB_CONFIG_1_ONE_SHOT);
5175 
5176 		REG_WR(sc, base + BCE_HC_TX_QUICK_CONS_TRIP_OFF,
5177 		    (sc->tx_quick_cons_trip_int << 16) |
5178 		     sc->tx_quick_cons_trip);
5179 
5180 		REG_WR(sc, base + BCE_HC_TX_TICKS_OFF,
5181 		    (sc->tx_ticks_int << 16) | sc->tx_ticks);
5182 
5183 		val |= BCE_HC_CONFIG_SB_ADDR_INC_128B;
5184 	}
5185 
5186 	/*
5187 	 * Tell the HC block to automatically set the
5188 	 * INT_MASK bit after an MSI/MSI-X interrupt
5189 	 * is generated so the driver doesn't have to.
5190 	 */
5191 	if (sc->bce_flags & BCE_ONE_SHOT_MSI_FLAG)
5192 		val |= BCE_HC_CONFIG_ONE_SHOT;
5193 
5194 	/* Set the MSI-X status blocks to 128 byte boundaries. */
5195 	if (sc->bce_flags & BCE_USING_MSIX_FLAG)
5196 		val |= BCE_HC_CONFIG_SB_ADDR_INC_128B;
5197 #endif
5198 
5199 	REG_WR(sc, BCE_HC_CONFIG, val);
5200 
5201 	/* Clear the internal statistics counters. */
5202 	REG_WR(sc, BCE_HC_COMMAND, BCE_HC_COMMAND_CLR_STAT_NOW);
5203 
5204 	/* Verify that bootcode is running. */
5205 	reg = bce_shmem_rd(sc, BCE_DEV_INFO_SIGNATURE);
5206 
5207 	DBRUNIF(DB_RANDOMTRUE(bootcode_running_failure_sim_control),
5208 	    BCE_PRINTF("%s(%d): Simulating bootcode failure.\n",
5209 	    __FILE__, __LINE__);
5210 	    reg = 0);
5211 
5212 	if ((reg & BCE_DEV_INFO_SIGNATURE_MAGIC_MASK) !=
5213 	    BCE_DEV_INFO_SIGNATURE_MAGIC) {
5214 		BCE_PRINTF("%s(%d): Bootcode not running! Found: 0x%08X, "
5215 		    "Expected: 08%08X\n", __FILE__, __LINE__,
5216 		    (reg & BCE_DEV_INFO_SIGNATURE_MAGIC_MASK),
5217 		    BCE_DEV_INFO_SIGNATURE_MAGIC);
5218 		rc = ENODEV;
5219 		goto bce_blockinit_exit;
5220 	}
5221 
5222 	/* Enable DMA */
5223 	if (BCE_CHIP_NUM(sc) == BCE_CHIP_NUM_5709) {
5224 		val = REG_RD(sc, BCE_MISC_NEW_CORE_CTL);
5225 		val |= BCE_MISC_NEW_CORE_CTL_DMA_ENABLE;
5226 		REG_WR(sc, BCE_MISC_NEW_CORE_CTL, val);
5227 	}
5228 
5229 	/* Allow bootcode to apply additional fixes before enabling MAC. */
5230 	rc = bce_fw_sync(sc, BCE_DRV_MSG_DATA_WAIT2 |
5231 	    BCE_DRV_MSG_CODE_RESET);
5232 
5233 	/* Enable link state change interrupt generation. */
5234 	REG_WR(sc, BCE_HC_ATTN_BITS_ENABLE, STATUS_ATTN_BITS_LINK_STATE);
5235 
5236 	/* Enable the RXP. */
5237 	bce_start_rxp_cpu(sc);
5238 
5239 	/* Disable management frames (NC-SI) from flowing to the MCP. */
5240 	if (sc->bce_flags & BCE_MFW_ENABLE_FLAG) {
5241 		val = REG_RD(sc, BCE_RPM_MGMT_PKT_CTRL) &
5242 		    ~BCE_RPM_MGMT_PKT_CTRL_MGMT_EN;
5243 		REG_WR(sc, BCE_RPM_MGMT_PKT_CTRL, val);
5244 	}
5245 
5246 	/* Enable all remaining blocks in the MAC. */
5247 	if (BCE_CHIP_NUM(sc) == BCE_CHIP_NUM_5709)
5248 		REG_WR(sc, BCE_MISC_ENABLE_SET_BITS,
5249 		    BCE_MISC_ENABLE_DEFAULT_XI);
5250 	else
5251 		REG_WR(sc, BCE_MISC_ENABLE_SET_BITS,
5252 		    BCE_MISC_ENABLE_DEFAULT);
5253 
5254 	REG_RD(sc, BCE_MISC_ENABLE_SET_BITS);
5255 	DELAY(20);
5256 
5257 	/* Save the current host coalescing block settings. */
5258 	sc->hc_command = REG_RD(sc, BCE_HC_COMMAND);
5259 
5260 bce_blockinit_exit:
5261 	DBEXIT(BCE_VERBOSE_RESET);
5262 
5263 	return (rc);
5264 }
5265 
5266 /****************************************************************************/
5267 /* Encapsulate an mbuf into the rx_bd chain.                                */
5268 /*                                                                          */
5269 /* Returns:                                                                 */
5270 /*   0 for success, positive value for failure.                             */
5271 /****************************************************************************/
5272 static int
5273 bce_get_rx_buf(struct bce_softc *sc, u16 prod, u16 chain_prod, u32 *prod_bseq)
5274 {
5275 	bus_dma_segment_t segs[1];
5276 	struct mbuf *m_new = NULL;
5277 	struct rx_bd *rxbd;
5278 	int nsegs, error, rc = 0;
5279 #ifdef BCE_DEBUG
5280 	u16 debug_chain_prod = chain_prod;
5281 #endif
5282 
5283 	DBENTER(BCE_EXTREME_RESET | BCE_EXTREME_RECV | BCE_EXTREME_LOAD);
5284 
5285 	/* Make sure the inputs are valid. */
5286 	DBRUNIF((chain_prod > MAX_RX_BD_ALLOC),
5287 	    BCE_PRINTF("%s(%d): RX producer out of range: "
5288 	    "0x%04X > 0x%04X\n", __FILE__, __LINE__,
5289 	    chain_prod, (u16)MAX_RX_BD_ALLOC));
5290 
5291 	DBPRINT(sc, BCE_EXTREME_RECV, "%s(enter): prod = 0x%04X, "
5292 	    "chain_prod = 0x%04X, prod_bseq = 0x%08X\n", __FUNCTION__,
5293 	    prod, chain_prod, *prod_bseq);
5294 
5295 	/* Update some debug statistic counters */
5296 	DBRUNIF((sc->free_rx_bd < sc->rx_low_watermark),
5297 	    sc->rx_low_watermark = sc->free_rx_bd);
5298 	DBRUNIF((sc->free_rx_bd == sc->max_rx_bd),
5299 	    sc->rx_empty_count++);
5300 
5301 	/* Simulate an mbuf allocation failure. */
5302 	DBRUNIF(DB_RANDOMTRUE(mbuf_alloc_failed_sim_control),
5303 	    sc->mbuf_alloc_failed_count++;
5304 	    sc->mbuf_alloc_failed_sim_count++;
5305 	    rc = ENOBUFS;
5306 	    goto bce_get_rx_buf_exit);
5307 
5308 	/* This is a new mbuf allocation. */
5309 	if (bce_hdr_split == TRUE)
5310 		MGETHDR(m_new, M_NOWAIT, MT_DATA);
5311 	else
5312 		m_new = m_getjcl(M_NOWAIT, MT_DATA, M_PKTHDR,
5313 		    sc->rx_bd_mbuf_alloc_size);
5314 
5315 	if (m_new == NULL) {
5316 		sc->mbuf_alloc_failed_count++;
5317 		rc = ENOBUFS;
5318 		goto bce_get_rx_buf_exit;
5319 	}
5320 
5321 	DBRUN(sc->debug_rx_mbuf_alloc++);
5322 
5323 	/* Make sure we have a valid packet header. */
5324 	M_ASSERTPKTHDR(m_new);
5325 
5326 	/* Initialize the mbuf size and pad if necessary for alignment. */
5327 	m_new->m_pkthdr.len = m_new->m_len = sc->rx_bd_mbuf_alloc_size;
5328 	m_adj(m_new, sc->rx_bd_mbuf_align_pad);
5329 
5330 	/* ToDo: Consider calling m_fragment() to test error handling. */
5331 
5332 	/* Map the mbuf cluster into device memory. */
5333 	error = bus_dmamap_load_mbuf_sg(sc->rx_mbuf_tag,
5334 	    sc->rx_mbuf_map[chain_prod], m_new, segs, &nsegs, BUS_DMA_NOWAIT);
5335 
5336 	/* Handle any mapping errors. */
5337 	if (error) {
5338 		BCE_PRINTF("%s(%d): Error mapping mbuf into RX "
5339 		    "chain (%d)!\n", __FILE__, __LINE__, error);
5340 
5341 		sc->dma_map_addr_rx_failed_count++;
5342 		m_freem(m_new);
5343 
5344 		DBRUN(sc->debug_rx_mbuf_alloc--);
5345 
5346 		rc = ENOBUFS;
5347 		goto bce_get_rx_buf_exit;
5348 	}
5349 
5350 	/* All mbufs must map to a single segment. */
5351 	KASSERT(nsegs == 1, ("%s(): Too many segments returned (%d)!",
5352 	    __FUNCTION__, nsegs));
5353 
5354 	/* Setup the rx_bd for the segment. */
5355 	rxbd = &sc->rx_bd_chain[RX_PAGE(chain_prod)][RX_IDX(chain_prod)];
5356 
5357 	rxbd->rx_bd_haddr_lo  = htole32(BCE_ADDR_LO(segs[0].ds_addr));
5358 	rxbd->rx_bd_haddr_hi  = htole32(BCE_ADDR_HI(segs[0].ds_addr));
5359 	rxbd->rx_bd_len       = htole32(segs[0].ds_len);
5360 	rxbd->rx_bd_flags     = htole32(RX_BD_FLAGS_START | RX_BD_FLAGS_END);
5361 	*prod_bseq += segs[0].ds_len;
5362 
5363 	/* Save the mbuf and update our counter. */
5364 	sc->rx_mbuf_ptr[chain_prod] = m_new;
5365 	sc->free_rx_bd -= nsegs;
5366 
5367 	DBRUNMSG(BCE_INSANE_RECV,
5368 	    bce_dump_rx_mbuf_chain(sc, debug_chain_prod, nsegs));
5369 
5370 	DBPRINT(sc, BCE_EXTREME_RECV, "%s(exit): prod = 0x%04X, "
5371 	    "chain_prod = 0x%04X, prod_bseq = 0x%08X\n", __FUNCTION__, prod,
5372 	    chain_prod, *prod_bseq);
5373 
5374 bce_get_rx_buf_exit:
5375 	DBEXIT(BCE_EXTREME_RESET | BCE_EXTREME_RECV | BCE_EXTREME_LOAD);
5376 
5377 	return(rc);
5378 }
5379 
5380 /****************************************************************************/
5381 /* Encapsulate an mbuf cluster into the page chain.                         */
5382 /*                                                                          */
5383 /* Returns:                                                                 */
5384 /*   0 for success, positive value for failure.                             */
5385 /****************************************************************************/
5386 static int
5387 bce_get_pg_buf(struct bce_softc *sc, u16 prod, u16 prod_idx)
5388 {
5389 	bus_dma_segment_t segs[1];
5390 	struct mbuf *m_new = NULL;
5391 	struct rx_bd *pgbd;
5392 	int error, nsegs, rc = 0;
5393 #ifdef BCE_DEBUG
5394 	u16 debug_prod_idx = prod_idx;
5395 #endif
5396 
5397 	DBENTER(BCE_EXTREME_RESET | BCE_EXTREME_RECV | BCE_EXTREME_LOAD);
5398 
5399 	/* Make sure the inputs are valid. */
5400 	DBRUNIF((prod_idx > MAX_PG_BD_ALLOC),
5401 	    BCE_PRINTF("%s(%d): page producer out of range: "
5402 	    "0x%04X > 0x%04X\n", __FILE__, __LINE__,
5403 	    prod_idx, (u16)MAX_PG_BD_ALLOC));
5404 
5405 	DBPRINT(sc, BCE_EXTREME_RECV, "%s(enter): prod = 0x%04X, "
5406 	    "chain_prod = 0x%04X\n", __FUNCTION__, prod, prod_idx);
5407 
5408 	/* Update counters if we've hit a new low or run out of pages. */
5409 	DBRUNIF((sc->free_pg_bd < sc->pg_low_watermark),
5410 	    sc->pg_low_watermark = sc->free_pg_bd);
5411 	DBRUNIF((sc->free_pg_bd == sc->max_pg_bd), sc->pg_empty_count++);
5412 
5413 	/* Simulate an mbuf allocation failure. */
5414 	DBRUNIF(DB_RANDOMTRUE(mbuf_alloc_failed_sim_control),
5415 	    sc->mbuf_alloc_failed_count++;
5416 	    sc->mbuf_alloc_failed_sim_count++;
5417 	    rc = ENOBUFS;
5418 	    goto bce_get_pg_buf_exit);
5419 
5420 	/* This is a new mbuf allocation. */
5421 	m_new = m_getcl(M_NOWAIT, MT_DATA, 0);
5422 	if (m_new == NULL) {
5423 		sc->mbuf_alloc_failed_count++;
5424 		rc = ENOBUFS;
5425 		goto bce_get_pg_buf_exit;
5426 	}
5427 
5428 	DBRUN(sc->debug_pg_mbuf_alloc++);
5429 
5430 	m_new->m_len = MCLBYTES;
5431 
5432 	/* ToDo: Consider calling m_fragment() to test error handling. */
5433 
5434 	/* Map the mbuf cluster into device memory. */
5435 	error = bus_dmamap_load_mbuf_sg(sc->pg_mbuf_tag,
5436 	    sc->pg_mbuf_map[prod_idx], m_new, segs, &nsegs, BUS_DMA_NOWAIT);
5437 
5438 	/* Handle any mapping errors. */
5439 	if (error) {
5440 		BCE_PRINTF("%s(%d): Error mapping mbuf into page chain!\n",
5441 		    __FILE__, __LINE__);
5442 
5443 		m_freem(m_new);
5444 		DBRUN(sc->debug_pg_mbuf_alloc--);
5445 
5446 		rc = ENOBUFS;
5447 		goto bce_get_pg_buf_exit;
5448 	}
5449 
5450 	/* All mbufs must map to a single segment. */
5451 	KASSERT(nsegs == 1, ("%s(): Too many segments returned (%d)!",
5452 	    __FUNCTION__, nsegs));
5453 
5454 	/* ToDo: Do we need bus_dmamap_sync(,,BUS_DMASYNC_PREREAD) here? */
5455 
5456 	/*
5457 	 * The page chain uses the same rx_bd data structure
5458 	 * as the receive chain but doesn't require a byte sequence (bseq).
5459 	 */
5460 	pgbd = &sc->pg_bd_chain[PG_PAGE(prod_idx)][PG_IDX(prod_idx)];
5461 
5462 	pgbd->rx_bd_haddr_lo  = htole32(BCE_ADDR_LO(segs[0].ds_addr));
5463 	pgbd->rx_bd_haddr_hi  = htole32(BCE_ADDR_HI(segs[0].ds_addr));
5464 	pgbd->rx_bd_len       = htole32(MCLBYTES);
5465 	pgbd->rx_bd_flags     = htole32(RX_BD_FLAGS_START | RX_BD_FLAGS_END);
5466 
5467 	/* Save the mbuf and update our counter. */
5468 	sc->pg_mbuf_ptr[prod_idx] = m_new;
5469 	sc->free_pg_bd--;
5470 
5471 	DBRUNMSG(BCE_INSANE_RECV,
5472 	    bce_dump_pg_mbuf_chain(sc, debug_prod_idx, 1));
5473 
5474 	DBPRINT(sc, BCE_EXTREME_RECV, "%s(exit): prod = 0x%04X, "
5475 	    "prod_idx = 0x%04X\n", __FUNCTION__, prod, prod_idx);
5476 
5477 bce_get_pg_buf_exit:
5478 	DBEXIT(BCE_EXTREME_RESET | BCE_EXTREME_RECV | BCE_EXTREME_LOAD);
5479 
5480 	return(rc);
5481 }
5482 
5483 /****************************************************************************/
5484 /* Initialize the TX context memory.                                        */
5485 /*                                                                          */
5486 /* Returns:                                                                 */
5487 /*   Nothing                                                                */
5488 /****************************************************************************/
5489 static void
5490 bce_init_tx_context(struct bce_softc *sc)
5491 {
5492 	u32 val;
5493 
5494 	DBENTER(BCE_VERBOSE_RESET | BCE_VERBOSE_SEND | BCE_VERBOSE_CTX);
5495 
5496 	/* Initialize the context ID for an L2 TX chain. */
5497 	if (BCE_CHIP_NUM(sc) == BCE_CHIP_NUM_5709) {
5498 		/* Set the CID type to support an L2 connection. */
5499 		val = BCE_L2CTX_TX_TYPE_TYPE_L2_XI |
5500 		    BCE_L2CTX_TX_TYPE_SIZE_L2_XI;
5501 		CTX_WR(sc, GET_CID_ADDR(TX_CID), BCE_L2CTX_TX_TYPE_XI, val);
5502 		val = BCE_L2CTX_TX_CMD_TYPE_TYPE_L2_XI | (8 << 16);
5503 		CTX_WR(sc, GET_CID_ADDR(TX_CID),
5504 		    BCE_L2CTX_TX_CMD_TYPE_XI, val);
5505 
5506 		/* Point the hardware to the first page in the chain. */
5507 		val = BCE_ADDR_HI(sc->tx_bd_chain_paddr[0]);
5508 		CTX_WR(sc, GET_CID_ADDR(TX_CID),
5509 		    BCE_L2CTX_TX_TBDR_BHADDR_HI_XI, val);
5510 		val = BCE_ADDR_LO(sc->tx_bd_chain_paddr[0]);
5511 		CTX_WR(sc, GET_CID_ADDR(TX_CID),
5512 		    BCE_L2CTX_TX_TBDR_BHADDR_LO_XI, val);
5513 	} else {
5514 		/* Set the CID type to support an L2 connection. */
5515 		val = BCE_L2CTX_TX_TYPE_TYPE_L2 | BCE_L2CTX_TX_TYPE_SIZE_L2;
5516 		CTX_WR(sc, GET_CID_ADDR(TX_CID), BCE_L2CTX_TX_TYPE, val);
5517 		val = BCE_L2CTX_TX_CMD_TYPE_TYPE_L2 | (8 << 16);
5518 		CTX_WR(sc, GET_CID_ADDR(TX_CID), BCE_L2CTX_TX_CMD_TYPE, val);
5519 
5520 		/* Point the hardware to the first page in the chain. */
5521 		val = BCE_ADDR_HI(sc->tx_bd_chain_paddr[0]);
5522 		CTX_WR(sc, GET_CID_ADDR(TX_CID),
5523 		    BCE_L2CTX_TX_TBDR_BHADDR_HI, val);
5524 		val = BCE_ADDR_LO(sc->tx_bd_chain_paddr[0]);
5525 		CTX_WR(sc, GET_CID_ADDR(TX_CID),
5526 		    BCE_L2CTX_TX_TBDR_BHADDR_LO, val);
5527 	}
5528 
5529 	DBEXIT(BCE_VERBOSE_RESET | BCE_VERBOSE_SEND | BCE_VERBOSE_CTX);
5530 }
5531 
5532 /****************************************************************************/
5533 /* Allocate memory and initialize the TX data structures.                   */
5534 /*                                                                          */
5535 /* Returns:                                                                 */
5536 /*   0 for success, positive value for failure.                             */
5537 /****************************************************************************/
5538 static int
5539 bce_init_tx_chain(struct bce_softc *sc)
5540 {
5541 	struct tx_bd *txbd;
5542 	int i, rc = 0;
5543 
5544 	DBENTER(BCE_VERBOSE_RESET | BCE_VERBOSE_SEND | BCE_VERBOSE_LOAD);
5545 
5546 	/* Set the initial TX producer/consumer indices. */
5547 	sc->tx_prod        = 0;
5548 	sc->tx_cons        = 0;
5549 	sc->tx_prod_bseq   = 0;
5550 	sc->used_tx_bd     = 0;
5551 	sc->max_tx_bd      = USABLE_TX_BD_ALLOC;
5552 	DBRUN(sc->tx_hi_watermark = 0);
5553 	DBRUN(sc->tx_full_count = 0);
5554 
5555 	/*
5556 	 * The NetXtreme II supports a linked-list structure called
5557 	 * a Buffer Descriptor Chain (or BD chain).  A BD chain
5558 	 * consists of a series of 1 or more chain pages, each of which
5559 	 * consists of a fixed number of BD entries.
5560 	 * The last BD entry on each page is a pointer to the next page
5561 	 * in the chain, and the last pointer in the BD chain
5562 	 * points back to the beginning of the chain.
5563 	 */
5564 
5565 	/* Set the TX next pointer chain entries. */
5566 	for (i = 0; i < sc->tx_pages; i++) {
5567 		int j;
5568 
5569 		txbd = &sc->tx_bd_chain[i][USABLE_TX_BD_PER_PAGE];
5570 
5571 		/* Check if we've reached the last page. */
5572 		if (i == (sc->tx_pages - 1))
5573 			j = 0;
5574 		else
5575 			j = i + 1;
5576 
5577 		txbd->tx_bd_haddr_hi =
5578 		    htole32(BCE_ADDR_HI(sc->tx_bd_chain_paddr[j]));
5579 		txbd->tx_bd_haddr_lo =
5580 		    htole32(BCE_ADDR_LO(sc->tx_bd_chain_paddr[j]));
5581 	}
5582 
5583 	bce_init_tx_context(sc);
5584 
5585 	DBRUNMSG(BCE_INSANE_SEND, bce_dump_tx_chain(sc, 0, TOTAL_TX_BD_ALLOC));
5586 	DBEXIT(BCE_VERBOSE_RESET | BCE_VERBOSE_SEND | BCE_VERBOSE_LOAD);
5587 
5588 	return(rc);
5589 }
5590 
5591 /****************************************************************************/
5592 /* Free memory and clear the TX data structures.                            */
5593 /*                                                                          */
5594 /* Returns:                                                                 */
5595 /*   Nothing.                                                               */
5596 /****************************************************************************/
5597 static void
5598 bce_free_tx_chain(struct bce_softc *sc)
5599 {
5600 	int i;
5601 
5602 	DBENTER(BCE_VERBOSE_RESET | BCE_VERBOSE_SEND | BCE_VERBOSE_UNLOAD);
5603 
5604 	/* Unmap, unload, and free any mbufs still in the TX mbuf chain. */
5605 	for (i = 0; i < MAX_TX_BD_AVAIL; i++) {
5606 		if (sc->tx_mbuf_ptr[i] != NULL) {
5607 			if (sc->tx_mbuf_map[i] != NULL)
5608 				bus_dmamap_sync(sc->tx_mbuf_tag,
5609 				    sc->tx_mbuf_map[i],
5610 				    BUS_DMASYNC_POSTWRITE);
5611 			m_freem(sc->tx_mbuf_ptr[i]);
5612 			sc->tx_mbuf_ptr[i] = NULL;
5613 			DBRUN(sc->debug_tx_mbuf_alloc--);
5614 		}
5615 	}
5616 
5617 	/* Clear each TX chain page. */
5618 	for (i = 0; i < sc->tx_pages; i++)
5619 		bzero((char *)sc->tx_bd_chain[i], BCE_TX_CHAIN_PAGE_SZ);
5620 
5621 	sc->used_tx_bd = 0;
5622 
5623 	/* Check if we lost any mbufs in the process. */
5624 	DBRUNIF((sc->debug_tx_mbuf_alloc),
5625 	    BCE_PRINTF("%s(%d): Memory leak! Lost %d mbufs "
5626 	    "from tx chain!\n",	__FILE__, __LINE__,
5627 	    sc->debug_tx_mbuf_alloc));
5628 
5629 	DBEXIT(BCE_VERBOSE_RESET | BCE_VERBOSE_SEND | BCE_VERBOSE_UNLOAD);
5630 }
5631 
5632 /****************************************************************************/
5633 /* Initialize the RX context memory.                                        */
5634 /*                                                                          */
5635 /* Returns:                                                                 */
5636 /*   Nothing                                                                */
5637 /****************************************************************************/
5638 static void
5639 bce_init_rx_context(struct bce_softc *sc)
5640 {
5641 	u32 val;
5642 
5643 	DBENTER(BCE_VERBOSE_RESET | BCE_VERBOSE_RECV | BCE_VERBOSE_CTX);
5644 
5645 	/* Init the type, size, and BD cache levels for the RX context. */
5646 	val = BCE_L2CTX_RX_CTX_TYPE_CTX_BD_CHN_TYPE_VALUE |
5647 	    BCE_L2CTX_RX_CTX_TYPE_SIZE_L2 |
5648 	    (0x02 << BCE_L2CTX_RX_BD_PRE_READ_SHIFT);
5649 
5650 	/*
5651 	 * Set the level for generating pause frames
5652 	 * when the number of available rx_bd's gets
5653 	 * too low (the low watermark) and the level
5654 	 * when pause frames can be stopped (the high
5655 	 * watermark).
5656 	 */
5657 	if (BCE_CHIP_NUM(sc) == BCE_CHIP_NUM_5709) {
5658 		u32 lo_water, hi_water;
5659 
5660 		if (sc->bce_flags & BCE_USING_TX_FLOW_CONTROL) {
5661 			lo_water = BCE_L2CTX_RX_LO_WATER_MARK_DEFAULT;
5662 		} else {
5663 			lo_water = 0;
5664 		}
5665 
5666 		if (lo_water >= USABLE_RX_BD_ALLOC) {
5667 			lo_water = 0;
5668 		}
5669 
5670 		hi_water = USABLE_RX_BD_ALLOC / 4;
5671 
5672 		if (hi_water <= lo_water) {
5673 			lo_water = 0;
5674 		}
5675 
5676 		lo_water /= BCE_L2CTX_RX_LO_WATER_MARK_SCALE;
5677 		hi_water /= BCE_L2CTX_RX_HI_WATER_MARK_SCALE;
5678 
5679 		if (hi_water > 0xf)
5680 			hi_water = 0xf;
5681 		else if (hi_water == 0)
5682 			lo_water = 0;
5683 
5684 		val |= (lo_water << BCE_L2CTX_RX_LO_WATER_MARK_SHIFT) |
5685 		    (hi_water << BCE_L2CTX_RX_HI_WATER_MARK_SHIFT);
5686 	}
5687 
5688 	CTX_WR(sc, GET_CID_ADDR(RX_CID), BCE_L2CTX_RX_CTX_TYPE, val);
5689 
5690 	/* Setup the MQ BIN mapping for l2_ctx_host_bseq. */
5691 	if (BCE_CHIP_NUM(sc) == BCE_CHIP_NUM_5709) {
5692 		val = REG_RD(sc, BCE_MQ_MAP_L2_5);
5693 		REG_WR(sc, BCE_MQ_MAP_L2_5, val | BCE_MQ_MAP_L2_5_ARM);
5694 	}
5695 
5696 	/* Point the hardware to the first page in the chain. */
5697 	val = BCE_ADDR_HI(sc->rx_bd_chain_paddr[0]);
5698 	CTX_WR(sc, GET_CID_ADDR(RX_CID), BCE_L2CTX_RX_NX_BDHADDR_HI, val);
5699 	val = BCE_ADDR_LO(sc->rx_bd_chain_paddr[0]);
5700 	CTX_WR(sc, GET_CID_ADDR(RX_CID), BCE_L2CTX_RX_NX_BDHADDR_LO, val);
5701 
5702 	DBEXIT(BCE_VERBOSE_RESET | BCE_VERBOSE_RECV | BCE_VERBOSE_CTX);
5703 }
5704 
5705 /****************************************************************************/
5706 /* Allocate memory and initialize the RX data structures.                   */
5707 /*                                                                          */
5708 /* Returns:                                                                 */
5709 /*   0 for success, positive value for failure.                             */
5710 /****************************************************************************/
5711 static int
5712 bce_init_rx_chain(struct bce_softc *sc)
5713 {
5714 	struct rx_bd *rxbd;
5715 	int i, rc = 0;
5716 
5717 	DBENTER(BCE_VERBOSE_RESET | BCE_VERBOSE_RECV | BCE_VERBOSE_LOAD |
5718 	    BCE_VERBOSE_CTX);
5719 
5720 	/* Initialize the RX producer and consumer indices. */
5721 	sc->rx_prod        = 0;
5722 	sc->rx_cons        = 0;
5723 	sc->rx_prod_bseq   = 0;
5724 	sc->free_rx_bd     = USABLE_RX_BD_ALLOC;
5725 	sc->max_rx_bd      = USABLE_RX_BD_ALLOC;
5726 
5727 	/* Initialize the RX next pointer chain entries. */
5728 	for (i = 0; i < sc->rx_pages; i++) {
5729 		int j;
5730 
5731 		rxbd = &sc->rx_bd_chain[i][USABLE_RX_BD_PER_PAGE];
5732 
5733 		/* Check if we've reached the last page. */
5734 		if (i == (sc->rx_pages - 1))
5735 			j = 0;
5736 		else
5737 			j = i + 1;
5738 
5739 		/* Setup the chain page pointers. */
5740 		rxbd->rx_bd_haddr_hi =
5741 		    htole32(BCE_ADDR_HI(sc->rx_bd_chain_paddr[j]));
5742 		rxbd->rx_bd_haddr_lo =
5743 		    htole32(BCE_ADDR_LO(sc->rx_bd_chain_paddr[j]));
5744 	}
5745 
5746 	/* Fill up the RX chain. */
5747 	bce_fill_rx_chain(sc);
5748 
5749 	DBRUN(sc->rx_low_watermark = USABLE_RX_BD_ALLOC);
5750 	DBRUN(sc->rx_empty_count = 0);
5751 	for (i = 0; i < sc->rx_pages; i++) {
5752 		bus_dmamap_sync(sc->rx_bd_chain_tag, sc->rx_bd_chain_map[i],
5753 		    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
5754 	}
5755 
5756 	bce_init_rx_context(sc);
5757 
5758 	DBRUNMSG(BCE_EXTREME_RECV,
5759 	    bce_dump_rx_bd_chain(sc, 0, TOTAL_RX_BD_ALLOC));
5760 	DBEXIT(BCE_VERBOSE_RESET | BCE_VERBOSE_RECV | BCE_VERBOSE_LOAD |
5761 	    BCE_VERBOSE_CTX);
5762 
5763 	/* ToDo: Are there possible failure modes here? */
5764 
5765 	return(rc);
5766 }
5767 
5768 /****************************************************************************/
5769 /* Add mbufs to the RX chain until its full or an mbuf allocation error     */
5770 /* occurs.                                                                  */
5771 /*                                                                          */
5772 /* Returns:                                                                 */
5773 /*   Nothing                                                                */
5774 /****************************************************************************/
5775 static void
5776 bce_fill_rx_chain(struct bce_softc *sc)
5777 {
5778 	u16 prod, prod_idx;
5779 	u32 prod_bseq;
5780 
5781 	DBENTER(BCE_VERBOSE_RESET | BCE_EXTREME_RECV | BCE_VERBOSE_LOAD |
5782 	    BCE_VERBOSE_CTX);
5783 
5784 	/* Get the RX chain producer indices. */
5785 	prod      = sc->rx_prod;
5786 	prod_bseq = sc->rx_prod_bseq;
5787 
5788 	/* Keep filling the RX chain until it's full. */
5789 	while (sc->free_rx_bd > 0) {
5790 		prod_idx = RX_CHAIN_IDX(prod);
5791 		if (bce_get_rx_buf(sc, prod, prod_idx, &prod_bseq)) {
5792 			/* Bail out if we can't add an mbuf to the chain. */
5793 			break;
5794 		}
5795 		prod = NEXT_RX_BD(prod);
5796 	}
5797 
5798 	/* Save the RX chain producer indices. */
5799 	sc->rx_prod      = prod;
5800 	sc->rx_prod_bseq = prod_bseq;
5801 
5802 	/* We should never end up pointing to a next page pointer. */
5803 	DBRUNIF(((prod & USABLE_RX_BD_PER_PAGE) == USABLE_RX_BD_PER_PAGE),
5804 	    BCE_PRINTF("%s(): Invalid rx_prod value: 0x%04X\n",
5805 	    __FUNCTION__, rx_prod));
5806 
5807 	/* Write the mailbox and tell the chip about the waiting rx_bd's. */
5808 	REG_WR16(sc, MB_GET_CID_ADDR(RX_CID) + BCE_L2MQ_RX_HOST_BDIDX, prod);
5809 	REG_WR(sc, MB_GET_CID_ADDR(RX_CID) + BCE_L2MQ_RX_HOST_BSEQ, prod_bseq);
5810 
5811 	DBEXIT(BCE_VERBOSE_RESET | BCE_EXTREME_RECV | BCE_VERBOSE_LOAD |
5812 	    BCE_VERBOSE_CTX);
5813 }
5814 
5815 /****************************************************************************/
5816 /* Free memory and clear the RX data structures.                            */
5817 /*                                                                          */
5818 /* Returns:                                                                 */
5819 /*   Nothing.                                                               */
5820 /****************************************************************************/
5821 static void
5822 bce_free_rx_chain(struct bce_softc *sc)
5823 {
5824 	int i;
5825 
5826 	DBENTER(BCE_VERBOSE_RESET | BCE_VERBOSE_RECV | BCE_VERBOSE_UNLOAD);
5827 
5828 	/* Free any mbufs still in the RX mbuf chain. */
5829 	for (i = 0; i < MAX_RX_BD_AVAIL; i++) {
5830 		if (sc->rx_mbuf_ptr[i] != NULL) {
5831 			if (sc->rx_mbuf_map[i] != NULL)
5832 				bus_dmamap_sync(sc->rx_mbuf_tag,
5833 				    sc->rx_mbuf_map[i],
5834 				    BUS_DMASYNC_POSTREAD);
5835 			m_freem(sc->rx_mbuf_ptr[i]);
5836 			sc->rx_mbuf_ptr[i] = NULL;
5837 			DBRUN(sc->debug_rx_mbuf_alloc--);
5838 		}
5839 	}
5840 
5841 	/* Clear each RX chain page. */
5842 	for (i = 0; i < sc->rx_pages; i++)
5843 		if (sc->rx_bd_chain[i] != NULL)
5844 			bzero((char *)sc->rx_bd_chain[i],
5845 			    BCE_RX_CHAIN_PAGE_SZ);
5846 
5847 	sc->free_rx_bd = sc->max_rx_bd;
5848 
5849 	/* Check if we lost any mbufs in the process. */
5850 	DBRUNIF((sc->debug_rx_mbuf_alloc),
5851 	    BCE_PRINTF("%s(): Memory leak! Lost %d mbufs from rx chain!\n",
5852 	    __FUNCTION__, sc->debug_rx_mbuf_alloc));
5853 
5854 	DBEXIT(BCE_VERBOSE_RESET | BCE_VERBOSE_RECV | BCE_VERBOSE_UNLOAD);
5855 }
5856 
5857 /****************************************************************************/
5858 /* Allocate memory and initialize the page data structures.                 */
5859 /* Assumes that bce_init_rx_chain() has not already been called.            */
5860 /*                                                                          */
5861 /* Returns:                                                                 */
5862 /*   0 for success, positive value for failure.                             */
5863 /****************************************************************************/
5864 static int
5865 bce_init_pg_chain(struct bce_softc *sc)
5866 {
5867 	struct rx_bd *pgbd;
5868 	int i, rc = 0;
5869 	u32 val;
5870 
5871 	DBENTER(BCE_VERBOSE_RESET | BCE_VERBOSE_RECV | BCE_VERBOSE_LOAD |
5872 		BCE_VERBOSE_CTX);
5873 
5874 	/* Initialize the page producer and consumer indices. */
5875 	sc->pg_prod        = 0;
5876 	sc->pg_cons        = 0;
5877 	sc->free_pg_bd     = USABLE_PG_BD_ALLOC;
5878 	sc->max_pg_bd      = USABLE_PG_BD_ALLOC;
5879 	DBRUN(sc->pg_low_watermark = sc->max_pg_bd);
5880 	DBRUN(sc->pg_empty_count = 0);
5881 
5882 	/* Initialize the page next pointer chain entries. */
5883 	for (i = 0; i < sc->pg_pages; i++) {
5884 		int j;
5885 
5886 		pgbd = &sc->pg_bd_chain[i][USABLE_PG_BD_PER_PAGE];
5887 
5888 		/* Check if we've reached the last page. */
5889 		if (i == (sc->pg_pages - 1))
5890 			j = 0;
5891 		else
5892 			j = i + 1;
5893 
5894 		/* Setup the chain page pointers. */
5895 		pgbd->rx_bd_haddr_hi =
5896 		    htole32(BCE_ADDR_HI(sc->pg_bd_chain_paddr[j]));
5897 		pgbd->rx_bd_haddr_lo =
5898 		    htole32(BCE_ADDR_LO(sc->pg_bd_chain_paddr[j]));
5899 	}
5900 
5901 	/* Setup the MQ BIN mapping for host_pg_bidx. */
5902 	if (BCE_CHIP_NUM(sc) == BCE_CHIP_NUM_5709)
5903 		REG_WR(sc, BCE_MQ_MAP_L2_3, BCE_MQ_MAP_L2_3_DEFAULT);
5904 
5905 	CTX_WR(sc, GET_CID_ADDR(RX_CID), BCE_L2CTX_RX_PG_BUF_SIZE, 0);
5906 
5907 	/* Configure the rx_bd and page chain mbuf cluster size. */
5908 	val = (sc->rx_bd_mbuf_data_len << 16) | MCLBYTES;
5909 	CTX_WR(sc, GET_CID_ADDR(RX_CID), BCE_L2CTX_RX_PG_BUF_SIZE, val);
5910 
5911 	/* Configure the context reserved for jumbo support. */
5912 	CTX_WR(sc, GET_CID_ADDR(RX_CID), BCE_L2CTX_RX_RBDC_KEY,
5913 		BCE_L2CTX_RX_RBDC_JUMBO_KEY);
5914 
5915 	/* Point the hardware to the first page in the page chain. */
5916 	val = BCE_ADDR_HI(sc->pg_bd_chain_paddr[0]);
5917 	CTX_WR(sc, GET_CID_ADDR(RX_CID), BCE_L2CTX_RX_NX_PG_BDHADDR_HI, val);
5918 	val = BCE_ADDR_LO(sc->pg_bd_chain_paddr[0]);
5919 	CTX_WR(sc, GET_CID_ADDR(RX_CID), BCE_L2CTX_RX_NX_PG_BDHADDR_LO, val);
5920 
5921 	/* Fill up the page chain. */
5922 	bce_fill_pg_chain(sc);
5923 
5924 	for (i = 0; i < sc->pg_pages; i++) {
5925 		bus_dmamap_sync(sc->pg_bd_chain_tag, sc->pg_bd_chain_map[i],
5926 		    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
5927 	}
5928 
5929 	DBRUNMSG(BCE_EXTREME_RECV,
5930 	    bce_dump_pg_chain(sc, 0, TOTAL_PG_BD_ALLOC));
5931 	DBEXIT(BCE_VERBOSE_RESET | BCE_VERBOSE_RECV | BCE_VERBOSE_LOAD |
5932 		BCE_VERBOSE_CTX);
5933 	return(rc);
5934 }
5935 
5936 /****************************************************************************/
5937 /* Add mbufs to the page chain until its full or an mbuf allocation error   */
5938 /* occurs.                                                                  */
5939 /*                                                                          */
5940 /* Returns:                                                                 */
5941 /*   Nothing                                                                */
5942 /****************************************************************************/
5943 static void
5944 bce_fill_pg_chain(struct bce_softc *sc)
5945 {
5946 	u16 prod, prod_idx;
5947 
5948 	DBENTER(BCE_VERBOSE_RESET | BCE_EXTREME_RECV | BCE_VERBOSE_LOAD |
5949 	    BCE_VERBOSE_CTX);
5950 
5951 	/* Get the page chain prodcuer index. */
5952 	prod = sc->pg_prod;
5953 
5954 	/* Keep filling the page chain until it's full. */
5955 	while (sc->free_pg_bd > 0) {
5956 		prod_idx = PG_CHAIN_IDX(prod);
5957 		if (bce_get_pg_buf(sc, prod, prod_idx)) {
5958 			/* Bail out if we can't add an mbuf to the chain. */
5959 			break;
5960 		}
5961 		prod = NEXT_PG_BD(prod);
5962 	}
5963 
5964 	/* Save the page chain producer index. */
5965 	sc->pg_prod = prod;
5966 
5967 	DBRUNIF(((prod & USABLE_RX_BD_PER_PAGE) == USABLE_RX_BD_PER_PAGE),
5968 	    BCE_PRINTF("%s(): Invalid pg_prod value: 0x%04X\n",
5969 	    __FUNCTION__, pg_prod));
5970 
5971 	/*
5972 	 * Write the mailbox and tell the chip about
5973 	 * the new rx_bd's in the page chain.
5974 	 */
5975 	REG_WR16(sc, MB_GET_CID_ADDR(RX_CID) + BCE_L2MQ_RX_HOST_PG_BDIDX,
5976 	    prod);
5977 
5978 	DBEXIT(BCE_VERBOSE_RESET | BCE_EXTREME_RECV | BCE_VERBOSE_LOAD |
5979 	    BCE_VERBOSE_CTX);
5980 }
5981 
5982 /****************************************************************************/
5983 /* Free memory and clear the RX data structures.                            */
5984 /*                                                                          */
5985 /* Returns:                                                                 */
5986 /*   Nothing.                                                               */
5987 /****************************************************************************/
5988 static void
5989 bce_free_pg_chain(struct bce_softc *sc)
5990 {
5991 	int i;
5992 
5993 	DBENTER(BCE_VERBOSE_RESET | BCE_VERBOSE_RECV | BCE_VERBOSE_UNLOAD);
5994 
5995 	/* Free any mbufs still in the mbuf page chain. */
5996 	for (i = 0; i < MAX_PG_BD_AVAIL; i++) {
5997 		if (sc->pg_mbuf_ptr[i] != NULL) {
5998 			if (sc->pg_mbuf_map[i] != NULL)
5999 				bus_dmamap_sync(sc->pg_mbuf_tag,
6000 				    sc->pg_mbuf_map[i],
6001 				    BUS_DMASYNC_POSTREAD);
6002 			m_freem(sc->pg_mbuf_ptr[i]);
6003 			sc->pg_mbuf_ptr[i] = NULL;
6004 			DBRUN(sc->debug_pg_mbuf_alloc--);
6005 		}
6006 	}
6007 
6008 	/* Clear each page chain pages. */
6009 	for (i = 0; i < sc->pg_pages; i++)
6010 		bzero((char *)sc->pg_bd_chain[i], BCE_PG_CHAIN_PAGE_SZ);
6011 
6012 	sc->free_pg_bd = sc->max_pg_bd;
6013 
6014 	/* Check if we lost any mbufs in the process. */
6015 	DBRUNIF((sc->debug_pg_mbuf_alloc),
6016 	    BCE_PRINTF("%s(): Memory leak! Lost %d mbufs from page chain!\n",
6017 	    __FUNCTION__, sc->debug_pg_mbuf_alloc));
6018 
6019 	DBEXIT(BCE_VERBOSE_RESET | BCE_VERBOSE_RECV | BCE_VERBOSE_UNLOAD);
6020 }
6021 
6022 static u32
6023 bce_get_rphy_link(struct bce_softc *sc)
6024 {
6025 	u32 advertise, link;
6026 	int fdpx;
6027 
6028 	advertise = 0;
6029 	fdpx = 0;
6030 	if ((sc->bce_phy_flags & BCE_PHY_REMOTE_PORT_FIBER_FLAG) != 0)
6031 		link = bce_shmem_rd(sc, BCE_RPHY_SERDES_LINK);
6032 	else
6033 		link = bce_shmem_rd(sc, BCE_RPHY_COPPER_LINK);
6034 	if (link & BCE_NETLINK_ANEG_ENB)
6035 		advertise |= BCE_NETLINK_ANEG_ENB;
6036 	if (link & BCE_NETLINK_SPEED_10HALF)
6037 		advertise |= BCE_NETLINK_SPEED_10HALF;
6038 	if (link & BCE_NETLINK_SPEED_10FULL) {
6039 		advertise |= BCE_NETLINK_SPEED_10FULL;
6040 		fdpx++;
6041 	}
6042 	if (link & BCE_NETLINK_SPEED_100HALF)
6043 		advertise |= BCE_NETLINK_SPEED_100HALF;
6044 	if (link & BCE_NETLINK_SPEED_100FULL) {
6045 		advertise |= BCE_NETLINK_SPEED_100FULL;
6046 		fdpx++;
6047 	}
6048 	if (link & BCE_NETLINK_SPEED_1000HALF)
6049 		advertise |= BCE_NETLINK_SPEED_1000HALF;
6050 	if (link & BCE_NETLINK_SPEED_1000FULL) {
6051 		advertise |= BCE_NETLINK_SPEED_1000FULL;
6052 		fdpx++;
6053 	}
6054 	if (link & BCE_NETLINK_SPEED_2500HALF)
6055 		advertise |= BCE_NETLINK_SPEED_2500HALF;
6056 	if (link & BCE_NETLINK_SPEED_2500FULL) {
6057 		advertise |= BCE_NETLINK_SPEED_2500FULL;
6058 		fdpx++;
6059 	}
6060 	if (fdpx)
6061 		advertise |= BCE_NETLINK_FC_PAUSE_SYM |
6062 		    BCE_NETLINK_FC_PAUSE_ASYM;
6063 	if ((sc->bce_phy_flags & BCE_PHY_REMOTE_PORT_FIBER_FLAG) == 0)
6064 		advertise |= BCE_NETLINK_PHY_APP_REMOTE |
6065 		    BCE_NETLINK_ETH_AT_WIRESPEED;
6066 
6067 	return (advertise);
6068 }
6069 
6070 /****************************************************************************/
6071 /* Set media options.                                                       */
6072 /*                                                                          */
6073 /* Returns:                                                                 */
6074 /*   0 for success, positive value for failure.                             */
6075 /****************************************************************************/
6076 static int
6077 bce_ifmedia_upd(struct ifnet *ifp)
6078 {
6079 	struct bce_softc *sc = ifp->if_softc;
6080 	int error;
6081 
6082 	DBENTER(BCE_VERBOSE);
6083 
6084 	BCE_LOCK(sc);
6085 	error = bce_ifmedia_upd_locked(ifp);
6086 	BCE_UNLOCK(sc);
6087 
6088 	DBEXIT(BCE_VERBOSE);
6089 	return (error);
6090 }
6091 
6092 /****************************************************************************/
6093 /* Set media options.                                                       */
6094 /*                                                                          */
6095 /* Returns:                                                                 */
6096 /*   Nothing.                                                               */
6097 /****************************************************************************/
6098 static int
6099 bce_ifmedia_upd_locked(struct ifnet *ifp)
6100 {
6101 	struct bce_softc *sc = ifp->if_softc;
6102 	struct mii_data *mii;
6103 	struct mii_softc *miisc;
6104 	struct ifmedia *ifm;
6105 	u32 link;
6106 	int error, fdx;
6107 
6108 	DBENTER(BCE_VERBOSE_PHY);
6109 
6110 	error = 0;
6111 	BCE_LOCK_ASSERT(sc);
6112 
6113 	sc->bce_link_up = FALSE;
6114 	if ((sc->bce_phy_flags & BCE_PHY_REMOTE_CAP_FLAG) != 0) {
6115 		ifm = &sc->bce_ifmedia;
6116 		if (IFM_TYPE(ifm->ifm_media) != IFM_ETHER)
6117 			return (EINVAL);
6118 		link = 0;
6119 		fdx = IFM_OPTIONS(ifm->ifm_media) & IFM_FDX;
6120 		switch(IFM_SUBTYPE(ifm->ifm_media)) {
6121 		case IFM_AUTO:
6122 			/*
6123 			 * Check advertised link of remote PHY by reading
6124 			 * BCE_RPHY_SERDES_LINK or BCE_RPHY_COPPER_LINK.
6125 			 * Always use the same link type of remote PHY.
6126 			 */
6127 			link = bce_get_rphy_link(sc);
6128 			break;
6129 		case IFM_2500_SX:
6130 			if ((sc->bce_phy_flags &
6131 			    (BCE_PHY_REMOTE_PORT_FIBER_FLAG |
6132 			    BCE_PHY_2_5G_CAPABLE_FLAG)) == 0)
6133 				return (EINVAL);
6134 			/*
6135 			 * XXX
6136 			 * Have to enable forced 2.5Gbps configuration.
6137 			 */
6138 			if (fdx != 0)
6139 				link |= BCE_NETLINK_SPEED_2500FULL;
6140 			else
6141 				link |= BCE_NETLINK_SPEED_2500HALF;
6142 			break;
6143 		case IFM_1000_SX:
6144 			if ((sc->bce_phy_flags &
6145 			    BCE_PHY_REMOTE_PORT_FIBER_FLAG) == 0)
6146 				return (EINVAL);
6147 			/*
6148 			 * XXX
6149 			 * Have to disable 2.5Gbps configuration.
6150 			 */
6151 			if (fdx != 0)
6152 				link = BCE_NETLINK_SPEED_1000FULL;
6153 			else
6154 				link = BCE_NETLINK_SPEED_1000HALF;
6155 			break;
6156 		case IFM_1000_T:
6157 			if (sc->bce_phy_flags & BCE_PHY_REMOTE_PORT_FIBER_FLAG)
6158 				return (EINVAL);
6159 			if (fdx != 0)
6160 				link = BCE_NETLINK_SPEED_1000FULL;
6161 			else
6162 				link = BCE_NETLINK_SPEED_1000HALF;
6163 			break;
6164 		case IFM_100_TX:
6165 			if (sc->bce_phy_flags & BCE_PHY_REMOTE_PORT_FIBER_FLAG)
6166 				return (EINVAL);
6167 			if (fdx != 0)
6168 				link = BCE_NETLINK_SPEED_100FULL;
6169 			else
6170 				link = BCE_NETLINK_SPEED_100HALF;
6171 			break;
6172 		case IFM_10_T:
6173 			if (sc->bce_phy_flags & BCE_PHY_REMOTE_PORT_FIBER_FLAG)
6174 				return (EINVAL);
6175 			if (fdx != 0)
6176 				link = BCE_NETLINK_SPEED_10FULL;
6177 			else
6178 				link = BCE_NETLINK_SPEED_10HALF;
6179 			break;
6180 		default:
6181 			return (EINVAL);
6182 		}
6183 		if (IFM_SUBTYPE(ifm->ifm_media) != IFM_AUTO) {
6184 			/*
6185 			 * XXX
6186 			 * Advertise pause capability for full-duplex media.
6187 			 */
6188 			if (fdx != 0)
6189 				link |= BCE_NETLINK_FC_PAUSE_SYM |
6190 				    BCE_NETLINK_FC_PAUSE_ASYM;
6191 			if ((sc->bce_phy_flags &
6192 			    BCE_PHY_REMOTE_PORT_FIBER_FLAG) == 0)
6193 				link |= BCE_NETLINK_PHY_APP_REMOTE |
6194 				    BCE_NETLINK_ETH_AT_WIRESPEED;
6195 		}
6196 
6197 		bce_shmem_wr(sc, BCE_MB_ARGS_0, link);
6198 		error = bce_fw_sync(sc, BCE_DRV_MSG_CODE_CMD_SET_LINK);
6199 	} else {
6200 		mii = device_get_softc(sc->bce_miibus);
6201 
6202 		/* Make sure the MII bus has been enumerated. */
6203 		if (mii) {
6204 			LIST_FOREACH(miisc, &mii->mii_phys, mii_list)
6205 				PHY_RESET(miisc);
6206 			error = mii_mediachg(mii);
6207 		}
6208 	}
6209 
6210 	DBEXIT(BCE_VERBOSE_PHY);
6211 	return (error);
6212 }
6213 
6214 static void
6215 bce_ifmedia_sts_rphy(struct bce_softc *sc, struct ifmediareq *ifmr)
6216 {
6217 	struct ifnet *ifp;
6218 	u32 link;
6219 
6220 	ifp = sc->bce_ifp;
6221 	BCE_LOCK_ASSERT(sc);
6222 
6223 	ifmr->ifm_status = IFM_AVALID;
6224 	ifmr->ifm_active = IFM_ETHER;
6225 	link = bce_shmem_rd(sc, BCE_LINK_STATUS);
6226 	/* XXX Handle heart beat status? */
6227 	if ((link & BCE_LINK_STATUS_LINK_UP) != 0)
6228 		ifmr->ifm_status |= IFM_ACTIVE;
6229 	else {
6230 		ifmr->ifm_active |= IFM_NONE;
6231 		ifp->if_baudrate = 0;
6232 		return;
6233 	}
6234 	switch (link & BCE_LINK_STATUS_SPEED_MASK) {
6235 	case BCE_LINK_STATUS_10HALF:
6236 		ifmr->ifm_active |= IFM_10_T | IFM_HDX;
6237 		ifp->if_baudrate = IF_Mbps(10UL);
6238 		break;
6239 	case BCE_LINK_STATUS_10FULL:
6240 		ifmr->ifm_active |= IFM_10_T | IFM_FDX;
6241 		ifp->if_baudrate = IF_Mbps(10UL);
6242 		break;
6243 	case BCE_LINK_STATUS_100HALF:
6244 		ifmr->ifm_active |= IFM_100_TX | IFM_HDX;
6245 		ifp->if_baudrate = IF_Mbps(100UL);
6246 		break;
6247 	case BCE_LINK_STATUS_100FULL:
6248 		ifmr->ifm_active |= IFM_100_TX | IFM_FDX;
6249 		ifp->if_baudrate = IF_Mbps(100UL);
6250 		break;
6251 	case BCE_LINK_STATUS_1000HALF:
6252 		if ((sc->bce_phy_flags & BCE_PHY_REMOTE_PORT_FIBER_FLAG) == 0)
6253 			ifmr->ifm_active |= IFM_1000_T | IFM_HDX;
6254 		else
6255 			ifmr->ifm_active |= IFM_1000_SX | IFM_HDX;
6256 		ifp->if_baudrate = IF_Mbps(1000UL);
6257 		break;
6258 	case BCE_LINK_STATUS_1000FULL:
6259 		if ((sc->bce_phy_flags & BCE_PHY_REMOTE_PORT_FIBER_FLAG) == 0)
6260 			ifmr->ifm_active |= IFM_1000_T | IFM_FDX;
6261 		else
6262 			ifmr->ifm_active |= IFM_1000_SX | IFM_FDX;
6263 		ifp->if_baudrate = IF_Mbps(1000UL);
6264 		break;
6265 	case BCE_LINK_STATUS_2500HALF:
6266 		if ((sc->bce_phy_flags & BCE_PHY_REMOTE_PORT_FIBER_FLAG) == 0) {
6267 			ifmr->ifm_active |= IFM_NONE;
6268 			return;
6269 		} else
6270 			ifmr->ifm_active |= IFM_2500_SX | IFM_HDX;
6271 		ifp->if_baudrate = IF_Mbps(2500UL);
6272 		break;
6273 	case BCE_LINK_STATUS_2500FULL:
6274 		if ((sc->bce_phy_flags & BCE_PHY_REMOTE_PORT_FIBER_FLAG) == 0) {
6275 			ifmr->ifm_active |= IFM_NONE;
6276 			return;
6277 		} else
6278 			ifmr->ifm_active |= IFM_2500_SX | IFM_FDX;
6279 		ifp->if_baudrate = IF_Mbps(2500UL);
6280 		break;
6281 	default:
6282 		ifmr->ifm_active |= IFM_NONE;
6283 		return;
6284 	}
6285 
6286 	if ((link & BCE_LINK_STATUS_RX_FC_ENABLED) != 0)
6287 		ifmr->ifm_active |= IFM_ETH_RXPAUSE;
6288 	if ((link & BCE_LINK_STATUS_TX_FC_ENABLED) != 0)
6289 		ifmr->ifm_active |= IFM_ETH_TXPAUSE;
6290 }
6291 
6292 /****************************************************************************/
6293 /* Reports current media status.                                            */
6294 /*                                                                          */
6295 /* Returns:                                                                 */
6296 /*   Nothing.                                                               */
6297 /****************************************************************************/
6298 static void
6299 bce_ifmedia_sts(struct ifnet *ifp, struct ifmediareq *ifmr)
6300 {
6301 	struct bce_softc *sc = ifp->if_softc;
6302 	struct mii_data *mii;
6303 
6304 	DBENTER(BCE_VERBOSE_PHY);
6305 
6306 	BCE_LOCK(sc);
6307 
6308 	if ((ifp->if_flags & IFF_UP) == 0) {
6309 		BCE_UNLOCK(sc);
6310 		return;
6311 	}
6312 
6313 	if ((sc->bce_phy_flags & BCE_PHY_REMOTE_CAP_FLAG) != 0)
6314 		bce_ifmedia_sts_rphy(sc, ifmr);
6315 	else {
6316 		mii = device_get_softc(sc->bce_miibus);
6317 		mii_pollstat(mii);
6318 		ifmr->ifm_active = mii->mii_media_active;
6319 		ifmr->ifm_status = mii->mii_media_status;
6320 	}
6321 
6322 	BCE_UNLOCK(sc);
6323 
6324 	DBEXIT(BCE_VERBOSE_PHY);
6325 }
6326 
6327 /****************************************************************************/
6328 /* Handles PHY generated interrupt events.                                  */
6329 /*                                                                          */
6330 /* Returns:                                                                 */
6331 /*   Nothing.                                                               */
6332 /****************************************************************************/
6333 static void
6334 bce_phy_intr(struct bce_softc *sc)
6335 {
6336 	u32 new_link_state, old_link_state;
6337 
6338 	DBENTER(BCE_VERBOSE_PHY | BCE_VERBOSE_INTR);
6339 
6340 	DBRUN(sc->phy_interrupts++);
6341 
6342 	new_link_state = sc->status_block->status_attn_bits &
6343 	    STATUS_ATTN_BITS_LINK_STATE;
6344 	old_link_state = sc->status_block->status_attn_bits_ack &
6345 	    STATUS_ATTN_BITS_LINK_STATE;
6346 
6347 	/* Handle any changes if the link state has changed. */
6348 	if (new_link_state != old_link_state) {
6349 		/* Update the status_attn_bits_ack field. */
6350 		if (new_link_state) {
6351 			REG_WR(sc, BCE_PCICFG_STATUS_BIT_SET_CMD,
6352 			    STATUS_ATTN_BITS_LINK_STATE);
6353 			DBPRINT(sc, BCE_INFO_PHY, "%s(): Link is now UP.\n",
6354 			    __FUNCTION__);
6355 		} else {
6356 			REG_WR(sc, BCE_PCICFG_STATUS_BIT_CLEAR_CMD,
6357 			    STATUS_ATTN_BITS_LINK_STATE);
6358 			DBPRINT(sc, BCE_INFO_PHY, "%s(): Link is now DOWN.\n",
6359 			    __FUNCTION__);
6360 		}
6361 
6362 		if ((sc->bce_phy_flags & BCE_PHY_REMOTE_CAP_FLAG) != 0) {
6363 			if (new_link_state) {
6364 				if (bootverbose)
6365 					if_printf(sc->bce_ifp, "link UP\n");
6366 				if_link_state_change(sc->bce_ifp,
6367 				    LINK_STATE_UP);
6368 			} else {
6369 				if (bootverbose)
6370 					if_printf(sc->bce_ifp, "link DOWN\n");
6371 				if_link_state_change(sc->bce_ifp,
6372 				    LINK_STATE_DOWN);
6373 			}
6374 		}
6375 		/*
6376 		 * Assume link is down and allow
6377 		 * tick routine to update the state
6378 		 * based on the actual media state.
6379 		 */
6380 		sc->bce_link_up = FALSE;
6381 		callout_stop(&sc->bce_tick_callout);
6382 		bce_tick(sc);
6383 	}
6384 
6385 	/* Acknowledge the link change interrupt. */
6386 	REG_WR(sc, BCE_EMAC_STATUS, BCE_EMAC_STATUS_LINK_CHANGE);
6387 
6388 	DBEXIT(BCE_VERBOSE_PHY | BCE_VERBOSE_INTR);
6389 }
6390 
6391 /****************************************************************************/
6392 /* Reads the receive consumer value from the status block (skipping over    */
6393 /* chain page pointer if necessary).                                        */
6394 /*                                                                          */
6395 /* Returns:                                                                 */
6396 /*   hw_cons                                                                */
6397 /****************************************************************************/
6398 static inline u16
6399 bce_get_hw_rx_cons(struct bce_softc *sc)
6400 {
6401 	u16 hw_cons;
6402 
6403 	rmb();
6404 	hw_cons = sc->status_block->status_rx_quick_consumer_index0;
6405 	if ((hw_cons & USABLE_RX_BD_PER_PAGE) == USABLE_RX_BD_PER_PAGE)
6406 		hw_cons++;
6407 
6408 	return hw_cons;
6409 }
6410 
6411 /****************************************************************************/
6412 /* Handles received frame interrupt events.                                 */
6413 /*                                                                          */
6414 /* Returns:                                                                 */
6415 /*   Nothing.                                                               */
6416 /****************************************************************************/
6417 static void
6418 bce_rx_intr(struct bce_softc *sc)
6419 {
6420 	struct ifnet *ifp = sc->bce_ifp;
6421 	struct l2_fhdr *l2fhdr;
6422 	struct ether_vlan_header *vh;
6423 	unsigned int pkt_len;
6424 	u16 sw_rx_cons, sw_rx_cons_idx, hw_rx_cons;
6425 	u32 status;
6426 	unsigned int rem_len;
6427 	u16 sw_pg_cons, sw_pg_cons_idx;
6428 
6429 	DBENTER(BCE_VERBOSE_RECV | BCE_VERBOSE_INTR);
6430 	DBRUN(sc->interrupts_rx++);
6431 	DBPRINT(sc, BCE_EXTREME_RECV, "%s(enter): rx_prod = 0x%04X, "
6432 	    "rx_cons = 0x%04X, rx_prod_bseq = 0x%08X\n",
6433 	    __FUNCTION__, sc->rx_prod, sc->rx_cons, sc->rx_prod_bseq);
6434 
6435 	/* Prepare the RX chain pages to be accessed by the host CPU. */
6436 	for (int i = 0; i < sc->rx_pages; i++)
6437 		bus_dmamap_sync(sc->rx_bd_chain_tag,
6438 		    sc->rx_bd_chain_map[i], BUS_DMASYNC_POSTREAD);
6439 
6440 	/* Prepare the page chain pages to be accessed by the host CPU. */
6441 	if (bce_hdr_split == TRUE) {
6442 		for (int i = 0; i < sc->pg_pages; i++)
6443 			bus_dmamap_sync(sc->pg_bd_chain_tag,
6444 			    sc->pg_bd_chain_map[i], BUS_DMASYNC_POSTREAD);
6445 	}
6446 
6447 	/* Get the hardware's view of the RX consumer index. */
6448 	hw_rx_cons = sc->hw_rx_cons = bce_get_hw_rx_cons(sc);
6449 
6450 	/* Get working copies of the driver's view of the consumer indices. */
6451 	sw_rx_cons = sc->rx_cons;
6452 	sw_pg_cons = sc->pg_cons;
6453 
6454 	/* Update some debug statistics counters */
6455 	DBRUNIF((sc->free_rx_bd < sc->rx_low_watermark),
6456 	    sc->rx_low_watermark = sc->free_rx_bd);
6457 	DBRUNIF((sc->free_rx_bd == sc->max_rx_bd),
6458 	    sc->rx_empty_count++);
6459 
6460 	/* Scan through the receive chain as long as there is work to do */
6461 	/* ToDo: Consider setting a limit on the number of packets processed. */
6462 	rmb();
6463 	while (sw_rx_cons != hw_rx_cons) {
6464 		struct mbuf *m0;
6465 
6466 		/* Convert the producer/consumer indices to an actual rx_bd index. */
6467 		sw_rx_cons_idx = RX_CHAIN_IDX(sw_rx_cons);
6468 
6469 		/* Unmap the mbuf from DMA space. */
6470 		bus_dmamap_sync(sc->rx_mbuf_tag,
6471 		    sc->rx_mbuf_map[sw_rx_cons_idx],
6472 		    BUS_DMASYNC_POSTREAD);
6473 		bus_dmamap_unload(sc->rx_mbuf_tag,
6474 		    sc->rx_mbuf_map[sw_rx_cons_idx]);
6475 
6476 		/* Remove the mbuf from the RX chain. */
6477 		m0 = sc->rx_mbuf_ptr[sw_rx_cons_idx];
6478 		sc->rx_mbuf_ptr[sw_rx_cons_idx] = NULL;
6479 		DBRUN(sc->debug_rx_mbuf_alloc--);
6480 		sc->free_rx_bd++;
6481 
6482 		/*
6483  		 * Frames received on the NetXteme II are prepended
6484  		 * with an l2_fhdr structure which provides status
6485  		 * information about the received frame (including
6486  		 * VLAN tags and checksum info).  The frames are
6487 		 * also automatically adjusted to word align the IP
6488  		 * header (i.e. two null bytes are inserted before
6489  		 * the Ethernet	header).  As a result the data
6490  		 * DMA'd by the controller into	the mbuf looks
6491 		 * like this:
6492 		 *
6493 		 * +---------+-----+---------------------+-----+
6494 		 * | l2_fhdr | pad | packet data         | FCS |
6495 		 * +---------+-----+---------------------+-----+
6496 		 *
6497  		 * The l2_fhdr needs to be checked and skipped and
6498  		 * the FCS needs to be stripped before sending the
6499 		 * packet up the stack.
6500 		 */
6501 		l2fhdr  = mtod(m0, struct l2_fhdr *);
6502 
6503 		/* Get the packet data + FCS length and the status. */
6504 		pkt_len = l2fhdr->l2_fhdr_pkt_len;
6505 		status  = l2fhdr->l2_fhdr_status;
6506 
6507 		/*
6508 		 * Skip over the l2_fhdr and pad, resulting in the
6509 		 * following data in the mbuf:
6510 		 * +---------------------+-----+
6511 		 * | packet data         | FCS |
6512 		 * +---------------------+-----+
6513 		 */
6514 		m_adj(m0, sizeof(struct l2_fhdr) + ETHER_ALIGN);
6515 
6516 		/*
6517  		 * When split header mode is used, an ethernet frame
6518  		 * may be split across the receive chain and the
6519  		 * page chain. If that occurs an mbuf cluster must be
6520  		 * reassembled from the individual mbuf pieces.
6521 		 */
6522 		if (bce_hdr_split == TRUE) {
6523 			/*
6524 			 * Check whether the received frame fits in a single
6525 			 * mbuf or not (i.e. packet data + FCS <=
6526 			 * sc->rx_bd_mbuf_data_len bytes).
6527 			 */
6528 			if (pkt_len > m0->m_len) {
6529 				/*
6530 				 * The received frame is larger than a single mbuf.
6531 				 * If the frame was a TCP frame then only the TCP
6532 				 * header is placed in the mbuf, the remaining
6533 				 * payload (including FCS) is placed in the page
6534 				 * chain, the SPLIT flag is set, and the header
6535 				 * length is placed in the IP checksum field.
6536 				 * If the frame is not a TCP frame then the mbuf
6537 				 * is filled and the remaining bytes are placed
6538 				 * in the page chain.
6539 				 */
6540 
6541 				DBPRINT(sc, BCE_INFO_RECV, "%s(): Found a large "
6542 					"packet.\n", __FUNCTION__);
6543 				DBRUN(sc->split_header_frames_rcvd++);
6544 
6545 				/*
6546 				 * When the page chain is enabled and the TCP
6547 				 * header has been split from the TCP payload,
6548 				 * the ip_xsum structure will reflect the length
6549 				 * of the TCP header, not the IP checksum.  Set
6550 				 * the packet length of the mbuf accordingly.
6551 				 */
6552 				if (status & L2_FHDR_STATUS_SPLIT) {
6553 					m0->m_len = l2fhdr->l2_fhdr_ip_xsum;
6554 					DBRUN(sc->split_header_tcp_frames_rcvd++);
6555 				}
6556 
6557 				rem_len = pkt_len - m0->m_len;
6558 
6559 				/* Pull mbufs off the page chain for any remaining data. */
6560 				while (rem_len > 0) {
6561 					struct mbuf *m_pg;
6562 
6563 					sw_pg_cons_idx = PG_CHAIN_IDX(sw_pg_cons);
6564 
6565 					/* Remove the mbuf from the page chain. */
6566 					m_pg = sc->pg_mbuf_ptr[sw_pg_cons_idx];
6567 					sc->pg_mbuf_ptr[sw_pg_cons_idx] = NULL;
6568 					DBRUN(sc->debug_pg_mbuf_alloc--);
6569 					sc->free_pg_bd++;
6570 
6571 					/* Unmap the page chain mbuf from DMA space. */
6572 					bus_dmamap_sync(sc->pg_mbuf_tag,
6573 						sc->pg_mbuf_map[sw_pg_cons_idx],
6574 						BUS_DMASYNC_POSTREAD);
6575 					bus_dmamap_unload(sc->pg_mbuf_tag,
6576 						sc->pg_mbuf_map[sw_pg_cons_idx]);
6577 
6578 					/* Adjust the mbuf length. */
6579 					if (rem_len < m_pg->m_len) {
6580 						/* The mbuf chain is complete. */
6581 						m_pg->m_len = rem_len;
6582 						rem_len = 0;
6583 					} else {
6584 						/* More packet data is waiting. */
6585 						rem_len -= m_pg->m_len;
6586 					}
6587 
6588 					/* Concatenate the mbuf cluster to the mbuf. */
6589 					m_cat(m0, m_pg);
6590 
6591 					sw_pg_cons = NEXT_PG_BD(sw_pg_cons);
6592 				}
6593 
6594 				/* Set the total packet length. */
6595 				m0->m_pkthdr.len = pkt_len;
6596 
6597 			} else {
6598 				/*
6599 				 * The received packet is small and fits in a
6600 				 * single mbuf (i.e. the l2_fhdr + pad + packet +
6601 				 * FCS <= MHLEN).  In other words, the packet is
6602 				 * 154 bytes or less in size.
6603 				 */
6604 
6605 				DBPRINT(sc, BCE_INFO_RECV, "%s(): Found a small "
6606 					"packet.\n", __FUNCTION__);
6607 
6608 				/* Set the total packet length. */
6609 				m0->m_pkthdr.len = m0->m_len = pkt_len;
6610 			}
6611 		} else
6612 			/* Set the total packet length. */
6613 			m0->m_pkthdr.len = m0->m_len = pkt_len;
6614 
6615 		/* Remove the trailing Ethernet FCS. */
6616 		m_adj(m0, -ETHER_CRC_LEN);
6617 
6618 		/* Check that the resulting mbuf chain is valid. */
6619 		DBRUN(m_sanity(m0, FALSE));
6620 		DBRUNIF(((m0->m_len < ETHER_HDR_LEN) |
6621 		    (m0->m_pkthdr.len > BCE_MAX_JUMBO_ETHER_MTU_VLAN)),
6622 		    BCE_PRINTF("Invalid Ethernet frame size!\n");
6623 		    m_print(m0, 128));
6624 
6625 		DBRUNIF(DB_RANDOMTRUE(l2fhdr_error_sim_control),
6626 		    sc->l2fhdr_error_sim_count++;
6627 		    status = status | L2_FHDR_ERRORS_PHY_DECODE);
6628 
6629 		/* Check the received frame for errors. */
6630 		if (status & (L2_FHDR_ERRORS_BAD_CRC |
6631 		    L2_FHDR_ERRORS_PHY_DECODE | L2_FHDR_ERRORS_ALIGNMENT |
6632 		    L2_FHDR_ERRORS_TOO_SHORT  | L2_FHDR_ERRORS_GIANT_FRAME)) {
6633 			/* Log the error and release the mbuf. */
6634 			sc->l2fhdr_error_count++;
6635 			m_freem(m0);
6636 			m0 = NULL;
6637 			goto bce_rx_intr_next_rx;
6638 		}
6639 
6640 		/* Send the packet to the appropriate interface. */
6641 		m0->m_pkthdr.rcvif = ifp;
6642 
6643 		/* Assume no hardware checksum. */
6644 		m0->m_pkthdr.csum_flags = 0;
6645 
6646 		/* Validate the checksum if offload enabled. */
6647 		if (ifp->if_capenable & IFCAP_RXCSUM) {
6648 			/* Check for an IP datagram. */
6649 		 	if (!(status & L2_FHDR_STATUS_SPLIT) &&
6650 			    (status & L2_FHDR_STATUS_IP_DATAGRAM)) {
6651 				m0->m_pkthdr.csum_flags |= CSUM_IP_CHECKED;
6652 				DBRUN(sc->csum_offload_ip++);
6653 				/* Check if the IP checksum is valid. */
6654 				if ((l2fhdr->l2_fhdr_ip_xsum ^ 0xffff) == 0)
6655 					m0->m_pkthdr.csum_flags |=
6656 					    CSUM_IP_VALID;
6657 			}
6658 
6659 			/* Check for a valid TCP/UDP frame. */
6660 			if (status & (L2_FHDR_STATUS_TCP_SEGMENT |
6661 			    L2_FHDR_STATUS_UDP_DATAGRAM)) {
6662 				/* Check for a good TCP/UDP checksum. */
6663 				if ((status & (L2_FHDR_ERRORS_TCP_XSUM |
6664 				    L2_FHDR_ERRORS_UDP_XSUM)) == 0) {
6665 					DBRUN(sc->csum_offload_tcp_udp++);
6666 					m0->m_pkthdr.csum_data =
6667 					    l2fhdr->l2_fhdr_tcp_udp_xsum;
6668 					m0->m_pkthdr.csum_flags |=
6669 					    (CSUM_DATA_VALID
6670 					    | CSUM_PSEUDO_HDR);
6671 				}
6672 			}
6673 		}
6674 
6675 		/* Attach the VLAN tag.	*/
6676 		if ((status & L2_FHDR_STATUS_L2_VLAN_TAG) &&
6677 		    !(sc->rx_mode & BCE_EMAC_RX_MODE_KEEP_VLAN_TAG)) {
6678 			DBRUN(sc->vlan_tagged_frames_rcvd++);
6679 			if (ifp->if_capenable & IFCAP_VLAN_HWTAGGING) {
6680 				DBRUN(sc->vlan_tagged_frames_stripped++);
6681 				m0->m_pkthdr.ether_vtag =
6682 				    l2fhdr->l2_fhdr_vlan_tag;
6683 				m0->m_flags |= M_VLANTAG;
6684 			} else {
6685 				/*
6686 				 * bce(4) controllers can't disable VLAN
6687 				 * tag stripping if management firmware
6688 				 * (ASF/IPMI/UMP) is running. So we always
6689 				 * strip VLAN tag and manually reconstruct
6690 				 * the VLAN frame by appending stripped
6691 				 * VLAN tag in driver if VLAN tag stripping
6692 				 * was disabled.
6693 				 *
6694 				 * TODO: LLC SNAP handling.
6695 				 */
6696 				bcopy(mtod(m0, uint8_t *),
6697 				    mtod(m0, uint8_t *) - ETHER_VLAN_ENCAP_LEN,
6698 				    ETHER_ADDR_LEN * 2);
6699 				m0->m_data -= ETHER_VLAN_ENCAP_LEN;
6700 				vh = mtod(m0, struct ether_vlan_header *);
6701 				vh->evl_encap_proto = htons(ETHERTYPE_VLAN);
6702 				vh->evl_tag = htons(l2fhdr->l2_fhdr_vlan_tag);
6703 				m0->m_pkthdr.len += ETHER_VLAN_ENCAP_LEN;
6704 				m0->m_len += ETHER_VLAN_ENCAP_LEN;
6705 			}
6706 		}
6707 
6708 		/* Increment received packet statistics. */
6709 		if_inc_counter(ifp, IFCOUNTER_IPACKETS, 1);
6710 
6711 bce_rx_intr_next_rx:
6712 		sw_rx_cons = NEXT_RX_BD(sw_rx_cons);
6713 
6714 		/* If we have a packet, pass it up the stack */
6715 		if (m0) {
6716 			/* Make sure we don't lose our place when we release the lock. */
6717 			sc->rx_cons = sw_rx_cons;
6718 			sc->pg_cons = sw_pg_cons;
6719 
6720 			BCE_UNLOCK(sc);
6721 			(*ifp->if_input)(ifp, m0);
6722 			BCE_LOCK(sc);
6723 
6724 			/* Recover our place. */
6725 			sw_rx_cons = sc->rx_cons;
6726 			sw_pg_cons = sc->pg_cons;
6727 		}
6728 
6729 		/* Refresh hw_cons to see if there's new work */
6730 		if (sw_rx_cons == hw_rx_cons)
6731 			hw_rx_cons = sc->hw_rx_cons = bce_get_hw_rx_cons(sc);
6732 	}
6733 
6734 	/* No new packets.  Refill the page chain. */
6735 	if (bce_hdr_split == TRUE) {
6736 		sc->pg_cons = sw_pg_cons;
6737 		bce_fill_pg_chain(sc);
6738 	}
6739 
6740 	/* No new packets.  Refill the RX chain. */
6741 	sc->rx_cons = sw_rx_cons;
6742 	bce_fill_rx_chain(sc);
6743 
6744 	/* Prepare the page chain pages to be accessed by the NIC. */
6745 	for (int i = 0; i < sc->rx_pages; i++)
6746 		bus_dmamap_sync(sc->rx_bd_chain_tag,
6747 		    sc->rx_bd_chain_map[i], BUS_DMASYNC_PREWRITE);
6748 
6749 	if (bce_hdr_split == TRUE) {
6750 		for (int i = 0; i < sc->pg_pages; i++)
6751 			bus_dmamap_sync(sc->pg_bd_chain_tag,
6752 			    sc->pg_bd_chain_map[i], BUS_DMASYNC_PREWRITE);
6753 	}
6754 
6755 	DBPRINT(sc, BCE_EXTREME_RECV, "%s(exit): rx_prod = 0x%04X, "
6756 	    "rx_cons = 0x%04X, rx_prod_bseq = 0x%08X\n",
6757 	    __FUNCTION__, sc->rx_prod, sc->rx_cons, sc->rx_prod_bseq);
6758 	DBEXIT(BCE_VERBOSE_RECV | BCE_VERBOSE_INTR);
6759 }
6760 
6761 /****************************************************************************/
6762 /* Reads the transmit consumer value from the status block (skipping over   */
6763 /* chain page pointer if necessary).                                        */
6764 /*                                                                          */
6765 /* Returns:                                                                 */
6766 /*   hw_cons                                                                */
6767 /****************************************************************************/
6768 static inline u16
6769 bce_get_hw_tx_cons(struct bce_softc *sc)
6770 {
6771 	u16 hw_cons;
6772 
6773 	mb();
6774 	hw_cons = sc->status_block->status_tx_quick_consumer_index0;
6775 	if ((hw_cons & USABLE_TX_BD_PER_PAGE) == USABLE_TX_BD_PER_PAGE)
6776 		hw_cons++;
6777 
6778 	return hw_cons;
6779 }
6780 
6781 /****************************************************************************/
6782 /* Handles transmit completion interrupt events.                            */
6783 /*                                                                          */
6784 /* Returns:                                                                 */
6785 /*   Nothing.                                                               */
6786 /****************************************************************************/
6787 static void
6788 bce_tx_intr(struct bce_softc *sc)
6789 {
6790 	struct ifnet *ifp = sc->bce_ifp;
6791 	u16 hw_tx_cons, sw_tx_cons, sw_tx_chain_cons;
6792 
6793 	DBENTER(BCE_VERBOSE_SEND | BCE_VERBOSE_INTR);
6794 	DBRUN(sc->interrupts_tx++);
6795 	DBPRINT(sc, BCE_EXTREME_SEND, "%s(enter): tx_prod = 0x%04X, "
6796 	    "tx_cons = 0x%04X, tx_prod_bseq = 0x%08X\n",
6797 	    __FUNCTION__, sc->tx_prod, sc->tx_cons, sc->tx_prod_bseq);
6798 
6799 	BCE_LOCK_ASSERT(sc);
6800 
6801 	/* Get the hardware's view of the TX consumer index. */
6802 	hw_tx_cons = sc->hw_tx_cons = bce_get_hw_tx_cons(sc);
6803 	sw_tx_cons = sc->tx_cons;
6804 
6805 	/* Prevent speculative reads of the status block. */
6806 	bus_space_barrier(sc->bce_btag, sc->bce_bhandle, 0, 0,
6807 	    BUS_SPACE_BARRIER_READ);
6808 
6809 	/* Cycle through any completed TX chain page entries. */
6810 	while (sw_tx_cons != hw_tx_cons) {
6811 #ifdef BCE_DEBUG
6812 		struct tx_bd *txbd = NULL;
6813 #endif
6814 		sw_tx_chain_cons = TX_CHAIN_IDX(sw_tx_cons);
6815 
6816 		DBPRINT(sc, BCE_INFO_SEND,
6817 		    "%s(): hw_tx_cons = 0x%04X, sw_tx_cons = 0x%04X, "
6818 		    "sw_tx_chain_cons = 0x%04X\n",
6819 		    __FUNCTION__, hw_tx_cons, sw_tx_cons, sw_tx_chain_cons);
6820 
6821 		DBRUNIF((sw_tx_chain_cons > MAX_TX_BD_ALLOC),
6822 		    BCE_PRINTF("%s(%d): TX chain consumer out of range! "
6823 		    " 0x%04X > 0x%04X\n", __FILE__, __LINE__, sw_tx_chain_cons,
6824 		    (int) MAX_TX_BD_ALLOC);
6825 		    bce_breakpoint(sc));
6826 
6827 		DBRUN(txbd = &sc->tx_bd_chain[TX_PAGE(sw_tx_chain_cons)]
6828 		    [TX_IDX(sw_tx_chain_cons)]);
6829 
6830 		DBRUNIF((txbd == NULL),
6831 		    BCE_PRINTF("%s(%d): Unexpected NULL tx_bd[0x%04X]!\n",
6832 		    __FILE__, __LINE__, sw_tx_chain_cons);
6833 		    bce_breakpoint(sc));
6834 
6835 		DBRUNMSG(BCE_INFO_SEND, BCE_PRINTF("%s(): ", __FUNCTION__);
6836 		    bce_dump_txbd(sc, sw_tx_chain_cons, txbd));
6837 
6838 		/*
6839 		 * Free the associated mbuf. Remember
6840 		 * that only the last tx_bd of a packet
6841 		 * has an mbuf pointer and DMA map.
6842 		 */
6843 		if (sc->tx_mbuf_ptr[sw_tx_chain_cons] != NULL) {
6844 			/* Validate that this is the last tx_bd. */
6845 			DBRUNIF((!(txbd->tx_bd_flags & TX_BD_FLAGS_END)),
6846 			    BCE_PRINTF("%s(%d): tx_bd END flag not set but "
6847 			    "txmbuf == NULL!\n", __FILE__, __LINE__);
6848 			    bce_breakpoint(sc));
6849 
6850 			DBRUNMSG(BCE_INFO_SEND,
6851 			    BCE_PRINTF("%s(): Unloading map/freeing mbuf "
6852 			    "from tx_bd[0x%04X]\n", __FUNCTION__,
6853 			    sw_tx_chain_cons));
6854 
6855 			/* Unmap the mbuf. */
6856 			bus_dmamap_unload(sc->tx_mbuf_tag,
6857 			    sc->tx_mbuf_map[sw_tx_chain_cons]);
6858 
6859 			/* Free the mbuf. */
6860 			m_freem(sc->tx_mbuf_ptr[sw_tx_chain_cons]);
6861 			sc->tx_mbuf_ptr[sw_tx_chain_cons] = NULL;
6862 			DBRUN(sc->debug_tx_mbuf_alloc--);
6863 
6864 			if_inc_counter(ifp, IFCOUNTER_OPACKETS, 1);
6865 		}
6866 
6867 		sc->used_tx_bd--;
6868 		sw_tx_cons = NEXT_TX_BD(sw_tx_cons);
6869 
6870 		/* Refresh hw_cons to see if there's new work. */
6871 		hw_tx_cons = sc->hw_tx_cons = bce_get_hw_tx_cons(sc);
6872 
6873 		/* Prevent speculative reads of the status block. */
6874 		bus_space_barrier(sc->bce_btag, sc->bce_bhandle, 0, 0,
6875 		    BUS_SPACE_BARRIER_READ);
6876 	}
6877 
6878 	/* Clear the TX timeout timer. */
6879 	sc->watchdog_timer = 0;
6880 
6881 	/* Clear the tx hardware queue full flag. */
6882 	if (sc->used_tx_bd < sc->max_tx_bd) {
6883 		DBRUNIF((ifp->if_drv_flags & IFF_DRV_OACTIVE),
6884 		    DBPRINT(sc, BCE_INFO_SEND,
6885 		    "%s(): Open TX chain! %d/%d (used/total)\n",
6886 		    __FUNCTION__, sc->used_tx_bd, sc->max_tx_bd));
6887 		ifp->if_drv_flags &= ~IFF_DRV_OACTIVE;
6888 	}
6889 
6890 	sc->tx_cons = sw_tx_cons;
6891 
6892 	DBPRINT(sc, BCE_EXTREME_SEND, "%s(exit): tx_prod = 0x%04X, "
6893 	    "tx_cons = 0x%04X, tx_prod_bseq = 0x%08X\n",
6894 	    __FUNCTION__, sc->tx_prod, sc->tx_cons, sc->tx_prod_bseq);
6895 	DBEXIT(BCE_VERBOSE_SEND | BCE_VERBOSE_INTR);
6896 }
6897 
6898 /****************************************************************************/
6899 /* Disables interrupt generation.                                           */
6900 /*                                                                          */
6901 /* Returns:                                                                 */
6902 /*   Nothing.                                                               */
6903 /****************************************************************************/
6904 static void
6905 bce_disable_intr(struct bce_softc *sc)
6906 {
6907 	DBENTER(BCE_VERBOSE_INTR);
6908 
6909 	REG_WR(sc, BCE_PCICFG_INT_ACK_CMD, BCE_PCICFG_INT_ACK_CMD_MASK_INT);
6910 	REG_RD(sc, BCE_PCICFG_INT_ACK_CMD);
6911 
6912 	DBEXIT(BCE_VERBOSE_INTR);
6913 }
6914 
6915 /****************************************************************************/
6916 /* Enables interrupt generation.                                            */
6917 /*                                                                          */
6918 /* Returns:                                                                 */
6919 /*   Nothing.                                                               */
6920 /****************************************************************************/
6921 static void
6922 bce_enable_intr(struct bce_softc *sc, int coal_now)
6923 {
6924 	DBENTER(BCE_VERBOSE_INTR);
6925 
6926 	REG_WR(sc, BCE_PCICFG_INT_ACK_CMD,
6927 	    BCE_PCICFG_INT_ACK_CMD_INDEX_VALID |
6928 	    BCE_PCICFG_INT_ACK_CMD_MASK_INT | sc->last_status_idx);
6929 
6930 	REG_WR(sc, BCE_PCICFG_INT_ACK_CMD,
6931 	    BCE_PCICFG_INT_ACK_CMD_INDEX_VALID | sc->last_status_idx);
6932 
6933 	/* Force an immediate interrupt (whether there is new data or not). */
6934 	if (coal_now)
6935 		REG_WR(sc, BCE_HC_COMMAND, sc->hc_command | BCE_HC_COMMAND_COAL_NOW);
6936 
6937 	DBEXIT(BCE_VERBOSE_INTR);
6938 }
6939 
6940 /****************************************************************************/
6941 /* Handles controller initialization.                                       */
6942 /*                                                                          */
6943 /* Returns:                                                                 */
6944 /*   Nothing.                                                               */
6945 /****************************************************************************/
6946 static void
6947 bce_init_locked(struct bce_softc *sc)
6948 {
6949 	struct ifnet *ifp;
6950 	u32 ether_mtu = 0;
6951 
6952 	DBENTER(BCE_VERBOSE_RESET);
6953 
6954 	BCE_LOCK_ASSERT(sc);
6955 
6956 	ifp = sc->bce_ifp;
6957 
6958 	/* Check if the driver is still running and bail out if it is. */
6959 	if (ifp->if_drv_flags & IFF_DRV_RUNNING)
6960 		goto bce_init_locked_exit;
6961 
6962 	bce_stop(sc);
6963 
6964 	if (bce_reset(sc, BCE_DRV_MSG_CODE_RESET)) {
6965 		BCE_PRINTF("%s(%d): Controller reset failed!\n",
6966 		    __FILE__, __LINE__);
6967 		goto bce_init_locked_exit;
6968 	}
6969 
6970 	if (bce_chipinit(sc)) {
6971 		BCE_PRINTF("%s(%d): Controller initialization failed!\n",
6972 		    __FILE__, __LINE__);
6973 		goto bce_init_locked_exit;
6974 	}
6975 
6976 	if (bce_blockinit(sc)) {
6977 		BCE_PRINTF("%s(%d): Block initialization failed!\n",
6978 		    __FILE__, __LINE__);
6979 		goto bce_init_locked_exit;
6980 	}
6981 
6982 	/* Load our MAC address. */
6983 	bcopy(IF_LLADDR(sc->bce_ifp), sc->eaddr, ETHER_ADDR_LEN);
6984 	bce_set_mac_addr(sc);
6985 
6986 	if (bce_hdr_split == FALSE)
6987 		bce_get_rx_buffer_sizes(sc, ifp->if_mtu);
6988 	/*
6989 	 * Calculate and program the hardware Ethernet MTU
6990  	 * size. Be generous on the receive if we have room
6991  	 * and allowed by the user.
6992 	 */
6993 	if (bce_strict_rx_mtu == TRUE)
6994 		ether_mtu = ifp->if_mtu;
6995 	else {
6996 		if (bce_hdr_split == TRUE) {
6997 			if (ifp->if_mtu <= sc->rx_bd_mbuf_data_len + MCLBYTES)
6998 				ether_mtu = sc->rx_bd_mbuf_data_len +
6999 				    MCLBYTES;
7000 			else
7001 				ether_mtu = ifp->if_mtu;
7002 		} else {
7003 			if (ifp->if_mtu <= sc->rx_bd_mbuf_data_len)
7004 				ether_mtu = sc->rx_bd_mbuf_data_len;
7005 			else
7006 				ether_mtu = ifp->if_mtu;
7007 		}
7008 	}
7009 
7010 	ether_mtu += ETHER_HDR_LEN + ETHER_VLAN_ENCAP_LEN + ETHER_CRC_LEN;
7011 
7012 	DBPRINT(sc, BCE_INFO_MISC, "%s(): setting h/w mtu = %d\n",
7013 	    __FUNCTION__, ether_mtu);
7014 
7015 	/* Program the mtu, enabling jumbo frame support if necessary. */
7016 	if (ether_mtu > (ETHER_MAX_LEN + ETHER_VLAN_ENCAP_LEN))
7017 		REG_WR(sc, BCE_EMAC_RX_MTU_SIZE,
7018 		    min(ether_mtu, BCE_MAX_JUMBO_ETHER_MTU) |
7019 		    BCE_EMAC_RX_MTU_SIZE_JUMBO_ENA);
7020 	else
7021 		REG_WR(sc, BCE_EMAC_RX_MTU_SIZE, ether_mtu);
7022 
7023 	/* Program appropriate promiscuous/multicast filtering. */
7024 	bce_set_rx_mode(sc);
7025 
7026 	if (bce_hdr_split == TRUE) {
7027 		/* Init page buffer descriptor chain. */
7028 		bce_init_pg_chain(sc);
7029 	}
7030 
7031 	/* Init RX buffer descriptor chain. */
7032 	bce_init_rx_chain(sc);
7033 
7034 	/* Init TX buffer descriptor chain. */
7035 	bce_init_tx_chain(sc);
7036 
7037 	/* Enable host interrupts. */
7038 	bce_enable_intr(sc, 1);
7039 
7040 	bce_ifmedia_upd_locked(ifp);
7041 
7042 	/* Let the OS know the driver is up and running. */
7043 	ifp->if_drv_flags |= IFF_DRV_RUNNING;
7044 	ifp->if_drv_flags &= ~IFF_DRV_OACTIVE;
7045 
7046 	callout_reset(&sc->bce_tick_callout, hz, bce_tick, sc);
7047 
7048 bce_init_locked_exit:
7049 	DBEXIT(BCE_VERBOSE_RESET);
7050 }
7051 
7052 /****************************************************************************/
7053 /* Initialize the controller just enough so that any management firmware    */
7054 /* running on the device will continue to operate correctly.                */
7055 /*                                                                          */
7056 /* Returns:                                                                 */
7057 /*   Nothing.                                                               */
7058 /****************************************************************************/
7059 static void
7060 bce_mgmt_init_locked(struct bce_softc *sc)
7061 {
7062 	struct ifnet *ifp;
7063 
7064 	DBENTER(BCE_VERBOSE_RESET);
7065 
7066 	BCE_LOCK_ASSERT(sc);
7067 
7068 	/* Bail out if management firmware is not running. */
7069 	if (!(sc->bce_flags & BCE_MFW_ENABLE_FLAG)) {
7070 		DBPRINT(sc, BCE_VERBOSE_SPECIAL,
7071 		    "No management firmware running...\n");
7072 		goto bce_mgmt_init_locked_exit;
7073 	}
7074 
7075 	ifp = sc->bce_ifp;
7076 
7077 	/* Enable all critical blocks in the MAC. */
7078 	REG_WR(sc, BCE_MISC_ENABLE_SET_BITS, BCE_MISC_ENABLE_DEFAULT);
7079 	REG_RD(sc, BCE_MISC_ENABLE_SET_BITS);
7080 	DELAY(20);
7081 
7082 	bce_ifmedia_upd_locked(ifp);
7083 
7084 bce_mgmt_init_locked_exit:
7085 	DBEXIT(BCE_VERBOSE_RESET);
7086 }
7087 
7088 /****************************************************************************/
7089 /* Handles controller initialization when called from an unlocked routine.  */
7090 /*                                                                          */
7091 /* Returns:                                                                 */
7092 /*   Nothing.                                                               */
7093 /****************************************************************************/
7094 static void
7095 bce_init(void *xsc)
7096 {
7097 	struct bce_softc *sc = xsc;
7098 
7099 	DBENTER(BCE_VERBOSE_RESET);
7100 
7101 	BCE_LOCK(sc);
7102 	bce_init_locked(sc);
7103 	BCE_UNLOCK(sc);
7104 
7105 	DBEXIT(BCE_VERBOSE_RESET);
7106 }
7107 
7108 /****************************************************************************/
7109 /* Modifies an mbuf for TSO on the hardware.                                */
7110 /*                                                                          */
7111 /* Returns:                                                                 */
7112 /*   Pointer to a modified mbuf.                                            */
7113 /****************************************************************************/
7114 static struct mbuf *
7115 bce_tso_setup(struct bce_softc *sc, struct mbuf **m_head, u16 *flags)
7116 {
7117 	struct mbuf *m;
7118 	struct ether_header *eh;
7119 	struct ip *ip;
7120 	struct tcphdr *th;
7121 	u16 etype;
7122 	int hdr_len, ip_hlen = 0, tcp_hlen = 0, ip_len = 0;
7123 
7124 	DBRUN(sc->tso_frames_requested++);
7125 
7126 	/* Controller may modify mbuf chains. */
7127 	if (M_WRITABLE(*m_head) == 0) {
7128 		m = m_dup(*m_head, M_NOWAIT);
7129 		m_freem(*m_head);
7130 		if (m == NULL) {
7131 			sc->mbuf_alloc_failed_count++;
7132 			*m_head = NULL;
7133 			return (NULL);
7134 		}
7135 		*m_head = m;
7136 	}
7137 
7138 	/*
7139 	 * For TSO the controller needs two pieces of info,
7140 	 * the MSS and the IP+TCP options length.
7141 	 */
7142 	m = m_pullup(*m_head, sizeof(struct ether_header) + sizeof(struct ip));
7143 	if (m == NULL) {
7144 		*m_head = NULL;
7145 		return (NULL);
7146 	}
7147 	eh = mtod(m, struct ether_header *);
7148 	etype = ntohs(eh->ether_type);
7149 
7150 	/* Check for supported TSO Ethernet types (only IPv4 for now) */
7151 	switch (etype) {
7152 	case ETHERTYPE_IP:
7153 		ip = (struct ip *)(m->m_data + sizeof(struct ether_header));
7154 		/* TSO only supported for TCP protocol. */
7155 		if (ip->ip_p != IPPROTO_TCP) {
7156 			BCE_PRINTF("%s(%d): TSO enabled for non-TCP frame!.\n",
7157 			    __FILE__, __LINE__);
7158 			m_freem(*m_head);
7159 			*m_head = NULL;
7160 			return (NULL);
7161 		}
7162 
7163 		/* Get IP header length in bytes (min 20) */
7164 		ip_hlen = ip->ip_hl << 2;
7165 		m = m_pullup(*m_head, sizeof(struct ether_header) + ip_hlen +
7166 		    sizeof(struct tcphdr));
7167 		if (m == NULL) {
7168 			*m_head = NULL;
7169 			return (NULL);
7170 		}
7171 
7172 		/* Get the TCP header length in bytes (min 20) */
7173 		ip = (struct ip *)(m->m_data + sizeof(struct ether_header));
7174 		th = (struct tcphdr *)((caddr_t)ip + ip_hlen);
7175 		tcp_hlen = (th->th_off << 2);
7176 
7177 		/* Make sure all IP/TCP options live in the same buffer. */
7178 		m = m_pullup(*m_head,  sizeof(struct ether_header)+ ip_hlen +
7179 		    tcp_hlen);
7180 		if (m == NULL) {
7181 			*m_head = NULL;
7182 			return (NULL);
7183 		}
7184 
7185 		/* Clear IP header length and checksum, will be calc'd by h/w. */
7186 		ip = (struct ip *)(m->m_data + sizeof(struct ether_header));
7187 		ip_len = ip->ip_len;
7188 		ip->ip_len = 0;
7189 		ip->ip_sum = 0;
7190 		break;
7191 	case ETHERTYPE_IPV6:
7192 		BCE_PRINTF("%s(%d): TSO over IPv6 not supported!.\n",
7193 		    __FILE__, __LINE__);
7194 		m_freem(*m_head);
7195 		*m_head = NULL;
7196 		return (NULL);
7197 		/* NOT REACHED */
7198 	default:
7199 		BCE_PRINTF("%s(%d): TSO enabled for unsupported protocol!.\n",
7200 		    __FILE__, __LINE__);
7201 		m_freem(*m_head);
7202 		*m_head = NULL;
7203 		return (NULL);
7204 	}
7205 
7206 	hdr_len = sizeof(struct ether_header) + ip_hlen + tcp_hlen;
7207 
7208 	DBPRINT(sc, BCE_EXTREME_SEND, "%s(): hdr_len = %d, e_hlen = %d, "
7209 	    "ip_hlen = %d, tcp_hlen = %d, ip_len = %d\n",
7210 	    __FUNCTION__, hdr_len, (int) sizeof(struct ether_header), ip_hlen,
7211 	    tcp_hlen, ip_len);
7212 
7213 	/* Set the LSO flag in the TX BD */
7214 	*flags |= TX_BD_FLAGS_SW_LSO;
7215 
7216 	/* Set the length of IP + TCP options (in 32 bit words) */
7217 	*flags |= (((ip_hlen + tcp_hlen - sizeof(struct ip) -
7218 	    sizeof(struct tcphdr)) >> 2) << 8);
7219 
7220 	DBRUN(sc->tso_frames_completed++);
7221 	return (*m_head);
7222 }
7223 
7224 /****************************************************************************/
7225 /* Encapsultes an mbuf cluster into the tx_bd chain structure and makes the */
7226 /* memory visible to the controller.                                        */
7227 /*                                                                          */
7228 /* Returns:                                                                 */
7229 /*   0 for success, positive value for failure.                             */
7230 /* Modified:                                                                */
7231 /*   m_head: May be set to NULL if MBUF is excessively fragmented.          */
7232 /****************************************************************************/
7233 static int
7234 bce_tx_encap(struct bce_softc *sc, struct mbuf **m_head)
7235 {
7236 	bus_dma_segment_t segs[BCE_MAX_SEGMENTS];
7237 	bus_dmamap_t map;
7238 	struct tx_bd *txbd = NULL;
7239 	struct mbuf *m0;
7240 	u16 prod, chain_prod, mss = 0, vlan_tag = 0, flags = 0;
7241 	u32 prod_bseq;
7242 
7243 #ifdef BCE_DEBUG
7244 	u16 debug_prod;
7245 #endif
7246 
7247 	int i, error, nsegs, rc = 0;
7248 
7249 	DBENTER(BCE_VERBOSE_SEND);
7250 
7251 	/* Make sure we have room in the TX chain. */
7252 	if (sc->used_tx_bd >= sc->max_tx_bd)
7253 		goto bce_tx_encap_exit;
7254 
7255 	/* Transfer any checksum offload flags to the bd. */
7256 	m0 = *m_head;
7257 	if (m0->m_pkthdr.csum_flags) {
7258 		if (m0->m_pkthdr.csum_flags & CSUM_TSO) {
7259 			m0 = bce_tso_setup(sc, m_head, &flags);
7260 			if (m0 == NULL) {
7261 				DBRUN(sc->tso_frames_failed++);
7262 				goto bce_tx_encap_exit;
7263 			}
7264 			mss = htole16(m0->m_pkthdr.tso_segsz);
7265 		} else {
7266 			if (m0->m_pkthdr.csum_flags & CSUM_IP)
7267 				flags |= TX_BD_FLAGS_IP_CKSUM;
7268 			if (m0->m_pkthdr.csum_flags & (CSUM_TCP | CSUM_UDP))
7269 				flags |= TX_BD_FLAGS_TCP_UDP_CKSUM;
7270 		}
7271 	}
7272 
7273 	/* Transfer any VLAN tags to the bd. */
7274 	if (m0->m_flags & M_VLANTAG) {
7275 		flags |= TX_BD_FLAGS_VLAN_TAG;
7276 		vlan_tag = m0->m_pkthdr.ether_vtag;
7277 	}
7278 
7279 	/* Map the mbuf into DMAable memory. */
7280 	prod = sc->tx_prod;
7281 	chain_prod = TX_CHAIN_IDX(prod);
7282 	map = sc->tx_mbuf_map[chain_prod];
7283 
7284 	/* Map the mbuf into our DMA address space. */
7285 	error = bus_dmamap_load_mbuf_sg(sc->tx_mbuf_tag, map, m0,
7286 	    segs, &nsegs, BUS_DMA_NOWAIT);
7287 
7288 	/* Check if the DMA mapping was successful */
7289 	if (error == EFBIG) {
7290 		sc->mbuf_frag_count++;
7291 
7292 		/* Try to defrag the mbuf. */
7293 		m0 = m_collapse(*m_head, M_NOWAIT, BCE_MAX_SEGMENTS);
7294 		if (m0 == NULL) {
7295 			/* Defrag was unsuccessful */
7296 			m_freem(*m_head);
7297 			*m_head = NULL;
7298 			sc->mbuf_alloc_failed_count++;
7299 			rc = ENOBUFS;
7300 			goto bce_tx_encap_exit;
7301 		}
7302 
7303 		/* Defrag was successful, try mapping again */
7304 		*m_head = m0;
7305 		error = bus_dmamap_load_mbuf_sg(sc->tx_mbuf_tag,
7306 		    map, m0, segs, &nsegs, BUS_DMA_NOWAIT);
7307 
7308 		/* Still getting an error after a defrag. */
7309 		if (error == ENOMEM) {
7310 			/* Insufficient DMA buffers available. */
7311 			sc->dma_map_addr_tx_failed_count++;
7312 			rc = error;
7313 			goto bce_tx_encap_exit;
7314 		} else if (error != 0) {
7315 			/* Release it and return an error. */
7316 			BCE_PRINTF("%s(%d): Unknown error mapping mbuf into "
7317 			    "TX chain!\n", __FILE__, __LINE__);
7318 			m_freem(m0);
7319 			*m_head = NULL;
7320 			sc->dma_map_addr_tx_failed_count++;
7321 			rc = ENOBUFS;
7322 			goto bce_tx_encap_exit;
7323 		}
7324 	} else if (error == ENOMEM) {
7325 		/* Insufficient DMA buffers available. */
7326 		sc->dma_map_addr_tx_failed_count++;
7327 		rc = error;
7328 		goto bce_tx_encap_exit;
7329 	} else if (error != 0) {
7330 		m_freem(m0);
7331 		*m_head = NULL;
7332 		sc->dma_map_addr_tx_failed_count++;
7333 		rc = error;
7334 		goto bce_tx_encap_exit;
7335 	}
7336 
7337 	/* Make sure there's room in the chain */
7338 	if (nsegs > (sc->max_tx_bd - sc->used_tx_bd)) {
7339 		bus_dmamap_unload(sc->tx_mbuf_tag, map);
7340 		rc = ENOBUFS;
7341 		goto bce_tx_encap_exit;
7342 	}
7343 
7344 	/* prod points to an empty tx_bd at this point. */
7345 	prod_bseq  = sc->tx_prod_bseq;
7346 
7347 #ifdef BCE_DEBUG
7348 	debug_prod = chain_prod;
7349 #endif
7350 
7351 	DBPRINT(sc, BCE_INFO_SEND,
7352 	    "%s(start): prod = 0x%04X, chain_prod = 0x%04X, "
7353 	    "prod_bseq = 0x%08X\n",
7354 	    __FUNCTION__, prod, chain_prod, prod_bseq);
7355 
7356 	/*
7357 	 * Cycle through each mbuf segment that makes up
7358 	 * the outgoing frame, gathering the mapping info
7359 	 * for that segment and creating a tx_bd for
7360 	 * the mbuf.
7361 	 */
7362 	for (i = 0; i < nsegs ; i++) {
7363 		chain_prod = TX_CHAIN_IDX(prod);
7364 		txbd= &sc->tx_bd_chain[TX_PAGE(chain_prod)]
7365 		    [TX_IDX(chain_prod)];
7366 
7367 		txbd->tx_bd_haddr_lo =
7368 		    htole32(BCE_ADDR_LO(segs[i].ds_addr));
7369 		txbd->tx_bd_haddr_hi =
7370 		    htole32(BCE_ADDR_HI(segs[i].ds_addr));
7371 		txbd->tx_bd_mss_nbytes = htole32(mss << 16) |
7372 		    htole16(segs[i].ds_len);
7373 		txbd->tx_bd_vlan_tag = htole16(vlan_tag);
7374 		txbd->tx_bd_flags = htole16(flags);
7375 		prod_bseq += segs[i].ds_len;
7376 		if (i == 0)
7377 			txbd->tx_bd_flags |= htole16(TX_BD_FLAGS_START);
7378 		prod = NEXT_TX_BD(prod);
7379 	}
7380 
7381 	/* Set the END flag on the last TX buffer descriptor. */
7382 	txbd->tx_bd_flags |= htole16(TX_BD_FLAGS_END);
7383 
7384 	DBRUNMSG(BCE_EXTREME_SEND,
7385 	    bce_dump_tx_chain(sc, debug_prod, nsegs));
7386 
7387 	/*
7388 	 * Ensure that the mbuf pointer for this transmission
7389 	 * is placed at the array index of the last
7390 	 * descriptor in this chain.  This is done
7391 	 * because a single map is used for all
7392 	 * segments of the mbuf and we don't want to
7393 	 * unload the map before all of the segments
7394 	 * have been freed.
7395 	 */
7396 	sc->tx_mbuf_ptr[chain_prod] = m0;
7397 	sc->used_tx_bd += nsegs;
7398 
7399 	/* Update some debug statistic counters */
7400 	DBRUNIF((sc->used_tx_bd > sc->tx_hi_watermark),
7401 	    sc->tx_hi_watermark = sc->used_tx_bd);
7402 	DBRUNIF((sc->used_tx_bd == sc->max_tx_bd), sc->tx_full_count++);
7403 	DBRUNIF(sc->debug_tx_mbuf_alloc++);
7404 
7405 	DBRUNMSG(BCE_EXTREME_SEND, bce_dump_tx_mbuf_chain(sc, chain_prod, 1));
7406 
7407 	/* prod points to the next free tx_bd at this point. */
7408 	sc->tx_prod = prod;
7409 	sc->tx_prod_bseq = prod_bseq;
7410 
7411 	/* Tell the chip about the waiting TX frames. */
7412 	REG_WR16(sc, MB_GET_CID_ADDR(TX_CID) +
7413 	    BCE_L2MQ_TX_HOST_BIDX, sc->tx_prod);
7414 	REG_WR(sc, MB_GET_CID_ADDR(TX_CID) +
7415 	    BCE_L2MQ_TX_HOST_BSEQ, sc->tx_prod_bseq);
7416 
7417 bce_tx_encap_exit:
7418 	DBEXIT(BCE_VERBOSE_SEND);
7419 	return(rc);
7420 }
7421 
7422 /****************************************************************************/
7423 /* Main transmit routine when called from another routine with a lock.      */
7424 /*                                                                          */
7425 /* Returns:                                                                 */
7426 /*   Nothing.                                                               */
7427 /****************************************************************************/
7428 static void
7429 bce_start_locked(struct ifnet *ifp)
7430 {
7431 	struct bce_softc *sc = ifp->if_softc;
7432 	struct mbuf *m_head = NULL;
7433 	int count = 0;
7434 	u16 tx_prod, tx_chain_prod;
7435 
7436 	DBENTER(BCE_VERBOSE_SEND | BCE_VERBOSE_CTX);
7437 
7438 	BCE_LOCK_ASSERT(sc);
7439 
7440 	/* prod points to the next free tx_bd. */
7441 	tx_prod = sc->tx_prod;
7442 	tx_chain_prod = TX_CHAIN_IDX(tx_prod);
7443 
7444 	DBPRINT(sc, BCE_INFO_SEND,
7445 	    "%s(enter): tx_prod = 0x%04X, tx_chain_prod = 0x%04X, "
7446 	    "tx_prod_bseq = 0x%08X\n",
7447 	    __FUNCTION__, tx_prod, tx_chain_prod, sc->tx_prod_bseq);
7448 
7449 	/* If there's no link or the transmit queue is empty then just exit. */
7450 	if (sc->bce_link_up == FALSE) {
7451 		DBPRINT(sc, BCE_INFO_SEND, "%s(): No link.\n",
7452 		    __FUNCTION__);
7453 		goto bce_start_locked_exit;
7454 	}
7455 
7456 	if (IFQ_DRV_IS_EMPTY(&ifp->if_snd)) {
7457 		DBPRINT(sc, BCE_INFO_SEND, "%s(): Transmit queue empty.\n",
7458 		    __FUNCTION__);
7459 		goto bce_start_locked_exit;
7460 	}
7461 
7462 	/*
7463 	 * Keep adding entries while there is space in the ring.
7464 	 */
7465 	while (sc->used_tx_bd < sc->max_tx_bd) {
7466 		/* Check for any frames to send. */
7467 		IFQ_DRV_DEQUEUE(&ifp->if_snd, m_head);
7468 
7469 		/* Stop when the transmit queue is empty. */
7470 		if (m_head == NULL)
7471 			break;
7472 
7473 		/*
7474 		 * Pack the data into the transmit ring. If we
7475 		 * don't have room, place the mbuf back at the
7476 		 * head of the queue and set the OACTIVE flag
7477 		 * to wait for the NIC to drain the chain.
7478 		 */
7479 		if (bce_tx_encap(sc, &m_head)) {
7480 			if (m_head != NULL)
7481 				IFQ_DRV_PREPEND(&ifp->if_snd, m_head);
7482 			ifp->if_drv_flags |= IFF_DRV_OACTIVE;
7483 			DBPRINT(sc, BCE_INFO_SEND,
7484 			    "TX chain is closed for business! Total "
7485 			    "tx_bd used = %d\n", sc->used_tx_bd);
7486 			break;
7487 		}
7488 
7489 		count++;
7490 
7491 		/* Send a copy of the frame to any BPF listeners. */
7492 		ETHER_BPF_MTAP(ifp, m_head);
7493 	}
7494 
7495 	/* Exit if no packets were dequeued. */
7496 	if (count == 0) {
7497 		DBPRINT(sc, BCE_VERBOSE_SEND, "%s(): No packets were "
7498 		    "dequeued\n", __FUNCTION__);
7499 		goto bce_start_locked_exit;
7500 	}
7501 
7502 	DBPRINT(sc, BCE_VERBOSE_SEND, "%s(): Inserted %d frames into "
7503 	    "send queue.\n", __FUNCTION__, count);
7504 
7505 	/* Set the tx timeout. */
7506 	sc->watchdog_timer = BCE_TX_TIMEOUT;
7507 
7508 	DBRUNMSG(BCE_VERBOSE_SEND, bce_dump_ctx(sc, TX_CID));
7509 	DBRUNMSG(BCE_VERBOSE_SEND, bce_dump_mq_regs(sc));
7510 
7511 bce_start_locked_exit:
7512 	DBEXIT(BCE_VERBOSE_SEND | BCE_VERBOSE_CTX);
7513 }
7514 
7515 /****************************************************************************/
7516 /* Main transmit routine when called from another routine without a lock.   */
7517 /*                                                                          */
7518 /* Returns:                                                                 */
7519 /*   Nothing.                                                               */
7520 /****************************************************************************/
7521 static void
7522 bce_start(struct ifnet *ifp)
7523 {
7524 	struct bce_softc *sc = ifp->if_softc;
7525 
7526 	DBENTER(BCE_VERBOSE_SEND);
7527 
7528 	BCE_LOCK(sc);
7529 	bce_start_locked(ifp);
7530 	BCE_UNLOCK(sc);
7531 
7532 	DBEXIT(BCE_VERBOSE_SEND);
7533 }
7534 
7535 /****************************************************************************/
7536 /* Handles any IOCTL calls from the operating system.                       */
7537 /*                                                                          */
7538 /* Returns:                                                                 */
7539 /*   0 for success, positive value for failure.                             */
7540 /****************************************************************************/
7541 static int
7542 bce_ioctl(struct ifnet *ifp, u_long command, caddr_t data)
7543 {
7544 	struct bce_softc *sc = ifp->if_softc;
7545 	struct ifreq *ifr = (struct ifreq *) data;
7546 	struct mii_data *mii;
7547 	int mask, error = 0;
7548 
7549 	DBENTER(BCE_VERBOSE_MISC);
7550 
7551 	switch(command) {
7552 	/* Set the interface MTU. */
7553 	case SIOCSIFMTU:
7554 		/* Check that the MTU setting is supported. */
7555 		if ((ifr->ifr_mtu < BCE_MIN_MTU) ||
7556 			(ifr->ifr_mtu > BCE_MAX_JUMBO_MTU)) {
7557 			error = EINVAL;
7558 			break;
7559 		}
7560 
7561 		DBPRINT(sc, BCE_INFO_MISC,
7562 		    "SIOCSIFMTU: Changing MTU from %d to %d\n",
7563 		    (int) ifp->if_mtu, (int) ifr->ifr_mtu);
7564 
7565 		BCE_LOCK(sc);
7566 		ifp->if_mtu = ifr->ifr_mtu;
7567 		if (ifp->if_drv_flags & IFF_DRV_RUNNING) {
7568 			ifp->if_drv_flags &= ~IFF_DRV_RUNNING;
7569 			bce_init_locked(sc);
7570 		}
7571 		BCE_UNLOCK(sc);
7572 		break;
7573 
7574 	/* Set interface flags. */
7575 	case SIOCSIFFLAGS:
7576 		DBPRINT(sc, BCE_VERBOSE_SPECIAL, "Received SIOCSIFFLAGS\n");
7577 
7578 		BCE_LOCK(sc);
7579 
7580 		/* Check if the interface is up. */
7581 		if (ifp->if_flags & IFF_UP) {
7582 			if (ifp->if_drv_flags & IFF_DRV_RUNNING) {
7583 				/* Change promiscuous/multicast flags as necessary. */
7584 				bce_set_rx_mode(sc);
7585 			} else {
7586 				/* Start the HW */
7587 				bce_init_locked(sc);
7588 			}
7589 		} else {
7590 			/* The interface is down, check if driver is running. */
7591 			if (ifp->if_drv_flags & IFF_DRV_RUNNING) {
7592 				bce_stop(sc);
7593 
7594 				/* If MFW is running, restart the controller a bit. */
7595 				if (sc->bce_flags & BCE_MFW_ENABLE_FLAG) {
7596 					bce_reset(sc, BCE_DRV_MSG_CODE_RESET);
7597 					bce_chipinit(sc);
7598 					bce_mgmt_init_locked(sc);
7599 				}
7600 			}
7601 		}
7602 
7603 		BCE_UNLOCK(sc);
7604 		break;
7605 
7606 	/* Add/Delete multicast address */
7607 	case SIOCADDMULTI:
7608 	case SIOCDELMULTI:
7609 		DBPRINT(sc, BCE_VERBOSE_MISC,
7610 		    "Received SIOCADDMULTI/SIOCDELMULTI\n");
7611 
7612 		BCE_LOCK(sc);
7613 		if (ifp->if_drv_flags & IFF_DRV_RUNNING)
7614 			bce_set_rx_mode(sc);
7615 		BCE_UNLOCK(sc);
7616 
7617 		break;
7618 
7619 	/* Set/Get Interface media */
7620 	case SIOCSIFMEDIA:
7621 	case SIOCGIFMEDIA:
7622 		DBPRINT(sc, BCE_VERBOSE_MISC,
7623 		    "Received SIOCSIFMEDIA/SIOCGIFMEDIA\n");
7624 		if ((sc->bce_phy_flags & BCE_PHY_REMOTE_CAP_FLAG) != 0)
7625 			error = ifmedia_ioctl(ifp, ifr, &sc->bce_ifmedia,
7626 			    command);
7627 		else {
7628 			mii = device_get_softc(sc->bce_miibus);
7629 			error = ifmedia_ioctl(ifp, ifr, &mii->mii_media,
7630 			    command);
7631 		}
7632 		break;
7633 
7634 	/* Set interface capability */
7635 	case SIOCSIFCAP:
7636 		mask = ifr->ifr_reqcap ^ ifp->if_capenable;
7637 		DBPRINT(sc, BCE_INFO_MISC,
7638 		    "Received SIOCSIFCAP = 0x%08X\n", (u32) mask);
7639 
7640 		/* Toggle the TX checksum capabilities enable flag. */
7641 		if (mask & IFCAP_TXCSUM &&
7642 		    ifp->if_capabilities & IFCAP_TXCSUM) {
7643 			ifp->if_capenable ^= IFCAP_TXCSUM;
7644 			if (IFCAP_TXCSUM & ifp->if_capenable)
7645 				ifp->if_hwassist |= BCE_IF_HWASSIST;
7646 			else
7647 				ifp->if_hwassist &= ~BCE_IF_HWASSIST;
7648 		}
7649 
7650 		/* Toggle the RX checksum capabilities enable flag. */
7651 		if (mask & IFCAP_RXCSUM &&
7652 		    ifp->if_capabilities & IFCAP_RXCSUM)
7653 			ifp->if_capenable ^= IFCAP_RXCSUM;
7654 
7655 		/* Toggle the TSO capabilities enable flag. */
7656 		if (bce_tso_enable && (mask & IFCAP_TSO4) &&
7657 		    ifp->if_capabilities & IFCAP_TSO4) {
7658 			ifp->if_capenable ^= IFCAP_TSO4;
7659 			if (IFCAP_TSO4 & ifp->if_capenable)
7660 				ifp->if_hwassist |= CSUM_TSO;
7661 			else
7662 				ifp->if_hwassist &= ~CSUM_TSO;
7663 		}
7664 
7665 		if (mask & IFCAP_VLAN_HWCSUM &&
7666 		    ifp->if_capabilities & IFCAP_VLAN_HWCSUM)
7667 			ifp->if_capenable ^= IFCAP_VLAN_HWCSUM;
7668 
7669 		if ((mask & IFCAP_VLAN_HWTSO) != 0 &&
7670 		    (ifp->if_capabilities & IFCAP_VLAN_HWTSO) != 0)
7671 			ifp->if_capenable ^= IFCAP_VLAN_HWTSO;
7672 		/*
7673 		 * Don't actually disable VLAN tag stripping as
7674 		 * management firmware (ASF/IPMI/UMP) requires the
7675 		 * feature. If VLAN tag stripping is disabled driver
7676 		 * will manually reconstruct the VLAN frame by
7677 		 * appending stripped VLAN tag.
7678 		 */
7679 		if ((mask & IFCAP_VLAN_HWTAGGING) != 0 &&
7680 		    (ifp->if_capabilities & IFCAP_VLAN_HWTAGGING)) {
7681 			ifp->if_capenable ^= IFCAP_VLAN_HWTAGGING;
7682 			if ((ifp->if_capenable & IFCAP_VLAN_HWTAGGING)
7683 			    == 0)
7684 				ifp->if_capenable &= ~IFCAP_VLAN_HWTSO;
7685 		}
7686 		VLAN_CAPABILITIES(ifp);
7687 		break;
7688 	default:
7689 		/* We don't know how to handle the IOCTL, pass it on. */
7690 		error = ether_ioctl(ifp, command, data);
7691 		break;
7692 	}
7693 
7694 	DBEXIT(BCE_VERBOSE_MISC);
7695 	return(error);
7696 }
7697 
7698 /****************************************************************************/
7699 /* Transmit timeout handler.                                                */
7700 /*                                                                          */
7701 /* Returns:                                                                 */
7702 /*   Nothing.                                                               */
7703 /****************************************************************************/
7704 static void
7705 bce_watchdog(struct bce_softc *sc)
7706 {
7707 	uint32_t status;
7708 
7709 	DBENTER(BCE_EXTREME_SEND);
7710 
7711 	BCE_LOCK_ASSERT(sc);
7712 
7713 	status = 0;
7714 	/* If the watchdog timer hasn't expired then just exit. */
7715 	if (sc->watchdog_timer == 0 || --sc->watchdog_timer)
7716 		goto bce_watchdog_exit;
7717 
7718 	status = REG_RD(sc, BCE_EMAC_RX_STATUS);
7719 	/* If pause frames are active then don't reset the hardware. */
7720 	if ((sc->bce_flags & BCE_USING_RX_FLOW_CONTROL) != 0) {
7721 		if ((status & BCE_EMAC_RX_STATUS_FFED) != 0) {
7722 			/*
7723 			 * If link partner has us in XOFF state then wait for
7724 			 * the condition to clear.
7725 			 */
7726 			sc->watchdog_timer = BCE_TX_TIMEOUT;
7727 			goto bce_watchdog_exit;
7728 		} else if ((status & BCE_EMAC_RX_STATUS_FF_RECEIVED) != 0 &&
7729 			(status & BCE_EMAC_RX_STATUS_N_RECEIVED) != 0) {
7730 			/*
7731 			 * If we're not currently XOFF'ed but have recently
7732 			 * been XOFF'd/XON'd then assume that's delaying TX
7733 			 * this time around.
7734 			 */
7735 			sc->watchdog_timer = BCE_TX_TIMEOUT;
7736 			goto bce_watchdog_exit;
7737 		}
7738 		/*
7739 		 * Any other condition is unexpected and the controller
7740 		 * should be reset.
7741 		 */
7742 	}
7743 
7744 	BCE_PRINTF("%s(%d): Watchdog timeout occurred, resetting!\n",
7745 	    __FILE__, __LINE__);
7746 
7747 	DBRUNMSG(BCE_INFO,
7748 	    bce_dump_driver_state(sc);
7749 	    bce_dump_status_block(sc);
7750 	    bce_dump_stats_block(sc);
7751 	    bce_dump_ftqs(sc);
7752 	    bce_dump_txp_state(sc, 0);
7753 	    bce_dump_rxp_state(sc, 0);
7754 	    bce_dump_tpat_state(sc, 0);
7755 	    bce_dump_cp_state(sc, 0);
7756 	    bce_dump_com_state(sc, 0));
7757 
7758 	DBRUN(bce_breakpoint(sc));
7759 
7760 	sc->bce_ifp->if_drv_flags &= ~IFF_DRV_RUNNING;
7761 
7762 	bce_init_locked(sc);
7763 	sc->watchdog_timeouts++;
7764 
7765 bce_watchdog_exit:
7766 	REG_WR(sc, BCE_EMAC_RX_STATUS, status);
7767 	DBEXIT(BCE_EXTREME_SEND);
7768 }
7769 
7770 /*
7771  * Interrupt handler.
7772  */
7773 /****************************************************************************/
7774 /* Main interrupt entry point.  Verifies that the controller generated the  */
7775 /* interrupt and then calls a separate routine for handle the various       */
7776 /* interrupt causes (PHY, TX, RX).                                          */
7777 /*                                                                          */
7778 /* Returns:                                                                 */
7779 /*   Nothing.                                                               */
7780 /****************************************************************************/
7781 static void
7782 bce_intr(void *xsc)
7783 {
7784 	struct bce_softc *sc;
7785 	struct ifnet *ifp;
7786 	u32 status_attn_bits;
7787 	u16 hw_rx_cons, hw_tx_cons;
7788 
7789 	sc = xsc;
7790 	ifp = sc->bce_ifp;
7791 
7792 	DBENTER(BCE_VERBOSE_SEND | BCE_VERBOSE_RECV | BCE_VERBOSE_INTR);
7793 	DBRUNMSG(BCE_VERBOSE_INTR, bce_dump_status_block(sc));
7794 	DBRUNMSG(BCE_VERBOSE_INTR, bce_dump_stats_block(sc));
7795 
7796 	BCE_LOCK(sc);
7797 
7798 	DBRUN(sc->interrupts_generated++);
7799 
7800 	/* Synchnorize before we read from interface's status block */
7801 	bus_dmamap_sync(sc->status_tag, sc->status_map, BUS_DMASYNC_POSTREAD);
7802 
7803 	/*
7804 	 * If the hardware status block index matches the last value read
7805 	 * by the driver and we haven't asserted our interrupt then there's
7806 	 * nothing to do.  This may only happen in case of INTx due to the
7807 	 * interrupt arriving at the CPU before the status block is updated.
7808 	 */
7809 	if ((sc->bce_flags & (BCE_USING_MSI_FLAG | BCE_USING_MSIX_FLAG)) == 0 &&
7810 	    sc->status_block->status_idx == sc->last_status_idx &&
7811 	    (REG_RD(sc, BCE_PCICFG_MISC_STATUS) &
7812 	     BCE_PCICFG_MISC_STATUS_INTA_VALUE)) {
7813 		DBPRINT(sc, BCE_VERBOSE_INTR, "%s(): Spurious interrupt.\n",
7814 		    __FUNCTION__);
7815 		goto bce_intr_exit;
7816 	}
7817 
7818 	/* Ack the interrupt and stop others from occurring. */
7819 	REG_WR(sc, BCE_PCICFG_INT_ACK_CMD,
7820 	    BCE_PCICFG_INT_ACK_CMD_USE_INT_HC_PARAM |
7821 	    BCE_PCICFG_INT_ACK_CMD_MASK_INT);
7822 
7823 	/* Check if the hardware has finished any work. */
7824 	hw_rx_cons = bce_get_hw_rx_cons(sc);
7825 	hw_tx_cons = bce_get_hw_tx_cons(sc);
7826 
7827 	/* Keep processing data as long as there is work to do. */
7828 	for (;;) {
7829 		status_attn_bits = sc->status_block->status_attn_bits;
7830 
7831 		DBRUNIF(DB_RANDOMTRUE(unexpected_attention_sim_control),
7832 		    BCE_PRINTF("Simulating unexpected status attention "
7833 		    "bit set.");
7834 		    sc->unexpected_attention_sim_count++;
7835 		    status_attn_bits = status_attn_bits |
7836 		    STATUS_ATTN_BITS_PARITY_ERROR);
7837 
7838 		/* Was it a link change interrupt? */
7839 		if ((status_attn_bits & STATUS_ATTN_BITS_LINK_STATE) !=
7840 		    (sc->status_block->status_attn_bits_ack &
7841 		     STATUS_ATTN_BITS_LINK_STATE)) {
7842 			bce_phy_intr(sc);
7843 
7844 			/* Clear transient updates during link state change. */
7845 			REG_WR(sc, BCE_HC_COMMAND, sc->hc_command |
7846 			    BCE_HC_COMMAND_COAL_NOW_WO_INT);
7847 			REG_RD(sc, BCE_HC_COMMAND);
7848 		}
7849 
7850 		/* If any other attention is asserted, the chip is toast. */
7851 		if (((status_attn_bits & ~STATUS_ATTN_BITS_LINK_STATE) !=
7852 		    (sc->status_block->status_attn_bits_ack &
7853 		    ~STATUS_ATTN_BITS_LINK_STATE))) {
7854 			sc->unexpected_attention_count++;
7855 
7856 			BCE_PRINTF("%s(%d): Fatal attention detected: "
7857 			    "0x%08X\n",	__FILE__, __LINE__,
7858 			    sc->status_block->status_attn_bits);
7859 
7860 			DBRUNMSG(BCE_FATAL,
7861 			    if (unexpected_attention_sim_control == 0)
7862 				bce_breakpoint(sc));
7863 
7864 			bce_init_locked(sc);
7865 			goto bce_intr_exit;
7866 		}
7867 
7868 		/* Check for any completed RX frames. */
7869 		if (hw_rx_cons != sc->hw_rx_cons)
7870 			bce_rx_intr(sc);
7871 
7872 		/* Check for any completed TX frames. */
7873 		if (hw_tx_cons != sc->hw_tx_cons)
7874 			bce_tx_intr(sc);
7875 
7876 		/* Save status block index value for the next interrupt. */
7877 		sc->last_status_idx = sc->status_block->status_idx;
7878 
7879  		/*
7880  		 * Prevent speculative reads from getting
7881  		 * ahead of the status block.
7882 		 */
7883 		bus_space_barrier(sc->bce_btag, sc->bce_bhandle, 0, 0,
7884 		    BUS_SPACE_BARRIER_READ);
7885 
7886  		/*
7887  		 * If there's no work left then exit the
7888  		 * interrupt service routine.
7889 		 */
7890 		hw_rx_cons = bce_get_hw_rx_cons(sc);
7891 		hw_tx_cons = bce_get_hw_tx_cons(sc);
7892 
7893 		if ((hw_rx_cons == sc->hw_rx_cons) &&
7894 		    (hw_tx_cons == sc->hw_tx_cons))
7895 			break;
7896 	}
7897 
7898 	bus_dmamap_sync(sc->status_tag,	sc->status_map, BUS_DMASYNC_PREREAD);
7899 
7900 	/* Re-enable interrupts. */
7901 	bce_enable_intr(sc, 0);
7902 
7903 	/* Handle any frames that arrived while handling the interrupt. */
7904 	if (ifp->if_drv_flags & IFF_DRV_RUNNING &&
7905 	    !IFQ_DRV_IS_EMPTY(&ifp->if_snd))
7906 		bce_start_locked(ifp);
7907 
7908 bce_intr_exit:
7909 	BCE_UNLOCK(sc);
7910 
7911 	DBEXIT(BCE_VERBOSE_SEND | BCE_VERBOSE_RECV | BCE_VERBOSE_INTR);
7912 }
7913 
7914 /****************************************************************************/
7915 /* Programs the various packet receive modes (broadcast and multicast).     */
7916 /*                                                                          */
7917 /* Returns:                                                                 */
7918 /*   Nothing.                                                               */
7919 /****************************************************************************/
7920 static u_int
7921 bce_hash_maddr(void *arg, struct sockaddr_dl *sdl, u_int cnt)
7922 {
7923 	u32 *hashes = arg;
7924 	int h;
7925 
7926 	h = ether_crc32_le(LLADDR(sdl), ETHER_ADDR_LEN) & 0xFF;
7927 	hashes[(h & 0xE0) >> 5] |= 1 << (h & 0x1F);
7928 
7929 	return (1);
7930 }
7931 
7932 static void
7933 bce_set_rx_mode(struct bce_softc *sc)
7934 {
7935 	struct ifnet *ifp;
7936 	u32 hashes[NUM_MC_HASH_REGISTERS] = { 0, 0, 0, 0, 0, 0, 0, 0 };
7937 	u32 rx_mode, sort_mode;
7938 	int i;
7939 
7940 	DBENTER(BCE_VERBOSE_MISC);
7941 
7942 	BCE_LOCK_ASSERT(sc);
7943 
7944 	ifp = sc->bce_ifp;
7945 
7946 	/* Initialize receive mode default settings. */
7947 	rx_mode   = sc->rx_mode & ~(BCE_EMAC_RX_MODE_PROMISCUOUS |
7948 	    BCE_EMAC_RX_MODE_KEEP_VLAN_TAG);
7949 	sort_mode = 1 | BCE_RPM_SORT_USER0_BC_EN;
7950 
7951 	/*
7952 	 * ASF/IPMI/UMP firmware requires that VLAN tag stripping
7953 	 * be enbled.
7954 	 */
7955 	if (!(BCE_IF_CAPABILITIES & IFCAP_VLAN_HWTAGGING) &&
7956 	    (!(sc->bce_flags & BCE_MFW_ENABLE_FLAG)))
7957 		rx_mode |= BCE_EMAC_RX_MODE_KEEP_VLAN_TAG;
7958 
7959 	/*
7960 	 * Check for promiscuous, all multicast, or selected
7961 	 * multicast address filtering.
7962 	 */
7963 	if (ifp->if_flags & IFF_PROMISC) {
7964 		DBPRINT(sc, BCE_INFO_MISC, "Enabling promiscuous mode.\n");
7965 
7966 		/* Enable promiscuous mode. */
7967 		rx_mode |= BCE_EMAC_RX_MODE_PROMISCUOUS;
7968 		sort_mode |= BCE_RPM_SORT_USER0_PROM_EN;
7969 	} else if (ifp->if_flags & IFF_ALLMULTI) {
7970 		DBPRINT(sc, BCE_INFO_MISC, "Enabling all multicast mode.\n");
7971 
7972 		/* Enable all multicast addresses. */
7973 		for (i = 0; i < NUM_MC_HASH_REGISTERS; i++) {
7974 			REG_WR(sc, BCE_EMAC_MULTICAST_HASH0 + (i * 4),
7975 			    0xffffffff);
7976 		}
7977 		sort_mode |= BCE_RPM_SORT_USER0_MC_EN;
7978 	} else {
7979 		/* Accept one or more multicast(s). */
7980 		DBPRINT(sc, BCE_INFO_MISC, "Enabling selective multicast mode.\n");
7981 		if_foreach_llmaddr(ifp, bce_hash_maddr, hashes);
7982 
7983 		for (i = 0; i < NUM_MC_HASH_REGISTERS; i++)
7984 			REG_WR(sc, BCE_EMAC_MULTICAST_HASH0 + (i * 4), hashes[i]);
7985 
7986 		sort_mode |= BCE_RPM_SORT_USER0_MC_HSH_EN;
7987 	}
7988 
7989 	/* Only make changes if the recive mode has actually changed. */
7990 	if (rx_mode != sc->rx_mode) {
7991 		DBPRINT(sc, BCE_VERBOSE_MISC, "Enabling new receive mode: "
7992 		    "0x%08X\n", rx_mode);
7993 
7994 		sc->rx_mode = rx_mode;
7995 		REG_WR(sc, BCE_EMAC_RX_MODE, rx_mode);
7996 	}
7997 
7998 	/* Disable and clear the exisitng sort before enabling a new sort. */
7999 	REG_WR(sc, BCE_RPM_SORT_USER0, 0x0);
8000 	REG_WR(sc, BCE_RPM_SORT_USER0, sort_mode);
8001 	REG_WR(sc, BCE_RPM_SORT_USER0, sort_mode | BCE_RPM_SORT_USER0_ENA);
8002 
8003 	DBEXIT(BCE_VERBOSE_MISC);
8004 }
8005 
8006 /****************************************************************************/
8007 /* Called periodically to updates statistics from the controllers           */
8008 /* statistics block.                                                        */
8009 /*                                                                          */
8010 /* Returns:                                                                 */
8011 /*   Nothing.                                                               */
8012 /****************************************************************************/
8013 static void
8014 bce_stats_update(struct bce_softc *sc)
8015 {
8016 	struct statistics_block *stats;
8017 
8018 	DBENTER(BCE_EXTREME_MISC);
8019 
8020 	bus_dmamap_sync(sc->stats_tag, sc->stats_map, BUS_DMASYNC_POSTREAD);
8021 
8022 	stats = (struct statistics_block *) sc->stats_block;
8023 
8024 	/*
8025 	 * Update the sysctl statistics from the
8026 	 * hardware statistics.
8027 	 */
8028 	sc->stat_IfHCInOctets =
8029 	    ((u64) stats->stat_IfHCInOctets_hi << 32) +
8030 	     (u64) stats->stat_IfHCInOctets_lo;
8031 
8032 	sc->stat_IfHCInBadOctets =
8033 	    ((u64) stats->stat_IfHCInBadOctets_hi << 32) +
8034 	     (u64) stats->stat_IfHCInBadOctets_lo;
8035 
8036 	sc->stat_IfHCOutOctets =
8037 	    ((u64) stats->stat_IfHCOutOctets_hi << 32) +
8038 	     (u64) stats->stat_IfHCOutOctets_lo;
8039 
8040 	sc->stat_IfHCOutBadOctets =
8041 	    ((u64) stats->stat_IfHCOutBadOctets_hi << 32) +
8042 	     (u64) stats->stat_IfHCOutBadOctets_lo;
8043 
8044 	sc->stat_IfHCInUcastPkts =
8045 	    ((u64) stats->stat_IfHCInUcastPkts_hi << 32) +
8046 	     (u64) stats->stat_IfHCInUcastPkts_lo;
8047 
8048 	sc->stat_IfHCInMulticastPkts =
8049 	    ((u64) stats->stat_IfHCInMulticastPkts_hi << 32) +
8050 	     (u64) stats->stat_IfHCInMulticastPkts_lo;
8051 
8052 	sc->stat_IfHCInBroadcastPkts =
8053 	    ((u64) stats->stat_IfHCInBroadcastPkts_hi << 32) +
8054 	     (u64) stats->stat_IfHCInBroadcastPkts_lo;
8055 
8056 	sc->stat_IfHCOutUcastPkts =
8057 	    ((u64) stats->stat_IfHCOutUcastPkts_hi << 32) +
8058 	     (u64) stats->stat_IfHCOutUcastPkts_lo;
8059 
8060 	sc->stat_IfHCOutMulticastPkts =
8061 	    ((u64) stats->stat_IfHCOutMulticastPkts_hi << 32) +
8062 	     (u64) stats->stat_IfHCOutMulticastPkts_lo;
8063 
8064 	sc->stat_IfHCOutBroadcastPkts =
8065 	    ((u64) stats->stat_IfHCOutBroadcastPkts_hi << 32) +
8066 	     (u64) stats->stat_IfHCOutBroadcastPkts_lo;
8067 
8068 	/* ToDo: Preserve counters beyond 32 bits? */
8069 	/* ToDo: Read the statistics from auto-clear regs? */
8070 
8071 	sc->stat_emac_tx_stat_dot3statsinternalmactransmiterrors =
8072 	    stats->stat_emac_tx_stat_dot3statsinternalmactransmiterrors;
8073 
8074 	sc->stat_Dot3StatsCarrierSenseErrors =
8075 	    stats->stat_Dot3StatsCarrierSenseErrors;
8076 
8077 	sc->stat_Dot3StatsFCSErrors =
8078 	    stats->stat_Dot3StatsFCSErrors;
8079 
8080 	sc->stat_Dot3StatsAlignmentErrors =
8081 	    stats->stat_Dot3StatsAlignmentErrors;
8082 
8083 	sc->stat_Dot3StatsSingleCollisionFrames =
8084 	    stats->stat_Dot3StatsSingleCollisionFrames;
8085 
8086 	sc->stat_Dot3StatsMultipleCollisionFrames =
8087 	    stats->stat_Dot3StatsMultipleCollisionFrames;
8088 
8089 	sc->stat_Dot3StatsDeferredTransmissions =
8090 	    stats->stat_Dot3StatsDeferredTransmissions;
8091 
8092 	sc->stat_Dot3StatsExcessiveCollisions =
8093 	    stats->stat_Dot3StatsExcessiveCollisions;
8094 
8095 	sc->stat_Dot3StatsLateCollisions =
8096 	    stats->stat_Dot3StatsLateCollisions;
8097 
8098 	sc->stat_EtherStatsCollisions =
8099 	    stats->stat_EtherStatsCollisions;
8100 
8101 	sc->stat_EtherStatsFragments =
8102 	    stats->stat_EtherStatsFragments;
8103 
8104 	sc->stat_EtherStatsJabbers =
8105 	    stats->stat_EtherStatsJabbers;
8106 
8107 	sc->stat_EtherStatsUndersizePkts =
8108 	    stats->stat_EtherStatsUndersizePkts;
8109 
8110 	sc->stat_EtherStatsOversizePkts =
8111 	     stats->stat_EtherStatsOversizePkts;
8112 
8113 	sc->stat_EtherStatsPktsRx64Octets =
8114 	    stats->stat_EtherStatsPktsRx64Octets;
8115 
8116 	sc->stat_EtherStatsPktsRx65Octetsto127Octets =
8117 	    stats->stat_EtherStatsPktsRx65Octetsto127Octets;
8118 
8119 	sc->stat_EtherStatsPktsRx128Octetsto255Octets =
8120 	    stats->stat_EtherStatsPktsRx128Octetsto255Octets;
8121 
8122 	sc->stat_EtherStatsPktsRx256Octetsto511Octets =
8123 	    stats->stat_EtherStatsPktsRx256Octetsto511Octets;
8124 
8125 	sc->stat_EtherStatsPktsRx512Octetsto1023Octets =
8126 	    stats->stat_EtherStatsPktsRx512Octetsto1023Octets;
8127 
8128 	sc->stat_EtherStatsPktsRx1024Octetsto1522Octets =
8129 	    stats->stat_EtherStatsPktsRx1024Octetsto1522Octets;
8130 
8131 	sc->stat_EtherStatsPktsRx1523Octetsto9022Octets =
8132 	    stats->stat_EtherStatsPktsRx1523Octetsto9022Octets;
8133 
8134 	sc->stat_EtherStatsPktsTx64Octets =
8135 	    stats->stat_EtherStatsPktsTx64Octets;
8136 
8137 	sc->stat_EtherStatsPktsTx65Octetsto127Octets =
8138 	    stats->stat_EtherStatsPktsTx65Octetsto127Octets;
8139 
8140 	sc->stat_EtherStatsPktsTx128Octetsto255Octets =
8141 	    stats->stat_EtherStatsPktsTx128Octetsto255Octets;
8142 
8143 	sc->stat_EtherStatsPktsTx256Octetsto511Octets =
8144 	    stats->stat_EtherStatsPktsTx256Octetsto511Octets;
8145 
8146 	sc->stat_EtherStatsPktsTx512Octetsto1023Octets =
8147 	    stats->stat_EtherStatsPktsTx512Octetsto1023Octets;
8148 
8149 	sc->stat_EtherStatsPktsTx1024Octetsto1522Octets =
8150 	    stats->stat_EtherStatsPktsTx1024Octetsto1522Octets;
8151 
8152 	sc->stat_EtherStatsPktsTx1523Octetsto9022Octets =
8153 	    stats->stat_EtherStatsPktsTx1523Octetsto9022Octets;
8154 
8155 	sc->stat_XonPauseFramesReceived =
8156 	    stats->stat_XonPauseFramesReceived;
8157 
8158 	sc->stat_XoffPauseFramesReceived =
8159 	    stats->stat_XoffPauseFramesReceived;
8160 
8161 	sc->stat_OutXonSent =
8162 	    stats->stat_OutXonSent;
8163 
8164 	sc->stat_OutXoffSent =
8165 	    stats->stat_OutXoffSent;
8166 
8167 	sc->stat_FlowControlDone =
8168 	    stats->stat_FlowControlDone;
8169 
8170 	sc->stat_MacControlFramesReceived =
8171 	    stats->stat_MacControlFramesReceived;
8172 
8173 	sc->stat_XoffStateEntered =
8174 	    stats->stat_XoffStateEntered;
8175 
8176 	sc->stat_IfInFramesL2FilterDiscards =
8177 	    stats->stat_IfInFramesL2FilterDiscards;
8178 
8179 	sc->stat_IfInRuleCheckerDiscards =
8180 	    stats->stat_IfInRuleCheckerDiscards;
8181 
8182 	sc->stat_IfInFTQDiscards =
8183 	    stats->stat_IfInFTQDiscards;
8184 
8185 	sc->stat_IfInMBUFDiscards =
8186 	    stats->stat_IfInMBUFDiscards;
8187 
8188 	sc->stat_IfInRuleCheckerP4Hit =
8189 	    stats->stat_IfInRuleCheckerP4Hit;
8190 
8191 	sc->stat_CatchupInRuleCheckerDiscards =
8192 	    stats->stat_CatchupInRuleCheckerDiscards;
8193 
8194 	sc->stat_CatchupInFTQDiscards =
8195 	    stats->stat_CatchupInFTQDiscards;
8196 
8197 	sc->stat_CatchupInMBUFDiscards =
8198 	    stats->stat_CatchupInMBUFDiscards;
8199 
8200 	sc->stat_CatchupInRuleCheckerP4Hit =
8201 	    stats->stat_CatchupInRuleCheckerP4Hit;
8202 
8203 	sc->com_no_buffers = REG_RD_IND(sc, 0x120084);
8204 
8205 	/* ToDo: Add additional statistics? */
8206 
8207 	DBEXIT(BCE_EXTREME_MISC);
8208 }
8209 
8210 static uint64_t
8211 bce_get_counter(struct ifnet *ifp, ift_counter cnt)
8212 {
8213 	struct bce_softc *sc;
8214 	uint64_t rv;
8215 
8216 	sc = if_getsoftc(ifp);
8217 
8218 	switch (cnt) {
8219 	case IFCOUNTER_COLLISIONS:
8220 		return (sc->stat_EtherStatsCollisions);
8221 	case IFCOUNTER_IERRORS:
8222 		return (sc->stat_EtherStatsUndersizePkts +
8223 		    sc->stat_EtherStatsOversizePkts +
8224 		    sc->stat_IfInMBUFDiscards +
8225 		    sc->stat_Dot3StatsAlignmentErrors +
8226 		    sc->stat_Dot3StatsFCSErrors +
8227 		    sc->stat_IfInRuleCheckerDiscards +
8228 		    sc->stat_IfInFTQDiscards +
8229 		    sc->l2fhdr_error_count +
8230 		    sc->com_no_buffers);
8231 	case IFCOUNTER_OERRORS:
8232 		rv = sc->stat_Dot3StatsExcessiveCollisions +
8233 		    sc->stat_emac_tx_stat_dot3statsinternalmactransmiterrors +
8234 		    sc->stat_Dot3StatsLateCollisions +
8235 		    sc->watchdog_timeouts;
8236 		/*
8237 		 * Certain controllers don't report
8238 		 * carrier sense errors correctly.
8239 		 * See errata E11_5708CA0_1165.
8240 		 */
8241 		if (!(BCE_CHIP_NUM(sc) == BCE_CHIP_NUM_5706) &&
8242 		    !(BCE_CHIP_ID(sc) == BCE_CHIP_ID_5708_A0))
8243 			rv += sc->stat_Dot3StatsCarrierSenseErrors;
8244 		return (rv);
8245 	default:
8246 		return (if_get_counter_default(ifp, cnt));
8247 	}
8248 }
8249 
8250 /****************************************************************************/
8251 /* Periodic function to notify the bootcode that the driver is still        */
8252 /* present.                                                                 */
8253 /*                                                                          */
8254 /* Returns:                                                                 */
8255 /*   Nothing.                                                               */
8256 /****************************************************************************/
8257 static void
8258 bce_pulse(void *xsc)
8259 {
8260 	struct bce_softc *sc = xsc;
8261 	u32 msg;
8262 
8263 	DBENTER(BCE_EXTREME_MISC);
8264 
8265 	BCE_LOCK_ASSERT(sc);
8266 
8267 	/* Tell the firmware that the driver is still running. */
8268 	msg = (u32) ++sc->bce_fw_drv_pulse_wr_seq;
8269 	bce_shmem_wr(sc, BCE_DRV_PULSE_MB, msg);
8270 
8271 	/* Update the bootcode condition. */
8272 	sc->bc_state = bce_shmem_rd(sc, BCE_BC_STATE_CONDITION);
8273 
8274 	/* Report whether the bootcode still knows the driver is running. */
8275 	if (bce_verbose || bootverbose) {
8276 		if (sc->bce_drv_cardiac_arrest == FALSE) {
8277 			if (!(sc->bc_state & BCE_CONDITION_DRV_PRESENT)) {
8278 				sc->bce_drv_cardiac_arrest = TRUE;
8279 				BCE_PRINTF("%s(): Warning: bootcode "
8280 				    "thinks driver is absent! "
8281 				    "(bc_state = 0x%08X)\n",
8282 				    __FUNCTION__, sc->bc_state);
8283 			}
8284 		} else {
8285 			/*
8286 			 * Not supported by all bootcode versions.
8287 			 * (v5.0.11+ and v5.2.1+)  Older bootcode
8288 			 * will require the driver to reset the
8289 			 * controller to clear this condition.
8290 			 */
8291 			if (sc->bc_state & BCE_CONDITION_DRV_PRESENT) {
8292 				sc->bce_drv_cardiac_arrest = FALSE;
8293 				BCE_PRINTF("%s(): Bootcode found the "
8294 				    "driver pulse! (bc_state = 0x%08X)\n",
8295 				    __FUNCTION__, sc->bc_state);
8296 			}
8297 		}
8298 	}
8299 
8300 	/* Schedule the next pulse. */
8301 	callout_reset(&sc->bce_pulse_callout, hz, bce_pulse, sc);
8302 
8303 	DBEXIT(BCE_EXTREME_MISC);
8304 }
8305 
8306 /****************************************************************************/
8307 /* Periodic function to perform maintenance tasks.                          */
8308 /*                                                                          */
8309 /* Returns:                                                                 */
8310 /*   Nothing.                                                               */
8311 /****************************************************************************/
8312 static void
8313 bce_tick(void *xsc)
8314 {
8315 	struct bce_softc *sc = xsc;
8316 	struct mii_data *mii;
8317 	struct ifnet *ifp;
8318 	struct ifmediareq ifmr;
8319 
8320 	ifp = sc->bce_ifp;
8321 
8322 	DBENTER(BCE_EXTREME_MISC);
8323 
8324 	BCE_LOCK_ASSERT(sc);
8325 
8326 	/* Schedule the next tick. */
8327 	callout_reset(&sc->bce_tick_callout, hz, bce_tick, sc);
8328 
8329 	/* Update the statistics from the hardware statistics block. */
8330 	bce_stats_update(sc);
8331 
8332  	/* Ensure page and RX chains get refilled in low-memory situations. */
8333 	if (bce_hdr_split == TRUE)
8334 		bce_fill_pg_chain(sc);
8335 	bce_fill_rx_chain(sc);
8336 
8337 	/* Check that chip hasn't hung. */
8338 	bce_watchdog(sc);
8339 
8340 	/* If link is up already up then we're done. */
8341 	if (sc->bce_link_up == TRUE)
8342 		goto bce_tick_exit;
8343 
8344 	/* Link is down.  Check what the PHY's doing. */
8345 	if ((sc->bce_phy_flags & BCE_PHY_REMOTE_CAP_FLAG) != 0) {
8346 		bzero(&ifmr, sizeof(ifmr));
8347 		bce_ifmedia_sts_rphy(sc, &ifmr);
8348 		if ((ifmr.ifm_status & (IFM_ACTIVE | IFM_AVALID)) ==
8349 		    (IFM_ACTIVE | IFM_AVALID)) {
8350 			sc->bce_link_up = TRUE;
8351 			bce_miibus_statchg(sc->bce_dev);
8352 		}
8353 	} else {
8354 		mii = device_get_softc(sc->bce_miibus);
8355 		mii_tick(mii);
8356 		/* Check if the link has come up. */
8357 		if ((mii->mii_media_status & IFM_ACTIVE) &&
8358 		    (IFM_SUBTYPE(mii->mii_media_active) != IFM_NONE)) {
8359 			DBPRINT(sc, BCE_VERBOSE_MISC, "%s(): Link up!\n",
8360 			    __FUNCTION__);
8361 			sc->bce_link_up = TRUE;
8362 			if ((IFM_SUBTYPE(mii->mii_media_active) == IFM_1000_T ||
8363 			    IFM_SUBTYPE(mii->mii_media_active) == IFM_1000_SX ||
8364 			    IFM_SUBTYPE(mii->mii_media_active) == IFM_2500_SX) &&
8365 			    (bce_verbose || bootverbose))
8366 				BCE_PRINTF("Gigabit link up!\n");
8367 		}
8368 	}
8369 	if (sc->bce_link_up == TRUE) {
8370 		/* Now that link is up, handle any outstanding TX traffic. */
8371 		if (!IFQ_DRV_IS_EMPTY(&ifp->if_snd)) {
8372 			DBPRINT(sc, BCE_VERBOSE_MISC, "%s(): Found "
8373 			    "pending TX traffic.\n", __FUNCTION__);
8374 			bce_start_locked(ifp);
8375 		}
8376 	}
8377 
8378 bce_tick_exit:
8379 	DBEXIT(BCE_EXTREME_MISC);
8380 }
8381 
8382 static void
8383 bce_fw_cap_init(struct bce_softc *sc)
8384 {
8385 	u32 ack, cap, link;
8386 
8387 	ack = 0;
8388 	cap = bce_shmem_rd(sc, BCE_FW_CAP_MB);
8389 	if ((cap & BCE_FW_CAP_SIGNATURE_MAGIC_MASK) !=
8390 	    BCE_FW_CAP_SIGNATURE_MAGIC)
8391 		return;
8392 	if ((cap & (BCE_FW_CAP_MFW_KEEP_VLAN | BCE_FW_CAP_BC_KEEP_VLAN)) ==
8393 	    (BCE_FW_CAP_MFW_KEEP_VLAN | BCE_FW_CAP_BC_KEEP_VLAN))
8394 		ack |= BCE_DRV_ACK_CAP_SIGNATURE_MAGIC |
8395 		    BCE_FW_CAP_MFW_KEEP_VLAN | BCE_FW_CAP_BC_KEEP_VLAN;
8396 	if ((sc->bce_phy_flags & BCE_PHY_SERDES_FLAG) != 0 &&
8397 	    (cap & BCE_FW_CAP_REMOTE_PHY_CAP) != 0) {
8398 		sc->bce_phy_flags &= ~BCE_PHY_REMOTE_PORT_FIBER_FLAG;
8399 		sc->bce_phy_flags |= BCE_PHY_REMOTE_CAP_FLAG;
8400 		link = bce_shmem_rd(sc, BCE_LINK_STATUS);
8401 		if ((link & BCE_LINK_STATUS_SERDES_LINK) != 0)
8402 			sc->bce_phy_flags |= BCE_PHY_REMOTE_PORT_FIBER_FLAG;
8403 		ack |= BCE_DRV_ACK_CAP_SIGNATURE_MAGIC |
8404 		    BCE_FW_CAP_REMOTE_PHY_CAP;
8405 	}
8406 
8407 	if (ack != 0)
8408 		bce_shmem_wr(sc, BCE_DRV_ACK_CAP_MB, ack);
8409 }
8410 
8411 #ifdef BCE_DEBUG
8412 /****************************************************************************/
8413 /* Allows the driver state to be dumped through the sysctl interface.       */
8414 /*                                                                          */
8415 /* Returns:                                                                 */
8416 /*   0 for success, positive value for failure.                             */
8417 /****************************************************************************/
8418 static int
8419 bce_sysctl_driver_state(SYSCTL_HANDLER_ARGS)
8420 {
8421 	int error;
8422 	int result;
8423 	struct bce_softc *sc;
8424 
8425 	result = -1;
8426 	error = sysctl_handle_int(oidp, &result, 0, req);
8427 
8428 	if (error || !req->newptr)
8429 		return (error);
8430 
8431 	if (result == 1) {
8432 		sc = (struct bce_softc *)arg1;
8433 		bce_dump_driver_state(sc);
8434 	}
8435 
8436 	return error;
8437 }
8438 
8439 /****************************************************************************/
8440 /* Allows the hardware state to be dumped through the sysctl interface.     */
8441 /*                                                                          */
8442 /* Returns:                                                                 */
8443 /*   0 for success, positive value for failure.                             */
8444 /****************************************************************************/
8445 static int
8446 bce_sysctl_hw_state(SYSCTL_HANDLER_ARGS)
8447 {
8448 	int error;
8449 	int result;
8450 	struct bce_softc *sc;
8451 
8452 	result = -1;
8453 	error = sysctl_handle_int(oidp, &result, 0, req);
8454 
8455 	if (error || !req->newptr)
8456 		return (error);
8457 
8458 	if (result == 1) {
8459 		sc = (struct bce_softc *)arg1;
8460 		bce_dump_hw_state(sc);
8461 	}
8462 
8463 	return error;
8464 }
8465 
8466 /****************************************************************************/
8467 /* Allows the status block to be dumped through the sysctl interface.       */
8468 /*                                                                          */
8469 /* Returns:                                                                 */
8470 /*   0 for success, positive value for failure.                             */
8471 /****************************************************************************/
8472 static int
8473 bce_sysctl_status_block(SYSCTL_HANDLER_ARGS)
8474 {
8475 	int error;
8476 	int result;
8477 	struct bce_softc *sc;
8478 
8479 	result = -1;
8480 	error = sysctl_handle_int(oidp, &result, 0, req);
8481 
8482 	if (error || !req->newptr)
8483 		return (error);
8484 
8485 	if (result == 1) {
8486 		sc = (struct bce_softc *)arg1;
8487 		bce_dump_status_block(sc);
8488 	}
8489 
8490 	return error;
8491 }
8492 
8493 /****************************************************************************/
8494 /* Allows the stats block to be dumped through the sysctl interface.        */
8495 /*                                                                          */
8496 /* Returns:                                                                 */
8497 /*   0 for success, positive value for failure.                             */
8498 /****************************************************************************/
8499 static int
8500 bce_sysctl_stats_block(SYSCTL_HANDLER_ARGS)
8501 {
8502 	int error;
8503 	int result;
8504 	struct bce_softc *sc;
8505 
8506 	result = -1;
8507 	error = sysctl_handle_int(oidp, &result, 0, req);
8508 
8509 	if (error || !req->newptr)
8510 		return (error);
8511 
8512 	if (result == 1) {
8513 		sc = (struct bce_softc *)arg1;
8514 		bce_dump_stats_block(sc);
8515 	}
8516 
8517 	return error;
8518 }
8519 
8520 /****************************************************************************/
8521 /* Allows the stat counters to be cleared without unloading/reloading the   */
8522 /* driver.                                                                  */
8523 /*                                                                          */
8524 /* Returns:                                                                 */
8525 /*   0 for success, positive value for failure.                             */
8526 /****************************************************************************/
8527 static int
8528 bce_sysctl_stats_clear(SYSCTL_HANDLER_ARGS)
8529 {
8530 	int error;
8531 	int result;
8532 	struct bce_softc *sc;
8533 
8534 	result = -1;
8535 	error = sysctl_handle_int(oidp, &result, 0, req);
8536 
8537 	if (error || !req->newptr)
8538 		return (error);
8539 
8540 	if (result == 1) {
8541 		sc = (struct bce_softc *)arg1;
8542 		struct statistics_block *stats;
8543 
8544 		stats = (struct statistics_block *) sc->stats_block;
8545 		bzero(stats, sizeof(struct statistics_block));
8546 		bus_dmamap_sync(sc->stats_tag, sc->stats_map,
8547 		    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
8548 
8549 		/* Clear the internal H/W statistics counters. */
8550 		REG_WR(sc, BCE_HC_COMMAND, BCE_HC_COMMAND_CLR_STAT_NOW);
8551 
8552 		/* Reset the driver maintained statistics. */
8553 		sc->interrupts_rx =
8554 		    sc->interrupts_tx = 0;
8555 		sc->tso_frames_requested =
8556 		    sc->tso_frames_completed =
8557 		    sc->tso_frames_failed = 0;
8558 		sc->rx_empty_count =
8559 		    sc->tx_full_count = 0;
8560 		sc->rx_low_watermark = USABLE_RX_BD_ALLOC;
8561 		sc->tx_hi_watermark = 0;
8562 		sc->l2fhdr_error_count =
8563 		    sc->l2fhdr_error_sim_count = 0;
8564 		sc->mbuf_alloc_failed_count =
8565 		    sc->mbuf_alloc_failed_sim_count = 0;
8566 		sc->dma_map_addr_rx_failed_count =
8567 		    sc->dma_map_addr_tx_failed_count = 0;
8568 		sc->mbuf_frag_count = 0;
8569 		sc->csum_offload_tcp_udp =
8570 		    sc->csum_offload_ip = 0;
8571 		sc->vlan_tagged_frames_rcvd =
8572 		    sc->vlan_tagged_frames_stripped = 0;
8573 		sc->split_header_frames_rcvd =
8574 		    sc->split_header_tcp_frames_rcvd = 0;
8575 
8576 		/* Clear firmware maintained statistics. */
8577 		REG_WR_IND(sc, 0x120084, 0);
8578 	}
8579 
8580 	return error;
8581 }
8582 
8583 /****************************************************************************/
8584 /* Allows the shared memory contents to be dumped through the sysctl  .     */
8585 /* interface.                                                               */
8586 /*                                                                          */
8587 /* Returns:                                                                 */
8588 /*   0 for success, positive value for failure.                             */
8589 /****************************************************************************/
8590 static int
8591 bce_sysctl_shmem_state(SYSCTL_HANDLER_ARGS)
8592 {
8593 	int error;
8594 	int result;
8595 	struct bce_softc *sc;
8596 
8597 	result = -1;
8598 	error = sysctl_handle_int(oidp, &result, 0, req);
8599 
8600 	if (error || !req->newptr)
8601 		return (error);
8602 
8603 	if (result == 1) {
8604 		sc = (struct bce_softc *)arg1;
8605 		bce_dump_shmem_state(sc);
8606 	}
8607 
8608 	return error;
8609 }
8610 
8611 /****************************************************************************/
8612 /* Allows the bootcode state to be dumped through the sysctl interface.     */
8613 /*                                                                          */
8614 /* Returns:                                                                 */
8615 /*   0 for success, positive value for failure.                             */
8616 /****************************************************************************/
8617 static int
8618 bce_sysctl_bc_state(SYSCTL_HANDLER_ARGS)
8619 {
8620 	int error;
8621 	int result;
8622 	struct bce_softc *sc;
8623 
8624 	result = -1;
8625 	error = sysctl_handle_int(oidp, &result, 0, req);
8626 
8627 	if (error || !req->newptr)
8628 		return (error);
8629 
8630 	if (result == 1) {
8631 		sc = (struct bce_softc *)arg1;
8632 		bce_dump_bc_state(sc);
8633 	}
8634 
8635 	return error;
8636 }
8637 
8638 /****************************************************************************/
8639 /* Provides a sysctl interface to allow dumping the RX BD chain.            */
8640 /*                                                                          */
8641 /* Returns:                                                                 */
8642 /*   0 for success, positive value for failure.                             */
8643 /****************************************************************************/
8644 static int
8645 bce_sysctl_dump_rx_bd_chain(SYSCTL_HANDLER_ARGS)
8646 {
8647 	int error;
8648 	int result;
8649 	struct bce_softc *sc;
8650 
8651 	result = -1;
8652 	error = sysctl_handle_int(oidp, &result, 0, req);
8653 
8654 	if (error || !req->newptr)
8655 		return (error);
8656 
8657 	if (result == 1) {
8658 		sc = (struct bce_softc *)arg1;
8659 		bce_dump_rx_bd_chain(sc, 0, TOTAL_RX_BD_ALLOC);
8660 	}
8661 
8662 	return error;
8663 }
8664 
8665 /****************************************************************************/
8666 /* Provides a sysctl interface to allow dumping the RX MBUF chain.          */
8667 /*                                                                          */
8668 /* Returns:                                                                 */
8669 /*   0 for success, positive value for failure.                             */
8670 /****************************************************************************/
8671 static int
8672 bce_sysctl_dump_rx_mbuf_chain(SYSCTL_HANDLER_ARGS)
8673 {
8674 	int error;
8675 	int result;
8676 	struct bce_softc *sc;
8677 
8678 	result = -1;
8679 	error = sysctl_handle_int(oidp, &result, 0, req);
8680 
8681 	if (error || !req->newptr)
8682 		return (error);
8683 
8684 	if (result == 1) {
8685 		sc = (struct bce_softc *)arg1;
8686 		bce_dump_rx_mbuf_chain(sc, 0, USABLE_RX_BD_ALLOC);
8687 	}
8688 
8689 	return error;
8690 }
8691 
8692 /****************************************************************************/
8693 /* Provides a sysctl interface to allow dumping the TX chain.               */
8694 /*                                                                          */
8695 /* Returns:                                                                 */
8696 /*   0 for success, positive value for failure.                             */
8697 /****************************************************************************/
8698 static int
8699 bce_sysctl_dump_tx_chain(SYSCTL_HANDLER_ARGS)
8700 {
8701 	int error;
8702 	int result;
8703 	struct bce_softc *sc;
8704 
8705 	result = -1;
8706 	error = sysctl_handle_int(oidp, &result, 0, req);
8707 
8708 	if (error || !req->newptr)
8709 		return (error);
8710 
8711 	if (result == 1) {
8712 		sc = (struct bce_softc *)arg1;
8713 		bce_dump_tx_chain(sc, 0, TOTAL_TX_BD_ALLOC);
8714 	}
8715 
8716 	return error;
8717 }
8718 
8719 /****************************************************************************/
8720 /* Provides a sysctl interface to allow dumping the page chain.             */
8721 /*                                                                          */
8722 /* Returns:                                                                 */
8723 /*   0 for success, positive value for failure.                             */
8724 /****************************************************************************/
8725 static int
8726 bce_sysctl_dump_pg_chain(SYSCTL_HANDLER_ARGS)
8727 {
8728 	int error;
8729 	int result;
8730 	struct bce_softc *sc;
8731 
8732 	result = -1;
8733 	error = sysctl_handle_int(oidp, &result, 0, req);
8734 
8735 	if (error || !req->newptr)
8736 		return (error);
8737 
8738 	if (result == 1) {
8739 		sc = (struct bce_softc *)arg1;
8740 		bce_dump_pg_chain(sc, 0, TOTAL_PG_BD_ALLOC);
8741 	}
8742 
8743 	return error;
8744 }
8745 
8746 /****************************************************************************/
8747 /* Provides a sysctl interface to allow reading arbitrary NVRAM offsets in  */
8748 /* the device.  DO NOT ENABLE ON PRODUCTION SYSTEMS!                        */
8749 /*                                                                          */
8750 /* Returns:                                                                 */
8751 /*   0 for success, positive value for failure.                             */
8752 /****************************************************************************/
8753 static int
8754 bce_sysctl_nvram_read(SYSCTL_HANDLER_ARGS)
8755 {
8756 	struct bce_softc *sc = (struct bce_softc *)arg1;
8757 	int error;
8758 	u32 result;
8759 	u32 val[1];
8760 	u8 *data = (u8 *) val;
8761 
8762 	result = -1;
8763 	error = sysctl_handle_int(oidp, &result, 0, req);
8764 	if (error || (req->newptr == NULL))
8765 		return (error);
8766 
8767 	error = bce_nvram_read(sc, result, data, 4);
8768 
8769 	BCE_PRINTF("offset 0x%08X = 0x%08X\n", result, bce_be32toh(val[0]));
8770 
8771 	return (error);
8772 }
8773 
8774 /****************************************************************************/
8775 /* Provides a sysctl interface to allow reading arbitrary registers in the  */
8776 /* device.  DO NOT ENABLE ON PRODUCTION SYSTEMS!                            */
8777 /*                                                                          */
8778 /* Returns:                                                                 */
8779 /*   0 for success, positive value for failure.                             */
8780 /****************************************************************************/
8781 static int
8782 bce_sysctl_reg_read(SYSCTL_HANDLER_ARGS)
8783 {
8784 	struct bce_softc *sc = (struct bce_softc *)arg1;
8785 	int error;
8786 	u32 val, result;
8787 
8788 	result = -1;
8789 	error = sysctl_handle_int(oidp, &result, 0, req);
8790 	if (error || (req->newptr == NULL))
8791 		return (error);
8792 
8793 	/* Make sure the register is accessible. */
8794 	if (result < 0x8000) {
8795 		val = REG_RD(sc, result);
8796 		BCE_PRINTF("reg 0x%08X = 0x%08X\n", result, val);
8797 	} else if (result < 0x0280000) {
8798 		val = REG_RD_IND(sc, result);
8799 		BCE_PRINTF("reg 0x%08X = 0x%08X\n", result, val);
8800 	}
8801 
8802 	return (error);
8803 }
8804 
8805 /****************************************************************************/
8806 /* Provides a sysctl interface to allow reading arbitrary PHY registers in  */
8807 /* the device.  DO NOT ENABLE ON PRODUCTION SYSTEMS!                        */
8808 /*                                                                          */
8809 /* Returns:                                                                 */
8810 /*   0 for success, positive value for failure.                             */
8811 /****************************************************************************/
8812 static int
8813 bce_sysctl_phy_read(SYSCTL_HANDLER_ARGS)
8814 {
8815 	struct bce_softc *sc;
8816 	device_t dev;
8817 	int error, result;
8818 	u16 val;
8819 
8820 	result = -1;
8821 	error = sysctl_handle_int(oidp, &result, 0, req);
8822 	if (error || (req->newptr == NULL))
8823 		return (error);
8824 
8825 	/* Make sure the register is accessible. */
8826 	if (result < 0x20) {
8827 		sc = (struct bce_softc *)arg1;
8828 		dev = sc->bce_dev;
8829 		val = bce_miibus_read_reg(dev, sc->bce_phy_addr, result);
8830 		BCE_PRINTF("phy 0x%02X = 0x%04X\n", result, val);
8831 	}
8832 	return (error);
8833 }
8834 
8835 /****************************************************************************/
8836 /* Provides a sysctl interface for dumping the nvram contents.              */
8837 /* DO NOT ENABLE ON PRODUCTION SYSTEMS!					    */
8838 /*									    */
8839 /* Returns:								    */
8840 /*   0 for success, positive errno for failure.				    */
8841 /****************************************************************************/
8842 static int
8843 bce_sysctl_nvram_dump(SYSCTL_HANDLER_ARGS)
8844 {
8845 	struct bce_softc *sc = (struct bce_softc *)arg1;
8846 	int error, i;
8847 
8848 	if (sc->nvram_buf == NULL)
8849 		sc->nvram_buf = malloc(sc->bce_flash_size,
8850 				    M_TEMP, M_ZERO | M_WAITOK);
8851 
8852 	error = 0;
8853 	if (req->oldlen == sc->bce_flash_size) {
8854 		for (i = 0; i < sc->bce_flash_size && error == 0; i++)
8855 			error = bce_nvram_read(sc, i, &sc->nvram_buf[i], 1);
8856 	}
8857 
8858 	if (error == 0)
8859 		error = SYSCTL_OUT(req, sc->nvram_buf, sc->bce_flash_size);
8860 
8861 	return error;
8862 }
8863 
8864 #ifdef BCE_NVRAM_WRITE_SUPPORT
8865 /****************************************************************************/
8866 /* Provides a sysctl interface for writing to nvram.                        */
8867 /* DO NOT ENABLE ON PRODUCTION SYSTEMS!					    */
8868 /*									    */
8869 /* Returns:								    */
8870 /*   0 for success, positive errno for failure.				    */
8871 /****************************************************************************/
8872 static int
8873 bce_sysctl_nvram_write(SYSCTL_HANDLER_ARGS)
8874 {
8875 	struct bce_softc *sc = (struct bce_softc *)arg1;
8876 	int error;
8877 
8878 	if (sc->nvram_buf == NULL)
8879 		sc->nvram_buf = malloc(sc->bce_flash_size,
8880 				    M_TEMP, M_ZERO | M_WAITOK);
8881 	else
8882 		bzero(sc->nvram_buf, sc->bce_flash_size);
8883 
8884 	error = SYSCTL_IN(req, sc->nvram_buf, sc->bce_flash_size);
8885 	if (error == 0)
8886 		return (error);
8887 
8888 	if (req->newlen == sc->bce_flash_size)
8889 		error = bce_nvram_write(sc, 0, sc->nvram_buf,
8890 			    sc->bce_flash_size);
8891 
8892 	return error;
8893 }
8894 #endif
8895 
8896 /****************************************************************************/
8897 /* Provides a sysctl interface to allow reading a CID.                      */
8898 /*                                                                          */
8899 /* Returns:                                                                 */
8900 /*   0 for success, positive value for failure.                             */
8901 /****************************************************************************/
8902 static int
8903 bce_sysctl_dump_ctx(SYSCTL_HANDLER_ARGS)
8904 {
8905 	struct bce_softc *sc;
8906 	int error, result;
8907 
8908 	result = -1;
8909 	error = sysctl_handle_int(oidp, &result, 0, req);
8910 	if (error || (req->newptr == NULL))
8911 		return (error);
8912 
8913 	/* Make sure the register is accessible. */
8914 	if (result <= TX_CID) {
8915 		sc = (struct bce_softc *)arg1;
8916 		bce_dump_ctx(sc, result);
8917 	}
8918 
8919 	return (error);
8920 }
8921 
8922 /****************************************************************************/
8923 /* Provides a sysctl interface to forcing the driver to dump state and      */
8924 /* enter the debugger.  DO NOT ENABLE ON PRODUCTION SYSTEMS!                */
8925 /*                                                                          */
8926 /* Returns:                                                                 */
8927 /*   0 for success, positive value for failure.                             */
8928 /****************************************************************************/
8929 static int
8930 bce_sysctl_breakpoint(SYSCTL_HANDLER_ARGS)
8931 {
8932 	int error;
8933 	int result;
8934 	struct bce_softc *sc;
8935 
8936 	result = -1;
8937 	error = sysctl_handle_int(oidp, &result, 0, req);
8938 
8939 	if (error || !req->newptr)
8940 		return (error);
8941 
8942 	if (result == 1) {
8943 		sc = (struct bce_softc *)arg1;
8944 		bce_breakpoint(sc);
8945 	}
8946 
8947 	return error;
8948 }
8949 #endif
8950 
8951 /****************************************************************************/
8952 /* Adds any sysctl parameters for tuning or debugging purposes.             */
8953 /*                                                                          */
8954 /* Returns:                                                                 */
8955 /*   0 for success, positive value for failure.                             */
8956 /****************************************************************************/
8957 static void
8958 bce_add_sysctls(struct bce_softc *sc)
8959 {
8960 	struct sysctl_ctx_list *ctx;
8961 	struct sysctl_oid_list *children;
8962 
8963 	DBENTER(BCE_VERBOSE_MISC);
8964 
8965 	ctx = device_get_sysctl_ctx(sc->bce_dev);
8966 	children = SYSCTL_CHILDREN(device_get_sysctl_tree(sc->bce_dev));
8967 
8968 #ifdef BCE_DEBUG
8969 	SYSCTL_ADD_INT(ctx, children, OID_AUTO,
8970 	    "l2fhdr_error_sim_control",
8971 	    CTLFLAG_RW, &l2fhdr_error_sim_control,
8972 	    0, "Debug control to force l2fhdr errors");
8973 
8974 	SYSCTL_ADD_INT(ctx, children, OID_AUTO,
8975 	    "l2fhdr_error_sim_count",
8976 	    CTLFLAG_RD, &sc->l2fhdr_error_sim_count,
8977 	    0, "Number of simulated l2_fhdr errors");
8978 #endif
8979 
8980 	SYSCTL_ADD_UINT(ctx, children, OID_AUTO,
8981 	    "l2fhdr_error_count",
8982 	    CTLFLAG_RD, &sc->l2fhdr_error_count,
8983 	    0, "Number of l2_fhdr errors");
8984 
8985 #ifdef BCE_DEBUG
8986 	SYSCTL_ADD_INT(ctx, children, OID_AUTO,
8987 	    "mbuf_alloc_failed_sim_control",
8988 	    CTLFLAG_RW, &mbuf_alloc_failed_sim_control,
8989 	    0, "Debug control to force mbuf allocation failures");
8990 
8991 	SYSCTL_ADD_UINT(ctx, children, OID_AUTO,
8992 	    "mbuf_alloc_failed_sim_count",
8993 	    CTLFLAG_RD, &sc->mbuf_alloc_failed_sim_count,
8994 	    0, "Number of simulated mbuf cluster allocation failures");
8995 #endif
8996 
8997 	SYSCTL_ADD_UINT(ctx, children, OID_AUTO,
8998 	    "mbuf_alloc_failed_count",
8999 	    CTLFLAG_RD, &sc->mbuf_alloc_failed_count,
9000 	    0, "Number of mbuf allocation failures");
9001 
9002 	SYSCTL_ADD_UINT(ctx, children, OID_AUTO,
9003 	    "mbuf_frag_count",
9004 	    CTLFLAG_RD, &sc->mbuf_frag_count,
9005 	    0, "Number of fragmented mbufs");
9006 
9007 #ifdef BCE_DEBUG
9008 	SYSCTL_ADD_INT(ctx, children, OID_AUTO,
9009 	    "dma_map_addr_failed_sim_control",
9010 	    CTLFLAG_RW, &dma_map_addr_failed_sim_control,
9011 	    0, "Debug control to force DMA mapping failures");
9012 
9013 	/* ToDo: Figure out how to update this value in bce_dma_map_addr(). */
9014 	SYSCTL_ADD_UINT(ctx, children, OID_AUTO,
9015 	    "dma_map_addr_failed_sim_count",
9016 	    CTLFLAG_RD, &sc->dma_map_addr_failed_sim_count,
9017 	    0, "Number of simulated DMA mapping failures");
9018 
9019 #endif
9020 
9021 	SYSCTL_ADD_UINT(ctx, children, OID_AUTO,
9022 	    "dma_map_addr_rx_failed_count",
9023 	    CTLFLAG_RD, &sc->dma_map_addr_rx_failed_count,
9024 	    0, "Number of RX DMA mapping failures");
9025 
9026 	SYSCTL_ADD_UINT(ctx, children, OID_AUTO,
9027 	    "dma_map_addr_tx_failed_count",
9028 	    CTLFLAG_RD, &sc->dma_map_addr_tx_failed_count,
9029 	    0, "Number of TX DMA mapping failures");
9030 
9031 #ifdef BCE_DEBUG
9032 	SYSCTL_ADD_INT(ctx, children, OID_AUTO,
9033 	    "unexpected_attention_sim_control",
9034 	    CTLFLAG_RW, &unexpected_attention_sim_control,
9035 	    0, "Debug control to simulate unexpected attentions");
9036 
9037 	SYSCTL_ADD_UINT(ctx, children, OID_AUTO,
9038 	    "unexpected_attention_sim_count",
9039 	    CTLFLAG_RW, &sc->unexpected_attention_sim_count,
9040 	    0, "Number of simulated unexpected attentions");
9041 #endif
9042 
9043 	SYSCTL_ADD_UINT(ctx, children, OID_AUTO,
9044 	    "unexpected_attention_count",
9045 	    CTLFLAG_RW, &sc->unexpected_attention_count,
9046 	    0, "Number of unexpected attentions");
9047 
9048 #ifdef BCE_DEBUG
9049 	SYSCTL_ADD_INT(ctx, children, OID_AUTO,
9050 	    "debug_bootcode_running_failure",
9051 	    CTLFLAG_RW, &bootcode_running_failure_sim_control,
9052 	    0, "Debug control to force bootcode running failures");
9053 
9054 	SYSCTL_ADD_INT(ctx, children, OID_AUTO,
9055 	    "rx_low_watermark",
9056 	    CTLFLAG_RD, &sc->rx_low_watermark,
9057 	    0, "Lowest level of free rx_bd's");
9058 
9059 	SYSCTL_ADD_QUAD(ctx, children, OID_AUTO,
9060 	    "rx_empty_count",
9061 	    CTLFLAG_RD, &sc->rx_empty_count,
9062 	    "Number of times the RX chain was empty");
9063 
9064 	SYSCTL_ADD_INT(ctx, children, OID_AUTO,
9065 	    "tx_hi_watermark",
9066 	    CTLFLAG_RD, &sc->tx_hi_watermark,
9067 	    0, "Highest level of used tx_bd's");
9068 
9069 	SYSCTL_ADD_QUAD(ctx, children, OID_AUTO,
9070 	    "tx_full_count",
9071 	    CTLFLAG_RD, &sc->tx_full_count,
9072 	    "Number of times the TX chain was full");
9073 
9074 	SYSCTL_ADD_QUAD(ctx, children, OID_AUTO,
9075 	    "tso_frames_requested",
9076 	    CTLFLAG_RD, &sc->tso_frames_requested,
9077 	    "Number of TSO frames requested");
9078 
9079 	SYSCTL_ADD_QUAD(ctx, children, OID_AUTO,
9080 	    "tso_frames_completed",
9081 	    CTLFLAG_RD, &sc->tso_frames_completed,
9082 	    "Number of TSO frames completed");
9083 
9084 	SYSCTL_ADD_QUAD(ctx, children, OID_AUTO,
9085 	    "tso_frames_failed",
9086 	    CTLFLAG_RD, &sc->tso_frames_failed,
9087 	    "Number of TSO frames failed");
9088 
9089 	SYSCTL_ADD_QUAD(ctx, children, OID_AUTO,
9090 	    "csum_offload_ip",
9091 	    CTLFLAG_RD, &sc->csum_offload_ip,
9092 	    "Number of IP checksum offload frames");
9093 
9094 	SYSCTL_ADD_QUAD(ctx, children, OID_AUTO,
9095 	    "csum_offload_tcp_udp",
9096 	    CTLFLAG_RD, &sc->csum_offload_tcp_udp,
9097 	    "Number of TCP/UDP checksum offload frames");
9098 
9099 	SYSCTL_ADD_QUAD(ctx, children, OID_AUTO,
9100 	    "vlan_tagged_frames_rcvd",
9101 	    CTLFLAG_RD, &sc->vlan_tagged_frames_rcvd,
9102 	    "Number of VLAN tagged frames received");
9103 
9104 	SYSCTL_ADD_QUAD(ctx, children, OID_AUTO,
9105 	    "vlan_tagged_frames_stripped",
9106 	    CTLFLAG_RD, &sc->vlan_tagged_frames_stripped,
9107 	    "Number of VLAN tagged frames stripped");
9108 
9109 	SYSCTL_ADD_QUAD(ctx, children, OID_AUTO,
9110 	    "interrupts_rx",
9111 	    CTLFLAG_RD, &sc->interrupts_rx,
9112 	    "Number of RX interrupts");
9113 
9114 	SYSCTL_ADD_QUAD(ctx, children, OID_AUTO,
9115 	    "interrupts_tx",
9116 	    CTLFLAG_RD, &sc->interrupts_tx,
9117 	    "Number of TX interrupts");
9118 
9119 	if (bce_hdr_split == TRUE) {
9120 		SYSCTL_ADD_QUAD(ctx, children, OID_AUTO,
9121 		    "split_header_frames_rcvd",
9122 		    CTLFLAG_RD, &sc->split_header_frames_rcvd,
9123 		    "Number of split header frames received");
9124 
9125 		SYSCTL_ADD_QUAD(ctx, children, OID_AUTO,
9126 		    "split_header_tcp_frames_rcvd",
9127 		    CTLFLAG_RD, &sc->split_header_tcp_frames_rcvd,
9128 		    "Number of split header TCP frames received");
9129 	}
9130 
9131 	SYSCTL_ADD_PROC(ctx, children, OID_AUTO,
9132 	    "nvram_dump", CTLTYPE_OPAQUE | CTLFLAG_RD | CTLFLAG_NEEDGIANT,
9133 	    (void *)sc, 0,
9134 	    bce_sysctl_nvram_dump, "S", "");
9135 
9136 #ifdef BCE_NVRAM_WRITE_SUPPORT
9137 	SYSCTL_ADD_PROC(ctx, children, OID_AUTO,
9138 	    "nvram_write", CTLTYPE_OPAQUE | CTLFLAG_WR | CTLFLAG_NEEDGIANT,
9139 	    (void *)sc, 0,
9140 	    bce_sysctl_nvram_write, "S", "");
9141 #endif
9142 #endif /* BCE_DEBUG */
9143 
9144 	SYSCTL_ADD_QUAD(ctx, children, OID_AUTO,
9145 	    "stat_IfHcInOctets",
9146 	    CTLFLAG_RD, &sc->stat_IfHCInOctets,
9147 	    "Bytes received");
9148 
9149 	SYSCTL_ADD_QUAD(ctx, children, OID_AUTO,
9150 	    "stat_IfHCInBadOctets",
9151 	    CTLFLAG_RD, &sc->stat_IfHCInBadOctets,
9152 	    "Bad bytes received");
9153 
9154 	SYSCTL_ADD_QUAD(ctx, children, OID_AUTO,
9155 	    "stat_IfHCOutOctets",
9156 	    CTLFLAG_RD, &sc->stat_IfHCOutOctets,
9157 	    "Bytes sent");
9158 
9159 	SYSCTL_ADD_QUAD(ctx, children, OID_AUTO,
9160 	    "stat_IfHCOutBadOctets",
9161 	    CTLFLAG_RD, &sc->stat_IfHCOutBadOctets,
9162 	    "Bad bytes sent");
9163 
9164 	SYSCTL_ADD_QUAD(ctx, children, OID_AUTO,
9165 	    "stat_IfHCInUcastPkts",
9166 	    CTLFLAG_RD, &sc->stat_IfHCInUcastPkts,
9167 	    "Unicast packets received");
9168 
9169 	SYSCTL_ADD_QUAD(ctx, children, OID_AUTO,
9170 	    "stat_IfHCInMulticastPkts",
9171 	    CTLFLAG_RD, &sc->stat_IfHCInMulticastPkts,
9172 	    "Multicast packets received");
9173 
9174 	SYSCTL_ADD_QUAD(ctx, children, OID_AUTO,
9175 	    "stat_IfHCInBroadcastPkts",
9176 	    CTLFLAG_RD, &sc->stat_IfHCInBroadcastPkts,
9177 	    "Broadcast packets received");
9178 
9179 	SYSCTL_ADD_QUAD(ctx, children, OID_AUTO,
9180 	    "stat_IfHCOutUcastPkts",
9181 	    CTLFLAG_RD, &sc->stat_IfHCOutUcastPkts,
9182 	    "Unicast packets sent");
9183 
9184 	SYSCTL_ADD_QUAD(ctx, children, OID_AUTO,
9185 	    "stat_IfHCOutMulticastPkts",
9186 	    CTLFLAG_RD, &sc->stat_IfHCOutMulticastPkts,
9187 	    "Multicast packets sent");
9188 
9189 	SYSCTL_ADD_QUAD(ctx, children, OID_AUTO,
9190 	    "stat_IfHCOutBroadcastPkts",
9191 	    CTLFLAG_RD, &sc->stat_IfHCOutBroadcastPkts,
9192 	    "Broadcast packets sent");
9193 
9194 	SYSCTL_ADD_UINT(ctx, children, OID_AUTO,
9195 	    "stat_emac_tx_stat_dot3statsinternalmactransmiterrors",
9196 	    CTLFLAG_RD, &sc->stat_emac_tx_stat_dot3statsinternalmactransmiterrors,
9197 	    0, "Internal MAC transmit errors");
9198 
9199 	SYSCTL_ADD_UINT(ctx, children, OID_AUTO,
9200 	    "stat_Dot3StatsCarrierSenseErrors",
9201 	    CTLFLAG_RD, &sc->stat_Dot3StatsCarrierSenseErrors,
9202 	    0, "Carrier sense errors");
9203 
9204 	SYSCTL_ADD_UINT(ctx, children, OID_AUTO,
9205 	    "stat_Dot3StatsFCSErrors",
9206 	    CTLFLAG_RD, &sc->stat_Dot3StatsFCSErrors,
9207 	    0, "Frame check sequence errors");
9208 
9209 	SYSCTL_ADD_UINT(ctx, children, OID_AUTO,
9210 	    "stat_Dot3StatsAlignmentErrors",
9211 	    CTLFLAG_RD, &sc->stat_Dot3StatsAlignmentErrors,
9212 	    0, "Alignment errors");
9213 
9214 	SYSCTL_ADD_UINT(ctx, children, OID_AUTO,
9215 	    "stat_Dot3StatsSingleCollisionFrames",
9216 	    CTLFLAG_RD, &sc->stat_Dot3StatsSingleCollisionFrames,
9217 	    0, "Single Collision Frames");
9218 
9219 	SYSCTL_ADD_UINT(ctx, children, OID_AUTO,
9220 	    "stat_Dot3StatsMultipleCollisionFrames",
9221 	    CTLFLAG_RD, &sc->stat_Dot3StatsMultipleCollisionFrames,
9222 	    0, "Multiple Collision Frames");
9223 
9224 	SYSCTL_ADD_UINT(ctx, children, OID_AUTO,
9225 	    "stat_Dot3StatsDeferredTransmissions",
9226 	    CTLFLAG_RD, &sc->stat_Dot3StatsDeferredTransmissions,
9227 	    0, "Deferred Transmissions");
9228 
9229 	SYSCTL_ADD_UINT(ctx, children, OID_AUTO,
9230 	    "stat_Dot3StatsExcessiveCollisions",
9231 	    CTLFLAG_RD, &sc->stat_Dot3StatsExcessiveCollisions,
9232 	    0, "Excessive Collisions");
9233 
9234 	SYSCTL_ADD_UINT(ctx, children, OID_AUTO,
9235 	    "stat_Dot3StatsLateCollisions",
9236 	    CTLFLAG_RD, &sc->stat_Dot3StatsLateCollisions,
9237 	    0, "Late Collisions");
9238 
9239 	SYSCTL_ADD_UINT(ctx, children, OID_AUTO,
9240 	    "stat_EtherStatsCollisions",
9241 	    CTLFLAG_RD, &sc->stat_EtherStatsCollisions,
9242 	    0, "Collisions");
9243 
9244 	SYSCTL_ADD_UINT(ctx, children, OID_AUTO,
9245 	    "stat_EtherStatsFragments",
9246 	    CTLFLAG_RD, &sc->stat_EtherStatsFragments,
9247 	    0, "Fragments");
9248 
9249 	SYSCTL_ADD_UINT(ctx, children, OID_AUTO,
9250 	    "stat_EtherStatsJabbers",
9251 	    CTLFLAG_RD, &sc->stat_EtherStatsJabbers,
9252 	    0, "Jabbers");
9253 
9254 	SYSCTL_ADD_UINT(ctx, children, OID_AUTO,
9255 	    "stat_EtherStatsUndersizePkts",
9256 	    CTLFLAG_RD, &sc->stat_EtherStatsUndersizePkts,
9257 	    0, "Undersize packets");
9258 
9259 	SYSCTL_ADD_UINT(ctx, children, OID_AUTO,
9260 	    "stat_EtherStatsOversizePkts",
9261 	    CTLFLAG_RD, &sc->stat_EtherStatsOversizePkts,
9262 	    0, "stat_EtherStatsOversizePkts");
9263 
9264 	SYSCTL_ADD_UINT(ctx, children, OID_AUTO,
9265 	    "stat_EtherStatsPktsRx64Octets",
9266 	    CTLFLAG_RD, &sc->stat_EtherStatsPktsRx64Octets,
9267 	    0, "Bytes received in 64 byte packets");
9268 
9269 	SYSCTL_ADD_UINT(ctx, children, OID_AUTO,
9270 	    "stat_EtherStatsPktsRx65Octetsto127Octets",
9271 	    CTLFLAG_RD, &sc->stat_EtherStatsPktsRx65Octetsto127Octets,
9272 	    0, "Bytes received in 65 to 127 byte packets");
9273 
9274 	SYSCTL_ADD_UINT(ctx, children, OID_AUTO,
9275 	    "stat_EtherStatsPktsRx128Octetsto255Octets",
9276 	    CTLFLAG_RD, &sc->stat_EtherStatsPktsRx128Octetsto255Octets,
9277 	    0, "Bytes received in 128 to 255 byte packets");
9278 
9279 	SYSCTL_ADD_UINT(ctx, children, OID_AUTO,
9280 	    "stat_EtherStatsPktsRx256Octetsto511Octets",
9281 	    CTLFLAG_RD, &sc->stat_EtherStatsPktsRx256Octetsto511Octets,
9282 	    0, "Bytes received in 256 to 511 byte packets");
9283 
9284 	SYSCTL_ADD_UINT(ctx, children, OID_AUTO,
9285 	    "stat_EtherStatsPktsRx512Octetsto1023Octets",
9286 	    CTLFLAG_RD, &sc->stat_EtherStatsPktsRx512Octetsto1023Octets,
9287 	    0, "Bytes received in 512 to 1023 byte packets");
9288 
9289 	SYSCTL_ADD_UINT(ctx, children, OID_AUTO,
9290 	    "stat_EtherStatsPktsRx1024Octetsto1522Octets",
9291 	    CTLFLAG_RD, &sc->stat_EtherStatsPktsRx1024Octetsto1522Octets,
9292 	    0, "Bytes received in 1024 t0 1522 byte packets");
9293 
9294 	SYSCTL_ADD_UINT(ctx, children, OID_AUTO,
9295 	    "stat_EtherStatsPktsRx1523Octetsto9022Octets",
9296 	    CTLFLAG_RD, &sc->stat_EtherStatsPktsRx1523Octetsto9022Octets,
9297 	    0, "Bytes received in 1523 to 9022 byte packets");
9298 
9299 	SYSCTL_ADD_UINT(ctx, children, OID_AUTO,
9300 	    "stat_EtherStatsPktsTx64Octets",
9301 	    CTLFLAG_RD, &sc->stat_EtherStatsPktsTx64Octets,
9302 	    0, "Bytes sent in 64 byte packets");
9303 
9304 	SYSCTL_ADD_UINT(ctx, children, OID_AUTO,
9305 	    "stat_EtherStatsPktsTx65Octetsto127Octets",
9306 	    CTLFLAG_RD, &sc->stat_EtherStatsPktsTx65Octetsto127Octets,
9307 	    0, "Bytes sent in 65 to 127 byte packets");
9308 
9309 	SYSCTL_ADD_UINT(ctx, children, OID_AUTO,
9310 	    "stat_EtherStatsPktsTx128Octetsto255Octets",
9311 	    CTLFLAG_RD, &sc->stat_EtherStatsPktsTx128Octetsto255Octets,
9312 	    0, "Bytes sent in 128 to 255 byte packets");
9313 
9314 	SYSCTL_ADD_UINT(ctx, children, OID_AUTO,
9315 	    "stat_EtherStatsPktsTx256Octetsto511Octets",
9316 	    CTLFLAG_RD, &sc->stat_EtherStatsPktsTx256Octetsto511Octets,
9317 	    0, "Bytes sent in 256 to 511 byte packets");
9318 
9319 	SYSCTL_ADD_UINT(ctx, children, OID_AUTO,
9320 	    "stat_EtherStatsPktsTx512Octetsto1023Octets",
9321 	    CTLFLAG_RD, &sc->stat_EtherStatsPktsTx512Octetsto1023Octets,
9322 	    0, "Bytes sent in 512 to 1023 byte packets");
9323 
9324 	SYSCTL_ADD_UINT(ctx, children, OID_AUTO,
9325 	    "stat_EtherStatsPktsTx1024Octetsto1522Octets",
9326 	    CTLFLAG_RD, &sc->stat_EtherStatsPktsTx1024Octetsto1522Octets,
9327 	    0, "Bytes sent in 1024 to 1522 byte packets");
9328 
9329 	SYSCTL_ADD_UINT(ctx, children, OID_AUTO,
9330 	    "stat_EtherStatsPktsTx1523Octetsto9022Octets",
9331 	    CTLFLAG_RD, &sc->stat_EtherStatsPktsTx1523Octetsto9022Octets,
9332 	    0, "Bytes sent in 1523 to 9022 byte packets");
9333 
9334 	SYSCTL_ADD_UINT(ctx, children, OID_AUTO,
9335 	    "stat_XonPauseFramesReceived",
9336 	    CTLFLAG_RD, &sc->stat_XonPauseFramesReceived,
9337 	    0, "XON pause frames receved");
9338 
9339 	SYSCTL_ADD_UINT(ctx, children, OID_AUTO,
9340 	    "stat_XoffPauseFramesReceived",
9341 	    CTLFLAG_RD, &sc->stat_XoffPauseFramesReceived,
9342 	    0, "XOFF pause frames received");
9343 
9344 	SYSCTL_ADD_UINT(ctx, children, OID_AUTO,
9345 	    "stat_OutXonSent",
9346 	    CTLFLAG_RD, &sc->stat_OutXonSent,
9347 	    0, "XON pause frames sent");
9348 
9349 	SYSCTL_ADD_UINT(ctx, children, OID_AUTO,
9350 	    "stat_OutXoffSent",
9351 	    CTLFLAG_RD, &sc->stat_OutXoffSent,
9352 	    0, "XOFF pause frames sent");
9353 
9354 	SYSCTL_ADD_UINT(ctx, children, OID_AUTO,
9355 	    "stat_FlowControlDone",
9356 	    CTLFLAG_RD, &sc->stat_FlowControlDone,
9357 	    0, "Flow control done");
9358 
9359 	SYSCTL_ADD_UINT(ctx, children, OID_AUTO,
9360 	    "stat_MacControlFramesReceived",
9361 	    CTLFLAG_RD, &sc->stat_MacControlFramesReceived,
9362 	    0, "MAC control frames received");
9363 
9364 	SYSCTL_ADD_UINT(ctx, children, OID_AUTO,
9365 	    "stat_XoffStateEntered",
9366 	    CTLFLAG_RD, &sc->stat_XoffStateEntered,
9367 	    0, "XOFF state entered");
9368 
9369 	SYSCTL_ADD_UINT(ctx, children, OID_AUTO,
9370 	    "stat_IfInFramesL2FilterDiscards",
9371 	    CTLFLAG_RD, &sc->stat_IfInFramesL2FilterDiscards,
9372 	    0, "Received L2 packets discarded");
9373 
9374 	SYSCTL_ADD_UINT(ctx, children, OID_AUTO,
9375 	    "stat_IfInRuleCheckerDiscards",
9376 	    CTLFLAG_RD, &sc->stat_IfInRuleCheckerDiscards,
9377 	    0, "Received packets discarded by rule");
9378 
9379 	SYSCTL_ADD_UINT(ctx, children, OID_AUTO,
9380 	    "stat_IfInFTQDiscards",
9381 	    CTLFLAG_RD, &sc->stat_IfInFTQDiscards,
9382 	    0, "Received packet FTQ discards");
9383 
9384 	SYSCTL_ADD_UINT(ctx, children, OID_AUTO,
9385 	    "stat_IfInMBUFDiscards",
9386 	    CTLFLAG_RD, &sc->stat_IfInMBUFDiscards,
9387 	    0, "Received packets discarded due to lack "
9388 	    "of controller buffer memory");
9389 
9390 	SYSCTL_ADD_UINT(ctx, children, OID_AUTO,
9391 	    "stat_IfInRuleCheckerP4Hit",
9392 	    CTLFLAG_RD, &sc->stat_IfInRuleCheckerP4Hit,
9393 	    0, "Received packets rule checker hits");
9394 
9395 	SYSCTL_ADD_UINT(ctx, children, OID_AUTO,
9396 	    "stat_CatchupInRuleCheckerDiscards",
9397 	    CTLFLAG_RD, &sc->stat_CatchupInRuleCheckerDiscards,
9398 	    0, "Received packets discarded in Catchup path");
9399 
9400 	SYSCTL_ADD_UINT(ctx, children, OID_AUTO,
9401 	    "stat_CatchupInFTQDiscards",
9402 	    CTLFLAG_RD, &sc->stat_CatchupInFTQDiscards,
9403 	    0, "Received packets discarded in FTQ in Catchup path");
9404 
9405 	SYSCTL_ADD_UINT(ctx, children, OID_AUTO,
9406 	    "stat_CatchupInMBUFDiscards",
9407 	    CTLFLAG_RD, &sc->stat_CatchupInMBUFDiscards,
9408 	    0, "Received packets discarded in controller "
9409 	    "buffer memory in Catchup path");
9410 
9411 	SYSCTL_ADD_UINT(ctx, children, OID_AUTO,
9412 	    "stat_CatchupInRuleCheckerP4Hit",
9413 	    CTLFLAG_RD, &sc->stat_CatchupInRuleCheckerP4Hit,
9414 	    0, "Received packets rule checker hits in Catchup path");
9415 
9416 	SYSCTL_ADD_UINT(ctx, children, OID_AUTO,
9417 	    "com_no_buffers",
9418 	    CTLFLAG_RD, &sc->com_no_buffers,
9419 	    0, "Valid packets received but no RX buffers available");
9420 
9421 #ifdef BCE_DEBUG
9422 	SYSCTL_ADD_PROC(ctx, children, OID_AUTO,
9423 	    "driver_state", CTLTYPE_INT | CTLFLAG_RW | CTLFLAG_NEEDGIANT,
9424 	    (void *)sc, 0,
9425 	    bce_sysctl_driver_state, "I", "Drive state information");
9426 
9427 	SYSCTL_ADD_PROC(ctx, children, OID_AUTO,
9428 	    "hw_state", CTLTYPE_INT | CTLFLAG_RW | CTLFLAG_NEEDGIANT,
9429 	    (void *)sc, 0,
9430 	    bce_sysctl_hw_state, "I", "Hardware state information");
9431 
9432 	SYSCTL_ADD_PROC(ctx, children, OID_AUTO,
9433 	    "status_block", CTLTYPE_INT | CTLFLAG_RW | CTLFLAG_NEEDGIANT,
9434 	    (void *)sc, 0,
9435 	    bce_sysctl_status_block, "I", "Dump status block");
9436 
9437 	SYSCTL_ADD_PROC(ctx, children, OID_AUTO,
9438 	    "stats_block", CTLTYPE_INT | CTLFLAG_RW | CTLFLAG_NEEDGIANT,
9439 	    (void *)sc, 0,
9440 	    bce_sysctl_stats_block, "I", "Dump statistics block");
9441 
9442 	SYSCTL_ADD_PROC(ctx, children, OID_AUTO,
9443 	    "stats_clear", CTLTYPE_INT | CTLFLAG_RW | CTLFLAG_NEEDGIANT,
9444 	    (void *)sc, 0,
9445 	    bce_sysctl_stats_clear, "I", "Clear statistics block");
9446 
9447 	SYSCTL_ADD_PROC(ctx, children, OID_AUTO,
9448 	    "shmem_state", CTLTYPE_INT | CTLFLAG_RW | CTLFLAG_NEEDGIANT,
9449 	    (void *)sc, 0,
9450 	    bce_sysctl_shmem_state, "I", "Shared memory state information");
9451 
9452 	SYSCTL_ADD_PROC(ctx, children, OID_AUTO,
9453 	    "bc_state", CTLTYPE_INT | CTLFLAG_RW | CTLFLAG_NEEDGIANT,
9454 	    (void *)sc, 0,
9455 	    bce_sysctl_bc_state, "I", "Bootcode state information");
9456 
9457 	SYSCTL_ADD_PROC(ctx, children, OID_AUTO,
9458 	    "dump_rx_bd_chain", CTLTYPE_INT | CTLFLAG_RW | CTLFLAG_NEEDGIANT,
9459 	    (void *)sc, 0,
9460 	    bce_sysctl_dump_rx_bd_chain, "I", "Dump RX BD chain");
9461 
9462 	SYSCTL_ADD_PROC(ctx, children, OID_AUTO,
9463 	    "dump_rx_mbuf_chain", CTLTYPE_INT | CTLFLAG_RW | CTLFLAG_NEEDGIANT,
9464 	    (void *)sc, 0,
9465 	    bce_sysctl_dump_rx_mbuf_chain, "I", "Dump RX MBUF chain");
9466 
9467 	SYSCTL_ADD_PROC(ctx, children, OID_AUTO,
9468 	    "dump_tx_chain", CTLTYPE_INT | CTLFLAG_RW | CTLFLAG_NEEDGIANT,
9469 	    (void *)sc, 0,
9470 	    bce_sysctl_dump_tx_chain, "I", "Dump tx_bd chain");
9471 
9472 	if (bce_hdr_split == TRUE) {
9473 		SYSCTL_ADD_PROC(ctx, children, OID_AUTO,
9474 		    "dump_pg_chain",
9475 		    CTLTYPE_INT | CTLFLAG_RW | CTLFLAG_NEEDGIANT,
9476 		    (void *)sc, 0,
9477 		    bce_sysctl_dump_pg_chain, "I", "Dump page chain");
9478 	}
9479 
9480 	SYSCTL_ADD_PROC(ctx, children, OID_AUTO,
9481 	    "dump_ctx", CTLTYPE_INT | CTLFLAG_RW | CTLFLAG_NEEDGIANT,
9482 	    (void *)sc, 0,
9483 	    bce_sysctl_dump_ctx, "I", "Dump context memory");
9484 
9485 	SYSCTL_ADD_PROC(ctx, children, OID_AUTO,
9486 	    "breakpoint", CTLTYPE_INT | CTLFLAG_RW | CTLFLAG_NEEDGIANT,
9487 	    (void *)sc, 0,
9488 	    bce_sysctl_breakpoint, "I", "Driver breakpoint");
9489 
9490 	SYSCTL_ADD_PROC(ctx, children, OID_AUTO,
9491 	    "reg_read", CTLTYPE_INT | CTLFLAG_RW| CTLFLAG_NEEDGIANT,
9492 	    (void *)sc, 0,
9493 	    bce_sysctl_reg_read, "I", "Register read");
9494 
9495 	SYSCTL_ADD_PROC(ctx, children, OID_AUTO,
9496 	    "nvram_read", CTLTYPE_INT | CTLFLAG_RW | CTLFLAG_NEEDGIANT,
9497 	    (void *)sc, 0,
9498 	    bce_sysctl_nvram_read, "I", "NVRAM read");
9499 
9500 	SYSCTL_ADD_PROC(ctx, children, OID_AUTO,
9501 	    "phy_read", CTLTYPE_INT | CTLFLAG_RW | CTLFLAG_NEEDGIANT,
9502 	    (void *)sc, 0,
9503 	    bce_sysctl_phy_read, "I", "PHY register read");
9504 
9505 #endif
9506 
9507 	DBEXIT(BCE_VERBOSE_MISC);
9508 }
9509 
9510 /****************************************************************************/
9511 /* BCE Debug Routines                                                       */
9512 /****************************************************************************/
9513 #ifdef BCE_DEBUG
9514 
9515 /****************************************************************************/
9516 /* Freezes the controller to allow for a cohesive state dump.               */
9517 /*                                                                          */
9518 /* Returns:                                                                 */
9519 /*   Nothing.                                                               */
9520 /****************************************************************************/
9521 static __attribute__ ((noinline)) void
9522 bce_freeze_controller(struct bce_softc *sc)
9523 {
9524 	u32 val;
9525 	val = REG_RD(sc, BCE_MISC_COMMAND);
9526 	val |= BCE_MISC_COMMAND_DISABLE_ALL;
9527 	REG_WR(sc, BCE_MISC_COMMAND, val);
9528 }
9529 
9530 /****************************************************************************/
9531 /* Unfreezes the controller after a freeze operation.  This may not always  */
9532 /* work and the controller will require a reset!                            */
9533 /*                                                                          */
9534 /* Returns:                                                                 */
9535 /*   Nothing.                                                               */
9536 /****************************************************************************/
9537 static __attribute__ ((noinline)) void
9538 bce_unfreeze_controller(struct bce_softc *sc)
9539 {
9540 	u32 val;
9541 	val = REG_RD(sc, BCE_MISC_COMMAND);
9542 	val |= BCE_MISC_COMMAND_ENABLE_ALL;
9543 	REG_WR(sc, BCE_MISC_COMMAND, val);
9544 }
9545 
9546 /****************************************************************************/
9547 /* Prints out Ethernet frame information from an mbuf.                      */
9548 /*                                                                          */
9549 /* Partially decode an Ethernet frame to look at some important headers.    */
9550 /*                                                                          */
9551 /* Returns:                                                                 */
9552 /*   Nothing.                                                               */
9553 /****************************************************************************/
9554 static __attribute__ ((noinline)) void
9555 bce_dump_enet(struct bce_softc *sc, struct mbuf *m)
9556 {
9557 	struct ether_vlan_header *eh;
9558 	u16 etype;
9559 	int ehlen;
9560 	struct ip *ip;
9561 	struct tcphdr *th;
9562 	struct udphdr *uh;
9563 	struct arphdr *ah;
9564 
9565 	BCE_PRINTF(
9566 	    "-----------------------------"
9567 	    " Frame Decode "
9568 	    "-----------------------------\n");
9569 
9570 	eh = mtod(m, struct ether_vlan_header *);
9571 
9572 	/* Handle VLAN encapsulation if present. */
9573 	if (eh->evl_encap_proto == htons(ETHERTYPE_VLAN)) {
9574 		etype = ntohs(eh->evl_proto);
9575 		ehlen = ETHER_HDR_LEN + ETHER_VLAN_ENCAP_LEN;
9576 	} else {
9577 		etype = ntohs(eh->evl_encap_proto);
9578 		ehlen = ETHER_HDR_LEN;
9579 	}
9580 
9581 	/* ToDo: Add VLAN output. */
9582 	BCE_PRINTF("enet: dest = %6D, src = %6D, type = 0x%04X, hlen = %d\n",
9583 	    eh->evl_dhost, ":", eh->evl_shost, ":", etype, ehlen);
9584 
9585 	switch (etype) {
9586 	case ETHERTYPE_IP:
9587 		ip = (struct ip *)(m->m_data + ehlen);
9588 		BCE_PRINTF("--ip: dest = 0x%08X , src = 0x%08X, "
9589 		    "len = %d bytes, protocol = 0x%02X, xsum = 0x%04X\n",
9590 		    ntohl(ip->ip_dst.s_addr), ntohl(ip->ip_src.s_addr),
9591 		    ntohs(ip->ip_len), ip->ip_p, ntohs(ip->ip_sum));
9592 
9593 		switch (ip->ip_p) {
9594 		case IPPROTO_TCP:
9595 			th = (struct tcphdr *)((caddr_t)ip + (ip->ip_hl << 2));
9596 			BCE_PRINTF("-tcp: dest = %d, src = %d, hlen = "
9597 			    "%d bytes, flags = 0x%b, csum = 0x%04X\n",
9598 			    ntohs(th->th_dport), ntohs(th->th_sport),
9599 			    (th->th_off << 2), th->th_flags,
9600 			    "\20\10CWR\07ECE\06URG\05ACK\04PSH\03RST"
9601 			    "\02SYN\01FIN", ntohs(th->th_sum));
9602 			break;
9603 		case IPPROTO_UDP:
9604 			uh = (struct udphdr *)((caddr_t)ip + (ip->ip_hl << 2));
9605 			BCE_PRINTF("-udp: dest = %d, src = %d, len = %d "
9606 			    "bytes, csum = 0x%04X\n", ntohs(uh->uh_dport),
9607 			    ntohs(uh->uh_sport), ntohs(uh->uh_ulen),
9608 			    ntohs(uh->uh_sum));
9609 			break;
9610 		case IPPROTO_ICMP:
9611 			BCE_PRINTF("icmp:\n");
9612 			break;
9613 		default:
9614 			BCE_PRINTF("----: Other IP protocol.\n");
9615 			}
9616 		break;
9617 	case ETHERTYPE_IPV6:
9618 		BCE_PRINTF("ipv6: No decode supported.\n");
9619 		break;
9620 	case ETHERTYPE_ARP:
9621 		BCE_PRINTF("-arp: ");
9622 		ah = (struct arphdr *) (m->m_data + ehlen);
9623 		switch (ntohs(ah->ar_op)) {
9624 		case ARPOP_REVREQUEST:
9625 			printf("reverse ARP request\n");
9626 			break;
9627 		case ARPOP_REVREPLY:
9628 			printf("reverse ARP reply\n");
9629 			break;
9630 		case ARPOP_REQUEST:
9631 			printf("ARP request\n");
9632 			break;
9633 		case ARPOP_REPLY:
9634 			printf("ARP reply\n");
9635 			break;
9636 		default:
9637 			printf("other ARP operation\n");
9638 		}
9639 		break;
9640 	default:
9641 		BCE_PRINTF("----: Other protocol.\n");
9642 	}
9643 
9644 	BCE_PRINTF(
9645 		"-----------------------------"
9646 		"--------------"
9647 		"-----------------------------\n");
9648 }
9649 
9650 /****************************************************************************/
9651 /* Prints out information about an mbuf.                                    */
9652 /*                                                                          */
9653 /* Returns:                                                                 */
9654 /*   Nothing.                                                               */
9655 /****************************************************************************/
9656 static __attribute__ ((noinline)) void
9657 bce_dump_mbuf(struct bce_softc *sc, struct mbuf *m)
9658 {
9659 	struct mbuf *mp = m;
9660 
9661 	if (m == NULL) {
9662 		BCE_PRINTF("mbuf: null pointer\n");
9663 		return;
9664 	}
9665 
9666 	while (mp) {
9667 		BCE_PRINTF("mbuf: %p, m_len = %d, m_flags = 0x%b, "
9668 		    "m_data = %p\n", mp, mp->m_len, mp->m_flags,
9669 		    "\20\1M_EXT\2M_PKTHDR\3M_EOR\4M_RDONLY", mp->m_data);
9670 
9671 		if (mp->m_flags & M_PKTHDR) {
9672 			BCE_PRINTF("- m_pkthdr: len = %d, flags = 0x%b, "
9673 			    "csum_flags = %b\n", mp->m_pkthdr.len,
9674 			    mp->m_flags, M_FLAG_PRINTF,
9675 			    mp->m_pkthdr.csum_flags, CSUM_BITS);
9676 		}
9677 
9678 		if (mp->m_flags & M_EXT) {
9679 			BCE_PRINTF("- m_ext: %p, ext_size = %d, type = ",
9680 			    mp->m_ext.ext_buf, mp->m_ext.ext_size);
9681 			switch (mp->m_ext.ext_type) {
9682 			case EXT_CLUSTER:
9683 				printf("EXT_CLUSTER\n"); break;
9684 			case EXT_SFBUF:
9685 				printf("EXT_SFBUF\n"); break;
9686 			case EXT_JUMBO9:
9687 				printf("EXT_JUMBO9\n"); break;
9688 			case EXT_JUMBO16:
9689 				printf("EXT_JUMBO16\n"); break;
9690 			case EXT_PACKET:
9691 				printf("EXT_PACKET\n"); break;
9692 			case EXT_MBUF:
9693 				printf("EXT_MBUF\n"); break;
9694 			case EXT_NET_DRV:
9695 				printf("EXT_NET_DRV\n"); break;
9696 			case EXT_MOD_TYPE:
9697 				printf("EXT_MDD_TYPE\n"); break;
9698 			case EXT_DISPOSABLE:
9699 				printf("EXT_DISPOSABLE\n"); break;
9700 			case EXT_EXTREF:
9701 				printf("EXT_EXTREF\n"); break;
9702 			default:
9703 				printf("UNKNOWN\n");
9704 			}
9705 		}
9706 
9707 		mp = mp->m_next;
9708 	}
9709 }
9710 
9711 /****************************************************************************/
9712 /* Prints out the mbufs in the TX mbuf chain.                               */
9713 /*                                                                          */
9714 /* Returns:                                                                 */
9715 /*   Nothing.                                                               */
9716 /****************************************************************************/
9717 static __attribute__ ((noinline)) void
9718 bce_dump_tx_mbuf_chain(struct bce_softc *sc, u16 chain_prod, int count)
9719 {
9720 	struct mbuf *m;
9721 
9722 	BCE_PRINTF(
9723 		"----------------------------"
9724 		"  tx mbuf data  "
9725 		"----------------------------\n");
9726 
9727 	for (int i = 0; i < count; i++) {
9728 	 	m = sc->tx_mbuf_ptr[chain_prod];
9729 		BCE_PRINTF("txmbuf[0x%04X]\n", chain_prod);
9730 		bce_dump_mbuf(sc, m);
9731 		chain_prod = TX_CHAIN_IDX(NEXT_TX_BD(chain_prod));
9732 	}
9733 
9734 	BCE_PRINTF(
9735 		"----------------------------"
9736 		"----------------"
9737 		"----------------------------\n");
9738 }
9739 
9740 /****************************************************************************/
9741 /* Prints out the mbufs in the RX mbuf chain.                               */
9742 /*                                                                          */
9743 /* Returns:                                                                 */
9744 /*   Nothing.                                                               */
9745 /****************************************************************************/
9746 static __attribute__ ((noinline)) void
9747 bce_dump_rx_mbuf_chain(struct bce_softc *sc, u16 chain_prod, int count)
9748 {
9749 	struct mbuf *m;
9750 
9751 	BCE_PRINTF(
9752 		"----------------------------"
9753 		"  rx mbuf data  "
9754 		"----------------------------\n");
9755 
9756 	for (int i = 0; i < count; i++) {
9757 	 	m = sc->rx_mbuf_ptr[chain_prod];
9758 		BCE_PRINTF("rxmbuf[0x%04X]\n", chain_prod);
9759 		bce_dump_mbuf(sc, m);
9760 		chain_prod = RX_CHAIN_IDX(NEXT_RX_BD(chain_prod));
9761 	}
9762 
9763 	BCE_PRINTF(
9764 		"----------------------------"
9765 		"----------------"
9766 		"----------------------------\n");
9767 }
9768 
9769 /****************************************************************************/
9770 /* Prints out the mbufs in the mbuf page chain.                             */
9771 /*                                                                          */
9772 /* Returns:                                                                 */
9773 /*   Nothing.                                                               */
9774 /****************************************************************************/
9775 static __attribute__ ((noinline)) void
9776 bce_dump_pg_mbuf_chain(struct bce_softc *sc, u16 chain_prod, int count)
9777 {
9778 	struct mbuf *m;
9779 
9780 	BCE_PRINTF(
9781 		"----------------------------"
9782 		"  pg mbuf data  "
9783 		"----------------------------\n");
9784 
9785 	for (int i = 0; i < count; i++) {
9786 	 	m = sc->pg_mbuf_ptr[chain_prod];
9787 		BCE_PRINTF("pgmbuf[0x%04X]\n", chain_prod);
9788 		bce_dump_mbuf(sc, m);
9789 		chain_prod = PG_CHAIN_IDX(NEXT_PG_BD(chain_prod));
9790 	}
9791 
9792 	BCE_PRINTF(
9793 		"----------------------------"
9794 		"----------------"
9795 		"----------------------------\n");
9796 }
9797 
9798 /****************************************************************************/
9799 /* Prints out a tx_bd structure.                                            */
9800 /*                                                                          */
9801 /* Returns:                                                                 */
9802 /*   Nothing.                                                               */
9803 /****************************************************************************/
9804 static __attribute__ ((noinline)) void
9805 bce_dump_txbd(struct bce_softc *sc, int idx, struct tx_bd *txbd)
9806 {
9807 	int i = 0;
9808 
9809 	if (idx > MAX_TX_BD_ALLOC)
9810 		/* Index out of range. */
9811 		BCE_PRINTF("tx_bd[0x%04X]: Invalid tx_bd index!\n", idx);
9812 	else if ((idx & USABLE_TX_BD_PER_PAGE) == USABLE_TX_BD_PER_PAGE)
9813 		/* TX Chain page pointer. */
9814 		BCE_PRINTF("tx_bd[0x%04X]: haddr = 0x%08X:%08X, chain page "
9815 		    "pointer\n", idx, txbd->tx_bd_haddr_hi,
9816 		    txbd->tx_bd_haddr_lo);
9817 	else {
9818 		/* Normal tx_bd entry. */
9819 		BCE_PRINTF("tx_bd[0x%04X]: haddr = 0x%08X:%08X, "
9820 		    "mss_nbytes = 0x%08X, vlan tag = 0x%04X, flags = "
9821 		    "0x%04X (", idx, txbd->tx_bd_haddr_hi,
9822 		    txbd->tx_bd_haddr_lo, txbd->tx_bd_mss_nbytes,
9823 		    txbd->tx_bd_vlan_tag, txbd->tx_bd_flags);
9824 
9825 		if (txbd->tx_bd_flags & TX_BD_FLAGS_CONN_FAULT) {
9826 			if (i>0)
9827 				printf("|");
9828 			printf("CONN_FAULT");
9829 			i++;
9830 		}
9831 
9832 		if (txbd->tx_bd_flags & TX_BD_FLAGS_TCP_UDP_CKSUM) {
9833 			if (i>0)
9834 				printf("|");
9835 			printf("TCP_UDP_CKSUM");
9836 			i++;
9837 		}
9838 
9839 		if (txbd->tx_bd_flags & TX_BD_FLAGS_IP_CKSUM) {
9840 			if (i>0)
9841 				printf("|");
9842 			printf("IP_CKSUM");
9843 			i++;
9844 		}
9845 
9846 		if (txbd->tx_bd_flags & TX_BD_FLAGS_VLAN_TAG) {
9847 			if (i>0)
9848 				printf("|");
9849 			printf("VLAN");
9850 			i++;
9851 		}
9852 
9853 		if (txbd->tx_bd_flags & TX_BD_FLAGS_COAL_NOW) {
9854 			if (i>0)
9855 				printf("|");
9856 			printf("COAL_NOW");
9857 			i++;
9858 		}
9859 
9860 		if (txbd->tx_bd_flags & TX_BD_FLAGS_DONT_GEN_CRC) {
9861 			if (i>0)
9862 				printf("|");
9863 			printf("DONT_GEN_CRC");
9864 			i++;
9865 		}
9866 
9867 		if (txbd->tx_bd_flags & TX_BD_FLAGS_START) {
9868 			if (i>0)
9869 				printf("|");
9870 			printf("START");
9871 			i++;
9872 		}
9873 
9874 		if (txbd->tx_bd_flags & TX_BD_FLAGS_END) {
9875 			if (i>0)
9876 				printf("|");
9877 			printf("END");
9878 			i++;
9879 		}
9880 
9881 		if (txbd->tx_bd_flags & TX_BD_FLAGS_SW_LSO) {
9882 			if (i>0)
9883 				printf("|");
9884 			printf("LSO");
9885 			i++;
9886 		}
9887 
9888 		if (txbd->tx_bd_flags & TX_BD_FLAGS_SW_OPTION_WORD) {
9889 			if (i>0)
9890 				printf("|");
9891 			printf("SW_OPTION=%d", ((txbd->tx_bd_flags &
9892 			    TX_BD_FLAGS_SW_OPTION_WORD) >> 8)); i++;
9893 		}
9894 
9895 		if (txbd->tx_bd_flags & TX_BD_FLAGS_SW_FLAGS) {
9896 			if (i>0)
9897 				printf("|");
9898 			printf("SW_FLAGS");
9899 			i++;
9900 		}
9901 
9902 		if (txbd->tx_bd_flags & TX_BD_FLAGS_SW_SNAP) {
9903 			if (i>0)
9904 				printf("|");
9905 			printf("SNAP)");
9906 		} else {
9907 			printf(")\n");
9908 		}
9909 	}
9910 }
9911 
9912 /****************************************************************************/
9913 /* Prints out a rx_bd structure.                                            */
9914 /*                                                                          */
9915 /* Returns:                                                                 */
9916 /*   Nothing.                                                               */
9917 /****************************************************************************/
9918 static __attribute__ ((noinline)) void
9919 bce_dump_rxbd(struct bce_softc *sc, int idx, struct rx_bd *rxbd)
9920 {
9921 	if (idx > MAX_RX_BD_ALLOC)
9922 		/* Index out of range. */
9923 		BCE_PRINTF("rx_bd[0x%04X]: Invalid rx_bd index!\n", idx);
9924 	else if ((idx & USABLE_RX_BD_PER_PAGE) == USABLE_RX_BD_PER_PAGE)
9925 		/* RX Chain page pointer. */
9926 		BCE_PRINTF("rx_bd[0x%04X]: haddr = 0x%08X:%08X, chain page "
9927 		    "pointer\n", idx, rxbd->rx_bd_haddr_hi,
9928 		    rxbd->rx_bd_haddr_lo);
9929 	else
9930 		/* Normal rx_bd entry. */
9931 		BCE_PRINTF("rx_bd[0x%04X]: haddr = 0x%08X:%08X, nbytes = "
9932 		    "0x%08X, flags = 0x%08X\n", idx, rxbd->rx_bd_haddr_hi,
9933 		    rxbd->rx_bd_haddr_lo, rxbd->rx_bd_len,
9934 		    rxbd->rx_bd_flags);
9935 }
9936 
9937 /****************************************************************************/
9938 /* Prints out a rx_bd structure in the page chain.                          */
9939 /*                                                                          */
9940 /* Returns:                                                                 */
9941 /*   Nothing.                                                               */
9942 /****************************************************************************/
9943 static __attribute__ ((noinline)) void
9944 bce_dump_pgbd(struct bce_softc *sc, int idx, struct rx_bd *pgbd)
9945 {
9946 	if (idx > MAX_PG_BD_ALLOC)
9947 		/* Index out of range. */
9948 		BCE_PRINTF("pg_bd[0x%04X]: Invalid pg_bd index!\n", idx);
9949 	else if ((idx & USABLE_PG_BD_PER_PAGE) == USABLE_PG_BD_PER_PAGE)
9950 		/* Page Chain page pointer. */
9951 		BCE_PRINTF("px_bd[0x%04X]: haddr = 0x%08X:%08X, chain page pointer\n",
9952 			idx, pgbd->rx_bd_haddr_hi, pgbd->rx_bd_haddr_lo);
9953 	else
9954 		/* Normal rx_bd entry. */
9955 		BCE_PRINTF("pg_bd[0x%04X]: haddr = 0x%08X:%08X, nbytes = 0x%08X, "
9956 			"flags = 0x%08X\n", idx,
9957 			pgbd->rx_bd_haddr_hi, pgbd->rx_bd_haddr_lo,
9958 			pgbd->rx_bd_len, pgbd->rx_bd_flags);
9959 }
9960 
9961 /****************************************************************************/
9962 /* Prints out a l2_fhdr structure.                                          */
9963 /*                                                                          */
9964 /* Returns:                                                                 */
9965 /*   Nothing.                                                               */
9966 /****************************************************************************/
9967 static __attribute__ ((noinline)) void
9968 bce_dump_l2fhdr(struct bce_softc *sc, int idx, struct l2_fhdr *l2fhdr)
9969 {
9970 	BCE_PRINTF("l2_fhdr[0x%04X]: status = 0x%b, "
9971 		"pkt_len = %d, vlan = 0x%04x, ip_xsum/hdr_len = 0x%04X, "
9972 		"tcp_udp_xsum = 0x%04X\n", idx,
9973 		l2fhdr->l2_fhdr_status, BCE_L2FHDR_PRINTFB,
9974 		l2fhdr->l2_fhdr_pkt_len, l2fhdr->l2_fhdr_vlan_tag,
9975 		l2fhdr->l2_fhdr_ip_xsum, l2fhdr->l2_fhdr_tcp_udp_xsum);
9976 }
9977 
9978 /****************************************************************************/
9979 /* Prints out context memory info.  (Only useful for CID 0 to 16.)          */
9980 /*                                                                          */
9981 /* Returns:                                                                 */
9982 /*   Nothing.                                                               */
9983 /****************************************************************************/
9984 static __attribute__ ((noinline)) void
9985 bce_dump_ctx(struct bce_softc *sc, u16 cid)
9986 {
9987 	if (cid > TX_CID) {
9988 		BCE_PRINTF(" Unknown CID\n");
9989 		return;
9990 	}
9991 
9992 	BCE_PRINTF(
9993 	    "----------------------------"
9994 	    "    CTX Data    "
9995 	    "----------------------------\n");
9996 
9997 	BCE_PRINTF("     0x%04X - (CID) Context ID\n", cid);
9998 
9999 	if (cid == RX_CID) {
10000 		BCE_PRINTF(" 0x%08X - (L2CTX_RX_HOST_BDIDX) host rx "
10001 		   "producer index\n",
10002 		    CTX_RD(sc, GET_CID_ADDR(cid), BCE_L2CTX_RX_HOST_BDIDX));
10003 		BCE_PRINTF(" 0x%08X - (L2CTX_RX_HOST_BSEQ) host "
10004 		    "byte sequence\n", CTX_RD(sc, GET_CID_ADDR(cid),
10005 		    BCE_L2CTX_RX_HOST_BSEQ));
10006 		BCE_PRINTF(" 0x%08X - (L2CTX_RX_NX_BSEQ) h/w byte sequence\n",
10007 		    CTX_RD(sc, GET_CID_ADDR(cid), BCE_L2CTX_RX_NX_BSEQ));
10008 		BCE_PRINTF(" 0x%08X - (L2CTX_RX_NX_BDHADDR_HI) h/w buffer "
10009 		    "descriptor address\n",
10010  		    CTX_RD(sc, GET_CID_ADDR(cid), BCE_L2CTX_RX_NX_BDHADDR_HI));
10011 		BCE_PRINTF(" 0x%08X - (L2CTX_RX_NX_BDHADDR_LO) h/w buffer "
10012 		    "descriptor address\n",
10013 		    CTX_RD(sc, GET_CID_ADDR(cid), BCE_L2CTX_RX_NX_BDHADDR_LO));
10014 		BCE_PRINTF(" 0x%08X - (L2CTX_RX_NX_BDIDX) h/w rx consumer "
10015 		    "index\n", CTX_RD(sc, GET_CID_ADDR(cid),
10016 		    BCE_L2CTX_RX_NX_BDIDX));
10017 		BCE_PRINTF(" 0x%08X - (L2CTX_RX_HOST_PG_BDIDX) host page "
10018 		    "producer index\n", CTX_RD(sc, GET_CID_ADDR(cid),
10019 		    BCE_L2CTX_RX_HOST_PG_BDIDX));
10020 		BCE_PRINTF(" 0x%08X - (L2CTX_RX_PG_BUF_SIZE) host rx_bd/page "
10021 		    "buffer size\n", CTX_RD(sc, GET_CID_ADDR(cid),
10022 		    BCE_L2CTX_RX_PG_BUF_SIZE));
10023 		BCE_PRINTF(" 0x%08X - (L2CTX_RX_NX_PG_BDHADDR_HI) h/w page "
10024 		    "chain address\n", CTX_RD(sc, GET_CID_ADDR(cid),
10025 		    BCE_L2CTX_RX_NX_PG_BDHADDR_HI));
10026 		BCE_PRINTF(" 0x%08X - (L2CTX_RX_NX_PG_BDHADDR_LO) h/w page "
10027 		    "chain address\n", CTX_RD(sc, GET_CID_ADDR(cid),
10028 		    BCE_L2CTX_RX_NX_PG_BDHADDR_LO));
10029 		BCE_PRINTF(" 0x%08X - (L2CTX_RX_NX_PG_BDIDX) h/w page "
10030 		    "consumer index\n",	CTX_RD(sc, GET_CID_ADDR(cid),
10031 		    BCE_L2CTX_RX_NX_PG_BDIDX));
10032 	} else if (cid == TX_CID) {
10033 		if (BCE_CHIP_NUM(sc) == BCE_CHIP_NUM_5709) {
10034 			BCE_PRINTF(" 0x%08X - (L2CTX_TX_TYPE_XI) ctx type\n",
10035 			    CTX_RD(sc, GET_CID_ADDR(cid),
10036 			    BCE_L2CTX_TX_TYPE_XI));
10037 			BCE_PRINTF(" 0x%08X - (L2CTX_CMD_TX_TYPE_XI) ctx "
10038 			    "cmd\n", CTX_RD(sc, GET_CID_ADDR(cid),
10039 			    BCE_L2CTX_TX_CMD_TYPE_XI));
10040 			BCE_PRINTF(" 0x%08X - (L2CTX_TX_TBDR_BDHADDR_HI_XI) "
10041 			    "h/w buffer descriptor address\n",
10042 			    CTX_RD(sc, GET_CID_ADDR(cid),
10043 			    BCE_L2CTX_TX_TBDR_BHADDR_HI_XI));
10044 			BCE_PRINTF(" 0x%08X - (L2CTX_TX_TBDR_BHADDR_LO_XI) "
10045 			    "h/w buffer	descriptor address\n",
10046 			    CTX_RD(sc, GET_CID_ADDR(cid),
10047 			    BCE_L2CTX_TX_TBDR_BHADDR_LO_XI));
10048 			BCE_PRINTF(" 0x%08X - (L2CTX_TX_HOST_BIDX_XI) "
10049 			    "host producer index\n",
10050 			    CTX_RD(sc, GET_CID_ADDR(cid),
10051 			    BCE_L2CTX_TX_HOST_BIDX_XI));
10052 			BCE_PRINTF(" 0x%08X - (L2CTX_TX_HOST_BSEQ_XI) "
10053 			    "host byte sequence\n",
10054 			    CTX_RD(sc, GET_CID_ADDR(cid),
10055 			    BCE_L2CTX_TX_HOST_BSEQ_XI));
10056 		} else {
10057 			BCE_PRINTF(" 0x%08X - (L2CTX_TX_TYPE) ctx type\n",
10058 			    CTX_RD(sc, GET_CID_ADDR(cid), BCE_L2CTX_TX_TYPE));
10059 			BCE_PRINTF(" 0x%08X - (L2CTX_TX_CMD_TYPE) ctx cmd\n",
10060 			    CTX_RD(sc, GET_CID_ADDR(cid),
10061 			    BCE_L2CTX_TX_CMD_TYPE));
10062 			BCE_PRINTF(" 0x%08X - (L2CTX_TX_TBDR_BDHADDR_HI) "
10063 			    "h/w buffer	descriptor address\n",
10064 			    CTX_RD(sc, GET_CID_ADDR(cid),
10065 			    BCE_L2CTX_TX_TBDR_BHADDR_HI));
10066 			BCE_PRINTF(" 0x%08X - (L2CTX_TX_TBDR_BHADDR_LO) "
10067 			    "h/w buffer	descriptor address\n",
10068 			    CTX_RD(sc, GET_CID_ADDR(cid),
10069 			    BCE_L2CTX_TX_TBDR_BHADDR_LO));
10070 			BCE_PRINTF(" 0x%08X - (L2CTX_TX_HOST_BIDX) host "
10071 			    "producer index\n", CTX_RD(sc, GET_CID_ADDR(cid),
10072 			    BCE_L2CTX_TX_HOST_BIDX));
10073 			BCE_PRINTF(" 0x%08X - (L2CTX_TX_HOST_BSEQ) host byte "
10074 			    "sequence\n", CTX_RD(sc, GET_CID_ADDR(cid),
10075 			    BCE_L2CTX_TX_HOST_BSEQ));
10076 		}
10077 	}
10078 
10079 	BCE_PRINTF(
10080 	   "----------------------------"
10081 	   "    Raw CTX     "
10082 	   "----------------------------\n");
10083 
10084 	for (int i = 0x0; i < 0x300; i += 0x10) {
10085 		BCE_PRINTF("0x%04X: 0x%08X 0x%08X 0x%08X 0x%08X\n", i,
10086 		   CTX_RD(sc, GET_CID_ADDR(cid), i),
10087 		   CTX_RD(sc, GET_CID_ADDR(cid), i + 0x4),
10088 		   CTX_RD(sc, GET_CID_ADDR(cid), i + 0x8),
10089 		   CTX_RD(sc, GET_CID_ADDR(cid), i + 0xc));
10090 	}
10091 
10092 	BCE_PRINTF(
10093 	   "----------------------------"
10094 	   "----------------"
10095 	   "----------------------------\n");
10096 }
10097 
10098 /****************************************************************************/
10099 /* Prints out the FTQ data.                                                 */
10100 /*                                                                          */
10101 /* Returns:                                                                */
10102 /*   Nothing.                                                               */
10103 /****************************************************************************/
10104 static __attribute__ ((noinline)) void
10105 bce_dump_ftqs(struct bce_softc *sc)
10106 {
10107 	u32 cmd, ctl, cur_depth, max_depth, valid_cnt, val;
10108 
10109 	BCE_PRINTF(
10110 	    "----------------------------"
10111 	    "    FTQ Data    "
10112 	    "----------------------------\n");
10113 
10114 	BCE_PRINTF("   FTQ    Command    Control   Depth_Now  "
10115 	    "Max_Depth  Valid_Cnt \n");
10116 	BCE_PRINTF(" ------- ---------- ---------- ---------- "
10117 	    "---------- ----------\n");
10118 
10119 	/* Setup the generic statistic counters for the FTQ valid count. */
10120 	val = (BCE_HC_STAT_GEN_SEL_0_GEN_SEL_0_RV2PPQ_VALID_CNT << 24) |
10121 	    (BCE_HC_STAT_GEN_SEL_0_GEN_SEL_0_RXPCQ_VALID_CNT  << 16) |
10122 	    (BCE_HC_STAT_GEN_SEL_0_GEN_SEL_0_RXPQ_VALID_CNT   <<  8) |
10123 	    (BCE_HC_STAT_GEN_SEL_0_GEN_SEL_0_RLUPQ_VALID_CNT);
10124 	REG_WR(sc, BCE_HC_STAT_GEN_SEL_0, val);
10125 
10126 	val = (BCE_HC_STAT_GEN_SEL_0_GEN_SEL_0_TSCHQ_VALID_CNT  << 24) |
10127 	    (BCE_HC_STAT_GEN_SEL_0_GEN_SEL_0_RDMAQ_VALID_CNT  << 16) |
10128 	    (BCE_HC_STAT_GEN_SEL_0_GEN_SEL_0_RV2PTQ_VALID_CNT <<  8) |
10129 	    (BCE_HC_STAT_GEN_SEL_0_GEN_SEL_0_RV2PMQ_VALID_CNT);
10130 	REG_WR(sc, BCE_HC_STAT_GEN_SEL_1, val);
10131 
10132 	val = (BCE_HC_STAT_GEN_SEL_0_GEN_SEL_0_TPATQ_VALID_CNT  << 24) |
10133 	    (BCE_HC_STAT_GEN_SEL_0_GEN_SEL_0_TDMAQ_VALID_CNT  << 16) |
10134 	    (BCE_HC_STAT_GEN_SEL_0_GEN_SEL_0_TXPQ_VALID_CNT   <<  8) |
10135 	    (BCE_HC_STAT_GEN_SEL_0_GEN_SEL_0_TBDRQ_VALID_CNT);
10136 	REG_WR(sc, BCE_HC_STAT_GEN_SEL_2, val);
10137 
10138 	val = (BCE_HC_STAT_GEN_SEL_0_GEN_SEL_0_COMQ_VALID_CNT   << 24) |
10139 	    (BCE_HC_STAT_GEN_SEL_0_GEN_SEL_0_COMTQ_VALID_CNT  << 16) |
10140 	    (BCE_HC_STAT_GEN_SEL_0_GEN_SEL_0_COMXQ_VALID_CNT  <<  8) |
10141 	    (BCE_HC_STAT_GEN_SEL_0_GEN_SEL_0_TASQ_VALID_CNT);
10142 	REG_WR(sc, BCE_HC_STAT_GEN_SEL_3, val);
10143 
10144 	/* Input queue to the Receive Lookup state machine */
10145 	cmd = REG_RD(sc, BCE_RLUP_FTQ_CMD);
10146 	ctl = REG_RD(sc, BCE_RLUP_FTQ_CTL);
10147 	cur_depth = (ctl & BCE_RLUP_FTQ_CTL_CUR_DEPTH) >> 22;
10148 	max_depth = (ctl & BCE_RLUP_FTQ_CTL_MAX_DEPTH) >> 12;
10149 	valid_cnt = REG_RD(sc, BCE_HC_STAT_GEN_STAT0);
10150 	BCE_PRINTF(" RLUP    0x%08X 0x%08X 0x%08X 0x%08X 0x%08X\n",
10151 	    cmd, ctl, cur_depth, max_depth, valid_cnt);
10152 
10153 	/* Input queue to the Receive Processor */
10154 	cmd = REG_RD_IND(sc, BCE_RXP_FTQ_CMD);
10155 	ctl = REG_RD_IND(sc, BCE_RXP_FTQ_CTL);
10156 	cur_depth = (ctl & BCE_RXP_FTQ_CTL_CUR_DEPTH) >> 22;
10157 	max_depth = (ctl & BCE_RXP_FTQ_CTL_MAX_DEPTH) >> 12;
10158 	valid_cnt = REG_RD(sc, BCE_HC_STAT_GEN_STAT1);
10159 	BCE_PRINTF(" RXP     0x%08X 0x%08X 0x%08X 0x%08X 0x%08X\n",
10160 	    cmd, ctl, cur_depth, max_depth, valid_cnt);
10161 
10162 	/* Input queue to the Recevie Processor */
10163 	cmd = REG_RD_IND(sc, BCE_RXP_CFTQ_CMD);
10164 	ctl = REG_RD_IND(sc, BCE_RXP_CFTQ_CTL);
10165 	cur_depth = (ctl & BCE_RXP_CFTQ_CTL_CUR_DEPTH) >> 22;
10166 	max_depth = (ctl & BCE_RXP_CFTQ_CTL_MAX_DEPTH) >> 12;
10167 	valid_cnt = REG_RD(sc, BCE_HC_STAT_GEN_STAT2);
10168 	BCE_PRINTF(" RXPC    0x%08X 0x%08X 0x%08X 0x%08X 0x%08X\n",
10169 	    cmd, ctl, cur_depth, max_depth, valid_cnt);
10170 
10171 	/* Input queue to the Receive Virtual to Physical state machine */
10172 	cmd = REG_RD(sc, BCE_RV2P_PFTQ_CMD);
10173 	ctl = REG_RD(sc, BCE_RV2P_PFTQ_CTL);
10174 	cur_depth = (ctl & BCE_RV2P_PFTQ_CTL_CUR_DEPTH) >> 22;
10175 	max_depth = (ctl & BCE_RV2P_PFTQ_CTL_MAX_DEPTH) >> 12;
10176 	valid_cnt = REG_RD(sc, BCE_HC_STAT_GEN_STAT3);
10177 	BCE_PRINTF(" RV2PP   0x%08X 0x%08X 0x%08X 0x%08X 0x%08X\n",
10178 	    cmd, ctl, cur_depth, max_depth, valid_cnt);
10179 
10180 	/* Input queue to the Recevie Virtual to Physical state machine */
10181 	cmd = REG_RD(sc, BCE_RV2P_MFTQ_CMD);
10182 	ctl = REG_RD(sc, BCE_RV2P_MFTQ_CTL);
10183 	cur_depth = (ctl & BCE_RV2P_MFTQ_CTL_CUR_DEPTH) >> 22;
10184 	max_depth = (ctl & BCE_RV2P_MFTQ_CTL_MAX_DEPTH) >> 12;
10185 	valid_cnt = REG_RD(sc, BCE_HC_STAT_GEN_STAT4);
10186 	BCE_PRINTF(" RV2PM   0x%08X 0x%08X 0x%08X 0x%08X 0x%08X\n",
10187 	    cmd, ctl, cur_depth, max_depth, valid_cnt);
10188 
10189 	/* Input queue to the Receive Virtual to Physical state machine */
10190 	cmd = REG_RD(sc, BCE_RV2P_TFTQ_CMD);
10191 	ctl = REG_RD(sc, BCE_RV2P_TFTQ_CTL);
10192 	cur_depth = (ctl & BCE_RV2P_TFTQ_CTL_CUR_DEPTH) >> 22;
10193 	max_depth = (ctl & BCE_RV2P_TFTQ_CTL_MAX_DEPTH) >> 12;
10194 	valid_cnt = REG_RD(sc, BCE_HC_STAT_GEN_STAT5);
10195 	BCE_PRINTF(" RV2PT   0x%08X 0x%08X 0x%08X 0x%08X 0x%08X\n",
10196 	    cmd, ctl, cur_depth, max_depth, valid_cnt);
10197 
10198 	/* Input queue to the Receive DMA state machine */
10199 	cmd = REG_RD(sc, BCE_RDMA_FTQ_CMD);
10200 	ctl = REG_RD(sc, BCE_RDMA_FTQ_CTL);
10201 	cur_depth = (ctl & BCE_RDMA_FTQ_CTL_CUR_DEPTH) >> 22;
10202 	max_depth = (ctl & BCE_RDMA_FTQ_CTL_MAX_DEPTH) >> 12;
10203 	valid_cnt = REG_RD(sc, BCE_HC_STAT_GEN_STAT6);
10204 	BCE_PRINTF(" RDMA    0x%08X 0x%08X 0x%08X 0x%08X 0x%08X\n",
10205 	    cmd, ctl, cur_depth, max_depth, valid_cnt);
10206 
10207 	/* Input queue to the Transmit Scheduler state machine */
10208 	cmd = REG_RD(sc, BCE_TSCH_FTQ_CMD);
10209 	ctl = REG_RD(sc, BCE_TSCH_FTQ_CTL);
10210 	cur_depth = (ctl & BCE_TSCH_FTQ_CTL_CUR_DEPTH) >> 22;
10211 	max_depth = (ctl & BCE_TSCH_FTQ_CTL_MAX_DEPTH) >> 12;
10212 	valid_cnt = REG_RD(sc, BCE_HC_STAT_GEN_STAT7);
10213 	BCE_PRINTF(" TSCH    0x%08X 0x%08X 0x%08X 0x%08X 0x%08X\n",
10214 	    cmd, ctl, cur_depth, max_depth, valid_cnt);
10215 
10216 	/* Input queue to the Transmit Buffer Descriptor state machine */
10217 	cmd = REG_RD(sc, BCE_TBDR_FTQ_CMD);
10218 	ctl = REG_RD(sc, BCE_TBDR_FTQ_CTL);
10219 	cur_depth = (ctl & BCE_TBDR_FTQ_CTL_CUR_DEPTH) >> 22;
10220 	max_depth = (ctl & BCE_TBDR_FTQ_CTL_MAX_DEPTH) >> 12;
10221 	valid_cnt = REG_RD(sc, BCE_HC_STAT_GEN_STAT8);
10222 	BCE_PRINTF(" TBDR    0x%08X 0x%08X 0x%08X 0x%08X 0x%08X\n",
10223 	    cmd, ctl, cur_depth, max_depth, valid_cnt);
10224 
10225 	/* Input queue to the Transmit Processor */
10226 	cmd = REG_RD_IND(sc, BCE_TXP_FTQ_CMD);
10227 	ctl = REG_RD_IND(sc, BCE_TXP_FTQ_CTL);
10228 	cur_depth = (ctl & BCE_TXP_FTQ_CTL_CUR_DEPTH) >> 22;
10229 	max_depth = (ctl & BCE_TXP_FTQ_CTL_MAX_DEPTH) >> 12;
10230 	valid_cnt = REG_RD(sc, BCE_HC_STAT_GEN_STAT9);
10231 	BCE_PRINTF(" TXP     0x%08X 0x%08X 0x%08X 0x%08X 0x%08X\n",
10232 	    cmd, ctl, cur_depth, max_depth, valid_cnt);
10233 
10234 	/* Input queue to the Transmit DMA state machine */
10235 	cmd = REG_RD(sc, BCE_TDMA_FTQ_CMD);
10236 	ctl = REG_RD(sc, BCE_TDMA_FTQ_CTL);
10237 	cur_depth = (ctl & BCE_TDMA_FTQ_CTL_CUR_DEPTH) >> 22;
10238 	max_depth = (ctl & BCE_TDMA_FTQ_CTL_MAX_DEPTH) >> 12;
10239 	valid_cnt = REG_RD(sc, BCE_HC_STAT_GEN_STAT10);
10240 	BCE_PRINTF(" TDMA    0x%08X 0x%08X 0x%08X 0x%08X 0x%08X\n",
10241 	    cmd, ctl, cur_depth, max_depth, valid_cnt);
10242 
10243 	/* Input queue to the Transmit Patch-Up Processor */
10244 	cmd = REG_RD_IND(sc, BCE_TPAT_FTQ_CMD);
10245 	ctl = REG_RD_IND(sc, BCE_TPAT_FTQ_CTL);
10246 	cur_depth = (ctl & BCE_TPAT_FTQ_CTL_CUR_DEPTH) >> 22;
10247 	max_depth = (ctl & BCE_TPAT_FTQ_CTL_MAX_DEPTH) >> 12;
10248 	valid_cnt = REG_RD(sc, BCE_HC_STAT_GEN_STAT11);
10249 	BCE_PRINTF(" TPAT    0x%08X 0x%08X 0x%08X 0x%08X 0x%08X\n",
10250 	    cmd, ctl, cur_depth, max_depth, valid_cnt);
10251 
10252 	/* Input queue to the Transmit Assembler state machine */
10253 	cmd = REG_RD_IND(sc, BCE_TAS_FTQ_CMD);
10254 	ctl = REG_RD_IND(sc, BCE_TAS_FTQ_CTL);
10255 	cur_depth = (ctl & BCE_TAS_FTQ_CTL_CUR_DEPTH) >> 22;
10256 	max_depth = (ctl & BCE_TAS_FTQ_CTL_MAX_DEPTH) >> 12;
10257 	valid_cnt = REG_RD(sc, BCE_HC_STAT_GEN_STAT12);
10258 	BCE_PRINTF(" TAS     0x%08X 0x%08X 0x%08X 0x%08X 0x%08X\n",
10259 	    cmd, ctl, cur_depth, max_depth, valid_cnt);
10260 
10261 	/* Input queue to the Completion Processor */
10262 	cmd = REG_RD_IND(sc, BCE_COM_COMXQ_FTQ_CMD);
10263 	ctl = REG_RD_IND(sc, BCE_COM_COMXQ_FTQ_CTL);
10264 	cur_depth = (ctl & BCE_COM_COMXQ_FTQ_CTL_CUR_DEPTH) >> 22;
10265 	max_depth = (ctl & BCE_COM_COMXQ_FTQ_CTL_MAX_DEPTH) >> 12;
10266 	valid_cnt = REG_RD(sc, BCE_HC_STAT_GEN_STAT13);
10267 	BCE_PRINTF(" COMX    0x%08X 0x%08X 0x%08X 0x%08X 0x%08X\n",
10268 	    cmd, ctl, cur_depth, max_depth, valid_cnt);
10269 
10270 	/* Input queue to the Completion Processor */
10271 	cmd = REG_RD_IND(sc, BCE_COM_COMTQ_FTQ_CMD);
10272 	ctl = REG_RD_IND(sc, BCE_COM_COMTQ_FTQ_CTL);
10273 	cur_depth = (ctl & BCE_COM_COMTQ_FTQ_CTL_CUR_DEPTH) >> 22;
10274 	max_depth = (ctl & BCE_COM_COMTQ_FTQ_CTL_MAX_DEPTH) >> 12;
10275 	valid_cnt = REG_RD(sc, BCE_HC_STAT_GEN_STAT14);
10276 	BCE_PRINTF(" COMT    0x%08X 0x%08X 0x%08X 0x%08X 0x%08X\n",
10277 	    cmd, ctl, cur_depth, max_depth, valid_cnt);
10278 
10279 	/* Input queue to the Completion Processor */
10280 	cmd = REG_RD_IND(sc, BCE_COM_COMQ_FTQ_CMD);
10281 	ctl = REG_RD_IND(sc, BCE_COM_COMQ_FTQ_CTL);
10282 	cur_depth = (ctl & BCE_COM_COMQ_FTQ_CTL_CUR_DEPTH) >> 22;
10283 	max_depth = (ctl & BCE_COM_COMQ_FTQ_CTL_MAX_DEPTH) >> 12;
10284 	valid_cnt = REG_RD(sc, BCE_HC_STAT_GEN_STAT15);
10285 	BCE_PRINTF(" COMX    0x%08X 0x%08X 0x%08X 0x%08X 0x%08X\n",
10286 	    cmd, ctl, cur_depth, max_depth, valid_cnt);
10287 
10288 	/* Setup the generic statistic counters for the FTQ valid count. */
10289 	val = (BCE_HC_STAT_GEN_SEL_0_GEN_SEL_0_CSQ_VALID_CNT  << 16) |
10290 	    (BCE_HC_STAT_GEN_SEL_0_GEN_SEL_0_CPQ_VALID_CNT  <<  8) |
10291 	    (BCE_HC_STAT_GEN_SEL_0_GEN_SEL_0_MGMQ_VALID_CNT);
10292 
10293 	if (BCE_CHIP_NUM(sc) == BCE_CHIP_NUM_5709)
10294 		val = val |
10295 		    (BCE_HC_STAT_GEN_SEL_0_GEN_SEL_0_RV2PCSQ_VALID_CNT_XI <<
10296 		     24);
10297 	REG_WR(sc, BCE_HC_STAT_GEN_SEL_0, val);
10298 
10299 	/* Input queue to the Management Control Processor */
10300 	cmd = REG_RD_IND(sc, BCE_MCP_MCPQ_FTQ_CMD);
10301 	ctl = REG_RD_IND(sc, BCE_MCP_MCPQ_FTQ_CTL);
10302 	cur_depth = (ctl & BCE_MCP_MCPQ_FTQ_CTL_CUR_DEPTH) >> 22;
10303 	max_depth = (ctl & BCE_MCP_MCPQ_FTQ_CTL_MAX_DEPTH) >> 12;
10304 	valid_cnt = REG_RD(sc, BCE_HC_STAT_GEN_STAT0);
10305 	BCE_PRINTF(" MCP     0x%08X 0x%08X 0x%08X 0x%08X 0x%08X\n",
10306 	    cmd, ctl, cur_depth, max_depth, valid_cnt);
10307 
10308 	/* Input queue to the Command Processor */
10309 	cmd = REG_RD_IND(sc, BCE_CP_CPQ_FTQ_CMD);
10310 	ctl = REG_RD_IND(sc, BCE_CP_CPQ_FTQ_CTL);
10311 	cur_depth = (ctl & BCE_CP_CPQ_FTQ_CTL_CUR_DEPTH) >> 22;
10312 	max_depth = (ctl & BCE_CP_CPQ_FTQ_CTL_MAX_DEPTH) >> 12;
10313 	valid_cnt = REG_RD(sc, BCE_HC_STAT_GEN_STAT1);
10314 	BCE_PRINTF(" CP      0x%08X 0x%08X 0x%08X 0x%08X 0x%08X\n",
10315 	    cmd, ctl, cur_depth, max_depth, valid_cnt);
10316 
10317 	/* Input queue to the Completion Scheduler state machine */
10318 	cmd = REG_RD(sc, BCE_CSCH_CH_FTQ_CMD);
10319 	ctl = REG_RD(sc, BCE_CSCH_CH_FTQ_CTL);
10320 	cur_depth = (ctl & BCE_CSCH_CH_FTQ_CTL_CUR_DEPTH) >> 22;
10321 	max_depth = (ctl & BCE_CSCH_CH_FTQ_CTL_MAX_DEPTH) >> 12;
10322 	valid_cnt = REG_RD(sc, BCE_HC_STAT_GEN_STAT2);
10323 	BCE_PRINTF(" CS      0x%08X 0x%08X 0x%08X 0x%08X 0x%08X\n",
10324 	    cmd, ctl, cur_depth, max_depth, valid_cnt);
10325 
10326 	if (BCE_CHIP_NUM(sc) == BCE_CHIP_NUM_5709) {
10327 		/* Input queue to the RV2P Command Scheduler */
10328 		cmd = REG_RD(sc, BCE_RV2PCSR_FTQ_CMD);
10329 		ctl = REG_RD(sc, BCE_RV2PCSR_FTQ_CTL);
10330 		cur_depth = (ctl & 0xFFC00000) >> 22;
10331 		max_depth = (ctl & 0x003FF000) >> 12;
10332 		valid_cnt = REG_RD(sc, BCE_HC_STAT_GEN_STAT3);
10333 		BCE_PRINTF(" RV2PCSR 0x%08X 0x%08X 0x%08X 0x%08X 0x%08X\n",
10334 		    cmd, ctl, cur_depth, max_depth, valid_cnt);
10335 	}
10336 
10337 	BCE_PRINTF(
10338 	    "----------------------------"
10339 	    "----------------"
10340 	    "----------------------------\n");
10341 }
10342 
10343 /****************************************************************************/
10344 /* Prints out the TX chain.                                                 */
10345 /*                                                                          */
10346 /* Returns:                                                                 */
10347 /*   Nothing.                                                               */
10348 /****************************************************************************/
10349 static __attribute__ ((noinline)) void
10350 bce_dump_tx_chain(struct bce_softc *sc, u16 tx_prod, int count)
10351 {
10352 	struct tx_bd *txbd;
10353 
10354 	/* First some info about the tx_bd chain structure. */
10355 	BCE_PRINTF(
10356 	    "----------------------------"
10357 	    "  tx_bd  chain  "
10358 	    "----------------------------\n");
10359 
10360 	BCE_PRINTF("page size      = 0x%08X, tx chain pages        = 0x%08X\n",
10361 	    (u32) BCM_PAGE_SIZE, (u32) sc->tx_pages);
10362 	BCE_PRINTF("tx_bd per page = 0x%08X, usable tx_bd per page = 0x%08X\n",
10363 	    (u32) TOTAL_TX_BD_PER_PAGE, (u32) USABLE_TX_BD_PER_PAGE);
10364 	BCE_PRINTF("total tx_bd    = 0x%08X\n", (u32) TOTAL_TX_BD_ALLOC);
10365 
10366 	BCE_PRINTF(
10367 	    "----------------------------"
10368 	    "   tx_bd data   "
10369 	    "----------------------------\n");
10370 
10371 	/* Now print out a decoded list of TX buffer descriptors. */
10372 	for (int i = 0; i < count; i++) {
10373 	 	txbd = &sc->tx_bd_chain[TX_PAGE(tx_prod)][TX_IDX(tx_prod)];
10374 		bce_dump_txbd(sc, tx_prod, txbd);
10375 		tx_prod++;
10376 	}
10377 
10378 	BCE_PRINTF(
10379 	    "----------------------------"
10380 	    "----------------"
10381 	    "----------------------------\n");
10382 }
10383 
10384 /****************************************************************************/
10385 /* Prints out the RX chain.                                                 */
10386 /*                                                                          */
10387 /* Returns:                                                                 */
10388 /*   Nothing.                                                               */
10389 /****************************************************************************/
10390 static __attribute__ ((noinline)) void
10391 bce_dump_rx_bd_chain(struct bce_softc *sc, u16 rx_prod, int count)
10392 {
10393 	struct rx_bd *rxbd;
10394 
10395 	/* First some info about the rx_bd chain structure. */
10396 	BCE_PRINTF(
10397 	    "----------------------------"
10398 	    "  rx_bd  chain  "
10399 	    "----------------------------\n");
10400 
10401 	BCE_PRINTF("page size      = 0x%08X, rx chain pages        = 0x%08X\n",
10402 	    (u32) BCM_PAGE_SIZE, (u32) sc->rx_pages);
10403 
10404 	BCE_PRINTF("rx_bd per page = 0x%08X, usable rx_bd per page = 0x%08X\n",
10405 	    (u32) TOTAL_RX_BD_PER_PAGE, (u32) USABLE_RX_BD_PER_PAGE);
10406 
10407 	BCE_PRINTF("total rx_bd    = 0x%08X\n", (u32) TOTAL_RX_BD_ALLOC);
10408 
10409 	BCE_PRINTF(
10410 	    "----------------------------"
10411 	    "   rx_bd data   "
10412 	    "----------------------------\n");
10413 
10414 	/* Now print out the rx_bd's themselves. */
10415 	for (int i = 0; i < count; i++) {
10416 		rxbd = &sc->rx_bd_chain[RX_PAGE(rx_prod)][RX_IDX(rx_prod)];
10417 		bce_dump_rxbd(sc, rx_prod, rxbd);
10418 		rx_prod = RX_CHAIN_IDX(rx_prod + 1);
10419 	}
10420 
10421 	BCE_PRINTF(
10422 	    "----------------------------"
10423 	    "----------------"
10424 	    "----------------------------\n");
10425 }
10426 
10427 /****************************************************************************/
10428 /* Prints out the page chain.                                               */
10429 /*                                                                          */
10430 /* Returns:                                                                 */
10431 /*   Nothing.                                                               */
10432 /****************************************************************************/
10433 static __attribute__ ((noinline)) void
10434 bce_dump_pg_chain(struct bce_softc *sc, u16 pg_prod, int count)
10435 {
10436 	struct rx_bd *pgbd;
10437 
10438 	/* First some info about the page chain structure. */
10439 	BCE_PRINTF(
10440 	    "----------------------------"
10441 	    "   page chain   "
10442 	    "----------------------------\n");
10443 
10444 	BCE_PRINTF("page size      = 0x%08X, pg chain pages        = 0x%08X\n",
10445 	    (u32) BCM_PAGE_SIZE, (u32) sc->pg_pages);
10446 
10447 	BCE_PRINTF("rx_bd per page = 0x%08X, usable rx_bd per page = 0x%08X\n",
10448 	    (u32) TOTAL_PG_BD_PER_PAGE, (u32) USABLE_PG_BD_PER_PAGE);
10449 
10450 	BCE_PRINTF("total pg_bd             = 0x%08X\n", (u32) TOTAL_PG_BD_ALLOC);
10451 
10452 	BCE_PRINTF(
10453 	    "----------------------------"
10454 	    "   page data    "
10455 	    "----------------------------\n");
10456 
10457 	/* Now print out the rx_bd's themselves. */
10458 	for (int i = 0; i < count; i++) {
10459 		pgbd = &sc->pg_bd_chain[PG_PAGE(pg_prod)][PG_IDX(pg_prod)];
10460 		bce_dump_pgbd(sc, pg_prod, pgbd);
10461 		pg_prod = PG_CHAIN_IDX(pg_prod + 1);
10462 	}
10463 
10464 	BCE_PRINTF(
10465 	    "----------------------------"
10466 	    "----------------"
10467 	    "----------------------------\n");
10468 }
10469 
10470 #define BCE_PRINT_RX_CONS(arg)						\
10471 if (sblk->status_rx_quick_consumer_index##arg)				\
10472 	BCE_PRINTF("0x%04X(0x%04X) - rx_quick_consumer_index%d\n",	\
10473 	    sblk->status_rx_quick_consumer_index##arg, (u16)		\
10474 	    RX_CHAIN_IDX(sblk->status_rx_quick_consumer_index##arg),	\
10475 	    arg);
10476 
10477 #define BCE_PRINT_TX_CONS(arg)						\
10478 if (sblk->status_tx_quick_consumer_index##arg)				\
10479 	BCE_PRINTF("0x%04X(0x%04X) - tx_quick_consumer_index%d\n",	\
10480 	    sblk->status_tx_quick_consumer_index##arg, (u16)		\
10481 	    TX_CHAIN_IDX(sblk->status_tx_quick_consumer_index##arg),	\
10482 	    arg);
10483 
10484 /****************************************************************************/
10485 /* Prints out the status block from host memory.                            */
10486 /*                                                                          */
10487 /* Returns:                                                                 */
10488 /*   Nothing.                                                               */
10489 /****************************************************************************/
10490 static __attribute__ ((noinline)) void
10491 bce_dump_status_block(struct bce_softc *sc)
10492 {
10493 	struct status_block *sblk;
10494 
10495 	bus_dmamap_sync(sc->status_tag, sc->status_map, BUS_DMASYNC_POSTREAD);
10496 
10497 	sblk = sc->status_block;
10498 
10499 	BCE_PRINTF(
10500 	    "----------------------------"
10501 	    "  Status Block  "
10502 	    "----------------------------\n");
10503 
10504 	/* Theses indices are used for normal L2 drivers. */
10505 	BCE_PRINTF("    0x%08X - attn_bits\n",
10506 	    sblk->status_attn_bits);
10507 
10508 	BCE_PRINTF("    0x%08X - attn_bits_ack\n",
10509 	    sblk->status_attn_bits_ack);
10510 
10511 	BCE_PRINT_RX_CONS(0);
10512 	BCE_PRINT_TX_CONS(0)
10513 
10514 	BCE_PRINTF("        0x%04X - status_idx\n", sblk->status_idx);
10515 
10516 	/* Theses indices are not used for normal L2 drivers. */
10517 	BCE_PRINT_RX_CONS(1);   BCE_PRINT_RX_CONS(2);   BCE_PRINT_RX_CONS(3);
10518 	BCE_PRINT_RX_CONS(4);   BCE_PRINT_RX_CONS(5);   BCE_PRINT_RX_CONS(6);
10519 	BCE_PRINT_RX_CONS(7);   BCE_PRINT_RX_CONS(8);   BCE_PRINT_RX_CONS(9);
10520 	BCE_PRINT_RX_CONS(10);  BCE_PRINT_RX_CONS(11);  BCE_PRINT_RX_CONS(12);
10521 	BCE_PRINT_RX_CONS(13);  BCE_PRINT_RX_CONS(14);  BCE_PRINT_RX_CONS(15);
10522 
10523 	BCE_PRINT_TX_CONS(1);   BCE_PRINT_TX_CONS(2);   BCE_PRINT_TX_CONS(3);
10524 
10525 	if (sblk->status_completion_producer_index ||
10526 	    sblk->status_cmd_consumer_index)
10527 		BCE_PRINTF("com_prod  = 0x%08X, cmd_cons      = 0x%08X\n",
10528 		    sblk->status_completion_producer_index,
10529 		    sblk->status_cmd_consumer_index);
10530 
10531 	BCE_PRINTF(
10532 	    "----------------------------"
10533 	    "----------------"
10534 	    "----------------------------\n");
10535 }
10536 
10537 #define BCE_PRINT_64BIT_STAT(arg) 				\
10538 if (sblk->arg##_lo || sblk->arg##_hi)				\
10539 	BCE_PRINTF("0x%08X:%08X : %s\n", sblk->arg##_hi,	\
10540 	    sblk->arg##_lo, #arg);
10541 
10542 #define BCE_PRINT_32BIT_STAT(arg)				\
10543 if (sblk->arg)							\
10544 	BCE_PRINTF("         0x%08X : %s\n", 			\
10545 	    sblk->arg, #arg);
10546 
10547 /****************************************************************************/
10548 /* Prints out the statistics block from host memory.                        */
10549 /*                                                                          */
10550 /* Returns:                                                                 */
10551 /*   Nothing.                                                               */
10552 /****************************************************************************/
10553 static __attribute__ ((noinline)) void
10554 bce_dump_stats_block(struct bce_softc *sc)
10555 {
10556 	struct statistics_block *sblk;
10557 
10558 	bus_dmamap_sync(sc->stats_tag, sc->stats_map, BUS_DMASYNC_POSTREAD);
10559 
10560 	sblk = sc->stats_block;
10561 
10562 	BCE_PRINTF(
10563 	    "---------------"
10564 	    " Stats Block  (All Stats Not Shown Are 0) "
10565 	    "---------------\n");
10566 
10567 	BCE_PRINT_64BIT_STAT(stat_IfHCInOctets);
10568 	BCE_PRINT_64BIT_STAT(stat_IfHCInBadOctets);
10569 	BCE_PRINT_64BIT_STAT(stat_IfHCOutOctets);
10570 	BCE_PRINT_64BIT_STAT(stat_IfHCOutBadOctets);
10571 	BCE_PRINT_64BIT_STAT(stat_IfHCInUcastPkts);
10572 	BCE_PRINT_64BIT_STAT(stat_IfHCInBroadcastPkts);
10573 	BCE_PRINT_64BIT_STAT(stat_IfHCInMulticastPkts);
10574 	BCE_PRINT_64BIT_STAT(stat_IfHCOutUcastPkts);
10575 	BCE_PRINT_64BIT_STAT(stat_IfHCOutBroadcastPkts);
10576 	BCE_PRINT_64BIT_STAT(stat_IfHCOutMulticastPkts);
10577 	BCE_PRINT_32BIT_STAT(
10578 	    stat_emac_tx_stat_dot3statsinternalmactransmiterrors);
10579 	BCE_PRINT_32BIT_STAT(stat_Dot3StatsCarrierSenseErrors);
10580 	BCE_PRINT_32BIT_STAT(stat_Dot3StatsFCSErrors);
10581 	BCE_PRINT_32BIT_STAT(stat_Dot3StatsAlignmentErrors);
10582 	BCE_PRINT_32BIT_STAT(stat_Dot3StatsSingleCollisionFrames);
10583 	BCE_PRINT_32BIT_STAT(stat_Dot3StatsMultipleCollisionFrames);
10584 	BCE_PRINT_32BIT_STAT(stat_Dot3StatsDeferredTransmissions);
10585 	BCE_PRINT_32BIT_STAT(stat_Dot3StatsExcessiveCollisions);
10586 	BCE_PRINT_32BIT_STAT(stat_Dot3StatsLateCollisions);
10587 	BCE_PRINT_32BIT_STAT(stat_EtherStatsCollisions);
10588 	BCE_PRINT_32BIT_STAT(stat_EtherStatsFragments);
10589 	BCE_PRINT_32BIT_STAT(stat_EtherStatsJabbers);
10590 	BCE_PRINT_32BIT_STAT(stat_EtherStatsUndersizePkts);
10591 	BCE_PRINT_32BIT_STAT(stat_EtherStatsOversizePkts);
10592 	BCE_PRINT_32BIT_STAT(stat_EtherStatsPktsRx64Octets);
10593 	BCE_PRINT_32BIT_STAT(stat_EtherStatsPktsRx65Octetsto127Octets);
10594 	BCE_PRINT_32BIT_STAT(stat_EtherStatsPktsRx128Octetsto255Octets);
10595 	BCE_PRINT_32BIT_STAT(stat_EtherStatsPktsRx256Octetsto511Octets);
10596 	BCE_PRINT_32BIT_STAT(stat_EtherStatsPktsRx512Octetsto1023Octets);
10597 	BCE_PRINT_32BIT_STAT(stat_EtherStatsPktsRx1024Octetsto1522Octets);
10598 	BCE_PRINT_32BIT_STAT(stat_EtherStatsPktsRx1523Octetsto9022Octets);
10599 	BCE_PRINT_32BIT_STAT(stat_EtherStatsPktsTx64Octets);
10600 	BCE_PRINT_32BIT_STAT(stat_EtherStatsPktsTx65Octetsto127Octets);
10601 	BCE_PRINT_32BIT_STAT(stat_EtherStatsPktsTx128Octetsto255Octets);
10602 	BCE_PRINT_32BIT_STAT(stat_EtherStatsPktsTx256Octetsto511Octets);
10603 	BCE_PRINT_32BIT_STAT(stat_EtherStatsPktsTx512Octetsto1023Octets);
10604 	BCE_PRINT_32BIT_STAT(stat_EtherStatsPktsTx1024Octetsto1522Octets);
10605 	BCE_PRINT_32BIT_STAT(stat_EtherStatsPktsTx1523Octetsto9022Octets);
10606 	BCE_PRINT_32BIT_STAT(stat_XonPauseFramesReceived);
10607 	BCE_PRINT_32BIT_STAT(stat_XoffPauseFramesReceived);
10608 	BCE_PRINT_32BIT_STAT(stat_OutXonSent);
10609 	BCE_PRINT_32BIT_STAT(stat_OutXoffSent);
10610 	BCE_PRINT_32BIT_STAT(stat_FlowControlDone);
10611 	BCE_PRINT_32BIT_STAT(stat_MacControlFramesReceived);
10612 	BCE_PRINT_32BIT_STAT(stat_XoffStateEntered);
10613 	BCE_PRINT_32BIT_STAT(stat_IfInFramesL2FilterDiscards);
10614 	BCE_PRINT_32BIT_STAT(stat_IfInRuleCheckerDiscards);
10615 	BCE_PRINT_32BIT_STAT(stat_IfInFTQDiscards);
10616 	BCE_PRINT_32BIT_STAT(stat_IfInMBUFDiscards);
10617 	BCE_PRINT_32BIT_STAT(stat_IfInRuleCheckerP4Hit);
10618 	BCE_PRINT_32BIT_STAT(stat_CatchupInRuleCheckerDiscards);
10619 	BCE_PRINT_32BIT_STAT(stat_CatchupInFTQDiscards);
10620 	BCE_PRINT_32BIT_STAT(stat_CatchupInMBUFDiscards);
10621 	BCE_PRINT_32BIT_STAT(stat_CatchupInRuleCheckerP4Hit);
10622 
10623 	BCE_PRINTF(
10624 	    "----------------------------"
10625 	    "----------------"
10626 	    "----------------------------\n");
10627 }
10628 
10629 /****************************************************************************/
10630 /* Prints out a summary of the driver state.                                */
10631 /*                                                                          */
10632 /* Returns:                                                                 */
10633 /*   Nothing.                                                               */
10634 /****************************************************************************/
10635 static __attribute__ ((noinline)) void
10636 bce_dump_driver_state(struct bce_softc *sc)
10637 {
10638 	u32 val_hi, val_lo;
10639 
10640 	BCE_PRINTF(
10641 	    "-----------------------------"
10642 	    " Driver State "
10643 	    "-----------------------------\n");
10644 
10645 	val_hi = BCE_ADDR_HI(sc);
10646 	val_lo = BCE_ADDR_LO(sc);
10647 	BCE_PRINTF("0x%08X:%08X - (sc) driver softc structure virtual "
10648 	    "address\n", val_hi, val_lo);
10649 
10650 	val_hi = BCE_ADDR_HI(sc->bce_vhandle);
10651 	val_lo = BCE_ADDR_LO(sc->bce_vhandle);
10652 	BCE_PRINTF("0x%08X:%08X - (sc->bce_vhandle) PCI BAR virtual "
10653 	    "address\n", val_hi, val_lo);
10654 
10655 	val_hi = BCE_ADDR_HI(sc->status_block);
10656 	val_lo = BCE_ADDR_LO(sc->status_block);
10657 	BCE_PRINTF("0x%08X:%08X - (sc->status_block) status block "
10658 	    "virtual address\n",	val_hi, val_lo);
10659 
10660 	val_hi = BCE_ADDR_HI(sc->stats_block);
10661 	val_lo = BCE_ADDR_LO(sc->stats_block);
10662 	BCE_PRINTF("0x%08X:%08X - (sc->stats_block) statistics block "
10663 	    "virtual address\n", val_hi, val_lo);
10664 
10665 	val_hi = BCE_ADDR_HI(sc->tx_bd_chain);
10666 	val_lo = BCE_ADDR_LO(sc->tx_bd_chain);
10667 	BCE_PRINTF("0x%08X:%08X - (sc->tx_bd_chain) tx_bd chain "
10668 	    "virtual adddress\n", val_hi, val_lo);
10669 
10670 	val_hi = BCE_ADDR_HI(sc->rx_bd_chain);
10671 	val_lo = BCE_ADDR_LO(sc->rx_bd_chain);
10672 	BCE_PRINTF("0x%08X:%08X - (sc->rx_bd_chain) rx_bd chain "
10673 	    "virtual address\n", val_hi, val_lo);
10674 
10675 	if (bce_hdr_split == TRUE) {
10676 		val_hi = BCE_ADDR_HI(sc->pg_bd_chain);
10677 		val_lo = BCE_ADDR_LO(sc->pg_bd_chain);
10678 		BCE_PRINTF("0x%08X:%08X - (sc->pg_bd_chain) page chain "
10679 		    "virtual address\n", val_hi, val_lo);
10680 	}
10681 
10682 	val_hi = BCE_ADDR_HI(sc->tx_mbuf_ptr);
10683 	val_lo = BCE_ADDR_LO(sc->tx_mbuf_ptr);
10684 	BCE_PRINTF("0x%08X:%08X - (sc->tx_mbuf_ptr) tx mbuf chain "
10685 	    "virtual address\n",	val_hi, val_lo);
10686 
10687 	val_hi = BCE_ADDR_HI(sc->rx_mbuf_ptr);
10688 	val_lo = BCE_ADDR_LO(sc->rx_mbuf_ptr);
10689 	BCE_PRINTF("0x%08X:%08X - (sc->rx_mbuf_ptr) rx mbuf chain "
10690 	    "virtual address\n", val_hi, val_lo);
10691 
10692 	if (bce_hdr_split == TRUE) {
10693 		val_hi = BCE_ADDR_HI(sc->pg_mbuf_ptr);
10694 		val_lo = BCE_ADDR_LO(sc->pg_mbuf_ptr);
10695 		BCE_PRINTF("0x%08X:%08X - (sc->pg_mbuf_ptr) page mbuf chain "
10696 		    "virtual address\n", val_hi, val_lo);
10697 	}
10698 
10699 	BCE_PRINTF(" 0x%016llX - (sc->interrupts_generated) "
10700 	    "h/w intrs\n",
10701 	    (long long unsigned int) sc->interrupts_generated);
10702 
10703 	BCE_PRINTF(" 0x%016llX - (sc->interrupts_rx) "
10704 	    "rx interrupts handled\n",
10705 	    (long long unsigned int) sc->interrupts_rx);
10706 
10707 	BCE_PRINTF(" 0x%016llX - (sc->interrupts_tx) "
10708 	    "tx interrupts handled\n",
10709 	    (long long unsigned int) sc->interrupts_tx);
10710 
10711 	BCE_PRINTF(" 0x%016llX - (sc->phy_interrupts) "
10712 	    "phy interrupts handled\n",
10713 	    (long long unsigned int) sc->phy_interrupts);
10714 
10715 	BCE_PRINTF("         0x%08X - (sc->last_status_idx) "
10716 	    "status block index\n", sc->last_status_idx);
10717 
10718 	BCE_PRINTF("     0x%04X(0x%04X) - (sc->tx_prod) tx producer "
10719 	    "index\n", sc->tx_prod, (u16) TX_CHAIN_IDX(sc->tx_prod));
10720 
10721 	BCE_PRINTF("     0x%04X(0x%04X) - (sc->tx_cons) tx consumer "
10722 	    "index\n", sc->tx_cons, (u16) TX_CHAIN_IDX(sc->tx_cons));
10723 
10724 	BCE_PRINTF("         0x%08X - (sc->tx_prod_bseq) tx producer "
10725 	    "byte seq index\n",	sc->tx_prod_bseq);
10726 
10727 	BCE_PRINTF("         0x%08X - (sc->debug_tx_mbuf_alloc) tx "
10728 	    "mbufs allocated\n", sc->debug_tx_mbuf_alloc);
10729 
10730 	BCE_PRINTF("         0x%08X - (sc->used_tx_bd) used "
10731 	    "tx_bd's\n", sc->used_tx_bd);
10732 
10733 	BCE_PRINTF("      0x%04X/0x%04X - (sc->tx_hi_watermark)/"
10734 	    "(sc->max_tx_bd)\n", sc->tx_hi_watermark, sc->max_tx_bd);
10735 
10736 	BCE_PRINTF("     0x%04X(0x%04X) - (sc->rx_prod) rx producer "
10737 	    "index\n", sc->rx_prod, (u16) RX_CHAIN_IDX(sc->rx_prod));
10738 
10739 	BCE_PRINTF("     0x%04X(0x%04X) - (sc->rx_cons) rx consumer "
10740 	    "index\n", sc->rx_cons, (u16) RX_CHAIN_IDX(sc->rx_cons));
10741 
10742 	BCE_PRINTF("         0x%08X - (sc->rx_prod_bseq) rx producer "
10743 	    "byte seq index\n",	sc->rx_prod_bseq);
10744 
10745 	BCE_PRINTF("      0x%04X/0x%04X - (sc->rx_low_watermark)/"
10746 		   "(sc->max_rx_bd)\n", sc->rx_low_watermark, sc->max_rx_bd);
10747 
10748 	BCE_PRINTF("         0x%08X - (sc->debug_rx_mbuf_alloc) rx "
10749 	    "mbufs allocated\n", sc->debug_rx_mbuf_alloc);
10750 
10751 	BCE_PRINTF("         0x%08X - (sc->free_rx_bd) free "
10752 	    "rx_bd's\n", sc->free_rx_bd);
10753 
10754 	if (bce_hdr_split == TRUE) {
10755 		BCE_PRINTF("     0x%04X(0x%04X) - (sc->pg_prod) page producer "
10756 		    "index\n", sc->pg_prod, (u16) PG_CHAIN_IDX(sc->pg_prod));
10757 
10758 		BCE_PRINTF("     0x%04X(0x%04X) - (sc->pg_cons) page consumer "
10759 		    "index\n", sc->pg_cons, (u16) PG_CHAIN_IDX(sc->pg_cons));
10760 
10761 		BCE_PRINTF("         0x%08X - (sc->debug_pg_mbuf_alloc) page "
10762 		    "mbufs allocated\n", sc->debug_pg_mbuf_alloc);
10763 	}
10764 
10765 	BCE_PRINTF("         0x%08X - (sc->free_pg_bd) free page "
10766 	    "rx_bd's\n", sc->free_pg_bd);
10767 
10768 	BCE_PRINTF("      0x%04X/0x%04X - (sc->pg_low_watermark)/"
10769 	    "(sc->max_pg_bd)\n", sc->pg_low_watermark, sc->max_pg_bd);
10770 
10771 	BCE_PRINTF("         0x%08X - (sc->mbuf_alloc_failed_count) "
10772 	    "mbuf alloc failures\n", sc->mbuf_alloc_failed_count);
10773 
10774 	BCE_PRINTF("         0x%08X - (sc->bce_flags) "
10775 	    "bce mac flags\n", sc->bce_flags);
10776 
10777 	BCE_PRINTF("         0x%08X - (sc->bce_phy_flags) "
10778 	    "bce phy flags\n", sc->bce_phy_flags);
10779 
10780 	BCE_PRINTF(
10781 	    "----------------------------"
10782 	    "----------------"
10783 	    "----------------------------\n");
10784 }
10785 
10786 /****************************************************************************/
10787 /* Prints out the hardware state through a summary of important register,   */
10788 /* followed by a complete register dump.                                    */
10789 /*                                                                          */
10790 /* Returns:                                                                 */
10791 /*   Nothing.                                                               */
10792 /****************************************************************************/
10793 static __attribute__ ((noinline)) void
10794 bce_dump_hw_state(struct bce_softc *sc)
10795 {
10796 	u32 val;
10797 
10798 	BCE_PRINTF(
10799 	    "----------------------------"
10800 	    " Hardware State "
10801 	    "----------------------------\n");
10802 
10803 	BCE_PRINTF("%s - bootcode version\n", sc->bce_bc_ver);
10804 
10805 	val = REG_RD(sc, BCE_MISC_ENABLE_STATUS_BITS);
10806 	BCE_PRINTF("0x%08X - (0x%06X) misc_enable_status_bits\n",
10807 	    val, BCE_MISC_ENABLE_STATUS_BITS);
10808 
10809 	val = REG_RD(sc, BCE_DMA_STATUS);
10810 	BCE_PRINTF("0x%08X - (0x%06X) dma_status\n",
10811 	    val, BCE_DMA_STATUS);
10812 
10813 	val = REG_RD(sc, BCE_CTX_STATUS);
10814 	BCE_PRINTF("0x%08X - (0x%06X) ctx_status\n",
10815 	    val, BCE_CTX_STATUS);
10816 
10817 	val = REG_RD(sc, BCE_EMAC_STATUS);
10818 	BCE_PRINTF("0x%08X - (0x%06X) emac_status\n",
10819 	    val, BCE_EMAC_STATUS);
10820 
10821 	val = REG_RD(sc, BCE_RPM_STATUS);
10822 	BCE_PRINTF("0x%08X - (0x%06X) rpm_status\n",
10823 	    val, BCE_RPM_STATUS);
10824 
10825 	/* ToDo: Create a #define for this constant. */
10826 	val = REG_RD(sc, 0x2004);
10827 	BCE_PRINTF("0x%08X - (0x%06X) rlup_status\n",
10828 	    val, 0x2004);
10829 
10830 	val = REG_RD(sc, BCE_RV2P_STATUS);
10831 	BCE_PRINTF("0x%08X - (0x%06X) rv2p_status\n",
10832 	    val, BCE_RV2P_STATUS);
10833 
10834 	/* ToDo: Create a #define for this constant. */
10835 	val = REG_RD(sc, 0x2c04);
10836 	BCE_PRINTF("0x%08X - (0x%06X) rdma_status\n",
10837 	    val, 0x2c04);
10838 
10839 	val = REG_RD(sc, BCE_TBDR_STATUS);
10840 	BCE_PRINTF("0x%08X - (0x%06X) tbdr_status\n",
10841 	    val, BCE_TBDR_STATUS);
10842 
10843 	val = REG_RD(sc, BCE_TDMA_STATUS);
10844 	BCE_PRINTF("0x%08X - (0x%06X) tdma_status\n",
10845 	    val, BCE_TDMA_STATUS);
10846 
10847 	val = REG_RD(sc, BCE_HC_STATUS);
10848 	BCE_PRINTF("0x%08X - (0x%06X) hc_status\n",
10849 	    val, BCE_HC_STATUS);
10850 
10851 	val = REG_RD_IND(sc, BCE_TXP_CPU_STATE);
10852 	BCE_PRINTF("0x%08X - (0x%06X) txp_cpu_state\n",
10853 	    val, BCE_TXP_CPU_STATE);
10854 
10855 	val = REG_RD_IND(sc, BCE_TPAT_CPU_STATE);
10856 	BCE_PRINTF("0x%08X - (0x%06X) tpat_cpu_state\n",
10857 	    val, BCE_TPAT_CPU_STATE);
10858 
10859 	val = REG_RD_IND(sc, BCE_RXP_CPU_STATE);
10860 	BCE_PRINTF("0x%08X - (0x%06X) rxp_cpu_state\n",
10861 	    val, BCE_RXP_CPU_STATE);
10862 
10863 	val = REG_RD_IND(sc, BCE_COM_CPU_STATE);
10864 	BCE_PRINTF("0x%08X - (0x%06X) com_cpu_state\n",
10865 	    val, BCE_COM_CPU_STATE);
10866 
10867 	val = REG_RD_IND(sc, BCE_MCP_CPU_STATE);
10868 	BCE_PRINTF("0x%08X - (0x%06X) mcp_cpu_state\n",
10869 	    val, BCE_MCP_CPU_STATE);
10870 
10871 	val = REG_RD_IND(sc, BCE_CP_CPU_STATE);
10872 	BCE_PRINTF("0x%08X - (0x%06X) cp_cpu_state\n",
10873 	    val, BCE_CP_CPU_STATE);
10874 
10875 	BCE_PRINTF(
10876 	    "----------------------------"
10877 	    "----------------"
10878 	    "----------------------------\n");
10879 
10880 	BCE_PRINTF(
10881 	    "----------------------------"
10882 	    " Register  Dump "
10883 	    "----------------------------\n");
10884 
10885 	for (int i = 0x400; i < 0x8000; i += 0x10) {
10886 		BCE_PRINTF("0x%04X: 0x%08X 0x%08X 0x%08X 0x%08X\n",
10887 		    i, REG_RD(sc, i), REG_RD(sc, i + 0x4),
10888 		    REG_RD(sc, i + 0x8), REG_RD(sc, i + 0xC));
10889 	}
10890 
10891 	BCE_PRINTF(
10892 	    "----------------------------"
10893 	    "----------------"
10894 	    "----------------------------\n");
10895 }
10896 
10897 /****************************************************************************/
10898 /* Prints out the contentst of shared memory which is used for host driver  */
10899 /* to bootcode firmware communication.                                      */
10900 /*                                                                          */
10901 /* Returns:                                                                 */
10902 /*   Nothing.                                                               */
10903 /****************************************************************************/
10904 static __attribute__ ((noinline)) void
10905 bce_dump_shmem_state(struct bce_softc *sc)
10906 {
10907 	BCE_PRINTF(
10908 	    "----------------------------"
10909 	    " Hardware State "
10910 	    "----------------------------\n");
10911 
10912 	BCE_PRINTF("0x%08X - Shared memory base address\n",
10913 	    sc->bce_shmem_base);
10914 	BCE_PRINTF("%s - bootcode version\n",
10915 	    sc->bce_bc_ver);
10916 
10917 	BCE_PRINTF(
10918 	    "----------------------------"
10919 	    "   Shared Mem   "
10920 	    "----------------------------\n");
10921 
10922 	for (int i = 0x0; i < 0x200; i += 0x10) {
10923 		BCE_PRINTF("0x%04X: 0x%08X 0x%08X 0x%08X 0x%08X\n",
10924 		    i, bce_shmem_rd(sc, i), bce_shmem_rd(sc, i + 0x4),
10925 		    bce_shmem_rd(sc, i + 0x8), bce_shmem_rd(sc, i + 0xC));
10926 	}
10927 
10928 	BCE_PRINTF(
10929 	    "----------------------------"
10930 	    "----------------"
10931 	    "----------------------------\n");
10932 }
10933 
10934 /****************************************************************************/
10935 /* Prints out the mailbox queue registers.                                  */
10936 /*                                                                          */
10937 /* Returns:                                                                 */
10938 /*   Nothing.                                                               */
10939 /****************************************************************************/
10940 static __attribute__ ((noinline)) void
10941 bce_dump_mq_regs(struct bce_softc *sc)
10942 {
10943 	BCE_PRINTF(
10944 	    "----------------------------"
10945 	    "    MQ Regs     "
10946 	    "----------------------------\n");
10947 
10948 	BCE_PRINTF(
10949 	    "----------------------------"
10950 	    "----------------"
10951 	    "----------------------------\n");
10952 
10953 	for (int i = 0x3c00; i < 0x4000; i += 0x10) {
10954 		BCE_PRINTF("0x%04X: 0x%08X 0x%08X 0x%08X 0x%08X\n",
10955 		    i, REG_RD(sc, i), REG_RD(sc, i + 0x4),
10956 		    REG_RD(sc, i + 0x8), REG_RD(sc, i + 0xC));
10957 	}
10958 
10959 	BCE_PRINTF(
10960 	    "----------------------------"
10961 	    "----------------"
10962 	    "----------------------------\n");
10963 }
10964 
10965 /****************************************************************************/
10966 /* Prints out the bootcode state.                                           */
10967 /*                                                                          */
10968 /* Returns:                                                                 */
10969 /*   Nothing.                                                               */
10970 /****************************************************************************/
10971 static __attribute__ ((noinline)) void
10972 bce_dump_bc_state(struct bce_softc *sc)
10973 {
10974 	u32 val;
10975 
10976 	BCE_PRINTF(
10977 	    "----------------------------"
10978 	    " Bootcode State "
10979 	    "----------------------------\n");
10980 
10981 	BCE_PRINTF("%s - bootcode version\n", sc->bce_bc_ver);
10982 
10983 	val = bce_shmem_rd(sc, BCE_BC_RESET_TYPE);
10984 	BCE_PRINTF("0x%08X - (0x%06X) reset_type\n",
10985 	    val, BCE_BC_RESET_TYPE);
10986 
10987 	val = bce_shmem_rd(sc, BCE_BC_STATE);
10988 	BCE_PRINTF("0x%08X - (0x%06X) state\n",
10989 	    val, BCE_BC_STATE);
10990 
10991 	val = bce_shmem_rd(sc, BCE_BC_STATE_CONDITION);
10992 	BCE_PRINTF("0x%08X - (0x%06X) condition\n",
10993 	    val, BCE_BC_STATE_CONDITION);
10994 
10995 	val = bce_shmem_rd(sc, BCE_BC_STATE_DEBUG_CMD);
10996 	BCE_PRINTF("0x%08X - (0x%06X) debug_cmd\n",
10997 	    val, BCE_BC_STATE_DEBUG_CMD);
10998 
10999 	BCE_PRINTF(
11000 	    "----------------------------"
11001 	    "----------------"
11002 	    "----------------------------\n");
11003 }
11004 
11005 /****************************************************************************/
11006 /* Prints out the TXP processor state.                                      */
11007 /*                                                                          */
11008 /* Returns:                                                                 */
11009 /*   Nothing.                                                               */
11010 /****************************************************************************/
11011 static __attribute__ ((noinline)) void
11012 bce_dump_txp_state(struct bce_softc *sc, int regs)
11013 {
11014 	u32 val;
11015 	u32 fw_version[3];
11016 
11017 	BCE_PRINTF(
11018 	    "----------------------------"
11019 	    "   TXP  State   "
11020 	    "----------------------------\n");
11021 
11022 	for (int i = 0; i < 3; i++)
11023 		fw_version[i] = htonl(REG_RD_IND(sc,
11024 		    (BCE_TXP_SCRATCH + 0x10 + i * 4)));
11025 	BCE_PRINTF("Firmware version - %s\n", (char *) fw_version);
11026 
11027 	val = REG_RD_IND(sc, BCE_TXP_CPU_MODE);
11028 	BCE_PRINTF("0x%08X - (0x%06X) txp_cpu_mode\n",
11029 	    val, BCE_TXP_CPU_MODE);
11030 
11031 	val = REG_RD_IND(sc, BCE_TXP_CPU_STATE);
11032 	BCE_PRINTF("0x%08X - (0x%06X) txp_cpu_state\n",
11033 	    val, BCE_TXP_CPU_STATE);
11034 
11035 	val = REG_RD_IND(sc, BCE_TXP_CPU_EVENT_MASK);
11036 	BCE_PRINTF("0x%08X - (0x%06X) txp_cpu_event_mask\n",
11037 	    val, BCE_TXP_CPU_EVENT_MASK);
11038 
11039 	if (regs) {
11040 		BCE_PRINTF(
11041 		    "----------------------------"
11042 		    " Register  Dump "
11043 		    "----------------------------\n");
11044 
11045 		for (int i = BCE_TXP_CPU_MODE; i < 0x68000; i += 0x10) {
11046 			/* Skip the big blank spaces */
11047 			if (i < 0x454000 && i > 0x5ffff)
11048 				BCE_PRINTF("0x%04X: 0x%08X 0x%08X "
11049 				    "0x%08X 0x%08X\n", i,
11050 				    REG_RD_IND(sc, i),
11051 				    REG_RD_IND(sc, i + 0x4),
11052 				    REG_RD_IND(sc, i + 0x8),
11053 				    REG_RD_IND(sc, i + 0xC));
11054 		}
11055 	}
11056 
11057 	BCE_PRINTF(
11058 	    "----------------------------"
11059 	    "----------------"
11060 	    "----------------------------\n");
11061 }
11062 
11063 /****************************************************************************/
11064 /* Prints out the RXP processor state.                                      */
11065 /*                                                                          */
11066 /* Returns:                                                                 */
11067 /*   Nothing.                                                               */
11068 /****************************************************************************/
11069 static __attribute__ ((noinline)) void
11070 bce_dump_rxp_state(struct bce_softc *sc, int regs)
11071 {
11072 	u32 val;
11073 	u32 fw_version[3];
11074 
11075 	BCE_PRINTF(
11076 	    "----------------------------"
11077 	    "   RXP  State   "
11078 	    "----------------------------\n");
11079 
11080 	for (int i = 0; i < 3; i++)
11081 		fw_version[i] = htonl(REG_RD_IND(sc,
11082 		    (BCE_RXP_SCRATCH + 0x10 + i * 4)));
11083 
11084 	BCE_PRINTF("Firmware version - %s\n", (char *) fw_version);
11085 
11086 	val = REG_RD_IND(sc, BCE_RXP_CPU_MODE);
11087 	BCE_PRINTF("0x%08X - (0x%06X) rxp_cpu_mode\n",
11088 	    val, BCE_RXP_CPU_MODE);
11089 
11090 	val = REG_RD_IND(sc, BCE_RXP_CPU_STATE);
11091 	BCE_PRINTF("0x%08X - (0x%06X) rxp_cpu_state\n",
11092 	    val, BCE_RXP_CPU_STATE);
11093 
11094 	val = REG_RD_IND(sc, BCE_RXP_CPU_EVENT_MASK);
11095 	BCE_PRINTF("0x%08X - (0x%06X) rxp_cpu_event_mask\n",
11096 	    val, BCE_RXP_CPU_EVENT_MASK);
11097 
11098 	if (regs) {
11099 		BCE_PRINTF(
11100 		    "----------------------------"
11101 		    " Register  Dump "
11102 		    "----------------------------\n");
11103 
11104 		for (int i = BCE_RXP_CPU_MODE; i < 0xe8fff; i += 0x10) {
11105 			/* Skip the big blank sapces */
11106 			if (i < 0xc5400 && i > 0xdffff)
11107 				BCE_PRINTF("0x%04X: 0x%08X 0x%08X "
11108 				    "0x%08X 0x%08X\n", i,
11109 				    REG_RD_IND(sc, i),
11110 				    REG_RD_IND(sc, i + 0x4),
11111 				    REG_RD_IND(sc, i + 0x8),
11112 				    REG_RD_IND(sc, i + 0xC));
11113 		}
11114 	}
11115 
11116 	BCE_PRINTF(
11117 	    "----------------------------"
11118 	    "----------------"
11119 	    "----------------------------\n");
11120 }
11121 
11122 /****************************************************************************/
11123 /* Prints out the TPAT processor state.                                     */
11124 /*                                                                          */
11125 /* Returns:                                                                 */
11126 /*   Nothing.                                                               */
11127 /****************************************************************************/
11128 static __attribute__ ((noinline)) void
11129 bce_dump_tpat_state(struct bce_softc *sc, int regs)
11130 {
11131 	u32 val;
11132 	u32 fw_version[3];
11133 
11134 	BCE_PRINTF(
11135 	    "----------------------------"
11136 	    "   TPAT State   "
11137 	    "----------------------------\n");
11138 
11139 	for (int i = 0; i < 3; i++)
11140 		fw_version[i] = htonl(REG_RD_IND(sc,
11141 		    (BCE_TPAT_SCRATCH + 0x410 + i * 4)));
11142 
11143 	BCE_PRINTF("Firmware version - %s\n", (char *) fw_version);
11144 
11145 	val = REG_RD_IND(sc, BCE_TPAT_CPU_MODE);
11146 	BCE_PRINTF("0x%08X - (0x%06X) tpat_cpu_mode\n",
11147 	    val, BCE_TPAT_CPU_MODE);
11148 
11149 	val = REG_RD_IND(sc, BCE_TPAT_CPU_STATE);
11150 	BCE_PRINTF("0x%08X - (0x%06X) tpat_cpu_state\n",
11151 	    val, BCE_TPAT_CPU_STATE);
11152 
11153 	val = REG_RD_IND(sc, BCE_TPAT_CPU_EVENT_MASK);
11154 	BCE_PRINTF("0x%08X - (0x%06X) tpat_cpu_event_mask\n",
11155 	    val, BCE_TPAT_CPU_EVENT_MASK);
11156 
11157 	if (regs) {
11158 		BCE_PRINTF(
11159 		    "----------------------------"
11160 		    " Register  Dump "
11161 		    "----------------------------\n");
11162 
11163 		for (int i = BCE_TPAT_CPU_MODE; i < 0xa3fff; i += 0x10) {
11164 			/* Skip the big blank spaces */
11165 			if (i < 0x854000 && i > 0x9ffff)
11166 				BCE_PRINTF("0x%04X: 0x%08X 0x%08X "
11167 				    "0x%08X 0x%08X\n", i,
11168 				    REG_RD_IND(sc, i),
11169 				    REG_RD_IND(sc, i + 0x4),
11170 				    REG_RD_IND(sc, i + 0x8),
11171 				    REG_RD_IND(sc, i + 0xC));
11172 		}
11173 	}
11174 
11175 	BCE_PRINTF(
11176 		"----------------------------"
11177 		"----------------"
11178 		"----------------------------\n");
11179 }
11180 
11181 /****************************************************************************/
11182 /* Prints out the Command Procesor (CP) state.                              */
11183 /*                                                                          */
11184 /* Returns:                                                                 */
11185 /*   Nothing.                                                               */
11186 /****************************************************************************/
11187 static __attribute__ ((noinline)) void
11188 bce_dump_cp_state(struct bce_softc *sc, int regs)
11189 {
11190 	u32 val;
11191 	u32 fw_version[3];
11192 
11193 	BCE_PRINTF(
11194 	    "----------------------------"
11195 	    "    CP State    "
11196 	    "----------------------------\n");
11197 
11198 	for (int i = 0; i < 3; i++)
11199 		fw_version[i] = htonl(REG_RD_IND(sc,
11200 		    (BCE_CP_SCRATCH + 0x10 + i * 4)));
11201 
11202 	BCE_PRINTF("Firmware version - %s\n", (char *) fw_version);
11203 
11204 	val = REG_RD_IND(sc, BCE_CP_CPU_MODE);
11205 	BCE_PRINTF("0x%08X - (0x%06X) cp_cpu_mode\n",
11206 	    val, BCE_CP_CPU_MODE);
11207 
11208 	val = REG_RD_IND(sc, BCE_CP_CPU_STATE);
11209 	BCE_PRINTF("0x%08X - (0x%06X) cp_cpu_state\n",
11210 	    val, BCE_CP_CPU_STATE);
11211 
11212 	val = REG_RD_IND(sc, BCE_CP_CPU_EVENT_MASK);
11213 	BCE_PRINTF("0x%08X - (0x%06X) cp_cpu_event_mask\n", val,
11214 	    BCE_CP_CPU_EVENT_MASK);
11215 
11216 	if (regs) {
11217 		BCE_PRINTF(
11218 		    "----------------------------"
11219 		    " Register  Dump "
11220 		    "----------------------------\n");
11221 
11222 		for (int i = BCE_CP_CPU_MODE; i < 0x1aa000; i += 0x10) {
11223 			/* Skip the big blank spaces */
11224 			if (i < 0x185400 && i > 0x19ffff)
11225 				BCE_PRINTF("0x%04X: 0x%08X 0x%08X "
11226 				    "0x%08X 0x%08X\n", i,
11227 				    REG_RD_IND(sc, i),
11228 				    REG_RD_IND(sc, i + 0x4),
11229 				    REG_RD_IND(sc, i + 0x8),
11230 				    REG_RD_IND(sc, i + 0xC));
11231 		}
11232 	}
11233 
11234 	BCE_PRINTF(
11235 	    "----------------------------"
11236 	    "----------------"
11237 	    "----------------------------\n");
11238 }
11239 
11240 /****************************************************************************/
11241 /* Prints out the Completion Procesor (COM) state.                          */
11242 /*                                                                          */
11243 /* Returns:                                                                 */
11244 /*   Nothing.                                                               */
11245 /****************************************************************************/
11246 static __attribute__ ((noinline)) void
11247 bce_dump_com_state(struct bce_softc *sc, int regs)
11248 {
11249 	u32 val;
11250 	u32 fw_version[4];
11251 
11252 	BCE_PRINTF(
11253 	    "----------------------------"
11254 	    "   COM State    "
11255 	    "----------------------------\n");
11256 
11257 	for (int i = 0; i < 3; i++)
11258 		fw_version[i] = htonl(REG_RD_IND(sc,
11259 		    (BCE_COM_SCRATCH + 0x10 + i * 4)));
11260 
11261 	BCE_PRINTF("Firmware version - %s\n", (char *) fw_version);
11262 
11263 	val = REG_RD_IND(sc, BCE_COM_CPU_MODE);
11264 	BCE_PRINTF("0x%08X - (0x%06X) com_cpu_mode\n",
11265 	    val, BCE_COM_CPU_MODE);
11266 
11267 	val = REG_RD_IND(sc, BCE_COM_CPU_STATE);
11268 	BCE_PRINTF("0x%08X - (0x%06X) com_cpu_state\n",
11269 	    val, BCE_COM_CPU_STATE);
11270 
11271 	val = REG_RD_IND(sc, BCE_COM_CPU_EVENT_MASK);
11272 	BCE_PRINTF("0x%08X - (0x%06X) com_cpu_event_mask\n", val,
11273 	    BCE_COM_CPU_EVENT_MASK);
11274 
11275 	if (regs) {
11276 		BCE_PRINTF(
11277 		    "----------------------------"
11278 		    " Register  Dump "
11279 		    "----------------------------\n");
11280 
11281 		for (int i = BCE_COM_CPU_MODE; i < 0x1053e8; i += 0x10) {
11282 			BCE_PRINTF("0x%04X: 0x%08X 0x%08X "
11283 			    "0x%08X 0x%08X\n", i,
11284 			    REG_RD_IND(sc, i),
11285 			    REG_RD_IND(sc, i + 0x4),
11286 			    REG_RD_IND(sc, i + 0x8),
11287 			    REG_RD_IND(sc, i + 0xC));
11288 		}
11289 	}
11290 
11291 	BCE_PRINTF(
11292 		"----------------------------"
11293 		"----------------"
11294 		"----------------------------\n");
11295 }
11296 
11297 /****************************************************************************/
11298 /* Prints out the Receive Virtual 2 Physical (RV2P) state.                  */
11299 /*                                                                          */
11300 /* Returns:                                                                 */
11301 /*   Nothing.                                                               */
11302 /****************************************************************************/
11303 static __attribute__ ((noinline)) void
11304 bce_dump_rv2p_state(struct bce_softc *sc)
11305 {
11306 	u32 val, pc1, pc2, fw_ver_high, fw_ver_low;
11307 
11308 	BCE_PRINTF(
11309 	    "----------------------------"
11310 	    "   RV2P State   "
11311 	    "----------------------------\n");
11312 
11313 	/* Stall the RV2P processors. */
11314 	val = REG_RD_IND(sc, BCE_RV2P_CONFIG);
11315 	val |= BCE_RV2P_CONFIG_STALL_PROC1 | BCE_RV2P_CONFIG_STALL_PROC2;
11316 	REG_WR_IND(sc, BCE_RV2P_CONFIG, val);
11317 
11318 	/* Read the firmware version. */
11319 	val = 0x00000001;
11320 	REG_WR_IND(sc, BCE_RV2P_PROC1_ADDR_CMD, val);
11321 	fw_ver_low = REG_RD_IND(sc, BCE_RV2P_INSTR_LOW);
11322 	fw_ver_high = REG_RD_IND(sc, BCE_RV2P_INSTR_HIGH) &
11323 	    BCE_RV2P_INSTR_HIGH_HIGH;
11324 	BCE_PRINTF("RV2P1 Firmware version - 0x%08X:0x%08X\n",
11325 	    fw_ver_high, fw_ver_low);
11326 
11327 	val = 0x00000001;
11328 	REG_WR_IND(sc, BCE_RV2P_PROC2_ADDR_CMD, val);
11329 	fw_ver_low = REG_RD_IND(sc, BCE_RV2P_INSTR_LOW);
11330 	fw_ver_high = REG_RD_IND(sc, BCE_RV2P_INSTR_HIGH) &
11331 	    BCE_RV2P_INSTR_HIGH_HIGH;
11332 	BCE_PRINTF("RV2P2 Firmware version - 0x%08X:0x%08X\n",
11333 	    fw_ver_high, fw_ver_low);
11334 
11335 	/* Resume the RV2P processors. */
11336 	val = REG_RD_IND(sc, BCE_RV2P_CONFIG);
11337 	val &= ~(BCE_RV2P_CONFIG_STALL_PROC1 | BCE_RV2P_CONFIG_STALL_PROC2);
11338 	REG_WR_IND(sc, BCE_RV2P_CONFIG, val);
11339 
11340 	/* Fetch the program counter value. */
11341 	val = 0x68007800;
11342 	REG_WR_IND(sc, BCE_RV2P_DEBUG_VECT_PEEK, val);
11343 	val = REG_RD_IND(sc, BCE_RV2P_DEBUG_VECT_PEEK);
11344 	pc1 = (val & BCE_RV2P_DEBUG_VECT_PEEK_1_VALUE);
11345 	pc2 = (val & BCE_RV2P_DEBUG_VECT_PEEK_2_VALUE) >> 16;
11346 	BCE_PRINTF("0x%08X - RV2P1 program counter (1st read)\n", pc1);
11347 	BCE_PRINTF("0x%08X - RV2P2 program counter (1st read)\n", pc2);
11348 
11349 	/* Fetch the program counter value again to see if it is advancing. */
11350 	val = 0x68007800;
11351 	REG_WR_IND(sc, BCE_RV2P_DEBUG_VECT_PEEK, val);
11352 	val = REG_RD_IND(sc, BCE_RV2P_DEBUG_VECT_PEEK);
11353 	pc1 = (val & BCE_RV2P_DEBUG_VECT_PEEK_1_VALUE);
11354 	pc2 = (val & BCE_RV2P_DEBUG_VECT_PEEK_2_VALUE) >> 16;
11355 	BCE_PRINTF("0x%08X - RV2P1 program counter (2nd read)\n", pc1);
11356 	BCE_PRINTF("0x%08X - RV2P2 program counter (2nd read)\n", pc2);
11357 
11358 	BCE_PRINTF(
11359 	    "----------------------------"
11360 	    "----------------"
11361 	    "----------------------------\n");
11362 }
11363 
11364 /****************************************************************************/
11365 /* Prints out the driver state and then enters the debugger.                */
11366 /*                                                                          */
11367 /* Returns:                                                                 */
11368 /*   Nothing.                                                               */
11369 /****************************************************************************/
11370 static __attribute__ ((noinline)) void
11371 bce_breakpoint(struct bce_softc *sc)
11372 {
11373 
11374 	/*
11375 	 * Unreachable code to silence compiler warnings
11376 	 * about unused functions.
11377 	 */
11378 	if (0) {
11379 		bce_freeze_controller(sc);
11380 		bce_unfreeze_controller(sc);
11381 		bce_dump_enet(sc, NULL);
11382 		bce_dump_txbd(sc, 0, NULL);
11383 		bce_dump_rxbd(sc, 0, NULL);
11384 		bce_dump_tx_mbuf_chain(sc, 0, USABLE_TX_BD_ALLOC);
11385 		bce_dump_rx_mbuf_chain(sc, 0, USABLE_RX_BD_ALLOC);
11386 		bce_dump_pg_mbuf_chain(sc, 0, USABLE_PG_BD_ALLOC);
11387 		bce_dump_l2fhdr(sc, 0, NULL);
11388 		bce_dump_ctx(sc, RX_CID);
11389 		bce_dump_ftqs(sc);
11390 		bce_dump_tx_chain(sc, 0, USABLE_TX_BD_ALLOC);
11391 		bce_dump_rx_bd_chain(sc, 0, USABLE_RX_BD_ALLOC);
11392 		bce_dump_pg_chain(sc, 0, USABLE_PG_BD_ALLOC);
11393 		bce_dump_status_block(sc);
11394 		bce_dump_stats_block(sc);
11395 		bce_dump_driver_state(sc);
11396 		bce_dump_hw_state(sc);
11397 		bce_dump_bc_state(sc);
11398 		bce_dump_txp_state(sc, 0);
11399 		bce_dump_rxp_state(sc, 0);
11400 		bce_dump_tpat_state(sc, 0);
11401 		bce_dump_cp_state(sc, 0);
11402 		bce_dump_com_state(sc, 0);
11403 		bce_dump_rv2p_state(sc);
11404 		bce_dump_pgbd(sc, 0, NULL);
11405 	}
11406 
11407 	bce_dump_status_block(sc);
11408 	bce_dump_driver_state(sc);
11409 
11410 	/* Call the debugger. */
11411 	breakpoint();
11412 }
11413 #endif
11414