1 /*- 2 * SPDX-License-Identifier: BSD-2-Clause 3 * 4 * Copyright (c) 2006-2014 QLogic Corporation 5 * 6 * Redistribution and use in source and binary forms, with or without 7 * modification, are permitted provided that the following conditions 8 * are met: 9 * 10 * 1. Redistributions of source code must retain the above copyright 11 * notice, this list of conditions and the following disclaimer. 12 * 2. Redistributions in binary form must reproduce the above copyright 13 * notice, this list of conditions and the following disclaimer in the 14 * documentation and/or other materials provided with the distribution. 15 * 16 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS' 17 * AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 18 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 19 * ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS 20 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR 21 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF 22 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS 23 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN 24 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) 25 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF 26 * THE POSSIBILITY OF SUCH DAMAGE. 27 */ 28 29 #include <sys/cdefs.h> 30 /* 31 * The following controllers are supported by this driver: 32 * BCM5706C A2, A3 33 * BCM5706S A2, A3 34 * BCM5708C B1, B2 35 * BCM5708S B1, B2 36 * BCM5709C A1, C0 37 * BCM5709S A1, C0 38 * BCM5716C C0 39 * BCM5716S C0 40 * 41 * The following controllers are not supported by this driver: 42 * BCM5706C A0, A1 (pre-production) 43 * BCM5706S A0, A1 (pre-production) 44 * BCM5708C A0, B0 (pre-production) 45 * BCM5708S A0, B0 (pre-production) 46 * BCM5709C A0 B0, B1, B2 (pre-production) 47 * BCM5709S A0, B0, B1, B2 (pre-production) 48 */ 49 50 #include "opt_bce.h" 51 52 #include <sys/param.h> 53 #include <sys/endian.h> 54 #include <sys/systm.h> 55 #include <sys/sockio.h> 56 #include <sys/lock.h> 57 #include <sys/mbuf.h> 58 #include <sys/malloc.h> 59 #include <sys/mutex.h> 60 #include <sys/kernel.h> 61 #include <sys/module.h> 62 #include <sys/socket.h> 63 #include <sys/sysctl.h> 64 #include <sys/queue.h> 65 66 #include <net/bpf.h> 67 #include <net/ethernet.h> 68 #include <net/if.h> 69 #include <net/if_var.h> 70 #include <net/if_arp.h> 71 #include <net/if_dl.h> 72 #include <net/if_media.h> 73 74 #include <net/if_types.h> 75 #include <net/if_vlan_var.h> 76 77 #include <netinet/in_systm.h> 78 #include <netinet/in.h> 79 #include <netinet/if_ether.h> 80 #include <netinet/ip.h> 81 #include <netinet/ip6.h> 82 #include <netinet/tcp.h> 83 #include <netinet/udp.h> 84 85 #include <machine/bus.h> 86 #include <machine/resource.h> 87 #include <sys/bus.h> 88 #include <sys/rman.h> 89 90 #include <dev/mii/mii.h> 91 #include <dev/mii/miivar.h> 92 #include "miidevs.h" 93 #include <dev/mii/brgphyreg.h> 94 95 #include <dev/pci/pcireg.h> 96 #include <dev/pci/pcivar.h> 97 98 #include "miibus_if.h" 99 100 #include <dev/bce/if_bcereg.h> 101 #include <dev/bce/if_bcefw.h> 102 103 /****************************************************************************/ 104 /* BCE Debug Options */ 105 /****************************************************************************/ 106 #ifdef BCE_DEBUG 107 u32 bce_debug = BCE_WARN; 108 109 /* 0 = Never */ 110 /* 1 = 1 in 2,147,483,648 */ 111 /* 256 = 1 in 8,388,608 */ 112 /* 2048 = 1 in 1,048,576 */ 113 /* 65536 = 1 in 32,768 */ 114 /* 1048576 = 1 in 2,048 */ 115 /* 268435456 = 1 in 8 */ 116 /* 536870912 = 1 in 4 */ 117 /* 1073741824 = 1 in 2 */ 118 119 /* Controls how often the l2_fhdr frame error check will fail. */ 120 int l2fhdr_error_sim_control = 0; 121 122 /* Controls how often the unexpected attention check will fail. */ 123 int unexpected_attention_sim_control = 0; 124 125 /* Controls how often to simulate an mbuf allocation failure. */ 126 int mbuf_alloc_failed_sim_control = 0; 127 128 /* Controls how often to simulate a DMA mapping failure. */ 129 int dma_map_addr_failed_sim_control = 0; 130 131 /* Controls how often to simulate a bootcode failure. */ 132 int bootcode_running_failure_sim_control = 0; 133 #endif 134 135 /****************************************************************************/ 136 /* PCI Device ID Table */ 137 /* */ 138 /* Used by bce_probe() to identify the devices supported by this driver. */ 139 /****************************************************************************/ 140 #define BCE_DEVDESC_MAX 64 141 142 static const struct bce_type bce_devs[] = { 143 /* BCM5706C Controllers and OEM boards. */ 144 { BRCM_VENDORID, BRCM_DEVICEID_BCM5706, HP_VENDORID, 0x3101, 145 "HP NC370T Multifunction Gigabit Server Adapter" }, 146 { BRCM_VENDORID, BRCM_DEVICEID_BCM5706, HP_VENDORID, 0x3106, 147 "HP NC370i Multifunction Gigabit Server Adapter" }, 148 { BRCM_VENDORID, BRCM_DEVICEID_BCM5706, HP_VENDORID, 0x3070, 149 "HP NC380T PCIe DP Multifunc Gig Server Adapter" }, 150 { BRCM_VENDORID, BRCM_DEVICEID_BCM5706, HP_VENDORID, 0x1709, 151 "HP NC371i Multifunction Gigabit Server Adapter" }, 152 { BRCM_VENDORID, BRCM_DEVICEID_BCM5706, PCI_ANY_ID, PCI_ANY_ID, 153 "QLogic NetXtreme II BCM5706 1000Base-T" }, 154 155 /* BCM5706S controllers and OEM boards. */ 156 { BRCM_VENDORID, BRCM_DEVICEID_BCM5706S, HP_VENDORID, 0x3102, 157 "HP NC370F Multifunction Gigabit Server Adapter" }, 158 { BRCM_VENDORID, BRCM_DEVICEID_BCM5706S, PCI_ANY_ID, PCI_ANY_ID, 159 "QLogic NetXtreme II BCM5706 1000Base-SX" }, 160 161 /* BCM5708C controllers and OEM boards. */ 162 { BRCM_VENDORID, BRCM_DEVICEID_BCM5708, HP_VENDORID, 0x7037, 163 "HP NC373T PCIe Multifunction Gig Server Adapter" }, 164 { BRCM_VENDORID, BRCM_DEVICEID_BCM5708, HP_VENDORID, 0x7038, 165 "HP NC373i Multifunction Gigabit Server Adapter" }, 166 { BRCM_VENDORID, BRCM_DEVICEID_BCM5708, HP_VENDORID, 0x7045, 167 "HP NC374m PCIe Multifunction Adapter" }, 168 { BRCM_VENDORID, BRCM_DEVICEID_BCM5708, PCI_ANY_ID, PCI_ANY_ID, 169 "QLogic NetXtreme II BCM5708 1000Base-T" }, 170 171 /* BCM5708S controllers and OEM boards. */ 172 { BRCM_VENDORID, BRCM_DEVICEID_BCM5708S, HP_VENDORID, 0x1706, 173 "HP NC373m Multifunction Gigabit Server Adapter" }, 174 { BRCM_VENDORID, BRCM_DEVICEID_BCM5708S, HP_VENDORID, 0x703b, 175 "HP NC373i Multifunction Gigabit Server Adapter" }, 176 { BRCM_VENDORID, BRCM_DEVICEID_BCM5708S, HP_VENDORID, 0x703d, 177 "HP NC373F PCIe Multifunc Giga Server Adapter" }, 178 { BRCM_VENDORID, BRCM_DEVICEID_BCM5708S, PCI_ANY_ID, PCI_ANY_ID, 179 "QLogic NetXtreme II BCM5708 1000Base-SX" }, 180 181 /* BCM5709C controllers and OEM boards. */ 182 { BRCM_VENDORID, BRCM_DEVICEID_BCM5709, HP_VENDORID, 0x7055, 183 "HP NC382i DP Multifunction Gigabit Server Adapter" }, 184 { BRCM_VENDORID, BRCM_DEVICEID_BCM5709, HP_VENDORID, 0x7059, 185 "HP NC382T PCIe DP Multifunction Gigabit Server Adapter" }, 186 { BRCM_VENDORID, BRCM_DEVICEID_BCM5709, PCI_ANY_ID, PCI_ANY_ID, 187 "QLogic NetXtreme II BCM5709 1000Base-T" }, 188 189 /* BCM5709S controllers and OEM boards. */ 190 { BRCM_VENDORID, BRCM_DEVICEID_BCM5709S, HP_VENDORID, 0x171d, 191 "HP NC382m DP 1GbE Multifunction BL-c Adapter" }, 192 { BRCM_VENDORID, BRCM_DEVICEID_BCM5709S, HP_VENDORID, 0x7056, 193 "HP NC382i DP Multifunction Gigabit Server Adapter" }, 194 { BRCM_VENDORID, BRCM_DEVICEID_BCM5709S, PCI_ANY_ID, PCI_ANY_ID, 195 "QLogic NetXtreme II BCM5709 1000Base-SX" }, 196 197 /* BCM5716 controllers and OEM boards. */ 198 { BRCM_VENDORID, BRCM_DEVICEID_BCM5716, PCI_ANY_ID, PCI_ANY_ID, 199 "QLogic NetXtreme II BCM5716 1000Base-T" }, 200 { 0, 0, 0, 0, NULL } 201 }; 202 203 /****************************************************************************/ 204 /* Supported Flash NVRAM device data. */ 205 /****************************************************************************/ 206 static const struct flash_spec flash_table[] = 207 { 208 #define BUFFERED_FLAGS (BCE_NV_BUFFERED | BCE_NV_TRANSLATE) 209 #define NONBUFFERED_FLAGS (BCE_NV_WREN) 210 211 /* Slow EEPROM */ 212 {0x00000000, 0x40830380, 0x009f0081, 0xa184a053, 0xaf000400, 213 BUFFERED_FLAGS, SEEPROM_PAGE_BITS, SEEPROM_PAGE_SIZE, 214 SEEPROM_BYTE_ADDR_MASK, SEEPROM_TOTAL_SIZE, 215 "EEPROM - slow"}, 216 /* Expansion entry 0001 */ 217 {0x08000002, 0x4b808201, 0x00050081, 0x03840253, 0xaf020406, 218 NONBUFFERED_FLAGS, SAIFUN_FLASH_PAGE_BITS, SAIFUN_FLASH_PAGE_SIZE, 219 SAIFUN_FLASH_BYTE_ADDR_MASK, 0, 220 "Entry 0001"}, 221 /* Saifun SA25F010 (non-buffered flash) */ 222 /* strap, cfg1, & write1 need updates */ 223 {0x04000001, 0x47808201, 0x00050081, 0x03840253, 0xaf020406, 224 NONBUFFERED_FLAGS, SAIFUN_FLASH_PAGE_BITS, SAIFUN_FLASH_PAGE_SIZE, 225 SAIFUN_FLASH_BYTE_ADDR_MASK, SAIFUN_FLASH_BASE_TOTAL_SIZE*2, 226 "Non-buffered flash (128kB)"}, 227 /* Saifun SA25F020 (non-buffered flash) */ 228 /* strap, cfg1, & write1 need updates */ 229 {0x0c000003, 0x4f808201, 0x00050081, 0x03840253, 0xaf020406, 230 NONBUFFERED_FLAGS, SAIFUN_FLASH_PAGE_BITS, SAIFUN_FLASH_PAGE_SIZE, 231 SAIFUN_FLASH_BYTE_ADDR_MASK, SAIFUN_FLASH_BASE_TOTAL_SIZE*4, 232 "Non-buffered flash (256kB)"}, 233 /* Expansion entry 0100 */ 234 {0x11000000, 0x53808201, 0x00050081, 0x03840253, 0xaf020406, 235 NONBUFFERED_FLAGS, SAIFUN_FLASH_PAGE_BITS, SAIFUN_FLASH_PAGE_SIZE, 236 SAIFUN_FLASH_BYTE_ADDR_MASK, 0, 237 "Entry 0100"}, 238 /* Entry 0101: ST M45PE10 (non-buffered flash, TetonII B0) */ 239 {0x19000002, 0x5b808201, 0x000500db, 0x03840253, 0xaf020406, 240 NONBUFFERED_FLAGS, ST_MICRO_FLASH_PAGE_BITS, ST_MICRO_FLASH_PAGE_SIZE, 241 ST_MICRO_FLASH_BYTE_ADDR_MASK, ST_MICRO_FLASH_BASE_TOTAL_SIZE*2, 242 "Entry 0101: ST M45PE10 (128kB non-buffered)"}, 243 /* Entry 0110: ST M45PE20 (non-buffered flash)*/ 244 {0x15000001, 0x57808201, 0x000500db, 0x03840253, 0xaf020406, 245 NONBUFFERED_FLAGS, ST_MICRO_FLASH_PAGE_BITS, ST_MICRO_FLASH_PAGE_SIZE, 246 ST_MICRO_FLASH_BYTE_ADDR_MASK, ST_MICRO_FLASH_BASE_TOTAL_SIZE*4, 247 "Entry 0110: ST M45PE20 (256kB non-buffered)"}, 248 /* Saifun SA25F005 (non-buffered flash) */ 249 /* strap, cfg1, & write1 need updates */ 250 {0x1d000003, 0x5f808201, 0x00050081, 0x03840253, 0xaf020406, 251 NONBUFFERED_FLAGS, SAIFUN_FLASH_PAGE_BITS, SAIFUN_FLASH_PAGE_SIZE, 252 SAIFUN_FLASH_BYTE_ADDR_MASK, SAIFUN_FLASH_BASE_TOTAL_SIZE, 253 "Non-buffered flash (64kB)"}, 254 /* Fast EEPROM */ 255 {0x22000000, 0x62808380, 0x009f0081, 0xa184a053, 0xaf000400, 256 BUFFERED_FLAGS, SEEPROM_PAGE_BITS, SEEPROM_PAGE_SIZE, 257 SEEPROM_BYTE_ADDR_MASK, SEEPROM_TOTAL_SIZE, 258 "EEPROM - fast"}, 259 /* Expansion entry 1001 */ 260 {0x2a000002, 0x6b808201, 0x00050081, 0x03840253, 0xaf020406, 261 NONBUFFERED_FLAGS, SAIFUN_FLASH_PAGE_BITS, SAIFUN_FLASH_PAGE_SIZE, 262 SAIFUN_FLASH_BYTE_ADDR_MASK, 0, 263 "Entry 1001"}, 264 /* Expansion entry 1010 */ 265 {0x26000001, 0x67808201, 0x00050081, 0x03840253, 0xaf020406, 266 NONBUFFERED_FLAGS, SAIFUN_FLASH_PAGE_BITS, SAIFUN_FLASH_PAGE_SIZE, 267 SAIFUN_FLASH_BYTE_ADDR_MASK, 0, 268 "Entry 1010"}, 269 /* ATMEL AT45DB011B (buffered flash) */ 270 {0x2e000003, 0x6e808273, 0x00570081, 0x68848353, 0xaf000400, 271 BUFFERED_FLAGS, BUFFERED_FLASH_PAGE_BITS, BUFFERED_FLASH_PAGE_SIZE, 272 BUFFERED_FLASH_BYTE_ADDR_MASK, BUFFERED_FLASH_TOTAL_SIZE, 273 "Buffered flash (128kB)"}, 274 /* Expansion entry 1100 */ 275 {0x33000000, 0x73808201, 0x00050081, 0x03840253, 0xaf020406, 276 NONBUFFERED_FLAGS, SAIFUN_FLASH_PAGE_BITS, SAIFUN_FLASH_PAGE_SIZE, 277 SAIFUN_FLASH_BYTE_ADDR_MASK, 0, 278 "Entry 1100"}, 279 /* Expansion entry 1101 */ 280 {0x3b000002, 0x7b808201, 0x00050081, 0x03840253, 0xaf020406, 281 NONBUFFERED_FLAGS, SAIFUN_FLASH_PAGE_BITS, SAIFUN_FLASH_PAGE_SIZE, 282 SAIFUN_FLASH_BYTE_ADDR_MASK, 0, 283 "Entry 1101"}, 284 /* Ateml Expansion entry 1110 */ 285 {0x37000001, 0x76808273, 0x00570081, 0x68848353, 0xaf000400, 286 BUFFERED_FLAGS, BUFFERED_FLASH_PAGE_BITS, BUFFERED_FLASH_PAGE_SIZE, 287 BUFFERED_FLASH_BYTE_ADDR_MASK, 0, 288 "Entry 1110 (Atmel)"}, 289 /* ATMEL AT45DB021B (buffered flash) */ 290 {0x3f000003, 0x7e808273, 0x00570081, 0x68848353, 0xaf000400, 291 BUFFERED_FLAGS, BUFFERED_FLASH_PAGE_BITS, BUFFERED_FLASH_PAGE_SIZE, 292 BUFFERED_FLASH_BYTE_ADDR_MASK, BUFFERED_FLASH_TOTAL_SIZE*2, 293 "Buffered flash (256kB)"}, 294 }; 295 296 /* 297 * The BCM5709 controllers transparently handle the 298 * differences between Atmel 264 byte pages and all 299 * flash devices which use 256 byte pages, so no 300 * logical-to-physical mapping is required in the 301 * driver. 302 */ 303 static const struct flash_spec flash_5709 = { 304 .flags = BCE_NV_BUFFERED, 305 .page_bits = BCM5709_FLASH_PAGE_BITS, 306 .page_size = BCM5709_FLASH_PAGE_SIZE, 307 .addr_mask = BCM5709_FLASH_BYTE_ADDR_MASK, 308 .total_size = BUFFERED_FLASH_TOTAL_SIZE * 2, 309 .name = "5709/5716 buffered flash (256kB)", 310 }; 311 312 /****************************************************************************/ 313 /* FreeBSD device entry points. */ 314 /****************************************************************************/ 315 static int bce_probe (device_t); 316 static int bce_attach (device_t); 317 static int bce_detach (device_t); 318 static int bce_shutdown (device_t); 319 320 /****************************************************************************/ 321 /* BCE Debug Data Structure Dump Routines */ 322 /****************************************************************************/ 323 #ifdef BCE_DEBUG 324 static u32 bce_reg_rd (struct bce_softc *, u32); 325 static void bce_reg_wr (struct bce_softc *, u32, u32); 326 static void bce_reg_wr16 (struct bce_softc *, u32, u16); 327 static u32 bce_ctx_rd (struct bce_softc *, u32, u32); 328 static void bce_dump_enet (struct bce_softc *, struct mbuf *); 329 static void bce_dump_mbuf (struct bce_softc *, struct mbuf *); 330 static void bce_dump_tx_mbuf_chain (struct bce_softc *, u16, int); 331 static void bce_dump_rx_mbuf_chain (struct bce_softc *, u16, int); 332 static void bce_dump_pg_mbuf_chain (struct bce_softc *, u16, int); 333 static void bce_dump_txbd (struct bce_softc *, 334 int, struct tx_bd *); 335 static void bce_dump_rxbd (struct bce_softc *, 336 int, struct rx_bd *); 337 static void bce_dump_pgbd (struct bce_softc *, 338 int, struct rx_bd *); 339 static void bce_dump_l2fhdr (struct bce_softc *, 340 int, struct l2_fhdr *); 341 static void bce_dump_ctx (struct bce_softc *, u16); 342 static void bce_dump_ftqs (struct bce_softc *); 343 static void bce_dump_tx_chain (struct bce_softc *, u16, int); 344 static void bce_dump_rx_bd_chain (struct bce_softc *, u16, int); 345 static void bce_dump_pg_chain (struct bce_softc *, u16, int); 346 static void bce_dump_status_block (struct bce_softc *); 347 static void bce_dump_stats_block (struct bce_softc *); 348 static void bce_dump_driver_state (struct bce_softc *); 349 static void bce_dump_hw_state (struct bce_softc *); 350 static void bce_dump_shmem_state (struct bce_softc *); 351 static void bce_dump_mq_regs (struct bce_softc *); 352 static void bce_dump_bc_state (struct bce_softc *); 353 static void bce_dump_txp_state (struct bce_softc *, int); 354 static void bce_dump_rxp_state (struct bce_softc *, int); 355 static void bce_dump_tpat_state (struct bce_softc *, int); 356 static void bce_dump_cp_state (struct bce_softc *, int); 357 static void bce_dump_com_state (struct bce_softc *, int); 358 static void bce_dump_rv2p_state (struct bce_softc *); 359 static void bce_breakpoint (struct bce_softc *); 360 #endif /*BCE_DEBUG */ 361 362 /****************************************************************************/ 363 /* BCE Register/Memory Access Routines */ 364 /****************************************************************************/ 365 static u32 bce_reg_rd_ind (struct bce_softc *, u32); 366 static void bce_reg_wr_ind (struct bce_softc *, u32, u32); 367 static void bce_shmem_wr (struct bce_softc *, u32, u32); 368 static u32 bce_shmem_rd (struct bce_softc *, u32); 369 static void bce_ctx_wr (struct bce_softc *, u32, u32, u32); 370 static int bce_miibus_read_reg (device_t, int, int); 371 static int bce_miibus_write_reg (device_t, int, int, int); 372 static void bce_miibus_statchg (device_t); 373 374 #ifdef BCE_DEBUG 375 static int bce_sysctl_nvram_dump(SYSCTL_HANDLER_ARGS); 376 #ifdef BCE_NVRAM_WRITE_SUPPORT 377 static int bce_sysctl_nvram_write(SYSCTL_HANDLER_ARGS); 378 #endif 379 #endif 380 381 /****************************************************************************/ 382 /* BCE NVRAM Access Routines */ 383 /****************************************************************************/ 384 static int bce_acquire_nvram_lock (struct bce_softc *); 385 static int bce_release_nvram_lock (struct bce_softc *); 386 static void bce_enable_nvram_access(struct bce_softc *); 387 static void bce_disable_nvram_access(struct bce_softc *); 388 static int bce_nvram_read_dword (struct bce_softc *, u32, u8 *, u32); 389 static int bce_init_nvram (struct bce_softc *); 390 static int bce_nvram_read (struct bce_softc *, u32, u8 *, int); 391 static int bce_nvram_test (struct bce_softc *); 392 #ifdef BCE_NVRAM_WRITE_SUPPORT 393 static int bce_enable_nvram_write (struct bce_softc *); 394 static void bce_disable_nvram_write(struct bce_softc *); 395 static int bce_nvram_erase_page (struct bce_softc *, u32); 396 static int bce_nvram_write_dword (struct bce_softc *, u32, u8 *, u32); 397 static int bce_nvram_write (struct bce_softc *, u32, u8 *, int); 398 #endif 399 400 /****************************************************************************/ 401 /* */ 402 /****************************************************************************/ 403 static void bce_get_rx_buffer_sizes(struct bce_softc *, int); 404 static void bce_get_media (struct bce_softc *); 405 static void bce_init_media (struct bce_softc *); 406 static u32 bce_get_rphy_link (struct bce_softc *); 407 static void bce_dma_map_addr (void *, bus_dma_segment_t *, int, int); 408 static int bce_dma_alloc (device_t); 409 static void bce_dma_free (struct bce_softc *); 410 static void bce_release_resources (struct bce_softc *); 411 412 /****************************************************************************/ 413 /* BCE Firmware Synchronization and Load */ 414 /****************************************************************************/ 415 static void bce_fw_cap_init (struct bce_softc *); 416 static int bce_fw_sync (struct bce_softc *, u32); 417 static void bce_load_rv2p_fw (struct bce_softc *, const u32 *, u32, 418 u32); 419 static void bce_load_cpu_fw (struct bce_softc *, 420 struct cpu_reg *, struct fw_info *); 421 static void bce_start_cpu (struct bce_softc *, struct cpu_reg *); 422 static void bce_halt_cpu (struct bce_softc *, struct cpu_reg *); 423 static void bce_start_rxp_cpu (struct bce_softc *); 424 static void bce_init_rxp_cpu (struct bce_softc *); 425 static void bce_init_txp_cpu (struct bce_softc *); 426 static void bce_init_tpat_cpu (struct bce_softc *); 427 static void bce_init_cp_cpu (struct bce_softc *); 428 static void bce_init_com_cpu (struct bce_softc *); 429 static void bce_init_cpus (struct bce_softc *); 430 431 static void bce_print_adapter_info (struct bce_softc *); 432 static void bce_probe_pci_caps (device_t, struct bce_softc *); 433 static void bce_stop (struct bce_softc *); 434 static int bce_reset (struct bce_softc *, u32); 435 static int bce_chipinit (struct bce_softc *); 436 static int bce_blockinit (struct bce_softc *); 437 438 static int bce_init_tx_chain (struct bce_softc *); 439 static void bce_free_tx_chain (struct bce_softc *); 440 441 static int bce_get_rx_buf (struct bce_softc *, u16, u16, u32 *); 442 static int bce_init_rx_chain (struct bce_softc *); 443 static void bce_fill_rx_chain (struct bce_softc *); 444 static void bce_free_rx_chain (struct bce_softc *); 445 446 static int bce_get_pg_buf (struct bce_softc *, u16, u16); 447 static int bce_init_pg_chain (struct bce_softc *); 448 static void bce_fill_pg_chain (struct bce_softc *); 449 static void bce_free_pg_chain (struct bce_softc *); 450 451 static struct mbuf *bce_tso_setup (struct bce_softc *, 452 struct mbuf **, u16 *); 453 static int bce_tx_encap (struct bce_softc *, struct mbuf **); 454 static void bce_start_locked (if_t); 455 static void bce_start (if_t); 456 static int bce_ioctl (if_t, u_long, caddr_t); 457 static uint64_t bce_get_counter (if_t, ift_counter); 458 static void bce_watchdog (struct bce_softc *); 459 static int bce_ifmedia_upd (if_t); 460 static int bce_ifmedia_upd_locked (if_t); 461 static void bce_ifmedia_sts (if_t, struct ifmediareq *); 462 static void bce_ifmedia_sts_rphy (struct bce_softc *, struct ifmediareq *); 463 static void bce_init_locked (struct bce_softc *); 464 static void bce_init (void *); 465 static void bce_mgmt_init_locked (struct bce_softc *sc); 466 467 static int bce_init_ctx (struct bce_softc *); 468 static void bce_get_mac_addr (struct bce_softc *); 469 static void bce_set_mac_addr (struct bce_softc *); 470 static void bce_phy_intr (struct bce_softc *); 471 static inline u16 bce_get_hw_rx_cons (struct bce_softc *); 472 static void bce_rx_intr (struct bce_softc *); 473 static void bce_tx_intr (struct bce_softc *); 474 static void bce_disable_intr (struct bce_softc *); 475 static void bce_enable_intr (struct bce_softc *, int); 476 477 static void bce_intr (void *); 478 static void bce_set_rx_mode (struct bce_softc *); 479 static void bce_stats_update (struct bce_softc *); 480 static void bce_tick (void *); 481 static void bce_pulse (void *); 482 static void bce_add_sysctls (struct bce_softc *); 483 484 /****************************************************************************/ 485 /* FreeBSD device dispatch table. */ 486 /****************************************************************************/ 487 static device_method_t bce_methods[] = { 488 /* Device interface (device_if.h) */ 489 DEVMETHOD(device_probe, bce_probe), 490 DEVMETHOD(device_attach, bce_attach), 491 DEVMETHOD(device_detach, bce_detach), 492 DEVMETHOD(device_shutdown, bce_shutdown), 493 /* Supported by device interface but not used here. */ 494 /* DEVMETHOD(device_identify, bce_identify), */ 495 /* DEVMETHOD(device_suspend, bce_suspend), */ 496 /* DEVMETHOD(device_resume, bce_resume), */ 497 /* DEVMETHOD(device_quiesce, bce_quiesce), */ 498 499 /* MII interface (miibus_if.h) */ 500 DEVMETHOD(miibus_readreg, bce_miibus_read_reg), 501 DEVMETHOD(miibus_writereg, bce_miibus_write_reg), 502 DEVMETHOD(miibus_statchg, bce_miibus_statchg), 503 /* Supported by MII interface but not used here. */ 504 /* DEVMETHOD(miibus_linkchg, bce_miibus_linkchg), */ 505 /* DEVMETHOD(miibus_mediainit, bce_miibus_mediainit), */ 506 507 DEVMETHOD_END 508 }; 509 510 static driver_t bce_driver = { 511 "bce", 512 bce_methods, 513 sizeof(struct bce_softc) 514 }; 515 516 MODULE_DEPEND(bce, pci, 1, 1, 1); 517 MODULE_DEPEND(bce, ether, 1, 1, 1); 518 MODULE_DEPEND(bce, miibus, 1, 1, 1); 519 520 DRIVER_MODULE(bce, pci, bce_driver, NULL, NULL); 521 DRIVER_MODULE(miibus, bce, miibus_driver, NULL, NULL); 522 MODULE_PNP_INFO("U16:vendor;U16:device;U16:#;U16:#;D:#", pci, bce, 523 bce_devs, nitems(bce_devs) - 1); 524 525 /****************************************************************************/ 526 /* Tunable device values */ 527 /****************************************************************************/ 528 static SYSCTL_NODE(_hw, OID_AUTO, bce, CTLFLAG_RD | CTLFLAG_MPSAFE, 0, 529 "bce driver parameters"); 530 531 /* Allowable values are TRUE or FALSE */ 532 static int bce_verbose = TRUE; 533 SYSCTL_INT(_hw_bce, OID_AUTO, verbose, CTLFLAG_RDTUN, &bce_verbose, 0, 534 "Verbose output enable/disable"); 535 536 /* Allowable values are TRUE or FALSE */ 537 static int bce_tso_enable = TRUE; 538 SYSCTL_INT(_hw_bce, OID_AUTO, tso_enable, CTLFLAG_RDTUN, &bce_tso_enable, 0, 539 "TSO Enable/Disable"); 540 541 /* Allowable values are 0 (IRQ), 1 (MSI/IRQ), and 2 (MSI-X/MSI/IRQ) */ 542 /* ToDo: Add MSI-X support. */ 543 static int bce_msi_enable = 1; 544 SYSCTL_INT(_hw_bce, OID_AUTO, msi_enable, CTLFLAG_RDTUN, &bce_msi_enable, 0, 545 "MSI-X|MSI|INTx selector"); 546 547 /* Allowable values are 1, 2, 4, 8. */ 548 static int bce_rx_pages = DEFAULT_RX_PAGES; 549 SYSCTL_UINT(_hw_bce, OID_AUTO, rx_pages, CTLFLAG_RDTUN, &bce_rx_pages, 0, 550 "Receive buffer descriptor pages (1 page = 255 buffer descriptors)"); 551 552 /* Allowable values are 1, 2, 4, 8. */ 553 static int bce_tx_pages = DEFAULT_TX_PAGES; 554 SYSCTL_UINT(_hw_bce, OID_AUTO, tx_pages, CTLFLAG_RDTUN, &bce_tx_pages, 0, 555 "Transmit buffer descriptor pages (1 page = 255 buffer descriptors)"); 556 557 /* Allowable values are TRUE or FALSE. */ 558 static int bce_hdr_split = TRUE; 559 SYSCTL_UINT(_hw_bce, OID_AUTO, hdr_split, CTLFLAG_RDTUN, &bce_hdr_split, 0, 560 "Frame header/payload splitting Enable/Disable"); 561 562 /* Allowable values are TRUE or FALSE. */ 563 static int bce_strict_rx_mtu = FALSE; 564 SYSCTL_UINT(_hw_bce, OID_AUTO, strict_rx_mtu, CTLFLAG_RDTUN, 565 &bce_strict_rx_mtu, 0, 566 "Enable/Disable strict RX frame size checking"); 567 568 /* Allowable values are 0 ... 100 */ 569 #ifdef BCE_DEBUG 570 /* Generate 1 interrupt for every transmit completion. */ 571 static int bce_tx_quick_cons_trip_int = 1; 572 #else 573 /* Generate 1 interrupt for every 20 transmit completions. */ 574 static int bce_tx_quick_cons_trip_int = DEFAULT_TX_QUICK_CONS_TRIP_INT; 575 #endif 576 SYSCTL_UINT(_hw_bce, OID_AUTO, tx_quick_cons_trip_int, CTLFLAG_RDTUN, 577 &bce_tx_quick_cons_trip_int, 0, 578 "Transmit BD trip point during interrupts"); 579 580 /* Allowable values are 0 ... 100 */ 581 /* Generate 1 interrupt for every transmit completion. */ 582 #ifdef BCE_DEBUG 583 static int bce_tx_quick_cons_trip = 1; 584 #else 585 /* Generate 1 interrupt for every 20 transmit completions. */ 586 static int bce_tx_quick_cons_trip = DEFAULT_TX_QUICK_CONS_TRIP; 587 #endif 588 SYSCTL_UINT(_hw_bce, OID_AUTO, tx_quick_cons_trip, CTLFLAG_RDTUN, 589 &bce_tx_quick_cons_trip, 0, 590 "Transmit BD trip point"); 591 592 /* Allowable values are 0 ... 100 */ 593 #ifdef BCE_DEBUG 594 /* Generate an interrupt if 0us have elapsed since the last TX completion. */ 595 static int bce_tx_ticks_int = 0; 596 #else 597 /* Generate an interrupt if 80us have elapsed since the last TX completion. */ 598 static int bce_tx_ticks_int = DEFAULT_TX_TICKS_INT; 599 #endif 600 SYSCTL_UINT(_hw_bce, OID_AUTO, tx_ticks_int, CTLFLAG_RDTUN, 601 &bce_tx_ticks_int, 0, "Transmit ticks count during interrupt"); 602 603 /* Allowable values are 0 ... 100 */ 604 #ifdef BCE_DEBUG 605 /* Generate an interrupt if 0us have elapsed since the last TX completion. */ 606 static int bce_tx_ticks = 0; 607 #else 608 /* Generate an interrupt if 80us have elapsed since the last TX completion. */ 609 static int bce_tx_ticks = DEFAULT_TX_TICKS; 610 #endif 611 SYSCTL_UINT(_hw_bce, OID_AUTO, tx_ticks, CTLFLAG_RDTUN, 612 &bce_tx_ticks, 0, "Transmit ticks count"); 613 614 /* Allowable values are 1 ... 100 */ 615 #ifdef BCE_DEBUG 616 /* Generate 1 interrupt for every received frame. */ 617 static int bce_rx_quick_cons_trip_int = 1; 618 #else 619 /* Generate 1 interrupt for every 6 received frames. */ 620 static int bce_rx_quick_cons_trip_int = DEFAULT_RX_QUICK_CONS_TRIP_INT; 621 #endif 622 SYSCTL_UINT(_hw_bce, OID_AUTO, rx_quick_cons_trip_int, CTLFLAG_RDTUN, 623 &bce_rx_quick_cons_trip_int, 0, 624 "Receive BD trip point during interrupts"); 625 626 /* Allowable values are 1 ... 100 */ 627 #ifdef BCE_DEBUG 628 /* Generate 1 interrupt for every received frame. */ 629 static int bce_rx_quick_cons_trip = 1; 630 #else 631 /* Generate 1 interrupt for every 6 received frames. */ 632 static int bce_rx_quick_cons_trip = DEFAULT_RX_QUICK_CONS_TRIP; 633 #endif 634 SYSCTL_UINT(_hw_bce, OID_AUTO, rx_quick_cons_trip, CTLFLAG_RDTUN, 635 &bce_rx_quick_cons_trip, 0, 636 "Receive BD trip point"); 637 638 /* Allowable values are 0 ... 100 */ 639 #ifdef BCE_DEBUG 640 /* Generate an int. if 0us have elapsed since the last received frame. */ 641 static int bce_rx_ticks_int = 0; 642 #else 643 /* Generate an int. if 18us have elapsed since the last received frame. */ 644 static int bce_rx_ticks_int = DEFAULT_RX_TICKS_INT; 645 #endif 646 SYSCTL_UINT(_hw_bce, OID_AUTO, rx_ticks_int, CTLFLAG_RDTUN, 647 &bce_rx_ticks_int, 0, "Receive ticks count during interrupt"); 648 649 /* Allowable values are 0 ... 100 */ 650 #ifdef BCE_DEBUG 651 /* Generate an int. if 0us have elapsed since the last received frame. */ 652 static int bce_rx_ticks = 0; 653 #else 654 /* Generate an int. if 18us have elapsed since the last received frame. */ 655 static int bce_rx_ticks = DEFAULT_RX_TICKS; 656 #endif 657 SYSCTL_UINT(_hw_bce, OID_AUTO, rx_ticks, CTLFLAG_RDTUN, 658 &bce_rx_ticks, 0, "Receive ticks count"); 659 660 /****************************************************************************/ 661 /* Device probe function. */ 662 /* */ 663 /* Compares the device to the driver's list of supported devices and */ 664 /* reports back to the OS whether this is the right driver for the device. */ 665 /* */ 666 /* Returns: */ 667 /* BUS_PROBE_DEFAULT on success, positive value on failure. */ 668 /****************************************************************************/ 669 static int 670 bce_probe(device_t dev) 671 { 672 const struct bce_type *t; 673 struct bce_softc *sc; 674 u16 vid = 0, did = 0, svid = 0, sdid = 0; 675 676 t = bce_devs; 677 678 sc = device_get_softc(dev); 679 sc->bce_unit = device_get_unit(dev); 680 sc->bce_dev = dev; 681 682 /* Get the data for the device to be probed. */ 683 vid = pci_get_vendor(dev); 684 did = pci_get_device(dev); 685 svid = pci_get_subvendor(dev); 686 sdid = pci_get_subdevice(dev); 687 688 DBPRINT(sc, BCE_EXTREME_LOAD, 689 "%s(); VID = 0x%04X, DID = 0x%04X, SVID = 0x%04X, " 690 "SDID = 0x%04X\n", __FUNCTION__, vid, did, svid, sdid); 691 692 /* Look through the list of known devices for a match. */ 693 while(t->bce_name != NULL) { 694 if ((vid == t->bce_vid) && (did == t->bce_did) && 695 ((svid == t->bce_svid) || (t->bce_svid == PCI_ANY_ID)) && 696 ((sdid == t->bce_sdid) || (t->bce_sdid == PCI_ANY_ID))) { 697 device_set_descf(dev, "%s (%c%d)", 698 t->bce_name, (((pci_read_config(dev, 699 PCIR_REVID, 4) & 0xf0) >> 4) + 'A'), 700 (pci_read_config(dev, PCIR_REVID, 4) & 0xf)); 701 return(BUS_PROBE_DEFAULT); 702 } 703 t++; 704 } 705 706 return(ENXIO); 707 } 708 709 /****************************************************************************/ 710 /* PCI Capabilities Probe Function. */ 711 /* */ 712 /* Walks the PCI capabiites list for the device to find what features are */ 713 /* supported. */ 714 /* */ 715 /* Returns: */ 716 /* None. */ 717 /****************************************************************************/ 718 static void 719 bce_print_adapter_info(struct bce_softc *sc) 720 { 721 int i = 0; 722 723 DBENTER(BCE_VERBOSE_LOAD); 724 725 if (bce_verbose || bootverbose) { 726 BCE_PRINTF("ASIC (0x%08X); ", sc->bce_chipid); 727 printf("Rev (%c%d); ", ((BCE_CHIP_ID(sc) & 0xf000) >> 728 12) + 'A', ((BCE_CHIP_ID(sc) & 0x0ff0) >> 4)); 729 730 /* Bus info. */ 731 if (sc->bce_flags & BCE_PCIE_FLAG) { 732 printf("Bus (PCIe x%d, ", sc->link_width); 733 switch (sc->link_speed) { 734 case 1: printf("2.5Gbps); "); break; 735 case 2: printf("5Gbps); "); break; 736 default: printf("Unknown link speed); "); 737 } 738 } else { 739 printf("Bus (PCI%s, %s, %dMHz); ", 740 ((sc->bce_flags & BCE_PCIX_FLAG) ? "-X" : ""), 741 ((sc->bce_flags & BCE_PCI_32BIT_FLAG) ? 742 "32-bit" : "64-bit"), sc->bus_speed_mhz); 743 } 744 745 /* Firmware version and device features. */ 746 printf("B/C (%s); Bufs (RX:%d;TX:%d;PG:%d); Flags (", 747 sc->bce_bc_ver, sc->rx_pages, sc->tx_pages, 748 (bce_hdr_split == TRUE ? sc->pg_pages: 0)); 749 750 if (bce_hdr_split == TRUE) { 751 printf("SPLT"); 752 i++; 753 } 754 755 if (sc->bce_flags & BCE_USING_MSI_FLAG) { 756 if (i > 0) printf("|"); 757 printf("MSI"); i++; 758 } 759 760 if (sc->bce_flags & BCE_USING_MSIX_FLAG) { 761 if (i > 0) printf("|"); 762 printf("MSI-X"); i++; 763 } 764 765 if (sc->bce_phy_flags & BCE_PHY_2_5G_CAPABLE_FLAG) { 766 if (i > 0) printf("|"); 767 printf("2.5G"); i++; 768 } 769 770 if (sc->bce_phy_flags & BCE_PHY_REMOTE_CAP_FLAG) { 771 if (i > 0) printf("|"); 772 printf("Remote PHY(%s)", 773 sc->bce_phy_flags & BCE_PHY_REMOTE_PORT_FIBER_FLAG ? 774 "FIBER" : "TP"); i++; 775 } 776 777 if (sc->bce_flags & BCE_MFW_ENABLE_FLAG) { 778 if (i > 0) printf("|"); 779 printf("MFW); MFW (%s)\n", sc->bce_mfw_ver); 780 } else { 781 printf(")\n"); 782 } 783 784 printf("Coal (RX:%d,%d,%d,%d; TX:%d,%d,%d,%d)\n", 785 sc->bce_rx_quick_cons_trip_int, 786 sc->bce_rx_quick_cons_trip, 787 sc->bce_rx_ticks_int, 788 sc->bce_rx_ticks, 789 sc->bce_tx_quick_cons_trip_int, 790 sc->bce_tx_quick_cons_trip, 791 sc->bce_tx_ticks_int, 792 sc->bce_tx_ticks); 793 } 794 795 DBEXIT(BCE_VERBOSE_LOAD); 796 } 797 798 /****************************************************************************/ 799 /* PCI Capabilities Probe Function. */ 800 /* */ 801 /* Walks the PCI capabiites list for the device to find what features are */ 802 /* supported. */ 803 /* */ 804 /* Returns: */ 805 /* None. */ 806 /****************************************************************************/ 807 static void 808 bce_probe_pci_caps(device_t dev, struct bce_softc *sc) 809 { 810 u32 reg; 811 812 DBENTER(BCE_VERBOSE_LOAD); 813 814 /* Check if PCI-X capability is enabled. */ 815 if (pci_find_cap(dev, PCIY_PCIX, ®) == 0) { 816 if (reg != 0) 817 sc->bce_cap_flags |= BCE_PCIX_CAPABLE_FLAG; 818 } 819 820 /* Check if PCIe capability is enabled. */ 821 if (pci_find_cap(dev, PCIY_EXPRESS, ®) == 0) { 822 if (reg != 0) { 823 u16 link_status = pci_read_config(dev, reg + 0x12, 2); 824 DBPRINT(sc, BCE_INFO_LOAD, "PCIe link_status = " 825 "0x%08X\n", link_status); 826 sc->link_speed = link_status & 0xf; 827 sc->link_width = (link_status >> 4) & 0x3f; 828 sc->bce_cap_flags |= BCE_PCIE_CAPABLE_FLAG; 829 sc->bce_flags |= BCE_PCIE_FLAG; 830 } 831 } 832 833 /* Check if MSI capability is enabled. */ 834 if (pci_find_cap(dev, PCIY_MSI, ®) == 0) { 835 if (reg != 0) 836 sc->bce_cap_flags |= BCE_MSI_CAPABLE_FLAG; 837 } 838 839 /* Check if MSI-X capability is enabled. */ 840 if (pci_find_cap(dev, PCIY_MSIX, ®) == 0) { 841 if (reg != 0) 842 sc->bce_cap_flags |= BCE_MSIX_CAPABLE_FLAG; 843 } 844 845 DBEXIT(BCE_VERBOSE_LOAD); 846 } 847 848 /****************************************************************************/ 849 /* Load and validate user tunable settings. */ 850 /* */ 851 /* Returns: */ 852 /* Nothing. */ 853 /****************************************************************************/ 854 static void 855 bce_set_tunables(struct bce_softc *sc) 856 { 857 /* Set sysctl values for RX page count. */ 858 switch (bce_rx_pages) { 859 case 1: 860 /* fall-through */ 861 case 2: 862 /* fall-through */ 863 case 4: 864 /* fall-through */ 865 case 8: 866 sc->rx_pages = bce_rx_pages; 867 break; 868 default: 869 sc->rx_pages = DEFAULT_RX_PAGES; 870 BCE_PRINTF("%s(%d): Illegal value (%d) specified for " 871 "hw.bce.rx_pages! Setting default of %d.\n", 872 __FILE__, __LINE__, bce_rx_pages, DEFAULT_RX_PAGES); 873 } 874 875 /* ToDo: Consider allowing user setting for pg_pages. */ 876 sc->pg_pages = min((sc->rx_pages * 4), MAX_PG_PAGES); 877 878 /* Set sysctl values for TX page count. */ 879 switch (bce_tx_pages) { 880 case 1: 881 /* fall-through */ 882 case 2: 883 /* fall-through */ 884 case 4: 885 /* fall-through */ 886 case 8: 887 sc->tx_pages = bce_tx_pages; 888 break; 889 default: 890 sc->tx_pages = DEFAULT_TX_PAGES; 891 BCE_PRINTF("%s(%d): Illegal value (%d) specified for " 892 "hw.bce.tx_pages! Setting default of %d.\n", 893 __FILE__, __LINE__, bce_tx_pages, DEFAULT_TX_PAGES); 894 } 895 896 /* 897 * Validate the TX trip point (i.e. the number of 898 * TX completions before a status block update is 899 * generated and an interrupt is asserted. 900 */ 901 if (bce_tx_quick_cons_trip_int <= 100) { 902 sc->bce_tx_quick_cons_trip_int = 903 bce_tx_quick_cons_trip_int; 904 } else { 905 BCE_PRINTF("%s(%d): Illegal value (%d) specified for " 906 "hw.bce.tx_quick_cons_trip_int! Setting default of %d.\n", 907 __FILE__, __LINE__, bce_tx_quick_cons_trip_int, 908 DEFAULT_TX_QUICK_CONS_TRIP_INT); 909 sc->bce_tx_quick_cons_trip_int = 910 DEFAULT_TX_QUICK_CONS_TRIP_INT; 911 } 912 913 if (bce_tx_quick_cons_trip <= 100) { 914 sc->bce_tx_quick_cons_trip = 915 bce_tx_quick_cons_trip; 916 } else { 917 BCE_PRINTF("%s(%d): Illegal value (%d) specified for " 918 "hw.bce.tx_quick_cons_trip! Setting default of %d.\n", 919 __FILE__, __LINE__, bce_tx_quick_cons_trip, 920 DEFAULT_TX_QUICK_CONS_TRIP); 921 sc->bce_tx_quick_cons_trip = 922 DEFAULT_TX_QUICK_CONS_TRIP; 923 } 924 925 /* 926 * Validate the TX ticks count (i.e. the maximum amount 927 * of time to wait after the last TX completion has 928 * occurred before a status block update is generated 929 * and an interrupt is asserted. 930 */ 931 if (bce_tx_ticks_int <= 100) { 932 sc->bce_tx_ticks_int = 933 bce_tx_ticks_int; 934 } else { 935 BCE_PRINTF("%s(%d): Illegal value (%d) specified for " 936 "hw.bce.tx_ticks_int! Setting default of %d.\n", 937 __FILE__, __LINE__, bce_tx_ticks_int, 938 DEFAULT_TX_TICKS_INT); 939 sc->bce_tx_ticks_int = 940 DEFAULT_TX_TICKS_INT; 941 } 942 943 if (bce_tx_ticks <= 100) { 944 sc->bce_tx_ticks = 945 bce_tx_ticks; 946 } else { 947 BCE_PRINTF("%s(%d): Illegal value (%d) specified for " 948 "hw.bce.tx_ticks! Setting default of %d.\n", 949 __FILE__, __LINE__, bce_tx_ticks, 950 DEFAULT_TX_TICKS); 951 sc->bce_tx_ticks = 952 DEFAULT_TX_TICKS; 953 } 954 955 /* 956 * Validate the RX trip point (i.e. the number of 957 * RX frames received before a status block update is 958 * generated and an interrupt is asserted. 959 */ 960 if (bce_rx_quick_cons_trip_int <= 100) { 961 sc->bce_rx_quick_cons_trip_int = 962 bce_rx_quick_cons_trip_int; 963 } else { 964 BCE_PRINTF("%s(%d): Illegal value (%d) specified for " 965 "hw.bce.rx_quick_cons_trip_int! Setting default of %d.\n", 966 __FILE__, __LINE__, bce_rx_quick_cons_trip_int, 967 DEFAULT_RX_QUICK_CONS_TRIP_INT); 968 sc->bce_rx_quick_cons_trip_int = 969 DEFAULT_RX_QUICK_CONS_TRIP_INT; 970 } 971 972 if (bce_rx_quick_cons_trip <= 100) { 973 sc->bce_rx_quick_cons_trip = 974 bce_rx_quick_cons_trip; 975 } else { 976 BCE_PRINTF("%s(%d): Illegal value (%d) specified for " 977 "hw.bce.rx_quick_cons_trip! Setting default of %d.\n", 978 __FILE__, __LINE__, bce_rx_quick_cons_trip, 979 DEFAULT_RX_QUICK_CONS_TRIP); 980 sc->bce_rx_quick_cons_trip = 981 DEFAULT_RX_QUICK_CONS_TRIP; 982 } 983 984 /* 985 * Validate the RX ticks count (i.e. the maximum amount 986 * of time to wait after the last RX frame has been 987 * received before a status block update is generated 988 * and an interrupt is asserted. 989 */ 990 if (bce_rx_ticks_int <= 100) { 991 sc->bce_rx_ticks_int = bce_rx_ticks_int; 992 } else { 993 BCE_PRINTF("%s(%d): Illegal value (%d) specified for " 994 "hw.bce.rx_ticks_int! Setting default of %d.\n", 995 __FILE__, __LINE__, bce_rx_ticks_int, 996 DEFAULT_RX_TICKS_INT); 997 sc->bce_rx_ticks_int = DEFAULT_RX_TICKS_INT; 998 } 999 1000 if (bce_rx_ticks <= 100) { 1001 sc->bce_rx_ticks = bce_rx_ticks; 1002 } else { 1003 BCE_PRINTF("%s(%d): Illegal value (%d) specified for " 1004 "hw.bce.rx_ticks! Setting default of %d.\n", 1005 __FILE__, __LINE__, bce_rx_ticks, 1006 DEFAULT_RX_TICKS); 1007 sc->bce_rx_ticks = DEFAULT_RX_TICKS; 1008 } 1009 1010 /* Disabling both RX ticks and RX trips will prevent interrupts. */ 1011 if ((bce_rx_quick_cons_trip == 0) && (bce_rx_ticks == 0)) { 1012 BCE_PRINTF("%s(%d): Cannot set both hw.bce.rx_ticks and " 1013 "hw.bce.rx_quick_cons_trip to 0. Setting default values.\n", 1014 __FILE__, __LINE__); 1015 sc->bce_rx_ticks = DEFAULT_RX_TICKS; 1016 sc->bce_rx_quick_cons_trip = DEFAULT_RX_QUICK_CONS_TRIP; 1017 } 1018 1019 /* Disabling both TX ticks and TX trips will prevent interrupts. */ 1020 if ((bce_tx_quick_cons_trip == 0) && (bce_tx_ticks == 0)) { 1021 BCE_PRINTF("%s(%d): Cannot set both hw.bce.tx_ticks and " 1022 "hw.bce.tx_quick_cons_trip to 0. Setting default values.\n", 1023 __FILE__, __LINE__); 1024 sc->bce_tx_ticks = DEFAULT_TX_TICKS; 1025 sc->bce_tx_quick_cons_trip = DEFAULT_TX_QUICK_CONS_TRIP; 1026 } 1027 } 1028 1029 /****************************************************************************/ 1030 /* Device attach function. */ 1031 /* */ 1032 /* Allocates device resources, performs secondary chip identification, */ 1033 /* resets and initializes the hardware, and initializes driver instance */ 1034 /* variables. */ 1035 /* */ 1036 /* Returns: */ 1037 /* 0 on success, positive value on failure. */ 1038 /****************************************************************************/ 1039 static int 1040 bce_attach(device_t dev) 1041 { 1042 struct bce_softc *sc; 1043 if_t ifp; 1044 u32 val; 1045 int count, error, rc = 0, rid; 1046 1047 sc = device_get_softc(dev); 1048 sc->bce_dev = dev; 1049 1050 DBENTER(BCE_VERBOSE_LOAD | BCE_VERBOSE_RESET); 1051 1052 sc->bce_unit = device_get_unit(dev); 1053 1054 /* Set initial device and PHY flags */ 1055 sc->bce_flags = 0; 1056 sc->bce_phy_flags = 0; 1057 1058 bce_set_tunables(sc); 1059 1060 pci_enable_busmaster(dev); 1061 1062 /* Allocate PCI memory resources. */ 1063 rid = PCIR_BAR(0); 1064 sc->bce_res_mem = bus_alloc_resource_any(dev, SYS_RES_MEMORY, 1065 &rid, RF_ACTIVE); 1066 1067 if (sc->bce_res_mem == NULL) { 1068 BCE_PRINTF("%s(%d): PCI memory allocation failed\n", 1069 __FILE__, __LINE__); 1070 rc = ENXIO; 1071 goto bce_attach_fail; 1072 } 1073 1074 /* Get various resource handles. */ 1075 sc->bce_btag = rman_get_bustag(sc->bce_res_mem); 1076 sc->bce_bhandle = rman_get_bushandle(sc->bce_res_mem); 1077 sc->bce_vhandle = (vm_offset_t) rman_get_virtual(sc->bce_res_mem); 1078 1079 bce_probe_pci_caps(dev, sc); 1080 1081 rid = 1; 1082 count = 0; 1083 #if 0 1084 /* Try allocating MSI-X interrupts. */ 1085 if ((sc->bce_cap_flags & BCE_MSIX_CAPABLE_FLAG) && 1086 (bce_msi_enable >= 2) && 1087 ((sc->bce_res_irq = bus_alloc_resource_any(dev, SYS_RES_MEMORY, 1088 &rid, RF_ACTIVE)) != NULL)) { 1089 msi_needed = count = 1; 1090 1091 if (((error = pci_alloc_msix(dev, &count)) != 0) || 1092 (count != msi_needed)) { 1093 BCE_PRINTF("%s(%d): MSI-X allocation failed! Requested = %d," 1094 "Received = %d, error = %d\n", __FILE__, __LINE__, 1095 msi_needed, count, error); 1096 count = 0; 1097 pci_release_msi(dev); 1098 bus_release_resource(dev, SYS_RES_MEMORY, rid, 1099 sc->bce_res_irq); 1100 sc->bce_res_irq = NULL; 1101 } else { 1102 DBPRINT(sc, BCE_INFO_LOAD, "%s(): Using MSI-X interrupt.\n", 1103 __FUNCTION__); 1104 sc->bce_flags |= BCE_USING_MSIX_FLAG; 1105 } 1106 } 1107 #endif 1108 1109 /* Try allocating a MSI interrupt. */ 1110 if ((sc->bce_cap_flags & BCE_MSI_CAPABLE_FLAG) && 1111 (bce_msi_enable >= 1) && (count == 0)) { 1112 count = 1; 1113 if ((error = pci_alloc_msi(dev, &count)) != 0) { 1114 BCE_PRINTF("%s(%d): MSI allocation failed! " 1115 "error = %d\n", __FILE__, __LINE__, error); 1116 count = 0; 1117 pci_release_msi(dev); 1118 } else { 1119 DBPRINT(sc, BCE_INFO_LOAD, "%s(): Using MSI " 1120 "interrupt.\n", __FUNCTION__); 1121 sc->bce_flags |= BCE_USING_MSI_FLAG; 1122 if (BCE_CHIP_NUM(sc) == BCE_CHIP_NUM_5709) 1123 sc->bce_flags |= BCE_ONE_SHOT_MSI_FLAG; 1124 rid = 1; 1125 } 1126 } 1127 1128 /* Try allocating a legacy interrupt. */ 1129 if (count == 0) { 1130 DBPRINT(sc, BCE_INFO_LOAD, "%s(): Using INTx interrupt.\n", 1131 __FUNCTION__); 1132 rid = 0; 1133 } 1134 1135 sc->bce_res_irq = bus_alloc_resource_any(dev, SYS_RES_IRQ, 1136 &rid, RF_ACTIVE | (count != 0 ? 0 : RF_SHAREABLE)); 1137 1138 /* Report any IRQ allocation errors. */ 1139 if (sc->bce_res_irq == NULL) { 1140 BCE_PRINTF("%s(%d): PCI map interrupt failed!\n", 1141 __FILE__, __LINE__); 1142 rc = ENXIO; 1143 goto bce_attach_fail; 1144 } 1145 1146 /* Initialize mutex for the current device instance. */ 1147 BCE_LOCK_INIT(sc, device_get_nameunit(dev)); 1148 1149 /* 1150 * Configure byte swap and enable indirect register access. 1151 * Rely on CPU to do target byte swapping on big endian systems. 1152 * Access to registers outside of PCI configurtion space are not 1153 * valid until this is done. 1154 */ 1155 pci_write_config(dev, BCE_PCICFG_MISC_CONFIG, 1156 BCE_PCICFG_MISC_CONFIG_REG_WINDOW_ENA | 1157 BCE_PCICFG_MISC_CONFIG_TARGET_MB_WORD_SWAP, 4); 1158 1159 /* Save ASIC revsion info. */ 1160 sc->bce_chipid = REG_RD(sc, BCE_MISC_ID); 1161 1162 /* Weed out any non-production controller revisions. */ 1163 switch(BCE_CHIP_ID(sc)) { 1164 case BCE_CHIP_ID_5706_A0: 1165 case BCE_CHIP_ID_5706_A1: 1166 case BCE_CHIP_ID_5708_A0: 1167 case BCE_CHIP_ID_5708_B0: 1168 case BCE_CHIP_ID_5709_A0: 1169 case BCE_CHIP_ID_5709_B0: 1170 case BCE_CHIP_ID_5709_B1: 1171 case BCE_CHIP_ID_5709_B2: 1172 BCE_PRINTF("%s(%d): Unsupported controller " 1173 "revision (%c%d)!\n", __FILE__, __LINE__, 1174 (((pci_read_config(dev, PCIR_REVID, 4) & 1175 0xf0) >> 4) + 'A'), (pci_read_config(dev, 1176 PCIR_REVID, 4) & 0xf)); 1177 rc = ENODEV; 1178 goto bce_attach_fail; 1179 } 1180 1181 /* 1182 * The embedded PCIe to PCI-X bridge (EPB) 1183 * in the 5708 cannot address memory above 1184 * 40 bits (E7_5708CB1_23043 & E6_5708SB1_23043). 1185 */ 1186 if (BCE_CHIP_NUM(sc) == BCE_CHIP_NUM_5708) 1187 sc->max_bus_addr = BCE_BUS_SPACE_MAXADDR; 1188 else 1189 sc->max_bus_addr = BUS_SPACE_MAXADDR; 1190 1191 /* 1192 * Find the base address for shared memory access. 1193 * Newer versions of bootcode use a signature and offset 1194 * while older versions use a fixed address. 1195 */ 1196 val = REG_RD_IND(sc, BCE_SHM_HDR_SIGNATURE); 1197 if ((val & BCE_SHM_HDR_SIGNATURE_SIG_MASK) == BCE_SHM_HDR_SIGNATURE_SIG) 1198 /* Multi-port devices use different offsets in shared memory. */ 1199 sc->bce_shmem_base = REG_RD_IND(sc, BCE_SHM_HDR_ADDR_0 + 1200 (pci_get_function(sc->bce_dev) << 2)); 1201 else 1202 sc->bce_shmem_base = HOST_VIEW_SHMEM_BASE; 1203 1204 DBPRINT(sc, BCE_VERBOSE_FIRMWARE, "%s(): bce_shmem_base = 0x%08X\n", 1205 __FUNCTION__, sc->bce_shmem_base); 1206 1207 /* Fetch the bootcode revision. */ 1208 val = bce_shmem_rd(sc, BCE_DEV_INFO_BC_REV); 1209 for (int i = 0, j = 0; i < 3; i++) { 1210 u8 num; 1211 1212 num = (u8) (val >> (24 - (i * 8))); 1213 for (int k = 100, skip0 = 1; k >= 1; num %= k, k /= 10) { 1214 if (num >= k || !skip0 || k == 1) { 1215 sc->bce_bc_ver[j++] = (num / k) + '0'; 1216 skip0 = 0; 1217 } 1218 } 1219 1220 if (i != 2) 1221 sc->bce_bc_ver[j++] = '.'; 1222 } 1223 1224 /* Check if any management firwmare is enabled. */ 1225 val = bce_shmem_rd(sc, BCE_PORT_FEATURE); 1226 if (val & BCE_PORT_FEATURE_ASF_ENABLED) { 1227 sc->bce_flags |= BCE_MFW_ENABLE_FLAG; 1228 1229 /* Allow time for firmware to enter the running state. */ 1230 for (int i = 0; i < 30; i++) { 1231 val = bce_shmem_rd(sc, BCE_BC_STATE_CONDITION); 1232 if (val & BCE_CONDITION_MFW_RUN_MASK) 1233 break; 1234 DELAY(10000); 1235 } 1236 1237 /* Check if management firmware is running. */ 1238 val = bce_shmem_rd(sc, BCE_BC_STATE_CONDITION); 1239 val &= BCE_CONDITION_MFW_RUN_MASK; 1240 if ((val != BCE_CONDITION_MFW_RUN_UNKNOWN) && 1241 (val != BCE_CONDITION_MFW_RUN_NONE)) { 1242 u32 addr = bce_shmem_rd(sc, BCE_MFW_VER_PTR); 1243 int i = 0; 1244 1245 /* Read the management firmware version string. */ 1246 for (int j = 0; j < 3; j++) { 1247 val = bce_reg_rd_ind(sc, addr + j * 4); 1248 val = bswap32(val); 1249 memcpy(&sc->bce_mfw_ver[i], &val, 4); 1250 i += 4; 1251 } 1252 } else { 1253 /* May cause firmware synchronization timeouts. */ 1254 BCE_PRINTF("%s(%d): Management firmware enabled " 1255 "but not running!\n", __FILE__, __LINE__); 1256 strcpy(sc->bce_mfw_ver, "NOT RUNNING!"); 1257 1258 /* ToDo: Any action the driver should take? */ 1259 } 1260 } 1261 1262 /* Get PCI bus information (speed and type). */ 1263 val = REG_RD(sc, BCE_PCICFG_MISC_STATUS); 1264 if (val & BCE_PCICFG_MISC_STATUS_PCIX_DET) { 1265 u32 clkreg; 1266 1267 sc->bce_flags |= BCE_PCIX_FLAG; 1268 1269 clkreg = REG_RD(sc, BCE_PCICFG_PCI_CLOCK_CONTROL_BITS); 1270 1271 clkreg &= BCE_PCICFG_PCI_CLOCK_CONTROL_BITS_PCI_CLK_SPD_DET; 1272 switch (clkreg) { 1273 case BCE_PCICFG_PCI_CLOCK_CONTROL_BITS_PCI_CLK_SPD_DET_133MHZ: 1274 sc->bus_speed_mhz = 133; 1275 break; 1276 1277 case BCE_PCICFG_PCI_CLOCK_CONTROL_BITS_PCI_CLK_SPD_DET_95MHZ: 1278 sc->bus_speed_mhz = 100; 1279 break; 1280 1281 case BCE_PCICFG_PCI_CLOCK_CONTROL_BITS_PCI_CLK_SPD_DET_66MHZ: 1282 case BCE_PCICFG_PCI_CLOCK_CONTROL_BITS_PCI_CLK_SPD_DET_80MHZ: 1283 sc->bus_speed_mhz = 66; 1284 break; 1285 1286 case BCE_PCICFG_PCI_CLOCK_CONTROL_BITS_PCI_CLK_SPD_DET_48MHZ: 1287 case BCE_PCICFG_PCI_CLOCK_CONTROL_BITS_PCI_CLK_SPD_DET_55MHZ: 1288 sc->bus_speed_mhz = 50; 1289 break; 1290 1291 case BCE_PCICFG_PCI_CLOCK_CONTROL_BITS_PCI_CLK_SPD_DET_LOW: 1292 case BCE_PCICFG_PCI_CLOCK_CONTROL_BITS_PCI_CLK_SPD_DET_32MHZ: 1293 case BCE_PCICFG_PCI_CLOCK_CONTROL_BITS_PCI_CLK_SPD_DET_38MHZ: 1294 sc->bus_speed_mhz = 33; 1295 break; 1296 } 1297 } else { 1298 if (val & BCE_PCICFG_MISC_STATUS_M66EN) 1299 sc->bus_speed_mhz = 66; 1300 else 1301 sc->bus_speed_mhz = 33; 1302 } 1303 1304 if (val & BCE_PCICFG_MISC_STATUS_32BIT_DET) 1305 sc->bce_flags |= BCE_PCI_32BIT_FLAG; 1306 1307 /* Find the media type for the adapter. */ 1308 bce_get_media(sc); 1309 1310 /* Reset controller and announce to bootcode that driver is present. */ 1311 if (bce_reset(sc, BCE_DRV_MSG_CODE_RESET)) { 1312 BCE_PRINTF("%s(%d): Controller reset failed!\n", 1313 __FILE__, __LINE__); 1314 rc = ENXIO; 1315 goto bce_attach_fail; 1316 } 1317 1318 /* Initialize the controller. */ 1319 if (bce_chipinit(sc)) { 1320 BCE_PRINTF("%s(%d): Controller initialization failed!\n", 1321 __FILE__, __LINE__); 1322 rc = ENXIO; 1323 goto bce_attach_fail; 1324 } 1325 1326 /* Perform NVRAM test. */ 1327 if (bce_nvram_test(sc)) { 1328 BCE_PRINTF("%s(%d): NVRAM test failed!\n", 1329 __FILE__, __LINE__); 1330 rc = ENXIO; 1331 goto bce_attach_fail; 1332 } 1333 1334 /* Fetch the permanent Ethernet MAC address. */ 1335 bce_get_mac_addr(sc); 1336 1337 /* Update statistics once every second. */ 1338 sc->bce_stats_ticks = 1000000 & 0xffff00; 1339 1340 /* Store data needed by PHY driver for backplane applications */ 1341 sc->bce_shared_hw_cfg = bce_shmem_rd(sc, BCE_SHARED_HW_CFG_CONFIG); 1342 sc->bce_port_hw_cfg = bce_shmem_rd(sc, BCE_PORT_HW_CFG_CONFIG); 1343 1344 /* Allocate DMA memory resources. */ 1345 if (bce_dma_alloc(dev)) { 1346 BCE_PRINTF("%s(%d): DMA resource allocation failed!\n", 1347 __FILE__, __LINE__); 1348 rc = ENXIO; 1349 goto bce_attach_fail; 1350 } 1351 1352 /* Allocate an ifnet structure. */ 1353 ifp = sc->bce_ifp = if_alloc(IFT_ETHER); 1354 1355 /* Initialize the ifnet interface. */ 1356 if_setsoftc(ifp, sc); 1357 if_initname(ifp, device_get_name(dev), device_get_unit(dev)); 1358 if_setflags(ifp, IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST); 1359 if_setioctlfn(ifp, bce_ioctl); 1360 if_setstartfn(ifp, bce_start); 1361 if_setgetcounterfn(ifp, bce_get_counter); 1362 if_setinitfn(ifp, bce_init); 1363 if_setmtu(ifp, ETHERMTU); 1364 1365 if (bce_tso_enable) { 1366 if_sethwassist(ifp, BCE_IF_HWASSIST | CSUM_TSO); 1367 if_setcapabilities(ifp, BCE_IF_CAPABILITIES | IFCAP_TSO4 | 1368 IFCAP_VLAN_HWTSO); 1369 } else { 1370 if_sethwassist(ifp, BCE_IF_HWASSIST); 1371 if_setcapabilities(ifp, BCE_IF_CAPABILITIES); 1372 } 1373 1374 if ((sc->bce_phy_flags & BCE_PHY_REMOTE_CAP_FLAG) != 0) 1375 if_setcapabilitiesbit(ifp, IFCAP_LINKSTATE, 0); 1376 1377 if_setcapenable(ifp, if_getcapabilities(ifp)); 1378 1379 /* 1380 * Assume standard mbuf sizes for buffer allocation. 1381 * This may change later if the MTU size is set to 1382 * something other than 1500. 1383 */ 1384 bce_get_rx_buffer_sizes(sc, 1385 (ETHER_MAX_LEN - ETHER_HDR_LEN - ETHER_CRC_LEN)); 1386 1387 /* Recalculate our buffer allocation sizes. */ 1388 if_setsendqlen(ifp, USABLE_TX_BD_ALLOC); 1389 if_setsendqready(ifp); 1390 1391 if (sc->bce_phy_flags & BCE_PHY_2_5G_CAPABLE_FLAG) 1392 if_setbaudrate(ifp, IF_Mbps(2500ULL)); 1393 else 1394 if_setbaudrate(ifp, IF_Mbps(1000)); 1395 1396 /* Handle any special PHY initialization for SerDes PHYs. */ 1397 bce_init_media(sc); 1398 1399 if ((sc->bce_phy_flags & BCE_PHY_REMOTE_CAP_FLAG) != 0) { 1400 ifmedia_init(&sc->bce_ifmedia, IFM_IMASK, bce_ifmedia_upd, 1401 bce_ifmedia_sts); 1402 /* 1403 * We can't manually override remote PHY's link and assume 1404 * PHY port configuration(Fiber or TP) is not changed after 1405 * device attach. This may not be correct though. 1406 */ 1407 if ((sc->bce_phy_flags & BCE_PHY_REMOTE_PORT_FIBER_FLAG) != 0) { 1408 if (sc->bce_phy_flags & BCE_PHY_2_5G_CAPABLE_FLAG) { 1409 ifmedia_add(&sc->bce_ifmedia, 1410 IFM_ETHER | IFM_2500_SX, 0, NULL); 1411 ifmedia_add(&sc->bce_ifmedia, 1412 IFM_ETHER | IFM_2500_SX | IFM_FDX, 0, NULL); 1413 } 1414 ifmedia_add(&sc->bce_ifmedia, 1415 IFM_ETHER | IFM_1000_SX, 0, NULL); 1416 ifmedia_add(&sc->bce_ifmedia, 1417 IFM_ETHER | IFM_1000_SX | IFM_FDX, 0, NULL); 1418 } else { 1419 ifmedia_add(&sc->bce_ifmedia, 1420 IFM_ETHER | IFM_10_T, 0, NULL); 1421 ifmedia_add(&sc->bce_ifmedia, 1422 IFM_ETHER | IFM_10_T | IFM_FDX, 0, NULL); 1423 ifmedia_add(&sc->bce_ifmedia, 1424 IFM_ETHER | IFM_100_TX, 0, NULL); 1425 ifmedia_add(&sc->bce_ifmedia, 1426 IFM_ETHER | IFM_100_TX | IFM_FDX, 0, NULL); 1427 ifmedia_add(&sc->bce_ifmedia, 1428 IFM_ETHER | IFM_1000_T, 0, NULL); 1429 ifmedia_add(&sc->bce_ifmedia, 1430 IFM_ETHER | IFM_1000_T | IFM_FDX, 0, NULL); 1431 } 1432 ifmedia_add(&sc->bce_ifmedia, IFM_ETHER | IFM_AUTO, 0, NULL); 1433 ifmedia_set(&sc->bce_ifmedia, IFM_ETHER | IFM_AUTO); 1434 sc->bce_ifmedia.ifm_media = sc->bce_ifmedia.ifm_cur->ifm_media; 1435 } else { 1436 /* MII child bus by attaching the PHY. */ 1437 rc = mii_attach(dev, &sc->bce_miibus, ifp, bce_ifmedia_upd, 1438 bce_ifmedia_sts, BMSR_DEFCAPMASK, sc->bce_phy_addr, 1439 MII_OFFSET_ANY, MIIF_DOPAUSE); 1440 if (rc != 0) { 1441 BCE_PRINTF("%s(%d): attaching PHYs failed\n", __FILE__, 1442 __LINE__); 1443 goto bce_attach_fail; 1444 } 1445 } 1446 1447 /* Attach to the Ethernet interface list. */ 1448 ether_ifattach(ifp, sc->eaddr); 1449 1450 callout_init_mtx(&sc->bce_tick_callout, &sc->bce_mtx, 0); 1451 callout_init_mtx(&sc->bce_pulse_callout, &sc->bce_mtx, 0); 1452 1453 /* Hookup IRQ last. */ 1454 rc = bus_setup_intr(dev, sc->bce_res_irq, INTR_TYPE_NET | INTR_MPSAFE, 1455 NULL, bce_intr, sc, &sc->bce_intrhand); 1456 1457 if (rc) { 1458 BCE_PRINTF("%s(%d): Failed to setup IRQ!\n", 1459 __FILE__, __LINE__); 1460 bce_detach(dev); 1461 goto bce_attach_exit; 1462 } 1463 1464 /* 1465 * At this point we've acquired all the resources 1466 * we need to run so there's no turning back, we're 1467 * cleared for launch. 1468 */ 1469 1470 /* Print some important debugging info. */ 1471 DBRUNMSG(BCE_INFO, bce_dump_driver_state(sc)); 1472 1473 /* Add the supported sysctls to the kernel. */ 1474 bce_add_sysctls(sc); 1475 1476 BCE_LOCK(sc); 1477 1478 /* 1479 * The chip reset earlier notified the bootcode that 1480 * a driver is present. We now need to start our pulse 1481 * routine so that the bootcode is reminded that we're 1482 * still running. 1483 */ 1484 bce_pulse(sc); 1485 1486 bce_mgmt_init_locked(sc); 1487 BCE_UNLOCK(sc); 1488 1489 /* Finally, print some useful adapter info */ 1490 bce_print_adapter_info(sc); 1491 DBPRINT(sc, BCE_FATAL, "%s(): sc = %p\n", 1492 __FUNCTION__, sc); 1493 1494 goto bce_attach_exit; 1495 1496 bce_attach_fail: 1497 bce_release_resources(sc); 1498 1499 bce_attach_exit: 1500 1501 DBEXIT(BCE_VERBOSE_LOAD | BCE_VERBOSE_RESET); 1502 1503 return(rc); 1504 } 1505 1506 /****************************************************************************/ 1507 /* Device detach function. */ 1508 /* */ 1509 /* Stops the controller, resets the controller, and releases resources. */ 1510 /* */ 1511 /* Returns: */ 1512 /* 0 on success, positive value on failure. */ 1513 /****************************************************************************/ 1514 static int 1515 bce_detach(device_t dev) 1516 { 1517 struct bce_softc *sc = device_get_softc(dev); 1518 if_t ifp; 1519 u32 msg; 1520 1521 DBENTER(BCE_VERBOSE_UNLOAD | BCE_VERBOSE_RESET); 1522 1523 ifp = sc->bce_ifp; 1524 1525 /* Stop and reset the controller. */ 1526 BCE_LOCK(sc); 1527 1528 /* Stop the pulse so the bootcode can go to driver absent state. */ 1529 callout_stop(&sc->bce_pulse_callout); 1530 1531 bce_stop(sc); 1532 if (sc->bce_flags & BCE_NO_WOL_FLAG) 1533 msg = BCE_DRV_MSG_CODE_UNLOAD_LNK_DN; 1534 else 1535 msg = BCE_DRV_MSG_CODE_UNLOAD; 1536 bce_reset(sc, msg); 1537 1538 BCE_UNLOCK(sc); 1539 1540 ether_ifdetach(ifp); 1541 1542 /* If we have a child device on the MII bus remove it too. */ 1543 if ((sc->bce_phy_flags & BCE_PHY_REMOTE_CAP_FLAG) != 0) 1544 ifmedia_removeall(&sc->bce_ifmedia); 1545 else { 1546 bus_generic_detach(dev); 1547 } 1548 1549 /* Release all remaining resources. */ 1550 bce_release_resources(sc); 1551 1552 DBEXIT(BCE_VERBOSE_UNLOAD | BCE_VERBOSE_RESET); 1553 1554 return(0); 1555 } 1556 1557 /****************************************************************************/ 1558 /* Device shutdown function. */ 1559 /* */ 1560 /* Stops and resets the controller. */ 1561 /* */ 1562 /* Returns: */ 1563 /* 0 on success, positive value on failure. */ 1564 /****************************************************************************/ 1565 static int 1566 bce_shutdown(device_t dev) 1567 { 1568 struct bce_softc *sc = device_get_softc(dev); 1569 u32 msg; 1570 1571 DBENTER(BCE_VERBOSE); 1572 1573 BCE_LOCK(sc); 1574 bce_stop(sc); 1575 if (sc->bce_flags & BCE_NO_WOL_FLAG) 1576 msg = BCE_DRV_MSG_CODE_UNLOAD_LNK_DN; 1577 else 1578 msg = BCE_DRV_MSG_CODE_UNLOAD; 1579 bce_reset(sc, msg); 1580 BCE_UNLOCK(sc); 1581 1582 DBEXIT(BCE_VERBOSE); 1583 1584 return (0); 1585 } 1586 1587 #ifdef BCE_DEBUG 1588 /****************************************************************************/ 1589 /* Register read. */ 1590 /* */ 1591 /* Returns: */ 1592 /* The value of the register. */ 1593 /****************************************************************************/ 1594 static u32 1595 bce_reg_rd(struct bce_softc *sc, u32 offset) 1596 { 1597 u32 val = REG_RD(sc, offset); 1598 DBPRINT(sc, BCE_INSANE_REG, "%s(); offset = 0x%08X, val = 0x%08X\n", 1599 __FUNCTION__, offset, val); 1600 return val; 1601 } 1602 1603 /****************************************************************************/ 1604 /* Register write (16 bit). */ 1605 /* */ 1606 /* Returns: */ 1607 /* Nothing. */ 1608 /****************************************************************************/ 1609 static void 1610 bce_reg_wr16(struct bce_softc *sc, u32 offset, u16 val) 1611 { 1612 DBPRINT(sc, BCE_INSANE_REG, "%s(); offset = 0x%08X, val = 0x%04X\n", 1613 __FUNCTION__, offset, val); 1614 REG_WR16(sc, offset, val); 1615 } 1616 1617 /****************************************************************************/ 1618 /* Register write. */ 1619 /* */ 1620 /* Returns: */ 1621 /* Nothing. */ 1622 /****************************************************************************/ 1623 static void 1624 bce_reg_wr(struct bce_softc *sc, u32 offset, u32 val) 1625 { 1626 DBPRINT(sc, BCE_INSANE_REG, "%s(); offset = 0x%08X, val = 0x%08X\n", 1627 __FUNCTION__, offset, val); 1628 REG_WR(sc, offset, val); 1629 } 1630 #endif 1631 1632 /****************************************************************************/ 1633 /* Indirect register read. */ 1634 /* */ 1635 /* Reads NetXtreme II registers using an index/data register pair in PCI */ 1636 /* configuration space. Using this mechanism avoids issues with posted */ 1637 /* reads but is much slower than memory-mapped I/O. */ 1638 /* */ 1639 /* Returns: */ 1640 /* The value of the register. */ 1641 /****************************************************************************/ 1642 static u32 1643 bce_reg_rd_ind(struct bce_softc *sc, u32 offset) 1644 { 1645 device_t dev; 1646 dev = sc->bce_dev; 1647 1648 pci_write_config(dev, BCE_PCICFG_REG_WINDOW_ADDRESS, offset, 4); 1649 #ifdef BCE_DEBUG 1650 { 1651 u32 val; 1652 val = pci_read_config(dev, BCE_PCICFG_REG_WINDOW, 4); 1653 DBPRINT(sc, BCE_INSANE_REG, "%s(); offset = 0x%08X, val = 0x%08X\n", 1654 __FUNCTION__, offset, val); 1655 return val; 1656 } 1657 #else 1658 return pci_read_config(dev, BCE_PCICFG_REG_WINDOW, 4); 1659 #endif 1660 } 1661 1662 /****************************************************************************/ 1663 /* Indirect register write. */ 1664 /* */ 1665 /* Writes NetXtreme II registers using an index/data register pair in PCI */ 1666 /* configuration space. Using this mechanism avoids issues with posted */ 1667 /* writes but is muchh slower than memory-mapped I/O. */ 1668 /* */ 1669 /* Returns: */ 1670 /* Nothing. */ 1671 /****************************************************************************/ 1672 static void 1673 bce_reg_wr_ind(struct bce_softc *sc, u32 offset, u32 val) 1674 { 1675 device_t dev; 1676 dev = sc->bce_dev; 1677 1678 DBPRINT(sc, BCE_INSANE_REG, "%s(); offset = 0x%08X, val = 0x%08X\n", 1679 __FUNCTION__, offset, val); 1680 1681 pci_write_config(dev, BCE_PCICFG_REG_WINDOW_ADDRESS, offset, 4); 1682 pci_write_config(dev, BCE_PCICFG_REG_WINDOW, val, 4); 1683 } 1684 1685 /****************************************************************************/ 1686 /* Shared memory write. */ 1687 /* */ 1688 /* Writes NetXtreme II shared memory region. */ 1689 /* */ 1690 /* Returns: */ 1691 /* Nothing. */ 1692 /****************************************************************************/ 1693 static void 1694 bce_shmem_wr(struct bce_softc *sc, u32 offset, u32 val) 1695 { 1696 DBPRINT(sc, BCE_VERBOSE_FIRMWARE, "%s(): Writing 0x%08X to " 1697 "0x%08X\n", __FUNCTION__, val, offset); 1698 1699 bce_reg_wr_ind(sc, sc->bce_shmem_base + offset, val); 1700 } 1701 1702 /****************************************************************************/ 1703 /* Shared memory read. */ 1704 /* */ 1705 /* Reads NetXtreme II shared memory region. */ 1706 /* */ 1707 /* Returns: */ 1708 /* The 32 bit value read. */ 1709 /****************************************************************************/ 1710 static u32 1711 bce_shmem_rd(struct bce_softc *sc, u32 offset) 1712 { 1713 u32 val = bce_reg_rd_ind(sc, sc->bce_shmem_base + offset); 1714 1715 DBPRINT(sc, BCE_VERBOSE_FIRMWARE, "%s(): Reading 0x%08X from " 1716 "0x%08X\n", __FUNCTION__, val, offset); 1717 1718 return val; 1719 } 1720 1721 #ifdef BCE_DEBUG 1722 /****************************************************************************/ 1723 /* Context memory read. */ 1724 /* */ 1725 /* The NetXtreme II controller uses context memory to track connection */ 1726 /* information for L2 and higher network protocols. */ 1727 /* */ 1728 /* Returns: */ 1729 /* The requested 32 bit value of context memory. */ 1730 /****************************************************************************/ 1731 static u32 1732 bce_ctx_rd(struct bce_softc *sc, u32 cid_addr, u32 ctx_offset) 1733 { 1734 u32 idx, offset, retry_cnt = 5, val; 1735 1736 DBRUNIF((cid_addr > MAX_CID_ADDR || ctx_offset & 0x3 || 1737 cid_addr & CTX_MASK), BCE_PRINTF("%s(): Invalid CID " 1738 "address: 0x%08X.\n", __FUNCTION__, cid_addr)); 1739 1740 offset = ctx_offset + cid_addr; 1741 1742 if (BCE_CHIP_NUM(sc) == BCE_CHIP_NUM_5709) { 1743 REG_WR(sc, BCE_CTX_CTX_CTRL, (offset | BCE_CTX_CTX_CTRL_READ_REQ)); 1744 1745 for (idx = 0; idx < retry_cnt; idx++) { 1746 val = REG_RD(sc, BCE_CTX_CTX_CTRL); 1747 if ((val & BCE_CTX_CTX_CTRL_READ_REQ) == 0) 1748 break; 1749 DELAY(5); 1750 } 1751 1752 if (val & BCE_CTX_CTX_CTRL_READ_REQ) 1753 BCE_PRINTF("%s(%d); Unable to read CTX memory: " 1754 "cid_addr = 0x%08X, offset = 0x%08X!\n", 1755 __FILE__, __LINE__, cid_addr, ctx_offset); 1756 1757 val = REG_RD(sc, BCE_CTX_CTX_DATA); 1758 } else { 1759 REG_WR(sc, BCE_CTX_DATA_ADR, offset); 1760 val = REG_RD(sc, BCE_CTX_DATA); 1761 } 1762 1763 DBPRINT(sc, BCE_EXTREME_CTX, "%s(); cid_addr = 0x%08X, offset = 0x%08X, " 1764 "val = 0x%08X\n", __FUNCTION__, cid_addr, ctx_offset, val); 1765 1766 return(val); 1767 } 1768 #endif 1769 1770 /****************************************************************************/ 1771 /* Context memory write. */ 1772 /* */ 1773 /* The NetXtreme II controller uses context memory to track connection */ 1774 /* information for L2 and higher network protocols. */ 1775 /* */ 1776 /* Returns: */ 1777 /* Nothing. */ 1778 /****************************************************************************/ 1779 static void 1780 bce_ctx_wr(struct bce_softc *sc, u32 cid_addr, u32 ctx_offset, u32 ctx_val) 1781 { 1782 u32 idx, offset = ctx_offset + cid_addr; 1783 u32 val, retry_cnt = 5; 1784 1785 DBPRINT(sc, BCE_EXTREME_CTX, "%s(); cid_addr = 0x%08X, offset = 0x%08X, " 1786 "val = 0x%08X\n", __FUNCTION__, cid_addr, ctx_offset, ctx_val); 1787 1788 DBRUNIF((cid_addr > MAX_CID_ADDR || ctx_offset & 0x3 || cid_addr & CTX_MASK), 1789 BCE_PRINTF("%s(): Invalid CID address: 0x%08X.\n", 1790 __FUNCTION__, cid_addr)); 1791 1792 if (BCE_CHIP_NUM(sc) == BCE_CHIP_NUM_5709) { 1793 REG_WR(sc, BCE_CTX_CTX_DATA, ctx_val); 1794 REG_WR(sc, BCE_CTX_CTX_CTRL, (offset | BCE_CTX_CTX_CTRL_WRITE_REQ)); 1795 1796 for (idx = 0; idx < retry_cnt; idx++) { 1797 val = REG_RD(sc, BCE_CTX_CTX_CTRL); 1798 if ((val & BCE_CTX_CTX_CTRL_WRITE_REQ) == 0) 1799 break; 1800 DELAY(5); 1801 } 1802 1803 if (val & BCE_CTX_CTX_CTRL_WRITE_REQ) 1804 BCE_PRINTF("%s(%d); Unable to write CTX memory: " 1805 "cid_addr = 0x%08X, offset = 0x%08X!\n", 1806 __FILE__, __LINE__, cid_addr, ctx_offset); 1807 1808 } else { 1809 REG_WR(sc, BCE_CTX_DATA_ADR, offset); 1810 REG_WR(sc, BCE_CTX_DATA, ctx_val); 1811 } 1812 } 1813 1814 /****************************************************************************/ 1815 /* PHY register read. */ 1816 /* */ 1817 /* Implements register reads on the MII bus. */ 1818 /* */ 1819 /* Returns: */ 1820 /* The value of the register. */ 1821 /****************************************************************************/ 1822 static int 1823 bce_miibus_read_reg(device_t dev, int phy, int reg) 1824 { 1825 struct bce_softc *sc; 1826 u32 val; 1827 int i; 1828 1829 sc = device_get_softc(dev); 1830 1831 /* 1832 * The 5709S PHY is an IEEE Clause 45 PHY 1833 * with special mappings to work with IEEE 1834 * Clause 22 register accesses. 1835 */ 1836 if ((sc->bce_phy_flags & BCE_PHY_IEEE_CLAUSE_45_FLAG) != 0) { 1837 if (reg >= MII_BMCR && reg <= MII_ANLPRNP) 1838 reg += 0x10; 1839 } 1840 1841 if (sc->bce_phy_flags & BCE_PHY_INT_MODE_AUTO_POLLING_FLAG) { 1842 val = REG_RD(sc, BCE_EMAC_MDIO_MODE); 1843 val &= ~BCE_EMAC_MDIO_MODE_AUTO_POLL; 1844 1845 REG_WR(sc, BCE_EMAC_MDIO_MODE, val); 1846 REG_RD(sc, BCE_EMAC_MDIO_MODE); 1847 1848 DELAY(40); 1849 } 1850 1851 val = BCE_MIPHY(phy) | BCE_MIREG(reg) | 1852 BCE_EMAC_MDIO_COMM_COMMAND_READ | BCE_EMAC_MDIO_COMM_DISEXT | 1853 BCE_EMAC_MDIO_COMM_START_BUSY; 1854 REG_WR(sc, BCE_EMAC_MDIO_COMM, val); 1855 1856 for (i = 0; i < BCE_PHY_TIMEOUT; i++) { 1857 DELAY(10); 1858 1859 val = REG_RD(sc, BCE_EMAC_MDIO_COMM); 1860 if (!(val & BCE_EMAC_MDIO_COMM_START_BUSY)) { 1861 DELAY(5); 1862 1863 val = REG_RD(sc, BCE_EMAC_MDIO_COMM); 1864 val &= BCE_EMAC_MDIO_COMM_DATA; 1865 1866 break; 1867 } 1868 } 1869 1870 if (val & BCE_EMAC_MDIO_COMM_START_BUSY) { 1871 BCE_PRINTF("%s(%d): Error: PHY read timeout! phy = %d, " 1872 "reg = 0x%04X\n", __FILE__, __LINE__, phy, reg); 1873 val = 0x0; 1874 } else { 1875 val = REG_RD(sc, BCE_EMAC_MDIO_COMM); 1876 } 1877 1878 if (sc->bce_phy_flags & BCE_PHY_INT_MODE_AUTO_POLLING_FLAG) { 1879 val = REG_RD(sc, BCE_EMAC_MDIO_MODE); 1880 val |= BCE_EMAC_MDIO_MODE_AUTO_POLL; 1881 1882 REG_WR(sc, BCE_EMAC_MDIO_MODE, val); 1883 REG_RD(sc, BCE_EMAC_MDIO_MODE); 1884 1885 DELAY(40); 1886 } 1887 1888 DB_PRINT_PHY_REG(reg, val); 1889 return (val & 0xffff); 1890 } 1891 1892 /****************************************************************************/ 1893 /* PHY register write. */ 1894 /* */ 1895 /* Implements register writes on the MII bus. */ 1896 /* */ 1897 /* Returns: */ 1898 /* The value of the register. */ 1899 /****************************************************************************/ 1900 static int 1901 bce_miibus_write_reg(device_t dev, int phy, int reg, int val) 1902 { 1903 struct bce_softc *sc; 1904 u32 val1; 1905 int i; 1906 1907 sc = device_get_softc(dev); 1908 1909 DB_PRINT_PHY_REG(reg, val); 1910 1911 /* 1912 * The 5709S PHY is an IEEE Clause 45 PHY 1913 * with special mappings to work with IEEE 1914 * Clause 22 register accesses. 1915 */ 1916 if ((sc->bce_phy_flags & BCE_PHY_IEEE_CLAUSE_45_FLAG) != 0) { 1917 if (reg >= MII_BMCR && reg <= MII_ANLPRNP) 1918 reg += 0x10; 1919 } 1920 1921 if (sc->bce_phy_flags & BCE_PHY_INT_MODE_AUTO_POLLING_FLAG) { 1922 val1 = REG_RD(sc, BCE_EMAC_MDIO_MODE); 1923 val1 &= ~BCE_EMAC_MDIO_MODE_AUTO_POLL; 1924 1925 REG_WR(sc, BCE_EMAC_MDIO_MODE, val1); 1926 REG_RD(sc, BCE_EMAC_MDIO_MODE); 1927 1928 DELAY(40); 1929 } 1930 1931 val1 = BCE_MIPHY(phy) | BCE_MIREG(reg) | val | 1932 BCE_EMAC_MDIO_COMM_COMMAND_WRITE | 1933 BCE_EMAC_MDIO_COMM_START_BUSY | BCE_EMAC_MDIO_COMM_DISEXT; 1934 REG_WR(sc, BCE_EMAC_MDIO_COMM, val1); 1935 1936 for (i = 0; i < BCE_PHY_TIMEOUT; i++) { 1937 DELAY(10); 1938 1939 val1 = REG_RD(sc, BCE_EMAC_MDIO_COMM); 1940 if (!(val1 & BCE_EMAC_MDIO_COMM_START_BUSY)) { 1941 DELAY(5); 1942 break; 1943 } 1944 } 1945 1946 if (val1 & BCE_EMAC_MDIO_COMM_START_BUSY) 1947 BCE_PRINTF("%s(%d): PHY write timeout!\n", 1948 __FILE__, __LINE__); 1949 1950 if (sc->bce_phy_flags & BCE_PHY_INT_MODE_AUTO_POLLING_FLAG) { 1951 val1 = REG_RD(sc, BCE_EMAC_MDIO_MODE); 1952 val1 |= BCE_EMAC_MDIO_MODE_AUTO_POLL; 1953 1954 REG_WR(sc, BCE_EMAC_MDIO_MODE, val1); 1955 REG_RD(sc, BCE_EMAC_MDIO_MODE); 1956 1957 DELAY(40); 1958 } 1959 1960 return 0; 1961 } 1962 1963 /****************************************************************************/ 1964 /* MII bus status change. */ 1965 /* */ 1966 /* Called by the MII bus driver when the PHY establishes link to set the */ 1967 /* MAC interface registers. */ 1968 /* */ 1969 /* Returns: */ 1970 /* Nothing. */ 1971 /****************************************************************************/ 1972 static void 1973 bce_miibus_statchg(device_t dev) 1974 { 1975 struct bce_softc *sc; 1976 struct mii_data *mii; 1977 struct ifmediareq ifmr; 1978 int media_active, media_status, val; 1979 1980 sc = device_get_softc(dev); 1981 1982 DBENTER(BCE_VERBOSE_PHY); 1983 1984 if ((sc->bce_phy_flags & BCE_PHY_REMOTE_CAP_FLAG) != 0) { 1985 bzero(&ifmr, sizeof(ifmr)); 1986 bce_ifmedia_sts_rphy(sc, &ifmr); 1987 media_active = ifmr.ifm_active; 1988 media_status = ifmr.ifm_status; 1989 } else { 1990 mii = device_get_softc(sc->bce_miibus); 1991 media_active = mii->mii_media_active; 1992 media_status = mii->mii_media_status; 1993 } 1994 1995 /* Ignore invalid media status. */ 1996 if ((media_status & (IFM_ACTIVE | IFM_AVALID)) != 1997 (IFM_ACTIVE | IFM_AVALID)) 1998 goto bce_miibus_statchg_exit; 1999 2000 val = REG_RD(sc, BCE_EMAC_MODE); 2001 val &= ~(BCE_EMAC_MODE_PORT | BCE_EMAC_MODE_HALF_DUPLEX | 2002 BCE_EMAC_MODE_MAC_LOOP | BCE_EMAC_MODE_FORCE_LINK | 2003 BCE_EMAC_MODE_25G); 2004 2005 /* Set MII or GMII interface based on the PHY speed. */ 2006 switch (IFM_SUBTYPE(media_active)) { 2007 case IFM_10_T: 2008 if (BCE_CHIP_NUM(sc) != BCE_CHIP_NUM_5706) { 2009 DBPRINT(sc, BCE_INFO_PHY, 2010 "Enabling 10Mb interface.\n"); 2011 val |= BCE_EMAC_MODE_PORT_MII_10; 2012 break; 2013 } 2014 /* fall-through */ 2015 case IFM_100_TX: 2016 DBPRINT(sc, BCE_INFO_PHY, "Enabling MII interface.\n"); 2017 val |= BCE_EMAC_MODE_PORT_MII; 2018 break; 2019 case IFM_2500_SX: 2020 DBPRINT(sc, BCE_INFO_PHY, "Enabling 2.5G MAC mode.\n"); 2021 val |= BCE_EMAC_MODE_25G; 2022 /* fall-through */ 2023 case IFM_1000_T: 2024 case IFM_1000_SX: 2025 DBPRINT(sc, BCE_INFO_PHY, "Enabling GMII interface.\n"); 2026 val |= BCE_EMAC_MODE_PORT_GMII; 2027 break; 2028 default: 2029 DBPRINT(sc, BCE_INFO_PHY, "Unknown link speed, enabling " 2030 "default GMII interface.\n"); 2031 val |= BCE_EMAC_MODE_PORT_GMII; 2032 } 2033 2034 /* Set half or full duplex based on PHY settings. */ 2035 if ((IFM_OPTIONS(media_active) & IFM_FDX) == 0) { 2036 DBPRINT(sc, BCE_INFO_PHY, 2037 "Setting Half-Duplex interface.\n"); 2038 val |= BCE_EMAC_MODE_HALF_DUPLEX; 2039 } else 2040 DBPRINT(sc, BCE_INFO_PHY, 2041 "Setting Full-Duplex interface.\n"); 2042 2043 REG_WR(sc, BCE_EMAC_MODE, val); 2044 2045 if ((IFM_OPTIONS(media_active) & IFM_ETH_RXPAUSE) != 0) { 2046 DBPRINT(sc, BCE_INFO_PHY, 2047 "%s(): Enabling RX flow control.\n", __FUNCTION__); 2048 BCE_SETBIT(sc, BCE_EMAC_RX_MODE, BCE_EMAC_RX_MODE_FLOW_EN); 2049 sc->bce_flags |= BCE_USING_RX_FLOW_CONTROL; 2050 } else { 2051 DBPRINT(sc, BCE_INFO_PHY, 2052 "%s(): Disabling RX flow control.\n", __FUNCTION__); 2053 BCE_CLRBIT(sc, BCE_EMAC_RX_MODE, BCE_EMAC_RX_MODE_FLOW_EN); 2054 sc->bce_flags &= ~BCE_USING_RX_FLOW_CONTROL; 2055 } 2056 2057 if ((IFM_OPTIONS(media_active) & IFM_ETH_TXPAUSE) != 0) { 2058 DBPRINT(sc, BCE_INFO_PHY, 2059 "%s(): Enabling TX flow control.\n", __FUNCTION__); 2060 BCE_SETBIT(sc, BCE_EMAC_TX_MODE, BCE_EMAC_TX_MODE_FLOW_EN); 2061 sc->bce_flags |= BCE_USING_TX_FLOW_CONTROL; 2062 } else { 2063 DBPRINT(sc, BCE_INFO_PHY, 2064 "%s(): Disabling TX flow control.\n", __FUNCTION__); 2065 BCE_CLRBIT(sc, BCE_EMAC_TX_MODE, BCE_EMAC_TX_MODE_FLOW_EN); 2066 sc->bce_flags &= ~BCE_USING_TX_FLOW_CONTROL; 2067 } 2068 2069 /* ToDo: Update watermarks in bce_init_rx_context(). */ 2070 2071 bce_miibus_statchg_exit: 2072 DBEXIT(BCE_VERBOSE_PHY); 2073 } 2074 2075 /****************************************************************************/ 2076 /* Acquire NVRAM lock. */ 2077 /* */ 2078 /* Before the NVRAM can be accessed the caller must acquire an NVRAM lock. */ 2079 /* Locks 0 and 2 are reserved, lock 1 is used by firmware and lock 2 is */ 2080 /* for use by the driver. */ 2081 /* */ 2082 /* Returns: */ 2083 /* 0 on success, positive value on failure. */ 2084 /****************************************************************************/ 2085 static int 2086 bce_acquire_nvram_lock(struct bce_softc *sc) 2087 { 2088 u32 val; 2089 int j, rc = 0; 2090 2091 DBENTER(BCE_VERBOSE_NVRAM); 2092 2093 /* Request access to the flash interface. */ 2094 REG_WR(sc, BCE_NVM_SW_ARB, BCE_NVM_SW_ARB_ARB_REQ_SET2); 2095 for (j = 0; j < NVRAM_TIMEOUT_COUNT; j++) { 2096 val = REG_RD(sc, BCE_NVM_SW_ARB); 2097 if (val & BCE_NVM_SW_ARB_ARB_ARB2) 2098 break; 2099 2100 DELAY(5); 2101 } 2102 2103 if (j >= NVRAM_TIMEOUT_COUNT) { 2104 DBPRINT(sc, BCE_WARN, "Timeout acquiring NVRAM lock!\n"); 2105 rc = EBUSY; 2106 } 2107 2108 DBEXIT(BCE_VERBOSE_NVRAM); 2109 return (rc); 2110 } 2111 2112 /****************************************************************************/ 2113 /* Release NVRAM lock. */ 2114 /* */ 2115 /* When the caller is finished accessing NVRAM the lock must be released. */ 2116 /* Locks 0 and 2 are reserved, lock 1 is used by firmware and lock 2 is */ 2117 /* for use by the driver. */ 2118 /* */ 2119 /* Returns: */ 2120 /* 0 on success, positive value on failure. */ 2121 /****************************************************************************/ 2122 static int 2123 bce_release_nvram_lock(struct bce_softc *sc) 2124 { 2125 u32 val; 2126 int j, rc = 0; 2127 2128 DBENTER(BCE_VERBOSE_NVRAM); 2129 2130 /* 2131 * Relinquish nvram interface. 2132 */ 2133 REG_WR(sc, BCE_NVM_SW_ARB, BCE_NVM_SW_ARB_ARB_REQ_CLR2); 2134 2135 for (j = 0; j < NVRAM_TIMEOUT_COUNT; j++) { 2136 val = REG_RD(sc, BCE_NVM_SW_ARB); 2137 if (!(val & BCE_NVM_SW_ARB_ARB_ARB2)) 2138 break; 2139 2140 DELAY(5); 2141 } 2142 2143 if (j >= NVRAM_TIMEOUT_COUNT) { 2144 DBPRINT(sc, BCE_WARN, "Timeout releasing NVRAM lock!\n"); 2145 rc = EBUSY; 2146 } 2147 2148 DBEXIT(BCE_VERBOSE_NVRAM); 2149 return (rc); 2150 } 2151 2152 #ifdef BCE_NVRAM_WRITE_SUPPORT 2153 /****************************************************************************/ 2154 /* Enable NVRAM write access. */ 2155 /* */ 2156 /* Before writing to NVRAM the caller must enable NVRAM writes. */ 2157 /* */ 2158 /* Returns: */ 2159 /* 0 on success, positive value on failure. */ 2160 /****************************************************************************/ 2161 static int 2162 bce_enable_nvram_write(struct bce_softc *sc) 2163 { 2164 u32 val; 2165 int rc = 0; 2166 2167 DBENTER(BCE_VERBOSE_NVRAM); 2168 2169 val = REG_RD(sc, BCE_MISC_CFG); 2170 REG_WR(sc, BCE_MISC_CFG, val | BCE_MISC_CFG_NVM_WR_EN_PCI); 2171 2172 if (!(sc->bce_flash_info->flags & BCE_NV_BUFFERED)) { 2173 int j; 2174 2175 REG_WR(sc, BCE_NVM_COMMAND, BCE_NVM_COMMAND_DONE); 2176 REG_WR(sc, BCE_NVM_COMMAND, BCE_NVM_COMMAND_WREN | BCE_NVM_COMMAND_DOIT); 2177 2178 for (j = 0; j < NVRAM_TIMEOUT_COUNT; j++) { 2179 DELAY(5); 2180 2181 val = REG_RD(sc, BCE_NVM_COMMAND); 2182 if (val & BCE_NVM_COMMAND_DONE) 2183 break; 2184 } 2185 2186 if (j >= NVRAM_TIMEOUT_COUNT) { 2187 DBPRINT(sc, BCE_WARN, "Timeout writing NVRAM!\n"); 2188 rc = EBUSY; 2189 } 2190 } 2191 2192 DBENTER(BCE_VERBOSE_NVRAM); 2193 return (rc); 2194 } 2195 2196 /****************************************************************************/ 2197 /* Disable NVRAM write access. */ 2198 /* */ 2199 /* When the caller is finished writing to NVRAM write access must be */ 2200 /* disabled. */ 2201 /* */ 2202 /* Returns: */ 2203 /* Nothing. */ 2204 /****************************************************************************/ 2205 static void 2206 bce_disable_nvram_write(struct bce_softc *sc) 2207 { 2208 u32 val; 2209 2210 DBENTER(BCE_VERBOSE_NVRAM); 2211 2212 val = REG_RD(sc, BCE_MISC_CFG); 2213 REG_WR(sc, BCE_MISC_CFG, val & ~BCE_MISC_CFG_NVM_WR_EN); 2214 2215 DBEXIT(BCE_VERBOSE_NVRAM); 2216 2217 } 2218 #endif 2219 2220 /****************************************************************************/ 2221 /* Enable NVRAM access. */ 2222 /* */ 2223 /* Before accessing NVRAM for read or write operations the caller must */ 2224 /* enabled NVRAM access. */ 2225 /* */ 2226 /* Returns: */ 2227 /* Nothing. */ 2228 /****************************************************************************/ 2229 static void 2230 bce_enable_nvram_access(struct bce_softc *sc) 2231 { 2232 u32 val; 2233 2234 DBENTER(BCE_VERBOSE_NVRAM); 2235 2236 val = REG_RD(sc, BCE_NVM_ACCESS_ENABLE); 2237 /* Enable both bits, even on read. */ 2238 REG_WR(sc, BCE_NVM_ACCESS_ENABLE, val | 2239 BCE_NVM_ACCESS_ENABLE_EN | BCE_NVM_ACCESS_ENABLE_WR_EN); 2240 2241 DBEXIT(BCE_VERBOSE_NVRAM); 2242 } 2243 2244 /****************************************************************************/ 2245 /* Disable NVRAM access. */ 2246 /* */ 2247 /* When the caller is finished accessing NVRAM access must be disabled. */ 2248 /* */ 2249 /* Returns: */ 2250 /* Nothing. */ 2251 /****************************************************************************/ 2252 static void 2253 bce_disable_nvram_access(struct bce_softc *sc) 2254 { 2255 u32 val; 2256 2257 DBENTER(BCE_VERBOSE_NVRAM); 2258 2259 val = REG_RD(sc, BCE_NVM_ACCESS_ENABLE); 2260 2261 /* Disable both bits, even after read. */ 2262 REG_WR(sc, BCE_NVM_ACCESS_ENABLE, val & 2263 ~(BCE_NVM_ACCESS_ENABLE_EN | BCE_NVM_ACCESS_ENABLE_WR_EN)); 2264 2265 DBEXIT(BCE_VERBOSE_NVRAM); 2266 } 2267 2268 #ifdef BCE_NVRAM_WRITE_SUPPORT 2269 /****************************************************************************/ 2270 /* Erase NVRAM page before writing. */ 2271 /* */ 2272 /* Non-buffered flash parts require that a page be erased before it is */ 2273 /* written. */ 2274 /* */ 2275 /* Returns: */ 2276 /* 0 on success, positive value on failure. */ 2277 /****************************************************************************/ 2278 static int 2279 bce_nvram_erase_page(struct bce_softc *sc, u32 offset) 2280 { 2281 u32 cmd; 2282 int j, rc = 0; 2283 2284 DBENTER(BCE_VERBOSE_NVRAM); 2285 2286 /* Buffered flash doesn't require an erase. */ 2287 if (sc->bce_flash_info->flags & BCE_NV_BUFFERED) 2288 goto bce_nvram_erase_page_exit; 2289 2290 /* Build an erase command. */ 2291 cmd = BCE_NVM_COMMAND_ERASE | BCE_NVM_COMMAND_WR | 2292 BCE_NVM_COMMAND_DOIT; 2293 2294 /* 2295 * Clear the DONE bit separately, set the NVRAM address to erase, 2296 * and issue the erase command. 2297 */ 2298 REG_WR(sc, BCE_NVM_COMMAND, BCE_NVM_COMMAND_DONE); 2299 REG_WR(sc, BCE_NVM_ADDR, offset & BCE_NVM_ADDR_NVM_ADDR_VALUE); 2300 REG_WR(sc, BCE_NVM_COMMAND, cmd); 2301 2302 /* Wait for completion. */ 2303 for (j = 0; j < NVRAM_TIMEOUT_COUNT; j++) { 2304 u32 val; 2305 2306 DELAY(5); 2307 2308 val = REG_RD(sc, BCE_NVM_COMMAND); 2309 if (val & BCE_NVM_COMMAND_DONE) 2310 break; 2311 } 2312 2313 if (j >= NVRAM_TIMEOUT_COUNT) { 2314 DBPRINT(sc, BCE_WARN, "Timeout erasing NVRAM.\n"); 2315 rc = EBUSY; 2316 } 2317 2318 bce_nvram_erase_page_exit: 2319 DBEXIT(BCE_VERBOSE_NVRAM); 2320 return (rc); 2321 } 2322 #endif /* BCE_NVRAM_WRITE_SUPPORT */ 2323 2324 /****************************************************************************/ 2325 /* Read a dword (32 bits) from NVRAM. */ 2326 /* */ 2327 /* Read a 32 bit word from NVRAM. The caller is assumed to have already */ 2328 /* obtained the NVRAM lock and enabled the controller for NVRAM access. */ 2329 /* */ 2330 /* Returns: */ 2331 /* 0 on success and the 32 bit value read, positive value on failure. */ 2332 /****************************************************************************/ 2333 static int 2334 bce_nvram_read_dword(struct bce_softc *sc, 2335 u32 offset, u8 *ret_val, u32 cmd_flags) 2336 { 2337 u32 cmd; 2338 int i, rc = 0; 2339 2340 DBENTER(BCE_EXTREME_NVRAM); 2341 2342 /* Build the command word. */ 2343 cmd = BCE_NVM_COMMAND_DOIT | cmd_flags; 2344 2345 /* Calculate the offset for buffered flash if translation is used. */ 2346 if (sc->bce_flash_info->flags & BCE_NV_TRANSLATE) { 2347 offset = ((offset / sc->bce_flash_info->page_size) << 2348 sc->bce_flash_info->page_bits) + 2349 (offset % sc->bce_flash_info->page_size); 2350 } 2351 2352 /* 2353 * Clear the DONE bit separately, set the address to read, 2354 * and issue the read. 2355 */ 2356 REG_WR(sc, BCE_NVM_COMMAND, BCE_NVM_COMMAND_DONE); 2357 REG_WR(sc, BCE_NVM_ADDR, offset & BCE_NVM_ADDR_NVM_ADDR_VALUE); 2358 REG_WR(sc, BCE_NVM_COMMAND, cmd); 2359 2360 /* Wait for completion. */ 2361 for (i = 0; i < NVRAM_TIMEOUT_COUNT; i++) { 2362 u32 val; 2363 2364 DELAY(5); 2365 2366 val = REG_RD(sc, BCE_NVM_COMMAND); 2367 if (val & BCE_NVM_COMMAND_DONE) { 2368 val = REG_RD(sc, BCE_NVM_READ); 2369 2370 val = bce_be32toh(val); 2371 memcpy(ret_val, &val, 4); 2372 break; 2373 } 2374 } 2375 2376 /* Check for errors. */ 2377 if (i >= NVRAM_TIMEOUT_COUNT) { 2378 BCE_PRINTF("%s(%d): Timeout error reading NVRAM at " 2379 "offset 0x%08X!\n", __FILE__, __LINE__, offset); 2380 rc = EBUSY; 2381 } 2382 2383 DBEXIT(BCE_EXTREME_NVRAM); 2384 return(rc); 2385 } 2386 2387 #ifdef BCE_NVRAM_WRITE_SUPPORT 2388 /****************************************************************************/ 2389 /* Write a dword (32 bits) to NVRAM. */ 2390 /* */ 2391 /* Write a 32 bit word to NVRAM. The caller is assumed to have already */ 2392 /* obtained the NVRAM lock, enabled the controller for NVRAM access, and */ 2393 /* enabled NVRAM write access. */ 2394 /* */ 2395 /* Returns: */ 2396 /* 0 on success, positive value on failure. */ 2397 /****************************************************************************/ 2398 static int 2399 bce_nvram_write_dword(struct bce_softc *sc, u32 offset, u8 *val, 2400 u32 cmd_flags) 2401 { 2402 u32 cmd, val32; 2403 int j, rc = 0; 2404 2405 DBENTER(BCE_VERBOSE_NVRAM); 2406 2407 /* Build the command word. */ 2408 cmd = BCE_NVM_COMMAND_DOIT | BCE_NVM_COMMAND_WR | cmd_flags; 2409 2410 /* Calculate the offset for buffered flash if translation is used. */ 2411 if (sc->bce_flash_info->flags & BCE_NV_TRANSLATE) { 2412 offset = ((offset / sc->bce_flash_info->page_size) << 2413 sc->bce_flash_info->page_bits) + 2414 (offset % sc->bce_flash_info->page_size); 2415 } 2416 2417 /* 2418 * Clear the DONE bit separately, convert NVRAM data to big-endian, 2419 * set the NVRAM address to write, and issue the write command 2420 */ 2421 REG_WR(sc, BCE_NVM_COMMAND, BCE_NVM_COMMAND_DONE); 2422 memcpy(&val32, val, 4); 2423 val32 = htobe32(val32); 2424 REG_WR(sc, BCE_NVM_WRITE, val32); 2425 REG_WR(sc, BCE_NVM_ADDR, offset & BCE_NVM_ADDR_NVM_ADDR_VALUE); 2426 REG_WR(sc, BCE_NVM_COMMAND, cmd); 2427 2428 /* Wait for completion. */ 2429 for (j = 0; j < NVRAM_TIMEOUT_COUNT; j++) { 2430 DELAY(5); 2431 2432 if (REG_RD(sc, BCE_NVM_COMMAND) & BCE_NVM_COMMAND_DONE) 2433 break; 2434 } 2435 if (j >= NVRAM_TIMEOUT_COUNT) { 2436 BCE_PRINTF("%s(%d): Timeout error writing NVRAM at " 2437 "offset 0x%08X\n", __FILE__, __LINE__, offset); 2438 rc = EBUSY; 2439 } 2440 2441 DBEXIT(BCE_VERBOSE_NVRAM); 2442 return (rc); 2443 } 2444 #endif /* BCE_NVRAM_WRITE_SUPPORT */ 2445 2446 /****************************************************************************/ 2447 /* Initialize NVRAM access. */ 2448 /* */ 2449 /* Identify the NVRAM device in use and prepare the NVRAM interface to */ 2450 /* access that device. */ 2451 /* */ 2452 /* Returns: */ 2453 /* 0 on success, positive value on failure. */ 2454 /****************************************************************************/ 2455 static int 2456 bce_init_nvram(struct bce_softc *sc) 2457 { 2458 u32 val; 2459 int j, entry_count, rc = 0; 2460 const struct flash_spec *flash; 2461 2462 DBENTER(BCE_VERBOSE_NVRAM); 2463 2464 if (BCE_CHIP_NUM(sc) == BCE_CHIP_NUM_5709) { 2465 sc->bce_flash_info = &flash_5709; 2466 goto bce_init_nvram_get_flash_size; 2467 } 2468 2469 /* Determine the selected interface. */ 2470 val = REG_RD(sc, BCE_NVM_CFG1); 2471 2472 entry_count = sizeof(flash_table) / sizeof(struct flash_spec); 2473 2474 /* 2475 * Flash reconfiguration is required to support additional 2476 * NVRAM devices not directly supported in hardware. 2477 * Check if the flash interface was reconfigured 2478 * by the bootcode. 2479 */ 2480 2481 if (val & 0x40000000) { 2482 /* Flash interface reconfigured by bootcode. */ 2483 2484 DBPRINT(sc,BCE_INFO_LOAD, 2485 "bce_init_nvram(): Flash WAS reconfigured.\n"); 2486 2487 for (j = 0, flash = &flash_table[0]; j < entry_count; 2488 j++, flash++) { 2489 if ((val & FLASH_BACKUP_STRAP_MASK) == 2490 (flash->config1 & FLASH_BACKUP_STRAP_MASK)) { 2491 sc->bce_flash_info = flash; 2492 break; 2493 } 2494 } 2495 } else { 2496 /* Flash interface not yet reconfigured. */ 2497 u32 mask; 2498 2499 DBPRINT(sc, BCE_INFO_LOAD, "%s(): Flash was NOT reconfigured.\n", 2500 __FUNCTION__); 2501 2502 if (val & (1 << 23)) 2503 mask = FLASH_BACKUP_STRAP_MASK; 2504 else 2505 mask = FLASH_STRAP_MASK; 2506 2507 /* Look for the matching NVRAM device configuration data. */ 2508 for (j = 0, flash = &flash_table[0]; j < entry_count; j++, flash++) { 2509 /* Check if the device matches any of the known devices. */ 2510 if ((val & mask) == (flash->strapping & mask)) { 2511 /* Found a device match. */ 2512 sc->bce_flash_info = flash; 2513 2514 /* Request access to the flash interface. */ 2515 if ((rc = bce_acquire_nvram_lock(sc)) != 0) 2516 return rc; 2517 2518 /* Reconfigure the flash interface. */ 2519 bce_enable_nvram_access(sc); 2520 REG_WR(sc, BCE_NVM_CFG1, flash->config1); 2521 REG_WR(sc, BCE_NVM_CFG2, flash->config2); 2522 REG_WR(sc, BCE_NVM_CFG3, flash->config3); 2523 REG_WR(sc, BCE_NVM_WRITE1, flash->write1); 2524 bce_disable_nvram_access(sc); 2525 bce_release_nvram_lock(sc); 2526 2527 break; 2528 } 2529 } 2530 } 2531 2532 /* Check if a matching device was found. */ 2533 if (j == entry_count) { 2534 sc->bce_flash_info = NULL; 2535 BCE_PRINTF("%s(%d): Unknown Flash NVRAM found!\n", 2536 __FILE__, __LINE__); 2537 DBEXIT(BCE_VERBOSE_NVRAM); 2538 return (ENODEV); 2539 } 2540 2541 bce_init_nvram_get_flash_size: 2542 /* Write the flash config data to the shared memory interface. */ 2543 val = bce_shmem_rd(sc, BCE_SHARED_HW_CFG_CONFIG2); 2544 val &= BCE_SHARED_HW_CFG2_NVM_SIZE_MASK; 2545 if (val) 2546 sc->bce_flash_size = val; 2547 else 2548 sc->bce_flash_size = sc->bce_flash_info->total_size; 2549 2550 DBPRINT(sc, BCE_INFO_LOAD, "%s(): Found %s, size = 0x%08X\n", 2551 __FUNCTION__, sc->bce_flash_info->name, 2552 sc->bce_flash_info->total_size); 2553 2554 DBEXIT(BCE_VERBOSE_NVRAM); 2555 return rc; 2556 } 2557 2558 /****************************************************************************/ 2559 /* Read an arbitrary range of data from NVRAM. */ 2560 /* */ 2561 /* Prepares the NVRAM interface for access and reads the requested data */ 2562 /* into the supplied buffer. */ 2563 /* */ 2564 /* Returns: */ 2565 /* 0 on success and the data read, positive value on failure. */ 2566 /****************************************************************************/ 2567 static int 2568 bce_nvram_read(struct bce_softc *sc, u32 offset, u8 *ret_buf, 2569 int buf_size) 2570 { 2571 int rc = 0; 2572 u32 cmd_flags, offset32, len32, extra; 2573 2574 DBENTER(BCE_VERBOSE_NVRAM); 2575 2576 if (buf_size == 0) 2577 goto bce_nvram_read_exit; 2578 2579 /* Request access to the flash interface. */ 2580 if ((rc = bce_acquire_nvram_lock(sc)) != 0) 2581 goto bce_nvram_read_exit; 2582 2583 /* Enable access to flash interface */ 2584 bce_enable_nvram_access(sc); 2585 2586 len32 = buf_size; 2587 offset32 = offset; 2588 extra = 0; 2589 2590 cmd_flags = 0; 2591 2592 if (offset32 & 3) { 2593 u8 buf[4]; 2594 u32 pre_len; 2595 2596 offset32 &= ~3; 2597 pre_len = 4 - (offset & 3); 2598 2599 if (pre_len >= len32) { 2600 pre_len = len32; 2601 cmd_flags = BCE_NVM_COMMAND_FIRST | BCE_NVM_COMMAND_LAST; 2602 } 2603 else { 2604 cmd_flags = BCE_NVM_COMMAND_FIRST; 2605 } 2606 2607 rc = bce_nvram_read_dword(sc, offset32, buf, cmd_flags); 2608 2609 if (rc) 2610 return rc; 2611 2612 memcpy(ret_buf, buf + (offset & 3), pre_len); 2613 2614 offset32 += 4; 2615 ret_buf += pre_len; 2616 len32 -= pre_len; 2617 } 2618 2619 if (len32 & 3) { 2620 extra = 4 - (len32 & 3); 2621 len32 = (len32 + 4) & ~3; 2622 } 2623 2624 if (len32 == 4) { 2625 u8 buf[4]; 2626 2627 if (cmd_flags) 2628 cmd_flags = BCE_NVM_COMMAND_LAST; 2629 else 2630 cmd_flags = BCE_NVM_COMMAND_FIRST | 2631 BCE_NVM_COMMAND_LAST; 2632 2633 rc = bce_nvram_read_dword(sc, offset32, buf, cmd_flags); 2634 2635 memcpy(ret_buf, buf, 4 - extra); 2636 } 2637 else if (len32 > 0) { 2638 u8 buf[4]; 2639 2640 /* Read the first word. */ 2641 if (cmd_flags) 2642 cmd_flags = 0; 2643 else 2644 cmd_flags = BCE_NVM_COMMAND_FIRST; 2645 2646 rc = bce_nvram_read_dword(sc, offset32, ret_buf, cmd_flags); 2647 2648 /* Advance to the next dword. */ 2649 offset32 += 4; 2650 ret_buf += 4; 2651 len32 -= 4; 2652 2653 while (len32 > 4 && rc == 0) { 2654 rc = bce_nvram_read_dword(sc, offset32, ret_buf, 0); 2655 2656 /* Advance to the next dword. */ 2657 offset32 += 4; 2658 ret_buf += 4; 2659 len32 -= 4; 2660 } 2661 2662 if (rc) 2663 goto bce_nvram_read_locked_exit; 2664 2665 cmd_flags = BCE_NVM_COMMAND_LAST; 2666 rc = bce_nvram_read_dword(sc, offset32, buf, cmd_flags); 2667 2668 memcpy(ret_buf, buf, 4 - extra); 2669 } 2670 2671 bce_nvram_read_locked_exit: 2672 /* Disable access to flash interface and release the lock. */ 2673 bce_disable_nvram_access(sc); 2674 bce_release_nvram_lock(sc); 2675 2676 bce_nvram_read_exit: 2677 DBEXIT(BCE_VERBOSE_NVRAM); 2678 return rc; 2679 } 2680 2681 #ifdef BCE_NVRAM_WRITE_SUPPORT 2682 /****************************************************************************/ 2683 /* Write an arbitrary range of data from NVRAM. */ 2684 /* */ 2685 /* Prepares the NVRAM interface for write access and writes the requested */ 2686 /* data from the supplied buffer. The caller is responsible for */ 2687 /* calculating any appropriate CRCs. */ 2688 /* */ 2689 /* Returns: */ 2690 /* 0 on success, positive value on failure. */ 2691 /****************************************************************************/ 2692 static int 2693 bce_nvram_write(struct bce_softc *sc, u32 offset, u8 *data_buf, 2694 int buf_size) 2695 { 2696 u32 written, offset32, len32; 2697 u8 *buf, start[4], end[4]; 2698 int rc = 0; 2699 int align_start, align_end; 2700 2701 DBENTER(BCE_VERBOSE_NVRAM); 2702 2703 buf = data_buf; 2704 offset32 = offset; 2705 len32 = buf_size; 2706 align_start = align_end = 0; 2707 2708 if ((align_start = (offset32 & 3))) { 2709 offset32 &= ~3; 2710 len32 += align_start; 2711 if ((rc = bce_nvram_read(sc, offset32, start, 4))) 2712 goto bce_nvram_write_exit; 2713 } 2714 2715 if (len32 & 3) { 2716 if ((len32 > 4) || !align_start) { 2717 align_end = 4 - (len32 & 3); 2718 len32 += align_end; 2719 if ((rc = bce_nvram_read(sc, offset32 + len32 - 4, 2720 end, 4))) { 2721 goto bce_nvram_write_exit; 2722 } 2723 } 2724 } 2725 2726 if (align_start || align_end) { 2727 buf = malloc(len32, M_DEVBUF, M_NOWAIT); 2728 if (buf == NULL) { 2729 rc = ENOMEM; 2730 goto bce_nvram_write_exit; 2731 } 2732 2733 if (align_start) { 2734 memcpy(buf, start, 4); 2735 } 2736 2737 if (align_end) { 2738 memcpy(buf + len32 - 4, end, 4); 2739 } 2740 memcpy(buf + align_start, data_buf, buf_size); 2741 } 2742 2743 written = 0; 2744 while ((written < len32) && (rc == 0)) { 2745 u32 page_start, page_end, data_start, data_end; 2746 u32 addr, cmd_flags; 2747 int i; 2748 u8 flash_buffer[264]; 2749 2750 /* Find the page_start addr */ 2751 page_start = offset32 + written; 2752 page_start -= (page_start % sc->bce_flash_info->page_size); 2753 /* Find the page_end addr */ 2754 page_end = page_start + sc->bce_flash_info->page_size; 2755 /* Find the data_start addr */ 2756 data_start = (written == 0) ? offset32 : page_start; 2757 /* Find the data_end addr */ 2758 data_end = (page_end > offset32 + len32) ? 2759 (offset32 + len32) : page_end; 2760 2761 /* Request access to the flash interface. */ 2762 if ((rc = bce_acquire_nvram_lock(sc)) != 0) 2763 goto bce_nvram_write_exit; 2764 2765 /* Enable access to flash interface */ 2766 bce_enable_nvram_access(sc); 2767 2768 cmd_flags = BCE_NVM_COMMAND_FIRST; 2769 if (!(sc->bce_flash_info->flags & BCE_NV_BUFFERED)) { 2770 int j; 2771 2772 /* Read the whole page into the buffer 2773 * (non-buffer flash only) */ 2774 for (j = 0; j < sc->bce_flash_info->page_size; j += 4) { 2775 if (j == (sc->bce_flash_info->page_size - 4)) { 2776 cmd_flags |= BCE_NVM_COMMAND_LAST; 2777 } 2778 rc = bce_nvram_read_dword(sc, 2779 page_start + j, 2780 &flash_buffer[j], 2781 cmd_flags); 2782 2783 if (rc) 2784 goto bce_nvram_write_locked_exit; 2785 2786 cmd_flags = 0; 2787 } 2788 } 2789 2790 /* Enable writes to flash interface (unlock write-protect) */ 2791 if ((rc = bce_enable_nvram_write(sc)) != 0) 2792 goto bce_nvram_write_locked_exit; 2793 2794 /* Erase the page */ 2795 if ((rc = bce_nvram_erase_page(sc, page_start)) != 0) 2796 goto bce_nvram_write_locked_exit; 2797 2798 /* Re-enable the write again for the actual write */ 2799 bce_enable_nvram_write(sc); 2800 2801 /* Loop to write back the buffer data from page_start to 2802 * data_start */ 2803 i = 0; 2804 if (!(sc->bce_flash_info->flags & BCE_NV_BUFFERED)) { 2805 for (addr = page_start; addr < data_start; 2806 addr += 4, i += 4) { 2807 rc = bce_nvram_write_dword(sc, addr, 2808 &flash_buffer[i], cmd_flags); 2809 2810 if (rc != 0) 2811 goto bce_nvram_write_locked_exit; 2812 2813 cmd_flags = 0; 2814 } 2815 } 2816 2817 /* Loop to write the new data from data_start to data_end */ 2818 for (addr = data_start; addr < data_end; addr += 4, i++) { 2819 if ((addr == page_end - 4) || 2820 ((sc->bce_flash_info->flags & BCE_NV_BUFFERED) && 2821 (addr == data_end - 4))) { 2822 cmd_flags |= BCE_NVM_COMMAND_LAST; 2823 } 2824 rc = bce_nvram_write_dword(sc, addr, buf, 2825 cmd_flags); 2826 2827 if (rc != 0) 2828 goto bce_nvram_write_locked_exit; 2829 2830 cmd_flags = 0; 2831 buf += 4; 2832 } 2833 2834 /* Loop to write back the buffer data from data_end 2835 * to page_end */ 2836 if (!(sc->bce_flash_info->flags & BCE_NV_BUFFERED)) { 2837 for (addr = data_end; addr < page_end; 2838 addr += 4, i += 4) { 2839 if (addr == page_end-4) { 2840 cmd_flags = BCE_NVM_COMMAND_LAST; 2841 } 2842 rc = bce_nvram_write_dword(sc, addr, 2843 &flash_buffer[i], cmd_flags); 2844 2845 if (rc != 0) 2846 goto bce_nvram_write_locked_exit; 2847 2848 cmd_flags = 0; 2849 } 2850 } 2851 2852 /* Disable writes to flash interface (lock write-protect) */ 2853 bce_disable_nvram_write(sc); 2854 2855 /* Disable access to flash interface */ 2856 bce_disable_nvram_access(sc); 2857 bce_release_nvram_lock(sc); 2858 2859 /* Increment written */ 2860 written += data_end - data_start; 2861 } 2862 2863 goto bce_nvram_write_exit; 2864 2865 bce_nvram_write_locked_exit: 2866 bce_disable_nvram_write(sc); 2867 bce_disable_nvram_access(sc); 2868 bce_release_nvram_lock(sc); 2869 2870 bce_nvram_write_exit: 2871 if (align_start || align_end) 2872 free(buf, M_DEVBUF); 2873 2874 DBEXIT(BCE_VERBOSE_NVRAM); 2875 return (rc); 2876 } 2877 #endif /* BCE_NVRAM_WRITE_SUPPORT */ 2878 2879 /****************************************************************************/ 2880 /* Verifies that NVRAM is accessible and contains valid data. */ 2881 /* */ 2882 /* Reads the configuration data from NVRAM and verifies that the CRC is */ 2883 /* correct. */ 2884 /* */ 2885 /* Returns: */ 2886 /* 0 on success, positive value on failure. */ 2887 /****************************************************************************/ 2888 static int 2889 bce_nvram_test(struct bce_softc *sc) 2890 { 2891 u32 buf[BCE_NVRAM_SIZE / 4]; 2892 u8 *data = (u8 *) buf; 2893 int rc = 0; 2894 u32 magic, csum; 2895 2896 DBENTER(BCE_VERBOSE_NVRAM | BCE_VERBOSE_LOAD | BCE_VERBOSE_RESET); 2897 2898 /* 2899 * Check that the device NVRAM is valid by reading 2900 * the magic value at offset 0. 2901 */ 2902 if ((rc = bce_nvram_read(sc, 0, data, 4)) != 0) { 2903 BCE_PRINTF("%s(%d): Unable to read NVRAM!\n", 2904 __FILE__, __LINE__); 2905 goto bce_nvram_test_exit; 2906 } 2907 2908 /* 2909 * Verify that offset 0 of the NVRAM contains 2910 * a valid magic number. 2911 */ 2912 magic = bce_be32toh(buf[0]); 2913 if (magic != BCE_NVRAM_MAGIC) { 2914 rc = ENODEV; 2915 BCE_PRINTF("%s(%d): Invalid NVRAM magic value! " 2916 "Expected: 0x%08X, Found: 0x%08X\n", 2917 __FILE__, __LINE__, BCE_NVRAM_MAGIC, magic); 2918 goto bce_nvram_test_exit; 2919 } 2920 2921 /* 2922 * Verify that the device NVRAM includes valid 2923 * configuration data. 2924 */ 2925 if ((rc = bce_nvram_read(sc, 0x100, data, BCE_NVRAM_SIZE)) != 0) { 2926 BCE_PRINTF("%s(%d): Unable to read manufacturing " 2927 "Information from NVRAM!\n", __FILE__, __LINE__); 2928 goto bce_nvram_test_exit; 2929 } 2930 2931 csum = ether_crc32_le(data, 0x100); 2932 if (csum != BCE_CRC32_RESIDUAL) { 2933 rc = ENODEV; 2934 BCE_PRINTF("%s(%d): Invalid manufacturing information " 2935 "NVRAM CRC! Expected: 0x%08X, Found: 0x%08X\n", 2936 __FILE__, __LINE__, BCE_CRC32_RESIDUAL, csum); 2937 goto bce_nvram_test_exit; 2938 } 2939 2940 csum = ether_crc32_le(data + 0x100, 0x100); 2941 if (csum != BCE_CRC32_RESIDUAL) { 2942 rc = ENODEV; 2943 BCE_PRINTF("%s(%d): Invalid feature configuration " 2944 "information NVRAM CRC! Expected: 0x%08X, " 2945 "Found: 08%08X\n", __FILE__, __LINE__, 2946 BCE_CRC32_RESIDUAL, csum); 2947 } 2948 2949 bce_nvram_test_exit: 2950 DBEXIT(BCE_VERBOSE_NVRAM | BCE_VERBOSE_LOAD | BCE_VERBOSE_RESET); 2951 return rc; 2952 } 2953 2954 /****************************************************************************/ 2955 /* Calculates the size of the buffers to allocate based on the MTU. */ 2956 /* */ 2957 /* Returns: */ 2958 /* Nothing. */ 2959 /****************************************************************************/ 2960 static void 2961 bce_get_rx_buffer_sizes(struct bce_softc *sc, int mtu) 2962 { 2963 DBENTER(BCE_VERBOSE_LOAD); 2964 2965 /* Use a single allocation type when header splitting enabled. */ 2966 if (bce_hdr_split == TRUE) { 2967 sc->rx_bd_mbuf_alloc_size = MHLEN; 2968 /* Make sure offset is 16 byte aligned for hardware. */ 2969 sc->rx_bd_mbuf_align_pad = 2970 roundup2(MSIZE - MHLEN, 16) - (MSIZE - MHLEN); 2971 sc->rx_bd_mbuf_data_len = sc->rx_bd_mbuf_alloc_size - 2972 sc->rx_bd_mbuf_align_pad; 2973 } else { 2974 if ((mtu + ETHER_HDR_LEN + ETHER_VLAN_ENCAP_LEN + 2975 ETHER_CRC_LEN) > MCLBYTES) { 2976 /* Setup for jumbo RX buffer allocations. */ 2977 sc->rx_bd_mbuf_alloc_size = MJUM9BYTES; 2978 sc->rx_bd_mbuf_align_pad = 2979 roundup2(MJUM9BYTES, 16) - MJUM9BYTES; 2980 sc->rx_bd_mbuf_data_len = 2981 sc->rx_bd_mbuf_alloc_size - 2982 sc->rx_bd_mbuf_align_pad; 2983 } else { 2984 /* Setup for standard RX buffer allocations. */ 2985 sc->rx_bd_mbuf_alloc_size = MCLBYTES; 2986 sc->rx_bd_mbuf_align_pad = 2987 roundup2(MCLBYTES, 16) - MCLBYTES; 2988 sc->rx_bd_mbuf_data_len = 2989 sc->rx_bd_mbuf_alloc_size - 2990 sc->rx_bd_mbuf_align_pad; 2991 } 2992 } 2993 2994 // DBPRINT(sc, BCE_INFO_LOAD, 2995 DBPRINT(sc, BCE_WARN, 2996 "%s(): rx_bd_mbuf_alloc_size = %d, rx_bd_mbuf_data_len = %d, " 2997 "rx_bd_mbuf_align_pad = %d\n", __FUNCTION__, 2998 sc->rx_bd_mbuf_alloc_size, sc->rx_bd_mbuf_data_len, 2999 sc->rx_bd_mbuf_align_pad); 3000 3001 DBEXIT(BCE_VERBOSE_LOAD); 3002 } 3003 3004 /****************************************************************************/ 3005 /* Identifies the current media type of the controller and sets the PHY */ 3006 /* address. */ 3007 /* */ 3008 /* Returns: */ 3009 /* Nothing. */ 3010 /****************************************************************************/ 3011 static void 3012 bce_get_media(struct bce_softc *sc) 3013 { 3014 u32 val; 3015 3016 DBENTER(BCE_VERBOSE_PHY); 3017 3018 /* Assume PHY address for copper controllers. */ 3019 sc->bce_phy_addr = 1; 3020 3021 if (BCE_CHIP_NUM(sc) == BCE_CHIP_NUM_5709) { 3022 u32 val = REG_RD(sc, BCE_MISC_DUAL_MEDIA_CTRL); 3023 u32 bond_id = val & BCE_MISC_DUAL_MEDIA_CTRL_BOND_ID; 3024 u32 strap; 3025 3026 /* 3027 * The BCM5709S is software configurable 3028 * for Copper or SerDes operation. 3029 */ 3030 if (bond_id == BCE_MISC_DUAL_MEDIA_CTRL_BOND_ID_C) { 3031 DBPRINT(sc, BCE_INFO_LOAD, "5709 bonded " 3032 "for copper.\n"); 3033 goto bce_get_media_exit; 3034 } else if (bond_id == BCE_MISC_DUAL_MEDIA_CTRL_BOND_ID_S) { 3035 DBPRINT(sc, BCE_INFO_LOAD, "5709 bonded " 3036 "for dual media.\n"); 3037 sc->bce_phy_flags |= BCE_PHY_SERDES_FLAG; 3038 goto bce_get_media_exit; 3039 } 3040 3041 if (val & BCE_MISC_DUAL_MEDIA_CTRL_STRAP_OVERRIDE) 3042 strap = (val & 3043 BCE_MISC_DUAL_MEDIA_CTRL_PHY_CTRL) >> 21; 3044 else 3045 strap = (val & 3046 BCE_MISC_DUAL_MEDIA_CTRL_PHY_CTRL_STRAP) >> 8; 3047 3048 if (pci_get_function(sc->bce_dev) == 0) { 3049 switch (strap) { 3050 case 0x4: 3051 case 0x5: 3052 case 0x6: 3053 DBPRINT(sc, BCE_INFO_LOAD, 3054 "BCM5709 s/w configured for SerDes.\n"); 3055 sc->bce_phy_flags |= BCE_PHY_SERDES_FLAG; 3056 break; 3057 default: 3058 DBPRINT(sc, BCE_INFO_LOAD, 3059 "BCM5709 s/w configured for Copper.\n"); 3060 break; 3061 } 3062 } else { 3063 switch (strap) { 3064 case 0x1: 3065 case 0x2: 3066 case 0x4: 3067 DBPRINT(sc, BCE_INFO_LOAD, 3068 "BCM5709 s/w configured for SerDes.\n"); 3069 sc->bce_phy_flags |= BCE_PHY_SERDES_FLAG; 3070 break; 3071 default: 3072 DBPRINT(sc, BCE_INFO_LOAD, 3073 "BCM5709 s/w configured for Copper.\n"); 3074 break; 3075 } 3076 } 3077 3078 } else if (BCE_CHIP_BOND_ID(sc) & BCE_CHIP_BOND_ID_SERDES_BIT) 3079 sc->bce_phy_flags |= BCE_PHY_SERDES_FLAG; 3080 3081 if (sc->bce_phy_flags & BCE_PHY_SERDES_FLAG) { 3082 sc->bce_flags |= BCE_NO_WOL_FLAG; 3083 3084 if (BCE_CHIP_NUM(sc) == BCE_CHIP_NUM_5709) 3085 sc->bce_phy_flags |= BCE_PHY_IEEE_CLAUSE_45_FLAG; 3086 3087 if (BCE_CHIP_NUM(sc) != BCE_CHIP_NUM_5706) { 3088 /* 5708S/09S/16S use a separate PHY for SerDes. */ 3089 sc->bce_phy_addr = 2; 3090 3091 val = bce_shmem_rd(sc, BCE_SHARED_HW_CFG_CONFIG); 3092 if (val & BCE_SHARED_HW_CFG_PHY_2_5G) { 3093 sc->bce_phy_flags |= 3094 BCE_PHY_2_5G_CAPABLE_FLAG; 3095 DBPRINT(sc, BCE_INFO_LOAD, "Found 2.5Gb " 3096 "capable adapter\n"); 3097 } 3098 } 3099 } else if ((BCE_CHIP_NUM(sc) == BCE_CHIP_NUM_5706) || 3100 (BCE_CHIP_NUM(sc) == BCE_CHIP_NUM_5708)) 3101 sc->bce_phy_flags |= BCE_PHY_CRC_FIX_FLAG; 3102 3103 bce_get_media_exit: 3104 DBPRINT(sc, (BCE_INFO_LOAD | BCE_INFO_PHY), 3105 "Using PHY address %d.\n", sc->bce_phy_addr); 3106 3107 DBEXIT(BCE_VERBOSE_PHY); 3108 } 3109 3110 /****************************************************************************/ 3111 /* Performs PHY initialization required before MII drivers access the */ 3112 /* device. */ 3113 /* */ 3114 /* Returns: */ 3115 /* Nothing. */ 3116 /****************************************************************************/ 3117 static void 3118 bce_init_media(struct bce_softc *sc) 3119 { 3120 if ((sc->bce_phy_flags & (BCE_PHY_IEEE_CLAUSE_45_FLAG | 3121 BCE_PHY_REMOTE_CAP_FLAG)) == BCE_PHY_IEEE_CLAUSE_45_FLAG) { 3122 /* 3123 * Configure 5709S/5716S PHYs to use traditional IEEE 3124 * Clause 22 method. Otherwise we have no way to attach 3125 * the PHY in mii(4) layer. PHY specific configuration 3126 * is done in mii layer. 3127 */ 3128 3129 /* Select auto-negotiation MMD of the PHY. */ 3130 bce_miibus_write_reg(sc->bce_dev, sc->bce_phy_addr, 3131 BRGPHY_BLOCK_ADDR, BRGPHY_BLOCK_ADDR_ADDR_EXT); 3132 bce_miibus_write_reg(sc->bce_dev, sc->bce_phy_addr, 3133 BRGPHY_ADDR_EXT, BRGPHY_ADDR_EXT_AN_MMD); 3134 3135 /* Set IEEE0 block of AN MMD (assumed in brgphy(4) code). */ 3136 bce_miibus_write_reg(sc->bce_dev, sc->bce_phy_addr, 3137 BRGPHY_BLOCK_ADDR, BRGPHY_BLOCK_ADDR_COMBO_IEEE0); 3138 } 3139 } 3140 3141 /****************************************************************************/ 3142 /* Free any DMA memory owned by the driver. */ 3143 /* */ 3144 /* Scans through each data structure that requires DMA memory and frees */ 3145 /* the memory if allocated. */ 3146 /* */ 3147 /* Returns: */ 3148 /* Nothing. */ 3149 /****************************************************************************/ 3150 static void 3151 bce_dma_free(struct bce_softc *sc) 3152 { 3153 int i; 3154 3155 DBENTER(BCE_VERBOSE_RESET | BCE_VERBOSE_UNLOAD | BCE_VERBOSE_CTX); 3156 3157 /* Free, unmap, and destroy the status block. */ 3158 if (sc->status_block_paddr != 0) { 3159 bus_dmamap_unload( 3160 sc->status_tag, 3161 sc->status_map); 3162 sc->status_block_paddr = 0; 3163 } 3164 3165 if (sc->status_block != NULL) { 3166 bus_dmamem_free( 3167 sc->status_tag, 3168 sc->status_block, 3169 sc->status_map); 3170 sc->status_block = NULL; 3171 } 3172 3173 if (sc->status_tag != NULL) { 3174 bus_dma_tag_destroy(sc->status_tag); 3175 sc->status_tag = NULL; 3176 } 3177 3178 /* Free, unmap, and destroy the statistics block. */ 3179 if (sc->stats_block_paddr != 0) { 3180 bus_dmamap_unload( 3181 sc->stats_tag, 3182 sc->stats_map); 3183 sc->stats_block_paddr = 0; 3184 } 3185 3186 if (sc->stats_block != NULL) { 3187 bus_dmamem_free( 3188 sc->stats_tag, 3189 sc->stats_block, 3190 sc->stats_map); 3191 sc->stats_block = NULL; 3192 } 3193 3194 if (sc->stats_tag != NULL) { 3195 bus_dma_tag_destroy(sc->stats_tag); 3196 sc->stats_tag = NULL; 3197 } 3198 3199 /* Free, unmap and destroy all context memory pages. */ 3200 if (BCE_CHIP_NUM(sc) == BCE_CHIP_NUM_5709) { 3201 for (i = 0; i < sc->ctx_pages; i++ ) { 3202 if (sc->ctx_paddr[i] != 0) { 3203 bus_dmamap_unload( 3204 sc->ctx_tag, 3205 sc->ctx_map[i]); 3206 sc->ctx_paddr[i] = 0; 3207 } 3208 3209 if (sc->ctx_block[i] != NULL) { 3210 bus_dmamem_free( 3211 sc->ctx_tag, 3212 sc->ctx_block[i], 3213 sc->ctx_map[i]); 3214 sc->ctx_block[i] = NULL; 3215 } 3216 } 3217 3218 /* Destroy the context memory tag. */ 3219 if (sc->ctx_tag != NULL) { 3220 bus_dma_tag_destroy(sc->ctx_tag); 3221 sc->ctx_tag = NULL; 3222 } 3223 } 3224 3225 /* Free, unmap and destroy all TX buffer descriptor chain pages. */ 3226 for (i = 0; i < sc->tx_pages; i++ ) { 3227 if (sc->tx_bd_chain_paddr[i] != 0) { 3228 bus_dmamap_unload( 3229 sc->tx_bd_chain_tag, 3230 sc->tx_bd_chain_map[i]); 3231 sc->tx_bd_chain_paddr[i] = 0; 3232 } 3233 3234 if (sc->tx_bd_chain[i] != NULL) { 3235 bus_dmamem_free( 3236 sc->tx_bd_chain_tag, 3237 sc->tx_bd_chain[i], 3238 sc->tx_bd_chain_map[i]); 3239 sc->tx_bd_chain[i] = NULL; 3240 } 3241 } 3242 3243 /* Destroy the TX buffer descriptor tag. */ 3244 if (sc->tx_bd_chain_tag != NULL) { 3245 bus_dma_tag_destroy(sc->tx_bd_chain_tag); 3246 sc->tx_bd_chain_tag = NULL; 3247 } 3248 3249 /* Free, unmap and destroy all RX buffer descriptor chain pages. */ 3250 for (i = 0; i < sc->rx_pages; i++ ) { 3251 if (sc->rx_bd_chain_paddr[i] != 0) { 3252 bus_dmamap_unload( 3253 sc->rx_bd_chain_tag, 3254 sc->rx_bd_chain_map[i]); 3255 sc->rx_bd_chain_paddr[i] = 0; 3256 } 3257 3258 if (sc->rx_bd_chain[i] != NULL) { 3259 bus_dmamem_free( 3260 sc->rx_bd_chain_tag, 3261 sc->rx_bd_chain[i], 3262 sc->rx_bd_chain_map[i]); 3263 sc->rx_bd_chain[i] = NULL; 3264 } 3265 } 3266 3267 /* Destroy the RX buffer descriptor tag. */ 3268 if (sc->rx_bd_chain_tag != NULL) { 3269 bus_dma_tag_destroy(sc->rx_bd_chain_tag); 3270 sc->rx_bd_chain_tag = NULL; 3271 } 3272 3273 /* Free, unmap and destroy all page buffer descriptor chain pages. */ 3274 if (bce_hdr_split == TRUE) { 3275 for (i = 0; i < sc->pg_pages; i++ ) { 3276 if (sc->pg_bd_chain_paddr[i] != 0) { 3277 bus_dmamap_unload( 3278 sc->pg_bd_chain_tag, 3279 sc->pg_bd_chain_map[i]); 3280 sc->pg_bd_chain_paddr[i] = 0; 3281 } 3282 3283 if (sc->pg_bd_chain[i] != NULL) { 3284 bus_dmamem_free( 3285 sc->pg_bd_chain_tag, 3286 sc->pg_bd_chain[i], 3287 sc->pg_bd_chain_map[i]); 3288 sc->pg_bd_chain[i] = NULL; 3289 } 3290 } 3291 3292 /* Destroy the page buffer descriptor tag. */ 3293 if (sc->pg_bd_chain_tag != NULL) { 3294 bus_dma_tag_destroy(sc->pg_bd_chain_tag); 3295 sc->pg_bd_chain_tag = NULL; 3296 } 3297 } 3298 3299 /* Unload and destroy the TX mbuf maps. */ 3300 for (i = 0; i < MAX_TX_BD_AVAIL; i++) { 3301 if (sc->tx_mbuf_map[i] != NULL) { 3302 bus_dmamap_unload(sc->tx_mbuf_tag, 3303 sc->tx_mbuf_map[i]); 3304 bus_dmamap_destroy(sc->tx_mbuf_tag, 3305 sc->tx_mbuf_map[i]); 3306 sc->tx_mbuf_map[i] = NULL; 3307 } 3308 } 3309 3310 /* Destroy the TX mbuf tag. */ 3311 if (sc->tx_mbuf_tag != NULL) { 3312 bus_dma_tag_destroy(sc->tx_mbuf_tag); 3313 sc->tx_mbuf_tag = NULL; 3314 } 3315 3316 /* Unload and destroy the RX mbuf maps. */ 3317 for (i = 0; i < MAX_RX_BD_AVAIL; i++) { 3318 if (sc->rx_mbuf_map[i] != NULL) { 3319 bus_dmamap_unload(sc->rx_mbuf_tag, 3320 sc->rx_mbuf_map[i]); 3321 bus_dmamap_destroy(sc->rx_mbuf_tag, 3322 sc->rx_mbuf_map[i]); 3323 sc->rx_mbuf_map[i] = NULL; 3324 } 3325 } 3326 3327 /* Destroy the RX mbuf tag. */ 3328 if (sc->rx_mbuf_tag != NULL) { 3329 bus_dma_tag_destroy(sc->rx_mbuf_tag); 3330 sc->rx_mbuf_tag = NULL; 3331 } 3332 3333 /* Unload and destroy the page mbuf maps. */ 3334 if (bce_hdr_split == TRUE) { 3335 for (i = 0; i < MAX_PG_BD_AVAIL; i++) { 3336 if (sc->pg_mbuf_map[i] != NULL) { 3337 bus_dmamap_unload(sc->pg_mbuf_tag, 3338 sc->pg_mbuf_map[i]); 3339 bus_dmamap_destroy(sc->pg_mbuf_tag, 3340 sc->pg_mbuf_map[i]); 3341 sc->pg_mbuf_map[i] = NULL; 3342 } 3343 } 3344 3345 /* Destroy the page mbuf tag. */ 3346 if (sc->pg_mbuf_tag != NULL) { 3347 bus_dma_tag_destroy(sc->pg_mbuf_tag); 3348 sc->pg_mbuf_tag = NULL; 3349 } 3350 } 3351 3352 /* Destroy the parent tag */ 3353 if (sc->parent_tag != NULL) { 3354 bus_dma_tag_destroy(sc->parent_tag); 3355 sc->parent_tag = NULL; 3356 } 3357 3358 DBEXIT(BCE_VERBOSE_RESET | BCE_VERBOSE_UNLOAD | BCE_VERBOSE_CTX); 3359 } 3360 3361 /****************************************************************************/ 3362 /* Get DMA memory from the OS. */ 3363 /* */ 3364 /* Validates that the OS has provided DMA buffers in response to a */ 3365 /* bus_dmamap_load() call and saves the physical address of those buffers. */ 3366 /* When the callback is used the OS will return 0 for the mapping function */ 3367 /* (bus_dmamap_load()) so we use the value of map_arg->maxsegs to pass any */ 3368 /* failures back to the caller. */ 3369 /* */ 3370 /* Returns: */ 3371 /* Nothing. */ 3372 /****************************************************************************/ 3373 static void 3374 bce_dma_map_addr(void *arg, bus_dma_segment_t *segs, int nseg, int error) 3375 { 3376 bus_addr_t *busaddr = arg; 3377 3378 KASSERT(nseg == 1, ("%s(): Too many segments returned (%d)!", 3379 __FUNCTION__, nseg)); 3380 /* Simulate a mapping failure. */ 3381 DBRUNIF(DB_RANDOMTRUE(dma_map_addr_failed_sim_control), 3382 error = ENOMEM); 3383 3384 /* ToDo: How to increment debug sim_count variable here? */ 3385 3386 /* Check for an error and signal the caller that an error occurred. */ 3387 if (error) { 3388 *busaddr = 0; 3389 } else { 3390 *busaddr = segs->ds_addr; 3391 } 3392 } 3393 3394 /****************************************************************************/ 3395 /* Allocate any DMA memory needed by the driver. */ 3396 /* */ 3397 /* Allocates DMA memory needed for the various global structures needed by */ 3398 /* hardware. */ 3399 /* */ 3400 /* Memory alignment requirements: */ 3401 /* +-----------------+----------+----------+----------+----------+ */ 3402 /* | | 5706 | 5708 | 5709 | 5716 | */ 3403 /* +-----------------+----------+----------+----------+----------+ */ 3404 /* |Status Block | 8 bytes | 8 bytes | 16 bytes | 16 bytes | */ 3405 /* |Statistics Block | 8 bytes | 8 bytes | 16 bytes | 16 bytes | */ 3406 /* |RX Buffers | 16 bytes | 16 bytes | 16 bytes | 16 bytes | */ 3407 /* |PG Buffers | none | none | none | none | */ 3408 /* |TX Buffers | none | none | none | none | */ 3409 /* |Chain Pages(1) | 4KiB | 4KiB | 4KiB | 4KiB | */ 3410 /* |Context Memory | | | | | */ 3411 /* +-----------------+----------+----------+----------+----------+ */ 3412 /* */ 3413 /* (1) Must align with CPU page size (BCM_PAGE_SZIE). */ 3414 /* */ 3415 /* Returns: */ 3416 /* 0 for success, positive value for failure. */ 3417 /****************************************************************************/ 3418 static int 3419 bce_dma_alloc(device_t dev) 3420 { 3421 struct bce_softc *sc; 3422 int i, error, rc = 0; 3423 bus_size_t max_size, max_seg_size; 3424 int max_segments; 3425 3426 sc = device_get_softc(dev); 3427 3428 DBENTER(BCE_VERBOSE_RESET | BCE_VERBOSE_CTX); 3429 3430 /* 3431 * Allocate the parent bus DMA tag appropriate for PCI. 3432 */ 3433 if (bus_dma_tag_create(bus_get_dma_tag(dev), 1, BCE_DMA_BOUNDARY, 3434 sc->max_bus_addr, BUS_SPACE_MAXADDR, NULL, NULL, 3435 BUS_SPACE_MAXSIZE_32BIT, 0, BUS_SPACE_MAXSIZE_32BIT, 0, NULL, NULL, 3436 &sc->parent_tag)) { 3437 BCE_PRINTF("%s(%d): Could not allocate parent DMA tag!\n", 3438 __FILE__, __LINE__); 3439 rc = ENOMEM; 3440 goto bce_dma_alloc_exit; 3441 } 3442 3443 /* 3444 * Create a DMA tag for the status block, allocate and clear the 3445 * memory, map the memory into DMA space, and fetch the physical 3446 * address of the block. 3447 */ 3448 if (bus_dma_tag_create(sc->parent_tag, BCE_DMA_ALIGN, 3449 BCE_DMA_BOUNDARY, sc->max_bus_addr, BUS_SPACE_MAXADDR, 3450 NULL, NULL, BCE_STATUS_BLK_SZ, 1, BCE_STATUS_BLK_SZ, 3451 0, NULL, NULL, &sc->status_tag)) { 3452 BCE_PRINTF("%s(%d): Could not allocate status block " 3453 "DMA tag!\n", __FILE__, __LINE__); 3454 rc = ENOMEM; 3455 goto bce_dma_alloc_exit; 3456 } 3457 3458 if(bus_dmamem_alloc(sc->status_tag, (void **)&sc->status_block, 3459 BUS_DMA_NOWAIT | BUS_DMA_ZERO | BUS_DMA_COHERENT, 3460 &sc->status_map)) { 3461 BCE_PRINTF("%s(%d): Could not allocate status block " 3462 "DMA memory!\n", __FILE__, __LINE__); 3463 rc = ENOMEM; 3464 goto bce_dma_alloc_exit; 3465 } 3466 3467 error = bus_dmamap_load(sc->status_tag, sc->status_map, 3468 sc->status_block, BCE_STATUS_BLK_SZ, bce_dma_map_addr, 3469 &sc->status_block_paddr, BUS_DMA_NOWAIT); 3470 3471 if (error || sc->status_block_paddr == 0) { 3472 BCE_PRINTF("%s(%d): Could not map status block " 3473 "DMA memory!\n", __FILE__, __LINE__); 3474 rc = ENOMEM; 3475 goto bce_dma_alloc_exit; 3476 } 3477 3478 DBPRINT(sc, BCE_INFO_LOAD, "%s(): status_block_paddr = 0x%jX\n", 3479 __FUNCTION__, (uintmax_t) sc->status_block_paddr); 3480 3481 /* 3482 * Create a DMA tag for the statistics block, allocate and clear the 3483 * memory, map the memory into DMA space, and fetch the physical 3484 * address of the block. 3485 */ 3486 if (bus_dma_tag_create(sc->parent_tag, BCE_DMA_ALIGN, 3487 BCE_DMA_BOUNDARY, sc->max_bus_addr, BUS_SPACE_MAXADDR, 3488 NULL, NULL, BCE_STATS_BLK_SZ, 1, BCE_STATS_BLK_SZ, 3489 0, NULL, NULL, &sc->stats_tag)) { 3490 BCE_PRINTF("%s(%d): Could not allocate statistics block " 3491 "DMA tag!\n", __FILE__, __LINE__); 3492 rc = ENOMEM; 3493 goto bce_dma_alloc_exit; 3494 } 3495 3496 if (bus_dmamem_alloc(sc->stats_tag, (void **)&sc->stats_block, 3497 BUS_DMA_NOWAIT | BUS_DMA_ZERO | BUS_DMA_COHERENT, &sc->stats_map)) { 3498 BCE_PRINTF("%s(%d): Could not allocate statistics block " 3499 "DMA memory!\n", __FILE__, __LINE__); 3500 rc = ENOMEM; 3501 goto bce_dma_alloc_exit; 3502 } 3503 3504 error = bus_dmamap_load(sc->stats_tag, sc->stats_map, 3505 sc->stats_block, BCE_STATS_BLK_SZ, bce_dma_map_addr, 3506 &sc->stats_block_paddr, BUS_DMA_NOWAIT); 3507 3508 if (error || sc->stats_block_paddr == 0) { 3509 BCE_PRINTF("%s(%d): Could not map statistics block " 3510 "DMA memory!\n", __FILE__, __LINE__); 3511 rc = ENOMEM; 3512 goto bce_dma_alloc_exit; 3513 } 3514 3515 DBPRINT(sc, BCE_INFO_LOAD, "%s(): stats_block_paddr = 0x%jX\n", 3516 __FUNCTION__, (uintmax_t) sc->stats_block_paddr); 3517 3518 /* BCM5709 uses host memory as cache for context memory. */ 3519 if (BCE_CHIP_NUM(sc) == BCE_CHIP_NUM_5709) { 3520 sc->ctx_pages = 0x2000 / BCM_PAGE_SIZE; 3521 if (sc->ctx_pages == 0) 3522 sc->ctx_pages = 1; 3523 3524 DBRUNIF((sc->ctx_pages > 512), 3525 BCE_PRINTF("%s(%d): Too many CTX pages! %d > 512\n", 3526 __FILE__, __LINE__, sc->ctx_pages)); 3527 3528 /* 3529 * Create a DMA tag for the context pages, 3530 * allocate and clear the memory, map the 3531 * memory into DMA space, and fetch the 3532 * physical address of the block. 3533 */ 3534 if(bus_dma_tag_create(sc->parent_tag, BCM_PAGE_SIZE, 3535 BCE_DMA_BOUNDARY, sc->max_bus_addr, BUS_SPACE_MAXADDR, 3536 NULL, NULL, BCM_PAGE_SIZE, 1, BCM_PAGE_SIZE, 3537 0, NULL, NULL, &sc->ctx_tag)) { 3538 BCE_PRINTF("%s(%d): Could not allocate CTX " 3539 "DMA tag!\n", __FILE__, __LINE__); 3540 rc = ENOMEM; 3541 goto bce_dma_alloc_exit; 3542 } 3543 3544 for (i = 0; i < sc->ctx_pages; i++) { 3545 if(bus_dmamem_alloc(sc->ctx_tag, 3546 (void **)&sc->ctx_block[i], 3547 BUS_DMA_NOWAIT | BUS_DMA_ZERO | BUS_DMA_COHERENT, 3548 &sc->ctx_map[i])) { 3549 BCE_PRINTF("%s(%d): Could not allocate CTX " 3550 "DMA memory!\n", __FILE__, __LINE__); 3551 rc = ENOMEM; 3552 goto bce_dma_alloc_exit; 3553 } 3554 3555 error = bus_dmamap_load(sc->ctx_tag, sc->ctx_map[i], 3556 sc->ctx_block[i], BCM_PAGE_SIZE, bce_dma_map_addr, 3557 &sc->ctx_paddr[i], BUS_DMA_NOWAIT); 3558 3559 if (error || sc->ctx_paddr[i] == 0) { 3560 BCE_PRINTF("%s(%d): Could not map CTX " 3561 "DMA memory!\n", __FILE__, __LINE__); 3562 rc = ENOMEM; 3563 goto bce_dma_alloc_exit; 3564 } 3565 3566 DBPRINT(sc, BCE_INFO_LOAD, "%s(): ctx_paddr[%d] " 3567 "= 0x%jX\n", __FUNCTION__, i, 3568 (uintmax_t) sc->ctx_paddr[i]); 3569 } 3570 } 3571 3572 /* 3573 * Create a DMA tag for the TX buffer descriptor chain, 3574 * allocate and clear the memory, and fetch the 3575 * physical address of the block. 3576 */ 3577 if(bus_dma_tag_create(sc->parent_tag, BCM_PAGE_SIZE, BCE_DMA_BOUNDARY, 3578 sc->max_bus_addr, BUS_SPACE_MAXADDR, NULL, NULL, 3579 BCE_TX_CHAIN_PAGE_SZ, 1, BCE_TX_CHAIN_PAGE_SZ, 0, 3580 NULL, NULL, &sc->tx_bd_chain_tag)) { 3581 BCE_PRINTF("%s(%d): Could not allocate TX descriptor " 3582 "chain DMA tag!\n", __FILE__, __LINE__); 3583 rc = ENOMEM; 3584 goto bce_dma_alloc_exit; 3585 } 3586 3587 for (i = 0; i < sc->tx_pages; i++) { 3588 if(bus_dmamem_alloc(sc->tx_bd_chain_tag, 3589 (void **)&sc->tx_bd_chain[i], 3590 BUS_DMA_NOWAIT | BUS_DMA_ZERO | BUS_DMA_COHERENT, 3591 &sc->tx_bd_chain_map[i])) { 3592 BCE_PRINTF("%s(%d): Could not allocate TX descriptor " 3593 "chain DMA memory!\n", __FILE__, __LINE__); 3594 rc = ENOMEM; 3595 goto bce_dma_alloc_exit; 3596 } 3597 3598 error = bus_dmamap_load(sc->tx_bd_chain_tag, 3599 sc->tx_bd_chain_map[i], sc->tx_bd_chain[i], 3600 BCE_TX_CHAIN_PAGE_SZ, bce_dma_map_addr, 3601 &sc->tx_bd_chain_paddr[i], BUS_DMA_NOWAIT); 3602 3603 if (error || sc->tx_bd_chain_paddr[i] == 0) { 3604 BCE_PRINTF("%s(%d): Could not map TX descriptor " 3605 "chain DMA memory!\n", __FILE__, __LINE__); 3606 rc = ENOMEM; 3607 goto bce_dma_alloc_exit; 3608 } 3609 3610 DBPRINT(sc, BCE_INFO_LOAD, "%s(): tx_bd_chain_paddr[%d] = " 3611 "0x%jX\n", __FUNCTION__, i, 3612 (uintmax_t) sc->tx_bd_chain_paddr[i]); 3613 } 3614 3615 /* Check the required size before mapping to conserve resources. */ 3616 if (bce_tso_enable) { 3617 max_size = BCE_TSO_MAX_SIZE; 3618 max_segments = BCE_MAX_SEGMENTS; 3619 max_seg_size = BCE_TSO_MAX_SEG_SIZE; 3620 } else { 3621 max_size = MCLBYTES * BCE_MAX_SEGMENTS; 3622 max_segments = BCE_MAX_SEGMENTS; 3623 max_seg_size = MCLBYTES; 3624 } 3625 3626 /* Create a DMA tag for TX mbufs. */ 3627 if (bus_dma_tag_create(sc->parent_tag, 1, BCE_DMA_BOUNDARY, 3628 sc->max_bus_addr, BUS_SPACE_MAXADDR, NULL, NULL, max_size, 3629 max_segments, max_seg_size, 0, NULL, NULL, &sc->tx_mbuf_tag)) { 3630 BCE_PRINTF("%s(%d): Could not allocate TX mbuf DMA tag!\n", 3631 __FILE__, __LINE__); 3632 rc = ENOMEM; 3633 goto bce_dma_alloc_exit; 3634 } 3635 3636 /* Create DMA maps for the TX mbufs clusters. */ 3637 for (i = 0; i < TOTAL_TX_BD_ALLOC; i++) { 3638 if (bus_dmamap_create(sc->tx_mbuf_tag, BUS_DMA_NOWAIT, 3639 &sc->tx_mbuf_map[i])) { 3640 BCE_PRINTF("%s(%d): Unable to create TX mbuf DMA " 3641 "map!\n", __FILE__, __LINE__); 3642 rc = ENOMEM; 3643 goto bce_dma_alloc_exit; 3644 } 3645 } 3646 3647 /* 3648 * Create a DMA tag for the RX buffer descriptor chain, 3649 * allocate and clear the memory, and fetch the physical 3650 * address of the blocks. 3651 */ 3652 if (bus_dma_tag_create(sc->parent_tag, BCM_PAGE_SIZE, 3653 BCE_DMA_BOUNDARY, BUS_SPACE_MAXADDR, 3654 sc->max_bus_addr, NULL, NULL, 3655 BCE_RX_CHAIN_PAGE_SZ, 1, BCE_RX_CHAIN_PAGE_SZ, 3656 0, NULL, NULL, &sc->rx_bd_chain_tag)) { 3657 BCE_PRINTF("%s(%d): Could not allocate RX descriptor chain " 3658 "DMA tag!\n", __FILE__, __LINE__); 3659 rc = ENOMEM; 3660 goto bce_dma_alloc_exit; 3661 } 3662 3663 for (i = 0; i < sc->rx_pages; i++) { 3664 if (bus_dmamem_alloc(sc->rx_bd_chain_tag, 3665 (void **)&sc->rx_bd_chain[i], 3666 BUS_DMA_NOWAIT | BUS_DMA_ZERO | BUS_DMA_COHERENT, 3667 &sc->rx_bd_chain_map[i])) { 3668 BCE_PRINTF("%s(%d): Could not allocate RX descriptor " 3669 "chain DMA memory!\n", __FILE__, __LINE__); 3670 rc = ENOMEM; 3671 goto bce_dma_alloc_exit; 3672 } 3673 3674 error = bus_dmamap_load(sc->rx_bd_chain_tag, 3675 sc->rx_bd_chain_map[i], sc->rx_bd_chain[i], 3676 BCE_RX_CHAIN_PAGE_SZ, bce_dma_map_addr, 3677 &sc->rx_bd_chain_paddr[i], BUS_DMA_NOWAIT); 3678 3679 if (error || sc->rx_bd_chain_paddr[i] == 0) { 3680 BCE_PRINTF("%s(%d): Could not map RX descriptor " 3681 "chain DMA memory!\n", __FILE__, __LINE__); 3682 rc = ENOMEM; 3683 goto bce_dma_alloc_exit; 3684 } 3685 3686 DBPRINT(sc, BCE_INFO_LOAD, "%s(): rx_bd_chain_paddr[%d] = " 3687 "0x%jX\n", __FUNCTION__, i, 3688 (uintmax_t) sc->rx_bd_chain_paddr[i]); 3689 } 3690 3691 /* 3692 * Create a DMA tag for RX mbufs. 3693 */ 3694 if (bce_hdr_split == TRUE) 3695 max_size = ((sc->rx_bd_mbuf_alloc_size < MCLBYTES) ? 3696 MCLBYTES : sc->rx_bd_mbuf_alloc_size); 3697 else 3698 max_size = MJUM9BYTES; 3699 3700 DBPRINT(sc, BCE_INFO_LOAD, "%s(): Creating rx_mbuf_tag " 3701 "(max size = 0x%jX)\n", __FUNCTION__, (uintmax_t)max_size); 3702 3703 if (bus_dma_tag_create(sc->parent_tag, BCE_RX_BUF_ALIGN, 3704 BCE_DMA_BOUNDARY, sc->max_bus_addr, BUS_SPACE_MAXADDR, NULL, NULL, 3705 max_size, 1, max_size, 0, NULL, NULL, &sc->rx_mbuf_tag)) { 3706 BCE_PRINTF("%s(%d): Could not allocate RX mbuf DMA tag!\n", 3707 __FILE__, __LINE__); 3708 rc = ENOMEM; 3709 goto bce_dma_alloc_exit; 3710 } 3711 3712 /* Create DMA maps for the RX mbuf clusters. */ 3713 for (i = 0; i < TOTAL_RX_BD_ALLOC; i++) { 3714 if (bus_dmamap_create(sc->rx_mbuf_tag, BUS_DMA_NOWAIT, 3715 &sc->rx_mbuf_map[i])) { 3716 BCE_PRINTF("%s(%d): Unable to create RX mbuf " 3717 "DMA map!\n", __FILE__, __LINE__); 3718 rc = ENOMEM; 3719 goto bce_dma_alloc_exit; 3720 } 3721 } 3722 3723 if (bce_hdr_split == TRUE) { 3724 /* 3725 * Create a DMA tag for the page buffer descriptor chain, 3726 * allocate and clear the memory, and fetch the physical 3727 * address of the blocks. 3728 */ 3729 if (bus_dma_tag_create(sc->parent_tag, BCM_PAGE_SIZE, 3730 BCE_DMA_BOUNDARY, BUS_SPACE_MAXADDR, sc->max_bus_addr, 3731 NULL, NULL, BCE_PG_CHAIN_PAGE_SZ, 1, BCE_PG_CHAIN_PAGE_SZ, 3732 0, NULL, NULL, &sc->pg_bd_chain_tag)) { 3733 BCE_PRINTF("%s(%d): Could not allocate page descriptor " 3734 "chain DMA tag!\n", __FILE__, __LINE__); 3735 rc = ENOMEM; 3736 goto bce_dma_alloc_exit; 3737 } 3738 3739 for (i = 0; i < sc->pg_pages; i++) { 3740 if (bus_dmamem_alloc(sc->pg_bd_chain_tag, 3741 (void **)&sc->pg_bd_chain[i], 3742 BUS_DMA_NOWAIT | BUS_DMA_ZERO | BUS_DMA_COHERENT, 3743 &sc->pg_bd_chain_map[i])) { 3744 BCE_PRINTF("%s(%d): Could not allocate page " 3745 "descriptor chain DMA memory!\n", 3746 __FILE__, __LINE__); 3747 rc = ENOMEM; 3748 goto bce_dma_alloc_exit; 3749 } 3750 3751 error = bus_dmamap_load(sc->pg_bd_chain_tag, 3752 sc->pg_bd_chain_map[i], sc->pg_bd_chain[i], 3753 BCE_PG_CHAIN_PAGE_SZ, bce_dma_map_addr, 3754 &sc->pg_bd_chain_paddr[i], BUS_DMA_NOWAIT); 3755 3756 if (error || sc->pg_bd_chain_paddr[i] == 0) { 3757 BCE_PRINTF("%s(%d): Could not map page descriptor " 3758 "chain DMA memory!\n", __FILE__, __LINE__); 3759 rc = ENOMEM; 3760 goto bce_dma_alloc_exit; 3761 } 3762 3763 DBPRINT(sc, BCE_INFO_LOAD, "%s(): pg_bd_chain_paddr[%d] = " 3764 "0x%jX\n", __FUNCTION__, i, 3765 (uintmax_t) sc->pg_bd_chain_paddr[i]); 3766 } 3767 3768 /* 3769 * Create a DMA tag for page mbufs. 3770 */ 3771 if (bus_dma_tag_create(sc->parent_tag, 1, BCE_DMA_BOUNDARY, 3772 sc->max_bus_addr, BUS_SPACE_MAXADDR, NULL, NULL, MCLBYTES, 3773 1, MCLBYTES, 0, NULL, NULL, &sc->pg_mbuf_tag)) { 3774 BCE_PRINTF("%s(%d): Could not allocate page mbuf " 3775 "DMA tag!\n", __FILE__, __LINE__); 3776 rc = ENOMEM; 3777 goto bce_dma_alloc_exit; 3778 } 3779 3780 /* Create DMA maps for the page mbuf clusters. */ 3781 for (i = 0; i < TOTAL_PG_BD_ALLOC; i++) { 3782 if (bus_dmamap_create(sc->pg_mbuf_tag, BUS_DMA_NOWAIT, 3783 &sc->pg_mbuf_map[i])) { 3784 BCE_PRINTF("%s(%d): Unable to create page mbuf " 3785 "DMA map!\n", __FILE__, __LINE__); 3786 rc = ENOMEM; 3787 goto bce_dma_alloc_exit; 3788 } 3789 } 3790 } 3791 3792 bce_dma_alloc_exit: 3793 DBEXIT(BCE_VERBOSE_RESET | BCE_VERBOSE_CTX); 3794 return(rc); 3795 } 3796 3797 /****************************************************************************/ 3798 /* Release all resources used by the driver. */ 3799 /* */ 3800 /* Releases all resources acquired by the driver including interrupts, */ 3801 /* interrupt handler, interfaces, mutexes, and DMA memory. */ 3802 /* */ 3803 /* Returns: */ 3804 /* Nothing. */ 3805 /****************************************************************************/ 3806 static void 3807 bce_release_resources(struct bce_softc *sc) 3808 { 3809 device_t dev; 3810 3811 DBENTER(BCE_VERBOSE_RESET); 3812 3813 dev = sc->bce_dev; 3814 3815 bce_dma_free(sc); 3816 3817 if (sc->bce_intrhand != NULL) { 3818 DBPRINT(sc, BCE_INFO_RESET, "Removing interrupt handler.\n"); 3819 bus_teardown_intr(dev, sc->bce_res_irq, sc->bce_intrhand); 3820 } 3821 3822 if (sc->bce_res_irq != NULL) { 3823 DBPRINT(sc, BCE_INFO_RESET, "Releasing IRQ.\n"); 3824 bus_release_resource(dev, SYS_RES_IRQ, 3825 rman_get_rid(sc->bce_res_irq), sc->bce_res_irq); 3826 } 3827 3828 if (sc->bce_flags & (BCE_USING_MSI_FLAG | BCE_USING_MSIX_FLAG)) { 3829 DBPRINT(sc, BCE_INFO_RESET, "Releasing MSI/MSI-X vector.\n"); 3830 pci_release_msi(dev); 3831 } 3832 3833 if (sc->bce_res_mem != NULL) { 3834 DBPRINT(sc, BCE_INFO_RESET, "Releasing PCI memory.\n"); 3835 bus_release_resource(dev, SYS_RES_MEMORY, PCIR_BAR(0), 3836 sc->bce_res_mem); 3837 } 3838 3839 if (sc->bce_ifp != NULL) { 3840 DBPRINT(sc, BCE_INFO_RESET, "Releasing IF.\n"); 3841 if_free(sc->bce_ifp); 3842 } 3843 3844 if (mtx_initialized(&sc->bce_mtx)) 3845 BCE_LOCK_DESTROY(sc); 3846 3847 DBEXIT(BCE_VERBOSE_RESET); 3848 } 3849 3850 /****************************************************************************/ 3851 /* Firmware synchronization. */ 3852 /* */ 3853 /* Before performing certain events such as a chip reset, synchronize with */ 3854 /* the firmware first. */ 3855 /* */ 3856 /* Returns: */ 3857 /* 0 for success, positive value for failure. */ 3858 /****************************************************************************/ 3859 static int 3860 bce_fw_sync(struct bce_softc *sc, u32 msg_data) 3861 { 3862 int i, rc = 0; 3863 u32 val; 3864 3865 DBENTER(BCE_VERBOSE_RESET); 3866 3867 /* Don't waste any time if we've timed out before. */ 3868 if (sc->bce_fw_timed_out == TRUE) { 3869 rc = EBUSY; 3870 goto bce_fw_sync_exit; 3871 } 3872 3873 /* Increment the message sequence number. */ 3874 sc->bce_fw_wr_seq++; 3875 msg_data |= sc->bce_fw_wr_seq; 3876 3877 DBPRINT(sc, BCE_VERBOSE_FIRMWARE, "bce_fw_sync(): msg_data = " 3878 "0x%08X\n", msg_data); 3879 3880 /* Send the message to the bootcode driver mailbox. */ 3881 bce_shmem_wr(sc, BCE_DRV_MB, msg_data); 3882 3883 /* Wait for the bootcode to acknowledge the message. */ 3884 for (i = 0; i < FW_ACK_TIME_OUT_MS; i++) { 3885 /* Check for a response in the bootcode firmware mailbox. */ 3886 val = bce_shmem_rd(sc, BCE_FW_MB); 3887 if ((val & BCE_FW_MSG_ACK) == (msg_data & BCE_DRV_MSG_SEQ)) 3888 break; 3889 DELAY(1000); 3890 } 3891 3892 /* If we've timed out, tell bootcode that we've stopped waiting. */ 3893 if (((val & BCE_FW_MSG_ACK) != (msg_data & BCE_DRV_MSG_SEQ)) && 3894 ((msg_data & BCE_DRV_MSG_DATA) != BCE_DRV_MSG_DATA_WAIT0)) { 3895 BCE_PRINTF("%s(%d): Firmware synchronization timeout! " 3896 "msg_data = 0x%08X\n", __FILE__, __LINE__, msg_data); 3897 3898 msg_data &= ~BCE_DRV_MSG_CODE; 3899 msg_data |= BCE_DRV_MSG_CODE_FW_TIMEOUT; 3900 3901 bce_shmem_wr(sc, BCE_DRV_MB, msg_data); 3902 3903 sc->bce_fw_timed_out = TRUE; 3904 rc = EBUSY; 3905 } 3906 3907 bce_fw_sync_exit: 3908 DBEXIT(BCE_VERBOSE_RESET); 3909 return (rc); 3910 } 3911 3912 /****************************************************************************/ 3913 /* Load Receive Virtual 2 Physical (RV2P) processor firmware. */ 3914 /* */ 3915 /* Returns: */ 3916 /* Nothing. */ 3917 /****************************************************************************/ 3918 static void 3919 bce_load_rv2p_fw(struct bce_softc *sc, const u32 *rv2p_code, 3920 u32 rv2p_code_len, u32 rv2p_proc) 3921 { 3922 int i; 3923 u32 val; 3924 3925 DBENTER(BCE_VERBOSE_RESET); 3926 3927 /* Set the page size used by RV2P. */ 3928 if (rv2p_proc == RV2P_PROC2) { 3929 BCE_RV2P_PROC2_CHG_MAX_BD_PAGE(USABLE_RX_BD_PER_PAGE); 3930 } 3931 3932 for (i = 0; i < rv2p_code_len; i += 8) { 3933 REG_WR(sc, BCE_RV2P_INSTR_HIGH, *rv2p_code); 3934 rv2p_code++; 3935 REG_WR(sc, BCE_RV2P_INSTR_LOW, *rv2p_code); 3936 rv2p_code++; 3937 3938 if (rv2p_proc == RV2P_PROC1) { 3939 val = (i / 8) | BCE_RV2P_PROC1_ADDR_CMD_RDWR; 3940 REG_WR(sc, BCE_RV2P_PROC1_ADDR_CMD, val); 3941 } 3942 else { 3943 val = (i / 8) | BCE_RV2P_PROC2_ADDR_CMD_RDWR; 3944 REG_WR(sc, BCE_RV2P_PROC2_ADDR_CMD, val); 3945 } 3946 } 3947 3948 /* Reset the processor, un-stall is done later. */ 3949 if (rv2p_proc == RV2P_PROC1) { 3950 REG_WR(sc, BCE_RV2P_COMMAND, BCE_RV2P_COMMAND_PROC1_RESET); 3951 } 3952 else { 3953 REG_WR(sc, BCE_RV2P_COMMAND, BCE_RV2P_COMMAND_PROC2_RESET); 3954 } 3955 3956 DBEXIT(BCE_VERBOSE_RESET); 3957 } 3958 3959 /****************************************************************************/ 3960 /* Load RISC processor firmware. */ 3961 /* */ 3962 /* Loads firmware from the file if_bcefw.h into the scratchpad memory */ 3963 /* associated with a particular processor. */ 3964 /* */ 3965 /* Returns: */ 3966 /* Nothing. */ 3967 /****************************************************************************/ 3968 static void 3969 bce_load_cpu_fw(struct bce_softc *sc, struct cpu_reg *cpu_reg, 3970 struct fw_info *fw) 3971 { 3972 u32 offset; 3973 3974 DBENTER(BCE_VERBOSE_RESET); 3975 3976 bce_halt_cpu(sc, cpu_reg); 3977 3978 /* Load the Text area. */ 3979 offset = cpu_reg->spad_base + (fw->text_addr - cpu_reg->mips_view_base); 3980 if (fw->text) { 3981 int j; 3982 3983 for (j = 0; j < (fw->text_len / 4); j++, offset += 4) { 3984 REG_WR_IND(sc, offset, fw->text[j]); 3985 } 3986 } 3987 3988 /* Load the Data area. */ 3989 offset = cpu_reg->spad_base + (fw->data_addr - cpu_reg->mips_view_base); 3990 if (fw->data) { 3991 int j; 3992 3993 for (j = 0; j < (fw->data_len / 4); j++, offset += 4) { 3994 REG_WR_IND(sc, offset, fw->data[j]); 3995 } 3996 } 3997 3998 /* Load the SBSS area. */ 3999 offset = cpu_reg->spad_base + (fw->sbss_addr - cpu_reg->mips_view_base); 4000 if (fw->sbss) { 4001 int j; 4002 4003 for (j = 0; j < (fw->sbss_len / 4); j++, offset += 4) { 4004 REG_WR_IND(sc, offset, fw->sbss[j]); 4005 } 4006 } 4007 4008 /* Load the BSS area. */ 4009 offset = cpu_reg->spad_base + (fw->bss_addr - cpu_reg->mips_view_base); 4010 if (fw->bss) { 4011 int j; 4012 4013 for (j = 0; j < (fw->bss_len/4); j++, offset += 4) { 4014 REG_WR_IND(sc, offset, fw->bss[j]); 4015 } 4016 } 4017 4018 /* Load the Read-Only area. */ 4019 offset = cpu_reg->spad_base + 4020 (fw->rodata_addr - cpu_reg->mips_view_base); 4021 if (fw->rodata) { 4022 int j; 4023 4024 for (j = 0; j < (fw->rodata_len / 4); j++, offset += 4) { 4025 REG_WR_IND(sc, offset, fw->rodata[j]); 4026 } 4027 } 4028 4029 /* Clear the pre-fetch instruction and set the FW start address. */ 4030 REG_WR_IND(sc, cpu_reg->inst, 0); 4031 REG_WR_IND(sc, cpu_reg->pc, fw->start_addr); 4032 4033 DBEXIT(BCE_VERBOSE_RESET); 4034 } 4035 4036 /****************************************************************************/ 4037 /* Starts the RISC processor. */ 4038 /* */ 4039 /* Assumes the CPU starting address has already been set. */ 4040 /* */ 4041 /* Returns: */ 4042 /* Nothing. */ 4043 /****************************************************************************/ 4044 static void 4045 bce_start_cpu(struct bce_softc *sc, struct cpu_reg *cpu_reg) 4046 { 4047 u32 val; 4048 4049 DBENTER(BCE_VERBOSE_RESET); 4050 4051 /* Start the CPU. */ 4052 val = REG_RD_IND(sc, cpu_reg->mode); 4053 val &= ~cpu_reg->mode_value_halt; 4054 REG_WR_IND(sc, cpu_reg->state, cpu_reg->state_value_clear); 4055 REG_WR_IND(sc, cpu_reg->mode, val); 4056 4057 DBEXIT(BCE_VERBOSE_RESET); 4058 } 4059 4060 /****************************************************************************/ 4061 /* Halts the RISC processor. */ 4062 /* */ 4063 /* Returns: */ 4064 /* Nothing. */ 4065 /****************************************************************************/ 4066 static void 4067 bce_halt_cpu(struct bce_softc *sc, struct cpu_reg *cpu_reg) 4068 { 4069 u32 val; 4070 4071 DBENTER(BCE_VERBOSE_RESET); 4072 4073 /* Halt the CPU. */ 4074 val = REG_RD_IND(sc, cpu_reg->mode); 4075 val |= cpu_reg->mode_value_halt; 4076 REG_WR_IND(sc, cpu_reg->mode, val); 4077 REG_WR_IND(sc, cpu_reg->state, cpu_reg->state_value_clear); 4078 4079 DBEXIT(BCE_VERBOSE_RESET); 4080 } 4081 4082 /****************************************************************************/ 4083 /* Initialize the RX CPU. */ 4084 /* */ 4085 /* Returns: */ 4086 /* Nothing. */ 4087 /****************************************************************************/ 4088 static void 4089 bce_start_rxp_cpu(struct bce_softc *sc) 4090 { 4091 struct cpu_reg cpu_reg; 4092 4093 DBENTER(BCE_VERBOSE_RESET); 4094 4095 cpu_reg.mode = BCE_RXP_CPU_MODE; 4096 cpu_reg.mode_value_halt = BCE_RXP_CPU_MODE_SOFT_HALT; 4097 cpu_reg.mode_value_sstep = BCE_RXP_CPU_MODE_STEP_ENA; 4098 cpu_reg.state = BCE_RXP_CPU_STATE; 4099 cpu_reg.state_value_clear = 0xffffff; 4100 cpu_reg.gpr0 = BCE_RXP_CPU_REG_FILE; 4101 cpu_reg.evmask = BCE_RXP_CPU_EVENT_MASK; 4102 cpu_reg.pc = BCE_RXP_CPU_PROGRAM_COUNTER; 4103 cpu_reg.inst = BCE_RXP_CPU_INSTRUCTION; 4104 cpu_reg.bp = BCE_RXP_CPU_HW_BREAKPOINT; 4105 cpu_reg.spad_base = BCE_RXP_SCRATCH; 4106 cpu_reg.mips_view_base = 0x8000000; 4107 4108 DBPRINT(sc, BCE_INFO_RESET, "Starting RX firmware.\n"); 4109 bce_start_cpu(sc, &cpu_reg); 4110 4111 DBEXIT(BCE_VERBOSE_RESET); 4112 } 4113 4114 /****************************************************************************/ 4115 /* Initialize the RX CPU. */ 4116 /* */ 4117 /* Returns: */ 4118 /* Nothing. */ 4119 /****************************************************************************/ 4120 static void 4121 bce_init_rxp_cpu(struct bce_softc *sc) 4122 { 4123 struct cpu_reg cpu_reg; 4124 struct fw_info fw; 4125 4126 DBENTER(BCE_VERBOSE_RESET); 4127 4128 cpu_reg.mode = BCE_RXP_CPU_MODE; 4129 cpu_reg.mode_value_halt = BCE_RXP_CPU_MODE_SOFT_HALT; 4130 cpu_reg.mode_value_sstep = BCE_RXP_CPU_MODE_STEP_ENA; 4131 cpu_reg.state = BCE_RXP_CPU_STATE; 4132 cpu_reg.state_value_clear = 0xffffff; 4133 cpu_reg.gpr0 = BCE_RXP_CPU_REG_FILE; 4134 cpu_reg.evmask = BCE_RXP_CPU_EVENT_MASK; 4135 cpu_reg.pc = BCE_RXP_CPU_PROGRAM_COUNTER; 4136 cpu_reg.inst = BCE_RXP_CPU_INSTRUCTION; 4137 cpu_reg.bp = BCE_RXP_CPU_HW_BREAKPOINT; 4138 cpu_reg.spad_base = BCE_RXP_SCRATCH; 4139 cpu_reg.mips_view_base = 0x8000000; 4140 4141 if (BCE_CHIP_NUM(sc) == BCE_CHIP_NUM_5709) { 4142 fw.ver_major = bce_RXP_b09FwReleaseMajor; 4143 fw.ver_minor = bce_RXP_b09FwReleaseMinor; 4144 fw.ver_fix = bce_RXP_b09FwReleaseFix; 4145 fw.start_addr = bce_RXP_b09FwStartAddr; 4146 4147 fw.text_addr = bce_RXP_b09FwTextAddr; 4148 fw.text_len = bce_RXP_b09FwTextLen; 4149 fw.text_index = 0; 4150 fw.text = bce_RXP_b09FwText; 4151 4152 fw.data_addr = bce_RXP_b09FwDataAddr; 4153 fw.data_len = bce_RXP_b09FwDataLen; 4154 fw.data_index = 0; 4155 fw.data = bce_RXP_b09FwData; 4156 4157 fw.sbss_addr = bce_RXP_b09FwSbssAddr; 4158 fw.sbss_len = bce_RXP_b09FwSbssLen; 4159 fw.sbss_index = 0; 4160 fw.sbss = bce_RXP_b09FwSbss; 4161 4162 fw.bss_addr = bce_RXP_b09FwBssAddr; 4163 fw.bss_len = bce_RXP_b09FwBssLen; 4164 fw.bss_index = 0; 4165 fw.bss = bce_RXP_b09FwBss; 4166 4167 fw.rodata_addr = bce_RXP_b09FwRodataAddr; 4168 fw.rodata_len = bce_RXP_b09FwRodataLen; 4169 fw.rodata_index = 0; 4170 fw.rodata = bce_RXP_b09FwRodata; 4171 } else { 4172 fw.ver_major = bce_RXP_b06FwReleaseMajor; 4173 fw.ver_minor = bce_RXP_b06FwReleaseMinor; 4174 fw.ver_fix = bce_RXP_b06FwReleaseFix; 4175 fw.start_addr = bce_RXP_b06FwStartAddr; 4176 4177 fw.text_addr = bce_RXP_b06FwTextAddr; 4178 fw.text_len = bce_RXP_b06FwTextLen; 4179 fw.text_index = 0; 4180 fw.text = bce_RXP_b06FwText; 4181 4182 fw.data_addr = bce_RXP_b06FwDataAddr; 4183 fw.data_len = bce_RXP_b06FwDataLen; 4184 fw.data_index = 0; 4185 fw.data = bce_RXP_b06FwData; 4186 4187 fw.sbss_addr = bce_RXP_b06FwSbssAddr; 4188 fw.sbss_len = bce_RXP_b06FwSbssLen; 4189 fw.sbss_index = 0; 4190 fw.sbss = bce_RXP_b06FwSbss; 4191 4192 fw.bss_addr = bce_RXP_b06FwBssAddr; 4193 fw.bss_len = bce_RXP_b06FwBssLen; 4194 fw.bss_index = 0; 4195 fw.bss = bce_RXP_b06FwBss; 4196 4197 fw.rodata_addr = bce_RXP_b06FwRodataAddr; 4198 fw.rodata_len = bce_RXP_b06FwRodataLen; 4199 fw.rodata_index = 0; 4200 fw.rodata = bce_RXP_b06FwRodata; 4201 } 4202 4203 DBPRINT(sc, BCE_INFO_RESET, "Loading RX firmware.\n"); 4204 bce_load_cpu_fw(sc, &cpu_reg, &fw); 4205 4206 /* Delay RXP start until initialization is complete. */ 4207 4208 DBEXIT(BCE_VERBOSE_RESET); 4209 } 4210 4211 /****************************************************************************/ 4212 /* Initialize the TX CPU. */ 4213 /* */ 4214 /* Returns: */ 4215 /* Nothing. */ 4216 /****************************************************************************/ 4217 static void 4218 bce_init_txp_cpu(struct bce_softc *sc) 4219 { 4220 struct cpu_reg cpu_reg; 4221 struct fw_info fw; 4222 4223 DBENTER(BCE_VERBOSE_RESET); 4224 4225 cpu_reg.mode = BCE_TXP_CPU_MODE; 4226 cpu_reg.mode_value_halt = BCE_TXP_CPU_MODE_SOFT_HALT; 4227 cpu_reg.mode_value_sstep = BCE_TXP_CPU_MODE_STEP_ENA; 4228 cpu_reg.state = BCE_TXP_CPU_STATE; 4229 cpu_reg.state_value_clear = 0xffffff; 4230 cpu_reg.gpr0 = BCE_TXP_CPU_REG_FILE; 4231 cpu_reg.evmask = BCE_TXP_CPU_EVENT_MASK; 4232 cpu_reg.pc = BCE_TXP_CPU_PROGRAM_COUNTER; 4233 cpu_reg.inst = BCE_TXP_CPU_INSTRUCTION; 4234 cpu_reg.bp = BCE_TXP_CPU_HW_BREAKPOINT; 4235 cpu_reg.spad_base = BCE_TXP_SCRATCH; 4236 cpu_reg.mips_view_base = 0x8000000; 4237 4238 if (BCE_CHIP_NUM(sc) == BCE_CHIP_NUM_5709) { 4239 fw.ver_major = bce_TXP_b09FwReleaseMajor; 4240 fw.ver_minor = bce_TXP_b09FwReleaseMinor; 4241 fw.ver_fix = bce_TXP_b09FwReleaseFix; 4242 fw.start_addr = bce_TXP_b09FwStartAddr; 4243 4244 fw.text_addr = bce_TXP_b09FwTextAddr; 4245 fw.text_len = bce_TXP_b09FwTextLen; 4246 fw.text_index = 0; 4247 fw.text = bce_TXP_b09FwText; 4248 4249 fw.data_addr = bce_TXP_b09FwDataAddr; 4250 fw.data_len = bce_TXP_b09FwDataLen; 4251 fw.data_index = 0; 4252 fw.data = bce_TXP_b09FwData; 4253 4254 fw.sbss_addr = bce_TXP_b09FwSbssAddr; 4255 fw.sbss_len = bce_TXP_b09FwSbssLen; 4256 fw.sbss_index = 0; 4257 fw.sbss = bce_TXP_b09FwSbss; 4258 4259 fw.bss_addr = bce_TXP_b09FwBssAddr; 4260 fw.bss_len = bce_TXP_b09FwBssLen; 4261 fw.bss_index = 0; 4262 fw.bss = bce_TXP_b09FwBss; 4263 4264 fw.rodata_addr = bce_TXP_b09FwRodataAddr; 4265 fw.rodata_len = bce_TXP_b09FwRodataLen; 4266 fw.rodata_index = 0; 4267 fw.rodata = bce_TXP_b09FwRodata; 4268 } else { 4269 fw.ver_major = bce_TXP_b06FwReleaseMajor; 4270 fw.ver_minor = bce_TXP_b06FwReleaseMinor; 4271 fw.ver_fix = bce_TXP_b06FwReleaseFix; 4272 fw.start_addr = bce_TXP_b06FwStartAddr; 4273 4274 fw.text_addr = bce_TXP_b06FwTextAddr; 4275 fw.text_len = bce_TXP_b06FwTextLen; 4276 fw.text_index = 0; 4277 fw.text = bce_TXP_b06FwText; 4278 4279 fw.data_addr = bce_TXP_b06FwDataAddr; 4280 fw.data_len = bce_TXP_b06FwDataLen; 4281 fw.data_index = 0; 4282 fw.data = bce_TXP_b06FwData; 4283 4284 fw.sbss_addr = bce_TXP_b06FwSbssAddr; 4285 fw.sbss_len = bce_TXP_b06FwSbssLen; 4286 fw.sbss_index = 0; 4287 fw.sbss = bce_TXP_b06FwSbss; 4288 4289 fw.bss_addr = bce_TXP_b06FwBssAddr; 4290 fw.bss_len = bce_TXP_b06FwBssLen; 4291 fw.bss_index = 0; 4292 fw.bss = bce_TXP_b06FwBss; 4293 4294 fw.rodata_addr = bce_TXP_b06FwRodataAddr; 4295 fw.rodata_len = bce_TXP_b06FwRodataLen; 4296 fw.rodata_index = 0; 4297 fw.rodata = bce_TXP_b06FwRodata; 4298 } 4299 4300 DBPRINT(sc, BCE_INFO_RESET, "Loading TX firmware.\n"); 4301 bce_load_cpu_fw(sc, &cpu_reg, &fw); 4302 bce_start_cpu(sc, &cpu_reg); 4303 4304 DBEXIT(BCE_VERBOSE_RESET); 4305 } 4306 4307 /****************************************************************************/ 4308 /* Initialize the TPAT CPU. */ 4309 /* */ 4310 /* Returns: */ 4311 /* Nothing. */ 4312 /****************************************************************************/ 4313 static void 4314 bce_init_tpat_cpu(struct bce_softc *sc) 4315 { 4316 struct cpu_reg cpu_reg; 4317 struct fw_info fw; 4318 4319 DBENTER(BCE_VERBOSE_RESET); 4320 4321 cpu_reg.mode = BCE_TPAT_CPU_MODE; 4322 cpu_reg.mode_value_halt = BCE_TPAT_CPU_MODE_SOFT_HALT; 4323 cpu_reg.mode_value_sstep = BCE_TPAT_CPU_MODE_STEP_ENA; 4324 cpu_reg.state = BCE_TPAT_CPU_STATE; 4325 cpu_reg.state_value_clear = 0xffffff; 4326 cpu_reg.gpr0 = BCE_TPAT_CPU_REG_FILE; 4327 cpu_reg.evmask = BCE_TPAT_CPU_EVENT_MASK; 4328 cpu_reg.pc = BCE_TPAT_CPU_PROGRAM_COUNTER; 4329 cpu_reg.inst = BCE_TPAT_CPU_INSTRUCTION; 4330 cpu_reg.bp = BCE_TPAT_CPU_HW_BREAKPOINT; 4331 cpu_reg.spad_base = BCE_TPAT_SCRATCH; 4332 cpu_reg.mips_view_base = 0x8000000; 4333 4334 if (BCE_CHIP_NUM(sc) == BCE_CHIP_NUM_5709) { 4335 fw.ver_major = bce_TPAT_b09FwReleaseMajor; 4336 fw.ver_minor = bce_TPAT_b09FwReleaseMinor; 4337 fw.ver_fix = bce_TPAT_b09FwReleaseFix; 4338 fw.start_addr = bce_TPAT_b09FwStartAddr; 4339 4340 fw.text_addr = bce_TPAT_b09FwTextAddr; 4341 fw.text_len = bce_TPAT_b09FwTextLen; 4342 fw.text_index = 0; 4343 fw.text = bce_TPAT_b09FwText; 4344 4345 fw.data_addr = bce_TPAT_b09FwDataAddr; 4346 fw.data_len = bce_TPAT_b09FwDataLen; 4347 fw.data_index = 0; 4348 fw.data = bce_TPAT_b09FwData; 4349 4350 fw.sbss_addr = bce_TPAT_b09FwSbssAddr; 4351 fw.sbss_len = bce_TPAT_b09FwSbssLen; 4352 fw.sbss_index = 0; 4353 fw.sbss = bce_TPAT_b09FwSbss; 4354 4355 fw.bss_addr = bce_TPAT_b09FwBssAddr; 4356 fw.bss_len = bce_TPAT_b09FwBssLen; 4357 fw.bss_index = 0; 4358 fw.bss = bce_TPAT_b09FwBss; 4359 4360 fw.rodata_addr = bce_TPAT_b09FwRodataAddr; 4361 fw.rodata_len = bce_TPAT_b09FwRodataLen; 4362 fw.rodata_index = 0; 4363 fw.rodata = bce_TPAT_b09FwRodata; 4364 } else { 4365 fw.ver_major = bce_TPAT_b06FwReleaseMajor; 4366 fw.ver_minor = bce_TPAT_b06FwReleaseMinor; 4367 fw.ver_fix = bce_TPAT_b06FwReleaseFix; 4368 fw.start_addr = bce_TPAT_b06FwStartAddr; 4369 4370 fw.text_addr = bce_TPAT_b06FwTextAddr; 4371 fw.text_len = bce_TPAT_b06FwTextLen; 4372 fw.text_index = 0; 4373 fw.text = bce_TPAT_b06FwText; 4374 4375 fw.data_addr = bce_TPAT_b06FwDataAddr; 4376 fw.data_len = bce_TPAT_b06FwDataLen; 4377 fw.data_index = 0; 4378 fw.data = bce_TPAT_b06FwData; 4379 4380 fw.sbss_addr = bce_TPAT_b06FwSbssAddr; 4381 fw.sbss_len = bce_TPAT_b06FwSbssLen; 4382 fw.sbss_index = 0; 4383 fw.sbss = bce_TPAT_b06FwSbss; 4384 4385 fw.bss_addr = bce_TPAT_b06FwBssAddr; 4386 fw.bss_len = bce_TPAT_b06FwBssLen; 4387 fw.bss_index = 0; 4388 fw.bss = bce_TPAT_b06FwBss; 4389 4390 fw.rodata_addr = bce_TPAT_b06FwRodataAddr; 4391 fw.rodata_len = bce_TPAT_b06FwRodataLen; 4392 fw.rodata_index = 0; 4393 fw.rodata = bce_TPAT_b06FwRodata; 4394 } 4395 4396 DBPRINT(sc, BCE_INFO_RESET, "Loading TPAT firmware.\n"); 4397 bce_load_cpu_fw(sc, &cpu_reg, &fw); 4398 bce_start_cpu(sc, &cpu_reg); 4399 4400 DBEXIT(BCE_VERBOSE_RESET); 4401 } 4402 4403 /****************************************************************************/ 4404 /* Initialize the CP CPU. */ 4405 /* */ 4406 /* Returns: */ 4407 /* Nothing. */ 4408 /****************************************************************************/ 4409 static void 4410 bce_init_cp_cpu(struct bce_softc *sc) 4411 { 4412 struct cpu_reg cpu_reg; 4413 struct fw_info fw; 4414 4415 DBENTER(BCE_VERBOSE_RESET); 4416 4417 cpu_reg.mode = BCE_CP_CPU_MODE; 4418 cpu_reg.mode_value_halt = BCE_CP_CPU_MODE_SOFT_HALT; 4419 cpu_reg.mode_value_sstep = BCE_CP_CPU_MODE_STEP_ENA; 4420 cpu_reg.state = BCE_CP_CPU_STATE; 4421 cpu_reg.state_value_clear = 0xffffff; 4422 cpu_reg.gpr0 = BCE_CP_CPU_REG_FILE; 4423 cpu_reg.evmask = BCE_CP_CPU_EVENT_MASK; 4424 cpu_reg.pc = BCE_CP_CPU_PROGRAM_COUNTER; 4425 cpu_reg.inst = BCE_CP_CPU_INSTRUCTION; 4426 cpu_reg.bp = BCE_CP_CPU_HW_BREAKPOINT; 4427 cpu_reg.spad_base = BCE_CP_SCRATCH; 4428 cpu_reg.mips_view_base = 0x8000000; 4429 4430 if (BCE_CHIP_NUM(sc) == BCE_CHIP_NUM_5709) { 4431 fw.ver_major = bce_CP_b09FwReleaseMajor; 4432 fw.ver_minor = bce_CP_b09FwReleaseMinor; 4433 fw.ver_fix = bce_CP_b09FwReleaseFix; 4434 fw.start_addr = bce_CP_b09FwStartAddr; 4435 4436 fw.text_addr = bce_CP_b09FwTextAddr; 4437 fw.text_len = bce_CP_b09FwTextLen; 4438 fw.text_index = 0; 4439 fw.text = bce_CP_b09FwText; 4440 4441 fw.data_addr = bce_CP_b09FwDataAddr; 4442 fw.data_len = bce_CP_b09FwDataLen; 4443 fw.data_index = 0; 4444 fw.data = bce_CP_b09FwData; 4445 4446 fw.sbss_addr = bce_CP_b09FwSbssAddr; 4447 fw.sbss_len = bce_CP_b09FwSbssLen; 4448 fw.sbss_index = 0; 4449 fw.sbss = bce_CP_b09FwSbss; 4450 4451 fw.bss_addr = bce_CP_b09FwBssAddr; 4452 fw.bss_len = bce_CP_b09FwBssLen; 4453 fw.bss_index = 0; 4454 fw.bss = bce_CP_b09FwBss; 4455 4456 fw.rodata_addr = bce_CP_b09FwRodataAddr; 4457 fw.rodata_len = bce_CP_b09FwRodataLen; 4458 fw.rodata_index = 0; 4459 fw.rodata = bce_CP_b09FwRodata; 4460 } else { 4461 fw.ver_major = bce_CP_b06FwReleaseMajor; 4462 fw.ver_minor = bce_CP_b06FwReleaseMinor; 4463 fw.ver_fix = bce_CP_b06FwReleaseFix; 4464 fw.start_addr = bce_CP_b06FwStartAddr; 4465 4466 fw.text_addr = bce_CP_b06FwTextAddr; 4467 fw.text_len = bce_CP_b06FwTextLen; 4468 fw.text_index = 0; 4469 fw.text = bce_CP_b06FwText; 4470 4471 fw.data_addr = bce_CP_b06FwDataAddr; 4472 fw.data_len = bce_CP_b06FwDataLen; 4473 fw.data_index = 0; 4474 fw.data = bce_CP_b06FwData; 4475 4476 fw.sbss_addr = bce_CP_b06FwSbssAddr; 4477 fw.sbss_len = bce_CP_b06FwSbssLen; 4478 fw.sbss_index = 0; 4479 fw.sbss = bce_CP_b06FwSbss; 4480 4481 fw.bss_addr = bce_CP_b06FwBssAddr; 4482 fw.bss_len = bce_CP_b06FwBssLen; 4483 fw.bss_index = 0; 4484 fw.bss = bce_CP_b06FwBss; 4485 4486 fw.rodata_addr = bce_CP_b06FwRodataAddr; 4487 fw.rodata_len = bce_CP_b06FwRodataLen; 4488 fw.rodata_index = 0; 4489 fw.rodata = bce_CP_b06FwRodata; 4490 } 4491 4492 DBPRINT(sc, BCE_INFO_RESET, "Loading CP firmware.\n"); 4493 bce_load_cpu_fw(sc, &cpu_reg, &fw); 4494 bce_start_cpu(sc, &cpu_reg); 4495 4496 DBEXIT(BCE_VERBOSE_RESET); 4497 } 4498 4499 /****************************************************************************/ 4500 /* Initialize the COM CPU. */ 4501 /* */ 4502 /* Returns: */ 4503 /* Nothing. */ 4504 /****************************************************************************/ 4505 static void 4506 bce_init_com_cpu(struct bce_softc *sc) 4507 { 4508 struct cpu_reg cpu_reg; 4509 struct fw_info fw; 4510 4511 DBENTER(BCE_VERBOSE_RESET); 4512 4513 cpu_reg.mode = BCE_COM_CPU_MODE; 4514 cpu_reg.mode_value_halt = BCE_COM_CPU_MODE_SOFT_HALT; 4515 cpu_reg.mode_value_sstep = BCE_COM_CPU_MODE_STEP_ENA; 4516 cpu_reg.state = BCE_COM_CPU_STATE; 4517 cpu_reg.state_value_clear = 0xffffff; 4518 cpu_reg.gpr0 = BCE_COM_CPU_REG_FILE; 4519 cpu_reg.evmask = BCE_COM_CPU_EVENT_MASK; 4520 cpu_reg.pc = BCE_COM_CPU_PROGRAM_COUNTER; 4521 cpu_reg.inst = BCE_COM_CPU_INSTRUCTION; 4522 cpu_reg.bp = BCE_COM_CPU_HW_BREAKPOINT; 4523 cpu_reg.spad_base = BCE_COM_SCRATCH; 4524 cpu_reg.mips_view_base = 0x8000000; 4525 4526 if (BCE_CHIP_NUM(sc) == BCE_CHIP_NUM_5709) { 4527 fw.ver_major = bce_COM_b09FwReleaseMajor; 4528 fw.ver_minor = bce_COM_b09FwReleaseMinor; 4529 fw.ver_fix = bce_COM_b09FwReleaseFix; 4530 fw.start_addr = bce_COM_b09FwStartAddr; 4531 4532 fw.text_addr = bce_COM_b09FwTextAddr; 4533 fw.text_len = bce_COM_b09FwTextLen; 4534 fw.text_index = 0; 4535 fw.text = bce_COM_b09FwText; 4536 4537 fw.data_addr = bce_COM_b09FwDataAddr; 4538 fw.data_len = bce_COM_b09FwDataLen; 4539 fw.data_index = 0; 4540 fw.data = bce_COM_b09FwData; 4541 4542 fw.sbss_addr = bce_COM_b09FwSbssAddr; 4543 fw.sbss_len = bce_COM_b09FwSbssLen; 4544 fw.sbss_index = 0; 4545 fw.sbss = bce_COM_b09FwSbss; 4546 4547 fw.bss_addr = bce_COM_b09FwBssAddr; 4548 fw.bss_len = bce_COM_b09FwBssLen; 4549 fw.bss_index = 0; 4550 fw.bss = bce_COM_b09FwBss; 4551 4552 fw.rodata_addr = bce_COM_b09FwRodataAddr; 4553 fw.rodata_len = bce_COM_b09FwRodataLen; 4554 fw.rodata_index = 0; 4555 fw.rodata = bce_COM_b09FwRodata; 4556 } else { 4557 fw.ver_major = bce_COM_b06FwReleaseMajor; 4558 fw.ver_minor = bce_COM_b06FwReleaseMinor; 4559 fw.ver_fix = bce_COM_b06FwReleaseFix; 4560 fw.start_addr = bce_COM_b06FwStartAddr; 4561 4562 fw.text_addr = bce_COM_b06FwTextAddr; 4563 fw.text_len = bce_COM_b06FwTextLen; 4564 fw.text_index = 0; 4565 fw.text = bce_COM_b06FwText; 4566 4567 fw.data_addr = bce_COM_b06FwDataAddr; 4568 fw.data_len = bce_COM_b06FwDataLen; 4569 fw.data_index = 0; 4570 fw.data = bce_COM_b06FwData; 4571 4572 fw.sbss_addr = bce_COM_b06FwSbssAddr; 4573 fw.sbss_len = bce_COM_b06FwSbssLen; 4574 fw.sbss_index = 0; 4575 fw.sbss = bce_COM_b06FwSbss; 4576 4577 fw.bss_addr = bce_COM_b06FwBssAddr; 4578 fw.bss_len = bce_COM_b06FwBssLen; 4579 fw.bss_index = 0; 4580 fw.bss = bce_COM_b06FwBss; 4581 4582 fw.rodata_addr = bce_COM_b06FwRodataAddr; 4583 fw.rodata_len = bce_COM_b06FwRodataLen; 4584 fw.rodata_index = 0; 4585 fw.rodata = bce_COM_b06FwRodata; 4586 } 4587 4588 DBPRINT(sc, BCE_INFO_RESET, "Loading COM firmware.\n"); 4589 bce_load_cpu_fw(sc, &cpu_reg, &fw); 4590 bce_start_cpu(sc, &cpu_reg); 4591 4592 DBEXIT(BCE_VERBOSE_RESET); 4593 } 4594 4595 /****************************************************************************/ 4596 /* Initialize the RV2P, RX, TX, TPAT, COM, and CP CPUs. */ 4597 /* */ 4598 /* Loads the firmware for each CPU and starts the CPU. */ 4599 /* */ 4600 /* Returns: */ 4601 /* Nothing. */ 4602 /****************************************************************************/ 4603 static void 4604 bce_init_cpus(struct bce_softc *sc) 4605 { 4606 DBENTER(BCE_VERBOSE_RESET); 4607 4608 if (BCE_CHIP_NUM(sc) == BCE_CHIP_NUM_5709) { 4609 if ((BCE_CHIP_REV(sc) == BCE_CHIP_REV_Ax)) { 4610 bce_load_rv2p_fw(sc, bce_xi90_rv2p_proc1, 4611 sizeof(bce_xi90_rv2p_proc1), RV2P_PROC1); 4612 bce_load_rv2p_fw(sc, bce_xi90_rv2p_proc2, 4613 sizeof(bce_xi90_rv2p_proc2), RV2P_PROC2); 4614 } else { 4615 bce_load_rv2p_fw(sc, bce_xi_rv2p_proc1, 4616 sizeof(bce_xi_rv2p_proc1), RV2P_PROC1); 4617 bce_load_rv2p_fw(sc, bce_xi_rv2p_proc2, 4618 sizeof(bce_xi_rv2p_proc2), RV2P_PROC2); 4619 } 4620 4621 } else { 4622 bce_load_rv2p_fw(sc, bce_rv2p_proc1, 4623 sizeof(bce_rv2p_proc1), RV2P_PROC1); 4624 bce_load_rv2p_fw(sc, bce_rv2p_proc2, 4625 sizeof(bce_rv2p_proc2), RV2P_PROC2); 4626 } 4627 4628 bce_init_rxp_cpu(sc); 4629 bce_init_txp_cpu(sc); 4630 bce_init_tpat_cpu(sc); 4631 bce_init_com_cpu(sc); 4632 bce_init_cp_cpu(sc); 4633 4634 DBEXIT(BCE_VERBOSE_RESET); 4635 } 4636 4637 /****************************************************************************/ 4638 /* Initialize context memory. */ 4639 /* */ 4640 /* Clears the memory associated with each Context ID (CID). */ 4641 /* */ 4642 /* Returns: */ 4643 /* Nothing. */ 4644 /****************************************************************************/ 4645 static int 4646 bce_init_ctx(struct bce_softc *sc) 4647 { 4648 u32 offset, val, vcid_addr; 4649 int i, j, rc, retry_cnt; 4650 4651 rc = 0; 4652 DBENTER(BCE_VERBOSE_RESET | BCE_VERBOSE_CTX); 4653 4654 if (BCE_CHIP_NUM(sc) == BCE_CHIP_NUM_5709) { 4655 retry_cnt = CTX_INIT_RETRY_COUNT; 4656 4657 DBPRINT(sc, BCE_INFO_CTX, "Initializing 5709 context.\n"); 4658 4659 /* 4660 * BCM5709 context memory may be cached 4661 * in host memory so prepare the host memory 4662 * for access. 4663 */ 4664 val = BCE_CTX_COMMAND_ENABLED | 4665 BCE_CTX_COMMAND_MEM_INIT | (1 << 12); 4666 val |= (BCM_PAGE_BITS - 8) << 16; 4667 REG_WR(sc, BCE_CTX_COMMAND, val); 4668 4669 /* Wait for mem init command to complete. */ 4670 for (i = 0; i < retry_cnt; i++) { 4671 val = REG_RD(sc, BCE_CTX_COMMAND); 4672 if (!(val & BCE_CTX_COMMAND_MEM_INIT)) 4673 break; 4674 DELAY(2); 4675 } 4676 if ((val & BCE_CTX_COMMAND_MEM_INIT) != 0) { 4677 BCE_PRINTF("%s(): Context memory initialization failed!\n", 4678 __FUNCTION__); 4679 rc = EBUSY; 4680 goto init_ctx_fail; 4681 } 4682 4683 for (i = 0; i < sc->ctx_pages; i++) { 4684 /* Set the physical address of the context memory. */ 4685 REG_WR(sc, BCE_CTX_HOST_PAGE_TBL_DATA0, 4686 BCE_ADDR_LO(sc->ctx_paddr[i] & 0xfffffff0) | 4687 BCE_CTX_HOST_PAGE_TBL_DATA0_VALID); 4688 REG_WR(sc, BCE_CTX_HOST_PAGE_TBL_DATA1, 4689 BCE_ADDR_HI(sc->ctx_paddr[i])); 4690 REG_WR(sc, BCE_CTX_HOST_PAGE_TBL_CTRL, i | 4691 BCE_CTX_HOST_PAGE_TBL_CTRL_WRITE_REQ); 4692 4693 /* Verify the context memory write was successful. */ 4694 for (j = 0; j < retry_cnt; j++) { 4695 val = REG_RD(sc, BCE_CTX_HOST_PAGE_TBL_CTRL); 4696 if ((val & 4697 BCE_CTX_HOST_PAGE_TBL_CTRL_WRITE_REQ) == 0) 4698 break; 4699 DELAY(5); 4700 } 4701 if ((val & BCE_CTX_HOST_PAGE_TBL_CTRL_WRITE_REQ) != 0) { 4702 BCE_PRINTF("%s(): Failed to initialize " 4703 "context page %d!\n", __FUNCTION__, i); 4704 rc = EBUSY; 4705 goto init_ctx_fail; 4706 } 4707 } 4708 } else { 4709 DBPRINT(sc, BCE_INFO, "Initializing 5706/5708 context.\n"); 4710 4711 /* 4712 * For the 5706/5708, context memory is local to 4713 * the controller, so initialize the controller 4714 * context memory. 4715 */ 4716 4717 vcid_addr = GET_CID_ADDR(96); 4718 while (vcid_addr) { 4719 vcid_addr -= PHY_CTX_SIZE; 4720 4721 REG_WR(sc, BCE_CTX_VIRT_ADDR, 0); 4722 REG_WR(sc, BCE_CTX_PAGE_TBL, vcid_addr); 4723 4724 for(offset = 0; offset < PHY_CTX_SIZE; offset += 4) { 4725 CTX_WR(sc, 0x00, offset, 0); 4726 } 4727 4728 REG_WR(sc, BCE_CTX_VIRT_ADDR, vcid_addr); 4729 REG_WR(sc, BCE_CTX_PAGE_TBL, vcid_addr); 4730 } 4731 } 4732 init_ctx_fail: 4733 DBEXIT(BCE_VERBOSE_RESET | BCE_VERBOSE_CTX); 4734 return (rc); 4735 } 4736 4737 /****************************************************************************/ 4738 /* Fetch the permanent MAC address of the controller. */ 4739 /* */ 4740 /* Returns: */ 4741 /* Nothing. */ 4742 /****************************************************************************/ 4743 static void 4744 bce_get_mac_addr(struct bce_softc *sc) 4745 { 4746 u32 mac_lo = 0, mac_hi = 0; 4747 4748 DBENTER(BCE_VERBOSE_RESET); 4749 4750 /* 4751 * The NetXtreme II bootcode populates various NIC 4752 * power-on and runtime configuration items in a 4753 * shared memory area. The factory configured MAC 4754 * address is available from both NVRAM and the 4755 * shared memory area so we'll read the value from 4756 * shared memory for speed. 4757 */ 4758 4759 mac_hi = bce_shmem_rd(sc, BCE_PORT_HW_CFG_MAC_UPPER); 4760 mac_lo = bce_shmem_rd(sc, BCE_PORT_HW_CFG_MAC_LOWER); 4761 4762 if ((mac_lo == 0) && (mac_hi == 0)) { 4763 BCE_PRINTF("%s(%d): Invalid Ethernet address!\n", 4764 __FILE__, __LINE__); 4765 } else { 4766 sc->eaddr[0] = (u_char)(mac_hi >> 8); 4767 sc->eaddr[1] = (u_char)(mac_hi >> 0); 4768 sc->eaddr[2] = (u_char)(mac_lo >> 24); 4769 sc->eaddr[3] = (u_char)(mac_lo >> 16); 4770 sc->eaddr[4] = (u_char)(mac_lo >> 8); 4771 sc->eaddr[5] = (u_char)(mac_lo >> 0); 4772 } 4773 4774 DBPRINT(sc, BCE_INFO_MISC, "Permanent Ethernet " 4775 "address = %6D\n", sc->eaddr, ":"); 4776 DBEXIT(BCE_VERBOSE_RESET); 4777 } 4778 4779 /****************************************************************************/ 4780 /* Program the MAC address. */ 4781 /* */ 4782 /* Returns: */ 4783 /* Nothing. */ 4784 /****************************************************************************/ 4785 static void 4786 bce_set_mac_addr(struct bce_softc *sc) 4787 { 4788 u32 val; 4789 u8 *mac_addr = sc->eaddr; 4790 4791 /* ToDo: Add support for setting multiple MAC addresses. */ 4792 4793 DBENTER(BCE_VERBOSE_RESET); 4794 DBPRINT(sc, BCE_INFO_MISC, "Setting Ethernet address = " 4795 "%6D\n", sc->eaddr, ":"); 4796 4797 val = (mac_addr[0] << 8) | mac_addr[1]; 4798 4799 REG_WR(sc, BCE_EMAC_MAC_MATCH0, val); 4800 4801 val = (mac_addr[2] << 24) | (mac_addr[3] << 16) | 4802 (mac_addr[4] << 8) | mac_addr[5]; 4803 4804 REG_WR(sc, BCE_EMAC_MAC_MATCH1, val); 4805 4806 DBEXIT(BCE_VERBOSE_RESET); 4807 } 4808 4809 /****************************************************************************/ 4810 /* Stop the controller. */ 4811 /* */ 4812 /* Returns: */ 4813 /* Nothing. */ 4814 /****************************************************************************/ 4815 static void 4816 bce_stop(struct bce_softc *sc) 4817 { 4818 if_t ifp; 4819 4820 DBENTER(BCE_VERBOSE_RESET); 4821 4822 BCE_LOCK_ASSERT(sc); 4823 4824 ifp = sc->bce_ifp; 4825 4826 callout_stop(&sc->bce_tick_callout); 4827 4828 /* Disable the transmit/receive blocks. */ 4829 REG_WR(sc, BCE_MISC_ENABLE_CLR_BITS, BCE_MISC_ENABLE_CLR_DEFAULT); 4830 REG_RD(sc, BCE_MISC_ENABLE_CLR_BITS); 4831 DELAY(20); 4832 4833 bce_disable_intr(sc); 4834 4835 /* Free RX buffers. */ 4836 if (bce_hdr_split == TRUE) { 4837 bce_free_pg_chain(sc); 4838 } 4839 bce_free_rx_chain(sc); 4840 4841 /* Free TX buffers. */ 4842 bce_free_tx_chain(sc); 4843 4844 sc->watchdog_timer = 0; 4845 4846 sc->bce_link_up = FALSE; 4847 4848 if_setdrvflagbits(ifp, 0, (IFF_DRV_RUNNING | IFF_DRV_OACTIVE)); 4849 4850 DBEXIT(BCE_VERBOSE_RESET); 4851 } 4852 4853 static int 4854 bce_reset(struct bce_softc *sc, u32 reset_code) 4855 { 4856 u32 emac_mode_save, val; 4857 int i, rc = 0; 4858 static const u32 emac_mode_mask = BCE_EMAC_MODE_PORT | 4859 BCE_EMAC_MODE_HALF_DUPLEX | BCE_EMAC_MODE_25G; 4860 4861 DBENTER(BCE_VERBOSE_RESET); 4862 4863 DBPRINT(sc, BCE_VERBOSE_RESET, "%s(): reset_code = 0x%08X\n", 4864 __FUNCTION__, reset_code); 4865 4866 /* 4867 * If ASF/IPMI is operational, then the EMAC Mode register already 4868 * contains appropriate values for the link settings that have 4869 * been auto-negotiated. Resetting the chip will clobber those 4870 * values. Save the important bits so we can restore them after 4871 * the reset. 4872 */ 4873 emac_mode_save = REG_RD(sc, BCE_EMAC_MODE) & emac_mode_mask; 4874 4875 /* Wait for pending PCI transactions to complete. */ 4876 REG_WR(sc, BCE_MISC_ENABLE_CLR_BITS, 4877 BCE_MISC_ENABLE_CLR_BITS_TX_DMA_ENABLE | 4878 BCE_MISC_ENABLE_CLR_BITS_DMA_ENGINE_ENABLE | 4879 BCE_MISC_ENABLE_CLR_BITS_RX_DMA_ENABLE | 4880 BCE_MISC_ENABLE_CLR_BITS_HOST_COALESCE_ENABLE); 4881 val = REG_RD(sc, BCE_MISC_ENABLE_CLR_BITS); 4882 DELAY(5); 4883 4884 /* Disable DMA */ 4885 if (BCE_CHIP_NUM(sc) == BCE_CHIP_NUM_5709) { 4886 val = REG_RD(sc, BCE_MISC_NEW_CORE_CTL); 4887 val &= ~BCE_MISC_NEW_CORE_CTL_DMA_ENABLE; 4888 REG_WR(sc, BCE_MISC_NEW_CORE_CTL, val); 4889 } 4890 4891 /* Assume bootcode is running. */ 4892 sc->bce_fw_timed_out = FALSE; 4893 sc->bce_drv_cardiac_arrest = FALSE; 4894 4895 /* Give the firmware a chance to prepare for the reset. */ 4896 rc = bce_fw_sync(sc, BCE_DRV_MSG_DATA_WAIT0 | reset_code); 4897 if (rc) 4898 goto bce_reset_exit; 4899 4900 /* Set a firmware reminder that this is a soft reset. */ 4901 bce_shmem_wr(sc, BCE_DRV_RESET_SIGNATURE, BCE_DRV_RESET_SIGNATURE_MAGIC); 4902 4903 /* Dummy read to force the chip to complete all current transactions. */ 4904 val = REG_RD(sc, BCE_MISC_ID); 4905 4906 /* Chip reset. */ 4907 if (BCE_CHIP_NUM(sc) == BCE_CHIP_NUM_5709) { 4908 REG_WR(sc, BCE_MISC_COMMAND, BCE_MISC_COMMAND_SW_RESET); 4909 REG_RD(sc, BCE_MISC_COMMAND); 4910 DELAY(5); 4911 4912 val = BCE_PCICFG_MISC_CONFIG_REG_WINDOW_ENA | 4913 BCE_PCICFG_MISC_CONFIG_TARGET_MB_WORD_SWAP; 4914 4915 pci_write_config(sc->bce_dev, BCE_PCICFG_MISC_CONFIG, val, 4); 4916 } else { 4917 val = BCE_PCICFG_MISC_CONFIG_CORE_RST_REQ | 4918 BCE_PCICFG_MISC_CONFIG_REG_WINDOW_ENA | 4919 BCE_PCICFG_MISC_CONFIG_TARGET_MB_WORD_SWAP; 4920 REG_WR(sc, BCE_PCICFG_MISC_CONFIG, val); 4921 4922 /* Allow up to 30us for reset to complete. */ 4923 for (i = 0; i < 10; i++) { 4924 val = REG_RD(sc, BCE_PCICFG_MISC_CONFIG); 4925 if ((val & (BCE_PCICFG_MISC_CONFIG_CORE_RST_REQ | 4926 BCE_PCICFG_MISC_CONFIG_CORE_RST_BSY)) == 0) { 4927 break; 4928 } 4929 DELAY(10); 4930 } 4931 4932 /* Check that reset completed successfully. */ 4933 if (val & (BCE_PCICFG_MISC_CONFIG_CORE_RST_REQ | 4934 BCE_PCICFG_MISC_CONFIG_CORE_RST_BSY)) { 4935 BCE_PRINTF("%s(%d): Reset failed!\n", 4936 __FILE__, __LINE__); 4937 rc = EBUSY; 4938 goto bce_reset_exit; 4939 } 4940 } 4941 4942 /* Make sure byte swapping is properly configured. */ 4943 val = REG_RD(sc, BCE_PCI_SWAP_DIAG0); 4944 if (val != 0x01020304) { 4945 BCE_PRINTF("%s(%d): Byte swap is incorrect!\n", 4946 __FILE__, __LINE__); 4947 rc = ENODEV; 4948 goto bce_reset_exit; 4949 } 4950 4951 /* Just completed a reset, assume that firmware is running again. */ 4952 sc->bce_fw_timed_out = FALSE; 4953 sc->bce_drv_cardiac_arrest = FALSE; 4954 4955 /* Wait for the firmware to finish its initialization. */ 4956 rc = bce_fw_sync(sc, BCE_DRV_MSG_DATA_WAIT1 | reset_code); 4957 if (rc) 4958 BCE_PRINTF("%s(%d): Firmware did not complete " 4959 "initialization!\n", __FILE__, __LINE__); 4960 /* Get firmware capabilities. */ 4961 bce_fw_cap_init(sc); 4962 4963 bce_reset_exit: 4964 /* Restore EMAC Mode bits needed to keep ASF/IPMI running. */ 4965 if (reset_code == BCE_DRV_MSG_CODE_RESET) { 4966 val = REG_RD(sc, BCE_EMAC_MODE); 4967 val = (val & ~emac_mode_mask) | emac_mode_save; 4968 REG_WR(sc, BCE_EMAC_MODE, val); 4969 } 4970 4971 DBEXIT(BCE_VERBOSE_RESET); 4972 return (rc); 4973 } 4974 4975 static int 4976 bce_chipinit(struct bce_softc *sc) 4977 { 4978 u32 val; 4979 int rc = 0; 4980 4981 DBENTER(BCE_VERBOSE_RESET); 4982 4983 bce_disable_intr(sc); 4984 4985 /* 4986 * Initialize DMA byte/word swapping, configure the number of DMA 4987 * channels and PCI clock compensation delay. 4988 */ 4989 val = BCE_DMA_CONFIG_DATA_BYTE_SWAP | 4990 BCE_DMA_CONFIG_DATA_WORD_SWAP | 4991 #if BYTE_ORDER == BIG_ENDIAN 4992 BCE_DMA_CONFIG_CNTL_BYTE_SWAP | 4993 #endif 4994 BCE_DMA_CONFIG_CNTL_WORD_SWAP | 4995 DMA_READ_CHANS << 12 | 4996 DMA_WRITE_CHANS << 16; 4997 4998 val |= (0x2 << 20) | BCE_DMA_CONFIG_CNTL_PCI_COMP_DLY; 4999 5000 if ((sc->bce_flags & BCE_PCIX_FLAG) && (sc->bus_speed_mhz == 133)) 5001 val |= BCE_DMA_CONFIG_PCI_FAST_CLK_CMP; 5002 5003 /* 5004 * This setting resolves a problem observed on certain Intel PCI 5005 * chipsets that cannot handle multiple outstanding DMA operations. 5006 * See errata E9_5706A1_65. 5007 */ 5008 if ((BCE_CHIP_NUM(sc) == BCE_CHIP_NUM_5706) && 5009 (BCE_CHIP_ID(sc) != BCE_CHIP_ID_5706_A0) && 5010 !(sc->bce_flags & BCE_PCIX_FLAG)) 5011 val |= BCE_DMA_CONFIG_CNTL_PING_PONG_DMA; 5012 5013 REG_WR(sc, BCE_DMA_CONFIG, val); 5014 5015 /* Enable the RX_V2P and Context state machines before access. */ 5016 REG_WR(sc, BCE_MISC_ENABLE_SET_BITS, 5017 BCE_MISC_ENABLE_SET_BITS_HOST_COALESCE_ENABLE | 5018 BCE_MISC_ENABLE_STATUS_BITS_RX_V2P_ENABLE | 5019 BCE_MISC_ENABLE_STATUS_BITS_CONTEXT_ENABLE); 5020 5021 /* Initialize context mapping and zero out the quick contexts. */ 5022 if ((rc = bce_init_ctx(sc)) != 0) 5023 goto bce_chipinit_exit; 5024 5025 /* Initialize the on-boards CPUs */ 5026 bce_init_cpus(sc); 5027 5028 /* Enable management frames (NC-SI) to flow to the MCP. */ 5029 if (sc->bce_flags & BCE_MFW_ENABLE_FLAG) { 5030 val = REG_RD(sc, BCE_RPM_MGMT_PKT_CTRL) | BCE_RPM_MGMT_PKT_CTRL_MGMT_EN; 5031 REG_WR(sc, BCE_RPM_MGMT_PKT_CTRL, val); 5032 } 5033 5034 /* Prepare NVRAM for access. */ 5035 if ((rc = bce_init_nvram(sc)) != 0) 5036 goto bce_chipinit_exit; 5037 5038 /* Set the kernel bypass block size */ 5039 val = REG_RD(sc, BCE_MQ_CONFIG); 5040 val &= ~BCE_MQ_CONFIG_KNL_BYP_BLK_SIZE; 5041 val |= BCE_MQ_CONFIG_KNL_BYP_BLK_SIZE_256; 5042 5043 /* Enable bins used on the 5709. */ 5044 if (BCE_CHIP_NUM(sc) == BCE_CHIP_NUM_5709) { 5045 val |= BCE_MQ_CONFIG_BIN_MQ_MODE; 5046 if (BCE_CHIP_ID(sc) == BCE_CHIP_ID_5709_A1) 5047 val |= BCE_MQ_CONFIG_HALT_DIS; 5048 } 5049 5050 REG_WR(sc, BCE_MQ_CONFIG, val); 5051 5052 val = 0x10000 + (MAX_CID_CNT * MB_KERNEL_CTX_SIZE); 5053 REG_WR(sc, BCE_MQ_KNL_BYP_WIND_START, val); 5054 REG_WR(sc, BCE_MQ_KNL_WIND_END, val); 5055 5056 /* Set the page size and clear the RV2P processor stall bits. */ 5057 val = (BCM_PAGE_BITS - 8) << 24; 5058 REG_WR(sc, BCE_RV2P_CONFIG, val); 5059 5060 /* Configure page size. */ 5061 val = REG_RD(sc, BCE_TBDR_CONFIG); 5062 val &= ~BCE_TBDR_CONFIG_PAGE_SIZE; 5063 val |= (BCM_PAGE_BITS - 8) << 24 | 0x40; 5064 REG_WR(sc, BCE_TBDR_CONFIG, val); 5065 5066 /* Set the perfect match control register to default. */ 5067 REG_WR_IND(sc, BCE_RXP_PM_CTRL, 0); 5068 5069 bce_chipinit_exit: 5070 DBEXIT(BCE_VERBOSE_RESET); 5071 5072 return(rc); 5073 } 5074 5075 /****************************************************************************/ 5076 /* Initialize the controller in preparation to send/receive traffic. */ 5077 /* */ 5078 /* Returns: */ 5079 /* 0 for success, positive value for failure. */ 5080 /****************************************************************************/ 5081 static int 5082 bce_blockinit(struct bce_softc *sc) 5083 { 5084 u32 reg, val; 5085 int rc = 0; 5086 5087 DBENTER(BCE_VERBOSE_RESET); 5088 5089 /* Load the hardware default MAC address. */ 5090 bce_set_mac_addr(sc); 5091 5092 /* Set the Ethernet backoff seed value */ 5093 val = sc->eaddr[0] + (sc->eaddr[1] << 8) + 5094 (sc->eaddr[2] << 16) + (sc->eaddr[3] ) + 5095 (sc->eaddr[4] << 8) + (sc->eaddr[5] << 16); 5096 REG_WR(sc, BCE_EMAC_BACKOFF_SEED, val); 5097 5098 sc->last_status_idx = 0; 5099 sc->rx_mode = BCE_EMAC_RX_MODE_SORT_MODE; 5100 5101 /* Set up link change interrupt generation. */ 5102 REG_WR(sc, BCE_EMAC_ATTENTION_ENA, BCE_EMAC_ATTENTION_ENA_LINK); 5103 5104 /* Program the physical address of the status block. */ 5105 REG_WR(sc, BCE_HC_STATUS_ADDR_L, 5106 BCE_ADDR_LO(sc->status_block_paddr)); 5107 REG_WR(sc, BCE_HC_STATUS_ADDR_H, 5108 BCE_ADDR_HI(sc->status_block_paddr)); 5109 5110 /* Program the physical address of the statistics block. */ 5111 REG_WR(sc, BCE_HC_STATISTICS_ADDR_L, 5112 BCE_ADDR_LO(sc->stats_block_paddr)); 5113 REG_WR(sc, BCE_HC_STATISTICS_ADDR_H, 5114 BCE_ADDR_HI(sc->stats_block_paddr)); 5115 5116 /* 5117 * Program various host coalescing parameters. 5118 * Trip points control how many BDs should be ready before generating 5119 * an interrupt while ticks control how long a BD can sit in the chain 5120 * before generating an interrupt. 5121 */ 5122 REG_WR(sc, BCE_HC_TX_QUICK_CONS_TRIP, 5123 (sc->bce_tx_quick_cons_trip_int << 16) | 5124 sc->bce_tx_quick_cons_trip); 5125 REG_WR(sc, BCE_HC_RX_QUICK_CONS_TRIP, 5126 (sc->bce_rx_quick_cons_trip_int << 16) | 5127 sc->bce_rx_quick_cons_trip); 5128 REG_WR(sc, BCE_HC_TX_TICKS, 5129 (sc->bce_tx_ticks_int << 16) | sc->bce_tx_ticks); 5130 REG_WR(sc, BCE_HC_RX_TICKS, 5131 (sc->bce_rx_ticks_int << 16) | sc->bce_rx_ticks); 5132 REG_WR(sc, BCE_HC_STATS_TICKS, sc->bce_stats_ticks & 0xffff00); 5133 REG_WR(sc, BCE_HC_STAT_COLLECT_TICKS, 0xbb8); /* 3ms */ 5134 /* Not used for L2. */ 5135 REG_WR(sc, BCE_HC_COMP_PROD_TRIP, 0); 5136 REG_WR(sc, BCE_HC_COM_TICKS, 0); 5137 REG_WR(sc, BCE_HC_CMD_TICKS, 0); 5138 5139 /* Configure the Host Coalescing block. */ 5140 val = BCE_HC_CONFIG_RX_TMR_MODE | BCE_HC_CONFIG_TX_TMR_MODE | 5141 BCE_HC_CONFIG_COLLECT_STATS; 5142 5143 #if 0 5144 /* ToDo: Add MSI-X support. */ 5145 if (sc->bce_flags & BCE_USING_MSIX_FLAG) { 5146 u32 base = ((BCE_TX_VEC - 1) * BCE_HC_SB_CONFIG_SIZE) + 5147 BCE_HC_SB_CONFIG_1; 5148 5149 REG_WR(sc, BCE_HC_MSIX_BIT_VECTOR, BCE_HC_MSIX_BIT_VECTOR_VAL); 5150 5151 REG_WR(sc, base, BCE_HC_SB_CONFIG_1_TX_TMR_MODE | 5152 BCE_HC_SB_CONFIG_1_ONE_SHOT); 5153 5154 REG_WR(sc, base + BCE_HC_TX_QUICK_CONS_TRIP_OFF, 5155 (sc->tx_quick_cons_trip_int << 16) | 5156 sc->tx_quick_cons_trip); 5157 5158 REG_WR(sc, base + BCE_HC_TX_TICKS_OFF, 5159 (sc->tx_ticks_int << 16) | sc->tx_ticks); 5160 5161 val |= BCE_HC_CONFIG_SB_ADDR_INC_128B; 5162 } 5163 5164 /* 5165 * Tell the HC block to automatically set the 5166 * INT_MASK bit after an MSI/MSI-X interrupt 5167 * is generated so the driver doesn't have to. 5168 */ 5169 if (sc->bce_flags & BCE_ONE_SHOT_MSI_FLAG) 5170 val |= BCE_HC_CONFIG_ONE_SHOT; 5171 5172 /* Set the MSI-X status blocks to 128 byte boundaries. */ 5173 if (sc->bce_flags & BCE_USING_MSIX_FLAG) 5174 val |= BCE_HC_CONFIG_SB_ADDR_INC_128B; 5175 #endif 5176 5177 REG_WR(sc, BCE_HC_CONFIG, val); 5178 5179 /* Clear the internal statistics counters. */ 5180 REG_WR(sc, BCE_HC_COMMAND, BCE_HC_COMMAND_CLR_STAT_NOW); 5181 5182 /* Verify that bootcode is running. */ 5183 reg = bce_shmem_rd(sc, BCE_DEV_INFO_SIGNATURE); 5184 5185 DBRUNIF(DB_RANDOMTRUE(bootcode_running_failure_sim_control), 5186 BCE_PRINTF("%s(%d): Simulating bootcode failure.\n", 5187 __FILE__, __LINE__); 5188 reg = 0); 5189 5190 if ((reg & BCE_DEV_INFO_SIGNATURE_MAGIC_MASK) != 5191 BCE_DEV_INFO_SIGNATURE_MAGIC) { 5192 BCE_PRINTF("%s(%d): Bootcode not running! Found: 0x%08X, " 5193 "Expected: 08%08X\n", __FILE__, __LINE__, 5194 (reg & BCE_DEV_INFO_SIGNATURE_MAGIC_MASK), 5195 BCE_DEV_INFO_SIGNATURE_MAGIC); 5196 rc = ENODEV; 5197 goto bce_blockinit_exit; 5198 } 5199 5200 /* Enable DMA */ 5201 if (BCE_CHIP_NUM(sc) == BCE_CHIP_NUM_5709) { 5202 val = REG_RD(sc, BCE_MISC_NEW_CORE_CTL); 5203 val |= BCE_MISC_NEW_CORE_CTL_DMA_ENABLE; 5204 REG_WR(sc, BCE_MISC_NEW_CORE_CTL, val); 5205 } 5206 5207 /* Allow bootcode to apply additional fixes before enabling MAC. */ 5208 rc = bce_fw_sync(sc, BCE_DRV_MSG_DATA_WAIT2 | 5209 BCE_DRV_MSG_CODE_RESET); 5210 5211 /* Enable link state change interrupt generation. */ 5212 REG_WR(sc, BCE_HC_ATTN_BITS_ENABLE, STATUS_ATTN_BITS_LINK_STATE); 5213 5214 /* Enable the RXP. */ 5215 bce_start_rxp_cpu(sc); 5216 5217 /* Disable management frames (NC-SI) from flowing to the MCP. */ 5218 if (sc->bce_flags & BCE_MFW_ENABLE_FLAG) { 5219 val = REG_RD(sc, BCE_RPM_MGMT_PKT_CTRL) & 5220 ~BCE_RPM_MGMT_PKT_CTRL_MGMT_EN; 5221 REG_WR(sc, BCE_RPM_MGMT_PKT_CTRL, val); 5222 } 5223 5224 /* Enable all remaining blocks in the MAC. */ 5225 if (BCE_CHIP_NUM(sc) == BCE_CHIP_NUM_5709) 5226 REG_WR(sc, BCE_MISC_ENABLE_SET_BITS, 5227 BCE_MISC_ENABLE_DEFAULT_XI); 5228 else 5229 REG_WR(sc, BCE_MISC_ENABLE_SET_BITS, 5230 BCE_MISC_ENABLE_DEFAULT); 5231 5232 REG_RD(sc, BCE_MISC_ENABLE_SET_BITS); 5233 DELAY(20); 5234 5235 /* Save the current host coalescing block settings. */ 5236 sc->hc_command = REG_RD(sc, BCE_HC_COMMAND); 5237 5238 bce_blockinit_exit: 5239 DBEXIT(BCE_VERBOSE_RESET); 5240 5241 return (rc); 5242 } 5243 5244 /****************************************************************************/ 5245 /* Encapsulate an mbuf into the rx_bd chain. */ 5246 /* */ 5247 /* Returns: */ 5248 /* 0 for success, positive value for failure. */ 5249 /****************************************************************************/ 5250 static int 5251 bce_get_rx_buf(struct bce_softc *sc, u16 prod, u16 chain_prod, u32 *prod_bseq) 5252 { 5253 bus_dma_segment_t segs[1]; 5254 struct mbuf *m_new = NULL; 5255 struct rx_bd *rxbd; 5256 int nsegs, error, rc = 0; 5257 #ifdef BCE_DEBUG 5258 u16 debug_chain_prod = chain_prod; 5259 #endif 5260 5261 DBENTER(BCE_EXTREME_RESET | BCE_EXTREME_RECV | BCE_EXTREME_LOAD); 5262 5263 /* Make sure the inputs are valid. */ 5264 DBRUNIF((chain_prod > MAX_RX_BD_ALLOC), 5265 BCE_PRINTF("%s(%d): RX producer out of range: " 5266 "0x%04X > 0x%04X\n", __FILE__, __LINE__, 5267 chain_prod, (u16)MAX_RX_BD_ALLOC)); 5268 5269 DBPRINT(sc, BCE_EXTREME_RECV, "%s(enter): prod = 0x%04X, " 5270 "chain_prod = 0x%04X, prod_bseq = 0x%08X\n", __FUNCTION__, 5271 prod, chain_prod, *prod_bseq); 5272 5273 /* Update some debug statistic counters */ 5274 DBRUNIF((sc->free_rx_bd < sc->rx_low_watermark), 5275 sc->rx_low_watermark = sc->free_rx_bd); 5276 DBRUNIF((sc->free_rx_bd == sc->max_rx_bd), 5277 sc->rx_empty_count++); 5278 5279 /* Simulate an mbuf allocation failure. */ 5280 DBRUNIF(DB_RANDOMTRUE(mbuf_alloc_failed_sim_control), 5281 sc->mbuf_alloc_failed_count++; 5282 sc->mbuf_alloc_failed_sim_count++; 5283 rc = ENOBUFS; 5284 goto bce_get_rx_buf_exit); 5285 5286 /* This is a new mbuf allocation. */ 5287 if (bce_hdr_split == TRUE) 5288 MGETHDR(m_new, M_NOWAIT, MT_DATA); 5289 else 5290 m_new = m_getjcl(M_NOWAIT, MT_DATA, M_PKTHDR, 5291 sc->rx_bd_mbuf_alloc_size); 5292 5293 if (m_new == NULL) { 5294 sc->mbuf_alloc_failed_count++; 5295 rc = ENOBUFS; 5296 goto bce_get_rx_buf_exit; 5297 } 5298 5299 DBRUN(sc->debug_rx_mbuf_alloc++); 5300 5301 /* Make sure we have a valid packet header. */ 5302 M_ASSERTPKTHDR(m_new); 5303 5304 /* Initialize the mbuf size and pad if necessary for alignment. */ 5305 m_new->m_pkthdr.len = m_new->m_len = sc->rx_bd_mbuf_alloc_size; 5306 m_adj(m_new, sc->rx_bd_mbuf_align_pad); 5307 5308 /* ToDo: Consider calling m_fragment() to test error handling. */ 5309 5310 /* Map the mbuf cluster into device memory. */ 5311 error = bus_dmamap_load_mbuf_sg(sc->rx_mbuf_tag, 5312 sc->rx_mbuf_map[chain_prod], m_new, segs, &nsegs, BUS_DMA_NOWAIT); 5313 5314 /* Handle any mapping errors. */ 5315 if (error) { 5316 BCE_PRINTF("%s(%d): Error mapping mbuf into RX " 5317 "chain (%d)!\n", __FILE__, __LINE__, error); 5318 5319 sc->dma_map_addr_rx_failed_count++; 5320 m_freem(m_new); 5321 5322 DBRUN(sc->debug_rx_mbuf_alloc--); 5323 5324 rc = ENOBUFS; 5325 goto bce_get_rx_buf_exit; 5326 } 5327 5328 /* All mbufs must map to a single segment. */ 5329 KASSERT(nsegs == 1, ("%s(): Too many segments returned (%d)!", 5330 __FUNCTION__, nsegs)); 5331 5332 /* Setup the rx_bd for the segment. */ 5333 rxbd = &sc->rx_bd_chain[RX_PAGE(chain_prod)][RX_IDX(chain_prod)]; 5334 5335 rxbd->rx_bd_haddr_lo = htole32(BCE_ADDR_LO(segs[0].ds_addr)); 5336 rxbd->rx_bd_haddr_hi = htole32(BCE_ADDR_HI(segs[0].ds_addr)); 5337 rxbd->rx_bd_len = htole32(segs[0].ds_len); 5338 rxbd->rx_bd_flags = htole32(RX_BD_FLAGS_START | RX_BD_FLAGS_END); 5339 *prod_bseq += segs[0].ds_len; 5340 5341 /* Save the mbuf and update our counter. */ 5342 sc->rx_mbuf_ptr[chain_prod] = m_new; 5343 sc->free_rx_bd -= nsegs; 5344 5345 DBRUNMSG(BCE_INSANE_RECV, 5346 bce_dump_rx_mbuf_chain(sc, debug_chain_prod, nsegs)); 5347 5348 DBPRINT(sc, BCE_EXTREME_RECV, "%s(exit): prod = 0x%04X, " 5349 "chain_prod = 0x%04X, prod_bseq = 0x%08X\n", __FUNCTION__, prod, 5350 chain_prod, *prod_bseq); 5351 5352 bce_get_rx_buf_exit: 5353 DBEXIT(BCE_EXTREME_RESET | BCE_EXTREME_RECV | BCE_EXTREME_LOAD); 5354 5355 return(rc); 5356 } 5357 5358 /****************************************************************************/ 5359 /* Encapsulate an mbuf cluster into the page chain. */ 5360 /* */ 5361 /* Returns: */ 5362 /* 0 for success, positive value for failure. */ 5363 /****************************************************************************/ 5364 static int 5365 bce_get_pg_buf(struct bce_softc *sc, u16 prod, u16 prod_idx) 5366 { 5367 bus_dma_segment_t segs[1]; 5368 struct mbuf *m_new = NULL; 5369 struct rx_bd *pgbd; 5370 int error, nsegs, rc = 0; 5371 #ifdef BCE_DEBUG 5372 u16 debug_prod_idx = prod_idx; 5373 #endif 5374 5375 DBENTER(BCE_EXTREME_RESET | BCE_EXTREME_RECV | BCE_EXTREME_LOAD); 5376 5377 /* Make sure the inputs are valid. */ 5378 DBRUNIF((prod_idx > MAX_PG_BD_ALLOC), 5379 BCE_PRINTF("%s(%d): page producer out of range: " 5380 "0x%04X > 0x%04X\n", __FILE__, __LINE__, 5381 prod_idx, (u16)MAX_PG_BD_ALLOC)); 5382 5383 DBPRINT(sc, BCE_EXTREME_RECV, "%s(enter): prod = 0x%04X, " 5384 "chain_prod = 0x%04X\n", __FUNCTION__, prod, prod_idx); 5385 5386 /* Update counters if we've hit a new low or run out of pages. */ 5387 DBRUNIF((sc->free_pg_bd < sc->pg_low_watermark), 5388 sc->pg_low_watermark = sc->free_pg_bd); 5389 DBRUNIF((sc->free_pg_bd == sc->max_pg_bd), sc->pg_empty_count++); 5390 5391 /* Simulate an mbuf allocation failure. */ 5392 DBRUNIF(DB_RANDOMTRUE(mbuf_alloc_failed_sim_control), 5393 sc->mbuf_alloc_failed_count++; 5394 sc->mbuf_alloc_failed_sim_count++; 5395 rc = ENOBUFS; 5396 goto bce_get_pg_buf_exit); 5397 5398 /* This is a new mbuf allocation. */ 5399 m_new = m_getcl(M_NOWAIT, MT_DATA, 0); 5400 if (m_new == NULL) { 5401 sc->mbuf_alloc_failed_count++; 5402 rc = ENOBUFS; 5403 goto bce_get_pg_buf_exit; 5404 } 5405 5406 DBRUN(sc->debug_pg_mbuf_alloc++); 5407 5408 m_new->m_len = MCLBYTES; 5409 5410 /* ToDo: Consider calling m_fragment() to test error handling. */ 5411 5412 /* Map the mbuf cluster into device memory. */ 5413 error = bus_dmamap_load_mbuf_sg(sc->pg_mbuf_tag, 5414 sc->pg_mbuf_map[prod_idx], m_new, segs, &nsegs, BUS_DMA_NOWAIT); 5415 5416 /* Handle any mapping errors. */ 5417 if (error) { 5418 BCE_PRINTF("%s(%d): Error mapping mbuf into page chain!\n", 5419 __FILE__, __LINE__); 5420 5421 m_freem(m_new); 5422 DBRUN(sc->debug_pg_mbuf_alloc--); 5423 5424 rc = ENOBUFS; 5425 goto bce_get_pg_buf_exit; 5426 } 5427 5428 /* All mbufs must map to a single segment. */ 5429 KASSERT(nsegs == 1, ("%s(): Too many segments returned (%d)!", 5430 __FUNCTION__, nsegs)); 5431 5432 /* ToDo: Do we need bus_dmamap_sync(,,BUS_DMASYNC_PREREAD) here? */ 5433 5434 /* 5435 * The page chain uses the same rx_bd data structure 5436 * as the receive chain but doesn't require a byte sequence (bseq). 5437 */ 5438 pgbd = &sc->pg_bd_chain[PG_PAGE(prod_idx)][PG_IDX(prod_idx)]; 5439 5440 pgbd->rx_bd_haddr_lo = htole32(BCE_ADDR_LO(segs[0].ds_addr)); 5441 pgbd->rx_bd_haddr_hi = htole32(BCE_ADDR_HI(segs[0].ds_addr)); 5442 pgbd->rx_bd_len = htole32(MCLBYTES); 5443 pgbd->rx_bd_flags = htole32(RX_BD_FLAGS_START | RX_BD_FLAGS_END); 5444 5445 /* Save the mbuf and update our counter. */ 5446 sc->pg_mbuf_ptr[prod_idx] = m_new; 5447 sc->free_pg_bd--; 5448 5449 DBRUNMSG(BCE_INSANE_RECV, 5450 bce_dump_pg_mbuf_chain(sc, debug_prod_idx, 1)); 5451 5452 DBPRINT(sc, BCE_EXTREME_RECV, "%s(exit): prod = 0x%04X, " 5453 "prod_idx = 0x%04X\n", __FUNCTION__, prod, prod_idx); 5454 5455 bce_get_pg_buf_exit: 5456 DBEXIT(BCE_EXTREME_RESET | BCE_EXTREME_RECV | BCE_EXTREME_LOAD); 5457 5458 return(rc); 5459 } 5460 5461 /****************************************************************************/ 5462 /* Initialize the TX context memory. */ 5463 /* */ 5464 /* Returns: */ 5465 /* Nothing */ 5466 /****************************************************************************/ 5467 static void 5468 bce_init_tx_context(struct bce_softc *sc) 5469 { 5470 u32 val; 5471 5472 DBENTER(BCE_VERBOSE_RESET | BCE_VERBOSE_SEND | BCE_VERBOSE_CTX); 5473 5474 /* Initialize the context ID for an L2 TX chain. */ 5475 if (BCE_CHIP_NUM(sc) == BCE_CHIP_NUM_5709) { 5476 /* Set the CID type to support an L2 connection. */ 5477 val = BCE_L2CTX_TX_TYPE_TYPE_L2_XI | 5478 BCE_L2CTX_TX_TYPE_SIZE_L2_XI; 5479 CTX_WR(sc, GET_CID_ADDR(TX_CID), BCE_L2CTX_TX_TYPE_XI, val); 5480 val = BCE_L2CTX_TX_CMD_TYPE_TYPE_L2_XI | (8 << 16); 5481 CTX_WR(sc, GET_CID_ADDR(TX_CID), 5482 BCE_L2CTX_TX_CMD_TYPE_XI, val); 5483 5484 /* Point the hardware to the first page in the chain. */ 5485 val = BCE_ADDR_HI(sc->tx_bd_chain_paddr[0]); 5486 CTX_WR(sc, GET_CID_ADDR(TX_CID), 5487 BCE_L2CTX_TX_TBDR_BHADDR_HI_XI, val); 5488 val = BCE_ADDR_LO(sc->tx_bd_chain_paddr[0]); 5489 CTX_WR(sc, GET_CID_ADDR(TX_CID), 5490 BCE_L2CTX_TX_TBDR_BHADDR_LO_XI, val); 5491 } else { 5492 /* Set the CID type to support an L2 connection. */ 5493 val = BCE_L2CTX_TX_TYPE_TYPE_L2 | BCE_L2CTX_TX_TYPE_SIZE_L2; 5494 CTX_WR(sc, GET_CID_ADDR(TX_CID), BCE_L2CTX_TX_TYPE, val); 5495 val = BCE_L2CTX_TX_CMD_TYPE_TYPE_L2 | (8 << 16); 5496 CTX_WR(sc, GET_CID_ADDR(TX_CID), BCE_L2CTX_TX_CMD_TYPE, val); 5497 5498 /* Point the hardware to the first page in the chain. */ 5499 val = BCE_ADDR_HI(sc->tx_bd_chain_paddr[0]); 5500 CTX_WR(sc, GET_CID_ADDR(TX_CID), 5501 BCE_L2CTX_TX_TBDR_BHADDR_HI, val); 5502 val = BCE_ADDR_LO(sc->tx_bd_chain_paddr[0]); 5503 CTX_WR(sc, GET_CID_ADDR(TX_CID), 5504 BCE_L2CTX_TX_TBDR_BHADDR_LO, val); 5505 } 5506 5507 DBEXIT(BCE_VERBOSE_RESET | BCE_VERBOSE_SEND | BCE_VERBOSE_CTX); 5508 } 5509 5510 /****************************************************************************/ 5511 /* Allocate memory and initialize the TX data structures. */ 5512 /* */ 5513 /* Returns: */ 5514 /* 0 for success, positive value for failure. */ 5515 /****************************************************************************/ 5516 static int 5517 bce_init_tx_chain(struct bce_softc *sc) 5518 { 5519 struct tx_bd *txbd; 5520 int i, rc = 0; 5521 5522 DBENTER(BCE_VERBOSE_RESET | BCE_VERBOSE_SEND | BCE_VERBOSE_LOAD); 5523 5524 /* Set the initial TX producer/consumer indices. */ 5525 sc->tx_prod = 0; 5526 sc->tx_cons = 0; 5527 sc->tx_prod_bseq = 0; 5528 sc->used_tx_bd = 0; 5529 sc->max_tx_bd = USABLE_TX_BD_ALLOC; 5530 DBRUN(sc->tx_hi_watermark = 0); 5531 DBRUN(sc->tx_full_count = 0); 5532 5533 /* 5534 * The NetXtreme II supports a linked-list structure called 5535 * a Buffer Descriptor Chain (or BD chain). A BD chain 5536 * consists of a series of 1 or more chain pages, each of which 5537 * consists of a fixed number of BD entries. 5538 * The last BD entry on each page is a pointer to the next page 5539 * in the chain, and the last pointer in the BD chain 5540 * points back to the beginning of the chain. 5541 */ 5542 5543 /* Set the TX next pointer chain entries. */ 5544 for (i = 0; i < sc->tx_pages; i++) { 5545 int j; 5546 5547 txbd = &sc->tx_bd_chain[i][USABLE_TX_BD_PER_PAGE]; 5548 5549 /* Check if we've reached the last page. */ 5550 if (i == (sc->tx_pages - 1)) 5551 j = 0; 5552 else 5553 j = i + 1; 5554 5555 txbd->tx_bd_haddr_hi = 5556 htole32(BCE_ADDR_HI(sc->tx_bd_chain_paddr[j])); 5557 txbd->tx_bd_haddr_lo = 5558 htole32(BCE_ADDR_LO(sc->tx_bd_chain_paddr[j])); 5559 } 5560 5561 bce_init_tx_context(sc); 5562 5563 DBRUNMSG(BCE_INSANE_SEND, bce_dump_tx_chain(sc, 0, TOTAL_TX_BD_ALLOC)); 5564 DBEXIT(BCE_VERBOSE_RESET | BCE_VERBOSE_SEND | BCE_VERBOSE_LOAD); 5565 5566 return(rc); 5567 } 5568 5569 /****************************************************************************/ 5570 /* Free memory and clear the TX data structures. */ 5571 /* */ 5572 /* Returns: */ 5573 /* Nothing. */ 5574 /****************************************************************************/ 5575 static void 5576 bce_free_tx_chain(struct bce_softc *sc) 5577 { 5578 int i; 5579 5580 DBENTER(BCE_VERBOSE_RESET | BCE_VERBOSE_SEND | BCE_VERBOSE_UNLOAD); 5581 5582 /* Unmap, unload, and free any mbufs still in the TX mbuf chain. */ 5583 for (i = 0; i < MAX_TX_BD_AVAIL; i++) { 5584 if (sc->tx_mbuf_ptr[i] != NULL) { 5585 if (sc->tx_mbuf_map[i] != NULL) 5586 bus_dmamap_sync(sc->tx_mbuf_tag, 5587 sc->tx_mbuf_map[i], 5588 BUS_DMASYNC_POSTWRITE); 5589 m_freem(sc->tx_mbuf_ptr[i]); 5590 sc->tx_mbuf_ptr[i] = NULL; 5591 DBRUN(sc->debug_tx_mbuf_alloc--); 5592 } 5593 } 5594 5595 /* Clear each TX chain page. */ 5596 for (i = 0; i < sc->tx_pages; i++) 5597 bzero((char *)sc->tx_bd_chain[i], BCE_TX_CHAIN_PAGE_SZ); 5598 5599 sc->used_tx_bd = 0; 5600 5601 /* Check if we lost any mbufs in the process. */ 5602 DBRUNIF((sc->debug_tx_mbuf_alloc), 5603 BCE_PRINTF("%s(%d): Memory leak! Lost %d mbufs " 5604 "from tx chain!\n", __FILE__, __LINE__, 5605 sc->debug_tx_mbuf_alloc)); 5606 5607 DBEXIT(BCE_VERBOSE_RESET | BCE_VERBOSE_SEND | BCE_VERBOSE_UNLOAD); 5608 } 5609 5610 /****************************************************************************/ 5611 /* Initialize the RX context memory. */ 5612 /* */ 5613 /* Returns: */ 5614 /* Nothing */ 5615 /****************************************************************************/ 5616 static void 5617 bce_init_rx_context(struct bce_softc *sc) 5618 { 5619 u32 val; 5620 5621 DBENTER(BCE_VERBOSE_RESET | BCE_VERBOSE_RECV | BCE_VERBOSE_CTX); 5622 5623 /* Init the type, size, and BD cache levels for the RX context. */ 5624 val = BCE_L2CTX_RX_CTX_TYPE_CTX_BD_CHN_TYPE_VALUE | 5625 BCE_L2CTX_RX_CTX_TYPE_SIZE_L2 | 5626 (0x02 << BCE_L2CTX_RX_BD_PRE_READ_SHIFT); 5627 5628 /* 5629 * Set the level for generating pause frames 5630 * when the number of available rx_bd's gets 5631 * too low (the low watermark) and the level 5632 * when pause frames can be stopped (the high 5633 * watermark). 5634 */ 5635 if (BCE_CHIP_NUM(sc) == BCE_CHIP_NUM_5709) { 5636 u32 lo_water, hi_water; 5637 5638 if (sc->bce_flags & BCE_USING_TX_FLOW_CONTROL) { 5639 lo_water = BCE_L2CTX_RX_LO_WATER_MARK_DEFAULT; 5640 } else { 5641 lo_water = 0; 5642 } 5643 5644 if (lo_water >= USABLE_RX_BD_ALLOC) { 5645 lo_water = 0; 5646 } 5647 5648 hi_water = USABLE_RX_BD_ALLOC / 4; 5649 5650 if (hi_water <= lo_water) { 5651 lo_water = 0; 5652 } 5653 5654 lo_water /= BCE_L2CTX_RX_LO_WATER_MARK_SCALE; 5655 hi_water /= BCE_L2CTX_RX_HI_WATER_MARK_SCALE; 5656 5657 if (hi_water > 0xf) 5658 hi_water = 0xf; 5659 else if (hi_water == 0) 5660 lo_water = 0; 5661 5662 val |= (lo_water << BCE_L2CTX_RX_LO_WATER_MARK_SHIFT) | 5663 (hi_water << BCE_L2CTX_RX_HI_WATER_MARK_SHIFT); 5664 } 5665 5666 CTX_WR(sc, GET_CID_ADDR(RX_CID), BCE_L2CTX_RX_CTX_TYPE, val); 5667 5668 /* Setup the MQ BIN mapping for l2_ctx_host_bseq. */ 5669 if (BCE_CHIP_NUM(sc) == BCE_CHIP_NUM_5709) { 5670 val = REG_RD(sc, BCE_MQ_MAP_L2_5); 5671 REG_WR(sc, BCE_MQ_MAP_L2_5, val | BCE_MQ_MAP_L2_5_ARM); 5672 } 5673 5674 /* Point the hardware to the first page in the chain. */ 5675 val = BCE_ADDR_HI(sc->rx_bd_chain_paddr[0]); 5676 CTX_WR(sc, GET_CID_ADDR(RX_CID), BCE_L2CTX_RX_NX_BDHADDR_HI, val); 5677 val = BCE_ADDR_LO(sc->rx_bd_chain_paddr[0]); 5678 CTX_WR(sc, GET_CID_ADDR(RX_CID), BCE_L2CTX_RX_NX_BDHADDR_LO, val); 5679 5680 DBEXIT(BCE_VERBOSE_RESET | BCE_VERBOSE_RECV | BCE_VERBOSE_CTX); 5681 } 5682 5683 /****************************************************************************/ 5684 /* Allocate memory and initialize the RX data structures. */ 5685 /* */ 5686 /* Returns: */ 5687 /* 0 for success, positive value for failure. */ 5688 /****************************************************************************/ 5689 static int 5690 bce_init_rx_chain(struct bce_softc *sc) 5691 { 5692 struct rx_bd *rxbd; 5693 int i, rc = 0; 5694 5695 DBENTER(BCE_VERBOSE_RESET | BCE_VERBOSE_RECV | BCE_VERBOSE_LOAD | 5696 BCE_VERBOSE_CTX); 5697 5698 /* Initialize the RX producer and consumer indices. */ 5699 sc->rx_prod = 0; 5700 sc->rx_cons = 0; 5701 sc->rx_prod_bseq = 0; 5702 sc->free_rx_bd = USABLE_RX_BD_ALLOC; 5703 sc->max_rx_bd = USABLE_RX_BD_ALLOC; 5704 5705 /* Initialize the RX next pointer chain entries. */ 5706 for (i = 0; i < sc->rx_pages; i++) { 5707 int j; 5708 5709 rxbd = &sc->rx_bd_chain[i][USABLE_RX_BD_PER_PAGE]; 5710 5711 /* Check if we've reached the last page. */ 5712 if (i == (sc->rx_pages - 1)) 5713 j = 0; 5714 else 5715 j = i + 1; 5716 5717 /* Setup the chain page pointers. */ 5718 rxbd->rx_bd_haddr_hi = 5719 htole32(BCE_ADDR_HI(sc->rx_bd_chain_paddr[j])); 5720 rxbd->rx_bd_haddr_lo = 5721 htole32(BCE_ADDR_LO(sc->rx_bd_chain_paddr[j])); 5722 } 5723 5724 /* Fill up the RX chain. */ 5725 bce_fill_rx_chain(sc); 5726 5727 DBRUN(sc->rx_low_watermark = USABLE_RX_BD_ALLOC); 5728 DBRUN(sc->rx_empty_count = 0); 5729 for (i = 0; i < sc->rx_pages; i++) { 5730 bus_dmamap_sync(sc->rx_bd_chain_tag, sc->rx_bd_chain_map[i], 5731 BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE); 5732 } 5733 5734 bce_init_rx_context(sc); 5735 5736 DBRUNMSG(BCE_EXTREME_RECV, 5737 bce_dump_rx_bd_chain(sc, 0, TOTAL_RX_BD_ALLOC)); 5738 DBEXIT(BCE_VERBOSE_RESET | BCE_VERBOSE_RECV | BCE_VERBOSE_LOAD | 5739 BCE_VERBOSE_CTX); 5740 5741 /* ToDo: Are there possible failure modes here? */ 5742 5743 return(rc); 5744 } 5745 5746 /****************************************************************************/ 5747 /* Add mbufs to the RX chain until its full or an mbuf allocation error */ 5748 /* occurs. */ 5749 /* */ 5750 /* Returns: */ 5751 /* Nothing */ 5752 /****************************************************************************/ 5753 static void 5754 bce_fill_rx_chain(struct bce_softc *sc) 5755 { 5756 u16 prod, prod_idx; 5757 u32 prod_bseq; 5758 5759 DBENTER(BCE_VERBOSE_RESET | BCE_EXTREME_RECV | BCE_VERBOSE_LOAD | 5760 BCE_VERBOSE_CTX); 5761 5762 /* Get the RX chain producer indices. */ 5763 prod = sc->rx_prod; 5764 prod_bseq = sc->rx_prod_bseq; 5765 5766 /* Keep filling the RX chain until it's full. */ 5767 while (sc->free_rx_bd > 0) { 5768 prod_idx = RX_CHAIN_IDX(prod); 5769 if (bce_get_rx_buf(sc, prod, prod_idx, &prod_bseq)) { 5770 /* Bail out if we can't add an mbuf to the chain. */ 5771 break; 5772 } 5773 prod = NEXT_RX_BD(prod); 5774 } 5775 5776 /* Save the RX chain producer indices. */ 5777 sc->rx_prod = prod; 5778 sc->rx_prod_bseq = prod_bseq; 5779 5780 /* We should never end up pointing to a next page pointer. */ 5781 DBRUNIF(((prod & USABLE_RX_BD_PER_PAGE) == USABLE_RX_BD_PER_PAGE), 5782 BCE_PRINTF("%s(): Invalid rx_prod value: 0x%04X\n", 5783 __FUNCTION__, rx_prod)); 5784 5785 /* Write the mailbox and tell the chip about the waiting rx_bd's. */ 5786 REG_WR16(sc, MB_GET_CID_ADDR(RX_CID) + BCE_L2MQ_RX_HOST_BDIDX, prod); 5787 REG_WR(sc, MB_GET_CID_ADDR(RX_CID) + BCE_L2MQ_RX_HOST_BSEQ, prod_bseq); 5788 5789 DBEXIT(BCE_VERBOSE_RESET | BCE_EXTREME_RECV | BCE_VERBOSE_LOAD | 5790 BCE_VERBOSE_CTX); 5791 } 5792 5793 /****************************************************************************/ 5794 /* Free memory and clear the RX data structures. */ 5795 /* */ 5796 /* Returns: */ 5797 /* Nothing. */ 5798 /****************************************************************************/ 5799 static void 5800 bce_free_rx_chain(struct bce_softc *sc) 5801 { 5802 int i; 5803 5804 DBENTER(BCE_VERBOSE_RESET | BCE_VERBOSE_RECV | BCE_VERBOSE_UNLOAD); 5805 5806 /* Free any mbufs still in the RX mbuf chain. */ 5807 for (i = 0; i < MAX_RX_BD_AVAIL; i++) { 5808 if (sc->rx_mbuf_ptr[i] != NULL) { 5809 if (sc->rx_mbuf_map[i] != NULL) 5810 bus_dmamap_sync(sc->rx_mbuf_tag, 5811 sc->rx_mbuf_map[i], 5812 BUS_DMASYNC_POSTREAD); 5813 m_freem(sc->rx_mbuf_ptr[i]); 5814 sc->rx_mbuf_ptr[i] = NULL; 5815 DBRUN(sc->debug_rx_mbuf_alloc--); 5816 } 5817 } 5818 5819 /* Clear each RX chain page. */ 5820 for (i = 0; i < sc->rx_pages; i++) 5821 if (sc->rx_bd_chain[i] != NULL) 5822 bzero((char *)sc->rx_bd_chain[i], 5823 BCE_RX_CHAIN_PAGE_SZ); 5824 5825 sc->free_rx_bd = sc->max_rx_bd; 5826 5827 /* Check if we lost any mbufs in the process. */ 5828 DBRUNIF((sc->debug_rx_mbuf_alloc), 5829 BCE_PRINTF("%s(): Memory leak! Lost %d mbufs from rx chain!\n", 5830 __FUNCTION__, sc->debug_rx_mbuf_alloc)); 5831 5832 DBEXIT(BCE_VERBOSE_RESET | BCE_VERBOSE_RECV | BCE_VERBOSE_UNLOAD); 5833 } 5834 5835 /****************************************************************************/ 5836 /* Allocate memory and initialize the page data structures. */ 5837 /* Assumes that bce_init_rx_chain() has not already been called. */ 5838 /* */ 5839 /* Returns: */ 5840 /* 0 for success, positive value for failure. */ 5841 /****************************************************************************/ 5842 static int 5843 bce_init_pg_chain(struct bce_softc *sc) 5844 { 5845 struct rx_bd *pgbd; 5846 int i, rc = 0; 5847 u32 val; 5848 5849 DBENTER(BCE_VERBOSE_RESET | BCE_VERBOSE_RECV | BCE_VERBOSE_LOAD | 5850 BCE_VERBOSE_CTX); 5851 5852 /* Initialize the page producer and consumer indices. */ 5853 sc->pg_prod = 0; 5854 sc->pg_cons = 0; 5855 sc->free_pg_bd = USABLE_PG_BD_ALLOC; 5856 sc->max_pg_bd = USABLE_PG_BD_ALLOC; 5857 DBRUN(sc->pg_low_watermark = sc->max_pg_bd); 5858 DBRUN(sc->pg_empty_count = 0); 5859 5860 /* Initialize the page next pointer chain entries. */ 5861 for (i = 0; i < sc->pg_pages; i++) { 5862 int j; 5863 5864 pgbd = &sc->pg_bd_chain[i][USABLE_PG_BD_PER_PAGE]; 5865 5866 /* Check if we've reached the last page. */ 5867 if (i == (sc->pg_pages - 1)) 5868 j = 0; 5869 else 5870 j = i + 1; 5871 5872 /* Setup the chain page pointers. */ 5873 pgbd->rx_bd_haddr_hi = 5874 htole32(BCE_ADDR_HI(sc->pg_bd_chain_paddr[j])); 5875 pgbd->rx_bd_haddr_lo = 5876 htole32(BCE_ADDR_LO(sc->pg_bd_chain_paddr[j])); 5877 } 5878 5879 /* Setup the MQ BIN mapping for host_pg_bidx. */ 5880 if (BCE_CHIP_NUM(sc) == BCE_CHIP_NUM_5709) 5881 REG_WR(sc, BCE_MQ_MAP_L2_3, BCE_MQ_MAP_L2_3_DEFAULT); 5882 5883 CTX_WR(sc, GET_CID_ADDR(RX_CID), BCE_L2CTX_RX_PG_BUF_SIZE, 0); 5884 5885 /* Configure the rx_bd and page chain mbuf cluster size. */ 5886 val = (sc->rx_bd_mbuf_data_len << 16) | MCLBYTES; 5887 CTX_WR(sc, GET_CID_ADDR(RX_CID), BCE_L2CTX_RX_PG_BUF_SIZE, val); 5888 5889 /* Configure the context reserved for jumbo support. */ 5890 CTX_WR(sc, GET_CID_ADDR(RX_CID), BCE_L2CTX_RX_RBDC_KEY, 5891 BCE_L2CTX_RX_RBDC_JUMBO_KEY); 5892 5893 /* Point the hardware to the first page in the page chain. */ 5894 val = BCE_ADDR_HI(sc->pg_bd_chain_paddr[0]); 5895 CTX_WR(sc, GET_CID_ADDR(RX_CID), BCE_L2CTX_RX_NX_PG_BDHADDR_HI, val); 5896 val = BCE_ADDR_LO(sc->pg_bd_chain_paddr[0]); 5897 CTX_WR(sc, GET_CID_ADDR(RX_CID), BCE_L2CTX_RX_NX_PG_BDHADDR_LO, val); 5898 5899 /* Fill up the page chain. */ 5900 bce_fill_pg_chain(sc); 5901 5902 for (i = 0; i < sc->pg_pages; i++) { 5903 bus_dmamap_sync(sc->pg_bd_chain_tag, sc->pg_bd_chain_map[i], 5904 BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE); 5905 } 5906 5907 DBRUNMSG(BCE_EXTREME_RECV, 5908 bce_dump_pg_chain(sc, 0, TOTAL_PG_BD_ALLOC)); 5909 DBEXIT(BCE_VERBOSE_RESET | BCE_VERBOSE_RECV | BCE_VERBOSE_LOAD | 5910 BCE_VERBOSE_CTX); 5911 return(rc); 5912 } 5913 5914 /****************************************************************************/ 5915 /* Add mbufs to the page chain until its full or an mbuf allocation error */ 5916 /* occurs. */ 5917 /* */ 5918 /* Returns: */ 5919 /* Nothing */ 5920 /****************************************************************************/ 5921 static void 5922 bce_fill_pg_chain(struct bce_softc *sc) 5923 { 5924 u16 prod, prod_idx; 5925 5926 DBENTER(BCE_VERBOSE_RESET | BCE_EXTREME_RECV | BCE_VERBOSE_LOAD | 5927 BCE_VERBOSE_CTX); 5928 5929 /* Get the page chain prodcuer index. */ 5930 prod = sc->pg_prod; 5931 5932 /* Keep filling the page chain until it's full. */ 5933 while (sc->free_pg_bd > 0) { 5934 prod_idx = PG_CHAIN_IDX(prod); 5935 if (bce_get_pg_buf(sc, prod, prod_idx)) { 5936 /* Bail out if we can't add an mbuf to the chain. */ 5937 break; 5938 } 5939 prod = NEXT_PG_BD(prod); 5940 } 5941 5942 /* Save the page chain producer index. */ 5943 sc->pg_prod = prod; 5944 5945 DBRUNIF(((prod & USABLE_RX_BD_PER_PAGE) == USABLE_RX_BD_PER_PAGE), 5946 BCE_PRINTF("%s(): Invalid pg_prod value: 0x%04X\n", 5947 __FUNCTION__, pg_prod)); 5948 5949 /* 5950 * Write the mailbox and tell the chip about 5951 * the new rx_bd's in the page chain. 5952 */ 5953 REG_WR16(sc, MB_GET_CID_ADDR(RX_CID) + BCE_L2MQ_RX_HOST_PG_BDIDX, 5954 prod); 5955 5956 DBEXIT(BCE_VERBOSE_RESET | BCE_EXTREME_RECV | BCE_VERBOSE_LOAD | 5957 BCE_VERBOSE_CTX); 5958 } 5959 5960 /****************************************************************************/ 5961 /* Free memory and clear the RX data structures. */ 5962 /* */ 5963 /* Returns: */ 5964 /* Nothing. */ 5965 /****************************************************************************/ 5966 static void 5967 bce_free_pg_chain(struct bce_softc *sc) 5968 { 5969 int i; 5970 5971 DBENTER(BCE_VERBOSE_RESET | BCE_VERBOSE_RECV | BCE_VERBOSE_UNLOAD); 5972 5973 /* Free any mbufs still in the mbuf page chain. */ 5974 for (i = 0; i < MAX_PG_BD_AVAIL; i++) { 5975 if (sc->pg_mbuf_ptr[i] != NULL) { 5976 if (sc->pg_mbuf_map[i] != NULL) 5977 bus_dmamap_sync(sc->pg_mbuf_tag, 5978 sc->pg_mbuf_map[i], 5979 BUS_DMASYNC_POSTREAD); 5980 m_freem(sc->pg_mbuf_ptr[i]); 5981 sc->pg_mbuf_ptr[i] = NULL; 5982 DBRUN(sc->debug_pg_mbuf_alloc--); 5983 } 5984 } 5985 5986 /* Clear each page chain pages. */ 5987 for (i = 0; i < sc->pg_pages; i++) 5988 bzero((char *)sc->pg_bd_chain[i], BCE_PG_CHAIN_PAGE_SZ); 5989 5990 sc->free_pg_bd = sc->max_pg_bd; 5991 5992 /* Check if we lost any mbufs in the process. */ 5993 DBRUNIF((sc->debug_pg_mbuf_alloc), 5994 BCE_PRINTF("%s(): Memory leak! Lost %d mbufs from page chain!\n", 5995 __FUNCTION__, sc->debug_pg_mbuf_alloc)); 5996 5997 DBEXIT(BCE_VERBOSE_RESET | BCE_VERBOSE_RECV | BCE_VERBOSE_UNLOAD); 5998 } 5999 6000 static u32 6001 bce_get_rphy_link(struct bce_softc *sc) 6002 { 6003 u32 advertise, link; 6004 int fdpx; 6005 6006 advertise = 0; 6007 fdpx = 0; 6008 if ((sc->bce_phy_flags & BCE_PHY_REMOTE_PORT_FIBER_FLAG) != 0) 6009 link = bce_shmem_rd(sc, BCE_RPHY_SERDES_LINK); 6010 else 6011 link = bce_shmem_rd(sc, BCE_RPHY_COPPER_LINK); 6012 if (link & BCE_NETLINK_ANEG_ENB) 6013 advertise |= BCE_NETLINK_ANEG_ENB; 6014 if (link & BCE_NETLINK_SPEED_10HALF) 6015 advertise |= BCE_NETLINK_SPEED_10HALF; 6016 if (link & BCE_NETLINK_SPEED_10FULL) { 6017 advertise |= BCE_NETLINK_SPEED_10FULL; 6018 fdpx++; 6019 } 6020 if (link & BCE_NETLINK_SPEED_100HALF) 6021 advertise |= BCE_NETLINK_SPEED_100HALF; 6022 if (link & BCE_NETLINK_SPEED_100FULL) { 6023 advertise |= BCE_NETLINK_SPEED_100FULL; 6024 fdpx++; 6025 } 6026 if (link & BCE_NETLINK_SPEED_1000HALF) 6027 advertise |= BCE_NETLINK_SPEED_1000HALF; 6028 if (link & BCE_NETLINK_SPEED_1000FULL) { 6029 advertise |= BCE_NETLINK_SPEED_1000FULL; 6030 fdpx++; 6031 } 6032 if (link & BCE_NETLINK_SPEED_2500HALF) 6033 advertise |= BCE_NETLINK_SPEED_2500HALF; 6034 if (link & BCE_NETLINK_SPEED_2500FULL) { 6035 advertise |= BCE_NETLINK_SPEED_2500FULL; 6036 fdpx++; 6037 } 6038 if (fdpx) 6039 advertise |= BCE_NETLINK_FC_PAUSE_SYM | 6040 BCE_NETLINK_FC_PAUSE_ASYM; 6041 if ((sc->bce_phy_flags & BCE_PHY_REMOTE_PORT_FIBER_FLAG) == 0) 6042 advertise |= BCE_NETLINK_PHY_APP_REMOTE | 6043 BCE_NETLINK_ETH_AT_WIRESPEED; 6044 6045 return (advertise); 6046 } 6047 6048 /****************************************************************************/ 6049 /* Set media options. */ 6050 /* */ 6051 /* Returns: */ 6052 /* 0 for success, positive value for failure. */ 6053 /****************************************************************************/ 6054 static int 6055 bce_ifmedia_upd(if_t ifp) 6056 { 6057 struct bce_softc *sc = if_getsoftc(ifp); 6058 int error; 6059 6060 DBENTER(BCE_VERBOSE); 6061 6062 BCE_LOCK(sc); 6063 error = bce_ifmedia_upd_locked(ifp); 6064 BCE_UNLOCK(sc); 6065 6066 DBEXIT(BCE_VERBOSE); 6067 return (error); 6068 } 6069 6070 /****************************************************************************/ 6071 /* Set media options. */ 6072 /* */ 6073 /* Returns: */ 6074 /* Nothing. */ 6075 /****************************************************************************/ 6076 static int 6077 bce_ifmedia_upd_locked(if_t ifp) 6078 { 6079 struct bce_softc *sc = if_getsoftc(ifp); 6080 struct mii_data *mii; 6081 struct mii_softc *miisc; 6082 struct ifmedia *ifm; 6083 u32 link; 6084 int error, fdx; 6085 6086 DBENTER(BCE_VERBOSE_PHY); 6087 6088 error = 0; 6089 BCE_LOCK_ASSERT(sc); 6090 6091 sc->bce_link_up = FALSE; 6092 if ((sc->bce_phy_flags & BCE_PHY_REMOTE_CAP_FLAG) != 0) { 6093 ifm = &sc->bce_ifmedia; 6094 if (IFM_TYPE(ifm->ifm_media) != IFM_ETHER) 6095 return (EINVAL); 6096 link = 0; 6097 fdx = IFM_OPTIONS(ifm->ifm_media) & IFM_FDX; 6098 switch(IFM_SUBTYPE(ifm->ifm_media)) { 6099 case IFM_AUTO: 6100 /* 6101 * Check advertised link of remote PHY by reading 6102 * BCE_RPHY_SERDES_LINK or BCE_RPHY_COPPER_LINK. 6103 * Always use the same link type of remote PHY. 6104 */ 6105 link = bce_get_rphy_link(sc); 6106 break; 6107 case IFM_2500_SX: 6108 if ((sc->bce_phy_flags & 6109 (BCE_PHY_REMOTE_PORT_FIBER_FLAG | 6110 BCE_PHY_2_5G_CAPABLE_FLAG)) == 0) 6111 return (EINVAL); 6112 /* 6113 * XXX 6114 * Have to enable forced 2.5Gbps configuration. 6115 */ 6116 if (fdx != 0) 6117 link |= BCE_NETLINK_SPEED_2500FULL; 6118 else 6119 link |= BCE_NETLINK_SPEED_2500HALF; 6120 break; 6121 case IFM_1000_SX: 6122 if ((sc->bce_phy_flags & 6123 BCE_PHY_REMOTE_PORT_FIBER_FLAG) == 0) 6124 return (EINVAL); 6125 /* 6126 * XXX 6127 * Have to disable 2.5Gbps configuration. 6128 */ 6129 if (fdx != 0) 6130 link = BCE_NETLINK_SPEED_1000FULL; 6131 else 6132 link = BCE_NETLINK_SPEED_1000HALF; 6133 break; 6134 case IFM_1000_T: 6135 if (sc->bce_phy_flags & BCE_PHY_REMOTE_PORT_FIBER_FLAG) 6136 return (EINVAL); 6137 if (fdx != 0) 6138 link = BCE_NETLINK_SPEED_1000FULL; 6139 else 6140 link = BCE_NETLINK_SPEED_1000HALF; 6141 break; 6142 case IFM_100_TX: 6143 if (sc->bce_phy_flags & BCE_PHY_REMOTE_PORT_FIBER_FLAG) 6144 return (EINVAL); 6145 if (fdx != 0) 6146 link = BCE_NETLINK_SPEED_100FULL; 6147 else 6148 link = BCE_NETLINK_SPEED_100HALF; 6149 break; 6150 case IFM_10_T: 6151 if (sc->bce_phy_flags & BCE_PHY_REMOTE_PORT_FIBER_FLAG) 6152 return (EINVAL); 6153 if (fdx != 0) 6154 link = BCE_NETLINK_SPEED_10FULL; 6155 else 6156 link = BCE_NETLINK_SPEED_10HALF; 6157 break; 6158 default: 6159 return (EINVAL); 6160 } 6161 if (IFM_SUBTYPE(ifm->ifm_media) != IFM_AUTO) { 6162 /* 6163 * XXX 6164 * Advertise pause capability for full-duplex media. 6165 */ 6166 if (fdx != 0) 6167 link |= BCE_NETLINK_FC_PAUSE_SYM | 6168 BCE_NETLINK_FC_PAUSE_ASYM; 6169 if ((sc->bce_phy_flags & 6170 BCE_PHY_REMOTE_PORT_FIBER_FLAG) == 0) 6171 link |= BCE_NETLINK_PHY_APP_REMOTE | 6172 BCE_NETLINK_ETH_AT_WIRESPEED; 6173 } 6174 6175 bce_shmem_wr(sc, BCE_MB_ARGS_0, link); 6176 error = bce_fw_sync(sc, BCE_DRV_MSG_CODE_CMD_SET_LINK); 6177 } else { 6178 mii = device_get_softc(sc->bce_miibus); 6179 6180 /* Make sure the MII bus has been enumerated. */ 6181 if (mii) { 6182 LIST_FOREACH(miisc, &mii->mii_phys, mii_list) 6183 PHY_RESET(miisc); 6184 error = mii_mediachg(mii); 6185 } 6186 } 6187 6188 DBEXIT(BCE_VERBOSE_PHY); 6189 return (error); 6190 } 6191 6192 static void 6193 bce_ifmedia_sts_rphy(struct bce_softc *sc, struct ifmediareq *ifmr) 6194 { 6195 if_t ifp; 6196 u32 link; 6197 6198 ifp = sc->bce_ifp; 6199 BCE_LOCK_ASSERT(sc); 6200 6201 ifmr->ifm_status = IFM_AVALID; 6202 ifmr->ifm_active = IFM_ETHER; 6203 link = bce_shmem_rd(sc, BCE_LINK_STATUS); 6204 /* XXX Handle heart beat status? */ 6205 if ((link & BCE_LINK_STATUS_LINK_UP) != 0) 6206 ifmr->ifm_status |= IFM_ACTIVE; 6207 else { 6208 ifmr->ifm_active |= IFM_NONE; 6209 if_setbaudrate(ifp, 0); 6210 return; 6211 } 6212 switch (link & BCE_LINK_STATUS_SPEED_MASK) { 6213 case BCE_LINK_STATUS_10HALF: 6214 ifmr->ifm_active |= IFM_10_T | IFM_HDX; 6215 if_setbaudrate(ifp, IF_Mbps(10UL)); 6216 break; 6217 case BCE_LINK_STATUS_10FULL: 6218 ifmr->ifm_active |= IFM_10_T | IFM_FDX; 6219 if_setbaudrate(ifp, IF_Mbps(10UL)); 6220 break; 6221 case BCE_LINK_STATUS_100HALF: 6222 ifmr->ifm_active |= IFM_100_TX | IFM_HDX; 6223 if_setbaudrate(ifp, IF_Mbps(100UL)); 6224 break; 6225 case BCE_LINK_STATUS_100FULL: 6226 ifmr->ifm_active |= IFM_100_TX | IFM_FDX; 6227 if_setbaudrate(ifp, IF_Mbps(100UL)); 6228 break; 6229 case BCE_LINK_STATUS_1000HALF: 6230 if ((sc->bce_phy_flags & BCE_PHY_REMOTE_PORT_FIBER_FLAG) == 0) 6231 ifmr->ifm_active |= IFM_1000_T | IFM_HDX; 6232 else 6233 ifmr->ifm_active |= IFM_1000_SX | IFM_HDX; 6234 if_setbaudrate(ifp, IF_Mbps(1000UL)); 6235 break; 6236 case BCE_LINK_STATUS_1000FULL: 6237 if ((sc->bce_phy_flags & BCE_PHY_REMOTE_PORT_FIBER_FLAG) == 0) 6238 ifmr->ifm_active |= IFM_1000_T | IFM_FDX; 6239 else 6240 ifmr->ifm_active |= IFM_1000_SX | IFM_FDX; 6241 if_setbaudrate(ifp, IF_Mbps(1000UL)); 6242 break; 6243 case BCE_LINK_STATUS_2500HALF: 6244 if ((sc->bce_phy_flags & BCE_PHY_REMOTE_PORT_FIBER_FLAG) == 0) { 6245 ifmr->ifm_active |= IFM_NONE; 6246 return; 6247 } else 6248 ifmr->ifm_active |= IFM_2500_SX | IFM_HDX; 6249 if_setbaudrate(ifp, IF_Mbps(2500UL)); 6250 break; 6251 case BCE_LINK_STATUS_2500FULL: 6252 if ((sc->bce_phy_flags & BCE_PHY_REMOTE_PORT_FIBER_FLAG) == 0) { 6253 ifmr->ifm_active |= IFM_NONE; 6254 return; 6255 } else 6256 ifmr->ifm_active |= IFM_2500_SX | IFM_FDX; 6257 if_setbaudrate(ifp, IF_Mbps(2500UL)); 6258 break; 6259 default: 6260 ifmr->ifm_active |= IFM_NONE; 6261 return; 6262 } 6263 6264 if ((link & BCE_LINK_STATUS_RX_FC_ENABLED) != 0) 6265 ifmr->ifm_active |= IFM_ETH_RXPAUSE; 6266 if ((link & BCE_LINK_STATUS_TX_FC_ENABLED) != 0) 6267 ifmr->ifm_active |= IFM_ETH_TXPAUSE; 6268 } 6269 6270 /****************************************************************************/ 6271 /* Reports current media status. */ 6272 /* */ 6273 /* Returns: */ 6274 /* Nothing. */ 6275 /****************************************************************************/ 6276 static void 6277 bce_ifmedia_sts(if_t ifp, struct ifmediareq *ifmr) 6278 { 6279 struct bce_softc *sc = if_getsoftc(ifp); 6280 struct mii_data *mii; 6281 6282 DBENTER(BCE_VERBOSE_PHY); 6283 6284 BCE_LOCK(sc); 6285 6286 if ((if_getflags(ifp) & IFF_UP) == 0) { 6287 BCE_UNLOCK(sc); 6288 return; 6289 } 6290 6291 if ((sc->bce_phy_flags & BCE_PHY_REMOTE_CAP_FLAG) != 0) 6292 bce_ifmedia_sts_rphy(sc, ifmr); 6293 else { 6294 mii = device_get_softc(sc->bce_miibus); 6295 mii_pollstat(mii); 6296 ifmr->ifm_active = mii->mii_media_active; 6297 ifmr->ifm_status = mii->mii_media_status; 6298 } 6299 6300 BCE_UNLOCK(sc); 6301 6302 DBEXIT(BCE_VERBOSE_PHY); 6303 } 6304 6305 /****************************************************************************/ 6306 /* Handles PHY generated interrupt events. */ 6307 /* */ 6308 /* Returns: */ 6309 /* Nothing. */ 6310 /****************************************************************************/ 6311 static void 6312 bce_phy_intr(struct bce_softc *sc) 6313 { 6314 u32 new_link_state, old_link_state; 6315 6316 DBENTER(BCE_VERBOSE_PHY | BCE_VERBOSE_INTR); 6317 6318 DBRUN(sc->phy_interrupts++); 6319 6320 new_link_state = sc->status_block->status_attn_bits & 6321 STATUS_ATTN_BITS_LINK_STATE; 6322 old_link_state = sc->status_block->status_attn_bits_ack & 6323 STATUS_ATTN_BITS_LINK_STATE; 6324 6325 /* Handle any changes if the link state has changed. */ 6326 if (new_link_state != old_link_state) { 6327 /* Update the status_attn_bits_ack field. */ 6328 if (new_link_state) { 6329 REG_WR(sc, BCE_PCICFG_STATUS_BIT_SET_CMD, 6330 STATUS_ATTN_BITS_LINK_STATE); 6331 DBPRINT(sc, BCE_INFO_PHY, "%s(): Link is now UP.\n", 6332 __FUNCTION__); 6333 } else { 6334 REG_WR(sc, BCE_PCICFG_STATUS_BIT_CLEAR_CMD, 6335 STATUS_ATTN_BITS_LINK_STATE); 6336 DBPRINT(sc, BCE_INFO_PHY, "%s(): Link is now DOWN.\n", 6337 __FUNCTION__); 6338 } 6339 6340 if ((sc->bce_phy_flags & BCE_PHY_REMOTE_CAP_FLAG) != 0) { 6341 if (new_link_state) { 6342 if (bootverbose) 6343 if_printf(sc->bce_ifp, "link UP\n"); 6344 if_link_state_change(sc->bce_ifp, 6345 LINK_STATE_UP); 6346 } else { 6347 if (bootverbose) 6348 if_printf(sc->bce_ifp, "link DOWN\n"); 6349 if_link_state_change(sc->bce_ifp, 6350 LINK_STATE_DOWN); 6351 } 6352 } 6353 /* 6354 * Assume link is down and allow 6355 * tick routine to update the state 6356 * based on the actual media state. 6357 */ 6358 sc->bce_link_up = FALSE; 6359 callout_stop(&sc->bce_tick_callout); 6360 bce_tick(sc); 6361 } 6362 6363 /* Acknowledge the link change interrupt. */ 6364 REG_WR(sc, BCE_EMAC_STATUS, BCE_EMAC_STATUS_LINK_CHANGE); 6365 6366 DBEXIT(BCE_VERBOSE_PHY | BCE_VERBOSE_INTR); 6367 } 6368 6369 /****************************************************************************/ 6370 /* Reads the receive consumer value from the status block (skipping over */ 6371 /* chain page pointer if necessary). */ 6372 /* */ 6373 /* Returns: */ 6374 /* hw_cons */ 6375 /****************************************************************************/ 6376 static inline u16 6377 bce_get_hw_rx_cons(struct bce_softc *sc) 6378 { 6379 u16 hw_cons; 6380 6381 rmb(); 6382 hw_cons = sc->status_block->status_rx_quick_consumer_index0; 6383 if ((hw_cons & USABLE_RX_BD_PER_PAGE) == USABLE_RX_BD_PER_PAGE) 6384 hw_cons++; 6385 6386 return hw_cons; 6387 } 6388 6389 /****************************************************************************/ 6390 /* Handles received frame interrupt events. */ 6391 /* */ 6392 /* Returns: */ 6393 /* Nothing. */ 6394 /****************************************************************************/ 6395 static void 6396 bce_rx_intr(struct bce_softc *sc) 6397 { 6398 if_t ifp = sc->bce_ifp; 6399 struct l2_fhdr *l2fhdr; 6400 struct ether_vlan_header *vh; 6401 unsigned int pkt_len; 6402 u16 sw_rx_cons, sw_rx_cons_idx, hw_rx_cons; 6403 u32 status; 6404 unsigned int rem_len; 6405 u16 sw_pg_cons, sw_pg_cons_idx; 6406 6407 DBENTER(BCE_VERBOSE_RECV | BCE_VERBOSE_INTR); 6408 DBRUN(sc->interrupts_rx++); 6409 DBPRINT(sc, BCE_EXTREME_RECV, "%s(enter): rx_prod = 0x%04X, " 6410 "rx_cons = 0x%04X, rx_prod_bseq = 0x%08X\n", 6411 __FUNCTION__, sc->rx_prod, sc->rx_cons, sc->rx_prod_bseq); 6412 6413 /* Prepare the RX chain pages to be accessed by the host CPU. */ 6414 for (int i = 0; i < sc->rx_pages; i++) 6415 bus_dmamap_sync(sc->rx_bd_chain_tag, 6416 sc->rx_bd_chain_map[i], BUS_DMASYNC_POSTREAD); 6417 6418 /* Prepare the page chain pages to be accessed by the host CPU. */ 6419 if (bce_hdr_split == TRUE) { 6420 for (int i = 0; i < sc->pg_pages; i++) 6421 bus_dmamap_sync(sc->pg_bd_chain_tag, 6422 sc->pg_bd_chain_map[i], BUS_DMASYNC_POSTREAD); 6423 } 6424 6425 /* Get the hardware's view of the RX consumer index. */ 6426 hw_rx_cons = sc->hw_rx_cons = bce_get_hw_rx_cons(sc); 6427 6428 /* Get working copies of the driver's view of the consumer indices. */ 6429 sw_rx_cons = sc->rx_cons; 6430 sw_pg_cons = sc->pg_cons; 6431 6432 /* Update some debug statistics counters */ 6433 DBRUNIF((sc->free_rx_bd < sc->rx_low_watermark), 6434 sc->rx_low_watermark = sc->free_rx_bd); 6435 DBRUNIF((sc->free_rx_bd == sc->max_rx_bd), 6436 sc->rx_empty_count++); 6437 6438 /* Scan through the receive chain as long as there is work to do */ 6439 /* ToDo: Consider setting a limit on the number of packets processed. */ 6440 rmb(); 6441 while (sw_rx_cons != hw_rx_cons) { 6442 struct mbuf *m0; 6443 6444 /* Convert the producer/consumer indices to an actual rx_bd index. */ 6445 sw_rx_cons_idx = RX_CHAIN_IDX(sw_rx_cons); 6446 6447 /* Unmap the mbuf from DMA space. */ 6448 bus_dmamap_sync(sc->rx_mbuf_tag, 6449 sc->rx_mbuf_map[sw_rx_cons_idx], 6450 BUS_DMASYNC_POSTREAD); 6451 bus_dmamap_unload(sc->rx_mbuf_tag, 6452 sc->rx_mbuf_map[sw_rx_cons_idx]); 6453 6454 /* Remove the mbuf from the RX chain. */ 6455 m0 = sc->rx_mbuf_ptr[sw_rx_cons_idx]; 6456 sc->rx_mbuf_ptr[sw_rx_cons_idx] = NULL; 6457 DBRUN(sc->debug_rx_mbuf_alloc--); 6458 sc->free_rx_bd++; 6459 6460 /* 6461 * Frames received on the NetXteme II are prepended 6462 * with an l2_fhdr structure which provides status 6463 * information about the received frame (including 6464 * VLAN tags and checksum info). The frames are 6465 * also automatically adjusted to word align the IP 6466 * header (i.e. two null bytes are inserted before 6467 * the Ethernet header). As a result the data 6468 * DMA'd by the controller into the mbuf looks 6469 * like this: 6470 * 6471 * +---------+-----+---------------------+-----+ 6472 * | l2_fhdr | pad | packet data | FCS | 6473 * +---------+-----+---------------------+-----+ 6474 * 6475 * The l2_fhdr needs to be checked and skipped and 6476 * the FCS needs to be stripped before sending the 6477 * packet up the stack. 6478 */ 6479 l2fhdr = mtod(m0, struct l2_fhdr *); 6480 6481 /* Get the packet data + FCS length and the status. */ 6482 pkt_len = l2fhdr->l2_fhdr_pkt_len; 6483 status = l2fhdr->l2_fhdr_status; 6484 6485 /* 6486 * Skip over the l2_fhdr and pad, resulting in the 6487 * following data in the mbuf: 6488 * +---------------------+-----+ 6489 * | packet data | FCS | 6490 * +---------------------+-----+ 6491 */ 6492 m_adj(m0, sizeof(struct l2_fhdr) + ETHER_ALIGN); 6493 6494 /* 6495 * When split header mode is used, an ethernet frame 6496 * may be split across the receive chain and the 6497 * page chain. If that occurs an mbuf cluster must be 6498 * reassembled from the individual mbuf pieces. 6499 */ 6500 if (bce_hdr_split == TRUE) { 6501 /* 6502 * Check whether the received frame fits in a single 6503 * mbuf or not (i.e. packet data + FCS <= 6504 * sc->rx_bd_mbuf_data_len bytes). 6505 */ 6506 if (pkt_len > m0->m_len) { 6507 /* 6508 * The received frame is larger than a single mbuf. 6509 * If the frame was a TCP frame then only the TCP 6510 * header is placed in the mbuf, the remaining 6511 * payload (including FCS) is placed in the page 6512 * chain, the SPLIT flag is set, and the header 6513 * length is placed in the IP checksum field. 6514 * If the frame is not a TCP frame then the mbuf 6515 * is filled and the remaining bytes are placed 6516 * in the page chain. 6517 */ 6518 6519 DBPRINT(sc, BCE_INFO_RECV, "%s(): Found a large " 6520 "packet.\n", __FUNCTION__); 6521 DBRUN(sc->split_header_frames_rcvd++); 6522 6523 /* 6524 * When the page chain is enabled and the TCP 6525 * header has been split from the TCP payload, 6526 * the ip_xsum structure will reflect the length 6527 * of the TCP header, not the IP checksum. Set 6528 * the packet length of the mbuf accordingly. 6529 */ 6530 if (status & L2_FHDR_STATUS_SPLIT) { 6531 m0->m_len = l2fhdr->l2_fhdr_ip_xsum; 6532 DBRUN(sc->split_header_tcp_frames_rcvd++); 6533 } 6534 6535 rem_len = pkt_len - m0->m_len; 6536 6537 /* Pull mbufs off the page chain for any remaining data. */ 6538 while (rem_len > 0) { 6539 struct mbuf *m_pg; 6540 6541 sw_pg_cons_idx = PG_CHAIN_IDX(sw_pg_cons); 6542 6543 /* Remove the mbuf from the page chain. */ 6544 m_pg = sc->pg_mbuf_ptr[sw_pg_cons_idx]; 6545 sc->pg_mbuf_ptr[sw_pg_cons_idx] = NULL; 6546 DBRUN(sc->debug_pg_mbuf_alloc--); 6547 sc->free_pg_bd++; 6548 6549 /* Unmap the page chain mbuf from DMA space. */ 6550 bus_dmamap_sync(sc->pg_mbuf_tag, 6551 sc->pg_mbuf_map[sw_pg_cons_idx], 6552 BUS_DMASYNC_POSTREAD); 6553 bus_dmamap_unload(sc->pg_mbuf_tag, 6554 sc->pg_mbuf_map[sw_pg_cons_idx]); 6555 6556 /* Adjust the mbuf length. */ 6557 if (rem_len < m_pg->m_len) { 6558 /* The mbuf chain is complete. */ 6559 m_pg->m_len = rem_len; 6560 rem_len = 0; 6561 } else { 6562 /* More packet data is waiting. */ 6563 rem_len -= m_pg->m_len; 6564 } 6565 6566 /* Concatenate the mbuf cluster to the mbuf. */ 6567 m_cat(m0, m_pg); 6568 6569 sw_pg_cons = NEXT_PG_BD(sw_pg_cons); 6570 } 6571 6572 /* Set the total packet length. */ 6573 m0->m_pkthdr.len = pkt_len; 6574 6575 } else { 6576 /* 6577 * The received packet is small and fits in a 6578 * single mbuf (i.e. the l2_fhdr + pad + packet + 6579 * FCS <= MHLEN). In other words, the packet is 6580 * 154 bytes or less in size. 6581 */ 6582 6583 DBPRINT(sc, BCE_INFO_RECV, "%s(): Found a small " 6584 "packet.\n", __FUNCTION__); 6585 6586 /* Set the total packet length. */ 6587 m0->m_pkthdr.len = m0->m_len = pkt_len; 6588 } 6589 } else 6590 /* Set the total packet length. */ 6591 m0->m_pkthdr.len = m0->m_len = pkt_len; 6592 6593 /* Remove the trailing Ethernet FCS. */ 6594 m_adj(m0, -ETHER_CRC_LEN); 6595 6596 /* Check that the resulting mbuf chain is valid. */ 6597 DBRUN(m_sanity(m0, FALSE)); 6598 DBRUNIF(((m0->m_len < ETHER_HDR_LEN) | 6599 (m0->m_pkthdr.len > BCE_MAX_JUMBO_ETHER_MTU_VLAN)), 6600 BCE_PRINTF("Invalid Ethernet frame size!\n"); 6601 m_print(m0, 128)); 6602 6603 DBRUNIF(DB_RANDOMTRUE(l2fhdr_error_sim_control), 6604 sc->l2fhdr_error_sim_count++; 6605 status = status | L2_FHDR_ERRORS_PHY_DECODE); 6606 6607 /* Check the received frame for errors. */ 6608 if (status & (L2_FHDR_ERRORS_BAD_CRC | 6609 L2_FHDR_ERRORS_PHY_DECODE | L2_FHDR_ERRORS_ALIGNMENT | 6610 L2_FHDR_ERRORS_TOO_SHORT | L2_FHDR_ERRORS_GIANT_FRAME)) { 6611 /* Log the error and release the mbuf. */ 6612 sc->l2fhdr_error_count++; 6613 m_freem(m0); 6614 m0 = NULL; 6615 goto bce_rx_intr_next_rx; 6616 } 6617 6618 /* Send the packet to the appropriate interface. */ 6619 m0->m_pkthdr.rcvif = ifp; 6620 6621 /* Assume no hardware checksum. */ 6622 m0->m_pkthdr.csum_flags = 0; 6623 6624 /* Validate the checksum if offload enabled. */ 6625 if (if_getcapenable(ifp) & IFCAP_RXCSUM) { 6626 /* Check for an IP datagram. */ 6627 if (!(status & L2_FHDR_STATUS_SPLIT) && 6628 (status & L2_FHDR_STATUS_IP_DATAGRAM)) { 6629 m0->m_pkthdr.csum_flags |= CSUM_IP_CHECKED; 6630 DBRUN(sc->csum_offload_ip++); 6631 /* Check if the IP checksum is valid. */ 6632 if ((l2fhdr->l2_fhdr_ip_xsum ^ 0xffff) == 0) 6633 m0->m_pkthdr.csum_flags |= 6634 CSUM_IP_VALID; 6635 } 6636 6637 /* Check for a valid TCP/UDP frame. */ 6638 if (status & (L2_FHDR_STATUS_TCP_SEGMENT | 6639 L2_FHDR_STATUS_UDP_DATAGRAM)) { 6640 /* Check for a good TCP/UDP checksum. */ 6641 if ((status & (L2_FHDR_ERRORS_TCP_XSUM | 6642 L2_FHDR_ERRORS_UDP_XSUM)) == 0) { 6643 DBRUN(sc->csum_offload_tcp_udp++); 6644 m0->m_pkthdr.csum_data = 6645 l2fhdr->l2_fhdr_tcp_udp_xsum; 6646 m0->m_pkthdr.csum_flags |= 6647 (CSUM_DATA_VALID 6648 | CSUM_PSEUDO_HDR); 6649 } 6650 } 6651 } 6652 6653 /* Attach the VLAN tag. */ 6654 if ((status & L2_FHDR_STATUS_L2_VLAN_TAG) && 6655 !(sc->rx_mode & BCE_EMAC_RX_MODE_KEEP_VLAN_TAG)) { 6656 DBRUN(sc->vlan_tagged_frames_rcvd++); 6657 if (if_getcapenable(ifp) & IFCAP_VLAN_HWTAGGING) { 6658 DBRUN(sc->vlan_tagged_frames_stripped++); 6659 m0->m_pkthdr.ether_vtag = 6660 l2fhdr->l2_fhdr_vlan_tag; 6661 m0->m_flags |= M_VLANTAG; 6662 } else { 6663 /* 6664 * bce(4) controllers can't disable VLAN 6665 * tag stripping if management firmware 6666 * (ASF/IPMI/UMP) is running. So we always 6667 * strip VLAN tag and manually reconstruct 6668 * the VLAN frame by appending stripped 6669 * VLAN tag in driver if VLAN tag stripping 6670 * was disabled. 6671 * 6672 * TODO: LLC SNAP handling. 6673 */ 6674 bcopy(mtod(m0, uint8_t *), 6675 mtod(m0, uint8_t *) - ETHER_VLAN_ENCAP_LEN, 6676 ETHER_ADDR_LEN * 2); 6677 m0->m_data -= ETHER_VLAN_ENCAP_LEN; 6678 vh = mtod(m0, struct ether_vlan_header *); 6679 vh->evl_encap_proto = htons(ETHERTYPE_VLAN); 6680 vh->evl_tag = htons(l2fhdr->l2_fhdr_vlan_tag); 6681 m0->m_pkthdr.len += ETHER_VLAN_ENCAP_LEN; 6682 m0->m_len += ETHER_VLAN_ENCAP_LEN; 6683 } 6684 } 6685 6686 /* Increment received packet statistics. */ 6687 if_inc_counter(ifp, IFCOUNTER_IPACKETS, 1); 6688 6689 bce_rx_intr_next_rx: 6690 sw_rx_cons = NEXT_RX_BD(sw_rx_cons); 6691 6692 /* If we have a packet, pass it up the stack */ 6693 if (m0) { 6694 /* Make sure we don't lose our place when we release the lock. */ 6695 sc->rx_cons = sw_rx_cons; 6696 sc->pg_cons = sw_pg_cons; 6697 6698 BCE_UNLOCK(sc); 6699 if_input(ifp, m0); 6700 BCE_LOCK(sc); 6701 6702 /* Recover our place. */ 6703 sw_rx_cons = sc->rx_cons; 6704 sw_pg_cons = sc->pg_cons; 6705 } 6706 6707 /* Refresh hw_cons to see if there's new work */ 6708 if (sw_rx_cons == hw_rx_cons) 6709 hw_rx_cons = sc->hw_rx_cons = bce_get_hw_rx_cons(sc); 6710 } 6711 6712 /* No new packets. Refill the page chain. */ 6713 if (bce_hdr_split == TRUE) { 6714 sc->pg_cons = sw_pg_cons; 6715 bce_fill_pg_chain(sc); 6716 } 6717 6718 /* No new packets. Refill the RX chain. */ 6719 sc->rx_cons = sw_rx_cons; 6720 bce_fill_rx_chain(sc); 6721 6722 /* Prepare the page chain pages to be accessed by the NIC. */ 6723 for (int i = 0; i < sc->rx_pages; i++) 6724 bus_dmamap_sync(sc->rx_bd_chain_tag, 6725 sc->rx_bd_chain_map[i], BUS_DMASYNC_PREWRITE); 6726 6727 if (bce_hdr_split == TRUE) { 6728 for (int i = 0; i < sc->pg_pages; i++) 6729 bus_dmamap_sync(sc->pg_bd_chain_tag, 6730 sc->pg_bd_chain_map[i], BUS_DMASYNC_PREWRITE); 6731 } 6732 6733 DBPRINT(sc, BCE_EXTREME_RECV, "%s(exit): rx_prod = 0x%04X, " 6734 "rx_cons = 0x%04X, rx_prod_bseq = 0x%08X\n", 6735 __FUNCTION__, sc->rx_prod, sc->rx_cons, sc->rx_prod_bseq); 6736 DBEXIT(BCE_VERBOSE_RECV | BCE_VERBOSE_INTR); 6737 } 6738 6739 /****************************************************************************/ 6740 /* Reads the transmit consumer value from the status block (skipping over */ 6741 /* chain page pointer if necessary). */ 6742 /* */ 6743 /* Returns: */ 6744 /* hw_cons */ 6745 /****************************************************************************/ 6746 static inline u16 6747 bce_get_hw_tx_cons(struct bce_softc *sc) 6748 { 6749 u16 hw_cons; 6750 6751 mb(); 6752 hw_cons = sc->status_block->status_tx_quick_consumer_index0; 6753 if ((hw_cons & USABLE_TX_BD_PER_PAGE) == USABLE_TX_BD_PER_PAGE) 6754 hw_cons++; 6755 6756 return hw_cons; 6757 } 6758 6759 /****************************************************************************/ 6760 /* Handles transmit completion interrupt events. */ 6761 /* */ 6762 /* Returns: */ 6763 /* Nothing. */ 6764 /****************************************************************************/ 6765 static void 6766 bce_tx_intr(struct bce_softc *sc) 6767 { 6768 if_t ifp = sc->bce_ifp; 6769 u16 hw_tx_cons, sw_tx_cons, sw_tx_chain_cons; 6770 6771 DBENTER(BCE_VERBOSE_SEND | BCE_VERBOSE_INTR); 6772 DBRUN(sc->interrupts_tx++); 6773 DBPRINT(sc, BCE_EXTREME_SEND, "%s(enter): tx_prod = 0x%04X, " 6774 "tx_cons = 0x%04X, tx_prod_bseq = 0x%08X\n", 6775 __FUNCTION__, sc->tx_prod, sc->tx_cons, sc->tx_prod_bseq); 6776 6777 BCE_LOCK_ASSERT(sc); 6778 6779 /* Get the hardware's view of the TX consumer index. */ 6780 hw_tx_cons = sc->hw_tx_cons = bce_get_hw_tx_cons(sc); 6781 sw_tx_cons = sc->tx_cons; 6782 6783 /* Prevent speculative reads of the status block. */ 6784 bus_space_barrier(sc->bce_btag, sc->bce_bhandle, 0, 0, 6785 BUS_SPACE_BARRIER_READ); 6786 6787 /* Cycle through any completed TX chain page entries. */ 6788 while (sw_tx_cons != hw_tx_cons) { 6789 #ifdef BCE_DEBUG 6790 struct tx_bd *txbd = NULL; 6791 #endif 6792 sw_tx_chain_cons = TX_CHAIN_IDX(sw_tx_cons); 6793 6794 DBPRINT(sc, BCE_INFO_SEND, 6795 "%s(): hw_tx_cons = 0x%04X, sw_tx_cons = 0x%04X, " 6796 "sw_tx_chain_cons = 0x%04X\n", 6797 __FUNCTION__, hw_tx_cons, sw_tx_cons, sw_tx_chain_cons); 6798 6799 DBRUNIF((sw_tx_chain_cons > MAX_TX_BD_ALLOC), 6800 BCE_PRINTF("%s(%d): TX chain consumer out of range! " 6801 " 0x%04X > 0x%04X\n", __FILE__, __LINE__, sw_tx_chain_cons, 6802 (int) MAX_TX_BD_ALLOC); 6803 bce_breakpoint(sc)); 6804 6805 DBRUN(txbd = &sc->tx_bd_chain[TX_PAGE(sw_tx_chain_cons)] 6806 [TX_IDX(sw_tx_chain_cons)]); 6807 6808 DBRUNIF((txbd == NULL), 6809 BCE_PRINTF("%s(%d): Unexpected NULL tx_bd[0x%04X]!\n", 6810 __FILE__, __LINE__, sw_tx_chain_cons); 6811 bce_breakpoint(sc)); 6812 6813 DBRUNMSG(BCE_INFO_SEND, BCE_PRINTF("%s(): ", __FUNCTION__); 6814 bce_dump_txbd(sc, sw_tx_chain_cons, txbd)); 6815 6816 /* 6817 * Free the associated mbuf. Remember 6818 * that only the last tx_bd of a packet 6819 * has an mbuf pointer and DMA map. 6820 */ 6821 if (sc->tx_mbuf_ptr[sw_tx_chain_cons] != NULL) { 6822 /* Validate that this is the last tx_bd. */ 6823 DBRUNIF((!(txbd->tx_bd_flags & TX_BD_FLAGS_END)), 6824 BCE_PRINTF("%s(%d): tx_bd END flag not set but " 6825 "txmbuf == NULL!\n", __FILE__, __LINE__); 6826 bce_breakpoint(sc)); 6827 6828 DBRUNMSG(BCE_INFO_SEND, 6829 BCE_PRINTF("%s(): Unloading map/freeing mbuf " 6830 "from tx_bd[0x%04X]\n", __FUNCTION__, 6831 sw_tx_chain_cons)); 6832 6833 /* Unmap the mbuf. */ 6834 bus_dmamap_unload(sc->tx_mbuf_tag, 6835 sc->tx_mbuf_map[sw_tx_chain_cons]); 6836 6837 /* Free the mbuf. */ 6838 m_freem(sc->tx_mbuf_ptr[sw_tx_chain_cons]); 6839 sc->tx_mbuf_ptr[sw_tx_chain_cons] = NULL; 6840 DBRUN(sc->debug_tx_mbuf_alloc--); 6841 6842 if_inc_counter(ifp, IFCOUNTER_OPACKETS, 1); 6843 } 6844 6845 sc->used_tx_bd--; 6846 sw_tx_cons = NEXT_TX_BD(sw_tx_cons); 6847 6848 /* Refresh hw_cons to see if there's new work. */ 6849 hw_tx_cons = sc->hw_tx_cons = bce_get_hw_tx_cons(sc); 6850 6851 /* Prevent speculative reads of the status block. */ 6852 bus_space_barrier(sc->bce_btag, sc->bce_bhandle, 0, 0, 6853 BUS_SPACE_BARRIER_READ); 6854 } 6855 6856 /* Clear the TX timeout timer. */ 6857 sc->watchdog_timer = 0; 6858 6859 /* Clear the tx hardware queue full flag. */ 6860 if (sc->used_tx_bd < sc->max_tx_bd) { 6861 DBRUNIF((if_getdrvflags(ifp) & IFF_DRV_OACTIVE), 6862 DBPRINT(sc, BCE_INFO_SEND, 6863 "%s(): Open TX chain! %d/%d (used/total)\n", 6864 __FUNCTION__, sc->used_tx_bd, sc->max_tx_bd)); 6865 if_setdrvflagbits(ifp, 0, IFF_DRV_OACTIVE); 6866 } 6867 6868 sc->tx_cons = sw_tx_cons; 6869 6870 DBPRINT(sc, BCE_EXTREME_SEND, "%s(exit): tx_prod = 0x%04X, " 6871 "tx_cons = 0x%04X, tx_prod_bseq = 0x%08X\n", 6872 __FUNCTION__, sc->tx_prod, sc->tx_cons, sc->tx_prod_bseq); 6873 DBEXIT(BCE_VERBOSE_SEND | BCE_VERBOSE_INTR); 6874 } 6875 6876 /****************************************************************************/ 6877 /* Disables interrupt generation. */ 6878 /* */ 6879 /* Returns: */ 6880 /* Nothing. */ 6881 /****************************************************************************/ 6882 static void 6883 bce_disable_intr(struct bce_softc *sc) 6884 { 6885 DBENTER(BCE_VERBOSE_INTR); 6886 6887 REG_WR(sc, BCE_PCICFG_INT_ACK_CMD, BCE_PCICFG_INT_ACK_CMD_MASK_INT); 6888 REG_RD(sc, BCE_PCICFG_INT_ACK_CMD); 6889 6890 DBEXIT(BCE_VERBOSE_INTR); 6891 } 6892 6893 /****************************************************************************/ 6894 /* Enables interrupt generation. */ 6895 /* */ 6896 /* Returns: */ 6897 /* Nothing. */ 6898 /****************************************************************************/ 6899 static void 6900 bce_enable_intr(struct bce_softc *sc, int coal_now) 6901 { 6902 DBENTER(BCE_VERBOSE_INTR); 6903 6904 REG_WR(sc, BCE_PCICFG_INT_ACK_CMD, 6905 BCE_PCICFG_INT_ACK_CMD_INDEX_VALID | 6906 BCE_PCICFG_INT_ACK_CMD_MASK_INT | sc->last_status_idx); 6907 6908 REG_WR(sc, BCE_PCICFG_INT_ACK_CMD, 6909 BCE_PCICFG_INT_ACK_CMD_INDEX_VALID | sc->last_status_idx); 6910 6911 /* Force an immediate interrupt (whether there is new data or not). */ 6912 if (coal_now) 6913 REG_WR(sc, BCE_HC_COMMAND, sc->hc_command | BCE_HC_COMMAND_COAL_NOW); 6914 6915 DBEXIT(BCE_VERBOSE_INTR); 6916 } 6917 6918 /****************************************************************************/ 6919 /* Handles controller initialization. */ 6920 /* */ 6921 /* Returns: */ 6922 /* Nothing. */ 6923 /****************************************************************************/ 6924 static void 6925 bce_init_locked(struct bce_softc *sc) 6926 { 6927 if_t ifp; 6928 u32 ether_mtu = 0; 6929 6930 DBENTER(BCE_VERBOSE_RESET); 6931 6932 BCE_LOCK_ASSERT(sc); 6933 6934 ifp = sc->bce_ifp; 6935 6936 /* Check if the driver is still running and bail out if it is. */ 6937 if (if_getdrvflags(ifp) & IFF_DRV_RUNNING) 6938 goto bce_init_locked_exit; 6939 6940 bce_stop(sc); 6941 6942 if (bce_reset(sc, BCE_DRV_MSG_CODE_RESET)) { 6943 BCE_PRINTF("%s(%d): Controller reset failed!\n", 6944 __FILE__, __LINE__); 6945 goto bce_init_locked_exit; 6946 } 6947 6948 if (bce_chipinit(sc)) { 6949 BCE_PRINTF("%s(%d): Controller initialization failed!\n", 6950 __FILE__, __LINE__); 6951 goto bce_init_locked_exit; 6952 } 6953 6954 if (bce_blockinit(sc)) { 6955 BCE_PRINTF("%s(%d): Block initialization failed!\n", 6956 __FILE__, __LINE__); 6957 goto bce_init_locked_exit; 6958 } 6959 6960 /* Load our MAC address. */ 6961 bcopy(if_getlladdr(sc->bce_ifp), sc->eaddr, ETHER_ADDR_LEN); 6962 bce_set_mac_addr(sc); 6963 6964 if (bce_hdr_split == FALSE) 6965 bce_get_rx_buffer_sizes(sc, if_getmtu(ifp)); 6966 /* 6967 * Calculate and program the hardware Ethernet MTU 6968 * size. Be generous on the receive if we have room 6969 * and allowed by the user. 6970 */ 6971 if (bce_strict_rx_mtu == TRUE) 6972 ether_mtu = if_getmtu(ifp); 6973 else { 6974 if (bce_hdr_split == TRUE) { 6975 if (if_getmtu(ifp) <= sc->rx_bd_mbuf_data_len + MCLBYTES) 6976 ether_mtu = sc->rx_bd_mbuf_data_len + 6977 MCLBYTES; 6978 else 6979 ether_mtu = if_getmtu(ifp); 6980 } else { 6981 if (if_getmtu(ifp) <= sc->rx_bd_mbuf_data_len) 6982 ether_mtu = sc->rx_bd_mbuf_data_len; 6983 else 6984 ether_mtu = if_getmtu(ifp); 6985 } 6986 } 6987 6988 ether_mtu += ETHER_HDR_LEN + ETHER_VLAN_ENCAP_LEN + ETHER_CRC_LEN; 6989 6990 DBPRINT(sc, BCE_INFO_MISC, "%s(): setting h/w mtu = %d\n", 6991 __FUNCTION__, ether_mtu); 6992 6993 /* Program the mtu, enabling jumbo frame support if necessary. */ 6994 if (ether_mtu > (ETHER_MAX_LEN + ETHER_VLAN_ENCAP_LEN)) 6995 REG_WR(sc, BCE_EMAC_RX_MTU_SIZE, 6996 min(ether_mtu, BCE_MAX_JUMBO_ETHER_MTU) | 6997 BCE_EMAC_RX_MTU_SIZE_JUMBO_ENA); 6998 else 6999 REG_WR(sc, BCE_EMAC_RX_MTU_SIZE, ether_mtu); 7000 7001 /* Program appropriate promiscuous/multicast filtering. */ 7002 bce_set_rx_mode(sc); 7003 7004 if (bce_hdr_split == TRUE) { 7005 /* Init page buffer descriptor chain. */ 7006 bce_init_pg_chain(sc); 7007 } 7008 7009 /* Init RX buffer descriptor chain. */ 7010 bce_init_rx_chain(sc); 7011 7012 /* Init TX buffer descriptor chain. */ 7013 bce_init_tx_chain(sc); 7014 7015 /* Enable host interrupts. */ 7016 bce_enable_intr(sc, 1); 7017 7018 bce_ifmedia_upd_locked(ifp); 7019 7020 /* Let the OS know the driver is up and running. */ 7021 if_setdrvflagbits(ifp, IFF_DRV_RUNNING, 0); 7022 if_setdrvflagbits(ifp, 0, IFF_DRV_OACTIVE); 7023 7024 callout_reset(&sc->bce_tick_callout, hz, bce_tick, sc); 7025 7026 bce_init_locked_exit: 7027 DBEXIT(BCE_VERBOSE_RESET); 7028 } 7029 7030 /****************************************************************************/ 7031 /* Initialize the controller just enough so that any management firmware */ 7032 /* running on the device will continue to operate correctly. */ 7033 /* */ 7034 /* Returns: */ 7035 /* Nothing. */ 7036 /****************************************************************************/ 7037 static void 7038 bce_mgmt_init_locked(struct bce_softc *sc) 7039 { 7040 if_t ifp; 7041 7042 DBENTER(BCE_VERBOSE_RESET); 7043 7044 BCE_LOCK_ASSERT(sc); 7045 7046 /* Bail out if management firmware is not running. */ 7047 if (!(sc->bce_flags & BCE_MFW_ENABLE_FLAG)) { 7048 DBPRINT(sc, BCE_VERBOSE_SPECIAL, 7049 "No management firmware running...\n"); 7050 goto bce_mgmt_init_locked_exit; 7051 } 7052 7053 ifp = sc->bce_ifp; 7054 7055 /* Enable all critical blocks in the MAC. */ 7056 REG_WR(sc, BCE_MISC_ENABLE_SET_BITS, BCE_MISC_ENABLE_DEFAULT); 7057 REG_RD(sc, BCE_MISC_ENABLE_SET_BITS); 7058 DELAY(20); 7059 7060 bce_ifmedia_upd_locked(ifp); 7061 7062 bce_mgmt_init_locked_exit: 7063 DBEXIT(BCE_VERBOSE_RESET); 7064 } 7065 7066 /****************************************************************************/ 7067 /* Handles controller initialization when called from an unlocked routine. */ 7068 /* */ 7069 /* Returns: */ 7070 /* Nothing. */ 7071 /****************************************************************************/ 7072 static void 7073 bce_init(void *xsc) 7074 { 7075 struct bce_softc *sc = xsc; 7076 7077 DBENTER(BCE_VERBOSE_RESET); 7078 7079 BCE_LOCK(sc); 7080 bce_init_locked(sc); 7081 BCE_UNLOCK(sc); 7082 7083 DBEXIT(BCE_VERBOSE_RESET); 7084 } 7085 7086 /****************************************************************************/ 7087 /* Modifies an mbuf for TSO on the hardware. */ 7088 /* */ 7089 /* Returns: */ 7090 /* Pointer to a modified mbuf. */ 7091 /****************************************************************************/ 7092 static struct mbuf * 7093 bce_tso_setup(struct bce_softc *sc, struct mbuf **m_head, u16 *flags) 7094 { 7095 struct mbuf *m; 7096 struct ether_header *eh; 7097 struct ip *ip; 7098 struct tcphdr *th; 7099 u16 etype; 7100 int hdr_len __unused, ip_len __unused, ip_hlen = 0, tcp_hlen = 0; 7101 7102 DBRUN(sc->tso_frames_requested++); 7103 7104 ip_len = 0; 7105 /* Controller may modify mbuf chains. */ 7106 if (M_WRITABLE(*m_head) == 0) { 7107 m = m_dup(*m_head, M_NOWAIT); 7108 m_freem(*m_head); 7109 if (m == NULL) { 7110 sc->mbuf_alloc_failed_count++; 7111 *m_head = NULL; 7112 return (NULL); 7113 } 7114 *m_head = m; 7115 } 7116 7117 /* 7118 * For TSO the controller needs two pieces of info, 7119 * the MSS and the IP+TCP options length. 7120 */ 7121 m = m_pullup(*m_head, sizeof(struct ether_header) + sizeof(struct ip)); 7122 if (m == NULL) { 7123 *m_head = NULL; 7124 return (NULL); 7125 } 7126 eh = mtod(m, struct ether_header *); 7127 etype = ntohs(eh->ether_type); 7128 7129 /* Check for supported TSO Ethernet types (only IPv4 for now) */ 7130 switch (etype) { 7131 case ETHERTYPE_IP: 7132 ip = (struct ip *)(m->m_data + sizeof(struct ether_header)); 7133 /* TSO only supported for TCP protocol. */ 7134 if (ip->ip_p != IPPROTO_TCP) { 7135 BCE_PRINTF("%s(%d): TSO enabled for non-TCP frame!.\n", 7136 __FILE__, __LINE__); 7137 m_freem(*m_head); 7138 *m_head = NULL; 7139 return (NULL); 7140 } 7141 7142 /* Get IP header length in bytes (min 20) */ 7143 ip_hlen = ip->ip_hl << 2; 7144 m = m_pullup(*m_head, sizeof(struct ether_header) + ip_hlen + 7145 sizeof(struct tcphdr)); 7146 if (m == NULL) { 7147 *m_head = NULL; 7148 return (NULL); 7149 } 7150 7151 /* Get the TCP header length in bytes (min 20) */ 7152 ip = (struct ip *)(m->m_data + sizeof(struct ether_header)); 7153 th = (struct tcphdr *)((caddr_t)ip + ip_hlen); 7154 tcp_hlen = (th->th_off << 2); 7155 7156 /* Make sure all IP/TCP options live in the same buffer. */ 7157 m = m_pullup(*m_head, sizeof(struct ether_header)+ ip_hlen + 7158 tcp_hlen); 7159 if (m == NULL) { 7160 *m_head = NULL; 7161 return (NULL); 7162 } 7163 7164 /* Clear IP header length and checksum, will be calc'd by h/w. */ 7165 ip = (struct ip *)(m->m_data + sizeof(struct ether_header)); 7166 ip_len = ip->ip_len; 7167 ip->ip_len = 0; 7168 ip->ip_sum = 0; 7169 break; 7170 case ETHERTYPE_IPV6: 7171 BCE_PRINTF("%s(%d): TSO over IPv6 not supported!.\n", 7172 __FILE__, __LINE__); 7173 m_freem(*m_head); 7174 *m_head = NULL; 7175 return (NULL); 7176 /* NOT REACHED */ 7177 default: 7178 BCE_PRINTF("%s(%d): TSO enabled for unsupported protocol!.\n", 7179 __FILE__, __LINE__); 7180 m_freem(*m_head); 7181 *m_head = NULL; 7182 return (NULL); 7183 } 7184 7185 hdr_len = sizeof(struct ether_header) + ip_hlen + tcp_hlen; 7186 7187 DBPRINT(sc, BCE_EXTREME_SEND, "%s(): hdr_len = %d, e_hlen = %d, " 7188 "ip_hlen = %d, tcp_hlen = %d, ip_len = %d\n", 7189 __FUNCTION__, hdr_len, (int) sizeof(struct ether_header), ip_hlen, 7190 tcp_hlen, ip_len); 7191 7192 /* Set the LSO flag in the TX BD */ 7193 *flags |= TX_BD_FLAGS_SW_LSO; 7194 7195 /* Set the length of IP + TCP options (in 32 bit words) */ 7196 *flags |= (((ip_hlen + tcp_hlen - sizeof(struct ip) - 7197 sizeof(struct tcphdr)) >> 2) << 8); 7198 7199 DBRUN(sc->tso_frames_completed++); 7200 return (*m_head); 7201 } 7202 7203 /****************************************************************************/ 7204 /* Encapsultes an mbuf cluster into the tx_bd chain structure and makes the */ 7205 /* memory visible to the controller. */ 7206 /* */ 7207 /* Returns: */ 7208 /* 0 for success, positive value for failure. */ 7209 /* Modified: */ 7210 /* m_head: May be set to NULL if MBUF is excessively fragmented. */ 7211 /****************************************************************************/ 7212 static int 7213 bce_tx_encap(struct bce_softc *sc, struct mbuf **m_head) 7214 { 7215 bus_dma_segment_t segs[BCE_MAX_SEGMENTS]; 7216 bus_dmamap_t map; 7217 struct tx_bd *txbd = NULL; 7218 struct mbuf *m0; 7219 u16 prod, chain_prod, mss = 0, vlan_tag = 0, flags = 0; 7220 u32 prod_bseq; 7221 7222 #ifdef BCE_DEBUG 7223 u16 debug_prod; 7224 #endif 7225 7226 int i, error, nsegs, rc = 0; 7227 7228 DBENTER(BCE_VERBOSE_SEND); 7229 7230 /* Make sure we have room in the TX chain. */ 7231 if (sc->used_tx_bd >= sc->max_tx_bd) 7232 goto bce_tx_encap_exit; 7233 7234 /* Transfer any checksum offload flags to the bd. */ 7235 m0 = *m_head; 7236 if (m0->m_pkthdr.csum_flags) { 7237 if (m0->m_pkthdr.csum_flags & CSUM_TSO) { 7238 m0 = bce_tso_setup(sc, m_head, &flags); 7239 if (m0 == NULL) { 7240 DBRUN(sc->tso_frames_failed++); 7241 goto bce_tx_encap_exit; 7242 } 7243 mss = htole16(m0->m_pkthdr.tso_segsz); 7244 } else { 7245 if (m0->m_pkthdr.csum_flags & CSUM_IP) 7246 flags |= TX_BD_FLAGS_IP_CKSUM; 7247 if (m0->m_pkthdr.csum_flags & (CSUM_TCP | CSUM_UDP)) 7248 flags |= TX_BD_FLAGS_TCP_UDP_CKSUM; 7249 } 7250 } 7251 7252 /* Transfer any VLAN tags to the bd. */ 7253 if (m0->m_flags & M_VLANTAG) { 7254 flags |= TX_BD_FLAGS_VLAN_TAG; 7255 vlan_tag = m0->m_pkthdr.ether_vtag; 7256 } 7257 7258 /* Map the mbuf into DMAable memory. */ 7259 prod = sc->tx_prod; 7260 chain_prod = TX_CHAIN_IDX(prod); 7261 map = sc->tx_mbuf_map[chain_prod]; 7262 7263 /* Map the mbuf into our DMA address space. */ 7264 error = bus_dmamap_load_mbuf_sg(sc->tx_mbuf_tag, map, m0, 7265 segs, &nsegs, BUS_DMA_NOWAIT); 7266 7267 /* Check if the DMA mapping was successful */ 7268 if (error == EFBIG) { 7269 sc->mbuf_frag_count++; 7270 7271 /* Try to defrag the mbuf. */ 7272 m0 = m_collapse(*m_head, M_NOWAIT, BCE_MAX_SEGMENTS); 7273 if (m0 == NULL) { 7274 /* Defrag was unsuccessful */ 7275 m_freem(*m_head); 7276 *m_head = NULL; 7277 sc->mbuf_alloc_failed_count++; 7278 rc = ENOBUFS; 7279 goto bce_tx_encap_exit; 7280 } 7281 7282 /* Defrag was successful, try mapping again */ 7283 *m_head = m0; 7284 error = bus_dmamap_load_mbuf_sg(sc->tx_mbuf_tag, 7285 map, m0, segs, &nsegs, BUS_DMA_NOWAIT); 7286 7287 /* Still getting an error after a defrag. */ 7288 if (error == ENOMEM) { 7289 /* Insufficient DMA buffers available. */ 7290 sc->dma_map_addr_tx_failed_count++; 7291 rc = error; 7292 goto bce_tx_encap_exit; 7293 } else if (error != 0) { 7294 /* Release it and return an error. */ 7295 BCE_PRINTF("%s(%d): Unknown error mapping mbuf into " 7296 "TX chain!\n", __FILE__, __LINE__); 7297 m_freem(m0); 7298 *m_head = NULL; 7299 sc->dma_map_addr_tx_failed_count++; 7300 rc = ENOBUFS; 7301 goto bce_tx_encap_exit; 7302 } 7303 } else if (error == ENOMEM) { 7304 /* Insufficient DMA buffers available. */ 7305 sc->dma_map_addr_tx_failed_count++; 7306 rc = error; 7307 goto bce_tx_encap_exit; 7308 } else if (error != 0) { 7309 m_freem(m0); 7310 *m_head = NULL; 7311 sc->dma_map_addr_tx_failed_count++; 7312 rc = error; 7313 goto bce_tx_encap_exit; 7314 } 7315 7316 /* Make sure there's room in the chain */ 7317 if (nsegs > (sc->max_tx_bd - sc->used_tx_bd)) { 7318 bus_dmamap_unload(sc->tx_mbuf_tag, map); 7319 rc = ENOBUFS; 7320 goto bce_tx_encap_exit; 7321 } 7322 7323 /* prod points to an empty tx_bd at this point. */ 7324 prod_bseq = sc->tx_prod_bseq; 7325 7326 #ifdef BCE_DEBUG 7327 debug_prod = chain_prod; 7328 #endif 7329 7330 DBPRINT(sc, BCE_INFO_SEND, 7331 "%s(start): prod = 0x%04X, chain_prod = 0x%04X, " 7332 "prod_bseq = 0x%08X\n", 7333 __FUNCTION__, prod, chain_prod, prod_bseq); 7334 7335 /* 7336 * Cycle through each mbuf segment that makes up 7337 * the outgoing frame, gathering the mapping info 7338 * for that segment and creating a tx_bd for 7339 * the mbuf. 7340 */ 7341 for (i = 0; i < nsegs ; i++) { 7342 chain_prod = TX_CHAIN_IDX(prod); 7343 txbd= &sc->tx_bd_chain[TX_PAGE(chain_prod)] 7344 [TX_IDX(chain_prod)]; 7345 7346 txbd->tx_bd_haddr_lo = 7347 htole32(BCE_ADDR_LO(segs[i].ds_addr)); 7348 txbd->tx_bd_haddr_hi = 7349 htole32(BCE_ADDR_HI(segs[i].ds_addr)); 7350 txbd->tx_bd_mss_nbytes = htole32(mss << 16) | 7351 htole16(segs[i].ds_len); 7352 txbd->tx_bd_vlan_tag = htole16(vlan_tag); 7353 txbd->tx_bd_flags = htole16(flags); 7354 prod_bseq += segs[i].ds_len; 7355 if (i == 0) 7356 txbd->tx_bd_flags |= htole16(TX_BD_FLAGS_START); 7357 prod = NEXT_TX_BD(prod); 7358 } 7359 7360 /* Set the END flag on the last TX buffer descriptor. */ 7361 txbd->tx_bd_flags |= htole16(TX_BD_FLAGS_END); 7362 7363 DBRUNMSG(BCE_EXTREME_SEND, 7364 bce_dump_tx_chain(sc, debug_prod, nsegs)); 7365 7366 /* 7367 * Ensure that the mbuf pointer for this transmission 7368 * is placed at the array index of the last 7369 * descriptor in this chain. This is done 7370 * because a single map is used for all 7371 * segments of the mbuf and we don't want to 7372 * unload the map before all of the segments 7373 * have been freed. 7374 */ 7375 sc->tx_mbuf_ptr[chain_prod] = m0; 7376 sc->used_tx_bd += nsegs; 7377 7378 /* Update some debug statistic counters */ 7379 DBRUNIF((sc->used_tx_bd > sc->tx_hi_watermark), 7380 sc->tx_hi_watermark = sc->used_tx_bd); 7381 DBRUNIF((sc->used_tx_bd == sc->max_tx_bd), sc->tx_full_count++); 7382 DBRUNIF(sc->debug_tx_mbuf_alloc++); 7383 7384 DBRUNMSG(BCE_EXTREME_SEND, bce_dump_tx_mbuf_chain(sc, chain_prod, 1)); 7385 7386 /* prod points to the next free tx_bd at this point. */ 7387 sc->tx_prod = prod; 7388 sc->tx_prod_bseq = prod_bseq; 7389 7390 /* Tell the chip about the waiting TX frames. */ 7391 REG_WR16(sc, MB_GET_CID_ADDR(TX_CID) + 7392 BCE_L2MQ_TX_HOST_BIDX, sc->tx_prod); 7393 REG_WR(sc, MB_GET_CID_ADDR(TX_CID) + 7394 BCE_L2MQ_TX_HOST_BSEQ, sc->tx_prod_bseq); 7395 7396 bce_tx_encap_exit: 7397 DBEXIT(BCE_VERBOSE_SEND); 7398 return(rc); 7399 } 7400 7401 /****************************************************************************/ 7402 /* Main transmit routine when called from another routine with a lock. */ 7403 /* */ 7404 /* Returns: */ 7405 /* Nothing. */ 7406 /****************************************************************************/ 7407 static void 7408 bce_start_locked(if_t ifp) 7409 { 7410 struct bce_softc *sc = if_getsoftc(ifp); 7411 struct mbuf *m_head = NULL; 7412 int count = 0; 7413 u16 tx_prod, tx_chain_prod __unused; 7414 7415 DBENTER(BCE_VERBOSE_SEND | BCE_VERBOSE_CTX); 7416 7417 BCE_LOCK_ASSERT(sc); 7418 7419 /* prod points to the next free tx_bd. */ 7420 tx_prod = sc->tx_prod; 7421 tx_chain_prod = TX_CHAIN_IDX(tx_prod); 7422 7423 DBPRINT(sc, BCE_INFO_SEND, 7424 "%s(enter): tx_prod = 0x%04X, tx_chain_prod = 0x%04X, " 7425 "tx_prod_bseq = 0x%08X\n", 7426 __FUNCTION__, tx_prod, tx_chain_prod, sc->tx_prod_bseq); 7427 7428 /* If there's no link or the transmit queue is empty then just exit. */ 7429 if (sc->bce_link_up == FALSE) { 7430 DBPRINT(sc, BCE_INFO_SEND, "%s(): No link.\n", 7431 __FUNCTION__); 7432 goto bce_start_locked_exit; 7433 } 7434 7435 if (if_sendq_empty(ifp)) { 7436 DBPRINT(sc, BCE_INFO_SEND, "%s(): Transmit queue empty.\n", 7437 __FUNCTION__); 7438 goto bce_start_locked_exit; 7439 } 7440 7441 /* 7442 * Keep adding entries while there is space in the ring. 7443 */ 7444 while (sc->used_tx_bd < sc->max_tx_bd) { 7445 /* Check for any frames to send. */ 7446 m_head = if_dequeue(ifp); 7447 7448 /* Stop when the transmit queue is empty. */ 7449 if (m_head == NULL) 7450 break; 7451 7452 /* 7453 * Pack the data into the transmit ring. If we 7454 * don't have room, place the mbuf back at the 7455 * head of the queue and set the OACTIVE flag 7456 * to wait for the NIC to drain the chain. 7457 */ 7458 if (bce_tx_encap(sc, &m_head)) { 7459 if (m_head != NULL) 7460 if_sendq_prepend(ifp, m_head); 7461 if_setdrvflagbits(ifp, IFF_DRV_OACTIVE, 0); 7462 DBPRINT(sc, BCE_INFO_SEND, 7463 "TX chain is closed for business! Total " 7464 "tx_bd used = %d\n", sc->used_tx_bd); 7465 break; 7466 } 7467 7468 count++; 7469 7470 /* Send a copy of the frame to any BPF listeners. */ 7471 ETHER_BPF_MTAP(ifp, m_head); 7472 } 7473 7474 /* Exit if no packets were dequeued. */ 7475 if (count == 0) { 7476 DBPRINT(sc, BCE_VERBOSE_SEND, "%s(): No packets were " 7477 "dequeued\n", __FUNCTION__); 7478 goto bce_start_locked_exit; 7479 } 7480 7481 DBPRINT(sc, BCE_VERBOSE_SEND, "%s(): Inserted %d frames into " 7482 "send queue.\n", __FUNCTION__, count); 7483 7484 /* Set the tx timeout. */ 7485 sc->watchdog_timer = BCE_TX_TIMEOUT; 7486 7487 DBRUNMSG(BCE_VERBOSE_SEND, bce_dump_ctx(sc, TX_CID)); 7488 DBRUNMSG(BCE_VERBOSE_SEND, bce_dump_mq_regs(sc)); 7489 7490 bce_start_locked_exit: 7491 DBEXIT(BCE_VERBOSE_SEND | BCE_VERBOSE_CTX); 7492 } 7493 7494 /****************************************************************************/ 7495 /* Main transmit routine when called from another routine without a lock. */ 7496 /* */ 7497 /* Returns: */ 7498 /* Nothing. */ 7499 /****************************************************************************/ 7500 static void 7501 bce_start(if_t ifp) 7502 { 7503 struct bce_softc *sc = if_getsoftc(ifp); 7504 7505 DBENTER(BCE_VERBOSE_SEND); 7506 7507 BCE_LOCK(sc); 7508 bce_start_locked(ifp); 7509 BCE_UNLOCK(sc); 7510 7511 DBEXIT(BCE_VERBOSE_SEND); 7512 } 7513 7514 /****************************************************************************/ 7515 /* Handles any IOCTL calls from the operating system. */ 7516 /* */ 7517 /* Returns: */ 7518 /* 0 for success, positive value for failure. */ 7519 /****************************************************************************/ 7520 static int 7521 bce_ioctl(if_t ifp, u_long command, caddr_t data) 7522 { 7523 struct bce_softc *sc = if_getsoftc(ifp); 7524 struct ifreq *ifr = (struct ifreq *) data; 7525 struct mii_data *mii; 7526 int mask, error = 0; 7527 7528 DBENTER(BCE_VERBOSE_MISC); 7529 7530 switch(command) { 7531 /* Set the interface MTU. */ 7532 case SIOCSIFMTU: 7533 /* Check that the MTU setting is supported. */ 7534 if ((ifr->ifr_mtu < BCE_MIN_MTU) || 7535 (ifr->ifr_mtu > BCE_MAX_JUMBO_MTU)) { 7536 error = EINVAL; 7537 break; 7538 } 7539 7540 DBPRINT(sc, BCE_INFO_MISC, 7541 "SIOCSIFMTU: Changing MTU from %d to %d\n", 7542 (int) if_getmtu(ifp), (int) ifr->ifr_mtu); 7543 7544 BCE_LOCK(sc); 7545 if_setmtu(ifp, ifr->ifr_mtu); 7546 if (if_getdrvflags(ifp) & IFF_DRV_RUNNING) { 7547 if_setdrvflagbits(ifp, 0, IFF_DRV_RUNNING); 7548 bce_init_locked(sc); 7549 } 7550 BCE_UNLOCK(sc); 7551 break; 7552 7553 /* Set interface flags. */ 7554 case SIOCSIFFLAGS: 7555 DBPRINT(sc, BCE_VERBOSE_SPECIAL, "Received SIOCSIFFLAGS\n"); 7556 7557 BCE_LOCK(sc); 7558 7559 /* Check if the interface is up. */ 7560 if (if_getflags(ifp) & IFF_UP) { 7561 if (if_getdrvflags(ifp) & IFF_DRV_RUNNING) { 7562 /* Change promiscuous/multicast flags as necessary. */ 7563 bce_set_rx_mode(sc); 7564 } else { 7565 /* Start the HW */ 7566 bce_init_locked(sc); 7567 } 7568 } else { 7569 /* The interface is down, check if driver is running. */ 7570 if (if_getdrvflags(ifp) & IFF_DRV_RUNNING) { 7571 bce_stop(sc); 7572 7573 /* If MFW is running, restart the controller a bit. */ 7574 if (sc->bce_flags & BCE_MFW_ENABLE_FLAG) { 7575 bce_reset(sc, BCE_DRV_MSG_CODE_RESET); 7576 bce_chipinit(sc); 7577 bce_mgmt_init_locked(sc); 7578 } 7579 } 7580 } 7581 7582 BCE_UNLOCK(sc); 7583 break; 7584 7585 /* Add/Delete multicast address */ 7586 case SIOCADDMULTI: 7587 case SIOCDELMULTI: 7588 DBPRINT(sc, BCE_VERBOSE_MISC, 7589 "Received SIOCADDMULTI/SIOCDELMULTI\n"); 7590 7591 BCE_LOCK(sc); 7592 if (if_getdrvflags(ifp) & IFF_DRV_RUNNING) 7593 bce_set_rx_mode(sc); 7594 BCE_UNLOCK(sc); 7595 7596 break; 7597 7598 /* Set/Get Interface media */ 7599 case SIOCSIFMEDIA: 7600 case SIOCGIFMEDIA: 7601 DBPRINT(sc, BCE_VERBOSE_MISC, 7602 "Received SIOCSIFMEDIA/SIOCGIFMEDIA\n"); 7603 if ((sc->bce_phy_flags & BCE_PHY_REMOTE_CAP_FLAG) != 0) 7604 error = ifmedia_ioctl(ifp, ifr, &sc->bce_ifmedia, 7605 command); 7606 else { 7607 mii = device_get_softc(sc->bce_miibus); 7608 error = ifmedia_ioctl(ifp, ifr, &mii->mii_media, 7609 command); 7610 } 7611 break; 7612 7613 /* Set interface capability */ 7614 case SIOCSIFCAP: 7615 mask = ifr->ifr_reqcap ^ if_getcapenable(ifp); 7616 DBPRINT(sc, BCE_INFO_MISC, 7617 "Received SIOCSIFCAP = 0x%08X\n", (u32) mask); 7618 7619 /* Toggle the TX checksum capabilities enable flag. */ 7620 if (mask & IFCAP_TXCSUM && 7621 if_getcapabilities(ifp) & IFCAP_TXCSUM) { 7622 if_togglecapenable(ifp, IFCAP_TXCSUM); 7623 if (IFCAP_TXCSUM & if_getcapenable(ifp)) 7624 if_sethwassistbits(ifp, BCE_IF_HWASSIST, 0); 7625 else 7626 if_sethwassistbits(ifp, 0, BCE_IF_HWASSIST); 7627 } 7628 7629 /* Toggle the RX checksum capabilities enable flag. */ 7630 if (mask & IFCAP_RXCSUM && 7631 if_getcapabilities(ifp) & IFCAP_RXCSUM) 7632 if_togglecapenable(ifp, IFCAP_RXCSUM); 7633 7634 /* Toggle the TSO capabilities enable flag. */ 7635 if (bce_tso_enable && (mask & IFCAP_TSO4) && 7636 if_getcapabilities(ifp) & IFCAP_TSO4) { 7637 if_togglecapenable(ifp, IFCAP_TSO4); 7638 if (IFCAP_TSO4 & if_getcapenable(ifp)) 7639 if_sethwassistbits(ifp, CSUM_TSO, 0); 7640 else 7641 if_sethwassistbits(ifp, 0, CSUM_TSO); 7642 } 7643 7644 if (mask & IFCAP_VLAN_HWCSUM && 7645 if_getcapabilities(ifp) & IFCAP_VLAN_HWCSUM) 7646 if_togglecapenable(ifp, IFCAP_VLAN_HWCSUM); 7647 7648 if ((mask & IFCAP_VLAN_HWTSO) != 0 && 7649 (if_getcapabilities(ifp) & IFCAP_VLAN_HWTSO) != 0) 7650 if_togglecapenable(ifp, IFCAP_VLAN_HWTSO); 7651 /* 7652 * Don't actually disable VLAN tag stripping as 7653 * management firmware (ASF/IPMI/UMP) requires the 7654 * feature. If VLAN tag stripping is disabled driver 7655 * will manually reconstruct the VLAN frame by 7656 * appending stripped VLAN tag. 7657 */ 7658 if ((mask & IFCAP_VLAN_HWTAGGING) != 0 && 7659 (if_getcapabilities(ifp) & IFCAP_VLAN_HWTAGGING)) { 7660 if_togglecapenable(ifp, IFCAP_VLAN_HWTAGGING); 7661 if ((if_getcapenable(ifp) & IFCAP_VLAN_HWTAGGING) 7662 == 0) 7663 if_setcapenablebit(ifp, 0, IFCAP_VLAN_HWTSO); 7664 } 7665 VLAN_CAPABILITIES(ifp); 7666 break; 7667 default: 7668 /* We don't know how to handle the IOCTL, pass it on. */ 7669 error = ether_ioctl(ifp, command, data); 7670 break; 7671 } 7672 7673 DBEXIT(BCE_VERBOSE_MISC); 7674 return(error); 7675 } 7676 7677 /****************************************************************************/ 7678 /* Transmit timeout handler. */ 7679 /* */ 7680 /* Returns: */ 7681 /* Nothing. */ 7682 /****************************************************************************/ 7683 static void 7684 bce_watchdog(struct bce_softc *sc) 7685 { 7686 uint32_t status; 7687 7688 DBENTER(BCE_EXTREME_SEND); 7689 7690 BCE_LOCK_ASSERT(sc); 7691 7692 status = 0; 7693 /* If the watchdog timer hasn't expired then just exit. */ 7694 if (sc->watchdog_timer == 0 || --sc->watchdog_timer) 7695 goto bce_watchdog_exit; 7696 7697 status = REG_RD(sc, BCE_EMAC_RX_STATUS); 7698 /* If pause frames are active then don't reset the hardware. */ 7699 if ((sc->bce_flags & BCE_USING_RX_FLOW_CONTROL) != 0) { 7700 if ((status & BCE_EMAC_RX_STATUS_FFED) != 0) { 7701 /* 7702 * If link partner has us in XOFF state then wait for 7703 * the condition to clear. 7704 */ 7705 sc->watchdog_timer = BCE_TX_TIMEOUT; 7706 goto bce_watchdog_exit; 7707 } else if ((status & BCE_EMAC_RX_STATUS_FF_RECEIVED) != 0 && 7708 (status & BCE_EMAC_RX_STATUS_N_RECEIVED) != 0) { 7709 /* 7710 * If we're not currently XOFF'ed but have recently 7711 * been XOFF'd/XON'd then assume that's delaying TX 7712 * this time around. 7713 */ 7714 sc->watchdog_timer = BCE_TX_TIMEOUT; 7715 goto bce_watchdog_exit; 7716 } 7717 /* 7718 * Any other condition is unexpected and the controller 7719 * should be reset. 7720 */ 7721 } 7722 7723 BCE_PRINTF("%s(%d): Watchdog timeout occurred, resetting!\n", 7724 __FILE__, __LINE__); 7725 7726 DBRUNMSG(BCE_INFO, 7727 bce_dump_driver_state(sc); 7728 bce_dump_status_block(sc); 7729 bce_dump_stats_block(sc); 7730 bce_dump_ftqs(sc); 7731 bce_dump_txp_state(sc, 0); 7732 bce_dump_rxp_state(sc, 0); 7733 bce_dump_tpat_state(sc, 0); 7734 bce_dump_cp_state(sc, 0); 7735 bce_dump_com_state(sc, 0)); 7736 7737 DBRUN(bce_breakpoint(sc)); 7738 7739 if_setdrvflagbits(sc->bce_ifp, 0, IFF_DRV_RUNNING); 7740 7741 bce_init_locked(sc); 7742 sc->watchdog_timeouts++; 7743 7744 bce_watchdog_exit: 7745 REG_WR(sc, BCE_EMAC_RX_STATUS, status); 7746 DBEXIT(BCE_EXTREME_SEND); 7747 } 7748 7749 /* 7750 * Interrupt handler. 7751 */ 7752 /****************************************************************************/ 7753 /* Main interrupt entry point. Verifies that the controller generated the */ 7754 /* interrupt and then calls a separate routine for handle the various */ 7755 /* interrupt causes (PHY, TX, RX). */ 7756 /* */ 7757 /* Returns: */ 7758 /* Nothing. */ 7759 /****************************************************************************/ 7760 static void 7761 bce_intr(void *xsc) 7762 { 7763 struct bce_softc *sc; 7764 if_t ifp; 7765 u32 status_attn_bits; 7766 u16 hw_rx_cons, hw_tx_cons; 7767 7768 sc = xsc; 7769 ifp = sc->bce_ifp; 7770 7771 DBENTER(BCE_VERBOSE_SEND | BCE_VERBOSE_RECV | BCE_VERBOSE_INTR); 7772 DBRUNMSG(BCE_VERBOSE_INTR, bce_dump_status_block(sc)); 7773 DBRUNMSG(BCE_VERBOSE_INTR, bce_dump_stats_block(sc)); 7774 7775 BCE_LOCK(sc); 7776 7777 DBRUN(sc->interrupts_generated++); 7778 7779 /* Synchnorize before we read from interface's status block */ 7780 bus_dmamap_sync(sc->status_tag, sc->status_map, BUS_DMASYNC_POSTREAD); 7781 7782 /* 7783 * If the hardware status block index matches the last value read 7784 * by the driver and we haven't asserted our interrupt then there's 7785 * nothing to do. This may only happen in case of INTx due to the 7786 * interrupt arriving at the CPU before the status block is updated. 7787 */ 7788 if ((sc->bce_flags & (BCE_USING_MSI_FLAG | BCE_USING_MSIX_FLAG)) == 0 && 7789 sc->status_block->status_idx == sc->last_status_idx && 7790 (REG_RD(sc, BCE_PCICFG_MISC_STATUS) & 7791 BCE_PCICFG_MISC_STATUS_INTA_VALUE)) { 7792 DBPRINT(sc, BCE_VERBOSE_INTR, "%s(): Spurious interrupt.\n", 7793 __FUNCTION__); 7794 goto bce_intr_exit; 7795 } 7796 7797 /* Ack the interrupt and stop others from occurring. */ 7798 REG_WR(sc, BCE_PCICFG_INT_ACK_CMD, 7799 BCE_PCICFG_INT_ACK_CMD_USE_INT_HC_PARAM | 7800 BCE_PCICFG_INT_ACK_CMD_MASK_INT); 7801 7802 /* Check if the hardware has finished any work. */ 7803 hw_rx_cons = bce_get_hw_rx_cons(sc); 7804 hw_tx_cons = bce_get_hw_tx_cons(sc); 7805 7806 /* Keep processing data as long as there is work to do. */ 7807 for (;;) { 7808 status_attn_bits = sc->status_block->status_attn_bits; 7809 7810 DBRUNIF(DB_RANDOMTRUE(unexpected_attention_sim_control), 7811 BCE_PRINTF("Simulating unexpected status attention " 7812 "bit set."); 7813 sc->unexpected_attention_sim_count++; 7814 status_attn_bits = status_attn_bits | 7815 STATUS_ATTN_BITS_PARITY_ERROR); 7816 7817 /* Was it a link change interrupt? */ 7818 if ((status_attn_bits & STATUS_ATTN_BITS_LINK_STATE) != 7819 (sc->status_block->status_attn_bits_ack & 7820 STATUS_ATTN_BITS_LINK_STATE)) { 7821 bce_phy_intr(sc); 7822 7823 /* Clear transient updates during link state change. */ 7824 REG_WR(sc, BCE_HC_COMMAND, sc->hc_command | 7825 BCE_HC_COMMAND_COAL_NOW_WO_INT); 7826 REG_RD(sc, BCE_HC_COMMAND); 7827 } 7828 7829 /* If any other attention is asserted, the chip is toast. */ 7830 if (((status_attn_bits & ~STATUS_ATTN_BITS_LINK_STATE) != 7831 (sc->status_block->status_attn_bits_ack & 7832 ~STATUS_ATTN_BITS_LINK_STATE))) { 7833 sc->unexpected_attention_count++; 7834 7835 BCE_PRINTF("%s(%d): Fatal attention detected: " 7836 "0x%08X\n", __FILE__, __LINE__, 7837 sc->status_block->status_attn_bits); 7838 7839 DBRUNMSG(BCE_FATAL, 7840 if (unexpected_attention_sim_control == 0) 7841 bce_breakpoint(sc)); 7842 7843 bce_init_locked(sc); 7844 goto bce_intr_exit; 7845 } 7846 7847 /* Check for any completed RX frames. */ 7848 if (hw_rx_cons != sc->hw_rx_cons) 7849 bce_rx_intr(sc); 7850 7851 /* Check for any completed TX frames. */ 7852 if (hw_tx_cons != sc->hw_tx_cons) 7853 bce_tx_intr(sc); 7854 7855 /* Save status block index value for the next interrupt. */ 7856 sc->last_status_idx = sc->status_block->status_idx; 7857 7858 /* 7859 * Prevent speculative reads from getting 7860 * ahead of the status block. 7861 */ 7862 bus_space_barrier(sc->bce_btag, sc->bce_bhandle, 0, 0, 7863 BUS_SPACE_BARRIER_READ); 7864 7865 /* 7866 * If there's no work left then exit the 7867 * interrupt service routine. 7868 */ 7869 hw_rx_cons = bce_get_hw_rx_cons(sc); 7870 hw_tx_cons = bce_get_hw_tx_cons(sc); 7871 7872 if ((hw_rx_cons == sc->hw_rx_cons) && 7873 (hw_tx_cons == sc->hw_tx_cons)) 7874 break; 7875 } 7876 7877 bus_dmamap_sync(sc->status_tag, sc->status_map, BUS_DMASYNC_PREREAD); 7878 7879 /* Re-enable interrupts. */ 7880 bce_enable_intr(sc, 0); 7881 7882 /* Handle any frames that arrived while handling the interrupt. */ 7883 if (if_getdrvflags(ifp) & IFF_DRV_RUNNING && 7884 !if_sendq_empty(ifp)) 7885 bce_start_locked(ifp); 7886 7887 bce_intr_exit: 7888 BCE_UNLOCK(sc); 7889 7890 DBEXIT(BCE_VERBOSE_SEND | BCE_VERBOSE_RECV | BCE_VERBOSE_INTR); 7891 } 7892 7893 /****************************************************************************/ 7894 /* Programs the various packet receive modes (broadcast and multicast). */ 7895 /* */ 7896 /* Returns: */ 7897 /* Nothing. */ 7898 /****************************************************************************/ 7899 static u_int 7900 bce_hash_maddr(void *arg, struct sockaddr_dl *sdl, u_int cnt) 7901 { 7902 u32 *hashes = arg; 7903 int h; 7904 7905 h = ether_crc32_le(LLADDR(sdl), ETHER_ADDR_LEN) & 0xFF; 7906 hashes[(h & 0xE0) >> 5] |= 1 << (h & 0x1F); 7907 7908 return (1); 7909 } 7910 7911 static void 7912 bce_set_rx_mode(struct bce_softc *sc) 7913 { 7914 if_t ifp; 7915 u32 hashes[NUM_MC_HASH_REGISTERS] = { 0, 0, 0, 0, 0, 0, 0, 0 }; 7916 u32 rx_mode, sort_mode; 7917 int i; 7918 7919 DBENTER(BCE_VERBOSE_MISC); 7920 7921 BCE_LOCK_ASSERT(sc); 7922 7923 ifp = sc->bce_ifp; 7924 7925 /* Initialize receive mode default settings. */ 7926 rx_mode = sc->rx_mode & ~(BCE_EMAC_RX_MODE_PROMISCUOUS | 7927 BCE_EMAC_RX_MODE_KEEP_VLAN_TAG); 7928 sort_mode = 1 | BCE_RPM_SORT_USER0_BC_EN; 7929 7930 /* 7931 * ASF/IPMI/UMP firmware requires that VLAN tag stripping 7932 * be enbled. 7933 */ 7934 if (!(BCE_IF_CAPABILITIES & IFCAP_VLAN_HWTAGGING) && 7935 (!(sc->bce_flags & BCE_MFW_ENABLE_FLAG))) 7936 rx_mode |= BCE_EMAC_RX_MODE_KEEP_VLAN_TAG; 7937 7938 /* 7939 * Check for promiscuous, all multicast, or selected 7940 * multicast address filtering. 7941 */ 7942 if (if_getflags(ifp) & IFF_PROMISC) { 7943 DBPRINT(sc, BCE_INFO_MISC, "Enabling promiscuous mode.\n"); 7944 7945 /* Enable promiscuous mode. */ 7946 rx_mode |= BCE_EMAC_RX_MODE_PROMISCUOUS; 7947 sort_mode |= BCE_RPM_SORT_USER0_PROM_EN; 7948 } else if (if_getflags(ifp) & IFF_ALLMULTI) { 7949 DBPRINT(sc, BCE_INFO_MISC, "Enabling all multicast mode.\n"); 7950 7951 /* Enable all multicast addresses. */ 7952 for (i = 0; i < NUM_MC_HASH_REGISTERS; i++) { 7953 REG_WR(sc, BCE_EMAC_MULTICAST_HASH0 + (i * 4), 7954 0xffffffff); 7955 } 7956 sort_mode |= BCE_RPM_SORT_USER0_MC_EN; 7957 } else { 7958 /* Accept one or more multicast(s). */ 7959 DBPRINT(sc, BCE_INFO_MISC, "Enabling selective multicast mode.\n"); 7960 if_foreach_llmaddr(ifp, bce_hash_maddr, hashes); 7961 7962 for (i = 0; i < NUM_MC_HASH_REGISTERS; i++) 7963 REG_WR(sc, BCE_EMAC_MULTICAST_HASH0 + (i * 4), hashes[i]); 7964 7965 sort_mode |= BCE_RPM_SORT_USER0_MC_HSH_EN; 7966 } 7967 7968 /* Only make changes if the recive mode has actually changed. */ 7969 if (rx_mode != sc->rx_mode) { 7970 DBPRINT(sc, BCE_VERBOSE_MISC, "Enabling new receive mode: " 7971 "0x%08X\n", rx_mode); 7972 7973 sc->rx_mode = rx_mode; 7974 REG_WR(sc, BCE_EMAC_RX_MODE, rx_mode); 7975 } 7976 7977 /* Disable and clear the existing sort before enabling a new sort. */ 7978 REG_WR(sc, BCE_RPM_SORT_USER0, 0x0); 7979 REG_WR(sc, BCE_RPM_SORT_USER0, sort_mode); 7980 REG_WR(sc, BCE_RPM_SORT_USER0, sort_mode | BCE_RPM_SORT_USER0_ENA); 7981 7982 DBEXIT(BCE_VERBOSE_MISC); 7983 } 7984 7985 /****************************************************************************/ 7986 /* Called periodically to updates statistics from the controllers */ 7987 /* statistics block. */ 7988 /* */ 7989 /* Returns: */ 7990 /* Nothing. */ 7991 /****************************************************************************/ 7992 static void 7993 bce_stats_update(struct bce_softc *sc) 7994 { 7995 struct statistics_block *stats; 7996 7997 DBENTER(BCE_EXTREME_MISC); 7998 7999 bus_dmamap_sync(sc->stats_tag, sc->stats_map, BUS_DMASYNC_POSTREAD); 8000 8001 stats = (struct statistics_block *) sc->stats_block; 8002 8003 /* 8004 * Update the sysctl statistics from the 8005 * hardware statistics. 8006 */ 8007 sc->stat_IfHCInOctets = 8008 ((u64) stats->stat_IfHCInOctets_hi << 32) + 8009 (u64) stats->stat_IfHCInOctets_lo; 8010 8011 sc->stat_IfHCInBadOctets = 8012 ((u64) stats->stat_IfHCInBadOctets_hi << 32) + 8013 (u64) stats->stat_IfHCInBadOctets_lo; 8014 8015 sc->stat_IfHCOutOctets = 8016 ((u64) stats->stat_IfHCOutOctets_hi << 32) + 8017 (u64) stats->stat_IfHCOutOctets_lo; 8018 8019 sc->stat_IfHCOutBadOctets = 8020 ((u64) stats->stat_IfHCOutBadOctets_hi << 32) + 8021 (u64) stats->stat_IfHCOutBadOctets_lo; 8022 8023 sc->stat_IfHCInUcastPkts = 8024 ((u64) stats->stat_IfHCInUcastPkts_hi << 32) + 8025 (u64) stats->stat_IfHCInUcastPkts_lo; 8026 8027 sc->stat_IfHCInMulticastPkts = 8028 ((u64) stats->stat_IfHCInMulticastPkts_hi << 32) + 8029 (u64) stats->stat_IfHCInMulticastPkts_lo; 8030 8031 sc->stat_IfHCInBroadcastPkts = 8032 ((u64) stats->stat_IfHCInBroadcastPkts_hi << 32) + 8033 (u64) stats->stat_IfHCInBroadcastPkts_lo; 8034 8035 sc->stat_IfHCOutUcastPkts = 8036 ((u64) stats->stat_IfHCOutUcastPkts_hi << 32) + 8037 (u64) stats->stat_IfHCOutUcastPkts_lo; 8038 8039 sc->stat_IfHCOutMulticastPkts = 8040 ((u64) stats->stat_IfHCOutMulticastPkts_hi << 32) + 8041 (u64) stats->stat_IfHCOutMulticastPkts_lo; 8042 8043 sc->stat_IfHCOutBroadcastPkts = 8044 ((u64) stats->stat_IfHCOutBroadcastPkts_hi << 32) + 8045 (u64) stats->stat_IfHCOutBroadcastPkts_lo; 8046 8047 /* ToDo: Preserve counters beyond 32 bits? */ 8048 /* ToDo: Read the statistics from auto-clear regs? */ 8049 8050 sc->stat_emac_tx_stat_dot3statsinternalmactransmiterrors = 8051 stats->stat_emac_tx_stat_dot3statsinternalmactransmiterrors; 8052 8053 sc->stat_Dot3StatsCarrierSenseErrors = 8054 stats->stat_Dot3StatsCarrierSenseErrors; 8055 8056 sc->stat_Dot3StatsFCSErrors = 8057 stats->stat_Dot3StatsFCSErrors; 8058 8059 sc->stat_Dot3StatsAlignmentErrors = 8060 stats->stat_Dot3StatsAlignmentErrors; 8061 8062 sc->stat_Dot3StatsSingleCollisionFrames = 8063 stats->stat_Dot3StatsSingleCollisionFrames; 8064 8065 sc->stat_Dot3StatsMultipleCollisionFrames = 8066 stats->stat_Dot3StatsMultipleCollisionFrames; 8067 8068 sc->stat_Dot3StatsDeferredTransmissions = 8069 stats->stat_Dot3StatsDeferredTransmissions; 8070 8071 sc->stat_Dot3StatsExcessiveCollisions = 8072 stats->stat_Dot3StatsExcessiveCollisions; 8073 8074 sc->stat_Dot3StatsLateCollisions = 8075 stats->stat_Dot3StatsLateCollisions; 8076 8077 sc->stat_EtherStatsCollisions = 8078 stats->stat_EtherStatsCollisions; 8079 8080 sc->stat_EtherStatsFragments = 8081 stats->stat_EtherStatsFragments; 8082 8083 sc->stat_EtherStatsJabbers = 8084 stats->stat_EtherStatsJabbers; 8085 8086 sc->stat_EtherStatsUndersizePkts = 8087 stats->stat_EtherStatsUndersizePkts; 8088 8089 sc->stat_EtherStatsOversizePkts = 8090 stats->stat_EtherStatsOversizePkts; 8091 8092 sc->stat_EtherStatsPktsRx64Octets = 8093 stats->stat_EtherStatsPktsRx64Octets; 8094 8095 sc->stat_EtherStatsPktsRx65Octetsto127Octets = 8096 stats->stat_EtherStatsPktsRx65Octetsto127Octets; 8097 8098 sc->stat_EtherStatsPktsRx128Octetsto255Octets = 8099 stats->stat_EtherStatsPktsRx128Octetsto255Octets; 8100 8101 sc->stat_EtherStatsPktsRx256Octetsto511Octets = 8102 stats->stat_EtherStatsPktsRx256Octetsto511Octets; 8103 8104 sc->stat_EtherStatsPktsRx512Octetsto1023Octets = 8105 stats->stat_EtherStatsPktsRx512Octetsto1023Octets; 8106 8107 sc->stat_EtherStatsPktsRx1024Octetsto1522Octets = 8108 stats->stat_EtherStatsPktsRx1024Octetsto1522Octets; 8109 8110 sc->stat_EtherStatsPktsRx1523Octetsto9022Octets = 8111 stats->stat_EtherStatsPktsRx1523Octetsto9022Octets; 8112 8113 sc->stat_EtherStatsPktsTx64Octets = 8114 stats->stat_EtherStatsPktsTx64Octets; 8115 8116 sc->stat_EtherStatsPktsTx65Octetsto127Octets = 8117 stats->stat_EtherStatsPktsTx65Octetsto127Octets; 8118 8119 sc->stat_EtherStatsPktsTx128Octetsto255Octets = 8120 stats->stat_EtherStatsPktsTx128Octetsto255Octets; 8121 8122 sc->stat_EtherStatsPktsTx256Octetsto511Octets = 8123 stats->stat_EtherStatsPktsTx256Octetsto511Octets; 8124 8125 sc->stat_EtherStatsPktsTx512Octetsto1023Octets = 8126 stats->stat_EtherStatsPktsTx512Octetsto1023Octets; 8127 8128 sc->stat_EtherStatsPktsTx1024Octetsto1522Octets = 8129 stats->stat_EtherStatsPktsTx1024Octetsto1522Octets; 8130 8131 sc->stat_EtherStatsPktsTx1523Octetsto9022Octets = 8132 stats->stat_EtherStatsPktsTx1523Octetsto9022Octets; 8133 8134 sc->stat_XonPauseFramesReceived = 8135 stats->stat_XonPauseFramesReceived; 8136 8137 sc->stat_XoffPauseFramesReceived = 8138 stats->stat_XoffPauseFramesReceived; 8139 8140 sc->stat_OutXonSent = 8141 stats->stat_OutXonSent; 8142 8143 sc->stat_OutXoffSent = 8144 stats->stat_OutXoffSent; 8145 8146 sc->stat_FlowControlDone = 8147 stats->stat_FlowControlDone; 8148 8149 sc->stat_MacControlFramesReceived = 8150 stats->stat_MacControlFramesReceived; 8151 8152 sc->stat_XoffStateEntered = 8153 stats->stat_XoffStateEntered; 8154 8155 sc->stat_IfInFramesL2FilterDiscards = 8156 stats->stat_IfInFramesL2FilterDiscards; 8157 8158 sc->stat_IfInRuleCheckerDiscards = 8159 stats->stat_IfInRuleCheckerDiscards; 8160 8161 sc->stat_IfInFTQDiscards = 8162 stats->stat_IfInFTQDiscards; 8163 8164 sc->stat_IfInMBUFDiscards = 8165 stats->stat_IfInMBUFDiscards; 8166 8167 sc->stat_IfInRuleCheckerP4Hit = 8168 stats->stat_IfInRuleCheckerP4Hit; 8169 8170 sc->stat_CatchupInRuleCheckerDiscards = 8171 stats->stat_CatchupInRuleCheckerDiscards; 8172 8173 sc->stat_CatchupInFTQDiscards = 8174 stats->stat_CatchupInFTQDiscards; 8175 8176 sc->stat_CatchupInMBUFDiscards = 8177 stats->stat_CatchupInMBUFDiscards; 8178 8179 sc->stat_CatchupInRuleCheckerP4Hit = 8180 stats->stat_CatchupInRuleCheckerP4Hit; 8181 8182 sc->com_no_buffers = REG_RD_IND(sc, 0x120084); 8183 8184 /* ToDo: Add additional statistics? */ 8185 8186 DBEXIT(BCE_EXTREME_MISC); 8187 } 8188 8189 static uint64_t 8190 bce_get_counter(if_t ifp, ift_counter cnt) 8191 { 8192 struct bce_softc *sc; 8193 uint64_t rv; 8194 8195 sc = if_getsoftc(ifp); 8196 8197 switch (cnt) { 8198 case IFCOUNTER_COLLISIONS: 8199 return (sc->stat_EtherStatsCollisions); 8200 case IFCOUNTER_IERRORS: 8201 return (sc->stat_EtherStatsUndersizePkts + 8202 sc->stat_EtherStatsOversizePkts + 8203 sc->stat_IfInMBUFDiscards + 8204 sc->stat_Dot3StatsAlignmentErrors + 8205 sc->stat_Dot3StatsFCSErrors + 8206 sc->stat_IfInRuleCheckerDiscards + 8207 sc->stat_IfInFTQDiscards + 8208 sc->l2fhdr_error_count + 8209 sc->com_no_buffers); 8210 case IFCOUNTER_OERRORS: 8211 rv = sc->stat_Dot3StatsExcessiveCollisions + 8212 sc->stat_emac_tx_stat_dot3statsinternalmactransmiterrors + 8213 sc->stat_Dot3StatsLateCollisions + 8214 sc->watchdog_timeouts; 8215 /* 8216 * Certain controllers don't report 8217 * carrier sense errors correctly. 8218 * See errata E11_5708CA0_1165. 8219 */ 8220 if (!(BCE_CHIP_NUM(sc) == BCE_CHIP_NUM_5706) && 8221 !(BCE_CHIP_ID(sc) == BCE_CHIP_ID_5708_A0)) 8222 rv += sc->stat_Dot3StatsCarrierSenseErrors; 8223 return (rv); 8224 default: 8225 return (if_get_counter_default(ifp, cnt)); 8226 } 8227 } 8228 8229 /****************************************************************************/ 8230 /* Periodic function to notify the bootcode that the driver is still */ 8231 /* present. */ 8232 /* */ 8233 /* Returns: */ 8234 /* Nothing. */ 8235 /****************************************************************************/ 8236 static void 8237 bce_pulse(void *xsc) 8238 { 8239 struct bce_softc *sc = xsc; 8240 u32 msg; 8241 8242 DBENTER(BCE_EXTREME_MISC); 8243 8244 BCE_LOCK_ASSERT(sc); 8245 8246 /* Tell the firmware that the driver is still running. */ 8247 msg = (u32) ++sc->bce_fw_drv_pulse_wr_seq; 8248 bce_shmem_wr(sc, BCE_DRV_PULSE_MB, msg); 8249 8250 /* Update the bootcode condition. */ 8251 sc->bc_state = bce_shmem_rd(sc, BCE_BC_STATE_CONDITION); 8252 8253 /* Report whether the bootcode still knows the driver is running. */ 8254 if (bce_verbose || bootverbose) { 8255 if (sc->bce_drv_cardiac_arrest == FALSE) { 8256 if (!(sc->bc_state & BCE_CONDITION_DRV_PRESENT)) { 8257 sc->bce_drv_cardiac_arrest = TRUE; 8258 BCE_PRINTF("%s(): Warning: bootcode " 8259 "thinks driver is absent! " 8260 "(bc_state = 0x%08X)\n", 8261 __FUNCTION__, sc->bc_state); 8262 } 8263 } else { 8264 /* 8265 * Not supported by all bootcode versions. 8266 * (v5.0.11+ and v5.2.1+) Older bootcode 8267 * will require the driver to reset the 8268 * controller to clear this condition. 8269 */ 8270 if (sc->bc_state & BCE_CONDITION_DRV_PRESENT) { 8271 sc->bce_drv_cardiac_arrest = FALSE; 8272 BCE_PRINTF("%s(): Bootcode found the " 8273 "driver pulse! (bc_state = 0x%08X)\n", 8274 __FUNCTION__, sc->bc_state); 8275 } 8276 } 8277 } 8278 8279 /* Schedule the next pulse. */ 8280 callout_reset(&sc->bce_pulse_callout, hz, bce_pulse, sc); 8281 8282 DBEXIT(BCE_EXTREME_MISC); 8283 } 8284 8285 /****************************************************************************/ 8286 /* Periodic function to perform maintenance tasks. */ 8287 /* */ 8288 /* Returns: */ 8289 /* Nothing. */ 8290 /****************************************************************************/ 8291 static void 8292 bce_tick(void *xsc) 8293 { 8294 struct bce_softc *sc = xsc; 8295 struct mii_data *mii; 8296 if_t ifp; 8297 struct ifmediareq ifmr; 8298 8299 ifp = sc->bce_ifp; 8300 8301 DBENTER(BCE_EXTREME_MISC); 8302 8303 BCE_LOCK_ASSERT(sc); 8304 8305 /* Schedule the next tick. */ 8306 callout_reset(&sc->bce_tick_callout, hz, bce_tick, sc); 8307 8308 /* Update the statistics from the hardware statistics block. */ 8309 bce_stats_update(sc); 8310 8311 /* Ensure page and RX chains get refilled in low-memory situations. */ 8312 if (bce_hdr_split == TRUE) 8313 bce_fill_pg_chain(sc); 8314 bce_fill_rx_chain(sc); 8315 8316 /* Check that chip hasn't hung. */ 8317 bce_watchdog(sc); 8318 8319 /* If link is up already up then we're done. */ 8320 if (sc->bce_link_up == TRUE) 8321 goto bce_tick_exit; 8322 8323 /* Link is down. Check what the PHY's doing. */ 8324 if ((sc->bce_phy_flags & BCE_PHY_REMOTE_CAP_FLAG) != 0) { 8325 bzero(&ifmr, sizeof(ifmr)); 8326 bce_ifmedia_sts_rphy(sc, &ifmr); 8327 if ((ifmr.ifm_status & (IFM_ACTIVE | IFM_AVALID)) == 8328 (IFM_ACTIVE | IFM_AVALID)) { 8329 sc->bce_link_up = TRUE; 8330 bce_miibus_statchg(sc->bce_dev); 8331 } 8332 } else { 8333 mii = device_get_softc(sc->bce_miibus); 8334 mii_tick(mii); 8335 /* Check if the link has come up. */ 8336 if ((mii->mii_media_status & IFM_ACTIVE) && 8337 (IFM_SUBTYPE(mii->mii_media_active) != IFM_NONE)) { 8338 DBPRINT(sc, BCE_VERBOSE_MISC, "%s(): Link up!\n", 8339 __FUNCTION__); 8340 sc->bce_link_up = TRUE; 8341 if ((IFM_SUBTYPE(mii->mii_media_active) == IFM_1000_T || 8342 IFM_SUBTYPE(mii->mii_media_active) == IFM_1000_SX || 8343 IFM_SUBTYPE(mii->mii_media_active) == IFM_2500_SX) && 8344 (bce_verbose || bootverbose)) 8345 BCE_PRINTF("Gigabit link up!\n"); 8346 } 8347 } 8348 if (sc->bce_link_up == TRUE) { 8349 /* Now that link is up, handle any outstanding TX traffic. */ 8350 if (!if_sendq_empty(ifp)) { 8351 DBPRINT(sc, BCE_VERBOSE_MISC, "%s(): Found " 8352 "pending TX traffic.\n", __FUNCTION__); 8353 bce_start_locked(ifp); 8354 } 8355 } 8356 8357 bce_tick_exit: 8358 DBEXIT(BCE_EXTREME_MISC); 8359 } 8360 8361 static void 8362 bce_fw_cap_init(struct bce_softc *sc) 8363 { 8364 u32 ack, cap, link; 8365 8366 ack = 0; 8367 cap = bce_shmem_rd(sc, BCE_FW_CAP_MB); 8368 if ((cap & BCE_FW_CAP_SIGNATURE_MAGIC_MASK) != 8369 BCE_FW_CAP_SIGNATURE_MAGIC) 8370 return; 8371 if ((cap & (BCE_FW_CAP_MFW_KEEP_VLAN | BCE_FW_CAP_BC_KEEP_VLAN)) == 8372 (BCE_FW_CAP_MFW_KEEP_VLAN | BCE_FW_CAP_BC_KEEP_VLAN)) 8373 ack |= BCE_DRV_ACK_CAP_SIGNATURE_MAGIC | 8374 BCE_FW_CAP_MFW_KEEP_VLAN | BCE_FW_CAP_BC_KEEP_VLAN; 8375 if ((sc->bce_phy_flags & BCE_PHY_SERDES_FLAG) != 0 && 8376 (cap & BCE_FW_CAP_REMOTE_PHY_CAP) != 0) { 8377 sc->bce_phy_flags &= ~BCE_PHY_REMOTE_PORT_FIBER_FLAG; 8378 sc->bce_phy_flags |= BCE_PHY_REMOTE_CAP_FLAG; 8379 link = bce_shmem_rd(sc, BCE_LINK_STATUS); 8380 if ((link & BCE_LINK_STATUS_SERDES_LINK) != 0) 8381 sc->bce_phy_flags |= BCE_PHY_REMOTE_PORT_FIBER_FLAG; 8382 ack |= BCE_DRV_ACK_CAP_SIGNATURE_MAGIC | 8383 BCE_FW_CAP_REMOTE_PHY_CAP; 8384 } 8385 8386 if (ack != 0) 8387 bce_shmem_wr(sc, BCE_DRV_ACK_CAP_MB, ack); 8388 } 8389 8390 #ifdef BCE_DEBUG 8391 /****************************************************************************/ 8392 /* Allows the driver state to be dumped through the sysctl interface. */ 8393 /* */ 8394 /* Returns: */ 8395 /* 0 for success, positive value for failure. */ 8396 /****************************************************************************/ 8397 static int 8398 bce_sysctl_driver_state(SYSCTL_HANDLER_ARGS) 8399 { 8400 int error; 8401 int result; 8402 struct bce_softc *sc; 8403 8404 result = -1; 8405 error = sysctl_handle_int(oidp, &result, 0, req); 8406 8407 if (error || !req->newptr) 8408 return (error); 8409 8410 if (result == 1) { 8411 sc = (struct bce_softc *)arg1; 8412 bce_dump_driver_state(sc); 8413 } 8414 8415 return error; 8416 } 8417 8418 /****************************************************************************/ 8419 /* Allows the hardware state to be dumped through the sysctl interface. */ 8420 /* */ 8421 /* Returns: */ 8422 /* 0 for success, positive value for failure. */ 8423 /****************************************************************************/ 8424 static int 8425 bce_sysctl_hw_state(SYSCTL_HANDLER_ARGS) 8426 { 8427 int error; 8428 int result; 8429 struct bce_softc *sc; 8430 8431 result = -1; 8432 error = sysctl_handle_int(oidp, &result, 0, req); 8433 8434 if (error || !req->newptr) 8435 return (error); 8436 8437 if (result == 1) { 8438 sc = (struct bce_softc *)arg1; 8439 bce_dump_hw_state(sc); 8440 } 8441 8442 return error; 8443 } 8444 8445 /****************************************************************************/ 8446 /* Allows the status block to be dumped through the sysctl interface. */ 8447 /* */ 8448 /* Returns: */ 8449 /* 0 for success, positive value for failure. */ 8450 /****************************************************************************/ 8451 static int 8452 bce_sysctl_status_block(SYSCTL_HANDLER_ARGS) 8453 { 8454 int error; 8455 int result; 8456 struct bce_softc *sc; 8457 8458 result = -1; 8459 error = sysctl_handle_int(oidp, &result, 0, req); 8460 8461 if (error || !req->newptr) 8462 return (error); 8463 8464 if (result == 1) { 8465 sc = (struct bce_softc *)arg1; 8466 bce_dump_status_block(sc); 8467 } 8468 8469 return error; 8470 } 8471 8472 /****************************************************************************/ 8473 /* Allows the stats block to be dumped through the sysctl interface. */ 8474 /* */ 8475 /* Returns: */ 8476 /* 0 for success, positive value for failure. */ 8477 /****************************************************************************/ 8478 static int 8479 bce_sysctl_stats_block(SYSCTL_HANDLER_ARGS) 8480 { 8481 int error; 8482 int result; 8483 struct bce_softc *sc; 8484 8485 result = -1; 8486 error = sysctl_handle_int(oidp, &result, 0, req); 8487 8488 if (error || !req->newptr) 8489 return (error); 8490 8491 if (result == 1) { 8492 sc = (struct bce_softc *)arg1; 8493 bce_dump_stats_block(sc); 8494 } 8495 8496 return error; 8497 } 8498 8499 /****************************************************************************/ 8500 /* Allows the stat counters to be cleared without unloading/reloading the */ 8501 /* driver. */ 8502 /* */ 8503 /* Returns: */ 8504 /* 0 for success, positive value for failure. */ 8505 /****************************************************************************/ 8506 static int 8507 bce_sysctl_stats_clear(SYSCTL_HANDLER_ARGS) 8508 { 8509 int error; 8510 int result; 8511 struct bce_softc *sc; 8512 8513 result = -1; 8514 error = sysctl_handle_int(oidp, &result, 0, req); 8515 8516 if (error || !req->newptr) 8517 return (error); 8518 8519 if (result == 1) { 8520 sc = (struct bce_softc *)arg1; 8521 struct statistics_block *stats; 8522 8523 stats = (struct statistics_block *) sc->stats_block; 8524 bzero(stats, sizeof(struct statistics_block)); 8525 bus_dmamap_sync(sc->stats_tag, sc->stats_map, 8526 BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE); 8527 8528 /* Clear the internal H/W statistics counters. */ 8529 REG_WR(sc, BCE_HC_COMMAND, BCE_HC_COMMAND_CLR_STAT_NOW); 8530 8531 /* Reset the driver maintained statistics. */ 8532 sc->interrupts_rx = 8533 sc->interrupts_tx = 0; 8534 sc->tso_frames_requested = 8535 sc->tso_frames_completed = 8536 sc->tso_frames_failed = 0; 8537 sc->rx_empty_count = 8538 sc->tx_full_count = 0; 8539 sc->rx_low_watermark = USABLE_RX_BD_ALLOC; 8540 sc->tx_hi_watermark = 0; 8541 sc->l2fhdr_error_count = 8542 sc->l2fhdr_error_sim_count = 0; 8543 sc->mbuf_alloc_failed_count = 8544 sc->mbuf_alloc_failed_sim_count = 0; 8545 sc->dma_map_addr_rx_failed_count = 8546 sc->dma_map_addr_tx_failed_count = 0; 8547 sc->mbuf_frag_count = 0; 8548 sc->csum_offload_tcp_udp = 8549 sc->csum_offload_ip = 0; 8550 sc->vlan_tagged_frames_rcvd = 8551 sc->vlan_tagged_frames_stripped = 0; 8552 sc->split_header_frames_rcvd = 8553 sc->split_header_tcp_frames_rcvd = 0; 8554 8555 /* Clear firmware maintained statistics. */ 8556 REG_WR_IND(sc, 0x120084, 0); 8557 } 8558 8559 return error; 8560 } 8561 8562 /****************************************************************************/ 8563 /* Allows the shared memory contents to be dumped through the sysctl . */ 8564 /* interface. */ 8565 /* */ 8566 /* Returns: */ 8567 /* 0 for success, positive value for failure. */ 8568 /****************************************************************************/ 8569 static int 8570 bce_sysctl_shmem_state(SYSCTL_HANDLER_ARGS) 8571 { 8572 int error; 8573 int result; 8574 struct bce_softc *sc; 8575 8576 result = -1; 8577 error = sysctl_handle_int(oidp, &result, 0, req); 8578 8579 if (error || !req->newptr) 8580 return (error); 8581 8582 if (result == 1) { 8583 sc = (struct bce_softc *)arg1; 8584 bce_dump_shmem_state(sc); 8585 } 8586 8587 return error; 8588 } 8589 8590 /****************************************************************************/ 8591 /* Allows the bootcode state to be dumped through the sysctl interface. */ 8592 /* */ 8593 /* Returns: */ 8594 /* 0 for success, positive value for failure. */ 8595 /****************************************************************************/ 8596 static int 8597 bce_sysctl_bc_state(SYSCTL_HANDLER_ARGS) 8598 { 8599 int error; 8600 int result; 8601 struct bce_softc *sc; 8602 8603 result = -1; 8604 error = sysctl_handle_int(oidp, &result, 0, req); 8605 8606 if (error || !req->newptr) 8607 return (error); 8608 8609 if (result == 1) { 8610 sc = (struct bce_softc *)arg1; 8611 bce_dump_bc_state(sc); 8612 } 8613 8614 return error; 8615 } 8616 8617 /****************************************************************************/ 8618 /* Provides a sysctl interface to allow dumping the RX BD chain. */ 8619 /* */ 8620 /* Returns: */ 8621 /* 0 for success, positive value for failure. */ 8622 /****************************************************************************/ 8623 static int 8624 bce_sysctl_dump_rx_bd_chain(SYSCTL_HANDLER_ARGS) 8625 { 8626 int error; 8627 int result; 8628 struct bce_softc *sc; 8629 8630 result = -1; 8631 error = sysctl_handle_int(oidp, &result, 0, req); 8632 8633 if (error || !req->newptr) 8634 return (error); 8635 8636 if (result == 1) { 8637 sc = (struct bce_softc *)arg1; 8638 bce_dump_rx_bd_chain(sc, 0, TOTAL_RX_BD_ALLOC); 8639 } 8640 8641 return error; 8642 } 8643 8644 /****************************************************************************/ 8645 /* Provides a sysctl interface to allow dumping the RX MBUF chain. */ 8646 /* */ 8647 /* Returns: */ 8648 /* 0 for success, positive value for failure. */ 8649 /****************************************************************************/ 8650 static int 8651 bce_sysctl_dump_rx_mbuf_chain(SYSCTL_HANDLER_ARGS) 8652 { 8653 int error; 8654 int result; 8655 struct bce_softc *sc; 8656 8657 result = -1; 8658 error = sysctl_handle_int(oidp, &result, 0, req); 8659 8660 if (error || !req->newptr) 8661 return (error); 8662 8663 if (result == 1) { 8664 sc = (struct bce_softc *)arg1; 8665 bce_dump_rx_mbuf_chain(sc, 0, USABLE_RX_BD_ALLOC); 8666 } 8667 8668 return error; 8669 } 8670 8671 /****************************************************************************/ 8672 /* Provides a sysctl interface to allow dumping the TX chain. */ 8673 /* */ 8674 /* Returns: */ 8675 /* 0 for success, positive value for failure. */ 8676 /****************************************************************************/ 8677 static int 8678 bce_sysctl_dump_tx_chain(SYSCTL_HANDLER_ARGS) 8679 { 8680 int error; 8681 int result; 8682 struct bce_softc *sc; 8683 8684 result = -1; 8685 error = sysctl_handle_int(oidp, &result, 0, req); 8686 8687 if (error || !req->newptr) 8688 return (error); 8689 8690 if (result == 1) { 8691 sc = (struct bce_softc *)arg1; 8692 bce_dump_tx_chain(sc, 0, TOTAL_TX_BD_ALLOC); 8693 } 8694 8695 return error; 8696 } 8697 8698 /****************************************************************************/ 8699 /* Provides a sysctl interface to allow dumping the page chain. */ 8700 /* */ 8701 /* Returns: */ 8702 /* 0 for success, positive value for failure. */ 8703 /****************************************************************************/ 8704 static int 8705 bce_sysctl_dump_pg_chain(SYSCTL_HANDLER_ARGS) 8706 { 8707 int error; 8708 int result; 8709 struct bce_softc *sc; 8710 8711 result = -1; 8712 error = sysctl_handle_int(oidp, &result, 0, req); 8713 8714 if (error || !req->newptr) 8715 return (error); 8716 8717 if (result == 1) { 8718 sc = (struct bce_softc *)arg1; 8719 bce_dump_pg_chain(sc, 0, TOTAL_PG_BD_ALLOC); 8720 } 8721 8722 return error; 8723 } 8724 8725 /****************************************************************************/ 8726 /* Provides a sysctl interface to allow reading arbitrary NVRAM offsets in */ 8727 /* the device. DO NOT ENABLE ON PRODUCTION SYSTEMS! */ 8728 /* */ 8729 /* Returns: */ 8730 /* 0 for success, positive value for failure. */ 8731 /****************************************************************************/ 8732 static int 8733 bce_sysctl_nvram_read(SYSCTL_HANDLER_ARGS) 8734 { 8735 struct bce_softc *sc = (struct bce_softc *)arg1; 8736 int error; 8737 u32 result; 8738 u32 val[1]; 8739 u8 *data = (u8 *) val; 8740 8741 result = -1; 8742 error = sysctl_handle_int(oidp, &result, 0, req); 8743 if (error || (req->newptr == NULL)) 8744 return (error); 8745 8746 error = bce_nvram_read(sc, result, data, 4); 8747 8748 BCE_PRINTF("offset 0x%08X = 0x%08X\n", result, bce_be32toh(val[0])); 8749 8750 return (error); 8751 } 8752 8753 /****************************************************************************/ 8754 /* Provides a sysctl interface to allow reading arbitrary registers in the */ 8755 /* device. DO NOT ENABLE ON PRODUCTION SYSTEMS! */ 8756 /* */ 8757 /* Returns: */ 8758 /* 0 for success, positive value for failure. */ 8759 /****************************************************************************/ 8760 static int 8761 bce_sysctl_reg_read(SYSCTL_HANDLER_ARGS) 8762 { 8763 struct bce_softc *sc = (struct bce_softc *)arg1; 8764 int error; 8765 u32 val, result; 8766 8767 result = -1; 8768 error = sysctl_handle_int(oidp, &result, 0, req); 8769 if (error || (req->newptr == NULL)) 8770 return (error); 8771 8772 /* Make sure the register is accessible. */ 8773 if (result < 0x8000) { 8774 val = REG_RD(sc, result); 8775 BCE_PRINTF("reg 0x%08X = 0x%08X\n", result, val); 8776 } else if (result < 0x0280000) { 8777 val = REG_RD_IND(sc, result); 8778 BCE_PRINTF("reg 0x%08X = 0x%08X\n", result, val); 8779 } 8780 8781 return (error); 8782 } 8783 8784 /****************************************************************************/ 8785 /* Provides a sysctl interface to allow reading arbitrary PHY registers in */ 8786 /* the device. DO NOT ENABLE ON PRODUCTION SYSTEMS! */ 8787 /* */ 8788 /* Returns: */ 8789 /* 0 for success, positive value for failure. */ 8790 /****************************************************************************/ 8791 static int 8792 bce_sysctl_phy_read(SYSCTL_HANDLER_ARGS) 8793 { 8794 struct bce_softc *sc; 8795 device_t dev; 8796 int error, result; 8797 u16 val; 8798 8799 result = -1; 8800 error = sysctl_handle_int(oidp, &result, 0, req); 8801 if (error || (req->newptr == NULL)) 8802 return (error); 8803 8804 /* Make sure the register is accessible. */ 8805 if (result < 0x20) { 8806 sc = (struct bce_softc *)arg1; 8807 dev = sc->bce_dev; 8808 val = bce_miibus_read_reg(dev, sc->bce_phy_addr, result); 8809 BCE_PRINTF("phy 0x%02X = 0x%04X\n", result, val); 8810 } 8811 return (error); 8812 } 8813 8814 /****************************************************************************/ 8815 /* Provides a sysctl interface for dumping the nvram contents. */ 8816 /* DO NOT ENABLE ON PRODUCTION SYSTEMS! */ 8817 /* */ 8818 /* Returns: */ 8819 /* 0 for success, positive errno for failure. */ 8820 /****************************************************************************/ 8821 static int 8822 bce_sysctl_nvram_dump(SYSCTL_HANDLER_ARGS) 8823 { 8824 struct bce_softc *sc = (struct bce_softc *)arg1; 8825 int error, i; 8826 8827 if (sc->nvram_buf == NULL) 8828 sc->nvram_buf = malloc(sc->bce_flash_size, 8829 M_TEMP, M_ZERO | M_WAITOK); 8830 8831 error = 0; 8832 if (req->oldlen == sc->bce_flash_size) { 8833 for (i = 0; i < sc->bce_flash_size && error == 0; i++) 8834 error = bce_nvram_read(sc, i, &sc->nvram_buf[i], 1); 8835 } 8836 8837 if (error == 0) 8838 error = SYSCTL_OUT(req, sc->nvram_buf, sc->bce_flash_size); 8839 8840 return error; 8841 } 8842 8843 #ifdef BCE_NVRAM_WRITE_SUPPORT 8844 /****************************************************************************/ 8845 /* Provides a sysctl interface for writing to nvram. */ 8846 /* DO NOT ENABLE ON PRODUCTION SYSTEMS! */ 8847 /* */ 8848 /* Returns: */ 8849 /* 0 for success, positive errno for failure. */ 8850 /****************************************************************************/ 8851 static int 8852 bce_sysctl_nvram_write(SYSCTL_HANDLER_ARGS) 8853 { 8854 struct bce_softc *sc = (struct bce_softc *)arg1; 8855 int error; 8856 8857 if (sc->nvram_buf == NULL) 8858 sc->nvram_buf = malloc(sc->bce_flash_size, 8859 M_TEMP, M_ZERO | M_WAITOK); 8860 else 8861 bzero(sc->nvram_buf, sc->bce_flash_size); 8862 8863 error = SYSCTL_IN(req, sc->nvram_buf, sc->bce_flash_size); 8864 if (error == 0) 8865 return (error); 8866 8867 if (req->newlen == sc->bce_flash_size) 8868 error = bce_nvram_write(sc, 0, sc->nvram_buf, 8869 sc->bce_flash_size); 8870 8871 return error; 8872 } 8873 #endif 8874 8875 /****************************************************************************/ 8876 /* Provides a sysctl interface to allow reading a CID. */ 8877 /* */ 8878 /* Returns: */ 8879 /* 0 for success, positive value for failure. */ 8880 /****************************************************************************/ 8881 static int 8882 bce_sysctl_dump_ctx(SYSCTL_HANDLER_ARGS) 8883 { 8884 struct bce_softc *sc; 8885 int error, result; 8886 8887 result = -1; 8888 error = sysctl_handle_int(oidp, &result, 0, req); 8889 if (error || (req->newptr == NULL)) 8890 return (error); 8891 8892 /* Make sure the register is accessible. */ 8893 if (result <= TX_CID) { 8894 sc = (struct bce_softc *)arg1; 8895 bce_dump_ctx(sc, result); 8896 } 8897 8898 return (error); 8899 } 8900 8901 /****************************************************************************/ 8902 /* Provides a sysctl interface to forcing the driver to dump state and */ 8903 /* enter the debugger. DO NOT ENABLE ON PRODUCTION SYSTEMS! */ 8904 /* */ 8905 /* Returns: */ 8906 /* 0 for success, positive value for failure. */ 8907 /****************************************************************************/ 8908 static int 8909 bce_sysctl_breakpoint(SYSCTL_HANDLER_ARGS) 8910 { 8911 int error; 8912 int result; 8913 struct bce_softc *sc; 8914 8915 result = -1; 8916 error = sysctl_handle_int(oidp, &result, 0, req); 8917 8918 if (error || !req->newptr) 8919 return (error); 8920 8921 if (result == 1) { 8922 sc = (struct bce_softc *)arg1; 8923 bce_breakpoint(sc); 8924 } 8925 8926 return error; 8927 } 8928 #endif 8929 8930 /****************************************************************************/ 8931 /* Adds any sysctl parameters for tuning or debugging purposes. */ 8932 /* */ 8933 /* Returns: */ 8934 /* 0 for success, positive value for failure. */ 8935 /****************************************************************************/ 8936 static void 8937 bce_add_sysctls(struct bce_softc *sc) 8938 { 8939 struct sysctl_ctx_list *ctx; 8940 struct sysctl_oid_list *children; 8941 8942 DBENTER(BCE_VERBOSE_MISC); 8943 8944 ctx = device_get_sysctl_ctx(sc->bce_dev); 8945 children = SYSCTL_CHILDREN(device_get_sysctl_tree(sc->bce_dev)); 8946 8947 #ifdef BCE_DEBUG 8948 SYSCTL_ADD_INT(ctx, children, OID_AUTO, 8949 "l2fhdr_error_sim_control", 8950 CTLFLAG_RW, &l2fhdr_error_sim_control, 8951 0, "Debug control to force l2fhdr errors"); 8952 8953 SYSCTL_ADD_INT(ctx, children, OID_AUTO, 8954 "l2fhdr_error_sim_count", 8955 CTLFLAG_RD, &sc->l2fhdr_error_sim_count, 8956 0, "Number of simulated l2_fhdr errors"); 8957 #endif 8958 8959 SYSCTL_ADD_UINT(ctx, children, OID_AUTO, 8960 "l2fhdr_error_count", 8961 CTLFLAG_RD, &sc->l2fhdr_error_count, 8962 0, "Number of l2_fhdr errors"); 8963 8964 #ifdef BCE_DEBUG 8965 SYSCTL_ADD_INT(ctx, children, OID_AUTO, 8966 "mbuf_alloc_failed_sim_control", 8967 CTLFLAG_RW, &mbuf_alloc_failed_sim_control, 8968 0, "Debug control to force mbuf allocation failures"); 8969 8970 SYSCTL_ADD_UINT(ctx, children, OID_AUTO, 8971 "mbuf_alloc_failed_sim_count", 8972 CTLFLAG_RD, &sc->mbuf_alloc_failed_sim_count, 8973 0, "Number of simulated mbuf cluster allocation failures"); 8974 #endif 8975 8976 SYSCTL_ADD_UINT(ctx, children, OID_AUTO, 8977 "mbuf_alloc_failed_count", 8978 CTLFLAG_RD, &sc->mbuf_alloc_failed_count, 8979 0, "Number of mbuf allocation failures"); 8980 8981 SYSCTL_ADD_UINT(ctx, children, OID_AUTO, 8982 "mbuf_frag_count", 8983 CTLFLAG_RD, &sc->mbuf_frag_count, 8984 0, "Number of fragmented mbufs"); 8985 8986 #ifdef BCE_DEBUG 8987 SYSCTL_ADD_INT(ctx, children, OID_AUTO, 8988 "dma_map_addr_failed_sim_control", 8989 CTLFLAG_RW, &dma_map_addr_failed_sim_control, 8990 0, "Debug control to force DMA mapping failures"); 8991 8992 /* ToDo: Figure out how to update this value in bce_dma_map_addr(). */ 8993 SYSCTL_ADD_UINT(ctx, children, OID_AUTO, 8994 "dma_map_addr_failed_sim_count", 8995 CTLFLAG_RD, &sc->dma_map_addr_failed_sim_count, 8996 0, "Number of simulated DMA mapping failures"); 8997 8998 #endif 8999 9000 SYSCTL_ADD_UINT(ctx, children, OID_AUTO, 9001 "dma_map_addr_rx_failed_count", 9002 CTLFLAG_RD, &sc->dma_map_addr_rx_failed_count, 9003 0, "Number of RX DMA mapping failures"); 9004 9005 SYSCTL_ADD_UINT(ctx, children, OID_AUTO, 9006 "dma_map_addr_tx_failed_count", 9007 CTLFLAG_RD, &sc->dma_map_addr_tx_failed_count, 9008 0, "Number of TX DMA mapping failures"); 9009 9010 #ifdef BCE_DEBUG 9011 SYSCTL_ADD_INT(ctx, children, OID_AUTO, 9012 "unexpected_attention_sim_control", 9013 CTLFLAG_RW, &unexpected_attention_sim_control, 9014 0, "Debug control to simulate unexpected attentions"); 9015 9016 SYSCTL_ADD_UINT(ctx, children, OID_AUTO, 9017 "unexpected_attention_sim_count", 9018 CTLFLAG_RW, &sc->unexpected_attention_sim_count, 9019 0, "Number of simulated unexpected attentions"); 9020 #endif 9021 9022 SYSCTL_ADD_UINT(ctx, children, OID_AUTO, 9023 "unexpected_attention_count", 9024 CTLFLAG_RW, &sc->unexpected_attention_count, 9025 0, "Number of unexpected attentions"); 9026 9027 #ifdef BCE_DEBUG 9028 SYSCTL_ADD_INT(ctx, children, OID_AUTO, 9029 "debug_bootcode_running_failure", 9030 CTLFLAG_RW, &bootcode_running_failure_sim_control, 9031 0, "Debug control to force bootcode running failures"); 9032 9033 SYSCTL_ADD_INT(ctx, children, OID_AUTO, 9034 "rx_low_watermark", 9035 CTLFLAG_RD, &sc->rx_low_watermark, 9036 0, "Lowest level of free rx_bd's"); 9037 9038 SYSCTL_ADD_QUAD(ctx, children, OID_AUTO, 9039 "rx_empty_count", 9040 CTLFLAG_RD, &sc->rx_empty_count, 9041 "Number of times the RX chain was empty"); 9042 9043 SYSCTL_ADD_INT(ctx, children, OID_AUTO, 9044 "tx_hi_watermark", 9045 CTLFLAG_RD, &sc->tx_hi_watermark, 9046 0, "Highest level of used tx_bd's"); 9047 9048 SYSCTL_ADD_QUAD(ctx, children, OID_AUTO, 9049 "tx_full_count", 9050 CTLFLAG_RD, &sc->tx_full_count, 9051 "Number of times the TX chain was full"); 9052 9053 SYSCTL_ADD_QUAD(ctx, children, OID_AUTO, 9054 "tso_frames_requested", 9055 CTLFLAG_RD, &sc->tso_frames_requested, 9056 "Number of TSO frames requested"); 9057 9058 SYSCTL_ADD_QUAD(ctx, children, OID_AUTO, 9059 "tso_frames_completed", 9060 CTLFLAG_RD, &sc->tso_frames_completed, 9061 "Number of TSO frames completed"); 9062 9063 SYSCTL_ADD_QUAD(ctx, children, OID_AUTO, 9064 "tso_frames_failed", 9065 CTLFLAG_RD, &sc->tso_frames_failed, 9066 "Number of TSO frames failed"); 9067 9068 SYSCTL_ADD_QUAD(ctx, children, OID_AUTO, 9069 "csum_offload_ip", 9070 CTLFLAG_RD, &sc->csum_offload_ip, 9071 "Number of IP checksum offload frames"); 9072 9073 SYSCTL_ADD_QUAD(ctx, children, OID_AUTO, 9074 "csum_offload_tcp_udp", 9075 CTLFLAG_RD, &sc->csum_offload_tcp_udp, 9076 "Number of TCP/UDP checksum offload frames"); 9077 9078 SYSCTL_ADD_QUAD(ctx, children, OID_AUTO, 9079 "vlan_tagged_frames_rcvd", 9080 CTLFLAG_RD, &sc->vlan_tagged_frames_rcvd, 9081 "Number of VLAN tagged frames received"); 9082 9083 SYSCTL_ADD_QUAD(ctx, children, OID_AUTO, 9084 "vlan_tagged_frames_stripped", 9085 CTLFLAG_RD, &sc->vlan_tagged_frames_stripped, 9086 "Number of VLAN tagged frames stripped"); 9087 9088 SYSCTL_ADD_QUAD(ctx, children, OID_AUTO, 9089 "interrupts_rx", 9090 CTLFLAG_RD, &sc->interrupts_rx, 9091 "Number of RX interrupts"); 9092 9093 SYSCTL_ADD_QUAD(ctx, children, OID_AUTO, 9094 "interrupts_tx", 9095 CTLFLAG_RD, &sc->interrupts_tx, 9096 "Number of TX interrupts"); 9097 9098 if (bce_hdr_split == TRUE) { 9099 SYSCTL_ADD_QUAD(ctx, children, OID_AUTO, 9100 "split_header_frames_rcvd", 9101 CTLFLAG_RD, &sc->split_header_frames_rcvd, 9102 "Number of split header frames received"); 9103 9104 SYSCTL_ADD_QUAD(ctx, children, OID_AUTO, 9105 "split_header_tcp_frames_rcvd", 9106 CTLFLAG_RD, &sc->split_header_tcp_frames_rcvd, 9107 "Number of split header TCP frames received"); 9108 } 9109 9110 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, 9111 "nvram_dump", CTLTYPE_OPAQUE | CTLFLAG_RD | CTLFLAG_NEEDGIANT, 9112 (void *)sc, 0, 9113 bce_sysctl_nvram_dump, "S", ""); 9114 9115 #ifdef BCE_NVRAM_WRITE_SUPPORT 9116 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, 9117 "nvram_write", CTLTYPE_OPAQUE | CTLFLAG_WR | CTLFLAG_NEEDGIANT, 9118 (void *)sc, 0, 9119 bce_sysctl_nvram_write, "S", ""); 9120 #endif 9121 #endif /* BCE_DEBUG */ 9122 9123 SYSCTL_ADD_QUAD(ctx, children, OID_AUTO, 9124 "stat_IfHcInOctets", 9125 CTLFLAG_RD, &sc->stat_IfHCInOctets, 9126 "Bytes received"); 9127 9128 SYSCTL_ADD_QUAD(ctx, children, OID_AUTO, 9129 "stat_IfHCInBadOctets", 9130 CTLFLAG_RD, &sc->stat_IfHCInBadOctets, 9131 "Bad bytes received"); 9132 9133 SYSCTL_ADD_QUAD(ctx, children, OID_AUTO, 9134 "stat_IfHCOutOctets", 9135 CTLFLAG_RD, &sc->stat_IfHCOutOctets, 9136 "Bytes sent"); 9137 9138 SYSCTL_ADD_QUAD(ctx, children, OID_AUTO, 9139 "stat_IfHCOutBadOctets", 9140 CTLFLAG_RD, &sc->stat_IfHCOutBadOctets, 9141 "Bad bytes sent"); 9142 9143 SYSCTL_ADD_QUAD(ctx, children, OID_AUTO, 9144 "stat_IfHCInUcastPkts", 9145 CTLFLAG_RD, &sc->stat_IfHCInUcastPkts, 9146 "Unicast packets received"); 9147 9148 SYSCTL_ADD_QUAD(ctx, children, OID_AUTO, 9149 "stat_IfHCInMulticastPkts", 9150 CTLFLAG_RD, &sc->stat_IfHCInMulticastPkts, 9151 "Multicast packets received"); 9152 9153 SYSCTL_ADD_QUAD(ctx, children, OID_AUTO, 9154 "stat_IfHCInBroadcastPkts", 9155 CTLFLAG_RD, &sc->stat_IfHCInBroadcastPkts, 9156 "Broadcast packets received"); 9157 9158 SYSCTL_ADD_QUAD(ctx, children, OID_AUTO, 9159 "stat_IfHCOutUcastPkts", 9160 CTLFLAG_RD, &sc->stat_IfHCOutUcastPkts, 9161 "Unicast packets sent"); 9162 9163 SYSCTL_ADD_QUAD(ctx, children, OID_AUTO, 9164 "stat_IfHCOutMulticastPkts", 9165 CTLFLAG_RD, &sc->stat_IfHCOutMulticastPkts, 9166 "Multicast packets sent"); 9167 9168 SYSCTL_ADD_QUAD(ctx, children, OID_AUTO, 9169 "stat_IfHCOutBroadcastPkts", 9170 CTLFLAG_RD, &sc->stat_IfHCOutBroadcastPkts, 9171 "Broadcast packets sent"); 9172 9173 SYSCTL_ADD_UINT(ctx, children, OID_AUTO, 9174 "stat_emac_tx_stat_dot3statsinternalmactransmiterrors", 9175 CTLFLAG_RD, &sc->stat_emac_tx_stat_dot3statsinternalmactransmiterrors, 9176 0, "Internal MAC transmit errors"); 9177 9178 SYSCTL_ADD_UINT(ctx, children, OID_AUTO, 9179 "stat_Dot3StatsCarrierSenseErrors", 9180 CTLFLAG_RD, &sc->stat_Dot3StatsCarrierSenseErrors, 9181 0, "Carrier sense errors"); 9182 9183 SYSCTL_ADD_UINT(ctx, children, OID_AUTO, 9184 "stat_Dot3StatsFCSErrors", 9185 CTLFLAG_RD, &sc->stat_Dot3StatsFCSErrors, 9186 0, "Frame check sequence errors"); 9187 9188 SYSCTL_ADD_UINT(ctx, children, OID_AUTO, 9189 "stat_Dot3StatsAlignmentErrors", 9190 CTLFLAG_RD, &sc->stat_Dot3StatsAlignmentErrors, 9191 0, "Alignment errors"); 9192 9193 SYSCTL_ADD_UINT(ctx, children, OID_AUTO, 9194 "stat_Dot3StatsSingleCollisionFrames", 9195 CTLFLAG_RD, &sc->stat_Dot3StatsSingleCollisionFrames, 9196 0, "Single Collision Frames"); 9197 9198 SYSCTL_ADD_UINT(ctx, children, OID_AUTO, 9199 "stat_Dot3StatsMultipleCollisionFrames", 9200 CTLFLAG_RD, &sc->stat_Dot3StatsMultipleCollisionFrames, 9201 0, "Multiple Collision Frames"); 9202 9203 SYSCTL_ADD_UINT(ctx, children, OID_AUTO, 9204 "stat_Dot3StatsDeferredTransmissions", 9205 CTLFLAG_RD, &sc->stat_Dot3StatsDeferredTransmissions, 9206 0, "Deferred Transmissions"); 9207 9208 SYSCTL_ADD_UINT(ctx, children, OID_AUTO, 9209 "stat_Dot3StatsExcessiveCollisions", 9210 CTLFLAG_RD, &sc->stat_Dot3StatsExcessiveCollisions, 9211 0, "Excessive Collisions"); 9212 9213 SYSCTL_ADD_UINT(ctx, children, OID_AUTO, 9214 "stat_Dot3StatsLateCollisions", 9215 CTLFLAG_RD, &sc->stat_Dot3StatsLateCollisions, 9216 0, "Late Collisions"); 9217 9218 SYSCTL_ADD_UINT(ctx, children, OID_AUTO, 9219 "stat_EtherStatsCollisions", 9220 CTLFLAG_RD, &sc->stat_EtherStatsCollisions, 9221 0, "Collisions"); 9222 9223 SYSCTL_ADD_UINT(ctx, children, OID_AUTO, 9224 "stat_EtherStatsFragments", 9225 CTLFLAG_RD, &sc->stat_EtherStatsFragments, 9226 0, "Fragments"); 9227 9228 SYSCTL_ADD_UINT(ctx, children, OID_AUTO, 9229 "stat_EtherStatsJabbers", 9230 CTLFLAG_RD, &sc->stat_EtherStatsJabbers, 9231 0, "Jabbers"); 9232 9233 SYSCTL_ADD_UINT(ctx, children, OID_AUTO, 9234 "stat_EtherStatsUndersizePkts", 9235 CTLFLAG_RD, &sc->stat_EtherStatsUndersizePkts, 9236 0, "Undersize packets"); 9237 9238 SYSCTL_ADD_UINT(ctx, children, OID_AUTO, 9239 "stat_EtherStatsOversizePkts", 9240 CTLFLAG_RD, &sc->stat_EtherStatsOversizePkts, 9241 0, "stat_EtherStatsOversizePkts"); 9242 9243 SYSCTL_ADD_UINT(ctx, children, OID_AUTO, 9244 "stat_EtherStatsPktsRx64Octets", 9245 CTLFLAG_RD, &sc->stat_EtherStatsPktsRx64Octets, 9246 0, "Bytes received in 64 byte packets"); 9247 9248 SYSCTL_ADD_UINT(ctx, children, OID_AUTO, 9249 "stat_EtherStatsPktsRx65Octetsto127Octets", 9250 CTLFLAG_RD, &sc->stat_EtherStatsPktsRx65Octetsto127Octets, 9251 0, "Bytes received in 65 to 127 byte packets"); 9252 9253 SYSCTL_ADD_UINT(ctx, children, OID_AUTO, 9254 "stat_EtherStatsPktsRx128Octetsto255Octets", 9255 CTLFLAG_RD, &sc->stat_EtherStatsPktsRx128Octetsto255Octets, 9256 0, "Bytes received in 128 to 255 byte packets"); 9257 9258 SYSCTL_ADD_UINT(ctx, children, OID_AUTO, 9259 "stat_EtherStatsPktsRx256Octetsto511Octets", 9260 CTLFLAG_RD, &sc->stat_EtherStatsPktsRx256Octetsto511Octets, 9261 0, "Bytes received in 256 to 511 byte packets"); 9262 9263 SYSCTL_ADD_UINT(ctx, children, OID_AUTO, 9264 "stat_EtherStatsPktsRx512Octetsto1023Octets", 9265 CTLFLAG_RD, &sc->stat_EtherStatsPktsRx512Octetsto1023Octets, 9266 0, "Bytes received in 512 to 1023 byte packets"); 9267 9268 SYSCTL_ADD_UINT(ctx, children, OID_AUTO, 9269 "stat_EtherStatsPktsRx1024Octetsto1522Octets", 9270 CTLFLAG_RD, &sc->stat_EtherStatsPktsRx1024Octetsto1522Octets, 9271 0, "Bytes received in 1024 t0 1522 byte packets"); 9272 9273 SYSCTL_ADD_UINT(ctx, children, OID_AUTO, 9274 "stat_EtherStatsPktsRx1523Octetsto9022Octets", 9275 CTLFLAG_RD, &sc->stat_EtherStatsPktsRx1523Octetsto9022Octets, 9276 0, "Bytes received in 1523 to 9022 byte packets"); 9277 9278 SYSCTL_ADD_UINT(ctx, children, OID_AUTO, 9279 "stat_EtherStatsPktsTx64Octets", 9280 CTLFLAG_RD, &sc->stat_EtherStatsPktsTx64Octets, 9281 0, "Bytes sent in 64 byte packets"); 9282 9283 SYSCTL_ADD_UINT(ctx, children, OID_AUTO, 9284 "stat_EtherStatsPktsTx65Octetsto127Octets", 9285 CTLFLAG_RD, &sc->stat_EtherStatsPktsTx65Octetsto127Octets, 9286 0, "Bytes sent in 65 to 127 byte packets"); 9287 9288 SYSCTL_ADD_UINT(ctx, children, OID_AUTO, 9289 "stat_EtherStatsPktsTx128Octetsto255Octets", 9290 CTLFLAG_RD, &sc->stat_EtherStatsPktsTx128Octetsto255Octets, 9291 0, "Bytes sent in 128 to 255 byte packets"); 9292 9293 SYSCTL_ADD_UINT(ctx, children, OID_AUTO, 9294 "stat_EtherStatsPktsTx256Octetsto511Octets", 9295 CTLFLAG_RD, &sc->stat_EtherStatsPktsTx256Octetsto511Octets, 9296 0, "Bytes sent in 256 to 511 byte packets"); 9297 9298 SYSCTL_ADD_UINT(ctx, children, OID_AUTO, 9299 "stat_EtherStatsPktsTx512Octetsto1023Octets", 9300 CTLFLAG_RD, &sc->stat_EtherStatsPktsTx512Octetsto1023Octets, 9301 0, "Bytes sent in 512 to 1023 byte packets"); 9302 9303 SYSCTL_ADD_UINT(ctx, children, OID_AUTO, 9304 "stat_EtherStatsPktsTx1024Octetsto1522Octets", 9305 CTLFLAG_RD, &sc->stat_EtherStatsPktsTx1024Octetsto1522Octets, 9306 0, "Bytes sent in 1024 to 1522 byte packets"); 9307 9308 SYSCTL_ADD_UINT(ctx, children, OID_AUTO, 9309 "stat_EtherStatsPktsTx1523Octetsto9022Octets", 9310 CTLFLAG_RD, &sc->stat_EtherStatsPktsTx1523Octetsto9022Octets, 9311 0, "Bytes sent in 1523 to 9022 byte packets"); 9312 9313 SYSCTL_ADD_UINT(ctx, children, OID_AUTO, 9314 "stat_XonPauseFramesReceived", 9315 CTLFLAG_RD, &sc->stat_XonPauseFramesReceived, 9316 0, "XON pause frames receved"); 9317 9318 SYSCTL_ADD_UINT(ctx, children, OID_AUTO, 9319 "stat_XoffPauseFramesReceived", 9320 CTLFLAG_RD, &sc->stat_XoffPauseFramesReceived, 9321 0, "XOFF pause frames received"); 9322 9323 SYSCTL_ADD_UINT(ctx, children, OID_AUTO, 9324 "stat_OutXonSent", 9325 CTLFLAG_RD, &sc->stat_OutXonSent, 9326 0, "XON pause frames sent"); 9327 9328 SYSCTL_ADD_UINT(ctx, children, OID_AUTO, 9329 "stat_OutXoffSent", 9330 CTLFLAG_RD, &sc->stat_OutXoffSent, 9331 0, "XOFF pause frames sent"); 9332 9333 SYSCTL_ADD_UINT(ctx, children, OID_AUTO, 9334 "stat_FlowControlDone", 9335 CTLFLAG_RD, &sc->stat_FlowControlDone, 9336 0, "Flow control done"); 9337 9338 SYSCTL_ADD_UINT(ctx, children, OID_AUTO, 9339 "stat_MacControlFramesReceived", 9340 CTLFLAG_RD, &sc->stat_MacControlFramesReceived, 9341 0, "MAC control frames received"); 9342 9343 SYSCTL_ADD_UINT(ctx, children, OID_AUTO, 9344 "stat_XoffStateEntered", 9345 CTLFLAG_RD, &sc->stat_XoffStateEntered, 9346 0, "XOFF state entered"); 9347 9348 SYSCTL_ADD_UINT(ctx, children, OID_AUTO, 9349 "stat_IfInFramesL2FilterDiscards", 9350 CTLFLAG_RD, &sc->stat_IfInFramesL2FilterDiscards, 9351 0, "Received L2 packets discarded"); 9352 9353 SYSCTL_ADD_UINT(ctx, children, OID_AUTO, 9354 "stat_IfInRuleCheckerDiscards", 9355 CTLFLAG_RD, &sc->stat_IfInRuleCheckerDiscards, 9356 0, "Received packets discarded by rule"); 9357 9358 SYSCTL_ADD_UINT(ctx, children, OID_AUTO, 9359 "stat_IfInFTQDiscards", 9360 CTLFLAG_RD, &sc->stat_IfInFTQDiscards, 9361 0, "Received packet FTQ discards"); 9362 9363 SYSCTL_ADD_UINT(ctx, children, OID_AUTO, 9364 "stat_IfInMBUFDiscards", 9365 CTLFLAG_RD, &sc->stat_IfInMBUFDiscards, 9366 0, "Received packets discarded due to lack " 9367 "of controller buffer memory"); 9368 9369 SYSCTL_ADD_UINT(ctx, children, OID_AUTO, 9370 "stat_IfInRuleCheckerP4Hit", 9371 CTLFLAG_RD, &sc->stat_IfInRuleCheckerP4Hit, 9372 0, "Received packets rule checker hits"); 9373 9374 SYSCTL_ADD_UINT(ctx, children, OID_AUTO, 9375 "stat_CatchupInRuleCheckerDiscards", 9376 CTLFLAG_RD, &sc->stat_CatchupInRuleCheckerDiscards, 9377 0, "Received packets discarded in Catchup path"); 9378 9379 SYSCTL_ADD_UINT(ctx, children, OID_AUTO, 9380 "stat_CatchupInFTQDiscards", 9381 CTLFLAG_RD, &sc->stat_CatchupInFTQDiscards, 9382 0, "Received packets discarded in FTQ in Catchup path"); 9383 9384 SYSCTL_ADD_UINT(ctx, children, OID_AUTO, 9385 "stat_CatchupInMBUFDiscards", 9386 CTLFLAG_RD, &sc->stat_CatchupInMBUFDiscards, 9387 0, "Received packets discarded in controller " 9388 "buffer memory in Catchup path"); 9389 9390 SYSCTL_ADD_UINT(ctx, children, OID_AUTO, 9391 "stat_CatchupInRuleCheckerP4Hit", 9392 CTLFLAG_RD, &sc->stat_CatchupInRuleCheckerP4Hit, 9393 0, "Received packets rule checker hits in Catchup path"); 9394 9395 SYSCTL_ADD_UINT(ctx, children, OID_AUTO, 9396 "com_no_buffers", 9397 CTLFLAG_RD, &sc->com_no_buffers, 9398 0, "Valid packets received but no RX buffers available"); 9399 9400 #ifdef BCE_DEBUG 9401 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, 9402 "driver_state", CTLTYPE_INT | CTLFLAG_RW | CTLFLAG_NEEDGIANT, 9403 (void *)sc, 0, 9404 bce_sysctl_driver_state, "I", "Drive state information"); 9405 9406 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, 9407 "hw_state", CTLTYPE_INT | CTLFLAG_RW | CTLFLAG_NEEDGIANT, 9408 (void *)sc, 0, 9409 bce_sysctl_hw_state, "I", "Hardware state information"); 9410 9411 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, 9412 "status_block", CTLTYPE_INT | CTLFLAG_RW | CTLFLAG_NEEDGIANT, 9413 (void *)sc, 0, 9414 bce_sysctl_status_block, "I", "Dump status block"); 9415 9416 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, 9417 "stats_block", CTLTYPE_INT | CTLFLAG_RW | CTLFLAG_NEEDGIANT, 9418 (void *)sc, 0, 9419 bce_sysctl_stats_block, "I", "Dump statistics block"); 9420 9421 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, 9422 "stats_clear", CTLTYPE_INT | CTLFLAG_RW | CTLFLAG_NEEDGIANT, 9423 (void *)sc, 0, 9424 bce_sysctl_stats_clear, "I", "Clear statistics block"); 9425 9426 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, 9427 "shmem_state", CTLTYPE_INT | CTLFLAG_RW | CTLFLAG_NEEDGIANT, 9428 (void *)sc, 0, 9429 bce_sysctl_shmem_state, "I", "Shared memory state information"); 9430 9431 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, 9432 "bc_state", CTLTYPE_INT | CTLFLAG_RW | CTLFLAG_NEEDGIANT, 9433 (void *)sc, 0, 9434 bce_sysctl_bc_state, "I", "Bootcode state information"); 9435 9436 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, 9437 "dump_rx_bd_chain", CTLTYPE_INT | CTLFLAG_RW | CTLFLAG_NEEDGIANT, 9438 (void *)sc, 0, 9439 bce_sysctl_dump_rx_bd_chain, "I", "Dump RX BD chain"); 9440 9441 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, 9442 "dump_rx_mbuf_chain", CTLTYPE_INT | CTLFLAG_RW | CTLFLAG_NEEDGIANT, 9443 (void *)sc, 0, 9444 bce_sysctl_dump_rx_mbuf_chain, "I", "Dump RX MBUF chain"); 9445 9446 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, 9447 "dump_tx_chain", CTLTYPE_INT | CTLFLAG_RW | CTLFLAG_NEEDGIANT, 9448 (void *)sc, 0, 9449 bce_sysctl_dump_tx_chain, "I", "Dump tx_bd chain"); 9450 9451 if (bce_hdr_split == TRUE) { 9452 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, 9453 "dump_pg_chain", 9454 CTLTYPE_INT | CTLFLAG_RW | CTLFLAG_NEEDGIANT, 9455 (void *)sc, 0, 9456 bce_sysctl_dump_pg_chain, "I", "Dump page chain"); 9457 } 9458 9459 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, 9460 "dump_ctx", CTLTYPE_INT | CTLFLAG_RW | CTLFLAG_NEEDGIANT, 9461 (void *)sc, 0, 9462 bce_sysctl_dump_ctx, "I", "Dump context memory"); 9463 9464 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, 9465 "breakpoint", CTLTYPE_INT | CTLFLAG_RW | CTLFLAG_NEEDGIANT, 9466 (void *)sc, 0, 9467 bce_sysctl_breakpoint, "I", "Driver breakpoint"); 9468 9469 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, 9470 "reg_read", CTLTYPE_INT | CTLFLAG_RW| CTLFLAG_NEEDGIANT, 9471 (void *)sc, 0, 9472 bce_sysctl_reg_read, "I", "Register read"); 9473 9474 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, 9475 "nvram_read", CTLTYPE_INT | CTLFLAG_RW | CTLFLAG_NEEDGIANT, 9476 (void *)sc, 0, 9477 bce_sysctl_nvram_read, "I", "NVRAM read"); 9478 9479 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, 9480 "phy_read", CTLTYPE_INT | CTLFLAG_RW | CTLFLAG_NEEDGIANT, 9481 (void *)sc, 0, 9482 bce_sysctl_phy_read, "I", "PHY register read"); 9483 9484 #endif 9485 9486 DBEXIT(BCE_VERBOSE_MISC); 9487 } 9488 9489 /****************************************************************************/ 9490 /* BCE Debug Routines */ 9491 /****************************************************************************/ 9492 #ifdef BCE_DEBUG 9493 9494 /****************************************************************************/ 9495 /* Freezes the controller to allow for a cohesive state dump. */ 9496 /* */ 9497 /* Returns: */ 9498 /* Nothing. */ 9499 /****************************************************************************/ 9500 static __attribute__ ((noinline)) void 9501 bce_freeze_controller(struct bce_softc *sc) 9502 { 9503 u32 val; 9504 val = REG_RD(sc, BCE_MISC_COMMAND); 9505 val |= BCE_MISC_COMMAND_DISABLE_ALL; 9506 REG_WR(sc, BCE_MISC_COMMAND, val); 9507 } 9508 9509 /****************************************************************************/ 9510 /* Unfreezes the controller after a freeze operation. This may not always */ 9511 /* work and the controller will require a reset! */ 9512 /* */ 9513 /* Returns: */ 9514 /* Nothing. */ 9515 /****************************************************************************/ 9516 static __attribute__ ((noinline)) void 9517 bce_unfreeze_controller(struct bce_softc *sc) 9518 { 9519 u32 val; 9520 val = REG_RD(sc, BCE_MISC_COMMAND); 9521 val |= BCE_MISC_COMMAND_ENABLE_ALL; 9522 REG_WR(sc, BCE_MISC_COMMAND, val); 9523 } 9524 9525 /****************************************************************************/ 9526 /* Prints out Ethernet frame information from an mbuf. */ 9527 /* */ 9528 /* Partially decode an Ethernet frame to look at some important headers. */ 9529 /* */ 9530 /* Returns: */ 9531 /* Nothing. */ 9532 /****************************************************************************/ 9533 static __attribute__ ((noinline)) void 9534 bce_dump_enet(struct bce_softc *sc, struct mbuf *m) 9535 { 9536 struct ether_vlan_header *eh; 9537 u16 etype; 9538 int ehlen; 9539 struct ip *ip; 9540 struct tcphdr *th; 9541 struct udphdr *uh; 9542 struct arphdr *ah; 9543 9544 BCE_PRINTF( 9545 "-----------------------------" 9546 " Frame Decode " 9547 "-----------------------------\n"); 9548 9549 eh = mtod(m, struct ether_vlan_header *); 9550 9551 /* Handle VLAN encapsulation if present. */ 9552 if (eh->evl_encap_proto == htons(ETHERTYPE_VLAN)) { 9553 etype = ntohs(eh->evl_proto); 9554 ehlen = ETHER_HDR_LEN + ETHER_VLAN_ENCAP_LEN; 9555 } else { 9556 etype = ntohs(eh->evl_encap_proto); 9557 ehlen = ETHER_HDR_LEN; 9558 } 9559 9560 /* ToDo: Add VLAN output. */ 9561 BCE_PRINTF("enet: dest = %6D, src = %6D, type = 0x%04X, hlen = %d\n", 9562 eh->evl_dhost, ":", eh->evl_shost, ":", etype, ehlen); 9563 9564 switch (etype) { 9565 case ETHERTYPE_IP: 9566 ip = (struct ip *)(m->m_data + ehlen); 9567 BCE_PRINTF("--ip: dest = 0x%08X , src = 0x%08X, " 9568 "len = %d bytes, protocol = 0x%02X, xsum = 0x%04X\n", 9569 ntohl(ip->ip_dst.s_addr), ntohl(ip->ip_src.s_addr), 9570 ntohs(ip->ip_len), ip->ip_p, ntohs(ip->ip_sum)); 9571 9572 switch (ip->ip_p) { 9573 case IPPROTO_TCP: 9574 th = (struct tcphdr *)((caddr_t)ip + (ip->ip_hl << 2)); 9575 BCE_PRINTF("-tcp: dest = %d, src = %d, hlen = " 9576 "%d bytes, flags = 0x%b, csum = 0x%04X\n", 9577 ntohs(th->th_dport), ntohs(th->th_sport), 9578 (th->th_off << 2), th->th_flags, 9579 "\20\10CWR\07ECE\06URG\05ACK\04PSH\03RST" 9580 "\02SYN\01FIN", ntohs(th->th_sum)); 9581 break; 9582 case IPPROTO_UDP: 9583 uh = (struct udphdr *)((caddr_t)ip + (ip->ip_hl << 2)); 9584 BCE_PRINTF("-udp: dest = %d, src = %d, len = %d " 9585 "bytes, csum = 0x%04X\n", ntohs(uh->uh_dport), 9586 ntohs(uh->uh_sport), ntohs(uh->uh_ulen), 9587 ntohs(uh->uh_sum)); 9588 break; 9589 case IPPROTO_ICMP: 9590 BCE_PRINTF("icmp:\n"); 9591 break; 9592 default: 9593 BCE_PRINTF("----: Other IP protocol.\n"); 9594 } 9595 break; 9596 case ETHERTYPE_IPV6: 9597 BCE_PRINTF("ipv6: No decode supported.\n"); 9598 break; 9599 case ETHERTYPE_ARP: 9600 BCE_PRINTF("-arp: "); 9601 ah = (struct arphdr *) (m->m_data + ehlen); 9602 switch (ntohs(ah->ar_op)) { 9603 case ARPOP_REVREQUEST: 9604 printf("reverse ARP request\n"); 9605 break; 9606 case ARPOP_REVREPLY: 9607 printf("reverse ARP reply\n"); 9608 break; 9609 case ARPOP_REQUEST: 9610 printf("ARP request\n"); 9611 break; 9612 case ARPOP_REPLY: 9613 printf("ARP reply\n"); 9614 break; 9615 default: 9616 printf("other ARP operation\n"); 9617 } 9618 break; 9619 default: 9620 BCE_PRINTF("----: Other protocol.\n"); 9621 } 9622 9623 BCE_PRINTF( 9624 "-----------------------------" 9625 "--------------" 9626 "-----------------------------\n"); 9627 } 9628 9629 /****************************************************************************/ 9630 /* Prints out information about an mbuf. */ 9631 /* */ 9632 /* Returns: */ 9633 /* Nothing. */ 9634 /****************************************************************************/ 9635 static __attribute__ ((noinline)) void 9636 bce_dump_mbuf(struct bce_softc *sc, struct mbuf *m) 9637 { 9638 struct mbuf *mp = m; 9639 9640 if (m == NULL) { 9641 BCE_PRINTF("mbuf: null pointer\n"); 9642 return; 9643 } 9644 9645 while (mp) { 9646 BCE_PRINTF("mbuf: %p, m_len = %d, m_flags = 0x%b, " 9647 "m_data = %p\n", mp, mp->m_len, mp->m_flags, 9648 "\20\1M_EXT\2M_PKTHDR\3M_EOR\4M_RDONLY", mp->m_data); 9649 9650 if (mp->m_flags & M_PKTHDR) { 9651 BCE_PRINTF("- m_pkthdr: len = %d, flags = 0x%b, " 9652 "csum_flags = %b\n", mp->m_pkthdr.len, 9653 mp->m_flags, M_FLAG_PRINTF, 9654 mp->m_pkthdr.csum_flags, CSUM_BITS); 9655 } 9656 9657 if (mp->m_flags & M_EXT) { 9658 BCE_PRINTF("- m_ext: %p, ext_size = %d, type = ", 9659 mp->m_ext.ext_buf, mp->m_ext.ext_size); 9660 switch (mp->m_ext.ext_type) { 9661 case EXT_CLUSTER: 9662 printf("EXT_CLUSTER\n"); break; 9663 case EXT_SFBUF: 9664 printf("EXT_SFBUF\n"); break; 9665 case EXT_JUMBO9: 9666 printf("EXT_JUMBO9\n"); break; 9667 case EXT_JUMBO16: 9668 printf("EXT_JUMBO16\n"); break; 9669 case EXT_PACKET: 9670 printf("EXT_PACKET\n"); break; 9671 case EXT_MBUF: 9672 printf("EXT_MBUF\n"); break; 9673 case EXT_NET_DRV: 9674 printf("EXT_NET_DRV\n"); break; 9675 case EXT_MOD_TYPE: 9676 printf("EXT_MDD_TYPE\n"); break; 9677 case EXT_DISPOSABLE: 9678 printf("EXT_DISPOSABLE\n"); break; 9679 case EXT_EXTREF: 9680 printf("EXT_EXTREF\n"); break; 9681 default: 9682 printf("UNKNOWN\n"); 9683 } 9684 } 9685 9686 mp = mp->m_next; 9687 } 9688 } 9689 9690 /****************************************************************************/ 9691 /* Prints out the mbufs in the TX mbuf chain. */ 9692 /* */ 9693 /* Returns: */ 9694 /* Nothing. */ 9695 /****************************************************************************/ 9696 static __attribute__ ((noinline)) void 9697 bce_dump_tx_mbuf_chain(struct bce_softc *sc, u16 chain_prod, int count) 9698 { 9699 struct mbuf *m; 9700 9701 BCE_PRINTF( 9702 "----------------------------" 9703 " tx mbuf data " 9704 "----------------------------\n"); 9705 9706 for (int i = 0; i < count; i++) { 9707 m = sc->tx_mbuf_ptr[chain_prod]; 9708 BCE_PRINTF("txmbuf[0x%04X]\n", chain_prod); 9709 bce_dump_mbuf(sc, m); 9710 chain_prod = TX_CHAIN_IDX(NEXT_TX_BD(chain_prod)); 9711 } 9712 9713 BCE_PRINTF( 9714 "----------------------------" 9715 "----------------" 9716 "----------------------------\n"); 9717 } 9718 9719 /****************************************************************************/ 9720 /* Prints out the mbufs in the RX mbuf chain. */ 9721 /* */ 9722 /* Returns: */ 9723 /* Nothing. */ 9724 /****************************************************************************/ 9725 static __attribute__ ((noinline)) void 9726 bce_dump_rx_mbuf_chain(struct bce_softc *sc, u16 chain_prod, int count) 9727 { 9728 struct mbuf *m; 9729 9730 BCE_PRINTF( 9731 "----------------------------" 9732 " rx mbuf data " 9733 "----------------------------\n"); 9734 9735 for (int i = 0; i < count; i++) { 9736 m = sc->rx_mbuf_ptr[chain_prod]; 9737 BCE_PRINTF("rxmbuf[0x%04X]\n", chain_prod); 9738 bce_dump_mbuf(sc, m); 9739 chain_prod = RX_CHAIN_IDX(NEXT_RX_BD(chain_prod)); 9740 } 9741 9742 BCE_PRINTF( 9743 "----------------------------" 9744 "----------------" 9745 "----------------------------\n"); 9746 } 9747 9748 /****************************************************************************/ 9749 /* Prints out the mbufs in the mbuf page chain. */ 9750 /* */ 9751 /* Returns: */ 9752 /* Nothing. */ 9753 /****************************************************************************/ 9754 static __attribute__ ((noinline)) void 9755 bce_dump_pg_mbuf_chain(struct bce_softc *sc, u16 chain_prod, int count) 9756 { 9757 struct mbuf *m; 9758 9759 BCE_PRINTF( 9760 "----------------------------" 9761 " pg mbuf data " 9762 "----------------------------\n"); 9763 9764 for (int i = 0; i < count; i++) { 9765 m = sc->pg_mbuf_ptr[chain_prod]; 9766 BCE_PRINTF("pgmbuf[0x%04X]\n", chain_prod); 9767 bce_dump_mbuf(sc, m); 9768 chain_prod = PG_CHAIN_IDX(NEXT_PG_BD(chain_prod)); 9769 } 9770 9771 BCE_PRINTF( 9772 "----------------------------" 9773 "----------------" 9774 "----------------------------\n"); 9775 } 9776 9777 /****************************************************************************/ 9778 /* Prints out a tx_bd structure. */ 9779 /* */ 9780 /* Returns: */ 9781 /* Nothing. */ 9782 /****************************************************************************/ 9783 static __attribute__ ((noinline)) void 9784 bce_dump_txbd(struct bce_softc *sc, int idx, struct tx_bd *txbd) 9785 { 9786 int i = 0; 9787 9788 if (idx > MAX_TX_BD_ALLOC) 9789 /* Index out of range. */ 9790 BCE_PRINTF("tx_bd[0x%04X]: Invalid tx_bd index!\n", idx); 9791 else if ((idx & USABLE_TX_BD_PER_PAGE) == USABLE_TX_BD_PER_PAGE) 9792 /* TX Chain page pointer. */ 9793 BCE_PRINTF("tx_bd[0x%04X]: haddr = 0x%08X:%08X, chain page " 9794 "pointer\n", idx, txbd->tx_bd_haddr_hi, 9795 txbd->tx_bd_haddr_lo); 9796 else { 9797 /* Normal tx_bd entry. */ 9798 BCE_PRINTF("tx_bd[0x%04X]: haddr = 0x%08X:%08X, " 9799 "mss_nbytes = 0x%08X, vlan tag = 0x%04X, flags = " 9800 "0x%04X (", idx, txbd->tx_bd_haddr_hi, 9801 txbd->tx_bd_haddr_lo, txbd->tx_bd_mss_nbytes, 9802 txbd->tx_bd_vlan_tag, txbd->tx_bd_flags); 9803 9804 if (txbd->tx_bd_flags & TX_BD_FLAGS_CONN_FAULT) { 9805 if (i>0) 9806 printf("|"); 9807 printf("CONN_FAULT"); 9808 i++; 9809 } 9810 9811 if (txbd->tx_bd_flags & TX_BD_FLAGS_TCP_UDP_CKSUM) { 9812 if (i>0) 9813 printf("|"); 9814 printf("TCP_UDP_CKSUM"); 9815 i++; 9816 } 9817 9818 if (txbd->tx_bd_flags & TX_BD_FLAGS_IP_CKSUM) { 9819 if (i>0) 9820 printf("|"); 9821 printf("IP_CKSUM"); 9822 i++; 9823 } 9824 9825 if (txbd->tx_bd_flags & TX_BD_FLAGS_VLAN_TAG) { 9826 if (i>0) 9827 printf("|"); 9828 printf("VLAN"); 9829 i++; 9830 } 9831 9832 if (txbd->tx_bd_flags & TX_BD_FLAGS_COAL_NOW) { 9833 if (i>0) 9834 printf("|"); 9835 printf("COAL_NOW"); 9836 i++; 9837 } 9838 9839 if (txbd->tx_bd_flags & TX_BD_FLAGS_DONT_GEN_CRC) { 9840 if (i>0) 9841 printf("|"); 9842 printf("DONT_GEN_CRC"); 9843 i++; 9844 } 9845 9846 if (txbd->tx_bd_flags & TX_BD_FLAGS_START) { 9847 if (i>0) 9848 printf("|"); 9849 printf("START"); 9850 i++; 9851 } 9852 9853 if (txbd->tx_bd_flags & TX_BD_FLAGS_END) { 9854 if (i>0) 9855 printf("|"); 9856 printf("END"); 9857 i++; 9858 } 9859 9860 if (txbd->tx_bd_flags & TX_BD_FLAGS_SW_LSO) { 9861 if (i>0) 9862 printf("|"); 9863 printf("LSO"); 9864 i++; 9865 } 9866 9867 if (txbd->tx_bd_flags & TX_BD_FLAGS_SW_OPTION_WORD) { 9868 if (i>0) 9869 printf("|"); 9870 printf("SW_OPTION=%d", ((txbd->tx_bd_flags & 9871 TX_BD_FLAGS_SW_OPTION_WORD) >> 8)); i++; 9872 } 9873 9874 if (txbd->tx_bd_flags & TX_BD_FLAGS_SW_FLAGS) { 9875 if (i>0) 9876 printf("|"); 9877 printf("SW_FLAGS"); 9878 i++; 9879 } 9880 9881 if (txbd->tx_bd_flags & TX_BD_FLAGS_SW_SNAP) { 9882 if (i>0) 9883 printf("|"); 9884 printf("SNAP)"); 9885 } else { 9886 printf(")\n"); 9887 } 9888 } 9889 } 9890 9891 /****************************************************************************/ 9892 /* Prints out a rx_bd structure. */ 9893 /* */ 9894 /* Returns: */ 9895 /* Nothing. */ 9896 /****************************************************************************/ 9897 static __attribute__ ((noinline)) void 9898 bce_dump_rxbd(struct bce_softc *sc, int idx, struct rx_bd *rxbd) 9899 { 9900 if (idx > MAX_RX_BD_ALLOC) 9901 /* Index out of range. */ 9902 BCE_PRINTF("rx_bd[0x%04X]: Invalid rx_bd index!\n", idx); 9903 else if ((idx & USABLE_RX_BD_PER_PAGE) == USABLE_RX_BD_PER_PAGE) 9904 /* RX Chain page pointer. */ 9905 BCE_PRINTF("rx_bd[0x%04X]: haddr = 0x%08X:%08X, chain page " 9906 "pointer\n", idx, rxbd->rx_bd_haddr_hi, 9907 rxbd->rx_bd_haddr_lo); 9908 else 9909 /* Normal rx_bd entry. */ 9910 BCE_PRINTF("rx_bd[0x%04X]: haddr = 0x%08X:%08X, nbytes = " 9911 "0x%08X, flags = 0x%08X\n", idx, rxbd->rx_bd_haddr_hi, 9912 rxbd->rx_bd_haddr_lo, rxbd->rx_bd_len, 9913 rxbd->rx_bd_flags); 9914 } 9915 9916 /****************************************************************************/ 9917 /* Prints out a rx_bd structure in the page chain. */ 9918 /* */ 9919 /* Returns: */ 9920 /* Nothing. */ 9921 /****************************************************************************/ 9922 static __attribute__ ((noinline)) void 9923 bce_dump_pgbd(struct bce_softc *sc, int idx, struct rx_bd *pgbd) 9924 { 9925 if (idx > MAX_PG_BD_ALLOC) 9926 /* Index out of range. */ 9927 BCE_PRINTF("pg_bd[0x%04X]: Invalid pg_bd index!\n", idx); 9928 else if ((idx & USABLE_PG_BD_PER_PAGE) == USABLE_PG_BD_PER_PAGE) 9929 /* Page Chain page pointer. */ 9930 BCE_PRINTF("px_bd[0x%04X]: haddr = 0x%08X:%08X, chain page pointer\n", 9931 idx, pgbd->rx_bd_haddr_hi, pgbd->rx_bd_haddr_lo); 9932 else 9933 /* Normal rx_bd entry. */ 9934 BCE_PRINTF("pg_bd[0x%04X]: haddr = 0x%08X:%08X, nbytes = 0x%08X, " 9935 "flags = 0x%08X\n", idx, 9936 pgbd->rx_bd_haddr_hi, pgbd->rx_bd_haddr_lo, 9937 pgbd->rx_bd_len, pgbd->rx_bd_flags); 9938 } 9939 9940 /****************************************************************************/ 9941 /* Prints out a l2_fhdr structure. */ 9942 /* */ 9943 /* Returns: */ 9944 /* Nothing. */ 9945 /****************************************************************************/ 9946 static __attribute__ ((noinline)) void 9947 bce_dump_l2fhdr(struct bce_softc *sc, int idx, struct l2_fhdr *l2fhdr) 9948 { 9949 BCE_PRINTF("l2_fhdr[0x%04X]: status = 0x%b, " 9950 "pkt_len = %d, vlan = 0x%04x, ip_xsum/hdr_len = 0x%04X, " 9951 "tcp_udp_xsum = 0x%04X\n", idx, 9952 l2fhdr->l2_fhdr_status, BCE_L2FHDR_PRINTFB, 9953 l2fhdr->l2_fhdr_pkt_len, l2fhdr->l2_fhdr_vlan_tag, 9954 l2fhdr->l2_fhdr_ip_xsum, l2fhdr->l2_fhdr_tcp_udp_xsum); 9955 } 9956 9957 /****************************************************************************/ 9958 /* Prints out context memory info. (Only useful for CID 0 to 16.) */ 9959 /* */ 9960 /* Returns: */ 9961 /* Nothing. */ 9962 /****************************************************************************/ 9963 static __attribute__ ((noinline)) void 9964 bce_dump_ctx(struct bce_softc *sc, u16 cid) 9965 { 9966 if (cid > TX_CID) { 9967 BCE_PRINTF(" Unknown CID\n"); 9968 return; 9969 } 9970 9971 BCE_PRINTF( 9972 "----------------------------" 9973 " CTX Data " 9974 "----------------------------\n"); 9975 9976 BCE_PRINTF(" 0x%04X - (CID) Context ID\n", cid); 9977 9978 if (cid == RX_CID) { 9979 BCE_PRINTF(" 0x%08X - (L2CTX_RX_HOST_BDIDX) host rx " 9980 "producer index\n", 9981 CTX_RD(sc, GET_CID_ADDR(cid), BCE_L2CTX_RX_HOST_BDIDX)); 9982 BCE_PRINTF(" 0x%08X - (L2CTX_RX_HOST_BSEQ) host " 9983 "byte sequence\n", CTX_RD(sc, GET_CID_ADDR(cid), 9984 BCE_L2CTX_RX_HOST_BSEQ)); 9985 BCE_PRINTF(" 0x%08X - (L2CTX_RX_NX_BSEQ) h/w byte sequence\n", 9986 CTX_RD(sc, GET_CID_ADDR(cid), BCE_L2CTX_RX_NX_BSEQ)); 9987 BCE_PRINTF(" 0x%08X - (L2CTX_RX_NX_BDHADDR_HI) h/w buffer " 9988 "descriptor address\n", 9989 CTX_RD(sc, GET_CID_ADDR(cid), BCE_L2CTX_RX_NX_BDHADDR_HI)); 9990 BCE_PRINTF(" 0x%08X - (L2CTX_RX_NX_BDHADDR_LO) h/w buffer " 9991 "descriptor address\n", 9992 CTX_RD(sc, GET_CID_ADDR(cid), BCE_L2CTX_RX_NX_BDHADDR_LO)); 9993 BCE_PRINTF(" 0x%08X - (L2CTX_RX_NX_BDIDX) h/w rx consumer " 9994 "index\n", CTX_RD(sc, GET_CID_ADDR(cid), 9995 BCE_L2CTX_RX_NX_BDIDX)); 9996 BCE_PRINTF(" 0x%08X - (L2CTX_RX_HOST_PG_BDIDX) host page " 9997 "producer index\n", CTX_RD(sc, GET_CID_ADDR(cid), 9998 BCE_L2CTX_RX_HOST_PG_BDIDX)); 9999 BCE_PRINTF(" 0x%08X - (L2CTX_RX_PG_BUF_SIZE) host rx_bd/page " 10000 "buffer size\n", CTX_RD(sc, GET_CID_ADDR(cid), 10001 BCE_L2CTX_RX_PG_BUF_SIZE)); 10002 BCE_PRINTF(" 0x%08X - (L2CTX_RX_NX_PG_BDHADDR_HI) h/w page " 10003 "chain address\n", CTX_RD(sc, GET_CID_ADDR(cid), 10004 BCE_L2CTX_RX_NX_PG_BDHADDR_HI)); 10005 BCE_PRINTF(" 0x%08X - (L2CTX_RX_NX_PG_BDHADDR_LO) h/w page " 10006 "chain address\n", CTX_RD(sc, GET_CID_ADDR(cid), 10007 BCE_L2CTX_RX_NX_PG_BDHADDR_LO)); 10008 BCE_PRINTF(" 0x%08X - (L2CTX_RX_NX_PG_BDIDX) h/w page " 10009 "consumer index\n", CTX_RD(sc, GET_CID_ADDR(cid), 10010 BCE_L2CTX_RX_NX_PG_BDIDX)); 10011 } else if (cid == TX_CID) { 10012 if (BCE_CHIP_NUM(sc) == BCE_CHIP_NUM_5709) { 10013 BCE_PRINTF(" 0x%08X - (L2CTX_TX_TYPE_XI) ctx type\n", 10014 CTX_RD(sc, GET_CID_ADDR(cid), 10015 BCE_L2CTX_TX_TYPE_XI)); 10016 BCE_PRINTF(" 0x%08X - (L2CTX_CMD_TX_TYPE_XI) ctx " 10017 "cmd\n", CTX_RD(sc, GET_CID_ADDR(cid), 10018 BCE_L2CTX_TX_CMD_TYPE_XI)); 10019 BCE_PRINTF(" 0x%08X - (L2CTX_TX_TBDR_BDHADDR_HI_XI) " 10020 "h/w buffer descriptor address\n", 10021 CTX_RD(sc, GET_CID_ADDR(cid), 10022 BCE_L2CTX_TX_TBDR_BHADDR_HI_XI)); 10023 BCE_PRINTF(" 0x%08X - (L2CTX_TX_TBDR_BHADDR_LO_XI) " 10024 "h/w buffer descriptor address\n", 10025 CTX_RD(sc, GET_CID_ADDR(cid), 10026 BCE_L2CTX_TX_TBDR_BHADDR_LO_XI)); 10027 BCE_PRINTF(" 0x%08X - (L2CTX_TX_HOST_BIDX_XI) " 10028 "host producer index\n", 10029 CTX_RD(sc, GET_CID_ADDR(cid), 10030 BCE_L2CTX_TX_HOST_BIDX_XI)); 10031 BCE_PRINTF(" 0x%08X - (L2CTX_TX_HOST_BSEQ_XI) " 10032 "host byte sequence\n", 10033 CTX_RD(sc, GET_CID_ADDR(cid), 10034 BCE_L2CTX_TX_HOST_BSEQ_XI)); 10035 } else { 10036 BCE_PRINTF(" 0x%08X - (L2CTX_TX_TYPE) ctx type\n", 10037 CTX_RD(sc, GET_CID_ADDR(cid), BCE_L2CTX_TX_TYPE)); 10038 BCE_PRINTF(" 0x%08X - (L2CTX_TX_CMD_TYPE) ctx cmd\n", 10039 CTX_RD(sc, GET_CID_ADDR(cid), 10040 BCE_L2CTX_TX_CMD_TYPE)); 10041 BCE_PRINTF(" 0x%08X - (L2CTX_TX_TBDR_BDHADDR_HI) " 10042 "h/w buffer descriptor address\n", 10043 CTX_RD(sc, GET_CID_ADDR(cid), 10044 BCE_L2CTX_TX_TBDR_BHADDR_HI)); 10045 BCE_PRINTF(" 0x%08X - (L2CTX_TX_TBDR_BHADDR_LO) " 10046 "h/w buffer descriptor address\n", 10047 CTX_RD(sc, GET_CID_ADDR(cid), 10048 BCE_L2CTX_TX_TBDR_BHADDR_LO)); 10049 BCE_PRINTF(" 0x%08X - (L2CTX_TX_HOST_BIDX) host " 10050 "producer index\n", CTX_RD(sc, GET_CID_ADDR(cid), 10051 BCE_L2CTX_TX_HOST_BIDX)); 10052 BCE_PRINTF(" 0x%08X - (L2CTX_TX_HOST_BSEQ) host byte " 10053 "sequence\n", CTX_RD(sc, GET_CID_ADDR(cid), 10054 BCE_L2CTX_TX_HOST_BSEQ)); 10055 } 10056 } 10057 10058 BCE_PRINTF( 10059 "----------------------------" 10060 " Raw CTX " 10061 "----------------------------\n"); 10062 10063 for (int i = 0x0; i < 0x300; i += 0x10) { 10064 BCE_PRINTF("0x%04X: 0x%08X 0x%08X 0x%08X 0x%08X\n", i, 10065 CTX_RD(sc, GET_CID_ADDR(cid), i), 10066 CTX_RD(sc, GET_CID_ADDR(cid), i + 0x4), 10067 CTX_RD(sc, GET_CID_ADDR(cid), i + 0x8), 10068 CTX_RD(sc, GET_CID_ADDR(cid), i + 0xc)); 10069 } 10070 10071 BCE_PRINTF( 10072 "----------------------------" 10073 "----------------" 10074 "----------------------------\n"); 10075 } 10076 10077 /****************************************************************************/ 10078 /* Prints out the FTQ data. */ 10079 /* */ 10080 /* Returns: */ 10081 /* Nothing. */ 10082 /****************************************************************************/ 10083 static __attribute__ ((noinline)) void 10084 bce_dump_ftqs(struct bce_softc *sc) 10085 { 10086 u32 cmd, ctl, cur_depth, max_depth, valid_cnt, val; 10087 10088 BCE_PRINTF( 10089 "----------------------------" 10090 " FTQ Data " 10091 "----------------------------\n"); 10092 10093 BCE_PRINTF(" FTQ Command Control Depth_Now " 10094 "Max_Depth Valid_Cnt \n"); 10095 BCE_PRINTF(" ------- ---------- ---------- ---------- " 10096 "---------- ----------\n"); 10097 10098 /* Setup the generic statistic counters for the FTQ valid count. */ 10099 val = (BCE_HC_STAT_GEN_SEL_0_GEN_SEL_0_RV2PPQ_VALID_CNT << 24) | 10100 (BCE_HC_STAT_GEN_SEL_0_GEN_SEL_0_RXPCQ_VALID_CNT << 16) | 10101 (BCE_HC_STAT_GEN_SEL_0_GEN_SEL_0_RXPQ_VALID_CNT << 8) | 10102 (BCE_HC_STAT_GEN_SEL_0_GEN_SEL_0_RLUPQ_VALID_CNT); 10103 REG_WR(sc, BCE_HC_STAT_GEN_SEL_0, val); 10104 10105 val = (BCE_HC_STAT_GEN_SEL_0_GEN_SEL_0_TSCHQ_VALID_CNT << 24) | 10106 (BCE_HC_STAT_GEN_SEL_0_GEN_SEL_0_RDMAQ_VALID_CNT << 16) | 10107 (BCE_HC_STAT_GEN_SEL_0_GEN_SEL_0_RV2PTQ_VALID_CNT << 8) | 10108 (BCE_HC_STAT_GEN_SEL_0_GEN_SEL_0_RV2PMQ_VALID_CNT); 10109 REG_WR(sc, BCE_HC_STAT_GEN_SEL_1, val); 10110 10111 val = (BCE_HC_STAT_GEN_SEL_0_GEN_SEL_0_TPATQ_VALID_CNT << 24) | 10112 (BCE_HC_STAT_GEN_SEL_0_GEN_SEL_0_TDMAQ_VALID_CNT << 16) | 10113 (BCE_HC_STAT_GEN_SEL_0_GEN_SEL_0_TXPQ_VALID_CNT << 8) | 10114 (BCE_HC_STAT_GEN_SEL_0_GEN_SEL_0_TBDRQ_VALID_CNT); 10115 REG_WR(sc, BCE_HC_STAT_GEN_SEL_2, val); 10116 10117 val = (BCE_HC_STAT_GEN_SEL_0_GEN_SEL_0_COMQ_VALID_CNT << 24) | 10118 (BCE_HC_STAT_GEN_SEL_0_GEN_SEL_0_COMTQ_VALID_CNT << 16) | 10119 (BCE_HC_STAT_GEN_SEL_0_GEN_SEL_0_COMXQ_VALID_CNT << 8) | 10120 (BCE_HC_STAT_GEN_SEL_0_GEN_SEL_0_TASQ_VALID_CNT); 10121 REG_WR(sc, BCE_HC_STAT_GEN_SEL_3, val); 10122 10123 /* Input queue to the Receive Lookup state machine */ 10124 cmd = REG_RD(sc, BCE_RLUP_FTQ_CMD); 10125 ctl = REG_RD(sc, BCE_RLUP_FTQ_CTL); 10126 cur_depth = (ctl & BCE_RLUP_FTQ_CTL_CUR_DEPTH) >> 22; 10127 max_depth = (ctl & BCE_RLUP_FTQ_CTL_MAX_DEPTH) >> 12; 10128 valid_cnt = REG_RD(sc, BCE_HC_STAT_GEN_STAT0); 10129 BCE_PRINTF(" RLUP 0x%08X 0x%08X 0x%08X 0x%08X 0x%08X\n", 10130 cmd, ctl, cur_depth, max_depth, valid_cnt); 10131 10132 /* Input queue to the Receive Processor */ 10133 cmd = REG_RD_IND(sc, BCE_RXP_FTQ_CMD); 10134 ctl = REG_RD_IND(sc, BCE_RXP_FTQ_CTL); 10135 cur_depth = (ctl & BCE_RXP_FTQ_CTL_CUR_DEPTH) >> 22; 10136 max_depth = (ctl & BCE_RXP_FTQ_CTL_MAX_DEPTH) >> 12; 10137 valid_cnt = REG_RD(sc, BCE_HC_STAT_GEN_STAT1); 10138 BCE_PRINTF(" RXP 0x%08X 0x%08X 0x%08X 0x%08X 0x%08X\n", 10139 cmd, ctl, cur_depth, max_depth, valid_cnt); 10140 10141 /* Input queue to the Recevie Processor */ 10142 cmd = REG_RD_IND(sc, BCE_RXP_CFTQ_CMD); 10143 ctl = REG_RD_IND(sc, BCE_RXP_CFTQ_CTL); 10144 cur_depth = (ctl & BCE_RXP_CFTQ_CTL_CUR_DEPTH) >> 22; 10145 max_depth = (ctl & BCE_RXP_CFTQ_CTL_MAX_DEPTH) >> 12; 10146 valid_cnt = REG_RD(sc, BCE_HC_STAT_GEN_STAT2); 10147 BCE_PRINTF(" RXPC 0x%08X 0x%08X 0x%08X 0x%08X 0x%08X\n", 10148 cmd, ctl, cur_depth, max_depth, valid_cnt); 10149 10150 /* Input queue to the Receive Virtual to Physical state machine */ 10151 cmd = REG_RD(sc, BCE_RV2P_PFTQ_CMD); 10152 ctl = REG_RD(sc, BCE_RV2P_PFTQ_CTL); 10153 cur_depth = (ctl & BCE_RV2P_PFTQ_CTL_CUR_DEPTH) >> 22; 10154 max_depth = (ctl & BCE_RV2P_PFTQ_CTL_MAX_DEPTH) >> 12; 10155 valid_cnt = REG_RD(sc, BCE_HC_STAT_GEN_STAT3); 10156 BCE_PRINTF(" RV2PP 0x%08X 0x%08X 0x%08X 0x%08X 0x%08X\n", 10157 cmd, ctl, cur_depth, max_depth, valid_cnt); 10158 10159 /* Input queue to the Recevie Virtual to Physical state machine */ 10160 cmd = REG_RD(sc, BCE_RV2P_MFTQ_CMD); 10161 ctl = REG_RD(sc, BCE_RV2P_MFTQ_CTL); 10162 cur_depth = (ctl & BCE_RV2P_MFTQ_CTL_CUR_DEPTH) >> 22; 10163 max_depth = (ctl & BCE_RV2P_MFTQ_CTL_MAX_DEPTH) >> 12; 10164 valid_cnt = REG_RD(sc, BCE_HC_STAT_GEN_STAT4); 10165 BCE_PRINTF(" RV2PM 0x%08X 0x%08X 0x%08X 0x%08X 0x%08X\n", 10166 cmd, ctl, cur_depth, max_depth, valid_cnt); 10167 10168 /* Input queue to the Receive Virtual to Physical state machine */ 10169 cmd = REG_RD(sc, BCE_RV2P_TFTQ_CMD); 10170 ctl = REG_RD(sc, BCE_RV2P_TFTQ_CTL); 10171 cur_depth = (ctl & BCE_RV2P_TFTQ_CTL_CUR_DEPTH) >> 22; 10172 max_depth = (ctl & BCE_RV2P_TFTQ_CTL_MAX_DEPTH) >> 12; 10173 valid_cnt = REG_RD(sc, BCE_HC_STAT_GEN_STAT5); 10174 BCE_PRINTF(" RV2PT 0x%08X 0x%08X 0x%08X 0x%08X 0x%08X\n", 10175 cmd, ctl, cur_depth, max_depth, valid_cnt); 10176 10177 /* Input queue to the Receive DMA state machine */ 10178 cmd = REG_RD(sc, BCE_RDMA_FTQ_CMD); 10179 ctl = REG_RD(sc, BCE_RDMA_FTQ_CTL); 10180 cur_depth = (ctl & BCE_RDMA_FTQ_CTL_CUR_DEPTH) >> 22; 10181 max_depth = (ctl & BCE_RDMA_FTQ_CTL_MAX_DEPTH) >> 12; 10182 valid_cnt = REG_RD(sc, BCE_HC_STAT_GEN_STAT6); 10183 BCE_PRINTF(" RDMA 0x%08X 0x%08X 0x%08X 0x%08X 0x%08X\n", 10184 cmd, ctl, cur_depth, max_depth, valid_cnt); 10185 10186 /* Input queue to the Transmit Scheduler state machine */ 10187 cmd = REG_RD(sc, BCE_TSCH_FTQ_CMD); 10188 ctl = REG_RD(sc, BCE_TSCH_FTQ_CTL); 10189 cur_depth = (ctl & BCE_TSCH_FTQ_CTL_CUR_DEPTH) >> 22; 10190 max_depth = (ctl & BCE_TSCH_FTQ_CTL_MAX_DEPTH) >> 12; 10191 valid_cnt = REG_RD(sc, BCE_HC_STAT_GEN_STAT7); 10192 BCE_PRINTF(" TSCH 0x%08X 0x%08X 0x%08X 0x%08X 0x%08X\n", 10193 cmd, ctl, cur_depth, max_depth, valid_cnt); 10194 10195 /* Input queue to the Transmit Buffer Descriptor state machine */ 10196 cmd = REG_RD(sc, BCE_TBDR_FTQ_CMD); 10197 ctl = REG_RD(sc, BCE_TBDR_FTQ_CTL); 10198 cur_depth = (ctl & BCE_TBDR_FTQ_CTL_CUR_DEPTH) >> 22; 10199 max_depth = (ctl & BCE_TBDR_FTQ_CTL_MAX_DEPTH) >> 12; 10200 valid_cnt = REG_RD(sc, BCE_HC_STAT_GEN_STAT8); 10201 BCE_PRINTF(" TBDR 0x%08X 0x%08X 0x%08X 0x%08X 0x%08X\n", 10202 cmd, ctl, cur_depth, max_depth, valid_cnt); 10203 10204 /* Input queue to the Transmit Processor */ 10205 cmd = REG_RD_IND(sc, BCE_TXP_FTQ_CMD); 10206 ctl = REG_RD_IND(sc, BCE_TXP_FTQ_CTL); 10207 cur_depth = (ctl & BCE_TXP_FTQ_CTL_CUR_DEPTH) >> 22; 10208 max_depth = (ctl & BCE_TXP_FTQ_CTL_MAX_DEPTH) >> 12; 10209 valid_cnt = REG_RD(sc, BCE_HC_STAT_GEN_STAT9); 10210 BCE_PRINTF(" TXP 0x%08X 0x%08X 0x%08X 0x%08X 0x%08X\n", 10211 cmd, ctl, cur_depth, max_depth, valid_cnt); 10212 10213 /* Input queue to the Transmit DMA state machine */ 10214 cmd = REG_RD(sc, BCE_TDMA_FTQ_CMD); 10215 ctl = REG_RD(sc, BCE_TDMA_FTQ_CTL); 10216 cur_depth = (ctl & BCE_TDMA_FTQ_CTL_CUR_DEPTH) >> 22; 10217 max_depth = (ctl & BCE_TDMA_FTQ_CTL_MAX_DEPTH) >> 12; 10218 valid_cnt = REG_RD(sc, BCE_HC_STAT_GEN_STAT10); 10219 BCE_PRINTF(" TDMA 0x%08X 0x%08X 0x%08X 0x%08X 0x%08X\n", 10220 cmd, ctl, cur_depth, max_depth, valid_cnt); 10221 10222 /* Input queue to the Transmit Patch-Up Processor */ 10223 cmd = REG_RD_IND(sc, BCE_TPAT_FTQ_CMD); 10224 ctl = REG_RD_IND(sc, BCE_TPAT_FTQ_CTL); 10225 cur_depth = (ctl & BCE_TPAT_FTQ_CTL_CUR_DEPTH) >> 22; 10226 max_depth = (ctl & BCE_TPAT_FTQ_CTL_MAX_DEPTH) >> 12; 10227 valid_cnt = REG_RD(sc, BCE_HC_STAT_GEN_STAT11); 10228 BCE_PRINTF(" TPAT 0x%08X 0x%08X 0x%08X 0x%08X 0x%08X\n", 10229 cmd, ctl, cur_depth, max_depth, valid_cnt); 10230 10231 /* Input queue to the Transmit Assembler state machine */ 10232 cmd = REG_RD_IND(sc, BCE_TAS_FTQ_CMD); 10233 ctl = REG_RD_IND(sc, BCE_TAS_FTQ_CTL); 10234 cur_depth = (ctl & BCE_TAS_FTQ_CTL_CUR_DEPTH) >> 22; 10235 max_depth = (ctl & BCE_TAS_FTQ_CTL_MAX_DEPTH) >> 12; 10236 valid_cnt = REG_RD(sc, BCE_HC_STAT_GEN_STAT12); 10237 BCE_PRINTF(" TAS 0x%08X 0x%08X 0x%08X 0x%08X 0x%08X\n", 10238 cmd, ctl, cur_depth, max_depth, valid_cnt); 10239 10240 /* Input queue to the Completion Processor */ 10241 cmd = REG_RD_IND(sc, BCE_COM_COMXQ_FTQ_CMD); 10242 ctl = REG_RD_IND(sc, BCE_COM_COMXQ_FTQ_CTL); 10243 cur_depth = (ctl & BCE_COM_COMXQ_FTQ_CTL_CUR_DEPTH) >> 22; 10244 max_depth = (ctl & BCE_COM_COMXQ_FTQ_CTL_MAX_DEPTH) >> 12; 10245 valid_cnt = REG_RD(sc, BCE_HC_STAT_GEN_STAT13); 10246 BCE_PRINTF(" COMX 0x%08X 0x%08X 0x%08X 0x%08X 0x%08X\n", 10247 cmd, ctl, cur_depth, max_depth, valid_cnt); 10248 10249 /* Input queue to the Completion Processor */ 10250 cmd = REG_RD_IND(sc, BCE_COM_COMTQ_FTQ_CMD); 10251 ctl = REG_RD_IND(sc, BCE_COM_COMTQ_FTQ_CTL); 10252 cur_depth = (ctl & BCE_COM_COMTQ_FTQ_CTL_CUR_DEPTH) >> 22; 10253 max_depth = (ctl & BCE_COM_COMTQ_FTQ_CTL_MAX_DEPTH) >> 12; 10254 valid_cnt = REG_RD(sc, BCE_HC_STAT_GEN_STAT14); 10255 BCE_PRINTF(" COMT 0x%08X 0x%08X 0x%08X 0x%08X 0x%08X\n", 10256 cmd, ctl, cur_depth, max_depth, valid_cnt); 10257 10258 /* Input queue to the Completion Processor */ 10259 cmd = REG_RD_IND(sc, BCE_COM_COMQ_FTQ_CMD); 10260 ctl = REG_RD_IND(sc, BCE_COM_COMQ_FTQ_CTL); 10261 cur_depth = (ctl & BCE_COM_COMQ_FTQ_CTL_CUR_DEPTH) >> 22; 10262 max_depth = (ctl & BCE_COM_COMQ_FTQ_CTL_MAX_DEPTH) >> 12; 10263 valid_cnt = REG_RD(sc, BCE_HC_STAT_GEN_STAT15); 10264 BCE_PRINTF(" COMX 0x%08X 0x%08X 0x%08X 0x%08X 0x%08X\n", 10265 cmd, ctl, cur_depth, max_depth, valid_cnt); 10266 10267 /* Setup the generic statistic counters for the FTQ valid count. */ 10268 val = (BCE_HC_STAT_GEN_SEL_0_GEN_SEL_0_CSQ_VALID_CNT << 16) | 10269 (BCE_HC_STAT_GEN_SEL_0_GEN_SEL_0_CPQ_VALID_CNT << 8) | 10270 (BCE_HC_STAT_GEN_SEL_0_GEN_SEL_0_MGMQ_VALID_CNT); 10271 10272 if (BCE_CHIP_NUM(sc) == BCE_CHIP_NUM_5709) 10273 val = val | 10274 (BCE_HC_STAT_GEN_SEL_0_GEN_SEL_0_RV2PCSQ_VALID_CNT_XI << 10275 24); 10276 REG_WR(sc, BCE_HC_STAT_GEN_SEL_0, val); 10277 10278 /* Input queue to the Management Control Processor */ 10279 cmd = REG_RD_IND(sc, BCE_MCP_MCPQ_FTQ_CMD); 10280 ctl = REG_RD_IND(sc, BCE_MCP_MCPQ_FTQ_CTL); 10281 cur_depth = (ctl & BCE_MCP_MCPQ_FTQ_CTL_CUR_DEPTH) >> 22; 10282 max_depth = (ctl & BCE_MCP_MCPQ_FTQ_CTL_MAX_DEPTH) >> 12; 10283 valid_cnt = REG_RD(sc, BCE_HC_STAT_GEN_STAT0); 10284 BCE_PRINTF(" MCP 0x%08X 0x%08X 0x%08X 0x%08X 0x%08X\n", 10285 cmd, ctl, cur_depth, max_depth, valid_cnt); 10286 10287 /* Input queue to the Command Processor */ 10288 cmd = REG_RD_IND(sc, BCE_CP_CPQ_FTQ_CMD); 10289 ctl = REG_RD_IND(sc, BCE_CP_CPQ_FTQ_CTL); 10290 cur_depth = (ctl & BCE_CP_CPQ_FTQ_CTL_CUR_DEPTH) >> 22; 10291 max_depth = (ctl & BCE_CP_CPQ_FTQ_CTL_MAX_DEPTH) >> 12; 10292 valid_cnt = REG_RD(sc, BCE_HC_STAT_GEN_STAT1); 10293 BCE_PRINTF(" CP 0x%08X 0x%08X 0x%08X 0x%08X 0x%08X\n", 10294 cmd, ctl, cur_depth, max_depth, valid_cnt); 10295 10296 /* Input queue to the Completion Scheduler state machine */ 10297 cmd = REG_RD(sc, BCE_CSCH_CH_FTQ_CMD); 10298 ctl = REG_RD(sc, BCE_CSCH_CH_FTQ_CTL); 10299 cur_depth = (ctl & BCE_CSCH_CH_FTQ_CTL_CUR_DEPTH) >> 22; 10300 max_depth = (ctl & BCE_CSCH_CH_FTQ_CTL_MAX_DEPTH) >> 12; 10301 valid_cnt = REG_RD(sc, BCE_HC_STAT_GEN_STAT2); 10302 BCE_PRINTF(" CS 0x%08X 0x%08X 0x%08X 0x%08X 0x%08X\n", 10303 cmd, ctl, cur_depth, max_depth, valid_cnt); 10304 10305 if (BCE_CHIP_NUM(sc) == BCE_CHIP_NUM_5709) { 10306 /* Input queue to the RV2P Command Scheduler */ 10307 cmd = REG_RD(sc, BCE_RV2PCSR_FTQ_CMD); 10308 ctl = REG_RD(sc, BCE_RV2PCSR_FTQ_CTL); 10309 cur_depth = (ctl & 0xFFC00000) >> 22; 10310 max_depth = (ctl & 0x003FF000) >> 12; 10311 valid_cnt = REG_RD(sc, BCE_HC_STAT_GEN_STAT3); 10312 BCE_PRINTF(" RV2PCSR 0x%08X 0x%08X 0x%08X 0x%08X 0x%08X\n", 10313 cmd, ctl, cur_depth, max_depth, valid_cnt); 10314 } 10315 10316 BCE_PRINTF( 10317 "----------------------------" 10318 "----------------" 10319 "----------------------------\n"); 10320 } 10321 10322 /****************************************************************************/ 10323 /* Prints out the TX chain. */ 10324 /* */ 10325 /* Returns: */ 10326 /* Nothing. */ 10327 /****************************************************************************/ 10328 static __attribute__ ((noinline)) void 10329 bce_dump_tx_chain(struct bce_softc *sc, u16 tx_prod, int count) 10330 { 10331 struct tx_bd *txbd; 10332 10333 /* First some info about the tx_bd chain structure. */ 10334 BCE_PRINTF( 10335 "----------------------------" 10336 " tx_bd chain " 10337 "----------------------------\n"); 10338 10339 BCE_PRINTF("page size = 0x%08X, tx chain pages = 0x%08X\n", 10340 (u32) BCM_PAGE_SIZE, (u32) sc->tx_pages); 10341 BCE_PRINTF("tx_bd per page = 0x%08X, usable tx_bd per page = 0x%08X\n", 10342 (u32) TOTAL_TX_BD_PER_PAGE, (u32) USABLE_TX_BD_PER_PAGE); 10343 BCE_PRINTF("total tx_bd = 0x%08X\n", (u32) TOTAL_TX_BD_ALLOC); 10344 10345 BCE_PRINTF( 10346 "----------------------------" 10347 " tx_bd data " 10348 "----------------------------\n"); 10349 10350 /* Now print out a decoded list of TX buffer descriptors. */ 10351 for (int i = 0; i < count; i++) { 10352 txbd = &sc->tx_bd_chain[TX_PAGE(tx_prod)][TX_IDX(tx_prod)]; 10353 bce_dump_txbd(sc, tx_prod, txbd); 10354 tx_prod++; 10355 } 10356 10357 BCE_PRINTF( 10358 "----------------------------" 10359 "----------------" 10360 "----------------------------\n"); 10361 } 10362 10363 /****************************************************************************/ 10364 /* Prints out the RX chain. */ 10365 /* */ 10366 /* Returns: */ 10367 /* Nothing. */ 10368 /****************************************************************************/ 10369 static __attribute__ ((noinline)) void 10370 bce_dump_rx_bd_chain(struct bce_softc *sc, u16 rx_prod, int count) 10371 { 10372 struct rx_bd *rxbd; 10373 10374 /* First some info about the rx_bd chain structure. */ 10375 BCE_PRINTF( 10376 "----------------------------" 10377 " rx_bd chain " 10378 "----------------------------\n"); 10379 10380 BCE_PRINTF("page size = 0x%08X, rx chain pages = 0x%08X\n", 10381 (u32) BCM_PAGE_SIZE, (u32) sc->rx_pages); 10382 10383 BCE_PRINTF("rx_bd per page = 0x%08X, usable rx_bd per page = 0x%08X\n", 10384 (u32) TOTAL_RX_BD_PER_PAGE, (u32) USABLE_RX_BD_PER_PAGE); 10385 10386 BCE_PRINTF("total rx_bd = 0x%08X\n", (u32) TOTAL_RX_BD_ALLOC); 10387 10388 BCE_PRINTF( 10389 "----------------------------" 10390 " rx_bd data " 10391 "----------------------------\n"); 10392 10393 /* Now print out the rx_bd's themselves. */ 10394 for (int i = 0; i < count; i++) { 10395 rxbd = &sc->rx_bd_chain[RX_PAGE(rx_prod)][RX_IDX(rx_prod)]; 10396 bce_dump_rxbd(sc, rx_prod, rxbd); 10397 rx_prod = RX_CHAIN_IDX(rx_prod + 1); 10398 } 10399 10400 BCE_PRINTF( 10401 "----------------------------" 10402 "----------------" 10403 "----------------------------\n"); 10404 } 10405 10406 /****************************************************************************/ 10407 /* Prints out the page chain. */ 10408 /* */ 10409 /* Returns: */ 10410 /* Nothing. */ 10411 /****************************************************************************/ 10412 static __attribute__ ((noinline)) void 10413 bce_dump_pg_chain(struct bce_softc *sc, u16 pg_prod, int count) 10414 { 10415 struct rx_bd *pgbd; 10416 10417 /* First some info about the page chain structure. */ 10418 BCE_PRINTF( 10419 "----------------------------" 10420 " page chain " 10421 "----------------------------\n"); 10422 10423 BCE_PRINTF("page size = 0x%08X, pg chain pages = 0x%08X\n", 10424 (u32) BCM_PAGE_SIZE, (u32) sc->pg_pages); 10425 10426 BCE_PRINTF("rx_bd per page = 0x%08X, usable rx_bd per page = 0x%08X\n", 10427 (u32) TOTAL_PG_BD_PER_PAGE, (u32) USABLE_PG_BD_PER_PAGE); 10428 10429 BCE_PRINTF("total pg_bd = 0x%08X\n", (u32) TOTAL_PG_BD_ALLOC); 10430 10431 BCE_PRINTF( 10432 "----------------------------" 10433 " page data " 10434 "----------------------------\n"); 10435 10436 /* Now print out the rx_bd's themselves. */ 10437 for (int i = 0; i < count; i++) { 10438 pgbd = &sc->pg_bd_chain[PG_PAGE(pg_prod)][PG_IDX(pg_prod)]; 10439 bce_dump_pgbd(sc, pg_prod, pgbd); 10440 pg_prod = PG_CHAIN_IDX(pg_prod + 1); 10441 } 10442 10443 BCE_PRINTF( 10444 "----------------------------" 10445 "----------------" 10446 "----------------------------\n"); 10447 } 10448 10449 #define BCE_PRINT_RX_CONS(arg) \ 10450 if (sblk->status_rx_quick_consumer_index##arg) \ 10451 BCE_PRINTF("0x%04X(0x%04X) - rx_quick_consumer_index%d\n", \ 10452 sblk->status_rx_quick_consumer_index##arg, (u16) \ 10453 RX_CHAIN_IDX(sblk->status_rx_quick_consumer_index##arg), \ 10454 arg); 10455 10456 #define BCE_PRINT_TX_CONS(arg) \ 10457 if (sblk->status_tx_quick_consumer_index##arg) \ 10458 BCE_PRINTF("0x%04X(0x%04X) - tx_quick_consumer_index%d\n", \ 10459 sblk->status_tx_quick_consumer_index##arg, (u16) \ 10460 TX_CHAIN_IDX(sblk->status_tx_quick_consumer_index##arg), \ 10461 arg); 10462 10463 /****************************************************************************/ 10464 /* Prints out the status block from host memory. */ 10465 /* */ 10466 /* Returns: */ 10467 /* Nothing. */ 10468 /****************************************************************************/ 10469 static __attribute__ ((noinline)) void 10470 bce_dump_status_block(struct bce_softc *sc) 10471 { 10472 struct status_block *sblk; 10473 10474 bus_dmamap_sync(sc->status_tag, sc->status_map, BUS_DMASYNC_POSTREAD); 10475 10476 sblk = sc->status_block; 10477 10478 BCE_PRINTF( 10479 "----------------------------" 10480 " Status Block " 10481 "----------------------------\n"); 10482 10483 /* Theses indices are used for normal L2 drivers. */ 10484 BCE_PRINTF(" 0x%08X - attn_bits\n", 10485 sblk->status_attn_bits); 10486 10487 BCE_PRINTF(" 0x%08X - attn_bits_ack\n", 10488 sblk->status_attn_bits_ack); 10489 10490 BCE_PRINT_RX_CONS(0); 10491 BCE_PRINT_TX_CONS(0) 10492 10493 BCE_PRINTF(" 0x%04X - status_idx\n", sblk->status_idx); 10494 10495 /* Theses indices are not used for normal L2 drivers. */ 10496 BCE_PRINT_RX_CONS(1); BCE_PRINT_RX_CONS(2); BCE_PRINT_RX_CONS(3); 10497 BCE_PRINT_RX_CONS(4); BCE_PRINT_RX_CONS(5); BCE_PRINT_RX_CONS(6); 10498 BCE_PRINT_RX_CONS(7); BCE_PRINT_RX_CONS(8); BCE_PRINT_RX_CONS(9); 10499 BCE_PRINT_RX_CONS(10); BCE_PRINT_RX_CONS(11); BCE_PRINT_RX_CONS(12); 10500 BCE_PRINT_RX_CONS(13); BCE_PRINT_RX_CONS(14); BCE_PRINT_RX_CONS(15); 10501 10502 BCE_PRINT_TX_CONS(1); BCE_PRINT_TX_CONS(2); BCE_PRINT_TX_CONS(3); 10503 10504 if (sblk->status_completion_producer_index || 10505 sblk->status_cmd_consumer_index) 10506 BCE_PRINTF("com_prod = 0x%08X, cmd_cons = 0x%08X\n", 10507 sblk->status_completion_producer_index, 10508 sblk->status_cmd_consumer_index); 10509 10510 BCE_PRINTF( 10511 "----------------------------" 10512 "----------------" 10513 "----------------------------\n"); 10514 } 10515 10516 #define BCE_PRINT_64BIT_STAT(arg) \ 10517 if (sblk->arg##_lo || sblk->arg##_hi) \ 10518 BCE_PRINTF("0x%08X:%08X : %s\n", sblk->arg##_hi, \ 10519 sblk->arg##_lo, #arg); 10520 10521 #define BCE_PRINT_32BIT_STAT(arg) \ 10522 if (sblk->arg) \ 10523 BCE_PRINTF(" 0x%08X : %s\n", \ 10524 sblk->arg, #arg); 10525 10526 /****************************************************************************/ 10527 /* Prints out the statistics block from host memory. */ 10528 /* */ 10529 /* Returns: */ 10530 /* Nothing. */ 10531 /****************************************************************************/ 10532 static __attribute__ ((noinline)) void 10533 bce_dump_stats_block(struct bce_softc *sc) 10534 { 10535 struct statistics_block *sblk; 10536 10537 bus_dmamap_sync(sc->stats_tag, sc->stats_map, BUS_DMASYNC_POSTREAD); 10538 10539 sblk = sc->stats_block; 10540 10541 BCE_PRINTF( 10542 "---------------" 10543 " Stats Block (All Stats Not Shown Are 0) " 10544 "---------------\n"); 10545 10546 BCE_PRINT_64BIT_STAT(stat_IfHCInOctets); 10547 BCE_PRINT_64BIT_STAT(stat_IfHCInBadOctets); 10548 BCE_PRINT_64BIT_STAT(stat_IfHCOutOctets); 10549 BCE_PRINT_64BIT_STAT(stat_IfHCOutBadOctets); 10550 BCE_PRINT_64BIT_STAT(stat_IfHCInUcastPkts); 10551 BCE_PRINT_64BIT_STAT(stat_IfHCInBroadcastPkts); 10552 BCE_PRINT_64BIT_STAT(stat_IfHCInMulticastPkts); 10553 BCE_PRINT_64BIT_STAT(stat_IfHCOutUcastPkts); 10554 BCE_PRINT_64BIT_STAT(stat_IfHCOutBroadcastPkts); 10555 BCE_PRINT_64BIT_STAT(stat_IfHCOutMulticastPkts); 10556 BCE_PRINT_32BIT_STAT( 10557 stat_emac_tx_stat_dot3statsinternalmactransmiterrors); 10558 BCE_PRINT_32BIT_STAT(stat_Dot3StatsCarrierSenseErrors); 10559 BCE_PRINT_32BIT_STAT(stat_Dot3StatsFCSErrors); 10560 BCE_PRINT_32BIT_STAT(stat_Dot3StatsAlignmentErrors); 10561 BCE_PRINT_32BIT_STAT(stat_Dot3StatsSingleCollisionFrames); 10562 BCE_PRINT_32BIT_STAT(stat_Dot3StatsMultipleCollisionFrames); 10563 BCE_PRINT_32BIT_STAT(stat_Dot3StatsDeferredTransmissions); 10564 BCE_PRINT_32BIT_STAT(stat_Dot3StatsExcessiveCollisions); 10565 BCE_PRINT_32BIT_STAT(stat_Dot3StatsLateCollisions); 10566 BCE_PRINT_32BIT_STAT(stat_EtherStatsCollisions); 10567 BCE_PRINT_32BIT_STAT(stat_EtherStatsFragments); 10568 BCE_PRINT_32BIT_STAT(stat_EtherStatsJabbers); 10569 BCE_PRINT_32BIT_STAT(stat_EtherStatsUndersizePkts); 10570 BCE_PRINT_32BIT_STAT(stat_EtherStatsOversizePkts); 10571 BCE_PRINT_32BIT_STAT(stat_EtherStatsPktsRx64Octets); 10572 BCE_PRINT_32BIT_STAT(stat_EtherStatsPktsRx65Octetsto127Octets); 10573 BCE_PRINT_32BIT_STAT(stat_EtherStatsPktsRx128Octetsto255Octets); 10574 BCE_PRINT_32BIT_STAT(stat_EtherStatsPktsRx256Octetsto511Octets); 10575 BCE_PRINT_32BIT_STAT(stat_EtherStatsPktsRx512Octetsto1023Octets); 10576 BCE_PRINT_32BIT_STAT(stat_EtherStatsPktsRx1024Octetsto1522Octets); 10577 BCE_PRINT_32BIT_STAT(stat_EtherStatsPktsRx1523Octetsto9022Octets); 10578 BCE_PRINT_32BIT_STAT(stat_EtherStatsPktsTx64Octets); 10579 BCE_PRINT_32BIT_STAT(stat_EtherStatsPktsTx65Octetsto127Octets); 10580 BCE_PRINT_32BIT_STAT(stat_EtherStatsPktsTx128Octetsto255Octets); 10581 BCE_PRINT_32BIT_STAT(stat_EtherStatsPktsTx256Octetsto511Octets); 10582 BCE_PRINT_32BIT_STAT(stat_EtherStatsPktsTx512Octetsto1023Octets); 10583 BCE_PRINT_32BIT_STAT(stat_EtherStatsPktsTx1024Octetsto1522Octets); 10584 BCE_PRINT_32BIT_STAT(stat_EtherStatsPktsTx1523Octetsto9022Octets); 10585 BCE_PRINT_32BIT_STAT(stat_XonPauseFramesReceived); 10586 BCE_PRINT_32BIT_STAT(stat_XoffPauseFramesReceived); 10587 BCE_PRINT_32BIT_STAT(stat_OutXonSent); 10588 BCE_PRINT_32BIT_STAT(stat_OutXoffSent); 10589 BCE_PRINT_32BIT_STAT(stat_FlowControlDone); 10590 BCE_PRINT_32BIT_STAT(stat_MacControlFramesReceived); 10591 BCE_PRINT_32BIT_STAT(stat_XoffStateEntered); 10592 BCE_PRINT_32BIT_STAT(stat_IfInFramesL2FilterDiscards); 10593 BCE_PRINT_32BIT_STAT(stat_IfInRuleCheckerDiscards); 10594 BCE_PRINT_32BIT_STAT(stat_IfInFTQDiscards); 10595 BCE_PRINT_32BIT_STAT(stat_IfInMBUFDiscards); 10596 BCE_PRINT_32BIT_STAT(stat_IfInRuleCheckerP4Hit); 10597 BCE_PRINT_32BIT_STAT(stat_CatchupInRuleCheckerDiscards); 10598 BCE_PRINT_32BIT_STAT(stat_CatchupInFTQDiscards); 10599 BCE_PRINT_32BIT_STAT(stat_CatchupInMBUFDiscards); 10600 BCE_PRINT_32BIT_STAT(stat_CatchupInRuleCheckerP4Hit); 10601 10602 BCE_PRINTF( 10603 "----------------------------" 10604 "----------------" 10605 "----------------------------\n"); 10606 } 10607 10608 /****************************************************************************/ 10609 /* Prints out a summary of the driver state. */ 10610 /* */ 10611 /* Returns: */ 10612 /* Nothing. */ 10613 /****************************************************************************/ 10614 static __attribute__ ((noinline)) void 10615 bce_dump_driver_state(struct bce_softc *sc) 10616 { 10617 u32 val_hi, val_lo; 10618 10619 BCE_PRINTF( 10620 "-----------------------------" 10621 " Driver State " 10622 "-----------------------------\n"); 10623 10624 val_hi = BCE_ADDR_HI(sc); 10625 val_lo = BCE_ADDR_LO(sc); 10626 BCE_PRINTF("0x%08X:%08X - (sc) driver softc structure virtual " 10627 "address\n", val_hi, val_lo); 10628 10629 val_hi = BCE_ADDR_HI(sc->bce_vhandle); 10630 val_lo = BCE_ADDR_LO(sc->bce_vhandle); 10631 BCE_PRINTF("0x%08X:%08X - (sc->bce_vhandle) PCI BAR virtual " 10632 "address\n", val_hi, val_lo); 10633 10634 val_hi = BCE_ADDR_HI(sc->status_block); 10635 val_lo = BCE_ADDR_LO(sc->status_block); 10636 BCE_PRINTF("0x%08X:%08X - (sc->status_block) status block " 10637 "virtual address\n", val_hi, val_lo); 10638 10639 val_hi = BCE_ADDR_HI(sc->stats_block); 10640 val_lo = BCE_ADDR_LO(sc->stats_block); 10641 BCE_PRINTF("0x%08X:%08X - (sc->stats_block) statistics block " 10642 "virtual address\n", val_hi, val_lo); 10643 10644 val_hi = BCE_ADDR_HI(sc->tx_bd_chain); 10645 val_lo = BCE_ADDR_LO(sc->tx_bd_chain); 10646 BCE_PRINTF("0x%08X:%08X - (sc->tx_bd_chain) tx_bd chain " 10647 "virtual address\n", val_hi, val_lo); 10648 10649 val_hi = BCE_ADDR_HI(sc->rx_bd_chain); 10650 val_lo = BCE_ADDR_LO(sc->rx_bd_chain); 10651 BCE_PRINTF("0x%08X:%08X - (sc->rx_bd_chain) rx_bd chain " 10652 "virtual address\n", val_hi, val_lo); 10653 10654 if (bce_hdr_split == TRUE) { 10655 val_hi = BCE_ADDR_HI(sc->pg_bd_chain); 10656 val_lo = BCE_ADDR_LO(sc->pg_bd_chain); 10657 BCE_PRINTF("0x%08X:%08X - (sc->pg_bd_chain) page chain " 10658 "virtual address\n", val_hi, val_lo); 10659 } 10660 10661 val_hi = BCE_ADDR_HI(sc->tx_mbuf_ptr); 10662 val_lo = BCE_ADDR_LO(sc->tx_mbuf_ptr); 10663 BCE_PRINTF("0x%08X:%08X - (sc->tx_mbuf_ptr) tx mbuf chain " 10664 "virtual address\n", val_hi, val_lo); 10665 10666 val_hi = BCE_ADDR_HI(sc->rx_mbuf_ptr); 10667 val_lo = BCE_ADDR_LO(sc->rx_mbuf_ptr); 10668 BCE_PRINTF("0x%08X:%08X - (sc->rx_mbuf_ptr) rx mbuf chain " 10669 "virtual address\n", val_hi, val_lo); 10670 10671 if (bce_hdr_split == TRUE) { 10672 val_hi = BCE_ADDR_HI(sc->pg_mbuf_ptr); 10673 val_lo = BCE_ADDR_LO(sc->pg_mbuf_ptr); 10674 BCE_PRINTF("0x%08X:%08X - (sc->pg_mbuf_ptr) page mbuf chain " 10675 "virtual address\n", val_hi, val_lo); 10676 } 10677 10678 BCE_PRINTF(" 0x%016llX - (sc->interrupts_generated) " 10679 "h/w intrs\n", 10680 (long long unsigned int) sc->interrupts_generated); 10681 10682 BCE_PRINTF(" 0x%016llX - (sc->interrupts_rx) " 10683 "rx interrupts handled\n", 10684 (long long unsigned int) sc->interrupts_rx); 10685 10686 BCE_PRINTF(" 0x%016llX - (sc->interrupts_tx) " 10687 "tx interrupts handled\n", 10688 (long long unsigned int) sc->interrupts_tx); 10689 10690 BCE_PRINTF(" 0x%016llX - (sc->phy_interrupts) " 10691 "phy interrupts handled\n", 10692 (long long unsigned int) sc->phy_interrupts); 10693 10694 BCE_PRINTF(" 0x%08X - (sc->last_status_idx) " 10695 "status block index\n", sc->last_status_idx); 10696 10697 BCE_PRINTF(" 0x%04X(0x%04X) - (sc->tx_prod) tx producer " 10698 "index\n", sc->tx_prod, (u16) TX_CHAIN_IDX(sc->tx_prod)); 10699 10700 BCE_PRINTF(" 0x%04X(0x%04X) - (sc->tx_cons) tx consumer " 10701 "index\n", sc->tx_cons, (u16) TX_CHAIN_IDX(sc->tx_cons)); 10702 10703 BCE_PRINTF(" 0x%08X - (sc->tx_prod_bseq) tx producer " 10704 "byte seq index\n", sc->tx_prod_bseq); 10705 10706 BCE_PRINTF(" 0x%08X - (sc->debug_tx_mbuf_alloc) tx " 10707 "mbufs allocated\n", sc->debug_tx_mbuf_alloc); 10708 10709 BCE_PRINTF(" 0x%08X - (sc->used_tx_bd) used " 10710 "tx_bd's\n", sc->used_tx_bd); 10711 10712 BCE_PRINTF(" 0x%04X/0x%04X - (sc->tx_hi_watermark)/" 10713 "(sc->max_tx_bd)\n", sc->tx_hi_watermark, sc->max_tx_bd); 10714 10715 BCE_PRINTF(" 0x%04X(0x%04X) - (sc->rx_prod) rx producer " 10716 "index\n", sc->rx_prod, (u16) RX_CHAIN_IDX(sc->rx_prod)); 10717 10718 BCE_PRINTF(" 0x%04X(0x%04X) - (sc->rx_cons) rx consumer " 10719 "index\n", sc->rx_cons, (u16) RX_CHAIN_IDX(sc->rx_cons)); 10720 10721 BCE_PRINTF(" 0x%08X - (sc->rx_prod_bseq) rx producer " 10722 "byte seq index\n", sc->rx_prod_bseq); 10723 10724 BCE_PRINTF(" 0x%04X/0x%04X - (sc->rx_low_watermark)/" 10725 "(sc->max_rx_bd)\n", sc->rx_low_watermark, sc->max_rx_bd); 10726 10727 BCE_PRINTF(" 0x%08X - (sc->debug_rx_mbuf_alloc) rx " 10728 "mbufs allocated\n", sc->debug_rx_mbuf_alloc); 10729 10730 BCE_PRINTF(" 0x%08X - (sc->free_rx_bd) free " 10731 "rx_bd's\n", sc->free_rx_bd); 10732 10733 if (bce_hdr_split == TRUE) { 10734 BCE_PRINTF(" 0x%04X(0x%04X) - (sc->pg_prod) page producer " 10735 "index\n", sc->pg_prod, (u16) PG_CHAIN_IDX(sc->pg_prod)); 10736 10737 BCE_PRINTF(" 0x%04X(0x%04X) - (sc->pg_cons) page consumer " 10738 "index\n", sc->pg_cons, (u16) PG_CHAIN_IDX(sc->pg_cons)); 10739 10740 BCE_PRINTF(" 0x%08X - (sc->debug_pg_mbuf_alloc) page " 10741 "mbufs allocated\n", sc->debug_pg_mbuf_alloc); 10742 } 10743 10744 BCE_PRINTF(" 0x%08X - (sc->free_pg_bd) free page " 10745 "rx_bd's\n", sc->free_pg_bd); 10746 10747 BCE_PRINTF(" 0x%04X/0x%04X - (sc->pg_low_watermark)/" 10748 "(sc->max_pg_bd)\n", sc->pg_low_watermark, sc->max_pg_bd); 10749 10750 BCE_PRINTF(" 0x%08X - (sc->mbuf_alloc_failed_count) " 10751 "mbuf alloc failures\n", sc->mbuf_alloc_failed_count); 10752 10753 BCE_PRINTF(" 0x%08X - (sc->bce_flags) " 10754 "bce mac flags\n", sc->bce_flags); 10755 10756 BCE_PRINTF(" 0x%08X - (sc->bce_phy_flags) " 10757 "bce phy flags\n", sc->bce_phy_flags); 10758 10759 BCE_PRINTF( 10760 "----------------------------" 10761 "----------------" 10762 "----------------------------\n"); 10763 } 10764 10765 /****************************************************************************/ 10766 /* Prints out the hardware state through a summary of important register, */ 10767 /* followed by a complete register dump. */ 10768 /* */ 10769 /* Returns: */ 10770 /* Nothing. */ 10771 /****************************************************************************/ 10772 static __attribute__ ((noinline)) void 10773 bce_dump_hw_state(struct bce_softc *sc) 10774 { 10775 u32 val; 10776 10777 BCE_PRINTF( 10778 "----------------------------" 10779 " Hardware State " 10780 "----------------------------\n"); 10781 10782 BCE_PRINTF("%s - bootcode version\n", sc->bce_bc_ver); 10783 10784 val = REG_RD(sc, BCE_MISC_ENABLE_STATUS_BITS); 10785 BCE_PRINTF("0x%08X - (0x%06X) misc_enable_status_bits\n", 10786 val, BCE_MISC_ENABLE_STATUS_BITS); 10787 10788 val = REG_RD(sc, BCE_DMA_STATUS); 10789 BCE_PRINTF("0x%08X - (0x%06X) dma_status\n", 10790 val, BCE_DMA_STATUS); 10791 10792 val = REG_RD(sc, BCE_CTX_STATUS); 10793 BCE_PRINTF("0x%08X - (0x%06X) ctx_status\n", 10794 val, BCE_CTX_STATUS); 10795 10796 val = REG_RD(sc, BCE_EMAC_STATUS); 10797 BCE_PRINTF("0x%08X - (0x%06X) emac_status\n", 10798 val, BCE_EMAC_STATUS); 10799 10800 val = REG_RD(sc, BCE_RPM_STATUS); 10801 BCE_PRINTF("0x%08X - (0x%06X) rpm_status\n", 10802 val, BCE_RPM_STATUS); 10803 10804 /* ToDo: Create a #define for this constant. */ 10805 val = REG_RD(sc, 0x2004); 10806 BCE_PRINTF("0x%08X - (0x%06X) rlup_status\n", 10807 val, 0x2004); 10808 10809 val = REG_RD(sc, BCE_RV2P_STATUS); 10810 BCE_PRINTF("0x%08X - (0x%06X) rv2p_status\n", 10811 val, BCE_RV2P_STATUS); 10812 10813 /* ToDo: Create a #define for this constant. */ 10814 val = REG_RD(sc, 0x2c04); 10815 BCE_PRINTF("0x%08X - (0x%06X) rdma_status\n", 10816 val, 0x2c04); 10817 10818 val = REG_RD(sc, BCE_TBDR_STATUS); 10819 BCE_PRINTF("0x%08X - (0x%06X) tbdr_status\n", 10820 val, BCE_TBDR_STATUS); 10821 10822 val = REG_RD(sc, BCE_TDMA_STATUS); 10823 BCE_PRINTF("0x%08X - (0x%06X) tdma_status\n", 10824 val, BCE_TDMA_STATUS); 10825 10826 val = REG_RD(sc, BCE_HC_STATUS); 10827 BCE_PRINTF("0x%08X - (0x%06X) hc_status\n", 10828 val, BCE_HC_STATUS); 10829 10830 val = REG_RD_IND(sc, BCE_TXP_CPU_STATE); 10831 BCE_PRINTF("0x%08X - (0x%06X) txp_cpu_state\n", 10832 val, BCE_TXP_CPU_STATE); 10833 10834 val = REG_RD_IND(sc, BCE_TPAT_CPU_STATE); 10835 BCE_PRINTF("0x%08X - (0x%06X) tpat_cpu_state\n", 10836 val, BCE_TPAT_CPU_STATE); 10837 10838 val = REG_RD_IND(sc, BCE_RXP_CPU_STATE); 10839 BCE_PRINTF("0x%08X - (0x%06X) rxp_cpu_state\n", 10840 val, BCE_RXP_CPU_STATE); 10841 10842 val = REG_RD_IND(sc, BCE_COM_CPU_STATE); 10843 BCE_PRINTF("0x%08X - (0x%06X) com_cpu_state\n", 10844 val, BCE_COM_CPU_STATE); 10845 10846 val = REG_RD_IND(sc, BCE_MCP_CPU_STATE); 10847 BCE_PRINTF("0x%08X - (0x%06X) mcp_cpu_state\n", 10848 val, BCE_MCP_CPU_STATE); 10849 10850 val = REG_RD_IND(sc, BCE_CP_CPU_STATE); 10851 BCE_PRINTF("0x%08X - (0x%06X) cp_cpu_state\n", 10852 val, BCE_CP_CPU_STATE); 10853 10854 BCE_PRINTF( 10855 "----------------------------" 10856 "----------------" 10857 "----------------------------\n"); 10858 10859 BCE_PRINTF( 10860 "----------------------------" 10861 " Register Dump " 10862 "----------------------------\n"); 10863 10864 for (int i = 0x400; i < 0x8000; i += 0x10) { 10865 BCE_PRINTF("0x%04X: 0x%08X 0x%08X 0x%08X 0x%08X\n", 10866 i, REG_RD(sc, i), REG_RD(sc, i + 0x4), 10867 REG_RD(sc, i + 0x8), REG_RD(sc, i + 0xC)); 10868 } 10869 10870 BCE_PRINTF( 10871 "----------------------------" 10872 "----------------" 10873 "----------------------------\n"); 10874 } 10875 10876 /****************************************************************************/ 10877 /* Prints out the contentst of shared memory which is used for host driver */ 10878 /* to bootcode firmware communication. */ 10879 /* */ 10880 /* Returns: */ 10881 /* Nothing. */ 10882 /****************************************************************************/ 10883 static __attribute__ ((noinline)) void 10884 bce_dump_shmem_state(struct bce_softc *sc) 10885 { 10886 BCE_PRINTF( 10887 "----------------------------" 10888 " Hardware State " 10889 "----------------------------\n"); 10890 10891 BCE_PRINTF("0x%08X - Shared memory base address\n", 10892 sc->bce_shmem_base); 10893 BCE_PRINTF("%s - bootcode version\n", 10894 sc->bce_bc_ver); 10895 10896 BCE_PRINTF( 10897 "----------------------------" 10898 " Shared Mem " 10899 "----------------------------\n"); 10900 10901 for (int i = 0x0; i < 0x200; i += 0x10) { 10902 BCE_PRINTF("0x%04X: 0x%08X 0x%08X 0x%08X 0x%08X\n", 10903 i, bce_shmem_rd(sc, i), bce_shmem_rd(sc, i + 0x4), 10904 bce_shmem_rd(sc, i + 0x8), bce_shmem_rd(sc, i + 0xC)); 10905 } 10906 10907 BCE_PRINTF( 10908 "----------------------------" 10909 "----------------" 10910 "----------------------------\n"); 10911 } 10912 10913 /****************************************************************************/ 10914 /* Prints out the mailbox queue registers. */ 10915 /* */ 10916 /* Returns: */ 10917 /* Nothing. */ 10918 /****************************************************************************/ 10919 static __attribute__ ((noinline)) void 10920 bce_dump_mq_regs(struct bce_softc *sc) 10921 { 10922 BCE_PRINTF( 10923 "----------------------------" 10924 " MQ Regs " 10925 "----------------------------\n"); 10926 10927 BCE_PRINTF( 10928 "----------------------------" 10929 "----------------" 10930 "----------------------------\n"); 10931 10932 for (int i = 0x3c00; i < 0x4000; i += 0x10) { 10933 BCE_PRINTF("0x%04X: 0x%08X 0x%08X 0x%08X 0x%08X\n", 10934 i, REG_RD(sc, i), REG_RD(sc, i + 0x4), 10935 REG_RD(sc, i + 0x8), REG_RD(sc, i + 0xC)); 10936 } 10937 10938 BCE_PRINTF( 10939 "----------------------------" 10940 "----------------" 10941 "----------------------------\n"); 10942 } 10943 10944 /****************************************************************************/ 10945 /* Prints out the bootcode state. */ 10946 /* */ 10947 /* Returns: */ 10948 /* Nothing. */ 10949 /****************************************************************************/ 10950 static __attribute__ ((noinline)) void 10951 bce_dump_bc_state(struct bce_softc *sc) 10952 { 10953 u32 val; 10954 10955 BCE_PRINTF( 10956 "----------------------------" 10957 " Bootcode State " 10958 "----------------------------\n"); 10959 10960 BCE_PRINTF("%s - bootcode version\n", sc->bce_bc_ver); 10961 10962 val = bce_shmem_rd(sc, BCE_BC_RESET_TYPE); 10963 BCE_PRINTF("0x%08X - (0x%06X) reset_type\n", 10964 val, BCE_BC_RESET_TYPE); 10965 10966 val = bce_shmem_rd(sc, BCE_BC_STATE); 10967 BCE_PRINTF("0x%08X - (0x%06X) state\n", 10968 val, BCE_BC_STATE); 10969 10970 val = bce_shmem_rd(sc, BCE_BC_STATE_CONDITION); 10971 BCE_PRINTF("0x%08X - (0x%06X) condition\n", 10972 val, BCE_BC_STATE_CONDITION); 10973 10974 val = bce_shmem_rd(sc, BCE_BC_STATE_DEBUG_CMD); 10975 BCE_PRINTF("0x%08X - (0x%06X) debug_cmd\n", 10976 val, BCE_BC_STATE_DEBUG_CMD); 10977 10978 BCE_PRINTF( 10979 "----------------------------" 10980 "----------------" 10981 "----------------------------\n"); 10982 } 10983 10984 /****************************************************************************/ 10985 /* Prints out the TXP processor state. */ 10986 /* */ 10987 /* Returns: */ 10988 /* Nothing. */ 10989 /****************************************************************************/ 10990 static __attribute__ ((noinline)) void 10991 bce_dump_txp_state(struct bce_softc *sc, int regs) 10992 { 10993 u32 val; 10994 u32 fw_version[3]; 10995 10996 BCE_PRINTF( 10997 "----------------------------" 10998 " TXP State " 10999 "----------------------------\n"); 11000 11001 for (int i = 0; i < 3; i++) 11002 fw_version[i] = htonl(REG_RD_IND(sc, 11003 (BCE_TXP_SCRATCH + 0x10 + i * 4))); 11004 BCE_PRINTF("Firmware version - %s\n", (char *) fw_version); 11005 11006 val = REG_RD_IND(sc, BCE_TXP_CPU_MODE); 11007 BCE_PRINTF("0x%08X - (0x%06X) txp_cpu_mode\n", 11008 val, BCE_TXP_CPU_MODE); 11009 11010 val = REG_RD_IND(sc, BCE_TXP_CPU_STATE); 11011 BCE_PRINTF("0x%08X - (0x%06X) txp_cpu_state\n", 11012 val, BCE_TXP_CPU_STATE); 11013 11014 val = REG_RD_IND(sc, BCE_TXP_CPU_EVENT_MASK); 11015 BCE_PRINTF("0x%08X - (0x%06X) txp_cpu_event_mask\n", 11016 val, BCE_TXP_CPU_EVENT_MASK); 11017 11018 if (regs) { 11019 BCE_PRINTF( 11020 "----------------------------" 11021 " Register Dump " 11022 "----------------------------\n"); 11023 11024 for (int i = BCE_TXP_CPU_MODE; i < 0x68000; i += 0x10) { 11025 /* Skip the big blank spaces */ 11026 if (i < 0x454000 && i > 0x5ffff) 11027 BCE_PRINTF("0x%04X: 0x%08X 0x%08X " 11028 "0x%08X 0x%08X\n", i, 11029 REG_RD_IND(sc, i), 11030 REG_RD_IND(sc, i + 0x4), 11031 REG_RD_IND(sc, i + 0x8), 11032 REG_RD_IND(sc, i + 0xC)); 11033 } 11034 } 11035 11036 BCE_PRINTF( 11037 "----------------------------" 11038 "----------------" 11039 "----------------------------\n"); 11040 } 11041 11042 /****************************************************************************/ 11043 /* Prints out the RXP processor state. */ 11044 /* */ 11045 /* Returns: */ 11046 /* Nothing. */ 11047 /****************************************************************************/ 11048 static __attribute__ ((noinline)) void 11049 bce_dump_rxp_state(struct bce_softc *sc, int regs) 11050 { 11051 u32 val; 11052 u32 fw_version[3]; 11053 11054 BCE_PRINTF( 11055 "----------------------------" 11056 " RXP State " 11057 "----------------------------\n"); 11058 11059 for (int i = 0; i < 3; i++) 11060 fw_version[i] = htonl(REG_RD_IND(sc, 11061 (BCE_RXP_SCRATCH + 0x10 + i * 4))); 11062 11063 BCE_PRINTF("Firmware version - %s\n", (char *) fw_version); 11064 11065 val = REG_RD_IND(sc, BCE_RXP_CPU_MODE); 11066 BCE_PRINTF("0x%08X - (0x%06X) rxp_cpu_mode\n", 11067 val, BCE_RXP_CPU_MODE); 11068 11069 val = REG_RD_IND(sc, BCE_RXP_CPU_STATE); 11070 BCE_PRINTF("0x%08X - (0x%06X) rxp_cpu_state\n", 11071 val, BCE_RXP_CPU_STATE); 11072 11073 val = REG_RD_IND(sc, BCE_RXP_CPU_EVENT_MASK); 11074 BCE_PRINTF("0x%08X - (0x%06X) rxp_cpu_event_mask\n", 11075 val, BCE_RXP_CPU_EVENT_MASK); 11076 11077 if (regs) { 11078 BCE_PRINTF( 11079 "----------------------------" 11080 " Register Dump " 11081 "----------------------------\n"); 11082 11083 for (int i = BCE_RXP_CPU_MODE; i < 0xe8fff; i += 0x10) { 11084 /* Skip the big blank sapces */ 11085 if (i < 0xc5400 && i > 0xdffff) 11086 BCE_PRINTF("0x%04X: 0x%08X 0x%08X " 11087 "0x%08X 0x%08X\n", i, 11088 REG_RD_IND(sc, i), 11089 REG_RD_IND(sc, i + 0x4), 11090 REG_RD_IND(sc, i + 0x8), 11091 REG_RD_IND(sc, i + 0xC)); 11092 } 11093 } 11094 11095 BCE_PRINTF( 11096 "----------------------------" 11097 "----------------" 11098 "----------------------------\n"); 11099 } 11100 11101 /****************************************************************************/ 11102 /* Prints out the TPAT processor state. */ 11103 /* */ 11104 /* Returns: */ 11105 /* Nothing. */ 11106 /****************************************************************************/ 11107 static __attribute__ ((noinline)) void 11108 bce_dump_tpat_state(struct bce_softc *sc, int regs) 11109 { 11110 u32 val; 11111 u32 fw_version[3]; 11112 11113 BCE_PRINTF( 11114 "----------------------------" 11115 " TPAT State " 11116 "----------------------------\n"); 11117 11118 for (int i = 0; i < 3; i++) 11119 fw_version[i] = htonl(REG_RD_IND(sc, 11120 (BCE_TPAT_SCRATCH + 0x410 + i * 4))); 11121 11122 BCE_PRINTF("Firmware version - %s\n", (char *) fw_version); 11123 11124 val = REG_RD_IND(sc, BCE_TPAT_CPU_MODE); 11125 BCE_PRINTF("0x%08X - (0x%06X) tpat_cpu_mode\n", 11126 val, BCE_TPAT_CPU_MODE); 11127 11128 val = REG_RD_IND(sc, BCE_TPAT_CPU_STATE); 11129 BCE_PRINTF("0x%08X - (0x%06X) tpat_cpu_state\n", 11130 val, BCE_TPAT_CPU_STATE); 11131 11132 val = REG_RD_IND(sc, BCE_TPAT_CPU_EVENT_MASK); 11133 BCE_PRINTF("0x%08X - (0x%06X) tpat_cpu_event_mask\n", 11134 val, BCE_TPAT_CPU_EVENT_MASK); 11135 11136 if (regs) { 11137 BCE_PRINTF( 11138 "----------------------------" 11139 " Register Dump " 11140 "----------------------------\n"); 11141 11142 for (int i = BCE_TPAT_CPU_MODE; i < 0xa3fff; i += 0x10) { 11143 /* Skip the big blank spaces */ 11144 if (i < 0x854000 && i > 0x9ffff) 11145 BCE_PRINTF("0x%04X: 0x%08X 0x%08X " 11146 "0x%08X 0x%08X\n", i, 11147 REG_RD_IND(sc, i), 11148 REG_RD_IND(sc, i + 0x4), 11149 REG_RD_IND(sc, i + 0x8), 11150 REG_RD_IND(sc, i + 0xC)); 11151 } 11152 } 11153 11154 BCE_PRINTF( 11155 "----------------------------" 11156 "----------------" 11157 "----------------------------\n"); 11158 } 11159 11160 /****************************************************************************/ 11161 /* Prints out the Command Procesor (CP) state. */ 11162 /* */ 11163 /* Returns: */ 11164 /* Nothing. */ 11165 /****************************************************************************/ 11166 static __attribute__ ((noinline)) void 11167 bce_dump_cp_state(struct bce_softc *sc, int regs) 11168 { 11169 u32 val; 11170 u32 fw_version[3]; 11171 11172 BCE_PRINTF( 11173 "----------------------------" 11174 " CP State " 11175 "----------------------------\n"); 11176 11177 for (int i = 0; i < 3; i++) 11178 fw_version[i] = htonl(REG_RD_IND(sc, 11179 (BCE_CP_SCRATCH + 0x10 + i * 4))); 11180 11181 BCE_PRINTF("Firmware version - %s\n", (char *) fw_version); 11182 11183 val = REG_RD_IND(sc, BCE_CP_CPU_MODE); 11184 BCE_PRINTF("0x%08X - (0x%06X) cp_cpu_mode\n", 11185 val, BCE_CP_CPU_MODE); 11186 11187 val = REG_RD_IND(sc, BCE_CP_CPU_STATE); 11188 BCE_PRINTF("0x%08X - (0x%06X) cp_cpu_state\n", 11189 val, BCE_CP_CPU_STATE); 11190 11191 val = REG_RD_IND(sc, BCE_CP_CPU_EVENT_MASK); 11192 BCE_PRINTF("0x%08X - (0x%06X) cp_cpu_event_mask\n", val, 11193 BCE_CP_CPU_EVENT_MASK); 11194 11195 if (regs) { 11196 BCE_PRINTF( 11197 "----------------------------" 11198 " Register Dump " 11199 "----------------------------\n"); 11200 11201 for (int i = BCE_CP_CPU_MODE; i < 0x1aa000; i += 0x10) { 11202 /* Skip the big blank spaces */ 11203 if (i < 0x185400 && i > 0x19ffff) 11204 BCE_PRINTF("0x%04X: 0x%08X 0x%08X " 11205 "0x%08X 0x%08X\n", i, 11206 REG_RD_IND(sc, i), 11207 REG_RD_IND(sc, i + 0x4), 11208 REG_RD_IND(sc, i + 0x8), 11209 REG_RD_IND(sc, i + 0xC)); 11210 } 11211 } 11212 11213 BCE_PRINTF( 11214 "----------------------------" 11215 "----------------" 11216 "----------------------------\n"); 11217 } 11218 11219 /****************************************************************************/ 11220 /* Prints out the Completion Procesor (COM) state. */ 11221 /* */ 11222 /* Returns: */ 11223 /* Nothing. */ 11224 /****************************************************************************/ 11225 static __attribute__ ((noinline)) void 11226 bce_dump_com_state(struct bce_softc *sc, int regs) 11227 { 11228 u32 val; 11229 u32 fw_version[4]; 11230 11231 BCE_PRINTF( 11232 "----------------------------" 11233 " COM State " 11234 "----------------------------\n"); 11235 11236 for (int i = 0; i < 3; i++) 11237 fw_version[i] = htonl(REG_RD_IND(sc, 11238 (BCE_COM_SCRATCH + 0x10 + i * 4))); 11239 11240 BCE_PRINTF("Firmware version - %s\n", (char *) fw_version); 11241 11242 val = REG_RD_IND(sc, BCE_COM_CPU_MODE); 11243 BCE_PRINTF("0x%08X - (0x%06X) com_cpu_mode\n", 11244 val, BCE_COM_CPU_MODE); 11245 11246 val = REG_RD_IND(sc, BCE_COM_CPU_STATE); 11247 BCE_PRINTF("0x%08X - (0x%06X) com_cpu_state\n", 11248 val, BCE_COM_CPU_STATE); 11249 11250 val = REG_RD_IND(sc, BCE_COM_CPU_EVENT_MASK); 11251 BCE_PRINTF("0x%08X - (0x%06X) com_cpu_event_mask\n", val, 11252 BCE_COM_CPU_EVENT_MASK); 11253 11254 if (regs) { 11255 BCE_PRINTF( 11256 "----------------------------" 11257 " Register Dump " 11258 "----------------------------\n"); 11259 11260 for (int i = BCE_COM_CPU_MODE; i < 0x1053e8; i += 0x10) { 11261 BCE_PRINTF("0x%04X: 0x%08X 0x%08X " 11262 "0x%08X 0x%08X\n", i, 11263 REG_RD_IND(sc, i), 11264 REG_RD_IND(sc, i + 0x4), 11265 REG_RD_IND(sc, i + 0x8), 11266 REG_RD_IND(sc, i + 0xC)); 11267 } 11268 } 11269 11270 BCE_PRINTF( 11271 "----------------------------" 11272 "----------------" 11273 "----------------------------\n"); 11274 } 11275 11276 /****************************************************************************/ 11277 /* Prints out the Receive Virtual 2 Physical (RV2P) state. */ 11278 /* */ 11279 /* Returns: */ 11280 /* Nothing. */ 11281 /****************************************************************************/ 11282 static __attribute__ ((noinline)) void 11283 bce_dump_rv2p_state(struct bce_softc *sc) 11284 { 11285 u32 val, pc1, pc2, fw_ver_high, fw_ver_low; 11286 11287 BCE_PRINTF( 11288 "----------------------------" 11289 " RV2P State " 11290 "----------------------------\n"); 11291 11292 /* Stall the RV2P processors. */ 11293 val = REG_RD_IND(sc, BCE_RV2P_CONFIG); 11294 val |= BCE_RV2P_CONFIG_STALL_PROC1 | BCE_RV2P_CONFIG_STALL_PROC2; 11295 REG_WR_IND(sc, BCE_RV2P_CONFIG, val); 11296 11297 /* Read the firmware version. */ 11298 val = 0x00000001; 11299 REG_WR_IND(sc, BCE_RV2P_PROC1_ADDR_CMD, val); 11300 fw_ver_low = REG_RD_IND(sc, BCE_RV2P_INSTR_LOW); 11301 fw_ver_high = REG_RD_IND(sc, BCE_RV2P_INSTR_HIGH) & 11302 BCE_RV2P_INSTR_HIGH_HIGH; 11303 BCE_PRINTF("RV2P1 Firmware version - 0x%08X:0x%08X\n", 11304 fw_ver_high, fw_ver_low); 11305 11306 val = 0x00000001; 11307 REG_WR_IND(sc, BCE_RV2P_PROC2_ADDR_CMD, val); 11308 fw_ver_low = REG_RD_IND(sc, BCE_RV2P_INSTR_LOW); 11309 fw_ver_high = REG_RD_IND(sc, BCE_RV2P_INSTR_HIGH) & 11310 BCE_RV2P_INSTR_HIGH_HIGH; 11311 BCE_PRINTF("RV2P2 Firmware version - 0x%08X:0x%08X\n", 11312 fw_ver_high, fw_ver_low); 11313 11314 /* Resume the RV2P processors. */ 11315 val = REG_RD_IND(sc, BCE_RV2P_CONFIG); 11316 val &= ~(BCE_RV2P_CONFIG_STALL_PROC1 | BCE_RV2P_CONFIG_STALL_PROC2); 11317 REG_WR_IND(sc, BCE_RV2P_CONFIG, val); 11318 11319 /* Fetch the program counter value. */ 11320 val = 0x68007800; 11321 REG_WR_IND(sc, BCE_RV2P_DEBUG_VECT_PEEK, val); 11322 val = REG_RD_IND(sc, BCE_RV2P_DEBUG_VECT_PEEK); 11323 pc1 = (val & BCE_RV2P_DEBUG_VECT_PEEK_1_VALUE); 11324 pc2 = (val & BCE_RV2P_DEBUG_VECT_PEEK_2_VALUE) >> 16; 11325 BCE_PRINTF("0x%08X - RV2P1 program counter (1st read)\n", pc1); 11326 BCE_PRINTF("0x%08X - RV2P2 program counter (1st read)\n", pc2); 11327 11328 /* Fetch the program counter value again to see if it is advancing. */ 11329 val = 0x68007800; 11330 REG_WR_IND(sc, BCE_RV2P_DEBUG_VECT_PEEK, val); 11331 val = REG_RD_IND(sc, BCE_RV2P_DEBUG_VECT_PEEK); 11332 pc1 = (val & BCE_RV2P_DEBUG_VECT_PEEK_1_VALUE); 11333 pc2 = (val & BCE_RV2P_DEBUG_VECT_PEEK_2_VALUE) >> 16; 11334 BCE_PRINTF("0x%08X - RV2P1 program counter (2nd read)\n", pc1); 11335 BCE_PRINTF("0x%08X - RV2P2 program counter (2nd read)\n", pc2); 11336 11337 BCE_PRINTF( 11338 "----------------------------" 11339 "----------------" 11340 "----------------------------\n"); 11341 } 11342 11343 /****************************************************************************/ 11344 /* Prints out the driver state and then enters the debugger. */ 11345 /* */ 11346 /* Returns: */ 11347 /* Nothing. */ 11348 /****************************************************************************/ 11349 static __attribute__ ((noinline)) void 11350 bce_breakpoint(struct bce_softc *sc) 11351 { 11352 11353 /* 11354 * Unreachable code to silence compiler warnings 11355 * about unused functions. 11356 */ 11357 if (0) { 11358 bce_freeze_controller(sc); 11359 bce_unfreeze_controller(sc); 11360 bce_dump_enet(sc, NULL); 11361 bce_dump_txbd(sc, 0, NULL); 11362 bce_dump_rxbd(sc, 0, NULL); 11363 bce_dump_tx_mbuf_chain(sc, 0, USABLE_TX_BD_ALLOC); 11364 bce_dump_rx_mbuf_chain(sc, 0, USABLE_RX_BD_ALLOC); 11365 bce_dump_pg_mbuf_chain(sc, 0, USABLE_PG_BD_ALLOC); 11366 bce_dump_l2fhdr(sc, 0, NULL); 11367 bce_dump_ctx(sc, RX_CID); 11368 bce_dump_ftqs(sc); 11369 bce_dump_tx_chain(sc, 0, USABLE_TX_BD_ALLOC); 11370 bce_dump_rx_bd_chain(sc, 0, USABLE_RX_BD_ALLOC); 11371 bce_dump_pg_chain(sc, 0, USABLE_PG_BD_ALLOC); 11372 bce_dump_status_block(sc); 11373 bce_dump_stats_block(sc); 11374 bce_dump_driver_state(sc); 11375 bce_dump_hw_state(sc); 11376 bce_dump_bc_state(sc); 11377 bce_dump_txp_state(sc, 0); 11378 bce_dump_rxp_state(sc, 0); 11379 bce_dump_tpat_state(sc, 0); 11380 bce_dump_cp_state(sc, 0); 11381 bce_dump_com_state(sc, 0); 11382 bce_dump_rv2p_state(sc); 11383 bce_dump_pgbd(sc, 0, NULL); 11384 } 11385 11386 bce_dump_status_block(sc); 11387 bce_dump_driver_state(sc); 11388 11389 /* Call the debugger. */ 11390 breakpoint(); 11391 } 11392 #endif 11393