1 /*- 2 * Copyright (c) 2006-2010 Broadcom Corporation 3 * David Christensen <davidch@broadcom.com>. All rights reserved. 4 * 5 * Redistribution and use in source and binary forms, with or without 6 * modification, are permitted provided that the following conditions 7 * are met: 8 * 9 * 1. Redistributions of source code must retain the above copyright 10 * notice, this list of conditions and the following disclaimer. 11 * 2. Redistributions in binary form must reproduce the above copyright 12 * notice, this list of conditions and the following disclaimer in the 13 * documentation and/or other materials provided with the distribution. 14 * 3. Neither the name of Broadcom Corporation nor the name of its contributors 15 * may be used to endorse or promote products derived from this software 16 * without specific prior written consent. 17 * 18 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS' 19 * AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 20 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 21 * ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS 22 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR 23 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF 24 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS 25 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN 26 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) 27 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF 28 * THE POSSIBILITY OF SUCH DAMAGE. 29 */ 30 31 #include <sys/cdefs.h> 32 __FBSDID("$FreeBSD$"); 33 34 /* 35 * The following controllers are supported by this driver: 36 * BCM5706C A2, A3 37 * BCM5706S A2, A3 38 * BCM5708C B1, B2 39 * BCM5708S B1, B2 40 * BCM5709C A1, C0 41 * BCM5709S A1, C0 42 * BCM5716C C0 43 * BCM5716S C0 44 * 45 * The following controllers are not supported by this driver: 46 * BCM5706C A0, A1 (pre-production) 47 * BCM5706S A0, A1 (pre-production) 48 * BCM5708C A0, B0 (pre-production) 49 * BCM5708S A0, B0 (pre-production) 50 * BCM5709C A0 B0, B1, B2 (pre-production) 51 * BCM5709S A0, B0, B1, B2 (pre-production) 52 */ 53 54 #include "opt_bce.h" 55 56 #include <dev/bce/if_bcereg.h> 57 #include <dev/bce/if_bcefw.h> 58 59 /****************************************************************************/ 60 /* BCE Debug Options */ 61 /****************************************************************************/ 62 #ifdef BCE_DEBUG 63 u32 bce_debug = BCE_WARN; 64 65 /* 0 = Never */ 66 /* 1 = 1 in 2,147,483,648 */ 67 /* 256 = 1 in 8,388,608 */ 68 /* 2048 = 1 in 1,048,576 */ 69 /* 65536 = 1 in 32,768 */ 70 /* 1048576 = 1 in 2,048 */ 71 /* 268435456 = 1 in 8 */ 72 /* 536870912 = 1 in 4 */ 73 /* 1073741824 = 1 in 2 */ 74 75 /* Controls how often the l2_fhdr frame error check will fail. */ 76 int l2fhdr_error_sim_control = 0; 77 78 /* Controls how often the unexpected attention check will fail. */ 79 int unexpected_attention_sim_control = 0; 80 81 /* Controls how often to simulate an mbuf allocation failure. */ 82 int mbuf_alloc_failed_sim_control = 0; 83 84 /* Controls how often to simulate a DMA mapping failure. */ 85 int dma_map_addr_failed_sim_control = 0; 86 87 /* Controls how often to simulate a bootcode failure. */ 88 int bootcode_running_failure_sim_control = 0; 89 #endif 90 91 /****************************************************************************/ 92 /* BCE Build Time Options */ 93 /****************************************************************************/ 94 /* #define BCE_NVRAM_WRITE_SUPPORT 1 */ 95 96 97 /****************************************************************************/ 98 /* PCI Device ID Table */ 99 /* */ 100 /* Used by bce_probe() to identify the devices supported by this driver. */ 101 /****************************************************************************/ 102 #define BCE_DEVDESC_MAX 64 103 104 static struct bce_type bce_devs[] = { 105 /* BCM5706C Controllers and OEM boards. */ 106 { BRCM_VENDORID, BRCM_DEVICEID_BCM5706, HP_VENDORID, 0x3101, 107 "HP NC370T Multifunction Gigabit Server Adapter" }, 108 { BRCM_VENDORID, BRCM_DEVICEID_BCM5706, HP_VENDORID, 0x3106, 109 "HP NC370i Multifunction Gigabit Server Adapter" }, 110 { BRCM_VENDORID, BRCM_DEVICEID_BCM5706, HP_VENDORID, 0x3070, 111 "HP NC380T PCIe DP Multifunc Gig Server Adapter" }, 112 { BRCM_VENDORID, BRCM_DEVICEID_BCM5706, HP_VENDORID, 0x1709, 113 "HP NC371i Multifunction Gigabit Server Adapter" }, 114 { BRCM_VENDORID, BRCM_DEVICEID_BCM5706, PCI_ANY_ID, PCI_ANY_ID, 115 "Broadcom NetXtreme II BCM5706 1000Base-T" }, 116 117 /* BCM5706S controllers and OEM boards. */ 118 { BRCM_VENDORID, BRCM_DEVICEID_BCM5706S, HP_VENDORID, 0x3102, 119 "HP NC370F Multifunction Gigabit Server Adapter" }, 120 { BRCM_VENDORID, BRCM_DEVICEID_BCM5706S, PCI_ANY_ID, PCI_ANY_ID, 121 "Broadcom NetXtreme II BCM5706 1000Base-SX" }, 122 123 /* BCM5708C controllers and OEM boards. */ 124 { BRCM_VENDORID, BRCM_DEVICEID_BCM5708, HP_VENDORID, 0x7037, 125 "HP NC373T PCIe Multifunction Gig Server Adapter" }, 126 { BRCM_VENDORID, BRCM_DEVICEID_BCM5708, HP_VENDORID, 0x7038, 127 "HP NC373i Multifunction Gigabit Server Adapter" }, 128 { BRCM_VENDORID, BRCM_DEVICEID_BCM5708, HP_VENDORID, 0x7045, 129 "HP NC374m PCIe Multifunction Adapter" }, 130 { BRCM_VENDORID, BRCM_DEVICEID_BCM5708, PCI_ANY_ID, PCI_ANY_ID, 131 "Broadcom NetXtreme II BCM5708 1000Base-T" }, 132 133 /* BCM5708S controllers and OEM boards. */ 134 { BRCM_VENDORID, BRCM_DEVICEID_BCM5708S, HP_VENDORID, 0x1706, 135 "HP NC373m Multifunction Gigabit Server Adapter" }, 136 { BRCM_VENDORID, BRCM_DEVICEID_BCM5708S, HP_VENDORID, 0x703b, 137 "HP NC373i Multifunction Gigabit Server Adapter" }, 138 { BRCM_VENDORID, BRCM_DEVICEID_BCM5708S, HP_VENDORID, 0x703d, 139 "HP NC373F PCIe Multifunc Giga Server Adapter" }, 140 { BRCM_VENDORID, BRCM_DEVICEID_BCM5708S, PCI_ANY_ID, PCI_ANY_ID, 141 "Broadcom NetXtreme II BCM5708 1000Base-SX" }, 142 143 /* BCM5709C controllers and OEM boards. */ 144 { BRCM_VENDORID, BRCM_DEVICEID_BCM5709, HP_VENDORID, 0x7055, 145 "HP NC382i DP Multifunction Gigabit Server Adapter" }, 146 { BRCM_VENDORID, BRCM_DEVICEID_BCM5709, HP_VENDORID, 0x7059, 147 "HP NC382T PCIe DP Multifunction Gigabit Server Adapter" }, 148 { BRCM_VENDORID, BRCM_DEVICEID_BCM5709, PCI_ANY_ID, PCI_ANY_ID, 149 "Broadcom NetXtreme II BCM5709 1000Base-T" }, 150 151 /* BCM5709S controllers and OEM boards. */ 152 { BRCM_VENDORID, BRCM_DEVICEID_BCM5709S, HP_VENDORID, 0x171d, 153 "HP NC382m DP 1GbE Multifunction BL-c Adapter" }, 154 { BRCM_VENDORID, BRCM_DEVICEID_BCM5709S, HP_VENDORID, 0x7056, 155 "HP NC382i DP Multifunction Gigabit Server Adapter" }, 156 { BRCM_VENDORID, BRCM_DEVICEID_BCM5709S, PCI_ANY_ID, PCI_ANY_ID, 157 "Broadcom NetXtreme II BCM5709 1000Base-SX" }, 158 159 /* BCM5716 controllers and OEM boards. */ 160 { BRCM_VENDORID, BRCM_DEVICEID_BCM5716, PCI_ANY_ID, PCI_ANY_ID, 161 "Broadcom NetXtreme II BCM5716 1000Base-T" }, 162 163 { 0, 0, 0, 0, NULL } 164 }; 165 166 167 /****************************************************************************/ 168 /* Supported Flash NVRAM device data. */ 169 /****************************************************************************/ 170 static struct flash_spec flash_table[] = 171 { 172 #define BUFFERED_FLAGS (BCE_NV_BUFFERED | BCE_NV_TRANSLATE) 173 #define NONBUFFERED_FLAGS (BCE_NV_WREN) 174 175 /* Slow EEPROM */ 176 {0x00000000, 0x40830380, 0x009f0081, 0xa184a053, 0xaf000400, 177 BUFFERED_FLAGS, SEEPROM_PAGE_BITS, SEEPROM_PAGE_SIZE, 178 SEEPROM_BYTE_ADDR_MASK, SEEPROM_TOTAL_SIZE, 179 "EEPROM - slow"}, 180 /* Expansion entry 0001 */ 181 {0x08000002, 0x4b808201, 0x00050081, 0x03840253, 0xaf020406, 182 NONBUFFERED_FLAGS, SAIFUN_FLASH_PAGE_BITS, SAIFUN_FLASH_PAGE_SIZE, 183 SAIFUN_FLASH_BYTE_ADDR_MASK, 0, 184 "Entry 0001"}, 185 /* Saifun SA25F010 (non-buffered flash) */ 186 /* strap, cfg1, & write1 need updates */ 187 {0x04000001, 0x47808201, 0x00050081, 0x03840253, 0xaf020406, 188 NONBUFFERED_FLAGS, SAIFUN_FLASH_PAGE_BITS, SAIFUN_FLASH_PAGE_SIZE, 189 SAIFUN_FLASH_BYTE_ADDR_MASK, SAIFUN_FLASH_BASE_TOTAL_SIZE*2, 190 "Non-buffered flash (128kB)"}, 191 /* Saifun SA25F020 (non-buffered flash) */ 192 /* strap, cfg1, & write1 need updates */ 193 {0x0c000003, 0x4f808201, 0x00050081, 0x03840253, 0xaf020406, 194 NONBUFFERED_FLAGS, SAIFUN_FLASH_PAGE_BITS, SAIFUN_FLASH_PAGE_SIZE, 195 SAIFUN_FLASH_BYTE_ADDR_MASK, SAIFUN_FLASH_BASE_TOTAL_SIZE*4, 196 "Non-buffered flash (256kB)"}, 197 /* Expansion entry 0100 */ 198 {0x11000000, 0x53808201, 0x00050081, 0x03840253, 0xaf020406, 199 NONBUFFERED_FLAGS, SAIFUN_FLASH_PAGE_BITS, SAIFUN_FLASH_PAGE_SIZE, 200 SAIFUN_FLASH_BYTE_ADDR_MASK, 0, 201 "Entry 0100"}, 202 /* Entry 0101: ST M45PE10 (non-buffered flash, TetonII B0) */ 203 {0x19000002, 0x5b808201, 0x000500db, 0x03840253, 0xaf020406, 204 NONBUFFERED_FLAGS, ST_MICRO_FLASH_PAGE_BITS, ST_MICRO_FLASH_PAGE_SIZE, 205 ST_MICRO_FLASH_BYTE_ADDR_MASK, ST_MICRO_FLASH_BASE_TOTAL_SIZE*2, 206 "Entry 0101: ST M45PE10 (128kB non-bufferred)"}, 207 /* Entry 0110: ST M45PE20 (non-buffered flash)*/ 208 {0x15000001, 0x57808201, 0x000500db, 0x03840253, 0xaf020406, 209 NONBUFFERED_FLAGS, ST_MICRO_FLASH_PAGE_BITS, ST_MICRO_FLASH_PAGE_SIZE, 210 ST_MICRO_FLASH_BYTE_ADDR_MASK, ST_MICRO_FLASH_BASE_TOTAL_SIZE*4, 211 "Entry 0110: ST M45PE20 (256kB non-bufferred)"}, 212 /* Saifun SA25F005 (non-buffered flash) */ 213 /* strap, cfg1, & write1 need updates */ 214 {0x1d000003, 0x5f808201, 0x00050081, 0x03840253, 0xaf020406, 215 NONBUFFERED_FLAGS, SAIFUN_FLASH_PAGE_BITS, SAIFUN_FLASH_PAGE_SIZE, 216 SAIFUN_FLASH_BYTE_ADDR_MASK, SAIFUN_FLASH_BASE_TOTAL_SIZE, 217 "Non-buffered flash (64kB)"}, 218 /* Fast EEPROM */ 219 {0x22000000, 0x62808380, 0x009f0081, 0xa184a053, 0xaf000400, 220 BUFFERED_FLAGS, SEEPROM_PAGE_BITS, SEEPROM_PAGE_SIZE, 221 SEEPROM_BYTE_ADDR_MASK, SEEPROM_TOTAL_SIZE, 222 "EEPROM - fast"}, 223 /* Expansion entry 1001 */ 224 {0x2a000002, 0x6b808201, 0x00050081, 0x03840253, 0xaf020406, 225 NONBUFFERED_FLAGS, SAIFUN_FLASH_PAGE_BITS, SAIFUN_FLASH_PAGE_SIZE, 226 SAIFUN_FLASH_BYTE_ADDR_MASK, 0, 227 "Entry 1001"}, 228 /* Expansion entry 1010 */ 229 {0x26000001, 0x67808201, 0x00050081, 0x03840253, 0xaf020406, 230 NONBUFFERED_FLAGS, SAIFUN_FLASH_PAGE_BITS, SAIFUN_FLASH_PAGE_SIZE, 231 SAIFUN_FLASH_BYTE_ADDR_MASK, 0, 232 "Entry 1010"}, 233 /* ATMEL AT45DB011B (buffered flash) */ 234 {0x2e000003, 0x6e808273, 0x00570081, 0x68848353, 0xaf000400, 235 BUFFERED_FLAGS, BUFFERED_FLASH_PAGE_BITS, BUFFERED_FLASH_PAGE_SIZE, 236 BUFFERED_FLASH_BYTE_ADDR_MASK, BUFFERED_FLASH_TOTAL_SIZE, 237 "Buffered flash (128kB)"}, 238 /* Expansion entry 1100 */ 239 {0x33000000, 0x73808201, 0x00050081, 0x03840253, 0xaf020406, 240 NONBUFFERED_FLAGS, SAIFUN_FLASH_PAGE_BITS, SAIFUN_FLASH_PAGE_SIZE, 241 SAIFUN_FLASH_BYTE_ADDR_MASK, 0, 242 "Entry 1100"}, 243 /* Expansion entry 1101 */ 244 {0x3b000002, 0x7b808201, 0x00050081, 0x03840253, 0xaf020406, 245 NONBUFFERED_FLAGS, SAIFUN_FLASH_PAGE_BITS, SAIFUN_FLASH_PAGE_SIZE, 246 SAIFUN_FLASH_BYTE_ADDR_MASK, 0, 247 "Entry 1101"}, 248 /* Ateml Expansion entry 1110 */ 249 {0x37000001, 0x76808273, 0x00570081, 0x68848353, 0xaf000400, 250 BUFFERED_FLAGS, BUFFERED_FLASH_PAGE_BITS, BUFFERED_FLASH_PAGE_SIZE, 251 BUFFERED_FLASH_BYTE_ADDR_MASK, 0, 252 "Entry 1110 (Atmel)"}, 253 /* ATMEL AT45DB021B (buffered flash) */ 254 {0x3f000003, 0x7e808273, 0x00570081, 0x68848353, 0xaf000400, 255 BUFFERED_FLAGS, BUFFERED_FLASH_PAGE_BITS, BUFFERED_FLASH_PAGE_SIZE, 256 BUFFERED_FLASH_BYTE_ADDR_MASK, BUFFERED_FLASH_TOTAL_SIZE*2, 257 "Buffered flash (256kB)"}, 258 }; 259 260 /* 261 * The BCM5709 controllers transparently handle the 262 * differences between Atmel 264 byte pages and all 263 * flash devices which use 256 byte pages, so no 264 * logical-to-physical mapping is required in the 265 * driver. 266 */ 267 static struct flash_spec flash_5709 = { 268 .flags = BCE_NV_BUFFERED, 269 .page_bits = BCM5709_FLASH_PAGE_BITS, 270 .page_size = BCM5709_FLASH_PAGE_SIZE, 271 .addr_mask = BCM5709_FLASH_BYTE_ADDR_MASK, 272 .total_size = BUFFERED_FLASH_TOTAL_SIZE * 2, 273 .name = "5709/5716 buffered flash (256kB)", 274 }; 275 276 277 /****************************************************************************/ 278 /* FreeBSD device entry points. */ 279 /****************************************************************************/ 280 static int bce_probe (device_t); 281 static int bce_attach (device_t); 282 static int bce_detach (device_t); 283 static int bce_shutdown (device_t); 284 285 286 /****************************************************************************/ 287 /* BCE Debug Data Structure Dump Routines */ 288 /****************************************************************************/ 289 #ifdef BCE_DEBUG 290 static u32 bce_reg_rd (struct bce_softc *, u32); 291 static void bce_reg_wr (struct bce_softc *, u32, u32); 292 static void bce_reg_wr16 (struct bce_softc *, u32, u16); 293 static u32 bce_ctx_rd (struct bce_softc *, u32, u32); 294 static void bce_dump_enet (struct bce_softc *, struct mbuf *); 295 static void bce_dump_mbuf (struct bce_softc *, struct mbuf *); 296 static void bce_dump_tx_mbuf_chain (struct bce_softc *, u16, int); 297 static void bce_dump_rx_mbuf_chain (struct bce_softc *, u16, int); 298 #ifdef BCE_JUMBO_HDRSPLIT 299 static void bce_dump_pg_mbuf_chain (struct bce_softc *, u16, int); 300 #endif 301 static void bce_dump_txbd (struct bce_softc *, 302 int, struct tx_bd *); 303 static void bce_dump_rxbd (struct bce_softc *, 304 int, struct rx_bd *); 305 #ifdef BCE_JUMBO_HDRSPLIT 306 static void bce_dump_pgbd (struct bce_softc *, 307 int, struct rx_bd *); 308 #endif 309 static void bce_dump_l2fhdr (struct bce_softc *, 310 int, struct l2_fhdr *); 311 static void bce_dump_ctx (struct bce_softc *, u16); 312 static void bce_dump_ftqs (struct bce_softc *); 313 static void bce_dump_tx_chain (struct bce_softc *, u16, int); 314 static void bce_dump_rx_bd_chain (struct bce_softc *, u16, int); 315 #ifdef BCE_JUMBO_HDRSPLIT 316 static void bce_dump_pg_chain (struct bce_softc *, u16, int); 317 #endif 318 static void bce_dump_status_block (struct bce_softc *); 319 static void bce_dump_stats_block (struct bce_softc *); 320 static void bce_dump_driver_state (struct bce_softc *); 321 static void bce_dump_hw_state (struct bce_softc *); 322 static void bce_dump_mq_regs (struct bce_softc *); 323 static void bce_dump_bc_state (struct bce_softc *); 324 static void bce_dump_txp_state (struct bce_softc *, int); 325 static void bce_dump_rxp_state (struct bce_softc *, int); 326 static void bce_dump_tpat_state (struct bce_softc *, int); 327 static void bce_dump_cp_state (struct bce_softc *, int); 328 static void bce_dump_com_state (struct bce_softc *, int); 329 static void bce_dump_rv2p_state (struct bce_softc *); 330 static void bce_breakpoint (struct bce_softc *); 331 #endif 332 333 334 /****************************************************************************/ 335 /* BCE Register/Memory Access Routines */ 336 /****************************************************************************/ 337 static u32 bce_reg_rd_ind (struct bce_softc *, u32); 338 static void bce_reg_wr_ind (struct bce_softc *, u32, u32); 339 static void bce_shmem_wr (struct bce_softc *, u32, u32); 340 static u32 bce_shmem_rd (struct bce_softc *, u32); 341 static void bce_ctx_wr (struct bce_softc *, u32, u32, u32); 342 static int bce_miibus_read_reg (device_t, int, int); 343 static int bce_miibus_write_reg (device_t, int, int, int); 344 static void bce_miibus_statchg (device_t); 345 346 347 /****************************************************************************/ 348 /* BCE NVRAM Access Routines */ 349 /****************************************************************************/ 350 static int bce_acquire_nvram_lock (struct bce_softc *); 351 static int bce_release_nvram_lock (struct bce_softc *); 352 static void bce_enable_nvram_access (struct bce_softc *); 353 static void bce_disable_nvram_access (struct bce_softc *); 354 static int bce_nvram_read_dword (struct bce_softc *, u32, u8 *, u32); 355 static int bce_init_nvram (struct bce_softc *); 356 static int bce_nvram_read (struct bce_softc *, u32, u8 *, int); 357 static int bce_nvram_test (struct bce_softc *); 358 #ifdef BCE_NVRAM_WRITE_SUPPORT 359 static int bce_enable_nvram_write (struct bce_softc *); 360 static void bce_disable_nvram_write (struct bce_softc *); 361 static int bce_nvram_erase_page (struct bce_softc *, u32); 362 static int bce_nvram_write_dword (struct bce_softc *, u32, u8 *, u32); 363 static int bce_nvram_write (struct bce_softc *, u32, u8 *, int); 364 #endif 365 366 /****************************************************************************/ 367 /* */ 368 /****************************************************************************/ 369 static void bce_get_media (struct bce_softc *); 370 static void bce_init_media (struct bce_softc *); 371 static void bce_dma_map_addr (void *, 372 bus_dma_segment_t *, int, int); 373 static int bce_dma_alloc (device_t); 374 static void bce_dma_free (struct bce_softc *); 375 static void bce_release_resources (struct bce_softc *); 376 377 /****************************************************************************/ 378 /* BCE Firmware Synchronization and Load */ 379 /****************************************************************************/ 380 static int bce_fw_sync (struct bce_softc *, u32); 381 static void bce_load_rv2p_fw (struct bce_softc *, u32 *, u32, u32); 382 static void bce_load_cpu_fw (struct bce_softc *, 383 struct cpu_reg *, struct fw_info *); 384 static void bce_start_cpu (struct bce_softc *, struct cpu_reg *); 385 static void bce_halt_cpu (struct bce_softc *, struct cpu_reg *); 386 static void bce_start_rxp_cpu (struct bce_softc *); 387 static void bce_init_rxp_cpu (struct bce_softc *); 388 static void bce_init_txp_cpu (struct bce_softc *); 389 static void bce_init_tpat_cpu (struct bce_softc *); 390 static void bce_init_cp_cpu (struct bce_softc *); 391 static void bce_init_com_cpu (struct bce_softc *); 392 static void bce_init_cpus (struct bce_softc *); 393 394 static void bce_print_adapter_info (struct bce_softc *); 395 static void bce_probe_pci_caps (device_t, struct bce_softc *); 396 static void bce_stop (struct bce_softc *); 397 static int bce_reset (struct bce_softc *, u32); 398 static int bce_chipinit (struct bce_softc *); 399 static int bce_blockinit (struct bce_softc *); 400 401 static int bce_init_tx_chain (struct bce_softc *); 402 static void bce_free_tx_chain (struct bce_softc *); 403 404 static int bce_get_rx_buf (struct bce_softc *, 405 struct mbuf *, u16 *, u16 *, u32 *); 406 static int bce_init_rx_chain (struct bce_softc *); 407 static void bce_fill_rx_chain (struct bce_softc *); 408 static void bce_free_rx_chain (struct bce_softc *); 409 410 #ifdef BCE_JUMBO_HDRSPLIT 411 static int bce_get_pg_buf (struct bce_softc *, 412 struct mbuf *, u16 *, u16 *); 413 static int bce_init_pg_chain (struct bce_softc *); 414 static void bce_fill_pg_chain (struct bce_softc *); 415 static void bce_free_pg_chain (struct bce_softc *); 416 #endif 417 418 static struct mbuf *bce_tso_setup (struct bce_softc *, 419 struct mbuf **, u16 *); 420 static int bce_tx_encap (struct bce_softc *, struct mbuf **); 421 static void bce_start_locked (struct ifnet *); 422 static void bce_start (struct ifnet *); 423 static int bce_ioctl (struct ifnet *, u_long, caddr_t); 424 static void bce_watchdog (struct bce_softc *); 425 static int bce_ifmedia_upd (struct ifnet *); 426 static void bce_ifmedia_upd_locked (struct ifnet *); 427 static void bce_ifmedia_sts (struct ifnet *, struct ifmediareq *); 428 static void bce_init_locked (struct bce_softc *); 429 static void bce_init (void *); 430 static void bce_mgmt_init_locked (struct bce_softc *sc); 431 432 static void bce_init_ctx (struct bce_softc *); 433 static void bce_get_mac_addr (struct bce_softc *); 434 static void bce_set_mac_addr (struct bce_softc *); 435 static void bce_phy_intr (struct bce_softc *); 436 static inline u16 bce_get_hw_rx_cons (struct bce_softc *); 437 static void bce_rx_intr (struct bce_softc *); 438 static void bce_tx_intr (struct bce_softc *); 439 static void bce_disable_intr (struct bce_softc *); 440 static void bce_enable_intr (struct bce_softc *, int); 441 442 static void bce_intr (void *); 443 static void bce_set_rx_mode (struct bce_softc *); 444 static void bce_stats_update (struct bce_softc *); 445 static void bce_tick (void *); 446 static void bce_pulse (void *); 447 static void bce_add_sysctls (struct bce_softc *); 448 449 450 /****************************************************************************/ 451 /* FreeBSD device dispatch table. */ 452 /****************************************************************************/ 453 static device_method_t bce_methods[] = { 454 /* Device interface (device_if.h) */ 455 DEVMETHOD(device_probe, bce_probe), 456 DEVMETHOD(device_attach, bce_attach), 457 DEVMETHOD(device_detach, bce_detach), 458 DEVMETHOD(device_shutdown, bce_shutdown), 459 /* Supported by device interface but not used here. */ 460 /* DEVMETHOD(device_identify, bce_identify), */ 461 /* DEVMETHOD(device_suspend, bce_suspend), */ 462 /* DEVMETHOD(device_resume, bce_resume), */ 463 /* DEVMETHOD(device_quiesce, bce_quiesce), */ 464 465 /* Bus interface (bus_if.h) */ 466 DEVMETHOD(bus_print_child, bus_generic_print_child), 467 DEVMETHOD(bus_driver_added, bus_generic_driver_added), 468 469 /* MII interface (miibus_if.h) */ 470 DEVMETHOD(miibus_readreg, bce_miibus_read_reg), 471 DEVMETHOD(miibus_writereg, bce_miibus_write_reg), 472 DEVMETHOD(miibus_statchg, bce_miibus_statchg), 473 /* Supported by MII interface but not used here. */ 474 /* DEVMETHOD(miibus_linkchg, bce_miibus_linkchg), */ 475 /* DEVMETHOD(miibus_mediainit, bce_miibus_mediainit), */ 476 477 { 0, 0 } 478 }; 479 480 static driver_t bce_driver = { 481 "bce", 482 bce_methods, 483 sizeof(struct bce_softc) 484 }; 485 486 static devclass_t bce_devclass; 487 488 MODULE_DEPEND(bce, pci, 1, 1, 1); 489 MODULE_DEPEND(bce, ether, 1, 1, 1); 490 MODULE_DEPEND(bce, miibus, 1, 1, 1); 491 492 DRIVER_MODULE(bce, pci, bce_driver, bce_devclass, 0, 0); 493 DRIVER_MODULE(miibus, bce, miibus_driver, miibus_devclass, 0, 0); 494 495 496 /****************************************************************************/ 497 /* Tunable device values */ 498 /****************************************************************************/ 499 SYSCTL_NODE(_hw, OID_AUTO, bce, CTLFLAG_RD, 0, "bce driver parameters"); 500 501 /* Allowable values are TRUE or FALSE */ 502 static int bce_tso_enable = TRUE; 503 TUNABLE_INT("hw.bce.tso_enable", &bce_tso_enable); 504 SYSCTL_UINT(_hw_bce, OID_AUTO, tso_enable, CTLFLAG_RDTUN, &bce_tso_enable, 0, 505 "TSO Enable/Disable"); 506 507 /* Allowable values are 0 (IRQ), 1 (MSI/IRQ), and 2 (MSI-X/MSI/IRQ) */ 508 /* ToDo: Add MSI-X support. */ 509 static int bce_msi_enable = 1; 510 TUNABLE_INT("hw.bce.msi_enable", &bce_msi_enable); 511 SYSCTL_UINT(_hw_bce, OID_AUTO, msi_enable, CTLFLAG_RDTUN, &bce_msi_enable, 0, 512 "MSI-X|MSI|INTx selector"); 513 514 /* ToDo: Add tunable to enable/disable strict MTU handling. */ 515 /* Currently allows "loose" RX MTU checking (i.e. sets the */ 516 /* H/W RX MTU to the size of the largest receive buffer, or */ 517 /* 2048 bytes). This will cause a UNH failure but is more */ 518 /* desireable from a functional perspective. */ 519 520 521 /****************************************************************************/ 522 /* Device probe function. */ 523 /* */ 524 /* Compares the device to the driver's list of supported devices and */ 525 /* reports back to the OS whether this is the right driver for the device. */ 526 /* */ 527 /* Returns: */ 528 /* BUS_PROBE_DEFAULT on success, positive value on failure. */ 529 /****************************************************************************/ 530 static int 531 bce_probe(device_t dev) 532 { 533 struct bce_type *t; 534 struct bce_softc *sc; 535 char *descbuf; 536 u16 vid = 0, did = 0, svid = 0, sdid = 0; 537 538 t = bce_devs; 539 540 sc = device_get_softc(dev); 541 bzero(sc, sizeof(struct bce_softc)); 542 sc->bce_unit = device_get_unit(dev); 543 sc->bce_dev = dev; 544 545 /* Get the data for the device to be probed. */ 546 vid = pci_get_vendor(dev); 547 did = pci_get_device(dev); 548 svid = pci_get_subvendor(dev); 549 sdid = pci_get_subdevice(dev); 550 551 DBPRINT(sc, BCE_EXTREME_LOAD, 552 "%s(); VID = 0x%04X, DID = 0x%04X, SVID = 0x%04X, " 553 "SDID = 0x%04X\n", __FUNCTION__, vid, did, svid, sdid); 554 555 /* Look through the list of known devices for a match. */ 556 while(t->bce_name != NULL) { 557 558 if ((vid == t->bce_vid) && (did == t->bce_did) && 559 ((svid == t->bce_svid) || (t->bce_svid == PCI_ANY_ID)) && 560 ((sdid == t->bce_sdid) || (t->bce_sdid == PCI_ANY_ID))) { 561 562 descbuf = malloc(BCE_DEVDESC_MAX, M_TEMP, M_NOWAIT); 563 564 if (descbuf == NULL) 565 return(ENOMEM); 566 567 /* Print out the device identity. */ 568 snprintf(descbuf, BCE_DEVDESC_MAX, "%s (%c%d)", 569 t->bce_name, (((pci_read_config(dev, 570 PCIR_REVID, 4) & 0xf0) >> 4) + 'A'), 571 (pci_read_config(dev, PCIR_REVID, 4) & 0xf)); 572 573 device_set_desc_copy(dev, descbuf); 574 free(descbuf, M_TEMP); 575 return(BUS_PROBE_DEFAULT); 576 } 577 t++; 578 } 579 580 return(ENXIO); 581 } 582 583 584 /****************************************************************************/ 585 /* PCI Capabilities Probe Function. */ 586 /* */ 587 /* Walks the PCI capabiites list for the device to find what features are */ 588 /* supported. */ 589 /* */ 590 /* Returns: */ 591 /* None. */ 592 /****************************************************************************/ 593 static void 594 bce_print_adapter_info(struct bce_softc *sc) 595 { 596 int i = 0; 597 598 DBENTER(BCE_VERBOSE_LOAD); 599 600 BCE_PRINTF("ASIC (0x%08X); ", sc->bce_chipid); 601 printf("Rev (%c%d); ", ((BCE_CHIP_ID(sc) & 0xf000) >> 12) + 'A', 602 ((BCE_CHIP_ID(sc) & 0x0ff0) >> 4)); 603 604 /* Bus info. */ 605 if (sc->bce_flags & BCE_PCIE_FLAG) { 606 printf("Bus (PCIe x%d, ", sc->link_width); 607 switch (sc->link_speed) { 608 case 1: printf("2.5Gbps); "); break; 609 case 2: printf("5Gbps); "); break; 610 default: printf("Unknown link speed); "); 611 } 612 } else { 613 printf("Bus (PCI%s, %s, %dMHz); ", 614 ((sc->bce_flags & BCE_PCIX_FLAG) ? "-X" : ""), 615 ((sc->bce_flags & BCE_PCI_32BIT_FLAG) ? 616 "32-bit" : "64-bit"), sc->bus_speed_mhz); 617 } 618 619 /* Firmware version and device features. */ 620 printf("B/C (%s); Flags (", sc->bce_bc_ver); 621 622 #ifdef BCE_JUMBO_HDRSPLIT 623 printf("SPLT"); 624 i++; 625 #endif 626 627 if (sc->bce_flags & BCE_USING_MSI_FLAG) { 628 if (i > 0) printf("|"); 629 printf("MSI"); i++; 630 } 631 632 if (sc->bce_flags & BCE_USING_MSIX_FLAG) { 633 if (i > 0) printf("|"); 634 printf("MSI-X"); i++; 635 } 636 637 if (sc->bce_phy_flags & BCE_PHY_2_5G_CAPABLE_FLAG) { 638 if (i > 0) printf("|"); 639 printf("2.5G"); i++; 640 } 641 642 if (sc->bce_flags & BCE_MFW_ENABLE_FLAG) { 643 if (i > 0) printf("|"); 644 printf("MFW); MFW (%s)\n", sc->bce_mfw_ver); 645 } else { 646 printf(")\n"); 647 } 648 649 DBEXIT(BCE_VERBOSE_LOAD); 650 } 651 652 653 /****************************************************************************/ 654 /* PCI Capabilities Probe Function. */ 655 /* */ 656 /* Walks the PCI capabiites list for the device to find what features are */ 657 /* supported. */ 658 /* */ 659 /* Returns: */ 660 /* None. */ 661 /****************************************************************************/ 662 static void 663 bce_probe_pci_caps(device_t dev, struct bce_softc *sc) 664 { 665 u32 reg; 666 667 DBENTER(BCE_VERBOSE_LOAD); 668 669 /* Check if PCI-X capability is enabled. */ 670 if (pci_find_extcap(dev, PCIY_PCIX, ®) == 0) { 671 if (reg != 0) 672 sc->bce_cap_flags |= BCE_PCIX_CAPABLE_FLAG; 673 } 674 675 /* Check if PCIe capability is enabled. */ 676 if (pci_find_extcap(dev, PCIY_EXPRESS, ®) == 0) { 677 if (reg != 0) { 678 u16 link_status = pci_read_config(dev, reg + 0x12, 2); 679 DBPRINT(sc, BCE_INFO_LOAD, "PCIe link_status = " 680 "0x%08X\n", link_status); 681 sc->link_speed = link_status & 0xf; 682 sc->link_width = (link_status >> 4) & 0x3f; 683 sc->bce_cap_flags |= BCE_PCIE_CAPABLE_FLAG; 684 sc->bce_flags |= BCE_PCIE_FLAG; 685 } 686 } 687 688 /* Check if MSI capability is enabled. */ 689 if (pci_find_extcap(dev, PCIY_MSI, ®) == 0) { 690 if (reg != 0) 691 sc->bce_cap_flags |= BCE_MSI_CAPABLE_FLAG; 692 } 693 694 /* Check if MSI-X capability is enabled. */ 695 if (pci_find_extcap(dev, PCIY_MSIX, ®) == 0) { 696 if (reg != 0) 697 sc->bce_cap_flags |= BCE_MSIX_CAPABLE_FLAG; 698 } 699 700 DBEXIT(BCE_VERBOSE_LOAD); 701 } 702 703 704 /****************************************************************************/ 705 /* Device attach function. */ 706 /* */ 707 /* Allocates device resources, performs secondary chip identification, */ 708 /* resets and initializes the hardware, and initializes driver instance */ 709 /* variables. */ 710 /* */ 711 /* Returns: */ 712 /* 0 on success, positive value on failure. */ 713 /****************************************************************************/ 714 static int 715 bce_attach(device_t dev) 716 { 717 struct bce_softc *sc; 718 struct ifnet *ifp; 719 u32 val; 720 int error, rid, rc = 0; 721 722 sc = device_get_softc(dev); 723 sc->bce_dev = dev; 724 725 DBENTER(BCE_VERBOSE_LOAD | BCE_VERBOSE_RESET); 726 727 sc->bce_unit = device_get_unit(dev); 728 729 /* Set initial device and PHY flags */ 730 sc->bce_flags = 0; 731 sc->bce_phy_flags = 0; 732 733 pci_enable_busmaster(dev); 734 735 /* Allocate PCI memory resources. */ 736 rid = PCIR_BAR(0); 737 sc->bce_res_mem = bus_alloc_resource_any(dev, SYS_RES_MEMORY, 738 &rid, RF_ACTIVE); 739 740 if (sc->bce_res_mem == NULL) { 741 BCE_PRINTF("%s(%d): PCI memory allocation failed\n", 742 __FILE__, __LINE__); 743 rc = ENXIO; 744 goto bce_attach_fail; 745 } 746 747 /* Get various resource handles. */ 748 sc->bce_btag = rman_get_bustag(sc->bce_res_mem); 749 sc->bce_bhandle = rman_get_bushandle(sc->bce_res_mem); 750 sc->bce_vhandle = (vm_offset_t) rman_get_virtual(sc->bce_res_mem); 751 752 bce_probe_pci_caps(dev, sc); 753 754 rid = 1; 755 #if 0 756 /* Try allocating MSI-X interrupts. */ 757 if ((sc->bce_cap_flags & BCE_MSIX_CAPABLE_FLAG) && 758 (bce_msi_enable >= 2) && 759 ((sc->bce_res_irq = bus_alloc_resource_any(dev, SYS_RES_MEMORY, 760 &rid, RF_ACTIVE)) != NULL)) { 761 762 msi_needed = sc->bce_msi_count = 1; 763 764 if (((error = pci_alloc_msix(dev, &sc->bce_msi_count)) != 0) || 765 (sc->bce_msi_count != msi_needed)) { 766 BCE_PRINTF("%s(%d): MSI-X allocation failed! Requested = %d," 767 "Received = %d, error = %d\n", __FILE__, __LINE__, 768 msi_needed, sc->bce_msi_count, error); 769 sc->bce_msi_count = 0; 770 pci_release_msi(dev); 771 bus_release_resource(dev, SYS_RES_MEMORY, rid, 772 sc->bce_res_irq); 773 sc->bce_res_irq = NULL; 774 } else { 775 DBPRINT(sc, BCE_INFO_LOAD, "%s(): Using MSI-X interrupt.\n", 776 __FUNCTION__); 777 sc->bce_flags |= BCE_USING_MSIX_FLAG; 778 sc->bce_intr = bce_intr; 779 } 780 } 781 #endif 782 783 /* Try allocating a MSI interrupt. */ 784 if ((sc->bce_cap_flags & BCE_MSI_CAPABLE_FLAG) && 785 (bce_msi_enable >= 1) && (sc->bce_msi_count == 0)) { 786 sc->bce_msi_count = 1; 787 if ((error = pci_alloc_msi(dev, &sc->bce_msi_count)) != 0) { 788 BCE_PRINTF("%s(%d): MSI allocation failed! error = %d\n", 789 __FILE__, __LINE__, error); 790 sc->bce_msi_count = 0; 791 pci_release_msi(dev); 792 } else { 793 DBPRINT(sc, BCE_INFO_LOAD, "%s(): Using MSI interrupt.\n", 794 __FUNCTION__); 795 sc->bce_flags |= BCE_USING_MSI_FLAG; 796 if ((BCE_CHIP_NUM(sc) == BCE_CHIP_NUM_5709) || 797 (BCE_CHIP_NUM(sc) == BCE_CHIP_NUM_5716)) 798 sc->bce_flags |= BCE_ONE_SHOT_MSI_FLAG; 799 sc->bce_irq_rid = 1; 800 sc->bce_intr = bce_intr; 801 } 802 } 803 804 /* Try allocating a legacy interrupt. */ 805 if (sc->bce_msi_count == 0) { 806 DBPRINT(sc, BCE_INFO_LOAD, "%s(): Using INTx interrupt.\n", 807 __FUNCTION__); 808 rid = 0; 809 sc->bce_intr = bce_intr; 810 } 811 812 sc->bce_res_irq = bus_alloc_resource_any(dev, SYS_RES_IRQ, 813 &rid, RF_SHAREABLE | RF_ACTIVE); 814 815 sc->bce_irq_rid = rid; 816 817 /* Report any IRQ allocation errors. */ 818 if (sc->bce_res_irq == NULL) { 819 BCE_PRINTF("%s(%d): PCI map interrupt failed!\n", 820 __FILE__, __LINE__); 821 rc = ENXIO; 822 goto bce_attach_fail; 823 } 824 825 /* Initialize mutex for the current device instance. */ 826 BCE_LOCK_INIT(sc, device_get_nameunit(dev)); 827 828 /* 829 * Configure byte swap and enable indirect register access. 830 * Rely on CPU to do target byte swapping on big endian systems. 831 * Access to registers outside of PCI configurtion space are not 832 * valid until this is done. 833 */ 834 pci_write_config(dev, BCE_PCICFG_MISC_CONFIG, 835 BCE_PCICFG_MISC_CONFIG_REG_WINDOW_ENA | 836 BCE_PCICFG_MISC_CONFIG_TARGET_MB_WORD_SWAP, 4); 837 838 /* Save ASIC revsion info. */ 839 sc->bce_chipid = REG_RD(sc, BCE_MISC_ID); 840 841 /* Weed out any non-production controller revisions. */ 842 switch(BCE_CHIP_ID(sc)) { 843 case BCE_CHIP_ID_5706_A0: 844 case BCE_CHIP_ID_5706_A1: 845 case BCE_CHIP_ID_5708_A0: 846 case BCE_CHIP_ID_5708_B0: 847 case BCE_CHIP_ID_5709_A0: 848 case BCE_CHIP_ID_5709_B0: 849 case BCE_CHIP_ID_5709_B1: 850 case BCE_CHIP_ID_5709_B2: 851 BCE_PRINTF("%s(%d): Unsupported controller revision (%c%d)!\n", 852 __FILE__, __LINE__, 853 (((pci_read_config(dev, PCIR_REVID, 4) & 0xf0) >> 4) + 'A'), 854 (pci_read_config(dev, PCIR_REVID, 4) & 0xf)); 855 rc = ENODEV; 856 goto bce_attach_fail; 857 } 858 859 /* 860 * The embedded PCIe to PCI-X bridge (EPB) 861 * in the 5708 cannot address memory above 862 * 40 bits (E7_5708CB1_23043 & E6_5708SB1_23043). 863 */ 864 if (BCE_CHIP_NUM(sc) == BCE_CHIP_NUM_5708) 865 sc->max_bus_addr = BCE_BUS_SPACE_MAXADDR; 866 else 867 sc->max_bus_addr = BUS_SPACE_MAXADDR; 868 869 /* 870 * Find the base address for shared memory access. 871 * Newer versions of bootcode use a signature and offset 872 * while older versions use a fixed address. 873 */ 874 val = REG_RD_IND(sc, BCE_SHM_HDR_SIGNATURE); 875 if ((val & BCE_SHM_HDR_SIGNATURE_SIG_MASK) == BCE_SHM_HDR_SIGNATURE_SIG) 876 /* Multi-port devices use different offsets in shared memory. */ 877 sc->bce_shmem_base = REG_RD_IND(sc, BCE_SHM_HDR_ADDR_0 + 878 (pci_get_function(sc->bce_dev) << 2)); 879 else 880 sc->bce_shmem_base = HOST_VIEW_SHMEM_BASE; 881 882 DBPRINT(sc, BCE_VERBOSE_FIRMWARE, "%s(): bce_shmem_base = 0x%08X\n", 883 __FUNCTION__, sc->bce_shmem_base); 884 885 /* Fetch the bootcode revision. */ 886 val = bce_shmem_rd(sc, BCE_DEV_INFO_BC_REV); 887 for (int i = 0, j = 0; i < 3; i++) { 888 u8 num; 889 890 num = (u8) (val >> (24 - (i * 8))); 891 for (int k = 100, skip0 = 1; k >= 1; num %= k, k /= 10) { 892 if (num >= k || !skip0 || k == 1) { 893 sc->bce_bc_ver[j++] = (num / k) + '0'; 894 skip0 = 0; 895 } 896 } 897 898 if (i != 2) 899 sc->bce_bc_ver[j++] = '.'; 900 } 901 902 /* Check if any management firwmare is enabled. */ 903 val = bce_shmem_rd(sc, BCE_PORT_FEATURE); 904 if (val & BCE_PORT_FEATURE_ASF_ENABLED) { 905 sc->bce_flags |= BCE_MFW_ENABLE_FLAG; 906 907 /* Allow time for firmware to enter the running state. */ 908 for (int i = 0; i < 30; i++) { 909 val = bce_shmem_rd(sc, BCE_BC_STATE_CONDITION); 910 if (val & BCE_CONDITION_MFW_RUN_MASK) 911 break; 912 DELAY(10000); 913 } 914 915 /* Check if management firmware is running. */ 916 val = bce_shmem_rd(sc, BCE_BC_STATE_CONDITION); 917 val &= BCE_CONDITION_MFW_RUN_MASK; 918 if ((val != BCE_CONDITION_MFW_RUN_UNKNOWN) && 919 (val != BCE_CONDITION_MFW_RUN_NONE)) { 920 u32 addr = bce_shmem_rd(sc, BCE_MFW_VER_PTR); 921 int i = 0; 922 923 /* Read the management firmware version string. */ 924 for (int j = 0; j < 3; j++) { 925 val = bce_reg_rd_ind(sc, addr + j * 4); 926 val = bswap32(val); 927 memcpy(&sc->bce_mfw_ver[i], &val, 4); 928 i += 4; 929 } 930 } else { 931 /* May cause firmware synchronization timeouts. */ 932 BCE_PRINTF("%s(%d): Management firmware enabled " 933 "but not running!\n", __FILE__, __LINE__); 934 strcpy(sc->bce_mfw_ver, "NOT RUNNING!"); 935 936 /* ToDo: Any action the driver should take? */ 937 } 938 } 939 940 /* Get PCI bus information (speed and type). */ 941 val = REG_RD(sc, BCE_PCICFG_MISC_STATUS); 942 if (val & BCE_PCICFG_MISC_STATUS_PCIX_DET) { 943 u32 clkreg; 944 945 sc->bce_flags |= BCE_PCIX_FLAG; 946 947 clkreg = REG_RD(sc, BCE_PCICFG_PCI_CLOCK_CONTROL_BITS); 948 949 clkreg &= BCE_PCICFG_PCI_CLOCK_CONTROL_BITS_PCI_CLK_SPD_DET; 950 switch (clkreg) { 951 case BCE_PCICFG_PCI_CLOCK_CONTROL_BITS_PCI_CLK_SPD_DET_133MHZ: 952 sc->bus_speed_mhz = 133; 953 break; 954 955 case BCE_PCICFG_PCI_CLOCK_CONTROL_BITS_PCI_CLK_SPD_DET_95MHZ: 956 sc->bus_speed_mhz = 100; 957 break; 958 959 case BCE_PCICFG_PCI_CLOCK_CONTROL_BITS_PCI_CLK_SPD_DET_66MHZ: 960 case BCE_PCICFG_PCI_CLOCK_CONTROL_BITS_PCI_CLK_SPD_DET_80MHZ: 961 sc->bus_speed_mhz = 66; 962 break; 963 964 case BCE_PCICFG_PCI_CLOCK_CONTROL_BITS_PCI_CLK_SPD_DET_48MHZ: 965 case BCE_PCICFG_PCI_CLOCK_CONTROL_BITS_PCI_CLK_SPD_DET_55MHZ: 966 sc->bus_speed_mhz = 50; 967 break; 968 969 case BCE_PCICFG_PCI_CLOCK_CONTROL_BITS_PCI_CLK_SPD_DET_LOW: 970 case BCE_PCICFG_PCI_CLOCK_CONTROL_BITS_PCI_CLK_SPD_DET_32MHZ: 971 case BCE_PCICFG_PCI_CLOCK_CONTROL_BITS_PCI_CLK_SPD_DET_38MHZ: 972 sc->bus_speed_mhz = 33; 973 break; 974 } 975 } else { 976 if (val & BCE_PCICFG_MISC_STATUS_M66EN) 977 sc->bus_speed_mhz = 66; 978 else 979 sc->bus_speed_mhz = 33; 980 } 981 982 if (val & BCE_PCICFG_MISC_STATUS_32BIT_DET) 983 sc->bce_flags |= BCE_PCI_32BIT_FLAG; 984 985 /* Reset controller and announce to bootcode that driver is present. */ 986 if (bce_reset(sc, BCE_DRV_MSG_CODE_RESET)) { 987 BCE_PRINTF("%s(%d): Controller reset failed!\n", 988 __FILE__, __LINE__); 989 rc = ENXIO; 990 goto bce_attach_fail; 991 } 992 993 /* Initialize the controller. */ 994 if (bce_chipinit(sc)) { 995 BCE_PRINTF("%s(%d): Controller initialization failed!\n", 996 __FILE__, __LINE__); 997 rc = ENXIO; 998 goto bce_attach_fail; 999 } 1000 1001 /* Perform NVRAM test. */ 1002 if (bce_nvram_test(sc)) { 1003 BCE_PRINTF("%s(%d): NVRAM test failed!\n", 1004 __FILE__, __LINE__); 1005 rc = ENXIO; 1006 goto bce_attach_fail; 1007 } 1008 1009 /* Fetch the permanent Ethernet MAC address. */ 1010 bce_get_mac_addr(sc); 1011 1012 /* 1013 * Trip points control how many BDs 1014 * should be ready before generating an 1015 * interrupt while ticks control how long 1016 * a BD can sit in the chain before 1017 * generating an interrupt. Set the default 1018 * values for the RX and TX chains. 1019 */ 1020 1021 #ifdef BCE_DEBUG 1022 /* Force more frequent interrupts. */ 1023 sc->bce_tx_quick_cons_trip_int = 1; 1024 sc->bce_tx_quick_cons_trip = 1; 1025 sc->bce_tx_ticks_int = 0; 1026 sc->bce_tx_ticks = 0; 1027 1028 sc->bce_rx_quick_cons_trip_int = 1; 1029 sc->bce_rx_quick_cons_trip = 1; 1030 sc->bce_rx_ticks_int = 0; 1031 sc->bce_rx_ticks = 0; 1032 #else 1033 /* Improve throughput at the expense of increased latency. */ 1034 sc->bce_tx_quick_cons_trip_int = 20; 1035 sc->bce_tx_quick_cons_trip = 20; 1036 sc->bce_tx_ticks_int = 80; 1037 sc->bce_tx_ticks = 80; 1038 1039 sc->bce_rx_quick_cons_trip_int = 6; 1040 sc->bce_rx_quick_cons_trip = 6; 1041 sc->bce_rx_ticks_int = 18; 1042 sc->bce_rx_ticks = 18; 1043 #endif 1044 1045 /* Not used for L2. */ 1046 sc->bce_comp_prod_trip_int = 0; 1047 sc->bce_comp_prod_trip = 0; 1048 sc->bce_com_ticks_int = 0; 1049 sc->bce_com_ticks = 0; 1050 sc->bce_cmd_ticks_int = 0; 1051 sc->bce_cmd_ticks = 0; 1052 1053 /* Update statistics once every second. */ 1054 sc->bce_stats_ticks = 1000000 & 0xffff00; 1055 1056 /* Find the media type for the adapter. */ 1057 bce_get_media(sc); 1058 1059 /* Store data needed by PHY driver for backplane applications */ 1060 sc->bce_shared_hw_cfg = bce_shmem_rd(sc, BCE_SHARED_HW_CFG_CONFIG); 1061 sc->bce_port_hw_cfg = bce_shmem_rd(sc, BCE_PORT_HW_CFG_CONFIG); 1062 1063 /* Allocate DMA memory resources. */ 1064 if (bce_dma_alloc(dev)) { 1065 BCE_PRINTF("%s(%d): DMA resource allocation failed!\n", 1066 __FILE__, __LINE__); 1067 rc = ENXIO; 1068 goto bce_attach_fail; 1069 } 1070 1071 /* Allocate an ifnet structure. */ 1072 ifp = sc->bce_ifp = if_alloc(IFT_ETHER); 1073 if (ifp == NULL) { 1074 BCE_PRINTF("%s(%d): Interface allocation failed!\n", 1075 __FILE__, __LINE__); 1076 rc = ENXIO; 1077 goto bce_attach_fail; 1078 } 1079 1080 /* Initialize the ifnet interface. */ 1081 ifp->if_softc = sc; 1082 if_initname(ifp, device_get_name(dev), device_get_unit(dev)); 1083 ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST; 1084 ifp->if_ioctl = bce_ioctl; 1085 ifp->if_start = bce_start; 1086 ifp->if_init = bce_init; 1087 ifp->if_mtu = ETHERMTU; 1088 1089 if (bce_tso_enable) { 1090 ifp->if_hwassist = BCE_IF_HWASSIST | CSUM_TSO; 1091 ifp->if_capabilities = BCE_IF_CAPABILITIES | IFCAP_TSO4 | 1092 IFCAP_VLAN_HWTSO; 1093 } else { 1094 ifp->if_hwassist = BCE_IF_HWASSIST; 1095 ifp->if_capabilities = BCE_IF_CAPABILITIES; 1096 } 1097 1098 ifp->if_capenable = ifp->if_capabilities; 1099 1100 /* 1101 * Assume standard mbuf sizes for buffer allocation. 1102 * This may change later if the MTU size is set to 1103 * something other than 1500. 1104 */ 1105 #ifdef BCE_JUMBO_HDRSPLIT 1106 sc->rx_bd_mbuf_alloc_size = MHLEN; 1107 /* Make sure offset is 16 byte aligned for hardware. */ 1108 sc->rx_bd_mbuf_align_pad = roundup2((MSIZE - MHLEN), 16) - 1109 (MSIZE - MHLEN); 1110 sc->rx_bd_mbuf_data_len = sc->rx_bd_mbuf_alloc_size - 1111 sc->rx_bd_mbuf_align_pad; 1112 sc->pg_bd_mbuf_alloc_size = MCLBYTES; 1113 #else 1114 sc->rx_bd_mbuf_alloc_size = MCLBYTES; 1115 sc->rx_bd_mbuf_align_pad = roundup2(MCLBYTES, 16) - MCLBYTES; 1116 sc->rx_bd_mbuf_data_len = sc->rx_bd_mbuf_alloc_size - 1117 sc->rx_bd_mbuf_align_pad; 1118 #endif 1119 1120 ifp->if_snd.ifq_drv_maxlen = USABLE_TX_BD; 1121 IFQ_SET_MAXLEN(&ifp->if_snd, ifp->if_snd.ifq_drv_maxlen); 1122 IFQ_SET_READY(&ifp->if_snd); 1123 1124 if (sc->bce_phy_flags & BCE_PHY_2_5G_CAPABLE_FLAG) 1125 ifp->if_baudrate = IF_Mbps(2500ULL); 1126 else 1127 ifp->if_baudrate = IF_Mbps(1000); 1128 1129 /* Handle any special PHY initialization for SerDes PHYs. */ 1130 bce_init_media(sc); 1131 1132 /* MII child bus by probing the PHY. */ 1133 if (mii_phy_probe(dev, &sc->bce_miibus, bce_ifmedia_upd, 1134 bce_ifmedia_sts)) { 1135 BCE_PRINTF("%s(%d): No PHY found on child MII bus!\n", 1136 __FILE__, __LINE__); 1137 rc = ENXIO; 1138 goto bce_attach_fail; 1139 } 1140 1141 /* Attach to the Ethernet interface list. */ 1142 ether_ifattach(ifp, sc->eaddr); 1143 1144 #if __FreeBSD_version < 500000 1145 callout_init(&sc->bce_tick_callout); 1146 callout_init(&sc->bce_pulse_callout); 1147 #else 1148 callout_init_mtx(&sc->bce_tick_callout, &sc->bce_mtx, 0); 1149 callout_init_mtx(&sc->bce_pulse_callout, &sc->bce_mtx, 0); 1150 #endif 1151 1152 /* Hookup IRQ last. */ 1153 rc = bus_setup_intr(dev, sc->bce_res_irq, INTR_TYPE_NET | INTR_MPSAFE, 1154 NULL, bce_intr, sc, &sc->bce_intrhand); 1155 1156 if (rc) { 1157 BCE_PRINTF("%s(%d): Failed to setup IRQ!\n", 1158 __FILE__, __LINE__); 1159 bce_detach(dev); 1160 goto bce_attach_exit; 1161 } 1162 1163 /* 1164 * At this point we've acquired all the resources 1165 * we need to run so there's no turning back, we're 1166 * cleared for launch. 1167 */ 1168 1169 /* Print some important debugging info. */ 1170 DBRUNMSG(BCE_INFO, bce_dump_driver_state(sc)); 1171 1172 /* Add the supported sysctls to the kernel. */ 1173 bce_add_sysctls(sc); 1174 1175 BCE_LOCK(sc); 1176 1177 /* 1178 * The chip reset earlier notified the bootcode that 1179 * a driver is present. We now need to start our pulse 1180 * routine so that the bootcode is reminded that we're 1181 * still running. 1182 */ 1183 bce_pulse(sc); 1184 1185 bce_mgmt_init_locked(sc); 1186 BCE_UNLOCK(sc); 1187 1188 /* Finally, print some useful adapter info */ 1189 bce_print_adapter_info(sc); 1190 DBPRINT(sc, BCE_FATAL, "%s(): sc = %p\n", 1191 __FUNCTION__, sc); 1192 1193 goto bce_attach_exit; 1194 1195 bce_attach_fail: 1196 bce_release_resources(sc); 1197 1198 bce_attach_exit: 1199 1200 DBEXIT(BCE_VERBOSE_LOAD | BCE_VERBOSE_RESET); 1201 1202 return(rc); 1203 } 1204 1205 1206 /****************************************************************************/ 1207 /* Device detach function. */ 1208 /* */ 1209 /* Stops the controller, resets the controller, and releases resources. */ 1210 /* */ 1211 /* Returns: */ 1212 /* 0 on success, positive value on failure. */ 1213 /****************************************************************************/ 1214 static int 1215 bce_detach(device_t dev) 1216 { 1217 struct bce_softc *sc = device_get_softc(dev); 1218 struct ifnet *ifp; 1219 u32 msg; 1220 1221 DBENTER(BCE_VERBOSE_UNLOAD | BCE_VERBOSE_RESET); 1222 1223 ifp = sc->bce_ifp; 1224 1225 /* Stop and reset the controller. */ 1226 BCE_LOCK(sc); 1227 1228 /* Stop the pulse so the bootcode can go to driver absent state. */ 1229 callout_stop(&sc->bce_pulse_callout); 1230 1231 bce_stop(sc); 1232 if (sc->bce_flags & BCE_NO_WOL_FLAG) 1233 msg = BCE_DRV_MSG_CODE_UNLOAD_LNK_DN; 1234 else 1235 msg = BCE_DRV_MSG_CODE_UNLOAD; 1236 bce_reset(sc, msg); 1237 1238 BCE_UNLOCK(sc); 1239 1240 ether_ifdetach(ifp); 1241 1242 /* If we have a child device on the MII bus remove it too. */ 1243 bus_generic_detach(dev); 1244 device_delete_child(dev, sc->bce_miibus); 1245 1246 /* Release all remaining resources. */ 1247 bce_release_resources(sc); 1248 1249 DBEXIT(BCE_VERBOSE_UNLOAD | BCE_VERBOSE_RESET); 1250 1251 return(0); 1252 } 1253 1254 1255 /****************************************************************************/ 1256 /* Device shutdown function. */ 1257 /* */ 1258 /* Stops and resets the controller. */ 1259 /* */ 1260 /* Returns: */ 1261 /* 0 on success, positive value on failure. */ 1262 /****************************************************************************/ 1263 static int 1264 bce_shutdown(device_t dev) 1265 { 1266 struct bce_softc *sc = device_get_softc(dev); 1267 u32 msg; 1268 1269 DBENTER(BCE_VERBOSE); 1270 1271 BCE_LOCK(sc); 1272 bce_stop(sc); 1273 if (sc->bce_flags & BCE_NO_WOL_FLAG) 1274 msg = BCE_DRV_MSG_CODE_UNLOAD_LNK_DN; 1275 else 1276 msg = BCE_DRV_MSG_CODE_UNLOAD; 1277 bce_reset(sc, msg); 1278 BCE_UNLOCK(sc); 1279 1280 DBEXIT(BCE_VERBOSE); 1281 1282 return (0); 1283 } 1284 1285 1286 #ifdef BCE_DEBUG 1287 /****************************************************************************/ 1288 /* Register read. */ 1289 /* */ 1290 /* Returns: */ 1291 /* The value of the register. */ 1292 /****************************************************************************/ 1293 static u32 1294 bce_reg_rd(struct bce_softc *sc, u32 offset) 1295 { 1296 u32 val = bus_space_read_4(sc->bce_btag, sc->bce_bhandle, offset); 1297 DBPRINT(sc, BCE_INSANE_REG, "%s(); offset = 0x%08X, val = 0x%08X\n", 1298 __FUNCTION__, offset, val); 1299 return val; 1300 } 1301 1302 1303 /****************************************************************************/ 1304 /* Register write (16 bit). */ 1305 /* */ 1306 /* Returns: */ 1307 /* Nothing. */ 1308 /****************************************************************************/ 1309 static void 1310 bce_reg_wr16(struct bce_softc *sc, u32 offset, u16 val) 1311 { 1312 DBPRINT(sc, BCE_INSANE_REG, "%s(); offset = 0x%08X, val = 0x%04X\n", 1313 __FUNCTION__, offset, val); 1314 bus_space_write_2(sc->bce_btag, sc->bce_bhandle, offset, val); 1315 } 1316 1317 1318 /****************************************************************************/ 1319 /* Register write. */ 1320 /* */ 1321 /* Returns: */ 1322 /* Nothing. */ 1323 /****************************************************************************/ 1324 static void 1325 bce_reg_wr(struct bce_softc *sc, u32 offset, u32 val) 1326 { 1327 DBPRINT(sc, BCE_INSANE_REG, "%s(); offset = 0x%08X, val = 0x%08X\n", 1328 __FUNCTION__, offset, val); 1329 bus_space_write_4(sc->bce_btag, sc->bce_bhandle, offset, val); 1330 } 1331 #endif 1332 1333 /****************************************************************************/ 1334 /* Indirect register read. */ 1335 /* */ 1336 /* Reads NetXtreme II registers using an index/data register pair in PCI */ 1337 /* configuration space. Using this mechanism avoids issues with posted */ 1338 /* reads but is much slower than memory-mapped I/O. */ 1339 /* */ 1340 /* Returns: */ 1341 /* The value of the register. */ 1342 /****************************************************************************/ 1343 static u32 1344 bce_reg_rd_ind(struct bce_softc *sc, u32 offset) 1345 { 1346 device_t dev; 1347 dev = sc->bce_dev; 1348 1349 pci_write_config(dev, BCE_PCICFG_REG_WINDOW_ADDRESS, offset, 4); 1350 #ifdef BCE_DEBUG 1351 { 1352 u32 val; 1353 val = pci_read_config(dev, BCE_PCICFG_REG_WINDOW, 4); 1354 DBPRINT(sc, BCE_INSANE_REG, "%s(); offset = 0x%08X, val = 0x%08X\n", 1355 __FUNCTION__, offset, val); 1356 return val; 1357 } 1358 #else 1359 return pci_read_config(dev, BCE_PCICFG_REG_WINDOW, 4); 1360 #endif 1361 } 1362 1363 1364 /****************************************************************************/ 1365 /* Indirect register write. */ 1366 /* */ 1367 /* Writes NetXtreme II registers using an index/data register pair in PCI */ 1368 /* configuration space. Using this mechanism avoids issues with posted */ 1369 /* writes but is muchh slower than memory-mapped I/O. */ 1370 /* */ 1371 /* Returns: */ 1372 /* Nothing. */ 1373 /****************************************************************************/ 1374 static void 1375 bce_reg_wr_ind(struct bce_softc *sc, u32 offset, u32 val) 1376 { 1377 device_t dev; 1378 dev = sc->bce_dev; 1379 1380 DBPRINT(sc, BCE_INSANE_REG, "%s(); offset = 0x%08X, val = 0x%08X\n", 1381 __FUNCTION__, offset, val); 1382 1383 pci_write_config(dev, BCE_PCICFG_REG_WINDOW_ADDRESS, offset, 4); 1384 pci_write_config(dev, BCE_PCICFG_REG_WINDOW, val, 4); 1385 } 1386 1387 1388 /****************************************************************************/ 1389 /* Shared memory write. */ 1390 /* */ 1391 /* Writes NetXtreme II shared memory region. */ 1392 /* */ 1393 /* Returns: */ 1394 /* Nothing. */ 1395 /****************************************************************************/ 1396 static void 1397 bce_shmem_wr(struct bce_softc *sc, u32 offset, u32 val) 1398 { 1399 bce_reg_wr_ind(sc, sc->bce_shmem_base + offset, val); 1400 } 1401 1402 1403 /****************************************************************************/ 1404 /* Shared memory read. */ 1405 /* */ 1406 /* Reads NetXtreme II shared memory region. */ 1407 /* */ 1408 /* Returns: */ 1409 /* The 32 bit value read. */ 1410 /****************************************************************************/ 1411 static u32 1412 bce_shmem_rd(struct bce_softc *sc, u32 offset) 1413 { 1414 return (bce_reg_rd_ind(sc, sc->bce_shmem_base + offset)); 1415 } 1416 1417 1418 #ifdef BCE_DEBUG 1419 /****************************************************************************/ 1420 /* Context memory read. */ 1421 /* */ 1422 /* The NetXtreme II controller uses context memory to track connection */ 1423 /* information for L2 and higher network protocols. */ 1424 /* */ 1425 /* Returns: */ 1426 /* The requested 32 bit value of context memory. */ 1427 /****************************************************************************/ 1428 static u32 1429 bce_ctx_rd(struct bce_softc *sc, u32 cid_addr, u32 ctx_offset) 1430 { 1431 u32 idx, offset, retry_cnt = 5, val; 1432 1433 DBRUNIF((cid_addr > MAX_CID_ADDR || ctx_offset & 0x3 || cid_addr & CTX_MASK), 1434 BCE_PRINTF("%s(): Invalid CID address: 0x%08X.\n", 1435 __FUNCTION__, cid_addr)); 1436 1437 offset = ctx_offset + cid_addr; 1438 1439 if ((BCE_CHIP_NUM(sc) == BCE_CHIP_NUM_5709) || 1440 (BCE_CHIP_NUM(sc) == BCE_CHIP_NUM_5716)) { 1441 1442 REG_WR(sc, BCE_CTX_CTX_CTRL, (offset | BCE_CTX_CTX_CTRL_READ_REQ)); 1443 1444 for (idx = 0; idx < retry_cnt; idx++) { 1445 val = REG_RD(sc, BCE_CTX_CTX_CTRL); 1446 if ((val & BCE_CTX_CTX_CTRL_READ_REQ) == 0) 1447 break; 1448 DELAY(5); 1449 } 1450 1451 if (val & BCE_CTX_CTX_CTRL_READ_REQ) 1452 BCE_PRINTF("%s(%d); Unable to read CTX memory: " 1453 "cid_addr = 0x%08X, offset = 0x%08X!\n", 1454 __FILE__, __LINE__, cid_addr, ctx_offset); 1455 1456 val = REG_RD(sc, BCE_CTX_CTX_DATA); 1457 } else { 1458 REG_WR(sc, BCE_CTX_DATA_ADR, offset); 1459 val = REG_RD(sc, BCE_CTX_DATA); 1460 } 1461 1462 DBPRINT(sc, BCE_EXTREME_CTX, "%s(); cid_addr = 0x%08X, offset = 0x%08X, " 1463 "val = 0x%08X\n", __FUNCTION__, cid_addr, ctx_offset, val); 1464 1465 return(val); 1466 } 1467 #endif 1468 1469 1470 /****************************************************************************/ 1471 /* Context memory write. */ 1472 /* */ 1473 /* The NetXtreme II controller uses context memory to track connection */ 1474 /* information for L2 and higher network protocols. */ 1475 /* */ 1476 /* Returns: */ 1477 /* Nothing. */ 1478 /****************************************************************************/ 1479 static void 1480 bce_ctx_wr(struct bce_softc *sc, u32 cid_addr, u32 ctx_offset, u32 ctx_val) 1481 { 1482 u32 idx, offset = ctx_offset + cid_addr; 1483 u32 val, retry_cnt = 5; 1484 1485 DBPRINT(sc, BCE_EXTREME_CTX, "%s(); cid_addr = 0x%08X, offset = 0x%08X, " 1486 "val = 0x%08X\n", __FUNCTION__, cid_addr, ctx_offset, ctx_val); 1487 1488 DBRUNIF((cid_addr > MAX_CID_ADDR || ctx_offset & 0x3 || cid_addr & CTX_MASK), 1489 BCE_PRINTF("%s(): Invalid CID address: 0x%08X.\n", 1490 __FUNCTION__, cid_addr)); 1491 1492 if ((BCE_CHIP_NUM(sc) == BCE_CHIP_NUM_5709) || 1493 (BCE_CHIP_NUM(sc) == BCE_CHIP_NUM_5716)) { 1494 1495 REG_WR(sc, BCE_CTX_CTX_DATA, ctx_val); 1496 REG_WR(sc, BCE_CTX_CTX_CTRL, (offset | BCE_CTX_CTX_CTRL_WRITE_REQ)); 1497 1498 for (idx = 0; idx < retry_cnt; idx++) { 1499 val = REG_RD(sc, BCE_CTX_CTX_CTRL); 1500 if ((val & BCE_CTX_CTX_CTRL_WRITE_REQ) == 0) 1501 break; 1502 DELAY(5); 1503 } 1504 1505 if (val & BCE_CTX_CTX_CTRL_WRITE_REQ) 1506 BCE_PRINTF("%s(%d); Unable to write CTX memory: " 1507 "cid_addr = 0x%08X, offset = 0x%08X!\n", 1508 __FILE__, __LINE__, cid_addr, ctx_offset); 1509 1510 } else { 1511 REG_WR(sc, BCE_CTX_DATA_ADR, offset); 1512 REG_WR(sc, BCE_CTX_DATA, ctx_val); 1513 } 1514 } 1515 1516 1517 /****************************************************************************/ 1518 /* PHY register read. */ 1519 /* */ 1520 /* Implements register reads on the MII bus. */ 1521 /* */ 1522 /* Returns: */ 1523 /* The value of the register. */ 1524 /****************************************************************************/ 1525 static int 1526 bce_miibus_read_reg(device_t dev, int phy, int reg) 1527 { 1528 struct bce_softc *sc; 1529 u32 val; 1530 int i; 1531 1532 sc = device_get_softc(dev); 1533 1534 /* Make sure we are accessing the correct PHY address. */ 1535 if (phy != sc->bce_phy_addr) { 1536 DBPRINT(sc, BCE_INSANE_PHY, "Invalid PHY address %d " 1537 "for PHY read!\n", phy); 1538 return(0); 1539 } 1540 1541 /* 1542 * The 5709S PHY is an IEEE Clause 45 PHY 1543 * with special mappings to work with IEEE 1544 * Clause 22 register accesses. 1545 */ 1546 if ((sc->bce_phy_flags & BCE_PHY_IEEE_CLAUSE_45_FLAG) != 0) { 1547 if (reg >= MII_BMCR && reg <= MII_ANLPRNP) 1548 reg += 0x10; 1549 } 1550 1551 if (sc->bce_phy_flags & BCE_PHY_INT_MODE_AUTO_POLLING_FLAG) { 1552 val = REG_RD(sc, BCE_EMAC_MDIO_MODE); 1553 val &= ~BCE_EMAC_MDIO_MODE_AUTO_POLL; 1554 1555 REG_WR(sc, BCE_EMAC_MDIO_MODE, val); 1556 REG_RD(sc, BCE_EMAC_MDIO_MODE); 1557 1558 DELAY(40); 1559 } 1560 1561 1562 val = BCE_MIPHY(phy) | BCE_MIREG(reg) | 1563 BCE_EMAC_MDIO_COMM_COMMAND_READ | BCE_EMAC_MDIO_COMM_DISEXT | 1564 BCE_EMAC_MDIO_COMM_START_BUSY; 1565 REG_WR(sc, BCE_EMAC_MDIO_COMM, val); 1566 1567 for (i = 0; i < BCE_PHY_TIMEOUT; i++) { 1568 DELAY(10); 1569 1570 val = REG_RD(sc, BCE_EMAC_MDIO_COMM); 1571 if (!(val & BCE_EMAC_MDIO_COMM_START_BUSY)) { 1572 DELAY(5); 1573 1574 val = REG_RD(sc, BCE_EMAC_MDIO_COMM); 1575 val &= BCE_EMAC_MDIO_COMM_DATA; 1576 1577 break; 1578 } 1579 } 1580 1581 if (val & BCE_EMAC_MDIO_COMM_START_BUSY) { 1582 BCE_PRINTF("%s(%d): Error: PHY read timeout! phy = %d, " 1583 "reg = 0x%04X\n", __FILE__, __LINE__, phy, reg); 1584 val = 0x0; 1585 } else { 1586 val = REG_RD(sc, BCE_EMAC_MDIO_COMM); 1587 } 1588 1589 1590 if (sc->bce_phy_flags & BCE_PHY_INT_MODE_AUTO_POLLING_FLAG) { 1591 val = REG_RD(sc, BCE_EMAC_MDIO_MODE); 1592 val |= BCE_EMAC_MDIO_MODE_AUTO_POLL; 1593 1594 REG_WR(sc, BCE_EMAC_MDIO_MODE, val); 1595 REG_RD(sc, BCE_EMAC_MDIO_MODE); 1596 1597 DELAY(40); 1598 } 1599 1600 DB_PRINT_PHY_REG(reg, val); 1601 return (val & 0xffff); 1602 1603 } 1604 1605 1606 /****************************************************************************/ 1607 /* PHY register write. */ 1608 /* */ 1609 /* Implements register writes on the MII bus. */ 1610 /* */ 1611 /* Returns: */ 1612 /* The value of the register. */ 1613 /****************************************************************************/ 1614 static int 1615 bce_miibus_write_reg(device_t dev, int phy, int reg, int val) 1616 { 1617 struct bce_softc *sc; 1618 u32 val1; 1619 int i; 1620 1621 sc = device_get_softc(dev); 1622 1623 /* Make sure we are accessing the correct PHY address. */ 1624 if (phy != sc->bce_phy_addr) { 1625 DBPRINT(sc, BCE_INSANE_PHY, "Invalid PHY address %d " 1626 "for PHY write!\n", phy); 1627 return(0); 1628 } 1629 1630 DB_PRINT_PHY_REG(reg, val); 1631 1632 /* 1633 * The 5709S PHY is an IEEE Clause 45 PHY 1634 * with special mappings to work with IEEE 1635 * Clause 22 register accesses. 1636 */ 1637 if ((sc->bce_phy_flags & BCE_PHY_IEEE_CLAUSE_45_FLAG) != 0) { 1638 if (reg >= MII_BMCR && reg <= MII_ANLPRNP) 1639 reg += 0x10; 1640 } 1641 1642 if (sc->bce_phy_flags & BCE_PHY_INT_MODE_AUTO_POLLING_FLAG) { 1643 val1 = REG_RD(sc, BCE_EMAC_MDIO_MODE); 1644 val1 &= ~BCE_EMAC_MDIO_MODE_AUTO_POLL; 1645 1646 REG_WR(sc, BCE_EMAC_MDIO_MODE, val1); 1647 REG_RD(sc, BCE_EMAC_MDIO_MODE); 1648 1649 DELAY(40); 1650 } 1651 1652 val1 = BCE_MIPHY(phy) | BCE_MIREG(reg) | val | 1653 BCE_EMAC_MDIO_COMM_COMMAND_WRITE | 1654 BCE_EMAC_MDIO_COMM_START_BUSY | BCE_EMAC_MDIO_COMM_DISEXT; 1655 REG_WR(sc, BCE_EMAC_MDIO_COMM, val1); 1656 1657 for (i = 0; i < BCE_PHY_TIMEOUT; i++) { 1658 DELAY(10); 1659 1660 val1 = REG_RD(sc, BCE_EMAC_MDIO_COMM); 1661 if (!(val1 & BCE_EMAC_MDIO_COMM_START_BUSY)) { 1662 DELAY(5); 1663 break; 1664 } 1665 } 1666 1667 if (val1 & BCE_EMAC_MDIO_COMM_START_BUSY) 1668 BCE_PRINTF("%s(%d): PHY write timeout!\n", 1669 __FILE__, __LINE__); 1670 1671 if (sc->bce_phy_flags & BCE_PHY_INT_MODE_AUTO_POLLING_FLAG) { 1672 val1 = REG_RD(sc, BCE_EMAC_MDIO_MODE); 1673 val1 |= BCE_EMAC_MDIO_MODE_AUTO_POLL; 1674 1675 REG_WR(sc, BCE_EMAC_MDIO_MODE, val1); 1676 REG_RD(sc, BCE_EMAC_MDIO_MODE); 1677 1678 DELAY(40); 1679 } 1680 1681 return 0; 1682 } 1683 1684 1685 /****************************************************************************/ 1686 /* MII bus status change. */ 1687 /* */ 1688 /* Called by the MII bus driver when the PHY establishes link to set the */ 1689 /* MAC interface registers. */ 1690 /* */ 1691 /* Returns: */ 1692 /* Nothing. */ 1693 /****************************************************************************/ 1694 static void 1695 bce_miibus_statchg(device_t dev) 1696 { 1697 struct bce_softc *sc; 1698 struct mii_data *mii; 1699 int val; 1700 1701 sc = device_get_softc(dev); 1702 1703 DBENTER(BCE_VERBOSE_PHY); 1704 1705 mii = device_get_softc(sc->bce_miibus); 1706 1707 val = REG_RD(sc, BCE_EMAC_MODE); 1708 val &= ~(BCE_EMAC_MODE_PORT | BCE_EMAC_MODE_HALF_DUPLEX | 1709 BCE_EMAC_MODE_MAC_LOOP | BCE_EMAC_MODE_FORCE_LINK | 1710 BCE_EMAC_MODE_25G); 1711 1712 /* Set MII or GMII interface based on the speed negotiated by the PHY. */ 1713 switch (IFM_SUBTYPE(mii->mii_media_active)) { 1714 case IFM_10_T: 1715 if (BCE_CHIP_NUM(sc) != BCE_CHIP_NUM_5706) { 1716 DBPRINT(sc, BCE_INFO, "Enabling 10Mb interface.\n"); 1717 val |= BCE_EMAC_MODE_PORT_MII_10; 1718 break; 1719 } 1720 /* fall-through */ 1721 case IFM_100_TX: 1722 DBPRINT(sc, BCE_INFO, "Enabling MII interface.\n"); 1723 val |= BCE_EMAC_MODE_PORT_MII; 1724 break; 1725 case IFM_2500_SX: 1726 DBPRINT(sc, BCE_INFO, "Enabling 2.5G MAC mode.\n"); 1727 val |= BCE_EMAC_MODE_25G; 1728 /* fall-through */ 1729 case IFM_1000_T: 1730 case IFM_1000_SX: 1731 DBPRINT(sc, BCE_INFO, "Enabling GMII interface.\n"); 1732 val |= BCE_EMAC_MODE_PORT_GMII; 1733 break; 1734 default: 1735 DBPRINT(sc, BCE_INFO, "Unknown speed, enabling default GMII " 1736 "interface.\n"); 1737 val |= BCE_EMAC_MODE_PORT_GMII; 1738 } 1739 1740 /* Set half or full duplex based on the duplicity negotiated by the PHY. */ 1741 if ((mii->mii_media_active & IFM_GMASK) == IFM_HDX) { 1742 DBPRINT(sc, BCE_INFO, "Setting Half-Duplex interface.\n"); 1743 val |= BCE_EMAC_MODE_HALF_DUPLEX; 1744 } else 1745 DBPRINT(sc, BCE_INFO, "Setting Full-Duplex interface.\n"); 1746 1747 REG_WR(sc, BCE_EMAC_MODE, val); 1748 1749 #if 0 1750 /* ToDo: Enable flow control support in brgphy and bge. */ 1751 /* FLAG0 is set if RX is enabled and FLAG1 if TX is enabled */ 1752 if (mii->mii_media_active & IFM_FLAG0) 1753 BCE_SETBIT(sc, BCE_EMAC_RX_MODE, BCE_EMAC_RX_MODE_FLOW_EN); 1754 if (mii->mii_media_active & IFM_FLAG1) 1755 BCE_SETBIT(sc, BCE_EMAC_RX_MODE, BCE_EMAC_TX_MODE_FLOW_EN); 1756 #endif 1757 1758 DBEXIT(BCE_VERBOSE_PHY); 1759 } 1760 1761 1762 /****************************************************************************/ 1763 /* Acquire NVRAM lock. */ 1764 /* */ 1765 /* Before the NVRAM can be accessed the caller must acquire an NVRAM lock. */ 1766 /* Locks 0 and 2 are reserved, lock 1 is used by firmware and lock 2 is */ 1767 /* for use by the driver. */ 1768 /* */ 1769 /* Returns: */ 1770 /* 0 on success, positive value on failure. */ 1771 /****************************************************************************/ 1772 static int 1773 bce_acquire_nvram_lock(struct bce_softc *sc) 1774 { 1775 u32 val; 1776 int j, rc = 0; 1777 1778 DBENTER(BCE_VERBOSE_NVRAM); 1779 1780 /* Request access to the flash interface. */ 1781 REG_WR(sc, BCE_NVM_SW_ARB, BCE_NVM_SW_ARB_ARB_REQ_SET2); 1782 for (j = 0; j < NVRAM_TIMEOUT_COUNT; j++) { 1783 val = REG_RD(sc, BCE_NVM_SW_ARB); 1784 if (val & BCE_NVM_SW_ARB_ARB_ARB2) 1785 break; 1786 1787 DELAY(5); 1788 } 1789 1790 if (j >= NVRAM_TIMEOUT_COUNT) { 1791 DBPRINT(sc, BCE_WARN, "Timeout acquiring NVRAM lock!\n"); 1792 rc = EBUSY; 1793 } 1794 1795 DBEXIT(BCE_VERBOSE_NVRAM); 1796 return (rc); 1797 } 1798 1799 1800 /****************************************************************************/ 1801 /* Release NVRAM lock. */ 1802 /* */ 1803 /* When the caller is finished accessing NVRAM the lock must be released. */ 1804 /* Locks 0 and 2 are reserved, lock 1 is used by firmware and lock 2 is */ 1805 /* for use by the driver. */ 1806 /* */ 1807 /* Returns: */ 1808 /* 0 on success, positive value on failure. */ 1809 /****************************************************************************/ 1810 static int 1811 bce_release_nvram_lock(struct bce_softc *sc) 1812 { 1813 u32 val; 1814 int j, rc = 0; 1815 1816 DBENTER(BCE_VERBOSE_NVRAM); 1817 1818 /* 1819 * Relinquish nvram interface. 1820 */ 1821 REG_WR(sc, BCE_NVM_SW_ARB, BCE_NVM_SW_ARB_ARB_REQ_CLR2); 1822 1823 for (j = 0; j < NVRAM_TIMEOUT_COUNT; j++) { 1824 val = REG_RD(sc, BCE_NVM_SW_ARB); 1825 if (!(val & BCE_NVM_SW_ARB_ARB_ARB2)) 1826 break; 1827 1828 DELAY(5); 1829 } 1830 1831 if (j >= NVRAM_TIMEOUT_COUNT) { 1832 DBPRINT(sc, BCE_WARN, "Timeout releasing NVRAM lock!\n"); 1833 rc = EBUSY; 1834 } 1835 1836 DBEXIT(BCE_VERBOSE_NVRAM); 1837 return (rc); 1838 } 1839 1840 1841 #ifdef BCE_NVRAM_WRITE_SUPPORT 1842 /****************************************************************************/ 1843 /* Enable NVRAM write access. */ 1844 /* */ 1845 /* Before writing to NVRAM the caller must enable NVRAM writes. */ 1846 /* */ 1847 /* Returns: */ 1848 /* 0 on success, positive value on failure. */ 1849 /****************************************************************************/ 1850 static int 1851 bce_enable_nvram_write(struct bce_softc *sc) 1852 { 1853 u32 val; 1854 int rc = 0; 1855 1856 DBENTER(BCE_VERBOSE_NVRAM); 1857 1858 val = REG_RD(sc, BCE_MISC_CFG); 1859 REG_WR(sc, BCE_MISC_CFG, val | BCE_MISC_CFG_NVM_WR_EN_PCI); 1860 1861 if (!(sc->bce_flash_info->flags & BCE_NV_BUFFERED)) { 1862 int j; 1863 1864 REG_WR(sc, BCE_NVM_COMMAND, BCE_NVM_COMMAND_DONE); 1865 REG_WR(sc, BCE_NVM_COMMAND, BCE_NVM_COMMAND_WREN | BCE_NVM_COMMAND_DOIT); 1866 1867 for (j = 0; j < NVRAM_TIMEOUT_COUNT; j++) { 1868 DELAY(5); 1869 1870 val = REG_RD(sc, BCE_NVM_COMMAND); 1871 if (val & BCE_NVM_COMMAND_DONE) 1872 break; 1873 } 1874 1875 if (j >= NVRAM_TIMEOUT_COUNT) { 1876 DBPRINT(sc, BCE_WARN, "Timeout writing NVRAM!\n"); 1877 rc = EBUSY; 1878 } 1879 } 1880 1881 DBENTER(BCE_VERBOSE_NVRAM); 1882 return (rc); 1883 } 1884 1885 1886 /****************************************************************************/ 1887 /* Disable NVRAM write access. */ 1888 /* */ 1889 /* When the caller is finished writing to NVRAM write access must be */ 1890 /* disabled. */ 1891 /* */ 1892 /* Returns: */ 1893 /* Nothing. */ 1894 /****************************************************************************/ 1895 static void 1896 bce_disable_nvram_write(struct bce_softc *sc) 1897 { 1898 u32 val; 1899 1900 DBENTER(BCE_VERBOSE_NVRAM); 1901 1902 val = REG_RD(sc, BCE_MISC_CFG); 1903 REG_WR(sc, BCE_MISC_CFG, val & ~BCE_MISC_CFG_NVM_WR_EN); 1904 1905 DBEXIT(BCE_VERBOSE_NVRAM); 1906 1907 } 1908 #endif 1909 1910 1911 /****************************************************************************/ 1912 /* Enable NVRAM access. */ 1913 /* */ 1914 /* Before accessing NVRAM for read or write operations the caller must */ 1915 /* enabled NVRAM access. */ 1916 /* */ 1917 /* Returns: */ 1918 /* Nothing. */ 1919 /****************************************************************************/ 1920 static void 1921 bce_enable_nvram_access(struct bce_softc *sc) 1922 { 1923 u32 val; 1924 1925 DBENTER(BCE_VERBOSE_NVRAM); 1926 1927 val = REG_RD(sc, BCE_NVM_ACCESS_ENABLE); 1928 /* Enable both bits, even on read. */ 1929 REG_WR(sc, BCE_NVM_ACCESS_ENABLE, 1930 val | BCE_NVM_ACCESS_ENABLE_EN | BCE_NVM_ACCESS_ENABLE_WR_EN); 1931 1932 DBEXIT(BCE_VERBOSE_NVRAM); 1933 } 1934 1935 1936 /****************************************************************************/ 1937 /* Disable NVRAM access. */ 1938 /* */ 1939 /* When the caller is finished accessing NVRAM access must be disabled. */ 1940 /* */ 1941 /* Returns: */ 1942 /* Nothing. */ 1943 /****************************************************************************/ 1944 static void 1945 bce_disable_nvram_access(struct bce_softc *sc) 1946 { 1947 u32 val; 1948 1949 DBENTER(BCE_VERBOSE_NVRAM); 1950 1951 val = REG_RD(sc, BCE_NVM_ACCESS_ENABLE); 1952 1953 /* Disable both bits, even after read. */ 1954 REG_WR(sc, BCE_NVM_ACCESS_ENABLE, 1955 val & ~(BCE_NVM_ACCESS_ENABLE_EN | 1956 BCE_NVM_ACCESS_ENABLE_WR_EN)); 1957 1958 DBEXIT(BCE_VERBOSE_NVRAM); 1959 } 1960 1961 1962 #ifdef BCE_NVRAM_WRITE_SUPPORT 1963 /****************************************************************************/ 1964 /* Erase NVRAM page before writing. */ 1965 /* */ 1966 /* Non-buffered flash parts require that a page be erased before it is */ 1967 /* written. */ 1968 /* */ 1969 /* Returns: */ 1970 /* 0 on success, positive value on failure. */ 1971 /****************************************************************************/ 1972 static int 1973 bce_nvram_erase_page(struct bce_softc *sc, u32 offset) 1974 { 1975 u32 cmd; 1976 int j, rc = 0; 1977 1978 DBENTER(BCE_VERBOSE_NVRAM); 1979 1980 /* Buffered flash doesn't require an erase. */ 1981 if (sc->bce_flash_info->flags & BCE_NV_BUFFERED) 1982 goto bce_nvram_erase_page_exit; 1983 1984 /* Build an erase command. */ 1985 cmd = BCE_NVM_COMMAND_ERASE | BCE_NVM_COMMAND_WR | 1986 BCE_NVM_COMMAND_DOIT; 1987 1988 /* 1989 * Clear the DONE bit separately, set the NVRAM adress to erase, 1990 * and issue the erase command. 1991 */ 1992 REG_WR(sc, BCE_NVM_COMMAND, BCE_NVM_COMMAND_DONE); 1993 REG_WR(sc, BCE_NVM_ADDR, offset & BCE_NVM_ADDR_NVM_ADDR_VALUE); 1994 REG_WR(sc, BCE_NVM_COMMAND, cmd); 1995 1996 /* Wait for completion. */ 1997 for (j = 0; j < NVRAM_TIMEOUT_COUNT; j++) { 1998 u32 val; 1999 2000 DELAY(5); 2001 2002 val = REG_RD(sc, BCE_NVM_COMMAND); 2003 if (val & BCE_NVM_COMMAND_DONE) 2004 break; 2005 } 2006 2007 if (j >= NVRAM_TIMEOUT_COUNT) { 2008 DBPRINT(sc, BCE_WARN, "Timeout erasing NVRAM.\n"); 2009 rc = EBUSY; 2010 } 2011 2012 bce_nvram_erase_page_exit: 2013 DBEXIT(BCE_VERBOSE_NVRAM); 2014 return (rc); 2015 } 2016 #endif /* BCE_NVRAM_WRITE_SUPPORT */ 2017 2018 2019 /****************************************************************************/ 2020 /* Read a dword (32 bits) from NVRAM. */ 2021 /* */ 2022 /* Read a 32 bit word from NVRAM. The caller is assumed to have already */ 2023 /* obtained the NVRAM lock and enabled the controller for NVRAM access. */ 2024 /* */ 2025 /* Returns: */ 2026 /* 0 on success and the 32 bit value read, positive value on failure. */ 2027 /****************************************************************************/ 2028 static int 2029 bce_nvram_read_dword(struct bce_softc *sc, u32 offset, u8 *ret_val, 2030 u32 cmd_flags) 2031 { 2032 u32 cmd; 2033 int i, rc = 0; 2034 2035 DBENTER(BCE_EXTREME_NVRAM); 2036 2037 /* Build the command word. */ 2038 cmd = BCE_NVM_COMMAND_DOIT | cmd_flags; 2039 2040 /* Calculate the offset for buffered flash if translation is used. */ 2041 if (sc->bce_flash_info->flags & BCE_NV_TRANSLATE) { 2042 offset = ((offset / sc->bce_flash_info->page_size) << 2043 sc->bce_flash_info->page_bits) + 2044 (offset % sc->bce_flash_info->page_size); 2045 } 2046 2047 /* 2048 * Clear the DONE bit separately, set the address to read, 2049 * and issue the read. 2050 */ 2051 REG_WR(sc, BCE_NVM_COMMAND, BCE_NVM_COMMAND_DONE); 2052 REG_WR(sc, BCE_NVM_ADDR, offset & BCE_NVM_ADDR_NVM_ADDR_VALUE); 2053 REG_WR(sc, BCE_NVM_COMMAND, cmd); 2054 2055 /* Wait for completion. */ 2056 for (i = 0; i < NVRAM_TIMEOUT_COUNT; i++) { 2057 u32 val; 2058 2059 DELAY(5); 2060 2061 val = REG_RD(sc, BCE_NVM_COMMAND); 2062 if (val & BCE_NVM_COMMAND_DONE) { 2063 val = REG_RD(sc, BCE_NVM_READ); 2064 2065 val = bce_be32toh(val); 2066 memcpy(ret_val, &val, 4); 2067 break; 2068 } 2069 } 2070 2071 /* Check for errors. */ 2072 if (i >= NVRAM_TIMEOUT_COUNT) { 2073 BCE_PRINTF("%s(%d): Timeout error reading NVRAM at offset 0x%08X!\n", 2074 __FILE__, __LINE__, offset); 2075 rc = EBUSY; 2076 } 2077 2078 DBEXIT(BCE_EXTREME_NVRAM); 2079 return(rc); 2080 } 2081 2082 2083 #ifdef BCE_NVRAM_WRITE_SUPPORT 2084 /****************************************************************************/ 2085 /* Write a dword (32 bits) to NVRAM. */ 2086 /* */ 2087 /* Write a 32 bit word to NVRAM. The caller is assumed to have already */ 2088 /* obtained the NVRAM lock, enabled the controller for NVRAM access, and */ 2089 /* enabled NVRAM write access. */ 2090 /* */ 2091 /* Returns: */ 2092 /* 0 on success, positive value on failure. */ 2093 /****************************************************************************/ 2094 static int 2095 bce_nvram_write_dword(struct bce_softc *sc, u32 offset, u8 *val, 2096 u32 cmd_flags) 2097 { 2098 u32 cmd, val32; 2099 int j, rc = 0; 2100 2101 DBENTER(BCE_VERBOSE_NVRAM); 2102 2103 /* Build the command word. */ 2104 cmd = BCE_NVM_COMMAND_DOIT | BCE_NVM_COMMAND_WR | cmd_flags; 2105 2106 /* Calculate the offset for buffered flash if translation is used. */ 2107 if (sc->bce_flash_info->flags & BCE_NV_TRANSLATE) { 2108 offset = ((offset / sc->bce_flash_info->page_size) << 2109 sc->bce_flash_info->page_bits) + 2110 (offset % sc->bce_flash_info->page_size); 2111 } 2112 2113 /* 2114 * Clear the DONE bit separately, convert NVRAM data to big-endian, 2115 * set the NVRAM address to write, and issue the write command 2116 */ 2117 REG_WR(sc, BCE_NVM_COMMAND, BCE_NVM_COMMAND_DONE); 2118 memcpy(&val32, val, 4); 2119 val32 = htobe32(val32); 2120 REG_WR(sc, BCE_NVM_WRITE, val32); 2121 REG_WR(sc, BCE_NVM_ADDR, offset & BCE_NVM_ADDR_NVM_ADDR_VALUE); 2122 REG_WR(sc, BCE_NVM_COMMAND, cmd); 2123 2124 /* Wait for completion. */ 2125 for (j = 0; j < NVRAM_TIMEOUT_COUNT; j++) { 2126 DELAY(5); 2127 2128 if (REG_RD(sc, BCE_NVM_COMMAND) & BCE_NVM_COMMAND_DONE) 2129 break; 2130 } 2131 if (j >= NVRAM_TIMEOUT_COUNT) { 2132 BCE_PRINTF("%s(%d): Timeout error writing NVRAM at offset 0x%08X\n", 2133 __FILE__, __LINE__, offset); 2134 rc = EBUSY; 2135 } 2136 2137 DBEXIT(BCE_VERBOSE_NVRAM); 2138 return (rc); 2139 } 2140 #endif /* BCE_NVRAM_WRITE_SUPPORT */ 2141 2142 2143 /****************************************************************************/ 2144 /* Initialize NVRAM access. */ 2145 /* */ 2146 /* Identify the NVRAM device in use and prepare the NVRAM interface to */ 2147 /* access that device. */ 2148 /* */ 2149 /* Returns: */ 2150 /* 0 on success, positive value on failure. */ 2151 /****************************************************************************/ 2152 static int 2153 bce_init_nvram(struct bce_softc *sc) 2154 { 2155 u32 val; 2156 int j, entry_count, rc = 0; 2157 struct flash_spec *flash; 2158 2159 DBENTER(BCE_VERBOSE_NVRAM); 2160 2161 if ((BCE_CHIP_NUM(sc) == BCE_CHIP_NUM_5709) || 2162 (BCE_CHIP_NUM(sc) == BCE_CHIP_NUM_5716)) { 2163 sc->bce_flash_info = &flash_5709; 2164 goto bce_init_nvram_get_flash_size; 2165 } 2166 2167 /* Determine the selected interface. */ 2168 val = REG_RD(sc, BCE_NVM_CFG1); 2169 2170 entry_count = sizeof(flash_table) / sizeof(struct flash_spec); 2171 2172 /* 2173 * Flash reconfiguration is required to support additional 2174 * NVRAM devices not directly supported in hardware. 2175 * Check if the flash interface was reconfigured 2176 * by the bootcode. 2177 */ 2178 2179 if (val & 0x40000000) { 2180 /* Flash interface reconfigured by bootcode. */ 2181 2182 DBPRINT(sc,BCE_INFO_LOAD, 2183 "bce_init_nvram(): Flash WAS reconfigured.\n"); 2184 2185 for (j = 0, flash = &flash_table[0]; j < entry_count; 2186 j++, flash++) { 2187 if ((val & FLASH_BACKUP_STRAP_MASK) == 2188 (flash->config1 & FLASH_BACKUP_STRAP_MASK)) { 2189 sc->bce_flash_info = flash; 2190 break; 2191 } 2192 } 2193 } else { 2194 /* Flash interface not yet reconfigured. */ 2195 u32 mask; 2196 2197 DBPRINT(sc, BCE_INFO_LOAD, "%s(): Flash was NOT reconfigured.\n", 2198 __FUNCTION__); 2199 2200 if (val & (1 << 23)) 2201 mask = FLASH_BACKUP_STRAP_MASK; 2202 else 2203 mask = FLASH_STRAP_MASK; 2204 2205 /* Look for the matching NVRAM device configuration data. */ 2206 for (j = 0, flash = &flash_table[0]; j < entry_count; j++, flash++) { 2207 2208 /* Check if the device matches any of the known devices. */ 2209 if ((val & mask) == (flash->strapping & mask)) { 2210 /* Found a device match. */ 2211 sc->bce_flash_info = flash; 2212 2213 /* Request access to the flash interface. */ 2214 if ((rc = bce_acquire_nvram_lock(sc)) != 0) 2215 return rc; 2216 2217 /* Reconfigure the flash interface. */ 2218 bce_enable_nvram_access(sc); 2219 REG_WR(sc, BCE_NVM_CFG1, flash->config1); 2220 REG_WR(sc, BCE_NVM_CFG2, flash->config2); 2221 REG_WR(sc, BCE_NVM_CFG3, flash->config3); 2222 REG_WR(sc, BCE_NVM_WRITE1, flash->write1); 2223 bce_disable_nvram_access(sc); 2224 bce_release_nvram_lock(sc); 2225 2226 break; 2227 } 2228 } 2229 } 2230 2231 /* Check if a matching device was found. */ 2232 if (j == entry_count) { 2233 sc->bce_flash_info = NULL; 2234 BCE_PRINTF("%s(%d): Unknown Flash NVRAM found!\n", 2235 __FILE__, __LINE__); 2236 rc = ENODEV; 2237 } 2238 2239 bce_init_nvram_get_flash_size: 2240 /* Write the flash config data to the shared memory interface. */ 2241 val = bce_shmem_rd(sc, BCE_SHARED_HW_CFG_CONFIG2); 2242 val &= BCE_SHARED_HW_CFG2_NVM_SIZE_MASK; 2243 if (val) 2244 sc->bce_flash_size = val; 2245 else 2246 sc->bce_flash_size = sc->bce_flash_info->total_size; 2247 2248 DBPRINT(sc, BCE_INFO_LOAD, "%s(): Found %s, size = 0x%08X\n", 2249 __FUNCTION__, sc->bce_flash_info->name, 2250 sc->bce_flash_info->total_size); 2251 2252 DBEXIT(BCE_VERBOSE_NVRAM); 2253 return rc; 2254 } 2255 2256 2257 /****************************************************************************/ 2258 /* Read an arbitrary range of data from NVRAM. */ 2259 /* */ 2260 /* Prepares the NVRAM interface for access and reads the requested data */ 2261 /* into the supplied buffer. */ 2262 /* */ 2263 /* Returns: */ 2264 /* 0 on success and the data read, positive value on failure. */ 2265 /****************************************************************************/ 2266 static int 2267 bce_nvram_read(struct bce_softc *sc, u32 offset, u8 *ret_buf, 2268 int buf_size) 2269 { 2270 int rc = 0; 2271 u32 cmd_flags, offset32, len32, extra; 2272 2273 DBENTER(BCE_VERBOSE_NVRAM); 2274 2275 if (buf_size == 0) 2276 goto bce_nvram_read_exit; 2277 2278 /* Request access to the flash interface. */ 2279 if ((rc = bce_acquire_nvram_lock(sc)) != 0) 2280 goto bce_nvram_read_exit; 2281 2282 /* Enable access to flash interface */ 2283 bce_enable_nvram_access(sc); 2284 2285 len32 = buf_size; 2286 offset32 = offset; 2287 extra = 0; 2288 2289 cmd_flags = 0; 2290 2291 if (offset32 & 3) { 2292 u8 buf[4]; 2293 u32 pre_len; 2294 2295 offset32 &= ~3; 2296 pre_len = 4 - (offset & 3); 2297 2298 if (pre_len >= len32) { 2299 pre_len = len32; 2300 cmd_flags = BCE_NVM_COMMAND_FIRST | BCE_NVM_COMMAND_LAST; 2301 } 2302 else { 2303 cmd_flags = BCE_NVM_COMMAND_FIRST; 2304 } 2305 2306 rc = bce_nvram_read_dword(sc, offset32, buf, cmd_flags); 2307 2308 if (rc) 2309 return rc; 2310 2311 memcpy(ret_buf, buf + (offset & 3), pre_len); 2312 2313 offset32 += 4; 2314 ret_buf += pre_len; 2315 len32 -= pre_len; 2316 } 2317 2318 if (len32 & 3) { 2319 extra = 4 - (len32 & 3); 2320 len32 = (len32 + 4) & ~3; 2321 } 2322 2323 if (len32 == 4) { 2324 u8 buf[4]; 2325 2326 if (cmd_flags) 2327 cmd_flags = BCE_NVM_COMMAND_LAST; 2328 else 2329 cmd_flags = BCE_NVM_COMMAND_FIRST | 2330 BCE_NVM_COMMAND_LAST; 2331 2332 rc = bce_nvram_read_dword(sc, offset32, buf, cmd_flags); 2333 2334 memcpy(ret_buf, buf, 4 - extra); 2335 } 2336 else if (len32 > 0) { 2337 u8 buf[4]; 2338 2339 /* Read the first word. */ 2340 if (cmd_flags) 2341 cmd_flags = 0; 2342 else 2343 cmd_flags = BCE_NVM_COMMAND_FIRST; 2344 2345 rc = bce_nvram_read_dword(sc, offset32, ret_buf, cmd_flags); 2346 2347 /* Advance to the next dword. */ 2348 offset32 += 4; 2349 ret_buf += 4; 2350 len32 -= 4; 2351 2352 while (len32 > 4 && rc == 0) { 2353 rc = bce_nvram_read_dword(sc, offset32, ret_buf, 0); 2354 2355 /* Advance to the next dword. */ 2356 offset32 += 4; 2357 ret_buf += 4; 2358 len32 -= 4; 2359 } 2360 2361 if (rc) 2362 goto bce_nvram_read_locked_exit; 2363 2364 cmd_flags = BCE_NVM_COMMAND_LAST; 2365 rc = bce_nvram_read_dword(sc, offset32, buf, cmd_flags); 2366 2367 memcpy(ret_buf, buf, 4 - extra); 2368 } 2369 2370 bce_nvram_read_locked_exit: 2371 /* Disable access to flash interface and release the lock. */ 2372 bce_disable_nvram_access(sc); 2373 bce_release_nvram_lock(sc); 2374 2375 bce_nvram_read_exit: 2376 DBEXIT(BCE_VERBOSE_NVRAM); 2377 return rc; 2378 } 2379 2380 2381 #ifdef BCE_NVRAM_WRITE_SUPPORT 2382 /****************************************************************************/ 2383 /* Write an arbitrary range of data from NVRAM. */ 2384 /* */ 2385 /* Prepares the NVRAM interface for write access and writes the requested */ 2386 /* data from the supplied buffer. The caller is responsible for */ 2387 /* calculating any appropriate CRCs. */ 2388 /* */ 2389 /* Returns: */ 2390 /* 0 on success, positive value on failure. */ 2391 /****************************************************************************/ 2392 static int 2393 bce_nvram_write(struct bce_softc *sc, u32 offset, u8 *data_buf, 2394 int buf_size) 2395 { 2396 u32 written, offset32, len32; 2397 u8 *buf, start[4], end[4]; 2398 int rc = 0; 2399 int align_start, align_end; 2400 2401 DBENTER(BCE_VERBOSE_NVRAM); 2402 2403 buf = data_buf; 2404 offset32 = offset; 2405 len32 = buf_size; 2406 align_start = align_end = 0; 2407 2408 if ((align_start = (offset32 & 3))) { 2409 offset32 &= ~3; 2410 len32 += align_start; 2411 if ((rc = bce_nvram_read(sc, offset32, start, 4))) 2412 goto bce_nvram_write_exit; 2413 } 2414 2415 if (len32 & 3) { 2416 if ((len32 > 4) || !align_start) { 2417 align_end = 4 - (len32 & 3); 2418 len32 += align_end; 2419 if ((rc = bce_nvram_read(sc, offset32 + len32 - 4, 2420 end, 4))) { 2421 goto bce_nvram_write_exit; 2422 } 2423 } 2424 } 2425 2426 if (align_start || align_end) { 2427 buf = malloc(len32, M_DEVBUF, M_NOWAIT); 2428 if (buf == 0) { 2429 rc = ENOMEM; 2430 goto bce_nvram_write_exit; 2431 } 2432 2433 if (align_start) { 2434 memcpy(buf, start, 4); 2435 } 2436 2437 if (align_end) { 2438 memcpy(buf + len32 - 4, end, 4); 2439 } 2440 memcpy(buf + align_start, data_buf, buf_size); 2441 } 2442 2443 written = 0; 2444 while ((written < len32) && (rc == 0)) { 2445 u32 page_start, page_end, data_start, data_end; 2446 u32 addr, cmd_flags; 2447 int i; 2448 u8 flash_buffer[264]; 2449 2450 /* Find the page_start addr */ 2451 page_start = offset32 + written; 2452 page_start -= (page_start % sc->bce_flash_info->page_size); 2453 /* Find the page_end addr */ 2454 page_end = page_start + sc->bce_flash_info->page_size; 2455 /* Find the data_start addr */ 2456 data_start = (written == 0) ? offset32 : page_start; 2457 /* Find the data_end addr */ 2458 data_end = (page_end > offset32 + len32) ? 2459 (offset32 + len32) : page_end; 2460 2461 /* Request access to the flash interface. */ 2462 if ((rc = bce_acquire_nvram_lock(sc)) != 0) 2463 goto bce_nvram_write_exit; 2464 2465 /* Enable access to flash interface */ 2466 bce_enable_nvram_access(sc); 2467 2468 cmd_flags = BCE_NVM_COMMAND_FIRST; 2469 if (!(sc->bce_flash_info->flags & BCE_NV_BUFFERED)) { 2470 int j; 2471 2472 /* Read the whole page into the buffer 2473 * (non-buffer flash only) */ 2474 for (j = 0; j < sc->bce_flash_info->page_size; j += 4) { 2475 if (j == (sc->bce_flash_info->page_size - 4)) { 2476 cmd_flags |= BCE_NVM_COMMAND_LAST; 2477 } 2478 rc = bce_nvram_read_dword(sc, 2479 page_start + j, 2480 &flash_buffer[j], 2481 cmd_flags); 2482 2483 if (rc) 2484 goto bce_nvram_write_locked_exit; 2485 2486 cmd_flags = 0; 2487 } 2488 } 2489 2490 /* Enable writes to flash interface (unlock write-protect) */ 2491 if ((rc = bce_enable_nvram_write(sc)) != 0) 2492 goto bce_nvram_write_locked_exit; 2493 2494 /* Erase the page */ 2495 if ((rc = bce_nvram_erase_page(sc, page_start)) != 0) 2496 goto bce_nvram_write_locked_exit; 2497 2498 /* Re-enable the write again for the actual write */ 2499 bce_enable_nvram_write(sc); 2500 2501 /* Loop to write back the buffer data from page_start to 2502 * data_start */ 2503 i = 0; 2504 if (!(sc->bce_flash_info->flags & BCE_NV_BUFFERED)) { 2505 for (addr = page_start; addr < data_start; 2506 addr += 4, i += 4) { 2507 2508 rc = bce_nvram_write_dword(sc, addr, 2509 &flash_buffer[i], cmd_flags); 2510 2511 if (rc != 0) 2512 goto bce_nvram_write_locked_exit; 2513 2514 cmd_flags = 0; 2515 } 2516 } 2517 2518 /* Loop to write the new data from data_start to data_end */ 2519 for (addr = data_start; addr < data_end; addr += 4, i++) { 2520 if ((addr == page_end - 4) || 2521 ((sc->bce_flash_info->flags & BCE_NV_BUFFERED) && 2522 (addr == data_end - 4))) { 2523 2524 cmd_flags |= BCE_NVM_COMMAND_LAST; 2525 } 2526 rc = bce_nvram_write_dword(sc, addr, buf, 2527 cmd_flags); 2528 2529 if (rc != 0) 2530 goto bce_nvram_write_locked_exit; 2531 2532 cmd_flags = 0; 2533 buf += 4; 2534 } 2535 2536 /* Loop to write back the buffer data from data_end 2537 * to page_end */ 2538 if (!(sc->bce_flash_info->flags & BCE_NV_BUFFERED)) { 2539 for (addr = data_end; addr < page_end; 2540 addr += 4, i += 4) { 2541 2542 if (addr == page_end-4) { 2543 cmd_flags = BCE_NVM_COMMAND_LAST; 2544 } 2545 rc = bce_nvram_write_dword(sc, addr, 2546 &flash_buffer[i], cmd_flags); 2547 2548 if (rc != 0) 2549 goto bce_nvram_write_locked_exit; 2550 2551 cmd_flags = 0; 2552 } 2553 } 2554 2555 /* Disable writes to flash interface (lock write-protect) */ 2556 bce_disable_nvram_write(sc); 2557 2558 /* Disable access to flash interface */ 2559 bce_disable_nvram_access(sc); 2560 bce_release_nvram_lock(sc); 2561 2562 /* Increment written */ 2563 written += data_end - data_start; 2564 } 2565 2566 goto bce_nvram_write_exit; 2567 2568 bce_nvram_write_locked_exit: 2569 bce_disable_nvram_write(sc); 2570 bce_disable_nvram_access(sc); 2571 bce_release_nvram_lock(sc); 2572 2573 bce_nvram_write_exit: 2574 if (align_start || align_end) 2575 free(buf, M_DEVBUF); 2576 2577 DBEXIT(BCE_VERBOSE_NVRAM); 2578 return (rc); 2579 } 2580 #endif /* BCE_NVRAM_WRITE_SUPPORT */ 2581 2582 2583 /****************************************************************************/ 2584 /* Verifies that NVRAM is accessible and contains valid data. */ 2585 /* */ 2586 /* Reads the configuration data from NVRAM and verifies that the CRC is */ 2587 /* correct. */ 2588 /* */ 2589 /* Returns: */ 2590 /* 0 on success, positive value on failure. */ 2591 /****************************************************************************/ 2592 static int 2593 bce_nvram_test(struct bce_softc *sc) 2594 { 2595 u32 buf[BCE_NVRAM_SIZE / 4]; 2596 u8 *data = (u8 *) buf; 2597 int rc = 0; 2598 u32 magic, csum; 2599 2600 DBENTER(BCE_VERBOSE_NVRAM | BCE_VERBOSE_LOAD | BCE_VERBOSE_RESET); 2601 2602 /* 2603 * Check that the device NVRAM is valid by reading 2604 * the magic value at offset 0. 2605 */ 2606 if ((rc = bce_nvram_read(sc, 0, data, 4)) != 0) { 2607 BCE_PRINTF("%s(%d): Unable to read NVRAM!\n", __FILE__, __LINE__); 2608 goto bce_nvram_test_exit; 2609 } 2610 2611 /* 2612 * Verify that offset 0 of the NVRAM contains 2613 * a valid magic number. 2614 */ 2615 magic = bce_be32toh(buf[0]); 2616 if (magic != BCE_NVRAM_MAGIC) { 2617 rc = ENODEV; 2618 BCE_PRINTF("%s(%d): Invalid NVRAM magic value! Expected: 0x%08X, " 2619 "Found: 0x%08X\n", 2620 __FILE__, __LINE__, BCE_NVRAM_MAGIC, magic); 2621 goto bce_nvram_test_exit; 2622 } 2623 2624 /* 2625 * Verify that the device NVRAM includes valid 2626 * configuration data. 2627 */ 2628 if ((rc = bce_nvram_read(sc, 0x100, data, BCE_NVRAM_SIZE)) != 0) { 2629 BCE_PRINTF("%s(%d): Unable to read Manufacturing Information from " 2630 "NVRAM!\n", __FILE__, __LINE__); 2631 goto bce_nvram_test_exit; 2632 } 2633 2634 csum = ether_crc32_le(data, 0x100); 2635 if (csum != BCE_CRC32_RESIDUAL) { 2636 rc = ENODEV; 2637 BCE_PRINTF("%s(%d): Invalid Manufacturing Information NVRAM CRC! " 2638 "Expected: 0x%08X, Found: 0x%08X\n", 2639 __FILE__, __LINE__, BCE_CRC32_RESIDUAL, csum); 2640 goto bce_nvram_test_exit; 2641 } 2642 2643 csum = ether_crc32_le(data + 0x100, 0x100); 2644 if (csum != BCE_CRC32_RESIDUAL) { 2645 rc = ENODEV; 2646 BCE_PRINTF("%s(%d): Invalid Feature Configuration Information " 2647 "NVRAM CRC! Expected: 0x%08X, Found: 08%08X\n", 2648 __FILE__, __LINE__, BCE_CRC32_RESIDUAL, csum); 2649 } 2650 2651 bce_nvram_test_exit: 2652 DBEXIT(BCE_VERBOSE_NVRAM | BCE_VERBOSE_LOAD | BCE_VERBOSE_RESET); 2653 return rc; 2654 } 2655 2656 2657 /****************************************************************************/ 2658 /* Identifies the current media type of the controller and sets the PHY */ 2659 /* address. */ 2660 /* */ 2661 /* Returns: */ 2662 /* Nothing. */ 2663 /****************************************************************************/ 2664 static void 2665 bce_get_media(struct bce_softc *sc) 2666 { 2667 u32 val; 2668 2669 DBENTER(BCE_VERBOSE); 2670 2671 /* Assume PHY address for copper controllers. */ 2672 sc->bce_phy_addr = 1; 2673 2674 if (BCE_CHIP_NUM(sc) == BCE_CHIP_NUM_5709) { 2675 u32 val = REG_RD(sc, BCE_MISC_DUAL_MEDIA_CTRL); 2676 u32 bond_id = val & BCE_MISC_DUAL_MEDIA_CTRL_BOND_ID; 2677 u32 strap; 2678 2679 /* 2680 * The BCM5709S is software configurable 2681 * for Copper or SerDes operation. 2682 */ 2683 if (bond_id == BCE_MISC_DUAL_MEDIA_CTRL_BOND_ID_C) { 2684 DBPRINT(sc, BCE_INFO_LOAD, "5709 bonded " 2685 "for copper.\n"); 2686 goto bce_get_media_exit; 2687 } else if (bond_id == BCE_MISC_DUAL_MEDIA_CTRL_BOND_ID_S) { 2688 DBPRINT(sc, BCE_INFO_LOAD, "5709 bonded " 2689 "for dual media.\n"); 2690 sc->bce_phy_flags |= BCE_PHY_SERDES_FLAG; 2691 goto bce_get_media_exit; 2692 } 2693 2694 if (val & BCE_MISC_DUAL_MEDIA_CTRL_STRAP_OVERRIDE) 2695 strap = (val & 2696 BCE_MISC_DUAL_MEDIA_CTRL_PHY_CTRL) >> 21; 2697 else 2698 strap = (val & 2699 BCE_MISC_DUAL_MEDIA_CTRL_PHY_CTRL_STRAP) >> 8; 2700 2701 if (pci_get_function(sc->bce_dev) == 0) { 2702 switch (strap) { 2703 case 0x4: 2704 case 0x5: 2705 case 0x6: 2706 DBPRINT(sc, BCE_INFO_LOAD, 2707 "BCM5709 s/w configured for SerDes.\n"); 2708 sc->bce_phy_flags |= BCE_PHY_SERDES_FLAG; 2709 break; 2710 default: 2711 DBPRINT(sc, BCE_INFO_LOAD, 2712 "BCM5709 s/w configured for Copper.\n"); 2713 break; 2714 } 2715 } else { 2716 switch (strap) { 2717 case 0x1: 2718 case 0x2: 2719 case 0x4: 2720 DBPRINT(sc, BCE_INFO_LOAD, 2721 "BCM5709 s/w configured for SerDes.\n"); 2722 sc->bce_phy_flags |= BCE_PHY_SERDES_FLAG; 2723 break; 2724 default: 2725 DBPRINT(sc, BCE_INFO_LOAD, 2726 "BCM5709 s/w configured for Copper.\n"); 2727 break; 2728 } 2729 } 2730 2731 } else if (BCE_CHIP_BOND_ID(sc) & BCE_CHIP_BOND_ID_SERDES_BIT) 2732 sc->bce_phy_flags |= BCE_PHY_SERDES_FLAG; 2733 2734 if (sc->bce_phy_flags & BCE_PHY_SERDES_FLAG) { 2735 2736 sc->bce_flags |= BCE_NO_WOL_FLAG; 2737 2738 if (BCE_CHIP_NUM(sc) == BCE_CHIP_NUM_5709) 2739 sc->bce_phy_flags |= BCE_PHY_IEEE_CLAUSE_45_FLAG; 2740 2741 if (BCE_CHIP_NUM(sc) != BCE_CHIP_NUM_5706) { 2742 /* 5708S/09S/16S use a separate PHY for SerDes. */ 2743 sc->bce_phy_addr = 2; 2744 2745 val = bce_shmem_rd(sc, BCE_SHARED_HW_CFG_CONFIG); 2746 if (val & BCE_SHARED_HW_CFG_PHY_2_5G) { 2747 sc->bce_phy_flags |= 2748 BCE_PHY_2_5G_CAPABLE_FLAG; 2749 DBPRINT(sc, BCE_INFO_LOAD, "Found 2.5Gb " 2750 "capable adapter\n"); 2751 } 2752 } 2753 } else if ((BCE_CHIP_NUM(sc) == BCE_CHIP_NUM_5706) || 2754 (BCE_CHIP_NUM(sc) == BCE_CHIP_NUM_5708)) 2755 sc->bce_phy_flags |= BCE_PHY_CRC_FIX_FLAG; 2756 2757 bce_get_media_exit: 2758 DBPRINT(sc, (BCE_INFO_LOAD | BCE_INFO_PHY), 2759 "Using PHY address %d.\n", sc->bce_phy_addr); 2760 2761 DBEXIT(BCE_VERBOSE); 2762 } 2763 2764 2765 /****************************************************************************/ 2766 /* Performs PHY initialization required before MII drivers access the */ 2767 /* device. */ 2768 /* */ 2769 /* Returns: */ 2770 /* Nothing. */ 2771 /****************************************************************************/ 2772 static void 2773 bce_init_media(struct bce_softc *sc) 2774 { 2775 if ((sc->bce_phy_flags & BCE_PHY_IEEE_CLAUSE_45_FLAG) != 0) { 2776 /* 2777 * Configure 5709S/5716S PHYs to use traditional IEEE 2778 * Clause 22 method. Otherwise we have no way to attach 2779 * the PHY in mii(4) layer. PHY specific configuration 2780 * is done in mii layer. 2781 */ 2782 2783 /* Select auto-negotiation MMD of the PHY. */ 2784 bce_miibus_write_reg(sc->bce_dev, sc->bce_phy_addr, 2785 BRGPHY_BLOCK_ADDR, BRGPHY_BLOCK_ADDR_ADDR_EXT); 2786 bce_miibus_write_reg(sc->bce_dev, sc->bce_phy_addr, 2787 BRGPHY_ADDR_EXT, BRGPHY_ADDR_EXT_AN_MMD); 2788 2789 /* Set IEEE0 block of AN MMD (assumed in brgphy(4) code). */ 2790 bce_miibus_write_reg(sc->bce_dev, sc->bce_phy_addr, 2791 BRGPHY_BLOCK_ADDR, BRGPHY_BLOCK_ADDR_COMBO_IEEE0); 2792 } 2793 } 2794 2795 2796 /****************************************************************************/ 2797 /* Free any DMA memory owned by the driver. */ 2798 /* */ 2799 /* Scans through each data structre that requires DMA memory and frees */ 2800 /* the memory if allocated. */ 2801 /* */ 2802 /* Returns: */ 2803 /* Nothing. */ 2804 /****************************************************************************/ 2805 static void 2806 bce_dma_free(struct bce_softc *sc) 2807 { 2808 int i; 2809 2810 DBENTER(BCE_VERBOSE_RESET | BCE_VERBOSE_UNLOAD | BCE_VERBOSE_CTX); 2811 2812 /* Free, unmap, and destroy the status block. */ 2813 if (sc->status_block != NULL) { 2814 bus_dmamem_free( 2815 sc->status_tag, 2816 sc->status_block, 2817 sc->status_map); 2818 sc->status_block = NULL; 2819 } 2820 2821 if (sc->status_map != NULL) { 2822 bus_dmamap_unload( 2823 sc->status_tag, 2824 sc->status_map); 2825 bus_dmamap_destroy(sc->status_tag, 2826 sc->status_map); 2827 sc->status_map = NULL; 2828 } 2829 2830 if (sc->status_tag != NULL) { 2831 bus_dma_tag_destroy(sc->status_tag); 2832 sc->status_tag = NULL; 2833 } 2834 2835 2836 /* Free, unmap, and destroy the statistics block. */ 2837 if (sc->stats_block != NULL) { 2838 bus_dmamem_free( 2839 sc->stats_tag, 2840 sc->stats_block, 2841 sc->stats_map); 2842 sc->stats_block = NULL; 2843 } 2844 2845 if (sc->stats_map != NULL) { 2846 bus_dmamap_unload( 2847 sc->stats_tag, 2848 sc->stats_map); 2849 bus_dmamap_destroy(sc->stats_tag, 2850 sc->stats_map); 2851 sc->stats_map = NULL; 2852 } 2853 2854 if (sc->stats_tag != NULL) { 2855 bus_dma_tag_destroy(sc->stats_tag); 2856 sc->stats_tag = NULL; 2857 } 2858 2859 2860 /* Free, unmap and destroy all context memory pages. */ 2861 if ((BCE_CHIP_NUM(sc) == BCE_CHIP_NUM_5709) || 2862 (BCE_CHIP_NUM(sc) == BCE_CHIP_NUM_5716)) { 2863 for (i = 0; i < sc->ctx_pages; i++ ) { 2864 if (sc->ctx_block[i] != NULL) { 2865 bus_dmamem_free( 2866 sc->ctx_tag, 2867 sc->ctx_block[i], 2868 sc->ctx_map[i]); 2869 sc->ctx_block[i] = NULL; 2870 } 2871 2872 if (sc->ctx_map[i] != NULL) { 2873 bus_dmamap_unload( 2874 sc->ctx_tag, 2875 sc->ctx_map[i]); 2876 bus_dmamap_destroy( 2877 sc->ctx_tag, 2878 sc->ctx_map[i]); 2879 sc->ctx_map[i] = NULL; 2880 } 2881 } 2882 2883 /* Destroy the context memory tag. */ 2884 if (sc->ctx_tag != NULL) { 2885 bus_dma_tag_destroy(sc->ctx_tag); 2886 sc->ctx_tag = NULL; 2887 } 2888 } 2889 2890 2891 /* Free, unmap and destroy all TX buffer descriptor chain pages. */ 2892 for (i = 0; i < TX_PAGES; i++ ) { 2893 if (sc->tx_bd_chain[i] != NULL) { 2894 bus_dmamem_free( 2895 sc->tx_bd_chain_tag, 2896 sc->tx_bd_chain[i], 2897 sc->tx_bd_chain_map[i]); 2898 sc->tx_bd_chain[i] = NULL; 2899 } 2900 2901 if (sc->tx_bd_chain_map[i] != NULL) { 2902 bus_dmamap_unload( 2903 sc->tx_bd_chain_tag, 2904 sc->tx_bd_chain_map[i]); 2905 bus_dmamap_destroy( 2906 sc->tx_bd_chain_tag, 2907 sc->tx_bd_chain_map[i]); 2908 sc->tx_bd_chain_map[i] = NULL; 2909 } 2910 } 2911 2912 /* Destroy the TX buffer descriptor tag. */ 2913 if (sc->tx_bd_chain_tag != NULL) { 2914 bus_dma_tag_destroy(sc->tx_bd_chain_tag); 2915 sc->tx_bd_chain_tag = NULL; 2916 } 2917 2918 2919 /* Free, unmap and destroy all RX buffer descriptor chain pages. */ 2920 for (i = 0; i < RX_PAGES; i++ ) { 2921 if (sc->rx_bd_chain[i] != NULL) { 2922 bus_dmamem_free( 2923 sc->rx_bd_chain_tag, 2924 sc->rx_bd_chain[i], 2925 sc->rx_bd_chain_map[i]); 2926 sc->rx_bd_chain[i] = NULL; 2927 } 2928 2929 if (sc->rx_bd_chain_map[i] != NULL) { 2930 bus_dmamap_unload( 2931 sc->rx_bd_chain_tag, 2932 sc->rx_bd_chain_map[i]); 2933 bus_dmamap_destroy( 2934 sc->rx_bd_chain_tag, 2935 sc->rx_bd_chain_map[i]); 2936 sc->rx_bd_chain_map[i] = NULL; 2937 } 2938 } 2939 2940 /* Destroy the RX buffer descriptor tag. */ 2941 if (sc->rx_bd_chain_tag != NULL) { 2942 bus_dma_tag_destroy(sc->rx_bd_chain_tag); 2943 sc->rx_bd_chain_tag = NULL; 2944 } 2945 2946 2947 #ifdef BCE_JUMBO_HDRSPLIT 2948 /* Free, unmap and destroy all page buffer descriptor chain pages. */ 2949 for (i = 0; i < PG_PAGES; i++ ) { 2950 if (sc->pg_bd_chain[i] != NULL) { 2951 bus_dmamem_free( 2952 sc->pg_bd_chain_tag, 2953 sc->pg_bd_chain[i], 2954 sc->pg_bd_chain_map[i]); 2955 sc->pg_bd_chain[i] = NULL; 2956 } 2957 2958 if (sc->pg_bd_chain_map[i] != NULL) { 2959 bus_dmamap_unload( 2960 sc->pg_bd_chain_tag, 2961 sc->pg_bd_chain_map[i]); 2962 bus_dmamap_destroy( 2963 sc->pg_bd_chain_tag, 2964 sc->pg_bd_chain_map[i]); 2965 sc->pg_bd_chain_map[i] = NULL; 2966 } 2967 } 2968 2969 /* Destroy the page buffer descriptor tag. */ 2970 if (sc->pg_bd_chain_tag != NULL) { 2971 bus_dma_tag_destroy(sc->pg_bd_chain_tag); 2972 sc->pg_bd_chain_tag = NULL; 2973 } 2974 #endif 2975 2976 2977 /* Unload and destroy the TX mbuf maps. */ 2978 for (i = 0; i < TOTAL_TX_BD; i++) { 2979 if (sc->tx_mbuf_map[i] != NULL) { 2980 bus_dmamap_unload(sc->tx_mbuf_tag, 2981 sc->tx_mbuf_map[i]); 2982 bus_dmamap_destroy(sc->tx_mbuf_tag, 2983 sc->tx_mbuf_map[i]); 2984 sc->tx_mbuf_map[i] = NULL; 2985 } 2986 } 2987 2988 /* Destroy the TX mbuf tag. */ 2989 if (sc->tx_mbuf_tag != NULL) { 2990 bus_dma_tag_destroy(sc->tx_mbuf_tag); 2991 sc->tx_mbuf_tag = NULL; 2992 } 2993 2994 /* Unload and destroy the RX mbuf maps. */ 2995 for (i = 0; i < TOTAL_RX_BD; i++) { 2996 if (sc->rx_mbuf_map[i] != NULL) { 2997 bus_dmamap_unload(sc->rx_mbuf_tag, 2998 sc->rx_mbuf_map[i]); 2999 bus_dmamap_destroy(sc->rx_mbuf_tag, 3000 sc->rx_mbuf_map[i]); 3001 sc->rx_mbuf_map[i] = NULL; 3002 } 3003 } 3004 3005 /* Destroy the RX mbuf tag. */ 3006 if (sc->rx_mbuf_tag != NULL) { 3007 bus_dma_tag_destroy(sc->rx_mbuf_tag); 3008 sc->rx_mbuf_tag = NULL; 3009 } 3010 3011 #ifdef BCE_JUMBO_HDRSPLIT 3012 /* Unload and destroy the page mbuf maps. */ 3013 for (i = 0; i < TOTAL_PG_BD; i++) { 3014 if (sc->pg_mbuf_map[i] != NULL) { 3015 bus_dmamap_unload(sc->pg_mbuf_tag, 3016 sc->pg_mbuf_map[i]); 3017 bus_dmamap_destroy(sc->pg_mbuf_tag, 3018 sc->pg_mbuf_map[i]); 3019 sc->pg_mbuf_map[i] = NULL; 3020 } 3021 } 3022 3023 /* Destroy the page mbuf tag. */ 3024 if (sc->pg_mbuf_tag != NULL) { 3025 bus_dma_tag_destroy(sc->pg_mbuf_tag); 3026 sc->pg_mbuf_tag = NULL; 3027 } 3028 #endif 3029 3030 /* Destroy the parent tag */ 3031 if (sc->parent_tag != NULL) { 3032 bus_dma_tag_destroy(sc->parent_tag); 3033 sc->parent_tag = NULL; 3034 } 3035 3036 DBEXIT(BCE_VERBOSE_RESET | BCE_VERBOSE_UNLOAD | BCE_VERBOSE_CTX); 3037 } 3038 3039 3040 /****************************************************************************/ 3041 /* Get DMA memory from the OS. */ 3042 /* */ 3043 /* Validates that the OS has provided DMA buffers in response to a */ 3044 /* bus_dmamap_load() call and saves the physical address of those buffers. */ 3045 /* When the callback is used the OS will return 0 for the mapping function */ 3046 /* (bus_dmamap_load()) so we use the value of map_arg->maxsegs to pass any */ 3047 /* failures back to the caller. */ 3048 /* */ 3049 /* Returns: */ 3050 /* Nothing. */ 3051 /****************************************************************************/ 3052 static void 3053 bce_dma_map_addr(void *arg, bus_dma_segment_t *segs, int nseg, int error) 3054 { 3055 bus_addr_t *busaddr = arg; 3056 3057 /* Simulate a mapping failure. */ 3058 DBRUNIF(DB_RANDOMTRUE(dma_map_addr_failed_sim_control), 3059 error = ENOMEM); 3060 3061 /* Check for an error and signal the caller that an error occurred. */ 3062 if (error) { 3063 *busaddr = 0; 3064 } else { 3065 *busaddr = segs->ds_addr; 3066 } 3067 3068 return; 3069 } 3070 3071 3072 /****************************************************************************/ 3073 /* Allocate any DMA memory needed by the driver. */ 3074 /* */ 3075 /* Allocates DMA memory needed for the various global structures needed by */ 3076 /* hardware. */ 3077 /* */ 3078 /* Memory alignment requirements: */ 3079 /* +-----------------+----------+----------+----------+----------+ */ 3080 /* | | 5706 | 5708 | 5709 | 5716 | */ 3081 /* +-----------------+----------+----------+----------+----------+ */ 3082 /* |Status Block | 8 bytes | 8 bytes | 16 bytes | 16 bytes | */ 3083 /* |Statistics Block | 8 bytes | 8 bytes | 16 bytes | 16 bytes | */ 3084 /* |RX Buffers | 16 bytes | 16 bytes | 16 bytes | 16 bytes | */ 3085 /* |PG Buffers | none | none | none | none | */ 3086 /* |TX Buffers | none | none | none | none | */ 3087 /* |Chain Pages(1) | 4KiB | 4KiB | 4KiB | 4KiB | */ 3088 /* |Context Memory | | | | | */ 3089 /* +-----------------+----------+----------+----------+----------+ */ 3090 /* */ 3091 /* (1) Must align with CPU page size (BCM_PAGE_SZIE). */ 3092 /* */ 3093 /* Returns: */ 3094 /* 0 for success, positive value for failure. */ 3095 /****************************************************************************/ 3096 static int 3097 bce_dma_alloc(device_t dev) 3098 { 3099 struct bce_softc *sc; 3100 int i, error, rc = 0; 3101 bus_size_t max_size, max_seg_size; 3102 int max_segments; 3103 3104 sc = device_get_softc(dev); 3105 3106 DBENTER(BCE_VERBOSE_RESET | BCE_VERBOSE_CTX); 3107 3108 /* 3109 * Allocate the parent bus DMA tag appropriate for PCI. 3110 */ 3111 if (bus_dma_tag_create(NULL, 1, BCE_DMA_BOUNDARY, 3112 sc->max_bus_addr, BUS_SPACE_MAXADDR, NULL, NULL, 3113 MAXBSIZE, BUS_SPACE_UNRESTRICTED, BUS_SPACE_MAXSIZE_32BIT, 3114 0, NULL, NULL, &sc->parent_tag)) { 3115 BCE_PRINTF("%s(%d): Could not allocate parent DMA tag!\n", 3116 __FILE__, __LINE__); 3117 rc = ENOMEM; 3118 goto bce_dma_alloc_exit; 3119 } 3120 3121 /* 3122 * Create a DMA tag for the status block, allocate and clear the 3123 * memory, map the memory into DMA space, and fetch the physical 3124 * address of the block. 3125 */ 3126 if (bus_dma_tag_create(sc->parent_tag, BCE_DMA_ALIGN, 3127 BCE_DMA_BOUNDARY, sc->max_bus_addr, BUS_SPACE_MAXADDR, 3128 NULL, NULL, BCE_STATUS_BLK_SZ, 1, BCE_STATUS_BLK_SZ, 3129 0, NULL, NULL, &sc->status_tag)) { 3130 BCE_PRINTF("%s(%d): Could not allocate status block " 3131 "DMA tag!\n", __FILE__, __LINE__); 3132 rc = ENOMEM; 3133 goto bce_dma_alloc_exit; 3134 } 3135 3136 if(bus_dmamem_alloc(sc->status_tag, (void **)&sc->status_block, 3137 BUS_DMA_NOWAIT, &sc->status_map)) { 3138 BCE_PRINTF("%s(%d): Could not allocate status block " 3139 "DMA memory!\n", __FILE__, __LINE__); 3140 rc = ENOMEM; 3141 goto bce_dma_alloc_exit; 3142 } 3143 3144 bzero((char *)sc->status_block, BCE_STATUS_BLK_SZ); 3145 3146 error = bus_dmamap_load(sc->status_tag, sc->status_map, 3147 sc->status_block, BCE_STATUS_BLK_SZ, bce_dma_map_addr, 3148 &sc->status_block_paddr, BUS_DMA_NOWAIT); 3149 3150 if (error) { 3151 BCE_PRINTF("%s(%d): Could not map status block " 3152 "DMA memory!\n", __FILE__, __LINE__); 3153 rc = ENOMEM; 3154 goto bce_dma_alloc_exit; 3155 } 3156 3157 DBPRINT(sc, BCE_INFO, "%s(): status_block_paddr = 0x%jX\n", 3158 __FUNCTION__, (uintmax_t) sc->status_block_paddr); 3159 3160 /* 3161 * Create a DMA tag for the statistics block, allocate and clear the 3162 * memory, map the memory into DMA space, and fetch the physical 3163 * address of the block. 3164 */ 3165 if (bus_dma_tag_create(sc->parent_tag, BCE_DMA_ALIGN, 3166 BCE_DMA_BOUNDARY, sc->max_bus_addr, BUS_SPACE_MAXADDR, 3167 NULL, NULL, BCE_STATS_BLK_SZ, 1, BCE_STATS_BLK_SZ, 3168 0, NULL, NULL, &sc->stats_tag)) { 3169 BCE_PRINTF("%s(%d): Could not allocate statistics block " 3170 "DMA tag!\n", __FILE__, __LINE__); 3171 rc = ENOMEM; 3172 goto bce_dma_alloc_exit; 3173 } 3174 3175 if (bus_dmamem_alloc(sc->stats_tag, (void **)&sc->stats_block, 3176 BUS_DMA_NOWAIT, &sc->stats_map)) { 3177 BCE_PRINTF("%s(%d): Could not allocate statistics block " 3178 "DMA memory!\n", __FILE__, __LINE__); 3179 rc = ENOMEM; 3180 goto bce_dma_alloc_exit; 3181 } 3182 3183 bzero((char *)sc->stats_block, BCE_STATS_BLK_SZ); 3184 3185 error = bus_dmamap_load(sc->stats_tag, sc->stats_map, 3186 sc->stats_block, BCE_STATS_BLK_SZ, bce_dma_map_addr, 3187 &sc->stats_block_paddr, BUS_DMA_NOWAIT); 3188 3189 if(error) { 3190 BCE_PRINTF("%s(%d): Could not map statistics block " 3191 "DMA memory!\n", __FILE__, __LINE__); 3192 rc = ENOMEM; 3193 goto bce_dma_alloc_exit; 3194 } 3195 3196 DBPRINT(sc, BCE_INFO, "%s(): stats_block_paddr = 0x%jX\n", 3197 __FUNCTION__, (uintmax_t) sc->stats_block_paddr); 3198 3199 /* BCM5709 uses host memory as cache for context memory. */ 3200 if ((BCE_CHIP_NUM(sc) == BCE_CHIP_NUM_5709) || 3201 (BCE_CHIP_NUM(sc) == BCE_CHIP_NUM_5716)) { 3202 sc->ctx_pages = 0x2000 / BCM_PAGE_SIZE; 3203 if (sc->ctx_pages == 0) 3204 sc->ctx_pages = 1; 3205 3206 DBRUNIF((sc->ctx_pages > 512), 3207 BCE_PRINTF("%s(%d): Too many CTX pages! %d > 512\n", 3208 __FILE__, __LINE__, sc->ctx_pages)); 3209 3210 /* 3211 * Create a DMA tag for the context pages, 3212 * allocate and clear the memory, map the 3213 * memory into DMA space, and fetch the 3214 * physical address of the block. 3215 */ 3216 if(bus_dma_tag_create(sc->parent_tag, BCM_PAGE_SIZE, 3217 BCE_DMA_BOUNDARY, sc->max_bus_addr, BUS_SPACE_MAXADDR, 3218 NULL, NULL, BCM_PAGE_SIZE, 1, BCM_PAGE_SIZE, 3219 0, NULL, NULL, &sc->ctx_tag)) { 3220 BCE_PRINTF("%s(%d): Could not allocate CTX DMA tag!\n", 3221 __FILE__, __LINE__); 3222 rc = ENOMEM; 3223 goto bce_dma_alloc_exit; 3224 } 3225 3226 for (i = 0; i < sc->ctx_pages; i++) { 3227 3228 if(bus_dmamem_alloc(sc->ctx_tag, 3229 (void **)&sc->ctx_block[i], 3230 BUS_DMA_NOWAIT, 3231 &sc->ctx_map[i])) { 3232 BCE_PRINTF("%s(%d): Could not allocate CTX " 3233 "DMA memory!\n", __FILE__, __LINE__); 3234 rc = ENOMEM; 3235 goto bce_dma_alloc_exit; 3236 } 3237 3238 bzero((char *)sc->ctx_block[i], BCM_PAGE_SIZE); 3239 3240 error = bus_dmamap_load(sc->ctx_tag, sc->ctx_map[i], 3241 sc->ctx_block[i], BCM_PAGE_SIZE, bce_dma_map_addr, 3242 &sc->ctx_paddr[i], BUS_DMA_NOWAIT); 3243 3244 if (error) { 3245 BCE_PRINTF("%s(%d): Could not map CTX " 3246 "DMA memory!\n", __FILE__, __LINE__); 3247 rc = ENOMEM; 3248 goto bce_dma_alloc_exit; 3249 } 3250 3251 DBPRINT(sc, BCE_INFO, "%s(): ctx_paddr[%d] = 0x%jX\n", 3252 __FUNCTION__, i, (uintmax_t) sc->ctx_paddr[i]); 3253 } 3254 } 3255 3256 /* 3257 * Create a DMA tag for the TX buffer descriptor chain, 3258 * allocate and clear the memory, and fetch the 3259 * physical address of the block. 3260 */ 3261 if(bus_dma_tag_create(sc->parent_tag, BCM_PAGE_SIZE, BCE_DMA_BOUNDARY, 3262 sc->max_bus_addr, BUS_SPACE_MAXADDR, NULL, NULL, 3263 BCE_TX_CHAIN_PAGE_SZ, 1, BCE_TX_CHAIN_PAGE_SZ, 0, 3264 NULL, NULL, &sc->tx_bd_chain_tag)) { 3265 BCE_PRINTF("%s(%d): Could not allocate TX descriptor chain " 3266 "DMA tag!\n", __FILE__, __LINE__); 3267 rc = ENOMEM; 3268 goto bce_dma_alloc_exit; 3269 } 3270 3271 for (i = 0; i < TX_PAGES; i++) { 3272 3273 if(bus_dmamem_alloc(sc->tx_bd_chain_tag, 3274 (void **)&sc->tx_bd_chain[i], BUS_DMA_NOWAIT, 3275 &sc->tx_bd_chain_map[i])) { 3276 BCE_PRINTF("%s(%d): Could not allocate TX descriptor " 3277 "chain DMA memory!\n", __FILE__, __LINE__); 3278 rc = ENOMEM; 3279 goto bce_dma_alloc_exit; 3280 } 3281 3282 error = bus_dmamap_load(sc->tx_bd_chain_tag, 3283 sc->tx_bd_chain_map[i], sc->tx_bd_chain[i], 3284 BCE_TX_CHAIN_PAGE_SZ, bce_dma_map_addr, 3285 &sc->tx_bd_chain_paddr[i], BUS_DMA_NOWAIT); 3286 3287 if (error) { 3288 BCE_PRINTF("%s(%d): Could not map TX descriptor " 3289 "chain DMA memory!\n", __FILE__, __LINE__); 3290 rc = ENOMEM; 3291 goto bce_dma_alloc_exit; 3292 } 3293 3294 DBPRINT(sc, BCE_INFO, "%s(): tx_bd_chain_paddr[%d] = 0x%jX\n", 3295 __FUNCTION__, i, (uintmax_t) sc->tx_bd_chain_paddr[i]); 3296 } 3297 3298 /* Check the required size before mapping to conserve resources. */ 3299 if (bce_tso_enable) { 3300 max_size = BCE_TSO_MAX_SIZE; 3301 max_segments = BCE_MAX_SEGMENTS; 3302 max_seg_size = BCE_TSO_MAX_SEG_SIZE; 3303 } else { 3304 max_size = MCLBYTES * BCE_MAX_SEGMENTS; 3305 max_segments = BCE_MAX_SEGMENTS; 3306 max_seg_size = MCLBYTES; 3307 } 3308 3309 /* Create a DMA tag for TX mbufs. */ 3310 if (bus_dma_tag_create(sc->parent_tag, 1, BCE_DMA_BOUNDARY, 3311 sc->max_bus_addr, BUS_SPACE_MAXADDR, NULL, NULL, max_size, 3312 max_segments, max_seg_size, 0, NULL, NULL, &sc->tx_mbuf_tag)) { 3313 BCE_PRINTF("%s(%d): Could not allocate TX mbuf DMA tag!\n", 3314 __FILE__, __LINE__); 3315 rc = ENOMEM; 3316 goto bce_dma_alloc_exit; 3317 } 3318 3319 /* Create DMA maps for the TX mbufs clusters. */ 3320 for (i = 0; i < TOTAL_TX_BD; i++) { 3321 if (bus_dmamap_create(sc->tx_mbuf_tag, BUS_DMA_NOWAIT, 3322 &sc->tx_mbuf_map[i])) { 3323 BCE_PRINTF("%s(%d): Unable to create TX mbuf DMA " 3324 "map!\n", __FILE__, __LINE__); 3325 rc = ENOMEM; 3326 goto bce_dma_alloc_exit; 3327 } 3328 } 3329 3330 /* 3331 * Create a DMA tag for the RX buffer descriptor chain, 3332 * allocate and clear the memory, and fetch the physical 3333 * address of the blocks. 3334 */ 3335 if (bus_dma_tag_create(sc->parent_tag, BCM_PAGE_SIZE, 3336 BCE_DMA_BOUNDARY, BUS_SPACE_MAXADDR, 3337 sc->max_bus_addr, NULL, NULL, 3338 BCE_RX_CHAIN_PAGE_SZ, 1, BCE_RX_CHAIN_PAGE_SZ, 3339 0, NULL, NULL, &sc->rx_bd_chain_tag)) { 3340 BCE_PRINTF("%s(%d): Could not allocate RX descriptor chain " 3341 "DMA tag!\n", __FILE__, __LINE__); 3342 rc = ENOMEM; 3343 goto bce_dma_alloc_exit; 3344 } 3345 3346 for (i = 0; i < RX_PAGES; i++) { 3347 3348 if (bus_dmamem_alloc(sc->rx_bd_chain_tag, 3349 (void **)&sc->rx_bd_chain[i], BUS_DMA_NOWAIT, 3350 &sc->rx_bd_chain_map[i])) { 3351 BCE_PRINTF("%s(%d): Could not allocate RX descriptor " 3352 "chain DMA memory!\n", __FILE__, __LINE__); 3353 rc = ENOMEM; 3354 goto bce_dma_alloc_exit; 3355 } 3356 3357 bzero((char *)sc->rx_bd_chain[i], BCE_RX_CHAIN_PAGE_SZ); 3358 3359 error = bus_dmamap_load(sc->rx_bd_chain_tag, 3360 sc->rx_bd_chain_map[i], sc->rx_bd_chain[i], 3361 BCE_RX_CHAIN_PAGE_SZ, bce_dma_map_addr, 3362 &sc->rx_bd_chain_paddr[i], BUS_DMA_NOWAIT); 3363 3364 if (error) { 3365 BCE_PRINTF("%s(%d): Could not map RX descriptor " 3366 "chain DMA memory!\n", __FILE__, __LINE__); 3367 rc = ENOMEM; 3368 goto bce_dma_alloc_exit; 3369 } 3370 3371 DBPRINT(sc, BCE_INFO, "%s(): rx_bd_chain_paddr[%d] = 0x%jX\n", 3372 __FUNCTION__, i, (uintmax_t) sc->rx_bd_chain_paddr[i]); 3373 } 3374 3375 /* 3376 * Create a DMA tag for RX mbufs. 3377 */ 3378 #ifdef BCE_JUMBO_HDRSPLIT 3379 max_size = max_seg_size = ((sc->rx_bd_mbuf_alloc_size < MCLBYTES) ? 3380 MCLBYTES : sc->rx_bd_mbuf_alloc_size); 3381 #else 3382 max_size = max_seg_size = MJUM9BYTES; 3383 #endif 3384 max_segments = 1; 3385 3386 DBPRINT(sc, BCE_INFO, "%s(): Creating rx_mbuf_tag (max size = 0x%jX " 3387 "max segments = %d, max segment size = 0x%jX)\n", __FUNCTION__, 3388 (uintmax_t) max_size, max_segments, (uintmax_t) max_seg_size); 3389 3390 if (bus_dma_tag_create(sc->parent_tag, 1, BCE_DMA_BOUNDARY, 3391 sc->max_bus_addr, BUS_SPACE_MAXADDR, NULL, NULL, max_size, 3392 max_segments, max_seg_size, 0, NULL, NULL, &sc->rx_mbuf_tag)) { 3393 BCE_PRINTF("%s(%d): Could not allocate RX mbuf DMA tag!\n", 3394 __FILE__, __LINE__); 3395 rc = ENOMEM; 3396 goto bce_dma_alloc_exit; 3397 } 3398 3399 /* Create DMA maps for the RX mbuf clusters. */ 3400 for (i = 0; i < TOTAL_RX_BD; i++) { 3401 if (bus_dmamap_create(sc->rx_mbuf_tag, BUS_DMA_NOWAIT, 3402 &sc->rx_mbuf_map[i])) { 3403 BCE_PRINTF("%s(%d): Unable to create RX mbuf " 3404 "DMA map!\n", __FILE__, __LINE__); 3405 rc = ENOMEM; 3406 goto bce_dma_alloc_exit; 3407 } 3408 } 3409 3410 #ifdef BCE_JUMBO_HDRSPLIT 3411 /* 3412 * Create a DMA tag for the page buffer descriptor chain, 3413 * allocate and clear the memory, and fetch the physical 3414 * address of the blocks. 3415 */ 3416 if (bus_dma_tag_create(sc->parent_tag, BCM_PAGE_SIZE, 3417 BCE_DMA_BOUNDARY, BUS_SPACE_MAXADDR, sc->max_bus_addr, 3418 NULL, NULL, BCE_PG_CHAIN_PAGE_SZ, 1, BCE_PG_CHAIN_PAGE_SZ, 3419 0, NULL, NULL, &sc->pg_bd_chain_tag)) { 3420 BCE_PRINTF("%s(%d): Could not allocate page descriptor " 3421 "chain DMA tag!\n", __FILE__, __LINE__); 3422 rc = ENOMEM; 3423 goto bce_dma_alloc_exit; 3424 } 3425 3426 for (i = 0; i < PG_PAGES; i++) { 3427 3428 if (bus_dmamem_alloc(sc->pg_bd_chain_tag, 3429 (void **)&sc->pg_bd_chain[i], BUS_DMA_NOWAIT, 3430 &sc->pg_bd_chain_map[i])) { 3431 BCE_PRINTF("%s(%d): Could not allocate page " 3432 "descriptor chain DMA memory!\n", 3433 __FILE__, __LINE__); 3434 rc = ENOMEM; 3435 goto bce_dma_alloc_exit; 3436 } 3437 3438 bzero((char *)sc->pg_bd_chain[i], BCE_PG_CHAIN_PAGE_SZ); 3439 3440 error = bus_dmamap_load(sc->pg_bd_chain_tag, 3441 sc->pg_bd_chain_map[i], sc->pg_bd_chain[i], 3442 BCE_PG_CHAIN_PAGE_SZ, bce_dma_map_addr, 3443 &sc->pg_bd_chain_paddr[i], BUS_DMA_NOWAIT); 3444 3445 if (error) { 3446 BCE_PRINTF("%s(%d): Could not map page descriptor " 3447 "chain DMA memory!\n", __FILE__, __LINE__); 3448 rc = ENOMEM; 3449 goto bce_dma_alloc_exit; 3450 } 3451 3452 DBPRINT(sc, BCE_INFO, "%s(): pg_bd_chain_paddr[%d] = 0x%jX\n", 3453 __FUNCTION__, i, (uintmax_t) sc->pg_bd_chain_paddr[i]); 3454 } 3455 3456 /* 3457 * Create a DMA tag for page mbufs. 3458 */ 3459 max_size = max_seg_size = ((sc->pg_bd_mbuf_alloc_size < MCLBYTES) ? 3460 MCLBYTES : sc->pg_bd_mbuf_alloc_size); 3461 3462 if (bus_dma_tag_create(sc->parent_tag, 1, BCE_DMA_BOUNDARY, 3463 sc->max_bus_addr, BUS_SPACE_MAXADDR, NULL, NULL, 3464 max_size, 1, max_seg_size, 0, NULL, NULL, &sc->pg_mbuf_tag)) { 3465 BCE_PRINTF("%s(%d): Could not allocate page mbuf " 3466 "DMA tag!\n", __FILE__, __LINE__); 3467 rc = ENOMEM; 3468 goto bce_dma_alloc_exit; 3469 } 3470 3471 /* Create DMA maps for the page mbuf clusters. */ 3472 for (i = 0; i < TOTAL_PG_BD; i++) { 3473 if (bus_dmamap_create(sc->pg_mbuf_tag, BUS_DMA_NOWAIT, 3474 &sc->pg_mbuf_map[i])) { 3475 BCE_PRINTF("%s(%d): Unable to create page mbuf " 3476 "DMA map!\n", __FILE__, __LINE__); 3477 rc = ENOMEM; 3478 goto bce_dma_alloc_exit; 3479 } 3480 } 3481 #endif 3482 3483 bce_dma_alloc_exit: 3484 DBEXIT(BCE_VERBOSE_RESET | BCE_VERBOSE_CTX); 3485 return(rc); 3486 } 3487 3488 3489 /****************************************************************************/ 3490 /* Release all resources used by the driver. */ 3491 /* */ 3492 /* Releases all resources acquired by the driver including interrupts, */ 3493 /* interrupt handler, interfaces, mutexes, and DMA memory. */ 3494 /* */ 3495 /* Returns: */ 3496 /* Nothing. */ 3497 /****************************************************************************/ 3498 static void 3499 bce_release_resources(struct bce_softc *sc) 3500 { 3501 device_t dev; 3502 3503 DBENTER(BCE_VERBOSE_RESET); 3504 3505 dev = sc->bce_dev; 3506 3507 bce_dma_free(sc); 3508 3509 if (sc->bce_intrhand != NULL) { 3510 DBPRINT(sc, BCE_INFO_RESET, "Removing interrupt handler.\n"); 3511 bus_teardown_intr(dev, sc->bce_res_irq, sc->bce_intrhand); 3512 } 3513 3514 if (sc->bce_res_irq != NULL) { 3515 DBPRINT(sc, BCE_INFO_RESET, "Releasing IRQ.\n"); 3516 bus_release_resource(dev, SYS_RES_IRQ, sc->bce_irq_rid, 3517 sc->bce_res_irq); 3518 } 3519 3520 if (sc->bce_flags & (BCE_USING_MSI_FLAG | BCE_USING_MSIX_FLAG)) { 3521 DBPRINT(sc, BCE_INFO_RESET, "Releasing MSI/MSI-X vector.\n"); 3522 pci_release_msi(dev); 3523 } 3524 3525 if (sc->bce_res_mem != NULL) { 3526 DBPRINT(sc, BCE_INFO_RESET, "Releasing PCI memory.\n"); 3527 bus_release_resource(dev, SYS_RES_MEMORY, PCIR_BAR(0), 3528 sc->bce_res_mem); 3529 } 3530 3531 if (sc->bce_ifp != NULL) { 3532 DBPRINT(sc, BCE_INFO_RESET, "Releasing IF.\n"); 3533 if_free(sc->bce_ifp); 3534 } 3535 3536 if (mtx_initialized(&sc->bce_mtx)) 3537 BCE_LOCK_DESTROY(sc); 3538 3539 DBEXIT(BCE_VERBOSE_RESET); 3540 } 3541 3542 3543 /****************************************************************************/ 3544 /* Firmware synchronization. */ 3545 /* */ 3546 /* Before performing certain events such as a chip reset, synchronize with */ 3547 /* the firmware first. */ 3548 /* */ 3549 /* Returns: */ 3550 /* 0 for success, positive value for failure. */ 3551 /****************************************************************************/ 3552 static int 3553 bce_fw_sync(struct bce_softc *sc, u32 msg_data) 3554 { 3555 int i, rc = 0; 3556 u32 val; 3557 3558 DBENTER(BCE_VERBOSE_RESET); 3559 3560 /* Don't waste any time if we've timed out before. */ 3561 if (sc->bce_fw_timed_out == TRUE) { 3562 rc = EBUSY; 3563 goto bce_fw_sync_exit; 3564 } 3565 3566 /* Increment the message sequence number. */ 3567 sc->bce_fw_wr_seq++; 3568 msg_data |= sc->bce_fw_wr_seq; 3569 3570 DBPRINT(sc, BCE_VERBOSE_FIRMWARE, "bce_fw_sync(): msg_data = " 3571 "0x%08X\n", msg_data); 3572 3573 /* Send the message to the bootcode driver mailbox. */ 3574 bce_shmem_wr(sc, BCE_DRV_MB, msg_data); 3575 3576 /* Wait for the bootcode to acknowledge the message. */ 3577 for (i = 0; i < FW_ACK_TIME_OUT_MS; i++) { 3578 /* Check for a response in the bootcode firmware mailbox. */ 3579 val = bce_shmem_rd(sc, BCE_FW_MB); 3580 if ((val & BCE_FW_MSG_ACK) == (msg_data & BCE_DRV_MSG_SEQ)) 3581 break; 3582 DELAY(1000); 3583 } 3584 3585 /* If we've timed out, tell the bootcode that we've stopped waiting. */ 3586 if (((val & BCE_FW_MSG_ACK) != (msg_data & BCE_DRV_MSG_SEQ)) && 3587 ((msg_data & BCE_DRV_MSG_DATA) != BCE_DRV_MSG_DATA_WAIT0)) { 3588 3589 BCE_PRINTF("%s(%d): Firmware synchronization timeout! " 3590 "msg_data = 0x%08X\n", __FILE__, __LINE__, msg_data); 3591 3592 msg_data &= ~BCE_DRV_MSG_CODE; 3593 msg_data |= BCE_DRV_MSG_CODE_FW_TIMEOUT; 3594 3595 bce_shmem_wr(sc, BCE_DRV_MB, msg_data); 3596 3597 sc->bce_fw_timed_out = TRUE; 3598 rc = EBUSY; 3599 } 3600 3601 bce_fw_sync_exit: 3602 DBEXIT(BCE_VERBOSE_RESET); 3603 return (rc); 3604 } 3605 3606 3607 /****************************************************************************/ 3608 /* Load Receive Virtual 2 Physical (RV2P) processor firmware. */ 3609 /* */ 3610 /* Returns: */ 3611 /* Nothing. */ 3612 /****************************************************************************/ 3613 static void 3614 bce_load_rv2p_fw(struct bce_softc *sc, u32 *rv2p_code, 3615 u32 rv2p_code_len, u32 rv2p_proc) 3616 { 3617 int i; 3618 u32 val; 3619 3620 DBENTER(BCE_VERBOSE_RESET); 3621 3622 /* Set the page size used by RV2P. */ 3623 if (rv2p_proc == RV2P_PROC2) { 3624 BCE_RV2P_PROC2_CHG_MAX_BD_PAGE(USABLE_RX_BD_PER_PAGE); 3625 } 3626 3627 for (i = 0; i < rv2p_code_len; i += 8) { 3628 REG_WR(sc, BCE_RV2P_INSTR_HIGH, *rv2p_code); 3629 rv2p_code++; 3630 REG_WR(sc, BCE_RV2P_INSTR_LOW, *rv2p_code); 3631 rv2p_code++; 3632 3633 if (rv2p_proc == RV2P_PROC1) { 3634 val = (i / 8) | BCE_RV2P_PROC1_ADDR_CMD_RDWR; 3635 REG_WR(sc, BCE_RV2P_PROC1_ADDR_CMD, val); 3636 } 3637 else { 3638 val = (i / 8) | BCE_RV2P_PROC2_ADDR_CMD_RDWR; 3639 REG_WR(sc, BCE_RV2P_PROC2_ADDR_CMD, val); 3640 } 3641 } 3642 3643 /* Reset the processor, un-stall is done later. */ 3644 if (rv2p_proc == RV2P_PROC1) { 3645 REG_WR(sc, BCE_RV2P_COMMAND, BCE_RV2P_COMMAND_PROC1_RESET); 3646 } 3647 else { 3648 REG_WR(sc, BCE_RV2P_COMMAND, BCE_RV2P_COMMAND_PROC2_RESET); 3649 } 3650 3651 DBEXIT(BCE_VERBOSE_RESET); 3652 } 3653 3654 3655 /****************************************************************************/ 3656 /* Load RISC processor firmware. */ 3657 /* */ 3658 /* Loads firmware from the file if_bcefw.h into the scratchpad memory */ 3659 /* associated with a particular processor. */ 3660 /* */ 3661 /* Returns: */ 3662 /* Nothing. */ 3663 /****************************************************************************/ 3664 static void 3665 bce_load_cpu_fw(struct bce_softc *sc, struct cpu_reg *cpu_reg, 3666 struct fw_info *fw) 3667 { 3668 u32 offset; 3669 3670 DBENTER(BCE_VERBOSE_RESET); 3671 3672 bce_halt_cpu(sc, cpu_reg); 3673 3674 /* Load the Text area. */ 3675 offset = cpu_reg->spad_base + (fw->text_addr - cpu_reg->mips_view_base); 3676 if (fw->text) { 3677 int j; 3678 3679 for (j = 0; j < (fw->text_len / 4); j++, offset += 4) { 3680 REG_WR_IND(sc, offset, fw->text[j]); 3681 } 3682 } 3683 3684 /* Load the Data area. */ 3685 offset = cpu_reg->spad_base + (fw->data_addr - cpu_reg->mips_view_base); 3686 if (fw->data) { 3687 int j; 3688 3689 for (j = 0; j < (fw->data_len / 4); j++, offset += 4) { 3690 REG_WR_IND(sc, offset, fw->data[j]); 3691 } 3692 } 3693 3694 /* Load the SBSS area. */ 3695 offset = cpu_reg->spad_base + (fw->sbss_addr - cpu_reg->mips_view_base); 3696 if (fw->sbss) { 3697 int j; 3698 3699 for (j = 0; j < (fw->sbss_len / 4); j++, offset += 4) { 3700 REG_WR_IND(sc, offset, fw->sbss[j]); 3701 } 3702 } 3703 3704 /* Load the BSS area. */ 3705 offset = cpu_reg->spad_base + (fw->bss_addr - cpu_reg->mips_view_base); 3706 if (fw->bss) { 3707 int j; 3708 3709 for (j = 0; j < (fw->bss_len/4); j++, offset += 4) { 3710 REG_WR_IND(sc, offset, fw->bss[j]); 3711 } 3712 } 3713 3714 /* Load the Read-Only area. */ 3715 offset = cpu_reg->spad_base + 3716 (fw->rodata_addr - cpu_reg->mips_view_base); 3717 if (fw->rodata) { 3718 int j; 3719 3720 for (j = 0; j < (fw->rodata_len / 4); j++, offset += 4) { 3721 REG_WR_IND(sc, offset, fw->rodata[j]); 3722 } 3723 } 3724 3725 /* Clear the pre-fetch instruction and set the FW start address. */ 3726 REG_WR_IND(sc, cpu_reg->inst, 0); 3727 REG_WR_IND(sc, cpu_reg->pc, fw->start_addr); 3728 3729 DBEXIT(BCE_VERBOSE_RESET); 3730 } 3731 3732 3733 /****************************************************************************/ 3734 /* Starts the RISC processor. */ 3735 /* */ 3736 /* Assumes the CPU starting address has already been set. */ 3737 /* */ 3738 /* Returns: */ 3739 /* Nothing. */ 3740 /****************************************************************************/ 3741 static void 3742 bce_start_cpu(struct bce_softc *sc, struct cpu_reg *cpu_reg) 3743 { 3744 u32 val; 3745 3746 DBENTER(BCE_VERBOSE_RESET); 3747 3748 /* Start the CPU. */ 3749 val = REG_RD_IND(sc, cpu_reg->mode); 3750 val &= ~cpu_reg->mode_value_halt; 3751 REG_WR_IND(sc, cpu_reg->state, cpu_reg->state_value_clear); 3752 REG_WR_IND(sc, cpu_reg->mode, val); 3753 3754 DBEXIT(BCE_VERBOSE_RESET); 3755 } 3756 3757 3758 /****************************************************************************/ 3759 /* Halts the RISC processor. */ 3760 /* */ 3761 /* Returns: */ 3762 /* Nothing. */ 3763 /****************************************************************************/ 3764 static void 3765 bce_halt_cpu(struct bce_softc *sc, struct cpu_reg *cpu_reg) 3766 { 3767 u32 val; 3768 3769 DBENTER(BCE_VERBOSE_RESET); 3770 3771 /* Halt the CPU. */ 3772 val = REG_RD_IND(sc, cpu_reg->mode); 3773 val |= cpu_reg->mode_value_halt; 3774 REG_WR_IND(sc, cpu_reg->mode, val); 3775 REG_WR_IND(sc, cpu_reg->state, cpu_reg->state_value_clear); 3776 3777 DBEXIT(BCE_VERBOSE_RESET); 3778 } 3779 3780 3781 /****************************************************************************/ 3782 /* Initialize the RX CPU. */ 3783 /* */ 3784 /* Returns: */ 3785 /* Nothing. */ 3786 /****************************************************************************/ 3787 static void 3788 bce_start_rxp_cpu(struct bce_softc *sc) 3789 { 3790 struct cpu_reg cpu_reg; 3791 3792 DBENTER(BCE_VERBOSE_RESET); 3793 3794 cpu_reg.mode = BCE_RXP_CPU_MODE; 3795 cpu_reg.mode_value_halt = BCE_RXP_CPU_MODE_SOFT_HALT; 3796 cpu_reg.mode_value_sstep = BCE_RXP_CPU_MODE_STEP_ENA; 3797 cpu_reg.state = BCE_RXP_CPU_STATE; 3798 cpu_reg.state_value_clear = 0xffffff; 3799 cpu_reg.gpr0 = BCE_RXP_CPU_REG_FILE; 3800 cpu_reg.evmask = BCE_RXP_CPU_EVENT_MASK; 3801 cpu_reg.pc = BCE_RXP_CPU_PROGRAM_COUNTER; 3802 cpu_reg.inst = BCE_RXP_CPU_INSTRUCTION; 3803 cpu_reg.bp = BCE_RXP_CPU_HW_BREAKPOINT; 3804 cpu_reg.spad_base = BCE_RXP_SCRATCH; 3805 cpu_reg.mips_view_base = 0x8000000; 3806 3807 DBPRINT(sc, BCE_INFO_RESET, "Starting RX firmware.\n"); 3808 bce_start_cpu(sc, &cpu_reg); 3809 3810 DBEXIT(BCE_VERBOSE_RESET); 3811 } 3812 3813 3814 /****************************************************************************/ 3815 /* Initialize the RX CPU. */ 3816 /* */ 3817 /* Returns: */ 3818 /* Nothing. */ 3819 /****************************************************************************/ 3820 static void 3821 bce_init_rxp_cpu(struct bce_softc *sc) 3822 { 3823 struct cpu_reg cpu_reg; 3824 struct fw_info fw; 3825 3826 DBENTER(BCE_VERBOSE_RESET); 3827 3828 cpu_reg.mode = BCE_RXP_CPU_MODE; 3829 cpu_reg.mode_value_halt = BCE_RXP_CPU_MODE_SOFT_HALT; 3830 cpu_reg.mode_value_sstep = BCE_RXP_CPU_MODE_STEP_ENA; 3831 cpu_reg.state = BCE_RXP_CPU_STATE; 3832 cpu_reg.state_value_clear = 0xffffff; 3833 cpu_reg.gpr0 = BCE_RXP_CPU_REG_FILE; 3834 cpu_reg.evmask = BCE_RXP_CPU_EVENT_MASK; 3835 cpu_reg.pc = BCE_RXP_CPU_PROGRAM_COUNTER; 3836 cpu_reg.inst = BCE_RXP_CPU_INSTRUCTION; 3837 cpu_reg.bp = BCE_RXP_CPU_HW_BREAKPOINT; 3838 cpu_reg.spad_base = BCE_RXP_SCRATCH; 3839 cpu_reg.mips_view_base = 0x8000000; 3840 3841 if ((BCE_CHIP_NUM(sc) == BCE_CHIP_NUM_5709) || 3842 (BCE_CHIP_NUM(sc) == BCE_CHIP_NUM_5716)) { 3843 fw.ver_major = bce_RXP_b09FwReleaseMajor; 3844 fw.ver_minor = bce_RXP_b09FwReleaseMinor; 3845 fw.ver_fix = bce_RXP_b09FwReleaseFix; 3846 fw.start_addr = bce_RXP_b09FwStartAddr; 3847 3848 fw.text_addr = bce_RXP_b09FwTextAddr; 3849 fw.text_len = bce_RXP_b09FwTextLen; 3850 fw.text_index = 0; 3851 fw.text = bce_RXP_b09FwText; 3852 3853 fw.data_addr = bce_RXP_b09FwDataAddr; 3854 fw.data_len = bce_RXP_b09FwDataLen; 3855 fw.data_index = 0; 3856 fw.data = bce_RXP_b09FwData; 3857 3858 fw.sbss_addr = bce_RXP_b09FwSbssAddr; 3859 fw.sbss_len = bce_RXP_b09FwSbssLen; 3860 fw.sbss_index = 0; 3861 fw.sbss = bce_RXP_b09FwSbss; 3862 3863 fw.bss_addr = bce_RXP_b09FwBssAddr; 3864 fw.bss_len = bce_RXP_b09FwBssLen; 3865 fw.bss_index = 0; 3866 fw.bss = bce_RXP_b09FwBss; 3867 3868 fw.rodata_addr = bce_RXP_b09FwRodataAddr; 3869 fw.rodata_len = bce_RXP_b09FwRodataLen; 3870 fw.rodata_index = 0; 3871 fw.rodata = bce_RXP_b09FwRodata; 3872 } else { 3873 fw.ver_major = bce_RXP_b06FwReleaseMajor; 3874 fw.ver_minor = bce_RXP_b06FwReleaseMinor; 3875 fw.ver_fix = bce_RXP_b06FwReleaseFix; 3876 fw.start_addr = bce_RXP_b06FwStartAddr; 3877 3878 fw.text_addr = bce_RXP_b06FwTextAddr; 3879 fw.text_len = bce_RXP_b06FwTextLen; 3880 fw.text_index = 0; 3881 fw.text = bce_RXP_b06FwText; 3882 3883 fw.data_addr = bce_RXP_b06FwDataAddr; 3884 fw.data_len = bce_RXP_b06FwDataLen; 3885 fw.data_index = 0; 3886 fw.data = bce_RXP_b06FwData; 3887 3888 fw.sbss_addr = bce_RXP_b06FwSbssAddr; 3889 fw.sbss_len = bce_RXP_b06FwSbssLen; 3890 fw.sbss_index = 0; 3891 fw.sbss = bce_RXP_b06FwSbss; 3892 3893 fw.bss_addr = bce_RXP_b06FwBssAddr; 3894 fw.bss_len = bce_RXP_b06FwBssLen; 3895 fw.bss_index = 0; 3896 fw.bss = bce_RXP_b06FwBss; 3897 3898 fw.rodata_addr = bce_RXP_b06FwRodataAddr; 3899 fw.rodata_len = bce_RXP_b06FwRodataLen; 3900 fw.rodata_index = 0; 3901 fw.rodata = bce_RXP_b06FwRodata; 3902 } 3903 3904 DBPRINT(sc, BCE_INFO_RESET, "Loading RX firmware.\n"); 3905 bce_load_cpu_fw(sc, &cpu_reg, &fw); 3906 3907 /* Delay RXP start until initialization is complete. */ 3908 3909 DBEXIT(BCE_VERBOSE_RESET); 3910 } 3911 3912 3913 /****************************************************************************/ 3914 /* Initialize the TX CPU. */ 3915 /* */ 3916 /* Returns: */ 3917 /* Nothing. */ 3918 /****************************************************************************/ 3919 static void 3920 bce_init_txp_cpu(struct bce_softc *sc) 3921 { 3922 struct cpu_reg cpu_reg; 3923 struct fw_info fw; 3924 3925 DBENTER(BCE_VERBOSE_RESET); 3926 3927 cpu_reg.mode = BCE_TXP_CPU_MODE; 3928 cpu_reg.mode_value_halt = BCE_TXP_CPU_MODE_SOFT_HALT; 3929 cpu_reg.mode_value_sstep = BCE_TXP_CPU_MODE_STEP_ENA; 3930 cpu_reg.state = BCE_TXP_CPU_STATE; 3931 cpu_reg.state_value_clear = 0xffffff; 3932 cpu_reg.gpr0 = BCE_TXP_CPU_REG_FILE; 3933 cpu_reg.evmask = BCE_TXP_CPU_EVENT_MASK; 3934 cpu_reg.pc = BCE_TXP_CPU_PROGRAM_COUNTER; 3935 cpu_reg.inst = BCE_TXP_CPU_INSTRUCTION; 3936 cpu_reg.bp = BCE_TXP_CPU_HW_BREAKPOINT; 3937 cpu_reg.spad_base = BCE_TXP_SCRATCH; 3938 cpu_reg.mips_view_base = 0x8000000; 3939 3940 if ((BCE_CHIP_NUM(sc) == BCE_CHIP_NUM_5709) || 3941 (BCE_CHIP_NUM(sc) == BCE_CHIP_NUM_5716)) { 3942 fw.ver_major = bce_TXP_b09FwReleaseMajor; 3943 fw.ver_minor = bce_TXP_b09FwReleaseMinor; 3944 fw.ver_fix = bce_TXP_b09FwReleaseFix; 3945 fw.start_addr = bce_TXP_b09FwStartAddr; 3946 3947 fw.text_addr = bce_TXP_b09FwTextAddr; 3948 fw.text_len = bce_TXP_b09FwTextLen; 3949 fw.text_index = 0; 3950 fw.text = bce_TXP_b09FwText; 3951 3952 fw.data_addr = bce_TXP_b09FwDataAddr; 3953 fw.data_len = bce_TXP_b09FwDataLen; 3954 fw.data_index = 0; 3955 fw.data = bce_TXP_b09FwData; 3956 3957 fw.sbss_addr = bce_TXP_b09FwSbssAddr; 3958 fw.sbss_len = bce_TXP_b09FwSbssLen; 3959 fw.sbss_index = 0; 3960 fw.sbss = bce_TXP_b09FwSbss; 3961 3962 fw.bss_addr = bce_TXP_b09FwBssAddr; 3963 fw.bss_len = bce_TXP_b09FwBssLen; 3964 fw.bss_index = 0; 3965 fw.bss = bce_TXP_b09FwBss; 3966 3967 fw.rodata_addr = bce_TXP_b09FwRodataAddr; 3968 fw.rodata_len = bce_TXP_b09FwRodataLen; 3969 fw.rodata_index = 0; 3970 fw.rodata = bce_TXP_b09FwRodata; 3971 } else { 3972 fw.ver_major = bce_TXP_b06FwReleaseMajor; 3973 fw.ver_minor = bce_TXP_b06FwReleaseMinor; 3974 fw.ver_fix = bce_TXP_b06FwReleaseFix; 3975 fw.start_addr = bce_TXP_b06FwStartAddr; 3976 3977 fw.text_addr = bce_TXP_b06FwTextAddr; 3978 fw.text_len = bce_TXP_b06FwTextLen; 3979 fw.text_index = 0; 3980 fw.text = bce_TXP_b06FwText; 3981 3982 fw.data_addr = bce_TXP_b06FwDataAddr; 3983 fw.data_len = bce_TXP_b06FwDataLen; 3984 fw.data_index = 0; 3985 fw.data = bce_TXP_b06FwData; 3986 3987 fw.sbss_addr = bce_TXP_b06FwSbssAddr; 3988 fw.sbss_len = bce_TXP_b06FwSbssLen; 3989 fw.sbss_index = 0; 3990 fw.sbss = bce_TXP_b06FwSbss; 3991 3992 fw.bss_addr = bce_TXP_b06FwBssAddr; 3993 fw.bss_len = bce_TXP_b06FwBssLen; 3994 fw.bss_index = 0; 3995 fw.bss = bce_TXP_b06FwBss; 3996 3997 fw.rodata_addr = bce_TXP_b06FwRodataAddr; 3998 fw.rodata_len = bce_TXP_b06FwRodataLen; 3999 fw.rodata_index = 0; 4000 fw.rodata = bce_TXP_b06FwRodata; 4001 } 4002 4003 DBPRINT(sc, BCE_INFO_RESET, "Loading TX firmware.\n"); 4004 bce_load_cpu_fw(sc, &cpu_reg, &fw); 4005 bce_start_cpu(sc, &cpu_reg); 4006 4007 DBEXIT(BCE_VERBOSE_RESET); 4008 } 4009 4010 4011 /****************************************************************************/ 4012 /* Initialize the TPAT CPU. */ 4013 /* */ 4014 /* Returns: */ 4015 /* Nothing. */ 4016 /****************************************************************************/ 4017 static void 4018 bce_init_tpat_cpu(struct bce_softc *sc) 4019 { 4020 struct cpu_reg cpu_reg; 4021 struct fw_info fw; 4022 4023 DBENTER(BCE_VERBOSE_RESET); 4024 4025 cpu_reg.mode = BCE_TPAT_CPU_MODE; 4026 cpu_reg.mode_value_halt = BCE_TPAT_CPU_MODE_SOFT_HALT; 4027 cpu_reg.mode_value_sstep = BCE_TPAT_CPU_MODE_STEP_ENA; 4028 cpu_reg.state = BCE_TPAT_CPU_STATE; 4029 cpu_reg.state_value_clear = 0xffffff; 4030 cpu_reg.gpr0 = BCE_TPAT_CPU_REG_FILE; 4031 cpu_reg.evmask = BCE_TPAT_CPU_EVENT_MASK; 4032 cpu_reg.pc = BCE_TPAT_CPU_PROGRAM_COUNTER; 4033 cpu_reg.inst = BCE_TPAT_CPU_INSTRUCTION; 4034 cpu_reg.bp = BCE_TPAT_CPU_HW_BREAKPOINT; 4035 cpu_reg.spad_base = BCE_TPAT_SCRATCH; 4036 cpu_reg.mips_view_base = 0x8000000; 4037 4038 if ((BCE_CHIP_NUM(sc) == BCE_CHIP_NUM_5709) || 4039 (BCE_CHIP_NUM(sc) == BCE_CHIP_NUM_5716)) { 4040 fw.ver_major = bce_TPAT_b09FwReleaseMajor; 4041 fw.ver_minor = bce_TPAT_b09FwReleaseMinor; 4042 fw.ver_fix = bce_TPAT_b09FwReleaseFix; 4043 fw.start_addr = bce_TPAT_b09FwStartAddr; 4044 4045 fw.text_addr = bce_TPAT_b09FwTextAddr; 4046 fw.text_len = bce_TPAT_b09FwTextLen; 4047 fw.text_index = 0; 4048 fw.text = bce_TPAT_b09FwText; 4049 4050 fw.data_addr = bce_TPAT_b09FwDataAddr; 4051 fw.data_len = bce_TPAT_b09FwDataLen; 4052 fw.data_index = 0; 4053 fw.data = bce_TPAT_b09FwData; 4054 4055 fw.sbss_addr = bce_TPAT_b09FwSbssAddr; 4056 fw.sbss_len = bce_TPAT_b09FwSbssLen; 4057 fw.sbss_index = 0; 4058 fw.sbss = bce_TPAT_b09FwSbss; 4059 4060 fw.bss_addr = bce_TPAT_b09FwBssAddr; 4061 fw.bss_len = bce_TPAT_b09FwBssLen; 4062 fw.bss_index = 0; 4063 fw.bss = bce_TPAT_b09FwBss; 4064 4065 fw.rodata_addr = bce_TPAT_b09FwRodataAddr; 4066 fw.rodata_len = bce_TPAT_b09FwRodataLen; 4067 fw.rodata_index = 0; 4068 fw.rodata = bce_TPAT_b09FwRodata; 4069 } else { 4070 fw.ver_major = bce_TPAT_b06FwReleaseMajor; 4071 fw.ver_minor = bce_TPAT_b06FwReleaseMinor; 4072 fw.ver_fix = bce_TPAT_b06FwReleaseFix; 4073 fw.start_addr = bce_TPAT_b06FwStartAddr; 4074 4075 fw.text_addr = bce_TPAT_b06FwTextAddr; 4076 fw.text_len = bce_TPAT_b06FwTextLen; 4077 fw.text_index = 0; 4078 fw.text = bce_TPAT_b06FwText; 4079 4080 fw.data_addr = bce_TPAT_b06FwDataAddr; 4081 fw.data_len = bce_TPAT_b06FwDataLen; 4082 fw.data_index = 0; 4083 fw.data = bce_TPAT_b06FwData; 4084 4085 fw.sbss_addr = bce_TPAT_b06FwSbssAddr; 4086 fw.sbss_len = bce_TPAT_b06FwSbssLen; 4087 fw.sbss_index = 0; 4088 fw.sbss = bce_TPAT_b06FwSbss; 4089 4090 fw.bss_addr = bce_TPAT_b06FwBssAddr; 4091 fw.bss_len = bce_TPAT_b06FwBssLen; 4092 fw.bss_index = 0; 4093 fw.bss = bce_TPAT_b06FwBss; 4094 4095 fw.rodata_addr = bce_TPAT_b06FwRodataAddr; 4096 fw.rodata_len = bce_TPAT_b06FwRodataLen; 4097 fw.rodata_index = 0; 4098 fw.rodata = bce_TPAT_b06FwRodata; 4099 } 4100 4101 DBPRINT(sc, BCE_INFO_RESET, "Loading TPAT firmware.\n"); 4102 bce_load_cpu_fw(sc, &cpu_reg, &fw); 4103 bce_start_cpu(sc, &cpu_reg); 4104 4105 DBEXIT(BCE_VERBOSE_RESET); 4106 } 4107 4108 4109 /****************************************************************************/ 4110 /* Initialize the CP CPU. */ 4111 /* */ 4112 /* Returns: */ 4113 /* Nothing. */ 4114 /****************************************************************************/ 4115 static void 4116 bce_init_cp_cpu(struct bce_softc *sc) 4117 { 4118 struct cpu_reg cpu_reg; 4119 struct fw_info fw; 4120 4121 DBENTER(BCE_VERBOSE_RESET); 4122 4123 cpu_reg.mode = BCE_CP_CPU_MODE; 4124 cpu_reg.mode_value_halt = BCE_CP_CPU_MODE_SOFT_HALT; 4125 cpu_reg.mode_value_sstep = BCE_CP_CPU_MODE_STEP_ENA; 4126 cpu_reg.state = BCE_CP_CPU_STATE; 4127 cpu_reg.state_value_clear = 0xffffff; 4128 cpu_reg.gpr0 = BCE_CP_CPU_REG_FILE; 4129 cpu_reg.evmask = BCE_CP_CPU_EVENT_MASK; 4130 cpu_reg.pc = BCE_CP_CPU_PROGRAM_COUNTER; 4131 cpu_reg.inst = BCE_CP_CPU_INSTRUCTION; 4132 cpu_reg.bp = BCE_CP_CPU_HW_BREAKPOINT; 4133 cpu_reg.spad_base = BCE_CP_SCRATCH; 4134 cpu_reg.mips_view_base = 0x8000000; 4135 4136 if ((BCE_CHIP_NUM(sc) == BCE_CHIP_NUM_5709) || 4137 (BCE_CHIP_NUM(sc) == BCE_CHIP_NUM_5716)) { 4138 fw.ver_major = bce_CP_b09FwReleaseMajor; 4139 fw.ver_minor = bce_CP_b09FwReleaseMinor; 4140 fw.ver_fix = bce_CP_b09FwReleaseFix; 4141 fw.start_addr = bce_CP_b09FwStartAddr; 4142 4143 fw.text_addr = bce_CP_b09FwTextAddr; 4144 fw.text_len = bce_CP_b09FwTextLen; 4145 fw.text_index = 0; 4146 fw.text = bce_CP_b09FwText; 4147 4148 fw.data_addr = bce_CP_b09FwDataAddr; 4149 fw.data_len = bce_CP_b09FwDataLen; 4150 fw.data_index = 0; 4151 fw.data = bce_CP_b09FwData; 4152 4153 fw.sbss_addr = bce_CP_b09FwSbssAddr; 4154 fw.sbss_len = bce_CP_b09FwSbssLen; 4155 fw.sbss_index = 0; 4156 fw.sbss = bce_CP_b09FwSbss; 4157 4158 fw.bss_addr = bce_CP_b09FwBssAddr; 4159 fw.bss_len = bce_CP_b09FwBssLen; 4160 fw.bss_index = 0; 4161 fw.bss = bce_CP_b09FwBss; 4162 4163 fw.rodata_addr = bce_CP_b09FwRodataAddr; 4164 fw.rodata_len = bce_CP_b09FwRodataLen; 4165 fw.rodata_index = 0; 4166 fw.rodata = bce_CP_b09FwRodata; 4167 } else { 4168 fw.ver_major = bce_CP_b06FwReleaseMajor; 4169 fw.ver_minor = bce_CP_b06FwReleaseMinor; 4170 fw.ver_fix = bce_CP_b06FwReleaseFix; 4171 fw.start_addr = bce_CP_b06FwStartAddr; 4172 4173 fw.text_addr = bce_CP_b06FwTextAddr; 4174 fw.text_len = bce_CP_b06FwTextLen; 4175 fw.text_index = 0; 4176 fw.text = bce_CP_b06FwText; 4177 4178 fw.data_addr = bce_CP_b06FwDataAddr; 4179 fw.data_len = bce_CP_b06FwDataLen; 4180 fw.data_index = 0; 4181 fw.data = bce_CP_b06FwData; 4182 4183 fw.sbss_addr = bce_CP_b06FwSbssAddr; 4184 fw.sbss_len = bce_CP_b06FwSbssLen; 4185 fw.sbss_index = 0; 4186 fw.sbss = bce_CP_b06FwSbss; 4187 4188 fw.bss_addr = bce_CP_b06FwBssAddr; 4189 fw.bss_len = bce_CP_b06FwBssLen; 4190 fw.bss_index = 0; 4191 fw.bss = bce_CP_b06FwBss; 4192 4193 fw.rodata_addr = bce_CP_b06FwRodataAddr; 4194 fw.rodata_len = bce_CP_b06FwRodataLen; 4195 fw.rodata_index = 0; 4196 fw.rodata = bce_CP_b06FwRodata; 4197 } 4198 4199 DBPRINT(sc, BCE_INFO_RESET, "Loading CP firmware.\n"); 4200 bce_load_cpu_fw(sc, &cpu_reg, &fw); 4201 bce_start_cpu(sc, &cpu_reg); 4202 4203 DBEXIT(BCE_VERBOSE_RESET); 4204 } 4205 4206 4207 /****************************************************************************/ 4208 /* Initialize the COM CPU. */ 4209 /* */ 4210 /* Returns: */ 4211 /* Nothing. */ 4212 /****************************************************************************/ 4213 static void 4214 bce_init_com_cpu(struct bce_softc *sc) 4215 { 4216 struct cpu_reg cpu_reg; 4217 struct fw_info fw; 4218 4219 DBENTER(BCE_VERBOSE_RESET); 4220 4221 cpu_reg.mode = BCE_COM_CPU_MODE; 4222 cpu_reg.mode_value_halt = BCE_COM_CPU_MODE_SOFT_HALT; 4223 cpu_reg.mode_value_sstep = BCE_COM_CPU_MODE_STEP_ENA; 4224 cpu_reg.state = BCE_COM_CPU_STATE; 4225 cpu_reg.state_value_clear = 0xffffff; 4226 cpu_reg.gpr0 = BCE_COM_CPU_REG_FILE; 4227 cpu_reg.evmask = BCE_COM_CPU_EVENT_MASK; 4228 cpu_reg.pc = BCE_COM_CPU_PROGRAM_COUNTER; 4229 cpu_reg.inst = BCE_COM_CPU_INSTRUCTION; 4230 cpu_reg.bp = BCE_COM_CPU_HW_BREAKPOINT; 4231 cpu_reg.spad_base = BCE_COM_SCRATCH; 4232 cpu_reg.mips_view_base = 0x8000000; 4233 4234 if ((BCE_CHIP_NUM(sc) == BCE_CHIP_NUM_5709) || 4235 (BCE_CHIP_NUM(sc) == BCE_CHIP_NUM_5716)) { 4236 fw.ver_major = bce_COM_b09FwReleaseMajor; 4237 fw.ver_minor = bce_COM_b09FwReleaseMinor; 4238 fw.ver_fix = bce_COM_b09FwReleaseFix; 4239 fw.start_addr = bce_COM_b09FwStartAddr; 4240 4241 fw.text_addr = bce_COM_b09FwTextAddr; 4242 fw.text_len = bce_COM_b09FwTextLen; 4243 fw.text_index = 0; 4244 fw.text = bce_COM_b09FwText; 4245 4246 fw.data_addr = bce_COM_b09FwDataAddr; 4247 fw.data_len = bce_COM_b09FwDataLen; 4248 fw.data_index = 0; 4249 fw.data = bce_COM_b09FwData; 4250 4251 fw.sbss_addr = bce_COM_b09FwSbssAddr; 4252 fw.sbss_len = bce_COM_b09FwSbssLen; 4253 fw.sbss_index = 0; 4254 fw.sbss = bce_COM_b09FwSbss; 4255 4256 fw.bss_addr = bce_COM_b09FwBssAddr; 4257 fw.bss_len = bce_COM_b09FwBssLen; 4258 fw.bss_index = 0; 4259 fw.bss = bce_COM_b09FwBss; 4260 4261 fw.rodata_addr = bce_COM_b09FwRodataAddr; 4262 fw.rodata_len = bce_COM_b09FwRodataLen; 4263 fw.rodata_index = 0; 4264 fw.rodata = bce_COM_b09FwRodata; 4265 } else { 4266 fw.ver_major = bce_COM_b06FwReleaseMajor; 4267 fw.ver_minor = bce_COM_b06FwReleaseMinor; 4268 fw.ver_fix = bce_COM_b06FwReleaseFix; 4269 fw.start_addr = bce_COM_b06FwStartAddr; 4270 4271 fw.text_addr = bce_COM_b06FwTextAddr; 4272 fw.text_len = bce_COM_b06FwTextLen; 4273 fw.text_index = 0; 4274 fw.text = bce_COM_b06FwText; 4275 4276 fw.data_addr = bce_COM_b06FwDataAddr; 4277 fw.data_len = bce_COM_b06FwDataLen; 4278 fw.data_index = 0; 4279 fw.data = bce_COM_b06FwData; 4280 4281 fw.sbss_addr = bce_COM_b06FwSbssAddr; 4282 fw.sbss_len = bce_COM_b06FwSbssLen; 4283 fw.sbss_index = 0; 4284 fw.sbss = bce_COM_b06FwSbss; 4285 4286 fw.bss_addr = bce_COM_b06FwBssAddr; 4287 fw.bss_len = bce_COM_b06FwBssLen; 4288 fw.bss_index = 0; 4289 fw.bss = bce_COM_b06FwBss; 4290 4291 fw.rodata_addr = bce_COM_b06FwRodataAddr; 4292 fw.rodata_len = bce_COM_b06FwRodataLen; 4293 fw.rodata_index = 0; 4294 fw.rodata = bce_COM_b06FwRodata; 4295 } 4296 4297 DBPRINT(sc, BCE_INFO_RESET, "Loading COM firmware.\n"); 4298 bce_load_cpu_fw(sc, &cpu_reg, &fw); 4299 bce_start_cpu(sc, &cpu_reg); 4300 4301 DBEXIT(BCE_VERBOSE_RESET); 4302 } 4303 4304 4305 /****************************************************************************/ 4306 /* Initialize the RV2P, RX, TX, TPAT, COM, and CP CPUs. */ 4307 /* */ 4308 /* Loads the firmware for each CPU and starts the CPU. */ 4309 /* */ 4310 /* Returns: */ 4311 /* Nothing. */ 4312 /****************************************************************************/ 4313 static void 4314 bce_init_cpus(struct bce_softc *sc) 4315 { 4316 DBENTER(BCE_VERBOSE_RESET); 4317 4318 if ((BCE_CHIP_NUM(sc) == BCE_CHIP_NUM_5709) || 4319 (BCE_CHIP_NUM(sc) == BCE_CHIP_NUM_5716)) { 4320 4321 if ((BCE_CHIP_REV(sc) == BCE_CHIP_REV_Ax)) { 4322 bce_load_rv2p_fw(sc, bce_xi90_rv2p_proc1, 4323 sizeof(bce_xi90_rv2p_proc1), RV2P_PROC1); 4324 bce_load_rv2p_fw(sc, bce_xi90_rv2p_proc2, 4325 sizeof(bce_xi90_rv2p_proc2), RV2P_PROC2); 4326 } else { 4327 bce_load_rv2p_fw(sc, bce_xi_rv2p_proc1, 4328 sizeof(bce_xi_rv2p_proc1), RV2P_PROC1); 4329 bce_load_rv2p_fw(sc, bce_xi_rv2p_proc2, 4330 sizeof(bce_xi_rv2p_proc2), RV2P_PROC2); 4331 } 4332 4333 } else { 4334 bce_load_rv2p_fw(sc, bce_rv2p_proc1, 4335 sizeof(bce_rv2p_proc1), RV2P_PROC1); 4336 bce_load_rv2p_fw(sc, bce_rv2p_proc2, 4337 sizeof(bce_rv2p_proc2), RV2P_PROC2); 4338 } 4339 4340 bce_init_rxp_cpu(sc); 4341 bce_init_txp_cpu(sc); 4342 bce_init_tpat_cpu(sc); 4343 bce_init_com_cpu(sc); 4344 bce_init_cp_cpu(sc); 4345 4346 DBEXIT(BCE_VERBOSE_RESET); 4347 } 4348 4349 4350 /****************************************************************************/ 4351 /* Initialize context memory. */ 4352 /* */ 4353 /* Clears the memory associated with each Context ID (CID). */ 4354 /* */ 4355 /* Returns: */ 4356 /* Nothing. */ 4357 /****************************************************************************/ 4358 static void 4359 bce_init_ctx(struct bce_softc *sc) 4360 { 4361 4362 DBENTER(BCE_VERBOSE_RESET | BCE_VERBOSE_CTX); 4363 4364 if ((BCE_CHIP_NUM(sc) == BCE_CHIP_NUM_5709) || 4365 (BCE_CHIP_NUM(sc) == BCE_CHIP_NUM_5716)) { 4366 int i, retry_cnt = CTX_INIT_RETRY_COUNT; 4367 u32 val; 4368 4369 DBPRINT(sc, BCE_INFO_CTX, "Initializing 5709 context.\n"); 4370 4371 /* 4372 * BCM5709 context memory may be cached 4373 * in host memory so prepare the host memory 4374 * for access. 4375 */ 4376 val = BCE_CTX_COMMAND_ENABLED | 4377 BCE_CTX_COMMAND_MEM_INIT | (1 << 12); 4378 val |= (BCM_PAGE_BITS - 8) << 16; 4379 REG_WR(sc, BCE_CTX_COMMAND, val); 4380 4381 /* Wait for mem init command to complete. */ 4382 for (i = 0; i < retry_cnt; i++) { 4383 val = REG_RD(sc, BCE_CTX_COMMAND); 4384 if (!(val & BCE_CTX_COMMAND_MEM_INIT)) 4385 break; 4386 DELAY(2); 4387 } 4388 4389 /* ToDo: Consider returning an error here. */ 4390 DBRUNIF((val & BCE_CTX_COMMAND_MEM_INIT), 4391 BCE_PRINTF("%s(): Context memory initialization " 4392 "failed!\n", __FUNCTION__)); 4393 4394 for (i = 0; i < sc->ctx_pages; i++) { 4395 int j; 4396 4397 /* Set the physical address of the context memory. */ 4398 REG_WR(sc, BCE_CTX_HOST_PAGE_TBL_DATA0, 4399 BCE_ADDR_LO(sc->ctx_paddr[i] & 0xfffffff0) | 4400 BCE_CTX_HOST_PAGE_TBL_DATA0_VALID); 4401 REG_WR(sc, BCE_CTX_HOST_PAGE_TBL_DATA1, 4402 BCE_ADDR_HI(sc->ctx_paddr[i])); 4403 REG_WR(sc, BCE_CTX_HOST_PAGE_TBL_CTRL, i | 4404 BCE_CTX_HOST_PAGE_TBL_CTRL_WRITE_REQ); 4405 4406 /* Verify the context memory write was successful. */ 4407 for (j = 0; j < retry_cnt; j++) { 4408 val = REG_RD(sc, BCE_CTX_HOST_PAGE_TBL_CTRL); 4409 if ((val & 4410 BCE_CTX_HOST_PAGE_TBL_CTRL_WRITE_REQ) == 0) 4411 break; 4412 DELAY(5); 4413 } 4414 4415 /* ToDo: Consider returning an error here. */ 4416 DBRUNIF((val & BCE_CTX_HOST_PAGE_TBL_CTRL_WRITE_REQ), 4417 BCE_PRINTF("%s(): Failed to initialize " 4418 "context page %d!\n", __FUNCTION__, i)); 4419 } 4420 } else { 4421 u32 vcid_addr, offset; 4422 4423 DBPRINT(sc, BCE_INFO, "Initializing 5706/5708 context.\n"); 4424 4425 /* 4426 * For the 5706/5708, context memory is local to 4427 * the controller, so initialize the controller 4428 * context memory. 4429 */ 4430 4431 vcid_addr = GET_CID_ADDR(96); 4432 while (vcid_addr) { 4433 4434 vcid_addr -= PHY_CTX_SIZE; 4435 4436 REG_WR(sc, BCE_CTX_VIRT_ADDR, 0); 4437 REG_WR(sc, BCE_CTX_PAGE_TBL, vcid_addr); 4438 4439 for(offset = 0; offset < PHY_CTX_SIZE; offset += 4) { 4440 CTX_WR(sc, 0x00, offset, 0); 4441 } 4442 4443 REG_WR(sc, BCE_CTX_VIRT_ADDR, vcid_addr); 4444 REG_WR(sc, BCE_CTX_PAGE_TBL, vcid_addr); 4445 } 4446 4447 } 4448 DBEXIT(BCE_VERBOSE_RESET | BCE_VERBOSE_CTX); 4449 } 4450 4451 4452 /****************************************************************************/ 4453 /* Fetch the permanent MAC address of the controller. */ 4454 /* */ 4455 /* Returns: */ 4456 /* Nothing. */ 4457 /****************************************************************************/ 4458 static void 4459 bce_get_mac_addr(struct bce_softc *sc) 4460 { 4461 u32 mac_lo = 0, mac_hi = 0; 4462 4463 DBENTER(BCE_VERBOSE_RESET); 4464 /* 4465 * The NetXtreme II bootcode populates various NIC 4466 * power-on and runtime configuration items in a 4467 * shared memory area. The factory configured MAC 4468 * address is available from both NVRAM and the 4469 * shared memory area so we'll read the value from 4470 * shared memory for speed. 4471 */ 4472 4473 mac_hi = bce_shmem_rd(sc, BCE_PORT_HW_CFG_MAC_UPPER); 4474 mac_lo = bce_shmem_rd(sc, BCE_PORT_HW_CFG_MAC_LOWER); 4475 4476 if ((mac_lo == 0) && (mac_hi == 0)) { 4477 BCE_PRINTF("%s(%d): Invalid Ethernet address!\n", 4478 __FILE__, __LINE__); 4479 } else { 4480 sc->eaddr[0] = (u_char)(mac_hi >> 8); 4481 sc->eaddr[1] = (u_char)(mac_hi >> 0); 4482 sc->eaddr[2] = (u_char)(mac_lo >> 24); 4483 sc->eaddr[3] = (u_char)(mac_lo >> 16); 4484 sc->eaddr[4] = (u_char)(mac_lo >> 8); 4485 sc->eaddr[5] = (u_char)(mac_lo >> 0); 4486 } 4487 4488 DBPRINT(sc, BCE_INFO_MISC, "Permanent Ethernet address = %6D\n", sc->eaddr, ":"); 4489 DBEXIT(BCE_VERBOSE_RESET); 4490 } 4491 4492 4493 /****************************************************************************/ 4494 /* Program the MAC address. */ 4495 /* */ 4496 /* Returns: */ 4497 /* Nothing. */ 4498 /****************************************************************************/ 4499 static void 4500 bce_set_mac_addr(struct bce_softc *sc) 4501 { 4502 u32 val; 4503 u8 *mac_addr = sc->eaddr; 4504 4505 /* ToDo: Add support for setting multiple MAC addresses. */ 4506 4507 DBENTER(BCE_VERBOSE_RESET); 4508 DBPRINT(sc, BCE_INFO_MISC, "Setting Ethernet address = %6D\n", sc->eaddr, ":"); 4509 4510 val = (mac_addr[0] << 8) | mac_addr[1]; 4511 4512 REG_WR(sc, BCE_EMAC_MAC_MATCH0, val); 4513 4514 val = (mac_addr[2] << 24) | (mac_addr[3] << 16) | 4515 (mac_addr[4] << 8) | mac_addr[5]; 4516 4517 REG_WR(sc, BCE_EMAC_MAC_MATCH1, val); 4518 4519 DBEXIT(BCE_VERBOSE_RESET); 4520 } 4521 4522 4523 /****************************************************************************/ 4524 /* Stop the controller. */ 4525 /* */ 4526 /* Returns: */ 4527 /* Nothing. */ 4528 /****************************************************************************/ 4529 static void 4530 bce_stop(struct bce_softc *sc) 4531 { 4532 struct ifnet *ifp; 4533 struct ifmedia_entry *ifm; 4534 struct mii_data *mii = NULL; 4535 int mtmp, itmp; 4536 4537 DBENTER(BCE_VERBOSE_RESET); 4538 4539 BCE_LOCK_ASSERT(sc); 4540 4541 ifp = sc->bce_ifp; 4542 4543 mii = device_get_softc(sc->bce_miibus); 4544 4545 callout_stop(&sc->bce_tick_callout); 4546 4547 /* Disable the transmit/receive blocks. */ 4548 REG_WR(sc, BCE_MISC_ENABLE_CLR_BITS, BCE_MISC_ENABLE_CLR_DEFAULT); 4549 REG_RD(sc, BCE_MISC_ENABLE_CLR_BITS); 4550 DELAY(20); 4551 4552 bce_disable_intr(sc); 4553 4554 /* Free RX buffers. */ 4555 #ifdef BCE_JUMBO_HDRSPLIT 4556 bce_free_pg_chain(sc); 4557 #endif 4558 bce_free_rx_chain(sc); 4559 4560 /* Free TX buffers. */ 4561 bce_free_tx_chain(sc); 4562 4563 /* 4564 * Isolate/power down the PHY, but leave the media selection 4565 * unchanged so that things will be put back to normal when 4566 * we bring the interface back up. 4567 */ 4568 4569 itmp = ifp->if_flags; 4570 ifp->if_flags |= IFF_UP; 4571 4572 /* If we are called from bce_detach(), mii is already NULL. */ 4573 if (mii != NULL) { 4574 ifm = mii->mii_media.ifm_cur; 4575 mtmp = ifm->ifm_media; 4576 ifm->ifm_media = IFM_ETHER | IFM_NONE; 4577 mii_mediachg(mii); 4578 ifm->ifm_media = mtmp; 4579 } 4580 4581 ifp->if_flags = itmp; 4582 sc->watchdog_timer = 0; 4583 4584 sc->bce_link_up = FALSE; 4585 4586 ifp->if_drv_flags &= ~(IFF_DRV_RUNNING | IFF_DRV_OACTIVE); 4587 4588 DBEXIT(BCE_VERBOSE_RESET); 4589 } 4590 4591 4592 static int 4593 bce_reset(struct bce_softc *sc, u32 reset_code) 4594 { 4595 u32 val; 4596 int i, rc = 0; 4597 4598 DBENTER(BCE_VERBOSE_RESET); 4599 4600 DBPRINT(sc, BCE_VERBOSE_RESET, "%s(): reset_code = 0x%08X\n", 4601 __FUNCTION__, reset_code); 4602 4603 /* Wait for pending PCI transactions to complete. */ 4604 REG_WR(sc, BCE_MISC_ENABLE_CLR_BITS, 4605 BCE_MISC_ENABLE_CLR_BITS_TX_DMA_ENABLE | 4606 BCE_MISC_ENABLE_CLR_BITS_DMA_ENGINE_ENABLE | 4607 BCE_MISC_ENABLE_CLR_BITS_RX_DMA_ENABLE | 4608 BCE_MISC_ENABLE_CLR_BITS_HOST_COALESCE_ENABLE); 4609 val = REG_RD(sc, BCE_MISC_ENABLE_CLR_BITS); 4610 DELAY(5); 4611 4612 /* Disable DMA */ 4613 if ((BCE_CHIP_NUM(sc) == BCE_CHIP_NUM_5709) || 4614 (BCE_CHIP_NUM(sc) == BCE_CHIP_NUM_5716)) { 4615 val = REG_RD(sc, BCE_MISC_NEW_CORE_CTL); 4616 val &= ~BCE_MISC_NEW_CORE_CTL_DMA_ENABLE; 4617 REG_WR(sc, BCE_MISC_NEW_CORE_CTL, val); 4618 } 4619 4620 /* Assume bootcode is running. */ 4621 sc->bce_fw_timed_out = FALSE; 4622 sc->bce_drv_cardiac_arrest = FALSE; 4623 4624 /* Give the firmware a chance to prepare for the reset. */ 4625 rc = bce_fw_sync(sc, BCE_DRV_MSG_DATA_WAIT0 | reset_code); 4626 if (rc) 4627 goto bce_reset_exit; 4628 4629 /* Set a firmware reminder that this is a soft reset. */ 4630 bce_shmem_wr(sc, BCE_DRV_RESET_SIGNATURE, BCE_DRV_RESET_SIGNATURE_MAGIC); 4631 4632 /* Dummy read to force the chip to complete all current transactions. */ 4633 val = REG_RD(sc, BCE_MISC_ID); 4634 4635 /* Chip reset. */ 4636 if ((BCE_CHIP_NUM(sc) == BCE_CHIP_NUM_5709) || 4637 (BCE_CHIP_NUM(sc) == BCE_CHIP_NUM_5716)) { 4638 REG_WR(sc, BCE_MISC_COMMAND, BCE_MISC_COMMAND_SW_RESET); 4639 REG_RD(sc, BCE_MISC_COMMAND); 4640 DELAY(5); 4641 4642 val = BCE_PCICFG_MISC_CONFIG_REG_WINDOW_ENA | 4643 BCE_PCICFG_MISC_CONFIG_TARGET_MB_WORD_SWAP; 4644 4645 pci_write_config(sc->bce_dev, BCE_PCICFG_MISC_CONFIG, val, 4); 4646 } else { 4647 val = BCE_PCICFG_MISC_CONFIG_CORE_RST_REQ | 4648 BCE_PCICFG_MISC_CONFIG_REG_WINDOW_ENA | 4649 BCE_PCICFG_MISC_CONFIG_TARGET_MB_WORD_SWAP; 4650 REG_WR(sc, BCE_PCICFG_MISC_CONFIG, val); 4651 4652 /* Allow up to 30us for reset to complete. */ 4653 for (i = 0; i < 10; i++) { 4654 val = REG_RD(sc, BCE_PCICFG_MISC_CONFIG); 4655 if ((val & (BCE_PCICFG_MISC_CONFIG_CORE_RST_REQ | 4656 BCE_PCICFG_MISC_CONFIG_CORE_RST_BSY)) == 0) { 4657 break; 4658 } 4659 DELAY(10); 4660 } 4661 4662 /* Check that reset completed successfully. */ 4663 if (val & (BCE_PCICFG_MISC_CONFIG_CORE_RST_REQ | 4664 BCE_PCICFG_MISC_CONFIG_CORE_RST_BSY)) { 4665 BCE_PRINTF("%s(%d): Reset failed!\n", 4666 __FILE__, __LINE__); 4667 rc = EBUSY; 4668 goto bce_reset_exit; 4669 } 4670 } 4671 4672 /* Make sure byte swapping is properly configured. */ 4673 val = REG_RD(sc, BCE_PCI_SWAP_DIAG0); 4674 if (val != 0x01020304) { 4675 BCE_PRINTF("%s(%d): Byte swap is incorrect!\n", 4676 __FILE__, __LINE__); 4677 rc = ENODEV; 4678 goto bce_reset_exit; 4679 } 4680 4681 /* Just completed a reset, assume that firmware is running again. */ 4682 sc->bce_fw_timed_out = FALSE; 4683 sc->bce_drv_cardiac_arrest = FALSE; 4684 4685 /* Wait for the firmware to finish its initialization. */ 4686 rc = bce_fw_sync(sc, BCE_DRV_MSG_DATA_WAIT1 | reset_code); 4687 if (rc) 4688 BCE_PRINTF("%s(%d): Firmware did not complete initialization!\n", 4689 __FILE__, __LINE__); 4690 4691 bce_reset_exit: 4692 DBEXIT(BCE_VERBOSE_RESET); 4693 return (rc); 4694 } 4695 4696 4697 static int 4698 bce_chipinit(struct bce_softc *sc) 4699 { 4700 u32 val; 4701 int rc = 0; 4702 4703 DBENTER(BCE_VERBOSE_RESET); 4704 4705 bce_disable_intr(sc); 4706 4707 /* 4708 * Initialize DMA byte/word swapping, configure the number of DMA 4709 * channels and PCI clock compensation delay. 4710 */ 4711 val = BCE_DMA_CONFIG_DATA_BYTE_SWAP | 4712 BCE_DMA_CONFIG_DATA_WORD_SWAP | 4713 #if BYTE_ORDER == BIG_ENDIAN 4714 BCE_DMA_CONFIG_CNTL_BYTE_SWAP | 4715 #endif 4716 BCE_DMA_CONFIG_CNTL_WORD_SWAP | 4717 DMA_READ_CHANS << 12 | 4718 DMA_WRITE_CHANS << 16; 4719 4720 val |= (0x2 << 20) | BCE_DMA_CONFIG_CNTL_PCI_COMP_DLY; 4721 4722 if ((sc->bce_flags & BCE_PCIX_FLAG) && (sc->bus_speed_mhz == 133)) 4723 val |= BCE_DMA_CONFIG_PCI_FAST_CLK_CMP; 4724 4725 /* 4726 * This setting resolves a problem observed on certain Intel PCI 4727 * chipsets that cannot handle multiple outstanding DMA operations. 4728 * See errata E9_5706A1_65. 4729 */ 4730 if ((BCE_CHIP_NUM(sc) == BCE_CHIP_NUM_5706) && 4731 (BCE_CHIP_ID(sc) != BCE_CHIP_ID_5706_A0) && 4732 !(sc->bce_flags & BCE_PCIX_FLAG)) 4733 val |= BCE_DMA_CONFIG_CNTL_PING_PONG_DMA; 4734 4735 REG_WR(sc, BCE_DMA_CONFIG, val); 4736 4737 /* Enable the RX_V2P and Context state machines before access. */ 4738 REG_WR(sc, BCE_MISC_ENABLE_SET_BITS, 4739 BCE_MISC_ENABLE_SET_BITS_HOST_COALESCE_ENABLE | 4740 BCE_MISC_ENABLE_STATUS_BITS_RX_V2P_ENABLE | 4741 BCE_MISC_ENABLE_STATUS_BITS_CONTEXT_ENABLE); 4742 4743 /* Initialize context mapping and zero out the quick contexts. */ 4744 bce_init_ctx(sc); 4745 4746 /* Initialize the on-boards CPUs */ 4747 bce_init_cpus(sc); 4748 4749 /* Enable management frames (NC-SI) to flow to the MCP. */ 4750 if (sc->bce_flags & BCE_MFW_ENABLE_FLAG) { 4751 val = REG_RD(sc, BCE_RPM_MGMT_PKT_CTRL) | BCE_RPM_MGMT_PKT_CTRL_MGMT_EN; 4752 REG_WR(sc, BCE_RPM_MGMT_PKT_CTRL, val); 4753 } 4754 4755 /* Prepare NVRAM for access. */ 4756 if (bce_init_nvram(sc)) { 4757 rc = ENODEV; 4758 goto bce_chipinit_exit; 4759 } 4760 4761 /* Set the kernel bypass block size */ 4762 val = REG_RD(sc, BCE_MQ_CONFIG); 4763 val &= ~BCE_MQ_CONFIG_KNL_BYP_BLK_SIZE; 4764 val |= BCE_MQ_CONFIG_KNL_BYP_BLK_SIZE_256; 4765 4766 /* Enable bins used on the 5709. */ 4767 if ((BCE_CHIP_NUM(sc) == BCE_CHIP_NUM_5709) || 4768 (BCE_CHIP_NUM(sc) == BCE_CHIP_NUM_5716)) { 4769 val |= BCE_MQ_CONFIG_BIN_MQ_MODE; 4770 if (BCE_CHIP_ID(sc) == BCE_CHIP_ID_5709_A1) 4771 val |= BCE_MQ_CONFIG_HALT_DIS; 4772 } 4773 4774 REG_WR(sc, BCE_MQ_CONFIG, val); 4775 4776 val = 0x10000 + (MAX_CID_CNT * MB_KERNEL_CTX_SIZE); 4777 REG_WR(sc, BCE_MQ_KNL_BYP_WIND_START, val); 4778 REG_WR(sc, BCE_MQ_KNL_WIND_END, val); 4779 4780 /* Set the page size and clear the RV2P processor stall bits. */ 4781 val = (BCM_PAGE_BITS - 8) << 24; 4782 REG_WR(sc, BCE_RV2P_CONFIG, val); 4783 4784 /* Configure page size. */ 4785 val = REG_RD(sc, BCE_TBDR_CONFIG); 4786 val &= ~BCE_TBDR_CONFIG_PAGE_SIZE; 4787 val |= (BCM_PAGE_BITS - 8) << 24 | 0x40; 4788 REG_WR(sc, BCE_TBDR_CONFIG, val); 4789 4790 /* Set the perfect match control register to default. */ 4791 REG_WR_IND(sc, BCE_RXP_PM_CTRL, 0); 4792 4793 bce_chipinit_exit: 4794 DBEXIT(BCE_VERBOSE_RESET); 4795 4796 return(rc); 4797 } 4798 4799 4800 /****************************************************************************/ 4801 /* Initialize the controller in preparation to send/receive traffic. */ 4802 /* */ 4803 /* Returns: */ 4804 /* 0 for success, positive value for failure. */ 4805 /****************************************************************************/ 4806 static int 4807 bce_blockinit(struct bce_softc *sc) 4808 { 4809 u32 reg, val; 4810 int rc = 0; 4811 4812 DBENTER(BCE_VERBOSE_RESET); 4813 4814 /* Load the hardware default MAC address. */ 4815 bce_set_mac_addr(sc); 4816 4817 /* Set the Ethernet backoff seed value */ 4818 val = sc->eaddr[0] + (sc->eaddr[1] << 8) + 4819 (sc->eaddr[2] << 16) + (sc->eaddr[3] ) + 4820 (sc->eaddr[4] << 8) + (sc->eaddr[5] << 16); 4821 REG_WR(sc, BCE_EMAC_BACKOFF_SEED, val); 4822 4823 sc->last_status_idx = 0; 4824 sc->rx_mode = BCE_EMAC_RX_MODE_SORT_MODE; 4825 4826 /* Set up link change interrupt generation. */ 4827 REG_WR(sc, BCE_EMAC_ATTENTION_ENA, BCE_EMAC_ATTENTION_ENA_LINK); 4828 4829 /* Program the physical address of the status block. */ 4830 REG_WR(sc, BCE_HC_STATUS_ADDR_L, 4831 BCE_ADDR_LO(sc->status_block_paddr)); 4832 REG_WR(sc, BCE_HC_STATUS_ADDR_H, 4833 BCE_ADDR_HI(sc->status_block_paddr)); 4834 4835 /* Program the physical address of the statistics block. */ 4836 REG_WR(sc, BCE_HC_STATISTICS_ADDR_L, 4837 BCE_ADDR_LO(sc->stats_block_paddr)); 4838 REG_WR(sc, BCE_HC_STATISTICS_ADDR_H, 4839 BCE_ADDR_HI(sc->stats_block_paddr)); 4840 4841 /* Program various host coalescing parameters. */ 4842 REG_WR(sc, BCE_HC_TX_QUICK_CONS_TRIP, 4843 (sc->bce_tx_quick_cons_trip_int << 16) | sc->bce_tx_quick_cons_trip); 4844 REG_WR(sc, BCE_HC_RX_QUICK_CONS_TRIP, 4845 (sc->bce_rx_quick_cons_trip_int << 16) | sc->bce_rx_quick_cons_trip); 4846 REG_WR(sc, BCE_HC_COMP_PROD_TRIP, 4847 (sc->bce_comp_prod_trip_int << 16) | sc->bce_comp_prod_trip); 4848 REG_WR(sc, BCE_HC_TX_TICKS, 4849 (sc->bce_tx_ticks_int << 16) | sc->bce_tx_ticks); 4850 REG_WR(sc, BCE_HC_RX_TICKS, 4851 (sc->bce_rx_ticks_int << 16) | sc->bce_rx_ticks); 4852 REG_WR(sc, BCE_HC_COM_TICKS, 4853 (sc->bce_com_ticks_int << 16) | sc->bce_com_ticks); 4854 REG_WR(sc, BCE_HC_CMD_TICKS, 4855 (sc->bce_cmd_ticks_int << 16) | sc->bce_cmd_ticks); 4856 REG_WR(sc, BCE_HC_STATS_TICKS, 4857 (sc->bce_stats_ticks & 0xffff00)); 4858 REG_WR(sc, BCE_HC_STAT_COLLECT_TICKS, 0xbb8); /* 3ms */ 4859 4860 /* Configure the Host Coalescing block. */ 4861 val = BCE_HC_CONFIG_RX_TMR_MODE | BCE_HC_CONFIG_TX_TMR_MODE | 4862 BCE_HC_CONFIG_COLLECT_STATS; 4863 4864 #if 0 4865 /* ToDo: Add MSI-X support. */ 4866 if (sc->bce_flags & BCE_USING_MSIX_FLAG) { 4867 u32 base = ((BCE_TX_VEC - 1) * BCE_HC_SB_CONFIG_SIZE) + 4868 BCE_HC_SB_CONFIG_1; 4869 4870 REG_WR(sc, BCE_HC_MSIX_BIT_VECTOR, BCE_HC_MSIX_BIT_VECTOR_VAL); 4871 4872 REG_WR(sc, base, BCE_HC_SB_CONFIG_1_TX_TMR_MODE | 4873 BCE_HC_SB_CONFIG_1_ONE_SHOT); 4874 4875 REG_WR(sc, base + BCE_HC_TX_QUICK_CONS_TRIP_OFF, 4876 (sc->tx_quick_cons_trip_int << 16) | 4877 sc->tx_quick_cons_trip); 4878 4879 REG_WR(sc, base + BCE_HC_TX_TICKS_OFF, 4880 (sc->tx_ticks_int << 16) | sc->tx_ticks); 4881 4882 val |= BCE_HC_CONFIG_SB_ADDR_INC_128B; 4883 } 4884 4885 /* 4886 * Tell the HC block to automatically set the 4887 * INT_MASK bit after an MSI/MSI-X interrupt 4888 * is generated so the driver doesn't have to. 4889 */ 4890 if (sc->bce_flags & BCE_ONE_SHOT_MSI_FLAG) 4891 val |= BCE_HC_CONFIG_ONE_SHOT; 4892 4893 /* Set the MSI-X status blocks to 128 byte boundaries. */ 4894 if (sc->bce_flags & BCE_USING_MSIX_FLAG) 4895 val |= BCE_HC_CONFIG_SB_ADDR_INC_128B; 4896 #endif 4897 4898 REG_WR(sc, BCE_HC_CONFIG, val); 4899 4900 /* Clear the internal statistics counters. */ 4901 REG_WR(sc, BCE_HC_COMMAND, BCE_HC_COMMAND_CLR_STAT_NOW); 4902 4903 /* Verify that bootcode is running. */ 4904 reg = bce_shmem_rd(sc, BCE_DEV_INFO_SIGNATURE); 4905 4906 DBRUNIF(DB_RANDOMTRUE(bootcode_running_failure_sim_control), 4907 BCE_PRINTF("%s(%d): Simulating bootcode failure.\n", 4908 __FILE__, __LINE__); 4909 reg = 0); 4910 4911 if ((reg & BCE_DEV_INFO_SIGNATURE_MAGIC_MASK) != 4912 BCE_DEV_INFO_SIGNATURE_MAGIC) { 4913 BCE_PRINTF("%s(%d): Bootcode not running! Found: 0x%08X, " 4914 "Expected: 08%08X\n", __FILE__, __LINE__, 4915 (reg & BCE_DEV_INFO_SIGNATURE_MAGIC_MASK), 4916 BCE_DEV_INFO_SIGNATURE_MAGIC); 4917 rc = ENODEV; 4918 goto bce_blockinit_exit; 4919 } 4920 4921 /* Enable DMA */ 4922 if ((BCE_CHIP_NUM(sc) == BCE_CHIP_NUM_5709) || 4923 (BCE_CHIP_NUM(sc) == BCE_CHIP_NUM_5716)) { 4924 val = REG_RD(sc, BCE_MISC_NEW_CORE_CTL); 4925 val |= BCE_MISC_NEW_CORE_CTL_DMA_ENABLE; 4926 REG_WR(sc, BCE_MISC_NEW_CORE_CTL, val); 4927 } 4928 4929 /* Allow bootcode to apply additional fixes before enabling MAC. */ 4930 rc = bce_fw_sync(sc, BCE_DRV_MSG_DATA_WAIT2 | 4931 BCE_DRV_MSG_CODE_RESET); 4932 4933 /* Enable link state change interrupt generation. */ 4934 REG_WR(sc, BCE_HC_ATTN_BITS_ENABLE, STATUS_ATTN_BITS_LINK_STATE); 4935 4936 /* Enable the RXP. */ 4937 bce_start_rxp_cpu(sc); 4938 4939 /* Disable management frames (NC-SI) from flowing to the MCP. */ 4940 if (sc->bce_flags & BCE_MFW_ENABLE_FLAG) { 4941 val = REG_RD(sc, BCE_RPM_MGMT_PKT_CTRL) & 4942 ~BCE_RPM_MGMT_PKT_CTRL_MGMT_EN; 4943 REG_WR(sc, BCE_RPM_MGMT_PKT_CTRL, val); 4944 } 4945 4946 /* Enable all remaining blocks in the MAC. */ 4947 if ((BCE_CHIP_NUM(sc) == BCE_CHIP_NUM_5709) || 4948 (BCE_CHIP_NUM(sc) == BCE_CHIP_NUM_5716)) 4949 REG_WR(sc, BCE_MISC_ENABLE_SET_BITS, 4950 BCE_MISC_ENABLE_DEFAULT_XI); 4951 else 4952 REG_WR(sc, BCE_MISC_ENABLE_SET_BITS, 4953 BCE_MISC_ENABLE_DEFAULT); 4954 4955 REG_RD(sc, BCE_MISC_ENABLE_SET_BITS); 4956 DELAY(20); 4957 4958 /* Save the current host coalescing block settings. */ 4959 sc->hc_command = REG_RD(sc, BCE_HC_COMMAND); 4960 4961 bce_blockinit_exit: 4962 DBEXIT(BCE_VERBOSE_RESET); 4963 4964 return (rc); 4965 } 4966 4967 4968 /****************************************************************************/ 4969 /* Encapsulate an mbuf into the rx_bd chain. */ 4970 /* */ 4971 /* Returns: */ 4972 /* 0 for success, positive value for failure. */ 4973 /****************************************************************************/ 4974 static int 4975 bce_get_rx_buf(struct bce_softc *sc, struct mbuf *m, u16 *prod, 4976 u16 *chain_prod, u32 *prod_bseq) 4977 { 4978 bus_dmamap_t map; 4979 bus_dma_segment_t segs[BCE_MAX_SEGMENTS]; 4980 struct mbuf *m_new = NULL; 4981 struct rx_bd *rxbd; 4982 int nsegs, error, rc = 0; 4983 #ifdef BCE_DEBUG 4984 u16 debug_chain_prod = *chain_prod; 4985 #endif 4986 4987 DBENTER(BCE_EXTREME_RESET | BCE_EXTREME_RECV | BCE_EXTREME_LOAD); 4988 4989 /* Make sure the inputs are valid. */ 4990 DBRUNIF((*chain_prod > MAX_RX_BD), 4991 BCE_PRINTF("%s(%d): RX producer out of range: 0x%04X > 0x%04X\n", 4992 __FILE__, __LINE__, *chain_prod, (u16) MAX_RX_BD)); 4993 4994 DBPRINT(sc, BCE_EXTREME_RECV, "%s(enter): prod = 0x%04X, " 4995 "chain_prod = 0x%04X, prod_bseq = 0x%08X\n", __FUNCTION__, 4996 *prod, *chain_prod, *prod_bseq); 4997 4998 /* Update some debug statistic counters */ 4999 DBRUNIF((sc->free_rx_bd < sc->rx_low_watermark), 5000 sc->rx_low_watermark = sc->free_rx_bd); 5001 DBRUNIF((sc->free_rx_bd == sc->max_rx_bd), sc->rx_empty_count++); 5002 5003 /* Check whether this is a new mbuf allocation. */ 5004 if (m == NULL) { 5005 5006 /* Simulate an mbuf allocation failure. */ 5007 DBRUNIF(DB_RANDOMTRUE(mbuf_alloc_failed_sim_control), 5008 sc->mbuf_alloc_failed_count++; 5009 sc->mbuf_alloc_failed_sim_count++; 5010 rc = ENOBUFS; 5011 goto bce_get_rx_buf_exit); 5012 5013 /* This is a new mbuf allocation. */ 5014 #ifdef BCE_JUMBO_HDRSPLIT 5015 MGETHDR(m_new, M_DONTWAIT, MT_DATA); 5016 #else 5017 if (sc->rx_bd_mbuf_alloc_size <= MCLBYTES) 5018 m_new = m_getcl(M_DONTWAIT, MT_DATA, M_PKTHDR); 5019 else 5020 m_new = m_getjcl(M_DONTWAIT, MT_DATA, M_PKTHDR, 5021 sc->rx_bd_mbuf_alloc_size); 5022 #endif 5023 5024 if (m_new == NULL) { 5025 sc->mbuf_alloc_failed_count++; 5026 rc = ENOBUFS; 5027 goto bce_get_rx_buf_exit; 5028 } 5029 5030 DBRUN(sc->debug_rx_mbuf_alloc++); 5031 } else { 5032 /* Reuse an existing mbuf. */ 5033 m_new = m; 5034 } 5035 5036 /* Make sure we have a valid packet header. */ 5037 M_ASSERTPKTHDR(m_new); 5038 5039 /* Initialize the mbuf size and pad if necessary for alignment. */ 5040 m_new->m_pkthdr.len = m_new->m_len = sc->rx_bd_mbuf_alloc_size; 5041 m_adj(m_new, sc->rx_bd_mbuf_align_pad); 5042 5043 /* ToDo: Consider calling m_fragment() to test error handling. */ 5044 5045 /* Map the mbuf cluster into device memory. */ 5046 map = sc->rx_mbuf_map[*chain_prod]; 5047 error = bus_dmamap_load_mbuf_sg(sc->rx_mbuf_tag, map, m_new, 5048 segs, &nsegs, BUS_DMA_NOWAIT); 5049 5050 /* Handle any mapping errors. */ 5051 if (error) { 5052 BCE_PRINTF("%s(%d): Error mapping mbuf into RX chain (%d)!\n", 5053 __FILE__, __LINE__, error); 5054 5055 sc->dma_map_addr_rx_failed_count++; 5056 m_freem(m_new); 5057 5058 DBRUN(sc->debug_rx_mbuf_alloc--); 5059 5060 rc = ENOBUFS; 5061 goto bce_get_rx_buf_exit; 5062 } 5063 5064 /* All mbufs must map to a single segment. */ 5065 KASSERT(nsegs == 1, ("%s(): Too many segments returned (%d)!", 5066 __FUNCTION__, nsegs)); 5067 5068 /* Setup the rx_bd for the segment. */ 5069 rxbd = &sc->rx_bd_chain[RX_PAGE(*chain_prod)][RX_IDX(*chain_prod)]; 5070 5071 rxbd->rx_bd_haddr_lo = htole32(BCE_ADDR_LO(segs[0].ds_addr)); 5072 rxbd->rx_bd_haddr_hi = htole32(BCE_ADDR_HI(segs[0].ds_addr)); 5073 rxbd->rx_bd_len = htole32(segs[0].ds_len); 5074 rxbd->rx_bd_flags = htole32(RX_BD_FLAGS_START | RX_BD_FLAGS_END); 5075 *prod_bseq += segs[0].ds_len; 5076 5077 /* Save the mbuf and update our counter. */ 5078 sc->rx_mbuf_ptr[*chain_prod] = m_new; 5079 sc->free_rx_bd -= nsegs; 5080 5081 DBRUNMSG(BCE_INSANE_RECV, 5082 bce_dump_rx_mbuf_chain(sc, debug_chain_prod, nsegs)); 5083 5084 DBPRINT(sc, BCE_EXTREME_RECV, "%s(exit): prod = 0x%04X, " 5085 "chain_prod = 0x%04X, prod_bseq = 0x%08X\n", 5086 __FUNCTION__, *prod, *chain_prod, *prod_bseq); 5087 5088 bce_get_rx_buf_exit: 5089 DBEXIT(BCE_EXTREME_RESET | BCE_EXTREME_RECV | BCE_EXTREME_LOAD); 5090 5091 return(rc); 5092 } 5093 5094 5095 #ifdef BCE_JUMBO_HDRSPLIT 5096 /****************************************************************************/ 5097 /* Encapsulate an mbuf cluster into the page chain. */ 5098 /* */ 5099 /* Returns: */ 5100 /* 0 for success, positive value for failure. */ 5101 /****************************************************************************/ 5102 static int 5103 bce_get_pg_buf(struct bce_softc *sc, struct mbuf *m, u16 *prod, 5104 u16 *prod_idx) 5105 { 5106 bus_dmamap_t map; 5107 bus_addr_t busaddr; 5108 struct mbuf *m_new = NULL; 5109 struct rx_bd *pgbd; 5110 int error, rc = 0; 5111 #ifdef BCE_DEBUG 5112 u16 debug_prod_idx = *prod_idx; 5113 #endif 5114 5115 DBENTER(BCE_EXTREME_RESET | BCE_EXTREME_RECV | BCE_EXTREME_LOAD); 5116 5117 /* Make sure the inputs are valid. */ 5118 DBRUNIF((*prod_idx > MAX_PG_BD), 5119 BCE_PRINTF("%s(%d): page producer out of range: 0x%04X > 0x%04X\n", 5120 __FILE__, __LINE__, *prod_idx, (u16) MAX_PG_BD)); 5121 5122 DBPRINT(sc, BCE_EXTREME_RECV, "%s(enter): prod = 0x%04X, " 5123 "chain_prod = 0x%04X\n", __FUNCTION__, *prod, *prod_idx); 5124 5125 /* Update counters if we've hit a new low or run out of pages. */ 5126 DBRUNIF((sc->free_pg_bd < sc->pg_low_watermark), 5127 sc->pg_low_watermark = sc->free_pg_bd); 5128 DBRUNIF((sc->free_pg_bd == sc->max_pg_bd), sc->pg_empty_count++); 5129 5130 /* Check whether this is a new mbuf allocation. */ 5131 if (m == NULL) { 5132 5133 /* Simulate an mbuf allocation failure. */ 5134 DBRUNIF(DB_RANDOMTRUE(mbuf_alloc_failed_sim_control), 5135 sc->mbuf_alloc_failed_count++; 5136 sc->mbuf_alloc_failed_sim_count++; 5137 rc = ENOBUFS; 5138 goto bce_get_pg_buf_exit); 5139 5140 /* This is a new mbuf allocation. */ 5141 m_new = m_getcl(M_DONTWAIT, MT_DATA, 0); 5142 if (m_new == NULL) { 5143 sc->mbuf_alloc_failed_count++; 5144 rc = ENOBUFS; 5145 goto bce_get_pg_buf_exit; 5146 } 5147 5148 DBRUN(sc->debug_pg_mbuf_alloc++); 5149 } else { 5150 /* Reuse an existing mbuf. */ 5151 m_new = m; 5152 m_new->m_data = m_new->m_ext.ext_buf; 5153 } 5154 5155 m_new->m_len = sc->pg_bd_mbuf_alloc_size; 5156 5157 /* ToDo: Consider calling m_fragment() to test error handling. */ 5158 5159 /* Map the mbuf cluster into device memory. */ 5160 map = sc->pg_mbuf_map[*prod_idx]; 5161 error = bus_dmamap_load(sc->pg_mbuf_tag, map, mtod(m_new, void *), 5162 sc->pg_bd_mbuf_alloc_size, bce_dma_map_addr, 5163 &busaddr, BUS_DMA_NOWAIT); 5164 5165 /* Handle any mapping errors. */ 5166 if (error) { 5167 BCE_PRINTF("%s(%d): Error mapping mbuf into page chain!\n", 5168 __FILE__, __LINE__); 5169 5170 m_freem(m_new); 5171 DBRUN(sc->debug_pg_mbuf_alloc--); 5172 5173 rc = ENOBUFS; 5174 goto bce_get_pg_buf_exit; 5175 } 5176 5177 /* ToDo: Do we need bus_dmamap_sync(,,BUS_DMASYNC_PREREAD) here? */ 5178 5179 /* 5180 * The page chain uses the same rx_bd data structure 5181 * as the receive chain but doesn't require a byte sequence (bseq). 5182 */ 5183 pgbd = &sc->pg_bd_chain[PG_PAGE(*prod_idx)][PG_IDX(*prod_idx)]; 5184 5185 pgbd->rx_bd_haddr_lo = htole32(BCE_ADDR_LO(busaddr)); 5186 pgbd->rx_bd_haddr_hi = htole32(BCE_ADDR_HI(busaddr)); 5187 pgbd->rx_bd_len = htole32(sc->pg_bd_mbuf_alloc_size); 5188 pgbd->rx_bd_flags = htole32(RX_BD_FLAGS_START | RX_BD_FLAGS_END); 5189 5190 /* Save the mbuf and update our counter. */ 5191 sc->pg_mbuf_ptr[*prod_idx] = m_new; 5192 sc->free_pg_bd--; 5193 5194 DBRUNMSG(BCE_INSANE_RECV, 5195 bce_dump_pg_mbuf_chain(sc, debug_prod_idx, 1)); 5196 5197 DBPRINT(sc, BCE_EXTREME_RECV, "%s(exit): prod = 0x%04X, " 5198 "prod_idx = 0x%04X\n", __FUNCTION__, *prod, *prod_idx); 5199 5200 bce_get_pg_buf_exit: 5201 DBEXIT(BCE_EXTREME_RESET | BCE_EXTREME_RECV | BCE_EXTREME_LOAD); 5202 5203 return(rc); 5204 } 5205 #endif /* BCE_JUMBO_HDRSPLIT */ 5206 5207 5208 /****************************************************************************/ 5209 /* Initialize the TX context memory. */ 5210 /* */ 5211 /* Returns: */ 5212 /* Nothing */ 5213 /****************************************************************************/ 5214 static void 5215 bce_init_tx_context(struct bce_softc *sc) 5216 { 5217 u32 val; 5218 5219 DBENTER(BCE_VERBOSE_RESET | BCE_VERBOSE_SEND | BCE_VERBOSE_CTX); 5220 5221 /* Initialize the context ID for an L2 TX chain. */ 5222 if ((BCE_CHIP_NUM(sc) == BCE_CHIP_NUM_5709) || 5223 (BCE_CHIP_NUM(sc) == BCE_CHIP_NUM_5716)) { 5224 /* Set the CID type to support an L2 connection. */ 5225 val = BCE_L2CTX_TX_TYPE_TYPE_L2_XI | 5226 BCE_L2CTX_TX_TYPE_SIZE_L2_XI; 5227 CTX_WR(sc, GET_CID_ADDR(TX_CID), BCE_L2CTX_TX_TYPE_XI, val); 5228 val = BCE_L2CTX_TX_CMD_TYPE_TYPE_L2_XI | (8 << 16); 5229 CTX_WR(sc, GET_CID_ADDR(TX_CID), 5230 BCE_L2CTX_TX_CMD_TYPE_XI, val); 5231 5232 /* Point the hardware to the first page in the chain. */ 5233 val = BCE_ADDR_HI(sc->tx_bd_chain_paddr[0]); 5234 CTX_WR(sc, GET_CID_ADDR(TX_CID), 5235 BCE_L2CTX_TX_TBDR_BHADDR_HI_XI, val); 5236 val = BCE_ADDR_LO(sc->tx_bd_chain_paddr[0]); 5237 CTX_WR(sc, GET_CID_ADDR(TX_CID), 5238 BCE_L2CTX_TX_TBDR_BHADDR_LO_XI, val); 5239 } else { 5240 /* Set the CID type to support an L2 connection. */ 5241 val = BCE_L2CTX_TX_TYPE_TYPE_L2 | BCE_L2CTX_TX_TYPE_SIZE_L2; 5242 CTX_WR(sc, GET_CID_ADDR(TX_CID), BCE_L2CTX_TX_TYPE, val); 5243 val = BCE_L2CTX_TX_CMD_TYPE_TYPE_L2 | (8 << 16); 5244 CTX_WR(sc, GET_CID_ADDR(TX_CID), BCE_L2CTX_TX_CMD_TYPE, val); 5245 5246 /* Point the hardware to the first page in the chain. */ 5247 val = BCE_ADDR_HI(sc->tx_bd_chain_paddr[0]); 5248 CTX_WR(sc, GET_CID_ADDR(TX_CID), 5249 BCE_L2CTX_TX_TBDR_BHADDR_HI, val); 5250 val = BCE_ADDR_LO(sc->tx_bd_chain_paddr[0]); 5251 CTX_WR(sc, GET_CID_ADDR(TX_CID), 5252 BCE_L2CTX_TX_TBDR_BHADDR_LO, val); 5253 } 5254 5255 DBEXIT(BCE_VERBOSE_RESET | BCE_VERBOSE_SEND | BCE_VERBOSE_CTX); 5256 } 5257 5258 5259 /****************************************************************************/ 5260 /* Allocate memory and initialize the TX data structures. */ 5261 /* */ 5262 /* Returns: */ 5263 /* 0 for success, positive value for failure. */ 5264 /****************************************************************************/ 5265 static int 5266 bce_init_tx_chain(struct bce_softc *sc) 5267 { 5268 struct tx_bd *txbd; 5269 int i, rc = 0; 5270 5271 DBENTER(BCE_VERBOSE_RESET | BCE_VERBOSE_SEND | BCE_VERBOSE_LOAD); 5272 5273 /* Set the initial TX producer/consumer indices. */ 5274 sc->tx_prod = 0; 5275 sc->tx_cons = 0; 5276 sc->tx_prod_bseq = 0; 5277 sc->used_tx_bd = 0; 5278 sc->max_tx_bd = USABLE_TX_BD; 5279 DBRUN(sc->tx_hi_watermark = 0); 5280 DBRUN(sc->tx_full_count = 0); 5281 5282 /* 5283 * The NetXtreme II supports a linked-list structre called 5284 * a Buffer Descriptor Chain (or BD chain). A BD chain 5285 * consists of a series of 1 or more chain pages, each of which 5286 * consists of a fixed number of BD entries. 5287 * The last BD entry on each page is a pointer to the next page 5288 * in the chain, and the last pointer in the BD chain 5289 * points back to the beginning of the chain. 5290 */ 5291 5292 /* Set the TX next pointer chain entries. */ 5293 for (i = 0; i < TX_PAGES; i++) { 5294 int j; 5295 5296 txbd = &sc->tx_bd_chain[i][USABLE_TX_BD_PER_PAGE]; 5297 5298 /* Check if we've reached the last page. */ 5299 if (i == (TX_PAGES - 1)) 5300 j = 0; 5301 else 5302 j = i + 1; 5303 5304 txbd->tx_bd_haddr_hi = htole32(BCE_ADDR_HI(sc->tx_bd_chain_paddr[j])); 5305 txbd->tx_bd_haddr_lo = htole32(BCE_ADDR_LO(sc->tx_bd_chain_paddr[j])); 5306 } 5307 5308 bce_init_tx_context(sc); 5309 5310 DBRUNMSG(BCE_INSANE_SEND, bce_dump_tx_chain(sc, 0, TOTAL_TX_BD)); 5311 DBEXIT(BCE_VERBOSE_RESET | BCE_VERBOSE_SEND | BCE_VERBOSE_LOAD); 5312 5313 return(rc); 5314 } 5315 5316 5317 /****************************************************************************/ 5318 /* Free memory and clear the TX data structures. */ 5319 /* */ 5320 /* Returns: */ 5321 /* Nothing. */ 5322 /****************************************************************************/ 5323 static void 5324 bce_free_tx_chain(struct bce_softc *sc) 5325 { 5326 int i; 5327 5328 DBENTER(BCE_VERBOSE_RESET | BCE_VERBOSE_SEND | BCE_VERBOSE_UNLOAD); 5329 5330 /* Unmap, unload, and free any mbufs still in the TX mbuf chain. */ 5331 for (i = 0; i < TOTAL_TX_BD; i++) { 5332 if (sc->tx_mbuf_ptr[i] != NULL) { 5333 if (sc->tx_mbuf_map[i] != NULL) 5334 bus_dmamap_sync(sc->tx_mbuf_tag, 5335 sc->tx_mbuf_map[i], 5336 BUS_DMASYNC_POSTWRITE); 5337 m_freem(sc->tx_mbuf_ptr[i]); 5338 sc->tx_mbuf_ptr[i] = NULL; 5339 DBRUN(sc->debug_tx_mbuf_alloc--); 5340 } 5341 } 5342 5343 /* Clear each TX chain page. */ 5344 for (i = 0; i < TX_PAGES; i++) 5345 bzero((char *)sc->tx_bd_chain[i], BCE_TX_CHAIN_PAGE_SZ); 5346 5347 sc->used_tx_bd = 0; 5348 5349 /* Check if we lost any mbufs in the process. */ 5350 DBRUNIF((sc->debug_tx_mbuf_alloc), 5351 BCE_PRINTF("%s(%d): Memory leak! Lost %d mbufs " 5352 "from tx chain!\n", __FILE__, __LINE__, 5353 sc->debug_tx_mbuf_alloc)); 5354 5355 DBEXIT(BCE_VERBOSE_RESET | BCE_VERBOSE_SEND | BCE_VERBOSE_UNLOAD); 5356 } 5357 5358 5359 /****************************************************************************/ 5360 /* Initialize the RX context memory. */ 5361 /* */ 5362 /* Returns: */ 5363 /* Nothing */ 5364 /****************************************************************************/ 5365 static void 5366 bce_init_rx_context(struct bce_softc *sc) 5367 { 5368 u32 val; 5369 5370 DBENTER(BCE_VERBOSE_RESET | BCE_VERBOSE_RECV | BCE_VERBOSE_CTX); 5371 5372 /* Init the type, size, and BD cache levels for the RX context. */ 5373 val = BCE_L2CTX_RX_CTX_TYPE_CTX_BD_CHN_TYPE_VALUE | 5374 BCE_L2CTX_RX_CTX_TYPE_SIZE_L2 | 5375 (0x02 << BCE_L2CTX_RX_BD_PRE_READ_SHIFT); 5376 5377 /* 5378 * Set the level for generating pause frames 5379 * when the number of available rx_bd's gets 5380 * too low (the low watermark) and the level 5381 * when pause frames can be stopped (the high 5382 * watermark). 5383 */ 5384 if ((BCE_CHIP_NUM(sc) == BCE_CHIP_NUM_5709) || 5385 (BCE_CHIP_NUM(sc) == BCE_CHIP_NUM_5716)) { 5386 u32 lo_water, hi_water; 5387 5388 lo_water = BCE_L2CTX_RX_LO_WATER_MARK_DEFAULT; 5389 hi_water = USABLE_RX_BD / 4; 5390 5391 lo_water /= BCE_L2CTX_RX_LO_WATER_MARK_SCALE; 5392 hi_water /= BCE_L2CTX_RX_HI_WATER_MARK_SCALE; 5393 5394 if (hi_water > 0xf) 5395 hi_water = 0xf; 5396 else if (hi_water == 0) 5397 lo_water = 0; 5398 val |= (lo_water << BCE_L2CTX_RX_LO_WATER_MARK_SHIFT) | 5399 (hi_water << BCE_L2CTX_RX_HI_WATER_MARK_SHIFT); 5400 } 5401 5402 CTX_WR(sc, GET_CID_ADDR(RX_CID), BCE_L2CTX_RX_CTX_TYPE, val); 5403 5404 /* Setup the MQ BIN mapping for l2_ctx_host_bseq. */ 5405 if ((BCE_CHIP_NUM(sc) == BCE_CHIP_NUM_5709) || 5406 (BCE_CHIP_NUM(sc) == BCE_CHIP_NUM_5716)) { 5407 val = REG_RD(sc, BCE_MQ_MAP_L2_5); 5408 REG_WR(sc, BCE_MQ_MAP_L2_5, val | BCE_MQ_MAP_L2_5_ARM); 5409 } 5410 5411 /* Point the hardware to the first page in the chain. */ 5412 val = BCE_ADDR_HI(sc->rx_bd_chain_paddr[0]); 5413 CTX_WR(sc, GET_CID_ADDR(RX_CID), BCE_L2CTX_RX_NX_BDHADDR_HI, val); 5414 val = BCE_ADDR_LO(sc->rx_bd_chain_paddr[0]); 5415 CTX_WR(sc, GET_CID_ADDR(RX_CID), BCE_L2CTX_RX_NX_BDHADDR_LO, val); 5416 5417 DBEXIT(BCE_VERBOSE_RESET | BCE_VERBOSE_RECV | BCE_VERBOSE_CTX); 5418 } 5419 5420 5421 /****************************************************************************/ 5422 /* Allocate memory and initialize the RX data structures. */ 5423 /* */ 5424 /* Returns: */ 5425 /* 0 for success, positive value for failure. */ 5426 /****************************************************************************/ 5427 static int 5428 bce_init_rx_chain(struct bce_softc *sc) 5429 { 5430 struct rx_bd *rxbd; 5431 int i, rc = 0; 5432 5433 DBENTER(BCE_VERBOSE_RESET | BCE_VERBOSE_RECV | BCE_VERBOSE_LOAD | 5434 BCE_VERBOSE_CTX); 5435 5436 /* Initialize the RX producer and consumer indices. */ 5437 sc->rx_prod = 0; 5438 sc->rx_cons = 0; 5439 sc->rx_prod_bseq = 0; 5440 sc->free_rx_bd = USABLE_RX_BD; 5441 sc->max_rx_bd = USABLE_RX_BD; 5442 5443 /* Initialize the RX next pointer chain entries. */ 5444 for (i = 0; i < RX_PAGES; i++) { 5445 int j; 5446 5447 rxbd = &sc->rx_bd_chain[i][USABLE_RX_BD_PER_PAGE]; 5448 5449 /* Check if we've reached the last page. */ 5450 if (i == (RX_PAGES - 1)) 5451 j = 0; 5452 else 5453 j = i + 1; 5454 5455 /* Setup the chain page pointers. */ 5456 rxbd->rx_bd_haddr_hi = 5457 htole32(BCE_ADDR_HI(sc->rx_bd_chain_paddr[j])); 5458 rxbd->rx_bd_haddr_lo = 5459 htole32(BCE_ADDR_LO(sc->rx_bd_chain_paddr[j])); 5460 } 5461 5462 /* Fill up the RX chain. */ 5463 bce_fill_rx_chain(sc); 5464 5465 DBRUN(sc->rx_low_watermark = USABLE_RX_BD); 5466 DBRUN(sc->rx_empty_count = 0); 5467 for (i = 0; i < RX_PAGES; i++) { 5468 bus_dmamap_sync(sc->rx_bd_chain_tag, sc->rx_bd_chain_map[i], 5469 BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE); 5470 } 5471 5472 bce_init_rx_context(sc); 5473 5474 DBRUNMSG(BCE_EXTREME_RECV, bce_dump_rx_bd_chain(sc, 0, TOTAL_RX_BD)); 5475 DBEXIT(BCE_VERBOSE_RESET | BCE_VERBOSE_RECV | BCE_VERBOSE_LOAD | 5476 BCE_VERBOSE_CTX); 5477 5478 /* ToDo: Are there possible failure modes here? */ 5479 5480 return(rc); 5481 } 5482 5483 5484 /****************************************************************************/ 5485 /* Add mbufs to the RX chain until its full or an mbuf allocation error */ 5486 /* occurs. */ 5487 /* */ 5488 /* Returns: */ 5489 /* Nothing */ 5490 /****************************************************************************/ 5491 static void 5492 bce_fill_rx_chain(struct bce_softc *sc) 5493 { 5494 u16 prod, prod_idx; 5495 u32 prod_bseq; 5496 5497 DBENTER(BCE_VERBOSE_RESET | BCE_EXTREME_RECV | BCE_VERBOSE_LOAD | 5498 BCE_VERBOSE_CTX); 5499 5500 /* Get the RX chain producer indices. */ 5501 prod = sc->rx_prod; 5502 prod_bseq = sc->rx_prod_bseq; 5503 5504 /* Keep filling the RX chain until it's full. */ 5505 while (sc->free_rx_bd > 0) { 5506 prod_idx = RX_CHAIN_IDX(prod); 5507 if (bce_get_rx_buf(sc, NULL, &prod, &prod_idx, &prod_bseq)) { 5508 /* Bail out if we can't add an mbuf to the chain. */ 5509 break; 5510 } 5511 prod = NEXT_RX_BD(prod); 5512 } 5513 5514 /* Save the RX chain producer indices. */ 5515 sc->rx_prod = prod; 5516 sc->rx_prod_bseq = prod_bseq; 5517 5518 /* We should never end up pointing to a next page pointer. */ 5519 DBRUNIF(((prod & USABLE_RX_BD_PER_PAGE) == USABLE_RX_BD_PER_PAGE), 5520 BCE_PRINTF("%s(): Invalid rx_prod value: 0x%04X\n", 5521 __FUNCTION__, sc->rx_prod)); 5522 5523 /* Write the mailbox and tell the chip about the waiting rx_bd's. */ 5524 REG_WR16(sc, MB_GET_CID_ADDR(RX_CID) + BCE_L2MQ_RX_HOST_BDIDX, 5525 sc->rx_prod); 5526 REG_WR(sc, MB_GET_CID_ADDR(RX_CID) + BCE_L2MQ_RX_HOST_BSEQ, 5527 sc->rx_prod_bseq); 5528 5529 DBEXIT(BCE_VERBOSE_RESET | BCE_EXTREME_RECV | BCE_VERBOSE_LOAD | 5530 BCE_VERBOSE_CTX); 5531 } 5532 5533 5534 /****************************************************************************/ 5535 /* Free memory and clear the RX data structures. */ 5536 /* */ 5537 /* Returns: */ 5538 /* Nothing. */ 5539 /****************************************************************************/ 5540 static void 5541 bce_free_rx_chain(struct bce_softc *sc) 5542 { 5543 int i; 5544 5545 DBENTER(BCE_VERBOSE_RESET | BCE_VERBOSE_RECV | BCE_VERBOSE_UNLOAD); 5546 5547 /* Free any mbufs still in the RX mbuf chain. */ 5548 for (i = 0; i < TOTAL_RX_BD; i++) { 5549 if (sc->rx_mbuf_ptr[i] != NULL) { 5550 if (sc->rx_mbuf_map[i] != NULL) 5551 bus_dmamap_sync(sc->rx_mbuf_tag, 5552 sc->rx_mbuf_map[i], 5553 BUS_DMASYNC_POSTREAD); 5554 m_freem(sc->rx_mbuf_ptr[i]); 5555 sc->rx_mbuf_ptr[i] = NULL; 5556 DBRUN(sc->debug_rx_mbuf_alloc--); 5557 } 5558 } 5559 5560 /* Clear each RX chain page. */ 5561 for (i = 0; i < RX_PAGES; i++) 5562 if (sc->rx_bd_chain[i] != NULL) { 5563 bzero((char *)sc->rx_bd_chain[i], 5564 BCE_RX_CHAIN_PAGE_SZ); 5565 } 5566 5567 sc->free_rx_bd = sc->max_rx_bd; 5568 5569 /* Check if we lost any mbufs in the process. */ 5570 DBRUNIF((sc->debug_rx_mbuf_alloc), 5571 BCE_PRINTF("%s(): Memory leak! Lost %d mbufs from rx chain!\n", 5572 __FUNCTION__, sc->debug_rx_mbuf_alloc)); 5573 5574 DBEXIT(BCE_VERBOSE_RESET | BCE_VERBOSE_RECV | BCE_VERBOSE_UNLOAD); 5575 } 5576 5577 5578 #ifdef BCE_JUMBO_HDRSPLIT 5579 /****************************************************************************/ 5580 /* Allocate memory and initialize the page data structures. */ 5581 /* Assumes that bce_init_rx_chain() has not already been called. */ 5582 /* */ 5583 /* Returns: */ 5584 /* 0 for success, positive value for failure. */ 5585 /****************************************************************************/ 5586 static int 5587 bce_init_pg_chain(struct bce_softc *sc) 5588 { 5589 struct rx_bd *pgbd; 5590 int i, rc = 0; 5591 u32 val; 5592 5593 DBENTER(BCE_VERBOSE_RESET | BCE_VERBOSE_RECV | BCE_VERBOSE_LOAD | 5594 BCE_VERBOSE_CTX); 5595 5596 /* Initialize the page producer and consumer indices. */ 5597 sc->pg_prod = 0; 5598 sc->pg_cons = 0; 5599 sc->free_pg_bd = USABLE_PG_BD; 5600 sc->max_pg_bd = USABLE_PG_BD; 5601 DBRUN(sc->pg_low_watermark = sc->max_pg_bd); 5602 DBRUN(sc->pg_empty_count = 0); 5603 5604 /* Initialize the page next pointer chain entries. */ 5605 for (i = 0; i < PG_PAGES; i++) { 5606 int j; 5607 5608 pgbd = &sc->pg_bd_chain[i][USABLE_PG_BD_PER_PAGE]; 5609 5610 /* Check if we've reached the last page. */ 5611 if (i == (PG_PAGES - 1)) 5612 j = 0; 5613 else 5614 j = i + 1; 5615 5616 /* Setup the chain page pointers. */ 5617 pgbd->rx_bd_haddr_hi = htole32(BCE_ADDR_HI(sc->pg_bd_chain_paddr[j])); 5618 pgbd->rx_bd_haddr_lo = htole32(BCE_ADDR_LO(sc->pg_bd_chain_paddr[j])); 5619 } 5620 5621 /* Setup the MQ BIN mapping for host_pg_bidx. */ 5622 if ((BCE_CHIP_NUM(sc) == BCE_CHIP_NUM_5709) || 5623 (BCE_CHIP_NUM(sc) == BCE_CHIP_NUM_5716)) 5624 REG_WR(sc, BCE_MQ_MAP_L2_3, BCE_MQ_MAP_L2_3_DEFAULT); 5625 5626 CTX_WR(sc, GET_CID_ADDR(RX_CID), BCE_L2CTX_RX_PG_BUF_SIZE, 0); 5627 5628 /* Configure the rx_bd and page chain mbuf cluster size. */ 5629 val = (sc->rx_bd_mbuf_data_len << 16) | sc->pg_bd_mbuf_alloc_size; 5630 CTX_WR(sc, GET_CID_ADDR(RX_CID), BCE_L2CTX_RX_PG_BUF_SIZE, val); 5631 5632 /* Configure the context reserved for jumbo support. */ 5633 CTX_WR(sc, GET_CID_ADDR(RX_CID), BCE_L2CTX_RX_RBDC_KEY, 5634 BCE_L2CTX_RX_RBDC_JUMBO_KEY); 5635 5636 /* Point the hardware to the first page in the page chain. */ 5637 val = BCE_ADDR_HI(sc->pg_bd_chain_paddr[0]); 5638 CTX_WR(sc, GET_CID_ADDR(RX_CID), BCE_L2CTX_RX_NX_PG_BDHADDR_HI, val); 5639 val = BCE_ADDR_LO(sc->pg_bd_chain_paddr[0]); 5640 CTX_WR(sc, GET_CID_ADDR(RX_CID), BCE_L2CTX_RX_NX_PG_BDHADDR_LO, val); 5641 5642 /* Fill up the page chain. */ 5643 bce_fill_pg_chain(sc); 5644 5645 for (i = 0; i < PG_PAGES; i++) { 5646 bus_dmamap_sync(sc->pg_bd_chain_tag, sc->pg_bd_chain_map[i], 5647 BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE); 5648 } 5649 5650 DBRUNMSG(BCE_EXTREME_RECV, bce_dump_pg_chain(sc, 0, TOTAL_PG_BD)); 5651 DBEXIT(BCE_VERBOSE_RESET | BCE_VERBOSE_RECV | BCE_VERBOSE_LOAD | 5652 BCE_VERBOSE_CTX); 5653 return(rc); 5654 } 5655 5656 5657 /****************************************************************************/ 5658 /* Add mbufs to the page chain until its full or an mbuf allocation error */ 5659 /* occurs. */ 5660 /* */ 5661 /* Returns: */ 5662 /* Nothing */ 5663 /****************************************************************************/ 5664 static void 5665 bce_fill_pg_chain(struct bce_softc *sc) 5666 { 5667 u16 prod, prod_idx; 5668 5669 DBENTER(BCE_VERBOSE_RESET | BCE_EXTREME_RECV | BCE_VERBOSE_LOAD | 5670 BCE_VERBOSE_CTX); 5671 5672 /* Get the page chain prodcuer index. */ 5673 prod = sc->pg_prod; 5674 5675 /* Keep filling the page chain until it's full. */ 5676 while (sc->free_pg_bd > 0) { 5677 prod_idx = PG_CHAIN_IDX(prod); 5678 if (bce_get_pg_buf(sc, NULL, &prod, &prod_idx)) { 5679 /* Bail out if we can't add an mbuf to the chain. */ 5680 break; 5681 } 5682 prod = NEXT_PG_BD(prod); 5683 } 5684 5685 /* Save the page chain producer index. */ 5686 sc->pg_prod = prod; 5687 5688 DBRUNIF(((prod & USABLE_RX_BD_PER_PAGE) == USABLE_RX_BD_PER_PAGE), 5689 BCE_PRINTF("%s(): Invalid pg_prod value: 0x%04X\n", 5690 __FUNCTION__, sc->pg_prod)); 5691 5692 /* 5693 * Write the mailbox and tell the chip about 5694 * the new rx_bd's in the page chain. 5695 */ 5696 REG_WR16(sc, MB_GET_CID_ADDR(RX_CID) + BCE_L2MQ_RX_HOST_PG_BDIDX, 5697 sc->pg_prod); 5698 5699 DBEXIT(BCE_VERBOSE_RESET | BCE_EXTREME_RECV | BCE_VERBOSE_LOAD | 5700 BCE_VERBOSE_CTX); 5701 } 5702 5703 5704 /****************************************************************************/ 5705 /* Free memory and clear the RX data structures. */ 5706 /* */ 5707 /* Returns: */ 5708 /* Nothing. */ 5709 /****************************************************************************/ 5710 static void 5711 bce_free_pg_chain(struct bce_softc *sc) 5712 { 5713 int i; 5714 5715 DBENTER(BCE_VERBOSE_RESET | BCE_VERBOSE_RECV | BCE_VERBOSE_UNLOAD); 5716 5717 /* Free any mbufs still in the mbuf page chain. */ 5718 for (i = 0; i < TOTAL_PG_BD; i++) { 5719 if (sc->pg_mbuf_ptr[i] != NULL) { 5720 if (sc->pg_mbuf_map[i] != NULL) 5721 bus_dmamap_sync(sc->pg_mbuf_tag, sc->pg_mbuf_map[i], 5722 BUS_DMASYNC_POSTREAD); 5723 m_freem(sc->pg_mbuf_ptr[i]); 5724 sc->pg_mbuf_ptr[i] = NULL; 5725 DBRUN(sc->debug_pg_mbuf_alloc--); 5726 } 5727 } 5728 5729 /* Clear each page chain pages. */ 5730 for (i = 0; i < PG_PAGES; i++) 5731 bzero((char *)sc->pg_bd_chain[i], BCE_PG_CHAIN_PAGE_SZ); 5732 5733 sc->free_pg_bd = sc->max_pg_bd; 5734 5735 /* Check if we lost any mbufs in the process. */ 5736 DBRUNIF((sc->debug_pg_mbuf_alloc), 5737 BCE_PRINTF("%s(): Memory leak! Lost %d mbufs from page chain!\n", 5738 __FUNCTION__, sc->debug_pg_mbuf_alloc)); 5739 5740 DBEXIT(BCE_VERBOSE_RESET | BCE_VERBOSE_RECV | BCE_VERBOSE_UNLOAD); 5741 } 5742 #endif /* BCE_JUMBO_HDRSPLIT */ 5743 5744 5745 /****************************************************************************/ 5746 /* Set media options. */ 5747 /* */ 5748 /* Returns: */ 5749 /* 0 for success, positive value for failure. */ 5750 /****************************************************************************/ 5751 static int 5752 bce_ifmedia_upd(struct ifnet *ifp) 5753 { 5754 struct bce_softc *sc = ifp->if_softc; 5755 5756 DBENTER(BCE_VERBOSE); 5757 5758 BCE_LOCK(sc); 5759 bce_ifmedia_upd_locked(ifp); 5760 BCE_UNLOCK(sc); 5761 5762 DBEXIT(BCE_VERBOSE); 5763 return (0); 5764 } 5765 5766 5767 /****************************************************************************/ 5768 /* Set media options. */ 5769 /* */ 5770 /* Returns: */ 5771 /* Nothing. */ 5772 /****************************************************************************/ 5773 static void 5774 bce_ifmedia_upd_locked(struct ifnet *ifp) 5775 { 5776 struct bce_softc *sc = ifp->if_softc; 5777 struct mii_data *mii; 5778 5779 DBENTER(BCE_VERBOSE); 5780 5781 BCE_LOCK_ASSERT(sc); 5782 5783 mii = device_get_softc(sc->bce_miibus); 5784 5785 /* Make sure the MII bus has been enumerated. */ 5786 if (mii) { 5787 sc->bce_link_up = FALSE; 5788 if (mii->mii_instance) { 5789 struct mii_softc *miisc; 5790 5791 LIST_FOREACH(miisc, &mii->mii_phys, mii_list) 5792 mii_phy_reset(miisc); 5793 } 5794 mii_mediachg(mii); 5795 } 5796 5797 DBEXIT(BCE_VERBOSE); 5798 } 5799 5800 5801 /****************************************************************************/ 5802 /* Reports current media status. */ 5803 /* */ 5804 /* Returns: */ 5805 /* Nothing. */ 5806 /****************************************************************************/ 5807 static void 5808 bce_ifmedia_sts(struct ifnet *ifp, struct ifmediareq *ifmr) 5809 { 5810 struct bce_softc *sc = ifp->if_softc; 5811 struct mii_data *mii; 5812 5813 DBENTER(BCE_VERBOSE); 5814 5815 BCE_LOCK(sc); 5816 5817 mii = device_get_softc(sc->bce_miibus); 5818 5819 mii_pollstat(mii); 5820 ifmr->ifm_active = mii->mii_media_active; 5821 ifmr->ifm_status = mii->mii_media_status; 5822 5823 BCE_UNLOCK(sc); 5824 5825 DBEXIT(BCE_VERBOSE); 5826 } 5827 5828 5829 /****************************************************************************/ 5830 /* Handles PHY generated interrupt events. */ 5831 /* */ 5832 /* Returns: */ 5833 /* Nothing. */ 5834 /****************************************************************************/ 5835 static void 5836 bce_phy_intr(struct bce_softc *sc) 5837 { 5838 u32 new_link_state, old_link_state; 5839 5840 DBENTER(BCE_VERBOSE_PHY | BCE_VERBOSE_INTR); 5841 5842 DBRUN(sc->phy_interrupts++); 5843 5844 new_link_state = sc->status_block->status_attn_bits & 5845 STATUS_ATTN_BITS_LINK_STATE; 5846 old_link_state = sc->status_block->status_attn_bits_ack & 5847 STATUS_ATTN_BITS_LINK_STATE; 5848 5849 /* Handle any changes if the link state has changed. */ 5850 if (new_link_state != old_link_state) { 5851 5852 /* Update the status_attn_bits_ack field. */ 5853 if (new_link_state) { 5854 REG_WR(sc, BCE_PCICFG_STATUS_BIT_SET_CMD, 5855 STATUS_ATTN_BITS_LINK_STATE); 5856 DBPRINT(sc, BCE_INFO_PHY, "%s(): Link is now UP.\n", 5857 __FUNCTION__); 5858 } 5859 else { 5860 REG_WR(sc, BCE_PCICFG_STATUS_BIT_CLEAR_CMD, 5861 STATUS_ATTN_BITS_LINK_STATE); 5862 DBPRINT(sc, BCE_INFO_PHY, "%s(): Link is now DOWN.\n", 5863 __FUNCTION__); 5864 } 5865 5866 /* 5867 * Assume link is down and allow 5868 * tick routine to update the state 5869 * based on the actual media state. 5870 */ 5871 sc->bce_link_up = FALSE; 5872 callout_stop(&sc->bce_tick_callout); 5873 bce_tick(sc); 5874 } 5875 5876 /* Acknowledge the link change interrupt. */ 5877 REG_WR(sc, BCE_EMAC_STATUS, BCE_EMAC_STATUS_LINK_CHANGE); 5878 5879 DBEXIT(BCE_VERBOSE_PHY | BCE_VERBOSE_INTR); 5880 } 5881 5882 5883 /****************************************************************************/ 5884 /* Reads the receive consumer value from the status block (skipping over */ 5885 /* chain page pointer if necessary). */ 5886 /* */ 5887 /* Returns: */ 5888 /* hw_cons */ 5889 /****************************************************************************/ 5890 static inline u16 5891 bce_get_hw_rx_cons(struct bce_softc *sc) 5892 { 5893 u16 hw_cons; 5894 5895 rmb(); 5896 hw_cons = sc->status_block->status_rx_quick_consumer_index0; 5897 if ((hw_cons & USABLE_RX_BD_PER_PAGE) == USABLE_RX_BD_PER_PAGE) 5898 hw_cons++; 5899 5900 return hw_cons; 5901 } 5902 5903 /****************************************************************************/ 5904 /* Handles received frame interrupt events. */ 5905 /* */ 5906 /* Returns: */ 5907 /* Nothing. */ 5908 /****************************************************************************/ 5909 static void 5910 bce_rx_intr(struct bce_softc *sc) 5911 { 5912 struct ifnet *ifp = sc->bce_ifp; 5913 struct l2_fhdr *l2fhdr; 5914 struct ether_vlan_header *vh; 5915 unsigned int pkt_len; 5916 u16 sw_rx_cons, sw_rx_cons_idx, hw_rx_cons; 5917 u32 status; 5918 #ifdef BCE_JUMBO_HDRSPLIT 5919 unsigned int rem_len; 5920 u16 sw_pg_cons, sw_pg_cons_idx; 5921 #endif 5922 5923 DBENTER(BCE_VERBOSE_RECV | BCE_VERBOSE_INTR); 5924 DBRUN(sc->rx_interrupts++); 5925 DBPRINT(sc, BCE_EXTREME_RECV, "%s(enter): rx_prod = 0x%04X, " 5926 "rx_cons = 0x%04X, rx_prod_bseq = 0x%08X\n", 5927 __FUNCTION__, sc->rx_prod, sc->rx_cons, sc->rx_prod_bseq); 5928 5929 /* Prepare the RX chain pages to be accessed by the host CPU. */ 5930 for (int i = 0; i < RX_PAGES; i++) 5931 bus_dmamap_sync(sc->rx_bd_chain_tag, 5932 sc->rx_bd_chain_map[i], BUS_DMASYNC_POSTREAD); 5933 5934 #ifdef BCE_JUMBO_HDRSPLIT 5935 /* Prepare the page chain pages to be accessed by the host CPU. */ 5936 for (int i = 0; i < PG_PAGES; i++) 5937 bus_dmamap_sync(sc->pg_bd_chain_tag, 5938 sc->pg_bd_chain_map[i], BUS_DMASYNC_POSTREAD); 5939 #endif 5940 5941 /* Get the hardware's view of the RX consumer index. */ 5942 hw_rx_cons = sc->hw_rx_cons = bce_get_hw_rx_cons(sc); 5943 5944 /* Get working copies of the driver's view of the consumer indices. */ 5945 sw_rx_cons = sc->rx_cons; 5946 #ifdef BCE_JUMBO_HDRSPLIT 5947 sw_pg_cons = sc->pg_cons; 5948 #endif 5949 5950 /* Update some debug statistics counters */ 5951 DBRUNIF((sc->free_rx_bd < sc->rx_low_watermark), 5952 sc->rx_low_watermark = sc->free_rx_bd); 5953 DBRUNIF((sc->free_rx_bd == sc->max_rx_bd), sc->rx_empty_count++); 5954 5955 /* Scan through the receive chain as long as there is work to do */ 5956 /* ToDo: Consider setting a limit on the number of packets processed. */ 5957 rmb(); 5958 while (sw_rx_cons != hw_rx_cons) { 5959 struct mbuf *m0; 5960 5961 /* Convert the producer/consumer indices to an actual rx_bd index. */ 5962 sw_rx_cons_idx = RX_CHAIN_IDX(sw_rx_cons); 5963 5964 /* Unmap the mbuf from DMA space. */ 5965 bus_dmamap_sync(sc->rx_mbuf_tag, 5966 sc->rx_mbuf_map[sw_rx_cons_idx], 5967 BUS_DMASYNC_POSTREAD); 5968 bus_dmamap_unload(sc->rx_mbuf_tag, 5969 sc->rx_mbuf_map[sw_rx_cons_idx]); 5970 5971 /* Remove the mbuf from the RX chain. */ 5972 m0 = sc->rx_mbuf_ptr[sw_rx_cons_idx]; 5973 sc->rx_mbuf_ptr[sw_rx_cons_idx] = NULL; 5974 DBRUN(sc->debug_rx_mbuf_alloc--); 5975 sc->free_rx_bd++; 5976 5977 if(m0 == NULL) { 5978 DBPRINT(sc, BCE_EXTREME_RECV, 5979 "%s(): Oops! Empty mbuf pointer " 5980 "found in sc->rx_mbuf_ptr[0x%04X]!\n", 5981 __FUNCTION__, sw_rx_cons_idx); 5982 goto bce_rx_int_next_rx; 5983 } 5984 5985 /* 5986 * Frames received on the NetXteme II are prepended with an 5987 * l2_fhdr structure which provides status information about 5988 * the received frame (including VLAN tags and checksum info). 5989 * The frames are also automatically adjusted to align the IP 5990 * header (i.e. two null bytes are inserted before the Ethernet 5991 * header). As a result the data DMA'd by the controller into 5992 * the mbuf is as follows: 5993 * 5994 * +---------+-----+---------------------+-----+ 5995 * | l2_fhdr | pad | packet data | FCS | 5996 * +---------+-----+---------------------+-----+ 5997 * 5998 * The l2_fhdr needs to be checked and skipped and the FCS needs 5999 * to be stripped before sending the packet up the stack. 6000 */ 6001 l2fhdr = mtod(m0, struct l2_fhdr *); 6002 6003 /* Get the packet data + FCS length and the status. */ 6004 pkt_len = l2fhdr->l2_fhdr_pkt_len; 6005 status = l2fhdr->l2_fhdr_status; 6006 6007 /* 6008 * Skip over the l2_fhdr and pad, resulting in the 6009 * following data in the mbuf: 6010 * +---------------------+-----+ 6011 * | packet data | FCS | 6012 * +---------------------+-----+ 6013 */ 6014 m_adj(m0, sizeof(struct l2_fhdr) + ETHER_ALIGN); 6015 6016 #ifdef BCE_JUMBO_HDRSPLIT 6017 /* 6018 * Check whether the received frame fits in a single 6019 * mbuf or not (i.e. packet data + FCS <= 6020 * sc->rx_bd_mbuf_data_len bytes). 6021 */ 6022 if (pkt_len > m0->m_len) { 6023 /* 6024 * The received frame is larger than a single mbuf. 6025 * If the frame was a TCP frame then only the TCP 6026 * header is placed in the mbuf, the remaining 6027 * payload (including FCS) is placed in the page 6028 * chain, the SPLIT flag is set, and the header 6029 * length is placed in the IP checksum field. 6030 * If the frame is not a TCP frame then the mbuf 6031 * is filled and the remaining bytes are placed 6032 * in the page chain. 6033 */ 6034 6035 DBPRINT(sc, BCE_INFO_RECV, "%s(): Found a large " 6036 "packet.\n", __FUNCTION__); 6037 6038 /* 6039 * When the page chain is enabled and the TCP 6040 * header has been split from the TCP payload, 6041 * the ip_xsum structure will reflect the length 6042 * of the TCP header, not the IP checksum. Set 6043 * the packet length of the mbuf accordingly. 6044 */ 6045 if (status & L2_FHDR_STATUS_SPLIT) 6046 m0->m_len = l2fhdr->l2_fhdr_ip_xsum; 6047 6048 rem_len = pkt_len - m0->m_len; 6049 6050 /* Pull mbufs off the page chain for the remaining data. */ 6051 while (rem_len > 0) { 6052 struct mbuf *m_pg; 6053 6054 sw_pg_cons_idx = PG_CHAIN_IDX(sw_pg_cons); 6055 6056 /* Remove the mbuf from the page chain. */ 6057 m_pg = sc->pg_mbuf_ptr[sw_pg_cons_idx]; 6058 sc->pg_mbuf_ptr[sw_pg_cons_idx] = NULL; 6059 DBRUN(sc->debug_pg_mbuf_alloc--); 6060 sc->free_pg_bd++; 6061 6062 /* Unmap the page chain mbuf from DMA space. */ 6063 bus_dmamap_sync(sc->pg_mbuf_tag, 6064 sc->pg_mbuf_map[sw_pg_cons_idx], 6065 BUS_DMASYNC_POSTREAD); 6066 bus_dmamap_unload(sc->pg_mbuf_tag, 6067 sc->pg_mbuf_map[sw_pg_cons_idx]); 6068 6069 /* Adjust the mbuf length. */ 6070 if (rem_len < m_pg->m_len) { 6071 /* The mbuf chain is complete. */ 6072 m_pg->m_len = rem_len; 6073 rem_len = 0; 6074 } else { 6075 /* More packet data is waiting. */ 6076 rem_len -= m_pg->m_len; 6077 } 6078 6079 /* Concatenate the mbuf cluster to the mbuf. */ 6080 m_cat(m0, m_pg); 6081 6082 sw_pg_cons = NEXT_PG_BD(sw_pg_cons); 6083 } 6084 6085 /* Set the total packet length. */ 6086 m0->m_pkthdr.len = pkt_len; 6087 6088 } else { 6089 /* 6090 * The received packet is small and fits in a 6091 * single mbuf (i.e. the l2_fhdr + pad + packet + 6092 * FCS <= MHLEN). In other words, the packet is 6093 * 154 bytes or less in size. 6094 */ 6095 6096 DBPRINT(sc, BCE_INFO_RECV, "%s(): Found a small " 6097 "packet.\n", __FUNCTION__); 6098 6099 /* Set the total packet length. */ 6100 m0->m_pkthdr.len = m0->m_len = pkt_len; 6101 } 6102 #else 6103 /* Set the total packet length. */ 6104 m0->m_pkthdr.len = m0->m_len = pkt_len; 6105 #endif 6106 6107 /* Remove the trailing Ethernet FCS. */ 6108 m_adj(m0, -ETHER_CRC_LEN); 6109 6110 /* Check that the resulting mbuf chain is valid. */ 6111 DBRUN(m_sanity(m0, FALSE)); 6112 DBRUNIF(((m0->m_len < ETHER_HDR_LEN) | 6113 (m0->m_pkthdr.len > BCE_MAX_JUMBO_ETHER_MTU_VLAN)), 6114 BCE_PRINTF("Invalid Ethernet frame size!\n"); 6115 m_print(m0, 128)); 6116 6117 DBRUNIF(DB_RANDOMTRUE(l2fhdr_error_sim_control), 6118 BCE_PRINTF("Simulating l2_fhdr status error.\n"); 6119 sc->l2fhdr_error_sim_count++; 6120 status = status | L2_FHDR_ERRORS_PHY_DECODE); 6121 6122 /* Check the received frame for errors. */ 6123 if (status & (L2_FHDR_ERRORS_BAD_CRC | 6124 L2_FHDR_ERRORS_PHY_DECODE | L2_FHDR_ERRORS_ALIGNMENT | 6125 L2_FHDR_ERRORS_TOO_SHORT | L2_FHDR_ERRORS_GIANT_FRAME)) { 6126 6127 /* Log the error and release the mbuf. */ 6128 ifp->if_ierrors++; 6129 sc->l2fhdr_error_count++; 6130 6131 m_freem(m0); 6132 m0 = NULL; 6133 goto bce_rx_int_next_rx; 6134 } 6135 6136 /* Send the packet to the appropriate interface. */ 6137 m0->m_pkthdr.rcvif = ifp; 6138 6139 /* Assume no hardware checksum. */ 6140 m0->m_pkthdr.csum_flags = 0; 6141 6142 /* Validate the checksum if offload enabled. */ 6143 if (ifp->if_capenable & IFCAP_RXCSUM) { 6144 6145 /* Check for an IP datagram. */ 6146 if (!(status & L2_FHDR_STATUS_SPLIT) && 6147 (status & L2_FHDR_STATUS_IP_DATAGRAM)) { 6148 m0->m_pkthdr.csum_flags |= CSUM_IP_CHECKED; 6149 6150 /* Check if the IP checksum is valid. */ 6151 if ((l2fhdr->l2_fhdr_ip_xsum ^ 0xffff) == 0) 6152 m0->m_pkthdr.csum_flags |= 6153 CSUM_IP_VALID; 6154 } 6155 6156 /* Check for a valid TCP/UDP frame. */ 6157 if (status & (L2_FHDR_STATUS_TCP_SEGMENT | 6158 L2_FHDR_STATUS_UDP_DATAGRAM)) { 6159 6160 /* Check for a good TCP/UDP checksum. */ 6161 if ((status & (L2_FHDR_ERRORS_TCP_XSUM | 6162 L2_FHDR_ERRORS_UDP_XSUM)) == 0) { 6163 m0->m_pkthdr.csum_data = 6164 l2fhdr->l2_fhdr_tcp_udp_xsum; 6165 m0->m_pkthdr.csum_flags |= 6166 (CSUM_DATA_VALID 6167 | CSUM_PSEUDO_HDR); 6168 } 6169 } 6170 } 6171 6172 /* Attach the VLAN tag. */ 6173 if (status & L2_FHDR_STATUS_L2_VLAN_TAG) { 6174 if (ifp->if_capenable & IFCAP_VLAN_HWTAGGING) { 6175 #if __FreeBSD_version < 700000 6176 VLAN_INPUT_TAG(ifp, m0, 6177 l2fhdr->l2_fhdr_vlan_tag, continue); 6178 #else 6179 m0->m_pkthdr.ether_vtag = 6180 l2fhdr->l2_fhdr_vlan_tag; 6181 m0->m_flags |= M_VLANTAG; 6182 #endif 6183 } else { 6184 /* 6185 * bce(4) controllers can't disable VLAN 6186 * tag stripping if management firmware 6187 * (ASF/IPMI/UMP) is running. So we always 6188 * strip VLAN tag and manually reconstruct 6189 * the VLAN frame by appending stripped 6190 * VLAN tag in driver if VLAN tag stripping 6191 * was disabled. 6192 * 6193 * TODO: LLC SNAP handling. 6194 */ 6195 bcopy(mtod(m0, uint8_t *), 6196 mtod(m0, uint8_t *) - ETHER_VLAN_ENCAP_LEN, 6197 ETHER_ADDR_LEN * 2); 6198 m0->m_data -= ETHER_VLAN_ENCAP_LEN; 6199 vh = mtod(m0, struct ether_vlan_header *); 6200 vh->evl_encap_proto = htons(ETHERTYPE_VLAN); 6201 vh->evl_tag = htons(l2fhdr->l2_fhdr_vlan_tag); 6202 m0->m_pkthdr.len += ETHER_VLAN_ENCAP_LEN; 6203 m0->m_len += ETHER_VLAN_ENCAP_LEN; 6204 } 6205 } 6206 6207 /* Increment received packet statistics. */ 6208 ifp->if_ipackets++; 6209 6210 bce_rx_int_next_rx: 6211 sw_rx_cons = NEXT_RX_BD(sw_rx_cons); 6212 6213 /* If we have a packet, pass it up the stack */ 6214 if (m0) { 6215 /* Make sure we don't lose our place when we release the lock. */ 6216 sc->rx_cons = sw_rx_cons; 6217 #ifdef BCE_JUMBO_HDRSPLIT 6218 sc->pg_cons = sw_pg_cons; 6219 #endif 6220 6221 BCE_UNLOCK(sc); 6222 (*ifp->if_input)(ifp, m0); 6223 BCE_LOCK(sc); 6224 6225 /* Recover our place. */ 6226 sw_rx_cons = sc->rx_cons; 6227 #ifdef BCE_JUMBO_HDRSPLIT 6228 sw_pg_cons = sc->pg_cons; 6229 #endif 6230 } 6231 6232 /* Refresh hw_cons to see if there's new work */ 6233 if (sw_rx_cons == hw_rx_cons) 6234 hw_rx_cons = sc->hw_rx_cons = bce_get_hw_rx_cons(sc); 6235 } 6236 6237 /* No new packets to process. Refill the RX and page chains and exit. */ 6238 #ifdef BCE_JUMBO_HDRSPLIT 6239 sc->pg_cons = sw_pg_cons; 6240 bce_fill_pg_chain(sc); 6241 #endif 6242 6243 sc->rx_cons = sw_rx_cons; 6244 bce_fill_rx_chain(sc); 6245 6246 /* Prepare the page chain pages to be accessed by the NIC. */ 6247 for (int i = 0; i < RX_PAGES; i++) 6248 bus_dmamap_sync(sc->rx_bd_chain_tag, 6249 sc->rx_bd_chain_map[i], BUS_DMASYNC_PREWRITE); 6250 6251 #ifdef BCE_JUMBO_HDRSPLIT 6252 for (int i = 0; i < PG_PAGES; i++) 6253 bus_dmamap_sync(sc->pg_bd_chain_tag, 6254 sc->pg_bd_chain_map[i], BUS_DMASYNC_PREWRITE); 6255 #endif 6256 6257 DBPRINT(sc, BCE_EXTREME_RECV, "%s(exit): rx_prod = 0x%04X, " 6258 "rx_cons = 0x%04X, rx_prod_bseq = 0x%08X\n", 6259 __FUNCTION__, sc->rx_prod, sc->rx_cons, sc->rx_prod_bseq); 6260 DBEXIT(BCE_VERBOSE_RECV | BCE_VERBOSE_INTR); 6261 } 6262 6263 6264 /****************************************************************************/ 6265 /* Reads the transmit consumer value from the status block (skipping over */ 6266 /* chain page pointer if necessary). */ 6267 /* */ 6268 /* Returns: */ 6269 /* hw_cons */ 6270 /****************************************************************************/ 6271 static inline u16 6272 bce_get_hw_tx_cons(struct bce_softc *sc) 6273 { 6274 u16 hw_cons; 6275 6276 mb(); 6277 hw_cons = sc->status_block->status_tx_quick_consumer_index0; 6278 if ((hw_cons & USABLE_TX_BD_PER_PAGE) == USABLE_TX_BD_PER_PAGE) 6279 hw_cons++; 6280 6281 return hw_cons; 6282 } 6283 6284 6285 /****************************************************************************/ 6286 /* Handles transmit completion interrupt events. */ 6287 /* */ 6288 /* Returns: */ 6289 /* Nothing. */ 6290 /****************************************************************************/ 6291 static void 6292 bce_tx_intr(struct bce_softc *sc) 6293 { 6294 struct ifnet *ifp = sc->bce_ifp; 6295 u16 hw_tx_cons, sw_tx_cons, sw_tx_chain_cons; 6296 6297 DBENTER(BCE_VERBOSE_SEND | BCE_VERBOSE_INTR); 6298 DBRUN(sc->tx_interrupts++); 6299 DBPRINT(sc, BCE_EXTREME_SEND, "%s(enter): tx_prod = 0x%04X, " 6300 "tx_cons = 0x%04X, tx_prod_bseq = 0x%08X\n", 6301 __FUNCTION__, sc->tx_prod, sc->tx_cons, sc->tx_prod_bseq); 6302 6303 BCE_LOCK_ASSERT(sc); 6304 6305 /* Get the hardware's view of the TX consumer index. */ 6306 hw_tx_cons = sc->hw_tx_cons = bce_get_hw_tx_cons(sc); 6307 sw_tx_cons = sc->tx_cons; 6308 6309 /* Prevent speculative reads from getting ahead of the status block. */ 6310 bus_space_barrier(sc->bce_btag, sc->bce_bhandle, 0, 0, 6311 BUS_SPACE_BARRIER_READ); 6312 6313 /* Cycle through any completed TX chain page entries. */ 6314 while (sw_tx_cons != hw_tx_cons) { 6315 #ifdef BCE_DEBUG 6316 struct tx_bd *txbd = NULL; 6317 #endif 6318 sw_tx_chain_cons = TX_CHAIN_IDX(sw_tx_cons); 6319 6320 DBPRINT(sc, BCE_INFO_SEND, 6321 "%s(): hw_tx_cons = 0x%04X, sw_tx_cons = 0x%04X, " 6322 "sw_tx_chain_cons = 0x%04X\n", 6323 __FUNCTION__, hw_tx_cons, sw_tx_cons, sw_tx_chain_cons); 6324 6325 DBRUNIF((sw_tx_chain_cons > MAX_TX_BD), 6326 BCE_PRINTF("%s(%d): TX chain consumer out of range! " 6327 " 0x%04X > 0x%04X\n", __FILE__, __LINE__, sw_tx_chain_cons, 6328 (int) MAX_TX_BD); 6329 bce_breakpoint(sc)); 6330 6331 DBRUN(txbd = &sc->tx_bd_chain[TX_PAGE(sw_tx_chain_cons)] 6332 [TX_IDX(sw_tx_chain_cons)]); 6333 6334 DBRUNIF((txbd == NULL), 6335 BCE_PRINTF("%s(%d): Unexpected NULL tx_bd[0x%04X]!\n", 6336 __FILE__, __LINE__, sw_tx_chain_cons); 6337 bce_breakpoint(sc)); 6338 6339 DBRUNMSG(BCE_INFO_SEND, BCE_PRINTF("%s(): ", __FUNCTION__); 6340 bce_dump_txbd(sc, sw_tx_chain_cons, txbd)); 6341 6342 /* 6343 * Free the associated mbuf. Remember 6344 * that only the last tx_bd of a packet 6345 * has an mbuf pointer and DMA map. 6346 */ 6347 if (sc->tx_mbuf_ptr[sw_tx_chain_cons] != NULL) { 6348 6349 /* Validate that this is the last tx_bd. */ 6350 DBRUNIF((!(txbd->tx_bd_flags & TX_BD_FLAGS_END)), 6351 BCE_PRINTF("%s(%d): tx_bd END flag not set but " 6352 "txmbuf == NULL!\n", __FILE__, __LINE__); 6353 bce_breakpoint(sc)); 6354 6355 DBRUNMSG(BCE_INFO_SEND, 6356 BCE_PRINTF("%s(): Unloading map/freeing mbuf " 6357 "from tx_bd[0x%04X]\n", __FUNCTION__, 6358 sw_tx_chain_cons)); 6359 6360 /* Unmap the mbuf. */ 6361 bus_dmamap_unload(sc->tx_mbuf_tag, 6362 sc->tx_mbuf_map[sw_tx_chain_cons]); 6363 6364 /* Free the mbuf. */ 6365 m_freem(sc->tx_mbuf_ptr[sw_tx_chain_cons]); 6366 sc->tx_mbuf_ptr[sw_tx_chain_cons] = NULL; 6367 DBRUN(sc->debug_tx_mbuf_alloc--); 6368 6369 ifp->if_opackets++; 6370 } 6371 6372 sc->used_tx_bd--; 6373 sw_tx_cons = NEXT_TX_BD(sw_tx_cons); 6374 6375 /* Refresh hw_cons to see if there's new work. */ 6376 hw_tx_cons = sc->hw_tx_cons = bce_get_hw_tx_cons(sc); 6377 6378 /* Prevent speculative reads of the status block. */ 6379 bus_space_barrier(sc->bce_btag, sc->bce_bhandle, 0, 0, 6380 BUS_SPACE_BARRIER_READ); 6381 } 6382 6383 /* Clear the TX timeout timer. */ 6384 sc->watchdog_timer = 0; 6385 6386 /* Clear the tx hardware queue full flag. */ 6387 if (sc->used_tx_bd < sc->max_tx_bd) { 6388 DBRUNIF((ifp->if_drv_flags & IFF_DRV_OACTIVE), 6389 DBPRINT(sc, BCE_INFO_SEND, 6390 "%s(): Open TX chain! %d/%d (used/total)\n", 6391 __FUNCTION__, sc->used_tx_bd, sc->max_tx_bd)); 6392 ifp->if_drv_flags &= ~IFF_DRV_OACTIVE; 6393 } 6394 6395 sc->tx_cons = sw_tx_cons; 6396 6397 DBPRINT(sc, BCE_EXTREME_SEND, "%s(exit): tx_prod = 0x%04X, " 6398 "tx_cons = 0x%04X, tx_prod_bseq = 0x%08X\n", 6399 __FUNCTION__, sc->tx_prod, sc->tx_cons, sc->tx_prod_bseq); 6400 DBEXIT(BCE_VERBOSE_SEND | BCE_VERBOSE_INTR); 6401 } 6402 6403 6404 /****************************************************************************/ 6405 /* Disables interrupt generation. */ 6406 /* */ 6407 /* Returns: */ 6408 /* Nothing. */ 6409 /****************************************************************************/ 6410 static void 6411 bce_disable_intr(struct bce_softc *sc) 6412 { 6413 DBENTER(BCE_VERBOSE_INTR); 6414 6415 REG_WR(sc, BCE_PCICFG_INT_ACK_CMD, BCE_PCICFG_INT_ACK_CMD_MASK_INT); 6416 REG_RD(sc, BCE_PCICFG_INT_ACK_CMD); 6417 6418 DBEXIT(BCE_VERBOSE_INTR); 6419 } 6420 6421 6422 /****************************************************************************/ 6423 /* Enables interrupt generation. */ 6424 /* */ 6425 /* Returns: */ 6426 /* Nothing. */ 6427 /****************************************************************************/ 6428 static void 6429 bce_enable_intr(struct bce_softc *sc, int coal_now) 6430 { 6431 DBENTER(BCE_VERBOSE_INTR); 6432 6433 REG_WR(sc, BCE_PCICFG_INT_ACK_CMD, 6434 BCE_PCICFG_INT_ACK_CMD_INDEX_VALID | 6435 BCE_PCICFG_INT_ACK_CMD_MASK_INT | sc->last_status_idx); 6436 6437 REG_WR(sc, BCE_PCICFG_INT_ACK_CMD, 6438 BCE_PCICFG_INT_ACK_CMD_INDEX_VALID | sc->last_status_idx); 6439 6440 /* Force an immediate interrupt (whether there is new data or not). */ 6441 if (coal_now) 6442 REG_WR(sc, BCE_HC_COMMAND, sc->hc_command | BCE_HC_COMMAND_COAL_NOW); 6443 6444 DBEXIT(BCE_VERBOSE_INTR); 6445 } 6446 6447 6448 /****************************************************************************/ 6449 /* Handles controller initialization. */ 6450 /* */ 6451 /* Returns: */ 6452 /* Nothing. */ 6453 /****************************************************************************/ 6454 static void 6455 bce_init_locked(struct bce_softc *sc) 6456 { 6457 struct ifnet *ifp; 6458 u32 ether_mtu = 0; 6459 6460 DBENTER(BCE_VERBOSE_RESET); 6461 6462 BCE_LOCK_ASSERT(sc); 6463 6464 ifp = sc->bce_ifp; 6465 6466 /* Check if the driver is still running and bail out if it is. */ 6467 if (ifp->if_drv_flags & IFF_DRV_RUNNING) 6468 goto bce_init_locked_exit; 6469 6470 bce_stop(sc); 6471 6472 if (bce_reset(sc, BCE_DRV_MSG_CODE_RESET)) { 6473 BCE_PRINTF("%s(%d): Controller reset failed!\n", 6474 __FILE__, __LINE__); 6475 goto bce_init_locked_exit; 6476 } 6477 6478 if (bce_chipinit(sc)) { 6479 BCE_PRINTF("%s(%d): Controller initialization failed!\n", 6480 __FILE__, __LINE__); 6481 goto bce_init_locked_exit; 6482 } 6483 6484 if (bce_blockinit(sc)) { 6485 BCE_PRINTF("%s(%d): Block initialization failed!\n", 6486 __FILE__, __LINE__); 6487 goto bce_init_locked_exit; 6488 } 6489 6490 /* Load our MAC address. */ 6491 bcopy(IF_LLADDR(sc->bce_ifp), sc->eaddr, ETHER_ADDR_LEN); 6492 bce_set_mac_addr(sc); 6493 6494 /* 6495 * Calculate and program the hardware Ethernet MTU 6496 * size. Be generous on the receive if we have room. 6497 */ 6498 #ifdef BCE_JUMBO_HDRSPLIT 6499 if (ifp->if_mtu <= (sc->rx_bd_mbuf_data_len + 6500 sc->pg_bd_mbuf_alloc_size)) 6501 ether_mtu = sc->rx_bd_mbuf_data_len + 6502 sc->pg_bd_mbuf_alloc_size; 6503 #else 6504 if (ifp->if_mtu <= sc->rx_bd_mbuf_data_len) 6505 ether_mtu = sc->rx_bd_mbuf_data_len; 6506 #endif 6507 else 6508 ether_mtu = ifp->if_mtu; 6509 6510 ether_mtu += ETHER_HDR_LEN + ETHER_VLAN_ENCAP_LEN + ETHER_CRC_LEN; 6511 6512 DBPRINT(sc, BCE_INFO_MISC, "%s(): setting h/w mtu = %d\n", 6513 __FUNCTION__, ether_mtu); 6514 6515 /* Program the mtu, enabling jumbo frame support if necessary. */ 6516 if (ether_mtu > (ETHER_MAX_LEN + ETHER_VLAN_ENCAP_LEN)) 6517 REG_WR(sc, BCE_EMAC_RX_MTU_SIZE, 6518 min(ether_mtu, BCE_MAX_JUMBO_ETHER_MTU) | 6519 BCE_EMAC_RX_MTU_SIZE_JUMBO_ENA); 6520 else 6521 REG_WR(sc, BCE_EMAC_RX_MTU_SIZE, ether_mtu); 6522 6523 DBPRINT(sc, BCE_INFO_LOAD, 6524 "%s(): rx_bd_mbuf_alloc_size = %d, rx_bce_mbuf_data_len = %d, " 6525 "rx_bd_mbuf_align_pad = %d\n", __FUNCTION__, 6526 sc->rx_bd_mbuf_alloc_size, sc->rx_bd_mbuf_data_len, 6527 sc->rx_bd_mbuf_align_pad); 6528 6529 /* Program appropriate promiscuous/multicast filtering. */ 6530 bce_set_rx_mode(sc); 6531 6532 #ifdef BCE_JUMBO_HDRSPLIT 6533 DBPRINT(sc, BCE_INFO_LOAD, "%s(): pg_bd_mbuf_alloc_size = %d\n", 6534 __FUNCTION__, sc->pg_bd_mbuf_alloc_size); 6535 6536 /* Init page buffer descriptor chain. */ 6537 bce_init_pg_chain(sc); 6538 #endif 6539 6540 /* Init RX buffer descriptor chain. */ 6541 bce_init_rx_chain(sc); 6542 6543 /* Init TX buffer descriptor chain. */ 6544 bce_init_tx_chain(sc); 6545 6546 /* Enable host interrupts. */ 6547 bce_enable_intr(sc, 1); 6548 6549 bce_ifmedia_upd_locked(ifp); 6550 6551 /* Let the OS know the driver is up and running. */ 6552 ifp->if_drv_flags |= IFF_DRV_RUNNING; 6553 ifp->if_drv_flags &= ~IFF_DRV_OACTIVE; 6554 6555 callout_reset(&sc->bce_tick_callout, hz, bce_tick, sc); 6556 6557 bce_init_locked_exit: 6558 DBEXIT(BCE_VERBOSE_RESET); 6559 } 6560 6561 6562 /****************************************************************************/ 6563 /* Initialize the controller just enough so that any management firmware */ 6564 /* running on the device will continue to operate correctly. */ 6565 /* */ 6566 /* Returns: */ 6567 /* Nothing. */ 6568 /****************************************************************************/ 6569 static void 6570 bce_mgmt_init_locked(struct bce_softc *sc) 6571 { 6572 struct ifnet *ifp; 6573 6574 DBENTER(BCE_VERBOSE_RESET); 6575 6576 BCE_LOCK_ASSERT(sc); 6577 6578 /* Bail out if management firmware is not running. */ 6579 if (!(sc->bce_flags & BCE_MFW_ENABLE_FLAG)) { 6580 DBPRINT(sc, BCE_VERBOSE_SPECIAL, 6581 "No management firmware running...\n"); 6582 goto bce_mgmt_init_locked_exit; 6583 } 6584 6585 ifp = sc->bce_ifp; 6586 6587 /* Enable all critical blocks in the MAC. */ 6588 REG_WR(sc, BCE_MISC_ENABLE_SET_BITS, BCE_MISC_ENABLE_DEFAULT); 6589 REG_RD(sc, BCE_MISC_ENABLE_SET_BITS); 6590 DELAY(20); 6591 6592 bce_ifmedia_upd_locked(ifp); 6593 6594 bce_mgmt_init_locked_exit: 6595 DBEXIT(BCE_VERBOSE_RESET); 6596 } 6597 6598 6599 /****************************************************************************/ 6600 /* Handles controller initialization when called from an unlocked routine. */ 6601 /* */ 6602 /* Returns: */ 6603 /* Nothing. */ 6604 /****************************************************************************/ 6605 static void 6606 bce_init(void *xsc) 6607 { 6608 struct bce_softc *sc = xsc; 6609 6610 DBENTER(BCE_VERBOSE_RESET); 6611 6612 BCE_LOCK(sc); 6613 bce_init_locked(sc); 6614 BCE_UNLOCK(sc); 6615 6616 DBEXIT(BCE_VERBOSE_RESET); 6617 } 6618 6619 6620 static struct mbuf * 6621 bce_tso_setup(struct bce_softc *sc, struct mbuf **m_head, u16 *flags) 6622 { 6623 struct mbuf *m; 6624 struct ether_header *eh; 6625 struct ip *ip; 6626 struct tcphdr *th; 6627 u16 etype; 6628 int hdr_len, ip_hlen = 0, tcp_hlen = 0, ip_len = 0; 6629 6630 DBRUN(sc->requested_tso_frames++); 6631 /* Controller requires to monify mbuf chains. */ 6632 if (M_WRITABLE(*m_head) == 0) { 6633 m = m_dup(*m_head, M_DONTWAIT); 6634 m_freem(*m_head); 6635 if (m == NULL) { 6636 sc->mbuf_alloc_failed_count++; 6637 *m_head = NULL; 6638 return (NULL); 6639 } 6640 *m_head = m; 6641 } 6642 /* 6643 * For TSO the controller needs two pieces of info, 6644 * the MSS and the IP+TCP options length. 6645 */ 6646 m = m_pullup(*m_head, sizeof(struct ether_header) + sizeof(struct ip)); 6647 if (m == NULL) { 6648 *m_head = NULL; 6649 return (NULL); 6650 } 6651 eh = mtod(m, struct ether_header *); 6652 etype = ntohs(eh->ether_type); 6653 6654 /* Check for supported TSO Ethernet types (only IPv4 for now) */ 6655 switch (etype) { 6656 case ETHERTYPE_IP: 6657 ip = (struct ip *)(m->m_data + sizeof(struct ether_header)); 6658 /* TSO only supported for TCP protocol. */ 6659 if (ip->ip_p != IPPROTO_TCP) { 6660 BCE_PRINTF("%s(%d): TSO enabled for non-TCP frame!.\n", 6661 __FILE__, __LINE__); 6662 m_freem(*m_head); 6663 *m_head = NULL; 6664 return (NULL); 6665 } 6666 6667 /* Get IP header length in bytes (min 20) */ 6668 ip_hlen = ip->ip_hl << 2; 6669 m = m_pullup(*m_head, sizeof(struct ether_header) + ip_hlen + 6670 sizeof(struct tcphdr)); 6671 if (m == NULL) { 6672 *m_head = NULL; 6673 return (NULL); 6674 } 6675 6676 /* Get the TCP header length in bytes (min 20) */ 6677 th = (struct tcphdr *)((caddr_t)ip + ip_hlen); 6678 tcp_hlen = (th->th_off << 2); 6679 6680 /* Make sure all IP/TCP options live in the same buffer. */ 6681 m = m_pullup(*m_head, sizeof(struct ether_header)+ ip_hlen + 6682 tcp_hlen); 6683 if (m == NULL) { 6684 *m_head = NULL; 6685 return (NULL); 6686 } 6687 6688 /* IP header length and checksum will be calc'd by hardware */ 6689 ip_len = ip->ip_len; 6690 ip->ip_len = 0; 6691 ip->ip_sum = 0; 6692 break; 6693 case ETHERTYPE_IPV6: 6694 BCE_PRINTF("%s(%d): TSO over IPv6 not supported!.\n", 6695 __FILE__, __LINE__); 6696 m_freem(*m_head); 6697 *m_head = NULL; 6698 return (NULL); 6699 /* NOT REACHED */ 6700 default: 6701 BCE_PRINTF("%s(%d): TSO enabled for unsupported protocol!.\n", 6702 __FILE__, __LINE__); 6703 m_freem(*m_head); 6704 *m_head = NULL; 6705 return (NULL); 6706 } 6707 6708 hdr_len = sizeof(struct ether_header) + ip_hlen + tcp_hlen; 6709 6710 DBPRINT(sc, BCE_EXTREME_SEND, "%s(): hdr_len = %d, e_hlen = %d, " 6711 "ip_hlen = %d, tcp_hlen = %d, ip_len = %d\n", 6712 __FUNCTION__, hdr_len, (int) sizeof(struct ether_header), ip_hlen, 6713 tcp_hlen, ip_len); 6714 6715 /* Set the LSO flag in the TX BD */ 6716 *flags |= TX_BD_FLAGS_SW_LSO; 6717 /* Set the length of IP + TCP options (in 32 bit words) */ 6718 *flags |= (((ip_hlen + tcp_hlen - sizeof(struct ip) - 6719 sizeof(struct tcphdr)) >> 2) << 8); 6720 return (*m_head); 6721 } 6722 6723 6724 /****************************************************************************/ 6725 /* Encapsultes an mbuf cluster into the tx_bd chain structure and makes the */ 6726 /* memory visible to the controller. */ 6727 /* */ 6728 /* Returns: */ 6729 /* 0 for success, positive value for failure. */ 6730 /* Modified: */ 6731 /* m_head: May be set to NULL if MBUF is excessively fragmented. */ 6732 /****************************************************************************/ 6733 static int 6734 bce_tx_encap(struct bce_softc *sc, struct mbuf **m_head) 6735 { 6736 bus_dma_segment_t segs[BCE_MAX_SEGMENTS]; 6737 bus_dmamap_t map; 6738 struct tx_bd *txbd = NULL; 6739 struct mbuf *m0; 6740 u16 prod, chain_prod, mss = 0, vlan_tag = 0, flags = 0; 6741 u32 prod_bseq; 6742 6743 #ifdef BCE_DEBUG 6744 u16 debug_prod; 6745 #endif 6746 int i, error, nsegs, rc = 0; 6747 6748 DBENTER(BCE_VERBOSE_SEND); 6749 DBPRINT(sc, BCE_INFO_SEND, 6750 "%s(enter): tx_prod = 0x%04X, tx_chain_prod = %04X, " 6751 "tx_prod_bseq = 0x%08X\n", 6752 __FUNCTION__, sc->tx_prod, (u16) TX_CHAIN_IDX(sc->tx_prod), 6753 sc->tx_prod_bseq); 6754 6755 /* Transfer any checksum offload flags to the bd. */ 6756 m0 = *m_head; 6757 if (m0->m_pkthdr.csum_flags) { 6758 if (m0->m_pkthdr.csum_flags & CSUM_TSO) { 6759 m0 = bce_tso_setup(sc, m_head, &flags); 6760 if (m0 == NULL) 6761 goto bce_tx_encap_exit; 6762 mss = htole16(m0->m_pkthdr.tso_segsz); 6763 } else { 6764 if (m0->m_pkthdr.csum_flags & CSUM_IP) 6765 flags |= TX_BD_FLAGS_IP_CKSUM; 6766 if (m0->m_pkthdr.csum_flags & (CSUM_TCP | CSUM_UDP)) 6767 flags |= TX_BD_FLAGS_TCP_UDP_CKSUM; 6768 } 6769 } 6770 6771 /* Transfer any VLAN tags to the bd. */ 6772 if (m0->m_flags & M_VLANTAG) { 6773 flags |= TX_BD_FLAGS_VLAN_TAG; 6774 vlan_tag = m0->m_pkthdr.ether_vtag; 6775 } 6776 6777 /* Map the mbuf into DMAable memory. */ 6778 prod = sc->tx_prod; 6779 chain_prod = TX_CHAIN_IDX(prod); 6780 map = sc->tx_mbuf_map[chain_prod]; 6781 6782 /* Map the mbuf into our DMA address space. */ 6783 error = bus_dmamap_load_mbuf_sg(sc->tx_mbuf_tag, map, m0, 6784 segs, &nsegs, BUS_DMA_NOWAIT); 6785 6786 /* Check if the DMA mapping was successful */ 6787 if (error == EFBIG) { 6788 6789 sc->fragmented_mbuf_count++; 6790 6791 /* Try to defrag the mbuf. */ 6792 m0 = m_collapse(*m_head, M_DONTWAIT, BCE_MAX_SEGMENTS); 6793 if (m0 == NULL) { 6794 /* Defrag was unsuccessful */ 6795 m_freem(*m_head); 6796 *m_head = NULL; 6797 sc->mbuf_alloc_failed_count++; 6798 rc = ENOBUFS; 6799 goto bce_tx_encap_exit; 6800 } 6801 6802 /* Defrag was successful, try mapping again */ 6803 *m_head = m0; 6804 error = bus_dmamap_load_mbuf_sg(sc->tx_mbuf_tag, map, m0, 6805 segs, &nsegs, BUS_DMA_NOWAIT); 6806 6807 /* Still getting an error after a defrag. */ 6808 if (error == ENOMEM) { 6809 /* Insufficient DMA buffers available. */ 6810 sc->dma_map_addr_tx_failed_count++; 6811 rc = error; 6812 goto bce_tx_encap_exit; 6813 } else if (error != 0) { 6814 /* Release it and return an error. */ 6815 BCE_PRINTF("%s(%d): Unknown error mapping mbuf into " 6816 "TX chain!\n", __FILE__, __LINE__); 6817 m_freem(m0); 6818 *m_head = NULL; 6819 sc->dma_map_addr_tx_failed_count++; 6820 rc = ENOBUFS; 6821 goto bce_tx_encap_exit; 6822 } 6823 } else if (error == ENOMEM) { 6824 /* Insufficient DMA buffers available. */ 6825 sc->dma_map_addr_tx_failed_count++; 6826 rc = error; 6827 goto bce_tx_encap_exit; 6828 } else if (error != 0) { 6829 m_freem(m0); 6830 *m_head = NULL; 6831 sc->dma_map_addr_tx_failed_count++; 6832 rc = error; 6833 goto bce_tx_encap_exit; 6834 } 6835 6836 /* Make sure there's room in the chain */ 6837 if (nsegs > (sc->max_tx_bd - sc->used_tx_bd)) { 6838 bus_dmamap_unload(sc->tx_mbuf_tag, map); 6839 rc = ENOBUFS; 6840 goto bce_tx_encap_exit; 6841 } 6842 6843 /* prod points to an empty tx_bd at this point. */ 6844 prod_bseq = sc->tx_prod_bseq; 6845 6846 #ifdef BCE_DEBUG 6847 debug_prod = chain_prod; 6848 #endif 6849 6850 DBPRINT(sc, BCE_INFO_SEND, 6851 "%s(start): prod = 0x%04X, chain_prod = 0x%04X, " 6852 "prod_bseq = 0x%08X\n", 6853 __FUNCTION__, prod, chain_prod, prod_bseq); 6854 6855 /* 6856 * Cycle through each mbuf segment that makes up 6857 * the outgoing frame, gathering the mapping info 6858 * for that segment and creating a tx_bd for 6859 * the mbuf. 6860 */ 6861 for (i = 0; i < nsegs ; i++) { 6862 6863 chain_prod = TX_CHAIN_IDX(prod); 6864 txbd= &sc->tx_bd_chain[TX_PAGE(chain_prod)] 6865 [TX_IDX(chain_prod)]; 6866 6867 txbd->tx_bd_haddr_lo = htole32(BCE_ADDR_LO(segs[i].ds_addr)); 6868 txbd->tx_bd_haddr_hi = htole32(BCE_ADDR_HI(segs[i].ds_addr)); 6869 txbd->tx_bd_mss_nbytes = htole32(mss << 16) | 6870 htole16(segs[i].ds_len); 6871 txbd->tx_bd_vlan_tag = htole16(vlan_tag); 6872 txbd->tx_bd_flags = htole16(flags); 6873 prod_bseq += segs[i].ds_len; 6874 if (i == 0) 6875 txbd->tx_bd_flags |= htole16(TX_BD_FLAGS_START); 6876 prod = NEXT_TX_BD(prod); 6877 } 6878 6879 /* Set the END flag on the last TX buffer descriptor. */ 6880 txbd->tx_bd_flags |= htole16(TX_BD_FLAGS_END); 6881 6882 DBRUNMSG(BCE_EXTREME_SEND, bce_dump_tx_chain(sc, debug_prod, nsegs)); 6883 6884 DBPRINT(sc, BCE_INFO_SEND, 6885 "%s( end ): prod = 0x%04X, chain_prod = 0x%04X, " 6886 "prod_bseq = 0x%08X\n", 6887 __FUNCTION__, prod, chain_prod, prod_bseq); 6888 6889 /* 6890 * Ensure that the mbuf pointer for this transmission 6891 * is placed at the array index of the last 6892 * descriptor in this chain. This is done 6893 * because a single map is used for all 6894 * segments of the mbuf and we don't want to 6895 * unload the map before all of the segments 6896 * have been freed. 6897 */ 6898 sc->tx_mbuf_ptr[chain_prod] = m0; 6899 sc->used_tx_bd += nsegs; 6900 6901 /* Update some debug statistic counters */ 6902 DBRUNIF((sc->used_tx_bd > sc->tx_hi_watermark), 6903 sc->tx_hi_watermark = sc->used_tx_bd); 6904 DBRUNIF((sc->used_tx_bd == sc->max_tx_bd), sc->tx_full_count++); 6905 DBRUNIF(sc->debug_tx_mbuf_alloc++); 6906 6907 DBRUNMSG(BCE_EXTREME_SEND, bce_dump_tx_mbuf_chain(sc, chain_prod, 1)); 6908 6909 /* prod points to the next free tx_bd at this point. */ 6910 sc->tx_prod = prod; 6911 sc->tx_prod_bseq = prod_bseq; 6912 6913 DBPRINT(sc, BCE_INFO_SEND, 6914 "%s(exit): prod = 0x%04X, chain_prod = %04X, " 6915 "prod_bseq = 0x%08X\n", __FUNCTION__, 6916 sc->tx_prod, (u16) TX_CHAIN_IDX(sc->tx_prod), 6917 sc->tx_prod_bseq); 6918 6919 bce_tx_encap_exit: 6920 DBEXIT(BCE_VERBOSE_SEND); 6921 return(rc); 6922 } 6923 6924 6925 /****************************************************************************/ 6926 /* Main transmit routine when called from another routine with a lock. */ 6927 /* */ 6928 /* Returns: */ 6929 /* Nothing. */ 6930 /****************************************************************************/ 6931 static void 6932 bce_start_locked(struct ifnet *ifp) 6933 { 6934 struct bce_softc *sc = ifp->if_softc; 6935 struct mbuf *m_head = NULL; 6936 int count = 0; 6937 u16 tx_prod, tx_chain_prod; 6938 6939 DBENTER(BCE_VERBOSE_SEND | BCE_VERBOSE_CTX); 6940 6941 BCE_LOCK_ASSERT(sc); 6942 6943 /* prod points to the next free tx_bd. */ 6944 tx_prod = sc->tx_prod; 6945 tx_chain_prod = TX_CHAIN_IDX(tx_prod); 6946 6947 DBPRINT(sc, BCE_INFO_SEND, 6948 "%s(enter): tx_prod = 0x%04X, tx_chain_prod = 0x%04X, " 6949 "tx_prod_bseq = 0x%08X\n", 6950 __FUNCTION__, tx_prod, tx_chain_prod, sc->tx_prod_bseq); 6951 6952 /* If there's no link or the transmit queue is empty then just exit. */ 6953 if (sc->bce_link_up == FALSE) { 6954 DBPRINT(sc, BCE_INFO_SEND, "%s(): No link.\n", 6955 __FUNCTION__); 6956 goto bce_start_locked_exit; 6957 } 6958 6959 if (IFQ_DRV_IS_EMPTY(&ifp->if_snd)) { 6960 DBPRINT(sc, BCE_INFO_SEND, "%s(): Transmit queue empty.\n", 6961 __FUNCTION__); 6962 goto bce_start_locked_exit; 6963 } 6964 6965 /* 6966 * Keep adding entries while there is space in the ring. 6967 */ 6968 while (sc->used_tx_bd < sc->max_tx_bd) { 6969 6970 /* Check for any frames to send. */ 6971 IFQ_DRV_DEQUEUE(&ifp->if_snd, m_head); 6972 6973 /* Stop when the transmit queue is empty. */ 6974 if (m_head == NULL) 6975 break; 6976 6977 /* 6978 * Pack the data into the transmit ring. If we 6979 * don't have room, place the mbuf back at the 6980 * head of the queue and set the OACTIVE flag 6981 * to wait for the NIC to drain the chain. 6982 */ 6983 if (bce_tx_encap(sc, &m_head)) { 6984 if (m_head != NULL) 6985 IFQ_DRV_PREPEND(&ifp->if_snd, m_head); 6986 ifp->if_drv_flags |= IFF_DRV_OACTIVE; 6987 DBPRINT(sc, BCE_INFO_SEND, 6988 "TX chain is closed for business! Total " 6989 "tx_bd used = %d\n", sc->used_tx_bd); 6990 break; 6991 } 6992 6993 count++; 6994 6995 /* Send a copy of the frame to any BPF listeners. */ 6996 ETHER_BPF_MTAP(ifp, m_head); 6997 } 6998 6999 /* Exit if no packets were dequeued. */ 7000 if (count == 0) { 7001 DBPRINT(sc, BCE_VERBOSE_SEND, "%s(): No packets were " 7002 "dequeued\n", __FUNCTION__); 7003 goto bce_start_locked_exit; 7004 } 7005 7006 DBPRINT(sc, BCE_VERBOSE_SEND, "%s(): Inserted %d frames into " 7007 "send queue.\n", __FUNCTION__, count); 7008 7009 REG_WR(sc, BCE_MQ_COMMAND, REG_RD(sc, BCE_MQ_COMMAND) | 7010 BCE_MQ_COMMAND_NO_MAP_ERROR); 7011 7012 /* Write the mailbox and tell the chip about the waiting tx_bd's. */ 7013 DBPRINT(sc, BCE_VERBOSE_SEND, "%s(): MB_GET_CID_ADDR(TX_CID) = " 7014 "0x%08X; BCE_L2MQ_TX_HOST_BIDX = 0x%08X, sc->tx_prod = 0x%04X\n", 7015 __FUNCTION__, MB_GET_CID_ADDR(TX_CID), 7016 BCE_L2MQ_TX_HOST_BIDX, sc->tx_prod); 7017 REG_WR16(sc, MB_GET_CID_ADDR(TX_CID) + 7018 BCE_L2MQ_TX_HOST_BIDX, sc->tx_prod); 7019 7020 DBPRINT(sc, BCE_VERBOSE_SEND, "%s(): MB_GET_CID_ADDR(TX_CID) = " 7021 "0x%08X; BCE_L2MQ_TX_HOST_BSEQ = 0x%08X, sc->tx_prod_bseq = " 7022 "0x%04X\n", __FUNCTION__, MB_GET_CID_ADDR(TX_CID), 7023 BCE_L2MQ_TX_HOST_BSEQ, sc->tx_prod_bseq); 7024 REG_WR(sc, MB_GET_CID_ADDR(TX_CID) + BCE_L2MQ_TX_HOST_BSEQ, sc->tx_prod_bseq); 7025 7026 /* Set the tx timeout. */ 7027 sc->watchdog_timer = BCE_TX_TIMEOUT; 7028 7029 DBRUNMSG(BCE_VERBOSE_SEND, bce_dump_ctx(sc, TX_CID)); 7030 DBRUNMSG(BCE_VERBOSE_SEND, bce_dump_mq_regs(sc)); 7031 7032 bce_start_locked_exit: 7033 DBEXIT(BCE_VERBOSE_SEND | BCE_VERBOSE_CTX); 7034 return; 7035 } 7036 7037 7038 /****************************************************************************/ 7039 /* Main transmit routine when called from another routine without a lock. */ 7040 /* */ 7041 /* Returns: */ 7042 /* Nothing. */ 7043 /****************************************************************************/ 7044 static void 7045 bce_start(struct ifnet *ifp) 7046 { 7047 struct bce_softc *sc = ifp->if_softc; 7048 7049 DBENTER(BCE_VERBOSE_SEND); 7050 7051 BCE_LOCK(sc); 7052 bce_start_locked(ifp); 7053 BCE_UNLOCK(sc); 7054 7055 DBEXIT(BCE_VERBOSE_SEND); 7056 } 7057 7058 7059 /****************************************************************************/ 7060 /* Handles any IOCTL calls from the operating system. */ 7061 /* */ 7062 /* Returns: */ 7063 /* 0 for success, positive value for failure. */ 7064 /****************************************************************************/ 7065 static int 7066 bce_ioctl(struct ifnet *ifp, u_long command, caddr_t data) 7067 { 7068 struct bce_softc *sc = ifp->if_softc; 7069 struct ifreq *ifr = (struct ifreq *) data; 7070 struct mii_data *mii; 7071 int mask, error = 0, reinit; 7072 7073 DBENTER(BCE_VERBOSE_MISC); 7074 7075 switch(command) { 7076 7077 /* Set the interface MTU. */ 7078 case SIOCSIFMTU: 7079 /* Check that the MTU setting is supported. */ 7080 if ((ifr->ifr_mtu < BCE_MIN_MTU) || 7081 (ifr->ifr_mtu > BCE_MAX_JUMBO_MTU)) { 7082 error = EINVAL; 7083 break; 7084 } 7085 7086 DBPRINT(sc, BCE_INFO_MISC, 7087 "SIOCSIFMTU: Changing MTU from %d to %d\n", 7088 (int) ifp->if_mtu, (int) ifr->ifr_mtu); 7089 7090 BCE_LOCK(sc); 7091 ifp->if_mtu = ifr->ifr_mtu; 7092 reinit = 0; 7093 if (ifp->if_drv_flags & IFF_DRV_RUNNING) { 7094 /* 7095 * Because allocation size is used in RX 7096 * buffer allocation, stop controller if 7097 * it is already running. 7098 */ 7099 bce_stop(sc); 7100 reinit = 1; 7101 } 7102 #ifdef BCE_JUMBO_HDRSPLIT 7103 /* No buffer allocation size changes are necessary. */ 7104 #else 7105 /* Recalculate our buffer allocation sizes. */ 7106 if ((ifp->if_mtu + ETHER_HDR_LEN + ETHER_VLAN_ENCAP_LEN + 7107 ETHER_CRC_LEN) > MCLBYTES) { 7108 sc->rx_bd_mbuf_alloc_size = MJUM9BYTES; 7109 sc->rx_bd_mbuf_align_pad = 7110 roundup2(MJUM9BYTES, 16) - MJUM9BYTES; 7111 sc->rx_bd_mbuf_data_len = 7112 sc->rx_bd_mbuf_alloc_size - 7113 sc->rx_bd_mbuf_align_pad; 7114 } else { 7115 sc->rx_bd_mbuf_alloc_size = MCLBYTES; 7116 sc->rx_bd_mbuf_align_pad = 7117 roundup2(MCLBYTES, 16) - MCLBYTES; 7118 sc->rx_bd_mbuf_data_len = 7119 sc->rx_bd_mbuf_alloc_size - 7120 sc->rx_bd_mbuf_align_pad; 7121 } 7122 #endif 7123 7124 if (reinit != 0) 7125 bce_init_locked(sc); 7126 BCE_UNLOCK(sc); 7127 break; 7128 7129 /* Set interface flags. */ 7130 case SIOCSIFFLAGS: 7131 DBPRINT(sc, BCE_VERBOSE_SPECIAL, "Received SIOCSIFFLAGS\n"); 7132 7133 BCE_LOCK(sc); 7134 7135 /* Check if the interface is up. */ 7136 if (ifp->if_flags & IFF_UP) { 7137 if (ifp->if_drv_flags & IFF_DRV_RUNNING) { 7138 /* Change promiscuous/multicast flags as necessary. */ 7139 bce_set_rx_mode(sc); 7140 } else { 7141 /* Start the HW */ 7142 bce_init_locked(sc); 7143 } 7144 } else { 7145 /* The interface is down, check if driver is running. */ 7146 if (ifp->if_drv_flags & IFF_DRV_RUNNING) { 7147 bce_stop(sc); 7148 7149 /* If MFW is running, restart the controller a bit. */ 7150 if (sc->bce_flags & BCE_MFW_ENABLE_FLAG) { 7151 bce_reset(sc, BCE_DRV_MSG_CODE_RESET); 7152 bce_chipinit(sc); 7153 bce_mgmt_init_locked(sc); 7154 } 7155 } 7156 } 7157 7158 BCE_UNLOCK(sc); 7159 break; 7160 7161 /* Add/Delete multicast address */ 7162 case SIOCADDMULTI: 7163 case SIOCDELMULTI: 7164 DBPRINT(sc, BCE_VERBOSE_MISC, 7165 "Received SIOCADDMULTI/SIOCDELMULTI\n"); 7166 7167 BCE_LOCK(sc); 7168 if (ifp->if_drv_flags & IFF_DRV_RUNNING) 7169 bce_set_rx_mode(sc); 7170 BCE_UNLOCK(sc); 7171 7172 break; 7173 7174 /* Set/Get Interface media */ 7175 case SIOCSIFMEDIA: 7176 case SIOCGIFMEDIA: 7177 DBPRINT(sc, BCE_VERBOSE_MISC, 7178 "Received SIOCSIFMEDIA/SIOCGIFMEDIA\n"); 7179 7180 mii = device_get_softc(sc->bce_miibus); 7181 error = ifmedia_ioctl(ifp, ifr, 7182 &mii->mii_media, command); 7183 break; 7184 7185 /* Set interface capability */ 7186 case SIOCSIFCAP: 7187 mask = ifr->ifr_reqcap ^ ifp->if_capenable; 7188 DBPRINT(sc, BCE_INFO_MISC, 7189 "Received SIOCSIFCAP = 0x%08X\n", (u32) mask); 7190 7191 /* Toggle the TX checksum capabilities enable flag. */ 7192 if (mask & IFCAP_TXCSUM && 7193 ifp->if_capabilities & IFCAP_TXCSUM) { 7194 ifp->if_capenable ^= IFCAP_TXCSUM; 7195 if (IFCAP_TXCSUM & ifp->if_capenable) 7196 ifp->if_hwassist |= BCE_IF_HWASSIST; 7197 else 7198 ifp->if_hwassist &= ~BCE_IF_HWASSIST; 7199 } 7200 7201 /* Toggle the RX checksum capabilities enable flag. */ 7202 if (mask & IFCAP_RXCSUM && 7203 ifp->if_capabilities & IFCAP_RXCSUM) 7204 ifp->if_capenable ^= IFCAP_RXCSUM; 7205 7206 /* Toggle the TSO capabilities enable flag. */ 7207 if (bce_tso_enable && (mask & IFCAP_TSO4) && 7208 ifp->if_capabilities & IFCAP_TSO4) { 7209 ifp->if_capenable ^= IFCAP_TSO4; 7210 if (IFCAP_TSO4 & ifp->if_capenable) 7211 ifp->if_hwassist |= CSUM_TSO; 7212 else 7213 ifp->if_hwassist &= ~CSUM_TSO; 7214 } 7215 7216 if (mask & IFCAP_VLAN_HWCSUM && 7217 ifp->if_capabilities & IFCAP_VLAN_HWCSUM) 7218 ifp->if_capenable ^= IFCAP_VLAN_HWCSUM; 7219 7220 if ((mask & IFCAP_VLAN_HWTSO) != 0 && 7221 (ifp->if_capabilities & IFCAP_VLAN_HWTSO) != 0) 7222 ifp->if_capenable ^= IFCAP_VLAN_HWTSO; 7223 /* 7224 * Don't actually disable VLAN tag stripping as 7225 * management firmware (ASF/IPMI/UMP) requires the 7226 * feature. If VLAN tag stripping is disabled driver 7227 * will manually reconstruct the VLAN frame by 7228 * appending stripped VLAN tag. 7229 */ 7230 if ((mask & IFCAP_VLAN_HWTAGGING) != 0 && 7231 (ifp->if_capabilities & IFCAP_VLAN_HWTAGGING)) { 7232 ifp->if_capenable ^= IFCAP_VLAN_HWTAGGING; 7233 if ((ifp->if_capenable & IFCAP_VLAN_HWTAGGING) 7234 == 0) 7235 ifp->if_capenable &= ~IFCAP_VLAN_HWTSO; 7236 } 7237 VLAN_CAPABILITIES(ifp); 7238 break; 7239 default: 7240 /* We don't know how to handle the IOCTL, pass it on. */ 7241 error = ether_ioctl(ifp, command, data); 7242 break; 7243 } 7244 7245 DBEXIT(BCE_VERBOSE_MISC); 7246 return(error); 7247 } 7248 7249 7250 /****************************************************************************/ 7251 /* Transmit timeout handler. */ 7252 /* */ 7253 /* Returns: */ 7254 /* Nothing. */ 7255 /****************************************************************************/ 7256 static void 7257 bce_watchdog(struct bce_softc *sc) 7258 { 7259 DBENTER(BCE_EXTREME_SEND); 7260 7261 BCE_LOCK_ASSERT(sc); 7262 7263 /* If the watchdog timer hasn't expired then just exit. */ 7264 if (sc->watchdog_timer == 0 || --sc->watchdog_timer) 7265 goto bce_watchdog_exit; 7266 7267 /* If pause frames are active then don't reset the hardware. */ 7268 /* ToDo: Should we reset the timer here? */ 7269 if (REG_RD(sc, BCE_EMAC_TX_STATUS) & BCE_EMAC_TX_STATUS_XOFFED) 7270 goto bce_watchdog_exit; 7271 7272 BCE_PRINTF("%s(%d): Watchdog timeout occurred, resetting!\n", 7273 __FILE__, __LINE__); 7274 7275 DBRUNMSG(BCE_INFO, 7276 bce_dump_driver_state(sc); 7277 bce_dump_status_block(sc); 7278 bce_dump_stats_block(sc); 7279 bce_dump_ftqs(sc); 7280 bce_dump_txp_state(sc, 0); 7281 bce_dump_rxp_state(sc, 0); 7282 bce_dump_tpat_state(sc, 0); 7283 bce_dump_cp_state(sc, 0); 7284 bce_dump_com_state(sc, 0)); 7285 7286 DBRUN(bce_breakpoint(sc)); 7287 7288 sc->bce_ifp->if_drv_flags &= ~IFF_DRV_RUNNING; 7289 7290 bce_init_locked(sc); 7291 sc->bce_ifp->if_oerrors++; 7292 7293 bce_watchdog_exit: 7294 DBEXIT(BCE_EXTREME_SEND); 7295 } 7296 7297 7298 /* 7299 * Interrupt handler. 7300 */ 7301 /****************************************************************************/ 7302 /* Main interrupt entry point. Verifies that the controller generated the */ 7303 /* interrupt and then calls a separate routine for handle the various */ 7304 /* interrupt causes (PHY, TX, RX). */ 7305 /* */ 7306 /* Returns: */ 7307 /* 0 for success, positive value for failure. */ 7308 /****************************************************************************/ 7309 static void 7310 bce_intr(void *xsc) 7311 { 7312 struct bce_softc *sc; 7313 struct ifnet *ifp; 7314 u32 status_attn_bits; 7315 u16 hw_rx_cons, hw_tx_cons; 7316 7317 sc = xsc; 7318 ifp = sc->bce_ifp; 7319 7320 DBENTER(BCE_VERBOSE_SEND | BCE_VERBOSE_RECV | BCE_VERBOSE_INTR); 7321 DBRUNMSG(BCE_VERBOSE_INTR, bce_dump_status_block(sc)); 7322 DBRUNMSG(BCE_VERBOSE_INTR, bce_dump_stats_block(sc)); 7323 7324 BCE_LOCK(sc); 7325 7326 DBRUN(sc->interrupts_generated++); 7327 7328 /* Synchnorize before we read from interface's status block */ 7329 bus_dmamap_sync(sc->status_tag, sc->status_map, 7330 BUS_DMASYNC_POSTREAD); 7331 7332 /* 7333 * If the hardware status block index 7334 * matches the last value read by the 7335 * driver and we haven't asserted our 7336 * interrupt then there's nothing to do. 7337 */ 7338 if ((sc->status_block->status_idx == sc->last_status_idx) && 7339 (REG_RD(sc, BCE_PCICFG_MISC_STATUS) & 7340 BCE_PCICFG_MISC_STATUS_INTA_VALUE)) { 7341 DBPRINT(sc, BCE_VERBOSE_INTR, "%s(): Spurious interrupt.\n", 7342 __FUNCTION__); 7343 goto bce_intr_exit; 7344 } 7345 7346 /* Ack the interrupt and stop others from occuring. */ 7347 REG_WR(sc, BCE_PCICFG_INT_ACK_CMD, 7348 BCE_PCICFG_INT_ACK_CMD_USE_INT_HC_PARAM | 7349 BCE_PCICFG_INT_ACK_CMD_MASK_INT); 7350 7351 /* Check if the hardware has finished any work. */ 7352 hw_rx_cons = bce_get_hw_rx_cons(sc); 7353 hw_tx_cons = bce_get_hw_tx_cons(sc); 7354 7355 /* Keep processing data as long as there is work to do. */ 7356 for (;;) { 7357 7358 status_attn_bits = sc->status_block->status_attn_bits; 7359 7360 DBRUNIF(DB_RANDOMTRUE(unexpected_attention_sim_control), 7361 BCE_PRINTF("Simulating unexpected status attention " 7362 "bit set."); 7363 sc->unexpected_attention_sim_count++; 7364 status_attn_bits = status_attn_bits | 7365 STATUS_ATTN_BITS_PARITY_ERROR); 7366 7367 /* Was it a link change interrupt? */ 7368 if ((status_attn_bits & STATUS_ATTN_BITS_LINK_STATE) != 7369 (sc->status_block->status_attn_bits_ack & 7370 STATUS_ATTN_BITS_LINK_STATE)) { 7371 bce_phy_intr(sc); 7372 7373 /* Clear transient updates during link state change. */ 7374 REG_WR(sc, BCE_HC_COMMAND, sc->hc_command | 7375 BCE_HC_COMMAND_COAL_NOW_WO_INT); 7376 REG_RD(sc, BCE_HC_COMMAND); 7377 } 7378 7379 /* If any other attention is asserted, the chip is toast. */ 7380 if (((status_attn_bits & ~STATUS_ATTN_BITS_LINK_STATE) != 7381 (sc->status_block->status_attn_bits_ack & 7382 ~STATUS_ATTN_BITS_LINK_STATE))) { 7383 7384 sc->unexpected_attention_count++; 7385 7386 BCE_PRINTF("%s(%d): Fatal attention detected: " 7387 "0x%08X\n", __FILE__, __LINE__, 7388 sc->status_block->status_attn_bits); 7389 7390 DBRUNMSG(BCE_FATAL, 7391 if (unexpected_attention_sim_control == 0) 7392 bce_breakpoint(sc)); 7393 7394 bce_init_locked(sc); 7395 goto bce_intr_exit; 7396 } 7397 7398 /* Check for any completed RX frames. */ 7399 if (hw_rx_cons != sc->hw_rx_cons) 7400 bce_rx_intr(sc); 7401 7402 /* Check for any completed TX frames. */ 7403 if (hw_tx_cons != sc->hw_tx_cons) 7404 bce_tx_intr(sc); 7405 7406 /* Save status block index value for the next interrupt. */ 7407 sc->last_status_idx = sc->status_block->status_idx; 7408 7409 /* 7410 * Prevent speculative reads from getting 7411 * ahead of the status block. 7412 */ 7413 bus_space_barrier(sc->bce_btag, sc->bce_bhandle, 0, 0, 7414 BUS_SPACE_BARRIER_READ); 7415 7416 /* 7417 * If there's no work left then exit the 7418 * interrupt service routine. 7419 */ 7420 hw_rx_cons = bce_get_hw_rx_cons(sc); 7421 hw_tx_cons = bce_get_hw_tx_cons(sc); 7422 7423 if ((hw_rx_cons == sc->hw_rx_cons) && 7424 (hw_tx_cons == sc->hw_tx_cons)) 7425 break; 7426 7427 } 7428 7429 bus_dmamap_sync(sc->status_tag, sc->status_map, 7430 BUS_DMASYNC_PREREAD); 7431 7432 /* Re-enable interrupts. */ 7433 bce_enable_intr(sc, 0); 7434 7435 /* Handle any frames that arrived while handling the interrupt. */ 7436 if (ifp->if_drv_flags & IFF_DRV_RUNNING && 7437 !IFQ_DRV_IS_EMPTY(&ifp->if_snd)) 7438 bce_start_locked(ifp); 7439 7440 bce_intr_exit: 7441 BCE_UNLOCK(sc); 7442 7443 DBEXIT(BCE_VERBOSE_SEND | BCE_VERBOSE_RECV | BCE_VERBOSE_INTR); 7444 } 7445 7446 7447 /****************************************************************************/ 7448 /* Programs the various packet receive modes (broadcast and multicast). */ 7449 /* */ 7450 /* Returns: */ 7451 /* Nothing. */ 7452 /****************************************************************************/ 7453 static void 7454 bce_set_rx_mode(struct bce_softc *sc) 7455 { 7456 struct ifnet *ifp; 7457 struct ifmultiaddr *ifma; 7458 u32 hashes[NUM_MC_HASH_REGISTERS] = { 0, 0, 0, 0, 0, 0, 0, 0 }; 7459 u32 rx_mode, sort_mode; 7460 int h, i; 7461 7462 DBENTER(BCE_VERBOSE_MISC); 7463 7464 BCE_LOCK_ASSERT(sc); 7465 7466 ifp = sc->bce_ifp; 7467 7468 /* Initialize receive mode default settings. */ 7469 rx_mode = sc->rx_mode & ~(BCE_EMAC_RX_MODE_PROMISCUOUS | 7470 BCE_EMAC_RX_MODE_KEEP_VLAN_TAG); 7471 sort_mode = 1 | BCE_RPM_SORT_USER0_BC_EN; 7472 7473 /* 7474 * ASF/IPMI/UMP firmware requires that VLAN tag stripping 7475 * be enbled. 7476 */ 7477 if (!(BCE_IF_CAPABILITIES & IFCAP_VLAN_HWTAGGING) && 7478 (!(sc->bce_flags & BCE_MFW_ENABLE_FLAG))) 7479 rx_mode |= BCE_EMAC_RX_MODE_KEEP_VLAN_TAG; 7480 7481 /* 7482 * Check for promiscuous, all multicast, or selected 7483 * multicast address filtering. 7484 */ 7485 if (ifp->if_flags & IFF_PROMISC) { 7486 DBPRINT(sc, BCE_INFO_MISC, "Enabling promiscuous mode.\n"); 7487 7488 /* Enable promiscuous mode. */ 7489 rx_mode |= BCE_EMAC_RX_MODE_PROMISCUOUS; 7490 sort_mode |= BCE_RPM_SORT_USER0_PROM_EN; 7491 } else if (ifp->if_flags & IFF_ALLMULTI) { 7492 DBPRINT(sc, BCE_INFO_MISC, "Enabling all multicast mode.\n"); 7493 7494 /* Enable all multicast addresses. */ 7495 for (i = 0; i < NUM_MC_HASH_REGISTERS; i++) { 7496 REG_WR(sc, BCE_EMAC_MULTICAST_HASH0 + (i * 4), 0xffffffff); 7497 } 7498 sort_mode |= BCE_RPM_SORT_USER0_MC_EN; 7499 } else { 7500 /* Accept one or more multicast(s). */ 7501 DBPRINT(sc, BCE_INFO_MISC, "Enabling selective multicast mode.\n"); 7502 7503 if_maddr_rlock(ifp); 7504 TAILQ_FOREACH(ifma, &ifp->if_multiaddrs, ifma_link) { 7505 if (ifma->ifma_addr->sa_family != AF_LINK) 7506 continue; 7507 h = ether_crc32_le(LLADDR((struct sockaddr_dl *) 7508 ifma->ifma_addr), ETHER_ADDR_LEN) & 0xFF; 7509 hashes[(h & 0xE0) >> 5] |= 1 << (h & 0x1F); 7510 } 7511 if_maddr_runlock(ifp); 7512 7513 for (i = 0; i < NUM_MC_HASH_REGISTERS; i++) 7514 REG_WR(sc, BCE_EMAC_MULTICAST_HASH0 + (i * 4), hashes[i]); 7515 7516 sort_mode |= BCE_RPM_SORT_USER0_MC_HSH_EN; 7517 } 7518 7519 /* Only make changes if the recive mode has actually changed. */ 7520 if (rx_mode != sc->rx_mode) { 7521 DBPRINT(sc, BCE_VERBOSE_MISC, "Enabling new receive mode: " 7522 "0x%08X\n", rx_mode); 7523 7524 sc->rx_mode = rx_mode; 7525 REG_WR(sc, BCE_EMAC_RX_MODE, rx_mode); 7526 } 7527 7528 /* Disable and clear the exisitng sort before enabling a new sort. */ 7529 REG_WR(sc, BCE_RPM_SORT_USER0, 0x0); 7530 REG_WR(sc, BCE_RPM_SORT_USER0, sort_mode); 7531 REG_WR(sc, BCE_RPM_SORT_USER0, sort_mode | BCE_RPM_SORT_USER0_ENA); 7532 7533 DBEXIT(BCE_VERBOSE_MISC); 7534 } 7535 7536 7537 /****************************************************************************/ 7538 /* Called periodically to updates statistics from the controllers */ 7539 /* statistics block. */ 7540 /* */ 7541 /* Returns: */ 7542 /* Nothing. */ 7543 /****************************************************************************/ 7544 static void 7545 bce_stats_update(struct bce_softc *sc) 7546 { 7547 struct ifnet *ifp; 7548 struct statistics_block *stats; 7549 7550 DBENTER(BCE_EXTREME_MISC); 7551 7552 ifp = sc->bce_ifp; 7553 7554 stats = (struct statistics_block *) sc->stats_block; 7555 7556 /* 7557 * Certain controllers don't report 7558 * carrier sense errors correctly. 7559 * See errata E11_5708CA0_1165. 7560 */ 7561 if (!(BCE_CHIP_NUM(sc) == BCE_CHIP_NUM_5706) && 7562 !(BCE_CHIP_ID(sc) == BCE_CHIP_ID_5708_A0)) 7563 ifp->if_oerrors += 7564 (u_long) stats->stat_Dot3StatsCarrierSenseErrors; 7565 7566 /* 7567 * Update the sysctl statistics from the 7568 * hardware statistics. 7569 */ 7570 sc->stat_IfHCInOctets = 7571 ((u64) stats->stat_IfHCInOctets_hi << 32) + 7572 (u64) stats->stat_IfHCInOctets_lo; 7573 7574 sc->stat_IfHCInBadOctets = 7575 ((u64) stats->stat_IfHCInBadOctets_hi << 32) + 7576 (u64) stats->stat_IfHCInBadOctets_lo; 7577 7578 sc->stat_IfHCOutOctets = 7579 ((u64) stats->stat_IfHCOutOctets_hi << 32) + 7580 (u64) stats->stat_IfHCOutOctets_lo; 7581 7582 sc->stat_IfHCOutBadOctets = 7583 ((u64) stats->stat_IfHCOutBadOctets_hi << 32) + 7584 (u64) stats->stat_IfHCOutBadOctets_lo; 7585 7586 sc->stat_IfHCInUcastPkts = 7587 ((u64) stats->stat_IfHCInUcastPkts_hi << 32) + 7588 (u64) stats->stat_IfHCInUcastPkts_lo; 7589 7590 sc->stat_IfHCInMulticastPkts = 7591 ((u64) stats->stat_IfHCInMulticastPkts_hi << 32) + 7592 (u64) stats->stat_IfHCInMulticastPkts_lo; 7593 7594 sc->stat_IfHCInBroadcastPkts = 7595 ((u64) stats->stat_IfHCInBroadcastPkts_hi << 32) + 7596 (u64) stats->stat_IfHCInBroadcastPkts_lo; 7597 7598 sc->stat_IfHCOutUcastPkts = 7599 ((u64) stats->stat_IfHCOutUcastPkts_hi << 32) + 7600 (u64) stats->stat_IfHCOutUcastPkts_lo; 7601 7602 sc->stat_IfHCOutMulticastPkts = 7603 ((u64) stats->stat_IfHCOutMulticastPkts_hi << 32) + 7604 (u64) stats->stat_IfHCOutMulticastPkts_lo; 7605 7606 sc->stat_IfHCOutBroadcastPkts = 7607 ((u64) stats->stat_IfHCOutBroadcastPkts_hi << 32) + 7608 (u64) stats->stat_IfHCOutBroadcastPkts_lo; 7609 7610 /* ToDo: Preserve counters beyond 32 bits? */ 7611 /* ToDo: Read the statistics from auto-clear regs? */ 7612 7613 sc->stat_emac_tx_stat_dot3statsinternalmactransmiterrors = 7614 stats->stat_emac_tx_stat_dot3statsinternalmactransmiterrors; 7615 7616 sc->stat_Dot3StatsCarrierSenseErrors = 7617 stats->stat_Dot3StatsCarrierSenseErrors; 7618 7619 sc->stat_Dot3StatsFCSErrors = 7620 stats->stat_Dot3StatsFCSErrors; 7621 7622 sc->stat_Dot3StatsAlignmentErrors = 7623 stats->stat_Dot3StatsAlignmentErrors; 7624 7625 sc->stat_Dot3StatsSingleCollisionFrames = 7626 stats->stat_Dot3StatsSingleCollisionFrames; 7627 7628 sc->stat_Dot3StatsMultipleCollisionFrames = 7629 stats->stat_Dot3StatsMultipleCollisionFrames; 7630 7631 sc->stat_Dot3StatsDeferredTransmissions = 7632 stats->stat_Dot3StatsDeferredTransmissions; 7633 7634 sc->stat_Dot3StatsExcessiveCollisions = 7635 stats->stat_Dot3StatsExcessiveCollisions; 7636 7637 sc->stat_Dot3StatsLateCollisions = 7638 stats->stat_Dot3StatsLateCollisions; 7639 7640 sc->stat_EtherStatsCollisions = 7641 stats->stat_EtherStatsCollisions; 7642 7643 sc->stat_EtherStatsFragments = 7644 stats->stat_EtherStatsFragments; 7645 7646 sc->stat_EtherStatsJabbers = 7647 stats->stat_EtherStatsJabbers; 7648 7649 sc->stat_EtherStatsUndersizePkts = 7650 stats->stat_EtherStatsUndersizePkts; 7651 7652 sc->stat_EtherStatsOversizePkts = 7653 stats->stat_EtherStatsOversizePkts; 7654 7655 sc->stat_EtherStatsPktsRx64Octets = 7656 stats->stat_EtherStatsPktsRx64Octets; 7657 7658 sc->stat_EtherStatsPktsRx65Octetsto127Octets = 7659 stats->stat_EtherStatsPktsRx65Octetsto127Octets; 7660 7661 sc->stat_EtherStatsPktsRx128Octetsto255Octets = 7662 stats->stat_EtherStatsPktsRx128Octetsto255Octets; 7663 7664 sc->stat_EtherStatsPktsRx256Octetsto511Octets = 7665 stats->stat_EtherStatsPktsRx256Octetsto511Octets; 7666 7667 sc->stat_EtherStatsPktsRx512Octetsto1023Octets = 7668 stats->stat_EtherStatsPktsRx512Octetsto1023Octets; 7669 7670 sc->stat_EtherStatsPktsRx1024Octetsto1522Octets = 7671 stats->stat_EtherStatsPktsRx1024Octetsto1522Octets; 7672 7673 sc->stat_EtherStatsPktsRx1523Octetsto9022Octets = 7674 stats->stat_EtherStatsPktsRx1523Octetsto9022Octets; 7675 7676 sc->stat_EtherStatsPktsTx64Octets = 7677 stats->stat_EtherStatsPktsTx64Octets; 7678 7679 sc->stat_EtherStatsPktsTx65Octetsto127Octets = 7680 stats->stat_EtherStatsPktsTx65Octetsto127Octets; 7681 7682 sc->stat_EtherStatsPktsTx128Octetsto255Octets = 7683 stats->stat_EtherStatsPktsTx128Octetsto255Octets; 7684 7685 sc->stat_EtherStatsPktsTx256Octetsto511Octets = 7686 stats->stat_EtherStatsPktsTx256Octetsto511Octets; 7687 7688 sc->stat_EtherStatsPktsTx512Octetsto1023Octets = 7689 stats->stat_EtherStatsPktsTx512Octetsto1023Octets; 7690 7691 sc->stat_EtherStatsPktsTx1024Octetsto1522Octets = 7692 stats->stat_EtherStatsPktsTx1024Octetsto1522Octets; 7693 7694 sc->stat_EtherStatsPktsTx1523Octetsto9022Octets = 7695 stats->stat_EtherStatsPktsTx1523Octetsto9022Octets; 7696 7697 sc->stat_XonPauseFramesReceived = 7698 stats->stat_XonPauseFramesReceived; 7699 7700 sc->stat_XoffPauseFramesReceived = 7701 stats->stat_XoffPauseFramesReceived; 7702 7703 sc->stat_OutXonSent = 7704 stats->stat_OutXonSent; 7705 7706 sc->stat_OutXoffSent = 7707 stats->stat_OutXoffSent; 7708 7709 sc->stat_FlowControlDone = 7710 stats->stat_FlowControlDone; 7711 7712 sc->stat_MacControlFramesReceived = 7713 stats->stat_MacControlFramesReceived; 7714 7715 sc->stat_XoffStateEntered = 7716 stats->stat_XoffStateEntered; 7717 7718 sc->stat_IfInFramesL2FilterDiscards = 7719 stats->stat_IfInFramesL2FilterDiscards; 7720 7721 sc->stat_IfInRuleCheckerDiscards = 7722 stats->stat_IfInRuleCheckerDiscards; 7723 7724 sc->stat_IfInFTQDiscards = 7725 stats->stat_IfInFTQDiscards; 7726 7727 sc->stat_IfInMBUFDiscards = 7728 stats->stat_IfInMBUFDiscards; 7729 7730 sc->stat_IfInRuleCheckerP4Hit = 7731 stats->stat_IfInRuleCheckerP4Hit; 7732 7733 sc->stat_CatchupInRuleCheckerDiscards = 7734 stats->stat_CatchupInRuleCheckerDiscards; 7735 7736 sc->stat_CatchupInFTQDiscards = 7737 stats->stat_CatchupInFTQDiscards; 7738 7739 sc->stat_CatchupInMBUFDiscards = 7740 stats->stat_CatchupInMBUFDiscards; 7741 7742 sc->stat_CatchupInRuleCheckerP4Hit = 7743 stats->stat_CatchupInRuleCheckerP4Hit; 7744 7745 sc->com_no_buffers = REG_RD_IND(sc, 0x120084); 7746 7747 /* 7748 * Update the interface statistics from the 7749 * hardware statistics. 7750 */ 7751 ifp->if_collisions = 7752 (u_long) sc->stat_EtherStatsCollisions; 7753 7754 /* ToDo: This method loses soft errors. */ 7755 ifp->if_ierrors = 7756 (u_long) sc->stat_EtherStatsUndersizePkts + 7757 (u_long) sc->stat_EtherStatsOversizePkts + 7758 (u_long) sc->stat_IfInMBUFDiscards + 7759 (u_long) sc->stat_Dot3StatsAlignmentErrors + 7760 (u_long) sc->stat_Dot3StatsFCSErrors + 7761 (u_long) sc->stat_IfInRuleCheckerDiscards + 7762 (u_long) sc->stat_IfInFTQDiscards + 7763 (u_long) sc->com_no_buffers; 7764 7765 /* ToDo: This method loses soft errors. */ 7766 ifp->if_oerrors = 7767 (u_long) sc->stat_emac_tx_stat_dot3statsinternalmactransmiterrors + 7768 (u_long) sc->stat_Dot3StatsExcessiveCollisions + 7769 (u_long) sc->stat_Dot3StatsLateCollisions; 7770 7771 /* ToDo: Add additional statistics? */ 7772 7773 DBEXIT(BCE_EXTREME_MISC); 7774 } 7775 7776 7777 /****************************************************************************/ 7778 /* Periodic function to notify the bootcode that the driver is still */ 7779 /* present. */ 7780 /* */ 7781 /* Returns: */ 7782 /* Nothing. */ 7783 /****************************************************************************/ 7784 static void 7785 bce_pulse(void *xsc) 7786 { 7787 struct bce_softc *sc = xsc; 7788 u32 msg; 7789 7790 DBENTER(BCE_EXTREME_MISC); 7791 7792 BCE_LOCK_ASSERT(sc); 7793 7794 /* Tell the firmware that the driver is still running. */ 7795 msg = (u32) ++sc->bce_fw_drv_pulse_wr_seq; 7796 bce_shmem_wr(sc, BCE_DRV_PULSE_MB, msg); 7797 7798 /* Update the bootcode condition. */ 7799 sc->bc_state = bce_shmem_rd(sc, BCE_BC_STATE_CONDITION); 7800 7801 /* Report whether the bootcode still knows the driver is running. */ 7802 if (sc->bce_drv_cardiac_arrest == FALSE) { 7803 if (!(sc->bc_state & BCE_CONDITION_DRV_PRESENT)) { 7804 sc->bce_drv_cardiac_arrest = TRUE; 7805 BCE_PRINTF("%s(): Bootcode lost the driver pulse! " 7806 "(bc_state = 0x%08X)\n", __FUNCTION__, 7807 sc->bc_state); 7808 } 7809 } else { 7810 /* 7811 * Not supported by all bootcode versions. 7812 * (v5.0.11+ and v5.2.1+) Older bootcode 7813 * will require the driver to reset the 7814 * controller to clear this condition. 7815 */ 7816 if (sc->bc_state & BCE_CONDITION_DRV_PRESENT) { 7817 sc->bce_drv_cardiac_arrest = FALSE; 7818 BCE_PRINTF("%s(): Bootcode found the driver pulse! " 7819 "(bc_state = 0x%08X)\n", __FUNCTION__, 7820 sc->bc_state); 7821 } 7822 } 7823 7824 7825 /* Schedule the next pulse. */ 7826 callout_reset(&sc->bce_pulse_callout, hz, bce_pulse, sc); 7827 7828 DBEXIT(BCE_EXTREME_MISC); 7829 } 7830 7831 7832 /****************************************************************************/ 7833 /* Periodic function to perform maintenance tasks. */ 7834 /* */ 7835 /* Returns: */ 7836 /* Nothing. */ 7837 /****************************************************************************/ 7838 static void 7839 bce_tick(void *xsc) 7840 { 7841 struct bce_softc *sc = xsc; 7842 struct mii_data *mii; 7843 struct ifnet *ifp; 7844 7845 ifp = sc->bce_ifp; 7846 7847 DBENTER(BCE_EXTREME_MISC); 7848 7849 BCE_LOCK_ASSERT(sc); 7850 7851 /* Schedule the next tick. */ 7852 callout_reset(&sc->bce_tick_callout, hz, bce_tick, sc); 7853 7854 /* Update the statistics from the hardware statistics block. */ 7855 bce_stats_update(sc); 7856 7857 /* Top off the receive and page chains. */ 7858 #ifdef BCE_JUMBO_HDRSPLIT 7859 bce_fill_pg_chain(sc); 7860 #endif 7861 bce_fill_rx_chain(sc); 7862 7863 /* Check that chip hasn't hung. */ 7864 bce_watchdog(sc); 7865 7866 /* If link is up already up then we're done. */ 7867 if (sc->bce_link_up == TRUE) 7868 goto bce_tick_exit; 7869 7870 /* Link is down. Check what the PHY's doing. */ 7871 mii = device_get_softc(sc->bce_miibus); 7872 mii_tick(mii); 7873 7874 /* Check if the link has come up. */ 7875 if ((mii->mii_media_status & IFM_ACTIVE) && 7876 (IFM_SUBTYPE(mii->mii_media_active) != IFM_NONE)) { 7877 DBPRINT(sc, BCE_VERBOSE_MISC, 7878 "%s(): Link up!\n", __FUNCTION__); 7879 sc->bce_link_up = TRUE; 7880 if ((IFM_SUBTYPE(mii->mii_media_active) == IFM_1000_T || 7881 IFM_SUBTYPE(mii->mii_media_active) == IFM_1000_SX || 7882 IFM_SUBTYPE(mii->mii_media_active) == IFM_2500_SX) && 7883 bootverbose) 7884 BCE_PRINTF("Gigabit link up!\n"); 7885 7886 /* Now that link is up, handle any outstanding TX traffic. */ 7887 if (!IFQ_DRV_IS_EMPTY(&ifp->if_snd)) { 7888 DBPRINT(sc, BCE_VERBOSE_MISC, "%s(): Found " 7889 "pending TX traffic.\n", __FUNCTION__); 7890 bce_start_locked(ifp); 7891 } 7892 } 7893 7894 bce_tick_exit: 7895 DBEXIT(BCE_EXTREME_MISC); 7896 return; 7897 } 7898 7899 7900 #ifdef BCE_DEBUG 7901 /****************************************************************************/ 7902 /* Allows the driver state to be dumped through the sysctl interface. */ 7903 /* */ 7904 /* Returns: */ 7905 /* 0 for success, positive value for failure. */ 7906 /****************************************************************************/ 7907 static int 7908 bce_sysctl_driver_state(SYSCTL_HANDLER_ARGS) 7909 { 7910 int error; 7911 int result; 7912 struct bce_softc *sc; 7913 7914 result = -1; 7915 error = sysctl_handle_int(oidp, &result, 0, req); 7916 7917 if (error || !req->newptr) 7918 return (error); 7919 7920 if (result == 1) { 7921 sc = (struct bce_softc *)arg1; 7922 bce_dump_driver_state(sc); 7923 } 7924 7925 return error; 7926 } 7927 7928 7929 /****************************************************************************/ 7930 /* Allows the hardware state to be dumped through the sysctl interface. */ 7931 /* */ 7932 /* Returns: */ 7933 /* 0 for success, positive value for failure. */ 7934 /****************************************************************************/ 7935 static int 7936 bce_sysctl_hw_state(SYSCTL_HANDLER_ARGS) 7937 { 7938 int error; 7939 int result; 7940 struct bce_softc *sc; 7941 7942 result = -1; 7943 error = sysctl_handle_int(oidp, &result, 0, req); 7944 7945 if (error || !req->newptr) 7946 return (error); 7947 7948 if (result == 1) { 7949 sc = (struct bce_softc *)arg1; 7950 bce_dump_hw_state(sc); 7951 } 7952 7953 return error; 7954 } 7955 7956 7957 /****************************************************************************/ 7958 /* Allows the status block to be dumped through the sysctl interface. */ 7959 /* */ 7960 /* Returns: */ 7961 /* 0 for success, positive value for failure. */ 7962 /****************************************************************************/ 7963 static int 7964 bce_sysctl_status_block(SYSCTL_HANDLER_ARGS) 7965 { 7966 int error; 7967 int result; 7968 struct bce_softc *sc; 7969 7970 result = -1; 7971 error = sysctl_handle_int(oidp, &result, 0, req); 7972 7973 if (error || !req->newptr) 7974 return (error); 7975 7976 if (result == 1) { 7977 sc = (struct bce_softc *)arg1; 7978 bce_dump_status_block(sc); 7979 } 7980 7981 return error; 7982 } 7983 7984 7985 /****************************************************************************/ 7986 /* Allows the stats block to be dumped through the sysctl interface. */ 7987 /* */ 7988 /* Returns: */ 7989 /* 0 for success, positive value for failure. */ 7990 /****************************************************************************/ 7991 static int 7992 bce_sysctl_stats_block(SYSCTL_HANDLER_ARGS) 7993 { 7994 int error; 7995 int result; 7996 struct bce_softc *sc; 7997 7998 result = -1; 7999 error = sysctl_handle_int(oidp, &result, 0, req); 8000 8001 if (error || !req->newptr) 8002 return (error); 8003 8004 if (result == 1) { 8005 sc = (struct bce_softc *)arg1; 8006 bce_dump_stats_block(sc); 8007 } 8008 8009 return error; 8010 } 8011 8012 8013 /****************************************************************************/ 8014 /* Allows the bootcode state to be dumped through the sysctl interface. */ 8015 /* */ 8016 /* Returns: */ 8017 /* 0 for success, positive value for failure. */ 8018 /****************************************************************************/ 8019 static int 8020 bce_sysctl_bc_state(SYSCTL_HANDLER_ARGS) 8021 { 8022 int error; 8023 int result; 8024 struct bce_softc *sc; 8025 8026 result = -1; 8027 error = sysctl_handle_int(oidp, &result, 0, req); 8028 8029 if (error || !req->newptr) 8030 return (error); 8031 8032 if (result == 1) { 8033 sc = (struct bce_softc *)arg1; 8034 bce_dump_bc_state(sc); 8035 } 8036 8037 return error; 8038 } 8039 8040 8041 /****************************************************************************/ 8042 /* Provides a sysctl interface to allow dumping the RX BD chain. */ 8043 /* */ 8044 /* Returns: */ 8045 /* 0 for success, positive value for failure. */ 8046 /****************************************************************************/ 8047 static int 8048 bce_sysctl_dump_rx_bd_chain(SYSCTL_HANDLER_ARGS) 8049 { 8050 int error; 8051 int result; 8052 struct bce_softc *sc; 8053 8054 result = -1; 8055 error = sysctl_handle_int(oidp, &result, 0, req); 8056 8057 if (error || !req->newptr) 8058 return (error); 8059 8060 if (result == 1) { 8061 sc = (struct bce_softc *)arg1; 8062 bce_dump_rx_bd_chain(sc, 0, TOTAL_RX_BD); 8063 } 8064 8065 return error; 8066 } 8067 8068 8069 /****************************************************************************/ 8070 /* Provides a sysctl interface to allow dumping the RX MBUF chain. */ 8071 /* */ 8072 /* Returns: */ 8073 /* 0 for success, positive value for failure. */ 8074 /****************************************************************************/ 8075 static int 8076 bce_sysctl_dump_rx_mbuf_chain(SYSCTL_HANDLER_ARGS) 8077 { 8078 int error; 8079 int result; 8080 struct bce_softc *sc; 8081 8082 result = -1; 8083 error = sysctl_handle_int(oidp, &result, 0, req); 8084 8085 if (error || !req->newptr) 8086 return (error); 8087 8088 if (result == 1) { 8089 sc = (struct bce_softc *)arg1; 8090 bce_dump_rx_mbuf_chain(sc, 0, USABLE_RX_BD); 8091 } 8092 8093 return error; 8094 } 8095 8096 8097 /****************************************************************************/ 8098 /* Provides a sysctl interface to allow dumping the TX chain. */ 8099 /* */ 8100 /* Returns: */ 8101 /* 0 for success, positive value for failure. */ 8102 /****************************************************************************/ 8103 static int 8104 bce_sysctl_dump_tx_chain(SYSCTL_HANDLER_ARGS) 8105 { 8106 int error; 8107 int result; 8108 struct bce_softc *sc; 8109 8110 result = -1; 8111 error = sysctl_handle_int(oidp, &result, 0, req); 8112 8113 if (error || !req->newptr) 8114 return (error); 8115 8116 if (result == 1) { 8117 sc = (struct bce_softc *)arg1; 8118 bce_dump_tx_chain(sc, 0, TOTAL_TX_BD); 8119 } 8120 8121 return error; 8122 } 8123 8124 8125 #ifdef BCE_JUMBO_HDRSPLIT 8126 /****************************************************************************/ 8127 /* Provides a sysctl interface to allow dumping the page chain. */ 8128 /* */ 8129 /* Returns: */ 8130 /* 0 for success, positive value for failure. */ 8131 /****************************************************************************/ 8132 static int 8133 bce_sysctl_dump_pg_chain(SYSCTL_HANDLER_ARGS) 8134 { 8135 int error; 8136 int result; 8137 struct bce_softc *sc; 8138 8139 result = -1; 8140 error = sysctl_handle_int(oidp, &result, 0, req); 8141 8142 if (error || !req->newptr) 8143 return (error); 8144 8145 if (result == 1) { 8146 sc = (struct bce_softc *)arg1; 8147 bce_dump_pg_chain(sc, 0, TOTAL_PG_BD); 8148 } 8149 8150 return error; 8151 } 8152 #endif 8153 8154 /****************************************************************************/ 8155 /* Provides a sysctl interface to allow reading arbitrary NVRAM offsets in */ 8156 /* the device. DO NOT ENABLE ON PRODUCTION SYSTEMS! */ 8157 /* */ 8158 /* Returns: */ 8159 /* 0 for success, positive value for failure. */ 8160 /****************************************************************************/ 8161 static int 8162 bce_sysctl_nvram_read(SYSCTL_HANDLER_ARGS) 8163 { 8164 struct bce_softc *sc = (struct bce_softc *)arg1; 8165 int error; 8166 u32 result; 8167 u32 val[1]; 8168 u8 *data = (u8 *) val; 8169 8170 result = -1; 8171 error = sysctl_handle_int(oidp, &result, 0, req); 8172 if (error || (req->newptr == NULL)) 8173 return (error); 8174 8175 bce_nvram_read(sc, result, data, 4); 8176 BCE_PRINTF("offset 0x%08X = 0x%08X\n", result, bce_be32toh(val[0])); 8177 8178 return (error); 8179 } 8180 8181 8182 /****************************************************************************/ 8183 /* Provides a sysctl interface to allow reading arbitrary registers in the */ 8184 /* device. DO NOT ENABLE ON PRODUCTION SYSTEMS! */ 8185 /* */ 8186 /* Returns: */ 8187 /* 0 for success, positive value for failure. */ 8188 /****************************************************************************/ 8189 static int 8190 bce_sysctl_reg_read(SYSCTL_HANDLER_ARGS) 8191 { 8192 struct bce_softc *sc = (struct bce_softc *)arg1; 8193 int error; 8194 u32 val, result; 8195 8196 result = -1; 8197 error = sysctl_handle_int(oidp, &result, 0, req); 8198 if (error || (req->newptr == NULL)) 8199 return (error); 8200 8201 /* Make sure the register is accessible. */ 8202 if (result < 0x8000) { 8203 val = REG_RD(sc, result); 8204 BCE_PRINTF("reg 0x%08X = 0x%08X\n", result, val); 8205 } else if (result < 0x0280000) { 8206 val = REG_RD_IND(sc, result); 8207 BCE_PRINTF("reg 0x%08X = 0x%08X\n", result, val); 8208 } 8209 8210 return (error); 8211 } 8212 8213 8214 /****************************************************************************/ 8215 /* Provides a sysctl interface to allow reading arbitrary PHY registers in */ 8216 /* the device. DO NOT ENABLE ON PRODUCTION SYSTEMS! */ 8217 /* */ 8218 /* Returns: */ 8219 /* 0 for success, positive value for failure. */ 8220 /****************************************************************************/ 8221 static int 8222 bce_sysctl_phy_read(SYSCTL_HANDLER_ARGS) 8223 { 8224 struct bce_softc *sc; 8225 device_t dev; 8226 int error, result; 8227 u16 val; 8228 8229 result = -1; 8230 error = sysctl_handle_int(oidp, &result, 0, req); 8231 if (error || (req->newptr == NULL)) 8232 return (error); 8233 8234 /* Make sure the register is accessible. */ 8235 if (result < 0x20) { 8236 sc = (struct bce_softc *)arg1; 8237 dev = sc->bce_dev; 8238 val = bce_miibus_read_reg(dev, sc->bce_phy_addr, result); 8239 BCE_PRINTF("phy 0x%02X = 0x%04X\n", result, val); 8240 } 8241 return (error); 8242 } 8243 8244 8245 /****************************************************************************/ 8246 /* Provides a sysctl interface to allow reading a CID. */ 8247 /* */ 8248 /* Returns: */ 8249 /* 0 for success, positive value for failure. */ 8250 /****************************************************************************/ 8251 static int 8252 bce_sysctl_dump_ctx(SYSCTL_HANDLER_ARGS) 8253 { 8254 struct bce_softc *sc; 8255 int error; 8256 u16 result; 8257 8258 result = -1; 8259 error = sysctl_handle_int(oidp, &result, 0, req); 8260 if (error || (req->newptr == NULL)) 8261 return (error); 8262 8263 /* Make sure the register is accessible. */ 8264 if (result <= TX_CID) { 8265 sc = (struct bce_softc *)arg1; 8266 bce_dump_ctx(sc, result); 8267 } 8268 8269 return (error); 8270 } 8271 8272 8273 /****************************************************************************/ 8274 /* Provides a sysctl interface to forcing the driver to dump state and */ 8275 /* enter the debugger. DO NOT ENABLE ON PRODUCTION SYSTEMS! */ 8276 /* */ 8277 /* Returns: */ 8278 /* 0 for success, positive value for failure. */ 8279 /****************************************************************************/ 8280 static int 8281 bce_sysctl_breakpoint(SYSCTL_HANDLER_ARGS) 8282 { 8283 int error; 8284 int result; 8285 struct bce_softc *sc; 8286 8287 result = -1; 8288 error = sysctl_handle_int(oidp, &result, 0, req); 8289 8290 if (error || !req->newptr) 8291 return (error); 8292 8293 if (result == 1) { 8294 sc = (struct bce_softc *)arg1; 8295 bce_breakpoint(sc); 8296 } 8297 8298 return error; 8299 } 8300 #endif 8301 8302 8303 /****************************************************************************/ 8304 /* Adds any sysctl parameters for tuning or debugging purposes. */ 8305 /* */ 8306 /* Returns: */ 8307 /* 0 for success, positive value for failure. */ 8308 /****************************************************************************/ 8309 static void 8310 bce_add_sysctls(struct bce_softc *sc) 8311 { 8312 struct sysctl_ctx_list *ctx; 8313 struct sysctl_oid_list *children; 8314 8315 DBENTER(BCE_VERBOSE_MISC); 8316 8317 ctx = device_get_sysctl_ctx(sc->bce_dev); 8318 children = SYSCTL_CHILDREN(device_get_sysctl_tree(sc->bce_dev)); 8319 8320 #ifdef BCE_DEBUG 8321 SYSCTL_ADD_INT(ctx, children, OID_AUTO, 8322 "l2fhdr_error_sim_control", 8323 CTLFLAG_RW, &l2fhdr_error_sim_control, 8324 0, "Debug control to force l2fhdr errors"); 8325 8326 SYSCTL_ADD_INT(ctx, children, OID_AUTO, 8327 "l2fhdr_error_sim_count", 8328 CTLFLAG_RD, &sc->l2fhdr_error_sim_count, 8329 0, "Number of simulated l2_fhdr errors"); 8330 #endif 8331 8332 SYSCTL_ADD_INT(ctx, children, OID_AUTO, 8333 "l2fhdr_error_count", 8334 CTLFLAG_RD, &sc->l2fhdr_error_count, 8335 0, "Number of l2_fhdr errors"); 8336 8337 #ifdef BCE_DEBUG 8338 SYSCTL_ADD_INT(ctx, children, OID_AUTO, 8339 "mbuf_alloc_failed_sim_control", 8340 CTLFLAG_RW, &mbuf_alloc_failed_sim_control, 8341 0, "Debug control to force mbuf allocation failures"); 8342 8343 SYSCTL_ADD_INT(ctx, children, OID_AUTO, 8344 "mbuf_alloc_failed_sim_count", 8345 CTLFLAG_RD, &sc->mbuf_alloc_failed_sim_count, 8346 0, "Number of simulated mbuf cluster allocation failures"); 8347 #endif 8348 8349 SYSCTL_ADD_INT(ctx, children, OID_AUTO, 8350 "mbuf_alloc_failed_count", 8351 CTLFLAG_RD, &sc->mbuf_alloc_failed_count, 8352 0, "Number of mbuf allocation failures"); 8353 8354 SYSCTL_ADD_INT(ctx, children, OID_AUTO, 8355 "fragmented_mbuf_count", 8356 CTLFLAG_RD, &sc->fragmented_mbuf_count, 8357 0, "Number of fragmented mbufs"); 8358 8359 #ifdef BCE_DEBUG 8360 SYSCTL_ADD_INT(ctx, children, OID_AUTO, 8361 "dma_map_addr_failed_sim_control", 8362 CTLFLAG_RW, &dma_map_addr_failed_sim_control, 8363 0, "Debug control to force DMA mapping failures"); 8364 8365 /* ToDo: Figure out how to update this value in bce_dma_map_addr(). */ 8366 SYSCTL_ADD_INT(ctx, children, OID_AUTO, 8367 "dma_map_addr_failed_sim_count", 8368 CTLFLAG_RD, &sc->dma_map_addr_failed_sim_count, 8369 0, "Number of simulated DMA mapping failures"); 8370 8371 #endif 8372 8373 SYSCTL_ADD_INT(ctx, children, OID_AUTO, 8374 "dma_map_addr_rx_failed_count", 8375 CTLFLAG_RD, &sc->dma_map_addr_rx_failed_count, 8376 0, "Number of RX DMA mapping failures"); 8377 8378 SYSCTL_ADD_INT(ctx, children, OID_AUTO, 8379 "dma_map_addr_tx_failed_count", 8380 CTLFLAG_RD, &sc->dma_map_addr_tx_failed_count, 8381 0, "Number of TX DMA mapping failures"); 8382 8383 #ifdef BCE_DEBUG 8384 SYSCTL_ADD_INT(ctx, children, OID_AUTO, 8385 "unexpected_attention_sim_control", 8386 CTLFLAG_RW, &unexpected_attention_sim_control, 8387 0, "Debug control to simulate unexpected attentions"); 8388 8389 SYSCTL_ADD_INT(ctx, children, OID_AUTO, 8390 "unexpected_attention_sim_count", 8391 CTLFLAG_RW, &sc->unexpected_attention_sim_count, 8392 0, "Number of simulated unexpected attentions"); 8393 #endif 8394 8395 SYSCTL_ADD_INT(ctx, children, OID_AUTO, 8396 "unexpected_attention_count", 8397 CTLFLAG_RW, &sc->unexpected_attention_count, 8398 0, "Number of unexpected attentions"); 8399 8400 #ifdef BCE_DEBUG 8401 SYSCTL_ADD_INT(ctx, children, OID_AUTO, 8402 "debug_bootcode_running_failure", 8403 CTLFLAG_RW, &bootcode_running_failure_sim_control, 8404 0, "Debug control to force bootcode running failures"); 8405 8406 SYSCTL_ADD_INT(ctx, children, OID_AUTO, 8407 "rx_low_watermark", 8408 CTLFLAG_RD, &sc->rx_low_watermark, 8409 0, "Lowest level of free rx_bd's"); 8410 8411 SYSCTL_ADD_INT(ctx, children, OID_AUTO, 8412 "rx_empty_count", 8413 CTLFLAG_RD, &sc->rx_empty_count, 8414 0, "Number of times the RX chain was empty"); 8415 8416 SYSCTL_ADD_INT(ctx, children, OID_AUTO, 8417 "tx_hi_watermark", 8418 CTLFLAG_RD, &sc->tx_hi_watermark, 8419 0, "Highest level of used tx_bd's"); 8420 8421 SYSCTL_ADD_INT(ctx, children, OID_AUTO, 8422 "tx_full_count", 8423 CTLFLAG_RD, &sc->tx_full_count, 8424 0, "Number of times the TX chain was full"); 8425 8426 SYSCTL_ADD_INT(ctx, children, OID_AUTO, 8427 "requested_tso_frames", 8428 CTLFLAG_RD, &sc->requested_tso_frames, 8429 0, "Number of TSO frames received"); 8430 8431 SYSCTL_ADD_UINT(ctx, children, OID_AUTO, 8432 "rx_interrupts", 8433 CTLFLAG_RD, &sc->rx_interrupts, 8434 0, "Number of RX interrupts"); 8435 8436 SYSCTL_ADD_UINT(ctx, children, OID_AUTO, 8437 "tx_interrupts", 8438 CTLFLAG_RD, &sc->tx_interrupts, 8439 0, "Number of TX interrupts"); 8440 #endif 8441 8442 SYSCTL_ADD_ULONG(ctx, children, OID_AUTO, 8443 "stat_IfHcInOctets", 8444 CTLFLAG_RD, &sc->stat_IfHCInOctets, 8445 "Bytes received"); 8446 8447 SYSCTL_ADD_ULONG(ctx, children, OID_AUTO, 8448 "stat_IfHCInBadOctets", 8449 CTLFLAG_RD, &sc->stat_IfHCInBadOctets, 8450 "Bad bytes received"); 8451 8452 SYSCTL_ADD_ULONG(ctx, children, OID_AUTO, 8453 "stat_IfHCOutOctets", 8454 CTLFLAG_RD, &sc->stat_IfHCOutOctets, 8455 "Bytes sent"); 8456 8457 SYSCTL_ADD_ULONG(ctx, children, OID_AUTO, 8458 "stat_IfHCOutBadOctets", 8459 CTLFLAG_RD, &sc->stat_IfHCOutBadOctets, 8460 "Bad bytes sent"); 8461 8462 SYSCTL_ADD_ULONG(ctx, children, OID_AUTO, 8463 "stat_IfHCInUcastPkts", 8464 CTLFLAG_RD, &sc->stat_IfHCInUcastPkts, 8465 "Unicast packets received"); 8466 8467 SYSCTL_ADD_ULONG(ctx, children, OID_AUTO, 8468 "stat_IfHCInMulticastPkts", 8469 CTLFLAG_RD, &sc->stat_IfHCInMulticastPkts, 8470 "Multicast packets received"); 8471 8472 SYSCTL_ADD_ULONG(ctx, children, OID_AUTO, 8473 "stat_IfHCInBroadcastPkts", 8474 CTLFLAG_RD, &sc->stat_IfHCInBroadcastPkts, 8475 "Broadcast packets received"); 8476 8477 SYSCTL_ADD_ULONG(ctx, children, OID_AUTO, 8478 "stat_IfHCOutUcastPkts", 8479 CTLFLAG_RD, &sc->stat_IfHCOutUcastPkts, 8480 "Unicast packets sent"); 8481 8482 SYSCTL_ADD_ULONG(ctx, children, OID_AUTO, 8483 "stat_IfHCOutMulticastPkts", 8484 CTLFLAG_RD, &sc->stat_IfHCOutMulticastPkts, 8485 "Multicast packets sent"); 8486 8487 SYSCTL_ADD_ULONG(ctx, children, OID_AUTO, 8488 "stat_IfHCOutBroadcastPkts", 8489 CTLFLAG_RD, &sc->stat_IfHCOutBroadcastPkts, 8490 "Broadcast packets sent"); 8491 8492 SYSCTL_ADD_UINT(ctx, children, OID_AUTO, 8493 "stat_emac_tx_stat_dot3statsinternalmactransmiterrors", 8494 CTLFLAG_RD, &sc->stat_emac_tx_stat_dot3statsinternalmactransmiterrors, 8495 0, "Internal MAC transmit errors"); 8496 8497 SYSCTL_ADD_UINT(ctx, children, OID_AUTO, 8498 "stat_Dot3StatsCarrierSenseErrors", 8499 CTLFLAG_RD, &sc->stat_Dot3StatsCarrierSenseErrors, 8500 0, "Carrier sense errors"); 8501 8502 SYSCTL_ADD_UINT(ctx, children, OID_AUTO, 8503 "stat_Dot3StatsFCSErrors", 8504 CTLFLAG_RD, &sc->stat_Dot3StatsFCSErrors, 8505 0, "Frame check sequence errors"); 8506 8507 SYSCTL_ADD_UINT(ctx, children, OID_AUTO, 8508 "stat_Dot3StatsAlignmentErrors", 8509 CTLFLAG_RD, &sc->stat_Dot3StatsAlignmentErrors, 8510 0, "Alignment errors"); 8511 8512 SYSCTL_ADD_UINT(ctx, children, OID_AUTO, 8513 "stat_Dot3StatsSingleCollisionFrames", 8514 CTLFLAG_RD, &sc->stat_Dot3StatsSingleCollisionFrames, 8515 0, "Single Collision Frames"); 8516 8517 SYSCTL_ADD_UINT(ctx, children, OID_AUTO, 8518 "stat_Dot3StatsMultipleCollisionFrames", 8519 CTLFLAG_RD, &sc->stat_Dot3StatsMultipleCollisionFrames, 8520 0, "Multiple Collision Frames"); 8521 8522 SYSCTL_ADD_UINT(ctx, children, OID_AUTO, 8523 "stat_Dot3StatsDeferredTransmissions", 8524 CTLFLAG_RD, &sc->stat_Dot3StatsDeferredTransmissions, 8525 0, "Deferred Transmissions"); 8526 8527 SYSCTL_ADD_UINT(ctx, children, OID_AUTO, 8528 "stat_Dot3StatsExcessiveCollisions", 8529 CTLFLAG_RD, &sc->stat_Dot3StatsExcessiveCollisions, 8530 0, "Excessive Collisions"); 8531 8532 SYSCTL_ADD_UINT(ctx, children, OID_AUTO, 8533 "stat_Dot3StatsLateCollisions", 8534 CTLFLAG_RD, &sc->stat_Dot3StatsLateCollisions, 8535 0, "Late Collisions"); 8536 8537 SYSCTL_ADD_UINT(ctx, children, OID_AUTO, 8538 "stat_EtherStatsCollisions", 8539 CTLFLAG_RD, &sc->stat_EtherStatsCollisions, 8540 0, "Collisions"); 8541 8542 SYSCTL_ADD_UINT(ctx, children, OID_AUTO, 8543 "stat_EtherStatsFragments", 8544 CTLFLAG_RD, &sc->stat_EtherStatsFragments, 8545 0, "Fragments"); 8546 8547 SYSCTL_ADD_UINT(ctx, children, OID_AUTO, 8548 "stat_EtherStatsJabbers", 8549 CTLFLAG_RD, &sc->stat_EtherStatsJabbers, 8550 0, "Jabbers"); 8551 8552 SYSCTL_ADD_UINT(ctx, children, OID_AUTO, 8553 "stat_EtherStatsUndersizePkts", 8554 CTLFLAG_RD, &sc->stat_EtherStatsUndersizePkts, 8555 0, "Undersize packets"); 8556 8557 SYSCTL_ADD_UINT(ctx, children, OID_AUTO, 8558 "stat_EtherStatsOversizePkts", 8559 CTLFLAG_RD, &sc->stat_EtherStatsOversizePkts, 8560 0, "stat_EtherStatsOversizePkts"); 8561 8562 SYSCTL_ADD_UINT(ctx, children, OID_AUTO, 8563 "stat_EtherStatsPktsRx64Octets", 8564 CTLFLAG_RD, &sc->stat_EtherStatsPktsRx64Octets, 8565 0, "Bytes received in 64 byte packets"); 8566 8567 SYSCTL_ADD_UINT(ctx, children, OID_AUTO, 8568 "stat_EtherStatsPktsRx65Octetsto127Octets", 8569 CTLFLAG_RD, &sc->stat_EtherStatsPktsRx65Octetsto127Octets, 8570 0, "Bytes received in 65 to 127 byte packets"); 8571 8572 SYSCTL_ADD_UINT(ctx, children, OID_AUTO, 8573 "stat_EtherStatsPktsRx128Octetsto255Octets", 8574 CTLFLAG_RD, &sc->stat_EtherStatsPktsRx128Octetsto255Octets, 8575 0, "Bytes received in 128 to 255 byte packets"); 8576 8577 SYSCTL_ADD_UINT(ctx, children, OID_AUTO, 8578 "stat_EtherStatsPktsRx256Octetsto511Octets", 8579 CTLFLAG_RD, &sc->stat_EtherStatsPktsRx256Octetsto511Octets, 8580 0, "Bytes received in 256 to 511 byte packets"); 8581 8582 SYSCTL_ADD_UINT(ctx, children, OID_AUTO, 8583 "stat_EtherStatsPktsRx512Octetsto1023Octets", 8584 CTLFLAG_RD, &sc->stat_EtherStatsPktsRx512Octetsto1023Octets, 8585 0, "Bytes received in 512 to 1023 byte packets"); 8586 8587 SYSCTL_ADD_UINT(ctx, children, OID_AUTO, 8588 "stat_EtherStatsPktsRx1024Octetsto1522Octets", 8589 CTLFLAG_RD, &sc->stat_EtherStatsPktsRx1024Octetsto1522Octets, 8590 0, "Bytes received in 1024 t0 1522 byte packets"); 8591 8592 SYSCTL_ADD_UINT(ctx, children, OID_AUTO, 8593 "stat_EtherStatsPktsRx1523Octetsto9022Octets", 8594 CTLFLAG_RD, &sc->stat_EtherStatsPktsRx1523Octetsto9022Octets, 8595 0, "Bytes received in 1523 to 9022 byte packets"); 8596 8597 SYSCTL_ADD_UINT(ctx, children, OID_AUTO, 8598 "stat_EtherStatsPktsTx64Octets", 8599 CTLFLAG_RD, &sc->stat_EtherStatsPktsTx64Octets, 8600 0, "Bytes sent in 64 byte packets"); 8601 8602 SYSCTL_ADD_UINT(ctx, children, OID_AUTO, 8603 "stat_EtherStatsPktsTx65Octetsto127Octets", 8604 CTLFLAG_RD, &sc->stat_EtherStatsPktsTx65Octetsto127Octets, 8605 0, "Bytes sent in 65 to 127 byte packets"); 8606 8607 SYSCTL_ADD_UINT(ctx, children, OID_AUTO, 8608 "stat_EtherStatsPktsTx128Octetsto255Octets", 8609 CTLFLAG_RD, &sc->stat_EtherStatsPktsTx128Octetsto255Octets, 8610 0, "Bytes sent in 128 to 255 byte packets"); 8611 8612 SYSCTL_ADD_UINT(ctx, children, OID_AUTO, 8613 "stat_EtherStatsPktsTx256Octetsto511Octets", 8614 CTLFLAG_RD, &sc->stat_EtherStatsPktsTx256Octetsto511Octets, 8615 0, "Bytes sent in 256 to 511 byte packets"); 8616 8617 SYSCTL_ADD_UINT(ctx, children, OID_AUTO, 8618 "stat_EtherStatsPktsTx512Octetsto1023Octets", 8619 CTLFLAG_RD, &sc->stat_EtherStatsPktsTx512Octetsto1023Octets, 8620 0, "Bytes sent in 512 to 1023 byte packets"); 8621 8622 SYSCTL_ADD_UINT(ctx, children, OID_AUTO, 8623 "stat_EtherStatsPktsTx1024Octetsto1522Octets", 8624 CTLFLAG_RD, &sc->stat_EtherStatsPktsTx1024Octetsto1522Octets, 8625 0, "Bytes sent in 1024 to 1522 byte packets"); 8626 8627 SYSCTL_ADD_UINT(ctx, children, OID_AUTO, 8628 "stat_EtherStatsPktsTx1523Octetsto9022Octets", 8629 CTLFLAG_RD, &sc->stat_EtherStatsPktsTx1523Octetsto9022Octets, 8630 0, "Bytes sent in 1523 to 9022 byte packets"); 8631 8632 SYSCTL_ADD_UINT(ctx, children, OID_AUTO, 8633 "stat_XonPauseFramesReceived", 8634 CTLFLAG_RD, &sc->stat_XonPauseFramesReceived, 8635 0, "XON pause frames receved"); 8636 8637 SYSCTL_ADD_UINT(ctx, children, OID_AUTO, 8638 "stat_XoffPauseFramesReceived", 8639 CTLFLAG_RD, &sc->stat_XoffPauseFramesReceived, 8640 0, "XOFF pause frames received"); 8641 8642 SYSCTL_ADD_UINT(ctx, children, OID_AUTO, 8643 "stat_OutXonSent", 8644 CTLFLAG_RD, &sc->stat_OutXonSent, 8645 0, "XON pause frames sent"); 8646 8647 SYSCTL_ADD_UINT(ctx, children, OID_AUTO, 8648 "stat_OutXoffSent", 8649 CTLFLAG_RD, &sc->stat_OutXoffSent, 8650 0, "XOFF pause frames sent"); 8651 8652 SYSCTL_ADD_UINT(ctx, children, OID_AUTO, 8653 "stat_FlowControlDone", 8654 CTLFLAG_RD, &sc->stat_FlowControlDone, 8655 0, "Flow control done"); 8656 8657 SYSCTL_ADD_UINT(ctx, children, OID_AUTO, 8658 "stat_MacControlFramesReceived", 8659 CTLFLAG_RD, &sc->stat_MacControlFramesReceived, 8660 0, "MAC control frames received"); 8661 8662 SYSCTL_ADD_UINT(ctx, children, OID_AUTO, 8663 "stat_XoffStateEntered", 8664 CTLFLAG_RD, &sc->stat_XoffStateEntered, 8665 0, "XOFF state entered"); 8666 8667 SYSCTL_ADD_UINT(ctx, children, OID_AUTO, 8668 "stat_IfInFramesL2FilterDiscards", 8669 CTLFLAG_RD, &sc->stat_IfInFramesL2FilterDiscards, 8670 0, "Received L2 packets discarded"); 8671 8672 SYSCTL_ADD_UINT(ctx, children, OID_AUTO, 8673 "stat_IfInRuleCheckerDiscards", 8674 CTLFLAG_RD, &sc->stat_IfInRuleCheckerDiscards, 8675 0, "Received packets discarded by rule"); 8676 8677 SYSCTL_ADD_UINT(ctx, children, OID_AUTO, 8678 "stat_IfInFTQDiscards", 8679 CTLFLAG_RD, &sc->stat_IfInFTQDiscards, 8680 0, "Received packet FTQ discards"); 8681 8682 SYSCTL_ADD_UINT(ctx, children, OID_AUTO, 8683 "stat_IfInMBUFDiscards", 8684 CTLFLAG_RD, &sc->stat_IfInMBUFDiscards, 8685 0, "Received packets discarded due to lack " 8686 "of controller buffer memory"); 8687 8688 SYSCTL_ADD_UINT(ctx, children, OID_AUTO, 8689 "stat_IfInRuleCheckerP4Hit", 8690 CTLFLAG_RD, &sc->stat_IfInRuleCheckerP4Hit, 8691 0, "Received packets rule checker hits"); 8692 8693 SYSCTL_ADD_UINT(ctx, children, OID_AUTO, 8694 "stat_CatchupInRuleCheckerDiscards", 8695 CTLFLAG_RD, &sc->stat_CatchupInRuleCheckerDiscards, 8696 0, "Received packets discarded in Catchup path"); 8697 8698 SYSCTL_ADD_UINT(ctx, children, OID_AUTO, 8699 "stat_CatchupInFTQDiscards", 8700 CTLFLAG_RD, &sc->stat_CatchupInFTQDiscards, 8701 0, "Received packets discarded in FTQ in Catchup path"); 8702 8703 SYSCTL_ADD_UINT(ctx, children, OID_AUTO, 8704 "stat_CatchupInMBUFDiscards", 8705 CTLFLAG_RD, &sc->stat_CatchupInMBUFDiscards, 8706 0, "Received packets discarded in controller " 8707 "buffer memory in Catchup path"); 8708 8709 SYSCTL_ADD_UINT(ctx, children, OID_AUTO, 8710 "stat_CatchupInRuleCheckerP4Hit", 8711 CTLFLAG_RD, &sc->stat_CatchupInRuleCheckerP4Hit, 8712 0, "Received packets rule checker hits in Catchup path"); 8713 8714 SYSCTL_ADD_UINT(ctx, children, OID_AUTO, 8715 "com_no_buffers", 8716 CTLFLAG_RD, &sc->com_no_buffers, 8717 0, "Valid packets received but no RX buffers available"); 8718 8719 #ifdef BCE_DEBUG 8720 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, 8721 "driver_state", CTLTYPE_INT | CTLFLAG_RW, 8722 (void *)sc, 0, 8723 bce_sysctl_driver_state, "I", "Drive state information"); 8724 8725 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, 8726 "hw_state", CTLTYPE_INT | CTLFLAG_RW, 8727 (void *)sc, 0, 8728 bce_sysctl_hw_state, "I", "Hardware state information"); 8729 8730 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, 8731 "status_block", CTLTYPE_INT | CTLFLAG_RW, 8732 (void *)sc, 0, 8733 bce_sysctl_status_block, "I", "Status block"); 8734 8735 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, 8736 "stats_block", CTLTYPE_INT | CTLFLAG_RW, 8737 (void *)sc, 0, 8738 bce_sysctl_stats_block, "I", "Stats block"); 8739 8740 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, 8741 "bc_state", CTLTYPE_INT | CTLFLAG_RW, 8742 (void *)sc, 0, 8743 bce_sysctl_bc_state, "I", "Bootcode state information"); 8744 8745 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, 8746 "dump_rx_bd_chain", CTLTYPE_INT | CTLFLAG_RW, 8747 (void *)sc, 0, 8748 bce_sysctl_dump_rx_bd_chain, "I", "Dump RX BD chain"); 8749 8750 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, 8751 "dump_rx_mbuf_chain", CTLTYPE_INT | CTLFLAG_RW, 8752 (void *)sc, 0, 8753 bce_sysctl_dump_rx_mbuf_chain, "I", "Dump RX MBUF chain"); 8754 8755 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, 8756 "dump_tx_chain", CTLTYPE_INT | CTLFLAG_RW, 8757 (void *)sc, 0, 8758 bce_sysctl_dump_tx_chain, "I", "Dump tx_bd chain"); 8759 8760 #ifdef BCE_JUMBO_HDRSPLIT 8761 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, 8762 "dump_pg_chain", CTLTYPE_INT | CTLFLAG_RW, 8763 (void *)sc, 0, 8764 bce_sysctl_dump_pg_chain, "I", "Dump page chain"); 8765 #endif 8766 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, 8767 "dump_ctx", CTLTYPE_INT | CTLFLAG_RW, 8768 (void *)sc, 0, 8769 bce_sysctl_dump_ctx, "I", "Dump context memory"); 8770 8771 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, 8772 "breakpoint", CTLTYPE_INT | CTLFLAG_RW, 8773 (void *)sc, 0, 8774 bce_sysctl_breakpoint, "I", "Driver breakpoint"); 8775 8776 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, 8777 "reg_read", CTLTYPE_INT | CTLFLAG_RW, 8778 (void *)sc, 0, 8779 bce_sysctl_reg_read, "I", "Register read"); 8780 8781 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, 8782 "nvram_read", CTLTYPE_INT | CTLFLAG_RW, 8783 (void *)sc, 0, 8784 bce_sysctl_nvram_read, "I", "NVRAM read"); 8785 8786 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, 8787 "phy_read", CTLTYPE_INT | CTLFLAG_RW, 8788 (void *)sc, 0, 8789 bce_sysctl_phy_read, "I", "PHY register read"); 8790 8791 #endif 8792 8793 DBEXIT(BCE_VERBOSE_MISC); 8794 } 8795 8796 8797 /****************************************************************************/ 8798 /* BCE Debug Routines */ 8799 /****************************************************************************/ 8800 #ifdef BCE_DEBUG 8801 8802 /****************************************************************************/ 8803 /* Freezes the controller to allow for a cohesive state dump. */ 8804 /* */ 8805 /* Returns: */ 8806 /* Nothing. */ 8807 /****************************************************************************/ 8808 static __attribute__ ((noinline)) void 8809 bce_freeze_controller(struct bce_softc *sc) 8810 { 8811 u32 val; 8812 val = REG_RD(sc, BCE_MISC_COMMAND); 8813 val |= BCE_MISC_COMMAND_DISABLE_ALL; 8814 REG_WR(sc, BCE_MISC_COMMAND, val); 8815 } 8816 8817 8818 /****************************************************************************/ 8819 /* Unfreezes the controller after a freeze operation. This may not always */ 8820 /* work and the controller will require a reset! */ 8821 /* */ 8822 /* Returns: */ 8823 /* Nothing. */ 8824 /****************************************************************************/ 8825 static __attribute__ ((noinline)) void 8826 bce_unfreeze_controller(struct bce_softc *sc) 8827 { 8828 u32 val; 8829 val = REG_RD(sc, BCE_MISC_COMMAND); 8830 val |= BCE_MISC_COMMAND_ENABLE_ALL; 8831 REG_WR(sc, BCE_MISC_COMMAND, val); 8832 } 8833 8834 8835 /****************************************************************************/ 8836 /* Prints out Ethernet frame information from an mbuf. */ 8837 /* */ 8838 /* Partially decode an Ethernet frame to look at some important headers. */ 8839 /* */ 8840 /* Returns: */ 8841 /* Nothing. */ 8842 /****************************************************************************/ 8843 static __attribute__ ((noinline)) void 8844 bce_dump_enet(struct bce_softc *sc, struct mbuf *m) 8845 { 8846 struct ether_vlan_header *eh; 8847 u16 etype; 8848 int ehlen; 8849 struct ip *ip; 8850 struct tcphdr *th; 8851 struct udphdr *uh; 8852 struct arphdr *ah; 8853 8854 BCE_PRINTF( 8855 "-----------------------------" 8856 " Frame Decode " 8857 "-----------------------------\n"); 8858 8859 eh = mtod(m, struct ether_vlan_header *); 8860 8861 /* Handle VLAN encapsulation if present. */ 8862 if (eh->evl_encap_proto == htons(ETHERTYPE_VLAN)) { 8863 etype = ntohs(eh->evl_proto); 8864 ehlen = ETHER_HDR_LEN + ETHER_VLAN_ENCAP_LEN; 8865 } else { 8866 etype = ntohs(eh->evl_encap_proto); 8867 ehlen = ETHER_HDR_LEN; 8868 } 8869 8870 /* ToDo: Add VLAN output. */ 8871 BCE_PRINTF("enet: dest = %6D, src = %6D, type = 0x%04X, hlen = %d\n", 8872 eh->evl_dhost, ":", eh->evl_shost, ":", etype, ehlen); 8873 8874 switch (etype) { 8875 case ETHERTYPE_IP: 8876 ip = (struct ip *)(m->m_data + ehlen); 8877 BCE_PRINTF("--ip: dest = 0x%08X , src = 0x%08X, " 8878 "len = %d bytes, protocol = 0x%02X, xsum = 0x%04X\n", 8879 ntohl(ip->ip_dst.s_addr), ntohl(ip->ip_src.s_addr), 8880 ntohs(ip->ip_len), ip->ip_p, ntohs(ip->ip_sum)); 8881 8882 switch (ip->ip_p) { 8883 case IPPROTO_TCP: 8884 th = (struct tcphdr *)((caddr_t)ip + (ip->ip_hl << 2)); 8885 BCE_PRINTF("-tcp: dest = %d, src = %d, hlen = %d bytes, " 8886 "flags = 0x%b, csum = 0x%04X\n", 8887 ntohs(th->th_dport), ntohs(th->th_sport), 8888 (th->th_off << 2), th->th_flags, 8889 "\20\10CWR\07ECE\06URG\05ACK\04PSH\03RST" 8890 "\02SYN\01FIN", ntohs(th->th_sum)); 8891 break; 8892 case IPPROTO_UDP: 8893 uh = (struct udphdr *)((caddr_t)ip + (ip->ip_hl << 2)); 8894 BCE_PRINTF("-udp: dest = %d, src = %d, len = %d " 8895 "bytes, csum = 0x%04X\n", ntohs(uh->uh_dport), 8896 ntohs(uh->uh_sport), ntohs(uh->uh_ulen), 8897 ntohs(uh->uh_sum)); 8898 break; 8899 case IPPROTO_ICMP: 8900 BCE_PRINTF("icmp:\n"); 8901 break; 8902 default: 8903 BCE_PRINTF("----: Other IP protocol.\n"); 8904 } 8905 break; 8906 case ETHERTYPE_IPV6: 8907 BCE_PRINTF("ipv6: No decode supported.\n"); 8908 break; 8909 case ETHERTYPE_ARP: 8910 BCE_PRINTF("-arp: "); 8911 ah = (struct arphdr *) (m->m_data + ehlen); 8912 switch (ntohs(ah->ar_op)) { 8913 case ARPOP_REVREQUEST: 8914 printf("reverse ARP request\n"); 8915 break; 8916 case ARPOP_REVREPLY: 8917 printf("reverse ARP reply\n"); 8918 break; 8919 case ARPOP_REQUEST: 8920 printf("ARP request\n"); 8921 break; 8922 case ARPOP_REPLY: 8923 printf("ARP reply\n"); 8924 break; 8925 default: 8926 printf("other ARP operation\n"); 8927 } 8928 break; 8929 default: 8930 BCE_PRINTF("----: Other protocol.\n"); 8931 } 8932 8933 BCE_PRINTF( 8934 "-----------------------------" 8935 "--------------" 8936 "-----------------------------\n"); 8937 } 8938 8939 8940 /****************************************************************************/ 8941 /* Prints out information about an mbuf. */ 8942 /* */ 8943 /* Returns: */ 8944 /* Nothing. */ 8945 /****************************************************************************/ 8946 static __attribute__ ((noinline)) void 8947 bce_dump_mbuf(struct bce_softc *sc, struct mbuf *m) 8948 { 8949 struct mbuf *mp = m; 8950 8951 if (m == NULL) { 8952 BCE_PRINTF("mbuf: null pointer\n"); 8953 return; 8954 } 8955 8956 while (mp) { 8957 BCE_PRINTF("mbuf: %p, m_len = %d, m_flags = 0x%b, " 8958 "m_data = %p\n", mp, mp->m_len, mp->m_flags, 8959 "\20\1M_EXT\2M_PKTHDR\3M_EOR\4M_RDONLY", mp->m_data); 8960 8961 if (mp->m_flags & M_PKTHDR) { 8962 BCE_PRINTF("- m_pkthdr: len = %d, flags = 0x%b, " 8963 "csum_flags = %b\n", mp->m_pkthdr.len, 8964 mp->m_flags, "\20\12M_BCAST\13M_MCAST\14M_FRAG" 8965 "\15M_FIRSTFRAG\16M_LASTFRAG\21M_VLANTAG" 8966 "\22M_PROMISC\23M_NOFREE", 8967 mp->m_pkthdr.csum_flags, 8968 "\20\1CSUM_IP\2CSUM_TCP\3CSUM_UDP\4CSUM_IP_FRAGS" 8969 "\5CSUM_FRAGMENT\6CSUM_TSO\11CSUM_IP_CHECKED" 8970 "\12CSUM_IP_VALID\13CSUM_DATA_VALID" 8971 "\14CSUM_PSEUDO_HDR"); 8972 } 8973 8974 if (mp->m_flags & M_EXT) { 8975 BCE_PRINTF("- m_ext: %p, ext_size = %d, type = ", 8976 mp->m_ext.ext_buf, mp->m_ext.ext_size); 8977 switch (mp->m_ext.ext_type) { 8978 case EXT_CLUSTER: 8979 printf("EXT_CLUSTER\n"); break; 8980 case EXT_SFBUF: 8981 printf("EXT_SFBUF\n"); break; 8982 case EXT_JUMBO9: 8983 printf("EXT_JUMBO9\n"); break; 8984 case EXT_JUMBO16: 8985 printf("EXT_JUMBO16\n"); break; 8986 case EXT_PACKET: 8987 printf("EXT_PACKET\n"); break; 8988 case EXT_MBUF: 8989 printf("EXT_MBUF\n"); break; 8990 case EXT_NET_DRV: 8991 printf("EXT_NET_DRV\n"); break; 8992 case EXT_MOD_TYPE: 8993 printf("EXT_MDD_TYPE\n"); break; 8994 case EXT_DISPOSABLE: 8995 printf("EXT_DISPOSABLE\n"); break; 8996 case EXT_EXTREF: 8997 printf("EXT_EXTREF\n"); break; 8998 default: 8999 printf("UNKNOWN\n"); 9000 } 9001 } 9002 9003 mp = mp->m_next; 9004 } 9005 } 9006 9007 9008 /****************************************************************************/ 9009 /* Prints out the mbufs in the TX mbuf chain. */ 9010 /* */ 9011 /* Returns: */ 9012 /* Nothing. */ 9013 /****************************************************************************/ 9014 static __attribute__ ((noinline)) void 9015 bce_dump_tx_mbuf_chain(struct bce_softc *sc, u16 chain_prod, int count) 9016 { 9017 struct mbuf *m; 9018 9019 BCE_PRINTF( 9020 "----------------------------" 9021 " tx mbuf data " 9022 "----------------------------\n"); 9023 9024 for (int i = 0; i < count; i++) { 9025 m = sc->tx_mbuf_ptr[chain_prod]; 9026 BCE_PRINTF("txmbuf[0x%04X]\n", chain_prod); 9027 bce_dump_mbuf(sc, m); 9028 chain_prod = TX_CHAIN_IDX(NEXT_TX_BD(chain_prod)); 9029 } 9030 9031 BCE_PRINTF( 9032 "----------------------------" 9033 "----------------" 9034 "----------------------------\n"); 9035 } 9036 9037 9038 /****************************************************************************/ 9039 /* Prints out the mbufs in the RX mbuf chain. */ 9040 /* */ 9041 /* Returns: */ 9042 /* Nothing. */ 9043 /****************************************************************************/ 9044 static __attribute__ ((noinline)) void 9045 bce_dump_rx_mbuf_chain(struct bce_softc *sc, u16 chain_prod, int count) 9046 { 9047 struct mbuf *m; 9048 9049 BCE_PRINTF( 9050 "----------------------------" 9051 " rx mbuf data " 9052 "----------------------------\n"); 9053 9054 for (int i = 0; i < count; i++) { 9055 m = sc->rx_mbuf_ptr[chain_prod]; 9056 BCE_PRINTF("rxmbuf[0x%04X]\n", chain_prod); 9057 bce_dump_mbuf(sc, m); 9058 chain_prod = RX_CHAIN_IDX(NEXT_RX_BD(chain_prod)); 9059 } 9060 9061 9062 BCE_PRINTF( 9063 "----------------------------" 9064 "----------------" 9065 "----------------------------\n"); 9066 } 9067 9068 9069 #ifdef BCE_JUMBO_HDRSPLIT 9070 /****************************************************************************/ 9071 /* Prints out the mbufs in the mbuf page chain. */ 9072 /* */ 9073 /* Returns: */ 9074 /* Nothing. */ 9075 /****************************************************************************/ 9076 static __attribute__ ((noinline)) void 9077 bce_dump_pg_mbuf_chain(struct bce_softc *sc, u16 chain_prod, int count) 9078 { 9079 struct mbuf *m; 9080 9081 BCE_PRINTF( 9082 "----------------------------" 9083 " pg mbuf data " 9084 "----------------------------\n"); 9085 9086 for (int i = 0; i < count; i++) { 9087 m = sc->pg_mbuf_ptr[chain_prod]; 9088 BCE_PRINTF("pgmbuf[0x%04X]\n", chain_prod); 9089 bce_dump_mbuf(sc, m); 9090 chain_prod = PG_CHAIN_IDX(NEXT_PG_BD(chain_prod)); 9091 } 9092 9093 9094 BCE_PRINTF( 9095 "----------------------------" 9096 "----------------" 9097 "----------------------------\n"); 9098 } 9099 #endif 9100 9101 9102 /****************************************************************************/ 9103 /* Prints out a tx_bd structure. */ 9104 /* */ 9105 /* Returns: */ 9106 /* Nothing. */ 9107 /****************************************************************************/ 9108 static __attribute__ ((noinline)) void 9109 bce_dump_txbd(struct bce_softc *sc, int idx, struct tx_bd *txbd) 9110 { 9111 int i = 0; 9112 9113 if (idx > MAX_TX_BD) 9114 /* Index out of range. */ 9115 BCE_PRINTF("tx_bd[0x%04X]: Invalid tx_bd index!\n", idx); 9116 else if ((idx & USABLE_TX_BD_PER_PAGE) == USABLE_TX_BD_PER_PAGE) 9117 /* TX Chain page pointer. */ 9118 BCE_PRINTF("tx_bd[0x%04X]: haddr = 0x%08X:%08X, chain page " 9119 "pointer\n", idx, txbd->tx_bd_haddr_hi, 9120 txbd->tx_bd_haddr_lo); 9121 else { 9122 /* Normal tx_bd entry. */ 9123 BCE_PRINTF("tx_bd[0x%04X]: haddr = 0x%08X:%08X, " 9124 "mss_nbytes = 0x%08X, vlan tag = 0x%04X, flags = " 9125 "0x%04X (", idx, txbd->tx_bd_haddr_hi, 9126 txbd->tx_bd_haddr_lo, txbd->tx_bd_mss_nbytes, 9127 txbd->tx_bd_vlan_tag, txbd->tx_bd_flags); 9128 9129 if (txbd->tx_bd_flags & TX_BD_FLAGS_CONN_FAULT) { 9130 if (i>0) 9131 printf("|"); 9132 printf("CONN_FAULT"); 9133 i++; 9134 } 9135 9136 if (txbd->tx_bd_flags & TX_BD_FLAGS_TCP_UDP_CKSUM) { 9137 if (i>0) 9138 printf("|"); 9139 printf("TCP_UDP_CKSUM"); 9140 i++; 9141 } 9142 9143 if (txbd->tx_bd_flags & TX_BD_FLAGS_IP_CKSUM) { 9144 if (i>0) 9145 printf("|"); 9146 printf("IP_CKSUM"); 9147 i++; 9148 } 9149 9150 if (txbd->tx_bd_flags & TX_BD_FLAGS_VLAN_TAG) { 9151 if (i>0) 9152 printf("|"); 9153 printf("VLAN"); 9154 i++; 9155 } 9156 9157 if (txbd->tx_bd_flags & TX_BD_FLAGS_COAL_NOW) { 9158 if (i>0) 9159 printf("|"); 9160 printf("COAL_NOW"); 9161 i++; 9162 } 9163 9164 if (txbd->tx_bd_flags & TX_BD_FLAGS_DONT_GEN_CRC) { 9165 if (i>0) 9166 printf("|"); 9167 printf("DONT_GEN_CRC"); 9168 i++; 9169 } 9170 9171 if (txbd->tx_bd_flags & TX_BD_FLAGS_START) { 9172 if (i>0) 9173 printf("|"); 9174 printf("START"); 9175 i++; 9176 } 9177 9178 if (txbd->tx_bd_flags & TX_BD_FLAGS_END) { 9179 if (i>0) 9180 printf("|"); 9181 printf("END"); 9182 i++; 9183 } 9184 9185 if (txbd->tx_bd_flags & TX_BD_FLAGS_SW_LSO) { 9186 if (i>0) 9187 printf("|"); 9188 printf("LSO"); 9189 i++; 9190 } 9191 9192 if (txbd->tx_bd_flags & TX_BD_FLAGS_SW_OPTION_WORD) { 9193 if (i>0) 9194 printf("|"); 9195 printf("SW_OPTION=%d", ((txbd->tx_bd_flags & 9196 TX_BD_FLAGS_SW_OPTION_WORD) >> 8)); i++; 9197 } 9198 9199 if (txbd->tx_bd_flags & TX_BD_FLAGS_SW_FLAGS) { 9200 if (i>0) 9201 printf("|"); 9202 printf("SW_FLAGS"); 9203 i++; 9204 } 9205 9206 if (txbd->tx_bd_flags & TX_BD_FLAGS_SW_SNAP) { 9207 if (i>0) 9208 printf("|"); 9209 printf("SNAP)"); 9210 } else { 9211 printf(")\n"); 9212 } 9213 } 9214 } 9215 9216 9217 /****************************************************************************/ 9218 /* Prints out a rx_bd structure. */ 9219 /* */ 9220 /* Returns: */ 9221 /* Nothing. */ 9222 /****************************************************************************/ 9223 static __attribute__ ((noinline)) void 9224 bce_dump_rxbd(struct bce_softc *sc, int idx, struct rx_bd *rxbd) 9225 { 9226 if (idx > MAX_RX_BD) 9227 /* Index out of range. */ 9228 BCE_PRINTF("rx_bd[0x%04X]: Invalid rx_bd index!\n", idx); 9229 else if ((idx & USABLE_RX_BD_PER_PAGE) == USABLE_RX_BD_PER_PAGE) 9230 /* RX Chain page pointer. */ 9231 BCE_PRINTF("rx_bd[0x%04X]: haddr = 0x%08X:%08X, chain page " 9232 "pointer\n", idx, rxbd->rx_bd_haddr_hi, 9233 rxbd->rx_bd_haddr_lo); 9234 else 9235 /* Normal rx_bd entry. */ 9236 BCE_PRINTF("rx_bd[0x%04X]: haddr = 0x%08X:%08X, nbytes = " 9237 "0x%08X, flags = 0x%08X\n", idx, rxbd->rx_bd_haddr_hi, 9238 rxbd->rx_bd_haddr_lo, rxbd->rx_bd_len, 9239 rxbd->rx_bd_flags); 9240 } 9241 9242 9243 #ifdef BCE_JUMBO_HDRSPLIT 9244 /****************************************************************************/ 9245 /* Prints out a rx_bd structure in the page chain. */ 9246 /* */ 9247 /* Returns: */ 9248 /* Nothing. */ 9249 /****************************************************************************/ 9250 static __attribute__ ((noinline)) void 9251 bce_dump_pgbd(struct bce_softc *sc, int idx, struct rx_bd *pgbd) 9252 { 9253 if (idx > MAX_PG_BD) 9254 /* Index out of range. */ 9255 BCE_PRINTF("pg_bd[0x%04X]: Invalid pg_bd index!\n", idx); 9256 else if ((idx & USABLE_PG_BD_PER_PAGE) == USABLE_PG_BD_PER_PAGE) 9257 /* Page Chain page pointer. */ 9258 BCE_PRINTF("px_bd[0x%04X]: haddr = 0x%08X:%08X, chain page pointer\n", 9259 idx, pgbd->rx_bd_haddr_hi, pgbd->rx_bd_haddr_lo); 9260 else 9261 /* Normal rx_bd entry. */ 9262 BCE_PRINTF("pg_bd[0x%04X]: haddr = 0x%08X:%08X, nbytes = 0x%08X, " 9263 "flags = 0x%08X\n", idx, 9264 pgbd->rx_bd_haddr_hi, pgbd->rx_bd_haddr_lo, 9265 pgbd->rx_bd_len, pgbd->rx_bd_flags); 9266 } 9267 #endif 9268 9269 9270 /****************************************************************************/ 9271 /* Prints out a l2_fhdr structure. */ 9272 /* */ 9273 /* Returns: */ 9274 /* Nothing. */ 9275 /****************************************************************************/ 9276 static __attribute__ ((noinline)) void 9277 bce_dump_l2fhdr(struct bce_softc *sc, int idx, struct l2_fhdr *l2fhdr) 9278 { 9279 BCE_PRINTF("l2_fhdr[0x%04X]: status = 0x%b, " 9280 "pkt_len = %d, vlan = 0x%04x, ip_xsum/hdr_len = 0x%04X, " 9281 "tcp_udp_xsum = 0x%04X\n", idx, 9282 l2fhdr->l2_fhdr_status, BCE_L2FHDR_PRINTFB, 9283 l2fhdr->l2_fhdr_pkt_len, l2fhdr->l2_fhdr_vlan_tag, 9284 l2fhdr->l2_fhdr_ip_xsum, l2fhdr->l2_fhdr_tcp_udp_xsum); 9285 } 9286 9287 9288 /****************************************************************************/ 9289 /* Prints out context memory info. (Only useful for CID 0 to 16.) */ 9290 /* */ 9291 /* Returns: */ 9292 /* Nothing. */ 9293 /****************************************************************************/ 9294 static __attribute__ ((noinline)) void 9295 bce_dump_ctx(struct bce_softc *sc, u16 cid) 9296 { 9297 if (cid > TX_CID) { 9298 BCE_PRINTF(" Unknown CID\n"); 9299 return; 9300 } 9301 9302 BCE_PRINTF( 9303 "----------------------------" 9304 " CTX Data " 9305 "----------------------------\n"); 9306 9307 BCE_PRINTF(" 0x%04X - (CID) Context ID\n", cid); 9308 9309 if (cid == RX_CID) { 9310 BCE_PRINTF(" 0x%08X - (L2CTX_RX_HOST_BDIDX) host rx " 9311 "producer index\n", 9312 CTX_RD(sc, GET_CID_ADDR(cid), BCE_L2CTX_RX_HOST_BDIDX)); 9313 BCE_PRINTF(" 0x%08X - (L2CTX_RX_HOST_BSEQ) host " 9314 "byte sequence\n", CTX_RD(sc, GET_CID_ADDR(cid), 9315 BCE_L2CTX_RX_HOST_BSEQ)); 9316 BCE_PRINTF(" 0x%08X - (L2CTX_RX_NX_BSEQ) h/w byte sequence\n", 9317 CTX_RD(sc, GET_CID_ADDR(cid), BCE_L2CTX_RX_NX_BSEQ)); 9318 BCE_PRINTF(" 0x%08X - (L2CTX_RX_NX_BDHADDR_HI) h/w buffer " 9319 "descriptor address\n", 9320 CTX_RD(sc, GET_CID_ADDR(cid), BCE_L2CTX_RX_NX_BDHADDR_HI)); 9321 BCE_PRINTF(" 0x%08X - (L2CTX_RX_NX_BDHADDR_LO) h/w buffer " 9322 "descriptor address\n", 9323 CTX_RD(sc, GET_CID_ADDR(cid), BCE_L2CTX_RX_NX_BDHADDR_LO)); 9324 BCE_PRINTF(" 0x%08X - (L2CTX_RX_NX_BDIDX) h/w rx consumer " 9325 "index\n", CTX_RD(sc, GET_CID_ADDR(cid), 9326 BCE_L2CTX_RX_NX_BDIDX)); 9327 BCE_PRINTF(" 0x%08X - (L2CTX_RX_HOST_PG_BDIDX) host page " 9328 "producer index\n", CTX_RD(sc, GET_CID_ADDR(cid), 9329 BCE_L2CTX_RX_HOST_PG_BDIDX)); 9330 BCE_PRINTF(" 0x%08X - (L2CTX_RX_PG_BUF_SIZE) host rx_bd/page " 9331 "buffer size\n", CTX_RD(sc, GET_CID_ADDR(cid), 9332 BCE_L2CTX_RX_PG_BUF_SIZE)); 9333 BCE_PRINTF(" 0x%08X - (L2CTX_RX_NX_PG_BDHADDR_HI) h/w page " 9334 "chain address\n", CTX_RD(sc, GET_CID_ADDR(cid), 9335 BCE_L2CTX_RX_NX_PG_BDHADDR_HI)); 9336 BCE_PRINTF(" 0x%08X - (L2CTX_RX_NX_PG_BDHADDR_LO) h/w page " 9337 "chain address\n", CTX_RD(sc, GET_CID_ADDR(cid), 9338 BCE_L2CTX_RX_NX_PG_BDHADDR_LO)); 9339 BCE_PRINTF(" 0x%08X - (L2CTX_RX_NX_PG_BDIDX) h/w page " 9340 "consumer index\n", CTX_RD(sc, GET_CID_ADDR(cid), 9341 BCE_L2CTX_RX_NX_PG_BDIDX)); 9342 } else if (cid == TX_CID) { 9343 if ((BCE_CHIP_NUM(sc) == BCE_CHIP_NUM_5709) || 9344 (BCE_CHIP_NUM(sc) == BCE_CHIP_NUM_5716)) { 9345 BCE_PRINTF(" 0x%08X - (L2CTX_TX_TYPE_XI) ctx type\n", 9346 CTX_RD(sc, GET_CID_ADDR(cid), 9347 BCE_L2CTX_TX_TYPE_XI)); 9348 BCE_PRINTF(" 0x%08X - (L2CTX_CMD_TX_TYPE_XI) ctx " 9349 "cmd\n", CTX_RD(sc, GET_CID_ADDR(cid), 9350 BCE_L2CTX_TX_CMD_TYPE_XI)); 9351 BCE_PRINTF(" 0x%08X - (L2CTX_TX_TBDR_BDHADDR_HI_XI) " 9352 "h/w buffer descriptor address\n", 9353 CTX_RD(sc, GET_CID_ADDR(cid), 9354 BCE_L2CTX_TX_TBDR_BHADDR_HI_XI)); 9355 BCE_PRINTF(" 0x%08X - (L2CTX_TX_TBDR_BHADDR_LO_XI) " 9356 "h/w buffer descriptor address\n", 9357 CTX_RD(sc, GET_CID_ADDR(cid), 9358 BCE_L2CTX_TX_TBDR_BHADDR_LO_XI)); 9359 BCE_PRINTF(" 0x%08X - (L2CTX_TX_HOST_BIDX_XI) " 9360 "host producer index\n", 9361 CTX_RD(sc, GET_CID_ADDR(cid), 9362 BCE_L2CTX_TX_HOST_BIDX_XI)); 9363 BCE_PRINTF(" 0x%08X - (L2CTX_TX_HOST_BSEQ_XI) " 9364 "host byte sequence\n", 9365 CTX_RD(sc, GET_CID_ADDR(cid), 9366 BCE_L2CTX_TX_HOST_BSEQ_XI)); 9367 } else { 9368 BCE_PRINTF(" 0x%08X - (L2CTX_TX_TYPE) ctx type\n", 9369 CTX_RD(sc, GET_CID_ADDR(cid), BCE_L2CTX_TX_TYPE)); 9370 BCE_PRINTF(" 0x%08X - (L2CTX_TX_CMD_TYPE) ctx cmd\n", 9371 CTX_RD(sc, GET_CID_ADDR(cid), 9372 BCE_L2CTX_TX_CMD_TYPE)); 9373 BCE_PRINTF(" 0x%08X - (L2CTX_TX_TBDR_BDHADDR_HI) " 9374 "h/w buffer descriptor address\n", 9375 CTX_RD(sc, GET_CID_ADDR(cid), 9376 BCE_L2CTX_TX_TBDR_BHADDR_HI)); 9377 BCE_PRINTF(" 0x%08X - (L2CTX_TX_TBDR_BHADDR_LO) " 9378 "h/w buffer descriptor address\n", 9379 CTX_RD(sc, GET_CID_ADDR(cid), 9380 BCE_L2CTX_TX_TBDR_BHADDR_LO)); 9381 BCE_PRINTF(" 0x%08X - (L2CTX_TX_HOST_BIDX) host " 9382 "producer index\n", CTX_RD(sc, GET_CID_ADDR(cid), 9383 BCE_L2CTX_TX_HOST_BIDX)); 9384 BCE_PRINTF(" 0x%08X - (L2CTX_TX_HOST_BSEQ) host byte " 9385 "sequence\n", CTX_RD(sc, GET_CID_ADDR(cid), 9386 BCE_L2CTX_TX_HOST_BSEQ)); 9387 } 9388 } 9389 9390 BCE_PRINTF( 9391 "----------------------------" 9392 " Raw CTX " 9393 "----------------------------\n"); 9394 9395 for (int i = 0x0; i < 0x300; i += 0x10) { 9396 BCE_PRINTF("0x%04X: 0x%08X 0x%08X 0x%08X 0x%08X\n", i, 9397 CTX_RD(sc, GET_CID_ADDR(cid), i), 9398 CTX_RD(sc, GET_CID_ADDR(cid), i + 0x4), 9399 CTX_RD(sc, GET_CID_ADDR(cid), i + 0x8), 9400 CTX_RD(sc, GET_CID_ADDR(cid), i + 0xc)); 9401 } 9402 9403 9404 BCE_PRINTF( 9405 "----------------------------" 9406 "----------------" 9407 "----------------------------\n"); 9408 } 9409 9410 9411 /****************************************************************************/ 9412 /* Prints out the FTQ data. */ 9413 /* */ 9414 /* Returns: */ 9415 /* Nothing. */ 9416 /****************************************************************************/ 9417 static __attribute__ ((noinline)) void 9418 bce_dump_ftqs(struct bce_softc *sc) 9419 { 9420 u32 cmd, ctl, cur_depth, max_depth, valid_cnt, val; 9421 9422 BCE_PRINTF( 9423 "----------------------------" 9424 " FTQ Data " 9425 "----------------------------\n"); 9426 9427 BCE_PRINTF(" FTQ Command Control Depth_Now " 9428 "Max_Depth Valid_Cnt \n"); 9429 BCE_PRINTF(" ------- ---------- ---------- ---------- " 9430 "---------- ----------\n"); 9431 9432 /* Setup the generic statistic counters for the FTQ valid count. */ 9433 val = (BCE_HC_STAT_GEN_SEL_0_GEN_SEL_0_RV2PPQ_VALID_CNT << 24) | 9434 (BCE_HC_STAT_GEN_SEL_0_GEN_SEL_0_RXPCQ_VALID_CNT << 16) | 9435 (BCE_HC_STAT_GEN_SEL_0_GEN_SEL_0_RXPQ_VALID_CNT << 8) | 9436 (BCE_HC_STAT_GEN_SEL_0_GEN_SEL_0_RLUPQ_VALID_CNT); 9437 REG_WR(sc, BCE_HC_STAT_GEN_SEL_0, val); 9438 9439 val = (BCE_HC_STAT_GEN_SEL_0_GEN_SEL_0_TSCHQ_VALID_CNT << 24) | 9440 (BCE_HC_STAT_GEN_SEL_0_GEN_SEL_0_RDMAQ_VALID_CNT << 16) | 9441 (BCE_HC_STAT_GEN_SEL_0_GEN_SEL_0_RV2PTQ_VALID_CNT << 8) | 9442 (BCE_HC_STAT_GEN_SEL_0_GEN_SEL_0_RV2PMQ_VALID_CNT); 9443 REG_WR(sc, BCE_HC_STAT_GEN_SEL_1, val); 9444 9445 val = (BCE_HC_STAT_GEN_SEL_0_GEN_SEL_0_TPATQ_VALID_CNT << 24) | 9446 (BCE_HC_STAT_GEN_SEL_0_GEN_SEL_0_TDMAQ_VALID_CNT << 16) | 9447 (BCE_HC_STAT_GEN_SEL_0_GEN_SEL_0_TXPQ_VALID_CNT << 8) | 9448 (BCE_HC_STAT_GEN_SEL_0_GEN_SEL_0_TBDRQ_VALID_CNT); 9449 REG_WR(sc, BCE_HC_STAT_GEN_SEL_2, val); 9450 9451 val = (BCE_HC_STAT_GEN_SEL_0_GEN_SEL_0_COMQ_VALID_CNT << 24) | 9452 (BCE_HC_STAT_GEN_SEL_0_GEN_SEL_0_COMTQ_VALID_CNT << 16) | 9453 (BCE_HC_STAT_GEN_SEL_0_GEN_SEL_0_COMXQ_VALID_CNT << 8) | 9454 (BCE_HC_STAT_GEN_SEL_0_GEN_SEL_0_TASQ_VALID_CNT); 9455 REG_WR(sc, BCE_HC_STAT_GEN_SEL_3, val); 9456 9457 /* Input queue to the Receive Lookup state machine */ 9458 cmd = REG_RD(sc, BCE_RLUP_FTQ_CMD); 9459 ctl = REG_RD(sc, BCE_RLUP_FTQ_CTL); 9460 cur_depth = (ctl & BCE_RLUP_FTQ_CTL_CUR_DEPTH) >> 22; 9461 max_depth = (ctl & BCE_RLUP_FTQ_CTL_MAX_DEPTH) >> 12; 9462 valid_cnt = REG_RD(sc, BCE_HC_STAT_GEN_STAT0); 9463 BCE_PRINTF(" RLUP 0x%08X 0x%08X 0x%08X 0x%08X 0x%08X\n", 9464 cmd, ctl, cur_depth, max_depth, valid_cnt); 9465 9466 /* Input queue to the Receive Processor */ 9467 cmd = REG_RD_IND(sc, BCE_RXP_FTQ_CMD); 9468 ctl = REG_RD_IND(sc, BCE_RXP_FTQ_CTL); 9469 cur_depth = (ctl & BCE_RXP_FTQ_CTL_CUR_DEPTH) >> 22; 9470 max_depth = (ctl & BCE_RXP_FTQ_CTL_MAX_DEPTH) >> 12; 9471 valid_cnt = REG_RD(sc, BCE_HC_STAT_GEN_STAT1); 9472 BCE_PRINTF(" RXP 0x%08X 0x%08X 0x%08X 0x%08X 0x%08X\n", 9473 cmd, ctl, cur_depth, max_depth, valid_cnt); 9474 9475 /* Input queue to the Recevie Processor */ 9476 cmd = REG_RD_IND(sc, BCE_RXP_CFTQ_CMD); 9477 ctl = REG_RD_IND(sc, BCE_RXP_CFTQ_CTL); 9478 cur_depth = (ctl & BCE_RXP_CFTQ_CTL_CUR_DEPTH) >> 22; 9479 max_depth = (ctl & BCE_RXP_CFTQ_CTL_MAX_DEPTH) >> 12; 9480 valid_cnt = REG_RD(sc, BCE_HC_STAT_GEN_STAT2); 9481 BCE_PRINTF(" RXPC 0x%08X 0x%08X 0x%08X 0x%08X 0x%08X\n", 9482 cmd, ctl, cur_depth, max_depth, valid_cnt); 9483 9484 /* Input queue to the Receive Virtual to Physical state machine */ 9485 cmd = REG_RD(sc, BCE_RV2P_PFTQ_CMD); 9486 ctl = REG_RD(sc, BCE_RV2P_PFTQ_CTL); 9487 cur_depth = (ctl & BCE_RV2P_PFTQ_CTL_CUR_DEPTH) >> 22; 9488 max_depth = (ctl & BCE_RV2P_PFTQ_CTL_MAX_DEPTH) >> 12; 9489 valid_cnt = REG_RD(sc, BCE_HC_STAT_GEN_STAT3); 9490 BCE_PRINTF(" RV2PP 0x%08X 0x%08X 0x%08X 0x%08X 0x%08X\n", 9491 cmd, ctl, cur_depth, max_depth, valid_cnt); 9492 9493 /* Input queue to the Recevie Virtual to Physical state machine */ 9494 cmd = REG_RD(sc, BCE_RV2P_MFTQ_CMD); 9495 ctl = REG_RD(sc, BCE_RV2P_MFTQ_CTL); 9496 cur_depth = (ctl & BCE_RV2P_MFTQ_CTL_CUR_DEPTH) >> 22; 9497 max_depth = (ctl & BCE_RV2P_MFTQ_CTL_MAX_DEPTH) >> 12; 9498 valid_cnt = REG_RD(sc, BCE_HC_STAT_GEN_STAT4); 9499 BCE_PRINTF(" RV2PM 0x%08X 0x%08X 0x%08X 0x%08X 0x%08X\n", 9500 cmd, ctl, cur_depth, max_depth, valid_cnt); 9501 9502 /* Input queue to the Receive Virtual to Physical state machine */ 9503 cmd = REG_RD(sc, BCE_RV2P_TFTQ_CMD); 9504 ctl = REG_RD(sc, BCE_RV2P_TFTQ_CTL); 9505 cur_depth = (ctl & BCE_RV2P_TFTQ_CTL_CUR_DEPTH) >> 22; 9506 max_depth = (ctl & BCE_RV2P_TFTQ_CTL_MAX_DEPTH) >> 12; 9507 valid_cnt = REG_RD(sc, BCE_HC_STAT_GEN_STAT5); 9508 BCE_PRINTF(" RV2PT 0x%08X 0x%08X 0x%08X 0x%08X 0x%08X\n", 9509 cmd, ctl, cur_depth, max_depth, valid_cnt); 9510 9511 /* Input queue to the Receive DMA state machine */ 9512 cmd = REG_RD(sc, BCE_RDMA_FTQ_CMD); 9513 ctl = REG_RD(sc, BCE_RDMA_FTQ_CTL); 9514 cur_depth = (ctl & BCE_RDMA_FTQ_CTL_CUR_DEPTH) >> 22; 9515 max_depth = (ctl & BCE_RDMA_FTQ_CTL_MAX_DEPTH) >> 12; 9516 valid_cnt = REG_RD(sc, BCE_HC_STAT_GEN_STAT6); 9517 BCE_PRINTF(" RDMA 0x%08X 0x%08X 0x%08X 0x%08X 0x%08X\n", 9518 cmd, ctl, cur_depth, max_depth, valid_cnt); 9519 9520 /* Input queue to the Transmit Scheduler state machine */ 9521 cmd = REG_RD(sc, BCE_TSCH_FTQ_CMD); 9522 ctl = REG_RD(sc, BCE_TSCH_FTQ_CTL); 9523 cur_depth = (ctl & BCE_TSCH_FTQ_CTL_CUR_DEPTH) >> 22; 9524 max_depth = (ctl & BCE_TSCH_FTQ_CTL_MAX_DEPTH) >> 12; 9525 valid_cnt = REG_RD(sc, BCE_HC_STAT_GEN_STAT7); 9526 BCE_PRINTF(" TSCH 0x%08X 0x%08X 0x%08X 0x%08X 0x%08X\n", 9527 cmd, ctl, cur_depth, max_depth, valid_cnt); 9528 9529 /* Input queue to the Transmit Buffer Descriptor state machine */ 9530 cmd = REG_RD(sc, BCE_TBDR_FTQ_CMD); 9531 ctl = REG_RD(sc, BCE_TBDR_FTQ_CTL); 9532 cur_depth = (ctl & BCE_TBDR_FTQ_CTL_CUR_DEPTH) >> 22; 9533 max_depth = (ctl & BCE_TBDR_FTQ_CTL_MAX_DEPTH) >> 12; 9534 valid_cnt = REG_RD(sc, BCE_HC_STAT_GEN_STAT8); 9535 BCE_PRINTF(" TBDR 0x%08X 0x%08X 0x%08X 0x%08X 0x%08X\n", 9536 cmd, ctl, cur_depth, max_depth, valid_cnt); 9537 9538 /* Input queue to the Transmit Processor */ 9539 cmd = REG_RD_IND(sc, BCE_TXP_FTQ_CMD); 9540 ctl = REG_RD_IND(sc, BCE_TXP_FTQ_CTL); 9541 cur_depth = (ctl & BCE_TXP_FTQ_CTL_CUR_DEPTH) >> 22; 9542 max_depth = (ctl & BCE_TXP_FTQ_CTL_MAX_DEPTH) >> 12; 9543 valid_cnt = REG_RD(sc, BCE_HC_STAT_GEN_STAT9); 9544 BCE_PRINTF(" TXP 0x%08X 0x%08X 0x%08X 0x%08X 0x%08X\n", 9545 cmd, ctl, cur_depth, max_depth, valid_cnt); 9546 9547 /* Input queue to the Transmit DMA state machine */ 9548 cmd = REG_RD(sc, BCE_TDMA_FTQ_CMD); 9549 ctl = REG_RD(sc, BCE_TDMA_FTQ_CTL); 9550 cur_depth = (ctl & BCE_TDMA_FTQ_CTL_CUR_DEPTH) >> 22; 9551 max_depth = (ctl & BCE_TDMA_FTQ_CTL_MAX_DEPTH) >> 12; 9552 valid_cnt = REG_RD(sc, BCE_HC_STAT_GEN_STAT10); 9553 BCE_PRINTF(" TDMA 0x%08X 0x%08X 0x%08X 0x%08X 0x%08X\n", 9554 cmd, ctl, cur_depth, max_depth, valid_cnt); 9555 9556 /* Input queue to the Transmit Patch-Up Processor */ 9557 cmd = REG_RD_IND(sc, BCE_TPAT_FTQ_CMD); 9558 ctl = REG_RD_IND(sc, BCE_TPAT_FTQ_CTL); 9559 cur_depth = (ctl & BCE_TPAT_FTQ_CTL_CUR_DEPTH) >> 22; 9560 max_depth = (ctl & BCE_TPAT_FTQ_CTL_MAX_DEPTH) >> 12; 9561 valid_cnt = REG_RD(sc, BCE_HC_STAT_GEN_STAT11); 9562 BCE_PRINTF(" TPAT 0x%08X 0x%08X 0x%08X 0x%08X 0x%08X\n", 9563 cmd, ctl, cur_depth, max_depth, valid_cnt); 9564 9565 /* Input queue to the Transmit Assembler state machine */ 9566 cmd = REG_RD_IND(sc, BCE_TAS_FTQ_CMD); 9567 ctl = REG_RD_IND(sc, BCE_TAS_FTQ_CTL); 9568 cur_depth = (ctl & BCE_TAS_FTQ_CTL_CUR_DEPTH) >> 22; 9569 max_depth = (ctl & BCE_TAS_FTQ_CTL_MAX_DEPTH) >> 12; 9570 valid_cnt = REG_RD(sc, BCE_HC_STAT_GEN_STAT12); 9571 BCE_PRINTF(" TAS 0x%08X 0x%08X 0x%08X 0x%08X 0x%08X\n", 9572 cmd, ctl, cur_depth, max_depth, valid_cnt); 9573 9574 /* Input queue to the Completion Processor */ 9575 cmd = REG_RD_IND(sc, BCE_COM_COMXQ_FTQ_CMD); 9576 ctl = REG_RD_IND(sc, BCE_COM_COMXQ_FTQ_CTL); 9577 cur_depth = (ctl & BCE_COM_COMXQ_FTQ_CTL_CUR_DEPTH) >> 22; 9578 max_depth = (ctl & BCE_COM_COMXQ_FTQ_CTL_MAX_DEPTH) >> 12; 9579 valid_cnt = REG_RD(sc, BCE_HC_STAT_GEN_STAT13); 9580 BCE_PRINTF(" COMX 0x%08X 0x%08X 0x%08X 0x%08X 0x%08X\n", 9581 cmd, ctl, cur_depth, max_depth, valid_cnt); 9582 9583 /* Input queue to the Completion Processor */ 9584 cmd = REG_RD_IND(sc, BCE_COM_COMTQ_FTQ_CMD); 9585 ctl = REG_RD_IND(sc, BCE_COM_COMTQ_FTQ_CTL); 9586 cur_depth = (ctl & BCE_COM_COMTQ_FTQ_CTL_CUR_DEPTH) >> 22; 9587 max_depth = (ctl & BCE_COM_COMTQ_FTQ_CTL_MAX_DEPTH) >> 12; 9588 valid_cnt = REG_RD(sc, BCE_HC_STAT_GEN_STAT14); 9589 BCE_PRINTF(" COMT 0x%08X 0x%08X 0x%08X 0x%08X 0x%08X\n", 9590 cmd, ctl, cur_depth, max_depth, valid_cnt); 9591 9592 /* Input queue to the Completion Processor */ 9593 cmd = REG_RD_IND(sc, BCE_COM_COMQ_FTQ_CMD); 9594 ctl = REG_RD_IND(sc, BCE_COM_COMQ_FTQ_CTL); 9595 cur_depth = (ctl & BCE_COM_COMQ_FTQ_CTL_CUR_DEPTH) >> 22; 9596 max_depth = (ctl & BCE_COM_COMQ_FTQ_CTL_MAX_DEPTH) >> 12; 9597 valid_cnt = REG_RD(sc, BCE_HC_STAT_GEN_STAT15); 9598 BCE_PRINTF(" COMX 0x%08X 0x%08X 0x%08X 0x%08X 0x%08X\n", 9599 cmd, ctl, cur_depth, max_depth, valid_cnt); 9600 9601 /* Setup the generic statistic counters for the FTQ valid count. */ 9602 val = (BCE_HC_STAT_GEN_SEL_0_GEN_SEL_0_CSQ_VALID_CNT << 16) | 9603 (BCE_HC_STAT_GEN_SEL_0_GEN_SEL_0_CPQ_VALID_CNT << 8) | 9604 (BCE_HC_STAT_GEN_SEL_0_GEN_SEL_0_MGMQ_VALID_CNT); 9605 9606 if ((BCE_CHIP_NUM(sc) == BCE_CHIP_NUM_5709) || 9607 (BCE_CHIP_NUM(sc) == BCE_CHIP_NUM_5716)) 9608 val = val | 9609 (BCE_HC_STAT_GEN_SEL_0_GEN_SEL_0_RV2PCSQ_VALID_CNT_XI << 9610 24); 9611 REG_WR(sc, BCE_HC_STAT_GEN_SEL_0, val); 9612 9613 /* Input queue to the Management Control Processor */ 9614 cmd = REG_RD_IND(sc, BCE_MCP_MCPQ_FTQ_CMD); 9615 ctl = REG_RD_IND(sc, BCE_MCP_MCPQ_FTQ_CTL); 9616 cur_depth = (ctl & BCE_MCP_MCPQ_FTQ_CTL_CUR_DEPTH) >> 22; 9617 max_depth = (ctl & BCE_MCP_MCPQ_FTQ_CTL_MAX_DEPTH) >> 12; 9618 valid_cnt = REG_RD(sc, BCE_HC_STAT_GEN_STAT0); 9619 BCE_PRINTF(" MCP 0x%08X 0x%08X 0x%08X 0x%08X 0x%08X\n", 9620 cmd, ctl, cur_depth, max_depth, valid_cnt); 9621 9622 /* Input queue to the Command Processor */ 9623 cmd = REG_RD_IND(sc, BCE_CP_CPQ_FTQ_CMD); 9624 ctl = REG_RD_IND(sc, BCE_CP_CPQ_FTQ_CTL); 9625 cur_depth = (ctl & BCE_CP_CPQ_FTQ_CTL_CUR_DEPTH) >> 22; 9626 max_depth = (ctl & BCE_CP_CPQ_FTQ_CTL_MAX_DEPTH) >> 12; 9627 valid_cnt = REG_RD(sc, BCE_HC_STAT_GEN_STAT1); 9628 BCE_PRINTF(" CP 0x%08X 0x%08X 0x%08X 0x%08X 0x%08X\n", 9629 cmd, ctl, cur_depth, max_depth, valid_cnt); 9630 9631 /* Input queue to the Completion Scheduler state machine */ 9632 cmd = REG_RD(sc, BCE_CSCH_CH_FTQ_CMD); 9633 ctl = REG_RD(sc, BCE_CSCH_CH_FTQ_CTL); 9634 cur_depth = (ctl & BCE_CSCH_CH_FTQ_CTL_CUR_DEPTH) >> 22; 9635 max_depth = (ctl & BCE_CSCH_CH_FTQ_CTL_MAX_DEPTH) >> 12; 9636 valid_cnt = REG_RD(sc, BCE_HC_STAT_GEN_STAT2); 9637 BCE_PRINTF(" CS 0x%08X 0x%08X 0x%08X 0x%08X 0x%08X\n", 9638 cmd, ctl, cur_depth, max_depth, valid_cnt); 9639 9640 if ((BCE_CHIP_NUM(sc) == BCE_CHIP_NUM_5709) || 9641 (BCE_CHIP_NUM(sc) == BCE_CHIP_NUM_5716)) { 9642 /* Input queue to the RV2P Command Scheduler */ 9643 cmd = REG_RD(sc, BCE_RV2PCSR_FTQ_CMD); 9644 ctl = REG_RD(sc, BCE_RV2PCSR_FTQ_CTL); 9645 cur_depth = (ctl & 0xFFC00000) >> 22; 9646 max_depth = (ctl & 0x003FF000) >> 12; 9647 valid_cnt = REG_RD(sc, BCE_HC_STAT_GEN_STAT3); 9648 BCE_PRINTF(" RV2PCSR 0x%08X 0x%08X 0x%08X 0x%08X 0x%08X\n", 9649 cmd, ctl, cur_depth, max_depth, valid_cnt); 9650 } 9651 9652 BCE_PRINTF( 9653 "----------------------------" 9654 "----------------" 9655 "----------------------------\n"); 9656 } 9657 9658 9659 /****************************************************************************/ 9660 /* Prints out the TX chain. */ 9661 /* */ 9662 /* Returns: */ 9663 /* Nothing. */ 9664 /****************************************************************************/ 9665 static __attribute__ ((noinline)) void 9666 bce_dump_tx_chain(struct bce_softc *sc, u16 tx_prod, int count) 9667 { 9668 struct tx_bd *txbd; 9669 9670 /* First some info about the tx_bd chain structure. */ 9671 BCE_PRINTF( 9672 "----------------------------" 9673 " tx_bd chain " 9674 "----------------------------\n"); 9675 9676 BCE_PRINTF("page size = 0x%08X, tx chain pages = 0x%08X\n", 9677 (u32) BCM_PAGE_SIZE, (u32) TX_PAGES); 9678 BCE_PRINTF("tx_bd per page = 0x%08X, usable tx_bd per page = 0x%08X\n", 9679 (u32) TOTAL_TX_BD_PER_PAGE, (u32) USABLE_TX_BD_PER_PAGE); 9680 BCE_PRINTF("total tx_bd = 0x%08X\n", (u32) TOTAL_TX_BD); 9681 9682 BCE_PRINTF( 9683 "----------------------------" 9684 " tx_bd data " 9685 "----------------------------\n"); 9686 9687 /* Now print out a decoded list of TX buffer descriptors. */ 9688 for (int i = 0; i < count; i++) { 9689 txbd = &sc->tx_bd_chain[TX_PAGE(tx_prod)][TX_IDX(tx_prod)]; 9690 bce_dump_txbd(sc, tx_prod, txbd); 9691 tx_prod++; 9692 } 9693 9694 BCE_PRINTF( 9695 "----------------------------" 9696 "----------------" 9697 "----------------------------\n"); 9698 } 9699 9700 9701 /****************************************************************************/ 9702 /* Prints out the RX chain. */ 9703 /* */ 9704 /* Returns: */ 9705 /* Nothing. */ 9706 /****************************************************************************/ 9707 static __attribute__ ((noinline)) void 9708 bce_dump_rx_bd_chain(struct bce_softc *sc, u16 rx_prod, int count) 9709 { 9710 struct rx_bd *rxbd; 9711 9712 /* First some info about the rx_bd chain structure. */ 9713 BCE_PRINTF( 9714 "----------------------------" 9715 " rx_bd chain " 9716 "----------------------------\n"); 9717 9718 BCE_PRINTF("page size = 0x%08X, rx chain pages = 0x%08X\n", 9719 (u32) BCM_PAGE_SIZE, (u32) RX_PAGES); 9720 9721 BCE_PRINTF("rx_bd per page = 0x%08X, usable rx_bd per page = 0x%08X\n", 9722 (u32) TOTAL_RX_BD_PER_PAGE, (u32) USABLE_RX_BD_PER_PAGE); 9723 9724 BCE_PRINTF("total rx_bd = 0x%08X\n", (u32) TOTAL_RX_BD); 9725 9726 BCE_PRINTF( 9727 "----------------------------" 9728 " rx_bd data " 9729 "----------------------------\n"); 9730 9731 /* Now print out the rx_bd's themselves. */ 9732 for (int i = 0; i < count; i++) { 9733 rxbd = &sc->rx_bd_chain[RX_PAGE(rx_prod)][RX_IDX(rx_prod)]; 9734 bce_dump_rxbd(sc, rx_prod, rxbd); 9735 rx_prod = RX_CHAIN_IDX(rx_prod + 1); 9736 } 9737 9738 BCE_PRINTF( 9739 "----------------------------" 9740 "----------------" 9741 "----------------------------\n"); 9742 } 9743 9744 9745 #ifdef BCE_JUMBO_HDRSPLIT 9746 /****************************************************************************/ 9747 /* Prints out the page chain. */ 9748 /* */ 9749 /* Returns: */ 9750 /* Nothing. */ 9751 /****************************************************************************/ 9752 static __attribute__ ((noinline)) void 9753 bce_dump_pg_chain(struct bce_softc *sc, u16 pg_prod, int count) 9754 { 9755 struct rx_bd *pgbd; 9756 9757 /* First some info about the page chain structure. */ 9758 BCE_PRINTF( 9759 "----------------------------" 9760 " page chain " 9761 "----------------------------\n"); 9762 9763 BCE_PRINTF("page size = 0x%08X, pg chain pages = 0x%08X\n", 9764 (u32) BCM_PAGE_SIZE, (u32) PG_PAGES); 9765 9766 BCE_PRINTF("rx_bd per page = 0x%08X, usable rx_bd per page = 0x%08X\n", 9767 (u32) TOTAL_PG_BD_PER_PAGE, (u32) USABLE_PG_BD_PER_PAGE); 9768 9769 BCE_PRINTF("total rx_bd = 0x%08X, max_pg_bd = 0x%08X\n", 9770 (u32) TOTAL_PG_BD, (u32) MAX_PG_BD); 9771 9772 BCE_PRINTF( 9773 "----------------------------" 9774 " page data " 9775 "----------------------------\n"); 9776 9777 /* Now print out the rx_bd's themselves. */ 9778 for (int i = 0; i < count; i++) { 9779 pgbd = &sc->pg_bd_chain[PG_PAGE(pg_prod)][PG_IDX(pg_prod)]; 9780 bce_dump_pgbd(sc, pg_prod, pgbd); 9781 pg_prod = PG_CHAIN_IDX(pg_prod + 1); 9782 } 9783 9784 BCE_PRINTF( 9785 "----------------------------" 9786 "----------------" 9787 "----------------------------\n"); 9788 } 9789 #endif 9790 9791 9792 #define BCE_PRINT_RX_CONS(arg) \ 9793 if (sblk->status_rx_quick_consumer_index##arg) \ 9794 BCE_PRINTF("0x%04X(0x%04X) - rx_quick_consumer_index%d\n", \ 9795 sblk->status_rx_quick_consumer_index##arg, (u16) \ 9796 RX_CHAIN_IDX(sblk->status_rx_quick_consumer_index##arg), \ 9797 arg); 9798 9799 9800 #define BCE_PRINT_TX_CONS(arg) \ 9801 if (sblk->status_tx_quick_consumer_index##arg) \ 9802 BCE_PRINTF("0x%04X(0x%04X) - tx_quick_consumer_index%d\n", \ 9803 sblk->status_tx_quick_consumer_index##arg, (u16) \ 9804 TX_CHAIN_IDX(sblk->status_tx_quick_consumer_index##arg), \ 9805 arg); 9806 9807 /****************************************************************************/ 9808 /* Prints out the status block from host memory. */ 9809 /* */ 9810 /* Returns: */ 9811 /* Nothing. */ 9812 /****************************************************************************/ 9813 static __attribute__ ((noinline)) void 9814 bce_dump_status_block(struct bce_softc *sc) 9815 { 9816 struct status_block *sblk; 9817 9818 sblk = sc->status_block; 9819 9820 BCE_PRINTF( 9821 "----------------------------" 9822 " Status Block " 9823 "----------------------------\n"); 9824 9825 /* Theses indices are used for normal L2 drivers. */ 9826 BCE_PRINTF(" 0x%08X - attn_bits\n", 9827 sblk->status_attn_bits); 9828 9829 BCE_PRINTF(" 0x%08X - attn_bits_ack\n", 9830 sblk->status_attn_bits_ack); 9831 9832 BCE_PRINT_RX_CONS(0); 9833 BCE_PRINT_TX_CONS(0) 9834 9835 BCE_PRINTF(" 0x%04X - status_idx\n", sblk->status_idx); 9836 9837 /* Theses indices are not used for normal L2 drivers. */ 9838 BCE_PRINT_RX_CONS(1); BCE_PRINT_RX_CONS(2); BCE_PRINT_RX_CONS(3); 9839 BCE_PRINT_RX_CONS(4); BCE_PRINT_RX_CONS(5); BCE_PRINT_RX_CONS(6); 9840 BCE_PRINT_RX_CONS(7); BCE_PRINT_RX_CONS(8); BCE_PRINT_RX_CONS(9); 9841 BCE_PRINT_RX_CONS(10); BCE_PRINT_RX_CONS(11); BCE_PRINT_RX_CONS(12); 9842 BCE_PRINT_RX_CONS(13); BCE_PRINT_RX_CONS(14); BCE_PRINT_RX_CONS(15); 9843 9844 BCE_PRINT_TX_CONS(1); BCE_PRINT_TX_CONS(2); BCE_PRINT_TX_CONS(3); 9845 9846 if (sblk->status_completion_producer_index || 9847 sblk->status_cmd_consumer_index) 9848 BCE_PRINTF("com_prod = 0x%08X, cmd_cons = 0x%08X\n", 9849 sblk->status_completion_producer_index, 9850 sblk->status_cmd_consumer_index); 9851 9852 BCE_PRINTF( 9853 "----------------------------" 9854 "----------------" 9855 "----------------------------\n"); 9856 } 9857 9858 9859 #define BCE_PRINT_64BIT_STAT(arg) \ 9860 if (sblk->arg##_lo || sblk->arg##_hi) \ 9861 BCE_PRINTF("0x%08X:%08X : %s\n", sblk->arg##_hi, \ 9862 sblk->arg##_lo, #arg); 9863 9864 #define BCE_PRINT_32BIT_STAT(arg) \ 9865 if (sblk->arg) \ 9866 BCE_PRINTF(" 0x%08X : %s\n", \ 9867 sblk->arg, #arg); 9868 9869 /****************************************************************************/ 9870 /* Prints out the statistics block from host memory. */ 9871 /* */ 9872 /* Returns: */ 9873 /* Nothing. */ 9874 /****************************************************************************/ 9875 static __attribute__ ((noinline)) void 9876 bce_dump_stats_block(struct bce_softc *sc) 9877 { 9878 struct statistics_block *sblk; 9879 9880 sblk = sc->stats_block; 9881 9882 BCE_PRINTF( 9883 "---------------" 9884 " Stats Block (All Stats Not Shown Are 0) " 9885 "---------------\n"); 9886 9887 BCE_PRINT_64BIT_STAT(stat_IfHCInOctets); 9888 BCE_PRINT_64BIT_STAT(stat_IfHCInBadOctets); 9889 BCE_PRINT_64BIT_STAT(stat_IfHCOutOctets); 9890 BCE_PRINT_64BIT_STAT(stat_IfHCOutBadOctets); 9891 BCE_PRINT_64BIT_STAT(stat_IfHCInUcastPkts); 9892 BCE_PRINT_64BIT_STAT(stat_IfHCInBroadcastPkts); 9893 BCE_PRINT_64BIT_STAT(stat_IfHCInMulticastPkts); 9894 BCE_PRINT_64BIT_STAT(stat_IfHCOutUcastPkts); 9895 BCE_PRINT_64BIT_STAT(stat_IfHCOutBroadcastPkts); 9896 BCE_PRINT_64BIT_STAT(stat_IfHCOutMulticastPkts); 9897 BCE_PRINT_32BIT_STAT( 9898 stat_emac_tx_stat_dot3statsinternalmactransmiterrors); 9899 BCE_PRINT_32BIT_STAT(stat_Dot3StatsCarrierSenseErrors); 9900 BCE_PRINT_32BIT_STAT(stat_Dot3StatsFCSErrors); 9901 BCE_PRINT_32BIT_STAT(stat_Dot3StatsAlignmentErrors); 9902 BCE_PRINT_32BIT_STAT(stat_Dot3StatsSingleCollisionFrames); 9903 BCE_PRINT_32BIT_STAT(stat_Dot3StatsMultipleCollisionFrames); 9904 BCE_PRINT_32BIT_STAT(stat_Dot3StatsDeferredTransmissions); 9905 BCE_PRINT_32BIT_STAT(stat_Dot3StatsExcessiveCollisions); 9906 BCE_PRINT_32BIT_STAT(stat_Dot3StatsLateCollisions); 9907 BCE_PRINT_32BIT_STAT(stat_EtherStatsCollisions); 9908 BCE_PRINT_32BIT_STAT(stat_EtherStatsFragments); 9909 BCE_PRINT_32BIT_STAT(stat_EtherStatsJabbers); 9910 BCE_PRINT_32BIT_STAT(stat_EtherStatsUndersizePkts); 9911 BCE_PRINT_32BIT_STAT(stat_EtherStatsOversizePkts); 9912 BCE_PRINT_32BIT_STAT(stat_EtherStatsPktsRx64Octets); 9913 BCE_PRINT_32BIT_STAT(stat_EtherStatsPktsRx65Octetsto127Octets); 9914 BCE_PRINT_32BIT_STAT(stat_EtherStatsPktsRx128Octetsto255Octets); 9915 BCE_PRINT_32BIT_STAT(stat_EtherStatsPktsRx256Octetsto511Octets); 9916 BCE_PRINT_32BIT_STAT(stat_EtherStatsPktsRx512Octetsto1023Octets); 9917 BCE_PRINT_32BIT_STAT(stat_EtherStatsPktsRx1024Octetsto1522Octets); 9918 BCE_PRINT_32BIT_STAT(stat_EtherStatsPktsRx1523Octetsto9022Octets); 9919 BCE_PRINT_32BIT_STAT(stat_EtherStatsPktsTx64Octets); 9920 BCE_PRINT_32BIT_STAT(stat_EtherStatsPktsTx65Octetsto127Octets); 9921 BCE_PRINT_32BIT_STAT(stat_EtherStatsPktsTx128Octetsto255Octets); 9922 BCE_PRINT_32BIT_STAT(stat_EtherStatsPktsTx256Octetsto511Octets); 9923 BCE_PRINT_32BIT_STAT(stat_EtherStatsPktsTx512Octetsto1023Octets); 9924 BCE_PRINT_32BIT_STAT(stat_EtherStatsPktsTx1024Octetsto1522Octets); 9925 BCE_PRINT_32BIT_STAT(stat_EtherStatsPktsTx1523Octetsto9022Octets); 9926 BCE_PRINT_32BIT_STAT(stat_XonPauseFramesReceived); 9927 BCE_PRINT_32BIT_STAT(stat_XoffPauseFramesReceived); 9928 BCE_PRINT_32BIT_STAT(stat_OutXonSent); 9929 BCE_PRINT_32BIT_STAT(stat_OutXoffSent); 9930 BCE_PRINT_32BIT_STAT(stat_FlowControlDone); 9931 BCE_PRINT_32BIT_STAT(stat_MacControlFramesReceived); 9932 BCE_PRINT_32BIT_STAT(stat_XoffStateEntered); 9933 BCE_PRINT_32BIT_STAT(stat_IfInFramesL2FilterDiscards); 9934 BCE_PRINT_32BIT_STAT(stat_IfInRuleCheckerDiscards); 9935 BCE_PRINT_32BIT_STAT(stat_IfInFTQDiscards); 9936 BCE_PRINT_32BIT_STAT(stat_IfInMBUFDiscards); 9937 BCE_PRINT_32BIT_STAT(stat_IfInRuleCheckerP4Hit); 9938 BCE_PRINT_32BIT_STAT(stat_CatchupInRuleCheckerDiscards); 9939 BCE_PRINT_32BIT_STAT(stat_CatchupInFTQDiscards); 9940 BCE_PRINT_32BIT_STAT(stat_CatchupInMBUFDiscards); 9941 BCE_PRINT_32BIT_STAT(stat_CatchupInRuleCheckerP4Hit); 9942 9943 BCE_PRINTF( 9944 "----------------------------" 9945 "----------------" 9946 "----------------------------\n"); 9947 } 9948 9949 9950 /****************************************************************************/ 9951 /* Prints out a summary of the driver state. */ 9952 /* */ 9953 /* Returns: */ 9954 /* Nothing. */ 9955 /****************************************************************************/ 9956 static __attribute__ ((noinline)) void 9957 bce_dump_driver_state(struct bce_softc *sc) 9958 { 9959 u32 val_hi, val_lo; 9960 9961 BCE_PRINTF( 9962 "-----------------------------" 9963 " Driver State " 9964 "-----------------------------\n"); 9965 9966 val_hi = BCE_ADDR_HI(sc); 9967 val_lo = BCE_ADDR_LO(sc); 9968 BCE_PRINTF("0x%08X:%08X - (sc) driver softc structure virtual " 9969 "address\n", val_hi, val_lo); 9970 9971 val_hi = BCE_ADDR_HI(sc->bce_vhandle); 9972 val_lo = BCE_ADDR_LO(sc->bce_vhandle); 9973 BCE_PRINTF("0x%08X:%08X - (sc->bce_vhandle) PCI BAR virtual " 9974 "address\n", val_hi, val_lo); 9975 9976 val_hi = BCE_ADDR_HI(sc->status_block); 9977 val_lo = BCE_ADDR_LO(sc->status_block); 9978 BCE_PRINTF("0x%08X:%08X - (sc->status_block) status block " 9979 "virtual address\n", val_hi, val_lo); 9980 9981 val_hi = BCE_ADDR_HI(sc->stats_block); 9982 val_lo = BCE_ADDR_LO(sc->stats_block); 9983 BCE_PRINTF("0x%08X:%08X - (sc->stats_block) statistics block " 9984 "virtual address\n", val_hi, val_lo); 9985 9986 val_hi = BCE_ADDR_HI(sc->tx_bd_chain); 9987 val_lo = BCE_ADDR_LO(sc->tx_bd_chain); 9988 BCE_PRINTF("0x%08X:%08X - (sc->tx_bd_chain) tx_bd chain " 9989 "virtual adddress\n", val_hi, val_lo); 9990 9991 val_hi = BCE_ADDR_HI(sc->rx_bd_chain); 9992 val_lo = BCE_ADDR_LO(sc->rx_bd_chain); 9993 BCE_PRINTF("0x%08X:%08X - (sc->rx_bd_chain) rx_bd chain " 9994 "virtual address\n", val_hi, val_lo); 9995 9996 #ifdef BCE_JUMBO_HDRSPLIT 9997 val_hi = BCE_ADDR_HI(sc->pg_bd_chain); 9998 val_lo = BCE_ADDR_LO(sc->pg_bd_chain); 9999 BCE_PRINTF("0x%08X:%08X - (sc->pg_bd_chain) page chain " 10000 "virtual address\n", val_hi, val_lo); 10001 #endif 10002 10003 val_hi = BCE_ADDR_HI(sc->tx_mbuf_ptr); 10004 val_lo = BCE_ADDR_LO(sc->tx_mbuf_ptr); 10005 BCE_PRINTF("0x%08X:%08X - (sc->tx_mbuf_ptr) tx mbuf chain " 10006 "virtual address\n", val_hi, val_lo); 10007 10008 val_hi = BCE_ADDR_HI(sc->rx_mbuf_ptr); 10009 val_lo = BCE_ADDR_LO(sc->rx_mbuf_ptr); 10010 BCE_PRINTF("0x%08X:%08X - (sc->rx_mbuf_ptr) rx mbuf chain " 10011 "virtual address\n", val_hi, val_lo); 10012 10013 #ifdef BCE_JUMBO_HDRSPLIT 10014 val_hi = BCE_ADDR_HI(sc->pg_mbuf_ptr); 10015 val_lo = BCE_ADDR_LO(sc->pg_mbuf_ptr); 10016 BCE_PRINTF("0x%08X:%08X - (sc->pg_mbuf_ptr) page mbuf chain " 10017 "virtual address\n", val_hi, val_lo); 10018 #endif 10019 10020 BCE_PRINTF(" 0x%08X - (sc->interrupts_generated) " 10021 "h/w intrs\n", sc->interrupts_generated); 10022 10023 BCE_PRINTF(" 0x%08X - (sc->rx_interrupts) " 10024 "rx interrupts handled\n", sc->rx_interrupts); 10025 10026 BCE_PRINTF(" 0x%08X - (sc->tx_interrupts) " 10027 "tx interrupts handled\n", sc->tx_interrupts); 10028 10029 BCE_PRINTF(" 0x%08X - (sc->phy_interrupts) " 10030 "phy interrupts handled\n", sc->phy_interrupts); 10031 10032 BCE_PRINTF(" 0x%08X - (sc->last_status_idx) " 10033 "status block index\n", sc->last_status_idx); 10034 10035 BCE_PRINTF(" 0x%04X(0x%04X) - (sc->tx_prod) tx producer " 10036 "index\n", sc->tx_prod, (u16) TX_CHAIN_IDX(sc->tx_prod)); 10037 10038 BCE_PRINTF(" 0x%04X(0x%04X) - (sc->tx_cons) tx consumer " 10039 "index\n", sc->tx_cons, (u16) TX_CHAIN_IDX(sc->tx_cons)); 10040 10041 BCE_PRINTF(" 0x%08X - (sc->tx_prod_bseq) tx producer " 10042 "byte seq index\n", sc->tx_prod_bseq); 10043 10044 BCE_PRINTF(" 0x%08X - (sc->debug_tx_mbuf_alloc) tx " 10045 "mbufs allocated\n", sc->debug_tx_mbuf_alloc); 10046 10047 BCE_PRINTF(" 0x%08X - (sc->used_tx_bd) used " 10048 "tx_bd's\n", sc->used_tx_bd); 10049 10050 BCE_PRINTF("0x%08X/%08X - (sc->tx_hi_watermark) tx hi " 10051 "watermark\n", sc->tx_hi_watermark, sc->max_tx_bd); 10052 10053 BCE_PRINTF(" 0x%04X(0x%04X) - (sc->rx_prod) rx producer " 10054 "index\n", sc->rx_prod, (u16) RX_CHAIN_IDX(sc->rx_prod)); 10055 10056 BCE_PRINTF(" 0x%04X(0x%04X) - (sc->rx_cons) rx consumer " 10057 "index\n", sc->rx_cons, (u16) RX_CHAIN_IDX(sc->rx_cons)); 10058 10059 BCE_PRINTF(" 0x%08X - (sc->rx_prod_bseq) rx producer " 10060 "byte seq index\n", sc->rx_prod_bseq); 10061 10062 BCE_PRINTF(" 0x%08X - (sc->debug_rx_mbuf_alloc) rx " 10063 "mbufs allocated\n", sc->debug_rx_mbuf_alloc); 10064 10065 BCE_PRINTF(" 0x%08X - (sc->free_rx_bd) free " 10066 "rx_bd's\n", sc->free_rx_bd); 10067 10068 #ifdef BCE_JUMBO_HDRSPLIT 10069 BCE_PRINTF(" 0x%04X(0x%04X) - (sc->pg_prod) page producer " 10070 "index\n", sc->pg_prod, (u16) PG_CHAIN_IDX(sc->pg_prod)); 10071 10072 BCE_PRINTF(" 0x%04X(0x%04X) - (sc->pg_cons) page consumer " 10073 "index\n", sc->pg_cons, (u16) PG_CHAIN_IDX(sc->pg_cons)); 10074 10075 BCE_PRINTF(" 0x%08X - (sc->debug_pg_mbuf_alloc) page " 10076 "mbufs allocated\n", sc->debug_pg_mbuf_alloc); 10077 10078 BCE_PRINTF(" 0x%08X - (sc->free_pg_bd) free page " 10079 "rx_bd's\n", sc->free_pg_bd); 10080 10081 BCE_PRINTF("0x%08X/%08X - (sc->pg_low_watermark) page low " 10082 "watermark\n", sc->pg_low_watermark, sc->max_pg_bd); 10083 #endif 10084 10085 BCE_PRINTF(" 0x%08X - (sc->mbuf_alloc_failed_count) " 10086 "mbuf alloc failures\n", sc->mbuf_alloc_failed_count); 10087 10088 BCE_PRINTF(" 0x%08X - (sc->bce_flags) " 10089 "bce mac flags\n", sc->bce_flags); 10090 10091 BCE_PRINTF(" 0x%08X - (sc->bce_phy_flags) " 10092 "bce phy flags\n", sc->bce_phy_flags); 10093 10094 BCE_PRINTF( 10095 "----------------------------" 10096 "----------------" 10097 "----------------------------\n"); 10098 } 10099 10100 10101 /****************************************************************************/ 10102 /* Prints out the hardware state through a summary of important register, */ 10103 /* followed by a complete register dump. */ 10104 /* */ 10105 /* Returns: */ 10106 /* Nothing. */ 10107 /****************************************************************************/ 10108 static __attribute__ ((noinline)) void 10109 bce_dump_hw_state(struct bce_softc *sc) 10110 { 10111 u32 val; 10112 10113 BCE_PRINTF( 10114 "----------------------------" 10115 " Hardware State " 10116 "----------------------------\n"); 10117 10118 BCE_PRINTF("%s - bootcode version\n", sc->bce_bc_ver); 10119 10120 val = REG_RD(sc, BCE_MISC_ENABLE_STATUS_BITS); 10121 BCE_PRINTF("0x%08X - (0x%06X) misc_enable_status_bits\n", 10122 val, BCE_MISC_ENABLE_STATUS_BITS); 10123 10124 val = REG_RD(sc, BCE_DMA_STATUS); 10125 BCE_PRINTF("0x%08X - (0x%06X) dma_status\n", 10126 val, BCE_DMA_STATUS); 10127 10128 val = REG_RD(sc, BCE_CTX_STATUS); 10129 BCE_PRINTF("0x%08X - (0x%06X) ctx_status\n", 10130 val, BCE_CTX_STATUS); 10131 10132 val = REG_RD(sc, BCE_EMAC_STATUS); 10133 BCE_PRINTF("0x%08X - (0x%06X) emac_status\n", 10134 val, BCE_EMAC_STATUS); 10135 10136 val = REG_RD(sc, BCE_RPM_STATUS); 10137 BCE_PRINTF("0x%08X - (0x%06X) rpm_status\n", 10138 val, BCE_RPM_STATUS); 10139 10140 /* ToDo: Create a #define for this constant. */ 10141 val = REG_RD(sc, 0x2004); 10142 BCE_PRINTF("0x%08X - (0x%06X) rlup_status\n", 10143 val, 0x2004); 10144 10145 val = REG_RD(sc, BCE_RV2P_STATUS); 10146 BCE_PRINTF("0x%08X - (0x%06X) rv2p_status\n", 10147 val, BCE_RV2P_STATUS); 10148 10149 /* ToDo: Create a #define for this constant. */ 10150 val = REG_RD(sc, 0x2c04); 10151 BCE_PRINTF("0x%08X - (0x%06X) rdma_status\n", 10152 val, 0x2c04); 10153 10154 val = REG_RD(sc, BCE_TBDR_STATUS); 10155 BCE_PRINTF("0x%08X - (0x%06X) tbdr_status\n", 10156 val, BCE_TBDR_STATUS); 10157 10158 val = REG_RD(sc, BCE_TDMA_STATUS); 10159 BCE_PRINTF("0x%08X - (0x%06X) tdma_status\n", 10160 val, BCE_TDMA_STATUS); 10161 10162 val = REG_RD(sc, BCE_HC_STATUS); 10163 BCE_PRINTF("0x%08X - (0x%06X) hc_status\n", 10164 val, BCE_HC_STATUS); 10165 10166 val = REG_RD_IND(sc, BCE_TXP_CPU_STATE); 10167 BCE_PRINTF("0x%08X - (0x%06X) txp_cpu_state\n", 10168 val, BCE_TXP_CPU_STATE); 10169 10170 val = REG_RD_IND(sc, BCE_TPAT_CPU_STATE); 10171 BCE_PRINTF("0x%08X - (0x%06X) tpat_cpu_state\n", 10172 val, BCE_TPAT_CPU_STATE); 10173 10174 val = REG_RD_IND(sc, BCE_RXP_CPU_STATE); 10175 BCE_PRINTF("0x%08X - (0x%06X) rxp_cpu_state\n", 10176 val, BCE_RXP_CPU_STATE); 10177 10178 val = REG_RD_IND(sc, BCE_COM_CPU_STATE); 10179 BCE_PRINTF("0x%08X - (0x%06X) com_cpu_state\n", 10180 val, BCE_COM_CPU_STATE); 10181 10182 val = REG_RD_IND(sc, BCE_MCP_CPU_STATE); 10183 BCE_PRINTF("0x%08X - (0x%06X) mcp_cpu_state\n", 10184 val, BCE_MCP_CPU_STATE); 10185 10186 val = REG_RD_IND(sc, BCE_CP_CPU_STATE); 10187 BCE_PRINTF("0x%08X - (0x%06X) cp_cpu_state\n", 10188 val, BCE_CP_CPU_STATE); 10189 10190 BCE_PRINTF( 10191 "----------------------------" 10192 "----------------" 10193 "----------------------------\n"); 10194 10195 BCE_PRINTF( 10196 "----------------------------" 10197 " Register Dump " 10198 "----------------------------\n"); 10199 10200 for (int i = 0x400; i < 0x8000; i += 0x10) { 10201 BCE_PRINTF("0x%04X: 0x%08X 0x%08X 0x%08X 0x%08X\n", 10202 i, REG_RD(sc, i), REG_RD(sc, i + 0x4), 10203 REG_RD(sc, i + 0x8), REG_RD(sc, i + 0xC)); 10204 } 10205 10206 BCE_PRINTF( 10207 "----------------------------" 10208 "----------------" 10209 "----------------------------\n"); 10210 } 10211 10212 10213 /****************************************************************************/ 10214 /* Prints out the mailbox queue registers. */ 10215 /* */ 10216 /* Returns: */ 10217 /* Nothing. */ 10218 /****************************************************************************/ 10219 static __attribute__ ((noinline)) void 10220 bce_dump_mq_regs(struct bce_softc *sc) 10221 { 10222 BCE_PRINTF( 10223 "----------------------------" 10224 " MQ Regs " 10225 "----------------------------\n"); 10226 10227 BCE_PRINTF( 10228 "----------------------------" 10229 "----------------" 10230 "----------------------------\n"); 10231 10232 for (int i = 0x3c00; i < 0x4000; i += 0x10) { 10233 BCE_PRINTF("0x%04X: 0x%08X 0x%08X 0x%08X 0x%08X\n", 10234 i, REG_RD(sc, i), REG_RD(sc, i + 0x4), 10235 REG_RD(sc, i + 0x8), REG_RD(sc, i + 0xC)); 10236 } 10237 10238 BCE_PRINTF( 10239 "----------------------------" 10240 "----------------" 10241 "----------------------------\n"); 10242 } 10243 10244 10245 /****************************************************************************/ 10246 /* Prints out the bootcode state. */ 10247 /* */ 10248 /* Returns: */ 10249 /* Nothing. */ 10250 /****************************************************************************/ 10251 static __attribute__ ((noinline)) void 10252 bce_dump_bc_state(struct bce_softc *sc) 10253 { 10254 u32 val; 10255 10256 BCE_PRINTF( 10257 "----------------------------" 10258 " Bootcode State " 10259 "----------------------------\n"); 10260 10261 BCE_PRINTF("%s - bootcode version\n", sc->bce_bc_ver); 10262 10263 val = bce_shmem_rd(sc, BCE_BC_RESET_TYPE); 10264 BCE_PRINTF("0x%08X - (0x%06X) reset_type\n", 10265 val, BCE_BC_RESET_TYPE); 10266 10267 val = bce_shmem_rd(sc, BCE_BC_STATE); 10268 BCE_PRINTF("0x%08X - (0x%06X) state\n", 10269 val, BCE_BC_STATE); 10270 10271 val = bce_shmem_rd(sc, BCE_BC_STATE_CONDITION); 10272 BCE_PRINTF("0x%08X - (0x%06X) condition\n", 10273 val, BCE_BC_STATE_CONDITION); 10274 10275 val = bce_shmem_rd(sc, BCE_BC_STATE_DEBUG_CMD); 10276 BCE_PRINTF("0x%08X - (0x%06X) debug_cmd\n", 10277 val, BCE_BC_STATE_DEBUG_CMD); 10278 10279 BCE_PRINTF( 10280 "----------------------------" 10281 "----------------" 10282 "----------------------------\n"); 10283 } 10284 10285 10286 /****************************************************************************/ 10287 /* Prints out the TXP processor state. */ 10288 /* */ 10289 /* Returns: */ 10290 /* Nothing. */ 10291 /****************************************************************************/ 10292 static __attribute__ ((noinline)) void 10293 bce_dump_txp_state(struct bce_softc *sc, int regs) 10294 { 10295 u32 val; 10296 u32 fw_version[3]; 10297 10298 BCE_PRINTF( 10299 "----------------------------" 10300 " TXP State " 10301 "----------------------------\n"); 10302 10303 for (int i = 0; i < 3; i++) 10304 fw_version[i] = htonl(REG_RD_IND(sc, 10305 (BCE_TXP_SCRATCH + 0x10 + i * 4))); 10306 BCE_PRINTF("Firmware version - %s\n", (char *) fw_version); 10307 10308 val = REG_RD_IND(sc, BCE_TXP_CPU_MODE); 10309 BCE_PRINTF("0x%08X - (0x%06X) txp_cpu_mode\n", 10310 val, BCE_TXP_CPU_MODE); 10311 10312 val = REG_RD_IND(sc, BCE_TXP_CPU_STATE); 10313 BCE_PRINTF("0x%08X - (0x%06X) txp_cpu_state\n", 10314 val, BCE_TXP_CPU_STATE); 10315 10316 val = REG_RD_IND(sc, BCE_TXP_CPU_EVENT_MASK); 10317 BCE_PRINTF("0x%08X - (0x%06X) txp_cpu_event_mask\n", 10318 val, BCE_TXP_CPU_EVENT_MASK); 10319 10320 if (regs) { 10321 BCE_PRINTF( 10322 "----------------------------" 10323 " Register Dump " 10324 "----------------------------\n"); 10325 10326 for (int i = BCE_TXP_CPU_MODE; i < 0x68000; i += 0x10) { 10327 /* Skip the big blank spaces */ 10328 if (i < 0x454000 && i > 0x5ffff) 10329 BCE_PRINTF("0x%04X: 0x%08X 0x%08X " 10330 "0x%08X 0x%08X\n", i, 10331 REG_RD_IND(sc, i), 10332 REG_RD_IND(sc, i + 0x4), 10333 REG_RD_IND(sc, i + 0x8), 10334 REG_RD_IND(sc, i + 0xC)); 10335 } 10336 } 10337 10338 BCE_PRINTF( 10339 "----------------------------" 10340 "----------------" 10341 "----------------------------\n"); 10342 } 10343 10344 10345 /****************************************************************************/ 10346 /* Prints out the RXP processor state. */ 10347 /* */ 10348 /* Returns: */ 10349 /* Nothing. */ 10350 /****************************************************************************/ 10351 static __attribute__ ((noinline)) void 10352 bce_dump_rxp_state(struct bce_softc *sc, int regs) 10353 { 10354 u32 val; 10355 u32 fw_version[3]; 10356 10357 BCE_PRINTF( 10358 "----------------------------" 10359 " RXP State " 10360 "----------------------------\n"); 10361 10362 for (int i = 0; i < 3; i++) 10363 fw_version[i] = htonl(REG_RD_IND(sc, 10364 (BCE_RXP_SCRATCH + 0x10 + i * 4))); 10365 10366 BCE_PRINTF("Firmware version - %s\n", (char *) fw_version); 10367 10368 val = REG_RD_IND(sc, BCE_RXP_CPU_MODE); 10369 BCE_PRINTF("0x%08X - (0x%06X) rxp_cpu_mode\n", 10370 val, BCE_RXP_CPU_MODE); 10371 10372 val = REG_RD_IND(sc, BCE_RXP_CPU_STATE); 10373 BCE_PRINTF("0x%08X - (0x%06X) rxp_cpu_state\n", 10374 val, BCE_RXP_CPU_STATE); 10375 10376 val = REG_RD_IND(sc, BCE_RXP_CPU_EVENT_MASK); 10377 BCE_PRINTF("0x%08X - (0x%06X) rxp_cpu_event_mask\n", 10378 val, BCE_RXP_CPU_EVENT_MASK); 10379 10380 if (regs) { 10381 BCE_PRINTF( 10382 "----------------------------" 10383 " Register Dump " 10384 "----------------------------\n"); 10385 10386 for (int i = BCE_RXP_CPU_MODE; i < 0xe8fff; i += 0x10) { 10387 /* Skip the big blank sapces */ 10388 if (i < 0xc5400 && i > 0xdffff) 10389 BCE_PRINTF("0x%04X: 0x%08X 0x%08X " 10390 "0x%08X 0x%08X\n", i, 10391 REG_RD_IND(sc, i), 10392 REG_RD_IND(sc, i + 0x4), 10393 REG_RD_IND(sc, i + 0x8), 10394 REG_RD_IND(sc, i + 0xC)); 10395 } 10396 } 10397 10398 BCE_PRINTF( 10399 "----------------------------" 10400 "----------------" 10401 "----------------------------\n"); 10402 } 10403 10404 10405 /****************************************************************************/ 10406 /* Prints out the TPAT processor state. */ 10407 /* */ 10408 /* Returns: */ 10409 /* Nothing. */ 10410 /****************************************************************************/ 10411 static __attribute__ ((noinline)) void 10412 bce_dump_tpat_state(struct bce_softc *sc, int regs) 10413 { 10414 u32 val; 10415 u32 fw_version[3]; 10416 10417 BCE_PRINTF( 10418 "----------------------------" 10419 " TPAT State " 10420 "----------------------------\n"); 10421 10422 for (int i = 0; i < 3; i++) 10423 fw_version[i] = htonl(REG_RD_IND(sc, 10424 (BCE_TPAT_SCRATCH + 0x410 + i * 4))); 10425 10426 BCE_PRINTF("Firmware version - %s\n", (char *) fw_version); 10427 10428 val = REG_RD_IND(sc, BCE_TPAT_CPU_MODE); 10429 BCE_PRINTF("0x%08X - (0x%06X) tpat_cpu_mode\n", 10430 val, BCE_TPAT_CPU_MODE); 10431 10432 val = REG_RD_IND(sc, BCE_TPAT_CPU_STATE); 10433 BCE_PRINTF("0x%08X - (0x%06X) tpat_cpu_state\n", 10434 val, BCE_TPAT_CPU_STATE); 10435 10436 val = REG_RD_IND(sc, BCE_TPAT_CPU_EVENT_MASK); 10437 BCE_PRINTF("0x%08X - (0x%06X) tpat_cpu_event_mask\n", 10438 val, BCE_TPAT_CPU_EVENT_MASK); 10439 10440 if (regs) { 10441 BCE_PRINTF( 10442 "----------------------------" 10443 " Register Dump " 10444 "----------------------------\n"); 10445 10446 for (int i = BCE_TPAT_CPU_MODE; i < 0xa3fff; i += 0x10) { 10447 /* Skip the big blank spaces */ 10448 if (i < 0x854000 && i > 0x9ffff) 10449 BCE_PRINTF("0x%04X: 0x%08X 0x%08X " 10450 "0x%08X 0x%08X\n", i, 10451 REG_RD_IND(sc, i), 10452 REG_RD_IND(sc, i + 0x4), 10453 REG_RD_IND(sc, i + 0x8), 10454 REG_RD_IND(sc, i + 0xC)); 10455 } 10456 } 10457 10458 BCE_PRINTF( 10459 "----------------------------" 10460 "----------------" 10461 "----------------------------\n"); 10462 } 10463 10464 10465 /****************************************************************************/ 10466 /* Prints out the Command Procesor (CP) state. */ 10467 /* */ 10468 /* Returns: */ 10469 /* Nothing. */ 10470 /****************************************************************************/ 10471 static __attribute__ ((noinline)) void 10472 bce_dump_cp_state(struct bce_softc *sc, int regs) 10473 { 10474 u32 val; 10475 u32 fw_version[3]; 10476 10477 BCE_PRINTF( 10478 "----------------------------" 10479 " CP State " 10480 "----------------------------\n"); 10481 10482 for (int i = 0; i < 3; i++) 10483 fw_version[i] = htonl(REG_RD_IND(sc, 10484 (BCE_CP_SCRATCH + 0x10 + i * 4))); 10485 10486 BCE_PRINTF("Firmware version - %s\n", (char *) fw_version); 10487 10488 val = REG_RD_IND(sc, BCE_CP_CPU_MODE); 10489 BCE_PRINTF("0x%08X - (0x%06X) cp_cpu_mode\n", 10490 val, BCE_CP_CPU_MODE); 10491 10492 val = REG_RD_IND(sc, BCE_CP_CPU_STATE); 10493 BCE_PRINTF("0x%08X - (0x%06X) cp_cpu_state\n", 10494 val, BCE_CP_CPU_STATE); 10495 10496 val = REG_RD_IND(sc, BCE_CP_CPU_EVENT_MASK); 10497 BCE_PRINTF("0x%08X - (0x%06X) cp_cpu_event_mask\n", val, 10498 BCE_CP_CPU_EVENT_MASK); 10499 10500 if (regs) { 10501 BCE_PRINTF( 10502 "----------------------------" 10503 " Register Dump " 10504 "----------------------------\n"); 10505 10506 for (int i = BCE_CP_CPU_MODE; i < 0x1aa000; i += 0x10) { 10507 /* Skip the big blank spaces */ 10508 if (i < 0x185400 && i > 0x19ffff) 10509 BCE_PRINTF("0x%04X: 0x%08X 0x%08X " 10510 "0x%08X 0x%08X\n", i, 10511 REG_RD_IND(sc, i), 10512 REG_RD_IND(sc, i + 0x4), 10513 REG_RD_IND(sc, i + 0x8), 10514 REG_RD_IND(sc, i + 0xC)); 10515 } 10516 } 10517 10518 BCE_PRINTF( 10519 "----------------------------" 10520 "----------------" 10521 "----------------------------\n"); 10522 } 10523 10524 10525 /****************************************************************************/ 10526 /* Prints out the Completion Procesor (COM) state. */ 10527 /* */ 10528 /* Returns: */ 10529 /* Nothing. */ 10530 /****************************************************************************/ 10531 static __attribute__ ((noinline)) void 10532 bce_dump_com_state(struct bce_softc *sc, int regs) 10533 { 10534 u32 val; 10535 u32 fw_version[4]; 10536 10537 BCE_PRINTF( 10538 "----------------------------" 10539 " COM State " 10540 "----------------------------\n"); 10541 10542 for (int i = 0; i < 3; i++) 10543 fw_version[i] = htonl(REG_RD_IND(sc, 10544 (BCE_COM_SCRATCH + 0x10 + i * 4))); 10545 10546 BCE_PRINTF("Firmware version - %s\n", (char *) fw_version); 10547 10548 val = REG_RD_IND(sc, BCE_COM_CPU_MODE); 10549 BCE_PRINTF("0x%08X - (0x%06X) com_cpu_mode\n", 10550 val, BCE_COM_CPU_MODE); 10551 10552 val = REG_RD_IND(sc, BCE_COM_CPU_STATE); 10553 BCE_PRINTF("0x%08X - (0x%06X) com_cpu_state\n", 10554 val, BCE_COM_CPU_STATE); 10555 10556 val = REG_RD_IND(sc, BCE_COM_CPU_EVENT_MASK); 10557 BCE_PRINTF("0x%08X - (0x%06X) com_cpu_event_mask\n", val, 10558 BCE_COM_CPU_EVENT_MASK); 10559 10560 if (regs) { 10561 BCE_PRINTF( 10562 "----------------------------" 10563 " Register Dump " 10564 "----------------------------\n"); 10565 10566 for (int i = BCE_COM_CPU_MODE; i < 0x1053e8; i += 0x10) { 10567 BCE_PRINTF("0x%04X: 0x%08X 0x%08X " 10568 "0x%08X 0x%08X\n", i, 10569 REG_RD_IND(sc, i), 10570 REG_RD_IND(sc, i + 0x4), 10571 REG_RD_IND(sc, i + 0x8), 10572 REG_RD_IND(sc, i + 0xC)); 10573 } 10574 } 10575 10576 BCE_PRINTF( 10577 "----------------------------" 10578 "----------------" 10579 "----------------------------\n"); 10580 } 10581 10582 10583 /****************************************************************************/ 10584 /* Prints out the Receive Virtual 2 Physical (RV2P) state. */ 10585 /* */ 10586 /* Returns: */ 10587 /* Nothing. */ 10588 /****************************************************************************/ 10589 static __attribute__ ((noinline)) void 10590 bce_dump_rv2p_state(struct bce_softc *sc) 10591 { 10592 u32 val, pc1, pc2, fw_ver_high, fw_ver_low; 10593 10594 BCE_PRINTF( 10595 "----------------------------" 10596 " RV2P State " 10597 "----------------------------\n"); 10598 10599 /* Stall the RV2P processors. */ 10600 val = REG_RD_IND(sc, BCE_RV2P_CONFIG); 10601 val |= BCE_RV2P_CONFIG_STALL_PROC1 | BCE_RV2P_CONFIG_STALL_PROC2; 10602 REG_WR_IND(sc, BCE_RV2P_CONFIG, val); 10603 10604 /* Read the firmware version. */ 10605 val = 0x00000001; 10606 REG_WR_IND(sc, BCE_RV2P_PROC1_ADDR_CMD, val); 10607 fw_ver_low = REG_RD_IND(sc, BCE_RV2P_INSTR_LOW); 10608 fw_ver_high = REG_RD_IND(sc, BCE_RV2P_INSTR_HIGH) & 10609 BCE_RV2P_INSTR_HIGH_HIGH; 10610 BCE_PRINTF("RV2P1 Firmware version - 0x%08X:0x%08X\n", 10611 fw_ver_high, fw_ver_low); 10612 10613 val = 0x00000001; 10614 REG_WR_IND(sc, BCE_RV2P_PROC2_ADDR_CMD, val); 10615 fw_ver_low = REG_RD_IND(sc, BCE_RV2P_INSTR_LOW); 10616 fw_ver_high = REG_RD_IND(sc, BCE_RV2P_INSTR_HIGH) & 10617 BCE_RV2P_INSTR_HIGH_HIGH; 10618 BCE_PRINTF("RV2P2 Firmware version - 0x%08X:0x%08X\n", 10619 fw_ver_high, fw_ver_low); 10620 10621 /* Resume the RV2P processors. */ 10622 val = REG_RD_IND(sc, BCE_RV2P_CONFIG); 10623 val &= ~(BCE_RV2P_CONFIG_STALL_PROC1 | BCE_RV2P_CONFIG_STALL_PROC2); 10624 REG_WR_IND(sc, BCE_RV2P_CONFIG, val); 10625 10626 /* Fetch the program counter value. */ 10627 val = 0x68007800; 10628 REG_WR_IND(sc, BCE_RV2P_DEBUG_VECT_PEEK, val); 10629 val = REG_RD_IND(sc, BCE_RV2P_DEBUG_VECT_PEEK); 10630 pc1 = (val & BCE_RV2P_DEBUG_VECT_PEEK_1_VALUE); 10631 pc2 = (val & BCE_RV2P_DEBUG_VECT_PEEK_2_VALUE) >> 16; 10632 BCE_PRINTF("0x%08X - RV2P1 program counter (1st read)\n", pc1); 10633 BCE_PRINTF("0x%08X - RV2P2 program counter (1st read)\n", pc2); 10634 10635 /* Fetch the program counter value again to see if it is advancing. */ 10636 val = 0x68007800; 10637 REG_WR_IND(sc, BCE_RV2P_DEBUG_VECT_PEEK, val); 10638 val = REG_RD_IND(sc, BCE_RV2P_DEBUG_VECT_PEEK); 10639 pc1 = (val & BCE_RV2P_DEBUG_VECT_PEEK_1_VALUE); 10640 pc2 = (val & BCE_RV2P_DEBUG_VECT_PEEK_2_VALUE) >> 16; 10641 BCE_PRINTF("0x%08X - RV2P1 program counter (2nd read)\n", pc1); 10642 BCE_PRINTF("0x%08X - RV2P2 program counter (2nd read)\n", pc2); 10643 10644 BCE_PRINTF( 10645 "----------------------------" 10646 "----------------" 10647 "----------------------------\n"); 10648 } 10649 10650 10651 /****************************************************************************/ 10652 /* Prints out the driver state and then enters the debugger. */ 10653 /* */ 10654 /* Returns: */ 10655 /* Nothing. */ 10656 /****************************************************************************/ 10657 static __attribute__ ((noinline)) void 10658 bce_breakpoint(struct bce_softc *sc) 10659 { 10660 10661 /* 10662 * Unreachable code to silence compiler warnings 10663 * about unused functions. 10664 */ 10665 if (0) { 10666 bce_freeze_controller(sc); 10667 bce_unfreeze_controller(sc); 10668 bce_dump_enet(sc, NULL); 10669 bce_dump_txbd(sc, 0, NULL); 10670 bce_dump_rxbd(sc, 0, NULL); 10671 bce_dump_tx_mbuf_chain(sc, 0, USABLE_TX_BD); 10672 bce_dump_rx_mbuf_chain(sc, 0, USABLE_RX_BD); 10673 bce_dump_l2fhdr(sc, 0, NULL); 10674 bce_dump_ctx(sc, RX_CID); 10675 bce_dump_ftqs(sc); 10676 bce_dump_tx_chain(sc, 0, USABLE_TX_BD); 10677 bce_dump_rx_bd_chain(sc, 0, USABLE_RX_BD); 10678 bce_dump_status_block(sc); 10679 bce_dump_stats_block(sc); 10680 bce_dump_driver_state(sc); 10681 bce_dump_hw_state(sc); 10682 bce_dump_bc_state(sc); 10683 bce_dump_txp_state(sc, 0); 10684 bce_dump_rxp_state(sc, 0); 10685 bce_dump_tpat_state(sc, 0); 10686 bce_dump_cp_state(sc, 0); 10687 bce_dump_com_state(sc, 0); 10688 bce_dump_rv2p_state(sc); 10689 10690 #ifdef BCE_JUMBO_HDRSPLIT 10691 bce_dump_pgbd(sc, 0, NULL); 10692 bce_dump_pg_mbuf_chain(sc, 0, USABLE_PG_BD); 10693 bce_dump_pg_chain(sc, 0, USABLE_PG_BD); 10694 #endif 10695 } 10696 10697 bce_dump_status_block(sc); 10698 bce_dump_driver_state(sc); 10699 10700 /* Call the debugger. */ 10701 breakpoint(); 10702 10703 return; 10704 } 10705 #endif 10706 10707