xref: /freebsd/sys/dev/bce/if_bce.c (revision d8a0fe102c0cfdfcd5b818f850eff09d8536c9bc)
1 /*-
2  * SPDX-License-Identifier: BSD-2-Clause
3  *
4  * Copyright (c) 2006-2014 QLogic Corporation
5  *
6  * Redistribution and use in source and binary forms, with or without
7  * modification, are permitted provided that the following conditions
8  * are met:
9  *
10  * 1. Redistributions of source code must retain the above copyright
11  *    notice, this list of conditions and the following disclaimer.
12  * 2. Redistributions in binary form must reproduce the above copyright
13  *    notice, this list of conditions and the following disclaimer in the
14  *    documentation and/or other materials provided with the distribution.
15  *
16  * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS'
17  * AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
18  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
19  * ARE DISCLAIMED.  IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS
20  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
21  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
22  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
23  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
24  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
25  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF
26  * THE POSSIBILITY OF SUCH DAMAGE.
27  */
28 
29 #include <sys/cdefs.h>
30 __FBSDID("$FreeBSD$");
31 
32 /*
33  * The following controllers are supported by this driver:
34  *   BCM5706C A2, A3
35  *   BCM5706S A2, A3
36  *   BCM5708C B1, B2
37  *   BCM5708S B1, B2
38  *   BCM5709C A1, C0
39  *   BCM5709S A1, C0
40  *   BCM5716C C0
41  *   BCM5716S C0
42  *
43  * The following controllers are not supported by this driver:
44  *   BCM5706C A0, A1 (pre-production)
45  *   BCM5706S A0, A1 (pre-production)
46  *   BCM5708C A0, B0 (pre-production)
47  *   BCM5708S A0, B0 (pre-production)
48  *   BCM5709C A0  B0, B1, B2 (pre-production)
49  *   BCM5709S A0, B0, B1, B2 (pre-production)
50  */
51 
52 #include "opt_bce.h"
53 
54 #include <sys/param.h>
55 #include <sys/endian.h>
56 #include <sys/systm.h>
57 #include <sys/sockio.h>
58 #include <sys/lock.h>
59 #include <sys/mbuf.h>
60 #include <sys/malloc.h>
61 #include <sys/mutex.h>
62 #include <sys/kernel.h>
63 #include <sys/module.h>
64 #include <sys/socket.h>
65 #include <sys/sysctl.h>
66 #include <sys/queue.h>
67 
68 #include <net/bpf.h>
69 #include <net/ethernet.h>
70 #include <net/if.h>
71 #include <net/if_var.h>
72 #include <net/if_arp.h>
73 #include <net/if_dl.h>
74 #include <net/if_media.h>
75 
76 #include <net/if_types.h>
77 #include <net/if_vlan_var.h>
78 
79 #include <netinet/in_systm.h>
80 #include <netinet/in.h>
81 #include <netinet/if_ether.h>
82 #include <netinet/ip.h>
83 #include <netinet/ip6.h>
84 #include <netinet/tcp.h>
85 #include <netinet/udp.h>
86 
87 #include <machine/bus.h>
88 #include <machine/resource.h>
89 #include <sys/bus.h>
90 #include <sys/rman.h>
91 
92 #include <dev/mii/mii.h>
93 #include <dev/mii/miivar.h>
94 #include "miidevs.h"
95 #include <dev/mii/brgphyreg.h>
96 
97 #include <dev/pci/pcireg.h>
98 #include <dev/pci/pcivar.h>
99 
100 #include "miibus_if.h"
101 
102 #include <dev/bce/if_bcereg.h>
103 #include <dev/bce/if_bcefw.h>
104 
105 /****************************************************************************/
106 /* BCE Debug Options                                                        */
107 /****************************************************************************/
108 #ifdef BCE_DEBUG
109 	u32 bce_debug = BCE_WARN;
110 
111 	/*          0 = Never              */
112 	/*          1 = 1 in 2,147,483,648 */
113 	/*        256 = 1 in     8,388,608 */
114 	/*       2048 = 1 in     1,048,576 */
115 	/*      65536 = 1 in        32,768 */
116 	/*    1048576 = 1 in         2,048 */
117 	/*  268435456 =	1 in             8 */
118 	/*  536870912 = 1 in             4 */
119 	/* 1073741824 = 1 in             2 */
120 
121 	/* Controls how often the l2_fhdr frame error check will fail. */
122 	int l2fhdr_error_sim_control = 0;
123 
124 	/* Controls how often the unexpected attention check will fail. */
125 	int unexpected_attention_sim_control = 0;
126 
127 	/* Controls how often to simulate an mbuf allocation failure. */
128 	int mbuf_alloc_failed_sim_control = 0;
129 
130 	/* Controls how often to simulate a DMA mapping failure. */
131 	int dma_map_addr_failed_sim_control = 0;
132 
133 	/* Controls how often to simulate a bootcode failure. */
134 	int bootcode_running_failure_sim_control = 0;
135 #endif
136 
137 /****************************************************************************/
138 /* PCI Device ID Table                                                      */
139 /*                                                                          */
140 /* Used by bce_probe() to identify the devices supported by this driver.    */
141 /****************************************************************************/
142 #define BCE_DEVDESC_MAX		64
143 
144 static const struct bce_type bce_devs[] = {
145 	/* BCM5706C Controllers and OEM boards. */
146 	{ BRCM_VENDORID, BRCM_DEVICEID_BCM5706,  HP_VENDORID, 0x3101,
147 		"HP NC370T Multifunction Gigabit Server Adapter" },
148 	{ BRCM_VENDORID, BRCM_DEVICEID_BCM5706,  HP_VENDORID, 0x3106,
149 		"HP NC370i Multifunction Gigabit Server Adapter" },
150 	{ BRCM_VENDORID, BRCM_DEVICEID_BCM5706,  HP_VENDORID, 0x3070,
151 		"HP NC380T PCIe DP Multifunc Gig Server Adapter" },
152 	{ BRCM_VENDORID, BRCM_DEVICEID_BCM5706,  HP_VENDORID, 0x1709,
153 		"HP NC371i Multifunction Gigabit Server Adapter" },
154 	{ BRCM_VENDORID, BRCM_DEVICEID_BCM5706,  PCI_ANY_ID,  PCI_ANY_ID,
155 		"QLogic NetXtreme II BCM5706 1000Base-T" },
156 
157 	/* BCM5706S controllers and OEM boards. */
158 	{ BRCM_VENDORID, BRCM_DEVICEID_BCM5706S, HP_VENDORID, 0x3102,
159 		"HP NC370F Multifunction Gigabit Server Adapter" },
160 	{ BRCM_VENDORID, BRCM_DEVICEID_BCM5706S, PCI_ANY_ID,  PCI_ANY_ID,
161 		"QLogic NetXtreme II BCM5706 1000Base-SX" },
162 
163 	/* BCM5708C controllers and OEM boards. */
164 	{ BRCM_VENDORID, BRCM_DEVICEID_BCM5708,  HP_VENDORID, 0x7037,
165 		"HP NC373T PCIe Multifunction Gig Server Adapter" },
166 	{ BRCM_VENDORID, BRCM_DEVICEID_BCM5708,  HP_VENDORID, 0x7038,
167 		"HP NC373i Multifunction Gigabit Server Adapter" },
168 	{ BRCM_VENDORID, BRCM_DEVICEID_BCM5708,  HP_VENDORID, 0x7045,
169 		"HP NC374m PCIe Multifunction Adapter" },
170 	{ BRCM_VENDORID, BRCM_DEVICEID_BCM5708,  PCI_ANY_ID,  PCI_ANY_ID,
171 		"QLogic NetXtreme II BCM5708 1000Base-T" },
172 
173 	/* BCM5708S controllers and OEM boards. */
174 	{ BRCM_VENDORID, BRCM_DEVICEID_BCM5708S,  HP_VENDORID, 0x1706,
175 		"HP NC373m Multifunction Gigabit Server Adapter" },
176 	{ BRCM_VENDORID, BRCM_DEVICEID_BCM5708S,  HP_VENDORID, 0x703b,
177 		"HP NC373i Multifunction Gigabit Server Adapter" },
178 	{ BRCM_VENDORID, BRCM_DEVICEID_BCM5708S,  HP_VENDORID, 0x703d,
179 		"HP NC373F PCIe Multifunc Giga Server Adapter" },
180 	{ BRCM_VENDORID, BRCM_DEVICEID_BCM5708S,  PCI_ANY_ID,  PCI_ANY_ID,
181 		"QLogic NetXtreme II BCM5708 1000Base-SX" },
182 
183 	/* BCM5709C controllers and OEM boards. */
184 	{ BRCM_VENDORID, BRCM_DEVICEID_BCM5709,  HP_VENDORID, 0x7055,
185 		"HP NC382i DP Multifunction Gigabit Server Adapter" },
186 	{ BRCM_VENDORID, BRCM_DEVICEID_BCM5709,  HP_VENDORID, 0x7059,
187 		"HP NC382T PCIe DP Multifunction Gigabit Server Adapter" },
188 	{ BRCM_VENDORID, BRCM_DEVICEID_BCM5709,  PCI_ANY_ID,  PCI_ANY_ID,
189 		"QLogic NetXtreme II BCM5709 1000Base-T" },
190 
191 	/* BCM5709S controllers and OEM boards. */
192 	{ BRCM_VENDORID, BRCM_DEVICEID_BCM5709S,  HP_VENDORID, 0x171d,
193 		"HP NC382m DP 1GbE Multifunction BL-c Adapter" },
194 	{ BRCM_VENDORID, BRCM_DEVICEID_BCM5709S,  HP_VENDORID, 0x7056,
195 		"HP NC382i DP Multifunction Gigabit Server Adapter" },
196 	{ BRCM_VENDORID, BRCM_DEVICEID_BCM5709S,  PCI_ANY_ID,  PCI_ANY_ID,
197 		"QLogic NetXtreme II BCM5709 1000Base-SX" },
198 
199 	/* BCM5716 controllers and OEM boards. */
200 	{ BRCM_VENDORID, BRCM_DEVICEID_BCM5716,  PCI_ANY_ID,  PCI_ANY_ID,
201 		"QLogic NetXtreme II BCM5716 1000Base-T" },
202 
203 	{ 0, 0, 0, 0, NULL }
204 };
205 
206 
207 /****************************************************************************/
208 /* Supported Flash NVRAM device data.                                       */
209 /****************************************************************************/
210 static const struct flash_spec flash_table[] =
211 {
212 #define BUFFERED_FLAGS		(BCE_NV_BUFFERED | BCE_NV_TRANSLATE)
213 #define NONBUFFERED_FLAGS	(BCE_NV_WREN)
214 
215 	/* Slow EEPROM */
216 	{0x00000000, 0x40830380, 0x009f0081, 0xa184a053, 0xaf000400,
217 	 BUFFERED_FLAGS, SEEPROM_PAGE_BITS, SEEPROM_PAGE_SIZE,
218 	 SEEPROM_BYTE_ADDR_MASK, SEEPROM_TOTAL_SIZE,
219 	 "EEPROM - slow"},
220 	/* Expansion entry 0001 */
221 	{0x08000002, 0x4b808201, 0x00050081, 0x03840253, 0xaf020406,
222 	 NONBUFFERED_FLAGS, SAIFUN_FLASH_PAGE_BITS, SAIFUN_FLASH_PAGE_SIZE,
223 	 SAIFUN_FLASH_BYTE_ADDR_MASK, 0,
224 	 "Entry 0001"},
225 	/* Saifun SA25F010 (non-buffered flash) */
226 	/* strap, cfg1, & write1 need updates */
227 	{0x04000001, 0x47808201, 0x00050081, 0x03840253, 0xaf020406,
228 	 NONBUFFERED_FLAGS, SAIFUN_FLASH_PAGE_BITS, SAIFUN_FLASH_PAGE_SIZE,
229 	 SAIFUN_FLASH_BYTE_ADDR_MASK, SAIFUN_FLASH_BASE_TOTAL_SIZE*2,
230 	 "Non-buffered flash (128kB)"},
231 	/* Saifun SA25F020 (non-buffered flash) */
232 	/* strap, cfg1, & write1 need updates */
233 	{0x0c000003, 0x4f808201, 0x00050081, 0x03840253, 0xaf020406,
234 	 NONBUFFERED_FLAGS, SAIFUN_FLASH_PAGE_BITS, SAIFUN_FLASH_PAGE_SIZE,
235 	 SAIFUN_FLASH_BYTE_ADDR_MASK, SAIFUN_FLASH_BASE_TOTAL_SIZE*4,
236 	 "Non-buffered flash (256kB)"},
237 	/* Expansion entry 0100 */
238 	{0x11000000, 0x53808201, 0x00050081, 0x03840253, 0xaf020406,
239 	 NONBUFFERED_FLAGS, SAIFUN_FLASH_PAGE_BITS, SAIFUN_FLASH_PAGE_SIZE,
240 	 SAIFUN_FLASH_BYTE_ADDR_MASK, 0,
241 	 "Entry 0100"},
242 	/* Entry 0101: ST M45PE10 (non-buffered flash, TetonII B0) */
243 	{0x19000002, 0x5b808201, 0x000500db, 0x03840253, 0xaf020406,
244 	 NONBUFFERED_FLAGS, ST_MICRO_FLASH_PAGE_BITS, ST_MICRO_FLASH_PAGE_SIZE,
245 	 ST_MICRO_FLASH_BYTE_ADDR_MASK, ST_MICRO_FLASH_BASE_TOTAL_SIZE*2,
246 	 "Entry 0101: ST M45PE10 (128kB non-bufferred)"},
247 	/* Entry 0110: ST M45PE20 (non-buffered flash)*/
248 	{0x15000001, 0x57808201, 0x000500db, 0x03840253, 0xaf020406,
249 	 NONBUFFERED_FLAGS, ST_MICRO_FLASH_PAGE_BITS, ST_MICRO_FLASH_PAGE_SIZE,
250 	 ST_MICRO_FLASH_BYTE_ADDR_MASK, ST_MICRO_FLASH_BASE_TOTAL_SIZE*4,
251 	 "Entry 0110: ST M45PE20 (256kB non-bufferred)"},
252 	/* Saifun SA25F005 (non-buffered flash) */
253 	/* strap, cfg1, & write1 need updates */
254 	{0x1d000003, 0x5f808201, 0x00050081, 0x03840253, 0xaf020406,
255 	 NONBUFFERED_FLAGS, SAIFUN_FLASH_PAGE_BITS, SAIFUN_FLASH_PAGE_SIZE,
256 	 SAIFUN_FLASH_BYTE_ADDR_MASK, SAIFUN_FLASH_BASE_TOTAL_SIZE,
257 	 "Non-buffered flash (64kB)"},
258 	/* Fast EEPROM */
259 	{0x22000000, 0x62808380, 0x009f0081, 0xa184a053, 0xaf000400,
260 	 BUFFERED_FLAGS, SEEPROM_PAGE_BITS, SEEPROM_PAGE_SIZE,
261 	 SEEPROM_BYTE_ADDR_MASK, SEEPROM_TOTAL_SIZE,
262 	 "EEPROM - fast"},
263 	/* Expansion entry 1001 */
264 	{0x2a000002, 0x6b808201, 0x00050081, 0x03840253, 0xaf020406,
265 	 NONBUFFERED_FLAGS, SAIFUN_FLASH_PAGE_BITS, SAIFUN_FLASH_PAGE_SIZE,
266 	 SAIFUN_FLASH_BYTE_ADDR_MASK, 0,
267 	 "Entry 1001"},
268 	/* Expansion entry 1010 */
269 	{0x26000001, 0x67808201, 0x00050081, 0x03840253, 0xaf020406,
270 	 NONBUFFERED_FLAGS, SAIFUN_FLASH_PAGE_BITS, SAIFUN_FLASH_PAGE_SIZE,
271 	 SAIFUN_FLASH_BYTE_ADDR_MASK, 0,
272 	 "Entry 1010"},
273 	/* ATMEL AT45DB011B (buffered flash) */
274 	{0x2e000003, 0x6e808273, 0x00570081, 0x68848353, 0xaf000400,
275 	 BUFFERED_FLAGS, BUFFERED_FLASH_PAGE_BITS, BUFFERED_FLASH_PAGE_SIZE,
276 	 BUFFERED_FLASH_BYTE_ADDR_MASK, BUFFERED_FLASH_TOTAL_SIZE,
277 	 "Buffered flash (128kB)"},
278 	/* Expansion entry 1100 */
279 	{0x33000000, 0x73808201, 0x00050081, 0x03840253, 0xaf020406,
280 	 NONBUFFERED_FLAGS, SAIFUN_FLASH_PAGE_BITS, SAIFUN_FLASH_PAGE_SIZE,
281 	 SAIFUN_FLASH_BYTE_ADDR_MASK, 0,
282 	 "Entry 1100"},
283 	/* Expansion entry 1101 */
284 	{0x3b000002, 0x7b808201, 0x00050081, 0x03840253, 0xaf020406,
285 	 NONBUFFERED_FLAGS, SAIFUN_FLASH_PAGE_BITS, SAIFUN_FLASH_PAGE_SIZE,
286 	 SAIFUN_FLASH_BYTE_ADDR_MASK, 0,
287 	 "Entry 1101"},
288 	/* Ateml Expansion entry 1110 */
289 	{0x37000001, 0x76808273, 0x00570081, 0x68848353, 0xaf000400,
290 	 BUFFERED_FLAGS, BUFFERED_FLASH_PAGE_BITS, BUFFERED_FLASH_PAGE_SIZE,
291 	 BUFFERED_FLASH_BYTE_ADDR_MASK, 0,
292 	 "Entry 1110 (Atmel)"},
293 	/* ATMEL AT45DB021B (buffered flash) */
294 	{0x3f000003, 0x7e808273, 0x00570081, 0x68848353, 0xaf000400,
295 	 BUFFERED_FLAGS, BUFFERED_FLASH_PAGE_BITS, BUFFERED_FLASH_PAGE_SIZE,
296 	 BUFFERED_FLASH_BYTE_ADDR_MASK, BUFFERED_FLASH_TOTAL_SIZE*2,
297 	 "Buffered flash (256kB)"},
298 };
299 
300 /*
301  * The BCM5709 controllers transparently handle the
302  * differences between Atmel 264 byte pages and all
303  * flash devices which use 256 byte pages, so no
304  * logical-to-physical mapping is required in the
305  * driver.
306  */
307 static const struct flash_spec flash_5709 = {
308 	.flags		= BCE_NV_BUFFERED,
309 	.page_bits	= BCM5709_FLASH_PAGE_BITS,
310 	.page_size	= BCM5709_FLASH_PAGE_SIZE,
311 	.addr_mask	= BCM5709_FLASH_BYTE_ADDR_MASK,
312 	.total_size	= BUFFERED_FLASH_TOTAL_SIZE * 2,
313 	.name		= "5709/5716 buffered flash (256kB)",
314 };
315 
316 
317 /****************************************************************************/
318 /* FreeBSD device entry points.                                             */
319 /****************************************************************************/
320 static int  bce_probe			(device_t);
321 static int  bce_attach			(device_t);
322 static int  bce_detach			(device_t);
323 static int  bce_shutdown		(device_t);
324 
325 
326 /****************************************************************************/
327 /* BCE Debug Data Structure Dump Routines                                   */
328 /****************************************************************************/
329 #ifdef BCE_DEBUG
330 static u32  bce_reg_rd				(struct bce_softc *, u32);
331 static void bce_reg_wr				(struct bce_softc *, u32, u32);
332 static void bce_reg_wr16			(struct bce_softc *, u32, u16);
333 static u32  bce_ctx_rd				(struct bce_softc *, u32, u32);
334 static void bce_dump_enet			(struct bce_softc *, struct mbuf *);
335 static void bce_dump_mbuf			(struct bce_softc *, struct mbuf *);
336 static void bce_dump_tx_mbuf_chain	(struct bce_softc *, u16, int);
337 static void bce_dump_rx_mbuf_chain	(struct bce_softc *, u16, int);
338 static void bce_dump_pg_mbuf_chain	(struct bce_softc *, u16, int);
339 static void bce_dump_txbd			(struct bce_softc *,
340     int, struct tx_bd *);
341 static void bce_dump_rxbd			(struct bce_softc *,
342     int, struct rx_bd *);
343 static void bce_dump_pgbd			(struct bce_softc *,
344     int, struct rx_bd *);
345 static void bce_dump_l2fhdr		(struct bce_softc *,
346     int, struct l2_fhdr *);
347 static void bce_dump_ctx			(struct bce_softc *, u16);
348 static void bce_dump_ftqs			(struct bce_softc *);
349 static void bce_dump_tx_chain		(struct bce_softc *, u16, int);
350 static void bce_dump_rx_bd_chain	(struct bce_softc *, u16, int);
351 static void bce_dump_pg_chain		(struct bce_softc *, u16, int);
352 static void bce_dump_status_block	(struct bce_softc *);
353 static void bce_dump_stats_block	(struct bce_softc *);
354 static void bce_dump_driver_state	(struct bce_softc *);
355 static void bce_dump_hw_state		(struct bce_softc *);
356 static void bce_dump_shmem_state	(struct bce_softc *);
357 static void bce_dump_mq_regs		(struct bce_softc *);
358 static void bce_dump_bc_state		(struct bce_softc *);
359 static void bce_dump_txp_state		(struct bce_softc *, int);
360 static void bce_dump_rxp_state		(struct bce_softc *, int);
361 static void bce_dump_tpat_state	(struct bce_softc *, int);
362 static void bce_dump_cp_state		(struct bce_softc *, int);
363 static void bce_dump_com_state		(struct bce_softc *, int);
364 static void bce_dump_rv2p_state	(struct bce_softc *);
365 static void bce_breakpoint			(struct bce_softc *);
366 #endif /*BCE_DEBUG */
367 
368 
369 /****************************************************************************/
370 /* BCE Register/Memory Access Routines                                      */
371 /****************************************************************************/
372 static u32  bce_reg_rd_ind		(struct bce_softc *, u32);
373 static void bce_reg_wr_ind		(struct bce_softc *, u32, u32);
374 static void bce_shmem_wr		(struct bce_softc *, u32, u32);
375 static u32  bce_shmem_rd		(struct bce_softc *, u32);
376 static void bce_ctx_wr			(struct bce_softc *, u32, u32, u32);
377 static int  bce_miibus_read_reg		(device_t, int, int);
378 static int  bce_miibus_write_reg	(device_t, int, int, int);
379 static void bce_miibus_statchg		(device_t);
380 
381 #ifdef BCE_DEBUG
382 static int bce_sysctl_nvram_dump(SYSCTL_HANDLER_ARGS);
383 #ifdef BCE_NVRAM_WRITE_SUPPORT
384 static int bce_sysctl_nvram_write(SYSCTL_HANDLER_ARGS);
385 #endif
386 #endif
387 
388 /****************************************************************************/
389 /* BCE NVRAM Access Routines                                                */
390 /****************************************************************************/
391 static int  bce_acquire_nvram_lock	(struct bce_softc *);
392 static int  bce_release_nvram_lock	(struct bce_softc *);
393 static void bce_enable_nvram_access(struct bce_softc *);
394 static void bce_disable_nvram_access(struct bce_softc *);
395 static int  bce_nvram_read_dword	(struct bce_softc *, u32, u8 *, u32);
396 static int  bce_init_nvram			(struct bce_softc *);
397 static int  bce_nvram_read			(struct bce_softc *, u32, u8 *, int);
398 static int  bce_nvram_test			(struct bce_softc *);
399 #ifdef BCE_NVRAM_WRITE_SUPPORT
400 static int  bce_enable_nvram_write	(struct bce_softc *);
401 static void bce_disable_nvram_write(struct bce_softc *);
402 static int  bce_nvram_erase_page	(struct bce_softc *, u32);
403 static int  bce_nvram_write_dword	(struct bce_softc *, u32, u8 *, u32);
404 static int  bce_nvram_write		(struct bce_softc *, u32, u8 *, int);
405 #endif
406 
407 /****************************************************************************/
408 /*                                                                          */
409 /****************************************************************************/
410 static void bce_get_rx_buffer_sizes(struct bce_softc *, int);
411 static void bce_get_media			(struct bce_softc *);
412 static void bce_init_media			(struct bce_softc *);
413 static u32 bce_get_rphy_link		(struct bce_softc *);
414 static void bce_dma_map_addr		(void *, bus_dma_segment_t *, int, int);
415 static int  bce_dma_alloc			(device_t);
416 static void bce_dma_free			(struct bce_softc *);
417 static void bce_release_resources	(struct bce_softc *);
418 
419 /****************************************************************************/
420 /* BCE Firmware Synchronization and Load                                    */
421 /****************************************************************************/
422 static void bce_fw_cap_init			(struct bce_softc *);
423 static int  bce_fw_sync			(struct bce_softc *, u32);
424 static void bce_load_rv2p_fw		(struct bce_softc *, const u32 *, u32,
425     u32);
426 static void bce_load_cpu_fw		(struct bce_softc *,
427     struct cpu_reg *, struct fw_info *);
428 static void bce_start_cpu			(struct bce_softc *, struct cpu_reg *);
429 static void bce_halt_cpu			(struct bce_softc *, struct cpu_reg *);
430 static void bce_start_rxp_cpu		(struct bce_softc *);
431 static void bce_init_rxp_cpu		(struct bce_softc *);
432 static void bce_init_txp_cpu 		(struct bce_softc *);
433 static void bce_init_tpat_cpu		(struct bce_softc *);
434 static void bce_init_cp_cpu	  	(struct bce_softc *);
435 static void bce_init_com_cpu	  	(struct bce_softc *);
436 static void bce_init_cpus			(struct bce_softc *);
437 
438 static void bce_print_adapter_info	(struct bce_softc *);
439 static void bce_probe_pci_caps		(device_t, struct bce_softc *);
440 static void bce_stop				(struct bce_softc *);
441 static int  bce_reset				(struct bce_softc *, u32);
442 static int  bce_chipinit 			(struct bce_softc *);
443 static int  bce_blockinit 			(struct bce_softc *);
444 
445 static int  bce_init_tx_chain		(struct bce_softc *);
446 static void bce_free_tx_chain		(struct bce_softc *);
447 
448 static int  bce_get_rx_buf		(struct bce_softc *, u16, u16, u32 *);
449 static int  bce_init_rx_chain		(struct bce_softc *);
450 static void bce_fill_rx_chain		(struct bce_softc *);
451 static void bce_free_rx_chain		(struct bce_softc *);
452 
453 static int  bce_get_pg_buf		(struct bce_softc *, u16, u16);
454 static int  bce_init_pg_chain		(struct bce_softc *);
455 static void bce_fill_pg_chain		(struct bce_softc *);
456 static void bce_free_pg_chain		(struct bce_softc *);
457 
458 static struct mbuf *bce_tso_setup	(struct bce_softc *,
459     struct mbuf **, u16 *);
460 static int  bce_tx_encap			(struct bce_softc *, struct mbuf **);
461 static void bce_start_locked		(struct ifnet *);
462 static void bce_start			(struct ifnet *);
463 static int  bce_ioctl			(struct ifnet *, u_long, caddr_t);
464 static uint64_t bce_get_counter		(struct ifnet *, ift_counter);
465 static void bce_watchdog		(struct bce_softc *);
466 static int  bce_ifmedia_upd		(struct ifnet *);
467 static int  bce_ifmedia_upd_locked	(struct ifnet *);
468 static void bce_ifmedia_sts		(struct ifnet *, struct ifmediareq *);
469 static void bce_ifmedia_sts_rphy	(struct bce_softc *, struct ifmediareq *);
470 static void bce_init_locked		(struct bce_softc *);
471 static void bce_init				(void *);
472 static void bce_mgmt_init_locked	(struct bce_softc *sc);
473 
474 static int  bce_init_ctx			(struct bce_softc *);
475 static void bce_get_mac_addr		(struct bce_softc *);
476 static void bce_set_mac_addr		(struct bce_softc *);
477 static void bce_phy_intr			(struct bce_softc *);
478 static inline u16 bce_get_hw_rx_cons	(struct bce_softc *);
479 static void bce_rx_intr			(struct bce_softc *);
480 static void bce_tx_intr			(struct bce_softc *);
481 static void bce_disable_intr		(struct bce_softc *);
482 static void bce_enable_intr		(struct bce_softc *, int);
483 
484 static void bce_intr				(void *);
485 static void bce_set_rx_mode		(struct bce_softc *);
486 static void bce_stats_update		(struct bce_softc *);
487 static void bce_tick				(void *);
488 static void bce_pulse				(void *);
489 static void bce_add_sysctls		(struct bce_softc *);
490 
491 
492 /****************************************************************************/
493 /* FreeBSD device dispatch table.                                           */
494 /****************************************************************************/
495 static device_method_t bce_methods[] = {
496 	/* Device interface (device_if.h) */
497 	DEVMETHOD(device_probe,		bce_probe),
498 	DEVMETHOD(device_attach,	bce_attach),
499 	DEVMETHOD(device_detach,	bce_detach),
500 	DEVMETHOD(device_shutdown,	bce_shutdown),
501 /* Supported by device interface but not used here. */
502 /*	DEVMETHOD(device_identify,	bce_identify),      */
503 /*	DEVMETHOD(device_suspend,	bce_suspend),       */
504 /*	DEVMETHOD(device_resume,	bce_resume),        */
505 /*	DEVMETHOD(device_quiesce,	bce_quiesce),       */
506 
507 	/* MII interface (miibus_if.h) */
508 	DEVMETHOD(miibus_readreg,	bce_miibus_read_reg),
509 	DEVMETHOD(miibus_writereg,	bce_miibus_write_reg),
510 	DEVMETHOD(miibus_statchg,	bce_miibus_statchg),
511 /* Supported by MII interface but not used here.       */
512 /*	DEVMETHOD(miibus_linkchg,	bce_miibus_linkchg),   */
513 /*	DEVMETHOD(miibus_mediainit,	bce_miibus_mediainit), */
514 
515 	DEVMETHOD_END
516 };
517 
518 static driver_t bce_driver = {
519 	"bce",
520 	bce_methods,
521 	sizeof(struct bce_softc)
522 };
523 
524 static devclass_t bce_devclass;
525 
526 MODULE_DEPEND(bce, pci, 1, 1, 1);
527 MODULE_DEPEND(bce, ether, 1, 1, 1);
528 MODULE_DEPEND(bce, miibus, 1, 1, 1);
529 
530 DRIVER_MODULE(bce, pci, bce_driver, bce_devclass, NULL, NULL);
531 DRIVER_MODULE(miibus, bce, miibus_driver, miibus_devclass, NULL, NULL);
532 
533 
534 /****************************************************************************/
535 /* Tunable device values                                                    */
536 /****************************************************************************/
537 static SYSCTL_NODE(_hw, OID_AUTO, bce, CTLFLAG_RD, 0, "bce driver parameters");
538 
539 /* Allowable values are TRUE or FALSE */
540 static int bce_verbose = TRUE;
541 SYSCTL_INT(_hw_bce, OID_AUTO, verbose, CTLFLAG_RDTUN, &bce_verbose, 0,
542     "Verbose output enable/disable");
543 
544 /* Allowable values are TRUE or FALSE */
545 static int bce_tso_enable = TRUE;
546 SYSCTL_INT(_hw_bce, OID_AUTO, tso_enable, CTLFLAG_RDTUN, &bce_tso_enable, 0,
547     "TSO Enable/Disable");
548 
549 /* Allowable values are 0 (IRQ), 1 (MSI/IRQ), and 2 (MSI-X/MSI/IRQ) */
550 /* ToDo: Add MSI-X support. */
551 static int bce_msi_enable = 1;
552 SYSCTL_INT(_hw_bce, OID_AUTO, msi_enable, CTLFLAG_RDTUN, &bce_msi_enable, 0,
553     "MSI-X|MSI|INTx selector");
554 
555 /* Allowable values are 1, 2, 4, 8. */
556 static int bce_rx_pages = DEFAULT_RX_PAGES;
557 SYSCTL_UINT(_hw_bce, OID_AUTO, rx_pages, CTLFLAG_RDTUN, &bce_rx_pages, 0,
558     "Receive buffer descriptor pages (1 page = 255 buffer descriptors)");
559 
560 /* Allowable values are 1, 2, 4, 8. */
561 static int bce_tx_pages = DEFAULT_TX_PAGES;
562 SYSCTL_UINT(_hw_bce, OID_AUTO, tx_pages, CTLFLAG_RDTUN, &bce_tx_pages, 0,
563     "Transmit buffer descriptor pages (1 page = 255 buffer descriptors)");
564 
565 /* Allowable values are TRUE or FALSE. */
566 static int bce_hdr_split = TRUE;
567 SYSCTL_UINT(_hw_bce, OID_AUTO, hdr_split, CTLFLAG_RDTUN, &bce_hdr_split, 0,
568     "Frame header/payload splitting Enable/Disable");
569 
570 /* Allowable values are TRUE or FALSE. */
571 static int bce_strict_rx_mtu = FALSE;
572 SYSCTL_UINT(_hw_bce, OID_AUTO, strict_rx_mtu, CTLFLAG_RDTUN,
573     &bce_strict_rx_mtu, 0,
574     "Enable/Disable strict RX frame size checking");
575 
576 /* Allowable values are 0 ... 100 */
577 #ifdef BCE_DEBUG
578 /* Generate 1 interrupt for every transmit completion. */
579 static int bce_tx_quick_cons_trip_int = 1;
580 #else
581 /* Generate 1 interrupt for every 20 transmit completions. */
582 static int bce_tx_quick_cons_trip_int = DEFAULT_TX_QUICK_CONS_TRIP_INT;
583 #endif
584 SYSCTL_UINT(_hw_bce, OID_AUTO, tx_quick_cons_trip_int, CTLFLAG_RDTUN,
585     &bce_tx_quick_cons_trip_int, 0,
586     "Transmit BD trip point during interrupts");
587 
588 /* Allowable values are 0 ... 100 */
589 /* Generate 1 interrupt for every transmit completion. */
590 #ifdef BCE_DEBUG
591 static int bce_tx_quick_cons_trip = 1;
592 #else
593 /* Generate 1 interrupt for every 20 transmit completions. */
594 static int bce_tx_quick_cons_trip = DEFAULT_TX_QUICK_CONS_TRIP;
595 #endif
596 SYSCTL_UINT(_hw_bce, OID_AUTO, tx_quick_cons_trip, CTLFLAG_RDTUN,
597     &bce_tx_quick_cons_trip, 0,
598     "Transmit BD trip point");
599 
600 /* Allowable values are 0 ... 100 */
601 #ifdef BCE_DEBUG
602 /* Generate an interrupt if 0us have elapsed since the last TX completion. */
603 static int bce_tx_ticks_int = 0;
604 #else
605 /* Generate an interrupt if 80us have elapsed since the last TX completion. */
606 static int bce_tx_ticks_int = DEFAULT_TX_TICKS_INT;
607 #endif
608 SYSCTL_UINT(_hw_bce, OID_AUTO, tx_ticks_int, CTLFLAG_RDTUN,
609     &bce_tx_ticks_int, 0, "Transmit ticks count during interrupt");
610 
611 /* Allowable values are 0 ... 100 */
612 #ifdef BCE_DEBUG
613 /* Generate an interrupt if 0us have elapsed since the last TX completion. */
614 static int bce_tx_ticks = 0;
615 #else
616 /* Generate an interrupt if 80us have elapsed since the last TX completion. */
617 static int bce_tx_ticks = DEFAULT_TX_TICKS;
618 #endif
619 SYSCTL_UINT(_hw_bce, OID_AUTO, tx_ticks, CTLFLAG_RDTUN,
620     &bce_tx_ticks, 0, "Transmit ticks count");
621 
622 /* Allowable values are 1 ... 100 */
623 #ifdef BCE_DEBUG
624 /* Generate 1 interrupt for every received frame. */
625 static int bce_rx_quick_cons_trip_int = 1;
626 #else
627 /* Generate 1 interrupt for every 6 received frames. */
628 static int bce_rx_quick_cons_trip_int = DEFAULT_RX_QUICK_CONS_TRIP_INT;
629 #endif
630 SYSCTL_UINT(_hw_bce, OID_AUTO, rx_quick_cons_trip_int, CTLFLAG_RDTUN,
631     &bce_rx_quick_cons_trip_int, 0,
632     "Receive BD trip point duirng interrupts");
633 
634 /* Allowable values are 1 ... 100 */
635 #ifdef BCE_DEBUG
636 /* Generate 1 interrupt for every received frame. */
637 static int bce_rx_quick_cons_trip = 1;
638 #else
639 /* Generate 1 interrupt for every 6 received frames. */
640 static int bce_rx_quick_cons_trip = DEFAULT_RX_QUICK_CONS_TRIP;
641 #endif
642 SYSCTL_UINT(_hw_bce, OID_AUTO, rx_quick_cons_trip, CTLFLAG_RDTUN,
643     &bce_rx_quick_cons_trip, 0,
644     "Receive BD trip point");
645 
646 /* Allowable values are 0 ... 100 */
647 #ifdef BCE_DEBUG
648 /* Generate an int. if 0us have elapsed since the last received frame. */
649 static int bce_rx_ticks_int = 0;
650 #else
651 /* Generate an int. if 18us have elapsed since the last received frame. */
652 static int bce_rx_ticks_int = DEFAULT_RX_TICKS_INT;
653 #endif
654 SYSCTL_UINT(_hw_bce, OID_AUTO, rx_ticks_int, CTLFLAG_RDTUN,
655     &bce_rx_ticks_int, 0, "Receive ticks count during interrupt");
656 
657 /* Allowable values are 0 ... 100 */
658 #ifdef BCE_DEBUG
659 /* Generate an int. if 0us have elapsed since the last received frame. */
660 static int bce_rx_ticks = 0;
661 #else
662 /* Generate an int. if 18us have elapsed since the last received frame. */
663 static int bce_rx_ticks = DEFAULT_RX_TICKS;
664 #endif
665 SYSCTL_UINT(_hw_bce, OID_AUTO, rx_ticks, CTLFLAG_RDTUN,
666     &bce_rx_ticks, 0, "Receive ticks count");
667 
668 
669 /****************************************************************************/
670 /* Device probe function.                                                   */
671 /*                                                                          */
672 /* Compares the device to the driver's list of supported devices and        */
673 /* reports back to the OS whether this is the right driver for the device.  */
674 /*                                                                          */
675 /* Returns:                                                                 */
676 /*   BUS_PROBE_DEFAULT on success, positive value on failure.               */
677 /****************************************************************************/
678 static int
679 bce_probe(device_t dev)
680 {
681 	const struct bce_type *t;
682 	struct bce_softc *sc;
683 	char *descbuf;
684 	u16 vid = 0, did = 0, svid = 0, sdid = 0;
685 
686 	t = bce_devs;
687 
688 	sc = device_get_softc(dev);
689 	sc->bce_unit = device_get_unit(dev);
690 	sc->bce_dev = dev;
691 
692 	/* Get the data for the device to be probed. */
693 	vid  = pci_get_vendor(dev);
694 	did  = pci_get_device(dev);
695 	svid = pci_get_subvendor(dev);
696 	sdid = pci_get_subdevice(dev);
697 
698 	DBPRINT(sc, BCE_EXTREME_LOAD,
699 	    "%s(); VID = 0x%04X, DID = 0x%04X, SVID = 0x%04X, "
700 	    "SDID = 0x%04X\n", __FUNCTION__, vid, did, svid, sdid);
701 
702 	/* Look through the list of known devices for a match. */
703 	while(t->bce_name != NULL) {
704 
705 		if ((vid == t->bce_vid) && (did == t->bce_did) &&
706 		    ((svid == t->bce_svid) || (t->bce_svid == PCI_ANY_ID)) &&
707 		    ((sdid == t->bce_sdid) || (t->bce_sdid == PCI_ANY_ID))) {
708 
709 			descbuf = malloc(BCE_DEVDESC_MAX, M_TEMP, M_NOWAIT);
710 
711 			if (descbuf == NULL)
712 				return(ENOMEM);
713 
714 			/* Print out the device identity. */
715 			snprintf(descbuf, BCE_DEVDESC_MAX, "%s (%c%d)",
716 			    t->bce_name, (((pci_read_config(dev,
717 			    PCIR_REVID, 4) & 0xf0) >> 4) + 'A'),
718 			    (pci_read_config(dev, PCIR_REVID, 4) & 0xf));
719 
720 			device_set_desc_copy(dev, descbuf);
721 			free(descbuf, M_TEMP);
722 			return(BUS_PROBE_DEFAULT);
723 		}
724 		t++;
725 	}
726 
727 	return(ENXIO);
728 }
729 
730 
731 /****************************************************************************/
732 /* PCI Capabilities Probe Function.                                         */
733 /*                                                                          */
734 /* Walks the PCI capabiites list for the device to find what features are   */
735 /* supported.                                                               */
736 /*                                                                          */
737 /* Returns:                                                                 */
738 /*   None.                                                                  */
739 /****************************************************************************/
740 static void
741 bce_print_adapter_info(struct bce_softc *sc)
742 {
743 	int i = 0;
744 
745 	DBENTER(BCE_VERBOSE_LOAD);
746 
747 	if (bce_verbose || bootverbose) {
748 		BCE_PRINTF("ASIC (0x%08X); ", sc->bce_chipid);
749 		printf("Rev (%c%d); ", ((BCE_CHIP_ID(sc) & 0xf000) >>
750 		    12) + 'A', ((BCE_CHIP_ID(sc) & 0x0ff0) >> 4));
751 
752 
753 		/* Bus info. */
754 		if (sc->bce_flags & BCE_PCIE_FLAG) {
755 			printf("Bus (PCIe x%d, ", sc->link_width);
756 			switch (sc->link_speed) {
757 			case 1: printf("2.5Gbps); "); break;
758 			case 2:	printf("5Gbps); "); break;
759 			default: printf("Unknown link speed); ");
760 			}
761 		} else {
762 			printf("Bus (PCI%s, %s, %dMHz); ",
763 			    ((sc->bce_flags & BCE_PCIX_FLAG) ? "-X" : ""),
764 			    ((sc->bce_flags & BCE_PCI_32BIT_FLAG) ?
765 			    "32-bit" : "64-bit"), sc->bus_speed_mhz);
766 		}
767 
768 		/* Firmware version and device features. */
769 		printf("B/C (%s); Bufs (RX:%d;TX:%d;PG:%d); Flags (",
770 		    sc->bce_bc_ver,	sc->rx_pages, sc->tx_pages,
771 		    (bce_hdr_split == TRUE ? sc->pg_pages: 0));
772 
773 		if (bce_hdr_split == TRUE) {
774 			printf("SPLT");
775 			i++;
776 		}
777 
778 		if (sc->bce_flags & BCE_USING_MSI_FLAG) {
779 			if (i > 0) printf("|");
780 			printf("MSI"); i++;
781 		}
782 
783 		if (sc->bce_flags & BCE_USING_MSIX_FLAG) {
784 			if (i > 0) printf("|");
785 			printf("MSI-X"); i++;
786 		}
787 
788 		if (sc->bce_phy_flags & BCE_PHY_2_5G_CAPABLE_FLAG) {
789 			if (i > 0) printf("|");
790 			printf("2.5G"); i++;
791 		}
792 
793 		if (sc->bce_phy_flags & BCE_PHY_REMOTE_CAP_FLAG) {
794 			if (i > 0) printf("|");
795 			printf("Remote PHY(%s)",
796 			    sc->bce_phy_flags & BCE_PHY_REMOTE_PORT_FIBER_FLAG ?
797 			    "FIBER" : "TP"); i++;
798 		}
799 
800 		if (sc->bce_flags & BCE_MFW_ENABLE_FLAG) {
801 			if (i > 0) printf("|");
802 			printf("MFW); MFW (%s)\n", sc->bce_mfw_ver);
803 		} else {
804 			printf(")\n");
805 		}
806 
807 		printf("Coal (RX:%d,%d,%d,%d; TX:%d,%d,%d,%d)\n",
808 		    sc->bce_rx_quick_cons_trip_int,
809 		    sc->bce_rx_quick_cons_trip,
810 		    sc->bce_rx_ticks_int,
811 		    sc->bce_rx_ticks,
812 		    sc->bce_tx_quick_cons_trip_int,
813 		    sc->bce_tx_quick_cons_trip,
814 		    sc->bce_tx_ticks_int,
815 		    sc->bce_tx_ticks);
816 
817 	}
818 
819 	DBEXIT(BCE_VERBOSE_LOAD);
820 }
821 
822 
823 /****************************************************************************/
824 /* PCI Capabilities Probe Function.                                         */
825 /*                                                                          */
826 /* Walks the PCI capabiites list for the device to find what features are   */
827 /* supported.                                                               */
828 /*                                                                          */
829 /* Returns:                                                                 */
830 /*   None.                                                                  */
831 /****************************************************************************/
832 static void
833 bce_probe_pci_caps(device_t dev, struct bce_softc *sc)
834 {
835 	u32 reg;
836 
837 	DBENTER(BCE_VERBOSE_LOAD);
838 
839 	/* Check if PCI-X capability is enabled. */
840 	if (pci_find_cap(dev, PCIY_PCIX, &reg) == 0) {
841 		if (reg != 0)
842 			sc->bce_cap_flags |= BCE_PCIX_CAPABLE_FLAG;
843 	}
844 
845 	/* Check if PCIe capability is enabled. */
846 	if (pci_find_cap(dev, PCIY_EXPRESS, &reg) == 0) {
847 		if (reg != 0) {
848 			u16 link_status = pci_read_config(dev, reg + 0x12, 2);
849 			DBPRINT(sc, BCE_INFO_LOAD, "PCIe link_status = "
850 			    "0x%08X\n",	link_status);
851 			sc->link_speed = link_status & 0xf;
852 			sc->link_width = (link_status >> 4) & 0x3f;
853 			sc->bce_cap_flags |= BCE_PCIE_CAPABLE_FLAG;
854 			sc->bce_flags |= BCE_PCIE_FLAG;
855 		}
856 	}
857 
858 	/* Check if MSI capability is enabled. */
859 	if (pci_find_cap(dev, PCIY_MSI, &reg) == 0) {
860 		if (reg != 0)
861 			sc->bce_cap_flags |= BCE_MSI_CAPABLE_FLAG;
862 	}
863 
864 	/* Check if MSI-X capability is enabled. */
865 	if (pci_find_cap(dev, PCIY_MSIX, &reg) == 0) {
866 		if (reg != 0)
867 			sc->bce_cap_flags |= BCE_MSIX_CAPABLE_FLAG;
868 	}
869 
870 	DBEXIT(BCE_VERBOSE_LOAD);
871 }
872 
873 
874 /****************************************************************************/
875 /* Load and validate user tunable settings.                                 */
876 /*                                                                          */
877 /* Returns:                                                                 */
878 /*   Nothing.                                                               */
879 /****************************************************************************/
880 static void
881 bce_set_tunables(struct bce_softc *sc)
882 {
883 	/* Set sysctl values for RX page count. */
884 	switch (bce_rx_pages) {
885 	case 1:
886 		/* fall-through */
887 	case 2:
888 		/* fall-through */
889 	case 4:
890 		/* fall-through */
891 	case 8:
892 		sc->rx_pages = bce_rx_pages;
893 		break;
894 	default:
895 		sc->rx_pages = DEFAULT_RX_PAGES;
896 		BCE_PRINTF("%s(%d): Illegal value (%d) specified for "
897 		    "hw.bce.rx_pages!  Setting default of %d.\n",
898 		    __FILE__, __LINE__, bce_rx_pages, DEFAULT_RX_PAGES);
899 	}
900 
901 	/* ToDo: Consider allowing user setting for pg_pages. */
902 	sc->pg_pages = min((sc->rx_pages * 4), MAX_PG_PAGES);
903 
904 	/* Set sysctl values for TX page count. */
905 	switch (bce_tx_pages) {
906 	case 1:
907 		/* fall-through */
908 	case 2:
909 		/* fall-through */
910 	case 4:
911 		/* fall-through */
912 	case 8:
913 		sc->tx_pages = bce_tx_pages;
914 		break;
915 	default:
916 		sc->tx_pages = DEFAULT_TX_PAGES;
917 		BCE_PRINTF("%s(%d): Illegal value (%d) specified for "
918 		    "hw.bce.tx_pages!  Setting default of %d.\n",
919 		    __FILE__, __LINE__, bce_tx_pages, DEFAULT_TX_PAGES);
920 	}
921 
922 	/*
923 	 * Validate the TX trip point (i.e. the number of
924 	 * TX completions before a status block update is
925 	 * generated and an interrupt is asserted.
926 	 */
927 	if (bce_tx_quick_cons_trip_int <= 100) {
928 		sc->bce_tx_quick_cons_trip_int =
929 		    bce_tx_quick_cons_trip_int;
930 	} else {
931 		BCE_PRINTF("%s(%d): Illegal value (%d) specified for "
932 		    "hw.bce.tx_quick_cons_trip_int!  Setting default of %d.\n",
933 		    __FILE__, __LINE__, bce_tx_quick_cons_trip_int,
934 		    DEFAULT_TX_QUICK_CONS_TRIP_INT);
935 		sc->bce_tx_quick_cons_trip_int =
936 		    DEFAULT_TX_QUICK_CONS_TRIP_INT;
937 	}
938 
939 	if (bce_tx_quick_cons_trip <= 100) {
940 		sc->bce_tx_quick_cons_trip =
941 		    bce_tx_quick_cons_trip;
942 	} else {
943 		BCE_PRINTF("%s(%d): Illegal value (%d) specified for "
944 		    "hw.bce.tx_quick_cons_trip!  Setting default of %d.\n",
945 		    __FILE__, __LINE__, bce_tx_quick_cons_trip,
946 		    DEFAULT_TX_QUICK_CONS_TRIP);
947 		sc->bce_tx_quick_cons_trip =
948 		    DEFAULT_TX_QUICK_CONS_TRIP;
949 	}
950 
951 	/*
952 	 * Validate the TX ticks count (i.e. the maximum amount
953 	 * of time to wait after the last TX completion has
954 	 * occurred before a status block update is generated
955 	 * and an interrupt is asserted.
956 	 */
957 	if (bce_tx_ticks_int <= 100) {
958 		sc->bce_tx_ticks_int =
959 		    bce_tx_ticks_int;
960 	} else {
961 		BCE_PRINTF("%s(%d): Illegal value (%d) specified for "
962 		    "hw.bce.tx_ticks_int!  Setting default of %d.\n",
963 		    __FILE__, __LINE__, bce_tx_ticks_int,
964 		    DEFAULT_TX_TICKS_INT);
965 		sc->bce_tx_ticks_int =
966 		    DEFAULT_TX_TICKS_INT;
967 	   }
968 
969 	if (bce_tx_ticks <= 100) {
970 		sc->bce_tx_ticks =
971 		    bce_tx_ticks;
972 	} else {
973 		BCE_PRINTF("%s(%d): Illegal value (%d) specified for "
974 		    "hw.bce.tx_ticks!  Setting default of %d.\n",
975 		    __FILE__, __LINE__, bce_tx_ticks,
976 		    DEFAULT_TX_TICKS);
977 		sc->bce_tx_ticks =
978 		    DEFAULT_TX_TICKS;
979 	}
980 
981 	/*
982 	 * Validate the RX trip point (i.e. the number of
983 	 * RX frames received before a status block update is
984 	 * generated and an interrupt is asserted.
985 	 */
986 	if (bce_rx_quick_cons_trip_int <= 100) {
987 		sc->bce_rx_quick_cons_trip_int =
988 		    bce_rx_quick_cons_trip_int;
989 	} else {
990 		BCE_PRINTF("%s(%d): Illegal value (%d) specified for "
991 		    "hw.bce.rx_quick_cons_trip_int!  Setting default of %d.\n",
992 		    __FILE__, __LINE__, bce_rx_quick_cons_trip_int,
993 		    DEFAULT_RX_QUICK_CONS_TRIP_INT);
994 		sc->bce_rx_quick_cons_trip_int =
995 		    DEFAULT_RX_QUICK_CONS_TRIP_INT;
996 	}
997 
998 	if (bce_rx_quick_cons_trip <= 100) {
999 		sc->bce_rx_quick_cons_trip =
1000 		    bce_rx_quick_cons_trip;
1001 	} else {
1002 		BCE_PRINTF("%s(%d): Illegal value (%d) specified for "
1003 		    "hw.bce.rx_quick_cons_trip!  Setting default of %d.\n",
1004 		    __FILE__, __LINE__, bce_rx_quick_cons_trip,
1005 		    DEFAULT_RX_QUICK_CONS_TRIP);
1006 		sc->bce_rx_quick_cons_trip =
1007 		    DEFAULT_RX_QUICK_CONS_TRIP;
1008 	}
1009 
1010 	/*
1011 	 * Validate the RX ticks count (i.e. the maximum amount
1012 	 * of time to wait after the last RX frame has been
1013 	 * received before a status block update is generated
1014 	 * and an interrupt is asserted.
1015 	 */
1016 	if (bce_rx_ticks_int <= 100) {
1017 		sc->bce_rx_ticks_int = bce_rx_ticks_int;
1018 	} else {
1019 		BCE_PRINTF("%s(%d): Illegal value (%d) specified for "
1020 		    "hw.bce.rx_ticks_int!  Setting default of %d.\n",
1021 		    __FILE__, __LINE__, bce_rx_ticks_int,
1022 		    DEFAULT_RX_TICKS_INT);
1023 		sc->bce_rx_ticks_int = DEFAULT_RX_TICKS_INT;
1024 	}
1025 
1026 	if (bce_rx_ticks <= 100) {
1027 		sc->bce_rx_ticks = bce_rx_ticks;
1028 	} else {
1029 		BCE_PRINTF("%s(%d): Illegal value (%d) specified for "
1030 		    "hw.bce.rx_ticks!  Setting default of %d.\n",
1031 		    __FILE__, __LINE__, bce_rx_ticks,
1032 		    DEFAULT_RX_TICKS);
1033 		sc->bce_rx_ticks = DEFAULT_RX_TICKS;
1034 	}
1035 
1036 	/* Disabling both RX ticks and RX trips will prevent interrupts. */
1037 	if ((bce_rx_quick_cons_trip == 0) && (bce_rx_ticks == 0)) {
1038 		BCE_PRINTF("%s(%d): Cannot set both hw.bce.rx_ticks and "
1039 		    "hw.bce.rx_quick_cons_trip to 0. Setting default values.\n",
1040 		   __FILE__, __LINE__);
1041 		sc->bce_rx_ticks = DEFAULT_RX_TICKS;
1042 		sc->bce_rx_quick_cons_trip = DEFAULT_RX_QUICK_CONS_TRIP;
1043 	}
1044 
1045 	/* Disabling both TX ticks and TX trips will prevent interrupts. */
1046 	if ((bce_tx_quick_cons_trip == 0) && (bce_tx_ticks == 0)) {
1047 		BCE_PRINTF("%s(%d): Cannot set both hw.bce.tx_ticks and "
1048 		    "hw.bce.tx_quick_cons_trip to 0. Setting default values.\n",
1049 		   __FILE__, __LINE__);
1050 		sc->bce_tx_ticks = DEFAULT_TX_TICKS;
1051 		sc->bce_tx_quick_cons_trip = DEFAULT_TX_QUICK_CONS_TRIP;
1052 	}
1053 }
1054 
1055 
1056 /****************************************************************************/
1057 /* Device attach function.                                                  */
1058 /*                                                                          */
1059 /* Allocates device resources, performs secondary chip identification,      */
1060 /* resets and initializes the hardware, and initializes driver instance     */
1061 /* variables.                                                               */
1062 /*                                                                          */
1063 /* Returns:                                                                 */
1064 /*   0 on success, positive value on failure.                               */
1065 /****************************************************************************/
1066 static int
1067 bce_attach(device_t dev)
1068 {
1069 	struct bce_softc *sc;
1070 	struct ifnet *ifp;
1071 	u32 val;
1072 	int count, error, rc = 0, rid;
1073 
1074 	sc = device_get_softc(dev);
1075 	sc->bce_dev = dev;
1076 
1077 	DBENTER(BCE_VERBOSE_LOAD | BCE_VERBOSE_RESET);
1078 
1079 	sc->bce_unit = device_get_unit(dev);
1080 
1081 	/* Set initial device and PHY flags */
1082 	sc->bce_flags = 0;
1083 	sc->bce_phy_flags = 0;
1084 
1085 	bce_set_tunables(sc);
1086 
1087 	pci_enable_busmaster(dev);
1088 
1089 	/* Allocate PCI memory resources. */
1090 	rid = PCIR_BAR(0);
1091 	sc->bce_res_mem = bus_alloc_resource_any(dev, SYS_RES_MEMORY,
1092 		&rid, RF_ACTIVE);
1093 
1094 	if (sc->bce_res_mem == NULL) {
1095 		BCE_PRINTF("%s(%d): PCI memory allocation failed\n",
1096 		    __FILE__, __LINE__);
1097 		rc = ENXIO;
1098 		goto bce_attach_fail;
1099 	}
1100 
1101 	/* Get various resource handles. */
1102 	sc->bce_btag    = rman_get_bustag(sc->bce_res_mem);
1103 	sc->bce_bhandle = rman_get_bushandle(sc->bce_res_mem);
1104 	sc->bce_vhandle = (vm_offset_t) rman_get_virtual(sc->bce_res_mem);
1105 
1106 	bce_probe_pci_caps(dev, sc);
1107 
1108 	rid = 1;
1109 	count = 0;
1110 #if 0
1111 	/* Try allocating MSI-X interrupts. */
1112 	if ((sc->bce_cap_flags & BCE_MSIX_CAPABLE_FLAG) &&
1113 		(bce_msi_enable >= 2) &&
1114 		((sc->bce_res_irq = bus_alloc_resource_any(dev, SYS_RES_MEMORY,
1115 		&rid, RF_ACTIVE)) != NULL)) {
1116 
1117 		msi_needed = count = 1;
1118 
1119 		if (((error = pci_alloc_msix(dev, &count)) != 0) ||
1120 			(count != msi_needed)) {
1121 			BCE_PRINTF("%s(%d): MSI-X allocation failed! Requested = %d,"
1122 				"Received = %d, error = %d\n", __FILE__, __LINE__,
1123 				msi_needed, count, error);
1124 			count = 0;
1125 			pci_release_msi(dev);
1126 			bus_release_resource(dev, SYS_RES_MEMORY, rid,
1127 				sc->bce_res_irq);
1128 			sc->bce_res_irq = NULL;
1129 		} else {
1130 			DBPRINT(sc, BCE_INFO_LOAD, "%s(): Using MSI-X interrupt.\n",
1131 				__FUNCTION__);
1132 			sc->bce_flags |= BCE_USING_MSIX_FLAG;
1133 		}
1134 	}
1135 #endif
1136 
1137 	/* Try allocating a MSI interrupt. */
1138 	if ((sc->bce_cap_flags & BCE_MSI_CAPABLE_FLAG) &&
1139 		(bce_msi_enable >= 1) && (count == 0)) {
1140 		count = 1;
1141 		if ((error = pci_alloc_msi(dev, &count)) != 0) {
1142 			BCE_PRINTF("%s(%d): MSI allocation failed! "
1143 			    "error = %d\n", __FILE__, __LINE__, error);
1144 			count = 0;
1145 			pci_release_msi(dev);
1146 		} else {
1147 			DBPRINT(sc, BCE_INFO_LOAD, "%s(): Using MSI "
1148 			    "interrupt.\n", __FUNCTION__);
1149 			sc->bce_flags |= BCE_USING_MSI_FLAG;
1150 			if (BCE_CHIP_NUM(sc) == BCE_CHIP_NUM_5709)
1151 				sc->bce_flags |= BCE_ONE_SHOT_MSI_FLAG;
1152 			rid = 1;
1153 		}
1154 	}
1155 
1156 	/* Try allocating a legacy interrupt. */
1157 	if (count == 0) {
1158 		DBPRINT(sc, BCE_INFO_LOAD, "%s(): Using INTx interrupt.\n",
1159 			__FUNCTION__);
1160 		rid = 0;
1161 	}
1162 
1163 	sc->bce_res_irq = bus_alloc_resource_any(dev, SYS_RES_IRQ,
1164 	    &rid, RF_ACTIVE | (count != 0 ? 0 : RF_SHAREABLE));
1165 
1166 	/* Report any IRQ allocation errors. */
1167 	if (sc->bce_res_irq == NULL) {
1168 		BCE_PRINTF("%s(%d): PCI map interrupt failed!\n",
1169 		    __FILE__, __LINE__);
1170 		rc = ENXIO;
1171 		goto bce_attach_fail;
1172 	}
1173 
1174 	/* Initialize mutex for the current device instance. */
1175 	BCE_LOCK_INIT(sc, device_get_nameunit(dev));
1176 
1177 	/*
1178 	 * Configure byte swap and enable indirect register access.
1179 	 * Rely on CPU to do target byte swapping on big endian systems.
1180 	 * Access to registers outside of PCI configurtion space are not
1181 	 * valid until this is done.
1182 	 */
1183 	pci_write_config(dev, BCE_PCICFG_MISC_CONFIG,
1184 	    BCE_PCICFG_MISC_CONFIG_REG_WINDOW_ENA |
1185 	    BCE_PCICFG_MISC_CONFIG_TARGET_MB_WORD_SWAP, 4);
1186 
1187 	/* Save ASIC revsion info. */
1188 	sc->bce_chipid =  REG_RD(sc, BCE_MISC_ID);
1189 
1190 	/* Weed out any non-production controller revisions. */
1191 	switch(BCE_CHIP_ID(sc)) {
1192 	case BCE_CHIP_ID_5706_A0:
1193 	case BCE_CHIP_ID_5706_A1:
1194 	case BCE_CHIP_ID_5708_A0:
1195 	case BCE_CHIP_ID_5708_B0:
1196 	case BCE_CHIP_ID_5709_A0:
1197 	case BCE_CHIP_ID_5709_B0:
1198 	case BCE_CHIP_ID_5709_B1:
1199 	case BCE_CHIP_ID_5709_B2:
1200 		BCE_PRINTF("%s(%d): Unsupported controller "
1201 		    "revision (%c%d)!\n", __FILE__, __LINE__,
1202 		    (((pci_read_config(dev, PCIR_REVID, 4) &
1203 		    0xf0) >> 4) + 'A'), (pci_read_config(dev,
1204 		    PCIR_REVID, 4) & 0xf));
1205 		rc = ENODEV;
1206 		goto bce_attach_fail;
1207 	}
1208 
1209 	/*
1210 	 * The embedded PCIe to PCI-X bridge (EPB)
1211 	 * in the 5708 cannot address memory above
1212 	 * 40 bits (E7_5708CB1_23043 & E6_5708SB1_23043).
1213 	 */
1214 	if (BCE_CHIP_NUM(sc) == BCE_CHIP_NUM_5708)
1215 		sc->max_bus_addr = BCE_BUS_SPACE_MAXADDR;
1216 	else
1217 		sc->max_bus_addr = BUS_SPACE_MAXADDR;
1218 
1219 	/*
1220 	 * Find the base address for shared memory access.
1221 	 * Newer versions of bootcode use a signature and offset
1222 	 * while older versions use a fixed address.
1223 	 */
1224 	val = REG_RD_IND(sc, BCE_SHM_HDR_SIGNATURE);
1225 	if ((val & BCE_SHM_HDR_SIGNATURE_SIG_MASK) == BCE_SHM_HDR_SIGNATURE_SIG)
1226 		/* Multi-port devices use different offsets in shared memory. */
1227 		sc->bce_shmem_base = REG_RD_IND(sc, BCE_SHM_HDR_ADDR_0 +
1228 		    (pci_get_function(sc->bce_dev) << 2));
1229 	else
1230 		sc->bce_shmem_base = HOST_VIEW_SHMEM_BASE;
1231 
1232 	DBPRINT(sc, BCE_VERBOSE_FIRMWARE, "%s(): bce_shmem_base = 0x%08X\n",
1233 	    __FUNCTION__, sc->bce_shmem_base);
1234 
1235 	/* Fetch the bootcode revision. */
1236 	val = bce_shmem_rd(sc, BCE_DEV_INFO_BC_REV);
1237 	for (int i = 0, j = 0; i < 3; i++) {
1238 		u8 num;
1239 
1240 		num = (u8) (val >> (24 - (i * 8)));
1241 		for (int k = 100, skip0 = 1; k >= 1; num %= k, k /= 10) {
1242 			if (num >= k || !skip0 || k == 1) {
1243 				sc->bce_bc_ver[j++] = (num / k) + '0';
1244 				skip0 = 0;
1245 			}
1246 		}
1247 
1248 		if (i != 2)
1249 			sc->bce_bc_ver[j++] = '.';
1250 	}
1251 
1252 	/* Check if any management firwmare is enabled. */
1253 	val = bce_shmem_rd(sc, BCE_PORT_FEATURE);
1254 	if (val & BCE_PORT_FEATURE_ASF_ENABLED) {
1255 		sc->bce_flags |= BCE_MFW_ENABLE_FLAG;
1256 
1257 		/* Allow time for firmware to enter the running state. */
1258 		for (int i = 0; i < 30; i++) {
1259 			val = bce_shmem_rd(sc, BCE_BC_STATE_CONDITION);
1260 			if (val & BCE_CONDITION_MFW_RUN_MASK)
1261 				break;
1262 			DELAY(10000);
1263 		}
1264 
1265 		/* Check if management firmware is running. */
1266 		val = bce_shmem_rd(sc, BCE_BC_STATE_CONDITION);
1267 		val &= BCE_CONDITION_MFW_RUN_MASK;
1268 		if ((val != BCE_CONDITION_MFW_RUN_UNKNOWN) &&
1269 		    (val != BCE_CONDITION_MFW_RUN_NONE)) {
1270 			u32 addr = bce_shmem_rd(sc, BCE_MFW_VER_PTR);
1271 			int i = 0;
1272 
1273 			/* Read the management firmware version string. */
1274 			for (int j = 0; j < 3; j++) {
1275 				val = bce_reg_rd_ind(sc, addr + j * 4);
1276 				val = bswap32(val);
1277 				memcpy(&sc->bce_mfw_ver[i], &val, 4);
1278 				i += 4;
1279 			}
1280 		} else {
1281 			/* May cause firmware synchronization timeouts. */
1282 			BCE_PRINTF("%s(%d): Management firmware enabled "
1283 			    "but not running!\n", __FILE__, __LINE__);
1284 			strcpy(sc->bce_mfw_ver, "NOT RUNNING!");
1285 
1286 			/* ToDo: Any action the driver should take? */
1287 		}
1288 	}
1289 
1290 	/* Get PCI bus information (speed and type). */
1291 	val = REG_RD(sc, BCE_PCICFG_MISC_STATUS);
1292 	if (val & BCE_PCICFG_MISC_STATUS_PCIX_DET) {
1293 		u32 clkreg;
1294 
1295 		sc->bce_flags |= BCE_PCIX_FLAG;
1296 
1297 		clkreg = REG_RD(sc, BCE_PCICFG_PCI_CLOCK_CONTROL_BITS);
1298 
1299 		clkreg &= BCE_PCICFG_PCI_CLOCK_CONTROL_BITS_PCI_CLK_SPD_DET;
1300 		switch (clkreg) {
1301 		case BCE_PCICFG_PCI_CLOCK_CONTROL_BITS_PCI_CLK_SPD_DET_133MHZ:
1302 			sc->bus_speed_mhz = 133;
1303 			break;
1304 
1305 		case BCE_PCICFG_PCI_CLOCK_CONTROL_BITS_PCI_CLK_SPD_DET_95MHZ:
1306 			sc->bus_speed_mhz = 100;
1307 			break;
1308 
1309 		case BCE_PCICFG_PCI_CLOCK_CONTROL_BITS_PCI_CLK_SPD_DET_66MHZ:
1310 		case BCE_PCICFG_PCI_CLOCK_CONTROL_BITS_PCI_CLK_SPD_DET_80MHZ:
1311 			sc->bus_speed_mhz = 66;
1312 			break;
1313 
1314 		case BCE_PCICFG_PCI_CLOCK_CONTROL_BITS_PCI_CLK_SPD_DET_48MHZ:
1315 		case BCE_PCICFG_PCI_CLOCK_CONTROL_BITS_PCI_CLK_SPD_DET_55MHZ:
1316 			sc->bus_speed_mhz = 50;
1317 			break;
1318 
1319 		case BCE_PCICFG_PCI_CLOCK_CONTROL_BITS_PCI_CLK_SPD_DET_LOW:
1320 		case BCE_PCICFG_PCI_CLOCK_CONTROL_BITS_PCI_CLK_SPD_DET_32MHZ:
1321 		case BCE_PCICFG_PCI_CLOCK_CONTROL_BITS_PCI_CLK_SPD_DET_38MHZ:
1322 			sc->bus_speed_mhz = 33;
1323 			break;
1324 		}
1325 	} else {
1326 		if (val & BCE_PCICFG_MISC_STATUS_M66EN)
1327 			sc->bus_speed_mhz = 66;
1328 		else
1329 			sc->bus_speed_mhz = 33;
1330 	}
1331 
1332 	if (val & BCE_PCICFG_MISC_STATUS_32BIT_DET)
1333 		sc->bce_flags |= BCE_PCI_32BIT_FLAG;
1334 
1335 	/* Find the media type for the adapter. */
1336 	bce_get_media(sc);
1337 
1338 	/* Reset controller and announce to bootcode that driver is present. */
1339 	if (bce_reset(sc, BCE_DRV_MSG_CODE_RESET)) {
1340 		BCE_PRINTF("%s(%d): Controller reset failed!\n",
1341 		    __FILE__, __LINE__);
1342 		rc = ENXIO;
1343 		goto bce_attach_fail;
1344 	}
1345 
1346 	/* Initialize the controller. */
1347 	if (bce_chipinit(sc)) {
1348 		BCE_PRINTF("%s(%d): Controller initialization failed!\n",
1349 		    __FILE__, __LINE__);
1350 		rc = ENXIO;
1351 		goto bce_attach_fail;
1352 	}
1353 
1354 	/* Perform NVRAM test. */
1355 	if (bce_nvram_test(sc)) {
1356 		BCE_PRINTF("%s(%d): NVRAM test failed!\n",
1357 		    __FILE__, __LINE__);
1358 		rc = ENXIO;
1359 		goto bce_attach_fail;
1360 	}
1361 
1362 	/* Fetch the permanent Ethernet MAC address. */
1363 	bce_get_mac_addr(sc);
1364 
1365 	/* Update statistics once every second. */
1366 	sc->bce_stats_ticks = 1000000 & 0xffff00;
1367 
1368 	/* Store data needed by PHY driver for backplane applications */
1369 	sc->bce_shared_hw_cfg = bce_shmem_rd(sc, BCE_SHARED_HW_CFG_CONFIG);
1370 	sc->bce_port_hw_cfg   = bce_shmem_rd(sc, BCE_PORT_HW_CFG_CONFIG);
1371 
1372 	/* Allocate DMA memory resources. */
1373 	if (bce_dma_alloc(dev)) {
1374 		BCE_PRINTF("%s(%d): DMA resource allocation failed!\n",
1375 		    __FILE__, __LINE__);
1376 		rc = ENXIO;
1377 		goto bce_attach_fail;
1378 	}
1379 
1380 	/* Allocate an ifnet structure. */
1381 	ifp = sc->bce_ifp = if_alloc(IFT_ETHER);
1382 	if (ifp == NULL) {
1383 		BCE_PRINTF("%s(%d): Interface allocation failed!\n",
1384 		    __FILE__, __LINE__);
1385 		rc = ENXIO;
1386 		goto bce_attach_fail;
1387 	}
1388 
1389 	/* Initialize the ifnet interface. */
1390 	ifp->if_softc	= sc;
1391 	if_initname(ifp, device_get_name(dev), device_get_unit(dev));
1392 	ifp->if_flags	= IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
1393 	ifp->if_ioctl	= bce_ioctl;
1394 	ifp->if_start	= bce_start;
1395 	ifp->if_get_counter = bce_get_counter;
1396 	ifp->if_init	= bce_init;
1397 	ifp->if_mtu	= ETHERMTU;
1398 
1399 	if (bce_tso_enable) {
1400 		ifp->if_hwassist = BCE_IF_HWASSIST | CSUM_TSO;
1401 		ifp->if_capabilities = BCE_IF_CAPABILITIES | IFCAP_TSO4 |
1402 		    IFCAP_VLAN_HWTSO;
1403 	} else {
1404 		ifp->if_hwassist = BCE_IF_HWASSIST;
1405 		ifp->if_capabilities = BCE_IF_CAPABILITIES;
1406 	}
1407 
1408 #if __FreeBSD_version >= 800505
1409 	/*
1410 	 * Introducing IFCAP_LINKSTATE didn't bump __FreeBSD_version
1411 	 * so it's approximate value.
1412 	 */
1413 	if ((sc->bce_phy_flags & BCE_PHY_REMOTE_CAP_FLAG) != 0)
1414 		ifp->if_capabilities |= IFCAP_LINKSTATE;
1415 #endif
1416 
1417 	ifp->if_capenable = ifp->if_capabilities;
1418 
1419 	/*
1420 	 * Assume standard mbuf sizes for buffer allocation.
1421 	 * This may change later if the MTU size is set to
1422 	 * something other than 1500.
1423 	 */
1424 	bce_get_rx_buffer_sizes(sc,
1425 	    (ETHER_MAX_LEN - ETHER_HDR_LEN - ETHER_CRC_LEN));
1426 
1427 	/* Recalculate our buffer allocation sizes. */
1428 	ifp->if_snd.ifq_drv_maxlen = USABLE_TX_BD_ALLOC;
1429 	IFQ_SET_MAXLEN(&ifp->if_snd, ifp->if_snd.ifq_drv_maxlen);
1430 	IFQ_SET_READY(&ifp->if_snd);
1431 
1432 	if (sc->bce_phy_flags & BCE_PHY_2_5G_CAPABLE_FLAG)
1433 		ifp->if_baudrate = IF_Mbps(2500ULL);
1434 	else
1435 		ifp->if_baudrate = IF_Mbps(1000);
1436 
1437 	/* Handle any special PHY initialization for SerDes PHYs. */
1438 	bce_init_media(sc);
1439 
1440 	if ((sc->bce_phy_flags & BCE_PHY_REMOTE_CAP_FLAG) != 0) {
1441 		ifmedia_init(&sc->bce_ifmedia, IFM_IMASK, bce_ifmedia_upd,
1442 		    bce_ifmedia_sts);
1443 		/*
1444 		 * We can't manually override remote PHY's link and assume
1445 		 * PHY port configuration(Fiber or TP) is not changed after
1446 		 * device attach.  This may not be correct though.
1447 		 */
1448 		if ((sc->bce_phy_flags & BCE_PHY_REMOTE_PORT_FIBER_FLAG) != 0) {
1449 			if (sc->bce_phy_flags & BCE_PHY_2_5G_CAPABLE_FLAG) {
1450 				ifmedia_add(&sc->bce_ifmedia,
1451 				    IFM_ETHER | IFM_2500_SX, 0, NULL);
1452 				ifmedia_add(&sc->bce_ifmedia,
1453 				    IFM_ETHER | IFM_2500_SX | IFM_FDX, 0, NULL);
1454 			}
1455 			ifmedia_add(&sc->bce_ifmedia,
1456 			    IFM_ETHER | IFM_1000_SX, 0, NULL);
1457 			ifmedia_add(&sc->bce_ifmedia,
1458 			    IFM_ETHER | IFM_1000_SX | IFM_FDX, 0, NULL);
1459 		} else {
1460 			ifmedia_add(&sc->bce_ifmedia,
1461 			    IFM_ETHER | IFM_10_T, 0, NULL);
1462 			ifmedia_add(&sc->bce_ifmedia,
1463 			    IFM_ETHER | IFM_10_T | IFM_FDX, 0, NULL);
1464 			ifmedia_add(&sc->bce_ifmedia,
1465 			    IFM_ETHER | IFM_100_TX, 0, NULL);
1466 			ifmedia_add(&sc->bce_ifmedia,
1467 			    IFM_ETHER | IFM_100_TX | IFM_FDX, 0, NULL);
1468 			ifmedia_add(&sc->bce_ifmedia,
1469 			    IFM_ETHER | IFM_1000_T, 0, NULL);
1470 			ifmedia_add(&sc->bce_ifmedia,
1471 			    IFM_ETHER | IFM_1000_T | IFM_FDX, 0, NULL);
1472 		}
1473 		ifmedia_add(&sc->bce_ifmedia, IFM_ETHER | IFM_AUTO, 0, NULL);
1474 		ifmedia_set(&sc->bce_ifmedia, IFM_ETHER | IFM_AUTO);
1475 		sc->bce_ifmedia.ifm_media = sc->bce_ifmedia.ifm_cur->ifm_media;
1476 	} else {
1477 		/* MII child bus by attaching the PHY. */
1478 		rc = mii_attach(dev, &sc->bce_miibus, ifp, bce_ifmedia_upd,
1479 		    bce_ifmedia_sts, BMSR_DEFCAPMASK, sc->bce_phy_addr,
1480 		    MII_OFFSET_ANY, MIIF_DOPAUSE);
1481 		if (rc != 0) {
1482 			BCE_PRINTF("%s(%d): attaching PHYs failed\n", __FILE__,
1483 			    __LINE__);
1484 			goto bce_attach_fail;
1485 		}
1486 	}
1487 
1488 	/* Attach to the Ethernet interface list. */
1489 	ether_ifattach(ifp, sc->eaddr);
1490 
1491 #if __FreeBSD_version < 500000
1492 	callout_init(&sc->bce_tick_callout);
1493 	callout_init(&sc->bce_pulse_callout);
1494 #else
1495 	callout_init_mtx(&sc->bce_tick_callout, &sc->bce_mtx, 0);
1496 	callout_init_mtx(&sc->bce_pulse_callout, &sc->bce_mtx, 0);
1497 #endif
1498 
1499 	/* Hookup IRQ last. */
1500 	rc = bus_setup_intr(dev, sc->bce_res_irq, INTR_TYPE_NET | INTR_MPSAFE,
1501 		NULL, bce_intr, sc, &sc->bce_intrhand);
1502 
1503 	if (rc) {
1504 		BCE_PRINTF("%s(%d): Failed to setup IRQ!\n",
1505 		    __FILE__, __LINE__);
1506 		bce_detach(dev);
1507 		goto bce_attach_exit;
1508 	}
1509 
1510 	/*
1511 	 * At this point we've acquired all the resources
1512 	 * we need to run so there's no turning back, we're
1513 	 * cleared for launch.
1514 	 */
1515 
1516 	/* Print some important debugging info. */
1517 	DBRUNMSG(BCE_INFO, bce_dump_driver_state(sc));
1518 
1519 	/* Add the supported sysctls to the kernel. */
1520 	bce_add_sysctls(sc);
1521 
1522 	BCE_LOCK(sc);
1523 
1524 	/*
1525 	 * The chip reset earlier notified the bootcode that
1526 	 * a driver is present.  We now need to start our pulse
1527 	 * routine so that the bootcode is reminded that we're
1528 	 * still running.
1529 	 */
1530 	bce_pulse(sc);
1531 
1532 	bce_mgmt_init_locked(sc);
1533 	BCE_UNLOCK(sc);
1534 
1535 	/* Finally, print some useful adapter info */
1536 	bce_print_adapter_info(sc);
1537 	DBPRINT(sc, BCE_FATAL, "%s(): sc = %p\n",
1538 		__FUNCTION__, sc);
1539 
1540 	goto bce_attach_exit;
1541 
1542 bce_attach_fail:
1543 	bce_release_resources(sc);
1544 
1545 bce_attach_exit:
1546 
1547 	DBEXIT(BCE_VERBOSE_LOAD | BCE_VERBOSE_RESET);
1548 
1549 	return(rc);
1550 }
1551 
1552 
1553 /****************************************************************************/
1554 /* Device detach function.                                                  */
1555 /*                                                                          */
1556 /* Stops the controller, resets the controller, and releases resources.     */
1557 /*                                                                          */
1558 /* Returns:                                                                 */
1559 /*   0 on success, positive value on failure.                               */
1560 /****************************************************************************/
1561 static int
1562 bce_detach(device_t dev)
1563 {
1564 	struct bce_softc *sc = device_get_softc(dev);
1565 	struct ifnet *ifp;
1566 	u32 msg;
1567 
1568 	DBENTER(BCE_VERBOSE_UNLOAD | BCE_VERBOSE_RESET);
1569 
1570 	ifp = sc->bce_ifp;
1571 
1572 	/* Stop and reset the controller. */
1573 	BCE_LOCK(sc);
1574 
1575 	/* Stop the pulse so the bootcode can go to driver absent state. */
1576 	callout_stop(&sc->bce_pulse_callout);
1577 
1578 	bce_stop(sc);
1579 	if (sc->bce_flags & BCE_NO_WOL_FLAG)
1580 		msg = BCE_DRV_MSG_CODE_UNLOAD_LNK_DN;
1581 	else
1582 		msg = BCE_DRV_MSG_CODE_UNLOAD;
1583 	bce_reset(sc, msg);
1584 
1585 	BCE_UNLOCK(sc);
1586 
1587 	ether_ifdetach(ifp);
1588 
1589 	/* If we have a child device on the MII bus remove it too. */
1590 	if ((sc->bce_phy_flags & BCE_PHY_REMOTE_CAP_FLAG) != 0)
1591 		ifmedia_removeall(&sc->bce_ifmedia);
1592 	else {
1593 		bus_generic_detach(dev);
1594 		device_delete_child(dev, sc->bce_miibus);
1595 	}
1596 
1597 	/* Release all remaining resources. */
1598 	bce_release_resources(sc);
1599 
1600 	DBEXIT(BCE_VERBOSE_UNLOAD | BCE_VERBOSE_RESET);
1601 
1602 	return(0);
1603 }
1604 
1605 
1606 /****************************************************************************/
1607 /* Device shutdown function.                                                */
1608 /*                                                                          */
1609 /* Stops and resets the controller.                                         */
1610 /*                                                                          */
1611 /* Returns:                                                                 */
1612 /*   0 on success, positive value on failure.                               */
1613 /****************************************************************************/
1614 static int
1615 bce_shutdown(device_t dev)
1616 {
1617 	struct bce_softc *sc = device_get_softc(dev);
1618 	u32 msg;
1619 
1620 	DBENTER(BCE_VERBOSE);
1621 
1622 	BCE_LOCK(sc);
1623 	bce_stop(sc);
1624 	if (sc->bce_flags & BCE_NO_WOL_FLAG)
1625 		msg = BCE_DRV_MSG_CODE_UNLOAD_LNK_DN;
1626 	else
1627 		msg = BCE_DRV_MSG_CODE_UNLOAD;
1628 	bce_reset(sc, msg);
1629 	BCE_UNLOCK(sc);
1630 
1631 	DBEXIT(BCE_VERBOSE);
1632 
1633 	return (0);
1634 }
1635 
1636 
1637 #ifdef BCE_DEBUG
1638 /****************************************************************************/
1639 /* Register read.                                                           */
1640 /*                                                                          */
1641 /* Returns:                                                                 */
1642 /*   The value of the register.                                             */
1643 /****************************************************************************/
1644 static u32
1645 bce_reg_rd(struct bce_softc *sc, u32 offset)
1646 {
1647 	u32 val = REG_RD(sc, offset);
1648 	DBPRINT(sc, BCE_INSANE_REG, "%s(); offset = 0x%08X, val = 0x%08X\n",
1649 		__FUNCTION__, offset, val);
1650 	return val;
1651 }
1652 
1653 
1654 /****************************************************************************/
1655 /* Register write (16 bit).                                                 */
1656 /*                                                                          */
1657 /* Returns:                                                                 */
1658 /*   Nothing.                                                               */
1659 /****************************************************************************/
1660 static void
1661 bce_reg_wr16(struct bce_softc *sc, u32 offset, u16 val)
1662 {
1663 	DBPRINT(sc, BCE_INSANE_REG, "%s(); offset = 0x%08X, val = 0x%04X\n",
1664 		__FUNCTION__, offset, val);
1665 	REG_WR16(sc, offset, val);
1666 }
1667 
1668 
1669 /****************************************************************************/
1670 /* Register write.                                                          */
1671 /*                                                                          */
1672 /* Returns:                                                                 */
1673 /*   Nothing.                                                               */
1674 /****************************************************************************/
1675 static void
1676 bce_reg_wr(struct bce_softc *sc, u32 offset, u32 val)
1677 {
1678 	DBPRINT(sc, BCE_INSANE_REG, "%s(); offset = 0x%08X, val = 0x%08X\n",
1679 		__FUNCTION__, offset, val);
1680 	REG_WR(sc, offset, val);
1681 }
1682 #endif
1683 
1684 /****************************************************************************/
1685 /* Indirect register read.                                                  */
1686 /*                                                                          */
1687 /* Reads NetXtreme II registers using an index/data register pair in PCI    */
1688 /* configuration space.  Using this mechanism avoids issues with posted     */
1689 /* reads but is much slower than memory-mapped I/O.                         */
1690 /*                                                                          */
1691 /* Returns:                                                                 */
1692 /*   The value of the register.                                             */
1693 /****************************************************************************/
1694 static u32
1695 bce_reg_rd_ind(struct bce_softc *sc, u32 offset)
1696 {
1697 	device_t dev;
1698 	dev = sc->bce_dev;
1699 
1700 	pci_write_config(dev, BCE_PCICFG_REG_WINDOW_ADDRESS, offset, 4);
1701 #ifdef BCE_DEBUG
1702 	{
1703 		u32 val;
1704 		val = pci_read_config(dev, BCE_PCICFG_REG_WINDOW, 4);
1705 		DBPRINT(sc, BCE_INSANE_REG, "%s(); offset = 0x%08X, val = 0x%08X\n",
1706 			__FUNCTION__, offset, val);
1707 		return val;
1708 	}
1709 #else
1710 	return pci_read_config(dev, BCE_PCICFG_REG_WINDOW, 4);
1711 #endif
1712 }
1713 
1714 
1715 /****************************************************************************/
1716 /* Indirect register write.                                                 */
1717 /*                                                                          */
1718 /* Writes NetXtreme II registers using an index/data register pair in PCI   */
1719 /* configuration space.  Using this mechanism avoids issues with posted     */
1720 /* writes but is muchh slower than memory-mapped I/O.                       */
1721 /*                                                                          */
1722 /* Returns:                                                                 */
1723 /*   Nothing.                                                               */
1724 /****************************************************************************/
1725 static void
1726 bce_reg_wr_ind(struct bce_softc *sc, u32 offset, u32 val)
1727 {
1728 	device_t dev;
1729 	dev = sc->bce_dev;
1730 
1731 	DBPRINT(sc, BCE_INSANE_REG, "%s(); offset = 0x%08X, val = 0x%08X\n",
1732 		__FUNCTION__, offset, val);
1733 
1734 	pci_write_config(dev, BCE_PCICFG_REG_WINDOW_ADDRESS, offset, 4);
1735 	pci_write_config(dev, BCE_PCICFG_REG_WINDOW, val, 4);
1736 }
1737 
1738 
1739 /****************************************************************************/
1740 /* Shared memory write.                                                     */
1741 /*                                                                          */
1742 /* Writes NetXtreme II shared memory region.                                */
1743 /*                                                                          */
1744 /* Returns:                                                                 */
1745 /*   Nothing.                                                               */
1746 /****************************************************************************/
1747 static void
1748 bce_shmem_wr(struct bce_softc *sc, u32 offset, u32 val)
1749 {
1750 	DBPRINT(sc, BCE_VERBOSE_FIRMWARE, "%s(): Writing 0x%08X  to  "
1751 	    "0x%08X\n",	__FUNCTION__, val, offset);
1752 
1753 	bce_reg_wr_ind(sc, sc->bce_shmem_base + offset, val);
1754 }
1755 
1756 
1757 /****************************************************************************/
1758 /* Shared memory read.                                                      */
1759 /*                                                                          */
1760 /* Reads NetXtreme II shared memory region.                                 */
1761 /*                                                                          */
1762 /* Returns:                                                                 */
1763 /*   The 32 bit value read.                                                 */
1764 /****************************************************************************/
1765 static u32
1766 bce_shmem_rd(struct bce_softc *sc, u32 offset)
1767 {
1768 	u32 val = bce_reg_rd_ind(sc, sc->bce_shmem_base + offset);
1769 
1770 	DBPRINT(sc, BCE_VERBOSE_FIRMWARE, "%s(): Reading 0x%08X from "
1771 	    "0x%08X\n",	__FUNCTION__, val, offset);
1772 
1773 	return val;
1774 }
1775 
1776 
1777 #ifdef BCE_DEBUG
1778 /****************************************************************************/
1779 /* Context memory read.                                                     */
1780 /*                                                                          */
1781 /* The NetXtreme II controller uses context memory to track connection      */
1782 /* information for L2 and higher network protocols.                         */
1783 /*                                                                          */
1784 /* Returns:                                                                 */
1785 /*   The requested 32 bit value of context memory.                          */
1786 /****************************************************************************/
1787 static u32
1788 bce_ctx_rd(struct bce_softc *sc, u32 cid_addr, u32 ctx_offset)
1789 {
1790 	u32 idx, offset, retry_cnt = 5, val;
1791 
1792 	DBRUNIF((cid_addr > MAX_CID_ADDR || ctx_offset & 0x3 ||
1793 	    cid_addr & CTX_MASK), BCE_PRINTF("%s(): Invalid CID "
1794 	    "address: 0x%08X.\n", __FUNCTION__, cid_addr));
1795 
1796 	offset = ctx_offset + cid_addr;
1797 
1798 	if (BCE_CHIP_NUM(sc) == BCE_CHIP_NUM_5709) {
1799 
1800 		REG_WR(sc, BCE_CTX_CTX_CTRL, (offset | BCE_CTX_CTX_CTRL_READ_REQ));
1801 
1802 		for (idx = 0; idx < retry_cnt; idx++) {
1803 			val = REG_RD(sc, BCE_CTX_CTX_CTRL);
1804 			if ((val & BCE_CTX_CTX_CTRL_READ_REQ) == 0)
1805 				break;
1806 			DELAY(5);
1807 		}
1808 
1809 		if (val & BCE_CTX_CTX_CTRL_READ_REQ)
1810 			BCE_PRINTF("%s(%d); Unable to read CTX memory: "
1811 			    "cid_addr = 0x%08X, offset = 0x%08X!\n",
1812 			    __FILE__, __LINE__, cid_addr, ctx_offset);
1813 
1814 		val = REG_RD(sc, BCE_CTX_CTX_DATA);
1815 	} else {
1816 		REG_WR(sc, BCE_CTX_DATA_ADR, offset);
1817 		val = REG_RD(sc, BCE_CTX_DATA);
1818 	}
1819 
1820 	DBPRINT(sc, BCE_EXTREME_CTX, "%s(); cid_addr = 0x%08X, offset = 0x%08X, "
1821 		"val = 0x%08X\n", __FUNCTION__, cid_addr, ctx_offset, val);
1822 
1823 	return(val);
1824 }
1825 #endif
1826 
1827 
1828 /****************************************************************************/
1829 /* Context memory write.                                                    */
1830 /*                                                                          */
1831 /* The NetXtreme II controller uses context memory to track connection      */
1832 /* information for L2 and higher network protocols.                         */
1833 /*                                                                          */
1834 /* Returns:                                                                 */
1835 /*   Nothing.                                                               */
1836 /****************************************************************************/
1837 static void
1838 bce_ctx_wr(struct bce_softc *sc, u32 cid_addr, u32 ctx_offset, u32 ctx_val)
1839 {
1840 	u32 idx, offset = ctx_offset + cid_addr;
1841 	u32 val, retry_cnt = 5;
1842 
1843 	DBPRINT(sc, BCE_EXTREME_CTX, "%s(); cid_addr = 0x%08X, offset = 0x%08X, "
1844 		"val = 0x%08X\n", __FUNCTION__, cid_addr, ctx_offset, ctx_val);
1845 
1846 	DBRUNIF((cid_addr > MAX_CID_ADDR || ctx_offset & 0x3 || cid_addr & CTX_MASK),
1847 		BCE_PRINTF("%s(): Invalid CID address: 0x%08X.\n",
1848 		    __FUNCTION__, cid_addr));
1849 
1850 	if (BCE_CHIP_NUM(sc) == BCE_CHIP_NUM_5709) {
1851 
1852 		REG_WR(sc, BCE_CTX_CTX_DATA, ctx_val);
1853 		REG_WR(sc, BCE_CTX_CTX_CTRL, (offset | BCE_CTX_CTX_CTRL_WRITE_REQ));
1854 
1855 		for (idx = 0; idx < retry_cnt; idx++) {
1856 			val = REG_RD(sc, BCE_CTX_CTX_CTRL);
1857 			if ((val & BCE_CTX_CTX_CTRL_WRITE_REQ) == 0)
1858 				break;
1859 			DELAY(5);
1860 		}
1861 
1862 		if (val & BCE_CTX_CTX_CTRL_WRITE_REQ)
1863 			BCE_PRINTF("%s(%d); Unable to write CTX memory: "
1864 			    "cid_addr = 0x%08X, offset = 0x%08X!\n",
1865 			    __FILE__, __LINE__, cid_addr, ctx_offset);
1866 
1867 	} else {
1868 		REG_WR(sc, BCE_CTX_DATA_ADR, offset);
1869 		REG_WR(sc, BCE_CTX_DATA, ctx_val);
1870 	}
1871 }
1872 
1873 
1874 /****************************************************************************/
1875 /* PHY register read.                                                       */
1876 /*                                                                          */
1877 /* Implements register reads on the MII bus.                                */
1878 /*                                                                          */
1879 /* Returns:                                                                 */
1880 /*   The value of the register.                                             */
1881 /****************************************************************************/
1882 static int
1883 bce_miibus_read_reg(device_t dev, int phy, int reg)
1884 {
1885 	struct bce_softc *sc;
1886 	u32 val;
1887 	int i;
1888 
1889 	sc = device_get_softc(dev);
1890 
1891     /*
1892      * The 5709S PHY is an IEEE Clause 45 PHY
1893      * with special mappings to work with IEEE
1894      * Clause 22 register accesses.
1895      */
1896 	if ((sc->bce_phy_flags & BCE_PHY_IEEE_CLAUSE_45_FLAG) != 0) {
1897 		if (reg >= MII_BMCR && reg <= MII_ANLPRNP)
1898 			reg += 0x10;
1899 	}
1900 
1901     if (sc->bce_phy_flags & BCE_PHY_INT_MODE_AUTO_POLLING_FLAG) {
1902 		val = REG_RD(sc, BCE_EMAC_MDIO_MODE);
1903 		val &= ~BCE_EMAC_MDIO_MODE_AUTO_POLL;
1904 
1905 		REG_WR(sc, BCE_EMAC_MDIO_MODE, val);
1906 		REG_RD(sc, BCE_EMAC_MDIO_MODE);
1907 
1908 		DELAY(40);
1909 	}
1910 
1911 
1912 	val = BCE_MIPHY(phy) | BCE_MIREG(reg) |
1913 	    BCE_EMAC_MDIO_COMM_COMMAND_READ | BCE_EMAC_MDIO_COMM_DISEXT |
1914 	    BCE_EMAC_MDIO_COMM_START_BUSY;
1915 	REG_WR(sc, BCE_EMAC_MDIO_COMM, val);
1916 
1917 	for (i = 0; i < BCE_PHY_TIMEOUT; i++) {
1918 		DELAY(10);
1919 
1920 		val = REG_RD(sc, BCE_EMAC_MDIO_COMM);
1921 		if (!(val & BCE_EMAC_MDIO_COMM_START_BUSY)) {
1922 			DELAY(5);
1923 
1924 			val = REG_RD(sc, BCE_EMAC_MDIO_COMM);
1925 			val &= BCE_EMAC_MDIO_COMM_DATA;
1926 
1927 			break;
1928 		}
1929 	}
1930 
1931 	if (val & BCE_EMAC_MDIO_COMM_START_BUSY) {
1932 		BCE_PRINTF("%s(%d): Error: PHY read timeout! phy = %d, "
1933 		    "reg = 0x%04X\n", __FILE__, __LINE__, phy, reg);
1934 		val = 0x0;
1935 	} else {
1936 		val = REG_RD(sc, BCE_EMAC_MDIO_COMM);
1937 	}
1938 
1939 
1940 	if (sc->bce_phy_flags & BCE_PHY_INT_MODE_AUTO_POLLING_FLAG) {
1941 		val = REG_RD(sc, BCE_EMAC_MDIO_MODE);
1942 		val |= BCE_EMAC_MDIO_MODE_AUTO_POLL;
1943 
1944 		REG_WR(sc, BCE_EMAC_MDIO_MODE, val);
1945 		REG_RD(sc, BCE_EMAC_MDIO_MODE);
1946 
1947 		DELAY(40);
1948 	}
1949 
1950 	DB_PRINT_PHY_REG(reg, val);
1951 	return (val & 0xffff);
1952 }
1953 
1954 
1955 /****************************************************************************/
1956 /* PHY register write.                                                      */
1957 /*                                                                          */
1958 /* Implements register writes on the MII bus.                               */
1959 /*                                                                          */
1960 /* Returns:                                                                 */
1961 /*   The value of the register.                                             */
1962 /****************************************************************************/
1963 static int
1964 bce_miibus_write_reg(device_t dev, int phy, int reg, int val)
1965 {
1966 	struct bce_softc *sc;
1967 	u32 val1;
1968 	int i;
1969 
1970 	sc = device_get_softc(dev);
1971 
1972 	DB_PRINT_PHY_REG(reg, val);
1973 
1974 	/*
1975 	 * The 5709S PHY is an IEEE Clause 45 PHY
1976 	 * with special mappings to work with IEEE
1977 	 * Clause 22 register accesses.
1978 	 */
1979 	if ((sc->bce_phy_flags & BCE_PHY_IEEE_CLAUSE_45_FLAG) != 0) {
1980 		if (reg >= MII_BMCR && reg <= MII_ANLPRNP)
1981 			reg += 0x10;
1982 	}
1983 
1984 	if (sc->bce_phy_flags & BCE_PHY_INT_MODE_AUTO_POLLING_FLAG) {
1985 		val1 = REG_RD(sc, BCE_EMAC_MDIO_MODE);
1986 		val1 &= ~BCE_EMAC_MDIO_MODE_AUTO_POLL;
1987 
1988 		REG_WR(sc, BCE_EMAC_MDIO_MODE, val1);
1989 		REG_RD(sc, BCE_EMAC_MDIO_MODE);
1990 
1991 		DELAY(40);
1992 	}
1993 
1994 	val1 = BCE_MIPHY(phy) | BCE_MIREG(reg) | val |
1995 	    BCE_EMAC_MDIO_COMM_COMMAND_WRITE |
1996 	    BCE_EMAC_MDIO_COMM_START_BUSY | BCE_EMAC_MDIO_COMM_DISEXT;
1997 	REG_WR(sc, BCE_EMAC_MDIO_COMM, val1);
1998 
1999 	for (i = 0; i < BCE_PHY_TIMEOUT; i++) {
2000 		DELAY(10);
2001 
2002 		val1 = REG_RD(sc, BCE_EMAC_MDIO_COMM);
2003 		if (!(val1 & BCE_EMAC_MDIO_COMM_START_BUSY)) {
2004 			DELAY(5);
2005 			break;
2006 		}
2007 	}
2008 
2009 	if (val1 & BCE_EMAC_MDIO_COMM_START_BUSY)
2010 		BCE_PRINTF("%s(%d): PHY write timeout!\n",
2011 		    __FILE__, __LINE__);
2012 
2013 	if (sc->bce_phy_flags & BCE_PHY_INT_MODE_AUTO_POLLING_FLAG) {
2014 		val1 = REG_RD(sc, BCE_EMAC_MDIO_MODE);
2015 		val1 |= BCE_EMAC_MDIO_MODE_AUTO_POLL;
2016 
2017 		REG_WR(sc, BCE_EMAC_MDIO_MODE, val1);
2018 		REG_RD(sc, BCE_EMAC_MDIO_MODE);
2019 
2020 		DELAY(40);
2021 	}
2022 
2023 	return 0;
2024 }
2025 
2026 
2027 /****************************************************************************/
2028 /* MII bus status change.                                                   */
2029 /*                                                                          */
2030 /* Called by the MII bus driver when the PHY establishes link to set the    */
2031 /* MAC interface registers.                                                 */
2032 /*                                                                          */
2033 /* Returns:                                                                 */
2034 /*   Nothing.                                                               */
2035 /****************************************************************************/
2036 static void
2037 bce_miibus_statchg(device_t dev)
2038 {
2039 	struct bce_softc *sc;
2040 	struct mii_data *mii;
2041 	struct ifmediareq ifmr;
2042 	int media_active, media_status, val;
2043 
2044 	sc = device_get_softc(dev);
2045 
2046 	DBENTER(BCE_VERBOSE_PHY);
2047 
2048 	if ((sc->bce_phy_flags & BCE_PHY_REMOTE_CAP_FLAG) != 0) {
2049 		bzero(&ifmr, sizeof(ifmr));
2050 		bce_ifmedia_sts_rphy(sc, &ifmr);
2051 		media_active = ifmr.ifm_active;
2052 		media_status = ifmr.ifm_status;
2053 	} else {
2054 		mii = device_get_softc(sc->bce_miibus);
2055 		media_active = mii->mii_media_active;
2056 		media_status = mii->mii_media_status;
2057 	}
2058 
2059 	/* Ignore invalid media status. */
2060 	if ((media_status & (IFM_ACTIVE | IFM_AVALID)) !=
2061 	    (IFM_ACTIVE | IFM_AVALID))
2062 		goto bce_miibus_statchg_exit;
2063 
2064 	val = REG_RD(sc, BCE_EMAC_MODE);
2065 	val &= ~(BCE_EMAC_MODE_PORT | BCE_EMAC_MODE_HALF_DUPLEX |
2066 	    BCE_EMAC_MODE_MAC_LOOP | BCE_EMAC_MODE_FORCE_LINK |
2067 	    BCE_EMAC_MODE_25G);
2068 
2069 	/* Set MII or GMII interface based on the PHY speed. */
2070 	switch (IFM_SUBTYPE(media_active)) {
2071 	case IFM_10_T:
2072 		if (BCE_CHIP_NUM(sc) != BCE_CHIP_NUM_5706) {
2073 			DBPRINT(sc, BCE_INFO_PHY,
2074 			    "Enabling 10Mb interface.\n");
2075 			val |= BCE_EMAC_MODE_PORT_MII_10;
2076 			break;
2077 		}
2078 		/* fall-through */
2079 	case IFM_100_TX:
2080 		DBPRINT(sc, BCE_INFO_PHY, "Enabling MII interface.\n");
2081 		val |= BCE_EMAC_MODE_PORT_MII;
2082 		break;
2083 	case IFM_2500_SX:
2084 		DBPRINT(sc, BCE_INFO_PHY, "Enabling 2.5G MAC mode.\n");
2085 		val |= BCE_EMAC_MODE_25G;
2086 		/* fall-through */
2087 	case IFM_1000_T:
2088 	case IFM_1000_SX:
2089 		DBPRINT(sc, BCE_INFO_PHY, "Enabling GMII interface.\n");
2090 		val |= BCE_EMAC_MODE_PORT_GMII;
2091 		break;
2092 	default:
2093 		DBPRINT(sc, BCE_INFO_PHY, "Unknown link speed, enabling "
2094 		    "default GMII interface.\n");
2095 		val |= BCE_EMAC_MODE_PORT_GMII;
2096 	}
2097 
2098 	/* Set half or full duplex based on PHY settings. */
2099 	if ((IFM_OPTIONS(media_active) & IFM_FDX) == 0) {
2100 		DBPRINT(sc, BCE_INFO_PHY,
2101 		    "Setting Half-Duplex interface.\n");
2102 		val |= BCE_EMAC_MODE_HALF_DUPLEX;
2103 	} else
2104 		DBPRINT(sc, BCE_INFO_PHY,
2105 		    "Setting Full-Duplex interface.\n");
2106 
2107 	REG_WR(sc, BCE_EMAC_MODE, val);
2108 
2109 	if ((IFM_OPTIONS(media_active) & IFM_ETH_RXPAUSE) != 0) {
2110 		DBPRINT(sc, BCE_INFO_PHY,
2111 		    "%s(): Enabling RX flow control.\n", __FUNCTION__);
2112 		BCE_SETBIT(sc, BCE_EMAC_RX_MODE, BCE_EMAC_RX_MODE_FLOW_EN);
2113 		sc->bce_flags |= BCE_USING_RX_FLOW_CONTROL;
2114 	} else {
2115 		DBPRINT(sc, BCE_INFO_PHY,
2116 		    "%s(): Disabling RX flow control.\n", __FUNCTION__);
2117 		BCE_CLRBIT(sc, BCE_EMAC_RX_MODE, BCE_EMAC_RX_MODE_FLOW_EN);
2118 		sc->bce_flags &= ~BCE_USING_RX_FLOW_CONTROL;
2119 	}
2120 
2121 	if ((IFM_OPTIONS(media_active) & IFM_ETH_TXPAUSE) != 0) {
2122 		DBPRINT(sc, BCE_INFO_PHY,
2123 		    "%s(): Enabling TX flow control.\n", __FUNCTION__);
2124 		BCE_SETBIT(sc, BCE_EMAC_TX_MODE, BCE_EMAC_TX_MODE_FLOW_EN);
2125 		sc->bce_flags |= BCE_USING_TX_FLOW_CONTROL;
2126 	} else {
2127 		DBPRINT(sc, BCE_INFO_PHY,
2128 		    "%s(): Disabling TX flow control.\n", __FUNCTION__);
2129 		BCE_CLRBIT(sc, BCE_EMAC_TX_MODE, BCE_EMAC_TX_MODE_FLOW_EN);
2130 		sc->bce_flags &= ~BCE_USING_TX_FLOW_CONTROL;
2131 	}
2132 
2133 	/* ToDo: Update watermarks in bce_init_rx_context(). */
2134 
2135 bce_miibus_statchg_exit:
2136 	DBEXIT(BCE_VERBOSE_PHY);
2137 }
2138 
2139 
2140 /****************************************************************************/
2141 /* Acquire NVRAM lock.                                                      */
2142 /*                                                                          */
2143 /* Before the NVRAM can be accessed the caller must acquire an NVRAM lock.  */
2144 /* Locks 0 and 2 are reserved, lock 1 is used by firmware and lock 2 is     */
2145 /* for use by the driver.                                                   */
2146 /*                                                                          */
2147 /* Returns:                                                                 */
2148 /*   0 on success, positive value on failure.                               */
2149 /****************************************************************************/
2150 static int
2151 bce_acquire_nvram_lock(struct bce_softc *sc)
2152 {
2153 	u32 val;
2154 	int j, rc = 0;
2155 
2156 	DBENTER(BCE_VERBOSE_NVRAM);
2157 
2158 	/* Request access to the flash interface. */
2159 	REG_WR(sc, BCE_NVM_SW_ARB, BCE_NVM_SW_ARB_ARB_REQ_SET2);
2160 	for (j = 0; j < NVRAM_TIMEOUT_COUNT; j++) {
2161 		val = REG_RD(sc, BCE_NVM_SW_ARB);
2162 		if (val & BCE_NVM_SW_ARB_ARB_ARB2)
2163 			break;
2164 
2165 		DELAY(5);
2166 	}
2167 
2168 	if (j >= NVRAM_TIMEOUT_COUNT) {
2169 		DBPRINT(sc, BCE_WARN, "Timeout acquiring NVRAM lock!\n");
2170 		rc = EBUSY;
2171 	}
2172 
2173 	DBEXIT(BCE_VERBOSE_NVRAM);
2174 	return (rc);
2175 }
2176 
2177 
2178 /****************************************************************************/
2179 /* Release NVRAM lock.                                                      */
2180 /*                                                                          */
2181 /* When the caller is finished accessing NVRAM the lock must be released.   */
2182 /* Locks 0 and 2 are reserved, lock 1 is used by firmware and lock 2 is     */
2183 /* for use by the driver.                                                   */
2184 /*                                                                          */
2185 /* Returns:                                                                 */
2186 /*   0 on success, positive value on failure.                               */
2187 /****************************************************************************/
2188 static int
2189 bce_release_nvram_lock(struct bce_softc *sc)
2190 {
2191 	u32 val;
2192 	int j, rc = 0;
2193 
2194 	DBENTER(BCE_VERBOSE_NVRAM);
2195 
2196 	/*
2197 	 * Relinquish nvram interface.
2198 	 */
2199 	REG_WR(sc, BCE_NVM_SW_ARB, BCE_NVM_SW_ARB_ARB_REQ_CLR2);
2200 
2201 	for (j = 0; j < NVRAM_TIMEOUT_COUNT; j++) {
2202 		val = REG_RD(sc, BCE_NVM_SW_ARB);
2203 		if (!(val & BCE_NVM_SW_ARB_ARB_ARB2))
2204 			break;
2205 
2206 		DELAY(5);
2207 	}
2208 
2209 	if (j >= NVRAM_TIMEOUT_COUNT) {
2210 		DBPRINT(sc, BCE_WARN, "Timeout releasing NVRAM lock!\n");
2211 		rc = EBUSY;
2212 	}
2213 
2214 	DBEXIT(BCE_VERBOSE_NVRAM);
2215 	return (rc);
2216 }
2217 
2218 
2219 #ifdef BCE_NVRAM_WRITE_SUPPORT
2220 /****************************************************************************/
2221 /* Enable NVRAM write access.                                               */
2222 /*                                                                          */
2223 /* Before writing to NVRAM the caller must enable NVRAM writes.             */
2224 /*                                                                          */
2225 /* Returns:                                                                 */
2226 /*   0 on success, positive value on failure.                               */
2227 /****************************************************************************/
2228 static int
2229 bce_enable_nvram_write(struct bce_softc *sc)
2230 {
2231 	u32 val;
2232 	int rc = 0;
2233 
2234 	DBENTER(BCE_VERBOSE_NVRAM);
2235 
2236 	val = REG_RD(sc, BCE_MISC_CFG);
2237 	REG_WR(sc, BCE_MISC_CFG, val | BCE_MISC_CFG_NVM_WR_EN_PCI);
2238 
2239 	if (!(sc->bce_flash_info->flags & BCE_NV_BUFFERED)) {
2240 		int j;
2241 
2242 		REG_WR(sc, BCE_NVM_COMMAND, BCE_NVM_COMMAND_DONE);
2243 		REG_WR(sc, BCE_NVM_COMMAND,	BCE_NVM_COMMAND_WREN | BCE_NVM_COMMAND_DOIT);
2244 
2245 		for (j = 0; j < NVRAM_TIMEOUT_COUNT; j++) {
2246 			DELAY(5);
2247 
2248 			val = REG_RD(sc, BCE_NVM_COMMAND);
2249 			if (val & BCE_NVM_COMMAND_DONE)
2250 				break;
2251 		}
2252 
2253 		if (j >= NVRAM_TIMEOUT_COUNT) {
2254 			DBPRINT(sc, BCE_WARN, "Timeout writing NVRAM!\n");
2255 			rc = EBUSY;
2256 		}
2257 	}
2258 
2259 	DBENTER(BCE_VERBOSE_NVRAM);
2260 	return (rc);
2261 }
2262 
2263 
2264 /****************************************************************************/
2265 /* Disable NVRAM write access.                                              */
2266 /*                                                                          */
2267 /* When the caller is finished writing to NVRAM write access must be        */
2268 /* disabled.                                                                */
2269 /*                                                                          */
2270 /* Returns:                                                                 */
2271 /*   Nothing.                                                               */
2272 /****************************************************************************/
2273 static void
2274 bce_disable_nvram_write(struct bce_softc *sc)
2275 {
2276 	u32 val;
2277 
2278 	DBENTER(BCE_VERBOSE_NVRAM);
2279 
2280 	val = REG_RD(sc, BCE_MISC_CFG);
2281 	REG_WR(sc, BCE_MISC_CFG, val & ~BCE_MISC_CFG_NVM_WR_EN);
2282 
2283 	DBEXIT(BCE_VERBOSE_NVRAM);
2284 
2285 }
2286 #endif
2287 
2288 
2289 /****************************************************************************/
2290 /* Enable NVRAM access.                                                     */
2291 /*                                                                          */
2292 /* Before accessing NVRAM for read or write operations the caller must      */
2293 /* enabled NVRAM access.                                                    */
2294 /*                                                                          */
2295 /* Returns:                                                                 */
2296 /*   Nothing.                                                               */
2297 /****************************************************************************/
2298 static void
2299 bce_enable_nvram_access(struct bce_softc *sc)
2300 {
2301 	u32 val;
2302 
2303 	DBENTER(BCE_VERBOSE_NVRAM);
2304 
2305 	val = REG_RD(sc, BCE_NVM_ACCESS_ENABLE);
2306 	/* Enable both bits, even on read. */
2307 	REG_WR(sc, BCE_NVM_ACCESS_ENABLE, val |
2308 	    BCE_NVM_ACCESS_ENABLE_EN | BCE_NVM_ACCESS_ENABLE_WR_EN);
2309 
2310 	DBEXIT(BCE_VERBOSE_NVRAM);
2311 }
2312 
2313 
2314 /****************************************************************************/
2315 /* Disable NVRAM access.                                                    */
2316 /*                                                                          */
2317 /* When the caller is finished accessing NVRAM access must be disabled.     */
2318 /*                                                                          */
2319 /* Returns:                                                                 */
2320 /*   Nothing.                                                               */
2321 /****************************************************************************/
2322 static void
2323 bce_disable_nvram_access(struct bce_softc *sc)
2324 {
2325 	u32 val;
2326 
2327 	DBENTER(BCE_VERBOSE_NVRAM);
2328 
2329 	val = REG_RD(sc, BCE_NVM_ACCESS_ENABLE);
2330 
2331 	/* Disable both bits, even after read. */
2332 	REG_WR(sc, BCE_NVM_ACCESS_ENABLE, val &
2333 	    ~(BCE_NVM_ACCESS_ENABLE_EN | BCE_NVM_ACCESS_ENABLE_WR_EN));
2334 
2335 	DBEXIT(BCE_VERBOSE_NVRAM);
2336 }
2337 
2338 
2339 #ifdef BCE_NVRAM_WRITE_SUPPORT
2340 /****************************************************************************/
2341 /* Erase NVRAM page before writing.                                         */
2342 /*                                                                          */
2343 /* Non-buffered flash parts require that a page be erased before it is      */
2344 /* written.                                                                 */
2345 /*                                                                          */
2346 /* Returns:                                                                 */
2347 /*   0 on success, positive value on failure.                               */
2348 /****************************************************************************/
2349 static int
2350 bce_nvram_erase_page(struct bce_softc *sc, u32 offset)
2351 {
2352 	u32 cmd;
2353 	int j, rc = 0;
2354 
2355 	DBENTER(BCE_VERBOSE_NVRAM);
2356 
2357 	/* Buffered flash doesn't require an erase. */
2358 	if (sc->bce_flash_info->flags & BCE_NV_BUFFERED)
2359 		goto bce_nvram_erase_page_exit;
2360 
2361 	/* Build an erase command. */
2362 	cmd = BCE_NVM_COMMAND_ERASE | BCE_NVM_COMMAND_WR |
2363 	    BCE_NVM_COMMAND_DOIT;
2364 
2365 	/*
2366 	 * Clear the DONE bit separately, set the NVRAM address to erase,
2367 	 * and issue the erase command.
2368 	 */
2369 	REG_WR(sc, BCE_NVM_COMMAND, BCE_NVM_COMMAND_DONE);
2370 	REG_WR(sc, BCE_NVM_ADDR, offset & BCE_NVM_ADDR_NVM_ADDR_VALUE);
2371 	REG_WR(sc, BCE_NVM_COMMAND, cmd);
2372 
2373 	/* Wait for completion. */
2374 	for (j = 0; j < NVRAM_TIMEOUT_COUNT; j++) {
2375 		u32 val;
2376 
2377 		DELAY(5);
2378 
2379 		val = REG_RD(sc, BCE_NVM_COMMAND);
2380 		if (val & BCE_NVM_COMMAND_DONE)
2381 			break;
2382 	}
2383 
2384 	if (j >= NVRAM_TIMEOUT_COUNT) {
2385 		DBPRINT(sc, BCE_WARN, "Timeout erasing NVRAM.\n");
2386 		rc = EBUSY;
2387 	}
2388 
2389 bce_nvram_erase_page_exit:
2390 	DBEXIT(BCE_VERBOSE_NVRAM);
2391 	return (rc);
2392 }
2393 #endif /* BCE_NVRAM_WRITE_SUPPORT */
2394 
2395 
2396 /****************************************************************************/
2397 /* Read a dword (32 bits) from NVRAM.                                       */
2398 /*                                                                          */
2399 /* Read a 32 bit word from NVRAM.  The caller is assumed to have already    */
2400 /* obtained the NVRAM lock and enabled the controller for NVRAM access.     */
2401 /*                                                                          */
2402 /* Returns:                                                                 */
2403 /*   0 on success and the 32 bit value read, positive value on failure.     */
2404 /****************************************************************************/
2405 static int
2406 bce_nvram_read_dword(struct bce_softc *sc,
2407     u32 offset, u8 *ret_val, u32 cmd_flags)
2408 {
2409 	u32 cmd;
2410 	int i, rc = 0;
2411 
2412 	DBENTER(BCE_EXTREME_NVRAM);
2413 
2414 	/* Build the command word. */
2415 	cmd = BCE_NVM_COMMAND_DOIT | cmd_flags;
2416 
2417 	/* Calculate the offset for buffered flash if translation is used. */
2418 	if (sc->bce_flash_info->flags & BCE_NV_TRANSLATE) {
2419 		offset = ((offset / sc->bce_flash_info->page_size) <<
2420 		    sc->bce_flash_info->page_bits) +
2421 		    (offset % sc->bce_flash_info->page_size);
2422 	}
2423 
2424 	/*
2425 	 * Clear the DONE bit separately, set the address to read,
2426 	 * and issue the read.
2427 	 */
2428 	REG_WR(sc, BCE_NVM_COMMAND, BCE_NVM_COMMAND_DONE);
2429 	REG_WR(sc, BCE_NVM_ADDR, offset & BCE_NVM_ADDR_NVM_ADDR_VALUE);
2430 	REG_WR(sc, BCE_NVM_COMMAND, cmd);
2431 
2432 	/* Wait for completion. */
2433 	for (i = 0; i < NVRAM_TIMEOUT_COUNT; i++) {
2434 		u32 val;
2435 
2436 		DELAY(5);
2437 
2438 		val = REG_RD(sc, BCE_NVM_COMMAND);
2439 		if (val & BCE_NVM_COMMAND_DONE) {
2440 			val = REG_RD(sc, BCE_NVM_READ);
2441 
2442 			val = bce_be32toh(val);
2443 			memcpy(ret_val, &val, 4);
2444 			break;
2445 		}
2446 	}
2447 
2448 	/* Check for errors. */
2449 	if (i >= NVRAM_TIMEOUT_COUNT) {
2450 		BCE_PRINTF("%s(%d): Timeout error reading NVRAM at "
2451 		    "offset 0x%08X!\n",	__FILE__, __LINE__, offset);
2452 		rc = EBUSY;
2453 	}
2454 
2455 	DBEXIT(BCE_EXTREME_NVRAM);
2456 	return(rc);
2457 }
2458 
2459 
2460 #ifdef BCE_NVRAM_WRITE_SUPPORT
2461 /****************************************************************************/
2462 /* Write a dword (32 bits) to NVRAM.                                        */
2463 /*                                                                          */
2464 /* Write a 32 bit word to NVRAM.  The caller is assumed to have already     */
2465 /* obtained the NVRAM lock, enabled the controller for NVRAM access, and    */
2466 /* enabled NVRAM write access.                                              */
2467 /*                                                                          */
2468 /* Returns:                                                                 */
2469 /*   0 on success, positive value on failure.                               */
2470 /****************************************************************************/
2471 static int
2472 bce_nvram_write_dword(struct bce_softc *sc, u32 offset, u8 *val,
2473 	u32 cmd_flags)
2474 {
2475 	u32 cmd, val32;
2476 	int j, rc = 0;
2477 
2478 	DBENTER(BCE_VERBOSE_NVRAM);
2479 
2480 	/* Build the command word. */
2481 	cmd = BCE_NVM_COMMAND_DOIT | BCE_NVM_COMMAND_WR | cmd_flags;
2482 
2483 	/* Calculate the offset for buffered flash if translation is used. */
2484 	if (sc->bce_flash_info->flags & BCE_NV_TRANSLATE) {
2485 		offset = ((offset / sc->bce_flash_info->page_size) <<
2486 		    sc->bce_flash_info->page_bits) +
2487 		    (offset % sc->bce_flash_info->page_size);
2488 	}
2489 
2490 	/*
2491 	 * Clear the DONE bit separately, convert NVRAM data to big-endian,
2492 	 * set the NVRAM address to write, and issue the write command
2493 	 */
2494 	REG_WR(sc, BCE_NVM_COMMAND, BCE_NVM_COMMAND_DONE);
2495 	memcpy(&val32, val, 4);
2496 	val32 = htobe32(val32);
2497 	REG_WR(sc, BCE_NVM_WRITE, val32);
2498 	REG_WR(sc, BCE_NVM_ADDR, offset & BCE_NVM_ADDR_NVM_ADDR_VALUE);
2499 	REG_WR(sc, BCE_NVM_COMMAND, cmd);
2500 
2501 	/* Wait for completion. */
2502 	for (j = 0; j < NVRAM_TIMEOUT_COUNT; j++) {
2503 		DELAY(5);
2504 
2505 		if (REG_RD(sc, BCE_NVM_COMMAND) & BCE_NVM_COMMAND_DONE)
2506 			break;
2507 	}
2508 	if (j >= NVRAM_TIMEOUT_COUNT) {
2509 		BCE_PRINTF("%s(%d): Timeout error writing NVRAM at "
2510 		    "offset 0x%08X\n", __FILE__, __LINE__, offset);
2511 		rc = EBUSY;
2512 	}
2513 
2514 	DBEXIT(BCE_VERBOSE_NVRAM);
2515 	return (rc);
2516 }
2517 #endif /* BCE_NVRAM_WRITE_SUPPORT */
2518 
2519 
2520 /****************************************************************************/
2521 /* Initialize NVRAM access.                                                 */
2522 /*                                                                          */
2523 /* Identify the NVRAM device in use and prepare the NVRAM interface to      */
2524 /* access that device.                                                      */
2525 /*                                                                          */
2526 /* Returns:                                                                 */
2527 /*   0 on success, positive value on failure.                               */
2528 /****************************************************************************/
2529 static int
2530 bce_init_nvram(struct bce_softc *sc)
2531 {
2532 	u32 val;
2533 	int j, entry_count, rc = 0;
2534 	const struct flash_spec *flash;
2535 
2536 	DBENTER(BCE_VERBOSE_NVRAM);
2537 
2538 	if (BCE_CHIP_NUM(sc) == BCE_CHIP_NUM_5709) {
2539 		sc->bce_flash_info = &flash_5709;
2540 		goto bce_init_nvram_get_flash_size;
2541 	}
2542 
2543 	/* Determine the selected interface. */
2544 	val = REG_RD(sc, BCE_NVM_CFG1);
2545 
2546 	entry_count = sizeof(flash_table) / sizeof(struct flash_spec);
2547 
2548 	/*
2549 	 * Flash reconfiguration is required to support additional
2550 	 * NVRAM devices not directly supported in hardware.
2551 	 * Check if the flash interface was reconfigured
2552 	 * by the bootcode.
2553 	 */
2554 
2555 	if (val & 0x40000000) {
2556 		/* Flash interface reconfigured by bootcode. */
2557 
2558 		DBPRINT(sc,BCE_INFO_LOAD,
2559 			"bce_init_nvram(): Flash WAS reconfigured.\n");
2560 
2561 		for (j = 0, flash = &flash_table[0]; j < entry_count;
2562 		     j++, flash++) {
2563 			if ((val & FLASH_BACKUP_STRAP_MASK) ==
2564 			    (flash->config1 & FLASH_BACKUP_STRAP_MASK)) {
2565 				sc->bce_flash_info = flash;
2566 				break;
2567 			}
2568 		}
2569 	} else {
2570 		/* Flash interface not yet reconfigured. */
2571 		u32 mask;
2572 
2573 		DBPRINT(sc, BCE_INFO_LOAD, "%s(): Flash was NOT reconfigured.\n",
2574 			__FUNCTION__);
2575 
2576 		if (val & (1 << 23))
2577 			mask = FLASH_BACKUP_STRAP_MASK;
2578 		else
2579 			mask = FLASH_STRAP_MASK;
2580 
2581 		/* Look for the matching NVRAM device configuration data. */
2582 		for (j = 0, flash = &flash_table[0]; j < entry_count; j++, flash++) {
2583 
2584 			/* Check if the device matches any of the known devices. */
2585 			if ((val & mask) == (flash->strapping & mask)) {
2586 				/* Found a device match. */
2587 				sc->bce_flash_info = flash;
2588 
2589 				/* Request access to the flash interface. */
2590 				if ((rc = bce_acquire_nvram_lock(sc)) != 0)
2591 					return rc;
2592 
2593 				/* Reconfigure the flash interface. */
2594 				bce_enable_nvram_access(sc);
2595 				REG_WR(sc, BCE_NVM_CFG1, flash->config1);
2596 				REG_WR(sc, BCE_NVM_CFG2, flash->config2);
2597 				REG_WR(sc, BCE_NVM_CFG3, flash->config3);
2598 				REG_WR(sc, BCE_NVM_WRITE1, flash->write1);
2599 				bce_disable_nvram_access(sc);
2600 				bce_release_nvram_lock(sc);
2601 
2602 				break;
2603 			}
2604 		}
2605 	}
2606 
2607 	/* Check if a matching device was found. */
2608 	if (j == entry_count) {
2609 		sc->bce_flash_info = NULL;
2610 		BCE_PRINTF("%s(%d): Unknown Flash NVRAM found!\n",
2611 		    __FILE__, __LINE__);
2612 		DBEXIT(BCE_VERBOSE_NVRAM);
2613 		return (ENODEV);
2614 	}
2615 
2616 bce_init_nvram_get_flash_size:
2617 	/* Write the flash config data to the shared memory interface. */
2618 	val = bce_shmem_rd(sc, BCE_SHARED_HW_CFG_CONFIG2);
2619 	val &= BCE_SHARED_HW_CFG2_NVM_SIZE_MASK;
2620 	if (val)
2621 		sc->bce_flash_size = val;
2622 	else
2623 		sc->bce_flash_size = sc->bce_flash_info->total_size;
2624 
2625 	DBPRINT(sc, BCE_INFO_LOAD, "%s(): Found %s, size = 0x%08X\n",
2626 	    __FUNCTION__, sc->bce_flash_info->name,
2627 	    sc->bce_flash_info->total_size);
2628 
2629 	DBEXIT(BCE_VERBOSE_NVRAM);
2630 	return rc;
2631 }
2632 
2633 
2634 /****************************************************************************/
2635 /* Read an arbitrary range of data from NVRAM.                              */
2636 /*                                                                          */
2637 /* Prepares the NVRAM interface for access and reads the requested data     */
2638 /* into the supplied buffer.                                                */
2639 /*                                                                          */
2640 /* Returns:                                                                 */
2641 /*   0 on success and the data read, positive value on failure.             */
2642 /****************************************************************************/
2643 static int
2644 bce_nvram_read(struct bce_softc *sc, u32 offset, u8 *ret_buf,
2645 	int buf_size)
2646 {
2647 	int rc = 0;
2648 	u32 cmd_flags, offset32, len32, extra;
2649 
2650 	DBENTER(BCE_VERBOSE_NVRAM);
2651 
2652 	if (buf_size == 0)
2653 		goto bce_nvram_read_exit;
2654 
2655 	/* Request access to the flash interface. */
2656 	if ((rc = bce_acquire_nvram_lock(sc)) != 0)
2657 		goto bce_nvram_read_exit;
2658 
2659 	/* Enable access to flash interface */
2660 	bce_enable_nvram_access(sc);
2661 
2662 	len32 = buf_size;
2663 	offset32 = offset;
2664 	extra = 0;
2665 
2666 	cmd_flags = 0;
2667 
2668 	if (offset32 & 3) {
2669 		u8 buf[4];
2670 		u32 pre_len;
2671 
2672 		offset32 &= ~3;
2673 		pre_len = 4 - (offset & 3);
2674 
2675 		if (pre_len >= len32) {
2676 			pre_len = len32;
2677 			cmd_flags = BCE_NVM_COMMAND_FIRST | BCE_NVM_COMMAND_LAST;
2678 		}
2679 		else {
2680 			cmd_flags = BCE_NVM_COMMAND_FIRST;
2681 		}
2682 
2683 		rc = bce_nvram_read_dword(sc, offset32, buf, cmd_flags);
2684 
2685 		if (rc)
2686 			return rc;
2687 
2688 		memcpy(ret_buf, buf + (offset & 3), pre_len);
2689 
2690 		offset32 += 4;
2691 		ret_buf += pre_len;
2692 		len32 -= pre_len;
2693 	}
2694 
2695 	if (len32 & 3) {
2696 		extra = 4 - (len32 & 3);
2697 		len32 = (len32 + 4) & ~3;
2698 	}
2699 
2700 	if (len32 == 4) {
2701 		u8 buf[4];
2702 
2703 		if (cmd_flags)
2704 			cmd_flags = BCE_NVM_COMMAND_LAST;
2705 		else
2706 			cmd_flags = BCE_NVM_COMMAND_FIRST |
2707 				    BCE_NVM_COMMAND_LAST;
2708 
2709 		rc = bce_nvram_read_dword(sc, offset32, buf, cmd_flags);
2710 
2711 		memcpy(ret_buf, buf, 4 - extra);
2712 	}
2713 	else if (len32 > 0) {
2714 		u8 buf[4];
2715 
2716 		/* Read the first word. */
2717 		if (cmd_flags)
2718 			cmd_flags = 0;
2719 		else
2720 			cmd_flags = BCE_NVM_COMMAND_FIRST;
2721 
2722 		rc = bce_nvram_read_dword(sc, offset32, ret_buf, cmd_flags);
2723 
2724 		/* Advance to the next dword. */
2725 		offset32 += 4;
2726 		ret_buf += 4;
2727 		len32 -= 4;
2728 
2729 		while (len32 > 4 && rc == 0) {
2730 			rc = bce_nvram_read_dword(sc, offset32, ret_buf, 0);
2731 
2732 			/* Advance to the next dword. */
2733 			offset32 += 4;
2734 			ret_buf += 4;
2735 			len32 -= 4;
2736 		}
2737 
2738 		if (rc)
2739 			goto bce_nvram_read_locked_exit;
2740 
2741 		cmd_flags = BCE_NVM_COMMAND_LAST;
2742 		rc = bce_nvram_read_dword(sc, offset32, buf, cmd_flags);
2743 
2744 		memcpy(ret_buf, buf, 4 - extra);
2745 	}
2746 
2747 bce_nvram_read_locked_exit:
2748 	/* Disable access to flash interface and release the lock. */
2749 	bce_disable_nvram_access(sc);
2750 	bce_release_nvram_lock(sc);
2751 
2752 bce_nvram_read_exit:
2753 	DBEXIT(BCE_VERBOSE_NVRAM);
2754 	return rc;
2755 }
2756 
2757 
2758 #ifdef BCE_NVRAM_WRITE_SUPPORT
2759 /****************************************************************************/
2760 /* Write an arbitrary range of data from NVRAM.                             */
2761 /*                                                                          */
2762 /* Prepares the NVRAM interface for write access and writes the requested   */
2763 /* data from the supplied buffer.  The caller is responsible for            */
2764 /* calculating any appropriate CRCs.                                        */
2765 /*                                                                          */
2766 /* Returns:                                                                 */
2767 /*   0 on success, positive value on failure.                               */
2768 /****************************************************************************/
2769 static int
2770 bce_nvram_write(struct bce_softc *sc, u32 offset, u8 *data_buf,
2771 	int buf_size)
2772 {
2773 	u32 written, offset32, len32;
2774 	u8 *buf, start[4], end[4];
2775 	int rc = 0;
2776 	int align_start, align_end;
2777 
2778 	DBENTER(BCE_VERBOSE_NVRAM);
2779 
2780 	buf = data_buf;
2781 	offset32 = offset;
2782 	len32 = buf_size;
2783 	align_start = align_end = 0;
2784 
2785 	if ((align_start = (offset32 & 3))) {
2786 		offset32 &= ~3;
2787 		len32 += align_start;
2788 		if ((rc = bce_nvram_read(sc, offset32, start, 4)))
2789 			goto bce_nvram_write_exit;
2790 	}
2791 
2792 	if (len32 & 3) {
2793 	       	if ((len32 > 4) || !align_start) {
2794 			align_end = 4 - (len32 & 3);
2795 			len32 += align_end;
2796 			if ((rc = bce_nvram_read(sc, offset32 + len32 - 4,
2797 				end, 4))) {
2798 				goto bce_nvram_write_exit;
2799 			}
2800 		}
2801 	}
2802 
2803 	if (align_start || align_end) {
2804 		buf = malloc(len32, M_DEVBUF, M_NOWAIT);
2805 		if (buf == NULL) {
2806 			rc = ENOMEM;
2807 			goto bce_nvram_write_exit;
2808 		}
2809 
2810 		if (align_start) {
2811 			memcpy(buf, start, 4);
2812 		}
2813 
2814 		if (align_end) {
2815 			memcpy(buf + len32 - 4, end, 4);
2816 		}
2817 		memcpy(buf + align_start, data_buf, buf_size);
2818 	}
2819 
2820 	written = 0;
2821 	while ((written < len32) && (rc == 0)) {
2822 		u32 page_start, page_end, data_start, data_end;
2823 		u32 addr, cmd_flags;
2824 		int i;
2825 		u8 flash_buffer[264];
2826 
2827 	    /* Find the page_start addr */
2828 		page_start = offset32 + written;
2829 		page_start -= (page_start % sc->bce_flash_info->page_size);
2830 		/* Find the page_end addr */
2831 		page_end = page_start + sc->bce_flash_info->page_size;
2832 		/* Find the data_start addr */
2833 		data_start = (written == 0) ? offset32 : page_start;
2834 		/* Find the data_end addr */
2835 		data_end = (page_end > offset32 + len32) ?
2836 			(offset32 + len32) : page_end;
2837 
2838 		/* Request access to the flash interface. */
2839 		if ((rc = bce_acquire_nvram_lock(sc)) != 0)
2840 			goto bce_nvram_write_exit;
2841 
2842 		/* Enable access to flash interface */
2843 		bce_enable_nvram_access(sc);
2844 
2845 		cmd_flags = BCE_NVM_COMMAND_FIRST;
2846 		if (!(sc->bce_flash_info->flags & BCE_NV_BUFFERED)) {
2847 			int j;
2848 
2849 			/* Read the whole page into the buffer
2850 			 * (non-buffer flash only) */
2851 			for (j = 0; j < sc->bce_flash_info->page_size; j += 4) {
2852 				if (j == (sc->bce_flash_info->page_size - 4)) {
2853 					cmd_flags |= BCE_NVM_COMMAND_LAST;
2854 				}
2855 				rc = bce_nvram_read_dword(sc,
2856 					page_start + j,
2857 					&flash_buffer[j],
2858 					cmd_flags);
2859 
2860 				if (rc)
2861 					goto bce_nvram_write_locked_exit;
2862 
2863 				cmd_flags = 0;
2864 			}
2865 		}
2866 
2867 		/* Enable writes to flash interface (unlock write-protect) */
2868 		if ((rc = bce_enable_nvram_write(sc)) != 0)
2869 			goto bce_nvram_write_locked_exit;
2870 
2871 		/* Erase the page */
2872 		if ((rc = bce_nvram_erase_page(sc, page_start)) != 0)
2873 			goto bce_nvram_write_locked_exit;
2874 
2875 		/* Re-enable the write again for the actual write */
2876 		bce_enable_nvram_write(sc);
2877 
2878 		/* Loop to write back the buffer data from page_start to
2879 		 * data_start */
2880 		i = 0;
2881 		if (!(sc->bce_flash_info->flags & BCE_NV_BUFFERED)) {
2882 			for (addr = page_start; addr < data_start;
2883 				addr += 4, i += 4) {
2884 
2885 				rc = bce_nvram_write_dword(sc, addr,
2886 					&flash_buffer[i], cmd_flags);
2887 
2888 				if (rc != 0)
2889 					goto bce_nvram_write_locked_exit;
2890 
2891 				cmd_flags = 0;
2892 			}
2893 		}
2894 
2895 		/* Loop to write the new data from data_start to data_end */
2896 		for (addr = data_start; addr < data_end; addr += 4, i++) {
2897 			if ((addr == page_end - 4) ||
2898 				((sc->bce_flash_info->flags & BCE_NV_BUFFERED) &&
2899 				(addr == data_end - 4))) {
2900 
2901 				cmd_flags |= BCE_NVM_COMMAND_LAST;
2902 			}
2903 			rc = bce_nvram_write_dword(sc, addr, buf,
2904 				cmd_flags);
2905 
2906 			if (rc != 0)
2907 				goto bce_nvram_write_locked_exit;
2908 
2909 			cmd_flags = 0;
2910 			buf += 4;
2911 		}
2912 
2913 		/* Loop to write back the buffer data from data_end
2914 		 * to page_end */
2915 		if (!(sc->bce_flash_info->flags & BCE_NV_BUFFERED)) {
2916 			for (addr = data_end; addr < page_end;
2917 				addr += 4, i += 4) {
2918 
2919 				if (addr == page_end-4) {
2920 					cmd_flags = BCE_NVM_COMMAND_LAST;
2921                 		}
2922 				rc = bce_nvram_write_dword(sc, addr,
2923 					&flash_buffer[i], cmd_flags);
2924 
2925 				if (rc != 0)
2926 					goto bce_nvram_write_locked_exit;
2927 
2928 				cmd_flags = 0;
2929 			}
2930 		}
2931 
2932 		/* Disable writes to flash interface (lock write-protect) */
2933 		bce_disable_nvram_write(sc);
2934 
2935 		/* Disable access to flash interface */
2936 		bce_disable_nvram_access(sc);
2937 		bce_release_nvram_lock(sc);
2938 
2939 		/* Increment written */
2940 		written += data_end - data_start;
2941 	}
2942 
2943 	goto bce_nvram_write_exit;
2944 
2945 bce_nvram_write_locked_exit:
2946 	bce_disable_nvram_write(sc);
2947 	bce_disable_nvram_access(sc);
2948 	bce_release_nvram_lock(sc);
2949 
2950 bce_nvram_write_exit:
2951 	if (align_start || align_end)
2952 		free(buf, M_DEVBUF);
2953 
2954 	DBEXIT(BCE_VERBOSE_NVRAM);
2955 	return (rc);
2956 }
2957 #endif /* BCE_NVRAM_WRITE_SUPPORT */
2958 
2959 
2960 /****************************************************************************/
2961 /* Verifies that NVRAM is accessible and contains valid data.               */
2962 /*                                                                          */
2963 /* Reads the configuration data from NVRAM and verifies that the CRC is     */
2964 /* correct.                                                                 */
2965 /*                                                                          */
2966 /* Returns:                                                                 */
2967 /*   0 on success, positive value on failure.                               */
2968 /****************************************************************************/
2969 static int
2970 bce_nvram_test(struct bce_softc *sc)
2971 {
2972 	u32 buf[BCE_NVRAM_SIZE / 4];
2973 	u8 *data = (u8 *) buf;
2974 	int rc = 0;
2975 	u32 magic, csum;
2976 
2977 	DBENTER(BCE_VERBOSE_NVRAM | BCE_VERBOSE_LOAD | BCE_VERBOSE_RESET);
2978 
2979 	/*
2980 	 * Check that the device NVRAM is valid by reading
2981 	 * the magic value at offset 0.
2982 	 */
2983 	if ((rc = bce_nvram_read(sc, 0, data, 4)) != 0) {
2984 		BCE_PRINTF("%s(%d): Unable to read NVRAM!\n",
2985 		    __FILE__, __LINE__);
2986 		goto bce_nvram_test_exit;
2987 	}
2988 
2989 	/*
2990 	 * Verify that offset 0 of the NVRAM contains
2991 	 * a valid magic number.
2992 	 */
2993 	magic = bce_be32toh(buf[0]);
2994 	if (magic != BCE_NVRAM_MAGIC) {
2995 		rc = ENODEV;
2996 		BCE_PRINTF("%s(%d): Invalid NVRAM magic value! "
2997 		    "Expected: 0x%08X, Found: 0x%08X\n",
2998 		    __FILE__, __LINE__, BCE_NVRAM_MAGIC, magic);
2999 		goto bce_nvram_test_exit;
3000 	}
3001 
3002 	/*
3003 	 * Verify that the device NVRAM includes valid
3004 	 * configuration data.
3005 	 */
3006 	if ((rc = bce_nvram_read(sc, 0x100, data, BCE_NVRAM_SIZE)) != 0) {
3007 		BCE_PRINTF("%s(%d): Unable to read manufacturing "
3008 		    "Information from  NVRAM!\n", __FILE__, __LINE__);
3009 		goto bce_nvram_test_exit;
3010 	}
3011 
3012 	csum = ether_crc32_le(data, 0x100);
3013 	if (csum != BCE_CRC32_RESIDUAL) {
3014 		rc = ENODEV;
3015 		BCE_PRINTF("%s(%d): Invalid manufacturing information "
3016 		    "NVRAM CRC!	Expected: 0x%08X, Found: 0x%08X\n",
3017 		    __FILE__, __LINE__, BCE_CRC32_RESIDUAL, csum);
3018 		goto bce_nvram_test_exit;
3019 	}
3020 
3021 	csum = ether_crc32_le(data + 0x100, 0x100);
3022 	if (csum != BCE_CRC32_RESIDUAL) {
3023 		rc = ENODEV;
3024 		BCE_PRINTF("%s(%d): Invalid feature configuration "
3025 		    "information NVRAM CRC! Expected: 0x%08X, "
3026 		    "Found: 08%08X\n", __FILE__, __LINE__,
3027 		    BCE_CRC32_RESIDUAL, csum);
3028 	}
3029 
3030 bce_nvram_test_exit:
3031 	DBEXIT(BCE_VERBOSE_NVRAM | BCE_VERBOSE_LOAD | BCE_VERBOSE_RESET);
3032 	return rc;
3033 }
3034 
3035 
3036 /****************************************************************************/
3037 /* Calculates the size of the buffers to allocate based on the MTU.         */
3038 /*                                                                          */
3039 /* Returns:                                                                 */
3040 /*   Nothing.                                                               */
3041 /****************************************************************************/
3042 static void
3043 bce_get_rx_buffer_sizes(struct bce_softc *sc, int mtu)
3044 {
3045 	DBENTER(BCE_VERBOSE_LOAD);
3046 
3047 	/* Use a single allocation type when header splitting enabled. */
3048 	if (bce_hdr_split == TRUE) {
3049 		sc->rx_bd_mbuf_alloc_size = MHLEN;
3050 		/* Make sure offset is 16 byte aligned for hardware. */
3051 		sc->rx_bd_mbuf_align_pad =
3052 			roundup2(MSIZE - MHLEN, 16) - (MSIZE - MHLEN);
3053 		sc->rx_bd_mbuf_data_len = sc->rx_bd_mbuf_alloc_size -
3054 			sc->rx_bd_mbuf_align_pad;
3055 	} else {
3056 		if ((mtu + ETHER_HDR_LEN + ETHER_VLAN_ENCAP_LEN +
3057 		    ETHER_CRC_LEN) > MCLBYTES) {
3058 			/* Setup for jumbo RX buffer allocations. */
3059 			sc->rx_bd_mbuf_alloc_size = MJUM9BYTES;
3060 			sc->rx_bd_mbuf_align_pad  =
3061 				roundup2(MJUM9BYTES, 16) - MJUM9BYTES;
3062 			sc->rx_bd_mbuf_data_len =
3063 			    sc->rx_bd_mbuf_alloc_size -
3064 			    sc->rx_bd_mbuf_align_pad;
3065 		} else {
3066 			/* Setup for standard RX buffer allocations. */
3067 			sc->rx_bd_mbuf_alloc_size = MCLBYTES;
3068 			sc->rx_bd_mbuf_align_pad  =
3069 			    roundup2(MCLBYTES, 16) - MCLBYTES;
3070 			sc->rx_bd_mbuf_data_len =
3071 			    sc->rx_bd_mbuf_alloc_size -
3072 			    sc->rx_bd_mbuf_align_pad;
3073 		}
3074 	}
3075 
3076 //	DBPRINT(sc, BCE_INFO_LOAD,
3077 	DBPRINT(sc, BCE_WARN,
3078 	   "%s(): rx_bd_mbuf_alloc_size = %d, rx_bd_mbuf_data_len = %d, "
3079 	   "rx_bd_mbuf_align_pad = %d\n", __FUNCTION__,
3080 	   sc->rx_bd_mbuf_alloc_size, sc->rx_bd_mbuf_data_len,
3081 	   sc->rx_bd_mbuf_align_pad);
3082 
3083 	DBEXIT(BCE_VERBOSE_LOAD);
3084 }
3085 
3086 /****************************************************************************/
3087 /* Identifies the current media type of the controller and sets the PHY     */
3088 /* address.                                                                 */
3089 /*                                                                          */
3090 /* Returns:                                                                 */
3091 /*   Nothing.                                                               */
3092 /****************************************************************************/
3093 static void
3094 bce_get_media(struct bce_softc *sc)
3095 {
3096 	u32 val;
3097 
3098 	DBENTER(BCE_VERBOSE_PHY);
3099 
3100 	/* Assume PHY address for copper controllers. */
3101 	sc->bce_phy_addr = 1;
3102 
3103 	if (BCE_CHIP_NUM(sc) == BCE_CHIP_NUM_5709) {
3104  		u32 val = REG_RD(sc, BCE_MISC_DUAL_MEDIA_CTRL);
3105 		u32 bond_id = val & BCE_MISC_DUAL_MEDIA_CTRL_BOND_ID;
3106 		u32 strap;
3107 
3108 		/*
3109 		 * The BCM5709S is software configurable
3110 		 * for Copper or SerDes operation.
3111 		 */
3112 		if (bond_id == BCE_MISC_DUAL_MEDIA_CTRL_BOND_ID_C) {
3113 			DBPRINT(sc, BCE_INFO_LOAD, "5709 bonded "
3114 			    "for copper.\n");
3115 			goto bce_get_media_exit;
3116 		} else if (bond_id == BCE_MISC_DUAL_MEDIA_CTRL_BOND_ID_S) {
3117 			DBPRINT(sc, BCE_INFO_LOAD, "5709 bonded "
3118 			    "for dual media.\n");
3119 			sc->bce_phy_flags |= BCE_PHY_SERDES_FLAG;
3120 			goto bce_get_media_exit;
3121 		}
3122 
3123 		if (val & BCE_MISC_DUAL_MEDIA_CTRL_STRAP_OVERRIDE)
3124 			strap = (val &
3125 			    BCE_MISC_DUAL_MEDIA_CTRL_PHY_CTRL) >> 21;
3126 		else
3127 			strap = (val &
3128 			    BCE_MISC_DUAL_MEDIA_CTRL_PHY_CTRL_STRAP) >> 8;
3129 
3130 		if (pci_get_function(sc->bce_dev) == 0) {
3131 			switch (strap) {
3132 			case 0x4:
3133 			case 0x5:
3134 			case 0x6:
3135 				DBPRINT(sc, BCE_INFO_LOAD,
3136 				    "BCM5709 s/w configured for SerDes.\n");
3137 				sc->bce_phy_flags |= BCE_PHY_SERDES_FLAG;
3138 				break;
3139 			default:
3140 				DBPRINT(sc, BCE_INFO_LOAD,
3141 				    "BCM5709 s/w configured for Copper.\n");
3142 				break;
3143 			}
3144 		} else {
3145 			switch (strap) {
3146 			case 0x1:
3147 			case 0x2:
3148 			case 0x4:
3149 				DBPRINT(sc, BCE_INFO_LOAD,
3150 				    "BCM5709 s/w configured for SerDes.\n");
3151 				sc->bce_phy_flags |= BCE_PHY_SERDES_FLAG;
3152 				break;
3153 			default:
3154 				DBPRINT(sc, BCE_INFO_LOAD,
3155 				    "BCM5709 s/w configured for Copper.\n");
3156 				break;
3157 			}
3158 		}
3159 
3160 	} else if (BCE_CHIP_BOND_ID(sc) & BCE_CHIP_BOND_ID_SERDES_BIT)
3161 		sc->bce_phy_flags |= BCE_PHY_SERDES_FLAG;
3162 
3163 	if (sc->bce_phy_flags & BCE_PHY_SERDES_FLAG) {
3164 
3165 		sc->bce_flags |= BCE_NO_WOL_FLAG;
3166 
3167 		if (BCE_CHIP_NUM(sc) == BCE_CHIP_NUM_5709)
3168 			sc->bce_phy_flags |= BCE_PHY_IEEE_CLAUSE_45_FLAG;
3169 
3170 		if (BCE_CHIP_NUM(sc) != BCE_CHIP_NUM_5706) {
3171 			/* 5708S/09S/16S use a separate PHY for SerDes. */
3172 			sc->bce_phy_addr = 2;
3173 
3174 			val = bce_shmem_rd(sc, BCE_SHARED_HW_CFG_CONFIG);
3175 			if (val & BCE_SHARED_HW_CFG_PHY_2_5G) {
3176 				sc->bce_phy_flags |=
3177 				    BCE_PHY_2_5G_CAPABLE_FLAG;
3178 				DBPRINT(sc, BCE_INFO_LOAD, "Found 2.5Gb "
3179 				    "capable adapter\n");
3180 			}
3181 		}
3182 	} else if ((BCE_CHIP_NUM(sc) == BCE_CHIP_NUM_5706) ||
3183 	    (BCE_CHIP_NUM(sc) == BCE_CHIP_NUM_5708))
3184 		sc->bce_phy_flags |= BCE_PHY_CRC_FIX_FLAG;
3185 
3186 bce_get_media_exit:
3187 	DBPRINT(sc, (BCE_INFO_LOAD | BCE_INFO_PHY),
3188 		"Using PHY address %d.\n", sc->bce_phy_addr);
3189 
3190 	DBEXIT(BCE_VERBOSE_PHY);
3191 }
3192 
3193 
3194 /****************************************************************************/
3195 /* Performs PHY initialization required before MII drivers access the       */
3196 /* device.                                                                  */
3197 /*                                                                          */
3198 /* Returns:                                                                 */
3199 /*   Nothing.                                                               */
3200 /****************************************************************************/
3201 static void
3202 bce_init_media(struct bce_softc *sc)
3203 {
3204 	if ((sc->bce_phy_flags & (BCE_PHY_IEEE_CLAUSE_45_FLAG |
3205 	    BCE_PHY_REMOTE_CAP_FLAG)) == BCE_PHY_IEEE_CLAUSE_45_FLAG) {
3206 		/*
3207 		 * Configure 5709S/5716S PHYs to use traditional IEEE
3208 		 * Clause 22 method. Otherwise we have no way to attach
3209 		 * the PHY in mii(4) layer. PHY specific configuration
3210 		 * is done in mii layer.
3211 		 */
3212 
3213 		/* Select auto-negotiation MMD of the PHY. */
3214 		bce_miibus_write_reg(sc->bce_dev, sc->bce_phy_addr,
3215 		    BRGPHY_BLOCK_ADDR, BRGPHY_BLOCK_ADDR_ADDR_EXT);
3216 		bce_miibus_write_reg(sc->bce_dev, sc->bce_phy_addr,
3217 		    BRGPHY_ADDR_EXT, BRGPHY_ADDR_EXT_AN_MMD);
3218 
3219 		/* Set IEEE0 block of AN MMD (assumed in brgphy(4) code). */
3220 		bce_miibus_write_reg(sc->bce_dev, sc->bce_phy_addr,
3221 		    BRGPHY_BLOCK_ADDR, BRGPHY_BLOCK_ADDR_COMBO_IEEE0);
3222 	}
3223 }
3224 
3225 
3226 /****************************************************************************/
3227 /* Free any DMA memory owned by the driver.                                 */
3228 /*                                                                          */
3229 /* Scans through each data structre that requires DMA memory and frees      */
3230 /* the memory if allocated.                                                 */
3231 /*                                                                          */
3232 /* Returns:                                                                 */
3233 /*   Nothing.                                                               */
3234 /****************************************************************************/
3235 static void
3236 bce_dma_free(struct bce_softc *sc)
3237 {
3238 	int i;
3239 
3240 	DBENTER(BCE_VERBOSE_RESET | BCE_VERBOSE_UNLOAD | BCE_VERBOSE_CTX);
3241 
3242 	/* Free, unmap, and destroy the status block. */
3243 	if (sc->status_block_paddr != 0) {
3244 		bus_dmamap_unload(
3245 		    sc->status_tag,
3246 		    sc->status_map);
3247 		sc->status_block_paddr = 0;
3248 	}
3249 
3250 	if (sc->status_block != NULL) {
3251 		bus_dmamem_free(
3252 		   sc->status_tag,
3253 		    sc->status_block,
3254 		    sc->status_map);
3255 		sc->status_block = NULL;
3256 	}
3257 
3258 	if (sc->status_tag != NULL) {
3259 		bus_dma_tag_destroy(sc->status_tag);
3260 		sc->status_tag = NULL;
3261 	}
3262 
3263 
3264 	/* Free, unmap, and destroy the statistics block. */
3265 	if (sc->stats_block_paddr != 0) {
3266 		bus_dmamap_unload(
3267 		    sc->stats_tag,
3268 		    sc->stats_map);
3269 		sc->stats_block_paddr = 0;
3270 	}
3271 
3272 	if (sc->stats_block != NULL) {
3273 		bus_dmamem_free(
3274 		    sc->stats_tag,
3275 		    sc->stats_block,
3276 		    sc->stats_map);
3277 		sc->stats_block = NULL;
3278 	}
3279 
3280 	if (sc->stats_tag != NULL) {
3281 		bus_dma_tag_destroy(sc->stats_tag);
3282 		sc->stats_tag = NULL;
3283 	}
3284 
3285 
3286 	/* Free, unmap and destroy all context memory pages. */
3287 	if (BCE_CHIP_NUM(sc) == BCE_CHIP_NUM_5709) {
3288 		for (i = 0; i < sc->ctx_pages; i++ ) {
3289 			if (sc->ctx_paddr[i] != 0) {
3290 				bus_dmamap_unload(
3291 				    sc->ctx_tag,
3292 				    sc->ctx_map[i]);
3293 				sc->ctx_paddr[i] = 0;
3294 			}
3295 
3296 			if (sc->ctx_block[i] != NULL) {
3297 				bus_dmamem_free(
3298 				    sc->ctx_tag,
3299 				    sc->ctx_block[i],
3300 				    sc->ctx_map[i]);
3301 				sc->ctx_block[i] = NULL;
3302 			}
3303 		}
3304 
3305 		/* Destroy the context memory tag. */
3306 		if (sc->ctx_tag != NULL) {
3307 			bus_dma_tag_destroy(sc->ctx_tag);
3308 			sc->ctx_tag = NULL;
3309 		}
3310 	}
3311 
3312 
3313 	/* Free, unmap and destroy all TX buffer descriptor chain pages. */
3314 	for (i = 0; i < sc->tx_pages; i++ ) {
3315 		if (sc->tx_bd_chain_paddr[i] != 0) {
3316 			bus_dmamap_unload(
3317 			    sc->tx_bd_chain_tag,
3318 			    sc->tx_bd_chain_map[i]);
3319 			sc->tx_bd_chain_paddr[i] = 0;
3320 		}
3321 
3322 		if (sc->tx_bd_chain[i] != NULL) {
3323 			bus_dmamem_free(
3324 			    sc->tx_bd_chain_tag,
3325 			    sc->tx_bd_chain[i],
3326 			    sc->tx_bd_chain_map[i]);
3327 			sc->tx_bd_chain[i] = NULL;
3328 		}
3329 	}
3330 
3331 	/* Destroy the TX buffer descriptor tag. */
3332 	if (sc->tx_bd_chain_tag != NULL) {
3333 		bus_dma_tag_destroy(sc->tx_bd_chain_tag);
3334 		sc->tx_bd_chain_tag = NULL;
3335 	}
3336 
3337 
3338 	/* Free, unmap and destroy all RX buffer descriptor chain pages. */
3339 	for (i = 0; i < sc->rx_pages; i++ ) {
3340 		if (sc->rx_bd_chain_paddr[i] != 0) {
3341 			bus_dmamap_unload(
3342 			    sc->rx_bd_chain_tag,
3343 			    sc->rx_bd_chain_map[i]);
3344 			sc->rx_bd_chain_paddr[i] = 0;
3345 		}
3346 
3347 		if (sc->rx_bd_chain[i] != NULL) {
3348 			bus_dmamem_free(
3349 			    sc->rx_bd_chain_tag,
3350 			    sc->rx_bd_chain[i],
3351 			    sc->rx_bd_chain_map[i]);
3352 			sc->rx_bd_chain[i] = NULL;
3353 		}
3354 	}
3355 
3356 	/* Destroy the RX buffer descriptor tag. */
3357 	if (sc->rx_bd_chain_tag != NULL) {
3358 		bus_dma_tag_destroy(sc->rx_bd_chain_tag);
3359 		sc->rx_bd_chain_tag = NULL;
3360 	}
3361 
3362 
3363 	/* Free, unmap and destroy all page buffer descriptor chain pages. */
3364 	if (bce_hdr_split == TRUE) {
3365 		for (i = 0; i < sc->pg_pages; i++ ) {
3366 			if (sc->pg_bd_chain_paddr[i] != 0) {
3367 				bus_dmamap_unload(
3368 				    sc->pg_bd_chain_tag,
3369 				    sc->pg_bd_chain_map[i]);
3370 				sc->pg_bd_chain_paddr[i] = 0;
3371 			}
3372 
3373 			if (sc->pg_bd_chain[i] != NULL) {
3374 				bus_dmamem_free(
3375 				    sc->pg_bd_chain_tag,
3376 				    sc->pg_bd_chain[i],
3377 				    sc->pg_bd_chain_map[i]);
3378 				sc->pg_bd_chain[i] = NULL;
3379 			}
3380 		}
3381 
3382 		/* Destroy the page buffer descriptor tag. */
3383 		if (sc->pg_bd_chain_tag != NULL) {
3384 			bus_dma_tag_destroy(sc->pg_bd_chain_tag);
3385 			sc->pg_bd_chain_tag = NULL;
3386 		}
3387 	}
3388 
3389 
3390 	/* Unload and destroy the TX mbuf maps. */
3391 	for (i = 0; i < MAX_TX_BD_AVAIL; i++) {
3392 		if (sc->tx_mbuf_map[i] != NULL) {
3393 			bus_dmamap_unload(sc->tx_mbuf_tag,
3394 			    sc->tx_mbuf_map[i]);
3395 			bus_dmamap_destroy(sc->tx_mbuf_tag,
3396 	 		    sc->tx_mbuf_map[i]);
3397 			sc->tx_mbuf_map[i] = NULL;
3398 		}
3399 	}
3400 
3401 	/* Destroy the TX mbuf tag. */
3402 	if (sc->tx_mbuf_tag != NULL) {
3403 		bus_dma_tag_destroy(sc->tx_mbuf_tag);
3404 		sc->tx_mbuf_tag = NULL;
3405 	}
3406 
3407 	/* Unload and destroy the RX mbuf maps. */
3408 	for (i = 0; i < MAX_RX_BD_AVAIL; i++) {
3409 		if (sc->rx_mbuf_map[i] != NULL) {
3410 			bus_dmamap_unload(sc->rx_mbuf_tag,
3411 			    sc->rx_mbuf_map[i]);
3412 			bus_dmamap_destroy(sc->rx_mbuf_tag,
3413 	 		    sc->rx_mbuf_map[i]);
3414 			sc->rx_mbuf_map[i] = NULL;
3415 		}
3416 	}
3417 
3418 	/* Destroy the RX mbuf tag. */
3419 	if (sc->rx_mbuf_tag != NULL) {
3420 		bus_dma_tag_destroy(sc->rx_mbuf_tag);
3421 		sc->rx_mbuf_tag = NULL;
3422 	}
3423 
3424 	/* Unload and destroy the page mbuf maps. */
3425 	if (bce_hdr_split == TRUE) {
3426 		for (i = 0; i < MAX_PG_BD_AVAIL; i++) {
3427 			if (sc->pg_mbuf_map[i] != NULL) {
3428 				bus_dmamap_unload(sc->pg_mbuf_tag,
3429 				    sc->pg_mbuf_map[i]);
3430 				bus_dmamap_destroy(sc->pg_mbuf_tag,
3431 				    sc->pg_mbuf_map[i]);
3432 				sc->pg_mbuf_map[i] = NULL;
3433 			}
3434 		}
3435 
3436 		/* Destroy the page mbuf tag. */
3437 		if (sc->pg_mbuf_tag != NULL) {
3438 			bus_dma_tag_destroy(sc->pg_mbuf_tag);
3439 			sc->pg_mbuf_tag = NULL;
3440 		}
3441 	}
3442 
3443 	/* Destroy the parent tag */
3444 	if (sc->parent_tag != NULL) {
3445 		bus_dma_tag_destroy(sc->parent_tag);
3446 		sc->parent_tag = NULL;
3447 	}
3448 
3449 	DBEXIT(BCE_VERBOSE_RESET | BCE_VERBOSE_UNLOAD | BCE_VERBOSE_CTX);
3450 }
3451 
3452 
3453 /****************************************************************************/
3454 /* Get DMA memory from the OS.                                              */
3455 /*                                                                          */
3456 /* Validates that the OS has provided DMA buffers in response to a          */
3457 /* bus_dmamap_load() call and saves the physical address of those buffers.  */
3458 /* When the callback is used the OS will return 0 for the mapping function  */
3459 /* (bus_dmamap_load()) so we use the value of map_arg->maxsegs to pass any  */
3460 /* failures back to the caller.                                             */
3461 /*                                                                          */
3462 /* Returns:                                                                 */
3463 /*   Nothing.                                                               */
3464 /****************************************************************************/
3465 static void
3466 bce_dma_map_addr(void *arg, bus_dma_segment_t *segs, int nseg, int error)
3467 {
3468 	bus_addr_t *busaddr = arg;
3469 
3470 	KASSERT(nseg == 1, ("%s(): Too many segments returned (%d)!",
3471 	    __FUNCTION__, nseg));
3472 	/* Simulate a mapping failure. */
3473 	DBRUNIF(DB_RANDOMTRUE(dma_map_addr_failed_sim_control),
3474 	    error = ENOMEM);
3475 
3476 	/* ToDo: How to increment debug sim_count variable here? */
3477 
3478 	/* Check for an error and signal the caller that an error occurred. */
3479 	if (error) {
3480 		*busaddr = 0;
3481 	} else {
3482 		*busaddr = segs->ds_addr;
3483 	}
3484 }
3485 
3486 
3487 /****************************************************************************/
3488 /* Allocate any DMA memory needed by the driver.                            */
3489 /*                                                                          */
3490 /* Allocates DMA memory needed for the various global structures needed by  */
3491 /* hardware.                                                                */
3492 /*                                                                          */
3493 /* Memory alignment requirements:                                           */
3494 /* +-----------------+----------+----------+----------+----------+          */
3495 /* |                 |   5706   |   5708   |   5709   |   5716   |          */
3496 /* +-----------------+----------+----------+----------+----------+          */
3497 /* |Status Block     | 8 bytes  | 8 bytes  | 16 bytes | 16 bytes |          */
3498 /* |Statistics Block | 8 bytes  | 8 bytes  | 16 bytes | 16 bytes |          */
3499 /* |RX Buffers       | 16 bytes | 16 bytes | 16 bytes | 16 bytes |          */
3500 /* |PG Buffers       |   none   |   none   |   none   |   none   |          */
3501 /* |TX Buffers       |   none   |   none   |   none   |   none   |          */
3502 /* |Chain Pages(1)   |   4KiB   |   4KiB   |   4KiB   |   4KiB   |          */
3503 /* |Context Memory   |          |          |          |          |          */
3504 /* +-----------------+----------+----------+----------+----------+          */
3505 /*                                                                          */
3506 /* (1) Must align with CPU page size (BCM_PAGE_SZIE).                       */
3507 /*                                                                          */
3508 /* Returns:                                                                 */
3509 /*   0 for success, positive value for failure.                             */
3510 /****************************************************************************/
3511 static int
3512 bce_dma_alloc(device_t dev)
3513 {
3514 	struct bce_softc *sc;
3515 	int i, error, rc = 0;
3516 	bus_size_t max_size, max_seg_size;
3517 	int max_segments;
3518 
3519 	sc = device_get_softc(dev);
3520 
3521 	DBENTER(BCE_VERBOSE_RESET | BCE_VERBOSE_CTX);
3522 
3523 	/*
3524 	 * Allocate the parent bus DMA tag appropriate for PCI.
3525 	 */
3526 	if (bus_dma_tag_create(bus_get_dma_tag(dev), 1, BCE_DMA_BOUNDARY,
3527 	    sc->max_bus_addr, BUS_SPACE_MAXADDR, NULL, NULL,
3528 	    BUS_SPACE_MAXSIZE_32BIT, 0, BUS_SPACE_MAXSIZE_32BIT, 0, NULL, NULL,
3529 	    &sc->parent_tag)) {
3530 		BCE_PRINTF("%s(%d): Could not allocate parent DMA tag!\n",
3531 		    __FILE__, __LINE__);
3532 		rc = ENOMEM;
3533 		goto bce_dma_alloc_exit;
3534 	}
3535 
3536 	/*
3537 	 * Create a DMA tag for the status block, allocate and clear the
3538 	 * memory, map the memory into DMA space, and fetch the physical
3539 	 * address of the block.
3540 	 */
3541 	if (bus_dma_tag_create(sc->parent_tag, BCE_DMA_ALIGN,
3542 	    BCE_DMA_BOUNDARY, sc->max_bus_addr,	BUS_SPACE_MAXADDR,
3543 	    NULL, NULL,	BCE_STATUS_BLK_SZ, 1, BCE_STATUS_BLK_SZ,
3544 	    0, NULL, NULL, &sc->status_tag)) {
3545 		BCE_PRINTF("%s(%d): Could not allocate status block "
3546 		    "DMA tag!\n", __FILE__, __LINE__);
3547 		rc = ENOMEM;
3548 		goto bce_dma_alloc_exit;
3549 	}
3550 
3551 	if(bus_dmamem_alloc(sc->status_tag, (void **)&sc->status_block,
3552 	    BUS_DMA_NOWAIT | BUS_DMA_ZERO | BUS_DMA_COHERENT,
3553 	    &sc->status_map)) {
3554 		BCE_PRINTF("%s(%d): Could not allocate status block "
3555 		    "DMA memory!\n", __FILE__, __LINE__);
3556 		rc = ENOMEM;
3557 		goto bce_dma_alloc_exit;
3558 	}
3559 
3560 	error = bus_dmamap_load(sc->status_tag,	sc->status_map,
3561 	    sc->status_block, BCE_STATUS_BLK_SZ, bce_dma_map_addr,
3562 	    &sc->status_block_paddr, BUS_DMA_NOWAIT);
3563 
3564 	if (error || sc->status_block_paddr == 0) {
3565 		BCE_PRINTF("%s(%d): Could not map status block "
3566 		    "DMA memory!\n", __FILE__, __LINE__);
3567 		rc = ENOMEM;
3568 		goto bce_dma_alloc_exit;
3569 	}
3570 
3571 	DBPRINT(sc, BCE_INFO_LOAD, "%s(): status_block_paddr = 0x%jX\n",
3572 	    __FUNCTION__, (uintmax_t) sc->status_block_paddr);
3573 
3574 	/*
3575 	 * Create a DMA tag for the statistics block, allocate and clear the
3576 	 * memory, map the memory into DMA space, and fetch the physical
3577 	 * address of the block.
3578 	 */
3579 	if (bus_dma_tag_create(sc->parent_tag, BCE_DMA_ALIGN,
3580 	    BCE_DMA_BOUNDARY, sc->max_bus_addr,	BUS_SPACE_MAXADDR,
3581 	    NULL, NULL,	BCE_STATS_BLK_SZ, 1, BCE_STATS_BLK_SZ,
3582 	    0, NULL, NULL, &sc->stats_tag)) {
3583 		BCE_PRINTF("%s(%d): Could not allocate statistics block "
3584 		    "DMA tag!\n", __FILE__, __LINE__);
3585 		rc = ENOMEM;
3586 		goto bce_dma_alloc_exit;
3587 	}
3588 
3589 	if (bus_dmamem_alloc(sc->stats_tag, (void **)&sc->stats_block,
3590 	    BUS_DMA_NOWAIT | BUS_DMA_ZERO | BUS_DMA_COHERENT, &sc->stats_map)) {
3591 		BCE_PRINTF("%s(%d): Could not allocate statistics block "
3592 		    "DMA memory!\n", __FILE__, __LINE__);
3593 		rc = ENOMEM;
3594 		goto bce_dma_alloc_exit;
3595 	}
3596 
3597 	error = bus_dmamap_load(sc->stats_tag, sc->stats_map,
3598 	    sc->stats_block, BCE_STATS_BLK_SZ, bce_dma_map_addr,
3599 	    &sc->stats_block_paddr, BUS_DMA_NOWAIT);
3600 
3601 	if (error || sc->stats_block_paddr == 0) {
3602 		BCE_PRINTF("%s(%d): Could not map statistics block "
3603 		    "DMA memory!\n", __FILE__, __LINE__);
3604 		rc = ENOMEM;
3605 		goto bce_dma_alloc_exit;
3606 	}
3607 
3608 	DBPRINT(sc, BCE_INFO_LOAD, "%s(): stats_block_paddr = 0x%jX\n",
3609 	    __FUNCTION__, (uintmax_t) sc->stats_block_paddr);
3610 
3611 	/* BCM5709 uses host memory as cache for context memory. */
3612 	if (BCE_CHIP_NUM(sc) == BCE_CHIP_NUM_5709) {
3613 		sc->ctx_pages = 0x2000 / BCM_PAGE_SIZE;
3614 		if (sc->ctx_pages == 0)
3615 			sc->ctx_pages = 1;
3616 
3617 		DBRUNIF((sc->ctx_pages > 512),
3618 		    BCE_PRINTF("%s(%d): Too many CTX pages! %d > 512\n",
3619 		    __FILE__, __LINE__, sc->ctx_pages));
3620 
3621 		/*
3622 		 * Create a DMA tag for the context pages,
3623 		 * allocate and clear the memory, map the
3624 		 * memory into DMA space, and fetch the
3625 		 * physical address of the block.
3626 		 */
3627 		if(bus_dma_tag_create(sc->parent_tag, BCM_PAGE_SIZE,
3628 		    BCE_DMA_BOUNDARY, sc->max_bus_addr,	BUS_SPACE_MAXADDR,
3629 		    NULL, NULL,	BCM_PAGE_SIZE, 1, BCM_PAGE_SIZE,
3630 		    0, NULL, NULL, &sc->ctx_tag)) {
3631 			BCE_PRINTF("%s(%d): Could not allocate CTX "
3632 			    "DMA tag!\n", __FILE__, __LINE__);
3633 			rc = ENOMEM;
3634 			goto bce_dma_alloc_exit;
3635 		}
3636 
3637 		for (i = 0; i < sc->ctx_pages; i++) {
3638 
3639 			if(bus_dmamem_alloc(sc->ctx_tag,
3640 			    (void **)&sc->ctx_block[i],
3641 			    BUS_DMA_NOWAIT | BUS_DMA_ZERO | BUS_DMA_COHERENT,
3642 			    &sc->ctx_map[i])) {
3643 				BCE_PRINTF("%s(%d): Could not allocate CTX "
3644 				    "DMA memory!\n", __FILE__, __LINE__);
3645 				rc = ENOMEM;
3646 				goto bce_dma_alloc_exit;
3647 			}
3648 
3649 			error = bus_dmamap_load(sc->ctx_tag, sc->ctx_map[i],
3650 			    sc->ctx_block[i], BCM_PAGE_SIZE, bce_dma_map_addr,
3651 			    &sc->ctx_paddr[i], BUS_DMA_NOWAIT);
3652 
3653 			if (error || sc->ctx_paddr[i] == 0) {
3654 				BCE_PRINTF("%s(%d): Could not map CTX "
3655 				    "DMA memory!\n", __FILE__, __LINE__);
3656 				rc = ENOMEM;
3657 				goto bce_dma_alloc_exit;
3658 			}
3659 
3660 			DBPRINT(sc, BCE_INFO_LOAD, "%s(): ctx_paddr[%d] "
3661 			    "= 0x%jX\n", __FUNCTION__, i,
3662 			    (uintmax_t) sc->ctx_paddr[i]);
3663 		}
3664 	}
3665 
3666 	/*
3667 	 * Create a DMA tag for the TX buffer descriptor chain,
3668 	 * allocate and clear the  memory, and fetch the
3669 	 * physical address of the block.
3670 	 */
3671 	if(bus_dma_tag_create(sc->parent_tag, BCM_PAGE_SIZE, BCE_DMA_BOUNDARY,
3672 	    sc->max_bus_addr, BUS_SPACE_MAXADDR, NULL, NULL,
3673 	    BCE_TX_CHAIN_PAGE_SZ, 1, BCE_TX_CHAIN_PAGE_SZ, 0,
3674 	    NULL, NULL,	&sc->tx_bd_chain_tag)) {
3675 		BCE_PRINTF("%s(%d): Could not allocate TX descriptor "
3676 		    "chain DMA tag!\n", __FILE__, __LINE__);
3677 		rc = ENOMEM;
3678 		goto bce_dma_alloc_exit;
3679 	}
3680 
3681 	for (i = 0; i < sc->tx_pages; i++) {
3682 
3683 		if(bus_dmamem_alloc(sc->tx_bd_chain_tag,
3684 		    (void **)&sc->tx_bd_chain[i],
3685 		    BUS_DMA_NOWAIT | BUS_DMA_ZERO | BUS_DMA_COHERENT,
3686 		    &sc->tx_bd_chain_map[i])) {
3687 			BCE_PRINTF("%s(%d): Could not allocate TX descriptor "
3688 			    "chain DMA memory!\n", __FILE__, __LINE__);
3689 			rc = ENOMEM;
3690 			goto bce_dma_alloc_exit;
3691 		}
3692 
3693 		error = bus_dmamap_load(sc->tx_bd_chain_tag,
3694 		    sc->tx_bd_chain_map[i], sc->tx_bd_chain[i],
3695 		    BCE_TX_CHAIN_PAGE_SZ, bce_dma_map_addr,
3696 		    &sc->tx_bd_chain_paddr[i], BUS_DMA_NOWAIT);
3697 
3698 		if (error || sc->tx_bd_chain_paddr[i] == 0) {
3699 			BCE_PRINTF("%s(%d): Could not map TX descriptor "
3700 			    "chain DMA memory!\n", __FILE__, __LINE__);
3701 			rc = ENOMEM;
3702 			goto bce_dma_alloc_exit;
3703 		}
3704 
3705 		DBPRINT(sc, BCE_INFO_LOAD, "%s(): tx_bd_chain_paddr[%d] = "
3706 		    "0x%jX\n", __FUNCTION__, i,
3707 		    (uintmax_t) sc->tx_bd_chain_paddr[i]);
3708 	}
3709 
3710 	/* Check the required size before mapping to conserve resources. */
3711 	if (bce_tso_enable) {
3712 		max_size     = BCE_TSO_MAX_SIZE;
3713 		max_segments = BCE_MAX_SEGMENTS;
3714 		max_seg_size = BCE_TSO_MAX_SEG_SIZE;
3715 	} else {
3716 		max_size     = MCLBYTES * BCE_MAX_SEGMENTS;
3717 		max_segments = BCE_MAX_SEGMENTS;
3718 		max_seg_size = MCLBYTES;
3719 	}
3720 
3721 	/* Create a DMA tag for TX mbufs. */
3722 	if (bus_dma_tag_create(sc->parent_tag, 1, BCE_DMA_BOUNDARY,
3723 	    sc->max_bus_addr, BUS_SPACE_MAXADDR, NULL, NULL, max_size,
3724 	    max_segments, max_seg_size,	0, NULL, NULL, &sc->tx_mbuf_tag)) {
3725 		BCE_PRINTF("%s(%d): Could not allocate TX mbuf DMA tag!\n",
3726 		    __FILE__, __LINE__);
3727 		rc = ENOMEM;
3728 		goto bce_dma_alloc_exit;
3729 	}
3730 
3731 	/* Create DMA maps for the TX mbufs clusters. */
3732 	for (i = 0; i < TOTAL_TX_BD_ALLOC; i++) {
3733 		if (bus_dmamap_create(sc->tx_mbuf_tag, BUS_DMA_NOWAIT,
3734 			&sc->tx_mbuf_map[i])) {
3735 			BCE_PRINTF("%s(%d): Unable to create TX mbuf DMA "
3736 			    "map!\n", __FILE__, __LINE__);
3737 			rc = ENOMEM;
3738 			goto bce_dma_alloc_exit;
3739 		}
3740 	}
3741 
3742 	/*
3743 	 * Create a DMA tag for the RX buffer descriptor chain,
3744 	 * allocate and clear the memory, and fetch the physical
3745 	 * address of the blocks.
3746 	 */
3747 	if (bus_dma_tag_create(sc->parent_tag, BCM_PAGE_SIZE,
3748 			BCE_DMA_BOUNDARY, BUS_SPACE_MAXADDR,
3749 			sc->max_bus_addr, NULL, NULL,
3750 			BCE_RX_CHAIN_PAGE_SZ, 1, BCE_RX_CHAIN_PAGE_SZ,
3751 			0, NULL, NULL, &sc->rx_bd_chain_tag)) {
3752 		BCE_PRINTF("%s(%d): Could not allocate RX descriptor chain "
3753 		    "DMA tag!\n", __FILE__, __LINE__);
3754 		rc = ENOMEM;
3755 		goto bce_dma_alloc_exit;
3756 	}
3757 
3758 	for (i = 0; i < sc->rx_pages; i++) {
3759 
3760 		if (bus_dmamem_alloc(sc->rx_bd_chain_tag,
3761 		    (void **)&sc->rx_bd_chain[i],
3762 		    BUS_DMA_NOWAIT | BUS_DMA_ZERO | BUS_DMA_COHERENT,
3763 		    &sc->rx_bd_chain_map[i])) {
3764 			BCE_PRINTF("%s(%d): Could not allocate RX descriptor "
3765 			    "chain DMA memory!\n", __FILE__, __LINE__);
3766 			rc = ENOMEM;
3767 			goto bce_dma_alloc_exit;
3768 		}
3769 
3770 		error = bus_dmamap_load(sc->rx_bd_chain_tag,
3771 		    sc->rx_bd_chain_map[i], sc->rx_bd_chain[i],
3772 		    BCE_RX_CHAIN_PAGE_SZ, bce_dma_map_addr,
3773 		    &sc->rx_bd_chain_paddr[i], BUS_DMA_NOWAIT);
3774 
3775 		if (error || sc->rx_bd_chain_paddr[i] == 0) {
3776 			BCE_PRINTF("%s(%d): Could not map RX descriptor "
3777 			    "chain DMA memory!\n", __FILE__, __LINE__);
3778 			rc = ENOMEM;
3779 			goto bce_dma_alloc_exit;
3780 		}
3781 
3782 		DBPRINT(sc, BCE_INFO_LOAD, "%s(): rx_bd_chain_paddr[%d] = "
3783 		    "0x%jX\n", __FUNCTION__, i,
3784 		    (uintmax_t) sc->rx_bd_chain_paddr[i]);
3785 	}
3786 
3787 	/*
3788 	 * Create a DMA tag for RX mbufs.
3789 	 */
3790 	if (bce_hdr_split == TRUE)
3791 		max_size = ((sc->rx_bd_mbuf_alloc_size < MCLBYTES) ?
3792 		    MCLBYTES : sc->rx_bd_mbuf_alloc_size);
3793 	else
3794 		max_size = MJUM9BYTES;
3795 
3796 	DBPRINT(sc, BCE_INFO_LOAD, "%s(): Creating rx_mbuf_tag "
3797 	    "(max size = 0x%jX)\n", __FUNCTION__, (uintmax_t)max_size);
3798 
3799 	if (bus_dma_tag_create(sc->parent_tag, BCE_RX_BUF_ALIGN,
3800 	    BCE_DMA_BOUNDARY, sc->max_bus_addr, BUS_SPACE_MAXADDR, NULL, NULL,
3801 	    max_size, 1, max_size, 0, NULL, NULL, &sc->rx_mbuf_tag)) {
3802 		BCE_PRINTF("%s(%d): Could not allocate RX mbuf DMA tag!\n",
3803 		    __FILE__, __LINE__);
3804 		rc = ENOMEM;
3805 		goto bce_dma_alloc_exit;
3806 	}
3807 
3808 	/* Create DMA maps for the RX mbuf clusters. */
3809 	for (i = 0; i < TOTAL_RX_BD_ALLOC; i++) {
3810 		if (bus_dmamap_create(sc->rx_mbuf_tag, BUS_DMA_NOWAIT,
3811 		    &sc->rx_mbuf_map[i])) {
3812 			BCE_PRINTF("%s(%d): Unable to create RX mbuf "
3813 			    "DMA map!\n", __FILE__, __LINE__);
3814 			rc = ENOMEM;
3815 			goto bce_dma_alloc_exit;
3816 		}
3817 	}
3818 
3819 	if (bce_hdr_split == TRUE) {
3820 		/*
3821 		 * Create a DMA tag for the page buffer descriptor chain,
3822 		 * allocate and clear the memory, and fetch the physical
3823 		 * address of the blocks.
3824 		 */
3825 		if (bus_dma_tag_create(sc->parent_tag, BCM_PAGE_SIZE,
3826 			    BCE_DMA_BOUNDARY, BUS_SPACE_MAXADDR, sc->max_bus_addr,
3827 			    NULL, NULL,	BCE_PG_CHAIN_PAGE_SZ, 1, BCE_PG_CHAIN_PAGE_SZ,
3828 			    0, NULL, NULL, &sc->pg_bd_chain_tag)) {
3829 			BCE_PRINTF("%s(%d): Could not allocate page descriptor "
3830 			    "chain DMA tag!\n",	__FILE__, __LINE__);
3831 			rc = ENOMEM;
3832 			goto bce_dma_alloc_exit;
3833 		}
3834 
3835 		for (i = 0; i < sc->pg_pages; i++) {
3836 			if (bus_dmamem_alloc(sc->pg_bd_chain_tag,
3837 			    (void **)&sc->pg_bd_chain[i],
3838 			    BUS_DMA_NOWAIT | BUS_DMA_ZERO | BUS_DMA_COHERENT,
3839 			    &sc->pg_bd_chain_map[i])) {
3840 				BCE_PRINTF("%s(%d): Could not allocate page "
3841 				    "descriptor chain DMA memory!\n",
3842 				    __FILE__, __LINE__);
3843 				rc = ENOMEM;
3844 				goto bce_dma_alloc_exit;
3845 			}
3846 
3847 			error = bus_dmamap_load(sc->pg_bd_chain_tag,
3848 			    sc->pg_bd_chain_map[i], sc->pg_bd_chain[i],
3849 			    BCE_PG_CHAIN_PAGE_SZ, bce_dma_map_addr,
3850 			    &sc->pg_bd_chain_paddr[i], BUS_DMA_NOWAIT);
3851 
3852 			if (error || sc->pg_bd_chain_paddr[i] == 0) {
3853 				BCE_PRINTF("%s(%d): Could not map page descriptor "
3854 					"chain DMA memory!\n", __FILE__, __LINE__);
3855 				rc = ENOMEM;
3856 				goto bce_dma_alloc_exit;
3857 			}
3858 
3859 			DBPRINT(sc, BCE_INFO_LOAD, "%s(): pg_bd_chain_paddr[%d] = "
3860 				"0x%jX\n", __FUNCTION__, i,
3861 				(uintmax_t) sc->pg_bd_chain_paddr[i]);
3862 		}
3863 
3864 		/*
3865 		 * Create a DMA tag for page mbufs.
3866 		 */
3867 		if (bus_dma_tag_create(sc->parent_tag, 1, BCE_DMA_BOUNDARY,
3868 		    sc->max_bus_addr, BUS_SPACE_MAXADDR, NULL, NULL, MCLBYTES,
3869 		    1, MCLBYTES, 0, NULL, NULL, &sc->pg_mbuf_tag)) {
3870 			BCE_PRINTF("%s(%d): Could not allocate page mbuf "
3871 				"DMA tag!\n", __FILE__, __LINE__);
3872 			rc = ENOMEM;
3873 			goto bce_dma_alloc_exit;
3874 		}
3875 
3876 		/* Create DMA maps for the page mbuf clusters. */
3877 		for (i = 0; i < TOTAL_PG_BD_ALLOC; i++) {
3878 			if (bus_dmamap_create(sc->pg_mbuf_tag, BUS_DMA_NOWAIT,
3879 				&sc->pg_mbuf_map[i])) {
3880 				BCE_PRINTF("%s(%d): Unable to create page mbuf "
3881 					"DMA map!\n", __FILE__, __LINE__);
3882 				rc = ENOMEM;
3883 				goto bce_dma_alloc_exit;
3884 			}
3885 		}
3886 	}
3887 
3888 bce_dma_alloc_exit:
3889 	DBEXIT(BCE_VERBOSE_RESET | BCE_VERBOSE_CTX);
3890 	return(rc);
3891 }
3892 
3893 
3894 /****************************************************************************/
3895 /* Release all resources used by the driver.                                */
3896 /*                                                                          */
3897 /* Releases all resources acquired by the driver including interrupts,      */
3898 /* interrupt handler, interfaces, mutexes, and DMA memory.                  */
3899 /*                                                                          */
3900 /* Returns:                                                                 */
3901 /*   Nothing.                                                               */
3902 /****************************************************************************/
3903 static void
3904 bce_release_resources(struct bce_softc *sc)
3905 {
3906 	device_t dev;
3907 
3908 	DBENTER(BCE_VERBOSE_RESET);
3909 
3910 	dev = sc->bce_dev;
3911 
3912 	bce_dma_free(sc);
3913 
3914 	if (sc->bce_intrhand != NULL) {
3915 		DBPRINT(sc, BCE_INFO_RESET, "Removing interrupt handler.\n");
3916 		bus_teardown_intr(dev, sc->bce_res_irq, sc->bce_intrhand);
3917 	}
3918 
3919 	if (sc->bce_res_irq != NULL) {
3920 		DBPRINT(sc, BCE_INFO_RESET, "Releasing IRQ.\n");
3921 		bus_release_resource(dev, SYS_RES_IRQ,
3922 		    rman_get_rid(sc->bce_res_irq), sc->bce_res_irq);
3923 	}
3924 
3925 	if (sc->bce_flags & (BCE_USING_MSI_FLAG | BCE_USING_MSIX_FLAG)) {
3926 		DBPRINT(sc, BCE_INFO_RESET, "Releasing MSI/MSI-X vector.\n");
3927 		pci_release_msi(dev);
3928 	}
3929 
3930 	if (sc->bce_res_mem != NULL) {
3931 		DBPRINT(sc, BCE_INFO_RESET, "Releasing PCI memory.\n");
3932 		    bus_release_resource(dev, SYS_RES_MEMORY, PCIR_BAR(0),
3933 		    sc->bce_res_mem);
3934 	}
3935 
3936 	if (sc->bce_ifp != NULL) {
3937 		DBPRINT(sc, BCE_INFO_RESET, "Releasing IF.\n");
3938 		if_free(sc->bce_ifp);
3939 	}
3940 
3941 	if (mtx_initialized(&sc->bce_mtx))
3942 		BCE_LOCK_DESTROY(sc);
3943 
3944 	DBEXIT(BCE_VERBOSE_RESET);
3945 }
3946 
3947 
3948 /****************************************************************************/
3949 /* Firmware synchronization.                                                */
3950 /*                                                                          */
3951 /* Before performing certain events such as a chip reset, synchronize with  */
3952 /* the firmware first.                                                      */
3953 /*                                                                          */
3954 /* Returns:                                                                 */
3955 /*   0 for success, positive value for failure.                             */
3956 /****************************************************************************/
3957 static int
3958 bce_fw_sync(struct bce_softc *sc, u32 msg_data)
3959 {
3960 	int i, rc = 0;
3961 	u32 val;
3962 
3963 	DBENTER(BCE_VERBOSE_RESET);
3964 
3965 	/* Don't waste any time if we've timed out before. */
3966 	if (sc->bce_fw_timed_out == TRUE) {
3967 		rc = EBUSY;
3968 		goto bce_fw_sync_exit;
3969 	}
3970 
3971 	/* Increment the message sequence number. */
3972 	sc->bce_fw_wr_seq++;
3973 	msg_data |= sc->bce_fw_wr_seq;
3974 
3975  	DBPRINT(sc, BCE_VERBOSE_FIRMWARE, "bce_fw_sync(): msg_data = "
3976 	    "0x%08X\n",	msg_data);
3977 
3978 	/* Send the message to the bootcode driver mailbox. */
3979 	bce_shmem_wr(sc, BCE_DRV_MB, msg_data);
3980 
3981 	/* Wait for the bootcode to acknowledge the message. */
3982 	for (i = 0; i < FW_ACK_TIME_OUT_MS; i++) {
3983 		/* Check for a response in the bootcode firmware mailbox. */
3984 		val = bce_shmem_rd(sc, BCE_FW_MB);
3985 		if ((val & BCE_FW_MSG_ACK) == (msg_data & BCE_DRV_MSG_SEQ))
3986 			break;
3987 		DELAY(1000);
3988 	}
3989 
3990 	/* If we've timed out, tell bootcode that we've stopped waiting. */
3991 	if (((val & BCE_FW_MSG_ACK) != (msg_data & BCE_DRV_MSG_SEQ)) &&
3992 	    ((msg_data & BCE_DRV_MSG_DATA) != BCE_DRV_MSG_DATA_WAIT0)) {
3993 
3994 		BCE_PRINTF("%s(%d): Firmware synchronization timeout! "
3995 		    "msg_data = 0x%08X\n", __FILE__, __LINE__, msg_data);
3996 
3997 		msg_data &= ~BCE_DRV_MSG_CODE;
3998 		msg_data |= BCE_DRV_MSG_CODE_FW_TIMEOUT;
3999 
4000 		bce_shmem_wr(sc, BCE_DRV_MB, msg_data);
4001 
4002 		sc->bce_fw_timed_out = TRUE;
4003 		rc = EBUSY;
4004 	}
4005 
4006 bce_fw_sync_exit:
4007 	DBEXIT(BCE_VERBOSE_RESET);
4008 	return (rc);
4009 }
4010 
4011 
4012 /****************************************************************************/
4013 /* Load Receive Virtual 2 Physical (RV2P) processor firmware.               */
4014 /*                                                                          */
4015 /* Returns:                                                                 */
4016 /*   Nothing.                                                               */
4017 /****************************************************************************/
4018 static void
4019 bce_load_rv2p_fw(struct bce_softc *sc, const u32 *rv2p_code,
4020 	u32 rv2p_code_len, u32 rv2p_proc)
4021 {
4022 	int i;
4023 	u32 val;
4024 
4025 	DBENTER(BCE_VERBOSE_RESET);
4026 
4027 	/* Set the page size used by RV2P. */
4028 	if (rv2p_proc == RV2P_PROC2) {
4029 		BCE_RV2P_PROC2_CHG_MAX_BD_PAGE(USABLE_RX_BD_PER_PAGE);
4030 	}
4031 
4032 	for (i = 0; i < rv2p_code_len; i += 8) {
4033 		REG_WR(sc, BCE_RV2P_INSTR_HIGH, *rv2p_code);
4034 		rv2p_code++;
4035 		REG_WR(sc, BCE_RV2P_INSTR_LOW, *rv2p_code);
4036 		rv2p_code++;
4037 
4038 		if (rv2p_proc == RV2P_PROC1) {
4039 			val = (i / 8) | BCE_RV2P_PROC1_ADDR_CMD_RDWR;
4040 			REG_WR(sc, BCE_RV2P_PROC1_ADDR_CMD, val);
4041 		}
4042 		else {
4043 			val = (i / 8) | BCE_RV2P_PROC2_ADDR_CMD_RDWR;
4044 			REG_WR(sc, BCE_RV2P_PROC2_ADDR_CMD, val);
4045 		}
4046 	}
4047 
4048 	/* Reset the processor, un-stall is done later. */
4049 	if (rv2p_proc == RV2P_PROC1) {
4050 		REG_WR(sc, BCE_RV2P_COMMAND, BCE_RV2P_COMMAND_PROC1_RESET);
4051 	}
4052 	else {
4053 		REG_WR(sc, BCE_RV2P_COMMAND, BCE_RV2P_COMMAND_PROC2_RESET);
4054 	}
4055 
4056 	DBEXIT(BCE_VERBOSE_RESET);
4057 }
4058 
4059 
4060 /****************************************************************************/
4061 /* Load RISC processor firmware.                                            */
4062 /*                                                                          */
4063 /* Loads firmware from the file if_bcefw.h into the scratchpad memory       */
4064 /* associated with a particular processor.                                  */
4065 /*                                                                          */
4066 /* Returns:                                                                 */
4067 /*   Nothing.                                                               */
4068 /****************************************************************************/
4069 static void
4070 bce_load_cpu_fw(struct bce_softc *sc, struct cpu_reg *cpu_reg,
4071 	struct fw_info *fw)
4072 {
4073 	u32 offset;
4074 
4075 	DBENTER(BCE_VERBOSE_RESET);
4076 
4077     bce_halt_cpu(sc, cpu_reg);
4078 
4079 	/* Load the Text area. */
4080 	offset = cpu_reg->spad_base + (fw->text_addr - cpu_reg->mips_view_base);
4081 	if (fw->text) {
4082 		int j;
4083 
4084 		for (j = 0; j < (fw->text_len / 4); j++, offset += 4) {
4085 			REG_WR_IND(sc, offset, fw->text[j]);
4086 	        }
4087 	}
4088 
4089 	/* Load the Data area. */
4090 	offset = cpu_reg->spad_base + (fw->data_addr - cpu_reg->mips_view_base);
4091 	if (fw->data) {
4092 		int j;
4093 
4094 		for (j = 0; j < (fw->data_len / 4); j++, offset += 4) {
4095 			REG_WR_IND(sc, offset, fw->data[j]);
4096 		}
4097 	}
4098 
4099 	/* Load the SBSS area. */
4100 	offset = cpu_reg->spad_base + (fw->sbss_addr - cpu_reg->mips_view_base);
4101 	if (fw->sbss) {
4102 		int j;
4103 
4104 		for (j = 0; j < (fw->sbss_len / 4); j++, offset += 4) {
4105 			REG_WR_IND(sc, offset, fw->sbss[j]);
4106 		}
4107 	}
4108 
4109 	/* Load the BSS area. */
4110 	offset = cpu_reg->spad_base + (fw->bss_addr - cpu_reg->mips_view_base);
4111 	if (fw->bss) {
4112 		int j;
4113 
4114 		for (j = 0; j < (fw->bss_len/4); j++, offset += 4) {
4115 			REG_WR_IND(sc, offset, fw->bss[j]);
4116 		}
4117 	}
4118 
4119 	/* Load the Read-Only area. */
4120 	offset = cpu_reg->spad_base +
4121 		(fw->rodata_addr - cpu_reg->mips_view_base);
4122 	if (fw->rodata) {
4123 		int j;
4124 
4125 		for (j = 0; j < (fw->rodata_len / 4); j++, offset += 4) {
4126 			REG_WR_IND(sc, offset, fw->rodata[j]);
4127 		}
4128 	}
4129 
4130 	/* Clear the pre-fetch instruction and set the FW start address. */
4131 	REG_WR_IND(sc, cpu_reg->inst, 0);
4132 	REG_WR_IND(sc, cpu_reg->pc, fw->start_addr);
4133 
4134 	DBEXIT(BCE_VERBOSE_RESET);
4135 }
4136 
4137 
4138 /****************************************************************************/
4139 /* Starts the RISC processor.                                               */
4140 /*                                                                          */
4141 /* Assumes the CPU starting address has already been set.                   */
4142 /*                                                                          */
4143 /* Returns:                                                                 */
4144 /*   Nothing.                                                               */
4145 /****************************************************************************/
4146 static void
4147 bce_start_cpu(struct bce_softc *sc, struct cpu_reg *cpu_reg)
4148 {
4149 	u32 val;
4150 
4151 	DBENTER(BCE_VERBOSE_RESET);
4152 
4153 	/* Start the CPU. */
4154 	val = REG_RD_IND(sc, cpu_reg->mode);
4155 	val &= ~cpu_reg->mode_value_halt;
4156 	REG_WR_IND(sc, cpu_reg->state, cpu_reg->state_value_clear);
4157 	REG_WR_IND(sc, cpu_reg->mode, val);
4158 
4159 	DBEXIT(BCE_VERBOSE_RESET);
4160 }
4161 
4162 
4163 /****************************************************************************/
4164 /* Halts the RISC processor.                                                */
4165 /*                                                                          */
4166 /* Returns:                                                                 */
4167 /*   Nothing.                                                               */
4168 /****************************************************************************/
4169 static void
4170 bce_halt_cpu(struct bce_softc *sc, struct cpu_reg *cpu_reg)
4171 {
4172 	u32 val;
4173 
4174 	DBENTER(BCE_VERBOSE_RESET);
4175 
4176 	/* Halt the CPU. */
4177 	val = REG_RD_IND(sc, cpu_reg->mode);
4178 	val |= cpu_reg->mode_value_halt;
4179 	REG_WR_IND(sc, cpu_reg->mode, val);
4180 	REG_WR_IND(sc, cpu_reg->state, cpu_reg->state_value_clear);
4181 
4182 	DBEXIT(BCE_VERBOSE_RESET);
4183 }
4184 
4185 
4186 /****************************************************************************/
4187 /* Initialize the RX CPU.                                                   */
4188 /*                                                                          */
4189 /* Returns:                                                                 */
4190 /*   Nothing.                                                               */
4191 /****************************************************************************/
4192 static void
4193 bce_start_rxp_cpu(struct bce_softc *sc)
4194 {
4195 	struct cpu_reg cpu_reg;
4196 
4197 	DBENTER(BCE_VERBOSE_RESET);
4198 
4199 	cpu_reg.mode = BCE_RXP_CPU_MODE;
4200 	cpu_reg.mode_value_halt = BCE_RXP_CPU_MODE_SOFT_HALT;
4201 	cpu_reg.mode_value_sstep = BCE_RXP_CPU_MODE_STEP_ENA;
4202 	cpu_reg.state = BCE_RXP_CPU_STATE;
4203 	cpu_reg.state_value_clear = 0xffffff;
4204 	cpu_reg.gpr0 = BCE_RXP_CPU_REG_FILE;
4205 	cpu_reg.evmask = BCE_RXP_CPU_EVENT_MASK;
4206 	cpu_reg.pc = BCE_RXP_CPU_PROGRAM_COUNTER;
4207 	cpu_reg.inst = BCE_RXP_CPU_INSTRUCTION;
4208 	cpu_reg.bp = BCE_RXP_CPU_HW_BREAKPOINT;
4209 	cpu_reg.spad_base = BCE_RXP_SCRATCH;
4210 	cpu_reg.mips_view_base = 0x8000000;
4211 
4212 	DBPRINT(sc, BCE_INFO_RESET, "Starting RX firmware.\n");
4213 	bce_start_cpu(sc, &cpu_reg);
4214 
4215 	DBEXIT(BCE_VERBOSE_RESET);
4216 }
4217 
4218 
4219 /****************************************************************************/
4220 /* Initialize the RX CPU.                                                   */
4221 /*                                                                          */
4222 /* Returns:                                                                 */
4223 /*   Nothing.                                                               */
4224 /****************************************************************************/
4225 static void
4226 bce_init_rxp_cpu(struct bce_softc *sc)
4227 {
4228 	struct cpu_reg cpu_reg;
4229 	struct fw_info fw;
4230 
4231 	DBENTER(BCE_VERBOSE_RESET);
4232 
4233 	cpu_reg.mode = BCE_RXP_CPU_MODE;
4234 	cpu_reg.mode_value_halt = BCE_RXP_CPU_MODE_SOFT_HALT;
4235 	cpu_reg.mode_value_sstep = BCE_RXP_CPU_MODE_STEP_ENA;
4236 	cpu_reg.state = BCE_RXP_CPU_STATE;
4237 	cpu_reg.state_value_clear = 0xffffff;
4238 	cpu_reg.gpr0 = BCE_RXP_CPU_REG_FILE;
4239 	cpu_reg.evmask = BCE_RXP_CPU_EVENT_MASK;
4240 	cpu_reg.pc = BCE_RXP_CPU_PROGRAM_COUNTER;
4241 	cpu_reg.inst = BCE_RXP_CPU_INSTRUCTION;
4242 	cpu_reg.bp = BCE_RXP_CPU_HW_BREAKPOINT;
4243 	cpu_reg.spad_base = BCE_RXP_SCRATCH;
4244 	cpu_reg.mips_view_base = 0x8000000;
4245 
4246 	if (BCE_CHIP_NUM(sc) == BCE_CHIP_NUM_5709) {
4247  		fw.ver_major = bce_RXP_b09FwReleaseMajor;
4248 		fw.ver_minor = bce_RXP_b09FwReleaseMinor;
4249 		fw.ver_fix = bce_RXP_b09FwReleaseFix;
4250 		fw.start_addr = bce_RXP_b09FwStartAddr;
4251 
4252 		fw.text_addr = bce_RXP_b09FwTextAddr;
4253 		fw.text_len = bce_RXP_b09FwTextLen;
4254 		fw.text_index = 0;
4255 		fw.text = bce_RXP_b09FwText;
4256 
4257 		fw.data_addr = bce_RXP_b09FwDataAddr;
4258 		fw.data_len = bce_RXP_b09FwDataLen;
4259 		fw.data_index = 0;
4260 		fw.data = bce_RXP_b09FwData;
4261 
4262 		fw.sbss_addr = bce_RXP_b09FwSbssAddr;
4263 		fw.sbss_len = bce_RXP_b09FwSbssLen;
4264 		fw.sbss_index = 0;
4265 		fw.sbss = bce_RXP_b09FwSbss;
4266 
4267 		fw.bss_addr = bce_RXP_b09FwBssAddr;
4268 		fw.bss_len = bce_RXP_b09FwBssLen;
4269 		fw.bss_index = 0;
4270 		fw.bss = bce_RXP_b09FwBss;
4271 
4272 		fw.rodata_addr = bce_RXP_b09FwRodataAddr;
4273 		fw.rodata_len = bce_RXP_b09FwRodataLen;
4274 		fw.rodata_index = 0;
4275 		fw.rodata = bce_RXP_b09FwRodata;
4276 	} else {
4277 		fw.ver_major = bce_RXP_b06FwReleaseMajor;
4278 		fw.ver_minor = bce_RXP_b06FwReleaseMinor;
4279 		fw.ver_fix = bce_RXP_b06FwReleaseFix;
4280 		fw.start_addr = bce_RXP_b06FwStartAddr;
4281 
4282 		fw.text_addr = bce_RXP_b06FwTextAddr;
4283 		fw.text_len = bce_RXP_b06FwTextLen;
4284 		fw.text_index = 0;
4285 		fw.text = bce_RXP_b06FwText;
4286 
4287 		fw.data_addr = bce_RXP_b06FwDataAddr;
4288 		fw.data_len = bce_RXP_b06FwDataLen;
4289 		fw.data_index = 0;
4290 		fw.data = bce_RXP_b06FwData;
4291 
4292 		fw.sbss_addr = bce_RXP_b06FwSbssAddr;
4293 		fw.sbss_len = bce_RXP_b06FwSbssLen;
4294 		fw.sbss_index = 0;
4295 		fw.sbss = bce_RXP_b06FwSbss;
4296 
4297 		fw.bss_addr = bce_RXP_b06FwBssAddr;
4298 		fw.bss_len = bce_RXP_b06FwBssLen;
4299 		fw.bss_index = 0;
4300 		fw.bss = bce_RXP_b06FwBss;
4301 
4302 		fw.rodata_addr = bce_RXP_b06FwRodataAddr;
4303 		fw.rodata_len = bce_RXP_b06FwRodataLen;
4304 		fw.rodata_index = 0;
4305 		fw.rodata = bce_RXP_b06FwRodata;
4306 	}
4307 
4308 	DBPRINT(sc, BCE_INFO_RESET, "Loading RX firmware.\n");
4309 	bce_load_cpu_fw(sc, &cpu_reg, &fw);
4310 
4311     /* Delay RXP start until initialization is complete. */
4312 
4313 	DBEXIT(BCE_VERBOSE_RESET);
4314 }
4315 
4316 
4317 /****************************************************************************/
4318 /* Initialize the TX CPU.                                                   */
4319 /*                                                                          */
4320 /* Returns:                                                                 */
4321 /*   Nothing.                                                               */
4322 /****************************************************************************/
4323 static void
4324 bce_init_txp_cpu(struct bce_softc *sc)
4325 {
4326 	struct cpu_reg cpu_reg;
4327 	struct fw_info fw;
4328 
4329 	DBENTER(BCE_VERBOSE_RESET);
4330 
4331 	cpu_reg.mode = BCE_TXP_CPU_MODE;
4332 	cpu_reg.mode_value_halt = BCE_TXP_CPU_MODE_SOFT_HALT;
4333 	cpu_reg.mode_value_sstep = BCE_TXP_CPU_MODE_STEP_ENA;
4334 	cpu_reg.state = BCE_TXP_CPU_STATE;
4335 	cpu_reg.state_value_clear = 0xffffff;
4336 	cpu_reg.gpr0 = BCE_TXP_CPU_REG_FILE;
4337 	cpu_reg.evmask = BCE_TXP_CPU_EVENT_MASK;
4338 	cpu_reg.pc = BCE_TXP_CPU_PROGRAM_COUNTER;
4339 	cpu_reg.inst = BCE_TXP_CPU_INSTRUCTION;
4340 	cpu_reg.bp = BCE_TXP_CPU_HW_BREAKPOINT;
4341 	cpu_reg.spad_base = BCE_TXP_SCRATCH;
4342 	cpu_reg.mips_view_base = 0x8000000;
4343 
4344 	if (BCE_CHIP_NUM(sc) == BCE_CHIP_NUM_5709) {
4345 		fw.ver_major = bce_TXP_b09FwReleaseMajor;
4346 		fw.ver_minor = bce_TXP_b09FwReleaseMinor;
4347 		fw.ver_fix = bce_TXP_b09FwReleaseFix;
4348 		fw.start_addr = bce_TXP_b09FwStartAddr;
4349 
4350 		fw.text_addr = bce_TXP_b09FwTextAddr;
4351 		fw.text_len = bce_TXP_b09FwTextLen;
4352 		fw.text_index = 0;
4353 		fw.text = bce_TXP_b09FwText;
4354 
4355 		fw.data_addr = bce_TXP_b09FwDataAddr;
4356 		fw.data_len = bce_TXP_b09FwDataLen;
4357 		fw.data_index = 0;
4358 		fw.data = bce_TXP_b09FwData;
4359 
4360 		fw.sbss_addr = bce_TXP_b09FwSbssAddr;
4361 		fw.sbss_len = bce_TXP_b09FwSbssLen;
4362 		fw.sbss_index = 0;
4363 		fw.sbss = bce_TXP_b09FwSbss;
4364 
4365 		fw.bss_addr = bce_TXP_b09FwBssAddr;
4366 		fw.bss_len = bce_TXP_b09FwBssLen;
4367 		fw.bss_index = 0;
4368 		fw.bss = bce_TXP_b09FwBss;
4369 
4370 		fw.rodata_addr = bce_TXP_b09FwRodataAddr;
4371 		fw.rodata_len = bce_TXP_b09FwRodataLen;
4372 		fw.rodata_index = 0;
4373 		fw.rodata = bce_TXP_b09FwRodata;
4374 	} else {
4375 		fw.ver_major = bce_TXP_b06FwReleaseMajor;
4376 		fw.ver_minor = bce_TXP_b06FwReleaseMinor;
4377 		fw.ver_fix = bce_TXP_b06FwReleaseFix;
4378 		fw.start_addr = bce_TXP_b06FwStartAddr;
4379 
4380 		fw.text_addr = bce_TXP_b06FwTextAddr;
4381 		fw.text_len = bce_TXP_b06FwTextLen;
4382 		fw.text_index = 0;
4383 		fw.text = bce_TXP_b06FwText;
4384 
4385 		fw.data_addr = bce_TXP_b06FwDataAddr;
4386 		fw.data_len = bce_TXP_b06FwDataLen;
4387 		fw.data_index = 0;
4388 		fw.data = bce_TXP_b06FwData;
4389 
4390 		fw.sbss_addr = bce_TXP_b06FwSbssAddr;
4391 		fw.sbss_len = bce_TXP_b06FwSbssLen;
4392 		fw.sbss_index = 0;
4393 		fw.sbss = bce_TXP_b06FwSbss;
4394 
4395 		fw.bss_addr = bce_TXP_b06FwBssAddr;
4396 		fw.bss_len = bce_TXP_b06FwBssLen;
4397 		fw.bss_index = 0;
4398 		fw.bss = bce_TXP_b06FwBss;
4399 
4400 		fw.rodata_addr = bce_TXP_b06FwRodataAddr;
4401 		fw.rodata_len = bce_TXP_b06FwRodataLen;
4402 		fw.rodata_index = 0;
4403 		fw.rodata = bce_TXP_b06FwRodata;
4404 	}
4405 
4406 	DBPRINT(sc, BCE_INFO_RESET, "Loading TX firmware.\n");
4407 	bce_load_cpu_fw(sc, &cpu_reg, &fw);
4408     bce_start_cpu(sc, &cpu_reg);
4409 
4410 	DBEXIT(BCE_VERBOSE_RESET);
4411 }
4412 
4413 
4414 /****************************************************************************/
4415 /* Initialize the TPAT CPU.                                                 */
4416 /*                                                                          */
4417 /* Returns:                                                                 */
4418 /*   Nothing.                                                               */
4419 /****************************************************************************/
4420 static void
4421 bce_init_tpat_cpu(struct bce_softc *sc)
4422 {
4423 	struct cpu_reg cpu_reg;
4424 	struct fw_info fw;
4425 
4426 	DBENTER(BCE_VERBOSE_RESET);
4427 
4428 	cpu_reg.mode = BCE_TPAT_CPU_MODE;
4429 	cpu_reg.mode_value_halt = BCE_TPAT_CPU_MODE_SOFT_HALT;
4430 	cpu_reg.mode_value_sstep = BCE_TPAT_CPU_MODE_STEP_ENA;
4431 	cpu_reg.state = BCE_TPAT_CPU_STATE;
4432 	cpu_reg.state_value_clear = 0xffffff;
4433 	cpu_reg.gpr0 = BCE_TPAT_CPU_REG_FILE;
4434 	cpu_reg.evmask = BCE_TPAT_CPU_EVENT_MASK;
4435 	cpu_reg.pc = BCE_TPAT_CPU_PROGRAM_COUNTER;
4436 	cpu_reg.inst = BCE_TPAT_CPU_INSTRUCTION;
4437 	cpu_reg.bp = BCE_TPAT_CPU_HW_BREAKPOINT;
4438 	cpu_reg.spad_base = BCE_TPAT_SCRATCH;
4439 	cpu_reg.mips_view_base = 0x8000000;
4440 
4441 	if (BCE_CHIP_NUM(sc) == BCE_CHIP_NUM_5709) {
4442 		fw.ver_major = bce_TPAT_b09FwReleaseMajor;
4443 		fw.ver_minor = bce_TPAT_b09FwReleaseMinor;
4444 		fw.ver_fix = bce_TPAT_b09FwReleaseFix;
4445 		fw.start_addr = bce_TPAT_b09FwStartAddr;
4446 
4447 		fw.text_addr = bce_TPAT_b09FwTextAddr;
4448 		fw.text_len = bce_TPAT_b09FwTextLen;
4449 		fw.text_index = 0;
4450 		fw.text = bce_TPAT_b09FwText;
4451 
4452 		fw.data_addr = bce_TPAT_b09FwDataAddr;
4453 		fw.data_len = bce_TPAT_b09FwDataLen;
4454 		fw.data_index = 0;
4455 		fw.data = bce_TPAT_b09FwData;
4456 
4457 		fw.sbss_addr = bce_TPAT_b09FwSbssAddr;
4458 		fw.sbss_len = bce_TPAT_b09FwSbssLen;
4459 		fw.sbss_index = 0;
4460 		fw.sbss = bce_TPAT_b09FwSbss;
4461 
4462 		fw.bss_addr = bce_TPAT_b09FwBssAddr;
4463 		fw.bss_len = bce_TPAT_b09FwBssLen;
4464 		fw.bss_index = 0;
4465 		fw.bss = bce_TPAT_b09FwBss;
4466 
4467 		fw.rodata_addr = bce_TPAT_b09FwRodataAddr;
4468 		fw.rodata_len = bce_TPAT_b09FwRodataLen;
4469 		fw.rodata_index = 0;
4470 		fw.rodata = bce_TPAT_b09FwRodata;
4471 	} else {
4472 		fw.ver_major = bce_TPAT_b06FwReleaseMajor;
4473 		fw.ver_minor = bce_TPAT_b06FwReleaseMinor;
4474 		fw.ver_fix = bce_TPAT_b06FwReleaseFix;
4475 		fw.start_addr = bce_TPAT_b06FwStartAddr;
4476 
4477 		fw.text_addr = bce_TPAT_b06FwTextAddr;
4478 		fw.text_len = bce_TPAT_b06FwTextLen;
4479 		fw.text_index = 0;
4480 		fw.text = bce_TPAT_b06FwText;
4481 
4482 		fw.data_addr = bce_TPAT_b06FwDataAddr;
4483 		fw.data_len = bce_TPAT_b06FwDataLen;
4484 		fw.data_index = 0;
4485 		fw.data = bce_TPAT_b06FwData;
4486 
4487 		fw.sbss_addr = bce_TPAT_b06FwSbssAddr;
4488 		fw.sbss_len = bce_TPAT_b06FwSbssLen;
4489 		fw.sbss_index = 0;
4490 		fw.sbss = bce_TPAT_b06FwSbss;
4491 
4492 		fw.bss_addr = bce_TPAT_b06FwBssAddr;
4493 		fw.bss_len = bce_TPAT_b06FwBssLen;
4494 		fw.bss_index = 0;
4495 		fw.bss = bce_TPAT_b06FwBss;
4496 
4497 		fw.rodata_addr = bce_TPAT_b06FwRodataAddr;
4498 		fw.rodata_len = bce_TPAT_b06FwRodataLen;
4499 		fw.rodata_index = 0;
4500 		fw.rodata = bce_TPAT_b06FwRodata;
4501 	}
4502 
4503 	DBPRINT(sc, BCE_INFO_RESET, "Loading TPAT firmware.\n");
4504 	bce_load_cpu_fw(sc, &cpu_reg, &fw);
4505 	bce_start_cpu(sc, &cpu_reg);
4506 
4507 	DBEXIT(BCE_VERBOSE_RESET);
4508 }
4509 
4510 
4511 /****************************************************************************/
4512 /* Initialize the CP CPU.                                                   */
4513 /*                                                                          */
4514 /* Returns:                                                                 */
4515 /*   Nothing.                                                               */
4516 /****************************************************************************/
4517 static void
4518 bce_init_cp_cpu(struct bce_softc *sc)
4519 {
4520 	struct cpu_reg cpu_reg;
4521 	struct fw_info fw;
4522 
4523 	DBENTER(BCE_VERBOSE_RESET);
4524 
4525 	cpu_reg.mode = BCE_CP_CPU_MODE;
4526 	cpu_reg.mode_value_halt = BCE_CP_CPU_MODE_SOFT_HALT;
4527 	cpu_reg.mode_value_sstep = BCE_CP_CPU_MODE_STEP_ENA;
4528 	cpu_reg.state = BCE_CP_CPU_STATE;
4529 	cpu_reg.state_value_clear = 0xffffff;
4530 	cpu_reg.gpr0 = BCE_CP_CPU_REG_FILE;
4531 	cpu_reg.evmask = BCE_CP_CPU_EVENT_MASK;
4532 	cpu_reg.pc = BCE_CP_CPU_PROGRAM_COUNTER;
4533 	cpu_reg.inst = BCE_CP_CPU_INSTRUCTION;
4534 	cpu_reg.bp = BCE_CP_CPU_HW_BREAKPOINT;
4535 	cpu_reg.spad_base = BCE_CP_SCRATCH;
4536 	cpu_reg.mips_view_base = 0x8000000;
4537 
4538 	if (BCE_CHIP_NUM(sc) == BCE_CHIP_NUM_5709) {
4539 		fw.ver_major = bce_CP_b09FwReleaseMajor;
4540 		fw.ver_minor = bce_CP_b09FwReleaseMinor;
4541 		fw.ver_fix = bce_CP_b09FwReleaseFix;
4542 		fw.start_addr = bce_CP_b09FwStartAddr;
4543 
4544 		fw.text_addr = bce_CP_b09FwTextAddr;
4545 		fw.text_len = bce_CP_b09FwTextLen;
4546 		fw.text_index = 0;
4547 		fw.text = bce_CP_b09FwText;
4548 
4549 		fw.data_addr = bce_CP_b09FwDataAddr;
4550 		fw.data_len = bce_CP_b09FwDataLen;
4551 		fw.data_index = 0;
4552 		fw.data = bce_CP_b09FwData;
4553 
4554 		fw.sbss_addr = bce_CP_b09FwSbssAddr;
4555 		fw.sbss_len = bce_CP_b09FwSbssLen;
4556 		fw.sbss_index = 0;
4557 		fw.sbss = bce_CP_b09FwSbss;
4558 
4559 		fw.bss_addr = bce_CP_b09FwBssAddr;
4560 		fw.bss_len = bce_CP_b09FwBssLen;
4561 		fw.bss_index = 0;
4562 		fw.bss = bce_CP_b09FwBss;
4563 
4564 		fw.rodata_addr = bce_CP_b09FwRodataAddr;
4565 		fw.rodata_len = bce_CP_b09FwRodataLen;
4566 		fw.rodata_index = 0;
4567 		fw.rodata = bce_CP_b09FwRodata;
4568 	} else {
4569 		fw.ver_major = bce_CP_b06FwReleaseMajor;
4570 		fw.ver_minor = bce_CP_b06FwReleaseMinor;
4571 		fw.ver_fix = bce_CP_b06FwReleaseFix;
4572 		fw.start_addr = bce_CP_b06FwStartAddr;
4573 
4574 		fw.text_addr = bce_CP_b06FwTextAddr;
4575 		fw.text_len = bce_CP_b06FwTextLen;
4576 		fw.text_index = 0;
4577 		fw.text = bce_CP_b06FwText;
4578 
4579 		fw.data_addr = bce_CP_b06FwDataAddr;
4580 		fw.data_len = bce_CP_b06FwDataLen;
4581 		fw.data_index = 0;
4582 		fw.data = bce_CP_b06FwData;
4583 
4584 		fw.sbss_addr = bce_CP_b06FwSbssAddr;
4585 		fw.sbss_len = bce_CP_b06FwSbssLen;
4586 		fw.sbss_index = 0;
4587 		fw.sbss = bce_CP_b06FwSbss;
4588 
4589 		fw.bss_addr = bce_CP_b06FwBssAddr;
4590 		fw.bss_len = bce_CP_b06FwBssLen;
4591 		fw.bss_index = 0;
4592 		fw.bss = bce_CP_b06FwBss;
4593 
4594 		fw.rodata_addr = bce_CP_b06FwRodataAddr;
4595 		fw.rodata_len = bce_CP_b06FwRodataLen;
4596 		fw.rodata_index = 0;
4597 		fw.rodata = bce_CP_b06FwRodata;
4598 	}
4599 
4600 	DBPRINT(sc, BCE_INFO_RESET, "Loading CP firmware.\n");
4601 	bce_load_cpu_fw(sc, &cpu_reg, &fw);
4602 	bce_start_cpu(sc, &cpu_reg);
4603 
4604 	DBEXIT(BCE_VERBOSE_RESET);
4605 }
4606 
4607 
4608 /****************************************************************************/
4609 /* Initialize the COM CPU.                                                 */
4610 /*                                                                          */
4611 /* Returns:                                                                 */
4612 /*   Nothing.                                                               */
4613 /****************************************************************************/
4614 static void
4615 bce_init_com_cpu(struct bce_softc *sc)
4616 {
4617 	struct cpu_reg cpu_reg;
4618 	struct fw_info fw;
4619 
4620 	DBENTER(BCE_VERBOSE_RESET);
4621 
4622 	cpu_reg.mode = BCE_COM_CPU_MODE;
4623 	cpu_reg.mode_value_halt = BCE_COM_CPU_MODE_SOFT_HALT;
4624 	cpu_reg.mode_value_sstep = BCE_COM_CPU_MODE_STEP_ENA;
4625 	cpu_reg.state = BCE_COM_CPU_STATE;
4626 	cpu_reg.state_value_clear = 0xffffff;
4627 	cpu_reg.gpr0 = BCE_COM_CPU_REG_FILE;
4628 	cpu_reg.evmask = BCE_COM_CPU_EVENT_MASK;
4629 	cpu_reg.pc = BCE_COM_CPU_PROGRAM_COUNTER;
4630 	cpu_reg.inst = BCE_COM_CPU_INSTRUCTION;
4631 	cpu_reg.bp = BCE_COM_CPU_HW_BREAKPOINT;
4632 	cpu_reg.spad_base = BCE_COM_SCRATCH;
4633 	cpu_reg.mips_view_base = 0x8000000;
4634 
4635 	if (BCE_CHIP_NUM(sc) == BCE_CHIP_NUM_5709) {
4636 		fw.ver_major = bce_COM_b09FwReleaseMajor;
4637 		fw.ver_minor = bce_COM_b09FwReleaseMinor;
4638 		fw.ver_fix = bce_COM_b09FwReleaseFix;
4639 		fw.start_addr = bce_COM_b09FwStartAddr;
4640 
4641 		fw.text_addr = bce_COM_b09FwTextAddr;
4642 		fw.text_len = bce_COM_b09FwTextLen;
4643 		fw.text_index = 0;
4644 		fw.text = bce_COM_b09FwText;
4645 
4646 		fw.data_addr = bce_COM_b09FwDataAddr;
4647 		fw.data_len = bce_COM_b09FwDataLen;
4648 		fw.data_index = 0;
4649 		fw.data = bce_COM_b09FwData;
4650 
4651 		fw.sbss_addr = bce_COM_b09FwSbssAddr;
4652 		fw.sbss_len = bce_COM_b09FwSbssLen;
4653 		fw.sbss_index = 0;
4654 		fw.sbss = bce_COM_b09FwSbss;
4655 
4656 		fw.bss_addr = bce_COM_b09FwBssAddr;
4657 		fw.bss_len = bce_COM_b09FwBssLen;
4658 		fw.bss_index = 0;
4659 		fw.bss = bce_COM_b09FwBss;
4660 
4661 		fw.rodata_addr = bce_COM_b09FwRodataAddr;
4662 		fw.rodata_len = bce_COM_b09FwRodataLen;
4663 		fw.rodata_index = 0;
4664 		fw.rodata = bce_COM_b09FwRodata;
4665 	} else {
4666 		fw.ver_major = bce_COM_b06FwReleaseMajor;
4667 		fw.ver_minor = bce_COM_b06FwReleaseMinor;
4668 		fw.ver_fix = bce_COM_b06FwReleaseFix;
4669 		fw.start_addr = bce_COM_b06FwStartAddr;
4670 
4671 		fw.text_addr = bce_COM_b06FwTextAddr;
4672 		fw.text_len = bce_COM_b06FwTextLen;
4673 		fw.text_index = 0;
4674 		fw.text = bce_COM_b06FwText;
4675 
4676 		fw.data_addr = bce_COM_b06FwDataAddr;
4677 		fw.data_len = bce_COM_b06FwDataLen;
4678 		fw.data_index = 0;
4679 		fw.data = bce_COM_b06FwData;
4680 
4681 		fw.sbss_addr = bce_COM_b06FwSbssAddr;
4682 		fw.sbss_len = bce_COM_b06FwSbssLen;
4683 		fw.sbss_index = 0;
4684 		fw.sbss = bce_COM_b06FwSbss;
4685 
4686 		fw.bss_addr = bce_COM_b06FwBssAddr;
4687 		fw.bss_len = bce_COM_b06FwBssLen;
4688 		fw.bss_index = 0;
4689 		fw.bss = bce_COM_b06FwBss;
4690 
4691 		fw.rodata_addr = bce_COM_b06FwRodataAddr;
4692 		fw.rodata_len = bce_COM_b06FwRodataLen;
4693 		fw.rodata_index = 0;
4694 		fw.rodata = bce_COM_b06FwRodata;
4695 	}
4696 
4697 	DBPRINT(sc, BCE_INFO_RESET, "Loading COM firmware.\n");
4698 	bce_load_cpu_fw(sc, &cpu_reg, &fw);
4699 	bce_start_cpu(sc, &cpu_reg);
4700 
4701 	DBEXIT(BCE_VERBOSE_RESET);
4702 }
4703 
4704 
4705 /****************************************************************************/
4706 /* Initialize the RV2P, RX, TX, TPAT, COM, and CP CPUs.                     */
4707 /*                                                                          */
4708 /* Loads the firmware for each CPU and starts the CPU.                      */
4709 /*                                                                          */
4710 /* Returns:                                                                 */
4711 /*   Nothing.                                                               */
4712 /****************************************************************************/
4713 static void
4714 bce_init_cpus(struct bce_softc *sc)
4715 {
4716 	DBENTER(BCE_VERBOSE_RESET);
4717 
4718 	if (BCE_CHIP_NUM(sc) == BCE_CHIP_NUM_5709) {
4719 
4720 		if ((BCE_CHIP_REV(sc) == BCE_CHIP_REV_Ax)) {
4721 			bce_load_rv2p_fw(sc, bce_xi90_rv2p_proc1,
4722 			    sizeof(bce_xi90_rv2p_proc1), RV2P_PROC1);
4723 			bce_load_rv2p_fw(sc, bce_xi90_rv2p_proc2,
4724 			    sizeof(bce_xi90_rv2p_proc2), RV2P_PROC2);
4725 		} else {
4726 			bce_load_rv2p_fw(sc, bce_xi_rv2p_proc1,
4727 			    sizeof(bce_xi_rv2p_proc1), RV2P_PROC1);
4728 			bce_load_rv2p_fw(sc, bce_xi_rv2p_proc2,
4729 			    sizeof(bce_xi_rv2p_proc2), RV2P_PROC2);
4730 		}
4731 
4732 	} else {
4733 		bce_load_rv2p_fw(sc, bce_rv2p_proc1,
4734 		    sizeof(bce_rv2p_proc1), RV2P_PROC1);
4735 		bce_load_rv2p_fw(sc, bce_rv2p_proc2,
4736 		    sizeof(bce_rv2p_proc2), RV2P_PROC2);
4737 	}
4738 
4739 	bce_init_rxp_cpu(sc);
4740 	bce_init_txp_cpu(sc);
4741 	bce_init_tpat_cpu(sc);
4742 	bce_init_com_cpu(sc);
4743 	bce_init_cp_cpu(sc);
4744 
4745 	DBEXIT(BCE_VERBOSE_RESET);
4746 }
4747 
4748 
4749 /****************************************************************************/
4750 /* Initialize context memory.                                               */
4751 /*                                                                          */
4752 /* Clears the memory associated with each Context ID (CID).                 */
4753 /*                                                                          */
4754 /* Returns:                                                                 */
4755 /*   Nothing.                                                               */
4756 /****************************************************************************/
4757 static int
4758 bce_init_ctx(struct bce_softc *sc)
4759 {
4760 	u32 offset, val, vcid_addr;
4761 	int i, j, rc, retry_cnt;
4762 
4763 	rc = 0;
4764 	DBENTER(BCE_VERBOSE_RESET | BCE_VERBOSE_CTX);
4765 
4766 	if (BCE_CHIP_NUM(sc) == BCE_CHIP_NUM_5709) {
4767 		retry_cnt = CTX_INIT_RETRY_COUNT;
4768 
4769 		DBPRINT(sc, BCE_INFO_CTX, "Initializing 5709 context.\n");
4770 
4771 		/*
4772 		 * BCM5709 context memory may be cached
4773 		 * in host memory so prepare the host memory
4774 		 * for access.
4775 		 */
4776 		val = BCE_CTX_COMMAND_ENABLED |
4777 		    BCE_CTX_COMMAND_MEM_INIT | (1 << 12);
4778 		val |= (BCM_PAGE_BITS - 8) << 16;
4779 		REG_WR(sc, BCE_CTX_COMMAND, val);
4780 
4781 		/* Wait for mem init command to complete. */
4782 		for (i = 0; i < retry_cnt; i++) {
4783 			val = REG_RD(sc, BCE_CTX_COMMAND);
4784 			if (!(val & BCE_CTX_COMMAND_MEM_INIT))
4785 				break;
4786 			DELAY(2);
4787 		}
4788 		if ((val & BCE_CTX_COMMAND_MEM_INIT) != 0) {
4789 			BCE_PRINTF("%s(): Context memory initialization failed!\n",
4790 			    __FUNCTION__);
4791 			rc = EBUSY;
4792 			goto init_ctx_fail;
4793 		}
4794 
4795 		for (i = 0; i < sc->ctx_pages; i++) {
4796 			/* Set the physical address of the context memory. */
4797 			REG_WR(sc, BCE_CTX_HOST_PAGE_TBL_DATA0,
4798 			    BCE_ADDR_LO(sc->ctx_paddr[i] & 0xfffffff0) |
4799 			    BCE_CTX_HOST_PAGE_TBL_DATA0_VALID);
4800 			REG_WR(sc, BCE_CTX_HOST_PAGE_TBL_DATA1,
4801 			    BCE_ADDR_HI(sc->ctx_paddr[i]));
4802 			REG_WR(sc, BCE_CTX_HOST_PAGE_TBL_CTRL, i |
4803 			    BCE_CTX_HOST_PAGE_TBL_CTRL_WRITE_REQ);
4804 
4805 			/* Verify the context memory write was successful. */
4806 			for (j = 0; j < retry_cnt; j++) {
4807 				val = REG_RD(sc, BCE_CTX_HOST_PAGE_TBL_CTRL);
4808 				if ((val &
4809 				    BCE_CTX_HOST_PAGE_TBL_CTRL_WRITE_REQ) == 0)
4810 					break;
4811 				DELAY(5);
4812 			}
4813 			if ((val & BCE_CTX_HOST_PAGE_TBL_CTRL_WRITE_REQ) != 0) {
4814 				BCE_PRINTF("%s(): Failed to initialize "
4815 				    "context page %d!\n", __FUNCTION__, i);
4816 				rc = EBUSY;
4817 				goto init_ctx_fail;
4818 			}
4819 		}
4820 	} else {
4821 
4822 		DBPRINT(sc, BCE_INFO, "Initializing 5706/5708 context.\n");
4823 
4824 		/*
4825 		 * For the 5706/5708, context memory is local to
4826 		 * the controller, so initialize the controller
4827 		 * context memory.
4828 		 */
4829 
4830 		vcid_addr = GET_CID_ADDR(96);
4831 		while (vcid_addr) {
4832 
4833 			vcid_addr -= PHY_CTX_SIZE;
4834 
4835 			REG_WR(sc, BCE_CTX_VIRT_ADDR, 0);
4836 			REG_WR(sc, BCE_CTX_PAGE_TBL, vcid_addr);
4837 
4838 			for(offset = 0; offset < PHY_CTX_SIZE; offset += 4) {
4839 				CTX_WR(sc, 0x00, offset, 0);
4840 			}
4841 
4842 			REG_WR(sc, BCE_CTX_VIRT_ADDR, vcid_addr);
4843 			REG_WR(sc, BCE_CTX_PAGE_TBL, vcid_addr);
4844 		}
4845 
4846 	}
4847 init_ctx_fail:
4848 	DBEXIT(BCE_VERBOSE_RESET | BCE_VERBOSE_CTX);
4849 	return (rc);
4850 }
4851 
4852 
4853 /****************************************************************************/
4854 /* Fetch the permanent MAC address of the controller.                       */
4855 /*                                                                          */
4856 /* Returns:                                                                 */
4857 /*   Nothing.                                                               */
4858 /****************************************************************************/
4859 static void
4860 bce_get_mac_addr(struct bce_softc *sc)
4861 {
4862 	u32 mac_lo = 0, mac_hi = 0;
4863 
4864 	DBENTER(BCE_VERBOSE_RESET);
4865 
4866 	/*
4867 	 * The NetXtreme II bootcode populates various NIC
4868 	 * power-on and runtime configuration items in a
4869 	 * shared memory area.  The factory configured MAC
4870 	 * address is available from both NVRAM and the
4871 	 * shared memory area so we'll read the value from
4872 	 * shared memory for speed.
4873 	 */
4874 
4875 	mac_hi = bce_shmem_rd(sc, BCE_PORT_HW_CFG_MAC_UPPER);
4876 	mac_lo = bce_shmem_rd(sc, BCE_PORT_HW_CFG_MAC_LOWER);
4877 
4878 	if ((mac_lo == 0) && (mac_hi == 0)) {
4879 		BCE_PRINTF("%s(%d): Invalid Ethernet address!\n",
4880 		    __FILE__, __LINE__);
4881 	} else {
4882 		sc->eaddr[0] = (u_char)(mac_hi >> 8);
4883 		sc->eaddr[1] = (u_char)(mac_hi >> 0);
4884 		sc->eaddr[2] = (u_char)(mac_lo >> 24);
4885 		sc->eaddr[3] = (u_char)(mac_lo >> 16);
4886 		sc->eaddr[4] = (u_char)(mac_lo >> 8);
4887 		sc->eaddr[5] = (u_char)(mac_lo >> 0);
4888 	}
4889 
4890 	DBPRINT(sc, BCE_INFO_MISC, "Permanent Ethernet "
4891 	    "address = %6D\n", sc->eaddr, ":");
4892 	DBEXIT(BCE_VERBOSE_RESET);
4893 }
4894 
4895 
4896 /****************************************************************************/
4897 /* Program the MAC address.                                                 */
4898 /*                                                                          */
4899 /* Returns:                                                                 */
4900 /*   Nothing.                                                               */
4901 /****************************************************************************/
4902 static void
4903 bce_set_mac_addr(struct bce_softc *sc)
4904 {
4905 	u32 val;
4906 	u8 *mac_addr = sc->eaddr;
4907 
4908 	/* ToDo: Add support for setting multiple MAC addresses. */
4909 
4910 	DBENTER(BCE_VERBOSE_RESET);
4911 	DBPRINT(sc, BCE_INFO_MISC, "Setting Ethernet address = "
4912 	    "%6D\n", sc->eaddr, ":");
4913 
4914 	val = (mac_addr[0] << 8) | mac_addr[1];
4915 
4916 	REG_WR(sc, BCE_EMAC_MAC_MATCH0, val);
4917 
4918 	val = (mac_addr[2] << 24) | (mac_addr[3] << 16) |
4919 	    (mac_addr[4] << 8) | mac_addr[5];
4920 
4921 	REG_WR(sc, BCE_EMAC_MAC_MATCH1, val);
4922 
4923 	DBEXIT(BCE_VERBOSE_RESET);
4924 }
4925 
4926 
4927 /****************************************************************************/
4928 /* Stop the controller.                                                     */
4929 /*                                                                          */
4930 /* Returns:                                                                 */
4931 /*   Nothing.                                                               */
4932 /****************************************************************************/
4933 static void
4934 bce_stop(struct bce_softc *sc)
4935 {
4936 	struct ifnet *ifp;
4937 
4938 	DBENTER(BCE_VERBOSE_RESET);
4939 
4940 	BCE_LOCK_ASSERT(sc);
4941 
4942 	ifp = sc->bce_ifp;
4943 
4944 	callout_stop(&sc->bce_tick_callout);
4945 
4946 	/* Disable the transmit/receive blocks. */
4947 	REG_WR(sc, BCE_MISC_ENABLE_CLR_BITS, BCE_MISC_ENABLE_CLR_DEFAULT);
4948 	REG_RD(sc, BCE_MISC_ENABLE_CLR_BITS);
4949 	DELAY(20);
4950 
4951 	bce_disable_intr(sc);
4952 
4953 	/* Free RX buffers. */
4954 	if (bce_hdr_split == TRUE) {
4955 		bce_free_pg_chain(sc);
4956 	}
4957 	bce_free_rx_chain(sc);
4958 
4959 	/* Free TX buffers. */
4960 	bce_free_tx_chain(sc);
4961 
4962 	sc->watchdog_timer = 0;
4963 
4964 	sc->bce_link_up = FALSE;
4965 
4966 	ifp->if_drv_flags &= ~(IFF_DRV_RUNNING | IFF_DRV_OACTIVE);
4967 
4968 	DBEXIT(BCE_VERBOSE_RESET);
4969 }
4970 
4971 
4972 static int
4973 bce_reset(struct bce_softc *sc, u32 reset_code)
4974 {
4975 	u32 emac_mode_save, val;
4976 	int i, rc = 0;
4977 	static const u32 emac_mode_mask = BCE_EMAC_MODE_PORT |
4978 	    BCE_EMAC_MODE_HALF_DUPLEX | BCE_EMAC_MODE_25G;
4979 
4980 	DBENTER(BCE_VERBOSE_RESET);
4981 
4982 	DBPRINT(sc, BCE_VERBOSE_RESET, "%s(): reset_code = 0x%08X\n",
4983 	    __FUNCTION__, reset_code);
4984 
4985 	/*
4986 	 * If ASF/IPMI is operational, then the EMAC Mode register already
4987 	 * contains appropriate values for the link settings that have
4988 	 * been auto-negotiated.  Resetting the chip will clobber those
4989 	 * values.  Save the important bits so we can restore them after
4990 	 * the reset.
4991 	 */
4992 	emac_mode_save = REG_RD(sc, BCE_EMAC_MODE) & emac_mode_mask;
4993 
4994 	/* Wait for pending PCI transactions to complete. */
4995 	REG_WR(sc, BCE_MISC_ENABLE_CLR_BITS,
4996 	    BCE_MISC_ENABLE_CLR_BITS_TX_DMA_ENABLE |
4997 	    BCE_MISC_ENABLE_CLR_BITS_DMA_ENGINE_ENABLE |
4998 	    BCE_MISC_ENABLE_CLR_BITS_RX_DMA_ENABLE |
4999 	    BCE_MISC_ENABLE_CLR_BITS_HOST_COALESCE_ENABLE);
5000 	val = REG_RD(sc, BCE_MISC_ENABLE_CLR_BITS);
5001 	DELAY(5);
5002 
5003 	/* Disable DMA */
5004 	if (BCE_CHIP_NUM(sc) == BCE_CHIP_NUM_5709) {
5005 		val = REG_RD(sc, BCE_MISC_NEW_CORE_CTL);
5006 		val &= ~BCE_MISC_NEW_CORE_CTL_DMA_ENABLE;
5007 		REG_WR(sc, BCE_MISC_NEW_CORE_CTL, val);
5008 	}
5009 
5010 	/* Assume bootcode is running. */
5011 	sc->bce_fw_timed_out = FALSE;
5012 	sc->bce_drv_cardiac_arrest = FALSE;
5013 
5014 	/* Give the firmware a chance to prepare for the reset. */
5015 	rc = bce_fw_sync(sc, BCE_DRV_MSG_DATA_WAIT0 | reset_code);
5016 	if (rc)
5017 		goto bce_reset_exit;
5018 
5019 	/* Set a firmware reminder that this is a soft reset. */
5020 	bce_shmem_wr(sc, BCE_DRV_RESET_SIGNATURE, BCE_DRV_RESET_SIGNATURE_MAGIC);
5021 
5022 	/* Dummy read to force the chip to complete all current transactions. */
5023 	val = REG_RD(sc, BCE_MISC_ID);
5024 
5025 	/* Chip reset. */
5026 	if (BCE_CHIP_NUM(sc) == BCE_CHIP_NUM_5709) {
5027 		REG_WR(sc, BCE_MISC_COMMAND, BCE_MISC_COMMAND_SW_RESET);
5028 		REG_RD(sc, BCE_MISC_COMMAND);
5029 		DELAY(5);
5030 
5031 		val = BCE_PCICFG_MISC_CONFIG_REG_WINDOW_ENA |
5032 		    BCE_PCICFG_MISC_CONFIG_TARGET_MB_WORD_SWAP;
5033 
5034 		pci_write_config(sc->bce_dev, BCE_PCICFG_MISC_CONFIG, val, 4);
5035 	} else {
5036 		val = BCE_PCICFG_MISC_CONFIG_CORE_RST_REQ |
5037 		    BCE_PCICFG_MISC_CONFIG_REG_WINDOW_ENA |
5038 		    BCE_PCICFG_MISC_CONFIG_TARGET_MB_WORD_SWAP;
5039 		REG_WR(sc, BCE_PCICFG_MISC_CONFIG, val);
5040 
5041 		/* Allow up to 30us for reset to complete. */
5042 		for (i = 0; i < 10; i++) {
5043 			val = REG_RD(sc, BCE_PCICFG_MISC_CONFIG);
5044 			if ((val & (BCE_PCICFG_MISC_CONFIG_CORE_RST_REQ |
5045 			    BCE_PCICFG_MISC_CONFIG_CORE_RST_BSY)) == 0) {
5046 				break;
5047 			}
5048 			DELAY(10);
5049 		}
5050 
5051 		/* Check that reset completed successfully. */
5052 		if (val & (BCE_PCICFG_MISC_CONFIG_CORE_RST_REQ |
5053 		    BCE_PCICFG_MISC_CONFIG_CORE_RST_BSY)) {
5054 			BCE_PRINTF("%s(%d): Reset failed!\n",
5055 			    __FILE__, __LINE__);
5056 			rc = EBUSY;
5057 			goto bce_reset_exit;
5058 		}
5059 	}
5060 
5061 	/* Make sure byte swapping is properly configured. */
5062 	val = REG_RD(sc, BCE_PCI_SWAP_DIAG0);
5063 	if (val != 0x01020304) {
5064 		BCE_PRINTF("%s(%d): Byte swap is incorrect!\n",
5065 		    __FILE__, __LINE__);
5066 		rc = ENODEV;
5067 		goto bce_reset_exit;
5068 	}
5069 
5070 	/* Just completed a reset, assume that firmware is running again. */
5071 	sc->bce_fw_timed_out = FALSE;
5072 	sc->bce_drv_cardiac_arrest = FALSE;
5073 
5074 	/* Wait for the firmware to finish its initialization. */
5075 	rc = bce_fw_sync(sc, BCE_DRV_MSG_DATA_WAIT1 | reset_code);
5076 	if (rc)
5077 		BCE_PRINTF("%s(%d): Firmware did not complete "
5078 		    "initialization!\n", __FILE__, __LINE__);
5079 	/* Get firmware capabilities. */
5080 	bce_fw_cap_init(sc);
5081 
5082 bce_reset_exit:
5083 	/* Restore EMAC Mode bits needed to keep ASF/IPMI running. */
5084 	if (reset_code == BCE_DRV_MSG_CODE_RESET) {
5085 		val = REG_RD(sc, BCE_EMAC_MODE);
5086 		val = (val & ~emac_mode_mask) | emac_mode_save;
5087 		REG_WR(sc, BCE_EMAC_MODE, val);
5088 	}
5089 
5090 	DBEXIT(BCE_VERBOSE_RESET);
5091 	return (rc);
5092 }
5093 
5094 
5095 static int
5096 bce_chipinit(struct bce_softc *sc)
5097 {
5098 	u32 val;
5099 	int rc = 0;
5100 
5101 	DBENTER(BCE_VERBOSE_RESET);
5102 
5103 	bce_disable_intr(sc);
5104 
5105 	/*
5106 	 * Initialize DMA byte/word swapping, configure the number of DMA
5107 	 * channels and PCI clock compensation delay.
5108 	 */
5109 	val = BCE_DMA_CONFIG_DATA_BYTE_SWAP |
5110 	    BCE_DMA_CONFIG_DATA_WORD_SWAP |
5111 #if BYTE_ORDER == BIG_ENDIAN
5112 	    BCE_DMA_CONFIG_CNTL_BYTE_SWAP |
5113 #endif
5114 	    BCE_DMA_CONFIG_CNTL_WORD_SWAP |
5115 	    DMA_READ_CHANS << 12 |
5116 	    DMA_WRITE_CHANS << 16;
5117 
5118 	val |= (0x2 << 20) | BCE_DMA_CONFIG_CNTL_PCI_COMP_DLY;
5119 
5120 	if ((sc->bce_flags & BCE_PCIX_FLAG) && (sc->bus_speed_mhz == 133))
5121 		val |= BCE_DMA_CONFIG_PCI_FAST_CLK_CMP;
5122 
5123 	/*
5124 	 * This setting resolves a problem observed on certain Intel PCI
5125 	 * chipsets that cannot handle multiple outstanding DMA operations.
5126 	 * See errata E9_5706A1_65.
5127 	 */
5128 	if ((BCE_CHIP_NUM(sc) == BCE_CHIP_NUM_5706) &&
5129 	    (BCE_CHIP_ID(sc) != BCE_CHIP_ID_5706_A0) &&
5130 	    !(sc->bce_flags & BCE_PCIX_FLAG))
5131 		val |= BCE_DMA_CONFIG_CNTL_PING_PONG_DMA;
5132 
5133 	REG_WR(sc, BCE_DMA_CONFIG, val);
5134 
5135 	/* Enable the RX_V2P and Context state machines before access. */
5136 	REG_WR(sc, BCE_MISC_ENABLE_SET_BITS,
5137 	    BCE_MISC_ENABLE_SET_BITS_HOST_COALESCE_ENABLE |
5138 	    BCE_MISC_ENABLE_STATUS_BITS_RX_V2P_ENABLE |
5139 	    BCE_MISC_ENABLE_STATUS_BITS_CONTEXT_ENABLE);
5140 
5141 	/* Initialize context mapping and zero out the quick contexts. */
5142 	if ((rc = bce_init_ctx(sc)) != 0)
5143 		goto bce_chipinit_exit;
5144 
5145 	/* Initialize the on-boards CPUs */
5146 	bce_init_cpus(sc);
5147 
5148 	/* Enable management frames (NC-SI) to flow to the MCP. */
5149 	if (sc->bce_flags & BCE_MFW_ENABLE_FLAG) {
5150 		val = REG_RD(sc, BCE_RPM_MGMT_PKT_CTRL) | BCE_RPM_MGMT_PKT_CTRL_MGMT_EN;
5151 		REG_WR(sc, BCE_RPM_MGMT_PKT_CTRL, val);
5152 	}
5153 
5154 	/* Prepare NVRAM for access. */
5155 	if ((rc = bce_init_nvram(sc)) != 0)
5156 		goto bce_chipinit_exit;
5157 
5158 	/* Set the kernel bypass block size */
5159 	val = REG_RD(sc, BCE_MQ_CONFIG);
5160 	val &= ~BCE_MQ_CONFIG_KNL_BYP_BLK_SIZE;
5161 	val |= BCE_MQ_CONFIG_KNL_BYP_BLK_SIZE_256;
5162 
5163 	/* Enable bins used on the 5709. */
5164 	if (BCE_CHIP_NUM(sc) == BCE_CHIP_NUM_5709) {
5165 		val |= BCE_MQ_CONFIG_BIN_MQ_MODE;
5166 		if (BCE_CHIP_ID(sc) == BCE_CHIP_ID_5709_A1)
5167 			val |= BCE_MQ_CONFIG_HALT_DIS;
5168 	}
5169 
5170 	REG_WR(sc, BCE_MQ_CONFIG, val);
5171 
5172 	val = 0x10000 + (MAX_CID_CNT * MB_KERNEL_CTX_SIZE);
5173 	REG_WR(sc, BCE_MQ_KNL_BYP_WIND_START, val);
5174 	REG_WR(sc, BCE_MQ_KNL_WIND_END, val);
5175 
5176 	/* Set the page size and clear the RV2P processor stall bits. */
5177 	val = (BCM_PAGE_BITS - 8) << 24;
5178 	REG_WR(sc, BCE_RV2P_CONFIG, val);
5179 
5180 	/* Configure page size. */
5181 	val = REG_RD(sc, BCE_TBDR_CONFIG);
5182 	val &= ~BCE_TBDR_CONFIG_PAGE_SIZE;
5183 	val |= (BCM_PAGE_BITS - 8) << 24 | 0x40;
5184 	REG_WR(sc, BCE_TBDR_CONFIG, val);
5185 
5186 	/* Set the perfect match control register to default. */
5187 	REG_WR_IND(sc, BCE_RXP_PM_CTRL, 0);
5188 
5189 bce_chipinit_exit:
5190 	DBEXIT(BCE_VERBOSE_RESET);
5191 
5192 	return(rc);
5193 }
5194 
5195 
5196 /****************************************************************************/
5197 /* Initialize the controller in preparation to send/receive traffic.        */
5198 /*                                                                          */
5199 /* Returns:                                                                 */
5200 /*   0 for success, positive value for failure.                             */
5201 /****************************************************************************/
5202 static int
5203 bce_blockinit(struct bce_softc *sc)
5204 {
5205 	u32 reg, val;
5206 	int rc = 0;
5207 
5208 	DBENTER(BCE_VERBOSE_RESET);
5209 
5210 	/* Load the hardware default MAC address. */
5211 	bce_set_mac_addr(sc);
5212 
5213 	/* Set the Ethernet backoff seed value */
5214 	val = sc->eaddr[0]         + (sc->eaddr[1] << 8) +
5215 	      (sc->eaddr[2] << 16) + (sc->eaddr[3]     ) +
5216 	      (sc->eaddr[4] << 8)  + (sc->eaddr[5] << 16);
5217 	REG_WR(sc, BCE_EMAC_BACKOFF_SEED, val);
5218 
5219 	sc->last_status_idx = 0;
5220 	sc->rx_mode = BCE_EMAC_RX_MODE_SORT_MODE;
5221 
5222 	/* Set up link change interrupt generation. */
5223 	REG_WR(sc, BCE_EMAC_ATTENTION_ENA, BCE_EMAC_ATTENTION_ENA_LINK);
5224 
5225 	/* Program the physical address of the status block. */
5226 	REG_WR(sc, BCE_HC_STATUS_ADDR_L,
5227 	    BCE_ADDR_LO(sc->status_block_paddr));
5228 	REG_WR(sc, BCE_HC_STATUS_ADDR_H,
5229 	    BCE_ADDR_HI(sc->status_block_paddr));
5230 
5231 	/* Program the physical address of the statistics block. */
5232 	REG_WR(sc, BCE_HC_STATISTICS_ADDR_L,
5233 	    BCE_ADDR_LO(sc->stats_block_paddr));
5234 	REG_WR(sc, BCE_HC_STATISTICS_ADDR_H,
5235 	    BCE_ADDR_HI(sc->stats_block_paddr));
5236 
5237 	/*
5238 	 * Program various host coalescing parameters.
5239 	 * Trip points control how many BDs should be ready before generating
5240 	 * an interrupt while ticks control how long a BD can sit in the chain
5241 	 * before generating an interrupt.
5242 	 */
5243 	REG_WR(sc, BCE_HC_TX_QUICK_CONS_TRIP,
5244 	    (sc->bce_tx_quick_cons_trip_int << 16) |
5245 	    sc->bce_tx_quick_cons_trip);
5246 	REG_WR(sc, BCE_HC_RX_QUICK_CONS_TRIP,
5247 	    (sc->bce_rx_quick_cons_trip_int << 16) |
5248 	    sc->bce_rx_quick_cons_trip);
5249 	REG_WR(sc, BCE_HC_TX_TICKS,
5250 	    (sc->bce_tx_ticks_int << 16) | sc->bce_tx_ticks);
5251 	REG_WR(sc, BCE_HC_RX_TICKS,
5252 	    (sc->bce_rx_ticks_int << 16) | sc->bce_rx_ticks);
5253 	REG_WR(sc, BCE_HC_STATS_TICKS, sc->bce_stats_ticks & 0xffff00);
5254 	REG_WR(sc, BCE_HC_STAT_COLLECT_TICKS, 0xbb8);  /* 3ms */
5255 	/* Not used for L2. */
5256 	REG_WR(sc, BCE_HC_COMP_PROD_TRIP, 0);
5257 	REG_WR(sc, BCE_HC_COM_TICKS, 0);
5258 	REG_WR(sc, BCE_HC_CMD_TICKS, 0);
5259 
5260 	/* Configure the Host Coalescing block. */
5261 	val = BCE_HC_CONFIG_RX_TMR_MODE | BCE_HC_CONFIG_TX_TMR_MODE |
5262 	    BCE_HC_CONFIG_COLLECT_STATS;
5263 
5264 #if 0
5265 	/* ToDo: Add MSI-X support. */
5266 	if (sc->bce_flags & BCE_USING_MSIX_FLAG) {
5267 		u32 base = ((BCE_TX_VEC - 1) * BCE_HC_SB_CONFIG_SIZE) +
5268 		    BCE_HC_SB_CONFIG_1;
5269 
5270 		REG_WR(sc, BCE_HC_MSIX_BIT_VECTOR, BCE_HC_MSIX_BIT_VECTOR_VAL);
5271 
5272 		REG_WR(sc, base, BCE_HC_SB_CONFIG_1_TX_TMR_MODE |
5273 		    BCE_HC_SB_CONFIG_1_ONE_SHOT);
5274 
5275 		REG_WR(sc, base + BCE_HC_TX_QUICK_CONS_TRIP_OFF,
5276 		    (sc->tx_quick_cons_trip_int << 16) |
5277 		     sc->tx_quick_cons_trip);
5278 
5279 		REG_WR(sc, base + BCE_HC_TX_TICKS_OFF,
5280 		    (sc->tx_ticks_int << 16) | sc->tx_ticks);
5281 
5282 		val |= BCE_HC_CONFIG_SB_ADDR_INC_128B;
5283 	}
5284 
5285 	/*
5286 	 * Tell the HC block to automatically set the
5287 	 * INT_MASK bit after an MSI/MSI-X interrupt
5288 	 * is generated so the driver doesn't have to.
5289 	 */
5290 	if (sc->bce_flags & BCE_ONE_SHOT_MSI_FLAG)
5291 		val |= BCE_HC_CONFIG_ONE_SHOT;
5292 
5293 	/* Set the MSI-X status blocks to 128 byte boundaries. */
5294 	if (sc->bce_flags & BCE_USING_MSIX_FLAG)
5295 		val |= BCE_HC_CONFIG_SB_ADDR_INC_128B;
5296 #endif
5297 
5298 	REG_WR(sc, BCE_HC_CONFIG, val);
5299 
5300 	/* Clear the internal statistics counters. */
5301 	REG_WR(sc, BCE_HC_COMMAND, BCE_HC_COMMAND_CLR_STAT_NOW);
5302 
5303 	/* Verify that bootcode is running. */
5304 	reg = bce_shmem_rd(sc, BCE_DEV_INFO_SIGNATURE);
5305 
5306 	DBRUNIF(DB_RANDOMTRUE(bootcode_running_failure_sim_control),
5307 	    BCE_PRINTF("%s(%d): Simulating bootcode failure.\n",
5308 	    __FILE__, __LINE__);
5309 	    reg = 0);
5310 
5311 	if ((reg & BCE_DEV_INFO_SIGNATURE_MAGIC_MASK) !=
5312 	    BCE_DEV_INFO_SIGNATURE_MAGIC) {
5313 		BCE_PRINTF("%s(%d): Bootcode not running! Found: 0x%08X, "
5314 		    "Expected: 08%08X\n", __FILE__, __LINE__,
5315 		    (reg & BCE_DEV_INFO_SIGNATURE_MAGIC_MASK),
5316 		    BCE_DEV_INFO_SIGNATURE_MAGIC);
5317 		rc = ENODEV;
5318 		goto bce_blockinit_exit;
5319 	}
5320 
5321 	/* Enable DMA */
5322 	if (BCE_CHIP_NUM(sc) == BCE_CHIP_NUM_5709) {
5323 		val = REG_RD(sc, BCE_MISC_NEW_CORE_CTL);
5324 		val |= BCE_MISC_NEW_CORE_CTL_DMA_ENABLE;
5325 		REG_WR(sc, BCE_MISC_NEW_CORE_CTL, val);
5326 	}
5327 
5328 	/* Allow bootcode to apply additional fixes before enabling MAC. */
5329 	rc = bce_fw_sync(sc, BCE_DRV_MSG_DATA_WAIT2 |
5330 	    BCE_DRV_MSG_CODE_RESET);
5331 
5332 	/* Enable link state change interrupt generation. */
5333 	REG_WR(sc, BCE_HC_ATTN_BITS_ENABLE, STATUS_ATTN_BITS_LINK_STATE);
5334 
5335 	/* Enable the RXP. */
5336 	bce_start_rxp_cpu(sc);
5337 
5338 	/* Disable management frames (NC-SI) from flowing to the MCP. */
5339 	if (sc->bce_flags & BCE_MFW_ENABLE_FLAG) {
5340 		val = REG_RD(sc, BCE_RPM_MGMT_PKT_CTRL) &
5341 		    ~BCE_RPM_MGMT_PKT_CTRL_MGMT_EN;
5342 		REG_WR(sc, BCE_RPM_MGMT_PKT_CTRL, val);
5343 	}
5344 
5345 	/* Enable all remaining blocks in the MAC. */
5346 	if (BCE_CHIP_NUM(sc) == BCE_CHIP_NUM_5709)
5347 		REG_WR(sc, BCE_MISC_ENABLE_SET_BITS,
5348 		    BCE_MISC_ENABLE_DEFAULT_XI);
5349 	else
5350 		REG_WR(sc, BCE_MISC_ENABLE_SET_BITS,
5351 		    BCE_MISC_ENABLE_DEFAULT);
5352 
5353 	REG_RD(sc, BCE_MISC_ENABLE_SET_BITS);
5354 	DELAY(20);
5355 
5356 	/* Save the current host coalescing block settings. */
5357 	sc->hc_command = REG_RD(sc, BCE_HC_COMMAND);
5358 
5359 bce_blockinit_exit:
5360 	DBEXIT(BCE_VERBOSE_RESET);
5361 
5362 	return (rc);
5363 }
5364 
5365 
5366 /****************************************************************************/
5367 /* Encapsulate an mbuf into the rx_bd chain.                                */
5368 /*                                                                          */
5369 /* Returns:                                                                 */
5370 /*   0 for success, positive value for failure.                             */
5371 /****************************************************************************/
5372 static int
5373 bce_get_rx_buf(struct bce_softc *sc, u16 prod, u16 chain_prod, u32 *prod_bseq)
5374 {
5375 	bus_dma_segment_t segs[1];
5376 	struct mbuf *m_new = NULL;
5377 	struct rx_bd *rxbd;
5378 	int nsegs, error, rc = 0;
5379 #ifdef BCE_DEBUG
5380 	u16 debug_chain_prod = chain_prod;
5381 #endif
5382 
5383 	DBENTER(BCE_EXTREME_RESET | BCE_EXTREME_RECV | BCE_EXTREME_LOAD);
5384 
5385 	/* Make sure the inputs are valid. */
5386 	DBRUNIF((chain_prod > MAX_RX_BD_ALLOC),
5387 	    BCE_PRINTF("%s(%d): RX producer out of range: "
5388 	    "0x%04X > 0x%04X\n", __FILE__, __LINE__,
5389 	    chain_prod, (u16)MAX_RX_BD_ALLOC));
5390 
5391 	DBPRINT(sc, BCE_EXTREME_RECV, "%s(enter): prod = 0x%04X, "
5392 	    "chain_prod = 0x%04X, prod_bseq = 0x%08X\n", __FUNCTION__,
5393 	    prod, chain_prod, *prod_bseq);
5394 
5395 	/* Update some debug statistic counters */
5396 	DBRUNIF((sc->free_rx_bd < sc->rx_low_watermark),
5397 	    sc->rx_low_watermark = sc->free_rx_bd);
5398 	DBRUNIF((sc->free_rx_bd == sc->max_rx_bd),
5399 	    sc->rx_empty_count++);
5400 
5401 	/* Simulate an mbuf allocation failure. */
5402 	DBRUNIF(DB_RANDOMTRUE(mbuf_alloc_failed_sim_control),
5403 	    sc->mbuf_alloc_failed_count++;
5404 	    sc->mbuf_alloc_failed_sim_count++;
5405 	    rc = ENOBUFS;
5406 	    goto bce_get_rx_buf_exit);
5407 
5408 	/* This is a new mbuf allocation. */
5409 	if (bce_hdr_split == TRUE)
5410 		MGETHDR(m_new, M_NOWAIT, MT_DATA);
5411 	else
5412 		m_new = m_getjcl(M_NOWAIT, MT_DATA, M_PKTHDR,
5413 		    sc->rx_bd_mbuf_alloc_size);
5414 
5415 	if (m_new == NULL) {
5416 		sc->mbuf_alloc_failed_count++;
5417 		rc = ENOBUFS;
5418 		goto bce_get_rx_buf_exit;
5419 	}
5420 
5421 	DBRUN(sc->debug_rx_mbuf_alloc++);
5422 
5423 	/* Make sure we have a valid packet header. */
5424 	M_ASSERTPKTHDR(m_new);
5425 
5426 	/* Initialize the mbuf size and pad if necessary for alignment. */
5427 	m_new->m_pkthdr.len = m_new->m_len = sc->rx_bd_mbuf_alloc_size;
5428 	m_adj(m_new, sc->rx_bd_mbuf_align_pad);
5429 
5430 	/* ToDo: Consider calling m_fragment() to test error handling. */
5431 
5432 	/* Map the mbuf cluster into device memory. */
5433 	error = bus_dmamap_load_mbuf_sg(sc->rx_mbuf_tag,
5434 	    sc->rx_mbuf_map[chain_prod], m_new, segs, &nsegs, BUS_DMA_NOWAIT);
5435 
5436 	/* Handle any mapping errors. */
5437 	if (error) {
5438 		BCE_PRINTF("%s(%d): Error mapping mbuf into RX "
5439 		    "chain (%d)!\n", __FILE__, __LINE__, error);
5440 
5441 		sc->dma_map_addr_rx_failed_count++;
5442 		m_freem(m_new);
5443 
5444 		DBRUN(sc->debug_rx_mbuf_alloc--);
5445 
5446 		rc = ENOBUFS;
5447 		goto bce_get_rx_buf_exit;
5448 	}
5449 
5450 	/* All mbufs must map to a single segment. */
5451 	KASSERT(nsegs == 1, ("%s(): Too many segments returned (%d)!",
5452 	    __FUNCTION__, nsegs));
5453 
5454 	/* Setup the rx_bd for the segment. */
5455 	rxbd = &sc->rx_bd_chain[RX_PAGE(chain_prod)][RX_IDX(chain_prod)];
5456 
5457 	rxbd->rx_bd_haddr_lo  = htole32(BCE_ADDR_LO(segs[0].ds_addr));
5458 	rxbd->rx_bd_haddr_hi  = htole32(BCE_ADDR_HI(segs[0].ds_addr));
5459 	rxbd->rx_bd_len       = htole32(segs[0].ds_len);
5460 	rxbd->rx_bd_flags     = htole32(RX_BD_FLAGS_START | RX_BD_FLAGS_END);
5461 	*prod_bseq += segs[0].ds_len;
5462 
5463 	/* Save the mbuf and update our counter. */
5464 	sc->rx_mbuf_ptr[chain_prod] = m_new;
5465 	sc->free_rx_bd -= nsegs;
5466 
5467 	DBRUNMSG(BCE_INSANE_RECV,
5468 	    bce_dump_rx_mbuf_chain(sc, debug_chain_prod, nsegs));
5469 
5470 	DBPRINT(sc, BCE_EXTREME_RECV, "%s(exit): prod = 0x%04X, "
5471 	    "chain_prod = 0x%04X, prod_bseq = 0x%08X\n", __FUNCTION__, prod,
5472 	    chain_prod, *prod_bseq);
5473 
5474 bce_get_rx_buf_exit:
5475 	DBEXIT(BCE_EXTREME_RESET | BCE_EXTREME_RECV | BCE_EXTREME_LOAD);
5476 
5477 	return(rc);
5478 }
5479 
5480 
5481 /****************************************************************************/
5482 /* Encapsulate an mbuf cluster into the page chain.                         */
5483 /*                                                                          */
5484 /* Returns:                                                                 */
5485 /*   0 for success, positive value for failure.                             */
5486 /****************************************************************************/
5487 static int
5488 bce_get_pg_buf(struct bce_softc *sc, u16 prod, u16 prod_idx)
5489 {
5490 	bus_dma_segment_t segs[1];
5491 	struct mbuf *m_new = NULL;
5492 	struct rx_bd *pgbd;
5493 	int error, nsegs, rc = 0;
5494 #ifdef BCE_DEBUG
5495 	u16 debug_prod_idx = prod_idx;
5496 #endif
5497 
5498 	DBENTER(BCE_EXTREME_RESET | BCE_EXTREME_RECV | BCE_EXTREME_LOAD);
5499 
5500 	/* Make sure the inputs are valid. */
5501 	DBRUNIF((prod_idx > MAX_PG_BD_ALLOC),
5502 	    BCE_PRINTF("%s(%d): page producer out of range: "
5503 	    "0x%04X > 0x%04X\n", __FILE__, __LINE__,
5504 	    prod_idx, (u16)MAX_PG_BD_ALLOC));
5505 
5506 	DBPRINT(sc, BCE_EXTREME_RECV, "%s(enter): prod = 0x%04X, "
5507 	    "chain_prod = 0x%04X\n", __FUNCTION__, prod, prod_idx);
5508 
5509 	/* Update counters if we've hit a new low or run out of pages. */
5510 	DBRUNIF((sc->free_pg_bd < sc->pg_low_watermark),
5511 	    sc->pg_low_watermark = sc->free_pg_bd);
5512 	DBRUNIF((sc->free_pg_bd == sc->max_pg_bd), sc->pg_empty_count++);
5513 
5514 	/* Simulate an mbuf allocation failure. */
5515 	DBRUNIF(DB_RANDOMTRUE(mbuf_alloc_failed_sim_control),
5516 	    sc->mbuf_alloc_failed_count++;
5517 	    sc->mbuf_alloc_failed_sim_count++;
5518 	    rc = ENOBUFS;
5519 	    goto bce_get_pg_buf_exit);
5520 
5521 	/* This is a new mbuf allocation. */
5522 	m_new = m_getcl(M_NOWAIT, MT_DATA, 0);
5523 	if (m_new == NULL) {
5524 		sc->mbuf_alloc_failed_count++;
5525 		rc = ENOBUFS;
5526 		goto bce_get_pg_buf_exit;
5527 	}
5528 
5529 	DBRUN(sc->debug_pg_mbuf_alloc++);
5530 
5531 	m_new->m_len = MCLBYTES;
5532 
5533 	/* ToDo: Consider calling m_fragment() to test error handling. */
5534 
5535 	/* Map the mbuf cluster into device memory. */
5536 	error = bus_dmamap_load_mbuf_sg(sc->pg_mbuf_tag,
5537 	    sc->pg_mbuf_map[prod_idx], m_new, segs, &nsegs, BUS_DMA_NOWAIT);
5538 
5539 	/* Handle any mapping errors. */
5540 	if (error) {
5541 		BCE_PRINTF("%s(%d): Error mapping mbuf into page chain!\n",
5542 		    __FILE__, __LINE__);
5543 
5544 		m_freem(m_new);
5545 		DBRUN(sc->debug_pg_mbuf_alloc--);
5546 
5547 		rc = ENOBUFS;
5548 		goto bce_get_pg_buf_exit;
5549 	}
5550 
5551 	/* All mbufs must map to a single segment. */
5552 	KASSERT(nsegs == 1, ("%s(): Too many segments returned (%d)!",
5553 	    __FUNCTION__, nsegs));
5554 
5555 	/* ToDo: Do we need bus_dmamap_sync(,,BUS_DMASYNC_PREREAD) here? */
5556 
5557 	/*
5558 	 * The page chain uses the same rx_bd data structure
5559 	 * as the receive chain but doesn't require a byte sequence (bseq).
5560 	 */
5561 	pgbd = &sc->pg_bd_chain[PG_PAGE(prod_idx)][PG_IDX(prod_idx)];
5562 
5563 	pgbd->rx_bd_haddr_lo  = htole32(BCE_ADDR_LO(segs[0].ds_addr));
5564 	pgbd->rx_bd_haddr_hi  = htole32(BCE_ADDR_HI(segs[0].ds_addr));
5565 	pgbd->rx_bd_len       = htole32(MCLBYTES);
5566 	pgbd->rx_bd_flags     = htole32(RX_BD_FLAGS_START | RX_BD_FLAGS_END);
5567 
5568 	/* Save the mbuf and update our counter. */
5569 	sc->pg_mbuf_ptr[prod_idx] = m_new;
5570 	sc->free_pg_bd--;
5571 
5572 	DBRUNMSG(BCE_INSANE_RECV,
5573 	    bce_dump_pg_mbuf_chain(sc, debug_prod_idx, 1));
5574 
5575 	DBPRINT(sc, BCE_EXTREME_RECV, "%s(exit): prod = 0x%04X, "
5576 	    "prod_idx = 0x%04X\n", __FUNCTION__, prod, prod_idx);
5577 
5578 bce_get_pg_buf_exit:
5579 	DBEXIT(BCE_EXTREME_RESET | BCE_EXTREME_RECV | BCE_EXTREME_LOAD);
5580 
5581 	return(rc);
5582 }
5583 
5584 
5585 /****************************************************************************/
5586 /* Initialize the TX context memory.                                        */
5587 /*                                                                          */
5588 /* Returns:                                                                 */
5589 /*   Nothing                                                                */
5590 /****************************************************************************/
5591 static void
5592 bce_init_tx_context(struct bce_softc *sc)
5593 {
5594 	u32 val;
5595 
5596 	DBENTER(BCE_VERBOSE_RESET | BCE_VERBOSE_SEND | BCE_VERBOSE_CTX);
5597 
5598 	/* Initialize the context ID for an L2 TX chain. */
5599 	if (BCE_CHIP_NUM(sc) == BCE_CHIP_NUM_5709) {
5600 		/* Set the CID type to support an L2 connection. */
5601 		val = BCE_L2CTX_TX_TYPE_TYPE_L2_XI |
5602 		    BCE_L2CTX_TX_TYPE_SIZE_L2_XI;
5603 		CTX_WR(sc, GET_CID_ADDR(TX_CID), BCE_L2CTX_TX_TYPE_XI, val);
5604 		val = BCE_L2CTX_TX_CMD_TYPE_TYPE_L2_XI | (8 << 16);
5605 		CTX_WR(sc, GET_CID_ADDR(TX_CID),
5606 		    BCE_L2CTX_TX_CMD_TYPE_XI, val);
5607 
5608 		/* Point the hardware to the first page in the chain. */
5609 		val = BCE_ADDR_HI(sc->tx_bd_chain_paddr[0]);
5610 		CTX_WR(sc, GET_CID_ADDR(TX_CID),
5611 		    BCE_L2CTX_TX_TBDR_BHADDR_HI_XI, val);
5612 		val = BCE_ADDR_LO(sc->tx_bd_chain_paddr[0]);
5613 		CTX_WR(sc, GET_CID_ADDR(TX_CID),
5614 		    BCE_L2CTX_TX_TBDR_BHADDR_LO_XI, val);
5615 	} else {
5616 		/* Set the CID type to support an L2 connection. */
5617 		val = BCE_L2CTX_TX_TYPE_TYPE_L2 | BCE_L2CTX_TX_TYPE_SIZE_L2;
5618 		CTX_WR(sc, GET_CID_ADDR(TX_CID), BCE_L2CTX_TX_TYPE, val);
5619 		val = BCE_L2CTX_TX_CMD_TYPE_TYPE_L2 | (8 << 16);
5620 		CTX_WR(sc, GET_CID_ADDR(TX_CID), BCE_L2CTX_TX_CMD_TYPE, val);
5621 
5622 		/* Point the hardware to the first page in the chain. */
5623 		val = BCE_ADDR_HI(sc->tx_bd_chain_paddr[0]);
5624 		CTX_WR(sc, GET_CID_ADDR(TX_CID),
5625 		    BCE_L2CTX_TX_TBDR_BHADDR_HI, val);
5626 		val = BCE_ADDR_LO(sc->tx_bd_chain_paddr[0]);
5627 		CTX_WR(sc, GET_CID_ADDR(TX_CID),
5628 		    BCE_L2CTX_TX_TBDR_BHADDR_LO, val);
5629 	}
5630 
5631 	DBEXIT(BCE_VERBOSE_RESET | BCE_VERBOSE_SEND | BCE_VERBOSE_CTX);
5632 }
5633 
5634 
5635 /****************************************************************************/
5636 /* Allocate memory and initialize the TX data structures.                   */
5637 /*                                                                          */
5638 /* Returns:                                                                 */
5639 /*   0 for success, positive value for failure.                             */
5640 /****************************************************************************/
5641 static int
5642 bce_init_tx_chain(struct bce_softc *sc)
5643 {
5644 	struct tx_bd *txbd;
5645 	int i, rc = 0;
5646 
5647 	DBENTER(BCE_VERBOSE_RESET | BCE_VERBOSE_SEND | BCE_VERBOSE_LOAD);
5648 
5649 	/* Set the initial TX producer/consumer indices. */
5650 	sc->tx_prod        = 0;
5651 	sc->tx_cons        = 0;
5652 	sc->tx_prod_bseq   = 0;
5653 	sc->used_tx_bd     = 0;
5654 	sc->max_tx_bd      = USABLE_TX_BD_ALLOC;
5655 	DBRUN(sc->tx_hi_watermark = 0);
5656 	DBRUN(sc->tx_full_count = 0);
5657 
5658 	/*
5659 	 * The NetXtreme II supports a linked-list structre called
5660 	 * a Buffer Descriptor Chain (or BD chain).  A BD chain
5661 	 * consists of a series of 1 or more chain pages, each of which
5662 	 * consists of a fixed number of BD entries.
5663 	 * The last BD entry on each page is a pointer to the next page
5664 	 * in the chain, and the last pointer in the BD chain
5665 	 * points back to the beginning of the chain.
5666 	 */
5667 
5668 	/* Set the TX next pointer chain entries. */
5669 	for (i = 0; i < sc->tx_pages; i++) {
5670 		int j;
5671 
5672 		txbd = &sc->tx_bd_chain[i][USABLE_TX_BD_PER_PAGE];
5673 
5674 		/* Check if we've reached the last page. */
5675 		if (i == (sc->tx_pages - 1))
5676 			j = 0;
5677 		else
5678 			j = i + 1;
5679 
5680 		txbd->tx_bd_haddr_hi =
5681 		    htole32(BCE_ADDR_HI(sc->tx_bd_chain_paddr[j]));
5682 		txbd->tx_bd_haddr_lo =
5683 		    htole32(BCE_ADDR_LO(sc->tx_bd_chain_paddr[j]));
5684 	}
5685 
5686 	bce_init_tx_context(sc);
5687 
5688 	DBRUNMSG(BCE_INSANE_SEND, bce_dump_tx_chain(sc, 0, TOTAL_TX_BD_ALLOC));
5689 	DBEXIT(BCE_VERBOSE_RESET | BCE_VERBOSE_SEND | BCE_VERBOSE_LOAD);
5690 
5691 	return(rc);
5692 }
5693 
5694 
5695 /****************************************************************************/
5696 /* Free memory and clear the TX data structures.                            */
5697 /*                                                                          */
5698 /* Returns:                                                                 */
5699 /*   Nothing.                                                               */
5700 /****************************************************************************/
5701 static void
5702 bce_free_tx_chain(struct bce_softc *sc)
5703 {
5704 	int i;
5705 
5706 	DBENTER(BCE_VERBOSE_RESET | BCE_VERBOSE_SEND | BCE_VERBOSE_UNLOAD);
5707 
5708 	/* Unmap, unload, and free any mbufs still in the TX mbuf chain. */
5709 	for (i = 0; i < MAX_TX_BD_AVAIL; i++) {
5710 		if (sc->tx_mbuf_ptr[i] != NULL) {
5711 			if (sc->tx_mbuf_map[i] != NULL)
5712 				bus_dmamap_sync(sc->tx_mbuf_tag,
5713 				    sc->tx_mbuf_map[i],
5714 				    BUS_DMASYNC_POSTWRITE);
5715 			m_freem(sc->tx_mbuf_ptr[i]);
5716 			sc->tx_mbuf_ptr[i] = NULL;
5717 			DBRUN(sc->debug_tx_mbuf_alloc--);
5718 		}
5719 	}
5720 
5721 	/* Clear each TX chain page. */
5722 	for (i = 0; i < sc->tx_pages; i++)
5723 		bzero((char *)sc->tx_bd_chain[i], BCE_TX_CHAIN_PAGE_SZ);
5724 
5725 	sc->used_tx_bd = 0;
5726 
5727 	/* Check if we lost any mbufs in the process. */
5728 	DBRUNIF((sc->debug_tx_mbuf_alloc),
5729 	    BCE_PRINTF("%s(%d): Memory leak! Lost %d mbufs "
5730 	    "from tx chain!\n",	__FILE__, __LINE__,
5731 	    sc->debug_tx_mbuf_alloc));
5732 
5733 	DBEXIT(BCE_VERBOSE_RESET | BCE_VERBOSE_SEND | BCE_VERBOSE_UNLOAD);
5734 }
5735 
5736 
5737 /****************************************************************************/
5738 /* Initialize the RX context memory.                                        */
5739 /*                                                                          */
5740 /* Returns:                                                                 */
5741 /*   Nothing                                                                */
5742 /****************************************************************************/
5743 static void
5744 bce_init_rx_context(struct bce_softc *sc)
5745 {
5746 	u32 val;
5747 
5748 	DBENTER(BCE_VERBOSE_RESET | BCE_VERBOSE_RECV | BCE_VERBOSE_CTX);
5749 
5750 	/* Init the type, size, and BD cache levels for the RX context. */
5751 	val = BCE_L2CTX_RX_CTX_TYPE_CTX_BD_CHN_TYPE_VALUE |
5752 	    BCE_L2CTX_RX_CTX_TYPE_SIZE_L2 |
5753 	    (0x02 << BCE_L2CTX_RX_BD_PRE_READ_SHIFT);
5754 
5755 	/*
5756 	 * Set the level for generating pause frames
5757 	 * when the number of available rx_bd's gets
5758 	 * too low (the low watermark) and the level
5759 	 * when pause frames can be stopped (the high
5760 	 * watermark).
5761 	 */
5762 	if (BCE_CHIP_NUM(sc) == BCE_CHIP_NUM_5709) {
5763 		u32 lo_water, hi_water;
5764 
5765 		if (sc->bce_flags & BCE_USING_TX_FLOW_CONTROL) {
5766 			lo_water = BCE_L2CTX_RX_LO_WATER_MARK_DEFAULT;
5767 		} else {
5768 			lo_water = 0;
5769 		}
5770 
5771 		if (lo_water >= USABLE_RX_BD_ALLOC) {
5772 			lo_water = 0;
5773 		}
5774 
5775 		hi_water = USABLE_RX_BD_ALLOC / 4;
5776 
5777 		if (hi_water <= lo_water) {
5778 			lo_water = 0;
5779 		}
5780 
5781 		lo_water /= BCE_L2CTX_RX_LO_WATER_MARK_SCALE;
5782 		hi_water /= BCE_L2CTX_RX_HI_WATER_MARK_SCALE;
5783 
5784 		if (hi_water > 0xf)
5785 			hi_water = 0xf;
5786 		else if (hi_water == 0)
5787 			lo_water = 0;
5788 
5789 		val |= (lo_water << BCE_L2CTX_RX_LO_WATER_MARK_SHIFT) |
5790 		    (hi_water << BCE_L2CTX_RX_HI_WATER_MARK_SHIFT);
5791 	}
5792 
5793 	CTX_WR(sc, GET_CID_ADDR(RX_CID), BCE_L2CTX_RX_CTX_TYPE, val);
5794 
5795 	/* Setup the MQ BIN mapping for l2_ctx_host_bseq. */
5796 	if (BCE_CHIP_NUM(sc) == BCE_CHIP_NUM_5709) {
5797 		val = REG_RD(sc, BCE_MQ_MAP_L2_5);
5798 		REG_WR(sc, BCE_MQ_MAP_L2_5, val | BCE_MQ_MAP_L2_5_ARM);
5799 	}
5800 
5801 	/* Point the hardware to the first page in the chain. */
5802 	val = BCE_ADDR_HI(sc->rx_bd_chain_paddr[0]);
5803 	CTX_WR(sc, GET_CID_ADDR(RX_CID), BCE_L2CTX_RX_NX_BDHADDR_HI, val);
5804 	val = BCE_ADDR_LO(sc->rx_bd_chain_paddr[0]);
5805 	CTX_WR(sc, GET_CID_ADDR(RX_CID), BCE_L2CTX_RX_NX_BDHADDR_LO, val);
5806 
5807 	DBEXIT(BCE_VERBOSE_RESET | BCE_VERBOSE_RECV | BCE_VERBOSE_CTX);
5808 }
5809 
5810 
5811 /****************************************************************************/
5812 /* Allocate memory and initialize the RX data structures.                   */
5813 /*                                                                          */
5814 /* Returns:                                                                 */
5815 /*   0 for success, positive value for failure.                             */
5816 /****************************************************************************/
5817 static int
5818 bce_init_rx_chain(struct bce_softc *sc)
5819 {
5820 	struct rx_bd *rxbd;
5821 	int i, rc = 0;
5822 
5823 	DBENTER(BCE_VERBOSE_RESET | BCE_VERBOSE_RECV | BCE_VERBOSE_LOAD |
5824 	    BCE_VERBOSE_CTX);
5825 
5826 	/* Initialize the RX producer and consumer indices. */
5827 	sc->rx_prod        = 0;
5828 	sc->rx_cons        = 0;
5829 	sc->rx_prod_bseq   = 0;
5830 	sc->free_rx_bd     = USABLE_RX_BD_ALLOC;
5831 	sc->max_rx_bd      = USABLE_RX_BD_ALLOC;
5832 
5833 	/* Initialize the RX next pointer chain entries. */
5834 	for (i = 0; i < sc->rx_pages; i++) {
5835 		int j;
5836 
5837 		rxbd = &sc->rx_bd_chain[i][USABLE_RX_BD_PER_PAGE];
5838 
5839 		/* Check if we've reached the last page. */
5840 		if (i == (sc->rx_pages - 1))
5841 			j = 0;
5842 		else
5843 			j = i + 1;
5844 
5845 		/* Setup the chain page pointers. */
5846 		rxbd->rx_bd_haddr_hi =
5847 		    htole32(BCE_ADDR_HI(sc->rx_bd_chain_paddr[j]));
5848 		rxbd->rx_bd_haddr_lo =
5849 		    htole32(BCE_ADDR_LO(sc->rx_bd_chain_paddr[j]));
5850 	}
5851 
5852 	/* Fill up the RX chain. */
5853 	bce_fill_rx_chain(sc);
5854 
5855 	DBRUN(sc->rx_low_watermark = USABLE_RX_BD_ALLOC);
5856 	DBRUN(sc->rx_empty_count = 0);
5857 	for (i = 0; i < sc->rx_pages; i++) {
5858 		bus_dmamap_sync(sc->rx_bd_chain_tag, sc->rx_bd_chain_map[i],
5859 		    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
5860 	}
5861 
5862 	bce_init_rx_context(sc);
5863 
5864 	DBRUNMSG(BCE_EXTREME_RECV,
5865 	    bce_dump_rx_bd_chain(sc, 0, TOTAL_RX_BD_ALLOC));
5866 	DBEXIT(BCE_VERBOSE_RESET | BCE_VERBOSE_RECV | BCE_VERBOSE_LOAD |
5867 	    BCE_VERBOSE_CTX);
5868 
5869 	/* ToDo: Are there possible failure modes here? */
5870 
5871 	return(rc);
5872 }
5873 
5874 
5875 /****************************************************************************/
5876 /* Add mbufs to the RX chain until its full or an mbuf allocation error     */
5877 /* occurs.                                                                  */
5878 /*                                                                          */
5879 /* Returns:                                                                 */
5880 /*   Nothing                                                                */
5881 /****************************************************************************/
5882 static void
5883 bce_fill_rx_chain(struct bce_softc *sc)
5884 {
5885 	u16 prod, prod_idx;
5886 	u32 prod_bseq;
5887 
5888 	DBENTER(BCE_VERBOSE_RESET | BCE_EXTREME_RECV | BCE_VERBOSE_LOAD |
5889 	    BCE_VERBOSE_CTX);
5890 
5891 	/* Get the RX chain producer indices. */
5892 	prod      = sc->rx_prod;
5893 	prod_bseq = sc->rx_prod_bseq;
5894 
5895 	/* Keep filling the RX chain until it's full. */
5896 	while (sc->free_rx_bd > 0) {
5897 		prod_idx = RX_CHAIN_IDX(prod);
5898 		if (bce_get_rx_buf(sc, prod, prod_idx, &prod_bseq)) {
5899 			/* Bail out if we can't add an mbuf to the chain. */
5900 			break;
5901 		}
5902 		prod = NEXT_RX_BD(prod);
5903 	}
5904 
5905 	/* Save the RX chain producer indices. */
5906 	sc->rx_prod      = prod;
5907 	sc->rx_prod_bseq = prod_bseq;
5908 
5909 	/* We should never end up pointing to a next page pointer. */
5910 	DBRUNIF(((prod & USABLE_RX_BD_PER_PAGE) == USABLE_RX_BD_PER_PAGE),
5911 	    BCE_PRINTF("%s(): Invalid rx_prod value: 0x%04X\n",
5912 	    __FUNCTION__, rx_prod));
5913 
5914 	/* Write the mailbox and tell the chip about the waiting rx_bd's. */
5915 	REG_WR16(sc, MB_GET_CID_ADDR(RX_CID) + BCE_L2MQ_RX_HOST_BDIDX, prod);
5916 	REG_WR(sc, MB_GET_CID_ADDR(RX_CID) + BCE_L2MQ_RX_HOST_BSEQ, prod_bseq);
5917 
5918 	DBEXIT(BCE_VERBOSE_RESET | BCE_EXTREME_RECV | BCE_VERBOSE_LOAD |
5919 	    BCE_VERBOSE_CTX);
5920 }
5921 
5922 
5923 /****************************************************************************/
5924 /* Free memory and clear the RX data structures.                            */
5925 /*                                                                          */
5926 /* Returns:                                                                 */
5927 /*   Nothing.                                                               */
5928 /****************************************************************************/
5929 static void
5930 bce_free_rx_chain(struct bce_softc *sc)
5931 {
5932 	int i;
5933 
5934 	DBENTER(BCE_VERBOSE_RESET | BCE_VERBOSE_RECV | BCE_VERBOSE_UNLOAD);
5935 
5936 	/* Free any mbufs still in the RX mbuf chain. */
5937 	for (i = 0; i < MAX_RX_BD_AVAIL; i++) {
5938 		if (sc->rx_mbuf_ptr[i] != NULL) {
5939 			if (sc->rx_mbuf_map[i] != NULL)
5940 				bus_dmamap_sync(sc->rx_mbuf_tag,
5941 				    sc->rx_mbuf_map[i],
5942 				    BUS_DMASYNC_POSTREAD);
5943 			m_freem(sc->rx_mbuf_ptr[i]);
5944 			sc->rx_mbuf_ptr[i] = NULL;
5945 			DBRUN(sc->debug_rx_mbuf_alloc--);
5946 		}
5947 	}
5948 
5949 	/* Clear each RX chain page. */
5950 	for (i = 0; i < sc->rx_pages; i++)
5951 		if (sc->rx_bd_chain[i] != NULL)
5952 			bzero((char *)sc->rx_bd_chain[i],
5953 			    BCE_RX_CHAIN_PAGE_SZ);
5954 
5955 	sc->free_rx_bd = sc->max_rx_bd;
5956 
5957 	/* Check if we lost any mbufs in the process. */
5958 	DBRUNIF((sc->debug_rx_mbuf_alloc),
5959 	    BCE_PRINTF("%s(): Memory leak! Lost %d mbufs from rx chain!\n",
5960 	    __FUNCTION__, sc->debug_rx_mbuf_alloc));
5961 
5962 	DBEXIT(BCE_VERBOSE_RESET | BCE_VERBOSE_RECV | BCE_VERBOSE_UNLOAD);
5963 }
5964 
5965 
5966 /****************************************************************************/
5967 /* Allocate memory and initialize the page data structures.                 */
5968 /* Assumes that bce_init_rx_chain() has not already been called.            */
5969 /*                                                                          */
5970 /* Returns:                                                                 */
5971 /*   0 for success, positive value for failure.                             */
5972 /****************************************************************************/
5973 static int
5974 bce_init_pg_chain(struct bce_softc *sc)
5975 {
5976 	struct rx_bd *pgbd;
5977 	int i, rc = 0;
5978 	u32 val;
5979 
5980 	DBENTER(BCE_VERBOSE_RESET | BCE_VERBOSE_RECV | BCE_VERBOSE_LOAD |
5981 		BCE_VERBOSE_CTX);
5982 
5983 	/* Initialize the page producer and consumer indices. */
5984 	sc->pg_prod        = 0;
5985 	sc->pg_cons        = 0;
5986 	sc->free_pg_bd     = USABLE_PG_BD_ALLOC;
5987 	sc->max_pg_bd      = USABLE_PG_BD_ALLOC;
5988 	DBRUN(sc->pg_low_watermark = sc->max_pg_bd);
5989 	DBRUN(sc->pg_empty_count = 0);
5990 
5991 	/* Initialize the page next pointer chain entries. */
5992 	for (i = 0; i < sc->pg_pages; i++) {
5993 		int j;
5994 
5995 		pgbd = &sc->pg_bd_chain[i][USABLE_PG_BD_PER_PAGE];
5996 
5997 		/* Check if we've reached the last page. */
5998 		if (i == (sc->pg_pages - 1))
5999 			j = 0;
6000 		else
6001 			j = i + 1;
6002 
6003 		/* Setup the chain page pointers. */
6004 		pgbd->rx_bd_haddr_hi =
6005 		    htole32(BCE_ADDR_HI(sc->pg_bd_chain_paddr[j]));
6006 		pgbd->rx_bd_haddr_lo =
6007 		    htole32(BCE_ADDR_LO(sc->pg_bd_chain_paddr[j]));
6008 	}
6009 
6010 	/* Setup the MQ BIN mapping for host_pg_bidx. */
6011 	if (BCE_CHIP_NUM(sc) == BCE_CHIP_NUM_5709)
6012 		REG_WR(sc, BCE_MQ_MAP_L2_3, BCE_MQ_MAP_L2_3_DEFAULT);
6013 
6014 	CTX_WR(sc, GET_CID_ADDR(RX_CID), BCE_L2CTX_RX_PG_BUF_SIZE, 0);
6015 
6016 	/* Configure the rx_bd and page chain mbuf cluster size. */
6017 	val = (sc->rx_bd_mbuf_data_len << 16) | MCLBYTES;
6018 	CTX_WR(sc, GET_CID_ADDR(RX_CID), BCE_L2CTX_RX_PG_BUF_SIZE, val);
6019 
6020 	/* Configure the context reserved for jumbo support. */
6021 	CTX_WR(sc, GET_CID_ADDR(RX_CID), BCE_L2CTX_RX_RBDC_KEY,
6022 		BCE_L2CTX_RX_RBDC_JUMBO_KEY);
6023 
6024 	/* Point the hardware to the first page in the page chain. */
6025 	val = BCE_ADDR_HI(sc->pg_bd_chain_paddr[0]);
6026 	CTX_WR(sc, GET_CID_ADDR(RX_CID), BCE_L2CTX_RX_NX_PG_BDHADDR_HI, val);
6027 	val = BCE_ADDR_LO(sc->pg_bd_chain_paddr[0]);
6028 	CTX_WR(sc, GET_CID_ADDR(RX_CID), BCE_L2CTX_RX_NX_PG_BDHADDR_LO, val);
6029 
6030 	/* Fill up the page chain. */
6031 	bce_fill_pg_chain(sc);
6032 
6033 	for (i = 0; i < sc->pg_pages; i++) {
6034 		bus_dmamap_sync(sc->pg_bd_chain_tag, sc->pg_bd_chain_map[i],
6035 		    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
6036 	}
6037 
6038 	DBRUNMSG(BCE_EXTREME_RECV,
6039 	    bce_dump_pg_chain(sc, 0, TOTAL_PG_BD_ALLOC));
6040 	DBEXIT(BCE_VERBOSE_RESET | BCE_VERBOSE_RECV | BCE_VERBOSE_LOAD |
6041 		BCE_VERBOSE_CTX);
6042 	return(rc);
6043 }
6044 
6045 
6046 /****************************************************************************/
6047 /* Add mbufs to the page chain until its full or an mbuf allocation error   */
6048 /* occurs.                                                                  */
6049 /*                                                                          */
6050 /* Returns:                                                                 */
6051 /*   Nothing                                                                */
6052 /****************************************************************************/
6053 static void
6054 bce_fill_pg_chain(struct bce_softc *sc)
6055 {
6056 	u16 prod, prod_idx;
6057 
6058 	DBENTER(BCE_VERBOSE_RESET | BCE_EXTREME_RECV | BCE_VERBOSE_LOAD |
6059 	    BCE_VERBOSE_CTX);
6060 
6061 	/* Get the page chain prodcuer index. */
6062 	prod = sc->pg_prod;
6063 
6064 	/* Keep filling the page chain until it's full. */
6065 	while (sc->free_pg_bd > 0) {
6066 		prod_idx = PG_CHAIN_IDX(prod);
6067 		if (bce_get_pg_buf(sc, prod, prod_idx)) {
6068 			/* Bail out if we can't add an mbuf to the chain. */
6069 			break;
6070 		}
6071 		prod = NEXT_PG_BD(prod);
6072 	}
6073 
6074 	/* Save the page chain producer index. */
6075 	sc->pg_prod = prod;
6076 
6077 	DBRUNIF(((prod & USABLE_RX_BD_PER_PAGE) == USABLE_RX_BD_PER_PAGE),
6078 	    BCE_PRINTF("%s(): Invalid pg_prod value: 0x%04X\n",
6079 	    __FUNCTION__, pg_prod));
6080 
6081 	/*
6082 	 * Write the mailbox and tell the chip about
6083 	 * the new rx_bd's in the page chain.
6084 	 */
6085 	REG_WR16(sc, MB_GET_CID_ADDR(RX_CID) + BCE_L2MQ_RX_HOST_PG_BDIDX,
6086 	    prod);
6087 
6088 	DBEXIT(BCE_VERBOSE_RESET | BCE_EXTREME_RECV | BCE_VERBOSE_LOAD |
6089 	    BCE_VERBOSE_CTX);
6090 }
6091 
6092 
6093 /****************************************************************************/
6094 /* Free memory and clear the RX data structures.                            */
6095 /*                                                                          */
6096 /* Returns:                                                                 */
6097 /*   Nothing.                                                               */
6098 /****************************************************************************/
6099 static void
6100 bce_free_pg_chain(struct bce_softc *sc)
6101 {
6102 	int i;
6103 
6104 	DBENTER(BCE_VERBOSE_RESET | BCE_VERBOSE_RECV | BCE_VERBOSE_UNLOAD);
6105 
6106 	/* Free any mbufs still in the mbuf page chain. */
6107 	for (i = 0; i < MAX_PG_BD_AVAIL; i++) {
6108 		if (sc->pg_mbuf_ptr[i] != NULL) {
6109 			if (sc->pg_mbuf_map[i] != NULL)
6110 				bus_dmamap_sync(sc->pg_mbuf_tag,
6111 				    sc->pg_mbuf_map[i],
6112 				    BUS_DMASYNC_POSTREAD);
6113 			m_freem(sc->pg_mbuf_ptr[i]);
6114 			sc->pg_mbuf_ptr[i] = NULL;
6115 			DBRUN(sc->debug_pg_mbuf_alloc--);
6116 		}
6117 	}
6118 
6119 	/* Clear each page chain pages. */
6120 	for (i = 0; i < sc->pg_pages; i++)
6121 		bzero((char *)sc->pg_bd_chain[i], BCE_PG_CHAIN_PAGE_SZ);
6122 
6123 	sc->free_pg_bd = sc->max_pg_bd;
6124 
6125 	/* Check if we lost any mbufs in the process. */
6126 	DBRUNIF((sc->debug_pg_mbuf_alloc),
6127 	    BCE_PRINTF("%s(): Memory leak! Lost %d mbufs from page chain!\n",
6128 	    __FUNCTION__, sc->debug_pg_mbuf_alloc));
6129 
6130 	DBEXIT(BCE_VERBOSE_RESET | BCE_VERBOSE_RECV | BCE_VERBOSE_UNLOAD);
6131 }
6132 
6133 
6134 static u32
6135 bce_get_rphy_link(struct bce_softc *sc)
6136 {
6137 	u32 advertise, link;
6138 	int fdpx;
6139 
6140 	advertise = 0;
6141 	fdpx = 0;
6142 	if ((sc->bce_phy_flags & BCE_PHY_REMOTE_PORT_FIBER_FLAG) != 0)
6143 		link = bce_shmem_rd(sc, BCE_RPHY_SERDES_LINK);
6144 	else
6145 		link = bce_shmem_rd(sc, BCE_RPHY_COPPER_LINK);
6146 	if (link & BCE_NETLINK_ANEG_ENB)
6147 		advertise |= BCE_NETLINK_ANEG_ENB;
6148 	if (link & BCE_NETLINK_SPEED_10HALF)
6149 		advertise |= BCE_NETLINK_SPEED_10HALF;
6150 	if (link & BCE_NETLINK_SPEED_10FULL) {
6151 		advertise |= BCE_NETLINK_SPEED_10FULL;
6152 		fdpx++;
6153 	}
6154 	if (link & BCE_NETLINK_SPEED_100HALF)
6155 		advertise |= BCE_NETLINK_SPEED_100HALF;
6156 	if (link & BCE_NETLINK_SPEED_100FULL) {
6157 		advertise |= BCE_NETLINK_SPEED_100FULL;
6158 		fdpx++;
6159 	}
6160 	if (link & BCE_NETLINK_SPEED_1000HALF)
6161 		advertise |= BCE_NETLINK_SPEED_1000HALF;
6162 	if (link & BCE_NETLINK_SPEED_1000FULL) {
6163 		advertise |= BCE_NETLINK_SPEED_1000FULL;
6164 		fdpx++;
6165 	}
6166 	if (link & BCE_NETLINK_SPEED_2500HALF)
6167 		advertise |= BCE_NETLINK_SPEED_2500HALF;
6168 	if (link & BCE_NETLINK_SPEED_2500FULL) {
6169 		advertise |= BCE_NETLINK_SPEED_2500FULL;
6170 		fdpx++;
6171 	}
6172 	if (fdpx)
6173 		advertise |= BCE_NETLINK_FC_PAUSE_SYM |
6174 		    BCE_NETLINK_FC_PAUSE_ASYM;
6175 	if ((sc->bce_phy_flags & BCE_PHY_REMOTE_PORT_FIBER_FLAG) == 0)
6176 		advertise |= BCE_NETLINK_PHY_APP_REMOTE |
6177 		    BCE_NETLINK_ETH_AT_WIRESPEED;
6178 
6179 	return (advertise);
6180 }
6181 
6182 
6183 /****************************************************************************/
6184 /* Set media options.                                                       */
6185 /*                                                                          */
6186 /* Returns:                                                                 */
6187 /*   0 for success, positive value for failure.                             */
6188 /****************************************************************************/
6189 static int
6190 bce_ifmedia_upd(struct ifnet *ifp)
6191 {
6192 	struct bce_softc *sc = ifp->if_softc;
6193 	int error;
6194 
6195 	DBENTER(BCE_VERBOSE);
6196 
6197 	BCE_LOCK(sc);
6198 	error = bce_ifmedia_upd_locked(ifp);
6199 	BCE_UNLOCK(sc);
6200 
6201 	DBEXIT(BCE_VERBOSE);
6202 	return (error);
6203 }
6204 
6205 
6206 /****************************************************************************/
6207 /* Set media options.                                                       */
6208 /*                                                                          */
6209 /* Returns:                                                                 */
6210 /*   Nothing.                                                               */
6211 /****************************************************************************/
6212 static int
6213 bce_ifmedia_upd_locked(struct ifnet *ifp)
6214 {
6215 	struct bce_softc *sc = ifp->if_softc;
6216 	struct mii_data *mii;
6217 	struct mii_softc *miisc;
6218 	struct ifmedia *ifm;
6219 	u32 link;
6220 	int error, fdx;
6221 
6222 	DBENTER(BCE_VERBOSE_PHY);
6223 
6224 	error = 0;
6225 	BCE_LOCK_ASSERT(sc);
6226 
6227 	sc->bce_link_up = FALSE;
6228 	if ((sc->bce_phy_flags & BCE_PHY_REMOTE_CAP_FLAG) != 0) {
6229 		ifm = &sc->bce_ifmedia;
6230 		if (IFM_TYPE(ifm->ifm_media) != IFM_ETHER)
6231 			return (EINVAL);
6232 		link = 0;
6233 		fdx = IFM_OPTIONS(ifm->ifm_media) & IFM_FDX;
6234 		switch(IFM_SUBTYPE(ifm->ifm_media)) {
6235 		case IFM_AUTO:
6236 			/*
6237 			 * Check advertised link of remote PHY by reading
6238 			 * BCE_RPHY_SERDES_LINK or BCE_RPHY_COPPER_LINK.
6239 			 * Always use the same link type of remote PHY.
6240 			 */
6241 			link = bce_get_rphy_link(sc);
6242 			break;
6243 		case IFM_2500_SX:
6244 			if ((sc->bce_phy_flags &
6245 			    (BCE_PHY_REMOTE_PORT_FIBER_FLAG |
6246 			    BCE_PHY_2_5G_CAPABLE_FLAG)) == 0)
6247 				return (EINVAL);
6248 			/*
6249 			 * XXX
6250 			 * Have to enable forced 2.5Gbps configuration.
6251 			 */
6252 			if (fdx != 0)
6253 				link |= BCE_NETLINK_SPEED_2500FULL;
6254 			else
6255 				link |= BCE_NETLINK_SPEED_2500HALF;
6256 			break;
6257 		case IFM_1000_SX:
6258 			if ((sc->bce_phy_flags &
6259 			    BCE_PHY_REMOTE_PORT_FIBER_FLAG) == 0)
6260 				return (EINVAL);
6261 			/*
6262 			 * XXX
6263 			 * Have to disable 2.5Gbps configuration.
6264 			 */
6265 			if (fdx != 0)
6266 				link = BCE_NETLINK_SPEED_1000FULL;
6267 			else
6268 				link = BCE_NETLINK_SPEED_1000HALF;
6269 			break;
6270 		case IFM_1000_T:
6271 			if (sc->bce_phy_flags & BCE_PHY_REMOTE_PORT_FIBER_FLAG)
6272 				return (EINVAL);
6273 			if (fdx != 0)
6274 				link = BCE_NETLINK_SPEED_1000FULL;
6275 			else
6276 				link = BCE_NETLINK_SPEED_1000HALF;
6277 			break;
6278 		case IFM_100_TX:
6279 			if (sc->bce_phy_flags & BCE_PHY_REMOTE_PORT_FIBER_FLAG)
6280 				return (EINVAL);
6281 			if (fdx != 0)
6282 				link = BCE_NETLINK_SPEED_100FULL;
6283 			else
6284 				link = BCE_NETLINK_SPEED_100HALF;
6285 			break;
6286 		case IFM_10_T:
6287 			if (sc->bce_phy_flags & BCE_PHY_REMOTE_PORT_FIBER_FLAG)
6288 				return (EINVAL);
6289 			if (fdx != 0)
6290 				link = BCE_NETLINK_SPEED_10FULL;
6291 			else
6292 				link = BCE_NETLINK_SPEED_10HALF;
6293 			break;
6294 		default:
6295 			return (EINVAL);
6296 		}
6297 		if (IFM_SUBTYPE(ifm->ifm_media) != IFM_AUTO) {
6298 			/*
6299 			 * XXX
6300 			 * Advertise pause capability for full-duplex media.
6301 			 */
6302 			if (fdx != 0)
6303 				link |= BCE_NETLINK_FC_PAUSE_SYM |
6304 				    BCE_NETLINK_FC_PAUSE_ASYM;
6305 			if ((sc->bce_phy_flags &
6306 			    BCE_PHY_REMOTE_PORT_FIBER_FLAG) == 0)
6307 				link |= BCE_NETLINK_PHY_APP_REMOTE |
6308 				    BCE_NETLINK_ETH_AT_WIRESPEED;
6309 		}
6310 
6311 		bce_shmem_wr(sc, BCE_MB_ARGS_0, link);
6312 		error = bce_fw_sync(sc, BCE_DRV_MSG_CODE_CMD_SET_LINK);
6313 	} else {
6314 		mii = device_get_softc(sc->bce_miibus);
6315 
6316 		/* Make sure the MII bus has been enumerated. */
6317 		if (mii) {
6318 			LIST_FOREACH(miisc, &mii->mii_phys, mii_list)
6319 				PHY_RESET(miisc);
6320 			error = mii_mediachg(mii);
6321 		}
6322 	}
6323 
6324 	DBEXIT(BCE_VERBOSE_PHY);
6325 	return (error);
6326 }
6327 
6328 
6329 static void
6330 bce_ifmedia_sts_rphy(struct bce_softc *sc, struct ifmediareq *ifmr)
6331 {
6332 	struct ifnet *ifp;
6333 	u32 link;
6334 
6335 	ifp = sc->bce_ifp;
6336 	BCE_LOCK_ASSERT(sc);
6337 
6338 	ifmr->ifm_status = IFM_AVALID;
6339 	ifmr->ifm_active = IFM_ETHER;
6340 	link = bce_shmem_rd(sc, BCE_LINK_STATUS);
6341 	/* XXX Handle heart beat status? */
6342 	if ((link & BCE_LINK_STATUS_LINK_UP) != 0)
6343 		ifmr->ifm_status |= IFM_ACTIVE;
6344 	else {
6345 		ifmr->ifm_active |= IFM_NONE;
6346 		ifp->if_baudrate = 0;
6347 		return;
6348 	}
6349 	switch (link & BCE_LINK_STATUS_SPEED_MASK) {
6350 	case BCE_LINK_STATUS_10HALF:
6351 		ifmr->ifm_active |= IFM_10_T | IFM_HDX;
6352 		ifp->if_baudrate = IF_Mbps(10UL);
6353 		break;
6354 	case BCE_LINK_STATUS_10FULL:
6355 		ifmr->ifm_active |= IFM_10_T | IFM_FDX;
6356 		ifp->if_baudrate = IF_Mbps(10UL);
6357 		break;
6358 	case BCE_LINK_STATUS_100HALF:
6359 		ifmr->ifm_active |= IFM_100_TX | IFM_HDX;
6360 		ifp->if_baudrate = IF_Mbps(100UL);
6361 		break;
6362 	case BCE_LINK_STATUS_100FULL:
6363 		ifmr->ifm_active |= IFM_100_TX | IFM_FDX;
6364 		ifp->if_baudrate = IF_Mbps(100UL);
6365 		break;
6366 	case BCE_LINK_STATUS_1000HALF:
6367 		if ((sc->bce_phy_flags & BCE_PHY_REMOTE_PORT_FIBER_FLAG) == 0)
6368 			ifmr->ifm_active |= IFM_1000_T | IFM_HDX;
6369 		else
6370 			ifmr->ifm_active |= IFM_1000_SX | IFM_HDX;
6371 		ifp->if_baudrate = IF_Mbps(1000UL);
6372 		break;
6373 	case BCE_LINK_STATUS_1000FULL:
6374 		if ((sc->bce_phy_flags & BCE_PHY_REMOTE_PORT_FIBER_FLAG) == 0)
6375 			ifmr->ifm_active |= IFM_1000_T | IFM_FDX;
6376 		else
6377 			ifmr->ifm_active |= IFM_1000_SX | IFM_FDX;
6378 		ifp->if_baudrate = IF_Mbps(1000UL);
6379 		break;
6380 	case BCE_LINK_STATUS_2500HALF:
6381 		if ((sc->bce_phy_flags & BCE_PHY_REMOTE_PORT_FIBER_FLAG) == 0) {
6382 			ifmr->ifm_active |= IFM_NONE;
6383 			return;
6384 		} else
6385 			ifmr->ifm_active |= IFM_2500_SX | IFM_HDX;
6386 		ifp->if_baudrate = IF_Mbps(2500UL);
6387 		break;
6388 	case BCE_LINK_STATUS_2500FULL:
6389 		if ((sc->bce_phy_flags & BCE_PHY_REMOTE_PORT_FIBER_FLAG) == 0) {
6390 			ifmr->ifm_active |= IFM_NONE;
6391 			return;
6392 		} else
6393 			ifmr->ifm_active |= IFM_2500_SX | IFM_FDX;
6394 		ifp->if_baudrate = IF_Mbps(2500UL);
6395 		break;
6396 	default:
6397 		ifmr->ifm_active |= IFM_NONE;
6398 		return;
6399 	}
6400 
6401 	if ((link & BCE_LINK_STATUS_RX_FC_ENABLED) != 0)
6402 		ifmr->ifm_active |= IFM_ETH_RXPAUSE;
6403 	if ((link & BCE_LINK_STATUS_TX_FC_ENABLED) != 0)
6404 		ifmr->ifm_active |= IFM_ETH_TXPAUSE;
6405 }
6406 
6407 
6408 /****************************************************************************/
6409 /* Reports current media status.                                            */
6410 /*                                                                          */
6411 /* Returns:                                                                 */
6412 /*   Nothing.                                                               */
6413 /****************************************************************************/
6414 static void
6415 bce_ifmedia_sts(struct ifnet *ifp, struct ifmediareq *ifmr)
6416 {
6417 	struct bce_softc *sc = ifp->if_softc;
6418 	struct mii_data *mii;
6419 
6420 	DBENTER(BCE_VERBOSE_PHY);
6421 
6422 	BCE_LOCK(sc);
6423 
6424 	if ((ifp->if_flags & IFF_UP) == 0) {
6425 		BCE_UNLOCK(sc);
6426 		return;
6427 	}
6428 
6429 	if ((sc->bce_phy_flags & BCE_PHY_REMOTE_CAP_FLAG) != 0)
6430 		bce_ifmedia_sts_rphy(sc, ifmr);
6431 	else {
6432 		mii = device_get_softc(sc->bce_miibus);
6433 		mii_pollstat(mii);
6434 		ifmr->ifm_active = mii->mii_media_active;
6435 		ifmr->ifm_status = mii->mii_media_status;
6436 	}
6437 
6438 	BCE_UNLOCK(sc);
6439 
6440 	DBEXIT(BCE_VERBOSE_PHY);
6441 }
6442 
6443 
6444 /****************************************************************************/
6445 /* Handles PHY generated interrupt events.                                  */
6446 /*                                                                          */
6447 /* Returns:                                                                 */
6448 /*   Nothing.                                                               */
6449 /****************************************************************************/
6450 static void
6451 bce_phy_intr(struct bce_softc *sc)
6452 {
6453 	u32 new_link_state, old_link_state;
6454 
6455 	DBENTER(BCE_VERBOSE_PHY | BCE_VERBOSE_INTR);
6456 
6457 	DBRUN(sc->phy_interrupts++);
6458 
6459 	new_link_state = sc->status_block->status_attn_bits &
6460 	    STATUS_ATTN_BITS_LINK_STATE;
6461 	old_link_state = sc->status_block->status_attn_bits_ack &
6462 	    STATUS_ATTN_BITS_LINK_STATE;
6463 
6464 	/* Handle any changes if the link state has changed. */
6465 	if (new_link_state != old_link_state) {
6466 
6467 		/* Update the status_attn_bits_ack field. */
6468 		if (new_link_state) {
6469 			REG_WR(sc, BCE_PCICFG_STATUS_BIT_SET_CMD,
6470 			    STATUS_ATTN_BITS_LINK_STATE);
6471 			DBPRINT(sc, BCE_INFO_PHY, "%s(): Link is now UP.\n",
6472 			    __FUNCTION__);
6473 		} else {
6474 			REG_WR(sc, BCE_PCICFG_STATUS_BIT_CLEAR_CMD,
6475 			    STATUS_ATTN_BITS_LINK_STATE);
6476 			DBPRINT(sc, BCE_INFO_PHY, "%s(): Link is now DOWN.\n",
6477 			    __FUNCTION__);
6478 		}
6479 
6480 		if ((sc->bce_phy_flags & BCE_PHY_REMOTE_CAP_FLAG) != 0) {
6481 			if (new_link_state) {
6482 				if (bootverbose)
6483 					if_printf(sc->bce_ifp, "link UP\n");
6484 				if_link_state_change(sc->bce_ifp,
6485 				    LINK_STATE_UP);
6486 			} else {
6487 				if (bootverbose)
6488 					if_printf(sc->bce_ifp, "link DOWN\n");
6489 				if_link_state_change(sc->bce_ifp,
6490 				    LINK_STATE_DOWN);
6491 			}
6492 		}
6493 		/*
6494 		 * Assume link is down and allow
6495 		 * tick routine to update the state
6496 		 * based on the actual media state.
6497 		 */
6498 		sc->bce_link_up = FALSE;
6499 		callout_stop(&sc->bce_tick_callout);
6500 		bce_tick(sc);
6501 	}
6502 
6503 	/* Acknowledge the link change interrupt. */
6504 	REG_WR(sc, BCE_EMAC_STATUS, BCE_EMAC_STATUS_LINK_CHANGE);
6505 
6506 	DBEXIT(BCE_VERBOSE_PHY | BCE_VERBOSE_INTR);
6507 }
6508 
6509 
6510 /****************************************************************************/
6511 /* Reads the receive consumer value from the status block (skipping over    */
6512 /* chain page pointer if necessary).                                        */
6513 /*                                                                          */
6514 /* Returns:                                                                 */
6515 /*   hw_cons                                                                */
6516 /****************************************************************************/
6517 static inline u16
6518 bce_get_hw_rx_cons(struct bce_softc *sc)
6519 {
6520 	u16 hw_cons;
6521 
6522 	rmb();
6523 	hw_cons = sc->status_block->status_rx_quick_consumer_index0;
6524 	if ((hw_cons & USABLE_RX_BD_PER_PAGE) == USABLE_RX_BD_PER_PAGE)
6525 		hw_cons++;
6526 
6527 	return hw_cons;
6528 }
6529 
6530 /****************************************************************************/
6531 /* Handles received frame interrupt events.                                 */
6532 /*                                                                          */
6533 /* Returns:                                                                 */
6534 /*   Nothing.                                                               */
6535 /****************************************************************************/
6536 static void
6537 bce_rx_intr(struct bce_softc *sc)
6538 {
6539 	struct ifnet *ifp = sc->bce_ifp;
6540 	struct l2_fhdr *l2fhdr;
6541 	struct ether_vlan_header *vh;
6542 	unsigned int pkt_len;
6543 	u16 sw_rx_cons, sw_rx_cons_idx, hw_rx_cons;
6544 	u32 status;
6545 	unsigned int rem_len;
6546 	u16 sw_pg_cons, sw_pg_cons_idx;
6547 
6548 	DBENTER(BCE_VERBOSE_RECV | BCE_VERBOSE_INTR);
6549 	DBRUN(sc->interrupts_rx++);
6550 	DBPRINT(sc, BCE_EXTREME_RECV, "%s(enter): rx_prod = 0x%04X, "
6551 	    "rx_cons = 0x%04X, rx_prod_bseq = 0x%08X\n",
6552 	    __FUNCTION__, sc->rx_prod, sc->rx_cons, sc->rx_prod_bseq);
6553 
6554 	/* Prepare the RX chain pages to be accessed by the host CPU. */
6555 	for (int i = 0; i < sc->rx_pages; i++)
6556 		bus_dmamap_sync(sc->rx_bd_chain_tag,
6557 		    sc->rx_bd_chain_map[i], BUS_DMASYNC_POSTREAD);
6558 
6559 	/* Prepare the page chain pages to be accessed by the host CPU. */
6560 	if (bce_hdr_split == TRUE) {
6561 		for (int i = 0; i < sc->pg_pages; i++)
6562 			bus_dmamap_sync(sc->pg_bd_chain_tag,
6563 			    sc->pg_bd_chain_map[i], BUS_DMASYNC_POSTREAD);
6564 	}
6565 
6566 	/* Get the hardware's view of the RX consumer index. */
6567 	hw_rx_cons = sc->hw_rx_cons = bce_get_hw_rx_cons(sc);
6568 
6569 	/* Get working copies of the driver's view of the consumer indices. */
6570 	sw_rx_cons = sc->rx_cons;
6571 	sw_pg_cons = sc->pg_cons;
6572 
6573 	/* Update some debug statistics counters */
6574 	DBRUNIF((sc->free_rx_bd < sc->rx_low_watermark),
6575 	    sc->rx_low_watermark = sc->free_rx_bd);
6576 	DBRUNIF((sc->free_rx_bd == sc->max_rx_bd),
6577 	    sc->rx_empty_count++);
6578 
6579 	/* Scan through the receive chain as long as there is work to do */
6580 	/* ToDo: Consider setting a limit on the number of packets processed. */
6581 	rmb();
6582 	while (sw_rx_cons != hw_rx_cons) {
6583 		struct mbuf *m0;
6584 
6585 		/* Convert the producer/consumer indices to an actual rx_bd index. */
6586 		sw_rx_cons_idx = RX_CHAIN_IDX(sw_rx_cons);
6587 
6588 		/* Unmap the mbuf from DMA space. */
6589 		bus_dmamap_sync(sc->rx_mbuf_tag,
6590 		    sc->rx_mbuf_map[sw_rx_cons_idx],
6591 		    BUS_DMASYNC_POSTREAD);
6592 		bus_dmamap_unload(sc->rx_mbuf_tag,
6593 		    sc->rx_mbuf_map[sw_rx_cons_idx]);
6594 
6595 		/* Remove the mbuf from the RX chain. */
6596 		m0 = sc->rx_mbuf_ptr[sw_rx_cons_idx];
6597 		sc->rx_mbuf_ptr[sw_rx_cons_idx] = NULL;
6598 		DBRUN(sc->debug_rx_mbuf_alloc--);
6599 		sc->free_rx_bd++;
6600 
6601 		/*
6602  		 * Frames received on the NetXteme II are prepended
6603  		 * with an l2_fhdr structure which provides status
6604  		 * information about the received frame (including
6605  		 * VLAN tags and checksum info).  The frames are
6606 		 * also automatically adjusted to word align the IP
6607  		 * header (i.e. two null bytes are inserted before
6608  		 * the Ethernet	header).  As a result the data
6609  		 * DMA'd by the controller into	the mbuf looks
6610 		 * like this:
6611 		 *
6612 		 * +---------+-----+---------------------+-----+
6613 		 * | l2_fhdr | pad | packet data         | FCS |
6614 		 * +---------+-----+---------------------+-----+
6615 		 *
6616  		 * The l2_fhdr needs to be checked and skipped and
6617  		 * the FCS needs to be stripped before sending the
6618 		 * packet up the stack.
6619 		 */
6620 		l2fhdr  = mtod(m0, struct l2_fhdr *);
6621 
6622 		/* Get the packet data + FCS length and the status. */
6623 		pkt_len = l2fhdr->l2_fhdr_pkt_len;
6624 		status  = l2fhdr->l2_fhdr_status;
6625 
6626 		/*
6627 		 * Skip over the l2_fhdr and pad, resulting in the
6628 		 * following data in the mbuf:
6629 		 * +---------------------+-----+
6630 		 * | packet data         | FCS |
6631 		 * +---------------------+-----+
6632 		 */
6633 		m_adj(m0, sizeof(struct l2_fhdr) + ETHER_ALIGN);
6634 
6635 		/*
6636  		 * When split header mode is used, an ethernet frame
6637  		 * may be split across the receive chain and the
6638  		 * page chain. If that occurs an mbuf cluster must be
6639  		 * reassembled from the individual mbuf pieces.
6640 		 */
6641 		if (bce_hdr_split == TRUE) {
6642 			/*
6643 			 * Check whether the received frame fits in a single
6644 			 * mbuf or not (i.e. packet data + FCS <=
6645 			 * sc->rx_bd_mbuf_data_len bytes).
6646 			 */
6647 			if (pkt_len > m0->m_len) {
6648 				/*
6649 				 * The received frame is larger than a single mbuf.
6650 				 * If the frame was a TCP frame then only the TCP
6651 				 * header is placed in the mbuf, the remaining
6652 				 * payload (including FCS) is placed in the page
6653 				 * chain, the SPLIT flag is set, and the header
6654 				 * length is placed in the IP checksum field.
6655 				 * If the frame is not a TCP frame then the mbuf
6656 				 * is filled and the remaining bytes are placed
6657 				 * in the page chain.
6658 				 */
6659 
6660 				DBPRINT(sc, BCE_INFO_RECV, "%s(): Found a large "
6661 					"packet.\n", __FUNCTION__);
6662 				DBRUN(sc->split_header_frames_rcvd++);
6663 
6664 				/*
6665 				 * When the page chain is enabled and the TCP
6666 				 * header has been split from the TCP payload,
6667 				 * the ip_xsum structure will reflect the length
6668 				 * of the TCP header, not the IP checksum.  Set
6669 				 * the packet length of the mbuf accordingly.
6670 				 */
6671 				if (status & L2_FHDR_STATUS_SPLIT) {
6672 					m0->m_len = l2fhdr->l2_fhdr_ip_xsum;
6673 					DBRUN(sc->split_header_tcp_frames_rcvd++);
6674 				}
6675 
6676 				rem_len = pkt_len - m0->m_len;
6677 
6678 				/* Pull mbufs off the page chain for any remaining data. */
6679 				while (rem_len > 0) {
6680 					struct mbuf *m_pg;
6681 
6682 					sw_pg_cons_idx = PG_CHAIN_IDX(sw_pg_cons);
6683 
6684 					/* Remove the mbuf from the page chain. */
6685 					m_pg = sc->pg_mbuf_ptr[sw_pg_cons_idx];
6686 					sc->pg_mbuf_ptr[sw_pg_cons_idx] = NULL;
6687 					DBRUN(sc->debug_pg_mbuf_alloc--);
6688 					sc->free_pg_bd++;
6689 
6690 					/* Unmap the page chain mbuf from DMA space. */
6691 					bus_dmamap_sync(sc->pg_mbuf_tag,
6692 						sc->pg_mbuf_map[sw_pg_cons_idx],
6693 						BUS_DMASYNC_POSTREAD);
6694 					bus_dmamap_unload(sc->pg_mbuf_tag,
6695 						sc->pg_mbuf_map[sw_pg_cons_idx]);
6696 
6697 					/* Adjust the mbuf length. */
6698 					if (rem_len < m_pg->m_len) {
6699 						/* The mbuf chain is complete. */
6700 						m_pg->m_len = rem_len;
6701 						rem_len = 0;
6702 					} else {
6703 						/* More packet data is waiting. */
6704 						rem_len -= m_pg->m_len;
6705 					}
6706 
6707 					/* Concatenate the mbuf cluster to the mbuf. */
6708 					m_cat(m0, m_pg);
6709 
6710 					sw_pg_cons = NEXT_PG_BD(sw_pg_cons);
6711 				}
6712 
6713 				/* Set the total packet length. */
6714 				m0->m_pkthdr.len = pkt_len;
6715 
6716 			} else {
6717 				/*
6718 				 * The received packet is small and fits in a
6719 				 * single mbuf (i.e. the l2_fhdr + pad + packet +
6720 				 * FCS <= MHLEN).  In other words, the packet is
6721 				 * 154 bytes or less in size.
6722 				 */
6723 
6724 				DBPRINT(sc, BCE_INFO_RECV, "%s(): Found a small "
6725 					"packet.\n", __FUNCTION__);
6726 
6727 				/* Set the total packet length. */
6728 				m0->m_pkthdr.len = m0->m_len = pkt_len;
6729 			}
6730 		} else
6731 			/* Set the total packet length. */
6732 			m0->m_pkthdr.len = m0->m_len = pkt_len;
6733 
6734 		/* Remove the trailing Ethernet FCS. */
6735 		m_adj(m0, -ETHER_CRC_LEN);
6736 
6737 		/* Check that the resulting mbuf chain is valid. */
6738 		DBRUN(m_sanity(m0, FALSE));
6739 		DBRUNIF(((m0->m_len < ETHER_HDR_LEN) |
6740 		    (m0->m_pkthdr.len > BCE_MAX_JUMBO_ETHER_MTU_VLAN)),
6741 		    BCE_PRINTF("Invalid Ethernet frame size!\n");
6742 		    m_print(m0, 128));
6743 
6744 		DBRUNIF(DB_RANDOMTRUE(l2fhdr_error_sim_control),
6745 		    sc->l2fhdr_error_sim_count++;
6746 		    status = status | L2_FHDR_ERRORS_PHY_DECODE);
6747 
6748 		/* Check the received frame for errors. */
6749 		if (status & (L2_FHDR_ERRORS_BAD_CRC |
6750 		    L2_FHDR_ERRORS_PHY_DECODE | L2_FHDR_ERRORS_ALIGNMENT |
6751 		    L2_FHDR_ERRORS_TOO_SHORT  | L2_FHDR_ERRORS_GIANT_FRAME)) {
6752 
6753 			/* Log the error and release the mbuf. */
6754 			sc->l2fhdr_error_count++;
6755 			m_freem(m0);
6756 			m0 = NULL;
6757 			goto bce_rx_intr_next_rx;
6758 		}
6759 
6760 		/* Send the packet to the appropriate interface. */
6761 		m0->m_pkthdr.rcvif = ifp;
6762 
6763 		/* Assume no hardware checksum. */
6764 		m0->m_pkthdr.csum_flags = 0;
6765 
6766 		/* Validate the checksum if offload enabled. */
6767 		if (ifp->if_capenable & IFCAP_RXCSUM) {
6768 			/* Check for an IP datagram. */
6769 		 	if (!(status & L2_FHDR_STATUS_SPLIT) &&
6770 			    (status & L2_FHDR_STATUS_IP_DATAGRAM)) {
6771 				m0->m_pkthdr.csum_flags |= CSUM_IP_CHECKED;
6772 				DBRUN(sc->csum_offload_ip++);
6773 				/* Check if the IP checksum is valid. */
6774 				if ((l2fhdr->l2_fhdr_ip_xsum ^ 0xffff) == 0)
6775 					m0->m_pkthdr.csum_flags |=
6776 					    CSUM_IP_VALID;
6777 			}
6778 
6779 			/* Check for a valid TCP/UDP frame. */
6780 			if (status & (L2_FHDR_STATUS_TCP_SEGMENT |
6781 			    L2_FHDR_STATUS_UDP_DATAGRAM)) {
6782 
6783 				/* Check for a good TCP/UDP checksum. */
6784 				if ((status & (L2_FHDR_ERRORS_TCP_XSUM |
6785 				    L2_FHDR_ERRORS_UDP_XSUM)) == 0) {
6786 					DBRUN(sc->csum_offload_tcp_udp++);
6787 					m0->m_pkthdr.csum_data =
6788 					    l2fhdr->l2_fhdr_tcp_udp_xsum;
6789 					m0->m_pkthdr.csum_flags |=
6790 					    (CSUM_DATA_VALID
6791 					    | CSUM_PSEUDO_HDR);
6792 				}
6793 			}
6794 		}
6795 
6796 		/* Attach the VLAN tag.	*/
6797 		if ((status & L2_FHDR_STATUS_L2_VLAN_TAG) &&
6798 		    !(sc->rx_mode & BCE_EMAC_RX_MODE_KEEP_VLAN_TAG)) {
6799 			DBRUN(sc->vlan_tagged_frames_rcvd++);
6800 			if (ifp->if_capenable & IFCAP_VLAN_HWTAGGING) {
6801 				DBRUN(sc->vlan_tagged_frames_stripped++);
6802 #if __FreeBSD_version < 700000
6803 				VLAN_INPUT_TAG(ifp, m0,
6804 				    l2fhdr->l2_fhdr_vlan_tag, continue);
6805 #else
6806 				m0->m_pkthdr.ether_vtag =
6807 				    l2fhdr->l2_fhdr_vlan_tag;
6808 				m0->m_flags |= M_VLANTAG;
6809 #endif
6810 			} else {
6811 				/*
6812 				 * bce(4) controllers can't disable VLAN
6813 				 * tag stripping if management firmware
6814 				 * (ASF/IPMI/UMP) is running. So we always
6815 				 * strip VLAN tag and manually reconstruct
6816 				 * the VLAN frame by appending stripped
6817 				 * VLAN tag in driver if VLAN tag stripping
6818 				 * was disabled.
6819 				 *
6820 				 * TODO: LLC SNAP handling.
6821 				 */
6822 				bcopy(mtod(m0, uint8_t *),
6823 				    mtod(m0, uint8_t *) - ETHER_VLAN_ENCAP_LEN,
6824 				    ETHER_ADDR_LEN * 2);
6825 				m0->m_data -= ETHER_VLAN_ENCAP_LEN;
6826 				vh = mtod(m0, struct ether_vlan_header *);
6827 				vh->evl_encap_proto = htons(ETHERTYPE_VLAN);
6828 				vh->evl_tag = htons(l2fhdr->l2_fhdr_vlan_tag);
6829 				m0->m_pkthdr.len += ETHER_VLAN_ENCAP_LEN;
6830 				m0->m_len += ETHER_VLAN_ENCAP_LEN;
6831 			}
6832 		}
6833 
6834 		/* Increment received packet statistics. */
6835 		if_inc_counter(ifp, IFCOUNTER_IPACKETS, 1);
6836 
6837 bce_rx_intr_next_rx:
6838 		sw_rx_cons = NEXT_RX_BD(sw_rx_cons);
6839 
6840 		/* If we have a packet, pass it up the stack */
6841 		if (m0) {
6842 			/* Make sure we don't lose our place when we release the lock. */
6843 			sc->rx_cons = sw_rx_cons;
6844 			sc->pg_cons = sw_pg_cons;
6845 
6846 			BCE_UNLOCK(sc);
6847 			(*ifp->if_input)(ifp, m0);
6848 			BCE_LOCK(sc);
6849 
6850 			/* Recover our place. */
6851 			sw_rx_cons = sc->rx_cons;
6852 			sw_pg_cons = sc->pg_cons;
6853 		}
6854 
6855 		/* Refresh hw_cons to see if there's new work */
6856 		if (sw_rx_cons == hw_rx_cons)
6857 			hw_rx_cons = sc->hw_rx_cons = bce_get_hw_rx_cons(sc);
6858 	}
6859 
6860 	/* No new packets.  Refill the page chain. */
6861 	if (bce_hdr_split == TRUE) {
6862 		sc->pg_cons = sw_pg_cons;
6863 		bce_fill_pg_chain(sc);
6864 	}
6865 
6866 	/* No new packets.  Refill the RX chain. */
6867 	sc->rx_cons = sw_rx_cons;
6868 	bce_fill_rx_chain(sc);
6869 
6870 	/* Prepare the page chain pages to be accessed by the NIC. */
6871 	for (int i = 0; i < sc->rx_pages; i++)
6872 		bus_dmamap_sync(sc->rx_bd_chain_tag,
6873 		    sc->rx_bd_chain_map[i], BUS_DMASYNC_PREWRITE);
6874 
6875 	if (bce_hdr_split == TRUE) {
6876 		for (int i = 0; i < sc->pg_pages; i++)
6877 			bus_dmamap_sync(sc->pg_bd_chain_tag,
6878 			    sc->pg_bd_chain_map[i], BUS_DMASYNC_PREWRITE);
6879 	}
6880 
6881 	DBPRINT(sc, BCE_EXTREME_RECV, "%s(exit): rx_prod = 0x%04X, "
6882 	    "rx_cons = 0x%04X, rx_prod_bseq = 0x%08X\n",
6883 	    __FUNCTION__, sc->rx_prod, sc->rx_cons, sc->rx_prod_bseq);
6884 	DBEXIT(BCE_VERBOSE_RECV | BCE_VERBOSE_INTR);
6885 }
6886 
6887 
6888 /****************************************************************************/
6889 /* Reads the transmit consumer value from the status block (skipping over   */
6890 /* chain page pointer if necessary).                                        */
6891 /*                                                                          */
6892 /* Returns:                                                                 */
6893 /*   hw_cons                                                                */
6894 /****************************************************************************/
6895 static inline u16
6896 bce_get_hw_tx_cons(struct bce_softc *sc)
6897 {
6898 	u16 hw_cons;
6899 
6900 	mb();
6901 	hw_cons = sc->status_block->status_tx_quick_consumer_index0;
6902 	if ((hw_cons & USABLE_TX_BD_PER_PAGE) == USABLE_TX_BD_PER_PAGE)
6903 		hw_cons++;
6904 
6905 	return hw_cons;
6906 }
6907 
6908 
6909 /****************************************************************************/
6910 /* Handles transmit completion interrupt events.                            */
6911 /*                                                                          */
6912 /* Returns:                                                                 */
6913 /*   Nothing.                                                               */
6914 /****************************************************************************/
6915 static void
6916 bce_tx_intr(struct bce_softc *sc)
6917 {
6918 	struct ifnet *ifp = sc->bce_ifp;
6919 	u16 hw_tx_cons, sw_tx_cons, sw_tx_chain_cons;
6920 
6921 	DBENTER(BCE_VERBOSE_SEND | BCE_VERBOSE_INTR);
6922 	DBRUN(sc->interrupts_tx++);
6923 	DBPRINT(sc, BCE_EXTREME_SEND, "%s(enter): tx_prod = 0x%04X, "
6924 	    "tx_cons = 0x%04X, tx_prod_bseq = 0x%08X\n",
6925 	    __FUNCTION__, sc->tx_prod, sc->tx_cons, sc->tx_prod_bseq);
6926 
6927 	BCE_LOCK_ASSERT(sc);
6928 
6929 	/* Get the hardware's view of the TX consumer index. */
6930 	hw_tx_cons = sc->hw_tx_cons = bce_get_hw_tx_cons(sc);
6931 	sw_tx_cons = sc->tx_cons;
6932 
6933 	/* Prevent speculative reads of the status block. */
6934 	bus_space_barrier(sc->bce_btag, sc->bce_bhandle, 0, 0,
6935 	    BUS_SPACE_BARRIER_READ);
6936 
6937 	/* Cycle through any completed TX chain page entries. */
6938 	while (sw_tx_cons != hw_tx_cons) {
6939 #ifdef BCE_DEBUG
6940 		struct tx_bd *txbd = NULL;
6941 #endif
6942 		sw_tx_chain_cons = TX_CHAIN_IDX(sw_tx_cons);
6943 
6944 		DBPRINT(sc, BCE_INFO_SEND,
6945 		    "%s(): hw_tx_cons = 0x%04X, sw_tx_cons = 0x%04X, "
6946 		    "sw_tx_chain_cons = 0x%04X\n",
6947 		    __FUNCTION__, hw_tx_cons, sw_tx_cons, sw_tx_chain_cons);
6948 
6949 		DBRUNIF((sw_tx_chain_cons > MAX_TX_BD_ALLOC),
6950 		    BCE_PRINTF("%s(%d): TX chain consumer out of range! "
6951 		    " 0x%04X > 0x%04X\n", __FILE__, __LINE__, sw_tx_chain_cons,
6952 		    (int) MAX_TX_BD_ALLOC);
6953 		    bce_breakpoint(sc));
6954 
6955 		DBRUN(txbd = &sc->tx_bd_chain[TX_PAGE(sw_tx_chain_cons)]
6956 		    [TX_IDX(sw_tx_chain_cons)]);
6957 
6958 		DBRUNIF((txbd == NULL),
6959 		    BCE_PRINTF("%s(%d): Unexpected NULL tx_bd[0x%04X]!\n",
6960 		    __FILE__, __LINE__, sw_tx_chain_cons);
6961 		    bce_breakpoint(sc));
6962 
6963 		DBRUNMSG(BCE_INFO_SEND, BCE_PRINTF("%s(): ", __FUNCTION__);
6964 		    bce_dump_txbd(sc, sw_tx_chain_cons, txbd));
6965 
6966 		/*
6967 		 * Free the associated mbuf. Remember
6968 		 * that only the last tx_bd of a packet
6969 		 * has an mbuf pointer and DMA map.
6970 		 */
6971 		if (sc->tx_mbuf_ptr[sw_tx_chain_cons] != NULL) {
6972 
6973 			/* Validate that this is the last tx_bd. */
6974 			DBRUNIF((!(txbd->tx_bd_flags & TX_BD_FLAGS_END)),
6975 			    BCE_PRINTF("%s(%d): tx_bd END flag not set but "
6976 			    "txmbuf == NULL!\n", __FILE__, __LINE__);
6977 			    bce_breakpoint(sc));
6978 
6979 			DBRUNMSG(BCE_INFO_SEND,
6980 			    BCE_PRINTF("%s(): Unloading map/freeing mbuf "
6981 			    "from tx_bd[0x%04X]\n", __FUNCTION__,
6982 			    sw_tx_chain_cons));
6983 
6984 			/* Unmap the mbuf. */
6985 			bus_dmamap_unload(sc->tx_mbuf_tag,
6986 			    sc->tx_mbuf_map[sw_tx_chain_cons]);
6987 
6988 			/* Free the mbuf. */
6989 			m_freem(sc->tx_mbuf_ptr[sw_tx_chain_cons]);
6990 			sc->tx_mbuf_ptr[sw_tx_chain_cons] = NULL;
6991 			DBRUN(sc->debug_tx_mbuf_alloc--);
6992 
6993 			if_inc_counter(ifp, IFCOUNTER_OPACKETS, 1);
6994 		}
6995 
6996 		sc->used_tx_bd--;
6997 		sw_tx_cons = NEXT_TX_BD(sw_tx_cons);
6998 
6999 		/* Refresh hw_cons to see if there's new work. */
7000 		hw_tx_cons = sc->hw_tx_cons = bce_get_hw_tx_cons(sc);
7001 
7002 		/* Prevent speculative reads of the status block. */
7003 		bus_space_barrier(sc->bce_btag, sc->bce_bhandle, 0, 0,
7004 		    BUS_SPACE_BARRIER_READ);
7005 	}
7006 
7007 	/* Clear the TX timeout timer. */
7008 	sc->watchdog_timer = 0;
7009 
7010 	/* Clear the tx hardware queue full flag. */
7011 	if (sc->used_tx_bd < sc->max_tx_bd) {
7012 		DBRUNIF((ifp->if_drv_flags & IFF_DRV_OACTIVE),
7013 		    DBPRINT(sc, BCE_INFO_SEND,
7014 		    "%s(): Open TX chain! %d/%d (used/total)\n",
7015 		    __FUNCTION__, sc->used_tx_bd, sc->max_tx_bd));
7016 		ifp->if_drv_flags &= ~IFF_DRV_OACTIVE;
7017 	}
7018 
7019 	sc->tx_cons = sw_tx_cons;
7020 
7021 	DBPRINT(sc, BCE_EXTREME_SEND, "%s(exit): tx_prod = 0x%04X, "
7022 	    "tx_cons = 0x%04X, tx_prod_bseq = 0x%08X\n",
7023 	    __FUNCTION__, sc->tx_prod, sc->tx_cons, sc->tx_prod_bseq);
7024 	DBEXIT(BCE_VERBOSE_SEND | BCE_VERBOSE_INTR);
7025 }
7026 
7027 
7028 /****************************************************************************/
7029 /* Disables interrupt generation.                                           */
7030 /*                                                                          */
7031 /* Returns:                                                                 */
7032 /*   Nothing.                                                               */
7033 /****************************************************************************/
7034 static void
7035 bce_disable_intr(struct bce_softc *sc)
7036 {
7037 	DBENTER(BCE_VERBOSE_INTR);
7038 
7039 	REG_WR(sc, BCE_PCICFG_INT_ACK_CMD, BCE_PCICFG_INT_ACK_CMD_MASK_INT);
7040 	REG_RD(sc, BCE_PCICFG_INT_ACK_CMD);
7041 
7042 	DBEXIT(BCE_VERBOSE_INTR);
7043 }
7044 
7045 
7046 /****************************************************************************/
7047 /* Enables interrupt generation.                                            */
7048 /*                                                                          */
7049 /* Returns:                                                                 */
7050 /*   Nothing.                                                               */
7051 /****************************************************************************/
7052 static void
7053 bce_enable_intr(struct bce_softc *sc, int coal_now)
7054 {
7055 	DBENTER(BCE_VERBOSE_INTR);
7056 
7057 	REG_WR(sc, BCE_PCICFG_INT_ACK_CMD,
7058 	    BCE_PCICFG_INT_ACK_CMD_INDEX_VALID |
7059 	    BCE_PCICFG_INT_ACK_CMD_MASK_INT | sc->last_status_idx);
7060 
7061 	REG_WR(sc, BCE_PCICFG_INT_ACK_CMD,
7062 	    BCE_PCICFG_INT_ACK_CMD_INDEX_VALID | sc->last_status_idx);
7063 
7064 	/* Force an immediate interrupt (whether there is new data or not). */
7065 	if (coal_now)
7066 		REG_WR(sc, BCE_HC_COMMAND, sc->hc_command | BCE_HC_COMMAND_COAL_NOW);
7067 
7068 	DBEXIT(BCE_VERBOSE_INTR);
7069 }
7070 
7071 
7072 /****************************************************************************/
7073 /* Handles controller initialization.                                       */
7074 /*                                                                          */
7075 /* Returns:                                                                 */
7076 /*   Nothing.                                                               */
7077 /****************************************************************************/
7078 static void
7079 bce_init_locked(struct bce_softc *sc)
7080 {
7081 	struct ifnet *ifp;
7082 	u32 ether_mtu = 0;
7083 
7084 	DBENTER(BCE_VERBOSE_RESET);
7085 
7086 	BCE_LOCK_ASSERT(sc);
7087 
7088 	ifp = sc->bce_ifp;
7089 
7090 	/* Check if the driver is still running and bail out if it is. */
7091 	if (ifp->if_drv_flags & IFF_DRV_RUNNING)
7092 		goto bce_init_locked_exit;
7093 
7094 	bce_stop(sc);
7095 
7096 	if (bce_reset(sc, BCE_DRV_MSG_CODE_RESET)) {
7097 		BCE_PRINTF("%s(%d): Controller reset failed!\n",
7098 		    __FILE__, __LINE__);
7099 		goto bce_init_locked_exit;
7100 	}
7101 
7102 	if (bce_chipinit(sc)) {
7103 		BCE_PRINTF("%s(%d): Controller initialization failed!\n",
7104 		    __FILE__, __LINE__);
7105 		goto bce_init_locked_exit;
7106 	}
7107 
7108 	if (bce_blockinit(sc)) {
7109 		BCE_PRINTF("%s(%d): Block initialization failed!\n",
7110 		    __FILE__, __LINE__);
7111 		goto bce_init_locked_exit;
7112 	}
7113 
7114 	/* Load our MAC address. */
7115 	bcopy(IF_LLADDR(sc->bce_ifp), sc->eaddr, ETHER_ADDR_LEN);
7116 	bce_set_mac_addr(sc);
7117 
7118 	if (bce_hdr_split == FALSE)
7119 		bce_get_rx_buffer_sizes(sc, ifp->if_mtu);
7120 	/*
7121 	 * Calculate and program the hardware Ethernet MTU
7122  	 * size. Be generous on the receive if we have room
7123  	 * and allowed by the user.
7124 	 */
7125 	if (bce_strict_rx_mtu == TRUE)
7126 		ether_mtu = ifp->if_mtu;
7127 	else {
7128 		if (bce_hdr_split == TRUE) {
7129 			if (ifp->if_mtu <= sc->rx_bd_mbuf_data_len + MCLBYTES)
7130 				ether_mtu = sc->rx_bd_mbuf_data_len +
7131 				    MCLBYTES;
7132 			else
7133 				ether_mtu = ifp->if_mtu;
7134 		} else {
7135 			if (ifp->if_mtu <= sc->rx_bd_mbuf_data_len)
7136 				ether_mtu = sc->rx_bd_mbuf_data_len;
7137 			else
7138 				ether_mtu = ifp->if_mtu;
7139 		}
7140 	}
7141 
7142 	ether_mtu += ETHER_HDR_LEN + ETHER_VLAN_ENCAP_LEN + ETHER_CRC_LEN;
7143 
7144 	DBPRINT(sc, BCE_INFO_MISC, "%s(): setting h/w mtu = %d\n",
7145 	    __FUNCTION__, ether_mtu);
7146 
7147 	/* Program the mtu, enabling jumbo frame support if necessary. */
7148 	if (ether_mtu > (ETHER_MAX_LEN + ETHER_VLAN_ENCAP_LEN))
7149 		REG_WR(sc, BCE_EMAC_RX_MTU_SIZE,
7150 		    min(ether_mtu, BCE_MAX_JUMBO_ETHER_MTU) |
7151 		    BCE_EMAC_RX_MTU_SIZE_JUMBO_ENA);
7152 	else
7153 		REG_WR(sc, BCE_EMAC_RX_MTU_SIZE, ether_mtu);
7154 
7155 	/* Program appropriate promiscuous/multicast filtering. */
7156 	bce_set_rx_mode(sc);
7157 
7158 	if (bce_hdr_split == TRUE) {
7159 		/* Init page buffer descriptor chain. */
7160 		bce_init_pg_chain(sc);
7161 	}
7162 
7163 	/* Init RX buffer descriptor chain. */
7164 	bce_init_rx_chain(sc);
7165 
7166 	/* Init TX buffer descriptor chain. */
7167 	bce_init_tx_chain(sc);
7168 
7169 	/* Enable host interrupts. */
7170 	bce_enable_intr(sc, 1);
7171 
7172 	bce_ifmedia_upd_locked(ifp);
7173 
7174 	/* Let the OS know the driver is up and running. */
7175 	ifp->if_drv_flags |= IFF_DRV_RUNNING;
7176 	ifp->if_drv_flags &= ~IFF_DRV_OACTIVE;
7177 
7178 	callout_reset(&sc->bce_tick_callout, hz, bce_tick, sc);
7179 
7180 bce_init_locked_exit:
7181 	DBEXIT(BCE_VERBOSE_RESET);
7182 }
7183 
7184 
7185 /****************************************************************************/
7186 /* Initialize the controller just enough so that any management firmware    */
7187 /* running on the device will continue to operate correctly.                */
7188 /*                                                                          */
7189 /* Returns:                                                                 */
7190 /*   Nothing.                                                               */
7191 /****************************************************************************/
7192 static void
7193 bce_mgmt_init_locked(struct bce_softc *sc)
7194 {
7195 	struct ifnet *ifp;
7196 
7197 	DBENTER(BCE_VERBOSE_RESET);
7198 
7199 	BCE_LOCK_ASSERT(sc);
7200 
7201 	/* Bail out if management firmware is not running. */
7202 	if (!(sc->bce_flags & BCE_MFW_ENABLE_FLAG)) {
7203 		DBPRINT(sc, BCE_VERBOSE_SPECIAL,
7204 		    "No management firmware running...\n");
7205 		goto bce_mgmt_init_locked_exit;
7206 	}
7207 
7208 	ifp = sc->bce_ifp;
7209 
7210 	/* Enable all critical blocks in the MAC. */
7211 	REG_WR(sc, BCE_MISC_ENABLE_SET_BITS, BCE_MISC_ENABLE_DEFAULT);
7212 	REG_RD(sc, BCE_MISC_ENABLE_SET_BITS);
7213 	DELAY(20);
7214 
7215 	bce_ifmedia_upd_locked(ifp);
7216 
7217 bce_mgmt_init_locked_exit:
7218 	DBEXIT(BCE_VERBOSE_RESET);
7219 }
7220 
7221 
7222 /****************************************************************************/
7223 /* Handles controller initialization when called from an unlocked routine.  */
7224 /*                                                                          */
7225 /* Returns:                                                                 */
7226 /*   Nothing.                                                               */
7227 /****************************************************************************/
7228 static void
7229 bce_init(void *xsc)
7230 {
7231 	struct bce_softc *sc = xsc;
7232 
7233 	DBENTER(BCE_VERBOSE_RESET);
7234 
7235 	BCE_LOCK(sc);
7236 	bce_init_locked(sc);
7237 	BCE_UNLOCK(sc);
7238 
7239 	DBEXIT(BCE_VERBOSE_RESET);
7240 }
7241 
7242 
7243 /****************************************************************************/
7244 /* Modifies an mbuf for TSO on the hardware.                                */
7245 /*                                                                          */
7246 /* Returns:                                                                 */
7247 /*   Pointer to a modified mbuf.                                            */
7248 /****************************************************************************/
7249 static struct mbuf *
7250 bce_tso_setup(struct bce_softc *sc, struct mbuf **m_head, u16 *flags)
7251 {
7252 	struct mbuf *m;
7253 	struct ether_header *eh;
7254 	struct ip *ip;
7255 	struct tcphdr *th;
7256 	u16 etype;
7257 	int hdr_len, ip_hlen = 0, tcp_hlen = 0, ip_len = 0;
7258 
7259 	DBRUN(sc->tso_frames_requested++);
7260 
7261 	/* Controller may modify mbuf chains. */
7262 	if (M_WRITABLE(*m_head) == 0) {
7263 		m = m_dup(*m_head, M_NOWAIT);
7264 		m_freem(*m_head);
7265 		if (m == NULL) {
7266 			sc->mbuf_alloc_failed_count++;
7267 			*m_head = NULL;
7268 			return (NULL);
7269 		}
7270 		*m_head = m;
7271 	}
7272 
7273 	/*
7274 	 * For TSO the controller needs two pieces of info,
7275 	 * the MSS and the IP+TCP options length.
7276 	 */
7277 	m = m_pullup(*m_head, sizeof(struct ether_header) + sizeof(struct ip));
7278 	if (m == NULL) {
7279 		*m_head = NULL;
7280 		return (NULL);
7281 	}
7282 	eh = mtod(m, struct ether_header *);
7283 	etype = ntohs(eh->ether_type);
7284 
7285 	/* Check for supported TSO Ethernet types (only IPv4 for now) */
7286 	switch (etype) {
7287 	case ETHERTYPE_IP:
7288 		ip = (struct ip *)(m->m_data + sizeof(struct ether_header));
7289 		/* TSO only supported for TCP protocol. */
7290 		if (ip->ip_p != IPPROTO_TCP) {
7291 			BCE_PRINTF("%s(%d): TSO enabled for non-TCP frame!.\n",
7292 			    __FILE__, __LINE__);
7293 			m_freem(*m_head);
7294 			*m_head = NULL;
7295 			return (NULL);
7296 		}
7297 
7298 		/* Get IP header length in bytes (min 20) */
7299 		ip_hlen = ip->ip_hl << 2;
7300 		m = m_pullup(*m_head, sizeof(struct ether_header) + ip_hlen +
7301 		    sizeof(struct tcphdr));
7302 		if (m == NULL) {
7303 			*m_head = NULL;
7304 			return (NULL);
7305 		}
7306 
7307 		/* Get the TCP header length in bytes (min 20) */
7308 		ip = (struct ip *)(m->m_data + sizeof(struct ether_header));
7309 		th = (struct tcphdr *)((caddr_t)ip + ip_hlen);
7310 		tcp_hlen = (th->th_off << 2);
7311 
7312 		/* Make sure all IP/TCP options live in the same buffer. */
7313 		m = m_pullup(*m_head,  sizeof(struct ether_header)+ ip_hlen +
7314 		    tcp_hlen);
7315 		if (m == NULL) {
7316 			*m_head = NULL;
7317 			return (NULL);
7318 		}
7319 
7320 		/* Clear IP header length and checksum, will be calc'd by h/w. */
7321 		ip = (struct ip *)(m->m_data + sizeof(struct ether_header));
7322 		ip_len = ip->ip_len;
7323 		ip->ip_len = 0;
7324 		ip->ip_sum = 0;
7325 		break;
7326 	case ETHERTYPE_IPV6:
7327 		BCE_PRINTF("%s(%d): TSO over IPv6 not supported!.\n",
7328 		    __FILE__, __LINE__);
7329 		m_freem(*m_head);
7330 		*m_head = NULL;
7331 		return (NULL);
7332 		/* NOT REACHED */
7333 	default:
7334 		BCE_PRINTF("%s(%d): TSO enabled for unsupported protocol!.\n",
7335 		    __FILE__, __LINE__);
7336 		m_freem(*m_head);
7337 		*m_head = NULL;
7338 		return (NULL);
7339 	}
7340 
7341 	hdr_len = sizeof(struct ether_header) + ip_hlen + tcp_hlen;
7342 
7343 	DBPRINT(sc, BCE_EXTREME_SEND, "%s(): hdr_len = %d, e_hlen = %d, "
7344 	    "ip_hlen = %d, tcp_hlen = %d, ip_len = %d\n",
7345 	    __FUNCTION__, hdr_len, (int) sizeof(struct ether_header), ip_hlen,
7346 	    tcp_hlen, ip_len);
7347 
7348 	/* Set the LSO flag in the TX BD */
7349 	*flags |= TX_BD_FLAGS_SW_LSO;
7350 
7351 	/* Set the length of IP + TCP options (in 32 bit words) */
7352 	*flags |= (((ip_hlen + tcp_hlen - sizeof(struct ip) -
7353 	    sizeof(struct tcphdr)) >> 2) << 8);
7354 
7355 	DBRUN(sc->tso_frames_completed++);
7356 	return (*m_head);
7357 }
7358 
7359 
7360 /****************************************************************************/
7361 /* Encapsultes an mbuf cluster into the tx_bd chain structure and makes the */
7362 /* memory visible to the controller.                                        */
7363 /*                                                                          */
7364 /* Returns:                                                                 */
7365 /*   0 for success, positive value for failure.                             */
7366 /* Modified:                                                                */
7367 /*   m_head: May be set to NULL if MBUF is excessively fragmented.          */
7368 /****************************************************************************/
7369 static int
7370 bce_tx_encap(struct bce_softc *sc, struct mbuf **m_head)
7371 {
7372 	bus_dma_segment_t segs[BCE_MAX_SEGMENTS];
7373 	bus_dmamap_t map;
7374 	struct tx_bd *txbd = NULL;
7375 	struct mbuf *m0;
7376 	u16 prod, chain_prod, mss = 0, vlan_tag = 0, flags = 0;
7377 	u32 prod_bseq;
7378 
7379 #ifdef BCE_DEBUG
7380 	u16 debug_prod;
7381 #endif
7382 
7383 	int i, error, nsegs, rc = 0;
7384 
7385 	DBENTER(BCE_VERBOSE_SEND);
7386 
7387 	/* Make sure we have room in the TX chain. */
7388 	if (sc->used_tx_bd >= sc->max_tx_bd)
7389 		goto bce_tx_encap_exit;
7390 
7391 	/* Transfer any checksum offload flags to the bd. */
7392 	m0 = *m_head;
7393 	if (m0->m_pkthdr.csum_flags) {
7394 		if (m0->m_pkthdr.csum_flags & CSUM_TSO) {
7395 			m0 = bce_tso_setup(sc, m_head, &flags);
7396 			if (m0 == NULL) {
7397 				DBRUN(sc->tso_frames_failed++);
7398 				goto bce_tx_encap_exit;
7399 			}
7400 			mss = htole16(m0->m_pkthdr.tso_segsz);
7401 		} else {
7402 			if (m0->m_pkthdr.csum_flags & CSUM_IP)
7403 				flags |= TX_BD_FLAGS_IP_CKSUM;
7404 			if (m0->m_pkthdr.csum_flags & (CSUM_TCP | CSUM_UDP))
7405 				flags |= TX_BD_FLAGS_TCP_UDP_CKSUM;
7406 		}
7407 	}
7408 
7409 	/* Transfer any VLAN tags to the bd. */
7410 	if (m0->m_flags & M_VLANTAG) {
7411 		flags |= TX_BD_FLAGS_VLAN_TAG;
7412 		vlan_tag = m0->m_pkthdr.ether_vtag;
7413 	}
7414 
7415 	/* Map the mbuf into DMAable memory. */
7416 	prod = sc->tx_prod;
7417 	chain_prod = TX_CHAIN_IDX(prod);
7418 	map = sc->tx_mbuf_map[chain_prod];
7419 
7420 	/* Map the mbuf into our DMA address space. */
7421 	error = bus_dmamap_load_mbuf_sg(sc->tx_mbuf_tag, map, m0,
7422 	    segs, &nsegs, BUS_DMA_NOWAIT);
7423 
7424 	/* Check if the DMA mapping was successful */
7425 	if (error == EFBIG) {
7426 		sc->mbuf_frag_count++;
7427 
7428 		/* Try to defrag the mbuf. */
7429 		m0 = m_collapse(*m_head, M_NOWAIT, BCE_MAX_SEGMENTS);
7430 		if (m0 == NULL) {
7431 			/* Defrag was unsuccessful */
7432 			m_freem(*m_head);
7433 			*m_head = NULL;
7434 			sc->mbuf_alloc_failed_count++;
7435 			rc = ENOBUFS;
7436 			goto bce_tx_encap_exit;
7437 		}
7438 
7439 		/* Defrag was successful, try mapping again */
7440 		*m_head = m0;
7441 		error = bus_dmamap_load_mbuf_sg(sc->tx_mbuf_tag,
7442 		    map, m0, segs, &nsegs, BUS_DMA_NOWAIT);
7443 
7444 		/* Still getting an error after a defrag. */
7445 		if (error == ENOMEM) {
7446 			/* Insufficient DMA buffers available. */
7447 			sc->dma_map_addr_tx_failed_count++;
7448 			rc = error;
7449 			goto bce_tx_encap_exit;
7450 		} else if (error != 0) {
7451 			/* Release it and return an error. */
7452 			BCE_PRINTF("%s(%d): Unknown error mapping mbuf into "
7453 			    "TX chain!\n", __FILE__, __LINE__);
7454 			m_freem(m0);
7455 			*m_head = NULL;
7456 			sc->dma_map_addr_tx_failed_count++;
7457 			rc = ENOBUFS;
7458 			goto bce_tx_encap_exit;
7459 		}
7460 	} else if (error == ENOMEM) {
7461 		/* Insufficient DMA buffers available. */
7462 		sc->dma_map_addr_tx_failed_count++;
7463 		rc = error;
7464 		goto bce_tx_encap_exit;
7465 	} else if (error != 0) {
7466 		m_freem(m0);
7467 		*m_head = NULL;
7468 		sc->dma_map_addr_tx_failed_count++;
7469 		rc = error;
7470 		goto bce_tx_encap_exit;
7471 	}
7472 
7473 	/* Make sure there's room in the chain */
7474 	if (nsegs > (sc->max_tx_bd - sc->used_tx_bd)) {
7475 		bus_dmamap_unload(sc->tx_mbuf_tag, map);
7476 		rc = ENOBUFS;
7477 		goto bce_tx_encap_exit;
7478 	}
7479 
7480 	/* prod points to an empty tx_bd at this point. */
7481 	prod_bseq  = sc->tx_prod_bseq;
7482 
7483 #ifdef BCE_DEBUG
7484 	debug_prod = chain_prod;
7485 #endif
7486 
7487 	DBPRINT(sc, BCE_INFO_SEND,
7488 	    "%s(start): prod = 0x%04X, chain_prod = 0x%04X, "
7489 	    "prod_bseq = 0x%08X\n",
7490 	    __FUNCTION__, prod, chain_prod, prod_bseq);
7491 
7492 	/*
7493 	 * Cycle through each mbuf segment that makes up
7494 	 * the outgoing frame, gathering the mapping info
7495 	 * for that segment and creating a tx_bd for
7496 	 * the mbuf.
7497 	 */
7498 	for (i = 0; i < nsegs ; i++) {
7499 
7500 		chain_prod = TX_CHAIN_IDX(prod);
7501 		txbd= &sc->tx_bd_chain[TX_PAGE(chain_prod)]
7502 		    [TX_IDX(chain_prod)];
7503 
7504 		txbd->tx_bd_haddr_lo =
7505 		    htole32(BCE_ADDR_LO(segs[i].ds_addr));
7506 		txbd->tx_bd_haddr_hi =
7507 		    htole32(BCE_ADDR_HI(segs[i].ds_addr));
7508 		txbd->tx_bd_mss_nbytes = htole32(mss << 16) |
7509 		    htole16(segs[i].ds_len);
7510 		txbd->tx_bd_vlan_tag = htole16(vlan_tag);
7511 		txbd->tx_bd_flags = htole16(flags);
7512 		prod_bseq += segs[i].ds_len;
7513 		if (i == 0)
7514 			txbd->tx_bd_flags |= htole16(TX_BD_FLAGS_START);
7515 		prod = NEXT_TX_BD(prod);
7516 	}
7517 
7518 	/* Set the END flag on the last TX buffer descriptor. */
7519 	txbd->tx_bd_flags |= htole16(TX_BD_FLAGS_END);
7520 
7521 	DBRUNMSG(BCE_EXTREME_SEND,
7522 	    bce_dump_tx_chain(sc, debug_prod, nsegs));
7523 
7524 	/*
7525 	 * Ensure that the mbuf pointer for this transmission
7526 	 * is placed at the array index of the last
7527 	 * descriptor in this chain.  This is done
7528 	 * because a single map is used for all
7529 	 * segments of the mbuf and we don't want to
7530 	 * unload the map before all of the segments
7531 	 * have been freed.
7532 	 */
7533 	sc->tx_mbuf_ptr[chain_prod] = m0;
7534 	sc->used_tx_bd += nsegs;
7535 
7536 	/* Update some debug statistic counters */
7537 	DBRUNIF((sc->used_tx_bd > sc->tx_hi_watermark),
7538 	    sc->tx_hi_watermark = sc->used_tx_bd);
7539 	DBRUNIF((sc->used_tx_bd == sc->max_tx_bd), sc->tx_full_count++);
7540 	DBRUNIF(sc->debug_tx_mbuf_alloc++);
7541 
7542 	DBRUNMSG(BCE_EXTREME_SEND, bce_dump_tx_mbuf_chain(sc, chain_prod, 1));
7543 
7544 	/* prod points to the next free tx_bd at this point. */
7545 	sc->tx_prod = prod;
7546 	sc->tx_prod_bseq = prod_bseq;
7547 
7548 	/* Tell the chip about the waiting TX frames. */
7549 	REG_WR16(sc, MB_GET_CID_ADDR(TX_CID) +
7550 	    BCE_L2MQ_TX_HOST_BIDX, sc->tx_prod);
7551 	REG_WR(sc, MB_GET_CID_ADDR(TX_CID) +
7552 	    BCE_L2MQ_TX_HOST_BSEQ, sc->tx_prod_bseq);
7553 
7554 bce_tx_encap_exit:
7555 	DBEXIT(BCE_VERBOSE_SEND);
7556 	return(rc);
7557 }
7558 
7559 
7560 /****************************************************************************/
7561 /* Main transmit routine when called from another routine with a lock.      */
7562 /*                                                                          */
7563 /* Returns:                                                                 */
7564 /*   Nothing.                                                               */
7565 /****************************************************************************/
7566 static void
7567 bce_start_locked(struct ifnet *ifp)
7568 {
7569 	struct bce_softc *sc = ifp->if_softc;
7570 	struct mbuf *m_head = NULL;
7571 	int count = 0;
7572 	u16 tx_prod, tx_chain_prod;
7573 
7574 	DBENTER(BCE_VERBOSE_SEND | BCE_VERBOSE_CTX);
7575 
7576 	BCE_LOCK_ASSERT(sc);
7577 
7578 	/* prod points to the next free tx_bd. */
7579 	tx_prod = sc->tx_prod;
7580 	tx_chain_prod = TX_CHAIN_IDX(tx_prod);
7581 
7582 	DBPRINT(sc, BCE_INFO_SEND,
7583 	    "%s(enter): tx_prod = 0x%04X, tx_chain_prod = 0x%04X, "
7584 	    "tx_prod_bseq = 0x%08X\n",
7585 	    __FUNCTION__, tx_prod, tx_chain_prod, sc->tx_prod_bseq);
7586 
7587 	/* If there's no link or the transmit queue is empty then just exit. */
7588 	if (sc->bce_link_up == FALSE) {
7589 		DBPRINT(sc, BCE_INFO_SEND, "%s(): No link.\n",
7590 		    __FUNCTION__);
7591 		goto bce_start_locked_exit;
7592 	}
7593 
7594 	if (IFQ_DRV_IS_EMPTY(&ifp->if_snd)) {
7595 		DBPRINT(sc, BCE_INFO_SEND, "%s(): Transmit queue empty.\n",
7596 		    __FUNCTION__);
7597 		goto bce_start_locked_exit;
7598 	}
7599 
7600 	/*
7601 	 * Keep adding entries while there is space in the ring.
7602 	 */
7603 	while (sc->used_tx_bd < sc->max_tx_bd) {
7604 
7605 		/* Check for any frames to send. */
7606 		IFQ_DRV_DEQUEUE(&ifp->if_snd, m_head);
7607 
7608 		/* Stop when the transmit queue is empty. */
7609 		if (m_head == NULL)
7610 			break;
7611 
7612 		/*
7613 		 * Pack the data into the transmit ring. If we
7614 		 * don't have room, place the mbuf back at the
7615 		 * head of the queue and set the OACTIVE flag
7616 		 * to wait for the NIC to drain the chain.
7617 		 */
7618 		if (bce_tx_encap(sc, &m_head)) {
7619 			if (m_head != NULL)
7620 				IFQ_DRV_PREPEND(&ifp->if_snd, m_head);
7621 			ifp->if_drv_flags |= IFF_DRV_OACTIVE;
7622 			DBPRINT(sc, BCE_INFO_SEND,
7623 			    "TX chain is closed for business! Total "
7624 			    "tx_bd used = %d\n", sc->used_tx_bd);
7625 			break;
7626 		}
7627 
7628 		count++;
7629 
7630 		/* Send a copy of the frame to any BPF listeners. */
7631 		ETHER_BPF_MTAP(ifp, m_head);
7632 	}
7633 
7634 	/* Exit if no packets were dequeued. */
7635 	if (count == 0) {
7636 		DBPRINT(sc, BCE_VERBOSE_SEND, "%s(): No packets were "
7637 		    "dequeued\n", __FUNCTION__);
7638 		goto bce_start_locked_exit;
7639 	}
7640 
7641 	DBPRINT(sc, BCE_VERBOSE_SEND, "%s(): Inserted %d frames into "
7642 	    "send queue.\n", __FUNCTION__, count);
7643 
7644 	/* Set the tx timeout. */
7645 	sc->watchdog_timer = BCE_TX_TIMEOUT;
7646 
7647 	DBRUNMSG(BCE_VERBOSE_SEND, bce_dump_ctx(sc, TX_CID));
7648 	DBRUNMSG(BCE_VERBOSE_SEND, bce_dump_mq_regs(sc));
7649 
7650 bce_start_locked_exit:
7651 	DBEXIT(BCE_VERBOSE_SEND | BCE_VERBOSE_CTX);
7652 }
7653 
7654 
7655 /****************************************************************************/
7656 /* Main transmit routine when called from another routine without a lock.   */
7657 /*                                                                          */
7658 /* Returns:                                                                 */
7659 /*   Nothing.                                                               */
7660 /****************************************************************************/
7661 static void
7662 bce_start(struct ifnet *ifp)
7663 {
7664 	struct bce_softc *sc = ifp->if_softc;
7665 
7666 	DBENTER(BCE_VERBOSE_SEND);
7667 
7668 	BCE_LOCK(sc);
7669 	bce_start_locked(ifp);
7670 	BCE_UNLOCK(sc);
7671 
7672 	DBEXIT(BCE_VERBOSE_SEND);
7673 }
7674 
7675 
7676 /****************************************************************************/
7677 /* Handles any IOCTL calls from the operating system.                       */
7678 /*                                                                          */
7679 /* Returns:                                                                 */
7680 /*   0 for success, positive value for failure.                             */
7681 /****************************************************************************/
7682 static int
7683 bce_ioctl(struct ifnet *ifp, u_long command, caddr_t data)
7684 {
7685 	struct bce_softc *sc = ifp->if_softc;
7686 	struct ifreq *ifr = (struct ifreq *) data;
7687 	struct mii_data *mii;
7688 	int mask, error = 0;
7689 
7690 	DBENTER(BCE_VERBOSE_MISC);
7691 
7692 	switch(command) {
7693 
7694 	/* Set the interface MTU. */
7695 	case SIOCSIFMTU:
7696 		/* Check that the MTU setting is supported. */
7697 		if ((ifr->ifr_mtu < BCE_MIN_MTU) ||
7698 			(ifr->ifr_mtu > BCE_MAX_JUMBO_MTU)) {
7699 			error = EINVAL;
7700 			break;
7701 		}
7702 
7703 		DBPRINT(sc, BCE_INFO_MISC,
7704 		    "SIOCSIFMTU: Changing MTU from %d to %d\n",
7705 		    (int) ifp->if_mtu, (int) ifr->ifr_mtu);
7706 
7707 		BCE_LOCK(sc);
7708 		ifp->if_mtu = ifr->ifr_mtu;
7709 		if (ifp->if_drv_flags & IFF_DRV_RUNNING) {
7710 			ifp->if_drv_flags &= ~IFF_DRV_RUNNING;
7711 			bce_init_locked(sc);
7712 		}
7713 		BCE_UNLOCK(sc);
7714 		break;
7715 
7716 	/* Set interface flags. */
7717 	case SIOCSIFFLAGS:
7718 		DBPRINT(sc, BCE_VERBOSE_SPECIAL, "Received SIOCSIFFLAGS\n");
7719 
7720 		BCE_LOCK(sc);
7721 
7722 		/* Check if the interface is up. */
7723 		if (ifp->if_flags & IFF_UP) {
7724 			if (ifp->if_drv_flags & IFF_DRV_RUNNING) {
7725 				/* Change promiscuous/multicast flags as necessary. */
7726 				bce_set_rx_mode(sc);
7727 			} else {
7728 				/* Start the HW */
7729 				bce_init_locked(sc);
7730 			}
7731 		} else {
7732 			/* The interface is down, check if driver is running. */
7733 			if (ifp->if_drv_flags & IFF_DRV_RUNNING) {
7734 				bce_stop(sc);
7735 
7736 				/* If MFW is running, restart the controller a bit. */
7737 				if (sc->bce_flags & BCE_MFW_ENABLE_FLAG) {
7738 					bce_reset(sc, BCE_DRV_MSG_CODE_RESET);
7739 					bce_chipinit(sc);
7740 					bce_mgmt_init_locked(sc);
7741 				}
7742 			}
7743 		}
7744 
7745 		BCE_UNLOCK(sc);
7746 		break;
7747 
7748 	/* Add/Delete multicast address */
7749 	case SIOCADDMULTI:
7750 	case SIOCDELMULTI:
7751 		DBPRINT(sc, BCE_VERBOSE_MISC,
7752 		    "Received SIOCADDMULTI/SIOCDELMULTI\n");
7753 
7754 		BCE_LOCK(sc);
7755 		if (ifp->if_drv_flags & IFF_DRV_RUNNING)
7756 			bce_set_rx_mode(sc);
7757 		BCE_UNLOCK(sc);
7758 
7759 		break;
7760 
7761 	/* Set/Get Interface media */
7762 	case SIOCSIFMEDIA:
7763 	case SIOCGIFMEDIA:
7764 		DBPRINT(sc, BCE_VERBOSE_MISC,
7765 		    "Received SIOCSIFMEDIA/SIOCGIFMEDIA\n");
7766 		if ((sc->bce_phy_flags & BCE_PHY_REMOTE_CAP_FLAG) != 0)
7767 			error = ifmedia_ioctl(ifp, ifr, &sc->bce_ifmedia,
7768 			    command);
7769 		else {
7770 			mii = device_get_softc(sc->bce_miibus);
7771 			error = ifmedia_ioctl(ifp, ifr, &mii->mii_media,
7772 			    command);
7773 		}
7774 		break;
7775 
7776 	/* Set interface capability */
7777 	case SIOCSIFCAP:
7778 		mask = ifr->ifr_reqcap ^ ifp->if_capenable;
7779 		DBPRINT(sc, BCE_INFO_MISC,
7780 		    "Received SIOCSIFCAP = 0x%08X\n", (u32) mask);
7781 
7782 		/* Toggle the TX checksum capabilities enable flag. */
7783 		if (mask & IFCAP_TXCSUM &&
7784 		    ifp->if_capabilities & IFCAP_TXCSUM) {
7785 			ifp->if_capenable ^= IFCAP_TXCSUM;
7786 			if (IFCAP_TXCSUM & ifp->if_capenable)
7787 				ifp->if_hwassist |= BCE_IF_HWASSIST;
7788 			else
7789 				ifp->if_hwassist &= ~BCE_IF_HWASSIST;
7790 		}
7791 
7792 		/* Toggle the RX checksum capabilities enable flag. */
7793 		if (mask & IFCAP_RXCSUM &&
7794 		    ifp->if_capabilities & IFCAP_RXCSUM)
7795 			ifp->if_capenable ^= IFCAP_RXCSUM;
7796 
7797 		/* Toggle the TSO capabilities enable flag. */
7798 		if (bce_tso_enable && (mask & IFCAP_TSO4) &&
7799 		    ifp->if_capabilities & IFCAP_TSO4) {
7800 			ifp->if_capenable ^= IFCAP_TSO4;
7801 			if (IFCAP_TSO4 & ifp->if_capenable)
7802 				ifp->if_hwassist |= CSUM_TSO;
7803 			else
7804 				ifp->if_hwassist &= ~CSUM_TSO;
7805 		}
7806 
7807 		if (mask & IFCAP_VLAN_HWCSUM &&
7808 		    ifp->if_capabilities & IFCAP_VLAN_HWCSUM)
7809 			ifp->if_capenable ^= IFCAP_VLAN_HWCSUM;
7810 
7811 		if ((mask & IFCAP_VLAN_HWTSO) != 0 &&
7812 		    (ifp->if_capabilities & IFCAP_VLAN_HWTSO) != 0)
7813 			ifp->if_capenable ^= IFCAP_VLAN_HWTSO;
7814 		/*
7815 		 * Don't actually disable VLAN tag stripping as
7816 		 * management firmware (ASF/IPMI/UMP) requires the
7817 		 * feature. If VLAN tag stripping is disabled driver
7818 		 * will manually reconstruct the VLAN frame by
7819 		 * appending stripped VLAN tag.
7820 		 */
7821 		if ((mask & IFCAP_VLAN_HWTAGGING) != 0 &&
7822 		    (ifp->if_capabilities & IFCAP_VLAN_HWTAGGING)) {
7823 			ifp->if_capenable ^= IFCAP_VLAN_HWTAGGING;
7824 			if ((ifp->if_capenable & IFCAP_VLAN_HWTAGGING)
7825 			    == 0)
7826 				ifp->if_capenable &= ~IFCAP_VLAN_HWTSO;
7827 		}
7828 		VLAN_CAPABILITIES(ifp);
7829 		break;
7830 	default:
7831 		/* We don't know how to handle the IOCTL, pass it on. */
7832 		error = ether_ioctl(ifp, command, data);
7833 		break;
7834 	}
7835 
7836 	DBEXIT(BCE_VERBOSE_MISC);
7837 	return(error);
7838 }
7839 
7840 
7841 /****************************************************************************/
7842 /* Transmit timeout handler.                                                */
7843 /*                                                                          */
7844 /* Returns:                                                                 */
7845 /*   Nothing.                                                               */
7846 /****************************************************************************/
7847 static void
7848 bce_watchdog(struct bce_softc *sc)
7849 {
7850 	uint32_t status;
7851 
7852 	DBENTER(BCE_EXTREME_SEND);
7853 
7854 	BCE_LOCK_ASSERT(sc);
7855 
7856 	status = 0;
7857 	/* If the watchdog timer hasn't expired then just exit. */
7858 	if (sc->watchdog_timer == 0 || --sc->watchdog_timer)
7859 		goto bce_watchdog_exit;
7860 
7861 	status = REG_RD(sc, BCE_EMAC_RX_STATUS);
7862 	/* If pause frames are active then don't reset the hardware. */
7863 	if ((sc->bce_flags & BCE_USING_RX_FLOW_CONTROL) != 0) {
7864 		if ((status & BCE_EMAC_RX_STATUS_FFED) != 0) {
7865 			/*
7866 			 * If link partner has us in XOFF state then wait for
7867 			 * the condition to clear.
7868 			 */
7869 			sc->watchdog_timer = BCE_TX_TIMEOUT;
7870 			goto bce_watchdog_exit;
7871 		} else if ((status & BCE_EMAC_RX_STATUS_FF_RECEIVED) != 0 &&
7872 			(status & BCE_EMAC_RX_STATUS_N_RECEIVED) != 0) {
7873 			/*
7874 			 * If we're not currently XOFF'ed but have recently
7875 			 * been XOFF'd/XON'd then assume that's delaying TX
7876 			 * this time around.
7877 			 */
7878 			sc->watchdog_timer = BCE_TX_TIMEOUT;
7879 			goto bce_watchdog_exit;
7880 		}
7881 		/*
7882 		 * Any other condition is unexpected and the controller
7883 		 * should be reset.
7884 		 */
7885 	}
7886 
7887 	BCE_PRINTF("%s(%d): Watchdog timeout occurred, resetting!\n",
7888 	    __FILE__, __LINE__);
7889 
7890 	DBRUNMSG(BCE_INFO,
7891 	    bce_dump_driver_state(sc);
7892 	    bce_dump_status_block(sc);
7893 	    bce_dump_stats_block(sc);
7894 	    bce_dump_ftqs(sc);
7895 	    bce_dump_txp_state(sc, 0);
7896 	    bce_dump_rxp_state(sc, 0);
7897 	    bce_dump_tpat_state(sc, 0);
7898 	    bce_dump_cp_state(sc, 0);
7899 	    bce_dump_com_state(sc, 0));
7900 
7901 	DBRUN(bce_breakpoint(sc));
7902 
7903 	sc->bce_ifp->if_drv_flags &= ~IFF_DRV_RUNNING;
7904 
7905 	bce_init_locked(sc);
7906 	sc->watchdog_timeouts++;
7907 
7908 bce_watchdog_exit:
7909 	REG_WR(sc, BCE_EMAC_RX_STATUS, status);
7910 	DBEXIT(BCE_EXTREME_SEND);
7911 }
7912 
7913 
7914 /*
7915  * Interrupt handler.
7916  */
7917 /****************************************************************************/
7918 /* Main interrupt entry point.  Verifies that the controller generated the  */
7919 /* interrupt and then calls a separate routine for handle the various       */
7920 /* interrupt causes (PHY, TX, RX).                                          */
7921 /*                                                                          */
7922 /* Returns:                                                                 */
7923 /*   Nothing.                                                               */
7924 /****************************************************************************/
7925 static void
7926 bce_intr(void *xsc)
7927 {
7928 	struct bce_softc *sc;
7929 	struct ifnet *ifp;
7930 	u32 status_attn_bits;
7931 	u16 hw_rx_cons, hw_tx_cons;
7932 
7933 	sc = xsc;
7934 	ifp = sc->bce_ifp;
7935 
7936 	DBENTER(BCE_VERBOSE_SEND | BCE_VERBOSE_RECV | BCE_VERBOSE_INTR);
7937 	DBRUNMSG(BCE_VERBOSE_INTR, bce_dump_status_block(sc));
7938 	DBRUNMSG(BCE_VERBOSE_INTR, bce_dump_stats_block(sc));
7939 
7940 	BCE_LOCK(sc);
7941 
7942 	DBRUN(sc->interrupts_generated++);
7943 
7944 	/* Synchnorize before we read from interface's status block */
7945 	bus_dmamap_sync(sc->status_tag, sc->status_map, BUS_DMASYNC_POSTREAD);
7946 
7947 	/*
7948 	 * If the hardware status block index matches the last value read
7949 	 * by the driver and we haven't asserted our interrupt then there's
7950 	 * nothing to do.  This may only happen in case of INTx due to the
7951 	 * interrupt arriving at the CPU before the status block is updated.
7952 	 */
7953 	if ((sc->bce_flags & (BCE_USING_MSI_FLAG | BCE_USING_MSIX_FLAG)) == 0 &&
7954 	    sc->status_block->status_idx == sc->last_status_idx &&
7955 	    (REG_RD(sc, BCE_PCICFG_MISC_STATUS) &
7956 	     BCE_PCICFG_MISC_STATUS_INTA_VALUE)) {
7957 		DBPRINT(sc, BCE_VERBOSE_INTR, "%s(): Spurious interrupt.\n",
7958 		    __FUNCTION__);
7959 		goto bce_intr_exit;
7960 	}
7961 
7962 	/* Ack the interrupt and stop others from occurring. */
7963 	REG_WR(sc, BCE_PCICFG_INT_ACK_CMD,
7964 	    BCE_PCICFG_INT_ACK_CMD_USE_INT_HC_PARAM |
7965 	    BCE_PCICFG_INT_ACK_CMD_MASK_INT);
7966 
7967 	/* Check if the hardware has finished any work. */
7968 	hw_rx_cons = bce_get_hw_rx_cons(sc);
7969 	hw_tx_cons = bce_get_hw_tx_cons(sc);
7970 
7971 	/* Keep processing data as long as there is work to do. */
7972 	for (;;) {
7973 
7974 		status_attn_bits = sc->status_block->status_attn_bits;
7975 
7976 		DBRUNIF(DB_RANDOMTRUE(unexpected_attention_sim_control),
7977 		    BCE_PRINTF("Simulating unexpected status attention "
7978 		    "bit set.");
7979 		    sc->unexpected_attention_sim_count++;
7980 		    status_attn_bits = status_attn_bits |
7981 		    STATUS_ATTN_BITS_PARITY_ERROR);
7982 
7983 		/* Was it a link change interrupt? */
7984 		if ((status_attn_bits & STATUS_ATTN_BITS_LINK_STATE) !=
7985 		    (sc->status_block->status_attn_bits_ack &
7986 		     STATUS_ATTN_BITS_LINK_STATE)) {
7987 			bce_phy_intr(sc);
7988 
7989 			/* Clear transient updates during link state change. */
7990 			REG_WR(sc, BCE_HC_COMMAND, sc->hc_command |
7991 			    BCE_HC_COMMAND_COAL_NOW_WO_INT);
7992 			REG_RD(sc, BCE_HC_COMMAND);
7993 		}
7994 
7995 		/* If any other attention is asserted, the chip is toast. */
7996 		if (((status_attn_bits & ~STATUS_ATTN_BITS_LINK_STATE) !=
7997 		    (sc->status_block->status_attn_bits_ack &
7998 		    ~STATUS_ATTN_BITS_LINK_STATE))) {
7999 
8000 			sc->unexpected_attention_count++;
8001 
8002 			BCE_PRINTF("%s(%d): Fatal attention detected: "
8003 			    "0x%08X\n",	__FILE__, __LINE__,
8004 			    sc->status_block->status_attn_bits);
8005 
8006 			DBRUNMSG(BCE_FATAL,
8007 			    if (unexpected_attention_sim_control == 0)
8008 				bce_breakpoint(sc));
8009 
8010 			bce_init_locked(sc);
8011 			goto bce_intr_exit;
8012 		}
8013 
8014 		/* Check for any completed RX frames. */
8015 		if (hw_rx_cons != sc->hw_rx_cons)
8016 			bce_rx_intr(sc);
8017 
8018 		/* Check for any completed TX frames. */
8019 		if (hw_tx_cons != sc->hw_tx_cons)
8020 			bce_tx_intr(sc);
8021 
8022 		/* Save status block index value for the next interrupt. */
8023 		sc->last_status_idx = sc->status_block->status_idx;
8024 
8025  		/*
8026  		 * Prevent speculative reads from getting
8027  		 * ahead of the status block.
8028 		 */
8029 		bus_space_barrier(sc->bce_btag, sc->bce_bhandle, 0, 0,
8030 		    BUS_SPACE_BARRIER_READ);
8031 
8032  		/*
8033  		 * If there's no work left then exit the
8034  		 * interrupt service routine.
8035 		 */
8036 		hw_rx_cons = bce_get_hw_rx_cons(sc);
8037 		hw_tx_cons = bce_get_hw_tx_cons(sc);
8038 
8039 		if ((hw_rx_cons == sc->hw_rx_cons) &&
8040 		    (hw_tx_cons == sc->hw_tx_cons))
8041 			break;
8042 	}
8043 
8044 	bus_dmamap_sync(sc->status_tag,	sc->status_map, BUS_DMASYNC_PREREAD);
8045 
8046 	/* Re-enable interrupts. */
8047 	bce_enable_intr(sc, 0);
8048 
8049 	/* Handle any frames that arrived while handling the interrupt. */
8050 	if (ifp->if_drv_flags & IFF_DRV_RUNNING &&
8051 	    !IFQ_DRV_IS_EMPTY(&ifp->if_snd))
8052 		bce_start_locked(ifp);
8053 
8054 bce_intr_exit:
8055 	BCE_UNLOCK(sc);
8056 
8057 	DBEXIT(BCE_VERBOSE_SEND | BCE_VERBOSE_RECV | BCE_VERBOSE_INTR);
8058 }
8059 
8060 
8061 /****************************************************************************/
8062 /* Programs the various packet receive modes (broadcast and multicast).     */
8063 /*                                                                          */
8064 /* Returns:                                                                 */
8065 /*   Nothing.                                                               */
8066 /****************************************************************************/
8067 static void
8068 bce_set_rx_mode(struct bce_softc *sc)
8069 {
8070 	struct ifnet *ifp;
8071 	struct ifmultiaddr *ifma;
8072 	u32 hashes[NUM_MC_HASH_REGISTERS] = { 0, 0, 0, 0, 0, 0, 0, 0 };
8073 	u32 rx_mode, sort_mode;
8074 	int h, i;
8075 
8076 	DBENTER(BCE_VERBOSE_MISC);
8077 
8078 	BCE_LOCK_ASSERT(sc);
8079 
8080 	ifp = sc->bce_ifp;
8081 
8082 	/* Initialize receive mode default settings. */
8083 	rx_mode   = sc->rx_mode & ~(BCE_EMAC_RX_MODE_PROMISCUOUS |
8084 	    BCE_EMAC_RX_MODE_KEEP_VLAN_TAG);
8085 	sort_mode = 1 | BCE_RPM_SORT_USER0_BC_EN;
8086 
8087 	/*
8088 	 * ASF/IPMI/UMP firmware requires that VLAN tag stripping
8089 	 * be enbled.
8090 	 */
8091 	if (!(BCE_IF_CAPABILITIES & IFCAP_VLAN_HWTAGGING) &&
8092 	    (!(sc->bce_flags & BCE_MFW_ENABLE_FLAG)))
8093 		rx_mode |= BCE_EMAC_RX_MODE_KEEP_VLAN_TAG;
8094 
8095 	/*
8096 	 * Check for promiscuous, all multicast, or selected
8097 	 * multicast address filtering.
8098 	 */
8099 	if (ifp->if_flags & IFF_PROMISC) {
8100 		DBPRINT(sc, BCE_INFO_MISC, "Enabling promiscuous mode.\n");
8101 
8102 		/* Enable promiscuous mode. */
8103 		rx_mode |= BCE_EMAC_RX_MODE_PROMISCUOUS;
8104 		sort_mode |= BCE_RPM_SORT_USER0_PROM_EN;
8105 	} else if (ifp->if_flags & IFF_ALLMULTI) {
8106 		DBPRINT(sc, BCE_INFO_MISC, "Enabling all multicast mode.\n");
8107 
8108 		/* Enable all multicast addresses. */
8109 		for (i = 0; i < NUM_MC_HASH_REGISTERS; i++) {
8110 			REG_WR(sc, BCE_EMAC_MULTICAST_HASH0 + (i * 4),
8111 			    0xffffffff);
8112 		}
8113 		sort_mode |= BCE_RPM_SORT_USER0_MC_EN;
8114 	} else {
8115 		/* Accept one or more multicast(s). */
8116 		DBPRINT(sc, BCE_INFO_MISC, "Enabling selective multicast mode.\n");
8117 
8118 		if_maddr_rlock(ifp);
8119 		TAILQ_FOREACH(ifma, &ifp->if_multiaddrs, ifma_link) {
8120 			if (ifma->ifma_addr->sa_family != AF_LINK)
8121 				continue;
8122 			h = ether_crc32_le(LLADDR((struct sockaddr_dl *)
8123 			    ifma->ifma_addr), ETHER_ADDR_LEN) & 0xFF;
8124 			    hashes[(h & 0xE0) >> 5] |= 1 << (h & 0x1F);
8125 		}
8126 		if_maddr_runlock(ifp);
8127 
8128 		for (i = 0; i < NUM_MC_HASH_REGISTERS; i++)
8129 			REG_WR(sc, BCE_EMAC_MULTICAST_HASH0 + (i * 4), hashes[i]);
8130 
8131 		sort_mode |= BCE_RPM_SORT_USER0_MC_HSH_EN;
8132 	}
8133 
8134 	/* Only make changes if the recive mode has actually changed. */
8135 	if (rx_mode != sc->rx_mode) {
8136 		DBPRINT(sc, BCE_VERBOSE_MISC, "Enabling new receive mode: "
8137 		    "0x%08X\n", rx_mode);
8138 
8139 		sc->rx_mode = rx_mode;
8140 		REG_WR(sc, BCE_EMAC_RX_MODE, rx_mode);
8141 	}
8142 
8143 	/* Disable and clear the exisitng sort before enabling a new sort. */
8144 	REG_WR(sc, BCE_RPM_SORT_USER0, 0x0);
8145 	REG_WR(sc, BCE_RPM_SORT_USER0, sort_mode);
8146 	REG_WR(sc, BCE_RPM_SORT_USER0, sort_mode | BCE_RPM_SORT_USER0_ENA);
8147 
8148 	DBEXIT(BCE_VERBOSE_MISC);
8149 }
8150 
8151 
8152 /****************************************************************************/
8153 /* Called periodically to updates statistics from the controllers           */
8154 /* statistics block.                                                        */
8155 /*                                                                          */
8156 /* Returns:                                                                 */
8157 /*   Nothing.                                                               */
8158 /****************************************************************************/
8159 static void
8160 bce_stats_update(struct bce_softc *sc)
8161 {
8162 	struct statistics_block *stats;
8163 
8164 	DBENTER(BCE_EXTREME_MISC);
8165 
8166 	bus_dmamap_sync(sc->stats_tag, sc->stats_map, BUS_DMASYNC_POSTREAD);
8167 
8168 	stats = (struct statistics_block *) sc->stats_block;
8169 
8170 	/*
8171 	 * Update the sysctl statistics from the
8172 	 * hardware statistics.
8173 	 */
8174 	sc->stat_IfHCInOctets =
8175 	    ((u64) stats->stat_IfHCInOctets_hi << 32) +
8176 	     (u64) stats->stat_IfHCInOctets_lo;
8177 
8178 	sc->stat_IfHCInBadOctets =
8179 	    ((u64) stats->stat_IfHCInBadOctets_hi << 32) +
8180 	     (u64) stats->stat_IfHCInBadOctets_lo;
8181 
8182 	sc->stat_IfHCOutOctets =
8183 	    ((u64) stats->stat_IfHCOutOctets_hi << 32) +
8184 	     (u64) stats->stat_IfHCOutOctets_lo;
8185 
8186 	sc->stat_IfHCOutBadOctets =
8187 	    ((u64) stats->stat_IfHCOutBadOctets_hi << 32) +
8188 	     (u64) stats->stat_IfHCOutBadOctets_lo;
8189 
8190 	sc->stat_IfHCInUcastPkts =
8191 	    ((u64) stats->stat_IfHCInUcastPkts_hi << 32) +
8192 	     (u64) stats->stat_IfHCInUcastPkts_lo;
8193 
8194 	sc->stat_IfHCInMulticastPkts =
8195 	    ((u64) stats->stat_IfHCInMulticastPkts_hi << 32) +
8196 	     (u64) stats->stat_IfHCInMulticastPkts_lo;
8197 
8198 	sc->stat_IfHCInBroadcastPkts =
8199 	    ((u64) stats->stat_IfHCInBroadcastPkts_hi << 32) +
8200 	     (u64) stats->stat_IfHCInBroadcastPkts_lo;
8201 
8202 	sc->stat_IfHCOutUcastPkts =
8203 	    ((u64) stats->stat_IfHCOutUcastPkts_hi << 32) +
8204 	     (u64) stats->stat_IfHCOutUcastPkts_lo;
8205 
8206 	sc->stat_IfHCOutMulticastPkts =
8207 	    ((u64) stats->stat_IfHCOutMulticastPkts_hi << 32) +
8208 	     (u64) stats->stat_IfHCOutMulticastPkts_lo;
8209 
8210 	sc->stat_IfHCOutBroadcastPkts =
8211 	    ((u64) stats->stat_IfHCOutBroadcastPkts_hi << 32) +
8212 	     (u64) stats->stat_IfHCOutBroadcastPkts_lo;
8213 
8214 	/* ToDo: Preserve counters beyond 32 bits? */
8215 	/* ToDo: Read the statistics from auto-clear regs? */
8216 
8217 	sc->stat_emac_tx_stat_dot3statsinternalmactransmiterrors =
8218 	    stats->stat_emac_tx_stat_dot3statsinternalmactransmiterrors;
8219 
8220 	sc->stat_Dot3StatsCarrierSenseErrors =
8221 	    stats->stat_Dot3StatsCarrierSenseErrors;
8222 
8223 	sc->stat_Dot3StatsFCSErrors =
8224 	    stats->stat_Dot3StatsFCSErrors;
8225 
8226 	sc->stat_Dot3StatsAlignmentErrors =
8227 	    stats->stat_Dot3StatsAlignmentErrors;
8228 
8229 	sc->stat_Dot3StatsSingleCollisionFrames =
8230 	    stats->stat_Dot3StatsSingleCollisionFrames;
8231 
8232 	sc->stat_Dot3StatsMultipleCollisionFrames =
8233 	    stats->stat_Dot3StatsMultipleCollisionFrames;
8234 
8235 	sc->stat_Dot3StatsDeferredTransmissions =
8236 	    stats->stat_Dot3StatsDeferredTransmissions;
8237 
8238 	sc->stat_Dot3StatsExcessiveCollisions =
8239 	    stats->stat_Dot3StatsExcessiveCollisions;
8240 
8241 	sc->stat_Dot3StatsLateCollisions =
8242 	    stats->stat_Dot3StatsLateCollisions;
8243 
8244 	sc->stat_EtherStatsCollisions =
8245 	    stats->stat_EtherStatsCollisions;
8246 
8247 	sc->stat_EtherStatsFragments =
8248 	    stats->stat_EtherStatsFragments;
8249 
8250 	sc->stat_EtherStatsJabbers =
8251 	    stats->stat_EtherStatsJabbers;
8252 
8253 	sc->stat_EtherStatsUndersizePkts =
8254 	    stats->stat_EtherStatsUndersizePkts;
8255 
8256 	sc->stat_EtherStatsOversizePkts =
8257 	     stats->stat_EtherStatsOversizePkts;
8258 
8259 	sc->stat_EtherStatsPktsRx64Octets =
8260 	    stats->stat_EtherStatsPktsRx64Octets;
8261 
8262 	sc->stat_EtherStatsPktsRx65Octetsto127Octets =
8263 	    stats->stat_EtherStatsPktsRx65Octetsto127Octets;
8264 
8265 	sc->stat_EtherStatsPktsRx128Octetsto255Octets =
8266 	    stats->stat_EtherStatsPktsRx128Octetsto255Octets;
8267 
8268 	sc->stat_EtherStatsPktsRx256Octetsto511Octets =
8269 	    stats->stat_EtherStatsPktsRx256Octetsto511Octets;
8270 
8271 	sc->stat_EtherStatsPktsRx512Octetsto1023Octets =
8272 	    stats->stat_EtherStatsPktsRx512Octetsto1023Octets;
8273 
8274 	sc->stat_EtherStatsPktsRx1024Octetsto1522Octets =
8275 	    stats->stat_EtherStatsPktsRx1024Octetsto1522Octets;
8276 
8277 	sc->stat_EtherStatsPktsRx1523Octetsto9022Octets =
8278 	    stats->stat_EtherStatsPktsRx1523Octetsto9022Octets;
8279 
8280 	sc->stat_EtherStatsPktsTx64Octets =
8281 	    stats->stat_EtherStatsPktsTx64Octets;
8282 
8283 	sc->stat_EtherStatsPktsTx65Octetsto127Octets =
8284 	    stats->stat_EtherStatsPktsTx65Octetsto127Octets;
8285 
8286 	sc->stat_EtherStatsPktsTx128Octetsto255Octets =
8287 	    stats->stat_EtherStatsPktsTx128Octetsto255Octets;
8288 
8289 	sc->stat_EtherStatsPktsTx256Octetsto511Octets =
8290 	    stats->stat_EtherStatsPktsTx256Octetsto511Octets;
8291 
8292 	sc->stat_EtherStatsPktsTx512Octetsto1023Octets =
8293 	    stats->stat_EtherStatsPktsTx512Octetsto1023Octets;
8294 
8295 	sc->stat_EtherStatsPktsTx1024Octetsto1522Octets =
8296 	    stats->stat_EtherStatsPktsTx1024Octetsto1522Octets;
8297 
8298 	sc->stat_EtherStatsPktsTx1523Octetsto9022Octets =
8299 	    stats->stat_EtherStatsPktsTx1523Octetsto9022Octets;
8300 
8301 	sc->stat_XonPauseFramesReceived =
8302 	    stats->stat_XonPauseFramesReceived;
8303 
8304 	sc->stat_XoffPauseFramesReceived =
8305 	    stats->stat_XoffPauseFramesReceived;
8306 
8307 	sc->stat_OutXonSent =
8308 	    stats->stat_OutXonSent;
8309 
8310 	sc->stat_OutXoffSent =
8311 	    stats->stat_OutXoffSent;
8312 
8313 	sc->stat_FlowControlDone =
8314 	    stats->stat_FlowControlDone;
8315 
8316 	sc->stat_MacControlFramesReceived =
8317 	    stats->stat_MacControlFramesReceived;
8318 
8319 	sc->stat_XoffStateEntered =
8320 	    stats->stat_XoffStateEntered;
8321 
8322 	sc->stat_IfInFramesL2FilterDiscards =
8323 	    stats->stat_IfInFramesL2FilterDiscards;
8324 
8325 	sc->stat_IfInRuleCheckerDiscards =
8326 	    stats->stat_IfInRuleCheckerDiscards;
8327 
8328 	sc->stat_IfInFTQDiscards =
8329 	    stats->stat_IfInFTQDiscards;
8330 
8331 	sc->stat_IfInMBUFDiscards =
8332 	    stats->stat_IfInMBUFDiscards;
8333 
8334 	sc->stat_IfInRuleCheckerP4Hit =
8335 	    stats->stat_IfInRuleCheckerP4Hit;
8336 
8337 	sc->stat_CatchupInRuleCheckerDiscards =
8338 	    stats->stat_CatchupInRuleCheckerDiscards;
8339 
8340 	sc->stat_CatchupInFTQDiscards =
8341 	    stats->stat_CatchupInFTQDiscards;
8342 
8343 	sc->stat_CatchupInMBUFDiscards =
8344 	    stats->stat_CatchupInMBUFDiscards;
8345 
8346 	sc->stat_CatchupInRuleCheckerP4Hit =
8347 	    stats->stat_CatchupInRuleCheckerP4Hit;
8348 
8349 	sc->com_no_buffers = REG_RD_IND(sc, 0x120084);
8350 
8351 	/* ToDo: Add additional statistics? */
8352 
8353 	DBEXIT(BCE_EXTREME_MISC);
8354 }
8355 
8356 static uint64_t
8357 bce_get_counter(struct ifnet *ifp, ift_counter cnt)
8358 {
8359 	struct bce_softc *sc;
8360 	uint64_t rv;
8361 
8362 	sc = if_getsoftc(ifp);
8363 
8364 	switch (cnt) {
8365 	case IFCOUNTER_COLLISIONS:
8366 		return (sc->stat_EtherStatsCollisions);
8367 	case IFCOUNTER_IERRORS:
8368 		return (sc->stat_EtherStatsUndersizePkts +
8369 		    sc->stat_EtherStatsOversizePkts +
8370 		    sc->stat_IfInMBUFDiscards +
8371 		    sc->stat_Dot3StatsAlignmentErrors +
8372 		    sc->stat_Dot3StatsFCSErrors +
8373 		    sc->stat_IfInRuleCheckerDiscards +
8374 		    sc->stat_IfInFTQDiscards +
8375 		    sc->l2fhdr_error_count +
8376 		    sc->com_no_buffers);
8377 	case IFCOUNTER_OERRORS:
8378 		rv = sc->stat_Dot3StatsExcessiveCollisions +
8379 		    sc->stat_emac_tx_stat_dot3statsinternalmactransmiterrors +
8380 		    sc->stat_Dot3StatsLateCollisions +
8381 		    sc->watchdog_timeouts;
8382 		/*
8383 		 * Certain controllers don't report
8384 		 * carrier sense errors correctly.
8385 		 * See errata E11_5708CA0_1165.
8386 		 */
8387 		if (!(BCE_CHIP_NUM(sc) == BCE_CHIP_NUM_5706) &&
8388 		    !(BCE_CHIP_ID(sc) == BCE_CHIP_ID_5708_A0))
8389 			rv += sc->stat_Dot3StatsCarrierSenseErrors;
8390 		return (rv);
8391 	default:
8392 		return (if_get_counter_default(ifp, cnt));
8393 	}
8394 }
8395 
8396 
8397 /****************************************************************************/
8398 /* Periodic function to notify the bootcode that the driver is still        */
8399 /* present.                                                                 */
8400 /*                                                                          */
8401 /* Returns:                                                                 */
8402 /*   Nothing.                                                               */
8403 /****************************************************************************/
8404 static void
8405 bce_pulse(void *xsc)
8406 {
8407 	struct bce_softc *sc = xsc;
8408 	u32 msg;
8409 
8410 	DBENTER(BCE_EXTREME_MISC);
8411 
8412 	BCE_LOCK_ASSERT(sc);
8413 
8414 	/* Tell the firmware that the driver is still running. */
8415 	msg = (u32) ++sc->bce_fw_drv_pulse_wr_seq;
8416 	bce_shmem_wr(sc, BCE_DRV_PULSE_MB, msg);
8417 
8418 	/* Update the bootcode condition. */
8419 	sc->bc_state = bce_shmem_rd(sc, BCE_BC_STATE_CONDITION);
8420 
8421 	/* Report whether the bootcode still knows the driver is running. */
8422 	if (bce_verbose || bootverbose) {
8423 		if (sc->bce_drv_cardiac_arrest == FALSE) {
8424 			if (!(sc->bc_state & BCE_CONDITION_DRV_PRESENT)) {
8425 				sc->bce_drv_cardiac_arrest = TRUE;
8426 				BCE_PRINTF("%s(): Warning: bootcode "
8427 				    "thinks driver is absent! "
8428 				    "(bc_state = 0x%08X)\n",
8429 				    __FUNCTION__, sc->bc_state);
8430 			}
8431 		} else {
8432 			/*
8433 			 * Not supported by all bootcode versions.
8434 			 * (v5.0.11+ and v5.2.1+)  Older bootcode
8435 			 * will require the driver to reset the
8436 			 * controller to clear this condition.
8437 			 */
8438 			if (sc->bc_state & BCE_CONDITION_DRV_PRESENT) {
8439 				sc->bce_drv_cardiac_arrest = FALSE;
8440 				BCE_PRINTF("%s(): Bootcode found the "
8441 				    "driver pulse! (bc_state = 0x%08X)\n",
8442 				    __FUNCTION__, sc->bc_state);
8443 			}
8444 		}
8445 	}
8446 
8447 
8448 	/* Schedule the next pulse. */
8449 	callout_reset(&sc->bce_pulse_callout, hz, bce_pulse, sc);
8450 
8451 	DBEXIT(BCE_EXTREME_MISC);
8452 }
8453 
8454 
8455 /****************************************************************************/
8456 /* Periodic function to perform maintenance tasks.                          */
8457 /*                                                                          */
8458 /* Returns:                                                                 */
8459 /*   Nothing.                                                               */
8460 /****************************************************************************/
8461 static void
8462 bce_tick(void *xsc)
8463 {
8464 	struct bce_softc *sc = xsc;
8465 	struct mii_data *mii;
8466 	struct ifnet *ifp;
8467 	struct ifmediareq ifmr;
8468 
8469 	ifp = sc->bce_ifp;
8470 
8471 	DBENTER(BCE_EXTREME_MISC);
8472 
8473 	BCE_LOCK_ASSERT(sc);
8474 
8475 	/* Schedule the next tick. */
8476 	callout_reset(&sc->bce_tick_callout, hz, bce_tick, sc);
8477 
8478 	/* Update the statistics from the hardware statistics block. */
8479 	bce_stats_update(sc);
8480 
8481  	/* Ensure page and RX chains get refilled in low-memory situations. */
8482 	if (bce_hdr_split == TRUE)
8483 		bce_fill_pg_chain(sc);
8484 	bce_fill_rx_chain(sc);
8485 
8486 	/* Check that chip hasn't hung. */
8487 	bce_watchdog(sc);
8488 
8489 	/* If link is up already up then we're done. */
8490 	if (sc->bce_link_up == TRUE)
8491 		goto bce_tick_exit;
8492 
8493 	/* Link is down.  Check what the PHY's doing. */
8494 	if ((sc->bce_phy_flags & BCE_PHY_REMOTE_CAP_FLAG) != 0) {
8495 		bzero(&ifmr, sizeof(ifmr));
8496 		bce_ifmedia_sts_rphy(sc, &ifmr);
8497 		if ((ifmr.ifm_status & (IFM_ACTIVE | IFM_AVALID)) ==
8498 		    (IFM_ACTIVE | IFM_AVALID)) {
8499 			sc->bce_link_up = TRUE;
8500 			bce_miibus_statchg(sc->bce_dev);
8501 		}
8502 	} else {
8503 		mii = device_get_softc(sc->bce_miibus);
8504 		mii_tick(mii);
8505 		/* Check if the link has come up. */
8506 		if ((mii->mii_media_status & IFM_ACTIVE) &&
8507 		    (IFM_SUBTYPE(mii->mii_media_active) != IFM_NONE)) {
8508 			DBPRINT(sc, BCE_VERBOSE_MISC, "%s(): Link up!\n",
8509 			    __FUNCTION__);
8510 			sc->bce_link_up = TRUE;
8511 			if ((IFM_SUBTYPE(mii->mii_media_active) == IFM_1000_T ||
8512 			    IFM_SUBTYPE(mii->mii_media_active) == IFM_1000_SX ||
8513 			    IFM_SUBTYPE(mii->mii_media_active) == IFM_2500_SX) &&
8514 			    (bce_verbose || bootverbose))
8515 				BCE_PRINTF("Gigabit link up!\n");
8516 		}
8517 
8518 	}
8519 	if (sc->bce_link_up == TRUE) {
8520 		/* Now that link is up, handle any outstanding TX traffic. */
8521 		if (!IFQ_DRV_IS_EMPTY(&ifp->if_snd)) {
8522 			DBPRINT(sc, BCE_VERBOSE_MISC, "%s(): Found "
8523 			    "pending TX traffic.\n", __FUNCTION__);
8524 			bce_start_locked(ifp);
8525 		}
8526 	}
8527 
8528 bce_tick_exit:
8529 	DBEXIT(BCE_EXTREME_MISC);
8530 }
8531 
8532 static void
8533 bce_fw_cap_init(struct bce_softc *sc)
8534 {
8535 	u32 ack, cap, link;
8536 
8537 	ack = 0;
8538 	cap = bce_shmem_rd(sc, BCE_FW_CAP_MB);
8539 	if ((cap & BCE_FW_CAP_SIGNATURE_MAGIC_MASK) !=
8540 	    BCE_FW_CAP_SIGNATURE_MAGIC)
8541 		return;
8542 	if ((cap & (BCE_FW_CAP_MFW_KEEP_VLAN | BCE_FW_CAP_BC_KEEP_VLAN)) ==
8543 	    (BCE_FW_CAP_MFW_KEEP_VLAN | BCE_FW_CAP_BC_KEEP_VLAN))
8544 		ack |= BCE_DRV_ACK_CAP_SIGNATURE_MAGIC |
8545 		    BCE_FW_CAP_MFW_KEEP_VLAN | BCE_FW_CAP_BC_KEEP_VLAN;
8546 	if ((sc->bce_phy_flags & BCE_PHY_SERDES_FLAG) != 0 &&
8547 	    (cap & BCE_FW_CAP_REMOTE_PHY_CAP) != 0) {
8548 		sc->bce_phy_flags &= ~BCE_PHY_REMOTE_PORT_FIBER_FLAG;
8549 		sc->bce_phy_flags |= BCE_PHY_REMOTE_CAP_FLAG;
8550 		link = bce_shmem_rd(sc, BCE_LINK_STATUS);
8551 		if ((link & BCE_LINK_STATUS_SERDES_LINK) != 0)
8552 			sc->bce_phy_flags |= BCE_PHY_REMOTE_PORT_FIBER_FLAG;
8553 		ack |= BCE_DRV_ACK_CAP_SIGNATURE_MAGIC |
8554 		    BCE_FW_CAP_REMOTE_PHY_CAP;
8555 	}
8556 
8557 	if (ack != 0)
8558 		bce_shmem_wr(sc, BCE_DRV_ACK_CAP_MB, ack);
8559 }
8560 
8561 
8562 #ifdef BCE_DEBUG
8563 /****************************************************************************/
8564 /* Allows the driver state to be dumped through the sysctl interface.       */
8565 /*                                                                          */
8566 /* Returns:                                                                 */
8567 /*   0 for success, positive value for failure.                             */
8568 /****************************************************************************/
8569 static int
8570 bce_sysctl_driver_state(SYSCTL_HANDLER_ARGS)
8571 {
8572 	int error;
8573 	int result;
8574 	struct bce_softc *sc;
8575 
8576 	result = -1;
8577 	error = sysctl_handle_int(oidp, &result, 0, req);
8578 
8579 	if (error || !req->newptr)
8580 		return (error);
8581 
8582 	if (result == 1) {
8583 		sc = (struct bce_softc *)arg1;
8584 		bce_dump_driver_state(sc);
8585 	}
8586 
8587 	return error;
8588 }
8589 
8590 
8591 /****************************************************************************/
8592 /* Allows the hardware state to be dumped through the sysctl interface.     */
8593 /*                                                                          */
8594 /* Returns:                                                                 */
8595 /*   0 for success, positive value for failure.                             */
8596 /****************************************************************************/
8597 static int
8598 bce_sysctl_hw_state(SYSCTL_HANDLER_ARGS)
8599 {
8600 	int error;
8601 	int result;
8602 	struct bce_softc *sc;
8603 
8604 	result = -1;
8605 	error = sysctl_handle_int(oidp, &result, 0, req);
8606 
8607 	if (error || !req->newptr)
8608 		return (error);
8609 
8610 	if (result == 1) {
8611 		sc = (struct bce_softc *)arg1;
8612 		bce_dump_hw_state(sc);
8613 	}
8614 
8615 	return error;
8616 }
8617 
8618 
8619 /****************************************************************************/
8620 /* Allows the status block to be dumped through the sysctl interface.       */
8621 /*                                                                          */
8622 /* Returns:                                                                 */
8623 /*   0 for success, positive value for failure.                             */
8624 /****************************************************************************/
8625 static int
8626 bce_sysctl_status_block(SYSCTL_HANDLER_ARGS)
8627 {
8628 	int error;
8629 	int result;
8630 	struct bce_softc *sc;
8631 
8632 	result = -1;
8633 	error = sysctl_handle_int(oidp, &result, 0, req);
8634 
8635 	if (error || !req->newptr)
8636 		return (error);
8637 
8638 	if (result == 1) {
8639 		sc = (struct bce_softc *)arg1;
8640 		bce_dump_status_block(sc);
8641 	}
8642 
8643 	return error;
8644 }
8645 
8646 
8647 /****************************************************************************/
8648 /* Allows the stats block to be dumped through the sysctl interface.        */
8649 /*                                                                          */
8650 /* Returns:                                                                 */
8651 /*   0 for success, positive value for failure.                             */
8652 /****************************************************************************/
8653 static int
8654 bce_sysctl_stats_block(SYSCTL_HANDLER_ARGS)
8655 {
8656 	int error;
8657 	int result;
8658 	struct bce_softc *sc;
8659 
8660 	result = -1;
8661 	error = sysctl_handle_int(oidp, &result, 0, req);
8662 
8663 	if (error || !req->newptr)
8664 		return (error);
8665 
8666 	if (result == 1) {
8667 		sc = (struct bce_softc *)arg1;
8668 		bce_dump_stats_block(sc);
8669 	}
8670 
8671 	return error;
8672 }
8673 
8674 
8675 /****************************************************************************/
8676 /* Allows the stat counters to be cleared without unloading/reloading the   */
8677 /* driver.                                                                  */
8678 /*                                                                          */
8679 /* Returns:                                                                 */
8680 /*   0 for success, positive value for failure.                             */
8681 /****************************************************************************/
8682 static int
8683 bce_sysctl_stats_clear(SYSCTL_HANDLER_ARGS)
8684 {
8685 	int error;
8686 	int result;
8687 	struct bce_softc *sc;
8688 
8689 	result = -1;
8690 	error = sysctl_handle_int(oidp, &result, 0, req);
8691 
8692 	if (error || !req->newptr)
8693 		return (error);
8694 
8695 	if (result == 1) {
8696 		sc = (struct bce_softc *)arg1;
8697 		struct statistics_block *stats;
8698 
8699 		stats = (struct statistics_block *) sc->stats_block;
8700 		bzero(stats, sizeof(struct statistics_block));
8701 		bus_dmamap_sync(sc->stats_tag, sc->stats_map,
8702 		    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
8703 
8704 		/* Clear the internal H/W statistics counters. */
8705 		REG_WR(sc, BCE_HC_COMMAND, BCE_HC_COMMAND_CLR_STAT_NOW);
8706 
8707 		/* Reset the driver maintained statistics. */
8708 		sc->interrupts_rx =
8709 		    sc->interrupts_tx = 0;
8710 		sc->tso_frames_requested =
8711 		    sc->tso_frames_completed =
8712 		    sc->tso_frames_failed = 0;
8713 		sc->rx_empty_count =
8714 		    sc->tx_full_count = 0;
8715 		sc->rx_low_watermark = USABLE_RX_BD_ALLOC;
8716 		sc->tx_hi_watermark = 0;
8717 		sc->l2fhdr_error_count =
8718 		    sc->l2fhdr_error_sim_count = 0;
8719 		sc->mbuf_alloc_failed_count =
8720 		    sc->mbuf_alloc_failed_sim_count = 0;
8721 		sc->dma_map_addr_rx_failed_count =
8722 		    sc->dma_map_addr_tx_failed_count = 0;
8723 		sc->mbuf_frag_count = 0;
8724 		sc->csum_offload_tcp_udp =
8725 		    sc->csum_offload_ip = 0;
8726 		sc->vlan_tagged_frames_rcvd =
8727 		    sc->vlan_tagged_frames_stripped = 0;
8728 		sc->split_header_frames_rcvd =
8729 		    sc->split_header_tcp_frames_rcvd = 0;
8730 
8731 		/* Clear firmware maintained statistics. */
8732 		REG_WR_IND(sc, 0x120084, 0);
8733 	}
8734 
8735 	return error;
8736 }
8737 
8738 
8739 /****************************************************************************/
8740 /* Allows the shared memory contents to be dumped through the sysctl  .     */
8741 /* interface.                                                               */
8742 /*                                                                          */
8743 /* Returns:                                                                 */
8744 /*   0 for success, positive value for failure.                             */
8745 /****************************************************************************/
8746 static int
8747 bce_sysctl_shmem_state(SYSCTL_HANDLER_ARGS)
8748 {
8749 	int error;
8750 	int result;
8751 	struct bce_softc *sc;
8752 
8753 	result = -1;
8754 	error = sysctl_handle_int(oidp, &result, 0, req);
8755 
8756 	if (error || !req->newptr)
8757 		return (error);
8758 
8759 	if (result == 1) {
8760 		sc = (struct bce_softc *)arg1;
8761 		bce_dump_shmem_state(sc);
8762 	}
8763 
8764 	return error;
8765 }
8766 
8767 
8768 /****************************************************************************/
8769 /* Allows the bootcode state to be dumped through the sysctl interface.     */
8770 /*                                                                          */
8771 /* Returns:                                                                 */
8772 /*   0 for success, positive value for failure.                             */
8773 /****************************************************************************/
8774 static int
8775 bce_sysctl_bc_state(SYSCTL_HANDLER_ARGS)
8776 {
8777 	int error;
8778 	int result;
8779 	struct bce_softc *sc;
8780 
8781 	result = -1;
8782 	error = sysctl_handle_int(oidp, &result, 0, req);
8783 
8784 	if (error || !req->newptr)
8785 		return (error);
8786 
8787 	if (result == 1) {
8788 		sc = (struct bce_softc *)arg1;
8789 		bce_dump_bc_state(sc);
8790 	}
8791 
8792 	return error;
8793 }
8794 
8795 
8796 /****************************************************************************/
8797 /* Provides a sysctl interface to allow dumping the RX BD chain.            */
8798 /*                                                                          */
8799 /* Returns:                                                                 */
8800 /*   0 for success, positive value for failure.                             */
8801 /****************************************************************************/
8802 static int
8803 bce_sysctl_dump_rx_bd_chain(SYSCTL_HANDLER_ARGS)
8804 {
8805 	int error;
8806 	int result;
8807 	struct bce_softc *sc;
8808 
8809 	result = -1;
8810 	error = sysctl_handle_int(oidp, &result, 0, req);
8811 
8812 	if (error || !req->newptr)
8813 		return (error);
8814 
8815 	if (result == 1) {
8816 		sc = (struct bce_softc *)arg1;
8817 		bce_dump_rx_bd_chain(sc, 0, TOTAL_RX_BD_ALLOC);
8818 	}
8819 
8820 	return error;
8821 }
8822 
8823 
8824 /****************************************************************************/
8825 /* Provides a sysctl interface to allow dumping the RX MBUF chain.          */
8826 /*                                                                          */
8827 /* Returns:                                                                 */
8828 /*   0 for success, positive value for failure.                             */
8829 /****************************************************************************/
8830 static int
8831 bce_sysctl_dump_rx_mbuf_chain(SYSCTL_HANDLER_ARGS)
8832 {
8833 	int error;
8834 	int result;
8835 	struct bce_softc *sc;
8836 
8837 	result = -1;
8838 	error = sysctl_handle_int(oidp, &result, 0, req);
8839 
8840 	if (error || !req->newptr)
8841 		return (error);
8842 
8843 	if (result == 1) {
8844 		sc = (struct bce_softc *)arg1;
8845 		bce_dump_rx_mbuf_chain(sc, 0, USABLE_RX_BD_ALLOC);
8846 	}
8847 
8848 	return error;
8849 }
8850 
8851 
8852 /****************************************************************************/
8853 /* Provides a sysctl interface to allow dumping the TX chain.               */
8854 /*                                                                          */
8855 /* Returns:                                                                 */
8856 /*   0 for success, positive value for failure.                             */
8857 /****************************************************************************/
8858 static int
8859 bce_sysctl_dump_tx_chain(SYSCTL_HANDLER_ARGS)
8860 {
8861 	int error;
8862 	int result;
8863 	struct bce_softc *sc;
8864 
8865 	result = -1;
8866 	error = sysctl_handle_int(oidp, &result, 0, req);
8867 
8868 	if (error || !req->newptr)
8869 		return (error);
8870 
8871 	if (result == 1) {
8872 		sc = (struct bce_softc *)arg1;
8873 		bce_dump_tx_chain(sc, 0, TOTAL_TX_BD_ALLOC);
8874 	}
8875 
8876 	return error;
8877 }
8878 
8879 
8880 /****************************************************************************/
8881 /* Provides a sysctl interface to allow dumping the page chain.             */
8882 /*                                                                          */
8883 /* Returns:                                                                 */
8884 /*   0 for success, positive value for failure.                             */
8885 /****************************************************************************/
8886 static int
8887 bce_sysctl_dump_pg_chain(SYSCTL_HANDLER_ARGS)
8888 {
8889 	int error;
8890 	int result;
8891 	struct bce_softc *sc;
8892 
8893 	result = -1;
8894 	error = sysctl_handle_int(oidp, &result, 0, req);
8895 
8896 	if (error || !req->newptr)
8897 		return (error);
8898 
8899 	if (result == 1) {
8900 		sc = (struct bce_softc *)arg1;
8901 		bce_dump_pg_chain(sc, 0, TOTAL_PG_BD_ALLOC);
8902 	}
8903 
8904 	return error;
8905 }
8906 
8907 /****************************************************************************/
8908 /* Provides a sysctl interface to allow reading arbitrary NVRAM offsets in  */
8909 /* the device.  DO NOT ENABLE ON PRODUCTION SYSTEMS!                        */
8910 /*                                                                          */
8911 /* Returns:                                                                 */
8912 /*   0 for success, positive value for failure.                             */
8913 /****************************************************************************/
8914 static int
8915 bce_sysctl_nvram_read(SYSCTL_HANDLER_ARGS)
8916 {
8917 	struct bce_softc *sc = (struct bce_softc *)arg1;
8918 	int error;
8919 	u32 result;
8920 	u32 val[1];
8921 	u8 *data = (u8 *) val;
8922 
8923 	result = -1;
8924 	error = sysctl_handle_int(oidp, &result, 0, req);
8925 	if (error || (req->newptr == NULL))
8926 		return (error);
8927 
8928 	error = bce_nvram_read(sc, result, data, 4);
8929 
8930 	BCE_PRINTF("offset 0x%08X = 0x%08X\n", result, bce_be32toh(val[0]));
8931 
8932 	return (error);
8933 }
8934 
8935 
8936 /****************************************************************************/
8937 /* Provides a sysctl interface to allow reading arbitrary registers in the  */
8938 /* device.  DO NOT ENABLE ON PRODUCTION SYSTEMS!                            */
8939 /*                                                                          */
8940 /* Returns:                                                                 */
8941 /*   0 for success, positive value for failure.                             */
8942 /****************************************************************************/
8943 static int
8944 bce_sysctl_reg_read(SYSCTL_HANDLER_ARGS)
8945 {
8946 	struct bce_softc *sc = (struct bce_softc *)arg1;
8947 	int error;
8948 	u32 val, result;
8949 
8950 	result = -1;
8951 	error = sysctl_handle_int(oidp, &result, 0, req);
8952 	if (error || (req->newptr == NULL))
8953 		return (error);
8954 
8955 	/* Make sure the register is accessible. */
8956 	if (result < 0x8000) {
8957 		val = REG_RD(sc, result);
8958 		BCE_PRINTF("reg 0x%08X = 0x%08X\n", result, val);
8959 	} else if (result < 0x0280000) {
8960 		val = REG_RD_IND(sc, result);
8961 		BCE_PRINTF("reg 0x%08X = 0x%08X\n", result, val);
8962 	}
8963 
8964 	return (error);
8965 }
8966 
8967 
8968 /****************************************************************************/
8969 /* Provides a sysctl interface to allow reading arbitrary PHY registers in  */
8970 /* the device.  DO NOT ENABLE ON PRODUCTION SYSTEMS!                        */
8971 /*                                                                          */
8972 /* Returns:                                                                 */
8973 /*   0 for success, positive value for failure.                             */
8974 /****************************************************************************/
8975 static int
8976 bce_sysctl_phy_read(SYSCTL_HANDLER_ARGS)
8977 {
8978 	struct bce_softc *sc;
8979 	device_t dev;
8980 	int error, result;
8981 	u16 val;
8982 
8983 	result = -1;
8984 	error = sysctl_handle_int(oidp, &result, 0, req);
8985 	if (error || (req->newptr == NULL))
8986 		return (error);
8987 
8988 	/* Make sure the register is accessible. */
8989 	if (result < 0x20) {
8990 		sc = (struct bce_softc *)arg1;
8991 		dev = sc->bce_dev;
8992 		val = bce_miibus_read_reg(dev, sc->bce_phy_addr, result);
8993 		BCE_PRINTF("phy 0x%02X = 0x%04X\n", result, val);
8994 	}
8995 	return (error);
8996 }
8997 
8998 
8999 /****************************************************************************/
9000 /* Provides a sysctl interface for dumping the nvram contents.              */
9001 /* DO NOT ENABLE ON PRODUCTION SYSTEMS!					    */
9002 /*									    */
9003 /* Returns:								    */
9004 /*   0 for success, positive errno for failure.				    */
9005 /****************************************************************************/
9006 static int
9007 bce_sysctl_nvram_dump(SYSCTL_HANDLER_ARGS)
9008 {
9009 	struct bce_softc *sc = (struct bce_softc *)arg1;
9010 	int error, i;
9011 
9012 	if (sc->nvram_buf == NULL)
9013 		sc->nvram_buf = malloc(sc->bce_flash_size,
9014 				    M_TEMP, M_ZERO | M_WAITOK);
9015 
9016 	error = 0;
9017 	if (req->oldlen == sc->bce_flash_size) {
9018 		for (i = 0; i < sc->bce_flash_size && error == 0; i++)
9019 			error = bce_nvram_read(sc, i, &sc->nvram_buf[i], 1);
9020 	}
9021 
9022 	if (error == 0)
9023 		error = SYSCTL_OUT(req, sc->nvram_buf, sc->bce_flash_size);
9024 
9025 	return error;
9026 }
9027 
9028 #ifdef BCE_NVRAM_WRITE_SUPPORT
9029 /****************************************************************************/
9030 /* Provides a sysctl interface for writing to nvram.                        */
9031 /* DO NOT ENABLE ON PRODUCTION SYSTEMS!					    */
9032 /*									    */
9033 /* Returns:								    */
9034 /*   0 for success, positive errno for failure.				    */
9035 /****************************************************************************/
9036 static int
9037 bce_sysctl_nvram_write(SYSCTL_HANDLER_ARGS)
9038 {
9039 	struct bce_softc *sc = (struct bce_softc *)arg1;
9040 	int error;
9041 
9042 	if (sc->nvram_buf == NULL)
9043 		sc->nvram_buf = malloc(sc->bce_flash_size,
9044 				    M_TEMP, M_ZERO | M_WAITOK);
9045 	else
9046 		bzero(sc->nvram_buf, sc->bce_flash_size);
9047 
9048 	error = SYSCTL_IN(req, sc->nvram_buf, sc->bce_flash_size);
9049 	if (error == 0)
9050 		return (error);
9051 
9052 	if (req->newlen == sc->bce_flash_size)
9053 		error = bce_nvram_write(sc, 0, sc->nvram_buf,
9054 			    sc->bce_flash_size);
9055 
9056 
9057 	return error;
9058 }
9059 #endif
9060 
9061 
9062 /****************************************************************************/
9063 /* Provides a sysctl interface to allow reading a CID.                      */
9064 /*                                                                          */
9065 /* Returns:                                                                 */
9066 /*   0 for success, positive value for failure.                             */
9067 /****************************************************************************/
9068 static int
9069 bce_sysctl_dump_ctx(SYSCTL_HANDLER_ARGS)
9070 {
9071 	struct bce_softc *sc;
9072 	int error, result;
9073 
9074 	result = -1;
9075 	error = sysctl_handle_int(oidp, &result, 0, req);
9076 	if (error || (req->newptr == NULL))
9077 		return (error);
9078 
9079 	/* Make sure the register is accessible. */
9080 	if (result <= TX_CID) {
9081 		sc = (struct bce_softc *)arg1;
9082 		bce_dump_ctx(sc, result);
9083 	}
9084 
9085 	return (error);
9086 }
9087 
9088 
9089 /****************************************************************************/
9090 /* Provides a sysctl interface to forcing the driver to dump state and      */
9091 /* enter the debugger.  DO NOT ENABLE ON PRODUCTION SYSTEMS!                */
9092 /*                                                                          */
9093 /* Returns:                                                                 */
9094 /*   0 for success, positive value for failure.                             */
9095 /****************************************************************************/
9096 static int
9097 bce_sysctl_breakpoint(SYSCTL_HANDLER_ARGS)
9098 {
9099 	int error;
9100 	int result;
9101 	struct bce_softc *sc;
9102 
9103 	result = -1;
9104 	error = sysctl_handle_int(oidp, &result, 0, req);
9105 
9106 	if (error || !req->newptr)
9107 		return (error);
9108 
9109 	if (result == 1) {
9110 		sc = (struct bce_softc *)arg1;
9111 		bce_breakpoint(sc);
9112 	}
9113 
9114 	return error;
9115 }
9116 #endif
9117 
9118 /****************************************************************************/
9119 /* Adds any sysctl parameters for tuning or debugging purposes.             */
9120 /*                                                                          */
9121 /* Returns:                                                                 */
9122 /*   0 for success, positive value for failure.                             */
9123 /****************************************************************************/
9124 static void
9125 bce_add_sysctls(struct bce_softc *sc)
9126 {
9127 	struct sysctl_ctx_list *ctx;
9128 	struct sysctl_oid_list *children;
9129 
9130 	DBENTER(BCE_VERBOSE_MISC);
9131 
9132 	ctx = device_get_sysctl_ctx(sc->bce_dev);
9133 	children = SYSCTL_CHILDREN(device_get_sysctl_tree(sc->bce_dev));
9134 
9135 #ifdef BCE_DEBUG
9136 	SYSCTL_ADD_INT(ctx, children, OID_AUTO,
9137 	    "l2fhdr_error_sim_control",
9138 	    CTLFLAG_RW, &l2fhdr_error_sim_control,
9139 	    0, "Debug control to force l2fhdr errors");
9140 
9141 	SYSCTL_ADD_INT(ctx, children, OID_AUTO,
9142 	    "l2fhdr_error_sim_count",
9143 	    CTLFLAG_RD, &sc->l2fhdr_error_sim_count,
9144 	    0, "Number of simulated l2_fhdr errors");
9145 #endif
9146 
9147 	SYSCTL_ADD_UINT(ctx, children, OID_AUTO,
9148 	    "l2fhdr_error_count",
9149 	    CTLFLAG_RD, &sc->l2fhdr_error_count,
9150 	    0, "Number of l2_fhdr errors");
9151 
9152 #ifdef BCE_DEBUG
9153 	SYSCTL_ADD_INT(ctx, children, OID_AUTO,
9154 	    "mbuf_alloc_failed_sim_control",
9155 	    CTLFLAG_RW, &mbuf_alloc_failed_sim_control,
9156 	    0, "Debug control to force mbuf allocation failures");
9157 
9158 	SYSCTL_ADD_UINT(ctx, children, OID_AUTO,
9159 	    "mbuf_alloc_failed_sim_count",
9160 	    CTLFLAG_RD, &sc->mbuf_alloc_failed_sim_count,
9161 	    0, "Number of simulated mbuf cluster allocation failures");
9162 #endif
9163 
9164 	SYSCTL_ADD_UINT(ctx, children, OID_AUTO,
9165 	    "mbuf_alloc_failed_count",
9166 	    CTLFLAG_RD, &sc->mbuf_alloc_failed_count,
9167 	    0, "Number of mbuf allocation failures");
9168 
9169 	SYSCTL_ADD_UINT(ctx, children, OID_AUTO,
9170 	    "mbuf_frag_count",
9171 	    CTLFLAG_RD, &sc->mbuf_frag_count,
9172 	    0, "Number of fragmented mbufs");
9173 
9174 #ifdef BCE_DEBUG
9175 	SYSCTL_ADD_INT(ctx, children, OID_AUTO,
9176 	    "dma_map_addr_failed_sim_control",
9177 	    CTLFLAG_RW, &dma_map_addr_failed_sim_control,
9178 	    0, "Debug control to force DMA mapping failures");
9179 
9180 	/* ToDo: Figure out how to update this value in bce_dma_map_addr(). */
9181 	SYSCTL_ADD_UINT(ctx, children, OID_AUTO,
9182 	    "dma_map_addr_failed_sim_count",
9183 	    CTLFLAG_RD, &sc->dma_map_addr_failed_sim_count,
9184 	    0, "Number of simulated DMA mapping failures");
9185 
9186 #endif
9187 
9188 	SYSCTL_ADD_UINT(ctx, children, OID_AUTO,
9189 	    "dma_map_addr_rx_failed_count",
9190 	    CTLFLAG_RD, &sc->dma_map_addr_rx_failed_count,
9191 	    0, "Number of RX DMA mapping failures");
9192 
9193 	SYSCTL_ADD_UINT(ctx, children, OID_AUTO,
9194 	    "dma_map_addr_tx_failed_count",
9195 	    CTLFLAG_RD, &sc->dma_map_addr_tx_failed_count,
9196 	    0, "Number of TX DMA mapping failures");
9197 
9198 #ifdef BCE_DEBUG
9199 	SYSCTL_ADD_INT(ctx, children, OID_AUTO,
9200 	    "unexpected_attention_sim_control",
9201 	    CTLFLAG_RW, &unexpected_attention_sim_control,
9202 	    0, "Debug control to simulate unexpected attentions");
9203 
9204 	SYSCTL_ADD_UINT(ctx, children, OID_AUTO,
9205 	    "unexpected_attention_sim_count",
9206 	    CTLFLAG_RW, &sc->unexpected_attention_sim_count,
9207 	    0, "Number of simulated unexpected attentions");
9208 #endif
9209 
9210 	SYSCTL_ADD_UINT(ctx, children, OID_AUTO,
9211 	    "unexpected_attention_count",
9212 	    CTLFLAG_RW, &sc->unexpected_attention_count,
9213 	    0, "Number of unexpected attentions");
9214 
9215 #ifdef BCE_DEBUG
9216 	SYSCTL_ADD_INT(ctx, children, OID_AUTO,
9217 	    "debug_bootcode_running_failure",
9218 	    CTLFLAG_RW, &bootcode_running_failure_sim_control,
9219 	    0, "Debug control to force bootcode running failures");
9220 
9221 	SYSCTL_ADD_INT(ctx, children, OID_AUTO,
9222 	    "rx_low_watermark",
9223 	    CTLFLAG_RD, &sc->rx_low_watermark,
9224 	    0, "Lowest level of free rx_bd's");
9225 
9226 	SYSCTL_ADD_QUAD(ctx, children, OID_AUTO,
9227 	    "rx_empty_count",
9228 	    CTLFLAG_RD, &sc->rx_empty_count,
9229 	    "Number of times the RX chain was empty");
9230 
9231 	SYSCTL_ADD_INT(ctx, children, OID_AUTO,
9232 	    "tx_hi_watermark",
9233 	    CTLFLAG_RD, &sc->tx_hi_watermark,
9234 	    0, "Highest level of used tx_bd's");
9235 
9236 	SYSCTL_ADD_QUAD(ctx, children, OID_AUTO,
9237 	    "tx_full_count",
9238 	    CTLFLAG_RD, &sc->tx_full_count,
9239 	    "Number of times the TX chain was full");
9240 
9241 	SYSCTL_ADD_QUAD(ctx, children, OID_AUTO,
9242 	    "tso_frames_requested",
9243 	    CTLFLAG_RD, &sc->tso_frames_requested,
9244 	    "Number of TSO frames requested");
9245 
9246 	SYSCTL_ADD_QUAD(ctx, children, OID_AUTO,
9247 	    "tso_frames_completed",
9248 	    CTLFLAG_RD, &sc->tso_frames_completed,
9249 	    "Number of TSO frames completed");
9250 
9251 	SYSCTL_ADD_QUAD(ctx, children, OID_AUTO,
9252 	    "tso_frames_failed",
9253 	    CTLFLAG_RD, &sc->tso_frames_failed,
9254 	    "Number of TSO frames failed");
9255 
9256 	SYSCTL_ADD_QUAD(ctx, children, OID_AUTO,
9257 	    "csum_offload_ip",
9258 	    CTLFLAG_RD, &sc->csum_offload_ip,
9259 	    "Number of IP checksum offload frames");
9260 
9261 	SYSCTL_ADD_QUAD(ctx, children, OID_AUTO,
9262 	    "csum_offload_tcp_udp",
9263 	    CTLFLAG_RD, &sc->csum_offload_tcp_udp,
9264 	    "Number of TCP/UDP checksum offload frames");
9265 
9266 	SYSCTL_ADD_QUAD(ctx, children, OID_AUTO,
9267 	    "vlan_tagged_frames_rcvd",
9268 	    CTLFLAG_RD, &sc->vlan_tagged_frames_rcvd,
9269 	    "Number of VLAN tagged frames received");
9270 
9271 	SYSCTL_ADD_QUAD(ctx, children, OID_AUTO,
9272 	    "vlan_tagged_frames_stripped",
9273 	    CTLFLAG_RD, &sc->vlan_tagged_frames_stripped,
9274 	    "Number of VLAN tagged frames stripped");
9275 
9276 	SYSCTL_ADD_QUAD(ctx, children, OID_AUTO,
9277 	    "interrupts_rx",
9278 	    CTLFLAG_RD, &sc->interrupts_rx,
9279 	    "Number of RX interrupts");
9280 
9281 	SYSCTL_ADD_QUAD(ctx, children, OID_AUTO,
9282 	    "interrupts_tx",
9283 	    CTLFLAG_RD, &sc->interrupts_tx,
9284 	    "Number of TX interrupts");
9285 
9286 	if (bce_hdr_split == TRUE) {
9287 		SYSCTL_ADD_QUAD(ctx, children, OID_AUTO,
9288 		    "split_header_frames_rcvd",
9289 		    CTLFLAG_RD, &sc->split_header_frames_rcvd,
9290 		    "Number of split header frames received");
9291 
9292 		SYSCTL_ADD_QUAD(ctx, children, OID_AUTO,
9293 		    "split_header_tcp_frames_rcvd",
9294 		    CTLFLAG_RD, &sc->split_header_tcp_frames_rcvd,
9295 		    "Number of split header TCP frames received");
9296 	}
9297 
9298 	SYSCTL_ADD_PROC(ctx, children, OID_AUTO,
9299 	    "nvram_dump", CTLTYPE_OPAQUE | CTLFLAG_RD,
9300 	    (void *)sc, 0,
9301 	    bce_sysctl_nvram_dump, "S", "");
9302 
9303 #ifdef BCE_NVRAM_WRITE_SUPPORT
9304 	SYSCTL_ADD_PROC(ctx, children, OID_AUTO,
9305 	    "nvram_write", CTLTYPE_OPAQUE | CTLFLAG_WR,
9306 	    (void *)sc, 0,
9307 	    bce_sysctl_nvram_write, "S", "");
9308 #endif
9309 #endif /* BCE_DEBUG */
9310 
9311 	SYSCTL_ADD_QUAD(ctx, children, OID_AUTO,
9312 	    "stat_IfHcInOctets",
9313 	    CTLFLAG_RD, &sc->stat_IfHCInOctets,
9314 	    "Bytes received");
9315 
9316 	SYSCTL_ADD_QUAD(ctx, children, OID_AUTO,
9317 	    "stat_IfHCInBadOctets",
9318 	    CTLFLAG_RD, &sc->stat_IfHCInBadOctets,
9319 	    "Bad bytes received");
9320 
9321 	SYSCTL_ADD_QUAD(ctx, children, OID_AUTO,
9322 	    "stat_IfHCOutOctets",
9323 	    CTLFLAG_RD, &sc->stat_IfHCOutOctets,
9324 	    "Bytes sent");
9325 
9326 	SYSCTL_ADD_QUAD(ctx, children, OID_AUTO,
9327 	    "stat_IfHCOutBadOctets",
9328 	    CTLFLAG_RD, &sc->stat_IfHCOutBadOctets,
9329 	    "Bad bytes sent");
9330 
9331 	SYSCTL_ADD_QUAD(ctx, children, OID_AUTO,
9332 	    "stat_IfHCInUcastPkts",
9333 	    CTLFLAG_RD, &sc->stat_IfHCInUcastPkts,
9334 	    "Unicast packets received");
9335 
9336 	SYSCTL_ADD_QUAD(ctx, children, OID_AUTO,
9337 	    "stat_IfHCInMulticastPkts",
9338 	    CTLFLAG_RD, &sc->stat_IfHCInMulticastPkts,
9339 	    "Multicast packets received");
9340 
9341 	SYSCTL_ADD_QUAD(ctx, children, OID_AUTO,
9342 	    "stat_IfHCInBroadcastPkts",
9343 	    CTLFLAG_RD, &sc->stat_IfHCInBroadcastPkts,
9344 	    "Broadcast packets received");
9345 
9346 	SYSCTL_ADD_QUAD(ctx, children, OID_AUTO,
9347 	    "stat_IfHCOutUcastPkts",
9348 	    CTLFLAG_RD, &sc->stat_IfHCOutUcastPkts,
9349 	    "Unicast packets sent");
9350 
9351 	SYSCTL_ADD_QUAD(ctx, children, OID_AUTO,
9352 	    "stat_IfHCOutMulticastPkts",
9353 	    CTLFLAG_RD, &sc->stat_IfHCOutMulticastPkts,
9354 	    "Multicast packets sent");
9355 
9356 	SYSCTL_ADD_QUAD(ctx, children, OID_AUTO,
9357 	    "stat_IfHCOutBroadcastPkts",
9358 	    CTLFLAG_RD, &sc->stat_IfHCOutBroadcastPkts,
9359 	    "Broadcast packets sent");
9360 
9361 	SYSCTL_ADD_UINT(ctx, children, OID_AUTO,
9362 	    "stat_emac_tx_stat_dot3statsinternalmactransmiterrors",
9363 	    CTLFLAG_RD, &sc->stat_emac_tx_stat_dot3statsinternalmactransmiterrors,
9364 	    0, "Internal MAC transmit errors");
9365 
9366 	SYSCTL_ADD_UINT(ctx, children, OID_AUTO,
9367 	    "stat_Dot3StatsCarrierSenseErrors",
9368 	    CTLFLAG_RD, &sc->stat_Dot3StatsCarrierSenseErrors,
9369 	    0, "Carrier sense errors");
9370 
9371 	SYSCTL_ADD_UINT(ctx, children, OID_AUTO,
9372 	    "stat_Dot3StatsFCSErrors",
9373 	    CTLFLAG_RD, &sc->stat_Dot3StatsFCSErrors,
9374 	    0, "Frame check sequence errors");
9375 
9376 	SYSCTL_ADD_UINT(ctx, children, OID_AUTO,
9377 	    "stat_Dot3StatsAlignmentErrors",
9378 	    CTLFLAG_RD, &sc->stat_Dot3StatsAlignmentErrors,
9379 	    0, "Alignment errors");
9380 
9381 	SYSCTL_ADD_UINT(ctx, children, OID_AUTO,
9382 	    "stat_Dot3StatsSingleCollisionFrames",
9383 	    CTLFLAG_RD, &sc->stat_Dot3StatsSingleCollisionFrames,
9384 	    0, "Single Collision Frames");
9385 
9386 	SYSCTL_ADD_UINT(ctx, children, OID_AUTO,
9387 	    "stat_Dot3StatsMultipleCollisionFrames",
9388 	    CTLFLAG_RD, &sc->stat_Dot3StatsMultipleCollisionFrames,
9389 	    0, "Multiple Collision Frames");
9390 
9391 	SYSCTL_ADD_UINT(ctx, children, OID_AUTO,
9392 	    "stat_Dot3StatsDeferredTransmissions",
9393 	    CTLFLAG_RD, &sc->stat_Dot3StatsDeferredTransmissions,
9394 	    0, "Deferred Transmissions");
9395 
9396 	SYSCTL_ADD_UINT(ctx, children, OID_AUTO,
9397 	    "stat_Dot3StatsExcessiveCollisions",
9398 	    CTLFLAG_RD, &sc->stat_Dot3StatsExcessiveCollisions,
9399 	    0, "Excessive Collisions");
9400 
9401 	SYSCTL_ADD_UINT(ctx, children, OID_AUTO,
9402 	    "stat_Dot3StatsLateCollisions",
9403 	    CTLFLAG_RD, &sc->stat_Dot3StatsLateCollisions,
9404 	    0, "Late Collisions");
9405 
9406 	SYSCTL_ADD_UINT(ctx, children, OID_AUTO,
9407 	    "stat_EtherStatsCollisions",
9408 	    CTLFLAG_RD, &sc->stat_EtherStatsCollisions,
9409 	    0, "Collisions");
9410 
9411 	SYSCTL_ADD_UINT(ctx, children, OID_AUTO,
9412 	    "stat_EtherStatsFragments",
9413 	    CTLFLAG_RD, &sc->stat_EtherStatsFragments,
9414 	    0, "Fragments");
9415 
9416 	SYSCTL_ADD_UINT(ctx, children, OID_AUTO,
9417 	    "stat_EtherStatsJabbers",
9418 	    CTLFLAG_RD, &sc->stat_EtherStatsJabbers,
9419 	    0, "Jabbers");
9420 
9421 	SYSCTL_ADD_UINT(ctx, children, OID_AUTO,
9422 	    "stat_EtherStatsUndersizePkts",
9423 	    CTLFLAG_RD, &sc->stat_EtherStatsUndersizePkts,
9424 	    0, "Undersize packets");
9425 
9426 	SYSCTL_ADD_UINT(ctx, children, OID_AUTO,
9427 	    "stat_EtherStatsOversizePkts",
9428 	    CTLFLAG_RD, &sc->stat_EtherStatsOversizePkts,
9429 	    0, "stat_EtherStatsOversizePkts");
9430 
9431 	SYSCTL_ADD_UINT(ctx, children, OID_AUTO,
9432 	    "stat_EtherStatsPktsRx64Octets",
9433 	    CTLFLAG_RD, &sc->stat_EtherStatsPktsRx64Octets,
9434 	    0, "Bytes received in 64 byte packets");
9435 
9436 	SYSCTL_ADD_UINT(ctx, children, OID_AUTO,
9437 	    "stat_EtherStatsPktsRx65Octetsto127Octets",
9438 	    CTLFLAG_RD, &sc->stat_EtherStatsPktsRx65Octetsto127Octets,
9439 	    0, "Bytes received in 65 to 127 byte packets");
9440 
9441 	SYSCTL_ADD_UINT(ctx, children, OID_AUTO,
9442 	    "stat_EtherStatsPktsRx128Octetsto255Octets",
9443 	    CTLFLAG_RD, &sc->stat_EtherStatsPktsRx128Octetsto255Octets,
9444 	    0, "Bytes received in 128 to 255 byte packets");
9445 
9446 	SYSCTL_ADD_UINT(ctx, children, OID_AUTO,
9447 	    "stat_EtherStatsPktsRx256Octetsto511Octets",
9448 	    CTLFLAG_RD, &sc->stat_EtherStatsPktsRx256Octetsto511Octets,
9449 	    0, "Bytes received in 256 to 511 byte packets");
9450 
9451 	SYSCTL_ADD_UINT(ctx, children, OID_AUTO,
9452 	    "stat_EtherStatsPktsRx512Octetsto1023Octets",
9453 	    CTLFLAG_RD, &sc->stat_EtherStatsPktsRx512Octetsto1023Octets,
9454 	    0, "Bytes received in 512 to 1023 byte packets");
9455 
9456 	SYSCTL_ADD_UINT(ctx, children, OID_AUTO,
9457 	    "stat_EtherStatsPktsRx1024Octetsto1522Octets",
9458 	    CTLFLAG_RD, &sc->stat_EtherStatsPktsRx1024Octetsto1522Octets,
9459 	    0, "Bytes received in 1024 t0 1522 byte packets");
9460 
9461 	SYSCTL_ADD_UINT(ctx, children, OID_AUTO,
9462 	    "stat_EtherStatsPktsRx1523Octetsto9022Octets",
9463 	    CTLFLAG_RD, &sc->stat_EtherStatsPktsRx1523Octetsto9022Octets,
9464 	    0, "Bytes received in 1523 to 9022 byte packets");
9465 
9466 	SYSCTL_ADD_UINT(ctx, children, OID_AUTO,
9467 	    "stat_EtherStatsPktsTx64Octets",
9468 	    CTLFLAG_RD, &sc->stat_EtherStatsPktsTx64Octets,
9469 	    0, "Bytes sent in 64 byte packets");
9470 
9471 	SYSCTL_ADD_UINT(ctx, children, OID_AUTO,
9472 	    "stat_EtherStatsPktsTx65Octetsto127Octets",
9473 	    CTLFLAG_RD, &sc->stat_EtherStatsPktsTx65Octetsto127Octets,
9474 	    0, "Bytes sent in 65 to 127 byte packets");
9475 
9476 	SYSCTL_ADD_UINT(ctx, children, OID_AUTO,
9477 	    "stat_EtherStatsPktsTx128Octetsto255Octets",
9478 	    CTLFLAG_RD, &sc->stat_EtherStatsPktsTx128Octetsto255Octets,
9479 	    0, "Bytes sent in 128 to 255 byte packets");
9480 
9481 	SYSCTL_ADD_UINT(ctx, children, OID_AUTO,
9482 	    "stat_EtherStatsPktsTx256Octetsto511Octets",
9483 	    CTLFLAG_RD, &sc->stat_EtherStatsPktsTx256Octetsto511Octets,
9484 	    0, "Bytes sent in 256 to 511 byte packets");
9485 
9486 	SYSCTL_ADD_UINT(ctx, children, OID_AUTO,
9487 	    "stat_EtherStatsPktsTx512Octetsto1023Octets",
9488 	    CTLFLAG_RD, &sc->stat_EtherStatsPktsTx512Octetsto1023Octets,
9489 	    0, "Bytes sent in 512 to 1023 byte packets");
9490 
9491 	SYSCTL_ADD_UINT(ctx, children, OID_AUTO,
9492 	    "stat_EtherStatsPktsTx1024Octetsto1522Octets",
9493 	    CTLFLAG_RD, &sc->stat_EtherStatsPktsTx1024Octetsto1522Octets,
9494 	    0, "Bytes sent in 1024 to 1522 byte packets");
9495 
9496 	SYSCTL_ADD_UINT(ctx, children, OID_AUTO,
9497 	    "stat_EtherStatsPktsTx1523Octetsto9022Octets",
9498 	    CTLFLAG_RD, &sc->stat_EtherStatsPktsTx1523Octetsto9022Octets,
9499 	    0, "Bytes sent in 1523 to 9022 byte packets");
9500 
9501 	SYSCTL_ADD_UINT(ctx, children, OID_AUTO,
9502 	    "stat_XonPauseFramesReceived",
9503 	    CTLFLAG_RD, &sc->stat_XonPauseFramesReceived,
9504 	    0, "XON pause frames receved");
9505 
9506 	SYSCTL_ADD_UINT(ctx, children, OID_AUTO,
9507 	    "stat_XoffPauseFramesReceived",
9508 	    CTLFLAG_RD, &sc->stat_XoffPauseFramesReceived,
9509 	    0, "XOFF pause frames received");
9510 
9511 	SYSCTL_ADD_UINT(ctx, children, OID_AUTO,
9512 	    "stat_OutXonSent",
9513 	    CTLFLAG_RD, &sc->stat_OutXonSent,
9514 	    0, "XON pause frames sent");
9515 
9516 	SYSCTL_ADD_UINT(ctx, children, OID_AUTO,
9517 	    "stat_OutXoffSent",
9518 	    CTLFLAG_RD, &sc->stat_OutXoffSent,
9519 	    0, "XOFF pause frames sent");
9520 
9521 	SYSCTL_ADD_UINT(ctx, children, OID_AUTO,
9522 	    "stat_FlowControlDone",
9523 	    CTLFLAG_RD, &sc->stat_FlowControlDone,
9524 	    0, "Flow control done");
9525 
9526 	SYSCTL_ADD_UINT(ctx, children, OID_AUTO,
9527 	    "stat_MacControlFramesReceived",
9528 	    CTLFLAG_RD, &sc->stat_MacControlFramesReceived,
9529 	    0, "MAC control frames received");
9530 
9531 	SYSCTL_ADD_UINT(ctx, children, OID_AUTO,
9532 	    "stat_XoffStateEntered",
9533 	    CTLFLAG_RD, &sc->stat_XoffStateEntered,
9534 	    0, "XOFF state entered");
9535 
9536 	SYSCTL_ADD_UINT(ctx, children, OID_AUTO,
9537 	    "stat_IfInFramesL2FilterDiscards",
9538 	    CTLFLAG_RD, &sc->stat_IfInFramesL2FilterDiscards,
9539 	    0, "Received L2 packets discarded");
9540 
9541 	SYSCTL_ADD_UINT(ctx, children, OID_AUTO,
9542 	    "stat_IfInRuleCheckerDiscards",
9543 	    CTLFLAG_RD, &sc->stat_IfInRuleCheckerDiscards,
9544 	    0, "Received packets discarded by rule");
9545 
9546 	SYSCTL_ADD_UINT(ctx, children, OID_AUTO,
9547 	    "stat_IfInFTQDiscards",
9548 	    CTLFLAG_RD, &sc->stat_IfInFTQDiscards,
9549 	    0, "Received packet FTQ discards");
9550 
9551 	SYSCTL_ADD_UINT(ctx, children, OID_AUTO,
9552 	    "stat_IfInMBUFDiscards",
9553 	    CTLFLAG_RD, &sc->stat_IfInMBUFDiscards,
9554 	    0, "Received packets discarded due to lack "
9555 	    "of controller buffer memory");
9556 
9557 	SYSCTL_ADD_UINT(ctx, children, OID_AUTO,
9558 	    "stat_IfInRuleCheckerP4Hit",
9559 	    CTLFLAG_RD, &sc->stat_IfInRuleCheckerP4Hit,
9560 	    0, "Received packets rule checker hits");
9561 
9562 	SYSCTL_ADD_UINT(ctx, children, OID_AUTO,
9563 	    "stat_CatchupInRuleCheckerDiscards",
9564 	    CTLFLAG_RD, &sc->stat_CatchupInRuleCheckerDiscards,
9565 	    0, "Received packets discarded in Catchup path");
9566 
9567 	SYSCTL_ADD_UINT(ctx, children, OID_AUTO,
9568 	    "stat_CatchupInFTQDiscards",
9569 	    CTLFLAG_RD, &sc->stat_CatchupInFTQDiscards,
9570 	    0, "Received packets discarded in FTQ in Catchup path");
9571 
9572 	SYSCTL_ADD_UINT(ctx, children, OID_AUTO,
9573 	    "stat_CatchupInMBUFDiscards",
9574 	    CTLFLAG_RD, &sc->stat_CatchupInMBUFDiscards,
9575 	    0, "Received packets discarded in controller "
9576 	    "buffer memory in Catchup path");
9577 
9578 	SYSCTL_ADD_UINT(ctx, children, OID_AUTO,
9579 	    "stat_CatchupInRuleCheckerP4Hit",
9580 	    CTLFLAG_RD, &sc->stat_CatchupInRuleCheckerP4Hit,
9581 	    0, "Received packets rule checker hits in Catchup path");
9582 
9583 	SYSCTL_ADD_UINT(ctx, children, OID_AUTO,
9584 	    "com_no_buffers",
9585 	    CTLFLAG_RD, &sc->com_no_buffers,
9586 	    0, "Valid packets received but no RX buffers available");
9587 
9588 #ifdef BCE_DEBUG
9589 	SYSCTL_ADD_PROC(ctx, children, OID_AUTO,
9590 	    "driver_state", CTLTYPE_INT | CTLFLAG_RW,
9591 	    (void *)sc, 0,
9592 	    bce_sysctl_driver_state, "I", "Drive state information");
9593 
9594 	SYSCTL_ADD_PROC(ctx, children, OID_AUTO,
9595 	    "hw_state", CTLTYPE_INT | CTLFLAG_RW,
9596 	    (void *)sc, 0,
9597 	    bce_sysctl_hw_state, "I", "Hardware state information");
9598 
9599 	SYSCTL_ADD_PROC(ctx, children, OID_AUTO,
9600 	    "status_block", CTLTYPE_INT | CTLFLAG_RW,
9601 	    (void *)sc, 0,
9602 	    bce_sysctl_status_block, "I", "Dump status block");
9603 
9604 	SYSCTL_ADD_PROC(ctx, children, OID_AUTO,
9605 	    "stats_block", CTLTYPE_INT | CTLFLAG_RW,
9606 	    (void *)sc, 0,
9607 	    bce_sysctl_stats_block, "I", "Dump statistics block");
9608 
9609 	SYSCTL_ADD_PROC(ctx, children, OID_AUTO,
9610 	    "stats_clear", CTLTYPE_INT | CTLFLAG_RW,
9611 	    (void *)sc, 0,
9612 	    bce_sysctl_stats_clear, "I", "Clear statistics block");
9613 
9614 	SYSCTL_ADD_PROC(ctx, children, OID_AUTO,
9615 	    "shmem_state", CTLTYPE_INT | CTLFLAG_RW,
9616 	    (void *)sc, 0,
9617 	    bce_sysctl_shmem_state, "I", "Shared memory state information");
9618 
9619 	SYSCTL_ADD_PROC(ctx, children, OID_AUTO,
9620 	    "bc_state", CTLTYPE_INT | CTLFLAG_RW,
9621 	    (void *)sc, 0,
9622 	    bce_sysctl_bc_state, "I", "Bootcode state information");
9623 
9624 	SYSCTL_ADD_PROC(ctx, children, OID_AUTO,
9625 	    "dump_rx_bd_chain", CTLTYPE_INT | CTLFLAG_RW,
9626 	    (void *)sc, 0,
9627 	    bce_sysctl_dump_rx_bd_chain, "I", "Dump RX BD chain");
9628 
9629 	SYSCTL_ADD_PROC(ctx, children, OID_AUTO,
9630 	    "dump_rx_mbuf_chain", CTLTYPE_INT | CTLFLAG_RW,
9631 	    (void *)sc, 0,
9632 	    bce_sysctl_dump_rx_mbuf_chain, "I", "Dump RX MBUF chain");
9633 
9634 	SYSCTL_ADD_PROC(ctx, children, OID_AUTO,
9635 	    "dump_tx_chain", CTLTYPE_INT | CTLFLAG_RW,
9636 	    (void *)sc, 0,
9637 	    bce_sysctl_dump_tx_chain, "I", "Dump tx_bd chain");
9638 
9639 	if (bce_hdr_split == TRUE) {
9640 		SYSCTL_ADD_PROC(ctx, children, OID_AUTO,
9641 		    "dump_pg_chain", CTLTYPE_INT | CTLFLAG_RW,
9642 		    (void *)sc, 0,
9643 		    bce_sysctl_dump_pg_chain, "I", "Dump page chain");
9644 	}
9645 
9646 	SYSCTL_ADD_PROC(ctx, children, OID_AUTO,
9647 	    "dump_ctx", CTLTYPE_INT | CTLFLAG_RW,
9648 	    (void *)sc, 0,
9649 	    bce_sysctl_dump_ctx, "I", "Dump context memory");
9650 
9651 	SYSCTL_ADD_PROC(ctx, children, OID_AUTO,
9652 	    "breakpoint", CTLTYPE_INT | CTLFLAG_RW,
9653 	    (void *)sc, 0,
9654 	    bce_sysctl_breakpoint, "I", "Driver breakpoint");
9655 
9656 	SYSCTL_ADD_PROC(ctx, children, OID_AUTO,
9657 	    "reg_read", CTLTYPE_INT | CTLFLAG_RW,
9658 	    (void *)sc, 0,
9659 	    bce_sysctl_reg_read, "I", "Register read");
9660 
9661 	SYSCTL_ADD_PROC(ctx, children, OID_AUTO,
9662 	    "nvram_read", CTLTYPE_INT | CTLFLAG_RW,
9663 	    (void *)sc, 0,
9664 	    bce_sysctl_nvram_read, "I", "NVRAM read");
9665 
9666 	SYSCTL_ADD_PROC(ctx, children, OID_AUTO,
9667 	    "phy_read", CTLTYPE_INT | CTLFLAG_RW,
9668 	    (void *)sc, 0,
9669 	    bce_sysctl_phy_read, "I", "PHY register read");
9670 
9671 #endif
9672 
9673 	DBEXIT(BCE_VERBOSE_MISC);
9674 }
9675 
9676 
9677 /****************************************************************************/
9678 /* BCE Debug Routines                                                       */
9679 /****************************************************************************/
9680 #ifdef BCE_DEBUG
9681 
9682 /****************************************************************************/
9683 /* Freezes the controller to allow for a cohesive state dump.               */
9684 /*                                                                          */
9685 /* Returns:                                                                 */
9686 /*   Nothing.                                                               */
9687 /****************************************************************************/
9688 static __attribute__ ((noinline)) void
9689 bce_freeze_controller(struct bce_softc *sc)
9690 {
9691 	u32 val;
9692 	val = REG_RD(sc, BCE_MISC_COMMAND);
9693 	val |= BCE_MISC_COMMAND_DISABLE_ALL;
9694 	REG_WR(sc, BCE_MISC_COMMAND, val);
9695 }
9696 
9697 
9698 /****************************************************************************/
9699 /* Unfreezes the controller after a freeze operation.  This may not always  */
9700 /* work and the controller will require a reset!                            */
9701 /*                                                                          */
9702 /* Returns:                                                                 */
9703 /*   Nothing.                                                               */
9704 /****************************************************************************/
9705 static __attribute__ ((noinline)) void
9706 bce_unfreeze_controller(struct bce_softc *sc)
9707 {
9708 	u32 val;
9709 	val = REG_RD(sc, BCE_MISC_COMMAND);
9710 	val |= BCE_MISC_COMMAND_ENABLE_ALL;
9711 	REG_WR(sc, BCE_MISC_COMMAND, val);
9712 }
9713 
9714 
9715 /****************************************************************************/
9716 /* Prints out Ethernet frame information from an mbuf.                      */
9717 /*                                                                          */
9718 /* Partially decode an Ethernet frame to look at some important headers.    */
9719 /*                                                                          */
9720 /* Returns:                                                                 */
9721 /*   Nothing.                                                               */
9722 /****************************************************************************/
9723 static __attribute__ ((noinline)) void
9724 bce_dump_enet(struct bce_softc *sc, struct mbuf *m)
9725 {
9726 	struct ether_vlan_header *eh;
9727 	u16 etype;
9728 	int ehlen;
9729 	struct ip *ip;
9730 	struct tcphdr *th;
9731 	struct udphdr *uh;
9732 	struct arphdr *ah;
9733 
9734 	BCE_PRINTF(
9735 	    "-----------------------------"
9736 	    " Frame Decode "
9737 	    "-----------------------------\n");
9738 
9739 	eh = mtod(m, struct ether_vlan_header *);
9740 
9741 	/* Handle VLAN encapsulation if present. */
9742 	if (eh->evl_encap_proto == htons(ETHERTYPE_VLAN)) {
9743 		etype = ntohs(eh->evl_proto);
9744 		ehlen = ETHER_HDR_LEN + ETHER_VLAN_ENCAP_LEN;
9745 	} else {
9746 		etype = ntohs(eh->evl_encap_proto);
9747 		ehlen = ETHER_HDR_LEN;
9748 	}
9749 
9750 	/* ToDo: Add VLAN output. */
9751 	BCE_PRINTF("enet: dest = %6D, src = %6D, type = 0x%04X, hlen = %d\n",
9752 	    eh->evl_dhost, ":", eh->evl_shost, ":", etype, ehlen);
9753 
9754 	switch (etype) {
9755 	case ETHERTYPE_IP:
9756 		ip = (struct ip *)(m->m_data + ehlen);
9757 		BCE_PRINTF("--ip: dest = 0x%08X , src = 0x%08X, "
9758 		    "len = %d bytes, protocol = 0x%02X, xsum = 0x%04X\n",
9759 		    ntohl(ip->ip_dst.s_addr), ntohl(ip->ip_src.s_addr),
9760 		    ntohs(ip->ip_len), ip->ip_p, ntohs(ip->ip_sum));
9761 
9762 		switch (ip->ip_p) {
9763 		case IPPROTO_TCP:
9764 			th = (struct tcphdr *)((caddr_t)ip + (ip->ip_hl << 2));
9765 			BCE_PRINTF("-tcp: dest = %d, src = %d, hlen = "
9766 			    "%d bytes, flags = 0x%b, csum = 0x%04X\n",
9767 			    ntohs(th->th_dport), ntohs(th->th_sport),
9768 			    (th->th_off << 2), th->th_flags,
9769 			    "\20\10CWR\07ECE\06URG\05ACK\04PSH\03RST"
9770 			    "\02SYN\01FIN", ntohs(th->th_sum));
9771 			break;
9772 		case IPPROTO_UDP:
9773 			uh = (struct udphdr *)((caddr_t)ip + (ip->ip_hl << 2));
9774 			BCE_PRINTF("-udp: dest = %d, src = %d, len = %d "
9775 			    "bytes, csum = 0x%04X\n", ntohs(uh->uh_dport),
9776 			    ntohs(uh->uh_sport), ntohs(uh->uh_ulen),
9777 			    ntohs(uh->uh_sum));
9778 			break;
9779 		case IPPROTO_ICMP:
9780 			BCE_PRINTF("icmp:\n");
9781 			break;
9782 		default:
9783 			BCE_PRINTF("----: Other IP protocol.\n");
9784 			}
9785 		break;
9786 	case ETHERTYPE_IPV6:
9787 		BCE_PRINTF("ipv6: No decode supported.\n");
9788 		break;
9789 	case ETHERTYPE_ARP:
9790 		BCE_PRINTF("-arp: ");
9791 		ah = (struct arphdr *) (m->m_data + ehlen);
9792 		switch (ntohs(ah->ar_op)) {
9793 		case ARPOP_REVREQUEST:
9794 			printf("reverse ARP request\n");
9795 			break;
9796 		case ARPOP_REVREPLY:
9797 			printf("reverse ARP reply\n");
9798 			break;
9799 		case ARPOP_REQUEST:
9800 			printf("ARP request\n");
9801 			break;
9802 		case ARPOP_REPLY:
9803 			printf("ARP reply\n");
9804 			break;
9805 		default:
9806 			printf("other ARP operation\n");
9807 		}
9808 		break;
9809 	default:
9810 		BCE_PRINTF("----: Other protocol.\n");
9811 	}
9812 
9813 	BCE_PRINTF(
9814 		"-----------------------------"
9815 		"--------------"
9816 		"-----------------------------\n");
9817 }
9818 
9819 
9820 /****************************************************************************/
9821 /* Prints out information about an mbuf.                                    */
9822 /*                                                                          */
9823 /* Returns:                                                                 */
9824 /*   Nothing.                                                               */
9825 /****************************************************************************/
9826 static __attribute__ ((noinline)) void
9827 bce_dump_mbuf(struct bce_softc *sc, struct mbuf *m)
9828 {
9829 	struct mbuf *mp = m;
9830 
9831 	if (m == NULL) {
9832 		BCE_PRINTF("mbuf: null pointer\n");
9833 		return;
9834 	}
9835 
9836 	while (mp) {
9837 		BCE_PRINTF("mbuf: %p, m_len = %d, m_flags = 0x%b, "
9838 		    "m_data = %p\n", mp, mp->m_len, mp->m_flags,
9839 		    "\20\1M_EXT\2M_PKTHDR\3M_EOR\4M_RDONLY", mp->m_data);
9840 
9841 		if (mp->m_flags & M_PKTHDR) {
9842 			BCE_PRINTF("- m_pkthdr: len = %d, flags = 0x%b, "
9843 			    "csum_flags = %b\n", mp->m_pkthdr.len,
9844 			    mp->m_flags, M_FLAG_PRINTF,
9845 			    mp->m_pkthdr.csum_flags, CSUM_BITS);
9846 		}
9847 
9848 		if (mp->m_flags & M_EXT) {
9849 			BCE_PRINTF("- m_ext: %p, ext_size = %d, type = ",
9850 			    mp->m_ext.ext_buf, mp->m_ext.ext_size);
9851 			switch (mp->m_ext.ext_type) {
9852 			case EXT_CLUSTER:
9853 				printf("EXT_CLUSTER\n"); break;
9854 			case EXT_SFBUF:
9855 				printf("EXT_SFBUF\n"); break;
9856 			case EXT_JUMBO9:
9857 				printf("EXT_JUMBO9\n"); break;
9858 			case EXT_JUMBO16:
9859 				printf("EXT_JUMBO16\n"); break;
9860 			case EXT_PACKET:
9861 				printf("EXT_PACKET\n"); break;
9862 			case EXT_MBUF:
9863 				printf("EXT_MBUF\n"); break;
9864 			case EXT_NET_DRV:
9865 				printf("EXT_NET_DRV\n"); break;
9866 			case EXT_MOD_TYPE:
9867 				printf("EXT_MDD_TYPE\n"); break;
9868 			case EXT_DISPOSABLE:
9869 				printf("EXT_DISPOSABLE\n"); break;
9870 			case EXT_EXTREF:
9871 				printf("EXT_EXTREF\n"); break;
9872 			default:
9873 				printf("UNKNOWN\n");
9874 			}
9875 		}
9876 
9877 		mp = mp->m_next;
9878 	}
9879 }
9880 
9881 
9882 /****************************************************************************/
9883 /* Prints out the mbufs in the TX mbuf chain.                               */
9884 /*                                                                          */
9885 /* Returns:                                                                 */
9886 /*   Nothing.                                                               */
9887 /****************************************************************************/
9888 static __attribute__ ((noinline)) void
9889 bce_dump_tx_mbuf_chain(struct bce_softc *sc, u16 chain_prod, int count)
9890 {
9891 	struct mbuf *m;
9892 
9893 	BCE_PRINTF(
9894 		"----------------------------"
9895 		"  tx mbuf data  "
9896 		"----------------------------\n");
9897 
9898 	for (int i = 0; i < count; i++) {
9899 	 	m = sc->tx_mbuf_ptr[chain_prod];
9900 		BCE_PRINTF("txmbuf[0x%04X]\n", chain_prod);
9901 		bce_dump_mbuf(sc, m);
9902 		chain_prod = TX_CHAIN_IDX(NEXT_TX_BD(chain_prod));
9903 	}
9904 
9905 	BCE_PRINTF(
9906 		"----------------------------"
9907 		"----------------"
9908 		"----------------------------\n");
9909 }
9910 
9911 
9912 /****************************************************************************/
9913 /* Prints out the mbufs in the RX mbuf chain.                               */
9914 /*                                                                          */
9915 /* Returns:                                                                 */
9916 /*   Nothing.                                                               */
9917 /****************************************************************************/
9918 static __attribute__ ((noinline)) void
9919 bce_dump_rx_mbuf_chain(struct bce_softc *sc, u16 chain_prod, int count)
9920 {
9921 	struct mbuf *m;
9922 
9923 	BCE_PRINTF(
9924 		"----------------------------"
9925 		"  rx mbuf data  "
9926 		"----------------------------\n");
9927 
9928 	for (int i = 0; i < count; i++) {
9929 	 	m = sc->rx_mbuf_ptr[chain_prod];
9930 		BCE_PRINTF("rxmbuf[0x%04X]\n", chain_prod);
9931 		bce_dump_mbuf(sc, m);
9932 		chain_prod = RX_CHAIN_IDX(NEXT_RX_BD(chain_prod));
9933 	}
9934 
9935 
9936 	BCE_PRINTF(
9937 		"----------------------------"
9938 		"----------------"
9939 		"----------------------------\n");
9940 }
9941 
9942 
9943 /****************************************************************************/
9944 /* Prints out the mbufs in the mbuf page chain.                             */
9945 /*                                                                          */
9946 /* Returns:                                                                 */
9947 /*   Nothing.                                                               */
9948 /****************************************************************************/
9949 static __attribute__ ((noinline)) void
9950 bce_dump_pg_mbuf_chain(struct bce_softc *sc, u16 chain_prod, int count)
9951 {
9952 	struct mbuf *m;
9953 
9954 	BCE_PRINTF(
9955 		"----------------------------"
9956 		"  pg mbuf data  "
9957 		"----------------------------\n");
9958 
9959 	for (int i = 0; i < count; i++) {
9960 	 	m = sc->pg_mbuf_ptr[chain_prod];
9961 		BCE_PRINTF("pgmbuf[0x%04X]\n", chain_prod);
9962 		bce_dump_mbuf(sc, m);
9963 		chain_prod = PG_CHAIN_IDX(NEXT_PG_BD(chain_prod));
9964 	}
9965 
9966 
9967 	BCE_PRINTF(
9968 		"----------------------------"
9969 		"----------------"
9970 		"----------------------------\n");
9971 }
9972 
9973 
9974 /****************************************************************************/
9975 /* Prints out a tx_bd structure.                                            */
9976 /*                                                                          */
9977 /* Returns:                                                                 */
9978 /*   Nothing.                                                               */
9979 /****************************************************************************/
9980 static __attribute__ ((noinline)) void
9981 bce_dump_txbd(struct bce_softc *sc, int idx, struct tx_bd *txbd)
9982 {
9983 	int i = 0;
9984 
9985 	if (idx > MAX_TX_BD_ALLOC)
9986 		/* Index out of range. */
9987 		BCE_PRINTF("tx_bd[0x%04X]: Invalid tx_bd index!\n", idx);
9988 	else if ((idx & USABLE_TX_BD_PER_PAGE) == USABLE_TX_BD_PER_PAGE)
9989 		/* TX Chain page pointer. */
9990 		BCE_PRINTF("tx_bd[0x%04X]: haddr = 0x%08X:%08X, chain page "
9991 		    "pointer\n", idx, txbd->tx_bd_haddr_hi,
9992 		    txbd->tx_bd_haddr_lo);
9993 	else {
9994 		/* Normal tx_bd entry. */
9995 		BCE_PRINTF("tx_bd[0x%04X]: haddr = 0x%08X:%08X, "
9996 		    "mss_nbytes = 0x%08X, vlan tag = 0x%04X, flags = "
9997 		    "0x%04X (", idx, txbd->tx_bd_haddr_hi,
9998 		    txbd->tx_bd_haddr_lo, txbd->tx_bd_mss_nbytes,
9999 		    txbd->tx_bd_vlan_tag, txbd->tx_bd_flags);
10000 
10001 		if (txbd->tx_bd_flags & TX_BD_FLAGS_CONN_FAULT) {
10002 			if (i>0)
10003 				printf("|");
10004 			printf("CONN_FAULT");
10005 			i++;
10006 		}
10007 
10008 		if (txbd->tx_bd_flags & TX_BD_FLAGS_TCP_UDP_CKSUM) {
10009 			if (i>0)
10010 				printf("|");
10011 			printf("TCP_UDP_CKSUM");
10012 			i++;
10013 		}
10014 
10015 		if (txbd->tx_bd_flags & TX_BD_FLAGS_IP_CKSUM) {
10016 			if (i>0)
10017 				printf("|");
10018 			printf("IP_CKSUM");
10019 			i++;
10020 		}
10021 
10022 		if (txbd->tx_bd_flags & TX_BD_FLAGS_VLAN_TAG) {
10023 			if (i>0)
10024 				printf("|");
10025 			printf("VLAN");
10026 			i++;
10027 		}
10028 
10029 		if (txbd->tx_bd_flags & TX_BD_FLAGS_COAL_NOW) {
10030 			if (i>0)
10031 				printf("|");
10032 			printf("COAL_NOW");
10033 			i++;
10034 		}
10035 
10036 		if (txbd->tx_bd_flags & TX_BD_FLAGS_DONT_GEN_CRC) {
10037 			if (i>0)
10038 				printf("|");
10039 			printf("DONT_GEN_CRC");
10040 			i++;
10041 		}
10042 
10043 		if (txbd->tx_bd_flags & TX_BD_FLAGS_START) {
10044 			if (i>0)
10045 				printf("|");
10046 			printf("START");
10047 			i++;
10048 		}
10049 
10050 		if (txbd->tx_bd_flags & TX_BD_FLAGS_END) {
10051 			if (i>0)
10052 				printf("|");
10053 			printf("END");
10054 			i++;
10055 		}
10056 
10057 		if (txbd->tx_bd_flags & TX_BD_FLAGS_SW_LSO) {
10058 			if (i>0)
10059 				printf("|");
10060 			printf("LSO");
10061 			i++;
10062 		}
10063 
10064 		if (txbd->tx_bd_flags & TX_BD_FLAGS_SW_OPTION_WORD) {
10065 			if (i>0)
10066 				printf("|");
10067 			printf("SW_OPTION=%d", ((txbd->tx_bd_flags &
10068 			    TX_BD_FLAGS_SW_OPTION_WORD) >> 8)); i++;
10069 		}
10070 
10071 		if (txbd->tx_bd_flags & TX_BD_FLAGS_SW_FLAGS) {
10072 			if (i>0)
10073 				printf("|");
10074 			printf("SW_FLAGS");
10075 			i++;
10076 		}
10077 
10078 		if (txbd->tx_bd_flags & TX_BD_FLAGS_SW_SNAP) {
10079 			if (i>0)
10080 				printf("|");
10081 			printf("SNAP)");
10082 		} else {
10083 			printf(")\n");
10084 		}
10085 	}
10086 }
10087 
10088 
10089 /****************************************************************************/
10090 /* Prints out a rx_bd structure.                                            */
10091 /*                                                                          */
10092 /* Returns:                                                                 */
10093 /*   Nothing.                                                               */
10094 /****************************************************************************/
10095 static __attribute__ ((noinline)) void
10096 bce_dump_rxbd(struct bce_softc *sc, int idx, struct rx_bd *rxbd)
10097 {
10098 	if (idx > MAX_RX_BD_ALLOC)
10099 		/* Index out of range. */
10100 		BCE_PRINTF("rx_bd[0x%04X]: Invalid rx_bd index!\n", idx);
10101 	else if ((idx & USABLE_RX_BD_PER_PAGE) == USABLE_RX_BD_PER_PAGE)
10102 		/* RX Chain page pointer. */
10103 		BCE_PRINTF("rx_bd[0x%04X]: haddr = 0x%08X:%08X, chain page "
10104 		    "pointer\n", idx, rxbd->rx_bd_haddr_hi,
10105 		    rxbd->rx_bd_haddr_lo);
10106 	else
10107 		/* Normal rx_bd entry. */
10108 		BCE_PRINTF("rx_bd[0x%04X]: haddr = 0x%08X:%08X, nbytes = "
10109 		    "0x%08X, flags = 0x%08X\n", idx, rxbd->rx_bd_haddr_hi,
10110 		    rxbd->rx_bd_haddr_lo, rxbd->rx_bd_len,
10111 		    rxbd->rx_bd_flags);
10112 }
10113 
10114 
10115 /****************************************************************************/
10116 /* Prints out a rx_bd structure in the page chain.                          */
10117 /*                                                                          */
10118 /* Returns:                                                                 */
10119 /*   Nothing.                                                               */
10120 /****************************************************************************/
10121 static __attribute__ ((noinline)) void
10122 bce_dump_pgbd(struct bce_softc *sc, int idx, struct rx_bd *pgbd)
10123 {
10124 	if (idx > MAX_PG_BD_ALLOC)
10125 		/* Index out of range. */
10126 		BCE_PRINTF("pg_bd[0x%04X]: Invalid pg_bd index!\n", idx);
10127 	else if ((idx & USABLE_PG_BD_PER_PAGE) == USABLE_PG_BD_PER_PAGE)
10128 		/* Page Chain page pointer. */
10129 		BCE_PRINTF("px_bd[0x%04X]: haddr = 0x%08X:%08X, chain page pointer\n",
10130 			idx, pgbd->rx_bd_haddr_hi, pgbd->rx_bd_haddr_lo);
10131 	else
10132 		/* Normal rx_bd entry. */
10133 		BCE_PRINTF("pg_bd[0x%04X]: haddr = 0x%08X:%08X, nbytes = 0x%08X, "
10134 			"flags = 0x%08X\n", idx,
10135 			pgbd->rx_bd_haddr_hi, pgbd->rx_bd_haddr_lo,
10136 			pgbd->rx_bd_len, pgbd->rx_bd_flags);
10137 }
10138 
10139 
10140 /****************************************************************************/
10141 /* Prints out a l2_fhdr structure.                                          */
10142 /*                                                                          */
10143 /* Returns:                                                                 */
10144 /*   Nothing.                                                               */
10145 /****************************************************************************/
10146 static __attribute__ ((noinline)) void
10147 bce_dump_l2fhdr(struct bce_softc *sc, int idx, struct l2_fhdr *l2fhdr)
10148 {
10149 	BCE_PRINTF("l2_fhdr[0x%04X]: status = 0x%b, "
10150 		"pkt_len = %d, vlan = 0x%04x, ip_xsum/hdr_len = 0x%04X, "
10151 		"tcp_udp_xsum = 0x%04X\n", idx,
10152 		l2fhdr->l2_fhdr_status, BCE_L2FHDR_PRINTFB,
10153 		l2fhdr->l2_fhdr_pkt_len, l2fhdr->l2_fhdr_vlan_tag,
10154 		l2fhdr->l2_fhdr_ip_xsum, l2fhdr->l2_fhdr_tcp_udp_xsum);
10155 }
10156 
10157 
10158 /****************************************************************************/
10159 /* Prints out context memory info.  (Only useful for CID 0 to 16.)          */
10160 /*                                                                          */
10161 /* Returns:                                                                 */
10162 /*   Nothing.                                                               */
10163 /****************************************************************************/
10164 static __attribute__ ((noinline)) void
10165 bce_dump_ctx(struct bce_softc *sc, u16 cid)
10166 {
10167 	if (cid > TX_CID) {
10168 		BCE_PRINTF(" Unknown CID\n");
10169 		return;
10170 	}
10171 
10172 	BCE_PRINTF(
10173 	    "----------------------------"
10174 	    "    CTX Data    "
10175 	    "----------------------------\n");
10176 
10177 	BCE_PRINTF("     0x%04X - (CID) Context ID\n", cid);
10178 
10179 	if (cid == RX_CID) {
10180 		BCE_PRINTF(" 0x%08X - (L2CTX_RX_HOST_BDIDX) host rx "
10181 		   "producer index\n",
10182 		    CTX_RD(sc, GET_CID_ADDR(cid), BCE_L2CTX_RX_HOST_BDIDX));
10183 		BCE_PRINTF(" 0x%08X - (L2CTX_RX_HOST_BSEQ) host "
10184 		    "byte sequence\n", CTX_RD(sc, GET_CID_ADDR(cid),
10185 		    BCE_L2CTX_RX_HOST_BSEQ));
10186 		BCE_PRINTF(" 0x%08X - (L2CTX_RX_NX_BSEQ) h/w byte sequence\n",
10187 		    CTX_RD(sc, GET_CID_ADDR(cid), BCE_L2CTX_RX_NX_BSEQ));
10188 		BCE_PRINTF(" 0x%08X - (L2CTX_RX_NX_BDHADDR_HI) h/w buffer "
10189 		    "descriptor address\n",
10190  		    CTX_RD(sc, GET_CID_ADDR(cid), BCE_L2CTX_RX_NX_BDHADDR_HI));
10191 		BCE_PRINTF(" 0x%08X - (L2CTX_RX_NX_BDHADDR_LO) h/w buffer "
10192 		    "descriptor address\n",
10193 		    CTX_RD(sc, GET_CID_ADDR(cid), BCE_L2CTX_RX_NX_BDHADDR_LO));
10194 		BCE_PRINTF(" 0x%08X - (L2CTX_RX_NX_BDIDX) h/w rx consumer "
10195 		    "index\n", CTX_RD(sc, GET_CID_ADDR(cid),
10196 		    BCE_L2CTX_RX_NX_BDIDX));
10197 		BCE_PRINTF(" 0x%08X - (L2CTX_RX_HOST_PG_BDIDX) host page "
10198 		    "producer index\n", CTX_RD(sc, GET_CID_ADDR(cid),
10199 		    BCE_L2CTX_RX_HOST_PG_BDIDX));
10200 		BCE_PRINTF(" 0x%08X - (L2CTX_RX_PG_BUF_SIZE) host rx_bd/page "
10201 		    "buffer size\n", CTX_RD(sc, GET_CID_ADDR(cid),
10202 		    BCE_L2CTX_RX_PG_BUF_SIZE));
10203 		BCE_PRINTF(" 0x%08X - (L2CTX_RX_NX_PG_BDHADDR_HI) h/w page "
10204 		    "chain address\n", CTX_RD(sc, GET_CID_ADDR(cid),
10205 		    BCE_L2CTX_RX_NX_PG_BDHADDR_HI));
10206 		BCE_PRINTF(" 0x%08X - (L2CTX_RX_NX_PG_BDHADDR_LO) h/w page "
10207 		    "chain address\n", CTX_RD(sc, GET_CID_ADDR(cid),
10208 		    BCE_L2CTX_RX_NX_PG_BDHADDR_LO));
10209 		BCE_PRINTF(" 0x%08X - (L2CTX_RX_NX_PG_BDIDX) h/w page "
10210 		    "consumer index\n",	CTX_RD(sc, GET_CID_ADDR(cid),
10211 		    BCE_L2CTX_RX_NX_PG_BDIDX));
10212 	} else if (cid == TX_CID) {
10213 		if (BCE_CHIP_NUM(sc) == BCE_CHIP_NUM_5709) {
10214 			BCE_PRINTF(" 0x%08X - (L2CTX_TX_TYPE_XI) ctx type\n",
10215 			    CTX_RD(sc, GET_CID_ADDR(cid),
10216 			    BCE_L2CTX_TX_TYPE_XI));
10217 			BCE_PRINTF(" 0x%08X - (L2CTX_CMD_TX_TYPE_XI) ctx "
10218 			    "cmd\n", CTX_RD(sc, GET_CID_ADDR(cid),
10219 			    BCE_L2CTX_TX_CMD_TYPE_XI));
10220 			BCE_PRINTF(" 0x%08X - (L2CTX_TX_TBDR_BDHADDR_HI_XI) "
10221 			    "h/w buffer descriptor address\n",
10222 			    CTX_RD(sc, GET_CID_ADDR(cid),
10223 			    BCE_L2CTX_TX_TBDR_BHADDR_HI_XI));
10224 			BCE_PRINTF(" 0x%08X - (L2CTX_TX_TBDR_BHADDR_LO_XI) "
10225 			    "h/w buffer	descriptor address\n",
10226 			    CTX_RD(sc, GET_CID_ADDR(cid),
10227 			    BCE_L2CTX_TX_TBDR_BHADDR_LO_XI));
10228 			BCE_PRINTF(" 0x%08X - (L2CTX_TX_HOST_BIDX_XI) "
10229 			    "host producer index\n",
10230 			    CTX_RD(sc, GET_CID_ADDR(cid),
10231 			    BCE_L2CTX_TX_HOST_BIDX_XI));
10232 			BCE_PRINTF(" 0x%08X - (L2CTX_TX_HOST_BSEQ_XI) "
10233 			    "host byte sequence\n",
10234 			    CTX_RD(sc, GET_CID_ADDR(cid),
10235 			    BCE_L2CTX_TX_HOST_BSEQ_XI));
10236 		} else {
10237 			BCE_PRINTF(" 0x%08X - (L2CTX_TX_TYPE) ctx type\n",
10238 			    CTX_RD(sc, GET_CID_ADDR(cid), BCE_L2CTX_TX_TYPE));
10239 			BCE_PRINTF(" 0x%08X - (L2CTX_TX_CMD_TYPE) ctx cmd\n",
10240 			    CTX_RD(sc, GET_CID_ADDR(cid),
10241 			    BCE_L2CTX_TX_CMD_TYPE));
10242 			BCE_PRINTF(" 0x%08X - (L2CTX_TX_TBDR_BDHADDR_HI) "
10243 			    "h/w buffer	descriptor address\n",
10244 			    CTX_RD(sc, GET_CID_ADDR(cid),
10245 			    BCE_L2CTX_TX_TBDR_BHADDR_HI));
10246 			BCE_PRINTF(" 0x%08X - (L2CTX_TX_TBDR_BHADDR_LO) "
10247 			    "h/w buffer	descriptor address\n",
10248 			    CTX_RD(sc, GET_CID_ADDR(cid),
10249 			    BCE_L2CTX_TX_TBDR_BHADDR_LO));
10250 			BCE_PRINTF(" 0x%08X - (L2CTX_TX_HOST_BIDX) host "
10251 			    "producer index\n", CTX_RD(sc, GET_CID_ADDR(cid),
10252 			    BCE_L2CTX_TX_HOST_BIDX));
10253 			BCE_PRINTF(" 0x%08X - (L2CTX_TX_HOST_BSEQ) host byte "
10254 			    "sequence\n", CTX_RD(sc, GET_CID_ADDR(cid),
10255 			    BCE_L2CTX_TX_HOST_BSEQ));
10256 		}
10257 	}
10258 
10259 	BCE_PRINTF(
10260 	   "----------------------------"
10261 	   "    Raw CTX     "
10262 	   "----------------------------\n");
10263 
10264 	for (int i = 0x0; i < 0x300; i += 0x10) {
10265 		BCE_PRINTF("0x%04X: 0x%08X 0x%08X 0x%08X 0x%08X\n", i,
10266 		   CTX_RD(sc, GET_CID_ADDR(cid), i),
10267 		   CTX_RD(sc, GET_CID_ADDR(cid), i + 0x4),
10268 		   CTX_RD(sc, GET_CID_ADDR(cid), i + 0x8),
10269 		   CTX_RD(sc, GET_CID_ADDR(cid), i + 0xc));
10270 	}
10271 
10272 
10273 	BCE_PRINTF(
10274 	   "----------------------------"
10275 	   "----------------"
10276 	   "----------------------------\n");
10277 }
10278 
10279 
10280 /****************************************************************************/
10281 /* Prints out the FTQ data.                                                 */
10282 /*                                                                          */
10283 /* Returns:                                                                */
10284 /*   Nothing.                                                               */
10285 /****************************************************************************/
10286 static __attribute__ ((noinline)) void
10287 bce_dump_ftqs(struct bce_softc *sc)
10288 {
10289 	u32 cmd, ctl, cur_depth, max_depth, valid_cnt, val;
10290 
10291 	BCE_PRINTF(
10292 	    "----------------------------"
10293 	    "    FTQ Data    "
10294 	    "----------------------------\n");
10295 
10296 	BCE_PRINTF("   FTQ    Command    Control   Depth_Now  "
10297 	    "Max_Depth  Valid_Cnt \n");
10298 	BCE_PRINTF(" ------- ---------- ---------- ---------- "
10299 	    "---------- ----------\n");
10300 
10301 	/* Setup the generic statistic counters for the FTQ valid count. */
10302 	val = (BCE_HC_STAT_GEN_SEL_0_GEN_SEL_0_RV2PPQ_VALID_CNT << 24) |
10303 	    (BCE_HC_STAT_GEN_SEL_0_GEN_SEL_0_RXPCQ_VALID_CNT  << 16) |
10304 	    (BCE_HC_STAT_GEN_SEL_0_GEN_SEL_0_RXPQ_VALID_CNT   <<  8) |
10305 	    (BCE_HC_STAT_GEN_SEL_0_GEN_SEL_0_RLUPQ_VALID_CNT);
10306 	REG_WR(sc, BCE_HC_STAT_GEN_SEL_0, val);
10307 
10308 	val = (BCE_HC_STAT_GEN_SEL_0_GEN_SEL_0_TSCHQ_VALID_CNT  << 24) |
10309 	    (BCE_HC_STAT_GEN_SEL_0_GEN_SEL_0_RDMAQ_VALID_CNT  << 16) |
10310 	    (BCE_HC_STAT_GEN_SEL_0_GEN_SEL_0_RV2PTQ_VALID_CNT <<  8) |
10311 	    (BCE_HC_STAT_GEN_SEL_0_GEN_SEL_0_RV2PMQ_VALID_CNT);
10312 	REG_WR(sc, BCE_HC_STAT_GEN_SEL_1, val);
10313 
10314 	val = (BCE_HC_STAT_GEN_SEL_0_GEN_SEL_0_TPATQ_VALID_CNT  << 24) |
10315 	    (BCE_HC_STAT_GEN_SEL_0_GEN_SEL_0_TDMAQ_VALID_CNT  << 16) |
10316 	    (BCE_HC_STAT_GEN_SEL_0_GEN_SEL_0_TXPQ_VALID_CNT   <<  8) |
10317 	    (BCE_HC_STAT_GEN_SEL_0_GEN_SEL_0_TBDRQ_VALID_CNT);
10318 	REG_WR(sc, BCE_HC_STAT_GEN_SEL_2, val);
10319 
10320 	val = (BCE_HC_STAT_GEN_SEL_0_GEN_SEL_0_COMQ_VALID_CNT   << 24) |
10321 	    (BCE_HC_STAT_GEN_SEL_0_GEN_SEL_0_COMTQ_VALID_CNT  << 16) |
10322 	    (BCE_HC_STAT_GEN_SEL_0_GEN_SEL_0_COMXQ_VALID_CNT  <<  8) |
10323 	    (BCE_HC_STAT_GEN_SEL_0_GEN_SEL_0_TASQ_VALID_CNT);
10324 	REG_WR(sc, BCE_HC_STAT_GEN_SEL_3, val);
10325 
10326 	/* Input queue to the Receive Lookup state machine */
10327 	cmd = REG_RD(sc, BCE_RLUP_FTQ_CMD);
10328 	ctl = REG_RD(sc, BCE_RLUP_FTQ_CTL);
10329 	cur_depth = (ctl & BCE_RLUP_FTQ_CTL_CUR_DEPTH) >> 22;
10330 	max_depth = (ctl & BCE_RLUP_FTQ_CTL_MAX_DEPTH) >> 12;
10331 	valid_cnt = REG_RD(sc, BCE_HC_STAT_GEN_STAT0);
10332 	BCE_PRINTF(" RLUP    0x%08X 0x%08X 0x%08X 0x%08X 0x%08X\n",
10333 	    cmd, ctl, cur_depth, max_depth, valid_cnt);
10334 
10335 	/* Input queue to the Receive Processor */
10336 	cmd = REG_RD_IND(sc, BCE_RXP_FTQ_CMD);
10337 	ctl = REG_RD_IND(sc, BCE_RXP_FTQ_CTL);
10338 	cur_depth = (ctl & BCE_RXP_FTQ_CTL_CUR_DEPTH) >> 22;
10339 	max_depth = (ctl & BCE_RXP_FTQ_CTL_MAX_DEPTH) >> 12;
10340 	valid_cnt = REG_RD(sc, BCE_HC_STAT_GEN_STAT1);
10341 	BCE_PRINTF(" RXP     0x%08X 0x%08X 0x%08X 0x%08X 0x%08X\n",
10342 	    cmd, ctl, cur_depth, max_depth, valid_cnt);
10343 
10344 	/* Input queue to the Recevie Processor */
10345 	cmd = REG_RD_IND(sc, BCE_RXP_CFTQ_CMD);
10346 	ctl = REG_RD_IND(sc, BCE_RXP_CFTQ_CTL);
10347 	cur_depth = (ctl & BCE_RXP_CFTQ_CTL_CUR_DEPTH) >> 22;
10348 	max_depth = (ctl & BCE_RXP_CFTQ_CTL_MAX_DEPTH) >> 12;
10349 	valid_cnt = REG_RD(sc, BCE_HC_STAT_GEN_STAT2);
10350 	BCE_PRINTF(" RXPC    0x%08X 0x%08X 0x%08X 0x%08X 0x%08X\n",
10351 	    cmd, ctl, cur_depth, max_depth, valid_cnt);
10352 
10353 	/* Input queue to the Receive Virtual to Physical state machine */
10354 	cmd = REG_RD(sc, BCE_RV2P_PFTQ_CMD);
10355 	ctl = REG_RD(sc, BCE_RV2P_PFTQ_CTL);
10356 	cur_depth = (ctl & BCE_RV2P_PFTQ_CTL_CUR_DEPTH) >> 22;
10357 	max_depth = (ctl & BCE_RV2P_PFTQ_CTL_MAX_DEPTH) >> 12;
10358 	valid_cnt = REG_RD(sc, BCE_HC_STAT_GEN_STAT3);
10359 	BCE_PRINTF(" RV2PP   0x%08X 0x%08X 0x%08X 0x%08X 0x%08X\n",
10360 	    cmd, ctl, cur_depth, max_depth, valid_cnt);
10361 
10362 	/* Input queue to the Recevie Virtual to Physical state machine */
10363 	cmd = REG_RD(sc, BCE_RV2P_MFTQ_CMD);
10364 	ctl = REG_RD(sc, BCE_RV2P_MFTQ_CTL);
10365 	cur_depth = (ctl & BCE_RV2P_MFTQ_CTL_CUR_DEPTH) >> 22;
10366 	max_depth = (ctl & BCE_RV2P_MFTQ_CTL_MAX_DEPTH) >> 12;
10367 	valid_cnt = REG_RD(sc, BCE_HC_STAT_GEN_STAT4);
10368 	BCE_PRINTF(" RV2PM   0x%08X 0x%08X 0x%08X 0x%08X 0x%08X\n",
10369 	    cmd, ctl, cur_depth, max_depth, valid_cnt);
10370 
10371 	/* Input queue to the Receive Virtual to Physical state machine */
10372 	cmd = REG_RD(sc, BCE_RV2P_TFTQ_CMD);
10373 	ctl = REG_RD(sc, BCE_RV2P_TFTQ_CTL);
10374 	cur_depth = (ctl & BCE_RV2P_TFTQ_CTL_CUR_DEPTH) >> 22;
10375 	max_depth = (ctl & BCE_RV2P_TFTQ_CTL_MAX_DEPTH) >> 12;
10376 	valid_cnt = REG_RD(sc, BCE_HC_STAT_GEN_STAT5);
10377 	BCE_PRINTF(" RV2PT   0x%08X 0x%08X 0x%08X 0x%08X 0x%08X\n",
10378 	    cmd, ctl, cur_depth, max_depth, valid_cnt);
10379 
10380 	/* Input queue to the Receive DMA state machine */
10381 	cmd = REG_RD(sc, BCE_RDMA_FTQ_CMD);
10382 	ctl = REG_RD(sc, BCE_RDMA_FTQ_CTL);
10383 	cur_depth = (ctl & BCE_RDMA_FTQ_CTL_CUR_DEPTH) >> 22;
10384 	max_depth = (ctl & BCE_RDMA_FTQ_CTL_MAX_DEPTH) >> 12;
10385 	valid_cnt = REG_RD(sc, BCE_HC_STAT_GEN_STAT6);
10386 	BCE_PRINTF(" RDMA    0x%08X 0x%08X 0x%08X 0x%08X 0x%08X\n",
10387 	    cmd, ctl, cur_depth, max_depth, valid_cnt);
10388 
10389 	/* Input queue to the Transmit Scheduler state machine */
10390 	cmd = REG_RD(sc, BCE_TSCH_FTQ_CMD);
10391 	ctl = REG_RD(sc, BCE_TSCH_FTQ_CTL);
10392 	cur_depth = (ctl & BCE_TSCH_FTQ_CTL_CUR_DEPTH) >> 22;
10393 	max_depth = (ctl & BCE_TSCH_FTQ_CTL_MAX_DEPTH) >> 12;
10394 	valid_cnt = REG_RD(sc, BCE_HC_STAT_GEN_STAT7);
10395 	BCE_PRINTF(" TSCH    0x%08X 0x%08X 0x%08X 0x%08X 0x%08X\n",
10396 	    cmd, ctl, cur_depth, max_depth, valid_cnt);
10397 
10398 	/* Input queue to the Transmit Buffer Descriptor state machine */
10399 	cmd = REG_RD(sc, BCE_TBDR_FTQ_CMD);
10400 	ctl = REG_RD(sc, BCE_TBDR_FTQ_CTL);
10401 	cur_depth = (ctl & BCE_TBDR_FTQ_CTL_CUR_DEPTH) >> 22;
10402 	max_depth = (ctl & BCE_TBDR_FTQ_CTL_MAX_DEPTH) >> 12;
10403 	valid_cnt = REG_RD(sc, BCE_HC_STAT_GEN_STAT8);
10404 	BCE_PRINTF(" TBDR    0x%08X 0x%08X 0x%08X 0x%08X 0x%08X\n",
10405 	    cmd, ctl, cur_depth, max_depth, valid_cnt);
10406 
10407 	/* Input queue to the Transmit Processor */
10408 	cmd = REG_RD_IND(sc, BCE_TXP_FTQ_CMD);
10409 	ctl = REG_RD_IND(sc, BCE_TXP_FTQ_CTL);
10410 	cur_depth = (ctl & BCE_TXP_FTQ_CTL_CUR_DEPTH) >> 22;
10411 	max_depth = (ctl & BCE_TXP_FTQ_CTL_MAX_DEPTH) >> 12;
10412 	valid_cnt = REG_RD(sc, BCE_HC_STAT_GEN_STAT9);
10413 	BCE_PRINTF(" TXP     0x%08X 0x%08X 0x%08X 0x%08X 0x%08X\n",
10414 	    cmd, ctl, cur_depth, max_depth, valid_cnt);
10415 
10416 	/* Input queue to the Transmit DMA state machine */
10417 	cmd = REG_RD(sc, BCE_TDMA_FTQ_CMD);
10418 	ctl = REG_RD(sc, BCE_TDMA_FTQ_CTL);
10419 	cur_depth = (ctl & BCE_TDMA_FTQ_CTL_CUR_DEPTH) >> 22;
10420 	max_depth = (ctl & BCE_TDMA_FTQ_CTL_MAX_DEPTH) >> 12;
10421 	valid_cnt = REG_RD(sc, BCE_HC_STAT_GEN_STAT10);
10422 	BCE_PRINTF(" TDMA    0x%08X 0x%08X 0x%08X 0x%08X 0x%08X\n",
10423 	    cmd, ctl, cur_depth, max_depth, valid_cnt);
10424 
10425 	/* Input queue to the Transmit Patch-Up Processor */
10426 	cmd = REG_RD_IND(sc, BCE_TPAT_FTQ_CMD);
10427 	ctl = REG_RD_IND(sc, BCE_TPAT_FTQ_CTL);
10428 	cur_depth = (ctl & BCE_TPAT_FTQ_CTL_CUR_DEPTH) >> 22;
10429 	max_depth = (ctl & BCE_TPAT_FTQ_CTL_MAX_DEPTH) >> 12;
10430 	valid_cnt = REG_RD(sc, BCE_HC_STAT_GEN_STAT11);
10431 	BCE_PRINTF(" TPAT    0x%08X 0x%08X 0x%08X 0x%08X 0x%08X\n",
10432 	    cmd, ctl, cur_depth, max_depth, valid_cnt);
10433 
10434 	/* Input queue to the Transmit Assembler state machine */
10435 	cmd = REG_RD_IND(sc, BCE_TAS_FTQ_CMD);
10436 	ctl = REG_RD_IND(sc, BCE_TAS_FTQ_CTL);
10437 	cur_depth = (ctl & BCE_TAS_FTQ_CTL_CUR_DEPTH) >> 22;
10438 	max_depth = (ctl & BCE_TAS_FTQ_CTL_MAX_DEPTH) >> 12;
10439 	valid_cnt = REG_RD(sc, BCE_HC_STAT_GEN_STAT12);
10440 	BCE_PRINTF(" TAS     0x%08X 0x%08X 0x%08X 0x%08X 0x%08X\n",
10441 	    cmd, ctl, cur_depth, max_depth, valid_cnt);
10442 
10443 	/* Input queue to the Completion Processor */
10444 	cmd = REG_RD_IND(sc, BCE_COM_COMXQ_FTQ_CMD);
10445 	ctl = REG_RD_IND(sc, BCE_COM_COMXQ_FTQ_CTL);
10446 	cur_depth = (ctl & BCE_COM_COMXQ_FTQ_CTL_CUR_DEPTH) >> 22;
10447 	max_depth = (ctl & BCE_COM_COMXQ_FTQ_CTL_MAX_DEPTH) >> 12;
10448 	valid_cnt = REG_RD(sc, BCE_HC_STAT_GEN_STAT13);
10449 	BCE_PRINTF(" COMX    0x%08X 0x%08X 0x%08X 0x%08X 0x%08X\n",
10450 	    cmd, ctl, cur_depth, max_depth, valid_cnt);
10451 
10452 	/* Input queue to the Completion Processor */
10453 	cmd = REG_RD_IND(sc, BCE_COM_COMTQ_FTQ_CMD);
10454 	ctl = REG_RD_IND(sc, BCE_COM_COMTQ_FTQ_CTL);
10455 	cur_depth = (ctl & BCE_COM_COMTQ_FTQ_CTL_CUR_DEPTH) >> 22;
10456 	max_depth = (ctl & BCE_COM_COMTQ_FTQ_CTL_MAX_DEPTH) >> 12;
10457 	valid_cnt = REG_RD(sc, BCE_HC_STAT_GEN_STAT14);
10458 	BCE_PRINTF(" COMT    0x%08X 0x%08X 0x%08X 0x%08X 0x%08X\n",
10459 	    cmd, ctl, cur_depth, max_depth, valid_cnt);
10460 
10461 	/* Input queue to the Completion Processor */
10462 	cmd = REG_RD_IND(sc, BCE_COM_COMQ_FTQ_CMD);
10463 	ctl = REG_RD_IND(sc, BCE_COM_COMQ_FTQ_CTL);
10464 	cur_depth = (ctl & BCE_COM_COMQ_FTQ_CTL_CUR_DEPTH) >> 22;
10465 	max_depth = (ctl & BCE_COM_COMQ_FTQ_CTL_MAX_DEPTH) >> 12;
10466 	valid_cnt = REG_RD(sc, BCE_HC_STAT_GEN_STAT15);
10467 	BCE_PRINTF(" COMX    0x%08X 0x%08X 0x%08X 0x%08X 0x%08X\n",
10468 	    cmd, ctl, cur_depth, max_depth, valid_cnt);
10469 
10470 	/* Setup the generic statistic counters for the FTQ valid count. */
10471 	val = (BCE_HC_STAT_GEN_SEL_0_GEN_SEL_0_CSQ_VALID_CNT  << 16) |
10472 	    (BCE_HC_STAT_GEN_SEL_0_GEN_SEL_0_CPQ_VALID_CNT  <<  8) |
10473 	    (BCE_HC_STAT_GEN_SEL_0_GEN_SEL_0_MGMQ_VALID_CNT);
10474 
10475 	if (BCE_CHIP_NUM(sc) == BCE_CHIP_NUM_5709)
10476 		val = val |
10477 		    (BCE_HC_STAT_GEN_SEL_0_GEN_SEL_0_RV2PCSQ_VALID_CNT_XI <<
10478 		     24);
10479 	REG_WR(sc, BCE_HC_STAT_GEN_SEL_0, val);
10480 
10481 	/* Input queue to the Management Control Processor */
10482 	cmd = REG_RD_IND(sc, BCE_MCP_MCPQ_FTQ_CMD);
10483 	ctl = REG_RD_IND(sc, BCE_MCP_MCPQ_FTQ_CTL);
10484 	cur_depth = (ctl & BCE_MCP_MCPQ_FTQ_CTL_CUR_DEPTH) >> 22;
10485 	max_depth = (ctl & BCE_MCP_MCPQ_FTQ_CTL_MAX_DEPTH) >> 12;
10486 	valid_cnt = REG_RD(sc, BCE_HC_STAT_GEN_STAT0);
10487 	BCE_PRINTF(" MCP     0x%08X 0x%08X 0x%08X 0x%08X 0x%08X\n",
10488 	    cmd, ctl, cur_depth, max_depth, valid_cnt);
10489 
10490 	/* Input queue to the Command Processor */
10491 	cmd = REG_RD_IND(sc, BCE_CP_CPQ_FTQ_CMD);
10492 	ctl = REG_RD_IND(sc, BCE_CP_CPQ_FTQ_CTL);
10493 	cur_depth = (ctl & BCE_CP_CPQ_FTQ_CTL_CUR_DEPTH) >> 22;
10494 	max_depth = (ctl & BCE_CP_CPQ_FTQ_CTL_MAX_DEPTH) >> 12;
10495 	valid_cnt = REG_RD(sc, BCE_HC_STAT_GEN_STAT1);
10496 	BCE_PRINTF(" CP      0x%08X 0x%08X 0x%08X 0x%08X 0x%08X\n",
10497 	    cmd, ctl, cur_depth, max_depth, valid_cnt);
10498 
10499 	/* Input queue to the Completion Scheduler state machine */
10500 	cmd = REG_RD(sc, BCE_CSCH_CH_FTQ_CMD);
10501 	ctl = REG_RD(sc, BCE_CSCH_CH_FTQ_CTL);
10502 	cur_depth = (ctl & BCE_CSCH_CH_FTQ_CTL_CUR_DEPTH) >> 22;
10503 	max_depth = (ctl & BCE_CSCH_CH_FTQ_CTL_MAX_DEPTH) >> 12;
10504 	valid_cnt = REG_RD(sc, BCE_HC_STAT_GEN_STAT2);
10505 	BCE_PRINTF(" CS      0x%08X 0x%08X 0x%08X 0x%08X 0x%08X\n",
10506 	    cmd, ctl, cur_depth, max_depth, valid_cnt);
10507 
10508 	if (BCE_CHIP_NUM(sc) == BCE_CHIP_NUM_5709) {
10509 		/* Input queue to the RV2P Command Scheduler */
10510 		cmd = REG_RD(sc, BCE_RV2PCSR_FTQ_CMD);
10511 		ctl = REG_RD(sc, BCE_RV2PCSR_FTQ_CTL);
10512 		cur_depth = (ctl & 0xFFC00000) >> 22;
10513 		max_depth = (ctl & 0x003FF000) >> 12;
10514 		valid_cnt = REG_RD(sc, BCE_HC_STAT_GEN_STAT3);
10515 		BCE_PRINTF(" RV2PCSR 0x%08X 0x%08X 0x%08X 0x%08X 0x%08X\n",
10516 		    cmd, ctl, cur_depth, max_depth, valid_cnt);
10517 	}
10518 
10519 	BCE_PRINTF(
10520 	    "----------------------------"
10521 	    "----------------"
10522 	    "----------------------------\n");
10523 }
10524 
10525 
10526 /****************************************************************************/
10527 /* Prints out the TX chain.                                                 */
10528 /*                                                                          */
10529 /* Returns:                                                                 */
10530 /*   Nothing.                                                               */
10531 /****************************************************************************/
10532 static __attribute__ ((noinline)) void
10533 bce_dump_tx_chain(struct bce_softc *sc, u16 tx_prod, int count)
10534 {
10535 	struct tx_bd *txbd;
10536 
10537 	/* First some info about the tx_bd chain structure. */
10538 	BCE_PRINTF(
10539 	    "----------------------------"
10540 	    "  tx_bd  chain  "
10541 	    "----------------------------\n");
10542 
10543 	BCE_PRINTF("page size      = 0x%08X, tx chain pages        = 0x%08X\n",
10544 	    (u32) BCM_PAGE_SIZE, (u32) sc->tx_pages);
10545 	BCE_PRINTF("tx_bd per page = 0x%08X, usable tx_bd per page = 0x%08X\n",
10546 	    (u32) TOTAL_TX_BD_PER_PAGE, (u32) USABLE_TX_BD_PER_PAGE);
10547 	BCE_PRINTF("total tx_bd    = 0x%08X\n", (u32) TOTAL_TX_BD_ALLOC);
10548 
10549 	BCE_PRINTF(
10550 	    "----------------------------"
10551 	    "   tx_bd data   "
10552 	    "----------------------------\n");
10553 
10554 	/* Now print out a decoded list of TX buffer descriptors. */
10555 	for (int i = 0; i < count; i++) {
10556 	 	txbd = &sc->tx_bd_chain[TX_PAGE(tx_prod)][TX_IDX(tx_prod)];
10557 		bce_dump_txbd(sc, tx_prod, txbd);
10558 		tx_prod++;
10559 	}
10560 
10561 	BCE_PRINTF(
10562 	    "----------------------------"
10563 	    "----------------"
10564 	    "----------------------------\n");
10565 }
10566 
10567 
10568 /****************************************************************************/
10569 /* Prints out the RX chain.                                                 */
10570 /*                                                                          */
10571 /* Returns:                                                                 */
10572 /*   Nothing.                                                               */
10573 /****************************************************************************/
10574 static __attribute__ ((noinline)) void
10575 bce_dump_rx_bd_chain(struct bce_softc *sc, u16 rx_prod, int count)
10576 {
10577 	struct rx_bd *rxbd;
10578 
10579 	/* First some info about the rx_bd chain structure. */
10580 	BCE_PRINTF(
10581 	    "----------------------------"
10582 	    "  rx_bd  chain  "
10583 	    "----------------------------\n");
10584 
10585 	BCE_PRINTF("page size      = 0x%08X, rx chain pages        = 0x%08X\n",
10586 	    (u32) BCM_PAGE_SIZE, (u32) sc->rx_pages);
10587 
10588 	BCE_PRINTF("rx_bd per page = 0x%08X, usable rx_bd per page = 0x%08X\n",
10589 	    (u32) TOTAL_RX_BD_PER_PAGE, (u32) USABLE_RX_BD_PER_PAGE);
10590 
10591 	BCE_PRINTF("total rx_bd    = 0x%08X\n", (u32) TOTAL_RX_BD_ALLOC);
10592 
10593 	BCE_PRINTF(
10594 	    "----------------------------"
10595 	    "   rx_bd data   "
10596 	    "----------------------------\n");
10597 
10598 	/* Now print out the rx_bd's themselves. */
10599 	for (int i = 0; i < count; i++) {
10600 		rxbd = &sc->rx_bd_chain[RX_PAGE(rx_prod)][RX_IDX(rx_prod)];
10601 		bce_dump_rxbd(sc, rx_prod, rxbd);
10602 		rx_prod = RX_CHAIN_IDX(rx_prod + 1);
10603 	}
10604 
10605 	BCE_PRINTF(
10606 	    "----------------------------"
10607 	    "----------------"
10608 	    "----------------------------\n");
10609 }
10610 
10611 
10612 /****************************************************************************/
10613 /* Prints out the page chain.                                               */
10614 /*                                                                          */
10615 /* Returns:                                                                 */
10616 /*   Nothing.                                                               */
10617 /****************************************************************************/
10618 static __attribute__ ((noinline)) void
10619 bce_dump_pg_chain(struct bce_softc *sc, u16 pg_prod, int count)
10620 {
10621 	struct rx_bd *pgbd;
10622 
10623 	/* First some info about the page chain structure. */
10624 	BCE_PRINTF(
10625 	    "----------------------------"
10626 	    "   page chain   "
10627 	    "----------------------------\n");
10628 
10629 	BCE_PRINTF("page size      = 0x%08X, pg chain pages        = 0x%08X\n",
10630 	    (u32) BCM_PAGE_SIZE, (u32) sc->pg_pages);
10631 
10632 	BCE_PRINTF("rx_bd per page = 0x%08X, usable rx_bd per page = 0x%08X\n",
10633 	    (u32) TOTAL_PG_BD_PER_PAGE, (u32) USABLE_PG_BD_PER_PAGE);
10634 
10635 	BCE_PRINTF("total pg_bd             = 0x%08X\n", (u32) TOTAL_PG_BD_ALLOC);
10636 
10637 	BCE_PRINTF(
10638 	    "----------------------------"
10639 	    "   page data    "
10640 	    "----------------------------\n");
10641 
10642 	/* Now print out the rx_bd's themselves. */
10643 	for (int i = 0; i < count; i++) {
10644 		pgbd = &sc->pg_bd_chain[PG_PAGE(pg_prod)][PG_IDX(pg_prod)];
10645 		bce_dump_pgbd(sc, pg_prod, pgbd);
10646 		pg_prod = PG_CHAIN_IDX(pg_prod + 1);
10647 	}
10648 
10649 	BCE_PRINTF(
10650 	    "----------------------------"
10651 	    "----------------"
10652 	    "----------------------------\n");
10653 }
10654 
10655 
10656 #define BCE_PRINT_RX_CONS(arg)						\
10657 if (sblk->status_rx_quick_consumer_index##arg)				\
10658 	BCE_PRINTF("0x%04X(0x%04X) - rx_quick_consumer_index%d\n",	\
10659 	    sblk->status_rx_quick_consumer_index##arg, (u16)		\
10660 	    RX_CHAIN_IDX(sblk->status_rx_quick_consumer_index##arg),	\
10661 	    arg);
10662 
10663 
10664 #define BCE_PRINT_TX_CONS(arg)						\
10665 if (sblk->status_tx_quick_consumer_index##arg)				\
10666 	BCE_PRINTF("0x%04X(0x%04X) - tx_quick_consumer_index%d\n",	\
10667 	    sblk->status_tx_quick_consumer_index##arg, (u16)		\
10668 	    TX_CHAIN_IDX(sblk->status_tx_quick_consumer_index##arg),	\
10669 	    arg);
10670 
10671 /****************************************************************************/
10672 /* Prints out the status block from host memory.                            */
10673 /*                                                                          */
10674 /* Returns:                                                                 */
10675 /*   Nothing.                                                               */
10676 /****************************************************************************/
10677 static __attribute__ ((noinline)) void
10678 bce_dump_status_block(struct bce_softc *sc)
10679 {
10680 	struct status_block *sblk;
10681 
10682 	bus_dmamap_sync(sc->status_tag, sc->status_map, BUS_DMASYNC_POSTREAD);
10683 
10684 	sblk = sc->status_block;
10685 
10686 	BCE_PRINTF(
10687 	    "----------------------------"
10688 	    "  Status Block  "
10689 	    "----------------------------\n");
10690 
10691 	/* Theses indices are used for normal L2 drivers. */
10692 	BCE_PRINTF("    0x%08X - attn_bits\n",
10693 	    sblk->status_attn_bits);
10694 
10695 	BCE_PRINTF("    0x%08X - attn_bits_ack\n",
10696 	    sblk->status_attn_bits_ack);
10697 
10698 	BCE_PRINT_RX_CONS(0);
10699 	BCE_PRINT_TX_CONS(0)
10700 
10701 	BCE_PRINTF("        0x%04X - status_idx\n", sblk->status_idx);
10702 
10703 	/* Theses indices are not used for normal L2 drivers. */
10704 	BCE_PRINT_RX_CONS(1);   BCE_PRINT_RX_CONS(2);   BCE_PRINT_RX_CONS(3);
10705 	BCE_PRINT_RX_CONS(4);   BCE_PRINT_RX_CONS(5);   BCE_PRINT_RX_CONS(6);
10706 	BCE_PRINT_RX_CONS(7);   BCE_PRINT_RX_CONS(8);   BCE_PRINT_RX_CONS(9);
10707 	BCE_PRINT_RX_CONS(10);  BCE_PRINT_RX_CONS(11);  BCE_PRINT_RX_CONS(12);
10708 	BCE_PRINT_RX_CONS(13);  BCE_PRINT_RX_CONS(14);  BCE_PRINT_RX_CONS(15);
10709 
10710 	BCE_PRINT_TX_CONS(1);   BCE_PRINT_TX_CONS(2);   BCE_PRINT_TX_CONS(3);
10711 
10712 	if (sblk->status_completion_producer_index ||
10713 	    sblk->status_cmd_consumer_index)
10714 		BCE_PRINTF("com_prod  = 0x%08X, cmd_cons      = 0x%08X\n",
10715 		    sblk->status_completion_producer_index,
10716 		    sblk->status_cmd_consumer_index);
10717 
10718 	BCE_PRINTF(
10719 	    "----------------------------"
10720 	    "----------------"
10721 	    "----------------------------\n");
10722 }
10723 
10724 
10725 #define BCE_PRINT_64BIT_STAT(arg) 				\
10726 if (sblk->arg##_lo || sblk->arg##_hi)				\
10727 	BCE_PRINTF("0x%08X:%08X : %s\n", sblk->arg##_hi,	\
10728 	    sblk->arg##_lo, #arg);
10729 
10730 #define BCE_PRINT_32BIT_STAT(arg)				\
10731 if (sblk->arg)							\
10732 	BCE_PRINTF("         0x%08X : %s\n", 			\
10733 	    sblk->arg, #arg);
10734 
10735 /****************************************************************************/
10736 /* Prints out the statistics block from host memory.                        */
10737 /*                                                                          */
10738 /* Returns:                                                                 */
10739 /*   Nothing.                                                               */
10740 /****************************************************************************/
10741 static __attribute__ ((noinline)) void
10742 bce_dump_stats_block(struct bce_softc *sc)
10743 {
10744 	struct statistics_block *sblk;
10745 
10746 	bus_dmamap_sync(sc->stats_tag, sc->stats_map, BUS_DMASYNC_POSTREAD);
10747 
10748 	sblk = sc->stats_block;
10749 
10750 	BCE_PRINTF(
10751 	    "---------------"
10752 	    " Stats Block  (All Stats Not Shown Are 0) "
10753 	    "---------------\n");
10754 
10755 	BCE_PRINT_64BIT_STAT(stat_IfHCInOctets);
10756 	BCE_PRINT_64BIT_STAT(stat_IfHCInBadOctets);
10757 	BCE_PRINT_64BIT_STAT(stat_IfHCOutOctets);
10758 	BCE_PRINT_64BIT_STAT(stat_IfHCOutBadOctets);
10759 	BCE_PRINT_64BIT_STAT(stat_IfHCInUcastPkts);
10760 	BCE_PRINT_64BIT_STAT(stat_IfHCInBroadcastPkts);
10761 	BCE_PRINT_64BIT_STAT(stat_IfHCInMulticastPkts);
10762 	BCE_PRINT_64BIT_STAT(stat_IfHCOutUcastPkts);
10763 	BCE_PRINT_64BIT_STAT(stat_IfHCOutBroadcastPkts);
10764 	BCE_PRINT_64BIT_STAT(stat_IfHCOutMulticastPkts);
10765 	BCE_PRINT_32BIT_STAT(
10766 	    stat_emac_tx_stat_dot3statsinternalmactransmiterrors);
10767 	BCE_PRINT_32BIT_STAT(stat_Dot3StatsCarrierSenseErrors);
10768 	BCE_PRINT_32BIT_STAT(stat_Dot3StatsFCSErrors);
10769 	BCE_PRINT_32BIT_STAT(stat_Dot3StatsAlignmentErrors);
10770 	BCE_PRINT_32BIT_STAT(stat_Dot3StatsSingleCollisionFrames);
10771 	BCE_PRINT_32BIT_STAT(stat_Dot3StatsMultipleCollisionFrames);
10772 	BCE_PRINT_32BIT_STAT(stat_Dot3StatsDeferredTransmissions);
10773 	BCE_PRINT_32BIT_STAT(stat_Dot3StatsExcessiveCollisions);
10774 	BCE_PRINT_32BIT_STAT(stat_Dot3StatsLateCollisions);
10775 	BCE_PRINT_32BIT_STAT(stat_EtherStatsCollisions);
10776 	BCE_PRINT_32BIT_STAT(stat_EtherStatsFragments);
10777 	BCE_PRINT_32BIT_STAT(stat_EtherStatsJabbers);
10778 	BCE_PRINT_32BIT_STAT(stat_EtherStatsUndersizePkts);
10779 	BCE_PRINT_32BIT_STAT(stat_EtherStatsOversizePkts);
10780 	BCE_PRINT_32BIT_STAT(stat_EtherStatsPktsRx64Octets);
10781 	BCE_PRINT_32BIT_STAT(stat_EtherStatsPktsRx65Octetsto127Octets);
10782 	BCE_PRINT_32BIT_STAT(stat_EtherStatsPktsRx128Octetsto255Octets);
10783 	BCE_PRINT_32BIT_STAT(stat_EtherStatsPktsRx256Octetsto511Octets);
10784 	BCE_PRINT_32BIT_STAT(stat_EtherStatsPktsRx512Octetsto1023Octets);
10785 	BCE_PRINT_32BIT_STAT(stat_EtherStatsPktsRx1024Octetsto1522Octets);
10786 	BCE_PRINT_32BIT_STAT(stat_EtherStatsPktsRx1523Octetsto9022Octets);
10787 	BCE_PRINT_32BIT_STAT(stat_EtherStatsPktsTx64Octets);
10788 	BCE_PRINT_32BIT_STAT(stat_EtherStatsPktsTx65Octetsto127Octets);
10789 	BCE_PRINT_32BIT_STAT(stat_EtherStatsPktsTx128Octetsto255Octets);
10790 	BCE_PRINT_32BIT_STAT(stat_EtherStatsPktsTx256Octetsto511Octets);
10791 	BCE_PRINT_32BIT_STAT(stat_EtherStatsPktsTx512Octetsto1023Octets);
10792 	BCE_PRINT_32BIT_STAT(stat_EtherStatsPktsTx1024Octetsto1522Octets);
10793 	BCE_PRINT_32BIT_STAT(stat_EtherStatsPktsTx1523Octetsto9022Octets);
10794 	BCE_PRINT_32BIT_STAT(stat_XonPauseFramesReceived);
10795 	BCE_PRINT_32BIT_STAT(stat_XoffPauseFramesReceived);
10796 	BCE_PRINT_32BIT_STAT(stat_OutXonSent);
10797 	BCE_PRINT_32BIT_STAT(stat_OutXoffSent);
10798 	BCE_PRINT_32BIT_STAT(stat_FlowControlDone);
10799 	BCE_PRINT_32BIT_STAT(stat_MacControlFramesReceived);
10800 	BCE_PRINT_32BIT_STAT(stat_XoffStateEntered);
10801 	BCE_PRINT_32BIT_STAT(stat_IfInFramesL2FilterDiscards);
10802 	BCE_PRINT_32BIT_STAT(stat_IfInRuleCheckerDiscards);
10803 	BCE_PRINT_32BIT_STAT(stat_IfInFTQDiscards);
10804 	BCE_PRINT_32BIT_STAT(stat_IfInMBUFDiscards);
10805 	BCE_PRINT_32BIT_STAT(stat_IfInRuleCheckerP4Hit);
10806 	BCE_PRINT_32BIT_STAT(stat_CatchupInRuleCheckerDiscards);
10807 	BCE_PRINT_32BIT_STAT(stat_CatchupInFTQDiscards);
10808 	BCE_PRINT_32BIT_STAT(stat_CatchupInMBUFDiscards);
10809 	BCE_PRINT_32BIT_STAT(stat_CatchupInRuleCheckerP4Hit);
10810 
10811 	BCE_PRINTF(
10812 	    "----------------------------"
10813 	    "----------------"
10814 	    "----------------------------\n");
10815 }
10816 
10817 
10818 /****************************************************************************/
10819 /* Prints out a summary of the driver state.                                */
10820 /*                                                                          */
10821 /* Returns:                                                                 */
10822 /*   Nothing.                                                               */
10823 /****************************************************************************/
10824 static __attribute__ ((noinline)) void
10825 bce_dump_driver_state(struct bce_softc *sc)
10826 {
10827 	u32 val_hi, val_lo;
10828 
10829 	BCE_PRINTF(
10830 	    "-----------------------------"
10831 	    " Driver State "
10832 	    "-----------------------------\n");
10833 
10834 	val_hi = BCE_ADDR_HI(sc);
10835 	val_lo = BCE_ADDR_LO(sc);
10836 	BCE_PRINTF("0x%08X:%08X - (sc) driver softc structure virtual "
10837 	    "address\n", val_hi, val_lo);
10838 
10839 	val_hi = BCE_ADDR_HI(sc->bce_vhandle);
10840 	val_lo = BCE_ADDR_LO(sc->bce_vhandle);
10841 	BCE_PRINTF("0x%08X:%08X - (sc->bce_vhandle) PCI BAR virtual "
10842 	    "address\n", val_hi, val_lo);
10843 
10844 	val_hi = BCE_ADDR_HI(sc->status_block);
10845 	val_lo = BCE_ADDR_LO(sc->status_block);
10846 	BCE_PRINTF("0x%08X:%08X - (sc->status_block) status block "
10847 	    "virtual address\n",	val_hi, val_lo);
10848 
10849 	val_hi = BCE_ADDR_HI(sc->stats_block);
10850 	val_lo = BCE_ADDR_LO(sc->stats_block);
10851 	BCE_PRINTF("0x%08X:%08X - (sc->stats_block) statistics block "
10852 	    "virtual address\n", val_hi, val_lo);
10853 
10854 	val_hi = BCE_ADDR_HI(sc->tx_bd_chain);
10855 	val_lo = BCE_ADDR_LO(sc->tx_bd_chain);
10856 	BCE_PRINTF("0x%08X:%08X - (sc->tx_bd_chain) tx_bd chain "
10857 	    "virtual adddress\n", val_hi, val_lo);
10858 
10859 	val_hi = BCE_ADDR_HI(sc->rx_bd_chain);
10860 	val_lo = BCE_ADDR_LO(sc->rx_bd_chain);
10861 	BCE_PRINTF("0x%08X:%08X - (sc->rx_bd_chain) rx_bd chain "
10862 	    "virtual address\n", val_hi, val_lo);
10863 
10864 	if (bce_hdr_split == TRUE) {
10865 		val_hi = BCE_ADDR_HI(sc->pg_bd_chain);
10866 		val_lo = BCE_ADDR_LO(sc->pg_bd_chain);
10867 		BCE_PRINTF("0x%08X:%08X - (sc->pg_bd_chain) page chain "
10868 		    "virtual address\n", val_hi, val_lo);
10869 	}
10870 
10871 	val_hi = BCE_ADDR_HI(sc->tx_mbuf_ptr);
10872 	val_lo = BCE_ADDR_LO(sc->tx_mbuf_ptr);
10873 	BCE_PRINTF("0x%08X:%08X - (sc->tx_mbuf_ptr) tx mbuf chain "
10874 	    "virtual address\n",	val_hi, val_lo);
10875 
10876 	val_hi = BCE_ADDR_HI(sc->rx_mbuf_ptr);
10877 	val_lo = BCE_ADDR_LO(sc->rx_mbuf_ptr);
10878 	BCE_PRINTF("0x%08X:%08X - (sc->rx_mbuf_ptr) rx mbuf chain "
10879 	    "virtual address\n", val_hi, val_lo);
10880 
10881 	if (bce_hdr_split == TRUE) {
10882 		val_hi = BCE_ADDR_HI(sc->pg_mbuf_ptr);
10883 		val_lo = BCE_ADDR_LO(sc->pg_mbuf_ptr);
10884 		BCE_PRINTF("0x%08X:%08X - (sc->pg_mbuf_ptr) page mbuf chain "
10885 		    "virtual address\n", val_hi, val_lo);
10886 	}
10887 
10888 	BCE_PRINTF(" 0x%016llX - (sc->interrupts_generated) "
10889 	    "h/w intrs\n",
10890 	    (long long unsigned int) sc->interrupts_generated);
10891 
10892 	BCE_PRINTF(" 0x%016llX - (sc->interrupts_rx) "
10893 	    "rx interrupts handled\n",
10894 	    (long long unsigned int) sc->interrupts_rx);
10895 
10896 	BCE_PRINTF(" 0x%016llX - (sc->interrupts_tx) "
10897 	    "tx interrupts handled\n",
10898 	    (long long unsigned int) sc->interrupts_tx);
10899 
10900 	BCE_PRINTF(" 0x%016llX - (sc->phy_interrupts) "
10901 	    "phy interrupts handled\n",
10902 	    (long long unsigned int) sc->phy_interrupts);
10903 
10904 	BCE_PRINTF("         0x%08X - (sc->last_status_idx) "
10905 	    "status block index\n", sc->last_status_idx);
10906 
10907 	BCE_PRINTF("     0x%04X(0x%04X) - (sc->tx_prod) tx producer "
10908 	    "index\n", sc->tx_prod, (u16) TX_CHAIN_IDX(sc->tx_prod));
10909 
10910 	BCE_PRINTF("     0x%04X(0x%04X) - (sc->tx_cons) tx consumer "
10911 	    "index\n", sc->tx_cons, (u16) TX_CHAIN_IDX(sc->tx_cons));
10912 
10913 	BCE_PRINTF("         0x%08X - (sc->tx_prod_bseq) tx producer "
10914 	    "byte seq index\n",	sc->tx_prod_bseq);
10915 
10916 	BCE_PRINTF("         0x%08X - (sc->debug_tx_mbuf_alloc) tx "
10917 	    "mbufs allocated\n", sc->debug_tx_mbuf_alloc);
10918 
10919 	BCE_PRINTF("         0x%08X - (sc->used_tx_bd) used "
10920 	    "tx_bd's\n", sc->used_tx_bd);
10921 
10922 	BCE_PRINTF("      0x%04X/0x%04X - (sc->tx_hi_watermark)/"
10923 	    "(sc->max_tx_bd)\n", sc->tx_hi_watermark, sc->max_tx_bd);
10924 
10925 	BCE_PRINTF("     0x%04X(0x%04X) - (sc->rx_prod) rx producer "
10926 	    "index\n", sc->rx_prod, (u16) RX_CHAIN_IDX(sc->rx_prod));
10927 
10928 	BCE_PRINTF("     0x%04X(0x%04X) - (sc->rx_cons) rx consumer "
10929 	    "index\n", sc->rx_cons, (u16) RX_CHAIN_IDX(sc->rx_cons));
10930 
10931 	BCE_PRINTF("         0x%08X - (sc->rx_prod_bseq) rx producer "
10932 	    "byte seq index\n",	sc->rx_prod_bseq);
10933 
10934 	BCE_PRINTF("      0x%04X/0x%04X - (sc->rx_low_watermark)/"
10935 		   "(sc->max_rx_bd)\n", sc->rx_low_watermark, sc->max_rx_bd);
10936 
10937 	BCE_PRINTF("         0x%08X - (sc->debug_rx_mbuf_alloc) rx "
10938 	    "mbufs allocated\n", sc->debug_rx_mbuf_alloc);
10939 
10940 	BCE_PRINTF("         0x%08X - (sc->free_rx_bd) free "
10941 	    "rx_bd's\n", sc->free_rx_bd);
10942 
10943 	if (bce_hdr_split == TRUE) {
10944 		BCE_PRINTF("     0x%04X(0x%04X) - (sc->pg_prod) page producer "
10945 		    "index\n", sc->pg_prod, (u16) PG_CHAIN_IDX(sc->pg_prod));
10946 
10947 		BCE_PRINTF("     0x%04X(0x%04X) - (sc->pg_cons) page consumer "
10948 		    "index\n", sc->pg_cons, (u16) PG_CHAIN_IDX(sc->pg_cons));
10949 
10950 		BCE_PRINTF("         0x%08X - (sc->debug_pg_mbuf_alloc) page "
10951 		    "mbufs allocated\n", sc->debug_pg_mbuf_alloc);
10952 	}
10953 
10954 	BCE_PRINTF("         0x%08X - (sc->free_pg_bd) free page "
10955 	    "rx_bd's\n", sc->free_pg_bd);
10956 
10957 	BCE_PRINTF("      0x%04X/0x%04X - (sc->pg_low_watermark)/"
10958 	    "(sc->max_pg_bd)\n", sc->pg_low_watermark, sc->max_pg_bd);
10959 
10960 	BCE_PRINTF("         0x%08X - (sc->mbuf_alloc_failed_count) "
10961 	    "mbuf alloc failures\n", sc->mbuf_alloc_failed_count);
10962 
10963 	BCE_PRINTF("         0x%08X - (sc->bce_flags) "
10964 	    "bce mac flags\n", sc->bce_flags);
10965 
10966 	BCE_PRINTF("         0x%08X - (sc->bce_phy_flags) "
10967 	    "bce phy flags\n", sc->bce_phy_flags);
10968 
10969 	BCE_PRINTF(
10970 	    "----------------------------"
10971 	    "----------------"
10972 	    "----------------------------\n");
10973 }
10974 
10975 
10976 /****************************************************************************/
10977 /* Prints out the hardware state through a summary of important register,   */
10978 /* followed by a complete register dump.                                    */
10979 /*                                                                          */
10980 /* Returns:                                                                 */
10981 /*   Nothing.                                                               */
10982 /****************************************************************************/
10983 static __attribute__ ((noinline)) void
10984 bce_dump_hw_state(struct bce_softc *sc)
10985 {
10986 	u32 val;
10987 
10988 	BCE_PRINTF(
10989 	    "----------------------------"
10990 	    " Hardware State "
10991 	    "----------------------------\n");
10992 
10993 	BCE_PRINTF("%s - bootcode version\n", sc->bce_bc_ver);
10994 
10995 	val = REG_RD(sc, BCE_MISC_ENABLE_STATUS_BITS);
10996 	BCE_PRINTF("0x%08X - (0x%06X) misc_enable_status_bits\n",
10997 	    val, BCE_MISC_ENABLE_STATUS_BITS);
10998 
10999 	val = REG_RD(sc, BCE_DMA_STATUS);
11000 	BCE_PRINTF("0x%08X - (0x%06X) dma_status\n",
11001 	    val, BCE_DMA_STATUS);
11002 
11003 	val = REG_RD(sc, BCE_CTX_STATUS);
11004 	BCE_PRINTF("0x%08X - (0x%06X) ctx_status\n",
11005 	    val, BCE_CTX_STATUS);
11006 
11007 	val = REG_RD(sc, BCE_EMAC_STATUS);
11008 	BCE_PRINTF("0x%08X - (0x%06X) emac_status\n",
11009 	    val, BCE_EMAC_STATUS);
11010 
11011 	val = REG_RD(sc, BCE_RPM_STATUS);
11012 	BCE_PRINTF("0x%08X - (0x%06X) rpm_status\n",
11013 	    val, BCE_RPM_STATUS);
11014 
11015 	/* ToDo: Create a #define for this constant. */
11016 	val = REG_RD(sc, 0x2004);
11017 	BCE_PRINTF("0x%08X - (0x%06X) rlup_status\n",
11018 	    val, 0x2004);
11019 
11020 	val = REG_RD(sc, BCE_RV2P_STATUS);
11021 	BCE_PRINTF("0x%08X - (0x%06X) rv2p_status\n",
11022 	    val, BCE_RV2P_STATUS);
11023 
11024 	/* ToDo: Create a #define for this constant. */
11025 	val = REG_RD(sc, 0x2c04);
11026 	BCE_PRINTF("0x%08X - (0x%06X) rdma_status\n",
11027 	    val, 0x2c04);
11028 
11029 	val = REG_RD(sc, BCE_TBDR_STATUS);
11030 	BCE_PRINTF("0x%08X - (0x%06X) tbdr_status\n",
11031 	    val, BCE_TBDR_STATUS);
11032 
11033 	val = REG_RD(sc, BCE_TDMA_STATUS);
11034 	BCE_PRINTF("0x%08X - (0x%06X) tdma_status\n",
11035 	    val, BCE_TDMA_STATUS);
11036 
11037 	val = REG_RD(sc, BCE_HC_STATUS);
11038 	BCE_PRINTF("0x%08X - (0x%06X) hc_status\n",
11039 	    val, BCE_HC_STATUS);
11040 
11041 	val = REG_RD_IND(sc, BCE_TXP_CPU_STATE);
11042 	BCE_PRINTF("0x%08X - (0x%06X) txp_cpu_state\n",
11043 	    val, BCE_TXP_CPU_STATE);
11044 
11045 	val = REG_RD_IND(sc, BCE_TPAT_CPU_STATE);
11046 	BCE_PRINTF("0x%08X - (0x%06X) tpat_cpu_state\n",
11047 	    val, BCE_TPAT_CPU_STATE);
11048 
11049 	val = REG_RD_IND(sc, BCE_RXP_CPU_STATE);
11050 	BCE_PRINTF("0x%08X - (0x%06X) rxp_cpu_state\n",
11051 	    val, BCE_RXP_CPU_STATE);
11052 
11053 	val = REG_RD_IND(sc, BCE_COM_CPU_STATE);
11054 	BCE_PRINTF("0x%08X - (0x%06X) com_cpu_state\n",
11055 	    val, BCE_COM_CPU_STATE);
11056 
11057 	val = REG_RD_IND(sc, BCE_MCP_CPU_STATE);
11058 	BCE_PRINTF("0x%08X - (0x%06X) mcp_cpu_state\n",
11059 	    val, BCE_MCP_CPU_STATE);
11060 
11061 	val = REG_RD_IND(sc, BCE_CP_CPU_STATE);
11062 	BCE_PRINTF("0x%08X - (0x%06X) cp_cpu_state\n",
11063 	    val, BCE_CP_CPU_STATE);
11064 
11065 	BCE_PRINTF(
11066 	    "----------------------------"
11067 	    "----------------"
11068 	    "----------------------------\n");
11069 
11070 	BCE_PRINTF(
11071 	    "----------------------------"
11072 	    " Register  Dump "
11073 	    "----------------------------\n");
11074 
11075 	for (int i = 0x400; i < 0x8000; i += 0x10) {
11076 		BCE_PRINTF("0x%04X: 0x%08X 0x%08X 0x%08X 0x%08X\n",
11077 		    i, REG_RD(sc, i), REG_RD(sc, i + 0x4),
11078 		    REG_RD(sc, i + 0x8), REG_RD(sc, i + 0xC));
11079 	}
11080 
11081 	BCE_PRINTF(
11082 	    "----------------------------"
11083 	    "----------------"
11084 	    "----------------------------\n");
11085 }
11086 
11087 
11088 /****************************************************************************/
11089 /* Prints out the contentst of shared memory which is used for host driver  */
11090 /* to bootcode firmware communication.                                      */
11091 /*                                                                          */
11092 /* Returns:                                                                 */
11093 /*   Nothing.                                                               */
11094 /****************************************************************************/
11095 static __attribute__ ((noinline)) void
11096 bce_dump_shmem_state(struct bce_softc *sc)
11097 {
11098 	BCE_PRINTF(
11099 	    "----------------------------"
11100 	    " Hardware State "
11101 	    "----------------------------\n");
11102 
11103 	BCE_PRINTF("0x%08X - Shared memory base address\n",
11104 	    sc->bce_shmem_base);
11105 	BCE_PRINTF("%s - bootcode version\n",
11106 	    sc->bce_bc_ver);
11107 
11108 	BCE_PRINTF(
11109 	    "----------------------------"
11110 	    "   Shared Mem   "
11111 	    "----------------------------\n");
11112 
11113 	for (int i = 0x0; i < 0x200; i += 0x10) {
11114 		BCE_PRINTF("0x%04X: 0x%08X 0x%08X 0x%08X 0x%08X\n",
11115 		    i, bce_shmem_rd(sc, i), bce_shmem_rd(sc, i + 0x4),
11116 		    bce_shmem_rd(sc, i + 0x8), bce_shmem_rd(sc, i + 0xC));
11117 	}
11118 
11119 	BCE_PRINTF(
11120 	    "----------------------------"
11121 	    "----------------"
11122 	    "----------------------------\n");
11123 }
11124 
11125 
11126 /****************************************************************************/
11127 /* Prints out the mailbox queue registers.                                  */
11128 /*                                                                          */
11129 /* Returns:                                                                 */
11130 /*   Nothing.                                                               */
11131 /****************************************************************************/
11132 static __attribute__ ((noinline)) void
11133 bce_dump_mq_regs(struct bce_softc *sc)
11134 {
11135 	BCE_PRINTF(
11136 	    "----------------------------"
11137 	    "    MQ Regs     "
11138 	    "----------------------------\n");
11139 
11140 	BCE_PRINTF(
11141 	    "----------------------------"
11142 	    "----------------"
11143 	    "----------------------------\n");
11144 
11145 	for (int i = 0x3c00; i < 0x4000; i += 0x10) {
11146 		BCE_PRINTF("0x%04X: 0x%08X 0x%08X 0x%08X 0x%08X\n",
11147 		    i, REG_RD(sc, i), REG_RD(sc, i + 0x4),
11148 		    REG_RD(sc, i + 0x8), REG_RD(sc, i + 0xC));
11149 	}
11150 
11151 	BCE_PRINTF(
11152 	    "----------------------------"
11153 	    "----------------"
11154 	    "----------------------------\n");
11155 }
11156 
11157 
11158 /****************************************************************************/
11159 /* Prints out the bootcode state.                                           */
11160 /*                                                                          */
11161 /* Returns:                                                                 */
11162 /*   Nothing.                                                               */
11163 /****************************************************************************/
11164 static __attribute__ ((noinline)) void
11165 bce_dump_bc_state(struct bce_softc *sc)
11166 {
11167 	u32 val;
11168 
11169 	BCE_PRINTF(
11170 	    "----------------------------"
11171 	    " Bootcode State "
11172 	    "----------------------------\n");
11173 
11174 	BCE_PRINTF("%s - bootcode version\n", sc->bce_bc_ver);
11175 
11176 	val = bce_shmem_rd(sc, BCE_BC_RESET_TYPE);
11177 	BCE_PRINTF("0x%08X - (0x%06X) reset_type\n",
11178 	    val, BCE_BC_RESET_TYPE);
11179 
11180 	val = bce_shmem_rd(sc, BCE_BC_STATE);
11181 	BCE_PRINTF("0x%08X - (0x%06X) state\n",
11182 	    val, BCE_BC_STATE);
11183 
11184 	val = bce_shmem_rd(sc, BCE_BC_STATE_CONDITION);
11185 	BCE_PRINTF("0x%08X - (0x%06X) condition\n",
11186 	    val, BCE_BC_STATE_CONDITION);
11187 
11188 	val = bce_shmem_rd(sc, BCE_BC_STATE_DEBUG_CMD);
11189 	BCE_PRINTF("0x%08X - (0x%06X) debug_cmd\n",
11190 	    val, BCE_BC_STATE_DEBUG_CMD);
11191 
11192 	BCE_PRINTF(
11193 	    "----------------------------"
11194 	    "----------------"
11195 	    "----------------------------\n");
11196 }
11197 
11198 
11199 /****************************************************************************/
11200 /* Prints out the TXP processor state.                                      */
11201 /*                                                                          */
11202 /* Returns:                                                                 */
11203 /*   Nothing.                                                               */
11204 /****************************************************************************/
11205 static __attribute__ ((noinline)) void
11206 bce_dump_txp_state(struct bce_softc *sc, int regs)
11207 {
11208 	u32 val;
11209 	u32 fw_version[3];
11210 
11211 	BCE_PRINTF(
11212 	    "----------------------------"
11213 	    "   TXP  State   "
11214 	    "----------------------------\n");
11215 
11216 	for (int i = 0; i < 3; i++)
11217 		fw_version[i] = htonl(REG_RD_IND(sc,
11218 		    (BCE_TXP_SCRATCH + 0x10 + i * 4)));
11219 	BCE_PRINTF("Firmware version - %s\n", (char *) fw_version);
11220 
11221 	val = REG_RD_IND(sc, BCE_TXP_CPU_MODE);
11222 	BCE_PRINTF("0x%08X - (0x%06X) txp_cpu_mode\n",
11223 	    val, BCE_TXP_CPU_MODE);
11224 
11225 	val = REG_RD_IND(sc, BCE_TXP_CPU_STATE);
11226 	BCE_PRINTF("0x%08X - (0x%06X) txp_cpu_state\n",
11227 	    val, BCE_TXP_CPU_STATE);
11228 
11229 	val = REG_RD_IND(sc, BCE_TXP_CPU_EVENT_MASK);
11230 	BCE_PRINTF("0x%08X - (0x%06X) txp_cpu_event_mask\n",
11231 	    val, BCE_TXP_CPU_EVENT_MASK);
11232 
11233 	if (regs) {
11234 		BCE_PRINTF(
11235 		    "----------------------------"
11236 		    " Register  Dump "
11237 		    "----------------------------\n");
11238 
11239 		for (int i = BCE_TXP_CPU_MODE; i < 0x68000; i += 0x10) {
11240 			/* Skip the big blank spaces */
11241 			if (i < 0x454000 && i > 0x5ffff)
11242 				BCE_PRINTF("0x%04X: 0x%08X 0x%08X "
11243 				    "0x%08X 0x%08X\n", i,
11244 				    REG_RD_IND(sc, i),
11245 				    REG_RD_IND(sc, i + 0x4),
11246 				    REG_RD_IND(sc, i + 0x8),
11247 				    REG_RD_IND(sc, i + 0xC));
11248 		}
11249 	}
11250 
11251 	BCE_PRINTF(
11252 	    "----------------------------"
11253 	    "----------------"
11254 	    "----------------------------\n");
11255 }
11256 
11257 
11258 /****************************************************************************/
11259 /* Prints out the RXP processor state.                                      */
11260 /*                                                                          */
11261 /* Returns:                                                                 */
11262 /*   Nothing.                                                               */
11263 /****************************************************************************/
11264 static __attribute__ ((noinline)) void
11265 bce_dump_rxp_state(struct bce_softc *sc, int regs)
11266 {
11267 	u32 val;
11268 	u32 fw_version[3];
11269 
11270 	BCE_PRINTF(
11271 	    "----------------------------"
11272 	    "   RXP  State   "
11273 	    "----------------------------\n");
11274 
11275 	for (int i = 0; i < 3; i++)
11276 		fw_version[i] = htonl(REG_RD_IND(sc,
11277 		    (BCE_RXP_SCRATCH + 0x10 + i * 4)));
11278 
11279 	BCE_PRINTF("Firmware version - %s\n", (char *) fw_version);
11280 
11281 	val = REG_RD_IND(sc, BCE_RXP_CPU_MODE);
11282 	BCE_PRINTF("0x%08X - (0x%06X) rxp_cpu_mode\n",
11283 	    val, BCE_RXP_CPU_MODE);
11284 
11285 	val = REG_RD_IND(sc, BCE_RXP_CPU_STATE);
11286 	BCE_PRINTF("0x%08X - (0x%06X) rxp_cpu_state\n",
11287 	    val, BCE_RXP_CPU_STATE);
11288 
11289 	val = REG_RD_IND(sc, BCE_RXP_CPU_EVENT_MASK);
11290 	BCE_PRINTF("0x%08X - (0x%06X) rxp_cpu_event_mask\n",
11291 	    val, BCE_RXP_CPU_EVENT_MASK);
11292 
11293 	if (regs) {
11294 		BCE_PRINTF(
11295 		    "----------------------------"
11296 		    " Register  Dump "
11297 		    "----------------------------\n");
11298 
11299 		for (int i = BCE_RXP_CPU_MODE; i < 0xe8fff; i += 0x10) {
11300 			/* Skip the big blank sapces */
11301 			if (i < 0xc5400 && i > 0xdffff)
11302 				BCE_PRINTF("0x%04X: 0x%08X 0x%08X "
11303 				    "0x%08X 0x%08X\n", i,
11304 				    REG_RD_IND(sc, i),
11305 				    REG_RD_IND(sc, i + 0x4),
11306 				    REG_RD_IND(sc, i + 0x8),
11307 				    REG_RD_IND(sc, i + 0xC));
11308 		}
11309 	}
11310 
11311 	BCE_PRINTF(
11312 	    "----------------------------"
11313 	    "----------------"
11314 	    "----------------------------\n");
11315 }
11316 
11317 
11318 /****************************************************************************/
11319 /* Prints out the TPAT processor state.                                     */
11320 /*                                                                          */
11321 /* Returns:                                                                 */
11322 /*   Nothing.                                                               */
11323 /****************************************************************************/
11324 static __attribute__ ((noinline)) void
11325 bce_dump_tpat_state(struct bce_softc *sc, int regs)
11326 {
11327 	u32 val;
11328 	u32 fw_version[3];
11329 
11330 	BCE_PRINTF(
11331 	    "----------------------------"
11332 	    "   TPAT State   "
11333 	    "----------------------------\n");
11334 
11335 	for (int i = 0; i < 3; i++)
11336 		fw_version[i] = htonl(REG_RD_IND(sc,
11337 		    (BCE_TPAT_SCRATCH + 0x410 + i * 4)));
11338 
11339 	BCE_PRINTF("Firmware version - %s\n", (char *) fw_version);
11340 
11341 	val = REG_RD_IND(sc, BCE_TPAT_CPU_MODE);
11342 	BCE_PRINTF("0x%08X - (0x%06X) tpat_cpu_mode\n",
11343 	    val, BCE_TPAT_CPU_MODE);
11344 
11345 	val = REG_RD_IND(sc, BCE_TPAT_CPU_STATE);
11346 	BCE_PRINTF("0x%08X - (0x%06X) tpat_cpu_state\n",
11347 	    val, BCE_TPAT_CPU_STATE);
11348 
11349 	val = REG_RD_IND(sc, BCE_TPAT_CPU_EVENT_MASK);
11350 	BCE_PRINTF("0x%08X - (0x%06X) tpat_cpu_event_mask\n",
11351 	    val, BCE_TPAT_CPU_EVENT_MASK);
11352 
11353 	if (regs) {
11354 		BCE_PRINTF(
11355 		    "----------------------------"
11356 		    " Register  Dump "
11357 		    "----------------------------\n");
11358 
11359 		for (int i = BCE_TPAT_CPU_MODE; i < 0xa3fff; i += 0x10) {
11360 			/* Skip the big blank spaces */
11361 			if (i < 0x854000 && i > 0x9ffff)
11362 				BCE_PRINTF("0x%04X: 0x%08X 0x%08X "
11363 				    "0x%08X 0x%08X\n", i,
11364 				    REG_RD_IND(sc, i),
11365 				    REG_RD_IND(sc, i + 0x4),
11366 				    REG_RD_IND(sc, i + 0x8),
11367 				    REG_RD_IND(sc, i + 0xC));
11368 		}
11369 	}
11370 
11371 	BCE_PRINTF(
11372 		"----------------------------"
11373 		"----------------"
11374 		"----------------------------\n");
11375 }
11376 
11377 
11378 /****************************************************************************/
11379 /* Prints out the Command Procesor (CP) state.                              */
11380 /*                                                                          */
11381 /* Returns:                                                                 */
11382 /*   Nothing.                                                               */
11383 /****************************************************************************/
11384 static __attribute__ ((noinline)) void
11385 bce_dump_cp_state(struct bce_softc *sc, int regs)
11386 {
11387 	u32 val;
11388 	u32 fw_version[3];
11389 
11390 	BCE_PRINTF(
11391 	    "----------------------------"
11392 	    "    CP State    "
11393 	    "----------------------------\n");
11394 
11395 	for (int i = 0; i < 3; i++)
11396 		fw_version[i] = htonl(REG_RD_IND(sc,
11397 		    (BCE_CP_SCRATCH + 0x10 + i * 4)));
11398 
11399 	BCE_PRINTF("Firmware version - %s\n", (char *) fw_version);
11400 
11401 	val = REG_RD_IND(sc, BCE_CP_CPU_MODE);
11402 	BCE_PRINTF("0x%08X - (0x%06X) cp_cpu_mode\n",
11403 	    val, BCE_CP_CPU_MODE);
11404 
11405 	val = REG_RD_IND(sc, BCE_CP_CPU_STATE);
11406 	BCE_PRINTF("0x%08X - (0x%06X) cp_cpu_state\n",
11407 	    val, BCE_CP_CPU_STATE);
11408 
11409 	val = REG_RD_IND(sc, BCE_CP_CPU_EVENT_MASK);
11410 	BCE_PRINTF("0x%08X - (0x%06X) cp_cpu_event_mask\n", val,
11411 	    BCE_CP_CPU_EVENT_MASK);
11412 
11413 	if (regs) {
11414 		BCE_PRINTF(
11415 		    "----------------------------"
11416 		    " Register  Dump "
11417 		    "----------------------------\n");
11418 
11419 		for (int i = BCE_CP_CPU_MODE; i < 0x1aa000; i += 0x10) {
11420 			/* Skip the big blank spaces */
11421 			if (i < 0x185400 && i > 0x19ffff)
11422 				BCE_PRINTF("0x%04X: 0x%08X 0x%08X "
11423 				    "0x%08X 0x%08X\n", i,
11424 				    REG_RD_IND(sc, i),
11425 				    REG_RD_IND(sc, i + 0x4),
11426 				    REG_RD_IND(sc, i + 0x8),
11427 				    REG_RD_IND(sc, i + 0xC));
11428 		}
11429 	}
11430 
11431 	BCE_PRINTF(
11432 	    "----------------------------"
11433 	    "----------------"
11434 	    "----------------------------\n");
11435 }
11436 
11437 
11438 /****************************************************************************/
11439 /* Prints out the Completion Procesor (COM) state.                          */
11440 /*                                                                          */
11441 /* Returns:                                                                 */
11442 /*   Nothing.                                                               */
11443 /****************************************************************************/
11444 static __attribute__ ((noinline)) void
11445 bce_dump_com_state(struct bce_softc *sc, int regs)
11446 {
11447 	u32 val;
11448 	u32 fw_version[4];
11449 
11450 	BCE_PRINTF(
11451 	    "----------------------------"
11452 	    "   COM State    "
11453 	    "----------------------------\n");
11454 
11455 	for (int i = 0; i < 3; i++)
11456 		fw_version[i] = htonl(REG_RD_IND(sc,
11457 		    (BCE_COM_SCRATCH + 0x10 + i * 4)));
11458 
11459 	BCE_PRINTF("Firmware version - %s\n", (char *) fw_version);
11460 
11461 	val = REG_RD_IND(sc, BCE_COM_CPU_MODE);
11462 	BCE_PRINTF("0x%08X - (0x%06X) com_cpu_mode\n",
11463 	    val, BCE_COM_CPU_MODE);
11464 
11465 	val = REG_RD_IND(sc, BCE_COM_CPU_STATE);
11466 	BCE_PRINTF("0x%08X - (0x%06X) com_cpu_state\n",
11467 	    val, BCE_COM_CPU_STATE);
11468 
11469 	val = REG_RD_IND(sc, BCE_COM_CPU_EVENT_MASK);
11470 	BCE_PRINTF("0x%08X - (0x%06X) com_cpu_event_mask\n", val,
11471 	    BCE_COM_CPU_EVENT_MASK);
11472 
11473 	if (regs) {
11474 		BCE_PRINTF(
11475 		    "----------------------------"
11476 		    " Register  Dump "
11477 		    "----------------------------\n");
11478 
11479 		for (int i = BCE_COM_CPU_MODE; i < 0x1053e8; i += 0x10) {
11480 			BCE_PRINTF("0x%04X: 0x%08X 0x%08X "
11481 			    "0x%08X 0x%08X\n", i,
11482 			    REG_RD_IND(sc, i),
11483 			    REG_RD_IND(sc, i + 0x4),
11484 			    REG_RD_IND(sc, i + 0x8),
11485 			    REG_RD_IND(sc, i + 0xC));
11486 		}
11487 	}
11488 
11489 	BCE_PRINTF(
11490 		"----------------------------"
11491 		"----------------"
11492 		"----------------------------\n");
11493 }
11494 
11495 
11496 /****************************************************************************/
11497 /* Prints out the Receive Virtual 2 Physical (RV2P) state.                  */
11498 /*                                                                          */
11499 /* Returns:                                                                 */
11500 /*   Nothing.                                                               */
11501 /****************************************************************************/
11502 static __attribute__ ((noinline)) void
11503 bce_dump_rv2p_state(struct bce_softc *sc)
11504 {
11505 	u32 val, pc1, pc2, fw_ver_high, fw_ver_low;
11506 
11507 	BCE_PRINTF(
11508 	    "----------------------------"
11509 	    "   RV2P State   "
11510 	    "----------------------------\n");
11511 
11512 	/* Stall the RV2P processors. */
11513 	val = REG_RD_IND(sc, BCE_RV2P_CONFIG);
11514 	val |= BCE_RV2P_CONFIG_STALL_PROC1 | BCE_RV2P_CONFIG_STALL_PROC2;
11515 	REG_WR_IND(sc, BCE_RV2P_CONFIG, val);
11516 
11517 	/* Read the firmware version. */
11518 	val = 0x00000001;
11519 	REG_WR_IND(sc, BCE_RV2P_PROC1_ADDR_CMD, val);
11520 	fw_ver_low = REG_RD_IND(sc, BCE_RV2P_INSTR_LOW);
11521 	fw_ver_high = REG_RD_IND(sc, BCE_RV2P_INSTR_HIGH) &
11522 	    BCE_RV2P_INSTR_HIGH_HIGH;
11523 	BCE_PRINTF("RV2P1 Firmware version - 0x%08X:0x%08X\n",
11524 	    fw_ver_high, fw_ver_low);
11525 
11526 	val = 0x00000001;
11527 	REG_WR_IND(sc, BCE_RV2P_PROC2_ADDR_CMD, val);
11528 	fw_ver_low = REG_RD_IND(sc, BCE_RV2P_INSTR_LOW);
11529 	fw_ver_high = REG_RD_IND(sc, BCE_RV2P_INSTR_HIGH) &
11530 	    BCE_RV2P_INSTR_HIGH_HIGH;
11531 	BCE_PRINTF("RV2P2 Firmware version - 0x%08X:0x%08X\n",
11532 	    fw_ver_high, fw_ver_low);
11533 
11534 	/* Resume the RV2P processors. */
11535 	val = REG_RD_IND(sc, BCE_RV2P_CONFIG);
11536 	val &= ~(BCE_RV2P_CONFIG_STALL_PROC1 | BCE_RV2P_CONFIG_STALL_PROC2);
11537 	REG_WR_IND(sc, BCE_RV2P_CONFIG, val);
11538 
11539 	/* Fetch the program counter value. */
11540 	val = 0x68007800;
11541 	REG_WR_IND(sc, BCE_RV2P_DEBUG_VECT_PEEK, val);
11542 	val = REG_RD_IND(sc, BCE_RV2P_DEBUG_VECT_PEEK);
11543 	pc1 = (val & BCE_RV2P_DEBUG_VECT_PEEK_1_VALUE);
11544 	pc2 = (val & BCE_RV2P_DEBUG_VECT_PEEK_2_VALUE) >> 16;
11545 	BCE_PRINTF("0x%08X - RV2P1 program counter (1st read)\n", pc1);
11546 	BCE_PRINTF("0x%08X - RV2P2 program counter (1st read)\n", pc2);
11547 
11548 	/* Fetch the program counter value again to see if it is advancing. */
11549 	val = 0x68007800;
11550 	REG_WR_IND(sc, BCE_RV2P_DEBUG_VECT_PEEK, val);
11551 	val = REG_RD_IND(sc, BCE_RV2P_DEBUG_VECT_PEEK);
11552 	pc1 = (val & BCE_RV2P_DEBUG_VECT_PEEK_1_VALUE);
11553 	pc2 = (val & BCE_RV2P_DEBUG_VECT_PEEK_2_VALUE) >> 16;
11554 	BCE_PRINTF("0x%08X - RV2P1 program counter (2nd read)\n", pc1);
11555 	BCE_PRINTF("0x%08X - RV2P2 program counter (2nd read)\n", pc2);
11556 
11557 	BCE_PRINTF(
11558 	    "----------------------------"
11559 	    "----------------"
11560 	    "----------------------------\n");
11561 }
11562 
11563 
11564 /****************************************************************************/
11565 /* Prints out the driver state and then enters the debugger.                */
11566 /*                                                                          */
11567 /* Returns:                                                                 */
11568 /*   Nothing.                                                               */
11569 /****************************************************************************/
11570 static __attribute__ ((noinline)) void
11571 bce_breakpoint(struct bce_softc *sc)
11572 {
11573 
11574 	/*
11575 	 * Unreachable code to silence compiler warnings
11576 	 * about unused functions.
11577 	 */
11578 	if (0) {
11579 		bce_freeze_controller(sc);
11580 		bce_unfreeze_controller(sc);
11581 		bce_dump_enet(sc, NULL);
11582 		bce_dump_txbd(sc, 0, NULL);
11583 		bce_dump_rxbd(sc, 0, NULL);
11584 		bce_dump_tx_mbuf_chain(sc, 0, USABLE_TX_BD_ALLOC);
11585 		bce_dump_rx_mbuf_chain(sc, 0, USABLE_RX_BD_ALLOC);
11586 		bce_dump_pg_mbuf_chain(sc, 0, USABLE_PG_BD_ALLOC);
11587 		bce_dump_l2fhdr(sc, 0, NULL);
11588 		bce_dump_ctx(sc, RX_CID);
11589 		bce_dump_ftqs(sc);
11590 		bce_dump_tx_chain(sc, 0, USABLE_TX_BD_ALLOC);
11591 		bce_dump_rx_bd_chain(sc, 0, USABLE_RX_BD_ALLOC);
11592 		bce_dump_pg_chain(sc, 0, USABLE_PG_BD_ALLOC);
11593 		bce_dump_status_block(sc);
11594 		bce_dump_stats_block(sc);
11595 		bce_dump_driver_state(sc);
11596 		bce_dump_hw_state(sc);
11597 		bce_dump_bc_state(sc);
11598 		bce_dump_txp_state(sc, 0);
11599 		bce_dump_rxp_state(sc, 0);
11600 		bce_dump_tpat_state(sc, 0);
11601 		bce_dump_cp_state(sc, 0);
11602 		bce_dump_com_state(sc, 0);
11603 		bce_dump_rv2p_state(sc);
11604 		bce_dump_pgbd(sc, 0, NULL);
11605 	}
11606 
11607 	bce_dump_status_block(sc);
11608 	bce_dump_driver_state(sc);
11609 
11610 	/* Call the debugger. */
11611 	breakpoint();
11612 }
11613 #endif
11614