1 /*- 2 * Copyright (c) 2006-2008 Broadcom Corporation 3 * David Christensen <davidch@broadcom.com>. All rights reserved. 4 * 5 * Redistribution and use in source and binary forms, with or without 6 * modification, are permitted provided that the following conditions 7 * are met: 8 * 9 * 1. Redistributions of source code must retain the above copyright 10 * notice, this list of conditions and the following disclaimer. 11 * 2. Redistributions in binary form must reproduce the above copyright 12 * notice, this list of conditions and the following disclaimer in the 13 * documentation and/or other materials provided with the distribution. 14 * 3. Neither the name of Broadcom Corporation nor the name of its contributors 15 * may be used to endorse or promote products derived from this software 16 * without specific prior written consent. 17 * 18 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS' 19 * AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 20 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 21 * ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS 22 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR 23 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF 24 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS 25 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN 26 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) 27 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF 28 * THE POSSIBILITY OF SUCH DAMAGE. 29 */ 30 31 #include <sys/cdefs.h> 32 __FBSDID("$FreeBSD$"); 33 34 /* 35 * The following controllers are supported by this driver: 36 * BCM5706C A2, A3 37 * BCM5706S A2, A3 38 * BCM5708C B1, B2 39 * BCM5708S B1, B2 40 * BCM5709C A1, C0 41 * BCM5716 C0 42 * 43 * The following controllers are not supported by this driver: 44 * BCM5706C A0, A1 (pre-production) 45 * BCM5706S A0, A1 (pre-production) 46 * BCM5708C A0, B0 (pre-production) 47 * BCM5708S A0, B0 (pre-production) 48 * BCM5709C A0 B0, B1, B2 (pre-production) 49 * BCM5709S A0, A1, B0, B1, B2, C0 (pre-production) 50 */ 51 52 #include "opt_bce.h" 53 54 #include <dev/bce/if_bcereg.h> 55 #include <dev/bce/if_bcefw.h> 56 57 /****************************************************************************/ 58 /* BCE Debug Options */ 59 /****************************************************************************/ 60 #ifdef BCE_DEBUG 61 u32 bce_debug = BCE_WARN; 62 63 /* 0 = Never */ 64 /* 1 = 1 in 2,147,483,648 */ 65 /* 256 = 1 in 8,388,608 */ 66 /* 2048 = 1 in 1,048,576 */ 67 /* 65536 = 1 in 32,768 */ 68 /* 1048576 = 1 in 2,048 */ 69 /* 268435456 = 1 in 8 */ 70 /* 536870912 = 1 in 4 */ 71 /* 1073741824 = 1 in 2 */ 72 73 /* Controls how often the l2_fhdr frame error check will fail. */ 74 int bce_debug_l2fhdr_status_check = 0; 75 76 /* Controls how often the unexpected attention check will fail. */ 77 int bce_debug_unexpected_attention = 0; 78 79 /* Controls how often to simulate an mbuf allocation failure. */ 80 int bce_debug_mbuf_allocation_failure = 0; 81 82 /* Controls how often to simulate a DMA mapping failure. */ 83 int bce_debug_dma_map_addr_failure = 0; 84 85 /* Controls how often to simulate a bootcode failure. */ 86 int bce_debug_bootcode_running_failure = 0; 87 #endif 88 89 /****************************************************************************/ 90 /* BCE Build Time Options */ 91 /****************************************************************************/ 92 #define BCE_USE_SPLIT_HEADER 1 93 /* #define BCE_NVRAM_WRITE_SUPPORT 1 */ 94 95 96 /****************************************************************************/ 97 /* PCI Device ID Table */ 98 /* */ 99 /* Used by bce_probe() to identify the devices supported by this driver. */ 100 /****************************************************************************/ 101 #define BCE_DEVDESC_MAX 64 102 103 static struct bce_type bce_devs[] = { 104 /* BCM5706C Controllers and OEM boards. */ 105 { BRCM_VENDORID, BRCM_DEVICEID_BCM5706, HP_VENDORID, 0x3101, 106 "HP NC370T Multifunction Gigabit Server Adapter" }, 107 { BRCM_VENDORID, BRCM_DEVICEID_BCM5706, HP_VENDORID, 0x3106, 108 "HP NC370i Multifunction Gigabit Server Adapter" }, 109 { BRCM_VENDORID, BRCM_DEVICEID_BCM5706, HP_VENDORID, 0x3070, 110 "HP NC380T PCIe DP Multifunc Gig Server Adapter" }, 111 { BRCM_VENDORID, BRCM_DEVICEID_BCM5706, HP_VENDORID, 0x1709, 112 "HP NC371i Multifunction Gigabit Server Adapter" }, 113 { BRCM_VENDORID, BRCM_DEVICEID_BCM5706, PCI_ANY_ID, PCI_ANY_ID, 114 "Broadcom NetXtreme II BCM5706 1000Base-T" }, 115 116 /* BCM5706S controllers and OEM boards. */ 117 { BRCM_VENDORID, BRCM_DEVICEID_BCM5706S, HP_VENDORID, 0x3102, 118 "HP NC370F Multifunction Gigabit Server Adapter" }, 119 { BRCM_VENDORID, BRCM_DEVICEID_BCM5706S, PCI_ANY_ID, PCI_ANY_ID, 120 "Broadcom NetXtreme II BCM5706 1000Base-SX" }, 121 122 /* BCM5708C controllers and OEM boards. */ 123 { BRCM_VENDORID, BRCM_DEVICEID_BCM5708, HP_VENDORID, 0x7037, 124 "HP NC373T PCIe Multifunction Gig Server Adapter" }, 125 { BRCM_VENDORID, BRCM_DEVICEID_BCM5708, HP_VENDORID, 0x7038, 126 "HP NC373i Multifunction Gigabit Server Adapter" }, 127 { BRCM_VENDORID, BRCM_DEVICEID_BCM5708, HP_VENDORID, 0x7045, 128 "HP NC374m PCIe Multifunction Adapter" }, 129 { BRCM_VENDORID, BRCM_DEVICEID_BCM5708, PCI_ANY_ID, PCI_ANY_ID, 130 "Broadcom NetXtreme II BCM5708 1000Base-T" }, 131 132 /* BCM5708S controllers and OEM boards. */ 133 { BRCM_VENDORID, BRCM_DEVICEID_BCM5708S, HP_VENDORID, 0x1706, 134 "HP NC373m Multifunction Gigabit Server Adapter" }, 135 { BRCM_VENDORID, BRCM_DEVICEID_BCM5708S, HP_VENDORID, 0x703b, 136 "HP NC373i Multifunction Gigabit Server Adapter" }, 137 { BRCM_VENDORID, BRCM_DEVICEID_BCM5708S, HP_VENDORID, 0x703d, 138 "HP NC373F PCIe Multifunc Giga Server Adapter" }, 139 { BRCM_VENDORID, BRCM_DEVICEID_BCM5708S, PCI_ANY_ID, PCI_ANY_ID, 140 "Broadcom NetXtreme II BCM5708 1000Base-SX" }, 141 142 /* BCM5709C controllers and OEM boards. */ 143 { BRCM_VENDORID, BRCM_DEVICEID_BCM5709, HP_VENDORID, 0x7055, 144 "HP NC382i DP Multifunction Gigabit Server Adapter" }, 145 { BRCM_VENDORID, BRCM_DEVICEID_BCM5709, HP_VENDORID, 0x7059, 146 "HP NC382T PCIe DP Multifunction Gigabit Server Adapter" }, 147 { BRCM_VENDORID, BRCM_DEVICEID_BCM5709, PCI_ANY_ID, PCI_ANY_ID, 148 "Broadcom NetXtreme II BCM5709 1000Base-T" }, 149 150 /* BCM5709S controllers and OEM boards. */ 151 { BRCM_VENDORID, BRCM_DEVICEID_BCM5709S, HP_VENDORID, 0x171d, 152 "HP NC382m DP 1GbE Multifunction BL-c Adapter" }, 153 { BRCM_VENDORID, BRCM_DEVICEID_BCM5709S, HP_VENDORID, 0x7056, 154 "HP NC382i DP Multifunction Gigabit Server Adapter" }, 155 { BRCM_VENDORID, BRCM_DEVICEID_BCM5709S, PCI_ANY_ID, PCI_ANY_ID, 156 "Broadcom NetXtreme II BCM5709 1000Base-SX" }, 157 158 /* BCM5716 controllers and OEM boards. */ 159 { BRCM_VENDORID, BRCM_DEVICEID_BCM5716, PCI_ANY_ID, PCI_ANY_ID, 160 "Broadcom NetXtreme II BCM5716 1000Base-T" }, 161 162 { 0, 0, 0, 0, NULL } 163 }; 164 165 166 /****************************************************************************/ 167 /* Supported Flash NVRAM device data. */ 168 /****************************************************************************/ 169 static struct flash_spec flash_table[] = 170 { 171 #define BUFFERED_FLAGS (BCE_NV_BUFFERED | BCE_NV_TRANSLATE) 172 #define NONBUFFERED_FLAGS (BCE_NV_WREN) 173 174 /* Slow EEPROM */ 175 {0x00000000, 0x40830380, 0x009f0081, 0xa184a053, 0xaf000400, 176 BUFFERED_FLAGS, SEEPROM_PAGE_BITS, SEEPROM_PAGE_SIZE, 177 SEEPROM_BYTE_ADDR_MASK, SEEPROM_TOTAL_SIZE, 178 "EEPROM - slow"}, 179 /* Expansion entry 0001 */ 180 {0x08000002, 0x4b808201, 0x00050081, 0x03840253, 0xaf020406, 181 NONBUFFERED_FLAGS, SAIFUN_FLASH_PAGE_BITS, SAIFUN_FLASH_PAGE_SIZE, 182 SAIFUN_FLASH_BYTE_ADDR_MASK, 0, 183 "Entry 0001"}, 184 /* Saifun SA25F010 (non-buffered flash) */ 185 /* strap, cfg1, & write1 need updates */ 186 {0x04000001, 0x47808201, 0x00050081, 0x03840253, 0xaf020406, 187 NONBUFFERED_FLAGS, SAIFUN_FLASH_PAGE_BITS, SAIFUN_FLASH_PAGE_SIZE, 188 SAIFUN_FLASH_BYTE_ADDR_MASK, SAIFUN_FLASH_BASE_TOTAL_SIZE*2, 189 "Non-buffered flash (128kB)"}, 190 /* Saifun SA25F020 (non-buffered flash) */ 191 /* strap, cfg1, & write1 need updates */ 192 {0x0c000003, 0x4f808201, 0x00050081, 0x03840253, 0xaf020406, 193 NONBUFFERED_FLAGS, SAIFUN_FLASH_PAGE_BITS, SAIFUN_FLASH_PAGE_SIZE, 194 SAIFUN_FLASH_BYTE_ADDR_MASK, SAIFUN_FLASH_BASE_TOTAL_SIZE*4, 195 "Non-buffered flash (256kB)"}, 196 /* Expansion entry 0100 */ 197 {0x11000000, 0x53808201, 0x00050081, 0x03840253, 0xaf020406, 198 NONBUFFERED_FLAGS, SAIFUN_FLASH_PAGE_BITS, SAIFUN_FLASH_PAGE_SIZE, 199 SAIFUN_FLASH_BYTE_ADDR_MASK, 0, 200 "Entry 0100"}, 201 /* Entry 0101: ST M45PE10 (non-buffered flash, TetonII B0) */ 202 {0x19000002, 0x5b808201, 0x000500db, 0x03840253, 0xaf020406, 203 NONBUFFERED_FLAGS, ST_MICRO_FLASH_PAGE_BITS, ST_MICRO_FLASH_PAGE_SIZE, 204 ST_MICRO_FLASH_BYTE_ADDR_MASK, ST_MICRO_FLASH_BASE_TOTAL_SIZE*2, 205 "Entry 0101: ST M45PE10 (128kB non-bufferred)"}, 206 /* Entry 0110: ST M45PE20 (non-buffered flash)*/ 207 {0x15000001, 0x57808201, 0x000500db, 0x03840253, 0xaf020406, 208 NONBUFFERED_FLAGS, ST_MICRO_FLASH_PAGE_BITS, ST_MICRO_FLASH_PAGE_SIZE, 209 ST_MICRO_FLASH_BYTE_ADDR_MASK, ST_MICRO_FLASH_BASE_TOTAL_SIZE*4, 210 "Entry 0110: ST M45PE20 (256kB non-bufferred)"}, 211 /* Saifun SA25F005 (non-buffered flash) */ 212 /* strap, cfg1, & write1 need updates */ 213 {0x1d000003, 0x5f808201, 0x00050081, 0x03840253, 0xaf020406, 214 NONBUFFERED_FLAGS, SAIFUN_FLASH_PAGE_BITS, SAIFUN_FLASH_PAGE_SIZE, 215 SAIFUN_FLASH_BYTE_ADDR_MASK, SAIFUN_FLASH_BASE_TOTAL_SIZE, 216 "Non-buffered flash (64kB)"}, 217 /* Fast EEPROM */ 218 {0x22000000, 0x62808380, 0x009f0081, 0xa184a053, 0xaf000400, 219 BUFFERED_FLAGS, SEEPROM_PAGE_BITS, SEEPROM_PAGE_SIZE, 220 SEEPROM_BYTE_ADDR_MASK, SEEPROM_TOTAL_SIZE, 221 "EEPROM - fast"}, 222 /* Expansion entry 1001 */ 223 {0x2a000002, 0x6b808201, 0x00050081, 0x03840253, 0xaf020406, 224 NONBUFFERED_FLAGS, SAIFUN_FLASH_PAGE_BITS, SAIFUN_FLASH_PAGE_SIZE, 225 SAIFUN_FLASH_BYTE_ADDR_MASK, 0, 226 "Entry 1001"}, 227 /* Expansion entry 1010 */ 228 {0x26000001, 0x67808201, 0x00050081, 0x03840253, 0xaf020406, 229 NONBUFFERED_FLAGS, SAIFUN_FLASH_PAGE_BITS, SAIFUN_FLASH_PAGE_SIZE, 230 SAIFUN_FLASH_BYTE_ADDR_MASK, 0, 231 "Entry 1010"}, 232 /* ATMEL AT45DB011B (buffered flash) */ 233 {0x2e000003, 0x6e808273, 0x00570081, 0x68848353, 0xaf000400, 234 BUFFERED_FLAGS, BUFFERED_FLASH_PAGE_BITS, BUFFERED_FLASH_PAGE_SIZE, 235 BUFFERED_FLASH_BYTE_ADDR_MASK, BUFFERED_FLASH_TOTAL_SIZE, 236 "Buffered flash (128kB)"}, 237 /* Expansion entry 1100 */ 238 {0x33000000, 0x73808201, 0x00050081, 0x03840253, 0xaf020406, 239 NONBUFFERED_FLAGS, SAIFUN_FLASH_PAGE_BITS, SAIFUN_FLASH_PAGE_SIZE, 240 SAIFUN_FLASH_BYTE_ADDR_MASK, 0, 241 "Entry 1100"}, 242 /* Expansion entry 1101 */ 243 {0x3b000002, 0x7b808201, 0x00050081, 0x03840253, 0xaf020406, 244 NONBUFFERED_FLAGS, SAIFUN_FLASH_PAGE_BITS, SAIFUN_FLASH_PAGE_SIZE, 245 SAIFUN_FLASH_BYTE_ADDR_MASK, 0, 246 "Entry 1101"}, 247 /* Ateml Expansion entry 1110 */ 248 {0x37000001, 0x76808273, 0x00570081, 0x68848353, 0xaf000400, 249 BUFFERED_FLAGS, BUFFERED_FLASH_PAGE_BITS, BUFFERED_FLASH_PAGE_SIZE, 250 BUFFERED_FLASH_BYTE_ADDR_MASK, 0, 251 "Entry 1110 (Atmel)"}, 252 /* ATMEL AT45DB021B (buffered flash) */ 253 {0x3f000003, 0x7e808273, 0x00570081, 0x68848353, 0xaf000400, 254 BUFFERED_FLAGS, BUFFERED_FLASH_PAGE_BITS, BUFFERED_FLASH_PAGE_SIZE, 255 BUFFERED_FLASH_BYTE_ADDR_MASK, BUFFERED_FLASH_TOTAL_SIZE*2, 256 "Buffered flash (256kB)"}, 257 }; 258 259 /* 260 * The BCM5709 controllers transparently handle the 261 * differences between Atmel 264 byte pages and all 262 * flash devices which use 256 byte pages, so no 263 * logical-to-physical mapping is required in the 264 * driver. 265 */ 266 static struct flash_spec flash_5709 = { 267 .flags = BCE_NV_BUFFERED, 268 .page_bits = BCM5709_FLASH_PAGE_BITS, 269 .page_size = BCM5709_FLASH_PAGE_SIZE, 270 .addr_mask = BCM5709_FLASH_BYTE_ADDR_MASK, 271 .total_size = BUFFERED_FLASH_TOTAL_SIZE * 2, 272 .name = "5709/5716 buffered flash (256kB)", 273 }; 274 275 276 /****************************************************************************/ 277 /* FreeBSD device entry points. */ 278 /****************************************************************************/ 279 static int bce_probe (device_t); 280 static int bce_attach (device_t); 281 static int bce_detach (device_t); 282 static int bce_shutdown (device_t); 283 284 285 /****************************************************************************/ 286 /* BCE Debug Data Structure Dump Routines */ 287 /****************************************************************************/ 288 #ifdef BCE_DEBUG 289 static u32 bce_reg_rd (struct bce_softc *, u32); 290 static void bce_reg_wr (struct bce_softc *, u32, u32); 291 static void bce_reg_wr16 (struct bce_softc *, u32, u16); 292 static u32 bce_ctx_rd (struct bce_softc *, u32, u32); 293 static void bce_dump_enet (struct bce_softc *, struct mbuf *); 294 static void bce_dump_mbuf (struct bce_softc *, struct mbuf *); 295 static void bce_dump_tx_mbuf_chain (struct bce_softc *, u16, int); 296 static void bce_dump_rx_mbuf_chain (struct bce_softc *, u16, int); 297 #ifdef BCE_USE_SPLIT_HEADER 298 static void bce_dump_pg_mbuf_chain (struct bce_softc *, u16, int); 299 #endif 300 static void bce_dump_txbd (struct bce_softc *, int, struct tx_bd *); 301 static void bce_dump_rxbd (struct bce_softc *, int, struct rx_bd *); 302 #ifdef BCE_USE_SPLIT_HEADER 303 static void bce_dump_pgbd (struct bce_softc *, int, struct rx_bd *); 304 #endif 305 static void bce_dump_l2fhdr (struct bce_softc *, int, struct l2_fhdr *); 306 static void bce_dump_ctx (struct bce_softc *, u16); 307 static void bce_dump_ftqs (struct bce_softc *); 308 static void bce_dump_tx_chain (struct bce_softc *, u16, int); 309 static void bce_dump_rx_chain (struct bce_softc *, u16, int); 310 #ifdef BCE_USE_SPLIT_HEADER 311 static void bce_dump_pg_chain (struct bce_softc *, u16, int); 312 #endif 313 static void bce_dump_status_block (struct bce_softc *); 314 static void bce_dump_stats_block (struct bce_softc *); 315 static void bce_dump_driver_state (struct bce_softc *); 316 static void bce_dump_hw_state (struct bce_softc *); 317 static void bce_dump_mq_regs (struct bce_softc *); 318 static void bce_dump_bc_state (struct bce_softc *); 319 static void bce_dump_txp_state (struct bce_softc *, int); 320 static void bce_dump_rxp_state (struct bce_softc *, int); 321 static void bce_dump_tpat_state (struct bce_softc *, int); 322 static void bce_dump_cp_state (struct bce_softc *, int); 323 static void bce_dump_com_state (struct bce_softc *, int); 324 static void bce_breakpoint (struct bce_softc *); 325 #endif 326 327 328 /****************************************************************************/ 329 /* BCE Register/Memory Access Routines */ 330 /****************************************************************************/ 331 static u32 bce_reg_rd_ind (struct bce_softc *, u32); 332 static void bce_reg_wr_ind (struct bce_softc *, u32, u32); 333 static void bce_ctx_wr (struct bce_softc *, u32, u32, u32); 334 static int bce_miibus_read_reg (device_t, int, int); 335 static int bce_miibus_write_reg (device_t, int, int, int); 336 static void bce_miibus_statchg (device_t); 337 338 339 /****************************************************************************/ 340 /* BCE NVRAM Access Routines */ 341 /****************************************************************************/ 342 static int bce_acquire_nvram_lock (struct bce_softc *); 343 static int bce_release_nvram_lock (struct bce_softc *); 344 static void bce_enable_nvram_access (struct bce_softc *); 345 static void bce_disable_nvram_access(struct bce_softc *); 346 static int bce_nvram_read_dword (struct bce_softc *, u32, u8 *, u32); 347 static int bce_init_nvram (struct bce_softc *); 348 static int bce_nvram_read (struct bce_softc *, u32, u8 *, int); 349 static int bce_nvram_test (struct bce_softc *); 350 #ifdef BCE_NVRAM_WRITE_SUPPORT 351 static int bce_enable_nvram_write (struct bce_softc *); 352 static void bce_disable_nvram_write (struct bce_softc *); 353 static int bce_nvram_erase_page (struct bce_softc *, u32); 354 static int bce_nvram_write_dword (struct bce_softc *, u32, u8 *, u32); 355 static int bce_nvram_write (struct bce_softc *, u32, u8 *, int); 356 #endif 357 358 /****************************************************************************/ 359 /* */ 360 /****************************************************************************/ 361 static void bce_get_media (struct bce_softc *); 362 static void bce_dma_map_addr (void *, bus_dma_segment_t *, int, int); 363 static int bce_dma_alloc (device_t); 364 static void bce_dma_free (struct bce_softc *); 365 static void bce_release_resources (struct bce_softc *); 366 367 /****************************************************************************/ 368 /* BCE Firmware Synchronization and Load */ 369 /****************************************************************************/ 370 static int bce_fw_sync (struct bce_softc *, u32); 371 static void bce_load_rv2p_fw (struct bce_softc *, u32 *, u32, u32); 372 static void bce_load_cpu_fw (struct bce_softc *, struct cpu_reg *, struct fw_info *); 373 static void bce_init_rxp_cpu (struct bce_softc *); 374 static void bce_init_txp_cpu (struct bce_softc *); 375 static void bce_init_tpat_cpu (struct bce_softc *); 376 static void bce_init_cp_cpu (struct bce_softc *); 377 static void bce_init_com_cpu (struct bce_softc *); 378 static void bce_init_cpus (struct bce_softc *); 379 380 static void bce_print_adapter_info (struct bce_softc *); 381 static void bce_probe_pci_caps (device_t, struct bce_softc *); 382 static void bce_stop (struct bce_softc *); 383 static int bce_reset (struct bce_softc *, u32); 384 static int bce_chipinit (struct bce_softc *); 385 static int bce_blockinit (struct bce_softc *); 386 387 static int bce_init_tx_chain (struct bce_softc *); 388 static void bce_free_tx_chain (struct bce_softc *); 389 390 static int bce_get_rx_buf (struct bce_softc *, struct mbuf *, u16 *, u16 *, u32 *); 391 static int bce_init_rx_chain (struct bce_softc *); 392 static void bce_fill_rx_chain (struct bce_softc *); 393 static void bce_free_rx_chain (struct bce_softc *); 394 395 #ifdef BCE_USE_SPLIT_HEADER 396 static int bce_get_pg_buf (struct bce_softc *, struct mbuf *, u16 *, u16 *); 397 static int bce_init_pg_chain (struct bce_softc *); 398 static void bce_fill_pg_chain (struct bce_softc *); 399 static void bce_free_pg_chain (struct bce_softc *); 400 #endif 401 402 static int bce_tx_encap (struct bce_softc *, struct mbuf **); 403 static void bce_start_locked (struct ifnet *); 404 static void bce_start (struct ifnet *); 405 static int bce_ioctl (struct ifnet *, u_long, caddr_t); 406 static void bce_watchdog (struct bce_softc *); 407 static int bce_ifmedia_upd (struct ifnet *); 408 static void bce_ifmedia_upd_locked (struct ifnet *); 409 static void bce_ifmedia_sts (struct ifnet *, struct ifmediareq *); 410 static void bce_init_locked (struct bce_softc *); 411 static void bce_init (void *); 412 static void bce_mgmt_init_locked (struct bce_softc *sc); 413 414 static void bce_init_ctx (struct bce_softc *); 415 static void bce_get_mac_addr (struct bce_softc *); 416 static void bce_set_mac_addr (struct bce_softc *); 417 static void bce_phy_intr (struct bce_softc *); 418 static inline u16 bce_get_hw_rx_cons(struct bce_softc *); 419 static void bce_rx_intr (struct bce_softc *); 420 static void bce_tx_intr (struct bce_softc *); 421 static void bce_disable_intr (struct bce_softc *); 422 static void bce_enable_intr (struct bce_softc *, int); 423 424 static void bce_intr (void *); 425 static void bce_set_rx_mode (struct bce_softc *); 426 static void bce_stats_update (struct bce_softc *); 427 static void bce_tick (void *); 428 static void bce_pulse (void *); 429 static void bce_add_sysctls (struct bce_softc *); 430 431 432 /****************************************************************************/ 433 /* FreeBSD device dispatch table. */ 434 /****************************************************************************/ 435 static device_method_t bce_methods[] = { 436 /* Device interface (device_if.h) */ 437 DEVMETHOD(device_probe, bce_probe), 438 DEVMETHOD(device_attach, bce_attach), 439 DEVMETHOD(device_detach, bce_detach), 440 DEVMETHOD(device_shutdown, bce_shutdown), 441 /* Supported by device interface but not used here. */ 442 /* DEVMETHOD(device_identify, bce_identify), */ 443 /* DEVMETHOD(device_suspend, bce_suspend), */ 444 /* DEVMETHOD(device_resume, bce_resume), */ 445 /* DEVMETHOD(device_quiesce, bce_quiesce), */ 446 447 /* Bus interface (bus_if.h) */ 448 DEVMETHOD(bus_print_child, bus_generic_print_child), 449 DEVMETHOD(bus_driver_added, bus_generic_driver_added), 450 451 /* MII interface (miibus_if.h) */ 452 DEVMETHOD(miibus_readreg, bce_miibus_read_reg), 453 DEVMETHOD(miibus_writereg, bce_miibus_write_reg), 454 DEVMETHOD(miibus_statchg, bce_miibus_statchg), 455 /* Supported by MII interface but not used here. */ 456 /* DEVMETHOD(miibus_linkchg, bce_miibus_linkchg), */ 457 /* DEVMETHOD(miibus_mediainit, bce_miibus_mediainit), */ 458 459 { 0, 0 } 460 }; 461 462 static driver_t bce_driver = { 463 "bce", 464 bce_methods, 465 sizeof(struct bce_softc) 466 }; 467 468 static devclass_t bce_devclass; 469 470 MODULE_DEPEND(bce, pci, 1, 1, 1); 471 MODULE_DEPEND(bce, ether, 1, 1, 1); 472 MODULE_DEPEND(bce, miibus, 1, 1, 1); 473 474 DRIVER_MODULE(bce, pci, bce_driver, bce_devclass, 0, 0); 475 DRIVER_MODULE(miibus, bce, miibus_driver, miibus_devclass, 0, 0); 476 477 478 /****************************************************************************/ 479 /* Tunable device values */ 480 /****************************************************************************/ 481 SYSCTL_NODE(_hw, OID_AUTO, bce, CTLFLAG_RD, 0, "bce driver parameters"); 482 483 /* Allowable values are TRUE or FALSE */ 484 static int bce_tso_enable = TRUE; 485 TUNABLE_INT("hw.bce.tso_enable", &bce_tso_enable); 486 SYSCTL_UINT(_hw_bce, OID_AUTO, tso_enable, CTLFLAG_RDTUN, &bce_tso_enable, 0, 487 "TSO Enable/Disable"); 488 489 /* Allowable values are 0 (IRQ), 1 (MSI/IRQ), and 2 (MSI-X/MSI/IRQ) */ 490 /* ToDo: Add MSI-X support. */ 491 static int bce_msi_enable = 1; 492 TUNABLE_INT("hw.bce.msi_enable", &bce_msi_enable); 493 SYSCTL_UINT(_hw_bce, OID_AUTO, msi_enable, CTLFLAG_RDTUN, &bce_msi_enable, 0, 494 "MSI-X|MSI|INTx selector"); 495 496 /* ToDo: Add tunable to enable/disable strict MTU handling. */ 497 /* Currently allows "loose" RX MTU checking (i.e. sets the */ 498 /* H/W RX MTU to the size of the largest receive buffer, or */ 499 /* 2048 bytes). */ 500 501 502 /****************************************************************************/ 503 /* Device probe function. */ 504 /* */ 505 /* Compares the device to the driver's list of supported devices and */ 506 /* reports back to the OS whether this is the right driver for the device. */ 507 /* */ 508 /* Returns: */ 509 /* BUS_PROBE_DEFAULT on success, positive value on failure. */ 510 /****************************************************************************/ 511 static int 512 bce_probe(device_t dev) 513 { 514 struct bce_type *t; 515 struct bce_softc *sc; 516 char *descbuf; 517 u16 vid = 0, did = 0, svid = 0, sdid = 0; 518 519 t = bce_devs; 520 521 sc = device_get_softc(dev); 522 bzero(sc, sizeof(struct bce_softc)); 523 sc->bce_unit = device_get_unit(dev); 524 sc->bce_dev = dev; 525 526 /* Get the data for the device to be probed. */ 527 vid = pci_get_vendor(dev); 528 did = pci_get_device(dev); 529 svid = pci_get_subvendor(dev); 530 sdid = pci_get_subdevice(dev); 531 532 DBPRINT(sc, BCE_EXTREME_LOAD, 533 "%s(); VID = 0x%04X, DID = 0x%04X, SVID = 0x%04X, " 534 "SDID = 0x%04X\n", __FUNCTION__, vid, did, svid, sdid); 535 536 /* Look through the list of known devices for a match. */ 537 while(t->bce_name != NULL) { 538 539 if ((vid == t->bce_vid) && (did == t->bce_did) && 540 ((svid == t->bce_svid) || (t->bce_svid == PCI_ANY_ID)) && 541 ((sdid == t->bce_sdid) || (t->bce_sdid == PCI_ANY_ID))) { 542 543 descbuf = malloc(BCE_DEVDESC_MAX, M_TEMP, M_NOWAIT); 544 545 if (descbuf == NULL) 546 return(ENOMEM); 547 548 /* Print out the device identity. */ 549 snprintf(descbuf, BCE_DEVDESC_MAX, "%s (%c%d)", 550 t->bce_name, 551 (((pci_read_config(dev, PCIR_REVID, 4) & 0xf0) >> 4) + 'A'), 552 (pci_read_config(dev, PCIR_REVID, 4) & 0xf)); 553 554 device_set_desc_copy(dev, descbuf); 555 free(descbuf, M_TEMP); 556 return(BUS_PROBE_DEFAULT); 557 } 558 t++; 559 } 560 561 return(ENXIO); 562 } 563 564 565 /****************************************************************************/ 566 /* PCI Capabilities Probe Function. */ 567 /* */ 568 /* Walks the PCI capabiites list for the device to find what features are */ 569 /* supported. */ 570 /* */ 571 /* Returns: */ 572 /* None. */ 573 /****************************************************************************/ 574 static void 575 bce_print_adapter_info(struct bce_softc *sc) 576 { 577 DBENTER(BCE_VERBOSE_LOAD); 578 579 BCE_PRINTF("ASIC (0x%08X); ", sc->bce_chipid); 580 printf("Rev (%c%d); ", ((BCE_CHIP_ID(sc) & 0xf000) >> 12) + 'A', 581 ((BCE_CHIP_ID(sc) & 0x0ff0) >> 4)); 582 583 /* Bus info. */ 584 if (sc->bce_flags & BCE_PCIE_FLAG) { 585 printf("Bus (PCIe x%d, ", sc->link_width); 586 switch (sc->link_speed) { 587 case 1: printf("2.5Gbps); "); break; 588 case 2: printf("5Gbps); "); break; 589 default: printf("Unknown link speed); "); 590 } 591 } else { 592 printf("Bus (PCI%s, %s, %dMHz); ", 593 ((sc->bce_flags & BCE_PCIX_FLAG) ? "-X" : ""), 594 ((sc->bce_flags & BCE_PCI_32BIT_FLAG) ? "32-bit" : "64-bit"), 595 sc->bus_speed_mhz); 596 } 597 598 /* Firmware version and device features. */ 599 printf("F/W (0x%08X); Flags( ", sc->bce_fw_ver); 600 #ifdef BCE_USE_SPLIT_HEADER 601 printf("SPLT "); 602 #endif 603 if (sc->bce_flags & BCE_MFW_ENABLE_FLAG) 604 printf("MFW "); 605 if (sc->bce_flags & BCE_USING_MSI_FLAG) 606 printf("MSI "); 607 if (sc->bce_flags & BCE_USING_MSIX_FLAG) 608 printf("MSI-X "); 609 if (sc->bce_phy_flags & BCE_PHY_2_5G_CAPABLE_FLAG) 610 printf("2.5G "); 611 printf(")\n"); 612 613 DBEXIT(BCE_VERBOSE_LOAD); 614 } 615 616 617 /****************************************************************************/ 618 /* PCI Capabilities Probe Function. */ 619 /* */ 620 /* Walks the PCI capabiites list for the device to find what features are */ 621 /* supported. */ 622 /* */ 623 /* Returns: */ 624 /* None. */ 625 /****************************************************************************/ 626 static void 627 bce_probe_pci_caps(device_t dev, struct bce_softc *sc) 628 { 629 u32 reg; 630 631 DBENTER(BCE_VERBOSE_LOAD); 632 633 /* Check if PCI-X capability is enabled. */ 634 if (pci_find_extcap(dev, PCIY_PCIX, ®) == 0) { 635 if (reg != 0) 636 sc->bce_cap_flags |= BCE_PCIX_CAPABLE_FLAG; 637 } 638 639 /* Check if PCIe capability is enabled. */ 640 if (pci_find_extcap(dev, PCIY_EXPRESS, ®) == 0) { 641 if (reg != 0) { 642 u16 link_status = pci_read_config(dev, reg + 0x12, 2); 643 DBPRINT(sc, BCE_INFO_LOAD, "PCIe link_status = 0x%08X\n", 644 link_status); 645 sc->link_speed = link_status & 0xf; 646 sc->link_width = (link_status >> 4) & 0x3f; 647 sc->bce_cap_flags |= BCE_PCIE_CAPABLE_FLAG; 648 sc->bce_flags |= BCE_PCIE_FLAG; 649 } 650 } 651 652 /* Check if MSI capability is enabled. */ 653 if (pci_find_extcap(dev, PCIY_MSI, ®) == 0) { 654 if (reg != 0) 655 sc->bce_cap_flags |= BCE_MSI_CAPABLE_FLAG; 656 } 657 658 /* Check if MSI-X capability is enabled. */ 659 if (pci_find_extcap(dev, PCIY_MSIX, ®) == 0) { 660 if (reg != 0) 661 sc->bce_cap_flags |= BCE_MSIX_CAPABLE_FLAG; 662 } 663 664 DBEXIT(BCE_VERBOSE_LOAD); 665 } 666 667 668 /****************************************************************************/ 669 /* Device attach function. */ 670 /* */ 671 /* Allocates device resources, performs secondary chip identification, */ 672 /* resets and initializes the hardware, and initializes driver instance */ 673 /* variables. */ 674 /* */ 675 /* Returns: */ 676 /* 0 on success, positive value on failure. */ 677 /****************************************************************************/ 678 static int 679 bce_attach(device_t dev) 680 { 681 struct bce_softc *sc; 682 struct ifnet *ifp; 683 u32 val; 684 int error, rid, rc = 0; 685 686 sc = device_get_softc(dev); 687 sc->bce_dev = dev; 688 689 DBENTER(BCE_VERBOSE_LOAD | BCE_VERBOSE_RESET); 690 691 sc->bce_unit = device_get_unit(dev); 692 693 /* Set initial device and PHY flags */ 694 sc->bce_flags = 0; 695 sc->bce_phy_flags = 0; 696 697 pci_enable_busmaster(dev); 698 699 /* Allocate PCI memory resources. */ 700 rid = PCIR_BAR(0); 701 sc->bce_res_mem = bus_alloc_resource_any(dev, SYS_RES_MEMORY, 702 &rid, RF_ACTIVE); 703 704 if (sc->bce_res_mem == NULL) { 705 BCE_PRINTF("%s(%d): PCI memory allocation failed\n", 706 __FILE__, __LINE__); 707 rc = ENXIO; 708 goto bce_attach_fail; 709 } 710 711 /* Get various resource handles. */ 712 sc->bce_btag = rman_get_bustag(sc->bce_res_mem); 713 sc->bce_bhandle = rman_get_bushandle(sc->bce_res_mem); 714 sc->bce_vhandle = (vm_offset_t) rman_get_virtual(sc->bce_res_mem); 715 716 bce_probe_pci_caps(dev, sc); 717 718 rid = 1; 719 #if 0 720 /* Try allocating MSI-X interrupts. */ 721 if ((sc->bce_cap_flags & BCE_MSIX_CAPABLE_FLAG) && 722 (bce_msi_enable >= 2) && 723 ((sc->bce_res_irq = bus_alloc_resource_any(dev, SYS_RES_MEMORY, 724 &rid, RF_ACTIVE)) != NULL)) { 725 726 msi_needed = sc->bce_msi_count = 1; 727 728 if (((error = pci_alloc_msix(dev, &sc->bce_msi_count)) != 0) || 729 (sc->bce_msi_count != msi_needed)) { 730 BCE_PRINTF("%s(%d): MSI-X allocation failed! Requested = %d," 731 "Received = %d, error = %d\n", __FILE__, __LINE__, 732 msi_needed, sc->bce_msi_count, error); 733 sc->bce_msi_count = 0; 734 pci_release_msi(dev); 735 bus_release_resource(dev, SYS_RES_MEMORY, rid, 736 sc->bce_res_irq); 737 sc->bce_res_irq = NULL; 738 } else { 739 DBPRINT(sc, BCE_INFO_LOAD, "%s(): Using MSI-X interrupt.\n", 740 __FUNCTION__); 741 sc->bce_flags |= BCE_USING_MSIX_FLAG; 742 sc->bce_intr = bce_intr; 743 } 744 } 745 #endif 746 747 /* Try allocating a MSI interrupt. */ 748 if ((sc->bce_cap_flags & BCE_MSI_CAPABLE_FLAG) && 749 (bce_msi_enable >= 1) && (sc->bce_msi_count == 0)) { 750 sc->bce_msi_count = 1; 751 if ((error = pci_alloc_msi(dev, &sc->bce_msi_count)) != 0) { 752 BCE_PRINTF("%s(%d): MSI allocation failed! error = %d\n", 753 __FILE__, __LINE__, error); 754 sc->bce_msi_count = 0; 755 pci_release_msi(dev); 756 } else { 757 DBPRINT(sc, BCE_INFO_LOAD, "%s(): Using MSI interrupt.\n", 758 __FUNCTION__); 759 sc->bce_flags |= BCE_USING_MSI_FLAG; 760 if ((BCE_CHIP_NUM(sc) == BCE_CHIP_NUM_5709) || 761 (BCE_CHIP_NUM(sc) == BCE_CHIP_NUM_5716)) 762 sc->bce_flags |= BCE_ONE_SHOT_MSI_FLAG; 763 sc->bce_irq_rid = 1; 764 sc->bce_intr = bce_intr; 765 } 766 } 767 768 /* Try allocating a legacy interrupt. */ 769 if (sc->bce_msi_count == 0) { 770 DBPRINT(sc, BCE_INFO_LOAD, "%s(): Using INTx interrupt.\n", 771 __FUNCTION__); 772 rid = 0; 773 sc->bce_intr = bce_intr; 774 } 775 776 sc->bce_res_irq = bus_alloc_resource_any(dev, SYS_RES_IRQ, 777 &rid, RF_SHAREABLE | RF_ACTIVE); 778 779 sc->bce_irq_rid = rid; 780 781 /* Report any IRQ allocation errors. */ 782 if (sc->bce_res_irq == NULL) { 783 BCE_PRINTF("%s(%d): PCI map interrupt failed!\n", 784 __FILE__, __LINE__); 785 rc = ENXIO; 786 goto bce_attach_fail; 787 } 788 789 /* Initialize mutex for the current device instance. */ 790 BCE_LOCK_INIT(sc, device_get_nameunit(dev)); 791 792 /* 793 * Configure byte swap and enable indirect register access. 794 * Rely on CPU to do target byte swapping on big endian systems. 795 * Access to registers outside of PCI configurtion space are not 796 * valid until this is done. 797 */ 798 pci_write_config(dev, BCE_PCICFG_MISC_CONFIG, 799 BCE_PCICFG_MISC_CONFIG_REG_WINDOW_ENA | 800 BCE_PCICFG_MISC_CONFIG_TARGET_MB_WORD_SWAP, 4); 801 802 /* Save ASIC revsion info. */ 803 sc->bce_chipid = REG_RD(sc, BCE_MISC_ID); 804 805 /* Weed out any non-production controller revisions. */ 806 switch(BCE_CHIP_ID(sc)) { 807 case BCE_CHIP_ID_5706_A0: 808 case BCE_CHIP_ID_5706_A1: 809 case BCE_CHIP_ID_5708_A0: 810 case BCE_CHIP_ID_5708_B0: 811 case BCE_CHIP_ID_5709_A0: 812 case BCE_CHIP_ID_5709_B0: 813 case BCE_CHIP_ID_5709_B1: 814 case BCE_CHIP_ID_5709_B2: 815 BCE_PRINTF("%s(%d): Unsupported controller revision (%c%d)!\n", 816 __FILE__, __LINE__, 817 (((pci_read_config(dev, PCIR_REVID, 4) & 0xf0) >> 4) + 'A'), 818 (pci_read_config(dev, PCIR_REVID, 4) & 0xf)); 819 rc = ENODEV; 820 goto bce_attach_fail; 821 } 822 823 /* 824 * The embedded PCIe to PCI-X bridge (EPB) 825 * in the 5708 cannot address memory above 826 * 40 bits (E7_5708CB1_23043 & E6_5708SB1_23043). 827 */ 828 if (BCE_CHIP_NUM(sc) == BCE_CHIP_NUM_5708) 829 sc->max_bus_addr = BCE_BUS_SPACE_MAXADDR; 830 else 831 sc->max_bus_addr = BUS_SPACE_MAXADDR; 832 833 /* 834 * Find the base address for shared memory access. 835 * Newer versions of bootcode use a signature and offset 836 * while older versions use a fixed address. 837 */ 838 val = REG_RD_IND(sc, BCE_SHM_HDR_SIGNATURE); 839 if ((val & BCE_SHM_HDR_SIGNATURE_SIG_MASK) == BCE_SHM_HDR_SIGNATURE_SIG) 840 /* Multi-port devices use different offsets in shared memory. */ 841 sc->bce_shmem_base = REG_RD_IND(sc, BCE_SHM_HDR_ADDR_0 + 842 (pci_get_function(sc->bce_dev) << 2)); 843 else 844 sc->bce_shmem_base = HOST_VIEW_SHMEM_BASE; 845 846 DBPRINT(sc, BCE_VERBOSE_FIRMWARE, "%s(): bce_shmem_base = 0x%08X\n", 847 __FUNCTION__, sc->bce_shmem_base); 848 849 /* Fetch the bootcode revision. */ 850 sc->bce_fw_ver = REG_RD_IND(sc, sc->bce_shmem_base + 851 BCE_DEV_INFO_BC_REV); 852 853 /* Check if any management firmware is running. */ 854 val = REG_RD_IND(sc, sc->bce_shmem_base + BCE_PORT_FEATURE); 855 if (val & (BCE_PORT_FEATURE_ASF_ENABLED | BCE_PORT_FEATURE_IMD_ENABLED)) 856 sc->bce_flags |= BCE_MFW_ENABLE_FLAG; 857 858 /* Get PCI bus information (speed and type). */ 859 val = REG_RD(sc, BCE_PCICFG_MISC_STATUS); 860 if (val & BCE_PCICFG_MISC_STATUS_PCIX_DET) { 861 u32 clkreg; 862 863 sc->bce_flags |= BCE_PCIX_FLAG; 864 865 clkreg = REG_RD(sc, BCE_PCICFG_PCI_CLOCK_CONTROL_BITS); 866 867 clkreg &= BCE_PCICFG_PCI_CLOCK_CONTROL_BITS_PCI_CLK_SPD_DET; 868 switch (clkreg) { 869 case BCE_PCICFG_PCI_CLOCK_CONTROL_BITS_PCI_CLK_SPD_DET_133MHZ: 870 sc->bus_speed_mhz = 133; 871 break; 872 873 case BCE_PCICFG_PCI_CLOCK_CONTROL_BITS_PCI_CLK_SPD_DET_95MHZ: 874 sc->bus_speed_mhz = 100; 875 break; 876 877 case BCE_PCICFG_PCI_CLOCK_CONTROL_BITS_PCI_CLK_SPD_DET_66MHZ: 878 case BCE_PCICFG_PCI_CLOCK_CONTROL_BITS_PCI_CLK_SPD_DET_80MHZ: 879 sc->bus_speed_mhz = 66; 880 break; 881 882 case BCE_PCICFG_PCI_CLOCK_CONTROL_BITS_PCI_CLK_SPD_DET_48MHZ: 883 case BCE_PCICFG_PCI_CLOCK_CONTROL_BITS_PCI_CLK_SPD_DET_55MHZ: 884 sc->bus_speed_mhz = 50; 885 break; 886 887 case BCE_PCICFG_PCI_CLOCK_CONTROL_BITS_PCI_CLK_SPD_DET_LOW: 888 case BCE_PCICFG_PCI_CLOCK_CONTROL_BITS_PCI_CLK_SPD_DET_32MHZ: 889 case BCE_PCICFG_PCI_CLOCK_CONTROL_BITS_PCI_CLK_SPD_DET_38MHZ: 890 sc->bus_speed_mhz = 33; 891 break; 892 } 893 } else { 894 if (val & BCE_PCICFG_MISC_STATUS_M66EN) 895 sc->bus_speed_mhz = 66; 896 else 897 sc->bus_speed_mhz = 33; 898 } 899 900 if (val & BCE_PCICFG_MISC_STATUS_32BIT_DET) 901 sc->bce_flags |= BCE_PCI_32BIT_FLAG; 902 903 /* Reset the controller and announce to bootcode that driver is present. */ 904 if (bce_reset(sc, BCE_DRV_MSG_CODE_RESET)) { 905 BCE_PRINTF("%s(%d): Controller reset failed!\n", 906 __FILE__, __LINE__); 907 rc = ENXIO; 908 goto bce_attach_fail; 909 } 910 911 /* Initialize the controller. */ 912 if (bce_chipinit(sc)) { 913 BCE_PRINTF("%s(%d): Controller initialization failed!\n", 914 __FILE__, __LINE__); 915 rc = ENXIO; 916 goto bce_attach_fail; 917 } 918 919 /* Perform NVRAM test. */ 920 if (bce_nvram_test(sc)) { 921 BCE_PRINTF("%s(%d): NVRAM test failed!\n", 922 __FILE__, __LINE__); 923 rc = ENXIO; 924 goto bce_attach_fail; 925 } 926 927 /* Fetch the permanent Ethernet MAC address. */ 928 bce_get_mac_addr(sc); 929 930 /* 931 * Trip points control how many BDs 932 * should be ready before generating an 933 * interrupt while ticks control how long 934 * a BD can sit in the chain before 935 * generating an interrupt. Set the default 936 * values for the RX and TX chains. 937 */ 938 939 #ifdef BCE_DEBUG 940 /* Force more frequent interrupts. */ 941 sc->bce_tx_quick_cons_trip_int = 1; 942 sc->bce_tx_quick_cons_trip = 1; 943 sc->bce_tx_ticks_int = 0; 944 sc->bce_tx_ticks = 0; 945 946 sc->bce_rx_quick_cons_trip_int = 1; 947 sc->bce_rx_quick_cons_trip = 1; 948 sc->bce_rx_ticks_int = 0; 949 sc->bce_rx_ticks = 0; 950 #else 951 /* Improve throughput at the expense of increased latency. */ 952 sc->bce_tx_quick_cons_trip_int = 20; 953 sc->bce_tx_quick_cons_trip = 20; 954 sc->bce_tx_ticks_int = 80; 955 sc->bce_tx_ticks = 80; 956 957 sc->bce_rx_quick_cons_trip_int = 6; 958 sc->bce_rx_quick_cons_trip = 6; 959 sc->bce_rx_ticks_int = 18; 960 sc->bce_rx_ticks = 18; 961 #endif 962 963 /* Update statistics once every second. */ 964 sc->bce_stats_ticks = 1000000 & 0xffff00; 965 966 /* Find the media type for the adapter. */ 967 bce_get_media(sc); 968 969 /* Store data needed by PHY driver for backplane applications */ 970 sc->bce_shared_hw_cfg = REG_RD_IND(sc, sc->bce_shmem_base + 971 BCE_SHARED_HW_CFG_CONFIG); 972 sc->bce_port_hw_cfg = REG_RD_IND(sc, sc->bce_shmem_base + 973 BCE_PORT_HW_CFG_CONFIG); 974 975 /* Allocate DMA memory resources. */ 976 if (bce_dma_alloc(dev)) { 977 BCE_PRINTF("%s(%d): DMA resource allocation failed!\n", 978 __FILE__, __LINE__); 979 rc = ENXIO; 980 goto bce_attach_fail; 981 } 982 983 /* Allocate an ifnet structure. */ 984 ifp = sc->bce_ifp = if_alloc(IFT_ETHER); 985 if (ifp == NULL) { 986 BCE_PRINTF("%s(%d): Interface allocation failed!\n", 987 __FILE__, __LINE__); 988 rc = ENXIO; 989 goto bce_attach_fail; 990 } 991 992 /* Initialize the ifnet interface. */ 993 ifp->if_softc = sc; 994 if_initname(ifp, device_get_name(dev), device_get_unit(dev)); 995 ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST; 996 ifp->if_ioctl = bce_ioctl; 997 ifp->if_start = bce_start; 998 ifp->if_init = bce_init; 999 ifp->if_mtu = ETHERMTU; 1000 1001 if (bce_tso_enable) { 1002 ifp->if_hwassist = BCE_IF_HWASSIST | CSUM_TSO; 1003 ifp->if_capabilities = BCE_IF_CAPABILITIES | IFCAP_TSO4; 1004 } else { 1005 ifp->if_hwassist = BCE_IF_HWASSIST; 1006 ifp->if_capabilities = BCE_IF_CAPABILITIES; 1007 } 1008 1009 ifp->if_capenable = ifp->if_capabilities; 1010 1011 /* 1012 * Assume standard mbuf sizes for buffer allocation. 1013 * This may change later if the MTU size is set to 1014 * something other than 1500. 1015 */ 1016 #ifdef BCE_USE_SPLIT_HEADER 1017 sc->rx_bd_mbuf_alloc_size = MHLEN; 1018 /* Make sure offset is 16 byte aligned for hardware. */ 1019 sc->rx_bd_mbuf_align_pad = roundup2((MSIZE - MHLEN), 16) - 1020 (MSIZE - MHLEN); 1021 sc->rx_bd_mbuf_data_len = sc->rx_bd_mbuf_alloc_size - 1022 sc->rx_bd_mbuf_align_pad; 1023 sc->pg_bd_mbuf_alloc_size = MCLBYTES; 1024 #else 1025 sc->rx_bd_mbuf_alloc_size = MCLBYTES; 1026 sc->rx_bd_mbuf_align_pad = roundup2(MCLBYTES, 16) - MCLBYTES; 1027 sc->rx_bd_mbuf_data_len = sc->rx_bd_mbuf_alloc_size - 1028 sc->rx_bd_mbuf_align_pad; 1029 #endif 1030 1031 ifp->if_snd.ifq_drv_maxlen = USABLE_TX_BD; 1032 IFQ_SET_MAXLEN(&ifp->if_snd, ifp->if_snd.ifq_drv_maxlen); 1033 IFQ_SET_READY(&ifp->if_snd); 1034 1035 if (sc->bce_phy_flags & BCE_PHY_2_5G_CAPABLE_FLAG) 1036 ifp->if_baudrate = IF_Mbps(2500ULL); 1037 else 1038 ifp->if_baudrate = IF_Mbps(1000); 1039 1040 /* Check for an MII child bus by probing the PHY. */ 1041 if (mii_phy_probe(dev, &sc->bce_miibus, bce_ifmedia_upd, 1042 bce_ifmedia_sts)) { 1043 BCE_PRINTF("%s(%d): No PHY found on child MII bus!\n", 1044 __FILE__, __LINE__); 1045 rc = ENXIO; 1046 goto bce_attach_fail; 1047 } 1048 1049 /* Attach to the Ethernet interface list. */ 1050 ether_ifattach(ifp, sc->eaddr); 1051 1052 #if __FreeBSD_version < 500000 1053 callout_init(&sc->bce_tick_callout); 1054 callout_init(&sc->bce_pulse_callout); 1055 #else 1056 callout_init_mtx(&sc->bce_tick_callout, &sc->bce_mtx, 0); 1057 callout_init_mtx(&sc->bce_pulse_callout, &sc->bce_mtx, 0); 1058 #endif 1059 1060 /* Hookup IRQ last. */ 1061 rc = bus_setup_intr(dev, sc->bce_res_irq, INTR_TYPE_NET | INTR_MPSAFE, 1062 NULL, bce_intr, sc, &sc->bce_intrhand); 1063 1064 if (rc) { 1065 BCE_PRINTF("%s(%d): Failed to setup IRQ!\n", 1066 __FILE__, __LINE__); 1067 bce_detach(dev); 1068 goto bce_attach_exit; 1069 } 1070 1071 /* 1072 * At this point we've acquired all the resources 1073 * we need to run so there's no turning back, we're 1074 * cleared for launch. 1075 */ 1076 1077 /* Print some important debugging info. */ 1078 DBRUNMSG(BCE_INFO, bce_dump_driver_state(sc)); 1079 1080 /* Add the supported sysctls to the kernel. */ 1081 bce_add_sysctls(sc); 1082 1083 BCE_LOCK(sc); 1084 1085 /* 1086 * The chip reset earlier notified the bootcode that 1087 * a driver is present. We now need to start our pulse 1088 * routine so that the bootcode is reminded that we're 1089 * still running. 1090 */ 1091 bce_pulse(sc); 1092 1093 bce_mgmt_init_locked(sc); 1094 BCE_UNLOCK(sc); 1095 1096 /* Finally, print some useful adapter info */ 1097 bce_print_adapter_info(sc); 1098 DBPRINT(sc, BCE_FATAL, "%s(): sc = %p\n", 1099 __FUNCTION__, sc); 1100 1101 goto bce_attach_exit; 1102 1103 bce_attach_fail: 1104 bce_release_resources(sc); 1105 1106 bce_attach_exit: 1107 1108 DBEXIT(BCE_VERBOSE_LOAD | BCE_VERBOSE_RESET); 1109 1110 return(rc); 1111 } 1112 1113 1114 /****************************************************************************/ 1115 /* Device detach function. */ 1116 /* */ 1117 /* Stops the controller, resets the controller, and releases resources. */ 1118 /* */ 1119 /* Returns: */ 1120 /* 0 on success, positive value on failure. */ 1121 /****************************************************************************/ 1122 static int 1123 bce_detach(device_t dev) 1124 { 1125 struct bce_softc *sc = device_get_softc(dev); 1126 struct ifnet *ifp; 1127 u32 msg; 1128 1129 DBENTER(BCE_VERBOSE_UNLOAD | BCE_VERBOSE_RESET); 1130 1131 ifp = sc->bce_ifp; 1132 1133 /* Stop and reset the controller. */ 1134 BCE_LOCK(sc); 1135 1136 /* Stop the pulse so the bootcode can go to driver absent state. */ 1137 callout_stop(&sc->bce_pulse_callout); 1138 1139 bce_stop(sc); 1140 if (sc->bce_flags & BCE_NO_WOL_FLAG) 1141 msg = BCE_DRV_MSG_CODE_UNLOAD_LNK_DN; 1142 else 1143 msg = BCE_DRV_MSG_CODE_UNLOAD; 1144 bce_reset(sc, msg); 1145 1146 BCE_UNLOCK(sc); 1147 1148 ether_ifdetach(ifp); 1149 1150 /* If we have a child device on the MII bus remove it too. */ 1151 bus_generic_detach(dev); 1152 device_delete_child(dev, sc->bce_miibus); 1153 1154 /* Release all remaining resources. */ 1155 bce_release_resources(sc); 1156 1157 DBEXIT(BCE_VERBOSE_UNLOAD | BCE_VERBOSE_RESET); 1158 1159 return(0); 1160 } 1161 1162 1163 /****************************************************************************/ 1164 /* Device shutdown function. */ 1165 /* */ 1166 /* Stops and resets the controller. */ 1167 /* */ 1168 /* Returns: */ 1169 /* 0 on success, positive value on failure. */ 1170 /****************************************************************************/ 1171 static int 1172 bce_shutdown(device_t dev) 1173 { 1174 struct bce_softc *sc = device_get_softc(dev); 1175 u32 msg; 1176 1177 DBENTER(BCE_VERBOSE); 1178 1179 BCE_LOCK(sc); 1180 bce_stop(sc); 1181 if (sc->bce_flags & BCE_NO_WOL_FLAG) 1182 msg = BCE_DRV_MSG_CODE_UNLOAD_LNK_DN; 1183 else 1184 msg = BCE_DRV_MSG_CODE_UNLOAD; 1185 bce_reset(sc, msg); 1186 BCE_UNLOCK(sc); 1187 1188 DBEXIT(BCE_VERBOSE); 1189 1190 return (0); 1191 } 1192 1193 1194 #ifdef BCE_DEBUG 1195 /****************************************************************************/ 1196 /* Register read. */ 1197 /* */ 1198 /* Returns: */ 1199 /* The value of the register. */ 1200 /****************************************************************************/ 1201 static u32 1202 bce_reg_rd(struct bce_softc *sc, u32 offset) 1203 { 1204 u32 val = bus_space_read_4(sc->bce_btag, sc->bce_bhandle, offset); 1205 DBPRINT(sc, BCE_INSANE_REG, "%s(); offset = 0x%08X, val = 0x%08X\n", 1206 __FUNCTION__, offset, val); 1207 return val; 1208 } 1209 1210 1211 /****************************************************************************/ 1212 /* Register write (16 bit). */ 1213 /* */ 1214 /* Returns: */ 1215 /* Nothing. */ 1216 /****************************************************************************/ 1217 static void 1218 bce_reg_wr16(struct bce_softc *sc, u32 offset, u16 val) 1219 { 1220 DBPRINT(sc, BCE_INSANE_REG, "%s(); offset = 0x%08X, val = 0x%04X\n", 1221 __FUNCTION__, offset, val); 1222 bus_space_write_2(sc->bce_btag, sc->bce_bhandle, offset, val); 1223 } 1224 1225 1226 /****************************************************************************/ 1227 /* Register write. */ 1228 /* */ 1229 /* Returns: */ 1230 /* Nothing. */ 1231 /****************************************************************************/ 1232 static void 1233 bce_reg_wr(struct bce_softc *sc, u32 offset, u32 val) 1234 { 1235 DBPRINT(sc, BCE_INSANE_REG, "%s(); offset = 0x%08X, val = 0x%08X\n", 1236 __FUNCTION__, offset, val); 1237 bus_space_write_4(sc->bce_btag, sc->bce_bhandle, offset, val); 1238 } 1239 #endif 1240 1241 /****************************************************************************/ 1242 /* Indirect register read. */ 1243 /* */ 1244 /* Reads NetXtreme II registers using an index/data register pair in PCI */ 1245 /* configuration space. Using this mechanism avoids issues with posted */ 1246 /* reads but is much slower than memory-mapped I/O. */ 1247 /* */ 1248 /* Returns: */ 1249 /* The value of the register. */ 1250 /****************************************************************************/ 1251 static u32 1252 bce_reg_rd_ind(struct bce_softc *sc, u32 offset) 1253 { 1254 device_t dev; 1255 dev = sc->bce_dev; 1256 1257 pci_write_config(dev, BCE_PCICFG_REG_WINDOW_ADDRESS, offset, 4); 1258 #ifdef BCE_DEBUG 1259 { 1260 u32 val; 1261 val = pci_read_config(dev, BCE_PCICFG_REG_WINDOW, 4); 1262 DBPRINT(sc, BCE_INSANE_REG, "%s(); offset = 0x%08X, val = 0x%08X\n", 1263 __FUNCTION__, offset, val); 1264 return val; 1265 } 1266 #else 1267 return pci_read_config(dev, BCE_PCICFG_REG_WINDOW, 4); 1268 #endif 1269 } 1270 1271 1272 /****************************************************************************/ 1273 /* Indirect register write. */ 1274 /* */ 1275 /* Writes NetXtreme II registers using an index/data register pair in PCI */ 1276 /* configuration space. Using this mechanism avoids issues with posted */ 1277 /* writes but is muchh slower than memory-mapped I/O. */ 1278 /* */ 1279 /* Returns: */ 1280 /* Nothing. */ 1281 /****************************************************************************/ 1282 static void 1283 bce_reg_wr_ind(struct bce_softc *sc, u32 offset, u32 val) 1284 { 1285 device_t dev; 1286 dev = sc->bce_dev; 1287 1288 DBPRINT(sc, BCE_INSANE_REG, "%s(); offset = 0x%08X, val = 0x%08X\n", 1289 __FUNCTION__, offset, val); 1290 1291 pci_write_config(dev, BCE_PCICFG_REG_WINDOW_ADDRESS, offset, 4); 1292 pci_write_config(dev, BCE_PCICFG_REG_WINDOW, val, 4); 1293 } 1294 1295 1296 #ifdef BCE_DEBUG 1297 /****************************************************************************/ 1298 /* Context memory read. */ 1299 /* */ 1300 /* The NetXtreme II controller uses context memory to track connection */ 1301 /* information for L2 and higher network protocols. */ 1302 /* */ 1303 /* Returns: */ 1304 /* The requested 32 bit value of context memory. */ 1305 /****************************************************************************/ 1306 static u32 1307 bce_ctx_rd(struct bce_softc *sc, u32 cid_addr, u32 ctx_offset) 1308 { 1309 u32 idx, offset, retry_cnt = 5, val; 1310 1311 DBRUNIF((cid_addr > MAX_CID_ADDR || ctx_offset & 0x3 || cid_addr & CTX_MASK), 1312 BCE_PRINTF("%s(): Invalid CID address: 0x%08X.\n", 1313 __FUNCTION__, cid_addr)); 1314 1315 offset = ctx_offset + cid_addr; 1316 1317 if ((BCE_CHIP_NUM(sc) == BCE_CHIP_NUM_5709) || 1318 (BCE_CHIP_NUM(sc) == BCE_CHIP_NUM_5716)) { 1319 1320 REG_WR(sc, BCE_CTX_CTX_CTRL, (offset | BCE_CTX_CTX_CTRL_READ_REQ)); 1321 1322 for (idx = 0; idx < retry_cnt; idx++) { 1323 val = REG_RD(sc, BCE_CTX_CTX_CTRL); 1324 if ((val & BCE_CTX_CTX_CTRL_READ_REQ) == 0) 1325 break; 1326 DELAY(5); 1327 } 1328 1329 if (val & BCE_CTX_CTX_CTRL_READ_REQ) 1330 BCE_PRINTF("%s(%d); Unable to read CTX memory: " 1331 "cid_addr = 0x%08X, offset = 0x%08X!\n", 1332 __FILE__, __LINE__, cid_addr, ctx_offset); 1333 1334 val = REG_RD(sc, BCE_CTX_CTX_DATA); 1335 } else { 1336 REG_WR(sc, BCE_CTX_DATA_ADR, offset); 1337 val = REG_RD(sc, BCE_CTX_DATA); 1338 } 1339 1340 DBPRINT(sc, BCE_EXTREME_CTX, "%s(); cid_addr = 0x%08X, offset = 0x%08X, " 1341 "val = 0x%08X\n", __FUNCTION__, cid_addr, ctx_offset, val); 1342 1343 return(val); 1344 } 1345 #endif 1346 1347 1348 /****************************************************************************/ 1349 /* Context memory write. */ 1350 /* */ 1351 /* The NetXtreme II controller uses context memory to track connection */ 1352 /* information for L2 and higher network protocols. */ 1353 /* */ 1354 /* Returns: */ 1355 /* Nothing. */ 1356 /****************************************************************************/ 1357 static void 1358 bce_ctx_wr(struct bce_softc *sc, u32 cid_addr, u32 ctx_offset, u32 ctx_val) 1359 { 1360 u32 idx, offset = ctx_offset + cid_addr; 1361 u32 val, retry_cnt = 5; 1362 1363 DBPRINT(sc, BCE_EXTREME_CTX, "%s(); cid_addr = 0x%08X, offset = 0x%08X, " 1364 "val = 0x%08X\n", __FUNCTION__, cid_addr, ctx_offset, ctx_val); 1365 1366 DBRUNIF((cid_addr > MAX_CID_ADDR || ctx_offset & 0x3 || cid_addr & CTX_MASK), 1367 BCE_PRINTF("%s(): Invalid CID address: 0x%08X.\n", 1368 __FUNCTION__, cid_addr)); 1369 1370 if ((BCE_CHIP_NUM(sc) == BCE_CHIP_NUM_5709) || 1371 (BCE_CHIP_NUM(sc) == BCE_CHIP_NUM_5716)) { 1372 1373 REG_WR(sc, BCE_CTX_CTX_DATA, ctx_val); 1374 REG_WR(sc, BCE_CTX_CTX_CTRL, (offset | BCE_CTX_CTX_CTRL_WRITE_REQ)); 1375 1376 for (idx = 0; idx < retry_cnt; idx++) { 1377 val = REG_RD(sc, BCE_CTX_CTX_CTRL); 1378 if ((val & BCE_CTX_CTX_CTRL_WRITE_REQ) == 0) 1379 break; 1380 DELAY(5); 1381 } 1382 1383 if (val & BCE_CTX_CTX_CTRL_WRITE_REQ) 1384 BCE_PRINTF("%s(%d); Unable to write CTX memory: " 1385 "cid_addr = 0x%08X, offset = 0x%08X!\n", 1386 __FILE__, __LINE__, cid_addr, ctx_offset); 1387 1388 } else { 1389 REG_WR(sc, BCE_CTX_DATA_ADR, offset); 1390 REG_WR(sc, BCE_CTX_DATA, ctx_val); 1391 } 1392 } 1393 1394 1395 /****************************************************************************/ 1396 /* PHY register read. */ 1397 /* */ 1398 /* Implements register reads on the MII bus. */ 1399 /* */ 1400 /* Returns: */ 1401 /* The value of the register. */ 1402 /****************************************************************************/ 1403 static int 1404 bce_miibus_read_reg(device_t dev, int phy, int reg) 1405 { 1406 struct bce_softc *sc; 1407 u32 val; 1408 int i; 1409 1410 sc = device_get_softc(dev); 1411 1412 /* Make sure we are accessing the correct PHY address. */ 1413 if (phy != sc->bce_phy_addr) { 1414 DBPRINT(sc, BCE_INSANE_PHY, "Invalid PHY address %d for PHY read!\n", phy); 1415 return(0); 1416 } 1417 1418 if (sc->bce_phy_flags & BCE_PHY_INT_MODE_AUTO_POLLING_FLAG) { 1419 val = REG_RD(sc, BCE_EMAC_MDIO_MODE); 1420 val &= ~BCE_EMAC_MDIO_MODE_AUTO_POLL; 1421 1422 REG_WR(sc, BCE_EMAC_MDIO_MODE, val); 1423 REG_RD(sc, BCE_EMAC_MDIO_MODE); 1424 1425 DELAY(40); 1426 } 1427 1428 1429 val = BCE_MIPHY(phy) | BCE_MIREG(reg) | 1430 BCE_EMAC_MDIO_COMM_COMMAND_READ | BCE_EMAC_MDIO_COMM_DISEXT | 1431 BCE_EMAC_MDIO_COMM_START_BUSY; 1432 REG_WR(sc, BCE_EMAC_MDIO_COMM, val); 1433 1434 for (i = 0; i < BCE_PHY_TIMEOUT; i++) { 1435 DELAY(10); 1436 1437 val = REG_RD(sc, BCE_EMAC_MDIO_COMM); 1438 if (!(val & BCE_EMAC_MDIO_COMM_START_BUSY)) { 1439 DELAY(5); 1440 1441 val = REG_RD(sc, BCE_EMAC_MDIO_COMM); 1442 val &= BCE_EMAC_MDIO_COMM_DATA; 1443 1444 break; 1445 } 1446 } 1447 1448 if (val & BCE_EMAC_MDIO_COMM_START_BUSY) { 1449 BCE_PRINTF("%s(%d): Error: PHY read timeout! phy = %d, reg = 0x%04X\n", 1450 __FILE__, __LINE__, phy, reg); 1451 val = 0x0; 1452 } else { 1453 val = REG_RD(sc, BCE_EMAC_MDIO_COMM); 1454 } 1455 1456 1457 if (sc->bce_phy_flags & BCE_PHY_INT_MODE_AUTO_POLLING_FLAG) { 1458 val = REG_RD(sc, BCE_EMAC_MDIO_MODE); 1459 val |= BCE_EMAC_MDIO_MODE_AUTO_POLL; 1460 1461 REG_WR(sc, BCE_EMAC_MDIO_MODE, val); 1462 REG_RD(sc, BCE_EMAC_MDIO_MODE); 1463 1464 DELAY(40); 1465 } 1466 1467 DB_PRINT_PHY_REG(reg, val); 1468 return (val & 0xffff); 1469 1470 } 1471 1472 1473 /****************************************************************************/ 1474 /* PHY register write. */ 1475 /* */ 1476 /* Implements register writes on the MII bus. */ 1477 /* */ 1478 /* Returns: */ 1479 /* The value of the register. */ 1480 /****************************************************************************/ 1481 static int 1482 bce_miibus_write_reg(device_t dev, int phy, int reg, int val) 1483 { 1484 struct bce_softc *sc; 1485 u32 val1; 1486 int i; 1487 1488 sc = device_get_softc(dev); 1489 1490 /* Make sure we are accessing the correct PHY address. */ 1491 if (phy != sc->bce_phy_addr) { 1492 DBPRINT(sc, BCE_INSANE_PHY, "Invalid PHY address %d for PHY write!\n", phy); 1493 return(0); 1494 } 1495 1496 DB_PRINT_PHY_REG(reg, val); 1497 1498 if (sc->bce_phy_flags & BCE_PHY_INT_MODE_AUTO_POLLING_FLAG) { 1499 val1 = REG_RD(sc, BCE_EMAC_MDIO_MODE); 1500 val1 &= ~BCE_EMAC_MDIO_MODE_AUTO_POLL; 1501 1502 REG_WR(sc, BCE_EMAC_MDIO_MODE, val1); 1503 REG_RD(sc, BCE_EMAC_MDIO_MODE); 1504 1505 DELAY(40); 1506 } 1507 1508 val1 = BCE_MIPHY(phy) | BCE_MIREG(reg) | val | 1509 BCE_EMAC_MDIO_COMM_COMMAND_WRITE | 1510 BCE_EMAC_MDIO_COMM_START_BUSY | BCE_EMAC_MDIO_COMM_DISEXT; 1511 REG_WR(sc, BCE_EMAC_MDIO_COMM, val1); 1512 1513 for (i = 0; i < BCE_PHY_TIMEOUT; i++) { 1514 DELAY(10); 1515 1516 val1 = REG_RD(sc, BCE_EMAC_MDIO_COMM); 1517 if (!(val1 & BCE_EMAC_MDIO_COMM_START_BUSY)) { 1518 DELAY(5); 1519 break; 1520 } 1521 } 1522 1523 if (val1 & BCE_EMAC_MDIO_COMM_START_BUSY) 1524 BCE_PRINTF("%s(%d): PHY write timeout!\n", 1525 __FILE__, __LINE__); 1526 1527 if (sc->bce_phy_flags & BCE_PHY_INT_MODE_AUTO_POLLING_FLAG) { 1528 val1 = REG_RD(sc, BCE_EMAC_MDIO_MODE); 1529 val1 |= BCE_EMAC_MDIO_MODE_AUTO_POLL; 1530 1531 REG_WR(sc, BCE_EMAC_MDIO_MODE, val1); 1532 REG_RD(sc, BCE_EMAC_MDIO_MODE); 1533 1534 DELAY(40); 1535 } 1536 1537 return 0; 1538 } 1539 1540 1541 /****************************************************************************/ 1542 /* MII bus status change. */ 1543 /* */ 1544 /* Called by the MII bus driver when the PHY establishes link to set the */ 1545 /* MAC interface registers. */ 1546 /* */ 1547 /* Returns: */ 1548 /* Nothing. */ 1549 /****************************************************************************/ 1550 static void 1551 bce_miibus_statchg(device_t dev) 1552 { 1553 struct bce_softc *sc; 1554 struct mii_data *mii; 1555 int val; 1556 1557 sc = device_get_softc(dev); 1558 1559 DBENTER(BCE_VERBOSE_PHY); 1560 1561 mii = device_get_softc(sc->bce_miibus); 1562 1563 val = REG_RD(sc, BCE_EMAC_MODE); 1564 val &= ~(BCE_EMAC_MODE_PORT | BCE_EMAC_MODE_HALF_DUPLEX | 1565 BCE_EMAC_MODE_MAC_LOOP | BCE_EMAC_MODE_FORCE_LINK | 1566 BCE_EMAC_MODE_25G); 1567 1568 /* Set MII or GMII interface based on the speed negotiated by the PHY. */ 1569 switch (IFM_SUBTYPE(mii->mii_media_active)) { 1570 case IFM_10_T: 1571 if (BCE_CHIP_NUM(sc) != BCE_CHIP_NUM_5706) { 1572 DBPRINT(sc, BCE_INFO, "Enabling 10Mb interface.\n"); 1573 val |= BCE_EMAC_MODE_PORT_MII_10; 1574 break; 1575 } 1576 /* fall-through */ 1577 case IFM_100_TX: 1578 DBPRINT(sc, BCE_INFO, "Enabling MII interface.\n"); 1579 val |= BCE_EMAC_MODE_PORT_MII; 1580 break; 1581 case IFM_2500_SX: 1582 DBPRINT(sc, BCE_INFO, "Enabling 2.5G MAC mode.\n"); 1583 val |= BCE_EMAC_MODE_25G; 1584 /* fall-through */ 1585 case IFM_1000_T: 1586 case IFM_1000_SX: 1587 DBPRINT(sc, BCE_INFO, "Enabling GMII interface.\n"); 1588 val |= BCE_EMAC_MODE_PORT_GMII; 1589 break; 1590 default: 1591 DBPRINT(sc, BCE_INFO, "Unknown speed, enabling default GMII " 1592 "interface.\n"); 1593 val |= BCE_EMAC_MODE_PORT_GMII; 1594 } 1595 1596 /* Set half or full duplex based on the duplicity negotiated by the PHY. */ 1597 if ((mii->mii_media_active & IFM_GMASK) == IFM_HDX) { 1598 DBPRINT(sc, BCE_INFO, "Setting Half-Duplex interface.\n"); 1599 val |= BCE_EMAC_MODE_HALF_DUPLEX; 1600 } else 1601 DBPRINT(sc, BCE_INFO, "Setting Full-Duplex interface.\n"); 1602 1603 REG_WR(sc, BCE_EMAC_MODE, val); 1604 1605 #if 0 1606 /* ToDo: Enable flow control support in brgphy and bge. */ 1607 /* FLAG0 is set if RX is enabled and FLAG1 if TX is enabled */ 1608 if (mii->mii_media_active & IFM_FLAG0) 1609 BCE_SETBIT(sc, BCE_EMAC_RX_MODE, BCE_EMAC_RX_MODE_FLOW_EN); 1610 if (mii->mii_media_active & IFM_FLAG1) 1611 BCE_SETBIT(sc, BCE_EMAC_RX_MODE, BCE_EMAC_TX_MODE_FLOW_EN); 1612 #endif 1613 1614 DBEXIT(BCE_VERBOSE_PHY); 1615 } 1616 1617 1618 /****************************************************************************/ 1619 /* Acquire NVRAM lock. */ 1620 /* */ 1621 /* Before the NVRAM can be accessed the caller must acquire an NVRAM lock. */ 1622 /* Locks 0 and 2 are reserved, lock 1 is used by firmware and lock 2 is */ 1623 /* for use by the driver. */ 1624 /* */ 1625 /* Returns: */ 1626 /* 0 on success, positive value on failure. */ 1627 /****************************************************************************/ 1628 static int 1629 bce_acquire_nvram_lock(struct bce_softc *sc) 1630 { 1631 u32 val; 1632 int j, rc = 0; 1633 1634 DBENTER(BCE_VERBOSE_NVRAM); 1635 1636 /* Request access to the flash interface. */ 1637 REG_WR(sc, BCE_NVM_SW_ARB, BCE_NVM_SW_ARB_ARB_REQ_SET2); 1638 for (j = 0; j < NVRAM_TIMEOUT_COUNT; j++) { 1639 val = REG_RD(sc, BCE_NVM_SW_ARB); 1640 if (val & BCE_NVM_SW_ARB_ARB_ARB2) 1641 break; 1642 1643 DELAY(5); 1644 } 1645 1646 if (j >= NVRAM_TIMEOUT_COUNT) { 1647 DBPRINT(sc, BCE_WARN, "Timeout acquiring NVRAM lock!\n"); 1648 rc = EBUSY; 1649 } 1650 1651 DBEXIT(BCE_VERBOSE_NVRAM); 1652 return (rc); 1653 } 1654 1655 1656 /****************************************************************************/ 1657 /* Release NVRAM lock. */ 1658 /* */ 1659 /* When the caller is finished accessing NVRAM the lock must be released. */ 1660 /* Locks 0 and 2 are reserved, lock 1 is used by firmware and lock 2 is */ 1661 /* for use by the driver. */ 1662 /* */ 1663 /* Returns: */ 1664 /* 0 on success, positive value on failure. */ 1665 /****************************************************************************/ 1666 static int 1667 bce_release_nvram_lock(struct bce_softc *sc) 1668 { 1669 u32 val; 1670 int j, rc = 0; 1671 1672 DBENTER(BCE_VERBOSE_NVRAM); 1673 1674 /* 1675 * Relinquish nvram interface. 1676 */ 1677 REG_WR(sc, BCE_NVM_SW_ARB, BCE_NVM_SW_ARB_ARB_REQ_CLR2); 1678 1679 for (j = 0; j < NVRAM_TIMEOUT_COUNT; j++) { 1680 val = REG_RD(sc, BCE_NVM_SW_ARB); 1681 if (!(val & BCE_NVM_SW_ARB_ARB_ARB2)) 1682 break; 1683 1684 DELAY(5); 1685 } 1686 1687 if (j >= NVRAM_TIMEOUT_COUNT) { 1688 DBPRINT(sc, BCE_WARN, "Timeout releasing NVRAM lock!\n"); 1689 rc = EBUSY; 1690 } 1691 1692 DBEXIT(BCE_VERBOSE_NVRAM); 1693 return (rc); 1694 } 1695 1696 1697 #ifdef BCE_NVRAM_WRITE_SUPPORT 1698 /****************************************************************************/ 1699 /* Enable NVRAM write access. */ 1700 /* */ 1701 /* Before writing to NVRAM the caller must enable NVRAM writes. */ 1702 /* */ 1703 /* Returns: */ 1704 /* 0 on success, positive value on failure. */ 1705 /****************************************************************************/ 1706 static int 1707 bce_enable_nvram_write(struct bce_softc *sc) 1708 { 1709 u32 val; 1710 int rc = 0; 1711 1712 DBENTER(BCE_VERBOSE_NVRAM); 1713 1714 val = REG_RD(sc, BCE_MISC_CFG); 1715 REG_WR(sc, BCE_MISC_CFG, val | BCE_MISC_CFG_NVM_WR_EN_PCI); 1716 1717 if (!(sc->bce_flash_info->flags & BCE_NV_BUFFERED)) { 1718 int j; 1719 1720 REG_WR(sc, BCE_NVM_COMMAND, BCE_NVM_COMMAND_DONE); 1721 REG_WR(sc, BCE_NVM_COMMAND, BCE_NVM_COMMAND_WREN | BCE_NVM_COMMAND_DOIT); 1722 1723 for (j = 0; j < NVRAM_TIMEOUT_COUNT; j++) { 1724 DELAY(5); 1725 1726 val = REG_RD(sc, BCE_NVM_COMMAND); 1727 if (val & BCE_NVM_COMMAND_DONE) 1728 break; 1729 } 1730 1731 if (j >= NVRAM_TIMEOUT_COUNT) { 1732 DBPRINT(sc, BCE_WARN, "Timeout writing NVRAM!\n"); 1733 rc = EBUSY; 1734 } 1735 } 1736 1737 DBENTER(BCE_VERBOSE_NVRAM); 1738 return (rc); 1739 } 1740 1741 1742 /****************************************************************************/ 1743 /* Disable NVRAM write access. */ 1744 /* */ 1745 /* When the caller is finished writing to NVRAM write access must be */ 1746 /* disabled. */ 1747 /* */ 1748 /* Returns: */ 1749 /* Nothing. */ 1750 /****************************************************************************/ 1751 static void 1752 bce_disable_nvram_write(struct bce_softc *sc) 1753 { 1754 u32 val; 1755 1756 DBENTER(BCE_VERBOSE_NVRAM); 1757 1758 val = REG_RD(sc, BCE_MISC_CFG); 1759 REG_WR(sc, BCE_MISC_CFG, val & ~BCE_MISC_CFG_NVM_WR_EN); 1760 1761 DBEXIT(BCE_VERBOSE_NVRAM); 1762 1763 } 1764 #endif 1765 1766 1767 /****************************************************************************/ 1768 /* Enable NVRAM access. */ 1769 /* */ 1770 /* Before accessing NVRAM for read or write operations the caller must */ 1771 /* enabled NVRAM access. */ 1772 /* */ 1773 /* Returns: */ 1774 /* Nothing. */ 1775 /****************************************************************************/ 1776 static void 1777 bce_enable_nvram_access(struct bce_softc *sc) 1778 { 1779 u32 val; 1780 1781 DBENTER(BCE_VERBOSE_NVRAM); 1782 1783 val = REG_RD(sc, BCE_NVM_ACCESS_ENABLE); 1784 /* Enable both bits, even on read. */ 1785 REG_WR(sc, BCE_NVM_ACCESS_ENABLE, 1786 val | BCE_NVM_ACCESS_ENABLE_EN | BCE_NVM_ACCESS_ENABLE_WR_EN); 1787 1788 DBEXIT(BCE_VERBOSE_NVRAM); 1789 } 1790 1791 1792 /****************************************************************************/ 1793 /* Disable NVRAM access. */ 1794 /* */ 1795 /* When the caller is finished accessing NVRAM access must be disabled. */ 1796 /* */ 1797 /* Returns: */ 1798 /* Nothing. */ 1799 /****************************************************************************/ 1800 static void 1801 bce_disable_nvram_access(struct bce_softc *sc) 1802 { 1803 u32 val; 1804 1805 DBENTER(BCE_VERBOSE_NVRAM); 1806 1807 val = REG_RD(sc, BCE_NVM_ACCESS_ENABLE); 1808 1809 /* Disable both bits, even after read. */ 1810 REG_WR(sc, BCE_NVM_ACCESS_ENABLE, 1811 val & ~(BCE_NVM_ACCESS_ENABLE_EN | 1812 BCE_NVM_ACCESS_ENABLE_WR_EN)); 1813 1814 DBEXIT(BCE_VERBOSE_NVRAM); 1815 } 1816 1817 1818 #ifdef BCE_NVRAM_WRITE_SUPPORT 1819 /****************************************************************************/ 1820 /* Erase NVRAM page before writing. */ 1821 /* */ 1822 /* Non-buffered flash parts require that a page be erased before it is */ 1823 /* written. */ 1824 /* */ 1825 /* Returns: */ 1826 /* 0 on success, positive value on failure. */ 1827 /****************************************************************************/ 1828 static int 1829 bce_nvram_erase_page(struct bce_softc *sc, u32 offset) 1830 { 1831 u32 cmd; 1832 int j, rc = 0; 1833 1834 DBENTER(BCE_VERBOSE_NVRAM); 1835 1836 /* Buffered flash doesn't require an erase. */ 1837 if (sc->bce_flash_info->flags & BCE_NV_BUFFERED) 1838 goto bce_nvram_erase_page_exit; 1839 1840 /* Build an erase command. */ 1841 cmd = BCE_NVM_COMMAND_ERASE | BCE_NVM_COMMAND_WR | 1842 BCE_NVM_COMMAND_DOIT; 1843 1844 /* 1845 * Clear the DONE bit separately, set the NVRAM adress to erase, 1846 * and issue the erase command. 1847 */ 1848 REG_WR(sc, BCE_NVM_COMMAND, BCE_NVM_COMMAND_DONE); 1849 REG_WR(sc, BCE_NVM_ADDR, offset & BCE_NVM_ADDR_NVM_ADDR_VALUE); 1850 REG_WR(sc, BCE_NVM_COMMAND, cmd); 1851 1852 /* Wait for completion. */ 1853 for (j = 0; j < NVRAM_TIMEOUT_COUNT; j++) { 1854 u32 val; 1855 1856 DELAY(5); 1857 1858 val = REG_RD(sc, BCE_NVM_COMMAND); 1859 if (val & BCE_NVM_COMMAND_DONE) 1860 break; 1861 } 1862 1863 if (j >= NVRAM_TIMEOUT_COUNT) { 1864 DBPRINT(sc, BCE_WARN, "Timeout erasing NVRAM.\n"); 1865 rc = EBUSY; 1866 } 1867 1868 bce_nvram_erase_page_exit: 1869 DBEXIT(BCE_VERBOSE_NVRAM); 1870 return (rc); 1871 } 1872 #endif /* BCE_NVRAM_WRITE_SUPPORT */ 1873 1874 1875 /****************************************************************************/ 1876 /* Read a dword (32 bits) from NVRAM. */ 1877 /* */ 1878 /* Read a 32 bit word from NVRAM. The caller is assumed to have already */ 1879 /* obtained the NVRAM lock and enabled the controller for NVRAM access. */ 1880 /* */ 1881 /* Returns: */ 1882 /* 0 on success and the 32 bit value read, positive value on failure. */ 1883 /****************************************************************************/ 1884 static int 1885 bce_nvram_read_dword(struct bce_softc *sc, u32 offset, u8 *ret_val, 1886 u32 cmd_flags) 1887 { 1888 u32 cmd; 1889 int i, rc = 0; 1890 1891 DBENTER(BCE_EXTREME_NVRAM); 1892 1893 /* Build the command word. */ 1894 cmd = BCE_NVM_COMMAND_DOIT | cmd_flags; 1895 1896 /* Calculate the offset for buffered flash if translation is used. */ 1897 if (sc->bce_flash_info->flags & BCE_NV_TRANSLATE) { 1898 offset = ((offset / sc->bce_flash_info->page_size) << 1899 sc->bce_flash_info->page_bits) + 1900 (offset % sc->bce_flash_info->page_size); 1901 } 1902 1903 /* 1904 * Clear the DONE bit separately, set the address to read, 1905 * and issue the read. 1906 */ 1907 REG_WR(sc, BCE_NVM_COMMAND, BCE_NVM_COMMAND_DONE); 1908 REG_WR(sc, BCE_NVM_ADDR, offset & BCE_NVM_ADDR_NVM_ADDR_VALUE); 1909 REG_WR(sc, BCE_NVM_COMMAND, cmd); 1910 1911 /* Wait for completion. */ 1912 for (i = 0; i < NVRAM_TIMEOUT_COUNT; i++) { 1913 u32 val; 1914 1915 DELAY(5); 1916 1917 val = REG_RD(sc, BCE_NVM_COMMAND); 1918 if (val & BCE_NVM_COMMAND_DONE) { 1919 val = REG_RD(sc, BCE_NVM_READ); 1920 1921 val = bce_be32toh(val); 1922 memcpy(ret_val, &val, 4); 1923 break; 1924 } 1925 } 1926 1927 /* Check for errors. */ 1928 if (i >= NVRAM_TIMEOUT_COUNT) { 1929 BCE_PRINTF("%s(%d): Timeout error reading NVRAM at offset 0x%08X!\n", 1930 __FILE__, __LINE__, offset); 1931 rc = EBUSY; 1932 } 1933 1934 DBEXIT(BCE_EXTREME_NVRAM); 1935 return(rc); 1936 } 1937 1938 1939 #ifdef BCE_NVRAM_WRITE_SUPPORT 1940 /****************************************************************************/ 1941 /* Write a dword (32 bits) to NVRAM. */ 1942 /* */ 1943 /* Write a 32 bit word to NVRAM. The caller is assumed to have already */ 1944 /* obtained the NVRAM lock, enabled the controller for NVRAM access, and */ 1945 /* enabled NVRAM write access. */ 1946 /* */ 1947 /* Returns: */ 1948 /* 0 on success, positive value on failure. */ 1949 /****************************************************************************/ 1950 static int 1951 bce_nvram_write_dword(struct bce_softc *sc, u32 offset, u8 *val, 1952 u32 cmd_flags) 1953 { 1954 u32 cmd, val32; 1955 int j, rc = 0; 1956 1957 DBENTER(BCE_VERBOSE_NVRAM); 1958 1959 /* Build the command word. */ 1960 cmd = BCE_NVM_COMMAND_DOIT | BCE_NVM_COMMAND_WR | cmd_flags; 1961 1962 /* Calculate the offset for buffered flash if translation is used. */ 1963 if (sc->bce_flash_info->flags & BCE_NV_TRANSLATE) { 1964 offset = ((offset / sc->bce_flash_info->page_size) << 1965 sc->bce_flash_info->page_bits) + 1966 (offset % sc->bce_flash_info->page_size); 1967 } 1968 1969 /* 1970 * Clear the DONE bit separately, convert NVRAM data to big-endian, 1971 * set the NVRAM address to write, and issue the write command 1972 */ 1973 REG_WR(sc, BCE_NVM_COMMAND, BCE_NVM_COMMAND_DONE); 1974 memcpy(&val32, val, 4); 1975 val32 = htobe32(val32); 1976 REG_WR(sc, BCE_NVM_WRITE, val32); 1977 REG_WR(sc, BCE_NVM_ADDR, offset & BCE_NVM_ADDR_NVM_ADDR_VALUE); 1978 REG_WR(sc, BCE_NVM_COMMAND, cmd); 1979 1980 /* Wait for completion. */ 1981 for (j = 0; j < NVRAM_TIMEOUT_COUNT; j++) { 1982 DELAY(5); 1983 1984 if (REG_RD(sc, BCE_NVM_COMMAND) & BCE_NVM_COMMAND_DONE) 1985 break; 1986 } 1987 if (j >= NVRAM_TIMEOUT_COUNT) { 1988 BCE_PRINTF("%s(%d): Timeout error writing NVRAM at offset 0x%08X\n", 1989 __FILE__, __LINE__, offset); 1990 rc = EBUSY; 1991 } 1992 1993 DBEXIT(BCE_VERBOSE_NVRAM); 1994 return (rc); 1995 } 1996 #endif /* BCE_NVRAM_WRITE_SUPPORT */ 1997 1998 1999 /****************************************************************************/ 2000 /* Initialize NVRAM access. */ 2001 /* */ 2002 /* Identify the NVRAM device in use and prepare the NVRAM interface to */ 2003 /* access that device. */ 2004 /* */ 2005 /* Returns: */ 2006 /* 0 on success, positive value on failure. */ 2007 /****************************************************************************/ 2008 static int 2009 bce_init_nvram(struct bce_softc *sc) 2010 { 2011 u32 val; 2012 int j, entry_count, rc = 0; 2013 struct flash_spec *flash; 2014 2015 DBENTER(BCE_VERBOSE_NVRAM); 2016 2017 if ((BCE_CHIP_NUM(sc) == BCE_CHIP_NUM_5709) || 2018 (BCE_CHIP_NUM(sc) == BCE_CHIP_NUM_5716)) { 2019 sc->bce_flash_info = &flash_5709; 2020 goto bce_init_nvram_get_flash_size; 2021 } 2022 2023 /* Determine the selected interface. */ 2024 val = REG_RD(sc, BCE_NVM_CFG1); 2025 2026 entry_count = sizeof(flash_table) / sizeof(struct flash_spec); 2027 2028 /* 2029 * Flash reconfiguration is required to support additional 2030 * NVRAM devices not directly supported in hardware. 2031 * Check if the flash interface was reconfigured 2032 * by the bootcode. 2033 */ 2034 2035 if (val & 0x40000000) { 2036 /* Flash interface reconfigured by bootcode. */ 2037 2038 DBPRINT(sc,BCE_INFO_LOAD, 2039 "bce_init_nvram(): Flash WAS reconfigured.\n"); 2040 2041 for (j = 0, flash = &flash_table[0]; j < entry_count; 2042 j++, flash++) { 2043 if ((val & FLASH_BACKUP_STRAP_MASK) == 2044 (flash->config1 & FLASH_BACKUP_STRAP_MASK)) { 2045 sc->bce_flash_info = flash; 2046 break; 2047 } 2048 } 2049 } else { 2050 /* Flash interface not yet reconfigured. */ 2051 u32 mask; 2052 2053 DBPRINT(sc, BCE_INFO_LOAD, "%s(): Flash was NOT reconfigured.\n", 2054 __FUNCTION__); 2055 2056 if (val & (1 << 23)) 2057 mask = FLASH_BACKUP_STRAP_MASK; 2058 else 2059 mask = FLASH_STRAP_MASK; 2060 2061 /* Look for the matching NVRAM device configuration data. */ 2062 for (j = 0, flash = &flash_table[0]; j < entry_count; j++, flash++) { 2063 2064 /* Check if the device matches any of the known devices. */ 2065 if ((val & mask) == (flash->strapping & mask)) { 2066 /* Found a device match. */ 2067 sc->bce_flash_info = flash; 2068 2069 /* Request access to the flash interface. */ 2070 if ((rc = bce_acquire_nvram_lock(sc)) != 0) 2071 return rc; 2072 2073 /* Reconfigure the flash interface. */ 2074 bce_enable_nvram_access(sc); 2075 REG_WR(sc, BCE_NVM_CFG1, flash->config1); 2076 REG_WR(sc, BCE_NVM_CFG2, flash->config2); 2077 REG_WR(sc, BCE_NVM_CFG3, flash->config3); 2078 REG_WR(sc, BCE_NVM_WRITE1, flash->write1); 2079 bce_disable_nvram_access(sc); 2080 bce_release_nvram_lock(sc); 2081 2082 break; 2083 } 2084 } 2085 } 2086 2087 /* Check if a matching device was found. */ 2088 if (j == entry_count) { 2089 sc->bce_flash_info = NULL; 2090 BCE_PRINTF("%s(%d): Unknown Flash NVRAM found!\n", 2091 __FILE__, __LINE__); 2092 rc = ENODEV; 2093 } 2094 2095 bce_init_nvram_get_flash_size: 2096 /* Write the flash config data to the shared memory interface. */ 2097 val = REG_RD_IND(sc, sc->bce_shmem_base + BCE_SHARED_HW_CFG_CONFIG2); 2098 val &= BCE_SHARED_HW_CFG2_NVM_SIZE_MASK; 2099 if (val) 2100 sc->bce_flash_size = val; 2101 else 2102 sc->bce_flash_size = sc->bce_flash_info->total_size; 2103 2104 DBPRINT(sc, BCE_INFO_LOAD, "%s(): Found %s, size = 0x%08X\n", 2105 __FUNCTION__, sc->bce_flash_info->name, 2106 sc->bce_flash_info->total_size); 2107 2108 DBEXIT(BCE_VERBOSE_NVRAM); 2109 return rc; 2110 } 2111 2112 2113 /****************************************************************************/ 2114 /* Read an arbitrary range of data from NVRAM. */ 2115 /* */ 2116 /* Prepares the NVRAM interface for access and reads the requested data */ 2117 /* into the supplied buffer. */ 2118 /* */ 2119 /* Returns: */ 2120 /* 0 on success and the data read, positive value on failure. */ 2121 /****************************************************************************/ 2122 static int 2123 bce_nvram_read(struct bce_softc *sc, u32 offset, u8 *ret_buf, 2124 int buf_size) 2125 { 2126 int rc = 0; 2127 u32 cmd_flags, offset32, len32, extra; 2128 2129 DBENTER(BCE_VERBOSE_NVRAM); 2130 2131 if (buf_size == 0) 2132 goto bce_nvram_read_exit; 2133 2134 /* Request access to the flash interface. */ 2135 if ((rc = bce_acquire_nvram_lock(sc)) != 0) 2136 goto bce_nvram_read_exit; 2137 2138 /* Enable access to flash interface */ 2139 bce_enable_nvram_access(sc); 2140 2141 len32 = buf_size; 2142 offset32 = offset; 2143 extra = 0; 2144 2145 cmd_flags = 0; 2146 2147 if (offset32 & 3) { 2148 u8 buf[4]; 2149 u32 pre_len; 2150 2151 offset32 &= ~3; 2152 pre_len = 4 - (offset & 3); 2153 2154 if (pre_len >= len32) { 2155 pre_len = len32; 2156 cmd_flags = BCE_NVM_COMMAND_FIRST | BCE_NVM_COMMAND_LAST; 2157 } 2158 else { 2159 cmd_flags = BCE_NVM_COMMAND_FIRST; 2160 } 2161 2162 rc = bce_nvram_read_dword(sc, offset32, buf, cmd_flags); 2163 2164 if (rc) 2165 return rc; 2166 2167 memcpy(ret_buf, buf + (offset & 3), pre_len); 2168 2169 offset32 += 4; 2170 ret_buf += pre_len; 2171 len32 -= pre_len; 2172 } 2173 2174 if (len32 & 3) { 2175 extra = 4 - (len32 & 3); 2176 len32 = (len32 + 4) & ~3; 2177 } 2178 2179 if (len32 == 4) { 2180 u8 buf[4]; 2181 2182 if (cmd_flags) 2183 cmd_flags = BCE_NVM_COMMAND_LAST; 2184 else 2185 cmd_flags = BCE_NVM_COMMAND_FIRST | 2186 BCE_NVM_COMMAND_LAST; 2187 2188 rc = bce_nvram_read_dword(sc, offset32, buf, cmd_flags); 2189 2190 memcpy(ret_buf, buf, 4 - extra); 2191 } 2192 else if (len32 > 0) { 2193 u8 buf[4]; 2194 2195 /* Read the first word. */ 2196 if (cmd_flags) 2197 cmd_flags = 0; 2198 else 2199 cmd_flags = BCE_NVM_COMMAND_FIRST; 2200 2201 rc = bce_nvram_read_dword(sc, offset32, ret_buf, cmd_flags); 2202 2203 /* Advance to the next dword. */ 2204 offset32 += 4; 2205 ret_buf += 4; 2206 len32 -= 4; 2207 2208 while (len32 > 4 && rc == 0) { 2209 rc = bce_nvram_read_dword(sc, offset32, ret_buf, 0); 2210 2211 /* Advance to the next dword. */ 2212 offset32 += 4; 2213 ret_buf += 4; 2214 len32 -= 4; 2215 } 2216 2217 if (rc) 2218 goto bce_nvram_read_locked_exit; 2219 2220 cmd_flags = BCE_NVM_COMMAND_LAST; 2221 rc = bce_nvram_read_dword(sc, offset32, buf, cmd_flags); 2222 2223 memcpy(ret_buf, buf, 4 - extra); 2224 } 2225 2226 bce_nvram_read_locked_exit: 2227 /* Disable access to flash interface and release the lock. */ 2228 bce_disable_nvram_access(sc); 2229 bce_release_nvram_lock(sc); 2230 2231 bce_nvram_read_exit: 2232 DBEXIT(BCE_VERBOSE_NVRAM); 2233 return rc; 2234 } 2235 2236 2237 #ifdef BCE_NVRAM_WRITE_SUPPORT 2238 /****************************************************************************/ 2239 /* Write an arbitrary range of data from NVRAM. */ 2240 /* */ 2241 /* Prepares the NVRAM interface for write access and writes the requested */ 2242 /* data from the supplied buffer. The caller is responsible for */ 2243 /* calculating any appropriate CRCs. */ 2244 /* */ 2245 /* Returns: */ 2246 /* 0 on success, positive value on failure. */ 2247 /****************************************************************************/ 2248 static int 2249 bce_nvram_write(struct bce_softc *sc, u32 offset, u8 *data_buf, 2250 int buf_size) 2251 { 2252 u32 written, offset32, len32; 2253 u8 *buf, start[4], end[4]; 2254 int rc = 0; 2255 int align_start, align_end; 2256 2257 DBENTER(BCE_VERBOSE_NVRAM); 2258 2259 buf = data_buf; 2260 offset32 = offset; 2261 len32 = buf_size; 2262 align_start = align_end = 0; 2263 2264 if ((align_start = (offset32 & 3))) { 2265 offset32 &= ~3; 2266 len32 += align_start; 2267 if ((rc = bce_nvram_read(sc, offset32, start, 4))) 2268 goto bce_nvram_write_exit; 2269 } 2270 2271 if (len32 & 3) { 2272 if ((len32 > 4) || !align_start) { 2273 align_end = 4 - (len32 & 3); 2274 len32 += align_end; 2275 if ((rc = bce_nvram_read(sc, offset32 + len32 - 4, 2276 end, 4))) { 2277 goto bce_nvram_write_exit; 2278 } 2279 } 2280 } 2281 2282 if (align_start || align_end) { 2283 buf = malloc(len32, M_DEVBUF, M_NOWAIT); 2284 if (buf == 0) { 2285 rc = ENOMEM; 2286 goto bce_nvram_write_exit; 2287 } 2288 2289 if (align_start) { 2290 memcpy(buf, start, 4); 2291 } 2292 2293 if (align_end) { 2294 memcpy(buf + len32 - 4, end, 4); 2295 } 2296 memcpy(buf + align_start, data_buf, buf_size); 2297 } 2298 2299 written = 0; 2300 while ((written < len32) && (rc == 0)) { 2301 u32 page_start, page_end, data_start, data_end; 2302 u32 addr, cmd_flags; 2303 int i; 2304 u8 flash_buffer[264]; 2305 2306 /* Find the page_start addr */ 2307 page_start = offset32 + written; 2308 page_start -= (page_start % sc->bce_flash_info->page_size); 2309 /* Find the page_end addr */ 2310 page_end = page_start + sc->bce_flash_info->page_size; 2311 /* Find the data_start addr */ 2312 data_start = (written == 0) ? offset32 : page_start; 2313 /* Find the data_end addr */ 2314 data_end = (page_end > offset32 + len32) ? 2315 (offset32 + len32) : page_end; 2316 2317 /* Request access to the flash interface. */ 2318 if ((rc = bce_acquire_nvram_lock(sc)) != 0) 2319 goto bce_nvram_write_exit; 2320 2321 /* Enable access to flash interface */ 2322 bce_enable_nvram_access(sc); 2323 2324 cmd_flags = BCE_NVM_COMMAND_FIRST; 2325 if (!(sc->bce_flash_info->flags & BCE_NV_BUFFERED)) { 2326 int j; 2327 2328 /* Read the whole page into the buffer 2329 * (non-buffer flash only) */ 2330 for (j = 0; j < sc->bce_flash_info->page_size; j += 4) { 2331 if (j == (sc->bce_flash_info->page_size - 4)) { 2332 cmd_flags |= BCE_NVM_COMMAND_LAST; 2333 } 2334 rc = bce_nvram_read_dword(sc, 2335 page_start + j, 2336 &flash_buffer[j], 2337 cmd_flags); 2338 2339 if (rc) 2340 goto bce_nvram_write_locked_exit; 2341 2342 cmd_flags = 0; 2343 } 2344 } 2345 2346 /* Enable writes to flash interface (unlock write-protect) */ 2347 if ((rc = bce_enable_nvram_write(sc)) != 0) 2348 goto bce_nvram_write_locked_exit; 2349 2350 /* Erase the page */ 2351 if ((rc = bce_nvram_erase_page(sc, page_start)) != 0) 2352 goto bce_nvram_write_locked_exit; 2353 2354 /* Re-enable the write again for the actual write */ 2355 bce_enable_nvram_write(sc); 2356 2357 /* Loop to write back the buffer data from page_start to 2358 * data_start */ 2359 i = 0; 2360 if (!(sc->bce_flash_info->flags & BCE_NV_BUFFERED)) { 2361 for (addr = page_start; addr < data_start; 2362 addr += 4, i += 4) { 2363 2364 rc = bce_nvram_write_dword(sc, addr, 2365 &flash_buffer[i], cmd_flags); 2366 2367 if (rc != 0) 2368 goto bce_nvram_write_locked_exit; 2369 2370 cmd_flags = 0; 2371 } 2372 } 2373 2374 /* Loop to write the new data from data_start to data_end */ 2375 for (addr = data_start; addr < data_end; addr += 4, i++) { 2376 if ((addr == page_end - 4) || 2377 ((sc->bce_flash_info->flags & BCE_NV_BUFFERED) && 2378 (addr == data_end - 4))) { 2379 2380 cmd_flags |= BCE_NVM_COMMAND_LAST; 2381 } 2382 rc = bce_nvram_write_dword(sc, addr, buf, 2383 cmd_flags); 2384 2385 if (rc != 0) 2386 goto bce_nvram_write_locked_exit; 2387 2388 cmd_flags = 0; 2389 buf += 4; 2390 } 2391 2392 /* Loop to write back the buffer data from data_end 2393 * to page_end */ 2394 if (!(sc->bce_flash_info->flags & BCE_NV_BUFFERED)) { 2395 for (addr = data_end; addr < page_end; 2396 addr += 4, i += 4) { 2397 2398 if (addr == page_end-4) { 2399 cmd_flags = BCE_NVM_COMMAND_LAST; 2400 } 2401 rc = bce_nvram_write_dword(sc, addr, 2402 &flash_buffer[i], cmd_flags); 2403 2404 if (rc != 0) 2405 goto bce_nvram_write_locked_exit; 2406 2407 cmd_flags = 0; 2408 } 2409 } 2410 2411 /* Disable writes to flash interface (lock write-protect) */ 2412 bce_disable_nvram_write(sc); 2413 2414 /* Disable access to flash interface */ 2415 bce_disable_nvram_access(sc); 2416 bce_release_nvram_lock(sc); 2417 2418 /* Increment written */ 2419 written += data_end - data_start; 2420 } 2421 2422 goto bce_nvram_write_exit; 2423 2424 bce_nvram_write_locked_exit: 2425 bce_disable_nvram_write(sc); 2426 bce_disable_nvram_access(sc); 2427 bce_release_nvram_lock(sc); 2428 2429 bce_nvram_write_exit: 2430 if (align_start || align_end) 2431 free(buf, M_DEVBUF); 2432 2433 DBEXIT(BCE_VERBOSE_NVRAM); 2434 return (rc); 2435 } 2436 #endif /* BCE_NVRAM_WRITE_SUPPORT */ 2437 2438 2439 /****************************************************************************/ 2440 /* Verifies that NVRAM is accessible and contains valid data. */ 2441 /* */ 2442 /* Reads the configuration data from NVRAM and verifies that the CRC is */ 2443 /* correct. */ 2444 /* */ 2445 /* Returns: */ 2446 /* 0 on success, positive value on failure. */ 2447 /****************************************************************************/ 2448 static int 2449 bce_nvram_test(struct bce_softc *sc) 2450 { 2451 u32 buf[BCE_NVRAM_SIZE / 4]; 2452 u8 *data = (u8 *) buf; 2453 int rc = 0; 2454 u32 magic, csum; 2455 2456 DBENTER(BCE_VERBOSE_NVRAM | BCE_VERBOSE_LOAD | BCE_VERBOSE_RESET); 2457 2458 /* 2459 * Check that the device NVRAM is valid by reading 2460 * the magic value at offset 0. 2461 */ 2462 if ((rc = bce_nvram_read(sc, 0, data, 4)) != 0) { 2463 BCE_PRINTF("%s(%d): Unable to read NVRAM!\n", __FILE__, __LINE__); 2464 goto bce_nvram_test_exit; 2465 } 2466 2467 /* 2468 * Verify that offset 0 of the NVRAM contains 2469 * a valid magic number. 2470 */ 2471 magic = bce_be32toh(buf[0]); 2472 if (magic != BCE_NVRAM_MAGIC) { 2473 rc = ENODEV; 2474 BCE_PRINTF("%s(%d): Invalid NVRAM magic value! Expected: 0x%08X, " 2475 "Found: 0x%08X\n", 2476 __FILE__, __LINE__, BCE_NVRAM_MAGIC, magic); 2477 goto bce_nvram_test_exit; 2478 } 2479 2480 /* 2481 * Verify that the device NVRAM includes valid 2482 * configuration data. 2483 */ 2484 if ((rc = bce_nvram_read(sc, 0x100, data, BCE_NVRAM_SIZE)) != 0) { 2485 BCE_PRINTF("%s(%d): Unable to read Manufacturing Information from " 2486 "NVRAM!\n", __FILE__, __LINE__); 2487 goto bce_nvram_test_exit; 2488 } 2489 2490 csum = ether_crc32_le(data, 0x100); 2491 if (csum != BCE_CRC32_RESIDUAL) { 2492 rc = ENODEV; 2493 BCE_PRINTF("%s(%d): Invalid Manufacturing Information NVRAM CRC! " 2494 "Expected: 0x%08X, Found: 0x%08X\n", 2495 __FILE__, __LINE__, BCE_CRC32_RESIDUAL, csum); 2496 goto bce_nvram_test_exit; 2497 } 2498 2499 csum = ether_crc32_le(data + 0x100, 0x100); 2500 if (csum != BCE_CRC32_RESIDUAL) { 2501 rc = ENODEV; 2502 BCE_PRINTF("%s(%d): Invalid Feature Configuration Information " 2503 "NVRAM CRC! Expected: 0x%08X, Found: 08%08X\n", 2504 __FILE__, __LINE__, BCE_CRC32_RESIDUAL, csum); 2505 } 2506 2507 bce_nvram_test_exit: 2508 DBEXIT(BCE_VERBOSE_NVRAM | BCE_VERBOSE_LOAD | BCE_VERBOSE_RESET); 2509 return rc; 2510 } 2511 2512 2513 /****************************************************************************/ 2514 /* Identifies the current media type of the controller and sets the PHY */ 2515 /* address. */ 2516 /* */ 2517 /* Returns: */ 2518 /* Nothing. */ 2519 /****************************************************************************/ 2520 static void 2521 bce_get_media(struct bce_softc *sc) 2522 { 2523 u32 val; 2524 2525 DBENTER(BCE_VERBOSE); 2526 2527 /* Assume PHY address for copper controllers. */ 2528 sc->bce_phy_addr = 1; 2529 2530 if (BCE_CHIP_NUM(sc) == BCE_CHIP_NUM_5709) { 2531 u32 val = REG_RD(sc, BCE_MISC_DUAL_MEDIA_CTRL); 2532 u32 bond_id = val & BCE_MISC_DUAL_MEDIA_CTRL_BOND_ID; 2533 u32 strap; 2534 2535 /* 2536 * The BCM5709S is software configurable 2537 * for Copper or SerDes operation. 2538 */ 2539 if (bond_id == BCE_MISC_DUAL_MEDIA_CTRL_BOND_ID_C) { 2540 DBPRINT(sc, BCE_INFO_LOAD, "5709 bonded for copper.\n"); 2541 goto bce_get_media_exit; 2542 } else if (bond_id == BCE_MISC_DUAL_MEDIA_CTRL_BOND_ID_S) { 2543 DBPRINT(sc, BCE_INFO_LOAD, "5709 bonded for dual media.\n"); 2544 sc->bce_phy_flags |= BCE_PHY_SERDES_FLAG; 2545 goto bce_get_media_exit; 2546 } 2547 2548 if (val & BCE_MISC_DUAL_MEDIA_CTRL_STRAP_OVERRIDE) 2549 strap = (val & BCE_MISC_DUAL_MEDIA_CTRL_PHY_CTRL) >> 21; 2550 else 2551 strap = (val & BCE_MISC_DUAL_MEDIA_CTRL_PHY_CTRL_STRAP) >> 8; 2552 2553 if (pci_get_function(sc->bce_dev) == 0) { 2554 switch (strap) { 2555 case 0x4: 2556 case 0x5: 2557 case 0x6: 2558 DBPRINT(sc, BCE_INFO_LOAD, 2559 "BCM5709 s/w configured for SerDes.\n"); 2560 sc->bce_phy_flags |= BCE_PHY_SERDES_FLAG; 2561 default: 2562 DBPRINT(sc, BCE_INFO_LOAD, 2563 "BCM5709 s/w configured for Copper.\n"); 2564 } 2565 } else { 2566 switch (strap) { 2567 case 0x1: 2568 case 0x2: 2569 case 0x4: 2570 DBPRINT(sc, BCE_INFO_LOAD, 2571 "BCM5709 s/w configured for SerDes.\n"); 2572 sc->bce_phy_flags |= BCE_PHY_SERDES_FLAG; 2573 default: 2574 DBPRINT(sc, BCE_INFO_LOAD, 2575 "BCM5709 s/w configured for Copper.\n"); 2576 } 2577 } 2578 2579 } else if (BCE_CHIP_BOND_ID(sc) & BCE_CHIP_BOND_ID_SERDES_BIT) 2580 sc->bce_phy_flags |= BCE_PHY_SERDES_FLAG; 2581 2582 if (sc->bce_phy_flags & BCE_PHY_SERDES_FLAG) { 2583 sc->bce_flags |= BCE_NO_WOL_FLAG; 2584 if (BCE_CHIP_NUM(sc) != BCE_CHIP_NUM_5706) { 2585 sc->bce_phy_addr = 2; 2586 val = REG_RD_IND(sc, sc->bce_shmem_base + 2587 BCE_SHARED_HW_CFG_CONFIG); 2588 if (val & BCE_SHARED_HW_CFG_PHY_2_5G) { 2589 sc->bce_phy_flags |= BCE_PHY_2_5G_CAPABLE_FLAG; 2590 DBPRINT(sc, BCE_INFO_LOAD, "Found 2.5Gb capable adapter\n"); 2591 } 2592 } 2593 } else if ((BCE_CHIP_NUM(sc) == BCE_CHIP_NUM_5706) || 2594 (BCE_CHIP_NUM(sc) == BCE_CHIP_NUM_5708)) 2595 sc->bce_phy_flags |= BCE_PHY_CRC_FIX_FLAG; 2596 2597 bce_get_media_exit: 2598 DBPRINT(sc, (BCE_INFO_LOAD | BCE_INFO_PHY), 2599 "Using PHY address %d.\n", sc->bce_phy_addr); 2600 2601 DBEXIT(BCE_VERBOSE); 2602 } 2603 2604 2605 /****************************************************************************/ 2606 /* Free any DMA memory owned by the driver. */ 2607 /* */ 2608 /* Scans through each data structre that requires DMA memory and frees */ 2609 /* the memory if allocated. */ 2610 /* */ 2611 /* Returns: */ 2612 /* Nothing. */ 2613 /****************************************************************************/ 2614 static void 2615 bce_dma_free(struct bce_softc *sc) 2616 { 2617 int i; 2618 2619 DBENTER(BCE_VERBOSE_RESET | BCE_VERBOSE_UNLOAD | BCE_VERBOSE_CTX); 2620 2621 /* Free, unmap, and destroy the status block. */ 2622 if (sc->status_block != NULL) { 2623 bus_dmamem_free( 2624 sc->status_tag, 2625 sc->status_block, 2626 sc->status_map); 2627 sc->status_block = NULL; 2628 } 2629 2630 if (sc->status_map != NULL) { 2631 bus_dmamap_unload( 2632 sc->status_tag, 2633 sc->status_map); 2634 bus_dmamap_destroy(sc->status_tag, 2635 sc->status_map); 2636 sc->status_map = NULL; 2637 } 2638 2639 if (sc->status_tag != NULL) { 2640 bus_dma_tag_destroy(sc->status_tag); 2641 sc->status_tag = NULL; 2642 } 2643 2644 2645 /* Free, unmap, and destroy the statistics block. */ 2646 if (sc->stats_block != NULL) { 2647 bus_dmamem_free( 2648 sc->stats_tag, 2649 sc->stats_block, 2650 sc->stats_map); 2651 sc->stats_block = NULL; 2652 } 2653 2654 if (sc->stats_map != NULL) { 2655 bus_dmamap_unload( 2656 sc->stats_tag, 2657 sc->stats_map); 2658 bus_dmamap_destroy(sc->stats_tag, 2659 sc->stats_map); 2660 sc->stats_map = NULL; 2661 } 2662 2663 if (sc->stats_tag != NULL) { 2664 bus_dma_tag_destroy(sc->stats_tag); 2665 sc->stats_tag = NULL; 2666 } 2667 2668 2669 /* Free, unmap and destroy all context memory pages. */ 2670 if ((BCE_CHIP_NUM(sc) == BCE_CHIP_NUM_5709) || 2671 (BCE_CHIP_NUM(sc) == BCE_CHIP_NUM_5716)) { 2672 for (i = 0; i < sc->ctx_pages; i++ ) { 2673 if (sc->ctx_block[i] != NULL) { 2674 bus_dmamem_free( 2675 sc->ctx_tag, 2676 sc->ctx_block[i], 2677 sc->ctx_map[i]); 2678 sc->ctx_block[i] = NULL; 2679 } 2680 2681 if (sc->ctx_map[i] != NULL) { 2682 bus_dmamap_unload( 2683 sc->ctx_tag, 2684 sc->ctx_map[i]); 2685 bus_dmamap_destroy( 2686 sc->ctx_tag, 2687 sc->ctx_map[i]); 2688 sc->ctx_map[i] = NULL; 2689 } 2690 } 2691 2692 /* Destroy the context memory tag. */ 2693 if (sc->ctx_tag != NULL) { 2694 bus_dma_tag_destroy(sc->ctx_tag); 2695 sc->ctx_tag = NULL; 2696 } 2697 } 2698 2699 2700 /* Free, unmap and destroy all TX buffer descriptor chain pages. */ 2701 for (i = 0; i < TX_PAGES; i++ ) { 2702 if (sc->tx_bd_chain[i] != NULL) { 2703 bus_dmamem_free( 2704 sc->tx_bd_chain_tag, 2705 sc->tx_bd_chain[i], 2706 sc->tx_bd_chain_map[i]); 2707 sc->tx_bd_chain[i] = NULL; 2708 } 2709 2710 if (sc->tx_bd_chain_map[i] != NULL) { 2711 bus_dmamap_unload( 2712 sc->tx_bd_chain_tag, 2713 sc->tx_bd_chain_map[i]); 2714 bus_dmamap_destroy( 2715 sc->tx_bd_chain_tag, 2716 sc->tx_bd_chain_map[i]); 2717 sc->tx_bd_chain_map[i] = NULL; 2718 } 2719 } 2720 2721 /* Destroy the TX buffer descriptor tag. */ 2722 if (sc->tx_bd_chain_tag != NULL) { 2723 bus_dma_tag_destroy(sc->tx_bd_chain_tag); 2724 sc->tx_bd_chain_tag = NULL; 2725 } 2726 2727 2728 /* Free, unmap and destroy all RX buffer descriptor chain pages. */ 2729 for (i = 0; i < RX_PAGES; i++ ) { 2730 if (sc->rx_bd_chain[i] != NULL) { 2731 bus_dmamem_free( 2732 sc->rx_bd_chain_tag, 2733 sc->rx_bd_chain[i], 2734 sc->rx_bd_chain_map[i]); 2735 sc->rx_bd_chain[i] = NULL; 2736 } 2737 2738 if (sc->rx_bd_chain_map[i] != NULL) { 2739 bus_dmamap_unload( 2740 sc->rx_bd_chain_tag, 2741 sc->rx_bd_chain_map[i]); 2742 bus_dmamap_destroy( 2743 sc->rx_bd_chain_tag, 2744 sc->rx_bd_chain_map[i]); 2745 sc->rx_bd_chain_map[i] = NULL; 2746 } 2747 } 2748 2749 /* Destroy the RX buffer descriptor tag. */ 2750 if (sc->rx_bd_chain_tag != NULL) { 2751 bus_dma_tag_destroy(sc->rx_bd_chain_tag); 2752 sc->rx_bd_chain_tag = NULL; 2753 } 2754 2755 2756 #ifdef BCE_USE_SPLIT_HEADER 2757 /* Free, unmap and destroy all page buffer descriptor chain pages. */ 2758 for (i = 0; i < PG_PAGES; i++ ) { 2759 if (sc->pg_bd_chain[i] != NULL) { 2760 bus_dmamem_free( 2761 sc->pg_bd_chain_tag, 2762 sc->pg_bd_chain[i], 2763 sc->pg_bd_chain_map[i]); 2764 sc->pg_bd_chain[i] = NULL; 2765 } 2766 2767 if (sc->pg_bd_chain_map[i] != NULL) { 2768 bus_dmamap_unload( 2769 sc->pg_bd_chain_tag, 2770 sc->pg_bd_chain_map[i]); 2771 bus_dmamap_destroy( 2772 sc->pg_bd_chain_tag, 2773 sc->pg_bd_chain_map[i]); 2774 sc->pg_bd_chain_map[i] = NULL; 2775 } 2776 } 2777 2778 /* Destroy the page buffer descriptor tag. */ 2779 if (sc->pg_bd_chain_tag != NULL) { 2780 bus_dma_tag_destroy(sc->pg_bd_chain_tag); 2781 sc->pg_bd_chain_tag = NULL; 2782 } 2783 #endif 2784 2785 2786 /* Unload and destroy the TX mbuf maps. */ 2787 for (i = 0; i < TOTAL_TX_BD; i++) { 2788 if (sc->tx_mbuf_map[i] != NULL) { 2789 bus_dmamap_unload(sc->tx_mbuf_tag, 2790 sc->tx_mbuf_map[i]); 2791 bus_dmamap_destroy(sc->tx_mbuf_tag, 2792 sc->tx_mbuf_map[i]); 2793 sc->tx_mbuf_map[i] = NULL; 2794 } 2795 } 2796 2797 /* Destroy the TX mbuf tag. */ 2798 if (sc->tx_mbuf_tag != NULL) { 2799 bus_dma_tag_destroy(sc->tx_mbuf_tag); 2800 sc->tx_mbuf_tag = NULL; 2801 } 2802 2803 /* Unload and destroy the RX mbuf maps. */ 2804 for (i = 0; i < TOTAL_RX_BD; i++) { 2805 if (sc->rx_mbuf_map[i] != NULL) { 2806 bus_dmamap_unload(sc->rx_mbuf_tag, 2807 sc->rx_mbuf_map[i]); 2808 bus_dmamap_destroy(sc->rx_mbuf_tag, 2809 sc->rx_mbuf_map[i]); 2810 sc->rx_mbuf_map[i] = NULL; 2811 } 2812 } 2813 2814 /* Destroy the RX mbuf tag. */ 2815 if (sc->rx_mbuf_tag != NULL) { 2816 bus_dma_tag_destroy(sc->rx_mbuf_tag); 2817 sc->rx_mbuf_tag = NULL; 2818 } 2819 2820 #ifdef BCE_USE_SPLIT_HEADER 2821 /* Unload and destroy the page mbuf maps. */ 2822 for (i = 0; i < TOTAL_PG_BD; i++) { 2823 if (sc->pg_mbuf_map[i] != NULL) { 2824 bus_dmamap_unload(sc->pg_mbuf_tag, 2825 sc->pg_mbuf_map[i]); 2826 bus_dmamap_destroy(sc->pg_mbuf_tag, 2827 sc->pg_mbuf_map[i]); 2828 sc->pg_mbuf_map[i] = NULL; 2829 } 2830 } 2831 2832 /* Destroy the page mbuf tag. */ 2833 if (sc->pg_mbuf_tag != NULL) { 2834 bus_dma_tag_destroy(sc->pg_mbuf_tag); 2835 sc->pg_mbuf_tag = NULL; 2836 } 2837 #endif 2838 2839 /* Destroy the parent tag */ 2840 if (sc->parent_tag != NULL) { 2841 bus_dma_tag_destroy(sc->parent_tag); 2842 sc->parent_tag = NULL; 2843 } 2844 2845 DBEXIT(BCE_VERBOSE_RESET | BCE_VERBOSE_UNLOAD | BCE_VERBOSE_CTX); 2846 } 2847 2848 2849 /****************************************************************************/ 2850 /* Get DMA memory from the OS. */ 2851 /* */ 2852 /* Validates that the OS has provided DMA buffers in response to a */ 2853 /* bus_dmamap_load() call and saves the physical address of those buffers. */ 2854 /* When the callback is used the OS will return 0 for the mapping function */ 2855 /* (bus_dmamap_load()) so we use the value of map_arg->maxsegs to pass any */ 2856 /* failures back to the caller. */ 2857 /* */ 2858 /* Returns: */ 2859 /* Nothing. */ 2860 /****************************************************************************/ 2861 static void 2862 bce_dma_map_addr(void *arg, bus_dma_segment_t *segs, int nseg, int error) 2863 { 2864 bus_addr_t *busaddr = arg; 2865 2866 /* Simulate a mapping failure. */ 2867 DBRUNIF(DB_RANDOMTRUE(bce_debug_dma_map_addr_failure), 2868 printf("bce: %s(%d): Simulating DMA mapping error.\n", 2869 __FILE__, __LINE__); 2870 error = ENOMEM); 2871 2872 /* Check for an error and signal the caller that an error occurred. */ 2873 if (error) { 2874 printf("bce %s(%d): DMA mapping error! error = %d, " 2875 "nseg = %d\n", __FILE__, __LINE__, error, nseg); 2876 *busaddr = 0; 2877 return; 2878 } 2879 2880 *busaddr = segs->ds_addr; 2881 return; 2882 } 2883 2884 2885 /****************************************************************************/ 2886 /* Allocate any DMA memory needed by the driver. */ 2887 /* */ 2888 /* Allocates DMA memory needed for the various global structures needed by */ 2889 /* hardware. */ 2890 /* */ 2891 /* Memory alignment requirements: */ 2892 /* +-----------------+----------+----------+----------+----------+ */ 2893 /* | | 5706 | 5708 | 5709 | 5716 | */ 2894 /* +-----------------+----------+----------+----------+----------+ */ 2895 /* |Status Block | 8 bytes | 8 bytes | 16 bytes | 16 bytes | */ 2896 /* |Statistics Block | 8 bytes | 8 bytes | 16 bytes | 16 bytes | */ 2897 /* |RX Buffers | 16 bytes | 16 bytes | 16 bytes | 16 bytes | */ 2898 /* |PG Buffers | none | none | none | none | */ 2899 /* |TX Buffers | none | none | none | none | */ 2900 /* |Chain Pages(1) | 4KiB | 4KiB | 4KiB | 4KiB | */ 2901 /* +-----------------+----------+----------+----------+----------+ */ 2902 /* */ 2903 /* (1) Must align with CPU page size (BCM_PAGE_SZIE). */ 2904 /* */ 2905 /* Returns: */ 2906 /* 0 for success, positive value for failure. */ 2907 /****************************************************************************/ 2908 static int 2909 bce_dma_alloc(device_t dev) 2910 { 2911 struct bce_softc *sc; 2912 int i, error, rc = 0; 2913 bus_size_t max_size, max_seg_size; 2914 int max_segments; 2915 2916 sc = device_get_softc(dev); 2917 2918 DBENTER(BCE_VERBOSE_RESET | BCE_VERBOSE_CTX); 2919 2920 /* 2921 * Allocate the parent bus DMA tag appropriate for PCI. 2922 */ 2923 if (bus_dma_tag_create(NULL, 2924 1, 2925 BCE_DMA_BOUNDARY, 2926 sc->max_bus_addr, 2927 BUS_SPACE_MAXADDR, 2928 NULL, NULL, 2929 MAXBSIZE, 2930 BUS_SPACE_UNRESTRICTED, 2931 BUS_SPACE_MAXSIZE_32BIT, 2932 0, 2933 NULL, NULL, 2934 &sc->parent_tag)) { 2935 BCE_PRINTF("%s(%d): Could not allocate parent DMA tag!\n", 2936 __FILE__, __LINE__); 2937 rc = ENOMEM; 2938 goto bce_dma_alloc_exit; 2939 } 2940 2941 /* 2942 * Create a DMA tag for the status block, allocate and clear the 2943 * memory, map the memory into DMA space, and fetch the physical 2944 * address of the block. 2945 */ 2946 if (bus_dma_tag_create(sc->parent_tag, 2947 BCE_DMA_ALIGN, 2948 BCE_DMA_BOUNDARY, 2949 sc->max_bus_addr, 2950 BUS_SPACE_MAXADDR, 2951 NULL, NULL, 2952 BCE_STATUS_BLK_SZ, 2953 1, 2954 BCE_STATUS_BLK_SZ, 2955 0, 2956 NULL, NULL, 2957 &sc->status_tag)) { 2958 BCE_PRINTF("%s(%d): Could not allocate status block DMA tag!\n", 2959 __FILE__, __LINE__); 2960 rc = ENOMEM; 2961 goto bce_dma_alloc_exit; 2962 } 2963 2964 if(bus_dmamem_alloc(sc->status_tag, 2965 (void **)&sc->status_block, 2966 BUS_DMA_NOWAIT, 2967 &sc->status_map)) { 2968 BCE_PRINTF("%s(%d): Could not allocate status block DMA memory!\n", 2969 __FILE__, __LINE__); 2970 rc = ENOMEM; 2971 goto bce_dma_alloc_exit; 2972 } 2973 2974 bzero((char *)sc->status_block, BCE_STATUS_BLK_SZ); 2975 2976 error = bus_dmamap_load(sc->status_tag, 2977 sc->status_map, 2978 sc->status_block, 2979 BCE_STATUS_BLK_SZ, 2980 bce_dma_map_addr, 2981 &sc->status_block_paddr, 2982 BUS_DMA_NOWAIT); 2983 2984 if (error) { 2985 BCE_PRINTF("%s(%d): Could not map status block DMA memory!\n", 2986 __FILE__, __LINE__); 2987 rc = ENOMEM; 2988 goto bce_dma_alloc_exit; 2989 } 2990 2991 DBPRINT(sc, BCE_INFO, "%s(): status_block_paddr = 0x%jX\n", 2992 __FUNCTION__, (uintmax_t) sc->status_block_paddr); 2993 2994 /* 2995 * Create a DMA tag for the statistics block, allocate and clear the 2996 * memory, map the memory into DMA space, and fetch the physical 2997 * address of the block. 2998 */ 2999 if (bus_dma_tag_create(sc->parent_tag, 3000 BCE_DMA_ALIGN, 3001 BCE_DMA_BOUNDARY, 3002 sc->max_bus_addr, 3003 BUS_SPACE_MAXADDR, 3004 NULL, NULL, 3005 BCE_STATS_BLK_SZ, 3006 1, 3007 BCE_STATS_BLK_SZ, 3008 0, 3009 NULL, NULL, 3010 &sc->stats_tag)) { 3011 BCE_PRINTF("%s(%d): Could not allocate statistics block DMA tag!\n", 3012 __FILE__, __LINE__); 3013 rc = ENOMEM; 3014 goto bce_dma_alloc_exit; 3015 } 3016 3017 if (bus_dmamem_alloc(sc->stats_tag, 3018 (void **)&sc->stats_block, 3019 BUS_DMA_NOWAIT, 3020 &sc->stats_map)) { 3021 BCE_PRINTF("%s(%d): Could not allocate statistics block DMA memory!\n", 3022 __FILE__, __LINE__); 3023 rc = ENOMEM; 3024 goto bce_dma_alloc_exit; 3025 } 3026 3027 bzero((char *)sc->stats_block, BCE_STATS_BLK_SZ); 3028 3029 error = bus_dmamap_load(sc->stats_tag, 3030 sc->stats_map, 3031 sc->stats_block, 3032 BCE_STATS_BLK_SZ, 3033 bce_dma_map_addr, 3034 &sc->stats_block_paddr, 3035 BUS_DMA_NOWAIT); 3036 3037 if(error) { 3038 BCE_PRINTF("%s(%d): Could not map statistics block DMA memory!\n", 3039 __FILE__, __LINE__); 3040 rc = ENOMEM; 3041 goto bce_dma_alloc_exit; 3042 } 3043 3044 DBPRINT(sc, BCE_INFO, "%s(): stats_block_paddr = 0x%jX\n", 3045 __FUNCTION__, (uintmax_t) sc->stats_block_paddr); 3046 3047 /* BCM5709 uses host memory as cache for context memory. */ 3048 if ((BCE_CHIP_NUM(sc) == BCE_CHIP_NUM_5709) || 3049 (BCE_CHIP_NUM(sc) == BCE_CHIP_NUM_5716)) { 3050 sc->ctx_pages = 0x2000 / BCM_PAGE_SIZE; 3051 if (sc->ctx_pages == 0) 3052 sc->ctx_pages = 1; 3053 3054 DBRUNIF((sc->ctx_pages > 512), 3055 BCE_PRINTF("%s(%d): Too many CTX pages! %d > 512\n", 3056 __FILE__, __LINE__, sc->ctx_pages)); 3057 3058 /* 3059 * Create a DMA tag for the context pages, 3060 * allocate and clear the memory, map the 3061 * memory into DMA space, and fetch the 3062 * physical address of the block. 3063 */ 3064 if(bus_dma_tag_create(sc->parent_tag, 3065 BCM_PAGE_SIZE, 3066 BCE_DMA_BOUNDARY, 3067 sc->max_bus_addr, 3068 BUS_SPACE_MAXADDR, 3069 NULL, NULL, 3070 BCM_PAGE_SIZE, 3071 1, 3072 BCM_PAGE_SIZE, 3073 0, 3074 NULL, NULL, 3075 &sc->ctx_tag)) { 3076 BCE_PRINTF("%s(%d): Could not allocate CTX DMA tag!\n", 3077 __FILE__, __LINE__); 3078 rc = ENOMEM; 3079 goto bce_dma_alloc_exit; 3080 } 3081 3082 for (i = 0; i < sc->ctx_pages; i++) { 3083 3084 if(bus_dmamem_alloc(sc->ctx_tag, 3085 (void **)&sc->ctx_block[i], 3086 BUS_DMA_NOWAIT, 3087 &sc->ctx_map[i])) { 3088 BCE_PRINTF("%s(%d): Could not allocate CTX " 3089 "DMA memory!\n", __FILE__, __LINE__); 3090 rc = ENOMEM; 3091 goto bce_dma_alloc_exit; 3092 } 3093 3094 bzero((char *)sc->ctx_block[i], BCM_PAGE_SIZE); 3095 3096 error = bus_dmamap_load(sc->ctx_tag, 3097 sc->ctx_map[i], 3098 sc->ctx_block[i], 3099 BCM_PAGE_SIZE, 3100 bce_dma_map_addr, 3101 &sc->ctx_paddr[i], 3102 BUS_DMA_NOWAIT); 3103 3104 if (error) { 3105 BCE_PRINTF("%s(%d): Could not map CTX DMA memory!\n", 3106 __FILE__, __LINE__); 3107 rc = ENOMEM; 3108 goto bce_dma_alloc_exit; 3109 } 3110 3111 DBPRINT(sc, BCE_INFO, "%s(): ctx_paddr[%d] = 0x%jX\n", 3112 __FUNCTION__, i, (uintmax_t) sc->ctx_paddr[i]); 3113 } 3114 } 3115 3116 /* 3117 * Create a DMA tag for the TX buffer descriptor chain, 3118 * allocate and clear the memory, and fetch the 3119 * physical address of the block. 3120 */ 3121 if(bus_dma_tag_create(sc->parent_tag, 3122 BCM_PAGE_SIZE, 3123 BCE_DMA_BOUNDARY, 3124 sc->max_bus_addr, 3125 BUS_SPACE_MAXADDR, 3126 NULL, NULL, 3127 BCE_TX_CHAIN_PAGE_SZ, 3128 1, 3129 BCE_TX_CHAIN_PAGE_SZ, 3130 0, 3131 NULL, NULL, 3132 &sc->tx_bd_chain_tag)) { 3133 BCE_PRINTF("%s(%d): Could not allocate TX descriptor chain DMA tag!\n", 3134 __FILE__, __LINE__); 3135 rc = ENOMEM; 3136 goto bce_dma_alloc_exit; 3137 } 3138 3139 for (i = 0; i < TX_PAGES; i++) { 3140 3141 if(bus_dmamem_alloc(sc->tx_bd_chain_tag, 3142 (void **)&sc->tx_bd_chain[i], 3143 BUS_DMA_NOWAIT, 3144 &sc->tx_bd_chain_map[i])) { 3145 BCE_PRINTF("%s(%d): Could not allocate TX descriptor " 3146 "chain DMA memory!\n", __FILE__, __LINE__); 3147 rc = ENOMEM; 3148 goto bce_dma_alloc_exit; 3149 } 3150 3151 error = bus_dmamap_load(sc->tx_bd_chain_tag, 3152 sc->tx_bd_chain_map[i], 3153 sc->tx_bd_chain[i], 3154 BCE_TX_CHAIN_PAGE_SZ, 3155 bce_dma_map_addr, 3156 &sc->tx_bd_chain_paddr[i], 3157 BUS_DMA_NOWAIT); 3158 3159 if (error) { 3160 BCE_PRINTF("%s(%d): Could not map TX descriptor chain DMA memory!\n", 3161 __FILE__, __LINE__); 3162 rc = ENOMEM; 3163 goto bce_dma_alloc_exit; 3164 } 3165 3166 DBPRINT(sc, BCE_INFO, "%s(): tx_bd_chain_paddr[%d] = 0x%jX\n", 3167 __FUNCTION__, i, (uintmax_t) sc->tx_bd_chain_paddr[i]); 3168 } 3169 3170 /* Check the required size before mapping to conserve resources. */ 3171 if (bce_tso_enable) { 3172 max_size = BCE_TSO_MAX_SIZE; 3173 max_segments = BCE_MAX_SEGMENTS; 3174 max_seg_size = BCE_TSO_MAX_SEG_SIZE; 3175 } else { 3176 max_size = MCLBYTES * BCE_MAX_SEGMENTS; 3177 max_segments = BCE_MAX_SEGMENTS; 3178 max_seg_size = MCLBYTES; 3179 } 3180 3181 /* Create a DMA tag for TX mbufs. */ 3182 if (bus_dma_tag_create(sc->parent_tag, 3183 1, 3184 BCE_DMA_BOUNDARY, 3185 sc->max_bus_addr, 3186 BUS_SPACE_MAXADDR, 3187 NULL, NULL, 3188 max_size, 3189 max_segments, 3190 max_seg_size, 3191 0, 3192 NULL, NULL, 3193 &sc->tx_mbuf_tag)) { 3194 BCE_PRINTF("%s(%d): Could not allocate TX mbuf DMA tag!\n", 3195 __FILE__, __LINE__); 3196 rc = ENOMEM; 3197 goto bce_dma_alloc_exit; 3198 } 3199 3200 /* Create DMA maps for the TX mbufs clusters. */ 3201 for (i = 0; i < TOTAL_TX_BD; i++) { 3202 if (bus_dmamap_create(sc->tx_mbuf_tag, BUS_DMA_NOWAIT, 3203 &sc->tx_mbuf_map[i])) { 3204 BCE_PRINTF("%s(%d): Unable to create TX mbuf DMA map!\n", 3205 __FILE__, __LINE__); 3206 rc = ENOMEM; 3207 goto bce_dma_alloc_exit; 3208 } 3209 } 3210 3211 /* 3212 * Create a DMA tag for the RX buffer descriptor chain, 3213 * allocate and clear the memory, and fetch the physical 3214 * address of the blocks. 3215 */ 3216 if (bus_dma_tag_create(sc->parent_tag, 3217 BCM_PAGE_SIZE, 3218 BCE_DMA_BOUNDARY, 3219 BUS_SPACE_MAXADDR, 3220 sc->max_bus_addr, 3221 NULL, NULL, 3222 BCE_RX_CHAIN_PAGE_SZ, 3223 1, 3224 BCE_RX_CHAIN_PAGE_SZ, 3225 0, 3226 NULL, NULL, 3227 &sc->rx_bd_chain_tag)) { 3228 BCE_PRINTF("%s(%d): Could not allocate RX descriptor chain DMA tag!\n", 3229 __FILE__, __LINE__); 3230 rc = ENOMEM; 3231 goto bce_dma_alloc_exit; 3232 } 3233 3234 for (i = 0; i < RX_PAGES; i++) { 3235 3236 if (bus_dmamem_alloc(sc->rx_bd_chain_tag, 3237 (void **)&sc->rx_bd_chain[i], 3238 BUS_DMA_NOWAIT, 3239 &sc->rx_bd_chain_map[i])) { 3240 BCE_PRINTF("%s(%d): Could not allocate RX descriptor chain " 3241 "DMA memory!\n", __FILE__, __LINE__); 3242 rc = ENOMEM; 3243 goto bce_dma_alloc_exit; 3244 } 3245 3246 bzero((char *)sc->rx_bd_chain[i], BCE_RX_CHAIN_PAGE_SZ); 3247 3248 error = bus_dmamap_load(sc->rx_bd_chain_tag, 3249 sc->rx_bd_chain_map[i], 3250 sc->rx_bd_chain[i], 3251 BCE_RX_CHAIN_PAGE_SZ, 3252 bce_dma_map_addr, 3253 &sc->rx_bd_chain_paddr[i], 3254 BUS_DMA_NOWAIT); 3255 3256 if (error) { 3257 BCE_PRINTF("%s(%d): Could not map RX descriptor chain DMA memory!\n", 3258 __FILE__, __LINE__); 3259 rc = ENOMEM; 3260 goto bce_dma_alloc_exit; 3261 } 3262 3263 DBPRINT(sc, BCE_INFO, "%s(): rx_bd_chain_paddr[%d] = 0x%jX\n", 3264 __FUNCTION__, i, (uintmax_t) sc->rx_bd_chain_paddr[i]); 3265 } 3266 3267 /* 3268 * Create a DMA tag for RX mbufs. 3269 */ 3270 #ifdef BCE_USE_SPLIT_HEADER 3271 max_size = max_seg_size = ((sc->rx_bd_mbuf_alloc_size < MCLBYTES) ? 3272 MCLBYTES : sc->rx_bd_mbuf_alloc_size); 3273 #else 3274 max_size = max_seg_size = MJUM9BYTES; 3275 #endif 3276 3277 if (bus_dma_tag_create(sc->parent_tag, 3278 1, 3279 BCE_DMA_BOUNDARY, 3280 sc->max_bus_addr, 3281 BUS_SPACE_MAXADDR, 3282 NULL, NULL, 3283 max_size, 3284 1, 3285 max_seg_size, 3286 0, 3287 NULL, NULL, 3288 &sc->rx_mbuf_tag)) { 3289 BCE_PRINTF("%s(%d): Could not allocate RX mbuf DMA tag!\n", 3290 __FILE__, __LINE__); 3291 rc = ENOMEM; 3292 goto bce_dma_alloc_exit; 3293 } 3294 3295 /* Create DMA maps for the RX mbuf clusters. */ 3296 for (i = 0; i < TOTAL_RX_BD; i++) { 3297 if (bus_dmamap_create(sc->rx_mbuf_tag, BUS_DMA_NOWAIT, 3298 &sc->rx_mbuf_map[i])) { 3299 BCE_PRINTF("%s(%d): Unable to create RX mbuf DMA map!\n", 3300 __FILE__, __LINE__); 3301 rc = ENOMEM; 3302 goto bce_dma_alloc_exit; 3303 } 3304 } 3305 3306 #ifdef BCE_USE_SPLIT_HEADER 3307 /* 3308 * Create a DMA tag for the page buffer descriptor chain, 3309 * allocate and clear the memory, and fetch the physical 3310 * address of the blocks. 3311 */ 3312 if (bus_dma_tag_create(sc->parent_tag, 3313 BCM_PAGE_SIZE, 3314 BCE_DMA_BOUNDARY, 3315 BUS_SPACE_MAXADDR, 3316 sc->max_bus_addr, 3317 NULL, NULL, 3318 BCE_PG_CHAIN_PAGE_SZ, 3319 1, 3320 BCE_PG_CHAIN_PAGE_SZ, 3321 0, 3322 NULL, NULL, 3323 &sc->pg_bd_chain_tag)) { 3324 BCE_PRINTF("%s(%d): Could not allocate page descriptor chain DMA tag!\n", 3325 __FILE__, __LINE__); 3326 rc = ENOMEM; 3327 goto bce_dma_alloc_exit; 3328 } 3329 3330 for (i = 0; i < PG_PAGES; i++) { 3331 3332 if (bus_dmamem_alloc(sc->pg_bd_chain_tag, 3333 (void **)&sc->pg_bd_chain[i], 3334 BUS_DMA_NOWAIT, 3335 &sc->pg_bd_chain_map[i])) { 3336 BCE_PRINTF("%s(%d): Could not allocate page descriptor chain " 3337 "DMA memory!\n", __FILE__, __LINE__); 3338 rc = ENOMEM; 3339 goto bce_dma_alloc_exit; 3340 } 3341 3342 bzero((char *)sc->pg_bd_chain[i], BCE_PG_CHAIN_PAGE_SZ); 3343 3344 error = bus_dmamap_load(sc->pg_bd_chain_tag, 3345 sc->pg_bd_chain_map[i], 3346 sc->pg_bd_chain[i], 3347 BCE_PG_CHAIN_PAGE_SZ, 3348 bce_dma_map_addr, 3349 &sc->pg_bd_chain_paddr[i], 3350 BUS_DMA_NOWAIT); 3351 3352 if (error) { 3353 BCE_PRINTF("%s(%d): Could not map page descriptor chain DMA memory!\n", 3354 __FILE__, __LINE__); 3355 rc = ENOMEM; 3356 goto bce_dma_alloc_exit; 3357 } 3358 3359 DBPRINT(sc, BCE_INFO, "%s(): pg_bd_chain_paddr[%d] = 0x%jX\n", 3360 __FUNCTION__, i, (uintmax_t) sc->pg_bd_chain_paddr[i]); 3361 } 3362 3363 /* 3364 * Create a DMA tag for page mbufs. 3365 */ 3366 max_size = max_seg_size = ((sc->pg_bd_mbuf_alloc_size < MCLBYTES) ? 3367 MCLBYTES : sc->pg_bd_mbuf_alloc_size); 3368 3369 if (bus_dma_tag_create(sc->parent_tag, 3370 1, 3371 BCE_DMA_BOUNDARY, 3372 sc->max_bus_addr, 3373 BUS_SPACE_MAXADDR, 3374 NULL, NULL, 3375 max_size, 3376 1, 3377 max_seg_size, 3378 0, 3379 NULL, NULL, 3380 &sc->pg_mbuf_tag)) { 3381 BCE_PRINTF("%s(%d): Could not allocate page mbuf DMA tag!\n", 3382 __FILE__, __LINE__); 3383 rc = ENOMEM; 3384 goto bce_dma_alloc_exit; 3385 } 3386 3387 /* Create DMA maps for the page mbuf clusters. */ 3388 for (i = 0; i < TOTAL_PG_BD; i++) { 3389 if (bus_dmamap_create(sc->pg_mbuf_tag, BUS_DMA_NOWAIT, 3390 &sc->pg_mbuf_map[i])) { 3391 BCE_PRINTF("%s(%d): Unable to create page mbuf DMA map!\n", 3392 __FILE__, __LINE__); 3393 rc = ENOMEM; 3394 goto bce_dma_alloc_exit; 3395 } 3396 } 3397 #endif 3398 3399 bce_dma_alloc_exit: 3400 DBEXIT(BCE_VERBOSE_RESET | BCE_VERBOSE_CTX); 3401 return(rc); 3402 } 3403 3404 3405 /****************************************************************************/ 3406 /* Release all resources used by the driver. */ 3407 /* */ 3408 /* Releases all resources acquired by the driver including interrupts, */ 3409 /* interrupt handler, interfaces, mutexes, and DMA memory. */ 3410 /* */ 3411 /* Returns: */ 3412 /* Nothing. */ 3413 /****************************************************************************/ 3414 static void 3415 bce_release_resources(struct bce_softc *sc) 3416 { 3417 device_t dev; 3418 3419 DBENTER(BCE_VERBOSE_RESET); 3420 3421 dev = sc->bce_dev; 3422 3423 bce_dma_free(sc); 3424 3425 if (sc->bce_intrhand != NULL) { 3426 DBPRINT(sc, BCE_INFO_RESET, "Removing interrupt handler.\n"); 3427 bus_teardown_intr(dev, sc->bce_res_irq, sc->bce_intrhand); 3428 } 3429 3430 if (sc->bce_res_irq != NULL) { 3431 DBPRINT(sc, BCE_INFO_RESET, "Releasing IRQ.\n"); 3432 bus_release_resource(dev, SYS_RES_IRQ, sc->bce_irq_rid, 3433 sc->bce_res_irq); 3434 } 3435 3436 if (sc->bce_flags & (BCE_USING_MSI_FLAG | BCE_USING_MSIX_FLAG)) { 3437 DBPRINT(sc, BCE_INFO_RESET, "Releasing MSI/MSI-X vector.\n"); 3438 pci_release_msi(dev); 3439 } 3440 3441 if (sc->bce_res_mem != NULL) { 3442 DBPRINT(sc, BCE_INFO_RESET, "Releasing PCI memory.\n"); 3443 bus_release_resource(dev, SYS_RES_MEMORY, PCIR_BAR(0), sc->bce_res_mem); 3444 } 3445 3446 if (sc->bce_ifp != NULL) { 3447 DBPRINT(sc, BCE_INFO_RESET, "Releasing IF.\n"); 3448 if_free(sc->bce_ifp); 3449 } 3450 3451 if (mtx_initialized(&sc->bce_mtx)) 3452 BCE_LOCK_DESTROY(sc); 3453 3454 DBEXIT(BCE_VERBOSE_RESET); 3455 } 3456 3457 3458 /****************************************************************************/ 3459 /* Firmware synchronization. */ 3460 /* */ 3461 /* Before performing certain events such as a chip reset, synchronize with */ 3462 /* the firmware first. */ 3463 /* */ 3464 /* Returns: */ 3465 /* 0 for success, positive value for failure. */ 3466 /****************************************************************************/ 3467 static int 3468 bce_fw_sync(struct bce_softc *sc, u32 msg_data) 3469 { 3470 int i, rc = 0; 3471 u32 val; 3472 3473 DBENTER(BCE_VERBOSE_RESET); 3474 3475 /* Don't waste any time if we've timed out before. */ 3476 if (sc->bce_fw_timed_out) { 3477 rc = EBUSY; 3478 goto bce_fw_sync_exit; 3479 } 3480 3481 /* Increment the message sequence number. */ 3482 sc->bce_fw_wr_seq++; 3483 msg_data |= sc->bce_fw_wr_seq; 3484 3485 DBPRINT(sc, BCE_VERBOSE_FIRMWARE, "bce_fw_sync(): msg_data = 0x%08X\n", 3486 msg_data); 3487 3488 /* Send the message to the bootcode driver mailbox. */ 3489 REG_WR_IND(sc, sc->bce_shmem_base + BCE_DRV_MB, msg_data); 3490 3491 /* Wait for the bootcode to acknowledge the message. */ 3492 for (i = 0; i < FW_ACK_TIME_OUT_MS; i++) { 3493 /* Check for a response in the bootcode firmware mailbox. */ 3494 val = REG_RD_IND(sc, sc->bce_shmem_base + BCE_FW_MB); 3495 if ((val & BCE_FW_MSG_ACK) == (msg_data & BCE_DRV_MSG_SEQ)) 3496 break; 3497 DELAY(1000); 3498 } 3499 3500 /* If we've timed out, tell the bootcode that we've stopped waiting. */ 3501 if (((val & BCE_FW_MSG_ACK) != (msg_data & BCE_DRV_MSG_SEQ)) && 3502 ((msg_data & BCE_DRV_MSG_DATA) != BCE_DRV_MSG_DATA_WAIT0)) { 3503 3504 BCE_PRINTF("%s(%d): Firmware synchronization timeout! " 3505 "msg_data = 0x%08X\n", 3506 __FILE__, __LINE__, msg_data); 3507 3508 msg_data &= ~BCE_DRV_MSG_CODE; 3509 msg_data |= BCE_DRV_MSG_CODE_FW_TIMEOUT; 3510 3511 REG_WR_IND(sc, sc->bce_shmem_base + BCE_DRV_MB, msg_data); 3512 3513 sc->bce_fw_timed_out = 1; 3514 rc = EBUSY; 3515 } 3516 3517 bce_fw_sync_exit: 3518 DBEXIT(BCE_VERBOSE_RESET); 3519 return (rc); 3520 } 3521 3522 3523 /****************************************************************************/ 3524 /* Load Receive Virtual 2 Physical (RV2P) processor firmware. */ 3525 /* */ 3526 /* Returns: */ 3527 /* Nothing. */ 3528 /****************************************************************************/ 3529 static void 3530 bce_load_rv2p_fw(struct bce_softc *sc, u32 *rv2p_code, 3531 u32 rv2p_code_len, u32 rv2p_proc) 3532 { 3533 int i; 3534 u32 val; 3535 3536 DBENTER(BCE_VERBOSE_RESET); 3537 3538 /* Set the page size used by RV2P. */ 3539 if (rv2p_proc == RV2P_PROC2) { 3540 BCE_RV2P_PROC2_CHG_MAX_BD_PAGE(USABLE_RX_BD_PER_PAGE); 3541 } 3542 3543 for (i = 0; i < rv2p_code_len; i += 8) { 3544 REG_WR(sc, BCE_RV2P_INSTR_HIGH, *rv2p_code); 3545 rv2p_code++; 3546 REG_WR(sc, BCE_RV2P_INSTR_LOW, *rv2p_code); 3547 rv2p_code++; 3548 3549 if (rv2p_proc == RV2P_PROC1) { 3550 val = (i / 8) | BCE_RV2P_PROC1_ADDR_CMD_RDWR; 3551 REG_WR(sc, BCE_RV2P_PROC1_ADDR_CMD, val); 3552 } 3553 else { 3554 val = (i / 8) | BCE_RV2P_PROC2_ADDR_CMD_RDWR; 3555 REG_WR(sc, BCE_RV2P_PROC2_ADDR_CMD, val); 3556 } 3557 } 3558 3559 /* Reset the processor, un-stall is done later. */ 3560 if (rv2p_proc == RV2P_PROC1) { 3561 REG_WR(sc, BCE_RV2P_COMMAND, BCE_RV2P_COMMAND_PROC1_RESET); 3562 } 3563 else { 3564 REG_WR(sc, BCE_RV2P_COMMAND, BCE_RV2P_COMMAND_PROC2_RESET); 3565 } 3566 3567 DBEXIT(BCE_VERBOSE_RESET); 3568 } 3569 3570 3571 /****************************************************************************/ 3572 /* Load RISC processor firmware. */ 3573 /* */ 3574 /* Loads firmware from the file if_bcefw.h into the scratchpad memory */ 3575 /* associated with a particular processor. */ 3576 /* */ 3577 /* Returns: */ 3578 /* Nothing. */ 3579 /****************************************************************************/ 3580 static void 3581 bce_load_cpu_fw(struct bce_softc *sc, struct cpu_reg *cpu_reg, 3582 struct fw_info *fw) 3583 { 3584 u32 offset; 3585 u32 val; 3586 3587 DBENTER(BCE_VERBOSE_RESET); 3588 3589 /* Halt the CPU. */ 3590 val = REG_RD_IND(sc, cpu_reg->mode); 3591 val |= cpu_reg->mode_value_halt; 3592 REG_WR_IND(sc, cpu_reg->mode, val); 3593 REG_WR_IND(sc, cpu_reg->state, cpu_reg->state_value_clear); 3594 3595 /* Load the Text area. */ 3596 offset = cpu_reg->spad_base + (fw->text_addr - cpu_reg->mips_view_base); 3597 if (fw->text) { 3598 int j; 3599 3600 for (j = 0; j < (fw->text_len / 4); j++, offset += 4) { 3601 REG_WR_IND(sc, offset, fw->text[j]); 3602 } 3603 } 3604 3605 /* Load the Data area. */ 3606 offset = cpu_reg->spad_base + (fw->data_addr - cpu_reg->mips_view_base); 3607 if (fw->data) { 3608 int j; 3609 3610 for (j = 0; j < (fw->data_len / 4); j++, offset += 4) { 3611 REG_WR_IND(sc, offset, fw->data[j]); 3612 } 3613 } 3614 3615 /* Load the SBSS area. */ 3616 offset = cpu_reg->spad_base + (fw->sbss_addr - cpu_reg->mips_view_base); 3617 if (fw->sbss) { 3618 int j; 3619 3620 for (j = 0; j < (fw->sbss_len / 4); j++, offset += 4) { 3621 REG_WR_IND(sc, offset, fw->sbss[j]); 3622 } 3623 } 3624 3625 /* Load the BSS area. */ 3626 offset = cpu_reg->spad_base + (fw->bss_addr - cpu_reg->mips_view_base); 3627 if (fw->bss) { 3628 int j; 3629 3630 for (j = 0; j < (fw->bss_len/4); j++, offset += 4) { 3631 REG_WR_IND(sc, offset, fw->bss[j]); 3632 } 3633 } 3634 3635 /* Load the Read-Only area. */ 3636 offset = cpu_reg->spad_base + 3637 (fw->rodata_addr - cpu_reg->mips_view_base); 3638 if (fw->rodata) { 3639 int j; 3640 3641 for (j = 0; j < (fw->rodata_len / 4); j++, offset += 4) { 3642 REG_WR_IND(sc, offset, fw->rodata[j]); 3643 } 3644 } 3645 3646 /* Clear the pre-fetch instruction. */ 3647 REG_WR_IND(sc, cpu_reg->inst, 0); 3648 REG_WR_IND(sc, cpu_reg->pc, fw->start_addr); 3649 3650 /* Start the CPU. */ 3651 val = REG_RD_IND(sc, cpu_reg->mode); 3652 val &= ~cpu_reg->mode_value_halt; 3653 REG_WR_IND(sc, cpu_reg->state, cpu_reg->state_value_clear); 3654 REG_WR_IND(sc, cpu_reg->mode, val); 3655 3656 DBEXIT(BCE_VERBOSE_RESET); 3657 } 3658 3659 3660 /****************************************************************************/ 3661 /* Initialize the RX CPU. */ 3662 /* */ 3663 /* Returns: */ 3664 /* Nothing. */ 3665 /****************************************************************************/ 3666 static void 3667 bce_init_rxp_cpu(struct bce_softc *sc) 3668 { 3669 struct cpu_reg cpu_reg; 3670 struct fw_info fw; 3671 3672 DBENTER(BCE_VERBOSE_RESET); 3673 3674 cpu_reg.mode = BCE_RXP_CPU_MODE; 3675 cpu_reg.mode_value_halt = BCE_RXP_CPU_MODE_SOFT_HALT; 3676 cpu_reg.mode_value_sstep = BCE_RXP_CPU_MODE_STEP_ENA; 3677 cpu_reg.state = BCE_RXP_CPU_STATE; 3678 cpu_reg.state_value_clear = 0xffffff; 3679 cpu_reg.gpr0 = BCE_RXP_CPU_REG_FILE; 3680 cpu_reg.evmask = BCE_RXP_CPU_EVENT_MASK; 3681 cpu_reg.pc = BCE_RXP_CPU_PROGRAM_COUNTER; 3682 cpu_reg.inst = BCE_RXP_CPU_INSTRUCTION; 3683 cpu_reg.bp = BCE_RXP_CPU_HW_BREAKPOINT; 3684 cpu_reg.spad_base = BCE_RXP_SCRATCH; 3685 cpu_reg.mips_view_base = 0x8000000; 3686 3687 if ((BCE_CHIP_NUM(sc) == BCE_CHIP_NUM_5709) || 3688 (BCE_CHIP_NUM(sc) == BCE_CHIP_NUM_5716)) { 3689 fw.ver_major = bce_RXP_b09FwReleaseMajor; 3690 fw.ver_minor = bce_RXP_b09FwReleaseMinor; 3691 fw.ver_fix = bce_RXP_b09FwReleaseFix; 3692 fw.start_addr = bce_RXP_b09FwStartAddr; 3693 3694 fw.text_addr = bce_RXP_b09FwTextAddr; 3695 fw.text_len = bce_RXP_b09FwTextLen; 3696 fw.text_index = 0; 3697 fw.text = bce_RXP_b09FwText; 3698 3699 fw.data_addr = bce_RXP_b09FwDataAddr; 3700 fw.data_len = bce_RXP_b09FwDataLen; 3701 fw.data_index = 0; 3702 fw.data = bce_RXP_b09FwData; 3703 3704 fw.sbss_addr = bce_RXP_b09FwSbssAddr; 3705 fw.sbss_len = bce_RXP_b09FwSbssLen; 3706 fw.sbss_index = 0; 3707 fw.sbss = bce_RXP_b09FwSbss; 3708 3709 fw.bss_addr = bce_RXP_b09FwBssAddr; 3710 fw.bss_len = bce_RXP_b09FwBssLen; 3711 fw.bss_index = 0; 3712 fw.bss = bce_RXP_b09FwBss; 3713 3714 fw.rodata_addr = bce_RXP_b09FwRodataAddr; 3715 fw.rodata_len = bce_RXP_b09FwRodataLen; 3716 fw.rodata_index = 0; 3717 fw.rodata = bce_RXP_b09FwRodata; 3718 } else { 3719 fw.ver_major = bce_RXP_b06FwReleaseMajor; 3720 fw.ver_minor = bce_RXP_b06FwReleaseMinor; 3721 fw.ver_fix = bce_RXP_b06FwReleaseFix; 3722 fw.start_addr = bce_RXP_b06FwStartAddr; 3723 3724 fw.text_addr = bce_RXP_b06FwTextAddr; 3725 fw.text_len = bce_RXP_b06FwTextLen; 3726 fw.text_index = 0; 3727 fw.text = bce_RXP_b06FwText; 3728 3729 fw.data_addr = bce_RXP_b06FwDataAddr; 3730 fw.data_len = bce_RXP_b06FwDataLen; 3731 fw.data_index = 0; 3732 fw.data = bce_RXP_b06FwData; 3733 3734 fw.sbss_addr = bce_RXP_b06FwSbssAddr; 3735 fw.sbss_len = bce_RXP_b06FwSbssLen; 3736 fw.sbss_index = 0; 3737 fw.sbss = bce_RXP_b06FwSbss; 3738 3739 fw.bss_addr = bce_RXP_b06FwBssAddr; 3740 fw.bss_len = bce_RXP_b06FwBssLen; 3741 fw.bss_index = 0; 3742 fw.bss = bce_RXP_b06FwBss; 3743 3744 fw.rodata_addr = bce_RXP_b06FwRodataAddr; 3745 fw.rodata_len = bce_RXP_b06FwRodataLen; 3746 fw.rodata_index = 0; 3747 fw.rodata = bce_RXP_b06FwRodata; 3748 } 3749 3750 DBPRINT(sc, BCE_INFO_RESET, "Loading RX firmware.\n"); 3751 bce_load_cpu_fw(sc, &cpu_reg, &fw); 3752 3753 DBEXIT(BCE_VERBOSE_RESET); 3754 } 3755 3756 3757 /****************************************************************************/ 3758 /* Initialize the TX CPU. */ 3759 /* */ 3760 /* Returns: */ 3761 /* Nothing. */ 3762 /****************************************************************************/ 3763 static void 3764 bce_init_txp_cpu(struct bce_softc *sc) 3765 { 3766 struct cpu_reg cpu_reg; 3767 struct fw_info fw; 3768 3769 DBENTER(BCE_VERBOSE_RESET); 3770 3771 cpu_reg.mode = BCE_TXP_CPU_MODE; 3772 cpu_reg.mode_value_halt = BCE_TXP_CPU_MODE_SOFT_HALT; 3773 cpu_reg.mode_value_sstep = BCE_TXP_CPU_MODE_STEP_ENA; 3774 cpu_reg.state = BCE_TXP_CPU_STATE; 3775 cpu_reg.state_value_clear = 0xffffff; 3776 cpu_reg.gpr0 = BCE_TXP_CPU_REG_FILE; 3777 cpu_reg.evmask = BCE_TXP_CPU_EVENT_MASK; 3778 cpu_reg.pc = BCE_TXP_CPU_PROGRAM_COUNTER; 3779 cpu_reg.inst = BCE_TXP_CPU_INSTRUCTION; 3780 cpu_reg.bp = BCE_TXP_CPU_HW_BREAKPOINT; 3781 cpu_reg.spad_base = BCE_TXP_SCRATCH; 3782 cpu_reg.mips_view_base = 0x8000000; 3783 3784 if ((BCE_CHIP_NUM(sc) == BCE_CHIP_NUM_5709) || 3785 (BCE_CHIP_NUM(sc) == BCE_CHIP_NUM_5716)) { 3786 fw.ver_major = bce_TXP_b09FwReleaseMajor; 3787 fw.ver_minor = bce_TXP_b09FwReleaseMinor; 3788 fw.ver_fix = bce_TXP_b09FwReleaseFix; 3789 fw.start_addr = bce_TXP_b09FwStartAddr; 3790 3791 fw.text_addr = bce_TXP_b09FwTextAddr; 3792 fw.text_len = bce_TXP_b09FwTextLen; 3793 fw.text_index = 0; 3794 fw.text = bce_TXP_b09FwText; 3795 3796 fw.data_addr = bce_TXP_b09FwDataAddr; 3797 fw.data_len = bce_TXP_b09FwDataLen; 3798 fw.data_index = 0; 3799 fw.data = bce_TXP_b09FwData; 3800 3801 fw.sbss_addr = bce_TXP_b09FwSbssAddr; 3802 fw.sbss_len = bce_TXP_b09FwSbssLen; 3803 fw.sbss_index = 0; 3804 fw.sbss = bce_TXP_b09FwSbss; 3805 3806 fw.bss_addr = bce_TXP_b09FwBssAddr; 3807 fw.bss_len = bce_TXP_b09FwBssLen; 3808 fw.bss_index = 0; 3809 fw.bss = bce_TXP_b09FwBss; 3810 3811 fw.rodata_addr = bce_TXP_b09FwRodataAddr; 3812 fw.rodata_len = bce_TXP_b09FwRodataLen; 3813 fw.rodata_index = 0; 3814 fw.rodata = bce_TXP_b09FwRodata; 3815 } else { 3816 fw.ver_major = bce_TXP_b06FwReleaseMajor; 3817 fw.ver_minor = bce_TXP_b06FwReleaseMinor; 3818 fw.ver_fix = bce_TXP_b06FwReleaseFix; 3819 fw.start_addr = bce_TXP_b06FwStartAddr; 3820 3821 fw.text_addr = bce_TXP_b06FwTextAddr; 3822 fw.text_len = bce_TXP_b06FwTextLen; 3823 fw.text_index = 0; 3824 fw.text = bce_TXP_b06FwText; 3825 3826 fw.data_addr = bce_TXP_b06FwDataAddr; 3827 fw.data_len = bce_TXP_b06FwDataLen; 3828 fw.data_index = 0; 3829 fw.data = bce_TXP_b06FwData; 3830 3831 fw.sbss_addr = bce_TXP_b06FwSbssAddr; 3832 fw.sbss_len = bce_TXP_b06FwSbssLen; 3833 fw.sbss_index = 0; 3834 fw.sbss = bce_TXP_b06FwSbss; 3835 3836 fw.bss_addr = bce_TXP_b06FwBssAddr; 3837 fw.bss_len = bce_TXP_b06FwBssLen; 3838 fw.bss_index = 0; 3839 fw.bss = bce_TXP_b06FwBss; 3840 3841 fw.rodata_addr = bce_TXP_b06FwRodataAddr; 3842 fw.rodata_len = bce_TXP_b06FwRodataLen; 3843 fw.rodata_index = 0; 3844 fw.rodata = bce_TXP_b06FwRodata; 3845 } 3846 3847 DBPRINT(sc, BCE_INFO_RESET, "Loading TX firmware.\n"); 3848 bce_load_cpu_fw(sc, &cpu_reg, &fw); 3849 3850 DBEXIT(BCE_VERBOSE_RESET); 3851 } 3852 3853 3854 /****************************************************************************/ 3855 /* Initialize the TPAT CPU. */ 3856 /* */ 3857 /* Returns: */ 3858 /* Nothing. */ 3859 /****************************************************************************/ 3860 static void 3861 bce_init_tpat_cpu(struct bce_softc *sc) 3862 { 3863 struct cpu_reg cpu_reg; 3864 struct fw_info fw; 3865 3866 DBENTER(BCE_VERBOSE_RESET); 3867 3868 cpu_reg.mode = BCE_TPAT_CPU_MODE; 3869 cpu_reg.mode_value_halt = BCE_TPAT_CPU_MODE_SOFT_HALT; 3870 cpu_reg.mode_value_sstep = BCE_TPAT_CPU_MODE_STEP_ENA; 3871 cpu_reg.state = BCE_TPAT_CPU_STATE; 3872 cpu_reg.state_value_clear = 0xffffff; 3873 cpu_reg.gpr0 = BCE_TPAT_CPU_REG_FILE; 3874 cpu_reg.evmask = BCE_TPAT_CPU_EVENT_MASK; 3875 cpu_reg.pc = BCE_TPAT_CPU_PROGRAM_COUNTER; 3876 cpu_reg.inst = BCE_TPAT_CPU_INSTRUCTION; 3877 cpu_reg.bp = BCE_TPAT_CPU_HW_BREAKPOINT; 3878 cpu_reg.spad_base = BCE_TPAT_SCRATCH; 3879 cpu_reg.mips_view_base = 0x8000000; 3880 3881 if ((BCE_CHIP_NUM(sc) == BCE_CHIP_NUM_5709) || 3882 (BCE_CHIP_NUM(sc) == BCE_CHIP_NUM_5716)) { 3883 fw.ver_major = bce_TPAT_b09FwReleaseMajor; 3884 fw.ver_minor = bce_TPAT_b09FwReleaseMinor; 3885 fw.ver_fix = bce_TPAT_b09FwReleaseFix; 3886 fw.start_addr = bce_TPAT_b09FwStartAddr; 3887 3888 fw.text_addr = bce_TPAT_b09FwTextAddr; 3889 fw.text_len = bce_TPAT_b09FwTextLen; 3890 fw.text_index = 0; 3891 fw.text = bce_TPAT_b09FwText; 3892 3893 fw.data_addr = bce_TPAT_b09FwDataAddr; 3894 fw.data_len = bce_TPAT_b09FwDataLen; 3895 fw.data_index = 0; 3896 fw.data = bce_TPAT_b09FwData; 3897 3898 fw.sbss_addr = bce_TPAT_b09FwSbssAddr; 3899 fw.sbss_len = bce_TPAT_b09FwSbssLen; 3900 fw.sbss_index = 0; 3901 fw.sbss = bce_TPAT_b09FwSbss; 3902 3903 fw.bss_addr = bce_TPAT_b09FwBssAddr; 3904 fw.bss_len = bce_TPAT_b09FwBssLen; 3905 fw.bss_index = 0; 3906 fw.bss = bce_TPAT_b09FwBss; 3907 3908 fw.rodata_addr = bce_TPAT_b09FwRodataAddr; 3909 fw.rodata_len = bce_TPAT_b09FwRodataLen; 3910 fw.rodata_index = 0; 3911 fw.rodata = bce_TPAT_b09FwRodata; 3912 } else { 3913 fw.ver_major = bce_TPAT_b06FwReleaseMajor; 3914 fw.ver_minor = bce_TPAT_b06FwReleaseMinor; 3915 fw.ver_fix = bce_TPAT_b06FwReleaseFix; 3916 fw.start_addr = bce_TPAT_b06FwStartAddr; 3917 3918 fw.text_addr = bce_TPAT_b06FwTextAddr; 3919 fw.text_len = bce_TPAT_b06FwTextLen; 3920 fw.text_index = 0; 3921 fw.text = bce_TPAT_b06FwText; 3922 3923 fw.data_addr = bce_TPAT_b06FwDataAddr; 3924 fw.data_len = bce_TPAT_b06FwDataLen; 3925 fw.data_index = 0; 3926 fw.data = bce_TPAT_b06FwData; 3927 3928 fw.sbss_addr = bce_TPAT_b06FwSbssAddr; 3929 fw.sbss_len = bce_TPAT_b06FwSbssLen; 3930 fw.sbss_index = 0; 3931 fw.sbss = bce_TPAT_b06FwSbss; 3932 3933 fw.bss_addr = bce_TPAT_b06FwBssAddr; 3934 fw.bss_len = bce_TPAT_b06FwBssLen; 3935 fw.bss_index = 0; 3936 fw.bss = bce_TPAT_b06FwBss; 3937 3938 fw.rodata_addr = bce_TPAT_b06FwRodataAddr; 3939 fw.rodata_len = bce_TPAT_b06FwRodataLen; 3940 fw.rodata_index = 0; 3941 fw.rodata = bce_TPAT_b06FwRodata; 3942 } 3943 3944 DBPRINT(sc, BCE_INFO_RESET, "Loading TPAT firmware.\n"); 3945 bce_load_cpu_fw(sc, &cpu_reg, &fw); 3946 3947 DBEXIT(BCE_VERBOSE_RESET); 3948 } 3949 3950 3951 /****************************************************************************/ 3952 /* Initialize the CP CPU. */ 3953 /* */ 3954 /* Returns: */ 3955 /* Nothing. */ 3956 /****************************************************************************/ 3957 static void 3958 bce_init_cp_cpu(struct bce_softc *sc) 3959 { 3960 struct cpu_reg cpu_reg; 3961 struct fw_info fw; 3962 3963 DBENTER(BCE_VERBOSE_RESET); 3964 3965 cpu_reg.mode = BCE_CP_CPU_MODE; 3966 cpu_reg.mode_value_halt = BCE_CP_CPU_MODE_SOFT_HALT; 3967 cpu_reg.mode_value_sstep = BCE_CP_CPU_MODE_STEP_ENA; 3968 cpu_reg.state = BCE_CP_CPU_STATE; 3969 cpu_reg.state_value_clear = 0xffffff; 3970 cpu_reg.gpr0 = BCE_CP_CPU_REG_FILE; 3971 cpu_reg.evmask = BCE_CP_CPU_EVENT_MASK; 3972 cpu_reg.pc = BCE_CP_CPU_PROGRAM_COUNTER; 3973 cpu_reg.inst = BCE_CP_CPU_INSTRUCTION; 3974 cpu_reg.bp = BCE_CP_CPU_HW_BREAKPOINT; 3975 cpu_reg.spad_base = BCE_CP_SCRATCH; 3976 cpu_reg.mips_view_base = 0x8000000; 3977 3978 if ((BCE_CHIP_NUM(sc) == BCE_CHIP_NUM_5709) || 3979 (BCE_CHIP_NUM(sc) == BCE_CHIP_NUM_5716)) { 3980 fw.ver_major = bce_CP_b09FwReleaseMajor; 3981 fw.ver_minor = bce_CP_b09FwReleaseMinor; 3982 fw.ver_fix = bce_CP_b09FwReleaseFix; 3983 fw.start_addr = bce_CP_b09FwStartAddr; 3984 3985 fw.text_addr = bce_CP_b09FwTextAddr; 3986 fw.text_len = bce_CP_b09FwTextLen; 3987 fw.text_index = 0; 3988 fw.text = bce_CP_b09FwText; 3989 3990 fw.data_addr = bce_CP_b09FwDataAddr; 3991 fw.data_len = bce_CP_b09FwDataLen; 3992 fw.data_index = 0; 3993 fw.data = bce_CP_b09FwData; 3994 3995 fw.sbss_addr = bce_CP_b09FwSbssAddr; 3996 fw.sbss_len = bce_CP_b09FwSbssLen; 3997 fw.sbss_index = 0; 3998 fw.sbss = bce_CP_b09FwSbss; 3999 4000 fw.bss_addr = bce_CP_b09FwBssAddr; 4001 fw.bss_len = bce_CP_b09FwBssLen; 4002 fw.bss_index = 0; 4003 fw.bss = bce_CP_b09FwBss; 4004 4005 fw.rodata_addr = bce_CP_b09FwRodataAddr; 4006 fw.rodata_len = bce_CP_b09FwRodataLen; 4007 fw.rodata_index = 0; 4008 fw.rodata = bce_CP_b09FwRodata; 4009 } else { 4010 fw.ver_major = bce_CP_b06FwReleaseMajor; 4011 fw.ver_minor = bce_CP_b06FwReleaseMinor; 4012 fw.ver_fix = bce_CP_b06FwReleaseFix; 4013 fw.start_addr = bce_CP_b06FwStartAddr; 4014 4015 fw.text_addr = bce_CP_b06FwTextAddr; 4016 fw.text_len = bce_CP_b06FwTextLen; 4017 fw.text_index = 0; 4018 fw.text = bce_CP_b06FwText; 4019 4020 fw.data_addr = bce_CP_b06FwDataAddr; 4021 fw.data_len = bce_CP_b06FwDataLen; 4022 fw.data_index = 0; 4023 fw.data = bce_CP_b06FwData; 4024 4025 fw.sbss_addr = bce_CP_b06FwSbssAddr; 4026 fw.sbss_len = bce_CP_b06FwSbssLen; 4027 fw.sbss_index = 0; 4028 fw.sbss = bce_CP_b06FwSbss; 4029 4030 fw.bss_addr = bce_CP_b06FwBssAddr; 4031 fw.bss_len = bce_CP_b06FwBssLen; 4032 fw.bss_index = 0; 4033 fw.bss = bce_CP_b06FwBss; 4034 4035 fw.rodata_addr = bce_CP_b06FwRodataAddr; 4036 fw.rodata_len = bce_CP_b06FwRodataLen; 4037 fw.rodata_index = 0; 4038 fw.rodata = bce_CP_b06FwRodata; 4039 } 4040 4041 DBPRINT(sc, BCE_INFO_RESET, "Loading CP firmware.\n"); 4042 bce_load_cpu_fw(sc, &cpu_reg, &fw); 4043 4044 DBEXIT(BCE_VERBOSE_RESET); 4045 } 4046 4047 4048 /****************************************************************************/ 4049 /* Initialize the COM CPU. */ 4050 /* */ 4051 /* Returns: */ 4052 /* Nothing. */ 4053 /****************************************************************************/ 4054 static void 4055 bce_init_com_cpu(struct bce_softc *sc) 4056 { 4057 struct cpu_reg cpu_reg; 4058 struct fw_info fw; 4059 4060 DBENTER(BCE_VERBOSE_RESET); 4061 4062 cpu_reg.mode = BCE_COM_CPU_MODE; 4063 cpu_reg.mode_value_halt = BCE_COM_CPU_MODE_SOFT_HALT; 4064 cpu_reg.mode_value_sstep = BCE_COM_CPU_MODE_STEP_ENA; 4065 cpu_reg.state = BCE_COM_CPU_STATE; 4066 cpu_reg.state_value_clear = 0xffffff; 4067 cpu_reg.gpr0 = BCE_COM_CPU_REG_FILE; 4068 cpu_reg.evmask = BCE_COM_CPU_EVENT_MASK; 4069 cpu_reg.pc = BCE_COM_CPU_PROGRAM_COUNTER; 4070 cpu_reg.inst = BCE_COM_CPU_INSTRUCTION; 4071 cpu_reg.bp = BCE_COM_CPU_HW_BREAKPOINT; 4072 cpu_reg.spad_base = BCE_COM_SCRATCH; 4073 cpu_reg.mips_view_base = 0x8000000; 4074 4075 if ((BCE_CHIP_NUM(sc) == BCE_CHIP_NUM_5709) || 4076 (BCE_CHIP_NUM(sc) == BCE_CHIP_NUM_5716)) { 4077 fw.ver_major = bce_COM_b09FwReleaseMajor; 4078 fw.ver_minor = bce_COM_b09FwReleaseMinor; 4079 fw.ver_fix = bce_COM_b09FwReleaseFix; 4080 fw.start_addr = bce_COM_b09FwStartAddr; 4081 4082 fw.text_addr = bce_COM_b09FwTextAddr; 4083 fw.text_len = bce_COM_b09FwTextLen; 4084 fw.text_index = 0; 4085 fw.text = bce_COM_b09FwText; 4086 4087 fw.data_addr = bce_COM_b09FwDataAddr; 4088 fw.data_len = bce_COM_b09FwDataLen; 4089 fw.data_index = 0; 4090 fw.data = bce_COM_b09FwData; 4091 4092 fw.sbss_addr = bce_COM_b09FwSbssAddr; 4093 fw.sbss_len = bce_COM_b09FwSbssLen; 4094 fw.sbss_index = 0; 4095 fw.sbss = bce_COM_b09FwSbss; 4096 4097 fw.bss_addr = bce_COM_b09FwBssAddr; 4098 fw.bss_len = bce_COM_b09FwBssLen; 4099 fw.bss_index = 0; 4100 fw.bss = bce_COM_b09FwBss; 4101 4102 fw.rodata_addr = bce_COM_b09FwRodataAddr; 4103 fw.rodata_len = bce_COM_b09FwRodataLen; 4104 fw.rodata_index = 0; 4105 fw.rodata = bce_COM_b09FwRodata; 4106 } else { 4107 fw.ver_major = bce_COM_b06FwReleaseMajor; 4108 fw.ver_minor = bce_COM_b06FwReleaseMinor; 4109 fw.ver_fix = bce_COM_b06FwReleaseFix; 4110 fw.start_addr = bce_COM_b06FwStartAddr; 4111 4112 fw.text_addr = bce_COM_b06FwTextAddr; 4113 fw.text_len = bce_COM_b06FwTextLen; 4114 fw.text_index = 0; 4115 fw.text = bce_COM_b06FwText; 4116 4117 fw.data_addr = bce_COM_b06FwDataAddr; 4118 fw.data_len = bce_COM_b06FwDataLen; 4119 fw.data_index = 0; 4120 fw.data = bce_COM_b06FwData; 4121 4122 fw.sbss_addr = bce_COM_b06FwSbssAddr; 4123 fw.sbss_len = bce_COM_b06FwSbssLen; 4124 fw.sbss_index = 0; 4125 fw.sbss = bce_COM_b06FwSbss; 4126 4127 fw.bss_addr = bce_COM_b06FwBssAddr; 4128 fw.bss_len = bce_COM_b06FwBssLen; 4129 fw.bss_index = 0; 4130 fw.bss = bce_COM_b06FwBss; 4131 4132 fw.rodata_addr = bce_COM_b06FwRodataAddr; 4133 fw.rodata_len = bce_COM_b06FwRodataLen; 4134 fw.rodata_index = 0; 4135 fw.rodata = bce_COM_b06FwRodata; 4136 } 4137 4138 DBPRINT(sc, BCE_INFO_RESET, "Loading COM firmware.\n"); 4139 bce_load_cpu_fw(sc, &cpu_reg, &fw); 4140 4141 DBEXIT(BCE_VERBOSE_RESET); 4142 } 4143 4144 4145 /****************************************************************************/ 4146 /* Initialize the RV2P, RX, TX, TPAT, COM, and CP CPUs. */ 4147 /* */ 4148 /* Loads the firmware for each CPU and starts the CPU. */ 4149 /* */ 4150 /* Returns: */ 4151 /* Nothing. */ 4152 /****************************************************************************/ 4153 static void 4154 bce_init_cpus(struct bce_softc *sc) 4155 { 4156 DBENTER(BCE_VERBOSE_RESET); 4157 4158 if ((BCE_CHIP_NUM(sc) == BCE_CHIP_NUM_5709) || 4159 (BCE_CHIP_NUM(sc) == BCE_CHIP_NUM_5716)) { 4160 bce_load_rv2p_fw(sc, bce_xi_rv2p_proc1, sizeof(bce_xi_rv2p_proc1), 4161 RV2P_PROC1); 4162 bce_load_rv2p_fw(sc, bce_xi_rv2p_proc2, sizeof(bce_xi_rv2p_proc2), 4163 RV2P_PROC2); 4164 } else { 4165 bce_load_rv2p_fw(sc, bce_rv2p_proc1, sizeof(bce_rv2p_proc1), 4166 RV2P_PROC1); 4167 bce_load_rv2p_fw(sc, bce_rv2p_proc2, sizeof(bce_rv2p_proc2), 4168 RV2P_PROC2); 4169 } 4170 4171 bce_init_rxp_cpu(sc); 4172 bce_init_txp_cpu(sc); 4173 bce_init_tpat_cpu(sc); 4174 bce_init_com_cpu(sc); 4175 bce_init_cp_cpu(sc); 4176 4177 DBEXIT(BCE_VERBOSE_RESET); 4178 } 4179 4180 4181 /****************************************************************************/ 4182 /* Initialize context memory. */ 4183 /* */ 4184 /* Clears the memory associated with each Context ID (CID). */ 4185 /* */ 4186 /* Returns: */ 4187 /* Nothing. */ 4188 /****************************************************************************/ 4189 static void 4190 bce_init_ctx(struct bce_softc *sc) 4191 { 4192 4193 DBENTER(BCE_VERBOSE_RESET | BCE_VERBOSE_CTX); 4194 4195 if ((BCE_CHIP_NUM(sc) == BCE_CHIP_NUM_5709) || 4196 (BCE_CHIP_NUM(sc) == BCE_CHIP_NUM_5716)) { 4197 /* DRC: Replace this constant value with a #define. */ 4198 int i, retry_cnt = 10; 4199 u32 val; 4200 4201 DBPRINT(sc, BCE_INFO_CTX, "Initializing 5709 context.\n"); 4202 4203 /* 4204 * BCM5709 context memory may be cached 4205 * in host memory so prepare the host memory 4206 * for access. 4207 */ 4208 val = BCE_CTX_COMMAND_ENABLED | BCE_CTX_COMMAND_MEM_INIT | (1 << 12); 4209 val |= (BCM_PAGE_BITS - 8) << 16; 4210 REG_WR(sc, BCE_CTX_COMMAND, val); 4211 4212 /* Wait for mem init command to complete. */ 4213 for (i = 0; i < retry_cnt; i++) { 4214 val = REG_RD(sc, BCE_CTX_COMMAND); 4215 if (!(val & BCE_CTX_COMMAND_MEM_INIT)) 4216 break; 4217 DELAY(2); 4218 } 4219 4220 /* ToDo: Consider returning an error here. */ 4221 DBRUNIF((val & BCE_CTX_COMMAND_MEM_INIT), 4222 BCE_PRINTF("%s(): Context memory initialization failed!\n", 4223 __FUNCTION__)); 4224 4225 for (i = 0; i < sc->ctx_pages; i++) { 4226 int j; 4227 4228 /* Set the physical address of the context memory cache. */ 4229 REG_WR(sc, BCE_CTX_HOST_PAGE_TBL_DATA0, 4230 BCE_ADDR_LO(sc->ctx_paddr[i] & 0xfffffff0) | 4231 BCE_CTX_HOST_PAGE_TBL_DATA0_VALID); 4232 REG_WR(sc, BCE_CTX_HOST_PAGE_TBL_DATA1, 4233 BCE_ADDR_HI(sc->ctx_paddr[i])); 4234 REG_WR(sc, BCE_CTX_HOST_PAGE_TBL_CTRL, i | 4235 BCE_CTX_HOST_PAGE_TBL_CTRL_WRITE_REQ); 4236 4237 /* Verify that the context memory write was successful. */ 4238 for (j = 0; j < retry_cnt; j++) { 4239 val = REG_RD(sc, BCE_CTX_HOST_PAGE_TBL_CTRL); 4240 if ((val & BCE_CTX_HOST_PAGE_TBL_CTRL_WRITE_REQ) == 0) 4241 break; 4242 DELAY(5); 4243 } 4244 4245 /* ToDo: Consider returning an error here. */ 4246 DBRUNIF((val & BCE_CTX_HOST_PAGE_TBL_CTRL_WRITE_REQ), 4247 BCE_PRINTF("%s(): Failed to initialize context page %d!\n", 4248 __FUNCTION__, i)); 4249 } 4250 } else { 4251 u32 vcid_addr, offset; 4252 4253 DBPRINT(sc, BCE_INFO, "Initializing 5706/5708 context.\n"); 4254 4255 /* 4256 * For the 5706/5708, context memory is local to 4257 * the controller, so initialize the controller 4258 * context memory. 4259 */ 4260 4261 vcid_addr = GET_CID_ADDR(96); 4262 while (vcid_addr) { 4263 4264 vcid_addr -= PHY_CTX_SIZE; 4265 4266 REG_WR(sc, BCE_CTX_VIRT_ADDR, 0); 4267 REG_WR(sc, BCE_CTX_PAGE_TBL, vcid_addr); 4268 4269 for(offset = 0; offset < PHY_CTX_SIZE; offset += 4) { 4270 CTX_WR(sc, 0x00, offset, 0); 4271 } 4272 4273 REG_WR(sc, BCE_CTX_VIRT_ADDR, vcid_addr); 4274 REG_WR(sc, BCE_CTX_PAGE_TBL, vcid_addr); 4275 } 4276 4277 } 4278 DBEXIT(BCE_VERBOSE_RESET | BCE_VERBOSE_CTX); 4279 } 4280 4281 4282 /****************************************************************************/ 4283 /* Fetch the permanent MAC address of the controller. */ 4284 /* */ 4285 /* Returns: */ 4286 /* Nothing. */ 4287 /****************************************************************************/ 4288 static void 4289 bce_get_mac_addr(struct bce_softc *sc) 4290 { 4291 u32 mac_lo = 0, mac_hi = 0; 4292 4293 DBENTER(BCE_VERBOSE_RESET); 4294 /* 4295 * The NetXtreme II bootcode populates various NIC 4296 * power-on and runtime configuration items in a 4297 * shared memory area. The factory configured MAC 4298 * address is available from both NVRAM and the 4299 * shared memory area so we'll read the value from 4300 * shared memory for speed. 4301 */ 4302 4303 mac_hi = REG_RD_IND(sc, sc->bce_shmem_base + 4304 BCE_PORT_HW_CFG_MAC_UPPER); 4305 mac_lo = REG_RD_IND(sc, sc->bce_shmem_base + 4306 BCE_PORT_HW_CFG_MAC_LOWER); 4307 4308 if ((mac_lo == 0) && (mac_hi == 0)) { 4309 BCE_PRINTF("%s(%d): Invalid Ethernet address!\n", 4310 __FILE__, __LINE__); 4311 } else { 4312 sc->eaddr[0] = (u_char)(mac_hi >> 8); 4313 sc->eaddr[1] = (u_char)(mac_hi >> 0); 4314 sc->eaddr[2] = (u_char)(mac_lo >> 24); 4315 sc->eaddr[3] = (u_char)(mac_lo >> 16); 4316 sc->eaddr[4] = (u_char)(mac_lo >> 8); 4317 sc->eaddr[5] = (u_char)(mac_lo >> 0); 4318 } 4319 4320 DBPRINT(sc, BCE_INFO_MISC, "Permanent Ethernet address = %6D\n", sc->eaddr, ":"); 4321 DBEXIT(BCE_VERBOSE_RESET); 4322 } 4323 4324 4325 /****************************************************************************/ 4326 /* Program the MAC address. */ 4327 /* */ 4328 /* Returns: */ 4329 /* Nothing. */ 4330 /****************************************************************************/ 4331 static void 4332 bce_set_mac_addr(struct bce_softc *sc) 4333 { 4334 u32 val; 4335 u8 *mac_addr = sc->eaddr; 4336 4337 /* ToDo: Add support for setting multiple MAC addresses. */ 4338 4339 DBENTER(BCE_VERBOSE_RESET); 4340 DBPRINT(sc, BCE_INFO_MISC, "Setting Ethernet address = %6D\n", sc->eaddr, ":"); 4341 4342 val = (mac_addr[0] << 8) | mac_addr[1]; 4343 4344 REG_WR(sc, BCE_EMAC_MAC_MATCH0, val); 4345 4346 val = (mac_addr[2] << 24) | (mac_addr[3] << 16) | 4347 (mac_addr[4] << 8) | mac_addr[5]; 4348 4349 REG_WR(sc, BCE_EMAC_MAC_MATCH1, val); 4350 4351 DBEXIT(BCE_VERBOSE_RESET); 4352 } 4353 4354 4355 /****************************************************************************/ 4356 /* Stop the controller. */ 4357 /* */ 4358 /* Returns: */ 4359 /* Nothing. */ 4360 /****************************************************************************/ 4361 static void 4362 bce_stop(struct bce_softc *sc) 4363 { 4364 struct ifnet *ifp; 4365 struct ifmedia_entry *ifm; 4366 struct mii_data *mii = NULL; 4367 int mtmp, itmp; 4368 4369 DBENTER(BCE_VERBOSE_RESET); 4370 4371 BCE_LOCK_ASSERT(sc); 4372 4373 ifp = sc->bce_ifp; 4374 4375 mii = device_get_softc(sc->bce_miibus); 4376 4377 callout_stop(&sc->bce_tick_callout); 4378 4379 /* Disable the transmit/receive blocks. */ 4380 REG_WR(sc, BCE_MISC_ENABLE_CLR_BITS, BCE_MISC_ENABLE_CLR_DEFAULT); 4381 REG_RD(sc, BCE_MISC_ENABLE_CLR_BITS); 4382 DELAY(20); 4383 4384 bce_disable_intr(sc); 4385 4386 /* Free RX buffers. */ 4387 #ifdef BCE_USE_SPLIT_HEADER 4388 bce_free_pg_chain(sc); 4389 #endif 4390 bce_free_rx_chain(sc); 4391 4392 /* Free TX buffers. */ 4393 bce_free_tx_chain(sc); 4394 4395 /* 4396 * Isolate/power down the PHY, but leave the media selection 4397 * unchanged so that things will be put back to normal when 4398 * we bring the interface back up. 4399 */ 4400 4401 itmp = ifp->if_flags; 4402 ifp->if_flags |= IFF_UP; 4403 4404 /* If we are called from bce_detach(), mii is already NULL. */ 4405 if (mii != NULL) { 4406 ifm = mii->mii_media.ifm_cur; 4407 mtmp = ifm->ifm_media; 4408 ifm->ifm_media = IFM_ETHER | IFM_NONE; 4409 mii_mediachg(mii); 4410 ifm->ifm_media = mtmp; 4411 } 4412 4413 ifp->if_flags = itmp; 4414 sc->watchdog_timer = 0; 4415 4416 sc->bce_link = 0; 4417 4418 ifp->if_drv_flags &= ~(IFF_DRV_RUNNING | IFF_DRV_OACTIVE); 4419 4420 DBEXIT(BCE_VERBOSE_RESET); 4421 } 4422 4423 4424 static int 4425 bce_reset(struct bce_softc *sc, u32 reset_code) 4426 { 4427 u32 val; 4428 int i, rc = 0; 4429 4430 DBENTER(BCE_VERBOSE_RESET); 4431 4432 DBPRINT(sc, BCE_VERBOSE_RESET, "%s(): reset_code = 0x%08X\n", 4433 __FUNCTION__, reset_code); 4434 4435 /* Wait for pending PCI transactions to complete. */ 4436 REG_WR(sc, BCE_MISC_ENABLE_CLR_BITS, 4437 BCE_MISC_ENABLE_CLR_BITS_TX_DMA_ENABLE | 4438 BCE_MISC_ENABLE_CLR_BITS_DMA_ENGINE_ENABLE | 4439 BCE_MISC_ENABLE_CLR_BITS_RX_DMA_ENABLE | 4440 BCE_MISC_ENABLE_CLR_BITS_HOST_COALESCE_ENABLE); 4441 val = REG_RD(sc, BCE_MISC_ENABLE_CLR_BITS); 4442 DELAY(5); 4443 4444 /* Disable DMA */ 4445 if ((BCE_CHIP_NUM(sc) == BCE_CHIP_NUM_5709) || 4446 (BCE_CHIP_NUM(sc) == BCE_CHIP_NUM_5716)) { 4447 val = REG_RD(sc, BCE_MISC_NEW_CORE_CTL); 4448 val &= ~BCE_MISC_NEW_CORE_CTL_DMA_ENABLE; 4449 REG_WR(sc, BCE_MISC_NEW_CORE_CTL, val); 4450 } 4451 4452 /* Assume bootcode is running. */ 4453 sc->bce_fw_timed_out = 0; 4454 4455 /* Give the firmware a chance to prepare for the reset. */ 4456 rc = bce_fw_sync(sc, BCE_DRV_MSG_DATA_WAIT0 | reset_code); 4457 if (rc) 4458 goto bce_reset_exit; 4459 4460 /* Set a firmware reminder that this is a soft reset. */ 4461 REG_WR_IND(sc, sc->bce_shmem_base + BCE_DRV_RESET_SIGNATURE, 4462 BCE_DRV_RESET_SIGNATURE_MAGIC); 4463 4464 /* Dummy read to force the chip to complete all current transactions. */ 4465 val = REG_RD(sc, BCE_MISC_ID); 4466 4467 /* Chip reset. */ 4468 if ((BCE_CHIP_NUM(sc) == BCE_CHIP_NUM_5709) || 4469 (BCE_CHIP_NUM(sc) == BCE_CHIP_NUM_5716)) { 4470 REG_WR(sc, BCE_MISC_COMMAND, BCE_MISC_COMMAND_SW_RESET); 4471 REG_RD(sc, BCE_MISC_COMMAND); 4472 DELAY(5); 4473 4474 val = BCE_PCICFG_MISC_CONFIG_REG_WINDOW_ENA | 4475 BCE_PCICFG_MISC_CONFIG_TARGET_MB_WORD_SWAP; 4476 4477 pci_write_config(sc->bce_dev, BCE_PCICFG_MISC_CONFIG, val, 4); 4478 } else { 4479 val = BCE_PCICFG_MISC_CONFIG_CORE_RST_REQ | 4480 BCE_PCICFG_MISC_CONFIG_REG_WINDOW_ENA | 4481 BCE_PCICFG_MISC_CONFIG_TARGET_MB_WORD_SWAP; 4482 REG_WR(sc, BCE_PCICFG_MISC_CONFIG, val); 4483 4484 /* Allow up to 30us for reset to complete. */ 4485 for (i = 0; i < 10; i++) { 4486 val = REG_RD(sc, BCE_PCICFG_MISC_CONFIG); 4487 if ((val & (BCE_PCICFG_MISC_CONFIG_CORE_RST_REQ | 4488 BCE_PCICFG_MISC_CONFIG_CORE_RST_BSY)) == 0) { 4489 break; 4490 } 4491 DELAY(10); 4492 } 4493 4494 /* Check that reset completed successfully. */ 4495 if (val & (BCE_PCICFG_MISC_CONFIG_CORE_RST_REQ | 4496 BCE_PCICFG_MISC_CONFIG_CORE_RST_BSY)) { 4497 BCE_PRINTF("%s(%d): Reset failed!\n", 4498 __FILE__, __LINE__); 4499 rc = EBUSY; 4500 goto bce_reset_exit; 4501 } 4502 } 4503 4504 /* Make sure byte swapping is properly configured. */ 4505 val = REG_RD(sc, BCE_PCI_SWAP_DIAG0); 4506 if (val != 0x01020304) { 4507 BCE_PRINTF("%s(%d): Byte swap is incorrect!\n", 4508 __FILE__, __LINE__); 4509 rc = ENODEV; 4510 goto bce_reset_exit; 4511 } 4512 4513 /* Just completed a reset, assume that firmware is running again. */ 4514 sc->bce_fw_timed_out = 0; 4515 4516 /* Wait for the firmware to finish its initialization. */ 4517 rc = bce_fw_sync(sc, BCE_DRV_MSG_DATA_WAIT1 | reset_code); 4518 if (rc) 4519 BCE_PRINTF("%s(%d): Firmware did not complete initialization!\n", 4520 __FILE__, __LINE__); 4521 4522 bce_reset_exit: 4523 DBEXIT(BCE_VERBOSE_RESET); 4524 return (rc); 4525 } 4526 4527 4528 static int 4529 bce_chipinit(struct bce_softc *sc) 4530 { 4531 u32 val; 4532 int rc = 0; 4533 4534 DBENTER(BCE_VERBOSE_RESET); 4535 4536 bce_disable_intr(sc); 4537 4538 /* 4539 * Initialize DMA byte/word swapping, configure the number of DMA 4540 * channels and PCI clock compensation delay. 4541 */ 4542 val = BCE_DMA_CONFIG_DATA_BYTE_SWAP | 4543 BCE_DMA_CONFIG_DATA_WORD_SWAP | 4544 #if BYTE_ORDER == BIG_ENDIAN 4545 BCE_DMA_CONFIG_CNTL_BYTE_SWAP | 4546 #endif 4547 BCE_DMA_CONFIG_CNTL_WORD_SWAP | 4548 DMA_READ_CHANS << 12 | 4549 DMA_WRITE_CHANS << 16; 4550 4551 val |= (0x2 << 20) | BCE_DMA_CONFIG_CNTL_PCI_COMP_DLY; 4552 4553 if ((sc->bce_flags & BCE_PCIX_FLAG) && (sc->bus_speed_mhz == 133)) 4554 val |= BCE_DMA_CONFIG_PCI_FAST_CLK_CMP; 4555 4556 /* 4557 * This setting resolves a problem observed on certain Intel PCI 4558 * chipsets that cannot handle multiple outstanding DMA operations. 4559 * See errata E9_5706A1_65. 4560 */ 4561 if ((BCE_CHIP_NUM(sc) == BCE_CHIP_NUM_5706) && 4562 (BCE_CHIP_ID(sc) != BCE_CHIP_ID_5706_A0) && 4563 !(sc->bce_flags & BCE_PCIX_FLAG)) 4564 val |= BCE_DMA_CONFIG_CNTL_PING_PONG_DMA; 4565 4566 REG_WR(sc, BCE_DMA_CONFIG, val); 4567 4568 /* Enable the RX_V2P and Context state machines before access. */ 4569 REG_WR(sc, BCE_MISC_ENABLE_SET_BITS, 4570 BCE_MISC_ENABLE_SET_BITS_HOST_COALESCE_ENABLE | 4571 BCE_MISC_ENABLE_STATUS_BITS_RX_V2P_ENABLE | 4572 BCE_MISC_ENABLE_STATUS_BITS_CONTEXT_ENABLE); 4573 4574 /* Initialize context mapping and zero out the quick contexts. */ 4575 bce_init_ctx(sc); 4576 4577 /* Initialize the on-boards CPUs */ 4578 bce_init_cpus(sc); 4579 4580 /* Prepare NVRAM for access. */ 4581 if (bce_init_nvram(sc)) { 4582 rc = ENODEV; 4583 goto bce_chipinit_exit; 4584 } 4585 4586 /* Set the kernel bypass block size */ 4587 val = REG_RD(sc, BCE_MQ_CONFIG); 4588 val &= ~BCE_MQ_CONFIG_KNL_BYP_BLK_SIZE; 4589 val |= BCE_MQ_CONFIG_KNL_BYP_BLK_SIZE_256; 4590 4591 /* Enable bins used on the 5709. */ 4592 if ((BCE_CHIP_NUM(sc) == BCE_CHIP_NUM_5709) || 4593 (BCE_CHIP_NUM(sc) == BCE_CHIP_NUM_5716)) { 4594 val |= BCE_MQ_CONFIG_BIN_MQ_MODE; 4595 if (BCE_CHIP_ID(sc) == BCE_CHIP_ID_5709_A1) 4596 val |= BCE_MQ_CONFIG_HALT_DIS; 4597 } 4598 4599 REG_WR(sc, BCE_MQ_CONFIG, val); 4600 4601 val = 0x10000 + (MAX_CID_CNT * MB_KERNEL_CTX_SIZE); 4602 REG_WR(sc, BCE_MQ_KNL_BYP_WIND_START, val); 4603 REG_WR(sc, BCE_MQ_KNL_WIND_END, val); 4604 4605 /* Set the page size and clear the RV2P processor stall bits. */ 4606 val = (BCM_PAGE_BITS - 8) << 24; 4607 REG_WR(sc, BCE_RV2P_CONFIG, val); 4608 4609 /* Configure page size. */ 4610 val = REG_RD(sc, BCE_TBDR_CONFIG); 4611 val &= ~BCE_TBDR_CONFIG_PAGE_SIZE; 4612 val |= (BCM_PAGE_BITS - 8) << 24 | 0x40; 4613 REG_WR(sc, BCE_TBDR_CONFIG, val); 4614 4615 /* Set the perfect match control register to default. */ 4616 REG_WR_IND(sc, BCE_RXP_PM_CTRL, 0); 4617 4618 bce_chipinit_exit: 4619 DBEXIT(BCE_VERBOSE_RESET); 4620 4621 return(rc); 4622 } 4623 4624 4625 /****************************************************************************/ 4626 /* Initialize the controller in preparation to send/receive traffic. */ 4627 /* */ 4628 /* Returns: */ 4629 /* 0 for success, positive value for failure. */ 4630 /****************************************************************************/ 4631 static int 4632 bce_blockinit(struct bce_softc *sc) 4633 { 4634 u32 reg, val; 4635 int rc = 0; 4636 4637 DBENTER(BCE_VERBOSE_RESET); 4638 4639 /* Load the hardware default MAC address. */ 4640 bce_set_mac_addr(sc); 4641 4642 /* Set the Ethernet backoff seed value */ 4643 val = sc->eaddr[0] + (sc->eaddr[1] << 8) + 4644 (sc->eaddr[2] << 16) + (sc->eaddr[3] ) + 4645 (sc->eaddr[4] << 8) + (sc->eaddr[5] << 16); 4646 REG_WR(sc, BCE_EMAC_BACKOFF_SEED, val); 4647 4648 sc->last_status_idx = 0; 4649 sc->rx_mode = BCE_EMAC_RX_MODE_SORT_MODE; 4650 4651 /* Set up link change interrupt generation. */ 4652 REG_WR(sc, BCE_EMAC_ATTENTION_ENA, BCE_EMAC_ATTENTION_ENA_LINK); 4653 4654 /* Program the physical address of the status block. */ 4655 REG_WR(sc, BCE_HC_STATUS_ADDR_L, 4656 BCE_ADDR_LO(sc->status_block_paddr)); 4657 REG_WR(sc, BCE_HC_STATUS_ADDR_H, 4658 BCE_ADDR_HI(sc->status_block_paddr)); 4659 4660 /* Program the physical address of the statistics block. */ 4661 REG_WR(sc, BCE_HC_STATISTICS_ADDR_L, 4662 BCE_ADDR_LO(sc->stats_block_paddr)); 4663 REG_WR(sc, BCE_HC_STATISTICS_ADDR_H, 4664 BCE_ADDR_HI(sc->stats_block_paddr)); 4665 4666 /* Program various host coalescing parameters. */ 4667 REG_WR(sc, BCE_HC_TX_QUICK_CONS_TRIP, 4668 (sc->bce_tx_quick_cons_trip_int << 16) | sc->bce_tx_quick_cons_trip); 4669 REG_WR(sc, BCE_HC_RX_QUICK_CONS_TRIP, 4670 (sc->bce_rx_quick_cons_trip_int << 16) | sc->bce_rx_quick_cons_trip); 4671 REG_WR(sc, BCE_HC_COMP_PROD_TRIP, 4672 (sc->bce_comp_prod_trip_int << 16) | sc->bce_comp_prod_trip); 4673 REG_WR(sc, BCE_HC_TX_TICKS, 4674 (sc->bce_tx_ticks_int << 16) | sc->bce_tx_ticks); 4675 REG_WR(sc, BCE_HC_RX_TICKS, 4676 (sc->bce_rx_ticks_int << 16) | sc->bce_rx_ticks); 4677 REG_WR(sc, BCE_HC_COM_TICKS, 4678 (sc->bce_com_ticks_int << 16) | sc->bce_com_ticks); 4679 REG_WR(sc, BCE_HC_CMD_TICKS, 4680 (sc->bce_cmd_ticks_int << 16) | sc->bce_cmd_ticks); 4681 REG_WR(sc, BCE_HC_STATS_TICKS, 4682 (sc->bce_stats_ticks & 0xffff00)); 4683 REG_WR(sc, BCE_HC_STAT_COLLECT_TICKS, 0xbb8); /* 3ms */ 4684 4685 /* Configure the Host Coalescing block. */ 4686 val = BCE_HC_CONFIG_RX_TMR_MODE | BCE_HC_CONFIG_TX_TMR_MODE | 4687 BCE_HC_CONFIG_COLLECT_STATS; 4688 4689 #if 0 4690 /* ToDo: Add MSI-X support. */ 4691 if (sc->bce_flags & BCE_USING_MSIX_FLAG) { 4692 u32 base = ((BCE_TX_VEC - 1) * BCE_HC_SB_CONFIG_SIZE) + 4693 BCE_HC_SB_CONFIG_1; 4694 4695 REG_WR(sc, BCE_HC_MSIX_BIT_VECTOR, BCE_HC_MSIX_BIT_VECTOR_VAL); 4696 4697 REG_WR(sc, base, BCE_HC_SB_CONFIG_1_TX_TMR_MODE | 4698 BCE_HC_SB_CONFIG_1_ONE_SHOT); 4699 4700 REG_WR(sc, base + BCE_HC_TX_QUICK_CONS_TRIP_OFF, 4701 (sc->tx_quick_cons_trip_int << 16) | 4702 sc->tx_quick_cons_trip); 4703 4704 REG_WR(sc, base + BCE_HC_TX_TICKS_OFF, 4705 (sc->tx_ticks_int << 16) | sc->tx_ticks); 4706 4707 val |= BCE_HC_CONFIG_SB_ADDR_INC_128B; 4708 } 4709 4710 /* 4711 * Tell the HC block to automatically set the 4712 * INT_MASK bit after an MSI/MSI-X interrupt 4713 * is generated so the driver doesn't have to. 4714 */ 4715 if (sc->bce_flags & BCE_ONE_SHOT_MSI_FLAG) 4716 val |= BCE_HC_CONFIG_ONE_SHOT; 4717 4718 /* Set the MSI-X status blocks to 128 byte boundaries. */ 4719 if (sc->bce_flags & BCE_USING_MSIX_FLAG) 4720 val |= BCE_HC_CONFIG_SB_ADDR_INC_128B; 4721 #endif 4722 4723 REG_WR(sc, BCE_HC_CONFIG, val); 4724 4725 /* Clear the internal statistics counters. */ 4726 REG_WR(sc, BCE_HC_COMMAND, BCE_HC_COMMAND_CLR_STAT_NOW); 4727 4728 /* Verify that bootcode is running. */ 4729 reg = REG_RD_IND(sc, sc->bce_shmem_base + BCE_DEV_INFO_SIGNATURE); 4730 4731 DBRUNIF(DB_RANDOMTRUE(bce_debug_bootcode_running_failure), 4732 BCE_PRINTF("%s(%d): Simulating bootcode failure.\n", 4733 __FILE__, __LINE__); 4734 reg = 0); 4735 4736 if ((reg & BCE_DEV_INFO_SIGNATURE_MAGIC_MASK) != 4737 BCE_DEV_INFO_SIGNATURE_MAGIC) { 4738 BCE_PRINTF("%s(%d): Bootcode not running! Found: 0x%08X, " 4739 "Expected: 08%08X\n", __FILE__, __LINE__, 4740 (reg & BCE_DEV_INFO_SIGNATURE_MAGIC_MASK), 4741 BCE_DEV_INFO_SIGNATURE_MAGIC); 4742 rc = ENODEV; 4743 goto bce_blockinit_exit; 4744 } 4745 4746 /* Enable DMA */ 4747 if ((BCE_CHIP_NUM(sc) == BCE_CHIP_NUM_5709) || 4748 (BCE_CHIP_NUM(sc) == BCE_CHIP_NUM_5716)) { 4749 val = REG_RD(sc, BCE_MISC_NEW_CORE_CTL); 4750 val |= BCE_MISC_NEW_CORE_CTL_DMA_ENABLE; 4751 REG_WR(sc, BCE_MISC_NEW_CORE_CTL, val); 4752 } 4753 4754 /* Allow bootcode to apply any additional fixes before enabling MAC. */ 4755 rc = bce_fw_sync(sc, BCE_DRV_MSG_DATA_WAIT2 | BCE_DRV_MSG_CODE_RESET); 4756 4757 /* Enable link state change interrupt generation. */ 4758 REG_WR(sc, BCE_HC_ATTN_BITS_ENABLE, STATUS_ATTN_BITS_LINK_STATE); 4759 4760 /* Enable all remaining blocks in the MAC. */ 4761 if ((BCE_CHIP_NUM(sc) == BCE_CHIP_NUM_5709) || 4762 (BCE_CHIP_NUM(sc) == BCE_CHIP_NUM_5716)) 4763 REG_WR(sc, BCE_MISC_ENABLE_SET_BITS, BCE_MISC_ENABLE_DEFAULT_XI); 4764 else 4765 REG_WR(sc, BCE_MISC_ENABLE_SET_BITS, BCE_MISC_ENABLE_DEFAULT); 4766 4767 REG_RD(sc, BCE_MISC_ENABLE_SET_BITS); 4768 DELAY(20); 4769 4770 /* Save the current host coalescing block settings. */ 4771 sc->hc_command = REG_RD(sc, BCE_HC_COMMAND); 4772 4773 bce_blockinit_exit: 4774 DBEXIT(BCE_VERBOSE_RESET); 4775 4776 return (rc); 4777 } 4778 4779 4780 /****************************************************************************/ 4781 /* Encapsulate an mbuf into the rx_bd chain. */ 4782 /* */ 4783 /* Returns: */ 4784 /* 0 for success, positive value for failure. */ 4785 /****************************************************************************/ 4786 static int 4787 bce_get_rx_buf(struct bce_softc *sc, struct mbuf *m, u16 *prod, 4788 u16 *chain_prod, u32 *prod_bseq) 4789 { 4790 bus_dmamap_t map; 4791 bus_dma_segment_t segs[BCE_MAX_SEGMENTS]; 4792 struct mbuf *m_new = NULL; 4793 struct rx_bd *rxbd; 4794 int nsegs, error, rc = 0; 4795 #ifdef BCE_DEBUG 4796 u16 debug_chain_prod = *chain_prod; 4797 #endif 4798 4799 DBENTER(BCE_EXTREME_RESET | BCE_EXTREME_RECV | BCE_EXTREME_LOAD); 4800 4801 /* Make sure the inputs are valid. */ 4802 DBRUNIF((*chain_prod > MAX_RX_BD), 4803 BCE_PRINTF("%s(%d): RX producer out of range: 0x%04X > 0x%04X\n", 4804 __FILE__, __LINE__, *chain_prod, (u16) MAX_RX_BD)); 4805 4806 DBPRINT(sc, BCE_EXTREME_RECV, "%s(enter): prod = 0x%04X, chain_prod = 0x%04X, " 4807 "prod_bseq = 0x%08X\n", __FUNCTION__, *prod, *chain_prod, *prod_bseq); 4808 4809 /* Update some debug statistic counters */ 4810 DBRUNIF((sc->free_rx_bd < sc->rx_low_watermark), 4811 sc->rx_low_watermark = sc->free_rx_bd); 4812 DBRUNIF((sc->free_rx_bd == sc->max_rx_bd), sc->rx_empty_count++); 4813 4814 /* Check whether this is a new mbuf allocation. */ 4815 if (m == NULL) { 4816 4817 /* Simulate an mbuf allocation failure. */ 4818 DBRUNIF(DB_RANDOMTRUE(bce_debug_mbuf_allocation_failure), 4819 sc->mbuf_alloc_failed++; 4820 sc->debug_mbuf_sim_alloc_failed++; 4821 rc = ENOBUFS; 4822 goto bce_get_rx_buf_exit); 4823 4824 /* This is a new mbuf allocation. */ 4825 #ifdef BCE_USE_SPLIT_HEADER 4826 MGETHDR(m_new, M_DONTWAIT, MT_DATA); 4827 #else 4828 if (sc->rx_bd_mbuf_alloc_size <= MCLBYTES) 4829 m_new = m_getcl(M_DONTWAIT, MT_DATA, M_PKTHDR); 4830 else 4831 m_new = m_getjcl(M_DONTWAIT, MT_DATA, M_PKTHDR, sc->rx_bd_mbuf_alloc_size); 4832 #endif 4833 4834 if (m_new == NULL) { 4835 sc->mbuf_alloc_failed++; 4836 rc = ENOBUFS; 4837 goto bce_get_rx_buf_exit; 4838 } 4839 4840 DBRUN(sc->debug_rx_mbuf_alloc++); 4841 } else { 4842 /* Reuse an existing mbuf. */ 4843 m_new = m; 4844 } 4845 4846 /* Make sure we have a valid packet header. */ 4847 M_ASSERTPKTHDR(m_new); 4848 4849 /* Initialize the mbuf size and pad if necessary for alignment. */ 4850 m_new->m_pkthdr.len = m_new->m_len = sc->rx_bd_mbuf_alloc_size; 4851 m_adj(m_new, sc->rx_bd_mbuf_align_pad); 4852 4853 /* ToDo: Consider calling m_fragment() to test error handling. */ 4854 4855 /* Map the mbuf cluster into device memory. */ 4856 map = sc->rx_mbuf_map[*chain_prod]; 4857 error = bus_dmamap_load_mbuf_sg(sc->rx_mbuf_tag, map, m_new, 4858 segs, &nsegs, BUS_DMA_NOWAIT); 4859 4860 /* Handle any mapping errors. */ 4861 if (error) { 4862 BCE_PRINTF("%s(%d): Error mapping mbuf into RX chain (%d)!\n", 4863 __FILE__, __LINE__, error); 4864 4865 m_freem(m_new); 4866 DBRUN(sc->debug_rx_mbuf_alloc--); 4867 4868 rc = ENOBUFS; 4869 goto bce_get_rx_buf_exit; 4870 } 4871 4872 /* All mbufs must map to a single segment. */ 4873 KASSERT(nsegs == 1, ("%s(): Too many segments returned (%d)!", 4874 __FUNCTION__, nsegs)); 4875 4876 /* ToDo: Do we need bus_dmamap_sync(,,BUS_DMASYNC_PREWRITE) here? */ 4877 4878 /* Setup the rx_bd for the segment. */ 4879 rxbd = &sc->rx_bd_chain[RX_PAGE(*chain_prod)][RX_IDX(*chain_prod)]; 4880 4881 rxbd->rx_bd_haddr_lo = htole32(BCE_ADDR_LO(segs[0].ds_addr)); 4882 rxbd->rx_bd_haddr_hi = htole32(BCE_ADDR_HI(segs[0].ds_addr)); 4883 rxbd->rx_bd_len = htole32(segs[0].ds_len); 4884 rxbd->rx_bd_flags = htole32(RX_BD_FLAGS_START | RX_BD_FLAGS_END); 4885 *prod_bseq += segs[0].ds_len; 4886 4887 /* Save the mbuf and update our counter. */ 4888 sc->rx_mbuf_ptr[*chain_prod] = m_new; 4889 sc->free_rx_bd -= nsegs; 4890 4891 DBRUNMSG(BCE_INSANE_RECV, bce_dump_rx_mbuf_chain(sc, debug_chain_prod, 4892 nsegs)); 4893 4894 DBPRINT(sc, BCE_EXTREME_RECV, "%s(exit): prod = 0x%04X, chain_prod = 0x%04X, " 4895 "prod_bseq = 0x%08X\n", __FUNCTION__, *prod, *chain_prod, *prod_bseq); 4896 4897 bce_get_rx_buf_exit: 4898 DBEXIT(BCE_EXTREME_RESET | BCE_EXTREME_RECV | BCE_EXTREME_LOAD); 4899 4900 return(rc); 4901 } 4902 4903 4904 #ifdef BCE_USE_SPLIT_HEADER 4905 /****************************************************************************/ 4906 /* Encapsulate an mbuf cluster into the page chain. */ 4907 /* */ 4908 /* Returns: */ 4909 /* 0 for success, positive value for failure. */ 4910 /****************************************************************************/ 4911 static int 4912 bce_get_pg_buf(struct bce_softc *sc, struct mbuf *m, u16 *prod, 4913 u16 *prod_idx) 4914 { 4915 bus_dmamap_t map; 4916 bus_addr_t busaddr; 4917 struct mbuf *m_new = NULL; 4918 struct rx_bd *pgbd; 4919 int error, rc = 0; 4920 #ifdef BCE_DEBUG 4921 u16 debug_prod_idx = *prod_idx; 4922 #endif 4923 4924 DBENTER(BCE_EXTREME_RESET | BCE_EXTREME_RECV | BCE_EXTREME_LOAD); 4925 4926 /* Make sure the inputs are valid. */ 4927 DBRUNIF((*prod_idx > MAX_PG_BD), 4928 BCE_PRINTF("%s(%d): page producer out of range: 0x%04X > 0x%04X\n", 4929 __FILE__, __LINE__, *prod_idx, (u16) MAX_PG_BD)); 4930 4931 DBPRINT(sc, BCE_EXTREME_RECV, "%s(enter): prod = 0x%04X, " 4932 "chain_prod = 0x%04X\n", __FUNCTION__, *prod, *prod_idx); 4933 4934 /* Update counters if we've hit a new low or run out of pages. */ 4935 DBRUNIF((sc->free_pg_bd < sc->pg_low_watermark), 4936 sc->pg_low_watermark = sc->free_pg_bd); 4937 DBRUNIF((sc->free_pg_bd == sc->max_pg_bd), sc->pg_empty_count++); 4938 4939 /* Check whether this is a new mbuf allocation. */ 4940 if (m == NULL) { 4941 4942 /* Simulate an mbuf allocation failure. */ 4943 DBRUNIF(DB_RANDOMTRUE(bce_debug_mbuf_allocation_failure), 4944 sc->mbuf_alloc_failed++; 4945 sc->debug_mbuf_sim_alloc_failed++; 4946 rc = ENOBUFS; 4947 goto bce_get_pg_buf_exit); 4948 4949 /* This is a new mbuf allocation. */ 4950 m_new = m_getcl(M_DONTWAIT, MT_DATA, 0); 4951 if (m_new == NULL) { 4952 sc->mbuf_alloc_failed++; 4953 rc = ENOBUFS; 4954 goto bce_get_pg_buf_exit; 4955 } 4956 4957 DBRUN(sc->debug_pg_mbuf_alloc++); 4958 } else { 4959 /* Reuse an existing mbuf. */ 4960 m_new = m; 4961 m_new->m_data = m_new->m_ext.ext_buf; 4962 } 4963 4964 m_new->m_len = sc->pg_bd_mbuf_alloc_size; 4965 4966 /* ToDo: Consider calling m_fragment() to test error handling. */ 4967 4968 /* Map the mbuf cluster into device memory. */ 4969 map = sc->pg_mbuf_map[*prod_idx]; 4970 error = bus_dmamap_load(sc->pg_mbuf_tag, map, mtod(m_new, void *), 4971 sc->pg_bd_mbuf_alloc_size, bce_dma_map_addr, &busaddr, BUS_DMA_NOWAIT); 4972 4973 /* Handle any mapping errors. */ 4974 if (error) { 4975 BCE_PRINTF("%s(%d): Error mapping mbuf into page chain!\n", 4976 __FILE__, __LINE__); 4977 4978 m_freem(m_new); 4979 DBRUN(sc->debug_pg_mbuf_alloc--); 4980 4981 rc = ENOBUFS; 4982 goto bce_get_pg_buf_exit; 4983 } 4984 4985 /* ToDo: Do we need bus_dmamap_sync(,,BUS_DMASYNC_PREWRITE) here? */ 4986 4987 /* 4988 * The page chain uses the same rx_bd data structure 4989 * as the receive chain but doesn't require a byte sequence (bseq). 4990 */ 4991 pgbd = &sc->pg_bd_chain[PG_PAGE(*prod_idx)][PG_IDX(*prod_idx)]; 4992 4993 pgbd->rx_bd_haddr_lo = htole32(BCE_ADDR_LO(busaddr)); 4994 pgbd->rx_bd_haddr_hi = htole32(BCE_ADDR_HI(busaddr)); 4995 pgbd->rx_bd_len = htole32(sc->pg_bd_mbuf_alloc_size); 4996 pgbd->rx_bd_flags = htole32(RX_BD_FLAGS_START | RX_BD_FLAGS_END); 4997 4998 /* Save the mbuf and update our counter. */ 4999 sc->pg_mbuf_ptr[*prod_idx] = m_new; 5000 sc->free_pg_bd--; 5001 5002 DBRUNMSG(BCE_INSANE_RECV, bce_dump_pg_mbuf_chain(sc, debug_prod_idx, 5003 1)); 5004 5005 DBPRINT(sc, BCE_EXTREME_RECV, "%s(exit): prod = 0x%04X, " 5006 "prod_idx = 0x%04X\n", __FUNCTION__, *prod, *prod_idx); 5007 5008 bce_get_pg_buf_exit: 5009 DBEXIT(BCE_EXTREME_RESET | BCE_EXTREME_RECV | BCE_EXTREME_LOAD); 5010 5011 return(rc); 5012 } 5013 #endif /* BCE_USE_SPLIT_HEADER */ 5014 5015 /****************************************************************************/ 5016 /* Initialize the TX context memory. */ 5017 /* */ 5018 /* Returns: */ 5019 /* Nothing */ 5020 /****************************************************************************/ 5021 static void 5022 bce_init_tx_context(struct bce_softc *sc) 5023 { 5024 u32 val; 5025 5026 DBENTER(BCE_VERBOSE_RESET | BCE_VERBOSE_SEND | BCE_VERBOSE_CTX); 5027 5028 /* Initialize the context ID for an L2 TX chain. */ 5029 if ((BCE_CHIP_NUM(sc) == BCE_CHIP_NUM_5709) || 5030 (BCE_CHIP_NUM(sc) == BCE_CHIP_NUM_5716)) { 5031 /* Set the CID type to support an L2 connection. */ 5032 val = BCE_L2CTX_TX_TYPE_TYPE_L2_XI | BCE_L2CTX_TX_TYPE_SIZE_L2_XI; 5033 CTX_WR(sc, GET_CID_ADDR(TX_CID), BCE_L2CTX_TX_TYPE_XI, val); 5034 val = BCE_L2CTX_TX_CMD_TYPE_TYPE_L2_XI | (8 << 16); 5035 CTX_WR(sc, GET_CID_ADDR(TX_CID), BCE_L2CTX_TX_CMD_TYPE_XI, val); 5036 5037 /* Point the hardware to the first page in the chain. */ 5038 val = BCE_ADDR_HI(sc->tx_bd_chain_paddr[0]); 5039 CTX_WR(sc, GET_CID_ADDR(TX_CID), BCE_L2CTX_TX_TBDR_BHADDR_HI_XI, val); 5040 val = BCE_ADDR_LO(sc->tx_bd_chain_paddr[0]); 5041 CTX_WR(sc, GET_CID_ADDR(TX_CID), BCE_L2CTX_TX_TBDR_BHADDR_LO_XI, val); 5042 } else { 5043 /* Set the CID type to support an L2 connection. */ 5044 val = BCE_L2CTX_TX_TYPE_TYPE_L2 | BCE_L2CTX_TX_TYPE_SIZE_L2; 5045 CTX_WR(sc, GET_CID_ADDR(TX_CID), BCE_L2CTX_TX_TYPE, val); 5046 val = BCE_L2CTX_TX_CMD_TYPE_TYPE_L2 | (8 << 16); 5047 CTX_WR(sc, GET_CID_ADDR(TX_CID), BCE_L2CTX_TX_CMD_TYPE, val); 5048 5049 /* Point the hardware to the first page in the chain. */ 5050 val = BCE_ADDR_HI(sc->tx_bd_chain_paddr[0]); 5051 CTX_WR(sc, GET_CID_ADDR(TX_CID), BCE_L2CTX_TX_TBDR_BHADDR_HI, val); 5052 val = BCE_ADDR_LO(sc->tx_bd_chain_paddr[0]); 5053 CTX_WR(sc, GET_CID_ADDR(TX_CID), BCE_L2CTX_TX_TBDR_BHADDR_LO, val); 5054 } 5055 5056 DBEXIT(BCE_VERBOSE_RESET | BCE_VERBOSE_SEND | BCE_VERBOSE_CTX); 5057 } 5058 5059 5060 /****************************************************************************/ 5061 /* Allocate memory and initialize the TX data structures. */ 5062 /* */ 5063 /* Returns: */ 5064 /* 0 for success, positive value for failure. */ 5065 /****************************************************************************/ 5066 static int 5067 bce_init_tx_chain(struct bce_softc *sc) 5068 { 5069 struct tx_bd *txbd; 5070 int i, rc = 0; 5071 5072 DBENTER(BCE_VERBOSE_RESET | BCE_VERBOSE_SEND | BCE_VERBOSE_LOAD); 5073 5074 /* Set the initial TX producer/consumer indices. */ 5075 sc->tx_prod = 0; 5076 sc->tx_cons = 0; 5077 sc->tx_prod_bseq = 0; 5078 sc->used_tx_bd = 0; 5079 sc->max_tx_bd = USABLE_TX_BD; 5080 DBRUN(sc->tx_hi_watermark = USABLE_TX_BD); 5081 DBRUN(sc->tx_full_count = 0); 5082 5083 /* 5084 * The NetXtreme II supports a linked-list structre called 5085 * a Buffer Descriptor Chain (or BD chain). A BD chain 5086 * consists of a series of 1 or more chain pages, each of which 5087 * consists of a fixed number of BD entries. 5088 * The last BD entry on each page is a pointer to the next page 5089 * in the chain, and the last pointer in the BD chain 5090 * points back to the beginning of the chain. 5091 */ 5092 5093 /* Set the TX next pointer chain entries. */ 5094 for (i = 0; i < TX_PAGES; i++) { 5095 int j; 5096 5097 txbd = &sc->tx_bd_chain[i][USABLE_TX_BD_PER_PAGE]; 5098 5099 /* Check if we've reached the last page. */ 5100 if (i == (TX_PAGES - 1)) 5101 j = 0; 5102 else 5103 j = i + 1; 5104 5105 txbd->tx_bd_haddr_hi = htole32(BCE_ADDR_HI(sc->tx_bd_chain_paddr[j])); 5106 txbd->tx_bd_haddr_lo = htole32(BCE_ADDR_LO(sc->tx_bd_chain_paddr[j])); 5107 } 5108 5109 bce_init_tx_context(sc); 5110 5111 DBRUNMSG(BCE_INSANE_SEND, bce_dump_tx_chain(sc, 0, TOTAL_TX_BD)); 5112 DBEXIT(BCE_VERBOSE_RESET | BCE_VERBOSE_SEND | BCE_VERBOSE_LOAD); 5113 5114 return(rc); 5115 } 5116 5117 5118 /****************************************************************************/ 5119 /* Free memory and clear the TX data structures. */ 5120 /* */ 5121 /* Returns: */ 5122 /* Nothing. */ 5123 /****************************************************************************/ 5124 static void 5125 bce_free_tx_chain(struct bce_softc *sc) 5126 { 5127 int i; 5128 5129 DBENTER(BCE_VERBOSE_RESET | BCE_VERBOSE_SEND | BCE_VERBOSE_UNLOAD); 5130 5131 /* Unmap, unload, and free any mbufs still in the TX mbuf chain. */ 5132 for (i = 0; i < TOTAL_TX_BD; i++) { 5133 if (sc->tx_mbuf_ptr[i] != NULL) { 5134 if (sc->tx_mbuf_map[i] != NULL) 5135 bus_dmamap_sync(sc->tx_mbuf_tag, sc->tx_mbuf_map[i], 5136 BUS_DMASYNC_POSTWRITE); 5137 m_freem(sc->tx_mbuf_ptr[i]); 5138 sc->tx_mbuf_ptr[i] = NULL; 5139 DBRUN(sc->debug_tx_mbuf_alloc--); 5140 } 5141 } 5142 5143 /* Clear each TX chain page. */ 5144 for (i = 0; i < TX_PAGES; i++) 5145 bzero((char *)sc->tx_bd_chain[i], BCE_TX_CHAIN_PAGE_SZ); 5146 5147 sc->used_tx_bd = 0; 5148 5149 /* Check if we lost any mbufs in the process. */ 5150 DBRUNIF((sc->debug_tx_mbuf_alloc), 5151 BCE_PRINTF("%s(%d): Memory leak! Lost %d mbufs " 5152 "from tx chain!\n", 5153 __FILE__, __LINE__, sc->debug_tx_mbuf_alloc)); 5154 5155 DBEXIT(BCE_VERBOSE_RESET | BCE_VERBOSE_SEND | BCE_VERBOSE_UNLOAD); 5156 } 5157 5158 5159 /****************************************************************************/ 5160 /* Initialize the RX context memory. */ 5161 /* */ 5162 /* Returns: */ 5163 /* Nothing */ 5164 /****************************************************************************/ 5165 static void 5166 bce_init_rx_context(struct bce_softc *sc) 5167 { 5168 u32 val; 5169 5170 DBENTER(BCE_VERBOSE_RESET | BCE_VERBOSE_RECV | BCE_VERBOSE_CTX); 5171 5172 /* Initialize the type, size, and BD cache levels for the RX context. */ 5173 val = BCE_L2CTX_RX_CTX_TYPE_CTX_BD_CHN_TYPE_VALUE | 5174 BCE_L2CTX_RX_CTX_TYPE_SIZE_L2 | 5175 (0x02 << BCE_L2CTX_RX_BD_PRE_READ_SHIFT); 5176 5177 /* 5178 * Set the level for generating pause frames 5179 * when the number of available rx_bd's gets 5180 * too low (the low watermark) and the level 5181 * when pause frames can be stopped (the high 5182 * watermark). 5183 */ 5184 if ((BCE_CHIP_NUM(sc) == BCE_CHIP_NUM_5709) || 5185 (BCE_CHIP_NUM(sc) == BCE_CHIP_NUM_5716)) { 5186 u32 lo_water, hi_water; 5187 5188 lo_water = BCE_L2CTX_RX_LO_WATER_MARK_DEFAULT; 5189 hi_water = USABLE_RX_BD / 4; 5190 5191 lo_water /= BCE_L2CTX_RX_LO_WATER_MARK_SCALE; 5192 hi_water /= BCE_L2CTX_RX_HI_WATER_MARK_SCALE; 5193 5194 if (hi_water > 0xf) 5195 hi_water = 0xf; 5196 else if (hi_water == 0) 5197 lo_water = 0; 5198 val |= (lo_water << BCE_L2CTX_RX_LO_WATER_MARK_SHIFT) | 5199 (hi_water << BCE_L2CTX_RX_HI_WATER_MARK_SHIFT); 5200 } 5201 5202 CTX_WR(sc, GET_CID_ADDR(RX_CID), BCE_L2CTX_RX_CTX_TYPE, val); 5203 5204 /* Setup the MQ BIN mapping for l2_ctx_host_bseq. */ 5205 if ((BCE_CHIP_NUM(sc) == BCE_CHIP_NUM_5709) || 5206 (BCE_CHIP_NUM(sc) == BCE_CHIP_NUM_5716)) { 5207 val = REG_RD(sc, BCE_MQ_MAP_L2_5); 5208 REG_WR(sc, BCE_MQ_MAP_L2_5, val | BCE_MQ_MAP_L2_5_ARM); 5209 } 5210 5211 /* Point the hardware to the first page in the chain. */ 5212 val = BCE_ADDR_HI(sc->rx_bd_chain_paddr[0]); 5213 CTX_WR(sc, GET_CID_ADDR(RX_CID), BCE_L2CTX_RX_NX_BDHADDR_HI, val); 5214 val = BCE_ADDR_LO(sc->rx_bd_chain_paddr[0]); 5215 CTX_WR(sc, GET_CID_ADDR(RX_CID), BCE_L2CTX_RX_NX_BDHADDR_LO, val); 5216 5217 DBEXIT(BCE_VERBOSE_RESET | BCE_VERBOSE_RECV | BCE_VERBOSE_CTX); 5218 } 5219 5220 5221 /****************************************************************************/ 5222 /* Allocate memory and initialize the RX data structures. */ 5223 /* */ 5224 /* Returns: */ 5225 /* 0 for success, positive value for failure. */ 5226 /****************************************************************************/ 5227 static int 5228 bce_init_rx_chain(struct bce_softc *sc) 5229 { 5230 struct rx_bd *rxbd; 5231 int i, rc = 0; 5232 5233 DBENTER(BCE_VERBOSE_RESET | BCE_VERBOSE_RECV | BCE_VERBOSE_LOAD | 5234 BCE_VERBOSE_CTX); 5235 5236 /* Initialize the RX producer and consumer indices. */ 5237 sc->rx_prod = 0; 5238 sc->rx_cons = 0; 5239 sc->rx_prod_bseq = 0; 5240 sc->free_rx_bd = USABLE_RX_BD; 5241 sc->max_rx_bd = USABLE_RX_BD; 5242 DBRUN(sc->rx_low_watermark = sc->max_rx_bd); 5243 DBRUN(sc->rx_empty_count = 0); 5244 5245 /* Initialize the RX next pointer chain entries. */ 5246 for (i = 0; i < RX_PAGES; i++) { 5247 int j; 5248 5249 rxbd = &sc->rx_bd_chain[i][USABLE_RX_BD_PER_PAGE]; 5250 5251 /* Check if we've reached the last page. */ 5252 if (i == (RX_PAGES - 1)) 5253 j = 0; 5254 else 5255 j = i + 1; 5256 5257 /* Setup the chain page pointers. */ 5258 rxbd->rx_bd_haddr_hi = htole32(BCE_ADDR_HI(sc->rx_bd_chain_paddr[j])); 5259 rxbd->rx_bd_haddr_lo = htole32(BCE_ADDR_LO(sc->rx_bd_chain_paddr[j])); 5260 } 5261 5262 /* Fill up the RX chain. */ 5263 bce_fill_rx_chain(sc); 5264 5265 for (i = 0; i < RX_PAGES; i++) { 5266 bus_dmamap_sync( 5267 sc->rx_bd_chain_tag, 5268 sc->rx_bd_chain_map[i], 5269 BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE); 5270 } 5271 5272 bce_init_rx_context(sc); 5273 5274 DBRUNMSG(BCE_EXTREME_RECV, bce_dump_rx_chain(sc, 0, TOTAL_RX_BD)); 5275 DBEXIT(BCE_VERBOSE_RESET | BCE_VERBOSE_RECV | BCE_VERBOSE_LOAD | 5276 BCE_VERBOSE_CTX); 5277 /* ToDo: Are there possible failure modes here? */ 5278 return(rc); 5279 } 5280 5281 5282 /****************************************************************************/ 5283 /* Add mbufs to the RX chain until its full or an mbuf allocation error */ 5284 /* occurs. */ 5285 /* */ 5286 /* Returns: */ 5287 /* Nothing */ 5288 /****************************************************************************/ 5289 static void 5290 bce_fill_rx_chain(struct bce_softc *sc) 5291 { 5292 u16 prod, prod_idx; 5293 u32 prod_bseq; 5294 5295 DBENTER(BCE_VERBOSE_RESET | BCE_EXTREME_RECV | BCE_VERBOSE_LOAD | 5296 BCE_VERBOSE_CTX); 5297 5298 /* Get the RX chain producer indices. */ 5299 prod = sc->rx_prod; 5300 prod_bseq = sc->rx_prod_bseq; 5301 5302 /* Keep filling the RX chain until it's full. */ 5303 while (sc->free_rx_bd > 0) { 5304 prod_idx = RX_CHAIN_IDX(prod); 5305 if (bce_get_rx_buf(sc, NULL, &prod, &prod_idx, &prod_bseq)) { 5306 /* Bail out if we can't add an mbuf to the chain. */ 5307 break; 5308 } 5309 prod = NEXT_RX_BD(prod); 5310 } 5311 5312 /* Save the RX chain producer indices. */ 5313 sc->rx_prod = prod; 5314 sc->rx_prod_bseq = prod_bseq; 5315 5316 DBRUNIF(((prod & USABLE_RX_BD_PER_PAGE) == USABLE_RX_BD_PER_PAGE), 5317 BCE_PRINTF("%s(): Invalid rx_prod value: 0x%04X\n", 5318 __FUNCTION__, sc->rx_prod)); 5319 5320 /* Write the mailbox and tell the chip about the waiting rx_bd's. */ 5321 REG_WR16(sc, MB_GET_CID_ADDR(RX_CID) + BCE_L2MQ_RX_HOST_BDIDX, 5322 sc->rx_prod); 5323 REG_WR(sc, MB_GET_CID_ADDR(RX_CID) + BCE_L2MQ_RX_HOST_BSEQ, 5324 sc->rx_prod_bseq); 5325 5326 DBEXIT(BCE_VERBOSE_RESET | BCE_EXTREME_RECV | BCE_VERBOSE_LOAD | 5327 BCE_VERBOSE_CTX); 5328 } 5329 5330 5331 /****************************************************************************/ 5332 /* Free memory and clear the RX data structures. */ 5333 /* */ 5334 /* Returns: */ 5335 /* Nothing. */ 5336 /****************************************************************************/ 5337 static void 5338 bce_free_rx_chain(struct bce_softc *sc) 5339 { 5340 int i; 5341 5342 DBENTER(BCE_VERBOSE_RESET | BCE_VERBOSE_RECV | BCE_VERBOSE_UNLOAD); 5343 5344 /* Free any mbufs still in the RX mbuf chain. */ 5345 for (i = 0; i < TOTAL_RX_BD; i++) { 5346 if (sc->rx_mbuf_ptr[i] != NULL) { 5347 if (sc->rx_mbuf_map[i] != NULL) 5348 bus_dmamap_sync(sc->rx_mbuf_tag, sc->rx_mbuf_map[i], 5349 BUS_DMASYNC_POSTREAD); 5350 m_freem(sc->rx_mbuf_ptr[i]); 5351 sc->rx_mbuf_ptr[i] = NULL; 5352 DBRUN(sc->debug_rx_mbuf_alloc--); 5353 } 5354 } 5355 5356 /* Clear each RX chain page. */ 5357 for (i = 0; i < RX_PAGES; i++) 5358 bzero((char *)sc->rx_bd_chain[i], BCE_RX_CHAIN_PAGE_SZ); 5359 5360 sc->free_rx_bd = sc->max_rx_bd; 5361 5362 /* Check if we lost any mbufs in the process. */ 5363 DBRUNIF((sc->debug_rx_mbuf_alloc), 5364 BCE_PRINTF("%s(): Memory leak! Lost %d mbufs from rx chain!\n", 5365 __FUNCTION__, sc->debug_rx_mbuf_alloc)); 5366 5367 DBEXIT(BCE_VERBOSE_RESET | BCE_VERBOSE_RECV | BCE_VERBOSE_UNLOAD); 5368 } 5369 5370 5371 #ifdef BCE_USE_SPLIT_HEADER 5372 /****************************************************************************/ 5373 /* Allocate memory and initialize the page data structures. */ 5374 /* Assumes that bce_init_rx_chain() has not already been called. */ 5375 /* */ 5376 /* Returns: */ 5377 /* 0 for success, positive value for failure. */ 5378 /****************************************************************************/ 5379 static int 5380 bce_init_pg_chain(struct bce_softc *sc) 5381 { 5382 struct rx_bd *pgbd; 5383 int i, rc = 0; 5384 u32 val; 5385 5386 DBENTER(BCE_VERBOSE_RESET | BCE_VERBOSE_RECV | BCE_VERBOSE_LOAD | 5387 BCE_VERBOSE_CTX); 5388 5389 /* Initialize the page producer and consumer indices. */ 5390 sc->pg_prod = 0; 5391 sc->pg_cons = 0; 5392 sc->free_pg_bd = USABLE_PG_BD; 5393 sc->max_pg_bd = USABLE_PG_BD; 5394 DBRUN(sc->pg_low_watermark = sc->max_pg_bd); 5395 DBRUN(sc->pg_empty_count = 0); 5396 5397 /* Initialize the page next pointer chain entries. */ 5398 for (i = 0; i < PG_PAGES; i++) { 5399 int j; 5400 5401 pgbd = &sc->pg_bd_chain[i][USABLE_PG_BD_PER_PAGE]; 5402 5403 /* Check if we've reached the last page. */ 5404 if (i == (PG_PAGES - 1)) 5405 j = 0; 5406 else 5407 j = i + 1; 5408 5409 /* Setup the chain page pointers. */ 5410 pgbd->rx_bd_haddr_hi = htole32(BCE_ADDR_HI(sc->pg_bd_chain_paddr[j])); 5411 pgbd->rx_bd_haddr_lo = htole32(BCE_ADDR_LO(sc->pg_bd_chain_paddr[j])); 5412 } 5413 5414 /* Setup the MQ BIN mapping for host_pg_bidx. */ 5415 if ((BCE_CHIP_NUM(sc) == BCE_CHIP_NUM_5709) || 5416 (BCE_CHIP_NUM(sc) == BCE_CHIP_NUM_5716)) 5417 REG_WR(sc, BCE_MQ_MAP_L2_3, BCE_MQ_MAP_L2_3_DEFAULT); 5418 5419 CTX_WR(sc, GET_CID_ADDR(RX_CID), BCE_L2CTX_RX_PG_BUF_SIZE, 0); 5420 5421 /* Configure the rx_bd and page chain mbuf cluster size. */ 5422 val = (sc->rx_bd_mbuf_data_len << 16) | sc->pg_bd_mbuf_alloc_size; 5423 CTX_WR(sc, GET_CID_ADDR(RX_CID), BCE_L2CTX_RX_PG_BUF_SIZE, val); 5424 5425 /* Configure the context reserved for jumbo support. */ 5426 CTX_WR(sc, GET_CID_ADDR(RX_CID), BCE_L2CTX_RX_RBDC_KEY, 5427 BCE_L2CTX_RX_RBDC_JUMBO_KEY); 5428 5429 /* Point the hardware to the first page in the page chain. */ 5430 val = BCE_ADDR_HI(sc->pg_bd_chain_paddr[0]); 5431 CTX_WR(sc, GET_CID_ADDR(RX_CID), BCE_L2CTX_RX_NX_PG_BDHADDR_HI, val); 5432 val = BCE_ADDR_LO(sc->pg_bd_chain_paddr[0]); 5433 CTX_WR(sc, GET_CID_ADDR(RX_CID), BCE_L2CTX_RX_NX_PG_BDHADDR_LO, val); 5434 5435 /* Fill up the page chain. */ 5436 bce_fill_pg_chain(sc); 5437 5438 for (i = 0; i < PG_PAGES; i++) { 5439 bus_dmamap_sync( 5440 sc->pg_bd_chain_tag, 5441 sc->pg_bd_chain_map[i], 5442 BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE); 5443 } 5444 5445 DBRUNMSG(BCE_EXTREME_RECV, bce_dump_pg_chain(sc, 0, TOTAL_PG_BD)); 5446 DBEXIT(BCE_VERBOSE_RESET | BCE_VERBOSE_RECV | BCE_VERBOSE_LOAD | 5447 BCE_VERBOSE_CTX); 5448 return(rc); 5449 } 5450 5451 5452 /****************************************************************************/ 5453 /* Add mbufs to the page chain until its full or an mbuf allocation error */ 5454 /* occurs. */ 5455 /* */ 5456 /* Returns: */ 5457 /* Nothing */ 5458 /****************************************************************************/ 5459 static void 5460 bce_fill_pg_chain(struct bce_softc *sc) 5461 { 5462 u16 prod, prod_idx; 5463 5464 DBENTER(BCE_VERBOSE_RESET | BCE_EXTREME_RECV | BCE_VERBOSE_LOAD | 5465 BCE_VERBOSE_CTX); 5466 5467 /* Get the page chain prodcuer index. */ 5468 prod = sc->pg_prod; 5469 5470 /* Keep filling the page chain until it's full. */ 5471 while (sc->free_pg_bd > 0) { 5472 prod_idx = PG_CHAIN_IDX(prod); 5473 if (bce_get_pg_buf(sc, NULL, &prod, &prod_idx)) { 5474 /* Bail out if we can't add an mbuf to the chain. */ 5475 break; 5476 } 5477 prod = NEXT_PG_BD(prod); 5478 } 5479 5480 /* Save the page chain producer index. */ 5481 sc->pg_prod = prod; 5482 5483 DBRUNIF(((prod & USABLE_RX_BD_PER_PAGE) == USABLE_RX_BD_PER_PAGE), 5484 BCE_PRINTF("%s(): Invalid pg_prod value: 0x%04X\n", 5485 __FUNCTION__, sc->pg_prod)); 5486 5487 /* 5488 * Write the mailbox and tell the chip about 5489 * the new rx_bd's in the page chain. 5490 */ 5491 REG_WR16(sc, MB_GET_CID_ADDR(RX_CID) + BCE_L2MQ_RX_HOST_PG_BDIDX, 5492 sc->pg_prod); 5493 5494 DBEXIT(BCE_VERBOSE_RESET | BCE_EXTREME_RECV | BCE_VERBOSE_LOAD | 5495 BCE_VERBOSE_CTX); 5496 } 5497 5498 5499 /****************************************************************************/ 5500 /* Free memory and clear the RX data structures. */ 5501 /* */ 5502 /* Returns: */ 5503 /* Nothing. */ 5504 /****************************************************************************/ 5505 static void 5506 bce_free_pg_chain(struct bce_softc *sc) 5507 { 5508 int i; 5509 5510 DBENTER(BCE_VERBOSE_RESET | BCE_VERBOSE_RECV | BCE_VERBOSE_UNLOAD); 5511 5512 /* Free any mbufs still in the mbuf page chain. */ 5513 for (i = 0; i < TOTAL_PG_BD; i++) { 5514 if (sc->pg_mbuf_ptr[i] != NULL) { 5515 if (sc->pg_mbuf_map[i] != NULL) 5516 bus_dmamap_sync(sc->pg_mbuf_tag, sc->pg_mbuf_map[i], 5517 BUS_DMASYNC_POSTREAD); 5518 m_freem(sc->pg_mbuf_ptr[i]); 5519 sc->pg_mbuf_ptr[i] = NULL; 5520 DBRUN(sc->debug_pg_mbuf_alloc--); 5521 } 5522 } 5523 5524 /* Clear each page chain pages. */ 5525 for (i = 0; i < PG_PAGES; i++) 5526 bzero((char *)sc->pg_bd_chain[i], BCE_PG_CHAIN_PAGE_SZ); 5527 5528 sc->free_pg_bd = sc->max_pg_bd; 5529 5530 /* Check if we lost any mbufs in the process. */ 5531 DBRUNIF((sc->debug_pg_mbuf_alloc), 5532 BCE_PRINTF("%s(): Memory leak! Lost %d mbufs from page chain!\n", 5533 __FUNCTION__, sc->debug_pg_mbuf_alloc)); 5534 5535 DBEXIT(BCE_VERBOSE_RESET | BCE_VERBOSE_RECV | BCE_VERBOSE_UNLOAD); 5536 } 5537 #endif /* BCE_USE_SPLIT_HEADER */ 5538 5539 5540 /****************************************************************************/ 5541 /* Set media options. */ 5542 /* */ 5543 /* Returns: */ 5544 /* 0 for success, positive value for failure. */ 5545 /****************************************************************************/ 5546 static int 5547 bce_ifmedia_upd(struct ifnet *ifp) 5548 { 5549 struct bce_softc *sc = ifp->if_softc; 5550 5551 DBENTER(BCE_VERBOSE); 5552 5553 BCE_LOCK(sc); 5554 bce_ifmedia_upd_locked(ifp); 5555 BCE_UNLOCK(sc); 5556 5557 DBEXIT(BCE_VERBOSE); 5558 return (0); 5559 } 5560 5561 5562 /****************************************************************************/ 5563 /* Set media options. */ 5564 /* */ 5565 /* Returns: */ 5566 /* Nothing. */ 5567 /****************************************************************************/ 5568 static void 5569 bce_ifmedia_upd_locked(struct ifnet *ifp) 5570 { 5571 struct bce_softc *sc = ifp->if_softc; 5572 struct mii_data *mii; 5573 5574 DBENTER(BCE_VERBOSE); 5575 5576 BCE_LOCK_ASSERT(sc); 5577 5578 mii = device_get_softc(sc->bce_miibus); 5579 5580 /* Make sure the MII bus has been enumerated. */ 5581 if (mii) { 5582 sc->bce_link = 0; 5583 if (mii->mii_instance) { 5584 struct mii_softc *miisc; 5585 5586 LIST_FOREACH(miisc, &mii->mii_phys, mii_list) 5587 mii_phy_reset(miisc); 5588 } 5589 mii_mediachg(mii); 5590 } 5591 5592 DBEXIT(BCE_VERBOSE); 5593 } 5594 5595 5596 /****************************************************************************/ 5597 /* Reports current media status. */ 5598 /* */ 5599 /* Returns: */ 5600 /* Nothing. */ 5601 /****************************************************************************/ 5602 static void 5603 bce_ifmedia_sts(struct ifnet *ifp, struct ifmediareq *ifmr) 5604 { 5605 struct bce_softc *sc = ifp->if_softc; 5606 struct mii_data *mii; 5607 5608 DBENTER(BCE_VERBOSE); 5609 5610 BCE_LOCK(sc); 5611 5612 mii = device_get_softc(sc->bce_miibus); 5613 5614 mii_pollstat(mii); 5615 ifmr->ifm_active = mii->mii_media_active; 5616 ifmr->ifm_status = mii->mii_media_status; 5617 5618 BCE_UNLOCK(sc); 5619 5620 DBEXIT(BCE_VERBOSE); 5621 } 5622 5623 5624 /****************************************************************************/ 5625 /* Handles PHY generated interrupt events. */ 5626 /* */ 5627 /* Returns: */ 5628 /* Nothing. */ 5629 /****************************************************************************/ 5630 static void 5631 bce_phy_intr(struct bce_softc *sc) 5632 { 5633 u32 new_link_state, old_link_state; 5634 5635 DBENTER(BCE_VERBOSE_PHY | BCE_VERBOSE_INTR); 5636 5637 new_link_state = sc->status_block->status_attn_bits & 5638 STATUS_ATTN_BITS_LINK_STATE; 5639 old_link_state = sc->status_block->status_attn_bits_ack & 5640 STATUS_ATTN_BITS_LINK_STATE; 5641 5642 /* Handle any changes if the link state has changed. */ 5643 if (new_link_state != old_link_state) { 5644 5645 /* Update the status_attn_bits_ack field in the status block. */ 5646 if (new_link_state) { 5647 REG_WR(sc, BCE_PCICFG_STATUS_BIT_SET_CMD, 5648 STATUS_ATTN_BITS_LINK_STATE); 5649 DBPRINT(sc, BCE_INFO_PHY, "%s(): Link is now UP.\n", 5650 __FUNCTION__); 5651 } 5652 else { 5653 REG_WR(sc, BCE_PCICFG_STATUS_BIT_CLEAR_CMD, 5654 STATUS_ATTN_BITS_LINK_STATE); 5655 DBPRINT(sc, BCE_INFO_PHY, "%s(): Link is now DOWN.\n", 5656 __FUNCTION__); 5657 } 5658 5659 /* 5660 * Assume link is down and allow 5661 * tick routine to update the state 5662 * based on the actual media state. 5663 */ 5664 sc->bce_link = 0; 5665 callout_stop(&sc->bce_tick_callout); 5666 bce_tick(sc); 5667 } 5668 5669 /* Acknowledge the link change interrupt. */ 5670 REG_WR(sc, BCE_EMAC_STATUS, BCE_EMAC_STATUS_LINK_CHANGE); 5671 5672 DBEXIT(BCE_VERBOSE_PHY | BCE_VERBOSE_INTR); 5673 } 5674 5675 5676 /****************************************************************************/ 5677 /* Reads the receive consumer value from the status block (skipping over */ 5678 /* chain page pointer if necessary). */ 5679 /* */ 5680 /* Returns: */ 5681 /* hw_cons */ 5682 /****************************************************************************/ 5683 static inline u16 5684 bce_get_hw_rx_cons(struct bce_softc *sc) 5685 { 5686 u16 hw_cons; 5687 5688 rmb(); 5689 hw_cons = sc->status_block->status_rx_quick_consumer_index0; 5690 if ((hw_cons & USABLE_RX_BD_PER_PAGE) == USABLE_RX_BD_PER_PAGE) 5691 hw_cons++; 5692 5693 return hw_cons; 5694 } 5695 5696 /****************************************************************************/ 5697 /* Handles received frame interrupt events. */ 5698 /* */ 5699 /* Returns: */ 5700 /* Nothing. */ 5701 /****************************************************************************/ 5702 static void 5703 bce_rx_intr(struct bce_softc *sc) 5704 { 5705 struct ifnet *ifp = sc->bce_ifp; 5706 struct l2_fhdr *l2fhdr; 5707 unsigned int pkt_len; 5708 u16 sw_rx_cons, sw_rx_cons_idx, hw_rx_cons; 5709 u32 status; 5710 #ifdef BCE_USE_SPLIT_HEADER 5711 unsigned int rem_len; 5712 u16 sw_pg_cons, sw_pg_cons_idx; 5713 #endif 5714 5715 DBENTER(BCE_VERBOSE_RECV | BCE_VERBOSE_INTR); 5716 DBRUN(sc->rx_interrupts++); 5717 DBPRINT(sc, BCE_EXTREME_RECV, "%s(enter): rx_prod = 0x%04X, " 5718 "rx_cons = 0x%04X, rx_prod_bseq = 0x%08X\n", 5719 __FUNCTION__, sc->rx_prod, sc->rx_cons, sc->rx_prod_bseq); 5720 5721 /* Prepare the RX chain pages to be accessed by the host CPU. */ 5722 for (int i = 0; i < RX_PAGES; i++) 5723 bus_dmamap_sync(sc->rx_bd_chain_tag, 5724 sc->rx_bd_chain_map[i], BUS_DMASYNC_POSTWRITE); 5725 5726 #ifdef BCE_USE_SPLIT_HEADER 5727 /* Prepare the page chain pages to be accessed by the host CPU. */ 5728 for (int i = 0; i < PG_PAGES; i++) 5729 bus_dmamap_sync(sc->pg_bd_chain_tag, 5730 sc->pg_bd_chain_map[i], BUS_DMASYNC_POSTWRITE); 5731 #endif 5732 5733 /* Get the hardware's view of the RX consumer index. */ 5734 hw_rx_cons = sc->hw_rx_cons = bce_get_hw_rx_cons(sc); 5735 5736 /* Get working copies of the driver's view of the consumer indices. */ 5737 sw_rx_cons = sc->rx_cons; 5738 #ifdef BCE_USE_SPLIT_HEADER 5739 sw_pg_cons = sc->pg_cons; 5740 #endif 5741 5742 /* Update some debug statistics counters */ 5743 DBRUNIF((sc->free_rx_bd < sc->rx_low_watermark), 5744 sc->rx_low_watermark = sc->free_rx_bd); 5745 DBRUNIF((sc->free_rx_bd == sc->max_rx_bd), sc->rx_empty_count++); 5746 5747 /* Scan through the receive chain as long as there is work to do */ 5748 /* ToDo: Consider setting a limit on the number of packets processed. */ 5749 rmb(); 5750 while (sw_rx_cons != hw_rx_cons) { 5751 struct mbuf *m0; 5752 5753 /* Convert the producer/consumer indices to an actual rx_bd index. */ 5754 sw_rx_cons_idx = RX_CHAIN_IDX(sw_rx_cons); 5755 5756 /* Unmap the mbuf from DMA space. */ 5757 bus_dmamap_sync(sc->rx_mbuf_tag, 5758 sc->rx_mbuf_map[sw_rx_cons_idx], 5759 BUS_DMASYNC_POSTREAD); 5760 bus_dmamap_unload(sc->rx_mbuf_tag, 5761 sc->rx_mbuf_map[sw_rx_cons_idx]); 5762 5763 /* Remove the mbuf from the RX chain. */ 5764 m0 = sc->rx_mbuf_ptr[sw_rx_cons_idx]; 5765 sc->rx_mbuf_ptr[sw_rx_cons_idx] = NULL; 5766 DBRUN(sc->debug_rx_mbuf_alloc--); 5767 sc->free_rx_bd++; 5768 5769 /* 5770 * Frames received on the NetXteme II are prepended 5771 * with an l2_fhdr structure which provides status 5772 * information about the received frame (including 5773 * VLAN tags and checksum info). The frames are also 5774 * automatically adjusted to align the IP header 5775 * (i.e. two null bytes are inserted before the 5776 * Ethernet header). As a result the data DMA'd by 5777 * the controller into the mbuf is as follows: 5778 * +---------+-----+---------------------+-----+ 5779 * | l2_fhdr | pad | packet data | FCS | 5780 * +---------+-----+---------------------+-----+ 5781 * The l2_fhdr needs to be checked and skipped and 5782 * the FCS needs to be stripped before sending the 5783 * packet up the stack. 5784 */ 5785 l2fhdr = mtod(m0, struct l2_fhdr *); 5786 5787 /* Get the packet data + FCS length and the status. */ 5788 pkt_len = l2fhdr->l2_fhdr_pkt_len; 5789 status = l2fhdr->l2_fhdr_status; 5790 5791 /* 5792 * Skip over the l2_fhdr and pad, resulting in the 5793 * following data in the mbuf: 5794 * +---------------------+-----+ 5795 * | packet data | FCS | 5796 * +---------------------+-----+ 5797 */ 5798 m_adj(m0, sizeof(struct l2_fhdr) + ETHER_ALIGN); 5799 5800 #ifdef BCE_USE_SPLIT_HEADER 5801 /* 5802 * Check whether the received frame fits in a single 5803 * mbuf or not (i.e. packet data + FCS <= 5804 * sc->rx_bd_mbuf_data_len bytes). 5805 */ 5806 if (pkt_len > m0->m_len) { 5807 /* 5808 * The received frame is larger than a single mbuf. 5809 * If the frame was a TCP frame then only the TCP 5810 * header is placed in the mbuf, the remaining 5811 * payload (including FCS) is placed in the page 5812 * chain, the SPLIT flag is set, and the header 5813 * length is placed in the IP checksum field. 5814 * If the frame is not a TCP frame then the mbuf 5815 * is filled and the remaining bytes are placed 5816 * in the page chain. 5817 */ 5818 5819 DBPRINT(sc, BCE_INFO_RECV, "%s(): Found a large packet.\n", 5820 __FUNCTION__); 5821 5822 /* 5823 * When the page chain is enabled and the TCP 5824 * header has been split from the TCP payload, 5825 * the ip_xsum structure will reflect the length 5826 * of the TCP header, not the IP checksum. Set 5827 * the packet length of the mbuf accordingly. 5828 */ 5829 if (status & L2_FHDR_STATUS_SPLIT) 5830 m0->m_len = l2fhdr->l2_fhdr_ip_xsum; 5831 5832 rem_len = pkt_len - m0->m_len; 5833 5834 /* Pull mbufs off the page chain for the remaining data. */ 5835 while (rem_len > 0) { 5836 struct mbuf *m_pg; 5837 5838 sw_pg_cons_idx = PG_CHAIN_IDX(sw_pg_cons); 5839 5840 /* Remove the mbuf from the page chain. */ 5841 m_pg = sc->pg_mbuf_ptr[sw_pg_cons_idx]; 5842 sc->pg_mbuf_ptr[sw_pg_cons_idx] = NULL; 5843 DBRUN(sc->debug_pg_mbuf_alloc--); 5844 sc->free_pg_bd++; 5845 5846 /* Unmap the page chain mbuf from DMA space. */ 5847 bus_dmamap_sync(sc->pg_mbuf_tag, 5848 sc->pg_mbuf_map[sw_pg_cons_idx], 5849 BUS_DMASYNC_POSTREAD); 5850 bus_dmamap_unload(sc->pg_mbuf_tag, 5851 sc->pg_mbuf_map[sw_pg_cons_idx]); 5852 5853 /* Adjust the mbuf length. */ 5854 if (rem_len < m_pg->m_len) { 5855 /* The mbuf chain is complete. */ 5856 m_pg->m_len = rem_len; 5857 rem_len = 0; 5858 } else { 5859 /* More packet data is waiting. */ 5860 rem_len -= m_pg->m_len; 5861 } 5862 5863 /* Concatenate the mbuf cluster to the mbuf. */ 5864 m_cat(m0, m_pg); 5865 5866 sw_pg_cons = NEXT_PG_BD(sw_pg_cons); 5867 } 5868 5869 /* Set the total packet length. */ 5870 m0->m_pkthdr.len = pkt_len; 5871 5872 } else { 5873 /* 5874 * The received packet is small and fits in a 5875 * single mbuf (i.e. the l2_fhdr + pad + packet + 5876 * FCS <= MHLEN). In other words, the packet is 5877 * 154 bytes or less in size. 5878 */ 5879 5880 DBPRINT(sc, BCE_INFO_RECV, "%s(): Found a small packet.\n", 5881 __FUNCTION__); 5882 5883 /* Set the total packet length. */ 5884 m0->m_pkthdr.len = m0->m_len = pkt_len; 5885 } 5886 #endif 5887 5888 /* Remove the trailing Ethernet FCS. */ 5889 m_adj(m0, -ETHER_CRC_LEN); 5890 5891 /* Check that the resulting mbuf chain is valid. */ 5892 DBRUN(m_sanity(m0, FALSE)); 5893 DBRUNIF(((m0->m_len < ETHER_HDR_LEN) | 5894 (m0->m_pkthdr.len > BCE_MAX_JUMBO_ETHER_MTU_VLAN)), 5895 BCE_PRINTF("Invalid Ethernet frame size!\n"); 5896 m_print(m0, 128)); 5897 5898 DBRUNIF(DB_RANDOMTRUE(bce_debug_l2fhdr_status_check), 5899 BCE_PRINTF("Simulating l2_fhdr status error.\n"); 5900 status = status | L2_FHDR_ERRORS_PHY_DECODE); 5901 5902 /* Check the received frame for errors. */ 5903 if (status & (L2_FHDR_ERRORS_BAD_CRC | 5904 L2_FHDR_ERRORS_PHY_DECODE | L2_FHDR_ERRORS_ALIGNMENT | 5905 L2_FHDR_ERRORS_TOO_SHORT | L2_FHDR_ERRORS_GIANT_FRAME)) { 5906 5907 /* Log the error and release the mbuf. */ 5908 ifp->if_ierrors++; 5909 DBRUN(sc->l2fhdr_status_errors++); 5910 5911 m_freem(m0); 5912 m0 = NULL; 5913 goto bce_rx_int_next_rx; 5914 } 5915 5916 /* Send the packet to the appropriate interface. */ 5917 m0->m_pkthdr.rcvif = ifp; 5918 5919 /* Assume no hardware checksum. */ 5920 m0->m_pkthdr.csum_flags = 0; 5921 5922 /* Validate the checksum if offload enabled. */ 5923 if (ifp->if_capenable & IFCAP_RXCSUM) { 5924 5925 /* Check for an IP datagram. */ 5926 if (!(status & L2_FHDR_STATUS_SPLIT) && 5927 (status & L2_FHDR_STATUS_IP_DATAGRAM)) { 5928 m0->m_pkthdr.csum_flags |= CSUM_IP_CHECKED; 5929 5930 /* Check if the IP checksum is valid. */ 5931 if ((l2fhdr->l2_fhdr_ip_xsum ^ 0xffff) == 0) 5932 m0->m_pkthdr.csum_flags |= CSUM_IP_VALID; 5933 } 5934 5935 /* Check for a valid TCP/UDP frame. */ 5936 if (status & (L2_FHDR_STATUS_TCP_SEGMENT | 5937 L2_FHDR_STATUS_UDP_DATAGRAM)) { 5938 5939 /* Check for a good TCP/UDP checksum. */ 5940 if ((status & (L2_FHDR_ERRORS_TCP_XSUM | 5941 L2_FHDR_ERRORS_UDP_XSUM)) == 0) { 5942 m0->m_pkthdr.csum_data = 5943 l2fhdr->l2_fhdr_tcp_udp_xsum; 5944 m0->m_pkthdr.csum_flags |= (CSUM_DATA_VALID 5945 | CSUM_PSEUDO_HDR); 5946 } 5947 } 5948 } 5949 5950 /* 5951 * If we received a packet with a vlan tag, 5952 * attach that information to the packet. 5953 */ 5954 if (status & L2_FHDR_STATUS_L2_VLAN_TAG) { 5955 #if __FreeBSD_version < 700000 5956 VLAN_INPUT_TAG(ifp, m0, l2fhdr->l2_fhdr_vlan_tag, continue); 5957 #else 5958 m0->m_pkthdr.ether_vtag = l2fhdr->l2_fhdr_vlan_tag; 5959 m0->m_flags |= M_VLANTAG; 5960 #endif 5961 } 5962 5963 /* Pass the mbuf off to the upper layers. */ 5964 ifp->if_ipackets++; 5965 5966 bce_rx_int_next_rx: 5967 sw_rx_cons = NEXT_RX_BD(sw_rx_cons); 5968 5969 /* If we have a packet, pass it up the stack */ 5970 if (m0) { 5971 /* Make sure we don't lose our place when we release the lock. */ 5972 sc->rx_cons = sw_rx_cons; 5973 #ifdef BCE_USE_SPLIT_HEADER 5974 sc->pg_cons = sw_pg_cons; 5975 #endif 5976 5977 BCE_UNLOCK(sc); 5978 (*ifp->if_input)(ifp, m0); 5979 BCE_LOCK(sc); 5980 5981 /* Recover our place. */ 5982 sw_rx_cons = sc->rx_cons; 5983 #ifdef BCE_USE_SPLIT_HEADER 5984 sw_pg_cons = sc->pg_cons; 5985 #endif 5986 } 5987 5988 /* Refresh hw_cons to see if there's new work */ 5989 if (sw_rx_cons == hw_rx_cons) 5990 hw_rx_cons = sc->hw_rx_cons = bce_get_hw_rx_cons(sc); 5991 } 5992 5993 /* No new packets to process. Refill the RX and page chains and exit. */ 5994 #ifdef BCE_USE_SPLIT_HEADER 5995 sc->pg_cons = sw_pg_cons; 5996 bce_fill_pg_chain(sc); 5997 #endif 5998 5999 sc->rx_cons = sw_rx_cons; 6000 bce_fill_rx_chain(sc); 6001 6002 for (int i = 0; i < RX_PAGES; i++) 6003 bus_dmamap_sync(sc->rx_bd_chain_tag, 6004 sc->rx_bd_chain_map[i], BUS_DMASYNC_PREWRITE); 6005 6006 #ifdef BCE_USE_SPLIT_HEADER 6007 for (int i = 0; i < PG_PAGES; i++) 6008 bus_dmamap_sync(sc->pg_bd_chain_tag, 6009 sc->pg_bd_chain_map[i], BUS_DMASYNC_PREWRITE); 6010 #endif 6011 6012 DBPRINT(sc, BCE_EXTREME_RECV, "%s(exit): rx_prod = 0x%04X, " 6013 "rx_cons = 0x%04X, rx_prod_bseq = 0x%08X\n", 6014 __FUNCTION__, sc->rx_prod, sc->rx_cons, sc->rx_prod_bseq); 6015 DBEXIT(BCE_VERBOSE_RECV | BCE_VERBOSE_INTR); 6016 } 6017 6018 6019 /****************************************************************************/ 6020 /* Reads the transmit consumer value from the status block (skipping over */ 6021 /* chain page pointer if necessary). */ 6022 /* */ 6023 /* Returns: */ 6024 /* hw_cons */ 6025 /****************************************************************************/ 6026 static inline u16 6027 bce_get_hw_tx_cons(struct bce_softc *sc) 6028 { 6029 u16 hw_cons; 6030 6031 mb(); 6032 hw_cons = sc->status_block->status_tx_quick_consumer_index0; 6033 if ((hw_cons & USABLE_TX_BD_PER_PAGE) == USABLE_TX_BD_PER_PAGE) 6034 hw_cons++; 6035 6036 return hw_cons; 6037 } 6038 6039 6040 /****************************************************************************/ 6041 /* Handles transmit completion interrupt events. */ 6042 /* */ 6043 /* Returns: */ 6044 /* Nothing. */ 6045 /****************************************************************************/ 6046 static void 6047 bce_tx_intr(struct bce_softc *sc) 6048 { 6049 struct ifnet *ifp = sc->bce_ifp; 6050 u16 hw_tx_cons, sw_tx_cons, sw_tx_chain_cons; 6051 6052 DBENTER(BCE_VERBOSE_SEND | BCE_VERBOSE_INTR); 6053 DBRUN(sc->tx_interrupts++); 6054 DBPRINT(sc, BCE_EXTREME_SEND, "%s(enter): tx_prod = 0x%04X, " 6055 "tx_cons = 0x%04X, tx_prod_bseq = 0x%08X\n", 6056 __FUNCTION__, sc->tx_prod, sc->tx_cons, sc->tx_prod_bseq); 6057 6058 BCE_LOCK_ASSERT(sc); 6059 6060 /* Get the hardware's view of the TX consumer index. */ 6061 hw_tx_cons = sc->hw_tx_cons = bce_get_hw_tx_cons(sc); 6062 sw_tx_cons = sc->tx_cons; 6063 6064 /* Prevent speculative reads from getting ahead of the status block. */ 6065 bus_space_barrier(sc->bce_btag, sc->bce_bhandle, 0, 0, 6066 BUS_SPACE_BARRIER_READ); 6067 6068 /* Cycle through any completed TX chain page entries. */ 6069 while (sw_tx_cons != hw_tx_cons) { 6070 #ifdef BCE_DEBUG 6071 struct tx_bd *txbd = NULL; 6072 #endif 6073 sw_tx_chain_cons = TX_CHAIN_IDX(sw_tx_cons); 6074 6075 DBPRINT(sc, BCE_INFO_SEND, 6076 "%s(): hw_tx_cons = 0x%04X, sw_tx_cons = 0x%04X, " 6077 "sw_tx_chain_cons = 0x%04X\n", 6078 __FUNCTION__, hw_tx_cons, sw_tx_cons, sw_tx_chain_cons); 6079 6080 DBRUNIF((sw_tx_chain_cons > MAX_TX_BD), 6081 BCE_PRINTF("%s(%d): TX chain consumer out of range! " 6082 " 0x%04X > 0x%04X\n", __FILE__, __LINE__, sw_tx_chain_cons, 6083 (int) MAX_TX_BD); 6084 bce_breakpoint(sc)); 6085 6086 DBRUN(txbd = &sc->tx_bd_chain[TX_PAGE(sw_tx_chain_cons)] 6087 [TX_IDX(sw_tx_chain_cons)]); 6088 6089 DBRUNIF((txbd == NULL), 6090 BCE_PRINTF("%s(%d): Unexpected NULL tx_bd[0x%04X]!\n", 6091 __FILE__, __LINE__, sw_tx_chain_cons); 6092 bce_breakpoint(sc)); 6093 6094 DBRUNMSG(BCE_INFO_SEND, BCE_PRINTF("%s(): ", __FUNCTION__); 6095 bce_dump_txbd(sc, sw_tx_chain_cons, txbd)); 6096 6097 /* 6098 * Free the associated mbuf. Remember 6099 * that only the last tx_bd of a packet 6100 * has an mbuf pointer and DMA map. 6101 */ 6102 if (sc->tx_mbuf_ptr[sw_tx_chain_cons] != NULL) { 6103 6104 /* Validate that this is the last tx_bd. */ 6105 DBRUNIF((!(txbd->tx_bd_flags & TX_BD_FLAGS_END)), 6106 BCE_PRINTF("%s(%d): tx_bd END flag not set but " 6107 "txmbuf == NULL!\n", __FILE__, __LINE__); 6108 bce_breakpoint(sc)); 6109 6110 DBRUNMSG(BCE_INFO_SEND, 6111 BCE_PRINTF("%s(): Unloading map/freeing mbuf " 6112 "from tx_bd[0x%04X]\n", __FUNCTION__, sw_tx_chain_cons)); 6113 6114 /* Unmap the mbuf. */ 6115 bus_dmamap_unload(sc->tx_mbuf_tag, 6116 sc->tx_mbuf_map[sw_tx_chain_cons]); 6117 6118 /* Free the mbuf. */ 6119 m_freem(sc->tx_mbuf_ptr[sw_tx_chain_cons]); 6120 sc->tx_mbuf_ptr[sw_tx_chain_cons] = NULL; 6121 DBRUN(sc->debug_tx_mbuf_alloc--); 6122 6123 ifp->if_opackets++; 6124 } 6125 6126 sc->used_tx_bd--; 6127 sw_tx_cons = NEXT_TX_BD(sw_tx_cons); 6128 6129 /* Refresh hw_cons to see if there's new work. */ 6130 hw_tx_cons = sc->hw_tx_cons = bce_get_hw_tx_cons(sc); 6131 6132 /* Prevent speculative reads from getting ahead of the status block. */ 6133 bus_space_barrier(sc->bce_btag, sc->bce_bhandle, 0, 0, 6134 BUS_SPACE_BARRIER_READ); 6135 } 6136 6137 /* Clear the TX timeout timer. */ 6138 sc->watchdog_timer = 0; 6139 6140 /* Clear the tx hardware queue full flag. */ 6141 if (sc->used_tx_bd < sc->max_tx_bd) { 6142 DBRUNIF((ifp->if_drv_flags & IFF_DRV_OACTIVE), 6143 DBPRINT(sc, BCE_INFO_SEND, 6144 "%s(): Open TX chain! %d/%d (used/total)\n", 6145 __FUNCTION__, sc->used_tx_bd, sc->max_tx_bd)); 6146 ifp->if_drv_flags &= ~IFF_DRV_OACTIVE; 6147 } 6148 6149 sc->tx_cons = sw_tx_cons; 6150 6151 DBPRINT(sc, BCE_EXTREME_SEND, "%s(exit): tx_prod = 0x%04X, " 6152 "tx_cons = 0x%04X, tx_prod_bseq = 0x%08X\n", 6153 __FUNCTION__, sc->tx_prod, sc->tx_cons, sc->tx_prod_bseq); 6154 DBEXIT(BCE_VERBOSE_SEND | BCE_VERBOSE_INTR); 6155 } 6156 6157 6158 /****************************************************************************/ 6159 /* Disables interrupt generation. */ 6160 /* */ 6161 /* Returns: */ 6162 /* Nothing. */ 6163 /****************************************************************************/ 6164 static void 6165 bce_disable_intr(struct bce_softc *sc) 6166 { 6167 DBENTER(BCE_VERBOSE_INTR); 6168 6169 REG_WR(sc, BCE_PCICFG_INT_ACK_CMD, BCE_PCICFG_INT_ACK_CMD_MASK_INT); 6170 REG_RD(sc, BCE_PCICFG_INT_ACK_CMD); 6171 6172 DBEXIT(BCE_VERBOSE_INTR); 6173 } 6174 6175 6176 /****************************************************************************/ 6177 /* Enables interrupt generation. */ 6178 /* */ 6179 /* Returns: */ 6180 /* Nothing. */ 6181 /****************************************************************************/ 6182 static void 6183 bce_enable_intr(struct bce_softc *sc, int coal_now) 6184 { 6185 DBENTER(BCE_VERBOSE_INTR); 6186 6187 REG_WR(sc, BCE_PCICFG_INT_ACK_CMD, 6188 BCE_PCICFG_INT_ACK_CMD_INDEX_VALID | 6189 BCE_PCICFG_INT_ACK_CMD_MASK_INT | sc->last_status_idx); 6190 6191 REG_WR(sc, BCE_PCICFG_INT_ACK_CMD, 6192 BCE_PCICFG_INT_ACK_CMD_INDEX_VALID | sc->last_status_idx); 6193 6194 /* Force an immediate interrupt (whether there is new data or not). */ 6195 if (coal_now) 6196 REG_WR(sc, BCE_HC_COMMAND, sc->hc_command | BCE_HC_COMMAND_COAL_NOW); 6197 6198 DBEXIT(BCE_VERBOSE_INTR); 6199 } 6200 6201 6202 /****************************************************************************/ 6203 /* Handles controller initialization. */ 6204 /* */ 6205 /* Returns: */ 6206 /* Nothing. */ 6207 /****************************************************************************/ 6208 static void 6209 bce_init_locked(struct bce_softc *sc) 6210 { 6211 struct ifnet *ifp; 6212 u32 ether_mtu = 0; 6213 6214 DBENTER(BCE_VERBOSE_RESET); 6215 6216 BCE_LOCK_ASSERT(sc); 6217 6218 ifp = sc->bce_ifp; 6219 6220 /* Check if the driver is still running and bail out if it is. */ 6221 if (ifp->if_drv_flags & IFF_DRV_RUNNING) 6222 goto bce_init_locked_exit; 6223 6224 bce_stop(sc); 6225 6226 if (bce_reset(sc, BCE_DRV_MSG_CODE_RESET)) { 6227 BCE_PRINTF("%s(%d): Controller reset failed!\n", 6228 __FILE__, __LINE__); 6229 goto bce_init_locked_exit; 6230 } 6231 6232 if (bce_chipinit(sc)) { 6233 BCE_PRINTF("%s(%d): Controller initialization failed!\n", 6234 __FILE__, __LINE__); 6235 goto bce_init_locked_exit; 6236 } 6237 6238 if (bce_blockinit(sc)) { 6239 BCE_PRINTF("%s(%d): Block initialization failed!\n", 6240 __FILE__, __LINE__); 6241 goto bce_init_locked_exit; 6242 } 6243 6244 /* Load our MAC address. */ 6245 bcopy(IF_LLADDR(sc->bce_ifp), sc->eaddr, ETHER_ADDR_LEN); 6246 bce_set_mac_addr(sc); 6247 6248 /* 6249 * Calculate and program the hardware Ethernet MTU 6250 * size. Be generous on the receive if we have room. 6251 */ 6252 #ifdef BCE_USE_SPLIT_HEADER 6253 if (ifp->if_mtu <= (sc->rx_bd_mbuf_data_len + sc->pg_bd_mbuf_alloc_size)) 6254 ether_mtu = sc->rx_bd_mbuf_data_len + sc->pg_bd_mbuf_alloc_size; 6255 #else 6256 if (ifp->if_mtu <= sc->rx_bd_mbuf_data_len) 6257 ether_mtu = sc->rx_bd_mbuf_data_len; 6258 #endif 6259 else 6260 ether_mtu = ifp->if_mtu; 6261 6262 ether_mtu += ETHER_HDR_LEN + ETHER_VLAN_ENCAP_LEN + ETHER_CRC_LEN; 6263 6264 DBPRINT(sc, BCE_INFO_MISC, "%s(): setting h/w mtu = %d\n", __FUNCTION__, 6265 ether_mtu); 6266 6267 /* Program the mtu, enabling jumbo frame support if necessary. */ 6268 if (ether_mtu > (ETHER_MAX_LEN + ETHER_VLAN_ENCAP_LEN)) 6269 REG_WR(sc, BCE_EMAC_RX_MTU_SIZE, 6270 min(ether_mtu, BCE_MAX_JUMBO_ETHER_MTU) | 6271 BCE_EMAC_RX_MTU_SIZE_JUMBO_ENA); 6272 else 6273 REG_WR(sc, BCE_EMAC_RX_MTU_SIZE, ether_mtu); 6274 6275 DBPRINT(sc, BCE_INFO_LOAD, 6276 "%s(): rx_bd_mbuf_alloc_size = %d, rx_bce_mbuf_data_len = %d, " 6277 "rx_bd_mbuf_align_pad = %d, pg_bd_mbuf_alloc_size = %d\n", 6278 __FUNCTION__, sc->rx_bd_mbuf_alloc_size, sc->rx_bd_mbuf_data_len, 6279 sc->rx_bd_mbuf_align_pad, sc->pg_bd_mbuf_alloc_size); 6280 6281 /* Program appropriate promiscuous/multicast filtering. */ 6282 bce_set_rx_mode(sc); 6283 6284 #ifdef BCE_USE_SPLIT_HEADER 6285 /* Init page buffer descriptor chain. */ 6286 bce_init_pg_chain(sc); 6287 #endif 6288 6289 /* Init RX buffer descriptor chain. */ 6290 bce_init_rx_chain(sc); 6291 6292 /* Init TX buffer descriptor chain. */ 6293 bce_init_tx_chain(sc); 6294 6295 /* Enable host interrupts. */ 6296 bce_enable_intr(sc, 1); 6297 6298 bce_ifmedia_upd_locked(ifp); 6299 6300 ifp->if_drv_flags |= IFF_DRV_RUNNING; 6301 ifp->if_drv_flags &= ~IFF_DRV_OACTIVE; 6302 6303 callout_reset(&sc->bce_tick_callout, hz, bce_tick, sc); 6304 6305 bce_init_locked_exit: 6306 DBEXIT(BCE_VERBOSE_RESET); 6307 } 6308 6309 6310 /****************************************************************************/ 6311 /* Initialize the controller just enough so that any management firmware */ 6312 /* running on the device will continue to operate correctly. */ 6313 /* */ 6314 /* Returns: */ 6315 /* Nothing. */ 6316 /****************************************************************************/ 6317 static void 6318 bce_mgmt_init_locked(struct bce_softc *sc) 6319 { 6320 struct ifnet *ifp; 6321 6322 DBENTER(BCE_VERBOSE_RESET); 6323 6324 BCE_LOCK_ASSERT(sc); 6325 6326 /* Bail out if management firmware is not running. */ 6327 if (!(sc->bce_flags & BCE_MFW_ENABLE_FLAG)) { 6328 DBPRINT(sc, BCE_VERBOSE_SPECIAL, 6329 "No management firmware running...\n"); 6330 goto bce_mgmt_init_locked_exit; 6331 } 6332 6333 ifp = sc->bce_ifp; 6334 6335 /* Enable all critical blocks in the MAC. */ 6336 REG_WR(sc, BCE_MISC_ENABLE_SET_BITS, BCE_MISC_ENABLE_DEFAULT); 6337 REG_RD(sc, BCE_MISC_ENABLE_SET_BITS); 6338 DELAY(20); 6339 6340 bce_ifmedia_upd_locked(ifp); 6341 6342 bce_mgmt_init_locked_exit: 6343 DBEXIT(BCE_VERBOSE_RESET); 6344 } 6345 6346 6347 /****************************************************************************/ 6348 /* Handles controller initialization when called from an unlocked routine. */ 6349 /* */ 6350 /* Returns: */ 6351 /* Nothing. */ 6352 /****************************************************************************/ 6353 static void 6354 bce_init(void *xsc) 6355 { 6356 struct bce_softc *sc = xsc; 6357 6358 DBENTER(BCE_VERBOSE_RESET); 6359 6360 BCE_LOCK(sc); 6361 bce_init_locked(sc); 6362 BCE_UNLOCK(sc); 6363 6364 DBEXIT(BCE_VERBOSE_RESET); 6365 } 6366 6367 6368 /****************************************************************************/ 6369 /* Encapsultes an mbuf cluster into the tx_bd chain structure and makes the */ 6370 /* memory visible to the controller. */ 6371 /* */ 6372 /* Returns: */ 6373 /* 0 for success, positive value for failure. */ 6374 /* Modified: */ 6375 /* m_head: May be set to NULL if MBUF is excessively fragmented. */ 6376 /****************************************************************************/ 6377 static int 6378 bce_tx_encap(struct bce_softc *sc, struct mbuf **m_head) 6379 { 6380 bus_dma_segment_t segs[BCE_MAX_SEGMENTS]; 6381 bus_dmamap_t map; 6382 struct tx_bd *txbd = NULL; 6383 struct mbuf *m0; 6384 struct ether_vlan_header *eh; 6385 struct ip *ip; 6386 struct tcphdr *th; 6387 u16 prod, chain_prod, etype, mss = 0, vlan_tag = 0, flags = 0; 6388 u32 prod_bseq; 6389 int hdr_len = 0, e_hlen = 0, ip_hlen = 0, tcp_hlen = 0, ip_len = 0; 6390 6391 #ifdef BCE_DEBUG 6392 u16 debug_prod; 6393 #endif 6394 int i, error, nsegs, rc = 0; 6395 6396 DBENTER(BCE_VERBOSE_SEND); 6397 DBPRINT(sc, BCE_INFO_SEND, 6398 "%s(enter): tx_prod = 0x%04X, tx_chain_prod = %04X, " 6399 "tx_prod_bseq = 0x%08X\n", 6400 __FUNCTION__, sc->tx_prod, (u16) TX_CHAIN_IDX(sc->tx_prod), 6401 sc->tx_prod_bseq); 6402 6403 /* Transfer any checksum offload flags to the bd. */ 6404 m0 = *m_head; 6405 if (m0->m_pkthdr.csum_flags) { 6406 if (m0->m_pkthdr.csum_flags & CSUM_IP) 6407 flags |= TX_BD_FLAGS_IP_CKSUM; 6408 if (m0->m_pkthdr.csum_flags & (CSUM_TCP | CSUM_UDP)) 6409 flags |= TX_BD_FLAGS_TCP_UDP_CKSUM; 6410 if (m0->m_pkthdr.csum_flags & CSUM_TSO) { 6411 /* For TSO the controller needs two pieces of info, */ 6412 /* the MSS and the IP+TCP options length. */ 6413 mss = htole16(m0->m_pkthdr.tso_segsz); 6414 6415 /* Map the header and find the Ethernet type & header length */ 6416 eh = mtod(m0, struct ether_vlan_header *); 6417 if (eh->evl_encap_proto == htons(ETHERTYPE_VLAN)) { 6418 etype = ntohs(eh->evl_proto); 6419 e_hlen = ETHER_HDR_LEN + ETHER_VLAN_ENCAP_LEN; 6420 } else { 6421 etype = ntohs(eh->evl_encap_proto); 6422 e_hlen = ETHER_HDR_LEN; 6423 } 6424 6425 /* Check for supported TSO Ethernet types (only IPv4 for now) */ 6426 switch (etype) { 6427 case ETHERTYPE_IP: 6428 ip = (struct ip *)(m0->m_data + e_hlen); 6429 6430 /* TSO only supported for TCP protocol */ 6431 if (ip->ip_p != IPPROTO_TCP) { 6432 BCE_PRINTF("%s(%d): TSO enabled for non-TCP frame!.\n", 6433 __FILE__, __LINE__); 6434 goto bce_tx_encap_skip_tso; 6435 } 6436 6437 /* Get IP header length in bytes (min 20) */ 6438 ip_hlen = ip->ip_hl << 2; 6439 6440 /* Get the TCP header length in bytes (min 20) */ 6441 th = (struct tcphdr *)((caddr_t)ip + ip_hlen); 6442 tcp_hlen = (th->th_off << 2); 6443 6444 /* IP header length and checksum will be calc'd by hardware */ 6445 ip_len = ip->ip_len; 6446 ip->ip_len = 0; 6447 ip->ip_sum = 0; 6448 break; 6449 case ETHERTYPE_IPV6: 6450 BCE_PRINTF("%s(%d): TSO over IPv6 not supported!.\n", 6451 __FILE__, __LINE__); 6452 goto bce_tx_encap_skip_tso; 6453 default: 6454 BCE_PRINTF("%s(%d): TSO enabled for unsupported protocol!.\n", 6455 __FILE__, __LINE__); 6456 goto bce_tx_encap_skip_tso; 6457 } 6458 6459 hdr_len = e_hlen + ip_hlen + tcp_hlen; 6460 6461 DBPRINT(sc, BCE_EXTREME_SEND, 6462 "%s(): hdr_len = %d, e_hlen = %d, ip_hlen = %d, tcp_hlen = %d, ip_len = %d\n", 6463 __FUNCTION__, hdr_len, e_hlen, ip_hlen, tcp_hlen, ip_len); 6464 6465 /* Set the LSO flag in the TX BD */ 6466 flags |= TX_BD_FLAGS_SW_LSO; 6467 /* Set the length of IP + TCP options (in 32 bit words) */ 6468 flags |= (((ip_hlen + tcp_hlen - 40) >> 2) << 8); 6469 6470 bce_tx_encap_skip_tso: 6471 DBRUN(sc->requested_tso_frames++); 6472 } 6473 } 6474 6475 /* Transfer any VLAN tags to the bd. */ 6476 if (m0->m_flags & M_VLANTAG) { 6477 flags |= TX_BD_FLAGS_VLAN_TAG; 6478 vlan_tag = m0->m_pkthdr.ether_vtag; 6479 } 6480 6481 /* Map the mbuf into DMAable memory. */ 6482 prod = sc->tx_prod; 6483 chain_prod = TX_CHAIN_IDX(prod); 6484 map = sc->tx_mbuf_map[chain_prod]; 6485 6486 /* Map the mbuf into our DMA address space. */ 6487 error = bus_dmamap_load_mbuf_sg(sc->tx_mbuf_tag, map, m0, 6488 segs, &nsegs, BUS_DMA_NOWAIT); 6489 6490 /* Check if the DMA mapping was successful */ 6491 if (error == EFBIG) { 6492 6493 /* The mbuf is too fragmented for our DMA mapping. */ 6494 DBPRINT(sc, BCE_WARN, "%s(): fragmented mbuf (%d pieces)\n", 6495 __FUNCTION__, nsegs); 6496 DBRUN(bce_dump_mbuf(sc, m0);); 6497 6498 /* Try to defrag the mbuf. */ 6499 m0 = m_defrag(*m_head, M_DONTWAIT); 6500 if (m0 == NULL) { 6501 /* Defrag was unsuccessful */ 6502 m_freem(*m_head); 6503 *m_head = NULL; 6504 sc->mbuf_alloc_failed++; 6505 rc = ENOBUFS; 6506 goto bce_tx_encap_exit; 6507 } 6508 6509 /* Defrag was successful, try mapping again */ 6510 *m_head = m0; 6511 error = bus_dmamap_load_mbuf_sg(sc->tx_mbuf_tag, map, m0, 6512 segs, &nsegs, BUS_DMA_NOWAIT); 6513 6514 /* Still getting an error after a defrag. */ 6515 if (error == ENOMEM) { 6516 /* Insufficient DMA buffers available. */ 6517 sc->tx_dma_map_failures++; 6518 rc = error; 6519 goto bce_tx_encap_exit; 6520 } else if (error != 0) { 6521 /* Still can't map the mbuf, release it and return an error. */ 6522 BCE_PRINTF( 6523 "%s(%d): Unknown error mapping mbuf into TX chain!\n", 6524 __FILE__, __LINE__); 6525 m_freem(m0); 6526 *m_head = NULL; 6527 sc->tx_dma_map_failures++; 6528 rc = ENOBUFS; 6529 goto bce_tx_encap_exit; 6530 } 6531 } else if (error == ENOMEM) { 6532 /* Insufficient DMA buffers available. */ 6533 sc->tx_dma_map_failures++; 6534 rc = error; 6535 goto bce_tx_encap_exit; 6536 } else if (error != 0) { 6537 m_freem(m0); 6538 *m_head = NULL; 6539 sc->tx_dma_map_failures++; 6540 rc = error; 6541 goto bce_tx_encap_exit; 6542 } 6543 6544 /* Make sure there's room in the chain */ 6545 if (nsegs > (sc->max_tx_bd - sc->used_tx_bd)) { 6546 bus_dmamap_unload(sc->tx_mbuf_tag, map); 6547 rc = ENOBUFS; 6548 goto bce_tx_encap_exit; 6549 } 6550 6551 /* prod points to an empty tx_bd at this point. */ 6552 prod_bseq = sc->tx_prod_bseq; 6553 6554 #ifdef BCE_DEBUG 6555 debug_prod = chain_prod; 6556 #endif 6557 6558 DBPRINT(sc, BCE_INFO_SEND, 6559 "%s(start): prod = 0x%04X, chain_prod = 0x%04X, " 6560 "prod_bseq = 0x%08X\n", 6561 __FUNCTION__, prod, chain_prod, prod_bseq); 6562 6563 /* 6564 * Cycle through each mbuf segment that makes up 6565 * the outgoing frame, gathering the mapping info 6566 * for that segment and creating a tx_bd for 6567 * the mbuf. 6568 */ 6569 for (i = 0; i < nsegs ; i++) { 6570 6571 chain_prod = TX_CHAIN_IDX(prod); 6572 txbd= &sc->tx_bd_chain[TX_PAGE(chain_prod)][TX_IDX(chain_prod)]; 6573 6574 txbd->tx_bd_haddr_lo = htole32(BCE_ADDR_LO(segs[i].ds_addr)); 6575 txbd->tx_bd_haddr_hi = htole32(BCE_ADDR_HI(segs[i].ds_addr)); 6576 txbd->tx_bd_mss_nbytes = htole32(mss << 16) | htole16(segs[i].ds_len); 6577 txbd->tx_bd_vlan_tag = htole16(vlan_tag); 6578 txbd->tx_bd_flags = htole16(flags); 6579 prod_bseq += segs[i].ds_len; 6580 if (i == 0) 6581 txbd->tx_bd_flags |= htole16(TX_BD_FLAGS_START); 6582 prod = NEXT_TX_BD(prod); 6583 } 6584 6585 /* Set the END flag on the last TX buffer descriptor. */ 6586 txbd->tx_bd_flags |= htole16(TX_BD_FLAGS_END); 6587 6588 DBRUNMSG(BCE_EXTREME_SEND, bce_dump_tx_chain(sc, debug_prod, nsegs)); 6589 6590 DBPRINT(sc, BCE_INFO_SEND, 6591 "%s( end ): prod = 0x%04X, chain_prod = 0x%04X, " 6592 "prod_bseq = 0x%08X\n", 6593 __FUNCTION__, prod, chain_prod, prod_bseq); 6594 6595 /* 6596 * Ensure that the mbuf pointer for this transmission 6597 * is placed at the array index of the last 6598 * descriptor in this chain. This is done 6599 * because a single map is used for all 6600 * segments of the mbuf and we don't want to 6601 * unload the map before all of the segments 6602 * have been freed. 6603 */ 6604 sc->tx_mbuf_ptr[chain_prod] = m0; 6605 sc->used_tx_bd += nsegs; 6606 6607 /* Update some debug statistic counters */ 6608 DBRUNIF((sc->used_tx_bd > sc->tx_hi_watermark), 6609 sc->tx_hi_watermark = sc->used_tx_bd); 6610 DBRUNIF((sc->used_tx_bd == sc->max_tx_bd), sc->tx_full_count++); 6611 DBRUNIF(sc->debug_tx_mbuf_alloc++); 6612 6613 DBRUNMSG(BCE_EXTREME_SEND, bce_dump_tx_mbuf_chain(sc, chain_prod, 1)); 6614 6615 /* prod points to the next free tx_bd at this point. */ 6616 sc->tx_prod = prod; 6617 sc->tx_prod_bseq = prod_bseq; 6618 6619 DBPRINT(sc, BCE_INFO_SEND, 6620 "%s(exit): prod = 0x%04X, chain_prod = %04X, " 6621 "prod_bseq = 0x%08X\n", 6622 __FUNCTION__, sc->tx_prod, (u16) TX_CHAIN_IDX(sc->tx_prod), 6623 sc->tx_prod_bseq); 6624 6625 bce_tx_encap_exit: 6626 DBEXIT(BCE_VERBOSE_SEND); 6627 return(rc); 6628 } 6629 6630 6631 /****************************************************************************/ 6632 /* Main transmit routine when called from another routine with a lock. */ 6633 /* */ 6634 /* Returns: */ 6635 /* Nothing. */ 6636 /****************************************************************************/ 6637 static void 6638 bce_start_locked(struct ifnet *ifp) 6639 { 6640 struct bce_softc *sc = ifp->if_softc; 6641 struct mbuf *m_head = NULL; 6642 int count = 0; 6643 u16 tx_prod, tx_chain_prod; 6644 6645 DBENTER(BCE_VERBOSE_SEND | BCE_VERBOSE_CTX); 6646 6647 BCE_LOCK_ASSERT(sc); 6648 6649 /* prod points to the next free tx_bd. */ 6650 tx_prod = sc->tx_prod; 6651 tx_chain_prod = TX_CHAIN_IDX(tx_prod); 6652 6653 DBPRINT(sc, BCE_INFO_SEND, 6654 "%s(enter): tx_prod = 0x%04X, tx_chain_prod = 0x%04X, " 6655 "tx_prod_bseq = 0x%08X\n", 6656 __FUNCTION__, tx_prod, tx_chain_prod, sc->tx_prod_bseq); 6657 6658 /* If there's no link or the transmit queue is empty then just exit. */ 6659 if (!sc->bce_link) { 6660 DBPRINT(sc, BCE_INFO_SEND, "%s(): No link.\n", 6661 __FUNCTION__); 6662 goto bce_start_locked_exit; 6663 } 6664 6665 if (IFQ_DRV_IS_EMPTY(&ifp->if_snd)) { 6666 DBPRINT(sc, BCE_INFO_SEND, "%s(): Transmit queue empty.\n", 6667 __FUNCTION__); 6668 goto bce_start_locked_exit; 6669 } 6670 6671 /* 6672 * Keep adding entries while there is space in the ring. 6673 */ 6674 while (sc->used_tx_bd < sc->max_tx_bd) { 6675 6676 /* Check for any frames to send. */ 6677 IFQ_DRV_DEQUEUE(&ifp->if_snd, m_head); 6678 6679 /* Stop when the transmit queue is empty. */ 6680 if (m_head == NULL) 6681 break; 6682 6683 /* 6684 * Pack the data into the transmit ring. If we 6685 * don't have room, place the mbuf back at the 6686 * head of the queue and set the OACTIVE flag 6687 * to wait for the NIC to drain the chain. 6688 */ 6689 if (bce_tx_encap(sc, &m_head)) { 6690 /* No room, put the frame back on the transmit queue. */ 6691 if (m_head != NULL) 6692 IFQ_DRV_PREPEND(&ifp->if_snd, m_head); 6693 ifp->if_drv_flags |= IFF_DRV_OACTIVE; 6694 DBPRINT(sc, BCE_INFO_SEND, 6695 "TX chain is closed for business! Total tx_bd used = %d\n", 6696 sc->used_tx_bd); 6697 break; 6698 } 6699 6700 count++; 6701 6702 /* Send a copy of the frame to any BPF listeners. */ 6703 ETHER_BPF_MTAP(ifp, m_head); 6704 } 6705 6706 /* Exit if no packets were dequeued. */ 6707 if (count == 0) { 6708 DBPRINT(sc, BCE_VERBOSE_SEND, "%s(): No packets were dequeued\n", 6709 __FUNCTION__); 6710 goto bce_start_locked_exit; 6711 } 6712 6713 DBPRINT(sc, BCE_VERBOSE_SEND, "%s(): Inserted %d frames into send queue.\n", 6714 __FUNCTION__, count); 6715 6716 REG_WR(sc, BCE_MQ_COMMAND, REG_RD(sc, BCE_MQ_COMMAND) | BCE_MQ_COMMAND_NO_MAP_ERROR); 6717 6718 /* Write the mailbox and tell the chip about the waiting tx_bd's. */ 6719 DBPRINT(sc, BCE_VERBOSE_SEND, "%s(): MB_GET_CID_ADDR(TX_CID) = 0x%08X; " 6720 "BCE_L2MQ_TX_HOST_BIDX = 0x%08X, sc->tx_prod = 0x%04X\n", 6721 __FUNCTION__, 6722 MB_GET_CID_ADDR(TX_CID), BCE_L2MQ_TX_HOST_BIDX, sc->tx_prod); 6723 REG_WR16(sc, MB_GET_CID_ADDR(TX_CID) + BCE_L2MQ_TX_HOST_BIDX, sc->tx_prod); 6724 DBPRINT(sc, BCE_VERBOSE_SEND, "%s(): MB_GET_CID_ADDR(TX_CID) = 0x%08X; " 6725 "BCE_L2MQ_TX_HOST_BSEQ = 0x%08X, sc->tx_prod_bseq = 0x%04X\n", 6726 __FUNCTION__, 6727 MB_GET_CID_ADDR(TX_CID), BCE_L2MQ_TX_HOST_BSEQ, sc->tx_prod_bseq); 6728 REG_WR(sc, MB_GET_CID_ADDR(TX_CID) + BCE_L2MQ_TX_HOST_BSEQ, sc->tx_prod_bseq); 6729 6730 /* Set the tx timeout. */ 6731 sc->watchdog_timer = BCE_TX_TIMEOUT; 6732 6733 DBRUNMSG(BCE_VERBOSE_SEND, bce_dump_ctx(sc, TX_CID)); 6734 DBRUNMSG(BCE_VERBOSE_SEND, bce_dump_mq_regs(sc)); 6735 6736 bce_start_locked_exit: 6737 DBEXIT(BCE_VERBOSE_SEND | BCE_VERBOSE_CTX); 6738 return; 6739 } 6740 6741 6742 /****************************************************************************/ 6743 /* Main transmit routine when called from another routine without a lock. */ 6744 /* */ 6745 /* Returns: */ 6746 /* Nothing. */ 6747 /****************************************************************************/ 6748 static void 6749 bce_start(struct ifnet *ifp) 6750 { 6751 struct bce_softc *sc = ifp->if_softc; 6752 6753 DBENTER(BCE_VERBOSE_SEND); 6754 6755 BCE_LOCK(sc); 6756 bce_start_locked(ifp); 6757 BCE_UNLOCK(sc); 6758 6759 DBEXIT(BCE_VERBOSE_SEND); 6760 } 6761 6762 6763 /****************************************************************************/ 6764 /* Handles any IOCTL calls from the operating system. */ 6765 /* */ 6766 /* Returns: */ 6767 /* 0 for success, positive value for failure. */ 6768 /****************************************************************************/ 6769 static int 6770 bce_ioctl(struct ifnet *ifp, u_long command, caddr_t data) 6771 { 6772 struct bce_softc *sc = ifp->if_softc; 6773 struct ifreq *ifr = (struct ifreq *) data; 6774 struct mii_data *mii; 6775 int mask, error = 0; 6776 6777 DBENTER(BCE_VERBOSE_MISC); 6778 6779 switch(command) { 6780 6781 /* Set the interface MTU. */ 6782 case SIOCSIFMTU: 6783 /* Check that the MTU setting is supported. */ 6784 if ((ifr->ifr_mtu < BCE_MIN_MTU) || 6785 (ifr->ifr_mtu > BCE_MAX_JUMBO_MTU)) { 6786 error = EINVAL; 6787 break; 6788 } 6789 6790 DBPRINT(sc, BCE_INFO_MISC, 6791 "SIOCSIFMTU: Changing MTU from %d to %d\n", 6792 (int) ifp->if_mtu, (int) ifr->ifr_mtu); 6793 6794 BCE_LOCK(sc); 6795 ifp->if_mtu = ifr->ifr_mtu; 6796 ifp->if_drv_flags &= ~IFF_DRV_RUNNING; 6797 #ifdef BCE_USE_SPLIT_HEADER 6798 /* No buffer allocation size changes are necessary. */ 6799 #else 6800 /* Recalculate our buffer allocation sizes. */ 6801 if ((ifp->if_mtu + ETHER_HDR_LEN + ETHER_VLAN_ENCAP_LEN + ETHER_CRC_LEN) > MCLBYTES) { 6802 sc->rx_bd_mbuf_alloc_size = MJUM9BYTES; 6803 sc->rx_bd_mbuf_align_pad = roundup2(MJUM9BYTES, 16) - MJUM9BYTES; 6804 sc->rx_bd_mbuf_data_len = sc->rx_bd_mbuf_alloc_size - 6805 sc->rx_bd_mbuf_align_pad; 6806 } else { 6807 sc->rx_bd_mbuf_alloc_size = MCLBYTES; 6808 sc->rx_bd_mbuf_align_pad = roundup2(MCLBYTES, 16) - MCLBYTES; 6809 sc->rx_bd_mbuf_data_len = sc->rx_bd_mbuf_alloc_size - 6810 sc->rx_bd_mbuf_align_pad; 6811 } 6812 #endif 6813 6814 bce_init_locked(sc); 6815 BCE_UNLOCK(sc); 6816 break; 6817 6818 /* Set interface flags. */ 6819 case SIOCSIFFLAGS: 6820 DBPRINT(sc, BCE_VERBOSE_SPECIAL, "Received SIOCSIFFLAGS\n"); 6821 6822 BCE_LOCK(sc); 6823 6824 /* Check if the interface is up. */ 6825 if (ifp->if_flags & IFF_UP) { 6826 if (ifp->if_drv_flags & IFF_DRV_RUNNING) { 6827 /* Change promiscuous/multicast flags as necessary. */ 6828 bce_set_rx_mode(sc); 6829 } else { 6830 /* Start the HW */ 6831 bce_init_locked(sc); 6832 } 6833 } else { 6834 /* The interface is down, check if driver is running. */ 6835 if (ifp->if_drv_flags & IFF_DRV_RUNNING) { 6836 bce_stop(sc); 6837 6838 /* If MFW is running, restart the controller a bit. */ 6839 if (sc->bce_flags & BCE_MFW_ENABLE_FLAG) { 6840 bce_reset(sc, BCE_DRV_MSG_CODE_RESET); 6841 bce_chipinit(sc); 6842 bce_mgmt_init_locked(sc); 6843 } 6844 } 6845 } 6846 6847 BCE_UNLOCK(sc); 6848 error = 0; 6849 6850 break; 6851 6852 /* Add/Delete multicast address */ 6853 case SIOCADDMULTI: 6854 case SIOCDELMULTI: 6855 DBPRINT(sc, BCE_VERBOSE_MISC, "Received SIOCADDMULTI/SIOCDELMULTI\n"); 6856 6857 BCE_LOCK(sc); 6858 if (ifp->if_drv_flags & IFF_DRV_RUNNING) { 6859 bce_set_rx_mode(sc); 6860 error = 0; 6861 } 6862 BCE_UNLOCK(sc); 6863 6864 break; 6865 6866 /* Set/Get Interface media */ 6867 case SIOCSIFMEDIA: 6868 case SIOCGIFMEDIA: 6869 DBPRINT(sc, BCE_VERBOSE_MISC, "Received SIOCSIFMEDIA/SIOCGIFMEDIA\n"); 6870 6871 mii = device_get_softc(sc->bce_miibus); 6872 error = ifmedia_ioctl(ifp, ifr, 6873 &mii->mii_media, command); 6874 break; 6875 6876 /* Set interface capability */ 6877 case SIOCSIFCAP: 6878 mask = ifr->ifr_reqcap ^ ifp->if_capenable; 6879 DBPRINT(sc, BCE_INFO_MISC, "Received SIOCSIFCAP = 0x%08X\n", (u32) mask); 6880 6881 /* Toggle the TX checksum capabilites enable flag. */ 6882 if (mask & IFCAP_TXCSUM) { 6883 ifp->if_capenable ^= IFCAP_TXCSUM; 6884 if (IFCAP_TXCSUM & ifp->if_capenable) 6885 ifp->if_hwassist = BCE_IF_HWASSIST; 6886 else 6887 ifp->if_hwassist = 0; 6888 } 6889 6890 /* Toggle the RX checksum capabilities enable flag. */ 6891 if (mask & IFCAP_RXCSUM) { 6892 ifp->if_capenable ^= IFCAP_RXCSUM; 6893 if (IFCAP_RXCSUM & ifp->if_capenable) 6894 ifp->if_hwassist = BCE_IF_HWASSIST; 6895 else 6896 ifp->if_hwassist = 0; 6897 } 6898 6899 /* Toggle the TSO capabilities enable flag. */ 6900 if (bce_tso_enable && (mask & IFCAP_TSO4)) { 6901 ifp->if_capenable ^= IFCAP_TSO4; 6902 if (IFCAP_RXCSUM & ifp->if_capenable) 6903 ifp->if_hwassist = BCE_IF_HWASSIST; 6904 else 6905 ifp->if_hwassist = 0; 6906 } 6907 6908 /* Toggle VLAN_MTU capabilities enable flag. */ 6909 if (mask & IFCAP_VLAN_MTU) { 6910 BCE_PRINTF("%s(%d): Changing VLAN_MTU not supported.\n", 6911 __FILE__, __LINE__); 6912 } 6913 6914 /* Toggle VLANHWTAG capabilities enabled flag. */ 6915 if (mask & IFCAP_VLAN_HWTAGGING) { 6916 if (sc->bce_flags & BCE_MFW_ENABLE_FLAG) 6917 BCE_PRINTF("%s(%d): Cannot change VLAN_HWTAGGING while " 6918 "management firmware (ASF/IPMI/UMP) is running!\n", 6919 __FILE__, __LINE__); 6920 else 6921 BCE_PRINTF("%s(%d): Changing VLAN_HWTAGGING not supported!\n", 6922 __FILE__, __LINE__); 6923 } 6924 6925 break; 6926 default: 6927 /* We don't know how to handle the IOCTL, pass it on. */ 6928 error = ether_ioctl(ifp, command, data); 6929 break; 6930 } 6931 6932 DBEXIT(BCE_VERBOSE_MISC); 6933 return(error); 6934 } 6935 6936 6937 /****************************************************************************/ 6938 /* Transmit timeout handler. */ 6939 /* */ 6940 /* Returns: */ 6941 /* Nothing. */ 6942 /****************************************************************************/ 6943 static void 6944 bce_watchdog(struct bce_softc *sc) 6945 { 6946 DBENTER(BCE_EXTREME_SEND); 6947 6948 BCE_LOCK_ASSERT(sc); 6949 6950 /* If the watchdog timer hasn't expired then just exit. */ 6951 if (sc->watchdog_timer == 0 || --sc->watchdog_timer) 6952 goto bce_watchdog_exit; 6953 6954 /* If pause frames are active then don't reset the hardware. */ 6955 /* ToDo: Should we reset the timer here? */ 6956 if (REG_RD(sc, BCE_EMAC_TX_STATUS) & BCE_EMAC_TX_STATUS_XOFFED) 6957 goto bce_watchdog_exit; 6958 6959 BCE_PRINTF("%s(%d): Watchdog timeout occurred, resetting!\n", 6960 __FILE__, __LINE__); 6961 6962 DBRUNMSG(BCE_INFO, 6963 bce_dump_driver_state(sc); 6964 bce_dump_status_block(sc); 6965 bce_dump_stats_block(sc); 6966 bce_dump_ftqs(sc); 6967 bce_dump_txp_state(sc, 0); 6968 bce_dump_rxp_state(sc, 0); 6969 bce_dump_tpat_state(sc, 0); 6970 bce_dump_cp_state(sc, 0); 6971 bce_dump_com_state(sc, 0)); 6972 6973 DBRUN(bce_breakpoint(sc)); 6974 6975 sc->bce_ifp->if_drv_flags &= ~IFF_DRV_RUNNING; 6976 6977 bce_init_locked(sc); 6978 sc->bce_ifp->if_oerrors++; 6979 6980 bce_watchdog_exit: 6981 DBEXIT(BCE_EXTREME_SEND); 6982 } 6983 6984 6985 /* 6986 * Interrupt handler. 6987 */ 6988 /****************************************************************************/ 6989 /* Main interrupt entry point. Verifies that the controller generated the */ 6990 /* interrupt and then calls a separate routine for handle the various */ 6991 /* interrupt causes (PHY, TX, RX). */ 6992 /* */ 6993 /* Returns: */ 6994 /* 0 for success, positive value for failure. */ 6995 /****************************************************************************/ 6996 static void 6997 bce_intr(void *xsc) 6998 { 6999 struct bce_softc *sc; 7000 struct ifnet *ifp; 7001 u32 status_attn_bits; 7002 u16 hw_rx_cons, hw_tx_cons; 7003 7004 sc = xsc; 7005 ifp = sc->bce_ifp; 7006 7007 DBENTER(BCE_VERBOSE_SEND | BCE_VERBOSE_RECV | BCE_VERBOSE_INTR); 7008 DBRUNMSG(BCE_VERBOSE_INTR, bce_dump_status_block(sc)); 7009 7010 BCE_LOCK(sc); 7011 7012 DBRUN(sc->interrupts_generated++); 7013 7014 bus_dmamap_sync(sc->status_tag, sc->status_map, 7015 BUS_DMASYNC_POSTWRITE); 7016 7017 /* 7018 * If the hardware status block index 7019 * matches the last value read by the 7020 * driver and we haven't asserted our 7021 * interrupt then there's nothing to do. 7022 */ 7023 if ((sc->status_block->status_idx == sc->last_status_idx) && 7024 (REG_RD(sc, BCE_PCICFG_MISC_STATUS) & BCE_PCICFG_MISC_STATUS_INTA_VALUE)) { 7025 DBPRINT(sc, BCE_VERBOSE_INTR, "%s(): Spurious interrupt.\n", 7026 __FUNCTION__); 7027 goto bce_intr_exit; 7028 } 7029 7030 /* Ack the interrupt and stop others from occuring. */ 7031 REG_WR(sc, BCE_PCICFG_INT_ACK_CMD, 7032 BCE_PCICFG_INT_ACK_CMD_USE_INT_HC_PARAM | 7033 BCE_PCICFG_INT_ACK_CMD_MASK_INT); 7034 7035 /* Check if the hardware has finished any work. */ 7036 hw_rx_cons = bce_get_hw_rx_cons(sc); 7037 hw_tx_cons = bce_get_hw_tx_cons(sc); 7038 7039 /* Keep processing data as long as there is work to do. */ 7040 for (;;) { 7041 7042 status_attn_bits = sc->status_block->status_attn_bits; 7043 7044 DBRUNIF(DB_RANDOMTRUE(bce_debug_unexpected_attention), 7045 BCE_PRINTF("Simulating unexpected status attention bit set."); 7046 status_attn_bits = status_attn_bits | STATUS_ATTN_BITS_PARITY_ERROR); 7047 7048 /* Was it a link change interrupt? */ 7049 if ((status_attn_bits & STATUS_ATTN_BITS_LINK_STATE) != 7050 (sc->status_block->status_attn_bits_ack & STATUS_ATTN_BITS_LINK_STATE)) { 7051 bce_phy_intr(sc); 7052 7053 /* Clear any transient status updates during link state change. */ 7054 REG_WR(sc, BCE_HC_COMMAND, 7055 sc->hc_command | BCE_HC_COMMAND_COAL_NOW_WO_INT); 7056 REG_RD(sc, BCE_HC_COMMAND); 7057 } 7058 7059 /* If any other attention is asserted then the chip is toast. */ 7060 if (((status_attn_bits & ~STATUS_ATTN_BITS_LINK_STATE) != 7061 (sc->status_block->status_attn_bits_ack & 7062 ~STATUS_ATTN_BITS_LINK_STATE))) { 7063 7064 DBRUN(sc->unexpected_attentions++); 7065 7066 BCE_PRINTF("%s(%d): Fatal attention detected: 0x%08X\n", 7067 __FILE__, __LINE__, sc->status_block->status_attn_bits); 7068 7069 DBRUNMSG(BCE_FATAL, 7070 if (bce_debug_unexpected_attention == 0) 7071 bce_breakpoint(sc)); 7072 7073 bce_init_locked(sc); 7074 goto bce_intr_exit; 7075 } 7076 7077 /* Check for any completed RX frames. */ 7078 if (hw_rx_cons != sc->hw_rx_cons) 7079 bce_rx_intr(sc); 7080 7081 /* Check for any completed TX frames. */ 7082 if (hw_tx_cons != sc->hw_tx_cons) 7083 bce_tx_intr(sc); 7084 7085 /* Save the status block index value for use during the next interrupt. */ 7086 sc->last_status_idx = sc->status_block->status_idx; 7087 7088 /* Prevent speculative reads from getting ahead of the status block. */ 7089 bus_space_barrier(sc->bce_btag, sc->bce_bhandle, 0, 0, 7090 BUS_SPACE_BARRIER_READ); 7091 7092 /* If there's no work left then exit the interrupt service routine. */ 7093 hw_rx_cons = bce_get_hw_rx_cons(sc); 7094 hw_tx_cons = bce_get_hw_tx_cons(sc); 7095 7096 if ((hw_rx_cons == sc->hw_rx_cons) && (hw_tx_cons == sc->hw_tx_cons)) 7097 break; 7098 7099 } 7100 7101 bus_dmamap_sync(sc->status_tag, sc->status_map, 7102 BUS_DMASYNC_PREWRITE); 7103 7104 /* Re-enable interrupts. */ 7105 bce_enable_intr(sc, 0); 7106 7107 /* Handle any frames that arrived while handling the interrupt. */ 7108 if (ifp->if_drv_flags & IFF_DRV_RUNNING && !IFQ_DRV_IS_EMPTY(&ifp->if_snd)) 7109 bce_start_locked(ifp); 7110 7111 bce_intr_exit: 7112 BCE_UNLOCK(sc); 7113 7114 DBEXIT(BCE_VERBOSE_SEND | BCE_VERBOSE_RECV | BCE_VERBOSE_INTR); 7115 } 7116 7117 7118 /****************************************************************************/ 7119 /* Programs the various packet receive modes (broadcast and multicast). */ 7120 /* */ 7121 /* Returns: */ 7122 /* Nothing. */ 7123 /****************************************************************************/ 7124 static void 7125 bce_set_rx_mode(struct bce_softc *sc) 7126 { 7127 struct ifnet *ifp; 7128 struct ifmultiaddr *ifma; 7129 u32 hashes[NUM_MC_HASH_REGISTERS] = { 0, 0, 0, 0, 0, 0, 0, 0 }; 7130 u32 rx_mode, sort_mode; 7131 int h, i; 7132 7133 DBENTER(BCE_VERBOSE_MISC); 7134 7135 BCE_LOCK_ASSERT(sc); 7136 7137 ifp = sc->bce_ifp; 7138 7139 /* Initialize receive mode default settings. */ 7140 rx_mode = sc->rx_mode & ~(BCE_EMAC_RX_MODE_PROMISCUOUS | 7141 BCE_EMAC_RX_MODE_KEEP_VLAN_TAG); 7142 sort_mode = 1 | BCE_RPM_SORT_USER0_BC_EN; 7143 7144 /* 7145 * ASF/IPMI/UMP firmware requires that VLAN tag stripping 7146 * be enbled. 7147 */ 7148 if (!(BCE_IF_CAPABILITIES & IFCAP_VLAN_HWTAGGING) && 7149 (!(sc->bce_flags & BCE_MFW_ENABLE_FLAG))) 7150 rx_mode |= BCE_EMAC_RX_MODE_KEEP_VLAN_TAG; 7151 7152 /* 7153 * Check for promiscuous, all multicast, or selected 7154 * multicast address filtering. 7155 */ 7156 if (ifp->if_flags & IFF_PROMISC) { 7157 DBPRINT(sc, BCE_INFO_MISC, "Enabling promiscuous mode.\n"); 7158 7159 /* Enable promiscuous mode. */ 7160 rx_mode |= BCE_EMAC_RX_MODE_PROMISCUOUS; 7161 sort_mode |= BCE_RPM_SORT_USER0_PROM_EN; 7162 } else if (ifp->if_flags & IFF_ALLMULTI) { 7163 DBPRINT(sc, BCE_INFO_MISC, "Enabling all multicast mode.\n"); 7164 7165 /* Enable all multicast addresses. */ 7166 for (i = 0; i < NUM_MC_HASH_REGISTERS; i++) { 7167 REG_WR(sc, BCE_EMAC_MULTICAST_HASH0 + (i * 4), 0xffffffff); 7168 } 7169 sort_mode |= BCE_RPM_SORT_USER0_MC_EN; 7170 } else { 7171 /* Accept one or more multicast(s). */ 7172 DBPRINT(sc, BCE_INFO_MISC, "Enabling selective multicast mode.\n"); 7173 7174 IF_ADDR_LOCK(ifp); 7175 TAILQ_FOREACH(ifma, &ifp->if_multiaddrs, ifma_link) { 7176 if (ifma->ifma_addr->sa_family != AF_LINK) 7177 continue; 7178 h = ether_crc32_le(LLADDR((struct sockaddr_dl *) 7179 ifma->ifma_addr), ETHER_ADDR_LEN) & 0xFF; 7180 hashes[(h & 0xE0) >> 5] |= 1 << (h & 0x1F); 7181 } 7182 IF_ADDR_UNLOCK(ifp); 7183 7184 for (i = 0; i < NUM_MC_HASH_REGISTERS; i++) 7185 REG_WR(sc, BCE_EMAC_MULTICAST_HASH0 + (i * 4), hashes[i]); 7186 7187 sort_mode |= BCE_RPM_SORT_USER0_MC_HSH_EN; 7188 } 7189 7190 /* Only make changes if the recive mode has actually changed. */ 7191 if (rx_mode != sc->rx_mode) { 7192 DBPRINT(sc, BCE_VERBOSE_MISC, "Enabling new receive mode: 0x%08X\n", 7193 rx_mode); 7194 7195 sc->rx_mode = rx_mode; 7196 REG_WR(sc, BCE_EMAC_RX_MODE, rx_mode); 7197 } 7198 7199 /* Disable and clear the exisitng sort before enabling a new sort. */ 7200 REG_WR(sc, BCE_RPM_SORT_USER0, 0x0); 7201 REG_WR(sc, BCE_RPM_SORT_USER0, sort_mode); 7202 REG_WR(sc, BCE_RPM_SORT_USER0, sort_mode | BCE_RPM_SORT_USER0_ENA); 7203 7204 DBEXIT(BCE_VERBOSE_MISC); 7205 } 7206 7207 7208 /****************************************************************************/ 7209 /* Called periodically to updates statistics from the controllers */ 7210 /* statistics block. */ 7211 /* */ 7212 /* Returns: */ 7213 /* Nothing. */ 7214 /****************************************************************************/ 7215 static void 7216 bce_stats_update(struct bce_softc *sc) 7217 { 7218 struct ifnet *ifp; 7219 struct statistics_block *stats; 7220 7221 DBENTER(BCE_EXTREME_MISC); 7222 7223 ifp = sc->bce_ifp; 7224 7225 stats = (struct statistics_block *) sc->stats_block; 7226 7227 /* 7228 * Certain controllers don't report 7229 * carrier sense errors correctly. 7230 * See errata E11_5708CA0_1165. 7231 */ 7232 if (!(BCE_CHIP_NUM(sc) == BCE_CHIP_NUM_5706) && 7233 !(BCE_CHIP_ID(sc) == BCE_CHIP_ID_5708_A0)) 7234 ifp->if_oerrors += (u_long) stats->stat_Dot3StatsCarrierSenseErrors; 7235 7236 /* 7237 * Update the sysctl statistics from the 7238 * hardware statistics. 7239 */ 7240 sc->stat_IfHCInOctets = 7241 ((u64) stats->stat_IfHCInOctets_hi << 32) + 7242 (u64) stats->stat_IfHCInOctets_lo; 7243 7244 sc->stat_IfHCInBadOctets = 7245 ((u64) stats->stat_IfHCInBadOctets_hi << 32) + 7246 (u64) stats->stat_IfHCInBadOctets_lo; 7247 7248 sc->stat_IfHCOutOctets = 7249 ((u64) stats->stat_IfHCOutOctets_hi << 32) + 7250 (u64) stats->stat_IfHCOutOctets_lo; 7251 7252 sc->stat_IfHCOutBadOctets = 7253 ((u64) stats->stat_IfHCOutBadOctets_hi << 32) + 7254 (u64) stats->stat_IfHCOutBadOctets_lo; 7255 7256 sc->stat_IfHCInUcastPkts = 7257 ((u64) stats->stat_IfHCInUcastPkts_hi << 32) + 7258 (u64) stats->stat_IfHCInUcastPkts_lo; 7259 7260 sc->stat_IfHCInMulticastPkts = 7261 ((u64) stats->stat_IfHCInMulticastPkts_hi << 32) + 7262 (u64) stats->stat_IfHCInMulticastPkts_lo; 7263 7264 sc->stat_IfHCInBroadcastPkts = 7265 ((u64) stats->stat_IfHCInBroadcastPkts_hi << 32) + 7266 (u64) stats->stat_IfHCInBroadcastPkts_lo; 7267 7268 sc->stat_IfHCOutUcastPkts = 7269 ((u64) stats->stat_IfHCOutUcastPkts_hi << 32) + 7270 (u64) stats->stat_IfHCOutUcastPkts_lo; 7271 7272 sc->stat_IfHCOutMulticastPkts = 7273 ((u64) stats->stat_IfHCOutMulticastPkts_hi << 32) + 7274 (u64) stats->stat_IfHCOutMulticastPkts_lo; 7275 7276 sc->stat_IfHCOutBroadcastPkts = 7277 ((u64) stats->stat_IfHCOutBroadcastPkts_hi << 32) + 7278 (u64) stats->stat_IfHCOutBroadcastPkts_lo; 7279 7280 sc->stat_emac_tx_stat_dot3statsinternalmactransmiterrors = 7281 stats->stat_emac_tx_stat_dot3statsinternalmactransmiterrors; 7282 7283 sc->stat_Dot3StatsCarrierSenseErrors = 7284 stats->stat_Dot3StatsCarrierSenseErrors; 7285 7286 sc->stat_Dot3StatsFCSErrors = 7287 stats->stat_Dot3StatsFCSErrors; 7288 7289 sc->stat_Dot3StatsAlignmentErrors = 7290 stats->stat_Dot3StatsAlignmentErrors; 7291 7292 sc->stat_Dot3StatsSingleCollisionFrames = 7293 stats->stat_Dot3StatsSingleCollisionFrames; 7294 7295 sc->stat_Dot3StatsMultipleCollisionFrames = 7296 stats->stat_Dot3StatsMultipleCollisionFrames; 7297 7298 sc->stat_Dot3StatsDeferredTransmissions = 7299 stats->stat_Dot3StatsDeferredTransmissions; 7300 7301 sc->stat_Dot3StatsExcessiveCollisions = 7302 stats->stat_Dot3StatsExcessiveCollisions; 7303 7304 sc->stat_Dot3StatsLateCollisions = 7305 stats->stat_Dot3StatsLateCollisions; 7306 7307 sc->stat_EtherStatsCollisions = 7308 stats->stat_EtherStatsCollisions; 7309 7310 sc->stat_EtherStatsFragments = 7311 stats->stat_EtherStatsFragments; 7312 7313 sc->stat_EtherStatsJabbers = 7314 stats->stat_EtherStatsJabbers; 7315 7316 sc->stat_EtherStatsUndersizePkts = 7317 stats->stat_EtherStatsUndersizePkts; 7318 7319 sc->stat_EtherStatsOverrsizePkts = 7320 stats->stat_EtherStatsOverrsizePkts; 7321 7322 sc->stat_EtherStatsPktsRx64Octets = 7323 stats->stat_EtherStatsPktsRx64Octets; 7324 7325 sc->stat_EtherStatsPktsRx65Octetsto127Octets = 7326 stats->stat_EtherStatsPktsRx65Octetsto127Octets; 7327 7328 sc->stat_EtherStatsPktsRx128Octetsto255Octets = 7329 stats->stat_EtherStatsPktsRx128Octetsto255Octets; 7330 7331 sc->stat_EtherStatsPktsRx256Octetsto511Octets = 7332 stats->stat_EtherStatsPktsRx256Octetsto511Octets; 7333 7334 sc->stat_EtherStatsPktsRx512Octetsto1023Octets = 7335 stats->stat_EtherStatsPktsRx512Octetsto1023Octets; 7336 7337 sc->stat_EtherStatsPktsRx1024Octetsto1522Octets = 7338 stats->stat_EtherStatsPktsRx1024Octetsto1522Octets; 7339 7340 sc->stat_EtherStatsPktsRx1523Octetsto9022Octets = 7341 stats->stat_EtherStatsPktsRx1523Octetsto9022Octets; 7342 7343 sc->stat_EtherStatsPktsTx64Octets = 7344 stats->stat_EtherStatsPktsTx64Octets; 7345 7346 sc->stat_EtherStatsPktsTx65Octetsto127Octets = 7347 stats->stat_EtherStatsPktsTx65Octetsto127Octets; 7348 7349 sc->stat_EtherStatsPktsTx128Octetsto255Octets = 7350 stats->stat_EtherStatsPktsTx128Octetsto255Octets; 7351 7352 sc->stat_EtherStatsPktsTx256Octetsto511Octets = 7353 stats->stat_EtherStatsPktsTx256Octetsto511Octets; 7354 7355 sc->stat_EtherStatsPktsTx512Octetsto1023Octets = 7356 stats->stat_EtherStatsPktsTx512Octetsto1023Octets; 7357 7358 sc->stat_EtherStatsPktsTx1024Octetsto1522Octets = 7359 stats->stat_EtherStatsPktsTx1024Octetsto1522Octets; 7360 7361 sc->stat_EtherStatsPktsTx1523Octetsto9022Octets = 7362 stats->stat_EtherStatsPktsTx1523Octetsto9022Octets; 7363 7364 sc->stat_XonPauseFramesReceived = 7365 stats->stat_XonPauseFramesReceived; 7366 7367 sc->stat_XoffPauseFramesReceived = 7368 stats->stat_XoffPauseFramesReceived; 7369 7370 sc->stat_OutXonSent = 7371 stats->stat_OutXonSent; 7372 7373 sc->stat_OutXoffSent = 7374 stats->stat_OutXoffSent; 7375 7376 sc->stat_FlowControlDone = 7377 stats->stat_FlowControlDone; 7378 7379 sc->stat_MacControlFramesReceived = 7380 stats->stat_MacControlFramesReceived; 7381 7382 sc->stat_XoffStateEntered = 7383 stats->stat_XoffStateEntered; 7384 7385 sc->stat_IfInFramesL2FilterDiscards = 7386 stats->stat_IfInFramesL2FilterDiscards; 7387 7388 sc->stat_IfInRuleCheckerDiscards = 7389 stats->stat_IfInRuleCheckerDiscards; 7390 7391 sc->stat_IfInFTQDiscards = 7392 stats->stat_IfInFTQDiscards; 7393 7394 sc->stat_IfInMBUFDiscards = 7395 stats->stat_IfInMBUFDiscards; 7396 7397 sc->stat_IfInRuleCheckerP4Hit = 7398 stats->stat_IfInRuleCheckerP4Hit; 7399 7400 sc->stat_CatchupInRuleCheckerDiscards = 7401 stats->stat_CatchupInRuleCheckerDiscards; 7402 7403 sc->stat_CatchupInFTQDiscards = 7404 stats->stat_CatchupInFTQDiscards; 7405 7406 sc->stat_CatchupInMBUFDiscards = 7407 stats->stat_CatchupInMBUFDiscards; 7408 7409 sc->stat_CatchupInRuleCheckerP4Hit = 7410 stats->stat_CatchupInRuleCheckerP4Hit; 7411 7412 sc->com_no_buffers = REG_RD_IND(sc, 0x120084); 7413 7414 /* 7415 * Update the interface statistics from the 7416 * hardware statistics. 7417 */ 7418 ifp->if_collisions = 7419 (u_long) sc->stat_EtherStatsCollisions; 7420 7421 /* ToDo: This method loses soft errors. */ 7422 ifp->if_ierrors = 7423 (u_long) sc->stat_EtherStatsUndersizePkts + 7424 (u_long) sc->stat_EtherStatsOverrsizePkts + 7425 (u_long) sc->stat_IfInMBUFDiscards + 7426 (u_long) sc->stat_Dot3StatsAlignmentErrors + 7427 (u_long) sc->stat_Dot3StatsFCSErrors + 7428 (u_long) sc->stat_IfInRuleCheckerDiscards + 7429 (u_long) sc->stat_IfInFTQDiscards + 7430 (u_long) sc->com_no_buffers; 7431 7432 /* ToDo: This method loses soft errors. */ 7433 ifp->if_oerrors = 7434 (u_long) sc->stat_emac_tx_stat_dot3statsinternalmactransmiterrors + 7435 (u_long) sc->stat_Dot3StatsExcessiveCollisions + 7436 (u_long) sc->stat_Dot3StatsLateCollisions; 7437 7438 /* ToDo: Add additional statistics. */ 7439 7440 DBEXIT(BCE_EXTREME_MISC); 7441 } 7442 7443 7444 /****************************************************************************/ 7445 /* Periodic function to notify the bootcode that the driver is still */ 7446 /* present. */ 7447 /* */ 7448 /* Returns: */ 7449 /* Nothing. */ 7450 /****************************************************************************/ 7451 static void 7452 bce_pulse(void *xsc) 7453 { 7454 struct bce_softc *sc = xsc; 7455 u32 msg; 7456 7457 DBENTER(BCE_EXTREME_MISC); 7458 7459 BCE_LOCK_ASSERT(sc); 7460 7461 /* Tell the firmware that the driver is still running. */ 7462 msg = (u32) ++sc->bce_fw_drv_pulse_wr_seq; 7463 REG_WR_IND(sc, sc->bce_shmem_base + BCE_DRV_PULSE_MB, msg); 7464 7465 /* Schedule the next pulse. */ 7466 callout_reset(&sc->bce_pulse_callout, hz, bce_pulse, sc); 7467 7468 DBEXIT(BCE_EXTREME_MISC); 7469 } 7470 7471 7472 /****************************************************************************/ 7473 /* Periodic function to perform maintenance tasks. */ 7474 /* */ 7475 /* Returns: */ 7476 /* Nothing. */ 7477 /****************************************************************************/ 7478 static void 7479 bce_tick(void *xsc) 7480 { 7481 struct bce_softc *sc = xsc; 7482 struct mii_data *mii; 7483 struct ifnet *ifp; 7484 7485 ifp = sc->bce_ifp; 7486 7487 DBENTER(BCE_EXTREME_MISC); 7488 7489 BCE_LOCK_ASSERT(sc); 7490 7491 /* Schedule the next tick. */ 7492 callout_reset(&sc->bce_tick_callout, hz, bce_tick, sc); 7493 7494 /* Update the statistics from the hardware statistics block. */ 7495 bce_stats_update(sc); 7496 7497 /* Top off the receive and page chains. */ 7498 #ifdef BCE_USE_SPLIT_HEADER 7499 bce_fill_pg_chain(sc); 7500 #endif 7501 bce_fill_rx_chain(sc); 7502 7503 /* Check that chip hasn't hung. */ 7504 bce_watchdog(sc); 7505 7506 /* If link is up already up then we're done. */ 7507 if (sc->bce_link) 7508 goto bce_tick_exit; 7509 7510 /* Link is down. Check what the PHY's doing. */ 7511 mii = device_get_softc(sc->bce_miibus); 7512 mii_tick(mii); 7513 7514 /* Check if the link has come up. */ 7515 if ((mii->mii_media_status & IFM_ACTIVE) && 7516 (IFM_SUBTYPE(mii->mii_media_active) != IFM_NONE)) { 7517 DBPRINT(sc, BCE_VERBOSE_MISC, "%s(): Link up!\n", __FUNCTION__); 7518 sc->bce_link++; 7519 if ((IFM_SUBTYPE(mii->mii_media_active) == IFM_1000_T || 7520 IFM_SUBTYPE(mii->mii_media_active) == IFM_1000_SX) && 7521 bootverbose) 7522 BCE_PRINTF("Gigabit link up!\n"); 7523 /* Now that link is up, handle any outstanding TX traffic. */ 7524 if (!IFQ_DRV_IS_EMPTY(&ifp->if_snd)) { 7525 DBPRINT(sc, BCE_VERBOSE_MISC, "%s(): Found pending TX traffic.\n", 7526 __FUNCTION__); 7527 bce_start_locked(ifp); 7528 } 7529 } 7530 7531 bce_tick_exit: 7532 DBEXIT(BCE_EXTREME_MISC); 7533 return; 7534 } 7535 7536 7537 #ifdef BCE_DEBUG 7538 /****************************************************************************/ 7539 /* Allows the driver state to be dumped through the sysctl interface. */ 7540 /* */ 7541 /* Returns: */ 7542 /* 0 for success, positive value for failure. */ 7543 /****************************************************************************/ 7544 static int 7545 bce_sysctl_driver_state(SYSCTL_HANDLER_ARGS) 7546 { 7547 int error; 7548 int result; 7549 struct bce_softc *sc; 7550 7551 result = -1; 7552 error = sysctl_handle_int(oidp, &result, 0, req); 7553 7554 if (error || !req->newptr) 7555 return (error); 7556 7557 if (result == 1) { 7558 sc = (struct bce_softc *)arg1; 7559 bce_dump_driver_state(sc); 7560 } 7561 7562 return error; 7563 } 7564 7565 7566 /****************************************************************************/ 7567 /* Allows the hardware state to be dumped through the sysctl interface. */ 7568 /* */ 7569 /* Returns: */ 7570 /* 0 for success, positive value for failure. */ 7571 /****************************************************************************/ 7572 static int 7573 bce_sysctl_hw_state(SYSCTL_HANDLER_ARGS) 7574 { 7575 int error; 7576 int result; 7577 struct bce_softc *sc; 7578 7579 result = -1; 7580 error = sysctl_handle_int(oidp, &result, 0, req); 7581 7582 if (error || !req->newptr) 7583 return (error); 7584 7585 if (result == 1) { 7586 sc = (struct bce_softc *)arg1; 7587 bce_dump_hw_state(sc); 7588 } 7589 7590 return error; 7591 } 7592 7593 7594 /****************************************************************************/ 7595 /* Allows the bootcode state to be dumped through the sysctl interface. */ 7596 /* */ 7597 /* Returns: */ 7598 /* 0 for success, positive value for failure. */ 7599 /****************************************************************************/ 7600 static int 7601 bce_sysctl_bc_state(SYSCTL_HANDLER_ARGS) 7602 { 7603 int error; 7604 int result; 7605 struct bce_softc *sc; 7606 7607 result = -1; 7608 error = sysctl_handle_int(oidp, &result, 0, req); 7609 7610 if (error || !req->newptr) 7611 return (error); 7612 7613 if (result == 1) { 7614 sc = (struct bce_softc *)arg1; 7615 bce_dump_bc_state(sc); 7616 } 7617 7618 return error; 7619 } 7620 7621 7622 /****************************************************************************/ 7623 /* Provides a sysctl interface to allow dumping the RX chain. */ 7624 /* */ 7625 /* Returns: */ 7626 /* 0 for success, positive value for failure. */ 7627 /****************************************************************************/ 7628 static int 7629 bce_sysctl_dump_rx_chain(SYSCTL_HANDLER_ARGS) 7630 { 7631 int error; 7632 int result; 7633 struct bce_softc *sc; 7634 7635 result = -1; 7636 error = sysctl_handle_int(oidp, &result, 0, req); 7637 7638 if (error || !req->newptr) 7639 return (error); 7640 7641 if (result == 1) { 7642 sc = (struct bce_softc *)arg1; 7643 bce_dump_rx_chain(sc, 0, TOTAL_RX_BD); 7644 } 7645 7646 return error; 7647 } 7648 7649 7650 /****************************************************************************/ 7651 /* Provides a sysctl interface to allow dumping the TX chain. */ 7652 /* */ 7653 /* Returns: */ 7654 /* 0 for success, positive value for failure. */ 7655 /****************************************************************************/ 7656 static int 7657 bce_sysctl_dump_tx_chain(SYSCTL_HANDLER_ARGS) 7658 { 7659 int error; 7660 int result; 7661 struct bce_softc *sc; 7662 7663 result = -1; 7664 error = sysctl_handle_int(oidp, &result, 0, req); 7665 7666 if (error || !req->newptr) 7667 return (error); 7668 7669 if (result == 1) { 7670 sc = (struct bce_softc *)arg1; 7671 bce_dump_tx_chain(sc, 0, USABLE_TX_BD); 7672 } 7673 7674 return error; 7675 } 7676 7677 7678 #ifdef BCE_USE_SPLIT_HEADER 7679 /****************************************************************************/ 7680 /* Provides a sysctl interface to allow dumping the page chain. */ 7681 /* */ 7682 /* Returns: */ 7683 /* 0 for success, positive value for failure. */ 7684 /****************************************************************************/ 7685 static int 7686 bce_sysctl_dump_pg_chain(SYSCTL_HANDLER_ARGS) 7687 { 7688 int error; 7689 int result; 7690 struct bce_softc *sc; 7691 7692 result = -1; 7693 error = sysctl_handle_int(oidp, &result, 0, req); 7694 7695 if (error || !req->newptr) 7696 return (error); 7697 7698 if (result == 1) { 7699 sc = (struct bce_softc *)arg1; 7700 bce_dump_pg_chain(sc, 0, TOTAL_PG_BD); 7701 } 7702 7703 return error; 7704 } 7705 #endif 7706 7707 /****************************************************************************/ 7708 /* Provides a sysctl interface to allow reading arbitrary NVRAM offsets in */ 7709 /* the device. DO NOT ENABLE ON PRODUCTION SYSTEMS! */ 7710 /* */ 7711 /* Returns: */ 7712 /* 0 for success, positive value for failure. */ 7713 /****************************************************************************/ 7714 static int 7715 bce_sysctl_nvram_read(SYSCTL_HANDLER_ARGS) 7716 { 7717 struct bce_softc *sc = (struct bce_softc *)arg1; 7718 int error; 7719 u32 result; 7720 u32 val[1]; 7721 u8 *data = (u8 *) val; 7722 7723 result = -1; 7724 error = sysctl_handle_int(oidp, &result, 0, req); 7725 if (error || (req->newptr == NULL)) 7726 return (error); 7727 7728 bce_nvram_read(sc, result, data, 4); 7729 BCE_PRINTF("offset 0x%08X = 0x%08X\n", result, bce_be32toh(val[0])); 7730 7731 return (error); 7732 } 7733 7734 7735 /****************************************************************************/ 7736 /* Provides a sysctl interface to allow reading arbitrary registers in the */ 7737 /* device. DO NOT ENABLE ON PRODUCTION SYSTEMS! */ 7738 /* */ 7739 /* Returns: */ 7740 /* 0 for success, positive value for failure. */ 7741 /****************************************************************************/ 7742 static int 7743 bce_sysctl_reg_read(SYSCTL_HANDLER_ARGS) 7744 { 7745 struct bce_softc *sc = (struct bce_softc *)arg1; 7746 int error; 7747 u32 val, result; 7748 7749 result = -1; 7750 error = sysctl_handle_int(oidp, &result, 0, req); 7751 if (error || (req->newptr == NULL)) 7752 return (error); 7753 7754 /* Make sure the register is accessible. */ 7755 if (result < 0x8000) { 7756 val = REG_RD(sc, result); 7757 BCE_PRINTF("reg 0x%08X = 0x%08X\n", result, val); 7758 } else if (result < 0x0280000) { 7759 val = REG_RD_IND(sc, result); 7760 BCE_PRINTF("reg 0x%08X = 0x%08X\n", result, val); 7761 } 7762 7763 return (error); 7764 } 7765 7766 7767 /****************************************************************************/ 7768 /* Provides a sysctl interface to allow reading arbitrary PHY registers in */ 7769 /* the device. DO NOT ENABLE ON PRODUCTION SYSTEMS! */ 7770 /* */ 7771 /* Returns: */ 7772 /* 0 for success, positive value for failure. */ 7773 /****************************************************************************/ 7774 static int 7775 bce_sysctl_phy_read(SYSCTL_HANDLER_ARGS) 7776 { 7777 struct bce_softc *sc; 7778 device_t dev; 7779 int error, result; 7780 u16 val; 7781 7782 result = -1; 7783 error = sysctl_handle_int(oidp, &result, 0, req); 7784 if (error || (req->newptr == NULL)) 7785 return (error); 7786 7787 /* Make sure the register is accessible. */ 7788 if (result < 0x20) { 7789 sc = (struct bce_softc *)arg1; 7790 dev = sc->bce_dev; 7791 val = bce_miibus_read_reg(dev, sc->bce_phy_addr, result); 7792 BCE_PRINTF("phy 0x%02X = 0x%04X\n", result, val); 7793 } 7794 return (error); 7795 } 7796 7797 7798 /****************************************************************************/ 7799 /* Provides a sysctl interface to allow reading a CID. */ 7800 /* */ 7801 /* Returns: */ 7802 /* 0 for success, positive value for failure. */ 7803 /****************************************************************************/ 7804 static int 7805 bce_sysctl_dump_ctx(SYSCTL_HANDLER_ARGS) 7806 { 7807 struct bce_softc *sc; 7808 int error; 7809 u16 result; 7810 7811 result = -1; 7812 error = sysctl_handle_int(oidp, &result, 0, req); 7813 if (error || (req->newptr == NULL)) 7814 return (error); 7815 7816 /* Make sure the register is accessible. */ 7817 if (result <= TX_CID) { 7818 sc = (struct bce_softc *)arg1; 7819 bce_dump_ctx(sc, result); 7820 } 7821 7822 return (error); 7823 } 7824 7825 7826 /****************************************************************************/ 7827 /* Provides a sysctl interface to forcing the driver to dump state and */ 7828 /* enter the debugger. DO NOT ENABLE ON PRODUCTION SYSTEMS! */ 7829 /* */ 7830 /* Returns: */ 7831 /* 0 for success, positive value for failure. */ 7832 /****************************************************************************/ 7833 static int 7834 bce_sysctl_breakpoint(SYSCTL_HANDLER_ARGS) 7835 { 7836 int error; 7837 int result; 7838 struct bce_softc *sc; 7839 7840 result = -1; 7841 error = sysctl_handle_int(oidp, &result, 0, req); 7842 7843 if (error || !req->newptr) 7844 return (error); 7845 7846 if (result == 1) { 7847 sc = (struct bce_softc *)arg1; 7848 bce_breakpoint(sc); 7849 } 7850 7851 return error; 7852 } 7853 #endif 7854 7855 7856 /****************************************************************************/ 7857 /* Adds any sysctl parameters for tuning or debugging purposes. */ 7858 /* */ 7859 /* Returns: */ 7860 /* 0 for success, positive value for failure. */ 7861 /****************************************************************************/ 7862 static void 7863 bce_add_sysctls(struct bce_softc *sc) 7864 { 7865 struct sysctl_ctx_list *ctx; 7866 struct sysctl_oid_list *children; 7867 7868 DBENTER(BCE_VERBOSE_MISC); 7869 7870 ctx = device_get_sysctl_ctx(sc->bce_dev); 7871 children = SYSCTL_CHILDREN(device_get_sysctl_tree(sc->bce_dev)); 7872 7873 #ifdef BCE_DEBUG 7874 SYSCTL_ADD_INT(ctx, children, OID_AUTO, 7875 "rx_low_watermark", 7876 CTLFLAG_RD, &sc->rx_low_watermark, 7877 0, "Lowest level of free rx_bd's"); 7878 7879 SYSCTL_ADD_INT(ctx, children, OID_AUTO, 7880 "rx_empty_count", 7881 CTLFLAG_RD, &sc->rx_empty_count, 7882 0, "Number of times the RX chain was empty"); 7883 7884 SYSCTL_ADD_INT(ctx, children, OID_AUTO, 7885 "tx_hi_watermark", 7886 CTLFLAG_RD, &sc->tx_hi_watermark, 7887 0, "Highest level of used tx_bd's"); 7888 7889 SYSCTL_ADD_INT(ctx, children, OID_AUTO, 7890 "tx_full_count", 7891 CTLFLAG_RD, &sc->tx_full_count, 7892 0, "Number of times the TX chain was full"); 7893 7894 SYSCTL_ADD_INT(ctx, children, OID_AUTO, 7895 "l2fhdr_status_errors", 7896 CTLFLAG_RD, &sc->l2fhdr_status_errors, 7897 0, "l2_fhdr status errors"); 7898 7899 SYSCTL_ADD_INT(ctx, children, OID_AUTO, 7900 "unexpected_attentions", 7901 CTLFLAG_RD, &sc->unexpected_attentions, 7902 0, "Unexpected attentions"); 7903 7904 SYSCTL_ADD_INT(ctx, children, OID_AUTO, 7905 "lost_status_block_updates", 7906 CTLFLAG_RD, &sc->lost_status_block_updates, 7907 0, "Lost status block updates"); 7908 7909 SYSCTL_ADD_INT(ctx, children, OID_AUTO, 7910 "debug_mbuf_sim_alloc_failed", 7911 CTLFLAG_RD, &sc->debug_mbuf_sim_alloc_failed, 7912 0, "Simulated mbuf cluster allocation failures"); 7913 7914 SYSCTL_ADD_INT(ctx, children, OID_AUTO, 7915 "requested_tso_frames", 7916 CTLFLAG_RD, &sc->requested_tso_frames, 7917 0, "Number of TSO frames received"); 7918 7919 SYSCTL_ADD_UINT(ctx, children, OID_AUTO, 7920 "rx_interrupts", 7921 CTLFLAG_RD, &sc->rx_interrupts, 7922 0, "Number of RX interrupts"); 7923 7924 SYSCTL_ADD_UINT(ctx, children, OID_AUTO, 7925 "tx_interrupts", 7926 CTLFLAG_RD, &sc->tx_interrupts, 7927 0, "Number of TX interrupts"); 7928 7929 SYSCTL_ADD_ULONG(ctx, children, OID_AUTO, 7930 "rx_intr_time", 7931 CTLFLAG_RD, &sc->rx_intr_time, 7932 "RX interrupt time"); 7933 7934 SYSCTL_ADD_ULONG(ctx, children, OID_AUTO, 7935 "tx_intr_time", 7936 CTLFLAG_RD, &sc->tx_intr_time, 7937 "TX interrupt time"); 7938 #endif 7939 7940 SYSCTL_ADD_INT(ctx, children, OID_AUTO, 7941 "mbuf_alloc_failed", 7942 CTLFLAG_RD, &sc->mbuf_alloc_failed, 7943 0, "mbuf cluster allocation failures"); 7944 7945 SYSCTL_ADD_INT(ctx, children, OID_AUTO, 7946 "tx_dma_map_failures", 7947 CTLFLAG_RD, &sc->tx_dma_map_failures, 7948 0, "tx dma mapping failures"); 7949 7950 SYSCTL_ADD_ULONG(ctx, children, OID_AUTO, 7951 "stat_IfHcInOctets", 7952 CTLFLAG_RD, &sc->stat_IfHCInOctets, 7953 "Bytes received"); 7954 7955 SYSCTL_ADD_ULONG(ctx, children, OID_AUTO, 7956 "stat_IfHCInBadOctets", 7957 CTLFLAG_RD, &sc->stat_IfHCInBadOctets, 7958 "Bad bytes received"); 7959 7960 SYSCTL_ADD_ULONG(ctx, children, OID_AUTO, 7961 "stat_IfHCOutOctets", 7962 CTLFLAG_RD, &sc->stat_IfHCOutOctets, 7963 "Bytes sent"); 7964 7965 SYSCTL_ADD_ULONG(ctx, children, OID_AUTO, 7966 "stat_IfHCOutBadOctets", 7967 CTLFLAG_RD, &sc->stat_IfHCOutBadOctets, 7968 "Bad bytes sent"); 7969 7970 SYSCTL_ADD_ULONG(ctx, children, OID_AUTO, 7971 "stat_IfHCInUcastPkts", 7972 CTLFLAG_RD, &sc->stat_IfHCInUcastPkts, 7973 "Unicast packets received"); 7974 7975 SYSCTL_ADD_ULONG(ctx, children, OID_AUTO, 7976 "stat_IfHCInMulticastPkts", 7977 CTLFLAG_RD, &sc->stat_IfHCInMulticastPkts, 7978 "Multicast packets received"); 7979 7980 SYSCTL_ADD_ULONG(ctx, children, OID_AUTO, 7981 "stat_IfHCInBroadcastPkts", 7982 CTLFLAG_RD, &sc->stat_IfHCInBroadcastPkts, 7983 "Broadcast packets received"); 7984 7985 SYSCTL_ADD_ULONG(ctx, children, OID_AUTO, 7986 "stat_IfHCOutUcastPkts", 7987 CTLFLAG_RD, &sc->stat_IfHCOutUcastPkts, 7988 "Unicast packets sent"); 7989 7990 SYSCTL_ADD_ULONG(ctx, children, OID_AUTO, 7991 "stat_IfHCOutMulticastPkts", 7992 CTLFLAG_RD, &sc->stat_IfHCOutMulticastPkts, 7993 "Multicast packets sent"); 7994 7995 SYSCTL_ADD_ULONG(ctx, children, OID_AUTO, 7996 "stat_IfHCOutBroadcastPkts", 7997 CTLFLAG_RD, &sc->stat_IfHCOutBroadcastPkts, 7998 "Broadcast packets sent"); 7999 8000 SYSCTL_ADD_UINT(ctx, children, OID_AUTO, 8001 "stat_emac_tx_stat_dot3statsinternalmactransmiterrors", 8002 CTLFLAG_RD, &sc->stat_emac_tx_stat_dot3statsinternalmactransmiterrors, 8003 0, "Internal MAC transmit errors"); 8004 8005 SYSCTL_ADD_UINT(ctx, children, OID_AUTO, 8006 "stat_Dot3StatsCarrierSenseErrors", 8007 CTLFLAG_RD, &sc->stat_Dot3StatsCarrierSenseErrors, 8008 0, "Carrier sense errors"); 8009 8010 SYSCTL_ADD_UINT(ctx, children, OID_AUTO, 8011 "stat_Dot3StatsFCSErrors", 8012 CTLFLAG_RD, &sc->stat_Dot3StatsFCSErrors, 8013 0, "Frame check sequence errors"); 8014 8015 SYSCTL_ADD_UINT(ctx, children, OID_AUTO, 8016 "stat_Dot3StatsAlignmentErrors", 8017 CTLFLAG_RD, &sc->stat_Dot3StatsAlignmentErrors, 8018 0, "Alignment errors"); 8019 8020 SYSCTL_ADD_UINT(ctx, children, OID_AUTO, 8021 "stat_Dot3StatsSingleCollisionFrames", 8022 CTLFLAG_RD, &sc->stat_Dot3StatsSingleCollisionFrames, 8023 0, "Single Collision Frames"); 8024 8025 SYSCTL_ADD_UINT(ctx, children, OID_AUTO, 8026 "stat_Dot3StatsMultipleCollisionFrames", 8027 CTLFLAG_RD, &sc->stat_Dot3StatsMultipleCollisionFrames, 8028 0, "Multiple Collision Frames"); 8029 8030 SYSCTL_ADD_UINT(ctx, children, OID_AUTO, 8031 "stat_Dot3StatsDeferredTransmissions", 8032 CTLFLAG_RD, &sc->stat_Dot3StatsDeferredTransmissions, 8033 0, "Deferred Transmissions"); 8034 8035 SYSCTL_ADD_UINT(ctx, children, OID_AUTO, 8036 "stat_Dot3StatsExcessiveCollisions", 8037 CTLFLAG_RD, &sc->stat_Dot3StatsExcessiveCollisions, 8038 0, "Excessive Collisions"); 8039 8040 SYSCTL_ADD_UINT(ctx, children, OID_AUTO, 8041 "stat_Dot3StatsLateCollisions", 8042 CTLFLAG_RD, &sc->stat_Dot3StatsLateCollisions, 8043 0, "Late Collisions"); 8044 8045 SYSCTL_ADD_UINT(ctx, children, OID_AUTO, 8046 "stat_EtherStatsCollisions", 8047 CTLFLAG_RD, &sc->stat_EtherStatsCollisions, 8048 0, "Collisions"); 8049 8050 SYSCTL_ADD_UINT(ctx, children, OID_AUTO, 8051 "stat_EtherStatsFragments", 8052 CTLFLAG_RD, &sc->stat_EtherStatsFragments, 8053 0, "Fragments"); 8054 8055 SYSCTL_ADD_UINT(ctx, children, OID_AUTO, 8056 "stat_EtherStatsJabbers", 8057 CTLFLAG_RD, &sc->stat_EtherStatsJabbers, 8058 0, "Jabbers"); 8059 8060 SYSCTL_ADD_UINT(ctx, children, OID_AUTO, 8061 "stat_EtherStatsUndersizePkts", 8062 CTLFLAG_RD, &sc->stat_EtherStatsUndersizePkts, 8063 0, "Undersize packets"); 8064 8065 SYSCTL_ADD_UINT(ctx, children, OID_AUTO, 8066 "stat_EtherStatsOverrsizePkts", 8067 CTLFLAG_RD, &sc->stat_EtherStatsOverrsizePkts, 8068 0, "stat_EtherStatsOverrsizePkts"); 8069 8070 SYSCTL_ADD_UINT(ctx, children, OID_AUTO, 8071 "stat_EtherStatsPktsRx64Octets", 8072 CTLFLAG_RD, &sc->stat_EtherStatsPktsRx64Octets, 8073 0, "Bytes received in 64 byte packets"); 8074 8075 SYSCTL_ADD_UINT(ctx, children, OID_AUTO, 8076 "stat_EtherStatsPktsRx65Octetsto127Octets", 8077 CTLFLAG_RD, &sc->stat_EtherStatsPktsRx65Octetsto127Octets, 8078 0, "Bytes received in 65 to 127 byte packets"); 8079 8080 SYSCTL_ADD_UINT(ctx, children, OID_AUTO, 8081 "stat_EtherStatsPktsRx128Octetsto255Octets", 8082 CTLFLAG_RD, &sc->stat_EtherStatsPktsRx128Octetsto255Octets, 8083 0, "Bytes received in 128 to 255 byte packets"); 8084 8085 SYSCTL_ADD_UINT(ctx, children, OID_AUTO, 8086 "stat_EtherStatsPktsRx256Octetsto511Octets", 8087 CTLFLAG_RD, &sc->stat_EtherStatsPktsRx256Octetsto511Octets, 8088 0, "Bytes received in 256 to 511 byte packets"); 8089 8090 SYSCTL_ADD_UINT(ctx, children, OID_AUTO, 8091 "stat_EtherStatsPktsRx512Octetsto1023Octets", 8092 CTLFLAG_RD, &sc->stat_EtherStatsPktsRx512Octetsto1023Octets, 8093 0, "Bytes received in 512 to 1023 byte packets"); 8094 8095 SYSCTL_ADD_UINT(ctx, children, OID_AUTO, 8096 "stat_EtherStatsPktsRx1024Octetsto1522Octets", 8097 CTLFLAG_RD, &sc->stat_EtherStatsPktsRx1024Octetsto1522Octets, 8098 0, "Bytes received in 1024 t0 1522 byte packets"); 8099 8100 SYSCTL_ADD_UINT(ctx, children, OID_AUTO, 8101 "stat_EtherStatsPktsRx1523Octetsto9022Octets", 8102 CTLFLAG_RD, &sc->stat_EtherStatsPktsRx1523Octetsto9022Octets, 8103 0, "Bytes received in 1523 to 9022 byte packets"); 8104 8105 SYSCTL_ADD_UINT(ctx, children, OID_AUTO, 8106 "stat_EtherStatsPktsTx64Octets", 8107 CTLFLAG_RD, &sc->stat_EtherStatsPktsTx64Octets, 8108 0, "Bytes sent in 64 byte packets"); 8109 8110 SYSCTL_ADD_UINT(ctx, children, OID_AUTO, 8111 "stat_EtherStatsPktsTx65Octetsto127Octets", 8112 CTLFLAG_RD, &sc->stat_EtherStatsPktsTx65Octetsto127Octets, 8113 0, "Bytes sent in 65 to 127 byte packets"); 8114 8115 SYSCTL_ADD_UINT(ctx, children, OID_AUTO, 8116 "stat_EtherStatsPktsTx128Octetsto255Octets", 8117 CTLFLAG_RD, &sc->stat_EtherStatsPktsTx128Octetsto255Octets, 8118 0, "Bytes sent in 128 to 255 byte packets"); 8119 8120 SYSCTL_ADD_UINT(ctx, children, OID_AUTO, 8121 "stat_EtherStatsPktsTx256Octetsto511Octets", 8122 CTLFLAG_RD, &sc->stat_EtherStatsPktsTx256Octetsto511Octets, 8123 0, "Bytes sent in 256 to 511 byte packets"); 8124 8125 SYSCTL_ADD_UINT(ctx, children, OID_AUTO, 8126 "stat_EtherStatsPktsTx512Octetsto1023Octets", 8127 CTLFLAG_RD, &sc->stat_EtherStatsPktsTx512Octetsto1023Octets, 8128 0, "Bytes sent in 512 to 1023 byte packets"); 8129 8130 SYSCTL_ADD_UINT(ctx, children, OID_AUTO, 8131 "stat_EtherStatsPktsTx1024Octetsto1522Octets", 8132 CTLFLAG_RD, &sc->stat_EtherStatsPktsTx1024Octetsto1522Octets, 8133 0, "Bytes sent in 1024 to 1522 byte packets"); 8134 8135 SYSCTL_ADD_UINT(ctx, children, OID_AUTO, 8136 "stat_EtherStatsPktsTx1523Octetsto9022Octets", 8137 CTLFLAG_RD, &sc->stat_EtherStatsPktsTx1523Octetsto9022Octets, 8138 0, "Bytes sent in 1523 to 9022 byte packets"); 8139 8140 SYSCTL_ADD_UINT(ctx, children, OID_AUTO, 8141 "stat_XonPauseFramesReceived", 8142 CTLFLAG_RD, &sc->stat_XonPauseFramesReceived, 8143 0, "XON pause frames receved"); 8144 8145 SYSCTL_ADD_UINT(ctx, children, OID_AUTO, 8146 "stat_XoffPauseFramesReceived", 8147 CTLFLAG_RD, &sc->stat_XoffPauseFramesReceived, 8148 0, "XOFF pause frames received"); 8149 8150 SYSCTL_ADD_UINT(ctx, children, OID_AUTO, 8151 "stat_OutXonSent", 8152 CTLFLAG_RD, &sc->stat_OutXonSent, 8153 0, "XON pause frames sent"); 8154 8155 SYSCTL_ADD_UINT(ctx, children, OID_AUTO, 8156 "stat_OutXoffSent", 8157 CTLFLAG_RD, &sc->stat_OutXoffSent, 8158 0, "XOFF pause frames sent"); 8159 8160 SYSCTL_ADD_UINT(ctx, children, OID_AUTO, 8161 "stat_FlowControlDone", 8162 CTLFLAG_RD, &sc->stat_FlowControlDone, 8163 0, "Flow control done"); 8164 8165 SYSCTL_ADD_UINT(ctx, children, OID_AUTO, 8166 "stat_MacControlFramesReceived", 8167 CTLFLAG_RD, &sc->stat_MacControlFramesReceived, 8168 0, "MAC control frames received"); 8169 8170 SYSCTL_ADD_UINT(ctx, children, OID_AUTO, 8171 "stat_XoffStateEntered", 8172 CTLFLAG_RD, &sc->stat_XoffStateEntered, 8173 0, "XOFF state entered"); 8174 8175 SYSCTL_ADD_UINT(ctx, children, OID_AUTO, 8176 "stat_IfInFramesL2FilterDiscards", 8177 CTLFLAG_RD, &sc->stat_IfInFramesL2FilterDiscards, 8178 0, "Received L2 packets discarded"); 8179 8180 SYSCTL_ADD_UINT(ctx, children, OID_AUTO, 8181 "stat_IfInRuleCheckerDiscards", 8182 CTLFLAG_RD, &sc->stat_IfInRuleCheckerDiscards, 8183 0, "Received packets discarded by rule"); 8184 8185 SYSCTL_ADD_UINT(ctx, children, OID_AUTO, 8186 "stat_IfInFTQDiscards", 8187 CTLFLAG_RD, &sc->stat_IfInFTQDiscards, 8188 0, "Received packet FTQ discards"); 8189 8190 SYSCTL_ADD_UINT(ctx, children, OID_AUTO, 8191 "stat_IfInMBUFDiscards", 8192 CTLFLAG_RD, &sc->stat_IfInMBUFDiscards, 8193 0, "Received packets discarded due to lack of controller buffer memory"); 8194 8195 SYSCTL_ADD_UINT(ctx, children, OID_AUTO, 8196 "stat_IfInRuleCheckerP4Hit", 8197 CTLFLAG_RD, &sc->stat_IfInRuleCheckerP4Hit, 8198 0, "Received packets rule checker hits"); 8199 8200 SYSCTL_ADD_UINT(ctx, children, OID_AUTO, 8201 "stat_CatchupInRuleCheckerDiscards", 8202 CTLFLAG_RD, &sc->stat_CatchupInRuleCheckerDiscards, 8203 0, "Received packets discarded in Catchup path"); 8204 8205 SYSCTL_ADD_UINT(ctx, children, OID_AUTO, 8206 "stat_CatchupInFTQDiscards", 8207 CTLFLAG_RD, &sc->stat_CatchupInFTQDiscards, 8208 0, "Received packets discarded in FTQ in Catchup path"); 8209 8210 SYSCTL_ADD_UINT(ctx, children, OID_AUTO, 8211 "stat_CatchupInMBUFDiscards", 8212 CTLFLAG_RD, &sc->stat_CatchupInMBUFDiscards, 8213 0, "Received packets discarded in controller buffer memory in Catchup path"); 8214 8215 SYSCTL_ADD_UINT(ctx, children, OID_AUTO, 8216 "stat_CatchupInRuleCheckerP4Hit", 8217 CTLFLAG_RD, &sc->stat_CatchupInRuleCheckerP4Hit, 8218 0, "Received packets rule checker hits in Catchup path"); 8219 8220 SYSCTL_ADD_UINT(ctx, children, OID_AUTO, 8221 "com_no_buffers", 8222 CTLFLAG_RD, &sc->com_no_buffers, 8223 0, "Valid packets received but no RX buffers available"); 8224 8225 #ifdef BCE_DEBUG 8226 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, 8227 "driver_state", CTLTYPE_INT | CTLFLAG_RW, 8228 (void *)sc, 0, 8229 bce_sysctl_driver_state, "I", "Drive state information"); 8230 8231 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, 8232 "hw_state", CTLTYPE_INT | CTLFLAG_RW, 8233 (void *)sc, 0, 8234 bce_sysctl_hw_state, "I", "Hardware state information"); 8235 8236 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, 8237 "bc_state", CTLTYPE_INT | CTLFLAG_RW, 8238 (void *)sc, 0, 8239 bce_sysctl_bc_state, "I", "Bootcode state information"); 8240 8241 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, 8242 "dump_rx_chain", CTLTYPE_INT | CTLFLAG_RW, 8243 (void *)sc, 0, 8244 bce_sysctl_dump_rx_chain, "I", "Dump rx_bd chain"); 8245 8246 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, 8247 "dump_tx_chain", CTLTYPE_INT | CTLFLAG_RW, 8248 (void *)sc, 0, 8249 bce_sysctl_dump_tx_chain, "I", "Dump tx_bd chain"); 8250 8251 #ifdef BCE_USE_SPLIT_HEADER 8252 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, 8253 "dump_pg_chain", CTLTYPE_INT | CTLFLAG_RW, 8254 (void *)sc, 0, 8255 bce_sysctl_dump_pg_chain, "I", "Dump page chain"); 8256 #endif 8257 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, 8258 "dump_ctx", CTLTYPE_INT | CTLFLAG_RW, 8259 (void *)sc, 0, 8260 bce_sysctl_dump_ctx, "I", "Dump context memory"); 8261 8262 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, 8263 "breakpoint", CTLTYPE_INT | CTLFLAG_RW, 8264 (void *)sc, 0, 8265 bce_sysctl_breakpoint, "I", "Driver breakpoint"); 8266 8267 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, 8268 "reg_read", CTLTYPE_INT | CTLFLAG_RW, 8269 (void *)sc, 0, 8270 bce_sysctl_reg_read, "I", "Register read"); 8271 8272 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, 8273 "nvram_read", CTLTYPE_INT | CTLFLAG_RW, 8274 (void *)sc, 0, 8275 bce_sysctl_nvram_read, "I", "NVRAM read"); 8276 8277 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, 8278 "phy_read", CTLTYPE_INT | CTLFLAG_RW, 8279 (void *)sc, 0, 8280 bce_sysctl_phy_read, "I", "PHY register read"); 8281 8282 #endif 8283 8284 DBEXIT(BCE_VERBOSE_MISC); 8285 } 8286 8287 8288 /****************************************************************************/ 8289 /* BCE Debug Routines */ 8290 /****************************************************************************/ 8291 #ifdef BCE_DEBUG 8292 8293 /****************************************************************************/ 8294 /* Freezes the controller to allow for a cohesive state dump. */ 8295 /* */ 8296 /* Returns: */ 8297 /* Nothing. */ 8298 /****************************************************************************/ 8299 static void 8300 bce_freeze_controller(struct bce_softc *sc) 8301 { 8302 u32 val; 8303 val = REG_RD(sc, BCE_MISC_COMMAND); 8304 val |= BCE_MISC_COMMAND_DISABLE_ALL; 8305 REG_WR(sc, BCE_MISC_COMMAND, val); 8306 } 8307 8308 8309 /****************************************************************************/ 8310 /* Unfreezes the controller after a freeze operation. This may not always */ 8311 /* work and the controller will require a reset! */ 8312 /* */ 8313 /* Returns: */ 8314 /* Nothing. */ 8315 /****************************************************************************/ 8316 static void 8317 bce_unfreeze_controller(struct bce_softc *sc) 8318 { 8319 u32 val; 8320 val = REG_RD(sc, BCE_MISC_COMMAND); 8321 val |= BCE_MISC_COMMAND_ENABLE_ALL; 8322 REG_WR(sc, BCE_MISC_COMMAND, val); 8323 } 8324 8325 8326 /****************************************************************************/ 8327 /* Prints out Ethernet frame information from an mbuf. */ 8328 /* */ 8329 /* Partially decode an Ethernet frame to look at some important headers. */ 8330 /* */ 8331 /* Returns: */ 8332 /* Nothing. */ 8333 /****************************************************************************/ 8334 static void 8335 bce_dump_enet(struct bce_softc *sc, struct mbuf *m) 8336 { 8337 struct ether_vlan_header *eh; 8338 u16 etype; 8339 int ehlen; 8340 struct ip *ip; 8341 struct tcphdr *th; 8342 struct udphdr *uh; 8343 struct arphdr *ah; 8344 8345 BCE_PRINTF( 8346 "-----------------------------" 8347 " Frame Decode " 8348 "-----------------------------\n"); 8349 8350 eh = mtod(m, struct ether_vlan_header *); 8351 8352 /* Handle VLAN encapsulation if present. */ 8353 if (eh->evl_encap_proto == htons(ETHERTYPE_VLAN)) { 8354 etype = ntohs(eh->evl_proto); 8355 ehlen = ETHER_HDR_LEN + ETHER_VLAN_ENCAP_LEN; 8356 } else { 8357 etype = ntohs(eh->evl_encap_proto); 8358 ehlen = ETHER_HDR_LEN; 8359 } 8360 8361 /* ToDo: Add VLAN output. */ 8362 BCE_PRINTF("enet: dest = %6D, src = %6D, type = 0x%04X, hlen = %d\n", 8363 eh->evl_dhost, ":", eh->evl_shost, ":", etype, ehlen); 8364 8365 switch (etype) { 8366 case ETHERTYPE_IP: 8367 ip = (struct ip *)(m->m_data + ehlen); 8368 BCE_PRINTF("--ip: dest = 0x%08X , src = 0x%08X, len = %d bytes, " 8369 "protocol = 0x%02X, xsum = 0x%04X\n", 8370 ntohl(ip->ip_dst.s_addr), ntohl(ip->ip_src.s_addr), 8371 ntohs(ip->ip_len), ip->ip_p, ntohs(ip->ip_sum)); 8372 8373 switch (ip->ip_p) { 8374 case IPPROTO_TCP: 8375 th = (struct tcphdr *)((caddr_t)ip + (ip->ip_hl << 2)); 8376 BCE_PRINTF("-tcp: dest = %d, src = %d, hlen = %d bytes, " 8377 "flags = 0x%b, csum = 0x%04X\n", 8378 ntohs(th->th_dport), ntohs(th->th_sport), (th->th_off << 2), 8379 th->th_flags, "\20\10CWR\07ECE\06URG\05ACK\04PSH\03RST\02SYN\01FIN", 8380 ntohs(th->th_sum)); 8381 break; 8382 case IPPROTO_UDP: 8383 uh = (struct udphdr *)((caddr_t)ip + (ip->ip_hl << 2)); 8384 BCE_PRINTF("-udp: dest = %d, src = %d, len = %d bytes, " 8385 "csum = 0x%04X\n", ntohs(uh->uh_dport), ntohs(uh->uh_sport), 8386 ntohs(uh->uh_ulen), ntohs(uh->uh_sum)); 8387 break; 8388 case IPPROTO_ICMP: 8389 BCE_PRINTF("icmp:\n"); 8390 break; 8391 default: 8392 BCE_PRINTF("----: Other IP protocol.\n"); 8393 } 8394 break; 8395 case ETHERTYPE_IPV6: 8396 BCE_PRINTF("ipv6: No decode supported.\n"); 8397 break; 8398 case ETHERTYPE_ARP: 8399 BCE_PRINTF("-arp: "); 8400 ah = (struct arphdr *) (m->m_data + ehlen); 8401 switch (ntohs(ah->ar_op)) { 8402 case ARPOP_REVREQUEST: 8403 printf("reverse ARP request\n"); 8404 break; 8405 case ARPOP_REVREPLY: 8406 printf("reverse ARP reply\n"); 8407 break; 8408 case ARPOP_REQUEST: 8409 printf("ARP request\n"); 8410 break; 8411 case ARPOP_REPLY: 8412 printf("ARP reply\n"); 8413 break; 8414 default: 8415 printf("other ARP operation\n"); 8416 } 8417 break; 8418 default: 8419 BCE_PRINTF("----: Other protocol.\n"); 8420 } 8421 8422 BCE_PRINTF( 8423 "-----------------------------" 8424 "--------------" 8425 "-----------------------------\n"); 8426 } 8427 8428 8429 /****************************************************************************/ 8430 /* Prints out information about an mbuf. */ 8431 /* */ 8432 /* Returns: */ 8433 /* Nothing. */ 8434 /****************************************************************************/ 8435 static __attribute__ ((noinline)) void 8436 bce_dump_mbuf(struct bce_softc *sc, struct mbuf *m) 8437 { 8438 struct mbuf *mp = m; 8439 8440 if (m == NULL) { 8441 BCE_PRINTF("mbuf: null pointer\n"); 8442 return; 8443 } 8444 8445 while (mp) { 8446 BCE_PRINTF("mbuf: %p, m_len = %d, m_flags = 0x%b, m_data = %p\n", 8447 mp, mp->m_len, mp->m_flags, 8448 "\20\1M_EXT\2M_PKTHDR\3M_EOR\4M_RDONLY", 8449 mp->m_data); 8450 8451 if (mp->m_flags & M_PKTHDR) { 8452 BCE_PRINTF("- m_pkthdr: len = %d, flags = 0x%b, csum_flags = %b\n", 8453 mp->m_pkthdr.len, mp->m_flags, 8454 "\20\12M_BCAST\13M_MCAST\14M_FRAG\15M_FIRSTFRAG" 8455 "\16M_LASTFRAG\21M_VLANTAG\22M_PROMISC\23M_NOFREE", 8456 mp->m_pkthdr.csum_flags, 8457 "\20\1CSUM_IP\2CSUM_TCP\3CSUM_UDP\4CSUM_IP_FRAGS" 8458 "\5CSUM_FRAGMENT\6CSUM_TSO\11CSUM_IP_CHECKED" 8459 "\12CSUM_IP_VALID\13CSUM_DATA_VALID\14CSUM_PSEUDO_HDR"); 8460 } 8461 8462 if (mp->m_flags & M_EXT) { 8463 BCE_PRINTF("- m_ext: %p, ext_size = %d, type = ", 8464 mp->m_ext.ext_buf, mp->m_ext.ext_size); 8465 switch (mp->m_ext.ext_type) { 8466 case EXT_CLUSTER: printf("EXT_CLUSTER\n"); break; 8467 case EXT_SFBUF: printf("EXT_SFBUF\n"); break; 8468 case EXT_JUMBO9: printf("EXT_JUMBO9\n"); break; 8469 case EXT_JUMBO16: printf("EXT_JUMBO16\n"); break; 8470 case EXT_PACKET: printf("EXT_PACKET\n"); break; 8471 case EXT_MBUF: printf("EXT_MBUF\n"); break; 8472 case EXT_NET_DRV: printf("EXT_NET_DRV\n"); break; 8473 case EXT_MOD_TYPE: printf("EXT_MDD_TYPE\n"); break; 8474 case EXT_DISPOSABLE: printf("EXT_DISPOSABLE\n"); break; 8475 case EXT_EXTREF: printf("EXT_EXTREF\n"); break; 8476 default: printf("UNKNOWN\n"); 8477 } 8478 } 8479 8480 mp = mp->m_next; 8481 } 8482 } 8483 8484 8485 /****************************************************************************/ 8486 /* Prints out the mbufs in the TX mbuf chain. */ 8487 /* */ 8488 /* Returns: */ 8489 /* Nothing. */ 8490 /****************************************************************************/ 8491 static __attribute__ ((noinline)) void 8492 bce_dump_tx_mbuf_chain(struct bce_softc *sc, u16 chain_prod, int count) 8493 { 8494 struct mbuf *m; 8495 8496 BCE_PRINTF( 8497 "----------------------------" 8498 " tx mbuf data " 8499 "----------------------------\n"); 8500 8501 for (int i = 0; i < count; i++) { 8502 m = sc->tx_mbuf_ptr[chain_prod]; 8503 BCE_PRINTF("txmbuf[0x%04X]\n", chain_prod); 8504 bce_dump_mbuf(sc, m); 8505 chain_prod = TX_CHAIN_IDX(NEXT_TX_BD(chain_prod)); 8506 } 8507 8508 BCE_PRINTF( 8509 "----------------------------" 8510 "----------------" 8511 "----------------------------\n"); 8512 } 8513 8514 8515 /****************************************************************************/ 8516 /* Prints out the mbufs in the RX mbuf chain. */ 8517 /* */ 8518 /* Returns: */ 8519 /* Nothing. */ 8520 /****************************************************************************/ 8521 static __attribute__ ((noinline)) void 8522 bce_dump_rx_mbuf_chain(struct bce_softc *sc, u16 chain_prod, int count) 8523 { 8524 struct mbuf *m; 8525 8526 BCE_PRINTF( 8527 "----------------------------" 8528 " rx mbuf data " 8529 "----------------------------\n"); 8530 8531 for (int i = 0; i < count; i++) { 8532 m = sc->rx_mbuf_ptr[chain_prod]; 8533 BCE_PRINTF("rxmbuf[0x%04X]\n", chain_prod); 8534 bce_dump_mbuf(sc, m); 8535 chain_prod = RX_CHAIN_IDX(NEXT_RX_BD(chain_prod)); 8536 } 8537 8538 8539 BCE_PRINTF( 8540 "----------------------------" 8541 "----------------" 8542 "----------------------------\n"); 8543 } 8544 8545 8546 #ifdef BCE_USE_SPLIT_HEADER 8547 /****************************************************************************/ 8548 /* Prints out the mbufs in the mbuf page chain. */ 8549 /* */ 8550 /* Returns: */ 8551 /* Nothing. */ 8552 /****************************************************************************/ 8553 static __attribute__ ((noinline)) void 8554 bce_dump_pg_mbuf_chain(struct bce_softc *sc, u16 chain_prod, int count) 8555 { 8556 struct mbuf *m; 8557 8558 BCE_PRINTF( 8559 "----------------------------" 8560 " pg mbuf data " 8561 "----------------------------\n"); 8562 8563 for (int i = 0; i < count; i++) { 8564 m = sc->pg_mbuf_ptr[chain_prod]; 8565 BCE_PRINTF("pgmbuf[0x%04X]\n", chain_prod); 8566 bce_dump_mbuf(sc, m); 8567 chain_prod = PG_CHAIN_IDX(NEXT_PG_BD(chain_prod)); 8568 } 8569 8570 8571 BCE_PRINTF( 8572 "----------------------------" 8573 "----------------" 8574 "----------------------------\n"); 8575 } 8576 #endif 8577 8578 8579 /****************************************************************************/ 8580 /* Prints out a tx_bd structure. */ 8581 /* */ 8582 /* Returns: */ 8583 /* Nothing. */ 8584 /****************************************************************************/ 8585 static __attribute__ ((noinline)) void 8586 bce_dump_txbd(struct bce_softc *sc, int idx, struct tx_bd *txbd) 8587 { 8588 if (idx > MAX_TX_BD) 8589 /* Index out of range. */ 8590 BCE_PRINTF("tx_bd[0x%04X]: Invalid tx_bd index!\n", idx); 8591 else if ((idx & USABLE_TX_BD_PER_PAGE) == USABLE_TX_BD_PER_PAGE) 8592 /* TX Chain page pointer. */ 8593 BCE_PRINTF("tx_bd[0x%04X]: haddr = 0x%08X:%08X, chain page pointer\n", 8594 idx, txbd->tx_bd_haddr_hi, txbd->tx_bd_haddr_lo); 8595 else { 8596 /* Normal tx_bd entry. */ 8597 BCE_PRINTF("tx_bd[0x%04X]: haddr = 0x%08X:%08X, nbytes = 0x%08X, " 8598 "vlan tag= 0x%04X, flags = 0x%04X (", idx, 8599 txbd->tx_bd_haddr_hi, txbd->tx_bd_haddr_lo, 8600 txbd->tx_bd_mss_nbytes, txbd->tx_bd_vlan_tag, 8601 txbd->tx_bd_flags); 8602 8603 if (txbd->tx_bd_flags & TX_BD_FLAGS_CONN_FAULT) 8604 printf(" CONN_FAULT"); 8605 8606 if (txbd->tx_bd_flags & TX_BD_FLAGS_TCP_UDP_CKSUM) 8607 printf(" TCP_UDP_CKSUM"); 8608 8609 if (txbd->tx_bd_flags & TX_BD_FLAGS_IP_CKSUM) 8610 printf(" IP_CKSUM"); 8611 8612 if (txbd->tx_bd_flags & TX_BD_FLAGS_VLAN_TAG) 8613 printf(" VLAN"); 8614 8615 if (txbd->tx_bd_flags & TX_BD_FLAGS_COAL_NOW) 8616 printf(" COAL_NOW"); 8617 8618 if (txbd->tx_bd_flags & TX_BD_FLAGS_DONT_GEN_CRC) 8619 printf(" DONT_GEN_CRC"); 8620 8621 if (txbd->tx_bd_flags & TX_BD_FLAGS_START) 8622 printf(" START"); 8623 8624 if (txbd->tx_bd_flags & TX_BD_FLAGS_END) 8625 printf(" END"); 8626 8627 if (txbd->tx_bd_flags & TX_BD_FLAGS_SW_LSO) 8628 printf(" LSO"); 8629 8630 if (txbd->tx_bd_flags & TX_BD_FLAGS_SW_OPTION_WORD) 8631 printf(" OPTION_WORD"); 8632 8633 if (txbd->tx_bd_flags & TX_BD_FLAGS_SW_FLAGS) 8634 printf(" FLAGS"); 8635 8636 if (txbd->tx_bd_flags & TX_BD_FLAGS_SW_SNAP) 8637 printf(" SNAP"); 8638 8639 printf(" )\n"); 8640 } 8641 8642 } 8643 8644 8645 /****************************************************************************/ 8646 /* Prints out a rx_bd structure. */ 8647 /* */ 8648 /* Returns: */ 8649 /* Nothing. */ 8650 /****************************************************************************/ 8651 static __attribute__ ((noinline)) void 8652 bce_dump_rxbd(struct bce_softc *sc, int idx, struct rx_bd *rxbd) 8653 { 8654 if (idx > MAX_RX_BD) 8655 /* Index out of range. */ 8656 BCE_PRINTF("rx_bd[0x%04X]: Invalid rx_bd index!\n", idx); 8657 else if ((idx & USABLE_RX_BD_PER_PAGE) == USABLE_RX_BD_PER_PAGE) 8658 /* RX Chain page pointer. */ 8659 BCE_PRINTF("rx_bd[0x%04X]: haddr = 0x%08X:%08X, chain page pointer\n", 8660 idx, rxbd->rx_bd_haddr_hi, rxbd->rx_bd_haddr_lo); 8661 else 8662 /* Normal rx_bd entry. */ 8663 BCE_PRINTF("rx_bd[0x%04X]: haddr = 0x%08X:%08X, nbytes = 0x%08X, " 8664 "flags = 0x%08X\n", idx, 8665 rxbd->rx_bd_haddr_hi, rxbd->rx_bd_haddr_lo, 8666 rxbd->rx_bd_len, rxbd->rx_bd_flags); 8667 } 8668 8669 8670 #ifdef BCE_USE_SPLIT_HEADER 8671 /****************************************************************************/ 8672 /* Prints out a rx_bd structure in the page chain. */ 8673 /* */ 8674 /* Returns: */ 8675 /* Nothing. */ 8676 /****************************************************************************/ 8677 static __attribute__ ((noinline)) void 8678 bce_dump_pgbd(struct bce_softc *sc, int idx, struct rx_bd *pgbd) 8679 { 8680 if (idx > MAX_PG_BD) 8681 /* Index out of range. */ 8682 BCE_PRINTF("pg_bd[0x%04X]: Invalid pg_bd index!\n", idx); 8683 else if ((idx & USABLE_PG_BD_PER_PAGE) == USABLE_PG_BD_PER_PAGE) 8684 /* Page Chain page pointer. */ 8685 BCE_PRINTF("px_bd[0x%04X]: haddr = 0x%08X:%08X, chain page pointer\n", 8686 idx, pgbd->rx_bd_haddr_hi, pgbd->rx_bd_haddr_lo); 8687 else 8688 /* Normal rx_bd entry. */ 8689 BCE_PRINTF("pg_bd[0x%04X]: haddr = 0x%08X:%08X, nbytes = 0x%08X, " 8690 "flags = 0x%08X\n", idx, 8691 pgbd->rx_bd_haddr_hi, pgbd->rx_bd_haddr_lo, 8692 pgbd->rx_bd_len, pgbd->rx_bd_flags); 8693 } 8694 #endif 8695 8696 8697 /****************************************************************************/ 8698 /* Prints out a l2_fhdr structure. */ 8699 /* */ 8700 /* Returns: */ 8701 /* Nothing. */ 8702 /****************************************************************************/ 8703 static __attribute__ ((noinline)) void 8704 bce_dump_l2fhdr(struct bce_softc *sc, int idx, struct l2_fhdr *l2fhdr) 8705 { 8706 BCE_PRINTF("l2_fhdr[0x%04X]: status = 0x%b, " 8707 "pkt_len = %d, vlan = 0x%04x, ip_xsum/hdr_len = 0x%04X, " 8708 "tcp_udp_xsum = 0x%04X\n", idx, 8709 l2fhdr->l2_fhdr_status, BCE_L2FHDR_PRINTFB, 8710 l2fhdr->l2_fhdr_pkt_len, l2fhdr->l2_fhdr_vlan_tag, 8711 l2fhdr->l2_fhdr_ip_xsum, l2fhdr->l2_fhdr_tcp_udp_xsum); 8712 } 8713 8714 8715 /****************************************************************************/ 8716 /* Prints out context memory info. (Only useful for CID 0 to 16.) */ 8717 /* */ 8718 /* Returns: */ 8719 /* Nothing. */ 8720 /****************************************************************************/ 8721 static __attribute__ ((noinline)) void 8722 bce_dump_ctx(struct bce_softc *sc, u16 cid) 8723 { 8724 if (cid <= TX_CID) { 8725 BCE_PRINTF( 8726 "----------------------------" 8727 " CTX Data " 8728 "----------------------------\n"); 8729 8730 BCE_PRINTF(" 0x%04X - (CID) Context ID\n", cid); 8731 8732 if (cid == RX_CID) { 8733 BCE_PRINTF(" 0x%08X - (L2CTX_RX_HOST_BDIDX) host rx " 8734 "producer index\n", 8735 CTX_RD(sc, GET_CID_ADDR(cid), BCE_L2CTX_RX_HOST_BDIDX)); 8736 BCE_PRINTF(" 0x%08X - (L2CTX_RX_HOST_BSEQ) host byte sequence\n", 8737 CTX_RD(sc, GET_CID_ADDR(cid), BCE_L2CTX_RX_HOST_BSEQ)); 8738 BCE_PRINTF(" 0x%08X - (L2CTX_RX_NX_BSEQ) h/w byte sequence\n", 8739 CTX_RD(sc, GET_CID_ADDR(cid), BCE_L2CTX_RX_NX_BSEQ)); 8740 BCE_PRINTF(" 0x%08X - (L2CTX_RX_NX_BDHADDR_HI) h/w buffer " 8741 "descriptor address\n", 8742 CTX_RD(sc, GET_CID_ADDR(cid), BCE_L2CTX_RX_NX_BDHADDR_HI)); 8743 BCE_PRINTF(" 0x%08X - (L2CTX_RX_NX_BDHADDR_LO) h/w buffer " 8744 "descriptor address\n", 8745 CTX_RD(sc, GET_CID_ADDR(cid), BCE_L2CTX_RX_NX_BDHADDR_LO)); 8746 BCE_PRINTF(" 0x%08X - (L2CTX_RX_NX_BDIDX) h/w rx consumer index\n", 8747 CTX_RD(sc, GET_CID_ADDR(cid), BCE_L2CTX_RX_NX_BDIDX)); 8748 BCE_PRINTF(" 0x%08X - (L2CTX_RX_HOST_PG_BDIDX) host page " 8749 "producer index\n", 8750 CTX_RD(sc, GET_CID_ADDR(cid), BCE_L2CTX_RX_HOST_PG_BDIDX)); 8751 BCE_PRINTF(" 0x%08X - (L2CTX_RX_PG_BUF_SIZE) host rx_bd/page " 8752 "buffer size\n", 8753 CTX_RD(sc, GET_CID_ADDR(cid), BCE_L2CTX_RX_PG_BUF_SIZE)); 8754 BCE_PRINTF(" 0x%08X - (L2CTX_RX_NX_PG_BDHADDR_HI) h/w page " 8755 "chain address\n", 8756 CTX_RD(sc, GET_CID_ADDR(cid), BCE_L2CTX_RX_NX_PG_BDHADDR_HI)); 8757 BCE_PRINTF(" 0x%08X - (L2CTX_RX_NX_PG_BDHADDR_LO) h/w page " 8758 "chain address\n", 8759 CTX_RD(sc, GET_CID_ADDR(cid), BCE_L2CTX_RX_NX_PG_BDHADDR_LO)); 8760 BCE_PRINTF(" 0x%08X - (L2CTX_RX_NX_PG_BDIDX) h/w page " 8761 "consumer index\n", 8762 CTX_RD(sc, GET_CID_ADDR(cid), BCE_L2CTX_RX_NX_PG_BDIDX)); 8763 } else if (cid == TX_CID) { 8764 if ((BCE_CHIP_NUM(sc) == BCE_CHIP_NUM_5709) || 8765 (BCE_CHIP_NUM(sc) == BCE_CHIP_NUM_5716)) { 8766 BCE_PRINTF(" 0x%08X - (L2CTX_TX_TYPE_XI) ctx type\n", 8767 CTX_RD(sc, GET_CID_ADDR(cid), BCE_L2CTX_TX_TYPE_XI)); 8768 BCE_PRINTF(" 0x%08X - (L2CTX_CMD_TX_TYPE_XI) ctx cmd\n", 8769 CTX_RD(sc, GET_CID_ADDR(cid), BCE_L2CTX_TX_CMD_TYPE_XI)); 8770 BCE_PRINTF(" 0x%08X - (L2CTX_TX_TBDR_BDHADDR_HI_XI) h/w buffer " 8771 "descriptor address\n", CTX_RD(sc, 8772 GET_CID_ADDR(cid), BCE_L2CTX_TX_TBDR_BHADDR_HI_XI)); 8773 BCE_PRINTF(" 0x%08X - (L2CTX_TX_TBDR_BHADDR_LO_XI) h/w buffer " 8774 "descriptor address\n", CTX_RD(sc, 8775 GET_CID_ADDR(cid), BCE_L2CTX_TX_TBDR_BHADDR_LO_XI)); 8776 BCE_PRINTF(" 0x%08X - (L2CTX_TX_HOST_BIDX_XI) host producer " 8777 "index\n", CTX_RD(sc, GET_CID_ADDR(cid), 8778 BCE_L2CTX_TX_HOST_BIDX_XI)); 8779 BCE_PRINTF(" 0x%08X - (L2CTX_TX_HOST_BSEQ_XI) host byte " 8780 "sequence\n", CTX_RD(sc, GET_CID_ADDR(cid), 8781 BCE_L2CTX_TX_HOST_BSEQ_XI)); 8782 } else { 8783 BCE_PRINTF(" 0x%08X - (L2CTX_TX_TYPE) ctx type\n", 8784 CTX_RD(sc, GET_CID_ADDR(cid), BCE_L2CTX_TX_TYPE)); 8785 BCE_PRINTF(" 0x%08X - (L2CTX_TX_CMD_TYPE) ctx cmd\n", 8786 CTX_RD(sc, GET_CID_ADDR(cid), BCE_L2CTX_TX_CMD_TYPE)); 8787 BCE_PRINTF(" 0x%08X - (L2CTX_TX_TBDR_BDHADDR_HI) h/w buffer " 8788 "descriptor address\n", CTX_RD(sc, GET_CID_ADDR(cid), 8789 BCE_L2CTX_TX_TBDR_BHADDR_HI)); 8790 BCE_PRINTF(" 0x%08X - (L2CTX_TX_TBDR_BHADDR_LO) h/w buffer " 8791 "descriptor address\n", CTX_RD(sc, GET_CID_ADDR(cid), 8792 BCE_L2CTX_TX_TBDR_BHADDR_LO)); 8793 BCE_PRINTF(" 0x%08X - (L2CTX_TX_HOST_BIDX) host producer " 8794 "index\n", CTX_RD(sc, GET_CID_ADDR(cid), 8795 BCE_L2CTX_TX_HOST_BIDX)); 8796 BCE_PRINTF(" 0x%08X - (L2CTX_TX_HOST_BSEQ) host byte " 8797 "sequence\n", CTX_RD(sc, GET_CID_ADDR(cid), 8798 BCE_L2CTX_TX_HOST_BSEQ)); 8799 } 8800 } else 8801 BCE_PRINTF(" Unknown CID\n"); 8802 8803 BCE_PRINTF( 8804 "----------------------------" 8805 " Raw CTX " 8806 "----------------------------\n"); 8807 8808 for (int i = 0x0; i < 0x300; i += 0x10) { 8809 BCE_PRINTF("0x%04X: 0x%08X 0x%08X 0x%08X 0x%08X\n", i, 8810 CTX_RD(sc, GET_CID_ADDR(cid), i), 8811 CTX_RD(sc, GET_CID_ADDR(cid), i + 0x4), 8812 CTX_RD(sc, GET_CID_ADDR(cid), i + 0x8), 8813 CTX_RD(sc, GET_CID_ADDR(cid), i + 0xc)); 8814 } 8815 8816 8817 BCE_PRINTF( 8818 "----------------------------" 8819 "----------------" 8820 "----------------------------\n"); 8821 } 8822 } 8823 8824 8825 /****************************************************************************/ 8826 /* Prints out the FTQ data. */ 8827 /* */ 8828 /* Returns: */ 8829 /* Nothing. */ 8830 /****************************************************************************/ 8831 static __attribute__ ((noinline)) void 8832 bce_dump_ftqs(struct bce_softc *sc) 8833 { 8834 u32 cmd, ctl, cur_depth, max_depth, valid_cnt, val; 8835 8836 BCE_PRINTF( 8837 "----------------------------" 8838 " FTQ Data " 8839 "----------------------------\n"); 8840 8841 BCE_PRINTF(" FTQ Command Control Depth_Now Max_Depth Valid_Cnt \n"); 8842 BCE_PRINTF(" ------- ---------- ---------- ---------- ---------- ----------\n"); 8843 8844 /* Setup the generic statistic counters for the FTQ valid count. */ 8845 val = (BCE_HC_STAT_GEN_SEL_0_GEN_SEL_0_RV2PPQ_VALID_CNT << 24) | 8846 (BCE_HC_STAT_GEN_SEL_0_GEN_SEL_0_RXPCQ_VALID_CNT << 16) | 8847 (BCE_HC_STAT_GEN_SEL_0_GEN_SEL_0_RXPQ_VALID_CNT << 8) | 8848 (BCE_HC_STAT_GEN_SEL_0_GEN_SEL_0_RLUPQ_VALID_CNT); 8849 REG_WR(sc, BCE_HC_STAT_GEN_SEL_0, val); 8850 8851 val = (BCE_HC_STAT_GEN_SEL_0_GEN_SEL_0_TSCHQ_VALID_CNT << 24) | 8852 (BCE_HC_STAT_GEN_SEL_0_GEN_SEL_0_RDMAQ_VALID_CNT << 16) | 8853 (BCE_HC_STAT_GEN_SEL_0_GEN_SEL_0_RV2PTQ_VALID_CNT << 8) | 8854 (BCE_HC_STAT_GEN_SEL_0_GEN_SEL_0_RV2PMQ_VALID_CNT); 8855 REG_WR(sc, BCE_HC_STAT_GEN_SEL_1, val); 8856 8857 val = (BCE_HC_STAT_GEN_SEL_0_GEN_SEL_0_TPATQ_VALID_CNT << 24) | 8858 (BCE_HC_STAT_GEN_SEL_0_GEN_SEL_0_TDMAQ_VALID_CNT << 16) | 8859 (BCE_HC_STAT_GEN_SEL_0_GEN_SEL_0_TXPQ_VALID_CNT << 8) | 8860 (BCE_HC_STAT_GEN_SEL_0_GEN_SEL_0_TBDRQ_VALID_CNT); 8861 REG_WR(sc, BCE_HC_STAT_GEN_SEL_2, val); 8862 8863 val = (BCE_HC_STAT_GEN_SEL_0_GEN_SEL_0_COMQ_VALID_CNT << 24) | 8864 (BCE_HC_STAT_GEN_SEL_0_GEN_SEL_0_COMTQ_VALID_CNT << 16) | 8865 (BCE_HC_STAT_GEN_SEL_0_GEN_SEL_0_COMXQ_VALID_CNT << 8) | 8866 (BCE_HC_STAT_GEN_SEL_0_GEN_SEL_0_TASQ_VALID_CNT); 8867 REG_WR(sc, BCE_HC_STAT_GEN_SEL_3, val); 8868 8869 /* Input queue to the Receive Lookup state machine */ 8870 cmd = REG_RD(sc, BCE_RLUP_FTQ_CMD); 8871 ctl = REG_RD(sc, BCE_RLUP_FTQ_CTL); 8872 cur_depth = (ctl & BCE_RLUP_FTQ_CTL_CUR_DEPTH) >> 22; 8873 max_depth = (ctl & BCE_RLUP_FTQ_CTL_MAX_DEPTH) >> 12; 8874 valid_cnt = REG_RD(sc, BCE_HC_STAT_GEN_STAT0); 8875 BCE_PRINTF(" RLUP 0x%08X 0x%08X 0x%08X 0x%08X 0x%08X\n", 8876 cmd, ctl, cur_depth, max_depth, valid_cnt); 8877 8878 /* Input queue to the Receive Processor */ 8879 cmd = REG_RD_IND(sc, BCE_RXP_FTQ_CMD); 8880 ctl = REG_RD_IND(sc, BCE_RXP_FTQ_CTL); 8881 cur_depth = (ctl & BCE_RXP_FTQ_CTL_CUR_DEPTH) >> 22; 8882 max_depth = (ctl & BCE_RXP_FTQ_CTL_MAX_DEPTH) >> 12; 8883 valid_cnt = REG_RD(sc, BCE_HC_STAT_GEN_STAT1); 8884 BCE_PRINTF(" RXP 0x%08X 0x%08X 0x%08X 0x%08X 0x%08X\n", 8885 cmd, ctl, cur_depth, max_depth, valid_cnt); 8886 8887 /* Input queue to the Recevie Processor */ 8888 cmd = REG_RD_IND(sc, BCE_RXP_CFTQ_CMD); 8889 ctl = REG_RD_IND(sc, BCE_RXP_CFTQ_CTL); 8890 cur_depth = (ctl & BCE_RXP_CFTQ_CTL_CUR_DEPTH) >> 22; 8891 max_depth = (ctl & BCE_RXP_CFTQ_CTL_MAX_DEPTH) >> 12; 8892 valid_cnt = REG_RD(sc, BCE_HC_STAT_GEN_STAT2); 8893 BCE_PRINTF(" RXPC 0x%08X 0x%08X 0x%08X 0x%08X 0x%08X\n", 8894 cmd, ctl, cur_depth, max_depth, valid_cnt); 8895 8896 /* Input queue to the Receive Virtual to Physical state machine */ 8897 cmd = REG_RD(sc, BCE_RV2P_PFTQ_CMD); 8898 ctl = REG_RD(sc, BCE_RV2P_PFTQ_CTL); 8899 cur_depth = (ctl & BCE_RV2P_PFTQ_CTL_CUR_DEPTH) >> 22; 8900 max_depth = (ctl & BCE_RV2P_PFTQ_CTL_MAX_DEPTH) >> 12; 8901 valid_cnt = REG_RD(sc, BCE_HC_STAT_GEN_STAT3); 8902 BCE_PRINTF(" RV2PP 0x%08X 0x%08X 0x%08X 0x%08X 0x%08X\n", 8903 cmd, ctl, cur_depth, max_depth, valid_cnt); 8904 8905 /* Input queue to the Recevie Virtual to Physical state machine */ 8906 cmd = REG_RD(sc, BCE_RV2P_MFTQ_CMD); 8907 ctl = REG_RD(sc, BCE_RV2P_MFTQ_CTL); 8908 cur_depth = (ctl & BCE_RV2P_MFTQ_CTL_CUR_DEPTH) >> 22; 8909 max_depth = (ctl & BCE_RV2P_MFTQ_CTL_MAX_DEPTH) >> 12; 8910 valid_cnt = REG_RD(sc, BCE_HC_STAT_GEN_STAT4); 8911 BCE_PRINTF(" RV2PM 0x%08X 0x%08X 0x%08X 0x%08X 0x%08X\n", 8912 cmd, ctl, cur_depth, max_depth, valid_cnt); 8913 8914 /* Input queue to the Receive Virtual to Physical state machine */ 8915 cmd = REG_RD(sc, BCE_RV2P_TFTQ_CMD); 8916 ctl = REG_RD(sc, BCE_RV2P_TFTQ_CTL); 8917 cur_depth = (ctl & BCE_RV2P_TFTQ_CTL_CUR_DEPTH) >> 22; 8918 max_depth = (ctl & BCE_RV2P_TFTQ_CTL_MAX_DEPTH) >> 12; 8919 valid_cnt = REG_RD(sc, BCE_HC_STAT_GEN_STAT5); 8920 BCE_PRINTF(" RV2PT 0x%08X 0x%08X 0x%08X 0x%08X 0x%08X\n", 8921 cmd, ctl, cur_depth, max_depth, valid_cnt); 8922 8923 /* Input queue to the Receive DMA state machine */ 8924 cmd = REG_RD(sc, BCE_RDMA_FTQ_CMD); 8925 ctl = REG_RD(sc, BCE_RDMA_FTQ_CTL); 8926 cur_depth = (ctl & BCE_RDMA_FTQ_CTL_CUR_DEPTH) >> 22; 8927 max_depth = (ctl & BCE_RDMA_FTQ_CTL_MAX_DEPTH) >> 12; 8928 valid_cnt = REG_RD(sc, BCE_HC_STAT_GEN_STAT6); 8929 BCE_PRINTF(" RDMA 0x%08X 0x%08X 0x%08X 0x%08X 0x%08X\n", 8930 cmd, ctl, cur_depth, max_depth, valid_cnt); 8931 8932 /* Input queue to the Transmit Scheduler state machine */ 8933 cmd = REG_RD(sc, BCE_TSCH_FTQ_CMD); 8934 ctl = REG_RD(sc, BCE_TSCH_FTQ_CTL); 8935 cur_depth = (ctl & BCE_TSCH_FTQ_CTL_CUR_DEPTH) >> 22; 8936 max_depth = (ctl & BCE_TSCH_FTQ_CTL_MAX_DEPTH) >> 12; 8937 valid_cnt = REG_RD(sc, BCE_HC_STAT_GEN_STAT7); 8938 BCE_PRINTF(" TSCH 0x%08X 0x%08X 0x%08X 0x%08X 0x%08X\n", 8939 cmd, ctl, cur_depth, max_depth, valid_cnt); 8940 8941 /* Input queue to the Transmit Buffer Descriptor state machine */ 8942 cmd = REG_RD(sc, BCE_TBDR_FTQ_CMD); 8943 ctl = REG_RD(sc, BCE_TBDR_FTQ_CTL); 8944 cur_depth = (ctl & BCE_TBDR_FTQ_CTL_CUR_DEPTH) >> 22; 8945 max_depth = (ctl & BCE_TBDR_FTQ_CTL_MAX_DEPTH) >> 12; 8946 valid_cnt = REG_RD(sc, BCE_HC_STAT_GEN_STAT8); 8947 BCE_PRINTF(" TBDR 0x%08X 0x%08X 0x%08X 0x%08X 0x%08X\n", 8948 cmd, ctl, cur_depth, max_depth, valid_cnt); 8949 8950 /* Input queue to the Transmit Processor */ 8951 cmd = REG_RD_IND(sc, BCE_TXP_FTQ_CMD); 8952 ctl = REG_RD_IND(sc, BCE_TXP_FTQ_CTL); 8953 cur_depth = (ctl & BCE_TXP_FTQ_CTL_CUR_DEPTH) >> 22; 8954 max_depth = (ctl & BCE_TXP_FTQ_CTL_MAX_DEPTH) >> 12; 8955 valid_cnt = REG_RD(sc, BCE_HC_STAT_GEN_STAT9); 8956 BCE_PRINTF(" TXP 0x%08X 0x%08X 0x%08X 0x%08X 0x%08X\n", 8957 cmd, ctl, cur_depth, max_depth, valid_cnt); 8958 8959 /* Input queue to the Transmit DMA state machine */ 8960 cmd = REG_RD(sc, BCE_TDMA_FTQ_CMD); 8961 ctl = REG_RD(sc, BCE_TDMA_FTQ_CTL); 8962 cur_depth = (ctl & BCE_TDMA_FTQ_CTL_CUR_DEPTH) >> 22; 8963 max_depth = (ctl & BCE_TDMA_FTQ_CTL_MAX_DEPTH) >> 12; 8964 valid_cnt = REG_RD(sc, BCE_HC_STAT_GEN_STAT10); 8965 BCE_PRINTF(" TDMA 0x%08X 0x%08X 0x%08X 0x%08X 0x%08X\n", 8966 cmd, ctl, cur_depth, max_depth, valid_cnt); 8967 8968 /* Input queue to the Transmit Patch-Up Processor */ 8969 cmd = REG_RD_IND(sc, BCE_TPAT_FTQ_CMD); 8970 ctl = REG_RD_IND(sc, BCE_TPAT_FTQ_CTL); 8971 cur_depth = (ctl & BCE_TPAT_FTQ_CTL_CUR_DEPTH) >> 22; 8972 max_depth = (ctl & BCE_TPAT_FTQ_CTL_MAX_DEPTH) >> 12; 8973 valid_cnt = REG_RD(sc, BCE_HC_STAT_GEN_STAT11); 8974 BCE_PRINTF(" TPAT 0x%08X 0x%08X 0x%08X 0x%08X 0x%08X\n", 8975 cmd, ctl, cur_depth, max_depth, valid_cnt); 8976 8977 /* Input queue to the Transmit Assembler state machine */ 8978 cmd = REG_RD_IND(sc, BCE_TAS_FTQ_CMD); 8979 ctl = REG_RD_IND(sc, BCE_TAS_FTQ_CTL); 8980 cur_depth = (ctl & BCE_TAS_FTQ_CTL_CUR_DEPTH) >> 22; 8981 max_depth = (ctl & BCE_TAS_FTQ_CTL_MAX_DEPTH) >> 12; 8982 valid_cnt = REG_RD(sc, BCE_HC_STAT_GEN_STAT12); 8983 BCE_PRINTF(" TAS 0x%08X 0x%08X 0x%08X 0x%08X 0x%08X\n", 8984 cmd, ctl, cur_depth, max_depth, valid_cnt); 8985 8986 /* Input queue to the Completion Processor */ 8987 cmd = REG_RD_IND(sc, BCE_COM_COMXQ_FTQ_CMD); 8988 ctl = REG_RD_IND(sc, BCE_COM_COMXQ_FTQ_CTL); 8989 cur_depth = (ctl & BCE_COM_COMXQ_FTQ_CTL_CUR_DEPTH) >> 22; 8990 max_depth = (ctl & BCE_COM_COMXQ_FTQ_CTL_MAX_DEPTH) >> 12; 8991 valid_cnt = REG_RD(sc, BCE_HC_STAT_GEN_STAT13); 8992 BCE_PRINTF(" COMX 0x%08X 0x%08X 0x%08X 0x%08X 0x%08X\n", 8993 cmd, ctl, cur_depth, max_depth, valid_cnt); 8994 8995 /* Input queue to the Completion Processor */ 8996 cmd = REG_RD_IND(sc, BCE_COM_COMTQ_FTQ_CMD); 8997 ctl = REG_RD_IND(sc, BCE_COM_COMTQ_FTQ_CTL); 8998 cur_depth = (ctl & BCE_COM_COMTQ_FTQ_CTL_CUR_DEPTH) >> 22; 8999 max_depth = (ctl & BCE_COM_COMTQ_FTQ_CTL_MAX_DEPTH) >> 12; 9000 valid_cnt = REG_RD(sc, BCE_HC_STAT_GEN_STAT14); 9001 BCE_PRINTF(" COMT 0x%08X 0x%08X 0x%08X 0x%08X 0x%08X\n", 9002 cmd, ctl, cur_depth, max_depth, valid_cnt); 9003 9004 /* Input queue to the Completion Processor */ 9005 cmd = REG_RD_IND(sc, BCE_COM_COMQ_FTQ_CMD); 9006 ctl = REG_RD_IND(sc, BCE_COM_COMQ_FTQ_CTL); 9007 cur_depth = (ctl & BCE_COM_COMQ_FTQ_CTL_CUR_DEPTH) >> 22; 9008 max_depth = (ctl & BCE_COM_COMQ_FTQ_CTL_MAX_DEPTH) >> 12; 9009 valid_cnt = REG_RD(sc, BCE_HC_STAT_GEN_STAT15); 9010 BCE_PRINTF(" COMX 0x%08X 0x%08X 0x%08X 0x%08X 0x%08X\n", 9011 cmd, ctl, cur_depth, max_depth, valid_cnt); 9012 9013 /* Setup the generic statistic counters for the FTQ valid count. */ 9014 val = (BCE_HC_STAT_GEN_SEL_0_GEN_SEL_0_CSQ_VALID_CNT << 16) | 9015 (BCE_HC_STAT_GEN_SEL_0_GEN_SEL_0_CPQ_VALID_CNT << 8) | 9016 (BCE_HC_STAT_GEN_SEL_0_GEN_SEL_0_MGMQ_VALID_CNT); 9017 9018 if ((BCE_CHIP_NUM(sc) == BCE_CHIP_NUM_5709) || 9019 (BCE_CHIP_NUM(sc) == BCE_CHIP_NUM_5716)) 9020 val = val | (BCE_HC_STAT_GEN_SEL_0_GEN_SEL_0_RV2PCSQ_VALID_CNT_XI << 24); 9021 REG_WR(sc, BCE_HC_STAT_GEN_SEL_0, val); 9022 9023 /* Input queue to the Management Control Processor */ 9024 cmd = REG_RD_IND(sc, BCE_MCP_MCPQ_FTQ_CMD); 9025 ctl = REG_RD_IND(sc, BCE_MCP_MCPQ_FTQ_CTL); 9026 cur_depth = (ctl & BCE_MCP_MCPQ_FTQ_CTL_CUR_DEPTH) >> 22; 9027 max_depth = (ctl & BCE_MCP_MCPQ_FTQ_CTL_MAX_DEPTH) >> 12; 9028 valid_cnt = REG_RD(sc, BCE_HC_STAT_GEN_STAT0); 9029 BCE_PRINTF(" MCP 0x%08X 0x%08X 0x%08X 0x%08X 0x%08X\n", 9030 cmd, ctl, cur_depth, max_depth, valid_cnt); 9031 9032 /* Input queue to the Command Processor */ 9033 cmd = REG_RD_IND(sc, BCE_CP_CPQ_FTQ_CMD); 9034 ctl = REG_RD_IND(sc, BCE_CP_CPQ_FTQ_CTL); 9035 cur_depth = (ctl & BCE_CP_CPQ_FTQ_CTL_CUR_DEPTH) >> 22; 9036 max_depth = (ctl & BCE_CP_CPQ_FTQ_CTL_MAX_DEPTH) >> 12; 9037 valid_cnt = REG_RD(sc, BCE_HC_STAT_GEN_STAT1); 9038 BCE_PRINTF(" CP 0x%08X 0x%08X 0x%08X 0x%08X 0x%08X\n", 9039 cmd, ctl, cur_depth, max_depth, valid_cnt); 9040 9041 /* Input queue to the Completion Scheduler state machine */ 9042 cmd = REG_RD(sc, BCE_CSCH_CH_FTQ_CMD); 9043 ctl = REG_RD(sc, BCE_CSCH_CH_FTQ_CTL); 9044 cur_depth = (ctl & BCE_CSCH_CH_FTQ_CTL_CUR_DEPTH) >> 22; 9045 max_depth = (ctl & BCE_CSCH_CH_FTQ_CTL_MAX_DEPTH) >> 12; 9046 valid_cnt = REG_RD(sc, BCE_HC_STAT_GEN_STAT2); 9047 BCE_PRINTF(" CS 0x%08X 0x%08X 0x%08X 0x%08X 0x%08X\n", 9048 cmd, ctl, cur_depth, max_depth, valid_cnt); 9049 9050 if ((BCE_CHIP_NUM(sc) == BCE_CHIP_NUM_5709) || 9051 (BCE_CHIP_NUM(sc) == BCE_CHIP_NUM_5716)) { 9052 /* Input queue to the Receive Virtual to Physical Command Scheduler */ 9053 cmd = REG_RD(sc, BCE_RV2PCSR_FTQ_CMD); 9054 ctl = REG_RD(sc, BCE_RV2PCSR_FTQ_CTL); 9055 cur_depth = (ctl & 0xFFC00000) >> 22; 9056 max_depth = (ctl & 0x003FF000) >> 12; 9057 valid_cnt = REG_RD(sc, BCE_HC_STAT_GEN_STAT3); 9058 BCE_PRINTF(" RV2PCSR 0x%08X 0x%08X 0x%08X 0x%08X 0x%08X\n", 9059 cmd, ctl, cur_depth, max_depth, valid_cnt); 9060 } 9061 9062 BCE_PRINTF( 9063 "----------------------------" 9064 "----------------" 9065 "----------------------------\n"); 9066 } 9067 9068 9069 /****************************************************************************/ 9070 /* Prints out the TX chain. */ 9071 /* */ 9072 /* Returns: */ 9073 /* Nothing. */ 9074 /****************************************************************************/ 9075 static __attribute__ ((noinline)) void 9076 bce_dump_tx_chain(struct bce_softc *sc, u16 tx_prod, int count) 9077 { 9078 struct tx_bd *txbd; 9079 9080 /* First some info about the tx_bd chain structure. */ 9081 BCE_PRINTF( 9082 "----------------------------" 9083 " tx_bd chain " 9084 "----------------------------\n"); 9085 9086 BCE_PRINTF("page size = 0x%08X, tx chain pages = 0x%08X\n", 9087 (u32) BCM_PAGE_SIZE, (u32) TX_PAGES); 9088 9089 BCE_PRINTF("tx_bd per page = 0x%08X, usable tx_bd per page = 0x%08X\n", 9090 (u32) TOTAL_TX_BD_PER_PAGE, (u32) USABLE_TX_BD_PER_PAGE); 9091 9092 BCE_PRINTF("total tx_bd = 0x%08X\n", (u32) TOTAL_TX_BD); 9093 9094 BCE_PRINTF( 9095 "----------------------------" 9096 " tx_bd data " 9097 "----------------------------\n"); 9098 9099 /* Now print out the tx_bd's themselves. */ 9100 for (int i = 0; i < count; i++) { 9101 txbd = &sc->tx_bd_chain[TX_PAGE(tx_prod)][TX_IDX(tx_prod)]; 9102 bce_dump_txbd(sc, tx_prod, txbd); 9103 tx_prod = NEXT_TX_BD(tx_prod); 9104 } 9105 9106 BCE_PRINTF( 9107 "----------------------------" 9108 "----------------" 9109 "----------------------------\n"); 9110 } 9111 9112 9113 /****************************************************************************/ 9114 /* Prints out the RX chain. */ 9115 /* */ 9116 /* Returns: */ 9117 /* Nothing. */ 9118 /****************************************************************************/ 9119 static __attribute__ ((noinline)) void 9120 bce_dump_rx_chain(struct bce_softc *sc, u16 rx_prod, int count) 9121 { 9122 struct rx_bd *rxbd; 9123 9124 /* First some info about the rx_bd chain structure. */ 9125 BCE_PRINTF( 9126 "----------------------------" 9127 " rx_bd chain " 9128 "----------------------------\n"); 9129 9130 BCE_PRINTF("page size = 0x%08X, rx chain pages = 0x%08X\n", 9131 (u32) BCM_PAGE_SIZE, (u32) RX_PAGES); 9132 9133 BCE_PRINTF("rx_bd per page = 0x%08X, usable rx_bd per page = 0x%08X\n", 9134 (u32) TOTAL_RX_BD_PER_PAGE, (u32) USABLE_RX_BD_PER_PAGE); 9135 9136 BCE_PRINTF("total rx_bd = 0x%08X\n", (u32) TOTAL_RX_BD); 9137 9138 BCE_PRINTF( 9139 "----------------------------" 9140 " rx_bd data " 9141 "----------------------------\n"); 9142 9143 /* Now print out the rx_bd's themselves. */ 9144 for (int i = 0; i < count; i++) { 9145 rxbd = &sc->rx_bd_chain[RX_PAGE(rx_prod)][RX_IDX(rx_prod)]; 9146 bce_dump_rxbd(sc, rx_prod, rxbd); 9147 rx_prod = RX_CHAIN_IDX(rx_prod + 1); 9148 } 9149 9150 BCE_PRINTF( 9151 "----------------------------" 9152 "----------------" 9153 "----------------------------\n"); 9154 } 9155 9156 9157 #ifdef BCE_USE_SPLIT_HEADER 9158 /****************************************************************************/ 9159 /* Prints out the page chain. */ 9160 /* */ 9161 /* Returns: */ 9162 /* Nothing. */ 9163 /****************************************************************************/ 9164 static __attribute__ ((noinline)) void 9165 bce_dump_pg_chain(struct bce_softc *sc, u16 pg_prod, int count) 9166 { 9167 struct rx_bd *pgbd; 9168 9169 /* First some info about the page chain structure. */ 9170 BCE_PRINTF( 9171 "----------------------------" 9172 " page chain " 9173 "----------------------------\n"); 9174 9175 BCE_PRINTF("page size = 0x%08X, pg chain pages = 0x%08X\n", 9176 (u32) BCM_PAGE_SIZE, (u32) PG_PAGES); 9177 9178 BCE_PRINTF("rx_bd per page = 0x%08X, usable rx_bd per page = 0x%08X\n", 9179 (u32) TOTAL_PG_BD_PER_PAGE, (u32) USABLE_PG_BD_PER_PAGE); 9180 9181 BCE_PRINTF("total rx_bd = 0x%08X, max_pg_bd = 0x%08X\n", 9182 (u32) TOTAL_PG_BD, (u32) MAX_PG_BD); 9183 9184 BCE_PRINTF( 9185 "----------------------------" 9186 " page data " 9187 "----------------------------\n"); 9188 9189 /* Now print out the rx_bd's themselves. */ 9190 for (int i = 0; i < count; i++) { 9191 pgbd = &sc->pg_bd_chain[PG_PAGE(pg_prod)][PG_IDX(pg_prod)]; 9192 bce_dump_pgbd(sc, pg_prod, pgbd); 9193 pg_prod = PG_CHAIN_IDX(pg_prod + 1); 9194 } 9195 9196 BCE_PRINTF( 9197 "----------------------------" 9198 "----------------" 9199 "----------------------------\n"); 9200 } 9201 #endif 9202 9203 9204 /****************************************************************************/ 9205 /* Prints out the status block from host memory. */ 9206 /* */ 9207 /* Returns: */ 9208 /* Nothing. */ 9209 /****************************************************************************/ 9210 static __attribute__ ((noinline)) void 9211 bce_dump_status_block(struct bce_softc *sc) 9212 { 9213 struct status_block *sblk; 9214 9215 sblk = sc->status_block; 9216 9217 BCE_PRINTF( 9218 "----------------------------" 9219 " Status Block " 9220 "----------------------------\n"); 9221 9222 BCE_PRINTF(" 0x%08X - attn_bits\n", 9223 sblk->status_attn_bits); 9224 9225 BCE_PRINTF(" 0x%08X - attn_bits_ack\n", 9226 sblk->status_attn_bits_ack); 9227 9228 BCE_PRINTF("0x%04X(0x%04X) - rx_cons0\n", 9229 sblk->status_rx_quick_consumer_index0, 9230 (u16) RX_CHAIN_IDX(sblk->status_rx_quick_consumer_index0)); 9231 9232 BCE_PRINTF("0x%04X(0x%04X) - tx_cons0\n", 9233 sblk->status_tx_quick_consumer_index0, 9234 (u16) TX_CHAIN_IDX(sblk->status_tx_quick_consumer_index0)); 9235 9236 BCE_PRINTF(" 0x%04X - status_idx\n", sblk->status_idx); 9237 9238 /* Theses indices are not used for normal L2 drivers. */ 9239 if (sblk->status_rx_quick_consumer_index1) 9240 BCE_PRINTF("0x%04X(0x%04X) - rx_cons1\n", 9241 sblk->status_rx_quick_consumer_index1, 9242 (u16) RX_CHAIN_IDX(sblk->status_rx_quick_consumer_index1)); 9243 9244 if (sblk->status_tx_quick_consumer_index1) 9245 BCE_PRINTF("0x%04X(0x%04X) - tx_cons1\n", 9246 sblk->status_tx_quick_consumer_index1, 9247 (u16) TX_CHAIN_IDX(sblk->status_tx_quick_consumer_index1)); 9248 9249 if (sblk->status_rx_quick_consumer_index2) 9250 BCE_PRINTF("0x%04X(0x%04X)- rx_cons2\n", 9251 sblk->status_rx_quick_consumer_index2, 9252 (u16) RX_CHAIN_IDX(sblk->status_rx_quick_consumer_index2)); 9253 9254 if (sblk->status_tx_quick_consumer_index2) 9255 BCE_PRINTF("0x%04X(0x%04X) - tx_cons2\n", 9256 sblk->status_tx_quick_consumer_index2, 9257 (u16) TX_CHAIN_IDX(sblk->status_tx_quick_consumer_index2)); 9258 9259 if (sblk->status_rx_quick_consumer_index3) 9260 BCE_PRINTF("0x%04X(0x%04X) - rx_cons3\n", 9261 sblk->status_rx_quick_consumer_index3, 9262 (u16) RX_CHAIN_IDX(sblk->status_rx_quick_consumer_index3)); 9263 9264 if (sblk->status_tx_quick_consumer_index3) 9265 BCE_PRINTF("0x%04X(0x%04X) - tx_cons3\n", 9266 sblk->status_tx_quick_consumer_index3, 9267 (u16) TX_CHAIN_IDX(sblk->status_tx_quick_consumer_index3)); 9268 9269 if (sblk->status_rx_quick_consumer_index4 || 9270 sblk->status_rx_quick_consumer_index5) 9271 BCE_PRINTF("rx_cons4 = 0x%08X, rx_cons5 = 0x%08X\n", 9272 sblk->status_rx_quick_consumer_index4, 9273 sblk->status_rx_quick_consumer_index5); 9274 9275 if (sblk->status_rx_quick_consumer_index6 || 9276 sblk->status_rx_quick_consumer_index7) 9277 BCE_PRINTF("rx_cons6 = 0x%08X, rx_cons7 = 0x%08X\n", 9278 sblk->status_rx_quick_consumer_index6, 9279 sblk->status_rx_quick_consumer_index7); 9280 9281 if (sblk->status_rx_quick_consumer_index8 || 9282 sblk->status_rx_quick_consumer_index9) 9283 BCE_PRINTF("rx_cons8 = 0x%08X, rx_cons9 = 0x%08X\n", 9284 sblk->status_rx_quick_consumer_index8, 9285 sblk->status_rx_quick_consumer_index9); 9286 9287 if (sblk->status_rx_quick_consumer_index10 || 9288 sblk->status_rx_quick_consumer_index11) 9289 BCE_PRINTF("rx_cons10 = 0x%08X, rx_cons11 = 0x%08X\n", 9290 sblk->status_rx_quick_consumer_index10, 9291 sblk->status_rx_quick_consumer_index11); 9292 9293 if (sblk->status_rx_quick_consumer_index12 || 9294 sblk->status_rx_quick_consumer_index13) 9295 BCE_PRINTF("rx_cons12 = 0x%08X, rx_cons13 = 0x%08X\n", 9296 sblk->status_rx_quick_consumer_index12, 9297 sblk->status_rx_quick_consumer_index13); 9298 9299 if (sblk->status_rx_quick_consumer_index14 || 9300 sblk->status_rx_quick_consumer_index15) 9301 BCE_PRINTF("rx_cons14 = 0x%08X, rx_cons15 = 0x%08X\n", 9302 sblk->status_rx_quick_consumer_index14, 9303 sblk->status_rx_quick_consumer_index15); 9304 9305 if (sblk->status_completion_producer_index || 9306 sblk->status_cmd_consumer_index) 9307 BCE_PRINTF("com_prod = 0x%08X, cmd_cons = 0x%08X\n", 9308 sblk->status_completion_producer_index, 9309 sblk->status_cmd_consumer_index); 9310 9311 BCE_PRINTF( 9312 "----------------------------" 9313 "----------------" 9314 "----------------------------\n"); 9315 } 9316 9317 9318 /****************************************************************************/ 9319 /* Prints out the statistics block from host memory. */ 9320 /* */ 9321 /* Returns: */ 9322 /* Nothing. */ 9323 /****************************************************************************/ 9324 static __attribute__ ((noinline)) void 9325 bce_dump_stats_block(struct bce_softc *sc) 9326 { 9327 struct statistics_block *sblk; 9328 9329 sblk = sc->stats_block; 9330 9331 BCE_PRINTF( 9332 "---------------" 9333 " Stats Block (All Stats Not Shown Are 0) " 9334 "---------------\n"); 9335 9336 if (sblk->stat_IfHCInOctets_hi 9337 || sblk->stat_IfHCInOctets_lo) 9338 BCE_PRINTF("0x%08X:%08X : " 9339 "IfHcInOctets\n", 9340 sblk->stat_IfHCInOctets_hi, 9341 sblk->stat_IfHCInOctets_lo); 9342 9343 if (sblk->stat_IfHCInBadOctets_hi 9344 || sblk->stat_IfHCInBadOctets_lo) 9345 BCE_PRINTF("0x%08X:%08X : " 9346 "IfHcInBadOctets\n", 9347 sblk->stat_IfHCInBadOctets_hi, 9348 sblk->stat_IfHCInBadOctets_lo); 9349 9350 if (sblk->stat_IfHCOutOctets_hi 9351 || sblk->stat_IfHCOutOctets_lo) 9352 BCE_PRINTF("0x%08X:%08X : " 9353 "IfHcOutOctets\n", 9354 sblk->stat_IfHCOutOctets_hi, 9355 sblk->stat_IfHCOutOctets_lo); 9356 9357 if (sblk->stat_IfHCOutBadOctets_hi 9358 || sblk->stat_IfHCOutBadOctets_lo) 9359 BCE_PRINTF("0x%08X:%08X : " 9360 "IfHcOutBadOctets\n", 9361 sblk->stat_IfHCOutBadOctets_hi, 9362 sblk->stat_IfHCOutBadOctets_lo); 9363 9364 if (sblk->stat_IfHCInUcastPkts_hi 9365 || sblk->stat_IfHCInUcastPkts_lo) 9366 BCE_PRINTF("0x%08X:%08X : " 9367 "IfHcInUcastPkts\n", 9368 sblk->stat_IfHCInUcastPkts_hi, 9369 sblk->stat_IfHCInUcastPkts_lo); 9370 9371 if (sblk->stat_IfHCInBroadcastPkts_hi 9372 || sblk->stat_IfHCInBroadcastPkts_lo) 9373 BCE_PRINTF("0x%08X:%08X : " 9374 "IfHcInBroadcastPkts\n", 9375 sblk->stat_IfHCInBroadcastPkts_hi, 9376 sblk->stat_IfHCInBroadcastPkts_lo); 9377 9378 if (sblk->stat_IfHCInMulticastPkts_hi 9379 || sblk->stat_IfHCInMulticastPkts_lo) 9380 BCE_PRINTF("0x%08X:%08X : " 9381 "IfHcInMulticastPkts\n", 9382 sblk->stat_IfHCInMulticastPkts_hi, 9383 sblk->stat_IfHCInMulticastPkts_lo); 9384 9385 if (sblk->stat_IfHCOutUcastPkts_hi 9386 || sblk->stat_IfHCOutUcastPkts_lo) 9387 BCE_PRINTF("0x%08X:%08X : " 9388 "IfHcOutUcastPkts\n", 9389 sblk->stat_IfHCOutUcastPkts_hi, 9390 sblk->stat_IfHCOutUcastPkts_lo); 9391 9392 if (sblk->stat_IfHCOutBroadcastPkts_hi 9393 || sblk->stat_IfHCOutBroadcastPkts_lo) 9394 BCE_PRINTF("0x%08X:%08X : " 9395 "IfHcOutBroadcastPkts\n", 9396 sblk->stat_IfHCOutBroadcastPkts_hi, 9397 sblk->stat_IfHCOutBroadcastPkts_lo); 9398 9399 if (sblk->stat_IfHCOutMulticastPkts_hi 9400 || sblk->stat_IfHCOutMulticastPkts_lo) 9401 BCE_PRINTF("0x%08X:%08X : " 9402 "IfHcOutMulticastPkts\n", 9403 sblk->stat_IfHCOutMulticastPkts_hi, 9404 sblk->stat_IfHCOutMulticastPkts_lo); 9405 9406 if (sblk->stat_emac_tx_stat_dot3statsinternalmactransmiterrors) 9407 BCE_PRINTF(" 0x%08X : " 9408 "emac_tx_stat_dot3statsinternalmactransmiterrors\n", 9409 sblk->stat_emac_tx_stat_dot3statsinternalmactransmiterrors); 9410 9411 if (sblk->stat_Dot3StatsCarrierSenseErrors) 9412 BCE_PRINTF(" 0x%08X : Dot3StatsCarrierSenseErrors\n", 9413 sblk->stat_Dot3StatsCarrierSenseErrors); 9414 9415 if (sblk->stat_Dot3StatsFCSErrors) 9416 BCE_PRINTF(" 0x%08X : Dot3StatsFCSErrors\n", 9417 sblk->stat_Dot3StatsFCSErrors); 9418 9419 if (sblk->stat_Dot3StatsAlignmentErrors) 9420 BCE_PRINTF(" 0x%08X : Dot3StatsAlignmentErrors\n", 9421 sblk->stat_Dot3StatsAlignmentErrors); 9422 9423 if (sblk->stat_Dot3StatsSingleCollisionFrames) 9424 BCE_PRINTF(" 0x%08X : Dot3StatsSingleCollisionFrames\n", 9425 sblk->stat_Dot3StatsSingleCollisionFrames); 9426 9427 if (sblk->stat_Dot3StatsMultipleCollisionFrames) 9428 BCE_PRINTF(" 0x%08X : Dot3StatsMultipleCollisionFrames\n", 9429 sblk->stat_Dot3StatsMultipleCollisionFrames); 9430 9431 if (sblk->stat_Dot3StatsDeferredTransmissions) 9432 BCE_PRINTF(" 0x%08X : Dot3StatsDeferredTransmissions\n", 9433 sblk->stat_Dot3StatsDeferredTransmissions); 9434 9435 if (sblk->stat_Dot3StatsExcessiveCollisions) 9436 BCE_PRINTF(" 0x%08X : Dot3StatsExcessiveCollisions\n", 9437 sblk->stat_Dot3StatsExcessiveCollisions); 9438 9439 if (sblk->stat_Dot3StatsLateCollisions) 9440 BCE_PRINTF(" 0x%08X : Dot3StatsLateCollisions\n", 9441 sblk->stat_Dot3StatsLateCollisions); 9442 9443 if (sblk->stat_EtherStatsCollisions) 9444 BCE_PRINTF(" 0x%08X : EtherStatsCollisions\n", 9445 sblk->stat_EtherStatsCollisions); 9446 9447 if (sblk->stat_EtherStatsFragments) 9448 BCE_PRINTF(" 0x%08X : EtherStatsFragments\n", 9449 sblk->stat_EtherStatsFragments); 9450 9451 if (sblk->stat_EtherStatsJabbers) 9452 BCE_PRINTF(" 0x%08X : EtherStatsJabbers\n", 9453 sblk->stat_EtherStatsJabbers); 9454 9455 if (sblk->stat_EtherStatsUndersizePkts) 9456 BCE_PRINTF(" 0x%08X : EtherStatsUndersizePkts\n", 9457 sblk->stat_EtherStatsUndersizePkts); 9458 9459 if (sblk->stat_EtherStatsOverrsizePkts) 9460 BCE_PRINTF(" 0x%08X : EtherStatsOverrsizePkts\n", 9461 sblk->stat_EtherStatsOverrsizePkts); 9462 9463 if (sblk->stat_EtherStatsPktsRx64Octets) 9464 BCE_PRINTF(" 0x%08X : EtherStatsPktsRx64Octets\n", 9465 sblk->stat_EtherStatsPktsRx64Octets); 9466 9467 if (sblk->stat_EtherStatsPktsRx65Octetsto127Octets) 9468 BCE_PRINTF(" 0x%08X : EtherStatsPktsRx65Octetsto127Octets\n", 9469 sblk->stat_EtherStatsPktsRx65Octetsto127Octets); 9470 9471 if (sblk->stat_EtherStatsPktsRx128Octetsto255Octets) 9472 BCE_PRINTF(" 0x%08X : EtherStatsPktsRx128Octetsto255Octets\n", 9473 sblk->stat_EtherStatsPktsRx128Octetsto255Octets); 9474 9475 if (sblk->stat_EtherStatsPktsRx256Octetsto511Octets) 9476 BCE_PRINTF(" 0x%08X : EtherStatsPktsRx256Octetsto511Octets\n", 9477 sblk->stat_EtherStatsPktsRx256Octetsto511Octets); 9478 9479 if (sblk->stat_EtherStatsPktsRx512Octetsto1023Octets) 9480 BCE_PRINTF(" 0x%08X : EtherStatsPktsRx512Octetsto1023Octets\n", 9481 sblk->stat_EtherStatsPktsRx512Octetsto1023Octets); 9482 9483 if (sblk->stat_EtherStatsPktsRx1024Octetsto1522Octets) 9484 BCE_PRINTF(" 0x%08X : EtherStatsPktsRx1024Octetsto1522Octets\n", 9485 sblk->stat_EtherStatsPktsRx1024Octetsto1522Octets); 9486 9487 if (sblk->stat_EtherStatsPktsRx1523Octetsto9022Octets) 9488 BCE_PRINTF(" 0x%08X : EtherStatsPktsRx1523Octetsto9022Octets\n", 9489 sblk->stat_EtherStatsPktsRx1523Octetsto9022Octets); 9490 9491 if (sblk->stat_EtherStatsPktsTx64Octets) 9492 BCE_PRINTF(" 0x%08X : EtherStatsPktsTx64Octets\n", 9493 sblk->stat_EtherStatsPktsTx64Octets); 9494 9495 if (sblk->stat_EtherStatsPktsTx65Octetsto127Octets) 9496 BCE_PRINTF(" 0x%08X : EtherStatsPktsTx65Octetsto127Octets\n", 9497 sblk->stat_EtherStatsPktsTx65Octetsto127Octets); 9498 9499 if (sblk->stat_EtherStatsPktsTx128Octetsto255Octets) 9500 BCE_PRINTF(" 0x%08X : EtherStatsPktsTx128Octetsto255Octets\n", 9501 sblk->stat_EtherStatsPktsTx128Octetsto255Octets); 9502 9503 if (sblk->stat_EtherStatsPktsTx256Octetsto511Octets) 9504 BCE_PRINTF(" 0x%08X : EtherStatsPktsTx256Octetsto511Octets\n", 9505 sblk->stat_EtherStatsPktsTx256Octetsto511Octets); 9506 9507 if (sblk->stat_EtherStatsPktsTx512Octetsto1023Octets) 9508 BCE_PRINTF(" 0x%08X : EtherStatsPktsTx512Octetsto1023Octets\n", 9509 sblk->stat_EtherStatsPktsTx512Octetsto1023Octets); 9510 9511 if (sblk->stat_EtherStatsPktsTx1024Octetsto1522Octets) 9512 BCE_PRINTF(" 0x%08X : EtherStatsPktsTx1024Octetsto1522Octets\n", 9513 sblk->stat_EtherStatsPktsTx1024Octetsto1522Octets); 9514 9515 if (sblk->stat_EtherStatsPktsTx1523Octetsto9022Octets) 9516 BCE_PRINTF(" 0x%08X : EtherStatsPktsTx1523Octetsto9022Octets\n", 9517 sblk->stat_EtherStatsPktsTx1523Octetsto9022Octets); 9518 9519 if (sblk->stat_XonPauseFramesReceived) 9520 BCE_PRINTF(" 0x%08X : XonPauseFramesReceived\n", 9521 sblk->stat_XonPauseFramesReceived); 9522 9523 if (sblk->stat_XoffPauseFramesReceived) 9524 BCE_PRINTF(" 0x%08X : XoffPauseFramesReceived\n", 9525 sblk->stat_XoffPauseFramesReceived); 9526 9527 if (sblk->stat_OutXonSent) 9528 BCE_PRINTF(" 0x%08X : OutXonSent\n", 9529 sblk->stat_OutXonSent); 9530 9531 if (sblk->stat_OutXoffSent) 9532 BCE_PRINTF(" 0x%08X : OutXoffSent\n", 9533 sblk->stat_OutXoffSent); 9534 9535 if (sblk->stat_FlowControlDone) 9536 BCE_PRINTF(" 0x%08X : FlowControlDone\n", 9537 sblk->stat_FlowControlDone); 9538 9539 if (sblk->stat_MacControlFramesReceived) 9540 BCE_PRINTF(" 0x%08X : MacControlFramesReceived\n", 9541 sblk->stat_MacControlFramesReceived); 9542 9543 if (sblk->stat_XoffStateEntered) 9544 BCE_PRINTF(" 0x%08X : XoffStateEntered\n", 9545 sblk->stat_XoffStateEntered); 9546 9547 if (sblk->stat_IfInFramesL2FilterDiscards) 9548 BCE_PRINTF(" 0x%08X : IfInFramesL2FilterDiscards\n", 9549 sblk->stat_IfInFramesL2FilterDiscards); 9550 9551 if (sblk->stat_IfInRuleCheckerDiscards) 9552 BCE_PRINTF(" 0x%08X : IfInRuleCheckerDiscards\n", 9553 sblk->stat_IfInRuleCheckerDiscards); 9554 9555 if (sblk->stat_IfInFTQDiscards) 9556 BCE_PRINTF(" 0x%08X : IfInFTQDiscards\n", 9557 sblk->stat_IfInFTQDiscards); 9558 9559 if (sblk->stat_IfInMBUFDiscards) 9560 BCE_PRINTF(" 0x%08X : IfInMBUFDiscards\n", 9561 sblk->stat_IfInMBUFDiscards); 9562 9563 if (sblk->stat_IfInRuleCheckerP4Hit) 9564 BCE_PRINTF(" 0x%08X : IfInRuleCheckerP4Hit\n", 9565 sblk->stat_IfInRuleCheckerP4Hit); 9566 9567 if (sblk->stat_CatchupInRuleCheckerDiscards) 9568 BCE_PRINTF(" 0x%08X : CatchupInRuleCheckerDiscards\n", 9569 sblk->stat_CatchupInRuleCheckerDiscards); 9570 9571 if (sblk->stat_CatchupInFTQDiscards) 9572 BCE_PRINTF(" 0x%08X : CatchupInFTQDiscards\n", 9573 sblk->stat_CatchupInFTQDiscards); 9574 9575 if (sblk->stat_CatchupInMBUFDiscards) 9576 BCE_PRINTF(" 0x%08X : CatchupInMBUFDiscards\n", 9577 sblk->stat_CatchupInMBUFDiscards); 9578 9579 if (sblk->stat_CatchupInRuleCheckerP4Hit) 9580 BCE_PRINTF(" 0x%08X : CatchupInRuleCheckerP4Hit\n", 9581 sblk->stat_CatchupInRuleCheckerP4Hit); 9582 9583 BCE_PRINTF( 9584 "----------------------------" 9585 "----------------" 9586 "----------------------------\n"); 9587 } 9588 9589 9590 /****************************************************************************/ 9591 /* Prints out a summary of the driver state. */ 9592 /* */ 9593 /* Returns: */ 9594 /* Nothing. */ 9595 /****************************************************************************/ 9596 static __attribute__ ((noinline)) void 9597 bce_dump_driver_state(struct bce_softc *sc) 9598 { 9599 u32 val_hi, val_lo; 9600 9601 BCE_PRINTF( 9602 "-----------------------------" 9603 " Driver State " 9604 "-----------------------------\n"); 9605 9606 val_hi = BCE_ADDR_HI(sc); 9607 val_lo = BCE_ADDR_LO(sc); 9608 BCE_PRINTF("0x%08X:%08X - (sc) driver softc structure virtual address\n", 9609 val_hi, val_lo); 9610 9611 val_hi = BCE_ADDR_HI(sc->bce_vhandle); 9612 val_lo = BCE_ADDR_LO(sc->bce_vhandle); 9613 BCE_PRINTF("0x%08X:%08X - (sc->bce_vhandle) PCI BAR virtual address\n", 9614 val_hi, val_lo); 9615 9616 val_hi = BCE_ADDR_HI(sc->status_block); 9617 val_lo = BCE_ADDR_LO(sc->status_block); 9618 BCE_PRINTF("0x%08X:%08X - (sc->status_block) status block virtual address\n", 9619 val_hi, val_lo); 9620 9621 val_hi = BCE_ADDR_HI(sc->stats_block); 9622 val_lo = BCE_ADDR_LO(sc->stats_block); 9623 BCE_PRINTF("0x%08X:%08X - (sc->stats_block) statistics block virtual address\n", 9624 val_hi, val_lo); 9625 9626 val_hi = BCE_ADDR_HI(sc->tx_bd_chain); 9627 val_lo = BCE_ADDR_LO(sc->tx_bd_chain); 9628 BCE_PRINTF( 9629 "0x%08X:%08X - (sc->tx_bd_chain) tx_bd chain virtual adddress\n", 9630 val_hi, val_lo); 9631 9632 val_hi = BCE_ADDR_HI(sc->rx_bd_chain); 9633 val_lo = BCE_ADDR_LO(sc->rx_bd_chain); 9634 BCE_PRINTF( 9635 "0x%08X:%08X - (sc->rx_bd_chain) rx_bd chain virtual address\n", 9636 val_hi, val_lo); 9637 9638 #ifdef BCE_USE_SPLIT_HEADER 9639 val_hi = BCE_ADDR_HI(sc->pg_bd_chain); 9640 val_lo = BCE_ADDR_LO(sc->pg_bd_chain); 9641 BCE_PRINTF( 9642 "0x%08X:%08X - (sc->pg_bd_chain) page chain virtual address\n", 9643 val_hi, val_lo); 9644 #endif 9645 9646 val_hi = BCE_ADDR_HI(sc->tx_mbuf_ptr); 9647 val_lo = BCE_ADDR_LO(sc->tx_mbuf_ptr); 9648 BCE_PRINTF( 9649 "0x%08X:%08X - (sc->tx_mbuf_ptr) tx mbuf chain virtual address\n", 9650 val_hi, val_lo); 9651 9652 val_hi = BCE_ADDR_HI(sc->rx_mbuf_ptr); 9653 val_lo = BCE_ADDR_LO(sc->rx_mbuf_ptr); 9654 BCE_PRINTF( 9655 "0x%08X:%08X - (sc->rx_mbuf_ptr) rx mbuf chain virtual address\n", 9656 val_hi, val_lo); 9657 9658 #ifdef BCE_USE_SPLIT_HEADER 9659 val_hi = BCE_ADDR_HI(sc->pg_mbuf_ptr); 9660 val_lo = BCE_ADDR_LO(sc->pg_mbuf_ptr); 9661 BCE_PRINTF( 9662 "0x%08X:%08X - (sc->pg_mbuf_ptr) page mbuf chain virtual address\n", 9663 val_hi, val_lo); 9664 #endif 9665 9666 BCE_PRINTF(" 0x%08X - (sc->interrupts_generated) h/w intrs\n", 9667 sc->interrupts_generated); 9668 9669 BCE_PRINTF(" 0x%08X - (sc->rx_interrupts) rx interrupts handled\n", 9670 sc->rx_interrupts); 9671 9672 BCE_PRINTF(" 0x%08X - (sc->tx_interrupts) tx interrupts handled\n", 9673 sc->tx_interrupts); 9674 9675 BCE_PRINTF(" 0x%08X - (sc->last_status_idx) status block index\n", 9676 sc->last_status_idx); 9677 9678 BCE_PRINTF(" 0x%04X(0x%04X) - (sc->tx_prod) tx producer index\n", 9679 sc->tx_prod, (u16) TX_CHAIN_IDX(sc->tx_prod)); 9680 9681 BCE_PRINTF(" 0x%04X(0x%04X) - (sc->tx_cons) tx consumer index\n", 9682 sc->tx_cons, (u16) TX_CHAIN_IDX(sc->tx_cons)); 9683 9684 BCE_PRINTF(" 0x%08X - (sc->tx_prod_bseq) tx producer bseq index\n", 9685 sc->tx_prod_bseq); 9686 9687 BCE_PRINTF(" 0x%08X - (sc->debug_tx_mbuf_alloc) tx mbufs allocated\n", 9688 sc->debug_tx_mbuf_alloc); 9689 9690 BCE_PRINTF(" 0x%08X - (sc->used_tx_bd) used tx_bd's\n", 9691 sc->used_tx_bd); 9692 9693 BCE_PRINTF("0x%08X/%08X - (sc->tx_hi_watermark) tx hi watermark\n", 9694 sc->tx_hi_watermark, sc->max_tx_bd); 9695 9696 BCE_PRINTF(" 0x%04X(0x%04X) - (sc->rx_prod) rx producer index\n", 9697 sc->rx_prod, (u16) RX_CHAIN_IDX(sc->rx_prod)); 9698 9699 BCE_PRINTF(" 0x%04X(0x%04X) - (sc->rx_cons) rx consumer index\n", 9700 sc->rx_cons, (u16) RX_CHAIN_IDX(sc->rx_cons)); 9701 9702 BCE_PRINTF(" 0x%08X - (sc->rx_prod_bseq) rx producer bseq index\n", 9703 sc->rx_prod_bseq); 9704 9705 BCE_PRINTF(" 0x%08X - (sc->debug_rx_mbuf_alloc) rx mbufs allocated\n", 9706 sc->debug_rx_mbuf_alloc); 9707 9708 BCE_PRINTF(" 0x%08X - (sc->free_rx_bd) free rx_bd's\n", 9709 sc->free_rx_bd); 9710 9711 #ifdef BCE_USE_SPLIT_HEADER 9712 BCE_PRINTF(" 0x%04X(0x%04X) - (sc->pg_prod) page producer index\n", 9713 sc->pg_prod, (u16) PG_CHAIN_IDX(sc->pg_prod)); 9714 9715 BCE_PRINTF(" 0x%04X(0x%04X) - (sc->pg_cons) page consumer index\n", 9716 sc->pg_cons, (u16) PG_CHAIN_IDX(sc->pg_cons)); 9717 9718 BCE_PRINTF(" 0x%08X - (sc->debug_pg_mbuf_alloc) page mbufs allocated\n", 9719 sc->debug_pg_mbuf_alloc); 9720 9721 BCE_PRINTF(" 0x%08X - (sc->free_pg_bd) free page rx_bd's\n", 9722 sc->free_pg_bd); 9723 9724 BCE_PRINTF("0x%08X/%08X - (sc->pg_low_watermark) page low watermark\n", 9725 sc->pg_low_watermark, sc->max_pg_bd); 9726 #endif 9727 9728 BCE_PRINTF(" 0x%08X - (sc->mbuf_alloc_failed) " 9729 "mbuf alloc failures\n", 9730 sc->mbuf_alloc_failed); 9731 9732 BCE_PRINTF(" 0x%08X - (sc->debug_mbuf_sim_alloc_failed) " 9733 "simulated mbuf alloc failures\n", 9734 sc->debug_mbuf_sim_alloc_failed); 9735 9736 BCE_PRINTF(" 0x%08X - (sc->bce_flags) bce mac flags\n", 9737 sc->bce_flags); 9738 9739 BCE_PRINTF(" 0x%08X - (sc->bce_phy_flags) bce phy flags\n", 9740 sc->bce_phy_flags); 9741 9742 BCE_PRINTF( 9743 "----------------------------" 9744 "----------------" 9745 "----------------------------\n"); 9746 } 9747 9748 9749 /****************************************************************************/ 9750 /* Prints out the hardware state through a summary of important register, */ 9751 /* followed by a complete register dump. */ 9752 /* */ 9753 /* Returns: */ 9754 /* Nothing. */ 9755 /****************************************************************************/ 9756 static __attribute__ ((noinline)) void 9757 bce_dump_hw_state(struct bce_softc *sc) 9758 { 9759 u32 val; 9760 9761 BCE_PRINTF( 9762 "----------------------------" 9763 " Hardware State " 9764 "----------------------------\n"); 9765 9766 BCE_PRINTF("0x%08X - bootcode version\n", sc->bce_fw_ver); 9767 9768 val = REG_RD(sc, BCE_MISC_ENABLE_STATUS_BITS); 9769 BCE_PRINTF("0x%08X - (0x%06X) misc_enable_status_bits\n", 9770 val, BCE_MISC_ENABLE_STATUS_BITS); 9771 9772 val = REG_RD(sc, BCE_DMA_STATUS); 9773 BCE_PRINTF("0x%08X - (0x%06X) dma_status\n", val, BCE_DMA_STATUS); 9774 9775 val = REG_RD(sc, BCE_CTX_STATUS); 9776 BCE_PRINTF("0x%08X - (0x%06X) ctx_status\n", val, BCE_CTX_STATUS); 9777 9778 val = REG_RD(sc, BCE_EMAC_STATUS); 9779 BCE_PRINTF("0x%08X - (0x%06X) emac_status\n", val, BCE_EMAC_STATUS); 9780 9781 val = REG_RD(sc, BCE_RPM_STATUS); 9782 BCE_PRINTF("0x%08X - (0x%06X) rpm_status\n", val, BCE_RPM_STATUS); 9783 9784 val = REG_RD(sc, 0x2004); 9785 BCE_PRINTF("0x%08X - (0x%06X) rlup_status\n", val, 0x2004); 9786 9787 val = REG_RD(sc, BCE_RV2P_STATUS); 9788 BCE_PRINTF("0x%08X - (0x%06X) rv2p_status\n", val, BCE_RV2P_STATUS); 9789 9790 val = REG_RD(sc, 0x2c04); 9791 BCE_PRINTF("0x%08X - (0x%06X) rdma_status\n", val, 0x2c04); 9792 9793 val = REG_RD(sc, BCE_TBDR_STATUS); 9794 BCE_PRINTF("0x%08X - (0x%06X) tbdr_status\n", val, BCE_TBDR_STATUS); 9795 9796 val = REG_RD(sc, BCE_TDMA_STATUS); 9797 BCE_PRINTF("0x%08X - (0x%06X) tdma_status\n", val, BCE_TDMA_STATUS); 9798 9799 val = REG_RD(sc, BCE_HC_STATUS); 9800 BCE_PRINTF("0x%08X - (0x%06X) hc_status\n", val, BCE_HC_STATUS); 9801 9802 val = REG_RD_IND(sc, BCE_TXP_CPU_STATE); 9803 BCE_PRINTF("0x%08X - (0x%06X) txp_cpu_state\n", val, BCE_TXP_CPU_STATE); 9804 9805 val = REG_RD_IND(sc, BCE_TPAT_CPU_STATE); 9806 BCE_PRINTF("0x%08X - (0x%06X) tpat_cpu_state\n", val, BCE_TPAT_CPU_STATE); 9807 9808 val = REG_RD_IND(sc, BCE_RXP_CPU_STATE); 9809 BCE_PRINTF("0x%08X - (0x%06X) rxp_cpu_state\n", val, BCE_RXP_CPU_STATE); 9810 9811 val = REG_RD_IND(sc, BCE_COM_CPU_STATE); 9812 BCE_PRINTF("0x%08X - (0x%06X) com_cpu_state\n", val, BCE_COM_CPU_STATE); 9813 9814 val = REG_RD_IND(sc, BCE_MCP_CPU_STATE); 9815 BCE_PRINTF("0x%08X - (0x%06X) mcp_cpu_state\n", val, BCE_MCP_CPU_STATE); 9816 9817 val = REG_RD_IND(sc, BCE_CP_CPU_STATE); 9818 BCE_PRINTF("0x%08X - (0x%06X) cp_cpu_state\n", val, BCE_CP_CPU_STATE); 9819 9820 BCE_PRINTF( 9821 "----------------------------" 9822 "----------------" 9823 "----------------------------\n"); 9824 9825 BCE_PRINTF( 9826 "----------------------------" 9827 " Register Dump " 9828 "----------------------------\n"); 9829 9830 for (int i = 0x400; i < 0x8000; i += 0x10) { 9831 BCE_PRINTF("0x%04X: 0x%08X 0x%08X 0x%08X 0x%08X\n", 9832 i, REG_RD(sc, i), REG_RD(sc, i + 0x4), 9833 REG_RD(sc, i + 0x8), REG_RD(sc, i + 0xC)); 9834 } 9835 9836 BCE_PRINTF( 9837 "----------------------------" 9838 "----------------" 9839 "----------------------------\n"); 9840 } 9841 9842 9843 /****************************************************************************/ 9844 /* Prints out the mailbox queue registers. */ 9845 /* */ 9846 /* Returns: */ 9847 /* Nothing. */ 9848 /****************************************************************************/ 9849 static __attribute__ ((noinline)) void 9850 bce_dump_mq_regs(struct bce_softc *sc) 9851 { 9852 BCE_PRINTF( 9853 "----------------------------" 9854 " MQ Regs " 9855 "----------------------------\n"); 9856 9857 BCE_PRINTF( 9858 "----------------------------" 9859 "----------------" 9860 "----------------------------\n"); 9861 9862 for (int i = 0x3c00; i < 0x4000; i += 0x10) { 9863 BCE_PRINTF("0x%04X: 0x%08X 0x%08X 0x%08X 0x%08X\n", 9864 i, REG_RD(sc, i), REG_RD(sc, i + 0x4), 9865 REG_RD(sc, i + 0x8), REG_RD(sc, i + 0xC)); 9866 } 9867 9868 BCE_PRINTF( 9869 "----------------------------" 9870 "----------------" 9871 "----------------------------\n"); 9872 } 9873 9874 9875 /****************************************************************************/ 9876 /* Prints out the bootcode state. */ 9877 /* */ 9878 /* Returns: */ 9879 /* Nothing. */ 9880 /****************************************************************************/ 9881 static __attribute__ ((noinline)) void 9882 bce_dump_bc_state(struct bce_softc *sc) 9883 { 9884 u32 val; 9885 9886 BCE_PRINTF( 9887 "----------------------------" 9888 " Bootcode State " 9889 "----------------------------\n"); 9890 9891 BCE_PRINTF("0x%08X - bootcode version\n", sc->bce_fw_ver); 9892 9893 val = REG_RD_IND(sc, sc->bce_shmem_base + BCE_BC_RESET_TYPE); 9894 BCE_PRINTF("0x%08X - (0x%06X) reset_type\n", 9895 val, BCE_BC_RESET_TYPE); 9896 9897 val = REG_RD_IND(sc, sc->bce_shmem_base + BCE_BC_STATE); 9898 BCE_PRINTF("0x%08X - (0x%06X) state\n", 9899 val, BCE_BC_STATE); 9900 9901 val = REG_RD_IND(sc, sc->bce_shmem_base + BCE_BC_CONDITION); 9902 BCE_PRINTF("0x%08X - (0x%06X) condition\n", 9903 val, BCE_BC_CONDITION); 9904 9905 val = REG_RD_IND(sc, sc->bce_shmem_base + BCE_BC_STATE_DEBUG_CMD); 9906 BCE_PRINTF("0x%08X - (0x%06X) debug_cmd\n", 9907 val, BCE_BC_STATE_DEBUG_CMD); 9908 9909 BCE_PRINTF( 9910 "----------------------------" 9911 "----------------" 9912 "----------------------------\n"); 9913 } 9914 9915 9916 /****************************************************************************/ 9917 /* Prints out the TXP processor state. */ 9918 /* */ 9919 /* Returns: */ 9920 /* Nothing. */ 9921 /****************************************************************************/ 9922 static __attribute__ ((noinline)) void 9923 bce_dump_txp_state(struct bce_softc *sc, int regs) 9924 { 9925 u32 val; 9926 u32 fw_version[3]; 9927 9928 BCE_PRINTF( 9929 "----------------------------" 9930 " TXP State " 9931 "----------------------------\n"); 9932 9933 for (int i = 0; i < 3; i++) 9934 fw_version[i] = htonl(REG_RD_IND(sc, 9935 (BCE_TXP_SCRATCH + 0x10 + i * 4))); 9936 BCE_PRINTF("Firmware version - %s\n", (char *) fw_version); 9937 9938 val = REG_RD_IND(sc, BCE_TXP_CPU_MODE); 9939 BCE_PRINTF("0x%08X - (0x%06X) txp_cpu_mode\n", val, BCE_TXP_CPU_MODE); 9940 9941 val = REG_RD_IND(sc, BCE_TXP_CPU_STATE); 9942 BCE_PRINTF("0x%08X - (0x%06X) txp_cpu_state\n", val, BCE_TXP_CPU_STATE); 9943 9944 val = REG_RD_IND(sc, BCE_TXP_CPU_EVENT_MASK); 9945 BCE_PRINTF("0x%08X - (0x%06X) txp_cpu_event_mask\n", val, 9946 BCE_TXP_CPU_EVENT_MASK); 9947 9948 if (regs) { 9949 BCE_PRINTF( 9950 "----------------------------" 9951 " Register Dump " 9952 "----------------------------\n"); 9953 9954 for (int i = BCE_TXP_CPU_MODE; i < 0x68000; i += 0x10) { 9955 /* Skip the big blank spaces */ 9956 if (i < 0x454000 && i > 0x5ffff) 9957 BCE_PRINTF("0x%04X: 0x%08X 0x%08X 0x%08X 0x%08X\n", 9958 i, REG_RD_IND(sc, i), REG_RD_IND(sc, i + 0x4), 9959 REG_RD_IND(sc, i + 0x8), REG_RD_IND(sc, i + 0xC)); 9960 } 9961 } 9962 9963 BCE_PRINTF( 9964 "----------------------------" 9965 "----------------" 9966 "----------------------------\n"); 9967 } 9968 9969 9970 /****************************************************************************/ 9971 /* Prints out the RXP processor state. */ 9972 /* */ 9973 /* Returns: */ 9974 /* Nothing. */ 9975 /****************************************************************************/ 9976 static __attribute__ ((noinline)) void 9977 bce_dump_rxp_state(struct bce_softc *sc, int regs) 9978 { 9979 u32 val; 9980 u32 fw_version[3]; 9981 9982 BCE_PRINTF( 9983 "----------------------------" 9984 " RXP State " 9985 "----------------------------\n"); 9986 9987 for (int i = 0; i < 3; i++) 9988 fw_version[i] = htonl(REG_RD_IND(sc, 9989 (BCE_RXP_SCRATCH + 0x10 + i * 4))); 9990 BCE_PRINTF("Firmware version - %s\n", (char *) fw_version); 9991 9992 val = REG_RD_IND(sc, BCE_RXP_CPU_MODE); 9993 BCE_PRINTF("0x%08X - (0x%06X) rxp_cpu_mode\n", val, BCE_RXP_CPU_MODE); 9994 9995 val = REG_RD_IND(sc, BCE_RXP_CPU_STATE); 9996 BCE_PRINTF("0x%08X - (0x%06X) rxp_cpu_state\n", val, BCE_RXP_CPU_STATE); 9997 9998 val = REG_RD_IND(sc, BCE_RXP_CPU_EVENT_MASK); 9999 BCE_PRINTF("0x%08X - (0x%06X) rxp_cpu_event_mask\n", val, 10000 BCE_RXP_CPU_EVENT_MASK); 10001 10002 if (regs) { 10003 BCE_PRINTF( 10004 "----------------------------" 10005 " Register Dump " 10006 "----------------------------\n"); 10007 10008 for (int i = BCE_RXP_CPU_MODE; i < 0xe8fff; i += 0x10) { 10009 /* Skip the big blank sapces */ 10010 if (i < 0xc5400 && i > 0xdffff) 10011 BCE_PRINTF("0x%04X: 0x%08X 0x%08X 0x%08X 0x%08X\n", 10012 i, REG_RD_IND(sc, i), REG_RD_IND(sc, i + 0x4), 10013 REG_RD_IND(sc, i + 0x8), REG_RD_IND(sc, i + 0xC)); 10014 } 10015 } 10016 10017 BCE_PRINTF( 10018 "----------------------------" 10019 "----------------" 10020 "----------------------------\n"); 10021 } 10022 10023 10024 /****************************************************************************/ 10025 /* Prints out the TPAT processor state. */ 10026 /* */ 10027 /* Returns: */ 10028 /* Nothing. */ 10029 /****************************************************************************/ 10030 static __attribute__ ((noinline)) void 10031 bce_dump_tpat_state(struct bce_softc *sc, int regs) 10032 { 10033 u32 val; 10034 u32 fw_version[3]; 10035 10036 BCE_PRINTF( 10037 "----------------------------" 10038 " TPAT State " 10039 "----------------------------\n"); 10040 10041 for (int i = 0; i < 3; i++) 10042 fw_version[i] = htonl(REG_RD_IND(sc, 10043 (BCE_TPAT_SCRATCH + 0x410 + i * 4))); 10044 BCE_PRINTF("Firmware version - %s\n", (char *) fw_version); 10045 10046 val = REG_RD_IND(sc, BCE_TPAT_CPU_MODE); 10047 BCE_PRINTF("0x%08X - (0x%06X) tpat_cpu_mode\n", val, BCE_TPAT_CPU_MODE); 10048 10049 val = REG_RD_IND(sc, BCE_TPAT_CPU_STATE); 10050 BCE_PRINTF("0x%08X - (0x%06X) tpat_cpu_state\n", val, BCE_TPAT_CPU_STATE); 10051 10052 val = REG_RD_IND(sc, BCE_TPAT_CPU_EVENT_MASK); 10053 BCE_PRINTF("0x%08X - (0x%06X) tpat_cpu_event_mask\n", val, 10054 BCE_TPAT_CPU_EVENT_MASK); 10055 10056 if (regs) { 10057 BCE_PRINTF( 10058 "----------------------------" 10059 " Register Dump " 10060 "----------------------------\n"); 10061 10062 for (int i = BCE_TPAT_CPU_MODE; i < 0xa3fff; i += 0x10) { 10063 /* Skip the big blank spaces */ 10064 if (i < 0x854000 && i > 0x9ffff) 10065 BCE_PRINTF("0x%04X: 0x%08X 0x%08X 0x%08X 0x%08X\n", 10066 i, REG_RD_IND(sc, i), REG_RD_IND(sc, i + 0x4), 10067 REG_RD_IND(sc, i + 0x8), REG_RD_IND(sc, i + 0xC)); 10068 } 10069 } 10070 10071 BCE_PRINTF( 10072 "----------------------------" 10073 "----------------" 10074 "----------------------------\n"); 10075 } 10076 10077 10078 /****************************************************************************/ 10079 /* Prints out the Command Procesor (CP) state. */ 10080 /* */ 10081 /* Returns: */ 10082 /* Nothing. */ 10083 /****************************************************************************/ 10084 static __attribute__ ((noinline)) void 10085 bce_dump_cp_state(struct bce_softc *sc, int regs) 10086 { 10087 u32 val; 10088 u32 fw_version[3]; 10089 10090 BCE_PRINTF( 10091 "----------------------------" 10092 " CP State " 10093 "----------------------------\n"); 10094 10095 for (int i = 0; i < 3; i++) 10096 fw_version[i] = htonl(REG_RD_IND(sc, 10097 (BCE_CP_SCRATCH + 0x10 + i * 4))); 10098 BCE_PRINTF("Firmware version - %s\n", (char *) fw_version); 10099 10100 val = REG_RD_IND(sc, BCE_CP_CPU_MODE); 10101 BCE_PRINTF("0x%08X - (0x%06X) cp_cpu_mode\n", val, BCE_CP_CPU_MODE); 10102 10103 val = REG_RD_IND(sc, BCE_CP_CPU_STATE); 10104 BCE_PRINTF("0x%08X - (0x%06X) cp_cpu_state\n", val, BCE_CP_CPU_STATE); 10105 10106 val = REG_RD_IND(sc, BCE_CP_CPU_EVENT_MASK); 10107 BCE_PRINTF("0x%08X - (0x%06X) cp_cpu_event_mask\n", val, 10108 BCE_CP_CPU_EVENT_MASK); 10109 10110 if (regs) { 10111 BCE_PRINTF( 10112 "----------------------------" 10113 " Register Dump " 10114 "----------------------------\n"); 10115 10116 for (int i = BCE_CP_CPU_MODE; i < 0x1aa000; i += 0x10) { 10117 /* Skip the big blank spaces */ 10118 if (i < 0x185400 && i > 0x19ffff) 10119 BCE_PRINTF("0x%04X: 0x%08X 0x%08X 0x%08X 0x%08X\n", 10120 i, REG_RD_IND(sc, i), REG_RD_IND(sc, i + 0x4), 10121 REG_RD_IND(sc, i + 0x8), REG_RD_IND(sc, i + 0xC)); 10122 } 10123 } 10124 10125 BCE_PRINTF( 10126 "----------------------------" 10127 "----------------" 10128 "----------------------------\n"); 10129 } 10130 10131 10132 /****************************************************************************/ 10133 /* Prints out the Completion Procesor (COM) state. */ 10134 /* */ 10135 /* Returns: */ 10136 /* Nothing. */ 10137 /****************************************************************************/ 10138 static __attribute__ ((noinline)) void 10139 bce_dump_com_state(struct bce_softc *sc, int regs) 10140 { 10141 u32 val; 10142 u32 fw_version[3]; 10143 10144 BCE_PRINTF( 10145 "----------------------------" 10146 " COM State " 10147 "----------------------------\n"); 10148 10149 for (int i = 0; i < 3; i++) 10150 fw_version[i] = htonl(REG_RD_IND(sc, 10151 (BCE_COM_SCRATCH + 0x10 + i * 4))); 10152 BCE_PRINTF("Firmware version - %s\n", (char *) fw_version); 10153 10154 val = REG_RD_IND(sc, BCE_COM_CPU_MODE); 10155 BCE_PRINTF("0x%08X - (0x%06X) com_cpu_mode\n", val, BCE_COM_CPU_MODE); 10156 10157 val = REG_RD_IND(sc, BCE_COM_CPU_STATE); 10158 BCE_PRINTF("0x%08X - (0x%06X) com_cpu_state\n", val, BCE_COM_CPU_STATE); 10159 10160 val = REG_RD_IND(sc, BCE_COM_CPU_EVENT_MASK); 10161 BCE_PRINTF("0x%08X - (0x%06X) com_cpu_event_mask\n", val, 10162 BCE_COM_CPU_EVENT_MASK); 10163 10164 if (regs) { 10165 BCE_PRINTF( 10166 "----------------------------" 10167 " Register Dump " 10168 "----------------------------\n"); 10169 10170 for (int i = BCE_COM_CPU_MODE; i < 0x1053e8; i += 0x10) { 10171 BCE_PRINTF("0x%04X: 0x%08X 0x%08X 0x%08X 0x%08X\n", 10172 i, REG_RD_IND(sc, i), REG_RD_IND(sc, i + 0x4), 10173 REG_RD_IND(sc, i + 0x8), REG_RD_IND(sc, i + 0xC)); 10174 } 10175 } 10176 10177 BCE_PRINTF( 10178 "----------------------------" 10179 "----------------" 10180 "----------------------------\n"); 10181 } 10182 10183 10184 /****************************************************************************/ 10185 /* Prints out the driver state and then enters the debugger. */ 10186 /* */ 10187 /* Returns: */ 10188 /* Nothing. */ 10189 /****************************************************************************/ 10190 static void 10191 bce_breakpoint(struct bce_softc *sc) 10192 { 10193 10194 /* 10195 * Unreachable code to silence compiler warnings 10196 * about unused functions. 10197 */ 10198 if (0) { 10199 bce_freeze_controller(sc); 10200 bce_unfreeze_controller(sc); 10201 bce_dump_enet(sc, NULL); 10202 bce_dump_txbd(sc, 0, NULL); 10203 bce_dump_rxbd(sc, 0, NULL); 10204 bce_dump_tx_mbuf_chain(sc, 0, USABLE_TX_BD); 10205 bce_dump_rx_mbuf_chain(sc, 0, USABLE_RX_BD); 10206 bce_dump_l2fhdr(sc, 0, NULL); 10207 bce_dump_ctx(sc, RX_CID); 10208 bce_dump_ftqs(sc); 10209 bce_dump_tx_chain(sc, 0, USABLE_TX_BD); 10210 bce_dump_rx_chain(sc, 0, USABLE_RX_BD); 10211 bce_dump_status_block(sc); 10212 bce_dump_stats_block(sc); 10213 bce_dump_driver_state(sc); 10214 bce_dump_hw_state(sc); 10215 bce_dump_bc_state(sc); 10216 bce_dump_txp_state(sc, 0); 10217 bce_dump_rxp_state(sc, 0); 10218 bce_dump_tpat_state(sc, 0); 10219 bce_dump_cp_state(sc, 0); 10220 bce_dump_com_state(sc, 0); 10221 #ifdef BCE_USE_SPLIT_HEADER 10222 bce_dump_pgbd(sc, 0, NULL); 10223 bce_dump_pg_mbuf_chain(sc, 0, USABLE_PG_BD); 10224 bce_dump_pg_chain(sc, 0, USABLE_PG_BD); 10225 #endif 10226 } 10227 10228 bce_dump_status_block(sc); 10229 bce_dump_driver_state(sc); 10230 10231 /* Call the debugger. */ 10232 breakpoint(); 10233 10234 return; 10235 } 10236 #endif 10237 10238