xref: /freebsd/sys/dev/bce/if_bce.c (revision b2db760808f74bb53c232900091c9da801ebbfcc)
1 /*-
2  * Copyright (c) 2006-2010 Broadcom Corporation
3  *	David Christensen <davidch@broadcom.com>.  All rights reserved.
4  *
5  * Redistribution and use in source and binary forms, with or without
6  * modification, are permitted provided that the following conditions
7  * are met:
8  *
9  * 1. Redistributions of source code must retain the above copyright
10  *    notice, this list of conditions and the following disclaimer.
11  * 2. Redistributions in binary form must reproduce the above copyright
12  *    notice, this list of conditions and the following disclaimer in the
13  *    documentation and/or other materials provided with the distribution.
14  * 3. Neither the name of Broadcom Corporation nor the name of its contributors
15  *    may be used to endorse or promote products derived from this software
16  *    without specific prior written consent.
17  *
18  * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS'
19  * AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
20  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
21  * ARE DISCLAIMED.  IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS
22  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
23  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
24  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
25  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
26  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
27  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF
28  * THE POSSIBILITY OF SUCH DAMAGE.
29  */
30 
31 #include <sys/cdefs.h>
32 __FBSDID("$FreeBSD$");
33 
34 /*
35  * The following controllers are supported by this driver:
36  *   BCM5706C A2, A3
37  *   BCM5706S A2, A3
38  *   BCM5708C B1, B2
39  *   BCM5708S B1, B2
40  *   BCM5709C A1, C0
41  *   BCM5709S A1, C0
42  *   BCM5716C C0
43  *   BCM5716S C0
44  *
45  * The following controllers are not supported by this driver:
46  *   BCM5706C A0, A1 (pre-production)
47  *   BCM5706S A0, A1 (pre-production)
48  *   BCM5708C A0, B0 (pre-production)
49  *   BCM5708S A0, B0 (pre-production)
50  *   BCM5709C A0  B0, B1, B2 (pre-production)
51  *   BCM5709S A0, B0, B1, B2 (pre-production)
52  */
53 
54 #include "opt_bce.h"
55 
56 #include <dev/bce/if_bcereg.h>
57 #include <dev/bce/if_bcefw.h>
58 
59 /****************************************************************************/
60 /* BCE Debug Options                                                        */
61 /****************************************************************************/
62 #ifdef BCE_DEBUG
63 	u32 bce_debug = BCE_WARN;
64 
65 	/*          0 = Never              */
66 	/*          1 = 1 in 2,147,483,648 */
67 	/*        256 = 1 in     8,388,608 */
68 	/*       2048 = 1 in     1,048,576 */
69 	/*      65536 = 1 in        32,768 */
70 	/*    1048576 = 1 in         2,048 */
71 	/*  268435456 =	1 in             8 */
72 	/*  536870912 = 1 in             4 */
73 	/* 1073741824 = 1 in             2 */
74 
75 	/* Controls how often the l2_fhdr frame error check will fail. */
76 	int l2fhdr_error_sim_control = 0;
77 
78 	/* Controls how often the unexpected attention check will fail. */
79 	int unexpected_attention_sim_control = 0;
80 
81 	/* Controls how often to simulate an mbuf allocation failure. */
82 	int mbuf_alloc_failed_sim_control = 0;
83 
84 	/* Controls how often to simulate a DMA mapping failure. */
85 	int dma_map_addr_failed_sim_control = 0;
86 
87 	/* Controls how often to simulate a bootcode failure. */
88 	int bootcode_running_failure_sim_control = 0;
89 #endif
90 
91 /****************************************************************************/
92 /* BCE Build Time Options                                                   */
93 /****************************************************************************/
94 /* #define BCE_NVRAM_WRITE_SUPPORT 1 */
95 
96 
97 /****************************************************************************/
98 /* PCI Device ID Table                                                      */
99 /*                                                                          */
100 /* Used by bce_probe() to identify the devices supported by this driver.    */
101 /****************************************************************************/
102 #define BCE_DEVDESC_MAX		64
103 
104 static struct bce_type bce_devs[] = {
105 	/* BCM5706C Controllers and OEM boards. */
106 	{ BRCM_VENDORID, BRCM_DEVICEID_BCM5706,  HP_VENDORID, 0x3101,
107 		"HP NC370T Multifunction Gigabit Server Adapter" },
108 	{ BRCM_VENDORID, BRCM_DEVICEID_BCM5706,  HP_VENDORID, 0x3106,
109 		"HP NC370i Multifunction Gigabit Server Adapter" },
110 	{ BRCM_VENDORID, BRCM_DEVICEID_BCM5706,  HP_VENDORID, 0x3070,
111 		"HP NC380T PCIe DP Multifunc Gig Server Adapter" },
112 	{ BRCM_VENDORID, BRCM_DEVICEID_BCM5706,  HP_VENDORID, 0x1709,
113 		"HP NC371i Multifunction Gigabit Server Adapter" },
114 	{ BRCM_VENDORID, BRCM_DEVICEID_BCM5706,  PCI_ANY_ID,  PCI_ANY_ID,
115 		"Broadcom NetXtreme II BCM5706 1000Base-T" },
116 
117 	/* BCM5706S controllers and OEM boards. */
118 	{ BRCM_VENDORID, BRCM_DEVICEID_BCM5706S, HP_VENDORID, 0x3102,
119 		"HP NC370F Multifunction Gigabit Server Adapter" },
120 	{ BRCM_VENDORID, BRCM_DEVICEID_BCM5706S, PCI_ANY_ID,  PCI_ANY_ID,
121 		"Broadcom NetXtreme II BCM5706 1000Base-SX" },
122 
123 	/* BCM5708C controllers and OEM boards. */
124 	{ BRCM_VENDORID, BRCM_DEVICEID_BCM5708,  HP_VENDORID, 0x7037,
125 		"HP NC373T PCIe Multifunction Gig Server Adapter" },
126 	{ BRCM_VENDORID, BRCM_DEVICEID_BCM5708,  HP_VENDORID, 0x7038,
127 		"HP NC373i Multifunction Gigabit Server Adapter" },
128 	{ BRCM_VENDORID, BRCM_DEVICEID_BCM5708,  HP_VENDORID, 0x7045,
129 		"HP NC374m PCIe Multifunction Adapter" },
130 	{ BRCM_VENDORID, BRCM_DEVICEID_BCM5708,  PCI_ANY_ID,  PCI_ANY_ID,
131 		"Broadcom NetXtreme II BCM5708 1000Base-T" },
132 
133 	/* BCM5708S controllers and OEM boards. */
134 	{ BRCM_VENDORID, BRCM_DEVICEID_BCM5708S,  HP_VENDORID, 0x1706,
135 		"HP NC373m Multifunction Gigabit Server Adapter" },
136 	{ BRCM_VENDORID, BRCM_DEVICEID_BCM5708S,  HP_VENDORID, 0x703b,
137 		"HP NC373i Multifunction Gigabit Server Adapter" },
138 	{ BRCM_VENDORID, BRCM_DEVICEID_BCM5708S,  HP_VENDORID, 0x703d,
139 		"HP NC373F PCIe Multifunc Giga Server Adapter" },
140 	{ BRCM_VENDORID, BRCM_DEVICEID_BCM5708S,  PCI_ANY_ID,  PCI_ANY_ID,
141 		"Broadcom NetXtreme II BCM5708 1000Base-SX" },
142 
143 	/* BCM5709C controllers and OEM boards. */
144 	{ BRCM_VENDORID, BRCM_DEVICEID_BCM5709,  HP_VENDORID, 0x7055,
145 		"HP NC382i DP Multifunction Gigabit Server Adapter" },
146 	{ BRCM_VENDORID, BRCM_DEVICEID_BCM5709,  HP_VENDORID, 0x7059,
147 		"HP NC382T PCIe DP Multifunction Gigabit Server Adapter" },
148 	{ BRCM_VENDORID, BRCM_DEVICEID_BCM5709,  PCI_ANY_ID,  PCI_ANY_ID,
149 		"Broadcom NetXtreme II BCM5709 1000Base-T" },
150 
151 	/* BCM5709S controllers and OEM boards. */
152 	{ BRCM_VENDORID, BRCM_DEVICEID_BCM5709S,  HP_VENDORID, 0x171d,
153 		"HP NC382m DP 1GbE Multifunction BL-c Adapter" },
154 	{ BRCM_VENDORID, BRCM_DEVICEID_BCM5709S,  HP_VENDORID, 0x7056,
155 		"HP NC382i DP Multifunction Gigabit Server Adapter" },
156 	{ BRCM_VENDORID, BRCM_DEVICEID_BCM5709S,  PCI_ANY_ID,  PCI_ANY_ID,
157 		"Broadcom NetXtreme II BCM5709 1000Base-SX" },
158 
159 	/* BCM5716 controllers and OEM boards. */
160 	{ BRCM_VENDORID, BRCM_DEVICEID_BCM5716,  PCI_ANY_ID,  PCI_ANY_ID,
161 		"Broadcom NetXtreme II BCM5716 1000Base-T" },
162 
163 	{ 0, 0, 0, 0, NULL }
164 };
165 
166 
167 /****************************************************************************/
168 /* Supported Flash NVRAM device data.                                       */
169 /****************************************************************************/
170 static struct flash_spec flash_table[] =
171 {
172 #define BUFFERED_FLAGS		(BCE_NV_BUFFERED | BCE_NV_TRANSLATE)
173 #define NONBUFFERED_FLAGS	(BCE_NV_WREN)
174 
175 	/* Slow EEPROM */
176 	{0x00000000, 0x40830380, 0x009f0081, 0xa184a053, 0xaf000400,
177 	 BUFFERED_FLAGS, SEEPROM_PAGE_BITS, SEEPROM_PAGE_SIZE,
178 	 SEEPROM_BYTE_ADDR_MASK, SEEPROM_TOTAL_SIZE,
179 	 "EEPROM - slow"},
180 	/* Expansion entry 0001 */
181 	{0x08000002, 0x4b808201, 0x00050081, 0x03840253, 0xaf020406,
182 	 NONBUFFERED_FLAGS, SAIFUN_FLASH_PAGE_BITS, SAIFUN_FLASH_PAGE_SIZE,
183 	 SAIFUN_FLASH_BYTE_ADDR_MASK, 0,
184 	 "Entry 0001"},
185 	/* Saifun SA25F010 (non-buffered flash) */
186 	/* strap, cfg1, & write1 need updates */
187 	{0x04000001, 0x47808201, 0x00050081, 0x03840253, 0xaf020406,
188 	 NONBUFFERED_FLAGS, SAIFUN_FLASH_PAGE_BITS, SAIFUN_FLASH_PAGE_SIZE,
189 	 SAIFUN_FLASH_BYTE_ADDR_MASK, SAIFUN_FLASH_BASE_TOTAL_SIZE*2,
190 	 "Non-buffered flash (128kB)"},
191 	/* Saifun SA25F020 (non-buffered flash) */
192 	/* strap, cfg1, & write1 need updates */
193 	{0x0c000003, 0x4f808201, 0x00050081, 0x03840253, 0xaf020406,
194 	 NONBUFFERED_FLAGS, SAIFUN_FLASH_PAGE_BITS, SAIFUN_FLASH_PAGE_SIZE,
195 	 SAIFUN_FLASH_BYTE_ADDR_MASK, SAIFUN_FLASH_BASE_TOTAL_SIZE*4,
196 	 "Non-buffered flash (256kB)"},
197 	/* Expansion entry 0100 */
198 	{0x11000000, 0x53808201, 0x00050081, 0x03840253, 0xaf020406,
199 	 NONBUFFERED_FLAGS, SAIFUN_FLASH_PAGE_BITS, SAIFUN_FLASH_PAGE_SIZE,
200 	 SAIFUN_FLASH_BYTE_ADDR_MASK, 0,
201 	 "Entry 0100"},
202 	/* Entry 0101: ST M45PE10 (non-buffered flash, TetonII B0) */
203 	{0x19000002, 0x5b808201, 0x000500db, 0x03840253, 0xaf020406,
204 	 NONBUFFERED_FLAGS, ST_MICRO_FLASH_PAGE_BITS, ST_MICRO_FLASH_PAGE_SIZE,
205 	 ST_MICRO_FLASH_BYTE_ADDR_MASK, ST_MICRO_FLASH_BASE_TOTAL_SIZE*2,
206 	 "Entry 0101: ST M45PE10 (128kB non-bufferred)"},
207 	/* Entry 0110: ST M45PE20 (non-buffered flash)*/
208 	{0x15000001, 0x57808201, 0x000500db, 0x03840253, 0xaf020406,
209 	 NONBUFFERED_FLAGS, ST_MICRO_FLASH_PAGE_BITS, ST_MICRO_FLASH_PAGE_SIZE,
210 	 ST_MICRO_FLASH_BYTE_ADDR_MASK, ST_MICRO_FLASH_BASE_TOTAL_SIZE*4,
211 	 "Entry 0110: ST M45PE20 (256kB non-bufferred)"},
212 	/* Saifun SA25F005 (non-buffered flash) */
213 	/* strap, cfg1, & write1 need updates */
214 	{0x1d000003, 0x5f808201, 0x00050081, 0x03840253, 0xaf020406,
215 	 NONBUFFERED_FLAGS, SAIFUN_FLASH_PAGE_BITS, SAIFUN_FLASH_PAGE_SIZE,
216 	 SAIFUN_FLASH_BYTE_ADDR_MASK, SAIFUN_FLASH_BASE_TOTAL_SIZE,
217 	 "Non-buffered flash (64kB)"},
218 	/* Fast EEPROM */
219 	{0x22000000, 0x62808380, 0x009f0081, 0xa184a053, 0xaf000400,
220 	 BUFFERED_FLAGS, SEEPROM_PAGE_BITS, SEEPROM_PAGE_SIZE,
221 	 SEEPROM_BYTE_ADDR_MASK, SEEPROM_TOTAL_SIZE,
222 	 "EEPROM - fast"},
223 	/* Expansion entry 1001 */
224 	{0x2a000002, 0x6b808201, 0x00050081, 0x03840253, 0xaf020406,
225 	 NONBUFFERED_FLAGS, SAIFUN_FLASH_PAGE_BITS, SAIFUN_FLASH_PAGE_SIZE,
226 	 SAIFUN_FLASH_BYTE_ADDR_MASK, 0,
227 	 "Entry 1001"},
228 	/* Expansion entry 1010 */
229 	{0x26000001, 0x67808201, 0x00050081, 0x03840253, 0xaf020406,
230 	 NONBUFFERED_FLAGS, SAIFUN_FLASH_PAGE_BITS, SAIFUN_FLASH_PAGE_SIZE,
231 	 SAIFUN_FLASH_BYTE_ADDR_MASK, 0,
232 	 "Entry 1010"},
233 	/* ATMEL AT45DB011B (buffered flash) */
234 	{0x2e000003, 0x6e808273, 0x00570081, 0x68848353, 0xaf000400,
235 	 BUFFERED_FLAGS, BUFFERED_FLASH_PAGE_BITS, BUFFERED_FLASH_PAGE_SIZE,
236 	 BUFFERED_FLASH_BYTE_ADDR_MASK, BUFFERED_FLASH_TOTAL_SIZE,
237 	 "Buffered flash (128kB)"},
238 	/* Expansion entry 1100 */
239 	{0x33000000, 0x73808201, 0x00050081, 0x03840253, 0xaf020406,
240 	 NONBUFFERED_FLAGS, SAIFUN_FLASH_PAGE_BITS, SAIFUN_FLASH_PAGE_SIZE,
241 	 SAIFUN_FLASH_BYTE_ADDR_MASK, 0,
242 	 "Entry 1100"},
243 	/* Expansion entry 1101 */
244 	{0x3b000002, 0x7b808201, 0x00050081, 0x03840253, 0xaf020406,
245 	 NONBUFFERED_FLAGS, SAIFUN_FLASH_PAGE_BITS, SAIFUN_FLASH_PAGE_SIZE,
246 	 SAIFUN_FLASH_BYTE_ADDR_MASK, 0,
247 	 "Entry 1101"},
248 	/* Ateml Expansion entry 1110 */
249 	{0x37000001, 0x76808273, 0x00570081, 0x68848353, 0xaf000400,
250 	 BUFFERED_FLAGS, BUFFERED_FLASH_PAGE_BITS, BUFFERED_FLASH_PAGE_SIZE,
251 	 BUFFERED_FLASH_BYTE_ADDR_MASK, 0,
252 	 "Entry 1110 (Atmel)"},
253 	/* ATMEL AT45DB021B (buffered flash) */
254 	{0x3f000003, 0x7e808273, 0x00570081, 0x68848353, 0xaf000400,
255 	 BUFFERED_FLAGS, BUFFERED_FLASH_PAGE_BITS, BUFFERED_FLASH_PAGE_SIZE,
256 	 BUFFERED_FLASH_BYTE_ADDR_MASK, BUFFERED_FLASH_TOTAL_SIZE*2,
257 	 "Buffered flash (256kB)"},
258 };
259 
260 /*
261  * The BCM5709 controllers transparently handle the
262  * differences between Atmel 264 byte pages and all
263  * flash devices which use 256 byte pages, so no
264  * logical-to-physical mapping is required in the
265  * driver.
266  */
267 static struct flash_spec flash_5709 = {
268 	.flags		= BCE_NV_BUFFERED,
269 	.page_bits	= BCM5709_FLASH_PAGE_BITS,
270 	.page_size	= BCM5709_FLASH_PAGE_SIZE,
271 	.addr_mask	= BCM5709_FLASH_BYTE_ADDR_MASK,
272 	.total_size	= BUFFERED_FLASH_TOTAL_SIZE * 2,
273 	.name		= "5709/5716 buffered flash (256kB)",
274 };
275 
276 
277 /****************************************************************************/
278 /* FreeBSD device entry points.                                             */
279 /****************************************************************************/
280 static int  bce_probe			(device_t);
281 static int  bce_attach			(device_t);
282 static int  bce_detach			(device_t);
283 static int  bce_shutdown		(device_t);
284 
285 
286 /****************************************************************************/
287 /* BCE Debug Data Structure Dump Routines                                   */
288 /****************************************************************************/
289 #ifdef BCE_DEBUG
290 static u32  bce_reg_rd			(struct bce_softc *, u32);
291 static void bce_reg_wr			(struct bce_softc *, u32, u32);
292 static void bce_reg_wr16		(struct bce_softc *, u32, u16);
293 static u32  bce_ctx_rd			(struct bce_softc *, u32, u32);
294 static void bce_dump_enet		(struct bce_softc *, struct mbuf *);
295 static void bce_dump_mbuf		(struct bce_softc *, struct mbuf *);
296 static void bce_dump_tx_mbuf_chain	(struct bce_softc *, u16, int);
297 static void bce_dump_rx_mbuf_chain	(struct bce_softc *, u16, int);
298 #ifdef BCE_JUMBO_HDRSPLIT
299 static void bce_dump_pg_mbuf_chain	(struct bce_softc *, u16, int);
300 #endif
301 static void bce_dump_txbd		(struct bce_softc *,
302     int, struct tx_bd *);
303 static void bce_dump_rxbd		(struct bce_softc *,
304     int, struct rx_bd *);
305 #ifdef BCE_JUMBO_HDRSPLIT
306 static void bce_dump_pgbd		(struct bce_softc *,
307     int, struct rx_bd *);
308 #endif
309 static void bce_dump_l2fhdr		(struct bce_softc *,
310     int, struct l2_fhdr *);
311 static void bce_dump_ctx		(struct bce_softc *, u16);
312 static void bce_dump_ftqs		(struct bce_softc *);
313 static void bce_dump_tx_chain		(struct bce_softc *, u16, int);
314 static void bce_dump_rx_bd_chain	(struct bce_softc *, u16, int);
315 #ifdef BCE_JUMBO_HDRSPLIT
316 static void bce_dump_pg_chain		(struct bce_softc *, u16, int);
317 #endif
318 static void bce_dump_status_block	(struct bce_softc *);
319 static void bce_dump_stats_block	(struct bce_softc *);
320 static void bce_dump_driver_state	(struct bce_softc *);
321 static void bce_dump_hw_state		(struct bce_softc *);
322 static void bce_dump_mq_regs		(struct bce_softc *);
323 static void bce_dump_bc_state		(struct bce_softc *);
324 static void bce_dump_txp_state		(struct bce_softc *, int);
325 static void bce_dump_rxp_state		(struct bce_softc *, int);
326 static void bce_dump_tpat_state		(struct bce_softc *, int);
327 static void bce_dump_cp_state		(struct bce_softc *, int);
328 static void bce_dump_com_state		(struct bce_softc *, int);
329 static void bce_dump_rv2p_state		(struct bce_softc *);
330 static void bce_breakpoint		(struct bce_softc *);
331 #endif
332 
333 
334 /****************************************************************************/
335 /* BCE Register/Memory Access Routines                                      */
336 /****************************************************************************/
337 static u32  bce_reg_rd_ind		(struct bce_softc *, u32);
338 static void bce_reg_wr_ind		(struct bce_softc *, u32, u32);
339 static void bce_shmem_wr		(struct bce_softc *, u32, u32);
340 static u32  bce_shmem_rd		(struct bce_softc *, u32);
341 static void bce_ctx_wr			(struct bce_softc *, u32, u32, u32);
342 static int  bce_miibus_read_reg		(device_t, int, int);
343 static int  bce_miibus_write_reg	(device_t, int, int, int);
344 static void bce_miibus_statchg		(device_t);
345 
346 
347 /****************************************************************************/
348 /* BCE NVRAM Access Routines                                                */
349 /****************************************************************************/
350 static int  bce_acquire_nvram_lock	(struct bce_softc *);
351 static int  bce_release_nvram_lock	(struct bce_softc *);
352 static void bce_enable_nvram_access	(struct bce_softc *);
353 static void bce_disable_nvram_access	(struct bce_softc *);
354 static int  bce_nvram_read_dword	(struct bce_softc *, u32, u8 *, u32);
355 static int  bce_init_nvram		(struct bce_softc *);
356 static int  bce_nvram_read		(struct bce_softc *, u32, u8 *, int);
357 static int  bce_nvram_test		(struct bce_softc *);
358 #ifdef BCE_NVRAM_WRITE_SUPPORT
359 static int  bce_enable_nvram_write	(struct bce_softc *);
360 static void bce_disable_nvram_write	(struct bce_softc *);
361 static int  bce_nvram_erase_page	(struct bce_softc *, u32);
362 static int  bce_nvram_write_dword	(struct bce_softc *, u32, u8 *, u32);
363 static int  bce_nvram_write		(struct bce_softc *, u32, u8 *, int);
364 #endif
365 
366 /****************************************************************************/
367 /*                                                                          */
368 /****************************************************************************/
369 static void bce_get_media		(struct bce_softc *);
370 static void bce_init_media		(struct bce_softc *);
371 static void bce_dma_map_addr		(void *,
372     bus_dma_segment_t *, int, int);
373 static int  bce_dma_alloc		(device_t);
374 static void bce_dma_free		(struct bce_softc *);
375 static void bce_release_resources	(struct bce_softc *);
376 
377 /****************************************************************************/
378 /* BCE Firmware Synchronization and Load                                    */
379 /****************************************************************************/
380 static int  bce_fw_sync			(struct bce_softc *, u32);
381 static void bce_load_rv2p_fw		(struct bce_softc *, u32 *, u32, u32);
382 static void bce_load_cpu_fw		(struct bce_softc *,
383     struct cpu_reg *, struct fw_info *);
384 static void bce_start_cpu		(struct bce_softc *, struct cpu_reg *);
385 static void bce_halt_cpu		(struct bce_softc *, struct cpu_reg *);
386 static void bce_start_rxp_cpu		(struct bce_softc *);
387 static void bce_init_rxp_cpu		(struct bce_softc *);
388 static void bce_init_txp_cpu 		(struct bce_softc *);
389 static void bce_init_tpat_cpu		(struct bce_softc *);
390 static void bce_init_cp_cpu	  	(struct bce_softc *);
391 static void bce_init_com_cpu	  	(struct bce_softc *);
392 static void bce_init_cpus		(struct bce_softc *);
393 
394 static void	bce_print_adapter_info	(struct bce_softc *);
395 static void bce_probe_pci_caps		(device_t, struct bce_softc *);
396 static void bce_stop			(struct bce_softc *);
397 static int  bce_reset			(struct bce_softc *, u32);
398 static int  bce_chipinit 		(struct bce_softc *);
399 static int  bce_blockinit 		(struct bce_softc *);
400 
401 static int  bce_init_tx_chain		(struct bce_softc *);
402 static void bce_free_tx_chain		(struct bce_softc *);
403 
404 static int  bce_get_rx_buf		(struct bce_softc *,
405     struct mbuf *, u16 *, u16 *, u32 *);
406 static int  bce_init_rx_chain		(struct bce_softc *);
407 static void bce_fill_rx_chain		(struct bce_softc *);
408 static void bce_free_rx_chain		(struct bce_softc *);
409 
410 #ifdef BCE_JUMBO_HDRSPLIT
411 static int  bce_get_pg_buf		(struct bce_softc *,
412     struct mbuf *, u16 *, u16 *);
413 static int  bce_init_pg_chain		(struct bce_softc *);
414 static void bce_fill_pg_chain		(struct bce_softc *);
415 static void bce_free_pg_chain		(struct bce_softc *);
416 #endif
417 
418 static struct mbuf *bce_tso_setup	(struct bce_softc *,
419     struct mbuf **, u16 *);
420 static int  bce_tx_encap		(struct bce_softc *, struct mbuf **);
421 static void bce_start_locked		(struct ifnet *);
422 static void bce_start			(struct ifnet *);
423 static int  bce_ioctl			(struct ifnet *, u_long, caddr_t);
424 static void bce_watchdog		(struct bce_softc *);
425 static int  bce_ifmedia_upd		(struct ifnet *);
426 static int  bce_ifmedia_upd_locked	(struct ifnet *);
427 static void bce_ifmedia_sts		(struct ifnet *, struct ifmediareq *);
428 static void bce_init_locked		(struct bce_softc *);
429 static void bce_init			(void *);
430 static void bce_mgmt_init_locked	(struct bce_softc *sc);
431 
432 static int  bce_init_ctx		(struct bce_softc *);
433 static void bce_get_mac_addr		(struct bce_softc *);
434 static void bce_set_mac_addr		(struct bce_softc *);
435 static void bce_phy_intr		(struct bce_softc *);
436 static inline u16 bce_get_hw_rx_cons	(struct bce_softc *);
437 static void bce_rx_intr			(struct bce_softc *);
438 static void bce_tx_intr			(struct bce_softc *);
439 static void bce_disable_intr		(struct bce_softc *);
440 static void bce_enable_intr		(struct bce_softc *, int);
441 
442 static void bce_intr			(void *);
443 static void bce_set_rx_mode		(struct bce_softc *);
444 static void bce_stats_update		(struct bce_softc *);
445 static void bce_tick			(void *);
446 static void bce_pulse			(void *);
447 static void bce_add_sysctls		(struct bce_softc *);
448 
449 
450 /****************************************************************************/
451 /* FreeBSD device dispatch table.                                           */
452 /****************************************************************************/
453 static device_method_t bce_methods[] = {
454 	/* Device interface (device_if.h) */
455 	DEVMETHOD(device_probe,		bce_probe),
456 	DEVMETHOD(device_attach,	bce_attach),
457 	DEVMETHOD(device_detach,	bce_detach),
458 	DEVMETHOD(device_shutdown,	bce_shutdown),
459 /* Supported by device interface but not used here. */
460 /*	DEVMETHOD(device_identify,	bce_identify),      */
461 /*	DEVMETHOD(device_suspend,	bce_suspend),       */
462 /*	DEVMETHOD(device_resume,	bce_resume),        */
463 /*	DEVMETHOD(device_quiesce,	bce_quiesce),       */
464 
465 	/* Bus interface (bus_if.h) */
466 	DEVMETHOD(bus_print_child,	bus_generic_print_child),
467 	DEVMETHOD(bus_driver_added,	bus_generic_driver_added),
468 
469 	/* MII interface (miibus_if.h) */
470 	DEVMETHOD(miibus_readreg,	bce_miibus_read_reg),
471 	DEVMETHOD(miibus_writereg,	bce_miibus_write_reg),
472 	DEVMETHOD(miibus_statchg,	bce_miibus_statchg),
473 /* Supported by MII interface but not used here.       */
474 /*	DEVMETHOD(miibus_linkchg,	bce_miibus_linkchg),   */
475 /*	DEVMETHOD(miibus_mediainit,	bce_miibus_mediainit), */
476 
477 	{ 0, 0 }
478 };
479 
480 static driver_t bce_driver = {
481 	"bce",
482 	bce_methods,
483 	sizeof(struct bce_softc)
484 };
485 
486 static devclass_t bce_devclass;
487 
488 MODULE_DEPEND(bce, pci, 1, 1, 1);
489 MODULE_DEPEND(bce, ether, 1, 1, 1);
490 MODULE_DEPEND(bce, miibus, 1, 1, 1);
491 
492 DRIVER_MODULE(bce, pci, bce_driver, bce_devclass, 0, 0);
493 DRIVER_MODULE(miibus, bce, miibus_driver, miibus_devclass, 0, 0);
494 
495 
496 /****************************************************************************/
497 /* Tunable device values                                                    */
498 /****************************************************************************/
499 SYSCTL_NODE(_hw, OID_AUTO, bce, CTLFLAG_RD, 0, "bce driver parameters");
500 
501 /* Allowable values are TRUE or FALSE */
502 static int bce_tso_enable = TRUE;
503 TUNABLE_INT("hw.bce.tso_enable", &bce_tso_enable);
504 SYSCTL_UINT(_hw_bce, OID_AUTO, tso_enable, CTLFLAG_RDTUN, &bce_tso_enable, 0,
505 "TSO Enable/Disable");
506 
507 /* Allowable values are 0 (IRQ), 1 (MSI/IRQ), and 2 (MSI-X/MSI/IRQ) */
508 /* ToDo: Add MSI-X support. */
509 static int bce_msi_enable = 1;
510 TUNABLE_INT("hw.bce.msi_enable", &bce_msi_enable);
511 SYSCTL_UINT(_hw_bce, OID_AUTO, msi_enable, CTLFLAG_RDTUN, &bce_msi_enable, 0,
512 "MSI-X|MSI|INTx selector");
513 
514 /* ToDo: Add tunable to enable/disable strict MTU handling. */
515 /* Currently allows "loose" RX MTU checking (i.e. sets the  */
516 /* H/W RX MTU to the size of the largest receive buffer, or */
517 /* 2048 bytes). This will cause a UNH failure but is more   */
518 /* desireable from a functional perspective.                */
519 
520 
521 /****************************************************************************/
522 /* Device probe function.                                                   */
523 /*                                                                          */
524 /* Compares the device to the driver's list of supported devices and        */
525 /* reports back to the OS whether this is the right driver for the device.  */
526 /*                                                                          */
527 /* Returns:                                                                 */
528 /*   BUS_PROBE_DEFAULT on success, positive value on failure.               */
529 /****************************************************************************/
530 static int
531 bce_probe(device_t dev)
532 {
533 	struct bce_type *t;
534 	struct bce_softc *sc;
535 	char *descbuf;
536 	u16 vid = 0, did = 0, svid = 0, sdid = 0;
537 
538 	t = bce_devs;
539 
540 	sc = device_get_softc(dev);
541 	bzero(sc, sizeof(struct bce_softc));
542 	sc->bce_unit = device_get_unit(dev);
543 	sc->bce_dev = dev;
544 
545 	/* Get the data for the device to be probed. */
546 	vid  = pci_get_vendor(dev);
547 	did  = pci_get_device(dev);
548 	svid = pci_get_subvendor(dev);
549 	sdid = pci_get_subdevice(dev);
550 
551 	DBPRINT(sc, BCE_EXTREME_LOAD,
552 	    "%s(); VID = 0x%04X, DID = 0x%04X, SVID = 0x%04X, "
553 	    "SDID = 0x%04X\n", __FUNCTION__, vid, did, svid, sdid);
554 
555 	/* Look through the list of known devices for a match. */
556 	while(t->bce_name != NULL) {
557 
558 		if ((vid == t->bce_vid) && (did == t->bce_did) &&
559 		    ((svid == t->bce_svid) || (t->bce_svid == PCI_ANY_ID)) &&
560 		    ((sdid == t->bce_sdid) || (t->bce_sdid == PCI_ANY_ID))) {
561 
562 			descbuf = malloc(BCE_DEVDESC_MAX, M_TEMP, M_NOWAIT);
563 
564 			if (descbuf == NULL)
565 				return(ENOMEM);
566 
567 			/* Print out the device identity. */
568 			snprintf(descbuf, BCE_DEVDESC_MAX, "%s (%c%d)",
569 			    t->bce_name, (((pci_read_config(dev,
570 			    PCIR_REVID, 4) & 0xf0) >> 4) + 'A'),
571 			    (pci_read_config(dev, PCIR_REVID, 4) & 0xf));
572 
573 			device_set_desc_copy(dev, descbuf);
574 			free(descbuf, M_TEMP);
575 			return(BUS_PROBE_DEFAULT);
576 		}
577 		t++;
578 	}
579 
580 	return(ENXIO);
581 }
582 
583 
584 /****************************************************************************/
585 /* PCI Capabilities Probe Function.                                         */
586 /*                                                                          */
587 /* Walks the PCI capabiites list for the device to find what features are   */
588 /* supported.                                                               */
589 /*                                                                          */
590 /* Returns:                                                                 */
591 /*   None.                                                                  */
592 /****************************************************************************/
593 static void
594 bce_print_adapter_info(struct bce_softc *sc)
595 {
596 	int i = 0;
597 
598 	DBENTER(BCE_VERBOSE_LOAD);
599 
600 	if (bootverbose) {
601 		BCE_PRINTF("ASIC (0x%08X); ", sc->bce_chipid);
602 		printf("Rev (%c%d); ", ((BCE_CHIP_ID(sc) & 0xf000) >>
603 		    12) + 'A', ((BCE_CHIP_ID(sc) & 0x0ff0) >> 4));
604 
605 
606 		/* Bus info. */
607 		if (sc->bce_flags & BCE_PCIE_FLAG) {
608 			printf("Bus (PCIe x%d, ", sc->link_width);
609 			switch (sc->link_speed) {
610 			case 1: printf("2.5Gbps); "); break;
611 			case 2:	printf("5Gbps); "); break;
612 			default: printf("Unknown link speed); ");
613 			}
614 		} else {
615 			printf("Bus (PCI%s, %s, %dMHz); ",
616 			    ((sc->bce_flags & BCE_PCIX_FLAG) ? "-X" : ""),
617 			    ((sc->bce_flags & BCE_PCI_32BIT_FLAG) ?
618 			    "32-bit" : "64-bit"), sc->bus_speed_mhz);
619 		}
620 
621 		/* Firmware version and device features. */
622 		printf("B/C (%s); Flags (", sc->bce_bc_ver);
623 
624 	#ifdef BCE_JUMBO_HDRSPLIT
625 		printf("SPLT");
626 		i++;
627 	#endif
628 
629 		if (sc->bce_flags & BCE_USING_MSI_FLAG) {
630 			if (i > 0) printf("|");
631 			printf("MSI"); i++;
632 		}
633 
634 		if (sc->bce_flags & BCE_USING_MSIX_FLAG) {
635 			if (i > 0) printf("|");
636 			printf("MSI-X"); i++;
637 		}
638 
639 		if (sc->bce_phy_flags & BCE_PHY_2_5G_CAPABLE_FLAG) {
640 			if (i > 0) printf("|");
641 			printf("2.5G"); i++;
642 		}
643 
644 		if (sc->bce_flags & BCE_MFW_ENABLE_FLAG) {
645 			if (i > 0) printf("|");
646 			printf("MFW); MFW (%s)\n", sc->bce_mfw_ver);
647 		} else {
648 			printf(")\n");
649 		}
650 	}
651 
652 	DBEXIT(BCE_VERBOSE_LOAD);
653 }
654 
655 
656 /****************************************************************************/
657 /* PCI Capabilities Probe Function.                                         */
658 /*                                                                          */
659 /* Walks the PCI capabiites list for the device to find what features are   */
660 /* supported.                                                               */
661 /*                                                                          */
662 /* Returns:                                                                 */
663 /*   None.                                                                  */
664 /****************************************************************************/
665 static void
666 bce_probe_pci_caps(device_t dev, struct bce_softc *sc)
667 {
668 	u32 reg;
669 
670 	DBENTER(BCE_VERBOSE_LOAD);
671 
672 	/* Check if PCI-X capability is enabled. */
673 	if (pci_find_extcap(dev, PCIY_PCIX, &reg) == 0) {
674 		if (reg != 0)
675 			sc->bce_cap_flags |= BCE_PCIX_CAPABLE_FLAG;
676 	}
677 
678 	/* Check if PCIe capability is enabled. */
679 	if (pci_find_extcap(dev, PCIY_EXPRESS, &reg) == 0) {
680 		if (reg != 0) {
681 			u16 link_status = pci_read_config(dev, reg + 0x12, 2);
682 			DBPRINT(sc, BCE_INFO_LOAD, "PCIe link_status = "
683 			    "0x%08X\n",	link_status);
684 			sc->link_speed = link_status & 0xf;
685 			sc->link_width = (link_status >> 4) & 0x3f;
686 			sc->bce_cap_flags |= BCE_PCIE_CAPABLE_FLAG;
687 			sc->bce_flags |= BCE_PCIE_FLAG;
688 		}
689 	}
690 
691 	/* Check if MSI capability is enabled. */
692 	if (pci_find_extcap(dev, PCIY_MSI, &reg) == 0) {
693 		if (reg != 0)
694 			sc->bce_cap_flags |= BCE_MSI_CAPABLE_FLAG;
695 	}
696 
697 	/* Check if MSI-X capability is enabled. */
698 	if (pci_find_extcap(dev, PCIY_MSIX, &reg) == 0) {
699 		if (reg != 0)
700 			sc->bce_cap_flags |= BCE_MSIX_CAPABLE_FLAG;
701 	}
702 
703 	DBEXIT(BCE_VERBOSE_LOAD);
704 }
705 
706 
707 /****************************************************************************/
708 /* Device attach function.                                                  */
709 /*                                                                          */
710 /* Allocates device resources, performs secondary chip identification,      */
711 /* resets and initializes the hardware, and initializes driver instance     */
712 /* variables.                                                               */
713 /*                                                                          */
714 /* Returns:                                                                 */
715 /*   0 on success, positive value on failure.                               */
716 /****************************************************************************/
717 static int
718 bce_attach(device_t dev)
719 {
720 	struct bce_softc *sc;
721 	struct ifnet *ifp;
722 	u32 val;
723 	int error, rid, rc = 0;
724 
725 	sc = device_get_softc(dev);
726 	sc->bce_dev = dev;
727 
728 	DBENTER(BCE_VERBOSE_LOAD | BCE_VERBOSE_RESET);
729 
730 	sc->bce_unit = device_get_unit(dev);
731 
732 	/* Set initial device and PHY flags */
733 	sc->bce_flags = 0;
734 	sc->bce_phy_flags = 0;
735 
736 	pci_enable_busmaster(dev);
737 
738 	/* Allocate PCI memory resources. */
739 	rid = PCIR_BAR(0);
740 	sc->bce_res_mem = bus_alloc_resource_any(dev, SYS_RES_MEMORY,
741 		&rid, RF_ACTIVE);
742 
743 	if (sc->bce_res_mem == NULL) {
744 		BCE_PRINTF("%s(%d): PCI memory allocation failed\n",
745 		    __FILE__, __LINE__);
746 		rc = ENXIO;
747 		goto bce_attach_fail;
748 	}
749 
750 	/* Get various resource handles. */
751 	sc->bce_btag    = rman_get_bustag(sc->bce_res_mem);
752 	sc->bce_bhandle = rman_get_bushandle(sc->bce_res_mem);
753 	sc->bce_vhandle = (vm_offset_t) rman_get_virtual(sc->bce_res_mem);
754 
755 	bce_probe_pci_caps(dev, sc);
756 
757 	rid = 1;
758 #if 0
759 	/* Try allocating MSI-X interrupts. */
760 	if ((sc->bce_cap_flags & BCE_MSIX_CAPABLE_FLAG) &&
761 		(bce_msi_enable >= 2) &&
762 		((sc->bce_res_irq = bus_alloc_resource_any(dev, SYS_RES_MEMORY,
763 		&rid, RF_ACTIVE)) != NULL)) {
764 
765 		msi_needed = sc->bce_msi_count = 1;
766 
767 		if (((error = pci_alloc_msix(dev, &sc->bce_msi_count)) != 0) ||
768 			(sc->bce_msi_count != msi_needed)) {
769 			BCE_PRINTF("%s(%d): MSI-X allocation failed! Requested = %d,"
770 				"Received = %d, error = %d\n", __FILE__, __LINE__,
771 				msi_needed, sc->bce_msi_count, error);
772 			sc->bce_msi_count = 0;
773 			pci_release_msi(dev);
774 			bus_release_resource(dev, SYS_RES_MEMORY, rid,
775 				sc->bce_res_irq);
776 			sc->bce_res_irq = NULL;
777 		} else {
778 			DBPRINT(sc, BCE_INFO_LOAD, "%s(): Using MSI-X interrupt.\n",
779 				__FUNCTION__);
780 			sc->bce_flags |= BCE_USING_MSIX_FLAG;
781 			sc->bce_intr = bce_intr;
782 		}
783 	}
784 #endif
785 
786 	/* Try allocating a MSI interrupt. */
787 	if ((sc->bce_cap_flags & BCE_MSI_CAPABLE_FLAG) &&
788 		(bce_msi_enable >= 1) && (sc->bce_msi_count == 0)) {
789 		sc->bce_msi_count = 1;
790 		if ((error = pci_alloc_msi(dev, &sc->bce_msi_count)) != 0) {
791 			BCE_PRINTF("%s(%d): MSI allocation failed! "
792 			    "error = %d\n", __FILE__, __LINE__, error);
793 			sc->bce_msi_count = 0;
794 			pci_release_msi(dev);
795 		} else {
796 			DBPRINT(sc, BCE_INFO_LOAD, "%s(): Using MSI "
797 			    "interrupt.\n", __FUNCTION__);
798 			sc->bce_flags |= BCE_USING_MSI_FLAG;
799 			if ((BCE_CHIP_NUM(sc) == BCE_CHIP_NUM_5709) ||
800 				(BCE_CHIP_NUM(sc) == BCE_CHIP_NUM_5716))
801 				sc->bce_flags |= BCE_ONE_SHOT_MSI_FLAG;
802 			sc->bce_irq_rid = 1;
803 			sc->bce_intr = bce_intr;
804 		}
805 	}
806 
807 	/* Try allocating a legacy interrupt. */
808 	if (sc->bce_msi_count == 0) {
809 		DBPRINT(sc, BCE_INFO_LOAD, "%s(): Using INTx interrupt.\n",
810 			__FUNCTION__);
811 		rid = 0;
812 		sc->bce_intr = bce_intr;
813 	}
814 
815 	sc->bce_res_irq = bus_alloc_resource_any(dev, SYS_RES_IRQ,
816 	    &rid, RF_SHAREABLE | RF_ACTIVE);
817 
818 	sc->bce_irq_rid = rid;
819 
820 	/* Report any IRQ allocation errors. */
821 	if (sc->bce_res_irq == NULL) {
822 		BCE_PRINTF("%s(%d): PCI map interrupt failed!\n",
823 		    __FILE__, __LINE__);
824 		rc = ENXIO;
825 		goto bce_attach_fail;
826 	}
827 
828 	/* Initialize mutex for the current device instance. */
829 	BCE_LOCK_INIT(sc, device_get_nameunit(dev));
830 
831 	/*
832 	 * Configure byte swap and enable indirect register access.
833 	 * Rely on CPU to do target byte swapping on big endian systems.
834 	 * Access to registers outside of PCI configurtion space are not
835 	 * valid until this is done.
836 	 */
837 	pci_write_config(dev, BCE_PCICFG_MISC_CONFIG,
838 	    BCE_PCICFG_MISC_CONFIG_REG_WINDOW_ENA |
839 	    BCE_PCICFG_MISC_CONFIG_TARGET_MB_WORD_SWAP, 4);
840 
841 	/* Save ASIC revsion info. */
842 	sc->bce_chipid =  REG_RD(sc, BCE_MISC_ID);
843 
844 	/* Weed out any non-production controller revisions. */
845 	switch(BCE_CHIP_ID(sc)) {
846 	case BCE_CHIP_ID_5706_A0:
847 	case BCE_CHIP_ID_5706_A1:
848 	case BCE_CHIP_ID_5708_A0:
849 	case BCE_CHIP_ID_5708_B0:
850 	case BCE_CHIP_ID_5709_A0:
851 	case BCE_CHIP_ID_5709_B0:
852 	case BCE_CHIP_ID_5709_B1:
853 	case BCE_CHIP_ID_5709_B2:
854 		BCE_PRINTF("%s(%d): Unsupported controller "
855 		    "revision (%c%d)!\n", __FILE__, __LINE__,
856 		    (((pci_read_config(dev, PCIR_REVID, 4) &
857 		    0xf0) >> 4) + 'A'), (pci_read_config(dev,
858 		    PCIR_REVID, 4) & 0xf));
859 		rc = ENODEV;
860 		goto bce_attach_fail;
861 	}
862 
863 	/*
864 	 * The embedded PCIe to PCI-X bridge (EPB)
865 	 * in the 5708 cannot address memory above
866 	 * 40 bits (E7_5708CB1_23043 & E6_5708SB1_23043).
867 	 */
868 	if (BCE_CHIP_NUM(sc) == BCE_CHIP_NUM_5708)
869 		sc->max_bus_addr = BCE_BUS_SPACE_MAXADDR;
870 	else
871 		sc->max_bus_addr = BUS_SPACE_MAXADDR;
872 
873 	/*
874 	 * Find the base address for shared memory access.
875 	 * Newer versions of bootcode use a signature and offset
876 	 * while older versions use a fixed address.
877 	 */
878 	val = REG_RD_IND(sc, BCE_SHM_HDR_SIGNATURE);
879 	if ((val & BCE_SHM_HDR_SIGNATURE_SIG_MASK) == BCE_SHM_HDR_SIGNATURE_SIG)
880 		/* Multi-port devices use different offsets in shared memory. */
881 		sc->bce_shmem_base = REG_RD_IND(sc, BCE_SHM_HDR_ADDR_0 +
882 		    (pci_get_function(sc->bce_dev) << 2));
883 	else
884 		sc->bce_shmem_base = HOST_VIEW_SHMEM_BASE;
885 
886 	DBPRINT(sc, BCE_VERBOSE_FIRMWARE, "%s(): bce_shmem_base = 0x%08X\n",
887 	    __FUNCTION__, sc->bce_shmem_base);
888 
889 	/* Fetch the bootcode revision. */
890 	val = bce_shmem_rd(sc, BCE_DEV_INFO_BC_REV);
891 	for (int i = 0, j = 0; i < 3; i++) {
892 		u8 num;
893 
894 		num = (u8) (val >> (24 - (i * 8)));
895 		for (int k = 100, skip0 = 1; k >= 1; num %= k, k /= 10) {
896 			if (num >= k || !skip0 || k == 1) {
897 				sc->bce_bc_ver[j++] = (num / k) + '0';
898 				skip0 = 0;
899 			}
900 		}
901 
902 		if (i != 2)
903 			sc->bce_bc_ver[j++] = '.';
904 	}
905 
906 	/* Check if any management firwmare is enabled. */
907 	val = bce_shmem_rd(sc, BCE_PORT_FEATURE);
908 	if (val & BCE_PORT_FEATURE_ASF_ENABLED) {
909 		sc->bce_flags |= BCE_MFW_ENABLE_FLAG;
910 
911 		/* Allow time for firmware to enter the running state. */
912 		for (int i = 0; i < 30; i++) {
913 			val = bce_shmem_rd(sc, BCE_BC_STATE_CONDITION);
914 			if (val & BCE_CONDITION_MFW_RUN_MASK)
915 				break;
916 			DELAY(10000);
917 		}
918 
919 		/* Check if management firmware is running. */
920 		val = bce_shmem_rd(sc, BCE_BC_STATE_CONDITION);
921 		val &= BCE_CONDITION_MFW_RUN_MASK;
922 		if ((val != BCE_CONDITION_MFW_RUN_UNKNOWN) &&
923 		    (val != BCE_CONDITION_MFW_RUN_NONE)) {
924 			u32 addr = bce_shmem_rd(sc, BCE_MFW_VER_PTR);
925 			int i = 0;
926 
927 			/* Read the management firmware version string. */
928 			for (int j = 0; j < 3; j++) {
929 				val = bce_reg_rd_ind(sc, addr + j * 4);
930 				val = bswap32(val);
931 				memcpy(&sc->bce_mfw_ver[i], &val, 4);
932 				i += 4;
933 			}
934 		} else {
935 			/* May cause firmware synchronization timeouts. */
936 			BCE_PRINTF("%s(%d): Management firmware enabled "
937 			    "but not running!\n", __FILE__, __LINE__);
938 			strcpy(sc->bce_mfw_ver, "NOT RUNNING!");
939 
940 			/* ToDo: Any action the driver should take? */
941 		}
942 	}
943 
944 	/* Get PCI bus information (speed and type). */
945 	val = REG_RD(sc, BCE_PCICFG_MISC_STATUS);
946 	if (val & BCE_PCICFG_MISC_STATUS_PCIX_DET) {
947 		u32 clkreg;
948 
949 		sc->bce_flags |= BCE_PCIX_FLAG;
950 
951 		clkreg = REG_RD(sc, BCE_PCICFG_PCI_CLOCK_CONTROL_BITS);
952 
953 		clkreg &= BCE_PCICFG_PCI_CLOCK_CONTROL_BITS_PCI_CLK_SPD_DET;
954 		switch (clkreg) {
955 		case BCE_PCICFG_PCI_CLOCK_CONTROL_BITS_PCI_CLK_SPD_DET_133MHZ:
956 			sc->bus_speed_mhz = 133;
957 			break;
958 
959 		case BCE_PCICFG_PCI_CLOCK_CONTROL_BITS_PCI_CLK_SPD_DET_95MHZ:
960 			sc->bus_speed_mhz = 100;
961 			break;
962 
963 		case BCE_PCICFG_PCI_CLOCK_CONTROL_BITS_PCI_CLK_SPD_DET_66MHZ:
964 		case BCE_PCICFG_PCI_CLOCK_CONTROL_BITS_PCI_CLK_SPD_DET_80MHZ:
965 			sc->bus_speed_mhz = 66;
966 			break;
967 
968 		case BCE_PCICFG_PCI_CLOCK_CONTROL_BITS_PCI_CLK_SPD_DET_48MHZ:
969 		case BCE_PCICFG_PCI_CLOCK_CONTROL_BITS_PCI_CLK_SPD_DET_55MHZ:
970 			sc->bus_speed_mhz = 50;
971 			break;
972 
973 		case BCE_PCICFG_PCI_CLOCK_CONTROL_BITS_PCI_CLK_SPD_DET_LOW:
974 		case BCE_PCICFG_PCI_CLOCK_CONTROL_BITS_PCI_CLK_SPD_DET_32MHZ:
975 		case BCE_PCICFG_PCI_CLOCK_CONTROL_BITS_PCI_CLK_SPD_DET_38MHZ:
976 			sc->bus_speed_mhz = 33;
977 			break;
978 		}
979 	} else {
980 		if (val & BCE_PCICFG_MISC_STATUS_M66EN)
981 			sc->bus_speed_mhz = 66;
982 		else
983 			sc->bus_speed_mhz = 33;
984 	}
985 
986 	if (val & BCE_PCICFG_MISC_STATUS_32BIT_DET)
987 		sc->bce_flags |= BCE_PCI_32BIT_FLAG;
988 
989 	/* Reset controller and announce to bootcode that driver is present. */
990 	if (bce_reset(sc, BCE_DRV_MSG_CODE_RESET)) {
991 		BCE_PRINTF("%s(%d): Controller reset failed!\n",
992 		    __FILE__, __LINE__);
993 		rc = ENXIO;
994 		goto bce_attach_fail;
995 	}
996 
997 	/* Initialize the controller. */
998 	if (bce_chipinit(sc)) {
999 		BCE_PRINTF("%s(%d): Controller initialization failed!\n",
1000 		    __FILE__, __LINE__);
1001 		rc = ENXIO;
1002 		goto bce_attach_fail;
1003 	}
1004 
1005 	/* Perform NVRAM test. */
1006 	if (bce_nvram_test(sc)) {
1007 		BCE_PRINTF("%s(%d): NVRAM test failed!\n",
1008 		    __FILE__, __LINE__);
1009 		rc = ENXIO;
1010 		goto bce_attach_fail;
1011 	}
1012 
1013 	/* Fetch the permanent Ethernet MAC address. */
1014 	bce_get_mac_addr(sc);
1015 
1016 	/*
1017 	 * Trip points control how many BDs
1018 	 * should be ready before generating an
1019 	 * interrupt while ticks control how long
1020 	 * a BD can sit in the chain before
1021 	 * generating an interrupt.  Set the default
1022 	 * values for the RX and TX chains.
1023 	 */
1024 
1025 #ifdef BCE_DEBUG
1026 	/* Force more frequent interrupts. */
1027 	sc->bce_tx_quick_cons_trip_int = 1;
1028 	sc->bce_tx_quick_cons_trip     = 1;
1029 	sc->bce_tx_ticks_int           = 0;
1030 	sc->bce_tx_ticks               = 0;
1031 
1032 	sc->bce_rx_quick_cons_trip_int = 1;
1033 	sc->bce_rx_quick_cons_trip     = 1;
1034 	sc->bce_rx_ticks_int           = 0;
1035 	sc->bce_rx_ticks               = 0;
1036 #else
1037 	/* Improve throughput at the expense of increased latency. */
1038 	sc->bce_tx_quick_cons_trip_int = 20;
1039 	sc->bce_tx_quick_cons_trip     = 20;
1040 	sc->bce_tx_ticks_int           = 80;
1041 	sc->bce_tx_ticks               = 80;
1042 
1043 	sc->bce_rx_quick_cons_trip_int = 6;
1044 	sc->bce_rx_quick_cons_trip     = 6;
1045 	sc->bce_rx_ticks_int           = 18;
1046 	sc->bce_rx_ticks               = 18;
1047 #endif
1048 
1049 	/* Not used for L2. */
1050 	sc->bce_comp_prod_trip_int = 0;
1051 	sc->bce_comp_prod_trip = 0;
1052 	sc->bce_com_ticks_int = 0;
1053 	sc->bce_com_ticks = 0;
1054 	sc->bce_cmd_ticks_int = 0;
1055 	sc->bce_cmd_ticks = 0;
1056 
1057 	/* Update statistics once every second. */
1058 	sc->bce_stats_ticks = 1000000 & 0xffff00;
1059 
1060 	/* Find the media type for the adapter. */
1061 	bce_get_media(sc);
1062 
1063 	/* Store data needed by PHY driver for backplane applications */
1064 	sc->bce_shared_hw_cfg = bce_shmem_rd(sc, BCE_SHARED_HW_CFG_CONFIG);
1065 	sc->bce_port_hw_cfg   = bce_shmem_rd(sc, BCE_PORT_HW_CFG_CONFIG);
1066 
1067 	/* Allocate DMA memory resources. */
1068 	if (bce_dma_alloc(dev)) {
1069 		BCE_PRINTF("%s(%d): DMA resource allocation failed!\n",
1070 		    __FILE__, __LINE__);
1071 		rc = ENXIO;
1072 		goto bce_attach_fail;
1073 	}
1074 
1075 	/* Allocate an ifnet structure. */
1076 	ifp = sc->bce_ifp = if_alloc(IFT_ETHER);
1077 	if (ifp == NULL) {
1078 		BCE_PRINTF("%s(%d): Interface allocation failed!\n",
1079 		    __FILE__, __LINE__);
1080 		rc = ENXIO;
1081 		goto bce_attach_fail;
1082 	}
1083 
1084 	/* Initialize the ifnet interface. */
1085 	ifp->if_softc	= sc;
1086 	if_initname(ifp, device_get_name(dev), device_get_unit(dev));
1087 	ifp->if_flags	= IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
1088 	ifp->if_ioctl	= bce_ioctl;
1089 	ifp->if_start	= bce_start;
1090 	ifp->if_init	= bce_init;
1091 	ifp->if_mtu	= ETHERMTU;
1092 
1093 	if (bce_tso_enable) {
1094 		ifp->if_hwassist = BCE_IF_HWASSIST | CSUM_TSO;
1095 		ifp->if_capabilities = BCE_IF_CAPABILITIES | IFCAP_TSO4 |
1096 		    IFCAP_VLAN_HWTSO;
1097 	} else {
1098 		ifp->if_hwassist = BCE_IF_HWASSIST;
1099 		ifp->if_capabilities = BCE_IF_CAPABILITIES;
1100 	}
1101 
1102 	ifp->if_capenable = ifp->if_capabilities;
1103 
1104 	/*
1105 	 * Assume standard mbuf sizes for buffer allocation.
1106 	 * This may change later if the MTU size is set to
1107 	 * something other than 1500.
1108 	 */
1109 #ifdef BCE_JUMBO_HDRSPLIT
1110 	sc->rx_bd_mbuf_alloc_size = MHLEN;
1111 	/* Make sure offset is 16 byte aligned for hardware. */
1112 	sc->rx_bd_mbuf_align_pad =
1113 	    roundup2((MSIZE - MHLEN), 16) - (MSIZE - MHLEN);
1114 	sc->rx_bd_mbuf_data_len = sc->rx_bd_mbuf_alloc_size -
1115 	    sc->rx_bd_mbuf_align_pad;
1116 	sc->pg_bd_mbuf_alloc_size = MCLBYTES;
1117 #else
1118 	sc->rx_bd_mbuf_alloc_size = MCLBYTES;
1119 	sc->rx_bd_mbuf_align_pad =
1120 	    roundup2(MCLBYTES, 16) - MCLBYTES;
1121 	sc->rx_bd_mbuf_data_len = sc->rx_bd_mbuf_alloc_size -
1122 	    sc->rx_bd_mbuf_align_pad;
1123 #endif
1124 
1125 	ifp->if_snd.ifq_drv_maxlen = USABLE_TX_BD;
1126 	IFQ_SET_MAXLEN(&ifp->if_snd, ifp->if_snd.ifq_drv_maxlen);
1127 	IFQ_SET_READY(&ifp->if_snd);
1128 
1129 	if (sc->bce_phy_flags & BCE_PHY_2_5G_CAPABLE_FLAG)
1130 		ifp->if_baudrate = IF_Mbps(2500ULL);
1131 	else
1132 		ifp->if_baudrate = IF_Mbps(1000);
1133 
1134 	/* Handle any special PHY initialization for SerDes PHYs. */
1135 	bce_init_media(sc);
1136 
1137 	/* MII child bus by probing the PHY. */
1138 	if (mii_phy_probe(dev, &sc->bce_miibus, bce_ifmedia_upd,
1139 		bce_ifmedia_sts)) {
1140 		BCE_PRINTF("%s(%d): No PHY found on child MII bus!\n",
1141 		    __FILE__, __LINE__);
1142 		rc = ENXIO;
1143 		goto bce_attach_fail;
1144 	}
1145 
1146 	/* Attach to the Ethernet interface list. */
1147 	ether_ifattach(ifp, sc->eaddr);
1148 
1149 #if __FreeBSD_version < 500000
1150 	callout_init(&sc->bce_tick_callout);
1151 	callout_init(&sc->bce_pulse_callout);
1152 #else
1153 	callout_init_mtx(&sc->bce_tick_callout, &sc->bce_mtx, 0);
1154 	callout_init_mtx(&sc->bce_pulse_callout, &sc->bce_mtx, 0);
1155 #endif
1156 
1157 	/* Hookup IRQ last. */
1158 	rc = bus_setup_intr(dev, sc->bce_res_irq, INTR_TYPE_NET | INTR_MPSAFE,
1159 		NULL, bce_intr, sc, &sc->bce_intrhand);
1160 
1161 	if (rc) {
1162 		BCE_PRINTF("%s(%d): Failed to setup IRQ!\n",
1163 		    __FILE__, __LINE__);
1164 		bce_detach(dev);
1165 		goto bce_attach_exit;
1166 	}
1167 
1168 	/*
1169 	 * At this point we've acquired all the resources
1170 	 * we need to run so there's no turning back, we're
1171 	 * cleared for launch.
1172 	 */
1173 
1174 	/* Print some important debugging info. */
1175 	DBRUNMSG(BCE_INFO, bce_dump_driver_state(sc));
1176 
1177 	/* Add the supported sysctls to the kernel. */
1178 	bce_add_sysctls(sc);
1179 
1180 	BCE_LOCK(sc);
1181 
1182 	/*
1183 	 * The chip reset earlier notified the bootcode that
1184 	 * a driver is present.  We now need to start our pulse
1185 	 * routine so that the bootcode is reminded that we're
1186 	 * still running.
1187 	 */
1188 	bce_pulse(sc);
1189 
1190 	bce_mgmt_init_locked(sc);
1191 	BCE_UNLOCK(sc);
1192 
1193 	/* Finally, print some useful adapter info */
1194 	bce_print_adapter_info(sc);
1195 	DBPRINT(sc, BCE_FATAL, "%s(): sc = %p\n",
1196 		__FUNCTION__, sc);
1197 
1198 	goto bce_attach_exit;
1199 
1200 bce_attach_fail:
1201 	bce_release_resources(sc);
1202 
1203 bce_attach_exit:
1204 
1205 	DBEXIT(BCE_VERBOSE_LOAD | BCE_VERBOSE_RESET);
1206 
1207 	return(rc);
1208 }
1209 
1210 
1211 /****************************************************************************/
1212 /* Device detach function.                                                  */
1213 /*                                                                          */
1214 /* Stops the controller, resets the controller, and releases resources.     */
1215 /*                                                                          */
1216 /* Returns:                                                                 */
1217 /*   0 on success, positive value on failure.                               */
1218 /****************************************************************************/
1219 static int
1220 bce_detach(device_t dev)
1221 {
1222 	struct bce_softc *sc = device_get_softc(dev);
1223 	struct ifnet *ifp;
1224 	u32 msg;
1225 
1226 	DBENTER(BCE_VERBOSE_UNLOAD | BCE_VERBOSE_RESET);
1227 
1228 	ifp = sc->bce_ifp;
1229 
1230 	/* Stop and reset the controller. */
1231 	BCE_LOCK(sc);
1232 
1233 	/* Stop the pulse so the bootcode can go to driver absent state. */
1234 	callout_stop(&sc->bce_pulse_callout);
1235 
1236 	bce_stop(sc);
1237 	if (sc->bce_flags & BCE_NO_WOL_FLAG)
1238 		msg = BCE_DRV_MSG_CODE_UNLOAD_LNK_DN;
1239 	else
1240 		msg = BCE_DRV_MSG_CODE_UNLOAD;
1241 	bce_reset(sc, msg);
1242 
1243 	BCE_UNLOCK(sc);
1244 
1245 	ether_ifdetach(ifp);
1246 
1247 	/* If we have a child device on the MII bus remove it too. */
1248 	bus_generic_detach(dev);
1249 	device_delete_child(dev, sc->bce_miibus);
1250 
1251 	/* Release all remaining resources. */
1252 	bce_release_resources(sc);
1253 
1254 	DBEXIT(BCE_VERBOSE_UNLOAD | BCE_VERBOSE_RESET);
1255 
1256 	return(0);
1257 }
1258 
1259 
1260 /****************************************************************************/
1261 /* Device shutdown function.                                                */
1262 /*                                                                          */
1263 /* Stops and resets the controller.                                         */
1264 /*                                                                          */
1265 /* Returns:                                                                 */
1266 /*   0 on success, positive value on failure.                               */
1267 /****************************************************************************/
1268 static int
1269 bce_shutdown(device_t dev)
1270 {
1271 	struct bce_softc *sc = device_get_softc(dev);
1272 	u32 msg;
1273 
1274 	DBENTER(BCE_VERBOSE);
1275 
1276 	BCE_LOCK(sc);
1277 	bce_stop(sc);
1278 	if (sc->bce_flags & BCE_NO_WOL_FLAG)
1279 		msg = BCE_DRV_MSG_CODE_UNLOAD_LNK_DN;
1280 	else
1281 		msg = BCE_DRV_MSG_CODE_UNLOAD;
1282 	bce_reset(sc, msg);
1283 	BCE_UNLOCK(sc);
1284 
1285 	DBEXIT(BCE_VERBOSE);
1286 
1287 	return (0);
1288 }
1289 
1290 
1291 #ifdef BCE_DEBUG
1292 /****************************************************************************/
1293 /* Register read.                                                           */
1294 /*                                                                          */
1295 /* Returns:                                                                 */
1296 /*   The value of the register.                                             */
1297 /****************************************************************************/
1298 static u32
1299 bce_reg_rd(struct bce_softc *sc, u32 offset)
1300 {
1301 	u32 val = bus_space_read_4(sc->bce_btag, sc->bce_bhandle, offset);
1302 	DBPRINT(sc, BCE_INSANE_REG, "%s(); offset = 0x%08X, val = 0x%08X\n",
1303 		__FUNCTION__, offset, val);
1304 	return val;
1305 }
1306 
1307 
1308 /****************************************************************************/
1309 /* Register write (16 bit).                                                 */
1310 /*                                                                          */
1311 /* Returns:                                                                 */
1312 /*   Nothing.                                                               */
1313 /****************************************************************************/
1314 static void
1315 bce_reg_wr16(struct bce_softc *sc, u32 offset, u16 val)
1316 {
1317 	DBPRINT(sc, BCE_INSANE_REG, "%s(); offset = 0x%08X, val = 0x%04X\n",
1318 		__FUNCTION__, offset, val);
1319 	bus_space_write_2(sc->bce_btag, sc->bce_bhandle, offset, val);
1320 }
1321 
1322 
1323 /****************************************************************************/
1324 /* Register write.                                                          */
1325 /*                                                                          */
1326 /* Returns:                                                                 */
1327 /*   Nothing.                                                               */
1328 /****************************************************************************/
1329 static void
1330 bce_reg_wr(struct bce_softc *sc, u32 offset, u32 val)
1331 {
1332 	DBPRINT(sc, BCE_INSANE_REG, "%s(); offset = 0x%08X, val = 0x%08X\n",
1333 		__FUNCTION__, offset, val);
1334 	bus_space_write_4(sc->bce_btag, sc->bce_bhandle, offset, val);
1335 }
1336 #endif
1337 
1338 /****************************************************************************/
1339 /* Indirect register read.                                                  */
1340 /*                                                                          */
1341 /* Reads NetXtreme II registers using an index/data register pair in PCI    */
1342 /* configuration space.  Using this mechanism avoids issues with posted     */
1343 /* reads but is much slower than memory-mapped I/O.                         */
1344 /*                                                                          */
1345 /* Returns:                                                                 */
1346 /*   The value of the register.                                             */
1347 /****************************************************************************/
1348 static u32
1349 bce_reg_rd_ind(struct bce_softc *sc, u32 offset)
1350 {
1351 	device_t dev;
1352 	dev = sc->bce_dev;
1353 
1354 	pci_write_config(dev, BCE_PCICFG_REG_WINDOW_ADDRESS, offset, 4);
1355 #ifdef BCE_DEBUG
1356 	{
1357 		u32 val;
1358 		val = pci_read_config(dev, BCE_PCICFG_REG_WINDOW, 4);
1359 		DBPRINT(sc, BCE_INSANE_REG, "%s(); offset = 0x%08X, val = 0x%08X\n",
1360 			__FUNCTION__, offset, val);
1361 		return val;
1362 	}
1363 #else
1364 	return pci_read_config(dev, BCE_PCICFG_REG_WINDOW, 4);
1365 #endif
1366 }
1367 
1368 
1369 /****************************************************************************/
1370 /* Indirect register write.                                                 */
1371 /*                                                                          */
1372 /* Writes NetXtreme II registers using an index/data register pair in PCI   */
1373 /* configuration space.  Using this mechanism avoids issues with posted     */
1374 /* writes but is muchh slower than memory-mapped I/O.                       */
1375 /*                                                                          */
1376 /* Returns:                                                                 */
1377 /*   Nothing.                                                               */
1378 /****************************************************************************/
1379 static void
1380 bce_reg_wr_ind(struct bce_softc *sc, u32 offset, u32 val)
1381 {
1382 	device_t dev;
1383 	dev = sc->bce_dev;
1384 
1385 	DBPRINT(sc, BCE_INSANE_REG, "%s(); offset = 0x%08X, val = 0x%08X\n",
1386 		__FUNCTION__, offset, val);
1387 
1388 	pci_write_config(dev, BCE_PCICFG_REG_WINDOW_ADDRESS, offset, 4);
1389 	pci_write_config(dev, BCE_PCICFG_REG_WINDOW, val, 4);
1390 }
1391 
1392 
1393 /****************************************************************************/
1394 /* Shared memory write.                                                     */
1395 /*                                                                          */
1396 /* Writes NetXtreme II shared memory region.                                */
1397 /*                                                                          */
1398 /* Returns:                                                                 */
1399 /*   Nothing.                                                               */
1400 /****************************************************************************/
1401 static void
1402 bce_shmem_wr(struct bce_softc *sc, u32 offset, u32 val)
1403 {
1404 	DBPRINT(sc, BCE_VERBOSE_FIRMWARE, "%s(): Writing 0x%08X  to  "
1405 	    "0x%08X\n",	__FUNCTION__, val, offset);
1406 
1407 	bce_reg_wr_ind(sc, sc->bce_shmem_base + offset, val);
1408 }
1409 
1410 
1411 /****************************************************************************/
1412 /* Shared memory read.                                                      */
1413 /*                                                                          */
1414 /* Reads NetXtreme II shared memory region.                                 */
1415 /*                                                                          */
1416 /* Returns:                                                                 */
1417 /*   The 32 bit value read.                                                 */
1418 /****************************************************************************/
1419 static u32
1420 bce_shmem_rd(struct bce_softc *sc, u32 offset)
1421 {
1422 	u32 val = bce_reg_rd_ind(sc, sc->bce_shmem_base + offset);
1423 
1424 	DBPRINT(sc, BCE_VERBOSE_FIRMWARE, "%s(): Reading 0x%08X from "
1425 	    "0x%08X\n",	__FUNCTION__, val, offset);
1426 
1427 	return val;
1428 }
1429 
1430 
1431 #ifdef BCE_DEBUG
1432 /****************************************************************************/
1433 /* Context memory read.                                                     */
1434 /*                                                                          */
1435 /* The NetXtreme II controller uses context memory to track connection      */
1436 /* information for L2 and higher network protocols.                         */
1437 /*                                                                          */
1438 /* Returns:                                                                 */
1439 /*   The requested 32 bit value of context memory.                          */
1440 /****************************************************************************/
1441 static u32
1442 bce_ctx_rd(struct bce_softc *sc, u32 cid_addr, u32 ctx_offset)
1443 {
1444 	u32 idx, offset, retry_cnt = 5, val;
1445 
1446 	DBRUNIF((cid_addr > MAX_CID_ADDR || ctx_offset & 0x3 ||
1447 	    cid_addr & CTX_MASK), BCE_PRINTF("%s(): Invalid CID "
1448 	    "address: 0x%08X.\n", __FUNCTION__, cid_addr));
1449 
1450 	offset = ctx_offset + cid_addr;
1451 
1452 	if ((BCE_CHIP_NUM(sc) == BCE_CHIP_NUM_5709) ||
1453 		(BCE_CHIP_NUM(sc) == BCE_CHIP_NUM_5716)) {
1454 
1455 		REG_WR(sc, BCE_CTX_CTX_CTRL, (offset | BCE_CTX_CTX_CTRL_READ_REQ));
1456 
1457 		for (idx = 0; idx < retry_cnt; idx++) {
1458 			val = REG_RD(sc, BCE_CTX_CTX_CTRL);
1459 			if ((val & BCE_CTX_CTX_CTRL_READ_REQ) == 0)
1460 				break;
1461 			DELAY(5);
1462 		}
1463 
1464 		if (val & BCE_CTX_CTX_CTRL_READ_REQ)
1465 			BCE_PRINTF("%s(%d); Unable to read CTX memory: "
1466 			    "cid_addr = 0x%08X, offset = 0x%08X!\n",
1467 			    __FILE__, __LINE__, cid_addr, ctx_offset);
1468 
1469 		val = REG_RD(sc, BCE_CTX_CTX_DATA);
1470 	} else {
1471 		REG_WR(sc, BCE_CTX_DATA_ADR, offset);
1472 		val = REG_RD(sc, BCE_CTX_DATA);
1473 	}
1474 
1475 	DBPRINT(sc, BCE_EXTREME_CTX, "%s(); cid_addr = 0x%08X, offset = 0x%08X, "
1476 		"val = 0x%08X\n", __FUNCTION__, cid_addr, ctx_offset, val);
1477 
1478 	return(val);
1479 }
1480 #endif
1481 
1482 
1483 /****************************************************************************/
1484 /* Context memory write.                                                    */
1485 /*                                                                          */
1486 /* The NetXtreme II controller uses context memory to track connection      */
1487 /* information for L2 and higher network protocols.                         */
1488 /*                                                                          */
1489 /* Returns:                                                                 */
1490 /*   Nothing.                                                               */
1491 /****************************************************************************/
1492 static void
1493 bce_ctx_wr(struct bce_softc *sc, u32 cid_addr, u32 ctx_offset, u32 ctx_val)
1494 {
1495 	u32 idx, offset = ctx_offset + cid_addr;
1496 	u32 val, retry_cnt = 5;
1497 
1498 	DBPRINT(sc, BCE_EXTREME_CTX, "%s(); cid_addr = 0x%08X, offset = 0x%08X, "
1499 		"val = 0x%08X\n", __FUNCTION__, cid_addr, ctx_offset, ctx_val);
1500 
1501 	DBRUNIF((cid_addr > MAX_CID_ADDR || ctx_offset & 0x3 || cid_addr & CTX_MASK),
1502 		BCE_PRINTF("%s(): Invalid CID address: 0x%08X.\n",
1503 		    __FUNCTION__, cid_addr));
1504 
1505 	if ((BCE_CHIP_NUM(sc) == BCE_CHIP_NUM_5709) ||
1506 		(BCE_CHIP_NUM(sc) == BCE_CHIP_NUM_5716)) {
1507 
1508 		REG_WR(sc, BCE_CTX_CTX_DATA, ctx_val);
1509 		REG_WR(sc, BCE_CTX_CTX_CTRL, (offset | BCE_CTX_CTX_CTRL_WRITE_REQ));
1510 
1511 		for (idx = 0; idx < retry_cnt; idx++) {
1512 			val = REG_RD(sc, BCE_CTX_CTX_CTRL);
1513 			if ((val & BCE_CTX_CTX_CTRL_WRITE_REQ) == 0)
1514 				break;
1515 			DELAY(5);
1516 		}
1517 
1518 		if (val & BCE_CTX_CTX_CTRL_WRITE_REQ)
1519 			BCE_PRINTF("%s(%d); Unable to write CTX memory: "
1520 			    "cid_addr = 0x%08X, offset = 0x%08X!\n",
1521 			    __FILE__, __LINE__, cid_addr, ctx_offset);
1522 
1523 	} else {
1524 		REG_WR(sc, BCE_CTX_DATA_ADR, offset);
1525 		REG_WR(sc, BCE_CTX_DATA, ctx_val);
1526 	}
1527 }
1528 
1529 
1530 /****************************************************************************/
1531 /* PHY register read.                                                       */
1532 /*                                                                          */
1533 /* Implements register reads on the MII bus.                                */
1534 /*                                                                          */
1535 /* Returns:                                                                 */
1536 /*   The value of the register.                                             */
1537 /****************************************************************************/
1538 static int
1539 bce_miibus_read_reg(device_t dev, int phy, int reg)
1540 {
1541 	struct bce_softc *sc;
1542 	u32 val;
1543 	int i;
1544 
1545 	sc = device_get_softc(dev);
1546 
1547 	/* Make sure we are accessing the correct PHY address. */
1548 	if (phy != sc->bce_phy_addr) {
1549 		DBPRINT(sc, BCE_INSANE_PHY, "Invalid PHY address %d "
1550 		    "for PHY read!\n", phy);
1551 		return(0);
1552 	}
1553 
1554     /*
1555      * The 5709S PHY is an IEEE Clause 45 PHY
1556      * with special mappings to work with IEEE
1557      * Clause 22 register accesses.
1558      */
1559 	if ((sc->bce_phy_flags & BCE_PHY_IEEE_CLAUSE_45_FLAG) != 0) {
1560 		if (reg >= MII_BMCR && reg <= MII_ANLPRNP)
1561 			reg += 0x10;
1562 	}
1563 
1564     if (sc->bce_phy_flags & BCE_PHY_INT_MODE_AUTO_POLLING_FLAG) {
1565 		val = REG_RD(sc, BCE_EMAC_MDIO_MODE);
1566 		val &= ~BCE_EMAC_MDIO_MODE_AUTO_POLL;
1567 
1568 		REG_WR(sc, BCE_EMAC_MDIO_MODE, val);
1569 		REG_RD(sc, BCE_EMAC_MDIO_MODE);
1570 
1571 		DELAY(40);
1572 	}
1573 
1574 
1575 	val = BCE_MIPHY(phy) | BCE_MIREG(reg) |
1576 	    BCE_EMAC_MDIO_COMM_COMMAND_READ | BCE_EMAC_MDIO_COMM_DISEXT |
1577 	    BCE_EMAC_MDIO_COMM_START_BUSY;
1578 	REG_WR(sc, BCE_EMAC_MDIO_COMM, val);
1579 
1580 	for (i = 0; i < BCE_PHY_TIMEOUT; i++) {
1581 		DELAY(10);
1582 
1583 		val = REG_RD(sc, BCE_EMAC_MDIO_COMM);
1584 		if (!(val & BCE_EMAC_MDIO_COMM_START_BUSY)) {
1585 			DELAY(5);
1586 
1587 			val = REG_RD(sc, BCE_EMAC_MDIO_COMM);
1588 			val &= BCE_EMAC_MDIO_COMM_DATA;
1589 
1590 			break;
1591 		}
1592 	}
1593 
1594 	if (val & BCE_EMAC_MDIO_COMM_START_BUSY) {
1595 		BCE_PRINTF("%s(%d): Error: PHY read timeout! phy = %d, "
1596 		    "reg = 0x%04X\n", __FILE__, __LINE__, phy, reg);
1597 		val = 0x0;
1598 	} else {
1599 		val = REG_RD(sc, BCE_EMAC_MDIO_COMM);
1600 	}
1601 
1602 
1603 	if (sc->bce_phy_flags & BCE_PHY_INT_MODE_AUTO_POLLING_FLAG) {
1604 		val = REG_RD(sc, BCE_EMAC_MDIO_MODE);
1605 		val |= BCE_EMAC_MDIO_MODE_AUTO_POLL;
1606 
1607 		REG_WR(sc, BCE_EMAC_MDIO_MODE, val);
1608 		REG_RD(sc, BCE_EMAC_MDIO_MODE);
1609 
1610 		DELAY(40);
1611 	}
1612 
1613 	DB_PRINT_PHY_REG(reg, val);
1614 	return (val & 0xffff);
1615 
1616 }
1617 
1618 
1619 /****************************************************************************/
1620 /* PHY register write.                                                      */
1621 /*                                                                          */
1622 /* Implements register writes on the MII bus.                               */
1623 /*                                                                          */
1624 /* Returns:                                                                 */
1625 /*   The value of the register.                                             */
1626 /****************************************************************************/
1627 static int
1628 bce_miibus_write_reg(device_t dev, int phy, int reg, int val)
1629 {
1630 	struct bce_softc *sc;
1631 	u32 val1;
1632 	int i;
1633 
1634 	sc = device_get_softc(dev);
1635 
1636 	/* Make sure we are accessing the correct PHY address. */
1637 	if (phy != sc->bce_phy_addr) {
1638 		DBPRINT(sc, BCE_INSANE_PHY, "Invalid PHY address %d "
1639 		    "for PHY write!\n", phy);
1640 		return(0);
1641 	}
1642 
1643 	DB_PRINT_PHY_REG(reg, val);
1644 
1645 	/*
1646 	 * The 5709S PHY is an IEEE Clause 45 PHY
1647 	 * with special mappings to work with IEEE
1648 	 * Clause 22 register accesses.
1649 	 */
1650 	if ((sc->bce_phy_flags & BCE_PHY_IEEE_CLAUSE_45_FLAG) != 0) {
1651 		if (reg >= MII_BMCR && reg <= MII_ANLPRNP)
1652 			reg += 0x10;
1653 	}
1654 
1655 	if (sc->bce_phy_flags & BCE_PHY_INT_MODE_AUTO_POLLING_FLAG) {
1656 		val1 = REG_RD(sc, BCE_EMAC_MDIO_MODE);
1657 		val1 &= ~BCE_EMAC_MDIO_MODE_AUTO_POLL;
1658 
1659 		REG_WR(sc, BCE_EMAC_MDIO_MODE, val1);
1660 		REG_RD(sc, BCE_EMAC_MDIO_MODE);
1661 
1662 		DELAY(40);
1663 	}
1664 
1665 	val1 = BCE_MIPHY(phy) | BCE_MIREG(reg) | val |
1666 	    BCE_EMAC_MDIO_COMM_COMMAND_WRITE |
1667 	    BCE_EMAC_MDIO_COMM_START_BUSY | BCE_EMAC_MDIO_COMM_DISEXT;
1668 	REG_WR(sc, BCE_EMAC_MDIO_COMM, val1);
1669 
1670 	for (i = 0; i < BCE_PHY_TIMEOUT; i++) {
1671 		DELAY(10);
1672 
1673 		val1 = REG_RD(sc, BCE_EMAC_MDIO_COMM);
1674 		if (!(val1 & BCE_EMAC_MDIO_COMM_START_BUSY)) {
1675 			DELAY(5);
1676 			break;
1677 		}
1678 	}
1679 
1680 	if (val1 & BCE_EMAC_MDIO_COMM_START_BUSY)
1681 		BCE_PRINTF("%s(%d): PHY write timeout!\n",
1682 		    __FILE__, __LINE__);
1683 
1684 	if (sc->bce_phy_flags & BCE_PHY_INT_MODE_AUTO_POLLING_FLAG) {
1685 		val1 = REG_RD(sc, BCE_EMAC_MDIO_MODE);
1686 		val1 |= BCE_EMAC_MDIO_MODE_AUTO_POLL;
1687 
1688 		REG_WR(sc, BCE_EMAC_MDIO_MODE, val1);
1689 		REG_RD(sc, BCE_EMAC_MDIO_MODE);
1690 
1691 		DELAY(40);
1692 	}
1693 
1694 	return 0;
1695 }
1696 
1697 
1698 /****************************************************************************/
1699 /* MII bus status change.                                                   */
1700 /*                                                                          */
1701 /* Called by the MII bus driver when the PHY establishes link to set the    */
1702 /* MAC interface registers.                                                 */
1703 /*                                                                          */
1704 /* Returns:                                                                 */
1705 /*   Nothing.                                                               */
1706 /****************************************************************************/
1707 static void
1708 bce_miibus_statchg(device_t dev)
1709 {
1710 	struct bce_softc *sc;
1711 	struct mii_data *mii;
1712 	int val;
1713 
1714 	sc = device_get_softc(dev);
1715 
1716 	DBENTER(BCE_VERBOSE_PHY);
1717 
1718 	mii = device_get_softc(sc->bce_miibus);
1719 
1720 	val = REG_RD(sc, BCE_EMAC_MODE);
1721 	val &= ~(BCE_EMAC_MODE_PORT | BCE_EMAC_MODE_HALF_DUPLEX |
1722 	    BCE_EMAC_MODE_MAC_LOOP | BCE_EMAC_MODE_FORCE_LINK |
1723 	    BCE_EMAC_MODE_25G);
1724 
1725 	/* Set MII or GMII interface based on the PHY speed. */
1726 	switch (IFM_SUBTYPE(mii->mii_media_active)) {
1727 	case IFM_10_T:
1728 		if (BCE_CHIP_NUM(sc) != BCE_CHIP_NUM_5706) {
1729 			DBPRINT(sc, BCE_INFO_PHY,
1730 			    "Enabling 10Mb interface.\n");
1731 			val |= BCE_EMAC_MODE_PORT_MII_10;
1732 			break;
1733 		}
1734 		/* fall-through */
1735 	case IFM_100_TX:
1736 		DBPRINT(sc, BCE_INFO_PHY, "Enabling MII interface.\n");
1737 		val |= BCE_EMAC_MODE_PORT_MII;
1738 		break;
1739 	case IFM_2500_SX:
1740 		DBPRINT(sc, BCE_INFO_PHY, "Enabling 2.5G MAC mode.\n");
1741 		val |= BCE_EMAC_MODE_25G;
1742 		/* fall-through */
1743 	case IFM_1000_T:
1744 	case IFM_1000_SX:
1745 		DBPRINT(sc, BCE_INFO_PHY, "Enabling GMII interface.\n");
1746 		val |= BCE_EMAC_MODE_PORT_GMII;
1747 		break;
1748 	default:
1749 		DBPRINT(sc, BCE_INFO_PHY, "Unknown link speed, enabling "
1750 		    "default GMII interface.\n");
1751 		val |= BCE_EMAC_MODE_PORT_GMII;
1752 	}
1753 
1754 	/* Set half or full duplex based on PHY settings. */
1755 	if ((mii->mii_media_active & IFM_GMASK) == IFM_HDX) {
1756 		DBPRINT(sc, BCE_INFO_PHY,
1757 		    "Setting Half-Duplex interface.\n");
1758 		val |= BCE_EMAC_MODE_HALF_DUPLEX;
1759 	} else
1760 		DBPRINT(sc, BCE_INFO_PHY,
1761 		    "Setting Full-Duplex interface.\n");
1762 
1763 	REG_WR(sc, BCE_EMAC_MODE, val);
1764 
1765 	/* FLAG0 is set if RX is enabled and FLAG1 if TX is enabled */
1766  	if (mii->mii_media_active & IFM_FLAG0) {
1767 		DBPRINT(sc, BCE_INFO_PHY,
1768 		    "%s(): Enabling RX flow control.\n", __FUNCTION__);
1769 		BCE_SETBIT(sc, BCE_EMAC_RX_MODE, BCE_EMAC_RX_MODE_FLOW_EN);
1770 	} else {
1771 		DBPRINT(sc, BCE_INFO_PHY,
1772 		    "%s(): Disabling RX flow control.\n", __FUNCTION__);
1773 		BCE_CLRBIT(sc, BCE_EMAC_RX_MODE, BCE_EMAC_RX_MODE_FLOW_EN);
1774 	}
1775 
1776  	if (mii->mii_media_active & IFM_FLAG1) {
1777 		DBPRINT(sc, BCE_INFO_PHY,
1778 		    "%s(): Enabling TX flow control.\n", __FUNCTION__);
1779 		BCE_SETBIT(sc, BCE_EMAC_TX_MODE, BCE_EMAC_TX_MODE_FLOW_EN);
1780 		sc->bce_flags |= BCE_USING_TX_FLOW_CONTROL;
1781 	} else {
1782 		DBPRINT(sc, BCE_INFO_PHY,
1783 		    "%s(): Disabling TX flow control.\n", __FUNCTION__);
1784 		BCE_CLRBIT(sc, BCE_EMAC_TX_MODE, BCE_EMAC_TX_MODE_FLOW_EN);
1785 		sc->bce_flags &= ~BCE_USING_TX_FLOW_CONTROL;
1786 	}
1787 
1788 	/* ToDo: Update watermarks in bce_init_rx_context(). */
1789 
1790 	DBEXIT(BCE_VERBOSE_PHY);
1791 }
1792 
1793 
1794 /****************************************************************************/
1795 /* Acquire NVRAM lock.                                                      */
1796 /*                                                                          */
1797 /* Before the NVRAM can be accessed the caller must acquire an NVRAM lock.  */
1798 /* Locks 0 and 2 are reserved, lock 1 is used by firmware and lock 2 is     */
1799 /* for use by the driver.                                                   */
1800 /*                                                                          */
1801 /* Returns:                                                                 */
1802 /*   0 on success, positive value on failure.                               */
1803 /****************************************************************************/
1804 static int
1805 bce_acquire_nvram_lock(struct bce_softc *sc)
1806 {
1807 	u32 val;
1808 	int j, rc = 0;
1809 
1810 	DBENTER(BCE_VERBOSE_NVRAM);
1811 
1812 	/* Request access to the flash interface. */
1813 	REG_WR(sc, BCE_NVM_SW_ARB, BCE_NVM_SW_ARB_ARB_REQ_SET2);
1814 	for (j = 0; j < NVRAM_TIMEOUT_COUNT; j++) {
1815 		val = REG_RD(sc, BCE_NVM_SW_ARB);
1816 		if (val & BCE_NVM_SW_ARB_ARB_ARB2)
1817 			break;
1818 
1819 		DELAY(5);
1820 	}
1821 
1822 	if (j >= NVRAM_TIMEOUT_COUNT) {
1823 		DBPRINT(sc, BCE_WARN, "Timeout acquiring NVRAM lock!\n");
1824 		rc = EBUSY;
1825 	}
1826 
1827 	DBEXIT(BCE_VERBOSE_NVRAM);
1828 	return (rc);
1829 }
1830 
1831 
1832 /****************************************************************************/
1833 /* Release NVRAM lock.                                                      */
1834 /*                                                                          */
1835 /* When the caller is finished accessing NVRAM the lock must be released.   */
1836 /* Locks 0 and 2 are reserved, lock 1 is used by firmware and lock 2 is     */
1837 /* for use by the driver.                                                   */
1838 /*                                                                          */
1839 /* Returns:                                                                 */
1840 /*   0 on success, positive value on failure.                               */
1841 /****************************************************************************/
1842 static int
1843 bce_release_nvram_lock(struct bce_softc *sc)
1844 {
1845 	u32 val;
1846 	int j, rc = 0;
1847 
1848 	DBENTER(BCE_VERBOSE_NVRAM);
1849 
1850 	/*
1851 	 * Relinquish nvram interface.
1852 	 */
1853 	REG_WR(sc, BCE_NVM_SW_ARB, BCE_NVM_SW_ARB_ARB_REQ_CLR2);
1854 
1855 	for (j = 0; j < NVRAM_TIMEOUT_COUNT; j++) {
1856 		val = REG_RD(sc, BCE_NVM_SW_ARB);
1857 		if (!(val & BCE_NVM_SW_ARB_ARB_ARB2))
1858 			break;
1859 
1860 		DELAY(5);
1861 	}
1862 
1863 	if (j >= NVRAM_TIMEOUT_COUNT) {
1864 		DBPRINT(sc, BCE_WARN, "Timeout releasing NVRAM lock!\n");
1865 		rc = EBUSY;
1866 	}
1867 
1868 	DBEXIT(BCE_VERBOSE_NVRAM);
1869 	return (rc);
1870 }
1871 
1872 
1873 #ifdef BCE_NVRAM_WRITE_SUPPORT
1874 /****************************************************************************/
1875 /* Enable NVRAM write access.                                               */
1876 /*                                                                          */
1877 /* Before writing to NVRAM the caller must enable NVRAM writes.             */
1878 /*                                                                          */
1879 /* Returns:                                                                 */
1880 /*   0 on success, positive value on failure.                               */
1881 /****************************************************************************/
1882 static int
1883 bce_enable_nvram_write(struct bce_softc *sc)
1884 {
1885 	u32 val;
1886 	int rc = 0;
1887 
1888 	DBENTER(BCE_VERBOSE_NVRAM);
1889 
1890 	val = REG_RD(sc, BCE_MISC_CFG);
1891 	REG_WR(sc, BCE_MISC_CFG, val | BCE_MISC_CFG_NVM_WR_EN_PCI);
1892 
1893 	if (!(sc->bce_flash_info->flags & BCE_NV_BUFFERED)) {
1894 		int j;
1895 
1896 		REG_WR(sc, BCE_NVM_COMMAND, BCE_NVM_COMMAND_DONE);
1897 		REG_WR(sc, BCE_NVM_COMMAND,	BCE_NVM_COMMAND_WREN | BCE_NVM_COMMAND_DOIT);
1898 
1899 		for (j = 0; j < NVRAM_TIMEOUT_COUNT; j++) {
1900 			DELAY(5);
1901 
1902 			val = REG_RD(sc, BCE_NVM_COMMAND);
1903 			if (val & BCE_NVM_COMMAND_DONE)
1904 				break;
1905 		}
1906 
1907 		if (j >= NVRAM_TIMEOUT_COUNT) {
1908 			DBPRINT(sc, BCE_WARN, "Timeout writing NVRAM!\n");
1909 			rc = EBUSY;
1910 		}
1911 	}
1912 
1913 	DBENTER(BCE_VERBOSE_NVRAM);
1914 	return (rc);
1915 }
1916 
1917 
1918 /****************************************************************************/
1919 /* Disable NVRAM write access.                                              */
1920 /*                                                                          */
1921 /* When the caller is finished writing to NVRAM write access must be        */
1922 /* disabled.                                                                */
1923 /*                                                                          */
1924 /* Returns:                                                                 */
1925 /*   Nothing.                                                               */
1926 /****************************************************************************/
1927 static void
1928 bce_disable_nvram_write(struct bce_softc *sc)
1929 {
1930 	u32 val;
1931 
1932 	DBENTER(BCE_VERBOSE_NVRAM);
1933 
1934 	val = REG_RD(sc, BCE_MISC_CFG);
1935 	REG_WR(sc, BCE_MISC_CFG, val & ~BCE_MISC_CFG_NVM_WR_EN);
1936 
1937 	DBEXIT(BCE_VERBOSE_NVRAM);
1938 
1939 }
1940 #endif
1941 
1942 
1943 /****************************************************************************/
1944 /* Enable NVRAM access.                                                     */
1945 /*                                                                          */
1946 /* Before accessing NVRAM for read or write operations the caller must      */
1947 /* enabled NVRAM access.                                                    */
1948 /*                                                                          */
1949 /* Returns:                                                                 */
1950 /*   Nothing.                                                               */
1951 /****************************************************************************/
1952 static void
1953 bce_enable_nvram_access(struct bce_softc *sc)
1954 {
1955 	u32 val;
1956 
1957 	DBENTER(BCE_VERBOSE_NVRAM);
1958 
1959 	val = REG_RD(sc, BCE_NVM_ACCESS_ENABLE);
1960 	/* Enable both bits, even on read. */
1961 	REG_WR(sc, BCE_NVM_ACCESS_ENABLE, val |
1962 	    BCE_NVM_ACCESS_ENABLE_EN | BCE_NVM_ACCESS_ENABLE_WR_EN);
1963 
1964 	DBEXIT(BCE_VERBOSE_NVRAM);
1965 }
1966 
1967 
1968 /****************************************************************************/
1969 /* Disable NVRAM access.                                                    */
1970 /*                                                                          */
1971 /* When the caller is finished accessing NVRAM access must be disabled.     */
1972 /*                                                                          */
1973 /* Returns:                                                                 */
1974 /*   Nothing.                                                               */
1975 /****************************************************************************/
1976 static void
1977 bce_disable_nvram_access(struct bce_softc *sc)
1978 {
1979 	u32 val;
1980 
1981 	DBENTER(BCE_VERBOSE_NVRAM);
1982 
1983 	val = REG_RD(sc, BCE_NVM_ACCESS_ENABLE);
1984 
1985 	/* Disable both bits, even after read. */
1986 	REG_WR(sc, BCE_NVM_ACCESS_ENABLE, val &
1987 	    ~(BCE_NVM_ACCESS_ENABLE_EN | BCE_NVM_ACCESS_ENABLE_WR_EN));
1988 
1989 	DBEXIT(BCE_VERBOSE_NVRAM);
1990 }
1991 
1992 
1993 #ifdef BCE_NVRAM_WRITE_SUPPORT
1994 /****************************************************************************/
1995 /* Erase NVRAM page before writing.                                         */
1996 /*                                                                          */
1997 /* Non-buffered flash parts require that a page be erased before it is      */
1998 /* written.                                                                 */
1999 /*                                                                          */
2000 /* Returns:                                                                 */
2001 /*   0 on success, positive value on failure.                               */
2002 /****************************************************************************/
2003 static int
2004 bce_nvram_erase_page(struct bce_softc *sc, u32 offset)
2005 {
2006 	u32 cmd;
2007 	int j, rc = 0;
2008 
2009 	DBENTER(BCE_VERBOSE_NVRAM);
2010 
2011 	/* Buffered flash doesn't require an erase. */
2012 	if (sc->bce_flash_info->flags & BCE_NV_BUFFERED)
2013 		goto bce_nvram_erase_page_exit;
2014 
2015 	/* Build an erase command. */
2016 	cmd = BCE_NVM_COMMAND_ERASE | BCE_NVM_COMMAND_WR |
2017 	    BCE_NVM_COMMAND_DOIT;
2018 
2019 	/*
2020 	 * Clear the DONE bit separately, set the NVRAM adress to erase,
2021 	 * and issue the erase command.
2022 	 */
2023 	REG_WR(sc, BCE_NVM_COMMAND, BCE_NVM_COMMAND_DONE);
2024 	REG_WR(sc, BCE_NVM_ADDR, offset & BCE_NVM_ADDR_NVM_ADDR_VALUE);
2025 	REG_WR(sc, BCE_NVM_COMMAND, cmd);
2026 
2027 	/* Wait for completion. */
2028 	for (j = 0; j < NVRAM_TIMEOUT_COUNT; j++) {
2029 		u32 val;
2030 
2031 		DELAY(5);
2032 
2033 		val = REG_RD(sc, BCE_NVM_COMMAND);
2034 		if (val & BCE_NVM_COMMAND_DONE)
2035 			break;
2036 	}
2037 
2038 	if (j >= NVRAM_TIMEOUT_COUNT) {
2039 		DBPRINT(sc, BCE_WARN, "Timeout erasing NVRAM.\n");
2040 		rc = EBUSY;
2041 	}
2042 
2043 bce_nvram_erase_page_exit:
2044 	DBEXIT(BCE_VERBOSE_NVRAM);
2045 	return (rc);
2046 }
2047 #endif /* BCE_NVRAM_WRITE_SUPPORT */
2048 
2049 
2050 /****************************************************************************/
2051 /* Read a dword (32 bits) from NVRAM.                                       */
2052 /*                                                                          */
2053 /* Read a 32 bit word from NVRAM.  The caller is assumed to have already    */
2054 /* obtained the NVRAM lock and enabled the controller for NVRAM access.     */
2055 /*                                                                          */
2056 /* Returns:                                                                 */
2057 /*   0 on success and the 32 bit value read, positive value on failure.     */
2058 /****************************************************************************/
2059 static int
2060 bce_nvram_read_dword(struct bce_softc *sc,
2061     u32 offset, u8 *ret_val, u32 cmd_flags)
2062 {
2063 	u32 cmd;
2064 	int i, rc = 0;
2065 
2066 	DBENTER(BCE_EXTREME_NVRAM);
2067 
2068 	/* Build the command word. */
2069 	cmd = BCE_NVM_COMMAND_DOIT | cmd_flags;
2070 
2071 	/* Calculate the offset for buffered flash if translation is used. */
2072 	if (sc->bce_flash_info->flags & BCE_NV_TRANSLATE) {
2073 		offset = ((offset / sc->bce_flash_info->page_size) <<
2074 		    sc->bce_flash_info->page_bits) +
2075 		    (offset % sc->bce_flash_info->page_size);
2076 	}
2077 
2078 	/*
2079 	 * Clear the DONE bit separately, set the address to read,
2080 	 * and issue the read.
2081 	 */
2082 	REG_WR(sc, BCE_NVM_COMMAND, BCE_NVM_COMMAND_DONE);
2083 	REG_WR(sc, BCE_NVM_ADDR, offset & BCE_NVM_ADDR_NVM_ADDR_VALUE);
2084 	REG_WR(sc, BCE_NVM_COMMAND, cmd);
2085 
2086 	/* Wait for completion. */
2087 	for (i = 0; i < NVRAM_TIMEOUT_COUNT; i++) {
2088 		u32 val;
2089 
2090 		DELAY(5);
2091 
2092 		val = REG_RD(sc, BCE_NVM_COMMAND);
2093 		if (val & BCE_NVM_COMMAND_DONE) {
2094 			val = REG_RD(sc, BCE_NVM_READ);
2095 
2096 			val = bce_be32toh(val);
2097 			memcpy(ret_val, &val, 4);
2098 			break;
2099 		}
2100 	}
2101 
2102 	/* Check for errors. */
2103 	if (i >= NVRAM_TIMEOUT_COUNT) {
2104 		BCE_PRINTF("%s(%d): Timeout error reading NVRAM at "
2105 		    "offset 0x%08X!\n",	__FILE__, __LINE__, offset);
2106 		rc = EBUSY;
2107 	}
2108 
2109 	DBEXIT(BCE_EXTREME_NVRAM);
2110 	return(rc);
2111 }
2112 
2113 
2114 #ifdef BCE_NVRAM_WRITE_SUPPORT
2115 /****************************************************************************/
2116 /* Write a dword (32 bits) to NVRAM.                                        */
2117 /*                                                                          */
2118 /* Write a 32 bit word to NVRAM.  The caller is assumed to have already     */
2119 /* obtained the NVRAM lock, enabled the controller for NVRAM access, and    */
2120 /* enabled NVRAM write access.                                              */
2121 /*                                                                          */
2122 /* Returns:                                                                 */
2123 /*   0 on success, positive value on failure.                               */
2124 /****************************************************************************/
2125 static int
2126 bce_nvram_write_dword(struct bce_softc *sc, u32 offset, u8 *val,
2127 	u32 cmd_flags)
2128 {
2129 	u32 cmd, val32;
2130 	int j, rc = 0;
2131 
2132 	DBENTER(BCE_VERBOSE_NVRAM);
2133 
2134 	/* Build the command word. */
2135 	cmd = BCE_NVM_COMMAND_DOIT | BCE_NVM_COMMAND_WR | cmd_flags;
2136 
2137 	/* Calculate the offset for buffered flash if translation is used. */
2138 	if (sc->bce_flash_info->flags & BCE_NV_TRANSLATE) {
2139 		offset = ((offset / sc->bce_flash_info->page_size) <<
2140 		    sc->bce_flash_info->page_bits) +
2141 		    (offset % sc->bce_flash_info->page_size);
2142 	}
2143 
2144 	/*
2145 	 * Clear the DONE bit separately, convert NVRAM data to big-endian,
2146 	 * set the NVRAM address to write, and issue the write command
2147 	 */
2148 	REG_WR(sc, BCE_NVM_COMMAND, BCE_NVM_COMMAND_DONE);
2149 	memcpy(&val32, val, 4);
2150 	val32 = htobe32(val32);
2151 	REG_WR(sc, BCE_NVM_WRITE, val32);
2152 	REG_WR(sc, BCE_NVM_ADDR, offset & BCE_NVM_ADDR_NVM_ADDR_VALUE);
2153 	REG_WR(sc, BCE_NVM_COMMAND, cmd);
2154 
2155 	/* Wait for completion. */
2156 	for (j = 0; j < NVRAM_TIMEOUT_COUNT; j++) {
2157 		DELAY(5);
2158 
2159 		if (REG_RD(sc, BCE_NVM_COMMAND) & BCE_NVM_COMMAND_DONE)
2160 			break;
2161 	}
2162 	if (j >= NVRAM_TIMEOUT_COUNT) {
2163 		BCE_PRINTF("%s(%d): Timeout error writing NVRAM at "
2164 		    "offset 0x%08X\n", __FILE__, __LINE__, offset);
2165 		rc = EBUSY;
2166 	}
2167 
2168 	DBEXIT(BCE_VERBOSE_NVRAM);
2169 	return (rc);
2170 }
2171 #endif /* BCE_NVRAM_WRITE_SUPPORT */
2172 
2173 
2174 /****************************************************************************/
2175 /* Initialize NVRAM access.                                                 */
2176 /*                                                                          */
2177 /* Identify the NVRAM device in use and prepare the NVRAM interface to      */
2178 /* access that device.                                                      */
2179 /*                                                                          */
2180 /* Returns:                                                                 */
2181 /*   0 on success, positive value on failure.                               */
2182 /****************************************************************************/
2183 static int
2184 bce_init_nvram(struct bce_softc *sc)
2185 {
2186 	u32 val;
2187 	int j, entry_count, rc = 0;
2188 	struct flash_spec *flash;
2189 
2190 	DBENTER(BCE_VERBOSE_NVRAM);
2191 
2192 	if ((BCE_CHIP_NUM(sc) == BCE_CHIP_NUM_5709) ||
2193 		(BCE_CHIP_NUM(sc) == BCE_CHIP_NUM_5716)) {
2194 		sc->bce_flash_info = &flash_5709;
2195 		goto bce_init_nvram_get_flash_size;
2196 	}
2197 
2198 	/* Determine the selected interface. */
2199 	val = REG_RD(sc, BCE_NVM_CFG1);
2200 
2201 	entry_count = sizeof(flash_table) / sizeof(struct flash_spec);
2202 
2203 	/*
2204 	 * Flash reconfiguration is required to support additional
2205 	 * NVRAM devices not directly supported in hardware.
2206 	 * Check if the flash interface was reconfigured
2207 	 * by the bootcode.
2208 	 */
2209 
2210 	if (val & 0x40000000) {
2211 		/* Flash interface reconfigured by bootcode. */
2212 
2213 		DBPRINT(sc,BCE_INFO_LOAD,
2214 			"bce_init_nvram(): Flash WAS reconfigured.\n");
2215 
2216 		for (j = 0, flash = &flash_table[0]; j < entry_count;
2217 		     j++, flash++) {
2218 			if ((val & FLASH_BACKUP_STRAP_MASK) ==
2219 			    (flash->config1 & FLASH_BACKUP_STRAP_MASK)) {
2220 				sc->bce_flash_info = flash;
2221 				break;
2222 			}
2223 		}
2224 	} else {
2225 		/* Flash interface not yet reconfigured. */
2226 		u32 mask;
2227 
2228 		DBPRINT(sc, BCE_INFO_LOAD, "%s(): Flash was NOT reconfigured.\n",
2229 			__FUNCTION__);
2230 
2231 		if (val & (1 << 23))
2232 			mask = FLASH_BACKUP_STRAP_MASK;
2233 		else
2234 			mask = FLASH_STRAP_MASK;
2235 
2236 		/* Look for the matching NVRAM device configuration data. */
2237 		for (j = 0, flash = &flash_table[0]; j < entry_count; j++, flash++) {
2238 
2239 			/* Check if the device matches any of the known devices. */
2240 			if ((val & mask) == (flash->strapping & mask)) {
2241 				/* Found a device match. */
2242 				sc->bce_flash_info = flash;
2243 
2244 				/* Request access to the flash interface. */
2245 				if ((rc = bce_acquire_nvram_lock(sc)) != 0)
2246 					return rc;
2247 
2248 				/* Reconfigure the flash interface. */
2249 				bce_enable_nvram_access(sc);
2250 				REG_WR(sc, BCE_NVM_CFG1, flash->config1);
2251 				REG_WR(sc, BCE_NVM_CFG2, flash->config2);
2252 				REG_WR(sc, BCE_NVM_CFG3, flash->config3);
2253 				REG_WR(sc, BCE_NVM_WRITE1, flash->write1);
2254 				bce_disable_nvram_access(sc);
2255 				bce_release_nvram_lock(sc);
2256 
2257 				break;
2258 			}
2259 		}
2260 	}
2261 
2262 	/* Check if a matching device was found. */
2263 	if (j == entry_count) {
2264 		sc->bce_flash_info = NULL;
2265 		BCE_PRINTF("%s(%d): Unknown Flash NVRAM found!\n",
2266 		    __FILE__, __LINE__);
2267 		DBEXIT(BCE_VERBOSE_NVRAM);
2268 		return (ENODEV);
2269 	}
2270 
2271 bce_init_nvram_get_flash_size:
2272 	/* Write the flash config data to the shared memory interface. */
2273 	val = bce_shmem_rd(sc, BCE_SHARED_HW_CFG_CONFIG2);
2274 	val &= BCE_SHARED_HW_CFG2_NVM_SIZE_MASK;
2275 	if (val)
2276 		sc->bce_flash_size = val;
2277 	else
2278 		sc->bce_flash_size = sc->bce_flash_info->total_size;
2279 
2280 	DBPRINT(sc, BCE_INFO_LOAD, "%s(): Found %s, size = 0x%08X\n",
2281 	    __FUNCTION__, sc->bce_flash_info->name,
2282 	    sc->bce_flash_info->total_size);
2283 
2284 	DBEXIT(BCE_VERBOSE_NVRAM);
2285 	return rc;
2286 }
2287 
2288 
2289 /****************************************************************************/
2290 /* Read an arbitrary range of data from NVRAM.                              */
2291 /*                                                                          */
2292 /* Prepares the NVRAM interface for access and reads the requested data     */
2293 /* into the supplied buffer.                                                */
2294 /*                                                                          */
2295 /* Returns:                                                                 */
2296 /*   0 on success and the data read, positive value on failure.             */
2297 /****************************************************************************/
2298 static int
2299 bce_nvram_read(struct bce_softc *sc, u32 offset, u8 *ret_buf,
2300 	int buf_size)
2301 {
2302 	int rc = 0;
2303 	u32 cmd_flags, offset32, len32, extra;
2304 
2305 	DBENTER(BCE_VERBOSE_NVRAM);
2306 
2307 	if (buf_size == 0)
2308 		goto bce_nvram_read_exit;
2309 
2310 	/* Request access to the flash interface. */
2311 	if ((rc = bce_acquire_nvram_lock(sc)) != 0)
2312 		goto bce_nvram_read_exit;
2313 
2314 	/* Enable access to flash interface */
2315 	bce_enable_nvram_access(sc);
2316 
2317 	len32 = buf_size;
2318 	offset32 = offset;
2319 	extra = 0;
2320 
2321 	cmd_flags = 0;
2322 
2323 	if (offset32 & 3) {
2324 		u8 buf[4];
2325 		u32 pre_len;
2326 
2327 		offset32 &= ~3;
2328 		pre_len = 4 - (offset & 3);
2329 
2330 		if (pre_len >= len32) {
2331 			pre_len = len32;
2332 			cmd_flags = BCE_NVM_COMMAND_FIRST | BCE_NVM_COMMAND_LAST;
2333 		}
2334 		else {
2335 			cmd_flags = BCE_NVM_COMMAND_FIRST;
2336 		}
2337 
2338 		rc = bce_nvram_read_dword(sc, offset32, buf, cmd_flags);
2339 
2340 		if (rc)
2341 			return rc;
2342 
2343 		memcpy(ret_buf, buf + (offset & 3), pre_len);
2344 
2345 		offset32 += 4;
2346 		ret_buf += pre_len;
2347 		len32 -= pre_len;
2348 	}
2349 
2350 	if (len32 & 3) {
2351 		extra = 4 - (len32 & 3);
2352 		len32 = (len32 + 4) & ~3;
2353 	}
2354 
2355 	if (len32 == 4) {
2356 		u8 buf[4];
2357 
2358 		if (cmd_flags)
2359 			cmd_flags = BCE_NVM_COMMAND_LAST;
2360 		else
2361 			cmd_flags = BCE_NVM_COMMAND_FIRST |
2362 				    BCE_NVM_COMMAND_LAST;
2363 
2364 		rc = bce_nvram_read_dword(sc, offset32, buf, cmd_flags);
2365 
2366 		memcpy(ret_buf, buf, 4 - extra);
2367 	}
2368 	else if (len32 > 0) {
2369 		u8 buf[4];
2370 
2371 		/* Read the first word. */
2372 		if (cmd_flags)
2373 			cmd_flags = 0;
2374 		else
2375 			cmd_flags = BCE_NVM_COMMAND_FIRST;
2376 
2377 		rc = bce_nvram_read_dword(sc, offset32, ret_buf, cmd_flags);
2378 
2379 		/* Advance to the next dword. */
2380 		offset32 += 4;
2381 		ret_buf += 4;
2382 		len32 -= 4;
2383 
2384 		while (len32 > 4 && rc == 0) {
2385 			rc = bce_nvram_read_dword(sc, offset32, ret_buf, 0);
2386 
2387 			/* Advance to the next dword. */
2388 			offset32 += 4;
2389 			ret_buf += 4;
2390 			len32 -= 4;
2391 		}
2392 
2393 		if (rc)
2394 			goto bce_nvram_read_locked_exit;
2395 
2396 		cmd_flags = BCE_NVM_COMMAND_LAST;
2397 		rc = bce_nvram_read_dword(sc, offset32, buf, cmd_flags);
2398 
2399 		memcpy(ret_buf, buf, 4 - extra);
2400 	}
2401 
2402 bce_nvram_read_locked_exit:
2403 	/* Disable access to flash interface and release the lock. */
2404 	bce_disable_nvram_access(sc);
2405 	bce_release_nvram_lock(sc);
2406 
2407 bce_nvram_read_exit:
2408 	DBEXIT(BCE_VERBOSE_NVRAM);
2409 	return rc;
2410 }
2411 
2412 
2413 #ifdef BCE_NVRAM_WRITE_SUPPORT
2414 /****************************************************************************/
2415 /* Write an arbitrary range of data from NVRAM.                             */
2416 /*                                                                          */
2417 /* Prepares the NVRAM interface for write access and writes the requested   */
2418 /* data from the supplied buffer.  The caller is responsible for            */
2419 /* calculating any appropriate CRCs.                                        */
2420 /*                                                                          */
2421 /* Returns:                                                                 */
2422 /*   0 on success, positive value on failure.                               */
2423 /****************************************************************************/
2424 static int
2425 bce_nvram_write(struct bce_softc *sc, u32 offset, u8 *data_buf,
2426 	int buf_size)
2427 {
2428 	u32 written, offset32, len32;
2429 	u8 *buf, start[4], end[4];
2430 	int rc = 0;
2431 	int align_start, align_end;
2432 
2433 	DBENTER(BCE_VERBOSE_NVRAM);
2434 
2435 	buf = data_buf;
2436 	offset32 = offset;
2437 	len32 = buf_size;
2438 	align_start = align_end = 0;
2439 
2440 	if ((align_start = (offset32 & 3))) {
2441 		offset32 &= ~3;
2442 		len32 += align_start;
2443 		if ((rc = bce_nvram_read(sc, offset32, start, 4)))
2444 			goto bce_nvram_write_exit;
2445 	}
2446 
2447 	if (len32 & 3) {
2448 	       	if ((len32 > 4) || !align_start) {
2449 			align_end = 4 - (len32 & 3);
2450 			len32 += align_end;
2451 			if ((rc = bce_nvram_read(sc, offset32 + len32 - 4,
2452 				end, 4))) {
2453 				goto bce_nvram_write_exit;
2454 			}
2455 		}
2456 	}
2457 
2458 	if (align_start || align_end) {
2459 		buf = malloc(len32, M_DEVBUF, M_NOWAIT);
2460 		if (buf == 0) {
2461 			rc = ENOMEM;
2462 			goto bce_nvram_write_exit;
2463 		}
2464 
2465 		if (align_start) {
2466 			memcpy(buf, start, 4);
2467 		}
2468 
2469 		if (align_end) {
2470 			memcpy(buf + len32 - 4, end, 4);
2471 		}
2472 		memcpy(buf + align_start, data_buf, buf_size);
2473 	}
2474 
2475 	written = 0;
2476 	while ((written < len32) && (rc == 0)) {
2477 		u32 page_start, page_end, data_start, data_end;
2478 		u32 addr, cmd_flags;
2479 		int i;
2480 		u8 flash_buffer[264];
2481 
2482 	    /* Find the page_start addr */
2483 		page_start = offset32 + written;
2484 		page_start -= (page_start % sc->bce_flash_info->page_size);
2485 		/* Find the page_end addr */
2486 		page_end = page_start + sc->bce_flash_info->page_size;
2487 		/* Find the data_start addr */
2488 		data_start = (written == 0) ? offset32 : page_start;
2489 		/* Find the data_end addr */
2490 		data_end = (page_end > offset32 + len32) ?
2491 			(offset32 + len32) : page_end;
2492 
2493 		/* Request access to the flash interface. */
2494 		if ((rc = bce_acquire_nvram_lock(sc)) != 0)
2495 			goto bce_nvram_write_exit;
2496 
2497 		/* Enable access to flash interface */
2498 		bce_enable_nvram_access(sc);
2499 
2500 		cmd_flags = BCE_NVM_COMMAND_FIRST;
2501 		if (!(sc->bce_flash_info->flags & BCE_NV_BUFFERED)) {
2502 			int j;
2503 
2504 			/* Read the whole page into the buffer
2505 			 * (non-buffer flash only) */
2506 			for (j = 0; j < sc->bce_flash_info->page_size; j += 4) {
2507 				if (j == (sc->bce_flash_info->page_size - 4)) {
2508 					cmd_flags |= BCE_NVM_COMMAND_LAST;
2509 				}
2510 				rc = bce_nvram_read_dword(sc,
2511 					page_start + j,
2512 					&flash_buffer[j],
2513 					cmd_flags);
2514 
2515 				if (rc)
2516 					goto bce_nvram_write_locked_exit;
2517 
2518 				cmd_flags = 0;
2519 			}
2520 		}
2521 
2522 		/* Enable writes to flash interface (unlock write-protect) */
2523 		if ((rc = bce_enable_nvram_write(sc)) != 0)
2524 			goto bce_nvram_write_locked_exit;
2525 
2526 		/* Erase the page */
2527 		if ((rc = bce_nvram_erase_page(sc, page_start)) != 0)
2528 			goto bce_nvram_write_locked_exit;
2529 
2530 		/* Re-enable the write again for the actual write */
2531 		bce_enable_nvram_write(sc);
2532 
2533 		/* Loop to write back the buffer data from page_start to
2534 		 * data_start */
2535 		i = 0;
2536 		if (!(sc->bce_flash_info->flags & BCE_NV_BUFFERED)) {
2537 			for (addr = page_start; addr < data_start;
2538 				addr += 4, i += 4) {
2539 
2540 				rc = bce_nvram_write_dword(sc, addr,
2541 					&flash_buffer[i], cmd_flags);
2542 
2543 				if (rc != 0)
2544 					goto bce_nvram_write_locked_exit;
2545 
2546 				cmd_flags = 0;
2547 			}
2548 		}
2549 
2550 		/* Loop to write the new data from data_start to data_end */
2551 		for (addr = data_start; addr < data_end; addr += 4, i++) {
2552 			if ((addr == page_end - 4) ||
2553 				((sc->bce_flash_info->flags & BCE_NV_BUFFERED) &&
2554 				(addr == data_end - 4))) {
2555 
2556 				cmd_flags |= BCE_NVM_COMMAND_LAST;
2557 			}
2558 			rc = bce_nvram_write_dword(sc, addr, buf,
2559 				cmd_flags);
2560 
2561 			if (rc != 0)
2562 				goto bce_nvram_write_locked_exit;
2563 
2564 			cmd_flags = 0;
2565 			buf += 4;
2566 		}
2567 
2568 		/* Loop to write back the buffer data from data_end
2569 		 * to page_end */
2570 		if (!(sc->bce_flash_info->flags & BCE_NV_BUFFERED)) {
2571 			for (addr = data_end; addr < page_end;
2572 				addr += 4, i += 4) {
2573 
2574 				if (addr == page_end-4) {
2575 					cmd_flags = BCE_NVM_COMMAND_LAST;
2576                 		}
2577 				rc = bce_nvram_write_dword(sc, addr,
2578 					&flash_buffer[i], cmd_flags);
2579 
2580 				if (rc != 0)
2581 					goto bce_nvram_write_locked_exit;
2582 
2583 				cmd_flags = 0;
2584 			}
2585 		}
2586 
2587 		/* Disable writes to flash interface (lock write-protect) */
2588 		bce_disable_nvram_write(sc);
2589 
2590 		/* Disable access to flash interface */
2591 		bce_disable_nvram_access(sc);
2592 		bce_release_nvram_lock(sc);
2593 
2594 		/* Increment written */
2595 		written += data_end - data_start;
2596 	}
2597 
2598 	goto bce_nvram_write_exit;
2599 
2600 bce_nvram_write_locked_exit:
2601 		bce_disable_nvram_write(sc);
2602 		bce_disable_nvram_access(sc);
2603 		bce_release_nvram_lock(sc);
2604 
2605 bce_nvram_write_exit:
2606 	if (align_start || align_end)
2607 		free(buf, M_DEVBUF);
2608 
2609 	DBEXIT(BCE_VERBOSE_NVRAM);
2610 	return (rc);
2611 }
2612 #endif /* BCE_NVRAM_WRITE_SUPPORT */
2613 
2614 
2615 /****************************************************************************/
2616 /* Verifies that NVRAM is accessible and contains valid data.               */
2617 /*                                                                          */
2618 /* Reads the configuration data from NVRAM and verifies that the CRC is     */
2619 /* correct.                                                                 */
2620 /*                                                                          */
2621 /* Returns:                                                                 */
2622 /*   0 on success, positive value on failure.                               */
2623 /****************************************************************************/
2624 static int
2625 bce_nvram_test(struct bce_softc *sc)
2626 {
2627 	u32 buf[BCE_NVRAM_SIZE / 4];
2628 	u8 *data = (u8 *) buf;
2629 	int rc = 0;
2630 	u32 magic, csum;
2631 
2632 	DBENTER(BCE_VERBOSE_NVRAM | BCE_VERBOSE_LOAD | BCE_VERBOSE_RESET);
2633 
2634 	/*
2635 	 * Check that the device NVRAM is valid by reading
2636 	 * the magic value at offset 0.
2637 	 */
2638 	if ((rc = bce_nvram_read(sc, 0, data, 4)) != 0) {
2639 		BCE_PRINTF("%s(%d): Unable to read NVRAM!\n",
2640 		    __FILE__, __LINE__);
2641 		goto bce_nvram_test_exit;
2642 	}
2643 
2644 	/*
2645 	 * Verify that offset 0 of the NVRAM contains
2646 	 * a valid magic number.
2647 	 */
2648     magic = bce_be32toh(buf[0]);
2649 	if (magic != BCE_NVRAM_MAGIC) {
2650 		rc = ENODEV;
2651 		BCE_PRINTF("%s(%d): Invalid NVRAM magic value! "
2652 		    "Expected: 0x%08X, Found: 0x%08X\n",
2653 		    __FILE__, __LINE__, BCE_NVRAM_MAGIC, magic);
2654 		goto bce_nvram_test_exit;
2655 	}
2656 
2657 	/*
2658 	 * Verify that the device NVRAM includes valid
2659 	 * configuration data.
2660 	 */
2661 	if ((rc = bce_nvram_read(sc, 0x100, data, BCE_NVRAM_SIZE)) != 0) {
2662 		BCE_PRINTF("%s(%d): Unable to read manufacturing "
2663 		    "Information from  NVRAM!\n", __FILE__, __LINE__);
2664 		goto bce_nvram_test_exit;
2665 	}
2666 
2667 	csum = ether_crc32_le(data, 0x100);
2668 	if (csum != BCE_CRC32_RESIDUAL) {
2669 		rc = ENODEV;
2670 		BCE_PRINTF("%s(%d): Invalid manufacturing information "
2671 		    "NVRAM CRC!	Expected: 0x%08X, Found: 0x%08X\n",
2672 		    __FILE__, __LINE__, BCE_CRC32_RESIDUAL, csum);
2673 		goto bce_nvram_test_exit;
2674 	}
2675 
2676 	csum = ether_crc32_le(data + 0x100, 0x100);
2677 	if (csum != BCE_CRC32_RESIDUAL) {
2678 		rc = ENODEV;
2679 		BCE_PRINTF("%s(%d): Invalid feature configuration "
2680 		    "information NVRAM CRC! Expected: 0x%08X, "
2681 		    "Found: 08%08X\n", __FILE__, __LINE__,
2682 		    BCE_CRC32_RESIDUAL, csum);
2683 	}
2684 
2685 bce_nvram_test_exit:
2686 	DBEXIT(BCE_VERBOSE_NVRAM | BCE_VERBOSE_LOAD | BCE_VERBOSE_RESET);
2687 	return rc;
2688 }
2689 
2690 
2691 /****************************************************************************/
2692 /* Identifies the current media type of the controller and sets the PHY     */
2693 /* address.                                                                 */
2694 /*                                                                          */
2695 /* Returns:                                                                 */
2696 /*   Nothing.                                                               */
2697 /****************************************************************************/
2698 static void
2699 bce_get_media(struct bce_softc *sc)
2700 {
2701 	u32 val;
2702 
2703 	DBENTER(BCE_VERBOSE_PHY);
2704 
2705 	/* Assume PHY address for copper controllers. */
2706 	sc->bce_phy_addr = 1;
2707 
2708 	if (BCE_CHIP_NUM(sc) == BCE_CHIP_NUM_5709) {
2709  		u32 val = REG_RD(sc, BCE_MISC_DUAL_MEDIA_CTRL);
2710 		u32 bond_id = val & BCE_MISC_DUAL_MEDIA_CTRL_BOND_ID;
2711 		u32 strap;
2712 
2713 		/*
2714 		 * The BCM5709S is software configurable
2715 		 * for Copper or SerDes operation.
2716 		 */
2717 		if (bond_id == BCE_MISC_DUAL_MEDIA_CTRL_BOND_ID_C) {
2718 			DBPRINT(sc, BCE_INFO_LOAD, "5709 bonded "
2719 			    "for copper.\n");
2720 			goto bce_get_media_exit;
2721 		} else if (bond_id == BCE_MISC_DUAL_MEDIA_CTRL_BOND_ID_S) {
2722 			DBPRINT(sc, BCE_INFO_LOAD, "5709 bonded "
2723 			    "for dual media.\n");
2724 			sc->bce_phy_flags |= BCE_PHY_SERDES_FLAG;
2725 			goto bce_get_media_exit;
2726 		}
2727 
2728 		if (val & BCE_MISC_DUAL_MEDIA_CTRL_STRAP_OVERRIDE)
2729 			strap = (val &
2730 			    BCE_MISC_DUAL_MEDIA_CTRL_PHY_CTRL) >> 21;
2731 		else
2732 			strap = (val &
2733 			    BCE_MISC_DUAL_MEDIA_CTRL_PHY_CTRL_STRAP) >> 8;
2734 
2735 		if (pci_get_function(sc->bce_dev) == 0) {
2736 			switch (strap) {
2737 			case 0x4:
2738 			case 0x5:
2739 			case 0x6:
2740 				DBPRINT(sc, BCE_INFO_LOAD,
2741 				    "BCM5709 s/w configured for SerDes.\n");
2742 				sc->bce_phy_flags |= BCE_PHY_SERDES_FLAG;
2743 				break;
2744 			default:
2745 				DBPRINT(sc, BCE_INFO_LOAD,
2746 				    "BCM5709 s/w configured for Copper.\n");
2747 				break;
2748 			}
2749 		} else {
2750 			switch (strap) {
2751 			case 0x1:
2752 			case 0x2:
2753 			case 0x4:
2754 				DBPRINT(sc, BCE_INFO_LOAD,
2755 				    "BCM5709 s/w configured for SerDes.\n");
2756 				sc->bce_phy_flags |= BCE_PHY_SERDES_FLAG;
2757 				break;
2758 			default:
2759 				DBPRINT(sc, BCE_INFO_LOAD,
2760 				    "BCM5709 s/w configured for Copper.\n");
2761 				break;
2762 			}
2763 		}
2764 
2765 	} else if (BCE_CHIP_BOND_ID(sc) & BCE_CHIP_BOND_ID_SERDES_BIT)
2766 		sc->bce_phy_flags |= BCE_PHY_SERDES_FLAG;
2767 
2768 	if (sc->bce_phy_flags & BCE_PHY_SERDES_FLAG) {
2769 
2770 		sc->bce_flags |= BCE_NO_WOL_FLAG;
2771 
2772 		if (BCE_CHIP_NUM(sc) == BCE_CHIP_NUM_5709)
2773 			sc->bce_phy_flags |= BCE_PHY_IEEE_CLAUSE_45_FLAG;
2774 
2775 		if (BCE_CHIP_NUM(sc) != BCE_CHIP_NUM_5706) {
2776 			/* 5708S/09S/16S use a separate PHY for SerDes. */
2777 			sc->bce_phy_addr = 2;
2778 
2779 			val = bce_shmem_rd(sc, BCE_SHARED_HW_CFG_CONFIG);
2780 			if (val & BCE_SHARED_HW_CFG_PHY_2_5G) {
2781 				sc->bce_phy_flags |=
2782 				    BCE_PHY_2_5G_CAPABLE_FLAG;
2783 				DBPRINT(sc, BCE_INFO_LOAD, "Found 2.5Gb "
2784 				    "capable adapter\n");
2785 			}
2786 		}
2787 	} else if ((BCE_CHIP_NUM(sc) == BCE_CHIP_NUM_5706) ||
2788 	    (BCE_CHIP_NUM(sc) == BCE_CHIP_NUM_5708))
2789 		sc->bce_phy_flags |= BCE_PHY_CRC_FIX_FLAG;
2790 
2791 bce_get_media_exit:
2792 	DBPRINT(sc, (BCE_INFO_LOAD | BCE_INFO_PHY),
2793 		"Using PHY address %d.\n", sc->bce_phy_addr);
2794 
2795 	DBEXIT(BCE_VERBOSE_PHY);
2796 }
2797 
2798 
2799 /****************************************************************************/
2800 /* Performs PHY initialization required before MII drivers access the       */
2801 /* device.                                                                  */
2802 /*                                                                          */
2803 /* Returns:                                                                 */
2804 /*   Nothing.                                                               */
2805 /****************************************************************************/
2806 static void
2807 bce_init_media(struct bce_softc *sc)
2808 {
2809 	if ((sc->bce_phy_flags & BCE_PHY_IEEE_CLAUSE_45_FLAG) != 0) {
2810 		/*
2811 		 * Configure 5709S/5716S PHYs to use traditional IEEE
2812 		 * Clause 22 method. Otherwise we have no way to attach
2813 		 * the PHY in mii(4) layer. PHY specific configuration
2814 		 * is done in mii layer.
2815 		 */
2816 
2817 		/* Select auto-negotiation MMD of the PHY. */
2818 		bce_miibus_write_reg(sc->bce_dev, sc->bce_phy_addr,
2819 		    BRGPHY_BLOCK_ADDR, BRGPHY_BLOCK_ADDR_ADDR_EXT);
2820 		bce_miibus_write_reg(sc->bce_dev, sc->bce_phy_addr,
2821 		    BRGPHY_ADDR_EXT, BRGPHY_ADDR_EXT_AN_MMD);
2822 
2823 		/* Set IEEE0 block of AN MMD (assumed in brgphy(4) code). */
2824 		bce_miibus_write_reg(sc->bce_dev, sc->bce_phy_addr,
2825 		    BRGPHY_BLOCK_ADDR, BRGPHY_BLOCK_ADDR_COMBO_IEEE0);
2826 	}
2827 }
2828 
2829 
2830 /****************************************************************************/
2831 /* Free any DMA memory owned by the driver.                                 */
2832 /*                                                                          */
2833 /* Scans through each data structre that requires DMA memory and frees      */
2834 /* the memory if allocated.                                                 */
2835 /*                                                                          */
2836 /* Returns:                                                                 */
2837 /*   Nothing.                                                               */
2838 /****************************************************************************/
2839 static void
2840 bce_dma_free(struct bce_softc *sc)
2841 {
2842 	int i;
2843 
2844 	DBENTER(BCE_VERBOSE_RESET | BCE_VERBOSE_UNLOAD | BCE_VERBOSE_CTX);
2845 
2846 	/* Free, unmap, and destroy the status block. */
2847 	if (sc->status_block != NULL) {
2848 		bus_dmamem_free(
2849 		   sc->status_tag,
2850 		    sc->status_block,
2851 		    sc->status_map);
2852 		sc->status_block = NULL;
2853 	}
2854 
2855 	if (sc->status_map != NULL) {
2856 		bus_dmamap_unload(
2857 		    sc->status_tag,
2858 		    sc->status_map);
2859 		bus_dmamap_destroy(sc->status_tag,
2860 		    sc->status_map);
2861 		sc->status_map = NULL;
2862 	}
2863 
2864 	if (sc->status_tag != NULL) {
2865 		bus_dma_tag_destroy(sc->status_tag);
2866 		sc->status_tag = NULL;
2867 	}
2868 
2869 
2870 	/* Free, unmap, and destroy the statistics block. */
2871 	if (sc->stats_block != NULL) {
2872 		bus_dmamem_free(
2873 		    sc->stats_tag,
2874 		    sc->stats_block,
2875 		    sc->stats_map);
2876 		sc->stats_block = NULL;
2877 	}
2878 
2879 	if (sc->stats_map != NULL) {
2880 		bus_dmamap_unload(
2881 		    sc->stats_tag,
2882 		    sc->stats_map);
2883 		bus_dmamap_destroy(sc->stats_tag,
2884 		    sc->stats_map);
2885 		sc->stats_map = NULL;
2886 	}
2887 
2888 	if (sc->stats_tag != NULL) {
2889 		bus_dma_tag_destroy(sc->stats_tag);
2890 		sc->stats_tag = NULL;
2891 	}
2892 
2893 
2894 	/* Free, unmap and destroy all context memory pages. */
2895 	if ((BCE_CHIP_NUM(sc) == BCE_CHIP_NUM_5709) ||
2896 		(BCE_CHIP_NUM(sc) == BCE_CHIP_NUM_5716)) {
2897 		for (i = 0; i < sc->ctx_pages; i++ ) {
2898 			if (sc->ctx_block[i] != NULL) {
2899 				bus_dmamem_free(
2900 				    sc->ctx_tag,
2901 				    sc->ctx_block[i],
2902 				    sc->ctx_map[i]);
2903 				sc->ctx_block[i] = NULL;
2904 			}
2905 
2906 			if (sc->ctx_map[i] != NULL) {
2907 				bus_dmamap_unload(
2908 				    sc->ctx_tag,
2909 				    sc->ctx_map[i]);
2910 				bus_dmamap_destroy(
2911 				    sc->ctx_tag,
2912 				    sc->ctx_map[i]);
2913 				sc->ctx_map[i] = NULL;
2914 			}
2915 		}
2916 
2917 		/* Destroy the context memory tag. */
2918 		if (sc->ctx_tag != NULL) {
2919 			bus_dma_tag_destroy(sc->ctx_tag);
2920 			sc->ctx_tag = NULL;
2921 		}
2922 	}
2923 
2924 
2925 	/* Free, unmap and destroy all TX buffer descriptor chain pages. */
2926 	for (i = 0; i < TX_PAGES; i++ ) {
2927 		if (sc->tx_bd_chain[i] != NULL) {
2928 			bus_dmamem_free(
2929 			    sc->tx_bd_chain_tag,
2930 			    sc->tx_bd_chain[i],
2931 			    sc->tx_bd_chain_map[i]);
2932 			sc->tx_bd_chain[i] = NULL;
2933 		}
2934 
2935 		if (sc->tx_bd_chain_map[i] != NULL) {
2936 			bus_dmamap_unload(
2937 			    sc->tx_bd_chain_tag,
2938 			    sc->tx_bd_chain_map[i]);
2939 			bus_dmamap_destroy(
2940 			    sc->tx_bd_chain_tag,
2941 			    sc->tx_bd_chain_map[i]);
2942 			sc->tx_bd_chain_map[i] = NULL;
2943 		}
2944 	}
2945 
2946 	/* Destroy the TX buffer descriptor tag. */
2947 	if (sc->tx_bd_chain_tag != NULL) {
2948 		bus_dma_tag_destroy(sc->tx_bd_chain_tag);
2949 		sc->tx_bd_chain_tag = NULL;
2950 	}
2951 
2952 
2953 	/* Free, unmap and destroy all RX buffer descriptor chain pages. */
2954 	for (i = 0; i < RX_PAGES; i++ ) {
2955 		if (sc->rx_bd_chain[i] != NULL) {
2956 			bus_dmamem_free(
2957 			    sc->rx_bd_chain_tag,
2958 			    sc->rx_bd_chain[i],
2959 			    sc->rx_bd_chain_map[i]);
2960 			sc->rx_bd_chain[i] = NULL;
2961 		}
2962 
2963 		if (sc->rx_bd_chain_map[i] != NULL) {
2964 			bus_dmamap_unload(
2965 			    sc->rx_bd_chain_tag,
2966 			    sc->rx_bd_chain_map[i]);
2967 			bus_dmamap_destroy(
2968 			    sc->rx_bd_chain_tag,
2969 			    sc->rx_bd_chain_map[i]);
2970 			sc->rx_bd_chain_map[i] = NULL;
2971 		}
2972 	}
2973 
2974 	/* Destroy the RX buffer descriptor tag. */
2975 	if (sc->rx_bd_chain_tag != NULL) {
2976 		bus_dma_tag_destroy(sc->rx_bd_chain_tag);
2977 		sc->rx_bd_chain_tag = NULL;
2978 	}
2979 
2980 
2981 #ifdef BCE_JUMBO_HDRSPLIT
2982 	/* Free, unmap and destroy all page buffer descriptor chain pages. */
2983 	for (i = 0; i < PG_PAGES; i++ ) {
2984 		if (sc->pg_bd_chain[i] != NULL) {
2985 			bus_dmamem_free(
2986 			    sc->pg_bd_chain_tag,
2987 			    sc->pg_bd_chain[i],
2988 			    sc->pg_bd_chain_map[i]);
2989 			sc->pg_bd_chain[i] = NULL;
2990 		}
2991 
2992 		if (sc->pg_bd_chain_map[i] != NULL) {
2993 			bus_dmamap_unload(
2994 			    sc->pg_bd_chain_tag,
2995 			    sc->pg_bd_chain_map[i]);
2996 			bus_dmamap_destroy(
2997 			    sc->pg_bd_chain_tag,
2998 			    sc->pg_bd_chain_map[i]);
2999 			sc->pg_bd_chain_map[i] = NULL;
3000 		}
3001 	}
3002 
3003 	/* Destroy the page buffer descriptor tag. */
3004 	if (sc->pg_bd_chain_tag != NULL) {
3005 		bus_dma_tag_destroy(sc->pg_bd_chain_tag);
3006 		sc->pg_bd_chain_tag = NULL;
3007 	}
3008 #endif
3009 
3010 
3011 	/* Unload and destroy the TX mbuf maps. */
3012 	for (i = 0; i < TOTAL_TX_BD; i++) {
3013 		if (sc->tx_mbuf_map[i] != NULL) {
3014 			bus_dmamap_unload(sc->tx_mbuf_tag,
3015 			    sc->tx_mbuf_map[i]);
3016 			bus_dmamap_destroy(sc->tx_mbuf_tag,
3017 	 		    sc->tx_mbuf_map[i]);
3018 			sc->tx_mbuf_map[i] = NULL;
3019 		}
3020 	}
3021 
3022 	/* Destroy the TX mbuf tag. */
3023 	if (sc->tx_mbuf_tag != NULL) {
3024 		bus_dma_tag_destroy(sc->tx_mbuf_tag);
3025 		sc->tx_mbuf_tag = NULL;
3026 	}
3027 
3028 	/* Unload and destroy the RX mbuf maps. */
3029 	for (i = 0; i < TOTAL_RX_BD; i++) {
3030 		if (sc->rx_mbuf_map[i] != NULL) {
3031 			bus_dmamap_unload(sc->rx_mbuf_tag,
3032 			    sc->rx_mbuf_map[i]);
3033 			bus_dmamap_destroy(sc->rx_mbuf_tag,
3034 	 		    sc->rx_mbuf_map[i]);
3035 			sc->rx_mbuf_map[i] = NULL;
3036 		}
3037 	}
3038 
3039 	/* Destroy the RX mbuf tag. */
3040 	if (sc->rx_mbuf_tag != NULL) {
3041 		bus_dma_tag_destroy(sc->rx_mbuf_tag);
3042 		sc->rx_mbuf_tag = NULL;
3043 	}
3044 
3045 #ifdef BCE_JUMBO_HDRSPLIT
3046 	/* Unload and destroy the page mbuf maps. */
3047 	for (i = 0; i < TOTAL_PG_BD; i++) {
3048 		if (sc->pg_mbuf_map[i] != NULL) {
3049 			bus_dmamap_unload(sc->pg_mbuf_tag,
3050 			    sc->pg_mbuf_map[i]);
3051 			bus_dmamap_destroy(sc->pg_mbuf_tag,
3052 	 		    sc->pg_mbuf_map[i]);
3053 			sc->pg_mbuf_map[i] = NULL;
3054 		}
3055 	}
3056 
3057 	/* Destroy the page mbuf tag. */
3058 	if (sc->pg_mbuf_tag != NULL) {
3059 		bus_dma_tag_destroy(sc->pg_mbuf_tag);
3060 		sc->pg_mbuf_tag = NULL;
3061 	}
3062 #endif
3063 
3064 	/* Destroy the parent tag */
3065 	if (sc->parent_tag != NULL) {
3066 		bus_dma_tag_destroy(sc->parent_tag);
3067 		sc->parent_tag = NULL;
3068 	}
3069 
3070 	DBEXIT(BCE_VERBOSE_RESET | BCE_VERBOSE_UNLOAD | BCE_VERBOSE_CTX);
3071 }
3072 
3073 
3074 /****************************************************************************/
3075 /* Get DMA memory from the OS.                                              */
3076 /*                                                                          */
3077 /* Validates that the OS has provided DMA buffers in response to a          */
3078 /* bus_dmamap_load() call and saves the physical address of those buffers.  */
3079 /* When the callback is used the OS will return 0 for the mapping function  */
3080 /* (bus_dmamap_load()) so we use the value of map_arg->maxsegs to pass any  */
3081 /* failures back to the caller.                                             */
3082 /*                                                                          */
3083 /* Returns:                                                                 */
3084 /*   Nothing.                                                               */
3085 /****************************************************************************/
3086 static void
3087 bce_dma_map_addr(void *arg, bus_dma_segment_t *segs, int nseg, int error)
3088 {
3089 	bus_addr_t *busaddr = arg;
3090 
3091 	KASSERT(nseg == 1, ("%s(): Too many segments returned (%d)!",
3092 	    __FUNCTION__, nseg));
3093 	/* Simulate a mapping failure. */
3094 	DBRUNIF(DB_RANDOMTRUE(dma_map_addr_failed_sim_control),
3095 	    error = ENOMEM);
3096 
3097 	/* ToDo: How to increment debug sim_count variable here? */
3098 
3099 	/* Check for an error and signal the caller that an error occurred. */
3100 	if (error) {
3101 		*busaddr = 0;
3102 	} else {
3103 		*busaddr = segs->ds_addr;
3104 	}
3105 
3106 	return;
3107 }
3108 
3109 
3110 /****************************************************************************/
3111 /* Allocate any DMA memory needed by the driver.                            */
3112 /*                                                                          */
3113 /* Allocates DMA memory needed for the various global structures needed by  */
3114 /* hardware.                                                                */
3115 /*                                                                          */
3116 /* Memory alignment requirements:                                           */
3117 /* +-----------------+----------+----------+----------+----------+          */
3118 /* |                 |   5706   |   5708   |   5709   |   5716   |          */
3119 /* +-----------------+----------+----------+----------+----------+          */
3120 /* |Status Block     | 8 bytes  | 8 bytes  | 16 bytes | 16 bytes |          */
3121 /* |Statistics Block | 8 bytes  | 8 bytes  | 16 bytes | 16 bytes |          */
3122 /* |RX Buffers       | 16 bytes | 16 bytes | 16 bytes | 16 bytes |          */
3123 /* |PG Buffers       |   none   |   none   |   none   |   none   |          */
3124 /* |TX Buffers       |   none   |   none   |   none   |   none   |          */
3125 /* |Chain Pages(1)   |   4KiB   |   4KiB   |   4KiB   |   4KiB   |          */
3126 /* |Context Memory   |          |          |          |          |          */
3127 /* +-----------------+----------+----------+----------+----------+          */
3128 /*                                                                          */
3129 /* (1) Must align with CPU page size (BCM_PAGE_SZIE).                       */
3130 /*                                                                          */
3131 /* Returns:                                                                 */
3132 /*   0 for success, positive value for failure.                             */
3133 /****************************************************************************/
3134 static int
3135 bce_dma_alloc(device_t dev)
3136 {
3137 	struct bce_softc *sc;
3138 	int i, error, rc = 0;
3139 	bus_size_t max_size, max_seg_size;
3140 	int max_segments;
3141 
3142 	sc = device_get_softc(dev);
3143 
3144 	DBENTER(BCE_VERBOSE_RESET | BCE_VERBOSE_CTX);
3145 
3146 	/*
3147 	 * Allocate the parent bus DMA tag appropriate for PCI.
3148 	 */
3149 	if (bus_dma_tag_create(bus_get_dma_tag(dev), 1, BCE_DMA_BOUNDARY,
3150 	    sc->max_bus_addr, BUS_SPACE_MAXADDR, NULL, NULL,
3151 	    BUS_SPACE_MAXSIZE_32BIT, 0, BUS_SPACE_MAXSIZE_32BIT, 0, NULL, NULL,
3152 	    &sc->parent_tag)) {
3153 		BCE_PRINTF("%s(%d): Could not allocate parent DMA tag!\n",
3154 		    __FILE__, __LINE__);
3155 		rc = ENOMEM;
3156 		goto bce_dma_alloc_exit;
3157 	}
3158 
3159 	/*
3160 	 * Create a DMA tag for the status block, allocate and clear the
3161 	 * memory, map the memory into DMA space, and fetch the physical
3162 	 * address of the block.
3163 	 */
3164 	if (bus_dma_tag_create(sc->parent_tag, BCE_DMA_ALIGN,
3165 	    BCE_DMA_BOUNDARY, sc->max_bus_addr,	BUS_SPACE_MAXADDR,
3166 	    NULL, NULL,	BCE_STATUS_BLK_SZ, 1, BCE_STATUS_BLK_SZ,
3167 	    0, NULL, NULL, &sc->status_tag)) {
3168 		BCE_PRINTF("%s(%d): Could not allocate status block "
3169 		    "DMA tag!\n", __FILE__, __LINE__);
3170 		rc = ENOMEM;
3171 		goto bce_dma_alloc_exit;
3172 	}
3173 
3174 	if(bus_dmamem_alloc(sc->status_tag, (void **)&sc->status_block,
3175 	    BUS_DMA_NOWAIT | BUS_DMA_ZERO | BUS_DMA_COHERENT,
3176 	    &sc->status_map)) {
3177 		BCE_PRINTF("%s(%d): Could not allocate status block "
3178 		    "DMA memory!\n", __FILE__, __LINE__);
3179 		rc = ENOMEM;
3180 		goto bce_dma_alloc_exit;
3181 	}
3182 
3183 	error = bus_dmamap_load(sc->status_tag,	sc->status_map,
3184 	    sc->status_block, BCE_STATUS_BLK_SZ, bce_dma_map_addr,
3185 	    &sc->status_block_paddr, BUS_DMA_NOWAIT);
3186 
3187 	if (error) {
3188 		BCE_PRINTF("%s(%d): Could not map status block "
3189 		    "DMA memory!\n", __FILE__, __LINE__);
3190 		rc = ENOMEM;
3191 		goto bce_dma_alloc_exit;
3192 	}
3193 
3194 	DBPRINT(sc, BCE_INFO_LOAD, "%s(): status_block_paddr = 0x%jX\n",
3195 	    __FUNCTION__, (uintmax_t) sc->status_block_paddr);
3196 
3197 	/*
3198 	 * Create a DMA tag for the statistics block, allocate and clear the
3199 	 * memory, map the memory into DMA space, and fetch the physical
3200 	 * address of the block.
3201 	 */
3202 	if (bus_dma_tag_create(sc->parent_tag, BCE_DMA_ALIGN,
3203 	    BCE_DMA_BOUNDARY, sc->max_bus_addr,	BUS_SPACE_MAXADDR,
3204 	    NULL, NULL,	BCE_STATS_BLK_SZ, 1, BCE_STATS_BLK_SZ,
3205 	    0, NULL, NULL, &sc->stats_tag)) {
3206 		BCE_PRINTF("%s(%d): Could not allocate statistics block "
3207 		    "DMA tag!\n", __FILE__, __LINE__);
3208 		rc = ENOMEM;
3209 		goto bce_dma_alloc_exit;
3210 	}
3211 
3212 	if (bus_dmamem_alloc(sc->stats_tag, (void **)&sc->stats_block,
3213 	    BUS_DMA_NOWAIT | BUS_DMA_ZERO | BUS_DMA_COHERENT, &sc->stats_map)) {
3214 		BCE_PRINTF("%s(%d): Could not allocate statistics block "
3215 		    "DMA memory!\n", __FILE__, __LINE__);
3216 		rc = ENOMEM;
3217 		goto bce_dma_alloc_exit;
3218 	}
3219 
3220 	error = bus_dmamap_load(sc->stats_tag, sc->stats_map,
3221 	    sc->stats_block, BCE_STATS_BLK_SZ, bce_dma_map_addr,
3222 	    &sc->stats_block_paddr, BUS_DMA_NOWAIT);
3223 
3224 	if(error) {
3225 		BCE_PRINTF("%s(%d): Could not map statistics block "
3226 		    "DMA memory!\n", __FILE__, __LINE__);
3227 		rc = ENOMEM;
3228 		goto bce_dma_alloc_exit;
3229 	}
3230 
3231 	DBPRINT(sc, BCE_INFO_LOAD, "%s(): stats_block_paddr = 0x%jX\n",
3232 	    __FUNCTION__, (uintmax_t) sc->stats_block_paddr);
3233 
3234 	/* BCM5709 uses host memory as cache for context memory. */
3235 	if ((BCE_CHIP_NUM(sc) == BCE_CHIP_NUM_5709) ||
3236 	    (BCE_CHIP_NUM(sc) == BCE_CHIP_NUM_5716)) {
3237 		sc->ctx_pages = 0x2000 / BCM_PAGE_SIZE;
3238 		if (sc->ctx_pages == 0)
3239 			sc->ctx_pages = 1;
3240 
3241 		DBRUNIF((sc->ctx_pages > 512),
3242 		    BCE_PRINTF("%s(%d): Too many CTX pages! %d > 512\n",
3243 		    __FILE__, __LINE__, sc->ctx_pages));
3244 
3245 		/*
3246 		 * Create a DMA tag for the context pages,
3247 		 * allocate and clear the memory, map the
3248 		 * memory into DMA space, and fetch the
3249 		 * physical address of the block.
3250 		 */
3251 		if(bus_dma_tag_create(sc->parent_tag, BCM_PAGE_SIZE,
3252 		    BCE_DMA_BOUNDARY, sc->max_bus_addr,	BUS_SPACE_MAXADDR,
3253 		    NULL, NULL,	BCM_PAGE_SIZE, 1, BCM_PAGE_SIZE,
3254 		    0, NULL, NULL, &sc->ctx_tag)) {
3255 			BCE_PRINTF("%s(%d): Could not allocate CTX "
3256 			    "DMA tag!\n", __FILE__, __LINE__);
3257 			rc = ENOMEM;
3258 			goto bce_dma_alloc_exit;
3259 		}
3260 
3261 		for (i = 0; i < sc->ctx_pages; i++) {
3262 
3263 			if(bus_dmamem_alloc(sc->ctx_tag,
3264 			    (void **)&sc->ctx_block[i],
3265 			    BUS_DMA_NOWAIT | BUS_DMA_ZERO | BUS_DMA_COHERENT,
3266 			    &sc->ctx_map[i])) {
3267 				BCE_PRINTF("%s(%d): Could not allocate CTX "
3268 				    "DMA memory!\n", __FILE__, __LINE__);
3269 				rc = ENOMEM;
3270 				goto bce_dma_alloc_exit;
3271 			}
3272 
3273 			error = bus_dmamap_load(sc->ctx_tag, sc->ctx_map[i],
3274 			    sc->ctx_block[i], BCM_PAGE_SIZE, bce_dma_map_addr,
3275 			    &sc->ctx_paddr[i], BUS_DMA_NOWAIT);
3276 
3277 			if (error) {
3278 				BCE_PRINTF("%s(%d): Could not map CTX "
3279 				    "DMA memory!\n", __FILE__, __LINE__);
3280 				rc = ENOMEM;
3281 				goto bce_dma_alloc_exit;
3282 			}
3283 
3284 			DBPRINT(sc, BCE_INFO_LOAD, "%s(): ctx_paddr[%d] "
3285 			    "= 0x%jX\n", __FUNCTION__, i,
3286 			    (uintmax_t) sc->ctx_paddr[i]);
3287 		}
3288 	}
3289 
3290 	/*
3291 	 * Create a DMA tag for the TX buffer descriptor chain,
3292 	 * allocate and clear the  memory, and fetch the
3293 	 * physical address of the block.
3294 	 */
3295 	if(bus_dma_tag_create(sc->parent_tag, BCM_PAGE_SIZE, BCE_DMA_BOUNDARY,
3296 	    sc->max_bus_addr, BUS_SPACE_MAXADDR, NULL, NULL,
3297 	    BCE_TX_CHAIN_PAGE_SZ, 1, BCE_TX_CHAIN_PAGE_SZ, 0,
3298 	    NULL, NULL,	&sc->tx_bd_chain_tag)) {
3299 		BCE_PRINTF("%s(%d): Could not allocate TX descriptor "
3300 		    "chain DMA tag!\n", __FILE__, __LINE__);
3301 		rc = ENOMEM;
3302 		goto bce_dma_alloc_exit;
3303 	}
3304 
3305 	for (i = 0; i < TX_PAGES; i++) {
3306 
3307 		if(bus_dmamem_alloc(sc->tx_bd_chain_tag,
3308 		    (void **)&sc->tx_bd_chain[i],
3309 		    BUS_DMA_NOWAIT | BUS_DMA_ZERO | BUS_DMA_COHERENT,
3310 		    &sc->tx_bd_chain_map[i])) {
3311 			BCE_PRINTF("%s(%d): Could not allocate TX descriptor "
3312 			    "chain DMA memory!\n", __FILE__, __LINE__);
3313 			rc = ENOMEM;
3314 			goto bce_dma_alloc_exit;
3315 		}
3316 
3317 		error = bus_dmamap_load(sc->tx_bd_chain_tag,
3318 		    sc->tx_bd_chain_map[i], sc->tx_bd_chain[i],
3319 		    BCE_TX_CHAIN_PAGE_SZ, bce_dma_map_addr,
3320 		    &sc->tx_bd_chain_paddr[i], BUS_DMA_NOWAIT);
3321 
3322 		if (error) {
3323 			BCE_PRINTF("%s(%d): Could not map TX descriptor "
3324 			    "chain DMA memory!\n", __FILE__, __LINE__);
3325 			rc = ENOMEM;
3326 			goto bce_dma_alloc_exit;
3327 		}
3328 
3329 		DBPRINT(sc, BCE_INFO_LOAD, "%s(): tx_bd_chain_paddr[%d] = "
3330 		    "0x%jX\n", __FUNCTION__, i,
3331 		    (uintmax_t) sc->tx_bd_chain_paddr[i]);
3332 	}
3333 
3334 	/* Check the required size before mapping to conserve resources. */
3335 	if (bce_tso_enable) {
3336 		max_size     = BCE_TSO_MAX_SIZE;
3337 		max_segments = BCE_MAX_SEGMENTS;
3338 		max_seg_size = BCE_TSO_MAX_SEG_SIZE;
3339 	} else {
3340 		max_size     = MCLBYTES * BCE_MAX_SEGMENTS;
3341 		max_segments = BCE_MAX_SEGMENTS;
3342 		max_seg_size = MCLBYTES;
3343 	}
3344 
3345 	/* Create a DMA tag for TX mbufs. */
3346 	if (bus_dma_tag_create(sc->parent_tag, 1, BCE_DMA_BOUNDARY,
3347 	    sc->max_bus_addr, BUS_SPACE_MAXADDR, NULL, NULL, max_size,
3348 	    max_segments, max_seg_size,	0, NULL, NULL, &sc->tx_mbuf_tag)) {
3349 		BCE_PRINTF("%s(%d): Could not allocate TX mbuf DMA tag!\n",
3350 		    __FILE__, __LINE__);
3351 		rc = ENOMEM;
3352 		goto bce_dma_alloc_exit;
3353 	}
3354 
3355 	/* Create DMA maps for the TX mbufs clusters. */
3356 	for (i = 0; i < TOTAL_TX_BD; i++) {
3357 		if (bus_dmamap_create(sc->tx_mbuf_tag, BUS_DMA_NOWAIT,
3358 			&sc->tx_mbuf_map[i])) {
3359 			BCE_PRINTF("%s(%d): Unable to create TX mbuf DMA "
3360 			    "map!\n", __FILE__, __LINE__);
3361 			rc = ENOMEM;
3362 			goto bce_dma_alloc_exit;
3363 		}
3364 	}
3365 
3366 	/*
3367 	 * Create a DMA tag for the RX buffer descriptor chain,
3368 	 * allocate and clear the memory, and fetch the physical
3369 	 * address of the blocks.
3370 	 */
3371 	if (bus_dma_tag_create(sc->parent_tag, BCM_PAGE_SIZE,
3372 			BCE_DMA_BOUNDARY, BUS_SPACE_MAXADDR,
3373 			sc->max_bus_addr, NULL, NULL,
3374 			BCE_RX_CHAIN_PAGE_SZ, 1, BCE_RX_CHAIN_PAGE_SZ,
3375 			0, NULL, NULL, &sc->rx_bd_chain_tag)) {
3376 		BCE_PRINTF("%s(%d): Could not allocate RX descriptor chain "
3377 		    "DMA tag!\n", __FILE__, __LINE__);
3378 		rc = ENOMEM;
3379 		goto bce_dma_alloc_exit;
3380 	}
3381 
3382 	for (i = 0; i < RX_PAGES; i++) {
3383 
3384 		if (bus_dmamem_alloc(sc->rx_bd_chain_tag,
3385 		    (void **)&sc->rx_bd_chain[i],
3386 		    BUS_DMA_NOWAIT | BUS_DMA_ZERO | BUS_DMA_COHERENT,
3387 		    &sc->rx_bd_chain_map[i])) {
3388 			BCE_PRINTF("%s(%d): Could not allocate RX descriptor "
3389 			    "chain DMA memory!\n", __FILE__, __LINE__);
3390 			rc = ENOMEM;
3391 			goto bce_dma_alloc_exit;
3392 		}
3393 
3394 		error = bus_dmamap_load(sc->rx_bd_chain_tag,
3395 		    sc->rx_bd_chain_map[i], sc->rx_bd_chain[i],
3396 		    BCE_RX_CHAIN_PAGE_SZ, bce_dma_map_addr,
3397 		    &sc->rx_bd_chain_paddr[i], BUS_DMA_NOWAIT);
3398 
3399 		if (error) {
3400 			BCE_PRINTF("%s(%d): Could not map RX descriptor "
3401 			    "chain DMA memory!\n", __FILE__, __LINE__);
3402 			rc = ENOMEM;
3403 			goto bce_dma_alloc_exit;
3404 		}
3405 
3406 		DBPRINT(sc, BCE_INFO_LOAD, "%s(): rx_bd_chain_paddr[%d] = "
3407 		    "0x%jX\n", __FUNCTION__, i,
3408 		    (uintmax_t) sc->rx_bd_chain_paddr[i]);
3409 	}
3410 
3411 	/*
3412 	 * Create a DMA tag for RX mbufs.
3413 	 */
3414 #ifdef BCE_JUMBO_HDRSPLIT
3415 	max_size = max_seg_size = ((sc->rx_bd_mbuf_alloc_size < MCLBYTES) ?
3416 		MCLBYTES : sc->rx_bd_mbuf_alloc_size);
3417 #else
3418 	max_size = max_seg_size = MJUM9BYTES;
3419 #endif
3420 	max_segments = 1;
3421 
3422 	DBPRINT(sc, BCE_INFO_LOAD, "%s(): Creating rx_mbuf_tag "
3423 	    "(max size = 0x%jX max segments = %d, max segment "
3424 	    "size = 0x%jX)\n", __FUNCTION__, (uintmax_t) max_size,
3425 	     max_segments, (uintmax_t) max_seg_size);
3426 
3427 	if (bus_dma_tag_create(sc->parent_tag, BCE_RX_BUF_ALIGN,
3428 	    BCE_DMA_BOUNDARY, sc->max_bus_addr, BUS_SPACE_MAXADDR, NULL, NULL,
3429 	    max_size, max_segments, max_seg_size, 0, NULL, NULL,
3430 	    &sc->rx_mbuf_tag)) {
3431 		BCE_PRINTF("%s(%d): Could not allocate RX mbuf DMA tag!\n",
3432 		    __FILE__, __LINE__);
3433 		rc = ENOMEM;
3434 		goto bce_dma_alloc_exit;
3435 	}
3436 
3437 	/* Create DMA maps for the RX mbuf clusters. */
3438 	for (i = 0; i < TOTAL_RX_BD; i++) {
3439 		if (bus_dmamap_create(sc->rx_mbuf_tag, BUS_DMA_NOWAIT,
3440 		    &sc->rx_mbuf_map[i])) {
3441 			BCE_PRINTF("%s(%d): Unable to create RX mbuf "
3442 			    "DMA map!\n", __FILE__, __LINE__);
3443 			rc = ENOMEM;
3444 			goto bce_dma_alloc_exit;
3445 		}
3446 	}
3447 
3448 #ifdef BCE_JUMBO_HDRSPLIT
3449 	/*
3450 	 * Create a DMA tag for the page buffer descriptor chain,
3451 	 * allocate and clear the memory, and fetch the physical
3452 	 * address of the blocks.
3453 	 */
3454 	if (bus_dma_tag_create(sc->parent_tag, BCM_PAGE_SIZE,
3455 	    BCE_DMA_BOUNDARY, BUS_SPACE_MAXADDR, sc->max_bus_addr,
3456 	    NULL, NULL,	BCE_PG_CHAIN_PAGE_SZ, 1, BCE_PG_CHAIN_PAGE_SZ,
3457 	    0, NULL, NULL, &sc->pg_bd_chain_tag)) {
3458 		BCE_PRINTF("%s(%d): Could not allocate page descriptor "
3459 		    "chain DMA tag!\n",	__FILE__, __LINE__);
3460 		rc = ENOMEM;
3461 		goto bce_dma_alloc_exit;
3462 	}
3463 
3464 	for (i = 0; i < PG_PAGES; i++) {
3465 
3466 		if (bus_dmamem_alloc(sc->pg_bd_chain_tag,
3467 		    (void **)&sc->pg_bd_chain[i],
3468 		    BUS_DMA_NOWAIT | BUS_DMA_ZERO | BUS_DMA_COHERENT,
3469 		    &sc->pg_bd_chain_map[i])) {
3470 			BCE_PRINTF("%s(%d): Could not allocate page "
3471 			    "descriptor chain DMA memory!\n",
3472 			    __FILE__, __LINE__);
3473 			rc = ENOMEM;
3474 			goto bce_dma_alloc_exit;
3475 		}
3476 
3477 		error = bus_dmamap_load(sc->pg_bd_chain_tag,
3478 		    sc->pg_bd_chain_map[i], sc->pg_bd_chain[i],
3479 		    BCE_PG_CHAIN_PAGE_SZ, bce_dma_map_addr,
3480 		    &sc->pg_bd_chain_paddr[i], BUS_DMA_NOWAIT);
3481 
3482 		if (error) {
3483 			BCE_PRINTF("%s(%d): Could not map page descriptor "
3484 			    "chain DMA memory!\n", __FILE__, __LINE__);
3485 			rc = ENOMEM;
3486 			goto bce_dma_alloc_exit;
3487 		}
3488 
3489 		DBPRINT(sc, BCE_INFO_LOAD, "%s(): pg_bd_chain_paddr[%d] = "
3490 		    "0x%jX\n", __FUNCTION__, i,
3491 		    (uintmax_t) sc->pg_bd_chain_paddr[i]);
3492 	}
3493 
3494 	/*
3495 	 * Create a DMA tag for page mbufs.
3496 	 */
3497 	max_size = max_seg_size = ((sc->pg_bd_mbuf_alloc_size < MCLBYTES) ?
3498 	    MCLBYTES : sc->pg_bd_mbuf_alloc_size);
3499 
3500 	if (bus_dma_tag_create(sc->parent_tag, 1, BCE_DMA_BOUNDARY,
3501 	    sc->max_bus_addr, BUS_SPACE_MAXADDR, NULL, NULL,
3502 	    max_size, 1, max_seg_size, 0, NULL, NULL, &sc->pg_mbuf_tag)) {
3503 		BCE_PRINTF("%s(%d): Could not allocate page mbuf "
3504 		    "DMA tag!\n", __FILE__, __LINE__);
3505 		rc = ENOMEM;
3506 		goto bce_dma_alloc_exit;
3507 	}
3508 
3509 	/* Create DMA maps for the page mbuf clusters. */
3510 	for (i = 0; i < TOTAL_PG_BD; i++) {
3511 		if (bus_dmamap_create(sc->pg_mbuf_tag, BUS_DMA_NOWAIT,
3512 		    &sc->pg_mbuf_map[i])) {
3513 			BCE_PRINTF("%s(%d): Unable to create page mbuf "
3514 			    "DMA map!\n", __FILE__, __LINE__);
3515 			rc = ENOMEM;
3516 			goto bce_dma_alloc_exit;
3517 		}
3518 	}
3519 #endif
3520 
3521 bce_dma_alloc_exit:
3522 	DBEXIT(BCE_VERBOSE_RESET | BCE_VERBOSE_CTX);
3523 	return(rc);
3524 }
3525 
3526 
3527 /****************************************************************************/
3528 /* Release all resources used by the driver.                                */
3529 /*                                                                          */
3530 /* Releases all resources acquired by the driver including interrupts,      */
3531 /* interrupt handler, interfaces, mutexes, and DMA memory.                  */
3532 /*                                                                          */
3533 /* Returns:                                                                 */
3534 /*   Nothing.                                                               */
3535 /****************************************************************************/
3536 static void
3537 bce_release_resources(struct bce_softc *sc)
3538 {
3539 	device_t dev;
3540 
3541 	DBENTER(BCE_VERBOSE_RESET);
3542 
3543 	dev = sc->bce_dev;
3544 
3545 	bce_dma_free(sc);
3546 
3547 	if (sc->bce_intrhand != NULL) {
3548 		DBPRINT(sc, BCE_INFO_RESET, "Removing interrupt handler.\n");
3549 		bus_teardown_intr(dev, sc->bce_res_irq, sc->bce_intrhand);
3550 	}
3551 
3552 	if (sc->bce_res_irq != NULL) {
3553 		DBPRINT(sc, BCE_INFO_RESET, "Releasing IRQ.\n");
3554 		bus_release_resource(dev, SYS_RES_IRQ, sc->bce_irq_rid,
3555 		    sc->bce_res_irq);
3556 	}
3557 
3558 	if (sc->bce_flags & (BCE_USING_MSI_FLAG | BCE_USING_MSIX_FLAG)) {
3559 		DBPRINT(sc, BCE_INFO_RESET, "Releasing MSI/MSI-X vector.\n");
3560 		pci_release_msi(dev);
3561 	}
3562 
3563 	if (sc->bce_res_mem != NULL) {
3564 		DBPRINT(sc, BCE_INFO_RESET, "Releasing PCI memory.\n");
3565 		    bus_release_resource(dev, SYS_RES_MEMORY, PCIR_BAR(0),
3566 		    sc->bce_res_mem);
3567 	}
3568 
3569 	if (sc->bce_ifp != NULL) {
3570 		DBPRINT(sc, BCE_INFO_RESET, "Releasing IF.\n");
3571 		if_free(sc->bce_ifp);
3572 	}
3573 
3574 	if (mtx_initialized(&sc->bce_mtx))
3575 		BCE_LOCK_DESTROY(sc);
3576 
3577 	DBEXIT(BCE_VERBOSE_RESET);
3578 }
3579 
3580 
3581 /****************************************************************************/
3582 /* Firmware synchronization.                                                */
3583 /*                                                                          */
3584 /* Before performing certain events such as a chip reset, synchronize with  */
3585 /* the firmware first.                                                      */
3586 /*                                                                          */
3587 /* Returns:                                                                 */
3588 /*   0 for success, positive value for failure.                             */
3589 /****************************************************************************/
3590 static int
3591 bce_fw_sync(struct bce_softc *sc, u32 msg_data)
3592 {
3593 	int i, rc = 0;
3594 	u32 val;
3595 
3596 	DBENTER(BCE_VERBOSE_RESET);
3597 
3598 	/* Don't waste any time if we've timed out before. */
3599 	if (sc->bce_fw_timed_out == TRUE) {
3600 		rc = EBUSY;
3601 		goto bce_fw_sync_exit;
3602 	}
3603 
3604 	/* Increment the message sequence number. */
3605 	sc->bce_fw_wr_seq++;
3606 	msg_data |= sc->bce_fw_wr_seq;
3607 
3608  	DBPRINT(sc, BCE_VERBOSE_FIRMWARE, "bce_fw_sync(): msg_data = "
3609 	    "0x%08X\n",	msg_data);
3610 
3611 	/* Send the message to the bootcode driver mailbox. */
3612 	bce_shmem_wr(sc, BCE_DRV_MB, msg_data);
3613 
3614 	/* Wait for the bootcode to acknowledge the message. */
3615 	for (i = 0; i < FW_ACK_TIME_OUT_MS; i++) {
3616 		/* Check for a response in the bootcode firmware mailbox. */
3617 		val = bce_shmem_rd(sc, BCE_FW_MB);
3618 		if ((val & BCE_FW_MSG_ACK) == (msg_data & BCE_DRV_MSG_SEQ))
3619 			break;
3620 		DELAY(1000);
3621 	}
3622 
3623 	/* If we've timed out, tell bootcode that we've stopped waiting. */
3624 	if (((val & BCE_FW_MSG_ACK) != (msg_data & BCE_DRV_MSG_SEQ)) &&
3625 	    ((msg_data & BCE_DRV_MSG_DATA) != BCE_DRV_MSG_DATA_WAIT0)) {
3626 
3627 		BCE_PRINTF("%s(%d): Firmware synchronization timeout! "
3628 		    "msg_data = 0x%08X\n", __FILE__, __LINE__, msg_data);
3629 
3630 		msg_data &= ~BCE_DRV_MSG_CODE;
3631 		msg_data |= BCE_DRV_MSG_CODE_FW_TIMEOUT;
3632 
3633 		bce_shmem_wr(sc, BCE_DRV_MB, msg_data);
3634 
3635 		sc->bce_fw_timed_out = TRUE;
3636 		rc = EBUSY;
3637 	}
3638 
3639 bce_fw_sync_exit:
3640 	DBEXIT(BCE_VERBOSE_RESET);
3641 	return (rc);
3642 }
3643 
3644 
3645 /****************************************************************************/
3646 /* Load Receive Virtual 2 Physical (RV2P) processor firmware.               */
3647 /*                                                                          */
3648 /* Returns:                                                                 */
3649 /*   Nothing.                                                               */
3650 /****************************************************************************/
3651 static void
3652 bce_load_rv2p_fw(struct bce_softc *sc, u32 *rv2p_code,
3653 	u32 rv2p_code_len, u32 rv2p_proc)
3654 {
3655 	int i;
3656 	u32 val;
3657 
3658 	DBENTER(BCE_VERBOSE_RESET);
3659 
3660 	/* Set the page size used by RV2P. */
3661 	if (rv2p_proc == RV2P_PROC2) {
3662 		BCE_RV2P_PROC2_CHG_MAX_BD_PAGE(USABLE_RX_BD_PER_PAGE);
3663 	}
3664 
3665 	for (i = 0; i < rv2p_code_len; i += 8) {
3666 		REG_WR(sc, BCE_RV2P_INSTR_HIGH, *rv2p_code);
3667 		rv2p_code++;
3668 		REG_WR(sc, BCE_RV2P_INSTR_LOW, *rv2p_code);
3669 		rv2p_code++;
3670 
3671 		if (rv2p_proc == RV2P_PROC1) {
3672 			val = (i / 8) | BCE_RV2P_PROC1_ADDR_CMD_RDWR;
3673 			REG_WR(sc, BCE_RV2P_PROC1_ADDR_CMD, val);
3674 		}
3675 		else {
3676 			val = (i / 8) | BCE_RV2P_PROC2_ADDR_CMD_RDWR;
3677 			REG_WR(sc, BCE_RV2P_PROC2_ADDR_CMD, val);
3678 		}
3679 	}
3680 
3681 	/* Reset the processor, un-stall is done later. */
3682 	if (rv2p_proc == RV2P_PROC1) {
3683 		REG_WR(sc, BCE_RV2P_COMMAND, BCE_RV2P_COMMAND_PROC1_RESET);
3684 	}
3685 	else {
3686 		REG_WR(sc, BCE_RV2P_COMMAND, BCE_RV2P_COMMAND_PROC2_RESET);
3687 	}
3688 
3689 	DBEXIT(BCE_VERBOSE_RESET);
3690 }
3691 
3692 
3693 /****************************************************************************/
3694 /* Load RISC processor firmware.                                            */
3695 /*                                                                          */
3696 /* Loads firmware from the file if_bcefw.h into the scratchpad memory       */
3697 /* associated with a particular processor.                                  */
3698 /*                                                                          */
3699 /* Returns:                                                                 */
3700 /*   Nothing.                                                               */
3701 /****************************************************************************/
3702 static void
3703 bce_load_cpu_fw(struct bce_softc *sc, struct cpu_reg *cpu_reg,
3704 	struct fw_info *fw)
3705 {
3706 	u32 offset;
3707 
3708 	DBENTER(BCE_VERBOSE_RESET);
3709 
3710     bce_halt_cpu(sc, cpu_reg);
3711 
3712 	/* Load the Text area. */
3713 	offset = cpu_reg->spad_base + (fw->text_addr - cpu_reg->mips_view_base);
3714 	if (fw->text) {
3715 		int j;
3716 
3717 		for (j = 0; j < (fw->text_len / 4); j++, offset += 4) {
3718 			REG_WR_IND(sc, offset, fw->text[j]);
3719 	        }
3720 	}
3721 
3722 	/* Load the Data area. */
3723 	offset = cpu_reg->spad_base + (fw->data_addr - cpu_reg->mips_view_base);
3724 	if (fw->data) {
3725 		int j;
3726 
3727 		for (j = 0; j < (fw->data_len / 4); j++, offset += 4) {
3728 			REG_WR_IND(sc, offset, fw->data[j]);
3729 		}
3730 	}
3731 
3732 	/* Load the SBSS area. */
3733 	offset = cpu_reg->spad_base + (fw->sbss_addr - cpu_reg->mips_view_base);
3734 	if (fw->sbss) {
3735 		int j;
3736 
3737 		for (j = 0; j < (fw->sbss_len / 4); j++, offset += 4) {
3738 			REG_WR_IND(sc, offset, fw->sbss[j]);
3739 		}
3740 	}
3741 
3742 	/* Load the BSS area. */
3743 	offset = cpu_reg->spad_base + (fw->bss_addr - cpu_reg->mips_view_base);
3744 	if (fw->bss) {
3745 		int j;
3746 
3747 		for (j = 0; j < (fw->bss_len/4); j++, offset += 4) {
3748 			REG_WR_IND(sc, offset, fw->bss[j]);
3749 		}
3750 	}
3751 
3752 	/* Load the Read-Only area. */
3753 	offset = cpu_reg->spad_base +
3754 		(fw->rodata_addr - cpu_reg->mips_view_base);
3755 	if (fw->rodata) {
3756 		int j;
3757 
3758 		for (j = 0; j < (fw->rodata_len / 4); j++, offset += 4) {
3759 			REG_WR_IND(sc, offset, fw->rodata[j]);
3760 		}
3761 	}
3762 
3763 	/* Clear the pre-fetch instruction and set the FW start address. */
3764 	REG_WR_IND(sc, cpu_reg->inst, 0);
3765 	REG_WR_IND(sc, cpu_reg->pc, fw->start_addr);
3766 
3767 	DBEXIT(BCE_VERBOSE_RESET);
3768 }
3769 
3770 
3771 /****************************************************************************/
3772 /* Starts the RISC processor.                                               */
3773 /*                                                                          */
3774 /* Assumes the CPU starting address has already been set.                   */
3775 /*                                                                          */
3776 /* Returns:                                                                 */
3777 /*   Nothing.                                                               */
3778 /****************************************************************************/
3779 static void
3780 bce_start_cpu(struct bce_softc *sc, struct cpu_reg *cpu_reg)
3781 {
3782 	u32 val;
3783 
3784 	DBENTER(BCE_VERBOSE_RESET);
3785 
3786 	/* Start the CPU. */
3787 	val = REG_RD_IND(sc, cpu_reg->mode);
3788 	val &= ~cpu_reg->mode_value_halt;
3789 	REG_WR_IND(sc, cpu_reg->state, cpu_reg->state_value_clear);
3790 	REG_WR_IND(sc, cpu_reg->mode, val);
3791 
3792 	DBEXIT(BCE_VERBOSE_RESET);
3793 }
3794 
3795 
3796 /****************************************************************************/
3797 /* Halts the RISC processor.                                                */
3798 /*                                                                          */
3799 /* Returns:                                                                 */
3800 /*   Nothing.                                                               */
3801 /****************************************************************************/
3802 static void
3803 bce_halt_cpu(struct bce_softc *sc, struct cpu_reg *cpu_reg)
3804 {
3805 	u32 val;
3806 
3807 	DBENTER(BCE_VERBOSE_RESET);
3808 
3809 	/* Halt the CPU. */
3810 	val = REG_RD_IND(sc, cpu_reg->mode);
3811 	val |= cpu_reg->mode_value_halt;
3812 	REG_WR_IND(sc, cpu_reg->mode, val);
3813 	REG_WR_IND(sc, cpu_reg->state, cpu_reg->state_value_clear);
3814 
3815 	DBEXIT(BCE_VERBOSE_RESET);
3816 }
3817 
3818 
3819 /****************************************************************************/
3820 /* Initialize the RX CPU.                                                   */
3821 /*                                                                          */
3822 /* Returns:                                                                 */
3823 /*   Nothing.                                                               */
3824 /****************************************************************************/
3825 static void
3826 bce_start_rxp_cpu(struct bce_softc *sc)
3827 {
3828 	struct cpu_reg cpu_reg;
3829 
3830 	DBENTER(BCE_VERBOSE_RESET);
3831 
3832 	cpu_reg.mode = BCE_RXP_CPU_MODE;
3833 	cpu_reg.mode_value_halt = BCE_RXP_CPU_MODE_SOFT_HALT;
3834 	cpu_reg.mode_value_sstep = BCE_RXP_CPU_MODE_STEP_ENA;
3835 	cpu_reg.state = BCE_RXP_CPU_STATE;
3836 	cpu_reg.state_value_clear = 0xffffff;
3837 	cpu_reg.gpr0 = BCE_RXP_CPU_REG_FILE;
3838 	cpu_reg.evmask = BCE_RXP_CPU_EVENT_MASK;
3839 	cpu_reg.pc = BCE_RXP_CPU_PROGRAM_COUNTER;
3840 	cpu_reg.inst = BCE_RXP_CPU_INSTRUCTION;
3841 	cpu_reg.bp = BCE_RXP_CPU_HW_BREAKPOINT;
3842 	cpu_reg.spad_base = BCE_RXP_SCRATCH;
3843 	cpu_reg.mips_view_base = 0x8000000;
3844 
3845 	DBPRINT(sc, BCE_INFO_RESET, "Starting RX firmware.\n");
3846 	bce_start_cpu(sc, &cpu_reg);
3847 
3848 	DBEXIT(BCE_VERBOSE_RESET);
3849 }
3850 
3851 
3852 /****************************************************************************/
3853 /* Initialize the RX CPU.                                                   */
3854 /*                                                                          */
3855 /* Returns:                                                                 */
3856 /*   Nothing.                                                               */
3857 /****************************************************************************/
3858 static void
3859 bce_init_rxp_cpu(struct bce_softc *sc)
3860 {
3861 	struct cpu_reg cpu_reg;
3862 	struct fw_info fw;
3863 
3864 	DBENTER(BCE_VERBOSE_RESET);
3865 
3866 	cpu_reg.mode = BCE_RXP_CPU_MODE;
3867 	cpu_reg.mode_value_halt = BCE_RXP_CPU_MODE_SOFT_HALT;
3868 	cpu_reg.mode_value_sstep = BCE_RXP_CPU_MODE_STEP_ENA;
3869 	cpu_reg.state = BCE_RXP_CPU_STATE;
3870 	cpu_reg.state_value_clear = 0xffffff;
3871 	cpu_reg.gpr0 = BCE_RXP_CPU_REG_FILE;
3872 	cpu_reg.evmask = BCE_RXP_CPU_EVENT_MASK;
3873 	cpu_reg.pc = BCE_RXP_CPU_PROGRAM_COUNTER;
3874 	cpu_reg.inst = BCE_RXP_CPU_INSTRUCTION;
3875 	cpu_reg.bp = BCE_RXP_CPU_HW_BREAKPOINT;
3876 	cpu_reg.spad_base = BCE_RXP_SCRATCH;
3877 	cpu_reg.mips_view_base = 0x8000000;
3878 
3879 	if ((BCE_CHIP_NUM(sc) == BCE_CHIP_NUM_5709) ||
3880 		(BCE_CHIP_NUM(sc) == BCE_CHIP_NUM_5716)) {
3881  		fw.ver_major = bce_RXP_b09FwReleaseMajor;
3882 		fw.ver_minor = bce_RXP_b09FwReleaseMinor;
3883 		fw.ver_fix = bce_RXP_b09FwReleaseFix;
3884 		fw.start_addr = bce_RXP_b09FwStartAddr;
3885 
3886 		fw.text_addr = bce_RXP_b09FwTextAddr;
3887 		fw.text_len = bce_RXP_b09FwTextLen;
3888 		fw.text_index = 0;
3889 		fw.text = bce_RXP_b09FwText;
3890 
3891 		fw.data_addr = bce_RXP_b09FwDataAddr;
3892 		fw.data_len = bce_RXP_b09FwDataLen;
3893 		fw.data_index = 0;
3894 		fw.data = bce_RXP_b09FwData;
3895 
3896 		fw.sbss_addr = bce_RXP_b09FwSbssAddr;
3897 		fw.sbss_len = bce_RXP_b09FwSbssLen;
3898 		fw.sbss_index = 0;
3899 		fw.sbss = bce_RXP_b09FwSbss;
3900 
3901 		fw.bss_addr = bce_RXP_b09FwBssAddr;
3902 		fw.bss_len = bce_RXP_b09FwBssLen;
3903 		fw.bss_index = 0;
3904 		fw.bss = bce_RXP_b09FwBss;
3905 
3906 		fw.rodata_addr = bce_RXP_b09FwRodataAddr;
3907 		fw.rodata_len = bce_RXP_b09FwRodataLen;
3908 		fw.rodata_index = 0;
3909 		fw.rodata = bce_RXP_b09FwRodata;
3910 	} else {
3911 		fw.ver_major = bce_RXP_b06FwReleaseMajor;
3912 		fw.ver_minor = bce_RXP_b06FwReleaseMinor;
3913 		fw.ver_fix = bce_RXP_b06FwReleaseFix;
3914 		fw.start_addr = bce_RXP_b06FwStartAddr;
3915 
3916 		fw.text_addr = bce_RXP_b06FwTextAddr;
3917 		fw.text_len = bce_RXP_b06FwTextLen;
3918 		fw.text_index = 0;
3919 		fw.text = bce_RXP_b06FwText;
3920 
3921 		fw.data_addr = bce_RXP_b06FwDataAddr;
3922 		fw.data_len = bce_RXP_b06FwDataLen;
3923 		fw.data_index = 0;
3924 		fw.data = bce_RXP_b06FwData;
3925 
3926 		fw.sbss_addr = bce_RXP_b06FwSbssAddr;
3927 		fw.sbss_len = bce_RXP_b06FwSbssLen;
3928 		fw.sbss_index = 0;
3929 		fw.sbss = bce_RXP_b06FwSbss;
3930 
3931 		fw.bss_addr = bce_RXP_b06FwBssAddr;
3932 		fw.bss_len = bce_RXP_b06FwBssLen;
3933 		fw.bss_index = 0;
3934 		fw.bss = bce_RXP_b06FwBss;
3935 
3936 		fw.rodata_addr = bce_RXP_b06FwRodataAddr;
3937 		fw.rodata_len = bce_RXP_b06FwRodataLen;
3938 		fw.rodata_index = 0;
3939 		fw.rodata = bce_RXP_b06FwRodata;
3940 	}
3941 
3942 	DBPRINT(sc, BCE_INFO_RESET, "Loading RX firmware.\n");
3943 	bce_load_cpu_fw(sc, &cpu_reg, &fw);
3944 
3945     /* Delay RXP start until initialization is complete. */
3946 
3947 	DBEXIT(BCE_VERBOSE_RESET);
3948 }
3949 
3950 
3951 /****************************************************************************/
3952 /* Initialize the TX CPU.                                                   */
3953 /*                                                                          */
3954 /* Returns:                                                                 */
3955 /*   Nothing.                                                               */
3956 /****************************************************************************/
3957 static void
3958 bce_init_txp_cpu(struct bce_softc *sc)
3959 {
3960 	struct cpu_reg cpu_reg;
3961 	struct fw_info fw;
3962 
3963 	DBENTER(BCE_VERBOSE_RESET);
3964 
3965 	cpu_reg.mode = BCE_TXP_CPU_MODE;
3966 	cpu_reg.mode_value_halt = BCE_TXP_CPU_MODE_SOFT_HALT;
3967 	cpu_reg.mode_value_sstep = BCE_TXP_CPU_MODE_STEP_ENA;
3968 	cpu_reg.state = BCE_TXP_CPU_STATE;
3969 	cpu_reg.state_value_clear = 0xffffff;
3970 	cpu_reg.gpr0 = BCE_TXP_CPU_REG_FILE;
3971 	cpu_reg.evmask = BCE_TXP_CPU_EVENT_MASK;
3972 	cpu_reg.pc = BCE_TXP_CPU_PROGRAM_COUNTER;
3973 	cpu_reg.inst = BCE_TXP_CPU_INSTRUCTION;
3974 	cpu_reg.bp = BCE_TXP_CPU_HW_BREAKPOINT;
3975 	cpu_reg.spad_base = BCE_TXP_SCRATCH;
3976 	cpu_reg.mips_view_base = 0x8000000;
3977 
3978 	if ((BCE_CHIP_NUM(sc) == BCE_CHIP_NUM_5709) ||
3979 		(BCE_CHIP_NUM(sc) == BCE_CHIP_NUM_5716)) {
3980 		fw.ver_major = bce_TXP_b09FwReleaseMajor;
3981 		fw.ver_minor = bce_TXP_b09FwReleaseMinor;
3982 		fw.ver_fix = bce_TXP_b09FwReleaseFix;
3983 		fw.start_addr = bce_TXP_b09FwStartAddr;
3984 
3985 		fw.text_addr = bce_TXP_b09FwTextAddr;
3986 		fw.text_len = bce_TXP_b09FwTextLen;
3987 		fw.text_index = 0;
3988 		fw.text = bce_TXP_b09FwText;
3989 
3990 		fw.data_addr = bce_TXP_b09FwDataAddr;
3991 		fw.data_len = bce_TXP_b09FwDataLen;
3992 		fw.data_index = 0;
3993 		fw.data = bce_TXP_b09FwData;
3994 
3995 		fw.sbss_addr = bce_TXP_b09FwSbssAddr;
3996 		fw.sbss_len = bce_TXP_b09FwSbssLen;
3997 		fw.sbss_index = 0;
3998 		fw.sbss = bce_TXP_b09FwSbss;
3999 
4000 		fw.bss_addr = bce_TXP_b09FwBssAddr;
4001 		fw.bss_len = bce_TXP_b09FwBssLen;
4002 		fw.bss_index = 0;
4003 		fw.bss = bce_TXP_b09FwBss;
4004 
4005 		fw.rodata_addr = bce_TXP_b09FwRodataAddr;
4006 		fw.rodata_len = bce_TXP_b09FwRodataLen;
4007 		fw.rodata_index = 0;
4008 		fw.rodata = bce_TXP_b09FwRodata;
4009 	} else {
4010 		fw.ver_major = bce_TXP_b06FwReleaseMajor;
4011 		fw.ver_minor = bce_TXP_b06FwReleaseMinor;
4012 		fw.ver_fix = bce_TXP_b06FwReleaseFix;
4013 		fw.start_addr = bce_TXP_b06FwStartAddr;
4014 
4015 		fw.text_addr = bce_TXP_b06FwTextAddr;
4016 		fw.text_len = bce_TXP_b06FwTextLen;
4017 		fw.text_index = 0;
4018 		fw.text = bce_TXP_b06FwText;
4019 
4020 		fw.data_addr = bce_TXP_b06FwDataAddr;
4021 		fw.data_len = bce_TXP_b06FwDataLen;
4022 		fw.data_index = 0;
4023 		fw.data = bce_TXP_b06FwData;
4024 
4025 		fw.sbss_addr = bce_TXP_b06FwSbssAddr;
4026 		fw.sbss_len = bce_TXP_b06FwSbssLen;
4027 		fw.sbss_index = 0;
4028 		fw.sbss = bce_TXP_b06FwSbss;
4029 
4030 		fw.bss_addr = bce_TXP_b06FwBssAddr;
4031 		fw.bss_len = bce_TXP_b06FwBssLen;
4032 		fw.bss_index = 0;
4033 		fw.bss = bce_TXP_b06FwBss;
4034 
4035 		fw.rodata_addr = bce_TXP_b06FwRodataAddr;
4036 		fw.rodata_len = bce_TXP_b06FwRodataLen;
4037 		fw.rodata_index = 0;
4038 		fw.rodata = bce_TXP_b06FwRodata;
4039 	}
4040 
4041 	DBPRINT(sc, BCE_INFO_RESET, "Loading TX firmware.\n");
4042 	bce_load_cpu_fw(sc, &cpu_reg, &fw);
4043     bce_start_cpu(sc, &cpu_reg);
4044 
4045 	DBEXIT(BCE_VERBOSE_RESET);
4046 }
4047 
4048 
4049 /****************************************************************************/
4050 /* Initialize the TPAT CPU.                                                 */
4051 /*                                                                          */
4052 /* Returns:                                                                 */
4053 /*   Nothing.                                                               */
4054 /****************************************************************************/
4055 static void
4056 bce_init_tpat_cpu(struct bce_softc *sc)
4057 {
4058 	struct cpu_reg cpu_reg;
4059 	struct fw_info fw;
4060 
4061 	DBENTER(BCE_VERBOSE_RESET);
4062 
4063 	cpu_reg.mode = BCE_TPAT_CPU_MODE;
4064 	cpu_reg.mode_value_halt = BCE_TPAT_CPU_MODE_SOFT_HALT;
4065 	cpu_reg.mode_value_sstep = BCE_TPAT_CPU_MODE_STEP_ENA;
4066 	cpu_reg.state = BCE_TPAT_CPU_STATE;
4067 	cpu_reg.state_value_clear = 0xffffff;
4068 	cpu_reg.gpr0 = BCE_TPAT_CPU_REG_FILE;
4069 	cpu_reg.evmask = BCE_TPAT_CPU_EVENT_MASK;
4070 	cpu_reg.pc = BCE_TPAT_CPU_PROGRAM_COUNTER;
4071 	cpu_reg.inst = BCE_TPAT_CPU_INSTRUCTION;
4072 	cpu_reg.bp = BCE_TPAT_CPU_HW_BREAKPOINT;
4073 	cpu_reg.spad_base = BCE_TPAT_SCRATCH;
4074 	cpu_reg.mips_view_base = 0x8000000;
4075 
4076 	if ((BCE_CHIP_NUM(sc) == BCE_CHIP_NUM_5709) ||
4077 		(BCE_CHIP_NUM(sc) == BCE_CHIP_NUM_5716)) {
4078 		fw.ver_major = bce_TPAT_b09FwReleaseMajor;
4079 		fw.ver_minor = bce_TPAT_b09FwReleaseMinor;
4080 		fw.ver_fix = bce_TPAT_b09FwReleaseFix;
4081 		fw.start_addr = bce_TPAT_b09FwStartAddr;
4082 
4083 		fw.text_addr = bce_TPAT_b09FwTextAddr;
4084 		fw.text_len = bce_TPAT_b09FwTextLen;
4085 		fw.text_index = 0;
4086 		fw.text = bce_TPAT_b09FwText;
4087 
4088 		fw.data_addr = bce_TPAT_b09FwDataAddr;
4089 		fw.data_len = bce_TPAT_b09FwDataLen;
4090 		fw.data_index = 0;
4091 		fw.data = bce_TPAT_b09FwData;
4092 
4093 		fw.sbss_addr = bce_TPAT_b09FwSbssAddr;
4094 		fw.sbss_len = bce_TPAT_b09FwSbssLen;
4095 		fw.sbss_index = 0;
4096 		fw.sbss = bce_TPAT_b09FwSbss;
4097 
4098 		fw.bss_addr = bce_TPAT_b09FwBssAddr;
4099 		fw.bss_len = bce_TPAT_b09FwBssLen;
4100 		fw.bss_index = 0;
4101 		fw.bss = bce_TPAT_b09FwBss;
4102 
4103 		fw.rodata_addr = bce_TPAT_b09FwRodataAddr;
4104 		fw.rodata_len = bce_TPAT_b09FwRodataLen;
4105 		fw.rodata_index = 0;
4106 		fw.rodata = bce_TPAT_b09FwRodata;
4107 	} else {
4108 		fw.ver_major = bce_TPAT_b06FwReleaseMajor;
4109 		fw.ver_minor = bce_TPAT_b06FwReleaseMinor;
4110 		fw.ver_fix = bce_TPAT_b06FwReleaseFix;
4111 		fw.start_addr = bce_TPAT_b06FwStartAddr;
4112 
4113 		fw.text_addr = bce_TPAT_b06FwTextAddr;
4114 		fw.text_len = bce_TPAT_b06FwTextLen;
4115 		fw.text_index = 0;
4116 		fw.text = bce_TPAT_b06FwText;
4117 
4118 		fw.data_addr = bce_TPAT_b06FwDataAddr;
4119 		fw.data_len = bce_TPAT_b06FwDataLen;
4120 		fw.data_index = 0;
4121 		fw.data = bce_TPAT_b06FwData;
4122 
4123 		fw.sbss_addr = bce_TPAT_b06FwSbssAddr;
4124 		fw.sbss_len = bce_TPAT_b06FwSbssLen;
4125 		fw.sbss_index = 0;
4126 		fw.sbss = bce_TPAT_b06FwSbss;
4127 
4128 		fw.bss_addr = bce_TPAT_b06FwBssAddr;
4129 		fw.bss_len = bce_TPAT_b06FwBssLen;
4130 		fw.bss_index = 0;
4131 		fw.bss = bce_TPAT_b06FwBss;
4132 
4133 		fw.rodata_addr = bce_TPAT_b06FwRodataAddr;
4134 		fw.rodata_len = bce_TPAT_b06FwRodataLen;
4135 		fw.rodata_index = 0;
4136 		fw.rodata = bce_TPAT_b06FwRodata;
4137 	}
4138 
4139 	DBPRINT(sc, BCE_INFO_RESET, "Loading TPAT firmware.\n");
4140 	bce_load_cpu_fw(sc, &cpu_reg, &fw);
4141 	bce_start_cpu(sc, &cpu_reg);
4142 
4143 	DBEXIT(BCE_VERBOSE_RESET);
4144 }
4145 
4146 
4147 /****************************************************************************/
4148 /* Initialize the CP CPU.                                                   */
4149 /*                                                                          */
4150 /* Returns:                                                                 */
4151 /*   Nothing.                                                               */
4152 /****************************************************************************/
4153 static void
4154 bce_init_cp_cpu(struct bce_softc *sc)
4155 {
4156 	struct cpu_reg cpu_reg;
4157 	struct fw_info fw;
4158 
4159 	DBENTER(BCE_VERBOSE_RESET);
4160 
4161 	cpu_reg.mode = BCE_CP_CPU_MODE;
4162 	cpu_reg.mode_value_halt = BCE_CP_CPU_MODE_SOFT_HALT;
4163 	cpu_reg.mode_value_sstep = BCE_CP_CPU_MODE_STEP_ENA;
4164 	cpu_reg.state = BCE_CP_CPU_STATE;
4165 	cpu_reg.state_value_clear = 0xffffff;
4166 	cpu_reg.gpr0 = BCE_CP_CPU_REG_FILE;
4167 	cpu_reg.evmask = BCE_CP_CPU_EVENT_MASK;
4168 	cpu_reg.pc = BCE_CP_CPU_PROGRAM_COUNTER;
4169 	cpu_reg.inst = BCE_CP_CPU_INSTRUCTION;
4170 	cpu_reg.bp = BCE_CP_CPU_HW_BREAKPOINT;
4171 	cpu_reg.spad_base = BCE_CP_SCRATCH;
4172 	cpu_reg.mips_view_base = 0x8000000;
4173 
4174 	if ((BCE_CHIP_NUM(sc) == BCE_CHIP_NUM_5709) ||
4175 		(BCE_CHIP_NUM(sc) == BCE_CHIP_NUM_5716)) {
4176 		fw.ver_major = bce_CP_b09FwReleaseMajor;
4177 		fw.ver_minor = bce_CP_b09FwReleaseMinor;
4178 		fw.ver_fix = bce_CP_b09FwReleaseFix;
4179 		fw.start_addr = bce_CP_b09FwStartAddr;
4180 
4181 		fw.text_addr = bce_CP_b09FwTextAddr;
4182 		fw.text_len = bce_CP_b09FwTextLen;
4183 		fw.text_index = 0;
4184 		fw.text = bce_CP_b09FwText;
4185 
4186 		fw.data_addr = bce_CP_b09FwDataAddr;
4187 		fw.data_len = bce_CP_b09FwDataLen;
4188 		fw.data_index = 0;
4189 		fw.data = bce_CP_b09FwData;
4190 
4191 		fw.sbss_addr = bce_CP_b09FwSbssAddr;
4192 		fw.sbss_len = bce_CP_b09FwSbssLen;
4193 		fw.sbss_index = 0;
4194 		fw.sbss = bce_CP_b09FwSbss;
4195 
4196 		fw.bss_addr = bce_CP_b09FwBssAddr;
4197 		fw.bss_len = bce_CP_b09FwBssLen;
4198 		fw.bss_index = 0;
4199 		fw.bss = bce_CP_b09FwBss;
4200 
4201 		fw.rodata_addr = bce_CP_b09FwRodataAddr;
4202 		fw.rodata_len = bce_CP_b09FwRodataLen;
4203 		fw.rodata_index = 0;
4204 		fw.rodata = bce_CP_b09FwRodata;
4205 	} else {
4206 		fw.ver_major = bce_CP_b06FwReleaseMajor;
4207 		fw.ver_minor = bce_CP_b06FwReleaseMinor;
4208 		fw.ver_fix = bce_CP_b06FwReleaseFix;
4209 		fw.start_addr = bce_CP_b06FwStartAddr;
4210 
4211 		fw.text_addr = bce_CP_b06FwTextAddr;
4212 		fw.text_len = bce_CP_b06FwTextLen;
4213 		fw.text_index = 0;
4214 		fw.text = bce_CP_b06FwText;
4215 
4216 		fw.data_addr = bce_CP_b06FwDataAddr;
4217 		fw.data_len = bce_CP_b06FwDataLen;
4218 		fw.data_index = 0;
4219 		fw.data = bce_CP_b06FwData;
4220 
4221 		fw.sbss_addr = bce_CP_b06FwSbssAddr;
4222 		fw.sbss_len = bce_CP_b06FwSbssLen;
4223 		fw.sbss_index = 0;
4224 		fw.sbss = bce_CP_b06FwSbss;
4225 
4226 		fw.bss_addr = bce_CP_b06FwBssAddr;
4227 		fw.bss_len = bce_CP_b06FwBssLen;
4228 		fw.bss_index = 0;
4229 		fw.bss = bce_CP_b06FwBss;
4230 
4231 		fw.rodata_addr = bce_CP_b06FwRodataAddr;
4232 		fw.rodata_len = bce_CP_b06FwRodataLen;
4233 		fw.rodata_index = 0;
4234 		fw.rodata = bce_CP_b06FwRodata;
4235 	}
4236 
4237 	DBPRINT(sc, BCE_INFO_RESET, "Loading CP firmware.\n");
4238 	bce_load_cpu_fw(sc, &cpu_reg, &fw);
4239 	bce_start_cpu(sc, &cpu_reg);
4240 
4241 	DBEXIT(BCE_VERBOSE_RESET);
4242 }
4243 
4244 
4245 /****************************************************************************/
4246 /* Initialize the COM CPU.                                                 */
4247 /*                                                                          */
4248 /* Returns:                                                                 */
4249 /*   Nothing.                                                               */
4250 /****************************************************************************/
4251 static void
4252 bce_init_com_cpu(struct bce_softc *sc)
4253 {
4254 	struct cpu_reg cpu_reg;
4255 	struct fw_info fw;
4256 
4257 	DBENTER(BCE_VERBOSE_RESET);
4258 
4259 	cpu_reg.mode = BCE_COM_CPU_MODE;
4260 	cpu_reg.mode_value_halt = BCE_COM_CPU_MODE_SOFT_HALT;
4261 	cpu_reg.mode_value_sstep = BCE_COM_CPU_MODE_STEP_ENA;
4262 	cpu_reg.state = BCE_COM_CPU_STATE;
4263 	cpu_reg.state_value_clear = 0xffffff;
4264 	cpu_reg.gpr0 = BCE_COM_CPU_REG_FILE;
4265 	cpu_reg.evmask = BCE_COM_CPU_EVENT_MASK;
4266 	cpu_reg.pc = BCE_COM_CPU_PROGRAM_COUNTER;
4267 	cpu_reg.inst = BCE_COM_CPU_INSTRUCTION;
4268 	cpu_reg.bp = BCE_COM_CPU_HW_BREAKPOINT;
4269 	cpu_reg.spad_base = BCE_COM_SCRATCH;
4270 	cpu_reg.mips_view_base = 0x8000000;
4271 
4272 	if ((BCE_CHIP_NUM(sc) == BCE_CHIP_NUM_5709) ||
4273 		(BCE_CHIP_NUM(sc) == BCE_CHIP_NUM_5716)) {
4274 		fw.ver_major = bce_COM_b09FwReleaseMajor;
4275 		fw.ver_minor = bce_COM_b09FwReleaseMinor;
4276 		fw.ver_fix = bce_COM_b09FwReleaseFix;
4277 		fw.start_addr = bce_COM_b09FwStartAddr;
4278 
4279 		fw.text_addr = bce_COM_b09FwTextAddr;
4280 		fw.text_len = bce_COM_b09FwTextLen;
4281 		fw.text_index = 0;
4282 		fw.text = bce_COM_b09FwText;
4283 
4284 		fw.data_addr = bce_COM_b09FwDataAddr;
4285 		fw.data_len = bce_COM_b09FwDataLen;
4286 		fw.data_index = 0;
4287 		fw.data = bce_COM_b09FwData;
4288 
4289 		fw.sbss_addr = bce_COM_b09FwSbssAddr;
4290 		fw.sbss_len = bce_COM_b09FwSbssLen;
4291 		fw.sbss_index = 0;
4292 		fw.sbss = bce_COM_b09FwSbss;
4293 
4294 		fw.bss_addr = bce_COM_b09FwBssAddr;
4295 		fw.bss_len = bce_COM_b09FwBssLen;
4296 		fw.bss_index = 0;
4297 		fw.bss = bce_COM_b09FwBss;
4298 
4299 		fw.rodata_addr = bce_COM_b09FwRodataAddr;
4300 		fw.rodata_len = bce_COM_b09FwRodataLen;
4301 		fw.rodata_index = 0;
4302 		fw.rodata = bce_COM_b09FwRodata;
4303 	} else {
4304 		fw.ver_major = bce_COM_b06FwReleaseMajor;
4305 		fw.ver_minor = bce_COM_b06FwReleaseMinor;
4306 		fw.ver_fix = bce_COM_b06FwReleaseFix;
4307 		fw.start_addr = bce_COM_b06FwStartAddr;
4308 
4309 		fw.text_addr = bce_COM_b06FwTextAddr;
4310 		fw.text_len = bce_COM_b06FwTextLen;
4311 		fw.text_index = 0;
4312 		fw.text = bce_COM_b06FwText;
4313 
4314 		fw.data_addr = bce_COM_b06FwDataAddr;
4315 		fw.data_len = bce_COM_b06FwDataLen;
4316 		fw.data_index = 0;
4317 		fw.data = bce_COM_b06FwData;
4318 
4319 		fw.sbss_addr = bce_COM_b06FwSbssAddr;
4320 		fw.sbss_len = bce_COM_b06FwSbssLen;
4321 		fw.sbss_index = 0;
4322 		fw.sbss = bce_COM_b06FwSbss;
4323 
4324 		fw.bss_addr = bce_COM_b06FwBssAddr;
4325 		fw.bss_len = bce_COM_b06FwBssLen;
4326 		fw.bss_index = 0;
4327 		fw.bss = bce_COM_b06FwBss;
4328 
4329 		fw.rodata_addr = bce_COM_b06FwRodataAddr;
4330 		fw.rodata_len = bce_COM_b06FwRodataLen;
4331 		fw.rodata_index = 0;
4332 		fw.rodata = bce_COM_b06FwRodata;
4333 	}
4334 
4335 	DBPRINT(sc, BCE_INFO_RESET, "Loading COM firmware.\n");
4336 	bce_load_cpu_fw(sc, &cpu_reg, &fw);
4337 	bce_start_cpu(sc, &cpu_reg);
4338 
4339 	DBEXIT(BCE_VERBOSE_RESET);
4340 }
4341 
4342 
4343 /****************************************************************************/
4344 /* Initialize the RV2P, RX, TX, TPAT, COM, and CP CPUs.                     */
4345 /*                                                                          */
4346 /* Loads the firmware for each CPU and starts the CPU.                      */
4347 /*                                                                          */
4348 /* Returns:                                                                 */
4349 /*   Nothing.                                                               */
4350 /****************************************************************************/
4351 static void
4352 bce_init_cpus(struct bce_softc *sc)
4353 {
4354 	DBENTER(BCE_VERBOSE_RESET);
4355 
4356 	if ((BCE_CHIP_NUM(sc) == BCE_CHIP_NUM_5709) ||
4357 		(BCE_CHIP_NUM(sc) == BCE_CHIP_NUM_5716)) {
4358 
4359 		if ((BCE_CHIP_REV(sc) == BCE_CHIP_REV_Ax)) {
4360 			bce_load_rv2p_fw(sc, bce_xi90_rv2p_proc1,
4361 			    sizeof(bce_xi90_rv2p_proc1), RV2P_PROC1);
4362 			bce_load_rv2p_fw(sc, bce_xi90_rv2p_proc2,
4363 			    sizeof(bce_xi90_rv2p_proc2), RV2P_PROC2);
4364 		} else {
4365 			bce_load_rv2p_fw(sc, bce_xi_rv2p_proc1,
4366 			    sizeof(bce_xi_rv2p_proc1), RV2P_PROC1);
4367 			bce_load_rv2p_fw(sc, bce_xi_rv2p_proc2,
4368 			    sizeof(bce_xi_rv2p_proc2), RV2P_PROC2);
4369 		}
4370 
4371 	} else {
4372 		bce_load_rv2p_fw(sc, bce_rv2p_proc1,
4373 		    sizeof(bce_rv2p_proc1), RV2P_PROC1);
4374 		bce_load_rv2p_fw(sc, bce_rv2p_proc2,
4375 		    sizeof(bce_rv2p_proc2), RV2P_PROC2);
4376 	}
4377 
4378 	bce_init_rxp_cpu(sc);
4379 	bce_init_txp_cpu(sc);
4380 	bce_init_tpat_cpu(sc);
4381 	bce_init_com_cpu(sc);
4382 	bce_init_cp_cpu(sc);
4383 
4384 	DBEXIT(BCE_VERBOSE_RESET);
4385 }
4386 
4387 
4388 /****************************************************************************/
4389 /* Initialize context memory.                                               */
4390 /*                                                                          */
4391 /* Clears the memory associated with each Context ID (CID).                 */
4392 /*                                                                          */
4393 /* Returns:                                                                 */
4394 /*   Nothing.                                                               */
4395 /****************************************************************************/
4396 static int
4397 bce_init_ctx(struct bce_softc *sc)
4398 {
4399 	u32 offset, val, vcid_addr;
4400 	int i, j, rc, retry_cnt;
4401 
4402 	rc = 0;
4403 	DBENTER(BCE_VERBOSE_RESET | BCE_VERBOSE_CTX);
4404 
4405 	if ((BCE_CHIP_NUM(sc) == BCE_CHIP_NUM_5709) ||
4406 	    (BCE_CHIP_NUM(sc) == BCE_CHIP_NUM_5716)) {
4407 		retry_cnt = CTX_INIT_RETRY_COUNT;
4408 
4409 		DBPRINT(sc, BCE_INFO_CTX, "Initializing 5709 context.\n");
4410 
4411 		/*
4412 		 * BCM5709 context memory may be cached
4413 		 * in host memory so prepare the host memory
4414 		 * for access.
4415 		 */
4416 		val = BCE_CTX_COMMAND_ENABLED |
4417 		    BCE_CTX_COMMAND_MEM_INIT | (1 << 12);
4418 		val |= (BCM_PAGE_BITS - 8) << 16;
4419 		REG_WR(sc, BCE_CTX_COMMAND, val);
4420 
4421 		/* Wait for mem init command to complete. */
4422 		for (i = 0; i < retry_cnt; i++) {
4423 			val = REG_RD(sc, BCE_CTX_COMMAND);
4424 			if (!(val & BCE_CTX_COMMAND_MEM_INIT))
4425 				break;
4426 			DELAY(2);
4427 		}
4428 		if ((val & BCE_CTX_COMMAND_MEM_INIT) != 0) {
4429 			BCE_PRINTF("%s(): Context memory initialization failed!\n",
4430 			    __FUNCTION__);
4431 			rc = EBUSY;
4432 			goto init_ctx_fail;
4433 		}
4434 
4435 		for (i = 0; i < sc->ctx_pages; i++) {
4436 			/* Set the physical address of the context memory. */
4437 			REG_WR(sc, BCE_CTX_HOST_PAGE_TBL_DATA0,
4438 			    BCE_ADDR_LO(sc->ctx_paddr[i] & 0xfffffff0) |
4439 			    BCE_CTX_HOST_PAGE_TBL_DATA0_VALID);
4440 			REG_WR(sc, BCE_CTX_HOST_PAGE_TBL_DATA1,
4441 			    BCE_ADDR_HI(sc->ctx_paddr[i]));
4442 			REG_WR(sc, BCE_CTX_HOST_PAGE_TBL_CTRL, i |
4443 			    BCE_CTX_HOST_PAGE_TBL_CTRL_WRITE_REQ);
4444 
4445 			/* Verify the context memory write was successful. */
4446 			for (j = 0; j < retry_cnt; j++) {
4447 				val = REG_RD(sc, BCE_CTX_HOST_PAGE_TBL_CTRL);
4448 				if ((val &
4449 				    BCE_CTX_HOST_PAGE_TBL_CTRL_WRITE_REQ) == 0)
4450 					break;
4451 				DELAY(5);
4452 			}
4453 			if ((val & BCE_CTX_HOST_PAGE_TBL_CTRL_WRITE_REQ) != 0) {
4454 				BCE_PRINTF("%s(): Failed to initialize "
4455 				    "context page %d!\n", __FUNCTION__, i);
4456 				rc = EBUSY;
4457 				goto init_ctx_fail;
4458 			}
4459 		}
4460 	} else {
4461 
4462 		DBPRINT(sc, BCE_INFO, "Initializing 5706/5708 context.\n");
4463 
4464 		/*
4465 		 * For the 5706/5708, context memory is local to
4466 		 * the controller, so initialize the controller
4467 		 * context memory.
4468 		 */
4469 
4470 		vcid_addr = GET_CID_ADDR(96);
4471 		while (vcid_addr) {
4472 
4473 			vcid_addr -= PHY_CTX_SIZE;
4474 
4475 			REG_WR(sc, BCE_CTX_VIRT_ADDR, 0);
4476 			REG_WR(sc, BCE_CTX_PAGE_TBL, vcid_addr);
4477 
4478 			for(offset = 0; offset < PHY_CTX_SIZE; offset += 4) {
4479 				CTX_WR(sc, 0x00, offset, 0);
4480 			}
4481 
4482 			REG_WR(sc, BCE_CTX_VIRT_ADDR, vcid_addr);
4483 			REG_WR(sc, BCE_CTX_PAGE_TBL, vcid_addr);
4484 		}
4485 
4486 	}
4487 init_ctx_fail:
4488 	DBEXIT(BCE_VERBOSE_RESET | BCE_VERBOSE_CTX);
4489 	return (rc);
4490 }
4491 
4492 
4493 /****************************************************************************/
4494 /* Fetch the permanent MAC address of the controller.                       */
4495 /*                                                                          */
4496 /* Returns:                                                                 */
4497 /*   Nothing.                                                               */
4498 /****************************************************************************/
4499 static void
4500 bce_get_mac_addr(struct bce_softc *sc)
4501 {
4502 	u32 mac_lo = 0, mac_hi = 0;
4503 
4504 	DBENTER(BCE_VERBOSE_RESET);
4505 
4506 	/*
4507 	 * The NetXtreme II bootcode populates various NIC
4508 	 * power-on and runtime configuration items in a
4509 	 * shared memory area.  The factory configured MAC
4510 	 * address is available from both NVRAM and the
4511 	 * shared memory area so we'll read the value from
4512 	 * shared memory for speed.
4513 	 */
4514 
4515 	mac_hi = bce_shmem_rd(sc, BCE_PORT_HW_CFG_MAC_UPPER);
4516 	mac_lo = bce_shmem_rd(sc, BCE_PORT_HW_CFG_MAC_LOWER);
4517 
4518 	if ((mac_lo == 0) && (mac_hi == 0)) {
4519 		BCE_PRINTF("%s(%d): Invalid Ethernet address!\n",
4520 		    __FILE__, __LINE__);
4521 	} else {
4522 		sc->eaddr[0] = (u_char)(mac_hi >> 8);
4523 		sc->eaddr[1] = (u_char)(mac_hi >> 0);
4524 		sc->eaddr[2] = (u_char)(mac_lo >> 24);
4525 		sc->eaddr[3] = (u_char)(mac_lo >> 16);
4526 		sc->eaddr[4] = (u_char)(mac_lo >> 8);
4527 		sc->eaddr[5] = (u_char)(mac_lo >> 0);
4528 	}
4529 
4530 	DBPRINT(sc, BCE_INFO_MISC, "Permanent Ethernet "
4531 	    "address = %6D\n", sc->eaddr, ":");
4532 	DBEXIT(BCE_VERBOSE_RESET);
4533 }
4534 
4535 
4536 /****************************************************************************/
4537 /* Program the MAC address.                                                 */
4538 /*                                                                          */
4539 /* Returns:                                                                 */
4540 /*   Nothing.                                                               */
4541 /****************************************************************************/
4542 static void
4543 bce_set_mac_addr(struct bce_softc *sc)
4544 {
4545 	u32 val;
4546 	u8 *mac_addr = sc->eaddr;
4547 
4548 	/* ToDo: Add support for setting multiple MAC addresses. */
4549 
4550 	DBENTER(BCE_VERBOSE_RESET);
4551 	DBPRINT(sc, BCE_INFO_MISC, "Setting Ethernet address = "
4552 	    "%6D\n", sc->eaddr, ":");
4553 
4554 	val = (mac_addr[0] << 8) | mac_addr[1];
4555 
4556 	REG_WR(sc, BCE_EMAC_MAC_MATCH0, val);
4557 
4558 	val = (mac_addr[2] << 24) | (mac_addr[3] << 16) |
4559 	    (mac_addr[4] << 8) | mac_addr[5];
4560 
4561 	REG_WR(sc, BCE_EMAC_MAC_MATCH1, val);
4562 
4563 	DBEXIT(BCE_VERBOSE_RESET);
4564 }
4565 
4566 
4567 /****************************************************************************/
4568 /* Stop the controller.                                                     */
4569 /*                                                                          */
4570 /* Returns:                                                                 */
4571 /*   Nothing.                                                               */
4572 /****************************************************************************/
4573 static void
4574 bce_stop(struct bce_softc *sc)
4575 {
4576 	struct ifnet *ifp;
4577 
4578 	DBENTER(BCE_VERBOSE_RESET);
4579 
4580 	BCE_LOCK_ASSERT(sc);
4581 
4582 	ifp = sc->bce_ifp;
4583 
4584 	callout_stop(&sc->bce_tick_callout);
4585 
4586 	/* Disable the transmit/receive blocks. */
4587 	REG_WR(sc, BCE_MISC_ENABLE_CLR_BITS, BCE_MISC_ENABLE_CLR_DEFAULT);
4588 	REG_RD(sc, BCE_MISC_ENABLE_CLR_BITS);
4589 	DELAY(20);
4590 
4591 	bce_disable_intr(sc);
4592 
4593 	/* Free RX buffers. */
4594 #ifdef BCE_JUMBO_HDRSPLIT
4595 	bce_free_pg_chain(sc);
4596 #endif
4597 	bce_free_rx_chain(sc);
4598 
4599 	/* Free TX buffers. */
4600 	bce_free_tx_chain(sc);
4601 
4602 	sc->watchdog_timer = 0;
4603 
4604 	sc->bce_link_up = FALSE;
4605 
4606 	ifp->if_drv_flags &= ~(IFF_DRV_RUNNING | IFF_DRV_OACTIVE);
4607 
4608 	DBEXIT(BCE_VERBOSE_RESET);
4609 }
4610 
4611 
4612 static int
4613 bce_reset(struct bce_softc *sc, u32 reset_code)
4614 {
4615 	u32 val;
4616 	int i, rc = 0;
4617 
4618 	DBENTER(BCE_VERBOSE_RESET);
4619 
4620 	DBPRINT(sc, BCE_VERBOSE_RESET, "%s(): reset_code = 0x%08X\n",
4621 	    __FUNCTION__, reset_code);
4622 
4623 	/* Wait for pending PCI transactions to complete. */
4624 	REG_WR(sc, BCE_MISC_ENABLE_CLR_BITS,
4625 	    BCE_MISC_ENABLE_CLR_BITS_TX_DMA_ENABLE |
4626 	    BCE_MISC_ENABLE_CLR_BITS_DMA_ENGINE_ENABLE |
4627 	    BCE_MISC_ENABLE_CLR_BITS_RX_DMA_ENABLE |
4628 	    BCE_MISC_ENABLE_CLR_BITS_HOST_COALESCE_ENABLE);
4629 	val = REG_RD(sc, BCE_MISC_ENABLE_CLR_BITS);
4630 	DELAY(5);
4631 
4632 	/* Disable DMA */
4633 	if ((BCE_CHIP_NUM(sc) == BCE_CHIP_NUM_5709) ||
4634 	    (BCE_CHIP_NUM(sc) == BCE_CHIP_NUM_5716)) {
4635 		val = REG_RD(sc, BCE_MISC_NEW_CORE_CTL);
4636 		val &= ~BCE_MISC_NEW_CORE_CTL_DMA_ENABLE;
4637 		REG_WR(sc, BCE_MISC_NEW_CORE_CTL, val);
4638 	}
4639 
4640 	/* Assume bootcode is running. */
4641 	sc->bce_fw_timed_out = FALSE;
4642 	sc->bce_drv_cardiac_arrest = FALSE;
4643 
4644 	/* Give the firmware a chance to prepare for the reset. */
4645 	rc = bce_fw_sync(sc, BCE_DRV_MSG_DATA_WAIT0 | reset_code);
4646 	if (rc)
4647 		goto bce_reset_exit;
4648 
4649 	/* Set a firmware reminder that this is a soft reset. */
4650 	bce_shmem_wr(sc, BCE_DRV_RESET_SIGNATURE, BCE_DRV_RESET_SIGNATURE_MAGIC);
4651 
4652 	/* Dummy read to force the chip to complete all current transactions. */
4653 	val = REG_RD(sc, BCE_MISC_ID);
4654 
4655 	/* Chip reset. */
4656 	if ((BCE_CHIP_NUM(sc) == BCE_CHIP_NUM_5709) ||
4657 	    (BCE_CHIP_NUM(sc) == BCE_CHIP_NUM_5716)) {
4658 		REG_WR(sc, BCE_MISC_COMMAND, BCE_MISC_COMMAND_SW_RESET);
4659 		REG_RD(sc, BCE_MISC_COMMAND);
4660 		DELAY(5);
4661 
4662 		val = BCE_PCICFG_MISC_CONFIG_REG_WINDOW_ENA |
4663 		    BCE_PCICFG_MISC_CONFIG_TARGET_MB_WORD_SWAP;
4664 
4665 		pci_write_config(sc->bce_dev, BCE_PCICFG_MISC_CONFIG, val, 4);
4666 	} else {
4667 		val = BCE_PCICFG_MISC_CONFIG_CORE_RST_REQ |
4668 		    BCE_PCICFG_MISC_CONFIG_REG_WINDOW_ENA |
4669 		    BCE_PCICFG_MISC_CONFIG_TARGET_MB_WORD_SWAP;
4670 		REG_WR(sc, BCE_PCICFG_MISC_CONFIG, val);
4671 
4672 		/* Allow up to 30us for reset to complete. */
4673 		for (i = 0; i < 10; i++) {
4674 			val = REG_RD(sc, BCE_PCICFG_MISC_CONFIG);
4675 			if ((val & (BCE_PCICFG_MISC_CONFIG_CORE_RST_REQ |
4676 			    BCE_PCICFG_MISC_CONFIG_CORE_RST_BSY)) == 0) {
4677 				break;
4678 			}
4679 			DELAY(10);
4680 		}
4681 
4682 		/* Check that reset completed successfully. */
4683 		if (val & (BCE_PCICFG_MISC_CONFIG_CORE_RST_REQ |
4684 		    BCE_PCICFG_MISC_CONFIG_CORE_RST_BSY)) {
4685 			BCE_PRINTF("%s(%d): Reset failed!\n",
4686 			    __FILE__, __LINE__);
4687 			rc = EBUSY;
4688 			goto bce_reset_exit;
4689 		}
4690 	}
4691 
4692 	/* Make sure byte swapping is properly configured. */
4693 	val = REG_RD(sc, BCE_PCI_SWAP_DIAG0);
4694 	if (val != 0x01020304) {
4695 		BCE_PRINTF("%s(%d): Byte swap is incorrect!\n",
4696 		    __FILE__, __LINE__);
4697 		rc = ENODEV;
4698 		goto bce_reset_exit;
4699 	}
4700 
4701 	/* Just completed a reset, assume that firmware is running again. */
4702 	sc->bce_fw_timed_out = FALSE;
4703 	sc->bce_drv_cardiac_arrest = FALSE;
4704 
4705 	/* Wait for the firmware to finish its initialization. */
4706 	rc = bce_fw_sync(sc, BCE_DRV_MSG_DATA_WAIT1 | reset_code);
4707 	if (rc)
4708 		BCE_PRINTF("%s(%d): Firmware did not complete "
4709 		    "initialization!\n", __FILE__, __LINE__);
4710 
4711 bce_reset_exit:
4712 	DBEXIT(BCE_VERBOSE_RESET);
4713 	return (rc);
4714 }
4715 
4716 
4717 static int
4718 bce_chipinit(struct bce_softc *sc)
4719 {
4720 	u32 val;
4721 	int rc = 0;
4722 
4723 	DBENTER(BCE_VERBOSE_RESET);
4724 
4725 	bce_disable_intr(sc);
4726 
4727 	/*
4728 	 * Initialize DMA byte/word swapping, configure the number of DMA
4729 	 * channels and PCI clock compensation delay.
4730 	 */
4731 	val = BCE_DMA_CONFIG_DATA_BYTE_SWAP |
4732 	    BCE_DMA_CONFIG_DATA_WORD_SWAP |
4733 #if BYTE_ORDER == BIG_ENDIAN
4734 	    BCE_DMA_CONFIG_CNTL_BYTE_SWAP |
4735 #endif
4736 	    BCE_DMA_CONFIG_CNTL_WORD_SWAP |
4737 	    DMA_READ_CHANS << 12 |
4738 	    DMA_WRITE_CHANS << 16;
4739 
4740 	val |= (0x2 << 20) | BCE_DMA_CONFIG_CNTL_PCI_COMP_DLY;
4741 
4742 	if ((sc->bce_flags & BCE_PCIX_FLAG) && (sc->bus_speed_mhz == 133))
4743 		val |= BCE_DMA_CONFIG_PCI_FAST_CLK_CMP;
4744 
4745 	/*
4746 	 * This setting resolves a problem observed on certain Intel PCI
4747 	 * chipsets that cannot handle multiple outstanding DMA operations.
4748 	 * See errata E9_5706A1_65.
4749 	 */
4750 	if ((BCE_CHIP_NUM(sc) == BCE_CHIP_NUM_5706) &&
4751 	    (BCE_CHIP_ID(sc) != BCE_CHIP_ID_5706_A0) &&
4752 	    !(sc->bce_flags & BCE_PCIX_FLAG))
4753 		val |= BCE_DMA_CONFIG_CNTL_PING_PONG_DMA;
4754 
4755 	REG_WR(sc, BCE_DMA_CONFIG, val);
4756 
4757 	/* Enable the RX_V2P and Context state machines before access. */
4758 	REG_WR(sc, BCE_MISC_ENABLE_SET_BITS,
4759 	    BCE_MISC_ENABLE_SET_BITS_HOST_COALESCE_ENABLE |
4760 	    BCE_MISC_ENABLE_STATUS_BITS_RX_V2P_ENABLE |
4761 	    BCE_MISC_ENABLE_STATUS_BITS_CONTEXT_ENABLE);
4762 
4763 	/* Initialize context mapping and zero out the quick contexts. */
4764 	if ((rc = bce_init_ctx(sc)) != 0)
4765 		goto bce_chipinit_exit;
4766 
4767 	/* Initialize the on-boards CPUs */
4768 	bce_init_cpus(sc);
4769 
4770 	/* Enable management frames (NC-SI) to flow to the MCP. */
4771 	if (sc->bce_flags & BCE_MFW_ENABLE_FLAG) {
4772 		val = REG_RD(sc, BCE_RPM_MGMT_PKT_CTRL) | BCE_RPM_MGMT_PKT_CTRL_MGMT_EN;
4773 		REG_WR(sc, BCE_RPM_MGMT_PKT_CTRL, val);
4774 	}
4775 
4776 	/* Prepare NVRAM for access. */
4777 	if ((rc = bce_init_nvram(sc)) != 0)
4778 		goto bce_chipinit_exit;
4779 
4780 	/* Set the kernel bypass block size */
4781 	val = REG_RD(sc, BCE_MQ_CONFIG);
4782 	val &= ~BCE_MQ_CONFIG_KNL_BYP_BLK_SIZE;
4783 	val |= BCE_MQ_CONFIG_KNL_BYP_BLK_SIZE_256;
4784 
4785 	/* Enable bins used on the 5709. */
4786 	if ((BCE_CHIP_NUM(sc) == BCE_CHIP_NUM_5709) ||
4787 	    (BCE_CHIP_NUM(sc) == BCE_CHIP_NUM_5716)) {
4788 		val |= BCE_MQ_CONFIG_BIN_MQ_MODE;
4789 		if (BCE_CHIP_ID(sc) == BCE_CHIP_ID_5709_A1)
4790 			val |= BCE_MQ_CONFIG_HALT_DIS;
4791 	}
4792 
4793 	REG_WR(sc, BCE_MQ_CONFIG, val);
4794 
4795 	val = 0x10000 + (MAX_CID_CNT * MB_KERNEL_CTX_SIZE);
4796 	REG_WR(sc, BCE_MQ_KNL_BYP_WIND_START, val);
4797 	REG_WR(sc, BCE_MQ_KNL_WIND_END, val);
4798 
4799 	/* Set the page size and clear the RV2P processor stall bits. */
4800 	val = (BCM_PAGE_BITS - 8) << 24;
4801 	REG_WR(sc, BCE_RV2P_CONFIG, val);
4802 
4803 	/* Configure page size. */
4804 	val = REG_RD(sc, BCE_TBDR_CONFIG);
4805 	val &= ~BCE_TBDR_CONFIG_PAGE_SIZE;
4806 	val |= (BCM_PAGE_BITS - 8) << 24 | 0x40;
4807 	REG_WR(sc, BCE_TBDR_CONFIG, val);
4808 
4809 	/* Set the perfect match control register to default. */
4810 	REG_WR_IND(sc, BCE_RXP_PM_CTRL, 0);
4811 
4812 bce_chipinit_exit:
4813 	DBEXIT(BCE_VERBOSE_RESET);
4814 
4815 	return(rc);
4816 }
4817 
4818 
4819 /****************************************************************************/
4820 /* Initialize the controller in preparation to send/receive traffic.        */
4821 /*                                                                          */
4822 /* Returns:                                                                 */
4823 /*   0 for success, positive value for failure.                             */
4824 /****************************************************************************/
4825 static int
4826 bce_blockinit(struct bce_softc *sc)
4827 {
4828 	u32 reg, val;
4829 	int rc = 0;
4830 
4831 	DBENTER(BCE_VERBOSE_RESET);
4832 
4833 	/* Load the hardware default MAC address. */
4834 	bce_set_mac_addr(sc);
4835 
4836 	/* Set the Ethernet backoff seed value */
4837 	val = sc->eaddr[0]         + (sc->eaddr[1] << 8) +
4838 	      (sc->eaddr[2] << 16) + (sc->eaddr[3]     ) +
4839 	      (sc->eaddr[4] << 8)  + (sc->eaddr[5] << 16);
4840 	REG_WR(sc, BCE_EMAC_BACKOFF_SEED, val);
4841 
4842 	sc->last_status_idx = 0;
4843 	sc->rx_mode = BCE_EMAC_RX_MODE_SORT_MODE;
4844 
4845 	/* Set up link change interrupt generation. */
4846 	REG_WR(sc, BCE_EMAC_ATTENTION_ENA, BCE_EMAC_ATTENTION_ENA_LINK);
4847 
4848 	/* Program the physical address of the status block. */
4849 	REG_WR(sc, BCE_HC_STATUS_ADDR_L,
4850 	    BCE_ADDR_LO(sc->status_block_paddr));
4851 	REG_WR(sc, BCE_HC_STATUS_ADDR_H,
4852 	    BCE_ADDR_HI(sc->status_block_paddr));
4853 
4854 	/* Program the physical address of the statistics block. */
4855 	REG_WR(sc, BCE_HC_STATISTICS_ADDR_L,
4856 	    BCE_ADDR_LO(sc->stats_block_paddr));
4857 	REG_WR(sc, BCE_HC_STATISTICS_ADDR_H,
4858 	    BCE_ADDR_HI(sc->stats_block_paddr));
4859 
4860 	/* Program various host coalescing parameters. */
4861 	REG_WR(sc, BCE_HC_TX_QUICK_CONS_TRIP,
4862 	    (sc->bce_tx_quick_cons_trip_int << 16) | sc->bce_tx_quick_cons_trip);
4863 	REG_WR(sc, BCE_HC_RX_QUICK_CONS_TRIP,
4864 	    (sc->bce_rx_quick_cons_trip_int << 16) | sc->bce_rx_quick_cons_trip);
4865 	REG_WR(sc, BCE_HC_COMP_PROD_TRIP,
4866 	    (sc->bce_comp_prod_trip_int << 16) | sc->bce_comp_prod_trip);
4867 	REG_WR(sc, BCE_HC_TX_TICKS,
4868 	    (sc->bce_tx_ticks_int << 16) | sc->bce_tx_ticks);
4869 	REG_WR(sc, BCE_HC_RX_TICKS,
4870 	    (sc->bce_rx_ticks_int << 16) | sc->bce_rx_ticks);
4871 	REG_WR(sc, BCE_HC_COM_TICKS,
4872 	    (sc->bce_com_ticks_int << 16) | sc->bce_com_ticks);
4873 	REG_WR(sc, BCE_HC_CMD_TICKS,
4874 	    (sc->bce_cmd_ticks_int << 16) | sc->bce_cmd_ticks);
4875 	REG_WR(sc, BCE_HC_STATS_TICKS,
4876 	    (sc->bce_stats_ticks & 0xffff00));
4877 	REG_WR(sc, BCE_HC_STAT_COLLECT_TICKS, 0xbb8);  /* 3ms */
4878 
4879 	/* Configure the Host Coalescing block. */
4880 	val = BCE_HC_CONFIG_RX_TMR_MODE | BCE_HC_CONFIG_TX_TMR_MODE |
4881 	    BCE_HC_CONFIG_COLLECT_STATS;
4882 
4883 #if 0
4884 	/* ToDo: Add MSI-X support. */
4885 	if (sc->bce_flags & BCE_USING_MSIX_FLAG) {
4886 		u32 base = ((BCE_TX_VEC - 1) * BCE_HC_SB_CONFIG_SIZE) +
4887 		    BCE_HC_SB_CONFIG_1;
4888 
4889 		REG_WR(sc, BCE_HC_MSIX_BIT_VECTOR, BCE_HC_MSIX_BIT_VECTOR_VAL);
4890 
4891 		REG_WR(sc, base, BCE_HC_SB_CONFIG_1_TX_TMR_MODE |
4892 		    BCE_HC_SB_CONFIG_1_ONE_SHOT);
4893 
4894 		REG_WR(sc, base + BCE_HC_TX_QUICK_CONS_TRIP_OFF,
4895 		    (sc->tx_quick_cons_trip_int << 16) |
4896 		     sc->tx_quick_cons_trip);
4897 
4898 		REG_WR(sc, base + BCE_HC_TX_TICKS_OFF,
4899 		    (sc->tx_ticks_int << 16) | sc->tx_ticks);
4900 
4901 		val |= BCE_HC_CONFIG_SB_ADDR_INC_128B;
4902 	}
4903 
4904 	/*
4905 	 * Tell the HC block to automatically set the
4906 	 * INT_MASK bit after an MSI/MSI-X interrupt
4907 	 * is generated so the driver doesn't have to.
4908 	 */
4909 	if (sc->bce_flags & BCE_ONE_SHOT_MSI_FLAG)
4910 		val |= BCE_HC_CONFIG_ONE_SHOT;
4911 
4912 	/* Set the MSI-X status blocks to 128 byte boundaries. */
4913 	if (sc->bce_flags & BCE_USING_MSIX_FLAG)
4914 		val |= BCE_HC_CONFIG_SB_ADDR_INC_128B;
4915 #endif
4916 
4917 	REG_WR(sc, BCE_HC_CONFIG, val);
4918 
4919 	/* Clear the internal statistics counters. */
4920 	REG_WR(sc, BCE_HC_COMMAND, BCE_HC_COMMAND_CLR_STAT_NOW);
4921 
4922 	/* Verify that bootcode is running. */
4923 	reg = bce_shmem_rd(sc, BCE_DEV_INFO_SIGNATURE);
4924 
4925 	DBRUNIF(DB_RANDOMTRUE(bootcode_running_failure_sim_control),
4926 	    BCE_PRINTF("%s(%d): Simulating bootcode failure.\n",
4927 	    __FILE__, __LINE__);
4928 	    reg = 0);
4929 
4930 	if ((reg & BCE_DEV_INFO_SIGNATURE_MAGIC_MASK) !=
4931 	    BCE_DEV_INFO_SIGNATURE_MAGIC) {
4932 		BCE_PRINTF("%s(%d): Bootcode not running! Found: 0x%08X, "
4933 		    "Expected: 08%08X\n", __FILE__, __LINE__,
4934 		    (reg & BCE_DEV_INFO_SIGNATURE_MAGIC_MASK),
4935 		    BCE_DEV_INFO_SIGNATURE_MAGIC);
4936 		rc = ENODEV;
4937 		goto bce_blockinit_exit;
4938 	}
4939 
4940 	/* Enable DMA */
4941 	if ((BCE_CHIP_NUM(sc) == BCE_CHIP_NUM_5709) ||
4942 	    (BCE_CHIP_NUM(sc) == BCE_CHIP_NUM_5716)) {
4943 		val = REG_RD(sc, BCE_MISC_NEW_CORE_CTL);
4944 		val |= BCE_MISC_NEW_CORE_CTL_DMA_ENABLE;
4945 		REG_WR(sc, BCE_MISC_NEW_CORE_CTL, val);
4946 	}
4947 
4948 	/* Allow bootcode to apply additional fixes before enabling MAC. */
4949 	rc = bce_fw_sync(sc, BCE_DRV_MSG_DATA_WAIT2 |
4950 	    BCE_DRV_MSG_CODE_RESET);
4951 
4952 	/* Enable link state change interrupt generation. */
4953 	REG_WR(sc, BCE_HC_ATTN_BITS_ENABLE, STATUS_ATTN_BITS_LINK_STATE);
4954 
4955 	/* Enable the RXP. */
4956 	bce_start_rxp_cpu(sc);
4957 
4958 	/* Disable management frames (NC-SI) from flowing to the MCP. */
4959 	if (sc->bce_flags & BCE_MFW_ENABLE_FLAG) {
4960 		val = REG_RD(sc, BCE_RPM_MGMT_PKT_CTRL) &
4961 		    ~BCE_RPM_MGMT_PKT_CTRL_MGMT_EN;
4962 		REG_WR(sc, BCE_RPM_MGMT_PKT_CTRL, val);
4963 	}
4964 
4965 	/* Enable all remaining blocks in the MAC. */
4966 	if ((BCE_CHIP_NUM(sc) == BCE_CHIP_NUM_5709) ||
4967 	    (BCE_CHIP_NUM(sc) == BCE_CHIP_NUM_5716))
4968 		REG_WR(sc, BCE_MISC_ENABLE_SET_BITS,
4969 		    BCE_MISC_ENABLE_DEFAULT_XI);
4970 	else
4971 		REG_WR(sc, BCE_MISC_ENABLE_SET_BITS,
4972 		    BCE_MISC_ENABLE_DEFAULT);
4973 
4974 	REG_RD(sc, BCE_MISC_ENABLE_SET_BITS);
4975 	DELAY(20);
4976 
4977 	/* Save the current host coalescing block settings. */
4978 	sc->hc_command = REG_RD(sc, BCE_HC_COMMAND);
4979 
4980 bce_blockinit_exit:
4981 	DBEXIT(BCE_VERBOSE_RESET);
4982 
4983 	return (rc);
4984 }
4985 
4986 
4987 /****************************************************************************/
4988 /* Encapsulate an mbuf into the rx_bd chain.                                */
4989 /*                                                                          */
4990 /* Returns:                                                                 */
4991 /*   0 for success, positive value for failure.                             */
4992 /****************************************************************************/
4993 static int
4994 bce_get_rx_buf(struct bce_softc *sc, struct mbuf *m, u16 *prod,
4995     u16 *chain_prod, u32 *prod_bseq)
4996 {
4997 	bus_dmamap_t map;
4998 	bus_dma_segment_t segs[BCE_MAX_SEGMENTS];
4999 	struct mbuf *m_new = NULL;
5000 	struct rx_bd *rxbd;
5001 	int nsegs, error, rc = 0;
5002 #ifdef BCE_DEBUG
5003 	u16 debug_chain_prod = *chain_prod;
5004 #endif
5005 
5006 	DBENTER(BCE_EXTREME_RESET | BCE_EXTREME_RECV | BCE_EXTREME_LOAD);
5007 
5008 	/* Make sure the inputs are valid. */
5009 	DBRUNIF((*chain_prod > MAX_RX_BD),
5010 	    BCE_PRINTF("%s(%d): RX producer out of range: "
5011 	    "0x%04X > 0x%04X\n", __FILE__, __LINE__,
5012 	    *chain_prod, (u16) MAX_RX_BD));
5013 
5014 	DBPRINT(sc, BCE_EXTREME_RECV, "%s(enter): prod = 0x%04X, "
5015 	    "chain_prod = 0x%04X, prod_bseq = 0x%08X\n", __FUNCTION__,
5016 	    *prod, *chain_prod, *prod_bseq);
5017 
5018 	/* Update some debug statistic counters */
5019 	DBRUNIF((sc->free_rx_bd < sc->rx_low_watermark),
5020 	    sc->rx_low_watermark = sc->free_rx_bd);
5021 	DBRUNIF((sc->free_rx_bd == sc->max_rx_bd),
5022 	    sc->rx_empty_count++);
5023 
5024 	/* Check whether this is a new mbuf allocation. */
5025 	if (m == NULL) {
5026 
5027 		/* Simulate an mbuf allocation failure. */
5028 		DBRUNIF(DB_RANDOMTRUE(mbuf_alloc_failed_sim_control),
5029 		    sc->mbuf_alloc_failed_count++;
5030 		    sc->mbuf_alloc_failed_sim_count++;
5031 		    rc = ENOBUFS;
5032 		    goto bce_get_rx_buf_exit);
5033 
5034 		/* This is a new mbuf allocation. */
5035 #ifdef BCE_JUMBO_HDRSPLIT
5036 		MGETHDR(m_new, M_DONTWAIT, MT_DATA);
5037 #else
5038 		m_new = m_getjcl(M_DONTWAIT, MT_DATA, M_PKTHDR,
5039 		    sc->rx_bd_mbuf_alloc_size);
5040 #endif
5041 
5042 		if (m_new == NULL) {
5043 			sc->mbuf_alloc_failed_count++;
5044 			rc = ENOBUFS;
5045 			goto bce_get_rx_buf_exit;
5046 		}
5047 
5048 		DBRUN(sc->debug_rx_mbuf_alloc++);
5049 	} else {
5050 		/* Reuse an existing mbuf. */
5051 		m_new = m;
5052 	}
5053 
5054 	/* Make sure we have a valid packet header. */
5055 	M_ASSERTPKTHDR(m_new);
5056 
5057 	/* Initialize the mbuf size and pad if necessary for alignment. */
5058 	m_new->m_pkthdr.len = m_new->m_len = sc->rx_bd_mbuf_alloc_size;
5059 	m_adj(m_new, sc->rx_bd_mbuf_align_pad);
5060 
5061 	/* ToDo: Consider calling m_fragment() to test error handling. */
5062 
5063 	/* Map the mbuf cluster into device memory. */
5064 	map = sc->rx_mbuf_map[*chain_prod];
5065 	error = bus_dmamap_load_mbuf_sg(sc->rx_mbuf_tag, map, m_new,
5066 	    segs, &nsegs, BUS_DMA_NOWAIT);
5067 
5068 	/* Handle any mapping errors. */
5069 	if (error) {
5070 		BCE_PRINTF("%s(%d): Error mapping mbuf into RX "
5071 		    "chain (%d)!\n", __FILE__, __LINE__, error);
5072 
5073 		sc->dma_map_addr_rx_failed_count++;
5074 		m_freem(m_new);
5075 
5076 		DBRUN(sc->debug_rx_mbuf_alloc--);
5077 
5078 		rc = ENOBUFS;
5079 		goto bce_get_rx_buf_exit;
5080 	}
5081 
5082 	/* All mbufs must map to a single segment. */
5083 	KASSERT(nsegs == 1, ("%s(): Too many segments returned (%d)!",
5084 	    __FUNCTION__, nsegs));
5085 
5086 	/* Setup the rx_bd for the segment. */
5087 	rxbd = &sc->rx_bd_chain[RX_PAGE(*chain_prod)][RX_IDX(*chain_prod)];
5088 
5089 	rxbd->rx_bd_haddr_lo  = htole32(BCE_ADDR_LO(segs[0].ds_addr));
5090 	rxbd->rx_bd_haddr_hi  = htole32(BCE_ADDR_HI(segs[0].ds_addr));
5091 	rxbd->rx_bd_len       = htole32(segs[0].ds_len);
5092 	rxbd->rx_bd_flags     = htole32(RX_BD_FLAGS_START | RX_BD_FLAGS_END);
5093 	*prod_bseq += segs[0].ds_len;
5094 
5095 	/* Save the mbuf and update our counter. */
5096 	sc->rx_mbuf_ptr[*chain_prod] = m_new;
5097 	sc->free_rx_bd -= nsegs;
5098 
5099 	DBRUNMSG(BCE_INSANE_RECV,
5100 	    bce_dump_rx_mbuf_chain(sc, debug_chain_prod, nsegs));
5101 
5102 	DBPRINT(sc, BCE_EXTREME_RECV, "%s(exit): prod = 0x%04X, "
5103 	    "chain_prod = 0x%04X, prod_bseq = 0x%08X\n",
5104 	    __FUNCTION__, *prod, *chain_prod, *prod_bseq);
5105 
5106 bce_get_rx_buf_exit:
5107 	DBEXIT(BCE_EXTREME_RESET | BCE_EXTREME_RECV | BCE_EXTREME_LOAD);
5108 
5109 	return(rc);
5110 }
5111 
5112 
5113 #ifdef BCE_JUMBO_HDRSPLIT
5114 /****************************************************************************/
5115 /* Encapsulate an mbuf cluster into the page chain.                         */
5116 /*                                                                          */
5117 /* Returns:                                                                 */
5118 /*   0 for success, positive value for failure.                             */
5119 /****************************************************************************/
5120 static int
5121 bce_get_pg_buf(struct bce_softc *sc, struct mbuf *m, u16 *prod,
5122 	u16 *prod_idx)
5123 {
5124 	bus_dmamap_t map;
5125 	bus_addr_t busaddr;
5126 	struct mbuf *m_new = NULL;
5127 	struct rx_bd *pgbd;
5128 	int error, rc = 0;
5129 #ifdef BCE_DEBUG
5130 	u16 debug_prod_idx = *prod_idx;
5131 #endif
5132 
5133 	DBENTER(BCE_EXTREME_RESET | BCE_EXTREME_RECV | BCE_EXTREME_LOAD);
5134 
5135 	/* Make sure the inputs are valid. */
5136 	DBRUNIF((*prod_idx > MAX_PG_BD),
5137 	    BCE_PRINTF("%s(%d): page producer out of range: "
5138 	    "0x%04X > 0x%04X\n", __FILE__, __LINE__,
5139 	    *prod_idx, (u16) MAX_PG_BD));
5140 
5141 	DBPRINT(sc, BCE_EXTREME_RECV, "%s(enter): prod = 0x%04X, "
5142 	    "chain_prod = 0x%04X\n", __FUNCTION__, *prod, *prod_idx);
5143 
5144 	/* Update counters if we've hit a new low or run out of pages. */
5145 	DBRUNIF((sc->free_pg_bd < sc->pg_low_watermark),
5146 	    sc->pg_low_watermark = sc->free_pg_bd);
5147 	DBRUNIF((sc->free_pg_bd == sc->max_pg_bd), sc->pg_empty_count++);
5148 
5149 	/* Check whether this is a new mbuf allocation. */
5150 	if (m == NULL) {
5151 
5152 		/* Simulate an mbuf allocation failure. */
5153 		DBRUNIF(DB_RANDOMTRUE(mbuf_alloc_failed_sim_control),
5154 		    sc->mbuf_alloc_failed_count++;
5155 		    sc->mbuf_alloc_failed_sim_count++;
5156 		    rc = ENOBUFS;
5157 		    goto bce_get_pg_buf_exit);
5158 
5159 		/* This is a new mbuf allocation. */
5160 		m_new = m_getcl(M_DONTWAIT, MT_DATA, 0);
5161 		if (m_new == NULL) {
5162 			sc->mbuf_alloc_failed_count++;
5163 			rc = ENOBUFS;
5164 			goto bce_get_pg_buf_exit;
5165 		}
5166 
5167 		DBRUN(sc->debug_pg_mbuf_alloc++);
5168 	} else {
5169 		/* Reuse an existing mbuf. */
5170 		m_new = m;
5171 		m_new->m_data = m_new->m_ext.ext_buf;
5172 	}
5173 
5174 	m_new->m_len = sc->pg_bd_mbuf_alloc_size;
5175 
5176 	/* ToDo: Consider calling m_fragment() to test error handling. */
5177 
5178 	/* Map the mbuf cluster into device memory. */
5179 	map = sc->pg_mbuf_map[*prod_idx];
5180 	error = bus_dmamap_load(sc->pg_mbuf_tag, map, mtod(m_new, void *),
5181 	    sc->pg_bd_mbuf_alloc_size, bce_dma_map_addr,
5182 	    &busaddr, BUS_DMA_NOWAIT);
5183 
5184 	/* Handle any mapping errors. */
5185 	if (error) {
5186 		BCE_PRINTF("%s(%d): Error mapping mbuf into page chain!\n",
5187 		    __FILE__, __LINE__);
5188 
5189 		m_freem(m_new);
5190 		DBRUN(sc->debug_pg_mbuf_alloc--);
5191 
5192 		rc = ENOBUFS;
5193 		goto bce_get_pg_buf_exit;
5194 	}
5195 
5196 	/* ToDo: Do we need bus_dmamap_sync(,,BUS_DMASYNC_PREREAD) here? */
5197 
5198 	/*
5199 	 * The page chain uses the same rx_bd data structure
5200 	 * as the receive chain but doesn't require a byte sequence (bseq).
5201 	 */
5202 	pgbd = &sc->pg_bd_chain[PG_PAGE(*prod_idx)][PG_IDX(*prod_idx)];
5203 
5204 	pgbd->rx_bd_haddr_lo  = htole32(BCE_ADDR_LO(busaddr));
5205 	pgbd->rx_bd_haddr_hi  = htole32(BCE_ADDR_HI(busaddr));
5206 	pgbd->rx_bd_len       = htole32(sc->pg_bd_mbuf_alloc_size);
5207 	pgbd->rx_bd_flags     = htole32(RX_BD_FLAGS_START | RX_BD_FLAGS_END);
5208 
5209 	/* Save the mbuf and update our counter. */
5210 	sc->pg_mbuf_ptr[*prod_idx] = m_new;
5211 	sc->free_pg_bd--;
5212 
5213 	DBRUNMSG(BCE_INSANE_RECV,
5214 	    bce_dump_pg_mbuf_chain(sc, debug_prod_idx, 1));
5215 
5216 	DBPRINT(sc, BCE_EXTREME_RECV, "%s(exit): prod = 0x%04X, "
5217 	    "prod_idx = 0x%04X\n", __FUNCTION__, *prod, *prod_idx);
5218 
5219 bce_get_pg_buf_exit:
5220 	DBEXIT(BCE_EXTREME_RESET | BCE_EXTREME_RECV | BCE_EXTREME_LOAD);
5221 
5222 	return(rc);
5223 }
5224 #endif /* BCE_JUMBO_HDRSPLIT */
5225 
5226 
5227 /****************************************************************************/
5228 /* Initialize the TX context memory.                                        */
5229 /*                                                                          */
5230 /* Returns:                                                                 */
5231 /*   Nothing                                                                */
5232 /****************************************************************************/
5233 static void
5234 bce_init_tx_context(struct bce_softc *sc)
5235 {
5236 	u32 val;
5237 
5238 	DBENTER(BCE_VERBOSE_RESET | BCE_VERBOSE_SEND | BCE_VERBOSE_CTX);
5239 
5240 	/* Initialize the context ID for an L2 TX chain. */
5241 	if ((BCE_CHIP_NUM(sc) == BCE_CHIP_NUM_5709) ||
5242 		(BCE_CHIP_NUM(sc) == BCE_CHIP_NUM_5716)) {
5243 		/* Set the CID type to support an L2 connection. */
5244 		val = BCE_L2CTX_TX_TYPE_TYPE_L2_XI |
5245 		    BCE_L2CTX_TX_TYPE_SIZE_L2_XI;
5246 		CTX_WR(sc, GET_CID_ADDR(TX_CID), BCE_L2CTX_TX_TYPE_XI, val);
5247 		val = BCE_L2CTX_TX_CMD_TYPE_TYPE_L2_XI | (8 << 16);
5248 		CTX_WR(sc, GET_CID_ADDR(TX_CID),
5249 		    BCE_L2CTX_TX_CMD_TYPE_XI, val);
5250 
5251 		/* Point the hardware to the first page in the chain. */
5252 		val = BCE_ADDR_HI(sc->tx_bd_chain_paddr[0]);
5253 		CTX_WR(sc, GET_CID_ADDR(TX_CID),
5254 		    BCE_L2CTX_TX_TBDR_BHADDR_HI_XI, val);
5255 		val = BCE_ADDR_LO(sc->tx_bd_chain_paddr[0]);
5256 		CTX_WR(sc, GET_CID_ADDR(TX_CID),
5257 		    BCE_L2CTX_TX_TBDR_BHADDR_LO_XI, val);
5258 	} else {
5259 		/* Set the CID type to support an L2 connection. */
5260 		val = BCE_L2CTX_TX_TYPE_TYPE_L2 | BCE_L2CTX_TX_TYPE_SIZE_L2;
5261 		CTX_WR(sc, GET_CID_ADDR(TX_CID), BCE_L2CTX_TX_TYPE, val);
5262 		val = BCE_L2CTX_TX_CMD_TYPE_TYPE_L2 | (8 << 16);
5263 		CTX_WR(sc, GET_CID_ADDR(TX_CID), BCE_L2CTX_TX_CMD_TYPE, val);
5264 
5265 		/* Point the hardware to the first page in the chain. */
5266 		val = BCE_ADDR_HI(sc->tx_bd_chain_paddr[0]);
5267 		CTX_WR(sc, GET_CID_ADDR(TX_CID),
5268 		    BCE_L2CTX_TX_TBDR_BHADDR_HI, val);
5269 		val = BCE_ADDR_LO(sc->tx_bd_chain_paddr[0]);
5270 		CTX_WR(sc, GET_CID_ADDR(TX_CID),
5271 		    BCE_L2CTX_TX_TBDR_BHADDR_LO, val);
5272 	}
5273 
5274 	DBEXIT(BCE_VERBOSE_RESET | BCE_VERBOSE_SEND | BCE_VERBOSE_CTX);
5275 }
5276 
5277 
5278 /****************************************************************************/
5279 /* Allocate memory and initialize the TX data structures.                   */
5280 /*                                                                          */
5281 /* Returns:                                                                 */
5282 /*   0 for success, positive value for failure.                             */
5283 /****************************************************************************/
5284 static int
5285 bce_init_tx_chain(struct bce_softc *sc)
5286 {
5287 	struct tx_bd *txbd;
5288 	int i, rc = 0;
5289 
5290 	DBENTER(BCE_VERBOSE_RESET | BCE_VERBOSE_SEND | BCE_VERBOSE_LOAD);
5291 
5292 	/* Set the initial TX producer/consumer indices. */
5293 	sc->tx_prod        = 0;
5294 	sc->tx_cons        = 0;
5295 	sc->tx_prod_bseq   = 0;
5296 	sc->used_tx_bd     = 0;
5297 	sc->max_tx_bd      = USABLE_TX_BD;
5298 	DBRUN(sc->tx_hi_watermark = 0);
5299 	DBRUN(sc->tx_full_count = 0);
5300 
5301 	/*
5302 	 * The NetXtreme II supports a linked-list structre called
5303 	 * a Buffer Descriptor Chain (or BD chain).  A BD chain
5304 	 * consists of a series of 1 or more chain pages, each of which
5305 	 * consists of a fixed number of BD entries.
5306 	 * The last BD entry on each page is a pointer to the next page
5307 	 * in the chain, and the last pointer in the BD chain
5308 	 * points back to the beginning of the chain.
5309 	 */
5310 
5311 	/* Set the TX next pointer chain entries. */
5312 	for (i = 0; i < TX_PAGES; i++) {
5313 		int j;
5314 
5315 		txbd = &sc->tx_bd_chain[i][USABLE_TX_BD_PER_PAGE];
5316 
5317 		/* Check if we've reached the last page. */
5318 		if (i == (TX_PAGES - 1))
5319 			j = 0;
5320 		else
5321 			j = i + 1;
5322 
5323 		txbd->tx_bd_haddr_hi = htole32(BCE_ADDR_HI(sc->tx_bd_chain_paddr[j]));
5324 		txbd->tx_bd_haddr_lo = htole32(BCE_ADDR_LO(sc->tx_bd_chain_paddr[j]));
5325 	}
5326 
5327 	bce_init_tx_context(sc);
5328 
5329 	DBRUNMSG(BCE_INSANE_SEND, bce_dump_tx_chain(sc, 0, TOTAL_TX_BD));
5330 	DBEXIT(BCE_VERBOSE_RESET | BCE_VERBOSE_SEND | BCE_VERBOSE_LOAD);
5331 
5332 	return(rc);
5333 }
5334 
5335 
5336 /****************************************************************************/
5337 /* Free memory and clear the TX data structures.                            */
5338 /*                                                                          */
5339 /* Returns:                                                                 */
5340 /*   Nothing.                                                               */
5341 /****************************************************************************/
5342 static void
5343 bce_free_tx_chain(struct bce_softc *sc)
5344 {
5345 	int i;
5346 
5347 	DBENTER(BCE_VERBOSE_RESET | BCE_VERBOSE_SEND | BCE_VERBOSE_UNLOAD);
5348 
5349 	/* Unmap, unload, and free any mbufs still in the TX mbuf chain. */
5350 	for (i = 0; i < TOTAL_TX_BD; i++) {
5351 		if (sc->tx_mbuf_ptr[i] != NULL) {
5352 			if (sc->tx_mbuf_map[i] != NULL)
5353 				bus_dmamap_sync(sc->tx_mbuf_tag,
5354 				    sc->tx_mbuf_map[i],
5355 				    BUS_DMASYNC_POSTWRITE);
5356 			m_freem(sc->tx_mbuf_ptr[i]);
5357 			sc->tx_mbuf_ptr[i] = NULL;
5358 			DBRUN(sc->debug_tx_mbuf_alloc--);
5359 		}
5360 	}
5361 
5362 	/* Clear each TX chain page. */
5363 	for (i = 0; i < TX_PAGES; i++)
5364 		bzero((char *)sc->tx_bd_chain[i], BCE_TX_CHAIN_PAGE_SZ);
5365 
5366 	sc->used_tx_bd = 0;
5367 
5368 	/* Check if we lost any mbufs in the process. */
5369 	DBRUNIF((sc->debug_tx_mbuf_alloc),
5370 	    BCE_PRINTF("%s(%d): Memory leak! Lost %d mbufs "
5371 	    "from tx chain!\n",	__FILE__, __LINE__,
5372 	    sc->debug_tx_mbuf_alloc));
5373 
5374 	DBEXIT(BCE_VERBOSE_RESET | BCE_VERBOSE_SEND | BCE_VERBOSE_UNLOAD);
5375 }
5376 
5377 
5378 /****************************************************************************/
5379 /* Initialize the RX context memory.                                        */
5380 /*                                                                          */
5381 /* Returns:                                                                 */
5382 /*   Nothing                                                                */
5383 /****************************************************************************/
5384 static void
5385 bce_init_rx_context(struct bce_softc *sc)
5386 {
5387 	u32 val;
5388 
5389 	DBENTER(BCE_VERBOSE_RESET | BCE_VERBOSE_RECV | BCE_VERBOSE_CTX);
5390 
5391 	/* Init the type, size, and BD cache levels for the RX context. */
5392 	val = BCE_L2CTX_RX_CTX_TYPE_CTX_BD_CHN_TYPE_VALUE |
5393 	    BCE_L2CTX_RX_CTX_TYPE_SIZE_L2 |
5394 	    (0x02 << BCE_L2CTX_RX_BD_PRE_READ_SHIFT);
5395 
5396 	/*
5397 	 * Set the level for generating pause frames
5398 	 * when the number of available rx_bd's gets
5399 	 * too low (the low watermark) and the level
5400 	 * when pause frames can be stopped (the high
5401 	 * watermark).
5402 	 */
5403 	if ((BCE_CHIP_NUM(sc) == BCE_CHIP_NUM_5709) ||
5404 	    (BCE_CHIP_NUM(sc) == BCE_CHIP_NUM_5716)) {
5405 		u32 lo_water, hi_water;
5406 
5407 		if (sc->bce_flags & BCE_USING_TX_FLOW_CONTROL) {
5408 			lo_water = BCE_L2CTX_RX_LO_WATER_MARK_DEFAULT;
5409 		} else {
5410 			lo_water = 0;
5411 		}
5412 
5413 		if (lo_water >= USABLE_RX_BD) {
5414 			lo_water = 0;
5415 		}
5416 
5417 		hi_water = USABLE_RX_BD / 4;
5418 
5419 		if (hi_water <= lo_water) {
5420 			lo_water = 0;
5421 		}
5422 
5423 		lo_water /= BCE_L2CTX_RX_LO_WATER_MARK_SCALE;
5424 		hi_water /= BCE_L2CTX_RX_HI_WATER_MARK_SCALE;
5425 
5426 		if (hi_water > 0xf)
5427 			hi_water = 0xf;
5428 		else if (hi_water == 0)
5429 			lo_water = 0;
5430 
5431 		val |= (lo_water << BCE_L2CTX_RX_LO_WATER_MARK_SHIFT) |
5432 		    (hi_water << BCE_L2CTX_RX_HI_WATER_MARK_SHIFT);
5433 	}
5434 
5435 	CTX_WR(sc, GET_CID_ADDR(RX_CID), BCE_L2CTX_RX_CTX_TYPE, val);
5436 
5437 	/* Setup the MQ BIN mapping for l2_ctx_host_bseq. */
5438 	if ((BCE_CHIP_NUM(sc) == BCE_CHIP_NUM_5709) ||
5439 	    (BCE_CHIP_NUM(sc) == BCE_CHIP_NUM_5716)) {
5440 		val = REG_RD(sc, BCE_MQ_MAP_L2_5);
5441 		REG_WR(sc, BCE_MQ_MAP_L2_5, val | BCE_MQ_MAP_L2_5_ARM);
5442 	}
5443 
5444 	/* Point the hardware to the first page in the chain. */
5445 	val = BCE_ADDR_HI(sc->rx_bd_chain_paddr[0]);
5446 	CTX_WR(sc, GET_CID_ADDR(RX_CID), BCE_L2CTX_RX_NX_BDHADDR_HI, val);
5447 	val = BCE_ADDR_LO(sc->rx_bd_chain_paddr[0]);
5448 	CTX_WR(sc, GET_CID_ADDR(RX_CID), BCE_L2CTX_RX_NX_BDHADDR_LO, val);
5449 
5450 	DBEXIT(BCE_VERBOSE_RESET | BCE_VERBOSE_RECV | BCE_VERBOSE_CTX);
5451 }
5452 
5453 
5454 /****************************************************************************/
5455 /* Allocate memory and initialize the RX data structures.                   */
5456 /*                                                                          */
5457 /* Returns:                                                                 */
5458 /*   0 for success, positive value for failure.                             */
5459 /****************************************************************************/
5460 static int
5461 bce_init_rx_chain(struct bce_softc *sc)
5462 {
5463 	struct rx_bd *rxbd;
5464 	int i, rc = 0;
5465 
5466 	DBENTER(BCE_VERBOSE_RESET | BCE_VERBOSE_RECV | BCE_VERBOSE_LOAD |
5467 	    BCE_VERBOSE_CTX);
5468 
5469 	/* Initialize the RX producer and consumer indices. */
5470 	sc->rx_prod        = 0;
5471 	sc->rx_cons        = 0;
5472 	sc->rx_prod_bseq   = 0;
5473 	sc->free_rx_bd     = USABLE_RX_BD;
5474 	sc->max_rx_bd      = USABLE_RX_BD;
5475 
5476 	/* Initialize the RX next pointer chain entries. */
5477 	for (i = 0; i < RX_PAGES; i++) {
5478 		int j;
5479 
5480 		rxbd = &sc->rx_bd_chain[i][USABLE_RX_BD_PER_PAGE];
5481 
5482 		/* Check if we've reached the last page. */
5483 		if (i == (RX_PAGES - 1))
5484 			j = 0;
5485 		else
5486 			j = i + 1;
5487 
5488 		/* Setup the chain page pointers. */
5489 		rxbd->rx_bd_haddr_hi =
5490 		    htole32(BCE_ADDR_HI(sc->rx_bd_chain_paddr[j]));
5491 		rxbd->rx_bd_haddr_lo =
5492 		    htole32(BCE_ADDR_LO(sc->rx_bd_chain_paddr[j]));
5493 	}
5494 
5495 	/* Fill up the RX chain. */
5496 	bce_fill_rx_chain(sc);
5497 
5498 	DBRUN(sc->rx_low_watermark = USABLE_RX_BD);
5499 	DBRUN(sc->rx_empty_count = 0);
5500 	for (i = 0; i < RX_PAGES; i++) {
5501 		bus_dmamap_sync(sc->rx_bd_chain_tag, sc->rx_bd_chain_map[i],
5502 		    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
5503 	}
5504 
5505 	bce_init_rx_context(sc);
5506 
5507 	DBRUNMSG(BCE_EXTREME_RECV, bce_dump_rx_bd_chain(sc, 0, TOTAL_RX_BD));
5508 	DBEXIT(BCE_VERBOSE_RESET | BCE_VERBOSE_RECV | BCE_VERBOSE_LOAD |
5509 	    BCE_VERBOSE_CTX);
5510 
5511 	/* ToDo: Are there possible failure modes here? */
5512 
5513 	return(rc);
5514 }
5515 
5516 
5517 /****************************************************************************/
5518 /* Add mbufs to the RX chain until its full or an mbuf allocation error     */
5519 /* occurs.                                                                  */
5520 /*                                                                          */
5521 /* Returns:                                                                 */
5522 /*   Nothing                                                                */
5523 /****************************************************************************/
5524 static void
5525 bce_fill_rx_chain(struct bce_softc *sc)
5526 {
5527 	u16 prod, prod_idx;
5528 	u32 prod_bseq;
5529 
5530 	DBENTER(BCE_VERBOSE_RESET | BCE_EXTREME_RECV | BCE_VERBOSE_LOAD |
5531 	    BCE_VERBOSE_CTX);
5532 
5533 	/* Get the RX chain producer indices. */
5534 	prod      = sc->rx_prod;
5535 	prod_bseq = sc->rx_prod_bseq;
5536 
5537 	/* Keep filling the RX chain until it's full. */
5538 	while (sc->free_rx_bd > 0) {
5539 		prod_idx = RX_CHAIN_IDX(prod);
5540 		if (bce_get_rx_buf(sc, NULL, &prod, &prod_idx, &prod_bseq)) {
5541 			/* Bail out if we can't add an mbuf to the chain. */
5542 			break;
5543 		}
5544 		prod = NEXT_RX_BD(prod);
5545 	}
5546 
5547 	/* Save the RX chain producer indices. */
5548 	sc->rx_prod      = prod;
5549 	sc->rx_prod_bseq = prod_bseq;
5550 
5551 	/* We should never end up pointing to a next page pointer. */
5552 	DBRUNIF(((prod & USABLE_RX_BD_PER_PAGE) == USABLE_RX_BD_PER_PAGE),
5553 	    BCE_PRINTF("%s(): Invalid rx_prod value: 0x%04X\n",
5554 	    __FUNCTION__, sc->rx_prod));
5555 
5556 	/* Write the mailbox and tell the chip about the waiting rx_bd's. */
5557 	REG_WR16(sc, MB_GET_CID_ADDR(RX_CID) +
5558 	    BCE_L2MQ_RX_HOST_BDIDX, sc->rx_prod);
5559 	REG_WR(sc, MB_GET_CID_ADDR(RX_CID) +
5560 	    BCE_L2MQ_RX_HOST_BSEQ, sc->rx_prod_bseq);
5561 
5562 	DBEXIT(BCE_VERBOSE_RESET | BCE_EXTREME_RECV | BCE_VERBOSE_LOAD |
5563 	    BCE_VERBOSE_CTX);
5564 }
5565 
5566 
5567 /****************************************************************************/
5568 /* Free memory and clear the RX data structures.                            */
5569 /*                                                                          */
5570 /* Returns:                                                                 */
5571 /*   Nothing.                                                               */
5572 /****************************************************************************/
5573 static void
5574 bce_free_rx_chain(struct bce_softc *sc)
5575 {
5576 	int i;
5577 
5578 	DBENTER(BCE_VERBOSE_RESET | BCE_VERBOSE_RECV | BCE_VERBOSE_UNLOAD);
5579 
5580 	/* Free any mbufs still in the RX mbuf chain. */
5581 	for (i = 0; i < TOTAL_RX_BD; i++) {
5582 		if (sc->rx_mbuf_ptr[i] != NULL) {
5583 			if (sc->rx_mbuf_map[i] != NULL)
5584 				bus_dmamap_sync(sc->rx_mbuf_tag,
5585 				    sc->rx_mbuf_map[i],
5586 				    BUS_DMASYNC_POSTREAD);
5587 			m_freem(sc->rx_mbuf_ptr[i]);
5588 			sc->rx_mbuf_ptr[i] = NULL;
5589 			DBRUN(sc->debug_rx_mbuf_alloc--);
5590 		}
5591 	}
5592 
5593 	/* Clear each RX chain page. */
5594 	for (i = 0; i < RX_PAGES; i++)
5595 		if (sc->rx_bd_chain[i] != NULL) {
5596 			bzero((char *)sc->rx_bd_chain[i],
5597 			    BCE_RX_CHAIN_PAGE_SZ);
5598 		}
5599 
5600 	sc->free_rx_bd = sc->max_rx_bd;
5601 
5602 	/* Check if we lost any mbufs in the process. */
5603 	DBRUNIF((sc->debug_rx_mbuf_alloc),
5604 	    BCE_PRINTF("%s(): Memory leak! Lost %d mbufs from rx chain!\n",
5605 	    __FUNCTION__, sc->debug_rx_mbuf_alloc));
5606 
5607 	DBEXIT(BCE_VERBOSE_RESET | BCE_VERBOSE_RECV | BCE_VERBOSE_UNLOAD);
5608 }
5609 
5610 
5611 #ifdef BCE_JUMBO_HDRSPLIT
5612 /****************************************************************************/
5613 /* Allocate memory and initialize the page data structures.                 */
5614 /* Assumes that bce_init_rx_chain() has not already been called.            */
5615 /*                                                                          */
5616 /* Returns:                                                                 */
5617 /*   0 for success, positive value for failure.                             */
5618 /****************************************************************************/
5619 static int
5620 bce_init_pg_chain(struct bce_softc *sc)
5621 {
5622 	struct rx_bd *pgbd;
5623 	int i, rc = 0;
5624 	u32 val;
5625 
5626 	DBENTER(BCE_VERBOSE_RESET | BCE_VERBOSE_RECV | BCE_VERBOSE_LOAD |
5627 		BCE_VERBOSE_CTX);
5628 
5629 	/* Initialize the page producer and consumer indices. */
5630 	sc->pg_prod        = 0;
5631 	sc->pg_cons        = 0;
5632 	sc->free_pg_bd     = USABLE_PG_BD;
5633 	sc->max_pg_bd      = USABLE_PG_BD;
5634 	DBRUN(sc->pg_low_watermark = sc->max_pg_bd);
5635 	DBRUN(sc->pg_empty_count = 0);
5636 
5637 	/* Initialize the page next pointer chain entries. */
5638 	for (i = 0; i < PG_PAGES; i++) {
5639 		int j;
5640 
5641 		pgbd = &sc->pg_bd_chain[i][USABLE_PG_BD_PER_PAGE];
5642 
5643 		/* Check if we've reached the last page. */
5644 		if (i == (PG_PAGES - 1))
5645 			j = 0;
5646 		else
5647 			j = i + 1;
5648 
5649 		/* Setup the chain page pointers. */
5650 		pgbd->rx_bd_haddr_hi = htole32(BCE_ADDR_HI(sc->pg_bd_chain_paddr[j]));
5651 		pgbd->rx_bd_haddr_lo = htole32(BCE_ADDR_LO(sc->pg_bd_chain_paddr[j]));
5652 	}
5653 
5654 	/* Setup the MQ BIN mapping for host_pg_bidx. */
5655 	if ((BCE_CHIP_NUM(sc) == BCE_CHIP_NUM_5709)	||
5656 		(BCE_CHIP_NUM(sc) == BCE_CHIP_NUM_5716))
5657 		REG_WR(sc, BCE_MQ_MAP_L2_3, BCE_MQ_MAP_L2_3_DEFAULT);
5658 
5659 	CTX_WR(sc, GET_CID_ADDR(RX_CID), BCE_L2CTX_RX_PG_BUF_SIZE, 0);
5660 
5661 	/* Configure the rx_bd and page chain mbuf cluster size. */
5662 	val = (sc->rx_bd_mbuf_data_len << 16) | sc->pg_bd_mbuf_alloc_size;
5663 	CTX_WR(sc, GET_CID_ADDR(RX_CID), BCE_L2CTX_RX_PG_BUF_SIZE, val);
5664 
5665 	/* Configure the context reserved for jumbo support. */
5666 	CTX_WR(sc, GET_CID_ADDR(RX_CID), BCE_L2CTX_RX_RBDC_KEY,
5667 		BCE_L2CTX_RX_RBDC_JUMBO_KEY);
5668 
5669 	/* Point the hardware to the first page in the page chain. */
5670 	val = BCE_ADDR_HI(sc->pg_bd_chain_paddr[0]);
5671 	CTX_WR(sc, GET_CID_ADDR(RX_CID), BCE_L2CTX_RX_NX_PG_BDHADDR_HI, val);
5672 	val = BCE_ADDR_LO(sc->pg_bd_chain_paddr[0]);
5673 	CTX_WR(sc, GET_CID_ADDR(RX_CID), BCE_L2CTX_RX_NX_PG_BDHADDR_LO, val);
5674 
5675 	/* Fill up the page chain. */
5676 	bce_fill_pg_chain(sc);
5677 
5678 	for (i = 0; i < PG_PAGES; i++) {
5679 		bus_dmamap_sync(sc->pg_bd_chain_tag, sc->pg_bd_chain_map[i],
5680 		    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
5681 	}
5682 
5683 	DBRUNMSG(BCE_EXTREME_RECV, bce_dump_pg_chain(sc, 0, TOTAL_PG_BD));
5684 	DBEXIT(BCE_VERBOSE_RESET | BCE_VERBOSE_RECV | BCE_VERBOSE_LOAD |
5685 		BCE_VERBOSE_CTX);
5686 	return(rc);
5687 }
5688 
5689 
5690 /****************************************************************************/
5691 /* Add mbufs to the page chain until its full or an mbuf allocation error   */
5692 /* occurs.                                                                  */
5693 /*                                                                          */
5694 /* Returns:                                                                 */
5695 /*   Nothing                                                                */
5696 /****************************************************************************/
5697 static void
5698 bce_fill_pg_chain(struct bce_softc *sc)
5699 {
5700 	u16 prod, prod_idx;
5701 
5702 	DBENTER(BCE_VERBOSE_RESET | BCE_EXTREME_RECV | BCE_VERBOSE_LOAD |
5703 	    BCE_VERBOSE_CTX);
5704 
5705 	/* Get the page chain prodcuer index. */
5706 	prod = sc->pg_prod;
5707 
5708 	/* Keep filling the page chain until it's full. */
5709 	while (sc->free_pg_bd > 0) {
5710 		prod_idx = PG_CHAIN_IDX(prod);
5711 		if (bce_get_pg_buf(sc, NULL, &prod, &prod_idx)) {
5712 			/* Bail out if we can't add an mbuf to the chain. */
5713 			break;
5714 		}
5715 		prod = NEXT_PG_BD(prod);
5716 	}
5717 
5718 	/* Save the page chain producer index. */
5719 	sc->pg_prod = prod;
5720 
5721 	DBRUNIF(((prod & USABLE_RX_BD_PER_PAGE) == USABLE_RX_BD_PER_PAGE),
5722 	    BCE_PRINTF("%s(): Invalid pg_prod value: 0x%04X\n",
5723 	    __FUNCTION__, sc->pg_prod));
5724 
5725 	/*
5726 	 * Write the mailbox and tell the chip about
5727 	 * the new rx_bd's in the page chain.
5728 	 */
5729 	REG_WR16(sc, MB_GET_CID_ADDR(RX_CID) +
5730 	    BCE_L2MQ_RX_HOST_PG_BDIDX, sc->pg_prod);
5731 
5732 	DBEXIT(BCE_VERBOSE_RESET | BCE_EXTREME_RECV | BCE_VERBOSE_LOAD |
5733 	    BCE_VERBOSE_CTX);
5734 }
5735 
5736 
5737 /****************************************************************************/
5738 /* Free memory and clear the RX data structures.                            */
5739 /*                                                                          */
5740 /* Returns:                                                                 */
5741 /*   Nothing.                                                               */
5742 /****************************************************************************/
5743 static void
5744 bce_free_pg_chain(struct bce_softc *sc)
5745 {
5746 	int i;
5747 
5748 	DBENTER(BCE_VERBOSE_RESET | BCE_VERBOSE_RECV | BCE_VERBOSE_UNLOAD);
5749 
5750 	/* Free any mbufs still in the mbuf page chain. */
5751 	for (i = 0; i < TOTAL_PG_BD; i++) {
5752 		if (sc->pg_mbuf_ptr[i] != NULL) {
5753 			if (sc->pg_mbuf_map[i] != NULL)
5754 				bus_dmamap_sync(sc->pg_mbuf_tag,
5755 				    sc->pg_mbuf_map[i],
5756 				    BUS_DMASYNC_POSTREAD);
5757 			m_freem(sc->pg_mbuf_ptr[i]);
5758 			sc->pg_mbuf_ptr[i] = NULL;
5759 			DBRUN(sc->debug_pg_mbuf_alloc--);
5760 		}
5761 	}
5762 
5763 	/* Clear each page chain pages. */
5764 	for (i = 0; i < PG_PAGES; i++)
5765 		bzero((char *)sc->pg_bd_chain[i], BCE_PG_CHAIN_PAGE_SZ);
5766 
5767 	sc->free_pg_bd = sc->max_pg_bd;
5768 
5769 	/* Check if we lost any mbufs in the process. */
5770 	DBRUNIF((sc->debug_pg_mbuf_alloc),
5771 	    BCE_PRINTF("%s(): Memory leak! Lost %d mbufs from page chain!\n",
5772 	    __FUNCTION__, sc->debug_pg_mbuf_alloc));
5773 
5774 	DBEXIT(BCE_VERBOSE_RESET | BCE_VERBOSE_RECV | BCE_VERBOSE_UNLOAD);
5775 }
5776 #endif /* BCE_JUMBO_HDRSPLIT */
5777 
5778 
5779 /****************************************************************************/
5780 /* Set media options.                                                       */
5781 /*                                                                          */
5782 /* Returns:                                                                 */
5783 /*   0 for success, positive value for failure.                             */
5784 /****************************************************************************/
5785 static int
5786 bce_ifmedia_upd(struct ifnet *ifp)
5787 {
5788 	struct bce_softc *sc = ifp->if_softc;
5789 	int error;
5790 
5791 	DBENTER(BCE_VERBOSE);
5792 
5793 	BCE_LOCK(sc);
5794 	error = bce_ifmedia_upd_locked(ifp);
5795 	BCE_UNLOCK(sc);
5796 
5797 	DBEXIT(BCE_VERBOSE);
5798 	return (error);
5799 }
5800 
5801 
5802 /****************************************************************************/
5803 /* Set media options.                                                       */
5804 /*                                                                          */
5805 /* Returns:                                                                 */
5806 /*   Nothing.                                                               */
5807 /****************************************************************************/
5808 static int
5809 bce_ifmedia_upd_locked(struct ifnet *ifp)
5810 {
5811 	struct bce_softc *sc = ifp->if_softc;
5812 	struct mii_data *mii;
5813 	int error;
5814 
5815 	DBENTER(BCE_VERBOSE_PHY);
5816 
5817 	error = 0;
5818 	BCE_LOCK_ASSERT(sc);
5819 
5820 	mii = device_get_softc(sc->bce_miibus);
5821 
5822 	/* Make sure the MII bus has been enumerated. */
5823 	if (mii) {
5824 		sc->bce_link_up = FALSE;
5825 		if (mii->mii_instance) {
5826 			struct mii_softc *miisc;
5827 
5828 			LIST_FOREACH(miisc, &mii->mii_phys, mii_list)
5829 			    mii_phy_reset(miisc);
5830 		}
5831 		error = mii_mediachg(mii);
5832 	}
5833 
5834 	DBEXIT(BCE_VERBOSE_PHY);
5835 	return (error);
5836 }
5837 
5838 
5839 /****************************************************************************/
5840 /* Reports current media status.                                            */
5841 /*                                                                          */
5842 /* Returns:                                                                 */
5843 /*   Nothing.                                                               */
5844 /****************************************************************************/
5845 static void
5846 bce_ifmedia_sts(struct ifnet *ifp, struct ifmediareq *ifmr)
5847 {
5848 	struct bce_softc *sc = ifp->if_softc;
5849 	struct mii_data *mii;
5850 
5851 	DBENTER(BCE_VERBOSE_PHY);
5852 
5853 	BCE_LOCK(sc);
5854 
5855 	if ((ifp->if_flags & IFF_UP) == 0) {
5856 		BCE_UNLOCK(sc);
5857 		return;
5858 	}
5859 	mii = device_get_softc(sc->bce_miibus);
5860 
5861 	mii_pollstat(mii);
5862 	ifmr->ifm_active = mii->mii_media_active;
5863 	ifmr->ifm_status = mii->mii_media_status;
5864 
5865 	BCE_UNLOCK(sc);
5866 
5867 	DBEXIT(BCE_VERBOSE_PHY);
5868 }
5869 
5870 
5871 /****************************************************************************/
5872 /* Handles PHY generated interrupt events.                                  */
5873 /*                                                                          */
5874 /* Returns:                                                                 */
5875 /*   Nothing.                                                               */
5876 /****************************************************************************/
5877 static void
5878 bce_phy_intr(struct bce_softc *sc)
5879 {
5880 	u32 new_link_state, old_link_state;
5881 
5882 	DBENTER(BCE_VERBOSE_PHY | BCE_VERBOSE_INTR);
5883 
5884 	DBRUN(sc->phy_interrupts++);
5885 
5886 	new_link_state = sc->status_block->status_attn_bits &
5887 	    STATUS_ATTN_BITS_LINK_STATE;
5888 	old_link_state = sc->status_block->status_attn_bits_ack &
5889 	    STATUS_ATTN_BITS_LINK_STATE;
5890 
5891 	/* Handle any changes if the link state has changed. */
5892 	if (new_link_state != old_link_state) {
5893 
5894 		/* Update the status_attn_bits_ack field. */
5895 		if (new_link_state) {
5896 			REG_WR(sc, BCE_PCICFG_STATUS_BIT_SET_CMD,
5897 			    STATUS_ATTN_BITS_LINK_STATE);
5898 			DBPRINT(sc, BCE_INFO_PHY, "%s(): Link is now UP.\n",
5899 			    __FUNCTION__);
5900 		}
5901 		else {
5902 			REG_WR(sc, BCE_PCICFG_STATUS_BIT_CLEAR_CMD,
5903 			    STATUS_ATTN_BITS_LINK_STATE);
5904 			DBPRINT(sc, BCE_INFO_PHY, "%s(): Link is now DOWN.\n",
5905 			    __FUNCTION__);
5906 		}
5907 
5908 		/*
5909 		 * Assume link is down and allow
5910 		 * tick routine to update the state
5911 		 * based on the actual media state.
5912 		 */
5913 		sc->bce_link_up = FALSE;
5914 		callout_stop(&sc->bce_tick_callout);
5915 		bce_tick(sc);
5916 	}
5917 
5918 	/* Acknowledge the link change interrupt. */
5919 	REG_WR(sc, BCE_EMAC_STATUS, BCE_EMAC_STATUS_LINK_CHANGE);
5920 
5921 	DBEXIT(BCE_VERBOSE_PHY | BCE_VERBOSE_INTR);
5922 }
5923 
5924 
5925 /****************************************************************************/
5926 /* Reads the receive consumer value from the status block (skipping over    */
5927 /* chain page pointer if necessary).                                        */
5928 /*                                                                          */
5929 /* Returns:                                                                 */
5930 /*   hw_cons                                                                */
5931 /****************************************************************************/
5932 static inline u16
5933 bce_get_hw_rx_cons(struct bce_softc *sc)
5934 {
5935 	u16 hw_cons;
5936 
5937 	rmb();
5938 	hw_cons = sc->status_block->status_rx_quick_consumer_index0;
5939 	if ((hw_cons & USABLE_RX_BD_PER_PAGE) == USABLE_RX_BD_PER_PAGE)
5940 		hw_cons++;
5941 
5942 	return hw_cons;
5943 }
5944 
5945 /****************************************************************************/
5946 /* Handles received frame interrupt events.                                 */
5947 /*                                                                          */
5948 /* Returns:                                                                 */
5949 /*   Nothing.                                                               */
5950 /****************************************************************************/
5951 static void
5952 bce_rx_intr(struct bce_softc *sc)
5953 {
5954 	struct ifnet *ifp = sc->bce_ifp;
5955 	struct l2_fhdr *l2fhdr;
5956 	struct ether_vlan_header *vh;
5957 	unsigned int pkt_len;
5958 	u16 sw_rx_cons, sw_rx_cons_idx, hw_rx_cons;
5959 	u32 status;
5960 #ifdef BCE_JUMBO_HDRSPLIT
5961 	unsigned int rem_len;
5962 	u16 sw_pg_cons, sw_pg_cons_idx;
5963 #endif
5964 
5965 	DBENTER(BCE_VERBOSE_RECV | BCE_VERBOSE_INTR);
5966 	DBRUN(sc->interrupts_rx++);
5967 	DBPRINT(sc, BCE_EXTREME_RECV, "%s(enter): rx_prod = 0x%04X, "
5968 	    "rx_cons = 0x%04X, rx_prod_bseq = 0x%08X\n",
5969 	    __FUNCTION__, sc->rx_prod, sc->rx_cons, sc->rx_prod_bseq);
5970 
5971 	/* Prepare the RX chain pages to be accessed by the host CPU. */
5972 	for (int i = 0; i < RX_PAGES; i++)
5973 		bus_dmamap_sync(sc->rx_bd_chain_tag,
5974 		    sc->rx_bd_chain_map[i], BUS_DMASYNC_POSTREAD);
5975 
5976 #ifdef BCE_JUMBO_HDRSPLIT
5977 	/* Prepare the page chain pages to be accessed by the host CPU. */
5978 	for (int i = 0; i < PG_PAGES; i++)
5979 		bus_dmamap_sync(sc->pg_bd_chain_tag,
5980 		    sc->pg_bd_chain_map[i], BUS_DMASYNC_POSTREAD);
5981 #endif
5982 
5983 	/* Get the hardware's view of the RX consumer index. */
5984 	hw_rx_cons = sc->hw_rx_cons = bce_get_hw_rx_cons(sc);
5985 
5986 	/* Get working copies of the driver's view of the consumer indices. */
5987 	sw_rx_cons = sc->rx_cons;
5988 
5989 #ifdef BCE_JUMBO_HDRSPLIT
5990 	sw_pg_cons = sc->pg_cons;
5991 #endif
5992 
5993 	/* Update some debug statistics counters */
5994 	DBRUNIF((sc->free_rx_bd < sc->rx_low_watermark),
5995 	    sc->rx_low_watermark = sc->free_rx_bd);
5996 	DBRUNIF((sc->free_rx_bd == sc->max_rx_bd),
5997 	    sc->rx_empty_count++);
5998 
5999 	/* Scan through the receive chain as long as there is work to do */
6000 	/* ToDo: Consider setting a limit on the number of packets processed. */
6001 	rmb();
6002 	while (sw_rx_cons != hw_rx_cons) {
6003 		struct mbuf *m0;
6004 
6005 		/* Convert the producer/consumer indices to an actual rx_bd index. */
6006 		sw_rx_cons_idx = RX_CHAIN_IDX(sw_rx_cons);
6007 
6008 		/* Unmap the mbuf from DMA space. */
6009 		bus_dmamap_sync(sc->rx_mbuf_tag,
6010 		    sc->rx_mbuf_map[sw_rx_cons_idx],
6011 		    BUS_DMASYNC_POSTREAD);
6012 		bus_dmamap_unload(sc->rx_mbuf_tag,
6013 		    sc->rx_mbuf_map[sw_rx_cons_idx]);
6014 
6015 		/* Remove the mbuf from the RX chain. */
6016 		m0 = sc->rx_mbuf_ptr[sw_rx_cons_idx];
6017 		sc->rx_mbuf_ptr[sw_rx_cons_idx] = NULL;
6018 		DBRUN(sc->debug_rx_mbuf_alloc--);
6019 		sc->free_rx_bd++;
6020 
6021 		if(m0 == NULL) {
6022 			DBPRINT(sc, BCE_EXTREME_RECV,
6023 			    "%s(): Oops! Empty mbuf pointer "
6024 			    "found in sc->rx_mbuf_ptr[0x%04X]!\n",
6025 			    __FUNCTION__, sw_rx_cons_idx);
6026 			goto bce_rx_int_next_rx;
6027 		}
6028 
6029 		/*
6030  		 * Frames received on the NetXteme II are prepended
6031  		 * with an l2_fhdr structure which provides status
6032  		 * information about the received frame (including
6033  		 * VLAN tags and checksum info).  The frames are
6034 		 * also automatically adjusted to align the IP
6035  		 * header (i.e. two null bytes are inserted before
6036  		 * the Ethernet	header).  As a result the data
6037  		 * DMA'd by the controller into	the mbuf looks
6038 		 * like this:
6039 		 *
6040 		 * +---------+-----+---------------------+-----+
6041 		 * | l2_fhdr | pad | packet data         | FCS |
6042 		 * +---------+-----+---------------------+-----+
6043 		 *
6044  		 * The l2_fhdr needs to be checked and skipped and
6045  		 * the FCS needs to be stripped before sending the
6046 		 * packet up the stack.
6047 		 */
6048 		l2fhdr  = mtod(m0, struct l2_fhdr *);
6049 
6050 		/* Get the packet data + FCS length and the status. */
6051 		pkt_len = l2fhdr->l2_fhdr_pkt_len;
6052 		status  = l2fhdr->l2_fhdr_status;
6053 
6054 		/*
6055 		 * Skip over the l2_fhdr and pad, resulting in the
6056 		 * following data in the mbuf:
6057 		 * +---------------------+-----+
6058 		 * | packet data         | FCS |
6059 		 * +---------------------+-----+
6060 		 */
6061 		m_adj(m0, sizeof(struct l2_fhdr) + ETHER_ALIGN);
6062 
6063 #ifdef BCE_JUMBO_HDRSPLIT
6064 		/*
6065 		 * Check whether the received frame fits in a single
6066 		 * mbuf or not (i.e. packet data + FCS <=
6067 		 * sc->rx_bd_mbuf_data_len bytes).
6068 		 */
6069 		if (pkt_len > m0->m_len) {
6070 			/*
6071 			 * The received frame is larger than a single mbuf.
6072 			 * If the frame was a TCP frame then only the TCP
6073 			 * header is placed in the mbuf, the remaining
6074 			 * payload (including FCS) is placed in the page
6075 			 * chain, the SPLIT flag is set, and the header
6076 			 * length is placed in the IP checksum field.
6077 			 * If the frame is not a TCP frame then the mbuf
6078 			 * is filled and the remaining bytes are placed
6079 			 * in the page chain.
6080 			 */
6081 
6082 			DBPRINT(sc, BCE_INFO_RECV, "%s(): Found a large "
6083 			    "packet.\n", __FUNCTION__);
6084 
6085 			/*
6086 			 * When the page chain is enabled and the TCP
6087 			 * header has been split from the TCP payload,
6088 			 * the ip_xsum structure will reflect the length
6089 			 * of the TCP header, not the IP checksum.  Set
6090 			 * the packet length of the mbuf accordingly.
6091 			 */
6092 		 	if (status & L2_FHDR_STATUS_SPLIT)
6093 				m0->m_len = l2fhdr->l2_fhdr_ip_xsum;
6094 
6095 			rem_len = pkt_len - m0->m_len;
6096 
6097 			/* Pull mbufs off the page chain for the remaining data. */
6098 			while (rem_len > 0) {
6099 				struct mbuf *m_pg;
6100 
6101 				sw_pg_cons_idx = PG_CHAIN_IDX(sw_pg_cons);
6102 
6103 				/* Remove the mbuf from the page chain. */
6104 				m_pg = sc->pg_mbuf_ptr[sw_pg_cons_idx];
6105 				sc->pg_mbuf_ptr[sw_pg_cons_idx] = NULL;
6106 				DBRUN(sc->debug_pg_mbuf_alloc--);
6107 				sc->free_pg_bd++;
6108 
6109 				/* Unmap the page chain mbuf from DMA space. */
6110 				bus_dmamap_sync(sc->pg_mbuf_tag,
6111 				    sc->pg_mbuf_map[sw_pg_cons_idx],
6112 				    BUS_DMASYNC_POSTREAD);
6113 				bus_dmamap_unload(sc->pg_mbuf_tag,
6114 				    sc->pg_mbuf_map[sw_pg_cons_idx]);
6115 
6116 				/* Adjust the mbuf length. */
6117 				if (rem_len < m_pg->m_len) {
6118 					/* The mbuf chain is complete. */
6119 					m_pg->m_len = rem_len;
6120 					rem_len = 0;
6121 				} else {
6122 					/* More packet data is waiting. */
6123 					rem_len -= m_pg->m_len;
6124 				}
6125 
6126 				/* Concatenate the mbuf cluster to the mbuf. */
6127 				m_cat(m0, m_pg);
6128 
6129 				sw_pg_cons = NEXT_PG_BD(sw_pg_cons);
6130 			}
6131 
6132 			/* Set the total packet length. */
6133 			m0->m_pkthdr.len = pkt_len;
6134 
6135 		} else {
6136 			/*
6137 			 * The received packet is small and fits in a
6138 			 * single mbuf (i.e. the l2_fhdr + pad + packet +
6139 			 * FCS <= MHLEN).  In other words, the packet is
6140 			 * 154 bytes or less in size.
6141 			 */
6142 
6143 			DBPRINT(sc, BCE_INFO_RECV, "%s(): Found a small "
6144 			    "packet.\n", __FUNCTION__);
6145 
6146 			/* Set the total packet length. */
6147 			m0->m_pkthdr.len = m0->m_len = pkt_len;
6148 		}
6149 #else
6150 		/* Set the total packet length. */
6151 		m0->m_pkthdr.len = m0->m_len = pkt_len;
6152 #endif
6153 
6154 		/* Remove the trailing Ethernet FCS. */
6155 		m_adj(m0, -ETHER_CRC_LEN);
6156 
6157 		/* Check that the resulting mbuf chain is valid. */
6158 		DBRUN(m_sanity(m0, FALSE));
6159 		DBRUNIF(((m0->m_len < ETHER_HDR_LEN) |
6160 		    (m0->m_pkthdr.len > BCE_MAX_JUMBO_ETHER_MTU_VLAN)),
6161 		     BCE_PRINTF("Invalid Ethernet frame size!\n");
6162 		     m_print(m0, 128));
6163 
6164 		DBRUNIF(DB_RANDOMTRUE(l2fhdr_error_sim_control),
6165 		    sc->l2fhdr_error_sim_count++;
6166 		    status = status | L2_FHDR_ERRORS_PHY_DECODE);
6167 
6168 		/* Check the received frame for errors. */
6169 		if (status & (L2_FHDR_ERRORS_BAD_CRC |
6170 		    L2_FHDR_ERRORS_PHY_DECODE | L2_FHDR_ERRORS_ALIGNMENT |
6171 		    L2_FHDR_ERRORS_TOO_SHORT  | L2_FHDR_ERRORS_GIANT_FRAME)) {
6172 
6173 			/* Log the error and release the mbuf. */
6174 			ifp->if_ierrors++;
6175 			sc->l2fhdr_error_count++;
6176 
6177 			m_freem(m0);
6178 			m0 = NULL;
6179 			goto bce_rx_int_next_rx;
6180 		}
6181 
6182 		/* Send the packet to the appropriate interface. */
6183 		m0->m_pkthdr.rcvif = ifp;
6184 
6185 		/* Assume no hardware checksum. */
6186 		m0->m_pkthdr.csum_flags = 0;
6187 
6188 		/* Validate the checksum if offload enabled. */
6189 		if (ifp->if_capenable & IFCAP_RXCSUM) {
6190 
6191 			/* Check for an IP datagram. */
6192 		 	if (!(status & L2_FHDR_STATUS_SPLIT) &&
6193 			    (status & L2_FHDR_STATUS_IP_DATAGRAM)) {
6194 				m0->m_pkthdr.csum_flags |= CSUM_IP_CHECKED;
6195 				DBRUN(sc->csum_offload_ip++);
6196 				/* Check if the IP checksum is valid. */
6197 				if ((l2fhdr->l2_fhdr_ip_xsum ^ 0xffff) == 0)
6198 					m0->m_pkthdr.csum_flags |=
6199 					    CSUM_IP_VALID;
6200 			}
6201 
6202 			/* Check for a valid TCP/UDP frame. */
6203 			if (status & (L2_FHDR_STATUS_TCP_SEGMENT |
6204 			    L2_FHDR_STATUS_UDP_DATAGRAM)) {
6205 
6206 				/* Check for a good TCP/UDP checksum. */
6207 				if ((status & (L2_FHDR_ERRORS_TCP_XSUM |
6208 				    L2_FHDR_ERRORS_UDP_XSUM)) == 0) {
6209 					DBRUN(sc->csum_offload_tcp_udp++);
6210 					m0->m_pkthdr.csum_data =
6211 					    l2fhdr->l2_fhdr_tcp_udp_xsum;
6212 					m0->m_pkthdr.csum_flags |=
6213 					    (CSUM_DATA_VALID
6214 					    | CSUM_PSEUDO_HDR);
6215 				}
6216 			}
6217 		}
6218 
6219 		/* Attach the VLAN tag.	*/
6220 		if (status & L2_FHDR_STATUS_L2_VLAN_TAG) {
6221 			if (ifp->if_capenable & IFCAP_VLAN_HWTAGGING) {
6222 #if __FreeBSD_version < 700000
6223 				VLAN_INPUT_TAG(ifp, m0,
6224 				    l2fhdr->l2_fhdr_vlan_tag, continue);
6225 #else
6226 				m0->m_pkthdr.ether_vtag =
6227 				    l2fhdr->l2_fhdr_vlan_tag;
6228 				m0->m_flags |= M_VLANTAG;
6229 #endif
6230 			} else {
6231 				/*
6232 				 * bce(4) controllers can't disable VLAN
6233 				 * tag stripping if management firmware
6234 				 * (ASF/IPMI/UMP) is running. So we always
6235 				 * strip VLAN tag and manually reconstruct
6236 				 * the VLAN frame by appending stripped
6237 				 * VLAN tag in driver if VLAN tag stripping
6238 				 * was disabled.
6239 				 *
6240 				 * TODO: LLC SNAP handling.
6241 				 */
6242 				bcopy(mtod(m0, uint8_t *),
6243 				    mtod(m0, uint8_t *) - ETHER_VLAN_ENCAP_LEN,
6244 				    ETHER_ADDR_LEN * 2);
6245 				m0->m_data -= ETHER_VLAN_ENCAP_LEN;
6246 				vh = mtod(m0, struct ether_vlan_header *);
6247 				vh->evl_encap_proto = htons(ETHERTYPE_VLAN);
6248 				vh->evl_tag = htons(l2fhdr->l2_fhdr_vlan_tag);
6249 				m0->m_pkthdr.len += ETHER_VLAN_ENCAP_LEN;
6250 				m0->m_len += ETHER_VLAN_ENCAP_LEN;
6251 			}
6252 		}
6253 
6254 		/* Increment received packet statistics. */
6255 		ifp->if_ipackets++;
6256 
6257 bce_rx_int_next_rx:
6258 		sw_rx_cons = NEXT_RX_BD(sw_rx_cons);
6259 
6260 		/* If we have a packet, pass it up the stack */
6261 		if (m0) {
6262 			/* Make sure we don't lose our place when we release the lock. */
6263 			sc->rx_cons = sw_rx_cons;
6264 #ifdef BCE_JUMBO_HDRSPLIT
6265 			sc->pg_cons = sw_pg_cons;
6266 #endif
6267 
6268 			BCE_UNLOCK(sc);
6269 			(*ifp->if_input)(ifp, m0);
6270 			BCE_LOCK(sc);
6271 
6272 			/* Recover our place. */
6273 			sw_rx_cons = sc->rx_cons;
6274 #ifdef BCE_JUMBO_HDRSPLIT
6275 			sw_pg_cons = sc->pg_cons;
6276 #endif
6277 		}
6278 
6279 		/* Refresh hw_cons to see if there's new work */
6280 		if (sw_rx_cons == hw_rx_cons)
6281 			hw_rx_cons = sc->hw_rx_cons = bce_get_hw_rx_cons(sc);
6282 	}
6283 
6284 #ifdef BCE_JUMBO_HDRSPLIT
6285 	/* No new packets.  Refill the page chain. */
6286 	sc->pg_cons = sw_pg_cons;
6287 	bce_fill_pg_chain(sc);
6288 #endif
6289 
6290 	/* No new packets.  Refill the RX chain. */
6291 	sc->rx_cons = sw_rx_cons;
6292 	bce_fill_rx_chain(sc);
6293 
6294 	/* Prepare the page chain pages to be accessed by the NIC. */
6295 	for (int i = 0; i < RX_PAGES; i++)
6296 		bus_dmamap_sync(sc->rx_bd_chain_tag,
6297 		    sc->rx_bd_chain_map[i], BUS_DMASYNC_PREWRITE);
6298 
6299 #ifdef BCE_JUMBO_HDRSPLIT
6300 	for (int i = 0; i < PG_PAGES; i++)
6301 		bus_dmamap_sync(sc->pg_bd_chain_tag,
6302 		    sc->pg_bd_chain_map[i], BUS_DMASYNC_PREWRITE);
6303 #endif
6304 
6305 	DBPRINT(sc, BCE_EXTREME_RECV, "%s(exit): rx_prod = 0x%04X, "
6306 	    "rx_cons = 0x%04X, rx_prod_bseq = 0x%08X\n",
6307 	    __FUNCTION__, sc->rx_prod, sc->rx_cons, sc->rx_prod_bseq);
6308 	DBEXIT(BCE_VERBOSE_RECV | BCE_VERBOSE_INTR);
6309 }
6310 
6311 
6312 /****************************************************************************/
6313 /* Reads the transmit consumer value from the status block (skipping over   */
6314 /* chain page pointer if necessary).                                        */
6315 /*                                                                          */
6316 /* Returns:                                                                 */
6317 /*   hw_cons                                                                */
6318 /****************************************************************************/
6319 static inline u16
6320 bce_get_hw_tx_cons(struct bce_softc *sc)
6321 {
6322 	u16 hw_cons;
6323 
6324 	mb();
6325 	hw_cons = sc->status_block->status_tx_quick_consumer_index0;
6326 	if ((hw_cons & USABLE_TX_BD_PER_PAGE) == USABLE_TX_BD_PER_PAGE)
6327 		hw_cons++;
6328 
6329 	return hw_cons;
6330 }
6331 
6332 
6333 /****************************************************************************/
6334 /* Handles transmit completion interrupt events.                            */
6335 /*                                                                          */
6336 /* Returns:                                                                 */
6337 /*   Nothing.                                                               */
6338 /****************************************************************************/
6339 static void
6340 bce_tx_intr(struct bce_softc *sc)
6341 {
6342 	struct ifnet *ifp = sc->bce_ifp;
6343 	u16 hw_tx_cons, sw_tx_cons, sw_tx_chain_cons;
6344 
6345 	DBENTER(BCE_VERBOSE_SEND | BCE_VERBOSE_INTR);
6346 	DBRUN(sc->interrupts_tx++);
6347 	DBPRINT(sc, BCE_EXTREME_SEND, "%s(enter): tx_prod = 0x%04X, "
6348 	    "tx_cons = 0x%04X, tx_prod_bseq = 0x%08X\n",
6349 	    __FUNCTION__, sc->tx_prod, sc->tx_cons, sc->tx_prod_bseq);
6350 
6351 	BCE_LOCK_ASSERT(sc);
6352 
6353 	/* Get the hardware's view of the TX consumer index. */
6354 	hw_tx_cons = sc->hw_tx_cons = bce_get_hw_tx_cons(sc);
6355 	sw_tx_cons = sc->tx_cons;
6356 
6357 	/* Prevent speculative reads of the status block. */
6358 	bus_space_barrier(sc->bce_btag, sc->bce_bhandle, 0, 0,
6359 	    BUS_SPACE_BARRIER_READ);
6360 
6361 	/* Cycle through any completed TX chain page entries. */
6362 	while (sw_tx_cons != hw_tx_cons) {
6363 #ifdef BCE_DEBUG
6364 		struct tx_bd *txbd = NULL;
6365 #endif
6366 		sw_tx_chain_cons = TX_CHAIN_IDX(sw_tx_cons);
6367 
6368 		DBPRINT(sc, BCE_INFO_SEND,
6369 		    "%s(): hw_tx_cons = 0x%04X, sw_tx_cons = 0x%04X, "
6370 		    "sw_tx_chain_cons = 0x%04X\n",
6371 		    __FUNCTION__, hw_tx_cons, sw_tx_cons, sw_tx_chain_cons);
6372 
6373 		DBRUNIF((sw_tx_chain_cons > MAX_TX_BD),
6374 		    BCE_PRINTF("%s(%d): TX chain consumer out of range! "
6375 		    " 0x%04X > 0x%04X\n", __FILE__, __LINE__, sw_tx_chain_cons,
6376 		    (int) MAX_TX_BD);
6377 		    bce_breakpoint(sc));
6378 
6379 		DBRUN(txbd = &sc->tx_bd_chain[TX_PAGE(sw_tx_chain_cons)]
6380 		    [TX_IDX(sw_tx_chain_cons)]);
6381 
6382 		DBRUNIF((txbd == NULL),
6383 		    BCE_PRINTF("%s(%d): Unexpected NULL tx_bd[0x%04X]!\n",
6384 		    __FILE__, __LINE__, sw_tx_chain_cons);
6385 		    bce_breakpoint(sc));
6386 
6387 		DBRUNMSG(BCE_INFO_SEND, BCE_PRINTF("%s(): ", __FUNCTION__);
6388 		    bce_dump_txbd(sc, sw_tx_chain_cons, txbd));
6389 
6390 		/*
6391 		 * Free the associated mbuf. Remember
6392 		 * that only the last tx_bd of a packet
6393 		 * has an mbuf pointer and DMA map.
6394 		 */
6395 		if (sc->tx_mbuf_ptr[sw_tx_chain_cons] != NULL) {
6396 
6397 			/* Validate that this is the last tx_bd. */
6398 			DBRUNIF((!(txbd->tx_bd_flags & TX_BD_FLAGS_END)),
6399 			    BCE_PRINTF("%s(%d): tx_bd END flag not set but "
6400 			    "txmbuf == NULL!\n", __FILE__, __LINE__);
6401 			    bce_breakpoint(sc));
6402 
6403 			DBRUNMSG(BCE_INFO_SEND,
6404 			    BCE_PRINTF("%s(): Unloading map/freeing mbuf "
6405 			    "from tx_bd[0x%04X]\n", __FUNCTION__,
6406 			    sw_tx_chain_cons));
6407 
6408 			/* Unmap the mbuf. */
6409 			bus_dmamap_unload(sc->tx_mbuf_tag,
6410 			    sc->tx_mbuf_map[sw_tx_chain_cons]);
6411 
6412 			/* Free the mbuf. */
6413 			m_freem(sc->tx_mbuf_ptr[sw_tx_chain_cons]);
6414 			sc->tx_mbuf_ptr[sw_tx_chain_cons] = NULL;
6415 			DBRUN(sc->debug_tx_mbuf_alloc--);
6416 
6417 			ifp->if_opackets++;
6418 		}
6419 
6420 		sc->used_tx_bd--;
6421 		sw_tx_cons = NEXT_TX_BD(sw_tx_cons);
6422 
6423 		/* Refresh hw_cons to see if there's new work. */
6424 		hw_tx_cons = sc->hw_tx_cons = bce_get_hw_tx_cons(sc);
6425 
6426 		/* Prevent speculative reads of the status block. */
6427 		bus_space_barrier(sc->bce_btag, sc->bce_bhandle, 0, 0,
6428 		    BUS_SPACE_BARRIER_READ);
6429 	}
6430 
6431 	/* Clear the TX timeout timer. */
6432 	sc->watchdog_timer = 0;
6433 
6434 	/* Clear the tx hardware queue full flag. */
6435 	if (sc->used_tx_bd < sc->max_tx_bd) {
6436 		DBRUNIF((ifp->if_drv_flags & IFF_DRV_OACTIVE),
6437 		    DBPRINT(sc, BCE_INFO_SEND,
6438 		    "%s(): Open TX chain! %d/%d (used/total)\n",
6439 		    __FUNCTION__, sc->used_tx_bd, sc->max_tx_bd));
6440 		ifp->if_drv_flags &= ~IFF_DRV_OACTIVE;
6441 	}
6442 
6443 	sc->tx_cons = sw_tx_cons;
6444 
6445 	DBPRINT(sc, BCE_EXTREME_SEND, "%s(exit): tx_prod = 0x%04X, "
6446 	    "tx_cons = 0x%04X, tx_prod_bseq = 0x%08X\n",
6447 	    __FUNCTION__, sc->tx_prod, sc->tx_cons, sc->tx_prod_bseq);
6448 	DBEXIT(BCE_VERBOSE_SEND | BCE_VERBOSE_INTR);
6449 }
6450 
6451 
6452 /****************************************************************************/
6453 /* Disables interrupt generation.                                           */
6454 /*                                                                          */
6455 /* Returns:                                                                 */
6456 /*   Nothing.                                                               */
6457 /****************************************************************************/
6458 static void
6459 bce_disable_intr(struct bce_softc *sc)
6460 {
6461 	DBENTER(BCE_VERBOSE_INTR);
6462 
6463 	REG_WR(sc, BCE_PCICFG_INT_ACK_CMD, BCE_PCICFG_INT_ACK_CMD_MASK_INT);
6464 	REG_RD(sc, BCE_PCICFG_INT_ACK_CMD);
6465 
6466 	DBEXIT(BCE_VERBOSE_INTR);
6467 }
6468 
6469 
6470 /****************************************************************************/
6471 /* Enables interrupt generation.                                            */
6472 /*                                                                          */
6473 /* Returns:                                                                 */
6474 /*   Nothing.                                                               */
6475 /****************************************************************************/
6476 static void
6477 bce_enable_intr(struct bce_softc *sc, int coal_now)
6478 {
6479 	DBENTER(BCE_VERBOSE_INTR);
6480 
6481 	REG_WR(sc, BCE_PCICFG_INT_ACK_CMD,
6482 	    BCE_PCICFG_INT_ACK_CMD_INDEX_VALID |
6483 	    BCE_PCICFG_INT_ACK_CMD_MASK_INT | sc->last_status_idx);
6484 
6485 	REG_WR(sc, BCE_PCICFG_INT_ACK_CMD,
6486 	    BCE_PCICFG_INT_ACK_CMD_INDEX_VALID | sc->last_status_idx);
6487 
6488 	/* Force an immediate interrupt (whether there is new data or not). */
6489 	if (coal_now)
6490 		REG_WR(sc, BCE_HC_COMMAND, sc->hc_command | BCE_HC_COMMAND_COAL_NOW);
6491 
6492 	DBEXIT(BCE_VERBOSE_INTR);
6493 }
6494 
6495 
6496 /****************************************************************************/
6497 /* Handles controller initialization.                                       */
6498 /*                                                                          */
6499 /* Returns:                                                                 */
6500 /*   Nothing.                                                               */
6501 /****************************************************************************/
6502 static void
6503 bce_init_locked(struct bce_softc *sc)
6504 {
6505 	struct ifnet *ifp;
6506 	u32 ether_mtu = 0;
6507 
6508 	DBENTER(BCE_VERBOSE_RESET);
6509 
6510 	BCE_LOCK_ASSERT(sc);
6511 
6512 	ifp = sc->bce_ifp;
6513 
6514 	/* Check if the driver is still running and bail out if it is. */
6515 	if (ifp->if_drv_flags & IFF_DRV_RUNNING)
6516 		goto bce_init_locked_exit;
6517 
6518 	bce_stop(sc);
6519 
6520 	if (bce_reset(sc, BCE_DRV_MSG_CODE_RESET)) {
6521 		BCE_PRINTF("%s(%d): Controller reset failed!\n",
6522 		    __FILE__, __LINE__);
6523 		goto bce_init_locked_exit;
6524 	}
6525 
6526 	if (bce_chipinit(sc)) {
6527 		BCE_PRINTF("%s(%d): Controller initialization failed!\n",
6528 		    __FILE__, __LINE__);
6529 		goto bce_init_locked_exit;
6530 	}
6531 
6532 	if (bce_blockinit(sc)) {
6533 		BCE_PRINTF("%s(%d): Block initialization failed!\n",
6534 		    __FILE__, __LINE__);
6535 		goto bce_init_locked_exit;
6536 	}
6537 
6538 	/* Load our MAC address. */
6539 	bcopy(IF_LLADDR(sc->bce_ifp), sc->eaddr, ETHER_ADDR_LEN);
6540 	bce_set_mac_addr(sc);
6541 
6542 	/*
6543 	 * Calculate and program the hardware Ethernet MTU
6544 	 * size. Be generous on the receive if we have room.
6545 	 */
6546 #ifdef BCE_JUMBO_HDRSPLIT
6547 	if (ifp->if_mtu <= (sc->rx_bd_mbuf_data_len +
6548 	    sc->pg_bd_mbuf_alloc_size))
6549 		ether_mtu = sc->rx_bd_mbuf_data_len +
6550 		    sc->pg_bd_mbuf_alloc_size;
6551 #else
6552 	if (ifp->if_mtu <= sc->rx_bd_mbuf_data_len)
6553 		ether_mtu = sc->rx_bd_mbuf_data_len;
6554 #endif
6555 	else
6556 		ether_mtu = ifp->if_mtu;
6557 
6558 	ether_mtu += ETHER_HDR_LEN + ETHER_VLAN_ENCAP_LEN + ETHER_CRC_LEN;
6559 
6560 	DBPRINT(sc, BCE_INFO_MISC, "%s(): setting h/w mtu = %d\n",
6561 	    __FUNCTION__, ether_mtu);
6562 
6563 	/* Program the mtu, enabling jumbo frame support if necessary. */
6564 	if (ether_mtu > (ETHER_MAX_LEN + ETHER_VLAN_ENCAP_LEN))
6565 		REG_WR(sc, BCE_EMAC_RX_MTU_SIZE,
6566 		    min(ether_mtu, BCE_MAX_JUMBO_ETHER_MTU) |
6567 		    BCE_EMAC_RX_MTU_SIZE_JUMBO_ENA);
6568 	else
6569 		REG_WR(sc, BCE_EMAC_RX_MTU_SIZE, ether_mtu);
6570 
6571 	DBPRINT(sc, BCE_INFO_LOAD,
6572 	    "%s(): rx_bd_mbuf_alloc_size = %d, rx_bce_mbuf_data_len = %d, "
6573 	    "rx_bd_mbuf_align_pad = %d\n", __FUNCTION__,
6574 	    sc->rx_bd_mbuf_alloc_size, sc->rx_bd_mbuf_data_len,
6575 	    sc->rx_bd_mbuf_align_pad);
6576 
6577 	/* Program appropriate promiscuous/multicast filtering. */
6578 	bce_set_rx_mode(sc);
6579 
6580 #ifdef BCE_JUMBO_HDRSPLIT
6581 	DBPRINT(sc, BCE_INFO_LOAD, "%s(): pg_bd_mbuf_alloc_size = %d\n",
6582 	    __FUNCTION__, sc->pg_bd_mbuf_alloc_size);
6583 
6584 	/* Init page buffer descriptor chain. */
6585 	bce_init_pg_chain(sc);
6586 #endif
6587 
6588 	/* Init RX buffer descriptor chain. */
6589 	bce_init_rx_chain(sc);
6590 
6591 	/* Init TX buffer descriptor chain. */
6592 	bce_init_tx_chain(sc);
6593 
6594 	/* Enable host interrupts. */
6595 	bce_enable_intr(sc, 1);
6596 
6597 	bce_ifmedia_upd_locked(ifp);
6598 
6599 	/* Let the OS know the driver is up and running. */
6600 	ifp->if_drv_flags |= IFF_DRV_RUNNING;
6601 	ifp->if_drv_flags &= ~IFF_DRV_OACTIVE;
6602 
6603 	callout_reset(&sc->bce_tick_callout, hz, bce_tick, sc);
6604 
6605 bce_init_locked_exit:
6606 	DBEXIT(BCE_VERBOSE_RESET);
6607 }
6608 
6609 
6610 /****************************************************************************/
6611 /* Initialize the controller just enough so that any management firmware    */
6612 /* running on the device will continue to operate correctly.                */
6613 /*                                                                          */
6614 /* Returns:                                                                 */
6615 /*   Nothing.                                                               */
6616 /****************************************************************************/
6617 static void
6618 bce_mgmt_init_locked(struct bce_softc *sc)
6619 {
6620 	struct ifnet *ifp;
6621 
6622 	DBENTER(BCE_VERBOSE_RESET);
6623 
6624 	BCE_LOCK_ASSERT(sc);
6625 
6626 	/* Bail out if management firmware is not running. */
6627 	if (!(sc->bce_flags & BCE_MFW_ENABLE_FLAG)) {
6628 		DBPRINT(sc, BCE_VERBOSE_SPECIAL,
6629 		    "No management firmware running...\n");
6630 		goto bce_mgmt_init_locked_exit;
6631 	}
6632 
6633 	ifp = sc->bce_ifp;
6634 
6635 	/* Enable all critical blocks in the MAC. */
6636 	REG_WR(sc, BCE_MISC_ENABLE_SET_BITS, BCE_MISC_ENABLE_DEFAULT);
6637 	REG_RD(sc, BCE_MISC_ENABLE_SET_BITS);
6638 	DELAY(20);
6639 
6640 	bce_ifmedia_upd_locked(ifp);
6641 
6642 bce_mgmt_init_locked_exit:
6643 	DBEXIT(BCE_VERBOSE_RESET);
6644 }
6645 
6646 
6647 /****************************************************************************/
6648 /* Handles controller initialization when called from an unlocked routine.  */
6649 /*                                                                          */
6650 /* Returns:                                                                 */
6651 /*   Nothing.                                                               */
6652 /****************************************************************************/
6653 static void
6654 bce_init(void *xsc)
6655 {
6656 	struct bce_softc *sc = xsc;
6657 
6658 	DBENTER(BCE_VERBOSE_RESET);
6659 
6660 	BCE_LOCK(sc);
6661 	bce_init_locked(sc);
6662 	BCE_UNLOCK(sc);
6663 
6664 	DBEXIT(BCE_VERBOSE_RESET);
6665 }
6666 
6667 
6668 /****************************************************************************/
6669 /* Modifies an mbuf for TSO on the hardware.                                */
6670 /*                                                                          */
6671 /* Returns:                                                                 */
6672 /*   Pointer to a modified mbuf.                                            */
6673 /****************************************************************************/
6674 static struct mbuf *
6675 bce_tso_setup(struct bce_softc *sc, struct mbuf **m_head, u16 *flags)
6676 {
6677 	struct mbuf *m;
6678 	struct ether_header *eh;
6679 	struct ip *ip;
6680 	struct tcphdr *th;
6681 	u16 etype;
6682 	int hdr_len, ip_hlen = 0, tcp_hlen = 0, ip_len = 0;
6683 
6684 	DBRUN(sc->tso_frames_requested++);
6685 
6686 	/* Controller may modify mbuf chains. */
6687 	if (M_WRITABLE(*m_head) == 0) {
6688 		m = m_dup(*m_head, M_DONTWAIT);
6689 		m_freem(*m_head);
6690 		if (m == NULL) {
6691 			sc->mbuf_alloc_failed_count++;
6692 			*m_head = NULL;
6693 			return (NULL);
6694 		}
6695 		*m_head = m;
6696 	}
6697 
6698 	/*
6699 	 * For TSO the controller needs two pieces of info,
6700 	 * the MSS and the IP+TCP options length.
6701 	 */
6702 	m = m_pullup(*m_head, sizeof(struct ether_header) + sizeof(struct ip));
6703 	if (m == NULL) {
6704 		*m_head = NULL;
6705 		return (NULL);
6706 	}
6707 	eh = mtod(m, struct ether_header *);
6708 	etype = ntohs(eh->ether_type);
6709 
6710 	/* Check for supported TSO Ethernet types (only IPv4 for now) */
6711 	switch (etype) {
6712 	case ETHERTYPE_IP:
6713 		ip = (struct ip *)(m->m_data + sizeof(struct ether_header));
6714 		/* TSO only supported for TCP protocol. */
6715 		if (ip->ip_p != IPPROTO_TCP) {
6716 			BCE_PRINTF("%s(%d): TSO enabled for non-TCP frame!.\n",
6717 			    __FILE__, __LINE__);
6718 			m_freem(*m_head);
6719 			*m_head = NULL;
6720 			return (NULL);
6721 		}
6722 
6723 		/* Get IP header length in bytes (min 20) */
6724 		ip_hlen = ip->ip_hl << 2;
6725 		m = m_pullup(*m_head, sizeof(struct ether_header) + ip_hlen +
6726 		    sizeof(struct tcphdr));
6727 		if (m == NULL) {
6728 			*m_head = NULL;
6729 			return (NULL);
6730 		}
6731 
6732 		/* Get the TCP header length in bytes (min 20) */
6733 		th = (struct tcphdr *)((caddr_t)ip + ip_hlen);
6734 		tcp_hlen = (th->th_off << 2);
6735 
6736 		/* Make sure all IP/TCP options live in the same buffer. */
6737 		m = m_pullup(*m_head,  sizeof(struct ether_header)+ ip_hlen +
6738 		    tcp_hlen);
6739 		if (m == NULL) {
6740 			*m_head = NULL;
6741 			return (NULL);
6742 		}
6743 
6744 		/* IP header length and checksum will be calc'd by hardware */
6745 		ip_len = ip->ip_len;
6746 		ip->ip_len = 0;
6747 		ip->ip_sum = 0;
6748 		break;
6749 	case ETHERTYPE_IPV6:
6750 		BCE_PRINTF("%s(%d): TSO over IPv6 not supported!.\n",
6751 		    __FILE__, __LINE__);
6752 		m_freem(*m_head);
6753 		*m_head = NULL;
6754 		return (NULL);
6755 		/* NOT REACHED */
6756 	default:
6757 		BCE_PRINTF("%s(%d): TSO enabled for unsupported protocol!.\n",
6758 		    __FILE__, __LINE__);
6759 		m_freem(*m_head);
6760 		*m_head = NULL;
6761 		return (NULL);
6762 	}
6763 
6764 	hdr_len = sizeof(struct ether_header) + ip_hlen + tcp_hlen;
6765 
6766 	DBPRINT(sc, BCE_EXTREME_SEND, "%s(): hdr_len = %d, e_hlen = %d, "
6767 	    "ip_hlen = %d, tcp_hlen = %d, ip_len = %d\n",
6768 	    __FUNCTION__, hdr_len, (int) sizeof(struct ether_header), ip_hlen,
6769 	    tcp_hlen, ip_len);
6770 
6771 	/* Set the LSO flag in the TX BD */
6772 	*flags |= TX_BD_FLAGS_SW_LSO;
6773 
6774 	/* Set the length of IP + TCP options (in 32 bit words) */
6775 	*flags |= (((ip_hlen + tcp_hlen - sizeof(struct ip) -
6776 	    sizeof(struct tcphdr)) >> 2) << 8);
6777 
6778 	DBRUN(sc->tso_frames_completed++);
6779 	return (*m_head);
6780 }
6781 
6782 
6783 /****************************************************************************/
6784 /* Encapsultes an mbuf cluster into the tx_bd chain structure and makes the */
6785 /* memory visible to the controller.                                        */
6786 /*                                                                          */
6787 /* Returns:                                                                 */
6788 /*   0 for success, positive value for failure.                             */
6789 /* Modified:                                                                */
6790 /*   m_head: May be set to NULL if MBUF is excessively fragmented.          */
6791 /****************************************************************************/
6792 static int
6793 bce_tx_encap(struct bce_softc *sc, struct mbuf **m_head)
6794 {
6795 	bus_dma_segment_t segs[BCE_MAX_SEGMENTS];
6796 	bus_dmamap_t map;
6797 	struct tx_bd *txbd = NULL;
6798 	struct mbuf *m0;
6799 	u16 prod, chain_prod, mss = 0, vlan_tag = 0, flags = 0;
6800 	u32 prod_bseq;
6801 
6802 #ifdef BCE_DEBUG
6803 	u16 debug_prod;
6804 #endif
6805 
6806 	int i, error, nsegs, rc = 0;
6807 
6808 	DBENTER(BCE_VERBOSE_SEND);
6809 
6810 	/* Make sure we have room in the TX chain. */
6811 	if (sc->used_tx_bd >= sc->max_tx_bd)
6812 		goto bce_tx_encap_exit;
6813 
6814 	/* Transfer any checksum offload flags to the bd. */
6815 	m0 = *m_head;
6816 	if (m0->m_pkthdr.csum_flags) {
6817 		if (m0->m_pkthdr.csum_flags & CSUM_TSO) {
6818 			m0 = bce_tso_setup(sc, m_head, &flags);
6819 			if (m0 == NULL) {
6820 				DBRUN(sc->tso_frames_failed++);
6821 				goto bce_tx_encap_exit;
6822 			}
6823 			mss = htole16(m0->m_pkthdr.tso_segsz);
6824 		} else {
6825 			if (m0->m_pkthdr.csum_flags & CSUM_IP)
6826 				flags |= TX_BD_FLAGS_IP_CKSUM;
6827 			if (m0->m_pkthdr.csum_flags & (CSUM_TCP | CSUM_UDP))
6828 				flags |= TX_BD_FLAGS_TCP_UDP_CKSUM;
6829 		}
6830 	}
6831 
6832 	/* Transfer any VLAN tags to the bd. */
6833 	if (m0->m_flags & M_VLANTAG) {
6834 		flags |= TX_BD_FLAGS_VLAN_TAG;
6835 		vlan_tag = m0->m_pkthdr.ether_vtag;
6836 	}
6837 
6838 	/* Map the mbuf into DMAable memory. */
6839 	prod = sc->tx_prod;
6840 	chain_prod = TX_CHAIN_IDX(prod);
6841 	map = sc->tx_mbuf_map[chain_prod];
6842 
6843 	/* Map the mbuf into our DMA address space. */
6844 	error = bus_dmamap_load_mbuf_sg(sc->tx_mbuf_tag, map, m0,
6845 	    segs, &nsegs, BUS_DMA_NOWAIT);
6846 
6847 	/* Check if the DMA mapping was successful */
6848 	if (error == EFBIG) {
6849 		sc->mbuf_frag_count++;
6850 
6851 		/* Try to defrag the mbuf. */
6852 		m0 = m_collapse(*m_head, M_DONTWAIT, BCE_MAX_SEGMENTS);
6853 		if (m0 == NULL) {
6854 			/* Defrag was unsuccessful */
6855 			m_freem(*m_head);
6856 			*m_head = NULL;
6857 			sc->mbuf_alloc_failed_count++;
6858 			rc = ENOBUFS;
6859 			goto bce_tx_encap_exit;
6860 		}
6861 
6862 		/* Defrag was successful, try mapping again */
6863 		*m_head = m0;
6864 		error = bus_dmamap_load_mbuf_sg(sc->tx_mbuf_tag,
6865 		    map, m0, segs, &nsegs, BUS_DMA_NOWAIT);
6866 
6867 		/* Still getting an error after a defrag. */
6868 		if (error == ENOMEM) {
6869 			/* Insufficient DMA buffers available. */
6870 			sc->dma_map_addr_tx_failed_count++;
6871 			rc = error;
6872 			goto bce_tx_encap_exit;
6873 		} else if (error != 0) {
6874 			/* Release it and return an error. */
6875 			BCE_PRINTF("%s(%d): Unknown error mapping mbuf into "
6876 			    "TX chain!\n", __FILE__, __LINE__);
6877 			m_freem(m0);
6878 			*m_head = NULL;
6879 			sc->dma_map_addr_tx_failed_count++;
6880 			rc = ENOBUFS;
6881 			goto bce_tx_encap_exit;
6882 		}
6883 	} else if (error == ENOMEM) {
6884 		/* Insufficient DMA buffers available. */
6885 		sc->dma_map_addr_tx_failed_count++;
6886 		rc = error;
6887 		goto bce_tx_encap_exit;
6888 	} else if (error != 0) {
6889 		m_freem(m0);
6890 		*m_head = NULL;
6891 		sc->dma_map_addr_tx_failed_count++;
6892 		rc = error;
6893 		goto bce_tx_encap_exit;
6894 	}
6895 
6896 	/* Make sure there's room in the chain */
6897 	if (nsegs > (sc->max_tx_bd - sc->used_tx_bd)) {
6898 		bus_dmamap_unload(sc->tx_mbuf_tag, map);
6899 		rc = ENOBUFS;
6900 		goto bce_tx_encap_exit;
6901 	}
6902 
6903 	/* prod points to an empty tx_bd at this point. */
6904 	prod_bseq  = sc->tx_prod_bseq;
6905 
6906 #ifdef BCE_DEBUG
6907 	debug_prod = chain_prod;
6908 #endif
6909 
6910 	DBPRINT(sc, BCE_INFO_SEND,
6911 	    "%s(start): prod = 0x%04X, chain_prod = 0x%04X, "
6912 	    "prod_bseq = 0x%08X\n",
6913 	    __FUNCTION__, prod, chain_prod, prod_bseq);
6914 
6915 	/*
6916 	 * Cycle through each mbuf segment that makes up
6917 	 * the outgoing frame, gathering the mapping info
6918 	 * for that segment and creating a tx_bd for
6919 	 * the mbuf.
6920 	 */
6921 	for (i = 0; i < nsegs ; i++) {
6922 
6923 		chain_prod = TX_CHAIN_IDX(prod);
6924 		txbd= &sc->tx_bd_chain[TX_PAGE(chain_prod)]
6925 		    [TX_IDX(chain_prod)];
6926 
6927 		txbd->tx_bd_haddr_lo =
6928 		    htole32(BCE_ADDR_LO(segs[i].ds_addr));
6929 		txbd->tx_bd_haddr_hi =
6930 		    htole32(BCE_ADDR_HI(segs[i].ds_addr));
6931 		txbd->tx_bd_mss_nbytes = htole32(mss << 16) |
6932 		    htole16(segs[i].ds_len);
6933 		txbd->tx_bd_vlan_tag = htole16(vlan_tag);
6934 		txbd->tx_bd_flags = htole16(flags);
6935 		prod_bseq += segs[i].ds_len;
6936 		if (i == 0)
6937 			txbd->tx_bd_flags |= htole16(TX_BD_FLAGS_START);
6938 		prod = NEXT_TX_BD(prod);
6939 	}
6940 
6941 	/* Set the END flag on the last TX buffer descriptor. */
6942 	txbd->tx_bd_flags |= htole16(TX_BD_FLAGS_END);
6943 
6944 	DBRUNMSG(BCE_EXTREME_SEND,
6945 	    bce_dump_tx_chain(sc, debug_prod, nsegs));
6946 
6947 	/*
6948 	 * Ensure that the mbuf pointer for this transmission
6949 	 * is placed at the array index of the last
6950 	 * descriptor in this chain.  This is done
6951 	 * because a single map is used for all
6952 	 * segments of the mbuf and we don't want to
6953 	 * unload the map before all of the segments
6954 	 * have been freed.
6955 	 */
6956 	sc->tx_mbuf_ptr[chain_prod] = m0;
6957 	sc->used_tx_bd += nsegs;
6958 
6959 	/* Update some debug statistic counters */
6960 	DBRUNIF((sc->used_tx_bd > sc->tx_hi_watermark),
6961 	    sc->tx_hi_watermark = sc->used_tx_bd);
6962 	DBRUNIF((sc->used_tx_bd == sc->max_tx_bd), sc->tx_full_count++);
6963 	DBRUNIF(sc->debug_tx_mbuf_alloc++);
6964 
6965 	DBRUNMSG(BCE_EXTREME_SEND, bce_dump_tx_mbuf_chain(sc, chain_prod, 1));
6966 
6967 	/* prod points to the next free tx_bd at this point. */
6968 	sc->tx_prod = prod;
6969 	sc->tx_prod_bseq = prod_bseq;
6970 
6971 	/* Tell the chip about the waiting TX frames. */
6972 	REG_WR16(sc, MB_GET_CID_ADDR(TX_CID) +
6973 	    BCE_L2MQ_TX_HOST_BIDX, sc->tx_prod);
6974 	REG_WR(sc, MB_GET_CID_ADDR(TX_CID) +
6975 	    BCE_L2MQ_TX_HOST_BSEQ, sc->tx_prod_bseq);
6976 
6977 bce_tx_encap_exit:
6978 	DBEXIT(BCE_VERBOSE_SEND);
6979 	return(rc);
6980 }
6981 
6982 
6983 /****************************************************************************/
6984 /* Main transmit routine when called from another routine with a lock.      */
6985 /*                                                                          */
6986 /* Returns:                                                                 */
6987 /*   Nothing.                                                               */
6988 /****************************************************************************/
6989 static void
6990 bce_start_locked(struct ifnet *ifp)
6991 {
6992 	struct bce_softc *sc = ifp->if_softc;
6993 	struct mbuf *m_head = NULL;
6994 	int count = 0;
6995 	u16 tx_prod, tx_chain_prod;
6996 
6997 	DBENTER(BCE_VERBOSE_SEND | BCE_VERBOSE_CTX);
6998 
6999 	BCE_LOCK_ASSERT(sc);
7000 
7001 	/* prod points to the next free tx_bd. */
7002 	tx_prod = sc->tx_prod;
7003 	tx_chain_prod = TX_CHAIN_IDX(tx_prod);
7004 
7005 	DBPRINT(sc, BCE_INFO_SEND,
7006 	    "%s(enter): tx_prod = 0x%04X, tx_chain_prod = 0x%04X, "
7007 	    "tx_prod_bseq = 0x%08X\n",
7008 	    __FUNCTION__, tx_prod, tx_chain_prod, sc->tx_prod_bseq);
7009 
7010 	/* If there's no link or the transmit queue is empty then just exit. */
7011 	if (sc->bce_link_up == FALSE) {
7012 		DBPRINT(sc, BCE_INFO_SEND, "%s(): No link.\n",
7013 		    __FUNCTION__);
7014 		goto bce_start_locked_exit;
7015 	}
7016 
7017 	if (IFQ_DRV_IS_EMPTY(&ifp->if_snd)) {
7018 		DBPRINT(sc, BCE_INFO_SEND, "%s(): Transmit queue empty.\n",
7019 		    __FUNCTION__);
7020 		goto bce_start_locked_exit;
7021 	}
7022 
7023 	/*
7024 	 * Keep adding entries while there is space in the ring.
7025 	 */
7026 	while (sc->used_tx_bd < sc->max_tx_bd) {
7027 
7028 		/* Check for any frames to send. */
7029 		IFQ_DRV_DEQUEUE(&ifp->if_snd, m_head);
7030 
7031 		/* Stop when the transmit queue is empty. */
7032 		if (m_head == NULL)
7033 			break;
7034 
7035 		/*
7036 		 * Pack the data into the transmit ring. If we
7037 		 * don't have room, place the mbuf back at the
7038 		 * head of the queue and set the OACTIVE flag
7039 		 * to wait for the NIC to drain the chain.
7040 		 */
7041 		if (bce_tx_encap(sc, &m_head)) {
7042 			if (m_head != NULL)
7043 				IFQ_DRV_PREPEND(&ifp->if_snd, m_head);
7044 			ifp->if_drv_flags |= IFF_DRV_OACTIVE;
7045 			DBPRINT(sc, BCE_INFO_SEND,
7046 			    "TX chain is closed for business! Total "
7047 			    "tx_bd used = %d\n", sc->used_tx_bd);
7048 			break;
7049 		}
7050 
7051 		count++;
7052 
7053 		/* Send a copy of the frame to any BPF listeners. */
7054 		ETHER_BPF_MTAP(ifp, m_head);
7055 	}
7056 
7057 	/* Exit if no packets were dequeued. */
7058 	if (count == 0) {
7059 		DBPRINT(sc, BCE_VERBOSE_SEND, "%s(): No packets were "
7060 		    "dequeued\n", __FUNCTION__);
7061 		goto bce_start_locked_exit;
7062 	}
7063 
7064 	DBPRINT(sc, BCE_VERBOSE_SEND, "%s(): Inserted %d frames into "
7065 	    "send queue.\n", __FUNCTION__, count);
7066 
7067 	/* Set the tx timeout. */
7068 	sc->watchdog_timer = BCE_TX_TIMEOUT;
7069 
7070 	DBRUNMSG(BCE_VERBOSE_SEND, bce_dump_ctx(sc, TX_CID));
7071 	DBRUNMSG(BCE_VERBOSE_SEND, bce_dump_mq_regs(sc));
7072 
7073 bce_start_locked_exit:
7074 	DBEXIT(BCE_VERBOSE_SEND | BCE_VERBOSE_CTX);
7075 	return;
7076 }
7077 
7078 
7079 /****************************************************************************/
7080 /* Main transmit routine when called from another routine without a lock.   */
7081 /*                                                                          */
7082 /* Returns:                                                                 */
7083 /*   Nothing.                                                               */
7084 /****************************************************************************/
7085 static void
7086 bce_start(struct ifnet *ifp)
7087 {
7088 	struct bce_softc *sc = ifp->if_softc;
7089 
7090 	DBENTER(BCE_VERBOSE_SEND);
7091 
7092 	BCE_LOCK(sc);
7093 	bce_start_locked(ifp);
7094 	BCE_UNLOCK(sc);
7095 
7096 	DBEXIT(BCE_VERBOSE_SEND);
7097 }
7098 
7099 
7100 /****************************************************************************/
7101 /* Handles any IOCTL calls from the operating system.                       */
7102 /*                                                                          */
7103 /* Returns:                                                                 */
7104 /*   0 for success, positive value for failure.                             */
7105 /****************************************************************************/
7106 static int
7107 bce_ioctl(struct ifnet *ifp, u_long command, caddr_t data)
7108 {
7109 	struct bce_softc *sc = ifp->if_softc;
7110 	struct ifreq *ifr = (struct ifreq *) data;
7111 	struct mii_data *mii;
7112 	int mask, error = 0, reinit;
7113 
7114 	DBENTER(BCE_VERBOSE_MISC);
7115 
7116 	switch(command) {
7117 
7118 	/* Set the interface MTU. */
7119 	case SIOCSIFMTU:
7120 		/* Check that the MTU setting is supported. */
7121 		if ((ifr->ifr_mtu < BCE_MIN_MTU) ||
7122 			(ifr->ifr_mtu > BCE_MAX_JUMBO_MTU)) {
7123 			error = EINVAL;
7124 			break;
7125 		}
7126 
7127 		DBPRINT(sc, BCE_INFO_MISC,
7128 		    "SIOCSIFMTU: Changing MTU from %d to %d\n",
7129 		    (int) ifp->if_mtu, (int) ifr->ifr_mtu);
7130 
7131 		BCE_LOCK(sc);
7132 		ifp->if_mtu = ifr->ifr_mtu;
7133 		reinit = 0;
7134 		if (ifp->if_drv_flags & IFF_DRV_RUNNING) {
7135 			/*
7136 			 * Because allocation size is used in RX
7137 			 * buffer allocation, stop controller if
7138 			 * it is already running.
7139 			 */
7140 			bce_stop(sc);
7141 			reinit = 1;
7142 		}
7143 #ifdef BCE_JUMBO_HDRSPLIT
7144 		/* No buffer allocation size changes are necessary. */
7145 #else
7146 		/* Recalculate our buffer allocation sizes. */
7147 		if ((ifp->if_mtu + ETHER_HDR_LEN + ETHER_VLAN_ENCAP_LEN +
7148 		     ETHER_CRC_LEN) > MCLBYTES) {
7149 			sc->rx_bd_mbuf_alloc_size = MJUM9BYTES;
7150 			sc->rx_bd_mbuf_align_pad  =
7151 			    roundup2(MJUM9BYTES, 16) - MJUM9BYTES;
7152 			sc->rx_bd_mbuf_data_len =
7153 			    sc->rx_bd_mbuf_alloc_size -
7154 			    sc->rx_bd_mbuf_align_pad;
7155 		} else {
7156 			sc->rx_bd_mbuf_alloc_size = MCLBYTES;
7157 			sc->rx_bd_mbuf_align_pad  =
7158 			    roundup2(MCLBYTES, 16) - MCLBYTES;
7159 			sc->rx_bd_mbuf_data_len =
7160 			    sc->rx_bd_mbuf_alloc_size -
7161 			    sc->rx_bd_mbuf_align_pad;
7162 		}
7163 #endif
7164 
7165 		if (reinit != 0)
7166 			bce_init_locked(sc);
7167 		BCE_UNLOCK(sc);
7168 		break;
7169 
7170 	/* Set interface flags. */
7171 	case SIOCSIFFLAGS:
7172 		DBPRINT(sc, BCE_VERBOSE_SPECIAL, "Received SIOCSIFFLAGS\n");
7173 
7174 		BCE_LOCK(sc);
7175 
7176 		/* Check if the interface is up. */
7177 		if (ifp->if_flags & IFF_UP) {
7178 			if (ifp->if_drv_flags & IFF_DRV_RUNNING) {
7179 				/* Change promiscuous/multicast flags as necessary. */
7180 				bce_set_rx_mode(sc);
7181 			} else {
7182 				/* Start the HW */
7183 				bce_init_locked(sc);
7184 			}
7185 		} else {
7186 			/* The interface is down, check if driver is running. */
7187 			if (ifp->if_drv_flags & IFF_DRV_RUNNING) {
7188 				bce_stop(sc);
7189 
7190 				/* If MFW is running, restart the controller a bit. */
7191 				if (sc->bce_flags & BCE_MFW_ENABLE_FLAG) {
7192 					bce_reset(sc, BCE_DRV_MSG_CODE_RESET);
7193 					bce_chipinit(sc);
7194 					bce_mgmt_init_locked(sc);
7195 				}
7196 			}
7197 		}
7198 
7199 		BCE_UNLOCK(sc);
7200 		break;
7201 
7202 	/* Add/Delete multicast address */
7203 	case SIOCADDMULTI:
7204 	case SIOCDELMULTI:
7205 		DBPRINT(sc, BCE_VERBOSE_MISC,
7206 		    "Received SIOCADDMULTI/SIOCDELMULTI\n");
7207 
7208 		BCE_LOCK(sc);
7209 		if (ifp->if_drv_flags & IFF_DRV_RUNNING)
7210 			bce_set_rx_mode(sc);
7211 		BCE_UNLOCK(sc);
7212 
7213 		break;
7214 
7215 	/* Set/Get Interface media */
7216 	case SIOCSIFMEDIA:
7217 	case SIOCGIFMEDIA:
7218 		DBPRINT(sc, BCE_VERBOSE_MISC,
7219 		    "Received SIOCSIFMEDIA/SIOCGIFMEDIA\n");
7220 
7221 		mii = device_get_softc(sc->bce_miibus);
7222 		error = ifmedia_ioctl(ifp, ifr,
7223 		    &mii->mii_media, command);
7224 		break;
7225 
7226 	/* Set interface capability */
7227 	case SIOCSIFCAP:
7228 		mask = ifr->ifr_reqcap ^ ifp->if_capenable;
7229 		DBPRINT(sc, BCE_INFO_MISC,
7230 		    "Received SIOCSIFCAP = 0x%08X\n", (u32) mask);
7231 
7232 		/* Toggle the TX checksum capabilities enable flag. */
7233 		if (mask & IFCAP_TXCSUM &&
7234 		    ifp->if_capabilities & IFCAP_TXCSUM) {
7235 			ifp->if_capenable ^= IFCAP_TXCSUM;
7236 			if (IFCAP_TXCSUM & ifp->if_capenable)
7237 				ifp->if_hwassist |= BCE_IF_HWASSIST;
7238 			else
7239 				ifp->if_hwassist &= ~BCE_IF_HWASSIST;
7240 		}
7241 
7242 		/* Toggle the RX checksum capabilities enable flag. */
7243 		if (mask & IFCAP_RXCSUM &&
7244 		    ifp->if_capabilities & IFCAP_RXCSUM)
7245 			ifp->if_capenable ^= IFCAP_RXCSUM;
7246 
7247 		/* Toggle the TSO capabilities enable flag. */
7248 		if (bce_tso_enable && (mask & IFCAP_TSO4) &&
7249 		    ifp->if_capabilities & IFCAP_TSO4) {
7250 			ifp->if_capenable ^= IFCAP_TSO4;
7251 			if (IFCAP_TSO4 & ifp->if_capenable)
7252 				ifp->if_hwassist |= CSUM_TSO;
7253 			else
7254 				ifp->if_hwassist &= ~CSUM_TSO;
7255 		}
7256 
7257 		if (mask & IFCAP_VLAN_HWCSUM &&
7258 		    ifp->if_capabilities & IFCAP_VLAN_HWCSUM)
7259 			ifp->if_capenable ^= IFCAP_VLAN_HWCSUM;
7260 
7261 		if ((mask & IFCAP_VLAN_HWTSO) != 0 &&
7262 		    (ifp->if_capabilities & IFCAP_VLAN_HWTSO) != 0)
7263 			ifp->if_capenable ^= IFCAP_VLAN_HWTSO;
7264 		/*
7265 		 * Don't actually disable VLAN tag stripping as
7266 		 * management firmware (ASF/IPMI/UMP) requires the
7267 		 * feature. If VLAN tag stripping is disabled driver
7268 		 * will manually reconstruct the VLAN frame by
7269 		 * appending stripped VLAN tag.
7270 		 */
7271 		if ((mask & IFCAP_VLAN_HWTAGGING) != 0 &&
7272 		    (ifp->if_capabilities & IFCAP_VLAN_HWTAGGING)) {
7273 			ifp->if_capenable ^= IFCAP_VLAN_HWTAGGING;
7274 			if ((ifp->if_capenable & IFCAP_VLAN_HWTAGGING)
7275 			    == 0)
7276 				ifp->if_capenable &= ~IFCAP_VLAN_HWTSO;
7277 		}
7278 		VLAN_CAPABILITIES(ifp);
7279 		break;
7280 	default:
7281 		/* We don't know how to handle the IOCTL, pass it on. */
7282 		error = ether_ioctl(ifp, command, data);
7283 		break;
7284 	}
7285 
7286 	DBEXIT(BCE_VERBOSE_MISC);
7287 	return(error);
7288 }
7289 
7290 
7291 /****************************************************************************/
7292 /* Transmit timeout handler.                                                */
7293 /*                                                                          */
7294 /* Returns:                                                                 */
7295 /*   Nothing.                                                               */
7296 /****************************************************************************/
7297 static void
7298 bce_watchdog(struct bce_softc *sc)
7299 {
7300 	DBENTER(BCE_EXTREME_SEND);
7301 
7302 	BCE_LOCK_ASSERT(sc);
7303 
7304 	/* If the watchdog timer hasn't expired then just exit. */
7305 	if (sc->watchdog_timer == 0 || --sc->watchdog_timer)
7306 		goto bce_watchdog_exit;
7307 
7308 	/* If pause frames are active then don't reset the hardware. */
7309 	/* ToDo: Should we reset the timer here? */
7310 	if (REG_RD(sc, BCE_EMAC_TX_STATUS) & BCE_EMAC_TX_STATUS_XOFFED)
7311 		goto bce_watchdog_exit;
7312 
7313 	BCE_PRINTF("%s(%d): Watchdog timeout occurred, resetting!\n",
7314 	    __FILE__, __LINE__);
7315 
7316 	DBRUNMSG(BCE_INFO,
7317 	    bce_dump_driver_state(sc);
7318 	    bce_dump_status_block(sc);
7319 	    bce_dump_stats_block(sc);
7320 	    bce_dump_ftqs(sc);
7321 	    bce_dump_txp_state(sc, 0);
7322 	    bce_dump_rxp_state(sc, 0);
7323 	    bce_dump_tpat_state(sc, 0);
7324 	    bce_dump_cp_state(sc, 0);
7325 	    bce_dump_com_state(sc, 0));
7326 
7327 	DBRUN(bce_breakpoint(sc));
7328 
7329 	sc->bce_ifp->if_drv_flags &= ~IFF_DRV_RUNNING;
7330 
7331 	bce_init_locked(sc);
7332 	sc->bce_ifp->if_oerrors++;
7333 
7334 bce_watchdog_exit:
7335 	DBEXIT(BCE_EXTREME_SEND);
7336 }
7337 
7338 
7339 /*
7340  * Interrupt handler.
7341  */
7342 /****************************************************************************/
7343 /* Main interrupt entry point.  Verifies that the controller generated the  */
7344 /* interrupt and then calls a separate routine for handle the various       */
7345 /* interrupt causes (PHY, TX, RX).                                          */
7346 /*                                                                          */
7347 /* Returns:                                                                 */
7348 /*   0 for success, positive value for failure.                             */
7349 /****************************************************************************/
7350 static void
7351 bce_intr(void *xsc)
7352 {
7353 	struct bce_softc *sc;
7354 	struct ifnet *ifp;
7355 	u32 status_attn_bits;
7356 	u16 hw_rx_cons, hw_tx_cons;
7357 
7358 	sc = xsc;
7359 	ifp = sc->bce_ifp;
7360 
7361 	DBENTER(BCE_VERBOSE_SEND | BCE_VERBOSE_RECV | BCE_VERBOSE_INTR);
7362 	DBRUNMSG(BCE_VERBOSE_INTR, bce_dump_status_block(sc));
7363 	DBRUNMSG(BCE_VERBOSE_INTR, bce_dump_stats_block(sc));
7364 
7365 	BCE_LOCK(sc);
7366 
7367 	DBRUN(sc->interrupts_generated++);
7368 
7369 	/* Synchnorize before we read from interface's status block */
7370 	bus_dmamap_sync(sc->status_tag, sc->status_map,
7371 	    BUS_DMASYNC_POSTREAD);
7372 
7373 	/*
7374 	 * If the hardware status block index
7375 	 * matches the last value read by the
7376 	 * driver and we haven't asserted our
7377 	 * interrupt then there's nothing to do.
7378 	 */
7379 	if ((sc->status_block->status_idx == sc->last_status_idx) &&
7380 	    (REG_RD(sc, BCE_PCICFG_MISC_STATUS) &
7381 	     BCE_PCICFG_MISC_STATUS_INTA_VALUE)) {
7382 		DBPRINT(sc, BCE_VERBOSE_INTR, "%s(): Spurious interrupt.\n",
7383 		    __FUNCTION__);
7384 		goto bce_intr_exit;
7385 	}
7386 
7387 	/* Ack the interrupt and stop others from occuring. */
7388 	REG_WR(sc, BCE_PCICFG_INT_ACK_CMD,
7389 	    BCE_PCICFG_INT_ACK_CMD_USE_INT_HC_PARAM |
7390 	    BCE_PCICFG_INT_ACK_CMD_MASK_INT);
7391 
7392 	/* Check if the hardware has finished any work. */
7393 	hw_rx_cons = bce_get_hw_rx_cons(sc);
7394 	hw_tx_cons = bce_get_hw_tx_cons(sc);
7395 
7396 	/* Keep processing data as long as there is work to do. */
7397 	for (;;) {
7398 
7399 		status_attn_bits = sc->status_block->status_attn_bits;
7400 
7401 		DBRUNIF(DB_RANDOMTRUE(unexpected_attention_sim_control),
7402 		    BCE_PRINTF("Simulating unexpected status attention "
7403 		    "bit set.");
7404 		    sc->unexpected_attention_sim_count++;
7405 		    status_attn_bits = status_attn_bits |
7406 		    STATUS_ATTN_BITS_PARITY_ERROR);
7407 
7408 		/* Was it a link change interrupt? */
7409 		if ((status_attn_bits & STATUS_ATTN_BITS_LINK_STATE) !=
7410 		    (sc->status_block->status_attn_bits_ack &
7411 		     STATUS_ATTN_BITS_LINK_STATE)) {
7412 			bce_phy_intr(sc);
7413 
7414 			/* Clear transient updates during link state change. */
7415 			REG_WR(sc, BCE_HC_COMMAND, sc->hc_command |
7416 			    BCE_HC_COMMAND_COAL_NOW_WO_INT);
7417 			REG_RD(sc, BCE_HC_COMMAND);
7418 		}
7419 
7420 		/* If any other attention is asserted, the chip is toast. */
7421 		if (((status_attn_bits & ~STATUS_ATTN_BITS_LINK_STATE) !=
7422 		    (sc->status_block->status_attn_bits_ack &
7423 		    ~STATUS_ATTN_BITS_LINK_STATE))) {
7424 
7425 			sc->unexpected_attention_count++;
7426 
7427 			BCE_PRINTF("%s(%d): Fatal attention detected: "
7428 			    "0x%08X\n",	__FILE__, __LINE__,
7429 			    sc->status_block->status_attn_bits);
7430 
7431 			DBRUNMSG(BCE_FATAL,
7432 			    if (unexpected_attention_sim_control == 0)
7433 				bce_breakpoint(sc));
7434 
7435 			bce_init_locked(sc);
7436 			goto bce_intr_exit;
7437 		}
7438 
7439 		/* Check for any completed RX frames. */
7440 		if (hw_rx_cons != sc->hw_rx_cons)
7441 			bce_rx_intr(sc);
7442 
7443 		/* Check for any completed TX frames. */
7444 		if (hw_tx_cons != sc->hw_tx_cons)
7445 			bce_tx_intr(sc);
7446 
7447 		/* Save status block index value for the next interrupt. */
7448 		sc->last_status_idx = sc->status_block->status_idx;
7449 
7450  		/*
7451  		 * Prevent speculative reads from getting
7452  		 * ahead of the status block.
7453 		 */
7454 		bus_space_barrier(sc->bce_btag, sc->bce_bhandle, 0, 0,
7455 		    BUS_SPACE_BARRIER_READ);
7456 
7457  		/*
7458  		 * If there's no work left then exit the
7459  		 * interrupt service routine.
7460 		 */
7461 		hw_rx_cons = bce_get_hw_rx_cons(sc);
7462 		hw_tx_cons = bce_get_hw_tx_cons(sc);
7463 
7464 		if ((hw_rx_cons == sc->hw_rx_cons) &&
7465 		    (hw_tx_cons == sc->hw_tx_cons))
7466 			break;
7467 
7468 	}
7469 
7470 	bus_dmamap_sync(sc->status_tag,	sc->status_map,
7471 	    BUS_DMASYNC_PREREAD);
7472 
7473 	/* Re-enable interrupts. */
7474 	bce_enable_intr(sc, 0);
7475 
7476 	/* Handle any frames that arrived while handling the interrupt. */
7477 	if (ifp->if_drv_flags & IFF_DRV_RUNNING &&
7478 	    !IFQ_DRV_IS_EMPTY(&ifp->if_snd))
7479 		bce_start_locked(ifp);
7480 
7481 bce_intr_exit:
7482 	BCE_UNLOCK(sc);
7483 
7484 	DBEXIT(BCE_VERBOSE_SEND | BCE_VERBOSE_RECV | BCE_VERBOSE_INTR);
7485 }
7486 
7487 
7488 /****************************************************************************/
7489 /* Programs the various packet receive modes (broadcast and multicast).     */
7490 /*                                                                          */
7491 /* Returns:                                                                 */
7492 /*   Nothing.                                                               */
7493 /****************************************************************************/
7494 static void
7495 bce_set_rx_mode(struct bce_softc *sc)
7496 {
7497 	struct ifnet *ifp;
7498 	struct ifmultiaddr *ifma;
7499 	u32 hashes[NUM_MC_HASH_REGISTERS] = { 0, 0, 0, 0, 0, 0, 0, 0 };
7500 	u32 rx_mode, sort_mode;
7501 	int h, i;
7502 
7503 	DBENTER(BCE_VERBOSE_MISC);
7504 
7505 	BCE_LOCK_ASSERT(sc);
7506 
7507 	ifp = sc->bce_ifp;
7508 
7509 	/* Initialize receive mode default settings. */
7510 	rx_mode   = sc->rx_mode & ~(BCE_EMAC_RX_MODE_PROMISCUOUS |
7511 	    BCE_EMAC_RX_MODE_KEEP_VLAN_TAG);
7512 	sort_mode = 1 | BCE_RPM_SORT_USER0_BC_EN;
7513 
7514 	/*
7515 	 * ASF/IPMI/UMP firmware requires that VLAN tag stripping
7516 	 * be enbled.
7517 	 */
7518 	if (!(BCE_IF_CAPABILITIES & IFCAP_VLAN_HWTAGGING) &&
7519 	    (!(sc->bce_flags & BCE_MFW_ENABLE_FLAG)))
7520 		rx_mode |= BCE_EMAC_RX_MODE_KEEP_VLAN_TAG;
7521 
7522 	/*
7523 	 * Check for promiscuous, all multicast, or selected
7524 	 * multicast address filtering.
7525 	 */
7526 	if (ifp->if_flags & IFF_PROMISC) {
7527 		DBPRINT(sc, BCE_INFO_MISC, "Enabling promiscuous mode.\n");
7528 
7529 		/* Enable promiscuous mode. */
7530 		rx_mode |= BCE_EMAC_RX_MODE_PROMISCUOUS;
7531 		sort_mode |= BCE_RPM_SORT_USER0_PROM_EN;
7532 	} else if (ifp->if_flags & IFF_ALLMULTI) {
7533 		DBPRINT(sc, BCE_INFO_MISC, "Enabling all multicast mode.\n");
7534 
7535 		/* Enable all multicast addresses. */
7536 		for (i = 0; i < NUM_MC_HASH_REGISTERS; i++) {
7537 			REG_WR(sc, BCE_EMAC_MULTICAST_HASH0 + (i * 4), 0xffffffff);
7538        	}
7539 		sort_mode |= BCE_RPM_SORT_USER0_MC_EN;
7540 	} else {
7541 		/* Accept one or more multicast(s). */
7542 		DBPRINT(sc, BCE_INFO_MISC, "Enabling selective multicast mode.\n");
7543 
7544 		if_maddr_rlock(ifp);
7545 		TAILQ_FOREACH(ifma, &ifp->if_multiaddrs, ifma_link) {
7546 			if (ifma->ifma_addr->sa_family != AF_LINK)
7547 				continue;
7548 			h = ether_crc32_le(LLADDR((struct sockaddr_dl *)
7549 			    ifma->ifma_addr), ETHER_ADDR_LEN) & 0xFF;
7550 			    hashes[(h & 0xE0) >> 5] |= 1 << (h & 0x1F);
7551 		}
7552 		if_maddr_runlock(ifp);
7553 
7554 		for (i = 0; i < NUM_MC_HASH_REGISTERS; i++)
7555 			REG_WR(sc, BCE_EMAC_MULTICAST_HASH0 + (i * 4), hashes[i]);
7556 
7557 		sort_mode |= BCE_RPM_SORT_USER0_MC_HSH_EN;
7558 	}
7559 
7560 	/* Only make changes if the recive mode has actually changed. */
7561 	if (rx_mode != sc->rx_mode) {
7562 		DBPRINT(sc, BCE_VERBOSE_MISC, "Enabling new receive mode: "
7563 		    "0x%08X\n", rx_mode);
7564 
7565 		sc->rx_mode = rx_mode;
7566 		REG_WR(sc, BCE_EMAC_RX_MODE, rx_mode);
7567 	}
7568 
7569 	/* Disable and clear the exisitng sort before enabling a new sort. */
7570 	REG_WR(sc, BCE_RPM_SORT_USER0, 0x0);
7571 	REG_WR(sc, BCE_RPM_SORT_USER0, sort_mode);
7572 	REG_WR(sc, BCE_RPM_SORT_USER0, sort_mode | BCE_RPM_SORT_USER0_ENA);
7573 
7574 	DBEXIT(BCE_VERBOSE_MISC);
7575 }
7576 
7577 
7578 /****************************************************************************/
7579 /* Called periodically to updates statistics from the controllers           */
7580 /* statistics block.                                                        */
7581 /*                                                                          */
7582 /* Returns:                                                                 */
7583 /*   Nothing.                                                               */
7584 /****************************************************************************/
7585 static void
7586 bce_stats_update(struct bce_softc *sc)
7587 {
7588 	struct ifnet *ifp;
7589 	struct statistics_block *stats;
7590 
7591 	DBENTER(BCE_EXTREME_MISC);
7592 
7593 	ifp = sc->bce_ifp;
7594 
7595 	stats = (struct statistics_block *) sc->stats_block;
7596 
7597 	/*
7598 	 * Certain controllers don't report
7599 	 * carrier sense errors correctly.
7600 	 * See errata E11_5708CA0_1165.
7601 	 */
7602 	if (!(BCE_CHIP_NUM(sc) == BCE_CHIP_NUM_5706) &&
7603 	    !(BCE_CHIP_ID(sc) == BCE_CHIP_ID_5708_A0))
7604 		ifp->if_oerrors +=
7605 		    (u_long) stats->stat_Dot3StatsCarrierSenseErrors;
7606 
7607 	/*
7608 	 * Update the sysctl statistics from the
7609 	 * hardware statistics.
7610 	 */
7611 	sc->stat_IfHCInOctets =
7612 	    ((u64) stats->stat_IfHCInOctets_hi << 32) +
7613 	     (u64) stats->stat_IfHCInOctets_lo;
7614 
7615 	sc->stat_IfHCInBadOctets =
7616 	    ((u64) stats->stat_IfHCInBadOctets_hi << 32) +
7617 	     (u64) stats->stat_IfHCInBadOctets_lo;
7618 
7619 	sc->stat_IfHCOutOctets =
7620 	    ((u64) stats->stat_IfHCOutOctets_hi << 32) +
7621 	     (u64) stats->stat_IfHCOutOctets_lo;
7622 
7623 	sc->stat_IfHCOutBadOctets =
7624 	    ((u64) stats->stat_IfHCOutBadOctets_hi << 32) +
7625 	     (u64) stats->stat_IfHCOutBadOctets_lo;
7626 
7627 	sc->stat_IfHCInUcastPkts =
7628 	    ((u64) stats->stat_IfHCInUcastPkts_hi << 32) +
7629 	     (u64) stats->stat_IfHCInUcastPkts_lo;
7630 
7631 	sc->stat_IfHCInMulticastPkts =
7632 	    ((u64) stats->stat_IfHCInMulticastPkts_hi << 32) +
7633 	     (u64) stats->stat_IfHCInMulticastPkts_lo;
7634 
7635 	sc->stat_IfHCInBroadcastPkts =
7636 	    ((u64) stats->stat_IfHCInBroadcastPkts_hi << 32) +
7637 	     (u64) stats->stat_IfHCInBroadcastPkts_lo;
7638 
7639 	sc->stat_IfHCOutUcastPkts =
7640 	    ((u64) stats->stat_IfHCOutUcastPkts_hi << 32) +
7641 	     (u64) stats->stat_IfHCOutUcastPkts_lo;
7642 
7643 	sc->stat_IfHCOutMulticastPkts =
7644 	    ((u64) stats->stat_IfHCOutMulticastPkts_hi << 32) +
7645 	     (u64) stats->stat_IfHCOutMulticastPkts_lo;
7646 
7647 	sc->stat_IfHCOutBroadcastPkts =
7648 	    ((u64) stats->stat_IfHCOutBroadcastPkts_hi << 32) +
7649 	     (u64) stats->stat_IfHCOutBroadcastPkts_lo;
7650 
7651 	/* ToDo: Preserve counters beyond 32 bits? */
7652 	/* ToDo: Read the statistics from auto-clear regs? */
7653 
7654 	sc->stat_emac_tx_stat_dot3statsinternalmactransmiterrors =
7655 	    stats->stat_emac_tx_stat_dot3statsinternalmactransmiterrors;
7656 
7657 	sc->stat_Dot3StatsCarrierSenseErrors =
7658 	    stats->stat_Dot3StatsCarrierSenseErrors;
7659 
7660 	sc->stat_Dot3StatsFCSErrors =
7661 	    stats->stat_Dot3StatsFCSErrors;
7662 
7663 	sc->stat_Dot3StatsAlignmentErrors =
7664 	    stats->stat_Dot3StatsAlignmentErrors;
7665 
7666 	sc->stat_Dot3StatsSingleCollisionFrames =
7667 	    stats->stat_Dot3StatsSingleCollisionFrames;
7668 
7669 	sc->stat_Dot3StatsMultipleCollisionFrames =
7670 	    stats->stat_Dot3StatsMultipleCollisionFrames;
7671 
7672 	sc->stat_Dot3StatsDeferredTransmissions =
7673 	    stats->stat_Dot3StatsDeferredTransmissions;
7674 
7675 	sc->stat_Dot3StatsExcessiveCollisions =
7676 	    stats->stat_Dot3StatsExcessiveCollisions;
7677 
7678 	sc->stat_Dot3StatsLateCollisions =
7679 	    stats->stat_Dot3StatsLateCollisions;
7680 
7681 	sc->stat_EtherStatsCollisions =
7682 	    stats->stat_EtherStatsCollisions;
7683 
7684 	sc->stat_EtherStatsFragments =
7685 	    stats->stat_EtherStatsFragments;
7686 
7687 	sc->stat_EtherStatsJabbers =
7688 	    stats->stat_EtherStatsJabbers;
7689 
7690 	sc->stat_EtherStatsUndersizePkts =
7691 	    stats->stat_EtherStatsUndersizePkts;
7692 
7693 	sc->stat_EtherStatsOversizePkts =
7694 	     stats->stat_EtherStatsOversizePkts;
7695 
7696 	sc->stat_EtherStatsPktsRx64Octets =
7697 	    stats->stat_EtherStatsPktsRx64Octets;
7698 
7699 	sc->stat_EtherStatsPktsRx65Octetsto127Octets =
7700 	    stats->stat_EtherStatsPktsRx65Octetsto127Octets;
7701 
7702 	sc->stat_EtherStatsPktsRx128Octetsto255Octets =
7703 	    stats->stat_EtherStatsPktsRx128Octetsto255Octets;
7704 
7705 	sc->stat_EtherStatsPktsRx256Octetsto511Octets =
7706 	    stats->stat_EtherStatsPktsRx256Octetsto511Octets;
7707 
7708 	sc->stat_EtherStatsPktsRx512Octetsto1023Octets =
7709 	    stats->stat_EtherStatsPktsRx512Octetsto1023Octets;
7710 
7711 	sc->stat_EtherStatsPktsRx1024Octetsto1522Octets =
7712 	    stats->stat_EtherStatsPktsRx1024Octetsto1522Octets;
7713 
7714 	sc->stat_EtherStatsPktsRx1523Octetsto9022Octets =
7715 	    stats->stat_EtherStatsPktsRx1523Octetsto9022Octets;
7716 
7717 	sc->stat_EtherStatsPktsTx64Octets =
7718 	    stats->stat_EtherStatsPktsTx64Octets;
7719 
7720 	sc->stat_EtherStatsPktsTx65Octetsto127Octets =
7721 	    stats->stat_EtherStatsPktsTx65Octetsto127Octets;
7722 
7723 	sc->stat_EtherStatsPktsTx128Octetsto255Octets =
7724 	    stats->stat_EtherStatsPktsTx128Octetsto255Octets;
7725 
7726 	sc->stat_EtherStatsPktsTx256Octetsto511Octets =
7727 	    stats->stat_EtherStatsPktsTx256Octetsto511Octets;
7728 
7729 	sc->stat_EtherStatsPktsTx512Octetsto1023Octets =
7730 	    stats->stat_EtherStatsPktsTx512Octetsto1023Octets;
7731 
7732 	sc->stat_EtherStatsPktsTx1024Octetsto1522Octets =
7733 	    stats->stat_EtherStatsPktsTx1024Octetsto1522Octets;
7734 
7735 	sc->stat_EtherStatsPktsTx1523Octetsto9022Octets =
7736 	    stats->stat_EtherStatsPktsTx1523Octetsto9022Octets;
7737 
7738 	sc->stat_XonPauseFramesReceived =
7739 	    stats->stat_XonPauseFramesReceived;
7740 
7741 	sc->stat_XoffPauseFramesReceived =
7742 	    stats->stat_XoffPauseFramesReceived;
7743 
7744 	sc->stat_OutXonSent =
7745 	    stats->stat_OutXonSent;
7746 
7747 	sc->stat_OutXoffSent =
7748 	    stats->stat_OutXoffSent;
7749 
7750 	sc->stat_FlowControlDone =
7751 	    stats->stat_FlowControlDone;
7752 
7753 	sc->stat_MacControlFramesReceived =
7754 	    stats->stat_MacControlFramesReceived;
7755 
7756 	sc->stat_XoffStateEntered =
7757 	    stats->stat_XoffStateEntered;
7758 
7759 	sc->stat_IfInFramesL2FilterDiscards =
7760 	    stats->stat_IfInFramesL2FilterDiscards;
7761 
7762 	sc->stat_IfInRuleCheckerDiscards =
7763 	    stats->stat_IfInRuleCheckerDiscards;
7764 
7765 	sc->stat_IfInFTQDiscards =
7766 	    stats->stat_IfInFTQDiscards;
7767 
7768 	sc->stat_IfInMBUFDiscards =
7769 	    stats->stat_IfInMBUFDiscards;
7770 
7771 	sc->stat_IfInRuleCheckerP4Hit =
7772 	    stats->stat_IfInRuleCheckerP4Hit;
7773 
7774 	sc->stat_CatchupInRuleCheckerDiscards =
7775 	    stats->stat_CatchupInRuleCheckerDiscards;
7776 
7777 	sc->stat_CatchupInFTQDiscards =
7778 	    stats->stat_CatchupInFTQDiscards;
7779 
7780 	sc->stat_CatchupInMBUFDiscards =
7781 	    stats->stat_CatchupInMBUFDiscards;
7782 
7783 	sc->stat_CatchupInRuleCheckerP4Hit =
7784 	    stats->stat_CatchupInRuleCheckerP4Hit;
7785 
7786 	sc->com_no_buffers = REG_RD_IND(sc, 0x120084);
7787 
7788 	/*
7789 	 * Update the interface statistics from the
7790 	 * hardware statistics.
7791 	 */
7792 	ifp->if_collisions =
7793 	    (u_long) sc->stat_EtherStatsCollisions;
7794 
7795 	/* ToDo: This method loses soft errors. */
7796 	ifp->if_ierrors =
7797 	    (u_long) sc->stat_EtherStatsUndersizePkts +
7798 	    (u_long) sc->stat_EtherStatsOversizePkts +
7799 	    (u_long) sc->stat_IfInMBUFDiscards +
7800 	    (u_long) sc->stat_Dot3StatsAlignmentErrors +
7801 	    (u_long) sc->stat_Dot3StatsFCSErrors +
7802 	    (u_long) sc->stat_IfInRuleCheckerDiscards +
7803 	    (u_long) sc->stat_IfInFTQDiscards +
7804 	    (u_long) sc->com_no_buffers;
7805 
7806 	/* ToDo: This method loses soft errors. */
7807 	ifp->if_oerrors =
7808 	    (u_long) sc->stat_emac_tx_stat_dot3statsinternalmactransmiterrors +
7809 	    (u_long) sc->stat_Dot3StatsExcessiveCollisions +
7810 	    (u_long) sc->stat_Dot3StatsLateCollisions;
7811 
7812 	/* ToDo: Add additional statistics? */
7813 
7814 	DBEXIT(BCE_EXTREME_MISC);
7815 }
7816 
7817 
7818 /****************************************************************************/
7819 /* Periodic function to notify the bootcode that the driver is still        */
7820 /* present.                                                                 */
7821 /*                                                                          */
7822 /* Returns:                                                                 */
7823 /*   Nothing.                                                               */
7824 /****************************************************************************/
7825 static void
7826 bce_pulse(void *xsc)
7827 {
7828 	struct bce_softc *sc = xsc;
7829 	u32 msg;
7830 
7831 	DBENTER(BCE_EXTREME_MISC);
7832 
7833 	BCE_LOCK_ASSERT(sc);
7834 
7835 	/* Tell the firmware that the driver is still running. */
7836 	msg = (u32) ++sc->bce_fw_drv_pulse_wr_seq;
7837 	bce_shmem_wr(sc, BCE_DRV_PULSE_MB, msg);
7838 
7839 	/* Update the bootcode condition. */
7840 	sc->bc_state = bce_shmem_rd(sc, BCE_BC_STATE_CONDITION);
7841 
7842 	/* Report whether the bootcode still knows the driver is running. */
7843 	if (bootverbose) {
7844 		if (sc->bce_drv_cardiac_arrest == FALSE) {
7845 			if (!(sc->bc_state & BCE_CONDITION_DRV_PRESENT)) {
7846 				sc->bce_drv_cardiac_arrest = TRUE;
7847 				BCE_PRINTF("%s(): Warning: bootcode "
7848 				    "thinks driver is absent! "
7849 				    "(bc_state = 0x%08X)\n",
7850 				    __FUNCTION__, sc->bc_state);
7851 			}
7852 		} else {
7853 			/*
7854 			 * Not supported by all bootcode versions.
7855 			 * (v5.0.11+ and v5.2.1+)  Older bootcode
7856 			 * will require the driver to reset the
7857 			 * controller to clear this condition.
7858 			 */
7859 			if (sc->bc_state & BCE_CONDITION_DRV_PRESENT) {
7860 				sc->bce_drv_cardiac_arrest = FALSE;
7861 				BCE_PRINTF("%s(): Bootcode found the "
7862 				    "driver pulse! (bc_state = 0x%08X)\n",
7863 				    __FUNCTION__, sc->bc_state);
7864 			}
7865 		}
7866 	}
7867 
7868 
7869 	/* Schedule the next pulse. */
7870 	callout_reset(&sc->bce_pulse_callout, hz, bce_pulse, sc);
7871 
7872 	DBEXIT(BCE_EXTREME_MISC);
7873 }
7874 
7875 
7876 /****************************************************************************/
7877 /* Periodic function to perform maintenance tasks.                          */
7878 /*                                                                          */
7879 /* Returns:                                                                 */
7880 /*   Nothing.                                                               */
7881 /****************************************************************************/
7882 static void
7883 bce_tick(void *xsc)
7884 {
7885 	struct bce_softc *sc = xsc;
7886 	struct mii_data *mii;
7887 	struct ifnet *ifp;
7888 
7889 	ifp = sc->bce_ifp;
7890 
7891 	DBENTER(BCE_EXTREME_MISC);
7892 
7893 	BCE_LOCK_ASSERT(sc);
7894 
7895 	/* Schedule the next tick. */
7896 	callout_reset(&sc->bce_tick_callout, hz, bce_tick, sc);
7897 
7898 	/* Update the statistics from the hardware statistics block. */
7899 	bce_stats_update(sc);
7900 
7901 	/* Top off the receive and page chains. */
7902 #ifdef BCE_JUMBO_HDRSPLIT
7903 	bce_fill_pg_chain(sc);
7904 #endif
7905 	bce_fill_rx_chain(sc);
7906 
7907 	/* Check that chip hasn't hung. */
7908 	bce_watchdog(sc);
7909 
7910 	/* If link is up already up then we're done. */
7911 	if (sc->bce_link_up == TRUE)
7912 		goto bce_tick_exit;
7913 
7914 	/* Link is down.  Check what the PHY's doing. */
7915 	mii = device_get_softc(sc->bce_miibus);
7916 	mii_tick(mii);
7917 
7918 	/* Check if the link has come up. */
7919 	if ((mii->mii_media_status & IFM_ACTIVE) &&
7920 	    (IFM_SUBTYPE(mii->mii_media_active) != IFM_NONE)) {
7921 		DBPRINT(sc, BCE_VERBOSE_MISC,
7922 		    "%s(): Link up!\n", __FUNCTION__);
7923 		sc->bce_link_up = TRUE;
7924 		if ((IFM_SUBTYPE(mii->mii_media_active) == IFM_1000_T ||
7925 		    IFM_SUBTYPE(mii->mii_media_active) == IFM_1000_SX ||
7926 		    IFM_SUBTYPE(mii->mii_media_active) == IFM_2500_SX) &&
7927 		    bootverbose)
7928 			BCE_PRINTF("Gigabit link up!\n");
7929 
7930 		/* Now that link is up, handle any outstanding TX traffic. */
7931 		if (!IFQ_DRV_IS_EMPTY(&ifp->if_snd)) {
7932 			DBPRINT(sc, BCE_VERBOSE_MISC, "%s(): Found "
7933 			    "pending TX traffic.\n", __FUNCTION__);
7934 			bce_start_locked(ifp);
7935 		}
7936 	}
7937 
7938 bce_tick_exit:
7939 	DBEXIT(BCE_EXTREME_MISC);
7940 	return;
7941 }
7942 
7943 
7944 #ifdef BCE_DEBUG
7945 /****************************************************************************/
7946 /* Allows the driver state to be dumped through the sysctl interface.       */
7947 /*                                                                          */
7948 /* Returns:                                                                 */
7949 /*   0 for success, positive value for failure.                             */
7950 /****************************************************************************/
7951 static int
7952 bce_sysctl_driver_state(SYSCTL_HANDLER_ARGS)
7953 {
7954 	int error;
7955 	int result;
7956 	struct bce_softc *sc;
7957 
7958 	result = -1;
7959 	error = sysctl_handle_int(oidp, &result, 0, req);
7960 
7961 	if (error || !req->newptr)
7962 		return (error);
7963 
7964 	if (result == 1) {
7965 		sc = (struct bce_softc *)arg1;
7966 		bce_dump_driver_state(sc);
7967 	}
7968 
7969 	return error;
7970 }
7971 
7972 
7973 /****************************************************************************/
7974 /* Allows the hardware state to be dumped through the sysctl interface.     */
7975 /*                                                                          */
7976 /* Returns:                                                                 */
7977 /*   0 for success, positive value for failure.                             */
7978 /****************************************************************************/
7979 static int
7980 bce_sysctl_hw_state(SYSCTL_HANDLER_ARGS)
7981 {
7982 	int error;
7983 	int result;
7984 	struct bce_softc *sc;
7985 
7986 	result = -1;
7987 	error = sysctl_handle_int(oidp, &result, 0, req);
7988 
7989 	if (error || !req->newptr)
7990 		return (error);
7991 
7992 	if (result == 1) {
7993 		sc = (struct bce_softc *)arg1;
7994 		bce_dump_hw_state(sc);
7995 	}
7996 
7997 	return error;
7998 }
7999 
8000 
8001 /****************************************************************************/
8002 /* Allows the status block to be dumped through the sysctl interface.       */
8003 /*                                                                          */
8004 /* Returns:                                                                 */
8005 /*   0 for success, positive value for failure.                             */
8006 /****************************************************************************/
8007 static int
8008 bce_sysctl_status_block(SYSCTL_HANDLER_ARGS)
8009 {
8010 	int error;
8011 	int result;
8012 	struct bce_softc *sc;
8013 
8014 	result = -1;
8015 	error = sysctl_handle_int(oidp, &result, 0, req);
8016 
8017 	if (error || !req->newptr)
8018 		return (error);
8019 
8020 	if (result == 1) {
8021 		sc = (struct bce_softc *)arg1;
8022 		bce_dump_status_block(sc);
8023 	}
8024 
8025 	return error;
8026 }
8027 
8028 
8029 /****************************************************************************/
8030 /* Allows the stats block to be dumped through the sysctl interface.        */
8031 /*                                                                          */
8032 /* Returns:                                                                 */
8033 /*   0 for success, positive value for failure.                             */
8034 /****************************************************************************/
8035 static int
8036 bce_sysctl_stats_block(SYSCTL_HANDLER_ARGS)
8037 {
8038 	int error;
8039 	int result;
8040 	struct bce_softc *sc;
8041 
8042 	result = -1;
8043 	error = sysctl_handle_int(oidp, &result, 0, req);
8044 
8045 	if (error || !req->newptr)
8046 		return (error);
8047 
8048 	if (result == 1) {
8049 		sc = (struct bce_softc *)arg1;
8050 		bce_dump_stats_block(sc);
8051 	}
8052 
8053 	return error;
8054 }
8055 
8056 
8057 /****************************************************************************/
8058 /* Allows the stat counters to be cleared without unloading/reloading the   */
8059 /* driver.                                                                  */
8060 /*                                                                          */
8061 /* Returns:                                                                 */
8062 /*   0 for success, positive value for failure.                             */
8063 /****************************************************************************/
8064 static int
8065 bce_sysctl_stats_clear(SYSCTL_HANDLER_ARGS)
8066 {
8067 	int error;
8068 	int result;
8069 	struct bce_softc *sc;
8070 
8071 	result = -1;
8072 	error = sysctl_handle_int(oidp, &result, 0, req);
8073 
8074 	if (error || !req->newptr)
8075 		return (error);
8076 
8077 	if (result == 1) {
8078 		sc = (struct bce_softc *)arg1;
8079 
8080 		/* Clear the internal H/W statistics counters. */
8081 		REG_WR(sc, BCE_HC_COMMAND, BCE_HC_COMMAND_CLR_STAT_NOW);
8082 
8083 		/* Reset the driver maintained statistics. */
8084 		sc->interrupts_rx =
8085 		    sc->interrupts_tx = 0;
8086 		sc->tso_frames_requested =
8087 		    sc->tso_frames_completed =
8088 		    sc->tso_frames_failed = 0;
8089 		sc->rx_empty_count =
8090 		    sc->tx_full_count = 0;
8091 		sc->rx_low_watermark = USABLE_RX_BD;
8092 		sc->tx_hi_watermark = 0;
8093 		sc->l2fhdr_error_count =
8094 		    sc->l2fhdr_error_sim_count = 0;
8095 		sc->mbuf_alloc_failed_count =
8096 		    sc->mbuf_alloc_failed_sim_count = 0;
8097 		sc->dma_map_addr_rx_failed_count =
8098 		    sc->dma_map_addr_tx_failed_count = 0;
8099 		sc->mbuf_frag_count = 0;
8100 		sc->csum_offload_tcp_udp =
8101 		   sc->csum_offload_ip = 0;
8102 		sc->vlan_tagged_frames_rcvd =
8103 		   sc->vlan_tagged_frames_stripped = 0;
8104 
8105 		/* Clear firmware maintained statistics. */
8106 		REG_WR_IND(sc, 0x120084, 0);
8107 	}
8108 
8109 	return error;
8110 }
8111 
8112 
8113 /****************************************************************************/
8114 /* Allows the bootcode state to be dumped through the sysctl interface.     */
8115 /*                                                                          */
8116 /* Returns:                                                                 */
8117 /*   0 for success, positive value for failure.                             */
8118 /****************************************************************************/
8119 static int
8120 bce_sysctl_bc_state(SYSCTL_HANDLER_ARGS)
8121 {
8122 	int error;
8123 	int result;
8124 	struct bce_softc *sc;
8125 
8126 	result = -1;
8127 	error = sysctl_handle_int(oidp, &result, 0, req);
8128 
8129 	if (error || !req->newptr)
8130 		return (error);
8131 
8132 	if (result == 1) {
8133 		sc = (struct bce_softc *)arg1;
8134 		bce_dump_bc_state(sc);
8135 	}
8136 
8137 	return error;
8138 }
8139 
8140 
8141 /****************************************************************************/
8142 /* Provides a sysctl interface to allow dumping the RX BD chain.            */
8143 /*                                                                          */
8144 /* Returns:                                                                 */
8145 /*   0 for success, positive value for failure.                             */
8146 /****************************************************************************/
8147 static int
8148 bce_sysctl_dump_rx_bd_chain(SYSCTL_HANDLER_ARGS)
8149 {
8150 	int error;
8151 	int result;
8152 	struct bce_softc *sc;
8153 
8154 	result = -1;
8155 	error = sysctl_handle_int(oidp, &result, 0, req);
8156 
8157 	if (error || !req->newptr)
8158 		return (error);
8159 
8160 	if (result == 1) {
8161 		sc = (struct bce_softc *)arg1;
8162 		bce_dump_rx_bd_chain(sc, 0, TOTAL_RX_BD);
8163 	}
8164 
8165 	return error;
8166 }
8167 
8168 
8169 /****************************************************************************/
8170 /* Provides a sysctl interface to allow dumping the RX MBUF chain.          */
8171 /*                                                                          */
8172 /* Returns:                                                                 */
8173 /*   0 for success, positive value for failure.                             */
8174 /****************************************************************************/
8175 static int
8176 bce_sysctl_dump_rx_mbuf_chain(SYSCTL_HANDLER_ARGS)
8177 {
8178 	int error;
8179 	int result;
8180 	struct bce_softc *sc;
8181 
8182 	result = -1;
8183 	error = sysctl_handle_int(oidp, &result, 0, req);
8184 
8185 	if (error || !req->newptr)
8186 		return (error);
8187 
8188 	if (result == 1) {
8189 		sc = (struct bce_softc *)arg1;
8190 		bce_dump_rx_mbuf_chain(sc, 0, USABLE_RX_BD);
8191 	}
8192 
8193 	return error;
8194 }
8195 
8196 
8197 /****************************************************************************/
8198 /* Provides a sysctl interface to allow dumping the TX chain.               */
8199 /*                                                                          */
8200 /* Returns:                                                                 */
8201 /*   0 for success, positive value for failure.                             */
8202 /****************************************************************************/
8203 static int
8204 bce_sysctl_dump_tx_chain(SYSCTL_HANDLER_ARGS)
8205 {
8206 	int error;
8207 	int result;
8208 	struct bce_softc *sc;
8209 
8210 	result = -1;
8211 	error = sysctl_handle_int(oidp, &result, 0, req);
8212 
8213 	if (error || !req->newptr)
8214 		return (error);
8215 
8216 	if (result == 1) {
8217 		sc = (struct bce_softc *)arg1;
8218 		bce_dump_tx_chain(sc, 0, TOTAL_TX_BD);
8219 	}
8220 
8221 	return error;
8222 }
8223 
8224 
8225 #ifdef BCE_JUMBO_HDRSPLIT
8226 /****************************************************************************/
8227 /* Provides a sysctl interface to allow dumping the page chain.             */
8228 /*                                                                          */
8229 /* Returns:                                                                 */
8230 /*   0 for success, positive value for failure.                             */
8231 /****************************************************************************/
8232 static int
8233 bce_sysctl_dump_pg_chain(SYSCTL_HANDLER_ARGS)
8234 {
8235 	int error;
8236 	int result;
8237 	struct bce_softc *sc;
8238 
8239 	result = -1;
8240 	error = sysctl_handle_int(oidp, &result, 0, req);
8241 
8242 	if (error || !req->newptr)
8243 		return (error);
8244 
8245 	if (result == 1) {
8246 		sc = (struct bce_softc *)arg1;
8247 		bce_dump_pg_chain(sc, 0, TOTAL_PG_BD);
8248 	}
8249 
8250 	return error;
8251 }
8252 #endif
8253 
8254 /****************************************************************************/
8255 /* Provides a sysctl interface to allow reading arbitrary NVRAM offsets in  */
8256 /* the device.  DO NOT ENABLE ON PRODUCTION SYSTEMS!                        */
8257 /*                                                                          */
8258 /* Returns:                                                                 */
8259 /*   0 for success, positive value for failure.                             */
8260 /****************************************************************************/
8261 static int
8262 bce_sysctl_nvram_read(SYSCTL_HANDLER_ARGS)
8263 {
8264 	struct bce_softc *sc = (struct bce_softc *)arg1;
8265 	int error;
8266 	u32 result;
8267 	u32 val[1];
8268 	u8 *data = (u8 *) val;
8269 
8270 	result = -1;
8271 	error = sysctl_handle_int(oidp, &result, 0, req);
8272 	if (error || (req->newptr == NULL))
8273 		return (error);
8274 
8275 	bce_nvram_read(sc, result, data, 4);
8276 	BCE_PRINTF("offset 0x%08X = 0x%08X\n", result, bce_be32toh(val[0]));
8277 
8278 	return (error);
8279 }
8280 
8281 
8282 /****************************************************************************/
8283 /* Provides a sysctl interface to allow reading arbitrary registers in the  */
8284 /* device.  DO NOT ENABLE ON PRODUCTION SYSTEMS!                            */
8285 /*                                                                          */
8286 /* Returns:                                                                 */
8287 /*   0 for success, positive value for failure.                             */
8288 /****************************************************************************/
8289 static int
8290 bce_sysctl_reg_read(SYSCTL_HANDLER_ARGS)
8291 {
8292 	struct bce_softc *sc = (struct bce_softc *)arg1;
8293 	int error;
8294 	u32 val, result;
8295 
8296 	result = -1;
8297 	error = sysctl_handle_int(oidp, &result, 0, req);
8298 	if (error || (req->newptr == NULL))
8299 		return (error);
8300 
8301 	/* Make sure the register is accessible. */
8302 	if (result < 0x8000) {
8303 		val = REG_RD(sc, result);
8304 		BCE_PRINTF("reg 0x%08X = 0x%08X\n", result, val);
8305 	} else if (result < 0x0280000) {
8306 		val = REG_RD_IND(sc, result);
8307 		BCE_PRINTF("reg 0x%08X = 0x%08X\n", result, val);
8308 	}
8309 
8310 	return (error);
8311 }
8312 
8313 
8314 /****************************************************************************/
8315 /* Provides a sysctl interface to allow reading arbitrary PHY registers in  */
8316 /* the device.  DO NOT ENABLE ON PRODUCTION SYSTEMS!                        */
8317 /*                                                                          */
8318 /* Returns:                                                                 */
8319 /*   0 for success, positive value for failure.                             */
8320 /****************************************************************************/
8321 static int
8322 bce_sysctl_phy_read(SYSCTL_HANDLER_ARGS)
8323 {
8324 	struct bce_softc *sc;
8325 	device_t dev;
8326 	int error, result;
8327 	u16 val;
8328 
8329 	result = -1;
8330 	error = sysctl_handle_int(oidp, &result, 0, req);
8331 	if (error || (req->newptr == NULL))
8332 		return (error);
8333 
8334 	/* Make sure the register is accessible. */
8335 	if (result < 0x20) {
8336 		sc = (struct bce_softc *)arg1;
8337 		dev = sc->bce_dev;
8338 		val = bce_miibus_read_reg(dev, sc->bce_phy_addr, result);
8339 		BCE_PRINTF("phy 0x%02X = 0x%04X\n", result, val);
8340 	}
8341 	return (error);
8342 }
8343 
8344 
8345 /****************************************************************************/
8346 /* Provides a sysctl interface to allow reading a CID.                      */
8347 /*                                                                          */
8348 /* Returns:                                                                 */
8349 /*   0 for success, positive value for failure.                             */
8350 /****************************************************************************/
8351 static int
8352 bce_sysctl_dump_ctx(SYSCTL_HANDLER_ARGS)
8353 {
8354 	struct bce_softc *sc;
8355 	int error, result;
8356 
8357 	result = -1;
8358 	error = sysctl_handle_int(oidp, &result, 0, req);
8359 	if (error || (req->newptr == NULL))
8360 		return (error);
8361 
8362 	/* Make sure the register is accessible. */
8363 	if (result <= TX_CID) {
8364 		sc = (struct bce_softc *)arg1;
8365 		bce_dump_ctx(sc, result);
8366 	}
8367 
8368 	return (error);
8369 }
8370 
8371 
8372  /****************************************************************************/
8373 /* Provides a sysctl interface to forcing the driver to dump state and      */
8374 /* enter the debugger.  DO NOT ENABLE ON PRODUCTION SYSTEMS!                */
8375 /*                                                                          */
8376 /* Returns:                                                                 */
8377 /*   0 for success, positive value for failure.                             */
8378 /****************************************************************************/
8379 static int
8380 bce_sysctl_breakpoint(SYSCTL_HANDLER_ARGS)
8381 {
8382 	int error;
8383 	int result;
8384 	struct bce_softc *sc;
8385 
8386 	result = -1;
8387 	error = sysctl_handle_int(oidp, &result, 0, req);
8388 
8389 	if (error || !req->newptr)
8390 		return (error);
8391 
8392 	if (result == 1) {
8393 		sc = (struct bce_softc *)arg1;
8394 		bce_breakpoint(sc);
8395 	}
8396 
8397 	return error;
8398 }
8399 #endif
8400 
8401 
8402 /****************************************************************************/
8403 /* Adds any sysctl parameters for tuning or debugging purposes.             */
8404 /*                                                                          */
8405 /* Returns:                                                                 */
8406 /*   0 for success, positive value for failure.                             */
8407 /****************************************************************************/
8408 static void
8409 bce_add_sysctls(struct bce_softc *sc)
8410 {
8411 	struct sysctl_ctx_list *ctx;
8412 	struct sysctl_oid_list *children;
8413 
8414 	DBENTER(BCE_VERBOSE_MISC);
8415 
8416 	ctx = device_get_sysctl_ctx(sc->bce_dev);
8417 	children = SYSCTL_CHILDREN(device_get_sysctl_tree(sc->bce_dev));
8418 
8419 #ifdef BCE_DEBUG
8420 	SYSCTL_ADD_INT(ctx, children, OID_AUTO,
8421 	    "l2fhdr_error_sim_control",
8422 	    CTLFLAG_RW, &l2fhdr_error_sim_control,
8423 	    0, "Debug control to force l2fhdr errors");
8424 
8425 	SYSCTL_ADD_INT(ctx, children, OID_AUTO,
8426 	    "l2fhdr_error_sim_count",
8427 	    CTLFLAG_RD, &sc->l2fhdr_error_sim_count,
8428 	    0, "Number of simulated l2_fhdr errors");
8429 #endif
8430 
8431 	SYSCTL_ADD_INT(ctx, children, OID_AUTO,
8432 	    "l2fhdr_error_count",
8433 	    CTLFLAG_RD, &sc->l2fhdr_error_count,
8434 	    0, "Number of l2_fhdr errors");
8435 
8436 #ifdef BCE_DEBUG
8437 	SYSCTL_ADD_INT(ctx, children, OID_AUTO,
8438 	    "mbuf_alloc_failed_sim_control",
8439 	    CTLFLAG_RW, &mbuf_alloc_failed_sim_control,
8440 	    0, "Debug control to force mbuf allocation failures");
8441 
8442 	SYSCTL_ADD_INT(ctx, children, OID_AUTO,
8443 	    "mbuf_alloc_failed_sim_count",
8444 	    CTLFLAG_RD, &sc->mbuf_alloc_failed_sim_count,
8445 	    0, "Number of simulated mbuf cluster allocation failures");
8446 #endif
8447 
8448 	SYSCTL_ADD_INT(ctx, children, OID_AUTO,
8449 	    "mbuf_alloc_failed_count",
8450 	    CTLFLAG_RD, &sc->mbuf_alloc_failed_count,
8451 	    0, "Number of mbuf allocation failures");
8452 
8453 	SYSCTL_ADD_INT(ctx, children, OID_AUTO,
8454 	    "mbuf_frag_count",
8455 	    CTLFLAG_RD, &sc->mbuf_frag_count,
8456 	    0, "Number of fragmented mbufs");
8457 
8458 #ifdef BCE_DEBUG
8459 	SYSCTL_ADD_INT(ctx, children, OID_AUTO,
8460 	    "dma_map_addr_failed_sim_control",
8461 	    CTLFLAG_RW, &dma_map_addr_failed_sim_control,
8462 	    0, "Debug control to force DMA mapping failures");
8463 
8464 	/* ToDo: Figure out how to update this value in bce_dma_map_addr(). */
8465 	SYSCTL_ADD_INT(ctx, children, OID_AUTO,
8466 	    "dma_map_addr_failed_sim_count",
8467 	    CTLFLAG_RD, &sc->dma_map_addr_failed_sim_count,
8468 	    0, "Number of simulated DMA mapping failures");
8469 
8470 #endif
8471 
8472 	SYSCTL_ADD_INT(ctx, children, OID_AUTO,
8473 	    "dma_map_addr_rx_failed_count",
8474 	    CTLFLAG_RD, &sc->dma_map_addr_rx_failed_count,
8475 	    0, "Number of RX DMA mapping failures");
8476 
8477 	SYSCTL_ADD_INT(ctx, children, OID_AUTO,
8478 	    "dma_map_addr_tx_failed_count",
8479 	    CTLFLAG_RD, &sc->dma_map_addr_tx_failed_count,
8480 	    0, "Number of TX DMA mapping failures");
8481 
8482 #ifdef BCE_DEBUG
8483 	SYSCTL_ADD_INT(ctx, children, OID_AUTO,
8484 	    "unexpected_attention_sim_control",
8485 	    CTLFLAG_RW, &unexpected_attention_sim_control,
8486 	    0, "Debug control to simulate unexpected attentions");
8487 
8488 	SYSCTL_ADD_INT(ctx, children, OID_AUTO,
8489 	    "unexpected_attention_sim_count",
8490 	    CTLFLAG_RW, &sc->unexpected_attention_sim_count,
8491 	    0, "Number of simulated unexpected attentions");
8492 #endif
8493 
8494 	SYSCTL_ADD_INT(ctx, children, OID_AUTO,
8495 	    "unexpected_attention_count",
8496 	    CTLFLAG_RW, &sc->unexpected_attention_count,
8497 	    0, "Number of unexpected attentions");
8498 
8499 #ifdef BCE_DEBUG
8500 	SYSCTL_ADD_INT(ctx, children, OID_AUTO,
8501 	    "debug_bootcode_running_failure",
8502 	    CTLFLAG_RW, &bootcode_running_failure_sim_control,
8503 	    0, "Debug control to force bootcode running failures");
8504 
8505 	SYSCTL_ADD_INT(ctx, children, OID_AUTO,
8506 	    "rx_low_watermark",
8507 	    CTLFLAG_RD, &sc->rx_low_watermark,
8508 	    0, "Lowest level of free rx_bd's");
8509 
8510 	SYSCTL_ADD_INT(ctx, children, OID_AUTO,
8511 	    "rx_empty_count",
8512 	    CTLFLAG_RD, &sc->rx_empty_count,
8513 	    0, "Number of times the RX chain was empty");
8514 
8515 	SYSCTL_ADD_INT(ctx, children, OID_AUTO,
8516 	    "tx_hi_watermark",
8517 	    CTLFLAG_RD, &sc->tx_hi_watermark,
8518 	    0, "Highest level of used tx_bd's");
8519 
8520 	SYSCTL_ADD_INT(ctx, children, OID_AUTO,
8521 	    "tx_full_count",
8522 	    CTLFLAG_RD, &sc->tx_full_count,
8523 	    0, "Number of times the TX chain was full");
8524 
8525 	SYSCTL_ADD_INT(ctx, children, OID_AUTO,
8526 	    "tso_frames_requested",
8527 	    CTLFLAG_RD, &sc->tso_frames_requested,
8528 	    0, "Number of TSO frames requested");
8529 
8530 	SYSCTL_ADD_INT(ctx, children, OID_AUTO,
8531 	    "tso_frames_completed",
8532 	    CTLFLAG_RD, &sc->tso_frames_completed,
8533 	    0, "Number of TSO frames completed");
8534 
8535 	SYSCTL_ADD_INT(ctx, children, OID_AUTO,
8536 	    "tso_frames_failed",
8537 	    CTLFLAG_RD, &sc->tso_frames_failed,
8538 	    0, "Number of TSO frames failed");
8539 
8540 	SYSCTL_ADD_INT(ctx, children, OID_AUTO,
8541 	    "csum_offload_ip",
8542 	    CTLFLAG_RD, &sc->csum_offload_ip,
8543 	    0, "Number of IP checksum offload frames");
8544 
8545 	SYSCTL_ADD_INT(ctx, children, OID_AUTO,
8546 	    "csum_offload_tcp_udp",
8547 	    CTLFLAG_RD, &sc->csum_offload_tcp_udp,
8548 	    0, "Number of TCP/UDP checksum offload frames");
8549 
8550 	SYSCTL_ADD_INT(ctx, children, OID_AUTO,
8551 	    "vlan_tagged_frames_rcvd",
8552 	    CTLFLAG_RD, &sc->vlan_tagged_frames_rcvd,
8553 	    0, "Number of VLAN tagged frames received");
8554 
8555 	SYSCTL_ADD_INT(ctx, children, OID_AUTO,
8556 	    "vlan_tagged_frames_stripped",
8557 	    CTLFLAG_RD, &sc->vlan_tagged_frames_stripped,
8558 	    0, "Number of VLAN tagged frames stripped");
8559 
8560 	SYSCTL_ADD_UINT(ctx, children, OID_AUTO,
8561 	    "interrupts_rx",
8562 	    CTLFLAG_RD, &sc->interrupts_rx,
8563 	    0, "Number of RX interrupts");
8564 
8565 	SYSCTL_ADD_UINT(ctx, children, OID_AUTO,
8566 	    "interrupts_tx",
8567 	    CTLFLAG_RD, &sc->interrupts_tx,
8568 	    0, "Number of TX interrupts");
8569 #endif
8570 
8571 	SYSCTL_ADD_ULONG(ctx, children, OID_AUTO,
8572 	    "stat_IfHcInOctets",
8573 	    CTLFLAG_RD, &sc->stat_IfHCInOctets,
8574 	    "Bytes received");
8575 
8576 	SYSCTL_ADD_ULONG(ctx, children, OID_AUTO,
8577 	    "stat_IfHCInBadOctets",
8578 	    CTLFLAG_RD, &sc->stat_IfHCInBadOctets,
8579 	    "Bad bytes received");
8580 
8581 	SYSCTL_ADD_ULONG(ctx, children, OID_AUTO,
8582 	    "stat_IfHCOutOctets",
8583 	    CTLFLAG_RD, &sc->stat_IfHCOutOctets,
8584 	    "Bytes sent");
8585 
8586 	SYSCTL_ADD_ULONG(ctx, children, OID_AUTO,
8587 	    "stat_IfHCOutBadOctets",
8588 	    CTLFLAG_RD, &sc->stat_IfHCOutBadOctets,
8589 	    "Bad bytes sent");
8590 
8591 	SYSCTL_ADD_ULONG(ctx, children, OID_AUTO,
8592 	    "stat_IfHCInUcastPkts",
8593 	    CTLFLAG_RD, &sc->stat_IfHCInUcastPkts,
8594 	    "Unicast packets received");
8595 
8596 	SYSCTL_ADD_ULONG(ctx, children, OID_AUTO,
8597 	    "stat_IfHCInMulticastPkts",
8598 	    CTLFLAG_RD, &sc->stat_IfHCInMulticastPkts,
8599 	    "Multicast packets received");
8600 
8601 	SYSCTL_ADD_ULONG(ctx, children, OID_AUTO,
8602 	    "stat_IfHCInBroadcastPkts",
8603 	    CTLFLAG_RD, &sc->stat_IfHCInBroadcastPkts,
8604 	    "Broadcast packets received");
8605 
8606 	SYSCTL_ADD_ULONG(ctx, children, OID_AUTO,
8607 	    "stat_IfHCOutUcastPkts",
8608 	    CTLFLAG_RD, &sc->stat_IfHCOutUcastPkts,
8609 	    "Unicast packets sent");
8610 
8611 	SYSCTL_ADD_ULONG(ctx, children, OID_AUTO,
8612 	    "stat_IfHCOutMulticastPkts",
8613 	    CTLFLAG_RD, &sc->stat_IfHCOutMulticastPkts,
8614 	    "Multicast packets sent");
8615 
8616 	SYSCTL_ADD_ULONG(ctx, children, OID_AUTO,
8617 	    "stat_IfHCOutBroadcastPkts",
8618 	    CTLFLAG_RD, &sc->stat_IfHCOutBroadcastPkts,
8619 	    "Broadcast packets sent");
8620 
8621 	SYSCTL_ADD_UINT(ctx, children, OID_AUTO,
8622 	    "stat_emac_tx_stat_dot3statsinternalmactransmiterrors",
8623 	    CTLFLAG_RD, &sc->stat_emac_tx_stat_dot3statsinternalmactransmiterrors,
8624 	    0, "Internal MAC transmit errors");
8625 
8626 	SYSCTL_ADD_UINT(ctx, children, OID_AUTO,
8627 	    "stat_Dot3StatsCarrierSenseErrors",
8628 	    CTLFLAG_RD, &sc->stat_Dot3StatsCarrierSenseErrors,
8629 	    0, "Carrier sense errors");
8630 
8631 	SYSCTL_ADD_UINT(ctx, children, OID_AUTO,
8632 	    "stat_Dot3StatsFCSErrors",
8633 	    CTLFLAG_RD, &sc->stat_Dot3StatsFCSErrors,
8634 	    0, "Frame check sequence errors");
8635 
8636 	SYSCTL_ADD_UINT(ctx, children, OID_AUTO,
8637 	    "stat_Dot3StatsAlignmentErrors",
8638 	    CTLFLAG_RD, &sc->stat_Dot3StatsAlignmentErrors,
8639 	    0, "Alignment errors");
8640 
8641 	SYSCTL_ADD_UINT(ctx, children, OID_AUTO,
8642 	    "stat_Dot3StatsSingleCollisionFrames",
8643 	    CTLFLAG_RD, &sc->stat_Dot3StatsSingleCollisionFrames,
8644 	    0, "Single Collision Frames");
8645 
8646 	SYSCTL_ADD_UINT(ctx, children, OID_AUTO,
8647 	    "stat_Dot3StatsMultipleCollisionFrames",
8648 	    CTLFLAG_RD, &sc->stat_Dot3StatsMultipleCollisionFrames,
8649 	    0, "Multiple Collision Frames");
8650 
8651 	SYSCTL_ADD_UINT(ctx, children, OID_AUTO,
8652 	    "stat_Dot3StatsDeferredTransmissions",
8653 	    CTLFLAG_RD, &sc->stat_Dot3StatsDeferredTransmissions,
8654 	    0, "Deferred Transmissions");
8655 
8656 	SYSCTL_ADD_UINT(ctx, children, OID_AUTO,
8657 	    "stat_Dot3StatsExcessiveCollisions",
8658 	    CTLFLAG_RD, &sc->stat_Dot3StatsExcessiveCollisions,
8659 	    0, "Excessive Collisions");
8660 
8661 	SYSCTL_ADD_UINT(ctx, children, OID_AUTO,
8662 	    "stat_Dot3StatsLateCollisions",
8663 	    CTLFLAG_RD, &sc->stat_Dot3StatsLateCollisions,
8664 	    0, "Late Collisions");
8665 
8666 	SYSCTL_ADD_UINT(ctx, children, OID_AUTO,
8667 	    "stat_EtherStatsCollisions",
8668 	    CTLFLAG_RD, &sc->stat_EtherStatsCollisions,
8669 	    0, "Collisions");
8670 
8671 	SYSCTL_ADD_UINT(ctx, children, OID_AUTO,
8672 	    "stat_EtherStatsFragments",
8673 	    CTLFLAG_RD, &sc->stat_EtherStatsFragments,
8674 	    0, "Fragments");
8675 
8676 	SYSCTL_ADD_UINT(ctx, children, OID_AUTO,
8677 	    "stat_EtherStatsJabbers",
8678 	    CTLFLAG_RD, &sc->stat_EtherStatsJabbers,
8679 	    0, "Jabbers");
8680 
8681 	SYSCTL_ADD_UINT(ctx, children, OID_AUTO,
8682 	    "stat_EtherStatsUndersizePkts",
8683 	    CTLFLAG_RD, &sc->stat_EtherStatsUndersizePkts,
8684 	    0, "Undersize packets");
8685 
8686 	SYSCTL_ADD_UINT(ctx, children, OID_AUTO,
8687 	    "stat_EtherStatsOversizePkts",
8688 	    CTLFLAG_RD, &sc->stat_EtherStatsOversizePkts,
8689 	    0, "stat_EtherStatsOversizePkts");
8690 
8691 	SYSCTL_ADD_UINT(ctx, children, OID_AUTO,
8692 	    "stat_EtherStatsPktsRx64Octets",
8693 	    CTLFLAG_RD, &sc->stat_EtherStatsPktsRx64Octets,
8694 	    0, "Bytes received in 64 byte packets");
8695 
8696 	SYSCTL_ADD_UINT(ctx, children, OID_AUTO,
8697 	    "stat_EtherStatsPktsRx65Octetsto127Octets",
8698 	    CTLFLAG_RD, &sc->stat_EtherStatsPktsRx65Octetsto127Octets,
8699 	    0, "Bytes received in 65 to 127 byte packets");
8700 
8701 	SYSCTL_ADD_UINT(ctx, children, OID_AUTO,
8702 	    "stat_EtherStatsPktsRx128Octetsto255Octets",
8703 	    CTLFLAG_RD, &sc->stat_EtherStatsPktsRx128Octetsto255Octets,
8704 	    0, "Bytes received in 128 to 255 byte packets");
8705 
8706 	SYSCTL_ADD_UINT(ctx, children, OID_AUTO,
8707 	    "stat_EtherStatsPktsRx256Octetsto511Octets",
8708 	    CTLFLAG_RD, &sc->stat_EtherStatsPktsRx256Octetsto511Octets,
8709 	    0, "Bytes received in 256 to 511 byte packets");
8710 
8711 	SYSCTL_ADD_UINT(ctx, children, OID_AUTO,
8712 	    "stat_EtherStatsPktsRx512Octetsto1023Octets",
8713 	    CTLFLAG_RD, &sc->stat_EtherStatsPktsRx512Octetsto1023Octets,
8714 	    0, "Bytes received in 512 to 1023 byte packets");
8715 
8716 	SYSCTL_ADD_UINT(ctx, children, OID_AUTO,
8717 	    "stat_EtherStatsPktsRx1024Octetsto1522Octets",
8718 	    CTLFLAG_RD, &sc->stat_EtherStatsPktsRx1024Octetsto1522Octets,
8719 	    0, "Bytes received in 1024 t0 1522 byte packets");
8720 
8721 	SYSCTL_ADD_UINT(ctx, children, OID_AUTO,
8722 	    "stat_EtherStatsPktsRx1523Octetsto9022Octets",
8723 	    CTLFLAG_RD, &sc->stat_EtherStatsPktsRx1523Octetsto9022Octets,
8724 	    0, "Bytes received in 1523 to 9022 byte packets");
8725 
8726 	SYSCTL_ADD_UINT(ctx, children, OID_AUTO,
8727 	    "stat_EtherStatsPktsTx64Octets",
8728 	    CTLFLAG_RD, &sc->stat_EtherStatsPktsTx64Octets,
8729 	    0, "Bytes sent in 64 byte packets");
8730 
8731 	SYSCTL_ADD_UINT(ctx, children, OID_AUTO,
8732 	    "stat_EtherStatsPktsTx65Octetsto127Octets",
8733 	    CTLFLAG_RD, &sc->stat_EtherStatsPktsTx65Octetsto127Octets,
8734 	    0, "Bytes sent in 65 to 127 byte packets");
8735 
8736 	SYSCTL_ADD_UINT(ctx, children, OID_AUTO,
8737 	    "stat_EtherStatsPktsTx128Octetsto255Octets",
8738 	    CTLFLAG_RD, &sc->stat_EtherStatsPktsTx128Octetsto255Octets,
8739 	    0, "Bytes sent in 128 to 255 byte packets");
8740 
8741 	SYSCTL_ADD_UINT(ctx, children, OID_AUTO,
8742 	    "stat_EtherStatsPktsTx256Octetsto511Octets",
8743 	    CTLFLAG_RD, &sc->stat_EtherStatsPktsTx256Octetsto511Octets,
8744 	    0, "Bytes sent in 256 to 511 byte packets");
8745 
8746 	SYSCTL_ADD_UINT(ctx, children, OID_AUTO,
8747 	    "stat_EtherStatsPktsTx512Octetsto1023Octets",
8748 	    CTLFLAG_RD, &sc->stat_EtherStatsPktsTx512Octetsto1023Octets,
8749 	    0, "Bytes sent in 512 to 1023 byte packets");
8750 
8751 	SYSCTL_ADD_UINT(ctx, children, OID_AUTO,
8752 	    "stat_EtherStatsPktsTx1024Octetsto1522Octets",
8753 	    CTLFLAG_RD, &sc->stat_EtherStatsPktsTx1024Octetsto1522Octets,
8754 	    0, "Bytes sent in 1024 to 1522 byte packets");
8755 
8756 	SYSCTL_ADD_UINT(ctx, children, OID_AUTO,
8757 	    "stat_EtherStatsPktsTx1523Octetsto9022Octets",
8758 	    CTLFLAG_RD, &sc->stat_EtherStatsPktsTx1523Octetsto9022Octets,
8759 	    0, "Bytes sent in 1523 to 9022 byte packets");
8760 
8761 	SYSCTL_ADD_UINT(ctx, children, OID_AUTO,
8762 	    "stat_XonPauseFramesReceived",
8763 	    CTLFLAG_RD, &sc->stat_XonPauseFramesReceived,
8764 	    0, "XON pause frames receved");
8765 
8766 	SYSCTL_ADD_UINT(ctx, children, OID_AUTO,
8767 	    "stat_XoffPauseFramesReceived",
8768 	    CTLFLAG_RD, &sc->stat_XoffPauseFramesReceived,
8769 	    0, "XOFF pause frames received");
8770 
8771 	SYSCTL_ADD_UINT(ctx, children, OID_AUTO,
8772 	    "stat_OutXonSent",
8773 	    CTLFLAG_RD, &sc->stat_OutXonSent,
8774 	    0, "XON pause frames sent");
8775 
8776 	SYSCTL_ADD_UINT(ctx, children, OID_AUTO,
8777 	    "stat_OutXoffSent",
8778 	    CTLFLAG_RD, &sc->stat_OutXoffSent,
8779 	    0, "XOFF pause frames sent");
8780 
8781 	SYSCTL_ADD_UINT(ctx, children, OID_AUTO,
8782 	    "stat_FlowControlDone",
8783 	    CTLFLAG_RD, &sc->stat_FlowControlDone,
8784 	    0, "Flow control done");
8785 
8786 	SYSCTL_ADD_UINT(ctx, children, OID_AUTO,
8787 	    "stat_MacControlFramesReceived",
8788 	    CTLFLAG_RD, &sc->stat_MacControlFramesReceived,
8789 	    0, "MAC control frames received");
8790 
8791 	SYSCTL_ADD_UINT(ctx, children, OID_AUTO,
8792 	    "stat_XoffStateEntered",
8793 	    CTLFLAG_RD, &sc->stat_XoffStateEntered,
8794 	    0, "XOFF state entered");
8795 
8796 	SYSCTL_ADD_UINT(ctx, children, OID_AUTO,
8797 	    "stat_IfInFramesL2FilterDiscards",
8798 	    CTLFLAG_RD, &sc->stat_IfInFramesL2FilterDiscards,
8799 	    0, "Received L2 packets discarded");
8800 
8801 	SYSCTL_ADD_UINT(ctx, children, OID_AUTO,
8802 	    "stat_IfInRuleCheckerDiscards",
8803 	    CTLFLAG_RD, &sc->stat_IfInRuleCheckerDiscards,
8804 	    0, "Received packets discarded by rule");
8805 
8806 	SYSCTL_ADD_UINT(ctx, children, OID_AUTO,
8807 	    "stat_IfInFTQDiscards",
8808 	    CTLFLAG_RD, &sc->stat_IfInFTQDiscards,
8809 	    0, "Received packet FTQ discards");
8810 
8811 	SYSCTL_ADD_UINT(ctx, children, OID_AUTO,
8812 	    "stat_IfInMBUFDiscards",
8813 	    CTLFLAG_RD, &sc->stat_IfInMBUFDiscards,
8814 	    0, "Received packets discarded due to lack "
8815 	    "of controller buffer memory");
8816 
8817 	SYSCTL_ADD_UINT(ctx, children, OID_AUTO,
8818 	    "stat_IfInRuleCheckerP4Hit",
8819 	    CTLFLAG_RD, &sc->stat_IfInRuleCheckerP4Hit,
8820 	    0, "Received packets rule checker hits");
8821 
8822 	SYSCTL_ADD_UINT(ctx, children, OID_AUTO,
8823 	    "stat_CatchupInRuleCheckerDiscards",
8824 	    CTLFLAG_RD, &sc->stat_CatchupInRuleCheckerDiscards,
8825 	    0, "Received packets discarded in Catchup path");
8826 
8827 	SYSCTL_ADD_UINT(ctx, children, OID_AUTO,
8828 	    "stat_CatchupInFTQDiscards",
8829 	    CTLFLAG_RD, &sc->stat_CatchupInFTQDiscards,
8830 	    0, "Received packets discarded in FTQ in Catchup path");
8831 
8832 	SYSCTL_ADD_UINT(ctx, children, OID_AUTO,
8833 	    "stat_CatchupInMBUFDiscards",
8834 	    CTLFLAG_RD, &sc->stat_CatchupInMBUFDiscards,
8835 	    0, "Received packets discarded in controller "
8836 	    "buffer memory in Catchup path");
8837 
8838 	SYSCTL_ADD_UINT(ctx, children, OID_AUTO,
8839 	    "stat_CatchupInRuleCheckerP4Hit",
8840 	    CTLFLAG_RD, &sc->stat_CatchupInRuleCheckerP4Hit,
8841 	    0, "Received packets rule checker hits in Catchup path");
8842 
8843 	SYSCTL_ADD_UINT(ctx, children, OID_AUTO,
8844 	    "com_no_buffers",
8845 	    CTLFLAG_RD, &sc->com_no_buffers,
8846 	    0, "Valid packets received but no RX buffers available");
8847 
8848 #ifdef BCE_DEBUG
8849 	SYSCTL_ADD_PROC(ctx, children, OID_AUTO,
8850 	    "driver_state", CTLTYPE_INT | CTLFLAG_RW,
8851 	    (void *)sc, 0,
8852 	    bce_sysctl_driver_state, "I", "Drive state information");
8853 
8854 	SYSCTL_ADD_PROC(ctx, children, OID_AUTO,
8855 	    "hw_state", CTLTYPE_INT | CTLFLAG_RW,
8856 	    (void *)sc, 0,
8857 	    bce_sysctl_hw_state, "I", "Hardware state information");
8858 
8859 	SYSCTL_ADD_PROC(ctx, children, OID_AUTO,
8860 	    "status_block", CTLTYPE_INT | CTLFLAG_RW,
8861 	    (void *)sc, 0,
8862 	    bce_sysctl_status_block, "I", "Dump status block");
8863 
8864 	SYSCTL_ADD_PROC(ctx, children, OID_AUTO,
8865 	    "stats_block", CTLTYPE_INT | CTLFLAG_RW,
8866 	    (void *)sc, 0,
8867 	    bce_sysctl_stats_block, "I", "Dump statistics block");
8868 
8869 	SYSCTL_ADD_PROC(ctx, children, OID_AUTO,
8870 	    "stats_clear", CTLTYPE_INT | CTLFLAG_RW,
8871 	    (void *)sc, 0,
8872 	    bce_sysctl_stats_clear, "I", "Clear statistics block");
8873 
8874 	SYSCTL_ADD_PROC(ctx, children, OID_AUTO,
8875 	    "bc_state", CTLTYPE_INT | CTLFLAG_RW,
8876 	    (void *)sc, 0,
8877 	    bce_sysctl_bc_state, "I", "Bootcode state information");
8878 
8879 	SYSCTL_ADD_PROC(ctx, children, OID_AUTO,
8880 	    "dump_rx_bd_chain", CTLTYPE_INT | CTLFLAG_RW,
8881 	    (void *)sc, 0,
8882 	    bce_sysctl_dump_rx_bd_chain, "I", "Dump RX BD chain");
8883 
8884 	SYSCTL_ADD_PROC(ctx, children, OID_AUTO,
8885 	    "dump_rx_mbuf_chain", CTLTYPE_INT | CTLFLAG_RW,
8886 	    (void *)sc, 0,
8887 	    bce_sysctl_dump_rx_mbuf_chain, "I", "Dump RX MBUF chain");
8888 
8889 	SYSCTL_ADD_PROC(ctx, children, OID_AUTO,
8890 	    "dump_tx_chain", CTLTYPE_INT | CTLFLAG_RW,
8891 	    (void *)sc, 0,
8892 	    bce_sysctl_dump_tx_chain, "I", "Dump tx_bd chain");
8893 
8894 #ifdef BCE_JUMBO_HDRSPLIT
8895 	SYSCTL_ADD_PROC(ctx, children, OID_AUTO,
8896 	    "dump_pg_chain", CTLTYPE_INT | CTLFLAG_RW,
8897 	    (void *)sc, 0,
8898 	    bce_sysctl_dump_pg_chain, "I", "Dump page chain");
8899 #endif
8900 	SYSCTL_ADD_PROC(ctx, children, OID_AUTO,
8901 	    "dump_ctx", CTLTYPE_INT | CTLFLAG_RW,
8902 	    (void *)sc, 0,
8903 	    bce_sysctl_dump_ctx, "I", "Dump context memory");
8904 
8905 	SYSCTL_ADD_PROC(ctx, children, OID_AUTO,
8906 	    "breakpoint", CTLTYPE_INT | CTLFLAG_RW,
8907 	    (void *)sc, 0,
8908 	    bce_sysctl_breakpoint, "I", "Driver breakpoint");
8909 
8910 	SYSCTL_ADD_PROC(ctx, children, OID_AUTO,
8911 	    "reg_read", CTLTYPE_INT | CTLFLAG_RW,
8912 	    (void *)sc, 0,
8913 	    bce_sysctl_reg_read, "I", "Register read");
8914 
8915 	SYSCTL_ADD_PROC(ctx, children, OID_AUTO,
8916 	    "nvram_read", CTLTYPE_INT | CTLFLAG_RW,
8917 	    (void *)sc, 0,
8918 	    bce_sysctl_nvram_read, "I", "NVRAM read");
8919 
8920 	SYSCTL_ADD_PROC(ctx, children, OID_AUTO,
8921 	    "phy_read", CTLTYPE_INT | CTLFLAG_RW,
8922 	    (void *)sc, 0,
8923 	    bce_sysctl_phy_read, "I", "PHY register read");
8924 
8925 #endif
8926 
8927 	DBEXIT(BCE_VERBOSE_MISC);
8928 }
8929 
8930 
8931 /****************************************************************************/
8932 /* BCE Debug Routines                                                       */
8933 /****************************************************************************/
8934 #ifdef BCE_DEBUG
8935 
8936 /****************************************************************************/
8937 /* Freezes the controller to allow for a cohesive state dump.               */
8938 /*                                                                          */
8939 /* Returns:                                                                 */
8940 /*   Nothing.                                                               */
8941 /****************************************************************************/
8942 static __attribute__ ((noinline)) void
8943 bce_freeze_controller(struct bce_softc *sc)
8944 {
8945 	u32 val;
8946 	val = REG_RD(sc, BCE_MISC_COMMAND);
8947 	val |= BCE_MISC_COMMAND_DISABLE_ALL;
8948 	REG_WR(sc, BCE_MISC_COMMAND, val);
8949 }
8950 
8951 
8952 /****************************************************************************/
8953 /* Unfreezes the controller after a freeze operation.  This may not always  */
8954 /* work and the controller will require a reset!                            */
8955 /*                                                                          */
8956 /* Returns:                                                                 */
8957 /*   Nothing.                                                               */
8958 /****************************************************************************/
8959 static __attribute__ ((noinline)) void
8960 bce_unfreeze_controller(struct bce_softc *sc)
8961 {
8962 	u32 val;
8963 	val = REG_RD(sc, BCE_MISC_COMMAND);
8964 	val |= BCE_MISC_COMMAND_ENABLE_ALL;
8965 	REG_WR(sc, BCE_MISC_COMMAND, val);
8966 }
8967 
8968 
8969 /****************************************************************************/
8970 /* Prints out Ethernet frame information from an mbuf.                      */
8971 /*                                                                          */
8972 /* Partially decode an Ethernet frame to look at some important headers.    */
8973 /*                                                                          */
8974 /* Returns:                                                                 */
8975 /*   Nothing.                                                               */
8976 /****************************************************************************/
8977 static __attribute__ ((noinline)) void
8978 bce_dump_enet(struct bce_softc *sc, struct mbuf *m)
8979 {
8980 	struct ether_vlan_header *eh;
8981 	u16 etype;
8982 	int ehlen;
8983 	struct ip *ip;
8984 	struct tcphdr *th;
8985 	struct udphdr *uh;
8986 	struct arphdr *ah;
8987 
8988 	BCE_PRINTF(
8989 	    "-----------------------------"
8990 	    " Frame Decode "
8991 	    "-----------------------------\n");
8992 
8993 	eh = mtod(m, struct ether_vlan_header *);
8994 
8995 	/* Handle VLAN encapsulation if present. */
8996 	if (eh->evl_encap_proto == htons(ETHERTYPE_VLAN)) {
8997 		etype = ntohs(eh->evl_proto);
8998 		ehlen = ETHER_HDR_LEN + ETHER_VLAN_ENCAP_LEN;
8999 	} else {
9000 		etype = ntohs(eh->evl_encap_proto);
9001 		ehlen = ETHER_HDR_LEN;
9002 	}
9003 
9004 	/* ToDo: Add VLAN output. */
9005 	BCE_PRINTF("enet: dest = %6D, src = %6D, type = 0x%04X, hlen = %d\n",
9006 	    eh->evl_dhost, ":", eh->evl_shost, ":", etype, ehlen);
9007 
9008 	switch (etype) {
9009 	case ETHERTYPE_IP:
9010 		ip = (struct ip *)(m->m_data + ehlen);
9011 		BCE_PRINTF("--ip: dest = 0x%08X , src = 0x%08X, "
9012 		    "len = %d bytes, protocol = 0x%02X, xsum = 0x%04X\n",
9013 		    ntohl(ip->ip_dst.s_addr), ntohl(ip->ip_src.s_addr),
9014 		    ntohs(ip->ip_len), ip->ip_p, ntohs(ip->ip_sum));
9015 
9016 		switch (ip->ip_p) {
9017 		case IPPROTO_TCP:
9018 			th = (struct tcphdr *)((caddr_t)ip + (ip->ip_hl << 2));
9019 			BCE_PRINTF("-tcp: dest = %d, src = %d, hlen = "
9020 			    "%d bytes, flags = 0x%b, csum = 0x%04X\n",
9021 			    ntohs(th->th_dport), ntohs(th->th_sport),
9022 			    (th->th_off << 2), th->th_flags,
9023 			    "\20\10CWR\07ECE\06URG\05ACK\04PSH\03RST"
9024 			    "\02SYN\01FIN", ntohs(th->th_sum));
9025 			break;
9026 		case IPPROTO_UDP:
9027 			uh = (struct udphdr *)((caddr_t)ip + (ip->ip_hl << 2));
9028 			BCE_PRINTF("-udp: dest = %d, src = %d, len = %d "
9029 			    "bytes, csum = 0x%04X\n", ntohs(uh->uh_dport),
9030 			    ntohs(uh->uh_sport), ntohs(uh->uh_ulen),
9031 			    ntohs(uh->uh_sum));
9032 			break;
9033 		case IPPROTO_ICMP:
9034 			BCE_PRINTF("icmp:\n");
9035 			break;
9036 		default:
9037 			BCE_PRINTF("----: Other IP protocol.\n");
9038 			}
9039 		break;
9040 	case ETHERTYPE_IPV6:
9041 		BCE_PRINTF("ipv6: No decode supported.\n");
9042 		break;
9043 	case ETHERTYPE_ARP:
9044 		BCE_PRINTF("-arp: ");
9045 		ah = (struct arphdr *) (m->m_data + ehlen);
9046 		switch (ntohs(ah->ar_op)) {
9047 		case ARPOP_REVREQUEST:
9048 			printf("reverse ARP request\n");
9049 			break;
9050 		case ARPOP_REVREPLY:
9051 			printf("reverse ARP reply\n");
9052 			break;
9053 		case ARPOP_REQUEST:
9054 			printf("ARP request\n");
9055 			break;
9056 		case ARPOP_REPLY:
9057 			printf("ARP reply\n");
9058 			break;
9059 		default:
9060 			printf("other ARP operation\n");
9061 		}
9062 		break;
9063 	default:
9064 		BCE_PRINTF("----: Other protocol.\n");
9065 	}
9066 
9067 	BCE_PRINTF(
9068 		"-----------------------------"
9069 		"--------------"
9070 		"-----------------------------\n");
9071 }
9072 
9073 
9074 /****************************************************************************/
9075 /* Prints out information about an mbuf.                                    */
9076 /*                                                                          */
9077 /* Returns:                                                                 */
9078 /*   Nothing.                                                               */
9079 /****************************************************************************/
9080 static __attribute__ ((noinline)) void
9081 bce_dump_mbuf(struct bce_softc *sc, struct mbuf *m)
9082 {
9083 	struct mbuf *mp = m;
9084 
9085 	if (m == NULL) {
9086 		BCE_PRINTF("mbuf: null pointer\n");
9087 		return;
9088 	}
9089 
9090 	while (mp) {
9091 		BCE_PRINTF("mbuf: %p, m_len = %d, m_flags = 0x%b, "
9092 		    "m_data = %p\n", mp, mp->m_len, mp->m_flags,
9093 		    "\20\1M_EXT\2M_PKTHDR\3M_EOR\4M_RDONLY", mp->m_data);
9094 
9095 		if (mp->m_flags & M_PKTHDR) {
9096 			BCE_PRINTF("- m_pkthdr: len = %d, flags = 0x%b, "
9097 			    "csum_flags = %b\n", mp->m_pkthdr.len,
9098 			    mp->m_flags, "\20\12M_BCAST\13M_MCAST\14M_FRAG"
9099 			    "\15M_FIRSTFRAG\16M_LASTFRAG\21M_VLANTAG"
9100 			    "\22M_PROMISC\23M_NOFREE",
9101 			    mp->m_pkthdr.csum_flags,
9102 			    "\20\1CSUM_IP\2CSUM_TCP\3CSUM_UDP\4CSUM_IP_FRAGS"
9103 			    "\5CSUM_FRAGMENT\6CSUM_TSO\11CSUM_IP_CHECKED"
9104 			    "\12CSUM_IP_VALID\13CSUM_DATA_VALID"
9105 			    "\14CSUM_PSEUDO_HDR");
9106 		}
9107 
9108 		if (mp->m_flags & M_EXT) {
9109 			BCE_PRINTF("- m_ext: %p, ext_size = %d, type = ",
9110 			    mp->m_ext.ext_buf, mp->m_ext.ext_size);
9111 			switch (mp->m_ext.ext_type) {
9112 			case EXT_CLUSTER:
9113 				printf("EXT_CLUSTER\n"); break;
9114 			case EXT_SFBUF:
9115 				printf("EXT_SFBUF\n"); break;
9116 			case EXT_JUMBO9:
9117 				printf("EXT_JUMBO9\n"); break;
9118 			case EXT_JUMBO16:
9119 				printf("EXT_JUMBO16\n"); break;
9120 			case EXT_PACKET:
9121 				printf("EXT_PACKET\n"); break;
9122 			case EXT_MBUF:
9123 				printf("EXT_MBUF\n"); break;
9124 			case EXT_NET_DRV:
9125 				printf("EXT_NET_DRV\n"); break;
9126 			case EXT_MOD_TYPE:
9127 				printf("EXT_MDD_TYPE\n"); break;
9128 			case EXT_DISPOSABLE:
9129 				printf("EXT_DISPOSABLE\n"); break;
9130 			case EXT_EXTREF:
9131 				printf("EXT_EXTREF\n"); break;
9132 			default:
9133 				printf("UNKNOWN\n");
9134 			}
9135 		}
9136 
9137 		mp = mp->m_next;
9138 	}
9139 }
9140 
9141 
9142 /****************************************************************************/
9143 /* Prints out the mbufs in the TX mbuf chain.                               */
9144 /*                                                                          */
9145 /* Returns:                                                                 */
9146 /*   Nothing.                                                               */
9147 /****************************************************************************/
9148 static __attribute__ ((noinline)) void
9149 bce_dump_tx_mbuf_chain(struct bce_softc *sc, u16 chain_prod, int count)
9150 {
9151 	struct mbuf *m;
9152 
9153 	BCE_PRINTF(
9154 		"----------------------------"
9155 		"  tx mbuf data  "
9156 		"----------------------------\n");
9157 
9158 	for (int i = 0; i < count; i++) {
9159 	 	m = sc->tx_mbuf_ptr[chain_prod];
9160 		BCE_PRINTF("txmbuf[0x%04X]\n", chain_prod);
9161 		bce_dump_mbuf(sc, m);
9162 		chain_prod = TX_CHAIN_IDX(NEXT_TX_BD(chain_prod));
9163 	}
9164 
9165 	BCE_PRINTF(
9166 		"----------------------------"
9167 		"----------------"
9168 		"----------------------------\n");
9169 }
9170 
9171 
9172 /****************************************************************************/
9173 /* Prints out the mbufs in the RX mbuf chain.                               */
9174 /*                                                                          */
9175 /* Returns:                                                                 */
9176 /*   Nothing.                                                               */
9177 /****************************************************************************/
9178 static __attribute__ ((noinline)) void
9179 bce_dump_rx_mbuf_chain(struct bce_softc *sc, u16 chain_prod, int count)
9180 {
9181 	struct mbuf *m;
9182 
9183 	BCE_PRINTF(
9184 		"----------------------------"
9185 		"  rx mbuf data  "
9186 		"----------------------------\n");
9187 
9188 	for (int i = 0; i < count; i++) {
9189 	 	m = sc->rx_mbuf_ptr[chain_prod];
9190 		BCE_PRINTF("rxmbuf[0x%04X]\n", chain_prod);
9191 		bce_dump_mbuf(sc, m);
9192 		chain_prod = RX_CHAIN_IDX(NEXT_RX_BD(chain_prod));
9193 	}
9194 
9195 
9196 	BCE_PRINTF(
9197 		"----------------------------"
9198 		"----------------"
9199 		"----------------------------\n");
9200 }
9201 
9202 
9203 #ifdef BCE_JUMBO_HDRSPLIT
9204 /****************************************************************************/
9205 /* Prints out the mbufs in the mbuf page chain.                             */
9206 /*                                                                          */
9207 /* Returns:                                                                 */
9208 /*   Nothing.                                                               */
9209 /****************************************************************************/
9210 static __attribute__ ((noinline)) void
9211 bce_dump_pg_mbuf_chain(struct bce_softc *sc, u16 chain_prod, int count)
9212 {
9213 	struct mbuf *m;
9214 
9215 	BCE_PRINTF(
9216 		"----------------------------"
9217 		"  pg mbuf data  "
9218 		"----------------------------\n");
9219 
9220 	for (int i = 0; i < count; i++) {
9221 	 	m = sc->pg_mbuf_ptr[chain_prod];
9222 		BCE_PRINTF("pgmbuf[0x%04X]\n", chain_prod);
9223 		bce_dump_mbuf(sc, m);
9224 		chain_prod = PG_CHAIN_IDX(NEXT_PG_BD(chain_prod));
9225 	}
9226 
9227 
9228 	BCE_PRINTF(
9229 		"----------------------------"
9230 		"----------------"
9231 		"----------------------------\n");
9232 }
9233 #endif
9234 
9235 
9236 /****************************************************************************/
9237 /* Prints out a tx_bd structure.                                            */
9238 /*                                                                          */
9239 /* Returns:                                                                 */
9240 /*   Nothing.                                                               */
9241 /****************************************************************************/
9242 static __attribute__ ((noinline)) void
9243 bce_dump_txbd(struct bce_softc *sc, int idx, struct tx_bd *txbd)
9244 {
9245 	int i = 0;
9246 
9247 	if (idx > MAX_TX_BD)
9248 		/* Index out of range. */
9249 		BCE_PRINTF("tx_bd[0x%04X]: Invalid tx_bd index!\n", idx);
9250 	else if ((idx & USABLE_TX_BD_PER_PAGE) == USABLE_TX_BD_PER_PAGE)
9251 		/* TX Chain page pointer. */
9252 		BCE_PRINTF("tx_bd[0x%04X]: haddr = 0x%08X:%08X, chain page "
9253 		    "pointer\n", idx, txbd->tx_bd_haddr_hi,
9254 		    txbd->tx_bd_haddr_lo);
9255 	else {
9256 		/* Normal tx_bd entry. */
9257 		BCE_PRINTF("tx_bd[0x%04X]: haddr = 0x%08X:%08X, "
9258 		    "mss_nbytes = 0x%08X, vlan tag = 0x%04X, flags = "
9259 		    "0x%04X (", idx, txbd->tx_bd_haddr_hi,
9260 		    txbd->tx_bd_haddr_lo, txbd->tx_bd_mss_nbytes,
9261 		    txbd->tx_bd_vlan_tag, txbd->tx_bd_flags);
9262 
9263 		if (txbd->tx_bd_flags & TX_BD_FLAGS_CONN_FAULT) {
9264 			if (i>0)
9265 				printf("|");
9266 			printf("CONN_FAULT");
9267 			i++;
9268 		}
9269 
9270 		if (txbd->tx_bd_flags & TX_BD_FLAGS_TCP_UDP_CKSUM) {
9271 			if (i>0)
9272 				printf("|");
9273 			printf("TCP_UDP_CKSUM");
9274 			i++;
9275 		}
9276 
9277 		if (txbd->tx_bd_flags & TX_BD_FLAGS_IP_CKSUM) {
9278 			if (i>0)
9279 				printf("|");
9280 			printf("IP_CKSUM");
9281 			i++;
9282 		}
9283 
9284 		if (txbd->tx_bd_flags & TX_BD_FLAGS_VLAN_TAG) {
9285 			if (i>0)
9286 				printf("|");
9287 			printf("VLAN");
9288 			i++;
9289 		}
9290 
9291 		if (txbd->tx_bd_flags & TX_BD_FLAGS_COAL_NOW) {
9292 			if (i>0)
9293 				printf("|");
9294 			printf("COAL_NOW");
9295 			i++;
9296 		}
9297 
9298 		if (txbd->tx_bd_flags & TX_BD_FLAGS_DONT_GEN_CRC) {
9299 			if (i>0)
9300 				printf("|");
9301 			printf("DONT_GEN_CRC");
9302 			i++;
9303 		}
9304 
9305 		if (txbd->tx_bd_flags & TX_BD_FLAGS_START) {
9306 			if (i>0)
9307 				printf("|");
9308 			printf("START");
9309 			i++;
9310 		}
9311 
9312 		if (txbd->tx_bd_flags & TX_BD_FLAGS_END) {
9313 			if (i>0)
9314 				printf("|");
9315 			printf("END");
9316 			i++;
9317 		}
9318 
9319 		if (txbd->tx_bd_flags & TX_BD_FLAGS_SW_LSO) {
9320 			if (i>0)
9321 				printf("|");
9322 			printf("LSO");
9323 			i++;
9324 		}
9325 
9326 		if (txbd->tx_bd_flags & TX_BD_FLAGS_SW_OPTION_WORD) {
9327 			if (i>0)
9328 				printf("|");
9329 			printf("SW_OPTION=%d", ((txbd->tx_bd_flags &
9330 			    TX_BD_FLAGS_SW_OPTION_WORD) >> 8)); i++;
9331 		}
9332 
9333 		if (txbd->tx_bd_flags & TX_BD_FLAGS_SW_FLAGS) {
9334 			if (i>0)
9335 				printf("|");
9336 			printf("SW_FLAGS");
9337 			i++;
9338 		}
9339 
9340 		if (txbd->tx_bd_flags & TX_BD_FLAGS_SW_SNAP) {
9341 			if (i>0)
9342 				printf("|");
9343 			printf("SNAP)");
9344 		} else {
9345 			printf(")\n");
9346 		}
9347 	}
9348 }
9349 
9350 
9351 /****************************************************************************/
9352 /* Prints out a rx_bd structure.                                            */
9353 /*                                                                          */
9354 /* Returns:                                                                 */
9355 /*   Nothing.                                                               */
9356 /****************************************************************************/
9357 static __attribute__ ((noinline)) void
9358 bce_dump_rxbd(struct bce_softc *sc, int idx, struct rx_bd *rxbd)
9359 {
9360 	if (idx > MAX_RX_BD)
9361 		/* Index out of range. */
9362 		BCE_PRINTF("rx_bd[0x%04X]: Invalid rx_bd index!\n", idx);
9363 	else if ((idx & USABLE_RX_BD_PER_PAGE) == USABLE_RX_BD_PER_PAGE)
9364 		/* RX Chain page pointer. */
9365 		BCE_PRINTF("rx_bd[0x%04X]: haddr = 0x%08X:%08X, chain page "
9366 		    "pointer\n", idx, rxbd->rx_bd_haddr_hi,
9367 		    rxbd->rx_bd_haddr_lo);
9368 	else
9369 		/* Normal rx_bd entry. */
9370 		BCE_PRINTF("rx_bd[0x%04X]: haddr = 0x%08X:%08X, nbytes = "
9371 		    "0x%08X, flags = 0x%08X\n", idx, rxbd->rx_bd_haddr_hi,
9372 		    rxbd->rx_bd_haddr_lo, rxbd->rx_bd_len,
9373 		    rxbd->rx_bd_flags);
9374 }
9375 
9376 
9377 #ifdef BCE_JUMBO_HDRSPLIT
9378 /****************************************************************************/
9379 /* Prints out a rx_bd structure in the page chain.                          */
9380 /*                                                                          */
9381 /* Returns:                                                                 */
9382 /*   Nothing.                                                               */
9383 /****************************************************************************/
9384 static __attribute__ ((noinline)) void
9385 bce_dump_pgbd(struct bce_softc *sc, int idx, struct rx_bd *pgbd)
9386 {
9387 	if (idx > MAX_PG_BD)
9388 		/* Index out of range. */
9389 		BCE_PRINTF("pg_bd[0x%04X]: Invalid pg_bd index!\n", idx);
9390 	else if ((idx & USABLE_PG_BD_PER_PAGE) == USABLE_PG_BD_PER_PAGE)
9391 		/* Page Chain page pointer. */
9392 		BCE_PRINTF("px_bd[0x%04X]: haddr = 0x%08X:%08X, chain page pointer\n",
9393 			idx, pgbd->rx_bd_haddr_hi, pgbd->rx_bd_haddr_lo);
9394 	else
9395 		/* Normal rx_bd entry. */
9396 		BCE_PRINTF("pg_bd[0x%04X]: haddr = 0x%08X:%08X, nbytes = 0x%08X, "
9397 			"flags = 0x%08X\n", idx,
9398 			pgbd->rx_bd_haddr_hi, pgbd->rx_bd_haddr_lo,
9399 			pgbd->rx_bd_len, pgbd->rx_bd_flags);
9400 }
9401 #endif
9402 
9403 
9404 /****************************************************************************/
9405 /* Prints out a l2_fhdr structure.                                          */
9406 /*                                                                          */
9407 /* Returns:                                                                 */
9408 /*   Nothing.                                                               */
9409 /****************************************************************************/
9410 static __attribute__ ((noinline)) void
9411 bce_dump_l2fhdr(struct bce_softc *sc, int idx, struct l2_fhdr *l2fhdr)
9412 {
9413 	BCE_PRINTF("l2_fhdr[0x%04X]: status = 0x%b, "
9414 		"pkt_len = %d, vlan = 0x%04x, ip_xsum/hdr_len = 0x%04X, "
9415 		"tcp_udp_xsum = 0x%04X\n", idx,
9416 		l2fhdr->l2_fhdr_status, BCE_L2FHDR_PRINTFB,
9417 		l2fhdr->l2_fhdr_pkt_len, l2fhdr->l2_fhdr_vlan_tag,
9418 		l2fhdr->l2_fhdr_ip_xsum, l2fhdr->l2_fhdr_tcp_udp_xsum);
9419 }
9420 
9421 
9422 /****************************************************************************/
9423 /* Prints out context memory info.  (Only useful for CID 0 to 16.)          */
9424 /*                                                                          */
9425 /* Returns:                                                                 */
9426 /*   Nothing.                                                               */
9427 /****************************************************************************/
9428 static __attribute__ ((noinline)) void
9429 bce_dump_ctx(struct bce_softc *sc, u16 cid)
9430 {
9431 	if (cid > TX_CID) {
9432 		BCE_PRINTF(" Unknown CID\n");
9433 		return;
9434 	}
9435 
9436 	BCE_PRINTF(
9437 	    "----------------------------"
9438 	    "    CTX Data    "
9439 	    "----------------------------\n");
9440 
9441 	BCE_PRINTF("     0x%04X - (CID) Context ID\n", cid);
9442 
9443 	if (cid == RX_CID) {
9444 		BCE_PRINTF(" 0x%08X - (L2CTX_RX_HOST_BDIDX) host rx "
9445 		   "producer index\n",
9446 		    CTX_RD(sc, GET_CID_ADDR(cid), BCE_L2CTX_RX_HOST_BDIDX));
9447 		BCE_PRINTF(" 0x%08X - (L2CTX_RX_HOST_BSEQ) host "
9448 		    "byte sequence\n", CTX_RD(sc, GET_CID_ADDR(cid),
9449 		    BCE_L2CTX_RX_HOST_BSEQ));
9450 		BCE_PRINTF(" 0x%08X - (L2CTX_RX_NX_BSEQ) h/w byte sequence\n",
9451 		    CTX_RD(sc, GET_CID_ADDR(cid), BCE_L2CTX_RX_NX_BSEQ));
9452 		BCE_PRINTF(" 0x%08X - (L2CTX_RX_NX_BDHADDR_HI) h/w buffer "
9453 		    "descriptor address\n",
9454  		    CTX_RD(sc, GET_CID_ADDR(cid), BCE_L2CTX_RX_NX_BDHADDR_HI));
9455 		BCE_PRINTF(" 0x%08X - (L2CTX_RX_NX_BDHADDR_LO) h/w buffer "
9456 		    "descriptor address\n",
9457 		    CTX_RD(sc, GET_CID_ADDR(cid), BCE_L2CTX_RX_NX_BDHADDR_LO));
9458 		BCE_PRINTF(" 0x%08X - (L2CTX_RX_NX_BDIDX) h/w rx consumer "
9459 		    "index\n", CTX_RD(sc, GET_CID_ADDR(cid),
9460 		    BCE_L2CTX_RX_NX_BDIDX));
9461 		BCE_PRINTF(" 0x%08X - (L2CTX_RX_HOST_PG_BDIDX) host page "
9462 		    "producer index\n", CTX_RD(sc, GET_CID_ADDR(cid),
9463 		    BCE_L2CTX_RX_HOST_PG_BDIDX));
9464 		BCE_PRINTF(" 0x%08X - (L2CTX_RX_PG_BUF_SIZE) host rx_bd/page "
9465 		    "buffer size\n", CTX_RD(sc, GET_CID_ADDR(cid),
9466 		    BCE_L2CTX_RX_PG_BUF_SIZE));
9467 		BCE_PRINTF(" 0x%08X - (L2CTX_RX_NX_PG_BDHADDR_HI) h/w page "
9468 		    "chain address\n", CTX_RD(sc, GET_CID_ADDR(cid),
9469 		    BCE_L2CTX_RX_NX_PG_BDHADDR_HI));
9470 		BCE_PRINTF(" 0x%08X - (L2CTX_RX_NX_PG_BDHADDR_LO) h/w page "
9471 		    "chain address\n", CTX_RD(sc, GET_CID_ADDR(cid),
9472 		    BCE_L2CTX_RX_NX_PG_BDHADDR_LO));
9473 		BCE_PRINTF(" 0x%08X - (L2CTX_RX_NX_PG_BDIDX) h/w page "
9474 		    "consumer index\n",	CTX_RD(sc, GET_CID_ADDR(cid),
9475 		    BCE_L2CTX_RX_NX_PG_BDIDX));
9476 	} else if (cid == TX_CID) {
9477 		if ((BCE_CHIP_NUM(sc) == BCE_CHIP_NUM_5709) ||
9478 		    (BCE_CHIP_NUM(sc) == BCE_CHIP_NUM_5716)) {
9479 			BCE_PRINTF(" 0x%08X - (L2CTX_TX_TYPE_XI) ctx type\n",
9480 			    CTX_RD(sc, GET_CID_ADDR(cid),
9481 			    BCE_L2CTX_TX_TYPE_XI));
9482 			BCE_PRINTF(" 0x%08X - (L2CTX_CMD_TX_TYPE_XI) ctx "
9483 			    "cmd\n", CTX_RD(sc, GET_CID_ADDR(cid),
9484 			    BCE_L2CTX_TX_CMD_TYPE_XI));
9485 			BCE_PRINTF(" 0x%08X - (L2CTX_TX_TBDR_BDHADDR_HI_XI) "
9486 			    "h/w buffer descriptor address\n",
9487 			    CTX_RD(sc, GET_CID_ADDR(cid),
9488 			    BCE_L2CTX_TX_TBDR_BHADDR_HI_XI));
9489 			BCE_PRINTF(" 0x%08X - (L2CTX_TX_TBDR_BHADDR_LO_XI) "
9490 			    "h/w buffer	descriptor address\n",
9491 			    CTX_RD(sc, GET_CID_ADDR(cid),
9492 			    BCE_L2CTX_TX_TBDR_BHADDR_LO_XI));
9493 			BCE_PRINTF(" 0x%08X - (L2CTX_TX_HOST_BIDX_XI) "
9494 			    "host producer index\n",
9495 			    CTX_RD(sc, GET_CID_ADDR(cid),
9496 			    BCE_L2CTX_TX_HOST_BIDX_XI));
9497 			BCE_PRINTF(" 0x%08X - (L2CTX_TX_HOST_BSEQ_XI) "
9498 			    "host byte sequence\n",
9499 			    CTX_RD(sc, GET_CID_ADDR(cid),
9500 			    BCE_L2CTX_TX_HOST_BSEQ_XI));
9501 		} else {
9502 			BCE_PRINTF(" 0x%08X - (L2CTX_TX_TYPE) ctx type\n",
9503 			    CTX_RD(sc, GET_CID_ADDR(cid), BCE_L2CTX_TX_TYPE));
9504 			BCE_PRINTF(" 0x%08X - (L2CTX_TX_CMD_TYPE) ctx cmd\n",
9505 			    CTX_RD(sc, GET_CID_ADDR(cid),
9506 			    BCE_L2CTX_TX_CMD_TYPE));
9507 			BCE_PRINTF(" 0x%08X - (L2CTX_TX_TBDR_BDHADDR_HI) "
9508 			    "h/w buffer	descriptor address\n",
9509 			    CTX_RD(sc, GET_CID_ADDR(cid),
9510 			    BCE_L2CTX_TX_TBDR_BHADDR_HI));
9511 			BCE_PRINTF(" 0x%08X - (L2CTX_TX_TBDR_BHADDR_LO) "
9512 			    "h/w buffer	descriptor address\n",
9513 			    CTX_RD(sc, GET_CID_ADDR(cid),
9514 			    BCE_L2CTX_TX_TBDR_BHADDR_LO));
9515 			BCE_PRINTF(" 0x%08X - (L2CTX_TX_HOST_BIDX) host "
9516 			    "producer index\n", CTX_RD(sc, GET_CID_ADDR(cid),
9517 			    BCE_L2CTX_TX_HOST_BIDX));
9518 			BCE_PRINTF(" 0x%08X - (L2CTX_TX_HOST_BSEQ) host byte "
9519 			    "sequence\n", CTX_RD(sc, GET_CID_ADDR(cid),
9520 			    BCE_L2CTX_TX_HOST_BSEQ));
9521 		}
9522 	}
9523 
9524 	BCE_PRINTF(
9525 	   "----------------------------"
9526 	   "    Raw CTX     "
9527 	   "----------------------------\n");
9528 
9529 	for (int i = 0x0; i < 0x300; i += 0x10) {
9530 		BCE_PRINTF("0x%04X: 0x%08X 0x%08X 0x%08X 0x%08X\n", i,
9531 		   CTX_RD(sc, GET_CID_ADDR(cid), i),
9532 		   CTX_RD(sc, GET_CID_ADDR(cid), i + 0x4),
9533 		   CTX_RD(sc, GET_CID_ADDR(cid), i + 0x8),
9534 		   CTX_RD(sc, GET_CID_ADDR(cid), i + 0xc));
9535 	}
9536 
9537 
9538 	BCE_PRINTF(
9539 	   "----------------------------"
9540 	   "----------------"
9541 	   "----------------------------\n");
9542 }
9543 
9544 
9545 /****************************************************************************/
9546 /* Prints out the FTQ data.                                                 */
9547 /*                                                                          */
9548 /* Returns:                                                                */
9549 /*   Nothing.                                                               */
9550 /****************************************************************************/
9551 static __attribute__ ((noinline)) void
9552 bce_dump_ftqs(struct bce_softc *sc)
9553 {
9554 	u32 cmd, ctl, cur_depth, max_depth, valid_cnt, val;
9555 
9556 	BCE_PRINTF(
9557 	    "----------------------------"
9558 	    "    FTQ Data    "
9559 	    "----------------------------\n");
9560 
9561 	BCE_PRINTF("   FTQ    Command    Control   Depth_Now  "
9562 	    "Max_Depth  Valid_Cnt \n");
9563 	BCE_PRINTF(" ------- ---------- ---------- ---------- "
9564 	    "---------- ----------\n");
9565 
9566 	/* Setup the generic statistic counters for the FTQ valid count. */
9567 	val = (BCE_HC_STAT_GEN_SEL_0_GEN_SEL_0_RV2PPQ_VALID_CNT << 24) |
9568 	    (BCE_HC_STAT_GEN_SEL_0_GEN_SEL_0_RXPCQ_VALID_CNT  << 16) |
9569 	    (BCE_HC_STAT_GEN_SEL_0_GEN_SEL_0_RXPQ_VALID_CNT   <<  8) |
9570 	    (BCE_HC_STAT_GEN_SEL_0_GEN_SEL_0_RLUPQ_VALID_CNT);
9571 	REG_WR(sc, BCE_HC_STAT_GEN_SEL_0, val);
9572 
9573 	val = (BCE_HC_STAT_GEN_SEL_0_GEN_SEL_0_TSCHQ_VALID_CNT  << 24) |
9574 	    (BCE_HC_STAT_GEN_SEL_0_GEN_SEL_0_RDMAQ_VALID_CNT  << 16) |
9575 	    (BCE_HC_STAT_GEN_SEL_0_GEN_SEL_0_RV2PTQ_VALID_CNT <<  8) |
9576 	    (BCE_HC_STAT_GEN_SEL_0_GEN_SEL_0_RV2PMQ_VALID_CNT);
9577 	REG_WR(sc, BCE_HC_STAT_GEN_SEL_1, val);
9578 
9579 	val = (BCE_HC_STAT_GEN_SEL_0_GEN_SEL_0_TPATQ_VALID_CNT  << 24) |
9580 	    (BCE_HC_STAT_GEN_SEL_0_GEN_SEL_0_TDMAQ_VALID_CNT  << 16) |
9581 	    (BCE_HC_STAT_GEN_SEL_0_GEN_SEL_0_TXPQ_VALID_CNT   <<  8) |
9582 	    (BCE_HC_STAT_GEN_SEL_0_GEN_SEL_0_TBDRQ_VALID_CNT);
9583 	REG_WR(sc, BCE_HC_STAT_GEN_SEL_2, val);
9584 
9585 	val = (BCE_HC_STAT_GEN_SEL_0_GEN_SEL_0_COMQ_VALID_CNT   << 24) |
9586 	    (BCE_HC_STAT_GEN_SEL_0_GEN_SEL_0_COMTQ_VALID_CNT  << 16) |
9587 	    (BCE_HC_STAT_GEN_SEL_0_GEN_SEL_0_COMXQ_VALID_CNT  <<  8) |
9588 	    (BCE_HC_STAT_GEN_SEL_0_GEN_SEL_0_TASQ_VALID_CNT);
9589 	REG_WR(sc, BCE_HC_STAT_GEN_SEL_3, val);
9590 
9591 	/* Input queue to the Receive Lookup state machine */
9592 	cmd = REG_RD(sc, BCE_RLUP_FTQ_CMD);
9593 	ctl = REG_RD(sc, BCE_RLUP_FTQ_CTL);
9594 	cur_depth = (ctl & BCE_RLUP_FTQ_CTL_CUR_DEPTH) >> 22;
9595 	max_depth = (ctl & BCE_RLUP_FTQ_CTL_MAX_DEPTH) >> 12;
9596 	valid_cnt = REG_RD(sc, BCE_HC_STAT_GEN_STAT0);
9597 	BCE_PRINTF(" RLUP    0x%08X 0x%08X 0x%08X 0x%08X 0x%08X\n",
9598 	    cmd, ctl, cur_depth, max_depth, valid_cnt);
9599 
9600 	/* Input queue to the Receive Processor */
9601 	cmd = REG_RD_IND(sc, BCE_RXP_FTQ_CMD);
9602 	ctl = REG_RD_IND(sc, BCE_RXP_FTQ_CTL);
9603 	cur_depth = (ctl & BCE_RXP_FTQ_CTL_CUR_DEPTH) >> 22;
9604 	max_depth = (ctl & BCE_RXP_FTQ_CTL_MAX_DEPTH) >> 12;
9605 	valid_cnt = REG_RD(sc, BCE_HC_STAT_GEN_STAT1);
9606 	BCE_PRINTF(" RXP     0x%08X 0x%08X 0x%08X 0x%08X 0x%08X\n",
9607 	    cmd, ctl, cur_depth, max_depth, valid_cnt);
9608 
9609 	/* Input queue to the Recevie Processor */
9610 	cmd = REG_RD_IND(sc, BCE_RXP_CFTQ_CMD);
9611 	ctl = REG_RD_IND(sc, BCE_RXP_CFTQ_CTL);
9612 	cur_depth = (ctl & BCE_RXP_CFTQ_CTL_CUR_DEPTH) >> 22;
9613 	max_depth = (ctl & BCE_RXP_CFTQ_CTL_MAX_DEPTH) >> 12;
9614 	valid_cnt = REG_RD(sc, BCE_HC_STAT_GEN_STAT2);
9615 	BCE_PRINTF(" RXPC    0x%08X 0x%08X 0x%08X 0x%08X 0x%08X\n",
9616 	    cmd, ctl, cur_depth, max_depth, valid_cnt);
9617 
9618 	/* Input queue to the Receive Virtual to Physical state machine */
9619 	cmd = REG_RD(sc, BCE_RV2P_PFTQ_CMD);
9620 	ctl = REG_RD(sc, BCE_RV2P_PFTQ_CTL);
9621 	cur_depth = (ctl & BCE_RV2P_PFTQ_CTL_CUR_DEPTH) >> 22;
9622 	max_depth = (ctl & BCE_RV2P_PFTQ_CTL_MAX_DEPTH) >> 12;
9623 	valid_cnt = REG_RD(sc, BCE_HC_STAT_GEN_STAT3);
9624 	BCE_PRINTF(" RV2PP   0x%08X 0x%08X 0x%08X 0x%08X 0x%08X\n",
9625 	    cmd, ctl, cur_depth, max_depth, valid_cnt);
9626 
9627 	/* Input queue to the Recevie Virtual to Physical state machine */
9628 	cmd = REG_RD(sc, BCE_RV2P_MFTQ_CMD);
9629 	ctl = REG_RD(sc, BCE_RV2P_MFTQ_CTL);
9630 	cur_depth = (ctl & BCE_RV2P_MFTQ_CTL_CUR_DEPTH) >> 22;
9631 	max_depth = (ctl & BCE_RV2P_MFTQ_CTL_MAX_DEPTH) >> 12;
9632 	valid_cnt = REG_RD(sc, BCE_HC_STAT_GEN_STAT4);
9633 	BCE_PRINTF(" RV2PM   0x%08X 0x%08X 0x%08X 0x%08X 0x%08X\n",
9634 	    cmd, ctl, cur_depth, max_depth, valid_cnt);
9635 
9636 	/* Input queue to the Receive Virtual to Physical state machine */
9637 	cmd = REG_RD(sc, BCE_RV2P_TFTQ_CMD);
9638 	ctl = REG_RD(sc, BCE_RV2P_TFTQ_CTL);
9639 	cur_depth = (ctl & BCE_RV2P_TFTQ_CTL_CUR_DEPTH) >> 22;
9640 	max_depth = (ctl & BCE_RV2P_TFTQ_CTL_MAX_DEPTH) >> 12;
9641 	valid_cnt = REG_RD(sc, BCE_HC_STAT_GEN_STAT5);
9642 	BCE_PRINTF(" RV2PT   0x%08X 0x%08X 0x%08X 0x%08X 0x%08X\n",
9643 	    cmd, ctl, cur_depth, max_depth, valid_cnt);
9644 
9645 	/* Input queue to the Receive DMA state machine */
9646 	cmd = REG_RD(sc, BCE_RDMA_FTQ_CMD);
9647 	ctl = REG_RD(sc, BCE_RDMA_FTQ_CTL);
9648 	cur_depth = (ctl & BCE_RDMA_FTQ_CTL_CUR_DEPTH) >> 22;
9649 	max_depth = (ctl & BCE_RDMA_FTQ_CTL_MAX_DEPTH) >> 12;
9650 	valid_cnt = REG_RD(sc, BCE_HC_STAT_GEN_STAT6);
9651 	BCE_PRINTF(" RDMA    0x%08X 0x%08X 0x%08X 0x%08X 0x%08X\n",
9652 	    cmd, ctl, cur_depth, max_depth, valid_cnt);
9653 
9654 	/* Input queue to the Transmit Scheduler state machine */
9655 	cmd = REG_RD(sc, BCE_TSCH_FTQ_CMD);
9656 	ctl = REG_RD(sc, BCE_TSCH_FTQ_CTL);
9657 	cur_depth = (ctl & BCE_TSCH_FTQ_CTL_CUR_DEPTH) >> 22;
9658 	max_depth = (ctl & BCE_TSCH_FTQ_CTL_MAX_DEPTH) >> 12;
9659 	valid_cnt = REG_RD(sc, BCE_HC_STAT_GEN_STAT7);
9660 	BCE_PRINTF(" TSCH    0x%08X 0x%08X 0x%08X 0x%08X 0x%08X\n",
9661 	    cmd, ctl, cur_depth, max_depth, valid_cnt);
9662 
9663 	/* Input queue to the Transmit Buffer Descriptor state machine */
9664 	cmd = REG_RD(sc, BCE_TBDR_FTQ_CMD);
9665 	ctl = REG_RD(sc, BCE_TBDR_FTQ_CTL);
9666 	cur_depth = (ctl & BCE_TBDR_FTQ_CTL_CUR_DEPTH) >> 22;
9667 	max_depth = (ctl & BCE_TBDR_FTQ_CTL_MAX_DEPTH) >> 12;
9668 	valid_cnt = REG_RD(sc, BCE_HC_STAT_GEN_STAT8);
9669 	BCE_PRINTF(" TBDR    0x%08X 0x%08X 0x%08X 0x%08X 0x%08X\n",
9670 	    cmd, ctl, cur_depth, max_depth, valid_cnt);
9671 
9672 	/* Input queue to the Transmit Processor */
9673 	cmd = REG_RD_IND(sc, BCE_TXP_FTQ_CMD);
9674 	ctl = REG_RD_IND(sc, BCE_TXP_FTQ_CTL);
9675 	cur_depth = (ctl & BCE_TXP_FTQ_CTL_CUR_DEPTH) >> 22;
9676 	max_depth = (ctl & BCE_TXP_FTQ_CTL_MAX_DEPTH) >> 12;
9677 	valid_cnt = REG_RD(sc, BCE_HC_STAT_GEN_STAT9);
9678 	BCE_PRINTF(" TXP     0x%08X 0x%08X 0x%08X 0x%08X 0x%08X\n",
9679 	    cmd, ctl, cur_depth, max_depth, valid_cnt);
9680 
9681 	/* Input queue to the Transmit DMA state machine */
9682 	cmd = REG_RD(sc, BCE_TDMA_FTQ_CMD);
9683 	ctl = REG_RD(sc, BCE_TDMA_FTQ_CTL);
9684 	cur_depth = (ctl & BCE_TDMA_FTQ_CTL_CUR_DEPTH) >> 22;
9685 	max_depth = (ctl & BCE_TDMA_FTQ_CTL_MAX_DEPTH) >> 12;
9686 	valid_cnt = REG_RD(sc, BCE_HC_STAT_GEN_STAT10);
9687 	BCE_PRINTF(" TDMA    0x%08X 0x%08X 0x%08X 0x%08X 0x%08X\n",
9688 	    cmd, ctl, cur_depth, max_depth, valid_cnt);
9689 
9690 	/* Input queue to the Transmit Patch-Up Processor */
9691 	cmd = REG_RD_IND(sc, BCE_TPAT_FTQ_CMD);
9692 	ctl = REG_RD_IND(sc, BCE_TPAT_FTQ_CTL);
9693 	cur_depth = (ctl & BCE_TPAT_FTQ_CTL_CUR_DEPTH) >> 22;
9694 	max_depth = (ctl & BCE_TPAT_FTQ_CTL_MAX_DEPTH) >> 12;
9695 	valid_cnt = REG_RD(sc, BCE_HC_STAT_GEN_STAT11);
9696 	BCE_PRINTF(" TPAT    0x%08X 0x%08X 0x%08X 0x%08X 0x%08X\n",
9697 	    cmd, ctl, cur_depth, max_depth, valid_cnt);
9698 
9699 	/* Input queue to the Transmit Assembler state machine */
9700 	cmd = REG_RD_IND(sc, BCE_TAS_FTQ_CMD);
9701 	ctl = REG_RD_IND(sc, BCE_TAS_FTQ_CTL);
9702 	cur_depth = (ctl & BCE_TAS_FTQ_CTL_CUR_DEPTH) >> 22;
9703 	max_depth = (ctl & BCE_TAS_FTQ_CTL_MAX_DEPTH) >> 12;
9704 	valid_cnt = REG_RD(sc, BCE_HC_STAT_GEN_STAT12);
9705 	BCE_PRINTF(" TAS     0x%08X 0x%08X 0x%08X 0x%08X 0x%08X\n",
9706 	    cmd, ctl, cur_depth, max_depth, valid_cnt);
9707 
9708 	/* Input queue to the Completion Processor */
9709 	cmd = REG_RD_IND(sc, BCE_COM_COMXQ_FTQ_CMD);
9710 	ctl = REG_RD_IND(sc, BCE_COM_COMXQ_FTQ_CTL);
9711 	cur_depth = (ctl & BCE_COM_COMXQ_FTQ_CTL_CUR_DEPTH) >> 22;
9712 	max_depth = (ctl & BCE_COM_COMXQ_FTQ_CTL_MAX_DEPTH) >> 12;
9713 	valid_cnt = REG_RD(sc, BCE_HC_STAT_GEN_STAT13);
9714 	BCE_PRINTF(" COMX    0x%08X 0x%08X 0x%08X 0x%08X 0x%08X\n",
9715 	    cmd, ctl, cur_depth, max_depth, valid_cnt);
9716 
9717 	/* Input queue to the Completion Processor */
9718 	cmd = REG_RD_IND(sc, BCE_COM_COMTQ_FTQ_CMD);
9719 	ctl = REG_RD_IND(sc, BCE_COM_COMTQ_FTQ_CTL);
9720 	cur_depth = (ctl & BCE_COM_COMTQ_FTQ_CTL_CUR_DEPTH) >> 22;
9721 	max_depth = (ctl & BCE_COM_COMTQ_FTQ_CTL_MAX_DEPTH) >> 12;
9722 	valid_cnt = REG_RD(sc, BCE_HC_STAT_GEN_STAT14);
9723 	BCE_PRINTF(" COMT    0x%08X 0x%08X 0x%08X 0x%08X 0x%08X\n",
9724 	    cmd, ctl, cur_depth, max_depth, valid_cnt);
9725 
9726 	/* Input queue to the Completion Processor */
9727 	cmd = REG_RD_IND(sc, BCE_COM_COMQ_FTQ_CMD);
9728 	ctl = REG_RD_IND(sc, BCE_COM_COMQ_FTQ_CTL);
9729 	cur_depth = (ctl & BCE_COM_COMQ_FTQ_CTL_CUR_DEPTH) >> 22;
9730 	max_depth = (ctl & BCE_COM_COMQ_FTQ_CTL_MAX_DEPTH) >> 12;
9731 	valid_cnt = REG_RD(sc, BCE_HC_STAT_GEN_STAT15);
9732 	BCE_PRINTF(" COMX    0x%08X 0x%08X 0x%08X 0x%08X 0x%08X\n",
9733 	    cmd, ctl, cur_depth, max_depth, valid_cnt);
9734 
9735 	/* Setup the generic statistic counters for the FTQ valid count. */
9736 	val = (BCE_HC_STAT_GEN_SEL_0_GEN_SEL_0_CSQ_VALID_CNT  << 16) |
9737 	    (BCE_HC_STAT_GEN_SEL_0_GEN_SEL_0_CPQ_VALID_CNT  <<  8) |
9738 	    (BCE_HC_STAT_GEN_SEL_0_GEN_SEL_0_MGMQ_VALID_CNT);
9739 
9740 	if ((BCE_CHIP_NUM(sc) == BCE_CHIP_NUM_5709) ||
9741 	    (BCE_CHIP_NUM(sc) == BCE_CHIP_NUM_5716))
9742 		val = val |
9743 		    (BCE_HC_STAT_GEN_SEL_0_GEN_SEL_0_RV2PCSQ_VALID_CNT_XI <<
9744 		     24);
9745 	REG_WR(sc, BCE_HC_STAT_GEN_SEL_0, val);
9746 
9747 	/* Input queue to the Management Control Processor */
9748 	cmd = REG_RD_IND(sc, BCE_MCP_MCPQ_FTQ_CMD);
9749 	ctl = REG_RD_IND(sc, BCE_MCP_MCPQ_FTQ_CTL);
9750 	cur_depth = (ctl & BCE_MCP_MCPQ_FTQ_CTL_CUR_DEPTH) >> 22;
9751 	max_depth = (ctl & BCE_MCP_MCPQ_FTQ_CTL_MAX_DEPTH) >> 12;
9752 	valid_cnt = REG_RD(sc, BCE_HC_STAT_GEN_STAT0);
9753 	BCE_PRINTF(" MCP     0x%08X 0x%08X 0x%08X 0x%08X 0x%08X\n",
9754 	    cmd, ctl, cur_depth, max_depth, valid_cnt);
9755 
9756 	/* Input queue to the Command Processor */
9757 	cmd = REG_RD_IND(sc, BCE_CP_CPQ_FTQ_CMD);
9758 	ctl = REG_RD_IND(sc, BCE_CP_CPQ_FTQ_CTL);
9759 	cur_depth = (ctl & BCE_CP_CPQ_FTQ_CTL_CUR_DEPTH) >> 22;
9760 	max_depth = (ctl & BCE_CP_CPQ_FTQ_CTL_MAX_DEPTH) >> 12;
9761 	valid_cnt = REG_RD(sc, BCE_HC_STAT_GEN_STAT1);
9762 	BCE_PRINTF(" CP      0x%08X 0x%08X 0x%08X 0x%08X 0x%08X\n",
9763 	    cmd, ctl, cur_depth, max_depth, valid_cnt);
9764 
9765 	/* Input queue to the Completion Scheduler state machine */
9766 	cmd = REG_RD(sc, BCE_CSCH_CH_FTQ_CMD);
9767 	ctl = REG_RD(sc, BCE_CSCH_CH_FTQ_CTL);
9768 	cur_depth = (ctl & BCE_CSCH_CH_FTQ_CTL_CUR_DEPTH) >> 22;
9769 	max_depth = (ctl & BCE_CSCH_CH_FTQ_CTL_MAX_DEPTH) >> 12;
9770 	valid_cnt = REG_RD(sc, BCE_HC_STAT_GEN_STAT2);
9771 	BCE_PRINTF(" CS      0x%08X 0x%08X 0x%08X 0x%08X 0x%08X\n",
9772 	    cmd, ctl, cur_depth, max_depth, valid_cnt);
9773 
9774 	if ((BCE_CHIP_NUM(sc) == BCE_CHIP_NUM_5709) ||
9775 	    (BCE_CHIP_NUM(sc) == BCE_CHIP_NUM_5716)) {
9776 		/* Input queue to the RV2P Command Scheduler */
9777 		cmd = REG_RD(sc, BCE_RV2PCSR_FTQ_CMD);
9778 		ctl = REG_RD(sc, BCE_RV2PCSR_FTQ_CTL);
9779 		cur_depth = (ctl & 0xFFC00000) >> 22;
9780 		max_depth = (ctl & 0x003FF000) >> 12;
9781 		valid_cnt = REG_RD(sc, BCE_HC_STAT_GEN_STAT3);
9782 		BCE_PRINTF(" RV2PCSR 0x%08X 0x%08X 0x%08X 0x%08X 0x%08X\n",
9783 		    cmd, ctl, cur_depth, max_depth, valid_cnt);
9784 	}
9785 
9786 	BCE_PRINTF(
9787 	    "----------------------------"
9788 	    "----------------"
9789 	    "----------------------------\n");
9790 }
9791 
9792 
9793 /****************************************************************************/
9794 /* Prints out the TX chain.                                                 */
9795 /*                                                                          */
9796 /* Returns:                                                                 */
9797 /*   Nothing.                                                               */
9798 /****************************************************************************/
9799 static __attribute__ ((noinline)) void
9800 bce_dump_tx_chain(struct bce_softc *sc, u16 tx_prod, int count)
9801 {
9802 	struct tx_bd *txbd;
9803 
9804 	/* First some info about the tx_bd chain structure. */
9805 	BCE_PRINTF(
9806 	    "----------------------------"
9807 	    "  tx_bd  chain  "
9808 	    "----------------------------\n");
9809 
9810 	BCE_PRINTF("page size      = 0x%08X, tx chain pages        = 0x%08X\n",
9811 	    (u32) BCM_PAGE_SIZE, (u32) TX_PAGES);
9812 	BCE_PRINTF("tx_bd per page = 0x%08X, usable tx_bd per page = 0x%08X\n",
9813 	    (u32) TOTAL_TX_BD_PER_PAGE, (u32) USABLE_TX_BD_PER_PAGE);
9814 	BCE_PRINTF("total tx_bd    = 0x%08X\n", (u32) TOTAL_TX_BD);
9815 
9816 	BCE_PRINTF(
9817 	    "----------------------------"
9818 	    "   tx_bd data   "
9819 	    "----------------------------\n");
9820 
9821 	/* Now print out a decoded list of TX buffer descriptors. */
9822 	for (int i = 0; i < count; i++) {
9823 	 	txbd = &sc->tx_bd_chain[TX_PAGE(tx_prod)][TX_IDX(tx_prod)];
9824 		bce_dump_txbd(sc, tx_prod, txbd);
9825 		tx_prod++;
9826 	}
9827 
9828 	BCE_PRINTF(
9829 	    "----------------------------"
9830 	    "----------------"
9831 	    "----------------------------\n");
9832 }
9833 
9834 
9835 /****************************************************************************/
9836 /* Prints out the RX chain.                                                 */
9837 /*                                                                          */
9838 /* Returns:                                                                 */
9839 /*   Nothing.                                                               */
9840 /****************************************************************************/
9841 static __attribute__ ((noinline)) void
9842 bce_dump_rx_bd_chain(struct bce_softc *sc, u16 rx_prod, int count)
9843 {
9844 	struct rx_bd *rxbd;
9845 
9846 	/* First some info about the rx_bd chain structure. */
9847 	BCE_PRINTF(
9848 	    "----------------------------"
9849 	    "  rx_bd  chain  "
9850 	    "----------------------------\n");
9851 
9852 	BCE_PRINTF("page size      = 0x%08X, rx chain pages        = 0x%08X\n",
9853 	    (u32) BCM_PAGE_SIZE, (u32) RX_PAGES);
9854 
9855 	BCE_PRINTF("rx_bd per page = 0x%08X, usable rx_bd per page = 0x%08X\n",
9856 	    (u32) TOTAL_RX_BD_PER_PAGE, (u32) USABLE_RX_BD_PER_PAGE);
9857 
9858 	BCE_PRINTF("total rx_bd    = 0x%08X\n", (u32) TOTAL_RX_BD);
9859 
9860 	BCE_PRINTF(
9861 	    "----------------------------"
9862 	    "   rx_bd data   "
9863 	    "----------------------------\n");
9864 
9865 	/* Now print out the rx_bd's themselves. */
9866 	for (int i = 0; i < count; i++) {
9867 		rxbd = &sc->rx_bd_chain[RX_PAGE(rx_prod)][RX_IDX(rx_prod)];
9868 		bce_dump_rxbd(sc, rx_prod, rxbd);
9869 		rx_prod = RX_CHAIN_IDX(rx_prod + 1);
9870 	}
9871 
9872 	BCE_PRINTF(
9873 	    "----------------------------"
9874 	    "----------------"
9875 	    "----------------------------\n");
9876 }
9877 
9878 
9879 #ifdef BCE_JUMBO_HDRSPLIT
9880 /****************************************************************************/
9881 /* Prints out the page chain.                                               */
9882 /*                                                                          */
9883 /* Returns:                                                                 */
9884 /*   Nothing.                                                               */
9885 /****************************************************************************/
9886 static __attribute__ ((noinline)) void
9887 bce_dump_pg_chain(struct bce_softc *sc, u16 pg_prod, int count)
9888 {
9889 	struct rx_bd *pgbd;
9890 
9891 	/* First some info about the page chain structure. */
9892 	BCE_PRINTF(
9893 	    "----------------------------"
9894 	    "   page chain   "
9895 	    "----------------------------\n");
9896 
9897 	BCE_PRINTF("page size      = 0x%08X, pg chain pages        = 0x%08X\n",
9898 	    (u32) BCM_PAGE_SIZE, (u32) PG_PAGES);
9899 
9900 	BCE_PRINTF("rx_bd per page = 0x%08X, usable rx_bd per page = 0x%08X\n",
9901 	    (u32) TOTAL_PG_BD_PER_PAGE, (u32) USABLE_PG_BD_PER_PAGE);
9902 
9903 	BCE_PRINTF("total rx_bd    = 0x%08X, max_pg_bd             = 0x%08X\n",
9904 	    (u32) TOTAL_PG_BD, (u32) MAX_PG_BD);
9905 
9906 	BCE_PRINTF(
9907 	    "----------------------------"
9908 	    "   page data    "
9909 	    "----------------------------\n");
9910 
9911 	/* Now print out the rx_bd's themselves. */
9912 	for (int i = 0; i < count; i++) {
9913 		pgbd = &sc->pg_bd_chain[PG_PAGE(pg_prod)][PG_IDX(pg_prod)];
9914 		bce_dump_pgbd(sc, pg_prod, pgbd);
9915 		pg_prod = PG_CHAIN_IDX(pg_prod + 1);
9916 	}
9917 
9918 	BCE_PRINTF(
9919 	    "----------------------------"
9920 	    "----------------"
9921 	    "----------------------------\n");
9922 }
9923 #endif
9924 
9925 
9926 #define BCE_PRINT_RX_CONS(arg)						\
9927 if (sblk->status_rx_quick_consumer_index##arg)				\
9928 	BCE_PRINTF("0x%04X(0x%04X) - rx_quick_consumer_index%d\n",	\
9929 	    sblk->status_rx_quick_consumer_index##arg, (u16)		\
9930 	    RX_CHAIN_IDX(sblk->status_rx_quick_consumer_index##arg),	\
9931 	    arg);
9932 
9933 
9934 #define BCE_PRINT_TX_CONS(arg)						\
9935 if (sblk->status_tx_quick_consumer_index##arg)				\
9936 	BCE_PRINTF("0x%04X(0x%04X) - tx_quick_consumer_index%d\n",	\
9937 	    sblk->status_tx_quick_consumer_index##arg, (u16)		\
9938 	    TX_CHAIN_IDX(sblk->status_tx_quick_consumer_index##arg),	\
9939 	    arg);
9940 
9941 /****************************************************************************/
9942 /* Prints out the status block from host memory.                            */
9943 /*                                                                          */
9944 /* Returns:                                                                 */
9945 /*   Nothing.                                                               */
9946 /****************************************************************************/
9947 static __attribute__ ((noinline)) void
9948 bce_dump_status_block(struct bce_softc *sc)
9949 {
9950 	struct status_block *sblk;
9951 
9952 	sblk = sc->status_block;
9953 
9954 	BCE_PRINTF(
9955 	    "----------------------------"
9956 	    "  Status Block  "
9957 	    "----------------------------\n");
9958 
9959 	/* Theses indices are used for normal L2 drivers. */
9960 	BCE_PRINTF("    0x%08X - attn_bits\n",
9961 	    sblk->status_attn_bits);
9962 
9963 	BCE_PRINTF("    0x%08X - attn_bits_ack\n",
9964 	    sblk->status_attn_bits_ack);
9965 
9966 	BCE_PRINT_RX_CONS(0);
9967 	BCE_PRINT_TX_CONS(0)
9968 
9969 	BCE_PRINTF("        0x%04X - status_idx\n", sblk->status_idx);
9970 
9971 	/* Theses indices are not used for normal L2 drivers. */
9972 	BCE_PRINT_RX_CONS(1);   BCE_PRINT_RX_CONS(2);   BCE_PRINT_RX_CONS(3);
9973 	BCE_PRINT_RX_CONS(4);   BCE_PRINT_RX_CONS(5);   BCE_PRINT_RX_CONS(6);
9974 	BCE_PRINT_RX_CONS(7);   BCE_PRINT_RX_CONS(8);   BCE_PRINT_RX_CONS(9);
9975 	BCE_PRINT_RX_CONS(10);  BCE_PRINT_RX_CONS(11);  BCE_PRINT_RX_CONS(12);
9976 	BCE_PRINT_RX_CONS(13);  BCE_PRINT_RX_CONS(14);  BCE_PRINT_RX_CONS(15);
9977 
9978 	BCE_PRINT_TX_CONS(1);   BCE_PRINT_TX_CONS(2);   BCE_PRINT_TX_CONS(3);
9979 
9980 	if (sblk->status_completion_producer_index ||
9981 	    sblk->status_cmd_consumer_index)
9982 		BCE_PRINTF("com_prod  = 0x%08X, cmd_cons      = 0x%08X\n",
9983 		    sblk->status_completion_producer_index,
9984 		    sblk->status_cmd_consumer_index);
9985 
9986 	BCE_PRINTF(
9987 	    "----------------------------"
9988 	    "----------------"
9989 	    "----------------------------\n");
9990 }
9991 
9992 
9993 #define BCE_PRINT_64BIT_STAT(arg) 				\
9994 if (sblk->arg##_lo || sblk->arg##_hi)				\
9995 	BCE_PRINTF("0x%08X:%08X : %s\n", sblk->arg##_hi,	\
9996 	    sblk->arg##_lo, #arg);
9997 
9998 #define BCE_PRINT_32BIT_STAT(arg)				\
9999 if (sblk->arg)							\
10000 	BCE_PRINTF("         0x%08X : %s\n", 			\
10001 	    sblk->arg, #arg);
10002 
10003 /****************************************************************************/
10004 /* Prints out the statistics block from host memory.                        */
10005 /*                                                                          */
10006 /* Returns:                                                                 */
10007 /*   Nothing.                                                               */
10008 /****************************************************************************/
10009 static __attribute__ ((noinline)) void
10010 bce_dump_stats_block(struct bce_softc *sc)
10011 {
10012 	struct statistics_block *sblk;
10013 
10014 	sblk = sc->stats_block;
10015 
10016 	BCE_PRINTF(
10017 	    "---------------"
10018 	    " Stats Block  (All Stats Not Shown Are 0) "
10019 	    "---------------\n");
10020 
10021 	BCE_PRINT_64BIT_STAT(stat_IfHCInOctets);
10022 	BCE_PRINT_64BIT_STAT(stat_IfHCInBadOctets);
10023 	BCE_PRINT_64BIT_STAT(stat_IfHCOutOctets);
10024 	BCE_PRINT_64BIT_STAT(stat_IfHCOutBadOctets);
10025 	BCE_PRINT_64BIT_STAT(stat_IfHCInUcastPkts);
10026 	BCE_PRINT_64BIT_STAT(stat_IfHCInBroadcastPkts);
10027 	BCE_PRINT_64BIT_STAT(stat_IfHCInMulticastPkts);
10028 	BCE_PRINT_64BIT_STAT(stat_IfHCOutUcastPkts);
10029 	BCE_PRINT_64BIT_STAT(stat_IfHCOutBroadcastPkts);
10030 	BCE_PRINT_64BIT_STAT(stat_IfHCOutMulticastPkts);
10031 	BCE_PRINT_32BIT_STAT(
10032 	    stat_emac_tx_stat_dot3statsinternalmactransmiterrors);
10033 	BCE_PRINT_32BIT_STAT(stat_Dot3StatsCarrierSenseErrors);
10034 	BCE_PRINT_32BIT_STAT(stat_Dot3StatsFCSErrors);
10035 	BCE_PRINT_32BIT_STAT(stat_Dot3StatsAlignmentErrors);
10036 	BCE_PRINT_32BIT_STAT(stat_Dot3StatsSingleCollisionFrames);
10037 	BCE_PRINT_32BIT_STAT(stat_Dot3StatsMultipleCollisionFrames);
10038 	BCE_PRINT_32BIT_STAT(stat_Dot3StatsDeferredTransmissions);
10039 	BCE_PRINT_32BIT_STAT(stat_Dot3StatsExcessiveCollisions);
10040 	BCE_PRINT_32BIT_STAT(stat_Dot3StatsLateCollisions);
10041 	BCE_PRINT_32BIT_STAT(stat_EtherStatsCollisions);
10042 	BCE_PRINT_32BIT_STAT(stat_EtherStatsFragments);
10043 	BCE_PRINT_32BIT_STAT(stat_EtherStatsJabbers);
10044 	BCE_PRINT_32BIT_STAT(stat_EtherStatsUndersizePkts);
10045 	BCE_PRINT_32BIT_STAT(stat_EtherStatsOversizePkts);
10046 	BCE_PRINT_32BIT_STAT(stat_EtherStatsPktsRx64Octets);
10047 	BCE_PRINT_32BIT_STAT(stat_EtherStatsPktsRx65Octetsto127Octets);
10048 	BCE_PRINT_32BIT_STAT(stat_EtherStatsPktsRx128Octetsto255Octets);
10049 	BCE_PRINT_32BIT_STAT(stat_EtherStatsPktsRx256Octetsto511Octets);
10050 	BCE_PRINT_32BIT_STAT(stat_EtherStatsPktsRx512Octetsto1023Octets);
10051 	BCE_PRINT_32BIT_STAT(stat_EtherStatsPktsRx1024Octetsto1522Octets);
10052 	BCE_PRINT_32BIT_STAT(stat_EtherStatsPktsRx1523Octetsto9022Octets);
10053 	BCE_PRINT_32BIT_STAT(stat_EtherStatsPktsTx64Octets);
10054 	BCE_PRINT_32BIT_STAT(stat_EtherStatsPktsTx65Octetsto127Octets);
10055 	BCE_PRINT_32BIT_STAT(stat_EtherStatsPktsTx128Octetsto255Octets);
10056 	BCE_PRINT_32BIT_STAT(stat_EtherStatsPktsTx256Octetsto511Octets);
10057 	BCE_PRINT_32BIT_STAT(stat_EtherStatsPktsTx512Octetsto1023Octets);
10058 	BCE_PRINT_32BIT_STAT(stat_EtherStatsPktsTx1024Octetsto1522Octets);
10059 	BCE_PRINT_32BIT_STAT(stat_EtherStatsPktsTx1523Octetsto9022Octets);
10060 	BCE_PRINT_32BIT_STAT(stat_XonPauseFramesReceived);
10061 	BCE_PRINT_32BIT_STAT(stat_XoffPauseFramesReceived);
10062 	BCE_PRINT_32BIT_STAT(stat_OutXonSent);
10063 	BCE_PRINT_32BIT_STAT(stat_OutXoffSent);
10064 	BCE_PRINT_32BIT_STAT(stat_FlowControlDone);
10065 	BCE_PRINT_32BIT_STAT(stat_MacControlFramesReceived);
10066 	BCE_PRINT_32BIT_STAT(stat_XoffStateEntered);
10067 	BCE_PRINT_32BIT_STAT(stat_IfInFramesL2FilterDiscards);
10068 	BCE_PRINT_32BIT_STAT(stat_IfInRuleCheckerDiscards);
10069 	BCE_PRINT_32BIT_STAT(stat_IfInFTQDiscards);
10070 	BCE_PRINT_32BIT_STAT(stat_IfInMBUFDiscards);
10071 	BCE_PRINT_32BIT_STAT(stat_IfInRuleCheckerP4Hit);
10072 	BCE_PRINT_32BIT_STAT(stat_CatchupInRuleCheckerDiscards);
10073 	BCE_PRINT_32BIT_STAT(stat_CatchupInFTQDiscards);
10074 	BCE_PRINT_32BIT_STAT(stat_CatchupInMBUFDiscards);
10075 	BCE_PRINT_32BIT_STAT(stat_CatchupInRuleCheckerP4Hit);
10076 
10077 	BCE_PRINTF(
10078 	    "----------------------------"
10079 	    "----------------"
10080 	    "----------------------------\n");
10081 }
10082 
10083 
10084 /****************************************************************************/
10085 /* Prints out a summary of the driver state.                                */
10086 /*                                                                          */
10087 /* Returns:                                                                 */
10088 /*   Nothing.                                                               */
10089 /****************************************************************************/
10090 static __attribute__ ((noinline)) void
10091 bce_dump_driver_state(struct bce_softc *sc)
10092 {
10093 	u32 val_hi, val_lo;
10094 
10095 	BCE_PRINTF(
10096 	    "-----------------------------"
10097 	    " Driver State "
10098 	    "-----------------------------\n");
10099 
10100 	val_hi = BCE_ADDR_HI(sc);
10101 	val_lo = BCE_ADDR_LO(sc);
10102 	BCE_PRINTF("0x%08X:%08X - (sc) driver softc structure virtual "
10103 	    "address\n", val_hi, val_lo);
10104 
10105 	val_hi = BCE_ADDR_HI(sc->bce_vhandle);
10106 	val_lo = BCE_ADDR_LO(sc->bce_vhandle);
10107 	BCE_PRINTF("0x%08X:%08X - (sc->bce_vhandle) PCI BAR virtual "
10108 	    "address\n", val_hi, val_lo);
10109 
10110 	val_hi = BCE_ADDR_HI(sc->status_block);
10111 	val_lo = BCE_ADDR_LO(sc->status_block);
10112 	BCE_PRINTF("0x%08X:%08X - (sc->status_block) status block "
10113 	    "virtual address\n",	val_hi, val_lo);
10114 
10115 	val_hi = BCE_ADDR_HI(sc->stats_block);
10116 	val_lo = BCE_ADDR_LO(sc->stats_block);
10117 	BCE_PRINTF("0x%08X:%08X - (sc->stats_block) statistics block "
10118 	    "virtual address\n", val_hi, val_lo);
10119 
10120 	val_hi = BCE_ADDR_HI(sc->tx_bd_chain);
10121 	val_lo = BCE_ADDR_LO(sc->tx_bd_chain);
10122 	BCE_PRINTF("0x%08X:%08X - (sc->tx_bd_chain) tx_bd chain "
10123 	    "virtual adddress\n", val_hi, val_lo);
10124 
10125 	val_hi = BCE_ADDR_HI(sc->rx_bd_chain);
10126 	val_lo = BCE_ADDR_LO(sc->rx_bd_chain);
10127 	BCE_PRINTF("0x%08X:%08X - (sc->rx_bd_chain) rx_bd chain "
10128 	    "virtual address\n", val_hi, val_lo);
10129 
10130 #ifdef BCE_JUMBO_HDRSPLIT
10131 	val_hi = BCE_ADDR_HI(sc->pg_bd_chain);
10132 	val_lo = BCE_ADDR_LO(sc->pg_bd_chain);
10133 	BCE_PRINTF("0x%08X:%08X - (sc->pg_bd_chain) page chain "
10134 	    "virtual address\n", val_hi, val_lo);
10135 #endif
10136 
10137 	val_hi = BCE_ADDR_HI(sc->tx_mbuf_ptr);
10138 	val_lo = BCE_ADDR_LO(sc->tx_mbuf_ptr);
10139 	BCE_PRINTF("0x%08X:%08X - (sc->tx_mbuf_ptr) tx mbuf chain "
10140 	    "virtual address\n",	val_hi, val_lo);
10141 
10142 	val_hi = BCE_ADDR_HI(sc->rx_mbuf_ptr);
10143 	val_lo = BCE_ADDR_LO(sc->rx_mbuf_ptr);
10144 	BCE_PRINTF("0x%08X:%08X - (sc->rx_mbuf_ptr) rx mbuf chain "
10145 	    "virtual address\n", val_hi, val_lo);
10146 
10147 #ifdef BCE_JUMBO_HDRSPLIT
10148 	val_hi = BCE_ADDR_HI(sc->pg_mbuf_ptr);
10149 	val_lo = BCE_ADDR_LO(sc->pg_mbuf_ptr);
10150 	BCE_PRINTF("0x%08X:%08X - (sc->pg_mbuf_ptr) page mbuf chain "
10151 	    "virtual address\n", val_hi, val_lo);
10152 #endif
10153 
10154 	BCE_PRINTF("         0x%08X - (sc->interrupts_generated) "
10155 	    "h/w intrs\n", sc->interrupts_generated);
10156 
10157 	BCE_PRINTF("         0x%08X - (sc->interrupts_rx) "
10158 	    "rx interrupts handled\n", sc->interrupts_rx);
10159 
10160 	BCE_PRINTF("         0x%08X - (sc->interrupts_tx) "
10161 	    "tx interrupts handled\n", sc->interrupts_tx);
10162 
10163 	BCE_PRINTF("         0x%08X - (sc->phy_interrupts) "
10164 	    "phy interrupts handled\n", sc->phy_interrupts);
10165 
10166 	BCE_PRINTF("         0x%08X - (sc->last_status_idx) "
10167 	    "status block index\n", sc->last_status_idx);
10168 
10169 	BCE_PRINTF("     0x%04X(0x%04X) - (sc->tx_prod) tx producer "
10170 	    "index\n", sc->tx_prod, (u16) TX_CHAIN_IDX(sc->tx_prod));
10171 
10172 	BCE_PRINTF("     0x%04X(0x%04X) - (sc->tx_cons) tx consumer "
10173 	    "index\n", sc->tx_cons, (u16) TX_CHAIN_IDX(sc->tx_cons));
10174 
10175 	BCE_PRINTF("         0x%08X - (sc->tx_prod_bseq) tx producer "
10176 	    "byte seq index\n",	sc->tx_prod_bseq);
10177 
10178 	BCE_PRINTF("         0x%08X - (sc->debug_tx_mbuf_alloc) tx "
10179 	    "mbufs allocated\n", sc->debug_tx_mbuf_alloc);
10180 
10181 	BCE_PRINTF("         0x%08X - (sc->used_tx_bd) used "
10182 	    "tx_bd's\n", sc->used_tx_bd);
10183 
10184 	BCE_PRINTF("0x%08X/%08X - (sc->tx_hi_watermark) tx hi "
10185 	    "watermark\n", sc->tx_hi_watermark, sc->max_tx_bd);
10186 
10187 	BCE_PRINTF("     0x%04X(0x%04X) - (sc->rx_prod) rx producer "
10188 	    "index\n", sc->rx_prod, (u16) RX_CHAIN_IDX(sc->rx_prod));
10189 
10190 	BCE_PRINTF("     0x%04X(0x%04X) - (sc->rx_cons) rx consumer "
10191 	    "index\n", sc->rx_cons, (u16) RX_CHAIN_IDX(sc->rx_cons));
10192 
10193 	BCE_PRINTF("         0x%08X - (sc->rx_prod_bseq) rx producer "
10194 	    "byte seq index\n",	sc->rx_prod_bseq);
10195 
10196 	BCE_PRINTF("         0x%08X - (sc->debug_rx_mbuf_alloc) rx "
10197 	    "mbufs allocated\n", sc->debug_rx_mbuf_alloc);
10198 
10199 	BCE_PRINTF("         0x%08X - (sc->free_rx_bd) free "
10200 	    "rx_bd's\n", sc->free_rx_bd);
10201 
10202 #ifdef BCE_JUMBO_HDRSPLIT
10203 	BCE_PRINTF("     0x%04X(0x%04X) - (sc->pg_prod) page producer "
10204 	    "index\n", sc->pg_prod, (u16) PG_CHAIN_IDX(sc->pg_prod));
10205 
10206 	BCE_PRINTF("     0x%04X(0x%04X) - (sc->pg_cons) page consumer "
10207 	    "index\n", sc->pg_cons, (u16) PG_CHAIN_IDX(sc->pg_cons));
10208 
10209 	BCE_PRINTF("         0x%08X - (sc->debug_pg_mbuf_alloc) page "
10210 	    "mbufs allocated\n", sc->debug_pg_mbuf_alloc);
10211 
10212 	BCE_PRINTF("         0x%08X - (sc->free_pg_bd) free page "
10213 	    "rx_bd's\n", sc->free_pg_bd);
10214 
10215 	BCE_PRINTF("0x%08X/%08X - (sc->pg_low_watermark) page low "
10216 	    "watermark\n", sc->pg_low_watermark, sc->max_pg_bd);
10217 #endif
10218 
10219 	BCE_PRINTF("         0x%08X - (sc->mbuf_alloc_failed_count) "
10220 	    "mbuf alloc failures\n", sc->mbuf_alloc_failed_count);
10221 
10222 	BCE_PRINTF("         0x%08X - (sc->bce_flags) "
10223 	    "bce mac flags\n", sc->bce_flags);
10224 
10225 	BCE_PRINTF("         0x%08X - (sc->bce_phy_flags) "
10226 	    "bce phy flags\n", sc->bce_phy_flags);
10227 
10228 	BCE_PRINTF(
10229 	    "----------------------------"
10230 	    "----------------"
10231 	    "----------------------------\n");
10232 }
10233 
10234 
10235 /****************************************************************************/
10236 /* Prints out the hardware state through a summary of important register,   */
10237 /* followed by a complete register dump.                                    */
10238 /*                                                                          */
10239 /* Returns:                                                                 */
10240 /*   Nothing.                                                               */
10241 /****************************************************************************/
10242 static __attribute__ ((noinline)) void
10243 bce_dump_hw_state(struct bce_softc *sc)
10244 {
10245 	u32 val;
10246 
10247 	BCE_PRINTF(
10248 	    "----------------------------"
10249 	    " Hardware State "
10250 	    "----------------------------\n");
10251 
10252 	BCE_PRINTF("%s - bootcode version\n", sc->bce_bc_ver);
10253 
10254 	val = REG_RD(sc, BCE_MISC_ENABLE_STATUS_BITS);
10255 	BCE_PRINTF("0x%08X - (0x%06X) misc_enable_status_bits\n",
10256 	    val, BCE_MISC_ENABLE_STATUS_BITS);
10257 
10258 	val = REG_RD(sc, BCE_DMA_STATUS);
10259 	BCE_PRINTF("0x%08X - (0x%06X) dma_status\n",
10260 	    val, BCE_DMA_STATUS);
10261 
10262 	val = REG_RD(sc, BCE_CTX_STATUS);
10263 	BCE_PRINTF("0x%08X - (0x%06X) ctx_status\n",
10264 	    val, BCE_CTX_STATUS);
10265 
10266 	val = REG_RD(sc, BCE_EMAC_STATUS);
10267 	BCE_PRINTF("0x%08X - (0x%06X) emac_status\n",
10268 	    val, BCE_EMAC_STATUS);
10269 
10270 	val = REG_RD(sc, BCE_RPM_STATUS);
10271 	BCE_PRINTF("0x%08X - (0x%06X) rpm_status\n",
10272 	    val, BCE_RPM_STATUS);
10273 
10274 	/* ToDo: Create a #define for this constant. */
10275 	val = REG_RD(sc, 0x2004);
10276 	BCE_PRINTF("0x%08X - (0x%06X) rlup_status\n",
10277 	    val, 0x2004);
10278 
10279 	val = REG_RD(sc, BCE_RV2P_STATUS);
10280 	BCE_PRINTF("0x%08X - (0x%06X) rv2p_status\n",
10281 	    val, BCE_RV2P_STATUS);
10282 
10283 	/* ToDo: Create a #define for this constant. */
10284 	val = REG_RD(sc, 0x2c04);
10285 	BCE_PRINTF("0x%08X - (0x%06X) rdma_status\n",
10286 	    val, 0x2c04);
10287 
10288 	val = REG_RD(sc, BCE_TBDR_STATUS);
10289 	BCE_PRINTF("0x%08X - (0x%06X) tbdr_status\n",
10290 	    val, BCE_TBDR_STATUS);
10291 
10292 	val = REG_RD(sc, BCE_TDMA_STATUS);
10293 	BCE_PRINTF("0x%08X - (0x%06X) tdma_status\n",
10294 	    val, BCE_TDMA_STATUS);
10295 
10296 	val = REG_RD(sc, BCE_HC_STATUS);
10297 	BCE_PRINTF("0x%08X - (0x%06X) hc_status\n",
10298 	    val, BCE_HC_STATUS);
10299 
10300 	val = REG_RD_IND(sc, BCE_TXP_CPU_STATE);
10301 	BCE_PRINTF("0x%08X - (0x%06X) txp_cpu_state\n",
10302 	    val, BCE_TXP_CPU_STATE);
10303 
10304 	val = REG_RD_IND(sc, BCE_TPAT_CPU_STATE);
10305 	BCE_PRINTF("0x%08X - (0x%06X) tpat_cpu_state\n",
10306 	    val, BCE_TPAT_CPU_STATE);
10307 
10308 	val = REG_RD_IND(sc, BCE_RXP_CPU_STATE);
10309 	BCE_PRINTF("0x%08X - (0x%06X) rxp_cpu_state\n",
10310 	    val, BCE_RXP_CPU_STATE);
10311 
10312 	val = REG_RD_IND(sc, BCE_COM_CPU_STATE);
10313 	BCE_PRINTF("0x%08X - (0x%06X) com_cpu_state\n",
10314 	    val, BCE_COM_CPU_STATE);
10315 
10316 	val = REG_RD_IND(sc, BCE_MCP_CPU_STATE);
10317 	BCE_PRINTF("0x%08X - (0x%06X) mcp_cpu_state\n",
10318 	    val, BCE_MCP_CPU_STATE);
10319 
10320 	val = REG_RD_IND(sc, BCE_CP_CPU_STATE);
10321 	BCE_PRINTF("0x%08X - (0x%06X) cp_cpu_state\n",
10322 	    val, BCE_CP_CPU_STATE);
10323 
10324 	BCE_PRINTF(
10325 	    "----------------------------"
10326 	    "----------------"
10327 	    "----------------------------\n");
10328 
10329 	BCE_PRINTF(
10330 	    "----------------------------"
10331 	    " Register  Dump "
10332 	    "----------------------------\n");
10333 
10334 	for (int i = 0x400; i < 0x8000; i += 0x10) {
10335 		BCE_PRINTF("0x%04X: 0x%08X 0x%08X 0x%08X 0x%08X\n",
10336 		    i, REG_RD(sc, i), REG_RD(sc, i + 0x4),
10337 		    REG_RD(sc, i + 0x8), REG_RD(sc, i + 0xC));
10338 	}
10339 
10340 	BCE_PRINTF(
10341 	    "----------------------------"
10342 	    "----------------"
10343 	    "----------------------------\n");
10344 }
10345 
10346 
10347 /****************************************************************************/
10348 /* Prints out the mailbox queue registers.                                  */
10349 /*                                                                          */
10350 /* Returns:                                                                 */
10351 /*   Nothing.                                                               */
10352 /****************************************************************************/
10353 static __attribute__ ((noinline)) void
10354 bce_dump_mq_regs(struct bce_softc *sc)
10355 {
10356 	BCE_PRINTF(
10357 	    "----------------------------"
10358 	    "    MQ Regs     "
10359 	    "----------------------------\n");
10360 
10361 	BCE_PRINTF(
10362 	    "----------------------------"
10363 	    "----------------"
10364 	    "----------------------------\n");
10365 
10366 	for (int i = 0x3c00; i < 0x4000; i += 0x10) {
10367 		BCE_PRINTF("0x%04X: 0x%08X 0x%08X 0x%08X 0x%08X\n",
10368 		    i, REG_RD(sc, i), REG_RD(sc, i + 0x4),
10369 		    REG_RD(sc, i + 0x8), REG_RD(sc, i + 0xC));
10370 	}
10371 
10372 	BCE_PRINTF(
10373 	    "----------------------------"
10374 	    "----------------"
10375 	    "----------------------------\n");
10376 }
10377 
10378 
10379 /****************************************************************************/
10380 /* Prints out the bootcode state.                                           */
10381 /*                                                                          */
10382 /* Returns:                                                                 */
10383 /*   Nothing.                                                               */
10384 /****************************************************************************/
10385 static __attribute__ ((noinline)) void
10386 bce_dump_bc_state(struct bce_softc *sc)
10387 {
10388 	u32 val;
10389 
10390 	BCE_PRINTF(
10391 	    "----------------------------"
10392 	    " Bootcode State "
10393 	    "----------------------------\n");
10394 
10395 	BCE_PRINTF("%s - bootcode version\n", sc->bce_bc_ver);
10396 
10397 	val = bce_shmem_rd(sc, BCE_BC_RESET_TYPE);
10398 	BCE_PRINTF("0x%08X - (0x%06X) reset_type\n",
10399 	    val, BCE_BC_RESET_TYPE);
10400 
10401 	val = bce_shmem_rd(sc, BCE_BC_STATE);
10402 	BCE_PRINTF("0x%08X - (0x%06X) state\n",
10403 	    val, BCE_BC_STATE);
10404 
10405 	val = bce_shmem_rd(sc, BCE_BC_STATE_CONDITION);
10406 	BCE_PRINTF("0x%08X - (0x%06X) condition\n",
10407 	    val, BCE_BC_STATE_CONDITION);
10408 
10409 	val = bce_shmem_rd(sc, BCE_BC_STATE_DEBUG_CMD);
10410 	BCE_PRINTF("0x%08X - (0x%06X) debug_cmd\n",
10411 	    val, BCE_BC_STATE_DEBUG_CMD);
10412 
10413 	BCE_PRINTF(
10414 	    "----------------------------"
10415 	    "----------------"
10416 	    "----------------------------\n");
10417 }
10418 
10419 
10420 /****************************************************************************/
10421 /* Prints out the TXP processor state.                                      */
10422 /*                                                                          */
10423 /* Returns:                                                                 */
10424 /*   Nothing.                                                               */
10425 /****************************************************************************/
10426 static __attribute__ ((noinline)) void
10427 bce_dump_txp_state(struct bce_softc *sc, int regs)
10428 {
10429 	u32 val;
10430 	u32 fw_version[3];
10431 
10432 	BCE_PRINTF(
10433 	    "----------------------------"
10434 	    "   TXP  State   "
10435 	    "----------------------------\n");
10436 
10437 	for (int i = 0; i < 3; i++)
10438 		fw_version[i] = htonl(REG_RD_IND(sc,
10439 		    (BCE_TXP_SCRATCH + 0x10 + i * 4)));
10440 	BCE_PRINTF("Firmware version - %s\n", (char *) fw_version);
10441 
10442 	val = REG_RD_IND(sc, BCE_TXP_CPU_MODE);
10443 	BCE_PRINTF("0x%08X - (0x%06X) txp_cpu_mode\n",
10444 	    val, BCE_TXP_CPU_MODE);
10445 
10446 	val = REG_RD_IND(sc, BCE_TXP_CPU_STATE);
10447 	BCE_PRINTF("0x%08X - (0x%06X) txp_cpu_state\n",
10448 	    val, BCE_TXP_CPU_STATE);
10449 
10450 	val = REG_RD_IND(sc, BCE_TXP_CPU_EVENT_MASK);
10451 	BCE_PRINTF("0x%08X - (0x%06X) txp_cpu_event_mask\n",
10452 	    val, BCE_TXP_CPU_EVENT_MASK);
10453 
10454 	if (regs) {
10455 		BCE_PRINTF(
10456 		    "----------------------------"
10457 		    " Register  Dump "
10458 		    "----------------------------\n");
10459 
10460 		for (int i = BCE_TXP_CPU_MODE; i < 0x68000; i += 0x10) {
10461 			/* Skip the big blank spaces */
10462 			if (i < 0x454000 && i > 0x5ffff)
10463 				BCE_PRINTF("0x%04X: 0x%08X 0x%08X "
10464 				    "0x%08X 0x%08X\n", i,
10465 				    REG_RD_IND(sc, i),
10466 				    REG_RD_IND(sc, i + 0x4),
10467 				    REG_RD_IND(sc, i + 0x8),
10468 				    REG_RD_IND(sc, i + 0xC));
10469 		}
10470 	}
10471 
10472 	BCE_PRINTF(
10473 	    "----------------------------"
10474 	    "----------------"
10475 	    "----------------------------\n");
10476 }
10477 
10478 
10479 /****************************************************************************/
10480 /* Prints out the RXP processor state.                                      */
10481 /*                                                                          */
10482 /* Returns:                                                                 */
10483 /*   Nothing.                                                               */
10484 /****************************************************************************/
10485 static __attribute__ ((noinline)) void
10486 bce_dump_rxp_state(struct bce_softc *sc, int regs)
10487 {
10488 	u32 val;
10489 	u32 fw_version[3];
10490 
10491 	BCE_PRINTF(
10492 	    "----------------------------"
10493 	    "   RXP  State   "
10494 	    "----------------------------\n");
10495 
10496 	for (int i = 0; i < 3; i++)
10497 		fw_version[i] = htonl(REG_RD_IND(sc,
10498 		    (BCE_RXP_SCRATCH + 0x10 + i * 4)));
10499 
10500 	BCE_PRINTF("Firmware version - %s\n", (char *) fw_version);
10501 
10502 	val = REG_RD_IND(sc, BCE_RXP_CPU_MODE);
10503 	BCE_PRINTF("0x%08X - (0x%06X) rxp_cpu_mode\n",
10504 	    val, BCE_RXP_CPU_MODE);
10505 
10506 	val = REG_RD_IND(sc, BCE_RXP_CPU_STATE);
10507 	BCE_PRINTF("0x%08X - (0x%06X) rxp_cpu_state\n",
10508 	    val, BCE_RXP_CPU_STATE);
10509 
10510 	val = REG_RD_IND(sc, BCE_RXP_CPU_EVENT_MASK);
10511 	BCE_PRINTF("0x%08X - (0x%06X) rxp_cpu_event_mask\n",
10512 	    val, BCE_RXP_CPU_EVENT_MASK);
10513 
10514 	if (regs) {
10515 		BCE_PRINTF(
10516 		    "----------------------------"
10517 		    " Register  Dump "
10518 		    "----------------------------\n");
10519 
10520 		for (int i = BCE_RXP_CPU_MODE; i < 0xe8fff; i += 0x10) {
10521 			/* Skip the big blank sapces */
10522 			if (i < 0xc5400 && i > 0xdffff)
10523 				BCE_PRINTF("0x%04X: 0x%08X 0x%08X "
10524 				    "0x%08X 0x%08X\n", i,
10525 				    REG_RD_IND(sc, i),
10526 				    REG_RD_IND(sc, i + 0x4),
10527 				    REG_RD_IND(sc, i + 0x8),
10528 				    REG_RD_IND(sc, i + 0xC));
10529 		}
10530 	}
10531 
10532 	BCE_PRINTF(
10533 	    "----------------------------"
10534 	    "----------------"
10535 	    "----------------------------\n");
10536 }
10537 
10538 
10539 /****************************************************************************/
10540 /* Prints out the TPAT processor state.                                     */
10541 /*                                                                          */
10542 /* Returns:                                                                 */
10543 /*   Nothing.                                                               */
10544 /****************************************************************************/
10545 static __attribute__ ((noinline)) void
10546 bce_dump_tpat_state(struct bce_softc *sc, int regs)
10547 {
10548 	u32 val;
10549 	u32 fw_version[3];
10550 
10551 	BCE_PRINTF(
10552 	    "----------------------------"
10553 	    "   TPAT State   "
10554 	    "----------------------------\n");
10555 
10556 	for (int i = 0; i < 3; i++)
10557 		fw_version[i] = htonl(REG_RD_IND(sc,
10558 		    (BCE_TPAT_SCRATCH + 0x410 + i * 4)));
10559 
10560 	BCE_PRINTF("Firmware version - %s\n", (char *) fw_version);
10561 
10562 	val = REG_RD_IND(sc, BCE_TPAT_CPU_MODE);
10563 	BCE_PRINTF("0x%08X - (0x%06X) tpat_cpu_mode\n",
10564 	    val, BCE_TPAT_CPU_MODE);
10565 
10566 	val = REG_RD_IND(sc, BCE_TPAT_CPU_STATE);
10567 	BCE_PRINTF("0x%08X - (0x%06X) tpat_cpu_state\n",
10568 	    val, BCE_TPAT_CPU_STATE);
10569 
10570 	val = REG_RD_IND(sc, BCE_TPAT_CPU_EVENT_MASK);
10571 	BCE_PRINTF("0x%08X - (0x%06X) tpat_cpu_event_mask\n",
10572 	    val, BCE_TPAT_CPU_EVENT_MASK);
10573 
10574 	if (regs) {
10575 		BCE_PRINTF(
10576 		    "----------------------------"
10577 		    " Register  Dump "
10578 		    "----------------------------\n");
10579 
10580 		for (int i = BCE_TPAT_CPU_MODE; i < 0xa3fff; i += 0x10) {
10581 			/* Skip the big blank spaces */
10582 			if (i < 0x854000 && i > 0x9ffff)
10583 				BCE_PRINTF("0x%04X: 0x%08X 0x%08X "
10584 				    "0x%08X 0x%08X\n", i,
10585 				    REG_RD_IND(sc, i),
10586 				    REG_RD_IND(sc, i + 0x4),
10587 				    REG_RD_IND(sc, i + 0x8),
10588 				    REG_RD_IND(sc, i + 0xC));
10589 		}
10590 	}
10591 
10592 	BCE_PRINTF(
10593 		"----------------------------"
10594 		"----------------"
10595 		"----------------------------\n");
10596 }
10597 
10598 
10599 /****************************************************************************/
10600 /* Prints out the Command Procesor (CP) state.                              */
10601 /*                                                                          */
10602 /* Returns:                                                                 */
10603 /*   Nothing.                                                               */
10604 /****************************************************************************/
10605 static __attribute__ ((noinline)) void
10606 bce_dump_cp_state(struct bce_softc *sc, int regs)
10607 {
10608 	u32 val;
10609 	u32 fw_version[3];
10610 
10611 	BCE_PRINTF(
10612 	    "----------------------------"
10613 	    "    CP State    "
10614 	    "----------------------------\n");
10615 
10616 	for (int i = 0; i < 3; i++)
10617 		fw_version[i] = htonl(REG_RD_IND(sc,
10618 		    (BCE_CP_SCRATCH + 0x10 + i * 4)));
10619 
10620 	BCE_PRINTF("Firmware version - %s\n", (char *) fw_version);
10621 
10622 	val = REG_RD_IND(sc, BCE_CP_CPU_MODE);
10623 	BCE_PRINTF("0x%08X - (0x%06X) cp_cpu_mode\n",
10624 	    val, BCE_CP_CPU_MODE);
10625 
10626 	val = REG_RD_IND(sc, BCE_CP_CPU_STATE);
10627 	BCE_PRINTF("0x%08X - (0x%06X) cp_cpu_state\n",
10628 	    val, BCE_CP_CPU_STATE);
10629 
10630 	val = REG_RD_IND(sc, BCE_CP_CPU_EVENT_MASK);
10631 	BCE_PRINTF("0x%08X - (0x%06X) cp_cpu_event_mask\n", val,
10632 	    BCE_CP_CPU_EVENT_MASK);
10633 
10634 	if (regs) {
10635 		BCE_PRINTF(
10636 		    "----------------------------"
10637 		    " Register  Dump "
10638 		    "----------------------------\n");
10639 
10640 		for (int i = BCE_CP_CPU_MODE; i < 0x1aa000; i += 0x10) {
10641 			/* Skip the big blank spaces */
10642 			if (i < 0x185400 && i > 0x19ffff)
10643 				BCE_PRINTF("0x%04X: 0x%08X 0x%08X "
10644 				    "0x%08X 0x%08X\n", i,
10645 				    REG_RD_IND(sc, i),
10646 				    REG_RD_IND(sc, i + 0x4),
10647 				    REG_RD_IND(sc, i + 0x8),
10648 				    REG_RD_IND(sc, i + 0xC));
10649 		}
10650 	}
10651 
10652 	BCE_PRINTF(
10653 	    "----------------------------"
10654 	    "----------------"
10655 	    "----------------------------\n");
10656 }
10657 
10658 
10659 /****************************************************************************/
10660 /* Prints out the Completion Procesor (COM) state.                          */
10661 /*                                                                          */
10662 /* Returns:                                                                 */
10663 /*   Nothing.                                                               */
10664 /****************************************************************************/
10665 static __attribute__ ((noinline)) void
10666 bce_dump_com_state(struct bce_softc *sc, int regs)
10667 {
10668 	u32 val;
10669 	u32 fw_version[4];
10670 
10671 	BCE_PRINTF(
10672 	    "----------------------------"
10673 	    "   COM State    "
10674 	    "----------------------------\n");
10675 
10676 	for (int i = 0; i < 3; i++)
10677 		fw_version[i] = htonl(REG_RD_IND(sc,
10678 		    (BCE_COM_SCRATCH + 0x10 + i * 4)));
10679 
10680 	BCE_PRINTF("Firmware version - %s\n", (char *) fw_version);
10681 
10682 	val = REG_RD_IND(sc, BCE_COM_CPU_MODE);
10683 	BCE_PRINTF("0x%08X - (0x%06X) com_cpu_mode\n",
10684 	    val, BCE_COM_CPU_MODE);
10685 
10686 	val = REG_RD_IND(sc, BCE_COM_CPU_STATE);
10687 	BCE_PRINTF("0x%08X - (0x%06X) com_cpu_state\n",
10688 	    val, BCE_COM_CPU_STATE);
10689 
10690 	val = REG_RD_IND(sc, BCE_COM_CPU_EVENT_MASK);
10691 	BCE_PRINTF("0x%08X - (0x%06X) com_cpu_event_mask\n", val,
10692 	    BCE_COM_CPU_EVENT_MASK);
10693 
10694 	if (regs) {
10695 		BCE_PRINTF(
10696 		    "----------------------------"
10697 		    " Register  Dump "
10698 		    "----------------------------\n");
10699 
10700 		for (int i = BCE_COM_CPU_MODE; i < 0x1053e8; i += 0x10) {
10701 			BCE_PRINTF("0x%04X: 0x%08X 0x%08X "
10702 			    "0x%08X 0x%08X\n", i,
10703 			    REG_RD_IND(sc, i),
10704 			    REG_RD_IND(sc, i + 0x4),
10705 			    REG_RD_IND(sc, i + 0x8),
10706 			    REG_RD_IND(sc, i + 0xC));
10707 		}
10708 	}
10709 
10710 	BCE_PRINTF(
10711 		"----------------------------"
10712 		"----------------"
10713 		"----------------------------\n");
10714 }
10715 
10716 
10717 /****************************************************************************/
10718 /* Prints out the Receive Virtual 2 Physical (RV2P) state.                  */
10719 /*                                                                          */
10720 /* Returns:                                                                 */
10721 /*   Nothing.                                                               */
10722 /****************************************************************************/
10723 static __attribute__ ((noinline)) void
10724 bce_dump_rv2p_state(struct bce_softc *sc)
10725 {
10726 	u32 val, pc1, pc2, fw_ver_high, fw_ver_low;
10727 
10728 	BCE_PRINTF(
10729 	    "----------------------------"
10730 	    "   RV2P State   "
10731 	    "----------------------------\n");
10732 
10733 	/* Stall the RV2P processors. */
10734 	val = REG_RD_IND(sc, BCE_RV2P_CONFIG);
10735 	val |= BCE_RV2P_CONFIG_STALL_PROC1 | BCE_RV2P_CONFIG_STALL_PROC2;
10736 	REG_WR_IND(sc, BCE_RV2P_CONFIG, val);
10737 
10738 	/* Read the firmware version. */
10739 	val = 0x00000001;
10740 	REG_WR_IND(sc, BCE_RV2P_PROC1_ADDR_CMD, val);
10741 	fw_ver_low = REG_RD_IND(sc, BCE_RV2P_INSTR_LOW);
10742 	fw_ver_high = REG_RD_IND(sc, BCE_RV2P_INSTR_HIGH) &
10743 	    BCE_RV2P_INSTR_HIGH_HIGH;
10744 	BCE_PRINTF("RV2P1 Firmware version - 0x%08X:0x%08X\n",
10745 	    fw_ver_high, fw_ver_low);
10746 
10747 	val = 0x00000001;
10748 	REG_WR_IND(sc, BCE_RV2P_PROC2_ADDR_CMD, val);
10749 	fw_ver_low = REG_RD_IND(sc, BCE_RV2P_INSTR_LOW);
10750 	fw_ver_high = REG_RD_IND(sc, BCE_RV2P_INSTR_HIGH) &
10751 	    BCE_RV2P_INSTR_HIGH_HIGH;
10752 	BCE_PRINTF("RV2P2 Firmware version - 0x%08X:0x%08X\n",
10753 	    fw_ver_high, fw_ver_low);
10754 
10755 	/* Resume the RV2P processors. */
10756 	val = REG_RD_IND(sc, BCE_RV2P_CONFIG);
10757 	val &= ~(BCE_RV2P_CONFIG_STALL_PROC1 | BCE_RV2P_CONFIG_STALL_PROC2);
10758 	REG_WR_IND(sc, BCE_RV2P_CONFIG, val);
10759 
10760 	/* Fetch the program counter value. */
10761 	val = 0x68007800;
10762 	REG_WR_IND(sc, BCE_RV2P_DEBUG_VECT_PEEK, val);
10763 	val = REG_RD_IND(sc, BCE_RV2P_DEBUG_VECT_PEEK);
10764 	pc1 = (val & BCE_RV2P_DEBUG_VECT_PEEK_1_VALUE);
10765 	pc2 = (val & BCE_RV2P_DEBUG_VECT_PEEK_2_VALUE) >> 16;
10766 	BCE_PRINTF("0x%08X - RV2P1 program counter (1st read)\n", pc1);
10767 	BCE_PRINTF("0x%08X - RV2P2 program counter (1st read)\n", pc2);
10768 
10769 	/* Fetch the program counter value again to see if it is advancing. */
10770 	val = 0x68007800;
10771 	REG_WR_IND(sc, BCE_RV2P_DEBUG_VECT_PEEK, val);
10772 	val = REG_RD_IND(sc, BCE_RV2P_DEBUG_VECT_PEEK);
10773 	pc1 = (val & BCE_RV2P_DEBUG_VECT_PEEK_1_VALUE);
10774 	pc2 = (val & BCE_RV2P_DEBUG_VECT_PEEK_2_VALUE) >> 16;
10775 	BCE_PRINTF("0x%08X - RV2P1 program counter (2nd read)\n", pc1);
10776 	BCE_PRINTF("0x%08X - RV2P2 program counter (2nd read)\n", pc2);
10777 
10778 	BCE_PRINTF(
10779 	    "----------------------------"
10780 	    "----------------"
10781 	    "----------------------------\n");
10782 }
10783 
10784 
10785 /****************************************************************************/
10786 /* Prints out the driver state and then enters the debugger.                */
10787 /*                                                                          */
10788 /* Returns:                                                                 */
10789 /*   Nothing.                                                               */
10790 /****************************************************************************/
10791 static __attribute__ ((noinline)) void
10792 bce_breakpoint(struct bce_softc *sc)
10793 {
10794 
10795 	/*
10796 	 * Unreachable code to silence compiler warnings
10797 	 * about unused functions.
10798 	 */
10799 	if (0) {
10800 		bce_freeze_controller(sc);
10801 		bce_unfreeze_controller(sc);
10802 		bce_dump_enet(sc, NULL);
10803 		bce_dump_txbd(sc, 0, NULL);
10804 		bce_dump_rxbd(sc, 0, NULL);
10805 		bce_dump_tx_mbuf_chain(sc, 0, USABLE_TX_BD);
10806 		bce_dump_rx_mbuf_chain(sc, 0, USABLE_RX_BD);
10807 		bce_dump_l2fhdr(sc, 0, NULL);
10808 		bce_dump_ctx(sc, RX_CID);
10809 		bce_dump_ftqs(sc);
10810 		bce_dump_tx_chain(sc, 0, USABLE_TX_BD);
10811 		bce_dump_rx_bd_chain(sc, 0, USABLE_RX_BD);
10812 		bce_dump_status_block(sc);
10813 		bce_dump_stats_block(sc);
10814 		bce_dump_driver_state(sc);
10815 		bce_dump_hw_state(sc);
10816 		bce_dump_bc_state(sc);
10817 		bce_dump_txp_state(sc, 0);
10818 		bce_dump_rxp_state(sc, 0);
10819 		bce_dump_tpat_state(sc, 0);
10820 		bce_dump_cp_state(sc, 0);
10821 		bce_dump_com_state(sc, 0);
10822 		bce_dump_rv2p_state(sc);
10823 
10824 #ifdef BCE_JUMBO_HDRSPLIT
10825 		bce_dump_pgbd(sc, 0, NULL);
10826 		bce_dump_pg_mbuf_chain(sc, 0, USABLE_PG_BD);
10827 		bce_dump_pg_chain(sc, 0, USABLE_PG_BD);
10828 #endif
10829 	}
10830 
10831 	bce_dump_status_block(sc);
10832 	bce_dump_driver_state(sc);
10833 
10834 	/* Call the debugger. */
10835 	breakpoint();
10836 
10837 	return;
10838 }
10839 #endif
10840 
10841