xref: /freebsd/sys/dev/bce/if_bce.c (revision a3cf0ef5a295c885c895fabfd56470c0d1db322d)
1 /*-
2  * Copyright (c) 2006-2010 Broadcom Corporation
3  *	David Christensen <davidch@broadcom.com>.  All rights reserved.
4  *
5  * Redistribution and use in source and binary forms, with or without
6  * modification, are permitted provided that the following conditions
7  * are met:
8  *
9  * 1. Redistributions of source code must retain the above copyright
10  *    notice, this list of conditions and the following disclaimer.
11  * 2. Redistributions in binary form must reproduce the above copyright
12  *    notice, this list of conditions and the following disclaimer in the
13  *    documentation and/or other materials provided with the distribution.
14  * 3. Neither the name of Broadcom Corporation nor the name of its contributors
15  *    may be used to endorse or promote products derived from this software
16  *    without specific prior written consent.
17  *
18  * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS'
19  * AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
20  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
21  * ARE DISCLAIMED.  IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS
22  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
23  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
24  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
25  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
26  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
27  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF
28  * THE POSSIBILITY OF SUCH DAMAGE.
29  */
30 
31 #include <sys/cdefs.h>
32 __FBSDID("$FreeBSD$");
33 
34 /*
35  * The following controllers are supported by this driver:
36  *   BCM5706C A2, A3
37  *   BCM5706S A2, A3
38  *   BCM5708C B1, B2
39  *   BCM5708S B1, B2
40  *   BCM5709C A1, C0
41  *   BCM5709S A1, C0
42  *   BCM5716C C0
43  *   BCM5716S C0
44  *
45  * The following controllers are not supported by this driver:
46  *   BCM5706C A0, A1 (pre-production)
47  *   BCM5706S A0, A1 (pre-production)
48  *   BCM5708C A0, B0 (pre-production)
49  *   BCM5708S A0, B0 (pre-production)
50  *   BCM5709C A0  B0, B1, B2 (pre-production)
51  *   BCM5709S A0, B0, B1, B2 (pre-production)
52  */
53 
54 #include "opt_bce.h"
55 
56 #include <dev/bce/if_bcereg.h>
57 #include <dev/bce/if_bcefw.h>
58 
59 /****************************************************************************/
60 /* BCE Debug Options                                                        */
61 /****************************************************************************/
62 #ifdef BCE_DEBUG
63 	u32 bce_debug = BCE_WARN;
64 
65 	/*          0 = Never              */
66 	/*          1 = 1 in 2,147,483,648 */
67 	/*        256 = 1 in     8,388,608 */
68 	/*       2048 = 1 in     1,048,576 */
69 	/*      65536 = 1 in        32,768 */
70 	/*    1048576 = 1 in         2,048 */
71 	/*  268435456 =	1 in             8 */
72 	/*  536870912 = 1 in             4 */
73 	/* 1073741824 = 1 in             2 */
74 
75 	/* Controls how often the l2_fhdr frame error check will fail. */
76 	int l2fhdr_error_sim_control = 0;
77 
78 	/* Controls how often the unexpected attention check will fail. */
79 	int unexpected_attention_sim_control = 0;
80 
81 	/* Controls how often to simulate an mbuf allocation failure. */
82 	int mbuf_alloc_failed_sim_control = 0;
83 
84 	/* Controls how often to simulate a DMA mapping failure. */
85 	int dma_map_addr_failed_sim_control = 0;
86 
87 	/* Controls how often to simulate a bootcode failure. */
88 	int bootcode_running_failure_sim_control = 0;
89 #endif
90 
91 /****************************************************************************/
92 /* BCE Build Time Options                                                   */
93 /****************************************************************************/
94 /* #define BCE_NVRAM_WRITE_SUPPORT 1 */
95 
96 
97 /****************************************************************************/
98 /* PCI Device ID Table                                                      */
99 /*                                                                          */
100 /* Used by bce_probe() to identify the devices supported by this driver.    */
101 /****************************************************************************/
102 #define BCE_DEVDESC_MAX		64
103 
104 static struct bce_type bce_devs[] = {
105 	/* BCM5706C Controllers and OEM boards. */
106 	{ BRCM_VENDORID, BRCM_DEVICEID_BCM5706,  HP_VENDORID, 0x3101,
107 		"HP NC370T Multifunction Gigabit Server Adapter" },
108 	{ BRCM_VENDORID, BRCM_DEVICEID_BCM5706,  HP_VENDORID, 0x3106,
109 		"HP NC370i Multifunction Gigabit Server Adapter" },
110 	{ BRCM_VENDORID, BRCM_DEVICEID_BCM5706,  HP_VENDORID, 0x3070,
111 		"HP NC380T PCIe DP Multifunc Gig Server Adapter" },
112 	{ BRCM_VENDORID, BRCM_DEVICEID_BCM5706,  HP_VENDORID, 0x1709,
113 		"HP NC371i Multifunction Gigabit Server Adapter" },
114 	{ BRCM_VENDORID, BRCM_DEVICEID_BCM5706,  PCI_ANY_ID,  PCI_ANY_ID,
115 		"Broadcom NetXtreme II BCM5706 1000Base-T" },
116 
117 	/* BCM5706S controllers and OEM boards. */
118 	{ BRCM_VENDORID, BRCM_DEVICEID_BCM5706S, HP_VENDORID, 0x3102,
119 		"HP NC370F Multifunction Gigabit Server Adapter" },
120 	{ BRCM_VENDORID, BRCM_DEVICEID_BCM5706S, PCI_ANY_ID,  PCI_ANY_ID,
121 		"Broadcom NetXtreme II BCM5706 1000Base-SX" },
122 
123 	/* BCM5708C controllers and OEM boards. */
124 	{ BRCM_VENDORID, BRCM_DEVICEID_BCM5708,  HP_VENDORID, 0x7037,
125 		"HP NC373T PCIe Multifunction Gig Server Adapter" },
126 	{ BRCM_VENDORID, BRCM_DEVICEID_BCM5708,  HP_VENDORID, 0x7038,
127 		"HP NC373i Multifunction Gigabit Server Adapter" },
128 	{ BRCM_VENDORID, BRCM_DEVICEID_BCM5708,  HP_VENDORID, 0x7045,
129 		"HP NC374m PCIe Multifunction Adapter" },
130 	{ BRCM_VENDORID, BRCM_DEVICEID_BCM5708,  PCI_ANY_ID,  PCI_ANY_ID,
131 		"Broadcom NetXtreme II BCM5708 1000Base-T" },
132 
133 	/* BCM5708S controllers and OEM boards. */
134 	{ BRCM_VENDORID, BRCM_DEVICEID_BCM5708S,  HP_VENDORID, 0x1706,
135 		"HP NC373m Multifunction Gigabit Server Adapter" },
136 	{ BRCM_VENDORID, BRCM_DEVICEID_BCM5708S,  HP_VENDORID, 0x703b,
137 		"HP NC373i Multifunction Gigabit Server Adapter" },
138 	{ BRCM_VENDORID, BRCM_DEVICEID_BCM5708S,  HP_VENDORID, 0x703d,
139 		"HP NC373F PCIe Multifunc Giga Server Adapter" },
140 	{ BRCM_VENDORID, BRCM_DEVICEID_BCM5708S,  PCI_ANY_ID,  PCI_ANY_ID,
141 		"Broadcom NetXtreme II BCM5708 1000Base-SX" },
142 
143 	/* BCM5709C controllers and OEM boards. */
144 	{ BRCM_VENDORID, BRCM_DEVICEID_BCM5709,  HP_VENDORID, 0x7055,
145 		"HP NC382i DP Multifunction Gigabit Server Adapter" },
146 	{ BRCM_VENDORID, BRCM_DEVICEID_BCM5709,  HP_VENDORID, 0x7059,
147 		"HP NC382T PCIe DP Multifunction Gigabit Server Adapter" },
148 	{ BRCM_VENDORID, BRCM_DEVICEID_BCM5709,  PCI_ANY_ID,  PCI_ANY_ID,
149 		"Broadcom NetXtreme II BCM5709 1000Base-T" },
150 
151 	/* BCM5709S controllers and OEM boards. */
152 	{ BRCM_VENDORID, BRCM_DEVICEID_BCM5709S,  HP_VENDORID, 0x171d,
153 		"HP NC382m DP 1GbE Multifunction BL-c Adapter" },
154 	{ BRCM_VENDORID, BRCM_DEVICEID_BCM5709S,  HP_VENDORID, 0x7056,
155 		"HP NC382i DP Multifunction Gigabit Server Adapter" },
156 	{ BRCM_VENDORID, BRCM_DEVICEID_BCM5709S,  PCI_ANY_ID,  PCI_ANY_ID,
157 		"Broadcom NetXtreme II BCM5709 1000Base-SX" },
158 
159 	/* BCM5716 controllers and OEM boards. */
160 	{ BRCM_VENDORID, BRCM_DEVICEID_BCM5716,  PCI_ANY_ID,  PCI_ANY_ID,
161 		"Broadcom NetXtreme II BCM5716 1000Base-T" },
162 
163 	{ 0, 0, 0, 0, NULL }
164 };
165 
166 
167 /****************************************************************************/
168 /* Supported Flash NVRAM device data.                                       */
169 /****************************************************************************/
170 static struct flash_spec flash_table[] =
171 {
172 #define BUFFERED_FLAGS		(BCE_NV_BUFFERED | BCE_NV_TRANSLATE)
173 #define NONBUFFERED_FLAGS	(BCE_NV_WREN)
174 
175 	/* Slow EEPROM */
176 	{0x00000000, 0x40830380, 0x009f0081, 0xa184a053, 0xaf000400,
177 	 BUFFERED_FLAGS, SEEPROM_PAGE_BITS, SEEPROM_PAGE_SIZE,
178 	 SEEPROM_BYTE_ADDR_MASK, SEEPROM_TOTAL_SIZE,
179 	 "EEPROM - slow"},
180 	/* Expansion entry 0001 */
181 	{0x08000002, 0x4b808201, 0x00050081, 0x03840253, 0xaf020406,
182 	 NONBUFFERED_FLAGS, SAIFUN_FLASH_PAGE_BITS, SAIFUN_FLASH_PAGE_SIZE,
183 	 SAIFUN_FLASH_BYTE_ADDR_MASK, 0,
184 	 "Entry 0001"},
185 	/* Saifun SA25F010 (non-buffered flash) */
186 	/* strap, cfg1, & write1 need updates */
187 	{0x04000001, 0x47808201, 0x00050081, 0x03840253, 0xaf020406,
188 	 NONBUFFERED_FLAGS, SAIFUN_FLASH_PAGE_BITS, SAIFUN_FLASH_PAGE_SIZE,
189 	 SAIFUN_FLASH_BYTE_ADDR_MASK, SAIFUN_FLASH_BASE_TOTAL_SIZE*2,
190 	 "Non-buffered flash (128kB)"},
191 	/* Saifun SA25F020 (non-buffered flash) */
192 	/* strap, cfg1, & write1 need updates */
193 	{0x0c000003, 0x4f808201, 0x00050081, 0x03840253, 0xaf020406,
194 	 NONBUFFERED_FLAGS, SAIFUN_FLASH_PAGE_BITS, SAIFUN_FLASH_PAGE_SIZE,
195 	 SAIFUN_FLASH_BYTE_ADDR_MASK, SAIFUN_FLASH_BASE_TOTAL_SIZE*4,
196 	 "Non-buffered flash (256kB)"},
197 	/* Expansion entry 0100 */
198 	{0x11000000, 0x53808201, 0x00050081, 0x03840253, 0xaf020406,
199 	 NONBUFFERED_FLAGS, SAIFUN_FLASH_PAGE_BITS, SAIFUN_FLASH_PAGE_SIZE,
200 	 SAIFUN_FLASH_BYTE_ADDR_MASK, 0,
201 	 "Entry 0100"},
202 	/* Entry 0101: ST M45PE10 (non-buffered flash, TetonII B0) */
203 	{0x19000002, 0x5b808201, 0x000500db, 0x03840253, 0xaf020406,
204 	 NONBUFFERED_FLAGS, ST_MICRO_FLASH_PAGE_BITS, ST_MICRO_FLASH_PAGE_SIZE,
205 	 ST_MICRO_FLASH_BYTE_ADDR_MASK, ST_MICRO_FLASH_BASE_TOTAL_SIZE*2,
206 	 "Entry 0101: ST M45PE10 (128kB non-bufferred)"},
207 	/* Entry 0110: ST M45PE20 (non-buffered flash)*/
208 	{0x15000001, 0x57808201, 0x000500db, 0x03840253, 0xaf020406,
209 	 NONBUFFERED_FLAGS, ST_MICRO_FLASH_PAGE_BITS, ST_MICRO_FLASH_PAGE_SIZE,
210 	 ST_MICRO_FLASH_BYTE_ADDR_MASK, ST_MICRO_FLASH_BASE_TOTAL_SIZE*4,
211 	 "Entry 0110: ST M45PE20 (256kB non-bufferred)"},
212 	/* Saifun SA25F005 (non-buffered flash) */
213 	/* strap, cfg1, & write1 need updates */
214 	{0x1d000003, 0x5f808201, 0x00050081, 0x03840253, 0xaf020406,
215 	 NONBUFFERED_FLAGS, SAIFUN_FLASH_PAGE_BITS, SAIFUN_FLASH_PAGE_SIZE,
216 	 SAIFUN_FLASH_BYTE_ADDR_MASK, SAIFUN_FLASH_BASE_TOTAL_SIZE,
217 	 "Non-buffered flash (64kB)"},
218 	/* Fast EEPROM */
219 	{0x22000000, 0x62808380, 0x009f0081, 0xa184a053, 0xaf000400,
220 	 BUFFERED_FLAGS, SEEPROM_PAGE_BITS, SEEPROM_PAGE_SIZE,
221 	 SEEPROM_BYTE_ADDR_MASK, SEEPROM_TOTAL_SIZE,
222 	 "EEPROM - fast"},
223 	/* Expansion entry 1001 */
224 	{0x2a000002, 0x6b808201, 0x00050081, 0x03840253, 0xaf020406,
225 	 NONBUFFERED_FLAGS, SAIFUN_FLASH_PAGE_BITS, SAIFUN_FLASH_PAGE_SIZE,
226 	 SAIFUN_FLASH_BYTE_ADDR_MASK, 0,
227 	 "Entry 1001"},
228 	/* Expansion entry 1010 */
229 	{0x26000001, 0x67808201, 0x00050081, 0x03840253, 0xaf020406,
230 	 NONBUFFERED_FLAGS, SAIFUN_FLASH_PAGE_BITS, SAIFUN_FLASH_PAGE_SIZE,
231 	 SAIFUN_FLASH_BYTE_ADDR_MASK, 0,
232 	 "Entry 1010"},
233 	/* ATMEL AT45DB011B (buffered flash) */
234 	{0x2e000003, 0x6e808273, 0x00570081, 0x68848353, 0xaf000400,
235 	 BUFFERED_FLAGS, BUFFERED_FLASH_PAGE_BITS, BUFFERED_FLASH_PAGE_SIZE,
236 	 BUFFERED_FLASH_BYTE_ADDR_MASK, BUFFERED_FLASH_TOTAL_SIZE,
237 	 "Buffered flash (128kB)"},
238 	/* Expansion entry 1100 */
239 	{0x33000000, 0x73808201, 0x00050081, 0x03840253, 0xaf020406,
240 	 NONBUFFERED_FLAGS, SAIFUN_FLASH_PAGE_BITS, SAIFUN_FLASH_PAGE_SIZE,
241 	 SAIFUN_FLASH_BYTE_ADDR_MASK, 0,
242 	 "Entry 1100"},
243 	/* Expansion entry 1101 */
244 	{0x3b000002, 0x7b808201, 0x00050081, 0x03840253, 0xaf020406,
245 	 NONBUFFERED_FLAGS, SAIFUN_FLASH_PAGE_BITS, SAIFUN_FLASH_PAGE_SIZE,
246 	 SAIFUN_FLASH_BYTE_ADDR_MASK, 0,
247 	 "Entry 1101"},
248 	/* Ateml Expansion entry 1110 */
249 	{0x37000001, 0x76808273, 0x00570081, 0x68848353, 0xaf000400,
250 	 BUFFERED_FLAGS, BUFFERED_FLASH_PAGE_BITS, BUFFERED_FLASH_PAGE_SIZE,
251 	 BUFFERED_FLASH_BYTE_ADDR_MASK, 0,
252 	 "Entry 1110 (Atmel)"},
253 	/* ATMEL AT45DB021B (buffered flash) */
254 	{0x3f000003, 0x7e808273, 0x00570081, 0x68848353, 0xaf000400,
255 	 BUFFERED_FLAGS, BUFFERED_FLASH_PAGE_BITS, BUFFERED_FLASH_PAGE_SIZE,
256 	 BUFFERED_FLASH_BYTE_ADDR_MASK, BUFFERED_FLASH_TOTAL_SIZE*2,
257 	 "Buffered flash (256kB)"},
258 };
259 
260 /*
261  * The BCM5709 controllers transparently handle the
262  * differences between Atmel 264 byte pages and all
263  * flash devices which use 256 byte pages, so no
264  * logical-to-physical mapping is required in the
265  * driver.
266  */
267 static struct flash_spec flash_5709 = {
268 	.flags		= BCE_NV_BUFFERED,
269 	.page_bits	= BCM5709_FLASH_PAGE_BITS,
270 	.page_size	= BCM5709_FLASH_PAGE_SIZE,
271 	.addr_mask	= BCM5709_FLASH_BYTE_ADDR_MASK,
272 	.total_size	= BUFFERED_FLASH_TOTAL_SIZE * 2,
273 	.name		= "5709/5716 buffered flash (256kB)",
274 };
275 
276 
277 /****************************************************************************/
278 /* FreeBSD device entry points.                                             */
279 /****************************************************************************/
280 static int  bce_probe			(device_t);
281 static int  bce_attach			(device_t);
282 static int  bce_detach			(device_t);
283 static int  bce_shutdown		(device_t);
284 
285 
286 /****************************************************************************/
287 /* BCE Debug Data Structure Dump Routines                                   */
288 /****************************************************************************/
289 #ifdef BCE_DEBUG
290 static u32  bce_reg_rd			(struct bce_softc *, u32);
291 static void bce_reg_wr			(struct bce_softc *, u32, u32);
292 static void bce_reg_wr16		(struct bce_softc *, u32, u16);
293 static u32  bce_ctx_rd			(struct bce_softc *, u32, u32);
294 static void bce_dump_enet		(struct bce_softc *, struct mbuf *);
295 static void bce_dump_mbuf		(struct bce_softc *, struct mbuf *);
296 static void bce_dump_tx_mbuf_chain	(struct bce_softc *, u16, int);
297 static void bce_dump_rx_mbuf_chain	(struct bce_softc *, u16, int);
298 #ifdef BCE_JUMBO_HDRSPLIT
299 static void bce_dump_pg_mbuf_chain	(struct bce_softc *, u16, int);
300 #endif
301 static void bce_dump_txbd		(struct bce_softc *,
302     int, struct tx_bd *);
303 static void bce_dump_rxbd		(struct bce_softc *,
304     int, struct rx_bd *);
305 #ifdef BCE_JUMBO_HDRSPLIT
306 static void bce_dump_pgbd		(struct bce_softc *,
307     int, struct rx_bd *);
308 #endif
309 static void bce_dump_l2fhdr		(struct bce_softc *,
310     int, struct l2_fhdr *);
311 static void bce_dump_ctx		(struct bce_softc *, u16);
312 static void bce_dump_ftqs		(struct bce_softc *);
313 static void bce_dump_tx_chain		(struct bce_softc *, u16, int);
314 static void bce_dump_rx_bd_chain	(struct bce_softc *, u16, int);
315 #ifdef BCE_JUMBO_HDRSPLIT
316 static void bce_dump_pg_chain		(struct bce_softc *, u16, int);
317 #endif
318 static void bce_dump_status_block	(struct bce_softc *);
319 static void bce_dump_stats_block	(struct bce_softc *);
320 static void bce_dump_driver_state	(struct bce_softc *);
321 static void bce_dump_hw_state		(struct bce_softc *);
322 static void bce_dump_mq_regs		(struct bce_softc *);
323 static void bce_dump_bc_state		(struct bce_softc *);
324 static void bce_dump_txp_state		(struct bce_softc *, int);
325 static void bce_dump_rxp_state		(struct bce_softc *, int);
326 static void bce_dump_tpat_state		(struct bce_softc *, int);
327 static void bce_dump_cp_state		(struct bce_softc *, int);
328 static void bce_dump_com_state		(struct bce_softc *, int);
329 static void bce_dump_rv2p_state		(struct bce_softc *);
330 static void bce_breakpoint		(struct bce_softc *);
331 #endif
332 
333 
334 /****************************************************************************/
335 /* BCE Register/Memory Access Routines                                      */
336 /****************************************************************************/
337 static u32  bce_reg_rd_ind		(struct bce_softc *, u32);
338 static void bce_reg_wr_ind		(struct bce_softc *, u32, u32);
339 static void bce_shmem_wr		(struct bce_softc *, u32, u32);
340 static u32  bce_shmem_rd		(struct bce_softc *, u32);
341 static void bce_ctx_wr			(struct bce_softc *, u32, u32, u32);
342 static int  bce_miibus_read_reg		(device_t, int, int);
343 static int  bce_miibus_write_reg	(device_t, int, int, int);
344 static void bce_miibus_statchg		(device_t);
345 
346 #ifdef BCE_DEBUG
347 static int sysctl_nvram_dump(SYSCTL_HANDLER_ARGS);
348 #ifdef BCE_NVRAM_WRITE_SUPPORT
349 static int sysctl_nvram_write(SYSCTL_HANDLER_ARGS);
350 #endif
351 #endif
352 
353 /****************************************************************************/
354 /* BCE NVRAM Access Routines                                                */
355 /****************************************************************************/
356 static int  bce_acquire_nvram_lock	(struct bce_softc *);
357 static int  bce_release_nvram_lock	(struct bce_softc *);
358 static void bce_enable_nvram_access	(struct bce_softc *);
359 static void bce_disable_nvram_access	(struct bce_softc *);
360 static int  bce_nvram_read_dword	(struct bce_softc *, u32, u8 *, u32);
361 static int  bce_init_nvram		(struct bce_softc *);
362 static int  bce_nvram_read		(struct bce_softc *, u32, u8 *, int);
363 static int  bce_nvram_test		(struct bce_softc *);
364 #ifdef BCE_NVRAM_WRITE_SUPPORT
365 static int  bce_enable_nvram_write	(struct bce_softc *);
366 static void bce_disable_nvram_write	(struct bce_softc *);
367 static int  bce_nvram_erase_page	(struct bce_softc *, u32);
368 static int  bce_nvram_write_dword	(struct bce_softc *, u32, u8 *, u32);
369 static int  bce_nvram_write		(struct bce_softc *, u32, u8 *, int);
370 #endif
371 
372 /****************************************************************************/
373 /*                                                                          */
374 /****************************************************************************/
375 static void bce_get_media		(struct bce_softc *);
376 static void bce_init_media		(struct bce_softc *);
377 static void bce_dma_map_addr		(void *,
378     bus_dma_segment_t *, int, int);
379 static int  bce_dma_alloc		(device_t);
380 static void bce_dma_free		(struct bce_softc *);
381 static void bce_release_resources	(struct bce_softc *);
382 
383 /****************************************************************************/
384 /* BCE Firmware Synchronization and Load                                    */
385 /****************************************************************************/
386 static int  bce_fw_sync			(struct bce_softc *, u32);
387 static void bce_load_rv2p_fw		(struct bce_softc *, u32 *, u32, u32);
388 static void bce_load_cpu_fw		(struct bce_softc *,
389     struct cpu_reg *, struct fw_info *);
390 static void bce_start_cpu		(struct bce_softc *, struct cpu_reg *);
391 static void bce_halt_cpu		(struct bce_softc *, struct cpu_reg *);
392 static void bce_start_rxp_cpu		(struct bce_softc *);
393 static void bce_init_rxp_cpu		(struct bce_softc *);
394 static void bce_init_txp_cpu 		(struct bce_softc *);
395 static void bce_init_tpat_cpu		(struct bce_softc *);
396 static void bce_init_cp_cpu	  	(struct bce_softc *);
397 static void bce_init_com_cpu	  	(struct bce_softc *);
398 static void bce_init_cpus		(struct bce_softc *);
399 
400 static void	bce_print_adapter_info	(struct bce_softc *);
401 static void bce_probe_pci_caps		(device_t, struct bce_softc *);
402 static void bce_stop			(struct bce_softc *);
403 static int  bce_reset			(struct bce_softc *, u32);
404 static int  bce_chipinit 		(struct bce_softc *);
405 static int  bce_blockinit 		(struct bce_softc *);
406 
407 static int  bce_init_tx_chain		(struct bce_softc *);
408 static void bce_free_tx_chain		(struct bce_softc *);
409 
410 static int  bce_get_rx_buf		(struct bce_softc *,
411     struct mbuf *, u16 *, u16 *, u32 *);
412 static int  bce_init_rx_chain		(struct bce_softc *);
413 static void bce_fill_rx_chain		(struct bce_softc *);
414 static void bce_free_rx_chain		(struct bce_softc *);
415 
416 #ifdef BCE_JUMBO_HDRSPLIT
417 static int  bce_get_pg_buf		(struct bce_softc *,
418     struct mbuf *, u16 *, u16 *);
419 static int  bce_init_pg_chain		(struct bce_softc *);
420 static void bce_fill_pg_chain		(struct bce_softc *);
421 static void bce_free_pg_chain		(struct bce_softc *);
422 #endif
423 
424 static struct mbuf *bce_tso_setup	(struct bce_softc *,
425     struct mbuf **, u16 *);
426 static int  bce_tx_encap		(struct bce_softc *, struct mbuf **);
427 static void bce_start_locked		(struct ifnet *);
428 static void bce_start			(struct ifnet *);
429 static int  bce_ioctl			(struct ifnet *, u_long, caddr_t);
430 static void bce_watchdog		(struct bce_softc *);
431 static int  bce_ifmedia_upd		(struct ifnet *);
432 static int  bce_ifmedia_upd_locked	(struct ifnet *);
433 static void bce_ifmedia_sts		(struct ifnet *, struct ifmediareq *);
434 static void bce_init_locked		(struct bce_softc *);
435 static void bce_init			(void *);
436 static void bce_mgmt_init_locked	(struct bce_softc *sc);
437 
438 static int  bce_init_ctx		(struct bce_softc *);
439 static void bce_get_mac_addr		(struct bce_softc *);
440 static void bce_set_mac_addr		(struct bce_softc *);
441 static void bce_phy_intr		(struct bce_softc *);
442 static inline u16 bce_get_hw_rx_cons	(struct bce_softc *);
443 static void bce_rx_intr			(struct bce_softc *);
444 static void bce_tx_intr			(struct bce_softc *);
445 static void bce_disable_intr		(struct bce_softc *);
446 static void bce_enable_intr		(struct bce_softc *, int);
447 
448 static void bce_intr			(void *);
449 static void bce_set_rx_mode		(struct bce_softc *);
450 static void bce_stats_update		(struct bce_softc *);
451 static void bce_tick			(void *);
452 static void bce_pulse			(void *);
453 static void bce_add_sysctls		(struct bce_softc *);
454 
455 
456 /****************************************************************************/
457 /* FreeBSD device dispatch table.                                           */
458 /****************************************************************************/
459 static device_method_t bce_methods[] = {
460 	/* Device interface (device_if.h) */
461 	DEVMETHOD(device_probe,		bce_probe),
462 	DEVMETHOD(device_attach,	bce_attach),
463 	DEVMETHOD(device_detach,	bce_detach),
464 	DEVMETHOD(device_shutdown,	bce_shutdown),
465 /* Supported by device interface but not used here. */
466 /*	DEVMETHOD(device_identify,	bce_identify),      */
467 /*	DEVMETHOD(device_suspend,	bce_suspend),       */
468 /*	DEVMETHOD(device_resume,	bce_resume),        */
469 /*	DEVMETHOD(device_quiesce,	bce_quiesce),       */
470 
471 	/* Bus interface (bus_if.h) */
472 	DEVMETHOD(bus_print_child,	bus_generic_print_child),
473 	DEVMETHOD(bus_driver_added,	bus_generic_driver_added),
474 
475 	/* MII interface (miibus_if.h) */
476 	DEVMETHOD(miibus_readreg,	bce_miibus_read_reg),
477 	DEVMETHOD(miibus_writereg,	bce_miibus_write_reg),
478 	DEVMETHOD(miibus_statchg,	bce_miibus_statchg),
479 /* Supported by MII interface but not used here.       */
480 /*	DEVMETHOD(miibus_linkchg,	bce_miibus_linkchg),   */
481 /*	DEVMETHOD(miibus_mediainit,	bce_miibus_mediainit), */
482 
483 	{ 0, 0 }
484 };
485 
486 static driver_t bce_driver = {
487 	"bce",
488 	bce_methods,
489 	sizeof(struct bce_softc)
490 };
491 
492 static devclass_t bce_devclass;
493 
494 MODULE_DEPEND(bce, pci, 1, 1, 1);
495 MODULE_DEPEND(bce, ether, 1, 1, 1);
496 MODULE_DEPEND(bce, miibus, 1, 1, 1);
497 
498 DRIVER_MODULE(bce, pci, bce_driver, bce_devclass, 0, 0);
499 DRIVER_MODULE(miibus, bce, miibus_driver, miibus_devclass, 0, 0);
500 
501 
502 /****************************************************************************/
503 /* Tunable device values                                                    */
504 /****************************************************************************/
505 SYSCTL_NODE(_hw, OID_AUTO, bce, CTLFLAG_RD, 0, "bce driver parameters");
506 
507 /* Allowable values are TRUE or FALSE */
508 static int bce_tso_enable = TRUE;
509 TUNABLE_INT("hw.bce.tso_enable", &bce_tso_enable);
510 SYSCTL_UINT(_hw_bce, OID_AUTO, tso_enable, CTLFLAG_RDTUN, &bce_tso_enable, 0,
511 "TSO Enable/Disable");
512 
513 /* Allowable values are 0 (IRQ), 1 (MSI/IRQ), and 2 (MSI-X/MSI/IRQ) */
514 /* ToDo: Add MSI-X support. */
515 static int bce_msi_enable = 1;
516 TUNABLE_INT("hw.bce.msi_enable", &bce_msi_enable);
517 SYSCTL_UINT(_hw_bce, OID_AUTO, msi_enable, CTLFLAG_RDTUN, &bce_msi_enable, 0,
518 "MSI-X|MSI|INTx selector");
519 
520 /* ToDo: Add tunable to enable/disable strict MTU handling. */
521 /* Currently allows "loose" RX MTU checking (i.e. sets the  */
522 /* H/W RX MTU to the size of the largest receive buffer, or */
523 /* 2048 bytes). This will cause a UNH failure but is more   */
524 /* desireable from a functional perspective.                */
525 
526 
527 /****************************************************************************/
528 /* Device probe function.                                                   */
529 /*                                                                          */
530 /* Compares the device to the driver's list of supported devices and        */
531 /* reports back to the OS whether this is the right driver for the device.  */
532 /*                                                                          */
533 /* Returns:                                                                 */
534 /*   BUS_PROBE_DEFAULT on success, positive value on failure.               */
535 /****************************************************************************/
536 static int
537 bce_probe(device_t dev)
538 {
539 	struct bce_type *t;
540 	struct bce_softc *sc;
541 	char *descbuf;
542 	u16 vid = 0, did = 0, svid = 0, sdid = 0;
543 
544 	t = bce_devs;
545 
546 	sc = device_get_softc(dev);
547 	bzero(sc, sizeof(struct bce_softc));
548 	sc->bce_unit = device_get_unit(dev);
549 	sc->bce_dev = dev;
550 
551 	/* Get the data for the device to be probed. */
552 	vid  = pci_get_vendor(dev);
553 	did  = pci_get_device(dev);
554 	svid = pci_get_subvendor(dev);
555 	sdid = pci_get_subdevice(dev);
556 
557 	DBPRINT(sc, BCE_EXTREME_LOAD,
558 	    "%s(); VID = 0x%04X, DID = 0x%04X, SVID = 0x%04X, "
559 	    "SDID = 0x%04X\n", __FUNCTION__, vid, did, svid, sdid);
560 
561 	/* Look through the list of known devices for a match. */
562 	while(t->bce_name != NULL) {
563 
564 		if ((vid == t->bce_vid) && (did == t->bce_did) &&
565 		    ((svid == t->bce_svid) || (t->bce_svid == PCI_ANY_ID)) &&
566 		    ((sdid == t->bce_sdid) || (t->bce_sdid == PCI_ANY_ID))) {
567 
568 			descbuf = malloc(BCE_DEVDESC_MAX, M_TEMP, M_NOWAIT);
569 
570 			if (descbuf == NULL)
571 				return(ENOMEM);
572 
573 			/* Print out the device identity. */
574 			snprintf(descbuf, BCE_DEVDESC_MAX, "%s (%c%d)",
575 			    t->bce_name, (((pci_read_config(dev,
576 			    PCIR_REVID, 4) & 0xf0) >> 4) + 'A'),
577 			    (pci_read_config(dev, PCIR_REVID, 4) & 0xf));
578 
579 			device_set_desc_copy(dev, descbuf);
580 			free(descbuf, M_TEMP);
581 			return(BUS_PROBE_DEFAULT);
582 		}
583 		t++;
584 	}
585 
586 	return(ENXIO);
587 }
588 
589 
590 /****************************************************************************/
591 /* PCI Capabilities Probe Function.                                         */
592 /*                                                                          */
593 /* Walks the PCI capabiites list for the device to find what features are   */
594 /* supported.                                                               */
595 /*                                                                          */
596 /* Returns:                                                                 */
597 /*   None.                                                                  */
598 /****************************************************************************/
599 static void
600 bce_print_adapter_info(struct bce_softc *sc)
601 {
602 	int i = 0;
603 
604 	DBENTER(BCE_VERBOSE_LOAD);
605 
606 	if (bootverbose) {
607 		BCE_PRINTF("ASIC (0x%08X); ", sc->bce_chipid);
608 		printf("Rev (%c%d); ", ((BCE_CHIP_ID(sc) & 0xf000) >>
609 		    12) + 'A', ((BCE_CHIP_ID(sc) & 0x0ff0) >> 4));
610 
611 
612 		/* Bus info. */
613 		if (sc->bce_flags & BCE_PCIE_FLAG) {
614 			printf("Bus (PCIe x%d, ", sc->link_width);
615 			switch (sc->link_speed) {
616 			case 1: printf("2.5Gbps); "); break;
617 			case 2:	printf("5Gbps); "); break;
618 			default: printf("Unknown link speed); ");
619 			}
620 		} else {
621 			printf("Bus (PCI%s, %s, %dMHz); ",
622 			    ((sc->bce_flags & BCE_PCIX_FLAG) ? "-X" : ""),
623 			    ((sc->bce_flags & BCE_PCI_32BIT_FLAG) ?
624 			    "32-bit" : "64-bit"), sc->bus_speed_mhz);
625 		}
626 
627 		/* Firmware version and device features. */
628 		printf("B/C (%s); Flags (", sc->bce_bc_ver);
629 
630 	#ifdef BCE_JUMBO_HDRSPLIT
631 		printf("SPLT");
632 		i++;
633 	#endif
634 
635 		if (sc->bce_flags & BCE_USING_MSI_FLAG) {
636 			if (i > 0) printf("|");
637 			printf("MSI"); i++;
638 		}
639 
640 		if (sc->bce_flags & BCE_USING_MSIX_FLAG) {
641 			if (i > 0) printf("|");
642 			printf("MSI-X"); i++;
643 		}
644 
645 		if (sc->bce_phy_flags & BCE_PHY_2_5G_CAPABLE_FLAG) {
646 			if (i > 0) printf("|");
647 			printf("2.5G"); i++;
648 		}
649 
650 		if (sc->bce_flags & BCE_MFW_ENABLE_FLAG) {
651 			if (i > 0) printf("|");
652 			printf("MFW); MFW (%s)\n", sc->bce_mfw_ver);
653 		} else {
654 			printf(")\n");
655 		}
656 	}
657 
658 	DBEXIT(BCE_VERBOSE_LOAD);
659 }
660 
661 
662 /****************************************************************************/
663 /* PCI Capabilities Probe Function.                                         */
664 /*                                                                          */
665 /* Walks the PCI capabiites list for the device to find what features are   */
666 /* supported.                                                               */
667 /*                                                                          */
668 /* Returns:                                                                 */
669 /*   None.                                                                  */
670 /****************************************************************************/
671 static void
672 bce_probe_pci_caps(device_t dev, struct bce_softc *sc)
673 {
674 	u32 reg;
675 
676 	DBENTER(BCE_VERBOSE_LOAD);
677 
678 	/* Check if PCI-X capability is enabled. */
679 	if (pci_find_extcap(dev, PCIY_PCIX, &reg) == 0) {
680 		if (reg != 0)
681 			sc->bce_cap_flags |= BCE_PCIX_CAPABLE_FLAG;
682 	}
683 
684 	/* Check if PCIe capability is enabled. */
685 	if (pci_find_extcap(dev, PCIY_EXPRESS, &reg) == 0) {
686 		if (reg != 0) {
687 			u16 link_status = pci_read_config(dev, reg + 0x12, 2);
688 			DBPRINT(sc, BCE_INFO_LOAD, "PCIe link_status = "
689 			    "0x%08X\n",	link_status);
690 			sc->link_speed = link_status & 0xf;
691 			sc->link_width = (link_status >> 4) & 0x3f;
692 			sc->bce_cap_flags |= BCE_PCIE_CAPABLE_FLAG;
693 			sc->bce_flags |= BCE_PCIE_FLAG;
694 		}
695 	}
696 
697 	/* Check if MSI capability is enabled. */
698 	if (pci_find_extcap(dev, PCIY_MSI, &reg) == 0) {
699 		if (reg != 0)
700 			sc->bce_cap_flags |= BCE_MSI_CAPABLE_FLAG;
701 	}
702 
703 	/* Check if MSI-X capability is enabled. */
704 	if (pci_find_extcap(dev, PCIY_MSIX, &reg) == 0) {
705 		if (reg != 0)
706 			sc->bce_cap_flags |= BCE_MSIX_CAPABLE_FLAG;
707 	}
708 
709 	DBEXIT(BCE_VERBOSE_LOAD);
710 }
711 
712 
713 /****************************************************************************/
714 /* Device attach function.                                                  */
715 /*                                                                          */
716 /* Allocates device resources, performs secondary chip identification,      */
717 /* resets and initializes the hardware, and initializes driver instance     */
718 /* variables.                                                               */
719 /*                                                                          */
720 /* Returns:                                                                 */
721 /*   0 on success, positive value on failure.                               */
722 /****************************************************************************/
723 static int
724 bce_attach(device_t dev)
725 {
726 	struct bce_softc *sc;
727 	struct ifnet *ifp;
728 	u32 val;
729 	int error, rid, rc = 0;
730 
731 	sc = device_get_softc(dev);
732 	sc->bce_dev = dev;
733 
734 	DBENTER(BCE_VERBOSE_LOAD | BCE_VERBOSE_RESET);
735 
736 	sc->bce_unit = device_get_unit(dev);
737 
738 	/* Set initial device and PHY flags */
739 	sc->bce_flags = 0;
740 	sc->bce_phy_flags = 0;
741 
742 	pci_enable_busmaster(dev);
743 
744 	/* Allocate PCI memory resources. */
745 	rid = PCIR_BAR(0);
746 	sc->bce_res_mem = bus_alloc_resource_any(dev, SYS_RES_MEMORY,
747 		&rid, RF_ACTIVE);
748 
749 	if (sc->bce_res_mem == NULL) {
750 		BCE_PRINTF("%s(%d): PCI memory allocation failed\n",
751 		    __FILE__, __LINE__);
752 		rc = ENXIO;
753 		goto bce_attach_fail;
754 	}
755 
756 	/* Get various resource handles. */
757 	sc->bce_btag    = rman_get_bustag(sc->bce_res_mem);
758 	sc->bce_bhandle = rman_get_bushandle(sc->bce_res_mem);
759 	sc->bce_vhandle = (vm_offset_t) rman_get_virtual(sc->bce_res_mem);
760 
761 	bce_probe_pci_caps(dev, sc);
762 
763 	rid = 1;
764 #if 0
765 	/* Try allocating MSI-X interrupts. */
766 	if ((sc->bce_cap_flags & BCE_MSIX_CAPABLE_FLAG) &&
767 		(bce_msi_enable >= 2) &&
768 		((sc->bce_res_irq = bus_alloc_resource_any(dev, SYS_RES_MEMORY,
769 		&rid, RF_ACTIVE)) != NULL)) {
770 
771 		msi_needed = sc->bce_msi_count = 1;
772 
773 		if (((error = pci_alloc_msix(dev, &sc->bce_msi_count)) != 0) ||
774 			(sc->bce_msi_count != msi_needed)) {
775 			BCE_PRINTF("%s(%d): MSI-X allocation failed! Requested = %d,"
776 				"Received = %d, error = %d\n", __FILE__, __LINE__,
777 				msi_needed, sc->bce_msi_count, error);
778 			sc->bce_msi_count = 0;
779 			pci_release_msi(dev);
780 			bus_release_resource(dev, SYS_RES_MEMORY, rid,
781 				sc->bce_res_irq);
782 			sc->bce_res_irq = NULL;
783 		} else {
784 			DBPRINT(sc, BCE_INFO_LOAD, "%s(): Using MSI-X interrupt.\n",
785 				__FUNCTION__);
786 			sc->bce_flags |= BCE_USING_MSIX_FLAG;
787 			sc->bce_intr = bce_intr;
788 		}
789 	}
790 #endif
791 
792 	/* Try allocating a MSI interrupt. */
793 	if ((sc->bce_cap_flags & BCE_MSI_CAPABLE_FLAG) &&
794 		(bce_msi_enable >= 1) && (sc->bce_msi_count == 0)) {
795 		sc->bce_msi_count = 1;
796 		if ((error = pci_alloc_msi(dev, &sc->bce_msi_count)) != 0) {
797 			BCE_PRINTF("%s(%d): MSI allocation failed! "
798 			    "error = %d\n", __FILE__, __LINE__, error);
799 			sc->bce_msi_count = 0;
800 			pci_release_msi(dev);
801 		} else {
802 			DBPRINT(sc, BCE_INFO_LOAD, "%s(): Using MSI "
803 			    "interrupt.\n", __FUNCTION__);
804 			sc->bce_flags |= BCE_USING_MSI_FLAG;
805 			if ((BCE_CHIP_NUM(sc) == BCE_CHIP_NUM_5709) ||
806 				(BCE_CHIP_NUM(sc) == BCE_CHIP_NUM_5716))
807 				sc->bce_flags |= BCE_ONE_SHOT_MSI_FLAG;
808 			sc->bce_irq_rid = 1;
809 			sc->bce_intr = bce_intr;
810 		}
811 	}
812 
813 	/* Try allocating a legacy interrupt. */
814 	if (sc->bce_msi_count == 0) {
815 		DBPRINT(sc, BCE_INFO_LOAD, "%s(): Using INTx interrupt.\n",
816 			__FUNCTION__);
817 		rid = 0;
818 		sc->bce_intr = bce_intr;
819 	}
820 
821 	sc->bce_res_irq = bus_alloc_resource_any(dev, SYS_RES_IRQ,
822 	    &rid, RF_SHAREABLE | RF_ACTIVE);
823 
824 	sc->bce_irq_rid = rid;
825 
826 	/* Report any IRQ allocation errors. */
827 	if (sc->bce_res_irq == NULL) {
828 		BCE_PRINTF("%s(%d): PCI map interrupt failed!\n",
829 		    __FILE__, __LINE__);
830 		rc = ENXIO;
831 		goto bce_attach_fail;
832 	}
833 
834 	/* Initialize mutex for the current device instance. */
835 	BCE_LOCK_INIT(sc, device_get_nameunit(dev));
836 
837 	/*
838 	 * Configure byte swap and enable indirect register access.
839 	 * Rely on CPU to do target byte swapping on big endian systems.
840 	 * Access to registers outside of PCI configurtion space are not
841 	 * valid until this is done.
842 	 */
843 	pci_write_config(dev, BCE_PCICFG_MISC_CONFIG,
844 	    BCE_PCICFG_MISC_CONFIG_REG_WINDOW_ENA |
845 	    BCE_PCICFG_MISC_CONFIG_TARGET_MB_WORD_SWAP, 4);
846 
847 	/* Save ASIC revsion info. */
848 	sc->bce_chipid =  REG_RD(sc, BCE_MISC_ID);
849 
850 	/* Weed out any non-production controller revisions. */
851 	switch(BCE_CHIP_ID(sc)) {
852 	case BCE_CHIP_ID_5706_A0:
853 	case BCE_CHIP_ID_5706_A1:
854 	case BCE_CHIP_ID_5708_A0:
855 	case BCE_CHIP_ID_5708_B0:
856 	case BCE_CHIP_ID_5709_A0:
857 	case BCE_CHIP_ID_5709_B0:
858 	case BCE_CHIP_ID_5709_B1:
859 	case BCE_CHIP_ID_5709_B2:
860 		BCE_PRINTF("%s(%d): Unsupported controller "
861 		    "revision (%c%d)!\n", __FILE__, __LINE__,
862 		    (((pci_read_config(dev, PCIR_REVID, 4) &
863 		    0xf0) >> 4) + 'A'), (pci_read_config(dev,
864 		    PCIR_REVID, 4) & 0xf));
865 		rc = ENODEV;
866 		goto bce_attach_fail;
867 	}
868 
869 	/*
870 	 * The embedded PCIe to PCI-X bridge (EPB)
871 	 * in the 5708 cannot address memory above
872 	 * 40 bits (E7_5708CB1_23043 & E6_5708SB1_23043).
873 	 */
874 	if (BCE_CHIP_NUM(sc) == BCE_CHIP_NUM_5708)
875 		sc->max_bus_addr = BCE_BUS_SPACE_MAXADDR;
876 	else
877 		sc->max_bus_addr = BUS_SPACE_MAXADDR;
878 
879 	/*
880 	 * Find the base address for shared memory access.
881 	 * Newer versions of bootcode use a signature and offset
882 	 * while older versions use a fixed address.
883 	 */
884 	val = REG_RD_IND(sc, BCE_SHM_HDR_SIGNATURE);
885 	if ((val & BCE_SHM_HDR_SIGNATURE_SIG_MASK) == BCE_SHM_HDR_SIGNATURE_SIG)
886 		/* Multi-port devices use different offsets in shared memory. */
887 		sc->bce_shmem_base = REG_RD_IND(sc, BCE_SHM_HDR_ADDR_0 +
888 		    (pci_get_function(sc->bce_dev) << 2));
889 	else
890 		sc->bce_shmem_base = HOST_VIEW_SHMEM_BASE;
891 
892 	DBPRINT(sc, BCE_VERBOSE_FIRMWARE, "%s(): bce_shmem_base = 0x%08X\n",
893 	    __FUNCTION__, sc->bce_shmem_base);
894 
895 	/* Fetch the bootcode revision. */
896 	val = bce_shmem_rd(sc, BCE_DEV_INFO_BC_REV);
897 	for (int i = 0, j = 0; i < 3; i++) {
898 		u8 num;
899 
900 		num = (u8) (val >> (24 - (i * 8)));
901 		for (int k = 100, skip0 = 1; k >= 1; num %= k, k /= 10) {
902 			if (num >= k || !skip0 || k == 1) {
903 				sc->bce_bc_ver[j++] = (num / k) + '0';
904 				skip0 = 0;
905 			}
906 		}
907 
908 		if (i != 2)
909 			sc->bce_bc_ver[j++] = '.';
910 	}
911 
912 	/* Check if any management firwmare is enabled. */
913 	val = bce_shmem_rd(sc, BCE_PORT_FEATURE);
914 	if (val & BCE_PORT_FEATURE_ASF_ENABLED) {
915 		sc->bce_flags |= BCE_MFW_ENABLE_FLAG;
916 
917 		/* Allow time for firmware to enter the running state. */
918 		for (int i = 0; i < 30; i++) {
919 			val = bce_shmem_rd(sc, BCE_BC_STATE_CONDITION);
920 			if (val & BCE_CONDITION_MFW_RUN_MASK)
921 				break;
922 			DELAY(10000);
923 		}
924 
925 		/* Check if management firmware is running. */
926 		val = bce_shmem_rd(sc, BCE_BC_STATE_CONDITION);
927 		val &= BCE_CONDITION_MFW_RUN_MASK;
928 		if ((val != BCE_CONDITION_MFW_RUN_UNKNOWN) &&
929 		    (val != BCE_CONDITION_MFW_RUN_NONE)) {
930 			u32 addr = bce_shmem_rd(sc, BCE_MFW_VER_PTR);
931 			int i = 0;
932 
933 			/* Read the management firmware version string. */
934 			for (int j = 0; j < 3; j++) {
935 				val = bce_reg_rd_ind(sc, addr + j * 4);
936 				val = bswap32(val);
937 				memcpy(&sc->bce_mfw_ver[i], &val, 4);
938 				i += 4;
939 			}
940 		} else {
941 			/* May cause firmware synchronization timeouts. */
942 			BCE_PRINTF("%s(%d): Management firmware enabled "
943 			    "but not running!\n", __FILE__, __LINE__);
944 			strcpy(sc->bce_mfw_ver, "NOT RUNNING!");
945 
946 			/* ToDo: Any action the driver should take? */
947 		}
948 	}
949 
950 	/* Get PCI bus information (speed and type). */
951 	val = REG_RD(sc, BCE_PCICFG_MISC_STATUS);
952 	if (val & BCE_PCICFG_MISC_STATUS_PCIX_DET) {
953 		u32 clkreg;
954 
955 		sc->bce_flags |= BCE_PCIX_FLAG;
956 
957 		clkreg = REG_RD(sc, BCE_PCICFG_PCI_CLOCK_CONTROL_BITS);
958 
959 		clkreg &= BCE_PCICFG_PCI_CLOCK_CONTROL_BITS_PCI_CLK_SPD_DET;
960 		switch (clkreg) {
961 		case BCE_PCICFG_PCI_CLOCK_CONTROL_BITS_PCI_CLK_SPD_DET_133MHZ:
962 			sc->bus_speed_mhz = 133;
963 			break;
964 
965 		case BCE_PCICFG_PCI_CLOCK_CONTROL_BITS_PCI_CLK_SPD_DET_95MHZ:
966 			sc->bus_speed_mhz = 100;
967 			break;
968 
969 		case BCE_PCICFG_PCI_CLOCK_CONTROL_BITS_PCI_CLK_SPD_DET_66MHZ:
970 		case BCE_PCICFG_PCI_CLOCK_CONTROL_BITS_PCI_CLK_SPD_DET_80MHZ:
971 			sc->bus_speed_mhz = 66;
972 			break;
973 
974 		case BCE_PCICFG_PCI_CLOCK_CONTROL_BITS_PCI_CLK_SPD_DET_48MHZ:
975 		case BCE_PCICFG_PCI_CLOCK_CONTROL_BITS_PCI_CLK_SPD_DET_55MHZ:
976 			sc->bus_speed_mhz = 50;
977 			break;
978 
979 		case BCE_PCICFG_PCI_CLOCK_CONTROL_BITS_PCI_CLK_SPD_DET_LOW:
980 		case BCE_PCICFG_PCI_CLOCK_CONTROL_BITS_PCI_CLK_SPD_DET_32MHZ:
981 		case BCE_PCICFG_PCI_CLOCK_CONTROL_BITS_PCI_CLK_SPD_DET_38MHZ:
982 			sc->bus_speed_mhz = 33;
983 			break;
984 		}
985 	} else {
986 		if (val & BCE_PCICFG_MISC_STATUS_M66EN)
987 			sc->bus_speed_mhz = 66;
988 		else
989 			sc->bus_speed_mhz = 33;
990 	}
991 
992 	if (val & BCE_PCICFG_MISC_STATUS_32BIT_DET)
993 		sc->bce_flags |= BCE_PCI_32BIT_FLAG;
994 
995 	/* Reset controller and announce to bootcode that driver is present. */
996 	if (bce_reset(sc, BCE_DRV_MSG_CODE_RESET)) {
997 		BCE_PRINTF("%s(%d): Controller reset failed!\n",
998 		    __FILE__, __LINE__);
999 		rc = ENXIO;
1000 		goto bce_attach_fail;
1001 	}
1002 
1003 	/* Initialize the controller. */
1004 	if (bce_chipinit(sc)) {
1005 		BCE_PRINTF("%s(%d): Controller initialization failed!\n",
1006 		    __FILE__, __LINE__);
1007 		rc = ENXIO;
1008 		goto bce_attach_fail;
1009 	}
1010 
1011 	/* Perform NVRAM test. */
1012 	if (bce_nvram_test(sc)) {
1013 		BCE_PRINTF("%s(%d): NVRAM test failed!\n",
1014 		    __FILE__, __LINE__);
1015 		rc = ENXIO;
1016 		goto bce_attach_fail;
1017 	}
1018 
1019 	/* Fetch the permanent Ethernet MAC address. */
1020 	bce_get_mac_addr(sc);
1021 
1022 	/*
1023 	 * Trip points control how many BDs
1024 	 * should be ready before generating an
1025 	 * interrupt while ticks control how long
1026 	 * a BD can sit in the chain before
1027 	 * generating an interrupt.  Set the default
1028 	 * values for the RX and TX chains.
1029 	 */
1030 
1031 #ifdef BCE_DEBUG
1032 	/* Force more frequent interrupts. */
1033 	sc->bce_tx_quick_cons_trip_int = 1;
1034 	sc->bce_tx_quick_cons_trip     = 1;
1035 	sc->bce_tx_ticks_int           = 0;
1036 	sc->bce_tx_ticks               = 0;
1037 
1038 	sc->bce_rx_quick_cons_trip_int = 1;
1039 	sc->bce_rx_quick_cons_trip     = 1;
1040 	sc->bce_rx_ticks_int           = 0;
1041 	sc->bce_rx_ticks               = 0;
1042 #else
1043 	/* Improve throughput at the expense of increased latency. */
1044 	sc->bce_tx_quick_cons_trip_int = 20;
1045 	sc->bce_tx_quick_cons_trip     = 20;
1046 	sc->bce_tx_ticks_int           = 80;
1047 	sc->bce_tx_ticks               = 80;
1048 
1049 	sc->bce_rx_quick_cons_trip_int = 6;
1050 	sc->bce_rx_quick_cons_trip     = 6;
1051 	sc->bce_rx_ticks_int           = 18;
1052 	sc->bce_rx_ticks               = 18;
1053 #endif
1054 
1055 	/* Not used for L2. */
1056 	sc->bce_comp_prod_trip_int = 0;
1057 	sc->bce_comp_prod_trip = 0;
1058 	sc->bce_com_ticks_int = 0;
1059 	sc->bce_com_ticks = 0;
1060 	sc->bce_cmd_ticks_int = 0;
1061 	sc->bce_cmd_ticks = 0;
1062 
1063 	/* Update statistics once every second. */
1064 	sc->bce_stats_ticks = 1000000 & 0xffff00;
1065 
1066 	/* Find the media type for the adapter. */
1067 	bce_get_media(sc);
1068 
1069 	/* Store data needed by PHY driver for backplane applications */
1070 	sc->bce_shared_hw_cfg = bce_shmem_rd(sc, BCE_SHARED_HW_CFG_CONFIG);
1071 	sc->bce_port_hw_cfg   = bce_shmem_rd(sc, BCE_PORT_HW_CFG_CONFIG);
1072 
1073 	/* Allocate DMA memory resources. */
1074 	if (bce_dma_alloc(dev)) {
1075 		BCE_PRINTF("%s(%d): DMA resource allocation failed!\n",
1076 		    __FILE__, __LINE__);
1077 		rc = ENXIO;
1078 		goto bce_attach_fail;
1079 	}
1080 
1081 	/* Allocate an ifnet structure. */
1082 	ifp = sc->bce_ifp = if_alloc(IFT_ETHER);
1083 	if (ifp == NULL) {
1084 		BCE_PRINTF("%s(%d): Interface allocation failed!\n",
1085 		    __FILE__, __LINE__);
1086 		rc = ENXIO;
1087 		goto bce_attach_fail;
1088 	}
1089 
1090 	/* Initialize the ifnet interface. */
1091 	ifp->if_softc	= sc;
1092 	if_initname(ifp, device_get_name(dev), device_get_unit(dev));
1093 	ifp->if_flags	= IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
1094 	ifp->if_ioctl	= bce_ioctl;
1095 	ifp->if_start	= bce_start;
1096 	ifp->if_init	= bce_init;
1097 	ifp->if_mtu	= ETHERMTU;
1098 
1099 	if (bce_tso_enable) {
1100 		ifp->if_hwassist = BCE_IF_HWASSIST | CSUM_TSO;
1101 		ifp->if_capabilities = BCE_IF_CAPABILITIES | IFCAP_TSO4 |
1102 		    IFCAP_VLAN_HWTSO;
1103 	} else {
1104 		ifp->if_hwassist = BCE_IF_HWASSIST;
1105 		ifp->if_capabilities = BCE_IF_CAPABILITIES;
1106 	}
1107 
1108 	ifp->if_capenable = ifp->if_capabilities;
1109 
1110 	/*
1111 	 * Assume standard mbuf sizes for buffer allocation.
1112 	 * This may change later if the MTU size is set to
1113 	 * something other than 1500.
1114 	 */
1115 #ifdef BCE_JUMBO_HDRSPLIT
1116 	sc->rx_bd_mbuf_alloc_size = MHLEN;
1117 	/* Make sure offset is 16 byte aligned for hardware. */
1118 	sc->rx_bd_mbuf_align_pad =
1119 	    roundup2((MSIZE - MHLEN), 16) - (MSIZE - MHLEN);
1120 	sc->rx_bd_mbuf_data_len = sc->rx_bd_mbuf_alloc_size -
1121 	    sc->rx_bd_mbuf_align_pad;
1122 	sc->pg_bd_mbuf_alloc_size = MCLBYTES;
1123 #else
1124 	sc->rx_bd_mbuf_alloc_size = MCLBYTES;
1125 	sc->rx_bd_mbuf_align_pad =
1126 	    roundup2(MCLBYTES, 16) - MCLBYTES;
1127 	sc->rx_bd_mbuf_data_len = sc->rx_bd_mbuf_alloc_size -
1128 	    sc->rx_bd_mbuf_align_pad;
1129 #endif
1130 
1131 	ifp->if_snd.ifq_drv_maxlen = USABLE_TX_BD;
1132 	IFQ_SET_MAXLEN(&ifp->if_snd, ifp->if_snd.ifq_drv_maxlen);
1133 	IFQ_SET_READY(&ifp->if_snd);
1134 
1135 	if (sc->bce_phy_flags & BCE_PHY_2_5G_CAPABLE_FLAG)
1136 		ifp->if_baudrate = IF_Mbps(2500ULL);
1137 	else
1138 		ifp->if_baudrate = IF_Mbps(1000);
1139 
1140 	/* Handle any special PHY initialization for SerDes PHYs. */
1141 	bce_init_media(sc);
1142 
1143 	/* MII child bus by attaching the PHY. */
1144 	rc = mii_attach(dev, &sc->bce_miibus, ifp, bce_ifmedia_upd,
1145 	    bce_ifmedia_sts, BMSR_DEFCAPMASK, sc->bce_phy_addr,
1146 	    MII_OFFSET_ANY, 0);
1147 	if (rc != 0) {
1148 		BCE_PRINTF("%s(%d): attaching PHYs failed\n", __FILE__,
1149 		    __LINE__);
1150 		goto bce_attach_fail;
1151 	}
1152 
1153 	/* Attach to the Ethernet interface list. */
1154 	ether_ifattach(ifp, sc->eaddr);
1155 
1156 #if __FreeBSD_version < 500000
1157 	callout_init(&sc->bce_tick_callout);
1158 	callout_init(&sc->bce_pulse_callout);
1159 #else
1160 	callout_init_mtx(&sc->bce_tick_callout, &sc->bce_mtx, 0);
1161 	callout_init_mtx(&sc->bce_pulse_callout, &sc->bce_mtx, 0);
1162 #endif
1163 
1164 	/* Hookup IRQ last. */
1165 	rc = bus_setup_intr(dev, sc->bce_res_irq, INTR_TYPE_NET | INTR_MPSAFE,
1166 		NULL, bce_intr, sc, &sc->bce_intrhand);
1167 
1168 	if (rc) {
1169 		BCE_PRINTF("%s(%d): Failed to setup IRQ!\n",
1170 		    __FILE__, __LINE__);
1171 		bce_detach(dev);
1172 		goto bce_attach_exit;
1173 	}
1174 
1175 	/*
1176 	 * At this point we've acquired all the resources
1177 	 * we need to run so there's no turning back, we're
1178 	 * cleared for launch.
1179 	 */
1180 
1181 	/* Print some important debugging info. */
1182 	DBRUNMSG(BCE_INFO, bce_dump_driver_state(sc));
1183 
1184 	/* Add the supported sysctls to the kernel. */
1185 	bce_add_sysctls(sc);
1186 
1187 	BCE_LOCK(sc);
1188 
1189 	/*
1190 	 * The chip reset earlier notified the bootcode that
1191 	 * a driver is present.  We now need to start our pulse
1192 	 * routine so that the bootcode is reminded that we're
1193 	 * still running.
1194 	 */
1195 	bce_pulse(sc);
1196 
1197 	bce_mgmt_init_locked(sc);
1198 	BCE_UNLOCK(sc);
1199 
1200 	/* Finally, print some useful adapter info */
1201 	bce_print_adapter_info(sc);
1202 	DBPRINT(sc, BCE_FATAL, "%s(): sc = %p\n",
1203 		__FUNCTION__, sc);
1204 
1205 	goto bce_attach_exit;
1206 
1207 bce_attach_fail:
1208 	bce_release_resources(sc);
1209 
1210 bce_attach_exit:
1211 
1212 	DBEXIT(BCE_VERBOSE_LOAD | BCE_VERBOSE_RESET);
1213 
1214 	return(rc);
1215 }
1216 
1217 
1218 /****************************************************************************/
1219 /* Device detach function.                                                  */
1220 /*                                                                          */
1221 /* Stops the controller, resets the controller, and releases resources.     */
1222 /*                                                                          */
1223 /* Returns:                                                                 */
1224 /*   0 on success, positive value on failure.                               */
1225 /****************************************************************************/
1226 static int
1227 bce_detach(device_t dev)
1228 {
1229 	struct bce_softc *sc = device_get_softc(dev);
1230 	struct ifnet *ifp;
1231 	u32 msg;
1232 
1233 	DBENTER(BCE_VERBOSE_UNLOAD | BCE_VERBOSE_RESET);
1234 
1235 	ifp = sc->bce_ifp;
1236 
1237 	/* Stop and reset the controller. */
1238 	BCE_LOCK(sc);
1239 
1240 	/* Stop the pulse so the bootcode can go to driver absent state. */
1241 	callout_stop(&sc->bce_pulse_callout);
1242 
1243 	bce_stop(sc);
1244 	if (sc->bce_flags & BCE_NO_WOL_FLAG)
1245 		msg = BCE_DRV_MSG_CODE_UNLOAD_LNK_DN;
1246 	else
1247 		msg = BCE_DRV_MSG_CODE_UNLOAD;
1248 	bce_reset(sc, msg);
1249 
1250 	BCE_UNLOCK(sc);
1251 
1252 	ether_ifdetach(ifp);
1253 
1254 	/* If we have a child device on the MII bus remove it too. */
1255 	bus_generic_detach(dev);
1256 	device_delete_child(dev, sc->bce_miibus);
1257 
1258 	/* Release all remaining resources. */
1259 	bce_release_resources(sc);
1260 
1261 	DBEXIT(BCE_VERBOSE_UNLOAD | BCE_VERBOSE_RESET);
1262 
1263 	return(0);
1264 }
1265 
1266 
1267 /****************************************************************************/
1268 /* Device shutdown function.                                                */
1269 /*                                                                          */
1270 /* Stops and resets the controller.                                         */
1271 /*                                                                          */
1272 /* Returns:                                                                 */
1273 /*   0 on success, positive value on failure.                               */
1274 /****************************************************************************/
1275 static int
1276 bce_shutdown(device_t dev)
1277 {
1278 	struct bce_softc *sc = device_get_softc(dev);
1279 	u32 msg;
1280 
1281 	DBENTER(BCE_VERBOSE);
1282 
1283 	BCE_LOCK(sc);
1284 	bce_stop(sc);
1285 	if (sc->bce_flags & BCE_NO_WOL_FLAG)
1286 		msg = BCE_DRV_MSG_CODE_UNLOAD_LNK_DN;
1287 	else
1288 		msg = BCE_DRV_MSG_CODE_UNLOAD;
1289 	bce_reset(sc, msg);
1290 	BCE_UNLOCK(sc);
1291 
1292 	DBEXIT(BCE_VERBOSE);
1293 
1294 	return (0);
1295 }
1296 
1297 
1298 #ifdef BCE_DEBUG
1299 /****************************************************************************/
1300 /* Register read.                                                           */
1301 /*                                                                          */
1302 /* Returns:                                                                 */
1303 /*   The value of the register.                                             */
1304 /****************************************************************************/
1305 static u32
1306 bce_reg_rd(struct bce_softc *sc, u32 offset)
1307 {
1308 	u32 val = bus_space_read_4(sc->bce_btag, sc->bce_bhandle, offset);
1309 	DBPRINT(sc, BCE_INSANE_REG, "%s(); offset = 0x%08X, val = 0x%08X\n",
1310 		__FUNCTION__, offset, val);
1311 	return val;
1312 }
1313 
1314 
1315 /****************************************************************************/
1316 /* Register write (16 bit).                                                 */
1317 /*                                                                          */
1318 /* Returns:                                                                 */
1319 /*   Nothing.                                                               */
1320 /****************************************************************************/
1321 static void
1322 bce_reg_wr16(struct bce_softc *sc, u32 offset, u16 val)
1323 {
1324 	DBPRINT(sc, BCE_INSANE_REG, "%s(); offset = 0x%08X, val = 0x%04X\n",
1325 		__FUNCTION__, offset, val);
1326 	bus_space_write_2(sc->bce_btag, sc->bce_bhandle, offset, val);
1327 }
1328 
1329 
1330 /****************************************************************************/
1331 /* Register write.                                                          */
1332 /*                                                                          */
1333 /* Returns:                                                                 */
1334 /*   Nothing.                                                               */
1335 /****************************************************************************/
1336 static void
1337 bce_reg_wr(struct bce_softc *sc, u32 offset, u32 val)
1338 {
1339 	DBPRINT(sc, BCE_INSANE_REG, "%s(); offset = 0x%08X, val = 0x%08X\n",
1340 		__FUNCTION__, offset, val);
1341 	bus_space_write_4(sc->bce_btag, sc->bce_bhandle, offset, val);
1342 }
1343 #endif
1344 
1345 /****************************************************************************/
1346 /* Indirect register read.                                                  */
1347 /*                                                                          */
1348 /* Reads NetXtreme II registers using an index/data register pair in PCI    */
1349 /* configuration space.  Using this mechanism avoids issues with posted     */
1350 /* reads but is much slower than memory-mapped I/O.                         */
1351 /*                                                                          */
1352 /* Returns:                                                                 */
1353 /*   The value of the register.                                             */
1354 /****************************************************************************/
1355 static u32
1356 bce_reg_rd_ind(struct bce_softc *sc, u32 offset)
1357 {
1358 	device_t dev;
1359 	dev = sc->bce_dev;
1360 
1361 	pci_write_config(dev, BCE_PCICFG_REG_WINDOW_ADDRESS, offset, 4);
1362 #ifdef BCE_DEBUG
1363 	{
1364 		u32 val;
1365 		val = pci_read_config(dev, BCE_PCICFG_REG_WINDOW, 4);
1366 		DBPRINT(sc, BCE_INSANE_REG, "%s(); offset = 0x%08X, val = 0x%08X\n",
1367 			__FUNCTION__, offset, val);
1368 		return val;
1369 	}
1370 #else
1371 	return pci_read_config(dev, BCE_PCICFG_REG_WINDOW, 4);
1372 #endif
1373 }
1374 
1375 
1376 /****************************************************************************/
1377 /* Indirect register write.                                                 */
1378 /*                                                                          */
1379 /* Writes NetXtreme II registers using an index/data register pair in PCI   */
1380 /* configuration space.  Using this mechanism avoids issues with posted     */
1381 /* writes but is muchh slower than memory-mapped I/O.                       */
1382 /*                                                                          */
1383 /* Returns:                                                                 */
1384 /*   Nothing.                                                               */
1385 /****************************************************************************/
1386 static void
1387 bce_reg_wr_ind(struct bce_softc *sc, u32 offset, u32 val)
1388 {
1389 	device_t dev;
1390 	dev = sc->bce_dev;
1391 
1392 	DBPRINT(sc, BCE_INSANE_REG, "%s(); offset = 0x%08X, val = 0x%08X\n",
1393 		__FUNCTION__, offset, val);
1394 
1395 	pci_write_config(dev, BCE_PCICFG_REG_WINDOW_ADDRESS, offset, 4);
1396 	pci_write_config(dev, BCE_PCICFG_REG_WINDOW, val, 4);
1397 }
1398 
1399 
1400 /****************************************************************************/
1401 /* Shared memory write.                                                     */
1402 /*                                                                          */
1403 /* Writes NetXtreme II shared memory region.                                */
1404 /*                                                                          */
1405 /* Returns:                                                                 */
1406 /*   Nothing.                                                               */
1407 /****************************************************************************/
1408 static void
1409 bce_shmem_wr(struct bce_softc *sc, u32 offset, u32 val)
1410 {
1411 	DBPRINT(sc, BCE_VERBOSE_FIRMWARE, "%s(): Writing 0x%08X  to  "
1412 	    "0x%08X\n",	__FUNCTION__, val, offset);
1413 
1414 	bce_reg_wr_ind(sc, sc->bce_shmem_base + offset, val);
1415 }
1416 
1417 
1418 /****************************************************************************/
1419 /* Shared memory read.                                                      */
1420 /*                                                                          */
1421 /* Reads NetXtreme II shared memory region.                                 */
1422 /*                                                                          */
1423 /* Returns:                                                                 */
1424 /*   The 32 bit value read.                                                 */
1425 /****************************************************************************/
1426 static u32
1427 bce_shmem_rd(struct bce_softc *sc, u32 offset)
1428 {
1429 	u32 val = bce_reg_rd_ind(sc, sc->bce_shmem_base + offset);
1430 
1431 	DBPRINT(sc, BCE_VERBOSE_FIRMWARE, "%s(): Reading 0x%08X from "
1432 	    "0x%08X\n",	__FUNCTION__, val, offset);
1433 
1434 	return val;
1435 }
1436 
1437 
1438 #ifdef BCE_DEBUG
1439 /****************************************************************************/
1440 /* Context memory read.                                                     */
1441 /*                                                                          */
1442 /* The NetXtreme II controller uses context memory to track connection      */
1443 /* information for L2 and higher network protocols.                         */
1444 /*                                                                          */
1445 /* Returns:                                                                 */
1446 /*   The requested 32 bit value of context memory.                          */
1447 /****************************************************************************/
1448 static u32
1449 bce_ctx_rd(struct bce_softc *sc, u32 cid_addr, u32 ctx_offset)
1450 {
1451 	u32 idx, offset, retry_cnt = 5, val;
1452 
1453 	DBRUNIF((cid_addr > MAX_CID_ADDR || ctx_offset & 0x3 ||
1454 	    cid_addr & CTX_MASK), BCE_PRINTF("%s(): Invalid CID "
1455 	    "address: 0x%08X.\n", __FUNCTION__, cid_addr));
1456 
1457 	offset = ctx_offset + cid_addr;
1458 
1459 	if ((BCE_CHIP_NUM(sc) == BCE_CHIP_NUM_5709) ||
1460 		(BCE_CHIP_NUM(sc) == BCE_CHIP_NUM_5716)) {
1461 
1462 		REG_WR(sc, BCE_CTX_CTX_CTRL, (offset | BCE_CTX_CTX_CTRL_READ_REQ));
1463 
1464 		for (idx = 0; idx < retry_cnt; idx++) {
1465 			val = REG_RD(sc, BCE_CTX_CTX_CTRL);
1466 			if ((val & BCE_CTX_CTX_CTRL_READ_REQ) == 0)
1467 				break;
1468 			DELAY(5);
1469 		}
1470 
1471 		if (val & BCE_CTX_CTX_CTRL_READ_REQ)
1472 			BCE_PRINTF("%s(%d); Unable to read CTX memory: "
1473 			    "cid_addr = 0x%08X, offset = 0x%08X!\n",
1474 			    __FILE__, __LINE__, cid_addr, ctx_offset);
1475 
1476 		val = REG_RD(sc, BCE_CTX_CTX_DATA);
1477 	} else {
1478 		REG_WR(sc, BCE_CTX_DATA_ADR, offset);
1479 		val = REG_RD(sc, BCE_CTX_DATA);
1480 	}
1481 
1482 	DBPRINT(sc, BCE_EXTREME_CTX, "%s(); cid_addr = 0x%08X, offset = 0x%08X, "
1483 		"val = 0x%08X\n", __FUNCTION__, cid_addr, ctx_offset, val);
1484 
1485 	return(val);
1486 }
1487 #endif
1488 
1489 
1490 /****************************************************************************/
1491 /* Context memory write.                                                    */
1492 /*                                                                          */
1493 /* The NetXtreme II controller uses context memory to track connection      */
1494 /* information for L2 and higher network protocols.                         */
1495 /*                                                                          */
1496 /* Returns:                                                                 */
1497 /*   Nothing.                                                               */
1498 /****************************************************************************/
1499 static void
1500 bce_ctx_wr(struct bce_softc *sc, u32 cid_addr, u32 ctx_offset, u32 ctx_val)
1501 {
1502 	u32 idx, offset = ctx_offset + cid_addr;
1503 	u32 val, retry_cnt = 5;
1504 
1505 	DBPRINT(sc, BCE_EXTREME_CTX, "%s(); cid_addr = 0x%08X, offset = 0x%08X, "
1506 		"val = 0x%08X\n", __FUNCTION__, cid_addr, ctx_offset, ctx_val);
1507 
1508 	DBRUNIF((cid_addr > MAX_CID_ADDR || ctx_offset & 0x3 || cid_addr & CTX_MASK),
1509 		BCE_PRINTF("%s(): Invalid CID address: 0x%08X.\n",
1510 		    __FUNCTION__, cid_addr));
1511 
1512 	if ((BCE_CHIP_NUM(sc) == BCE_CHIP_NUM_5709) ||
1513 		(BCE_CHIP_NUM(sc) == BCE_CHIP_NUM_5716)) {
1514 
1515 		REG_WR(sc, BCE_CTX_CTX_DATA, ctx_val);
1516 		REG_WR(sc, BCE_CTX_CTX_CTRL, (offset | BCE_CTX_CTX_CTRL_WRITE_REQ));
1517 
1518 		for (idx = 0; idx < retry_cnt; idx++) {
1519 			val = REG_RD(sc, BCE_CTX_CTX_CTRL);
1520 			if ((val & BCE_CTX_CTX_CTRL_WRITE_REQ) == 0)
1521 				break;
1522 			DELAY(5);
1523 		}
1524 
1525 		if (val & BCE_CTX_CTX_CTRL_WRITE_REQ)
1526 			BCE_PRINTF("%s(%d); Unable to write CTX memory: "
1527 			    "cid_addr = 0x%08X, offset = 0x%08X!\n",
1528 			    __FILE__, __LINE__, cid_addr, ctx_offset);
1529 
1530 	} else {
1531 		REG_WR(sc, BCE_CTX_DATA_ADR, offset);
1532 		REG_WR(sc, BCE_CTX_DATA, ctx_val);
1533 	}
1534 }
1535 
1536 
1537 /****************************************************************************/
1538 /* PHY register read.                                                       */
1539 /*                                                                          */
1540 /* Implements register reads on the MII bus.                                */
1541 /*                                                                          */
1542 /* Returns:                                                                 */
1543 /*   The value of the register.                                             */
1544 /****************************************************************************/
1545 static int
1546 bce_miibus_read_reg(device_t dev, int phy, int reg)
1547 {
1548 	struct bce_softc *sc;
1549 	u32 val;
1550 	int i;
1551 
1552 	sc = device_get_softc(dev);
1553 
1554 	/* Make sure we are accessing the correct PHY address. */
1555 	if (phy != sc->bce_phy_addr) {
1556 		DBPRINT(sc, BCE_INSANE_PHY, "Invalid PHY address %d "
1557 		    "for PHY read!\n", phy);
1558 		return(0);
1559 	}
1560 
1561     /*
1562      * The 5709S PHY is an IEEE Clause 45 PHY
1563      * with special mappings to work with IEEE
1564      * Clause 22 register accesses.
1565      */
1566 	if ((sc->bce_phy_flags & BCE_PHY_IEEE_CLAUSE_45_FLAG) != 0) {
1567 		if (reg >= MII_BMCR && reg <= MII_ANLPRNP)
1568 			reg += 0x10;
1569 	}
1570 
1571     if (sc->bce_phy_flags & BCE_PHY_INT_MODE_AUTO_POLLING_FLAG) {
1572 		val = REG_RD(sc, BCE_EMAC_MDIO_MODE);
1573 		val &= ~BCE_EMAC_MDIO_MODE_AUTO_POLL;
1574 
1575 		REG_WR(sc, BCE_EMAC_MDIO_MODE, val);
1576 		REG_RD(sc, BCE_EMAC_MDIO_MODE);
1577 
1578 		DELAY(40);
1579 	}
1580 
1581 
1582 	val = BCE_MIPHY(phy) | BCE_MIREG(reg) |
1583 	    BCE_EMAC_MDIO_COMM_COMMAND_READ | BCE_EMAC_MDIO_COMM_DISEXT |
1584 	    BCE_EMAC_MDIO_COMM_START_BUSY;
1585 	REG_WR(sc, BCE_EMAC_MDIO_COMM, val);
1586 
1587 	for (i = 0; i < BCE_PHY_TIMEOUT; i++) {
1588 		DELAY(10);
1589 
1590 		val = REG_RD(sc, BCE_EMAC_MDIO_COMM);
1591 		if (!(val & BCE_EMAC_MDIO_COMM_START_BUSY)) {
1592 			DELAY(5);
1593 
1594 			val = REG_RD(sc, BCE_EMAC_MDIO_COMM);
1595 			val &= BCE_EMAC_MDIO_COMM_DATA;
1596 
1597 			break;
1598 		}
1599 	}
1600 
1601 	if (val & BCE_EMAC_MDIO_COMM_START_BUSY) {
1602 		BCE_PRINTF("%s(%d): Error: PHY read timeout! phy = %d, "
1603 		    "reg = 0x%04X\n", __FILE__, __LINE__, phy, reg);
1604 		val = 0x0;
1605 	} else {
1606 		val = REG_RD(sc, BCE_EMAC_MDIO_COMM);
1607 	}
1608 
1609 
1610 	if (sc->bce_phy_flags & BCE_PHY_INT_MODE_AUTO_POLLING_FLAG) {
1611 		val = REG_RD(sc, BCE_EMAC_MDIO_MODE);
1612 		val |= BCE_EMAC_MDIO_MODE_AUTO_POLL;
1613 
1614 		REG_WR(sc, BCE_EMAC_MDIO_MODE, val);
1615 		REG_RD(sc, BCE_EMAC_MDIO_MODE);
1616 
1617 		DELAY(40);
1618 	}
1619 
1620 	DB_PRINT_PHY_REG(reg, val);
1621 	return (val & 0xffff);
1622 
1623 }
1624 
1625 
1626 /****************************************************************************/
1627 /* PHY register write.                                                      */
1628 /*                                                                          */
1629 /* Implements register writes on the MII bus.                               */
1630 /*                                                                          */
1631 /* Returns:                                                                 */
1632 /*   The value of the register.                                             */
1633 /****************************************************************************/
1634 static int
1635 bce_miibus_write_reg(device_t dev, int phy, int reg, int val)
1636 {
1637 	struct bce_softc *sc;
1638 	u32 val1;
1639 	int i;
1640 
1641 	sc = device_get_softc(dev);
1642 
1643 	/* Make sure we are accessing the correct PHY address. */
1644 	if (phy != sc->bce_phy_addr) {
1645 		DBPRINT(sc, BCE_INSANE_PHY, "Invalid PHY address %d "
1646 		    "for PHY write!\n", phy);
1647 		return(0);
1648 	}
1649 
1650 	DB_PRINT_PHY_REG(reg, val);
1651 
1652 	/*
1653 	 * The 5709S PHY is an IEEE Clause 45 PHY
1654 	 * with special mappings to work with IEEE
1655 	 * Clause 22 register accesses.
1656 	 */
1657 	if ((sc->bce_phy_flags & BCE_PHY_IEEE_CLAUSE_45_FLAG) != 0) {
1658 		if (reg >= MII_BMCR && reg <= MII_ANLPRNP)
1659 			reg += 0x10;
1660 	}
1661 
1662 	if (sc->bce_phy_flags & BCE_PHY_INT_MODE_AUTO_POLLING_FLAG) {
1663 		val1 = REG_RD(sc, BCE_EMAC_MDIO_MODE);
1664 		val1 &= ~BCE_EMAC_MDIO_MODE_AUTO_POLL;
1665 
1666 		REG_WR(sc, BCE_EMAC_MDIO_MODE, val1);
1667 		REG_RD(sc, BCE_EMAC_MDIO_MODE);
1668 
1669 		DELAY(40);
1670 	}
1671 
1672 	val1 = BCE_MIPHY(phy) | BCE_MIREG(reg) | val |
1673 	    BCE_EMAC_MDIO_COMM_COMMAND_WRITE |
1674 	    BCE_EMAC_MDIO_COMM_START_BUSY | BCE_EMAC_MDIO_COMM_DISEXT;
1675 	REG_WR(sc, BCE_EMAC_MDIO_COMM, val1);
1676 
1677 	for (i = 0; i < BCE_PHY_TIMEOUT; i++) {
1678 		DELAY(10);
1679 
1680 		val1 = REG_RD(sc, BCE_EMAC_MDIO_COMM);
1681 		if (!(val1 & BCE_EMAC_MDIO_COMM_START_BUSY)) {
1682 			DELAY(5);
1683 			break;
1684 		}
1685 	}
1686 
1687 	if (val1 & BCE_EMAC_MDIO_COMM_START_BUSY)
1688 		BCE_PRINTF("%s(%d): PHY write timeout!\n",
1689 		    __FILE__, __LINE__);
1690 
1691 	if (sc->bce_phy_flags & BCE_PHY_INT_MODE_AUTO_POLLING_FLAG) {
1692 		val1 = REG_RD(sc, BCE_EMAC_MDIO_MODE);
1693 		val1 |= BCE_EMAC_MDIO_MODE_AUTO_POLL;
1694 
1695 		REG_WR(sc, BCE_EMAC_MDIO_MODE, val1);
1696 		REG_RD(sc, BCE_EMAC_MDIO_MODE);
1697 
1698 		DELAY(40);
1699 	}
1700 
1701 	return 0;
1702 }
1703 
1704 
1705 /****************************************************************************/
1706 /* MII bus status change.                                                   */
1707 /*                                                                          */
1708 /* Called by the MII bus driver when the PHY establishes link to set the    */
1709 /* MAC interface registers.                                                 */
1710 /*                                                                          */
1711 /* Returns:                                                                 */
1712 /*   Nothing.                                                               */
1713 /****************************************************************************/
1714 static void
1715 bce_miibus_statchg(device_t dev)
1716 {
1717 	struct bce_softc *sc;
1718 	struct mii_data *mii;
1719 	int val;
1720 
1721 	sc = device_get_softc(dev);
1722 
1723 	DBENTER(BCE_VERBOSE_PHY);
1724 
1725 	mii = device_get_softc(sc->bce_miibus);
1726 
1727 	val = REG_RD(sc, BCE_EMAC_MODE);
1728 	val &= ~(BCE_EMAC_MODE_PORT | BCE_EMAC_MODE_HALF_DUPLEX |
1729 	    BCE_EMAC_MODE_MAC_LOOP | BCE_EMAC_MODE_FORCE_LINK |
1730 	    BCE_EMAC_MODE_25G);
1731 
1732 	/* Set MII or GMII interface based on the PHY speed. */
1733 	switch (IFM_SUBTYPE(mii->mii_media_active)) {
1734 	case IFM_10_T:
1735 		if (BCE_CHIP_NUM(sc) != BCE_CHIP_NUM_5706) {
1736 			DBPRINT(sc, BCE_INFO_PHY,
1737 			    "Enabling 10Mb interface.\n");
1738 			val |= BCE_EMAC_MODE_PORT_MII_10;
1739 			break;
1740 		}
1741 		/* fall-through */
1742 	case IFM_100_TX:
1743 		DBPRINT(sc, BCE_INFO_PHY, "Enabling MII interface.\n");
1744 		val |= BCE_EMAC_MODE_PORT_MII;
1745 		break;
1746 	case IFM_2500_SX:
1747 		DBPRINT(sc, BCE_INFO_PHY, "Enabling 2.5G MAC mode.\n");
1748 		val |= BCE_EMAC_MODE_25G;
1749 		/* fall-through */
1750 	case IFM_1000_T:
1751 	case IFM_1000_SX:
1752 		DBPRINT(sc, BCE_INFO_PHY, "Enabling GMII interface.\n");
1753 		val |= BCE_EMAC_MODE_PORT_GMII;
1754 		break;
1755 	default:
1756 		DBPRINT(sc, BCE_INFO_PHY, "Unknown link speed, enabling "
1757 		    "default GMII interface.\n");
1758 		val |= BCE_EMAC_MODE_PORT_GMII;
1759 	}
1760 
1761 	/* Set half or full duplex based on PHY settings. */
1762 	if ((mii->mii_media_active & IFM_GMASK) == IFM_HDX) {
1763 		DBPRINT(sc, BCE_INFO_PHY,
1764 		    "Setting Half-Duplex interface.\n");
1765 		val |= BCE_EMAC_MODE_HALF_DUPLEX;
1766 	} else
1767 		DBPRINT(sc, BCE_INFO_PHY,
1768 		    "Setting Full-Duplex interface.\n");
1769 
1770 	REG_WR(sc, BCE_EMAC_MODE, val);
1771 
1772 	/* FLAG0 is set if RX is enabled and FLAG1 if TX is enabled */
1773  	if (mii->mii_media_active & IFM_FLAG0) {
1774 		DBPRINT(sc, BCE_INFO_PHY,
1775 		    "%s(): Enabling RX flow control.\n", __FUNCTION__);
1776 		BCE_SETBIT(sc, BCE_EMAC_RX_MODE, BCE_EMAC_RX_MODE_FLOW_EN);
1777 	} else {
1778 		DBPRINT(sc, BCE_INFO_PHY,
1779 		    "%s(): Disabling RX flow control.\n", __FUNCTION__);
1780 		BCE_CLRBIT(sc, BCE_EMAC_RX_MODE, BCE_EMAC_RX_MODE_FLOW_EN);
1781 	}
1782 
1783  	if (mii->mii_media_active & IFM_FLAG1) {
1784 		DBPRINT(sc, BCE_INFO_PHY,
1785 		    "%s(): Enabling TX flow control.\n", __FUNCTION__);
1786 		BCE_SETBIT(sc, BCE_EMAC_TX_MODE, BCE_EMAC_TX_MODE_FLOW_EN);
1787 		sc->bce_flags |= BCE_USING_TX_FLOW_CONTROL;
1788 	} else {
1789 		DBPRINT(sc, BCE_INFO_PHY,
1790 		    "%s(): Disabling TX flow control.\n", __FUNCTION__);
1791 		BCE_CLRBIT(sc, BCE_EMAC_TX_MODE, BCE_EMAC_TX_MODE_FLOW_EN);
1792 		sc->bce_flags &= ~BCE_USING_TX_FLOW_CONTROL;
1793 	}
1794 
1795 	/* ToDo: Update watermarks in bce_init_rx_context(). */
1796 
1797 	DBEXIT(BCE_VERBOSE_PHY);
1798 }
1799 
1800 
1801 /****************************************************************************/
1802 /* Acquire NVRAM lock.                                                      */
1803 /*                                                                          */
1804 /* Before the NVRAM can be accessed the caller must acquire an NVRAM lock.  */
1805 /* Locks 0 and 2 are reserved, lock 1 is used by firmware and lock 2 is     */
1806 /* for use by the driver.                                                   */
1807 /*                                                                          */
1808 /* Returns:                                                                 */
1809 /*   0 on success, positive value on failure.                               */
1810 /****************************************************************************/
1811 static int
1812 bce_acquire_nvram_lock(struct bce_softc *sc)
1813 {
1814 	u32 val;
1815 	int j, rc = 0;
1816 
1817 	DBENTER(BCE_VERBOSE_NVRAM);
1818 
1819 	/* Request access to the flash interface. */
1820 	REG_WR(sc, BCE_NVM_SW_ARB, BCE_NVM_SW_ARB_ARB_REQ_SET2);
1821 	for (j = 0; j < NVRAM_TIMEOUT_COUNT; j++) {
1822 		val = REG_RD(sc, BCE_NVM_SW_ARB);
1823 		if (val & BCE_NVM_SW_ARB_ARB_ARB2)
1824 			break;
1825 
1826 		DELAY(5);
1827 	}
1828 
1829 	if (j >= NVRAM_TIMEOUT_COUNT) {
1830 		DBPRINT(sc, BCE_WARN, "Timeout acquiring NVRAM lock!\n");
1831 		rc = EBUSY;
1832 	}
1833 
1834 	DBEXIT(BCE_VERBOSE_NVRAM);
1835 	return (rc);
1836 }
1837 
1838 
1839 /****************************************************************************/
1840 /* Release NVRAM lock.                                                      */
1841 /*                                                                          */
1842 /* When the caller is finished accessing NVRAM the lock must be released.   */
1843 /* Locks 0 and 2 are reserved, lock 1 is used by firmware and lock 2 is     */
1844 /* for use by the driver.                                                   */
1845 /*                                                                          */
1846 /* Returns:                                                                 */
1847 /*   0 on success, positive value on failure.                               */
1848 /****************************************************************************/
1849 static int
1850 bce_release_nvram_lock(struct bce_softc *sc)
1851 {
1852 	u32 val;
1853 	int j, rc = 0;
1854 
1855 	DBENTER(BCE_VERBOSE_NVRAM);
1856 
1857 	/*
1858 	 * Relinquish nvram interface.
1859 	 */
1860 	REG_WR(sc, BCE_NVM_SW_ARB, BCE_NVM_SW_ARB_ARB_REQ_CLR2);
1861 
1862 	for (j = 0; j < NVRAM_TIMEOUT_COUNT; j++) {
1863 		val = REG_RD(sc, BCE_NVM_SW_ARB);
1864 		if (!(val & BCE_NVM_SW_ARB_ARB_ARB2))
1865 			break;
1866 
1867 		DELAY(5);
1868 	}
1869 
1870 	if (j >= NVRAM_TIMEOUT_COUNT) {
1871 		DBPRINT(sc, BCE_WARN, "Timeout releasing NVRAM lock!\n");
1872 		rc = EBUSY;
1873 	}
1874 
1875 	DBEXIT(BCE_VERBOSE_NVRAM);
1876 	return (rc);
1877 }
1878 
1879 
1880 #ifdef BCE_NVRAM_WRITE_SUPPORT
1881 /****************************************************************************/
1882 /* Enable NVRAM write access.                                               */
1883 /*                                                                          */
1884 /* Before writing to NVRAM the caller must enable NVRAM writes.             */
1885 /*                                                                          */
1886 /* Returns:                                                                 */
1887 /*   0 on success, positive value on failure.                               */
1888 /****************************************************************************/
1889 static int
1890 bce_enable_nvram_write(struct bce_softc *sc)
1891 {
1892 	u32 val;
1893 	int rc = 0;
1894 
1895 	DBENTER(BCE_VERBOSE_NVRAM);
1896 
1897 	val = REG_RD(sc, BCE_MISC_CFG);
1898 	REG_WR(sc, BCE_MISC_CFG, val | BCE_MISC_CFG_NVM_WR_EN_PCI);
1899 
1900 	if (!(sc->bce_flash_info->flags & BCE_NV_BUFFERED)) {
1901 		int j;
1902 
1903 		REG_WR(sc, BCE_NVM_COMMAND, BCE_NVM_COMMAND_DONE);
1904 		REG_WR(sc, BCE_NVM_COMMAND,	BCE_NVM_COMMAND_WREN | BCE_NVM_COMMAND_DOIT);
1905 
1906 		for (j = 0; j < NVRAM_TIMEOUT_COUNT; j++) {
1907 			DELAY(5);
1908 
1909 			val = REG_RD(sc, BCE_NVM_COMMAND);
1910 			if (val & BCE_NVM_COMMAND_DONE)
1911 				break;
1912 		}
1913 
1914 		if (j >= NVRAM_TIMEOUT_COUNT) {
1915 			DBPRINT(sc, BCE_WARN, "Timeout writing NVRAM!\n");
1916 			rc = EBUSY;
1917 		}
1918 	}
1919 
1920 	DBENTER(BCE_VERBOSE_NVRAM);
1921 	return (rc);
1922 }
1923 
1924 
1925 /****************************************************************************/
1926 /* Disable NVRAM write access.                                              */
1927 /*                                                                          */
1928 /* When the caller is finished writing to NVRAM write access must be        */
1929 /* disabled.                                                                */
1930 /*                                                                          */
1931 /* Returns:                                                                 */
1932 /*   Nothing.                                                               */
1933 /****************************************************************************/
1934 static void
1935 bce_disable_nvram_write(struct bce_softc *sc)
1936 {
1937 	u32 val;
1938 
1939 	DBENTER(BCE_VERBOSE_NVRAM);
1940 
1941 	val = REG_RD(sc, BCE_MISC_CFG);
1942 	REG_WR(sc, BCE_MISC_CFG, val & ~BCE_MISC_CFG_NVM_WR_EN);
1943 
1944 	DBEXIT(BCE_VERBOSE_NVRAM);
1945 
1946 }
1947 #endif
1948 
1949 
1950 /****************************************************************************/
1951 /* Enable NVRAM access.                                                     */
1952 /*                                                                          */
1953 /* Before accessing NVRAM for read or write operations the caller must      */
1954 /* enabled NVRAM access.                                                    */
1955 /*                                                                          */
1956 /* Returns:                                                                 */
1957 /*   Nothing.                                                               */
1958 /****************************************************************************/
1959 static void
1960 bce_enable_nvram_access(struct bce_softc *sc)
1961 {
1962 	u32 val;
1963 
1964 	DBENTER(BCE_VERBOSE_NVRAM);
1965 
1966 	val = REG_RD(sc, BCE_NVM_ACCESS_ENABLE);
1967 	/* Enable both bits, even on read. */
1968 	REG_WR(sc, BCE_NVM_ACCESS_ENABLE, val |
1969 	    BCE_NVM_ACCESS_ENABLE_EN | BCE_NVM_ACCESS_ENABLE_WR_EN);
1970 
1971 	DBEXIT(BCE_VERBOSE_NVRAM);
1972 }
1973 
1974 
1975 /****************************************************************************/
1976 /* Disable NVRAM access.                                                    */
1977 /*                                                                          */
1978 /* When the caller is finished accessing NVRAM access must be disabled.     */
1979 /*                                                                          */
1980 /* Returns:                                                                 */
1981 /*   Nothing.                                                               */
1982 /****************************************************************************/
1983 static void
1984 bce_disable_nvram_access(struct bce_softc *sc)
1985 {
1986 	u32 val;
1987 
1988 	DBENTER(BCE_VERBOSE_NVRAM);
1989 
1990 	val = REG_RD(sc, BCE_NVM_ACCESS_ENABLE);
1991 
1992 	/* Disable both bits, even after read. */
1993 	REG_WR(sc, BCE_NVM_ACCESS_ENABLE, val &
1994 	    ~(BCE_NVM_ACCESS_ENABLE_EN | BCE_NVM_ACCESS_ENABLE_WR_EN));
1995 
1996 	DBEXIT(BCE_VERBOSE_NVRAM);
1997 }
1998 
1999 
2000 #ifdef BCE_NVRAM_WRITE_SUPPORT
2001 /****************************************************************************/
2002 /* Erase NVRAM page before writing.                                         */
2003 /*                                                                          */
2004 /* Non-buffered flash parts require that a page be erased before it is      */
2005 /* written.                                                                 */
2006 /*                                                                          */
2007 /* Returns:                                                                 */
2008 /*   0 on success, positive value on failure.                               */
2009 /****************************************************************************/
2010 static int
2011 bce_nvram_erase_page(struct bce_softc *sc, u32 offset)
2012 {
2013 	u32 cmd;
2014 	int j, rc = 0;
2015 
2016 	DBENTER(BCE_VERBOSE_NVRAM);
2017 
2018 	/* Buffered flash doesn't require an erase. */
2019 	if (sc->bce_flash_info->flags & BCE_NV_BUFFERED)
2020 		goto bce_nvram_erase_page_exit;
2021 
2022 	/* Build an erase command. */
2023 	cmd = BCE_NVM_COMMAND_ERASE | BCE_NVM_COMMAND_WR |
2024 	    BCE_NVM_COMMAND_DOIT;
2025 
2026 	/*
2027 	 * Clear the DONE bit separately, set the NVRAM adress to erase,
2028 	 * and issue the erase command.
2029 	 */
2030 	REG_WR(sc, BCE_NVM_COMMAND, BCE_NVM_COMMAND_DONE);
2031 	REG_WR(sc, BCE_NVM_ADDR, offset & BCE_NVM_ADDR_NVM_ADDR_VALUE);
2032 	REG_WR(sc, BCE_NVM_COMMAND, cmd);
2033 
2034 	/* Wait for completion. */
2035 	for (j = 0; j < NVRAM_TIMEOUT_COUNT; j++) {
2036 		u32 val;
2037 
2038 		DELAY(5);
2039 
2040 		val = REG_RD(sc, BCE_NVM_COMMAND);
2041 		if (val & BCE_NVM_COMMAND_DONE)
2042 			break;
2043 	}
2044 
2045 	if (j >= NVRAM_TIMEOUT_COUNT) {
2046 		DBPRINT(sc, BCE_WARN, "Timeout erasing NVRAM.\n");
2047 		rc = EBUSY;
2048 	}
2049 
2050 bce_nvram_erase_page_exit:
2051 	DBEXIT(BCE_VERBOSE_NVRAM);
2052 	return (rc);
2053 }
2054 #endif /* BCE_NVRAM_WRITE_SUPPORT */
2055 
2056 
2057 /****************************************************************************/
2058 /* Read a dword (32 bits) from NVRAM.                                       */
2059 /*                                                                          */
2060 /* Read a 32 bit word from NVRAM.  The caller is assumed to have already    */
2061 /* obtained the NVRAM lock and enabled the controller for NVRAM access.     */
2062 /*                                                                          */
2063 /* Returns:                                                                 */
2064 /*   0 on success and the 32 bit value read, positive value on failure.     */
2065 /****************************************************************************/
2066 static int
2067 bce_nvram_read_dword(struct bce_softc *sc,
2068     u32 offset, u8 *ret_val, u32 cmd_flags)
2069 {
2070 	u32 cmd;
2071 	int i, rc = 0;
2072 
2073 	DBENTER(BCE_EXTREME_NVRAM);
2074 
2075 	/* Build the command word. */
2076 	cmd = BCE_NVM_COMMAND_DOIT | cmd_flags;
2077 
2078 	/* Calculate the offset for buffered flash if translation is used. */
2079 	if (sc->bce_flash_info->flags & BCE_NV_TRANSLATE) {
2080 		offset = ((offset / sc->bce_flash_info->page_size) <<
2081 		    sc->bce_flash_info->page_bits) +
2082 		    (offset % sc->bce_flash_info->page_size);
2083 	}
2084 
2085 	/*
2086 	 * Clear the DONE bit separately, set the address to read,
2087 	 * and issue the read.
2088 	 */
2089 	REG_WR(sc, BCE_NVM_COMMAND, BCE_NVM_COMMAND_DONE);
2090 	REG_WR(sc, BCE_NVM_ADDR, offset & BCE_NVM_ADDR_NVM_ADDR_VALUE);
2091 	REG_WR(sc, BCE_NVM_COMMAND, cmd);
2092 
2093 	/* Wait for completion. */
2094 	for (i = 0; i < NVRAM_TIMEOUT_COUNT; i++) {
2095 		u32 val;
2096 
2097 		DELAY(5);
2098 
2099 		val = REG_RD(sc, BCE_NVM_COMMAND);
2100 		if (val & BCE_NVM_COMMAND_DONE) {
2101 			val = REG_RD(sc, BCE_NVM_READ);
2102 
2103 			val = bce_be32toh(val);
2104 			memcpy(ret_val, &val, 4);
2105 			break;
2106 		}
2107 	}
2108 
2109 	/* Check for errors. */
2110 	if (i >= NVRAM_TIMEOUT_COUNT) {
2111 		BCE_PRINTF("%s(%d): Timeout error reading NVRAM at "
2112 		    "offset 0x%08X!\n",	__FILE__, __LINE__, offset);
2113 		rc = EBUSY;
2114 	}
2115 
2116 	DBEXIT(BCE_EXTREME_NVRAM);
2117 	return(rc);
2118 }
2119 
2120 
2121 #ifdef BCE_NVRAM_WRITE_SUPPORT
2122 /****************************************************************************/
2123 /* Write a dword (32 bits) to NVRAM.                                        */
2124 /*                                                                          */
2125 /* Write a 32 bit word to NVRAM.  The caller is assumed to have already     */
2126 /* obtained the NVRAM lock, enabled the controller for NVRAM access, and    */
2127 /* enabled NVRAM write access.                                              */
2128 /*                                                                          */
2129 /* Returns:                                                                 */
2130 /*   0 on success, positive value on failure.                               */
2131 /****************************************************************************/
2132 static int
2133 bce_nvram_write_dword(struct bce_softc *sc, u32 offset, u8 *val,
2134 	u32 cmd_flags)
2135 {
2136 	u32 cmd, val32;
2137 	int j, rc = 0;
2138 
2139 	DBENTER(BCE_VERBOSE_NVRAM);
2140 
2141 	/* Build the command word. */
2142 	cmd = BCE_NVM_COMMAND_DOIT | BCE_NVM_COMMAND_WR | cmd_flags;
2143 
2144 	/* Calculate the offset for buffered flash if translation is used. */
2145 	if (sc->bce_flash_info->flags & BCE_NV_TRANSLATE) {
2146 		offset = ((offset / sc->bce_flash_info->page_size) <<
2147 		    sc->bce_flash_info->page_bits) +
2148 		    (offset % sc->bce_flash_info->page_size);
2149 	}
2150 
2151 	/*
2152 	 * Clear the DONE bit separately, convert NVRAM data to big-endian,
2153 	 * set the NVRAM address to write, and issue the write command
2154 	 */
2155 	REG_WR(sc, BCE_NVM_COMMAND, BCE_NVM_COMMAND_DONE);
2156 	memcpy(&val32, val, 4);
2157 	val32 = htobe32(val32);
2158 	REG_WR(sc, BCE_NVM_WRITE, val32);
2159 	REG_WR(sc, BCE_NVM_ADDR, offset & BCE_NVM_ADDR_NVM_ADDR_VALUE);
2160 	REG_WR(sc, BCE_NVM_COMMAND, cmd);
2161 
2162 	/* Wait for completion. */
2163 	for (j = 0; j < NVRAM_TIMEOUT_COUNT; j++) {
2164 		DELAY(5);
2165 
2166 		if (REG_RD(sc, BCE_NVM_COMMAND) & BCE_NVM_COMMAND_DONE)
2167 			break;
2168 	}
2169 	if (j >= NVRAM_TIMEOUT_COUNT) {
2170 		BCE_PRINTF("%s(%d): Timeout error writing NVRAM at "
2171 		    "offset 0x%08X\n", __FILE__, __LINE__, offset);
2172 		rc = EBUSY;
2173 	}
2174 
2175 	DBEXIT(BCE_VERBOSE_NVRAM);
2176 	return (rc);
2177 }
2178 #endif /* BCE_NVRAM_WRITE_SUPPORT */
2179 
2180 
2181 /****************************************************************************/
2182 /* Initialize NVRAM access.                                                 */
2183 /*                                                                          */
2184 /* Identify the NVRAM device in use and prepare the NVRAM interface to      */
2185 /* access that device.                                                      */
2186 /*                                                                          */
2187 /* Returns:                                                                 */
2188 /*   0 on success, positive value on failure.                               */
2189 /****************************************************************************/
2190 static int
2191 bce_init_nvram(struct bce_softc *sc)
2192 {
2193 	u32 val;
2194 	int j, entry_count, rc = 0;
2195 	struct flash_spec *flash;
2196 
2197 	DBENTER(BCE_VERBOSE_NVRAM);
2198 
2199 	if ((BCE_CHIP_NUM(sc) == BCE_CHIP_NUM_5709) ||
2200 		(BCE_CHIP_NUM(sc) == BCE_CHIP_NUM_5716)) {
2201 		sc->bce_flash_info = &flash_5709;
2202 		goto bce_init_nvram_get_flash_size;
2203 	}
2204 
2205 	/* Determine the selected interface. */
2206 	val = REG_RD(sc, BCE_NVM_CFG1);
2207 
2208 	entry_count = sizeof(flash_table) / sizeof(struct flash_spec);
2209 
2210 	/*
2211 	 * Flash reconfiguration is required to support additional
2212 	 * NVRAM devices not directly supported in hardware.
2213 	 * Check if the flash interface was reconfigured
2214 	 * by the bootcode.
2215 	 */
2216 
2217 	if (val & 0x40000000) {
2218 		/* Flash interface reconfigured by bootcode. */
2219 
2220 		DBPRINT(sc,BCE_INFO_LOAD,
2221 			"bce_init_nvram(): Flash WAS reconfigured.\n");
2222 
2223 		for (j = 0, flash = &flash_table[0]; j < entry_count;
2224 		     j++, flash++) {
2225 			if ((val & FLASH_BACKUP_STRAP_MASK) ==
2226 			    (flash->config1 & FLASH_BACKUP_STRAP_MASK)) {
2227 				sc->bce_flash_info = flash;
2228 				break;
2229 			}
2230 		}
2231 	} else {
2232 		/* Flash interface not yet reconfigured. */
2233 		u32 mask;
2234 
2235 		DBPRINT(sc, BCE_INFO_LOAD, "%s(): Flash was NOT reconfigured.\n",
2236 			__FUNCTION__);
2237 
2238 		if (val & (1 << 23))
2239 			mask = FLASH_BACKUP_STRAP_MASK;
2240 		else
2241 			mask = FLASH_STRAP_MASK;
2242 
2243 		/* Look for the matching NVRAM device configuration data. */
2244 		for (j = 0, flash = &flash_table[0]; j < entry_count; j++, flash++) {
2245 
2246 			/* Check if the device matches any of the known devices. */
2247 			if ((val & mask) == (flash->strapping & mask)) {
2248 				/* Found a device match. */
2249 				sc->bce_flash_info = flash;
2250 
2251 				/* Request access to the flash interface. */
2252 				if ((rc = bce_acquire_nvram_lock(sc)) != 0)
2253 					return rc;
2254 
2255 				/* Reconfigure the flash interface. */
2256 				bce_enable_nvram_access(sc);
2257 				REG_WR(sc, BCE_NVM_CFG1, flash->config1);
2258 				REG_WR(sc, BCE_NVM_CFG2, flash->config2);
2259 				REG_WR(sc, BCE_NVM_CFG3, flash->config3);
2260 				REG_WR(sc, BCE_NVM_WRITE1, flash->write1);
2261 				bce_disable_nvram_access(sc);
2262 				bce_release_nvram_lock(sc);
2263 
2264 				break;
2265 			}
2266 		}
2267 	}
2268 
2269 	/* Check if a matching device was found. */
2270 	if (j == entry_count) {
2271 		sc->bce_flash_info = NULL;
2272 		BCE_PRINTF("%s(%d): Unknown Flash NVRAM found!\n",
2273 		    __FILE__, __LINE__);
2274 		DBEXIT(BCE_VERBOSE_NVRAM);
2275 		return (ENODEV);
2276 	}
2277 
2278 bce_init_nvram_get_flash_size:
2279 	/* Write the flash config data to the shared memory interface. */
2280 	val = bce_shmem_rd(sc, BCE_SHARED_HW_CFG_CONFIG2);
2281 	val &= BCE_SHARED_HW_CFG2_NVM_SIZE_MASK;
2282 	if (val)
2283 		sc->bce_flash_size = val;
2284 	else
2285 		sc->bce_flash_size = sc->bce_flash_info->total_size;
2286 
2287 	DBPRINT(sc, BCE_INFO_LOAD, "%s(): Found %s, size = 0x%08X\n",
2288 	    __FUNCTION__, sc->bce_flash_info->name,
2289 	    sc->bce_flash_info->total_size);
2290 
2291 	DBEXIT(BCE_VERBOSE_NVRAM);
2292 	return rc;
2293 }
2294 
2295 
2296 /****************************************************************************/
2297 /* Read an arbitrary range of data from NVRAM.                              */
2298 /*                                                                          */
2299 /* Prepares the NVRAM interface for access and reads the requested data     */
2300 /* into the supplied buffer.                                                */
2301 /*                                                                          */
2302 /* Returns:                                                                 */
2303 /*   0 on success and the data read, positive value on failure.             */
2304 /****************************************************************************/
2305 static int
2306 bce_nvram_read(struct bce_softc *sc, u32 offset, u8 *ret_buf,
2307 	int buf_size)
2308 {
2309 	int rc = 0;
2310 	u32 cmd_flags, offset32, len32, extra;
2311 
2312 	DBENTER(BCE_VERBOSE_NVRAM);
2313 
2314 	if (buf_size == 0)
2315 		goto bce_nvram_read_exit;
2316 
2317 	/* Request access to the flash interface. */
2318 	if ((rc = bce_acquire_nvram_lock(sc)) != 0)
2319 		goto bce_nvram_read_exit;
2320 
2321 	/* Enable access to flash interface */
2322 	bce_enable_nvram_access(sc);
2323 
2324 	len32 = buf_size;
2325 	offset32 = offset;
2326 	extra = 0;
2327 
2328 	cmd_flags = 0;
2329 
2330 	if (offset32 & 3) {
2331 		u8 buf[4];
2332 		u32 pre_len;
2333 
2334 		offset32 &= ~3;
2335 		pre_len = 4 - (offset & 3);
2336 
2337 		if (pre_len >= len32) {
2338 			pre_len = len32;
2339 			cmd_flags = BCE_NVM_COMMAND_FIRST | BCE_NVM_COMMAND_LAST;
2340 		}
2341 		else {
2342 			cmd_flags = BCE_NVM_COMMAND_FIRST;
2343 		}
2344 
2345 		rc = bce_nvram_read_dword(sc, offset32, buf, cmd_flags);
2346 
2347 		if (rc)
2348 			return rc;
2349 
2350 		memcpy(ret_buf, buf + (offset & 3), pre_len);
2351 
2352 		offset32 += 4;
2353 		ret_buf += pre_len;
2354 		len32 -= pre_len;
2355 	}
2356 
2357 	if (len32 & 3) {
2358 		extra = 4 - (len32 & 3);
2359 		len32 = (len32 + 4) & ~3;
2360 	}
2361 
2362 	if (len32 == 4) {
2363 		u8 buf[4];
2364 
2365 		if (cmd_flags)
2366 			cmd_flags = BCE_NVM_COMMAND_LAST;
2367 		else
2368 			cmd_flags = BCE_NVM_COMMAND_FIRST |
2369 				    BCE_NVM_COMMAND_LAST;
2370 
2371 		rc = bce_nvram_read_dword(sc, offset32, buf, cmd_flags);
2372 
2373 		memcpy(ret_buf, buf, 4 - extra);
2374 	}
2375 	else if (len32 > 0) {
2376 		u8 buf[4];
2377 
2378 		/* Read the first word. */
2379 		if (cmd_flags)
2380 			cmd_flags = 0;
2381 		else
2382 			cmd_flags = BCE_NVM_COMMAND_FIRST;
2383 
2384 		rc = bce_nvram_read_dword(sc, offset32, ret_buf, cmd_flags);
2385 
2386 		/* Advance to the next dword. */
2387 		offset32 += 4;
2388 		ret_buf += 4;
2389 		len32 -= 4;
2390 
2391 		while (len32 > 4 && rc == 0) {
2392 			rc = bce_nvram_read_dword(sc, offset32, ret_buf, 0);
2393 
2394 			/* Advance to the next dword. */
2395 			offset32 += 4;
2396 			ret_buf += 4;
2397 			len32 -= 4;
2398 		}
2399 
2400 		if (rc)
2401 			goto bce_nvram_read_locked_exit;
2402 
2403 		cmd_flags = BCE_NVM_COMMAND_LAST;
2404 		rc = bce_nvram_read_dword(sc, offset32, buf, cmd_flags);
2405 
2406 		memcpy(ret_buf, buf, 4 - extra);
2407 	}
2408 
2409 bce_nvram_read_locked_exit:
2410 	/* Disable access to flash interface and release the lock. */
2411 	bce_disable_nvram_access(sc);
2412 	bce_release_nvram_lock(sc);
2413 
2414 bce_nvram_read_exit:
2415 	DBEXIT(BCE_VERBOSE_NVRAM);
2416 	return rc;
2417 }
2418 
2419 
2420 #ifdef BCE_NVRAM_WRITE_SUPPORT
2421 /****************************************************************************/
2422 /* Write an arbitrary range of data from NVRAM.                             */
2423 /*                                                                          */
2424 /* Prepares the NVRAM interface for write access and writes the requested   */
2425 /* data from the supplied buffer.  The caller is responsible for            */
2426 /* calculating any appropriate CRCs.                                        */
2427 /*                                                                          */
2428 /* Returns:                                                                 */
2429 /*   0 on success, positive value on failure.                               */
2430 /****************************************************************************/
2431 static int
2432 bce_nvram_write(struct bce_softc *sc, u32 offset, u8 *data_buf,
2433 	int buf_size)
2434 {
2435 	u32 written, offset32, len32;
2436 	u8 *buf, start[4], end[4];
2437 	int rc = 0;
2438 	int align_start, align_end;
2439 
2440 	DBENTER(BCE_VERBOSE_NVRAM);
2441 
2442 	buf = data_buf;
2443 	offset32 = offset;
2444 	len32 = buf_size;
2445 	align_start = align_end = 0;
2446 
2447 	if ((align_start = (offset32 & 3))) {
2448 		offset32 &= ~3;
2449 		len32 += align_start;
2450 		if ((rc = bce_nvram_read(sc, offset32, start, 4)))
2451 			goto bce_nvram_write_exit;
2452 	}
2453 
2454 	if (len32 & 3) {
2455 	       	if ((len32 > 4) || !align_start) {
2456 			align_end = 4 - (len32 & 3);
2457 			len32 += align_end;
2458 			if ((rc = bce_nvram_read(sc, offset32 + len32 - 4,
2459 				end, 4))) {
2460 				goto bce_nvram_write_exit;
2461 			}
2462 		}
2463 	}
2464 
2465 	if (align_start || align_end) {
2466 		buf = malloc(len32, M_DEVBUF, M_NOWAIT);
2467 		if (buf == 0) {
2468 			rc = ENOMEM;
2469 			goto bce_nvram_write_exit;
2470 		}
2471 
2472 		if (align_start) {
2473 			memcpy(buf, start, 4);
2474 		}
2475 
2476 		if (align_end) {
2477 			memcpy(buf + len32 - 4, end, 4);
2478 		}
2479 		memcpy(buf + align_start, data_buf, buf_size);
2480 	}
2481 
2482 	written = 0;
2483 	while ((written < len32) && (rc == 0)) {
2484 		u32 page_start, page_end, data_start, data_end;
2485 		u32 addr, cmd_flags;
2486 		int i;
2487 		u8 flash_buffer[264];
2488 
2489 	    /* Find the page_start addr */
2490 		page_start = offset32 + written;
2491 		page_start -= (page_start % sc->bce_flash_info->page_size);
2492 		/* Find the page_end addr */
2493 		page_end = page_start + sc->bce_flash_info->page_size;
2494 		/* Find the data_start addr */
2495 		data_start = (written == 0) ? offset32 : page_start;
2496 		/* Find the data_end addr */
2497 		data_end = (page_end > offset32 + len32) ?
2498 			(offset32 + len32) : page_end;
2499 
2500 		/* Request access to the flash interface. */
2501 		if ((rc = bce_acquire_nvram_lock(sc)) != 0)
2502 			goto bce_nvram_write_exit;
2503 
2504 		/* Enable access to flash interface */
2505 		bce_enable_nvram_access(sc);
2506 
2507 		cmd_flags = BCE_NVM_COMMAND_FIRST;
2508 		if (!(sc->bce_flash_info->flags & BCE_NV_BUFFERED)) {
2509 			int j;
2510 
2511 			/* Read the whole page into the buffer
2512 			 * (non-buffer flash only) */
2513 			for (j = 0; j < sc->bce_flash_info->page_size; j += 4) {
2514 				if (j == (sc->bce_flash_info->page_size - 4)) {
2515 					cmd_flags |= BCE_NVM_COMMAND_LAST;
2516 				}
2517 				rc = bce_nvram_read_dword(sc,
2518 					page_start + j,
2519 					&flash_buffer[j],
2520 					cmd_flags);
2521 
2522 				if (rc)
2523 					goto bce_nvram_write_locked_exit;
2524 
2525 				cmd_flags = 0;
2526 			}
2527 		}
2528 
2529 		/* Enable writes to flash interface (unlock write-protect) */
2530 		if ((rc = bce_enable_nvram_write(sc)) != 0)
2531 			goto bce_nvram_write_locked_exit;
2532 
2533 		/* Erase the page */
2534 		if ((rc = bce_nvram_erase_page(sc, page_start)) != 0)
2535 			goto bce_nvram_write_locked_exit;
2536 
2537 		/* Re-enable the write again for the actual write */
2538 		bce_enable_nvram_write(sc);
2539 
2540 		/* Loop to write back the buffer data from page_start to
2541 		 * data_start */
2542 		i = 0;
2543 		if (!(sc->bce_flash_info->flags & BCE_NV_BUFFERED)) {
2544 			for (addr = page_start; addr < data_start;
2545 				addr += 4, i += 4) {
2546 
2547 				rc = bce_nvram_write_dword(sc, addr,
2548 					&flash_buffer[i], cmd_flags);
2549 
2550 				if (rc != 0)
2551 					goto bce_nvram_write_locked_exit;
2552 
2553 				cmd_flags = 0;
2554 			}
2555 		}
2556 
2557 		/* Loop to write the new data from data_start to data_end */
2558 		for (addr = data_start; addr < data_end; addr += 4, i++) {
2559 			if ((addr == page_end - 4) ||
2560 				((sc->bce_flash_info->flags & BCE_NV_BUFFERED) &&
2561 				(addr == data_end - 4))) {
2562 
2563 				cmd_flags |= BCE_NVM_COMMAND_LAST;
2564 			}
2565 			rc = bce_nvram_write_dword(sc, addr, buf,
2566 				cmd_flags);
2567 
2568 			if (rc != 0)
2569 				goto bce_nvram_write_locked_exit;
2570 
2571 			cmd_flags = 0;
2572 			buf += 4;
2573 		}
2574 
2575 		/* Loop to write back the buffer data from data_end
2576 		 * to page_end */
2577 		if (!(sc->bce_flash_info->flags & BCE_NV_BUFFERED)) {
2578 			for (addr = data_end; addr < page_end;
2579 				addr += 4, i += 4) {
2580 
2581 				if (addr == page_end-4) {
2582 					cmd_flags = BCE_NVM_COMMAND_LAST;
2583                 		}
2584 				rc = bce_nvram_write_dword(sc, addr,
2585 					&flash_buffer[i], cmd_flags);
2586 
2587 				if (rc != 0)
2588 					goto bce_nvram_write_locked_exit;
2589 
2590 				cmd_flags = 0;
2591 			}
2592 		}
2593 
2594 		/* Disable writes to flash interface (lock write-protect) */
2595 		bce_disable_nvram_write(sc);
2596 
2597 		/* Disable access to flash interface */
2598 		bce_disable_nvram_access(sc);
2599 		bce_release_nvram_lock(sc);
2600 
2601 		/* Increment written */
2602 		written += data_end - data_start;
2603 	}
2604 
2605 	goto bce_nvram_write_exit;
2606 
2607 bce_nvram_write_locked_exit:
2608 		bce_disable_nvram_write(sc);
2609 		bce_disable_nvram_access(sc);
2610 		bce_release_nvram_lock(sc);
2611 
2612 bce_nvram_write_exit:
2613 	if (align_start || align_end)
2614 		free(buf, M_DEVBUF);
2615 
2616 	DBEXIT(BCE_VERBOSE_NVRAM);
2617 	return (rc);
2618 }
2619 #endif /* BCE_NVRAM_WRITE_SUPPORT */
2620 
2621 
2622 /****************************************************************************/
2623 /* Verifies that NVRAM is accessible and contains valid data.               */
2624 /*                                                                          */
2625 /* Reads the configuration data from NVRAM and verifies that the CRC is     */
2626 /* correct.                                                                 */
2627 /*                                                                          */
2628 /* Returns:                                                                 */
2629 /*   0 on success, positive value on failure.                               */
2630 /****************************************************************************/
2631 static int
2632 bce_nvram_test(struct bce_softc *sc)
2633 {
2634 	u32 buf[BCE_NVRAM_SIZE / 4];
2635 	u8 *data = (u8 *) buf;
2636 	int rc = 0;
2637 	u32 magic, csum;
2638 
2639 	DBENTER(BCE_VERBOSE_NVRAM | BCE_VERBOSE_LOAD | BCE_VERBOSE_RESET);
2640 
2641 	/*
2642 	 * Check that the device NVRAM is valid by reading
2643 	 * the magic value at offset 0.
2644 	 */
2645 	if ((rc = bce_nvram_read(sc, 0, data, 4)) != 0) {
2646 		BCE_PRINTF("%s(%d): Unable to read NVRAM!\n",
2647 		    __FILE__, __LINE__);
2648 		goto bce_nvram_test_exit;
2649 	}
2650 
2651 	/*
2652 	 * Verify that offset 0 of the NVRAM contains
2653 	 * a valid magic number.
2654 	 */
2655     magic = bce_be32toh(buf[0]);
2656 	if (magic != BCE_NVRAM_MAGIC) {
2657 		rc = ENODEV;
2658 		BCE_PRINTF("%s(%d): Invalid NVRAM magic value! "
2659 		    "Expected: 0x%08X, Found: 0x%08X\n",
2660 		    __FILE__, __LINE__, BCE_NVRAM_MAGIC, magic);
2661 		goto bce_nvram_test_exit;
2662 	}
2663 
2664 	/*
2665 	 * Verify that the device NVRAM includes valid
2666 	 * configuration data.
2667 	 */
2668 	if ((rc = bce_nvram_read(sc, 0x100, data, BCE_NVRAM_SIZE)) != 0) {
2669 		BCE_PRINTF("%s(%d): Unable to read manufacturing "
2670 		    "Information from  NVRAM!\n", __FILE__, __LINE__);
2671 		goto bce_nvram_test_exit;
2672 	}
2673 
2674 	csum = ether_crc32_le(data, 0x100);
2675 	if (csum != BCE_CRC32_RESIDUAL) {
2676 		rc = ENODEV;
2677 		BCE_PRINTF("%s(%d): Invalid manufacturing information "
2678 		    "NVRAM CRC!	Expected: 0x%08X, Found: 0x%08X\n",
2679 		    __FILE__, __LINE__, BCE_CRC32_RESIDUAL, csum);
2680 		goto bce_nvram_test_exit;
2681 	}
2682 
2683 	csum = ether_crc32_le(data + 0x100, 0x100);
2684 	if (csum != BCE_CRC32_RESIDUAL) {
2685 		rc = ENODEV;
2686 		BCE_PRINTF("%s(%d): Invalid feature configuration "
2687 		    "information NVRAM CRC! Expected: 0x%08X, "
2688 		    "Found: 08%08X\n", __FILE__, __LINE__,
2689 		    BCE_CRC32_RESIDUAL, csum);
2690 	}
2691 
2692 bce_nvram_test_exit:
2693 	DBEXIT(BCE_VERBOSE_NVRAM | BCE_VERBOSE_LOAD | BCE_VERBOSE_RESET);
2694 	return rc;
2695 }
2696 
2697 
2698 /****************************************************************************/
2699 /* Identifies the current media type of the controller and sets the PHY     */
2700 /* address.                                                                 */
2701 /*                                                                          */
2702 /* Returns:                                                                 */
2703 /*   Nothing.                                                               */
2704 /****************************************************************************/
2705 static void
2706 bce_get_media(struct bce_softc *sc)
2707 {
2708 	u32 val;
2709 
2710 	DBENTER(BCE_VERBOSE_PHY);
2711 
2712 	/* Assume PHY address for copper controllers. */
2713 	sc->bce_phy_addr = 1;
2714 
2715 	if (BCE_CHIP_NUM(sc) == BCE_CHIP_NUM_5709) {
2716  		u32 val = REG_RD(sc, BCE_MISC_DUAL_MEDIA_CTRL);
2717 		u32 bond_id = val & BCE_MISC_DUAL_MEDIA_CTRL_BOND_ID;
2718 		u32 strap;
2719 
2720 		/*
2721 		 * The BCM5709S is software configurable
2722 		 * for Copper or SerDes operation.
2723 		 */
2724 		if (bond_id == BCE_MISC_DUAL_MEDIA_CTRL_BOND_ID_C) {
2725 			DBPRINT(sc, BCE_INFO_LOAD, "5709 bonded "
2726 			    "for copper.\n");
2727 			goto bce_get_media_exit;
2728 		} else if (bond_id == BCE_MISC_DUAL_MEDIA_CTRL_BOND_ID_S) {
2729 			DBPRINT(sc, BCE_INFO_LOAD, "5709 bonded "
2730 			    "for dual media.\n");
2731 			sc->bce_phy_flags |= BCE_PHY_SERDES_FLAG;
2732 			goto bce_get_media_exit;
2733 		}
2734 
2735 		if (val & BCE_MISC_DUAL_MEDIA_CTRL_STRAP_OVERRIDE)
2736 			strap = (val &
2737 			    BCE_MISC_DUAL_MEDIA_CTRL_PHY_CTRL) >> 21;
2738 		else
2739 			strap = (val &
2740 			    BCE_MISC_DUAL_MEDIA_CTRL_PHY_CTRL_STRAP) >> 8;
2741 
2742 		if (pci_get_function(sc->bce_dev) == 0) {
2743 			switch (strap) {
2744 			case 0x4:
2745 			case 0x5:
2746 			case 0x6:
2747 				DBPRINT(sc, BCE_INFO_LOAD,
2748 				    "BCM5709 s/w configured for SerDes.\n");
2749 				sc->bce_phy_flags |= BCE_PHY_SERDES_FLAG;
2750 				break;
2751 			default:
2752 				DBPRINT(sc, BCE_INFO_LOAD,
2753 				    "BCM5709 s/w configured for Copper.\n");
2754 				break;
2755 			}
2756 		} else {
2757 			switch (strap) {
2758 			case 0x1:
2759 			case 0x2:
2760 			case 0x4:
2761 				DBPRINT(sc, BCE_INFO_LOAD,
2762 				    "BCM5709 s/w configured for SerDes.\n");
2763 				sc->bce_phy_flags |= BCE_PHY_SERDES_FLAG;
2764 				break;
2765 			default:
2766 				DBPRINT(sc, BCE_INFO_LOAD,
2767 				    "BCM5709 s/w configured for Copper.\n");
2768 				break;
2769 			}
2770 		}
2771 
2772 	} else if (BCE_CHIP_BOND_ID(sc) & BCE_CHIP_BOND_ID_SERDES_BIT)
2773 		sc->bce_phy_flags |= BCE_PHY_SERDES_FLAG;
2774 
2775 	if (sc->bce_phy_flags & BCE_PHY_SERDES_FLAG) {
2776 
2777 		sc->bce_flags |= BCE_NO_WOL_FLAG;
2778 
2779 		if (BCE_CHIP_NUM(sc) == BCE_CHIP_NUM_5709)
2780 			sc->bce_phy_flags |= BCE_PHY_IEEE_CLAUSE_45_FLAG;
2781 
2782 		if (BCE_CHIP_NUM(sc) != BCE_CHIP_NUM_5706) {
2783 			/* 5708S/09S/16S use a separate PHY for SerDes. */
2784 			sc->bce_phy_addr = 2;
2785 
2786 			val = bce_shmem_rd(sc, BCE_SHARED_HW_CFG_CONFIG);
2787 			if (val & BCE_SHARED_HW_CFG_PHY_2_5G) {
2788 				sc->bce_phy_flags |=
2789 				    BCE_PHY_2_5G_CAPABLE_FLAG;
2790 				DBPRINT(sc, BCE_INFO_LOAD, "Found 2.5Gb "
2791 				    "capable adapter\n");
2792 			}
2793 		}
2794 	} else if ((BCE_CHIP_NUM(sc) == BCE_CHIP_NUM_5706) ||
2795 	    (BCE_CHIP_NUM(sc) == BCE_CHIP_NUM_5708))
2796 		sc->bce_phy_flags |= BCE_PHY_CRC_FIX_FLAG;
2797 
2798 bce_get_media_exit:
2799 	DBPRINT(sc, (BCE_INFO_LOAD | BCE_INFO_PHY),
2800 		"Using PHY address %d.\n", sc->bce_phy_addr);
2801 
2802 	DBEXIT(BCE_VERBOSE_PHY);
2803 }
2804 
2805 
2806 /****************************************************************************/
2807 /* Performs PHY initialization required before MII drivers access the       */
2808 /* device.                                                                  */
2809 /*                                                                          */
2810 /* Returns:                                                                 */
2811 /*   Nothing.                                                               */
2812 /****************************************************************************/
2813 static void
2814 bce_init_media(struct bce_softc *sc)
2815 {
2816 	if ((sc->bce_phy_flags & BCE_PHY_IEEE_CLAUSE_45_FLAG) != 0) {
2817 		/*
2818 		 * Configure 5709S/5716S PHYs to use traditional IEEE
2819 		 * Clause 22 method. Otherwise we have no way to attach
2820 		 * the PHY in mii(4) layer. PHY specific configuration
2821 		 * is done in mii layer.
2822 		 */
2823 
2824 		/* Select auto-negotiation MMD of the PHY. */
2825 		bce_miibus_write_reg(sc->bce_dev, sc->bce_phy_addr,
2826 		    BRGPHY_BLOCK_ADDR, BRGPHY_BLOCK_ADDR_ADDR_EXT);
2827 		bce_miibus_write_reg(sc->bce_dev, sc->bce_phy_addr,
2828 		    BRGPHY_ADDR_EXT, BRGPHY_ADDR_EXT_AN_MMD);
2829 
2830 		/* Set IEEE0 block of AN MMD (assumed in brgphy(4) code). */
2831 		bce_miibus_write_reg(sc->bce_dev, sc->bce_phy_addr,
2832 		    BRGPHY_BLOCK_ADDR, BRGPHY_BLOCK_ADDR_COMBO_IEEE0);
2833 	}
2834 }
2835 
2836 
2837 /****************************************************************************/
2838 /* Free any DMA memory owned by the driver.                                 */
2839 /*                                                                          */
2840 /* Scans through each data structre that requires DMA memory and frees      */
2841 /* the memory if allocated.                                                 */
2842 /*                                                                          */
2843 /* Returns:                                                                 */
2844 /*   Nothing.                                                               */
2845 /****************************************************************************/
2846 static void
2847 bce_dma_free(struct bce_softc *sc)
2848 {
2849 	int i;
2850 
2851 	DBENTER(BCE_VERBOSE_RESET | BCE_VERBOSE_UNLOAD | BCE_VERBOSE_CTX);
2852 
2853 	/* Free, unmap, and destroy the status block. */
2854 	if (sc->status_block != NULL) {
2855 		bus_dmamem_free(
2856 		   sc->status_tag,
2857 		    sc->status_block,
2858 		    sc->status_map);
2859 		sc->status_block = NULL;
2860 	}
2861 
2862 	if (sc->status_map != NULL) {
2863 		bus_dmamap_unload(
2864 		    sc->status_tag,
2865 		    sc->status_map);
2866 		bus_dmamap_destroy(sc->status_tag,
2867 		    sc->status_map);
2868 		sc->status_map = NULL;
2869 	}
2870 
2871 	if (sc->status_tag != NULL) {
2872 		bus_dma_tag_destroy(sc->status_tag);
2873 		sc->status_tag = NULL;
2874 	}
2875 
2876 
2877 	/* Free, unmap, and destroy the statistics block. */
2878 	if (sc->stats_block != NULL) {
2879 		bus_dmamem_free(
2880 		    sc->stats_tag,
2881 		    sc->stats_block,
2882 		    sc->stats_map);
2883 		sc->stats_block = NULL;
2884 	}
2885 
2886 	if (sc->stats_map != NULL) {
2887 		bus_dmamap_unload(
2888 		    sc->stats_tag,
2889 		    sc->stats_map);
2890 		bus_dmamap_destroy(sc->stats_tag,
2891 		    sc->stats_map);
2892 		sc->stats_map = NULL;
2893 	}
2894 
2895 	if (sc->stats_tag != NULL) {
2896 		bus_dma_tag_destroy(sc->stats_tag);
2897 		sc->stats_tag = NULL;
2898 	}
2899 
2900 
2901 	/* Free, unmap and destroy all context memory pages. */
2902 	if ((BCE_CHIP_NUM(sc) == BCE_CHIP_NUM_5709) ||
2903 		(BCE_CHIP_NUM(sc) == BCE_CHIP_NUM_5716)) {
2904 		for (i = 0; i < sc->ctx_pages; i++ ) {
2905 			if (sc->ctx_block[i] != NULL) {
2906 				bus_dmamem_free(
2907 				    sc->ctx_tag,
2908 				    sc->ctx_block[i],
2909 				    sc->ctx_map[i]);
2910 				sc->ctx_block[i] = NULL;
2911 			}
2912 
2913 			if (sc->ctx_map[i] != NULL) {
2914 				bus_dmamap_unload(
2915 				    sc->ctx_tag,
2916 				    sc->ctx_map[i]);
2917 				bus_dmamap_destroy(
2918 				    sc->ctx_tag,
2919 				    sc->ctx_map[i]);
2920 				sc->ctx_map[i] = NULL;
2921 			}
2922 		}
2923 
2924 		/* Destroy the context memory tag. */
2925 		if (sc->ctx_tag != NULL) {
2926 			bus_dma_tag_destroy(sc->ctx_tag);
2927 			sc->ctx_tag = NULL;
2928 		}
2929 	}
2930 
2931 
2932 	/* Free, unmap and destroy all TX buffer descriptor chain pages. */
2933 	for (i = 0; i < TX_PAGES; i++ ) {
2934 		if (sc->tx_bd_chain[i] != NULL) {
2935 			bus_dmamem_free(
2936 			    sc->tx_bd_chain_tag,
2937 			    sc->tx_bd_chain[i],
2938 			    sc->tx_bd_chain_map[i]);
2939 			sc->tx_bd_chain[i] = NULL;
2940 		}
2941 
2942 		if (sc->tx_bd_chain_map[i] != NULL) {
2943 			bus_dmamap_unload(
2944 			    sc->tx_bd_chain_tag,
2945 			    sc->tx_bd_chain_map[i]);
2946 			bus_dmamap_destroy(
2947 			    sc->tx_bd_chain_tag,
2948 			    sc->tx_bd_chain_map[i]);
2949 			sc->tx_bd_chain_map[i] = NULL;
2950 		}
2951 	}
2952 
2953 	/* Destroy the TX buffer descriptor tag. */
2954 	if (sc->tx_bd_chain_tag != NULL) {
2955 		bus_dma_tag_destroy(sc->tx_bd_chain_tag);
2956 		sc->tx_bd_chain_tag = NULL;
2957 	}
2958 
2959 
2960 	/* Free, unmap and destroy all RX buffer descriptor chain pages. */
2961 	for (i = 0; i < RX_PAGES; i++ ) {
2962 		if (sc->rx_bd_chain[i] != NULL) {
2963 			bus_dmamem_free(
2964 			    sc->rx_bd_chain_tag,
2965 			    sc->rx_bd_chain[i],
2966 			    sc->rx_bd_chain_map[i]);
2967 			sc->rx_bd_chain[i] = NULL;
2968 		}
2969 
2970 		if (sc->rx_bd_chain_map[i] != NULL) {
2971 			bus_dmamap_unload(
2972 			    sc->rx_bd_chain_tag,
2973 			    sc->rx_bd_chain_map[i]);
2974 			bus_dmamap_destroy(
2975 			    sc->rx_bd_chain_tag,
2976 			    sc->rx_bd_chain_map[i]);
2977 			sc->rx_bd_chain_map[i] = NULL;
2978 		}
2979 	}
2980 
2981 	/* Destroy the RX buffer descriptor tag. */
2982 	if (sc->rx_bd_chain_tag != NULL) {
2983 		bus_dma_tag_destroy(sc->rx_bd_chain_tag);
2984 		sc->rx_bd_chain_tag = NULL;
2985 	}
2986 
2987 
2988 #ifdef BCE_JUMBO_HDRSPLIT
2989 	/* Free, unmap and destroy all page buffer descriptor chain pages. */
2990 	for (i = 0; i < PG_PAGES; i++ ) {
2991 		if (sc->pg_bd_chain[i] != NULL) {
2992 			bus_dmamem_free(
2993 			    sc->pg_bd_chain_tag,
2994 			    sc->pg_bd_chain[i],
2995 			    sc->pg_bd_chain_map[i]);
2996 			sc->pg_bd_chain[i] = NULL;
2997 		}
2998 
2999 		if (sc->pg_bd_chain_map[i] != NULL) {
3000 			bus_dmamap_unload(
3001 			    sc->pg_bd_chain_tag,
3002 			    sc->pg_bd_chain_map[i]);
3003 			bus_dmamap_destroy(
3004 			    sc->pg_bd_chain_tag,
3005 			    sc->pg_bd_chain_map[i]);
3006 			sc->pg_bd_chain_map[i] = NULL;
3007 		}
3008 	}
3009 
3010 	/* Destroy the page buffer descriptor tag. */
3011 	if (sc->pg_bd_chain_tag != NULL) {
3012 		bus_dma_tag_destroy(sc->pg_bd_chain_tag);
3013 		sc->pg_bd_chain_tag = NULL;
3014 	}
3015 #endif
3016 
3017 
3018 	/* Unload and destroy the TX mbuf maps. */
3019 	for (i = 0; i < TOTAL_TX_BD; i++) {
3020 		if (sc->tx_mbuf_map[i] != NULL) {
3021 			bus_dmamap_unload(sc->tx_mbuf_tag,
3022 			    sc->tx_mbuf_map[i]);
3023 			bus_dmamap_destroy(sc->tx_mbuf_tag,
3024 	 		    sc->tx_mbuf_map[i]);
3025 			sc->tx_mbuf_map[i] = NULL;
3026 		}
3027 	}
3028 
3029 	/* Destroy the TX mbuf tag. */
3030 	if (sc->tx_mbuf_tag != NULL) {
3031 		bus_dma_tag_destroy(sc->tx_mbuf_tag);
3032 		sc->tx_mbuf_tag = NULL;
3033 	}
3034 
3035 	/* Unload and destroy the RX mbuf maps. */
3036 	for (i = 0; i < TOTAL_RX_BD; i++) {
3037 		if (sc->rx_mbuf_map[i] != NULL) {
3038 			bus_dmamap_unload(sc->rx_mbuf_tag,
3039 			    sc->rx_mbuf_map[i]);
3040 			bus_dmamap_destroy(sc->rx_mbuf_tag,
3041 	 		    sc->rx_mbuf_map[i]);
3042 			sc->rx_mbuf_map[i] = NULL;
3043 		}
3044 	}
3045 
3046 	/* Destroy the RX mbuf tag. */
3047 	if (sc->rx_mbuf_tag != NULL) {
3048 		bus_dma_tag_destroy(sc->rx_mbuf_tag);
3049 		sc->rx_mbuf_tag = NULL;
3050 	}
3051 
3052 #ifdef BCE_JUMBO_HDRSPLIT
3053 	/* Unload and destroy the page mbuf maps. */
3054 	for (i = 0; i < TOTAL_PG_BD; i++) {
3055 		if (sc->pg_mbuf_map[i] != NULL) {
3056 			bus_dmamap_unload(sc->pg_mbuf_tag,
3057 			    sc->pg_mbuf_map[i]);
3058 			bus_dmamap_destroy(sc->pg_mbuf_tag,
3059 	 		    sc->pg_mbuf_map[i]);
3060 			sc->pg_mbuf_map[i] = NULL;
3061 		}
3062 	}
3063 
3064 	/* Destroy the page mbuf tag. */
3065 	if (sc->pg_mbuf_tag != NULL) {
3066 		bus_dma_tag_destroy(sc->pg_mbuf_tag);
3067 		sc->pg_mbuf_tag = NULL;
3068 	}
3069 #endif
3070 
3071 	/* Destroy the parent tag */
3072 	if (sc->parent_tag != NULL) {
3073 		bus_dma_tag_destroy(sc->parent_tag);
3074 		sc->parent_tag = NULL;
3075 	}
3076 
3077 	DBEXIT(BCE_VERBOSE_RESET | BCE_VERBOSE_UNLOAD | BCE_VERBOSE_CTX);
3078 }
3079 
3080 
3081 /****************************************************************************/
3082 /* Get DMA memory from the OS.                                              */
3083 /*                                                                          */
3084 /* Validates that the OS has provided DMA buffers in response to a          */
3085 /* bus_dmamap_load() call and saves the physical address of those buffers.  */
3086 /* When the callback is used the OS will return 0 for the mapping function  */
3087 /* (bus_dmamap_load()) so we use the value of map_arg->maxsegs to pass any  */
3088 /* failures back to the caller.                                             */
3089 /*                                                                          */
3090 /* Returns:                                                                 */
3091 /*   Nothing.                                                               */
3092 /****************************************************************************/
3093 static void
3094 bce_dma_map_addr(void *arg, bus_dma_segment_t *segs, int nseg, int error)
3095 {
3096 	bus_addr_t *busaddr = arg;
3097 
3098 	KASSERT(nseg == 1, ("%s(): Too many segments returned (%d)!",
3099 	    __FUNCTION__, nseg));
3100 	/* Simulate a mapping failure. */
3101 	DBRUNIF(DB_RANDOMTRUE(dma_map_addr_failed_sim_control),
3102 	    error = ENOMEM);
3103 
3104 	/* ToDo: How to increment debug sim_count variable here? */
3105 
3106 	/* Check for an error and signal the caller that an error occurred. */
3107 	if (error) {
3108 		*busaddr = 0;
3109 	} else {
3110 		*busaddr = segs->ds_addr;
3111 	}
3112 
3113 	return;
3114 }
3115 
3116 
3117 /****************************************************************************/
3118 /* Allocate any DMA memory needed by the driver.                            */
3119 /*                                                                          */
3120 /* Allocates DMA memory needed for the various global structures needed by  */
3121 /* hardware.                                                                */
3122 /*                                                                          */
3123 /* Memory alignment requirements:                                           */
3124 /* +-----------------+----------+----------+----------+----------+          */
3125 /* |                 |   5706   |   5708   |   5709   |   5716   |          */
3126 /* +-----------------+----------+----------+----------+----------+          */
3127 /* |Status Block     | 8 bytes  | 8 bytes  | 16 bytes | 16 bytes |          */
3128 /* |Statistics Block | 8 bytes  | 8 bytes  | 16 bytes | 16 bytes |          */
3129 /* |RX Buffers       | 16 bytes | 16 bytes | 16 bytes | 16 bytes |          */
3130 /* |PG Buffers       |   none   |   none   |   none   |   none   |          */
3131 /* |TX Buffers       |   none   |   none   |   none   |   none   |          */
3132 /* |Chain Pages(1)   |   4KiB   |   4KiB   |   4KiB   |   4KiB   |          */
3133 /* |Context Memory   |          |          |          |          |          */
3134 /* +-----------------+----------+----------+----------+----------+          */
3135 /*                                                                          */
3136 /* (1) Must align with CPU page size (BCM_PAGE_SZIE).                       */
3137 /*                                                                          */
3138 /* Returns:                                                                 */
3139 /*   0 for success, positive value for failure.                             */
3140 /****************************************************************************/
3141 static int
3142 bce_dma_alloc(device_t dev)
3143 {
3144 	struct bce_softc *sc;
3145 	int i, error, rc = 0;
3146 	bus_size_t max_size, max_seg_size;
3147 	int max_segments;
3148 
3149 	sc = device_get_softc(dev);
3150 
3151 	DBENTER(BCE_VERBOSE_RESET | BCE_VERBOSE_CTX);
3152 
3153 	/*
3154 	 * Allocate the parent bus DMA tag appropriate for PCI.
3155 	 */
3156 	if (bus_dma_tag_create(bus_get_dma_tag(dev), 1, BCE_DMA_BOUNDARY,
3157 	    sc->max_bus_addr, BUS_SPACE_MAXADDR, NULL, NULL,
3158 	    BUS_SPACE_MAXSIZE_32BIT, 0, BUS_SPACE_MAXSIZE_32BIT, 0, NULL, NULL,
3159 	    &sc->parent_tag)) {
3160 		BCE_PRINTF("%s(%d): Could not allocate parent DMA tag!\n",
3161 		    __FILE__, __LINE__);
3162 		rc = ENOMEM;
3163 		goto bce_dma_alloc_exit;
3164 	}
3165 
3166 	/*
3167 	 * Create a DMA tag for the status block, allocate and clear the
3168 	 * memory, map the memory into DMA space, and fetch the physical
3169 	 * address of the block.
3170 	 */
3171 	if (bus_dma_tag_create(sc->parent_tag, BCE_DMA_ALIGN,
3172 	    BCE_DMA_BOUNDARY, sc->max_bus_addr,	BUS_SPACE_MAXADDR,
3173 	    NULL, NULL,	BCE_STATUS_BLK_SZ, 1, BCE_STATUS_BLK_SZ,
3174 	    0, NULL, NULL, &sc->status_tag)) {
3175 		BCE_PRINTF("%s(%d): Could not allocate status block "
3176 		    "DMA tag!\n", __FILE__, __LINE__);
3177 		rc = ENOMEM;
3178 		goto bce_dma_alloc_exit;
3179 	}
3180 
3181 	if(bus_dmamem_alloc(sc->status_tag, (void **)&sc->status_block,
3182 	    BUS_DMA_NOWAIT | BUS_DMA_ZERO | BUS_DMA_COHERENT,
3183 	    &sc->status_map)) {
3184 		BCE_PRINTF("%s(%d): Could not allocate status block "
3185 		    "DMA memory!\n", __FILE__, __LINE__);
3186 		rc = ENOMEM;
3187 		goto bce_dma_alloc_exit;
3188 	}
3189 
3190 	error = bus_dmamap_load(sc->status_tag,	sc->status_map,
3191 	    sc->status_block, BCE_STATUS_BLK_SZ, bce_dma_map_addr,
3192 	    &sc->status_block_paddr, BUS_DMA_NOWAIT);
3193 
3194 	if (error) {
3195 		BCE_PRINTF("%s(%d): Could not map status block "
3196 		    "DMA memory!\n", __FILE__, __LINE__);
3197 		rc = ENOMEM;
3198 		goto bce_dma_alloc_exit;
3199 	}
3200 
3201 	DBPRINT(sc, BCE_INFO_LOAD, "%s(): status_block_paddr = 0x%jX\n",
3202 	    __FUNCTION__, (uintmax_t) sc->status_block_paddr);
3203 
3204 	/*
3205 	 * Create a DMA tag for the statistics block, allocate and clear the
3206 	 * memory, map the memory into DMA space, and fetch the physical
3207 	 * address of the block.
3208 	 */
3209 	if (bus_dma_tag_create(sc->parent_tag, BCE_DMA_ALIGN,
3210 	    BCE_DMA_BOUNDARY, sc->max_bus_addr,	BUS_SPACE_MAXADDR,
3211 	    NULL, NULL,	BCE_STATS_BLK_SZ, 1, BCE_STATS_BLK_SZ,
3212 	    0, NULL, NULL, &sc->stats_tag)) {
3213 		BCE_PRINTF("%s(%d): Could not allocate statistics block "
3214 		    "DMA tag!\n", __FILE__, __LINE__);
3215 		rc = ENOMEM;
3216 		goto bce_dma_alloc_exit;
3217 	}
3218 
3219 	if (bus_dmamem_alloc(sc->stats_tag, (void **)&sc->stats_block,
3220 	    BUS_DMA_NOWAIT | BUS_DMA_ZERO | BUS_DMA_COHERENT, &sc->stats_map)) {
3221 		BCE_PRINTF("%s(%d): Could not allocate statistics block "
3222 		    "DMA memory!\n", __FILE__, __LINE__);
3223 		rc = ENOMEM;
3224 		goto bce_dma_alloc_exit;
3225 	}
3226 
3227 	error = bus_dmamap_load(sc->stats_tag, sc->stats_map,
3228 	    sc->stats_block, BCE_STATS_BLK_SZ, bce_dma_map_addr,
3229 	    &sc->stats_block_paddr, BUS_DMA_NOWAIT);
3230 
3231 	if(error) {
3232 		BCE_PRINTF("%s(%d): Could not map statistics block "
3233 		    "DMA memory!\n", __FILE__, __LINE__);
3234 		rc = ENOMEM;
3235 		goto bce_dma_alloc_exit;
3236 	}
3237 
3238 	DBPRINT(sc, BCE_INFO_LOAD, "%s(): stats_block_paddr = 0x%jX\n",
3239 	    __FUNCTION__, (uintmax_t) sc->stats_block_paddr);
3240 
3241 	/* BCM5709 uses host memory as cache for context memory. */
3242 	if ((BCE_CHIP_NUM(sc) == BCE_CHIP_NUM_5709) ||
3243 	    (BCE_CHIP_NUM(sc) == BCE_CHIP_NUM_5716)) {
3244 		sc->ctx_pages = 0x2000 / BCM_PAGE_SIZE;
3245 		if (sc->ctx_pages == 0)
3246 			sc->ctx_pages = 1;
3247 
3248 		DBRUNIF((sc->ctx_pages > 512),
3249 		    BCE_PRINTF("%s(%d): Too many CTX pages! %d > 512\n",
3250 		    __FILE__, __LINE__, sc->ctx_pages));
3251 
3252 		/*
3253 		 * Create a DMA tag for the context pages,
3254 		 * allocate and clear the memory, map the
3255 		 * memory into DMA space, and fetch the
3256 		 * physical address of the block.
3257 		 */
3258 		if(bus_dma_tag_create(sc->parent_tag, BCM_PAGE_SIZE,
3259 		    BCE_DMA_BOUNDARY, sc->max_bus_addr,	BUS_SPACE_MAXADDR,
3260 		    NULL, NULL,	BCM_PAGE_SIZE, 1, BCM_PAGE_SIZE,
3261 		    0, NULL, NULL, &sc->ctx_tag)) {
3262 			BCE_PRINTF("%s(%d): Could not allocate CTX "
3263 			    "DMA tag!\n", __FILE__, __LINE__);
3264 			rc = ENOMEM;
3265 			goto bce_dma_alloc_exit;
3266 		}
3267 
3268 		for (i = 0; i < sc->ctx_pages; i++) {
3269 
3270 			if(bus_dmamem_alloc(sc->ctx_tag,
3271 			    (void **)&sc->ctx_block[i],
3272 			    BUS_DMA_NOWAIT | BUS_DMA_ZERO | BUS_DMA_COHERENT,
3273 			    &sc->ctx_map[i])) {
3274 				BCE_PRINTF("%s(%d): Could not allocate CTX "
3275 				    "DMA memory!\n", __FILE__, __LINE__);
3276 				rc = ENOMEM;
3277 				goto bce_dma_alloc_exit;
3278 			}
3279 
3280 			error = bus_dmamap_load(sc->ctx_tag, sc->ctx_map[i],
3281 			    sc->ctx_block[i], BCM_PAGE_SIZE, bce_dma_map_addr,
3282 			    &sc->ctx_paddr[i], BUS_DMA_NOWAIT);
3283 
3284 			if (error) {
3285 				BCE_PRINTF("%s(%d): Could not map CTX "
3286 				    "DMA memory!\n", __FILE__, __LINE__);
3287 				rc = ENOMEM;
3288 				goto bce_dma_alloc_exit;
3289 			}
3290 
3291 			DBPRINT(sc, BCE_INFO_LOAD, "%s(): ctx_paddr[%d] "
3292 			    "= 0x%jX\n", __FUNCTION__, i,
3293 			    (uintmax_t) sc->ctx_paddr[i]);
3294 		}
3295 	}
3296 
3297 	/*
3298 	 * Create a DMA tag for the TX buffer descriptor chain,
3299 	 * allocate and clear the  memory, and fetch the
3300 	 * physical address of the block.
3301 	 */
3302 	if(bus_dma_tag_create(sc->parent_tag, BCM_PAGE_SIZE, BCE_DMA_BOUNDARY,
3303 	    sc->max_bus_addr, BUS_SPACE_MAXADDR, NULL, NULL,
3304 	    BCE_TX_CHAIN_PAGE_SZ, 1, BCE_TX_CHAIN_PAGE_SZ, 0,
3305 	    NULL, NULL,	&sc->tx_bd_chain_tag)) {
3306 		BCE_PRINTF("%s(%d): Could not allocate TX descriptor "
3307 		    "chain DMA tag!\n", __FILE__, __LINE__);
3308 		rc = ENOMEM;
3309 		goto bce_dma_alloc_exit;
3310 	}
3311 
3312 	for (i = 0; i < TX_PAGES; i++) {
3313 
3314 		if(bus_dmamem_alloc(sc->tx_bd_chain_tag,
3315 		    (void **)&sc->tx_bd_chain[i],
3316 		    BUS_DMA_NOWAIT | BUS_DMA_ZERO | BUS_DMA_COHERENT,
3317 		    &sc->tx_bd_chain_map[i])) {
3318 			BCE_PRINTF("%s(%d): Could not allocate TX descriptor "
3319 			    "chain DMA memory!\n", __FILE__, __LINE__);
3320 			rc = ENOMEM;
3321 			goto bce_dma_alloc_exit;
3322 		}
3323 
3324 		error = bus_dmamap_load(sc->tx_bd_chain_tag,
3325 		    sc->tx_bd_chain_map[i], sc->tx_bd_chain[i],
3326 		    BCE_TX_CHAIN_PAGE_SZ, bce_dma_map_addr,
3327 		    &sc->tx_bd_chain_paddr[i], BUS_DMA_NOWAIT);
3328 
3329 		if (error) {
3330 			BCE_PRINTF("%s(%d): Could not map TX descriptor "
3331 			    "chain DMA memory!\n", __FILE__, __LINE__);
3332 			rc = ENOMEM;
3333 			goto bce_dma_alloc_exit;
3334 		}
3335 
3336 		DBPRINT(sc, BCE_INFO_LOAD, "%s(): tx_bd_chain_paddr[%d] = "
3337 		    "0x%jX\n", __FUNCTION__, i,
3338 		    (uintmax_t) sc->tx_bd_chain_paddr[i]);
3339 	}
3340 
3341 	/* Check the required size before mapping to conserve resources. */
3342 	if (bce_tso_enable) {
3343 		max_size     = BCE_TSO_MAX_SIZE;
3344 		max_segments = BCE_MAX_SEGMENTS;
3345 		max_seg_size = BCE_TSO_MAX_SEG_SIZE;
3346 	} else {
3347 		max_size     = MCLBYTES * BCE_MAX_SEGMENTS;
3348 		max_segments = BCE_MAX_SEGMENTS;
3349 		max_seg_size = MCLBYTES;
3350 	}
3351 
3352 	/* Create a DMA tag for TX mbufs. */
3353 	if (bus_dma_tag_create(sc->parent_tag, 1, BCE_DMA_BOUNDARY,
3354 	    sc->max_bus_addr, BUS_SPACE_MAXADDR, NULL, NULL, max_size,
3355 	    max_segments, max_seg_size,	0, NULL, NULL, &sc->tx_mbuf_tag)) {
3356 		BCE_PRINTF("%s(%d): Could not allocate TX mbuf DMA tag!\n",
3357 		    __FILE__, __LINE__);
3358 		rc = ENOMEM;
3359 		goto bce_dma_alloc_exit;
3360 	}
3361 
3362 	/* Create DMA maps for the TX mbufs clusters. */
3363 	for (i = 0; i < TOTAL_TX_BD; i++) {
3364 		if (bus_dmamap_create(sc->tx_mbuf_tag, BUS_DMA_NOWAIT,
3365 			&sc->tx_mbuf_map[i])) {
3366 			BCE_PRINTF("%s(%d): Unable to create TX mbuf DMA "
3367 			    "map!\n", __FILE__, __LINE__);
3368 			rc = ENOMEM;
3369 			goto bce_dma_alloc_exit;
3370 		}
3371 	}
3372 
3373 	/*
3374 	 * Create a DMA tag for the RX buffer descriptor chain,
3375 	 * allocate and clear the memory, and fetch the physical
3376 	 * address of the blocks.
3377 	 */
3378 	if (bus_dma_tag_create(sc->parent_tag, BCM_PAGE_SIZE,
3379 			BCE_DMA_BOUNDARY, BUS_SPACE_MAXADDR,
3380 			sc->max_bus_addr, NULL, NULL,
3381 			BCE_RX_CHAIN_PAGE_SZ, 1, BCE_RX_CHAIN_PAGE_SZ,
3382 			0, NULL, NULL, &sc->rx_bd_chain_tag)) {
3383 		BCE_PRINTF("%s(%d): Could not allocate RX descriptor chain "
3384 		    "DMA tag!\n", __FILE__, __LINE__);
3385 		rc = ENOMEM;
3386 		goto bce_dma_alloc_exit;
3387 	}
3388 
3389 	for (i = 0; i < RX_PAGES; i++) {
3390 
3391 		if (bus_dmamem_alloc(sc->rx_bd_chain_tag,
3392 		    (void **)&sc->rx_bd_chain[i],
3393 		    BUS_DMA_NOWAIT | BUS_DMA_ZERO | BUS_DMA_COHERENT,
3394 		    &sc->rx_bd_chain_map[i])) {
3395 			BCE_PRINTF("%s(%d): Could not allocate RX descriptor "
3396 			    "chain DMA memory!\n", __FILE__, __LINE__);
3397 			rc = ENOMEM;
3398 			goto bce_dma_alloc_exit;
3399 		}
3400 
3401 		error = bus_dmamap_load(sc->rx_bd_chain_tag,
3402 		    sc->rx_bd_chain_map[i], sc->rx_bd_chain[i],
3403 		    BCE_RX_CHAIN_PAGE_SZ, bce_dma_map_addr,
3404 		    &sc->rx_bd_chain_paddr[i], BUS_DMA_NOWAIT);
3405 
3406 		if (error) {
3407 			BCE_PRINTF("%s(%d): Could not map RX descriptor "
3408 			    "chain DMA memory!\n", __FILE__, __LINE__);
3409 			rc = ENOMEM;
3410 			goto bce_dma_alloc_exit;
3411 		}
3412 
3413 		DBPRINT(sc, BCE_INFO_LOAD, "%s(): rx_bd_chain_paddr[%d] = "
3414 		    "0x%jX\n", __FUNCTION__, i,
3415 		    (uintmax_t) sc->rx_bd_chain_paddr[i]);
3416 	}
3417 
3418 	/*
3419 	 * Create a DMA tag for RX mbufs.
3420 	 */
3421 #ifdef BCE_JUMBO_HDRSPLIT
3422 	max_size = max_seg_size = ((sc->rx_bd_mbuf_alloc_size < MCLBYTES) ?
3423 		MCLBYTES : sc->rx_bd_mbuf_alloc_size);
3424 #else
3425 	max_size = max_seg_size = MJUM9BYTES;
3426 #endif
3427 	max_segments = 1;
3428 
3429 	DBPRINT(sc, BCE_INFO_LOAD, "%s(): Creating rx_mbuf_tag "
3430 	    "(max size = 0x%jX max segments = %d, max segment "
3431 	    "size = 0x%jX)\n", __FUNCTION__, (uintmax_t) max_size,
3432 	     max_segments, (uintmax_t) max_seg_size);
3433 
3434 	if (bus_dma_tag_create(sc->parent_tag, BCE_RX_BUF_ALIGN,
3435 	    BCE_DMA_BOUNDARY, sc->max_bus_addr, BUS_SPACE_MAXADDR, NULL, NULL,
3436 	    max_size, max_segments, max_seg_size, 0, NULL, NULL,
3437 	    &sc->rx_mbuf_tag)) {
3438 		BCE_PRINTF("%s(%d): Could not allocate RX mbuf DMA tag!\n",
3439 		    __FILE__, __LINE__);
3440 		rc = ENOMEM;
3441 		goto bce_dma_alloc_exit;
3442 	}
3443 
3444 	/* Create DMA maps for the RX mbuf clusters. */
3445 	for (i = 0; i < TOTAL_RX_BD; i++) {
3446 		if (bus_dmamap_create(sc->rx_mbuf_tag, BUS_DMA_NOWAIT,
3447 		    &sc->rx_mbuf_map[i])) {
3448 			BCE_PRINTF("%s(%d): Unable to create RX mbuf "
3449 			    "DMA map!\n", __FILE__, __LINE__);
3450 			rc = ENOMEM;
3451 			goto bce_dma_alloc_exit;
3452 		}
3453 	}
3454 
3455 #ifdef BCE_JUMBO_HDRSPLIT
3456 	/*
3457 	 * Create a DMA tag for the page buffer descriptor chain,
3458 	 * allocate and clear the memory, and fetch the physical
3459 	 * address of the blocks.
3460 	 */
3461 	if (bus_dma_tag_create(sc->parent_tag, BCM_PAGE_SIZE,
3462 	    BCE_DMA_BOUNDARY, BUS_SPACE_MAXADDR, sc->max_bus_addr,
3463 	    NULL, NULL,	BCE_PG_CHAIN_PAGE_SZ, 1, BCE_PG_CHAIN_PAGE_SZ,
3464 	    0, NULL, NULL, &sc->pg_bd_chain_tag)) {
3465 		BCE_PRINTF("%s(%d): Could not allocate page descriptor "
3466 		    "chain DMA tag!\n",	__FILE__, __LINE__);
3467 		rc = ENOMEM;
3468 		goto bce_dma_alloc_exit;
3469 	}
3470 
3471 	for (i = 0; i < PG_PAGES; i++) {
3472 
3473 		if (bus_dmamem_alloc(sc->pg_bd_chain_tag,
3474 		    (void **)&sc->pg_bd_chain[i],
3475 		    BUS_DMA_NOWAIT | BUS_DMA_ZERO | BUS_DMA_COHERENT,
3476 		    &sc->pg_bd_chain_map[i])) {
3477 			BCE_PRINTF("%s(%d): Could not allocate page "
3478 			    "descriptor chain DMA memory!\n",
3479 			    __FILE__, __LINE__);
3480 			rc = ENOMEM;
3481 			goto bce_dma_alloc_exit;
3482 		}
3483 
3484 		error = bus_dmamap_load(sc->pg_bd_chain_tag,
3485 		    sc->pg_bd_chain_map[i], sc->pg_bd_chain[i],
3486 		    BCE_PG_CHAIN_PAGE_SZ, bce_dma_map_addr,
3487 		    &sc->pg_bd_chain_paddr[i], BUS_DMA_NOWAIT);
3488 
3489 		if (error) {
3490 			BCE_PRINTF("%s(%d): Could not map page descriptor "
3491 			    "chain DMA memory!\n", __FILE__, __LINE__);
3492 			rc = ENOMEM;
3493 			goto bce_dma_alloc_exit;
3494 		}
3495 
3496 		DBPRINT(sc, BCE_INFO_LOAD, "%s(): pg_bd_chain_paddr[%d] = "
3497 		    "0x%jX\n", __FUNCTION__, i,
3498 		    (uintmax_t) sc->pg_bd_chain_paddr[i]);
3499 	}
3500 
3501 	/*
3502 	 * Create a DMA tag for page mbufs.
3503 	 */
3504 	max_size = max_seg_size = ((sc->pg_bd_mbuf_alloc_size < MCLBYTES) ?
3505 	    MCLBYTES : sc->pg_bd_mbuf_alloc_size);
3506 
3507 	if (bus_dma_tag_create(sc->parent_tag, 1, BCE_DMA_BOUNDARY,
3508 	    sc->max_bus_addr, BUS_SPACE_MAXADDR, NULL, NULL,
3509 	    max_size, 1, max_seg_size, 0, NULL, NULL, &sc->pg_mbuf_tag)) {
3510 		BCE_PRINTF("%s(%d): Could not allocate page mbuf "
3511 		    "DMA tag!\n", __FILE__, __LINE__);
3512 		rc = ENOMEM;
3513 		goto bce_dma_alloc_exit;
3514 	}
3515 
3516 	/* Create DMA maps for the page mbuf clusters. */
3517 	for (i = 0; i < TOTAL_PG_BD; i++) {
3518 		if (bus_dmamap_create(sc->pg_mbuf_tag, BUS_DMA_NOWAIT,
3519 		    &sc->pg_mbuf_map[i])) {
3520 			BCE_PRINTF("%s(%d): Unable to create page mbuf "
3521 			    "DMA map!\n", __FILE__, __LINE__);
3522 			rc = ENOMEM;
3523 			goto bce_dma_alloc_exit;
3524 		}
3525 	}
3526 #endif
3527 
3528 bce_dma_alloc_exit:
3529 	DBEXIT(BCE_VERBOSE_RESET | BCE_VERBOSE_CTX);
3530 	return(rc);
3531 }
3532 
3533 
3534 /****************************************************************************/
3535 /* Release all resources used by the driver.                                */
3536 /*                                                                          */
3537 /* Releases all resources acquired by the driver including interrupts,      */
3538 /* interrupt handler, interfaces, mutexes, and DMA memory.                  */
3539 /*                                                                          */
3540 /* Returns:                                                                 */
3541 /*   Nothing.                                                               */
3542 /****************************************************************************/
3543 static void
3544 bce_release_resources(struct bce_softc *sc)
3545 {
3546 	device_t dev;
3547 
3548 	DBENTER(BCE_VERBOSE_RESET);
3549 
3550 	dev = sc->bce_dev;
3551 
3552 	bce_dma_free(sc);
3553 
3554 	if (sc->bce_intrhand != NULL) {
3555 		DBPRINT(sc, BCE_INFO_RESET, "Removing interrupt handler.\n");
3556 		bus_teardown_intr(dev, sc->bce_res_irq, sc->bce_intrhand);
3557 	}
3558 
3559 	if (sc->bce_res_irq != NULL) {
3560 		DBPRINT(sc, BCE_INFO_RESET, "Releasing IRQ.\n");
3561 		bus_release_resource(dev, SYS_RES_IRQ, sc->bce_irq_rid,
3562 		    sc->bce_res_irq);
3563 	}
3564 
3565 	if (sc->bce_flags & (BCE_USING_MSI_FLAG | BCE_USING_MSIX_FLAG)) {
3566 		DBPRINT(sc, BCE_INFO_RESET, "Releasing MSI/MSI-X vector.\n");
3567 		pci_release_msi(dev);
3568 	}
3569 
3570 	if (sc->bce_res_mem != NULL) {
3571 		DBPRINT(sc, BCE_INFO_RESET, "Releasing PCI memory.\n");
3572 		    bus_release_resource(dev, SYS_RES_MEMORY, PCIR_BAR(0),
3573 		    sc->bce_res_mem);
3574 	}
3575 
3576 	if (sc->bce_ifp != NULL) {
3577 		DBPRINT(sc, BCE_INFO_RESET, "Releasing IF.\n");
3578 		if_free(sc->bce_ifp);
3579 	}
3580 
3581 	if (mtx_initialized(&sc->bce_mtx))
3582 		BCE_LOCK_DESTROY(sc);
3583 
3584 	DBEXIT(BCE_VERBOSE_RESET);
3585 }
3586 
3587 
3588 /****************************************************************************/
3589 /* Firmware synchronization.                                                */
3590 /*                                                                          */
3591 /* Before performing certain events such as a chip reset, synchronize with  */
3592 /* the firmware first.                                                      */
3593 /*                                                                          */
3594 /* Returns:                                                                 */
3595 /*   0 for success, positive value for failure.                             */
3596 /****************************************************************************/
3597 static int
3598 bce_fw_sync(struct bce_softc *sc, u32 msg_data)
3599 {
3600 	int i, rc = 0;
3601 	u32 val;
3602 
3603 	DBENTER(BCE_VERBOSE_RESET);
3604 
3605 	/* Don't waste any time if we've timed out before. */
3606 	if (sc->bce_fw_timed_out == TRUE) {
3607 		rc = EBUSY;
3608 		goto bce_fw_sync_exit;
3609 	}
3610 
3611 	/* Increment the message sequence number. */
3612 	sc->bce_fw_wr_seq++;
3613 	msg_data |= sc->bce_fw_wr_seq;
3614 
3615  	DBPRINT(sc, BCE_VERBOSE_FIRMWARE, "bce_fw_sync(): msg_data = "
3616 	    "0x%08X\n",	msg_data);
3617 
3618 	/* Send the message to the bootcode driver mailbox. */
3619 	bce_shmem_wr(sc, BCE_DRV_MB, msg_data);
3620 
3621 	/* Wait for the bootcode to acknowledge the message. */
3622 	for (i = 0; i < FW_ACK_TIME_OUT_MS; i++) {
3623 		/* Check for a response in the bootcode firmware mailbox. */
3624 		val = bce_shmem_rd(sc, BCE_FW_MB);
3625 		if ((val & BCE_FW_MSG_ACK) == (msg_data & BCE_DRV_MSG_SEQ))
3626 			break;
3627 		DELAY(1000);
3628 	}
3629 
3630 	/* If we've timed out, tell bootcode that we've stopped waiting. */
3631 	if (((val & BCE_FW_MSG_ACK) != (msg_data & BCE_DRV_MSG_SEQ)) &&
3632 	    ((msg_data & BCE_DRV_MSG_DATA) != BCE_DRV_MSG_DATA_WAIT0)) {
3633 
3634 		BCE_PRINTF("%s(%d): Firmware synchronization timeout! "
3635 		    "msg_data = 0x%08X\n", __FILE__, __LINE__, msg_data);
3636 
3637 		msg_data &= ~BCE_DRV_MSG_CODE;
3638 		msg_data |= BCE_DRV_MSG_CODE_FW_TIMEOUT;
3639 
3640 		bce_shmem_wr(sc, BCE_DRV_MB, msg_data);
3641 
3642 		sc->bce_fw_timed_out = TRUE;
3643 		rc = EBUSY;
3644 	}
3645 
3646 bce_fw_sync_exit:
3647 	DBEXIT(BCE_VERBOSE_RESET);
3648 	return (rc);
3649 }
3650 
3651 
3652 /****************************************************************************/
3653 /* Load Receive Virtual 2 Physical (RV2P) processor firmware.               */
3654 /*                                                                          */
3655 /* Returns:                                                                 */
3656 /*   Nothing.                                                               */
3657 /****************************************************************************/
3658 static void
3659 bce_load_rv2p_fw(struct bce_softc *sc, u32 *rv2p_code,
3660 	u32 rv2p_code_len, u32 rv2p_proc)
3661 {
3662 	int i;
3663 	u32 val;
3664 
3665 	DBENTER(BCE_VERBOSE_RESET);
3666 
3667 	/* Set the page size used by RV2P. */
3668 	if (rv2p_proc == RV2P_PROC2) {
3669 		BCE_RV2P_PROC2_CHG_MAX_BD_PAGE(USABLE_RX_BD_PER_PAGE);
3670 	}
3671 
3672 	for (i = 0; i < rv2p_code_len; i += 8) {
3673 		REG_WR(sc, BCE_RV2P_INSTR_HIGH, *rv2p_code);
3674 		rv2p_code++;
3675 		REG_WR(sc, BCE_RV2P_INSTR_LOW, *rv2p_code);
3676 		rv2p_code++;
3677 
3678 		if (rv2p_proc == RV2P_PROC1) {
3679 			val = (i / 8) | BCE_RV2P_PROC1_ADDR_CMD_RDWR;
3680 			REG_WR(sc, BCE_RV2P_PROC1_ADDR_CMD, val);
3681 		}
3682 		else {
3683 			val = (i / 8) | BCE_RV2P_PROC2_ADDR_CMD_RDWR;
3684 			REG_WR(sc, BCE_RV2P_PROC2_ADDR_CMD, val);
3685 		}
3686 	}
3687 
3688 	/* Reset the processor, un-stall is done later. */
3689 	if (rv2p_proc == RV2P_PROC1) {
3690 		REG_WR(sc, BCE_RV2P_COMMAND, BCE_RV2P_COMMAND_PROC1_RESET);
3691 	}
3692 	else {
3693 		REG_WR(sc, BCE_RV2P_COMMAND, BCE_RV2P_COMMAND_PROC2_RESET);
3694 	}
3695 
3696 	DBEXIT(BCE_VERBOSE_RESET);
3697 }
3698 
3699 
3700 /****************************************************************************/
3701 /* Load RISC processor firmware.                                            */
3702 /*                                                                          */
3703 /* Loads firmware from the file if_bcefw.h into the scratchpad memory       */
3704 /* associated with a particular processor.                                  */
3705 /*                                                                          */
3706 /* Returns:                                                                 */
3707 /*   Nothing.                                                               */
3708 /****************************************************************************/
3709 static void
3710 bce_load_cpu_fw(struct bce_softc *sc, struct cpu_reg *cpu_reg,
3711 	struct fw_info *fw)
3712 {
3713 	u32 offset;
3714 
3715 	DBENTER(BCE_VERBOSE_RESET);
3716 
3717     bce_halt_cpu(sc, cpu_reg);
3718 
3719 	/* Load the Text area. */
3720 	offset = cpu_reg->spad_base + (fw->text_addr - cpu_reg->mips_view_base);
3721 	if (fw->text) {
3722 		int j;
3723 
3724 		for (j = 0; j < (fw->text_len / 4); j++, offset += 4) {
3725 			REG_WR_IND(sc, offset, fw->text[j]);
3726 	        }
3727 	}
3728 
3729 	/* Load the Data area. */
3730 	offset = cpu_reg->spad_base + (fw->data_addr - cpu_reg->mips_view_base);
3731 	if (fw->data) {
3732 		int j;
3733 
3734 		for (j = 0; j < (fw->data_len / 4); j++, offset += 4) {
3735 			REG_WR_IND(sc, offset, fw->data[j]);
3736 		}
3737 	}
3738 
3739 	/* Load the SBSS area. */
3740 	offset = cpu_reg->spad_base + (fw->sbss_addr - cpu_reg->mips_view_base);
3741 	if (fw->sbss) {
3742 		int j;
3743 
3744 		for (j = 0; j < (fw->sbss_len / 4); j++, offset += 4) {
3745 			REG_WR_IND(sc, offset, fw->sbss[j]);
3746 		}
3747 	}
3748 
3749 	/* Load the BSS area. */
3750 	offset = cpu_reg->spad_base + (fw->bss_addr - cpu_reg->mips_view_base);
3751 	if (fw->bss) {
3752 		int j;
3753 
3754 		for (j = 0; j < (fw->bss_len/4); j++, offset += 4) {
3755 			REG_WR_IND(sc, offset, fw->bss[j]);
3756 		}
3757 	}
3758 
3759 	/* Load the Read-Only area. */
3760 	offset = cpu_reg->spad_base +
3761 		(fw->rodata_addr - cpu_reg->mips_view_base);
3762 	if (fw->rodata) {
3763 		int j;
3764 
3765 		for (j = 0; j < (fw->rodata_len / 4); j++, offset += 4) {
3766 			REG_WR_IND(sc, offset, fw->rodata[j]);
3767 		}
3768 	}
3769 
3770 	/* Clear the pre-fetch instruction and set the FW start address. */
3771 	REG_WR_IND(sc, cpu_reg->inst, 0);
3772 	REG_WR_IND(sc, cpu_reg->pc, fw->start_addr);
3773 
3774 	DBEXIT(BCE_VERBOSE_RESET);
3775 }
3776 
3777 
3778 /****************************************************************************/
3779 /* Starts the RISC processor.                                               */
3780 /*                                                                          */
3781 /* Assumes the CPU starting address has already been set.                   */
3782 /*                                                                          */
3783 /* Returns:                                                                 */
3784 /*   Nothing.                                                               */
3785 /****************************************************************************/
3786 static void
3787 bce_start_cpu(struct bce_softc *sc, struct cpu_reg *cpu_reg)
3788 {
3789 	u32 val;
3790 
3791 	DBENTER(BCE_VERBOSE_RESET);
3792 
3793 	/* Start the CPU. */
3794 	val = REG_RD_IND(sc, cpu_reg->mode);
3795 	val &= ~cpu_reg->mode_value_halt;
3796 	REG_WR_IND(sc, cpu_reg->state, cpu_reg->state_value_clear);
3797 	REG_WR_IND(sc, cpu_reg->mode, val);
3798 
3799 	DBEXIT(BCE_VERBOSE_RESET);
3800 }
3801 
3802 
3803 /****************************************************************************/
3804 /* Halts the RISC processor.                                                */
3805 /*                                                                          */
3806 /* Returns:                                                                 */
3807 /*   Nothing.                                                               */
3808 /****************************************************************************/
3809 static void
3810 bce_halt_cpu(struct bce_softc *sc, struct cpu_reg *cpu_reg)
3811 {
3812 	u32 val;
3813 
3814 	DBENTER(BCE_VERBOSE_RESET);
3815 
3816 	/* Halt the CPU. */
3817 	val = REG_RD_IND(sc, cpu_reg->mode);
3818 	val |= cpu_reg->mode_value_halt;
3819 	REG_WR_IND(sc, cpu_reg->mode, val);
3820 	REG_WR_IND(sc, cpu_reg->state, cpu_reg->state_value_clear);
3821 
3822 	DBEXIT(BCE_VERBOSE_RESET);
3823 }
3824 
3825 
3826 /****************************************************************************/
3827 /* Initialize the RX CPU.                                                   */
3828 /*                                                                          */
3829 /* Returns:                                                                 */
3830 /*   Nothing.                                                               */
3831 /****************************************************************************/
3832 static void
3833 bce_start_rxp_cpu(struct bce_softc *sc)
3834 {
3835 	struct cpu_reg cpu_reg;
3836 
3837 	DBENTER(BCE_VERBOSE_RESET);
3838 
3839 	cpu_reg.mode = BCE_RXP_CPU_MODE;
3840 	cpu_reg.mode_value_halt = BCE_RXP_CPU_MODE_SOFT_HALT;
3841 	cpu_reg.mode_value_sstep = BCE_RXP_CPU_MODE_STEP_ENA;
3842 	cpu_reg.state = BCE_RXP_CPU_STATE;
3843 	cpu_reg.state_value_clear = 0xffffff;
3844 	cpu_reg.gpr0 = BCE_RXP_CPU_REG_FILE;
3845 	cpu_reg.evmask = BCE_RXP_CPU_EVENT_MASK;
3846 	cpu_reg.pc = BCE_RXP_CPU_PROGRAM_COUNTER;
3847 	cpu_reg.inst = BCE_RXP_CPU_INSTRUCTION;
3848 	cpu_reg.bp = BCE_RXP_CPU_HW_BREAKPOINT;
3849 	cpu_reg.spad_base = BCE_RXP_SCRATCH;
3850 	cpu_reg.mips_view_base = 0x8000000;
3851 
3852 	DBPRINT(sc, BCE_INFO_RESET, "Starting RX firmware.\n");
3853 	bce_start_cpu(sc, &cpu_reg);
3854 
3855 	DBEXIT(BCE_VERBOSE_RESET);
3856 }
3857 
3858 
3859 /****************************************************************************/
3860 /* Initialize the RX CPU.                                                   */
3861 /*                                                                          */
3862 /* Returns:                                                                 */
3863 /*   Nothing.                                                               */
3864 /****************************************************************************/
3865 static void
3866 bce_init_rxp_cpu(struct bce_softc *sc)
3867 {
3868 	struct cpu_reg cpu_reg;
3869 	struct fw_info fw;
3870 
3871 	DBENTER(BCE_VERBOSE_RESET);
3872 
3873 	cpu_reg.mode = BCE_RXP_CPU_MODE;
3874 	cpu_reg.mode_value_halt = BCE_RXP_CPU_MODE_SOFT_HALT;
3875 	cpu_reg.mode_value_sstep = BCE_RXP_CPU_MODE_STEP_ENA;
3876 	cpu_reg.state = BCE_RXP_CPU_STATE;
3877 	cpu_reg.state_value_clear = 0xffffff;
3878 	cpu_reg.gpr0 = BCE_RXP_CPU_REG_FILE;
3879 	cpu_reg.evmask = BCE_RXP_CPU_EVENT_MASK;
3880 	cpu_reg.pc = BCE_RXP_CPU_PROGRAM_COUNTER;
3881 	cpu_reg.inst = BCE_RXP_CPU_INSTRUCTION;
3882 	cpu_reg.bp = BCE_RXP_CPU_HW_BREAKPOINT;
3883 	cpu_reg.spad_base = BCE_RXP_SCRATCH;
3884 	cpu_reg.mips_view_base = 0x8000000;
3885 
3886 	if ((BCE_CHIP_NUM(sc) == BCE_CHIP_NUM_5709) ||
3887 		(BCE_CHIP_NUM(sc) == BCE_CHIP_NUM_5716)) {
3888  		fw.ver_major = bce_RXP_b09FwReleaseMajor;
3889 		fw.ver_minor = bce_RXP_b09FwReleaseMinor;
3890 		fw.ver_fix = bce_RXP_b09FwReleaseFix;
3891 		fw.start_addr = bce_RXP_b09FwStartAddr;
3892 
3893 		fw.text_addr = bce_RXP_b09FwTextAddr;
3894 		fw.text_len = bce_RXP_b09FwTextLen;
3895 		fw.text_index = 0;
3896 		fw.text = bce_RXP_b09FwText;
3897 
3898 		fw.data_addr = bce_RXP_b09FwDataAddr;
3899 		fw.data_len = bce_RXP_b09FwDataLen;
3900 		fw.data_index = 0;
3901 		fw.data = bce_RXP_b09FwData;
3902 
3903 		fw.sbss_addr = bce_RXP_b09FwSbssAddr;
3904 		fw.sbss_len = bce_RXP_b09FwSbssLen;
3905 		fw.sbss_index = 0;
3906 		fw.sbss = bce_RXP_b09FwSbss;
3907 
3908 		fw.bss_addr = bce_RXP_b09FwBssAddr;
3909 		fw.bss_len = bce_RXP_b09FwBssLen;
3910 		fw.bss_index = 0;
3911 		fw.bss = bce_RXP_b09FwBss;
3912 
3913 		fw.rodata_addr = bce_RXP_b09FwRodataAddr;
3914 		fw.rodata_len = bce_RXP_b09FwRodataLen;
3915 		fw.rodata_index = 0;
3916 		fw.rodata = bce_RXP_b09FwRodata;
3917 	} else {
3918 		fw.ver_major = bce_RXP_b06FwReleaseMajor;
3919 		fw.ver_minor = bce_RXP_b06FwReleaseMinor;
3920 		fw.ver_fix = bce_RXP_b06FwReleaseFix;
3921 		fw.start_addr = bce_RXP_b06FwStartAddr;
3922 
3923 		fw.text_addr = bce_RXP_b06FwTextAddr;
3924 		fw.text_len = bce_RXP_b06FwTextLen;
3925 		fw.text_index = 0;
3926 		fw.text = bce_RXP_b06FwText;
3927 
3928 		fw.data_addr = bce_RXP_b06FwDataAddr;
3929 		fw.data_len = bce_RXP_b06FwDataLen;
3930 		fw.data_index = 0;
3931 		fw.data = bce_RXP_b06FwData;
3932 
3933 		fw.sbss_addr = bce_RXP_b06FwSbssAddr;
3934 		fw.sbss_len = bce_RXP_b06FwSbssLen;
3935 		fw.sbss_index = 0;
3936 		fw.sbss = bce_RXP_b06FwSbss;
3937 
3938 		fw.bss_addr = bce_RXP_b06FwBssAddr;
3939 		fw.bss_len = bce_RXP_b06FwBssLen;
3940 		fw.bss_index = 0;
3941 		fw.bss = bce_RXP_b06FwBss;
3942 
3943 		fw.rodata_addr = bce_RXP_b06FwRodataAddr;
3944 		fw.rodata_len = bce_RXP_b06FwRodataLen;
3945 		fw.rodata_index = 0;
3946 		fw.rodata = bce_RXP_b06FwRodata;
3947 	}
3948 
3949 	DBPRINT(sc, BCE_INFO_RESET, "Loading RX firmware.\n");
3950 	bce_load_cpu_fw(sc, &cpu_reg, &fw);
3951 
3952     /* Delay RXP start until initialization is complete. */
3953 
3954 	DBEXIT(BCE_VERBOSE_RESET);
3955 }
3956 
3957 
3958 /****************************************************************************/
3959 /* Initialize the TX CPU.                                                   */
3960 /*                                                                          */
3961 /* Returns:                                                                 */
3962 /*   Nothing.                                                               */
3963 /****************************************************************************/
3964 static void
3965 bce_init_txp_cpu(struct bce_softc *sc)
3966 {
3967 	struct cpu_reg cpu_reg;
3968 	struct fw_info fw;
3969 
3970 	DBENTER(BCE_VERBOSE_RESET);
3971 
3972 	cpu_reg.mode = BCE_TXP_CPU_MODE;
3973 	cpu_reg.mode_value_halt = BCE_TXP_CPU_MODE_SOFT_HALT;
3974 	cpu_reg.mode_value_sstep = BCE_TXP_CPU_MODE_STEP_ENA;
3975 	cpu_reg.state = BCE_TXP_CPU_STATE;
3976 	cpu_reg.state_value_clear = 0xffffff;
3977 	cpu_reg.gpr0 = BCE_TXP_CPU_REG_FILE;
3978 	cpu_reg.evmask = BCE_TXP_CPU_EVENT_MASK;
3979 	cpu_reg.pc = BCE_TXP_CPU_PROGRAM_COUNTER;
3980 	cpu_reg.inst = BCE_TXP_CPU_INSTRUCTION;
3981 	cpu_reg.bp = BCE_TXP_CPU_HW_BREAKPOINT;
3982 	cpu_reg.spad_base = BCE_TXP_SCRATCH;
3983 	cpu_reg.mips_view_base = 0x8000000;
3984 
3985 	if ((BCE_CHIP_NUM(sc) == BCE_CHIP_NUM_5709) ||
3986 		(BCE_CHIP_NUM(sc) == BCE_CHIP_NUM_5716)) {
3987 		fw.ver_major = bce_TXP_b09FwReleaseMajor;
3988 		fw.ver_minor = bce_TXP_b09FwReleaseMinor;
3989 		fw.ver_fix = bce_TXP_b09FwReleaseFix;
3990 		fw.start_addr = bce_TXP_b09FwStartAddr;
3991 
3992 		fw.text_addr = bce_TXP_b09FwTextAddr;
3993 		fw.text_len = bce_TXP_b09FwTextLen;
3994 		fw.text_index = 0;
3995 		fw.text = bce_TXP_b09FwText;
3996 
3997 		fw.data_addr = bce_TXP_b09FwDataAddr;
3998 		fw.data_len = bce_TXP_b09FwDataLen;
3999 		fw.data_index = 0;
4000 		fw.data = bce_TXP_b09FwData;
4001 
4002 		fw.sbss_addr = bce_TXP_b09FwSbssAddr;
4003 		fw.sbss_len = bce_TXP_b09FwSbssLen;
4004 		fw.sbss_index = 0;
4005 		fw.sbss = bce_TXP_b09FwSbss;
4006 
4007 		fw.bss_addr = bce_TXP_b09FwBssAddr;
4008 		fw.bss_len = bce_TXP_b09FwBssLen;
4009 		fw.bss_index = 0;
4010 		fw.bss = bce_TXP_b09FwBss;
4011 
4012 		fw.rodata_addr = bce_TXP_b09FwRodataAddr;
4013 		fw.rodata_len = bce_TXP_b09FwRodataLen;
4014 		fw.rodata_index = 0;
4015 		fw.rodata = bce_TXP_b09FwRodata;
4016 	} else {
4017 		fw.ver_major = bce_TXP_b06FwReleaseMajor;
4018 		fw.ver_minor = bce_TXP_b06FwReleaseMinor;
4019 		fw.ver_fix = bce_TXP_b06FwReleaseFix;
4020 		fw.start_addr = bce_TXP_b06FwStartAddr;
4021 
4022 		fw.text_addr = bce_TXP_b06FwTextAddr;
4023 		fw.text_len = bce_TXP_b06FwTextLen;
4024 		fw.text_index = 0;
4025 		fw.text = bce_TXP_b06FwText;
4026 
4027 		fw.data_addr = bce_TXP_b06FwDataAddr;
4028 		fw.data_len = bce_TXP_b06FwDataLen;
4029 		fw.data_index = 0;
4030 		fw.data = bce_TXP_b06FwData;
4031 
4032 		fw.sbss_addr = bce_TXP_b06FwSbssAddr;
4033 		fw.sbss_len = bce_TXP_b06FwSbssLen;
4034 		fw.sbss_index = 0;
4035 		fw.sbss = bce_TXP_b06FwSbss;
4036 
4037 		fw.bss_addr = bce_TXP_b06FwBssAddr;
4038 		fw.bss_len = bce_TXP_b06FwBssLen;
4039 		fw.bss_index = 0;
4040 		fw.bss = bce_TXP_b06FwBss;
4041 
4042 		fw.rodata_addr = bce_TXP_b06FwRodataAddr;
4043 		fw.rodata_len = bce_TXP_b06FwRodataLen;
4044 		fw.rodata_index = 0;
4045 		fw.rodata = bce_TXP_b06FwRodata;
4046 	}
4047 
4048 	DBPRINT(sc, BCE_INFO_RESET, "Loading TX firmware.\n");
4049 	bce_load_cpu_fw(sc, &cpu_reg, &fw);
4050     bce_start_cpu(sc, &cpu_reg);
4051 
4052 	DBEXIT(BCE_VERBOSE_RESET);
4053 }
4054 
4055 
4056 /****************************************************************************/
4057 /* Initialize the TPAT CPU.                                                 */
4058 /*                                                                          */
4059 /* Returns:                                                                 */
4060 /*   Nothing.                                                               */
4061 /****************************************************************************/
4062 static void
4063 bce_init_tpat_cpu(struct bce_softc *sc)
4064 {
4065 	struct cpu_reg cpu_reg;
4066 	struct fw_info fw;
4067 
4068 	DBENTER(BCE_VERBOSE_RESET);
4069 
4070 	cpu_reg.mode = BCE_TPAT_CPU_MODE;
4071 	cpu_reg.mode_value_halt = BCE_TPAT_CPU_MODE_SOFT_HALT;
4072 	cpu_reg.mode_value_sstep = BCE_TPAT_CPU_MODE_STEP_ENA;
4073 	cpu_reg.state = BCE_TPAT_CPU_STATE;
4074 	cpu_reg.state_value_clear = 0xffffff;
4075 	cpu_reg.gpr0 = BCE_TPAT_CPU_REG_FILE;
4076 	cpu_reg.evmask = BCE_TPAT_CPU_EVENT_MASK;
4077 	cpu_reg.pc = BCE_TPAT_CPU_PROGRAM_COUNTER;
4078 	cpu_reg.inst = BCE_TPAT_CPU_INSTRUCTION;
4079 	cpu_reg.bp = BCE_TPAT_CPU_HW_BREAKPOINT;
4080 	cpu_reg.spad_base = BCE_TPAT_SCRATCH;
4081 	cpu_reg.mips_view_base = 0x8000000;
4082 
4083 	if ((BCE_CHIP_NUM(sc) == BCE_CHIP_NUM_5709) ||
4084 		(BCE_CHIP_NUM(sc) == BCE_CHIP_NUM_5716)) {
4085 		fw.ver_major = bce_TPAT_b09FwReleaseMajor;
4086 		fw.ver_minor = bce_TPAT_b09FwReleaseMinor;
4087 		fw.ver_fix = bce_TPAT_b09FwReleaseFix;
4088 		fw.start_addr = bce_TPAT_b09FwStartAddr;
4089 
4090 		fw.text_addr = bce_TPAT_b09FwTextAddr;
4091 		fw.text_len = bce_TPAT_b09FwTextLen;
4092 		fw.text_index = 0;
4093 		fw.text = bce_TPAT_b09FwText;
4094 
4095 		fw.data_addr = bce_TPAT_b09FwDataAddr;
4096 		fw.data_len = bce_TPAT_b09FwDataLen;
4097 		fw.data_index = 0;
4098 		fw.data = bce_TPAT_b09FwData;
4099 
4100 		fw.sbss_addr = bce_TPAT_b09FwSbssAddr;
4101 		fw.sbss_len = bce_TPAT_b09FwSbssLen;
4102 		fw.sbss_index = 0;
4103 		fw.sbss = bce_TPAT_b09FwSbss;
4104 
4105 		fw.bss_addr = bce_TPAT_b09FwBssAddr;
4106 		fw.bss_len = bce_TPAT_b09FwBssLen;
4107 		fw.bss_index = 0;
4108 		fw.bss = bce_TPAT_b09FwBss;
4109 
4110 		fw.rodata_addr = bce_TPAT_b09FwRodataAddr;
4111 		fw.rodata_len = bce_TPAT_b09FwRodataLen;
4112 		fw.rodata_index = 0;
4113 		fw.rodata = bce_TPAT_b09FwRodata;
4114 	} else {
4115 		fw.ver_major = bce_TPAT_b06FwReleaseMajor;
4116 		fw.ver_minor = bce_TPAT_b06FwReleaseMinor;
4117 		fw.ver_fix = bce_TPAT_b06FwReleaseFix;
4118 		fw.start_addr = bce_TPAT_b06FwStartAddr;
4119 
4120 		fw.text_addr = bce_TPAT_b06FwTextAddr;
4121 		fw.text_len = bce_TPAT_b06FwTextLen;
4122 		fw.text_index = 0;
4123 		fw.text = bce_TPAT_b06FwText;
4124 
4125 		fw.data_addr = bce_TPAT_b06FwDataAddr;
4126 		fw.data_len = bce_TPAT_b06FwDataLen;
4127 		fw.data_index = 0;
4128 		fw.data = bce_TPAT_b06FwData;
4129 
4130 		fw.sbss_addr = bce_TPAT_b06FwSbssAddr;
4131 		fw.sbss_len = bce_TPAT_b06FwSbssLen;
4132 		fw.sbss_index = 0;
4133 		fw.sbss = bce_TPAT_b06FwSbss;
4134 
4135 		fw.bss_addr = bce_TPAT_b06FwBssAddr;
4136 		fw.bss_len = bce_TPAT_b06FwBssLen;
4137 		fw.bss_index = 0;
4138 		fw.bss = bce_TPAT_b06FwBss;
4139 
4140 		fw.rodata_addr = bce_TPAT_b06FwRodataAddr;
4141 		fw.rodata_len = bce_TPAT_b06FwRodataLen;
4142 		fw.rodata_index = 0;
4143 		fw.rodata = bce_TPAT_b06FwRodata;
4144 	}
4145 
4146 	DBPRINT(sc, BCE_INFO_RESET, "Loading TPAT firmware.\n");
4147 	bce_load_cpu_fw(sc, &cpu_reg, &fw);
4148 	bce_start_cpu(sc, &cpu_reg);
4149 
4150 	DBEXIT(BCE_VERBOSE_RESET);
4151 }
4152 
4153 
4154 /****************************************************************************/
4155 /* Initialize the CP CPU.                                                   */
4156 /*                                                                          */
4157 /* Returns:                                                                 */
4158 /*   Nothing.                                                               */
4159 /****************************************************************************/
4160 static void
4161 bce_init_cp_cpu(struct bce_softc *sc)
4162 {
4163 	struct cpu_reg cpu_reg;
4164 	struct fw_info fw;
4165 
4166 	DBENTER(BCE_VERBOSE_RESET);
4167 
4168 	cpu_reg.mode = BCE_CP_CPU_MODE;
4169 	cpu_reg.mode_value_halt = BCE_CP_CPU_MODE_SOFT_HALT;
4170 	cpu_reg.mode_value_sstep = BCE_CP_CPU_MODE_STEP_ENA;
4171 	cpu_reg.state = BCE_CP_CPU_STATE;
4172 	cpu_reg.state_value_clear = 0xffffff;
4173 	cpu_reg.gpr0 = BCE_CP_CPU_REG_FILE;
4174 	cpu_reg.evmask = BCE_CP_CPU_EVENT_MASK;
4175 	cpu_reg.pc = BCE_CP_CPU_PROGRAM_COUNTER;
4176 	cpu_reg.inst = BCE_CP_CPU_INSTRUCTION;
4177 	cpu_reg.bp = BCE_CP_CPU_HW_BREAKPOINT;
4178 	cpu_reg.spad_base = BCE_CP_SCRATCH;
4179 	cpu_reg.mips_view_base = 0x8000000;
4180 
4181 	if ((BCE_CHIP_NUM(sc) == BCE_CHIP_NUM_5709) ||
4182 		(BCE_CHIP_NUM(sc) == BCE_CHIP_NUM_5716)) {
4183 		fw.ver_major = bce_CP_b09FwReleaseMajor;
4184 		fw.ver_minor = bce_CP_b09FwReleaseMinor;
4185 		fw.ver_fix = bce_CP_b09FwReleaseFix;
4186 		fw.start_addr = bce_CP_b09FwStartAddr;
4187 
4188 		fw.text_addr = bce_CP_b09FwTextAddr;
4189 		fw.text_len = bce_CP_b09FwTextLen;
4190 		fw.text_index = 0;
4191 		fw.text = bce_CP_b09FwText;
4192 
4193 		fw.data_addr = bce_CP_b09FwDataAddr;
4194 		fw.data_len = bce_CP_b09FwDataLen;
4195 		fw.data_index = 0;
4196 		fw.data = bce_CP_b09FwData;
4197 
4198 		fw.sbss_addr = bce_CP_b09FwSbssAddr;
4199 		fw.sbss_len = bce_CP_b09FwSbssLen;
4200 		fw.sbss_index = 0;
4201 		fw.sbss = bce_CP_b09FwSbss;
4202 
4203 		fw.bss_addr = bce_CP_b09FwBssAddr;
4204 		fw.bss_len = bce_CP_b09FwBssLen;
4205 		fw.bss_index = 0;
4206 		fw.bss = bce_CP_b09FwBss;
4207 
4208 		fw.rodata_addr = bce_CP_b09FwRodataAddr;
4209 		fw.rodata_len = bce_CP_b09FwRodataLen;
4210 		fw.rodata_index = 0;
4211 		fw.rodata = bce_CP_b09FwRodata;
4212 	} else {
4213 		fw.ver_major = bce_CP_b06FwReleaseMajor;
4214 		fw.ver_minor = bce_CP_b06FwReleaseMinor;
4215 		fw.ver_fix = bce_CP_b06FwReleaseFix;
4216 		fw.start_addr = bce_CP_b06FwStartAddr;
4217 
4218 		fw.text_addr = bce_CP_b06FwTextAddr;
4219 		fw.text_len = bce_CP_b06FwTextLen;
4220 		fw.text_index = 0;
4221 		fw.text = bce_CP_b06FwText;
4222 
4223 		fw.data_addr = bce_CP_b06FwDataAddr;
4224 		fw.data_len = bce_CP_b06FwDataLen;
4225 		fw.data_index = 0;
4226 		fw.data = bce_CP_b06FwData;
4227 
4228 		fw.sbss_addr = bce_CP_b06FwSbssAddr;
4229 		fw.sbss_len = bce_CP_b06FwSbssLen;
4230 		fw.sbss_index = 0;
4231 		fw.sbss = bce_CP_b06FwSbss;
4232 
4233 		fw.bss_addr = bce_CP_b06FwBssAddr;
4234 		fw.bss_len = bce_CP_b06FwBssLen;
4235 		fw.bss_index = 0;
4236 		fw.bss = bce_CP_b06FwBss;
4237 
4238 		fw.rodata_addr = bce_CP_b06FwRodataAddr;
4239 		fw.rodata_len = bce_CP_b06FwRodataLen;
4240 		fw.rodata_index = 0;
4241 		fw.rodata = bce_CP_b06FwRodata;
4242 	}
4243 
4244 	DBPRINT(sc, BCE_INFO_RESET, "Loading CP firmware.\n");
4245 	bce_load_cpu_fw(sc, &cpu_reg, &fw);
4246 	bce_start_cpu(sc, &cpu_reg);
4247 
4248 	DBEXIT(BCE_VERBOSE_RESET);
4249 }
4250 
4251 
4252 /****************************************************************************/
4253 /* Initialize the COM CPU.                                                 */
4254 /*                                                                          */
4255 /* Returns:                                                                 */
4256 /*   Nothing.                                                               */
4257 /****************************************************************************/
4258 static void
4259 bce_init_com_cpu(struct bce_softc *sc)
4260 {
4261 	struct cpu_reg cpu_reg;
4262 	struct fw_info fw;
4263 
4264 	DBENTER(BCE_VERBOSE_RESET);
4265 
4266 	cpu_reg.mode = BCE_COM_CPU_MODE;
4267 	cpu_reg.mode_value_halt = BCE_COM_CPU_MODE_SOFT_HALT;
4268 	cpu_reg.mode_value_sstep = BCE_COM_CPU_MODE_STEP_ENA;
4269 	cpu_reg.state = BCE_COM_CPU_STATE;
4270 	cpu_reg.state_value_clear = 0xffffff;
4271 	cpu_reg.gpr0 = BCE_COM_CPU_REG_FILE;
4272 	cpu_reg.evmask = BCE_COM_CPU_EVENT_MASK;
4273 	cpu_reg.pc = BCE_COM_CPU_PROGRAM_COUNTER;
4274 	cpu_reg.inst = BCE_COM_CPU_INSTRUCTION;
4275 	cpu_reg.bp = BCE_COM_CPU_HW_BREAKPOINT;
4276 	cpu_reg.spad_base = BCE_COM_SCRATCH;
4277 	cpu_reg.mips_view_base = 0x8000000;
4278 
4279 	if ((BCE_CHIP_NUM(sc) == BCE_CHIP_NUM_5709) ||
4280 		(BCE_CHIP_NUM(sc) == BCE_CHIP_NUM_5716)) {
4281 		fw.ver_major = bce_COM_b09FwReleaseMajor;
4282 		fw.ver_minor = bce_COM_b09FwReleaseMinor;
4283 		fw.ver_fix = bce_COM_b09FwReleaseFix;
4284 		fw.start_addr = bce_COM_b09FwStartAddr;
4285 
4286 		fw.text_addr = bce_COM_b09FwTextAddr;
4287 		fw.text_len = bce_COM_b09FwTextLen;
4288 		fw.text_index = 0;
4289 		fw.text = bce_COM_b09FwText;
4290 
4291 		fw.data_addr = bce_COM_b09FwDataAddr;
4292 		fw.data_len = bce_COM_b09FwDataLen;
4293 		fw.data_index = 0;
4294 		fw.data = bce_COM_b09FwData;
4295 
4296 		fw.sbss_addr = bce_COM_b09FwSbssAddr;
4297 		fw.sbss_len = bce_COM_b09FwSbssLen;
4298 		fw.sbss_index = 0;
4299 		fw.sbss = bce_COM_b09FwSbss;
4300 
4301 		fw.bss_addr = bce_COM_b09FwBssAddr;
4302 		fw.bss_len = bce_COM_b09FwBssLen;
4303 		fw.bss_index = 0;
4304 		fw.bss = bce_COM_b09FwBss;
4305 
4306 		fw.rodata_addr = bce_COM_b09FwRodataAddr;
4307 		fw.rodata_len = bce_COM_b09FwRodataLen;
4308 		fw.rodata_index = 0;
4309 		fw.rodata = bce_COM_b09FwRodata;
4310 	} else {
4311 		fw.ver_major = bce_COM_b06FwReleaseMajor;
4312 		fw.ver_minor = bce_COM_b06FwReleaseMinor;
4313 		fw.ver_fix = bce_COM_b06FwReleaseFix;
4314 		fw.start_addr = bce_COM_b06FwStartAddr;
4315 
4316 		fw.text_addr = bce_COM_b06FwTextAddr;
4317 		fw.text_len = bce_COM_b06FwTextLen;
4318 		fw.text_index = 0;
4319 		fw.text = bce_COM_b06FwText;
4320 
4321 		fw.data_addr = bce_COM_b06FwDataAddr;
4322 		fw.data_len = bce_COM_b06FwDataLen;
4323 		fw.data_index = 0;
4324 		fw.data = bce_COM_b06FwData;
4325 
4326 		fw.sbss_addr = bce_COM_b06FwSbssAddr;
4327 		fw.sbss_len = bce_COM_b06FwSbssLen;
4328 		fw.sbss_index = 0;
4329 		fw.sbss = bce_COM_b06FwSbss;
4330 
4331 		fw.bss_addr = bce_COM_b06FwBssAddr;
4332 		fw.bss_len = bce_COM_b06FwBssLen;
4333 		fw.bss_index = 0;
4334 		fw.bss = bce_COM_b06FwBss;
4335 
4336 		fw.rodata_addr = bce_COM_b06FwRodataAddr;
4337 		fw.rodata_len = bce_COM_b06FwRodataLen;
4338 		fw.rodata_index = 0;
4339 		fw.rodata = bce_COM_b06FwRodata;
4340 	}
4341 
4342 	DBPRINT(sc, BCE_INFO_RESET, "Loading COM firmware.\n");
4343 	bce_load_cpu_fw(sc, &cpu_reg, &fw);
4344 	bce_start_cpu(sc, &cpu_reg);
4345 
4346 	DBEXIT(BCE_VERBOSE_RESET);
4347 }
4348 
4349 
4350 /****************************************************************************/
4351 /* Initialize the RV2P, RX, TX, TPAT, COM, and CP CPUs.                     */
4352 /*                                                                          */
4353 /* Loads the firmware for each CPU and starts the CPU.                      */
4354 /*                                                                          */
4355 /* Returns:                                                                 */
4356 /*   Nothing.                                                               */
4357 /****************************************************************************/
4358 static void
4359 bce_init_cpus(struct bce_softc *sc)
4360 {
4361 	DBENTER(BCE_VERBOSE_RESET);
4362 
4363 	if ((BCE_CHIP_NUM(sc) == BCE_CHIP_NUM_5709) ||
4364 		(BCE_CHIP_NUM(sc) == BCE_CHIP_NUM_5716)) {
4365 
4366 		if ((BCE_CHIP_REV(sc) == BCE_CHIP_REV_Ax)) {
4367 			bce_load_rv2p_fw(sc, bce_xi90_rv2p_proc1,
4368 			    sizeof(bce_xi90_rv2p_proc1), RV2P_PROC1);
4369 			bce_load_rv2p_fw(sc, bce_xi90_rv2p_proc2,
4370 			    sizeof(bce_xi90_rv2p_proc2), RV2P_PROC2);
4371 		} else {
4372 			bce_load_rv2p_fw(sc, bce_xi_rv2p_proc1,
4373 			    sizeof(bce_xi_rv2p_proc1), RV2P_PROC1);
4374 			bce_load_rv2p_fw(sc, bce_xi_rv2p_proc2,
4375 			    sizeof(bce_xi_rv2p_proc2), RV2P_PROC2);
4376 		}
4377 
4378 	} else {
4379 		bce_load_rv2p_fw(sc, bce_rv2p_proc1,
4380 		    sizeof(bce_rv2p_proc1), RV2P_PROC1);
4381 		bce_load_rv2p_fw(sc, bce_rv2p_proc2,
4382 		    sizeof(bce_rv2p_proc2), RV2P_PROC2);
4383 	}
4384 
4385 	bce_init_rxp_cpu(sc);
4386 	bce_init_txp_cpu(sc);
4387 	bce_init_tpat_cpu(sc);
4388 	bce_init_com_cpu(sc);
4389 	bce_init_cp_cpu(sc);
4390 
4391 	DBEXIT(BCE_VERBOSE_RESET);
4392 }
4393 
4394 
4395 /****************************************************************************/
4396 /* Initialize context memory.                                               */
4397 /*                                                                          */
4398 /* Clears the memory associated with each Context ID (CID).                 */
4399 /*                                                                          */
4400 /* Returns:                                                                 */
4401 /*   Nothing.                                                               */
4402 /****************************************************************************/
4403 static int
4404 bce_init_ctx(struct bce_softc *sc)
4405 {
4406 	u32 offset, val, vcid_addr;
4407 	int i, j, rc, retry_cnt;
4408 
4409 	rc = 0;
4410 	DBENTER(BCE_VERBOSE_RESET | BCE_VERBOSE_CTX);
4411 
4412 	if ((BCE_CHIP_NUM(sc) == BCE_CHIP_NUM_5709) ||
4413 	    (BCE_CHIP_NUM(sc) == BCE_CHIP_NUM_5716)) {
4414 		retry_cnt = CTX_INIT_RETRY_COUNT;
4415 
4416 		DBPRINT(sc, BCE_INFO_CTX, "Initializing 5709 context.\n");
4417 
4418 		/*
4419 		 * BCM5709 context memory may be cached
4420 		 * in host memory so prepare the host memory
4421 		 * for access.
4422 		 */
4423 		val = BCE_CTX_COMMAND_ENABLED |
4424 		    BCE_CTX_COMMAND_MEM_INIT | (1 << 12);
4425 		val |= (BCM_PAGE_BITS - 8) << 16;
4426 		REG_WR(sc, BCE_CTX_COMMAND, val);
4427 
4428 		/* Wait for mem init command to complete. */
4429 		for (i = 0; i < retry_cnt; i++) {
4430 			val = REG_RD(sc, BCE_CTX_COMMAND);
4431 			if (!(val & BCE_CTX_COMMAND_MEM_INIT))
4432 				break;
4433 			DELAY(2);
4434 		}
4435 		if ((val & BCE_CTX_COMMAND_MEM_INIT) != 0) {
4436 			BCE_PRINTF("%s(): Context memory initialization failed!\n",
4437 			    __FUNCTION__);
4438 			rc = EBUSY;
4439 			goto init_ctx_fail;
4440 		}
4441 
4442 		for (i = 0; i < sc->ctx_pages; i++) {
4443 			/* Set the physical address of the context memory. */
4444 			REG_WR(sc, BCE_CTX_HOST_PAGE_TBL_DATA0,
4445 			    BCE_ADDR_LO(sc->ctx_paddr[i] & 0xfffffff0) |
4446 			    BCE_CTX_HOST_PAGE_TBL_DATA0_VALID);
4447 			REG_WR(sc, BCE_CTX_HOST_PAGE_TBL_DATA1,
4448 			    BCE_ADDR_HI(sc->ctx_paddr[i]));
4449 			REG_WR(sc, BCE_CTX_HOST_PAGE_TBL_CTRL, i |
4450 			    BCE_CTX_HOST_PAGE_TBL_CTRL_WRITE_REQ);
4451 
4452 			/* Verify the context memory write was successful. */
4453 			for (j = 0; j < retry_cnt; j++) {
4454 				val = REG_RD(sc, BCE_CTX_HOST_PAGE_TBL_CTRL);
4455 				if ((val &
4456 				    BCE_CTX_HOST_PAGE_TBL_CTRL_WRITE_REQ) == 0)
4457 					break;
4458 				DELAY(5);
4459 			}
4460 			if ((val & BCE_CTX_HOST_PAGE_TBL_CTRL_WRITE_REQ) != 0) {
4461 				BCE_PRINTF("%s(): Failed to initialize "
4462 				    "context page %d!\n", __FUNCTION__, i);
4463 				rc = EBUSY;
4464 				goto init_ctx_fail;
4465 			}
4466 		}
4467 	} else {
4468 
4469 		DBPRINT(sc, BCE_INFO, "Initializing 5706/5708 context.\n");
4470 
4471 		/*
4472 		 * For the 5706/5708, context memory is local to
4473 		 * the controller, so initialize the controller
4474 		 * context memory.
4475 		 */
4476 
4477 		vcid_addr = GET_CID_ADDR(96);
4478 		while (vcid_addr) {
4479 
4480 			vcid_addr -= PHY_CTX_SIZE;
4481 
4482 			REG_WR(sc, BCE_CTX_VIRT_ADDR, 0);
4483 			REG_WR(sc, BCE_CTX_PAGE_TBL, vcid_addr);
4484 
4485 			for(offset = 0; offset < PHY_CTX_SIZE; offset += 4) {
4486 				CTX_WR(sc, 0x00, offset, 0);
4487 			}
4488 
4489 			REG_WR(sc, BCE_CTX_VIRT_ADDR, vcid_addr);
4490 			REG_WR(sc, BCE_CTX_PAGE_TBL, vcid_addr);
4491 		}
4492 
4493 	}
4494 init_ctx_fail:
4495 	DBEXIT(BCE_VERBOSE_RESET | BCE_VERBOSE_CTX);
4496 	return (rc);
4497 }
4498 
4499 
4500 /****************************************************************************/
4501 /* Fetch the permanent MAC address of the controller.                       */
4502 /*                                                                          */
4503 /* Returns:                                                                 */
4504 /*   Nothing.                                                               */
4505 /****************************************************************************/
4506 static void
4507 bce_get_mac_addr(struct bce_softc *sc)
4508 {
4509 	u32 mac_lo = 0, mac_hi = 0;
4510 
4511 	DBENTER(BCE_VERBOSE_RESET);
4512 
4513 	/*
4514 	 * The NetXtreme II bootcode populates various NIC
4515 	 * power-on and runtime configuration items in a
4516 	 * shared memory area.  The factory configured MAC
4517 	 * address is available from both NVRAM and the
4518 	 * shared memory area so we'll read the value from
4519 	 * shared memory for speed.
4520 	 */
4521 
4522 	mac_hi = bce_shmem_rd(sc, BCE_PORT_HW_CFG_MAC_UPPER);
4523 	mac_lo = bce_shmem_rd(sc, BCE_PORT_HW_CFG_MAC_LOWER);
4524 
4525 	if ((mac_lo == 0) && (mac_hi == 0)) {
4526 		BCE_PRINTF("%s(%d): Invalid Ethernet address!\n",
4527 		    __FILE__, __LINE__);
4528 	} else {
4529 		sc->eaddr[0] = (u_char)(mac_hi >> 8);
4530 		sc->eaddr[1] = (u_char)(mac_hi >> 0);
4531 		sc->eaddr[2] = (u_char)(mac_lo >> 24);
4532 		sc->eaddr[3] = (u_char)(mac_lo >> 16);
4533 		sc->eaddr[4] = (u_char)(mac_lo >> 8);
4534 		sc->eaddr[5] = (u_char)(mac_lo >> 0);
4535 	}
4536 
4537 	DBPRINT(sc, BCE_INFO_MISC, "Permanent Ethernet "
4538 	    "address = %6D\n", sc->eaddr, ":");
4539 	DBEXIT(BCE_VERBOSE_RESET);
4540 }
4541 
4542 
4543 /****************************************************************************/
4544 /* Program the MAC address.                                                 */
4545 /*                                                                          */
4546 /* Returns:                                                                 */
4547 /*   Nothing.                                                               */
4548 /****************************************************************************/
4549 static void
4550 bce_set_mac_addr(struct bce_softc *sc)
4551 {
4552 	u32 val;
4553 	u8 *mac_addr = sc->eaddr;
4554 
4555 	/* ToDo: Add support for setting multiple MAC addresses. */
4556 
4557 	DBENTER(BCE_VERBOSE_RESET);
4558 	DBPRINT(sc, BCE_INFO_MISC, "Setting Ethernet address = "
4559 	    "%6D\n", sc->eaddr, ":");
4560 
4561 	val = (mac_addr[0] << 8) | mac_addr[1];
4562 
4563 	REG_WR(sc, BCE_EMAC_MAC_MATCH0, val);
4564 
4565 	val = (mac_addr[2] << 24) | (mac_addr[3] << 16) |
4566 	    (mac_addr[4] << 8) | mac_addr[5];
4567 
4568 	REG_WR(sc, BCE_EMAC_MAC_MATCH1, val);
4569 
4570 	DBEXIT(BCE_VERBOSE_RESET);
4571 }
4572 
4573 
4574 /****************************************************************************/
4575 /* Stop the controller.                                                     */
4576 /*                                                                          */
4577 /* Returns:                                                                 */
4578 /*   Nothing.                                                               */
4579 /****************************************************************************/
4580 static void
4581 bce_stop(struct bce_softc *sc)
4582 {
4583 	struct ifnet *ifp;
4584 
4585 	DBENTER(BCE_VERBOSE_RESET);
4586 
4587 	BCE_LOCK_ASSERT(sc);
4588 
4589 	ifp = sc->bce_ifp;
4590 
4591 	callout_stop(&sc->bce_tick_callout);
4592 
4593 	/* Disable the transmit/receive blocks. */
4594 	REG_WR(sc, BCE_MISC_ENABLE_CLR_BITS, BCE_MISC_ENABLE_CLR_DEFAULT);
4595 	REG_RD(sc, BCE_MISC_ENABLE_CLR_BITS);
4596 	DELAY(20);
4597 
4598 	bce_disable_intr(sc);
4599 
4600 	/* Free RX buffers. */
4601 #ifdef BCE_JUMBO_HDRSPLIT
4602 	bce_free_pg_chain(sc);
4603 #endif
4604 	bce_free_rx_chain(sc);
4605 
4606 	/* Free TX buffers. */
4607 	bce_free_tx_chain(sc);
4608 
4609 	sc->watchdog_timer = 0;
4610 
4611 	sc->bce_link_up = FALSE;
4612 
4613 	ifp->if_drv_flags &= ~(IFF_DRV_RUNNING | IFF_DRV_OACTIVE);
4614 
4615 	DBEXIT(BCE_VERBOSE_RESET);
4616 }
4617 
4618 
4619 static int
4620 bce_reset(struct bce_softc *sc, u32 reset_code)
4621 {
4622 	u32 val;
4623 	int i, rc = 0;
4624 
4625 	DBENTER(BCE_VERBOSE_RESET);
4626 
4627 	DBPRINT(sc, BCE_VERBOSE_RESET, "%s(): reset_code = 0x%08X\n",
4628 	    __FUNCTION__, reset_code);
4629 
4630 	/* Wait for pending PCI transactions to complete. */
4631 	REG_WR(sc, BCE_MISC_ENABLE_CLR_BITS,
4632 	    BCE_MISC_ENABLE_CLR_BITS_TX_DMA_ENABLE |
4633 	    BCE_MISC_ENABLE_CLR_BITS_DMA_ENGINE_ENABLE |
4634 	    BCE_MISC_ENABLE_CLR_BITS_RX_DMA_ENABLE |
4635 	    BCE_MISC_ENABLE_CLR_BITS_HOST_COALESCE_ENABLE);
4636 	val = REG_RD(sc, BCE_MISC_ENABLE_CLR_BITS);
4637 	DELAY(5);
4638 
4639 	/* Disable DMA */
4640 	if ((BCE_CHIP_NUM(sc) == BCE_CHIP_NUM_5709) ||
4641 	    (BCE_CHIP_NUM(sc) == BCE_CHIP_NUM_5716)) {
4642 		val = REG_RD(sc, BCE_MISC_NEW_CORE_CTL);
4643 		val &= ~BCE_MISC_NEW_CORE_CTL_DMA_ENABLE;
4644 		REG_WR(sc, BCE_MISC_NEW_CORE_CTL, val);
4645 	}
4646 
4647 	/* Assume bootcode is running. */
4648 	sc->bce_fw_timed_out = FALSE;
4649 	sc->bce_drv_cardiac_arrest = FALSE;
4650 
4651 	/* Give the firmware a chance to prepare for the reset. */
4652 	rc = bce_fw_sync(sc, BCE_DRV_MSG_DATA_WAIT0 | reset_code);
4653 	if (rc)
4654 		goto bce_reset_exit;
4655 
4656 	/* Set a firmware reminder that this is a soft reset. */
4657 	bce_shmem_wr(sc, BCE_DRV_RESET_SIGNATURE, BCE_DRV_RESET_SIGNATURE_MAGIC);
4658 
4659 	/* Dummy read to force the chip to complete all current transactions. */
4660 	val = REG_RD(sc, BCE_MISC_ID);
4661 
4662 	/* Chip reset. */
4663 	if ((BCE_CHIP_NUM(sc) == BCE_CHIP_NUM_5709) ||
4664 	    (BCE_CHIP_NUM(sc) == BCE_CHIP_NUM_5716)) {
4665 		REG_WR(sc, BCE_MISC_COMMAND, BCE_MISC_COMMAND_SW_RESET);
4666 		REG_RD(sc, BCE_MISC_COMMAND);
4667 		DELAY(5);
4668 
4669 		val = BCE_PCICFG_MISC_CONFIG_REG_WINDOW_ENA |
4670 		    BCE_PCICFG_MISC_CONFIG_TARGET_MB_WORD_SWAP;
4671 
4672 		pci_write_config(sc->bce_dev, BCE_PCICFG_MISC_CONFIG, val, 4);
4673 	} else {
4674 		val = BCE_PCICFG_MISC_CONFIG_CORE_RST_REQ |
4675 		    BCE_PCICFG_MISC_CONFIG_REG_WINDOW_ENA |
4676 		    BCE_PCICFG_MISC_CONFIG_TARGET_MB_WORD_SWAP;
4677 		REG_WR(sc, BCE_PCICFG_MISC_CONFIG, val);
4678 
4679 		/* Allow up to 30us for reset to complete. */
4680 		for (i = 0; i < 10; i++) {
4681 			val = REG_RD(sc, BCE_PCICFG_MISC_CONFIG);
4682 			if ((val & (BCE_PCICFG_MISC_CONFIG_CORE_RST_REQ |
4683 			    BCE_PCICFG_MISC_CONFIG_CORE_RST_BSY)) == 0) {
4684 				break;
4685 			}
4686 			DELAY(10);
4687 		}
4688 
4689 		/* Check that reset completed successfully. */
4690 		if (val & (BCE_PCICFG_MISC_CONFIG_CORE_RST_REQ |
4691 		    BCE_PCICFG_MISC_CONFIG_CORE_RST_BSY)) {
4692 			BCE_PRINTF("%s(%d): Reset failed!\n",
4693 			    __FILE__, __LINE__);
4694 			rc = EBUSY;
4695 			goto bce_reset_exit;
4696 		}
4697 	}
4698 
4699 	/* Make sure byte swapping is properly configured. */
4700 	val = REG_RD(sc, BCE_PCI_SWAP_DIAG0);
4701 	if (val != 0x01020304) {
4702 		BCE_PRINTF("%s(%d): Byte swap is incorrect!\n",
4703 		    __FILE__, __LINE__);
4704 		rc = ENODEV;
4705 		goto bce_reset_exit;
4706 	}
4707 
4708 	/* Just completed a reset, assume that firmware is running again. */
4709 	sc->bce_fw_timed_out = FALSE;
4710 	sc->bce_drv_cardiac_arrest = FALSE;
4711 
4712 	/* Wait for the firmware to finish its initialization. */
4713 	rc = bce_fw_sync(sc, BCE_DRV_MSG_DATA_WAIT1 | reset_code);
4714 	if (rc)
4715 		BCE_PRINTF("%s(%d): Firmware did not complete "
4716 		    "initialization!\n", __FILE__, __LINE__);
4717 
4718 bce_reset_exit:
4719 	DBEXIT(BCE_VERBOSE_RESET);
4720 	return (rc);
4721 }
4722 
4723 
4724 static int
4725 bce_chipinit(struct bce_softc *sc)
4726 {
4727 	u32 val;
4728 	int rc = 0;
4729 
4730 	DBENTER(BCE_VERBOSE_RESET);
4731 
4732 	bce_disable_intr(sc);
4733 
4734 	/*
4735 	 * Initialize DMA byte/word swapping, configure the number of DMA
4736 	 * channels and PCI clock compensation delay.
4737 	 */
4738 	val = BCE_DMA_CONFIG_DATA_BYTE_SWAP |
4739 	    BCE_DMA_CONFIG_DATA_WORD_SWAP |
4740 #if BYTE_ORDER == BIG_ENDIAN
4741 	    BCE_DMA_CONFIG_CNTL_BYTE_SWAP |
4742 #endif
4743 	    BCE_DMA_CONFIG_CNTL_WORD_SWAP |
4744 	    DMA_READ_CHANS << 12 |
4745 	    DMA_WRITE_CHANS << 16;
4746 
4747 	val |= (0x2 << 20) | BCE_DMA_CONFIG_CNTL_PCI_COMP_DLY;
4748 
4749 	if ((sc->bce_flags & BCE_PCIX_FLAG) && (sc->bus_speed_mhz == 133))
4750 		val |= BCE_DMA_CONFIG_PCI_FAST_CLK_CMP;
4751 
4752 	/*
4753 	 * This setting resolves a problem observed on certain Intel PCI
4754 	 * chipsets that cannot handle multiple outstanding DMA operations.
4755 	 * See errata E9_5706A1_65.
4756 	 */
4757 	if ((BCE_CHIP_NUM(sc) == BCE_CHIP_NUM_5706) &&
4758 	    (BCE_CHIP_ID(sc) != BCE_CHIP_ID_5706_A0) &&
4759 	    !(sc->bce_flags & BCE_PCIX_FLAG))
4760 		val |= BCE_DMA_CONFIG_CNTL_PING_PONG_DMA;
4761 
4762 	REG_WR(sc, BCE_DMA_CONFIG, val);
4763 
4764 	/* Enable the RX_V2P and Context state machines before access. */
4765 	REG_WR(sc, BCE_MISC_ENABLE_SET_BITS,
4766 	    BCE_MISC_ENABLE_SET_BITS_HOST_COALESCE_ENABLE |
4767 	    BCE_MISC_ENABLE_STATUS_BITS_RX_V2P_ENABLE |
4768 	    BCE_MISC_ENABLE_STATUS_BITS_CONTEXT_ENABLE);
4769 
4770 	/* Initialize context mapping and zero out the quick contexts. */
4771 	if ((rc = bce_init_ctx(sc)) != 0)
4772 		goto bce_chipinit_exit;
4773 
4774 	/* Initialize the on-boards CPUs */
4775 	bce_init_cpus(sc);
4776 
4777 	/* Enable management frames (NC-SI) to flow to the MCP. */
4778 	if (sc->bce_flags & BCE_MFW_ENABLE_FLAG) {
4779 		val = REG_RD(sc, BCE_RPM_MGMT_PKT_CTRL) | BCE_RPM_MGMT_PKT_CTRL_MGMT_EN;
4780 		REG_WR(sc, BCE_RPM_MGMT_PKT_CTRL, val);
4781 	}
4782 
4783 	/* Prepare NVRAM for access. */
4784 	if ((rc = bce_init_nvram(sc)) != 0)
4785 		goto bce_chipinit_exit;
4786 
4787 	/* Set the kernel bypass block size */
4788 	val = REG_RD(sc, BCE_MQ_CONFIG);
4789 	val &= ~BCE_MQ_CONFIG_KNL_BYP_BLK_SIZE;
4790 	val |= BCE_MQ_CONFIG_KNL_BYP_BLK_SIZE_256;
4791 
4792 	/* Enable bins used on the 5709. */
4793 	if ((BCE_CHIP_NUM(sc) == BCE_CHIP_NUM_5709) ||
4794 	    (BCE_CHIP_NUM(sc) == BCE_CHIP_NUM_5716)) {
4795 		val |= BCE_MQ_CONFIG_BIN_MQ_MODE;
4796 		if (BCE_CHIP_ID(sc) == BCE_CHIP_ID_5709_A1)
4797 			val |= BCE_MQ_CONFIG_HALT_DIS;
4798 	}
4799 
4800 	REG_WR(sc, BCE_MQ_CONFIG, val);
4801 
4802 	val = 0x10000 + (MAX_CID_CNT * MB_KERNEL_CTX_SIZE);
4803 	REG_WR(sc, BCE_MQ_KNL_BYP_WIND_START, val);
4804 	REG_WR(sc, BCE_MQ_KNL_WIND_END, val);
4805 
4806 	/* Set the page size and clear the RV2P processor stall bits. */
4807 	val = (BCM_PAGE_BITS - 8) << 24;
4808 	REG_WR(sc, BCE_RV2P_CONFIG, val);
4809 
4810 	/* Configure page size. */
4811 	val = REG_RD(sc, BCE_TBDR_CONFIG);
4812 	val &= ~BCE_TBDR_CONFIG_PAGE_SIZE;
4813 	val |= (BCM_PAGE_BITS - 8) << 24 | 0x40;
4814 	REG_WR(sc, BCE_TBDR_CONFIG, val);
4815 
4816 	/* Set the perfect match control register to default. */
4817 	REG_WR_IND(sc, BCE_RXP_PM_CTRL, 0);
4818 
4819 bce_chipinit_exit:
4820 	DBEXIT(BCE_VERBOSE_RESET);
4821 
4822 	return(rc);
4823 }
4824 
4825 
4826 /****************************************************************************/
4827 /* Initialize the controller in preparation to send/receive traffic.        */
4828 /*                                                                          */
4829 /* Returns:                                                                 */
4830 /*   0 for success, positive value for failure.                             */
4831 /****************************************************************************/
4832 static int
4833 bce_blockinit(struct bce_softc *sc)
4834 {
4835 	u32 reg, val;
4836 	int rc = 0;
4837 
4838 	DBENTER(BCE_VERBOSE_RESET);
4839 
4840 	/* Load the hardware default MAC address. */
4841 	bce_set_mac_addr(sc);
4842 
4843 	/* Set the Ethernet backoff seed value */
4844 	val = sc->eaddr[0]         + (sc->eaddr[1] << 8) +
4845 	      (sc->eaddr[2] << 16) + (sc->eaddr[3]     ) +
4846 	      (sc->eaddr[4] << 8)  + (sc->eaddr[5] << 16);
4847 	REG_WR(sc, BCE_EMAC_BACKOFF_SEED, val);
4848 
4849 	sc->last_status_idx = 0;
4850 	sc->rx_mode = BCE_EMAC_RX_MODE_SORT_MODE;
4851 
4852 	/* Set up link change interrupt generation. */
4853 	REG_WR(sc, BCE_EMAC_ATTENTION_ENA, BCE_EMAC_ATTENTION_ENA_LINK);
4854 
4855 	/* Program the physical address of the status block. */
4856 	REG_WR(sc, BCE_HC_STATUS_ADDR_L,
4857 	    BCE_ADDR_LO(sc->status_block_paddr));
4858 	REG_WR(sc, BCE_HC_STATUS_ADDR_H,
4859 	    BCE_ADDR_HI(sc->status_block_paddr));
4860 
4861 	/* Program the physical address of the statistics block. */
4862 	REG_WR(sc, BCE_HC_STATISTICS_ADDR_L,
4863 	    BCE_ADDR_LO(sc->stats_block_paddr));
4864 	REG_WR(sc, BCE_HC_STATISTICS_ADDR_H,
4865 	    BCE_ADDR_HI(sc->stats_block_paddr));
4866 
4867 	/* Program various host coalescing parameters. */
4868 	REG_WR(sc, BCE_HC_TX_QUICK_CONS_TRIP,
4869 	    (sc->bce_tx_quick_cons_trip_int << 16) | sc->bce_tx_quick_cons_trip);
4870 	REG_WR(sc, BCE_HC_RX_QUICK_CONS_TRIP,
4871 	    (sc->bce_rx_quick_cons_trip_int << 16) | sc->bce_rx_quick_cons_trip);
4872 	REG_WR(sc, BCE_HC_COMP_PROD_TRIP,
4873 	    (sc->bce_comp_prod_trip_int << 16) | sc->bce_comp_prod_trip);
4874 	REG_WR(sc, BCE_HC_TX_TICKS,
4875 	    (sc->bce_tx_ticks_int << 16) | sc->bce_tx_ticks);
4876 	REG_WR(sc, BCE_HC_RX_TICKS,
4877 	    (sc->bce_rx_ticks_int << 16) | sc->bce_rx_ticks);
4878 	REG_WR(sc, BCE_HC_COM_TICKS,
4879 	    (sc->bce_com_ticks_int << 16) | sc->bce_com_ticks);
4880 	REG_WR(sc, BCE_HC_CMD_TICKS,
4881 	    (sc->bce_cmd_ticks_int << 16) | sc->bce_cmd_ticks);
4882 	REG_WR(sc, BCE_HC_STATS_TICKS,
4883 	    (sc->bce_stats_ticks & 0xffff00));
4884 	REG_WR(sc, BCE_HC_STAT_COLLECT_TICKS, 0xbb8);  /* 3ms */
4885 
4886 	/* Configure the Host Coalescing block. */
4887 	val = BCE_HC_CONFIG_RX_TMR_MODE | BCE_HC_CONFIG_TX_TMR_MODE |
4888 	    BCE_HC_CONFIG_COLLECT_STATS;
4889 
4890 #if 0
4891 	/* ToDo: Add MSI-X support. */
4892 	if (sc->bce_flags & BCE_USING_MSIX_FLAG) {
4893 		u32 base = ((BCE_TX_VEC - 1) * BCE_HC_SB_CONFIG_SIZE) +
4894 		    BCE_HC_SB_CONFIG_1;
4895 
4896 		REG_WR(sc, BCE_HC_MSIX_BIT_VECTOR, BCE_HC_MSIX_BIT_VECTOR_VAL);
4897 
4898 		REG_WR(sc, base, BCE_HC_SB_CONFIG_1_TX_TMR_MODE |
4899 		    BCE_HC_SB_CONFIG_1_ONE_SHOT);
4900 
4901 		REG_WR(sc, base + BCE_HC_TX_QUICK_CONS_TRIP_OFF,
4902 		    (sc->tx_quick_cons_trip_int << 16) |
4903 		     sc->tx_quick_cons_trip);
4904 
4905 		REG_WR(sc, base + BCE_HC_TX_TICKS_OFF,
4906 		    (sc->tx_ticks_int << 16) | sc->tx_ticks);
4907 
4908 		val |= BCE_HC_CONFIG_SB_ADDR_INC_128B;
4909 	}
4910 
4911 	/*
4912 	 * Tell the HC block to automatically set the
4913 	 * INT_MASK bit after an MSI/MSI-X interrupt
4914 	 * is generated so the driver doesn't have to.
4915 	 */
4916 	if (sc->bce_flags & BCE_ONE_SHOT_MSI_FLAG)
4917 		val |= BCE_HC_CONFIG_ONE_SHOT;
4918 
4919 	/* Set the MSI-X status blocks to 128 byte boundaries. */
4920 	if (sc->bce_flags & BCE_USING_MSIX_FLAG)
4921 		val |= BCE_HC_CONFIG_SB_ADDR_INC_128B;
4922 #endif
4923 
4924 	REG_WR(sc, BCE_HC_CONFIG, val);
4925 
4926 	/* Clear the internal statistics counters. */
4927 	REG_WR(sc, BCE_HC_COMMAND, BCE_HC_COMMAND_CLR_STAT_NOW);
4928 
4929 	/* Verify that bootcode is running. */
4930 	reg = bce_shmem_rd(sc, BCE_DEV_INFO_SIGNATURE);
4931 
4932 	DBRUNIF(DB_RANDOMTRUE(bootcode_running_failure_sim_control),
4933 	    BCE_PRINTF("%s(%d): Simulating bootcode failure.\n",
4934 	    __FILE__, __LINE__);
4935 	    reg = 0);
4936 
4937 	if ((reg & BCE_DEV_INFO_SIGNATURE_MAGIC_MASK) !=
4938 	    BCE_DEV_INFO_SIGNATURE_MAGIC) {
4939 		BCE_PRINTF("%s(%d): Bootcode not running! Found: 0x%08X, "
4940 		    "Expected: 08%08X\n", __FILE__, __LINE__,
4941 		    (reg & BCE_DEV_INFO_SIGNATURE_MAGIC_MASK),
4942 		    BCE_DEV_INFO_SIGNATURE_MAGIC);
4943 		rc = ENODEV;
4944 		goto bce_blockinit_exit;
4945 	}
4946 
4947 	/* Enable DMA */
4948 	if ((BCE_CHIP_NUM(sc) == BCE_CHIP_NUM_5709) ||
4949 	    (BCE_CHIP_NUM(sc) == BCE_CHIP_NUM_5716)) {
4950 		val = REG_RD(sc, BCE_MISC_NEW_CORE_CTL);
4951 		val |= BCE_MISC_NEW_CORE_CTL_DMA_ENABLE;
4952 		REG_WR(sc, BCE_MISC_NEW_CORE_CTL, val);
4953 	}
4954 
4955 	/* Allow bootcode to apply additional fixes before enabling MAC. */
4956 	rc = bce_fw_sync(sc, BCE_DRV_MSG_DATA_WAIT2 |
4957 	    BCE_DRV_MSG_CODE_RESET);
4958 
4959 	/* Enable link state change interrupt generation. */
4960 	REG_WR(sc, BCE_HC_ATTN_BITS_ENABLE, STATUS_ATTN_BITS_LINK_STATE);
4961 
4962 	/* Enable the RXP. */
4963 	bce_start_rxp_cpu(sc);
4964 
4965 	/* Disable management frames (NC-SI) from flowing to the MCP. */
4966 	if (sc->bce_flags & BCE_MFW_ENABLE_FLAG) {
4967 		val = REG_RD(sc, BCE_RPM_MGMT_PKT_CTRL) &
4968 		    ~BCE_RPM_MGMT_PKT_CTRL_MGMT_EN;
4969 		REG_WR(sc, BCE_RPM_MGMT_PKT_CTRL, val);
4970 	}
4971 
4972 	/* Enable all remaining blocks in the MAC. */
4973 	if ((BCE_CHIP_NUM(sc) == BCE_CHIP_NUM_5709) ||
4974 	    (BCE_CHIP_NUM(sc) == BCE_CHIP_NUM_5716))
4975 		REG_WR(sc, BCE_MISC_ENABLE_SET_BITS,
4976 		    BCE_MISC_ENABLE_DEFAULT_XI);
4977 	else
4978 		REG_WR(sc, BCE_MISC_ENABLE_SET_BITS,
4979 		    BCE_MISC_ENABLE_DEFAULT);
4980 
4981 	REG_RD(sc, BCE_MISC_ENABLE_SET_BITS);
4982 	DELAY(20);
4983 
4984 	/* Save the current host coalescing block settings. */
4985 	sc->hc_command = REG_RD(sc, BCE_HC_COMMAND);
4986 
4987 bce_blockinit_exit:
4988 	DBEXIT(BCE_VERBOSE_RESET);
4989 
4990 	return (rc);
4991 }
4992 
4993 
4994 /****************************************************************************/
4995 /* Encapsulate an mbuf into the rx_bd chain.                                */
4996 /*                                                                          */
4997 /* Returns:                                                                 */
4998 /*   0 for success, positive value for failure.                             */
4999 /****************************************************************************/
5000 static int
5001 bce_get_rx_buf(struct bce_softc *sc, struct mbuf *m, u16 *prod,
5002     u16 *chain_prod, u32 *prod_bseq)
5003 {
5004 	bus_dmamap_t map;
5005 	bus_dma_segment_t segs[BCE_MAX_SEGMENTS];
5006 	struct mbuf *m_new = NULL;
5007 	struct rx_bd *rxbd;
5008 	int nsegs, error, rc = 0;
5009 #ifdef BCE_DEBUG
5010 	u16 debug_chain_prod = *chain_prod;
5011 #endif
5012 
5013 	DBENTER(BCE_EXTREME_RESET | BCE_EXTREME_RECV | BCE_EXTREME_LOAD);
5014 
5015 	/* Make sure the inputs are valid. */
5016 	DBRUNIF((*chain_prod > MAX_RX_BD),
5017 	    BCE_PRINTF("%s(%d): RX producer out of range: "
5018 	    "0x%04X > 0x%04X\n", __FILE__, __LINE__,
5019 	    *chain_prod, (u16) MAX_RX_BD));
5020 
5021 	DBPRINT(sc, BCE_EXTREME_RECV, "%s(enter): prod = 0x%04X, "
5022 	    "chain_prod = 0x%04X, prod_bseq = 0x%08X\n", __FUNCTION__,
5023 	    *prod, *chain_prod, *prod_bseq);
5024 
5025 	/* Update some debug statistic counters */
5026 	DBRUNIF((sc->free_rx_bd < sc->rx_low_watermark),
5027 	    sc->rx_low_watermark = sc->free_rx_bd);
5028 	DBRUNIF((sc->free_rx_bd == sc->max_rx_bd),
5029 	    sc->rx_empty_count++);
5030 
5031 	/* Check whether this is a new mbuf allocation. */
5032 	if (m == NULL) {
5033 
5034 		/* Simulate an mbuf allocation failure. */
5035 		DBRUNIF(DB_RANDOMTRUE(mbuf_alloc_failed_sim_control),
5036 		    sc->mbuf_alloc_failed_count++;
5037 		    sc->mbuf_alloc_failed_sim_count++;
5038 		    rc = ENOBUFS;
5039 		    goto bce_get_rx_buf_exit);
5040 
5041 		/* This is a new mbuf allocation. */
5042 #ifdef BCE_JUMBO_HDRSPLIT
5043 		MGETHDR(m_new, M_DONTWAIT, MT_DATA);
5044 #else
5045 		m_new = m_getjcl(M_DONTWAIT, MT_DATA, M_PKTHDR,
5046 		    sc->rx_bd_mbuf_alloc_size);
5047 #endif
5048 
5049 		if (m_new == NULL) {
5050 			sc->mbuf_alloc_failed_count++;
5051 			rc = ENOBUFS;
5052 			goto bce_get_rx_buf_exit;
5053 		}
5054 
5055 		DBRUN(sc->debug_rx_mbuf_alloc++);
5056 	} else {
5057 		/* Reuse an existing mbuf. */
5058 		m_new = m;
5059 	}
5060 
5061 	/* Make sure we have a valid packet header. */
5062 	M_ASSERTPKTHDR(m_new);
5063 
5064 	/* Initialize the mbuf size and pad if necessary for alignment. */
5065 	m_new->m_pkthdr.len = m_new->m_len = sc->rx_bd_mbuf_alloc_size;
5066 	m_adj(m_new, sc->rx_bd_mbuf_align_pad);
5067 
5068 	/* ToDo: Consider calling m_fragment() to test error handling. */
5069 
5070 	/* Map the mbuf cluster into device memory. */
5071 	map = sc->rx_mbuf_map[*chain_prod];
5072 	error = bus_dmamap_load_mbuf_sg(sc->rx_mbuf_tag, map, m_new,
5073 	    segs, &nsegs, BUS_DMA_NOWAIT);
5074 
5075 	/* Handle any mapping errors. */
5076 	if (error) {
5077 		BCE_PRINTF("%s(%d): Error mapping mbuf into RX "
5078 		    "chain (%d)!\n", __FILE__, __LINE__, error);
5079 
5080 		sc->dma_map_addr_rx_failed_count++;
5081 		m_freem(m_new);
5082 
5083 		DBRUN(sc->debug_rx_mbuf_alloc--);
5084 
5085 		rc = ENOBUFS;
5086 		goto bce_get_rx_buf_exit;
5087 	}
5088 
5089 	/* All mbufs must map to a single segment. */
5090 	KASSERT(nsegs == 1, ("%s(): Too many segments returned (%d)!",
5091 	    __FUNCTION__, nsegs));
5092 
5093 	/* Setup the rx_bd for the segment. */
5094 	rxbd = &sc->rx_bd_chain[RX_PAGE(*chain_prod)][RX_IDX(*chain_prod)];
5095 
5096 	rxbd->rx_bd_haddr_lo  = htole32(BCE_ADDR_LO(segs[0].ds_addr));
5097 	rxbd->rx_bd_haddr_hi  = htole32(BCE_ADDR_HI(segs[0].ds_addr));
5098 	rxbd->rx_bd_len       = htole32(segs[0].ds_len);
5099 	rxbd->rx_bd_flags     = htole32(RX_BD_FLAGS_START | RX_BD_FLAGS_END);
5100 	*prod_bseq += segs[0].ds_len;
5101 
5102 	/* Save the mbuf and update our counter. */
5103 	sc->rx_mbuf_ptr[*chain_prod] = m_new;
5104 	sc->free_rx_bd -= nsegs;
5105 
5106 	DBRUNMSG(BCE_INSANE_RECV,
5107 	    bce_dump_rx_mbuf_chain(sc, debug_chain_prod, nsegs));
5108 
5109 	DBPRINT(sc, BCE_EXTREME_RECV, "%s(exit): prod = 0x%04X, "
5110 	    "chain_prod = 0x%04X, prod_bseq = 0x%08X\n",
5111 	    __FUNCTION__, *prod, *chain_prod, *prod_bseq);
5112 
5113 bce_get_rx_buf_exit:
5114 	DBEXIT(BCE_EXTREME_RESET | BCE_EXTREME_RECV | BCE_EXTREME_LOAD);
5115 
5116 	return(rc);
5117 }
5118 
5119 
5120 #ifdef BCE_JUMBO_HDRSPLIT
5121 /****************************************************************************/
5122 /* Encapsulate an mbuf cluster into the page chain.                         */
5123 /*                                                                          */
5124 /* Returns:                                                                 */
5125 /*   0 for success, positive value for failure.                             */
5126 /****************************************************************************/
5127 static int
5128 bce_get_pg_buf(struct bce_softc *sc, struct mbuf *m, u16 *prod,
5129 	u16 *prod_idx)
5130 {
5131 	bus_dmamap_t map;
5132 	bus_addr_t busaddr;
5133 	struct mbuf *m_new = NULL;
5134 	struct rx_bd *pgbd;
5135 	int error, rc = 0;
5136 #ifdef BCE_DEBUG
5137 	u16 debug_prod_idx = *prod_idx;
5138 #endif
5139 
5140 	DBENTER(BCE_EXTREME_RESET | BCE_EXTREME_RECV | BCE_EXTREME_LOAD);
5141 
5142 	/* Make sure the inputs are valid. */
5143 	DBRUNIF((*prod_idx > MAX_PG_BD),
5144 	    BCE_PRINTF("%s(%d): page producer out of range: "
5145 	    "0x%04X > 0x%04X\n", __FILE__, __LINE__,
5146 	    *prod_idx, (u16) MAX_PG_BD));
5147 
5148 	DBPRINT(sc, BCE_EXTREME_RECV, "%s(enter): prod = 0x%04X, "
5149 	    "chain_prod = 0x%04X\n", __FUNCTION__, *prod, *prod_idx);
5150 
5151 	/* Update counters if we've hit a new low or run out of pages. */
5152 	DBRUNIF((sc->free_pg_bd < sc->pg_low_watermark),
5153 	    sc->pg_low_watermark = sc->free_pg_bd);
5154 	DBRUNIF((sc->free_pg_bd == sc->max_pg_bd), sc->pg_empty_count++);
5155 
5156 	/* Check whether this is a new mbuf allocation. */
5157 	if (m == NULL) {
5158 
5159 		/* Simulate an mbuf allocation failure. */
5160 		DBRUNIF(DB_RANDOMTRUE(mbuf_alloc_failed_sim_control),
5161 		    sc->mbuf_alloc_failed_count++;
5162 		    sc->mbuf_alloc_failed_sim_count++;
5163 		    rc = ENOBUFS;
5164 		    goto bce_get_pg_buf_exit);
5165 
5166 		/* This is a new mbuf allocation. */
5167 		m_new = m_getcl(M_DONTWAIT, MT_DATA, 0);
5168 		if (m_new == NULL) {
5169 			sc->mbuf_alloc_failed_count++;
5170 			rc = ENOBUFS;
5171 			goto bce_get_pg_buf_exit;
5172 		}
5173 
5174 		DBRUN(sc->debug_pg_mbuf_alloc++);
5175 	} else {
5176 		/* Reuse an existing mbuf. */
5177 		m_new = m;
5178 		m_new->m_data = m_new->m_ext.ext_buf;
5179 	}
5180 
5181 	m_new->m_len = sc->pg_bd_mbuf_alloc_size;
5182 
5183 	/* ToDo: Consider calling m_fragment() to test error handling. */
5184 
5185 	/* Map the mbuf cluster into device memory. */
5186 	map = sc->pg_mbuf_map[*prod_idx];
5187 	error = bus_dmamap_load(sc->pg_mbuf_tag, map, mtod(m_new, void *),
5188 	    sc->pg_bd_mbuf_alloc_size, bce_dma_map_addr,
5189 	    &busaddr, BUS_DMA_NOWAIT);
5190 
5191 	/* Handle any mapping errors. */
5192 	if (error) {
5193 		BCE_PRINTF("%s(%d): Error mapping mbuf into page chain!\n",
5194 		    __FILE__, __LINE__);
5195 
5196 		m_freem(m_new);
5197 		DBRUN(sc->debug_pg_mbuf_alloc--);
5198 
5199 		rc = ENOBUFS;
5200 		goto bce_get_pg_buf_exit;
5201 	}
5202 
5203 	/* ToDo: Do we need bus_dmamap_sync(,,BUS_DMASYNC_PREREAD) here? */
5204 
5205 	/*
5206 	 * The page chain uses the same rx_bd data structure
5207 	 * as the receive chain but doesn't require a byte sequence (bseq).
5208 	 */
5209 	pgbd = &sc->pg_bd_chain[PG_PAGE(*prod_idx)][PG_IDX(*prod_idx)];
5210 
5211 	pgbd->rx_bd_haddr_lo  = htole32(BCE_ADDR_LO(busaddr));
5212 	pgbd->rx_bd_haddr_hi  = htole32(BCE_ADDR_HI(busaddr));
5213 	pgbd->rx_bd_len       = htole32(sc->pg_bd_mbuf_alloc_size);
5214 	pgbd->rx_bd_flags     = htole32(RX_BD_FLAGS_START | RX_BD_FLAGS_END);
5215 
5216 	/* Save the mbuf and update our counter. */
5217 	sc->pg_mbuf_ptr[*prod_idx] = m_new;
5218 	sc->free_pg_bd--;
5219 
5220 	DBRUNMSG(BCE_INSANE_RECV,
5221 	    bce_dump_pg_mbuf_chain(sc, debug_prod_idx, 1));
5222 
5223 	DBPRINT(sc, BCE_EXTREME_RECV, "%s(exit): prod = 0x%04X, "
5224 	    "prod_idx = 0x%04X\n", __FUNCTION__, *prod, *prod_idx);
5225 
5226 bce_get_pg_buf_exit:
5227 	DBEXIT(BCE_EXTREME_RESET | BCE_EXTREME_RECV | BCE_EXTREME_LOAD);
5228 
5229 	return(rc);
5230 }
5231 #endif /* BCE_JUMBO_HDRSPLIT */
5232 
5233 
5234 /****************************************************************************/
5235 /* Initialize the TX context memory.                                        */
5236 /*                                                                          */
5237 /* Returns:                                                                 */
5238 /*   Nothing                                                                */
5239 /****************************************************************************/
5240 static void
5241 bce_init_tx_context(struct bce_softc *sc)
5242 {
5243 	u32 val;
5244 
5245 	DBENTER(BCE_VERBOSE_RESET | BCE_VERBOSE_SEND | BCE_VERBOSE_CTX);
5246 
5247 	/* Initialize the context ID for an L2 TX chain. */
5248 	if ((BCE_CHIP_NUM(sc) == BCE_CHIP_NUM_5709) ||
5249 		(BCE_CHIP_NUM(sc) == BCE_CHIP_NUM_5716)) {
5250 		/* Set the CID type to support an L2 connection. */
5251 		val = BCE_L2CTX_TX_TYPE_TYPE_L2_XI |
5252 		    BCE_L2CTX_TX_TYPE_SIZE_L2_XI;
5253 		CTX_WR(sc, GET_CID_ADDR(TX_CID), BCE_L2CTX_TX_TYPE_XI, val);
5254 		val = BCE_L2CTX_TX_CMD_TYPE_TYPE_L2_XI | (8 << 16);
5255 		CTX_WR(sc, GET_CID_ADDR(TX_CID),
5256 		    BCE_L2CTX_TX_CMD_TYPE_XI, val);
5257 
5258 		/* Point the hardware to the first page in the chain. */
5259 		val = BCE_ADDR_HI(sc->tx_bd_chain_paddr[0]);
5260 		CTX_WR(sc, GET_CID_ADDR(TX_CID),
5261 		    BCE_L2CTX_TX_TBDR_BHADDR_HI_XI, val);
5262 		val = BCE_ADDR_LO(sc->tx_bd_chain_paddr[0]);
5263 		CTX_WR(sc, GET_CID_ADDR(TX_CID),
5264 		    BCE_L2CTX_TX_TBDR_BHADDR_LO_XI, val);
5265 	} else {
5266 		/* Set the CID type to support an L2 connection. */
5267 		val = BCE_L2CTX_TX_TYPE_TYPE_L2 | BCE_L2CTX_TX_TYPE_SIZE_L2;
5268 		CTX_WR(sc, GET_CID_ADDR(TX_CID), BCE_L2CTX_TX_TYPE, val);
5269 		val = BCE_L2CTX_TX_CMD_TYPE_TYPE_L2 | (8 << 16);
5270 		CTX_WR(sc, GET_CID_ADDR(TX_CID), BCE_L2CTX_TX_CMD_TYPE, val);
5271 
5272 		/* Point the hardware to the first page in the chain. */
5273 		val = BCE_ADDR_HI(sc->tx_bd_chain_paddr[0]);
5274 		CTX_WR(sc, GET_CID_ADDR(TX_CID),
5275 		    BCE_L2CTX_TX_TBDR_BHADDR_HI, val);
5276 		val = BCE_ADDR_LO(sc->tx_bd_chain_paddr[0]);
5277 		CTX_WR(sc, GET_CID_ADDR(TX_CID),
5278 		    BCE_L2CTX_TX_TBDR_BHADDR_LO, val);
5279 	}
5280 
5281 	DBEXIT(BCE_VERBOSE_RESET | BCE_VERBOSE_SEND | BCE_VERBOSE_CTX);
5282 }
5283 
5284 
5285 /****************************************************************************/
5286 /* Allocate memory and initialize the TX data structures.                   */
5287 /*                                                                          */
5288 /* Returns:                                                                 */
5289 /*   0 for success, positive value for failure.                             */
5290 /****************************************************************************/
5291 static int
5292 bce_init_tx_chain(struct bce_softc *sc)
5293 {
5294 	struct tx_bd *txbd;
5295 	int i, rc = 0;
5296 
5297 	DBENTER(BCE_VERBOSE_RESET | BCE_VERBOSE_SEND | BCE_VERBOSE_LOAD);
5298 
5299 	/* Set the initial TX producer/consumer indices. */
5300 	sc->tx_prod        = 0;
5301 	sc->tx_cons        = 0;
5302 	sc->tx_prod_bseq   = 0;
5303 	sc->used_tx_bd     = 0;
5304 	sc->max_tx_bd      = USABLE_TX_BD;
5305 	DBRUN(sc->tx_hi_watermark = 0);
5306 	DBRUN(sc->tx_full_count = 0);
5307 
5308 	/*
5309 	 * The NetXtreme II supports a linked-list structre called
5310 	 * a Buffer Descriptor Chain (or BD chain).  A BD chain
5311 	 * consists of a series of 1 or more chain pages, each of which
5312 	 * consists of a fixed number of BD entries.
5313 	 * The last BD entry on each page is a pointer to the next page
5314 	 * in the chain, and the last pointer in the BD chain
5315 	 * points back to the beginning of the chain.
5316 	 */
5317 
5318 	/* Set the TX next pointer chain entries. */
5319 	for (i = 0; i < TX_PAGES; i++) {
5320 		int j;
5321 
5322 		txbd = &sc->tx_bd_chain[i][USABLE_TX_BD_PER_PAGE];
5323 
5324 		/* Check if we've reached the last page. */
5325 		if (i == (TX_PAGES - 1))
5326 			j = 0;
5327 		else
5328 			j = i + 1;
5329 
5330 		txbd->tx_bd_haddr_hi = htole32(BCE_ADDR_HI(sc->tx_bd_chain_paddr[j]));
5331 		txbd->tx_bd_haddr_lo = htole32(BCE_ADDR_LO(sc->tx_bd_chain_paddr[j]));
5332 	}
5333 
5334 	bce_init_tx_context(sc);
5335 
5336 	DBRUNMSG(BCE_INSANE_SEND, bce_dump_tx_chain(sc, 0, TOTAL_TX_BD));
5337 	DBEXIT(BCE_VERBOSE_RESET | BCE_VERBOSE_SEND | BCE_VERBOSE_LOAD);
5338 
5339 	return(rc);
5340 }
5341 
5342 
5343 /****************************************************************************/
5344 /* Free memory and clear the TX data structures.                            */
5345 /*                                                                          */
5346 /* Returns:                                                                 */
5347 /*   Nothing.                                                               */
5348 /****************************************************************************/
5349 static void
5350 bce_free_tx_chain(struct bce_softc *sc)
5351 {
5352 	int i;
5353 
5354 	DBENTER(BCE_VERBOSE_RESET | BCE_VERBOSE_SEND | BCE_VERBOSE_UNLOAD);
5355 
5356 	/* Unmap, unload, and free any mbufs still in the TX mbuf chain. */
5357 	for (i = 0; i < TOTAL_TX_BD; i++) {
5358 		if (sc->tx_mbuf_ptr[i] != NULL) {
5359 			if (sc->tx_mbuf_map[i] != NULL)
5360 				bus_dmamap_sync(sc->tx_mbuf_tag,
5361 				    sc->tx_mbuf_map[i],
5362 				    BUS_DMASYNC_POSTWRITE);
5363 			m_freem(sc->tx_mbuf_ptr[i]);
5364 			sc->tx_mbuf_ptr[i] = NULL;
5365 			DBRUN(sc->debug_tx_mbuf_alloc--);
5366 		}
5367 	}
5368 
5369 	/* Clear each TX chain page. */
5370 	for (i = 0; i < TX_PAGES; i++)
5371 		bzero((char *)sc->tx_bd_chain[i], BCE_TX_CHAIN_PAGE_SZ);
5372 
5373 	sc->used_tx_bd = 0;
5374 
5375 	/* Check if we lost any mbufs in the process. */
5376 	DBRUNIF((sc->debug_tx_mbuf_alloc),
5377 	    BCE_PRINTF("%s(%d): Memory leak! Lost %d mbufs "
5378 	    "from tx chain!\n",	__FILE__, __LINE__,
5379 	    sc->debug_tx_mbuf_alloc));
5380 
5381 	DBEXIT(BCE_VERBOSE_RESET | BCE_VERBOSE_SEND | BCE_VERBOSE_UNLOAD);
5382 }
5383 
5384 
5385 /****************************************************************************/
5386 /* Initialize the RX context memory.                                        */
5387 /*                                                                          */
5388 /* Returns:                                                                 */
5389 /*   Nothing                                                                */
5390 /****************************************************************************/
5391 static void
5392 bce_init_rx_context(struct bce_softc *sc)
5393 {
5394 	u32 val;
5395 
5396 	DBENTER(BCE_VERBOSE_RESET | BCE_VERBOSE_RECV | BCE_VERBOSE_CTX);
5397 
5398 	/* Init the type, size, and BD cache levels for the RX context. */
5399 	val = BCE_L2CTX_RX_CTX_TYPE_CTX_BD_CHN_TYPE_VALUE |
5400 	    BCE_L2CTX_RX_CTX_TYPE_SIZE_L2 |
5401 	    (0x02 << BCE_L2CTX_RX_BD_PRE_READ_SHIFT);
5402 
5403 	/*
5404 	 * Set the level for generating pause frames
5405 	 * when the number of available rx_bd's gets
5406 	 * too low (the low watermark) and the level
5407 	 * when pause frames can be stopped (the high
5408 	 * watermark).
5409 	 */
5410 	if ((BCE_CHIP_NUM(sc) == BCE_CHIP_NUM_5709) ||
5411 	    (BCE_CHIP_NUM(sc) == BCE_CHIP_NUM_5716)) {
5412 		u32 lo_water, hi_water;
5413 
5414 		if (sc->bce_flags & BCE_USING_TX_FLOW_CONTROL) {
5415 			lo_water = BCE_L2CTX_RX_LO_WATER_MARK_DEFAULT;
5416 		} else {
5417 			lo_water = 0;
5418 		}
5419 
5420 		if (lo_water >= USABLE_RX_BD) {
5421 			lo_water = 0;
5422 		}
5423 
5424 		hi_water = USABLE_RX_BD / 4;
5425 
5426 		if (hi_water <= lo_water) {
5427 			lo_water = 0;
5428 		}
5429 
5430 		lo_water /= BCE_L2CTX_RX_LO_WATER_MARK_SCALE;
5431 		hi_water /= BCE_L2CTX_RX_HI_WATER_MARK_SCALE;
5432 
5433 		if (hi_water > 0xf)
5434 			hi_water = 0xf;
5435 		else if (hi_water == 0)
5436 			lo_water = 0;
5437 
5438 		val |= (lo_water << BCE_L2CTX_RX_LO_WATER_MARK_SHIFT) |
5439 		    (hi_water << BCE_L2CTX_RX_HI_WATER_MARK_SHIFT);
5440 	}
5441 
5442 	CTX_WR(sc, GET_CID_ADDR(RX_CID), BCE_L2CTX_RX_CTX_TYPE, val);
5443 
5444 	/* Setup the MQ BIN mapping for l2_ctx_host_bseq. */
5445 	if ((BCE_CHIP_NUM(sc) == BCE_CHIP_NUM_5709) ||
5446 	    (BCE_CHIP_NUM(sc) == BCE_CHIP_NUM_5716)) {
5447 		val = REG_RD(sc, BCE_MQ_MAP_L2_5);
5448 		REG_WR(sc, BCE_MQ_MAP_L2_5, val | BCE_MQ_MAP_L2_5_ARM);
5449 	}
5450 
5451 	/* Point the hardware to the first page in the chain. */
5452 	val = BCE_ADDR_HI(sc->rx_bd_chain_paddr[0]);
5453 	CTX_WR(sc, GET_CID_ADDR(RX_CID), BCE_L2CTX_RX_NX_BDHADDR_HI, val);
5454 	val = BCE_ADDR_LO(sc->rx_bd_chain_paddr[0]);
5455 	CTX_WR(sc, GET_CID_ADDR(RX_CID), BCE_L2CTX_RX_NX_BDHADDR_LO, val);
5456 
5457 	DBEXIT(BCE_VERBOSE_RESET | BCE_VERBOSE_RECV | BCE_VERBOSE_CTX);
5458 }
5459 
5460 
5461 /****************************************************************************/
5462 /* Allocate memory and initialize the RX data structures.                   */
5463 /*                                                                          */
5464 /* Returns:                                                                 */
5465 /*   0 for success, positive value for failure.                             */
5466 /****************************************************************************/
5467 static int
5468 bce_init_rx_chain(struct bce_softc *sc)
5469 {
5470 	struct rx_bd *rxbd;
5471 	int i, rc = 0;
5472 
5473 	DBENTER(BCE_VERBOSE_RESET | BCE_VERBOSE_RECV | BCE_VERBOSE_LOAD |
5474 	    BCE_VERBOSE_CTX);
5475 
5476 	/* Initialize the RX producer and consumer indices. */
5477 	sc->rx_prod        = 0;
5478 	sc->rx_cons        = 0;
5479 	sc->rx_prod_bseq   = 0;
5480 	sc->free_rx_bd     = USABLE_RX_BD;
5481 	sc->max_rx_bd      = USABLE_RX_BD;
5482 
5483 	/* Initialize the RX next pointer chain entries. */
5484 	for (i = 0; i < RX_PAGES; i++) {
5485 		int j;
5486 
5487 		rxbd = &sc->rx_bd_chain[i][USABLE_RX_BD_PER_PAGE];
5488 
5489 		/* Check if we've reached the last page. */
5490 		if (i == (RX_PAGES - 1))
5491 			j = 0;
5492 		else
5493 			j = i + 1;
5494 
5495 		/* Setup the chain page pointers. */
5496 		rxbd->rx_bd_haddr_hi =
5497 		    htole32(BCE_ADDR_HI(sc->rx_bd_chain_paddr[j]));
5498 		rxbd->rx_bd_haddr_lo =
5499 		    htole32(BCE_ADDR_LO(sc->rx_bd_chain_paddr[j]));
5500 	}
5501 
5502 	/* Fill up the RX chain. */
5503 	bce_fill_rx_chain(sc);
5504 
5505 	DBRUN(sc->rx_low_watermark = USABLE_RX_BD);
5506 	DBRUN(sc->rx_empty_count = 0);
5507 	for (i = 0; i < RX_PAGES; i++) {
5508 		bus_dmamap_sync(sc->rx_bd_chain_tag, sc->rx_bd_chain_map[i],
5509 		    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
5510 	}
5511 
5512 	bce_init_rx_context(sc);
5513 
5514 	DBRUNMSG(BCE_EXTREME_RECV, bce_dump_rx_bd_chain(sc, 0, TOTAL_RX_BD));
5515 	DBEXIT(BCE_VERBOSE_RESET | BCE_VERBOSE_RECV | BCE_VERBOSE_LOAD |
5516 	    BCE_VERBOSE_CTX);
5517 
5518 	/* ToDo: Are there possible failure modes here? */
5519 
5520 	return(rc);
5521 }
5522 
5523 
5524 /****************************************************************************/
5525 /* Add mbufs to the RX chain until its full or an mbuf allocation error     */
5526 /* occurs.                                                                  */
5527 /*                                                                          */
5528 /* Returns:                                                                 */
5529 /*   Nothing                                                                */
5530 /****************************************************************************/
5531 static void
5532 bce_fill_rx_chain(struct bce_softc *sc)
5533 {
5534 	u16 prod, prod_idx;
5535 	u32 prod_bseq;
5536 
5537 	DBENTER(BCE_VERBOSE_RESET | BCE_EXTREME_RECV | BCE_VERBOSE_LOAD |
5538 	    BCE_VERBOSE_CTX);
5539 
5540 	/* Get the RX chain producer indices. */
5541 	prod      = sc->rx_prod;
5542 	prod_bseq = sc->rx_prod_bseq;
5543 
5544 	/* Keep filling the RX chain until it's full. */
5545 	while (sc->free_rx_bd > 0) {
5546 		prod_idx = RX_CHAIN_IDX(prod);
5547 		if (bce_get_rx_buf(sc, NULL, &prod, &prod_idx, &prod_bseq)) {
5548 			/* Bail out if we can't add an mbuf to the chain. */
5549 			break;
5550 		}
5551 		prod = NEXT_RX_BD(prod);
5552 	}
5553 
5554 	/* Save the RX chain producer indices. */
5555 	sc->rx_prod      = prod;
5556 	sc->rx_prod_bseq = prod_bseq;
5557 
5558 	/* We should never end up pointing to a next page pointer. */
5559 	DBRUNIF(((prod & USABLE_RX_BD_PER_PAGE) == USABLE_RX_BD_PER_PAGE),
5560 	    BCE_PRINTF("%s(): Invalid rx_prod value: 0x%04X\n",
5561 	    __FUNCTION__, sc->rx_prod));
5562 
5563 	/* Write the mailbox and tell the chip about the waiting rx_bd's. */
5564 	REG_WR16(sc, MB_GET_CID_ADDR(RX_CID) +
5565 	    BCE_L2MQ_RX_HOST_BDIDX, sc->rx_prod);
5566 	REG_WR(sc, MB_GET_CID_ADDR(RX_CID) +
5567 	    BCE_L2MQ_RX_HOST_BSEQ, sc->rx_prod_bseq);
5568 
5569 	DBEXIT(BCE_VERBOSE_RESET | BCE_EXTREME_RECV | BCE_VERBOSE_LOAD |
5570 	    BCE_VERBOSE_CTX);
5571 }
5572 
5573 
5574 /****************************************************************************/
5575 /* Free memory and clear the RX data structures.                            */
5576 /*                                                                          */
5577 /* Returns:                                                                 */
5578 /*   Nothing.                                                               */
5579 /****************************************************************************/
5580 static void
5581 bce_free_rx_chain(struct bce_softc *sc)
5582 {
5583 	int i;
5584 
5585 	DBENTER(BCE_VERBOSE_RESET | BCE_VERBOSE_RECV | BCE_VERBOSE_UNLOAD);
5586 
5587 	/* Free any mbufs still in the RX mbuf chain. */
5588 	for (i = 0; i < TOTAL_RX_BD; i++) {
5589 		if (sc->rx_mbuf_ptr[i] != NULL) {
5590 			if (sc->rx_mbuf_map[i] != NULL)
5591 				bus_dmamap_sync(sc->rx_mbuf_tag,
5592 				    sc->rx_mbuf_map[i],
5593 				    BUS_DMASYNC_POSTREAD);
5594 			m_freem(sc->rx_mbuf_ptr[i]);
5595 			sc->rx_mbuf_ptr[i] = NULL;
5596 			DBRUN(sc->debug_rx_mbuf_alloc--);
5597 		}
5598 	}
5599 
5600 	/* Clear each RX chain page. */
5601 	for (i = 0; i < RX_PAGES; i++)
5602 		if (sc->rx_bd_chain[i] != NULL) {
5603 			bzero((char *)sc->rx_bd_chain[i],
5604 			    BCE_RX_CHAIN_PAGE_SZ);
5605 		}
5606 
5607 	sc->free_rx_bd = sc->max_rx_bd;
5608 
5609 	/* Check if we lost any mbufs in the process. */
5610 	DBRUNIF((sc->debug_rx_mbuf_alloc),
5611 	    BCE_PRINTF("%s(): Memory leak! Lost %d mbufs from rx chain!\n",
5612 	    __FUNCTION__, sc->debug_rx_mbuf_alloc));
5613 
5614 	DBEXIT(BCE_VERBOSE_RESET | BCE_VERBOSE_RECV | BCE_VERBOSE_UNLOAD);
5615 }
5616 
5617 
5618 #ifdef BCE_JUMBO_HDRSPLIT
5619 /****************************************************************************/
5620 /* Allocate memory and initialize the page data structures.                 */
5621 /* Assumes that bce_init_rx_chain() has not already been called.            */
5622 /*                                                                          */
5623 /* Returns:                                                                 */
5624 /*   0 for success, positive value for failure.                             */
5625 /****************************************************************************/
5626 static int
5627 bce_init_pg_chain(struct bce_softc *sc)
5628 {
5629 	struct rx_bd *pgbd;
5630 	int i, rc = 0;
5631 	u32 val;
5632 
5633 	DBENTER(BCE_VERBOSE_RESET | BCE_VERBOSE_RECV | BCE_VERBOSE_LOAD |
5634 		BCE_VERBOSE_CTX);
5635 
5636 	/* Initialize the page producer and consumer indices. */
5637 	sc->pg_prod        = 0;
5638 	sc->pg_cons        = 0;
5639 	sc->free_pg_bd     = USABLE_PG_BD;
5640 	sc->max_pg_bd      = USABLE_PG_BD;
5641 	DBRUN(sc->pg_low_watermark = sc->max_pg_bd);
5642 	DBRUN(sc->pg_empty_count = 0);
5643 
5644 	/* Initialize the page next pointer chain entries. */
5645 	for (i = 0; i < PG_PAGES; i++) {
5646 		int j;
5647 
5648 		pgbd = &sc->pg_bd_chain[i][USABLE_PG_BD_PER_PAGE];
5649 
5650 		/* Check if we've reached the last page. */
5651 		if (i == (PG_PAGES - 1))
5652 			j = 0;
5653 		else
5654 			j = i + 1;
5655 
5656 		/* Setup the chain page pointers. */
5657 		pgbd->rx_bd_haddr_hi = htole32(BCE_ADDR_HI(sc->pg_bd_chain_paddr[j]));
5658 		pgbd->rx_bd_haddr_lo = htole32(BCE_ADDR_LO(sc->pg_bd_chain_paddr[j]));
5659 	}
5660 
5661 	/* Setup the MQ BIN mapping for host_pg_bidx. */
5662 	if ((BCE_CHIP_NUM(sc) == BCE_CHIP_NUM_5709)	||
5663 		(BCE_CHIP_NUM(sc) == BCE_CHIP_NUM_5716))
5664 		REG_WR(sc, BCE_MQ_MAP_L2_3, BCE_MQ_MAP_L2_3_DEFAULT);
5665 
5666 	CTX_WR(sc, GET_CID_ADDR(RX_CID), BCE_L2CTX_RX_PG_BUF_SIZE, 0);
5667 
5668 	/* Configure the rx_bd and page chain mbuf cluster size. */
5669 	val = (sc->rx_bd_mbuf_data_len << 16) | sc->pg_bd_mbuf_alloc_size;
5670 	CTX_WR(sc, GET_CID_ADDR(RX_CID), BCE_L2CTX_RX_PG_BUF_SIZE, val);
5671 
5672 	/* Configure the context reserved for jumbo support. */
5673 	CTX_WR(sc, GET_CID_ADDR(RX_CID), BCE_L2CTX_RX_RBDC_KEY,
5674 		BCE_L2CTX_RX_RBDC_JUMBO_KEY);
5675 
5676 	/* Point the hardware to the first page in the page chain. */
5677 	val = BCE_ADDR_HI(sc->pg_bd_chain_paddr[0]);
5678 	CTX_WR(sc, GET_CID_ADDR(RX_CID), BCE_L2CTX_RX_NX_PG_BDHADDR_HI, val);
5679 	val = BCE_ADDR_LO(sc->pg_bd_chain_paddr[0]);
5680 	CTX_WR(sc, GET_CID_ADDR(RX_CID), BCE_L2CTX_RX_NX_PG_BDHADDR_LO, val);
5681 
5682 	/* Fill up the page chain. */
5683 	bce_fill_pg_chain(sc);
5684 
5685 	for (i = 0; i < PG_PAGES; i++) {
5686 		bus_dmamap_sync(sc->pg_bd_chain_tag, sc->pg_bd_chain_map[i],
5687 		    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
5688 	}
5689 
5690 	DBRUNMSG(BCE_EXTREME_RECV, bce_dump_pg_chain(sc, 0, TOTAL_PG_BD));
5691 	DBEXIT(BCE_VERBOSE_RESET | BCE_VERBOSE_RECV | BCE_VERBOSE_LOAD |
5692 		BCE_VERBOSE_CTX);
5693 	return(rc);
5694 }
5695 
5696 
5697 /****************************************************************************/
5698 /* Add mbufs to the page chain until its full or an mbuf allocation error   */
5699 /* occurs.                                                                  */
5700 /*                                                                          */
5701 /* Returns:                                                                 */
5702 /*   Nothing                                                                */
5703 /****************************************************************************/
5704 static void
5705 bce_fill_pg_chain(struct bce_softc *sc)
5706 {
5707 	u16 prod, prod_idx;
5708 
5709 	DBENTER(BCE_VERBOSE_RESET | BCE_EXTREME_RECV | BCE_VERBOSE_LOAD |
5710 	    BCE_VERBOSE_CTX);
5711 
5712 	/* Get the page chain prodcuer index. */
5713 	prod = sc->pg_prod;
5714 
5715 	/* Keep filling the page chain until it's full. */
5716 	while (sc->free_pg_bd > 0) {
5717 		prod_idx = PG_CHAIN_IDX(prod);
5718 		if (bce_get_pg_buf(sc, NULL, &prod, &prod_idx)) {
5719 			/* Bail out if we can't add an mbuf to the chain. */
5720 			break;
5721 		}
5722 		prod = NEXT_PG_BD(prod);
5723 	}
5724 
5725 	/* Save the page chain producer index. */
5726 	sc->pg_prod = prod;
5727 
5728 	DBRUNIF(((prod & USABLE_RX_BD_PER_PAGE) == USABLE_RX_BD_PER_PAGE),
5729 	    BCE_PRINTF("%s(): Invalid pg_prod value: 0x%04X\n",
5730 	    __FUNCTION__, sc->pg_prod));
5731 
5732 	/*
5733 	 * Write the mailbox and tell the chip about
5734 	 * the new rx_bd's in the page chain.
5735 	 */
5736 	REG_WR16(sc, MB_GET_CID_ADDR(RX_CID) +
5737 	    BCE_L2MQ_RX_HOST_PG_BDIDX, sc->pg_prod);
5738 
5739 	DBEXIT(BCE_VERBOSE_RESET | BCE_EXTREME_RECV | BCE_VERBOSE_LOAD |
5740 	    BCE_VERBOSE_CTX);
5741 }
5742 
5743 
5744 /****************************************************************************/
5745 /* Free memory and clear the RX data structures.                            */
5746 /*                                                                          */
5747 /* Returns:                                                                 */
5748 /*   Nothing.                                                               */
5749 /****************************************************************************/
5750 static void
5751 bce_free_pg_chain(struct bce_softc *sc)
5752 {
5753 	int i;
5754 
5755 	DBENTER(BCE_VERBOSE_RESET | BCE_VERBOSE_RECV | BCE_VERBOSE_UNLOAD);
5756 
5757 	/* Free any mbufs still in the mbuf page chain. */
5758 	for (i = 0; i < TOTAL_PG_BD; i++) {
5759 		if (sc->pg_mbuf_ptr[i] != NULL) {
5760 			if (sc->pg_mbuf_map[i] != NULL)
5761 				bus_dmamap_sync(sc->pg_mbuf_tag,
5762 				    sc->pg_mbuf_map[i],
5763 				    BUS_DMASYNC_POSTREAD);
5764 			m_freem(sc->pg_mbuf_ptr[i]);
5765 			sc->pg_mbuf_ptr[i] = NULL;
5766 			DBRUN(sc->debug_pg_mbuf_alloc--);
5767 		}
5768 	}
5769 
5770 	/* Clear each page chain pages. */
5771 	for (i = 0; i < PG_PAGES; i++)
5772 		bzero((char *)sc->pg_bd_chain[i], BCE_PG_CHAIN_PAGE_SZ);
5773 
5774 	sc->free_pg_bd = sc->max_pg_bd;
5775 
5776 	/* Check if we lost any mbufs in the process. */
5777 	DBRUNIF((sc->debug_pg_mbuf_alloc),
5778 	    BCE_PRINTF("%s(): Memory leak! Lost %d mbufs from page chain!\n",
5779 	    __FUNCTION__, sc->debug_pg_mbuf_alloc));
5780 
5781 	DBEXIT(BCE_VERBOSE_RESET | BCE_VERBOSE_RECV | BCE_VERBOSE_UNLOAD);
5782 }
5783 #endif /* BCE_JUMBO_HDRSPLIT */
5784 
5785 
5786 /****************************************************************************/
5787 /* Set media options.                                                       */
5788 /*                                                                          */
5789 /* Returns:                                                                 */
5790 /*   0 for success, positive value for failure.                             */
5791 /****************************************************************************/
5792 static int
5793 bce_ifmedia_upd(struct ifnet *ifp)
5794 {
5795 	struct bce_softc *sc = ifp->if_softc;
5796 	int error;
5797 
5798 	DBENTER(BCE_VERBOSE);
5799 
5800 	BCE_LOCK(sc);
5801 	error = bce_ifmedia_upd_locked(ifp);
5802 	BCE_UNLOCK(sc);
5803 
5804 	DBEXIT(BCE_VERBOSE);
5805 	return (error);
5806 }
5807 
5808 
5809 /****************************************************************************/
5810 /* Set media options.                                                       */
5811 /*                                                                          */
5812 /* Returns:                                                                 */
5813 /*   Nothing.                                                               */
5814 /****************************************************************************/
5815 static int
5816 bce_ifmedia_upd_locked(struct ifnet *ifp)
5817 {
5818 	struct bce_softc *sc = ifp->if_softc;
5819 	struct mii_data *mii;
5820 	int error;
5821 
5822 	DBENTER(BCE_VERBOSE_PHY);
5823 
5824 	error = 0;
5825 	BCE_LOCK_ASSERT(sc);
5826 
5827 	mii = device_get_softc(sc->bce_miibus);
5828 
5829 	/* Make sure the MII bus has been enumerated. */
5830 	if (mii) {
5831 		sc->bce_link_up = FALSE;
5832 		if (mii->mii_instance) {
5833 			struct mii_softc *miisc;
5834 
5835 			LIST_FOREACH(miisc, &mii->mii_phys, mii_list)
5836 			    mii_phy_reset(miisc);
5837 		}
5838 		error = mii_mediachg(mii);
5839 	}
5840 
5841 	DBEXIT(BCE_VERBOSE_PHY);
5842 	return (error);
5843 }
5844 
5845 
5846 /****************************************************************************/
5847 /* Reports current media status.                                            */
5848 /*                                                                          */
5849 /* Returns:                                                                 */
5850 /*   Nothing.                                                               */
5851 /****************************************************************************/
5852 static void
5853 bce_ifmedia_sts(struct ifnet *ifp, struct ifmediareq *ifmr)
5854 {
5855 	struct bce_softc *sc = ifp->if_softc;
5856 	struct mii_data *mii;
5857 
5858 	DBENTER(BCE_VERBOSE_PHY);
5859 
5860 	BCE_LOCK(sc);
5861 
5862 	if ((ifp->if_flags & IFF_UP) == 0) {
5863 		BCE_UNLOCK(sc);
5864 		return;
5865 	}
5866 	mii = device_get_softc(sc->bce_miibus);
5867 
5868 	mii_pollstat(mii);
5869 	ifmr->ifm_active = mii->mii_media_active;
5870 	ifmr->ifm_status = mii->mii_media_status;
5871 
5872 	BCE_UNLOCK(sc);
5873 
5874 	DBEXIT(BCE_VERBOSE_PHY);
5875 }
5876 
5877 
5878 /****************************************************************************/
5879 /* Handles PHY generated interrupt events.                                  */
5880 /*                                                                          */
5881 /* Returns:                                                                 */
5882 /*   Nothing.                                                               */
5883 /****************************************************************************/
5884 static void
5885 bce_phy_intr(struct bce_softc *sc)
5886 {
5887 	u32 new_link_state, old_link_state;
5888 
5889 	DBENTER(BCE_VERBOSE_PHY | BCE_VERBOSE_INTR);
5890 
5891 	DBRUN(sc->phy_interrupts++);
5892 
5893 	new_link_state = sc->status_block->status_attn_bits &
5894 	    STATUS_ATTN_BITS_LINK_STATE;
5895 	old_link_state = sc->status_block->status_attn_bits_ack &
5896 	    STATUS_ATTN_BITS_LINK_STATE;
5897 
5898 	/* Handle any changes if the link state has changed. */
5899 	if (new_link_state != old_link_state) {
5900 
5901 		/* Update the status_attn_bits_ack field. */
5902 		if (new_link_state) {
5903 			REG_WR(sc, BCE_PCICFG_STATUS_BIT_SET_CMD,
5904 			    STATUS_ATTN_BITS_LINK_STATE);
5905 			DBPRINT(sc, BCE_INFO_PHY, "%s(): Link is now UP.\n",
5906 			    __FUNCTION__);
5907 		}
5908 		else {
5909 			REG_WR(sc, BCE_PCICFG_STATUS_BIT_CLEAR_CMD,
5910 			    STATUS_ATTN_BITS_LINK_STATE);
5911 			DBPRINT(sc, BCE_INFO_PHY, "%s(): Link is now DOWN.\n",
5912 			    __FUNCTION__);
5913 		}
5914 
5915 		/*
5916 		 * Assume link is down and allow
5917 		 * tick routine to update the state
5918 		 * based on the actual media state.
5919 		 */
5920 		sc->bce_link_up = FALSE;
5921 		callout_stop(&sc->bce_tick_callout);
5922 		bce_tick(sc);
5923 	}
5924 
5925 	/* Acknowledge the link change interrupt. */
5926 	REG_WR(sc, BCE_EMAC_STATUS, BCE_EMAC_STATUS_LINK_CHANGE);
5927 
5928 	DBEXIT(BCE_VERBOSE_PHY | BCE_VERBOSE_INTR);
5929 }
5930 
5931 
5932 /****************************************************************************/
5933 /* Reads the receive consumer value from the status block (skipping over    */
5934 /* chain page pointer if necessary).                                        */
5935 /*                                                                          */
5936 /* Returns:                                                                 */
5937 /*   hw_cons                                                                */
5938 /****************************************************************************/
5939 static inline u16
5940 bce_get_hw_rx_cons(struct bce_softc *sc)
5941 {
5942 	u16 hw_cons;
5943 
5944 	rmb();
5945 	hw_cons = sc->status_block->status_rx_quick_consumer_index0;
5946 	if ((hw_cons & USABLE_RX_BD_PER_PAGE) == USABLE_RX_BD_PER_PAGE)
5947 		hw_cons++;
5948 
5949 	return hw_cons;
5950 }
5951 
5952 /****************************************************************************/
5953 /* Handles received frame interrupt events.                                 */
5954 /*                                                                          */
5955 /* Returns:                                                                 */
5956 /*   Nothing.                                                               */
5957 /****************************************************************************/
5958 static void
5959 bce_rx_intr(struct bce_softc *sc)
5960 {
5961 	struct ifnet *ifp = sc->bce_ifp;
5962 	struct l2_fhdr *l2fhdr;
5963 	struct ether_vlan_header *vh;
5964 	unsigned int pkt_len;
5965 	u16 sw_rx_cons, sw_rx_cons_idx, hw_rx_cons;
5966 	u32 status;
5967 #ifdef BCE_JUMBO_HDRSPLIT
5968 	unsigned int rem_len;
5969 	u16 sw_pg_cons, sw_pg_cons_idx;
5970 #endif
5971 
5972 	DBENTER(BCE_VERBOSE_RECV | BCE_VERBOSE_INTR);
5973 	DBRUN(sc->interrupts_rx++);
5974 	DBPRINT(sc, BCE_EXTREME_RECV, "%s(enter): rx_prod = 0x%04X, "
5975 	    "rx_cons = 0x%04X, rx_prod_bseq = 0x%08X\n",
5976 	    __FUNCTION__, sc->rx_prod, sc->rx_cons, sc->rx_prod_bseq);
5977 
5978 	/* Prepare the RX chain pages to be accessed by the host CPU. */
5979 	for (int i = 0; i < RX_PAGES; i++)
5980 		bus_dmamap_sync(sc->rx_bd_chain_tag,
5981 		    sc->rx_bd_chain_map[i], BUS_DMASYNC_POSTREAD);
5982 
5983 #ifdef BCE_JUMBO_HDRSPLIT
5984 	/* Prepare the page chain pages to be accessed by the host CPU. */
5985 	for (int i = 0; i < PG_PAGES; i++)
5986 		bus_dmamap_sync(sc->pg_bd_chain_tag,
5987 		    sc->pg_bd_chain_map[i], BUS_DMASYNC_POSTREAD);
5988 #endif
5989 
5990 	/* Get the hardware's view of the RX consumer index. */
5991 	hw_rx_cons = sc->hw_rx_cons = bce_get_hw_rx_cons(sc);
5992 
5993 	/* Get working copies of the driver's view of the consumer indices. */
5994 	sw_rx_cons = sc->rx_cons;
5995 
5996 #ifdef BCE_JUMBO_HDRSPLIT
5997 	sw_pg_cons = sc->pg_cons;
5998 #endif
5999 
6000 	/* Update some debug statistics counters */
6001 	DBRUNIF((sc->free_rx_bd < sc->rx_low_watermark),
6002 	    sc->rx_low_watermark = sc->free_rx_bd);
6003 	DBRUNIF((sc->free_rx_bd == sc->max_rx_bd),
6004 	    sc->rx_empty_count++);
6005 
6006 	/* Scan through the receive chain as long as there is work to do */
6007 	/* ToDo: Consider setting a limit on the number of packets processed. */
6008 	rmb();
6009 	while (sw_rx_cons != hw_rx_cons) {
6010 		struct mbuf *m0;
6011 
6012 		/* Convert the producer/consumer indices to an actual rx_bd index. */
6013 		sw_rx_cons_idx = RX_CHAIN_IDX(sw_rx_cons);
6014 
6015 		/* Unmap the mbuf from DMA space. */
6016 		bus_dmamap_sync(sc->rx_mbuf_tag,
6017 		    sc->rx_mbuf_map[sw_rx_cons_idx],
6018 		    BUS_DMASYNC_POSTREAD);
6019 		bus_dmamap_unload(sc->rx_mbuf_tag,
6020 		    sc->rx_mbuf_map[sw_rx_cons_idx]);
6021 
6022 		/* Remove the mbuf from the RX chain. */
6023 		m0 = sc->rx_mbuf_ptr[sw_rx_cons_idx];
6024 		sc->rx_mbuf_ptr[sw_rx_cons_idx] = NULL;
6025 		DBRUN(sc->debug_rx_mbuf_alloc--);
6026 		sc->free_rx_bd++;
6027 
6028 		if(m0 == NULL) {
6029 			DBPRINT(sc, BCE_EXTREME_RECV,
6030 			    "%s(): Oops! Empty mbuf pointer "
6031 			    "found in sc->rx_mbuf_ptr[0x%04X]!\n",
6032 			    __FUNCTION__, sw_rx_cons_idx);
6033 			goto bce_rx_int_next_rx;
6034 		}
6035 
6036 		/*
6037  		 * Frames received on the NetXteme II are prepended
6038  		 * with an l2_fhdr structure which provides status
6039  		 * information about the received frame (including
6040  		 * VLAN tags and checksum info).  The frames are
6041 		 * also automatically adjusted to align the IP
6042  		 * header (i.e. two null bytes are inserted before
6043  		 * the Ethernet	header).  As a result the data
6044  		 * DMA'd by the controller into	the mbuf looks
6045 		 * like this:
6046 		 *
6047 		 * +---------+-----+---------------------+-----+
6048 		 * | l2_fhdr | pad | packet data         | FCS |
6049 		 * +---------+-----+---------------------+-----+
6050 		 *
6051  		 * The l2_fhdr needs to be checked and skipped and
6052  		 * the FCS needs to be stripped before sending the
6053 		 * packet up the stack.
6054 		 */
6055 		l2fhdr  = mtod(m0, struct l2_fhdr *);
6056 
6057 		/* Get the packet data + FCS length and the status. */
6058 		pkt_len = l2fhdr->l2_fhdr_pkt_len;
6059 		status  = l2fhdr->l2_fhdr_status;
6060 
6061 		/*
6062 		 * Skip over the l2_fhdr and pad, resulting in the
6063 		 * following data in the mbuf:
6064 		 * +---------------------+-----+
6065 		 * | packet data         | FCS |
6066 		 * +---------------------+-----+
6067 		 */
6068 		m_adj(m0, sizeof(struct l2_fhdr) + ETHER_ALIGN);
6069 
6070 #ifdef BCE_JUMBO_HDRSPLIT
6071 		/*
6072 		 * Check whether the received frame fits in a single
6073 		 * mbuf or not (i.e. packet data + FCS <=
6074 		 * sc->rx_bd_mbuf_data_len bytes).
6075 		 */
6076 		if (pkt_len > m0->m_len) {
6077 			/*
6078 			 * The received frame is larger than a single mbuf.
6079 			 * If the frame was a TCP frame then only the TCP
6080 			 * header is placed in the mbuf, the remaining
6081 			 * payload (including FCS) is placed in the page
6082 			 * chain, the SPLIT flag is set, and the header
6083 			 * length is placed in the IP checksum field.
6084 			 * If the frame is not a TCP frame then the mbuf
6085 			 * is filled and the remaining bytes are placed
6086 			 * in the page chain.
6087 			 */
6088 
6089 			DBPRINT(sc, BCE_INFO_RECV, "%s(): Found a large "
6090 			    "packet.\n", __FUNCTION__);
6091 
6092 			/*
6093 			 * When the page chain is enabled and the TCP
6094 			 * header has been split from the TCP payload,
6095 			 * the ip_xsum structure will reflect the length
6096 			 * of the TCP header, not the IP checksum.  Set
6097 			 * the packet length of the mbuf accordingly.
6098 			 */
6099 		 	if (status & L2_FHDR_STATUS_SPLIT)
6100 				m0->m_len = l2fhdr->l2_fhdr_ip_xsum;
6101 
6102 			rem_len = pkt_len - m0->m_len;
6103 
6104 			/* Pull mbufs off the page chain for the remaining data. */
6105 			while (rem_len > 0) {
6106 				struct mbuf *m_pg;
6107 
6108 				sw_pg_cons_idx = PG_CHAIN_IDX(sw_pg_cons);
6109 
6110 				/* Remove the mbuf from the page chain. */
6111 				m_pg = sc->pg_mbuf_ptr[sw_pg_cons_idx];
6112 				sc->pg_mbuf_ptr[sw_pg_cons_idx] = NULL;
6113 				DBRUN(sc->debug_pg_mbuf_alloc--);
6114 				sc->free_pg_bd++;
6115 
6116 				/* Unmap the page chain mbuf from DMA space. */
6117 				bus_dmamap_sync(sc->pg_mbuf_tag,
6118 				    sc->pg_mbuf_map[sw_pg_cons_idx],
6119 				    BUS_DMASYNC_POSTREAD);
6120 				bus_dmamap_unload(sc->pg_mbuf_tag,
6121 				    sc->pg_mbuf_map[sw_pg_cons_idx]);
6122 
6123 				/* Adjust the mbuf length. */
6124 				if (rem_len < m_pg->m_len) {
6125 					/* The mbuf chain is complete. */
6126 					m_pg->m_len = rem_len;
6127 					rem_len = 0;
6128 				} else {
6129 					/* More packet data is waiting. */
6130 					rem_len -= m_pg->m_len;
6131 				}
6132 
6133 				/* Concatenate the mbuf cluster to the mbuf. */
6134 				m_cat(m0, m_pg);
6135 
6136 				sw_pg_cons = NEXT_PG_BD(sw_pg_cons);
6137 			}
6138 
6139 			/* Set the total packet length. */
6140 			m0->m_pkthdr.len = pkt_len;
6141 
6142 		} else {
6143 			/*
6144 			 * The received packet is small and fits in a
6145 			 * single mbuf (i.e. the l2_fhdr + pad + packet +
6146 			 * FCS <= MHLEN).  In other words, the packet is
6147 			 * 154 bytes or less in size.
6148 			 */
6149 
6150 			DBPRINT(sc, BCE_INFO_RECV, "%s(): Found a small "
6151 			    "packet.\n", __FUNCTION__);
6152 
6153 			/* Set the total packet length. */
6154 			m0->m_pkthdr.len = m0->m_len = pkt_len;
6155 		}
6156 #else
6157 		/* Set the total packet length. */
6158 		m0->m_pkthdr.len = m0->m_len = pkt_len;
6159 #endif
6160 
6161 		/* Remove the trailing Ethernet FCS. */
6162 		m_adj(m0, -ETHER_CRC_LEN);
6163 
6164 		/* Check that the resulting mbuf chain is valid. */
6165 		DBRUN(m_sanity(m0, FALSE));
6166 		DBRUNIF(((m0->m_len < ETHER_HDR_LEN) |
6167 		    (m0->m_pkthdr.len > BCE_MAX_JUMBO_ETHER_MTU_VLAN)),
6168 		     BCE_PRINTF("Invalid Ethernet frame size!\n");
6169 		     m_print(m0, 128));
6170 
6171 		DBRUNIF(DB_RANDOMTRUE(l2fhdr_error_sim_control),
6172 		    sc->l2fhdr_error_sim_count++;
6173 		    status = status | L2_FHDR_ERRORS_PHY_DECODE);
6174 
6175 		/* Check the received frame for errors. */
6176 		if (status & (L2_FHDR_ERRORS_BAD_CRC |
6177 		    L2_FHDR_ERRORS_PHY_DECODE | L2_FHDR_ERRORS_ALIGNMENT |
6178 		    L2_FHDR_ERRORS_TOO_SHORT  | L2_FHDR_ERRORS_GIANT_FRAME)) {
6179 
6180 			/* Log the error and release the mbuf. */
6181 			ifp->if_ierrors++;
6182 			sc->l2fhdr_error_count++;
6183 
6184 			m_freem(m0);
6185 			m0 = NULL;
6186 			goto bce_rx_int_next_rx;
6187 		}
6188 
6189 		/* Send the packet to the appropriate interface. */
6190 		m0->m_pkthdr.rcvif = ifp;
6191 
6192 		/* Assume no hardware checksum. */
6193 		m0->m_pkthdr.csum_flags = 0;
6194 
6195 		/* Validate the checksum if offload enabled. */
6196 		if (ifp->if_capenable & IFCAP_RXCSUM) {
6197 
6198 			/* Check for an IP datagram. */
6199 		 	if (!(status & L2_FHDR_STATUS_SPLIT) &&
6200 			    (status & L2_FHDR_STATUS_IP_DATAGRAM)) {
6201 				m0->m_pkthdr.csum_flags |= CSUM_IP_CHECKED;
6202 				DBRUN(sc->csum_offload_ip++);
6203 				/* Check if the IP checksum is valid. */
6204 				if ((l2fhdr->l2_fhdr_ip_xsum ^ 0xffff) == 0)
6205 					m0->m_pkthdr.csum_flags |=
6206 					    CSUM_IP_VALID;
6207 			}
6208 
6209 			/* Check for a valid TCP/UDP frame. */
6210 			if (status & (L2_FHDR_STATUS_TCP_SEGMENT |
6211 			    L2_FHDR_STATUS_UDP_DATAGRAM)) {
6212 
6213 				/* Check for a good TCP/UDP checksum. */
6214 				if ((status & (L2_FHDR_ERRORS_TCP_XSUM |
6215 				    L2_FHDR_ERRORS_UDP_XSUM)) == 0) {
6216 					DBRUN(sc->csum_offload_tcp_udp++);
6217 					m0->m_pkthdr.csum_data =
6218 					    l2fhdr->l2_fhdr_tcp_udp_xsum;
6219 					m0->m_pkthdr.csum_flags |=
6220 					    (CSUM_DATA_VALID
6221 					    | CSUM_PSEUDO_HDR);
6222 				}
6223 			}
6224 		}
6225 
6226 		/* Attach the VLAN tag.	*/
6227 		if (status & L2_FHDR_STATUS_L2_VLAN_TAG) {
6228 			if (ifp->if_capenable & IFCAP_VLAN_HWTAGGING) {
6229 #if __FreeBSD_version < 700000
6230 				VLAN_INPUT_TAG(ifp, m0,
6231 				    l2fhdr->l2_fhdr_vlan_tag, continue);
6232 #else
6233 				m0->m_pkthdr.ether_vtag =
6234 				    l2fhdr->l2_fhdr_vlan_tag;
6235 				m0->m_flags |= M_VLANTAG;
6236 #endif
6237 			} else {
6238 				/*
6239 				 * bce(4) controllers can't disable VLAN
6240 				 * tag stripping if management firmware
6241 				 * (ASF/IPMI/UMP) is running. So we always
6242 				 * strip VLAN tag and manually reconstruct
6243 				 * the VLAN frame by appending stripped
6244 				 * VLAN tag in driver if VLAN tag stripping
6245 				 * was disabled.
6246 				 *
6247 				 * TODO: LLC SNAP handling.
6248 				 */
6249 				bcopy(mtod(m0, uint8_t *),
6250 				    mtod(m0, uint8_t *) - ETHER_VLAN_ENCAP_LEN,
6251 				    ETHER_ADDR_LEN * 2);
6252 				m0->m_data -= ETHER_VLAN_ENCAP_LEN;
6253 				vh = mtod(m0, struct ether_vlan_header *);
6254 				vh->evl_encap_proto = htons(ETHERTYPE_VLAN);
6255 				vh->evl_tag = htons(l2fhdr->l2_fhdr_vlan_tag);
6256 				m0->m_pkthdr.len += ETHER_VLAN_ENCAP_LEN;
6257 				m0->m_len += ETHER_VLAN_ENCAP_LEN;
6258 			}
6259 		}
6260 
6261 		/* Increment received packet statistics. */
6262 		ifp->if_ipackets++;
6263 
6264 bce_rx_int_next_rx:
6265 		sw_rx_cons = NEXT_RX_BD(sw_rx_cons);
6266 
6267 		/* If we have a packet, pass it up the stack */
6268 		if (m0) {
6269 			/* Make sure we don't lose our place when we release the lock. */
6270 			sc->rx_cons = sw_rx_cons;
6271 #ifdef BCE_JUMBO_HDRSPLIT
6272 			sc->pg_cons = sw_pg_cons;
6273 #endif
6274 
6275 			BCE_UNLOCK(sc);
6276 			(*ifp->if_input)(ifp, m0);
6277 			BCE_LOCK(sc);
6278 
6279 			/* Recover our place. */
6280 			sw_rx_cons = sc->rx_cons;
6281 #ifdef BCE_JUMBO_HDRSPLIT
6282 			sw_pg_cons = sc->pg_cons;
6283 #endif
6284 		}
6285 
6286 		/* Refresh hw_cons to see if there's new work */
6287 		if (sw_rx_cons == hw_rx_cons)
6288 			hw_rx_cons = sc->hw_rx_cons = bce_get_hw_rx_cons(sc);
6289 	}
6290 
6291 #ifdef BCE_JUMBO_HDRSPLIT
6292 	/* No new packets.  Refill the page chain. */
6293 	sc->pg_cons = sw_pg_cons;
6294 	bce_fill_pg_chain(sc);
6295 #endif
6296 
6297 	/* No new packets.  Refill the RX chain. */
6298 	sc->rx_cons = sw_rx_cons;
6299 	bce_fill_rx_chain(sc);
6300 
6301 	/* Prepare the page chain pages to be accessed by the NIC. */
6302 	for (int i = 0; i < RX_PAGES; i++)
6303 		bus_dmamap_sync(sc->rx_bd_chain_tag,
6304 		    sc->rx_bd_chain_map[i], BUS_DMASYNC_PREWRITE);
6305 
6306 #ifdef BCE_JUMBO_HDRSPLIT
6307 	for (int i = 0; i < PG_PAGES; i++)
6308 		bus_dmamap_sync(sc->pg_bd_chain_tag,
6309 		    sc->pg_bd_chain_map[i], BUS_DMASYNC_PREWRITE);
6310 #endif
6311 
6312 	DBPRINT(sc, BCE_EXTREME_RECV, "%s(exit): rx_prod = 0x%04X, "
6313 	    "rx_cons = 0x%04X, rx_prod_bseq = 0x%08X\n",
6314 	    __FUNCTION__, sc->rx_prod, sc->rx_cons, sc->rx_prod_bseq);
6315 	DBEXIT(BCE_VERBOSE_RECV | BCE_VERBOSE_INTR);
6316 }
6317 
6318 
6319 /****************************************************************************/
6320 /* Reads the transmit consumer value from the status block (skipping over   */
6321 /* chain page pointer if necessary).                                        */
6322 /*                                                                          */
6323 /* Returns:                                                                 */
6324 /*   hw_cons                                                                */
6325 /****************************************************************************/
6326 static inline u16
6327 bce_get_hw_tx_cons(struct bce_softc *sc)
6328 {
6329 	u16 hw_cons;
6330 
6331 	mb();
6332 	hw_cons = sc->status_block->status_tx_quick_consumer_index0;
6333 	if ((hw_cons & USABLE_TX_BD_PER_PAGE) == USABLE_TX_BD_PER_PAGE)
6334 		hw_cons++;
6335 
6336 	return hw_cons;
6337 }
6338 
6339 
6340 /****************************************************************************/
6341 /* Handles transmit completion interrupt events.                            */
6342 /*                                                                          */
6343 /* Returns:                                                                 */
6344 /*   Nothing.                                                               */
6345 /****************************************************************************/
6346 static void
6347 bce_tx_intr(struct bce_softc *sc)
6348 {
6349 	struct ifnet *ifp = sc->bce_ifp;
6350 	u16 hw_tx_cons, sw_tx_cons, sw_tx_chain_cons;
6351 
6352 	DBENTER(BCE_VERBOSE_SEND | BCE_VERBOSE_INTR);
6353 	DBRUN(sc->interrupts_tx++);
6354 	DBPRINT(sc, BCE_EXTREME_SEND, "%s(enter): tx_prod = 0x%04X, "
6355 	    "tx_cons = 0x%04X, tx_prod_bseq = 0x%08X\n",
6356 	    __FUNCTION__, sc->tx_prod, sc->tx_cons, sc->tx_prod_bseq);
6357 
6358 	BCE_LOCK_ASSERT(sc);
6359 
6360 	/* Get the hardware's view of the TX consumer index. */
6361 	hw_tx_cons = sc->hw_tx_cons = bce_get_hw_tx_cons(sc);
6362 	sw_tx_cons = sc->tx_cons;
6363 
6364 	/* Prevent speculative reads of the status block. */
6365 	bus_space_barrier(sc->bce_btag, sc->bce_bhandle, 0, 0,
6366 	    BUS_SPACE_BARRIER_READ);
6367 
6368 	/* Cycle through any completed TX chain page entries. */
6369 	while (sw_tx_cons != hw_tx_cons) {
6370 #ifdef BCE_DEBUG
6371 		struct tx_bd *txbd = NULL;
6372 #endif
6373 		sw_tx_chain_cons = TX_CHAIN_IDX(sw_tx_cons);
6374 
6375 		DBPRINT(sc, BCE_INFO_SEND,
6376 		    "%s(): hw_tx_cons = 0x%04X, sw_tx_cons = 0x%04X, "
6377 		    "sw_tx_chain_cons = 0x%04X\n",
6378 		    __FUNCTION__, hw_tx_cons, sw_tx_cons, sw_tx_chain_cons);
6379 
6380 		DBRUNIF((sw_tx_chain_cons > MAX_TX_BD),
6381 		    BCE_PRINTF("%s(%d): TX chain consumer out of range! "
6382 		    " 0x%04X > 0x%04X\n", __FILE__, __LINE__, sw_tx_chain_cons,
6383 		    (int) MAX_TX_BD);
6384 		    bce_breakpoint(sc));
6385 
6386 		DBRUN(txbd = &sc->tx_bd_chain[TX_PAGE(sw_tx_chain_cons)]
6387 		    [TX_IDX(sw_tx_chain_cons)]);
6388 
6389 		DBRUNIF((txbd == NULL),
6390 		    BCE_PRINTF("%s(%d): Unexpected NULL tx_bd[0x%04X]!\n",
6391 		    __FILE__, __LINE__, sw_tx_chain_cons);
6392 		    bce_breakpoint(sc));
6393 
6394 		DBRUNMSG(BCE_INFO_SEND, BCE_PRINTF("%s(): ", __FUNCTION__);
6395 		    bce_dump_txbd(sc, sw_tx_chain_cons, txbd));
6396 
6397 		/*
6398 		 * Free the associated mbuf. Remember
6399 		 * that only the last tx_bd of a packet
6400 		 * has an mbuf pointer and DMA map.
6401 		 */
6402 		if (sc->tx_mbuf_ptr[sw_tx_chain_cons] != NULL) {
6403 
6404 			/* Validate that this is the last tx_bd. */
6405 			DBRUNIF((!(txbd->tx_bd_flags & TX_BD_FLAGS_END)),
6406 			    BCE_PRINTF("%s(%d): tx_bd END flag not set but "
6407 			    "txmbuf == NULL!\n", __FILE__, __LINE__);
6408 			    bce_breakpoint(sc));
6409 
6410 			DBRUNMSG(BCE_INFO_SEND,
6411 			    BCE_PRINTF("%s(): Unloading map/freeing mbuf "
6412 			    "from tx_bd[0x%04X]\n", __FUNCTION__,
6413 			    sw_tx_chain_cons));
6414 
6415 			/* Unmap the mbuf. */
6416 			bus_dmamap_unload(sc->tx_mbuf_tag,
6417 			    sc->tx_mbuf_map[sw_tx_chain_cons]);
6418 
6419 			/* Free the mbuf. */
6420 			m_freem(sc->tx_mbuf_ptr[sw_tx_chain_cons]);
6421 			sc->tx_mbuf_ptr[sw_tx_chain_cons] = NULL;
6422 			DBRUN(sc->debug_tx_mbuf_alloc--);
6423 
6424 			ifp->if_opackets++;
6425 		}
6426 
6427 		sc->used_tx_bd--;
6428 		sw_tx_cons = NEXT_TX_BD(sw_tx_cons);
6429 
6430 		/* Refresh hw_cons to see if there's new work. */
6431 		hw_tx_cons = sc->hw_tx_cons = bce_get_hw_tx_cons(sc);
6432 
6433 		/* Prevent speculative reads of the status block. */
6434 		bus_space_barrier(sc->bce_btag, sc->bce_bhandle, 0, 0,
6435 		    BUS_SPACE_BARRIER_READ);
6436 	}
6437 
6438 	/* Clear the TX timeout timer. */
6439 	sc->watchdog_timer = 0;
6440 
6441 	/* Clear the tx hardware queue full flag. */
6442 	if (sc->used_tx_bd < sc->max_tx_bd) {
6443 		DBRUNIF((ifp->if_drv_flags & IFF_DRV_OACTIVE),
6444 		    DBPRINT(sc, BCE_INFO_SEND,
6445 		    "%s(): Open TX chain! %d/%d (used/total)\n",
6446 		    __FUNCTION__, sc->used_tx_bd, sc->max_tx_bd));
6447 		ifp->if_drv_flags &= ~IFF_DRV_OACTIVE;
6448 	}
6449 
6450 	sc->tx_cons = sw_tx_cons;
6451 
6452 	DBPRINT(sc, BCE_EXTREME_SEND, "%s(exit): tx_prod = 0x%04X, "
6453 	    "tx_cons = 0x%04X, tx_prod_bseq = 0x%08X\n",
6454 	    __FUNCTION__, sc->tx_prod, sc->tx_cons, sc->tx_prod_bseq);
6455 	DBEXIT(BCE_VERBOSE_SEND | BCE_VERBOSE_INTR);
6456 }
6457 
6458 
6459 /****************************************************************************/
6460 /* Disables interrupt generation.                                           */
6461 /*                                                                          */
6462 /* Returns:                                                                 */
6463 /*   Nothing.                                                               */
6464 /****************************************************************************/
6465 static void
6466 bce_disable_intr(struct bce_softc *sc)
6467 {
6468 	DBENTER(BCE_VERBOSE_INTR);
6469 
6470 	REG_WR(sc, BCE_PCICFG_INT_ACK_CMD, BCE_PCICFG_INT_ACK_CMD_MASK_INT);
6471 	REG_RD(sc, BCE_PCICFG_INT_ACK_CMD);
6472 
6473 	DBEXIT(BCE_VERBOSE_INTR);
6474 }
6475 
6476 
6477 /****************************************************************************/
6478 /* Enables interrupt generation.                                            */
6479 /*                                                                          */
6480 /* Returns:                                                                 */
6481 /*   Nothing.                                                               */
6482 /****************************************************************************/
6483 static void
6484 bce_enable_intr(struct bce_softc *sc, int coal_now)
6485 {
6486 	DBENTER(BCE_VERBOSE_INTR);
6487 
6488 	REG_WR(sc, BCE_PCICFG_INT_ACK_CMD,
6489 	    BCE_PCICFG_INT_ACK_CMD_INDEX_VALID |
6490 	    BCE_PCICFG_INT_ACK_CMD_MASK_INT | sc->last_status_idx);
6491 
6492 	REG_WR(sc, BCE_PCICFG_INT_ACK_CMD,
6493 	    BCE_PCICFG_INT_ACK_CMD_INDEX_VALID | sc->last_status_idx);
6494 
6495 	/* Force an immediate interrupt (whether there is new data or not). */
6496 	if (coal_now)
6497 		REG_WR(sc, BCE_HC_COMMAND, sc->hc_command | BCE_HC_COMMAND_COAL_NOW);
6498 
6499 	DBEXIT(BCE_VERBOSE_INTR);
6500 }
6501 
6502 
6503 /****************************************************************************/
6504 /* Handles controller initialization.                                       */
6505 /*                                                                          */
6506 /* Returns:                                                                 */
6507 /*   Nothing.                                                               */
6508 /****************************************************************************/
6509 static void
6510 bce_init_locked(struct bce_softc *sc)
6511 {
6512 	struct ifnet *ifp;
6513 	u32 ether_mtu = 0;
6514 
6515 	DBENTER(BCE_VERBOSE_RESET);
6516 
6517 	BCE_LOCK_ASSERT(sc);
6518 
6519 	ifp = sc->bce_ifp;
6520 
6521 	/* Check if the driver is still running and bail out if it is. */
6522 	if (ifp->if_drv_flags & IFF_DRV_RUNNING)
6523 		goto bce_init_locked_exit;
6524 
6525 	bce_stop(sc);
6526 
6527 	if (bce_reset(sc, BCE_DRV_MSG_CODE_RESET)) {
6528 		BCE_PRINTF("%s(%d): Controller reset failed!\n",
6529 		    __FILE__, __LINE__);
6530 		goto bce_init_locked_exit;
6531 	}
6532 
6533 	if (bce_chipinit(sc)) {
6534 		BCE_PRINTF("%s(%d): Controller initialization failed!\n",
6535 		    __FILE__, __LINE__);
6536 		goto bce_init_locked_exit;
6537 	}
6538 
6539 	if (bce_blockinit(sc)) {
6540 		BCE_PRINTF("%s(%d): Block initialization failed!\n",
6541 		    __FILE__, __LINE__);
6542 		goto bce_init_locked_exit;
6543 	}
6544 
6545 	/* Load our MAC address. */
6546 	bcopy(IF_LLADDR(sc->bce_ifp), sc->eaddr, ETHER_ADDR_LEN);
6547 	bce_set_mac_addr(sc);
6548 
6549 	/*
6550 	 * Calculate and program the hardware Ethernet MTU
6551 	 * size. Be generous on the receive if we have room.
6552 	 */
6553 #ifdef BCE_JUMBO_HDRSPLIT
6554 	if (ifp->if_mtu <= (sc->rx_bd_mbuf_data_len +
6555 	    sc->pg_bd_mbuf_alloc_size))
6556 		ether_mtu = sc->rx_bd_mbuf_data_len +
6557 		    sc->pg_bd_mbuf_alloc_size;
6558 #else
6559 	if (ifp->if_mtu <= sc->rx_bd_mbuf_data_len)
6560 		ether_mtu = sc->rx_bd_mbuf_data_len;
6561 #endif
6562 	else
6563 		ether_mtu = ifp->if_mtu;
6564 
6565 	ether_mtu += ETHER_HDR_LEN + ETHER_VLAN_ENCAP_LEN + ETHER_CRC_LEN;
6566 
6567 	DBPRINT(sc, BCE_INFO_MISC, "%s(): setting h/w mtu = %d\n",
6568 	    __FUNCTION__, ether_mtu);
6569 
6570 	/* Program the mtu, enabling jumbo frame support if necessary. */
6571 	if (ether_mtu > (ETHER_MAX_LEN + ETHER_VLAN_ENCAP_LEN))
6572 		REG_WR(sc, BCE_EMAC_RX_MTU_SIZE,
6573 		    min(ether_mtu, BCE_MAX_JUMBO_ETHER_MTU) |
6574 		    BCE_EMAC_RX_MTU_SIZE_JUMBO_ENA);
6575 	else
6576 		REG_WR(sc, BCE_EMAC_RX_MTU_SIZE, ether_mtu);
6577 
6578 	DBPRINT(sc, BCE_INFO_LOAD,
6579 	    "%s(): rx_bd_mbuf_alloc_size = %d, rx_bce_mbuf_data_len = %d, "
6580 	    "rx_bd_mbuf_align_pad = %d\n", __FUNCTION__,
6581 	    sc->rx_bd_mbuf_alloc_size, sc->rx_bd_mbuf_data_len,
6582 	    sc->rx_bd_mbuf_align_pad);
6583 
6584 	/* Program appropriate promiscuous/multicast filtering. */
6585 	bce_set_rx_mode(sc);
6586 
6587 #ifdef BCE_JUMBO_HDRSPLIT
6588 	DBPRINT(sc, BCE_INFO_LOAD, "%s(): pg_bd_mbuf_alloc_size = %d\n",
6589 	    __FUNCTION__, sc->pg_bd_mbuf_alloc_size);
6590 
6591 	/* Init page buffer descriptor chain. */
6592 	bce_init_pg_chain(sc);
6593 #endif
6594 
6595 	/* Init RX buffer descriptor chain. */
6596 	bce_init_rx_chain(sc);
6597 
6598 	/* Init TX buffer descriptor chain. */
6599 	bce_init_tx_chain(sc);
6600 
6601 	/* Enable host interrupts. */
6602 	bce_enable_intr(sc, 1);
6603 
6604 	bce_ifmedia_upd_locked(ifp);
6605 
6606 	/* Let the OS know the driver is up and running. */
6607 	ifp->if_drv_flags |= IFF_DRV_RUNNING;
6608 	ifp->if_drv_flags &= ~IFF_DRV_OACTIVE;
6609 
6610 	callout_reset(&sc->bce_tick_callout, hz, bce_tick, sc);
6611 
6612 bce_init_locked_exit:
6613 	DBEXIT(BCE_VERBOSE_RESET);
6614 }
6615 
6616 
6617 /****************************************************************************/
6618 /* Initialize the controller just enough so that any management firmware    */
6619 /* running on the device will continue to operate correctly.                */
6620 /*                                                                          */
6621 /* Returns:                                                                 */
6622 /*   Nothing.                                                               */
6623 /****************************************************************************/
6624 static void
6625 bce_mgmt_init_locked(struct bce_softc *sc)
6626 {
6627 	struct ifnet *ifp;
6628 
6629 	DBENTER(BCE_VERBOSE_RESET);
6630 
6631 	BCE_LOCK_ASSERT(sc);
6632 
6633 	/* Bail out if management firmware is not running. */
6634 	if (!(sc->bce_flags & BCE_MFW_ENABLE_FLAG)) {
6635 		DBPRINT(sc, BCE_VERBOSE_SPECIAL,
6636 		    "No management firmware running...\n");
6637 		goto bce_mgmt_init_locked_exit;
6638 	}
6639 
6640 	ifp = sc->bce_ifp;
6641 
6642 	/* Enable all critical blocks in the MAC. */
6643 	REG_WR(sc, BCE_MISC_ENABLE_SET_BITS, BCE_MISC_ENABLE_DEFAULT);
6644 	REG_RD(sc, BCE_MISC_ENABLE_SET_BITS);
6645 	DELAY(20);
6646 
6647 	bce_ifmedia_upd_locked(ifp);
6648 
6649 bce_mgmt_init_locked_exit:
6650 	DBEXIT(BCE_VERBOSE_RESET);
6651 }
6652 
6653 
6654 /****************************************************************************/
6655 /* Handles controller initialization when called from an unlocked routine.  */
6656 /*                                                                          */
6657 /* Returns:                                                                 */
6658 /*   Nothing.                                                               */
6659 /****************************************************************************/
6660 static void
6661 bce_init(void *xsc)
6662 {
6663 	struct bce_softc *sc = xsc;
6664 
6665 	DBENTER(BCE_VERBOSE_RESET);
6666 
6667 	BCE_LOCK(sc);
6668 	bce_init_locked(sc);
6669 	BCE_UNLOCK(sc);
6670 
6671 	DBEXIT(BCE_VERBOSE_RESET);
6672 }
6673 
6674 
6675 /****************************************************************************/
6676 /* Modifies an mbuf for TSO on the hardware.                                */
6677 /*                                                                          */
6678 /* Returns:                                                                 */
6679 /*   Pointer to a modified mbuf.                                            */
6680 /****************************************************************************/
6681 static struct mbuf *
6682 bce_tso_setup(struct bce_softc *sc, struct mbuf **m_head, u16 *flags)
6683 {
6684 	struct mbuf *m;
6685 	struct ether_header *eh;
6686 	struct ip *ip;
6687 	struct tcphdr *th;
6688 	u16 etype;
6689 	int hdr_len, ip_hlen = 0, tcp_hlen = 0, ip_len = 0;
6690 
6691 	DBRUN(sc->tso_frames_requested++);
6692 
6693 	/* Controller may modify mbuf chains. */
6694 	if (M_WRITABLE(*m_head) == 0) {
6695 		m = m_dup(*m_head, M_DONTWAIT);
6696 		m_freem(*m_head);
6697 		if (m == NULL) {
6698 			sc->mbuf_alloc_failed_count++;
6699 			*m_head = NULL;
6700 			return (NULL);
6701 		}
6702 		*m_head = m;
6703 	}
6704 
6705 	/*
6706 	 * For TSO the controller needs two pieces of info,
6707 	 * the MSS and the IP+TCP options length.
6708 	 */
6709 	m = m_pullup(*m_head, sizeof(struct ether_header) + sizeof(struct ip));
6710 	if (m == NULL) {
6711 		*m_head = NULL;
6712 		return (NULL);
6713 	}
6714 	eh = mtod(m, struct ether_header *);
6715 	etype = ntohs(eh->ether_type);
6716 
6717 	/* Check for supported TSO Ethernet types (only IPv4 for now) */
6718 	switch (etype) {
6719 	case ETHERTYPE_IP:
6720 		ip = (struct ip *)(m->m_data + sizeof(struct ether_header));
6721 		/* TSO only supported for TCP protocol. */
6722 		if (ip->ip_p != IPPROTO_TCP) {
6723 			BCE_PRINTF("%s(%d): TSO enabled for non-TCP frame!.\n",
6724 			    __FILE__, __LINE__);
6725 			m_freem(*m_head);
6726 			*m_head = NULL;
6727 			return (NULL);
6728 		}
6729 
6730 		/* Get IP header length in bytes (min 20) */
6731 		ip_hlen = ip->ip_hl << 2;
6732 		m = m_pullup(*m_head, sizeof(struct ether_header) + ip_hlen +
6733 		    sizeof(struct tcphdr));
6734 		if (m == NULL) {
6735 			*m_head = NULL;
6736 			return (NULL);
6737 		}
6738 
6739 		/* Get the TCP header length in bytes (min 20) */
6740 		ip = (struct ip *)(m->m_data + sizeof(struct ether_header));
6741 		th = (struct tcphdr *)((caddr_t)ip + ip_hlen);
6742 		tcp_hlen = (th->th_off << 2);
6743 
6744 		/* Make sure all IP/TCP options live in the same buffer. */
6745 		m = m_pullup(*m_head,  sizeof(struct ether_header)+ ip_hlen +
6746 		    tcp_hlen);
6747 		if (m == NULL) {
6748 			*m_head = NULL;
6749 			return (NULL);
6750 		}
6751 
6752 		/* IP header length and checksum will be calc'd by hardware */
6753 		ip = (struct ip *)(m->m_data + sizeof(struct ether_header));
6754 		ip_len = ip->ip_len;
6755 		ip->ip_len = 0;
6756 		ip->ip_sum = 0;
6757 		break;
6758 	case ETHERTYPE_IPV6:
6759 		BCE_PRINTF("%s(%d): TSO over IPv6 not supported!.\n",
6760 		    __FILE__, __LINE__);
6761 		m_freem(*m_head);
6762 		*m_head = NULL;
6763 		return (NULL);
6764 		/* NOT REACHED */
6765 	default:
6766 		BCE_PRINTF("%s(%d): TSO enabled for unsupported protocol!.\n",
6767 		    __FILE__, __LINE__);
6768 		m_freem(*m_head);
6769 		*m_head = NULL;
6770 		return (NULL);
6771 	}
6772 
6773 	hdr_len = sizeof(struct ether_header) + ip_hlen + tcp_hlen;
6774 
6775 	DBPRINT(sc, BCE_EXTREME_SEND, "%s(): hdr_len = %d, e_hlen = %d, "
6776 	    "ip_hlen = %d, tcp_hlen = %d, ip_len = %d\n",
6777 	    __FUNCTION__, hdr_len, (int) sizeof(struct ether_header), ip_hlen,
6778 	    tcp_hlen, ip_len);
6779 
6780 	/* Set the LSO flag in the TX BD */
6781 	*flags |= TX_BD_FLAGS_SW_LSO;
6782 
6783 	/* Set the length of IP + TCP options (in 32 bit words) */
6784 	*flags |= (((ip_hlen + tcp_hlen - sizeof(struct ip) -
6785 	    sizeof(struct tcphdr)) >> 2) << 8);
6786 
6787 	DBRUN(sc->tso_frames_completed++);
6788 	return (*m_head);
6789 }
6790 
6791 
6792 /****************************************************************************/
6793 /* Encapsultes an mbuf cluster into the tx_bd chain structure and makes the */
6794 /* memory visible to the controller.                                        */
6795 /*                                                                          */
6796 /* Returns:                                                                 */
6797 /*   0 for success, positive value for failure.                             */
6798 /* Modified:                                                                */
6799 /*   m_head: May be set to NULL if MBUF is excessively fragmented.          */
6800 /****************************************************************************/
6801 static int
6802 bce_tx_encap(struct bce_softc *sc, struct mbuf **m_head)
6803 {
6804 	bus_dma_segment_t segs[BCE_MAX_SEGMENTS];
6805 	bus_dmamap_t map;
6806 	struct tx_bd *txbd = NULL;
6807 	struct mbuf *m0;
6808 	u16 prod, chain_prod, mss = 0, vlan_tag = 0, flags = 0;
6809 	u32 prod_bseq;
6810 
6811 #ifdef BCE_DEBUG
6812 	u16 debug_prod;
6813 #endif
6814 
6815 	int i, error, nsegs, rc = 0;
6816 
6817 	DBENTER(BCE_VERBOSE_SEND);
6818 
6819 	/* Make sure we have room in the TX chain. */
6820 	if (sc->used_tx_bd >= sc->max_tx_bd)
6821 		goto bce_tx_encap_exit;
6822 
6823 	/* Transfer any checksum offload flags to the bd. */
6824 	m0 = *m_head;
6825 	if (m0->m_pkthdr.csum_flags) {
6826 		if (m0->m_pkthdr.csum_flags & CSUM_TSO) {
6827 			m0 = bce_tso_setup(sc, m_head, &flags);
6828 			if (m0 == NULL) {
6829 				DBRUN(sc->tso_frames_failed++);
6830 				goto bce_tx_encap_exit;
6831 			}
6832 			mss = htole16(m0->m_pkthdr.tso_segsz);
6833 		} else {
6834 			if (m0->m_pkthdr.csum_flags & CSUM_IP)
6835 				flags |= TX_BD_FLAGS_IP_CKSUM;
6836 			if (m0->m_pkthdr.csum_flags & (CSUM_TCP | CSUM_UDP))
6837 				flags |= TX_BD_FLAGS_TCP_UDP_CKSUM;
6838 		}
6839 	}
6840 
6841 	/* Transfer any VLAN tags to the bd. */
6842 	if (m0->m_flags & M_VLANTAG) {
6843 		flags |= TX_BD_FLAGS_VLAN_TAG;
6844 		vlan_tag = m0->m_pkthdr.ether_vtag;
6845 	}
6846 
6847 	/* Map the mbuf into DMAable memory. */
6848 	prod = sc->tx_prod;
6849 	chain_prod = TX_CHAIN_IDX(prod);
6850 	map = sc->tx_mbuf_map[chain_prod];
6851 
6852 	/* Map the mbuf into our DMA address space. */
6853 	error = bus_dmamap_load_mbuf_sg(sc->tx_mbuf_tag, map, m0,
6854 	    segs, &nsegs, BUS_DMA_NOWAIT);
6855 
6856 	/* Check if the DMA mapping was successful */
6857 	if (error == EFBIG) {
6858 		sc->mbuf_frag_count++;
6859 
6860 		/* Try to defrag the mbuf. */
6861 		m0 = m_collapse(*m_head, M_DONTWAIT, BCE_MAX_SEGMENTS);
6862 		if (m0 == NULL) {
6863 			/* Defrag was unsuccessful */
6864 			m_freem(*m_head);
6865 			*m_head = NULL;
6866 			sc->mbuf_alloc_failed_count++;
6867 			rc = ENOBUFS;
6868 			goto bce_tx_encap_exit;
6869 		}
6870 
6871 		/* Defrag was successful, try mapping again */
6872 		*m_head = m0;
6873 		error = bus_dmamap_load_mbuf_sg(sc->tx_mbuf_tag,
6874 		    map, m0, segs, &nsegs, BUS_DMA_NOWAIT);
6875 
6876 		/* Still getting an error after a defrag. */
6877 		if (error == ENOMEM) {
6878 			/* Insufficient DMA buffers available. */
6879 			sc->dma_map_addr_tx_failed_count++;
6880 			rc = error;
6881 			goto bce_tx_encap_exit;
6882 		} else if (error != 0) {
6883 			/* Release it and return an error. */
6884 			BCE_PRINTF("%s(%d): Unknown error mapping mbuf into "
6885 			    "TX chain!\n", __FILE__, __LINE__);
6886 			m_freem(m0);
6887 			*m_head = NULL;
6888 			sc->dma_map_addr_tx_failed_count++;
6889 			rc = ENOBUFS;
6890 			goto bce_tx_encap_exit;
6891 		}
6892 	} else if (error == ENOMEM) {
6893 		/* Insufficient DMA buffers available. */
6894 		sc->dma_map_addr_tx_failed_count++;
6895 		rc = error;
6896 		goto bce_tx_encap_exit;
6897 	} else if (error != 0) {
6898 		m_freem(m0);
6899 		*m_head = NULL;
6900 		sc->dma_map_addr_tx_failed_count++;
6901 		rc = error;
6902 		goto bce_tx_encap_exit;
6903 	}
6904 
6905 	/* Make sure there's room in the chain */
6906 	if (nsegs > (sc->max_tx_bd - sc->used_tx_bd)) {
6907 		bus_dmamap_unload(sc->tx_mbuf_tag, map);
6908 		rc = ENOBUFS;
6909 		goto bce_tx_encap_exit;
6910 	}
6911 
6912 	/* prod points to an empty tx_bd at this point. */
6913 	prod_bseq  = sc->tx_prod_bseq;
6914 
6915 #ifdef BCE_DEBUG
6916 	debug_prod = chain_prod;
6917 #endif
6918 
6919 	DBPRINT(sc, BCE_INFO_SEND,
6920 	    "%s(start): prod = 0x%04X, chain_prod = 0x%04X, "
6921 	    "prod_bseq = 0x%08X\n",
6922 	    __FUNCTION__, prod, chain_prod, prod_bseq);
6923 
6924 	/*
6925 	 * Cycle through each mbuf segment that makes up
6926 	 * the outgoing frame, gathering the mapping info
6927 	 * for that segment and creating a tx_bd for
6928 	 * the mbuf.
6929 	 */
6930 	for (i = 0; i < nsegs ; i++) {
6931 
6932 		chain_prod = TX_CHAIN_IDX(prod);
6933 		txbd= &sc->tx_bd_chain[TX_PAGE(chain_prod)]
6934 		    [TX_IDX(chain_prod)];
6935 
6936 		txbd->tx_bd_haddr_lo =
6937 		    htole32(BCE_ADDR_LO(segs[i].ds_addr));
6938 		txbd->tx_bd_haddr_hi =
6939 		    htole32(BCE_ADDR_HI(segs[i].ds_addr));
6940 		txbd->tx_bd_mss_nbytes = htole32(mss << 16) |
6941 		    htole16(segs[i].ds_len);
6942 		txbd->tx_bd_vlan_tag = htole16(vlan_tag);
6943 		txbd->tx_bd_flags = htole16(flags);
6944 		prod_bseq += segs[i].ds_len;
6945 		if (i == 0)
6946 			txbd->tx_bd_flags |= htole16(TX_BD_FLAGS_START);
6947 		prod = NEXT_TX_BD(prod);
6948 	}
6949 
6950 	/* Set the END flag on the last TX buffer descriptor. */
6951 	txbd->tx_bd_flags |= htole16(TX_BD_FLAGS_END);
6952 
6953 	DBRUNMSG(BCE_EXTREME_SEND,
6954 	    bce_dump_tx_chain(sc, debug_prod, nsegs));
6955 
6956 	/*
6957 	 * Ensure that the mbuf pointer for this transmission
6958 	 * is placed at the array index of the last
6959 	 * descriptor in this chain.  This is done
6960 	 * because a single map is used for all
6961 	 * segments of the mbuf and we don't want to
6962 	 * unload the map before all of the segments
6963 	 * have been freed.
6964 	 */
6965 	sc->tx_mbuf_ptr[chain_prod] = m0;
6966 	sc->used_tx_bd += nsegs;
6967 
6968 	/* Update some debug statistic counters */
6969 	DBRUNIF((sc->used_tx_bd > sc->tx_hi_watermark),
6970 	    sc->tx_hi_watermark = sc->used_tx_bd);
6971 	DBRUNIF((sc->used_tx_bd == sc->max_tx_bd), sc->tx_full_count++);
6972 	DBRUNIF(sc->debug_tx_mbuf_alloc++);
6973 
6974 	DBRUNMSG(BCE_EXTREME_SEND, bce_dump_tx_mbuf_chain(sc, chain_prod, 1));
6975 
6976 	/* prod points to the next free tx_bd at this point. */
6977 	sc->tx_prod = prod;
6978 	sc->tx_prod_bseq = prod_bseq;
6979 
6980 	/* Tell the chip about the waiting TX frames. */
6981 	REG_WR16(sc, MB_GET_CID_ADDR(TX_CID) +
6982 	    BCE_L2MQ_TX_HOST_BIDX, sc->tx_prod);
6983 	REG_WR(sc, MB_GET_CID_ADDR(TX_CID) +
6984 	    BCE_L2MQ_TX_HOST_BSEQ, sc->tx_prod_bseq);
6985 
6986 bce_tx_encap_exit:
6987 	DBEXIT(BCE_VERBOSE_SEND);
6988 	return(rc);
6989 }
6990 
6991 
6992 /****************************************************************************/
6993 /* Main transmit routine when called from another routine with a lock.      */
6994 /*                                                                          */
6995 /* Returns:                                                                 */
6996 /*   Nothing.                                                               */
6997 /****************************************************************************/
6998 static void
6999 bce_start_locked(struct ifnet *ifp)
7000 {
7001 	struct bce_softc *sc = ifp->if_softc;
7002 	struct mbuf *m_head = NULL;
7003 	int count = 0;
7004 	u16 tx_prod, tx_chain_prod;
7005 
7006 	DBENTER(BCE_VERBOSE_SEND | BCE_VERBOSE_CTX);
7007 
7008 	BCE_LOCK_ASSERT(sc);
7009 
7010 	/* prod points to the next free tx_bd. */
7011 	tx_prod = sc->tx_prod;
7012 	tx_chain_prod = TX_CHAIN_IDX(tx_prod);
7013 
7014 	DBPRINT(sc, BCE_INFO_SEND,
7015 	    "%s(enter): tx_prod = 0x%04X, tx_chain_prod = 0x%04X, "
7016 	    "tx_prod_bseq = 0x%08X\n",
7017 	    __FUNCTION__, tx_prod, tx_chain_prod, sc->tx_prod_bseq);
7018 
7019 	/* If there's no link or the transmit queue is empty then just exit. */
7020 	if (sc->bce_link_up == FALSE) {
7021 		DBPRINT(sc, BCE_INFO_SEND, "%s(): No link.\n",
7022 		    __FUNCTION__);
7023 		goto bce_start_locked_exit;
7024 	}
7025 
7026 	if (IFQ_DRV_IS_EMPTY(&ifp->if_snd)) {
7027 		DBPRINT(sc, BCE_INFO_SEND, "%s(): Transmit queue empty.\n",
7028 		    __FUNCTION__);
7029 		goto bce_start_locked_exit;
7030 	}
7031 
7032 	/*
7033 	 * Keep adding entries while there is space in the ring.
7034 	 */
7035 	while (sc->used_tx_bd < sc->max_tx_bd) {
7036 
7037 		/* Check for any frames to send. */
7038 		IFQ_DRV_DEQUEUE(&ifp->if_snd, m_head);
7039 
7040 		/* Stop when the transmit queue is empty. */
7041 		if (m_head == NULL)
7042 			break;
7043 
7044 		/*
7045 		 * Pack the data into the transmit ring. If we
7046 		 * don't have room, place the mbuf back at the
7047 		 * head of the queue and set the OACTIVE flag
7048 		 * to wait for the NIC to drain the chain.
7049 		 */
7050 		if (bce_tx_encap(sc, &m_head)) {
7051 			if (m_head != NULL)
7052 				IFQ_DRV_PREPEND(&ifp->if_snd, m_head);
7053 			ifp->if_drv_flags |= IFF_DRV_OACTIVE;
7054 			DBPRINT(sc, BCE_INFO_SEND,
7055 			    "TX chain is closed for business! Total "
7056 			    "tx_bd used = %d\n", sc->used_tx_bd);
7057 			break;
7058 		}
7059 
7060 		count++;
7061 
7062 		/* Send a copy of the frame to any BPF listeners. */
7063 		ETHER_BPF_MTAP(ifp, m_head);
7064 	}
7065 
7066 	/* Exit if no packets were dequeued. */
7067 	if (count == 0) {
7068 		DBPRINT(sc, BCE_VERBOSE_SEND, "%s(): No packets were "
7069 		    "dequeued\n", __FUNCTION__);
7070 		goto bce_start_locked_exit;
7071 	}
7072 
7073 	DBPRINT(sc, BCE_VERBOSE_SEND, "%s(): Inserted %d frames into "
7074 	    "send queue.\n", __FUNCTION__, count);
7075 
7076 	/* Set the tx timeout. */
7077 	sc->watchdog_timer = BCE_TX_TIMEOUT;
7078 
7079 	DBRUNMSG(BCE_VERBOSE_SEND, bce_dump_ctx(sc, TX_CID));
7080 	DBRUNMSG(BCE_VERBOSE_SEND, bce_dump_mq_regs(sc));
7081 
7082 bce_start_locked_exit:
7083 	DBEXIT(BCE_VERBOSE_SEND | BCE_VERBOSE_CTX);
7084 	return;
7085 }
7086 
7087 
7088 /****************************************************************************/
7089 /* Main transmit routine when called from another routine without a lock.   */
7090 /*                                                                          */
7091 /* Returns:                                                                 */
7092 /*   Nothing.                                                               */
7093 /****************************************************************************/
7094 static void
7095 bce_start(struct ifnet *ifp)
7096 {
7097 	struct bce_softc *sc = ifp->if_softc;
7098 
7099 	DBENTER(BCE_VERBOSE_SEND);
7100 
7101 	BCE_LOCK(sc);
7102 	bce_start_locked(ifp);
7103 	BCE_UNLOCK(sc);
7104 
7105 	DBEXIT(BCE_VERBOSE_SEND);
7106 }
7107 
7108 
7109 /****************************************************************************/
7110 /* Handles any IOCTL calls from the operating system.                       */
7111 /*                                                                          */
7112 /* Returns:                                                                 */
7113 /*   0 for success, positive value for failure.                             */
7114 /****************************************************************************/
7115 static int
7116 bce_ioctl(struct ifnet *ifp, u_long command, caddr_t data)
7117 {
7118 	struct bce_softc *sc = ifp->if_softc;
7119 	struct ifreq *ifr = (struct ifreq *) data;
7120 	struct mii_data *mii;
7121 	int mask, error = 0, reinit;
7122 
7123 	DBENTER(BCE_VERBOSE_MISC);
7124 
7125 	switch(command) {
7126 
7127 	/* Set the interface MTU. */
7128 	case SIOCSIFMTU:
7129 		/* Check that the MTU setting is supported. */
7130 		if ((ifr->ifr_mtu < BCE_MIN_MTU) ||
7131 			(ifr->ifr_mtu > BCE_MAX_JUMBO_MTU)) {
7132 			error = EINVAL;
7133 			break;
7134 		}
7135 
7136 		DBPRINT(sc, BCE_INFO_MISC,
7137 		    "SIOCSIFMTU: Changing MTU from %d to %d\n",
7138 		    (int) ifp->if_mtu, (int) ifr->ifr_mtu);
7139 
7140 		BCE_LOCK(sc);
7141 		ifp->if_mtu = ifr->ifr_mtu;
7142 		reinit = 0;
7143 		if (ifp->if_drv_flags & IFF_DRV_RUNNING) {
7144 			/*
7145 			 * Because allocation size is used in RX
7146 			 * buffer allocation, stop controller if
7147 			 * it is already running.
7148 			 */
7149 			bce_stop(sc);
7150 			reinit = 1;
7151 		}
7152 #ifdef BCE_JUMBO_HDRSPLIT
7153 		/* No buffer allocation size changes are necessary. */
7154 #else
7155 		/* Recalculate our buffer allocation sizes. */
7156 		if ((ifp->if_mtu + ETHER_HDR_LEN + ETHER_VLAN_ENCAP_LEN +
7157 		     ETHER_CRC_LEN) > MCLBYTES) {
7158 			sc->rx_bd_mbuf_alloc_size = MJUM9BYTES;
7159 			sc->rx_bd_mbuf_align_pad  =
7160 			    roundup2(MJUM9BYTES, 16) - MJUM9BYTES;
7161 			sc->rx_bd_mbuf_data_len =
7162 			    sc->rx_bd_mbuf_alloc_size -
7163 			    sc->rx_bd_mbuf_align_pad;
7164 		} else {
7165 			sc->rx_bd_mbuf_alloc_size = MCLBYTES;
7166 			sc->rx_bd_mbuf_align_pad  =
7167 			    roundup2(MCLBYTES, 16) - MCLBYTES;
7168 			sc->rx_bd_mbuf_data_len =
7169 			    sc->rx_bd_mbuf_alloc_size -
7170 			    sc->rx_bd_mbuf_align_pad;
7171 		}
7172 #endif
7173 
7174 		if (reinit != 0)
7175 			bce_init_locked(sc);
7176 		BCE_UNLOCK(sc);
7177 		break;
7178 
7179 	/* Set interface flags. */
7180 	case SIOCSIFFLAGS:
7181 		DBPRINT(sc, BCE_VERBOSE_SPECIAL, "Received SIOCSIFFLAGS\n");
7182 
7183 		BCE_LOCK(sc);
7184 
7185 		/* Check if the interface is up. */
7186 		if (ifp->if_flags & IFF_UP) {
7187 			if (ifp->if_drv_flags & IFF_DRV_RUNNING) {
7188 				/* Change promiscuous/multicast flags as necessary. */
7189 				bce_set_rx_mode(sc);
7190 			} else {
7191 				/* Start the HW */
7192 				bce_init_locked(sc);
7193 			}
7194 		} else {
7195 			/* The interface is down, check if driver is running. */
7196 			if (ifp->if_drv_flags & IFF_DRV_RUNNING) {
7197 				bce_stop(sc);
7198 
7199 				/* If MFW is running, restart the controller a bit. */
7200 				if (sc->bce_flags & BCE_MFW_ENABLE_FLAG) {
7201 					bce_reset(sc, BCE_DRV_MSG_CODE_RESET);
7202 					bce_chipinit(sc);
7203 					bce_mgmt_init_locked(sc);
7204 				}
7205 			}
7206 		}
7207 
7208 		BCE_UNLOCK(sc);
7209 		break;
7210 
7211 	/* Add/Delete multicast address */
7212 	case SIOCADDMULTI:
7213 	case SIOCDELMULTI:
7214 		DBPRINT(sc, BCE_VERBOSE_MISC,
7215 		    "Received SIOCADDMULTI/SIOCDELMULTI\n");
7216 
7217 		BCE_LOCK(sc);
7218 		if (ifp->if_drv_flags & IFF_DRV_RUNNING)
7219 			bce_set_rx_mode(sc);
7220 		BCE_UNLOCK(sc);
7221 
7222 		break;
7223 
7224 	/* Set/Get Interface media */
7225 	case SIOCSIFMEDIA:
7226 	case SIOCGIFMEDIA:
7227 		DBPRINT(sc, BCE_VERBOSE_MISC,
7228 		    "Received SIOCSIFMEDIA/SIOCGIFMEDIA\n");
7229 
7230 		mii = device_get_softc(sc->bce_miibus);
7231 		error = ifmedia_ioctl(ifp, ifr,
7232 		    &mii->mii_media, command);
7233 		break;
7234 
7235 	/* Set interface capability */
7236 	case SIOCSIFCAP:
7237 		mask = ifr->ifr_reqcap ^ ifp->if_capenable;
7238 		DBPRINT(sc, BCE_INFO_MISC,
7239 		    "Received SIOCSIFCAP = 0x%08X\n", (u32) mask);
7240 
7241 		/* Toggle the TX checksum capabilities enable flag. */
7242 		if (mask & IFCAP_TXCSUM &&
7243 		    ifp->if_capabilities & IFCAP_TXCSUM) {
7244 			ifp->if_capenable ^= IFCAP_TXCSUM;
7245 			if (IFCAP_TXCSUM & ifp->if_capenable)
7246 				ifp->if_hwassist |= BCE_IF_HWASSIST;
7247 			else
7248 				ifp->if_hwassist &= ~BCE_IF_HWASSIST;
7249 		}
7250 
7251 		/* Toggle the RX checksum capabilities enable flag. */
7252 		if (mask & IFCAP_RXCSUM &&
7253 		    ifp->if_capabilities & IFCAP_RXCSUM)
7254 			ifp->if_capenable ^= IFCAP_RXCSUM;
7255 
7256 		/* Toggle the TSO capabilities enable flag. */
7257 		if (bce_tso_enable && (mask & IFCAP_TSO4) &&
7258 		    ifp->if_capabilities & IFCAP_TSO4) {
7259 			ifp->if_capenable ^= IFCAP_TSO4;
7260 			if (IFCAP_TSO4 & ifp->if_capenable)
7261 				ifp->if_hwassist |= CSUM_TSO;
7262 			else
7263 				ifp->if_hwassist &= ~CSUM_TSO;
7264 		}
7265 
7266 		if (mask & IFCAP_VLAN_HWCSUM &&
7267 		    ifp->if_capabilities & IFCAP_VLAN_HWCSUM)
7268 			ifp->if_capenable ^= IFCAP_VLAN_HWCSUM;
7269 
7270 		if ((mask & IFCAP_VLAN_HWTSO) != 0 &&
7271 		    (ifp->if_capabilities & IFCAP_VLAN_HWTSO) != 0)
7272 			ifp->if_capenable ^= IFCAP_VLAN_HWTSO;
7273 		/*
7274 		 * Don't actually disable VLAN tag stripping as
7275 		 * management firmware (ASF/IPMI/UMP) requires the
7276 		 * feature. If VLAN tag stripping is disabled driver
7277 		 * will manually reconstruct the VLAN frame by
7278 		 * appending stripped VLAN tag.
7279 		 */
7280 		if ((mask & IFCAP_VLAN_HWTAGGING) != 0 &&
7281 		    (ifp->if_capabilities & IFCAP_VLAN_HWTAGGING)) {
7282 			ifp->if_capenable ^= IFCAP_VLAN_HWTAGGING;
7283 			if ((ifp->if_capenable & IFCAP_VLAN_HWTAGGING)
7284 			    == 0)
7285 				ifp->if_capenable &= ~IFCAP_VLAN_HWTSO;
7286 		}
7287 		VLAN_CAPABILITIES(ifp);
7288 		break;
7289 	default:
7290 		/* We don't know how to handle the IOCTL, pass it on. */
7291 		error = ether_ioctl(ifp, command, data);
7292 		break;
7293 	}
7294 
7295 	DBEXIT(BCE_VERBOSE_MISC);
7296 	return(error);
7297 }
7298 
7299 
7300 /****************************************************************************/
7301 /* Transmit timeout handler.                                                */
7302 /*                                                                          */
7303 /* Returns:                                                                 */
7304 /*   Nothing.                                                               */
7305 /****************************************************************************/
7306 static void
7307 bce_watchdog(struct bce_softc *sc)
7308 {
7309 	DBENTER(BCE_EXTREME_SEND);
7310 
7311 	BCE_LOCK_ASSERT(sc);
7312 
7313 	/* If the watchdog timer hasn't expired then just exit. */
7314 	if (sc->watchdog_timer == 0 || --sc->watchdog_timer)
7315 		goto bce_watchdog_exit;
7316 
7317 	/* If pause frames are active then don't reset the hardware. */
7318 	/* ToDo: Should we reset the timer here? */
7319 	if (REG_RD(sc, BCE_EMAC_TX_STATUS) & BCE_EMAC_TX_STATUS_XOFFED)
7320 		goto bce_watchdog_exit;
7321 
7322 	BCE_PRINTF("%s(%d): Watchdog timeout occurred, resetting!\n",
7323 	    __FILE__, __LINE__);
7324 
7325 	DBRUNMSG(BCE_INFO,
7326 	    bce_dump_driver_state(sc);
7327 	    bce_dump_status_block(sc);
7328 	    bce_dump_stats_block(sc);
7329 	    bce_dump_ftqs(sc);
7330 	    bce_dump_txp_state(sc, 0);
7331 	    bce_dump_rxp_state(sc, 0);
7332 	    bce_dump_tpat_state(sc, 0);
7333 	    bce_dump_cp_state(sc, 0);
7334 	    bce_dump_com_state(sc, 0));
7335 
7336 	DBRUN(bce_breakpoint(sc));
7337 
7338 	sc->bce_ifp->if_drv_flags &= ~IFF_DRV_RUNNING;
7339 
7340 	bce_init_locked(sc);
7341 	sc->bce_ifp->if_oerrors++;
7342 
7343 bce_watchdog_exit:
7344 	DBEXIT(BCE_EXTREME_SEND);
7345 }
7346 
7347 
7348 /*
7349  * Interrupt handler.
7350  */
7351 /****************************************************************************/
7352 /* Main interrupt entry point.  Verifies that the controller generated the  */
7353 /* interrupt and then calls a separate routine for handle the various       */
7354 /* interrupt causes (PHY, TX, RX).                                          */
7355 /*                                                                          */
7356 /* Returns:                                                                 */
7357 /*   0 for success, positive value for failure.                             */
7358 /****************************************************************************/
7359 static void
7360 bce_intr(void *xsc)
7361 {
7362 	struct bce_softc *sc;
7363 	struct ifnet *ifp;
7364 	u32 status_attn_bits;
7365 	u16 hw_rx_cons, hw_tx_cons;
7366 
7367 	sc = xsc;
7368 	ifp = sc->bce_ifp;
7369 
7370 	DBENTER(BCE_VERBOSE_SEND | BCE_VERBOSE_RECV | BCE_VERBOSE_INTR);
7371 	DBRUNMSG(BCE_VERBOSE_INTR, bce_dump_status_block(sc));
7372 	DBRUNMSG(BCE_VERBOSE_INTR, bce_dump_stats_block(sc));
7373 
7374 	BCE_LOCK(sc);
7375 
7376 	DBRUN(sc->interrupts_generated++);
7377 
7378 	/* Synchnorize before we read from interface's status block */
7379 	bus_dmamap_sync(sc->status_tag, sc->status_map,
7380 	    BUS_DMASYNC_POSTREAD);
7381 
7382 	/*
7383 	 * If the hardware status block index
7384 	 * matches the last value read by the
7385 	 * driver and we haven't asserted our
7386 	 * interrupt then there's nothing to do.
7387 	 */
7388 	if ((sc->status_block->status_idx == sc->last_status_idx) &&
7389 	    (REG_RD(sc, BCE_PCICFG_MISC_STATUS) &
7390 	     BCE_PCICFG_MISC_STATUS_INTA_VALUE)) {
7391 		DBPRINT(sc, BCE_VERBOSE_INTR, "%s(): Spurious interrupt.\n",
7392 		    __FUNCTION__);
7393 		goto bce_intr_exit;
7394 	}
7395 
7396 	/* Ack the interrupt and stop others from occuring. */
7397 	REG_WR(sc, BCE_PCICFG_INT_ACK_CMD,
7398 	    BCE_PCICFG_INT_ACK_CMD_USE_INT_HC_PARAM |
7399 	    BCE_PCICFG_INT_ACK_CMD_MASK_INT);
7400 
7401 	/* Check if the hardware has finished any work. */
7402 	hw_rx_cons = bce_get_hw_rx_cons(sc);
7403 	hw_tx_cons = bce_get_hw_tx_cons(sc);
7404 
7405 	/* Keep processing data as long as there is work to do. */
7406 	for (;;) {
7407 
7408 		status_attn_bits = sc->status_block->status_attn_bits;
7409 
7410 		DBRUNIF(DB_RANDOMTRUE(unexpected_attention_sim_control),
7411 		    BCE_PRINTF("Simulating unexpected status attention "
7412 		    "bit set.");
7413 		    sc->unexpected_attention_sim_count++;
7414 		    status_attn_bits = status_attn_bits |
7415 		    STATUS_ATTN_BITS_PARITY_ERROR);
7416 
7417 		/* Was it a link change interrupt? */
7418 		if ((status_attn_bits & STATUS_ATTN_BITS_LINK_STATE) !=
7419 		    (sc->status_block->status_attn_bits_ack &
7420 		     STATUS_ATTN_BITS_LINK_STATE)) {
7421 			bce_phy_intr(sc);
7422 
7423 			/* Clear transient updates during link state change. */
7424 			REG_WR(sc, BCE_HC_COMMAND, sc->hc_command |
7425 			    BCE_HC_COMMAND_COAL_NOW_WO_INT);
7426 			REG_RD(sc, BCE_HC_COMMAND);
7427 		}
7428 
7429 		/* If any other attention is asserted, the chip is toast. */
7430 		if (((status_attn_bits & ~STATUS_ATTN_BITS_LINK_STATE) !=
7431 		    (sc->status_block->status_attn_bits_ack &
7432 		    ~STATUS_ATTN_BITS_LINK_STATE))) {
7433 
7434 			sc->unexpected_attention_count++;
7435 
7436 			BCE_PRINTF("%s(%d): Fatal attention detected: "
7437 			    "0x%08X\n",	__FILE__, __LINE__,
7438 			    sc->status_block->status_attn_bits);
7439 
7440 			DBRUNMSG(BCE_FATAL,
7441 			    if (unexpected_attention_sim_control == 0)
7442 				bce_breakpoint(sc));
7443 
7444 			bce_init_locked(sc);
7445 			goto bce_intr_exit;
7446 		}
7447 
7448 		/* Check for any completed RX frames. */
7449 		if (hw_rx_cons != sc->hw_rx_cons)
7450 			bce_rx_intr(sc);
7451 
7452 		/* Check for any completed TX frames. */
7453 		if (hw_tx_cons != sc->hw_tx_cons)
7454 			bce_tx_intr(sc);
7455 
7456 		/* Save status block index value for the next interrupt. */
7457 		sc->last_status_idx = sc->status_block->status_idx;
7458 
7459  		/*
7460  		 * Prevent speculative reads from getting
7461  		 * ahead of the status block.
7462 		 */
7463 		bus_space_barrier(sc->bce_btag, sc->bce_bhandle, 0, 0,
7464 		    BUS_SPACE_BARRIER_READ);
7465 
7466  		/*
7467  		 * If there's no work left then exit the
7468  		 * interrupt service routine.
7469 		 */
7470 		hw_rx_cons = bce_get_hw_rx_cons(sc);
7471 		hw_tx_cons = bce_get_hw_tx_cons(sc);
7472 
7473 		if ((hw_rx_cons == sc->hw_rx_cons) &&
7474 		    (hw_tx_cons == sc->hw_tx_cons))
7475 			break;
7476 
7477 	}
7478 
7479 	bus_dmamap_sync(sc->status_tag,	sc->status_map,
7480 	    BUS_DMASYNC_PREREAD);
7481 
7482 	/* Re-enable interrupts. */
7483 	bce_enable_intr(sc, 0);
7484 
7485 	/* Handle any frames that arrived while handling the interrupt. */
7486 	if (ifp->if_drv_flags & IFF_DRV_RUNNING &&
7487 	    !IFQ_DRV_IS_EMPTY(&ifp->if_snd))
7488 		bce_start_locked(ifp);
7489 
7490 bce_intr_exit:
7491 	BCE_UNLOCK(sc);
7492 
7493 	DBEXIT(BCE_VERBOSE_SEND | BCE_VERBOSE_RECV | BCE_VERBOSE_INTR);
7494 }
7495 
7496 
7497 /****************************************************************************/
7498 /* Programs the various packet receive modes (broadcast and multicast).     */
7499 /*                                                                          */
7500 /* Returns:                                                                 */
7501 /*   Nothing.                                                               */
7502 /****************************************************************************/
7503 static void
7504 bce_set_rx_mode(struct bce_softc *sc)
7505 {
7506 	struct ifnet *ifp;
7507 	struct ifmultiaddr *ifma;
7508 	u32 hashes[NUM_MC_HASH_REGISTERS] = { 0, 0, 0, 0, 0, 0, 0, 0 };
7509 	u32 rx_mode, sort_mode;
7510 	int h, i;
7511 
7512 	DBENTER(BCE_VERBOSE_MISC);
7513 
7514 	BCE_LOCK_ASSERT(sc);
7515 
7516 	ifp = sc->bce_ifp;
7517 
7518 	/* Initialize receive mode default settings. */
7519 	rx_mode   = sc->rx_mode & ~(BCE_EMAC_RX_MODE_PROMISCUOUS |
7520 	    BCE_EMAC_RX_MODE_KEEP_VLAN_TAG);
7521 	sort_mode = 1 | BCE_RPM_SORT_USER0_BC_EN;
7522 
7523 	/*
7524 	 * ASF/IPMI/UMP firmware requires that VLAN tag stripping
7525 	 * be enbled.
7526 	 */
7527 	if (!(BCE_IF_CAPABILITIES & IFCAP_VLAN_HWTAGGING) &&
7528 	    (!(sc->bce_flags & BCE_MFW_ENABLE_FLAG)))
7529 		rx_mode |= BCE_EMAC_RX_MODE_KEEP_VLAN_TAG;
7530 
7531 	/*
7532 	 * Check for promiscuous, all multicast, or selected
7533 	 * multicast address filtering.
7534 	 */
7535 	if (ifp->if_flags & IFF_PROMISC) {
7536 		DBPRINT(sc, BCE_INFO_MISC, "Enabling promiscuous mode.\n");
7537 
7538 		/* Enable promiscuous mode. */
7539 		rx_mode |= BCE_EMAC_RX_MODE_PROMISCUOUS;
7540 		sort_mode |= BCE_RPM_SORT_USER0_PROM_EN;
7541 	} else if (ifp->if_flags & IFF_ALLMULTI) {
7542 		DBPRINT(sc, BCE_INFO_MISC, "Enabling all multicast mode.\n");
7543 
7544 		/* Enable all multicast addresses. */
7545 		for (i = 0; i < NUM_MC_HASH_REGISTERS; i++) {
7546 			REG_WR(sc, BCE_EMAC_MULTICAST_HASH0 + (i * 4), 0xffffffff);
7547        	}
7548 		sort_mode |= BCE_RPM_SORT_USER0_MC_EN;
7549 	} else {
7550 		/* Accept one or more multicast(s). */
7551 		DBPRINT(sc, BCE_INFO_MISC, "Enabling selective multicast mode.\n");
7552 
7553 		if_maddr_rlock(ifp);
7554 		TAILQ_FOREACH(ifma, &ifp->if_multiaddrs, ifma_link) {
7555 			if (ifma->ifma_addr->sa_family != AF_LINK)
7556 				continue;
7557 			h = ether_crc32_le(LLADDR((struct sockaddr_dl *)
7558 			    ifma->ifma_addr), ETHER_ADDR_LEN) & 0xFF;
7559 			    hashes[(h & 0xE0) >> 5] |= 1 << (h & 0x1F);
7560 		}
7561 		if_maddr_runlock(ifp);
7562 
7563 		for (i = 0; i < NUM_MC_HASH_REGISTERS; i++)
7564 			REG_WR(sc, BCE_EMAC_MULTICAST_HASH0 + (i * 4), hashes[i]);
7565 
7566 		sort_mode |= BCE_RPM_SORT_USER0_MC_HSH_EN;
7567 	}
7568 
7569 	/* Only make changes if the recive mode has actually changed. */
7570 	if (rx_mode != sc->rx_mode) {
7571 		DBPRINT(sc, BCE_VERBOSE_MISC, "Enabling new receive mode: "
7572 		    "0x%08X\n", rx_mode);
7573 
7574 		sc->rx_mode = rx_mode;
7575 		REG_WR(sc, BCE_EMAC_RX_MODE, rx_mode);
7576 	}
7577 
7578 	/* Disable and clear the exisitng sort before enabling a new sort. */
7579 	REG_WR(sc, BCE_RPM_SORT_USER0, 0x0);
7580 	REG_WR(sc, BCE_RPM_SORT_USER0, sort_mode);
7581 	REG_WR(sc, BCE_RPM_SORT_USER0, sort_mode | BCE_RPM_SORT_USER0_ENA);
7582 
7583 	DBEXIT(BCE_VERBOSE_MISC);
7584 }
7585 
7586 
7587 /****************************************************************************/
7588 /* Called periodically to updates statistics from the controllers           */
7589 /* statistics block.                                                        */
7590 /*                                                                          */
7591 /* Returns:                                                                 */
7592 /*   Nothing.                                                               */
7593 /****************************************************************************/
7594 static void
7595 bce_stats_update(struct bce_softc *sc)
7596 {
7597 	struct ifnet *ifp;
7598 	struct statistics_block *stats;
7599 
7600 	DBENTER(BCE_EXTREME_MISC);
7601 
7602 	ifp = sc->bce_ifp;
7603 
7604 	stats = (struct statistics_block *) sc->stats_block;
7605 
7606 	/*
7607 	 * Certain controllers don't report
7608 	 * carrier sense errors correctly.
7609 	 * See errata E11_5708CA0_1165.
7610 	 */
7611 	if (!(BCE_CHIP_NUM(sc) == BCE_CHIP_NUM_5706) &&
7612 	    !(BCE_CHIP_ID(sc) == BCE_CHIP_ID_5708_A0))
7613 		ifp->if_oerrors +=
7614 		    (u_long) stats->stat_Dot3StatsCarrierSenseErrors;
7615 
7616 	/*
7617 	 * Update the sysctl statistics from the
7618 	 * hardware statistics.
7619 	 */
7620 	sc->stat_IfHCInOctets =
7621 	    ((u64) stats->stat_IfHCInOctets_hi << 32) +
7622 	     (u64) stats->stat_IfHCInOctets_lo;
7623 
7624 	sc->stat_IfHCInBadOctets =
7625 	    ((u64) stats->stat_IfHCInBadOctets_hi << 32) +
7626 	     (u64) stats->stat_IfHCInBadOctets_lo;
7627 
7628 	sc->stat_IfHCOutOctets =
7629 	    ((u64) stats->stat_IfHCOutOctets_hi << 32) +
7630 	     (u64) stats->stat_IfHCOutOctets_lo;
7631 
7632 	sc->stat_IfHCOutBadOctets =
7633 	    ((u64) stats->stat_IfHCOutBadOctets_hi << 32) +
7634 	     (u64) stats->stat_IfHCOutBadOctets_lo;
7635 
7636 	sc->stat_IfHCInUcastPkts =
7637 	    ((u64) stats->stat_IfHCInUcastPkts_hi << 32) +
7638 	     (u64) stats->stat_IfHCInUcastPkts_lo;
7639 
7640 	sc->stat_IfHCInMulticastPkts =
7641 	    ((u64) stats->stat_IfHCInMulticastPkts_hi << 32) +
7642 	     (u64) stats->stat_IfHCInMulticastPkts_lo;
7643 
7644 	sc->stat_IfHCInBroadcastPkts =
7645 	    ((u64) stats->stat_IfHCInBroadcastPkts_hi << 32) +
7646 	     (u64) stats->stat_IfHCInBroadcastPkts_lo;
7647 
7648 	sc->stat_IfHCOutUcastPkts =
7649 	    ((u64) stats->stat_IfHCOutUcastPkts_hi << 32) +
7650 	     (u64) stats->stat_IfHCOutUcastPkts_lo;
7651 
7652 	sc->stat_IfHCOutMulticastPkts =
7653 	    ((u64) stats->stat_IfHCOutMulticastPkts_hi << 32) +
7654 	     (u64) stats->stat_IfHCOutMulticastPkts_lo;
7655 
7656 	sc->stat_IfHCOutBroadcastPkts =
7657 	    ((u64) stats->stat_IfHCOutBroadcastPkts_hi << 32) +
7658 	     (u64) stats->stat_IfHCOutBroadcastPkts_lo;
7659 
7660 	/* ToDo: Preserve counters beyond 32 bits? */
7661 	/* ToDo: Read the statistics from auto-clear regs? */
7662 
7663 	sc->stat_emac_tx_stat_dot3statsinternalmactransmiterrors =
7664 	    stats->stat_emac_tx_stat_dot3statsinternalmactransmiterrors;
7665 
7666 	sc->stat_Dot3StatsCarrierSenseErrors =
7667 	    stats->stat_Dot3StatsCarrierSenseErrors;
7668 
7669 	sc->stat_Dot3StatsFCSErrors =
7670 	    stats->stat_Dot3StatsFCSErrors;
7671 
7672 	sc->stat_Dot3StatsAlignmentErrors =
7673 	    stats->stat_Dot3StatsAlignmentErrors;
7674 
7675 	sc->stat_Dot3StatsSingleCollisionFrames =
7676 	    stats->stat_Dot3StatsSingleCollisionFrames;
7677 
7678 	sc->stat_Dot3StatsMultipleCollisionFrames =
7679 	    stats->stat_Dot3StatsMultipleCollisionFrames;
7680 
7681 	sc->stat_Dot3StatsDeferredTransmissions =
7682 	    stats->stat_Dot3StatsDeferredTransmissions;
7683 
7684 	sc->stat_Dot3StatsExcessiveCollisions =
7685 	    stats->stat_Dot3StatsExcessiveCollisions;
7686 
7687 	sc->stat_Dot3StatsLateCollisions =
7688 	    stats->stat_Dot3StatsLateCollisions;
7689 
7690 	sc->stat_EtherStatsCollisions =
7691 	    stats->stat_EtherStatsCollisions;
7692 
7693 	sc->stat_EtherStatsFragments =
7694 	    stats->stat_EtherStatsFragments;
7695 
7696 	sc->stat_EtherStatsJabbers =
7697 	    stats->stat_EtherStatsJabbers;
7698 
7699 	sc->stat_EtherStatsUndersizePkts =
7700 	    stats->stat_EtherStatsUndersizePkts;
7701 
7702 	sc->stat_EtherStatsOversizePkts =
7703 	     stats->stat_EtherStatsOversizePkts;
7704 
7705 	sc->stat_EtherStatsPktsRx64Octets =
7706 	    stats->stat_EtherStatsPktsRx64Octets;
7707 
7708 	sc->stat_EtherStatsPktsRx65Octetsto127Octets =
7709 	    stats->stat_EtherStatsPktsRx65Octetsto127Octets;
7710 
7711 	sc->stat_EtherStatsPktsRx128Octetsto255Octets =
7712 	    stats->stat_EtherStatsPktsRx128Octetsto255Octets;
7713 
7714 	sc->stat_EtherStatsPktsRx256Octetsto511Octets =
7715 	    stats->stat_EtherStatsPktsRx256Octetsto511Octets;
7716 
7717 	sc->stat_EtherStatsPktsRx512Octetsto1023Octets =
7718 	    stats->stat_EtherStatsPktsRx512Octetsto1023Octets;
7719 
7720 	sc->stat_EtherStatsPktsRx1024Octetsto1522Octets =
7721 	    stats->stat_EtherStatsPktsRx1024Octetsto1522Octets;
7722 
7723 	sc->stat_EtherStatsPktsRx1523Octetsto9022Octets =
7724 	    stats->stat_EtherStatsPktsRx1523Octetsto9022Octets;
7725 
7726 	sc->stat_EtherStatsPktsTx64Octets =
7727 	    stats->stat_EtherStatsPktsTx64Octets;
7728 
7729 	sc->stat_EtherStatsPktsTx65Octetsto127Octets =
7730 	    stats->stat_EtherStatsPktsTx65Octetsto127Octets;
7731 
7732 	sc->stat_EtherStatsPktsTx128Octetsto255Octets =
7733 	    stats->stat_EtherStatsPktsTx128Octetsto255Octets;
7734 
7735 	sc->stat_EtherStatsPktsTx256Octetsto511Octets =
7736 	    stats->stat_EtherStatsPktsTx256Octetsto511Octets;
7737 
7738 	sc->stat_EtherStatsPktsTx512Octetsto1023Octets =
7739 	    stats->stat_EtherStatsPktsTx512Octetsto1023Octets;
7740 
7741 	sc->stat_EtherStatsPktsTx1024Octetsto1522Octets =
7742 	    stats->stat_EtherStatsPktsTx1024Octetsto1522Octets;
7743 
7744 	sc->stat_EtherStatsPktsTx1523Octetsto9022Octets =
7745 	    stats->stat_EtherStatsPktsTx1523Octetsto9022Octets;
7746 
7747 	sc->stat_XonPauseFramesReceived =
7748 	    stats->stat_XonPauseFramesReceived;
7749 
7750 	sc->stat_XoffPauseFramesReceived =
7751 	    stats->stat_XoffPauseFramesReceived;
7752 
7753 	sc->stat_OutXonSent =
7754 	    stats->stat_OutXonSent;
7755 
7756 	sc->stat_OutXoffSent =
7757 	    stats->stat_OutXoffSent;
7758 
7759 	sc->stat_FlowControlDone =
7760 	    stats->stat_FlowControlDone;
7761 
7762 	sc->stat_MacControlFramesReceived =
7763 	    stats->stat_MacControlFramesReceived;
7764 
7765 	sc->stat_XoffStateEntered =
7766 	    stats->stat_XoffStateEntered;
7767 
7768 	sc->stat_IfInFramesL2FilterDiscards =
7769 	    stats->stat_IfInFramesL2FilterDiscards;
7770 
7771 	sc->stat_IfInRuleCheckerDiscards =
7772 	    stats->stat_IfInRuleCheckerDiscards;
7773 
7774 	sc->stat_IfInFTQDiscards =
7775 	    stats->stat_IfInFTQDiscards;
7776 
7777 	sc->stat_IfInMBUFDiscards =
7778 	    stats->stat_IfInMBUFDiscards;
7779 
7780 	sc->stat_IfInRuleCheckerP4Hit =
7781 	    stats->stat_IfInRuleCheckerP4Hit;
7782 
7783 	sc->stat_CatchupInRuleCheckerDiscards =
7784 	    stats->stat_CatchupInRuleCheckerDiscards;
7785 
7786 	sc->stat_CatchupInFTQDiscards =
7787 	    stats->stat_CatchupInFTQDiscards;
7788 
7789 	sc->stat_CatchupInMBUFDiscards =
7790 	    stats->stat_CatchupInMBUFDiscards;
7791 
7792 	sc->stat_CatchupInRuleCheckerP4Hit =
7793 	    stats->stat_CatchupInRuleCheckerP4Hit;
7794 
7795 	sc->com_no_buffers = REG_RD_IND(sc, 0x120084);
7796 
7797 	/*
7798 	 * Update the interface statistics from the
7799 	 * hardware statistics.
7800 	 */
7801 	ifp->if_collisions =
7802 	    (u_long) sc->stat_EtherStatsCollisions;
7803 
7804 	/* ToDo: This method loses soft errors. */
7805 	ifp->if_ierrors =
7806 	    (u_long) sc->stat_EtherStatsUndersizePkts +
7807 	    (u_long) sc->stat_EtherStatsOversizePkts +
7808 	    (u_long) sc->stat_IfInMBUFDiscards +
7809 	    (u_long) sc->stat_Dot3StatsAlignmentErrors +
7810 	    (u_long) sc->stat_Dot3StatsFCSErrors +
7811 	    (u_long) sc->stat_IfInRuleCheckerDiscards +
7812 	    (u_long) sc->stat_IfInFTQDiscards +
7813 	    (u_long) sc->com_no_buffers;
7814 
7815 	/* ToDo: This method loses soft errors. */
7816 	ifp->if_oerrors =
7817 	    (u_long) sc->stat_emac_tx_stat_dot3statsinternalmactransmiterrors +
7818 	    (u_long) sc->stat_Dot3StatsExcessiveCollisions +
7819 	    (u_long) sc->stat_Dot3StatsLateCollisions;
7820 
7821 	/* ToDo: Add additional statistics? */
7822 
7823 	DBEXIT(BCE_EXTREME_MISC);
7824 }
7825 
7826 
7827 /****************************************************************************/
7828 /* Periodic function to notify the bootcode that the driver is still        */
7829 /* present.                                                                 */
7830 /*                                                                          */
7831 /* Returns:                                                                 */
7832 /*   Nothing.                                                               */
7833 /****************************************************************************/
7834 static void
7835 bce_pulse(void *xsc)
7836 {
7837 	struct bce_softc *sc = xsc;
7838 	u32 msg;
7839 
7840 	DBENTER(BCE_EXTREME_MISC);
7841 
7842 	BCE_LOCK_ASSERT(sc);
7843 
7844 	/* Tell the firmware that the driver is still running. */
7845 	msg = (u32) ++sc->bce_fw_drv_pulse_wr_seq;
7846 	bce_shmem_wr(sc, BCE_DRV_PULSE_MB, msg);
7847 
7848 	/* Update the bootcode condition. */
7849 	sc->bc_state = bce_shmem_rd(sc, BCE_BC_STATE_CONDITION);
7850 
7851 	/* Report whether the bootcode still knows the driver is running. */
7852 	if (bootverbose) {
7853 		if (sc->bce_drv_cardiac_arrest == FALSE) {
7854 			if (!(sc->bc_state & BCE_CONDITION_DRV_PRESENT)) {
7855 				sc->bce_drv_cardiac_arrest = TRUE;
7856 				BCE_PRINTF("%s(): Warning: bootcode "
7857 				    "thinks driver is absent! "
7858 				    "(bc_state = 0x%08X)\n",
7859 				    __FUNCTION__, sc->bc_state);
7860 			}
7861 		} else {
7862 			/*
7863 			 * Not supported by all bootcode versions.
7864 			 * (v5.0.11+ and v5.2.1+)  Older bootcode
7865 			 * will require the driver to reset the
7866 			 * controller to clear this condition.
7867 			 */
7868 			if (sc->bc_state & BCE_CONDITION_DRV_PRESENT) {
7869 				sc->bce_drv_cardiac_arrest = FALSE;
7870 				BCE_PRINTF("%s(): Bootcode found the "
7871 				    "driver pulse! (bc_state = 0x%08X)\n",
7872 				    __FUNCTION__, sc->bc_state);
7873 			}
7874 		}
7875 	}
7876 
7877 
7878 	/* Schedule the next pulse. */
7879 	callout_reset(&sc->bce_pulse_callout, hz, bce_pulse, sc);
7880 
7881 	DBEXIT(BCE_EXTREME_MISC);
7882 }
7883 
7884 
7885 /****************************************************************************/
7886 /* Periodic function to perform maintenance tasks.                          */
7887 /*                                                                          */
7888 /* Returns:                                                                 */
7889 /*   Nothing.                                                               */
7890 /****************************************************************************/
7891 static void
7892 bce_tick(void *xsc)
7893 {
7894 	struct bce_softc *sc = xsc;
7895 	struct mii_data *mii;
7896 	struct ifnet *ifp;
7897 
7898 	ifp = sc->bce_ifp;
7899 
7900 	DBENTER(BCE_EXTREME_MISC);
7901 
7902 	BCE_LOCK_ASSERT(sc);
7903 
7904 	/* Schedule the next tick. */
7905 	callout_reset(&sc->bce_tick_callout, hz, bce_tick, sc);
7906 
7907 	/* Update the statistics from the hardware statistics block. */
7908 	bce_stats_update(sc);
7909 
7910 	/* Top off the receive and page chains. */
7911 #ifdef BCE_JUMBO_HDRSPLIT
7912 	bce_fill_pg_chain(sc);
7913 #endif
7914 	bce_fill_rx_chain(sc);
7915 
7916 	/* Check that chip hasn't hung. */
7917 	bce_watchdog(sc);
7918 
7919 	/* If link is up already up then we're done. */
7920 	if (sc->bce_link_up == TRUE)
7921 		goto bce_tick_exit;
7922 
7923 	/* Link is down.  Check what the PHY's doing. */
7924 	mii = device_get_softc(sc->bce_miibus);
7925 	mii_tick(mii);
7926 
7927 	/* Check if the link has come up. */
7928 	if ((mii->mii_media_status & IFM_ACTIVE) &&
7929 	    (IFM_SUBTYPE(mii->mii_media_active) != IFM_NONE)) {
7930 		DBPRINT(sc, BCE_VERBOSE_MISC,
7931 		    "%s(): Link up!\n", __FUNCTION__);
7932 		sc->bce_link_up = TRUE;
7933 		if ((IFM_SUBTYPE(mii->mii_media_active) == IFM_1000_T ||
7934 		    IFM_SUBTYPE(mii->mii_media_active) == IFM_1000_SX ||
7935 		    IFM_SUBTYPE(mii->mii_media_active) == IFM_2500_SX) &&
7936 		    bootverbose)
7937 			BCE_PRINTF("Gigabit link up!\n");
7938 
7939 		/* Now that link is up, handle any outstanding TX traffic. */
7940 		if (!IFQ_DRV_IS_EMPTY(&ifp->if_snd)) {
7941 			DBPRINT(sc, BCE_VERBOSE_MISC, "%s(): Found "
7942 			    "pending TX traffic.\n", __FUNCTION__);
7943 			bce_start_locked(ifp);
7944 		}
7945 	}
7946 
7947 bce_tick_exit:
7948 	DBEXIT(BCE_EXTREME_MISC);
7949 	return;
7950 }
7951 
7952 
7953 #ifdef BCE_DEBUG
7954 /****************************************************************************/
7955 /* Allows the driver state to be dumped through the sysctl interface.       */
7956 /*                                                                          */
7957 /* Returns:                                                                 */
7958 /*   0 for success, positive value for failure.                             */
7959 /****************************************************************************/
7960 static int
7961 bce_sysctl_driver_state(SYSCTL_HANDLER_ARGS)
7962 {
7963 	int error;
7964 	int result;
7965 	struct bce_softc *sc;
7966 
7967 	result = -1;
7968 	error = sysctl_handle_int(oidp, &result, 0, req);
7969 
7970 	if (error || !req->newptr)
7971 		return (error);
7972 
7973 	if (result == 1) {
7974 		sc = (struct bce_softc *)arg1;
7975 		bce_dump_driver_state(sc);
7976 	}
7977 
7978 	return error;
7979 }
7980 
7981 
7982 /****************************************************************************/
7983 /* Allows the hardware state to be dumped through the sysctl interface.     */
7984 /*                                                                          */
7985 /* Returns:                                                                 */
7986 /*   0 for success, positive value for failure.                             */
7987 /****************************************************************************/
7988 static int
7989 bce_sysctl_hw_state(SYSCTL_HANDLER_ARGS)
7990 {
7991 	int error;
7992 	int result;
7993 	struct bce_softc *sc;
7994 
7995 	result = -1;
7996 	error = sysctl_handle_int(oidp, &result, 0, req);
7997 
7998 	if (error || !req->newptr)
7999 		return (error);
8000 
8001 	if (result == 1) {
8002 		sc = (struct bce_softc *)arg1;
8003 		bce_dump_hw_state(sc);
8004 	}
8005 
8006 	return error;
8007 }
8008 
8009 
8010 /****************************************************************************/
8011 /* Allows the status block to be dumped through the sysctl interface.       */
8012 /*                                                                          */
8013 /* Returns:                                                                 */
8014 /*   0 for success, positive value for failure.                             */
8015 /****************************************************************************/
8016 static int
8017 bce_sysctl_status_block(SYSCTL_HANDLER_ARGS)
8018 {
8019 	int error;
8020 	int result;
8021 	struct bce_softc *sc;
8022 
8023 	result = -1;
8024 	error = sysctl_handle_int(oidp, &result, 0, req);
8025 
8026 	if (error || !req->newptr)
8027 		return (error);
8028 
8029 	if (result == 1) {
8030 		sc = (struct bce_softc *)arg1;
8031 		bce_dump_status_block(sc);
8032 	}
8033 
8034 	return error;
8035 }
8036 
8037 
8038 /****************************************************************************/
8039 /* Allows the stats block to be dumped through the sysctl interface.        */
8040 /*                                                                          */
8041 /* Returns:                                                                 */
8042 /*   0 for success, positive value for failure.                             */
8043 /****************************************************************************/
8044 static int
8045 bce_sysctl_stats_block(SYSCTL_HANDLER_ARGS)
8046 {
8047 	int error;
8048 	int result;
8049 	struct bce_softc *sc;
8050 
8051 	result = -1;
8052 	error = sysctl_handle_int(oidp, &result, 0, req);
8053 
8054 	if (error || !req->newptr)
8055 		return (error);
8056 
8057 	if (result == 1) {
8058 		sc = (struct bce_softc *)arg1;
8059 		bce_dump_stats_block(sc);
8060 	}
8061 
8062 	return error;
8063 }
8064 
8065 
8066 /****************************************************************************/
8067 /* Allows the stat counters to be cleared without unloading/reloading the   */
8068 /* driver.                                                                  */
8069 /*                                                                          */
8070 /* Returns:                                                                 */
8071 /*   0 for success, positive value for failure.                             */
8072 /****************************************************************************/
8073 static int
8074 bce_sysctl_stats_clear(SYSCTL_HANDLER_ARGS)
8075 {
8076 	int error;
8077 	int result;
8078 	struct bce_softc *sc;
8079 
8080 	result = -1;
8081 	error = sysctl_handle_int(oidp, &result, 0, req);
8082 
8083 	if (error || !req->newptr)
8084 		return (error);
8085 
8086 	if (result == 1) {
8087 		sc = (struct bce_softc *)arg1;
8088 
8089 		/* Clear the internal H/W statistics counters. */
8090 		REG_WR(sc, BCE_HC_COMMAND, BCE_HC_COMMAND_CLR_STAT_NOW);
8091 
8092 		/* Reset the driver maintained statistics. */
8093 		sc->interrupts_rx =
8094 		    sc->interrupts_tx = 0;
8095 		sc->tso_frames_requested =
8096 		    sc->tso_frames_completed =
8097 		    sc->tso_frames_failed = 0;
8098 		sc->rx_empty_count =
8099 		    sc->tx_full_count = 0;
8100 		sc->rx_low_watermark = USABLE_RX_BD;
8101 		sc->tx_hi_watermark = 0;
8102 		sc->l2fhdr_error_count =
8103 		    sc->l2fhdr_error_sim_count = 0;
8104 		sc->mbuf_alloc_failed_count =
8105 		    sc->mbuf_alloc_failed_sim_count = 0;
8106 		sc->dma_map_addr_rx_failed_count =
8107 		    sc->dma_map_addr_tx_failed_count = 0;
8108 		sc->mbuf_frag_count = 0;
8109 		sc->csum_offload_tcp_udp =
8110 		   sc->csum_offload_ip = 0;
8111 		sc->vlan_tagged_frames_rcvd =
8112 		   sc->vlan_tagged_frames_stripped = 0;
8113 
8114 		/* Clear firmware maintained statistics. */
8115 		REG_WR_IND(sc, 0x120084, 0);
8116 	}
8117 
8118 	return error;
8119 }
8120 
8121 
8122 /****************************************************************************/
8123 /* Allows the bootcode state to be dumped through the sysctl interface.     */
8124 /*                                                                          */
8125 /* Returns:                                                                 */
8126 /*   0 for success, positive value for failure.                             */
8127 /****************************************************************************/
8128 static int
8129 bce_sysctl_bc_state(SYSCTL_HANDLER_ARGS)
8130 {
8131 	int error;
8132 	int result;
8133 	struct bce_softc *sc;
8134 
8135 	result = -1;
8136 	error = sysctl_handle_int(oidp, &result, 0, req);
8137 
8138 	if (error || !req->newptr)
8139 		return (error);
8140 
8141 	if (result == 1) {
8142 		sc = (struct bce_softc *)arg1;
8143 		bce_dump_bc_state(sc);
8144 	}
8145 
8146 	return error;
8147 }
8148 
8149 
8150 /****************************************************************************/
8151 /* Provides a sysctl interface to allow dumping the RX BD chain.            */
8152 /*                                                                          */
8153 /* Returns:                                                                 */
8154 /*   0 for success, positive value for failure.                             */
8155 /****************************************************************************/
8156 static int
8157 bce_sysctl_dump_rx_bd_chain(SYSCTL_HANDLER_ARGS)
8158 {
8159 	int error;
8160 	int result;
8161 	struct bce_softc *sc;
8162 
8163 	result = -1;
8164 	error = sysctl_handle_int(oidp, &result, 0, req);
8165 
8166 	if (error || !req->newptr)
8167 		return (error);
8168 
8169 	if (result == 1) {
8170 		sc = (struct bce_softc *)arg1;
8171 		bce_dump_rx_bd_chain(sc, 0, TOTAL_RX_BD);
8172 	}
8173 
8174 	return error;
8175 }
8176 
8177 
8178 /****************************************************************************/
8179 /* Provides a sysctl interface to allow dumping the RX MBUF chain.          */
8180 /*                                                                          */
8181 /* Returns:                                                                 */
8182 /*   0 for success, positive value for failure.                             */
8183 /****************************************************************************/
8184 static int
8185 bce_sysctl_dump_rx_mbuf_chain(SYSCTL_HANDLER_ARGS)
8186 {
8187 	int error;
8188 	int result;
8189 	struct bce_softc *sc;
8190 
8191 	result = -1;
8192 	error = sysctl_handle_int(oidp, &result, 0, req);
8193 
8194 	if (error || !req->newptr)
8195 		return (error);
8196 
8197 	if (result == 1) {
8198 		sc = (struct bce_softc *)arg1;
8199 		bce_dump_rx_mbuf_chain(sc, 0, USABLE_RX_BD);
8200 	}
8201 
8202 	return error;
8203 }
8204 
8205 
8206 /****************************************************************************/
8207 /* Provides a sysctl interface to allow dumping the TX chain.               */
8208 /*                                                                          */
8209 /* Returns:                                                                 */
8210 /*   0 for success, positive value for failure.                             */
8211 /****************************************************************************/
8212 static int
8213 bce_sysctl_dump_tx_chain(SYSCTL_HANDLER_ARGS)
8214 {
8215 	int error;
8216 	int result;
8217 	struct bce_softc *sc;
8218 
8219 	result = -1;
8220 	error = sysctl_handle_int(oidp, &result, 0, req);
8221 
8222 	if (error || !req->newptr)
8223 		return (error);
8224 
8225 	if (result == 1) {
8226 		sc = (struct bce_softc *)arg1;
8227 		bce_dump_tx_chain(sc, 0, TOTAL_TX_BD);
8228 	}
8229 
8230 	return error;
8231 }
8232 
8233 
8234 #ifdef BCE_JUMBO_HDRSPLIT
8235 /****************************************************************************/
8236 /* Provides a sysctl interface to allow dumping the page chain.             */
8237 /*                                                                          */
8238 /* Returns:                                                                 */
8239 /*   0 for success, positive value for failure.                             */
8240 /****************************************************************************/
8241 static int
8242 bce_sysctl_dump_pg_chain(SYSCTL_HANDLER_ARGS)
8243 {
8244 	int error;
8245 	int result;
8246 	struct bce_softc *sc;
8247 
8248 	result = -1;
8249 	error = sysctl_handle_int(oidp, &result, 0, req);
8250 
8251 	if (error || !req->newptr)
8252 		return (error);
8253 
8254 	if (result == 1) {
8255 		sc = (struct bce_softc *)arg1;
8256 		bce_dump_pg_chain(sc, 0, TOTAL_PG_BD);
8257 	}
8258 
8259 	return error;
8260 }
8261 #endif
8262 
8263 /****************************************************************************/
8264 /* Provides a sysctl interface to allow reading arbitrary NVRAM offsets in  */
8265 /* the device.  DO NOT ENABLE ON PRODUCTION SYSTEMS!                        */
8266 /*                                                                          */
8267 /* Returns:                                                                 */
8268 /*   0 for success, positive value for failure.                             */
8269 /****************************************************************************/
8270 static int
8271 bce_sysctl_nvram_read(SYSCTL_HANDLER_ARGS)
8272 {
8273 	struct bce_softc *sc = (struct bce_softc *)arg1;
8274 	int error;
8275 	u32 result;
8276 	u32 val[1];
8277 	u8 *data = (u8 *) val;
8278 
8279 	result = -1;
8280 	error = sysctl_handle_int(oidp, &result, 0, req);
8281 	if (error || (req->newptr == NULL))
8282 		return (error);
8283 
8284 	bce_nvram_read(sc, result, data, 4);
8285 	BCE_PRINTF("offset 0x%08X = 0x%08X\n", result, bce_be32toh(val[0]));
8286 
8287 	return (error);
8288 }
8289 
8290 
8291 /****************************************************************************/
8292 /* Provides a sysctl interface to allow reading arbitrary registers in the  */
8293 /* device.  DO NOT ENABLE ON PRODUCTION SYSTEMS!                            */
8294 /*                                                                          */
8295 /* Returns:                                                                 */
8296 /*   0 for success, positive value for failure.                             */
8297 /****************************************************************************/
8298 static int
8299 bce_sysctl_reg_read(SYSCTL_HANDLER_ARGS)
8300 {
8301 	struct bce_softc *sc = (struct bce_softc *)arg1;
8302 	int error;
8303 	u32 val, result;
8304 
8305 	result = -1;
8306 	error = sysctl_handle_int(oidp, &result, 0, req);
8307 	if (error || (req->newptr == NULL))
8308 		return (error);
8309 
8310 	/* Make sure the register is accessible. */
8311 	if (result < 0x8000) {
8312 		val = REG_RD(sc, result);
8313 		BCE_PRINTF("reg 0x%08X = 0x%08X\n", result, val);
8314 	} else if (result < 0x0280000) {
8315 		val = REG_RD_IND(sc, result);
8316 		BCE_PRINTF("reg 0x%08X = 0x%08X\n", result, val);
8317 	}
8318 
8319 	return (error);
8320 }
8321 
8322 
8323 /****************************************************************************/
8324 /* Provides a sysctl interface to allow reading arbitrary PHY registers in  */
8325 /* the device.  DO NOT ENABLE ON PRODUCTION SYSTEMS!                        */
8326 /*                                                                          */
8327 /* Returns:                                                                 */
8328 /*   0 for success, positive value for failure.                             */
8329 /****************************************************************************/
8330 static int
8331 bce_sysctl_phy_read(SYSCTL_HANDLER_ARGS)
8332 {
8333 	struct bce_softc *sc;
8334 	device_t dev;
8335 	int error, result;
8336 	u16 val;
8337 
8338 	result = -1;
8339 	error = sysctl_handle_int(oidp, &result, 0, req);
8340 	if (error || (req->newptr == NULL))
8341 		return (error);
8342 
8343 	/* Make sure the register is accessible. */
8344 	if (result < 0x20) {
8345 		sc = (struct bce_softc *)arg1;
8346 		dev = sc->bce_dev;
8347 		val = bce_miibus_read_reg(dev, sc->bce_phy_addr, result);
8348 		BCE_PRINTF("phy 0x%02X = 0x%04X\n", result, val);
8349 	}
8350 	return (error);
8351 }
8352 
8353 
8354 static int
8355 sysctl_nvram_dump(SYSCTL_HANDLER_ARGS)
8356 {
8357 	struct bce_softc *sc = (struct bce_softc *)arg1;
8358 	int error, i;
8359 
8360 	if (sc->nvram_buf == NULL) {
8361 		sc->nvram_buf = malloc(sc->bce_flash_size,
8362 				       M_TEMP, M_ZERO | M_WAITOK);
8363 	}
8364 	if (sc->nvram_buf == NULL) {
8365 		return(ENOMEM);
8366 	}
8367 	if (req->oldlen == sc->bce_flash_size) {
8368 		for (i = 0; i < sc->bce_flash_size; i++) {
8369 			bce_nvram_read(sc, i, &sc->nvram_buf[i], 1);
8370 		}
8371 	}
8372 
8373 	error = SYSCTL_OUT(req, sc->nvram_buf, sc->bce_flash_size);
8374 
8375 	return error;
8376 }
8377 
8378 #ifdef BCE_NVRAM_WRITE_SUPPORT
8379 static int
8380 sysctl_nvram_write(SYSCTL_HANDLER_ARGS)
8381 {
8382 	struct bce_softc *sc = (struct bce_softc *)arg1;
8383 	int error;
8384 
8385 	if (sc->nvram_buf == NULL) {
8386 		sc->nvram_buf = malloc(sc->bce_flash_size,
8387 				       M_TEMP, M_ZERO | M_WAITOK);
8388 	}
8389 	if (sc->nvram_buf == NULL) {
8390 		return(ENOMEM);
8391 	}
8392 	bzero(sc->nvram_buf, sc->bce_flash_size);
8393 	error = SYSCTL_IN(req, sc->nvram_buf, sc->bce_flash_size);
8394 
8395 	if (req->newlen == sc->bce_flash_size) {
8396 		bce_nvram_write(sc, 0, sc->nvram_buf , sc->bce_flash_size);
8397 	}
8398 
8399 
8400 	return error;
8401 }
8402 #endif
8403 
8404 
8405 /****************************************************************************/
8406 /* Provides a sysctl interface to allow reading a CID.                      */
8407 /*                                                                          */
8408 /* Returns:                                                                 */
8409 /*   0 for success, positive value for failure.                             */
8410 /****************************************************************************/
8411 static int
8412 bce_sysctl_dump_ctx(SYSCTL_HANDLER_ARGS)
8413 {
8414 	struct bce_softc *sc;
8415 	int error, result;
8416 
8417 	result = -1;
8418 	error = sysctl_handle_int(oidp, &result, 0, req);
8419 	if (error || (req->newptr == NULL))
8420 		return (error);
8421 
8422 	/* Make sure the register is accessible. */
8423 	if (result <= TX_CID) {
8424 		sc = (struct bce_softc *)arg1;
8425 		bce_dump_ctx(sc, result);
8426 	}
8427 
8428 	return (error);
8429 }
8430 
8431 
8432  /****************************************************************************/
8433 /* Provides a sysctl interface to forcing the driver to dump state and      */
8434 /* enter the debugger.  DO NOT ENABLE ON PRODUCTION SYSTEMS!                */
8435 /*                                                                          */
8436 /* Returns:                                                                 */
8437 /*   0 for success, positive value for failure.                             */
8438 /****************************************************************************/
8439 static int
8440 bce_sysctl_breakpoint(SYSCTL_HANDLER_ARGS)
8441 {
8442 	int error;
8443 	int result;
8444 	struct bce_softc *sc;
8445 
8446 	result = -1;
8447 	error = sysctl_handle_int(oidp, &result, 0, req);
8448 
8449 	if (error || !req->newptr)
8450 		return (error);
8451 
8452 	if (result == 1) {
8453 		sc = (struct bce_softc *)arg1;
8454 		bce_breakpoint(sc);
8455 	}
8456 
8457 	return error;
8458 }
8459 #endif
8460 
8461 
8462 /****************************************************************************/
8463 /* Adds any sysctl parameters for tuning or debugging purposes.             */
8464 /*                                                                          */
8465 /* Returns:                                                                 */
8466 /*   0 for success, positive value for failure.                             */
8467 /****************************************************************************/
8468 static void
8469 bce_add_sysctls(struct bce_softc *sc)
8470 {
8471 	struct sysctl_ctx_list *ctx;
8472 	struct sysctl_oid_list *children;
8473 
8474 	DBENTER(BCE_VERBOSE_MISC);
8475 
8476 	ctx = device_get_sysctl_ctx(sc->bce_dev);
8477 	children = SYSCTL_CHILDREN(device_get_sysctl_tree(sc->bce_dev));
8478 
8479 #ifdef BCE_DEBUG
8480 	SYSCTL_ADD_INT(ctx, children, OID_AUTO,
8481 	    "l2fhdr_error_sim_control",
8482 	    CTLFLAG_RW, &l2fhdr_error_sim_control,
8483 	    0, "Debug control to force l2fhdr errors");
8484 
8485 	SYSCTL_ADD_INT(ctx, children, OID_AUTO,
8486 	    "l2fhdr_error_sim_count",
8487 	    CTLFLAG_RD, &sc->l2fhdr_error_sim_count,
8488 	    0, "Number of simulated l2_fhdr errors");
8489 #endif
8490 
8491 	SYSCTL_ADD_INT(ctx, children, OID_AUTO,
8492 	    "l2fhdr_error_count",
8493 	    CTLFLAG_RD, &sc->l2fhdr_error_count,
8494 	    0, "Number of l2_fhdr errors");
8495 
8496 #ifdef BCE_DEBUG
8497 	SYSCTL_ADD_INT(ctx, children, OID_AUTO,
8498 	    "mbuf_alloc_failed_sim_control",
8499 	    CTLFLAG_RW, &mbuf_alloc_failed_sim_control,
8500 	    0, "Debug control to force mbuf allocation failures");
8501 
8502 	SYSCTL_ADD_INT(ctx, children, OID_AUTO,
8503 	    "mbuf_alloc_failed_sim_count",
8504 	    CTLFLAG_RD, &sc->mbuf_alloc_failed_sim_count,
8505 	    0, "Number of simulated mbuf cluster allocation failures");
8506 #endif
8507 
8508 	SYSCTL_ADD_INT(ctx, children, OID_AUTO,
8509 	    "mbuf_alloc_failed_count",
8510 	    CTLFLAG_RD, &sc->mbuf_alloc_failed_count,
8511 	    0, "Number of mbuf allocation failures");
8512 
8513 	SYSCTL_ADD_INT(ctx, children, OID_AUTO,
8514 	    "mbuf_frag_count",
8515 	    CTLFLAG_RD, &sc->mbuf_frag_count,
8516 	    0, "Number of fragmented mbufs");
8517 
8518 #ifdef BCE_DEBUG
8519 	SYSCTL_ADD_INT(ctx, children, OID_AUTO,
8520 	    "dma_map_addr_failed_sim_control",
8521 	    CTLFLAG_RW, &dma_map_addr_failed_sim_control,
8522 	    0, "Debug control to force DMA mapping failures");
8523 
8524 	/* ToDo: Figure out how to update this value in bce_dma_map_addr(). */
8525 	SYSCTL_ADD_INT(ctx, children, OID_AUTO,
8526 	    "dma_map_addr_failed_sim_count",
8527 	    CTLFLAG_RD, &sc->dma_map_addr_failed_sim_count,
8528 	    0, "Number of simulated DMA mapping failures");
8529 
8530 #endif
8531 
8532 	SYSCTL_ADD_INT(ctx, children, OID_AUTO,
8533 	    "dma_map_addr_rx_failed_count",
8534 	    CTLFLAG_RD, &sc->dma_map_addr_rx_failed_count,
8535 	    0, "Number of RX DMA mapping failures");
8536 
8537 	SYSCTL_ADD_INT(ctx, children, OID_AUTO,
8538 	    "dma_map_addr_tx_failed_count",
8539 	    CTLFLAG_RD, &sc->dma_map_addr_tx_failed_count,
8540 	    0, "Number of TX DMA mapping failures");
8541 
8542 #ifdef BCE_DEBUG
8543 	SYSCTL_ADD_INT(ctx, children, OID_AUTO,
8544 	    "unexpected_attention_sim_control",
8545 	    CTLFLAG_RW, &unexpected_attention_sim_control,
8546 	    0, "Debug control to simulate unexpected attentions");
8547 
8548 	SYSCTL_ADD_INT(ctx, children, OID_AUTO,
8549 	    "unexpected_attention_sim_count",
8550 	    CTLFLAG_RW, &sc->unexpected_attention_sim_count,
8551 	    0, "Number of simulated unexpected attentions");
8552 #endif
8553 
8554 	SYSCTL_ADD_INT(ctx, children, OID_AUTO,
8555 	    "unexpected_attention_count",
8556 	    CTLFLAG_RW, &sc->unexpected_attention_count,
8557 	    0, "Number of unexpected attentions");
8558 
8559 #ifdef BCE_DEBUG
8560 	SYSCTL_ADD_INT(ctx, children, OID_AUTO,
8561 	    "debug_bootcode_running_failure",
8562 	    CTLFLAG_RW, &bootcode_running_failure_sim_control,
8563 	    0, "Debug control to force bootcode running failures");
8564 
8565 	SYSCTL_ADD_INT(ctx, children, OID_AUTO,
8566 	    "rx_low_watermark",
8567 	    CTLFLAG_RD, &sc->rx_low_watermark,
8568 	    0, "Lowest level of free rx_bd's");
8569 
8570 	SYSCTL_ADD_INT(ctx, children, OID_AUTO,
8571 	    "rx_empty_count",
8572 	    CTLFLAG_RD, &sc->rx_empty_count,
8573 	    0, "Number of times the RX chain was empty");
8574 
8575 	SYSCTL_ADD_INT(ctx, children, OID_AUTO,
8576 	    "tx_hi_watermark",
8577 	    CTLFLAG_RD, &sc->tx_hi_watermark,
8578 	    0, "Highest level of used tx_bd's");
8579 
8580 	SYSCTL_ADD_INT(ctx, children, OID_AUTO,
8581 	    "tx_full_count",
8582 	    CTLFLAG_RD, &sc->tx_full_count,
8583 	    0, "Number of times the TX chain was full");
8584 
8585 	SYSCTL_ADD_INT(ctx, children, OID_AUTO,
8586 	    "tso_frames_requested",
8587 	    CTLFLAG_RD, &sc->tso_frames_requested,
8588 	    0, "Number of TSO frames requested");
8589 
8590 	SYSCTL_ADD_INT(ctx, children, OID_AUTO,
8591 	    "tso_frames_completed",
8592 	    CTLFLAG_RD, &sc->tso_frames_completed,
8593 	    0, "Number of TSO frames completed");
8594 
8595 	SYSCTL_ADD_INT(ctx, children, OID_AUTO,
8596 	    "tso_frames_failed",
8597 	    CTLFLAG_RD, &sc->tso_frames_failed,
8598 	    0, "Number of TSO frames failed");
8599 
8600 	SYSCTL_ADD_INT(ctx, children, OID_AUTO,
8601 	    "csum_offload_ip",
8602 	    CTLFLAG_RD, &sc->csum_offload_ip,
8603 	    0, "Number of IP checksum offload frames");
8604 
8605 	SYSCTL_ADD_INT(ctx, children, OID_AUTO,
8606 	    "csum_offload_tcp_udp",
8607 	    CTLFLAG_RD, &sc->csum_offload_tcp_udp,
8608 	    0, "Number of TCP/UDP checksum offload frames");
8609 
8610 	SYSCTL_ADD_INT(ctx, children, OID_AUTO,
8611 	    "vlan_tagged_frames_rcvd",
8612 	    CTLFLAG_RD, &sc->vlan_tagged_frames_rcvd,
8613 	    0, "Number of VLAN tagged frames received");
8614 
8615 	SYSCTL_ADD_INT(ctx, children, OID_AUTO,
8616 	    "vlan_tagged_frames_stripped",
8617 	    CTLFLAG_RD, &sc->vlan_tagged_frames_stripped,
8618 	    0, "Number of VLAN tagged frames stripped");
8619 
8620 	SYSCTL_ADD_UINT(ctx, children, OID_AUTO,
8621 	    "interrupts_rx",
8622 	    CTLFLAG_RD, &sc->interrupts_rx,
8623 	    0, "Number of RX interrupts");
8624 
8625 	SYSCTL_ADD_UINT(ctx, children, OID_AUTO,
8626 	    "interrupts_tx",
8627 	    CTLFLAG_RD, &sc->interrupts_tx,
8628 	    0, "Number of TX interrupts");
8629 	SYSCTL_ADD_PROC(ctx, children, OID_AUTO,
8630 	    "nvram_dump", CTLTYPE_OPAQUE | CTLFLAG_RD,
8631 	    (void *)sc, 0,
8632 	    sysctl_nvram_dump, "S", "");
8633 #ifdef BCE_NVRAM_WRITE_SUPPORT
8634 	SYSCTL_ADD_PROC(ctx, children, OID_AUTO,
8635 	    "nvram_write", CTLTYPE_OPAQUE | CTLFLAG_WR,
8636 	    (void *)sc, 0,
8637 	    sysctl_nvram_write, "S", "");
8638 #endif
8639 #endif
8640 
8641 	SYSCTL_ADD_ULONG(ctx, children, OID_AUTO,
8642 	    "stat_IfHcInOctets",
8643 	    CTLFLAG_RD, &sc->stat_IfHCInOctets,
8644 	    "Bytes received");
8645 
8646 	SYSCTL_ADD_ULONG(ctx, children, OID_AUTO,
8647 	    "stat_IfHCInBadOctets",
8648 	    CTLFLAG_RD, &sc->stat_IfHCInBadOctets,
8649 	    "Bad bytes received");
8650 
8651 	SYSCTL_ADD_ULONG(ctx, children, OID_AUTO,
8652 	    "stat_IfHCOutOctets",
8653 	    CTLFLAG_RD, &sc->stat_IfHCOutOctets,
8654 	    "Bytes sent");
8655 
8656 	SYSCTL_ADD_ULONG(ctx, children, OID_AUTO,
8657 	    "stat_IfHCOutBadOctets",
8658 	    CTLFLAG_RD, &sc->stat_IfHCOutBadOctets,
8659 	    "Bad bytes sent");
8660 
8661 	SYSCTL_ADD_ULONG(ctx, children, OID_AUTO,
8662 	    "stat_IfHCInUcastPkts",
8663 	    CTLFLAG_RD, &sc->stat_IfHCInUcastPkts,
8664 	    "Unicast packets received");
8665 
8666 	SYSCTL_ADD_ULONG(ctx, children, OID_AUTO,
8667 	    "stat_IfHCInMulticastPkts",
8668 	    CTLFLAG_RD, &sc->stat_IfHCInMulticastPkts,
8669 	    "Multicast packets received");
8670 
8671 	SYSCTL_ADD_ULONG(ctx, children, OID_AUTO,
8672 	    "stat_IfHCInBroadcastPkts",
8673 	    CTLFLAG_RD, &sc->stat_IfHCInBroadcastPkts,
8674 	    "Broadcast packets received");
8675 
8676 	SYSCTL_ADD_ULONG(ctx, children, OID_AUTO,
8677 	    "stat_IfHCOutUcastPkts",
8678 	    CTLFLAG_RD, &sc->stat_IfHCOutUcastPkts,
8679 	    "Unicast packets sent");
8680 
8681 	SYSCTL_ADD_ULONG(ctx, children, OID_AUTO,
8682 	    "stat_IfHCOutMulticastPkts",
8683 	    CTLFLAG_RD, &sc->stat_IfHCOutMulticastPkts,
8684 	    "Multicast packets sent");
8685 
8686 	SYSCTL_ADD_ULONG(ctx, children, OID_AUTO,
8687 	    "stat_IfHCOutBroadcastPkts",
8688 	    CTLFLAG_RD, &sc->stat_IfHCOutBroadcastPkts,
8689 	    "Broadcast packets sent");
8690 
8691 	SYSCTL_ADD_UINT(ctx, children, OID_AUTO,
8692 	    "stat_emac_tx_stat_dot3statsinternalmactransmiterrors",
8693 	    CTLFLAG_RD, &sc->stat_emac_tx_stat_dot3statsinternalmactransmiterrors,
8694 	    0, "Internal MAC transmit errors");
8695 
8696 	SYSCTL_ADD_UINT(ctx, children, OID_AUTO,
8697 	    "stat_Dot3StatsCarrierSenseErrors",
8698 	    CTLFLAG_RD, &sc->stat_Dot3StatsCarrierSenseErrors,
8699 	    0, "Carrier sense errors");
8700 
8701 	SYSCTL_ADD_UINT(ctx, children, OID_AUTO,
8702 	    "stat_Dot3StatsFCSErrors",
8703 	    CTLFLAG_RD, &sc->stat_Dot3StatsFCSErrors,
8704 	    0, "Frame check sequence errors");
8705 
8706 	SYSCTL_ADD_UINT(ctx, children, OID_AUTO,
8707 	    "stat_Dot3StatsAlignmentErrors",
8708 	    CTLFLAG_RD, &sc->stat_Dot3StatsAlignmentErrors,
8709 	    0, "Alignment errors");
8710 
8711 	SYSCTL_ADD_UINT(ctx, children, OID_AUTO,
8712 	    "stat_Dot3StatsSingleCollisionFrames",
8713 	    CTLFLAG_RD, &sc->stat_Dot3StatsSingleCollisionFrames,
8714 	    0, "Single Collision Frames");
8715 
8716 	SYSCTL_ADD_UINT(ctx, children, OID_AUTO,
8717 	    "stat_Dot3StatsMultipleCollisionFrames",
8718 	    CTLFLAG_RD, &sc->stat_Dot3StatsMultipleCollisionFrames,
8719 	    0, "Multiple Collision Frames");
8720 
8721 	SYSCTL_ADD_UINT(ctx, children, OID_AUTO,
8722 	    "stat_Dot3StatsDeferredTransmissions",
8723 	    CTLFLAG_RD, &sc->stat_Dot3StatsDeferredTransmissions,
8724 	    0, "Deferred Transmissions");
8725 
8726 	SYSCTL_ADD_UINT(ctx, children, OID_AUTO,
8727 	    "stat_Dot3StatsExcessiveCollisions",
8728 	    CTLFLAG_RD, &sc->stat_Dot3StatsExcessiveCollisions,
8729 	    0, "Excessive Collisions");
8730 
8731 	SYSCTL_ADD_UINT(ctx, children, OID_AUTO,
8732 	    "stat_Dot3StatsLateCollisions",
8733 	    CTLFLAG_RD, &sc->stat_Dot3StatsLateCollisions,
8734 	    0, "Late Collisions");
8735 
8736 	SYSCTL_ADD_UINT(ctx, children, OID_AUTO,
8737 	    "stat_EtherStatsCollisions",
8738 	    CTLFLAG_RD, &sc->stat_EtherStatsCollisions,
8739 	    0, "Collisions");
8740 
8741 	SYSCTL_ADD_UINT(ctx, children, OID_AUTO,
8742 	    "stat_EtherStatsFragments",
8743 	    CTLFLAG_RD, &sc->stat_EtherStatsFragments,
8744 	    0, "Fragments");
8745 
8746 	SYSCTL_ADD_UINT(ctx, children, OID_AUTO,
8747 	    "stat_EtherStatsJabbers",
8748 	    CTLFLAG_RD, &sc->stat_EtherStatsJabbers,
8749 	    0, "Jabbers");
8750 
8751 	SYSCTL_ADD_UINT(ctx, children, OID_AUTO,
8752 	    "stat_EtherStatsUndersizePkts",
8753 	    CTLFLAG_RD, &sc->stat_EtherStatsUndersizePkts,
8754 	    0, "Undersize packets");
8755 
8756 	SYSCTL_ADD_UINT(ctx, children, OID_AUTO,
8757 	    "stat_EtherStatsOversizePkts",
8758 	    CTLFLAG_RD, &sc->stat_EtherStatsOversizePkts,
8759 	    0, "stat_EtherStatsOversizePkts");
8760 
8761 	SYSCTL_ADD_UINT(ctx, children, OID_AUTO,
8762 	    "stat_EtherStatsPktsRx64Octets",
8763 	    CTLFLAG_RD, &sc->stat_EtherStatsPktsRx64Octets,
8764 	    0, "Bytes received in 64 byte packets");
8765 
8766 	SYSCTL_ADD_UINT(ctx, children, OID_AUTO,
8767 	    "stat_EtherStatsPktsRx65Octetsto127Octets",
8768 	    CTLFLAG_RD, &sc->stat_EtherStatsPktsRx65Octetsto127Octets,
8769 	    0, "Bytes received in 65 to 127 byte packets");
8770 
8771 	SYSCTL_ADD_UINT(ctx, children, OID_AUTO,
8772 	    "stat_EtherStatsPktsRx128Octetsto255Octets",
8773 	    CTLFLAG_RD, &sc->stat_EtherStatsPktsRx128Octetsto255Octets,
8774 	    0, "Bytes received in 128 to 255 byte packets");
8775 
8776 	SYSCTL_ADD_UINT(ctx, children, OID_AUTO,
8777 	    "stat_EtherStatsPktsRx256Octetsto511Octets",
8778 	    CTLFLAG_RD, &sc->stat_EtherStatsPktsRx256Octetsto511Octets,
8779 	    0, "Bytes received in 256 to 511 byte packets");
8780 
8781 	SYSCTL_ADD_UINT(ctx, children, OID_AUTO,
8782 	    "stat_EtherStatsPktsRx512Octetsto1023Octets",
8783 	    CTLFLAG_RD, &sc->stat_EtherStatsPktsRx512Octetsto1023Octets,
8784 	    0, "Bytes received in 512 to 1023 byte packets");
8785 
8786 	SYSCTL_ADD_UINT(ctx, children, OID_AUTO,
8787 	    "stat_EtherStatsPktsRx1024Octetsto1522Octets",
8788 	    CTLFLAG_RD, &sc->stat_EtherStatsPktsRx1024Octetsto1522Octets,
8789 	    0, "Bytes received in 1024 t0 1522 byte packets");
8790 
8791 	SYSCTL_ADD_UINT(ctx, children, OID_AUTO,
8792 	    "stat_EtherStatsPktsRx1523Octetsto9022Octets",
8793 	    CTLFLAG_RD, &sc->stat_EtherStatsPktsRx1523Octetsto9022Octets,
8794 	    0, "Bytes received in 1523 to 9022 byte packets");
8795 
8796 	SYSCTL_ADD_UINT(ctx, children, OID_AUTO,
8797 	    "stat_EtherStatsPktsTx64Octets",
8798 	    CTLFLAG_RD, &sc->stat_EtherStatsPktsTx64Octets,
8799 	    0, "Bytes sent in 64 byte packets");
8800 
8801 	SYSCTL_ADD_UINT(ctx, children, OID_AUTO,
8802 	    "stat_EtherStatsPktsTx65Octetsto127Octets",
8803 	    CTLFLAG_RD, &sc->stat_EtherStatsPktsTx65Octetsto127Octets,
8804 	    0, "Bytes sent in 65 to 127 byte packets");
8805 
8806 	SYSCTL_ADD_UINT(ctx, children, OID_AUTO,
8807 	    "stat_EtherStatsPktsTx128Octetsto255Octets",
8808 	    CTLFLAG_RD, &sc->stat_EtherStatsPktsTx128Octetsto255Octets,
8809 	    0, "Bytes sent in 128 to 255 byte packets");
8810 
8811 	SYSCTL_ADD_UINT(ctx, children, OID_AUTO,
8812 	    "stat_EtherStatsPktsTx256Octetsto511Octets",
8813 	    CTLFLAG_RD, &sc->stat_EtherStatsPktsTx256Octetsto511Octets,
8814 	    0, "Bytes sent in 256 to 511 byte packets");
8815 
8816 	SYSCTL_ADD_UINT(ctx, children, OID_AUTO,
8817 	    "stat_EtherStatsPktsTx512Octetsto1023Octets",
8818 	    CTLFLAG_RD, &sc->stat_EtherStatsPktsTx512Octetsto1023Octets,
8819 	    0, "Bytes sent in 512 to 1023 byte packets");
8820 
8821 	SYSCTL_ADD_UINT(ctx, children, OID_AUTO,
8822 	    "stat_EtherStatsPktsTx1024Octetsto1522Octets",
8823 	    CTLFLAG_RD, &sc->stat_EtherStatsPktsTx1024Octetsto1522Octets,
8824 	    0, "Bytes sent in 1024 to 1522 byte packets");
8825 
8826 	SYSCTL_ADD_UINT(ctx, children, OID_AUTO,
8827 	    "stat_EtherStatsPktsTx1523Octetsto9022Octets",
8828 	    CTLFLAG_RD, &sc->stat_EtherStatsPktsTx1523Octetsto9022Octets,
8829 	    0, "Bytes sent in 1523 to 9022 byte packets");
8830 
8831 	SYSCTL_ADD_UINT(ctx, children, OID_AUTO,
8832 	    "stat_XonPauseFramesReceived",
8833 	    CTLFLAG_RD, &sc->stat_XonPauseFramesReceived,
8834 	    0, "XON pause frames receved");
8835 
8836 	SYSCTL_ADD_UINT(ctx, children, OID_AUTO,
8837 	    "stat_XoffPauseFramesReceived",
8838 	    CTLFLAG_RD, &sc->stat_XoffPauseFramesReceived,
8839 	    0, "XOFF pause frames received");
8840 
8841 	SYSCTL_ADD_UINT(ctx, children, OID_AUTO,
8842 	    "stat_OutXonSent",
8843 	    CTLFLAG_RD, &sc->stat_OutXonSent,
8844 	    0, "XON pause frames sent");
8845 
8846 	SYSCTL_ADD_UINT(ctx, children, OID_AUTO,
8847 	    "stat_OutXoffSent",
8848 	    CTLFLAG_RD, &sc->stat_OutXoffSent,
8849 	    0, "XOFF pause frames sent");
8850 
8851 	SYSCTL_ADD_UINT(ctx, children, OID_AUTO,
8852 	    "stat_FlowControlDone",
8853 	    CTLFLAG_RD, &sc->stat_FlowControlDone,
8854 	    0, "Flow control done");
8855 
8856 	SYSCTL_ADD_UINT(ctx, children, OID_AUTO,
8857 	    "stat_MacControlFramesReceived",
8858 	    CTLFLAG_RD, &sc->stat_MacControlFramesReceived,
8859 	    0, "MAC control frames received");
8860 
8861 	SYSCTL_ADD_UINT(ctx, children, OID_AUTO,
8862 	    "stat_XoffStateEntered",
8863 	    CTLFLAG_RD, &sc->stat_XoffStateEntered,
8864 	    0, "XOFF state entered");
8865 
8866 	SYSCTL_ADD_UINT(ctx, children, OID_AUTO,
8867 	    "stat_IfInFramesL2FilterDiscards",
8868 	    CTLFLAG_RD, &sc->stat_IfInFramesL2FilterDiscards,
8869 	    0, "Received L2 packets discarded");
8870 
8871 	SYSCTL_ADD_UINT(ctx, children, OID_AUTO,
8872 	    "stat_IfInRuleCheckerDiscards",
8873 	    CTLFLAG_RD, &sc->stat_IfInRuleCheckerDiscards,
8874 	    0, "Received packets discarded by rule");
8875 
8876 	SYSCTL_ADD_UINT(ctx, children, OID_AUTO,
8877 	    "stat_IfInFTQDiscards",
8878 	    CTLFLAG_RD, &sc->stat_IfInFTQDiscards,
8879 	    0, "Received packet FTQ discards");
8880 
8881 	SYSCTL_ADD_UINT(ctx, children, OID_AUTO,
8882 	    "stat_IfInMBUFDiscards",
8883 	    CTLFLAG_RD, &sc->stat_IfInMBUFDiscards,
8884 	    0, "Received packets discarded due to lack "
8885 	    "of controller buffer memory");
8886 
8887 	SYSCTL_ADD_UINT(ctx, children, OID_AUTO,
8888 	    "stat_IfInRuleCheckerP4Hit",
8889 	    CTLFLAG_RD, &sc->stat_IfInRuleCheckerP4Hit,
8890 	    0, "Received packets rule checker hits");
8891 
8892 	SYSCTL_ADD_UINT(ctx, children, OID_AUTO,
8893 	    "stat_CatchupInRuleCheckerDiscards",
8894 	    CTLFLAG_RD, &sc->stat_CatchupInRuleCheckerDiscards,
8895 	    0, "Received packets discarded in Catchup path");
8896 
8897 	SYSCTL_ADD_UINT(ctx, children, OID_AUTO,
8898 	    "stat_CatchupInFTQDiscards",
8899 	    CTLFLAG_RD, &sc->stat_CatchupInFTQDiscards,
8900 	    0, "Received packets discarded in FTQ in Catchup path");
8901 
8902 	SYSCTL_ADD_UINT(ctx, children, OID_AUTO,
8903 	    "stat_CatchupInMBUFDiscards",
8904 	    CTLFLAG_RD, &sc->stat_CatchupInMBUFDiscards,
8905 	    0, "Received packets discarded in controller "
8906 	    "buffer memory in Catchup path");
8907 
8908 	SYSCTL_ADD_UINT(ctx, children, OID_AUTO,
8909 	    "stat_CatchupInRuleCheckerP4Hit",
8910 	    CTLFLAG_RD, &sc->stat_CatchupInRuleCheckerP4Hit,
8911 	    0, "Received packets rule checker hits in Catchup path");
8912 
8913 	SYSCTL_ADD_UINT(ctx, children, OID_AUTO,
8914 	    "com_no_buffers",
8915 	    CTLFLAG_RD, &sc->com_no_buffers,
8916 	    0, "Valid packets received but no RX buffers available");
8917 
8918 #ifdef BCE_DEBUG
8919 	SYSCTL_ADD_PROC(ctx, children, OID_AUTO,
8920 	    "driver_state", CTLTYPE_INT | CTLFLAG_RW,
8921 	    (void *)sc, 0,
8922 	    bce_sysctl_driver_state, "I", "Drive state information");
8923 
8924 	SYSCTL_ADD_PROC(ctx, children, OID_AUTO,
8925 	    "hw_state", CTLTYPE_INT | CTLFLAG_RW,
8926 	    (void *)sc, 0,
8927 	    bce_sysctl_hw_state, "I", "Hardware state information");
8928 
8929 	SYSCTL_ADD_PROC(ctx, children, OID_AUTO,
8930 	    "status_block", CTLTYPE_INT | CTLFLAG_RW,
8931 	    (void *)sc, 0,
8932 	    bce_sysctl_status_block, "I", "Dump status block");
8933 
8934 	SYSCTL_ADD_PROC(ctx, children, OID_AUTO,
8935 	    "stats_block", CTLTYPE_INT | CTLFLAG_RW,
8936 	    (void *)sc, 0,
8937 	    bce_sysctl_stats_block, "I", "Dump statistics block");
8938 
8939 	SYSCTL_ADD_PROC(ctx, children, OID_AUTO,
8940 	    "stats_clear", CTLTYPE_INT | CTLFLAG_RW,
8941 	    (void *)sc, 0,
8942 	    bce_sysctl_stats_clear, "I", "Clear statistics block");
8943 
8944 	SYSCTL_ADD_PROC(ctx, children, OID_AUTO,
8945 	    "bc_state", CTLTYPE_INT | CTLFLAG_RW,
8946 	    (void *)sc, 0,
8947 	    bce_sysctl_bc_state, "I", "Bootcode state information");
8948 
8949 	SYSCTL_ADD_PROC(ctx, children, OID_AUTO,
8950 	    "dump_rx_bd_chain", CTLTYPE_INT | CTLFLAG_RW,
8951 	    (void *)sc, 0,
8952 	    bce_sysctl_dump_rx_bd_chain, "I", "Dump RX BD chain");
8953 
8954 	SYSCTL_ADD_PROC(ctx, children, OID_AUTO,
8955 	    "dump_rx_mbuf_chain", CTLTYPE_INT | CTLFLAG_RW,
8956 	    (void *)sc, 0,
8957 	    bce_sysctl_dump_rx_mbuf_chain, "I", "Dump RX MBUF chain");
8958 
8959 	SYSCTL_ADD_PROC(ctx, children, OID_AUTO,
8960 	    "dump_tx_chain", CTLTYPE_INT | CTLFLAG_RW,
8961 	    (void *)sc, 0,
8962 	    bce_sysctl_dump_tx_chain, "I", "Dump tx_bd chain");
8963 
8964 #ifdef BCE_JUMBO_HDRSPLIT
8965 	SYSCTL_ADD_PROC(ctx, children, OID_AUTO,
8966 	    "dump_pg_chain", CTLTYPE_INT | CTLFLAG_RW,
8967 	    (void *)sc, 0,
8968 	    bce_sysctl_dump_pg_chain, "I", "Dump page chain");
8969 #endif
8970 	SYSCTL_ADD_PROC(ctx, children, OID_AUTO,
8971 	    "dump_ctx", CTLTYPE_INT | CTLFLAG_RW,
8972 	    (void *)sc, 0,
8973 	    bce_sysctl_dump_ctx, "I", "Dump context memory");
8974 
8975 	SYSCTL_ADD_PROC(ctx, children, OID_AUTO,
8976 	    "breakpoint", CTLTYPE_INT | CTLFLAG_RW,
8977 	    (void *)sc, 0,
8978 	    bce_sysctl_breakpoint, "I", "Driver breakpoint");
8979 
8980 	SYSCTL_ADD_PROC(ctx, children, OID_AUTO,
8981 	    "reg_read", CTLTYPE_INT | CTLFLAG_RW,
8982 	    (void *)sc, 0,
8983 	    bce_sysctl_reg_read, "I", "Register read");
8984 
8985 	SYSCTL_ADD_PROC(ctx, children, OID_AUTO,
8986 	    "nvram_read", CTLTYPE_INT | CTLFLAG_RW,
8987 	    (void *)sc, 0,
8988 	    bce_sysctl_nvram_read, "I", "NVRAM read");
8989 
8990 	SYSCTL_ADD_PROC(ctx, children, OID_AUTO,
8991 	    "phy_read", CTLTYPE_INT | CTLFLAG_RW,
8992 	    (void *)sc, 0,
8993 	    bce_sysctl_phy_read, "I", "PHY register read");
8994 
8995 #endif
8996 
8997 	DBEXIT(BCE_VERBOSE_MISC);
8998 }
8999 
9000 
9001 /****************************************************************************/
9002 /* BCE Debug Routines                                                       */
9003 /****************************************************************************/
9004 #ifdef BCE_DEBUG
9005 
9006 /****************************************************************************/
9007 /* Freezes the controller to allow for a cohesive state dump.               */
9008 /*                                                                          */
9009 /* Returns:                                                                 */
9010 /*   Nothing.                                                               */
9011 /****************************************************************************/
9012 static __attribute__ ((noinline)) void
9013 bce_freeze_controller(struct bce_softc *sc)
9014 {
9015 	u32 val;
9016 	val = REG_RD(sc, BCE_MISC_COMMAND);
9017 	val |= BCE_MISC_COMMAND_DISABLE_ALL;
9018 	REG_WR(sc, BCE_MISC_COMMAND, val);
9019 }
9020 
9021 
9022 /****************************************************************************/
9023 /* Unfreezes the controller after a freeze operation.  This may not always  */
9024 /* work and the controller will require a reset!                            */
9025 /*                                                                          */
9026 /* Returns:                                                                 */
9027 /*   Nothing.                                                               */
9028 /****************************************************************************/
9029 static __attribute__ ((noinline)) void
9030 bce_unfreeze_controller(struct bce_softc *sc)
9031 {
9032 	u32 val;
9033 	val = REG_RD(sc, BCE_MISC_COMMAND);
9034 	val |= BCE_MISC_COMMAND_ENABLE_ALL;
9035 	REG_WR(sc, BCE_MISC_COMMAND, val);
9036 }
9037 
9038 
9039 /****************************************************************************/
9040 /* Prints out Ethernet frame information from an mbuf.                      */
9041 /*                                                                          */
9042 /* Partially decode an Ethernet frame to look at some important headers.    */
9043 /*                                                                          */
9044 /* Returns:                                                                 */
9045 /*   Nothing.                                                               */
9046 /****************************************************************************/
9047 static __attribute__ ((noinline)) void
9048 bce_dump_enet(struct bce_softc *sc, struct mbuf *m)
9049 {
9050 	struct ether_vlan_header *eh;
9051 	u16 etype;
9052 	int ehlen;
9053 	struct ip *ip;
9054 	struct tcphdr *th;
9055 	struct udphdr *uh;
9056 	struct arphdr *ah;
9057 
9058 	BCE_PRINTF(
9059 	    "-----------------------------"
9060 	    " Frame Decode "
9061 	    "-----------------------------\n");
9062 
9063 	eh = mtod(m, struct ether_vlan_header *);
9064 
9065 	/* Handle VLAN encapsulation if present. */
9066 	if (eh->evl_encap_proto == htons(ETHERTYPE_VLAN)) {
9067 		etype = ntohs(eh->evl_proto);
9068 		ehlen = ETHER_HDR_LEN + ETHER_VLAN_ENCAP_LEN;
9069 	} else {
9070 		etype = ntohs(eh->evl_encap_proto);
9071 		ehlen = ETHER_HDR_LEN;
9072 	}
9073 
9074 	/* ToDo: Add VLAN output. */
9075 	BCE_PRINTF("enet: dest = %6D, src = %6D, type = 0x%04X, hlen = %d\n",
9076 	    eh->evl_dhost, ":", eh->evl_shost, ":", etype, ehlen);
9077 
9078 	switch (etype) {
9079 	case ETHERTYPE_IP:
9080 		ip = (struct ip *)(m->m_data + ehlen);
9081 		BCE_PRINTF("--ip: dest = 0x%08X , src = 0x%08X, "
9082 		    "len = %d bytes, protocol = 0x%02X, xsum = 0x%04X\n",
9083 		    ntohl(ip->ip_dst.s_addr), ntohl(ip->ip_src.s_addr),
9084 		    ntohs(ip->ip_len), ip->ip_p, ntohs(ip->ip_sum));
9085 
9086 		switch (ip->ip_p) {
9087 		case IPPROTO_TCP:
9088 			th = (struct tcphdr *)((caddr_t)ip + (ip->ip_hl << 2));
9089 			BCE_PRINTF("-tcp: dest = %d, src = %d, hlen = "
9090 			    "%d bytes, flags = 0x%b, csum = 0x%04X\n",
9091 			    ntohs(th->th_dport), ntohs(th->th_sport),
9092 			    (th->th_off << 2), th->th_flags,
9093 			    "\20\10CWR\07ECE\06URG\05ACK\04PSH\03RST"
9094 			    "\02SYN\01FIN", ntohs(th->th_sum));
9095 			break;
9096 		case IPPROTO_UDP:
9097 			uh = (struct udphdr *)((caddr_t)ip + (ip->ip_hl << 2));
9098 			BCE_PRINTF("-udp: dest = %d, src = %d, len = %d "
9099 			    "bytes, csum = 0x%04X\n", ntohs(uh->uh_dport),
9100 			    ntohs(uh->uh_sport), ntohs(uh->uh_ulen),
9101 			    ntohs(uh->uh_sum));
9102 			break;
9103 		case IPPROTO_ICMP:
9104 			BCE_PRINTF("icmp:\n");
9105 			break;
9106 		default:
9107 			BCE_PRINTF("----: Other IP protocol.\n");
9108 			}
9109 		break;
9110 	case ETHERTYPE_IPV6:
9111 		BCE_PRINTF("ipv6: No decode supported.\n");
9112 		break;
9113 	case ETHERTYPE_ARP:
9114 		BCE_PRINTF("-arp: ");
9115 		ah = (struct arphdr *) (m->m_data + ehlen);
9116 		switch (ntohs(ah->ar_op)) {
9117 		case ARPOP_REVREQUEST:
9118 			printf("reverse ARP request\n");
9119 			break;
9120 		case ARPOP_REVREPLY:
9121 			printf("reverse ARP reply\n");
9122 			break;
9123 		case ARPOP_REQUEST:
9124 			printf("ARP request\n");
9125 			break;
9126 		case ARPOP_REPLY:
9127 			printf("ARP reply\n");
9128 			break;
9129 		default:
9130 			printf("other ARP operation\n");
9131 		}
9132 		break;
9133 	default:
9134 		BCE_PRINTF("----: Other protocol.\n");
9135 	}
9136 
9137 	BCE_PRINTF(
9138 		"-----------------------------"
9139 		"--------------"
9140 		"-----------------------------\n");
9141 }
9142 
9143 
9144 /****************************************************************************/
9145 /* Prints out information about an mbuf.                                    */
9146 /*                                                                          */
9147 /* Returns:                                                                 */
9148 /*   Nothing.                                                               */
9149 /****************************************************************************/
9150 static __attribute__ ((noinline)) void
9151 bce_dump_mbuf(struct bce_softc *sc, struct mbuf *m)
9152 {
9153 	struct mbuf *mp = m;
9154 
9155 	if (m == NULL) {
9156 		BCE_PRINTF("mbuf: null pointer\n");
9157 		return;
9158 	}
9159 
9160 	while (mp) {
9161 		BCE_PRINTF("mbuf: %p, m_len = %d, m_flags = 0x%b, "
9162 		    "m_data = %p\n", mp, mp->m_len, mp->m_flags,
9163 		    "\20\1M_EXT\2M_PKTHDR\3M_EOR\4M_RDONLY", mp->m_data);
9164 
9165 		if (mp->m_flags & M_PKTHDR) {
9166 			BCE_PRINTF("- m_pkthdr: len = %d, flags = 0x%b, "
9167 			    "csum_flags = %b\n", mp->m_pkthdr.len,
9168 			    mp->m_flags, "\20\12M_BCAST\13M_MCAST\14M_FRAG"
9169 			    "\15M_FIRSTFRAG\16M_LASTFRAG\21M_VLANTAG"
9170 			    "\22M_PROMISC\23M_NOFREE",
9171 			    mp->m_pkthdr.csum_flags,
9172 			    "\20\1CSUM_IP\2CSUM_TCP\3CSUM_UDP\4CSUM_IP_FRAGS"
9173 			    "\5CSUM_FRAGMENT\6CSUM_TSO\11CSUM_IP_CHECKED"
9174 			    "\12CSUM_IP_VALID\13CSUM_DATA_VALID"
9175 			    "\14CSUM_PSEUDO_HDR");
9176 		}
9177 
9178 		if (mp->m_flags & M_EXT) {
9179 			BCE_PRINTF("- m_ext: %p, ext_size = %d, type = ",
9180 			    mp->m_ext.ext_buf, mp->m_ext.ext_size);
9181 			switch (mp->m_ext.ext_type) {
9182 			case EXT_CLUSTER:
9183 				printf("EXT_CLUSTER\n"); break;
9184 			case EXT_SFBUF:
9185 				printf("EXT_SFBUF\n"); break;
9186 			case EXT_JUMBO9:
9187 				printf("EXT_JUMBO9\n"); break;
9188 			case EXT_JUMBO16:
9189 				printf("EXT_JUMBO16\n"); break;
9190 			case EXT_PACKET:
9191 				printf("EXT_PACKET\n"); break;
9192 			case EXT_MBUF:
9193 				printf("EXT_MBUF\n"); break;
9194 			case EXT_NET_DRV:
9195 				printf("EXT_NET_DRV\n"); break;
9196 			case EXT_MOD_TYPE:
9197 				printf("EXT_MDD_TYPE\n"); break;
9198 			case EXT_DISPOSABLE:
9199 				printf("EXT_DISPOSABLE\n"); break;
9200 			case EXT_EXTREF:
9201 				printf("EXT_EXTREF\n"); break;
9202 			default:
9203 				printf("UNKNOWN\n");
9204 			}
9205 		}
9206 
9207 		mp = mp->m_next;
9208 	}
9209 }
9210 
9211 
9212 /****************************************************************************/
9213 /* Prints out the mbufs in the TX mbuf chain.                               */
9214 /*                                                                          */
9215 /* Returns:                                                                 */
9216 /*   Nothing.                                                               */
9217 /****************************************************************************/
9218 static __attribute__ ((noinline)) void
9219 bce_dump_tx_mbuf_chain(struct bce_softc *sc, u16 chain_prod, int count)
9220 {
9221 	struct mbuf *m;
9222 
9223 	BCE_PRINTF(
9224 		"----------------------------"
9225 		"  tx mbuf data  "
9226 		"----------------------------\n");
9227 
9228 	for (int i = 0; i < count; i++) {
9229 	 	m = sc->tx_mbuf_ptr[chain_prod];
9230 		BCE_PRINTF("txmbuf[0x%04X]\n", chain_prod);
9231 		bce_dump_mbuf(sc, m);
9232 		chain_prod = TX_CHAIN_IDX(NEXT_TX_BD(chain_prod));
9233 	}
9234 
9235 	BCE_PRINTF(
9236 		"----------------------------"
9237 		"----------------"
9238 		"----------------------------\n");
9239 }
9240 
9241 
9242 /****************************************************************************/
9243 /* Prints out the mbufs in the RX mbuf chain.                               */
9244 /*                                                                          */
9245 /* Returns:                                                                 */
9246 /*   Nothing.                                                               */
9247 /****************************************************************************/
9248 static __attribute__ ((noinline)) void
9249 bce_dump_rx_mbuf_chain(struct bce_softc *sc, u16 chain_prod, int count)
9250 {
9251 	struct mbuf *m;
9252 
9253 	BCE_PRINTF(
9254 		"----------------------------"
9255 		"  rx mbuf data  "
9256 		"----------------------------\n");
9257 
9258 	for (int i = 0; i < count; i++) {
9259 	 	m = sc->rx_mbuf_ptr[chain_prod];
9260 		BCE_PRINTF("rxmbuf[0x%04X]\n", chain_prod);
9261 		bce_dump_mbuf(sc, m);
9262 		chain_prod = RX_CHAIN_IDX(NEXT_RX_BD(chain_prod));
9263 	}
9264 
9265 
9266 	BCE_PRINTF(
9267 		"----------------------------"
9268 		"----------------"
9269 		"----------------------------\n");
9270 }
9271 
9272 
9273 #ifdef BCE_JUMBO_HDRSPLIT
9274 /****************************************************************************/
9275 /* Prints out the mbufs in the mbuf page chain.                             */
9276 /*                                                                          */
9277 /* Returns:                                                                 */
9278 /*   Nothing.                                                               */
9279 /****************************************************************************/
9280 static __attribute__ ((noinline)) void
9281 bce_dump_pg_mbuf_chain(struct bce_softc *sc, u16 chain_prod, int count)
9282 {
9283 	struct mbuf *m;
9284 
9285 	BCE_PRINTF(
9286 		"----------------------------"
9287 		"  pg mbuf data  "
9288 		"----------------------------\n");
9289 
9290 	for (int i = 0; i < count; i++) {
9291 	 	m = sc->pg_mbuf_ptr[chain_prod];
9292 		BCE_PRINTF("pgmbuf[0x%04X]\n", chain_prod);
9293 		bce_dump_mbuf(sc, m);
9294 		chain_prod = PG_CHAIN_IDX(NEXT_PG_BD(chain_prod));
9295 	}
9296 
9297 
9298 	BCE_PRINTF(
9299 		"----------------------------"
9300 		"----------------"
9301 		"----------------------------\n");
9302 }
9303 #endif
9304 
9305 
9306 /****************************************************************************/
9307 /* Prints out a tx_bd structure.                                            */
9308 /*                                                                          */
9309 /* Returns:                                                                 */
9310 /*   Nothing.                                                               */
9311 /****************************************************************************/
9312 static __attribute__ ((noinline)) void
9313 bce_dump_txbd(struct bce_softc *sc, int idx, struct tx_bd *txbd)
9314 {
9315 	int i = 0;
9316 
9317 	if (idx > MAX_TX_BD)
9318 		/* Index out of range. */
9319 		BCE_PRINTF("tx_bd[0x%04X]: Invalid tx_bd index!\n", idx);
9320 	else if ((idx & USABLE_TX_BD_PER_PAGE) == USABLE_TX_BD_PER_PAGE)
9321 		/* TX Chain page pointer. */
9322 		BCE_PRINTF("tx_bd[0x%04X]: haddr = 0x%08X:%08X, chain page "
9323 		    "pointer\n", idx, txbd->tx_bd_haddr_hi,
9324 		    txbd->tx_bd_haddr_lo);
9325 	else {
9326 		/* Normal tx_bd entry. */
9327 		BCE_PRINTF("tx_bd[0x%04X]: haddr = 0x%08X:%08X, "
9328 		    "mss_nbytes = 0x%08X, vlan tag = 0x%04X, flags = "
9329 		    "0x%04X (", idx, txbd->tx_bd_haddr_hi,
9330 		    txbd->tx_bd_haddr_lo, txbd->tx_bd_mss_nbytes,
9331 		    txbd->tx_bd_vlan_tag, txbd->tx_bd_flags);
9332 
9333 		if (txbd->tx_bd_flags & TX_BD_FLAGS_CONN_FAULT) {
9334 			if (i>0)
9335 				printf("|");
9336 			printf("CONN_FAULT");
9337 			i++;
9338 		}
9339 
9340 		if (txbd->tx_bd_flags & TX_BD_FLAGS_TCP_UDP_CKSUM) {
9341 			if (i>0)
9342 				printf("|");
9343 			printf("TCP_UDP_CKSUM");
9344 			i++;
9345 		}
9346 
9347 		if (txbd->tx_bd_flags & TX_BD_FLAGS_IP_CKSUM) {
9348 			if (i>0)
9349 				printf("|");
9350 			printf("IP_CKSUM");
9351 			i++;
9352 		}
9353 
9354 		if (txbd->tx_bd_flags & TX_BD_FLAGS_VLAN_TAG) {
9355 			if (i>0)
9356 				printf("|");
9357 			printf("VLAN");
9358 			i++;
9359 		}
9360 
9361 		if (txbd->tx_bd_flags & TX_BD_FLAGS_COAL_NOW) {
9362 			if (i>0)
9363 				printf("|");
9364 			printf("COAL_NOW");
9365 			i++;
9366 		}
9367 
9368 		if (txbd->tx_bd_flags & TX_BD_FLAGS_DONT_GEN_CRC) {
9369 			if (i>0)
9370 				printf("|");
9371 			printf("DONT_GEN_CRC");
9372 			i++;
9373 		}
9374 
9375 		if (txbd->tx_bd_flags & TX_BD_FLAGS_START) {
9376 			if (i>0)
9377 				printf("|");
9378 			printf("START");
9379 			i++;
9380 		}
9381 
9382 		if (txbd->tx_bd_flags & TX_BD_FLAGS_END) {
9383 			if (i>0)
9384 				printf("|");
9385 			printf("END");
9386 			i++;
9387 		}
9388 
9389 		if (txbd->tx_bd_flags & TX_BD_FLAGS_SW_LSO) {
9390 			if (i>0)
9391 				printf("|");
9392 			printf("LSO");
9393 			i++;
9394 		}
9395 
9396 		if (txbd->tx_bd_flags & TX_BD_FLAGS_SW_OPTION_WORD) {
9397 			if (i>0)
9398 				printf("|");
9399 			printf("SW_OPTION=%d", ((txbd->tx_bd_flags &
9400 			    TX_BD_FLAGS_SW_OPTION_WORD) >> 8)); i++;
9401 		}
9402 
9403 		if (txbd->tx_bd_flags & TX_BD_FLAGS_SW_FLAGS) {
9404 			if (i>0)
9405 				printf("|");
9406 			printf("SW_FLAGS");
9407 			i++;
9408 		}
9409 
9410 		if (txbd->tx_bd_flags & TX_BD_FLAGS_SW_SNAP) {
9411 			if (i>0)
9412 				printf("|");
9413 			printf("SNAP)");
9414 		} else {
9415 			printf(")\n");
9416 		}
9417 	}
9418 }
9419 
9420 
9421 /****************************************************************************/
9422 /* Prints out a rx_bd structure.                                            */
9423 /*                                                                          */
9424 /* Returns:                                                                 */
9425 /*   Nothing.                                                               */
9426 /****************************************************************************/
9427 static __attribute__ ((noinline)) void
9428 bce_dump_rxbd(struct bce_softc *sc, int idx, struct rx_bd *rxbd)
9429 {
9430 	if (idx > MAX_RX_BD)
9431 		/* Index out of range. */
9432 		BCE_PRINTF("rx_bd[0x%04X]: Invalid rx_bd index!\n", idx);
9433 	else if ((idx & USABLE_RX_BD_PER_PAGE) == USABLE_RX_BD_PER_PAGE)
9434 		/* RX Chain page pointer. */
9435 		BCE_PRINTF("rx_bd[0x%04X]: haddr = 0x%08X:%08X, chain page "
9436 		    "pointer\n", idx, rxbd->rx_bd_haddr_hi,
9437 		    rxbd->rx_bd_haddr_lo);
9438 	else
9439 		/* Normal rx_bd entry. */
9440 		BCE_PRINTF("rx_bd[0x%04X]: haddr = 0x%08X:%08X, nbytes = "
9441 		    "0x%08X, flags = 0x%08X\n", idx, rxbd->rx_bd_haddr_hi,
9442 		    rxbd->rx_bd_haddr_lo, rxbd->rx_bd_len,
9443 		    rxbd->rx_bd_flags);
9444 }
9445 
9446 
9447 #ifdef BCE_JUMBO_HDRSPLIT
9448 /****************************************************************************/
9449 /* Prints out a rx_bd structure in the page chain.                          */
9450 /*                                                                          */
9451 /* Returns:                                                                 */
9452 /*   Nothing.                                                               */
9453 /****************************************************************************/
9454 static __attribute__ ((noinline)) void
9455 bce_dump_pgbd(struct bce_softc *sc, int idx, struct rx_bd *pgbd)
9456 {
9457 	if (idx > MAX_PG_BD)
9458 		/* Index out of range. */
9459 		BCE_PRINTF("pg_bd[0x%04X]: Invalid pg_bd index!\n", idx);
9460 	else if ((idx & USABLE_PG_BD_PER_PAGE) == USABLE_PG_BD_PER_PAGE)
9461 		/* Page Chain page pointer. */
9462 		BCE_PRINTF("px_bd[0x%04X]: haddr = 0x%08X:%08X, chain page pointer\n",
9463 			idx, pgbd->rx_bd_haddr_hi, pgbd->rx_bd_haddr_lo);
9464 	else
9465 		/* Normal rx_bd entry. */
9466 		BCE_PRINTF("pg_bd[0x%04X]: haddr = 0x%08X:%08X, nbytes = 0x%08X, "
9467 			"flags = 0x%08X\n", idx,
9468 			pgbd->rx_bd_haddr_hi, pgbd->rx_bd_haddr_lo,
9469 			pgbd->rx_bd_len, pgbd->rx_bd_flags);
9470 }
9471 #endif
9472 
9473 
9474 /****************************************************************************/
9475 /* Prints out a l2_fhdr structure.                                          */
9476 /*                                                                          */
9477 /* Returns:                                                                 */
9478 /*   Nothing.                                                               */
9479 /****************************************************************************/
9480 static __attribute__ ((noinline)) void
9481 bce_dump_l2fhdr(struct bce_softc *sc, int idx, struct l2_fhdr *l2fhdr)
9482 {
9483 	BCE_PRINTF("l2_fhdr[0x%04X]: status = 0x%b, "
9484 		"pkt_len = %d, vlan = 0x%04x, ip_xsum/hdr_len = 0x%04X, "
9485 		"tcp_udp_xsum = 0x%04X\n", idx,
9486 		l2fhdr->l2_fhdr_status, BCE_L2FHDR_PRINTFB,
9487 		l2fhdr->l2_fhdr_pkt_len, l2fhdr->l2_fhdr_vlan_tag,
9488 		l2fhdr->l2_fhdr_ip_xsum, l2fhdr->l2_fhdr_tcp_udp_xsum);
9489 }
9490 
9491 
9492 /****************************************************************************/
9493 /* Prints out context memory info.  (Only useful for CID 0 to 16.)          */
9494 /*                                                                          */
9495 /* Returns:                                                                 */
9496 /*   Nothing.                                                               */
9497 /****************************************************************************/
9498 static __attribute__ ((noinline)) void
9499 bce_dump_ctx(struct bce_softc *sc, u16 cid)
9500 {
9501 	if (cid > TX_CID) {
9502 		BCE_PRINTF(" Unknown CID\n");
9503 		return;
9504 	}
9505 
9506 	BCE_PRINTF(
9507 	    "----------------------------"
9508 	    "    CTX Data    "
9509 	    "----------------------------\n");
9510 
9511 	BCE_PRINTF("     0x%04X - (CID) Context ID\n", cid);
9512 
9513 	if (cid == RX_CID) {
9514 		BCE_PRINTF(" 0x%08X - (L2CTX_RX_HOST_BDIDX) host rx "
9515 		   "producer index\n",
9516 		    CTX_RD(sc, GET_CID_ADDR(cid), BCE_L2CTX_RX_HOST_BDIDX));
9517 		BCE_PRINTF(" 0x%08X - (L2CTX_RX_HOST_BSEQ) host "
9518 		    "byte sequence\n", CTX_RD(sc, GET_CID_ADDR(cid),
9519 		    BCE_L2CTX_RX_HOST_BSEQ));
9520 		BCE_PRINTF(" 0x%08X - (L2CTX_RX_NX_BSEQ) h/w byte sequence\n",
9521 		    CTX_RD(sc, GET_CID_ADDR(cid), BCE_L2CTX_RX_NX_BSEQ));
9522 		BCE_PRINTF(" 0x%08X - (L2CTX_RX_NX_BDHADDR_HI) h/w buffer "
9523 		    "descriptor address\n",
9524  		    CTX_RD(sc, GET_CID_ADDR(cid), BCE_L2CTX_RX_NX_BDHADDR_HI));
9525 		BCE_PRINTF(" 0x%08X - (L2CTX_RX_NX_BDHADDR_LO) h/w buffer "
9526 		    "descriptor address\n",
9527 		    CTX_RD(sc, GET_CID_ADDR(cid), BCE_L2CTX_RX_NX_BDHADDR_LO));
9528 		BCE_PRINTF(" 0x%08X - (L2CTX_RX_NX_BDIDX) h/w rx consumer "
9529 		    "index\n", CTX_RD(sc, GET_CID_ADDR(cid),
9530 		    BCE_L2CTX_RX_NX_BDIDX));
9531 		BCE_PRINTF(" 0x%08X - (L2CTX_RX_HOST_PG_BDIDX) host page "
9532 		    "producer index\n", CTX_RD(sc, GET_CID_ADDR(cid),
9533 		    BCE_L2CTX_RX_HOST_PG_BDIDX));
9534 		BCE_PRINTF(" 0x%08X - (L2CTX_RX_PG_BUF_SIZE) host rx_bd/page "
9535 		    "buffer size\n", CTX_RD(sc, GET_CID_ADDR(cid),
9536 		    BCE_L2CTX_RX_PG_BUF_SIZE));
9537 		BCE_PRINTF(" 0x%08X - (L2CTX_RX_NX_PG_BDHADDR_HI) h/w page "
9538 		    "chain address\n", CTX_RD(sc, GET_CID_ADDR(cid),
9539 		    BCE_L2CTX_RX_NX_PG_BDHADDR_HI));
9540 		BCE_PRINTF(" 0x%08X - (L2CTX_RX_NX_PG_BDHADDR_LO) h/w page "
9541 		    "chain address\n", CTX_RD(sc, GET_CID_ADDR(cid),
9542 		    BCE_L2CTX_RX_NX_PG_BDHADDR_LO));
9543 		BCE_PRINTF(" 0x%08X - (L2CTX_RX_NX_PG_BDIDX) h/w page "
9544 		    "consumer index\n",	CTX_RD(sc, GET_CID_ADDR(cid),
9545 		    BCE_L2CTX_RX_NX_PG_BDIDX));
9546 	} else if (cid == TX_CID) {
9547 		if ((BCE_CHIP_NUM(sc) == BCE_CHIP_NUM_5709) ||
9548 		    (BCE_CHIP_NUM(sc) == BCE_CHIP_NUM_5716)) {
9549 			BCE_PRINTF(" 0x%08X - (L2CTX_TX_TYPE_XI) ctx type\n",
9550 			    CTX_RD(sc, GET_CID_ADDR(cid),
9551 			    BCE_L2CTX_TX_TYPE_XI));
9552 			BCE_PRINTF(" 0x%08X - (L2CTX_CMD_TX_TYPE_XI) ctx "
9553 			    "cmd\n", CTX_RD(sc, GET_CID_ADDR(cid),
9554 			    BCE_L2CTX_TX_CMD_TYPE_XI));
9555 			BCE_PRINTF(" 0x%08X - (L2CTX_TX_TBDR_BDHADDR_HI_XI) "
9556 			    "h/w buffer descriptor address\n",
9557 			    CTX_RD(sc, GET_CID_ADDR(cid),
9558 			    BCE_L2CTX_TX_TBDR_BHADDR_HI_XI));
9559 			BCE_PRINTF(" 0x%08X - (L2CTX_TX_TBDR_BHADDR_LO_XI) "
9560 			    "h/w buffer	descriptor address\n",
9561 			    CTX_RD(sc, GET_CID_ADDR(cid),
9562 			    BCE_L2CTX_TX_TBDR_BHADDR_LO_XI));
9563 			BCE_PRINTF(" 0x%08X - (L2CTX_TX_HOST_BIDX_XI) "
9564 			    "host producer index\n",
9565 			    CTX_RD(sc, GET_CID_ADDR(cid),
9566 			    BCE_L2CTX_TX_HOST_BIDX_XI));
9567 			BCE_PRINTF(" 0x%08X - (L2CTX_TX_HOST_BSEQ_XI) "
9568 			    "host byte sequence\n",
9569 			    CTX_RD(sc, GET_CID_ADDR(cid),
9570 			    BCE_L2CTX_TX_HOST_BSEQ_XI));
9571 		} else {
9572 			BCE_PRINTF(" 0x%08X - (L2CTX_TX_TYPE) ctx type\n",
9573 			    CTX_RD(sc, GET_CID_ADDR(cid), BCE_L2CTX_TX_TYPE));
9574 			BCE_PRINTF(" 0x%08X - (L2CTX_TX_CMD_TYPE) ctx cmd\n",
9575 			    CTX_RD(sc, GET_CID_ADDR(cid),
9576 			    BCE_L2CTX_TX_CMD_TYPE));
9577 			BCE_PRINTF(" 0x%08X - (L2CTX_TX_TBDR_BDHADDR_HI) "
9578 			    "h/w buffer	descriptor address\n",
9579 			    CTX_RD(sc, GET_CID_ADDR(cid),
9580 			    BCE_L2CTX_TX_TBDR_BHADDR_HI));
9581 			BCE_PRINTF(" 0x%08X - (L2CTX_TX_TBDR_BHADDR_LO) "
9582 			    "h/w buffer	descriptor address\n",
9583 			    CTX_RD(sc, GET_CID_ADDR(cid),
9584 			    BCE_L2CTX_TX_TBDR_BHADDR_LO));
9585 			BCE_PRINTF(" 0x%08X - (L2CTX_TX_HOST_BIDX) host "
9586 			    "producer index\n", CTX_RD(sc, GET_CID_ADDR(cid),
9587 			    BCE_L2CTX_TX_HOST_BIDX));
9588 			BCE_PRINTF(" 0x%08X - (L2CTX_TX_HOST_BSEQ) host byte "
9589 			    "sequence\n", CTX_RD(sc, GET_CID_ADDR(cid),
9590 			    BCE_L2CTX_TX_HOST_BSEQ));
9591 		}
9592 	}
9593 
9594 	BCE_PRINTF(
9595 	   "----------------------------"
9596 	   "    Raw CTX     "
9597 	   "----------------------------\n");
9598 
9599 	for (int i = 0x0; i < 0x300; i += 0x10) {
9600 		BCE_PRINTF("0x%04X: 0x%08X 0x%08X 0x%08X 0x%08X\n", i,
9601 		   CTX_RD(sc, GET_CID_ADDR(cid), i),
9602 		   CTX_RD(sc, GET_CID_ADDR(cid), i + 0x4),
9603 		   CTX_RD(sc, GET_CID_ADDR(cid), i + 0x8),
9604 		   CTX_RD(sc, GET_CID_ADDR(cid), i + 0xc));
9605 	}
9606 
9607 
9608 	BCE_PRINTF(
9609 	   "----------------------------"
9610 	   "----------------"
9611 	   "----------------------------\n");
9612 }
9613 
9614 
9615 /****************************************************************************/
9616 /* Prints out the FTQ data.                                                 */
9617 /*                                                                          */
9618 /* Returns:                                                                */
9619 /*   Nothing.                                                               */
9620 /****************************************************************************/
9621 static __attribute__ ((noinline)) void
9622 bce_dump_ftqs(struct bce_softc *sc)
9623 {
9624 	u32 cmd, ctl, cur_depth, max_depth, valid_cnt, val;
9625 
9626 	BCE_PRINTF(
9627 	    "----------------------------"
9628 	    "    FTQ Data    "
9629 	    "----------------------------\n");
9630 
9631 	BCE_PRINTF("   FTQ    Command    Control   Depth_Now  "
9632 	    "Max_Depth  Valid_Cnt \n");
9633 	BCE_PRINTF(" ------- ---------- ---------- ---------- "
9634 	    "---------- ----------\n");
9635 
9636 	/* Setup the generic statistic counters for the FTQ valid count. */
9637 	val = (BCE_HC_STAT_GEN_SEL_0_GEN_SEL_0_RV2PPQ_VALID_CNT << 24) |
9638 	    (BCE_HC_STAT_GEN_SEL_0_GEN_SEL_0_RXPCQ_VALID_CNT  << 16) |
9639 	    (BCE_HC_STAT_GEN_SEL_0_GEN_SEL_0_RXPQ_VALID_CNT   <<  8) |
9640 	    (BCE_HC_STAT_GEN_SEL_0_GEN_SEL_0_RLUPQ_VALID_CNT);
9641 	REG_WR(sc, BCE_HC_STAT_GEN_SEL_0, val);
9642 
9643 	val = (BCE_HC_STAT_GEN_SEL_0_GEN_SEL_0_TSCHQ_VALID_CNT  << 24) |
9644 	    (BCE_HC_STAT_GEN_SEL_0_GEN_SEL_0_RDMAQ_VALID_CNT  << 16) |
9645 	    (BCE_HC_STAT_GEN_SEL_0_GEN_SEL_0_RV2PTQ_VALID_CNT <<  8) |
9646 	    (BCE_HC_STAT_GEN_SEL_0_GEN_SEL_0_RV2PMQ_VALID_CNT);
9647 	REG_WR(sc, BCE_HC_STAT_GEN_SEL_1, val);
9648 
9649 	val = (BCE_HC_STAT_GEN_SEL_0_GEN_SEL_0_TPATQ_VALID_CNT  << 24) |
9650 	    (BCE_HC_STAT_GEN_SEL_0_GEN_SEL_0_TDMAQ_VALID_CNT  << 16) |
9651 	    (BCE_HC_STAT_GEN_SEL_0_GEN_SEL_0_TXPQ_VALID_CNT   <<  8) |
9652 	    (BCE_HC_STAT_GEN_SEL_0_GEN_SEL_0_TBDRQ_VALID_CNT);
9653 	REG_WR(sc, BCE_HC_STAT_GEN_SEL_2, val);
9654 
9655 	val = (BCE_HC_STAT_GEN_SEL_0_GEN_SEL_0_COMQ_VALID_CNT   << 24) |
9656 	    (BCE_HC_STAT_GEN_SEL_0_GEN_SEL_0_COMTQ_VALID_CNT  << 16) |
9657 	    (BCE_HC_STAT_GEN_SEL_0_GEN_SEL_0_COMXQ_VALID_CNT  <<  8) |
9658 	    (BCE_HC_STAT_GEN_SEL_0_GEN_SEL_0_TASQ_VALID_CNT);
9659 	REG_WR(sc, BCE_HC_STAT_GEN_SEL_3, val);
9660 
9661 	/* Input queue to the Receive Lookup state machine */
9662 	cmd = REG_RD(sc, BCE_RLUP_FTQ_CMD);
9663 	ctl = REG_RD(sc, BCE_RLUP_FTQ_CTL);
9664 	cur_depth = (ctl & BCE_RLUP_FTQ_CTL_CUR_DEPTH) >> 22;
9665 	max_depth = (ctl & BCE_RLUP_FTQ_CTL_MAX_DEPTH) >> 12;
9666 	valid_cnt = REG_RD(sc, BCE_HC_STAT_GEN_STAT0);
9667 	BCE_PRINTF(" RLUP    0x%08X 0x%08X 0x%08X 0x%08X 0x%08X\n",
9668 	    cmd, ctl, cur_depth, max_depth, valid_cnt);
9669 
9670 	/* Input queue to the Receive Processor */
9671 	cmd = REG_RD_IND(sc, BCE_RXP_FTQ_CMD);
9672 	ctl = REG_RD_IND(sc, BCE_RXP_FTQ_CTL);
9673 	cur_depth = (ctl & BCE_RXP_FTQ_CTL_CUR_DEPTH) >> 22;
9674 	max_depth = (ctl & BCE_RXP_FTQ_CTL_MAX_DEPTH) >> 12;
9675 	valid_cnt = REG_RD(sc, BCE_HC_STAT_GEN_STAT1);
9676 	BCE_PRINTF(" RXP     0x%08X 0x%08X 0x%08X 0x%08X 0x%08X\n",
9677 	    cmd, ctl, cur_depth, max_depth, valid_cnt);
9678 
9679 	/* Input queue to the Recevie Processor */
9680 	cmd = REG_RD_IND(sc, BCE_RXP_CFTQ_CMD);
9681 	ctl = REG_RD_IND(sc, BCE_RXP_CFTQ_CTL);
9682 	cur_depth = (ctl & BCE_RXP_CFTQ_CTL_CUR_DEPTH) >> 22;
9683 	max_depth = (ctl & BCE_RXP_CFTQ_CTL_MAX_DEPTH) >> 12;
9684 	valid_cnt = REG_RD(sc, BCE_HC_STAT_GEN_STAT2);
9685 	BCE_PRINTF(" RXPC    0x%08X 0x%08X 0x%08X 0x%08X 0x%08X\n",
9686 	    cmd, ctl, cur_depth, max_depth, valid_cnt);
9687 
9688 	/* Input queue to the Receive Virtual to Physical state machine */
9689 	cmd = REG_RD(sc, BCE_RV2P_PFTQ_CMD);
9690 	ctl = REG_RD(sc, BCE_RV2P_PFTQ_CTL);
9691 	cur_depth = (ctl & BCE_RV2P_PFTQ_CTL_CUR_DEPTH) >> 22;
9692 	max_depth = (ctl & BCE_RV2P_PFTQ_CTL_MAX_DEPTH) >> 12;
9693 	valid_cnt = REG_RD(sc, BCE_HC_STAT_GEN_STAT3);
9694 	BCE_PRINTF(" RV2PP   0x%08X 0x%08X 0x%08X 0x%08X 0x%08X\n",
9695 	    cmd, ctl, cur_depth, max_depth, valid_cnt);
9696 
9697 	/* Input queue to the Recevie Virtual to Physical state machine */
9698 	cmd = REG_RD(sc, BCE_RV2P_MFTQ_CMD);
9699 	ctl = REG_RD(sc, BCE_RV2P_MFTQ_CTL);
9700 	cur_depth = (ctl & BCE_RV2P_MFTQ_CTL_CUR_DEPTH) >> 22;
9701 	max_depth = (ctl & BCE_RV2P_MFTQ_CTL_MAX_DEPTH) >> 12;
9702 	valid_cnt = REG_RD(sc, BCE_HC_STAT_GEN_STAT4);
9703 	BCE_PRINTF(" RV2PM   0x%08X 0x%08X 0x%08X 0x%08X 0x%08X\n",
9704 	    cmd, ctl, cur_depth, max_depth, valid_cnt);
9705 
9706 	/* Input queue to the Receive Virtual to Physical state machine */
9707 	cmd = REG_RD(sc, BCE_RV2P_TFTQ_CMD);
9708 	ctl = REG_RD(sc, BCE_RV2P_TFTQ_CTL);
9709 	cur_depth = (ctl & BCE_RV2P_TFTQ_CTL_CUR_DEPTH) >> 22;
9710 	max_depth = (ctl & BCE_RV2P_TFTQ_CTL_MAX_DEPTH) >> 12;
9711 	valid_cnt = REG_RD(sc, BCE_HC_STAT_GEN_STAT5);
9712 	BCE_PRINTF(" RV2PT   0x%08X 0x%08X 0x%08X 0x%08X 0x%08X\n",
9713 	    cmd, ctl, cur_depth, max_depth, valid_cnt);
9714 
9715 	/* Input queue to the Receive DMA state machine */
9716 	cmd = REG_RD(sc, BCE_RDMA_FTQ_CMD);
9717 	ctl = REG_RD(sc, BCE_RDMA_FTQ_CTL);
9718 	cur_depth = (ctl & BCE_RDMA_FTQ_CTL_CUR_DEPTH) >> 22;
9719 	max_depth = (ctl & BCE_RDMA_FTQ_CTL_MAX_DEPTH) >> 12;
9720 	valid_cnt = REG_RD(sc, BCE_HC_STAT_GEN_STAT6);
9721 	BCE_PRINTF(" RDMA    0x%08X 0x%08X 0x%08X 0x%08X 0x%08X\n",
9722 	    cmd, ctl, cur_depth, max_depth, valid_cnt);
9723 
9724 	/* Input queue to the Transmit Scheduler state machine */
9725 	cmd = REG_RD(sc, BCE_TSCH_FTQ_CMD);
9726 	ctl = REG_RD(sc, BCE_TSCH_FTQ_CTL);
9727 	cur_depth = (ctl & BCE_TSCH_FTQ_CTL_CUR_DEPTH) >> 22;
9728 	max_depth = (ctl & BCE_TSCH_FTQ_CTL_MAX_DEPTH) >> 12;
9729 	valid_cnt = REG_RD(sc, BCE_HC_STAT_GEN_STAT7);
9730 	BCE_PRINTF(" TSCH    0x%08X 0x%08X 0x%08X 0x%08X 0x%08X\n",
9731 	    cmd, ctl, cur_depth, max_depth, valid_cnt);
9732 
9733 	/* Input queue to the Transmit Buffer Descriptor state machine */
9734 	cmd = REG_RD(sc, BCE_TBDR_FTQ_CMD);
9735 	ctl = REG_RD(sc, BCE_TBDR_FTQ_CTL);
9736 	cur_depth = (ctl & BCE_TBDR_FTQ_CTL_CUR_DEPTH) >> 22;
9737 	max_depth = (ctl & BCE_TBDR_FTQ_CTL_MAX_DEPTH) >> 12;
9738 	valid_cnt = REG_RD(sc, BCE_HC_STAT_GEN_STAT8);
9739 	BCE_PRINTF(" TBDR    0x%08X 0x%08X 0x%08X 0x%08X 0x%08X\n",
9740 	    cmd, ctl, cur_depth, max_depth, valid_cnt);
9741 
9742 	/* Input queue to the Transmit Processor */
9743 	cmd = REG_RD_IND(sc, BCE_TXP_FTQ_CMD);
9744 	ctl = REG_RD_IND(sc, BCE_TXP_FTQ_CTL);
9745 	cur_depth = (ctl & BCE_TXP_FTQ_CTL_CUR_DEPTH) >> 22;
9746 	max_depth = (ctl & BCE_TXP_FTQ_CTL_MAX_DEPTH) >> 12;
9747 	valid_cnt = REG_RD(sc, BCE_HC_STAT_GEN_STAT9);
9748 	BCE_PRINTF(" TXP     0x%08X 0x%08X 0x%08X 0x%08X 0x%08X\n",
9749 	    cmd, ctl, cur_depth, max_depth, valid_cnt);
9750 
9751 	/* Input queue to the Transmit DMA state machine */
9752 	cmd = REG_RD(sc, BCE_TDMA_FTQ_CMD);
9753 	ctl = REG_RD(sc, BCE_TDMA_FTQ_CTL);
9754 	cur_depth = (ctl & BCE_TDMA_FTQ_CTL_CUR_DEPTH) >> 22;
9755 	max_depth = (ctl & BCE_TDMA_FTQ_CTL_MAX_DEPTH) >> 12;
9756 	valid_cnt = REG_RD(sc, BCE_HC_STAT_GEN_STAT10);
9757 	BCE_PRINTF(" TDMA    0x%08X 0x%08X 0x%08X 0x%08X 0x%08X\n",
9758 	    cmd, ctl, cur_depth, max_depth, valid_cnt);
9759 
9760 	/* Input queue to the Transmit Patch-Up Processor */
9761 	cmd = REG_RD_IND(sc, BCE_TPAT_FTQ_CMD);
9762 	ctl = REG_RD_IND(sc, BCE_TPAT_FTQ_CTL);
9763 	cur_depth = (ctl & BCE_TPAT_FTQ_CTL_CUR_DEPTH) >> 22;
9764 	max_depth = (ctl & BCE_TPAT_FTQ_CTL_MAX_DEPTH) >> 12;
9765 	valid_cnt = REG_RD(sc, BCE_HC_STAT_GEN_STAT11);
9766 	BCE_PRINTF(" TPAT    0x%08X 0x%08X 0x%08X 0x%08X 0x%08X\n",
9767 	    cmd, ctl, cur_depth, max_depth, valid_cnt);
9768 
9769 	/* Input queue to the Transmit Assembler state machine */
9770 	cmd = REG_RD_IND(sc, BCE_TAS_FTQ_CMD);
9771 	ctl = REG_RD_IND(sc, BCE_TAS_FTQ_CTL);
9772 	cur_depth = (ctl & BCE_TAS_FTQ_CTL_CUR_DEPTH) >> 22;
9773 	max_depth = (ctl & BCE_TAS_FTQ_CTL_MAX_DEPTH) >> 12;
9774 	valid_cnt = REG_RD(sc, BCE_HC_STAT_GEN_STAT12);
9775 	BCE_PRINTF(" TAS     0x%08X 0x%08X 0x%08X 0x%08X 0x%08X\n",
9776 	    cmd, ctl, cur_depth, max_depth, valid_cnt);
9777 
9778 	/* Input queue to the Completion Processor */
9779 	cmd = REG_RD_IND(sc, BCE_COM_COMXQ_FTQ_CMD);
9780 	ctl = REG_RD_IND(sc, BCE_COM_COMXQ_FTQ_CTL);
9781 	cur_depth = (ctl & BCE_COM_COMXQ_FTQ_CTL_CUR_DEPTH) >> 22;
9782 	max_depth = (ctl & BCE_COM_COMXQ_FTQ_CTL_MAX_DEPTH) >> 12;
9783 	valid_cnt = REG_RD(sc, BCE_HC_STAT_GEN_STAT13);
9784 	BCE_PRINTF(" COMX    0x%08X 0x%08X 0x%08X 0x%08X 0x%08X\n",
9785 	    cmd, ctl, cur_depth, max_depth, valid_cnt);
9786 
9787 	/* Input queue to the Completion Processor */
9788 	cmd = REG_RD_IND(sc, BCE_COM_COMTQ_FTQ_CMD);
9789 	ctl = REG_RD_IND(sc, BCE_COM_COMTQ_FTQ_CTL);
9790 	cur_depth = (ctl & BCE_COM_COMTQ_FTQ_CTL_CUR_DEPTH) >> 22;
9791 	max_depth = (ctl & BCE_COM_COMTQ_FTQ_CTL_MAX_DEPTH) >> 12;
9792 	valid_cnt = REG_RD(sc, BCE_HC_STAT_GEN_STAT14);
9793 	BCE_PRINTF(" COMT    0x%08X 0x%08X 0x%08X 0x%08X 0x%08X\n",
9794 	    cmd, ctl, cur_depth, max_depth, valid_cnt);
9795 
9796 	/* Input queue to the Completion Processor */
9797 	cmd = REG_RD_IND(sc, BCE_COM_COMQ_FTQ_CMD);
9798 	ctl = REG_RD_IND(sc, BCE_COM_COMQ_FTQ_CTL);
9799 	cur_depth = (ctl & BCE_COM_COMQ_FTQ_CTL_CUR_DEPTH) >> 22;
9800 	max_depth = (ctl & BCE_COM_COMQ_FTQ_CTL_MAX_DEPTH) >> 12;
9801 	valid_cnt = REG_RD(sc, BCE_HC_STAT_GEN_STAT15);
9802 	BCE_PRINTF(" COMX    0x%08X 0x%08X 0x%08X 0x%08X 0x%08X\n",
9803 	    cmd, ctl, cur_depth, max_depth, valid_cnt);
9804 
9805 	/* Setup the generic statistic counters for the FTQ valid count. */
9806 	val = (BCE_HC_STAT_GEN_SEL_0_GEN_SEL_0_CSQ_VALID_CNT  << 16) |
9807 	    (BCE_HC_STAT_GEN_SEL_0_GEN_SEL_0_CPQ_VALID_CNT  <<  8) |
9808 	    (BCE_HC_STAT_GEN_SEL_0_GEN_SEL_0_MGMQ_VALID_CNT);
9809 
9810 	if ((BCE_CHIP_NUM(sc) == BCE_CHIP_NUM_5709) ||
9811 	    (BCE_CHIP_NUM(sc) == BCE_CHIP_NUM_5716))
9812 		val = val |
9813 		    (BCE_HC_STAT_GEN_SEL_0_GEN_SEL_0_RV2PCSQ_VALID_CNT_XI <<
9814 		     24);
9815 	REG_WR(sc, BCE_HC_STAT_GEN_SEL_0, val);
9816 
9817 	/* Input queue to the Management Control Processor */
9818 	cmd = REG_RD_IND(sc, BCE_MCP_MCPQ_FTQ_CMD);
9819 	ctl = REG_RD_IND(sc, BCE_MCP_MCPQ_FTQ_CTL);
9820 	cur_depth = (ctl & BCE_MCP_MCPQ_FTQ_CTL_CUR_DEPTH) >> 22;
9821 	max_depth = (ctl & BCE_MCP_MCPQ_FTQ_CTL_MAX_DEPTH) >> 12;
9822 	valid_cnt = REG_RD(sc, BCE_HC_STAT_GEN_STAT0);
9823 	BCE_PRINTF(" MCP     0x%08X 0x%08X 0x%08X 0x%08X 0x%08X\n",
9824 	    cmd, ctl, cur_depth, max_depth, valid_cnt);
9825 
9826 	/* Input queue to the Command Processor */
9827 	cmd = REG_RD_IND(sc, BCE_CP_CPQ_FTQ_CMD);
9828 	ctl = REG_RD_IND(sc, BCE_CP_CPQ_FTQ_CTL);
9829 	cur_depth = (ctl & BCE_CP_CPQ_FTQ_CTL_CUR_DEPTH) >> 22;
9830 	max_depth = (ctl & BCE_CP_CPQ_FTQ_CTL_MAX_DEPTH) >> 12;
9831 	valid_cnt = REG_RD(sc, BCE_HC_STAT_GEN_STAT1);
9832 	BCE_PRINTF(" CP      0x%08X 0x%08X 0x%08X 0x%08X 0x%08X\n",
9833 	    cmd, ctl, cur_depth, max_depth, valid_cnt);
9834 
9835 	/* Input queue to the Completion Scheduler state machine */
9836 	cmd = REG_RD(sc, BCE_CSCH_CH_FTQ_CMD);
9837 	ctl = REG_RD(sc, BCE_CSCH_CH_FTQ_CTL);
9838 	cur_depth = (ctl & BCE_CSCH_CH_FTQ_CTL_CUR_DEPTH) >> 22;
9839 	max_depth = (ctl & BCE_CSCH_CH_FTQ_CTL_MAX_DEPTH) >> 12;
9840 	valid_cnt = REG_RD(sc, BCE_HC_STAT_GEN_STAT2);
9841 	BCE_PRINTF(" CS      0x%08X 0x%08X 0x%08X 0x%08X 0x%08X\n",
9842 	    cmd, ctl, cur_depth, max_depth, valid_cnt);
9843 
9844 	if ((BCE_CHIP_NUM(sc) == BCE_CHIP_NUM_5709) ||
9845 	    (BCE_CHIP_NUM(sc) == BCE_CHIP_NUM_5716)) {
9846 		/* Input queue to the RV2P Command Scheduler */
9847 		cmd = REG_RD(sc, BCE_RV2PCSR_FTQ_CMD);
9848 		ctl = REG_RD(sc, BCE_RV2PCSR_FTQ_CTL);
9849 		cur_depth = (ctl & 0xFFC00000) >> 22;
9850 		max_depth = (ctl & 0x003FF000) >> 12;
9851 		valid_cnt = REG_RD(sc, BCE_HC_STAT_GEN_STAT3);
9852 		BCE_PRINTF(" RV2PCSR 0x%08X 0x%08X 0x%08X 0x%08X 0x%08X\n",
9853 		    cmd, ctl, cur_depth, max_depth, valid_cnt);
9854 	}
9855 
9856 	BCE_PRINTF(
9857 	    "----------------------------"
9858 	    "----------------"
9859 	    "----------------------------\n");
9860 }
9861 
9862 
9863 /****************************************************************************/
9864 /* Prints out the TX chain.                                                 */
9865 /*                                                                          */
9866 /* Returns:                                                                 */
9867 /*   Nothing.                                                               */
9868 /****************************************************************************/
9869 static __attribute__ ((noinline)) void
9870 bce_dump_tx_chain(struct bce_softc *sc, u16 tx_prod, int count)
9871 {
9872 	struct tx_bd *txbd;
9873 
9874 	/* First some info about the tx_bd chain structure. */
9875 	BCE_PRINTF(
9876 	    "----------------------------"
9877 	    "  tx_bd  chain  "
9878 	    "----------------------------\n");
9879 
9880 	BCE_PRINTF("page size      = 0x%08X, tx chain pages        = 0x%08X\n",
9881 	    (u32) BCM_PAGE_SIZE, (u32) TX_PAGES);
9882 	BCE_PRINTF("tx_bd per page = 0x%08X, usable tx_bd per page = 0x%08X\n",
9883 	    (u32) TOTAL_TX_BD_PER_PAGE, (u32) USABLE_TX_BD_PER_PAGE);
9884 	BCE_PRINTF("total tx_bd    = 0x%08X\n", (u32) TOTAL_TX_BD);
9885 
9886 	BCE_PRINTF(
9887 	    "----------------------------"
9888 	    "   tx_bd data   "
9889 	    "----------------------------\n");
9890 
9891 	/* Now print out a decoded list of TX buffer descriptors. */
9892 	for (int i = 0; i < count; i++) {
9893 	 	txbd = &sc->tx_bd_chain[TX_PAGE(tx_prod)][TX_IDX(tx_prod)];
9894 		bce_dump_txbd(sc, tx_prod, txbd);
9895 		tx_prod++;
9896 	}
9897 
9898 	BCE_PRINTF(
9899 	    "----------------------------"
9900 	    "----------------"
9901 	    "----------------------------\n");
9902 }
9903 
9904 
9905 /****************************************************************************/
9906 /* Prints out the RX chain.                                                 */
9907 /*                                                                          */
9908 /* Returns:                                                                 */
9909 /*   Nothing.                                                               */
9910 /****************************************************************************/
9911 static __attribute__ ((noinline)) void
9912 bce_dump_rx_bd_chain(struct bce_softc *sc, u16 rx_prod, int count)
9913 {
9914 	struct rx_bd *rxbd;
9915 
9916 	/* First some info about the rx_bd chain structure. */
9917 	BCE_PRINTF(
9918 	    "----------------------------"
9919 	    "  rx_bd  chain  "
9920 	    "----------------------------\n");
9921 
9922 	BCE_PRINTF("page size      = 0x%08X, rx chain pages        = 0x%08X\n",
9923 	    (u32) BCM_PAGE_SIZE, (u32) RX_PAGES);
9924 
9925 	BCE_PRINTF("rx_bd per page = 0x%08X, usable rx_bd per page = 0x%08X\n",
9926 	    (u32) TOTAL_RX_BD_PER_PAGE, (u32) USABLE_RX_BD_PER_PAGE);
9927 
9928 	BCE_PRINTF("total rx_bd    = 0x%08X\n", (u32) TOTAL_RX_BD);
9929 
9930 	BCE_PRINTF(
9931 	    "----------------------------"
9932 	    "   rx_bd data   "
9933 	    "----------------------------\n");
9934 
9935 	/* Now print out the rx_bd's themselves. */
9936 	for (int i = 0; i < count; i++) {
9937 		rxbd = &sc->rx_bd_chain[RX_PAGE(rx_prod)][RX_IDX(rx_prod)];
9938 		bce_dump_rxbd(sc, rx_prod, rxbd);
9939 		rx_prod = RX_CHAIN_IDX(rx_prod + 1);
9940 	}
9941 
9942 	BCE_PRINTF(
9943 	    "----------------------------"
9944 	    "----------------"
9945 	    "----------------------------\n");
9946 }
9947 
9948 
9949 #ifdef BCE_JUMBO_HDRSPLIT
9950 /****************************************************************************/
9951 /* Prints out the page chain.                                               */
9952 /*                                                                          */
9953 /* Returns:                                                                 */
9954 /*   Nothing.                                                               */
9955 /****************************************************************************/
9956 static __attribute__ ((noinline)) void
9957 bce_dump_pg_chain(struct bce_softc *sc, u16 pg_prod, int count)
9958 {
9959 	struct rx_bd *pgbd;
9960 
9961 	/* First some info about the page chain structure. */
9962 	BCE_PRINTF(
9963 	    "----------------------------"
9964 	    "   page chain   "
9965 	    "----------------------------\n");
9966 
9967 	BCE_PRINTF("page size      = 0x%08X, pg chain pages        = 0x%08X\n",
9968 	    (u32) BCM_PAGE_SIZE, (u32) PG_PAGES);
9969 
9970 	BCE_PRINTF("rx_bd per page = 0x%08X, usable rx_bd per page = 0x%08X\n",
9971 	    (u32) TOTAL_PG_BD_PER_PAGE, (u32) USABLE_PG_BD_PER_PAGE);
9972 
9973 	BCE_PRINTF("total rx_bd    = 0x%08X, max_pg_bd             = 0x%08X\n",
9974 	    (u32) TOTAL_PG_BD, (u32) MAX_PG_BD);
9975 
9976 	BCE_PRINTF(
9977 	    "----------------------------"
9978 	    "   page data    "
9979 	    "----------------------------\n");
9980 
9981 	/* Now print out the rx_bd's themselves. */
9982 	for (int i = 0; i < count; i++) {
9983 		pgbd = &sc->pg_bd_chain[PG_PAGE(pg_prod)][PG_IDX(pg_prod)];
9984 		bce_dump_pgbd(sc, pg_prod, pgbd);
9985 		pg_prod = PG_CHAIN_IDX(pg_prod + 1);
9986 	}
9987 
9988 	BCE_PRINTF(
9989 	    "----------------------------"
9990 	    "----------------"
9991 	    "----------------------------\n");
9992 }
9993 #endif
9994 
9995 
9996 #define BCE_PRINT_RX_CONS(arg)						\
9997 if (sblk->status_rx_quick_consumer_index##arg)				\
9998 	BCE_PRINTF("0x%04X(0x%04X) - rx_quick_consumer_index%d\n",	\
9999 	    sblk->status_rx_quick_consumer_index##arg, (u16)		\
10000 	    RX_CHAIN_IDX(sblk->status_rx_quick_consumer_index##arg),	\
10001 	    arg);
10002 
10003 
10004 #define BCE_PRINT_TX_CONS(arg)						\
10005 if (sblk->status_tx_quick_consumer_index##arg)				\
10006 	BCE_PRINTF("0x%04X(0x%04X) - tx_quick_consumer_index%d\n",	\
10007 	    sblk->status_tx_quick_consumer_index##arg, (u16)		\
10008 	    TX_CHAIN_IDX(sblk->status_tx_quick_consumer_index##arg),	\
10009 	    arg);
10010 
10011 /****************************************************************************/
10012 /* Prints out the status block from host memory.                            */
10013 /*                                                                          */
10014 /* Returns:                                                                 */
10015 /*   Nothing.                                                               */
10016 /****************************************************************************/
10017 static __attribute__ ((noinline)) void
10018 bce_dump_status_block(struct bce_softc *sc)
10019 {
10020 	struct status_block *sblk;
10021 
10022 	sblk = sc->status_block;
10023 
10024 	BCE_PRINTF(
10025 	    "----------------------------"
10026 	    "  Status Block  "
10027 	    "----------------------------\n");
10028 
10029 	/* Theses indices are used for normal L2 drivers. */
10030 	BCE_PRINTF("    0x%08X - attn_bits\n",
10031 	    sblk->status_attn_bits);
10032 
10033 	BCE_PRINTF("    0x%08X - attn_bits_ack\n",
10034 	    sblk->status_attn_bits_ack);
10035 
10036 	BCE_PRINT_RX_CONS(0);
10037 	BCE_PRINT_TX_CONS(0)
10038 
10039 	BCE_PRINTF("        0x%04X - status_idx\n", sblk->status_idx);
10040 
10041 	/* Theses indices are not used for normal L2 drivers. */
10042 	BCE_PRINT_RX_CONS(1);   BCE_PRINT_RX_CONS(2);   BCE_PRINT_RX_CONS(3);
10043 	BCE_PRINT_RX_CONS(4);   BCE_PRINT_RX_CONS(5);   BCE_PRINT_RX_CONS(6);
10044 	BCE_PRINT_RX_CONS(7);   BCE_PRINT_RX_CONS(8);   BCE_PRINT_RX_CONS(9);
10045 	BCE_PRINT_RX_CONS(10);  BCE_PRINT_RX_CONS(11);  BCE_PRINT_RX_CONS(12);
10046 	BCE_PRINT_RX_CONS(13);  BCE_PRINT_RX_CONS(14);  BCE_PRINT_RX_CONS(15);
10047 
10048 	BCE_PRINT_TX_CONS(1);   BCE_PRINT_TX_CONS(2);   BCE_PRINT_TX_CONS(3);
10049 
10050 	if (sblk->status_completion_producer_index ||
10051 	    sblk->status_cmd_consumer_index)
10052 		BCE_PRINTF("com_prod  = 0x%08X, cmd_cons      = 0x%08X\n",
10053 		    sblk->status_completion_producer_index,
10054 		    sblk->status_cmd_consumer_index);
10055 
10056 	BCE_PRINTF(
10057 	    "----------------------------"
10058 	    "----------------"
10059 	    "----------------------------\n");
10060 }
10061 
10062 
10063 #define BCE_PRINT_64BIT_STAT(arg) 				\
10064 if (sblk->arg##_lo || sblk->arg##_hi)				\
10065 	BCE_PRINTF("0x%08X:%08X : %s\n", sblk->arg##_hi,	\
10066 	    sblk->arg##_lo, #arg);
10067 
10068 #define BCE_PRINT_32BIT_STAT(arg)				\
10069 if (sblk->arg)							\
10070 	BCE_PRINTF("         0x%08X : %s\n", 			\
10071 	    sblk->arg, #arg);
10072 
10073 /****************************************************************************/
10074 /* Prints out the statistics block from host memory.                        */
10075 /*                                                                          */
10076 /* Returns:                                                                 */
10077 /*   Nothing.                                                               */
10078 /****************************************************************************/
10079 static __attribute__ ((noinline)) void
10080 bce_dump_stats_block(struct bce_softc *sc)
10081 {
10082 	struct statistics_block *sblk;
10083 
10084 	sblk = sc->stats_block;
10085 
10086 	BCE_PRINTF(
10087 	    "---------------"
10088 	    " Stats Block  (All Stats Not Shown Are 0) "
10089 	    "---------------\n");
10090 
10091 	BCE_PRINT_64BIT_STAT(stat_IfHCInOctets);
10092 	BCE_PRINT_64BIT_STAT(stat_IfHCInBadOctets);
10093 	BCE_PRINT_64BIT_STAT(stat_IfHCOutOctets);
10094 	BCE_PRINT_64BIT_STAT(stat_IfHCOutBadOctets);
10095 	BCE_PRINT_64BIT_STAT(stat_IfHCInUcastPkts);
10096 	BCE_PRINT_64BIT_STAT(stat_IfHCInBroadcastPkts);
10097 	BCE_PRINT_64BIT_STAT(stat_IfHCInMulticastPkts);
10098 	BCE_PRINT_64BIT_STAT(stat_IfHCOutUcastPkts);
10099 	BCE_PRINT_64BIT_STAT(stat_IfHCOutBroadcastPkts);
10100 	BCE_PRINT_64BIT_STAT(stat_IfHCOutMulticastPkts);
10101 	BCE_PRINT_32BIT_STAT(
10102 	    stat_emac_tx_stat_dot3statsinternalmactransmiterrors);
10103 	BCE_PRINT_32BIT_STAT(stat_Dot3StatsCarrierSenseErrors);
10104 	BCE_PRINT_32BIT_STAT(stat_Dot3StatsFCSErrors);
10105 	BCE_PRINT_32BIT_STAT(stat_Dot3StatsAlignmentErrors);
10106 	BCE_PRINT_32BIT_STAT(stat_Dot3StatsSingleCollisionFrames);
10107 	BCE_PRINT_32BIT_STAT(stat_Dot3StatsMultipleCollisionFrames);
10108 	BCE_PRINT_32BIT_STAT(stat_Dot3StatsDeferredTransmissions);
10109 	BCE_PRINT_32BIT_STAT(stat_Dot3StatsExcessiveCollisions);
10110 	BCE_PRINT_32BIT_STAT(stat_Dot3StatsLateCollisions);
10111 	BCE_PRINT_32BIT_STAT(stat_EtherStatsCollisions);
10112 	BCE_PRINT_32BIT_STAT(stat_EtherStatsFragments);
10113 	BCE_PRINT_32BIT_STAT(stat_EtherStatsJabbers);
10114 	BCE_PRINT_32BIT_STAT(stat_EtherStatsUndersizePkts);
10115 	BCE_PRINT_32BIT_STAT(stat_EtherStatsOversizePkts);
10116 	BCE_PRINT_32BIT_STAT(stat_EtherStatsPktsRx64Octets);
10117 	BCE_PRINT_32BIT_STAT(stat_EtherStatsPktsRx65Octetsto127Octets);
10118 	BCE_PRINT_32BIT_STAT(stat_EtherStatsPktsRx128Octetsto255Octets);
10119 	BCE_PRINT_32BIT_STAT(stat_EtherStatsPktsRx256Octetsto511Octets);
10120 	BCE_PRINT_32BIT_STAT(stat_EtherStatsPktsRx512Octetsto1023Octets);
10121 	BCE_PRINT_32BIT_STAT(stat_EtherStatsPktsRx1024Octetsto1522Octets);
10122 	BCE_PRINT_32BIT_STAT(stat_EtherStatsPktsRx1523Octetsto9022Octets);
10123 	BCE_PRINT_32BIT_STAT(stat_EtherStatsPktsTx64Octets);
10124 	BCE_PRINT_32BIT_STAT(stat_EtherStatsPktsTx65Octetsto127Octets);
10125 	BCE_PRINT_32BIT_STAT(stat_EtherStatsPktsTx128Octetsto255Octets);
10126 	BCE_PRINT_32BIT_STAT(stat_EtherStatsPktsTx256Octetsto511Octets);
10127 	BCE_PRINT_32BIT_STAT(stat_EtherStatsPktsTx512Octetsto1023Octets);
10128 	BCE_PRINT_32BIT_STAT(stat_EtherStatsPktsTx1024Octetsto1522Octets);
10129 	BCE_PRINT_32BIT_STAT(stat_EtherStatsPktsTx1523Octetsto9022Octets);
10130 	BCE_PRINT_32BIT_STAT(stat_XonPauseFramesReceived);
10131 	BCE_PRINT_32BIT_STAT(stat_XoffPauseFramesReceived);
10132 	BCE_PRINT_32BIT_STAT(stat_OutXonSent);
10133 	BCE_PRINT_32BIT_STAT(stat_OutXoffSent);
10134 	BCE_PRINT_32BIT_STAT(stat_FlowControlDone);
10135 	BCE_PRINT_32BIT_STAT(stat_MacControlFramesReceived);
10136 	BCE_PRINT_32BIT_STAT(stat_XoffStateEntered);
10137 	BCE_PRINT_32BIT_STAT(stat_IfInFramesL2FilterDiscards);
10138 	BCE_PRINT_32BIT_STAT(stat_IfInRuleCheckerDiscards);
10139 	BCE_PRINT_32BIT_STAT(stat_IfInFTQDiscards);
10140 	BCE_PRINT_32BIT_STAT(stat_IfInMBUFDiscards);
10141 	BCE_PRINT_32BIT_STAT(stat_IfInRuleCheckerP4Hit);
10142 	BCE_PRINT_32BIT_STAT(stat_CatchupInRuleCheckerDiscards);
10143 	BCE_PRINT_32BIT_STAT(stat_CatchupInFTQDiscards);
10144 	BCE_PRINT_32BIT_STAT(stat_CatchupInMBUFDiscards);
10145 	BCE_PRINT_32BIT_STAT(stat_CatchupInRuleCheckerP4Hit);
10146 
10147 	BCE_PRINTF(
10148 	    "----------------------------"
10149 	    "----------------"
10150 	    "----------------------------\n");
10151 }
10152 
10153 
10154 /****************************************************************************/
10155 /* Prints out a summary of the driver state.                                */
10156 /*                                                                          */
10157 /* Returns:                                                                 */
10158 /*   Nothing.                                                               */
10159 /****************************************************************************/
10160 static __attribute__ ((noinline)) void
10161 bce_dump_driver_state(struct bce_softc *sc)
10162 {
10163 	u32 val_hi, val_lo;
10164 
10165 	BCE_PRINTF(
10166 	    "-----------------------------"
10167 	    " Driver State "
10168 	    "-----------------------------\n");
10169 
10170 	val_hi = BCE_ADDR_HI(sc);
10171 	val_lo = BCE_ADDR_LO(sc);
10172 	BCE_PRINTF("0x%08X:%08X - (sc) driver softc structure virtual "
10173 	    "address\n", val_hi, val_lo);
10174 
10175 	val_hi = BCE_ADDR_HI(sc->bce_vhandle);
10176 	val_lo = BCE_ADDR_LO(sc->bce_vhandle);
10177 	BCE_PRINTF("0x%08X:%08X - (sc->bce_vhandle) PCI BAR virtual "
10178 	    "address\n", val_hi, val_lo);
10179 
10180 	val_hi = BCE_ADDR_HI(sc->status_block);
10181 	val_lo = BCE_ADDR_LO(sc->status_block);
10182 	BCE_PRINTF("0x%08X:%08X - (sc->status_block) status block "
10183 	    "virtual address\n",	val_hi, val_lo);
10184 
10185 	val_hi = BCE_ADDR_HI(sc->stats_block);
10186 	val_lo = BCE_ADDR_LO(sc->stats_block);
10187 	BCE_PRINTF("0x%08X:%08X - (sc->stats_block) statistics block "
10188 	    "virtual address\n", val_hi, val_lo);
10189 
10190 	val_hi = BCE_ADDR_HI(sc->tx_bd_chain);
10191 	val_lo = BCE_ADDR_LO(sc->tx_bd_chain);
10192 	BCE_PRINTF("0x%08X:%08X - (sc->tx_bd_chain) tx_bd chain "
10193 	    "virtual adddress\n", val_hi, val_lo);
10194 
10195 	val_hi = BCE_ADDR_HI(sc->rx_bd_chain);
10196 	val_lo = BCE_ADDR_LO(sc->rx_bd_chain);
10197 	BCE_PRINTF("0x%08X:%08X - (sc->rx_bd_chain) rx_bd chain "
10198 	    "virtual address\n", val_hi, val_lo);
10199 
10200 #ifdef BCE_JUMBO_HDRSPLIT
10201 	val_hi = BCE_ADDR_HI(sc->pg_bd_chain);
10202 	val_lo = BCE_ADDR_LO(sc->pg_bd_chain);
10203 	BCE_PRINTF("0x%08X:%08X - (sc->pg_bd_chain) page chain "
10204 	    "virtual address\n", val_hi, val_lo);
10205 #endif
10206 
10207 	val_hi = BCE_ADDR_HI(sc->tx_mbuf_ptr);
10208 	val_lo = BCE_ADDR_LO(sc->tx_mbuf_ptr);
10209 	BCE_PRINTF("0x%08X:%08X - (sc->tx_mbuf_ptr) tx mbuf chain "
10210 	    "virtual address\n",	val_hi, val_lo);
10211 
10212 	val_hi = BCE_ADDR_HI(sc->rx_mbuf_ptr);
10213 	val_lo = BCE_ADDR_LO(sc->rx_mbuf_ptr);
10214 	BCE_PRINTF("0x%08X:%08X - (sc->rx_mbuf_ptr) rx mbuf chain "
10215 	    "virtual address\n", val_hi, val_lo);
10216 
10217 #ifdef BCE_JUMBO_HDRSPLIT
10218 	val_hi = BCE_ADDR_HI(sc->pg_mbuf_ptr);
10219 	val_lo = BCE_ADDR_LO(sc->pg_mbuf_ptr);
10220 	BCE_PRINTF("0x%08X:%08X - (sc->pg_mbuf_ptr) page mbuf chain "
10221 	    "virtual address\n", val_hi, val_lo);
10222 #endif
10223 
10224 	BCE_PRINTF("         0x%08X - (sc->interrupts_generated) "
10225 	    "h/w intrs\n", sc->interrupts_generated);
10226 
10227 	BCE_PRINTF("         0x%08X - (sc->interrupts_rx) "
10228 	    "rx interrupts handled\n", sc->interrupts_rx);
10229 
10230 	BCE_PRINTF("         0x%08X - (sc->interrupts_tx) "
10231 	    "tx interrupts handled\n", sc->interrupts_tx);
10232 
10233 	BCE_PRINTF("         0x%08X - (sc->phy_interrupts) "
10234 	    "phy interrupts handled\n", sc->phy_interrupts);
10235 
10236 	BCE_PRINTF("         0x%08X - (sc->last_status_idx) "
10237 	    "status block index\n", sc->last_status_idx);
10238 
10239 	BCE_PRINTF("     0x%04X(0x%04X) - (sc->tx_prod) tx producer "
10240 	    "index\n", sc->tx_prod, (u16) TX_CHAIN_IDX(sc->tx_prod));
10241 
10242 	BCE_PRINTF("     0x%04X(0x%04X) - (sc->tx_cons) tx consumer "
10243 	    "index\n", sc->tx_cons, (u16) TX_CHAIN_IDX(sc->tx_cons));
10244 
10245 	BCE_PRINTF("         0x%08X - (sc->tx_prod_bseq) tx producer "
10246 	    "byte seq index\n",	sc->tx_prod_bseq);
10247 
10248 	BCE_PRINTF("         0x%08X - (sc->debug_tx_mbuf_alloc) tx "
10249 	    "mbufs allocated\n", sc->debug_tx_mbuf_alloc);
10250 
10251 	BCE_PRINTF("         0x%08X - (sc->used_tx_bd) used "
10252 	    "tx_bd's\n", sc->used_tx_bd);
10253 
10254 	BCE_PRINTF("0x%08X/%08X - (sc->tx_hi_watermark) tx hi "
10255 	    "watermark\n", sc->tx_hi_watermark, sc->max_tx_bd);
10256 
10257 	BCE_PRINTF("     0x%04X(0x%04X) - (sc->rx_prod) rx producer "
10258 	    "index\n", sc->rx_prod, (u16) RX_CHAIN_IDX(sc->rx_prod));
10259 
10260 	BCE_PRINTF("     0x%04X(0x%04X) - (sc->rx_cons) rx consumer "
10261 	    "index\n", sc->rx_cons, (u16) RX_CHAIN_IDX(sc->rx_cons));
10262 
10263 	BCE_PRINTF("         0x%08X - (sc->rx_prod_bseq) rx producer "
10264 	    "byte seq index\n",	sc->rx_prod_bseq);
10265 
10266 	BCE_PRINTF("         0x%08X - (sc->debug_rx_mbuf_alloc) rx "
10267 	    "mbufs allocated\n", sc->debug_rx_mbuf_alloc);
10268 
10269 	BCE_PRINTF("         0x%08X - (sc->free_rx_bd) free "
10270 	    "rx_bd's\n", sc->free_rx_bd);
10271 
10272 #ifdef BCE_JUMBO_HDRSPLIT
10273 	BCE_PRINTF("     0x%04X(0x%04X) - (sc->pg_prod) page producer "
10274 	    "index\n", sc->pg_prod, (u16) PG_CHAIN_IDX(sc->pg_prod));
10275 
10276 	BCE_PRINTF("     0x%04X(0x%04X) - (sc->pg_cons) page consumer "
10277 	    "index\n", sc->pg_cons, (u16) PG_CHAIN_IDX(sc->pg_cons));
10278 
10279 	BCE_PRINTF("         0x%08X - (sc->debug_pg_mbuf_alloc) page "
10280 	    "mbufs allocated\n", sc->debug_pg_mbuf_alloc);
10281 
10282 	BCE_PRINTF("         0x%08X - (sc->free_pg_bd) free page "
10283 	    "rx_bd's\n", sc->free_pg_bd);
10284 
10285 	BCE_PRINTF("0x%08X/%08X - (sc->pg_low_watermark) page low "
10286 	    "watermark\n", sc->pg_low_watermark, sc->max_pg_bd);
10287 #endif
10288 
10289 	BCE_PRINTF("         0x%08X - (sc->mbuf_alloc_failed_count) "
10290 	    "mbuf alloc failures\n", sc->mbuf_alloc_failed_count);
10291 
10292 	BCE_PRINTF("         0x%08X - (sc->bce_flags) "
10293 	    "bce mac flags\n", sc->bce_flags);
10294 
10295 	BCE_PRINTF("         0x%08X - (sc->bce_phy_flags) "
10296 	    "bce phy flags\n", sc->bce_phy_flags);
10297 
10298 	BCE_PRINTF(
10299 	    "----------------------------"
10300 	    "----------------"
10301 	    "----------------------------\n");
10302 }
10303 
10304 
10305 /****************************************************************************/
10306 /* Prints out the hardware state through a summary of important register,   */
10307 /* followed by a complete register dump.                                    */
10308 /*                                                                          */
10309 /* Returns:                                                                 */
10310 /*   Nothing.                                                               */
10311 /****************************************************************************/
10312 static __attribute__ ((noinline)) void
10313 bce_dump_hw_state(struct bce_softc *sc)
10314 {
10315 	u32 val;
10316 
10317 	BCE_PRINTF(
10318 	    "----------------------------"
10319 	    " Hardware State "
10320 	    "----------------------------\n");
10321 
10322 	BCE_PRINTF("%s - bootcode version\n", sc->bce_bc_ver);
10323 
10324 	val = REG_RD(sc, BCE_MISC_ENABLE_STATUS_BITS);
10325 	BCE_PRINTF("0x%08X - (0x%06X) misc_enable_status_bits\n",
10326 	    val, BCE_MISC_ENABLE_STATUS_BITS);
10327 
10328 	val = REG_RD(sc, BCE_DMA_STATUS);
10329 	BCE_PRINTF("0x%08X - (0x%06X) dma_status\n",
10330 	    val, BCE_DMA_STATUS);
10331 
10332 	val = REG_RD(sc, BCE_CTX_STATUS);
10333 	BCE_PRINTF("0x%08X - (0x%06X) ctx_status\n",
10334 	    val, BCE_CTX_STATUS);
10335 
10336 	val = REG_RD(sc, BCE_EMAC_STATUS);
10337 	BCE_PRINTF("0x%08X - (0x%06X) emac_status\n",
10338 	    val, BCE_EMAC_STATUS);
10339 
10340 	val = REG_RD(sc, BCE_RPM_STATUS);
10341 	BCE_PRINTF("0x%08X - (0x%06X) rpm_status\n",
10342 	    val, BCE_RPM_STATUS);
10343 
10344 	/* ToDo: Create a #define for this constant. */
10345 	val = REG_RD(sc, 0x2004);
10346 	BCE_PRINTF("0x%08X - (0x%06X) rlup_status\n",
10347 	    val, 0x2004);
10348 
10349 	val = REG_RD(sc, BCE_RV2P_STATUS);
10350 	BCE_PRINTF("0x%08X - (0x%06X) rv2p_status\n",
10351 	    val, BCE_RV2P_STATUS);
10352 
10353 	/* ToDo: Create a #define for this constant. */
10354 	val = REG_RD(sc, 0x2c04);
10355 	BCE_PRINTF("0x%08X - (0x%06X) rdma_status\n",
10356 	    val, 0x2c04);
10357 
10358 	val = REG_RD(sc, BCE_TBDR_STATUS);
10359 	BCE_PRINTF("0x%08X - (0x%06X) tbdr_status\n",
10360 	    val, BCE_TBDR_STATUS);
10361 
10362 	val = REG_RD(sc, BCE_TDMA_STATUS);
10363 	BCE_PRINTF("0x%08X - (0x%06X) tdma_status\n",
10364 	    val, BCE_TDMA_STATUS);
10365 
10366 	val = REG_RD(sc, BCE_HC_STATUS);
10367 	BCE_PRINTF("0x%08X - (0x%06X) hc_status\n",
10368 	    val, BCE_HC_STATUS);
10369 
10370 	val = REG_RD_IND(sc, BCE_TXP_CPU_STATE);
10371 	BCE_PRINTF("0x%08X - (0x%06X) txp_cpu_state\n",
10372 	    val, BCE_TXP_CPU_STATE);
10373 
10374 	val = REG_RD_IND(sc, BCE_TPAT_CPU_STATE);
10375 	BCE_PRINTF("0x%08X - (0x%06X) tpat_cpu_state\n",
10376 	    val, BCE_TPAT_CPU_STATE);
10377 
10378 	val = REG_RD_IND(sc, BCE_RXP_CPU_STATE);
10379 	BCE_PRINTF("0x%08X - (0x%06X) rxp_cpu_state\n",
10380 	    val, BCE_RXP_CPU_STATE);
10381 
10382 	val = REG_RD_IND(sc, BCE_COM_CPU_STATE);
10383 	BCE_PRINTF("0x%08X - (0x%06X) com_cpu_state\n",
10384 	    val, BCE_COM_CPU_STATE);
10385 
10386 	val = REG_RD_IND(sc, BCE_MCP_CPU_STATE);
10387 	BCE_PRINTF("0x%08X - (0x%06X) mcp_cpu_state\n",
10388 	    val, BCE_MCP_CPU_STATE);
10389 
10390 	val = REG_RD_IND(sc, BCE_CP_CPU_STATE);
10391 	BCE_PRINTF("0x%08X - (0x%06X) cp_cpu_state\n",
10392 	    val, BCE_CP_CPU_STATE);
10393 
10394 	BCE_PRINTF(
10395 	    "----------------------------"
10396 	    "----------------"
10397 	    "----------------------------\n");
10398 
10399 	BCE_PRINTF(
10400 	    "----------------------------"
10401 	    " Register  Dump "
10402 	    "----------------------------\n");
10403 
10404 	for (int i = 0x400; i < 0x8000; i += 0x10) {
10405 		BCE_PRINTF("0x%04X: 0x%08X 0x%08X 0x%08X 0x%08X\n",
10406 		    i, REG_RD(sc, i), REG_RD(sc, i + 0x4),
10407 		    REG_RD(sc, i + 0x8), REG_RD(sc, i + 0xC));
10408 	}
10409 
10410 	BCE_PRINTF(
10411 	    "----------------------------"
10412 	    "----------------"
10413 	    "----------------------------\n");
10414 }
10415 
10416 
10417 /****************************************************************************/
10418 /* Prints out the mailbox queue registers.                                  */
10419 /*                                                                          */
10420 /* Returns:                                                                 */
10421 /*   Nothing.                                                               */
10422 /****************************************************************************/
10423 static __attribute__ ((noinline)) void
10424 bce_dump_mq_regs(struct bce_softc *sc)
10425 {
10426 	BCE_PRINTF(
10427 	    "----------------------------"
10428 	    "    MQ Regs     "
10429 	    "----------------------------\n");
10430 
10431 	BCE_PRINTF(
10432 	    "----------------------------"
10433 	    "----------------"
10434 	    "----------------------------\n");
10435 
10436 	for (int i = 0x3c00; i < 0x4000; i += 0x10) {
10437 		BCE_PRINTF("0x%04X: 0x%08X 0x%08X 0x%08X 0x%08X\n",
10438 		    i, REG_RD(sc, i), REG_RD(sc, i + 0x4),
10439 		    REG_RD(sc, i + 0x8), REG_RD(sc, i + 0xC));
10440 	}
10441 
10442 	BCE_PRINTF(
10443 	    "----------------------------"
10444 	    "----------------"
10445 	    "----------------------------\n");
10446 }
10447 
10448 
10449 /****************************************************************************/
10450 /* Prints out the bootcode state.                                           */
10451 /*                                                                          */
10452 /* Returns:                                                                 */
10453 /*   Nothing.                                                               */
10454 /****************************************************************************/
10455 static __attribute__ ((noinline)) void
10456 bce_dump_bc_state(struct bce_softc *sc)
10457 {
10458 	u32 val;
10459 
10460 	BCE_PRINTF(
10461 	    "----------------------------"
10462 	    " Bootcode State "
10463 	    "----------------------------\n");
10464 
10465 	BCE_PRINTF("%s - bootcode version\n", sc->bce_bc_ver);
10466 
10467 	val = bce_shmem_rd(sc, BCE_BC_RESET_TYPE);
10468 	BCE_PRINTF("0x%08X - (0x%06X) reset_type\n",
10469 	    val, BCE_BC_RESET_TYPE);
10470 
10471 	val = bce_shmem_rd(sc, BCE_BC_STATE);
10472 	BCE_PRINTF("0x%08X - (0x%06X) state\n",
10473 	    val, BCE_BC_STATE);
10474 
10475 	val = bce_shmem_rd(sc, BCE_BC_STATE_CONDITION);
10476 	BCE_PRINTF("0x%08X - (0x%06X) condition\n",
10477 	    val, BCE_BC_STATE_CONDITION);
10478 
10479 	val = bce_shmem_rd(sc, BCE_BC_STATE_DEBUG_CMD);
10480 	BCE_PRINTF("0x%08X - (0x%06X) debug_cmd\n",
10481 	    val, BCE_BC_STATE_DEBUG_CMD);
10482 
10483 	BCE_PRINTF(
10484 	    "----------------------------"
10485 	    "----------------"
10486 	    "----------------------------\n");
10487 }
10488 
10489 
10490 /****************************************************************************/
10491 /* Prints out the TXP processor state.                                      */
10492 /*                                                                          */
10493 /* Returns:                                                                 */
10494 /*   Nothing.                                                               */
10495 /****************************************************************************/
10496 static __attribute__ ((noinline)) void
10497 bce_dump_txp_state(struct bce_softc *sc, int regs)
10498 {
10499 	u32 val;
10500 	u32 fw_version[3];
10501 
10502 	BCE_PRINTF(
10503 	    "----------------------------"
10504 	    "   TXP  State   "
10505 	    "----------------------------\n");
10506 
10507 	for (int i = 0; i < 3; i++)
10508 		fw_version[i] = htonl(REG_RD_IND(sc,
10509 		    (BCE_TXP_SCRATCH + 0x10 + i * 4)));
10510 	BCE_PRINTF("Firmware version - %s\n", (char *) fw_version);
10511 
10512 	val = REG_RD_IND(sc, BCE_TXP_CPU_MODE);
10513 	BCE_PRINTF("0x%08X - (0x%06X) txp_cpu_mode\n",
10514 	    val, BCE_TXP_CPU_MODE);
10515 
10516 	val = REG_RD_IND(sc, BCE_TXP_CPU_STATE);
10517 	BCE_PRINTF("0x%08X - (0x%06X) txp_cpu_state\n",
10518 	    val, BCE_TXP_CPU_STATE);
10519 
10520 	val = REG_RD_IND(sc, BCE_TXP_CPU_EVENT_MASK);
10521 	BCE_PRINTF("0x%08X - (0x%06X) txp_cpu_event_mask\n",
10522 	    val, BCE_TXP_CPU_EVENT_MASK);
10523 
10524 	if (regs) {
10525 		BCE_PRINTF(
10526 		    "----------------------------"
10527 		    " Register  Dump "
10528 		    "----------------------------\n");
10529 
10530 		for (int i = BCE_TXP_CPU_MODE; i < 0x68000; i += 0x10) {
10531 			/* Skip the big blank spaces */
10532 			if (i < 0x454000 && i > 0x5ffff)
10533 				BCE_PRINTF("0x%04X: 0x%08X 0x%08X "
10534 				    "0x%08X 0x%08X\n", i,
10535 				    REG_RD_IND(sc, i),
10536 				    REG_RD_IND(sc, i + 0x4),
10537 				    REG_RD_IND(sc, i + 0x8),
10538 				    REG_RD_IND(sc, i + 0xC));
10539 		}
10540 	}
10541 
10542 	BCE_PRINTF(
10543 	    "----------------------------"
10544 	    "----------------"
10545 	    "----------------------------\n");
10546 }
10547 
10548 
10549 /****************************************************************************/
10550 /* Prints out the RXP processor state.                                      */
10551 /*                                                                          */
10552 /* Returns:                                                                 */
10553 /*   Nothing.                                                               */
10554 /****************************************************************************/
10555 static __attribute__ ((noinline)) void
10556 bce_dump_rxp_state(struct bce_softc *sc, int regs)
10557 {
10558 	u32 val;
10559 	u32 fw_version[3];
10560 
10561 	BCE_PRINTF(
10562 	    "----------------------------"
10563 	    "   RXP  State   "
10564 	    "----------------------------\n");
10565 
10566 	for (int i = 0; i < 3; i++)
10567 		fw_version[i] = htonl(REG_RD_IND(sc,
10568 		    (BCE_RXP_SCRATCH + 0x10 + i * 4)));
10569 
10570 	BCE_PRINTF("Firmware version - %s\n", (char *) fw_version);
10571 
10572 	val = REG_RD_IND(sc, BCE_RXP_CPU_MODE);
10573 	BCE_PRINTF("0x%08X - (0x%06X) rxp_cpu_mode\n",
10574 	    val, BCE_RXP_CPU_MODE);
10575 
10576 	val = REG_RD_IND(sc, BCE_RXP_CPU_STATE);
10577 	BCE_PRINTF("0x%08X - (0x%06X) rxp_cpu_state\n",
10578 	    val, BCE_RXP_CPU_STATE);
10579 
10580 	val = REG_RD_IND(sc, BCE_RXP_CPU_EVENT_MASK);
10581 	BCE_PRINTF("0x%08X - (0x%06X) rxp_cpu_event_mask\n",
10582 	    val, BCE_RXP_CPU_EVENT_MASK);
10583 
10584 	if (regs) {
10585 		BCE_PRINTF(
10586 		    "----------------------------"
10587 		    " Register  Dump "
10588 		    "----------------------------\n");
10589 
10590 		for (int i = BCE_RXP_CPU_MODE; i < 0xe8fff; i += 0x10) {
10591 			/* Skip the big blank sapces */
10592 			if (i < 0xc5400 && i > 0xdffff)
10593 				BCE_PRINTF("0x%04X: 0x%08X 0x%08X "
10594 				    "0x%08X 0x%08X\n", i,
10595 				    REG_RD_IND(sc, i),
10596 				    REG_RD_IND(sc, i + 0x4),
10597 				    REG_RD_IND(sc, i + 0x8),
10598 				    REG_RD_IND(sc, i + 0xC));
10599 		}
10600 	}
10601 
10602 	BCE_PRINTF(
10603 	    "----------------------------"
10604 	    "----------------"
10605 	    "----------------------------\n");
10606 }
10607 
10608 
10609 /****************************************************************************/
10610 /* Prints out the TPAT processor state.                                     */
10611 /*                                                                          */
10612 /* Returns:                                                                 */
10613 /*   Nothing.                                                               */
10614 /****************************************************************************/
10615 static __attribute__ ((noinline)) void
10616 bce_dump_tpat_state(struct bce_softc *sc, int regs)
10617 {
10618 	u32 val;
10619 	u32 fw_version[3];
10620 
10621 	BCE_PRINTF(
10622 	    "----------------------------"
10623 	    "   TPAT State   "
10624 	    "----------------------------\n");
10625 
10626 	for (int i = 0; i < 3; i++)
10627 		fw_version[i] = htonl(REG_RD_IND(sc,
10628 		    (BCE_TPAT_SCRATCH + 0x410 + i * 4)));
10629 
10630 	BCE_PRINTF("Firmware version - %s\n", (char *) fw_version);
10631 
10632 	val = REG_RD_IND(sc, BCE_TPAT_CPU_MODE);
10633 	BCE_PRINTF("0x%08X - (0x%06X) tpat_cpu_mode\n",
10634 	    val, BCE_TPAT_CPU_MODE);
10635 
10636 	val = REG_RD_IND(sc, BCE_TPAT_CPU_STATE);
10637 	BCE_PRINTF("0x%08X - (0x%06X) tpat_cpu_state\n",
10638 	    val, BCE_TPAT_CPU_STATE);
10639 
10640 	val = REG_RD_IND(sc, BCE_TPAT_CPU_EVENT_MASK);
10641 	BCE_PRINTF("0x%08X - (0x%06X) tpat_cpu_event_mask\n",
10642 	    val, BCE_TPAT_CPU_EVENT_MASK);
10643 
10644 	if (regs) {
10645 		BCE_PRINTF(
10646 		    "----------------------------"
10647 		    " Register  Dump "
10648 		    "----------------------------\n");
10649 
10650 		for (int i = BCE_TPAT_CPU_MODE; i < 0xa3fff; i += 0x10) {
10651 			/* Skip the big blank spaces */
10652 			if (i < 0x854000 && i > 0x9ffff)
10653 				BCE_PRINTF("0x%04X: 0x%08X 0x%08X "
10654 				    "0x%08X 0x%08X\n", i,
10655 				    REG_RD_IND(sc, i),
10656 				    REG_RD_IND(sc, i + 0x4),
10657 				    REG_RD_IND(sc, i + 0x8),
10658 				    REG_RD_IND(sc, i + 0xC));
10659 		}
10660 	}
10661 
10662 	BCE_PRINTF(
10663 		"----------------------------"
10664 		"----------------"
10665 		"----------------------------\n");
10666 }
10667 
10668 
10669 /****************************************************************************/
10670 /* Prints out the Command Procesor (CP) state.                              */
10671 /*                                                                          */
10672 /* Returns:                                                                 */
10673 /*   Nothing.                                                               */
10674 /****************************************************************************/
10675 static __attribute__ ((noinline)) void
10676 bce_dump_cp_state(struct bce_softc *sc, int regs)
10677 {
10678 	u32 val;
10679 	u32 fw_version[3];
10680 
10681 	BCE_PRINTF(
10682 	    "----------------------------"
10683 	    "    CP State    "
10684 	    "----------------------------\n");
10685 
10686 	for (int i = 0; i < 3; i++)
10687 		fw_version[i] = htonl(REG_RD_IND(sc,
10688 		    (BCE_CP_SCRATCH + 0x10 + i * 4)));
10689 
10690 	BCE_PRINTF("Firmware version - %s\n", (char *) fw_version);
10691 
10692 	val = REG_RD_IND(sc, BCE_CP_CPU_MODE);
10693 	BCE_PRINTF("0x%08X - (0x%06X) cp_cpu_mode\n",
10694 	    val, BCE_CP_CPU_MODE);
10695 
10696 	val = REG_RD_IND(sc, BCE_CP_CPU_STATE);
10697 	BCE_PRINTF("0x%08X - (0x%06X) cp_cpu_state\n",
10698 	    val, BCE_CP_CPU_STATE);
10699 
10700 	val = REG_RD_IND(sc, BCE_CP_CPU_EVENT_MASK);
10701 	BCE_PRINTF("0x%08X - (0x%06X) cp_cpu_event_mask\n", val,
10702 	    BCE_CP_CPU_EVENT_MASK);
10703 
10704 	if (regs) {
10705 		BCE_PRINTF(
10706 		    "----------------------------"
10707 		    " Register  Dump "
10708 		    "----------------------------\n");
10709 
10710 		for (int i = BCE_CP_CPU_MODE; i < 0x1aa000; i += 0x10) {
10711 			/* Skip the big blank spaces */
10712 			if (i < 0x185400 && i > 0x19ffff)
10713 				BCE_PRINTF("0x%04X: 0x%08X 0x%08X "
10714 				    "0x%08X 0x%08X\n", i,
10715 				    REG_RD_IND(sc, i),
10716 				    REG_RD_IND(sc, i + 0x4),
10717 				    REG_RD_IND(sc, i + 0x8),
10718 				    REG_RD_IND(sc, i + 0xC));
10719 		}
10720 	}
10721 
10722 	BCE_PRINTF(
10723 	    "----------------------------"
10724 	    "----------------"
10725 	    "----------------------------\n");
10726 }
10727 
10728 
10729 /****************************************************************************/
10730 /* Prints out the Completion Procesor (COM) state.                          */
10731 /*                                                                          */
10732 /* Returns:                                                                 */
10733 /*   Nothing.                                                               */
10734 /****************************************************************************/
10735 static __attribute__ ((noinline)) void
10736 bce_dump_com_state(struct bce_softc *sc, int regs)
10737 {
10738 	u32 val;
10739 	u32 fw_version[4];
10740 
10741 	BCE_PRINTF(
10742 	    "----------------------------"
10743 	    "   COM State    "
10744 	    "----------------------------\n");
10745 
10746 	for (int i = 0; i < 3; i++)
10747 		fw_version[i] = htonl(REG_RD_IND(sc,
10748 		    (BCE_COM_SCRATCH + 0x10 + i * 4)));
10749 
10750 	BCE_PRINTF("Firmware version - %s\n", (char *) fw_version);
10751 
10752 	val = REG_RD_IND(sc, BCE_COM_CPU_MODE);
10753 	BCE_PRINTF("0x%08X - (0x%06X) com_cpu_mode\n",
10754 	    val, BCE_COM_CPU_MODE);
10755 
10756 	val = REG_RD_IND(sc, BCE_COM_CPU_STATE);
10757 	BCE_PRINTF("0x%08X - (0x%06X) com_cpu_state\n",
10758 	    val, BCE_COM_CPU_STATE);
10759 
10760 	val = REG_RD_IND(sc, BCE_COM_CPU_EVENT_MASK);
10761 	BCE_PRINTF("0x%08X - (0x%06X) com_cpu_event_mask\n", val,
10762 	    BCE_COM_CPU_EVENT_MASK);
10763 
10764 	if (regs) {
10765 		BCE_PRINTF(
10766 		    "----------------------------"
10767 		    " Register  Dump "
10768 		    "----------------------------\n");
10769 
10770 		for (int i = BCE_COM_CPU_MODE; i < 0x1053e8; i += 0x10) {
10771 			BCE_PRINTF("0x%04X: 0x%08X 0x%08X "
10772 			    "0x%08X 0x%08X\n", i,
10773 			    REG_RD_IND(sc, i),
10774 			    REG_RD_IND(sc, i + 0x4),
10775 			    REG_RD_IND(sc, i + 0x8),
10776 			    REG_RD_IND(sc, i + 0xC));
10777 		}
10778 	}
10779 
10780 	BCE_PRINTF(
10781 		"----------------------------"
10782 		"----------------"
10783 		"----------------------------\n");
10784 }
10785 
10786 
10787 /****************************************************************************/
10788 /* Prints out the Receive Virtual 2 Physical (RV2P) state.                  */
10789 /*                                                                          */
10790 /* Returns:                                                                 */
10791 /*   Nothing.                                                               */
10792 /****************************************************************************/
10793 static __attribute__ ((noinline)) void
10794 bce_dump_rv2p_state(struct bce_softc *sc)
10795 {
10796 	u32 val, pc1, pc2, fw_ver_high, fw_ver_low;
10797 
10798 	BCE_PRINTF(
10799 	    "----------------------------"
10800 	    "   RV2P State   "
10801 	    "----------------------------\n");
10802 
10803 	/* Stall the RV2P processors. */
10804 	val = REG_RD_IND(sc, BCE_RV2P_CONFIG);
10805 	val |= BCE_RV2P_CONFIG_STALL_PROC1 | BCE_RV2P_CONFIG_STALL_PROC2;
10806 	REG_WR_IND(sc, BCE_RV2P_CONFIG, val);
10807 
10808 	/* Read the firmware version. */
10809 	val = 0x00000001;
10810 	REG_WR_IND(sc, BCE_RV2P_PROC1_ADDR_CMD, val);
10811 	fw_ver_low = REG_RD_IND(sc, BCE_RV2P_INSTR_LOW);
10812 	fw_ver_high = REG_RD_IND(sc, BCE_RV2P_INSTR_HIGH) &
10813 	    BCE_RV2P_INSTR_HIGH_HIGH;
10814 	BCE_PRINTF("RV2P1 Firmware version - 0x%08X:0x%08X\n",
10815 	    fw_ver_high, fw_ver_low);
10816 
10817 	val = 0x00000001;
10818 	REG_WR_IND(sc, BCE_RV2P_PROC2_ADDR_CMD, val);
10819 	fw_ver_low = REG_RD_IND(sc, BCE_RV2P_INSTR_LOW);
10820 	fw_ver_high = REG_RD_IND(sc, BCE_RV2P_INSTR_HIGH) &
10821 	    BCE_RV2P_INSTR_HIGH_HIGH;
10822 	BCE_PRINTF("RV2P2 Firmware version - 0x%08X:0x%08X\n",
10823 	    fw_ver_high, fw_ver_low);
10824 
10825 	/* Resume the RV2P processors. */
10826 	val = REG_RD_IND(sc, BCE_RV2P_CONFIG);
10827 	val &= ~(BCE_RV2P_CONFIG_STALL_PROC1 | BCE_RV2P_CONFIG_STALL_PROC2);
10828 	REG_WR_IND(sc, BCE_RV2P_CONFIG, val);
10829 
10830 	/* Fetch the program counter value. */
10831 	val = 0x68007800;
10832 	REG_WR_IND(sc, BCE_RV2P_DEBUG_VECT_PEEK, val);
10833 	val = REG_RD_IND(sc, BCE_RV2P_DEBUG_VECT_PEEK);
10834 	pc1 = (val & BCE_RV2P_DEBUG_VECT_PEEK_1_VALUE);
10835 	pc2 = (val & BCE_RV2P_DEBUG_VECT_PEEK_2_VALUE) >> 16;
10836 	BCE_PRINTF("0x%08X - RV2P1 program counter (1st read)\n", pc1);
10837 	BCE_PRINTF("0x%08X - RV2P2 program counter (1st read)\n", pc2);
10838 
10839 	/* Fetch the program counter value again to see if it is advancing. */
10840 	val = 0x68007800;
10841 	REG_WR_IND(sc, BCE_RV2P_DEBUG_VECT_PEEK, val);
10842 	val = REG_RD_IND(sc, BCE_RV2P_DEBUG_VECT_PEEK);
10843 	pc1 = (val & BCE_RV2P_DEBUG_VECT_PEEK_1_VALUE);
10844 	pc2 = (val & BCE_RV2P_DEBUG_VECT_PEEK_2_VALUE) >> 16;
10845 	BCE_PRINTF("0x%08X - RV2P1 program counter (2nd read)\n", pc1);
10846 	BCE_PRINTF("0x%08X - RV2P2 program counter (2nd read)\n", pc2);
10847 
10848 	BCE_PRINTF(
10849 	    "----------------------------"
10850 	    "----------------"
10851 	    "----------------------------\n");
10852 }
10853 
10854 
10855 /****************************************************************************/
10856 /* Prints out the driver state and then enters the debugger.                */
10857 /*                                                                          */
10858 /* Returns:                                                                 */
10859 /*   Nothing.                                                               */
10860 /****************************************************************************/
10861 static __attribute__ ((noinline)) void
10862 bce_breakpoint(struct bce_softc *sc)
10863 {
10864 
10865 	/*
10866 	 * Unreachable code to silence compiler warnings
10867 	 * about unused functions.
10868 	 */
10869 	if (0) {
10870 		bce_freeze_controller(sc);
10871 		bce_unfreeze_controller(sc);
10872 		bce_dump_enet(sc, NULL);
10873 		bce_dump_txbd(sc, 0, NULL);
10874 		bce_dump_rxbd(sc, 0, NULL);
10875 		bce_dump_tx_mbuf_chain(sc, 0, USABLE_TX_BD);
10876 		bce_dump_rx_mbuf_chain(sc, 0, USABLE_RX_BD);
10877 		bce_dump_l2fhdr(sc, 0, NULL);
10878 		bce_dump_ctx(sc, RX_CID);
10879 		bce_dump_ftqs(sc);
10880 		bce_dump_tx_chain(sc, 0, USABLE_TX_BD);
10881 		bce_dump_rx_bd_chain(sc, 0, USABLE_RX_BD);
10882 		bce_dump_status_block(sc);
10883 		bce_dump_stats_block(sc);
10884 		bce_dump_driver_state(sc);
10885 		bce_dump_hw_state(sc);
10886 		bce_dump_bc_state(sc);
10887 		bce_dump_txp_state(sc, 0);
10888 		bce_dump_rxp_state(sc, 0);
10889 		bce_dump_tpat_state(sc, 0);
10890 		bce_dump_cp_state(sc, 0);
10891 		bce_dump_com_state(sc, 0);
10892 		bce_dump_rv2p_state(sc);
10893 
10894 #ifdef BCE_JUMBO_HDRSPLIT
10895 		bce_dump_pgbd(sc, 0, NULL);
10896 		bce_dump_pg_mbuf_chain(sc, 0, USABLE_PG_BD);
10897 		bce_dump_pg_chain(sc, 0, USABLE_PG_BD);
10898 #endif
10899 	}
10900 
10901 	bce_dump_status_block(sc);
10902 	bce_dump_driver_state(sc);
10903 
10904 	/* Call the debugger. */
10905 	breakpoint();
10906 
10907 	return;
10908 }
10909 #endif
10910 
10911