1 /*- 2 * Copyright (c) 2006-2014 QLogic Corporation 3 * 4 * Redistribution and use in source and binary forms, with or without 5 * modification, are permitted provided that the following conditions 6 * are met: 7 * 8 * 1. Redistributions of source code must retain the above copyright 9 * notice, this list of conditions and the following disclaimer. 10 * 2. Redistributions in binary form must reproduce the above copyright 11 * notice, this list of conditions and the following disclaimer in the 12 * documentation and/or other materials provided with the distribution. 13 * 14 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS' 15 * AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 16 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 17 * ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS 18 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR 19 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF 20 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS 21 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN 22 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) 23 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF 24 * THE POSSIBILITY OF SUCH DAMAGE. 25 */ 26 27 #include <sys/cdefs.h> 28 __FBSDID("$FreeBSD$"); 29 30 /* 31 * The following controllers are supported by this driver: 32 * BCM5706C A2, A3 33 * BCM5706S A2, A3 34 * BCM5708C B1, B2 35 * BCM5708S B1, B2 36 * BCM5709C A1, C0 37 * BCM5709S A1, C0 38 * BCM5716C C0 39 * BCM5716S C0 40 * 41 * The following controllers are not supported by this driver: 42 * BCM5706C A0, A1 (pre-production) 43 * BCM5706S A0, A1 (pre-production) 44 * BCM5708C A0, B0 (pre-production) 45 * BCM5708S A0, B0 (pre-production) 46 * BCM5709C A0 B0, B1, B2 (pre-production) 47 * BCM5709S A0, B0, B1, B2 (pre-production) 48 */ 49 50 #include "opt_bce.h" 51 52 #include <sys/param.h> 53 #include <sys/endian.h> 54 #include <sys/systm.h> 55 #include <sys/sockio.h> 56 #include <sys/lock.h> 57 #include <sys/mbuf.h> 58 #include <sys/malloc.h> 59 #include <sys/mutex.h> 60 #include <sys/kernel.h> 61 #include <sys/module.h> 62 #include <sys/socket.h> 63 #include <sys/sysctl.h> 64 #include <sys/queue.h> 65 66 #include <net/bpf.h> 67 #include <net/ethernet.h> 68 #include <net/if.h> 69 #include <net/if_var.h> 70 #include <net/if_arp.h> 71 #include <net/if_dl.h> 72 #include <net/if_media.h> 73 74 #include <net/if_types.h> 75 #include <net/if_vlan_var.h> 76 77 #include <netinet/in_systm.h> 78 #include <netinet/in.h> 79 #include <netinet/if_ether.h> 80 #include <netinet/ip.h> 81 #include <netinet/ip6.h> 82 #include <netinet/tcp.h> 83 #include <netinet/udp.h> 84 85 #include <machine/bus.h> 86 #include <machine/resource.h> 87 #include <sys/bus.h> 88 #include <sys/rman.h> 89 90 #include <dev/mii/mii.h> 91 #include <dev/mii/miivar.h> 92 #include "miidevs.h" 93 #include <dev/mii/brgphyreg.h> 94 95 #include <dev/pci/pcireg.h> 96 #include <dev/pci/pcivar.h> 97 98 #include "miibus_if.h" 99 100 #include <dev/bce/if_bcereg.h> 101 #include <dev/bce/if_bcefw.h> 102 103 /****************************************************************************/ 104 /* BCE Debug Options */ 105 /****************************************************************************/ 106 #ifdef BCE_DEBUG 107 u32 bce_debug = BCE_WARN; 108 109 /* 0 = Never */ 110 /* 1 = 1 in 2,147,483,648 */ 111 /* 256 = 1 in 8,388,608 */ 112 /* 2048 = 1 in 1,048,576 */ 113 /* 65536 = 1 in 32,768 */ 114 /* 1048576 = 1 in 2,048 */ 115 /* 268435456 = 1 in 8 */ 116 /* 536870912 = 1 in 4 */ 117 /* 1073741824 = 1 in 2 */ 118 119 /* Controls how often the l2_fhdr frame error check will fail. */ 120 int l2fhdr_error_sim_control = 0; 121 122 /* Controls how often the unexpected attention check will fail. */ 123 int unexpected_attention_sim_control = 0; 124 125 /* Controls how often to simulate an mbuf allocation failure. */ 126 int mbuf_alloc_failed_sim_control = 0; 127 128 /* Controls how often to simulate a DMA mapping failure. */ 129 int dma_map_addr_failed_sim_control = 0; 130 131 /* Controls how often to simulate a bootcode failure. */ 132 int bootcode_running_failure_sim_control = 0; 133 #endif 134 135 /****************************************************************************/ 136 /* PCI Device ID Table */ 137 /* */ 138 /* Used by bce_probe() to identify the devices supported by this driver. */ 139 /****************************************************************************/ 140 #define BCE_DEVDESC_MAX 64 141 142 static const struct bce_type bce_devs[] = { 143 /* BCM5706C Controllers and OEM boards. */ 144 { BRCM_VENDORID, BRCM_DEVICEID_BCM5706, HP_VENDORID, 0x3101, 145 "HP NC370T Multifunction Gigabit Server Adapter" }, 146 { BRCM_VENDORID, BRCM_DEVICEID_BCM5706, HP_VENDORID, 0x3106, 147 "HP NC370i Multifunction Gigabit Server Adapter" }, 148 { BRCM_VENDORID, BRCM_DEVICEID_BCM5706, HP_VENDORID, 0x3070, 149 "HP NC380T PCIe DP Multifunc Gig Server Adapter" }, 150 { BRCM_VENDORID, BRCM_DEVICEID_BCM5706, HP_VENDORID, 0x1709, 151 "HP NC371i Multifunction Gigabit Server Adapter" }, 152 { BRCM_VENDORID, BRCM_DEVICEID_BCM5706, PCI_ANY_ID, PCI_ANY_ID, 153 "QLogic NetXtreme II BCM5706 1000Base-T" }, 154 155 /* BCM5706S controllers and OEM boards. */ 156 { BRCM_VENDORID, BRCM_DEVICEID_BCM5706S, HP_VENDORID, 0x3102, 157 "HP NC370F Multifunction Gigabit Server Adapter" }, 158 { BRCM_VENDORID, BRCM_DEVICEID_BCM5706S, PCI_ANY_ID, PCI_ANY_ID, 159 "QLogic NetXtreme II BCM5706 1000Base-SX" }, 160 161 /* BCM5708C controllers and OEM boards. */ 162 { BRCM_VENDORID, BRCM_DEVICEID_BCM5708, HP_VENDORID, 0x7037, 163 "HP NC373T PCIe Multifunction Gig Server Adapter" }, 164 { BRCM_VENDORID, BRCM_DEVICEID_BCM5708, HP_VENDORID, 0x7038, 165 "HP NC373i Multifunction Gigabit Server Adapter" }, 166 { BRCM_VENDORID, BRCM_DEVICEID_BCM5708, HP_VENDORID, 0x7045, 167 "HP NC374m PCIe Multifunction Adapter" }, 168 { BRCM_VENDORID, BRCM_DEVICEID_BCM5708, PCI_ANY_ID, PCI_ANY_ID, 169 "QLogic NetXtreme II BCM5708 1000Base-T" }, 170 171 /* BCM5708S controllers and OEM boards. */ 172 { BRCM_VENDORID, BRCM_DEVICEID_BCM5708S, HP_VENDORID, 0x1706, 173 "HP NC373m Multifunction Gigabit Server Adapter" }, 174 { BRCM_VENDORID, BRCM_DEVICEID_BCM5708S, HP_VENDORID, 0x703b, 175 "HP NC373i Multifunction Gigabit Server Adapter" }, 176 { BRCM_VENDORID, BRCM_DEVICEID_BCM5708S, HP_VENDORID, 0x703d, 177 "HP NC373F PCIe Multifunc Giga Server Adapter" }, 178 { BRCM_VENDORID, BRCM_DEVICEID_BCM5708S, PCI_ANY_ID, PCI_ANY_ID, 179 "QLogic NetXtreme II BCM5708 1000Base-SX" }, 180 181 /* BCM5709C controllers and OEM boards. */ 182 { BRCM_VENDORID, BRCM_DEVICEID_BCM5709, HP_VENDORID, 0x7055, 183 "HP NC382i DP Multifunction Gigabit Server Adapter" }, 184 { BRCM_VENDORID, BRCM_DEVICEID_BCM5709, HP_VENDORID, 0x7059, 185 "HP NC382T PCIe DP Multifunction Gigabit Server Adapter" }, 186 { BRCM_VENDORID, BRCM_DEVICEID_BCM5709, PCI_ANY_ID, PCI_ANY_ID, 187 "QLogic NetXtreme II BCM5709 1000Base-T" }, 188 189 /* BCM5709S controllers and OEM boards. */ 190 { BRCM_VENDORID, BRCM_DEVICEID_BCM5709S, HP_VENDORID, 0x171d, 191 "HP NC382m DP 1GbE Multifunction BL-c Adapter" }, 192 { BRCM_VENDORID, BRCM_DEVICEID_BCM5709S, HP_VENDORID, 0x7056, 193 "HP NC382i DP Multifunction Gigabit Server Adapter" }, 194 { BRCM_VENDORID, BRCM_DEVICEID_BCM5709S, PCI_ANY_ID, PCI_ANY_ID, 195 "QLogic NetXtreme II BCM5709 1000Base-SX" }, 196 197 /* BCM5716 controllers and OEM boards. */ 198 { BRCM_VENDORID, BRCM_DEVICEID_BCM5716, PCI_ANY_ID, PCI_ANY_ID, 199 "QLogic NetXtreme II BCM5716 1000Base-T" }, 200 201 { 0, 0, 0, 0, NULL } 202 }; 203 204 205 /****************************************************************************/ 206 /* Supported Flash NVRAM device data. */ 207 /****************************************************************************/ 208 static const struct flash_spec flash_table[] = 209 { 210 #define BUFFERED_FLAGS (BCE_NV_BUFFERED | BCE_NV_TRANSLATE) 211 #define NONBUFFERED_FLAGS (BCE_NV_WREN) 212 213 /* Slow EEPROM */ 214 {0x00000000, 0x40830380, 0x009f0081, 0xa184a053, 0xaf000400, 215 BUFFERED_FLAGS, SEEPROM_PAGE_BITS, SEEPROM_PAGE_SIZE, 216 SEEPROM_BYTE_ADDR_MASK, SEEPROM_TOTAL_SIZE, 217 "EEPROM - slow"}, 218 /* Expansion entry 0001 */ 219 {0x08000002, 0x4b808201, 0x00050081, 0x03840253, 0xaf020406, 220 NONBUFFERED_FLAGS, SAIFUN_FLASH_PAGE_BITS, SAIFUN_FLASH_PAGE_SIZE, 221 SAIFUN_FLASH_BYTE_ADDR_MASK, 0, 222 "Entry 0001"}, 223 /* Saifun SA25F010 (non-buffered flash) */ 224 /* strap, cfg1, & write1 need updates */ 225 {0x04000001, 0x47808201, 0x00050081, 0x03840253, 0xaf020406, 226 NONBUFFERED_FLAGS, SAIFUN_FLASH_PAGE_BITS, SAIFUN_FLASH_PAGE_SIZE, 227 SAIFUN_FLASH_BYTE_ADDR_MASK, SAIFUN_FLASH_BASE_TOTAL_SIZE*2, 228 "Non-buffered flash (128kB)"}, 229 /* Saifun SA25F020 (non-buffered flash) */ 230 /* strap, cfg1, & write1 need updates */ 231 {0x0c000003, 0x4f808201, 0x00050081, 0x03840253, 0xaf020406, 232 NONBUFFERED_FLAGS, SAIFUN_FLASH_PAGE_BITS, SAIFUN_FLASH_PAGE_SIZE, 233 SAIFUN_FLASH_BYTE_ADDR_MASK, SAIFUN_FLASH_BASE_TOTAL_SIZE*4, 234 "Non-buffered flash (256kB)"}, 235 /* Expansion entry 0100 */ 236 {0x11000000, 0x53808201, 0x00050081, 0x03840253, 0xaf020406, 237 NONBUFFERED_FLAGS, SAIFUN_FLASH_PAGE_BITS, SAIFUN_FLASH_PAGE_SIZE, 238 SAIFUN_FLASH_BYTE_ADDR_MASK, 0, 239 "Entry 0100"}, 240 /* Entry 0101: ST M45PE10 (non-buffered flash, TetonII B0) */ 241 {0x19000002, 0x5b808201, 0x000500db, 0x03840253, 0xaf020406, 242 NONBUFFERED_FLAGS, ST_MICRO_FLASH_PAGE_BITS, ST_MICRO_FLASH_PAGE_SIZE, 243 ST_MICRO_FLASH_BYTE_ADDR_MASK, ST_MICRO_FLASH_BASE_TOTAL_SIZE*2, 244 "Entry 0101: ST M45PE10 (128kB non-bufferred)"}, 245 /* Entry 0110: ST M45PE20 (non-buffered flash)*/ 246 {0x15000001, 0x57808201, 0x000500db, 0x03840253, 0xaf020406, 247 NONBUFFERED_FLAGS, ST_MICRO_FLASH_PAGE_BITS, ST_MICRO_FLASH_PAGE_SIZE, 248 ST_MICRO_FLASH_BYTE_ADDR_MASK, ST_MICRO_FLASH_BASE_TOTAL_SIZE*4, 249 "Entry 0110: ST M45PE20 (256kB non-bufferred)"}, 250 /* Saifun SA25F005 (non-buffered flash) */ 251 /* strap, cfg1, & write1 need updates */ 252 {0x1d000003, 0x5f808201, 0x00050081, 0x03840253, 0xaf020406, 253 NONBUFFERED_FLAGS, SAIFUN_FLASH_PAGE_BITS, SAIFUN_FLASH_PAGE_SIZE, 254 SAIFUN_FLASH_BYTE_ADDR_MASK, SAIFUN_FLASH_BASE_TOTAL_SIZE, 255 "Non-buffered flash (64kB)"}, 256 /* Fast EEPROM */ 257 {0x22000000, 0x62808380, 0x009f0081, 0xa184a053, 0xaf000400, 258 BUFFERED_FLAGS, SEEPROM_PAGE_BITS, SEEPROM_PAGE_SIZE, 259 SEEPROM_BYTE_ADDR_MASK, SEEPROM_TOTAL_SIZE, 260 "EEPROM - fast"}, 261 /* Expansion entry 1001 */ 262 {0x2a000002, 0x6b808201, 0x00050081, 0x03840253, 0xaf020406, 263 NONBUFFERED_FLAGS, SAIFUN_FLASH_PAGE_BITS, SAIFUN_FLASH_PAGE_SIZE, 264 SAIFUN_FLASH_BYTE_ADDR_MASK, 0, 265 "Entry 1001"}, 266 /* Expansion entry 1010 */ 267 {0x26000001, 0x67808201, 0x00050081, 0x03840253, 0xaf020406, 268 NONBUFFERED_FLAGS, SAIFUN_FLASH_PAGE_BITS, SAIFUN_FLASH_PAGE_SIZE, 269 SAIFUN_FLASH_BYTE_ADDR_MASK, 0, 270 "Entry 1010"}, 271 /* ATMEL AT45DB011B (buffered flash) */ 272 {0x2e000003, 0x6e808273, 0x00570081, 0x68848353, 0xaf000400, 273 BUFFERED_FLAGS, BUFFERED_FLASH_PAGE_BITS, BUFFERED_FLASH_PAGE_SIZE, 274 BUFFERED_FLASH_BYTE_ADDR_MASK, BUFFERED_FLASH_TOTAL_SIZE, 275 "Buffered flash (128kB)"}, 276 /* Expansion entry 1100 */ 277 {0x33000000, 0x73808201, 0x00050081, 0x03840253, 0xaf020406, 278 NONBUFFERED_FLAGS, SAIFUN_FLASH_PAGE_BITS, SAIFUN_FLASH_PAGE_SIZE, 279 SAIFUN_FLASH_BYTE_ADDR_MASK, 0, 280 "Entry 1100"}, 281 /* Expansion entry 1101 */ 282 {0x3b000002, 0x7b808201, 0x00050081, 0x03840253, 0xaf020406, 283 NONBUFFERED_FLAGS, SAIFUN_FLASH_PAGE_BITS, SAIFUN_FLASH_PAGE_SIZE, 284 SAIFUN_FLASH_BYTE_ADDR_MASK, 0, 285 "Entry 1101"}, 286 /* Ateml Expansion entry 1110 */ 287 {0x37000001, 0x76808273, 0x00570081, 0x68848353, 0xaf000400, 288 BUFFERED_FLAGS, BUFFERED_FLASH_PAGE_BITS, BUFFERED_FLASH_PAGE_SIZE, 289 BUFFERED_FLASH_BYTE_ADDR_MASK, 0, 290 "Entry 1110 (Atmel)"}, 291 /* ATMEL AT45DB021B (buffered flash) */ 292 {0x3f000003, 0x7e808273, 0x00570081, 0x68848353, 0xaf000400, 293 BUFFERED_FLAGS, BUFFERED_FLASH_PAGE_BITS, BUFFERED_FLASH_PAGE_SIZE, 294 BUFFERED_FLASH_BYTE_ADDR_MASK, BUFFERED_FLASH_TOTAL_SIZE*2, 295 "Buffered flash (256kB)"}, 296 }; 297 298 /* 299 * The BCM5709 controllers transparently handle the 300 * differences between Atmel 264 byte pages and all 301 * flash devices which use 256 byte pages, so no 302 * logical-to-physical mapping is required in the 303 * driver. 304 */ 305 static const struct flash_spec flash_5709 = { 306 .flags = BCE_NV_BUFFERED, 307 .page_bits = BCM5709_FLASH_PAGE_BITS, 308 .page_size = BCM5709_FLASH_PAGE_SIZE, 309 .addr_mask = BCM5709_FLASH_BYTE_ADDR_MASK, 310 .total_size = BUFFERED_FLASH_TOTAL_SIZE * 2, 311 .name = "5709/5716 buffered flash (256kB)", 312 }; 313 314 315 /****************************************************************************/ 316 /* FreeBSD device entry points. */ 317 /****************************************************************************/ 318 static int bce_probe (device_t); 319 static int bce_attach (device_t); 320 static int bce_detach (device_t); 321 static int bce_shutdown (device_t); 322 323 324 /****************************************************************************/ 325 /* BCE Debug Data Structure Dump Routines */ 326 /****************************************************************************/ 327 #ifdef BCE_DEBUG 328 static u32 bce_reg_rd (struct bce_softc *, u32); 329 static void bce_reg_wr (struct bce_softc *, u32, u32); 330 static void bce_reg_wr16 (struct bce_softc *, u32, u16); 331 static u32 bce_ctx_rd (struct bce_softc *, u32, u32); 332 static void bce_dump_enet (struct bce_softc *, struct mbuf *); 333 static void bce_dump_mbuf (struct bce_softc *, struct mbuf *); 334 static void bce_dump_tx_mbuf_chain (struct bce_softc *, u16, int); 335 static void bce_dump_rx_mbuf_chain (struct bce_softc *, u16, int); 336 static void bce_dump_pg_mbuf_chain (struct bce_softc *, u16, int); 337 static void bce_dump_txbd (struct bce_softc *, 338 int, struct tx_bd *); 339 static void bce_dump_rxbd (struct bce_softc *, 340 int, struct rx_bd *); 341 static void bce_dump_pgbd (struct bce_softc *, 342 int, struct rx_bd *); 343 static void bce_dump_l2fhdr (struct bce_softc *, 344 int, struct l2_fhdr *); 345 static void bce_dump_ctx (struct bce_softc *, u16); 346 static void bce_dump_ftqs (struct bce_softc *); 347 static void bce_dump_tx_chain (struct bce_softc *, u16, int); 348 static void bce_dump_rx_bd_chain (struct bce_softc *, u16, int); 349 static void bce_dump_pg_chain (struct bce_softc *, u16, int); 350 static void bce_dump_status_block (struct bce_softc *); 351 static void bce_dump_stats_block (struct bce_softc *); 352 static void bce_dump_driver_state (struct bce_softc *); 353 static void bce_dump_hw_state (struct bce_softc *); 354 static void bce_dump_shmem_state (struct bce_softc *); 355 static void bce_dump_mq_regs (struct bce_softc *); 356 static void bce_dump_bc_state (struct bce_softc *); 357 static void bce_dump_txp_state (struct bce_softc *, int); 358 static void bce_dump_rxp_state (struct bce_softc *, int); 359 static void bce_dump_tpat_state (struct bce_softc *, int); 360 static void bce_dump_cp_state (struct bce_softc *, int); 361 static void bce_dump_com_state (struct bce_softc *, int); 362 static void bce_dump_rv2p_state (struct bce_softc *); 363 static void bce_breakpoint (struct bce_softc *); 364 #endif /*BCE_DEBUG */ 365 366 367 /****************************************************************************/ 368 /* BCE Register/Memory Access Routines */ 369 /****************************************************************************/ 370 static u32 bce_reg_rd_ind (struct bce_softc *, u32); 371 static void bce_reg_wr_ind (struct bce_softc *, u32, u32); 372 static void bce_shmem_wr (struct bce_softc *, u32, u32); 373 static u32 bce_shmem_rd (struct bce_softc *, u32); 374 static void bce_ctx_wr (struct bce_softc *, u32, u32, u32); 375 static int bce_miibus_read_reg (device_t, int, int); 376 static int bce_miibus_write_reg (device_t, int, int, int); 377 static void bce_miibus_statchg (device_t); 378 379 #ifdef BCE_DEBUG 380 static int bce_sysctl_nvram_dump(SYSCTL_HANDLER_ARGS); 381 #ifdef BCE_NVRAM_WRITE_SUPPORT 382 static int bce_sysctl_nvram_write(SYSCTL_HANDLER_ARGS); 383 #endif 384 #endif 385 386 /****************************************************************************/ 387 /* BCE NVRAM Access Routines */ 388 /****************************************************************************/ 389 static int bce_acquire_nvram_lock (struct bce_softc *); 390 static int bce_release_nvram_lock (struct bce_softc *); 391 static void bce_enable_nvram_access(struct bce_softc *); 392 static void bce_disable_nvram_access(struct bce_softc *); 393 static int bce_nvram_read_dword (struct bce_softc *, u32, u8 *, u32); 394 static int bce_init_nvram (struct bce_softc *); 395 static int bce_nvram_read (struct bce_softc *, u32, u8 *, int); 396 static int bce_nvram_test (struct bce_softc *); 397 #ifdef BCE_NVRAM_WRITE_SUPPORT 398 static int bce_enable_nvram_write (struct bce_softc *); 399 static void bce_disable_nvram_write(struct bce_softc *); 400 static int bce_nvram_erase_page (struct bce_softc *, u32); 401 static int bce_nvram_write_dword (struct bce_softc *, u32, u8 *, u32); 402 static int bce_nvram_write (struct bce_softc *, u32, u8 *, int); 403 #endif 404 405 /****************************************************************************/ 406 /* */ 407 /****************************************************************************/ 408 static void bce_get_rx_buffer_sizes(struct bce_softc *, int); 409 static void bce_get_media (struct bce_softc *); 410 static void bce_init_media (struct bce_softc *); 411 static u32 bce_get_rphy_link (struct bce_softc *); 412 static void bce_dma_map_addr (void *, bus_dma_segment_t *, int, int); 413 static int bce_dma_alloc (device_t); 414 static void bce_dma_free (struct bce_softc *); 415 static void bce_release_resources (struct bce_softc *); 416 417 /****************************************************************************/ 418 /* BCE Firmware Synchronization and Load */ 419 /****************************************************************************/ 420 static void bce_fw_cap_init (struct bce_softc *); 421 static int bce_fw_sync (struct bce_softc *, u32); 422 static void bce_load_rv2p_fw (struct bce_softc *, const u32 *, u32, 423 u32); 424 static void bce_load_cpu_fw (struct bce_softc *, 425 struct cpu_reg *, struct fw_info *); 426 static void bce_start_cpu (struct bce_softc *, struct cpu_reg *); 427 static void bce_halt_cpu (struct bce_softc *, struct cpu_reg *); 428 static void bce_start_rxp_cpu (struct bce_softc *); 429 static void bce_init_rxp_cpu (struct bce_softc *); 430 static void bce_init_txp_cpu (struct bce_softc *); 431 static void bce_init_tpat_cpu (struct bce_softc *); 432 static void bce_init_cp_cpu (struct bce_softc *); 433 static void bce_init_com_cpu (struct bce_softc *); 434 static void bce_init_cpus (struct bce_softc *); 435 436 static void bce_print_adapter_info (struct bce_softc *); 437 static void bce_probe_pci_caps (device_t, struct bce_softc *); 438 static void bce_stop (struct bce_softc *); 439 static int bce_reset (struct bce_softc *, u32); 440 static int bce_chipinit (struct bce_softc *); 441 static int bce_blockinit (struct bce_softc *); 442 443 static int bce_init_tx_chain (struct bce_softc *); 444 static void bce_free_tx_chain (struct bce_softc *); 445 446 static int bce_get_rx_buf (struct bce_softc *, u16, u16, u32 *); 447 static int bce_init_rx_chain (struct bce_softc *); 448 static void bce_fill_rx_chain (struct bce_softc *); 449 static void bce_free_rx_chain (struct bce_softc *); 450 451 static int bce_get_pg_buf (struct bce_softc *, u16, u16); 452 static int bce_init_pg_chain (struct bce_softc *); 453 static void bce_fill_pg_chain (struct bce_softc *); 454 static void bce_free_pg_chain (struct bce_softc *); 455 456 static struct mbuf *bce_tso_setup (struct bce_softc *, 457 struct mbuf **, u16 *); 458 static int bce_tx_encap (struct bce_softc *, struct mbuf **); 459 static void bce_start_locked (struct ifnet *); 460 static void bce_start (struct ifnet *); 461 static int bce_ioctl (struct ifnet *, u_long, caddr_t); 462 static void bce_watchdog (struct bce_softc *); 463 static int bce_ifmedia_upd (struct ifnet *); 464 static int bce_ifmedia_upd_locked (struct ifnet *); 465 static void bce_ifmedia_sts (struct ifnet *, struct ifmediareq *); 466 static void bce_ifmedia_sts_rphy (struct bce_softc *, struct ifmediareq *); 467 static void bce_init_locked (struct bce_softc *); 468 static void bce_init (void *); 469 static void bce_mgmt_init_locked (struct bce_softc *sc); 470 471 static int bce_init_ctx (struct bce_softc *); 472 static void bce_get_mac_addr (struct bce_softc *); 473 static void bce_set_mac_addr (struct bce_softc *); 474 static void bce_phy_intr (struct bce_softc *); 475 static inline u16 bce_get_hw_rx_cons (struct bce_softc *); 476 static void bce_rx_intr (struct bce_softc *); 477 static void bce_tx_intr (struct bce_softc *); 478 static void bce_disable_intr (struct bce_softc *); 479 static void bce_enable_intr (struct bce_softc *, int); 480 481 static void bce_intr (void *); 482 static void bce_set_rx_mode (struct bce_softc *); 483 static void bce_stats_update (struct bce_softc *); 484 static void bce_tick (void *); 485 static void bce_pulse (void *); 486 static void bce_add_sysctls (struct bce_softc *); 487 488 489 /****************************************************************************/ 490 /* FreeBSD device dispatch table. */ 491 /****************************************************************************/ 492 static device_method_t bce_methods[] = { 493 /* Device interface (device_if.h) */ 494 DEVMETHOD(device_probe, bce_probe), 495 DEVMETHOD(device_attach, bce_attach), 496 DEVMETHOD(device_detach, bce_detach), 497 DEVMETHOD(device_shutdown, bce_shutdown), 498 /* Supported by device interface but not used here. */ 499 /* DEVMETHOD(device_identify, bce_identify), */ 500 /* DEVMETHOD(device_suspend, bce_suspend), */ 501 /* DEVMETHOD(device_resume, bce_resume), */ 502 /* DEVMETHOD(device_quiesce, bce_quiesce), */ 503 504 /* MII interface (miibus_if.h) */ 505 DEVMETHOD(miibus_readreg, bce_miibus_read_reg), 506 DEVMETHOD(miibus_writereg, bce_miibus_write_reg), 507 DEVMETHOD(miibus_statchg, bce_miibus_statchg), 508 /* Supported by MII interface but not used here. */ 509 /* DEVMETHOD(miibus_linkchg, bce_miibus_linkchg), */ 510 /* DEVMETHOD(miibus_mediainit, bce_miibus_mediainit), */ 511 512 DEVMETHOD_END 513 }; 514 515 static driver_t bce_driver = { 516 "bce", 517 bce_methods, 518 sizeof(struct bce_softc) 519 }; 520 521 static devclass_t bce_devclass; 522 523 MODULE_DEPEND(bce, pci, 1, 1, 1); 524 MODULE_DEPEND(bce, ether, 1, 1, 1); 525 MODULE_DEPEND(bce, miibus, 1, 1, 1); 526 527 DRIVER_MODULE(bce, pci, bce_driver, bce_devclass, NULL, NULL); 528 DRIVER_MODULE(miibus, bce, miibus_driver, miibus_devclass, NULL, NULL); 529 530 531 /****************************************************************************/ 532 /* Tunable device values */ 533 /****************************************************************************/ 534 static SYSCTL_NODE(_hw, OID_AUTO, bce, CTLFLAG_RD, 0, "bce driver parameters"); 535 536 /* Allowable values are TRUE or FALSE */ 537 static int bce_verbose = TRUE; 538 SYSCTL_INT(_hw_bce, OID_AUTO, verbose, CTLFLAG_RDTUN, &bce_verbose, 0, 539 "Verbose output enable/disable"); 540 541 /* Allowable values are TRUE or FALSE */ 542 static int bce_tso_enable = TRUE; 543 SYSCTL_INT(_hw_bce, OID_AUTO, tso_enable, CTLFLAG_RDTUN, &bce_tso_enable, 0, 544 "TSO Enable/Disable"); 545 546 /* Allowable values are 0 (IRQ), 1 (MSI/IRQ), and 2 (MSI-X/MSI/IRQ) */ 547 /* ToDo: Add MSI-X support. */ 548 static int bce_msi_enable = 1; 549 SYSCTL_INT(_hw_bce, OID_AUTO, msi_enable, CTLFLAG_RDTUN, &bce_msi_enable, 0, 550 "MSI-X|MSI|INTx selector"); 551 552 /* Allowable values are 1, 2, 4, 8. */ 553 static int bce_rx_pages = DEFAULT_RX_PAGES; 554 SYSCTL_UINT(_hw_bce, OID_AUTO, rx_pages, CTLFLAG_RDTUN, &bce_rx_pages, 0, 555 "Receive buffer descriptor pages (1 page = 255 buffer descriptors)"); 556 557 /* Allowable values are 1, 2, 4, 8. */ 558 static int bce_tx_pages = DEFAULT_TX_PAGES; 559 SYSCTL_UINT(_hw_bce, OID_AUTO, tx_pages, CTLFLAG_RDTUN, &bce_tx_pages, 0, 560 "Transmit buffer descriptor pages (1 page = 255 buffer descriptors)"); 561 562 /* Allowable values are TRUE or FALSE. */ 563 static int bce_hdr_split = TRUE; 564 SYSCTL_UINT(_hw_bce, OID_AUTO, hdr_split, CTLFLAG_RDTUN, &bce_hdr_split, 0, 565 "Frame header/payload splitting Enable/Disable"); 566 567 /* Allowable values are TRUE or FALSE. */ 568 static int bce_strict_rx_mtu = FALSE; 569 SYSCTL_UINT(_hw_bce, OID_AUTO, strict_rx_mtu, CTLFLAG_RDTUN, 570 &bce_strict_rx_mtu, 0, 571 "Enable/Disable strict RX frame size checking"); 572 573 /* Allowable values are 0 ... 100 */ 574 #ifdef BCE_DEBUG 575 /* Generate 1 interrupt for every transmit completion. */ 576 static int bce_tx_quick_cons_trip_int = 1; 577 #else 578 /* Generate 1 interrupt for every 20 transmit completions. */ 579 static int bce_tx_quick_cons_trip_int = DEFAULT_TX_QUICK_CONS_TRIP_INT; 580 #endif 581 SYSCTL_UINT(_hw_bce, OID_AUTO, tx_quick_cons_trip_int, CTLFLAG_RDTUN, 582 &bce_tx_quick_cons_trip_int, 0, 583 "Transmit BD trip point during interrupts"); 584 585 /* Allowable values are 0 ... 100 */ 586 /* Generate 1 interrupt for every transmit completion. */ 587 #ifdef BCE_DEBUG 588 static int bce_tx_quick_cons_trip = 1; 589 #else 590 /* Generate 1 interrupt for every 20 transmit completions. */ 591 static int bce_tx_quick_cons_trip = DEFAULT_TX_QUICK_CONS_TRIP; 592 #endif 593 SYSCTL_UINT(_hw_bce, OID_AUTO, tx_quick_cons_trip, CTLFLAG_RDTUN, 594 &bce_tx_quick_cons_trip, 0, 595 "Transmit BD trip point"); 596 597 /* Allowable values are 0 ... 100 */ 598 #ifdef BCE_DEBUG 599 /* Generate an interrupt if 0us have elapsed since the last TX completion. */ 600 static int bce_tx_ticks_int = 0; 601 #else 602 /* Generate an interrupt if 80us have elapsed since the last TX completion. */ 603 static int bce_tx_ticks_int = DEFAULT_TX_TICKS_INT; 604 #endif 605 SYSCTL_UINT(_hw_bce, OID_AUTO, tx_ticks_int, CTLFLAG_RDTUN, 606 &bce_tx_ticks_int, 0, "Transmit ticks count during interrupt"); 607 608 /* Allowable values are 0 ... 100 */ 609 #ifdef BCE_DEBUG 610 /* Generate an interrupt if 0us have elapsed since the last TX completion. */ 611 static int bce_tx_ticks = 0; 612 #else 613 /* Generate an interrupt if 80us have elapsed since the last TX completion. */ 614 static int bce_tx_ticks = DEFAULT_TX_TICKS; 615 #endif 616 SYSCTL_UINT(_hw_bce, OID_AUTO, tx_ticks, CTLFLAG_RDTUN, 617 &bce_tx_ticks, 0, "Transmit ticks count"); 618 619 /* Allowable values are 1 ... 100 */ 620 #ifdef BCE_DEBUG 621 /* Generate 1 interrupt for every received frame. */ 622 static int bce_rx_quick_cons_trip_int = 1; 623 #else 624 /* Generate 1 interrupt for every 6 received frames. */ 625 static int bce_rx_quick_cons_trip_int = DEFAULT_RX_QUICK_CONS_TRIP_INT; 626 #endif 627 SYSCTL_UINT(_hw_bce, OID_AUTO, rx_quick_cons_trip_int, CTLFLAG_RDTUN, 628 &bce_rx_quick_cons_trip_int, 0, 629 "Receive BD trip point duirng interrupts"); 630 631 /* Allowable values are 1 ... 100 */ 632 #ifdef BCE_DEBUG 633 /* Generate 1 interrupt for every received frame. */ 634 static int bce_rx_quick_cons_trip = 1; 635 #else 636 /* Generate 1 interrupt for every 6 received frames. */ 637 static int bce_rx_quick_cons_trip = DEFAULT_RX_QUICK_CONS_TRIP; 638 #endif 639 SYSCTL_UINT(_hw_bce, OID_AUTO, rx_quick_cons_trip, CTLFLAG_RDTUN, 640 &bce_rx_quick_cons_trip, 0, 641 "Receive BD trip point"); 642 643 /* Allowable values are 0 ... 100 */ 644 #ifdef BCE_DEBUG 645 /* Generate an int. if 0us have elapsed since the last received frame. */ 646 static int bce_rx_ticks_int = 0; 647 #else 648 /* Generate an int. if 18us have elapsed since the last received frame. */ 649 static int bce_rx_ticks_int = DEFAULT_RX_TICKS_INT; 650 #endif 651 SYSCTL_UINT(_hw_bce, OID_AUTO, rx_ticks_int, CTLFLAG_RDTUN, 652 &bce_rx_ticks_int, 0, "Receive ticks count during interrupt"); 653 654 /* Allowable values are 0 ... 100 */ 655 #ifdef BCE_DEBUG 656 /* Generate an int. if 0us have elapsed since the last received frame. */ 657 static int bce_rx_ticks = 0; 658 #else 659 /* Generate an int. if 18us have elapsed since the last received frame. */ 660 static int bce_rx_ticks = DEFAULT_RX_TICKS; 661 #endif 662 SYSCTL_UINT(_hw_bce, OID_AUTO, rx_ticks, CTLFLAG_RDTUN, 663 &bce_rx_ticks, 0, "Receive ticks count"); 664 665 666 /****************************************************************************/ 667 /* Device probe function. */ 668 /* */ 669 /* Compares the device to the driver's list of supported devices and */ 670 /* reports back to the OS whether this is the right driver for the device. */ 671 /* */ 672 /* Returns: */ 673 /* BUS_PROBE_DEFAULT on success, positive value on failure. */ 674 /****************************************************************************/ 675 static int 676 bce_probe(device_t dev) 677 { 678 const struct bce_type *t; 679 struct bce_softc *sc; 680 char *descbuf; 681 u16 vid = 0, did = 0, svid = 0, sdid = 0; 682 683 t = bce_devs; 684 685 sc = device_get_softc(dev); 686 sc->bce_unit = device_get_unit(dev); 687 sc->bce_dev = dev; 688 689 /* Get the data for the device to be probed. */ 690 vid = pci_get_vendor(dev); 691 did = pci_get_device(dev); 692 svid = pci_get_subvendor(dev); 693 sdid = pci_get_subdevice(dev); 694 695 DBPRINT(sc, BCE_EXTREME_LOAD, 696 "%s(); VID = 0x%04X, DID = 0x%04X, SVID = 0x%04X, " 697 "SDID = 0x%04X\n", __FUNCTION__, vid, did, svid, sdid); 698 699 /* Look through the list of known devices for a match. */ 700 while(t->bce_name != NULL) { 701 702 if ((vid == t->bce_vid) && (did == t->bce_did) && 703 ((svid == t->bce_svid) || (t->bce_svid == PCI_ANY_ID)) && 704 ((sdid == t->bce_sdid) || (t->bce_sdid == PCI_ANY_ID))) { 705 706 descbuf = malloc(BCE_DEVDESC_MAX, M_TEMP, M_NOWAIT); 707 708 if (descbuf == NULL) 709 return(ENOMEM); 710 711 /* Print out the device identity. */ 712 snprintf(descbuf, BCE_DEVDESC_MAX, "%s (%c%d)", 713 t->bce_name, (((pci_read_config(dev, 714 PCIR_REVID, 4) & 0xf0) >> 4) + 'A'), 715 (pci_read_config(dev, PCIR_REVID, 4) & 0xf)); 716 717 device_set_desc_copy(dev, descbuf); 718 free(descbuf, M_TEMP); 719 return(BUS_PROBE_DEFAULT); 720 } 721 t++; 722 } 723 724 return(ENXIO); 725 } 726 727 728 /****************************************************************************/ 729 /* PCI Capabilities Probe Function. */ 730 /* */ 731 /* Walks the PCI capabiites list for the device to find what features are */ 732 /* supported. */ 733 /* */ 734 /* Returns: */ 735 /* None. */ 736 /****************************************************************************/ 737 static void 738 bce_print_adapter_info(struct bce_softc *sc) 739 { 740 int i = 0; 741 742 DBENTER(BCE_VERBOSE_LOAD); 743 744 if (bce_verbose || bootverbose) { 745 BCE_PRINTF("ASIC (0x%08X); ", sc->bce_chipid); 746 printf("Rev (%c%d); ", ((BCE_CHIP_ID(sc) & 0xf000) >> 747 12) + 'A', ((BCE_CHIP_ID(sc) & 0x0ff0) >> 4)); 748 749 750 /* Bus info. */ 751 if (sc->bce_flags & BCE_PCIE_FLAG) { 752 printf("Bus (PCIe x%d, ", sc->link_width); 753 switch (sc->link_speed) { 754 case 1: printf("2.5Gbps); "); break; 755 case 2: printf("5Gbps); "); break; 756 default: printf("Unknown link speed); "); 757 } 758 } else { 759 printf("Bus (PCI%s, %s, %dMHz); ", 760 ((sc->bce_flags & BCE_PCIX_FLAG) ? "-X" : ""), 761 ((sc->bce_flags & BCE_PCI_32BIT_FLAG) ? 762 "32-bit" : "64-bit"), sc->bus_speed_mhz); 763 } 764 765 /* Firmware version and device features. */ 766 printf("B/C (%s); Bufs (RX:%d;TX:%d;PG:%d); Flags (", 767 sc->bce_bc_ver, sc->rx_pages, sc->tx_pages, 768 (bce_hdr_split == TRUE ? sc->pg_pages: 0)); 769 770 if (bce_hdr_split == TRUE) { 771 printf("SPLT"); 772 i++; 773 } 774 775 if (sc->bce_flags & BCE_USING_MSI_FLAG) { 776 if (i > 0) printf("|"); 777 printf("MSI"); i++; 778 } 779 780 if (sc->bce_flags & BCE_USING_MSIX_FLAG) { 781 if (i > 0) printf("|"); 782 printf("MSI-X"); i++; 783 } 784 785 if (sc->bce_phy_flags & BCE_PHY_2_5G_CAPABLE_FLAG) { 786 if (i > 0) printf("|"); 787 printf("2.5G"); i++; 788 } 789 790 if (sc->bce_phy_flags & BCE_PHY_REMOTE_CAP_FLAG) { 791 if (i > 0) printf("|"); 792 printf("Remote PHY(%s)", 793 sc->bce_phy_flags & BCE_PHY_REMOTE_PORT_FIBER_FLAG ? 794 "FIBER" : "TP"); i++; 795 } 796 797 if (sc->bce_flags & BCE_MFW_ENABLE_FLAG) { 798 if (i > 0) printf("|"); 799 printf("MFW); MFW (%s)\n", sc->bce_mfw_ver); 800 } else { 801 printf(")\n"); 802 } 803 804 printf("Coal (RX:%d,%d,%d,%d; TX:%d,%d,%d,%d)\n", 805 sc->bce_rx_quick_cons_trip_int, 806 sc->bce_rx_quick_cons_trip, 807 sc->bce_rx_ticks_int, 808 sc->bce_rx_ticks, 809 sc->bce_tx_quick_cons_trip_int, 810 sc->bce_tx_quick_cons_trip, 811 sc->bce_tx_ticks_int, 812 sc->bce_tx_ticks); 813 814 } 815 816 DBEXIT(BCE_VERBOSE_LOAD); 817 } 818 819 820 /****************************************************************************/ 821 /* PCI Capabilities Probe Function. */ 822 /* */ 823 /* Walks the PCI capabiites list for the device to find what features are */ 824 /* supported. */ 825 /* */ 826 /* Returns: */ 827 /* None. */ 828 /****************************************************************************/ 829 static void 830 bce_probe_pci_caps(device_t dev, struct bce_softc *sc) 831 { 832 u32 reg; 833 834 DBENTER(BCE_VERBOSE_LOAD); 835 836 /* Check if PCI-X capability is enabled. */ 837 if (pci_find_cap(dev, PCIY_PCIX, ®) == 0) { 838 if (reg != 0) 839 sc->bce_cap_flags |= BCE_PCIX_CAPABLE_FLAG; 840 } 841 842 /* Check if PCIe capability is enabled. */ 843 if (pci_find_cap(dev, PCIY_EXPRESS, ®) == 0) { 844 if (reg != 0) { 845 u16 link_status = pci_read_config(dev, reg + 0x12, 2); 846 DBPRINT(sc, BCE_INFO_LOAD, "PCIe link_status = " 847 "0x%08X\n", link_status); 848 sc->link_speed = link_status & 0xf; 849 sc->link_width = (link_status >> 4) & 0x3f; 850 sc->bce_cap_flags |= BCE_PCIE_CAPABLE_FLAG; 851 sc->bce_flags |= BCE_PCIE_FLAG; 852 } 853 } 854 855 /* Check if MSI capability is enabled. */ 856 if (pci_find_cap(dev, PCIY_MSI, ®) == 0) { 857 if (reg != 0) 858 sc->bce_cap_flags |= BCE_MSI_CAPABLE_FLAG; 859 } 860 861 /* Check if MSI-X capability is enabled. */ 862 if (pci_find_cap(dev, PCIY_MSIX, ®) == 0) { 863 if (reg != 0) 864 sc->bce_cap_flags |= BCE_MSIX_CAPABLE_FLAG; 865 } 866 867 DBEXIT(BCE_VERBOSE_LOAD); 868 } 869 870 871 /****************************************************************************/ 872 /* Load and validate user tunable settings. */ 873 /* */ 874 /* Returns: */ 875 /* Nothing. */ 876 /****************************************************************************/ 877 static void 878 bce_set_tunables(struct bce_softc *sc) 879 { 880 /* Set sysctl values for RX page count. */ 881 switch (bce_rx_pages) { 882 case 1: 883 /* fall-through */ 884 case 2: 885 /* fall-through */ 886 case 4: 887 /* fall-through */ 888 case 8: 889 sc->rx_pages = bce_rx_pages; 890 break; 891 default: 892 sc->rx_pages = DEFAULT_RX_PAGES; 893 BCE_PRINTF("%s(%d): Illegal value (%d) specified for " 894 "hw.bce.rx_pages! Setting default of %d.\n", 895 __FILE__, __LINE__, bce_rx_pages, DEFAULT_RX_PAGES); 896 } 897 898 /* ToDo: Consider allowing user setting for pg_pages. */ 899 sc->pg_pages = min((sc->rx_pages * 4), MAX_PG_PAGES); 900 901 /* Set sysctl values for TX page count. */ 902 switch (bce_tx_pages) { 903 case 1: 904 /* fall-through */ 905 case 2: 906 /* fall-through */ 907 case 4: 908 /* fall-through */ 909 case 8: 910 sc->tx_pages = bce_tx_pages; 911 break; 912 default: 913 sc->tx_pages = DEFAULT_TX_PAGES; 914 BCE_PRINTF("%s(%d): Illegal value (%d) specified for " 915 "hw.bce.tx_pages! Setting default of %d.\n", 916 __FILE__, __LINE__, bce_tx_pages, DEFAULT_TX_PAGES); 917 } 918 919 /* 920 * Validate the TX trip point (i.e. the number of 921 * TX completions before a status block update is 922 * generated and an interrupt is asserted. 923 */ 924 if (bce_tx_quick_cons_trip_int <= 100) { 925 sc->bce_tx_quick_cons_trip_int = 926 bce_tx_quick_cons_trip_int; 927 } else { 928 BCE_PRINTF("%s(%d): Illegal value (%d) specified for " 929 "hw.bce.tx_quick_cons_trip_int! Setting default of %d.\n", 930 __FILE__, __LINE__, bce_tx_quick_cons_trip_int, 931 DEFAULT_TX_QUICK_CONS_TRIP_INT); 932 sc->bce_tx_quick_cons_trip_int = 933 DEFAULT_TX_QUICK_CONS_TRIP_INT; 934 } 935 936 if (bce_tx_quick_cons_trip <= 100) { 937 sc->bce_tx_quick_cons_trip = 938 bce_tx_quick_cons_trip; 939 } else { 940 BCE_PRINTF("%s(%d): Illegal value (%d) specified for " 941 "hw.bce.tx_quick_cons_trip! Setting default of %d.\n", 942 __FILE__, __LINE__, bce_tx_quick_cons_trip, 943 DEFAULT_TX_QUICK_CONS_TRIP); 944 sc->bce_tx_quick_cons_trip = 945 DEFAULT_TX_QUICK_CONS_TRIP; 946 } 947 948 /* 949 * Validate the TX ticks count (i.e. the maximum amount 950 * of time to wait after the last TX completion has 951 * occurred before a status block update is generated 952 * and an interrupt is asserted. 953 */ 954 if (bce_tx_ticks_int <= 100) { 955 sc->bce_tx_ticks_int = 956 bce_tx_ticks_int; 957 } else { 958 BCE_PRINTF("%s(%d): Illegal value (%d) specified for " 959 "hw.bce.tx_ticks_int! Setting default of %d.\n", 960 __FILE__, __LINE__, bce_tx_ticks_int, 961 DEFAULT_TX_TICKS_INT); 962 sc->bce_tx_ticks_int = 963 DEFAULT_TX_TICKS_INT; 964 } 965 966 if (bce_tx_ticks <= 100) { 967 sc->bce_tx_ticks = 968 bce_tx_ticks; 969 } else { 970 BCE_PRINTF("%s(%d): Illegal value (%d) specified for " 971 "hw.bce.tx_ticks! Setting default of %d.\n", 972 __FILE__, __LINE__, bce_tx_ticks, 973 DEFAULT_TX_TICKS); 974 sc->bce_tx_ticks = 975 DEFAULT_TX_TICKS; 976 } 977 978 /* 979 * Validate the RX trip point (i.e. the number of 980 * RX frames received before a status block update is 981 * generated and an interrupt is asserted. 982 */ 983 if (bce_rx_quick_cons_trip_int <= 100) { 984 sc->bce_rx_quick_cons_trip_int = 985 bce_rx_quick_cons_trip_int; 986 } else { 987 BCE_PRINTF("%s(%d): Illegal value (%d) specified for " 988 "hw.bce.rx_quick_cons_trip_int! Setting default of %d.\n", 989 __FILE__, __LINE__, bce_rx_quick_cons_trip_int, 990 DEFAULT_RX_QUICK_CONS_TRIP_INT); 991 sc->bce_rx_quick_cons_trip_int = 992 DEFAULT_RX_QUICK_CONS_TRIP_INT; 993 } 994 995 if (bce_rx_quick_cons_trip <= 100) { 996 sc->bce_rx_quick_cons_trip = 997 bce_rx_quick_cons_trip; 998 } else { 999 BCE_PRINTF("%s(%d): Illegal value (%d) specified for " 1000 "hw.bce.rx_quick_cons_trip! Setting default of %d.\n", 1001 __FILE__, __LINE__, bce_rx_quick_cons_trip, 1002 DEFAULT_RX_QUICK_CONS_TRIP); 1003 sc->bce_rx_quick_cons_trip = 1004 DEFAULT_RX_QUICK_CONS_TRIP; 1005 } 1006 1007 /* 1008 * Validate the RX ticks count (i.e. the maximum amount 1009 * of time to wait after the last RX frame has been 1010 * received before a status block update is generated 1011 * and an interrupt is asserted. 1012 */ 1013 if (bce_rx_ticks_int <= 100) { 1014 sc->bce_rx_ticks_int = bce_rx_ticks_int; 1015 } else { 1016 BCE_PRINTF("%s(%d): Illegal value (%d) specified for " 1017 "hw.bce.rx_ticks_int! Setting default of %d.\n", 1018 __FILE__, __LINE__, bce_rx_ticks_int, 1019 DEFAULT_RX_TICKS_INT); 1020 sc->bce_rx_ticks_int = DEFAULT_RX_TICKS_INT; 1021 } 1022 1023 if (bce_rx_ticks <= 100) { 1024 sc->bce_rx_ticks = bce_rx_ticks; 1025 } else { 1026 BCE_PRINTF("%s(%d): Illegal value (%d) specified for " 1027 "hw.bce.rx_ticks! Setting default of %d.\n", 1028 __FILE__, __LINE__, bce_rx_ticks, 1029 DEFAULT_RX_TICKS); 1030 sc->bce_rx_ticks = DEFAULT_RX_TICKS; 1031 } 1032 1033 /* Disabling both RX ticks and RX trips will prevent interrupts. */ 1034 if ((bce_rx_quick_cons_trip == 0) && (bce_rx_ticks == 0)) { 1035 BCE_PRINTF("%s(%d): Cannot set both hw.bce.rx_ticks and " 1036 "hw.bce.rx_quick_cons_trip to 0. Setting default values.\n", 1037 __FILE__, __LINE__); 1038 sc->bce_rx_ticks = DEFAULT_RX_TICKS; 1039 sc->bce_rx_quick_cons_trip = DEFAULT_RX_QUICK_CONS_TRIP; 1040 } 1041 1042 /* Disabling both TX ticks and TX trips will prevent interrupts. */ 1043 if ((bce_tx_quick_cons_trip == 0) && (bce_tx_ticks == 0)) { 1044 BCE_PRINTF("%s(%d): Cannot set both hw.bce.tx_ticks and " 1045 "hw.bce.tx_quick_cons_trip to 0. Setting default values.\n", 1046 __FILE__, __LINE__); 1047 sc->bce_tx_ticks = DEFAULT_TX_TICKS; 1048 sc->bce_tx_quick_cons_trip = DEFAULT_TX_QUICK_CONS_TRIP; 1049 } 1050 } 1051 1052 1053 /****************************************************************************/ 1054 /* Device attach function. */ 1055 /* */ 1056 /* Allocates device resources, performs secondary chip identification, */ 1057 /* resets and initializes the hardware, and initializes driver instance */ 1058 /* variables. */ 1059 /* */ 1060 /* Returns: */ 1061 /* 0 on success, positive value on failure. */ 1062 /****************************************************************************/ 1063 static int 1064 bce_attach(device_t dev) 1065 { 1066 struct bce_softc *sc; 1067 struct ifnet *ifp; 1068 u32 val; 1069 int count, error, rc = 0, rid; 1070 1071 sc = device_get_softc(dev); 1072 sc->bce_dev = dev; 1073 1074 DBENTER(BCE_VERBOSE_LOAD | BCE_VERBOSE_RESET); 1075 1076 sc->bce_unit = device_get_unit(dev); 1077 1078 /* Set initial device and PHY flags */ 1079 sc->bce_flags = 0; 1080 sc->bce_phy_flags = 0; 1081 1082 bce_set_tunables(sc); 1083 1084 pci_enable_busmaster(dev); 1085 1086 /* Allocate PCI memory resources. */ 1087 rid = PCIR_BAR(0); 1088 sc->bce_res_mem = bus_alloc_resource_any(dev, SYS_RES_MEMORY, 1089 &rid, RF_ACTIVE); 1090 1091 if (sc->bce_res_mem == NULL) { 1092 BCE_PRINTF("%s(%d): PCI memory allocation failed\n", 1093 __FILE__, __LINE__); 1094 rc = ENXIO; 1095 goto bce_attach_fail; 1096 } 1097 1098 /* Get various resource handles. */ 1099 sc->bce_btag = rman_get_bustag(sc->bce_res_mem); 1100 sc->bce_bhandle = rman_get_bushandle(sc->bce_res_mem); 1101 sc->bce_vhandle = (vm_offset_t) rman_get_virtual(sc->bce_res_mem); 1102 1103 bce_probe_pci_caps(dev, sc); 1104 1105 rid = 1; 1106 count = 0; 1107 #if 0 1108 /* Try allocating MSI-X interrupts. */ 1109 if ((sc->bce_cap_flags & BCE_MSIX_CAPABLE_FLAG) && 1110 (bce_msi_enable >= 2) && 1111 ((sc->bce_res_irq = bus_alloc_resource_any(dev, SYS_RES_MEMORY, 1112 &rid, RF_ACTIVE)) != NULL)) { 1113 1114 msi_needed = count = 1; 1115 1116 if (((error = pci_alloc_msix(dev, &count)) != 0) || 1117 (count != msi_needed)) { 1118 BCE_PRINTF("%s(%d): MSI-X allocation failed! Requested = %d," 1119 "Received = %d, error = %d\n", __FILE__, __LINE__, 1120 msi_needed, count, error); 1121 count = 0; 1122 pci_release_msi(dev); 1123 bus_release_resource(dev, SYS_RES_MEMORY, rid, 1124 sc->bce_res_irq); 1125 sc->bce_res_irq = NULL; 1126 } else { 1127 DBPRINT(sc, BCE_INFO_LOAD, "%s(): Using MSI-X interrupt.\n", 1128 __FUNCTION__); 1129 sc->bce_flags |= BCE_USING_MSIX_FLAG; 1130 } 1131 } 1132 #endif 1133 1134 /* Try allocating a MSI interrupt. */ 1135 if ((sc->bce_cap_flags & BCE_MSI_CAPABLE_FLAG) && 1136 (bce_msi_enable >= 1) && (count == 0)) { 1137 count = 1; 1138 if ((error = pci_alloc_msi(dev, &count)) != 0) { 1139 BCE_PRINTF("%s(%d): MSI allocation failed! " 1140 "error = %d\n", __FILE__, __LINE__, error); 1141 count = 0; 1142 pci_release_msi(dev); 1143 } else { 1144 DBPRINT(sc, BCE_INFO_LOAD, "%s(): Using MSI " 1145 "interrupt.\n", __FUNCTION__); 1146 sc->bce_flags |= BCE_USING_MSI_FLAG; 1147 if (BCE_CHIP_NUM(sc) == BCE_CHIP_NUM_5709) 1148 sc->bce_flags |= BCE_ONE_SHOT_MSI_FLAG; 1149 rid = 1; 1150 } 1151 } 1152 1153 /* Try allocating a legacy interrupt. */ 1154 if (count == 0) { 1155 DBPRINT(sc, BCE_INFO_LOAD, "%s(): Using INTx interrupt.\n", 1156 __FUNCTION__); 1157 rid = 0; 1158 } 1159 1160 sc->bce_res_irq = bus_alloc_resource_any(dev, SYS_RES_IRQ, 1161 &rid, RF_ACTIVE | (count != 0 ? 0 : RF_SHAREABLE)); 1162 1163 /* Report any IRQ allocation errors. */ 1164 if (sc->bce_res_irq == NULL) { 1165 BCE_PRINTF("%s(%d): PCI map interrupt failed!\n", 1166 __FILE__, __LINE__); 1167 rc = ENXIO; 1168 goto bce_attach_fail; 1169 } 1170 1171 /* Initialize mutex for the current device instance. */ 1172 BCE_LOCK_INIT(sc, device_get_nameunit(dev)); 1173 1174 /* 1175 * Configure byte swap and enable indirect register access. 1176 * Rely on CPU to do target byte swapping on big endian systems. 1177 * Access to registers outside of PCI configurtion space are not 1178 * valid until this is done. 1179 */ 1180 pci_write_config(dev, BCE_PCICFG_MISC_CONFIG, 1181 BCE_PCICFG_MISC_CONFIG_REG_WINDOW_ENA | 1182 BCE_PCICFG_MISC_CONFIG_TARGET_MB_WORD_SWAP, 4); 1183 1184 /* Save ASIC revsion info. */ 1185 sc->bce_chipid = REG_RD(sc, BCE_MISC_ID); 1186 1187 /* Weed out any non-production controller revisions. */ 1188 switch(BCE_CHIP_ID(sc)) { 1189 case BCE_CHIP_ID_5706_A0: 1190 case BCE_CHIP_ID_5706_A1: 1191 case BCE_CHIP_ID_5708_A0: 1192 case BCE_CHIP_ID_5708_B0: 1193 case BCE_CHIP_ID_5709_A0: 1194 case BCE_CHIP_ID_5709_B0: 1195 case BCE_CHIP_ID_5709_B1: 1196 case BCE_CHIP_ID_5709_B2: 1197 BCE_PRINTF("%s(%d): Unsupported controller " 1198 "revision (%c%d)!\n", __FILE__, __LINE__, 1199 (((pci_read_config(dev, PCIR_REVID, 4) & 1200 0xf0) >> 4) + 'A'), (pci_read_config(dev, 1201 PCIR_REVID, 4) & 0xf)); 1202 rc = ENODEV; 1203 goto bce_attach_fail; 1204 } 1205 1206 /* 1207 * The embedded PCIe to PCI-X bridge (EPB) 1208 * in the 5708 cannot address memory above 1209 * 40 bits (E7_5708CB1_23043 & E6_5708SB1_23043). 1210 */ 1211 if (BCE_CHIP_NUM(sc) == BCE_CHIP_NUM_5708) 1212 sc->max_bus_addr = BCE_BUS_SPACE_MAXADDR; 1213 else 1214 sc->max_bus_addr = BUS_SPACE_MAXADDR; 1215 1216 /* 1217 * Find the base address for shared memory access. 1218 * Newer versions of bootcode use a signature and offset 1219 * while older versions use a fixed address. 1220 */ 1221 val = REG_RD_IND(sc, BCE_SHM_HDR_SIGNATURE); 1222 if ((val & BCE_SHM_HDR_SIGNATURE_SIG_MASK) == BCE_SHM_HDR_SIGNATURE_SIG) 1223 /* Multi-port devices use different offsets in shared memory. */ 1224 sc->bce_shmem_base = REG_RD_IND(sc, BCE_SHM_HDR_ADDR_0 + 1225 (pci_get_function(sc->bce_dev) << 2)); 1226 else 1227 sc->bce_shmem_base = HOST_VIEW_SHMEM_BASE; 1228 1229 DBPRINT(sc, BCE_VERBOSE_FIRMWARE, "%s(): bce_shmem_base = 0x%08X\n", 1230 __FUNCTION__, sc->bce_shmem_base); 1231 1232 /* Fetch the bootcode revision. */ 1233 val = bce_shmem_rd(sc, BCE_DEV_INFO_BC_REV); 1234 for (int i = 0, j = 0; i < 3; i++) { 1235 u8 num; 1236 1237 num = (u8) (val >> (24 - (i * 8))); 1238 for (int k = 100, skip0 = 1; k >= 1; num %= k, k /= 10) { 1239 if (num >= k || !skip0 || k == 1) { 1240 sc->bce_bc_ver[j++] = (num / k) + '0'; 1241 skip0 = 0; 1242 } 1243 } 1244 1245 if (i != 2) 1246 sc->bce_bc_ver[j++] = '.'; 1247 } 1248 1249 /* Check if any management firwmare is enabled. */ 1250 val = bce_shmem_rd(sc, BCE_PORT_FEATURE); 1251 if (val & BCE_PORT_FEATURE_ASF_ENABLED) { 1252 sc->bce_flags |= BCE_MFW_ENABLE_FLAG; 1253 1254 /* Allow time for firmware to enter the running state. */ 1255 for (int i = 0; i < 30; i++) { 1256 val = bce_shmem_rd(sc, BCE_BC_STATE_CONDITION); 1257 if (val & BCE_CONDITION_MFW_RUN_MASK) 1258 break; 1259 DELAY(10000); 1260 } 1261 1262 /* Check if management firmware is running. */ 1263 val = bce_shmem_rd(sc, BCE_BC_STATE_CONDITION); 1264 val &= BCE_CONDITION_MFW_RUN_MASK; 1265 if ((val != BCE_CONDITION_MFW_RUN_UNKNOWN) && 1266 (val != BCE_CONDITION_MFW_RUN_NONE)) { 1267 u32 addr = bce_shmem_rd(sc, BCE_MFW_VER_PTR); 1268 int i = 0; 1269 1270 /* Read the management firmware version string. */ 1271 for (int j = 0; j < 3; j++) { 1272 val = bce_reg_rd_ind(sc, addr + j * 4); 1273 val = bswap32(val); 1274 memcpy(&sc->bce_mfw_ver[i], &val, 4); 1275 i += 4; 1276 } 1277 } else { 1278 /* May cause firmware synchronization timeouts. */ 1279 BCE_PRINTF("%s(%d): Management firmware enabled " 1280 "but not running!\n", __FILE__, __LINE__); 1281 strcpy(sc->bce_mfw_ver, "NOT RUNNING!"); 1282 1283 /* ToDo: Any action the driver should take? */ 1284 } 1285 } 1286 1287 /* Get PCI bus information (speed and type). */ 1288 val = REG_RD(sc, BCE_PCICFG_MISC_STATUS); 1289 if (val & BCE_PCICFG_MISC_STATUS_PCIX_DET) { 1290 u32 clkreg; 1291 1292 sc->bce_flags |= BCE_PCIX_FLAG; 1293 1294 clkreg = REG_RD(sc, BCE_PCICFG_PCI_CLOCK_CONTROL_BITS); 1295 1296 clkreg &= BCE_PCICFG_PCI_CLOCK_CONTROL_BITS_PCI_CLK_SPD_DET; 1297 switch (clkreg) { 1298 case BCE_PCICFG_PCI_CLOCK_CONTROL_BITS_PCI_CLK_SPD_DET_133MHZ: 1299 sc->bus_speed_mhz = 133; 1300 break; 1301 1302 case BCE_PCICFG_PCI_CLOCK_CONTROL_BITS_PCI_CLK_SPD_DET_95MHZ: 1303 sc->bus_speed_mhz = 100; 1304 break; 1305 1306 case BCE_PCICFG_PCI_CLOCK_CONTROL_BITS_PCI_CLK_SPD_DET_66MHZ: 1307 case BCE_PCICFG_PCI_CLOCK_CONTROL_BITS_PCI_CLK_SPD_DET_80MHZ: 1308 sc->bus_speed_mhz = 66; 1309 break; 1310 1311 case BCE_PCICFG_PCI_CLOCK_CONTROL_BITS_PCI_CLK_SPD_DET_48MHZ: 1312 case BCE_PCICFG_PCI_CLOCK_CONTROL_BITS_PCI_CLK_SPD_DET_55MHZ: 1313 sc->bus_speed_mhz = 50; 1314 break; 1315 1316 case BCE_PCICFG_PCI_CLOCK_CONTROL_BITS_PCI_CLK_SPD_DET_LOW: 1317 case BCE_PCICFG_PCI_CLOCK_CONTROL_BITS_PCI_CLK_SPD_DET_32MHZ: 1318 case BCE_PCICFG_PCI_CLOCK_CONTROL_BITS_PCI_CLK_SPD_DET_38MHZ: 1319 sc->bus_speed_mhz = 33; 1320 break; 1321 } 1322 } else { 1323 if (val & BCE_PCICFG_MISC_STATUS_M66EN) 1324 sc->bus_speed_mhz = 66; 1325 else 1326 sc->bus_speed_mhz = 33; 1327 } 1328 1329 if (val & BCE_PCICFG_MISC_STATUS_32BIT_DET) 1330 sc->bce_flags |= BCE_PCI_32BIT_FLAG; 1331 1332 /* Find the media type for the adapter. */ 1333 bce_get_media(sc); 1334 1335 /* Reset controller and announce to bootcode that driver is present. */ 1336 if (bce_reset(sc, BCE_DRV_MSG_CODE_RESET)) { 1337 BCE_PRINTF("%s(%d): Controller reset failed!\n", 1338 __FILE__, __LINE__); 1339 rc = ENXIO; 1340 goto bce_attach_fail; 1341 } 1342 1343 /* Initialize the controller. */ 1344 if (bce_chipinit(sc)) { 1345 BCE_PRINTF("%s(%d): Controller initialization failed!\n", 1346 __FILE__, __LINE__); 1347 rc = ENXIO; 1348 goto bce_attach_fail; 1349 } 1350 1351 /* Perform NVRAM test. */ 1352 if (bce_nvram_test(sc)) { 1353 BCE_PRINTF("%s(%d): NVRAM test failed!\n", 1354 __FILE__, __LINE__); 1355 rc = ENXIO; 1356 goto bce_attach_fail; 1357 } 1358 1359 /* Fetch the permanent Ethernet MAC address. */ 1360 bce_get_mac_addr(sc); 1361 1362 /* Update statistics once every second. */ 1363 sc->bce_stats_ticks = 1000000 & 0xffff00; 1364 1365 /* Store data needed by PHY driver for backplane applications */ 1366 sc->bce_shared_hw_cfg = bce_shmem_rd(sc, BCE_SHARED_HW_CFG_CONFIG); 1367 sc->bce_port_hw_cfg = bce_shmem_rd(sc, BCE_PORT_HW_CFG_CONFIG); 1368 1369 /* Allocate DMA memory resources. */ 1370 if (bce_dma_alloc(dev)) { 1371 BCE_PRINTF("%s(%d): DMA resource allocation failed!\n", 1372 __FILE__, __LINE__); 1373 rc = ENXIO; 1374 goto bce_attach_fail; 1375 } 1376 1377 /* Allocate an ifnet structure. */ 1378 ifp = sc->bce_ifp = if_alloc(IFT_ETHER); 1379 if (ifp == NULL) { 1380 BCE_PRINTF("%s(%d): Interface allocation failed!\n", 1381 __FILE__, __LINE__); 1382 rc = ENXIO; 1383 goto bce_attach_fail; 1384 } 1385 1386 /* Initialize the ifnet interface. */ 1387 ifp->if_softc = sc; 1388 if_initname(ifp, device_get_name(dev), device_get_unit(dev)); 1389 ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST; 1390 ifp->if_ioctl = bce_ioctl; 1391 ifp->if_start = bce_start; 1392 ifp->if_init = bce_init; 1393 ifp->if_mtu = ETHERMTU; 1394 1395 if (bce_tso_enable) { 1396 ifp->if_hwassist = BCE_IF_HWASSIST | CSUM_TSO; 1397 ifp->if_capabilities = BCE_IF_CAPABILITIES | IFCAP_TSO4 | 1398 IFCAP_VLAN_HWTSO; 1399 } else { 1400 ifp->if_hwassist = BCE_IF_HWASSIST; 1401 ifp->if_capabilities = BCE_IF_CAPABILITIES; 1402 } 1403 1404 #if __FreeBSD_version >= 800505 1405 /* 1406 * Introducing IFCAP_LINKSTATE didn't bump __FreeBSD_version 1407 * so it's approximate value. 1408 */ 1409 if ((sc->bce_phy_flags & BCE_PHY_REMOTE_CAP_FLAG) != 0) 1410 ifp->if_capabilities |= IFCAP_LINKSTATE; 1411 #endif 1412 1413 ifp->if_capenable = ifp->if_capabilities; 1414 1415 /* 1416 * Assume standard mbuf sizes for buffer allocation. 1417 * This may change later if the MTU size is set to 1418 * something other than 1500. 1419 */ 1420 bce_get_rx_buffer_sizes(sc, 1421 (ETHER_MAX_LEN - ETHER_HDR_LEN - ETHER_CRC_LEN)); 1422 1423 /* Recalculate our buffer allocation sizes. */ 1424 ifp->if_snd.ifq_drv_maxlen = USABLE_TX_BD_ALLOC; 1425 IFQ_SET_MAXLEN(&ifp->if_snd, ifp->if_snd.ifq_drv_maxlen); 1426 IFQ_SET_READY(&ifp->if_snd); 1427 1428 if (sc->bce_phy_flags & BCE_PHY_2_5G_CAPABLE_FLAG) 1429 ifp->if_baudrate = IF_Mbps(2500ULL); 1430 else 1431 ifp->if_baudrate = IF_Mbps(1000); 1432 1433 /* Handle any special PHY initialization for SerDes PHYs. */ 1434 bce_init_media(sc); 1435 1436 if ((sc->bce_phy_flags & BCE_PHY_REMOTE_CAP_FLAG) != 0) { 1437 ifmedia_init(&sc->bce_ifmedia, IFM_IMASK, bce_ifmedia_upd, 1438 bce_ifmedia_sts); 1439 /* 1440 * We can't manually override remote PHY's link and assume 1441 * PHY port configuration(Fiber or TP) is not changed after 1442 * device attach. This may not be correct though. 1443 */ 1444 if ((sc->bce_phy_flags & BCE_PHY_REMOTE_PORT_FIBER_FLAG) != 0) { 1445 if (sc->bce_phy_flags & BCE_PHY_2_5G_CAPABLE_FLAG) { 1446 ifmedia_add(&sc->bce_ifmedia, 1447 IFM_ETHER | IFM_2500_SX, 0, NULL); 1448 ifmedia_add(&sc->bce_ifmedia, 1449 IFM_ETHER | IFM_2500_SX | IFM_FDX, 0, NULL); 1450 } 1451 ifmedia_add(&sc->bce_ifmedia, 1452 IFM_ETHER | IFM_1000_SX, 0, NULL); 1453 ifmedia_add(&sc->bce_ifmedia, 1454 IFM_ETHER | IFM_1000_SX | IFM_FDX, 0, NULL); 1455 } else { 1456 ifmedia_add(&sc->bce_ifmedia, 1457 IFM_ETHER | IFM_10_T, 0, NULL); 1458 ifmedia_add(&sc->bce_ifmedia, 1459 IFM_ETHER | IFM_10_T | IFM_FDX, 0, NULL); 1460 ifmedia_add(&sc->bce_ifmedia, 1461 IFM_ETHER | IFM_100_TX, 0, NULL); 1462 ifmedia_add(&sc->bce_ifmedia, 1463 IFM_ETHER | IFM_100_TX | IFM_FDX, 0, NULL); 1464 ifmedia_add(&sc->bce_ifmedia, 1465 IFM_ETHER | IFM_1000_T, 0, NULL); 1466 ifmedia_add(&sc->bce_ifmedia, 1467 IFM_ETHER | IFM_1000_T | IFM_FDX, 0, NULL); 1468 } 1469 ifmedia_add(&sc->bce_ifmedia, IFM_ETHER | IFM_AUTO, 0, NULL); 1470 ifmedia_set(&sc->bce_ifmedia, IFM_ETHER | IFM_AUTO); 1471 sc->bce_ifmedia.ifm_media = sc->bce_ifmedia.ifm_cur->ifm_media; 1472 } else { 1473 /* MII child bus by attaching the PHY. */ 1474 rc = mii_attach(dev, &sc->bce_miibus, ifp, bce_ifmedia_upd, 1475 bce_ifmedia_sts, BMSR_DEFCAPMASK, sc->bce_phy_addr, 1476 MII_OFFSET_ANY, MIIF_DOPAUSE); 1477 if (rc != 0) { 1478 BCE_PRINTF("%s(%d): attaching PHYs failed\n", __FILE__, 1479 __LINE__); 1480 goto bce_attach_fail; 1481 } 1482 } 1483 1484 /* Attach to the Ethernet interface list. */ 1485 ether_ifattach(ifp, sc->eaddr); 1486 1487 #if __FreeBSD_version < 500000 1488 callout_init(&sc->bce_tick_callout); 1489 callout_init(&sc->bce_pulse_callout); 1490 #else 1491 callout_init_mtx(&sc->bce_tick_callout, &sc->bce_mtx, 0); 1492 callout_init_mtx(&sc->bce_pulse_callout, &sc->bce_mtx, 0); 1493 #endif 1494 1495 /* Hookup IRQ last. */ 1496 rc = bus_setup_intr(dev, sc->bce_res_irq, INTR_TYPE_NET | INTR_MPSAFE, 1497 NULL, bce_intr, sc, &sc->bce_intrhand); 1498 1499 if (rc) { 1500 BCE_PRINTF("%s(%d): Failed to setup IRQ!\n", 1501 __FILE__, __LINE__); 1502 bce_detach(dev); 1503 goto bce_attach_exit; 1504 } 1505 1506 /* 1507 * At this point we've acquired all the resources 1508 * we need to run so there's no turning back, we're 1509 * cleared for launch. 1510 */ 1511 1512 /* Print some important debugging info. */ 1513 DBRUNMSG(BCE_INFO, bce_dump_driver_state(sc)); 1514 1515 /* Add the supported sysctls to the kernel. */ 1516 bce_add_sysctls(sc); 1517 1518 BCE_LOCK(sc); 1519 1520 /* 1521 * The chip reset earlier notified the bootcode that 1522 * a driver is present. We now need to start our pulse 1523 * routine so that the bootcode is reminded that we're 1524 * still running. 1525 */ 1526 bce_pulse(sc); 1527 1528 bce_mgmt_init_locked(sc); 1529 BCE_UNLOCK(sc); 1530 1531 /* Finally, print some useful adapter info */ 1532 bce_print_adapter_info(sc); 1533 DBPRINT(sc, BCE_FATAL, "%s(): sc = %p\n", 1534 __FUNCTION__, sc); 1535 1536 goto bce_attach_exit; 1537 1538 bce_attach_fail: 1539 bce_release_resources(sc); 1540 1541 bce_attach_exit: 1542 1543 DBEXIT(BCE_VERBOSE_LOAD | BCE_VERBOSE_RESET); 1544 1545 return(rc); 1546 } 1547 1548 1549 /****************************************************************************/ 1550 /* Device detach function. */ 1551 /* */ 1552 /* Stops the controller, resets the controller, and releases resources. */ 1553 /* */ 1554 /* Returns: */ 1555 /* 0 on success, positive value on failure. */ 1556 /****************************************************************************/ 1557 static int 1558 bce_detach(device_t dev) 1559 { 1560 struct bce_softc *sc = device_get_softc(dev); 1561 struct ifnet *ifp; 1562 u32 msg; 1563 1564 DBENTER(BCE_VERBOSE_UNLOAD | BCE_VERBOSE_RESET); 1565 1566 ifp = sc->bce_ifp; 1567 1568 /* Stop and reset the controller. */ 1569 BCE_LOCK(sc); 1570 1571 /* Stop the pulse so the bootcode can go to driver absent state. */ 1572 callout_stop(&sc->bce_pulse_callout); 1573 1574 bce_stop(sc); 1575 if (sc->bce_flags & BCE_NO_WOL_FLAG) 1576 msg = BCE_DRV_MSG_CODE_UNLOAD_LNK_DN; 1577 else 1578 msg = BCE_DRV_MSG_CODE_UNLOAD; 1579 bce_reset(sc, msg); 1580 1581 BCE_UNLOCK(sc); 1582 1583 ether_ifdetach(ifp); 1584 1585 /* If we have a child device on the MII bus remove it too. */ 1586 if ((sc->bce_phy_flags & BCE_PHY_REMOTE_CAP_FLAG) != 0) 1587 ifmedia_removeall(&sc->bce_ifmedia); 1588 else { 1589 bus_generic_detach(dev); 1590 device_delete_child(dev, sc->bce_miibus); 1591 } 1592 1593 /* Release all remaining resources. */ 1594 bce_release_resources(sc); 1595 1596 DBEXIT(BCE_VERBOSE_UNLOAD | BCE_VERBOSE_RESET); 1597 1598 return(0); 1599 } 1600 1601 1602 /****************************************************************************/ 1603 /* Device shutdown function. */ 1604 /* */ 1605 /* Stops and resets the controller. */ 1606 /* */ 1607 /* Returns: */ 1608 /* 0 on success, positive value on failure. */ 1609 /****************************************************************************/ 1610 static int 1611 bce_shutdown(device_t dev) 1612 { 1613 struct bce_softc *sc = device_get_softc(dev); 1614 u32 msg; 1615 1616 DBENTER(BCE_VERBOSE); 1617 1618 BCE_LOCK(sc); 1619 bce_stop(sc); 1620 if (sc->bce_flags & BCE_NO_WOL_FLAG) 1621 msg = BCE_DRV_MSG_CODE_UNLOAD_LNK_DN; 1622 else 1623 msg = BCE_DRV_MSG_CODE_UNLOAD; 1624 bce_reset(sc, msg); 1625 BCE_UNLOCK(sc); 1626 1627 DBEXIT(BCE_VERBOSE); 1628 1629 return (0); 1630 } 1631 1632 1633 #ifdef BCE_DEBUG 1634 /****************************************************************************/ 1635 /* Register read. */ 1636 /* */ 1637 /* Returns: */ 1638 /* The value of the register. */ 1639 /****************************************************************************/ 1640 static u32 1641 bce_reg_rd(struct bce_softc *sc, u32 offset) 1642 { 1643 u32 val = REG_RD(sc, offset); 1644 DBPRINT(sc, BCE_INSANE_REG, "%s(); offset = 0x%08X, val = 0x%08X\n", 1645 __FUNCTION__, offset, val); 1646 return val; 1647 } 1648 1649 1650 /****************************************************************************/ 1651 /* Register write (16 bit). */ 1652 /* */ 1653 /* Returns: */ 1654 /* Nothing. */ 1655 /****************************************************************************/ 1656 static void 1657 bce_reg_wr16(struct bce_softc *sc, u32 offset, u16 val) 1658 { 1659 DBPRINT(sc, BCE_INSANE_REG, "%s(); offset = 0x%08X, val = 0x%04X\n", 1660 __FUNCTION__, offset, val); 1661 REG_WR16(sc, offset, val); 1662 } 1663 1664 1665 /****************************************************************************/ 1666 /* Register write. */ 1667 /* */ 1668 /* Returns: */ 1669 /* Nothing. */ 1670 /****************************************************************************/ 1671 static void 1672 bce_reg_wr(struct bce_softc *sc, u32 offset, u32 val) 1673 { 1674 DBPRINT(sc, BCE_INSANE_REG, "%s(); offset = 0x%08X, val = 0x%08X\n", 1675 __FUNCTION__, offset, val); 1676 REG_WR(sc, offset, val); 1677 } 1678 #endif 1679 1680 /****************************************************************************/ 1681 /* Indirect register read. */ 1682 /* */ 1683 /* Reads NetXtreme II registers using an index/data register pair in PCI */ 1684 /* configuration space. Using this mechanism avoids issues with posted */ 1685 /* reads but is much slower than memory-mapped I/O. */ 1686 /* */ 1687 /* Returns: */ 1688 /* The value of the register. */ 1689 /****************************************************************************/ 1690 static u32 1691 bce_reg_rd_ind(struct bce_softc *sc, u32 offset) 1692 { 1693 device_t dev; 1694 dev = sc->bce_dev; 1695 1696 pci_write_config(dev, BCE_PCICFG_REG_WINDOW_ADDRESS, offset, 4); 1697 #ifdef BCE_DEBUG 1698 { 1699 u32 val; 1700 val = pci_read_config(dev, BCE_PCICFG_REG_WINDOW, 4); 1701 DBPRINT(sc, BCE_INSANE_REG, "%s(); offset = 0x%08X, val = 0x%08X\n", 1702 __FUNCTION__, offset, val); 1703 return val; 1704 } 1705 #else 1706 return pci_read_config(dev, BCE_PCICFG_REG_WINDOW, 4); 1707 #endif 1708 } 1709 1710 1711 /****************************************************************************/ 1712 /* Indirect register write. */ 1713 /* */ 1714 /* Writes NetXtreme II registers using an index/data register pair in PCI */ 1715 /* configuration space. Using this mechanism avoids issues with posted */ 1716 /* writes but is muchh slower than memory-mapped I/O. */ 1717 /* */ 1718 /* Returns: */ 1719 /* Nothing. */ 1720 /****************************************************************************/ 1721 static void 1722 bce_reg_wr_ind(struct bce_softc *sc, u32 offset, u32 val) 1723 { 1724 device_t dev; 1725 dev = sc->bce_dev; 1726 1727 DBPRINT(sc, BCE_INSANE_REG, "%s(); offset = 0x%08X, val = 0x%08X\n", 1728 __FUNCTION__, offset, val); 1729 1730 pci_write_config(dev, BCE_PCICFG_REG_WINDOW_ADDRESS, offset, 4); 1731 pci_write_config(dev, BCE_PCICFG_REG_WINDOW, val, 4); 1732 } 1733 1734 1735 /****************************************************************************/ 1736 /* Shared memory write. */ 1737 /* */ 1738 /* Writes NetXtreme II shared memory region. */ 1739 /* */ 1740 /* Returns: */ 1741 /* Nothing. */ 1742 /****************************************************************************/ 1743 static void 1744 bce_shmem_wr(struct bce_softc *sc, u32 offset, u32 val) 1745 { 1746 DBPRINT(sc, BCE_VERBOSE_FIRMWARE, "%s(): Writing 0x%08X to " 1747 "0x%08X\n", __FUNCTION__, val, offset); 1748 1749 bce_reg_wr_ind(sc, sc->bce_shmem_base + offset, val); 1750 } 1751 1752 1753 /****************************************************************************/ 1754 /* Shared memory read. */ 1755 /* */ 1756 /* Reads NetXtreme II shared memory region. */ 1757 /* */ 1758 /* Returns: */ 1759 /* The 32 bit value read. */ 1760 /****************************************************************************/ 1761 static u32 1762 bce_shmem_rd(struct bce_softc *sc, u32 offset) 1763 { 1764 u32 val = bce_reg_rd_ind(sc, sc->bce_shmem_base + offset); 1765 1766 DBPRINT(sc, BCE_VERBOSE_FIRMWARE, "%s(): Reading 0x%08X from " 1767 "0x%08X\n", __FUNCTION__, val, offset); 1768 1769 return val; 1770 } 1771 1772 1773 #ifdef BCE_DEBUG 1774 /****************************************************************************/ 1775 /* Context memory read. */ 1776 /* */ 1777 /* The NetXtreme II controller uses context memory to track connection */ 1778 /* information for L2 and higher network protocols. */ 1779 /* */ 1780 /* Returns: */ 1781 /* The requested 32 bit value of context memory. */ 1782 /****************************************************************************/ 1783 static u32 1784 bce_ctx_rd(struct bce_softc *sc, u32 cid_addr, u32 ctx_offset) 1785 { 1786 u32 idx, offset, retry_cnt = 5, val; 1787 1788 DBRUNIF((cid_addr > MAX_CID_ADDR || ctx_offset & 0x3 || 1789 cid_addr & CTX_MASK), BCE_PRINTF("%s(): Invalid CID " 1790 "address: 0x%08X.\n", __FUNCTION__, cid_addr)); 1791 1792 offset = ctx_offset + cid_addr; 1793 1794 if (BCE_CHIP_NUM(sc) == BCE_CHIP_NUM_5709) { 1795 1796 REG_WR(sc, BCE_CTX_CTX_CTRL, (offset | BCE_CTX_CTX_CTRL_READ_REQ)); 1797 1798 for (idx = 0; idx < retry_cnt; idx++) { 1799 val = REG_RD(sc, BCE_CTX_CTX_CTRL); 1800 if ((val & BCE_CTX_CTX_CTRL_READ_REQ) == 0) 1801 break; 1802 DELAY(5); 1803 } 1804 1805 if (val & BCE_CTX_CTX_CTRL_READ_REQ) 1806 BCE_PRINTF("%s(%d); Unable to read CTX memory: " 1807 "cid_addr = 0x%08X, offset = 0x%08X!\n", 1808 __FILE__, __LINE__, cid_addr, ctx_offset); 1809 1810 val = REG_RD(sc, BCE_CTX_CTX_DATA); 1811 } else { 1812 REG_WR(sc, BCE_CTX_DATA_ADR, offset); 1813 val = REG_RD(sc, BCE_CTX_DATA); 1814 } 1815 1816 DBPRINT(sc, BCE_EXTREME_CTX, "%s(); cid_addr = 0x%08X, offset = 0x%08X, " 1817 "val = 0x%08X\n", __FUNCTION__, cid_addr, ctx_offset, val); 1818 1819 return(val); 1820 } 1821 #endif 1822 1823 1824 /****************************************************************************/ 1825 /* Context memory write. */ 1826 /* */ 1827 /* The NetXtreme II controller uses context memory to track connection */ 1828 /* information for L2 and higher network protocols. */ 1829 /* */ 1830 /* Returns: */ 1831 /* Nothing. */ 1832 /****************************************************************************/ 1833 static void 1834 bce_ctx_wr(struct bce_softc *sc, u32 cid_addr, u32 ctx_offset, u32 ctx_val) 1835 { 1836 u32 idx, offset = ctx_offset + cid_addr; 1837 u32 val, retry_cnt = 5; 1838 1839 DBPRINT(sc, BCE_EXTREME_CTX, "%s(); cid_addr = 0x%08X, offset = 0x%08X, " 1840 "val = 0x%08X\n", __FUNCTION__, cid_addr, ctx_offset, ctx_val); 1841 1842 DBRUNIF((cid_addr > MAX_CID_ADDR || ctx_offset & 0x3 || cid_addr & CTX_MASK), 1843 BCE_PRINTF("%s(): Invalid CID address: 0x%08X.\n", 1844 __FUNCTION__, cid_addr)); 1845 1846 if (BCE_CHIP_NUM(sc) == BCE_CHIP_NUM_5709) { 1847 1848 REG_WR(sc, BCE_CTX_CTX_DATA, ctx_val); 1849 REG_WR(sc, BCE_CTX_CTX_CTRL, (offset | BCE_CTX_CTX_CTRL_WRITE_REQ)); 1850 1851 for (idx = 0; idx < retry_cnt; idx++) { 1852 val = REG_RD(sc, BCE_CTX_CTX_CTRL); 1853 if ((val & BCE_CTX_CTX_CTRL_WRITE_REQ) == 0) 1854 break; 1855 DELAY(5); 1856 } 1857 1858 if (val & BCE_CTX_CTX_CTRL_WRITE_REQ) 1859 BCE_PRINTF("%s(%d); Unable to write CTX memory: " 1860 "cid_addr = 0x%08X, offset = 0x%08X!\n", 1861 __FILE__, __LINE__, cid_addr, ctx_offset); 1862 1863 } else { 1864 REG_WR(sc, BCE_CTX_DATA_ADR, offset); 1865 REG_WR(sc, BCE_CTX_DATA, ctx_val); 1866 } 1867 } 1868 1869 1870 /****************************************************************************/ 1871 /* PHY register read. */ 1872 /* */ 1873 /* Implements register reads on the MII bus. */ 1874 /* */ 1875 /* Returns: */ 1876 /* The value of the register. */ 1877 /****************************************************************************/ 1878 static int 1879 bce_miibus_read_reg(device_t dev, int phy, int reg) 1880 { 1881 struct bce_softc *sc; 1882 u32 val; 1883 int i; 1884 1885 sc = device_get_softc(dev); 1886 1887 /* 1888 * The 5709S PHY is an IEEE Clause 45 PHY 1889 * with special mappings to work with IEEE 1890 * Clause 22 register accesses. 1891 */ 1892 if ((sc->bce_phy_flags & BCE_PHY_IEEE_CLAUSE_45_FLAG) != 0) { 1893 if (reg >= MII_BMCR && reg <= MII_ANLPRNP) 1894 reg += 0x10; 1895 } 1896 1897 if (sc->bce_phy_flags & BCE_PHY_INT_MODE_AUTO_POLLING_FLAG) { 1898 val = REG_RD(sc, BCE_EMAC_MDIO_MODE); 1899 val &= ~BCE_EMAC_MDIO_MODE_AUTO_POLL; 1900 1901 REG_WR(sc, BCE_EMAC_MDIO_MODE, val); 1902 REG_RD(sc, BCE_EMAC_MDIO_MODE); 1903 1904 DELAY(40); 1905 } 1906 1907 1908 val = BCE_MIPHY(phy) | BCE_MIREG(reg) | 1909 BCE_EMAC_MDIO_COMM_COMMAND_READ | BCE_EMAC_MDIO_COMM_DISEXT | 1910 BCE_EMAC_MDIO_COMM_START_BUSY; 1911 REG_WR(sc, BCE_EMAC_MDIO_COMM, val); 1912 1913 for (i = 0; i < BCE_PHY_TIMEOUT; i++) { 1914 DELAY(10); 1915 1916 val = REG_RD(sc, BCE_EMAC_MDIO_COMM); 1917 if (!(val & BCE_EMAC_MDIO_COMM_START_BUSY)) { 1918 DELAY(5); 1919 1920 val = REG_RD(sc, BCE_EMAC_MDIO_COMM); 1921 val &= BCE_EMAC_MDIO_COMM_DATA; 1922 1923 break; 1924 } 1925 } 1926 1927 if (val & BCE_EMAC_MDIO_COMM_START_BUSY) { 1928 BCE_PRINTF("%s(%d): Error: PHY read timeout! phy = %d, " 1929 "reg = 0x%04X\n", __FILE__, __LINE__, phy, reg); 1930 val = 0x0; 1931 } else { 1932 val = REG_RD(sc, BCE_EMAC_MDIO_COMM); 1933 } 1934 1935 1936 if (sc->bce_phy_flags & BCE_PHY_INT_MODE_AUTO_POLLING_FLAG) { 1937 val = REG_RD(sc, BCE_EMAC_MDIO_MODE); 1938 val |= BCE_EMAC_MDIO_MODE_AUTO_POLL; 1939 1940 REG_WR(sc, BCE_EMAC_MDIO_MODE, val); 1941 REG_RD(sc, BCE_EMAC_MDIO_MODE); 1942 1943 DELAY(40); 1944 } 1945 1946 DB_PRINT_PHY_REG(reg, val); 1947 return (val & 0xffff); 1948 } 1949 1950 1951 /****************************************************************************/ 1952 /* PHY register write. */ 1953 /* */ 1954 /* Implements register writes on the MII bus. */ 1955 /* */ 1956 /* Returns: */ 1957 /* The value of the register. */ 1958 /****************************************************************************/ 1959 static int 1960 bce_miibus_write_reg(device_t dev, int phy, int reg, int val) 1961 { 1962 struct bce_softc *sc; 1963 u32 val1; 1964 int i; 1965 1966 sc = device_get_softc(dev); 1967 1968 DB_PRINT_PHY_REG(reg, val); 1969 1970 /* 1971 * The 5709S PHY is an IEEE Clause 45 PHY 1972 * with special mappings to work with IEEE 1973 * Clause 22 register accesses. 1974 */ 1975 if ((sc->bce_phy_flags & BCE_PHY_IEEE_CLAUSE_45_FLAG) != 0) { 1976 if (reg >= MII_BMCR && reg <= MII_ANLPRNP) 1977 reg += 0x10; 1978 } 1979 1980 if (sc->bce_phy_flags & BCE_PHY_INT_MODE_AUTO_POLLING_FLAG) { 1981 val1 = REG_RD(sc, BCE_EMAC_MDIO_MODE); 1982 val1 &= ~BCE_EMAC_MDIO_MODE_AUTO_POLL; 1983 1984 REG_WR(sc, BCE_EMAC_MDIO_MODE, val1); 1985 REG_RD(sc, BCE_EMAC_MDIO_MODE); 1986 1987 DELAY(40); 1988 } 1989 1990 val1 = BCE_MIPHY(phy) | BCE_MIREG(reg) | val | 1991 BCE_EMAC_MDIO_COMM_COMMAND_WRITE | 1992 BCE_EMAC_MDIO_COMM_START_BUSY | BCE_EMAC_MDIO_COMM_DISEXT; 1993 REG_WR(sc, BCE_EMAC_MDIO_COMM, val1); 1994 1995 for (i = 0; i < BCE_PHY_TIMEOUT; i++) { 1996 DELAY(10); 1997 1998 val1 = REG_RD(sc, BCE_EMAC_MDIO_COMM); 1999 if (!(val1 & BCE_EMAC_MDIO_COMM_START_BUSY)) { 2000 DELAY(5); 2001 break; 2002 } 2003 } 2004 2005 if (val1 & BCE_EMAC_MDIO_COMM_START_BUSY) 2006 BCE_PRINTF("%s(%d): PHY write timeout!\n", 2007 __FILE__, __LINE__); 2008 2009 if (sc->bce_phy_flags & BCE_PHY_INT_MODE_AUTO_POLLING_FLAG) { 2010 val1 = REG_RD(sc, BCE_EMAC_MDIO_MODE); 2011 val1 |= BCE_EMAC_MDIO_MODE_AUTO_POLL; 2012 2013 REG_WR(sc, BCE_EMAC_MDIO_MODE, val1); 2014 REG_RD(sc, BCE_EMAC_MDIO_MODE); 2015 2016 DELAY(40); 2017 } 2018 2019 return 0; 2020 } 2021 2022 2023 /****************************************************************************/ 2024 /* MII bus status change. */ 2025 /* */ 2026 /* Called by the MII bus driver when the PHY establishes link to set the */ 2027 /* MAC interface registers. */ 2028 /* */ 2029 /* Returns: */ 2030 /* Nothing. */ 2031 /****************************************************************************/ 2032 static void 2033 bce_miibus_statchg(device_t dev) 2034 { 2035 struct bce_softc *sc; 2036 struct mii_data *mii; 2037 struct ifmediareq ifmr; 2038 int media_active, media_status, val; 2039 2040 sc = device_get_softc(dev); 2041 2042 DBENTER(BCE_VERBOSE_PHY); 2043 2044 if ((sc->bce_phy_flags & BCE_PHY_REMOTE_CAP_FLAG) != 0) { 2045 bzero(&ifmr, sizeof(ifmr)); 2046 bce_ifmedia_sts_rphy(sc, &ifmr); 2047 media_active = ifmr.ifm_active; 2048 media_status = ifmr.ifm_status; 2049 } else { 2050 mii = device_get_softc(sc->bce_miibus); 2051 media_active = mii->mii_media_active; 2052 media_status = mii->mii_media_status; 2053 } 2054 2055 /* Ignore invalid media status. */ 2056 if ((media_status & (IFM_ACTIVE | IFM_AVALID)) != 2057 (IFM_ACTIVE | IFM_AVALID)) 2058 goto bce_miibus_statchg_exit; 2059 2060 val = REG_RD(sc, BCE_EMAC_MODE); 2061 val &= ~(BCE_EMAC_MODE_PORT | BCE_EMAC_MODE_HALF_DUPLEX | 2062 BCE_EMAC_MODE_MAC_LOOP | BCE_EMAC_MODE_FORCE_LINK | 2063 BCE_EMAC_MODE_25G); 2064 2065 /* Set MII or GMII interface based on the PHY speed. */ 2066 switch (IFM_SUBTYPE(media_active)) { 2067 case IFM_10_T: 2068 if (BCE_CHIP_NUM(sc) != BCE_CHIP_NUM_5706) { 2069 DBPRINT(sc, BCE_INFO_PHY, 2070 "Enabling 10Mb interface.\n"); 2071 val |= BCE_EMAC_MODE_PORT_MII_10; 2072 break; 2073 } 2074 /* fall-through */ 2075 case IFM_100_TX: 2076 DBPRINT(sc, BCE_INFO_PHY, "Enabling MII interface.\n"); 2077 val |= BCE_EMAC_MODE_PORT_MII; 2078 break; 2079 case IFM_2500_SX: 2080 DBPRINT(sc, BCE_INFO_PHY, "Enabling 2.5G MAC mode.\n"); 2081 val |= BCE_EMAC_MODE_25G; 2082 /* fall-through */ 2083 case IFM_1000_T: 2084 case IFM_1000_SX: 2085 DBPRINT(sc, BCE_INFO_PHY, "Enabling GMII interface.\n"); 2086 val |= BCE_EMAC_MODE_PORT_GMII; 2087 break; 2088 default: 2089 DBPRINT(sc, BCE_INFO_PHY, "Unknown link speed, enabling " 2090 "default GMII interface.\n"); 2091 val |= BCE_EMAC_MODE_PORT_GMII; 2092 } 2093 2094 /* Set half or full duplex based on PHY settings. */ 2095 if ((IFM_OPTIONS(media_active) & IFM_FDX) == 0) { 2096 DBPRINT(sc, BCE_INFO_PHY, 2097 "Setting Half-Duplex interface.\n"); 2098 val |= BCE_EMAC_MODE_HALF_DUPLEX; 2099 } else 2100 DBPRINT(sc, BCE_INFO_PHY, 2101 "Setting Full-Duplex interface.\n"); 2102 2103 REG_WR(sc, BCE_EMAC_MODE, val); 2104 2105 if ((IFM_OPTIONS(media_active) & IFM_ETH_RXPAUSE) != 0) { 2106 DBPRINT(sc, BCE_INFO_PHY, 2107 "%s(): Enabling RX flow control.\n", __FUNCTION__); 2108 BCE_SETBIT(sc, BCE_EMAC_RX_MODE, BCE_EMAC_RX_MODE_FLOW_EN); 2109 sc->bce_flags |= BCE_USING_RX_FLOW_CONTROL; 2110 } else { 2111 DBPRINT(sc, BCE_INFO_PHY, 2112 "%s(): Disabling RX flow control.\n", __FUNCTION__); 2113 BCE_CLRBIT(sc, BCE_EMAC_RX_MODE, BCE_EMAC_RX_MODE_FLOW_EN); 2114 sc->bce_flags &= ~BCE_USING_RX_FLOW_CONTROL; 2115 } 2116 2117 if ((IFM_OPTIONS(media_active) & IFM_ETH_TXPAUSE) != 0) { 2118 DBPRINT(sc, BCE_INFO_PHY, 2119 "%s(): Enabling TX flow control.\n", __FUNCTION__); 2120 BCE_SETBIT(sc, BCE_EMAC_TX_MODE, BCE_EMAC_TX_MODE_FLOW_EN); 2121 sc->bce_flags |= BCE_USING_TX_FLOW_CONTROL; 2122 } else { 2123 DBPRINT(sc, BCE_INFO_PHY, 2124 "%s(): Disabling TX flow control.\n", __FUNCTION__); 2125 BCE_CLRBIT(sc, BCE_EMAC_TX_MODE, BCE_EMAC_TX_MODE_FLOW_EN); 2126 sc->bce_flags &= ~BCE_USING_TX_FLOW_CONTROL; 2127 } 2128 2129 /* ToDo: Update watermarks in bce_init_rx_context(). */ 2130 2131 bce_miibus_statchg_exit: 2132 DBEXIT(BCE_VERBOSE_PHY); 2133 } 2134 2135 2136 /****************************************************************************/ 2137 /* Acquire NVRAM lock. */ 2138 /* */ 2139 /* Before the NVRAM can be accessed the caller must acquire an NVRAM lock. */ 2140 /* Locks 0 and 2 are reserved, lock 1 is used by firmware and lock 2 is */ 2141 /* for use by the driver. */ 2142 /* */ 2143 /* Returns: */ 2144 /* 0 on success, positive value on failure. */ 2145 /****************************************************************************/ 2146 static int 2147 bce_acquire_nvram_lock(struct bce_softc *sc) 2148 { 2149 u32 val; 2150 int j, rc = 0; 2151 2152 DBENTER(BCE_VERBOSE_NVRAM); 2153 2154 /* Request access to the flash interface. */ 2155 REG_WR(sc, BCE_NVM_SW_ARB, BCE_NVM_SW_ARB_ARB_REQ_SET2); 2156 for (j = 0; j < NVRAM_TIMEOUT_COUNT; j++) { 2157 val = REG_RD(sc, BCE_NVM_SW_ARB); 2158 if (val & BCE_NVM_SW_ARB_ARB_ARB2) 2159 break; 2160 2161 DELAY(5); 2162 } 2163 2164 if (j >= NVRAM_TIMEOUT_COUNT) { 2165 DBPRINT(sc, BCE_WARN, "Timeout acquiring NVRAM lock!\n"); 2166 rc = EBUSY; 2167 } 2168 2169 DBEXIT(BCE_VERBOSE_NVRAM); 2170 return (rc); 2171 } 2172 2173 2174 /****************************************************************************/ 2175 /* Release NVRAM lock. */ 2176 /* */ 2177 /* When the caller is finished accessing NVRAM the lock must be released. */ 2178 /* Locks 0 and 2 are reserved, lock 1 is used by firmware and lock 2 is */ 2179 /* for use by the driver. */ 2180 /* */ 2181 /* Returns: */ 2182 /* 0 on success, positive value on failure. */ 2183 /****************************************************************************/ 2184 static int 2185 bce_release_nvram_lock(struct bce_softc *sc) 2186 { 2187 u32 val; 2188 int j, rc = 0; 2189 2190 DBENTER(BCE_VERBOSE_NVRAM); 2191 2192 /* 2193 * Relinquish nvram interface. 2194 */ 2195 REG_WR(sc, BCE_NVM_SW_ARB, BCE_NVM_SW_ARB_ARB_REQ_CLR2); 2196 2197 for (j = 0; j < NVRAM_TIMEOUT_COUNT; j++) { 2198 val = REG_RD(sc, BCE_NVM_SW_ARB); 2199 if (!(val & BCE_NVM_SW_ARB_ARB_ARB2)) 2200 break; 2201 2202 DELAY(5); 2203 } 2204 2205 if (j >= NVRAM_TIMEOUT_COUNT) { 2206 DBPRINT(sc, BCE_WARN, "Timeout releasing NVRAM lock!\n"); 2207 rc = EBUSY; 2208 } 2209 2210 DBEXIT(BCE_VERBOSE_NVRAM); 2211 return (rc); 2212 } 2213 2214 2215 #ifdef BCE_NVRAM_WRITE_SUPPORT 2216 /****************************************************************************/ 2217 /* Enable NVRAM write access. */ 2218 /* */ 2219 /* Before writing to NVRAM the caller must enable NVRAM writes. */ 2220 /* */ 2221 /* Returns: */ 2222 /* 0 on success, positive value on failure. */ 2223 /****************************************************************************/ 2224 static int 2225 bce_enable_nvram_write(struct bce_softc *sc) 2226 { 2227 u32 val; 2228 int rc = 0; 2229 2230 DBENTER(BCE_VERBOSE_NVRAM); 2231 2232 val = REG_RD(sc, BCE_MISC_CFG); 2233 REG_WR(sc, BCE_MISC_CFG, val | BCE_MISC_CFG_NVM_WR_EN_PCI); 2234 2235 if (!(sc->bce_flash_info->flags & BCE_NV_BUFFERED)) { 2236 int j; 2237 2238 REG_WR(sc, BCE_NVM_COMMAND, BCE_NVM_COMMAND_DONE); 2239 REG_WR(sc, BCE_NVM_COMMAND, BCE_NVM_COMMAND_WREN | BCE_NVM_COMMAND_DOIT); 2240 2241 for (j = 0; j < NVRAM_TIMEOUT_COUNT; j++) { 2242 DELAY(5); 2243 2244 val = REG_RD(sc, BCE_NVM_COMMAND); 2245 if (val & BCE_NVM_COMMAND_DONE) 2246 break; 2247 } 2248 2249 if (j >= NVRAM_TIMEOUT_COUNT) { 2250 DBPRINT(sc, BCE_WARN, "Timeout writing NVRAM!\n"); 2251 rc = EBUSY; 2252 } 2253 } 2254 2255 DBENTER(BCE_VERBOSE_NVRAM); 2256 return (rc); 2257 } 2258 2259 2260 /****************************************************************************/ 2261 /* Disable NVRAM write access. */ 2262 /* */ 2263 /* When the caller is finished writing to NVRAM write access must be */ 2264 /* disabled. */ 2265 /* */ 2266 /* Returns: */ 2267 /* Nothing. */ 2268 /****************************************************************************/ 2269 static void 2270 bce_disable_nvram_write(struct bce_softc *sc) 2271 { 2272 u32 val; 2273 2274 DBENTER(BCE_VERBOSE_NVRAM); 2275 2276 val = REG_RD(sc, BCE_MISC_CFG); 2277 REG_WR(sc, BCE_MISC_CFG, val & ~BCE_MISC_CFG_NVM_WR_EN); 2278 2279 DBEXIT(BCE_VERBOSE_NVRAM); 2280 2281 } 2282 #endif 2283 2284 2285 /****************************************************************************/ 2286 /* Enable NVRAM access. */ 2287 /* */ 2288 /* Before accessing NVRAM for read or write operations the caller must */ 2289 /* enabled NVRAM access. */ 2290 /* */ 2291 /* Returns: */ 2292 /* Nothing. */ 2293 /****************************************************************************/ 2294 static void 2295 bce_enable_nvram_access(struct bce_softc *sc) 2296 { 2297 u32 val; 2298 2299 DBENTER(BCE_VERBOSE_NVRAM); 2300 2301 val = REG_RD(sc, BCE_NVM_ACCESS_ENABLE); 2302 /* Enable both bits, even on read. */ 2303 REG_WR(sc, BCE_NVM_ACCESS_ENABLE, val | 2304 BCE_NVM_ACCESS_ENABLE_EN | BCE_NVM_ACCESS_ENABLE_WR_EN); 2305 2306 DBEXIT(BCE_VERBOSE_NVRAM); 2307 } 2308 2309 2310 /****************************************************************************/ 2311 /* Disable NVRAM access. */ 2312 /* */ 2313 /* When the caller is finished accessing NVRAM access must be disabled. */ 2314 /* */ 2315 /* Returns: */ 2316 /* Nothing. */ 2317 /****************************************************************************/ 2318 static void 2319 bce_disable_nvram_access(struct bce_softc *sc) 2320 { 2321 u32 val; 2322 2323 DBENTER(BCE_VERBOSE_NVRAM); 2324 2325 val = REG_RD(sc, BCE_NVM_ACCESS_ENABLE); 2326 2327 /* Disable both bits, even after read. */ 2328 REG_WR(sc, BCE_NVM_ACCESS_ENABLE, val & 2329 ~(BCE_NVM_ACCESS_ENABLE_EN | BCE_NVM_ACCESS_ENABLE_WR_EN)); 2330 2331 DBEXIT(BCE_VERBOSE_NVRAM); 2332 } 2333 2334 2335 #ifdef BCE_NVRAM_WRITE_SUPPORT 2336 /****************************************************************************/ 2337 /* Erase NVRAM page before writing. */ 2338 /* */ 2339 /* Non-buffered flash parts require that a page be erased before it is */ 2340 /* written. */ 2341 /* */ 2342 /* Returns: */ 2343 /* 0 on success, positive value on failure. */ 2344 /****************************************************************************/ 2345 static int 2346 bce_nvram_erase_page(struct bce_softc *sc, u32 offset) 2347 { 2348 u32 cmd; 2349 int j, rc = 0; 2350 2351 DBENTER(BCE_VERBOSE_NVRAM); 2352 2353 /* Buffered flash doesn't require an erase. */ 2354 if (sc->bce_flash_info->flags & BCE_NV_BUFFERED) 2355 goto bce_nvram_erase_page_exit; 2356 2357 /* Build an erase command. */ 2358 cmd = BCE_NVM_COMMAND_ERASE | BCE_NVM_COMMAND_WR | 2359 BCE_NVM_COMMAND_DOIT; 2360 2361 /* 2362 * Clear the DONE bit separately, set the NVRAM adress to erase, 2363 * and issue the erase command. 2364 */ 2365 REG_WR(sc, BCE_NVM_COMMAND, BCE_NVM_COMMAND_DONE); 2366 REG_WR(sc, BCE_NVM_ADDR, offset & BCE_NVM_ADDR_NVM_ADDR_VALUE); 2367 REG_WR(sc, BCE_NVM_COMMAND, cmd); 2368 2369 /* Wait for completion. */ 2370 for (j = 0; j < NVRAM_TIMEOUT_COUNT; j++) { 2371 u32 val; 2372 2373 DELAY(5); 2374 2375 val = REG_RD(sc, BCE_NVM_COMMAND); 2376 if (val & BCE_NVM_COMMAND_DONE) 2377 break; 2378 } 2379 2380 if (j >= NVRAM_TIMEOUT_COUNT) { 2381 DBPRINT(sc, BCE_WARN, "Timeout erasing NVRAM.\n"); 2382 rc = EBUSY; 2383 } 2384 2385 bce_nvram_erase_page_exit: 2386 DBEXIT(BCE_VERBOSE_NVRAM); 2387 return (rc); 2388 } 2389 #endif /* BCE_NVRAM_WRITE_SUPPORT */ 2390 2391 2392 /****************************************************************************/ 2393 /* Read a dword (32 bits) from NVRAM. */ 2394 /* */ 2395 /* Read a 32 bit word from NVRAM. The caller is assumed to have already */ 2396 /* obtained the NVRAM lock and enabled the controller for NVRAM access. */ 2397 /* */ 2398 /* Returns: */ 2399 /* 0 on success and the 32 bit value read, positive value on failure. */ 2400 /****************************************************************************/ 2401 static int 2402 bce_nvram_read_dword(struct bce_softc *sc, 2403 u32 offset, u8 *ret_val, u32 cmd_flags) 2404 { 2405 u32 cmd; 2406 int i, rc = 0; 2407 2408 DBENTER(BCE_EXTREME_NVRAM); 2409 2410 /* Build the command word. */ 2411 cmd = BCE_NVM_COMMAND_DOIT | cmd_flags; 2412 2413 /* Calculate the offset for buffered flash if translation is used. */ 2414 if (sc->bce_flash_info->flags & BCE_NV_TRANSLATE) { 2415 offset = ((offset / sc->bce_flash_info->page_size) << 2416 sc->bce_flash_info->page_bits) + 2417 (offset % sc->bce_flash_info->page_size); 2418 } 2419 2420 /* 2421 * Clear the DONE bit separately, set the address to read, 2422 * and issue the read. 2423 */ 2424 REG_WR(sc, BCE_NVM_COMMAND, BCE_NVM_COMMAND_DONE); 2425 REG_WR(sc, BCE_NVM_ADDR, offset & BCE_NVM_ADDR_NVM_ADDR_VALUE); 2426 REG_WR(sc, BCE_NVM_COMMAND, cmd); 2427 2428 /* Wait for completion. */ 2429 for (i = 0; i < NVRAM_TIMEOUT_COUNT; i++) { 2430 u32 val; 2431 2432 DELAY(5); 2433 2434 val = REG_RD(sc, BCE_NVM_COMMAND); 2435 if (val & BCE_NVM_COMMAND_DONE) { 2436 val = REG_RD(sc, BCE_NVM_READ); 2437 2438 val = bce_be32toh(val); 2439 memcpy(ret_val, &val, 4); 2440 break; 2441 } 2442 } 2443 2444 /* Check for errors. */ 2445 if (i >= NVRAM_TIMEOUT_COUNT) { 2446 BCE_PRINTF("%s(%d): Timeout error reading NVRAM at " 2447 "offset 0x%08X!\n", __FILE__, __LINE__, offset); 2448 rc = EBUSY; 2449 } 2450 2451 DBEXIT(BCE_EXTREME_NVRAM); 2452 return(rc); 2453 } 2454 2455 2456 #ifdef BCE_NVRAM_WRITE_SUPPORT 2457 /****************************************************************************/ 2458 /* Write a dword (32 bits) to NVRAM. */ 2459 /* */ 2460 /* Write a 32 bit word to NVRAM. The caller is assumed to have already */ 2461 /* obtained the NVRAM lock, enabled the controller for NVRAM access, and */ 2462 /* enabled NVRAM write access. */ 2463 /* */ 2464 /* Returns: */ 2465 /* 0 on success, positive value on failure. */ 2466 /****************************************************************************/ 2467 static int 2468 bce_nvram_write_dword(struct bce_softc *sc, u32 offset, u8 *val, 2469 u32 cmd_flags) 2470 { 2471 u32 cmd, val32; 2472 int j, rc = 0; 2473 2474 DBENTER(BCE_VERBOSE_NVRAM); 2475 2476 /* Build the command word. */ 2477 cmd = BCE_NVM_COMMAND_DOIT | BCE_NVM_COMMAND_WR | cmd_flags; 2478 2479 /* Calculate the offset for buffered flash if translation is used. */ 2480 if (sc->bce_flash_info->flags & BCE_NV_TRANSLATE) { 2481 offset = ((offset / sc->bce_flash_info->page_size) << 2482 sc->bce_flash_info->page_bits) + 2483 (offset % sc->bce_flash_info->page_size); 2484 } 2485 2486 /* 2487 * Clear the DONE bit separately, convert NVRAM data to big-endian, 2488 * set the NVRAM address to write, and issue the write command 2489 */ 2490 REG_WR(sc, BCE_NVM_COMMAND, BCE_NVM_COMMAND_DONE); 2491 memcpy(&val32, val, 4); 2492 val32 = htobe32(val32); 2493 REG_WR(sc, BCE_NVM_WRITE, val32); 2494 REG_WR(sc, BCE_NVM_ADDR, offset & BCE_NVM_ADDR_NVM_ADDR_VALUE); 2495 REG_WR(sc, BCE_NVM_COMMAND, cmd); 2496 2497 /* Wait for completion. */ 2498 for (j = 0; j < NVRAM_TIMEOUT_COUNT; j++) { 2499 DELAY(5); 2500 2501 if (REG_RD(sc, BCE_NVM_COMMAND) & BCE_NVM_COMMAND_DONE) 2502 break; 2503 } 2504 if (j >= NVRAM_TIMEOUT_COUNT) { 2505 BCE_PRINTF("%s(%d): Timeout error writing NVRAM at " 2506 "offset 0x%08X\n", __FILE__, __LINE__, offset); 2507 rc = EBUSY; 2508 } 2509 2510 DBEXIT(BCE_VERBOSE_NVRAM); 2511 return (rc); 2512 } 2513 #endif /* BCE_NVRAM_WRITE_SUPPORT */ 2514 2515 2516 /****************************************************************************/ 2517 /* Initialize NVRAM access. */ 2518 /* */ 2519 /* Identify the NVRAM device in use and prepare the NVRAM interface to */ 2520 /* access that device. */ 2521 /* */ 2522 /* Returns: */ 2523 /* 0 on success, positive value on failure. */ 2524 /****************************************************************************/ 2525 static int 2526 bce_init_nvram(struct bce_softc *sc) 2527 { 2528 u32 val; 2529 int j, entry_count, rc = 0; 2530 const struct flash_spec *flash; 2531 2532 DBENTER(BCE_VERBOSE_NVRAM); 2533 2534 if (BCE_CHIP_NUM(sc) == BCE_CHIP_NUM_5709) { 2535 sc->bce_flash_info = &flash_5709; 2536 goto bce_init_nvram_get_flash_size; 2537 } 2538 2539 /* Determine the selected interface. */ 2540 val = REG_RD(sc, BCE_NVM_CFG1); 2541 2542 entry_count = sizeof(flash_table) / sizeof(struct flash_spec); 2543 2544 /* 2545 * Flash reconfiguration is required to support additional 2546 * NVRAM devices not directly supported in hardware. 2547 * Check if the flash interface was reconfigured 2548 * by the bootcode. 2549 */ 2550 2551 if (val & 0x40000000) { 2552 /* Flash interface reconfigured by bootcode. */ 2553 2554 DBPRINT(sc,BCE_INFO_LOAD, 2555 "bce_init_nvram(): Flash WAS reconfigured.\n"); 2556 2557 for (j = 0, flash = &flash_table[0]; j < entry_count; 2558 j++, flash++) { 2559 if ((val & FLASH_BACKUP_STRAP_MASK) == 2560 (flash->config1 & FLASH_BACKUP_STRAP_MASK)) { 2561 sc->bce_flash_info = flash; 2562 break; 2563 } 2564 } 2565 } else { 2566 /* Flash interface not yet reconfigured. */ 2567 u32 mask; 2568 2569 DBPRINT(sc, BCE_INFO_LOAD, "%s(): Flash was NOT reconfigured.\n", 2570 __FUNCTION__); 2571 2572 if (val & (1 << 23)) 2573 mask = FLASH_BACKUP_STRAP_MASK; 2574 else 2575 mask = FLASH_STRAP_MASK; 2576 2577 /* Look for the matching NVRAM device configuration data. */ 2578 for (j = 0, flash = &flash_table[0]; j < entry_count; j++, flash++) { 2579 2580 /* Check if the device matches any of the known devices. */ 2581 if ((val & mask) == (flash->strapping & mask)) { 2582 /* Found a device match. */ 2583 sc->bce_flash_info = flash; 2584 2585 /* Request access to the flash interface. */ 2586 if ((rc = bce_acquire_nvram_lock(sc)) != 0) 2587 return rc; 2588 2589 /* Reconfigure the flash interface. */ 2590 bce_enable_nvram_access(sc); 2591 REG_WR(sc, BCE_NVM_CFG1, flash->config1); 2592 REG_WR(sc, BCE_NVM_CFG2, flash->config2); 2593 REG_WR(sc, BCE_NVM_CFG3, flash->config3); 2594 REG_WR(sc, BCE_NVM_WRITE1, flash->write1); 2595 bce_disable_nvram_access(sc); 2596 bce_release_nvram_lock(sc); 2597 2598 break; 2599 } 2600 } 2601 } 2602 2603 /* Check if a matching device was found. */ 2604 if (j == entry_count) { 2605 sc->bce_flash_info = NULL; 2606 BCE_PRINTF("%s(%d): Unknown Flash NVRAM found!\n", 2607 __FILE__, __LINE__); 2608 DBEXIT(BCE_VERBOSE_NVRAM); 2609 return (ENODEV); 2610 } 2611 2612 bce_init_nvram_get_flash_size: 2613 /* Write the flash config data to the shared memory interface. */ 2614 val = bce_shmem_rd(sc, BCE_SHARED_HW_CFG_CONFIG2); 2615 val &= BCE_SHARED_HW_CFG2_NVM_SIZE_MASK; 2616 if (val) 2617 sc->bce_flash_size = val; 2618 else 2619 sc->bce_flash_size = sc->bce_flash_info->total_size; 2620 2621 DBPRINT(sc, BCE_INFO_LOAD, "%s(): Found %s, size = 0x%08X\n", 2622 __FUNCTION__, sc->bce_flash_info->name, 2623 sc->bce_flash_info->total_size); 2624 2625 DBEXIT(BCE_VERBOSE_NVRAM); 2626 return rc; 2627 } 2628 2629 2630 /****************************************************************************/ 2631 /* Read an arbitrary range of data from NVRAM. */ 2632 /* */ 2633 /* Prepares the NVRAM interface for access and reads the requested data */ 2634 /* into the supplied buffer. */ 2635 /* */ 2636 /* Returns: */ 2637 /* 0 on success and the data read, positive value on failure. */ 2638 /****************************************************************************/ 2639 static int 2640 bce_nvram_read(struct bce_softc *sc, u32 offset, u8 *ret_buf, 2641 int buf_size) 2642 { 2643 int rc = 0; 2644 u32 cmd_flags, offset32, len32, extra; 2645 2646 DBENTER(BCE_VERBOSE_NVRAM); 2647 2648 if (buf_size == 0) 2649 goto bce_nvram_read_exit; 2650 2651 /* Request access to the flash interface. */ 2652 if ((rc = bce_acquire_nvram_lock(sc)) != 0) 2653 goto bce_nvram_read_exit; 2654 2655 /* Enable access to flash interface */ 2656 bce_enable_nvram_access(sc); 2657 2658 len32 = buf_size; 2659 offset32 = offset; 2660 extra = 0; 2661 2662 cmd_flags = 0; 2663 2664 if (offset32 & 3) { 2665 u8 buf[4]; 2666 u32 pre_len; 2667 2668 offset32 &= ~3; 2669 pre_len = 4 - (offset & 3); 2670 2671 if (pre_len >= len32) { 2672 pre_len = len32; 2673 cmd_flags = BCE_NVM_COMMAND_FIRST | BCE_NVM_COMMAND_LAST; 2674 } 2675 else { 2676 cmd_flags = BCE_NVM_COMMAND_FIRST; 2677 } 2678 2679 rc = bce_nvram_read_dword(sc, offset32, buf, cmd_flags); 2680 2681 if (rc) 2682 return rc; 2683 2684 memcpy(ret_buf, buf + (offset & 3), pre_len); 2685 2686 offset32 += 4; 2687 ret_buf += pre_len; 2688 len32 -= pre_len; 2689 } 2690 2691 if (len32 & 3) { 2692 extra = 4 - (len32 & 3); 2693 len32 = (len32 + 4) & ~3; 2694 } 2695 2696 if (len32 == 4) { 2697 u8 buf[4]; 2698 2699 if (cmd_flags) 2700 cmd_flags = BCE_NVM_COMMAND_LAST; 2701 else 2702 cmd_flags = BCE_NVM_COMMAND_FIRST | 2703 BCE_NVM_COMMAND_LAST; 2704 2705 rc = bce_nvram_read_dword(sc, offset32, buf, cmd_flags); 2706 2707 memcpy(ret_buf, buf, 4 - extra); 2708 } 2709 else if (len32 > 0) { 2710 u8 buf[4]; 2711 2712 /* Read the first word. */ 2713 if (cmd_flags) 2714 cmd_flags = 0; 2715 else 2716 cmd_flags = BCE_NVM_COMMAND_FIRST; 2717 2718 rc = bce_nvram_read_dword(sc, offset32, ret_buf, cmd_flags); 2719 2720 /* Advance to the next dword. */ 2721 offset32 += 4; 2722 ret_buf += 4; 2723 len32 -= 4; 2724 2725 while (len32 > 4 && rc == 0) { 2726 rc = bce_nvram_read_dword(sc, offset32, ret_buf, 0); 2727 2728 /* Advance to the next dword. */ 2729 offset32 += 4; 2730 ret_buf += 4; 2731 len32 -= 4; 2732 } 2733 2734 if (rc) 2735 goto bce_nvram_read_locked_exit; 2736 2737 cmd_flags = BCE_NVM_COMMAND_LAST; 2738 rc = bce_nvram_read_dword(sc, offset32, buf, cmd_flags); 2739 2740 memcpy(ret_buf, buf, 4 - extra); 2741 } 2742 2743 bce_nvram_read_locked_exit: 2744 /* Disable access to flash interface and release the lock. */ 2745 bce_disable_nvram_access(sc); 2746 bce_release_nvram_lock(sc); 2747 2748 bce_nvram_read_exit: 2749 DBEXIT(BCE_VERBOSE_NVRAM); 2750 return rc; 2751 } 2752 2753 2754 #ifdef BCE_NVRAM_WRITE_SUPPORT 2755 /****************************************************************************/ 2756 /* Write an arbitrary range of data from NVRAM. */ 2757 /* */ 2758 /* Prepares the NVRAM interface for write access and writes the requested */ 2759 /* data from the supplied buffer. The caller is responsible for */ 2760 /* calculating any appropriate CRCs. */ 2761 /* */ 2762 /* Returns: */ 2763 /* 0 on success, positive value on failure. */ 2764 /****************************************************************************/ 2765 static int 2766 bce_nvram_write(struct bce_softc *sc, u32 offset, u8 *data_buf, 2767 int buf_size) 2768 { 2769 u32 written, offset32, len32; 2770 u8 *buf, start[4], end[4]; 2771 int rc = 0; 2772 int align_start, align_end; 2773 2774 DBENTER(BCE_VERBOSE_NVRAM); 2775 2776 buf = data_buf; 2777 offset32 = offset; 2778 len32 = buf_size; 2779 align_start = align_end = 0; 2780 2781 if ((align_start = (offset32 & 3))) { 2782 offset32 &= ~3; 2783 len32 += align_start; 2784 if ((rc = bce_nvram_read(sc, offset32, start, 4))) 2785 goto bce_nvram_write_exit; 2786 } 2787 2788 if (len32 & 3) { 2789 if ((len32 > 4) || !align_start) { 2790 align_end = 4 - (len32 & 3); 2791 len32 += align_end; 2792 if ((rc = bce_nvram_read(sc, offset32 + len32 - 4, 2793 end, 4))) { 2794 goto bce_nvram_write_exit; 2795 } 2796 } 2797 } 2798 2799 if (align_start || align_end) { 2800 buf = malloc(len32, M_DEVBUF, M_NOWAIT); 2801 if (buf == 0) { 2802 rc = ENOMEM; 2803 goto bce_nvram_write_exit; 2804 } 2805 2806 if (align_start) { 2807 memcpy(buf, start, 4); 2808 } 2809 2810 if (align_end) { 2811 memcpy(buf + len32 - 4, end, 4); 2812 } 2813 memcpy(buf + align_start, data_buf, buf_size); 2814 } 2815 2816 written = 0; 2817 while ((written < len32) && (rc == 0)) { 2818 u32 page_start, page_end, data_start, data_end; 2819 u32 addr, cmd_flags; 2820 int i; 2821 u8 flash_buffer[264]; 2822 2823 /* Find the page_start addr */ 2824 page_start = offset32 + written; 2825 page_start -= (page_start % sc->bce_flash_info->page_size); 2826 /* Find the page_end addr */ 2827 page_end = page_start + sc->bce_flash_info->page_size; 2828 /* Find the data_start addr */ 2829 data_start = (written == 0) ? offset32 : page_start; 2830 /* Find the data_end addr */ 2831 data_end = (page_end > offset32 + len32) ? 2832 (offset32 + len32) : page_end; 2833 2834 /* Request access to the flash interface. */ 2835 if ((rc = bce_acquire_nvram_lock(sc)) != 0) 2836 goto bce_nvram_write_exit; 2837 2838 /* Enable access to flash interface */ 2839 bce_enable_nvram_access(sc); 2840 2841 cmd_flags = BCE_NVM_COMMAND_FIRST; 2842 if (!(sc->bce_flash_info->flags & BCE_NV_BUFFERED)) { 2843 int j; 2844 2845 /* Read the whole page into the buffer 2846 * (non-buffer flash only) */ 2847 for (j = 0; j < sc->bce_flash_info->page_size; j += 4) { 2848 if (j == (sc->bce_flash_info->page_size - 4)) { 2849 cmd_flags |= BCE_NVM_COMMAND_LAST; 2850 } 2851 rc = bce_nvram_read_dword(sc, 2852 page_start + j, 2853 &flash_buffer[j], 2854 cmd_flags); 2855 2856 if (rc) 2857 goto bce_nvram_write_locked_exit; 2858 2859 cmd_flags = 0; 2860 } 2861 } 2862 2863 /* Enable writes to flash interface (unlock write-protect) */ 2864 if ((rc = bce_enable_nvram_write(sc)) != 0) 2865 goto bce_nvram_write_locked_exit; 2866 2867 /* Erase the page */ 2868 if ((rc = bce_nvram_erase_page(sc, page_start)) != 0) 2869 goto bce_nvram_write_locked_exit; 2870 2871 /* Re-enable the write again for the actual write */ 2872 bce_enable_nvram_write(sc); 2873 2874 /* Loop to write back the buffer data from page_start to 2875 * data_start */ 2876 i = 0; 2877 if (!(sc->bce_flash_info->flags & BCE_NV_BUFFERED)) { 2878 for (addr = page_start; addr < data_start; 2879 addr += 4, i += 4) { 2880 2881 rc = bce_nvram_write_dword(sc, addr, 2882 &flash_buffer[i], cmd_flags); 2883 2884 if (rc != 0) 2885 goto bce_nvram_write_locked_exit; 2886 2887 cmd_flags = 0; 2888 } 2889 } 2890 2891 /* Loop to write the new data from data_start to data_end */ 2892 for (addr = data_start; addr < data_end; addr += 4, i++) { 2893 if ((addr == page_end - 4) || 2894 ((sc->bce_flash_info->flags & BCE_NV_BUFFERED) && 2895 (addr == data_end - 4))) { 2896 2897 cmd_flags |= BCE_NVM_COMMAND_LAST; 2898 } 2899 rc = bce_nvram_write_dword(sc, addr, buf, 2900 cmd_flags); 2901 2902 if (rc != 0) 2903 goto bce_nvram_write_locked_exit; 2904 2905 cmd_flags = 0; 2906 buf += 4; 2907 } 2908 2909 /* Loop to write back the buffer data from data_end 2910 * to page_end */ 2911 if (!(sc->bce_flash_info->flags & BCE_NV_BUFFERED)) { 2912 for (addr = data_end; addr < page_end; 2913 addr += 4, i += 4) { 2914 2915 if (addr == page_end-4) { 2916 cmd_flags = BCE_NVM_COMMAND_LAST; 2917 } 2918 rc = bce_nvram_write_dword(sc, addr, 2919 &flash_buffer[i], cmd_flags); 2920 2921 if (rc != 0) 2922 goto bce_nvram_write_locked_exit; 2923 2924 cmd_flags = 0; 2925 } 2926 } 2927 2928 /* Disable writes to flash interface (lock write-protect) */ 2929 bce_disable_nvram_write(sc); 2930 2931 /* Disable access to flash interface */ 2932 bce_disable_nvram_access(sc); 2933 bce_release_nvram_lock(sc); 2934 2935 /* Increment written */ 2936 written += data_end - data_start; 2937 } 2938 2939 goto bce_nvram_write_exit; 2940 2941 bce_nvram_write_locked_exit: 2942 bce_disable_nvram_write(sc); 2943 bce_disable_nvram_access(sc); 2944 bce_release_nvram_lock(sc); 2945 2946 bce_nvram_write_exit: 2947 if (align_start || align_end) 2948 free(buf, M_DEVBUF); 2949 2950 DBEXIT(BCE_VERBOSE_NVRAM); 2951 return (rc); 2952 } 2953 #endif /* BCE_NVRAM_WRITE_SUPPORT */ 2954 2955 2956 /****************************************************************************/ 2957 /* Verifies that NVRAM is accessible and contains valid data. */ 2958 /* */ 2959 /* Reads the configuration data from NVRAM and verifies that the CRC is */ 2960 /* correct. */ 2961 /* */ 2962 /* Returns: */ 2963 /* 0 on success, positive value on failure. */ 2964 /****************************************************************************/ 2965 static int 2966 bce_nvram_test(struct bce_softc *sc) 2967 { 2968 u32 buf[BCE_NVRAM_SIZE / 4]; 2969 u8 *data = (u8 *) buf; 2970 int rc = 0; 2971 u32 magic, csum; 2972 2973 DBENTER(BCE_VERBOSE_NVRAM | BCE_VERBOSE_LOAD | BCE_VERBOSE_RESET); 2974 2975 /* 2976 * Check that the device NVRAM is valid by reading 2977 * the magic value at offset 0. 2978 */ 2979 if ((rc = bce_nvram_read(sc, 0, data, 4)) != 0) { 2980 BCE_PRINTF("%s(%d): Unable to read NVRAM!\n", 2981 __FILE__, __LINE__); 2982 goto bce_nvram_test_exit; 2983 } 2984 2985 /* 2986 * Verify that offset 0 of the NVRAM contains 2987 * a valid magic number. 2988 */ 2989 magic = bce_be32toh(buf[0]); 2990 if (magic != BCE_NVRAM_MAGIC) { 2991 rc = ENODEV; 2992 BCE_PRINTF("%s(%d): Invalid NVRAM magic value! " 2993 "Expected: 0x%08X, Found: 0x%08X\n", 2994 __FILE__, __LINE__, BCE_NVRAM_MAGIC, magic); 2995 goto bce_nvram_test_exit; 2996 } 2997 2998 /* 2999 * Verify that the device NVRAM includes valid 3000 * configuration data. 3001 */ 3002 if ((rc = bce_nvram_read(sc, 0x100, data, BCE_NVRAM_SIZE)) != 0) { 3003 BCE_PRINTF("%s(%d): Unable to read manufacturing " 3004 "Information from NVRAM!\n", __FILE__, __LINE__); 3005 goto bce_nvram_test_exit; 3006 } 3007 3008 csum = ether_crc32_le(data, 0x100); 3009 if (csum != BCE_CRC32_RESIDUAL) { 3010 rc = ENODEV; 3011 BCE_PRINTF("%s(%d): Invalid manufacturing information " 3012 "NVRAM CRC! Expected: 0x%08X, Found: 0x%08X\n", 3013 __FILE__, __LINE__, BCE_CRC32_RESIDUAL, csum); 3014 goto bce_nvram_test_exit; 3015 } 3016 3017 csum = ether_crc32_le(data + 0x100, 0x100); 3018 if (csum != BCE_CRC32_RESIDUAL) { 3019 rc = ENODEV; 3020 BCE_PRINTF("%s(%d): Invalid feature configuration " 3021 "information NVRAM CRC! Expected: 0x%08X, " 3022 "Found: 08%08X\n", __FILE__, __LINE__, 3023 BCE_CRC32_RESIDUAL, csum); 3024 } 3025 3026 bce_nvram_test_exit: 3027 DBEXIT(BCE_VERBOSE_NVRAM | BCE_VERBOSE_LOAD | BCE_VERBOSE_RESET); 3028 return rc; 3029 } 3030 3031 3032 /****************************************************************************/ 3033 /* Calculates the size of the buffers to allocate based on the MTU. */ 3034 /* */ 3035 /* Returns: */ 3036 /* Nothing. */ 3037 /****************************************************************************/ 3038 static void 3039 bce_get_rx_buffer_sizes(struct bce_softc *sc, int mtu) 3040 { 3041 DBENTER(BCE_VERBOSE_LOAD); 3042 3043 /* Use a single allocation type when header splitting enabled. */ 3044 if (bce_hdr_split == TRUE) { 3045 sc->rx_bd_mbuf_alloc_size = MHLEN; 3046 /* Make sure offset is 16 byte aligned for hardware. */ 3047 sc->rx_bd_mbuf_align_pad = 3048 roundup2((MSIZE - MHLEN), 16) - (MSIZE - MHLEN); 3049 sc->rx_bd_mbuf_data_len = sc->rx_bd_mbuf_alloc_size - 3050 sc->rx_bd_mbuf_align_pad; 3051 } else { 3052 if ((mtu + ETHER_HDR_LEN + ETHER_VLAN_ENCAP_LEN + 3053 ETHER_CRC_LEN) > MCLBYTES) { 3054 /* Setup for jumbo RX buffer allocations. */ 3055 sc->rx_bd_mbuf_alloc_size = MJUM9BYTES; 3056 sc->rx_bd_mbuf_align_pad = 3057 roundup2(MJUM9BYTES, 16) - MJUM9BYTES; 3058 sc->rx_bd_mbuf_data_len = 3059 sc->rx_bd_mbuf_alloc_size - 3060 sc->rx_bd_mbuf_align_pad; 3061 } else { 3062 /* Setup for standard RX buffer allocations. */ 3063 sc->rx_bd_mbuf_alloc_size = MCLBYTES; 3064 sc->rx_bd_mbuf_align_pad = 3065 roundup2(MCLBYTES, 16) - MCLBYTES; 3066 sc->rx_bd_mbuf_data_len = 3067 sc->rx_bd_mbuf_alloc_size - 3068 sc->rx_bd_mbuf_align_pad; 3069 } 3070 } 3071 3072 // DBPRINT(sc, BCE_INFO_LOAD, 3073 DBPRINT(sc, BCE_WARN, 3074 "%s(): rx_bd_mbuf_alloc_size = %d, rx_bd_mbuf_data_len = %d, " 3075 "rx_bd_mbuf_align_pad = %d\n", __FUNCTION__, 3076 sc->rx_bd_mbuf_alloc_size, sc->rx_bd_mbuf_data_len, 3077 sc->rx_bd_mbuf_align_pad); 3078 3079 DBEXIT(BCE_VERBOSE_LOAD); 3080 } 3081 3082 /****************************************************************************/ 3083 /* Identifies the current media type of the controller and sets the PHY */ 3084 /* address. */ 3085 /* */ 3086 /* Returns: */ 3087 /* Nothing. */ 3088 /****************************************************************************/ 3089 static void 3090 bce_get_media(struct bce_softc *sc) 3091 { 3092 u32 val; 3093 3094 DBENTER(BCE_VERBOSE_PHY); 3095 3096 /* Assume PHY address for copper controllers. */ 3097 sc->bce_phy_addr = 1; 3098 3099 if (BCE_CHIP_NUM(sc) == BCE_CHIP_NUM_5709) { 3100 u32 val = REG_RD(sc, BCE_MISC_DUAL_MEDIA_CTRL); 3101 u32 bond_id = val & BCE_MISC_DUAL_MEDIA_CTRL_BOND_ID; 3102 u32 strap; 3103 3104 /* 3105 * The BCM5709S is software configurable 3106 * for Copper or SerDes operation. 3107 */ 3108 if (bond_id == BCE_MISC_DUAL_MEDIA_CTRL_BOND_ID_C) { 3109 DBPRINT(sc, BCE_INFO_LOAD, "5709 bonded " 3110 "for copper.\n"); 3111 goto bce_get_media_exit; 3112 } else if (bond_id == BCE_MISC_DUAL_MEDIA_CTRL_BOND_ID_S) { 3113 DBPRINT(sc, BCE_INFO_LOAD, "5709 bonded " 3114 "for dual media.\n"); 3115 sc->bce_phy_flags |= BCE_PHY_SERDES_FLAG; 3116 goto bce_get_media_exit; 3117 } 3118 3119 if (val & BCE_MISC_DUAL_MEDIA_CTRL_STRAP_OVERRIDE) 3120 strap = (val & 3121 BCE_MISC_DUAL_MEDIA_CTRL_PHY_CTRL) >> 21; 3122 else 3123 strap = (val & 3124 BCE_MISC_DUAL_MEDIA_CTRL_PHY_CTRL_STRAP) >> 8; 3125 3126 if (pci_get_function(sc->bce_dev) == 0) { 3127 switch (strap) { 3128 case 0x4: 3129 case 0x5: 3130 case 0x6: 3131 DBPRINT(sc, BCE_INFO_LOAD, 3132 "BCM5709 s/w configured for SerDes.\n"); 3133 sc->bce_phy_flags |= BCE_PHY_SERDES_FLAG; 3134 break; 3135 default: 3136 DBPRINT(sc, BCE_INFO_LOAD, 3137 "BCM5709 s/w configured for Copper.\n"); 3138 break; 3139 } 3140 } else { 3141 switch (strap) { 3142 case 0x1: 3143 case 0x2: 3144 case 0x4: 3145 DBPRINT(sc, BCE_INFO_LOAD, 3146 "BCM5709 s/w configured for SerDes.\n"); 3147 sc->bce_phy_flags |= BCE_PHY_SERDES_FLAG; 3148 break; 3149 default: 3150 DBPRINT(sc, BCE_INFO_LOAD, 3151 "BCM5709 s/w configured for Copper.\n"); 3152 break; 3153 } 3154 } 3155 3156 } else if (BCE_CHIP_BOND_ID(sc) & BCE_CHIP_BOND_ID_SERDES_BIT) 3157 sc->bce_phy_flags |= BCE_PHY_SERDES_FLAG; 3158 3159 if (sc->bce_phy_flags & BCE_PHY_SERDES_FLAG) { 3160 3161 sc->bce_flags |= BCE_NO_WOL_FLAG; 3162 3163 if (BCE_CHIP_NUM(sc) == BCE_CHIP_NUM_5709) 3164 sc->bce_phy_flags |= BCE_PHY_IEEE_CLAUSE_45_FLAG; 3165 3166 if (BCE_CHIP_NUM(sc) != BCE_CHIP_NUM_5706) { 3167 /* 5708S/09S/16S use a separate PHY for SerDes. */ 3168 sc->bce_phy_addr = 2; 3169 3170 val = bce_shmem_rd(sc, BCE_SHARED_HW_CFG_CONFIG); 3171 if (val & BCE_SHARED_HW_CFG_PHY_2_5G) { 3172 sc->bce_phy_flags |= 3173 BCE_PHY_2_5G_CAPABLE_FLAG; 3174 DBPRINT(sc, BCE_INFO_LOAD, "Found 2.5Gb " 3175 "capable adapter\n"); 3176 } 3177 } 3178 } else if ((BCE_CHIP_NUM(sc) == BCE_CHIP_NUM_5706) || 3179 (BCE_CHIP_NUM(sc) == BCE_CHIP_NUM_5708)) 3180 sc->bce_phy_flags |= BCE_PHY_CRC_FIX_FLAG; 3181 3182 bce_get_media_exit: 3183 DBPRINT(sc, (BCE_INFO_LOAD | BCE_INFO_PHY), 3184 "Using PHY address %d.\n", sc->bce_phy_addr); 3185 3186 DBEXIT(BCE_VERBOSE_PHY); 3187 } 3188 3189 3190 /****************************************************************************/ 3191 /* Performs PHY initialization required before MII drivers access the */ 3192 /* device. */ 3193 /* */ 3194 /* Returns: */ 3195 /* Nothing. */ 3196 /****************************************************************************/ 3197 static void 3198 bce_init_media(struct bce_softc *sc) 3199 { 3200 if ((sc->bce_phy_flags & (BCE_PHY_IEEE_CLAUSE_45_FLAG | 3201 BCE_PHY_REMOTE_CAP_FLAG)) == BCE_PHY_IEEE_CLAUSE_45_FLAG) { 3202 /* 3203 * Configure 5709S/5716S PHYs to use traditional IEEE 3204 * Clause 22 method. Otherwise we have no way to attach 3205 * the PHY in mii(4) layer. PHY specific configuration 3206 * is done in mii layer. 3207 */ 3208 3209 /* Select auto-negotiation MMD of the PHY. */ 3210 bce_miibus_write_reg(sc->bce_dev, sc->bce_phy_addr, 3211 BRGPHY_BLOCK_ADDR, BRGPHY_BLOCK_ADDR_ADDR_EXT); 3212 bce_miibus_write_reg(sc->bce_dev, sc->bce_phy_addr, 3213 BRGPHY_ADDR_EXT, BRGPHY_ADDR_EXT_AN_MMD); 3214 3215 /* Set IEEE0 block of AN MMD (assumed in brgphy(4) code). */ 3216 bce_miibus_write_reg(sc->bce_dev, sc->bce_phy_addr, 3217 BRGPHY_BLOCK_ADDR, BRGPHY_BLOCK_ADDR_COMBO_IEEE0); 3218 } 3219 } 3220 3221 3222 /****************************************************************************/ 3223 /* Free any DMA memory owned by the driver. */ 3224 /* */ 3225 /* Scans through each data structre that requires DMA memory and frees */ 3226 /* the memory if allocated. */ 3227 /* */ 3228 /* Returns: */ 3229 /* Nothing. */ 3230 /****************************************************************************/ 3231 static void 3232 bce_dma_free(struct bce_softc *sc) 3233 { 3234 int i; 3235 3236 DBENTER(BCE_VERBOSE_RESET | BCE_VERBOSE_UNLOAD | BCE_VERBOSE_CTX); 3237 3238 /* Free, unmap, and destroy the status block. */ 3239 if (sc->status_block_paddr != 0) { 3240 bus_dmamap_unload( 3241 sc->status_tag, 3242 sc->status_map); 3243 sc->status_block_paddr = 0; 3244 } 3245 3246 if (sc->status_block != NULL) { 3247 bus_dmamem_free( 3248 sc->status_tag, 3249 sc->status_block, 3250 sc->status_map); 3251 sc->status_block = NULL; 3252 } 3253 3254 if (sc->status_tag != NULL) { 3255 bus_dma_tag_destroy(sc->status_tag); 3256 sc->status_tag = NULL; 3257 } 3258 3259 3260 /* Free, unmap, and destroy the statistics block. */ 3261 if (sc->stats_block_paddr != 0) { 3262 bus_dmamap_unload( 3263 sc->stats_tag, 3264 sc->stats_map); 3265 sc->stats_block_paddr = 0; 3266 } 3267 3268 if (sc->stats_block != NULL) { 3269 bus_dmamem_free( 3270 sc->stats_tag, 3271 sc->stats_block, 3272 sc->stats_map); 3273 sc->stats_block = NULL; 3274 } 3275 3276 if (sc->stats_tag != NULL) { 3277 bus_dma_tag_destroy(sc->stats_tag); 3278 sc->stats_tag = NULL; 3279 } 3280 3281 3282 /* Free, unmap and destroy all context memory pages. */ 3283 if (BCE_CHIP_NUM(sc) == BCE_CHIP_NUM_5709) { 3284 for (i = 0; i < sc->ctx_pages; i++ ) { 3285 if (sc->ctx_paddr[i] != 0) { 3286 bus_dmamap_unload( 3287 sc->ctx_tag, 3288 sc->ctx_map[i]); 3289 sc->ctx_paddr[i] = 0; 3290 } 3291 3292 if (sc->ctx_block[i] != NULL) { 3293 bus_dmamem_free( 3294 sc->ctx_tag, 3295 sc->ctx_block[i], 3296 sc->ctx_map[i]); 3297 sc->ctx_block[i] = NULL; 3298 } 3299 } 3300 3301 /* Destroy the context memory tag. */ 3302 if (sc->ctx_tag != NULL) { 3303 bus_dma_tag_destroy(sc->ctx_tag); 3304 sc->ctx_tag = NULL; 3305 } 3306 } 3307 3308 3309 /* Free, unmap and destroy all TX buffer descriptor chain pages. */ 3310 for (i = 0; i < sc->tx_pages; i++ ) { 3311 if (sc->tx_bd_chain_paddr[i] != 0) { 3312 bus_dmamap_unload( 3313 sc->tx_bd_chain_tag, 3314 sc->tx_bd_chain_map[i]); 3315 sc->tx_bd_chain_paddr[i] = 0; 3316 } 3317 3318 if (sc->tx_bd_chain[i] != NULL) { 3319 bus_dmamem_free( 3320 sc->tx_bd_chain_tag, 3321 sc->tx_bd_chain[i], 3322 sc->tx_bd_chain_map[i]); 3323 sc->tx_bd_chain[i] = NULL; 3324 } 3325 } 3326 3327 /* Destroy the TX buffer descriptor tag. */ 3328 if (sc->tx_bd_chain_tag != NULL) { 3329 bus_dma_tag_destroy(sc->tx_bd_chain_tag); 3330 sc->tx_bd_chain_tag = NULL; 3331 } 3332 3333 3334 /* Free, unmap and destroy all RX buffer descriptor chain pages. */ 3335 for (i = 0; i < sc->rx_pages; i++ ) { 3336 if (sc->rx_bd_chain_paddr[i] != 0) { 3337 bus_dmamap_unload( 3338 sc->rx_bd_chain_tag, 3339 sc->rx_bd_chain_map[i]); 3340 sc->rx_bd_chain_paddr[i] = 0; 3341 } 3342 3343 if (sc->rx_bd_chain[i] != NULL) { 3344 bus_dmamem_free( 3345 sc->rx_bd_chain_tag, 3346 sc->rx_bd_chain[i], 3347 sc->rx_bd_chain_map[i]); 3348 sc->rx_bd_chain[i] = NULL; 3349 } 3350 } 3351 3352 /* Destroy the RX buffer descriptor tag. */ 3353 if (sc->rx_bd_chain_tag != NULL) { 3354 bus_dma_tag_destroy(sc->rx_bd_chain_tag); 3355 sc->rx_bd_chain_tag = NULL; 3356 } 3357 3358 3359 /* Free, unmap and destroy all page buffer descriptor chain pages. */ 3360 if (bce_hdr_split == TRUE) { 3361 for (i = 0; i < sc->pg_pages; i++ ) { 3362 if (sc->pg_bd_chain_paddr[i] != 0) { 3363 bus_dmamap_unload( 3364 sc->pg_bd_chain_tag, 3365 sc->pg_bd_chain_map[i]); 3366 sc->pg_bd_chain_paddr[i] = 0; 3367 } 3368 3369 if (sc->pg_bd_chain[i] != NULL) { 3370 bus_dmamem_free( 3371 sc->pg_bd_chain_tag, 3372 sc->pg_bd_chain[i], 3373 sc->pg_bd_chain_map[i]); 3374 sc->pg_bd_chain[i] = NULL; 3375 } 3376 } 3377 3378 /* Destroy the page buffer descriptor tag. */ 3379 if (sc->pg_bd_chain_tag != NULL) { 3380 bus_dma_tag_destroy(sc->pg_bd_chain_tag); 3381 sc->pg_bd_chain_tag = NULL; 3382 } 3383 } 3384 3385 3386 /* Unload and destroy the TX mbuf maps. */ 3387 for (i = 0; i < MAX_TX_BD_AVAIL; i++) { 3388 if (sc->tx_mbuf_map[i] != NULL) { 3389 bus_dmamap_unload(sc->tx_mbuf_tag, 3390 sc->tx_mbuf_map[i]); 3391 bus_dmamap_destroy(sc->tx_mbuf_tag, 3392 sc->tx_mbuf_map[i]); 3393 sc->tx_mbuf_map[i] = NULL; 3394 } 3395 } 3396 3397 /* Destroy the TX mbuf tag. */ 3398 if (sc->tx_mbuf_tag != NULL) { 3399 bus_dma_tag_destroy(sc->tx_mbuf_tag); 3400 sc->tx_mbuf_tag = NULL; 3401 } 3402 3403 /* Unload and destroy the RX mbuf maps. */ 3404 for (i = 0; i < MAX_RX_BD_AVAIL; i++) { 3405 if (sc->rx_mbuf_map[i] != NULL) { 3406 bus_dmamap_unload(sc->rx_mbuf_tag, 3407 sc->rx_mbuf_map[i]); 3408 bus_dmamap_destroy(sc->rx_mbuf_tag, 3409 sc->rx_mbuf_map[i]); 3410 sc->rx_mbuf_map[i] = NULL; 3411 } 3412 } 3413 3414 /* Destroy the RX mbuf tag. */ 3415 if (sc->rx_mbuf_tag != NULL) { 3416 bus_dma_tag_destroy(sc->rx_mbuf_tag); 3417 sc->rx_mbuf_tag = NULL; 3418 } 3419 3420 /* Unload and destroy the page mbuf maps. */ 3421 if (bce_hdr_split == TRUE) { 3422 for (i = 0; i < MAX_PG_BD_AVAIL; i++) { 3423 if (sc->pg_mbuf_map[i] != NULL) { 3424 bus_dmamap_unload(sc->pg_mbuf_tag, 3425 sc->pg_mbuf_map[i]); 3426 bus_dmamap_destroy(sc->pg_mbuf_tag, 3427 sc->pg_mbuf_map[i]); 3428 sc->pg_mbuf_map[i] = NULL; 3429 } 3430 } 3431 3432 /* Destroy the page mbuf tag. */ 3433 if (sc->pg_mbuf_tag != NULL) { 3434 bus_dma_tag_destroy(sc->pg_mbuf_tag); 3435 sc->pg_mbuf_tag = NULL; 3436 } 3437 } 3438 3439 /* Destroy the parent tag */ 3440 if (sc->parent_tag != NULL) { 3441 bus_dma_tag_destroy(sc->parent_tag); 3442 sc->parent_tag = NULL; 3443 } 3444 3445 DBEXIT(BCE_VERBOSE_RESET | BCE_VERBOSE_UNLOAD | BCE_VERBOSE_CTX); 3446 } 3447 3448 3449 /****************************************************************************/ 3450 /* Get DMA memory from the OS. */ 3451 /* */ 3452 /* Validates that the OS has provided DMA buffers in response to a */ 3453 /* bus_dmamap_load() call and saves the physical address of those buffers. */ 3454 /* When the callback is used the OS will return 0 for the mapping function */ 3455 /* (bus_dmamap_load()) so we use the value of map_arg->maxsegs to pass any */ 3456 /* failures back to the caller. */ 3457 /* */ 3458 /* Returns: */ 3459 /* Nothing. */ 3460 /****************************************************************************/ 3461 static void 3462 bce_dma_map_addr(void *arg, bus_dma_segment_t *segs, int nseg, int error) 3463 { 3464 bus_addr_t *busaddr = arg; 3465 3466 KASSERT(nseg == 1, ("%s(): Too many segments returned (%d)!", 3467 __FUNCTION__, nseg)); 3468 /* Simulate a mapping failure. */ 3469 DBRUNIF(DB_RANDOMTRUE(dma_map_addr_failed_sim_control), 3470 error = ENOMEM); 3471 3472 /* ToDo: How to increment debug sim_count variable here? */ 3473 3474 /* Check for an error and signal the caller that an error occurred. */ 3475 if (error) { 3476 *busaddr = 0; 3477 } else { 3478 *busaddr = segs->ds_addr; 3479 } 3480 } 3481 3482 3483 /****************************************************************************/ 3484 /* Allocate any DMA memory needed by the driver. */ 3485 /* */ 3486 /* Allocates DMA memory needed for the various global structures needed by */ 3487 /* hardware. */ 3488 /* */ 3489 /* Memory alignment requirements: */ 3490 /* +-----------------+----------+----------+----------+----------+ */ 3491 /* | | 5706 | 5708 | 5709 | 5716 | */ 3492 /* +-----------------+----------+----------+----------+----------+ */ 3493 /* |Status Block | 8 bytes | 8 bytes | 16 bytes | 16 bytes | */ 3494 /* |Statistics Block | 8 bytes | 8 bytes | 16 bytes | 16 bytes | */ 3495 /* |RX Buffers | 16 bytes | 16 bytes | 16 bytes | 16 bytes | */ 3496 /* |PG Buffers | none | none | none | none | */ 3497 /* |TX Buffers | none | none | none | none | */ 3498 /* |Chain Pages(1) | 4KiB | 4KiB | 4KiB | 4KiB | */ 3499 /* |Context Memory | | | | | */ 3500 /* +-----------------+----------+----------+----------+----------+ */ 3501 /* */ 3502 /* (1) Must align with CPU page size (BCM_PAGE_SZIE). */ 3503 /* */ 3504 /* Returns: */ 3505 /* 0 for success, positive value for failure. */ 3506 /****************************************************************************/ 3507 static int 3508 bce_dma_alloc(device_t dev) 3509 { 3510 struct bce_softc *sc; 3511 int i, error, rc = 0; 3512 bus_size_t max_size, max_seg_size; 3513 int max_segments; 3514 3515 sc = device_get_softc(dev); 3516 3517 DBENTER(BCE_VERBOSE_RESET | BCE_VERBOSE_CTX); 3518 3519 /* 3520 * Allocate the parent bus DMA tag appropriate for PCI. 3521 */ 3522 if (bus_dma_tag_create(bus_get_dma_tag(dev), 1, BCE_DMA_BOUNDARY, 3523 sc->max_bus_addr, BUS_SPACE_MAXADDR, NULL, NULL, 3524 BUS_SPACE_MAXSIZE_32BIT, 0, BUS_SPACE_MAXSIZE_32BIT, 0, NULL, NULL, 3525 &sc->parent_tag)) { 3526 BCE_PRINTF("%s(%d): Could not allocate parent DMA tag!\n", 3527 __FILE__, __LINE__); 3528 rc = ENOMEM; 3529 goto bce_dma_alloc_exit; 3530 } 3531 3532 /* 3533 * Create a DMA tag for the status block, allocate and clear the 3534 * memory, map the memory into DMA space, and fetch the physical 3535 * address of the block. 3536 */ 3537 if (bus_dma_tag_create(sc->parent_tag, BCE_DMA_ALIGN, 3538 BCE_DMA_BOUNDARY, sc->max_bus_addr, BUS_SPACE_MAXADDR, 3539 NULL, NULL, BCE_STATUS_BLK_SZ, 1, BCE_STATUS_BLK_SZ, 3540 0, NULL, NULL, &sc->status_tag)) { 3541 BCE_PRINTF("%s(%d): Could not allocate status block " 3542 "DMA tag!\n", __FILE__, __LINE__); 3543 rc = ENOMEM; 3544 goto bce_dma_alloc_exit; 3545 } 3546 3547 if(bus_dmamem_alloc(sc->status_tag, (void **)&sc->status_block, 3548 BUS_DMA_NOWAIT | BUS_DMA_ZERO | BUS_DMA_COHERENT, 3549 &sc->status_map)) { 3550 BCE_PRINTF("%s(%d): Could not allocate status block " 3551 "DMA memory!\n", __FILE__, __LINE__); 3552 rc = ENOMEM; 3553 goto bce_dma_alloc_exit; 3554 } 3555 3556 error = bus_dmamap_load(sc->status_tag, sc->status_map, 3557 sc->status_block, BCE_STATUS_BLK_SZ, bce_dma_map_addr, 3558 &sc->status_block_paddr, BUS_DMA_NOWAIT); 3559 3560 if (error || sc->status_block_paddr == 0) { 3561 BCE_PRINTF("%s(%d): Could not map status block " 3562 "DMA memory!\n", __FILE__, __LINE__); 3563 rc = ENOMEM; 3564 goto bce_dma_alloc_exit; 3565 } 3566 3567 DBPRINT(sc, BCE_INFO_LOAD, "%s(): status_block_paddr = 0x%jX\n", 3568 __FUNCTION__, (uintmax_t) sc->status_block_paddr); 3569 3570 /* 3571 * Create a DMA tag for the statistics block, allocate and clear the 3572 * memory, map the memory into DMA space, and fetch the physical 3573 * address of the block. 3574 */ 3575 if (bus_dma_tag_create(sc->parent_tag, BCE_DMA_ALIGN, 3576 BCE_DMA_BOUNDARY, sc->max_bus_addr, BUS_SPACE_MAXADDR, 3577 NULL, NULL, BCE_STATS_BLK_SZ, 1, BCE_STATS_BLK_SZ, 3578 0, NULL, NULL, &sc->stats_tag)) { 3579 BCE_PRINTF("%s(%d): Could not allocate statistics block " 3580 "DMA tag!\n", __FILE__, __LINE__); 3581 rc = ENOMEM; 3582 goto bce_dma_alloc_exit; 3583 } 3584 3585 if (bus_dmamem_alloc(sc->stats_tag, (void **)&sc->stats_block, 3586 BUS_DMA_NOWAIT | BUS_DMA_ZERO | BUS_DMA_COHERENT, &sc->stats_map)) { 3587 BCE_PRINTF("%s(%d): Could not allocate statistics block " 3588 "DMA memory!\n", __FILE__, __LINE__); 3589 rc = ENOMEM; 3590 goto bce_dma_alloc_exit; 3591 } 3592 3593 error = bus_dmamap_load(sc->stats_tag, sc->stats_map, 3594 sc->stats_block, BCE_STATS_BLK_SZ, bce_dma_map_addr, 3595 &sc->stats_block_paddr, BUS_DMA_NOWAIT); 3596 3597 if (error || sc->stats_block_paddr == 0) { 3598 BCE_PRINTF("%s(%d): Could not map statistics block " 3599 "DMA memory!\n", __FILE__, __LINE__); 3600 rc = ENOMEM; 3601 goto bce_dma_alloc_exit; 3602 } 3603 3604 DBPRINT(sc, BCE_INFO_LOAD, "%s(): stats_block_paddr = 0x%jX\n", 3605 __FUNCTION__, (uintmax_t) sc->stats_block_paddr); 3606 3607 /* BCM5709 uses host memory as cache for context memory. */ 3608 if (BCE_CHIP_NUM(sc) == BCE_CHIP_NUM_5709) { 3609 sc->ctx_pages = 0x2000 / BCM_PAGE_SIZE; 3610 if (sc->ctx_pages == 0) 3611 sc->ctx_pages = 1; 3612 3613 DBRUNIF((sc->ctx_pages > 512), 3614 BCE_PRINTF("%s(%d): Too many CTX pages! %d > 512\n", 3615 __FILE__, __LINE__, sc->ctx_pages)); 3616 3617 /* 3618 * Create a DMA tag for the context pages, 3619 * allocate and clear the memory, map the 3620 * memory into DMA space, and fetch the 3621 * physical address of the block. 3622 */ 3623 if(bus_dma_tag_create(sc->parent_tag, BCM_PAGE_SIZE, 3624 BCE_DMA_BOUNDARY, sc->max_bus_addr, BUS_SPACE_MAXADDR, 3625 NULL, NULL, BCM_PAGE_SIZE, 1, BCM_PAGE_SIZE, 3626 0, NULL, NULL, &sc->ctx_tag)) { 3627 BCE_PRINTF("%s(%d): Could not allocate CTX " 3628 "DMA tag!\n", __FILE__, __LINE__); 3629 rc = ENOMEM; 3630 goto bce_dma_alloc_exit; 3631 } 3632 3633 for (i = 0; i < sc->ctx_pages; i++) { 3634 3635 if(bus_dmamem_alloc(sc->ctx_tag, 3636 (void **)&sc->ctx_block[i], 3637 BUS_DMA_NOWAIT | BUS_DMA_ZERO | BUS_DMA_COHERENT, 3638 &sc->ctx_map[i])) { 3639 BCE_PRINTF("%s(%d): Could not allocate CTX " 3640 "DMA memory!\n", __FILE__, __LINE__); 3641 rc = ENOMEM; 3642 goto bce_dma_alloc_exit; 3643 } 3644 3645 error = bus_dmamap_load(sc->ctx_tag, sc->ctx_map[i], 3646 sc->ctx_block[i], BCM_PAGE_SIZE, bce_dma_map_addr, 3647 &sc->ctx_paddr[i], BUS_DMA_NOWAIT); 3648 3649 if (error || sc->ctx_paddr[i] == 0) { 3650 BCE_PRINTF("%s(%d): Could not map CTX " 3651 "DMA memory!\n", __FILE__, __LINE__); 3652 rc = ENOMEM; 3653 goto bce_dma_alloc_exit; 3654 } 3655 3656 DBPRINT(sc, BCE_INFO_LOAD, "%s(): ctx_paddr[%d] " 3657 "= 0x%jX\n", __FUNCTION__, i, 3658 (uintmax_t) sc->ctx_paddr[i]); 3659 } 3660 } 3661 3662 /* 3663 * Create a DMA tag for the TX buffer descriptor chain, 3664 * allocate and clear the memory, and fetch the 3665 * physical address of the block. 3666 */ 3667 if(bus_dma_tag_create(sc->parent_tag, BCM_PAGE_SIZE, BCE_DMA_BOUNDARY, 3668 sc->max_bus_addr, BUS_SPACE_MAXADDR, NULL, NULL, 3669 BCE_TX_CHAIN_PAGE_SZ, 1, BCE_TX_CHAIN_PAGE_SZ, 0, 3670 NULL, NULL, &sc->tx_bd_chain_tag)) { 3671 BCE_PRINTF("%s(%d): Could not allocate TX descriptor " 3672 "chain DMA tag!\n", __FILE__, __LINE__); 3673 rc = ENOMEM; 3674 goto bce_dma_alloc_exit; 3675 } 3676 3677 for (i = 0; i < sc->tx_pages; i++) { 3678 3679 if(bus_dmamem_alloc(sc->tx_bd_chain_tag, 3680 (void **)&sc->tx_bd_chain[i], 3681 BUS_DMA_NOWAIT | BUS_DMA_ZERO | BUS_DMA_COHERENT, 3682 &sc->tx_bd_chain_map[i])) { 3683 BCE_PRINTF("%s(%d): Could not allocate TX descriptor " 3684 "chain DMA memory!\n", __FILE__, __LINE__); 3685 rc = ENOMEM; 3686 goto bce_dma_alloc_exit; 3687 } 3688 3689 error = bus_dmamap_load(sc->tx_bd_chain_tag, 3690 sc->tx_bd_chain_map[i], sc->tx_bd_chain[i], 3691 BCE_TX_CHAIN_PAGE_SZ, bce_dma_map_addr, 3692 &sc->tx_bd_chain_paddr[i], BUS_DMA_NOWAIT); 3693 3694 if (error || sc->tx_bd_chain_paddr[i] == 0) { 3695 BCE_PRINTF("%s(%d): Could not map TX descriptor " 3696 "chain DMA memory!\n", __FILE__, __LINE__); 3697 rc = ENOMEM; 3698 goto bce_dma_alloc_exit; 3699 } 3700 3701 DBPRINT(sc, BCE_INFO_LOAD, "%s(): tx_bd_chain_paddr[%d] = " 3702 "0x%jX\n", __FUNCTION__, i, 3703 (uintmax_t) sc->tx_bd_chain_paddr[i]); 3704 } 3705 3706 /* Check the required size before mapping to conserve resources. */ 3707 if (bce_tso_enable) { 3708 max_size = BCE_TSO_MAX_SIZE; 3709 max_segments = BCE_MAX_SEGMENTS; 3710 max_seg_size = BCE_TSO_MAX_SEG_SIZE; 3711 } else { 3712 max_size = MCLBYTES * BCE_MAX_SEGMENTS; 3713 max_segments = BCE_MAX_SEGMENTS; 3714 max_seg_size = MCLBYTES; 3715 } 3716 3717 /* Create a DMA tag for TX mbufs. */ 3718 if (bus_dma_tag_create(sc->parent_tag, 1, BCE_DMA_BOUNDARY, 3719 sc->max_bus_addr, BUS_SPACE_MAXADDR, NULL, NULL, max_size, 3720 max_segments, max_seg_size, 0, NULL, NULL, &sc->tx_mbuf_tag)) { 3721 BCE_PRINTF("%s(%d): Could not allocate TX mbuf DMA tag!\n", 3722 __FILE__, __LINE__); 3723 rc = ENOMEM; 3724 goto bce_dma_alloc_exit; 3725 } 3726 3727 /* Create DMA maps for the TX mbufs clusters. */ 3728 for (i = 0; i < TOTAL_TX_BD_ALLOC; i++) { 3729 if (bus_dmamap_create(sc->tx_mbuf_tag, BUS_DMA_NOWAIT, 3730 &sc->tx_mbuf_map[i])) { 3731 BCE_PRINTF("%s(%d): Unable to create TX mbuf DMA " 3732 "map!\n", __FILE__, __LINE__); 3733 rc = ENOMEM; 3734 goto bce_dma_alloc_exit; 3735 } 3736 } 3737 3738 /* 3739 * Create a DMA tag for the RX buffer descriptor chain, 3740 * allocate and clear the memory, and fetch the physical 3741 * address of the blocks. 3742 */ 3743 if (bus_dma_tag_create(sc->parent_tag, BCM_PAGE_SIZE, 3744 BCE_DMA_BOUNDARY, BUS_SPACE_MAXADDR, 3745 sc->max_bus_addr, NULL, NULL, 3746 BCE_RX_CHAIN_PAGE_SZ, 1, BCE_RX_CHAIN_PAGE_SZ, 3747 0, NULL, NULL, &sc->rx_bd_chain_tag)) { 3748 BCE_PRINTF("%s(%d): Could not allocate RX descriptor chain " 3749 "DMA tag!\n", __FILE__, __LINE__); 3750 rc = ENOMEM; 3751 goto bce_dma_alloc_exit; 3752 } 3753 3754 for (i = 0; i < sc->rx_pages; i++) { 3755 3756 if (bus_dmamem_alloc(sc->rx_bd_chain_tag, 3757 (void **)&sc->rx_bd_chain[i], 3758 BUS_DMA_NOWAIT | BUS_DMA_ZERO | BUS_DMA_COHERENT, 3759 &sc->rx_bd_chain_map[i])) { 3760 BCE_PRINTF("%s(%d): Could not allocate RX descriptor " 3761 "chain DMA memory!\n", __FILE__, __LINE__); 3762 rc = ENOMEM; 3763 goto bce_dma_alloc_exit; 3764 } 3765 3766 error = bus_dmamap_load(sc->rx_bd_chain_tag, 3767 sc->rx_bd_chain_map[i], sc->rx_bd_chain[i], 3768 BCE_RX_CHAIN_PAGE_SZ, bce_dma_map_addr, 3769 &sc->rx_bd_chain_paddr[i], BUS_DMA_NOWAIT); 3770 3771 if (error || sc->rx_bd_chain_paddr[i] == 0) { 3772 BCE_PRINTF("%s(%d): Could not map RX descriptor " 3773 "chain DMA memory!\n", __FILE__, __LINE__); 3774 rc = ENOMEM; 3775 goto bce_dma_alloc_exit; 3776 } 3777 3778 DBPRINT(sc, BCE_INFO_LOAD, "%s(): rx_bd_chain_paddr[%d] = " 3779 "0x%jX\n", __FUNCTION__, i, 3780 (uintmax_t) sc->rx_bd_chain_paddr[i]); 3781 } 3782 3783 /* 3784 * Create a DMA tag for RX mbufs. 3785 */ 3786 if (bce_hdr_split == TRUE) 3787 max_size = ((sc->rx_bd_mbuf_alloc_size < MCLBYTES) ? 3788 MCLBYTES : sc->rx_bd_mbuf_alloc_size); 3789 else 3790 max_size = MJUM9BYTES; 3791 3792 DBPRINT(sc, BCE_INFO_LOAD, "%s(): Creating rx_mbuf_tag " 3793 "(max size = 0x%jX)\n", __FUNCTION__, (uintmax_t)max_size); 3794 3795 if (bus_dma_tag_create(sc->parent_tag, BCE_RX_BUF_ALIGN, 3796 BCE_DMA_BOUNDARY, sc->max_bus_addr, BUS_SPACE_MAXADDR, NULL, NULL, 3797 max_size, 1, max_size, 0, NULL, NULL, &sc->rx_mbuf_tag)) { 3798 BCE_PRINTF("%s(%d): Could not allocate RX mbuf DMA tag!\n", 3799 __FILE__, __LINE__); 3800 rc = ENOMEM; 3801 goto bce_dma_alloc_exit; 3802 } 3803 3804 /* Create DMA maps for the RX mbuf clusters. */ 3805 for (i = 0; i < TOTAL_RX_BD_ALLOC; i++) { 3806 if (bus_dmamap_create(sc->rx_mbuf_tag, BUS_DMA_NOWAIT, 3807 &sc->rx_mbuf_map[i])) { 3808 BCE_PRINTF("%s(%d): Unable to create RX mbuf " 3809 "DMA map!\n", __FILE__, __LINE__); 3810 rc = ENOMEM; 3811 goto bce_dma_alloc_exit; 3812 } 3813 } 3814 3815 if (bce_hdr_split == TRUE) { 3816 /* 3817 * Create a DMA tag for the page buffer descriptor chain, 3818 * allocate and clear the memory, and fetch the physical 3819 * address of the blocks. 3820 */ 3821 if (bus_dma_tag_create(sc->parent_tag, BCM_PAGE_SIZE, 3822 BCE_DMA_BOUNDARY, BUS_SPACE_MAXADDR, sc->max_bus_addr, 3823 NULL, NULL, BCE_PG_CHAIN_PAGE_SZ, 1, BCE_PG_CHAIN_PAGE_SZ, 3824 0, NULL, NULL, &sc->pg_bd_chain_tag)) { 3825 BCE_PRINTF("%s(%d): Could not allocate page descriptor " 3826 "chain DMA tag!\n", __FILE__, __LINE__); 3827 rc = ENOMEM; 3828 goto bce_dma_alloc_exit; 3829 } 3830 3831 for (i = 0; i < sc->pg_pages; i++) { 3832 if (bus_dmamem_alloc(sc->pg_bd_chain_tag, 3833 (void **)&sc->pg_bd_chain[i], 3834 BUS_DMA_NOWAIT | BUS_DMA_ZERO | BUS_DMA_COHERENT, 3835 &sc->pg_bd_chain_map[i])) { 3836 BCE_PRINTF("%s(%d): Could not allocate page " 3837 "descriptor chain DMA memory!\n", 3838 __FILE__, __LINE__); 3839 rc = ENOMEM; 3840 goto bce_dma_alloc_exit; 3841 } 3842 3843 error = bus_dmamap_load(sc->pg_bd_chain_tag, 3844 sc->pg_bd_chain_map[i], sc->pg_bd_chain[i], 3845 BCE_PG_CHAIN_PAGE_SZ, bce_dma_map_addr, 3846 &sc->pg_bd_chain_paddr[i], BUS_DMA_NOWAIT); 3847 3848 if (error || sc->pg_bd_chain_paddr[i] == 0) { 3849 BCE_PRINTF("%s(%d): Could not map page descriptor " 3850 "chain DMA memory!\n", __FILE__, __LINE__); 3851 rc = ENOMEM; 3852 goto bce_dma_alloc_exit; 3853 } 3854 3855 DBPRINT(sc, BCE_INFO_LOAD, "%s(): pg_bd_chain_paddr[%d] = " 3856 "0x%jX\n", __FUNCTION__, i, 3857 (uintmax_t) sc->pg_bd_chain_paddr[i]); 3858 } 3859 3860 /* 3861 * Create a DMA tag for page mbufs. 3862 */ 3863 if (bus_dma_tag_create(sc->parent_tag, 1, BCE_DMA_BOUNDARY, 3864 sc->max_bus_addr, BUS_SPACE_MAXADDR, NULL, NULL, MCLBYTES, 3865 1, MCLBYTES, 0, NULL, NULL, &sc->pg_mbuf_tag)) { 3866 BCE_PRINTF("%s(%d): Could not allocate page mbuf " 3867 "DMA tag!\n", __FILE__, __LINE__); 3868 rc = ENOMEM; 3869 goto bce_dma_alloc_exit; 3870 } 3871 3872 /* Create DMA maps for the page mbuf clusters. */ 3873 for (i = 0; i < TOTAL_PG_BD_ALLOC; i++) { 3874 if (bus_dmamap_create(sc->pg_mbuf_tag, BUS_DMA_NOWAIT, 3875 &sc->pg_mbuf_map[i])) { 3876 BCE_PRINTF("%s(%d): Unable to create page mbuf " 3877 "DMA map!\n", __FILE__, __LINE__); 3878 rc = ENOMEM; 3879 goto bce_dma_alloc_exit; 3880 } 3881 } 3882 } 3883 3884 bce_dma_alloc_exit: 3885 DBEXIT(BCE_VERBOSE_RESET | BCE_VERBOSE_CTX); 3886 return(rc); 3887 } 3888 3889 3890 /****************************************************************************/ 3891 /* Release all resources used by the driver. */ 3892 /* */ 3893 /* Releases all resources acquired by the driver including interrupts, */ 3894 /* interrupt handler, interfaces, mutexes, and DMA memory. */ 3895 /* */ 3896 /* Returns: */ 3897 /* Nothing. */ 3898 /****************************************************************************/ 3899 static void 3900 bce_release_resources(struct bce_softc *sc) 3901 { 3902 device_t dev; 3903 3904 DBENTER(BCE_VERBOSE_RESET); 3905 3906 dev = sc->bce_dev; 3907 3908 bce_dma_free(sc); 3909 3910 if (sc->bce_intrhand != NULL) { 3911 DBPRINT(sc, BCE_INFO_RESET, "Removing interrupt handler.\n"); 3912 bus_teardown_intr(dev, sc->bce_res_irq, sc->bce_intrhand); 3913 } 3914 3915 if (sc->bce_res_irq != NULL) { 3916 DBPRINT(sc, BCE_INFO_RESET, "Releasing IRQ.\n"); 3917 bus_release_resource(dev, SYS_RES_IRQ, 3918 rman_get_rid(sc->bce_res_irq), sc->bce_res_irq); 3919 } 3920 3921 if (sc->bce_flags & (BCE_USING_MSI_FLAG | BCE_USING_MSIX_FLAG)) { 3922 DBPRINT(sc, BCE_INFO_RESET, "Releasing MSI/MSI-X vector.\n"); 3923 pci_release_msi(dev); 3924 } 3925 3926 if (sc->bce_res_mem != NULL) { 3927 DBPRINT(sc, BCE_INFO_RESET, "Releasing PCI memory.\n"); 3928 bus_release_resource(dev, SYS_RES_MEMORY, PCIR_BAR(0), 3929 sc->bce_res_mem); 3930 } 3931 3932 if (sc->bce_ifp != NULL) { 3933 DBPRINT(sc, BCE_INFO_RESET, "Releasing IF.\n"); 3934 if_free(sc->bce_ifp); 3935 } 3936 3937 if (mtx_initialized(&sc->bce_mtx)) 3938 BCE_LOCK_DESTROY(sc); 3939 3940 DBEXIT(BCE_VERBOSE_RESET); 3941 } 3942 3943 3944 /****************************************************************************/ 3945 /* Firmware synchronization. */ 3946 /* */ 3947 /* Before performing certain events such as a chip reset, synchronize with */ 3948 /* the firmware first. */ 3949 /* */ 3950 /* Returns: */ 3951 /* 0 for success, positive value for failure. */ 3952 /****************************************************************************/ 3953 static int 3954 bce_fw_sync(struct bce_softc *sc, u32 msg_data) 3955 { 3956 int i, rc = 0; 3957 u32 val; 3958 3959 DBENTER(BCE_VERBOSE_RESET); 3960 3961 /* Don't waste any time if we've timed out before. */ 3962 if (sc->bce_fw_timed_out == TRUE) { 3963 rc = EBUSY; 3964 goto bce_fw_sync_exit; 3965 } 3966 3967 /* Increment the message sequence number. */ 3968 sc->bce_fw_wr_seq++; 3969 msg_data |= sc->bce_fw_wr_seq; 3970 3971 DBPRINT(sc, BCE_VERBOSE_FIRMWARE, "bce_fw_sync(): msg_data = " 3972 "0x%08X\n", msg_data); 3973 3974 /* Send the message to the bootcode driver mailbox. */ 3975 bce_shmem_wr(sc, BCE_DRV_MB, msg_data); 3976 3977 /* Wait for the bootcode to acknowledge the message. */ 3978 for (i = 0; i < FW_ACK_TIME_OUT_MS; i++) { 3979 /* Check for a response in the bootcode firmware mailbox. */ 3980 val = bce_shmem_rd(sc, BCE_FW_MB); 3981 if ((val & BCE_FW_MSG_ACK) == (msg_data & BCE_DRV_MSG_SEQ)) 3982 break; 3983 DELAY(1000); 3984 } 3985 3986 /* If we've timed out, tell bootcode that we've stopped waiting. */ 3987 if (((val & BCE_FW_MSG_ACK) != (msg_data & BCE_DRV_MSG_SEQ)) && 3988 ((msg_data & BCE_DRV_MSG_DATA) != BCE_DRV_MSG_DATA_WAIT0)) { 3989 3990 BCE_PRINTF("%s(%d): Firmware synchronization timeout! " 3991 "msg_data = 0x%08X\n", __FILE__, __LINE__, msg_data); 3992 3993 msg_data &= ~BCE_DRV_MSG_CODE; 3994 msg_data |= BCE_DRV_MSG_CODE_FW_TIMEOUT; 3995 3996 bce_shmem_wr(sc, BCE_DRV_MB, msg_data); 3997 3998 sc->bce_fw_timed_out = TRUE; 3999 rc = EBUSY; 4000 } 4001 4002 bce_fw_sync_exit: 4003 DBEXIT(BCE_VERBOSE_RESET); 4004 return (rc); 4005 } 4006 4007 4008 /****************************************************************************/ 4009 /* Load Receive Virtual 2 Physical (RV2P) processor firmware. */ 4010 /* */ 4011 /* Returns: */ 4012 /* Nothing. */ 4013 /****************************************************************************/ 4014 static void 4015 bce_load_rv2p_fw(struct bce_softc *sc, const u32 *rv2p_code, 4016 u32 rv2p_code_len, u32 rv2p_proc) 4017 { 4018 int i; 4019 u32 val; 4020 4021 DBENTER(BCE_VERBOSE_RESET); 4022 4023 /* Set the page size used by RV2P. */ 4024 if (rv2p_proc == RV2P_PROC2) { 4025 BCE_RV2P_PROC2_CHG_MAX_BD_PAGE(USABLE_RX_BD_PER_PAGE); 4026 } 4027 4028 for (i = 0; i < rv2p_code_len; i += 8) { 4029 REG_WR(sc, BCE_RV2P_INSTR_HIGH, *rv2p_code); 4030 rv2p_code++; 4031 REG_WR(sc, BCE_RV2P_INSTR_LOW, *rv2p_code); 4032 rv2p_code++; 4033 4034 if (rv2p_proc == RV2P_PROC1) { 4035 val = (i / 8) | BCE_RV2P_PROC1_ADDR_CMD_RDWR; 4036 REG_WR(sc, BCE_RV2P_PROC1_ADDR_CMD, val); 4037 } 4038 else { 4039 val = (i / 8) | BCE_RV2P_PROC2_ADDR_CMD_RDWR; 4040 REG_WR(sc, BCE_RV2P_PROC2_ADDR_CMD, val); 4041 } 4042 } 4043 4044 /* Reset the processor, un-stall is done later. */ 4045 if (rv2p_proc == RV2P_PROC1) { 4046 REG_WR(sc, BCE_RV2P_COMMAND, BCE_RV2P_COMMAND_PROC1_RESET); 4047 } 4048 else { 4049 REG_WR(sc, BCE_RV2P_COMMAND, BCE_RV2P_COMMAND_PROC2_RESET); 4050 } 4051 4052 DBEXIT(BCE_VERBOSE_RESET); 4053 } 4054 4055 4056 /****************************************************************************/ 4057 /* Load RISC processor firmware. */ 4058 /* */ 4059 /* Loads firmware from the file if_bcefw.h into the scratchpad memory */ 4060 /* associated with a particular processor. */ 4061 /* */ 4062 /* Returns: */ 4063 /* Nothing. */ 4064 /****************************************************************************/ 4065 static void 4066 bce_load_cpu_fw(struct bce_softc *sc, struct cpu_reg *cpu_reg, 4067 struct fw_info *fw) 4068 { 4069 u32 offset; 4070 4071 DBENTER(BCE_VERBOSE_RESET); 4072 4073 bce_halt_cpu(sc, cpu_reg); 4074 4075 /* Load the Text area. */ 4076 offset = cpu_reg->spad_base + (fw->text_addr - cpu_reg->mips_view_base); 4077 if (fw->text) { 4078 int j; 4079 4080 for (j = 0; j < (fw->text_len / 4); j++, offset += 4) { 4081 REG_WR_IND(sc, offset, fw->text[j]); 4082 } 4083 } 4084 4085 /* Load the Data area. */ 4086 offset = cpu_reg->spad_base + (fw->data_addr - cpu_reg->mips_view_base); 4087 if (fw->data) { 4088 int j; 4089 4090 for (j = 0; j < (fw->data_len / 4); j++, offset += 4) { 4091 REG_WR_IND(sc, offset, fw->data[j]); 4092 } 4093 } 4094 4095 /* Load the SBSS area. */ 4096 offset = cpu_reg->spad_base + (fw->sbss_addr - cpu_reg->mips_view_base); 4097 if (fw->sbss) { 4098 int j; 4099 4100 for (j = 0; j < (fw->sbss_len / 4); j++, offset += 4) { 4101 REG_WR_IND(sc, offset, fw->sbss[j]); 4102 } 4103 } 4104 4105 /* Load the BSS area. */ 4106 offset = cpu_reg->spad_base + (fw->bss_addr - cpu_reg->mips_view_base); 4107 if (fw->bss) { 4108 int j; 4109 4110 for (j = 0; j < (fw->bss_len/4); j++, offset += 4) { 4111 REG_WR_IND(sc, offset, fw->bss[j]); 4112 } 4113 } 4114 4115 /* Load the Read-Only area. */ 4116 offset = cpu_reg->spad_base + 4117 (fw->rodata_addr - cpu_reg->mips_view_base); 4118 if (fw->rodata) { 4119 int j; 4120 4121 for (j = 0; j < (fw->rodata_len / 4); j++, offset += 4) { 4122 REG_WR_IND(sc, offset, fw->rodata[j]); 4123 } 4124 } 4125 4126 /* Clear the pre-fetch instruction and set the FW start address. */ 4127 REG_WR_IND(sc, cpu_reg->inst, 0); 4128 REG_WR_IND(sc, cpu_reg->pc, fw->start_addr); 4129 4130 DBEXIT(BCE_VERBOSE_RESET); 4131 } 4132 4133 4134 /****************************************************************************/ 4135 /* Starts the RISC processor. */ 4136 /* */ 4137 /* Assumes the CPU starting address has already been set. */ 4138 /* */ 4139 /* Returns: */ 4140 /* Nothing. */ 4141 /****************************************************************************/ 4142 static void 4143 bce_start_cpu(struct bce_softc *sc, struct cpu_reg *cpu_reg) 4144 { 4145 u32 val; 4146 4147 DBENTER(BCE_VERBOSE_RESET); 4148 4149 /* Start the CPU. */ 4150 val = REG_RD_IND(sc, cpu_reg->mode); 4151 val &= ~cpu_reg->mode_value_halt; 4152 REG_WR_IND(sc, cpu_reg->state, cpu_reg->state_value_clear); 4153 REG_WR_IND(sc, cpu_reg->mode, val); 4154 4155 DBEXIT(BCE_VERBOSE_RESET); 4156 } 4157 4158 4159 /****************************************************************************/ 4160 /* Halts the RISC processor. */ 4161 /* */ 4162 /* Returns: */ 4163 /* Nothing. */ 4164 /****************************************************************************/ 4165 static void 4166 bce_halt_cpu(struct bce_softc *sc, struct cpu_reg *cpu_reg) 4167 { 4168 u32 val; 4169 4170 DBENTER(BCE_VERBOSE_RESET); 4171 4172 /* Halt the CPU. */ 4173 val = REG_RD_IND(sc, cpu_reg->mode); 4174 val |= cpu_reg->mode_value_halt; 4175 REG_WR_IND(sc, cpu_reg->mode, val); 4176 REG_WR_IND(sc, cpu_reg->state, cpu_reg->state_value_clear); 4177 4178 DBEXIT(BCE_VERBOSE_RESET); 4179 } 4180 4181 4182 /****************************************************************************/ 4183 /* Initialize the RX CPU. */ 4184 /* */ 4185 /* Returns: */ 4186 /* Nothing. */ 4187 /****************************************************************************/ 4188 static void 4189 bce_start_rxp_cpu(struct bce_softc *sc) 4190 { 4191 struct cpu_reg cpu_reg; 4192 4193 DBENTER(BCE_VERBOSE_RESET); 4194 4195 cpu_reg.mode = BCE_RXP_CPU_MODE; 4196 cpu_reg.mode_value_halt = BCE_RXP_CPU_MODE_SOFT_HALT; 4197 cpu_reg.mode_value_sstep = BCE_RXP_CPU_MODE_STEP_ENA; 4198 cpu_reg.state = BCE_RXP_CPU_STATE; 4199 cpu_reg.state_value_clear = 0xffffff; 4200 cpu_reg.gpr0 = BCE_RXP_CPU_REG_FILE; 4201 cpu_reg.evmask = BCE_RXP_CPU_EVENT_MASK; 4202 cpu_reg.pc = BCE_RXP_CPU_PROGRAM_COUNTER; 4203 cpu_reg.inst = BCE_RXP_CPU_INSTRUCTION; 4204 cpu_reg.bp = BCE_RXP_CPU_HW_BREAKPOINT; 4205 cpu_reg.spad_base = BCE_RXP_SCRATCH; 4206 cpu_reg.mips_view_base = 0x8000000; 4207 4208 DBPRINT(sc, BCE_INFO_RESET, "Starting RX firmware.\n"); 4209 bce_start_cpu(sc, &cpu_reg); 4210 4211 DBEXIT(BCE_VERBOSE_RESET); 4212 } 4213 4214 4215 /****************************************************************************/ 4216 /* Initialize the RX CPU. */ 4217 /* */ 4218 /* Returns: */ 4219 /* Nothing. */ 4220 /****************************************************************************/ 4221 static void 4222 bce_init_rxp_cpu(struct bce_softc *sc) 4223 { 4224 struct cpu_reg cpu_reg; 4225 struct fw_info fw; 4226 4227 DBENTER(BCE_VERBOSE_RESET); 4228 4229 cpu_reg.mode = BCE_RXP_CPU_MODE; 4230 cpu_reg.mode_value_halt = BCE_RXP_CPU_MODE_SOFT_HALT; 4231 cpu_reg.mode_value_sstep = BCE_RXP_CPU_MODE_STEP_ENA; 4232 cpu_reg.state = BCE_RXP_CPU_STATE; 4233 cpu_reg.state_value_clear = 0xffffff; 4234 cpu_reg.gpr0 = BCE_RXP_CPU_REG_FILE; 4235 cpu_reg.evmask = BCE_RXP_CPU_EVENT_MASK; 4236 cpu_reg.pc = BCE_RXP_CPU_PROGRAM_COUNTER; 4237 cpu_reg.inst = BCE_RXP_CPU_INSTRUCTION; 4238 cpu_reg.bp = BCE_RXP_CPU_HW_BREAKPOINT; 4239 cpu_reg.spad_base = BCE_RXP_SCRATCH; 4240 cpu_reg.mips_view_base = 0x8000000; 4241 4242 if (BCE_CHIP_NUM(sc) == BCE_CHIP_NUM_5709) { 4243 fw.ver_major = bce_RXP_b09FwReleaseMajor; 4244 fw.ver_minor = bce_RXP_b09FwReleaseMinor; 4245 fw.ver_fix = bce_RXP_b09FwReleaseFix; 4246 fw.start_addr = bce_RXP_b09FwStartAddr; 4247 4248 fw.text_addr = bce_RXP_b09FwTextAddr; 4249 fw.text_len = bce_RXP_b09FwTextLen; 4250 fw.text_index = 0; 4251 fw.text = bce_RXP_b09FwText; 4252 4253 fw.data_addr = bce_RXP_b09FwDataAddr; 4254 fw.data_len = bce_RXP_b09FwDataLen; 4255 fw.data_index = 0; 4256 fw.data = bce_RXP_b09FwData; 4257 4258 fw.sbss_addr = bce_RXP_b09FwSbssAddr; 4259 fw.sbss_len = bce_RXP_b09FwSbssLen; 4260 fw.sbss_index = 0; 4261 fw.sbss = bce_RXP_b09FwSbss; 4262 4263 fw.bss_addr = bce_RXP_b09FwBssAddr; 4264 fw.bss_len = bce_RXP_b09FwBssLen; 4265 fw.bss_index = 0; 4266 fw.bss = bce_RXP_b09FwBss; 4267 4268 fw.rodata_addr = bce_RXP_b09FwRodataAddr; 4269 fw.rodata_len = bce_RXP_b09FwRodataLen; 4270 fw.rodata_index = 0; 4271 fw.rodata = bce_RXP_b09FwRodata; 4272 } else { 4273 fw.ver_major = bce_RXP_b06FwReleaseMajor; 4274 fw.ver_minor = bce_RXP_b06FwReleaseMinor; 4275 fw.ver_fix = bce_RXP_b06FwReleaseFix; 4276 fw.start_addr = bce_RXP_b06FwStartAddr; 4277 4278 fw.text_addr = bce_RXP_b06FwTextAddr; 4279 fw.text_len = bce_RXP_b06FwTextLen; 4280 fw.text_index = 0; 4281 fw.text = bce_RXP_b06FwText; 4282 4283 fw.data_addr = bce_RXP_b06FwDataAddr; 4284 fw.data_len = bce_RXP_b06FwDataLen; 4285 fw.data_index = 0; 4286 fw.data = bce_RXP_b06FwData; 4287 4288 fw.sbss_addr = bce_RXP_b06FwSbssAddr; 4289 fw.sbss_len = bce_RXP_b06FwSbssLen; 4290 fw.sbss_index = 0; 4291 fw.sbss = bce_RXP_b06FwSbss; 4292 4293 fw.bss_addr = bce_RXP_b06FwBssAddr; 4294 fw.bss_len = bce_RXP_b06FwBssLen; 4295 fw.bss_index = 0; 4296 fw.bss = bce_RXP_b06FwBss; 4297 4298 fw.rodata_addr = bce_RXP_b06FwRodataAddr; 4299 fw.rodata_len = bce_RXP_b06FwRodataLen; 4300 fw.rodata_index = 0; 4301 fw.rodata = bce_RXP_b06FwRodata; 4302 } 4303 4304 DBPRINT(sc, BCE_INFO_RESET, "Loading RX firmware.\n"); 4305 bce_load_cpu_fw(sc, &cpu_reg, &fw); 4306 4307 /* Delay RXP start until initialization is complete. */ 4308 4309 DBEXIT(BCE_VERBOSE_RESET); 4310 } 4311 4312 4313 /****************************************************************************/ 4314 /* Initialize the TX CPU. */ 4315 /* */ 4316 /* Returns: */ 4317 /* Nothing. */ 4318 /****************************************************************************/ 4319 static void 4320 bce_init_txp_cpu(struct bce_softc *sc) 4321 { 4322 struct cpu_reg cpu_reg; 4323 struct fw_info fw; 4324 4325 DBENTER(BCE_VERBOSE_RESET); 4326 4327 cpu_reg.mode = BCE_TXP_CPU_MODE; 4328 cpu_reg.mode_value_halt = BCE_TXP_CPU_MODE_SOFT_HALT; 4329 cpu_reg.mode_value_sstep = BCE_TXP_CPU_MODE_STEP_ENA; 4330 cpu_reg.state = BCE_TXP_CPU_STATE; 4331 cpu_reg.state_value_clear = 0xffffff; 4332 cpu_reg.gpr0 = BCE_TXP_CPU_REG_FILE; 4333 cpu_reg.evmask = BCE_TXP_CPU_EVENT_MASK; 4334 cpu_reg.pc = BCE_TXP_CPU_PROGRAM_COUNTER; 4335 cpu_reg.inst = BCE_TXP_CPU_INSTRUCTION; 4336 cpu_reg.bp = BCE_TXP_CPU_HW_BREAKPOINT; 4337 cpu_reg.spad_base = BCE_TXP_SCRATCH; 4338 cpu_reg.mips_view_base = 0x8000000; 4339 4340 if (BCE_CHIP_NUM(sc) == BCE_CHIP_NUM_5709) { 4341 fw.ver_major = bce_TXP_b09FwReleaseMajor; 4342 fw.ver_minor = bce_TXP_b09FwReleaseMinor; 4343 fw.ver_fix = bce_TXP_b09FwReleaseFix; 4344 fw.start_addr = bce_TXP_b09FwStartAddr; 4345 4346 fw.text_addr = bce_TXP_b09FwTextAddr; 4347 fw.text_len = bce_TXP_b09FwTextLen; 4348 fw.text_index = 0; 4349 fw.text = bce_TXP_b09FwText; 4350 4351 fw.data_addr = bce_TXP_b09FwDataAddr; 4352 fw.data_len = bce_TXP_b09FwDataLen; 4353 fw.data_index = 0; 4354 fw.data = bce_TXP_b09FwData; 4355 4356 fw.sbss_addr = bce_TXP_b09FwSbssAddr; 4357 fw.sbss_len = bce_TXP_b09FwSbssLen; 4358 fw.sbss_index = 0; 4359 fw.sbss = bce_TXP_b09FwSbss; 4360 4361 fw.bss_addr = bce_TXP_b09FwBssAddr; 4362 fw.bss_len = bce_TXP_b09FwBssLen; 4363 fw.bss_index = 0; 4364 fw.bss = bce_TXP_b09FwBss; 4365 4366 fw.rodata_addr = bce_TXP_b09FwRodataAddr; 4367 fw.rodata_len = bce_TXP_b09FwRodataLen; 4368 fw.rodata_index = 0; 4369 fw.rodata = bce_TXP_b09FwRodata; 4370 } else { 4371 fw.ver_major = bce_TXP_b06FwReleaseMajor; 4372 fw.ver_minor = bce_TXP_b06FwReleaseMinor; 4373 fw.ver_fix = bce_TXP_b06FwReleaseFix; 4374 fw.start_addr = bce_TXP_b06FwStartAddr; 4375 4376 fw.text_addr = bce_TXP_b06FwTextAddr; 4377 fw.text_len = bce_TXP_b06FwTextLen; 4378 fw.text_index = 0; 4379 fw.text = bce_TXP_b06FwText; 4380 4381 fw.data_addr = bce_TXP_b06FwDataAddr; 4382 fw.data_len = bce_TXP_b06FwDataLen; 4383 fw.data_index = 0; 4384 fw.data = bce_TXP_b06FwData; 4385 4386 fw.sbss_addr = bce_TXP_b06FwSbssAddr; 4387 fw.sbss_len = bce_TXP_b06FwSbssLen; 4388 fw.sbss_index = 0; 4389 fw.sbss = bce_TXP_b06FwSbss; 4390 4391 fw.bss_addr = bce_TXP_b06FwBssAddr; 4392 fw.bss_len = bce_TXP_b06FwBssLen; 4393 fw.bss_index = 0; 4394 fw.bss = bce_TXP_b06FwBss; 4395 4396 fw.rodata_addr = bce_TXP_b06FwRodataAddr; 4397 fw.rodata_len = bce_TXP_b06FwRodataLen; 4398 fw.rodata_index = 0; 4399 fw.rodata = bce_TXP_b06FwRodata; 4400 } 4401 4402 DBPRINT(sc, BCE_INFO_RESET, "Loading TX firmware.\n"); 4403 bce_load_cpu_fw(sc, &cpu_reg, &fw); 4404 bce_start_cpu(sc, &cpu_reg); 4405 4406 DBEXIT(BCE_VERBOSE_RESET); 4407 } 4408 4409 4410 /****************************************************************************/ 4411 /* Initialize the TPAT CPU. */ 4412 /* */ 4413 /* Returns: */ 4414 /* Nothing. */ 4415 /****************************************************************************/ 4416 static void 4417 bce_init_tpat_cpu(struct bce_softc *sc) 4418 { 4419 struct cpu_reg cpu_reg; 4420 struct fw_info fw; 4421 4422 DBENTER(BCE_VERBOSE_RESET); 4423 4424 cpu_reg.mode = BCE_TPAT_CPU_MODE; 4425 cpu_reg.mode_value_halt = BCE_TPAT_CPU_MODE_SOFT_HALT; 4426 cpu_reg.mode_value_sstep = BCE_TPAT_CPU_MODE_STEP_ENA; 4427 cpu_reg.state = BCE_TPAT_CPU_STATE; 4428 cpu_reg.state_value_clear = 0xffffff; 4429 cpu_reg.gpr0 = BCE_TPAT_CPU_REG_FILE; 4430 cpu_reg.evmask = BCE_TPAT_CPU_EVENT_MASK; 4431 cpu_reg.pc = BCE_TPAT_CPU_PROGRAM_COUNTER; 4432 cpu_reg.inst = BCE_TPAT_CPU_INSTRUCTION; 4433 cpu_reg.bp = BCE_TPAT_CPU_HW_BREAKPOINT; 4434 cpu_reg.spad_base = BCE_TPAT_SCRATCH; 4435 cpu_reg.mips_view_base = 0x8000000; 4436 4437 if (BCE_CHIP_NUM(sc) == BCE_CHIP_NUM_5709) { 4438 fw.ver_major = bce_TPAT_b09FwReleaseMajor; 4439 fw.ver_minor = bce_TPAT_b09FwReleaseMinor; 4440 fw.ver_fix = bce_TPAT_b09FwReleaseFix; 4441 fw.start_addr = bce_TPAT_b09FwStartAddr; 4442 4443 fw.text_addr = bce_TPAT_b09FwTextAddr; 4444 fw.text_len = bce_TPAT_b09FwTextLen; 4445 fw.text_index = 0; 4446 fw.text = bce_TPAT_b09FwText; 4447 4448 fw.data_addr = bce_TPAT_b09FwDataAddr; 4449 fw.data_len = bce_TPAT_b09FwDataLen; 4450 fw.data_index = 0; 4451 fw.data = bce_TPAT_b09FwData; 4452 4453 fw.sbss_addr = bce_TPAT_b09FwSbssAddr; 4454 fw.sbss_len = bce_TPAT_b09FwSbssLen; 4455 fw.sbss_index = 0; 4456 fw.sbss = bce_TPAT_b09FwSbss; 4457 4458 fw.bss_addr = bce_TPAT_b09FwBssAddr; 4459 fw.bss_len = bce_TPAT_b09FwBssLen; 4460 fw.bss_index = 0; 4461 fw.bss = bce_TPAT_b09FwBss; 4462 4463 fw.rodata_addr = bce_TPAT_b09FwRodataAddr; 4464 fw.rodata_len = bce_TPAT_b09FwRodataLen; 4465 fw.rodata_index = 0; 4466 fw.rodata = bce_TPAT_b09FwRodata; 4467 } else { 4468 fw.ver_major = bce_TPAT_b06FwReleaseMajor; 4469 fw.ver_minor = bce_TPAT_b06FwReleaseMinor; 4470 fw.ver_fix = bce_TPAT_b06FwReleaseFix; 4471 fw.start_addr = bce_TPAT_b06FwStartAddr; 4472 4473 fw.text_addr = bce_TPAT_b06FwTextAddr; 4474 fw.text_len = bce_TPAT_b06FwTextLen; 4475 fw.text_index = 0; 4476 fw.text = bce_TPAT_b06FwText; 4477 4478 fw.data_addr = bce_TPAT_b06FwDataAddr; 4479 fw.data_len = bce_TPAT_b06FwDataLen; 4480 fw.data_index = 0; 4481 fw.data = bce_TPAT_b06FwData; 4482 4483 fw.sbss_addr = bce_TPAT_b06FwSbssAddr; 4484 fw.sbss_len = bce_TPAT_b06FwSbssLen; 4485 fw.sbss_index = 0; 4486 fw.sbss = bce_TPAT_b06FwSbss; 4487 4488 fw.bss_addr = bce_TPAT_b06FwBssAddr; 4489 fw.bss_len = bce_TPAT_b06FwBssLen; 4490 fw.bss_index = 0; 4491 fw.bss = bce_TPAT_b06FwBss; 4492 4493 fw.rodata_addr = bce_TPAT_b06FwRodataAddr; 4494 fw.rodata_len = bce_TPAT_b06FwRodataLen; 4495 fw.rodata_index = 0; 4496 fw.rodata = bce_TPAT_b06FwRodata; 4497 } 4498 4499 DBPRINT(sc, BCE_INFO_RESET, "Loading TPAT firmware.\n"); 4500 bce_load_cpu_fw(sc, &cpu_reg, &fw); 4501 bce_start_cpu(sc, &cpu_reg); 4502 4503 DBEXIT(BCE_VERBOSE_RESET); 4504 } 4505 4506 4507 /****************************************************************************/ 4508 /* Initialize the CP CPU. */ 4509 /* */ 4510 /* Returns: */ 4511 /* Nothing. */ 4512 /****************************************************************************/ 4513 static void 4514 bce_init_cp_cpu(struct bce_softc *sc) 4515 { 4516 struct cpu_reg cpu_reg; 4517 struct fw_info fw; 4518 4519 DBENTER(BCE_VERBOSE_RESET); 4520 4521 cpu_reg.mode = BCE_CP_CPU_MODE; 4522 cpu_reg.mode_value_halt = BCE_CP_CPU_MODE_SOFT_HALT; 4523 cpu_reg.mode_value_sstep = BCE_CP_CPU_MODE_STEP_ENA; 4524 cpu_reg.state = BCE_CP_CPU_STATE; 4525 cpu_reg.state_value_clear = 0xffffff; 4526 cpu_reg.gpr0 = BCE_CP_CPU_REG_FILE; 4527 cpu_reg.evmask = BCE_CP_CPU_EVENT_MASK; 4528 cpu_reg.pc = BCE_CP_CPU_PROGRAM_COUNTER; 4529 cpu_reg.inst = BCE_CP_CPU_INSTRUCTION; 4530 cpu_reg.bp = BCE_CP_CPU_HW_BREAKPOINT; 4531 cpu_reg.spad_base = BCE_CP_SCRATCH; 4532 cpu_reg.mips_view_base = 0x8000000; 4533 4534 if (BCE_CHIP_NUM(sc) == BCE_CHIP_NUM_5709) { 4535 fw.ver_major = bce_CP_b09FwReleaseMajor; 4536 fw.ver_minor = bce_CP_b09FwReleaseMinor; 4537 fw.ver_fix = bce_CP_b09FwReleaseFix; 4538 fw.start_addr = bce_CP_b09FwStartAddr; 4539 4540 fw.text_addr = bce_CP_b09FwTextAddr; 4541 fw.text_len = bce_CP_b09FwTextLen; 4542 fw.text_index = 0; 4543 fw.text = bce_CP_b09FwText; 4544 4545 fw.data_addr = bce_CP_b09FwDataAddr; 4546 fw.data_len = bce_CP_b09FwDataLen; 4547 fw.data_index = 0; 4548 fw.data = bce_CP_b09FwData; 4549 4550 fw.sbss_addr = bce_CP_b09FwSbssAddr; 4551 fw.sbss_len = bce_CP_b09FwSbssLen; 4552 fw.sbss_index = 0; 4553 fw.sbss = bce_CP_b09FwSbss; 4554 4555 fw.bss_addr = bce_CP_b09FwBssAddr; 4556 fw.bss_len = bce_CP_b09FwBssLen; 4557 fw.bss_index = 0; 4558 fw.bss = bce_CP_b09FwBss; 4559 4560 fw.rodata_addr = bce_CP_b09FwRodataAddr; 4561 fw.rodata_len = bce_CP_b09FwRodataLen; 4562 fw.rodata_index = 0; 4563 fw.rodata = bce_CP_b09FwRodata; 4564 } else { 4565 fw.ver_major = bce_CP_b06FwReleaseMajor; 4566 fw.ver_minor = bce_CP_b06FwReleaseMinor; 4567 fw.ver_fix = bce_CP_b06FwReleaseFix; 4568 fw.start_addr = bce_CP_b06FwStartAddr; 4569 4570 fw.text_addr = bce_CP_b06FwTextAddr; 4571 fw.text_len = bce_CP_b06FwTextLen; 4572 fw.text_index = 0; 4573 fw.text = bce_CP_b06FwText; 4574 4575 fw.data_addr = bce_CP_b06FwDataAddr; 4576 fw.data_len = bce_CP_b06FwDataLen; 4577 fw.data_index = 0; 4578 fw.data = bce_CP_b06FwData; 4579 4580 fw.sbss_addr = bce_CP_b06FwSbssAddr; 4581 fw.sbss_len = bce_CP_b06FwSbssLen; 4582 fw.sbss_index = 0; 4583 fw.sbss = bce_CP_b06FwSbss; 4584 4585 fw.bss_addr = bce_CP_b06FwBssAddr; 4586 fw.bss_len = bce_CP_b06FwBssLen; 4587 fw.bss_index = 0; 4588 fw.bss = bce_CP_b06FwBss; 4589 4590 fw.rodata_addr = bce_CP_b06FwRodataAddr; 4591 fw.rodata_len = bce_CP_b06FwRodataLen; 4592 fw.rodata_index = 0; 4593 fw.rodata = bce_CP_b06FwRodata; 4594 } 4595 4596 DBPRINT(sc, BCE_INFO_RESET, "Loading CP firmware.\n"); 4597 bce_load_cpu_fw(sc, &cpu_reg, &fw); 4598 bce_start_cpu(sc, &cpu_reg); 4599 4600 DBEXIT(BCE_VERBOSE_RESET); 4601 } 4602 4603 4604 /****************************************************************************/ 4605 /* Initialize the COM CPU. */ 4606 /* */ 4607 /* Returns: */ 4608 /* Nothing. */ 4609 /****************************************************************************/ 4610 static void 4611 bce_init_com_cpu(struct bce_softc *sc) 4612 { 4613 struct cpu_reg cpu_reg; 4614 struct fw_info fw; 4615 4616 DBENTER(BCE_VERBOSE_RESET); 4617 4618 cpu_reg.mode = BCE_COM_CPU_MODE; 4619 cpu_reg.mode_value_halt = BCE_COM_CPU_MODE_SOFT_HALT; 4620 cpu_reg.mode_value_sstep = BCE_COM_CPU_MODE_STEP_ENA; 4621 cpu_reg.state = BCE_COM_CPU_STATE; 4622 cpu_reg.state_value_clear = 0xffffff; 4623 cpu_reg.gpr0 = BCE_COM_CPU_REG_FILE; 4624 cpu_reg.evmask = BCE_COM_CPU_EVENT_MASK; 4625 cpu_reg.pc = BCE_COM_CPU_PROGRAM_COUNTER; 4626 cpu_reg.inst = BCE_COM_CPU_INSTRUCTION; 4627 cpu_reg.bp = BCE_COM_CPU_HW_BREAKPOINT; 4628 cpu_reg.spad_base = BCE_COM_SCRATCH; 4629 cpu_reg.mips_view_base = 0x8000000; 4630 4631 if (BCE_CHIP_NUM(sc) == BCE_CHIP_NUM_5709) { 4632 fw.ver_major = bce_COM_b09FwReleaseMajor; 4633 fw.ver_minor = bce_COM_b09FwReleaseMinor; 4634 fw.ver_fix = bce_COM_b09FwReleaseFix; 4635 fw.start_addr = bce_COM_b09FwStartAddr; 4636 4637 fw.text_addr = bce_COM_b09FwTextAddr; 4638 fw.text_len = bce_COM_b09FwTextLen; 4639 fw.text_index = 0; 4640 fw.text = bce_COM_b09FwText; 4641 4642 fw.data_addr = bce_COM_b09FwDataAddr; 4643 fw.data_len = bce_COM_b09FwDataLen; 4644 fw.data_index = 0; 4645 fw.data = bce_COM_b09FwData; 4646 4647 fw.sbss_addr = bce_COM_b09FwSbssAddr; 4648 fw.sbss_len = bce_COM_b09FwSbssLen; 4649 fw.sbss_index = 0; 4650 fw.sbss = bce_COM_b09FwSbss; 4651 4652 fw.bss_addr = bce_COM_b09FwBssAddr; 4653 fw.bss_len = bce_COM_b09FwBssLen; 4654 fw.bss_index = 0; 4655 fw.bss = bce_COM_b09FwBss; 4656 4657 fw.rodata_addr = bce_COM_b09FwRodataAddr; 4658 fw.rodata_len = bce_COM_b09FwRodataLen; 4659 fw.rodata_index = 0; 4660 fw.rodata = bce_COM_b09FwRodata; 4661 } else { 4662 fw.ver_major = bce_COM_b06FwReleaseMajor; 4663 fw.ver_minor = bce_COM_b06FwReleaseMinor; 4664 fw.ver_fix = bce_COM_b06FwReleaseFix; 4665 fw.start_addr = bce_COM_b06FwStartAddr; 4666 4667 fw.text_addr = bce_COM_b06FwTextAddr; 4668 fw.text_len = bce_COM_b06FwTextLen; 4669 fw.text_index = 0; 4670 fw.text = bce_COM_b06FwText; 4671 4672 fw.data_addr = bce_COM_b06FwDataAddr; 4673 fw.data_len = bce_COM_b06FwDataLen; 4674 fw.data_index = 0; 4675 fw.data = bce_COM_b06FwData; 4676 4677 fw.sbss_addr = bce_COM_b06FwSbssAddr; 4678 fw.sbss_len = bce_COM_b06FwSbssLen; 4679 fw.sbss_index = 0; 4680 fw.sbss = bce_COM_b06FwSbss; 4681 4682 fw.bss_addr = bce_COM_b06FwBssAddr; 4683 fw.bss_len = bce_COM_b06FwBssLen; 4684 fw.bss_index = 0; 4685 fw.bss = bce_COM_b06FwBss; 4686 4687 fw.rodata_addr = bce_COM_b06FwRodataAddr; 4688 fw.rodata_len = bce_COM_b06FwRodataLen; 4689 fw.rodata_index = 0; 4690 fw.rodata = bce_COM_b06FwRodata; 4691 } 4692 4693 DBPRINT(sc, BCE_INFO_RESET, "Loading COM firmware.\n"); 4694 bce_load_cpu_fw(sc, &cpu_reg, &fw); 4695 bce_start_cpu(sc, &cpu_reg); 4696 4697 DBEXIT(BCE_VERBOSE_RESET); 4698 } 4699 4700 4701 /****************************************************************************/ 4702 /* Initialize the RV2P, RX, TX, TPAT, COM, and CP CPUs. */ 4703 /* */ 4704 /* Loads the firmware for each CPU and starts the CPU. */ 4705 /* */ 4706 /* Returns: */ 4707 /* Nothing. */ 4708 /****************************************************************************/ 4709 static void 4710 bce_init_cpus(struct bce_softc *sc) 4711 { 4712 DBENTER(BCE_VERBOSE_RESET); 4713 4714 if (BCE_CHIP_NUM(sc) == BCE_CHIP_NUM_5709) { 4715 4716 if ((BCE_CHIP_REV(sc) == BCE_CHIP_REV_Ax)) { 4717 bce_load_rv2p_fw(sc, bce_xi90_rv2p_proc1, 4718 sizeof(bce_xi90_rv2p_proc1), RV2P_PROC1); 4719 bce_load_rv2p_fw(sc, bce_xi90_rv2p_proc2, 4720 sizeof(bce_xi90_rv2p_proc2), RV2P_PROC2); 4721 } else { 4722 bce_load_rv2p_fw(sc, bce_xi_rv2p_proc1, 4723 sizeof(bce_xi_rv2p_proc1), RV2P_PROC1); 4724 bce_load_rv2p_fw(sc, bce_xi_rv2p_proc2, 4725 sizeof(bce_xi_rv2p_proc2), RV2P_PROC2); 4726 } 4727 4728 } else { 4729 bce_load_rv2p_fw(sc, bce_rv2p_proc1, 4730 sizeof(bce_rv2p_proc1), RV2P_PROC1); 4731 bce_load_rv2p_fw(sc, bce_rv2p_proc2, 4732 sizeof(bce_rv2p_proc2), RV2P_PROC2); 4733 } 4734 4735 bce_init_rxp_cpu(sc); 4736 bce_init_txp_cpu(sc); 4737 bce_init_tpat_cpu(sc); 4738 bce_init_com_cpu(sc); 4739 bce_init_cp_cpu(sc); 4740 4741 DBEXIT(BCE_VERBOSE_RESET); 4742 } 4743 4744 4745 /****************************************************************************/ 4746 /* Initialize context memory. */ 4747 /* */ 4748 /* Clears the memory associated with each Context ID (CID). */ 4749 /* */ 4750 /* Returns: */ 4751 /* Nothing. */ 4752 /****************************************************************************/ 4753 static int 4754 bce_init_ctx(struct bce_softc *sc) 4755 { 4756 u32 offset, val, vcid_addr; 4757 int i, j, rc, retry_cnt; 4758 4759 rc = 0; 4760 DBENTER(BCE_VERBOSE_RESET | BCE_VERBOSE_CTX); 4761 4762 if (BCE_CHIP_NUM(sc) == BCE_CHIP_NUM_5709) { 4763 retry_cnt = CTX_INIT_RETRY_COUNT; 4764 4765 DBPRINT(sc, BCE_INFO_CTX, "Initializing 5709 context.\n"); 4766 4767 /* 4768 * BCM5709 context memory may be cached 4769 * in host memory so prepare the host memory 4770 * for access. 4771 */ 4772 val = BCE_CTX_COMMAND_ENABLED | 4773 BCE_CTX_COMMAND_MEM_INIT | (1 << 12); 4774 val |= (BCM_PAGE_BITS - 8) << 16; 4775 REG_WR(sc, BCE_CTX_COMMAND, val); 4776 4777 /* Wait for mem init command to complete. */ 4778 for (i = 0; i < retry_cnt; i++) { 4779 val = REG_RD(sc, BCE_CTX_COMMAND); 4780 if (!(val & BCE_CTX_COMMAND_MEM_INIT)) 4781 break; 4782 DELAY(2); 4783 } 4784 if ((val & BCE_CTX_COMMAND_MEM_INIT) != 0) { 4785 BCE_PRINTF("%s(): Context memory initialization failed!\n", 4786 __FUNCTION__); 4787 rc = EBUSY; 4788 goto init_ctx_fail; 4789 } 4790 4791 for (i = 0; i < sc->ctx_pages; i++) { 4792 /* Set the physical address of the context memory. */ 4793 REG_WR(sc, BCE_CTX_HOST_PAGE_TBL_DATA0, 4794 BCE_ADDR_LO(sc->ctx_paddr[i] & 0xfffffff0) | 4795 BCE_CTX_HOST_PAGE_TBL_DATA0_VALID); 4796 REG_WR(sc, BCE_CTX_HOST_PAGE_TBL_DATA1, 4797 BCE_ADDR_HI(sc->ctx_paddr[i])); 4798 REG_WR(sc, BCE_CTX_HOST_PAGE_TBL_CTRL, i | 4799 BCE_CTX_HOST_PAGE_TBL_CTRL_WRITE_REQ); 4800 4801 /* Verify the context memory write was successful. */ 4802 for (j = 0; j < retry_cnt; j++) { 4803 val = REG_RD(sc, BCE_CTX_HOST_PAGE_TBL_CTRL); 4804 if ((val & 4805 BCE_CTX_HOST_PAGE_TBL_CTRL_WRITE_REQ) == 0) 4806 break; 4807 DELAY(5); 4808 } 4809 if ((val & BCE_CTX_HOST_PAGE_TBL_CTRL_WRITE_REQ) != 0) { 4810 BCE_PRINTF("%s(): Failed to initialize " 4811 "context page %d!\n", __FUNCTION__, i); 4812 rc = EBUSY; 4813 goto init_ctx_fail; 4814 } 4815 } 4816 } else { 4817 4818 DBPRINT(sc, BCE_INFO, "Initializing 5706/5708 context.\n"); 4819 4820 /* 4821 * For the 5706/5708, context memory is local to 4822 * the controller, so initialize the controller 4823 * context memory. 4824 */ 4825 4826 vcid_addr = GET_CID_ADDR(96); 4827 while (vcid_addr) { 4828 4829 vcid_addr -= PHY_CTX_SIZE; 4830 4831 REG_WR(sc, BCE_CTX_VIRT_ADDR, 0); 4832 REG_WR(sc, BCE_CTX_PAGE_TBL, vcid_addr); 4833 4834 for(offset = 0; offset < PHY_CTX_SIZE; offset += 4) { 4835 CTX_WR(sc, 0x00, offset, 0); 4836 } 4837 4838 REG_WR(sc, BCE_CTX_VIRT_ADDR, vcid_addr); 4839 REG_WR(sc, BCE_CTX_PAGE_TBL, vcid_addr); 4840 } 4841 4842 } 4843 init_ctx_fail: 4844 DBEXIT(BCE_VERBOSE_RESET | BCE_VERBOSE_CTX); 4845 return (rc); 4846 } 4847 4848 4849 /****************************************************************************/ 4850 /* Fetch the permanent MAC address of the controller. */ 4851 /* */ 4852 /* Returns: */ 4853 /* Nothing. */ 4854 /****************************************************************************/ 4855 static void 4856 bce_get_mac_addr(struct bce_softc *sc) 4857 { 4858 u32 mac_lo = 0, mac_hi = 0; 4859 4860 DBENTER(BCE_VERBOSE_RESET); 4861 4862 /* 4863 * The NetXtreme II bootcode populates various NIC 4864 * power-on and runtime configuration items in a 4865 * shared memory area. The factory configured MAC 4866 * address is available from both NVRAM and the 4867 * shared memory area so we'll read the value from 4868 * shared memory for speed. 4869 */ 4870 4871 mac_hi = bce_shmem_rd(sc, BCE_PORT_HW_CFG_MAC_UPPER); 4872 mac_lo = bce_shmem_rd(sc, BCE_PORT_HW_CFG_MAC_LOWER); 4873 4874 if ((mac_lo == 0) && (mac_hi == 0)) { 4875 BCE_PRINTF("%s(%d): Invalid Ethernet address!\n", 4876 __FILE__, __LINE__); 4877 } else { 4878 sc->eaddr[0] = (u_char)(mac_hi >> 8); 4879 sc->eaddr[1] = (u_char)(mac_hi >> 0); 4880 sc->eaddr[2] = (u_char)(mac_lo >> 24); 4881 sc->eaddr[3] = (u_char)(mac_lo >> 16); 4882 sc->eaddr[4] = (u_char)(mac_lo >> 8); 4883 sc->eaddr[5] = (u_char)(mac_lo >> 0); 4884 } 4885 4886 DBPRINT(sc, BCE_INFO_MISC, "Permanent Ethernet " 4887 "address = %6D\n", sc->eaddr, ":"); 4888 DBEXIT(BCE_VERBOSE_RESET); 4889 } 4890 4891 4892 /****************************************************************************/ 4893 /* Program the MAC address. */ 4894 /* */ 4895 /* Returns: */ 4896 /* Nothing. */ 4897 /****************************************************************************/ 4898 static void 4899 bce_set_mac_addr(struct bce_softc *sc) 4900 { 4901 u32 val; 4902 u8 *mac_addr = sc->eaddr; 4903 4904 /* ToDo: Add support for setting multiple MAC addresses. */ 4905 4906 DBENTER(BCE_VERBOSE_RESET); 4907 DBPRINT(sc, BCE_INFO_MISC, "Setting Ethernet address = " 4908 "%6D\n", sc->eaddr, ":"); 4909 4910 val = (mac_addr[0] << 8) | mac_addr[1]; 4911 4912 REG_WR(sc, BCE_EMAC_MAC_MATCH0, val); 4913 4914 val = (mac_addr[2] << 24) | (mac_addr[3] << 16) | 4915 (mac_addr[4] << 8) | mac_addr[5]; 4916 4917 REG_WR(sc, BCE_EMAC_MAC_MATCH1, val); 4918 4919 DBEXIT(BCE_VERBOSE_RESET); 4920 } 4921 4922 4923 /****************************************************************************/ 4924 /* Stop the controller. */ 4925 /* */ 4926 /* Returns: */ 4927 /* Nothing. */ 4928 /****************************************************************************/ 4929 static void 4930 bce_stop(struct bce_softc *sc) 4931 { 4932 struct ifnet *ifp; 4933 4934 DBENTER(BCE_VERBOSE_RESET); 4935 4936 BCE_LOCK_ASSERT(sc); 4937 4938 ifp = sc->bce_ifp; 4939 4940 callout_stop(&sc->bce_tick_callout); 4941 4942 /* Disable the transmit/receive blocks. */ 4943 REG_WR(sc, BCE_MISC_ENABLE_CLR_BITS, BCE_MISC_ENABLE_CLR_DEFAULT); 4944 REG_RD(sc, BCE_MISC_ENABLE_CLR_BITS); 4945 DELAY(20); 4946 4947 bce_disable_intr(sc); 4948 4949 /* Free RX buffers. */ 4950 if (bce_hdr_split == TRUE) { 4951 bce_free_pg_chain(sc); 4952 } 4953 bce_free_rx_chain(sc); 4954 4955 /* Free TX buffers. */ 4956 bce_free_tx_chain(sc); 4957 4958 sc->watchdog_timer = 0; 4959 4960 sc->bce_link_up = FALSE; 4961 4962 ifp->if_drv_flags &= ~(IFF_DRV_RUNNING | IFF_DRV_OACTIVE); 4963 4964 DBEXIT(BCE_VERBOSE_RESET); 4965 } 4966 4967 4968 static int 4969 bce_reset(struct bce_softc *sc, u32 reset_code) 4970 { 4971 u32 emac_mode_save, val; 4972 int i, rc = 0; 4973 static const u32 emac_mode_mask = BCE_EMAC_MODE_PORT | 4974 BCE_EMAC_MODE_HALF_DUPLEX | BCE_EMAC_MODE_25G; 4975 4976 DBENTER(BCE_VERBOSE_RESET); 4977 4978 DBPRINT(sc, BCE_VERBOSE_RESET, "%s(): reset_code = 0x%08X\n", 4979 __FUNCTION__, reset_code); 4980 4981 /* 4982 * If ASF/IPMI is operational, then the EMAC Mode register already 4983 * contains appropriate values for the link settings that have 4984 * been auto-negotiated. Resetting the chip will clobber those 4985 * values. Save the important bits so we can restore them after 4986 * the reset. 4987 */ 4988 emac_mode_save = REG_RD(sc, BCE_EMAC_MODE) & emac_mode_mask; 4989 4990 /* Wait for pending PCI transactions to complete. */ 4991 REG_WR(sc, BCE_MISC_ENABLE_CLR_BITS, 4992 BCE_MISC_ENABLE_CLR_BITS_TX_DMA_ENABLE | 4993 BCE_MISC_ENABLE_CLR_BITS_DMA_ENGINE_ENABLE | 4994 BCE_MISC_ENABLE_CLR_BITS_RX_DMA_ENABLE | 4995 BCE_MISC_ENABLE_CLR_BITS_HOST_COALESCE_ENABLE); 4996 val = REG_RD(sc, BCE_MISC_ENABLE_CLR_BITS); 4997 DELAY(5); 4998 4999 /* Disable DMA */ 5000 if (BCE_CHIP_NUM(sc) == BCE_CHIP_NUM_5709) { 5001 val = REG_RD(sc, BCE_MISC_NEW_CORE_CTL); 5002 val &= ~BCE_MISC_NEW_CORE_CTL_DMA_ENABLE; 5003 REG_WR(sc, BCE_MISC_NEW_CORE_CTL, val); 5004 } 5005 5006 /* Assume bootcode is running. */ 5007 sc->bce_fw_timed_out = FALSE; 5008 sc->bce_drv_cardiac_arrest = FALSE; 5009 5010 /* Give the firmware a chance to prepare for the reset. */ 5011 rc = bce_fw_sync(sc, BCE_DRV_MSG_DATA_WAIT0 | reset_code); 5012 if (rc) 5013 goto bce_reset_exit; 5014 5015 /* Set a firmware reminder that this is a soft reset. */ 5016 bce_shmem_wr(sc, BCE_DRV_RESET_SIGNATURE, BCE_DRV_RESET_SIGNATURE_MAGIC); 5017 5018 /* Dummy read to force the chip to complete all current transactions. */ 5019 val = REG_RD(sc, BCE_MISC_ID); 5020 5021 /* Chip reset. */ 5022 if (BCE_CHIP_NUM(sc) == BCE_CHIP_NUM_5709) { 5023 REG_WR(sc, BCE_MISC_COMMAND, BCE_MISC_COMMAND_SW_RESET); 5024 REG_RD(sc, BCE_MISC_COMMAND); 5025 DELAY(5); 5026 5027 val = BCE_PCICFG_MISC_CONFIG_REG_WINDOW_ENA | 5028 BCE_PCICFG_MISC_CONFIG_TARGET_MB_WORD_SWAP; 5029 5030 pci_write_config(sc->bce_dev, BCE_PCICFG_MISC_CONFIG, val, 4); 5031 } else { 5032 val = BCE_PCICFG_MISC_CONFIG_CORE_RST_REQ | 5033 BCE_PCICFG_MISC_CONFIG_REG_WINDOW_ENA | 5034 BCE_PCICFG_MISC_CONFIG_TARGET_MB_WORD_SWAP; 5035 REG_WR(sc, BCE_PCICFG_MISC_CONFIG, val); 5036 5037 /* Allow up to 30us for reset to complete. */ 5038 for (i = 0; i < 10; i++) { 5039 val = REG_RD(sc, BCE_PCICFG_MISC_CONFIG); 5040 if ((val & (BCE_PCICFG_MISC_CONFIG_CORE_RST_REQ | 5041 BCE_PCICFG_MISC_CONFIG_CORE_RST_BSY)) == 0) { 5042 break; 5043 } 5044 DELAY(10); 5045 } 5046 5047 /* Check that reset completed successfully. */ 5048 if (val & (BCE_PCICFG_MISC_CONFIG_CORE_RST_REQ | 5049 BCE_PCICFG_MISC_CONFIG_CORE_RST_BSY)) { 5050 BCE_PRINTF("%s(%d): Reset failed!\n", 5051 __FILE__, __LINE__); 5052 rc = EBUSY; 5053 goto bce_reset_exit; 5054 } 5055 } 5056 5057 /* Make sure byte swapping is properly configured. */ 5058 val = REG_RD(sc, BCE_PCI_SWAP_DIAG0); 5059 if (val != 0x01020304) { 5060 BCE_PRINTF("%s(%d): Byte swap is incorrect!\n", 5061 __FILE__, __LINE__); 5062 rc = ENODEV; 5063 goto bce_reset_exit; 5064 } 5065 5066 /* Just completed a reset, assume that firmware is running again. */ 5067 sc->bce_fw_timed_out = FALSE; 5068 sc->bce_drv_cardiac_arrest = FALSE; 5069 5070 /* Wait for the firmware to finish its initialization. */ 5071 rc = bce_fw_sync(sc, BCE_DRV_MSG_DATA_WAIT1 | reset_code); 5072 if (rc) 5073 BCE_PRINTF("%s(%d): Firmware did not complete " 5074 "initialization!\n", __FILE__, __LINE__); 5075 /* Get firmware capabilities. */ 5076 bce_fw_cap_init(sc); 5077 5078 bce_reset_exit: 5079 /* Restore EMAC Mode bits needed to keep ASF/IPMI running. */ 5080 if (reset_code == BCE_DRV_MSG_CODE_RESET) { 5081 val = REG_RD(sc, BCE_EMAC_MODE); 5082 val = (val & ~emac_mode_mask) | emac_mode_save; 5083 REG_WR(sc, BCE_EMAC_MODE, val); 5084 } 5085 5086 DBEXIT(BCE_VERBOSE_RESET); 5087 return (rc); 5088 } 5089 5090 5091 static int 5092 bce_chipinit(struct bce_softc *sc) 5093 { 5094 u32 val; 5095 int rc = 0; 5096 5097 DBENTER(BCE_VERBOSE_RESET); 5098 5099 bce_disable_intr(sc); 5100 5101 /* 5102 * Initialize DMA byte/word swapping, configure the number of DMA 5103 * channels and PCI clock compensation delay. 5104 */ 5105 val = BCE_DMA_CONFIG_DATA_BYTE_SWAP | 5106 BCE_DMA_CONFIG_DATA_WORD_SWAP | 5107 #if BYTE_ORDER == BIG_ENDIAN 5108 BCE_DMA_CONFIG_CNTL_BYTE_SWAP | 5109 #endif 5110 BCE_DMA_CONFIG_CNTL_WORD_SWAP | 5111 DMA_READ_CHANS << 12 | 5112 DMA_WRITE_CHANS << 16; 5113 5114 val |= (0x2 << 20) | BCE_DMA_CONFIG_CNTL_PCI_COMP_DLY; 5115 5116 if ((sc->bce_flags & BCE_PCIX_FLAG) && (sc->bus_speed_mhz == 133)) 5117 val |= BCE_DMA_CONFIG_PCI_FAST_CLK_CMP; 5118 5119 /* 5120 * This setting resolves a problem observed on certain Intel PCI 5121 * chipsets that cannot handle multiple outstanding DMA operations. 5122 * See errata E9_5706A1_65. 5123 */ 5124 if ((BCE_CHIP_NUM(sc) == BCE_CHIP_NUM_5706) && 5125 (BCE_CHIP_ID(sc) != BCE_CHIP_ID_5706_A0) && 5126 !(sc->bce_flags & BCE_PCIX_FLAG)) 5127 val |= BCE_DMA_CONFIG_CNTL_PING_PONG_DMA; 5128 5129 REG_WR(sc, BCE_DMA_CONFIG, val); 5130 5131 /* Enable the RX_V2P and Context state machines before access. */ 5132 REG_WR(sc, BCE_MISC_ENABLE_SET_BITS, 5133 BCE_MISC_ENABLE_SET_BITS_HOST_COALESCE_ENABLE | 5134 BCE_MISC_ENABLE_STATUS_BITS_RX_V2P_ENABLE | 5135 BCE_MISC_ENABLE_STATUS_BITS_CONTEXT_ENABLE); 5136 5137 /* Initialize context mapping and zero out the quick contexts. */ 5138 if ((rc = bce_init_ctx(sc)) != 0) 5139 goto bce_chipinit_exit; 5140 5141 /* Initialize the on-boards CPUs */ 5142 bce_init_cpus(sc); 5143 5144 /* Enable management frames (NC-SI) to flow to the MCP. */ 5145 if (sc->bce_flags & BCE_MFW_ENABLE_FLAG) { 5146 val = REG_RD(sc, BCE_RPM_MGMT_PKT_CTRL) | BCE_RPM_MGMT_PKT_CTRL_MGMT_EN; 5147 REG_WR(sc, BCE_RPM_MGMT_PKT_CTRL, val); 5148 } 5149 5150 /* Prepare NVRAM for access. */ 5151 if ((rc = bce_init_nvram(sc)) != 0) 5152 goto bce_chipinit_exit; 5153 5154 /* Set the kernel bypass block size */ 5155 val = REG_RD(sc, BCE_MQ_CONFIG); 5156 val &= ~BCE_MQ_CONFIG_KNL_BYP_BLK_SIZE; 5157 val |= BCE_MQ_CONFIG_KNL_BYP_BLK_SIZE_256; 5158 5159 /* Enable bins used on the 5709. */ 5160 if (BCE_CHIP_NUM(sc) == BCE_CHIP_NUM_5709) { 5161 val |= BCE_MQ_CONFIG_BIN_MQ_MODE; 5162 if (BCE_CHIP_ID(sc) == BCE_CHIP_ID_5709_A1) 5163 val |= BCE_MQ_CONFIG_HALT_DIS; 5164 } 5165 5166 REG_WR(sc, BCE_MQ_CONFIG, val); 5167 5168 val = 0x10000 + (MAX_CID_CNT * MB_KERNEL_CTX_SIZE); 5169 REG_WR(sc, BCE_MQ_KNL_BYP_WIND_START, val); 5170 REG_WR(sc, BCE_MQ_KNL_WIND_END, val); 5171 5172 /* Set the page size and clear the RV2P processor stall bits. */ 5173 val = (BCM_PAGE_BITS - 8) << 24; 5174 REG_WR(sc, BCE_RV2P_CONFIG, val); 5175 5176 /* Configure page size. */ 5177 val = REG_RD(sc, BCE_TBDR_CONFIG); 5178 val &= ~BCE_TBDR_CONFIG_PAGE_SIZE; 5179 val |= (BCM_PAGE_BITS - 8) << 24 | 0x40; 5180 REG_WR(sc, BCE_TBDR_CONFIG, val); 5181 5182 /* Set the perfect match control register to default. */ 5183 REG_WR_IND(sc, BCE_RXP_PM_CTRL, 0); 5184 5185 bce_chipinit_exit: 5186 DBEXIT(BCE_VERBOSE_RESET); 5187 5188 return(rc); 5189 } 5190 5191 5192 /****************************************************************************/ 5193 /* Initialize the controller in preparation to send/receive traffic. */ 5194 /* */ 5195 /* Returns: */ 5196 /* 0 for success, positive value for failure. */ 5197 /****************************************************************************/ 5198 static int 5199 bce_blockinit(struct bce_softc *sc) 5200 { 5201 u32 reg, val; 5202 int rc = 0; 5203 5204 DBENTER(BCE_VERBOSE_RESET); 5205 5206 /* Load the hardware default MAC address. */ 5207 bce_set_mac_addr(sc); 5208 5209 /* Set the Ethernet backoff seed value */ 5210 val = sc->eaddr[0] + (sc->eaddr[1] << 8) + 5211 (sc->eaddr[2] << 16) + (sc->eaddr[3] ) + 5212 (sc->eaddr[4] << 8) + (sc->eaddr[5] << 16); 5213 REG_WR(sc, BCE_EMAC_BACKOFF_SEED, val); 5214 5215 sc->last_status_idx = 0; 5216 sc->rx_mode = BCE_EMAC_RX_MODE_SORT_MODE; 5217 5218 /* Set up link change interrupt generation. */ 5219 REG_WR(sc, BCE_EMAC_ATTENTION_ENA, BCE_EMAC_ATTENTION_ENA_LINK); 5220 5221 /* Program the physical address of the status block. */ 5222 REG_WR(sc, BCE_HC_STATUS_ADDR_L, 5223 BCE_ADDR_LO(sc->status_block_paddr)); 5224 REG_WR(sc, BCE_HC_STATUS_ADDR_H, 5225 BCE_ADDR_HI(sc->status_block_paddr)); 5226 5227 /* Program the physical address of the statistics block. */ 5228 REG_WR(sc, BCE_HC_STATISTICS_ADDR_L, 5229 BCE_ADDR_LO(sc->stats_block_paddr)); 5230 REG_WR(sc, BCE_HC_STATISTICS_ADDR_H, 5231 BCE_ADDR_HI(sc->stats_block_paddr)); 5232 5233 /* 5234 * Program various host coalescing parameters. 5235 * Trip points control how many BDs should be ready before generating 5236 * an interrupt while ticks control how long a BD can sit in the chain 5237 * before generating an interrupt. 5238 */ 5239 REG_WR(sc, BCE_HC_TX_QUICK_CONS_TRIP, 5240 (sc->bce_tx_quick_cons_trip_int << 16) | 5241 sc->bce_tx_quick_cons_trip); 5242 REG_WR(sc, BCE_HC_RX_QUICK_CONS_TRIP, 5243 (sc->bce_rx_quick_cons_trip_int << 16) | 5244 sc->bce_rx_quick_cons_trip); 5245 REG_WR(sc, BCE_HC_TX_TICKS, 5246 (sc->bce_tx_ticks_int << 16) | sc->bce_tx_ticks); 5247 REG_WR(sc, BCE_HC_RX_TICKS, 5248 (sc->bce_rx_ticks_int << 16) | sc->bce_rx_ticks); 5249 REG_WR(sc, BCE_HC_STATS_TICKS, sc->bce_stats_ticks & 0xffff00); 5250 REG_WR(sc, BCE_HC_STAT_COLLECT_TICKS, 0xbb8); /* 3ms */ 5251 /* Not used for L2. */ 5252 REG_WR(sc, BCE_HC_COMP_PROD_TRIP, 0); 5253 REG_WR(sc, BCE_HC_COM_TICKS, 0); 5254 REG_WR(sc, BCE_HC_CMD_TICKS, 0); 5255 5256 /* Configure the Host Coalescing block. */ 5257 val = BCE_HC_CONFIG_RX_TMR_MODE | BCE_HC_CONFIG_TX_TMR_MODE | 5258 BCE_HC_CONFIG_COLLECT_STATS; 5259 5260 #if 0 5261 /* ToDo: Add MSI-X support. */ 5262 if (sc->bce_flags & BCE_USING_MSIX_FLAG) { 5263 u32 base = ((BCE_TX_VEC - 1) * BCE_HC_SB_CONFIG_SIZE) + 5264 BCE_HC_SB_CONFIG_1; 5265 5266 REG_WR(sc, BCE_HC_MSIX_BIT_VECTOR, BCE_HC_MSIX_BIT_VECTOR_VAL); 5267 5268 REG_WR(sc, base, BCE_HC_SB_CONFIG_1_TX_TMR_MODE | 5269 BCE_HC_SB_CONFIG_1_ONE_SHOT); 5270 5271 REG_WR(sc, base + BCE_HC_TX_QUICK_CONS_TRIP_OFF, 5272 (sc->tx_quick_cons_trip_int << 16) | 5273 sc->tx_quick_cons_trip); 5274 5275 REG_WR(sc, base + BCE_HC_TX_TICKS_OFF, 5276 (sc->tx_ticks_int << 16) | sc->tx_ticks); 5277 5278 val |= BCE_HC_CONFIG_SB_ADDR_INC_128B; 5279 } 5280 5281 /* 5282 * Tell the HC block to automatically set the 5283 * INT_MASK bit after an MSI/MSI-X interrupt 5284 * is generated so the driver doesn't have to. 5285 */ 5286 if (sc->bce_flags & BCE_ONE_SHOT_MSI_FLAG) 5287 val |= BCE_HC_CONFIG_ONE_SHOT; 5288 5289 /* Set the MSI-X status blocks to 128 byte boundaries. */ 5290 if (sc->bce_flags & BCE_USING_MSIX_FLAG) 5291 val |= BCE_HC_CONFIG_SB_ADDR_INC_128B; 5292 #endif 5293 5294 REG_WR(sc, BCE_HC_CONFIG, val); 5295 5296 /* Clear the internal statistics counters. */ 5297 REG_WR(sc, BCE_HC_COMMAND, BCE_HC_COMMAND_CLR_STAT_NOW); 5298 5299 /* Verify that bootcode is running. */ 5300 reg = bce_shmem_rd(sc, BCE_DEV_INFO_SIGNATURE); 5301 5302 DBRUNIF(DB_RANDOMTRUE(bootcode_running_failure_sim_control), 5303 BCE_PRINTF("%s(%d): Simulating bootcode failure.\n", 5304 __FILE__, __LINE__); 5305 reg = 0); 5306 5307 if ((reg & BCE_DEV_INFO_SIGNATURE_MAGIC_MASK) != 5308 BCE_DEV_INFO_SIGNATURE_MAGIC) { 5309 BCE_PRINTF("%s(%d): Bootcode not running! Found: 0x%08X, " 5310 "Expected: 08%08X\n", __FILE__, __LINE__, 5311 (reg & BCE_DEV_INFO_SIGNATURE_MAGIC_MASK), 5312 BCE_DEV_INFO_SIGNATURE_MAGIC); 5313 rc = ENODEV; 5314 goto bce_blockinit_exit; 5315 } 5316 5317 /* Enable DMA */ 5318 if (BCE_CHIP_NUM(sc) == BCE_CHIP_NUM_5709) { 5319 val = REG_RD(sc, BCE_MISC_NEW_CORE_CTL); 5320 val |= BCE_MISC_NEW_CORE_CTL_DMA_ENABLE; 5321 REG_WR(sc, BCE_MISC_NEW_CORE_CTL, val); 5322 } 5323 5324 /* Allow bootcode to apply additional fixes before enabling MAC. */ 5325 rc = bce_fw_sync(sc, BCE_DRV_MSG_DATA_WAIT2 | 5326 BCE_DRV_MSG_CODE_RESET); 5327 5328 /* Enable link state change interrupt generation. */ 5329 REG_WR(sc, BCE_HC_ATTN_BITS_ENABLE, STATUS_ATTN_BITS_LINK_STATE); 5330 5331 /* Enable the RXP. */ 5332 bce_start_rxp_cpu(sc); 5333 5334 /* Disable management frames (NC-SI) from flowing to the MCP. */ 5335 if (sc->bce_flags & BCE_MFW_ENABLE_FLAG) { 5336 val = REG_RD(sc, BCE_RPM_MGMT_PKT_CTRL) & 5337 ~BCE_RPM_MGMT_PKT_CTRL_MGMT_EN; 5338 REG_WR(sc, BCE_RPM_MGMT_PKT_CTRL, val); 5339 } 5340 5341 /* Enable all remaining blocks in the MAC. */ 5342 if (BCE_CHIP_NUM(sc) == BCE_CHIP_NUM_5709) 5343 REG_WR(sc, BCE_MISC_ENABLE_SET_BITS, 5344 BCE_MISC_ENABLE_DEFAULT_XI); 5345 else 5346 REG_WR(sc, BCE_MISC_ENABLE_SET_BITS, 5347 BCE_MISC_ENABLE_DEFAULT); 5348 5349 REG_RD(sc, BCE_MISC_ENABLE_SET_BITS); 5350 DELAY(20); 5351 5352 /* Save the current host coalescing block settings. */ 5353 sc->hc_command = REG_RD(sc, BCE_HC_COMMAND); 5354 5355 bce_blockinit_exit: 5356 DBEXIT(BCE_VERBOSE_RESET); 5357 5358 return (rc); 5359 } 5360 5361 5362 /****************************************************************************/ 5363 /* Encapsulate an mbuf into the rx_bd chain. */ 5364 /* */ 5365 /* Returns: */ 5366 /* 0 for success, positive value for failure. */ 5367 /****************************************************************************/ 5368 static int 5369 bce_get_rx_buf(struct bce_softc *sc, u16 prod, u16 chain_prod, u32 *prod_bseq) 5370 { 5371 bus_dma_segment_t segs[1]; 5372 struct mbuf *m_new = NULL; 5373 struct rx_bd *rxbd; 5374 int nsegs, error, rc = 0; 5375 #ifdef BCE_DEBUG 5376 u16 debug_chain_prod = chain_prod; 5377 #endif 5378 5379 DBENTER(BCE_EXTREME_RESET | BCE_EXTREME_RECV | BCE_EXTREME_LOAD); 5380 5381 /* Make sure the inputs are valid. */ 5382 DBRUNIF((chain_prod > MAX_RX_BD_ALLOC), 5383 BCE_PRINTF("%s(%d): RX producer out of range: " 5384 "0x%04X > 0x%04X\n", __FILE__, __LINE__, 5385 chain_prod, (u16)MAX_RX_BD_ALLOC)); 5386 5387 DBPRINT(sc, BCE_EXTREME_RECV, "%s(enter): prod = 0x%04X, " 5388 "chain_prod = 0x%04X, prod_bseq = 0x%08X\n", __FUNCTION__, 5389 prod, chain_prod, *prod_bseq); 5390 5391 /* Update some debug statistic counters */ 5392 DBRUNIF((sc->free_rx_bd < sc->rx_low_watermark), 5393 sc->rx_low_watermark = sc->free_rx_bd); 5394 DBRUNIF((sc->free_rx_bd == sc->max_rx_bd), 5395 sc->rx_empty_count++); 5396 5397 /* Simulate an mbuf allocation failure. */ 5398 DBRUNIF(DB_RANDOMTRUE(mbuf_alloc_failed_sim_control), 5399 sc->mbuf_alloc_failed_count++; 5400 sc->mbuf_alloc_failed_sim_count++; 5401 rc = ENOBUFS; 5402 goto bce_get_rx_buf_exit); 5403 5404 /* This is a new mbuf allocation. */ 5405 if (bce_hdr_split == TRUE) 5406 MGETHDR(m_new, M_NOWAIT, MT_DATA); 5407 else 5408 m_new = m_getjcl(M_NOWAIT, MT_DATA, M_PKTHDR, 5409 sc->rx_bd_mbuf_alloc_size); 5410 5411 if (m_new == NULL) { 5412 sc->mbuf_alloc_failed_count++; 5413 rc = ENOBUFS; 5414 goto bce_get_rx_buf_exit; 5415 } 5416 5417 DBRUN(sc->debug_rx_mbuf_alloc++); 5418 5419 /* Make sure we have a valid packet header. */ 5420 M_ASSERTPKTHDR(m_new); 5421 5422 /* Initialize the mbuf size and pad if necessary for alignment. */ 5423 m_new->m_pkthdr.len = m_new->m_len = sc->rx_bd_mbuf_alloc_size; 5424 m_adj(m_new, sc->rx_bd_mbuf_align_pad); 5425 5426 /* ToDo: Consider calling m_fragment() to test error handling. */ 5427 5428 /* Map the mbuf cluster into device memory. */ 5429 error = bus_dmamap_load_mbuf_sg(sc->rx_mbuf_tag, 5430 sc->rx_mbuf_map[chain_prod], m_new, segs, &nsegs, BUS_DMA_NOWAIT); 5431 5432 /* Handle any mapping errors. */ 5433 if (error) { 5434 BCE_PRINTF("%s(%d): Error mapping mbuf into RX " 5435 "chain (%d)!\n", __FILE__, __LINE__, error); 5436 5437 sc->dma_map_addr_rx_failed_count++; 5438 m_freem(m_new); 5439 5440 DBRUN(sc->debug_rx_mbuf_alloc--); 5441 5442 rc = ENOBUFS; 5443 goto bce_get_rx_buf_exit; 5444 } 5445 5446 /* All mbufs must map to a single segment. */ 5447 KASSERT(nsegs == 1, ("%s(): Too many segments returned (%d)!", 5448 __FUNCTION__, nsegs)); 5449 5450 /* Setup the rx_bd for the segment. */ 5451 rxbd = &sc->rx_bd_chain[RX_PAGE(chain_prod)][RX_IDX(chain_prod)]; 5452 5453 rxbd->rx_bd_haddr_lo = htole32(BCE_ADDR_LO(segs[0].ds_addr)); 5454 rxbd->rx_bd_haddr_hi = htole32(BCE_ADDR_HI(segs[0].ds_addr)); 5455 rxbd->rx_bd_len = htole32(segs[0].ds_len); 5456 rxbd->rx_bd_flags = htole32(RX_BD_FLAGS_START | RX_BD_FLAGS_END); 5457 *prod_bseq += segs[0].ds_len; 5458 5459 /* Save the mbuf and update our counter. */ 5460 sc->rx_mbuf_ptr[chain_prod] = m_new; 5461 sc->free_rx_bd -= nsegs; 5462 5463 DBRUNMSG(BCE_INSANE_RECV, 5464 bce_dump_rx_mbuf_chain(sc, debug_chain_prod, nsegs)); 5465 5466 DBPRINT(sc, BCE_EXTREME_RECV, "%s(exit): prod = 0x%04X, " 5467 "chain_prod = 0x%04X, prod_bseq = 0x%08X\n", __FUNCTION__, prod, 5468 chain_prod, *prod_bseq); 5469 5470 bce_get_rx_buf_exit: 5471 DBEXIT(BCE_EXTREME_RESET | BCE_EXTREME_RECV | BCE_EXTREME_LOAD); 5472 5473 return(rc); 5474 } 5475 5476 5477 /****************************************************************************/ 5478 /* Encapsulate an mbuf cluster into the page chain. */ 5479 /* */ 5480 /* Returns: */ 5481 /* 0 for success, positive value for failure. */ 5482 /****************************************************************************/ 5483 static int 5484 bce_get_pg_buf(struct bce_softc *sc, u16 prod, u16 prod_idx) 5485 { 5486 bus_dma_segment_t segs[1]; 5487 struct mbuf *m_new = NULL; 5488 struct rx_bd *pgbd; 5489 int error, nsegs, rc = 0; 5490 #ifdef BCE_DEBUG 5491 u16 debug_prod_idx = prod_idx; 5492 #endif 5493 5494 DBENTER(BCE_EXTREME_RESET | BCE_EXTREME_RECV | BCE_EXTREME_LOAD); 5495 5496 /* Make sure the inputs are valid. */ 5497 DBRUNIF((prod_idx > MAX_PG_BD_ALLOC), 5498 BCE_PRINTF("%s(%d): page producer out of range: " 5499 "0x%04X > 0x%04X\n", __FILE__, __LINE__, 5500 prod_idx, (u16)MAX_PG_BD_ALLOC)); 5501 5502 DBPRINT(sc, BCE_EXTREME_RECV, "%s(enter): prod = 0x%04X, " 5503 "chain_prod = 0x%04X\n", __FUNCTION__, prod, prod_idx); 5504 5505 /* Update counters if we've hit a new low or run out of pages. */ 5506 DBRUNIF((sc->free_pg_bd < sc->pg_low_watermark), 5507 sc->pg_low_watermark = sc->free_pg_bd); 5508 DBRUNIF((sc->free_pg_bd == sc->max_pg_bd), sc->pg_empty_count++); 5509 5510 /* Simulate an mbuf allocation failure. */ 5511 DBRUNIF(DB_RANDOMTRUE(mbuf_alloc_failed_sim_control), 5512 sc->mbuf_alloc_failed_count++; 5513 sc->mbuf_alloc_failed_sim_count++; 5514 rc = ENOBUFS; 5515 goto bce_get_pg_buf_exit); 5516 5517 /* This is a new mbuf allocation. */ 5518 m_new = m_getcl(M_NOWAIT, MT_DATA, 0); 5519 if (m_new == NULL) { 5520 sc->mbuf_alloc_failed_count++; 5521 rc = ENOBUFS; 5522 goto bce_get_pg_buf_exit; 5523 } 5524 5525 DBRUN(sc->debug_pg_mbuf_alloc++); 5526 5527 m_new->m_len = MCLBYTES; 5528 5529 /* ToDo: Consider calling m_fragment() to test error handling. */ 5530 5531 /* Map the mbuf cluster into device memory. */ 5532 error = bus_dmamap_load_mbuf_sg(sc->pg_mbuf_tag, 5533 sc->pg_mbuf_map[prod_idx], m_new, segs, &nsegs, BUS_DMA_NOWAIT); 5534 5535 /* Handle any mapping errors. */ 5536 if (error) { 5537 BCE_PRINTF("%s(%d): Error mapping mbuf into page chain!\n", 5538 __FILE__, __LINE__); 5539 5540 m_freem(m_new); 5541 DBRUN(sc->debug_pg_mbuf_alloc--); 5542 5543 rc = ENOBUFS; 5544 goto bce_get_pg_buf_exit; 5545 } 5546 5547 /* All mbufs must map to a single segment. */ 5548 KASSERT(nsegs == 1, ("%s(): Too many segments returned (%d)!", 5549 __FUNCTION__, nsegs)); 5550 5551 /* ToDo: Do we need bus_dmamap_sync(,,BUS_DMASYNC_PREREAD) here? */ 5552 5553 /* 5554 * The page chain uses the same rx_bd data structure 5555 * as the receive chain but doesn't require a byte sequence (bseq). 5556 */ 5557 pgbd = &sc->pg_bd_chain[PG_PAGE(prod_idx)][PG_IDX(prod_idx)]; 5558 5559 pgbd->rx_bd_haddr_lo = htole32(BCE_ADDR_LO(segs[0].ds_addr)); 5560 pgbd->rx_bd_haddr_hi = htole32(BCE_ADDR_HI(segs[0].ds_addr)); 5561 pgbd->rx_bd_len = htole32(MCLBYTES); 5562 pgbd->rx_bd_flags = htole32(RX_BD_FLAGS_START | RX_BD_FLAGS_END); 5563 5564 /* Save the mbuf and update our counter. */ 5565 sc->pg_mbuf_ptr[prod_idx] = m_new; 5566 sc->free_pg_bd--; 5567 5568 DBRUNMSG(BCE_INSANE_RECV, 5569 bce_dump_pg_mbuf_chain(sc, debug_prod_idx, 1)); 5570 5571 DBPRINT(sc, BCE_EXTREME_RECV, "%s(exit): prod = 0x%04X, " 5572 "prod_idx = 0x%04X\n", __FUNCTION__, prod, prod_idx); 5573 5574 bce_get_pg_buf_exit: 5575 DBEXIT(BCE_EXTREME_RESET | BCE_EXTREME_RECV | BCE_EXTREME_LOAD); 5576 5577 return(rc); 5578 } 5579 5580 5581 /****************************************************************************/ 5582 /* Initialize the TX context memory. */ 5583 /* */ 5584 /* Returns: */ 5585 /* Nothing */ 5586 /****************************************************************************/ 5587 static void 5588 bce_init_tx_context(struct bce_softc *sc) 5589 { 5590 u32 val; 5591 5592 DBENTER(BCE_VERBOSE_RESET | BCE_VERBOSE_SEND | BCE_VERBOSE_CTX); 5593 5594 /* Initialize the context ID for an L2 TX chain. */ 5595 if (BCE_CHIP_NUM(sc) == BCE_CHIP_NUM_5709) { 5596 /* Set the CID type to support an L2 connection. */ 5597 val = BCE_L2CTX_TX_TYPE_TYPE_L2_XI | 5598 BCE_L2CTX_TX_TYPE_SIZE_L2_XI; 5599 CTX_WR(sc, GET_CID_ADDR(TX_CID), BCE_L2CTX_TX_TYPE_XI, val); 5600 val = BCE_L2CTX_TX_CMD_TYPE_TYPE_L2_XI | (8 << 16); 5601 CTX_WR(sc, GET_CID_ADDR(TX_CID), 5602 BCE_L2CTX_TX_CMD_TYPE_XI, val); 5603 5604 /* Point the hardware to the first page in the chain. */ 5605 val = BCE_ADDR_HI(sc->tx_bd_chain_paddr[0]); 5606 CTX_WR(sc, GET_CID_ADDR(TX_CID), 5607 BCE_L2CTX_TX_TBDR_BHADDR_HI_XI, val); 5608 val = BCE_ADDR_LO(sc->tx_bd_chain_paddr[0]); 5609 CTX_WR(sc, GET_CID_ADDR(TX_CID), 5610 BCE_L2CTX_TX_TBDR_BHADDR_LO_XI, val); 5611 } else { 5612 /* Set the CID type to support an L2 connection. */ 5613 val = BCE_L2CTX_TX_TYPE_TYPE_L2 | BCE_L2CTX_TX_TYPE_SIZE_L2; 5614 CTX_WR(sc, GET_CID_ADDR(TX_CID), BCE_L2CTX_TX_TYPE, val); 5615 val = BCE_L2CTX_TX_CMD_TYPE_TYPE_L2 | (8 << 16); 5616 CTX_WR(sc, GET_CID_ADDR(TX_CID), BCE_L2CTX_TX_CMD_TYPE, val); 5617 5618 /* Point the hardware to the first page in the chain. */ 5619 val = BCE_ADDR_HI(sc->tx_bd_chain_paddr[0]); 5620 CTX_WR(sc, GET_CID_ADDR(TX_CID), 5621 BCE_L2CTX_TX_TBDR_BHADDR_HI, val); 5622 val = BCE_ADDR_LO(sc->tx_bd_chain_paddr[0]); 5623 CTX_WR(sc, GET_CID_ADDR(TX_CID), 5624 BCE_L2CTX_TX_TBDR_BHADDR_LO, val); 5625 } 5626 5627 DBEXIT(BCE_VERBOSE_RESET | BCE_VERBOSE_SEND | BCE_VERBOSE_CTX); 5628 } 5629 5630 5631 /****************************************************************************/ 5632 /* Allocate memory and initialize the TX data structures. */ 5633 /* */ 5634 /* Returns: */ 5635 /* 0 for success, positive value for failure. */ 5636 /****************************************************************************/ 5637 static int 5638 bce_init_tx_chain(struct bce_softc *sc) 5639 { 5640 struct tx_bd *txbd; 5641 int i, rc = 0; 5642 5643 DBENTER(BCE_VERBOSE_RESET | BCE_VERBOSE_SEND | BCE_VERBOSE_LOAD); 5644 5645 /* Set the initial TX producer/consumer indices. */ 5646 sc->tx_prod = 0; 5647 sc->tx_cons = 0; 5648 sc->tx_prod_bseq = 0; 5649 sc->used_tx_bd = 0; 5650 sc->max_tx_bd = USABLE_TX_BD_ALLOC; 5651 DBRUN(sc->tx_hi_watermark = 0); 5652 DBRUN(sc->tx_full_count = 0); 5653 5654 /* 5655 * The NetXtreme II supports a linked-list structre called 5656 * a Buffer Descriptor Chain (or BD chain). A BD chain 5657 * consists of a series of 1 or more chain pages, each of which 5658 * consists of a fixed number of BD entries. 5659 * The last BD entry on each page is a pointer to the next page 5660 * in the chain, and the last pointer in the BD chain 5661 * points back to the beginning of the chain. 5662 */ 5663 5664 /* Set the TX next pointer chain entries. */ 5665 for (i = 0; i < sc->tx_pages; i++) { 5666 int j; 5667 5668 txbd = &sc->tx_bd_chain[i][USABLE_TX_BD_PER_PAGE]; 5669 5670 /* Check if we've reached the last page. */ 5671 if (i == (sc->tx_pages - 1)) 5672 j = 0; 5673 else 5674 j = i + 1; 5675 5676 txbd->tx_bd_haddr_hi = 5677 htole32(BCE_ADDR_HI(sc->tx_bd_chain_paddr[j])); 5678 txbd->tx_bd_haddr_lo = 5679 htole32(BCE_ADDR_LO(sc->tx_bd_chain_paddr[j])); 5680 } 5681 5682 bce_init_tx_context(sc); 5683 5684 DBRUNMSG(BCE_INSANE_SEND, bce_dump_tx_chain(sc, 0, TOTAL_TX_BD_ALLOC)); 5685 DBEXIT(BCE_VERBOSE_RESET | BCE_VERBOSE_SEND | BCE_VERBOSE_LOAD); 5686 5687 return(rc); 5688 } 5689 5690 5691 /****************************************************************************/ 5692 /* Free memory and clear the TX data structures. */ 5693 /* */ 5694 /* Returns: */ 5695 /* Nothing. */ 5696 /****************************************************************************/ 5697 static void 5698 bce_free_tx_chain(struct bce_softc *sc) 5699 { 5700 int i; 5701 5702 DBENTER(BCE_VERBOSE_RESET | BCE_VERBOSE_SEND | BCE_VERBOSE_UNLOAD); 5703 5704 /* Unmap, unload, and free any mbufs still in the TX mbuf chain. */ 5705 for (i = 0; i < MAX_TX_BD_AVAIL; i++) { 5706 if (sc->tx_mbuf_ptr[i] != NULL) { 5707 if (sc->tx_mbuf_map[i] != NULL) 5708 bus_dmamap_sync(sc->tx_mbuf_tag, 5709 sc->tx_mbuf_map[i], 5710 BUS_DMASYNC_POSTWRITE); 5711 m_freem(sc->tx_mbuf_ptr[i]); 5712 sc->tx_mbuf_ptr[i] = NULL; 5713 DBRUN(sc->debug_tx_mbuf_alloc--); 5714 } 5715 } 5716 5717 /* Clear each TX chain page. */ 5718 for (i = 0; i < sc->tx_pages; i++) 5719 bzero((char *)sc->tx_bd_chain[i], BCE_TX_CHAIN_PAGE_SZ); 5720 5721 sc->used_tx_bd = 0; 5722 5723 /* Check if we lost any mbufs in the process. */ 5724 DBRUNIF((sc->debug_tx_mbuf_alloc), 5725 BCE_PRINTF("%s(%d): Memory leak! Lost %d mbufs " 5726 "from tx chain!\n", __FILE__, __LINE__, 5727 sc->debug_tx_mbuf_alloc)); 5728 5729 DBEXIT(BCE_VERBOSE_RESET | BCE_VERBOSE_SEND | BCE_VERBOSE_UNLOAD); 5730 } 5731 5732 5733 /****************************************************************************/ 5734 /* Initialize the RX context memory. */ 5735 /* */ 5736 /* Returns: */ 5737 /* Nothing */ 5738 /****************************************************************************/ 5739 static void 5740 bce_init_rx_context(struct bce_softc *sc) 5741 { 5742 u32 val; 5743 5744 DBENTER(BCE_VERBOSE_RESET | BCE_VERBOSE_RECV | BCE_VERBOSE_CTX); 5745 5746 /* Init the type, size, and BD cache levels for the RX context. */ 5747 val = BCE_L2CTX_RX_CTX_TYPE_CTX_BD_CHN_TYPE_VALUE | 5748 BCE_L2CTX_RX_CTX_TYPE_SIZE_L2 | 5749 (0x02 << BCE_L2CTX_RX_BD_PRE_READ_SHIFT); 5750 5751 /* 5752 * Set the level for generating pause frames 5753 * when the number of available rx_bd's gets 5754 * too low (the low watermark) and the level 5755 * when pause frames can be stopped (the high 5756 * watermark). 5757 */ 5758 if (BCE_CHIP_NUM(sc) == BCE_CHIP_NUM_5709) { 5759 u32 lo_water, hi_water; 5760 5761 if (sc->bce_flags & BCE_USING_TX_FLOW_CONTROL) { 5762 lo_water = BCE_L2CTX_RX_LO_WATER_MARK_DEFAULT; 5763 } else { 5764 lo_water = 0; 5765 } 5766 5767 if (lo_water >= USABLE_RX_BD_ALLOC) { 5768 lo_water = 0; 5769 } 5770 5771 hi_water = USABLE_RX_BD_ALLOC / 4; 5772 5773 if (hi_water <= lo_water) { 5774 lo_water = 0; 5775 } 5776 5777 lo_water /= BCE_L2CTX_RX_LO_WATER_MARK_SCALE; 5778 hi_water /= BCE_L2CTX_RX_HI_WATER_MARK_SCALE; 5779 5780 if (hi_water > 0xf) 5781 hi_water = 0xf; 5782 else if (hi_water == 0) 5783 lo_water = 0; 5784 5785 val |= (lo_water << BCE_L2CTX_RX_LO_WATER_MARK_SHIFT) | 5786 (hi_water << BCE_L2CTX_RX_HI_WATER_MARK_SHIFT); 5787 } 5788 5789 CTX_WR(sc, GET_CID_ADDR(RX_CID), BCE_L2CTX_RX_CTX_TYPE, val); 5790 5791 /* Setup the MQ BIN mapping for l2_ctx_host_bseq. */ 5792 if (BCE_CHIP_NUM(sc) == BCE_CHIP_NUM_5709) { 5793 val = REG_RD(sc, BCE_MQ_MAP_L2_5); 5794 REG_WR(sc, BCE_MQ_MAP_L2_5, val | BCE_MQ_MAP_L2_5_ARM); 5795 } 5796 5797 /* Point the hardware to the first page in the chain. */ 5798 val = BCE_ADDR_HI(sc->rx_bd_chain_paddr[0]); 5799 CTX_WR(sc, GET_CID_ADDR(RX_CID), BCE_L2CTX_RX_NX_BDHADDR_HI, val); 5800 val = BCE_ADDR_LO(sc->rx_bd_chain_paddr[0]); 5801 CTX_WR(sc, GET_CID_ADDR(RX_CID), BCE_L2CTX_RX_NX_BDHADDR_LO, val); 5802 5803 DBEXIT(BCE_VERBOSE_RESET | BCE_VERBOSE_RECV | BCE_VERBOSE_CTX); 5804 } 5805 5806 5807 /****************************************************************************/ 5808 /* Allocate memory and initialize the RX data structures. */ 5809 /* */ 5810 /* Returns: */ 5811 /* 0 for success, positive value for failure. */ 5812 /****************************************************************************/ 5813 static int 5814 bce_init_rx_chain(struct bce_softc *sc) 5815 { 5816 struct rx_bd *rxbd; 5817 int i, rc = 0; 5818 5819 DBENTER(BCE_VERBOSE_RESET | BCE_VERBOSE_RECV | BCE_VERBOSE_LOAD | 5820 BCE_VERBOSE_CTX); 5821 5822 /* Initialize the RX producer and consumer indices. */ 5823 sc->rx_prod = 0; 5824 sc->rx_cons = 0; 5825 sc->rx_prod_bseq = 0; 5826 sc->free_rx_bd = USABLE_RX_BD_ALLOC; 5827 sc->max_rx_bd = USABLE_RX_BD_ALLOC; 5828 5829 /* Initialize the RX next pointer chain entries. */ 5830 for (i = 0; i < sc->rx_pages; i++) { 5831 int j; 5832 5833 rxbd = &sc->rx_bd_chain[i][USABLE_RX_BD_PER_PAGE]; 5834 5835 /* Check if we've reached the last page. */ 5836 if (i == (sc->rx_pages - 1)) 5837 j = 0; 5838 else 5839 j = i + 1; 5840 5841 /* Setup the chain page pointers. */ 5842 rxbd->rx_bd_haddr_hi = 5843 htole32(BCE_ADDR_HI(sc->rx_bd_chain_paddr[j])); 5844 rxbd->rx_bd_haddr_lo = 5845 htole32(BCE_ADDR_LO(sc->rx_bd_chain_paddr[j])); 5846 } 5847 5848 /* Fill up the RX chain. */ 5849 bce_fill_rx_chain(sc); 5850 5851 DBRUN(sc->rx_low_watermark = USABLE_RX_BD_ALLOC); 5852 DBRUN(sc->rx_empty_count = 0); 5853 for (i = 0; i < sc->rx_pages; i++) { 5854 bus_dmamap_sync(sc->rx_bd_chain_tag, sc->rx_bd_chain_map[i], 5855 BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE); 5856 } 5857 5858 bce_init_rx_context(sc); 5859 5860 DBRUNMSG(BCE_EXTREME_RECV, 5861 bce_dump_rx_bd_chain(sc, 0, TOTAL_RX_BD_ALLOC)); 5862 DBEXIT(BCE_VERBOSE_RESET | BCE_VERBOSE_RECV | BCE_VERBOSE_LOAD | 5863 BCE_VERBOSE_CTX); 5864 5865 /* ToDo: Are there possible failure modes here? */ 5866 5867 return(rc); 5868 } 5869 5870 5871 /****************************************************************************/ 5872 /* Add mbufs to the RX chain until its full or an mbuf allocation error */ 5873 /* occurs. */ 5874 /* */ 5875 /* Returns: */ 5876 /* Nothing */ 5877 /****************************************************************************/ 5878 static void 5879 bce_fill_rx_chain(struct bce_softc *sc) 5880 { 5881 u16 prod, prod_idx; 5882 u32 prod_bseq; 5883 5884 DBENTER(BCE_VERBOSE_RESET | BCE_EXTREME_RECV | BCE_VERBOSE_LOAD | 5885 BCE_VERBOSE_CTX); 5886 5887 /* Get the RX chain producer indices. */ 5888 prod = sc->rx_prod; 5889 prod_bseq = sc->rx_prod_bseq; 5890 5891 /* Keep filling the RX chain until it's full. */ 5892 while (sc->free_rx_bd > 0) { 5893 prod_idx = RX_CHAIN_IDX(prod); 5894 if (bce_get_rx_buf(sc, prod, prod_idx, &prod_bseq)) { 5895 /* Bail out if we can't add an mbuf to the chain. */ 5896 break; 5897 } 5898 prod = NEXT_RX_BD(prod); 5899 } 5900 5901 /* Save the RX chain producer indices. */ 5902 sc->rx_prod = prod; 5903 sc->rx_prod_bseq = prod_bseq; 5904 5905 /* We should never end up pointing to a next page pointer. */ 5906 DBRUNIF(((prod & USABLE_RX_BD_PER_PAGE) == USABLE_RX_BD_PER_PAGE), 5907 BCE_PRINTF("%s(): Invalid rx_prod value: 0x%04X\n", 5908 __FUNCTION__, rx_prod)); 5909 5910 /* Write the mailbox and tell the chip about the waiting rx_bd's. */ 5911 REG_WR16(sc, MB_GET_CID_ADDR(RX_CID) + BCE_L2MQ_RX_HOST_BDIDX, prod); 5912 REG_WR(sc, MB_GET_CID_ADDR(RX_CID) + BCE_L2MQ_RX_HOST_BSEQ, prod_bseq); 5913 5914 DBEXIT(BCE_VERBOSE_RESET | BCE_EXTREME_RECV | BCE_VERBOSE_LOAD | 5915 BCE_VERBOSE_CTX); 5916 } 5917 5918 5919 /****************************************************************************/ 5920 /* Free memory and clear the RX data structures. */ 5921 /* */ 5922 /* Returns: */ 5923 /* Nothing. */ 5924 /****************************************************************************/ 5925 static void 5926 bce_free_rx_chain(struct bce_softc *sc) 5927 { 5928 int i; 5929 5930 DBENTER(BCE_VERBOSE_RESET | BCE_VERBOSE_RECV | BCE_VERBOSE_UNLOAD); 5931 5932 /* Free any mbufs still in the RX mbuf chain. */ 5933 for (i = 0; i < MAX_RX_BD_AVAIL; i++) { 5934 if (sc->rx_mbuf_ptr[i] != NULL) { 5935 if (sc->rx_mbuf_map[i] != NULL) 5936 bus_dmamap_sync(sc->rx_mbuf_tag, 5937 sc->rx_mbuf_map[i], 5938 BUS_DMASYNC_POSTREAD); 5939 m_freem(sc->rx_mbuf_ptr[i]); 5940 sc->rx_mbuf_ptr[i] = NULL; 5941 DBRUN(sc->debug_rx_mbuf_alloc--); 5942 } 5943 } 5944 5945 /* Clear each RX chain page. */ 5946 for (i = 0; i < sc->rx_pages; i++) 5947 if (sc->rx_bd_chain[i] != NULL) 5948 bzero((char *)sc->rx_bd_chain[i], 5949 BCE_RX_CHAIN_PAGE_SZ); 5950 5951 sc->free_rx_bd = sc->max_rx_bd; 5952 5953 /* Check if we lost any mbufs in the process. */ 5954 DBRUNIF((sc->debug_rx_mbuf_alloc), 5955 BCE_PRINTF("%s(): Memory leak! Lost %d mbufs from rx chain!\n", 5956 __FUNCTION__, sc->debug_rx_mbuf_alloc)); 5957 5958 DBEXIT(BCE_VERBOSE_RESET | BCE_VERBOSE_RECV | BCE_VERBOSE_UNLOAD); 5959 } 5960 5961 5962 /****************************************************************************/ 5963 /* Allocate memory and initialize the page data structures. */ 5964 /* Assumes that bce_init_rx_chain() has not already been called. */ 5965 /* */ 5966 /* Returns: */ 5967 /* 0 for success, positive value for failure. */ 5968 /****************************************************************************/ 5969 static int 5970 bce_init_pg_chain(struct bce_softc *sc) 5971 { 5972 struct rx_bd *pgbd; 5973 int i, rc = 0; 5974 u32 val; 5975 5976 DBENTER(BCE_VERBOSE_RESET | BCE_VERBOSE_RECV | BCE_VERBOSE_LOAD | 5977 BCE_VERBOSE_CTX); 5978 5979 /* Initialize the page producer and consumer indices. */ 5980 sc->pg_prod = 0; 5981 sc->pg_cons = 0; 5982 sc->free_pg_bd = USABLE_PG_BD_ALLOC; 5983 sc->max_pg_bd = USABLE_PG_BD_ALLOC; 5984 DBRUN(sc->pg_low_watermark = sc->max_pg_bd); 5985 DBRUN(sc->pg_empty_count = 0); 5986 5987 /* Initialize the page next pointer chain entries. */ 5988 for (i = 0; i < sc->pg_pages; i++) { 5989 int j; 5990 5991 pgbd = &sc->pg_bd_chain[i][USABLE_PG_BD_PER_PAGE]; 5992 5993 /* Check if we've reached the last page. */ 5994 if (i == (sc->pg_pages - 1)) 5995 j = 0; 5996 else 5997 j = i + 1; 5998 5999 /* Setup the chain page pointers. */ 6000 pgbd->rx_bd_haddr_hi = 6001 htole32(BCE_ADDR_HI(sc->pg_bd_chain_paddr[j])); 6002 pgbd->rx_bd_haddr_lo = 6003 htole32(BCE_ADDR_LO(sc->pg_bd_chain_paddr[j])); 6004 } 6005 6006 /* Setup the MQ BIN mapping for host_pg_bidx. */ 6007 if (BCE_CHIP_NUM(sc) == BCE_CHIP_NUM_5709) 6008 REG_WR(sc, BCE_MQ_MAP_L2_3, BCE_MQ_MAP_L2_3_DEFAULT); 6009 6010 CTX_WR(sc, GET_CID_ADDR(RX_CID), BCE_L2CTX_RX_PG_BUF_SIZE, 0); 6011 6012 /* Configure the rx_bd and page chain mbuf cluster size. */ 6013 val = (sc->rx_bd_mbuf_data_len << 16) | MCLBYTES; 6014 CTX_WR(sc, GET_CID_ADDR(RX_CID), BCE_L2CTX_RX_PG_BUF_SIZE, val); 6015 6016 /* Configure the context reserved for jumbo support. */ 6017 CTX_WR(sc, GET_CID_ADDR(RX_CID), BCE_L2CTX_RX_RBDC_KEY, 6018 BCE_L2CTX_RX_RBDC_JUMBO_KEY); 6019 6020 /* Point the hardware to the first page in the page chain. */ 6021 val = BCE_ADDR_HI(sc->pg_bd_chain_paddr[0]); 6022 CTX_WR(sc, GET_CID_ADDR(RX_CID), BCE_L2CTX_RX_NX_PG_BDHADDR_HI, val); 6023 val = BCE_ADDR_LO(sc->pg_bd_chain_paddr[0]); 6024 CTX_WR(sc, GET_CID_ADDR(RX_CID), BCE_L2CTX_RX_NX_PG_BDHADDR_LO, val); 6025 6026 /* Fill up the page chain. */ 6027 bce_fill_pg_chain(sc); 6028 6029 for (i = 0; i < sc->pg_pages; i++) { 6030 bus_dmamap_sync(sc->pg_bd_chain_tag, sc->pg_bd_chain_map[i], 6031 BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE); 6032 } 6033 6034 DBRUNMSG(BCE_EXTREME_RECV, 6035 bce_dump_pg_chain(sc, 0, TOTAL_PG_BD_ALLOC)); 6036 DBEXIT(BCE_VERBOSE_RESET | BCE_VERBOSE_RECV | BCE_VERBOSE_LOAD | 6037 BCE_VERBOSE_CTX); 6038 return(rc); 6039 } 6040 6041 6042 /****************************************************************************/ 6043 /* Add mbufs to the page chain until its full or an mbuf allocation error */ 6044 /* occurs. */ 6045 /* */ 6046 /* Returns: */ 6047 /* Nothing */ 6048 /****************************************************************************/ 6049 static void 6050 bce_fill_pg_chain(struct bce_softc *sc) 6051 { 6052 u16 prod, prod_idx; 6053 6054 DBENTER(BCE_VERBOSE_RESET | BCE_EXTREME_RECV | BCE_VERBOSE_LOAD | 6055 BCE_VERBOSE_CTX); 6056 6057 /* Get the page chain prodcuer index. */ 6058 prod = sc->pg_prod; 6059 6060 /* Keep filling the page chain until it's full. */ 6061 while (sc->free_pg_bd > 0) { 6062 prod_idx = PG_CHAIN_IDX(prod); 6063 if (bce_get_pg_buf(sc, prod, prod_idx)) { 6064 /* Bail out if we can't add an mbuf to the chain. */ 6065 break; 6066 } 6067 prod = NEXT_PG_BD(prod); 6068 } 6069 6070 /* Save the page chain producer index. */ 6071 sc->pg_prod = prod; 6072 6073 DBRUNIF(((prod & USABLE_RX_BD_PER_PAGE) == USABLE_RX_BD_PER_PAGE), 6074 BCE_PRINTF("%s(): Invalid pg_prod value: 0x%04X\n", 6075 __FUNCTION__, pg_prod)); 6076 6077 /* 6078 * Write the mailbox and tell the chip about 6079 * the new rx_bd's in the page chain. 6080 */ 6081 REG_WR16(sc, MB_GET_CID_ADDR(RX_CID) + BCE_L2MQ_RX_HOST_PG_BDIDX, 6082 prod); 6083 6084 DBEXIT(BCE_VERBOSE_RESET | BCE_EXTREME_RECV | BCE_VERBOSE_LOAD | 6085 BCE_VERBOSE_CTX); 6086 } 6087 6088 6089 /****************************************************************************/ 6090 /* Free memory and clear the RX data structures. */ 6091 /* */ 6092 /* Returns: */ 6093 /* Nothing. */ 6094 /****************************************************************************/ 6095 static void 6096 bce_free_pg_chain(struct bce_softc *sc) 6097 { 6098 int i; 6099 6100 DBENTER(BCE_VERBOSE_RESET | BCE_VERBOSE_RECV | BCE_VERBOSE_UNLOAD); 6101 6102 /* Free any mbufs still in the mbuf page chain. */ 6103 for (i = 0; i < MAX_PG_BD_AVAIL; i++) { 6104 if (sc->pg_mbuf_ptr[i] != NULL) { 6105 if (sc->pg_mbuf_map[i] != NULL) 6106 bus_dmamap_sync(sc->pg_mbuf_tag, 6107 sc->pg_mbuf_map[i], 6108 BUS_DMASYNC_POSTREAD); 6109 m_freem(sc->pg_mbuf_ptr[i]); 6110 sc->pg_mbuf_ptr[i] = NULL; 6111 DBRUN(sc->debug_pg_mbuf_alloc--); 6112 } 6113 } 6114 6115 /* Clear each page chain pages. */ 6116 for (i = 0; i < sc->pg_pages; i++) 6117 bzero((char *)sc->pg_bd_chain[i], BCE_PG_CHAIN_PAGE_SZ); 6118 6119 sc->free_pg_bd = sc->max_pg_bd; 6120 6121 /* Check if we lost any mbufs in the process. */ 6122 DBRUNIF((sc->debug_pg_mbuf_alloc), 6123 BCE_PRINTF("%s(): Memory leak! Lost %d mbufs from page chain!\n", 6124 __FUNCTION__, sc->debug_pg_mbuf_alloc)); 6125 6126 DBEXIT(BCE_VERBOSE_RESET | BCE_VERBOSE_RECV | BCE_VERBOSE_UNLOAD); 6127 } 6128 6129 6130 static u32 6131 bce_get_rphy_link(struct bce_softc *sc) 6132 { 6133 u32 advertise, link; 6134 int fdpx; 6135 6136 advertise = 0; 6137 fdpx = 0; 6138 if ((sc->bce_phy_flags & BCE_PHY_REMOTE_PORT_FIBER_FLAG) != 0) 6139 link = bce_shmem_rd(sc, BCE_RPHY_SERDES_LINK); 6140 else 6141 link = bce_shmem_rd(sc, BCE_RPHY_COPPER_LINK); 6142 if (link & BCE_NETLINK_ANEG_ENB) 6143 advertise |= BCE_NETLINK_ANEG_ENB; 6144 if (link & BCE_NETLINK_SPEED_10HALF) 6145 advertise |= BCE_NETLINK_SPEED_10HALF; 6146 if (link & BCE_NETLINK_SPEED_10FULL) { 6147 advertise |= BCE_NETLINK_SPEED_10FULL; 6148 fdpx++; 6149 } 6150 if (link & BCE_NETLINK_SPEED_100HALF) 6151 advertise |= BCE_NETLINK_SPEED_100HALF; 6152 if (link & BCE_NETLINK_SPEED_100FULL) { 6153 advertise |= BCE_NETLINK_SPEED_100FULL; 6154 fdpx++; 6155 } 6156 if (link & BCE_NETLINK_SPEED_1000HALF) 6157 advertise |= BCE_NETLINK_SPEED_1000HALF; 6158 if (link & BCE_NETLINK_SPEED_1000FULL) { 6159 advertise |= BCE_NETLINK_SPEED_1000FULL; 6160 fdpx++; 6161 } 6162 if (link & BCE_NETLINK_SPEED_2500HALF) 6163 advertise |= BCE_NETLINK_SPEED_2500HALF; 6164 if (link & BCE_NETLINK_SPEED_2500FULL) { 6165 advertise |= BCE_NETLINK_SPEED_2500FULL; 6166 fdpx++; 6167 } 6168 if (fdpx) 6169 advertise |= BCE_NETLINK_FC_PAUSE_SYM | 6170 BCE_NETLINK_FC_PAUSE_ASYM; 6171 if ((sc->bce_phy_flags & BCE_PHY_REMOTE_PORT_FIBER_FLAG) == 0) 6172 advertise |= BCE_NETLINK_PHY_APP_REMOTE | 6173 BCE_NETLINK_ETH_AT_WIRESPEED; 6174 6175 return (advertise); 6176 } 6177 6178 6179 /****************************************************************************/ 6180 /* Set media options. */ 6181 /* */ 6182 /* Returns: */ 6183 /* 0 for success, positive value for failure. */ 6184 /****************************************************************************/ 6185 static int 6186 bce_ifmedia_upd(struct ifnet *ifp) 6187 { 6188 struct bce_softc *sc = ifp->if_softc; 6189 int error; 6190 6191 DBENTER(BCE_VERBOSE); 6192 6193 BCE_LOCK(sc); 6194 error = bce_ifmedia_upd_locked(ifp); 6195 BCE_UNLOCK(sc); 6196 6197 DBEXIT(BCE_VERBOSE); 6198 return (error); 6199 } 6200 6201 6202 /****************************************************************************/ 6203 /* Set media options. */ 6204 /* */ 6205 /* Returns: */ 6206 /* Nothing. */ 6207 /****************************************************************************/ 6208 static int 6209 bce_ifmedia_upd_locked(struct ifnet *ifp) 6210 { 6211 struct bce_softc *sc = ifp->if_softc; 6212 struct mii_data *mii; 6213 struct mii_softc *miisc; 6214 struct ifmedia *ifm; 6215 u32 link; 6216 int error, fdx; 6217 6218 DBENTER(BCE_VERBOSE_PHY); 6219 6220 error = 0; 6221 BCE_LOCK_ASSERT(sc); 6222 6223 sc->bce_link_up = FALSE; 6224 if ((sc->bce_phy_flags & BCE_PHY_REMOTE_CAP_FLAG) != 0) { 6225 ifm = &sc->bce_ifmedia; 6226 if (IFM_TYPE(ifm->ifm_media) != IFM_ETHER) 6227 return (EINVAL); 6228 link = 0; 6229 fdx = IFM_OPTIONS(ifm->ifm_media) & IFM_FDX; 6230 switch(IFM_SUBTYPE(ifm->ifm_media)) { 6231 case IFM_AUTO: 6232 /* 6233 * Check advertised link of remote PHY by reading 6234 * BCE_RPHY_SERDES_LINK or BCE_RPHY_COPPER_LINK. 6235 * Always use the same link type of remote PHY. 6236 */ 6237 link = bce_get_rphy_link(sc); 6238 break; 6239 case IFM_2500_SX: 6240 if ((sc->bce_phy_flags & 6241 (BCE_PHY_REMOTE_PORT_FIBER_FLAG | 6242 BCE_PHY_2_5G_CAPABLE_FLAG)) == 0) 6243 return (EINVAL); 6244 /* 6245 * XXX 6246 * Have to enable forced 2.5Gbps configuration. 6247 */ 6248 if (fdx != 0) 6249 link |= BCE_NETLINK_SPEED_2500FULL; 6250 else 6251 link |= BCE_NETLINK_SPEED_2500HALF; 6252 break; 6253 case IFM_1000_SX: 6254 if ((sc->bce_phy_flags & 6255 BCE_PHY_REMOTE_PORT_FIBER_FLAG) == 0) 6256 return (EINVAL); 6257 /* 6258 * XXX 6259 * Have to disable 2.5Gbps configuration. 6260 */ 6261 if (fdx != 0) 6262 link = BCE_NETLINK_SPEED_1000FULL; 6263 else 6264 link = BCE_NETLINK_SPEED_1000HALF; 6265 break; 6266 case IFM_1000_T: 6267 if (sc->bce_phy_flags & BCE_PHY_REMOTE_PORT_FIBER_FLAG) 6268 return (EINVAL); 6269 if (fdx != 0) 6270 link = BCE_NETLINK_SPEED_1000FULL; 6271 else 6272 link = BCE_NETLINK_SPEED_1000HALF; 6273 break; 6274 case IFM_100_TX: 6275 if (sc->bce_phy_flags & BCE_PHY_REMOTE_PORT_FIBER_FLAG) 6276 return (EINVAL); 6277 if (fdx != 0) 6278 link = BCE_NETLINK_SPEED_100FULL; 6279 else 6280 link = BCE_NETLINK_SPEED_100HALF; 6281 break; 6282 case IFM_10_T: 6283 if (sc->bce_phy_flags & BCE_PHY_REMOTE_PORT_FIBER_FLAG) 6284 return (EINVAL); 6285 if (fdx != 0) 6286 link = BCE_NETLINK_SPEED_10FULL; 6287 else 6288 link = BCE_NETLINK_SPEED_10HALF; 6289 break; 6290 default: 6291 return (EINVAL); 6292 } 6293 if (IFM_SUBTYPE(ifm->ifm_media) != IFM_AUTO) { 6294 /* 6295 * XXX 6296 * Advertise pause capability for full-duplex media. 6297 */ 6298 if (fdx != 0) 6299 link |= BCE_NETLINK_FC_PAUSE_SYM | 6300 BCE_NETLINK_FC_PAUSE_ASYM; 6301 if ((sc->bce_phy_flags & 6302 BCE_PHY_REMOTE_PORT_FIBER_FLAG) == 0) 6303 link |= BCE_NETLINK_PHY_APP_REMOTE | 6304 BCE_NETLINK_ETH_AT_WIRESPEED; 6305 } 6306 6307 bce_shmem_wr(sc, BCE_MB_ARGS_0, link); 6308 error = bce_fw_sync(sc, BCE_DRV_MSG_CODE_CMD_SET_LINK); 6309 } else { 6310 mii = device_get_softc(sc->bce_miibus); 6311 6312 /* Make sure the MII bus has been enumerated. */ 6313 if (mii) { 6314 LIST_FOREACH(miisc, &mii->mii_phys, mii_list) 6315 PHY_RESET(miisc); 6316 error = mii_mediachg(mii); 6317 } 6318 } 6319 6320 DBEXIT(BCE_VERBOSE_PHY); 6321 return (error); 6322 } 6323 6324 6325 static void 6326 bce_ifmedia_sts_rphy(struct bce_softc *sc, struct ifmediareq *ifmr) 6327 { 6328 struct ifnet *ifp; 6329 u32 link; 6330 6331 ifp = sc->bce_ifp; 6332 BCE_LOCK_ASSERT(sc); 6333 6334 ifmr->ifm_status = IFM_AVALID; 6335 ifmr->ifm_active = IFM_ETHER; 6336 link = bce_shmem_rd(sc, BCE_LINK_STATUS); 6337 /* XXX Handle heart beat status? */ 6338 if ((link & BCE_LINK_STATUS_LINK_UP) != 0) 6339 ifmr->ifm_status |= IFM_ACTIVE; 6340 else { 6341 ifmr->ifm_active |= IFM_NONE; 6342 ifp->if_baudrate = 0; 6343 return; 6344 } 6345 switch (link & BCE_LINK_STATUS_SPEED_MASK) { 6346 case BCE_LINK_STATUS_10HALF: 6347 ifmr->ifm_active |= IFM_10_T | IFM_HDX; 6348 ifp->if_baudrate = IF_Mbps(10UL); 6349 break; 6350 case BCE_LINK_STATUS_10FULL: 6351 ifmr->ifm_active |= IFM_10_T | IFM_FDX; 6352 ifp->if_baudrate = IF_Mbps(10UL); 6353 break; 6354 case BCE_LINK_STATUS_100HALF: 6355 ifmr->ifm_active |= IFM_100_TX | IFM_HDX; 6356 ifp->if_baudrate = IF_Mbps(100UL); 6357 break; 6358 case BCE_LINK_STATUS_100FULL: 6359 ifmr->ifm_active |= IFM_100_TX | IFM_FDX; 6360 ifp->if_baudrate = IF_Mbps(100UL); 6361 break; 6362 case BCE_LINK_STATUS_1000HALF: 6363 if ((sc->bce_phy_flags & BCE_PHY_REMOTE_PORT_FIBER_FLAG) == 0) 6364 ifmr->ifm_active |= IFM_1000_T | IFM_HDX; 6365 else 6366 ifmr->ifm_active |= IFM_1000_SX | IFM_HDX; 6367 ifp->if_baudrate = IF_Mbps(1000UL); 6368 break; 6369 case BCE_LINK_STATUS_1000FULL: 6370 if ((sc->bce_phy_flags & BCE_PHY_REMOTE_PORT_FIBER_FLAG) == 0) 6371 ifmr->ifm_active |= IFM_1000_T | IFM_FDX; 6372 else 6373 ifmr->ifm_active |= IFM_1000_SX | IFM_FDX; 6374 ifp->if_baudrate = IF_Mbps(1000UL); 6375 break; 6376 case BCE_LINK_STATUS_2500HALF: 6377 if ((sc->bce_phy_flags & BCE_PHY_REMOTE_PORT_FIBER_FLAG) == 0) { 6378 ifmr->ifm_active |= IFM_NONE; 6379 return; 6380 } else 6381 ifmr->ifm_active |= IFM_2500_SX | IFM_HDX; 6382 ifp->if_baudrate = IF_Mbps(2500UL); 6383 break; 6384 case BCE_LINK_STATUS_2500FULL: 6385 if ((sc->bce_phy_flags & BCE_PHY_REMOTE_PORT_FIBER_FLAG) == 0) { 6386 ifmr->ifm_active |= IFM_NONE; 6387 return; 6388 } else 6389 ifmr->ifm_active |= IFM_2500_SX | IFM_FDX; 6390 ifp->if_baudrate = IF_Mbps(2500UL); 6391 break; 6392 default: 6393 ifmr->ifm_active |= IFM_NONE; 6394 return; 6395 } 6396 6397 if ((link & BCE_LINK_STATUS_RX_FC_ENABLED) != 0) 6398 ifmr->ifm_active |= IFM_ETH_RXPAUSE; 6399 if ((link & BCE_LINK_STATUS_TX_FC_ENABLED) != 0) 6400 ifmr->ifm_active |= IFM_ETH_TXPAUSE; 6401 } 6402 6403 6404 /****************************************************************************/ 6405 /* Reports current media status. */ 6406 /* */ 6407 /* Returns: */ 6408 /* Nothing. */ 6409 /****************************************************************************/ 6410 static void 6411 bce_ifmedia_sts(struct ifnet *ifp, struct ifmediareq *ifmr) 6412 { 6413 struct bce_softc *sc = ifp->if_softc; 6414 struct mii_data *mii; 6415 6416 DBENTER(BCE_VERBOSE_PHY); 6417 6418 BCE_LOCK(sc); 6419 6420 if ((ifp->if_flags & IFF_UP) == 0) { 6421 BCE_UNLOCK(sc); 6422 return; 6423 } 6424 6425 if ((sc->bce_phy_flags & BCE_PHY_REMOTE_CAP_FLAG) != 0) 6426 bce_ifmedia_sts_rphy(sc, ifmr); 6427 else { 6428 mii = device_get_softc(sc->bce_miibus); 6429 mii_pollstat(mii); 6430 ifmr->ifm_active = mii->mii_media_active; 6431 ifmr->ifm_status = mii->mii_media_status; 6432 } 6433 6434 BCE_UNLOCK(sc); 6435 6436 DBEXIT(BCE_VERBOSE_PHY); 6437 } 6438 6439 6440 /****************************************************************************/ 6441 /* Handles PHY generated interrupt events. */ 6442 /* */ 6443 /* Returns: */ 6444 /* Nothing. */ 6445 /****************************************************************************/ 6446 static void 6447 bce_phy_intr(struct bce_softc *sc) 6448 { 6449 u32 new_link_state, old_link_state; 6450 6451 DBENTER(BCE_VERBOSE_PHY | BCE_VERBOSE_INTR); 6452 6453 DBRUN(sc->phy_interrupts++); 6454 6455 new_link_state = sc->status_block->status_attn_bits & 6456 STATUS_ATTN_BITS_LINK_STATE; 6457 old_link_state = sc->status_block->status_attn_bits_ack & 6458 STATUS_ATTN_BITS_LINK_STATE; 6459 6460 /* Handle any changes if the link state has changed. */ 6461 if (new_link_state != old_link_state) { 6462 6463 /* Update the status_attn_bits_ack field. */ 6464 if (new_link_state) { 6465 REG_WR(sc, BCE_PCICFG_STATUS_BIT_SET_CMD, 6466 STATUS_ATTN_BITS_LINK_STATE); 6467 DBPRINT(sc, BCE_INFO_PHY, "%s(): Link is now UP.\n", 6468 __FUNCTION__); 6469 } else { 6470 REG_WR(sc, BCE_PCICFG_STATUS_BIT_CLEAR_CMD, 6471 STATUS_ATTN_BITS_LINK_STATE); 6472 DBPRINT(sc, BCE_INFO_PHY, "%s(): Link is now DOWN.\n", 6473 __FUNCTION__); 6474 } 6475 6476 if ((sc->bce_phy_flags & BCE_PHY_REMOTE_CAP_FLAG) != 0) { 6477 if (new_link_state) { 6478 if (bootverbose) 6479 if_printf(sc->bce_ifp, "link UP\n"); 6480 if_link_state_change(sc->bce_ifp, 6481 LINK_STATE_UP); 6482 } else { 6483 if (bootverbose) 6484 if_printf(sc->bce_ifp, "link DOWN\n"); 6485 if_link_state_change(sc->bce_ifp, 6486 LINK_STATE_DOWN); 6487 } 6488 } 6489 /* 6490 * Assume link is down and allow 6491 * tick routine to update the state 6492 * based on the actual media state. 6493 */ 6494 sc->bce_link_up = FALSE; 6495 callout_stop(&sc->bce_tick_callout); 6496 bce_tick(sc); 6497 } 6498 6499 /* Acknowledge the link change interrupt. */ 6500 REG_WR(sc, BCE_EMAC_STATUS, BCE_EMAC_STATUS_LINK_CHANGE); 6501 6502 DBEXIT(BCE_VERBOSE_PHY | BCE_VERBOSE_INTR); 6503 } 6504 6505 6506 /****************************************************************************/ 6507 /* Reads the receive consumer value from the status block (skipping over */ 6508 /* chain page pointer if necessary). */ 6509 /* */ 6510 /* Returns: */ 6511 /* hw_cons */ 6512 /****************************************************************************/ 6513 static inline u16 6514 bce_get_hw_rx_cons(struct bce_softc *sc) 6515 { 6516 u16 hw_cons; 6517 6518 rmb(); 6519 hw_cons = sc->status_block->status_rx_quick_consumer_index0; 6520 if ((hw_cons & USABLE_RX_BD_PER_PAGE) == USABLE_RX_BD_PER_PAGE) 6521 hw_cons++; 6522 6523 return hw_cons; 6524 } 6525 6526 /****************************************************************************/ 6527 /* Handles received frame interrupt events. */ 6528 /* */ 6529 /* Returns: */ 6530 /* Nothing. */ 6531 /****************************************************************************/ 6532 static void 6533 bce_rx_intr(struct bce_softc *sc) 6534 { 6535 struct ifnet *ifp = sc->bce_ifp; 6536 struct l2_fhdr *l2fhdr; 6537 struct ether_vlan_header *vh; 6538 unsigned int pkt_len; 6539 u16 sw_rx_cons, sw_rx_cons_idx, hw_rx_cons; 6540 u32 status; 6541 unsigned int rem_len; 6542 u16 sw_pg_cons, sw_pg_cons_idx; 6543 6544 DBENTER(BCE_VERBOSE_RECV | BCE_VERBOSE_INTR); 6545 DBRUN(sc->interrupts_rx++); 6546 DBPRINT(sc, BCE_EXTREME_RECV, "%s(enter): rx_prod = 0x%04X, " 6547 "rx_cons = 0x%04X, rx_prod_bseq = 0x%08X\n", 6548 __FUNCTION__, sc->rx_prod, sc->rx_cons, sc->rx_prod_bseq); 6549 6550 /* Prepare the RX chain pages to be accessed by the host CPU. */ 6551 for (int i = 0; i < sc->rx_pages; i++) 6552 bus_dmamap_sync(sc->rx_bd_chain_tag, 6553 sc->rx_bd_chain_map[i], BUS_DMASYNC_POSTREAD); 6554 6555 /* Prepare the page chain pages to be accessed by the host CPU. */ 6556 if (bce_hdr_split == TRUE) { 6557 for (int i = 0; i < sc->pg_pages; i++) 6558 bus_dmamap_sync(sc->pg_bd_chain_tag, 6559 sc->pg_bd_chain_map[i], BUS_DMASYNC_POSTREAD); 6560 } 6561 6562 /* Get the hardware's view of the RX consumer index. */ 6563 hw_rx_cons = sc->hw_rx_cons = bce_get_hw_rx_cons(sc); 6564 6565 /* Get working copies of the driver's view of the consumer indices. */ 6566 sw_rx_cons = sc->rx_cons; 6567 sw_pg_cons = sc->pg_cons; 6568 6569 /* Update some debug statistics counters */ 6570 DBRUNIF((sc->free_rx_bd < sc->rx_low_watermark), 6571 sc->rx_low_watermark = sc->free_rx_bd); 6572 DBRUNIF((sc->free_rx_bd == sc->max_rx_bd), 6573 sc->rx_empty_count++); 6574 6575 /* Scan through the receive chain as long as there is work to do */ 6576 /* ToDo: Consider setting a limit on the number of packets processed. */ 6577 rmb(); 6578 while (sw_rx_cons != hw_rx_cons) { 6579 struct mbuf *m0; 6580 6581 /* Convert the producer/consumer indices to an actual rx_bd index. */ 6582 sw_rx_cons_idx = RX_CHAIN_IDX(sw_rx_cons); 6583 6584 /* Unmap the mbuf from DMA space. */ 6585 bus_dmamap_sync(sc->rx_mbuf_tag, 6586 sc->rx_mbuf_map[sw_rx_cons_idx], 6587 BUS_DMASYNC_POSTREAD); 6588 bus_dmamap_unload(sc->rx_mbuf_tag, 6589 sc->rx_mbuf_map[sw_rx_cons_idx]); 6590 6591 /* Remove the mbuf from the RX chain. */ 6592 m0 = sc->rx_mbuf_ptr[sw_rx_cons_idx]; 6593 sc->rx_mbuf_ptr[sw_rx_cons_idx] = NULL; 6594 DBRUN(sc->debug_rx_mbuf_alloc--); 6595 sc->free_rx_bd++; 6596 6597 /* 6598 * Frames received on the NetXteme II are prepended 6599 * with an l2_fhdr structure which provides status 6600 * information about the received frame (including 6601 * VLAN tags and checksum info). The frames are 6602 * also automatically adjusted to word align the IP 6603 * header (i.e. two null bytes are inserted before 6604 * the Ethernet header). As a result the data 6605 * DMA'd by the controller into the mbuf looks 6606 * like this: 6607 * 6608 * +---------+-----+---------------------+-----+ 6609 * | l2_fhdr | pad | packet data | FCS | 6610 * +---------+-----+---------------------+-----+ 6611 * 6612 * The l2_fhdr needs to be checked and skipped and 6613 * the FCS needs to be stripped before sending the 6614 * packet up the stack. 6615 */ 6616 l2fhdr = mtod(m0, struct l2_fhdr *); 6617 6618 /* Get the packet data + FCS length and the status. */ 6619 pkt_len = l2fhdr->l2_fhdr_pkt_len; 6620 status = l2fhdr->l2_fhdr_status; 6621 6622 /* 6623 * Skip over the l2_fhdr and pad, resulting in the 6624 * following data in the mbuf: 6625 * +---------------------+-----+ 6626 * | packet data | FCS | 6627 * +---------------------+-----+ 6628 */ 6629 m_adj(m0, sizeof(struct l2_fhdr) + ETHER_ALIGN); 6630 6631 /* 6632 * When split header mode is used, an ethernet frame 6633 * may be split across the receive chain and the 6634 * page chain. If that occurs an mbuf cluster must be 6635 * reassembled from the individual mbuf pieces. 6636 */ 6637 if (bce_hdr_split == TRUE) { 6638 /* 6639 * Check whether the received frame fits in a single 6640 * mbuf or not (i.e. packet data + FCS <= 6641 * sc->rx_bd_mbuf_data_len bytes). 6642 */ 6643 if (pkt_len > m0->m_len) { 6644 /* 6645 * The received frame is larger than a single mbuf. 6646 * If the frame was a TCP frame then only the TCP 6647 * header is placed in the mbuf, the remaining 6648 * payload (including FCS) is placed in the page 6649 * chain, the SPLIT flag is set, and the header 6650 * length is placed in the IP checksum field. 6651 * If the frame is not a TCP frame then the mbuf 6652 * is filled and the remaining bytes are placed 6653 * in the page chain. 6654 */ 6655 6656 DBPRINT(sc, BCE_INFO_RECV, "%s(): Found a large " 6657 "packet.\n", __FUNCTION__); 6658 DBRUN(sc->split_header_frames_rcvd++); 6659 6660 /* 6661 * When the page chain is enabled and the TCP 6662 * header has been split from the TCP payload, 6663 * the ip_xsum structure will reflect the length 6664 * of the TCP header, not the IP checksum. Set 6665 * the packet length of the mbuf accordingly. 6666 */ 6667 if (status & L2_FHDR_STATUS_SPLIT) { 6668 m0->m_len = l2fhdr->l2_fhdr_ip_xsum; 6669 DBRUN(sc->split_header_tcp_frames_rcvd++); 6670 } 6671 6672 rem_len = pkt_len - m0->m_len; 6673 6674 /* Pull mbufs off the page chain for any remaining data. */ 6675 while (rem_len > 0) { 6676 struct mbuf *m_pg; 6677 6678 sw_pg_cons_idx = PG_CHAIN_IDX(sw_pg_cons); 6679 6680 /* Remove the mbuf from the page chain. */ 6681 m_pg = sc->pg_mbuf_ptr[sw_pg_cons_idx]; 6682 sc->pg_mbuf_ptr[sw_pg_cons_idx] = NULL; 6683 DBRUN(sc->debug_pg_mbuf_alloc--); 6684 sc->free_pg_bd++; 6685 6686 /* Unmap the page chain mbuf from DMA space. */ 6687 bus_dmamap_sync(sc->pg_mbuf_tag, 6688 sc->pg_mbuf_map[sw_pg_cons_idx], 6689 BUS_DMASYNC_POSTREAD); 6690 bus_dmamap_unload(sc->pg_mbuf_tag, 6691 sc->pg_mbuf_map[sw_pg_cons_idx]); 6692 6693 /* Adjust the mbuf length. */ 6694 if (rem_len < m_pg->m_len) { 6695 /* The mbuf chain is complete. */ 6696 m_pg->m_len = rem_len; 6697 rem_len = 0; 6698 } else { 6699 /* More packet data is waiting. */ 6700 rem_len -= m_pg->m_len; 6701 } 6702 6703 /* Concatenate the mbuf cluster to the mbuf. */ 6704 m_cat(m0, m_pg); 6705 6706 sw_pg_cons = NEXT_PG_BD(sw_pg_cons); 6707 } 6708 6709 /* Set the total packet length. */ 6710 m0->m_pkthdr.len = pkt_len; 6711 6712 } else { 6713 /* 6714 * The received packet is small and fits in a 6715 * single mbuf (i.e. the l2_fhdr + pad + packet + 6716 * FCS <= MHLEN). In other words, the packet is 6717 * 154 bytes or less in size. 6718 */ 6719 6720 DBPRINT(sc, BCE_INFO_RECV, "%s(): Found a small " 6721 "packet.\n", __FUNCTION__); 6722 6723 /* Set the total packet length. */ 6724 m0->m_pkthdr.len = m0->m_len = pkt_len; 6725 } 6726 } else 6727 /* Set the total packet length. */ 6728 m0->m_pkthdr.len = m0->m_len = pkt_len; 6729 6730 /* Remove the trailing Ethernet FCS. */ 6731 m_adj(m0, -ETHER_CRC_LEN); 6732 6733 /* Check that the resulting mbuf chain is valid. */ 6734 DBRUN(m_sanity(m0, FALSE)); 6735 DBRUNIF(((m0->m_len < ETHER_HDR_LEN) | 6736 (m0->m_pkthdr.len > BCE_MAX_JUMBO_ETHER_MTU_VLAN)), 6737 BCE_PRINTF("Invalid Ethernet frame size!\n"); 6738 m_print(m0, 128)); 6739 6740 DBRUNIF(DB_RANDOMTRUE(l2fhdr_error_sim_control), 6741 sc->l2fhdr_error_sim_count++; 6742 status = status | L2_FHDR_ERRORS_PHY_DECODE); 6743 6744 /* Check the received frame for errors. */ 6745 if (status & (L2_FHDR_ERRORS_BAD_CRC | 6746 L2_FHDR_ERRORS_PHY_DECODE | L2_FHDR_ERRORS_ALIGNMENT | 6747 L2_FHDR_ERRORS_TOO_SHORT | L2_FHDR_ERRORS_GIANT_FRAME)) { 6748 6749 /* Log the error and release the mbuf. */ 6750 ifp->if_ierrors++; 6751 sc->l2fhdr_error_count++; 6752 6753 m_freem(m0); 6754 m0 = NULL; 6755 goto bce_rx_intr_next_rx; 6756 } 6757 6758 /* Send the packet to the appropriate interface. */ 6759 m0->m_pkthdr.rcvif = ifp; 6760 6761 /* Assume no hardware checksum. */ 6762 m0->m_pkthdr.csum_flags = 0; 6763 6764 /* Validate the checksum if offload enabled. */ 6765 if (ifp->if_capenable & IFCAP_RXCSUM) { 6766 /* Check for an IP datagram. */ 6767 if (!(status & L2_FHDR_STATUS_SPLIT) && 6768 (status & L2_FHDR_STATUS_IP_DATAGRAM)) { 6769 m0->m_pkthdr.csum_flags |= CSUM_IP_CHECKED; 6770 DBRUN(sc->csum_offload_ip++); 6771 /* Check if the IP checksum is valid. */ 6772 if ((l2fhdr->l2_fhdr_ip_xsum ^ 0xffff) == 0) 6773 m0->m_pkthdr.csum_flags |= 6774 CSUM_IP_VALID; 6775 } 6776 6777 /* Check for a valid TCP/UDP frame. */ 6778 if (status & (L2_FHDR_STATUS_TCP_SEGMENT | 6779 L2_FHDR_STATUS_UDP_DATAGRAM)) { 6780 6781 /* Check for a good TCP/UDP checksum. */ 6782 if ((status & (L2_FHDR_ERRORS_TCP_XSUM | 6783 L2_FHDR_ERRORS_UDP_XSUM)) == 0) { 6784 DBRUN(sc->csum_offload_tcp_udp++); 6785 m0->m_pkthdr.csum_data = 6786 l2fhdr->l2_fhdr_tcp_udp_xsum; 6787 m0->m_pkthdr.csum_flags |= 6788 (CSUM_DATA_VALID 6789 | CSUM_PSEUDO_HDR); 6790 } 6791 } 6792 } 6793 6794 /* Attach the VLAN tag. */ 6795 if ((status & L2_FHDR_STATUS_L2_VLAN_TAG) && 6796 !(sc->rx_mode & BCE_EMAC_RX_MODE_KEEP_VLAN_TAG)) { 6797 DBRUN(sc->vlan_tagged_frames_rcvd++); 6798 if (ifp->if_capenable & IFCAP_VLAN_HWTAGGING) { 6799 DBRUN(sc->vlan_tagged_frames_stripped++); 6800 #if __FreeBSD_version < 700000 6801 VLAN_INPUT_TAG(ifp, m0, 6802 l2fhdr->l2_fhdr_vlan_tag, continue); 6803 #else 6804 m0->m_pkthdr.ether_vtag = 6805 l2fhdr->l2_fhdr_vlan_tag; 6806 m0->m_flags |= M_VLANTAG; 6807 #endif 6808 } else { 6809 /* 6810 * bce(4) controllers can't disable VLAN 6811 * tag stripping if management firmware 6812 * (ASF/IPMI/UMP) is running. So we always 6813 * strip VLAN tag and manually reconstruct 6814 * the VLAN frame by appending stripped 6815 * VLAN tag in driver if VLAN tag stripping 6816 * was disabled. 6817 * 6818 * TODO: LLC SNAP handling. 6819 */ 6820 bcopy(mtod(m0, uint8_t *), 6821 mtod(m0, uint8_t *) - ETHER_VLAN_ENCAP_LEN, 6822 ETHER_ADDR_LEN * 2); 6823 m0->m_data -= ETHER_VLAN_ENCAP_LEN; 6824 vh = mtod(m0, struct ether_vlan_header *); 6825 vh->evl_encap_proto = htons(ETHERTYPE_VLAN); 6826 vh->evl_tag = htons(l2fhdr->l2_fhdr_vlan_tag); 6827 m0->m_pkthdr.len += ETHER_VLAN_ENCAP_LEN; 6828 m0->m_len += ETHER_VLAN_ENCAP_LEN; 6829 } 6830 } 6831 6832 /* Increment received packet statistics. */ 6833 ifp->if_ipackets++; 6834 6835 bce_rx_intr_next_rx: 6836 sw_rx_cons = NEXT_RX_BD(sw_rx_cons); 6837 6838 /* If we have a packet, pass it up the stack */ 6839 if (m0) { 6840 /* Make sure we don't lose our place when we release the lock. */ 6841 sc->rx_cons = sw_rx_cons; 6842 sc->pg_cons = sw_pg_cons; 6843 6844 BCE_UNLOCK(sc); 6845 (*ifp->if_input)(ifp, m0); 6846 BCE_LOCK(sc); 6847 6848 /* Recover our place. */ 6849 sw_rx_cons = sc->rx_cons; 6850 sw_pg_cons = sc->pg_cons; 6851 } 6852 6853 /* Refresh hw_cons to see if there's new work */ 6854 if (sw_rx_cons == hw_rx_cons) 6855 hw_rx_cons = sc->hw_rx_cons = bce_get_hw_rx_cons(sc); 6856 } 6857 6858 /* No new packets. Refill the page chain. */ 6859 if (bce_hdr_split == TRUE) { 6860 sc->pg_cons = sw_pg_cons; 6861 bce_fill_pg_chain(sc); 6862 } 6863 6864 /* No new packets. Refill the RX chain. */ 6865 sc->rx_cons = sw_rx_cons; 6866 bce_fill_rx_chain(sc); 6867 6868 /* Prepare the page chain pages to be accessed by the NIC. */ 6869 for (int i = 0; i < sc->rx_pages; i++) 6870 bus_dmamap_sync(sc->rx_bd_chain_tag, 6871 sc->rx_bd_chain_map[i], BUS_DMASYNC_PREWRITE); 6872 6873 if (bce_hdr_split == TRUE) { 6874 for (int i = 0; i < sc->pg_pages; i++) 6875 bus_dmamap_sync(sc->pg_bd_chain_tag, 6876 sc->pg_bd_chain_map[i], BUS_DMASYNC_PREWRITE); 6877 } 6878 6879 DBPRINT(sc, BCE_EXTREME_RECV, "%s(exit): rx_prod = 0x%04X, " 6880 "rx_cons = 0x%04X, rx_prod_bseq = 0x%08X\n", 6881 __FUNCTION__, sc->rx_prod, sc->rx_cons, sc->rx_prod_bseq); 6882 DBEXIT(BCE_VERBOSE_RECV | BCE_VERBOSE_INTR); 6883 } 6884 6885 6886 /****************************************************************************/ 6887 /* Reads the transmit consumer value from the status block (skipping over */ 6888 /* chain page pointer if necessary). */ 6889 /* */ 6890 /* Returns: */ 6891 /* hw_cons */ 6892 /****************************************************************************/ 6893 static inline u16 6894 bce_get_hw_tx_cons(struct bce_softc *sc) 6895 { 6896 u16 hw_cons; 6897 6898 mb(); 6899 hw_cons = sc->status_block->status_tx_quick_consumer_index0; 6900 if ((hw_cons & USABLE_TX_BD_PER_PAGE) == USABLE_TX_BD_PER_PAGE) 6901 hw_cons++; 6902 6903 return hw_cons; 6904 } 6905 6906 6907 /****************************************************************************/ 6908 /* Handles transmit completion interrupt events. */ 6909 /* */ 6910 /* Returns: */ 6911 /* Nothing. */ 6912 /****************************************************************************/ 6913 static void 6914 bce_tx_intr(struct bce_softc *sc) 6915 { 6916 struct ifnet *ifp = sc->bce_ifp; 6917 u16 hw_tx_cons, sw_tx_cons, sw_tx_chain_cons; 6918 6919 DBENTER(BCE_VERBOSE_SEND | BCE_VERBOSE_INTR); 6920 DBRUN(sc->interrupts_tx++); 6921 DBPRINT(sc, BCE_EXTREME_SEND, "%s(enter): tx_prod = 0x%04X, " 6922 "tx_cons = 0x%04X, tx_prod_bseq = 0x%08X\n", 6923 __FUNCTION__, sc->tx_prod, sc->tx_cons, sc->tx_prod_bseq); 6924 6925 BCE_LOCK_ASSERT(sc); 6926 6927 /* Get the hardware's view of the TX consumer index. */ 6928 hw_tx_cons = sc->hw_tx_cons = bce_get_hw_tx_cons(sc); 6929 sw_tx_cons = sc->tx_cons; 6930 6931 /* Prevent speculative reads of the status block. */ 6932 bus_space_barrier(sc->bce_btag, sc->bce_bhandle, 0, 0, 6933 BUS_SPACE_BARRIER_READ); 6934 6935 /* Cycle through any completed TX chain page entries. */ 6936 while (sw_tx_cons != hw_tx_cons) { 6937 #ifdef BCE_DEBUG 6938 struct tx_bd *txbd = NULL; 6939 #endif 6940 sw_tx_chain_cons = TX_CHAIN_IDX(sw_tx_cons); 6941 6942 DBPRINT(sc, BCE_INFO_SEND, 6943 "%s(): hw_tx_cons = 0x%04X, sw_tx_cons = 0x%04X, " 6944 "sw_tx_chain_cons = 0x%04X\n", 6945 __FUNCTION__, hw_tx_cons, sw_tx_cons, sw_tx_chain_cons); 6946 6947 DBRUNIF((sw_tx_chain_cons > MAX_TX_BD_ALLOC), 6948 BCE_PRINTF("%s(%d): TX chain consumer out of range! " 6949 " 0x%04X > 0x%04X\n", __FILE__, __LINE__, sw_tx_chain_cons, 6950 (int) MAX_TX_BD_ALLOC); 6951 bce_breakpoint(sc)); 6952 6953 DBRUN(txbd = &sc->tx_bd_chain[TX_PAGE(sw_tx_chain_cons)] 6954 [TX_IDX(sw_tx_chain_cons)]); 6955 6956 DBRUNIF((txbd == NULL), 6957 BCE_PRINTF("%s(%d): Unexpected NULL tx_bd[0x%04X]!\n", 6958 __FILE__, __LINE__, sw_tx_chain_cons); 6959 bce_breakpoint(sc)); 6960 6961 DBRUNMSG(BCE_INFO_SEND, BCE_PRINTF("%s(): ", __FUNCTION__); 6962 bce_dump_txbd(sc, sw_tx_chain_cons, txbd)); 6963 6964 /* 6965 * Free the associated mbuf. Remember 6966 * that only the last tx_bd of a packet 6967 * has an mbuf pointer and DMA map. 6968 */ 6969 if (sc->tx_mbuf_ptr[sw_tx_chain_cons] != NULL) { 6970 6971 /* Validate that this is the last tx_bd. */ 6972 DBRUNIF((!(txbd->tx_bd_flags & TX_BD_FLAGS_END)), 6973 BCE_PRINTF("%s(%d): tx_bd END flag not set but " 6974 "txmbuf == NULL!\n", __FILE__, __LINE__); 6975 bce_breakpoint(sc)); 6976 6977 DBRUNMSG(BCE_INFO_SEND, 6978 BCE_PRINTF("%s(): Unloading map/freeing mbuf " 6979 "from tx_bd[0x%04X]\n", __FUNCTION__, 6980 sw_tx_chain_cons)); 6981 6982 /* Unmap the mbuf. */ 6983 bus_dmamap_unload(sc->tx_mbuf_tag, 6984 sc->tx_mbuf_map[sw_tx_chain_cons]); 6985 6986 /* Free the mbuf. */ 6987 m_freem(sc->tx_mbuf_ptr[sw_tx_chain_cons]); 6988 sc->tx_mbuf_ptr[sw_tx_chain_cons] = NULL; 6989 DBRUN(sc->debug_tx_mbuf_alloc--); 6990 6991 ifp->if_opackets++; 6992 } 6993 6994 sc->used_tx_bd--; 6995 sw_tx_cons = NEXT_TX_BD(sw_tx_cons); 6996 6997 /* Refresh hw_cons to see if there's new work. */ 6998 hw_tx_cons = sc->hw_tx_cons = bce_get_hw_tx_cons(sc); 6999 7000 /* Prevent speculative reads of the status block. */ 7001 bus_space_barrier(sc->bce_btag, sc->bce_bhandle, 0, 0, 7002 BUS_SPACE_BARRIER_READ); 7003 } 7004 7005 /* Clear the TX timeout timer. */ 7006 sc->watchdog_timer = 0; 7007 7008 /* Clear the tx hardware queue full flag. */ 7009 if (sc->used_tx_bd < sc->max_tx_bd) { 7010 DBRUNIF((ifp->if_drv_flags & IFF_DRV_OACTIVE), 7011 DBPRINT(sc, BCE_INFO_SEND, 7012 "%s(): Open TX chain! %d/%d (used/total)\n", 7013 __FUNCTION__, sc->used_tx_bd, sc->max_tx_bd)); 7014 ifp->if_drv_flags &= ~IFF_DRV_OACTIVE; 7015 } 7016 7017 sc->tx_cons = sw_tx_cons; 7018 7019 DBPRINT(sc, BCE_EXTREME_SEND, "%s(exit): tx_prod = 0x%04X, " 7020 "tx_cons = 0x%04X, tx_prod_bseq = 0x%08X\n", 7021 __FUNCTION__, sc->tx_prod, sc->tx_cons, sc->tx_prod_bseq); 7022 DBEXIT(BCE_VERBOSE_SEND | BCE_VERBOSE_INTR); 7023 } 7024 7025 7026 /****************************************************************************/ 7027 /* Disables interrupt generation. */ 7028 /* */ 7029 /* Returns: */ 7030 /* Nothing. */ 7031 /****************************************************************************/ 7032 static void 7033 bce_disable_intr(struct bce_softc *sc) 7034 { 7035 DBENTER(BCE_VERBOSE_INTR); 7036 7037 REG_WR(sc, BCE_PCICFG_INT_ACK_CMD, BCE_PCICFG_INT_ACK_CMD_MASK_INT); 7038 REG_RD(sc, BCE_PCICFG_INT_ACK_CMD); 7039 7040 DBEXIT(BCE_VERBOSE_INTR); 7041 } 7042 7043 7044 /****************************************************************************/ 7045 /* Enables interrupt generation. */ 7046 /* */ 7047 /* Returns: */ 7048 /* Nothing. */ 7049 /****************************************************************************/ 7050 static void 7051 bce_enable_intr(struct bce_softc *sc, int coal_now) 7052 { 7053 DBENTER(BCE_VERBOSE_INTR); 7054 7055 REG_WR(sc, BCE_PCICFG_INT_ACK_CMD, 7056 BCE_PCICFG_INT_ACK_CMD_INDEX_VALID | 7057 BCE_PCICFG_INT_ACK_CMD_MASK_INT | sc->last_status_idx); 7058 7059 REG_WR(sc, BCE_PCICFG_INT_ACK_CMD, 7060 BCE_PCICFG_INT_ACK_CMD_INDEX_VALID | sc->last_status_idx); 7061 7062 /* Force an immediate interrupt (whether there is new data or not). */ 7063 if (coal_now) 7064 REG_WR(sc, BCE_HC_COMMAND, sc->hc_command | BCE_HC_COMMAND_COAL_NOW); 7065 7066 DBEXIT(BCE_VERBOSE_INTR); 7067 } 7068 7069 7070 /****************************************************************************/ 7071 /* Handles controller initialization. */ 7072 /* */ 7073 /* Returns: */ 7074 /* Nothing. */ 7075 /****************************************************************************/ 7076 static void 7077 bce_init_locked(struct bce_softc *sc) 7078 { 7079 struct ifnet *ifp; 7080 u32 ether_mtu = 0; 7081 7082 DBENTER(BCE_VERBOSE_RESET); 7083 7084 BCE_LOCK_ASSERT(sc); 7085 7086 ifp = sc->bce_ifp; 7087 7088 /* Check if the driver is still running and bail out if it is. */ 7089 if (ifp->if_drv_flags & IFF_DRV_RUNNING) 7090 goto bce_init_locked_exit; 7091 7092 bce_stop(sc); 7093 7094 if (bce_reset(sc, BCE_DRV_MSG_CODE_RESET)) { 7095 BCE_PRINTF("%s(%d): Controller reset failed!\n", 7096 __FILE__, __LINE__); 7097 goto bce_init_locked_exit; 7098 } 7099 7100 if (bce_chipinit(sc)) { 7101 BCE_PRINTF("%s(%d): Controller initialization failed!\n", 7102 __FILE__, __LINE__); 7103 goto bce_init_locked_exit; 7104 } 7105 7106 if (bce_blockinit(sc)) { 7107 BCE_PRINTF("%s(%d): Block initialization failed!\n", 7108 __FILE__, __LINE__); 7109 goto bce_init_locked_exit; 7110 } 7111 7112 /* Load our MAC address. */ 7113 bcopy(IF_LLADDR(sc->bce_ifp), sc->eaddr, ETHER_ADDR_LEN); 7114 bce_set_mac_addr(sc); 7115 7116 if (bce_hdr_split == FALSE) 7117 bce_get_rx_buffer_sizes(sc, ifp->if_mtu); 7118 /* 7119 * Calculate and program the hardware Ethernet MTU 7120 * size. Be generous on the receive if we have room 7121 * and allowed by the user. 7122 */ 7123 if (bce_strict_rx_mtu == TRUE) 7124 ether_mtu = ifp->if_mtu; 7125 else { 7126 if (bce_hdr_split == TRUE) { 7127 if (ifp->if_mtu <= sc->rx_bd_mbuf_data_len + MCLBYTES) 7128 ether_mtu = sc->rx_bd_mbuf_data_len + 7129 MCLBYTES; 7130 else 7131 ether_mtu = ifp->if_mtu; 7132 } else { 7133 if (ifp->if_mtu <= sc->rx_bd_mbuf_data_len) 7134 ether_mtu = sc->rx_bd_mbuf_data_len; 7135 else 7136 ether_mtu = ifp->if_mtu; 7137 } 7138 } 7139 7140 ether_mtu += ETHER_HDR_LEN + ETHER_VLAN_ENCAP_LEN + ETHER_CRC_LEN; 7141 7142 DBPRINT(sc, BCE_INFO_MISC, "%s(): setting h/w mtu = %d\n", 7143 __FUNCTION__, ether_mtu); 7144 7145 /* Program the mtu, enabling jumbo frame support if necessary. */ 7146 if (ether_mtu > (ETHER_MAX_LEN + ETHER_VLAN_ENCAP_LEN)) 7147 REG_WR(sc, BCE_EMAC_RX_MTU_SIZE, 7148 min(ether_mtu, BCE_MAX_JUMBO_ETHER_MTU) | 7149 BCE_EMAC_RX_MTU_SIZE_JUMBO_ENA); 7150 else 7151 REG_WR(sc, BCE_EMAC_RX_MTU_SIZE, ether_mtu); 7152 7153 /* Program appropriate promiscuous/multicast filtering. */ 7154 bce_set_rx_mode(sc); 7155 7156 if (bce_hdr_split == TRUE) { 7157 /* Init page buffer descriptor chain. */ 7158 bce_init_pg_chain(sc); 7159 } 7160 7161 /* Init RX buffer descriptor chain. */ 7162 bce_init_rx_chain(sc); 7163 7164 /* Init TX buffer descriptor chain. */ 7165 bce_init_tx_chain(sc); 7166 7167 /* Enable host interrupts. */ 7168 bce_enable_intr(sc, 1); 7169 7170 bce_ifmedia_upd_locked(ifp); 7171 7172 /* Let the OS know the driver is up and running. */ 7173 ifp->if_drv_flags |= IFF_DRV_RUNNING; 7174 ifp->if_drv_flags &= ~IFF_DRV_OACTIVE; 7175 7176 callout_reset(&sc->bce_tick_callout, hz, bce_tick, sc); 7177 7178 bce_init_locked_exit: 7179 DBEXIT(BCE_VERBOSE_RESET); 7180 } 7181 7182 7183 /****************************************************************************/ 7184 /* Initialize the controller just enough so that any management firmware */ 7185 /* running on the device will continue to operate correctly. */ 7186 /* */ 7187 /* Returns: */ 7188 /* Nothing. */ 7189 /****************************************************************************/ 7190 static void 7191 bce_mgmt_init_locked(struct bce_softc *sc) 7192 { 7193 struct ifnet *ifp; 7194 7195 DBENTER(BCE_VERBOSE_RESET); 7196 7197 BCE_LOCK_ASSERT(sc); 7198 7199 /* Bail out if management firmware is not running. */ 7200 if (!(sc->bce_flags & BCE_MFW_ENABLE_FLAG)) { 7201 DBPRINT(sc, BCE_VERBOSE_SPECIAL, 7202 "No management firmware running...\n"); 7203 goto bce_mgmt_init_locked_exit; 7204 } 7205 7206 ifp = sc->bce_ifp; 7207 7208 /* Enable all critical blocks in the MAC. */ 7209 REG_WR(sc, BCE_MISC_ENABLE_SET_BITS, BCE_MISC_ENABLE_DEFAULT); 7210 REG_RD(sc, BCE_MISC_ENABLE_SET_BITS); 7211 DELAY(20); 7212 7213 bce_ifmedia_upd_locked(ifp); 7214 7215 bce_mgmt_init_locked_exit: 7216 DBEXIT(BCE_VERBOSE_RESET); 7217 } 7218 7219 7220 /****************************************************************************/ 7221 /* Handles controller initialization when called from an unlocked routine. */ 7222 /* */ 7223 /* Returns: */ 7224 /* Nothing. */ 7225 /****************************************************************************/ 7226 static void 7227 bce_init(void *xsc) 7228 { 7229 struct bce_softc *sc = xsc; 7230 7231 DBENTER(BCE_VERBOSE_RESET); 7232 7233 BCE_LOCK(sc); 7234 bce_init_locked(sc); 7235 BCE_UNLOCK(sc); 7236 7237 DBEXIT(BCE_VERBOSE_RESET); 7238 } 7239 7240 7241 /****************************************************************************/ 7242 /* Modifies an mbuf for TSO on the hardware. */ 7243 /* */ 7244 /* Returns: */ 7245 /* Pointer to a modified mbuf. */ 7246 /****************************************************************************/ 7247 static struct mbuf * 7248 bce_tso_setup(struct bce_softc *sc, struct mbuf **m_head, u16 *flags) 7249 { 7250 struct mbuf *m; 7251 struct ether_header *eh; 7252 struct ip *ip; 7253 struct tcphdr *th; 7254 u16 etype; 7255 int hdr_len, ip_hlen = 0, tcp_hlen = 0, ip_len = 0; 7256 7257 DBRUN(sc->tso_frames_requested++); 7258 7259 /* Controller may modify mbuf chains. */ 7260 if (M_WRITABLE(*m_head) == 0) { 7261 m = m_dup(*m_head, M_NOWAIT); 7262 m_freem(*m_head); 7263 if (m == NULL) { 7264 sc->mbuf_alloc_failed_count++; 7265 *m_head = NULL; 7266 return (NULL); 7267 } 7268 *m_head = m; 7269 } 7270 7271 /* 7272 * For TSO the controller needs two pieces of info, 7273 * the MSS and the IP+TCP options length. 7274 */ 7275 m = m_pullup(*m_head, sizeof(struct ether_header) + sizeof(struct ip)); 7276 if (m == NULL) { 7277 *m_head = NULL; 7278 return (NULL); 7279 } 7280 eh = mtod(m, struct ether_header *); 7281 etype = ntohs(eh->ether_type); 7282 7283 /* Check for supported TSO Ethernet types (only IPv4 for now) */ 7284 switch (etype) { 7285 case ETHERTYPE_IP: 7286 ip = (struct ip *)(m->m_data + sizeof(struct ether_header)); 7287 /* TSO only supported for TCP protocol. */ 7288 if (ip->ip_p != IPPROTO_TCP) { 7289 BCE_PRINTF("%s(%d): TSO enabled for non-TCP frame!.\n", 7290 __FILE__, __LINE__); 7291 m_freem(*m_head); 7292 *m_head = NULL; 7293 return (NULL); 7294 } 7295 7296 /* Get IP header length in bytes (min 20) */ 7297 ip_hlen = ip->ip_hl << 2; 7298 m = m_pullup(*m_head, sizeof(struct ether_header) + ip_hlen + 7299 sizeof(struct tcphdr)); 7300 if (m == NULL) { 7301 *m_head = NULL; 7302 return (NULL); 7303 } 7304 7305 /* Get the TCP header length in bytes (min 20) */ 7306 ip = (struct ip *)(m->m_data + sizeof(struct ether_header)); 7307 th = (struct tcphdr *)((caddr_t)ip + ip_hlen); 7308 tcp_hlen = (th->th_off << 2); 7309 7310 /* Make sure all IP/TCP options live in the same buffer. */ 7311 m = m_pullup(*m_head, sizeof(struct ether_header)+ ip_hlen + 7312 tcp_hlen); 7313 if (m == NULL) { 7314 *m_head = NULL; 7315 return (NULL); 7316 } 7317 7318 /* Clear IP header length and checksum, will be calc'd by h/w. */ 7319 ip = (struct ip *)(m->m_data + sizeof(struct ether_header)); 7320 ip_len = ip->ip_len; 7321 ip->ip_len = 0; 7322 ip->ip_sum = 0; 7323 break; 7324 case ETHERTYPE_IPV6: 7325 BCE_PRINTF("%s(%d): TSO over IPv6 not supported!.\n", 7326 __FILE__, __LINE__); 7327 m_freem(*m_head); 7328 *m_head = NULL; 7329 return (NULL); 7330 /* NOT REACHED */ 7331 default: 7332 BCE_PRINTF("%s(%d): TSO enabled for unsupported protocol!.\n", 7333 __FILE__, __LINE__); 7334 m_freem(*m_head); 7335 *m_head = NULL; 7336 return (NULL); 7337 } 7338 7339 hdr_len = sizeof(struct ether_header) + ip_hlen + tcp_hlen; 7340 7341 DBPRINT(sc, BCE_EXTREME_SEND, "%s(): hdr_len = %d, e_hlen = %d, " 7342 "ip_hlen = %d, tcp_hlen = %d, ip_len = %d\n", 7343 __FUNCTION__, hdr_len, (int) sizeof(struct ether_header), ip_hlen, 7344 tcp_hlen, ip_len); 7345 7346 /* Set the LSO flag in the TX BD */ 7347 *flags |= TX_BD_FLAGS_SW_LSO; 7348 7349 /* Set the length of IP + TCP options (in 32 bit words) */ 7350 *flags |= (((ip_hlen + tcp_hlen - sizeof(struct ip) - 7351 sizeof(struct tcphdr)) >> 2) << 8); 7352 7353 DBRUN(sc->tso_frames_completed++); 7354 return (*m_head); 7355 } 7356 7357 7358 /****************************************************************************/ 7359 /* Encapsultes an mbuf cluster into the tx_bd chain structure and makes the */ 7360 /* memory visible to the controller. */ 7361 /* */ 7362 /* Returns: */ 7363 /* 0 for success, positive value for failure. */ 7364 /* Modified: */ 7365 /* m_head: May be set to NULL if MBUF is excessively fragmented. */ 7366 /****************************************************************************/ 7367 static int 7368 bce_tx_encap(struct bce_softc *sc, struct mbuf **m_head) 7369 { 7370 bus_dma_segment_t segs[BCE_MAX_SEGMENTS]; 7371 bus_dmamap_t map; 7372 struct tx_bd *txbd = NULL; 7373 struct mbuf *m0; 7374 u16 prod, chain_prod, mss = 0, vlan_tag = 0, flags = 0; 7375 u32 prod_bseq; 7376 7377 #ifdef BCE_DEBUG 7378 u16 debug_prod; 7379 #endif 7380 7381 int i, error, nsegs, rc = 0; 7382 7383 DBENTER(BCE_VERBOSE_SEND); 7384 7385 /* Make sure we have room in the TX chain. */ 7386 if (sc->used_tx_bd >= sc->max_tx_bd) 7387 goto bce_tx_encap_exit; 7388 7389 /* Transfer any checksum offload flags to the bd. */ 7390 m0 = *m_head; 7391 if (m0->m_pkthdr.csum_flags) { 7392 if (m0->m_pkthdr.csum_flags & CSUM_TSO) { 7393 m0 = bce_tso_setup(sc, m_head, &flags); 7394 if (m0 == NULL) { 7395 DBRUN(sc->tso_frames_failed++); 7396 goto bce_tx_encap_exit; 7397 } 7398 mss = htole16(m0->m_pkthdr.tso_segsz); 7399 } else { 7400 if (m0->m_pkthdr.csum_flags & CSUM_IP) 7401 flags |= TX_BD_FLAGS_IP_CKSUM; 7402 if (m0->m_pkthdr.csum_flags & (CSUM_TCP | CSUM_UDP)) 7403 flags |= TX_BD_FLAGS_TCP_UDP_CKSUM; 7404 } 7405 } 7406 7407 /* Transfer any VLAN tags to the bd. */ 7408 if (m0->m_flags & M_VLANTAG) { 7409 flags |= TX_BD_FLAGS_VLAN_TAG; 7410 vlan_tag = m0->m_pkthdr.ether_vtag; 7411 } 7412 7413 /* Map the mbuf into DMAable memory. */ 7414 prod = sc->tx_prod; 7415 chain_prod = TX_CHAIN_IDX(prod); 7416 map = sc->tx_mbuf_map[chain_prod]; 7417 7418 /* Map the mbuf into our DMA address space. */ 7419 error = bus_dmamap_load_mbuf_sg(sc->tx_mbuf_tag, map, m0, 7420 segs, &nsegs, BUS_DMA_NOWAIT); 7421 7422 /* Check if the DMA mapping was successful */ 7423 if (error == EFBIG) { 7424 sc->mbuf_frag_count++; 7425 7426 /* Try to defrag the mbuf. */ 7427 m0 = m_collapse(*m_head, M_NOWAIT, BCE_MAX_SEGMENTS); 7428 if (m0 == NULL) { 7429 /* Defrag was unsuccessful */ 7430 m_freem(*m_head); 7431 *m_head = NULL; 7432 sc->mbuf_alloc_failed_count++; 7433 rc = ENOBUFS; 7434 goto bce_tx_encap_exit; 7435 } 7436 7437 /* Defrag was successful, try mapping again */ 7438 *m_head = m0; 7439 error = bus_dmamap_load_mbuf_sg(sc->tx_mbuf_tag, 7440 map, m0, segs, &nsegs, BUS_DMA_NOWAIT); 7441 7442 /* Still getting an error after a defrag. */ 7443 if (error == ENOMEM) { 7444 /* Insufficient DMA buffers available. */ 7445 sc->dma_map_addr_tx_failed_count++; 7446 rc = error; 7447 goto bce_tx_encap_exit; 7448 } else if (error != 0) { 7449 /* Release it and return an error. */ 7450 BCE_PRINTF("%s(%d): Unknown error mapping mbuf into " 7451 "TX chain!\n", __FILE__, __LINE__); 7452 m_freem(m0); 7453 *m_head = NULL; 7454 sc->dma_map_addr_tx_failed_count++; 7455 rc = ENOBUFS; 7456 goto bce_tx_encap_exit; 7457 } 7458 } else if (error == ENOMEM) { 7459 /* Insufficient DMA buffers available. */ 7460 sc->dma_map_addr_tx_failed_count++; 7461 rc = error; 7462 goto bce_tx_encap_exit; 7463 } else if (error != 0) { 7464 m_freem(m0); 7465 *m_head = NULL; 7466 sc->dma_map_addr_tx_failed_count++; 7467 rc = error; 7468 goto bce_tx_encap_exit; 7469 } 7470 7471 /* Make sure there's room in the chain */ 7472 if (nsegs > (sc->max_tx_bd - sc->used_tx_bd)) { 7473 bus_dmamap_unload(sc->tx_mbuf_tag, map); 7474 rc = ENOBUFS; 7475 goto bce_tx_encap_exit; 7476 } 7477 7478 /* prod points to an empty tx_bd at this point. */ 7479 prod_bseq = sc->tx_prod_bseq; 7480 7481 #ifdef BCE_DEBUG 7482 debug_prod = chain_prod; 7483 #endif 7484 7485 DBPRINT(sc, BCE_INFO_SEND, 7486 "%s(start): prod = 0x%04X, chain_prod = 0x%04X, " 7487 "prod_bseq = 0x%08X\n", 7488 __FUNCTION__, prod, chain_prod, prod_bseq); 7489 7490 /* 7491 * Cycle through each mbuf segment that makes up 7492 * the outgoing frame, gathering the mapping info 7493 * for that segment and creating a tx_bd for 7494 * the mbuf. 7495 */ 7496 for (i = 0; i < nsegs ; i++) { 7497 7498 chain_prod = TX_CHAIN_IDX(prod); 7499 txbd= &sc->tx_bd_chain[TX_PAGE(chain_prod)] 7500 [TX_IDX(chain_prod)]; 7501 7502 txbd->tx_bd_haddr_lo = 7503 htole32(BCE_ADDR_LO(segs[i].ds_addr)); 7504 txbd->tx_bd_haddr_hi = 7505 htole32(BCE_ADDR_HI(segs[i].ds_addr)); 7506 txbd->tx_bd_mss_nbytes = htole32(mss << 16) | 7507 htole16(segs[i].ds_len); 7508 txbd->tx_bd_vlan_tag = htole16(vlan_tag); 7509 txbd->tx_bd_flags = htole16(flags); 7510 prod_bseq += segs[i].ds_len; 7511 if (i == 0) 7512 txbd->tx_bd_flags |= htole16(TX_BD_FLAGS_START); 7513 prod = NEXT_TX_BD(prod); 7514 } 7515 7516 /* Set the END flag on the last TX buffer descriptor. */ 7517 txbd->tx_bd_flags |= htole16(TX_BD_FLAGS_END); 7518 7519 DBRUNMSG(BCE_EXTREME_SEND, 7520 bce_dump_tx_chain(sc, debug_prod, nsegs)); 7521 7522 /* 7523 * Ensure that the mbuf pointer for this transmission 7524 * is placed at the array index of the last 7525 * descriptor in this chain. This is done 7526 * because a single map is used for all 7527 * segments of the mbuf and we don't want to 7528 * unload the map before all of the segments 7529 * have been freed. 7530 */ 7531 sc->tx_mbuf_ptr[chain_prod] = m0; 7532 sc->used_tx_bd += nsegs; 7533 7534 /* Update some debug statistic counters */ 7535 DBRUNIF((sc->used_tx_bd > sc->tx_hi_watermark), 7536 sc->tx_hi_watermark = sc->used_tx_bd); 7537 DBRUNIF((sc->used_tx_bd == sc->max_tx_bd), sc->tx_full_count++); 7538 DBRUNIF(sc->debug_tx_mbuf_alloc++); 7539 7540 DBRUNMSG(BCE_EXTREME_SEND, bce_dump_tx_mbuf_chain(sc, chain_prod, 1)); 7541 7542 /* prod points to the next free tx_bd at this point. */ 7543 sc->tx_prod = prod; 7544 sc->tx_prod_bseq = prod_bseq; 7545 7546 /* Tell the chip about the waiting TX frames. */ 7547 REG_WR16(sc, MB_GET_CID_ADDR(TX_CID) + 7548 BCE_L2MQ_TX_HOST_BIDX, sc->tx_prod); 7549 REG_WR(sc, MB_GET_CID_ADDR(TX_CID) + 7550 BCE_L2MQ_TX_HOST_BSEQ, sc->tx_prod_bseq); 7551 7552 bce_tx_encap_exit: 7553 DBEXIT(BCE_VERBOSE_SEND); 7554 return(rc); 7555 } 7556 7557 7558 /****************************************************************************/ 7559 /* Main transmit routine when called from another routine with a lock. */ 7560 /* */ 7561 /* Returns: */ 7562 /* Nothing. */ 7563 /****************************************************************************/ 7564 static void 7565 bce_start_locked(struct ifnet *ifp) 7566 { 7567 struct bce_softc *sc = ifp->if_softc; 7568 struct mbuf *m_head = NULL; 7569 int count = 0; 7570 u16 tx_prod, tx_chain_prod; 7571 7572 DBENTER(BCE_VERBOSE_SEND | BCE_VERBOSE_CTX); 7573 7574 BCE_LOCK_ASSERT(sc); 7575 7576 /* prod points to the next free tx_bd. */ 7577 tx_prod = sc->tx_prod; 7578 tx_chain_prod = TX_CHAIN_IDX(tx_prod); 7579 7580 DBPRINT(sc, BCE_INFO_SEND, 7581 "%s(enter): tx_prod = 0x%04X, tx_chain_prod = 0x%04X, " 7582 "tx_prod_bseq = 0x%08X\n", 7583 __FUNCTION__, tx_prod, tx_chain_prod, sc->tx_prod_bseq); 7584 7585 /* If there's no link or the transmit queue is empty then just exit. */ 7586 if (sc->bce_link_up == FALSE) { 7587 DBPRINT(sc, BCE_INFO_SEND, "%s(): No link.\n", 7588 __FUNCTION__); 7589 goto bce_start_locked_exit; 7590 } 7591 7592 if (IFQ_DRV_IS_EMPTY(&ifp->if_snd)) { 7593 DBPRINT(sc, BCE_INFO_SEND, "%s(): Transmit queue empty.\n", 7594 __FUNCTION__); 7595 goto bce_start_locked_exit; 7596 } 7597 7598 /* 7599 * Keep adding entries while there is space in the ring. 7600 */ 7601 while (sc->used_tx_bd < sc->max_tx_bd) { 7602 7603 /* Check for any frames to send. */ 7604 IFQ_DRV_DEQUEUE(&ifp->if_snd, m_head); 7605 7606 /* Stop when the transmit queue is empty. */ 7607 if (m_head == NULL) 7608 break; 7609 7610 /* 7611 * Pack the data into the transmit ring. If we 7612 * don't have room, place the mbuf back at the 7613 * head of the queue and set the OACTIVE flag 7614 * to wait for the NIC to drain the chain. 7615 */ 7616 if (bce_tx_encap(sc, &m_head)) { 7617 if (m_head != NULL) 7618 IFQ_DRV_PREPEND(&ifp->if_snd, m_head); 7619 ifp->if_drv_flags |= IFF_DRV_OACTIVE; 7620 DBPRINT(sc, BCE_INFO_SEND, 7621 "TX chain is closed for business! Total " 7622 "tx_bd used = %d\n", sc->used_tx_bd); 7623 break; 7624 } 7625 7626 count++; 7627 7628 /* Send a copy of the frame to any BPF listeners. */ 7629 ETHER_BPF_MTAP(ifp, m_head); 7630 } 7631 7632 /* Exit if no packets were dequeued. */ 7633 if (count == 0) { 7634 DBPRINT(sc, BCE_VERBOSE_SEND, "%s(): No packets were " 7635 "dequeued\n", __FUNCTION__); 7636 goto bce_start_locked_exit; 7637 } 7638 7639 DBPRINT(sc, BCE_VERBOSE_SEND, "%s(): Inserted %d frames into " 7640 "send queue.\n", __FUNCTION__, count); 7641 7642 /* Set the tx timeout. */ 7643 sc->watchdog_timer = BCE_TX_TIMEOUT; 7644 7645 DBRUNMSG(BCE_VERBOSE_SEND, bce_dump_ctx(sc, TX_CID)); 7646 DBRUNMSG(BCE_VERBOSE_SEND, bce_dump_mq_regs(sc)); 7647 7648 bce_start_locked_exit: 7649 DBEXIT(BCE_VERBOSE_SEND | BCE_VERBOSE_CTX); 7650 } 7651 7652 7653 /****************************************************************************/ 7654 /* Main transmit routine when called from another routine without a lock. */ 7655 /* */ 7656 /* Returns: */ 7657 /* Nothing. */ 7658 /****************************************************************************/ 7659 static void 7660 bce_start(struct ifnet *ifp) 7661 { 7662 struct bce_softc *sc = ifp->if_softc; 7663 7664 DBENTER(BCE_VERBOSE_SEND); 7665 7666 BCE_LOCK(sc); 7667 bce_start_locked(ifp); 7668 BCE_UNLOCK(sc); 7669 7670 DBEXIT(BCE_VERBOSE_SEND); 7671 } 7672 7673 7674 /****************************************************************************/ 7675 /* Handles any IOCTL calls from the operating system. */ 7676 /* */ 7677 /* Returns: */ 7678 /* 0 for success, positive value for failure. */ 7679 /****************************************************************************/ 7680 static int 7681 bce_ioctl(struct ifnet *ifp, u_long command, caddr_t data) 7682 { 7683 struct bce_softc *sc = ifp->if_softc; 7684 struct ifreq *ifr = (struct ifreq *) data; 7685 struct mii_data *mii; 7686 int mask, error = 0; 7687 7688 DBENTER(BCE_VERBOSE_MISC); 7689 7690 switch(command) { 7691 7692 /* Set the interface MTU. */ 7693 case SIOCSIFMTU: 7694 /* Check that the MTU setting is supported. */ 7695 if ((ifr->ifr_mtu < BCE_MIN_MTU) || 7696 (ifr->ifr_mtu > BCE_MAX_JUMBO_MTU)) { 7697 error = EINVAL; 7698 break; 7699 } 7700 7701 DBPRINT(sc, BCE_INFO_MISC, 7702 "SIOCSIFMTU: Changing MTU from %d to %d\n", 7703 (int) ifp->if_mtu, (int) ifr->ifr_mtu); 7704 7705 BCE_LOCK(sc); 7706 ifp->if_mtu = ifr->ifr_mtu; 7707 if (ifp->if_drv_flags & IFF_DRV_RUNNING) { 7708 ifp->if_drv_flags &= ~IFF_DRV_RUNNING; 7709 bce_init_locked(sc); 7710 } 7711 BCE_UNLOCK(sc); 7712 break; 7713 7714 /* Set interface flags. */ 7715 case SIOCSIFFLAGS: 7716 DBPRINT(sc, BCE_VERBOSE_SPECIAL, "Received SIOCSIFFLAGS\n"); 7717 7718 BCE_LOCK(sc); 7719 7720 /* Check if the interface is up. */ 7721 if (ifp->if_flags & IFF_UP) { 7722 if (ifp->if_drv_flags & IFF_DRV_RUNNING) { 7723 /* Change promiscuous/multicast flags as necessary. */ 7724 bce_set_rx_mode(sc); 7725 } else { 7726 /* Start the HW */ 7727 bce_init_locked(sc); 7728 } 7729 } else { 7730 /* The interface is down, check if driver is running. */ 7731 if (ifp->if_drv_flags & IFF_DRV_RUNNING) { 7732 bce_stop(sc); 7733 7734 /* If MFW is running, restart the controller a bit. */ 7735 if (sc->bce_flags & BCE_MFW_ENABLE_FLAG) { 7736 bce_reset(sc, BCE_DRV_MSG_CODE_RESET); 7737 bce_chipinit(sc); 7738 bce_mgmt_init_locked(sc); 7739 } 7740 } 7741 } 7742 7743 BCE_UNLOCK(sc); 7744 break; 7745 7746 /* Add/Delete multicast address */ 7747 case SIOCADDMULTI: 7748 case SIOCDELMULTI: 7749 DBPRINT(sc, BCE_VERBOSE_MISC, 7750 "Received SIOCADDMULTI/SIOCDELMULTI\n"); 7751 7752 BCE_LOCK(sc); 7753 if (ifp->if_drv_flags & IFF_DRV_RUNNING) 7754 bce_set_rx_mode(sc); 7755 BCE_UNLOCK(sc); 7756 7757 break; 7758 7759 /* Set/Get Interface media */ 7760 case SIOCSIFMEDIA: 7761 case SIOCGIFMEDIA: 7762 DBPRINT(sc, BCE_VERBOSE_MISC, 7763 "Received SIOCSIFMEDIA/SIOCGIFMEDIA\n"); 7764 if ((sc->bce_phy_flags & BCE_PHY_REMOTE_CAP_FLAG) != 0) 7765 error = ifmedia_ioctl(ifp, ifr, &sc->bce_ifmedia, 7766 command); 7767 else { 7768 mii = device_get_softc(sc->bce_miibus); 7769 error = ifmedia_ioctl(ifp, ifr, &mii->mii_media, 7770 command); 7771 } 7772 break; 7773 7774 /* Set interface capability */ 7775 case SIOCSIFCAP: 7776 mask = ifr->ifr_reqcap ^ ifp->if_capenable; 7777 DBPRINT(sc, BCE_INFO_MISC, 7778 "Received SIOCSIFCAP = 0x%08X\n", (u32) mask); 7779 7780 /* Toggle the TX checksum capabilities enable flag. */ 7781 if (mask & IFCAP_TXCSUM && 7782 ifp->if_capabilities & IFCAP_TXCSUM) { 7783 ifp->if_capenable ^= IFCAP_TXCSUM; 7784 if (IFCAP_TXCSUM & ifp->if_capenable) 7785 ifp->if_hwassist |= BCE_IF_HWASSIST; 7786 else 7787 ifp->if_hwassist &= ~BCE_IF_HWASSIST; 7788 } 7789 7790 /* Toggle the RX checksum capabilities enable flag. */ 7791 if (mask & IFCAP_RXCSUM && 7792 ifp->if_capabilities & IFCAP_RXCSUM) 7793 ifp->if_capenable ^= IFCAP_RXCSUM; 7794 7795 /* Toggle the TSO capabilities enable flag. */ 7796 if (bce_tso_enable && (mask & IFCAP_TSO4) && 7797 ifp->if_capabilities & IFCAP_TSO4) { 7798 ifp->if_capenable ^= IFCAP_TSO4; 7799 if (IFCAP_TSO4 & ifp->if_capenable) 7800 ifp->if_hwassist |= CSUM_TSO; 7801 else 7802 ifp->if_hwassist &= ~CSUM_TSO; 7803 } 7804 7805 if (mask & IFCAP_VLAN_HWCSUM && 7806 ifp->if_capabilities & IFCAP_VLAN_HWCSUM) 7807 ifp->if_capenable ^= IFCAP_VLAN_HWCSUM; 7808 7809 if ((mask & IFCAP_VLAN_HWTSO) != 0 && 7810 (ifp->if_capabilities & IFCAP_VLAN_HWTSO) != 0) 7811 ifp->if_capenable ^= IFCAP_VLAN_HWTSO; 7812 /* 7813 * Don't actually disable VLAN tag stripping as 7814 * management firmware (ASF/IPMI/UMP) requires the 7815 * feature. If VLAN tag stripping is disabled driver 7816 * will manually reconstruct the VLAN frame by 7817 * appending stripped VLAN tag. 7818 */ 7819 if ((mask & IFCAP_VLAN_HWTAGGING) != 0 && 7820 (ifp->if_capabilities & IFCAP_VLAN_HWTAGGING)) { 7821 ifp->if_capenable ^= IFCAP_VLAN_HWTAGGING; 7822 if ((ifp->if_capenable & IFCAP_VLAN_HWTAGGING) 7823 == 0) 7824 ifp->if_capenable &= ~IFCAP_VLAN_HWTSO; 7825 } 7826 VLAN_CAPABILITIES(ifp); 7827 break; 7828 default: 7829 /* We don't know how to handle the IOCTL, pass it on. */ 7830 error = ether_ioctl(ifp, command, data); 7831 break; 7832 } 7833 7834 DBEXIT(BCE_VERBOSE_MISC); 7835 return(error); 7836 } 7837 7838 7839 /****************************************************************************/ 7840 /* Transmit timeout handler. */ 7841 /* */ 7842 /* Returns: */ 7843 /* Nothing. */ 7844 /****************************************************************************/ 7845 static void 7846 bce_watchdog(struct bce_softc *sc) 7847 { 7848 uint32_t status; 7849 7850 DBENTER(BCE_EXTREME_SEND); 7851 7852 BCE_LOCK_ASSERT(sc); 7853 7854 status = 0; 7855 /* If the watchdog timer hasn't expired then just exit. */ 7856 if (sc->watchdog_timer == 0 || --sc->watchdog_timer) 7857 goto bce_watchdog_exit; 7858 7859 status = REG_RD(sc, BCE_EMAC_RX_STATUS); 7860 /* If pause frames are active then don't reset the hardware. */ 7861 if ((sc->bce_flags & BCE_USING_RX_FLOW_CONTROL) != 0) { 7862 if ((status & BCE_EMAC_RX_STATUS_FFED) != 0) { 7863 /* 7864 * If link partner has us in XOFF state then wait for 7865 * the condition to clear. 7866 */ 7867 sc->watchdog_timer = BCE_TX_TIMEOUT; 7868 goto bce_watchdog_exit; 7869 } else if ((status & BCE_EMAC_RX_STATUS_FF_RECEIVED) != 0 && 7870 (status & BCE_EMAC_RX_STATUS_N_RECEIVED) != 0) { 7871 /* 7872 * If we're not currently XOFF'ed but have recently 7873 * been XOFF'd/XON'd then assume that's delaying TX 7874 * this time around. 7875 */ 7876 sc->watchdog_timer = BCE_TX_TIMEOUT; 7877 goto bce_watchdog_exit; 7878 } 7879 /* 7880 * Any other condition is unexpected and the controller 7881 * should be reset. 7882 */ 7883 } 7884 7885 BCE_PRINTF("%s(%d): Watchdog timeout occurred, resetting!\n", 7886 __FILE__, __LINE__); 7887 7888 DBRUNMSG(BCE_INFO, 7889 bce_dump_driver_state(sc); 7890 bce_dump_status_block(sc); 7891 bce_dump_stats_block(sc); 7892 bce_dump_ftqs(sc); 7893 bce_dump_txp_state(sc, 0); 7894 bce_dump_rxp_state(sc, 0); 7895 bce_dump_tpat_state(sc, 0); 7896 bce_dump_cp_state(sc, 0); 7897 bce_dump_com_state(sc, 0)); 7898 7899 DBRUN(bce_breakpoint(sc)); 7900 7901 sc->bce_ifp->if_drv_flags &= ~IFF_DRV_RUNNING; 7902 7903 bce_init_locked(sc); 7904 sc->bce_ifp->if_oerrors++; 7905 7906 bce_watchdog_exit: 7907 REG_WR(sc, BCE_EMAC_RX_STATUS, status); 7908 DBEXIT(BCE_EXTREME_SEND); 7909 } 7910 7911 7912 /* 7913 * Interrupt handler. 7914 */ 7915 /****************************************************************************/ 7916 /* Main interrupt entry point. Verifies that the controller generated the */ 7917 /* interrupt and then calls a separate routine for handle the various */ 7918 /* interrupt causes (PHY, TX, RX). */ 7919 /* */ 7920 /* Returns: */ 7921 /* Nothing. */ 7922 /****************************************************************************/ 7923 static void 7924 bce_intr(void *xsc) 7925 { 7926 struct bce_softc *sc; 7927 struct ifnet *ifp; 7928 u32 status_attn_bits; 7929 u16 hw_rx_cons, hw_tx_cons; 7930 7931 sc = xsc; 7932 ifp = sc->bce_ifp; 7933 7934 DBENTER(BCE_VERBOSE_SEND | BCE_VERBOSE_RECV | BCE_VERBOSE_INTR); 7935 DBRUNMSG(BCE_VERBOSE_INTR, bce_dump_status_block(sc)); 7936 DBRUNMSG(BCE_VERBOSE_INTR, bce_dump_stats_block(sc)); 7937 7938 BCE_LOCK(sc); 7939 7940 DBRUN(sc->interrupts_generated++); 7941 7942 /* Synchnorize before we read from interface's status block */ 7943 bus_dmamap_sync(sc->status_tag, sc->status_map, BUS_DMASYNC_POSTREAD); 7944 7945 /* 7946 * If the hardware status block index matches the last value read 7947 * by the driver and we haven't asserted our interrupt then there's 7948 * nothing to do. This may only happen in case of INTx due to the 7949 * interrupt arriving at the CPU before the status block is updated. 7950 */ 7951 if ((sc->bce_flags & (BCE_USING_MSI_FLAG | BCE_USING_MSIX_FLAG)) == 0 && 7952 sc->status_block->status_idx == sc->last_status_idx && 7953 (REG_RD(sc, BCE_PCICFG_MISC_STATUS) & 7954 BCE_PCICFG_MISC_STATUS_INTA_VALUE)) { 7955 DBPRINT(sc, BCE_VERBOSE_INTR, "%s(): Spurious interrupt.\n", 7956 __FUNCTION__); 7957 goto bce_intr_exit; 7958 } 7959 7960 /* Ack the interrupt and stop others from occuring. */ 7961 REG_WR(sc, BCE_PCICFG_INT_ACK_CMD, 7962 BCE_PCICFG_INT_ACK_CMD_USE_INT_HC_PARAM | 7963 BCE_PCICFG_INT_ACK_CMD_MASK_INT); 7964 7965 /* Check if the hardware has finished any work. */ 7966 hw_rx_cons = bce_get_hw_rx_cons(sc); 7967 hw_tx_cons = bce_get_hw_tx_cons(sc); 7968 7969 /* Keep processing data as long as there is work to do. */ 7970 for (;;) { 7971 7972 status_attn_bits = sc->status_block->status_attn_bits; 7973 7974 DBRUNIF(DB_RANDOMTRUE(unexpected_attention_sim_control), 7975 BCE_PRINTF("Simulating unexpected status attention " 7976 "bit set."); 7977 sc->unexpected_attention_sim_count++; 7978 status_attn_bits = status_attn_bits | 7979 STATUS_ATTN_BITS_PARITY_ERROR); 7980 7981 /* Was it a link change interrupt? */ 7982 if ((status_attn_bits & STATUS_ATTN_BITS_LINK_STATE) != 7983 (sc->status_block->status_attn_bits_ack & 7984 STATUS_ATTN_BITS_LINK_STATE)) { 7985 bce_phy_intr(sc); 7986 7987 /* Clear transient updates during link state change. */ 7988 REG_WR(sc, BCE_HC_COMMAND, sc->hc_command | 7989 BCE_HC_COMMAND_COAL_NOW_WO_INT); 7990 REG_RD(sc, BCE_HC_COMMAND); 7991 } 7992 7993 /* If any other attention is asserted, the chip is toast. */ 7994 if (((status_attn_bits & ~STATUS_ATTN_BITS_LINK_STATE) != 7995 (sc->status_block->status_attn_bits_ack & 7996 ~STATUS_ATTN_BITS_LINK_STATE))) { 7997 7998 sc->unexpected_attention_count++; 7999 8000 BCE_PRINTF("%s(%d): Fatal attention detected: " 8001 "0x%08X\n", __FILE__, __LINE__, 8002 sc->status_block->status_attn_bits); 8003 8004 DBRUNMSG(BCE_FATAL, 8005 if (unexpected_attention_sim_control == 0) 8006 bce_breakpoint(sc)); 8007 8008 bce_init_locked(sc); 8009 goto bce_intr_exit; 8010 } 8011 8012 /* Check for any completed RX frames. */ 8013 if (hw_rx_cons != sc->hw_rx_cons) 8014 bce_rx_intr(sc); 8015 8016 /* Check for any completed TX frames. */ 8017 if (hw_tx_cons != sc->hw_tx_cons) 8018 bce_tx_intr(sc); 8019 8020 /* Save status block index value for the next interrupt. */ 8021 sc->last_status_idx = sc->status_block->status_idx; 8022 8023 /* 8024 * Prevent speculative reads from getting 8025 * ahead of the status block. 8026 */ 8027 bus_space_barrier(sc->bce_btag, sc->bce_bhandle, 0, 0, 8028 BUS_SPACE_BARRIER_READ); 8029 8030 /* 8031 * If there's no work left then exit the 8032 * interrupt service routine. 8033 */ 8034 hw_rx_cons = bce_get_hw_rx_cons(sc); 8035 hw_tx_cons = bce_get_hw_tx_cons(sc); 8036 8037 if ((hw_rx_cons == sc->hw_rx_cons) && 8038 (hw_tx_cons == sc->hw_tx_cons)) 8039 break; 8040 } 8041 8042 bus_dmamap_sync(sc->status_tag, sc->status_map, BUS_DMASYNC_PREREAD); 8043 8044 /* Re-enable interrupts. */ 8045 bce_enable_intr(sc, 0); 8046 8047 /* Handle any frames that arrived while handling the interrupt. */ 8048 if (ifp->if_drv_flags & IFF_DRV_RUNNING && 8049 !IFQ_DRV_IS_EMPTY(&ifp->if_snd)) 8050 bce_start_locked(ifp); 8051 8052 bce_intr_exit: 8053 BCE_UNLOCK(sc); 8054 8055 DBEXIT(BCE_VERBOSE_SEND | BCE_VERBOSE_RECV | BCE_VERBOSE_INTR); 8056 } 8057 8058 8059 /****************************************************************************/ 8060 /* Programs the various packet receive modes (broadcast and multicast). */ 8061 /* */ 8062 /* Returns: */ 8063 /* Nothing. */ 8064 /****************************************************************************/ 8065 static void 8066 bce_set_rx_mode(struct bce_softc *sc) 8067 { 8068 struct ifnet *ifp; 8069 struct ifmultiaddr *ifma; 8070 u32 hashes[NUM_MC_HASH_REGISTERS] = { 0, 0, 0, 0, 0, 0, 0, 0 }; 8071 u32 rx_mode, sort_mode; 8072 int h, i; 8073 8074 DBENTER(BCE_VERBOSE_MISC); 8075 8076 BCE_LOCK_ASSERT(sc); 8077 8078 ifp = sc->bce_ifp; 8079 8080 /* Initialize receive mode default settings. */ 8081 rx_mode = sc->rx_mode & ~(BCE_EMAC_RX_MODE_PROMISCUOUS | 8082 BCE_EMAC_RX_MODE_KEEP_VLAN_TAG); 8083 sort_mode = 1 | BCE_RPM_SORT_USER0_BC_EN; 8084 8085 /* 8086 * ASF/IPMI/UMP firmware requires that VLAN tag stripping 8087 * be enbled. 8088 */ 8089 if (!(BCE_IF_CAPABILITIES & IFCAP_VLAN_HWTAGGING) && 8090 (!(sc->bce_flags & BCE_MFW_ENABLE_FLAG))) 8091 rx_mode |= BCE_EMAC_RX_MODE_KEEP_VLAN_TAG; 8092 8093 /* 8094 * Check for promiscuous, all multicast, or selected 8095 * multicast address filtering. 8096 */ 8097 if (ifp->if_flags & IFF_PROMISC) { 8098 DBPRINT(sc, BCE_INFO_MISC, "Enabling promiscuous mode.\n"); 8099 8100 /* Enable promiscuous mode. */ 8101 rx_mode |= BCE_EMAC_RX_MODE_PROMISCUOUS; 8102 sort_mode |= BCE_RPM_SORT_USER0_PROM_EN; 8103 } else if (ifp->if_flags & IFF_ALLMULTI) { 8104 DBPRINT(sc, BCE_INFO_MISC, "Enabling all multicast mode.\n"); 8105 8106 /* Enable all multicast addresses. */ 8107 for (i = 0; i < NUM_MC_HASH_REGISTERS; i++) { 8108 REG_WR(sc, BCE_EMAC_MULTICAST_HASH0 + (i * 4), 8109 0xffffffff); 8110 } 8111 sort_mode |= BCE_RPM_SORT_USER0_MC_EN; 8112 } else { 8113 /* Accept one or more multicast(s). */ 8114 DBPRINT(sc, BCE_INFO_MISC, "Enabling selective multicast mode.\n"); 8115 8116 if_maddr_rlock(ifp); 8117 TAILQ_FOREACH(ifma, &ifp->if_multiaddrs, ifma_link) { 8118 if (ifma->ifma_addr->sa_family != AF_LINK) 8119 continue; 8120 h = ether_crc32_le(LLADDR((struct sockaddr_dl *) 8121 ifma->ifma_addr), ETHER_ADDR_LEN) & 0xFF; 8122 hashes[(h & 0xE0) >> 5] |= 1 << (h & 0x1F); 8123 } 8124 if_maddr_runlock(ifp); 8125 8126 for (i = 0; i < NUM_MC_HASH_REGISTERS; i++) 8127 REG_WR(sc, BCE_EMAC_MULTICAST_HASH0 + (i * 4), hashes[i]); 8128 8129 sort_mode |= BCE_RPM_SORT_USER0_MC_HSH_EN; 8130 } 8131 8132 /* Only make changes if the recive mode has actually changed. */ 8133 if (rx_mode != sc->rx_mode) { 8134 DBPRINT(sc, BCE_VERBOSE_MISC, "Enabling new receive mode: " 8135 "0x%08X\n", rx_mode); 8136 8137 sc->rx_mode = rx_mode; 8138 REG_WR(sc, BCE_EMAC_RX_MODE, rx_mode); 8139 } 8140 8141 /* Disable and clear the exisitng sort before enabling a new sort. */ 8142 REG_WR(sc, BCE_RPM_SORT_USER0, 0x0); 8143 REG_WR(sc, BCE_RPM_SORT_USER0, sort_mode); 8144 REG_WR(sc, BCE_RPM_SORT_USER0, sort_mode | BCE_RPM_SORT_USER0_ENA); 8145 8146 DBEXIT(BCE_VERBOSE_MISC); 8147 } 8148 8149 8150 /****************************************************************************/ 8151 /* Called periodically to updates statistics from the controllers */ 8152 /* statistics block. */ 8153 /* */ 8154 /* Returns: */ 8155 /* Nothing. */ 8156 /****************************************************************************/ 8157 static void 8158 bce_stats_update(struct bce_softc *sc) 8159 { 8160 struct ifnet *ifp; 8161 struct statistics_block *stats; 8162 8163 DBENTER(BCE_EXTREME_MISC); 8164 8165 ifp = sc->bce_ifp; 8166 8167 bus_dmamap_sync(sc->stats_tag, sc->stats_map, BUS_DMASYNC_POSTREAD); 8168 8169 stats = (struct statistics_block *) sc->stats_block; 8170 8171 /* 8172 * Certain controllers don't report 8173 * carrier sense errors correctly. 8174 * See errata E11_5708CA0_1165. 8175 */ 8176 if (!(BCE_CHIP_NUM(sc) == BCE_CHIP_NUM_5706) && 8177 !(BCE_CHIP_ID(sc) == BCE_CHIP_ID_5708_A0)) 8178 ifp->if_oerrors += 8179 (u_long) stats->stat_Dot3StatsCarrierSenseErrors; 8180 8181 /* 8182 * Update the sysctl statistics from the 8183 * hardware statistics. 8184 */ 8185 sc->stat_IfHCInOctets = 8186 ((u64) stats->stat_IfHCInOctets_hi << 32) + 8187 (u64) stats->stat_IfHCInOctets_lo; 8188 8189 sc->stat_IfHCInBadOctets = 8190 ((u64) stats->stat_IfHCInBadOctets_hi << 32) + 8191 (u64) stats->stat_IfHCInBadOctets_lo; 8192 8193 sc->stat_IfHCOutOctets = 8194 ((u64) stats->stat_IfHCOutOctets_hi << 32) + 8195 (u64) stats->stat_IfHCOutOctets_lo; 8196 8197 sc->stat_IfHCOutBadOctets = 8198 ((u64) stats->stat_IfHCOutBadOctets_hi << 32) + 8199 (u64) stats->stat_IfHCOutBadOctets_lo; 8200 8201 sc->stat_IfHCInUcastPkts = 8202 ((u64) stats->stat_IfHCInUcastPkts_hi << 32) + 8203 (u64) stats->stat_IfHCInUcastPkts_lo; 8204 8205 sc->stat_IfHCInMulticastPkts = 8206 ((u64) stats->stat_IfHCInMulticastPkts_hi << 32) + 8207 (u64) stats->stat_IfHCInMulticastPkts_lo; 8208 8209 sc->stat_IfHCInBroadcastPkts = 8210 ((u64) stats->stat_IfHCInBroadcastPkts_hi << 32) + 8211 (u64) stats->stat_IfHCInBroadcastPkts_lo; 8212 8213 sc->stat_IfHCOutUcastPkts = 8214 ((u64) stats->stat_IfHCOutUcastPkts_hi << 32) + 8215 (u64) stats->stat_IfHCOutUcastPkts_lo; 8216 8217 sc->stat_IfHCOutMulticastPkts = 8218 ((u64) stats->stat_IfHCOutMulticastPkts_hi << 32) + 8219 (u64) stats->stat_IfHCOutMulticastPkts_lo; 8220 8221 sc->stat_IfHCOutBroadcastPkts = 8222 ((u64) stats->stat_IfHCOutBroadcastPkts_hi << 32) + 8223 (u64) stats->stat_IfHCOutBroadcastPkts_lo; 8224 8225 /* ToDo: Preserve counters beyond 32 bits? */ 8226 /* ToDo: Read the statistics from auto-clear regs? */ 8227 8228 sc->stat_emac_tx_stat_dot3statsinternalmactransmiterrors = 8229 stats->stat_emac_tx_stat_dot3statsinternalmactransmiterrors; 8230 8231 sc->stat_Dot3StatsCarrierSenseErrors = 8232 stats->stat_Dot3StatsCarrierSenseErrors; 8233 8234 sc->stat_Dot3StatsFCSErrors = 8235 stats->stat_Dot3StatsFCSErrors; 8236 8237 sc->stat_Dot3StatsAlignmentErrors = 8238 stats->stat_Dot3StatsAlignmentErrors; 8239 8240 sc->stat_Dot3StatsSingleCollisionFrames = 8241 stats->stat_Dot3StatsSingleCollisionFrames; 8242 8243 sc->stat_Dot3StatsMultipleCollisionFrames = 8244 stats->stat_Dot3StatsMultipleCollisionFrames; 8245 8246 sc->stat_Dot3StatsDeferredTransmissions = 8247 stats->stat_Dot3StatsDeferredTransmissions; 8248 8249 sc->stat_Dot3StatsExcessiveCollisions = 8250 stats->stat_Dot3StatsExcessiveCollisions; 8251 8252 sc->stat_Dot3StatsLateCollisions = 8253 stats->stat_Dot3StatsLateCollisions; 8254 8255 sc->stat_EtherStatsCollisions = 8256 stats->stat_EtherStatsCollisions; 8257 8258 sc->stat_EtherStatsFragments = 8259 stats->stat_EtherStatsFragments; 8260 8261 sc->stat_EtherStatsJabbers = 8262 stats->stat_EtherStatsJabbers; 8263 8264 sc->stat_EtherStatsUndersizePkts = 8265 stats->stat_EtherStatsUndersizePkts; 8266 8267 sc->stat_EtherStatsOversizePkts = 8268 stats->stat_EtherStatsOversizePkts; 8269 8270 sc->stat_EtherStatsPktsRx64Octets = 8271 stats->stat_EtherStatsPktsRx64Octets; 8272 8273 sc->stat_EtherStatsPktsRx65Octetsto127Octets = 8274 stats->stat_EtherStatsPktsRx65Octetsto127Octets; 8275 8276 sc->stat_EtherStatsPktsRx128Octetsto255Octets = 8277 stats->stat_EtherStatsPktsRx128Octetsto255Octets; 8278 8279 sc->stat_EtherStatsPktsRx256Octetsto511Octets = 8280 stats->stat_EtherStatsPktsRx256Octetsto511Octets; 8281 8282 sc->stat_EtherStatsPktsRx512Octetsto1023Octets = 8283 stats->stat_EtherStatsPktsRx512Octetsto1023Octets; 8284 8285 sc->stat_EtherStatsPktsRx1024Octetsto1522Octets = 8286 stats->stat_EtherStatsPktsRx1024Octetsto1522Octets; 8287 8288 sc->stat_EtherStatsPktsRx1523Octetsto9022Octets = 8289 stats->stat_EtherStatsPktsRx1523Octetsto9022Octets; 8290 8291 sc->stat_EtherStatsPktsTx64Octets = 8292 stats->stat_EtherStatsPktsTx64Octets; 8293 8294 sc->stat_EtherStatsPktsTx65Octetsto127Octets = 8295 stats->stat_EtherStatsPktsTx65Octetsto127Octets; 8296 8297 sc->stat_EtherStatsPktsTx128Octetsto255Octets = 8298 stats->stat_EtherStatsPktsTx128Octetsto255Octets; 8299 8300 sc->stat_EtherStatsPktsTx256Octetsto511Octets = 8301 stats->stat_EtherStatsPktsTx256Octetsto511Octets; 8302 8303 sc->stat_EtherStatsPktsTx512Octetsto1023Octets = 8304 stats->stat_EtherStatsPktsTx512Octetsto1023Octets; 8305 8306 sc->stat_EtherStatsPktsTx1024Octetsto1522Octets = 8307 stats->stat_EtherStatsPktsTx1024Octetsto1522Octets; 8308 8309 sc->stat_EtherStatsPktsTx1523Octetsto9022Octets = 8310 stats->stat_EtherStatsPktsTx1523Octetsto9022Octets; 8311 8312 sc->stat_XonPauseFramesReceived = 8313 stats->stat_XonPauseFramesReceived; 8314 8315 sc->stat_XoffPauseFramesReceived = 8316 stats->stat_XoffPauseFramesReceived; 8317 8318 sc->stat_OutXonSent = 8319 stats->stat_OutXonSent; 8320 8321 sc->stat_OutXoffSent = 8322 stats->stat_OutXoffSent; 8323 8324 sc->stat_FlowControlDone = 8325 stats->stat_FlowControlDone; 8326 8327 sc->stat_MacControlFramesReceived = 8328 stats->stat_MacControlFramesReceived; 8329 8330 sc->stat_XoffStateEntered = 8331 stats->stat_XoffStateEntered; 8332 8333 sc->stat_IfInFramesL2FilterDiscards = 8334 stats->stat_IfInFramesL2FilterDiscards; 8335 8336 sc->stat_IfInRuleCheckerDiscards = 8337 stats->stat_IfInRuleCheckerDiscards; 8338 8339 sc->stat_IfInFTQDiscards = 8340 stats->stat_IfInFTQDiscards; 8341 8342 sc->stat_IfInMBUFDiscards = 8343 stats->stat_IfInMBUFDiscards; 8344 8345 sc->stat_IfInRuleCheckerP4Hit = 8346 stats->stat_IfInRuleCheckerP4Hit; 8347 8348 sc->stat_CatchupInRuleCheckerDiscards = 8349 stats->stat_CatchupInRuleCheckerDiscards; 8350 8351 sc->stat_CatchupInFTQDiscards = 8352 stats->stat_CatchupInFTQDiscards; 8353 8354 sc->stat_CatchupInMBUFDiscards = 8355 stats->stat_CatchupInMBUFDiscards; 8356 8357 sc->stat_CatchupInRuleCheckerP4Hit = 8358 stats->stat_CatchupInRuleCheckerP4Hit; 8359 8360 sc->com_no_buffers = REG_RD_IND(sc, 0x120084); 8361 8362 /* 8363 * Update the interface statistics from the 8364 * hardware statistics. 8365 */ 8366 ifp->if_collisions = 8367 (u_long) sc->stat_EtherStatsCollisions; 8368 8369 /* ToDo: This method loses soft errors. */ 8370 ifp->if_ierrors = 8371 (u_long) sc->stat_EtherStatsUndersizePkts + 8372 (u_long) sc->stat_EtherStatsOversizePkts + 8373 (u_long) sc->stat_IfInMBUFDiscards + 8374 (u_long) sc->stat_Dot3StatsAlignmentErrors + 8375 (u_long) sc->stat_Dot3StatsFCSErrors + 8376 (u_long) sc->stat_IfInRuleCheckerDiscards + 8377 (u_long) sc->stat_IfInFTQDiscards + 8378 (u_long) sc->com_no_buffers; 8379 8380 /* ToDo: This method loses soft errors. */ 8381 ifp->if_oerrors = 8382 (u_long) sc->stat_emac_tx_stat_dot3statsinternalmactransmiterrors + 8383 (u_long) sc->stat_Dot3StatsExcessiveCollisions + 8384 (u_long) sc->stat_Dot3StatsLateCollisions; 8385 8386 /* ToDo: Add additional statistics? */ 8387 8388 DBEXIT(BCE_EXTREME_MISC); 8389 } 8390 8391 8392 /****************************************************************************/ 8393 /* Periodic function to notify the bootcode that the driver is still */ 8394 /* present. */ 8395 /* */ 8396 /* Returns: */ 8397 /* Nothing. */ 8398 /****************************************************************************/ 8399 static void 8400 bce_pulse(void *xsc) 8401 { 8402 struct bce_softc *sc = xsc; 8403 u32 msg; 8404 8405 DBENTER(BCE_EXTREME_MISC); 8406 8407 BCE_LOCK_ASSERT(sc); 8408 8409 /* Tell the firmware that the driver is still running. */ 8410 msg = (u32) ++sc->bce_fw_drv_pulse_wr_seq; 8411 bce_shmem_wr(sc, BCE_DRV_PULSE_MB, msg); 8412 8413 /* Update the bootcode condition. */ 8414 sc->bc_state = bce_shmem_rd(sc, BCE_BC_STATE_CONDITION); 8415 8416 /* Report whether the bootcode still knows the driver is running. */ 8417 if (bce_verbose || bootverbose) { 8418 if (sc->bce_drv_cardiac_arrest == FALSE) { 8419 if (!(sc->bc_state & BCE_CONDITION_DRV_PRESENT)) { 8420 sc->bce_drv_cardiac_arrest = TRUE; 8421 BCE_PRINTF("%s(): Warning: bootcode " 8422 "thinks driver is absent! " 8423 "(bc_state = 0x%08X)\n", 8424 __FUNCTION__, sc->bc_state); 8425 } 8426 } else { 8427 /* 8428 * Not supported by all bootcode versions. 8429 * (v5.0.11+ and v5.2.1+) Older bootcode 8430 * will require the driver to reset the 8431 * controller to clear this condition. 8432 */ 8433 if (sc->bc_state & BCE_CONDITION_DRV_PRESENT) { 8434 sc->bce_drv_cardiac_arrest = FALSE; 8435 BCE_PRINTF("%s(): Bootcode found the " 8436 "driver pulse! (bc_state = 0x%08X)\n", 8437 __FUNCTION__, sc->bc_state); 8438 } 8439 } 8440 } 8441 8442 8443 /* Schedule the next pulse. */ 8444 callout_reset(&sc->bce_pulse_callout, hz, bce_pulse, sc); 8445 8446 DBEXIT(BCE_EXTREME_MISC); 8447 } 8448 8449 8450 /****************************************************************************/ 8451 /* Periodic function to perform maintenance tasks. */ 8452 /* */ 8453 /* Returns: */ 8454 /* Nothing. */ 8455 /****************************************************************************/ 8456 static void 8457 bce_tick(void *xsc) 8458 { 8459 struct bce_softc *sc = xsc; 8460 struct mii_data *mii; 8461 struct ifnet *ifp; 8462 struct ifmediareq ifmr; 8463 8464 ifp = sc->bce_ifp; 8465 8466 DBENTER(BCE_EXTREME_MISC); 8467 8468 BCE_LOCK_ASSERT(sc); 8469 8470 /* Schedule the next tick. */ 8471 callout_reset(&sc->bce_tick_callout, hz, bce_tick, sc); 8472 8473 /* Update the statistics from the hardware statistics block. */ 8474 bce_stats_update(sc); 8475 8476 /* Ensure page and RX chains get refilled in low-memory situations. */ 8477 if (bce_hdr_split == TRUE) 8478 bce_fill_pg_chain(sc); 8479 bce_fill_rx_chain(sc); 8480 8481 /* Check that chip hasn't hung. */ 8482 bce_watchdog(sc); 8483 8484 /* If link is up already up then we're done. */ 8485 if (sc->bce_link_up == TRUE) 8486 goto bce_tick_exit; 8487 8488 /* Link is down. Check what the PHY's doing. */ 8489 if ((sc->bce_phy_flags & BCE_PHY_REMOTE_CAP_FLAG) != 0) { 8490 bzero(&ifmr, sizeof(ifmr)); 8491 bce_ifmedia_sts_rphy(sc, &ifmr); 8492 if ((ifmr.ifm_status & (IFM_ACTIVE | IFM_AVALID)) == 8493 (IFM_ACTIVE | IFM_AVALID)) { 8494 sc->bce_link_up = TRUE; 8495 bce_miibus_statchg(sc->bce_dev); 8496 } 8497 } else { 8498 mii = device_get_softc(sc->bce_miibus); 8499 mii_tick(mii); 8500 /* Check if the link has come up. */ 8501 if ((mii->mii_media_status & IFM_ACTIVE) && 8502 (IFM_SUBTYPE(mii->mii_media_active) != IFM_NONE)) { 8503 DBPRINT(sc, BCE_VERBOSE_MISC, "%s(): Link up!\n", 8504 __FUNCTION__); 8505 sc->bce_link_up = TRUE; 8506 if ((IFM_SUBTYPE(mii->mii_media_active) == IFM_1000_T || 8507 IFM_SUBTYPE(mii->mii_media_active) == IFM_1000_SX || 8508 IFM_SUBTYPE(mii->mii_media_active) == IFM_2500_SX) && 8509 (bce_verbose || bootverbose)) 8510 BCE_PRINTF("Gigabit link up!\n"); 8511 } 8512 8513 } 8514 if (sc->bce_link_up == TRUE) { 8515 /* Now that link is up, handle any outstanding TX traffic. */ 8516 if (!IFQ_DRV_IS_EMPTY(&ifp->if_snd)) { 8517 DBPRINT(sc, BCE_VERBOSE_MISC, "%s(): Found " 8518 "pending TX traffic.\n", __FUNCTION__); 8519 bce_start_locked(ifp); 8520 } 8521 } 8522 8523 bce_tick_exit: 8524 DBEXIT(BCE_EXTREME_MISC); 8525 } 8526 8527 static void 8528 bce_fw_cap_init(struct bce_softc *sc) 8529 { 8530 u32 ack, cap, link; 8531 8532 ack = 0; 8533 cap = bce_shmem_rd(sc, BCE_FW_CAP_MB); 8534 if ((cap & BCE_FW_CAP_SIGNATURE_MAGIC_MASK) != 8535 BCE_FW_CAP_SIGNATURE_MAGIC) 8536 return; 8537 if ((cap & (BCE_FW_CAP_MFW_KEEP_VLAN | BCE_FW_CAP_BC_KEEP_VLAN)) == 8538 (BCE_FW_CAP_MFW_KEEP_VLAN | BCE_FW_CAP_BC_KEEP_VLAN)) 8539 ack |= BCE_DRV_ACK_CAP_SIGNATURE_MAGIC | 8540 BCE_FW_CAP_MFW_KEEP_VLAN | BCE_FW_CAP_BC_KEEP_VLAN; 8541 if ((sc->bce_phy_flags & BCE_PHY_SERDES_FLAG) != 0 && 8542 (cap & BCE_FW_CAP_REMOTE_PHY_CAP) != 0) { 8543 sc->bce_phy_flags &= ~BCE_PHY_REMOTE_PORT_FIBER_FLAG; 8544 sc->bce_phy_flags |= BCE_PHY_REMOTE_CAP_FLAG; 8545 link = bce_shmem_rd(sc, BCE_LINK_STATUS); 8546 if ((link & BCE_LINK_STATUS_SERDES_LINK) != 0) 8547 sc->bce_phy_flags |= BCE_PHY_REMOTE_PORT_FIBER_FLAG; 8548 ack |= BCE_DRV_ACK_CAP_SIGNATURE_MAGIC | 8549 BCE_FW_CAP_REMOTE_PHY_CAP; 8550 } 8551 8552 if (ack != 0) 8553 bce_shmem_wr(sc, BCE_DRV_ACK_CAP_MB, ack); 8554 } 8555 8556 8557 #ifdef BCE_DEBUG 8558 /****************************************************************************/ 8559 /* Allows the driver state to be dumped through the sysctl interface. */ 8560 /* */ 8561 /* Returns: */ 8562 /* 0 for success, positive value for failure. */ 8563 /****************************************************************************/ 8564 static int 8565 bce_sysctl_driver_state(SYSCTL_HANDLER_ARGS) 8566 { 8567 int error; 8568 int result; 8569 struct bce_softc *sc; 8570 8571 result = -1; 8572 error = sysctl_handle_int(oidp, &result, 0, req); 8573 8574 if (error || !req->newptr) 8575 return (error); 8576 8577 if (result == 1) { 8578 sc = (struct bce_softc *)arg1; 8579 bce_dump_driver_state(sc); 8580 } 8581 8582 return error; 8583 } 8584 8585 8586 /****************************************************************************/ 8587 /* Allows the hardware state to be dumped through the sysctl interface. */ 8588 /* */ 8589 /* Returns: */ 8590 /* 0 for success, positive value for failure. */ 8591 /****************************************************************************/ 8592 static int 8593 bce_sysctl_hw_state(SYSCTL_HANDLER_ARGS) 8594 { 8595 int error; 8596 int result; 8597 struct bce_softc *sc; 8598 8599 result = -1; 8600 error = sysctl_handle_int(oidp, &result, 0, req); 8601 8602 if (error || !req->newptr) 8603 return (error); 8604 8605 if (result == 1) { 8606 sc = (struct bce_softc *)arg1; 8607 bce_dump_hw_state(sc); 8608 } 8609 8610 return error; 8611 } 8612 8613 8614 /****************************************************************************/ 8615 /* Allows the status block to be dumped through the sysctl interface. */ 8616 /* */ 8617 /* Returns: */ 8618 /* 0 for success, positive value for failure. */ 8619 /****************************************************************************/ 8620 static int 8621 bce_sysctl_status_block(SYSCTL_HANDLER_ARGS) 8622 { 8623 int error; 8624 int result; 8625 struct bce_softc *sc; 8626 8627 result = -1; 8628 error = sysctl_handle_int(oidp, &result, 0, req); 8629 8630 if (error || !req->newptr) 8631 return (error); 8632 8633 if (result == 1) { 8634 sc = (struct bce_softc *)arg1; 8635 bce_dump_status_block(sc); 8636 } 8637 8638 return error; 8639 } 8640 8641 8642 /****************************************************************************/ 8643 /* Allows the stats block to be dumped through the sysctl interface. */ 8644 /* */ 8645 /* Returns: */ 8646 /* 0 for success, positive value for failure. */ 8647 /****************************************************************************/ 8648 static int 8649 bce_sysctl_stats_block(SYSCTL_HANDLER_ARGS) 8650 { 8651 int error; 8652 int result; 8653 struct bce_softc *sc; 8654 8655 result = -1; 8656 error = sysctl_handle_int(oidp, &result, 0, req); 8657 8658 if (error || !req->newptr) 8659 return (error); 8660 8661 if (result == 1) { 8662 sc = (struct bce_softc *)arg1; 8663 bce_dump_stats_block(sc); 8664 } 8665 8666 return error; 8667 } 8668 8669 8670 /****************************************************************************/ 8671 /* Allows the stat counters to be cleared without unloading/reloading the */ 8672 /* driver. */ 8673 /* */ 8674 /* Returns: */ 8675 /* 0 for success, positive value for failure. */ 8676 /****************************************************************************/ 8677 static int 8678 bce_sysctl_stats_clear(SYSCTL_HANDLER_ARGS) 8679 { 8680 int error; 8681 int result; 8682 struct bce_softc *sc; 8683 8684 result = -1; 8685 error = sysctl_handle_int(oidp, &result, 0, req); 8686 8687 if (error || !req->newptr) 8688 return (error); 8689 8690 if (result == 1) { 8691 sc = (struct bce_softc *)arg1; 8692 struct statistics_block *stats; 8693 8694 stats = (struct statistics_block *) sc->stats_block; 8695 bzero(stats, sizeof(struct statistics_block)); 8696 bus_dmamap_sync(sc->stats_tag, sc->stats_map, 8697 BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE); 8698 8699 /* Clear the internal H/W statistics counters. */ 8700 REG_WR(sc, BCE_HC_COMMAND, BCE_HC_COMMAND_CLR_STAT_NOW); 8701 8702 /* Reset the driver maintained statistics. */ 8703 sc->interrupts_rx = 8704 sc->interrupts_tx = 0; 8705 sc->tso_frames_requested = 8706 sc->tso_frames_completed = 8707 sc->tso_frames_failed = 0; 8708 sc->rx_empty_count = 8709 sc->tx_full_count = 0; 8710 sc->rx_low_watermark = USABLE_RX_BD_ALLOC; 8711 sc->tx_hi_watermark = 0; 8712 sc->l2fhdr_error_count = 8713 sc->l2fhdr_error_sim_count = 0; 8714 sc->mbuf_alloc_failed_count = 8715 sc->mbuf_alloc_failed_sim_count = 0; 8716 sc->dma_map_addr_rx_failed_count = 8717 sc->dma_map_addr_tx_failed_count = 0; 8718 sc->mbuf_frag_count = 0; 8719 sc->csum_offload_tcp_udp = 8720 sc->csum_offload_ip = 0; 8721 sc->vlan_tagged_frames_rcvd = 8722 sc->vlan_tagged_frames_stripped = 0; 8723 sc->split_header_frames_rcvd = 8724 sc->split_header_tcp_frames_rcvd = 0; 8725 8726 /* Clear firmware maintained statistics. */ 8727 REG_WR_IND(sc, 0x120084, 0); 8728 } 8729 8730 return error; 8731 } 8732 8733 8734 /****************************************************************************/ 8735 /* Allows the shared memory contents to be dumped through the sysctl . */ 8736 /* interface. */ 8737 /* */ 8738 /* Returns: */ 8739 /* 0 for success, positive value for failure. */ 8740 /****************************************************************************/ 8741 static int 8742 bce_sysctl_shmem_state(SYSCTL_HANDLER_ARGS) 8743 { 8744 int error; 8745 int result; 8746 struct bce_softc *sc; 8747 8748 result = -1; 8749 error = sysctl_handle_int(oidp, &result, 0, req); 8750 8751 if (error || !req->newptr) 8752 return (error); 8753 8754 if (result == 1) { 8755 sc = (struct bce_softc *)arg1; 8756 bce_dump_shmem_state(sc); 8757 } 8758 8759 return error; 8760 } 8761 8762 8763 /****************************************************************************/ 8764 /* Allows the bootcode state to be dumped through the sysctl interface. */ 8765 /* */ 8766 /* Returns: */ 8767 /* 0 for success, positive value for failure. */ 8768 /****************************************************************************/ 8769 static int 8770 bce_sysctl_bc_state(SYSCTL_HANDLER_ARGS) 8771 { 8772 int error; 8773 int result; 8774 struct bce_softc *sc; 8775 8776 result = -1; 8777 error = sysctl_handle_int(oidp, &result, 0, req); 8778 8779 if (error || !req->newptr) 8780 return (error); 8781 8782 if (result == 1) { 8783 sc = (struct bce_softc *)arg1; 8784 bce_dump_bc_state(sc); 8785 } 8786 8787 return error; 8788 } 8789 8790 8791 /****************************************************************************/ 8792 /* Provides a sysctl interface to allow dumping the RX BD chain. */ 8793 /* */ 8794 /* Returns: */ 8795 /* 0 for success, positive value for failure. */ 8796 /****************************************************************************/ 8797 static int 8798 bce_sysctl_dump_rx_bd_chain(SYSCTL_HANDLER_ARGS) 8799 { 8800 int error; 8801 int result; 8802 struct bce_softc *sc; 8803 8804 result = -1; 8805 error = sysctl_handle_int(oidp, &result, 0, req); 8806 8807 if (error || !req->newptr) 8808 return (error); 8809 8810 if (result == 1) { 8811 sc = (struct bce_softc *)arg1; 8812 bce_dump_rx_bd_chain(sc, 0, TOTAL_RX_BD_ALLOC); 8813 } 8814 8815 return error; 8816 } 8817 8818 8819 /****************************************************************************/ 8820 /* Provides a sysctl interface to allow dumping the RX MBUF chain. */ 8821 /* */ 8822 /* Returns: */ 8823 /* 0 for success, positive value for failure. */ 8824 /****************************************************************************/ 8825 static int 8826 bce_sysctl_dump_rx_mbuf_chain(SYSCTL_HANDLER_ARGS) 8827 { 8828 int error; 8829 int result; 8830 struct bce_softc *sc; 8831 8832 result = -1; 8833 error = sysctl_handle_int(oidp, &result, 0, req); 8834 8835 if (error || !req->newptr) 8836 return (error); 8837 8838 if (result == 1) { 8839 sc = (struct bce_softc *)arg1; 8840 bce_dump_rx_mbuf_chain(sc, 0, USABLE_RX_BD_ALLOC); 8841 } 8842 8843 return error; 8844 } 8845 8846 8847 /****************************************************************************/ 8848 /* Provides a sysctl interface to allow dumping the TX chain. */ 8849 /* */ 8850 /* Returns: */ 8851 /* 0 for success, positive value for failure. */ 8852 /****************************************************************************/ 8853 static int 8854 bce_sysctl_dump_tx_chain(SYSCTL_HANDLER_ARGS) 8855 { 8856 int error; 8857 int result; 8858 struct bce_softc *sc; 8859 8860 result = -1; 8861 error = sysctl_handle_int(oidp, &result, 0, req); 8862 8863 if (error || !req->newptr) 8864 return (error); 8865 8866 if (result == 1) { 8867 sc = (struct bce_softc *)arg1; 8868 bce_dump_tx_chain(sc, 0, TOTAL_TX_BD_ALLOC); 8869 } 8870 8871 return error; 8872 } 8873 8874 8875 /****************************************************************************/ 8876 /* Provides a sysctl interface to allow dumping the page chain. */ 8877 /* */ 8878 /* Returns: */ 8879 /* 0 for success, positive value for failure. */ 8880 /****************************************************************************/ 8881 static int 8882 bce_sysctl_dump_pg_chain(SYSCTL_HANDLER_ARGS) 8883 { 8884 int error; 8885 int result; 8886 struct bce_softc *sc; 8887 8888 result = -1; 8889 error = sysctl_handle_int(oidp, &result, 0, req); 8890 8891 if (error || !req->newptr) 8892 return (error); 8893 8894 if (result == 1) { 8895 sc = (struct bce_softc *)arg1; 8896 bce_dump_pg_chain(sc, 0, TOTAL_PG_BD_ALLOC); 8897 } 8898 8899 return error; 8900 } 8901 8902 /****************************************************************************/ 8903 /* Provides a sysctl interface to allow reading arbitrary NVRAM offsets in */ 8904 /* the device. DO NOT ENABLE ON PRODUCTION SYSTEMS! */ 8905 /* */ 8906 /* Returns: */ 8907 /* 0 for success, positive value for failure. */ 8908 /****************************************************************************/ 8909 static int 8910 bce_sysctl_nvram_read(SYSCTL_HANDLER_ARGS) 8911 { 8912 struct bce_softc *sc = (struct bce_softc *)arg1; 8913 int error; 8914 u32 result; 8915 u32 val[1]; 8916 u8 *data = (u8 *) val; 8917 8918 result = -1; 8919 error = sysctl_handle_int(oidp, &result, 0, req); 8920 if (error || (req->newptr == NULL)) 8921 return (error); 8922 8923 error = bce_nvram_read(sc, result, data, 4); 8924 8925 BCE_PRINTF("offset 0x%08X = 0x%08X\n", result, bce_be32toh(val[0])); 8926 8927 return (error); 8928 } 8929 8930 8931 /****************************************************************************/ 8932 /* Provides a sysctl interface to allow reading arbitrary registers in the */ 8933 /* device. DO NOT ENABLE ON PRODUCTION SYSTEMS! */ 8934 /* */ 8935 /* Returns: */ 8936 /* 0 for success, positive value for failure. */ 8937 /****************************************************************************/ 8938 static int 8939 bce_sysctl_reg_read(SYSCTL_HANDLER_ARGS) 8940 { 8941 struct bce_softc *sc = (struct bce_softc *)arg1; 8942 int error; 8943 u32 val, result; 8944 8945 result = -1; 8946 error = sysctl_handle_int(oidp, &result, 0, req); 8947 if (error || (req->newptr == NULL)) 8948 return (error); 8949 8950 /* Make sure the register is accessible. */ 8951 if (result < 0x8000) { 8952 val = REG_RD(sc, result); 8953 BCE_PRINTF("reg 0x%08X = 0x%08X\n", result, val); 8954 } else if (result < 0x0280000) { 8955 val = REG_RD_IND(sc, result); 8956 BCE_PRINTF("reg 0x%08X = 0x%08X\n", result, val); 8957 } 8958 8959 return (error); 8960 } 8961 8962 8963 /****************************************************************************/ 8964 /* Provides a sysctl interface to allow reading arbitrary PHY registers in */ 8965 /* the device. DO NOT ENABLE ON PRODUCTION SYSTEMS! */ 8966 /* */ 8967 /* Returns: */ 8968 /* 0 for success, positive value for failure. */ 8969 /****************************************************************************/ 8970 static int 8971 bce_sysctl_phy_read(SYSCTL_HANDLER_ARGS) 8972 { 8973 struct bce_softc *sc; 8974 device_t dev; 8975 int error, result; 8976 u16 val; 8977 8978 result = -1; 8979 error = sysctl_handle_int(oidp, &result, 0, req); 8980 if (error || (req->newptr == NULL)) 8981 return (error); 8982 8983 /* Make sure the register is accessible. */ 8984 if (result < 0x20) { 8985 sc = (struct bce_softc *)arg1; 8986 dev = sc->bce_dev; 8987 val = bce_miibus_read_reg(dev, sc->bce_phy_addr, result); 8988 BCE_PRINTF("phy 0x%02X = 0x%04X\n", result, val); 8989 } 8990 return (error); 8991 } 8992 8993 8994 /****************************************************************************/ 8995 /* Provides a sysctl interface for dumping the nvram contents. */ 8996 /* DO NOT ENABLE ON PRODUCTION SYSTEMS! */ 8997 /* */ 8998 /* Returns: */ 8999 /* 0 for success, positive errno for failure. */ 9000 /****************************************************************************/ 9001 static int 9002 bce_sysctl_nvram_dump(SYSCTL_HANDLER_ARGS) 9003 { 9004 struct bce_softc *sc = (struct bce_softc *)arg1; 9005 int error, i; 9006 9007 if (sc->nvram_buf == NULL) 9008 sc->nvram_buf = malloc(sc->bce_flash_size, 9009 M_TEMP, M_ZERO | M_WAITOK); 9010 9011 error = 0; 9012 if (req->oldlen == sc->bce_flash_size) { 9013 for (i = 0; i < sc->bce_flash_size && error == 0; i++) 9014 error = bce_nvram_read(sc, i, &sc->nvram_buf[i], 1); 9015 } 9016 9017 if (error == 0) 9018 error = SYSCTL_OUT(req, sc->nvram_buf, sc->bce_flash_size); 9019 9020 return error; 9021 } 9022 9023 #ifdef BCE_NVRAM_WRITE_SUPPORT 9024 /****************************************************************************/ 9025 /* Provides a sysctl interface for writing to nvram. */ 9026 /* DO NOT ENABLE ON PRODUCTION SYSTEMS! */ 9027 /* */ 9028 /* Returns: */ 9029 /* 0 for success, positive errno for failure. */ 9030 /****************************************************************************/ 9031 static int 9032 bce_sysctl_nvram_write(SYSCTL_HANDLER_ARGS) 9033 { 9034 struct bce_softc *sc = (struct bce_softc *)arg1; 9035 int error; 9036 9037 if (sc->nvram_buf == NULL) 9038 sc->nvram_buf = malloc(sc->bce_flash_size, 9039 M_TEMP, M_ZERO | M_WAITOK); 9040 else 9041 bzero(sc->nvram_buf, sc->bce_flash_size); 9042 9043 error = SYSCTL_IN(req, sc->nvram_buf, sc->bce_flash_size); 9044 if (error == 0) 9045 return (error); 9046 9047 if (req->newlen == sc->bce_flash_size) 9048 error = bce_nvram_write(sc, 0, sc->nvram_buf, 9049 sc->bce_flash_size); 9050 9051 9052 return error; 9053 } 9054 #endif 9055 9056 9057 /****************************************************************************/ 9058 /* Provides a sysctl interface to allow reading a CID. */ 9059 /* */ 9060 /* Returns: */ 9061 /* 0 for success, positive value for failure. */ 9062 /****************************************************************************/ 9063 static int 9064 bce_sysctl_dump_ctx(SYSCTL_HANDLER_ARGS) 9065 { 9066 struct bce_softc *sc; 9067 int error, result; 9068 9069 result = -1; 9070 error = sysctl_handle_int(oidp, &result, 0, req); 9071 if (error || (req->newptr == NULL)) 9072 return (error); 9073 9074 /* Make sure the register is accessible. */ 9075 if (result <= TX_CID) { 9076 sc = (struct bce_softc *)arg1; 9077 bce_dump_ctx(sc, result); 9078 } 9079 9080 return (error); 9081 } 9082 9083 9084 /****************************************************************************/ 9085 /* Provides a sysctl interface to forcing the driver to dump state and */ 9086 /* enter the debugger. DO NOT ENABLE ON PRODUCTION SYSTEMS! */ 9087 /* */ 9088 /* Returns: */ 9089 /* 0 for success, positive value for failure. */ 9090 /****************************************************************************/ 9091 static int 9092 bce_sysctl_breakpoint(SYSCTL_HANDLER_ARGS) 9093 { 9094 int error; 9095 int result; 9096 struct bce_softc *sc; 9097 9098 result = -1; 9099 error = sysctl_handle_int(oidp, &result, 0, req); 9100 9101 if (error || !req->newptr) 9102 return (error); 9103 9104 if (result == 1) { 9105 sc = (struct bce_softc *)arg1; 9106 bce_breakpoint(sc); 9107 } 9108 9109 return error; 9110 } 9111 #endif 9112 9113 /****************************************************************************/ 9114 /* Adds any sysctl parameters for tuning or debugging purposes. */ 9115 /* */ 9116 /* Returns: */ 9117 /* 0 for success, positive value for failure. */ 9118 /****************************************************************************/ 9119 static void 9120 bce_add_sysctls(struct bce_softc *sc) 9121 { 9122 struct sysctl_ctx_list *ctx; 9123 struct sysctl_oid_list *children; 9124 9125 DBENTER(BCE_VERBOSE_MISC); 9126 9127 ctx = device_get_sysctl_ctx(sc->bce_dev); 9128 children = SYSCTL_CHILDREN(device_get_sysctl_tree(sc->bce_dev)); 9129 9130 #ifdef BCE_DEBUG 9131 SYSCTL_ADD_INT(ctx, children, OID_AUTO, 9132 "l2fhdr_error_sim_control", 9133 CTLFLAG_RW, &l2fhdr_error_sim_control, 9134 0, "Debug control to force l2fhdr errors"); 9135 9136 SYSCTL_ADD_INT(ctx, children, OID_AUTO, 9137 "l2fhdr_error_sim_count", 9138 CTLFLAG_RD, &sc->l2fhdr_error_sim_count, 9139 0, "Number of simulated l2_fhdr errors"); 9140 #endif 9141 9142 SYSCTL_ADD_UINT(ctx, children, OID_AUTO, 9143 "l2fhdr_error_count", 9144 CTLFLAG_RD, &sc->l2fhdr_error_count, 9145 0, "Number of l2_fhdr errors"); 9146 9147 #ifdef BCE_DEBUG 9148 SYSCTL_ADD_INT(ctx, children, OID_AUTO, 9149 "mbuf_alloc_failed_sim_control", 9150 CTLFLAG_RW, &mbuf_alloc_failed_sim_control, 9151 0, "Debug control to force mbuf allocation failures"); 9152 9153 SYSCTL_ADD_UINT(ctx, children, OID_AUTO, 9154 "mbuf_alloc_failed_sim_count", 9155 CTLFLAG_RD, &sc->mbuf_alloc_failed_sim_count, 9156 0, "Number of simulated mbuf cluster allocation failures"); 9157 #endif 9158 9159 SYSCTL_ADD_UINT(ctx, children, OID_AUTO, 9160 "mbuf_alloc_failed_count", 9161 CTLFLAG_RD, &sc->mbuf_alloc_failed_count, 9162 0, "Number of mbuf allocation failures"); 9163 9164 SYSCTL_ADD_UINT(ctx, children, OID_AUTO, 9165 "mbuf_frag_count", 9166 CTLFLAG_RD, &sc->mbuf_frag_count, 9167 0, "Number of fragmented mbufs"); 9168 9169 #ifdef BCE_DEBUG 9170 SYSCTL_ADD_INT(ctx, children, OID_AUTO, 9171 "dma_map_addr_failed_sim_control", 9172 CTLFLAG_RW, &dma_map_addr_failed_sim_control, 9173 0, "Debug control to force DMA mapping failures"); 9174 9175 /* ToDo: Figure out how to update this value in bce_dma_map_addr(). */ 9176 SYSCTL_ADD_UINT(ctx, children, OID_AUTO, 9177 "dma_map_addr_failed_sim_count", 9178 CTLFLAG_RD, &sc->dma_map_addr_failed_sim_count, 9179 0, "Number of simulated DMA mapping failures"); 9180 9181 #endif 9182 9183 SYSCTL_ADD_UINT(ctx, children, OID_AUTO, 9184 "dma_map_addr_rx_failed_count", 9185 CTLFLAG_RD, &sc->dma_map_addr_rx_failed_count, 9186 0, "Number of RX DMA mapping failures"); 9187 9188 SYSCTL_ADD_UINT(ctx, children, OID_AUTO, 9189 "dma_map_addr_tx_failed_count", 9190 CTLFLAG_RD, &sc->dma_map_addr_tx_failed_count, 9191 0, "Number of TX DMA mapping failures"); 9192 9193 #ifdef BCE_DEBUG 9194 SYSCTL_ADD_INT(ctx, children, OID_AUTO, 9195 "unexpected_attention_sim_control", 9196 CTLFLAG_RW, &unexpected_attention_sim_control, 9197 0, "Debug control to simulate unexpected attentions"); 9198 9199 SYSCTL_ADD_UINT(ctx, children, OID_AUTO, 9200 "unexpected_attention_sim_count", 9201 CTLFLAG_RW, &sc->unexpected_attention_sim_count, 9202 0, "Number of simulated unexpected attentions"); 9203 #endif 9204 9205 SYSCTL_ADD_UINT(ctx, children, OID_AUTO, 9206 "unexpected_attention_count", 9207 CTLFLAG_RW, &sc->unexpected_attention_count, 9208 0, "Number of unexpected attentions"); 9209 9210 #ifdef BCE_DEBUG 9211 SYSCTL_ADD_INT(ctx, children, OID_AUTO, 9212 "debug_bootcode_running_failure", 9213 CTLFLAG_RW, &bootcode_running_failure_sim_control, 9214 0, "Debug control to force bootcode running failures"); 9215 9216 SYSCTL_ADD_INT(ctx, children, OID_AUTO, 9217 "rx_low_watermark", 9218 CTLFLAG_RD, &sc->rx_low_watermark, 9219 0, "Lowest level of free rx_bd's"); 9220 9221 SYSCTL_ADD_QUAD(ctx, children, OID_AUTO, 9222 "rx_empty_count", 9223 CTLFLAG_RD, &sc->rx_empty_count, 9224 "Number of times the RX chain was empty"); 9225 9226 SYSCTL_ADD_INT(ctx, children, OID_AUTO, 9227 "tx_hi_watermark", 9228 CTLFLAG_RD, &sc->tx_hi_watermark, 9229 0, "Highest level of used tx_bd's"); 9230 9231 SYSCTL_ADD_QUAD(ctx, children, OID_AUTO, 9232 "tx_full_count", 9233 CTLFLAG_RD, &sc->tx_full_count, 9234 "Number of times the TX chain was full"); 9235 9236 SYSCTL_ADD_QUAD(ctx, children, OID_AUTO, 9237 "tso_frames_requested", 9238 CTLFLAG_RD, &sc->tso_frames_requested, 9239 "Number of TSO frames requested"); 9240 9241 SYSCTL_ADD_QUAD(ctx, children, OID_AUTO, 9242 "tso_frames_completed", 9243 CTLFLAG_RD, &sc->tso_frames_completed, 9244 "Number of TSO frames completed"); 9245 9246 SYSCTL_ADD_QUAD(ctx, children, OID_AUTO, 9247 "tso_frames_failed", 9248 CTLFLAG_RD, &sc->tso_frames_failed, 9249 "Number of TSO frames failed"); 9250 9251 SYSCTL_ADD_QUAD(ctx, children, OID_AUTO, 9252 "csum_offload_ip", 9253 CTLFLAG_RD, &sc->csum_offload_ip, 9254 "Number of IP checksum offload frames"); 9255 9256 SYSCTL_ADD_QUAD(ctx, children, OID_AUTO, 9257 "csum_offload_tcp_udp", 9258 CTLFLAG_RD, &sc->csum_offload_tcp_udp, 9259 "Number of TCP/UDP checksum offload frames"); 9260 9261 SYSCTL_ADD_QUAD(ctx, children, OID_AUTO, 9262 "vlan_tagged_frames_rcvd", 9263 CTLFLAG_RD, &sc->vlan_tagged_frames_rcvd, 9264 "Number of VLAN tagged frames received"); 9265 9266 SYSCTL_ADD_QUAD(ctx, children, OID_AUTO, 9267 "vlan_tagged_frames_stripped", 9268 CTLFLAG_RD, &sc->vlan_tagged_frames_stripped, 9269 "Number of VLAN tagged frames stripped"); 9270 9271 SYSCTL_ADD_QUAD(ctx, children, OID_AUTO, 9272 "interrupts_rx", 9273 CTLFLAG_RD, &sc->interrupts_rx, 9274 "Number of RX interrupts"); 9275 9276 SYSCTL_ADD_QUAD(ctx, children, OID_AUTO, 9277 "interrupts_tx", 9278 CTLFLAG_RD, &sc->interrupts_tx, 9279 "Number of TX interrupts"); 9280 9281 if (bce_hdr_split == TRUE) { 9282 SYSCTL_ADD_QUAD(ctx, children, OID_AUTO, 9283 "split_header_frames_rcvd", 9284 CTLFLAG_RD, &sc->split_header_frames_rcvd, 9285 "Number of split header frames received"); 9286 9287 SYSCTL_ADD_QUAD(ctx, children, OID_AUTO, 9288 "split_header_tcp_frames_rcvd", 9289 CTLFLAG_RD, &sc->split_header_tcp_frames_rcvd, 9290 "Number of split header TCP frames received"); 9291 } 9292 9293 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, 9294 "nvram_dump", CTLTYPE_OPAQUE | CTLFLAG_RD, 9295 (void *)sc, 0, 9296 bce_sysctl_nvram_dump, "S", ""); 9297 9298 #ifdef BCE_NVRAM_WRITE_SUPPORT 9299 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, 9300 "nvram_write", CTLTYPE_OPAQUE | CTLFLAG_WR, 9301 (void *)sc, 0, 9302 bce_sysctl_nvram_write, "S", ""); 9303 #endif 9304 #endif /* BCE_DEBUG */ 9305 9306 SYSCTL_ADD_QUAD(ctx, children, OID_AUTO, 9307 "stat_IfHcInOctets", 9308 CTLFLAG_RD, &sc->stat_IfHCInOctets, 9309 "Bytes received"); 9310 9311 SYSCTL_ADD_QUAD(ctx, children, OID_AUTO, 9312 "stat_IfHCInBadOctets", 9313 CTLFLAG_RD, &sc->stat_IfHCInBadOctets, 9314 "Bad bytes received"); 9315 9316 SYSCTL_ADD_QUAD(ctx, children, OID_AUTO, 9317 "stat_IfHCOutOctets", 9318 CTLFLAG_RD, &sc->stat_IfHCOutOctets, 9319 "Bytes sent"); 9320 9321 SYSCTL_ADD_QUAD(ctx, children, OID_AUTO, 9322 "stat_IfHCOutBadOctets", 9323 CTLFLAG_RD, &sc->stat_IfHCOutBadOctets, 9324 "Bad bytes sent"); 9325 9326 SYSCTL_ADD_QUAD(ctx, children, OID_AUTO, 9327 "stat_IfHCInUcastPkts", 9328 CTLFLAG_RD, &sc->stat_IfHCInUcastPkts, 9329 "Unicast packets received"); 9330 9331 SYSCTL_ADD_QUAD(ctx, children, OID_AUTO, 9332 "stat_IfHCInMulticastPkts", 9333 CTLFLAG_RD, &sc->stat_IfHCInMulticastPkts, 9334 "Multicast packets received"); 9335 9336 SYSCTL_ADD_QUAD(ctx, children, OID_AUTO, 9337 "stat_IfHCInBroadcastPkts", 9338 CTLFLAG_RD, &sc->stat_IfHCInBroadcastPkts, 9339 "Broadcast packets received"); 9340 9341 SYSCTL_ADD_QUAD(ctx, children, OID_AUTO, 9342 "stat_IfHCOutUcastPkts", 9343 CTLFLAG_RD, &sc->stat_IfHCOutUcastPkts, 9344 "Unicast packets sent"); 9345 9346 SYSCTL_ADD_QUAD(ctx, children, OID_AUTO, 9347 "stat_IfHCOutMulticastPkts", 9348 CTLFLAG_RD, &sc->stat_IfHCOutMulticastPkts, 9349 "Multicast packets sent"); 9350 9351 SYSCTL_ADD_QUAD(ctx, children, OID_AUTO, 9352 "stat_IfHCOutBroadcastPkts", 9353 CTLFLAG_RD, &sc->stat_IfHCOutBroadcastPkts, 9354 "Broadcast packets sent"); 9355 9356 SYSCTL_ADD_UINT(ctx, children, OID_AUTO, 9357 "stat_emac_tx_stat_dot3statsinternalmactransmiterrors", 9358 CTLFLAG_RD, &sc->stat_emac_tx_stat_dot3statsinternalmactransmiterrors, 9359 0, "Internal MAC transmit errors"); 9360 9361 SYSCTL_ADD_UINT(ctx, children, OID_AUTO, 9362 "stat_Dot3StatsCarrierSenseErrors", 9363 CTLFLAG_RD, &sc->stat_Dot3StatsCarrierSenseErrors, 9364 0, "Carrier sense errors"); 9365 9366 SYSCTL_ADD_UINT(ctx, children, OID_AUTO, 9367 "stat_Dot3StatsFCSErrors", 9368 CTLFLAG_RD, &sc->stat_Dot3StatsFCSErrors, 9369 0, "Frame check sequence errors"); 9370 9371 SYSCTL_ADD_UINT(ctx, children, OID_AUTO, 9372 "stat_Dot3StatsAlignmentErrors", 9373 CTLFLAG_RD, &sc->stat_Dot3StatsAlignmentErrors, 9374 0, "Alignment errors"); 9375 9376 SYSCTL_ADD_UINT(ctx, children, OID_AUTO, 9377 "stat_Dot3StatsSingleCollisionFrames", 9378 CTLFLAG_RD, &sc->stat_Dot3StatsSingleCollisionFrames, 9379 0, "Single Collision Frames"); 9380 9381 SYSCTL_ADD_UINT(ctx, children, OID_AUTO, 9382 "stat_Dot3StatsMultipleCollisionFrames", 9383 CTLFLAG_RD, &sc->stat_Dot3StatsMultipleCollisionFrames, 9384 0, "Multiple Collision Frames"); 9385 9386 SYSCTL_ADD_UINT(ctx, children, OID_AUTO, 9387 "stat_Dot3StatsDeferredTransmissions", 9388 CTLFLAG_RD, &sc->stat_Dot3StatsDeferredTransmissions, 9389 0, "Deferred Transmissions"); 9390 9391 SYSCTL_ADD_UINT(ctx, children, OID_AUTO, 9392 "stat_Dot3StatsExcessiveCollisions", 9393 CTLFLAG_RD, &sc->stat_Dot3StatsExcessiveCollisions, 9394 0, "Excessive Collisions"); 9395 9396 SYSCTL_ADD_UINT(ctx, children, OID_AUTO, 9397 "stat_Dot3StatsLateCollisions", 9398 CTLFLAG_RD, &sc->stat_Dot3StatsLateCollisions, 9399 0, "Late Collisions"); 9400 9401 SYSCTL_ADD_UINT(ctx, children, OID_AUTO, 9402 "stat_EtherStatsCollisions", 9403 CTLFLAG_RD, &sc->stat_EtherStatsCollisions, 9404 0, "Collisions"); 9405 9406 SYSCTL_ADD_UINT(ctx, children, OID_AUTO, 9407 "stat_EtherStatsFragments", 9408 CTLFLAG_RD, &sc->stat_EtherStatsFragments, 9409 0, "Fragments"); 9410 9411 SYSCTL_ADD_UINT(ctx, children, OID_AUTO, 9412 "stat_EtherStatsJabbers", 9413 CTLFLAG_RD, &sc->stat_EtherStatsJabbers, 9414 0, "Jabbers"); 9415 9416 SYSCTL_ADD_UINT(ctx, children, OID_AUTO, 9417 "stat_EtherStatsUndersizePkts", 9418 CTLFLAG_RD, &sc->stat_EtherStatsUndersizePkts, 9419 0, "Undersize packets"); 9420 9421 SYSCTL_ADD_UINT(ctx, children, OID_AUTO, 9422 "stat_EtherStatsOversizePkts", 9423 CTLFLAG_RD, &sc->stat_EtherStatsOversizePkts, 9424 0, "stat_EtherStatsOversizePkts"); 9425 9426 SYSCTL_ADD_UINT(ctx, children, OID_AUTO, 9427 "stat_EtherStatsPktsRx64Octets", 9428 CTLFLAG_RD, &sc->stat_EtherStatsPktsRx64Octets, 9429 0, "Bytes received in 64 byte packets"); 9430 9431 SYSCTL_ADD_UINT(ctx, children, OID_AUTO, 9432 "stat_EtherStatsPktsRx65Octetsto127Octets", 9433 CTLFLAG_RD, &sc->stat_EtherStatsPktsRx65Octetsto127Octets, 9434 0, "Bytes received in 65 to 127 byte packets"); 9435 9436 SYSCTL_ADD_UINT(ctx, children, OID_AUTO, 9437 "stat_EtherStatsPktsRx128Octetsto255Octets", 9438 CTLFLAG_RD, &sc->stat_EtherStatsPktsRx128Octetsto255Octets, 9439 0, "Bytes received in 128 to 255 byte packets"); 9440 9441 SYSCTL_ADD_UINT(ctx, children, OID_AUTO, 9442 "stat_EtherStatsPktsRx256Octetsto511Octets", 9443 CTLFLAG_RD, &sc->stat_EtherStatsPktsRx256Octetsto511Octets, 9444 0, "Bytes received in 256 to 511 byte packets"); 9445 9446 SYSCTL_ADD_UINT(ctx, children, OID_AUTO, 9447 "stat_EtherStatsPktsRx512Octetsto1023Octets", 9448 CTLFLAG_RD, &sc->stat_EtherStatsPktsRx512Octetsto1023Octets, 9449 0, "Bytes received in 512 to 1023 byte packets"); 9450 9451 SYSCTL_ADD_UINT(ctx, children, OID_AUTO, 9452 "stat_EtherStatsPktsRx1024Octetsto1522Octets", 9453 CTLFLAG_RD, &sc->stat_EtherStatsPktsRx1024Octetsto1522Octets, 9454 0, "Bytes received in 1024 t0 1522 byte packets"); 9455 9456 SYSCTL_ADD_UINT(ctx, children, OID_AUTO, 9457 "stat_EtherStatsPktsRx1523Octetsto9022Octets", 9458 CTLFLAG_RD, &sc->stat_EtherStatsPktsRx1523Octetsto9022Octets, 9459 0, "Bytes received in 1523 to 9022 byte packets"); 9460 9461 SYSCTL_ADD_UINT(ctx, children, OID_AUTO, 9462 "stat_EtherStatsPktsTx64Octets", 9463 CTLFLAG_RD, &sc->stat_EtherStatsPktsTx64Octets, 9464 0, "Bytes sent in 64 byte packets"); 9465 9466 SYSCTL_ADD_UINT(ctx, children, OID_AUTO, 9467 "stat_EtherStatsPktsTx65Octetsto127Octets", 9468 CTLFLAG_RD, &sc->stat_EtherStatsPktsTx65Octetsto127Octets, 9469 0, "Bytes sent in 65 to 127 byte packets"); 9470 9471 SYSCTL_ADD_UINT(ctx, children, OID_AUTO, 9472 "stat_EtherStatsPktsTx128Octetsto255Octets", 9473 CTLFLAG_RD, &sc->stat_EtherStatsPktsTx128Octetsto255Octets, 9474 0, "Bytes sent in 128 to 255 byte packets"); 9475 9476 SYSCTL_ADD_UINT(ctx, children, OID_AUTO, 9477 "stat_EtherStatsPktsTx256Octetsto511Octets", 9478 CTLFLAG_RD, &sc->stat_EtherStatsPktsTx256Octetsto511Octets, 9479 0, "Bytes sent in 256 to 511 byte packets"); 9480 9481 SYSCTL_ADD_UINT(ctx, children, OID_AUTO, 9482 "stat_EtherStatsPktsTx512Octetsto1023Octets", 9483 CTLFLAG_RD, &sc->stat_EtherStatsPktsTx512Octetsto1023Octets, 9484 0, "Bytes sent in 512 to 1023 byte packets"); 9485 9486 SYSCTL_ADD_UINT(ctx, children, OID_AUTO, 9487 "stat_EtherStatsPktsTx1024Octetsto1522Octets", 9488 CTLFLAG_RD, &sc->stat_EtherStatsPktsTx1024Octetsto1522Octets, 9489 0, "Bytes sent in 1024 to 1522 byte packets"); 9490 9491 SYSCTL_ADD_UINT(ctx, children, OID_AUTO, 9492 "stat_EtherStatsPktsTx1523Octetsto9022Octets", 9493 CTLFLAG_RD, &sc->stat_EtherStatsPktsTx1523Octetsto9022Octets, 9494 0, "Bytes sent in 1523 to 9022 byte packets"); 9495 9496 SYSCTL_ADD_UINT(ctx, children, OID_AUTO, 9497 "stat_XonPauseFramesReceived", 9498 CTLFLAG_RD, &sc->stat_XonPauseFramesReceived, 9499 0, "XON pause frames receved"); 9500 9501 SYSCTL_ADD_UINT(ctx, children, OID_AUTO, 9502 "stat_XoffPauseFramesReceived", 9503 CTLFLAG_RD, &sc->stat_XoffPauseFramesReceived, 9504 0, "XOFF pause frames received"); 9505 9506 SYSCTL_ADD_UINT(ctx, children, OID_AUTO, 9507 "stat_OutXonSent", 9508 CTLFLAG_RD, &sc->stat_OutXonSent, 9509 0, "XON pause frames sent"); 9510 9511 SYSCTL_ADD_UINT(ctx, children, OID_AUTO, 9512 "stat_OutXoffSent", 9513 CTLFLAG_RD, &sc->stat_OutXoffSent, 9514 0, "XOFF pause frames sent"); 9515 9516 SYSCTL_ADD_UINT(ctx, children, OID_AUTO, 9517 "stat_FlowControlDone", 9518 CTLFLAG_RD, &sc->stat_FlowControlDone, 9519 0, "Flow control done"); 9520 9521 SYSCTL_ADD_UINT(ctx, children, OID_AUTO, 9522 "stat_MacControlFramesReceived", 9523 CTLFLAG_RD, &sc->stat_MacControlFramesReceived, 9524 0, "MAC control frames received"); 9525 9526 SYSCTL_ADD_UINT(ctx, children, OID_AUTO, 9527 "stat_XoffStateEntered", 9528 CTLFLAG_RD, &sc->stat_XoffStateEntered, 9529 0, "XOFF state entered"); 9530 9531 SYSCTL_ADD_UINT(ctx, children, OID_AUTO, 9532 "stat_IfInFramesL2FilterDiscards", 9533 CTLFLAG_RD, &sc->stat_IfInFramesL2FilterDiscards, 9534 0, "Received L2 packets discarded"); 9535 9536 SYSCTL_ADD_UINT(ctx, children, OID_AUTO, 9537 "stat_IfInRuleCheckerDiscards", 9538 CTLFLAG_RD, &sc->stat_IfInRuleCheckerDiscards, 9539 0, "Received packets discarded by rule"); 9540 9541 SYSCTL_ADD_UINT(ctx, children, OID_AUTO, 9542 "stat_IfInFTQDiscards", 9543 CTLFLAG_RD, &sc->stat_IfInFTQDiscards, 9544 0, "Received packet FTQ discards"); 9545 9546 SYSCTL_ADD_UINT(ctx, children, OID_AUTO, 9547 "stat_IfInMBUFDiscards", 9548 CTLFLAG_RD, &sc->stat_IfInMBUFDiscards, 9549 0, "Received packets discarded due to lack " 9550 "of controller buffer memory"); 9551 9552 SYSCTL_ADD_UINT(ctx, children, OID_AUTO, 9553 "stat_IfInRuleCheckerP4Hit", 9554 CTLFLAG_RD, &sc->stat_IfInRuleCheckerP4Hit, 9555 0, "Received packets rule checker hits"); 9556 9557 SYSCTL_ADD_UINT(ctx, children, OID_AUTO, 9558 "stat_CatchupInRuleCheckerDiscards", 9559 CTLFLAG_RD, &sc->stat_CatchupInRuleCheckerDiscards, 9560 0, "Received packets discarded in Catchup path"); 9561 9562 SYSCTL_ADD_UINT(ctx, children, OID_AUTO, 9563 "stat_CatchupInFTQDiscards", 9564 CTLFLAG_RD, &sc->stat_CatchupInFTQDiscards, 9565 0, "Received packets discarded in FTQ in Catchup path"); 9566 9567 SYSCTL_ADD_UINT(ctx, children, OID_AUTO, 9568 "stat_CatchupInMBUFDiscards", 9569 CTLFLAG_RD, &sc->stat_CatchupInMBUFDiscards, 9570 0, "Received packets discarded in controller " 9571 "buffer memory in Catchup path"); 9572 9573 SYSCTL_ADD_UINT(ctx, children, OID_AUTO, 9574 "stat_CatchupInRuleCheckerP4Hit", 9575 CTLFLAG_RD, &sc->stat_CatchupInRuleCheckerP4Hit, 9576 0, "Received packets rule checker hits in Catchup path"); 9577 9578 SYSCTL_ADD_UINT(ctx, children, OID_AUTO, 9579 "com_no_buffers", 9580 CTLFLAG_RD, &sc->com_no_buffers, 9581 0, "Valid packets received but no RX buffers available"); 9582 9583 #ifdef BCE_DEBUG 9584 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, 9585 "driver_state", CTLTYPE_INT | CTLFLAG_RW, 9586 (void *)sc, 0, 9587 bce_sysctl_driver_state, "I", "Drive state information"); 9588 9589 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, 9590 "hw_state", CTLTYPE_INT | CTLFLAG_RW, 9591 (void *)sc, 0, 9592 bce_sysctl_hw_state, "I", "Hardware state information"); 9593 9594 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, 9595 "status_block", CTLTYPE_INT | CTLFLAG_RW, 9596 (void *)sc, 0, 9597 bce_sysctl_status_block, "I", "Dump status block"); 9598 9599 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, 9600 "stats_block", CTLTYPE_INT | CTLFLAG_RW, 9601 (void *)sc, 0, 9602 bce_sysctl_stats_block, "I", "Dump statistics block"); 9603 9604 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, 9605 "stats_clear", CTLTYPE_INT | CTLFLAG_RW, 9606 (void *)sc, 0, 9607 bce_sysctl_stats_clear, "I", "Clear statistics block"); 9608 9609 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, 9610 "shmem_state", CTLTYPE_INT | CTLFLAG_RW, 9611 (void *)sc, 0, 9612 bce_sysctl_shmem_state, "I", "Shared memory state information"); 9613 9614 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, 9615 "bc_state", CTLTYPE_INT | CTLFLAG_RW, 9616 (void *)sc, 0, 9617 bce_sysctl_bc_state, "I", "Bootcode state information"); 9618 9619 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, 9620 "dump_rx_bd_chain", CTLTYPE_INT | CTLFLAG_RW, 9621 (void *)sc, 0, 9622 bce_sysctl_dump_rx_bd_chain, "I", "Dump RX BD chain"); 9623 9624 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, 9625 "dump_rx_mbuf_chain", CTLTYPE_INT | CTLFLAG_RW, 9626 (void *)sc, 0, 9627 bce_sysctl_dump_rx_mbuf_chain, "I", "Dump RX MBUF chain"); 9628 9629 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, 9630 "dump_tx_chain", CTLTYPE_INT | CTLFLAG_RW, 9631 (void *)sc, 0, 9632 bce_sysctl_dump_tx_chain, "I", "Dump tx_bd chain"); 9633 9634 if (bce_hdr_split == TRUE) { 9635 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, 9636 "dump_pg_chain", CTLTYPE_INT | CTLFLAG_RW, 9637 (void *)sc, 0, 9638 bce_sysctl_dump_pg_chain, "I", "Dump page chain"); 9639 } 9640 9641 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, 9642 "dump_ctx", CTLTYPE_INT | CTLFLAG_RW, 9643 (void *)sc, 0, 9644 bce_sysctl_dump_ctx, "I", "Dump context memory"); 9645 9646 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, 9647 "breakpoint", CTLTYPE_INT | CTLFLAG_RW, 9648 (void *)sc, 0, 9649 bce_sysctl_breakpoint, "I", "Driver breakpoint"); 9650 9651 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, 9652 "reg_read", CTLTYPE_INT | CTLFLAG_RW, 9653 (void *)sc, 0, 9654 bce_sysctl_reg_read, "I", "Register read"); 9655 9656 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, 9657 "nvram_read", CTLTYPE_INT | CTLFLAG_RW, 9658 (void *)sc, 0, 9659 bce_sysctl_nvram_read, "I", "NVRAM read"); 9660 9661 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, 9662 "phy_read", CTLTYPE_INT | CTLFLAG_RW, 9663 (void *)sc, 0, 9664 bce_sysctl_phy_read, "I", "PHY register read"); 9665 9666 #endif 9667 9668 DBEXIT(BCE_VERBOSE_MISC); 9669 } 9670 9671 9672 /****************************************************************************/ 9673 /* BCE Debug Routines */ 9674 /****************************************************************************/ 9675 #ifdef BCE_DEBUG 9676 9677 /****************************************************************************/ 9678 /* Freezes the controller to allow for a cohesive state dump. */ 9679 /* */ 9680 /* Returns: */ 9681 /* Nothing. */ 9682 /****************************************************************************/ 9683 static __attribute__ ((noinline)) void 9684 bce_freeze_controller(struct bce_softc *sc) 9685 { 9686 u32 val; 9687 val = REG_RD(sc, BCE_MISC_COMMAND); 9688 val |= BCE_MISC_COMMAND_DISABLE_ALL; 9689 REG_WR(sc, BCE_MISC_COMMAND, val); 9690 } 9691 9692 9693 /****************************************************************************/ 9694 /* Unfreezes the controller after a freeze operation. This may not always */ 9695 /* work and the controller will require a reset! */ 9696 /* */ 9697 /* Returns: */ 9698 /* Nothing. */ 9699 /****************************************************************************/ 9700 static __attribute__ ((noinline)) void 9701 bce_unfreeze_controller(struct bce_softc *sc) 9702 { 9703 u32 val; 9704 val = REG_RD(sc, BCE_MISC_COMMAND); 9705 val |= BCE_MISC_COMMAND_ENABLE_ALL; 9706 REG_WR(sc, BCE_MISC_COMMAND, val); 9707 } 9708 9709 9710 /****************************************************************************/ 9711 /* Prints out Ethernet frame information from an mbuf. */ 9712 /* */ 9713 /* Partially decode an Ethernet frame to look at some important headers. */ 9714 /* */ 9715 /* Returns: */ 9716 /* Nothing. */ 9717 /****************************************************************************/ 9718 static __attribute__ ((noinline)) void 9719 bce_dump_enet(struct bce_softc *sc, struct mbuf *m) 9720 { 9721 struct ether_vlan_header *eh; 9722 u16 etype; 9723 int ehlen; 9724 struct ip *ip; 9725 struct tcphdr *th; 9726 struct udphdr *uh; 9727 struct arphdr *ah; 9728 9729 BCE_PRINTF( 9730 "-----------------------------" 9731 " Frame Decode " 9732 "-----------------------------\n"); 9733 9734 eh = mtod(m, struct ether_vlan_header *); 9735 9736 /* Handle VLAN encapsulation if present. */ 9737 if (eh->evl_encap_proto == htons(ETHERTYPE_VLAN)) { 9738 etype = ntohs(eh->evl_proto); 9739 ehlen = ETHER_HDR_LEN + ETHER_VLAN_ENCAP_LEN; 9740 } else { 9741 etype = ntohs(eh->evl_encap_proto); 9742 ehlen = ETHER_HDR_LEN; 9743 } 9744 9745 /* ToDo: Add VLAN output. */ 9746 BCE_PRINTF("enet: dest = %6D, src = %6D, type = 0x%04X, hlen = %d\n", 9747 eh->evl_dhost, ":", eh->evl_shost, ":", etype, ehlen); 9748 9749 switch (etype) { 9750 case ETHERTYPE_IP: 9751 ip = (struct ip *)(m->m_data + ehlen); 9752 BCE_PRINTF("--ip: dest = 0x%08X , src = 0x%08X, " 9753 "len = %d bytes, protocol = 0x%02X, xsum = 0x%04X\n", 9754 ntohl(ip->ip_dst.s_addr), ntohl(ip->ip_src.s_addr), 9755 ntohs(ip->ip_len), ip->ip_p, ntohs(ip->ip_sum)); 9756 9757 switch (ip->ip_p) { 9758 case IPPROTO_TCP: 9759 th = (struct tcphdr *)((caddr_t)ip + (ip->ip_hl << 2)); 9760 BCE_PRINTF("-tcp: dest = %d, src = %d, hlen = " 9761 "%d bytes, flags = 0x%b, csum = 0x%04X\n", 9762 ntohs(th->th_dport), ntohs(th->th_sport), 9763 (th->th_off << 2), th->th_flags, 9764 "\20\10CWR\07ECE\06URG\05ACK\04PSH\03RST" 9765 "\02SYN\01FIN", ntohs(th->th_sum)); 9766 break; 9767 case IPPROTO_UDP: 9768 uh = (struct udphdr *)((caddr_t)ip + (ip->ip_hl << 2)); 9769 BCE_PRINTF("-udp: dest = %d, src = %d, len = %d " 9770 "bytes, csum = 0x%04X\n", ntohs(uh->uh_dport), 9771 ntohs(uh->uh_sport), ntohs(uh->uh_ulen), 9772 ntohs(uh->uh_sum)); 9773 break; 9774 case IPPROTO_ICMP: 9775 BCE_PRINTF("icmp:\n"); 9776 break; 9777 default: 9778 BCE_PRINTF("----: Other IP protocol.\n"); 9779 } 9780 break; 9781 case ETHERTYPE_IPV6: 9782 BCE_PRINTF("ipv6: No decode supported.\n"); 9783 break; 9784 case ETHERTYPE_ARP: 9785 BCE_PRINTF("-arp: "); 9786 ah = (struct arphdr *) (m->m_data + ehlen); 9787 switch (ntohs(ah->ar_op)) { 9788 case ARPOP_REVREQUEST: 9789 printf("reverse ARP request\n"); 9790 break; 9791 case ARPOP_REVREPLY: 9792 printf("reverse ARP reply\n"); 9793 break; 9794 case ARPOP_REQUEST: 9795 printf("ARP request\n"); 9796 break; 9797 case ARPOP_REPLY: 9798 printf("ARP reply\n"); 9799 break; 9800 default: 9801 printf("other ARP operation\n"); 9802 } 9803 break; 9804 default: 9805 BCE_PRINTF("----: Other protocol.\n"); 9806 } 9807 9808 BCE_PRINTF( 9809 "-----------------------------" 9810 "--------------" 9811 "-----------------------------\n"); 9812 } 9813 9814 9815 /****************************************************************************/ 9816 /* Prints out information about an mbuf. */ 9817 /* */ 9818 /* Returns: */ 9819 /* Nothing. */ 9820 /****************************************************************************/ 9821 static __attribute__ ((noinline)) void 9822 bce_dump_mbuf(struct bce_softc *sc, struct mbuf *m) 9823 { 9824 struct mbuf *mp = m; 9825 9826 if (m == NULL) { 9827 BCE_PRINTF("mbuf: null pointer\n"); 9828 return; 9829 } 9830 9831 while (mp) { 9832 BCE_PRINTF("mbuf: %p, m_len = %d, m_flags = 0x%b, " 9833 "m_data = %p\n", mp, mp->m_len, mp->m_flags, 9834 "\20\1M_EXT\2M_PKTHDR\3M_EOR\4M_RDONLY", mp->m_data); 9835 9836 if (mp->m_flags & M_PKTHDR) { 9837 BCE_PRINTF("- m_pkthdr: len = %d, flags = 0x%b, " 9838 "csum_flags = %b\n", mp->m_pkthdr.len, 9839 mp->m_flags, M_FLAG_PRINTF, 9840 mp->m_pkthdr.csum_flags, 9841 "\20\1CSUM_IP\2CSUM_TCP\3CSUM_UDP" 9842 "\5CSUM_FRAGMENT\6CSUM_TSO\11CSUM_IP_CHECKED" 9843 "\12CSUM_IP_VALID\13CSUM_DATA_VALID" 9844 "\14CSUM_PSEUDO_HDR"); 9845 } 9846 9847 if (mp->m_flags & M_EXT) { 9848 BCE_PRINTF("- m_ext: %p, ext_size = %d, type = ", 9849 mp->m_ext.ext_buf, mp->m_ext.ext_size); 9850 switch (mp->m_ext.ext_type) { 9851 case EXT_CLUSTER: 9852 printf("EXT_CLUSTER\n"); break; 9853 case EXT_SFBUF: 9854 printf("EXT_SFBUF\n"); break; 9855 case EXT_JUMBO9: 9856 printf("EXT_JUMBO9\n"); break; 9857 case EXT_JUMBO16: 9858 printf("EXT_JUMBO16\n"); break; 9859 case EXT_PACKET: 9860 printf("EXT_PACKET\n"); break; 9861 case EXT_MBUF: 9862 printf("EXT_MBUF\n"); break; 9863 case EXT_NET_DRV: 9864 printf("EXT_NET_DRV\n"); break; 9865 case EXT_MOD_TYPE: 9866 printf("EXT_MDD_TYPE\n"); break; 9867 case EXT_DISPOSABLE: 9868 printf("EXT_DISPOSABLE\n"); break; 9869 case EXT_EXTREF: 9870 printf("EXT_EXTREF\n"); break; 9871 default: 9872 printf("UNKNOWN\n"); 9873 } 9874 } 9875 9876 mp = mp->m_next; 9877 } 9878 } 9879 9880 9881 /****************************************************************************/ 9882 /* Prints out the mbufs in the TX mbuf chain. */ 9883 /* */ 9884 /* Returns: */ 9885 /* Nothing. */ 9886 /****************************************************************************/ 9887 static __attribute__ ((noinline)) void 9888 bce_dump_tx_mbuf_chain(struct bce_softc *sc, u16 chain_prod, int count) 9889 { 9890 struct mbuf *m; 9891 9892 BCE_PRINTF( 9893 "----------------------------" 9894 " tx mbuf data " 9895 "----------------------------\n"); 9896 9897 for (int i = 0; i < count; i++) { 9898 m = sc->tx_mbuf_ptr[chain_prod]; 9899 BCE_PRINTF("txmbuf[0x%04X]\n", chain_prod); 9900 bce_dump_mbuf(sc, m); 9901 chain_prod = TX_CHAIN_IDX(NEXT_TX_BD(chain_prod)); 9902 } 9903 9904 BCE_PRINTF( 9905 "----------------------------" 9906 "----------------" 9907 "----------------------------\n"); 9908 } 9909 9910 9911 /****************************************************************************/ 9912 /* Prints out the mbufs in the RX mbuf chain. */ 9913 /* */ 9914 /* Returns: */ 9915 /* Nothing. */ 9916 /****************************************************************************/ 9917 static __attribute__ ((noinline)) void 9918 bce_dump_rx_mbuf_chain(struct bce_softc *sc, u16 chain_prod, int count) 9919 { 9920 struct mbuf *m; 9921 9922 BCE_PRINTF( 9923 "----------------------------" 9924 " rx mbuf data " 9925 "----------------------------\n"); 9926 9927 for (int i = 0; i < count; i++) { 9928 m = sc->rx_mbuf_ptr[chain_prod]; 9929 BCE_PRINTF("rxmbuf[0x%04X]\n", chain_prod); 9930 bce_dump_mbuf(sc, m); 9931 chain_prod = RX_CHAIN_IDX(NEXT_RX_BD(chain_prod)); 9932 } 9933 9934 9935 BCE_PRINTF( 9936 "----------------------------" 9937 "----------------" 9938 "----------------------------\n"); 9939 } 9940 9941 9942 /****************************************************************************/ 9943 /* Prints out the mbufs in the mbuf page chain. */ 9944 /* */ 9945 /* Returns: */ 9946 /* Nothing. */ 9947 /****************************************************************************/ 9948 static __attribute__ ((noinline)) void 9949 bce_dump_pg_mbuf_chain(struct bce_softc *sc, u16 chain_prod, int count) 9950 { 9951 struct mbuf *m; 9952 9953 BCE_PRINTF( 9954 "----------------------------" 9955 " pg mbuf data " 9956 "----------------------------\n"); 9957 9958 for (int i = 0; i < count; i++) { 9959 m = sc->pg_mbuf_ptr[chain_prod]; 9960 BCE_PRINTF("pgmbuf[0x%04X]\n", chain_prod); 9961 bce_dump_mbuf(sc, m); 9962 chain_prod = PG_CHAIN_IDX(NEXT_PG_BD(chain_prod)); 9963 } 9964 9965 9966 BCE_PRINTF( 9967 "----------------------------" 9968 "----------------" 9969 "----------------------------\n"); 9970 } 9971 9972 9973 /****************************************************************************/ 9974 /* Prints out a tx_bd structure. */ 9975 /* */ 9976 /* Returns: */ 9977 /* Nothing. */ 9978 /****************************************************************************/ 9979 static __attribute__ ((noinline)) void 9980 bce_dump_txbd(struct bce_softc *sc, int idx, struct tx_bd *txbd) 9981 { 9982 int i = 0; 9983 9984 if (idx > MAX_TX_BD_ALLOC) 9985 /* Index out of range. */ 9986 BCE_PRINTF("tx_bd[0x%04X]: Invalid tx_bd index!\n", idx); 9987 else if ((idx & USABLE_TX_BD_PER_PAGE) == USABLE_TX_BD_PER_PAGE) 9988 /* TX Chain page pointer. */ 9989 BCE_PRINTF("tx_bd[0x%04X]: haddr = 0x%08X:%08X, chain page " 9990 "pointer\n", idx, txbd->tx_bd_haddr_hi, 9991 txbd->tx_bd_haddr_lo); 9992 else { 9993 /* Normal tx_bd entry. */ 9994 BCE_PRINTF("tx_bd[0x%04X]: haddr = 0x%08X:%08X, " 9995 "mss_nbytes = 0x%08X, vlan tag = 0x%04X, flags = " 9996 "0x%04X (", idx, txbd->tx_bd_haddr_hi, 9997 txbd->tx_bd_haddr_lo, txbd->tx_bd_mss_nbytes, 9998 txbd->tx_bd_vlan_tag, txbd->tx_bd_flags); 9999 10000 if (txbd->tx_bd_flags & TX_BD_FLAGS_CONN_FAULT) { 10001 if (i>0) 10002 printf("|"); 10003 printf("CONN_FAULT"); 10004 i++; 10005 } 10006 10007 if (txbd->tx_bd_flags & TX_BD_FLAGS_TCP_UDP_CKSUM) { 10008 if (i>0) 10009 printf("|"); 10010 printf("TCP_UDP_CKSUM"); 10011 i++; 10012 } 10013 10014 if (txbd->tx_bd_flags & TX_BD_FLAGS_IP_CKSUM) { 10015 if (i>0) 10016 printf("|"); 10017 printf("IP_CKSUM"); 10018 i++; 10019 } 10020 10021 if (txbd->tx_bd_flags & TX_BD_FLAGS_VLAN_TAG) { 10022 if (i>0) 10023 printf("|"); 10024 printf("VLAN"); 10025 i++; 10026 } 10027 10028 if (txbd->tx_bd_flags & TX_BD_FLAGS_COAL_NOW) { 10029 if (i>0) 10030 printf("|"); 10031 printf("COAL_NOW"); 10032 i++; 10033 } 10034 10035 if (txbd->tx_bd_flags & TX_BD_FLAGS_DONT_GEN_CRC) { 10036 if (i>0) 10037 printf("|"); 10038 printf("DONT_GEN_CRC"); 10039 i++; 10040 } 10041 10042 if (txbd->tx_bd_flags & TX_BD_FLAGS_START) { 10043 if (i>0) 10044 printf("|"); 10045 printf("START"); 10046 i++; 10047 } 10048 10049 if (txbd->tx_bd_flags & TX_BD_FLAGS_END) { 10050 if (i>0) 10051 printf("|"); 10052 printf("END"); 10053 i++; 10054 } 10055 10056 if (txbd->tx_bd_flags & TX_BD_FLAGS_SW_LSO) { 10057 if (i>0) 10058 printf("|"); 10059 printf("LSO"); 10060 i++; 10061 } 10062 10063 if (txbd->tx_bd_flags & TX_BD_FLAGS_SW_OPTION_WORD) { 10064 if (i>0) 10065 printf("|"); 10066 printf("SW_OPTION=%d", ((txbd->tx_bd_flags & 10067 TX_BD_FLAGS_SW_OPTION_WORD) >> 8)); i++; 10068 } 10069 10070 if (txbd->tx_bd_flags & TX_BD_FLAGS_SW_FLAGS) { 10071 if (i>0) 10072 printf("|"); 10073 printf("SW_FLAGS"); 10074 i++; 10075 } 10076 10077 if (txbd->tx_bd_flags & TX_BD_FLAGS_SW_SNAP) { 10078 if (i>0) 10079 printf("|"); 10080 printf("SNAP)"); 10081 } else { 10082 printf(")\n"); 10083 } 10084 } 10085 } 10086 10087 10088 /****************************************************************************/ 10089 /* Prints out a rx_bd structure. */ 10090 /* */ 10091 /* Returns: */ 10092 /* Nothing. */ 10093 /****************************************************************************/ 10094 static __attribute__ ((noinline)) void 10095 bce_dump_rxbd(struct bce_softc *sc, int idx, struct rx_bd *rxbd) 10096 { 10097 if (idx > MAX_RX_BD_ALLOC) 10098 /* Index out of range. */ 10099 BCE_PRINTF("rx_bd[0x%04X]: Invalid rx_bd index!\n", idx); 10100 else if ((idx & USABLE_RX_BD_PER_PAGE) == USABLE_RX_BD_PER_PAGE) 10101 /* RX Chain page pointer. */ 10102 BCE_PRINTF("rx_bd[0x%04X]: haddr = 0x%08X:%08X, chain page " 10103 "pointer\n", idx, rxbd->rx_bd_haddr_hi, 10104 rxbd->rx_bd_haddr_lo); 10105 else 10106 /* Normal rx_bd entry. */ 10107 BCE_PRINTF("rx_bd[0x%04X]: haddr = 0x%08X:%08X, nbytes = " 10108 "0x%08X, flags = 0x%08X\n", idx, rxbd->rx_bd_haddr_hi, 10109 rxbd->rx_bd_haddr_lo, rxbd->rx_bd_len, 10110 rxbd->rx_bd_flags); 10111 } 10112 10113 10114 /****************************************************************************/ 10115 /* Prints out a rx_bd structure in the page chain. */ 10116 /* */ 10117 /* Returns: */ 10118 /* Nothing. */ 10119 /****************************************************************************/ 10120 static __attribute__ ((noinline)) void 10121 bce_dump_pgbd(struct bce_softc *sc, int idx, struct rx_bd *pgbd) 10122 { 10123 if (idx > MAX_PG_BD_ALLOC) 10124 /* Index out of range. */ 10125 BCE_PRINTF("pg_bd[0x%04X]: Invalid pg_bd index!\n", idx); 10126 else if ((idx & USABLE_PG_BD_PER_PAGE) == USABLE_PG_BD_PER_PAGE) 10127 /* Page Chain page pointer. */ 10128 BCE_PRINTF("px_bd[0x%04X]: haddr = 0x%08X:%08X, chain page pointer\n", 10129 idx, pgbd->rx_bd_haddr_hi, pgbd->rx_bd_haddr_lo); 10130 else 10131 /* Normal rx_bd entry. */ 10132 BCE_PRINTF("pg_bd[0x%04X]: haddr = 0x%08X:%08X, nbytes = 0x%08X, " 10133 "flags = 0x%08X\n", idx, 10134 pgbd->rx_bd_haddr_hi, pgbd->rx_bd_haddr_lo, 10135 pgbd->rx_bd_len, pgbd->rx_bd_flags); 10136 } 10137 10138 10139 /****************************************************************************/ 10140 /* Prints out a l2_fhdr structure. */ 10141 /* */ 10142 /* Returns: */ 10143 /* Nothing. */ 10144 /****************************************************************************/ 10145 static __attribute__ ((noinline)) void 10146 bce_dump_l2fhdr(struct bce_softc *sc, int idx, struct l2_fhdr *l2fhdr) 10147 { 10148 BCE_PRINTF("l2_fhdr[0x%04X]: status = 0x%b, " 10149 "pkt_len = %d, vlan = 0x%04x, ip_xsum/hdr_len = 0x%04X, " 10150 "tcp_udp_xsum = 0x%04X\n", idx, 10151 l2fhdr->l2_fhdr_status, BCE_L2FHDR_PRINTFB, 10152 l2fhdr->l2_fhdr_pkt_len, l2fhdr->l2_fhdr_vlan_tag, 10153 l2fhdr->l2_fhdr_ip_xsum, l2fhdr->l2_fhdr_tcp_udp_xsum); 10154 } 10155 10156 10157 /****************************************************************************/ 10158 /* Prints out context memory info. (Only useful for CID 0 to 16.) */ 10159 /* */ 10160 /* Returns: */ 10161 /* Nothing. */ 10162 /****************************************************************************/ 10163 static __attribute__ ((noinline)) void 10164 bce_dump_ctx(struct bce_softc *sc, u16 cid) 10165 { 10166 if (cid > TX_CID) { 10167 BCE_PRINTF(" Unknown CID\n"); 10168 return; 10169 } 10170 10171 BCE_PRINTF( 10172 "----------------------------" 10173 " CTX Data " 10174 "----------------------------\n"); 10175 10176 BCE_PRINTF(" 0x%04X - (CID) Context ID\n", cid); 10177 10178 if (cid == RX_CID) { 10179 BCE_PRINTF(" 0x%08X - (L2CTX_RX_HOST_BDIDX) host rx " 10180 "producer index\n", 10181 CTX_RD(sc, GET_CID_ADDR(cid), BCE_L2CTX_RX_HOST_BDIDX)); 10182 BCE_PRINTF(" 0x%08X - (L2CTX_RX_HOST_BSEQ) host " 10183 "byte sequence\n", CTX_RD(sc, GET_CID_ADDR(cid), 10184 BCE_L2CTX_RX_HOST_BSEQ)); 10185 BCE_PRINTF(" 0x%08X - (L2CTX_RX_NX_BSEQ) h/w byte sequence\n", 10186 CTX_RD(sc, GET_CID_ADDR(cid), BCE_L2CTX_RX_NX_BSEQ)); 10187 BCE_PRINTF(" 0x%08X - (L2CTX_RX_NX_BDHADDR_HI) h/w buffer " 10188 "descriptor address\n", 10189 CTX_RD(sc, GET_CID_ADDR(cid), BCE_L2CTX_RX_NX_BDHADDR_HI)); 10190 BCE_PRINTF(" 0x%08X - (L2CTX_RX_NX_BDHADDR_LO) h/w buffer " 10191 "descriptor address\n", 10192 CTX_RD(sc, GET_CID_ADDR(cid), BCE_L2CTX_RX_NX_BDHADDR_LO)); 10193 BCE_PRINTF(" 0x%08X - (L2CTX_RX_NX_BDIDX) h/w rx consumer " 10194 "index\n", CTX_RD(sc, GET_CID_ADDR(cid), 10195 BCE_L2CTX_RX_NX_BDIDX)); 10196 BCE_PRINTF(" 0x%08X - (L2CTX_RX_HOST_PG_BDIDX) host page " 10197 "producer index\n", CTX_RD(sc, GET_CID_ADDR(cid), 10198 BCE_L2CTX_RX_HOST_PG_BDIDX)); 10199 BCE_PRINTF(" 0x%08X - (L2CTX_RX_PG_BUF_SIZE) host rx_bd/page " 10200 "buffer size\n", CTX_RD(sc, GET_CID_ADDR(cid), 10201 BCE_L2CTX_RX_PG_BUF_SIZE)); 10202 BCE_PRINTF(" 0x%08X - (L2CTX_RX_NX_PG_BDHADDR_HI) h/w page " 10203 "chain address\n", CTX_RD(sc, GET_CID_ADDR(cid), 10204 BCE_L2CTX_RX_NX_PG_BDHADDR_HI)); 10205 BCE_PRINTF(" 0x%08X - (L2CTX_RX_NX_PG_BDHADDR_LO) h/w page " 10206 "chain address\n", CTX_RD(sc, GET_CID_ADDR(cid), 10207 BCE_L2CTX_RX_NX_PG_BDHADDR_LO)); 10208 BCE_PRINTF(" 0x%08X - (L2CTX_RX_NX_PG_BDIDX) h/w page " 10209 "consumer index\n", CTX_RD(sc, GET_CID_ADDR(cid), 10210 BCE_L2CTX_RX_NX_PG_BDIDX)); 10211 } else if (cid == TX_CID) { 10212 if (BCE_CHIP_NUM(sc) == BCE_CHIP_NUM_5709) { 10213 BCE_PRINTF(" 0x%08X - (L2CTX_TX_TYPE_XI) ctx type\n", 10214 CTX_RD(sc, GET_CID_ADDR(cid), 10215 BCE_L2CTX_TX_TYPE_XI)); 10216 BCE_PRINTF(" 0x%08X - (L2CTX_CMD_TX_TYPE_XI) ctx " 10217 "cmd\n", CTX_RD(sc, GET_CID_ADDR(cid), 10218 BCE_L2CTX_TX_CMD_TYPE_XI)); 10219 BCE_PRINTF(" 0x%08X - (L2CTX_TX_TBDR_BDHADDR_HI_XI) " 10220 "h/w buffer descriptor address\n", 10221 CTX_RD(sc, GET_CID_ADDR(cid), 10222 BCE_L2CTX_TX_TBDR_BHADDR_HI_XI)); 10223 BCE_PRINTF(" 0x%08X - (L2CTX_TX_TBDR_BHADDR_LO_XI) " 10224 "h/w buffer descriptor address\n", 10225 CTX_RD(sc, GET_CID_ADDR(cid), 10226 BCE_L2CTX_TX_TBDR_BHADDR_LO_XI)); 10227 BCE_PRINTF(" 0x%08X - (L2CTX_TX_HOST_BIDX_XI) " 10228 "host producer index\n", 10229 CTX_RD(sc, GET_CID_ADDR(cid), 10230 BCE_L2CTX_TX_HOST_BIDX_XI)); 10231 BCE_PRINTF(" 0x%08X - (L2CTX_TX_HOST_BSEQ_XI) " 10232 "host byte sequence\n", 10233 CTX_RD(sc, GET_CID_ADDR(cid), 10234 BCE_L2CTX_TX_HOST_BSEQ_XI)); 10235 } else { 10236 BCE_PRINTF(" 0x%08X - (L2CTX_TX_TYPE) ctx type\n", 10237 CTX_RD(sc, GET_CID_ADDR(cid), BCE_L2CTX_TX_TYPE)); 10238 BCE_PRINTF(" 0x%08X - (L2CTX_TX_CMD_TYPE) ctx cmd\n", 10239 CTX_RD(sc, GET_CID_ADDR(cid), 10240 BCE_L2CTX_TX_CMD_TYPE)); 10241 BCE_PRINTF(" 0x%08X - (L2CTX_TX_TBDR_BDHADDR_HI) " 10242 "h/w buffer descriptor address\n", 10243 CTX_RD(sc, GET_CID_ADDR(cid), 10244 BCE_L2CTX_TX_TBDR_BHADDR_HI)); 10245 BCE_PRINTF(" 0x%08X - (L2CTX_TX_TBDR_BHADDR_LO) " 10246 "h/w buffer descriptor address\n", 10247 CTX_RD(sc, GET_CID_ADDR(cid), 10248 BCE_L2CTX_TX_TBDR_BHADDR_LO)); 10249 BCE_PRINTF(" 0x%08X - (L2CTX_TX_HOST_BIDX) host " 10250 "producer index\n", CTX_RD(sc, GET_CID_ADDR(cid), 10251 BCE_L2CTX_TX_HOST_BIDX)); 10252 BCE_PRINTF(" 0x%08X - (L2CTX_TX_HOST_BSEQ) host byte " 10253 "sequence\n", CTX_RD(sc, GET_CID_ADDR(cid), 10254 BCE_L2CTX_TX_HOST_BSEQ)); 10255 } 10256 } 10257 10258 BCE_PRINTF( 10259 "----------------------------" 10260 " Raw CTX " 10261 "----------------------------\n"); 10262 10263 for (int i = 0x0; i < 0x300; i += 0x10) { 10264 BCE_PRINTF("0x%04X: 0x%08X 0x%08X 0x%08X 0x%08X\n", i, 10265 CTX_RD(sc, GET_CID_ADDR(cid), i), 10266 CTX_RD(sc, GET_CID_ADDR(cid), i + 0x4), 10267 CTX_RD(sc, GET_CID_ADDR(cid), i + 0x8), 10268 CTX_RD(sc, GET_CID_ADDR(cid), i + 0xc)); 10269 } 10270 10271 10272 BCE_PRINTF( 10273 "----------------------------" 10274 "----------------" 10275 "----------------------------\n"); 10276 } 10277 10278 10279 /****************************************************************************/ 10280 /* Prints out the FTQ data. */ 10281 /* */ 10282 /* Returns: */ 10283 /* Nothing. */ 10284 /****************************************************************************/ 10285 static __attribute__ ((noinline)) void 10286 bce_dump_ftqs(struct bce_softc *sc) 10287 { 10288 u32 cmd, ctl, cur_depth, max_depth, valid_cnt, val; 10289 10290 BCE_PRINTF( 10291 "----------------------------" 10292 " FTQ Data " 10293 "----------------------------\n"); 10294 10295 BCE_PRINTF(" FTQ Command Control Depth_Now " 10296 "Max_Depth Valid_Cnt \n"); 10297 BCE_PRINTF(" ------- ---------- ---------- ---------- " 10298 "---------- ----------\n"); 10299 10300 /* Setup the generic statistic counters for the FTQ valid count. */ 10301 val = (BCE_HC_STAT_GEN_SEL_0_GEN_SEL_0_RV2PPQ_VALID_CNT << 24) | 10302 (BCE_HC_STAT_GEN_SEL_0_GEN_SEL_0_RXPCQ_VALID_CNT << 16) | 10303 (BCE_HC_STAT_GEN_SEL_0_GEN_SEL_0_RXPQ_VALID_CNT << 8) | 10304 (BCE_HC_STAT_GEN_SEL_0_GEN_SEL_0_RLUPQ_VALID_CNT); 10305 REG_WR(sc, BCE_HC_STAT_GEN_SEL_0, val); 10306 10307 val = (BCE_HC_STAT_GEN_SEL_0_GEN_SEL_0_TSCHQ_VALID_CNT << 24) | 10308 (BCE_HC_STAT_GEN_SEL_0_GEN_SEL_0_RDMAQ_VALID_CNT << 16) | 10309 (BCE_HC_STAT_GEN_SEL_0_GEN_SEL_0_RV2PTQ_VALID_CNT << 8) | 10310 (BCE_HC_STAT_GEN_SEL_0_GEN_SEL_0_RV2PMQ_VALID_CNT); 10311 REG_WR(sc, BCE_HC_STAT_GEN_SEL_1, val); 10312 10313 val = (BCE_HC_STAT_GEN_SEL_0_GEN_SEL_0_TPATQ_VALID_CNT << 24) | 10314 (BCE_HC_STAT_GEN_SEL_0_GEN_SEL_0_TDMAQ_VALID_CNT << 16) | 10315 (BCE_HC_STAT_GEN_SEL_0_GEN_SEL_0_TXPQ_VALID_CNT << 8) | 10316 (BCE_HC_STAT_GEN_SEL_0_GEN_SEL_0_TBDRQ_VALID_CNT); 10317 REG_WR(sc, BCE_HC_STAT_GEN_SEL_2, val); 10318 10319 val = (BCE_HC_STAT_GEN_SEL_0_GEN_SEL_0_COMQ_VALID_CNT << 24) | 10320 (BCE_HC_STAT_GEN_SEL_0_GEN_SEL_0_COMTQ_VALID_CNT << 16) | 10321 (BCE_HC_STAT_GEN_SEL_0_GEN_SEL_0_COMXQ_VALID_CNT << 8) | 10322 (BCE_HC_STAT_GEN_SEL_0_GEN_SEL_0_TASQ_VALID_CNT); 10323 REG_WR(sc, BCE_HC_STAT_GEN_SEL_3, val); 10324 10325 /* Input queue to the Receive Lookup state machine */ 10326 cmd = REG_RD(sc, BCE_RLUP_FTQ_CMD); 10327 ctl = REG_RD(sc, BCE_RLUP_FTQ_CTL); 10328 cur_depth = (ctl & BCE_RLUP_FTQ_CTL_CUR_DEPTH) >> 22; 10329 max_depth = (ctl & BCE_RLUP_FTQ_CTL_MAX_DEPTH) >> 12; 10330 valid_cnt = REG_RD(sc, BCE_HC_STAT_GEN_STAT0); 10331 BCE_PRINTF(" RLUP 0x%08X 0x%08X 0x%08X 0x%08X 0x%08X\n", 10332 cmd, ctl, cur_depth, max_depth, valid_cnt); 10333 10334 /* Input queue to the Receive Processor */ 10335 cmd = REG_RD_IND(sc, BCE_RXP_FTQ_CMD); 10336 ctl = REG_RD_IND(sc, BCE_RXP_FTQ_CTL); 10337 cur_depth = (ctl & BCE_RXP_FTQ_CTL_CUR_DEPTH) >> 22; 10338 max_depth = (ctl & BCE_RXP_FTQ_CTL_MAX_DEPTH) >> 12; 10339 valid_cnt = REG_RD(sc, BCE_HC_STAT_GEN_STAT1); 10340 BCE_PRINTF(" RXP 0x%08X 0x%08X 0x%08X 0x%08X 0x%08X\n", 10341 cmd, ctl, cur_depth, max_depth, valid_cnt); 10342 10343 /* Input queue to the Recevie Processor */ 10344 cmd = REG_RD_IND(sc, BCE_RXP_CFTQ_CMD); 10345 ctl = REG_RD_IND(sc, BCE_RXP_CFTQ_CTL); 10346 cur_depth = (ctl & BCE_RXP_CFTQ_CTL_CUR_DEPTH) >> 22; 10347 max_depth = (ctl & BCE_RXP_CFTQ_CTL_MAX_DEPTH) >> 12; 10348 valid_cnt = REG_RD(sc, BCE_HC_STAT_GEN_STAT2); 10349 BCE_PRINTF(" RXPC 0x%08X 0x%08X 0x%08X 0x%08X 0x%08X\n", 10350 cmd, ctl, cur_depth, max_depth, valid_cnt); 10351 10352 /* Input queue to the Receive Virtual to Physical state machine */ 10353 cmd = REG_RD(sc, BCE_RV2P_PFTQ_CMD); 10354 ctl = REG_RD(sc, BCE_RV2P_PFTQ_CTL); 10355 cur_depth = (ctl & BCE_RV2P_PFTQ_CTL_CUR_DEPTH) >> 22; 10356 max_depth = (ctl & BCE_RV2P_PFTQ_CTL_MAX_DEPTH) >> 12; 10357 valid_cnt = REG_RD(sc, BCE_HC_STAT_GEN_STAT3); 10358 BCE_PRINTF(" RV2PP 0x%08X 0x%08X 0x%08X 0x%08X 0x%08X\n", 10359 cmd, ctl, cur_depth, max_depth, valid_cnt); 10360 10361 /* Input queue to the Recevie Virtual to Physical state machine */ 10362 cmd = REG_RD(sc, BCE_RV2P_MFTQ_CMD); 10363 ctl = REG_RD(sc, BCE_RV2P_MFTQ_CTL); 10364 cur_depth = (ctl & BCE_RV2P_MFTQ_CTL_CUR_DEPTH) >> 22; 10365 max_depth = (ctl & BCE_RV2P_MFTQ_CTL_MAX_DEPTH) >> 12; 10366 valid_cnt = REG_RD(sc, BCE_HC_STAT_GEN_STAT4); 10367 BCE_PRINTF(" RV2PM 0x%08X 0x%08X 0x%08X 0x%08X 0x%08X\n", 10368 cmd, ctl, cur_depth, max_depth, valid_cnt); 10369 10370 /* Input queue to the Receive Virtual to Physical state machine */ 10371 cmd = REG_RD(sc, BCE_RV2P_TFTQ_CMD); 10372 ctl = REG_RD(sc, BCE_RV2P_TFTQ_CTL); 10373 cur_depth = (ctl & BCE_RV2P_TFTQ_CTL_CUR_DEPTH) >> 22; 10374 max_depth = (ctl & BCE_RV2P_TFTQ_CTL_MAX_DEPTH) >> 12; 10375 valid_cnt = REG_RD(sc, BCE_HC_STAT_GEN_STAT5); 10376 BCE_PRINTF(" RV2PT 0x%08X 0x%08X 0x%08X 0x%08X 0x%08X\n", 10377 cmd, ctl, cur_depth, max_depth, valid_cnt); 10378 10379 /* Input queue to the Receive DMA state machine */ 10380 cmd = REG_RD(sc, BCE_RDMA_FTQ_CMD); 10381 ctl = REG_RD(sc, BCE_RDMA_FTQ_CTL); 10382 cur_depth = (ctl & BCE_RDMA_FTQ_CTL_CUR_DEPTH) >> 22; 10383 max_depth = (ctl & BCE_RDMA_FTQ_CTL_MAX_DEPTH) >> 12; 10384 valid_cnt = REG_RD(sc, BCE_HC_STAT_GEN_STAT6); 10385 BCE_PRINTF(" RDMA 0x%08X 0x%08X 0x%08X 0x%08X 0x%08X\n", 10386 cmd, ctl, cur_depth, max_depth, valid_cnt); 10387 10388 /* Input queue to the Transmit Scheduler state machine */ 10389 cmd = REG_RD(sc, BCE_TSCH_FTQ_CMD); 10390 ctl = REG_RD(sc, BCE_TSCH_FTQ_CTL); 10391 cur_depth = (ctl & BCE_TSCH_FTQ_CTL_CUR_DEPTH) >> 22; 10392 max_depth = (ctl & BCE_TSCH_FTQ_CTL_MAX_DEPTH) >> 12; 10393 valid_cnt = REG_RD(sc, BCE_HC_STAT_GEN_STAT7); 10394 BCE_PRINTF(" TSCH 0x%08X 0x%08X 0x%08X 0x%08X 0x%08X\n", 10395 cmd, ctl, cur_depth, max_depth, valid_cnt); 10396 10397 /* Input queue to the Transmit Buffer Descriptor state machine */ 10398 cmd = REG_RD(sc, BCE_TBDR_FTQ_CMD); 10399 ctl = REG_RD(sc, BCE_TBDR_FTQ_CTL); 10400 cur_depth = (ctl & BCE_TBDR_FTQ_CTL_CUR_DEPTH) >> 22; 10401 max_depth = (ctl & BCE_TBDR_FTQ_CTL_MAX_DEPTH) >> 12; 10402 valid_cnt = REG_RD(sc, BCE_HC_STAT_GEN_STAT8); 10403 BCE_PRINTF(" TBDR 0x%08X 0x%08X 0x%08X 0x%08X 0x%08X\n", 10404 cmd, ctl, cur_depth, max_depth, valid_cnt); 10405 10406 /* Input queue to the Transmit Processor */ 10407 cmd = REG_RD_IND(sc, BCE_TXP_FTQ_CMD); 10408 ctl = REG_RD_IND(sc, BCE_TXP_FTQ_CTL); 10409 cur_depth = (ctl & BCE_TXP_FTQ_CTL_CUR_DEPTH) >> 22; 10410 max_depth = (ctl & BCE_TXP_FTQ_CTL_MAX_DEPTH) >> 12; 10411 valid_cnt = REG_RD(sc, BCE_HC_STAT_GEN_STAT9); 10412 BCE_PRINTF(" TXP 0x%08X 0x%08X 0x%08X 0x%08X 0x%08X\n", 10413 cmd, ctl, cur_depth, max_depth, valid_cnt); 10414 10415 /* Input queue to the Transmit DMA state machine */ 10416 cmd = REG_RD(sc, BCE_TDMA_FTQ_CMD); 10417 ctl = REG_RD(sc, BCE_TDMA_FTQ_CTL); 10418 cur_depth = (ctl & BCE_TDMA_FTQ_CTL_CUR_DEPTH) >> 22; 10419 max_depth = (ctl & BCE_TDMA_FTQ_CTL_MAX_DEPTH) >> 12; 10420 valid_cnt = REG_RD(sc, BCE_HC_STAT_GEN_STAT10); 10421 BCE_PRINTF(" TDMA 0x%08X 0x%08X 0x%08X 0x%08X 0x%08X\n", 10422 cmd, ctl, cur_depth, max_depth, valid_cnt); 10423 10424 /* Input queue to the Transmit Patch-Up Processor */ 10425 cmd = REG_RD_IND(sc, BCE_TPAT_FTQ_CMD); 10426 ctl = REG_RD_IND(sc, BCE_TPAT_FTQ_CTL); 10427 cur_depth = (ctl & BCE_TPAT_FTQ_CTL_CUR_DEPTH) >> 22; 10428 max_depth = (ctl & BCE_TPAT_FTQ_CTL_MAX_DEPTH) >> 12; 10429 valid_cnt = REG_RD(sc, BCE_HC_STAT_GEN_STAT11); 10430 BCE_PRINTF(" TPAT 0x%08X 0x%08X 0x%08X 0x%08X 0x%08X\n", 10431 cmd, ctl, cur_depth, max_depth, valid_cnt); 10432 10433 /* Input queue to the Transmit Assembler state machine */ 10434 cmd = REG_RD_IND(sc, BCE_TAS_FTQ_CMD); 10435 ctl = REG_RD_IND(sc, BCE_TAS_FTQ_CTL); 10436 cur_depth = (ctl & BCE_TAS_FTQ_CTL_CUR_DEPTH) >> 22; 10437 max_depth = (ctl & BCE_TAS_FTQ_CTL_MAX_DEPTH) >> 12; 10438 valid_cnt = REG_RD(sc, BCE_HC_STAT_GEN_STAT12); 10439 BCE_PRINTF(" TAS 0x%08X 0x%08X 0x%08X 0x%08X 0x%08X\n", 10440 cmd, ctl, cur_depth, max_depth, valid_cnt); 10441 10442 /* Input queue to the Completion Processor */ 10443 cmd = REG_RD_IND(sc, BCE_COM_COMXQ_FTQ_CMD); 10444 ctl = REG_RD_IND(sc, BCE_COM_COMXQ_FTQ_CTL); 10445 cur_depth = (ctl & BCE_COM_COMXQ_FTQ_CTL_CUR_DEPTH) >> 22; 10446 max_depth = (ctl & BCE_COM_COMXQ_FTQ_CTL_MAX_DEPTH) >> 12; 10447 valid_cnt = REG_RD(sc, BCE_HC_STAT_GEN_STAT13); 10448 BCE_PRINTF(" COMX 0x%08X 0x%08X 0x%08X 0x%08X 0x%08X\n", 10449 cmd, ctl, cur_depth, max_depth, valid_cnt); 10450 10451 /* Input queue to the Completion Processor */ 10452 cmd = REG_RD_IND(sc, BCE_COM_COMTQ_FTQ_CMD); 10453 ctl = REG_RD_IND(sc, BCE_COM_COMTQ_FTQ_CTL); 10454 cur_depth = (ctl & BCE_COM_COMTQ_FTQ_CTL_CUR_DEPTH) >> 22; 10455 max_depth = (ctl & BCE_COM_COMTQ_FTQ_CTL_MAX_DEPTH) >> 12; 10456 valid_cnt = REG_RD(sc, BCE_HC_STAT_GEN_STAT14); 10457 BCE_PRINTF(" COMT 0x%08X 0x%08X 0x%08X 0x%08X 0x%08X\n", 10458 cmd, ctl, cur_depth, max_depth, valid_cnt); 10459 10460 /* Input queue to the Completion Processor */ 10461 cmd = REG_RD_IND(sc, BCE_COM_COMQ_FTQ_CMD); 10462 ctl = REG_RD_IND(sc, BCE_COM_COMQ_FTQ_CTL); 10463 cur_depth = (ctl & BCE_COM_COMQ_FTQ_CTL_CUR_DEPTH) >> 22; 10464 max_depth = (ctl & BCE_COM_COMQ_FTQ_CTL_MAX_DEPTH) >> 12; 10465 valid_cnt = REG_RD(sc, BCE_HC_STAT_GEN_STAT15); 10466 BCE_PRINTF(" COMX 0x%08X 0x%08X 0x%08X 0x%08X 0x%08X\n", 10467 cmd, ctl, cur_depth, max_depth, valid_cnt); 10468 10469 /* Setup the generic statistic counters for the FTQ valid count. */ 10470 val = (BCE_HC_STAT_GEN_SEL_0_GEN_SEL_0_CSQ_VALID_CNT << 16) | 10471 (BCE_HC_STAT_GEN_SEL_0_GEN_SEL_0_CPQ_VALID_CNT << 8) | 10472 (BCE_HC_STAT_GEN_SEL_0_GEN_SEL_0_MGMQ_VALID_CNT); 10473 10474 if (BCE_CHIP_NUM(sc) == BCE_CHIP_NUM_5709) 10475 val = val | 10476 (BCE_HC_STAT_GEN_SEL_0_GEN_SEL_0_RV2PCSQ_VALID_CNT_XI << 10477 24); 10478 REG_WR(sc, BCE_HC_STAT_GEN_SEL_0, val); 10479 10480 /* Input queue to the Management Control Processor */ 10481 cmd = REG_RD_IND(sc, BCE_MCP_MCPQ_FTQ_CMD); 10482 ctl = REG_RD_IND(sc, BCE_MCP_MCPQ_FTQ_CTL); 10483 cur_depth = (ctl & BCE_MCP_MCPQ_FTQ_CTL_CUR_DEPTH) >> 22; 10484 max_depth = (ctl & BCE_MCP_MCPQ_FTQ_CTL_MAX_DEPTH) >> 12; 10485 valid_cnt = REG_RD(sc, BCE_HC_STAT_GEN_STAT0); 10486 BCE_PRINTF(" MCP 0x%08X 0x%08X 0x%08X 0x%08X 0x%08X\n", 10487 cmd, ctl, cur_depth, max_depth, valid_cnt); 10488 10489 /* Input queue to the Command Processor */ 10490 cmd = REG_RD_IND(sc, BCE_CP_CPQ_FTQ_CMD); 10491 ctl = REG_RD_IND(sc, BCE_CP_CPQ_FTQ_CTL); 10492 cur_depth = (ctl & BCE_CP_CPQ_FTQ_CTL_CUR_DEPTH) >> 22; 10493 max_depth = (ctl & BCE_CP_CPQ_FTQ_CTL_MAX_DEPTH) >> 12; 10494 valid_cnt = REG_RD(sc, BCE_HC_STAT_GEN_STAT1); 10495 BCE_PRINTF(" CP 0x%08X 0x%08X 0x%08X 0x%08X 0x%08X\n", 10496 cmd, ctl, cur_depth, max_depth, valid_cnt); 10497 10498 /* Input queue to the Completion Scheduler state machine */ 10499 cmd = REG_RD(sc, BCE_CSCH_CH_FTQ_CMD); 10500 ctl = REG_RD(sc, BCE_CSCH_CH_FTQ_CTL); 10501 cur_depth = (ctl & BCE_CSCH_CH_FTQ_CTL_CUR_DEPTH) >> 22; 10502 max_depth = (ctl & BCE_CSCH_CH_FTQ_CTL_MAX_DEPTH) >> 12; 10503 valid_cnt = REG_RD(sc, BCE_HC_STAT_GEN_STAT2); 10504 BCE_PRINTF(" CS 0x%08X 0x%08X 0x%08X 0x%08X 0x%08X\n", 10505 cmd, ctl, cur_depth, max_depth, valid_cnt); 10506 10507 if (BCE_CHIP_NUM(sc) == BCE_CHIP_NUM_5709) { 10508 /* Input queue to the RV2P Command Scheduler */ 10509 cmd = REG_RD(sc, BCE_RV2PCSR_FTQ_CMD); 10510 ctl = REG_RD(sc, BCE_RV2PCSR_FTQ_CTL); 10511 cur_depth = (ctl & 0xFFC00000) >> 22; 10512 max_depth = (ctl & 0x003FF000) >> 12; 10513 valid_cnt = REG_RD(sc, BCE_HC_STAT_GEN_STAT3); 10514 BCE_PRINTF(" RV2PCSR 0x%08X 0x%08X 0x%08X 0x%08X 0x%08X\n", 10515 cmd, ctl, cur_depth, max_depth, valid_cnt); 10516 } 10517 10518 BCE_PRINTF( 10519 "----------------------------" 10520 "----------------" 10521 "----------------------------\n"); 10522 } 10523 10524 10525 /****************************************************************************/ 10526 /* Prints out the TX chain. */ 10527 /* */ 10528 /* Returns: */ 10529 /* Nothing. */ 10530 /****************************************************************************/ 10531 static __attribute__ ((noinline)) void 10532 bce_dump_tx_chain(struct bce_softc *sc, u16 tx_prod, int count) 10533 { 10534 struct tx_bd *txbd; 10535 10536 /* First some info about the tx_bd chain structure. */ 10537 BCE_PRINTF( 10538 "----------------------------" 10539 " tx_bd chain " 10540 "----------------------------\n"); 10541 10542 BCE_PRINTF("page size = 0x%08X, tx chain pages = 0x%08X\n", 10543 (u32) BCM_PAGE_SIZE, (u32) sc->tx_pages); 10544 BCE_PRINTF("tx_bd per page = 0x%08X, usable tx_bd per page = 0x%08X\n", 10545 (u32) TOTAL_TX_BD_PER_PAGE, (u32) USABLE_TX_BD_PER_PAGE); 10546 BCE_PRINTF("total tx_bd = 0x%08X\n", (u32) TOTAL_TX_BD_ALLOC); 10547 10548 BCE_PRINTF( 10549 "----------------------------" 10550 " tx_bd data " 10551 "----------------------------\n"); 10552 10553 /* Now print out a decoded list of TX buffer descriptors. */ 10554 for (int i = 0; i < count; i++) { 10555 txbd = &sc->tx_bd_chain[TX_PAGE(tx_prod)][TX_IDX(tx_prod)]; 10556 bce_dump_txbd(sc, tx_prod, txbd); 10557 tx_prod++; 10558 } 10559 10560 BCE_PRINTF( 10561 "----------------------------" 10562 "----------------" 10563 "----------------------------\n"); 10564 } 10565 10566 10567 /****************************************************************************/ 10568 /* Prints out the RX chain. */ 10569 /* */ 10570 /* Returns: */ 10571 /* Nothing. */ 10572 /****************************************************************************/ 10573 static __attribute__ ((noinline)) void 10574 bce_dump_rx_bd_chain(struct bce_softc *sc, u16 rx_prod, int count) 10575 { 10576 struct rx_bd *rxbd; 10577 10578 /* First some info about the rx_bd chain structure. */ 10579 BCE_PRINTF( 10580 "----------------------------" 10581 " rx_bd chain " 10582 "----------------------------\n"); 10583 10584 BCE_PRINTF("page size = 0x%08X, rx chain pages = 0x%08X\n", 10585 (u32) BCM_PAGE_SIZE, (u32) sc->rx_pages); 10586 10587 BCE_PRINTF("rx_bd per page = 0x%08X, usable rx_bd per page = 0x%08X\n", 10588 (u32) TOTAL_RX_BD_PER_PAGE, (u32) USABLE_RX_BD_PER_PAGE); 10589 10590 BCE_PRINTF("total rx_bd = 0x%08X\n", (u32) TOTAL_RX_BD_ALLOC); 10591 10592 BCE_PRINTF( 10593 "----------------------------" 10594 " rx_bd data " 10595 "----------------------------\n"); 10596 10597 /* Now print out the rx_bd's themselves. */ 10598 for (int i = 0; i < count; i++) { 10599 rxbd = &sc->rx_bd_chain[RX_PAGE(rx_prod)][RX_IDX(rx_prod)]; 10600 bce_dump_rxbd(sc, rx_prod, rxbd); 10601 rx_prod = RX_CHAIN_IDX(rx_prod + 1); 10602 } 10603 10604 BCE_PRINTF( 10605 "----------------------------" 10606 "----------------" 10607 "----------------------------\n"); 10608 } 10609 10610 10611 /****************************************************************************/ 10612 /* Prints out the page chain. */ 10613 /* */ 10614 /* Returns: */ 10615 /* Nothing. */ 10616 /****************************************************************************/ 10617 static __attribute__ ((noinline)) void 10618 bce_dump_pg_chain(struct bce_softc *sc, u16 pg_prod, int count) 10619 { 10620 struct rx_bd *pgbd; 10621 10622 /* First some info about the page chain structure. */ 10623 BCE_PRINTF( 10624 "----------------------------" 10625 " page chain " 10626 "----------------------------\n"); 10627 10628 BCE_PRINTF("page size = 0x%08X, pg chain pages = 0x%08X\n", 10629 (u32) BCM_PAGE_SIZE, (u32) sc->pg_pages); 10630 10631 BCE_PRINTF("rx_bd per page = 0x%08X, usable rx_bd per page = 0x%08X\n", 10632 (u32) TOTAL_PG_BD_PER_PAGE, (u32) USABLE_PG_BD_PER_PAGE); 10633 10634 BCE_PRINTF("total pg_bd = 0x%08X\n", (u32) TOTAL_PG_BD_ALLOC); 10635 10636 BCE_PRINTF( 10637 "----------------------------" 10638 " page data " 10639 "----------------------------\n"); 10640 10641 /* Now print out the rx_bd's themselves. */ 10642 for (int i = 0; i < count; i++) { 10643 pgbd = &sc->pg_bd_chain[PG_PAGE(pg_prod)][PG_IDX(pg_prod)]; 10644 bce_dump_pgbd(sc, pg_prod, pgbd); 10645 pg_prod = PG_CHAIN_IDX(pg_prod + 1); 10646 } 10647 10648 BCE_PRINTF( 10649 "----------------------------" 10650 "----------------" 10651 "----------------------------\n"); 10652 } 10653 10654 10655 #define BCE_PRINT_RX_CONS(arg) \ 10656 if (sblk->status_rx_quick_consumer_index##arg) \ 10657 BCE_PRINTF("0x%04X(0x%04X) - rx_quick_consumer_index%d\n", \ 10658 sblk->status_rx_quick_consumer_index##arg, (u16) \ 10659 RX_CHAIN_IDX(sblk->status_rx_quick_consumer_index##arg), \ 10660 arg); 10661 10662 10663 #define BCE_PRINT_TX_CONS(arg) \ 10664 if (sblk->status_tx_quick_consumer_index##arg) \ 10665 BCE_PRINTF("0x%04X(0x%04X) - tx_quick_consumer_index%d\n", \ 10666 sblk->status_tx_quick_consumer_index##arg, (u16) \ 10667 TX_CHAIN_IDX(sblk->status_tx_quick_consumer_index##arg), \ 10668 arg); 10669 10670 /****************************************************************************/ 10671 /* Prints out the status block from host memory. */ 10672 /* */ 10673 /* Returns: */ 10674 /* Nothing. */ 10675 /****************************************************************************/ 10676 static __attribute__ ((noinline)) void 10677 bce_dump_status_block(struct bce_softc *sc) 10678 { 10679 struct status_block *sblk; 10680 10681 bus_dmamap_sync(sc->status_tag, sc->status_map, BUS_DMASYNC_POSTREAD); 10682 10683 sblk = sc->status_block; 10684 10685 BCE_PRINTF( 10686 "----------------------------" 10687 " Status Block " 10688 "----------------------------\n"); 10689 10690 /* Theses indices are used for normal L2 drivers. */ 10691 BCE_PRINTF(" 0x%08X - attn_bits\n", 10692 sblk->status_attn_bits); 10693 10694 BCE_PRINTF(" 0x%08X - attn_bits_ack\n", 10695 sblk->status_attn_bits_ack); 10696 10697 BCE_PRINT_RX_CONS(0); 10698 BCE_PRINT_TX_CONS(0) 10699 10700 BCE_PRINTF(" 0x%04X - status_idx\n", sblk->status_idx); 10701 10702 /* Theses indices are not used for normal L2 drivers. */ 10703 BCE_PRINT_RX_CONS(1); BCE_PRINT_RX_CONS(2); BCE_PRINT_RX_CONS(3); 10704 BCE_PRINT_RX_CONS(4); BCE_PRINT_RX_CONS(5); BCE_PRINT_RX_CONS(6); 10705 BCE_PRINT_RX_CONS(7); BCE_PRINT_RX_CONS(8); BCE_PRINT_RX_CONS(9); 10706 BCE_PRINT_RX_CONS(10); BCE_PRINT_RX_CONS(11); BCE_PRINT_RX_CONS(12); 10707 BCE_PRINT_RX_CONS(13); BCE_PRINT_RX_CONS(14); BCE_PRINT_RX_CONS(15); 10708 10709 BCE_PRINT_TX_CONS(1); BCE_PRINT_TX_CONS(2); BCE_PRINT_TX_CONS(3); 10710 10711 if (sblk->status_completion_producer_index || 10712 sblk->status_cmd_consumer_index) 10713 BCE_PRINTF("com_prod = 0x%08X, cmd_cons = 0x%08X\n", 10714 sblk->status_completion_producer_index, 10715 sblk->status_cmd_consumer_index); 10716 10717 BCE_PRINTF( 10718 "----------------------------" 10719 "----------------" 10720 "----------------------------\n"); 10721 } 10722 10723 10724 #define BCE_PRINT_64BIT_STAT(arg) \ 10725 if (sblk->arg##_lo || sblk->arg##_hi) \ 10726 BCE_PRINTF("0x%08X:%08X : %s\n", sblk->arg##_hi, \ 10727 sblk->arg##_lo, #arg); 10728 10729 #define BCE_PRINT_32BIT_STAT(arg) \ 10730 if (sblk->arg) \ 10731 BCE_PRINTF(" 0x%08X : %s\n", \ 10732 sblk->arg, #arg); 10733 10734 /****************************************************************************/ 10735 /* Prints out the statistics block from host memory. */ 10736 /* */ 10737 /* Returns: */ 10738 /* Nothing. */ 10739 /****************************************************************************/ 10740 static __attribute__ ((noinline)) void 10741 bce_dump_stats_block(struct bce_softc *sc) 10742 { 10743 struct statistics_block *sblk; 10744 10745 bus_dmamap_sync(sc->stats_tag, sc->stats_map, BUS_DMASYNC_POSTREAD); 10746 10747 sblk = sc->stats_block; 10748 10749 BCE_PRINTF( 10750 "---------------" 10751 " Stats Block (All Stats Not Shown Are 0) " 10752 "---------------\n"); 10753 10754 BCE_PRINT_64BIT_STAT(stat_IfHCInOctets); 10755 BCE_PRINT_64BIT_STAT(stat_IfHCInBadOctets); 10756 BCE_PRINT_64BIT_STAT(stat_IfHCOutOctets); 10757 BCE_PRINT_64BIT_STAT(stat_IfHCOutBadOctets); 10758 BCE_PRINT_64BIT_STAT(stat_IfHCInUcastPkts); 10759 BCE_PRINT_64BIT_STAT(stat_IfHCInBroadcastPkts); 10760 BCE_PRINT_64BIT_STAT(stat_IfHCInMulticastPkts); 10761 BCE_PRINT_64BIT_STAT(stat_IfHCOutUcastPkts); 10762 BCE_PRINT_64BIT_STAT(stat_IfHCOutBroadcastPkts); 10763 BCE_PRINT_64BIT_STAT(stat_IfHCOutMulticastPkts); 10764 BCE_PRINT_32BIT_STAT( 10765 stat_emac_tx_stat_dot3statsinternalmactransmiterrors); 10766 BCE_PRINT_32BIT_STAT(stat_Dot3StatsCarrierSenseErrors); 10767 BCE_PRINT_32BIT_STAT(stat_Dot3StatsFCSErrors); 10768 BCE_PRINT_32BIT_STAT(stat_Dot3StatsAlignmentErrors); 10769 BCE_PRINT_32BIT_STAT(stat_Dot3StatsSingleCollisionFrames); 10770 BCE_PRINT_32BIT_STAT(stat_Dot3StatsMultipleCollisionFrames); 10771 BCE_PRINT_32BIT_STAT(stat_Dot3StatsDeferredTransmissions); 10772 BCE_PRINT_32BIT_STAT(stat_Dot3StatsExcessiveCollisions); 10773 BCE_PRINT_32BIT_STAT(stat_Dot3StatsLateCollisions); 10774 BCE_PRINT_32BIT_STAT(stat_EtherStatsCollisions); 10775 BCE_PRINT_32BIT_STAT(stat_EtherStatsFragments); 10776 BCE_PRINT_32BIT_STAT(stat_EtherStatsJabbers); 10777 BCE_PRINT_32BIT_STAT(stat_EtherStatsUndersizePkts); 10778 BCE_PRINT_32BIT_STAT(stat_EtherStatsOversizePkts); 10779 BCE_PRINT_32BIT_STAT(stat_EtherStatsPktsRx64Octets); 10780 BCE_PRINT_32BIT_STAT(stat_EtherStatsPktsRx65Octetsto127Octets); 10781 BCE_PRINT_32BIT_STAT(stat_EtherStatsPktsRx128Octetsto255Octets); 10782 BCE_PRINT_32BIT_STAT(stat_EtherStatsPktsRx256Octetsto511Octets); 10783 BCE_PRINT_32BIT_STAT(stat_EtherStatsPktsRx512Octetsto1023Octets); 10784 BCE_PRINT_32BIT_STAT(stat_EtherStatsPktsRx1024Octetsto1522Octets); 10785 BCE_PRINT_32BIT_STAT(stat_EtherStatsPktsRx1523Octetsto9022Octets); 10786 BCE_PRINT_32BIT_STAT(stat_EtherStatsPktsTx64Octets); 10787 BCE_PRINT_32BIT_STAT(stat_EtherStatsPktsTx65Octetsto127Octets); 10788 BCE_PRINT_32BIT_STAT(stat_EtherStatsPktsTx128Octetsto255Octets); 10789 BCE_PRINT_32BIT_STAT(stat_EtherStatsPktsTx256Octetsto511Octets); 10790 BCE_PRINT_32BIT_STAT(stat_EtherStatsPktsTx512Octetsto1023Octets); 10791 BCE_PRINT_32BIT_STAT(stat_EtherStatsPktsTx1024Octetsto1522Octets); 10792 BCE_PRINT_32BIT_STAT(stat_EtherStatsPktsTx1523Octetsto9022Octets); 10793 BCE_PRINT_32BIT_STAT(stat_XonPauseFramesReceived); 10794 BCE_PRINT_32BIT_STAT(stat_XoffPauseFramesReceived); 10795 BCE_PRINT_32BIT_STAT(stat_OutXonSent); 10796 BCE_PRINT_32BIT_STAT(stat_OutXoffSent); 10797 BCE_PRINT_32BIT_STAT(stat_FlowControlDone); 10798 BCE_PRINT_32BIT_STAT(stat_MacControlFramesReceived); 10799 BCE_PRINT_32BIT_STAT(stat_XoffStateEntered); 10800 BCE_PRINT_32BIT_STAT(stat_IfInFramesL2FilterDiscards); 10801 BCE_PRINT_32BIT_STAT(stat_IfInRuleCheckerDiscards); 10802 BCE_PRINT_32BIT_STAT(stat_IfInFTQDiscards); 10803 BCE_PRINT_32BIT_STAT(stat_IfInMBUFDiscards); 10804 BCE_PRINT_32BIT_STAT(stat_IfInRuleCheckerP4Hit); 10805 BCE_PRINT_32BIT_STAT(stat_CatchupInRuleCheckerDiscards); 10806 BCE_PRINT_32BIT_STAT(stat_CatchupInFTQDiscards); 10807 BCE_PRINT_32BIT_STAT(stat_CatchupInMBUFDiscards); 10808 BCE_PRINT_32BIT_STAT(stat_CatchupInRuleCheckerP4Hit); 10809 10810 BCE_PRINTF( 10811 "----------------------------" 10812 "----------------" 10813 "----------------------------\n"); 10814 } 10815 10816 10817 /****************************************************************************/ 10818 /* Prints out a summary of the driver state. */ 10819 /* */ 10820 /* Returns: */ 10821 /* Nothing. */ 10822 /****************************************************************************/ 10823 static __attribute__ ((noinline)) void 10824 bce_dump_driver_state(struct bce_softc *sc) 10825 { 10826 u32 val_hi, val_lo; 10827 10828 BCE_PRINTF( 10829 "-----------------------------" 10830 " Driver State " 10831 "-----------------------------\n"); 10832 10833 val_hi = BCE_ADDR_HI(sc); 10834 val_lo = BCE_ADDR_LO(sc); 10835 BCE_PRINTF("0x%08X:%08X - (sc) driver softc structure virtual " 10836 "address\n", val_hi, val_lo); 10837 10838 val_hi = BCE_ADDR_HI(sc->bce_vhandle); 10839 val_lo = BCE_ADDR_LO(sc->bce_vhandle); 10840 BCE_PRINTF("0x%08X:%08X - (sc->bce_vhandle) PCI BAR virtual " 10841 "address\n", val_hi, val_lo); 10842 10843 val_hi = BCE_ADDR_HI(sc->status_block); 10844 val_lo = BCE_ADDR_LO(sc->status_block); 10845 BCE_PRINTF("0x%08X:%08X - (sc->status_block) status block " 10846 "virtual address\n", val_hi, val_lo); 10847 10848 val_hi = BCE_ADDR_HI(sc->stats_block); 10849 val_lo = BCE_ADDR_LO(sc->stats_block); 10850 BCE_PRINTF("0x%08X:%08X - (sc->stats_block) statistics block " 10851 "virtual address\n", val_hi, val_lo); 10852 10853 val_hi = BCE_ADDR_HI(sc->tx_bd_chain); 10854 val_lo = BCE_ADDR_LO(sc->tx_bd_chain); 10855 BCE_PRINTF("0x%08X:%08X - (sc->tx_bd_chain) tx_bd chain " 10856 "virtual adddress\n", val_hi, val_lo); 10857 10858 val_hi = BCE_ADDR_HI(sc->rx_bd_chain); 10859 val_lo = BCE_ADDR_LO(sc->rx_bd_chain); 10860 BCE_PRINTF("0x%08X:%08X - (sc->rx_bd_chain) rx_bd chain " 10861 "virtual address\n", val_hi, val_lo); 10862 10863 if (bce_hdr_split == TRUE) { 10864 val_hi = BCE_ADDR_HI(sc->pg_bd_chain); 10865 val_lo = BCE_ADDR_LO(sc->pg_bd_chain); 10866 BCE_PRINTF("0x%08X:%08X - (sc->pg_bd_chain) page chain " 10867 "virtual address\n", val_hi, val_lo); 10868 } 10869 10870 val_hi = BCE_ADDR_HI(sc->tx_mbuf_ptr); 10871 val_lo = BCE_ADDR_LO(sc->tx_mbuf_ptr); 10872 BCE_PRINTF("0x%08X:%08X - (sc->tx_mbuf_ptr) tx mbuf chain " 10873 "virtual address\n", val_hi, val_lo); 10874 10875 val_hi = BCE_ADDR_HI(sc->rx_mbuf_ptr); 10876 val_lo = BCE_ADDR_LO(sc->rx_mbuf_ptr); 10877 BCE_PRINTF("0x%08X:%08X - (sc->rx_mbuf_ptr) rx mbuf chain " 10878 "virtual address\n", val_hi, val_lo); 10879 10880 if (bce_hdr_split == TRUE) { 10881 val_hi = BCE_ADDR_HI(sc->pg_mbuf_ptr); 10882 val_lo = BCE_ADDR_LO(sc->pg_mbuf_ptr); 10883 BCE_PRINTF("0x%08X:%08X - (sc->pg_mbuf_ptr) page mbuf chain " 10884 "virtual address\n", val_hi, val_lo); 10885 } 10886 10887 BCE_PRINTF(" 0x%016llX - (sc->interrupts_generated) " 10888 "h/w intrs\n", 10889 (long long unsigned int) sc->interrupts_generated); 10890 10891 BCE_PRINTF(" 0x%016llX - (sc->interrupts_rx) " 10892 "rx interrupts handled\n", 10893 (long long unsigned int) sc->interrupts_rx); 10894 10895 BCE_PRINTF(" 0x%016llX - (sc->interrupts_tx) " 10896 "tx interrupts handled\n", 10897 (long long unsigned int) sc->interrupts_tx); 10898 10899 BCE_PRINTF(" 0x%016llX - (sc->phy_interrupts) " 10900 "phy interrupts handled\n", 10901 (long long unsigned int) sc->phy_interrupts); 10902 10903 BCE_PRINTF(" 0x%08X - (sc->last_status_idx) " 10904 "status block index\n", sc->last_status_idx); 10905 10906 BCE_PRINTF(" 0x%04X(0x%04X) - (sc->tx_prod) tx producer " 10907 "index\n", sc->tx_prod, (u16) TX_CHAIN_IDX(sc->tx_prod)); 10908 10909 BCE_PRINTF(" 0x%04X(0x%04X) - (sc->tx_cons) tx consumer " 10910 "index\n", sc->tx_cons, (u16) TX_CHAIN_IDX(sc->tx_cons)); 10911 10912 BCE_PRINTF(" 0x%08X - (sc->tx_prod_bseq) tx producer " 10913 "byte seq index\n", sc->tx_prod_bseq); 10914 10915 BCE_PRINTF(" 0x%08X - (sc->debug_tx_mbuf_alloc) tx " 10916 "mbufs allocated\n", sc->debug_tx_mbuf_alloc); 10917 10918 BCE_PRINTF(" 0x%08X - (sc->used_tx_bd) used " 10919 "tx_bd's\n", sc->used_tx_bd); 10920 10921 BCE_PRINTF(" 0x%04X/0x%04X - (sc->tx_hi_watermark)/" 10922 "(sc->max_tx_bd)\n", sc->tx_hi_watermark, sc->max_tx_bd); 10923 10924 BCE_PRINTF(" 0x%04X(0x%04X) - (sc->rx_prod) rx producer " 10925 "index\n", sc->rx_prod, (u16) RX_CHAIN_IDX(sc->rx_prod)); 10926 10927 BCE_PRINTF(" 0x%04X(0x%04X) - (sc->rx_cons) rx consumer " 10928 "index\n", sc->rx_cons, (u16) RX_CHAIN_IDX(sc->rx_cons)); 10929 10930 BCE_PRINTF(" 0x%08X - (sc->rx_prod_bseq) rx producer " 10931 "byte seq index\n", sc->rx_prod_bseq); 10932 10933 BCE_PRINTF(" 0x%04X/0x%04X - (sc->rx_low_watermark)/" 10934 "(sc->max_rx_bd)\n", sc->rx_low_watermark, sc->max_rx_bd); 10935 10936 BCE_PRINTF(" 0x%08X - (sc->debug_rx_mbuf_alloc) rx " 10937 "mbufs allocated\n", sc->debug_rx_mbuf_alloc); 10938 10939 BCE_PRINTF(" 0x%08X - (sc->free_rx_bd) free " 10940 "rx_bd's\n", sc->free_rx_bd); 10941 10942 if (bce_hdr_split == TRUE) { 10943 BCE_PRINTF(" 0x%04X(0x%04X) - (sc->pg_prod) page producer " 10944 "index\n", sc->pg_prod, (u16) PG_CHAIN_IDX(sc->pg_prod)); 10945 10946 BCE_PRINTF(" 0x%04X(0x%04X) - (sc->pg_cons) page consumer " 10947 "index\n", sc->pg_cons, (u16) PG_CHAIN_IDX(sc->pg_cons)); 10948 10949 BCE_PRINTF(" 0x%08X - (sc->debug_pg_mbuf_alloc) page " 10950 "mbufs allocated\n", sc->debug_pg_mbuf_alloc); 10951 } 10952 10953 BCE_PRINTF(" 0x%08X - (sc->free_pg_bd) free page " 10954 "rx_bd's\n", sc->free_pg_bd); 10955 10956 BCE_PRINTF(" 0x%04X/0x%04X - (sc->pg_low_watermark)/" 10957 "(sc->max_pg_bd)\n", sc->pg_low_watermark, sc->max_pg_bd); 10958 10959 BCE_PRINTF(" 0x%08X - (sc->mbuf_alloc_failed_count) " 10960 "mbuf alloc failures\n", sc->mbuf_alloc_failed_count); 10961 10962 BCE_PRINTF(" 0x%08X - (sc->bce_flags) " 10963 "bce mac flags\n", sc->bce_flags); 10964 10965 BCE_PRINTF(" 0x%08X - (sc->bce_phy_flags) " 10966 "bce phy flags\n", sc->bce_phy_flags); 10967 10968 BCE_PRINTF( 10969 "----------------------------" 10970 "----------------" 10971 "----------------------------\n"); 10972 } 10973 10974 10975 /****************************************************************************/ 10976 /* Prints out the hardware state through a summary of important register, */ 10977 /* followed by a complete register dump. */ 10978 /* */ 10979 /* Returns: */ 10980 /* Nothing. */ 10981 /****************************************************************************/ 10982 static __attribute__ ((noinline)) void 10983 bce_dump_hw_state(struct bce_softc *sc) 10984 { 10985 u32 val; 10986 10987 BCE_PRINTF( 10988 "----------------------------" 10989 " Hardware State " 10990 "----------------------------\n"); 10991 10992 BCE_PRINTF("%s - bootcode version\n", sc->bce_bc_ver); 10993 10994 val = REG_RD(sc, BCE_MISC_ENABLE_STATUS_BITS); 10995 BCE_PRINTF("0x%08X - (0x%06X) misc_enable_status_bits\n", 10996 val, BCE_MISC_ENABLE_STATUS_BITS); 10997 10998 val = REG_RD(sc, BCE_DMA_STATUS); 10999 BCE_PRINTF("0x%08X - (0x%06X) dma_status\n", 11000 val, BCE_DMA_STATUS); 11001 11002 val = REG_RD(sc, BCE_CTX_STATUS); 11003 BCE_PRINTF("0x%08X - (0x%06X) ctx_status\n", 11004 val, BCE_CTX_STATUS); 11005 11006 val = REG_RD(sc, BCE_EMAC_STATUS); 11007 BCE_PRINTF("0x%08X - (0x%06X) emac_status\n", 11008 val, BCE_EMAC_STATUS); 11009 11010 val = REG_RD(sc, BCE_RPM_STATUS); 11011 BCE_PRINTF("0x%08X - (0x%06X) rpm_status\n", 11012 val, BCE_RPM_STATUS); 11013 11014 /* ToDo: Create a #define for this constant. */ 11015 val = REG_RD(sc, 0x2004); 11016 BCE_PRINTF("0x%08X - (0x%06X) rlup_status\n", 11017 val, 0x2004); 11018 11019 val = REG_RD(sc, BCE_RV2P_STATUS); 11020 BCE_PRINTF("0x%08X - (0x%06X) rv2p_status\n", 11021 val, BCE_RV2P_STATUS); 11022 11023 /* ToDo: Create a #define for this constant. */ 11024 val = REG_RD(sc, 0x2c04); 11025 BCE_PRINTF("0x%08X - (0x%06X) rdma_status\n", 11026 val, 0x2c04); 11027 11028 val = REG_RD(sc, BCE_TBDR_STATUS); 11029 BCE_PRINTF("0x%08X - (0x%06X) tbdr_status\n", 11030 val, BCE_TBDR_STATUS); 11031 11032 val = REG_RD(sc, BCE_TDMA_STATUS); 11033 BCE_PRINTF("0x%08X - (0x%06X) tdma_status\n", 11034 val, BCE_TDMA_STATUS); 11035 11036 val = REG_RD(sc, BCE_HC_STATUS); 11037 BCE_PRINTF("0x%08X - (0x%06X) hc_status\n", 11038 val, BCE_HC_STATUS); 11039 11040 val = REG_RD_IND(sc, BCE_TXP_CPU_STATE); 11041 BCE_PRINTF("0x%08X - (0x%06X) txp_cpu_state\n", 11042 val, BCE_TXP_CPU_STATE); 11043 11044 val = REG_RD_IND(sc, BCE_TPAT_CPU_STATE); 11045 BCE_PRINTF("0x%08X - (0x%06X) tpat_cpu_state\n", 11046 val, BCE_TPAT_CPU_STATE); 11047 11048 val = REG_RD_IND(sc, BCE_RXP_CPU_STATE); 11049 BCE_PRINTF("0x%08X - (0x%06X) rxp_cpu_state\n", 11050 val, BCE_RXP_CPU_STATE); 11051 11052 val = REG_RD_IND(sc, BCE_COM_CPU_STATE); 11053 BCE_PRINTF("0x%08X - (0x%06X) com_cpu_state\n", 11054 val, BCE_COM_CPU_STATE); 11055 11056 val = REG_RD_IND(sc, BCE_MCP_CPU_STATE); 11057 BCE_PRINTF("0x%08X - (0x%06X) mcp_cpu_state\n", 11058 val, BCE_MCP_CPU_STATE); 11059 11060 val = REG_RD_IND(sc, BCE_CP_CPU_STATE); 11061 BCE_PRINTF("0x%08X - (0x%06X) cp_cpu_state\n", 11062 val, BCE_CP_CPU_STATE); 11063 11064 BCE_PRINTF( 11065 "----------------------------" 11066 "----------------" 11067 "----------------------------\n"); 11068 11069 BCE_PRINTF( 11070 "----------------------------" 11071 " Register Dump " 11072 "----------------------------\n"); 11073 11074 for (int i = 0x400; i < 0x8000; i += 0x10) { 11075 BCE_PRINTF("0x%04X: 0x%08X 0x%08X 0x%08X 0x%08X\n", 11076 i, REG_RD(sc, i), REG_RD(sc, i + 0x4), 11077 REG_RD(sc, i + 0x8), REG_RD(sc, i + 0xC)); 11078 } 11079 11080 BCE_PRINTF( 11081 "----------------------------" 11082 "----------------" 11083 "----------------------------\n"); 11084 } 11085 11086 11087 /****************************************************************************/ 11088 /* Prints out the contentst of shared memory which is used for host driver */ 11089 /* to bootcode firmware communication. */ 11090 /* */ 11091 /* Returns: */ 11092 /* Nothing. */ 11093 /****************************************************************************/ 11094 static __attribute__ ((noinline)) void 11095 bce_dump_shmem_state(struct bce_softc *sc) 11096 { 11097 BCE_PRINTF( 11098 "----------------------------" 11099 " Hardware State " 11100 "----------------------------\n"); 11101 11102 BCE_PRINTF("0x%08X - Shared memory base address\n", 11103 sc->bce_shmem_base); 11104 BCE_PRINTF("%s - bootcode version\n", 11105 sc->bce_bc_ver); 11106 11107 BCE_PRINTF( 11108 "----------------------------" 11109 " Shared Mem " 11110 "----------------------------\n"); 11111 11112 for (int i = 0x0; i < 0x200; i += 0x10) { 11113 BCE_PRINTF("0x%04X: 0x%08X 0x%08X 0x%08X 0x%08X\n", 11114 i, bce_shmem_rd(sc, i), bce_shmem_rd(sc, i + 0x4), 11115 bce_shmem_rd(sc, i + 0x8), bce_shmem_rd(sc, i + 0xC)); 11116 } 11117 11118 BCE_PRINTF( 11119 "----------------------------" 11120 "----------------" 11121 "----------------------------\n"); 11122 } 11123 11124 11125 /****************************************************************************/ 11126 /* Prints out the mailbox queue registers. */ 11127 /* */ 11128 /* Returns: */ 11129 /* Nothing. */ 11130 /****************************************************************************/ 11131 static __attribute__ ((noinline)) void 11132 bce_dump_mq_regs(struct bce_softc *sc) 11133 { 11134 BCE_PRINTF( 11135 "----------------------------" 11136 " MQ Regs " 11137 "----------------------------\n"); 11138 11139 BCE_PRINTF( 11140 "----------------------------" 11141 "----------------" 11142 "----------------------------\n"); 11143 11144 for (int i = 0x3c00; i < 0x4000; i += 0x10) { 11145 BCE_PRINTF("0x%04X: 0x%08X 0x%08X 0x%08X 0x%08X\n", 11146 i, REG_RD(sc, i), REG_RD(sc, i + 0x4), 11147 REG_RD(sc, i + 0x8), REG_RD(sc, i + 0xC)); 11148 } 11149 11150 BCE_PRINTF( 11151 "----------------------------" 11152 "----------------" 11153 "----------------------------\n"); 11154 } 11155 11156 11157 /****************************************************************************/ 11158 /* Prints out the bootcode state. */ 11159 /* */ 11160 /* Returns: */ 11161 /* Nothing. */ 11162 /****************************************************************************/ 11163 static __attribute__ ((noinline)) void 11164 bce_dump_bc_state(struct bce_softc *sc) 11165 { 11166 u32 val; 11167 11168 BCE_PRINTF( 11169 "----------------------------" 11170 " Bootcode State " 11171 "----------------------------\n"); 11172 11173 BCE_PRINTF("%s - bootcode version\n", sc->bce_bc_ver); 11174 11175 val = bce_shmem_rd(sc, BCE_BC_RESET_TYPE); 11176 BCE_PRINTF("0x%08X - (0x%06X) reset_type\n", 11177 val, BCE_BC_RESET_TYPE); 11178 11179 val = bce_shmem_rd(sc, BCE_BC_STATE); 11180 BCE_PRINTF("0x%08X - (0x%06X) state\n", 11181 val, BCE_BC_STATE); 11182 11183 val = bce_shmem_rd(sc, BCE_BC_STATE_CONDITION); 11184 BCE_PRINTF("0x%08X - (0x%06X) condition\n", 11185 val, BCE_BC_STATE_CONDITION); 11186 11187 val = bce_shmem_rd(sc, BCE_BC_STATE_DEBUG_CMD); 11188 BCE_PRINTF("0x%08X - (0x%06X) debug_cmd\n", 11189 val, BCE_BC_STATE_DEBUG_CMD); 11190 11191 BCE_PRINTF( 11192 "----------------------------" 11193 "----------------" 11194 "----------------------------\n"); 11195 } 11196 11197 11198 /****************************************************************************/ 11199 /* Prints out the TXP processor state. */ 11200 /* */ 11201 /* Returns: */ 11202 /* Nothing. */ 11203 /****************************************************************************/ 11204 static __attribute__ ((noinline)) void 11205 bce_dump_txp_state(struct bce_softc *sc, int regs) 11206 { 11207 u32 val; 11208 u32 fw_version[3]; 11209 11210 BCE_PRINTF( 11211 "----------------------------" 11212 " TXP State " 11213 "----------------------------\n"); 11214 11215 for (int i = 0; i < 3; i++) 11216 fw_version[i] = htonl(REG_RD_IND(sc, 11217 (BCE_TXP_SCRATCH + 0x10 + i * 4))); 11218 BCE_PRINTF("Firmware version - %s\n", (char *) fw_version); 11219 11220 val = REG_RD_IND(sc, BCE_TXP_CPU_MODE); 11221 BCE_PRINTF("0x%08X - (0x%06X) txp_cpu_mode\n", 11222 val, BCE_TXP_CPU_MODE); 11223 11224 val = REG_RD_IND(sc, BCE_TXP_CPU_STATE); 11225 BCE_PRINTF("0x%08X - (0x%06X) txp_cpu_state\n", 11226 val, BCE_TXP_CPU_STATE); 11227 11228 val = REG_RD_IND(sc, BCE_TXP_CPU_EVENT_MASK); 11229 BCE_PRINTF("0x%08X - (0x%06X) txp_cpu_event_mask\n", 11230 val, BCE_TXP_CPU_EVENT_MASK); 11231 11232 if (regs) { 11233 BCE_PRINTF( 11234 "----------------------------" 11235 " Register Dump " 11236 "----------------------------\n"); 11237 11238 for (int i = BCE_TXP_CPU_MODE; i < 0x68000; i += 0x10) { 11239 /* Skip the big blank spaces */ 11240 if (i < 0x454000 && i > 0x5ffff) 11241 BCE_PRINTF("0x%04X: 0x%08X 0x%08X " 11242 "0x%08X 0x%08X\n", i, 11243 REG_RD_IND(sc, i), 11244 REG_RD_IND(sc, i + 0x4), 11245 REG_RD_IND(sc, i + 0x8), 11246 REG_RD_IND(sc, i + 0xC)); 11247 } 11248 } 11249 11250 BCE_PRINTF( 11251 "----------------------------" 11252 "----------------" 11253 "----------------------------\n"); 11254 } 11255 11256 11257 /****************************************************************************/ 11258 /* Prints out the RXP processor state. */ 11259 /* */ 11260 /* Returns: */ 11261 /* Nothing. */ 11262 /****************************************************************************/ 11263 static __attribute__ ((noinline)) void 11264 bce_dump_rxp_state(struct bce_softc *sc, int regs) 11265 { 11266 u32 val; 11267 u32 fw_version[3]; 11268 11269 BCE_PRINTF( 11270 "----------------------------" 11271 " RXP State " 11272 "----------------------------\n"); 11273 11274 for (int i = 0; i < 3; i++) 11275 fw_version[i] = htonl(REG_RD_IND(sc, 11276 (BCE_RXP_SCRATCH + 0x10 + i * 4))); 11277 11278 BCE_PRINTF("Firmware version - %s\n", (char *) fw_version); 11279 11280 val = REG_RD_IND(sc, BCE_RXP_CPU_MODE); 11281 BCE_PRINTF("0x%08X - (0x%06X) rxp_cpu_mode\n", 11282 val, BCE_RXP_CPU_MODE); 11283 11284 val = REG_RD_IND(sc, BCE_RXP_CPU_STATE); 11285 BCE_PRINTF("0x%08X - (0x%06X) rxp_cpu_state\n", 11286 val, BCE_RXP_CPU_STATE); 11287 11288 val = REG_RD_IND(sc, BCE_RXP_CPU_EVENT_MASK); 11289 BCE_PRINTF("0x%08X - (0x%06X) rxp_cpu_event_mask\n", 11290 val, BCE_RXP_CPU_EVENT_MASK); 11291 11292 if (regs) { 11293 BCE_PRINTF( 11294 "----------------------------" 11295 " Register Dump " 11296 "----------------------------\n"); 11297 11298 for (int i = BCE_RXP_CPU_MODE; i < 0xe8fff; i += 0x10) { 11299 /* Skip the big blank sapces */ 11300 if (i < 0xc5400 && i > 0xdffff) 11301 BCE_PRINTF("0x%04X: 0x%08X 0x%08X " 11302 "0x%08X 0x%08X\n", i, 11303 REG_RD_IND(sc, i), 11304 REG_RD_IND(sc, i + 0x4), 11305 REG_RD_IND(sc, i + 0x8), 11306 REG_RD_IND(sc, i + 0xC)); 11307 } 11308 } 11309 11310 BCE_PRINTF( 11311 "----------------------------" 11312 "----------------" 11313 "----------------------------\n"); 11314 } 11315 11316 11317 /****************************************************************************/ 11318 /* Prints out the TPAT processor state. */ 11319 /* */ 11320 /* Returns: */ 11321 /* Nothing. */ 11322 /****************************************************************************/ 11323 static __attribute__ ((noinline)) void 11324 bce_dump_tpat_state(struct bce_softc *sc, int regs) 11325 { 11326 u32 val; 11327 u32 fw_version[3]; 11328 11329 BCE_PRINTF( 11330 "----------------------------" 11331 " TPAT State " 11332 "----------------------------\n"); 11333 11334 for (int i = 0; i < 3; i++) 11335 fw_version[i] = htonl(REG_RD_IND(sc, 11336 (BCE_TPAT_SCRATCH + 0x410 + i * 4))); 11337 11338 BCE_PRINTF("Firmware version - %s\n", (char *) fw_version); 11339 11340 val = REG_RD_IND(sc, BCE_TPAT_CPU_MODE); 11341 BCE_PRINTF("0x%08X - (0x%06X) tpat_cpu_mode\n", 11342 val, BCE_TPAT_CPU_MODE); 11343 11344 val = REG_RD_IND(sc, BCE_TPAT_CPU_STATE); 11345 BCE_PRINTF("0x%08X - (0x%06X) tpat_cpu_state\n", 11346 val, BCE_TPAT_CPU_STATE); 11347 11348 val = REG_RD_IND(sc, BCE_TPAT_CPU_EVENT_MASK); 11349 BCE_PRINTF("0x%08X - (0x%06X) tpat_cpu_event_mask\n", 11350 val, BCE_TPAT_CPU_EVENT_MASK); 11351 11352 if (regs) { 11353 BCE_PRINTF( 11354 "----------------------------" 11355 " Register Dump " 11356 "----------------------------\n"); 11357 11358 for (int i = BCE_TPAT_CPU_MODE; i < 0xa3fff; i += 0x10) { 11359 /* Skip the big blank spaces */ 11360 if (i < 0x854000 && i > 0x9ffff) 11361 BCE_PRINTF("0x%04X: 0x%08X 0x%08X " 11362 "0x%08X 0x%08X\n", i, 11363 REG_RD_IND(sc, i), 11364 REG_RD_IND(sc, i + 0x4), 11365 REG_RD_IND(sc, i + 0x8), 11366 REG_RD_IND(sc, i + 0xC)); 11367 } 11368 } 11369 11370 BCE_PRINTF( 11371 "----------------------------" 11372 "----------------" 11373 "----------------------------\n"); 11374 } 11375 11376 11377 /****************************************************************************/ 11378 /* Prints out the Command Procesor (CP) state. */ 11379 /* */ 11380 /* Returns: */ 11381 /* Nothing. */ 11382 /****************************************************************************/ 11383 static __attribute__ ((noinline)) void 11384 bce_dump_cp_state(struct bce_softc *sc, int regs) 11385 { 11386 u32 val; 11387 u32 fw_version[3]; 11388 11389 BCE_PRINTF( 11390 "----------------------------" 11391 " CP State " 11392 "----------------------------\n"); 11393 11394 for (int i = 0; i < 3; i++) 11395 fw_version[i] = htonl(REG_RD_IND(sc, 11396 (BCE_CP_SCRATCH + 0x10 + i * 4))); 11397 11398 BCE_PRINTF("Firmware version - %s\n", (char *) fw_version); 11399 11400 val = REG_RD_IND(sc, BCE_CP_CPU_MODE); 11401 BCE_PRINTF("0x%08X - (0x%06X) cp_cpu_mode\n", 11402 val, BCE_CP_CPU_MODE); 11403 11404 val = REG_RD_IND(sc, BCE_CP_CPU_STATE); 11405 BCE_PRINTF("0x%08X - (0x%06X) cp_cpu_state\n", 11406 val, BCE_CP_CPU_STATE); 11407 11408 val = REG_RD_IND(sc, BCE_CP_CPU_EVENT_MASK); 11409 BCE_PRINTF("0x%08X - (0x%06X) cp_cpu_event_mask\n", val, 11410 BCE_CP_CPU_EVENT_MASK); 11411 11412 if (regs) { 11413 BCE_PRINTF( 11414 "----------------------------" 11415 " Register Dump " 11416 "----------------------------\n"); 11417 11418 for (int i = BCE_CP_CPU_MODE; i < 0x1aa000; i += 0x10) { 11419 /* Skip the big blank spaces */ 11420 if (i < 0x185400 && i > 0x19ffff) 11421 BCE_PRINTF("0x%04X: 0x%08X 0x%08X " 11422 "0x%08X 0x%08X\n", i, 11423 REG_RD_IND(sc, i), 11424 REG_RD_IND(sc, i + 0x4), 11425 REG_RD_IND(sc, i + 0x8), 11426 REG_RD_IND(sc, i + 0xC)); 11427 } 11428 } 11429 11430 BCE_PRINTF( 11431 "----------------------------" 11432 "----------------" 11433 "----------------------------\n"); 11434 } 11435 11436 11437 /****************************************************************************/ 11438 /* Prints out the Completion Procesor (COM) state. */ 11439 /* */ 11440 /* Returns: */ 11441 /* Nothing. */ 11442 /****************************************************************************/ 11443 static __attribute__ ((noinline)) void 11444 bce_dump_com_state(struct bce_softc *sc, int regs) 11445 { 11446 u32 val; 11447 u32 fw_version[4]; 11448 11449 BCE_PRINTF( 11450 "----------------------------" 11451 " COM State " 11452 "----------------------------\n"); 11453 11454 for (int i = 0; i < 3; i++) 11455 fw_version[i] = htonl(REG_RD_IND(sc, 11456 (BCE_COM_SCRATCH + 0x10 + i * 4))); 11457 11458 BCE_PRINTF("Firmware version - %s\n", (char *) fw_version); 11459 11460 val = REG_RD_IND(sc, BCE_COM_CPU_MODE); 11461 BCE_PRINTF("0x%08X - (0x%06X) com_cpu_mode\n", 11462 val, BCE_COM_CPU_MODE); 11463 11464 val = REG_RD_IND(sc, BCE_COM_CPU_STATE); 11465 BCE_PRINTF("0x%08X - (0x%06X) com_cpu_state\n", 11466 val, BCE_COM_CPU_STATE); 11467 11468 val = REG_RD_IND(sc, BCE_COM_CPU_EVENT_MASK); 11469 BCE_PRINTF("0x%08X - (0x%06X) com_cpu_event_mask\n", val, 11470 BCE_COM_CPU_EVENT_MASK); 11471 11472 if (regs) { 11473 BCE_PRINTF( 11474 "----------------------------" 11475 " Register Dump " 11476 "----------------------------\n"); 11477 11478 for (int i = BCE_COM_CPU_MODE; i < 0x1053e8; i += 0x10) { 11479 BCE_PRINTF("0x%04X: 0x%08X 0x%08X " 11480 "0x%08X 0x%08X\n", i, 11481 REG_RD_IND(sc, i), 11482 REG_RD_IND(sc, i + 0x4), 11483 REG_RD_IND(sc, i + 0x8), 11484 REG_RD_IND(sc, i + 0xC)); 11485 } 11486 } 11487 11488 BCE_PRINTF( 11489 "----------------------------" 11490 "----------------" 11491 "----------------------------\n"); 11492 } 11493 11494 11495 /****************************************************************************/ 11496 /* Prints out the Receive Virtual 2 Physical (RV2P) state. */ 11497 /* */ 11498 /* Returns: */ 11499 /* Nothing. */ 11500 /****************************************************************************/ 11501 static __attribute__ ((noinline)) void 11502 bce_dump_rv2p_state(struct bce_softc *sc) 11503 { 11504 u32 val, pc1, pc2, fw_ver_high, fw_ver_low; 11505 11506 BCE_PRINTF( 11507 "----------------------------" 11508 " RV2P State " 11509 "----------------------------\n"); 11510 11511 /* Stall the RV2P processors. */ 11512 val = REG_RD_IND(sc, BCE_RV2P_CONFIG); 11513 val |= BCE_RV2P_CONFIG_STALL_PROC1 | BCE_RV2P_CONFIG_STALL_PROC2; 11514 REG_WR_IND(sc, BCE_RV2P_CONFIG, val); 11515 11516 /* Read the firmware version. */ 11517 val = 0x00000001; 11518 REG_WR_IND(sc, BCE_RV2P_PROC1_ADDR_CMD, val); 11519 fw_ver_low = REG_RD_IND(sc, BCE_RV2P_INSTR_LOW); 11520 fw_ver_high = REG_RD_IND(sc, BCE_RV2P_INSTR_HIGH) & 11521 BCE_RV2P_INSTR_HIGH_HIGH; 11522 BCE_PRINTF("RV2P1 Firmware version - 0x%08X:0x%08X\n", 11523 fw_ver_high, fw_ver_low); 11524 11525 val = 0x00000001; 11526 REG_WR_IND(sc, BCE_RV2P_PROC2_ADDR_CMD, val); 11527 fw_ver_low = REG_RD_IND(sc, BCE_RV2P_INSTR_LOW); 11528 fw_ver_high = REG_RD_IND(sc, BCE_RV2P_INSTR_HIGH) & 11529 BCE_RV2P_INSTR_HIGH_HIGH; 11530 BCE_PRINTF("RV2P2 Firmware version - 0x%08X:0x%08X\n", 11531 fw_ver_high, fw_ver_low); 11532 11533 /* Resume the RV2P processors. */ 11534 val = REG_RD_IND(sc, BCE_RV2P_CONFIG); 11535 val &= ~(BCE_RV2P_CONFIG_STALL_PROC1 | BCE_RV2P_CONFIG_STALL_PROC2); 11536 REG_WR_IND(sc, BCE_RV2P_CONFIG, val); 11537 11538 /* Fetch the program counter value. */ 11539 val = 0x68007800; 11540 REG_WR_IND(sc, BCE_RV2P_DEBUG_VECT_PEEK, val); 11541 val = REG_RD_IND(sc, BCE_RV2P_DEBUG_VECT_PEEK); 11542 pc1 = (val & BCE_RV2P_DEBUG_VECT_PEEK_1_VALUE); 11543 pc2 = (val & BCE_RV2P_DEBUG_VECT_PEEK_2_VALUE) >> 16; 11544 BCE_PRINTF("0x%08X - RV2P1 program counter (1st read)\n", pc1); 11545 BCE_PRINTF("0x%08X - RV2P2 program counter (1st read)\n", pc2); 11546 11547 /* Fetch the program counter value again to see if it is advancing. */ 11548 val = 0x68007800; 11549 REG_WR_IND(sc, BCE_RV2P_DEBUG_VECT_PEEK, val); 11550 val = REG_RD_IND(sc, BCE_RV2P_DEBUG_VECT_PEEK); 11551 pc1 = (val & BCE_RV2P_DEBUG_VECT_PEEK_1_VALUE); 11552 pc2 = (val & BCE_RV2P_DEBUG_VECT_PEEK_2_VALUE) >> 16; 11553 BCE_PRINTF("0x%08X - RV2P1 program counter (2nd read)\n", pc1); 11554 BCE_PRINTF("0x%08X - RV2P2 program counter (2nd read)\n", pc2); 11555 11556 BCE_PRINTF( 11557 "----------------------------" 11558 "----------------" 11559 "----------------------------\n"); 11560 } 11561 11562 11563 /****************************************************************************/ 11564 /* Prints out the driver state and then enters the debugger. */ 11565 /* */ 11566 /* Returns: */ 11567 /* Nothing. */ 11568 /****************************************************************************/ 11569 static __attribute__ ((noinline)) void 11570 bce_breakpoint(struct bce_softc *sc) 11571 { 11572 11573 /* 11574 * Unreachable code to silence compiler warnings 11575 * about unused functions. 11576 */ 11577 if (0) { 11578 bce_freeze_controller(sc); 11579 bce_unfreeze_controller(sc); 11580 bce_dump_enet(sc, NULL); 11581 bce_dump_txbd(sc, 0, NULL); 11582 bce_dump_rxbd(sc, 0, NULL); 11583 bce_dump_tx_mbuf_chain(sc, 0, USABLE_TX_BD_ALLOC); 11584 bce_dump_rx_mbuf_chain(sc, 0, USABLE_RX_BD_ALLOC); 11585 bce_dump_pg_mbuf_chain(sc, 0, USABLE_PG_BD_ALLOC); 11586 bce_dump_l2fhdr(sc, 0, NULL); 11587 bce_dump_ctx(sc, RX_CID); 11588 bce_dump_ftqs(sc); 11589 bce_dump_tx_chain(sc, 0, USABLE_TX_BD_ALLOC); 11590 bce_dump_rx_bd_chain(sc, 0, USABLE_RX_BD_ALLOC); 11591 bce_dump_pg_chain(sc, 0, USABLE_PG_BD_ALLOC); 11592 bce_dump_status_block(sc); 11593 bce_dump_stats_block(sc); 11594 bce_dump_driver_state(sc); 11595 bce_dump_hw_state(sc); 11596 bce_dump_bc_state(sc); 11597 bce_dump_txp_state(sc, 0); 11598 bce_dump_rxp_state(sc, 0); 11599 bce_dump_tpat_state(sc, 0); 11600 bce_dump_cp_state(sc, 0); 11601 bce_dump_com_state(sc, 0); 11602 bce_dump_rv2p_state(sc); 11603 bce_dump_pgbd(sc, 0, NULL); 11604 } 11605 11606 bce_dump_status_block(sc); 11607 bce_dump_driver_state(sc); 11608 11609 /* Call the debugger. */ 11610 breakpoint(); 11611 } 11612 #endif 11613