xref: /freebsd/sys/dev/bce/if_bce.c (revision 9f31240773ae369c8285b700840a35e6bfa9f762)
1 /*-
2  * Copyright (c) 2006-2014 QLogic Corporation
3  *
4  * Redistribution and use in source and binary forms, with or without
5  * modification, are permitted provided that the following conditions
6  * are met:
7  *
8  * 1. Redistributions of source code must retain the above copyright
9  *    notice, this list of conditions and the following disclaimer.
10  * 2. Redistributions in binary form must reproduce the above copyright
11  *    notice, this list of conditions and the following disclaimer in the
12  *    documentation and/or other materials provided with the distribution.
13  *
14  * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS'
15  * AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
16  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
17  * ARE DISCLAIMED.  IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS
18  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
19  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
20  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
21  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
22  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
23  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF
24  * THE POSSIBILITY OF SUCH DAMAGE.
25  */
26 
27 #include <sys/cdefs.h>
28 __FBSDID("$FreeBSD$");
29 
30 /*
31  * The following controllers are supported by this driver:
32  *   BCM5706C A2, A3
33  *   BCM5706S A2, A3
34  *   BCM5708C B1, B2
35  *   BCM5708S B1, B2
36  *   BCM5709C A1, C0
37  *   BCM5709S A1, C0
38  *   BCM5716C C0
39  *   BCM5716S C0
40  *
41  * The following controllers are not supported by this driver:
42  *   BCM5706C A0, A1 (pre-production)
43  *   BCM5706S A0, A1 (pre-production)
44  *   BCM5708C A0, B0 (pre-production)
45  *   BCM5708S A0, B0 (pre-production)
46  *   BCM5709C A0  B0, B1, B2 (pre-production)
47  *   BCM5709S A0, B0, B1, B2 (pre-production)
48  */
49 
50 #include "opt_bce.h"
51 
52 #include <sys/param.h>
53 #include <sys/endian.h>
54 #include <sys/systm.h>
55 #include <sys/sockio.h>
56 #include <sys/lock.h>
57 #include <sys/mbuf.h>
58 #include <sys/malloc.h>
59 #include <sys/mutex.h>
60 #include <sys/kernel.h>
61 #include <sys/module.h>
62 #include <sys/socket.h>
63 #include <sys/sysctl.h>
64 #include <sys/queue.h>
65 
66 #include <net/bpf.h>
67 #include <net/ethernet.h>
68 #include <net/if.h>
69 #include <net/if_var.h>
70 #include <net/if_arp.h>
71 #include <net/if_dl.h>
72 #include <net/if_media.h>
73 
74 #include <net/if_types.h>
75 #include <net/if_vlan_var.h>
76 
77 #include <netinet/in_systm.h>
78 #include <netinet/in.h>
79 #include <netinet/if_ether.h>
80 #include <netinet/ip.h>
81 #include <netinet/ip6.h>
82 #include <netinet/tcp.h>
83 #include <netinet/udp.h>
84 
85 #include <machine/bus.h>
86 #include <machine/resource.h>
87 #include <sys/bus.h>
88 #include <sys/rman.h>
89 
90 #include <dev/mii/mii.h>
91 #include <dev/mii/miivar.h>
92 #include "miidevs.h"
93 #include <dev/mii/brgphyreg.h>
94 
95 #include <dev/pci/pcireg.h>
96 #include <dev/pci/pcivar.h>
97 
98 #include "miibus_if.h"
99 
100 #include <dev/bce/if_bcereg.h>
101 #include <dev/bce/if_bcefw.h>
102 
103 /****************************************************************************/
104 /* BCE Debug Options                                                        */
105 /****************************************************************************/
106 #ifdef BCE_DEBUG
107 	u32 bce_debug = BCE_WARN;
108 
109 	/*          0 = Never              */
110 	/*          1 = 1 in 2,147,483,648 */
111 	/*        256 = 1 in     8,388,608 */
112 	/*       2048 = 1 in     1,048,576 */
113 	/*      65536 = 1 in        32,768 */
114 	/*    1048576 = 1 in         2,048 */
115 	/*  268435456 =	1 in             8 */
116 	/*  536870912 = 1 in             4 */
117 	/* 1073741824 = 1 in             2 */
118 
119 	/* Controls how often the l2_fhdr frame error check will fail. */
120 	int l2fhdr_error_sim_control = 0;
121 
122 	/* Controls how often the unexpected attention check will fail. */
123 	int unexpected_attention_sim_control = 0;
124 
125 	/* Controls how often to simulate an mbuf allocation failure. */
126 	int mbuf_alloc_failed_sim_control = 0;
127 
128 	/* Controls how often to simulate a DMA mapping failure. */
129 	int dma_map_addr_failed_sim_control = 0;
130 
131 	/* Controls how often to simulate a bootcode failure. */
132 	int bootcode_running_failure_sim_control = 0;
133 #endif
134 
135 /****************************************************************************/
136 /* PCI Device ID Table                                                      */
137 /*                                                                          */
138 /* Used by bce_probe() to identify the devices supported by this driver.    */
139 /****************************************************************************/
140 #define BCE_DEVDESC_MAX		64
141 
142 static const struct bce_type bce_devs[] = {
143 	/* BCM5706C Controllers and OEM boards. */
144 	{ BRCM_VENDORID, BRCM_DEVICEID_BCM5706,  HP_VENDORID, 0x3101,
145 		"HP NC370T Multifunction Gigabit Server Adapter" },
146 	{ BRCM_VENDORID, BRCM_DEVICEID_BCM5706,  HP_VENDORID, 0x3106,
147 		"HP NC370i Multifunction Gigabit Server Adapter" },
148 	{ BRCM_VENDORID, BRCM_DEVICEID_BCM5706,  HP_VENDORID, 0x3070,
149 		"HP NC380T PCIe DP Multifunc Gig Server Adapter" },
150 	{ BRCM_VENDORID, BRCM_DEVICEID_BCM5706,  HP_VENDORID, 0x1709,
151 		"HP NC371i Multifunction Gigabit Server Adapter" },
152 	{ BRCM_VENDORID, BRCM_DEVICEID_BCM5706,  PCI_ANY_ID,  PCI_ANY_ID,
153 		"QLogic NetXtreme II BCM5706 1000Base-T" },
154 
155 	/* BCM5706S controllers and OEM boards. */
156 	{ BRCM_VENDORID, BRCM_DEVICEID_BCM5706S, HP_VENDORID, 0x3102,
157 		"HP NC370F Multifunction Gigabit Server Adapter" },
158 	{ BRCM_VENDORID, BRCM_DEVICEID_BCM5706S, PCI_ANY_ID,  PCI_ANY_ID,
159 		"QLogic NetXtreme II BCM5706 1000Base-SX" },
160 
161 	/* BCM5708C controllers and OEM boards. */
162 	{ BRCM_VENDORID, BRCM_DEVICEID_BCM5708,  HP_VENDORID, 0x7037,
163 		"HP NC373T PCIe Multifunction Gig Server Adapter" },
164 	{ BRCM_VENDORID, BRCM_DEVICEID_BCM5708,  HP_VENDORID, 0x7038,
165 		"HP NC373i Multifunction Gigabit Server Adapter" },
166 	{ BRCM_VENDORID, BRCM_DEVICEID_BCM5708,  HP_VENDORID, 0x7045,
167 		"HP NC374m PCIe Multifunction Adapter" },
168 	{ BRCM_VENDORID, BRCM_DEVICEID_BCM5708,  PCI_ANY_ID,  PCI_ANY_ID,
169 		"QLogic NetXtreme II BCM5708 1000Base-T" },
170 
171 	/* BCM5708S controllers and OEM boards. */
172 	{ BRCM_VENDORID, BRCM_DEVICEID_BCM5708S,  HP_VENDORID, 0x1706,
173 		"HP NC373m Multifunction Gigabit Server Adapter" },
174 	{ BRCM_VENDORID, BRCM_DEVICEID_BCM5708S,  HP_VENDORID, 0x703b,
175 		"HP NC373i Multifunction Gigabit Server Adapter" },
176 	{ BRCM_VENDORID, BRCM_DEVICEID_BCM5708S,  HP_VENDORID, 0x703d,
177 		"HP NC373F PCIe Multifunc Giga Server Adapter" },
178 	{ BRCM_VENDORID, BRCM_DEVICEID_BCM5708S,  PCI_ANY_ID,  PCI_ANY_ID,
179 		"QLogic NetXtreme II BCM5708 1000Base-SX" },
180 
181 	/* BCM5709C controllers and OEM boards. */
182 	{ BRCM_VENDORID, BRCM_DEVICEID_BCM5709,  HP_VENDORID, 0x7055,
183 		"HP NC382i DP Multifunction Gigabit Server Adapter" },
184 	{ BRCM_VENDORID, BRCM_DEVICEID_BCM5709,  HP_VENDORID, 0x7059,
185 		"HP NC382T PCIe DP Multifunction Gigabit Server Adapter" },
186 	{ BRCM_VENDORID, BRCM_DEVICEID_BCM5709,  PCI_ANY_ID,  PCI_ANY_ID,
187 		"QLogic NetXtreme II BCM5709 1000Base-T" },
188 
189 	/* BCM5709S controllers and OEM boards. */
190 	{ BRCM_VENDORID, BRCM_DEVICEID_BCM5709S,  HP_VENDORID, 0x171d,
191 		"HP NC382m DP 1GbE Multifunction BL-c Adapter" },
192 	{ BRCM_VENDORID, BRCM_DEVICEID_BCM5709S,  HP_VENDORID, 0x7056,
193 		"HP NC382i DP Multifunction Gigabit Server Adapter" },
194 	{ BRCM_VENDORID, BRCM_DEVICEID_BCM5709S,  PCI_ANY_ID,  PCI_ANY_ID,
195 		"QLogic NetXtreme II BCM5709 1000Base-SX" },
196 
197 	/* BCM5716 controllers and OEM boards. */
198 	{ BRCM_VENDORID, BRCM_DEVICEID_BCM5716,  PCI_ANY_ID,  PCI_ANY_ID,
199 		"QLogic NetXtreme II BCM5716 1000Base-T" },
200 
201 	{ 0, 0, 0, 0, NULL }
202 };
203 
204 
205 /****************************************************************************/
206 /* Supported Flash NVRAM device data.                                       */
207 /****************************************************************************/
208 static const struct flash_spec flash_table[] =
209 {
210 #define BUFFERED_FLAGS		(BCE_NV_BUFFERED | BCE_NV_TRANSLATE)
211 #define NONBUFFERED_FLAGS	(BCE_NV_WREN)
212 
213 	/* Slow EEPROM */
214 	{0x00000000, 0x40830380, 0x009f0081, 0xa184a053, 0xaf000400,
215 	 BUFFERED_FLAGS, SEEPROM_PAGE_BITS, SEEPROM_PAGE_SIZE,
216 	 SEEPROM_BYTE_ADDR_MASK, SEEPROM_TOTAL_SIZE,
217 	 "EEPROM - slow"},
218 	/* Expansion entry 0001 */
219 	{0x08000002, 0x4b808201, 0x00050081, 0x03840253, 0xaf020406,
220 	 NONBUFFERED_FLAGS, SAIFUN_FLASH_PAGE_BITS, SAIFUN_FLASH_PAGE_SIZE,
221 	 SAIFUN_FLASH_BYTE_ADDR_MASK, 0,
222 	 "Entry 0001"},
223 	/* Saifun SA25F010 (non-buffered flash) */
224 	/* strap, cfg1, & write1 need updates */
225 	{0x04000001, 0x47808201, 0x00050081, 0x03840253, 0xaf020406,
226 	 NONBUFFERED_FLAGS, SAIFUN_FLASH_PAGE_BITS, SAIFUN_FLASH_PAGE_SIZE,
227 	 SAIFUN_FLASH_BYTE_ADDR_MASK, SAIFUN_FLASH_BASE_TOTAL_SIZE*2,
228 	 "Non-buffered flash (128kB)"},
229 	/* Saifun SA25F020 (non-buffered flash) */
230 	/* strap, cfg1, & write1 need updates */
231 	{0x0c000003, 0x4f808201, 0x00050081, 0x03840253, 0xaf020406,
232 	 NONBUFFERED_FLAGS, SAIFUN_FLASH_PAGE_BITS, SAIFUN_FLASH_PAGE_SIZE,
233 	 SAIFUN_FLASH_BYTE_ADDR_MASK, SAIFUN_FLASH_BASE_TOTAL_SIZE*4,
234 	 "Non-buffered flash (256kB)"},
235 	/* Expansion entry 0100 */
236 	{0x11000000, 0x53808201, 0x00050081, 0x03840253, 0xaf020406,
237 	 NONBUFFERED_FLAGS, SAIFUN_FLASH_PAGE_BITS, SAIFUN_FLASH_PAGE_SIZE,
238 	 SAIFUN_FLASH_BYTE_ADDR_MASK, 0,
239 	 "Entry 0100"},
240 	/* Entry 0101: ST M45PE10 (non-buffered flash, TetonII B0) */
241 	{0x19000002, 0x5b808201, 0x000500db, 0x03840253, 0xaf020406,
242 	 NONBUFFERED_FLAGS, ST_MICRO_FLASH_PAGE_BITS, ST_MICRO_FLASH_PAGE_SIZE,
243 	 ST_MICRO_FLASH_BYTE_ADDR_MASK, ST_MICRO_FLASH_BASE_TOTAL_SIZE*2,
244 	 "Entry 0101: ST M45PE10 (128kB non-bufferred)"},
245 	/* Entry 0110: ST M45PE20 (non-buffered flash)*/
246 	{0x15000001, 0x57808201, 0x000500db, 0x03840253, 0xaf020406,
247 	 NONBUFFERED_FLAGS, ST_MICRO_FLASH_PAGE_BITS, ST_MICRO_FLASH_PAGE_SIZE,
248 	 ST_MICRO_FLASH_BYTE_ADDR_MASK, ST_MICRO_FLASH_BASE_TOTAL_SIZE*4,
249 	 "Entry 0110: ST M45PE20 (256kB non-bufferred)"},
250 	/* Saifun SA25F005 (non-buffered flash) */
251 	/* strap, cfg1, & write1 need updates */
252 	{0x1d000003, 0x5f808201, 0x00050081, 0x03840253, 0xaf020406,
253 	 NONBUFFERED_FLAGS, SAIFUN_FLASH_PAGE_BITS, SAIFUN_FLASH_PAGE_SIZE,
254 	 SAIFUN_FLASH_BYTE_ADDR_MASK, SAIFUN_FLASH_BASE_TOTAL_SIZE,
255 	 "Non-buffered flash (64kB)"},
256 	/* Fast EEPROM */
257 	{0x22000000, 0x62808380, 0x009f0081, 0xa184a053, 0xaf000400,
258 	 BUFFERED_FLAGS, SEEPROM_PAGE_BITS, SEEPROM_PAGE_SIZE,
259 	 SEEPROM_BYTE_ADDR_MASK, SEEPROM_TOTAL_SIZE,
260 	 "EEPROM - fast"},
261 	/* Expansion entry 1001 */
262 	{0x2a000002, 0x6b808201, 0x00050081, 0x03840253, 0xaf020406,
263 	 NONBUFFERED_FLAGS, SAIFUN_FLASH_PAGE_BITS, SAIFUN_FLASH_PAGE_SIZE,
264 	 SAIFUN_FLASH_BYTE_ADDR_MASK, 0,
265 	 "Entry 1001"},
266 	/* Expansion entry 1010 */
267 	{0x26000001, 0x67808201, 0x00050081, 0x03840253, 0xaf020406,
268 	 NONBUFFERED_FLAGS, SAIFUN_FLASH_PAGE_BITS, SAIFUN_FLASH_PAGE_SIZE,
269 	 SAIFUN_FLASH_BYTE_ADDR_MASK, 0,
270 	 "Entry 1010"},
271 	/* ATMEL AT45DB011B (buffered flash) */
272 	{0x2e000003, 0x6e808273, 0x00570081, 0x68848353, 0xaf000400,
273 	 BUFFERED_FLAGS, BUFFERED_FLASH_PAGE_BITS, BUFFERED_FLASH_PAGE_SIZE,
274 	 BUFFERED_FLASH_BYTE_ADDR_MASK, BUFFERED_FLASH_TOTAL_SIZE,
275 	 "Buffered flash (128kB)"},
276 	/* Expansion entry 1100 */
277 	{0x33000000, 0x73808201, 0x00050081, 0x03840253, 0xaf020406,
278 	 NONBUFFERED_FLAGS, SAIFUN_FLASH_PAGE_BITS, SAIFUN_FLASH_PAGE_SIZE,
279 	 SAIFUN_FLASH_BYTE_ADDR_MASK, 0,
280 	 "Entry 1100"},
281 	/* Expansion entry 1101 */
282 	{0x3b000002, 0x7b808201, 0x00050081, 0x03840253, 0xaf020406,
283 	 NONBUFFERED_FLAGS, SAIFUN_FLASH_PAGE_BITS, SAIFUN_FLASH_PAGE_SIZE,
284 	 SAIFUN_FLASH_BYTE_ADDR_MASK, 0,
285 	 "Entry 1101"},
286 	/* Ateml Expansion entry 1110 */
287 	{0x37000001, 0x76808273, 0x00570081, 0x68848353, 0xaf000400,
288 	 BUFFERED_FLAGS, BUFFERED_FLASH_PAGE_BITS, BUFFERED_FLASH_PAGE_SIZE,
289 	 BUFFERED_FLASH_BYTE_ADDR_MASK, 0,
290 	 "Entry 1110 (Atmel)"},
291 	/* ATMEL AT45DB021B (buffered flash) */
292 	{0x3f000003, 0x7e808273, 0x00570081, 0x68848353, 0xaf000400,
293 	 BUFFERED_FLAGS, BUFFERED_FLASH_PAGE_BITS, BUFFERED_FLASH_PAGE_SIZE,
294 	 BUFFERED_FLASH_BYTE_ADDR_MASK, BUFFERED_FLASH_TOTAL_SIZE*2,
295 	 "Buffered flash (256kB)"},
296 };
297 
298 /*
299  * The BCM5709 controllers transparently handle the
300  * differences between Atmel 264 byte pages and all
301  * flash devices which use 256 byte pages, so no
302  * logical-to-physical mapping is required in the
303  * driver.
304  */
305 static const struct flash_spec flash_5709 = {
306 	.flags		= BCE_NV_BUFFERED,
307 	.page_bits	= BCM5709_FLASH_PAGE_BITS,
308 	.page_size	= BCM5709_FLASH_PAGE_SIZE,
309 	.addr_mask	= BCM5709_FLASH_BYTE_ADDR_MASK,
310 	.total_size	= BUFFERED_FLASH_TOTAL_SIZE * 2,
311 	.name		= "5709/5716 buffered flash (256kB)",
312 };
313 
314 
315 /****************************************************************************/
316 /* FreeBSD device entry points.                                             */
317 /****************************************************************************/
318 static int  bce_probe			(device_t);
319 static int  bce_attach			(device_t);
320 static int  bce_detach			(device_t);
321 static int  bce_shutdown		(device_t);
322 
323 
324 /****************************************************************************/
325 /* BCE Debug Data Structure Dump Routines                                   */
326 /****************************************************************************/
327 #ifdef BCE_DEBUG
328 static u32  bce_reg_rd				(struct bce_softc *, u32);
329 static void bce_reg_wr				(struct bce_softc *, u32, u32);
330 static void bce_reg_wr16			(struct bce_softc *, u32, u16);
331 static u32  bce_ctx_rd				(struct bce_softc *, u32, u32);
332 static void bce_dump_enet			(struct bce_softc *, struct mbuf *);
333 static void bce_dump_mbuf			(struct bce_softc *, struct mbuf *);
334 static void bce_dump_tx_mbuf_chain	(struct bce_softc *, u16, int);
335 static void bce_dump_rx_mbuf_chain	(struct bce_softc *, u16, int);
336 static void bce_dump_pg_mbuf_chain	(struct bce_softc *, u16, int);
337 static void bce_dump_txbd			(struct bce_softc *,
338     int, struct tx_bd *);
339 static void bce_dump_rxbd			(struct bce_softc *,
340     int, struct rx_bd *);
341 static void bce_dump_pgbd			(struct bce_softc *,
342     int, struct rx_bd *);
343 static void bce_dump_l2fhdr		(struct bce_softc *,
344     int, struct l2_fhdr *);
345 static void bce_dump_ctx			(struct bce_softc *, u16);
346 static void bce_dump_ftqs			(struct bce_softc *);
347 static void bce_dump_tx_chain		(struct bce_softc *, u16, int);
348 static void bce_dump_rx_bd_chain	(struct bce_softc *, u16, int);
349 static void bce_dump_pg_chain		(struct bce_softc *, u16, int);
350 static void bce_dump_status_block	(struct bce_softc *);
351 static void bce_dump_stats_block	(struct bce_softc *);
352 static void bce_dump_driver_state	(struct bce_softc *);
353 static void bce_dump_hw_state		(struct bce_softc *);
354 static void bce_dump_shmem_state	(struct bce_softc *);
355 static void bce_dump_mq_regs		(struct bce_softc *);
356 static void bce_dump_bc_state		(struct bce_softc *);
357 static void bce_dump_txp_state		(struct bce_softc *, int);
358 static void bce_dump_rxp_state		(struct bce_softc *, int);
359 static void bce_dump_tpat_state	(struct bce_softc *, int);
360 static void bce_dump_cp_state		(struct bce_softc *, int);
361 static void bce_dump_com_state		(struct bce_softc *, int);
362 static void bce_dump_rv2p_state	(struct bce_softc *);
363 static void bce_breakpoint			(struct bce_softc *);
364 #endif /*BCE_DEBUG */
365 
366 
367 /****************************************************************************/
368 /* BCE Register/Memory Access Routines                                      */
369 /****************************************************************************/
370 static u32  bce_reg_rd_ind		(struct bce_softc *, u32);
371 static void bce_reg_wr_ind		(struct bce_softc *, u32, u32);
372 static void bce_shmem_wr		(struct bce_softc *, u32, u32);
373 static u32  bce_shmem_rd		(struct bce_softc *, u32);
374 static void bce_ctx_wr			(struct bce_softc *, u32, u32, u32);
375 static int  bce_miibus_read_reg		(device_t, int, int);
376 static int  bce_miibus_write_reg	(device_t, int, int, int);
377 static void bce_miibus_statchg		(device_t);
378 
379 #ifdef BCE_DEBUG
380 static int bce_sysctl_nvram_dump(SYSCTL_HANDLER_ARGS);
381 #ifdef BCE_NVRAM_WRITE_SUPPORT
382 static int bce_sysctl_nvram_write(SYSCTL_HANDLER_ARGS);
383 #endif
384 #endif
385 
386 /****************************************************************************/
387 /* BCE NVRAM Access Routines                                                */
388 /****************************************************************************/
389 static int  bce_acquire_nvram_lock	(struct bce_softc *);
390 static int  bce_release_nvram_lock	(struct bce_softc *);
391 static void bce_enable_nvram_access(struct bce_softc *);
392 static void bce_disable_nvram_access(struct bce_softc *);
393 static int  bce_nvram_read_dword	(struct bce_softc *, u32, u8 *, u32);
394 static int  bce_init_nvram			(struct bce_softc *);
395 static int  bce_nvram_read			(struct bce_softc *, u32, u8 *, int);
396 static int  bce_nvram_test			(struct bce_softc *);
397 #ifdef BCE_NVRAM_WRITE_SUPPORT
398 static int  bce_enable_nvram_write	(struct bce_softc *);
399 static void bce_disable_nvram_write(struct bce_softc *);
400 static int  bce_nvram_erase_page	(struct bce_softc *, u32);
401 static int  bce_nvram_write_dword	(struct bce_softc *, u32, u8 *, u32);
402 static int  bce_nvram_write		(struct bce_softc *, u32, u8 *, int);
403 #endif
404 
405 /****************************************************************************/
406 /*                                                                          */
407 /****************************************************************************/
408 static void bce_get_rx_buffer_sizes(struct bce_softc *, int);
409 static void bce_get_media			(struct bce_softc *);
410 static void bce_init_media			(struct bce_softc *);
411 static u32 bce_get_rphy_link		(struct bce_softc *);
412 static void bce_dma_map_addr		(void *, bus_dma_segment_t *, int, int);
413 static int  bce_dma_alloc			(device_t);
414 static void bce_dma_free			(struct bce_softc *);
415 static void bce_release_resources	(struct bce_softc *);
416 
417 /****************************************************************************/
418 /* BCE Firmware Synchronization and Load                                    */
419 /****************************************************************************/
420 static void bce_fw_cap_init			(struct bce_softc *);
421 static int  bce_fw_sync			(struct bce_softc *, u32);
422 static void bce_load_rv2p_fw		(struct bce_softc *, const u32 *, u32,
423     u32);
424 static void bce_load_cpu_fw		(struct bce_softc *,
425     struct cpu_reg *, struct fw_info *);
426 static void bce_start_cpu			(struct bce_softc *, struct cpu_reg *);
427 static void bce_halt_cpu			(struct bce_softc *, struct cpu_reg *);
428 static void bce_start_rxp_cpu		(struct bce_softc *);
429 static void bce_init_rxp_cpu		(struct bce_softc *);
430 static void bce_init_txp_cpu 		(struct bce_softc *);
431 static void bce_init_tpat_cpu		(struct bce_softc *);
432 static void bce_init_cp_cpu	  	(struct bce_softc *);
433 static void bce_init_com_cpu	  	(struct bce_softc *);
434 static void bce_init_cpus			(struct bce_softc *);
435 
436 static void bce_print_adapter_info	(struct bce_softc *);
437 static void bce_probe_pci_caps		(device_t, struct bce_softc *);
438 static void bce_stop				(struct bce_softc *);
439 static int  bce_reset				(struct bce_softc *, u32);
440 static int  bce_chipinit 			(struct bce_softc *);
441 static int  bce_blockinit 			(struct bce_softc *);
442 
443 static int  bce_init_tx_chain		(struct bce_softc *);
444 static void bce_free_tx_chain		(struct bce_softc *);
445 
446 static int  bce_get_rx_buf		(struct bce_softc *, u16, u16, u32 *);
447 static int  bce_init_rx_chain		(struct bce_softc *);
448 static void bce_fill_rx_chain		(struct bce_softc *);
449 static void bce_free_rx_chain		(struct bce_softc *);
450 
451 static int  bce_get_pg_buf		(struct bce_softc *, u16, u16);
452 static int  bce_init_pg_chain		(struct bce_softc *);
453 static void bce_fill_pg_chain		(struct bce_softc *);
454 static void bce_free_pg_chain		(struct bce_softc *);
455 
456 static struct mbuf *bce_tso_setup	(struct bce_softc *,
457     struct mbuf **, u16 *);
458 static int  bce_tx_encap			(struct bce_softc *, struct mbuf **);
459 static void bce_start_locked		(struct ifnet *);
460 static void bce_start				(struct ifnet *);
461 static int  bce_ioctl				(struct ifnet *, u_long, caddr_t);
462 static void bce_watchdog			(struct bce_softc *);
463 static int  bce_ifmedia_upd		(struct ifnet *);
464 static int  bce_ifmedia_upd_locked	(struct ifnet *);
465 static void bce_ifmedia_sts		(struct ifnet *, struct ifmediareq *);
466 static void bce_ifmedia_sts_rphy	(struct bce_softc *, struct ifmediareq *);
467 static void bce_init_locked		(struct bce_softc *);
468 static void bce_init				(void *);
469 static void bce_mgmt_init_locked	(struct bce_softc *sc);
470 
471 static int  bce_init_ctx			(struct bce_softc *);
472 static void bce_get_mac_addr		(struct bce_softc *);
473 static void bce_set_mac_addr		(struct bce_softc *);
474 static void bce_phy_intr			(struct bce_softc *);
475 static inline u16 bce_get_hw_rx_cons	(struct bce_softc *);
476 static void bce_rx_intr			(struct bce_softc *);
477 static void bce_tx_intr			(struct bce_softc *);
478 static void bce_disable_intr		(struct bce_softc *);
479 static void bce_enable_intr		(struct bce_softc *, int);
480 
481 static void bce_intr				(void *);
482 static void bce_set_rx_mode		(struct bce_softc *);
483 static void bce_stats_update		(struct bce_softc *);
484 static void bce_tick				(void *);
485 static void bce_pulse				(void *);
486 static void bce_add_sysctls		(struct bce_softc *);
487 
488 
489 /****************************************************************************/
490 /* FreeBSD device dispatch table.                                           */
491 /****************************************************************************/
492 static device_method_t bce_methods[] = {
493 	/* Device interface (device_if.h) */
494 	DEVMETHOD(device_probe,		bce_probe),
495 	DEVMETHOD(device_attach,	bce_attach),
496 	DEVMETHOD(device_detach,	bce_detach),
497 	DEVMETHOD(device_shutdown,	bce_shutdown),
498 /* Supported by device interface but not used here. */
499 /*	DEVMETHOD(device_identify,	bce_identify),      */
500 /*	DEVMETHOD(device_suspend,	bce_suspend),       */
501 /*	DEVMETHOD(device_resume,	bce_resume),        */
502 /*	DEVMETHOD(device_quiesce,	bce_quiesce),       */
503 
504 	/* MII interface (miibus_if.h) */
505 	DEVMETHOD(miibus_readreg,	bce_miibus_read_reg),
506 	DEVMETHOD(miibus_writereg,	bce_miibus_write_reg),
507 	DEVMETHOD(miibus_statchg,	bce_miibus_statchg),
508 /* Supported by MII interface but not used here.       */
509 /*	DEVMETHOD(miibus_linkchg,	bce_miibus_linkchg),   */
510 /*	DEVMETHOD(miibus_mediainit,	bce_miibus_mediainit), */
511 
512 	DEVMETHOD_END
513 };
514 
515 static driver_t bce_driver = {
516 	"bce",
517 	bce_methods,
518 	sizeof(struct bce_softc)
519 };
520 
521 static devclass_t bce_devclass;
522 
523 MODULE_DEPEND(bce, pci, 1, 1, 1);
524 MODULE_DEPEND(bce, ether, 1, 1, 1);
525 MODULE_DEPEND(bce, miibus, 1, 1, 1);
526 
527 DRIVER_MODULE(bce, pci, bce_driver, bce_devclass, NULL, NULL);
528 DRIVER_MODULE(miibus, bce, miibus_driver, miibus_devclass, NULL, NULL);
529 
530 
531 /****************************************************************************/
532 /* Tunable device values                                                    */
533 /****************************************************************************/
534 static SYSCTL_NODE(_hw, OID_AUTO, bce, CTLFLAG_RD, 0, "bce driver parameters");
535 
536 /* Allowable values are TRUE or FALSE */
537 static int bce_verbose = TRUE;
538 SYSCTL_INT(_hw_bce, OID_AUTO, verbose, CTLFLAG_RDTUN, &bce_verbose, 0,
539     "Verbose output enable/disable");
540 
541 /* Allowable values are TRUE or FALSE */
542 static int bce_tso_enable = TRUE;
543 SYSCTL_INT(_hw_bce, OID_AUTO, tso_enable, CTLFLAG_RDTUN, &bce_tso_enable, 0,
544     "TSO Enable/Disable");
545 
546 /* Allowable values are 0 (IRQ), 1 (MSI/IRQ), and 2 (MSI-X/MSI/IRQ) */
547 /* ToDo: Add MSI-X support. */
548 static int bce_msi_enable = 1;
549 SYSCTL_INT(_hw_bce, OID_AUTO, msi_enable, CTLFLAG_RDTUN, &bce_msi_enable, 0,
550     "MSI-X|MSI|INTx selector");
551 
552 /* Allowable values are 1, 2, 4, 8. */
553 static int bce_rx_pages = DEFAULT_RX_PAGES;
554 SYSCTL_UINT(_hw_bce, OID_AUTO, rx_pages, CTLFLAG_RDTUN, &bce_rx_pages, 0,
555     "Receive buffer descriptor pages (1 page = 255 buffer descriptors)");
556 
557 /* Allowable values are 1, 2, 4, 8. */
558 static int bce_tx_pages = DEFAULT_TX_PAGES;
559 SYSCTL_UINT(_hw_bce, OID_AUTO, tx_pages, CTLFLAG_RDTUN, &bce_tx_pages, 0,
560     "Transmit buffer descriptor pages (1 page = 255 buffer descriptors)");
561 
562 /* Allowable values are TRUE or FALSE. */
563 static int bce_hdr_split = TRUE;
564 SYSCTL_UINT(_hw_bce, OID_AUTO, hdr_split, CTLFLAG_RDTUN, &bce_hdr_split, 0,
565     "Frame header/payload splitting Enable/Disable");
566 
567 /* Allowable values are TRUE or FALSE. */
568 static int bce_strict_rx_mtu = FALSE;
569 SYSCTL_UINT(_hw_bce, OID_AUTO, strict_rx_mtu, CTLFLAG_RDTUN,
570     &bce_strict_rx_mtu, 0,
571     "Enable/Disable strict RX frame size checking");
572 
573 /* Allowable values are 0 ... 100 */
574 #ifdef BCE_DEBUG
575 /* Generate 1 interrupt for every transmit completion. */
576 static int bce_tx_quick_cons_trip_int = 1;
577 #else
578 /* Generate 1 interrupt for every 20 transmit completions. */
579 static int bce_tx_quick_cons_trip_int = DEFAULT_TX_QUICK_CONS_TRIP_INT;
580 #endif
581 SYSCTL_UINT(_hw_bce, OID_AUTO, tx_quick_cons_trip_int, CTLFLAG_RDTUN,
582     &bce_tx_quick_cons_trip_int, 0,
583     "Transmit BD trip point during interrupts");
584 
585 /* Allowable values are 0 ... 100 */
586 /* Generate 1 interrupt for every transmit completion. */
587 #ifdef BCE_DEBUG
588 static int bce_tx_quick_cons_trip = 1;
589 #else
590 /* Generate 1 interrupt for every 20 transmit completions. */
591 static int bce_tx_quick_cons_trip = DEFAULT_TX_QUICK_CONS_TRIP;
592 #endif
593 SYSCTL_UINT(_hw_bce, OID_AUTO, tx_quick_cons_trip, CTLFLAG_RDTUN,
594     &bce_tx_quick_cons_trip, 0,
595     "Transmit BD trip point");
596 
597 /* Allowable values are 0 ... 100 */
598 #ifdef BCE_DEBUG
599 /* Generate an interrupt if 0us have elapsed since the last TX completion. */
600 static int bce_tx_ticks_int = 0;
601 #else
602 /* Generate an interrupt if 80us have elapsed since the last TX completion. */
603 static int bce_tx_ticks_int = DEFAULT_TX_TICKS_INT;
604 #endif
605 SYSCTL_UINT(_hw_bce, OID_AUTO, tx_ticks_int, CTLFLAG_RDTUN,
606     &bce_tx_ticks_int, 0, "Transmit ticks count during interrupt");
607 
608 /* Allowable values are 0 ... 100 */
609 #ifdef BCE_DEBUG
610 /* Generate an interrupt if 0us have elapsed since the last TX completion. */
611 static int bce_tx_ticks = 0;
612 #else
613 /* Generate an interrupt if 80us have elapsed since the last TX completion. */
614 static int bce_tx_ticks = DEFAULT_TX_TICKS;
615 #endif
616 SYSCTL_UINT(_hw_bce, OID_AUTO, tx_ticks, CTLFLAG_RDTUN,
617     &bce_tx_ticks, 0, "Transmit ticks count");
618 
619 /* Allowable values are 1 ... 100 */
620 #ifdef BCE_DEBUG
621 /* Generate 1 interrupt for every received frame. */
622 static int bce_rx_quick_cons_trip_int = 1;
623 #else
624 /* Generate 1 interrupt for every 6 received frames. */
625 static int bce_rx_quick_cons_trip_int = DEFAULT_RX_QUICK_CONS_TRIP_INT;
626 #endif
627 SYSCTL_UINT(_hw_bce, OID_AUTO, rx_quick_cons_trip_int, CTLFLAG_RDTUN,
628     &bce_rx_quick_cons_trip_int, 0,
629     "Receive BD trip point duirng interrupts");
630 
631 /* Allowable values are 1 ... 100 */
632 #ifdef BCE_DEBUG
633 /* Generate 1 interrupt for every received frame. */
634 static int bce_rx_quick_cons_trip = 1;
635 #else
636 /* Generate 1 interrupt for every 6 received frames. */
637 static int bce_rx_quick_cons_trip = DEFAULT_RX_QUICK_CONS_TRIP;
638 #endif
639 SYSCTL_UINT(_hw_bce, OID_AUTO, rx_quick_cons_trip, CTLFLAG_RDTUN,
640     &bce_rx_quick_cons_trip, 0,
641     "Receive BD trip point");
642 
643 /* Allowable values are 0 ... 100 */
644 #ifdef BCE_DEBUG
645 /* Generate an int. if 0us have elapsed since the last received frame. */
646 static int bce_rx_ticks_int = 0;
647 #else
648 /* Generate an int. if 18us have elapsed since the last received frame. */
649 static int bce_rx_ticks_int = DEFAULT_RX_TICKS_INT;
650 #endif
651 SYSCTL_UINT(_hw_bce, OID_AUTO, rx_ticks_int, CTLFLAG_RDTUN,
652     &bce_rx_ticks_int, 0, "Receive ticks count during interrupt");
653 
654 /* Allowable values are 0 ... 100 */
655 #ifdef BCE_DEBUG
656 /* Generate an int. if 0us have elapsed since the last received frame. */
657 static int bce_rx_ticks = 0;
658 #else
659 /* Generate an int. if 18us have elapsed since the last received frame. */
660 static int bce_rx_ticks = DEFAULT_RX_TICKS;
661 #endif
662 SYSCTL_UINT(_hw_bce, OID_AUTO, rx_ticks, CTLFLAG_RDTUN,
663     &bce_rx_ticks, 0, "Receive ticks count");
664 
665 
666 /****************************************************************************/
667 /* Device probe function.                                                   */
668 /*                                                                          */
669 /* Compares the device to the driver's list of supported devices and        */
670 /* reports back to the OS whether this is the right driver for the device.  */
671 /*                                                                          */
672 /* Returns:                                                                 */
673 /*   BUS_PROBE_DEFAULT on success, positive value on failure.               */
674 /****************************************************************************/
675 static int
676 bce_probe(device_t dev)
677 {
678 	const struct bce_type *t;
679 	struct bce_softc *sc;
680 	char *descbuf;
681 	u16 vid = 0, did = 0, svid = 0, sdid = 0;
682 
683 	t = bce_devs;
684 
685 	sc = device_get_softc(dev);
686 	sc->bce_unit = device_get_unit(dev);
687 	sc->bce_dev = dev;
688 
689 	/* Get the data for the device to be probed. */
690 	vid  = pci_get_vendor(dev);
691 	did  = pci_get_device(dev);
692 	svid = pci_get_subvendor(dev);
693 	sdid = pci_get_subdevice(dev);
694 
695 	DBPRINT(sc, BCE_EXTREME_LOAD,
696 	    "%s(); VID = 0x%04X, DID = 0x%04X, SVID = 0x%04X, "
697 	    "SDID = 0x%04X\n", __FUNCTION__, vid, did, svid, sdid);
698 
699 	/* Look through the list of known devices for a match. */
700 	while(t->bce_name != NULL) {
701 
702 		if ((vid == t->bce_vid) && (did == t->bce_did) &&
703 		    ((svid == t->bce_svid) || (t->bce_svid == PCI_ANY_ID)) &&
704 		    ((sdid == t->bce_sdid) || (t->bce_sdid == PCI_ANY_ID))) {
705 
706 			descbuf = malloc(BCE_DEVDESC_MAX, M_TEMP, M_NOWAIT);
707 
708 			if (descbuf == NULL)
709 				return(ENOMEM);
710 
711 			/* Print out the device identity. */
712 			snprintf(descbuf, BCE_DEVDESC_MAX, "%s (%c%d)",
713 			    t->bce_name, (((pci_read_config(dev,
714 			    PCIR_REVID, 4) & 0xf0) >> 4) + 'A'),
715 			    (pci_read_config(dev, PCIR_REVID, 4) & 0xf));
716 
717 			device_set_desc_copy(dev, descbuf);
718 			free(descbuf, M_TEMP);
719 			return(BUS_PROBE_DEFAULT);
720 		}
721 		t++;
722 	}
723 
724 	return(ENXIO);
725 }
726 
727 
728 /****************************************************************************/
729 /* PCI Capabilities Probe Function.                                         */
730 /*                                                                          */
731 /* Walks the PCI capabiites list for the device to find what features are   */
732 /* supported.                                                               */
733 /*                                                                          */
734 /* Returns:                                                                 */
735 /*   None.                                                                  */
736 /****************************************************************************/
737 static void
738 bce_print_adapter_info(struct bce_softc *sc)
739 {
740 	int i = 0;
741 
742 	DBENTER(BCE_VERBOSE_LOAD);
743 
744 	if (bce_verbose || bootverbose) {
745 		BCE_PRINTF("ASIC (0x%08X); ", sc->bce_chipid);
746 		printf("Rev (%c%d); ", ((BCE_CHIP_ID(sc) & 0xf000) >>
747 		    12) + 'A', ((BCE_CHIP_ID(sc) & 0x0ff0) >> 4));
748 
749 
750 		/* Bus info. */
751 		if (sc->bce_flags & BCE_PCIE_FLAG) {
752 			printf("Bus (PCIe x%d, ", sc->link_width);
753 			switch (sc->link_speed) {
754 			case 1: printf("2.5Gbps); "); break;
755 			case 2:	printf("5Gbps); "); break;
756 			default: printf("Unknown link speed); ");
757 			}
758 		} else {
759 			printf("Bus (PCI%s, %s, %dMHz); ",
760 			    ((sc->bce_flags & BCE_PCIX_FLAG) ? "-X" : ""),
761 			    ((sc->bce_flags & BCE_PCI_32BIT_FLAG) ?
762 			    "32-bit" : "64-bit"), sc->bus_speed_mhz);
763 		}
764 
765 		/* Firmware version and device features. */
766 		printf("B/C (%s); Bufs (RX:%d;TX:%d;PG:%d); Flags (",
767 		    sc->bce_bc_ver,	sc->rx_pages, sc->tx_pages,
768 		    (bce_hdr_split == TRUE ? sc->pg_pages: 0));
769 
770 		if (bce_hdr_split == TRUE) {
771 			printf("SPLT");
772 			i++;
773 		}
774 
775 		if (sc->bce_flags & BCE_USING_MSI_FLAG) {
776 			if (i > 0) printf("|");
777 			printf("MSI"); i++;
778 		}
779 
780 		if (sc->bce_flags & BCE_USING_MSIX_FLAG) {
781 			if (i > 0) printf("|");
782 			printf("MSI-X"); i++;
783 		}
784 
785 		if (sc->bce_phy_flags & BCE_PHY_2_5G_CAPABLE_FLAG) {
786 			if (i > 0) printf("|");
787 			printf("2.5G"); i++;
788 		}
789 
790 		if (sc->bce_phy_flags & BCE_PHY_REMOTE_CAP_FLAG) {
791 			if (i > 0) printf("|");
792 			printf("Remote PHY(%s)",
793 			    sc->bce_phy_flags & BCE_PHY_REMOTE_PORT_FIBER_FLAG ?
794 			    "FIBER" : "TP"); i++;
795 		}
796 
797 		if (sc->bce_flags & BCE_MFW_ENABLE_FLAG) {
798 			if (i > 0) printf("|");
799 			printf("MFW); MFW (%s)\n", sc->bce_mfw_ver);
800 		} else {
801 			printf(")\n");
802 		}
803 
804 		printf("Coal (RX:%d,%d,%d,%d; TX:%d,%d,%d,%d)\n",
805 		    sc->bce_rx_quick_cons_trip_int,
806 		    sc->bce_rx_quick_cons_trip,
807 		    sc->bce_rx_ticks_int,
808 		    sc->bce_rx_ticks,
809 		    sc->bce_tx_quick_cons_trip_int,
810 		    sc->bce_tx_quick_cons_trip,
811 		    sc->bce_tx_ticks_int,
812 		    sc->bce_tx_ticks);
813 
814 	}
815 
816 	DBEXIT(BCE_VERBOSE_LOAD);
817 }
818 
819 
820 /****************************************************************************/
821 /* PCI Capabilities Probe Function.                                         */
822 /*                                                                          */
823 /* Walks the PCI capabiites list for the device to find what features are   */
824 /* supported.                                                               */
825 /*                                                                          */
826 /* Returns:                                                                 */
827 /*   None.                                                                  */
828 /****************************************************************************/
829 static void
830 bce_probe_pci_caps(device_t dev, struct bce_softc *sc)
831 {
832 	u32 reg;
833 
834 	DBENTER(BCE_VERBOSE_LOAD);
835 
836 	/* Check if PCI-X capability is enabled. */
837 	if (pci_find_cap(dev, PCIY_PCIX, &reg) == 0) {
838 		if (reg != 0)
839 			sc->bce_cap_flags |= BCE_PCIX_CAPABLE_FLAG;
840 	}
841 
842 	/* Check if PCIe capability is enabled. */
843 	if (pci_find_cap(dev, PCIY_EXPRESS, &reg) == 0) {
844 		if (reg != 0) {
845 			u16 link_status = pci_read_config(dev, reg + 0x12, 2);
846 			DBPRINT(sc, BCE_INFO_LOAD, "PCIe link_status = "
847 			    "0x%08X\n",	link_status);
848 			sc->link_speed = link_status & 0xf;
849 			sc->link_width = (link_status >> 4) & 0x3f;
850 			sc->bce_cap_flags |= BCE_PCIE_CAPABLE_FLAG;
851 			sc->bce_flags |= BCE_PCIE_FLAG;
852 		}
853 	}
854 
855 	/* Check if MSI capability is enabled. */
856 	if (pci_find_cap(dev, PCIY_MSI, &reg) == 0) {
857 		if (reg != 0)
858 			sc->bce_cap_flags |= BCE_MSI_CAPABLE_FLAG;
859 	}
860 
861 	/* Check if MSI-X capability is enabled. */
862 	if (pci_find_cap(dev, PCIY_MSIX, &reg) == 0) {
863 		if (reg != 0)
864 			sc->bce_cap_flags |= BCE_MSIX_CAPABLE_FLAG;
865 	}
866 
867 	DBEXIT(BCE_VERBOSE_LOAD);
868 }
869 
870 
871 /****************************************************************************/
872 /* Load and validate user tunable settings.                                 */
873 /*                                                                          */
874 /* Returns:                                                                 */
875 /*   Nothing.                                                               */
876 /****************************************************************************/
877 static void
878 bce_set_tunables(struct bce_softc *sc)
879 {
880 	/* Set sysctl values for RX page count. */
881 	switch (bce_rx_pages) {
882 	case 1:
883 		/* fall-through */
884 	case 2:
885 		/* fall-through */
886 	case 4:
887 		/* fall-through */
888 	case 8:
889 		sc->rx_pages = bce_rx_pages;
890 		break;
891 	default:
892 		sc->rx_pages = DEFAULT_RX_PAGES;
893 		BCE_PRINTF("%s(%d): Illegal value (%d) specified for "
894 		    "hw.bce.rx_pages!  Setting default of %d.\n",
895 		    __FILE__, __LINE__, bce_rx_pages, DEFAULT_RX_PAGES);
896 	}
897 
898 	/* ToDo: Consider allowing user setting for pg_pages. */
899 	sc->pg_pages = min((sc->rx_pages * 4), MAX_PG_PAGES);
900 
901 	/* Set sysctl values for TX page count. */
902 	switch (bce_tx_pages) {
903 	case 1:
904 		/* fall-through */
905 	case 2:
906 		/* fall-through */
907 	case 4:
908 		/* fall-through */
909 	case 8:
910 		sc->tx_pages = bce_tx_pages;
911 		break;
912 	default:
913 		sc->tx_pages = DEFAULT_TX_PAGES;
914 		BCE_PRINTF("%s(%d): Illegal value (%d) specified for "
915 		    "hw.bce.tx_pages!  Setting default of %d.\n",
916 		    __FILE__, __LINE__, bce_tx_pages, DEFAULT_TX_PAGES);
917 	}
918 
919 	/*
920 	 * Validate the TX trip point (i.e. the number of
921 	 * TX completions before a status block update is
922 	 * generated and an interrupt is asserted.
923 	 */
924 	if (bce_tx_quick_cons_trip_int <= 100) {
925 		sc->bce_tx_quick_cons_trip_int =
926 		    bce_tx_quick_cons_trip_int;
927 	} else {
928 		BCE_PRINTF("%s(%d): Illegal value (%d) specified for "
929 		    "hw.bce.tx_quick_cons_trip_int!  Setting default of %d.\n",
930 		    __FILE__, __LINE__, bce_tx_quick_cons_trip_int,
931 		    DEFAULT_TX_QUICK_CONS_TRIP_INT);
932 		sc->bce_tx_quick_cons_trip_int =
933 		    DEFAULT_TX_QUICK_CONS_TRIP_INT;
934 	}
935 
936 	if (bce_tx_quick_cons_trip <= 100) {
937 		sc->bce_tx_quick_cons_trip =
938 		    bce_tx_quick_cons_trip;
939 	} else {
940 		BCE_PRINTF("%s(%d): Illegal value (%d) specified for "
941 		    "hw.bce.tx_quick_cons_trip!  Setting default of %d.\n",
942 		    __FILE__, __LINE__, bce_tx_quick_cons_trip,
943 		    DEFAULT_TX_QUICK_CONS_TRIP);
944 		sc->bce_tx_quick_cons_trip =
945 		    DEFAULT_TX_QUICK_CONS_TRIP;
946 	}
947 
948 	/*
949 	 * Validate the TX ticks count (i.e. the maximum amount
950 	 * of time to wait after the last TX completion has
951 	 * occurred before a status block update is generated
952 	 * and an interrupt is asserted.
953 	 */
954 	if (bce_tx_ticks_int <= 100) {
955 		sc->bce_tx_ticks_int =
956 		    bce_tx_ticks_int;
957 	} else {
958 		BCE_PRINTF("%s(%d): Illegal value (%d) specified for "
959 		    "hw.bce.tx_ticks_int!  Setting default of %d.\n",
960 		    __FILE__, __LINE__, bce_tx_ticks_int,
961 		    DEFAULT_TX_TICKS_INT);
962 		sc->bce_tx_ticks_int =
963 		    DEFAULT_TX_TICKS_INT;
964 	   }
965 
966 	if (bce_tx_ticks <= 100) {
967 		sc->bce_tx_ticks =
968 		    bce_tx_ticks;
969 	} else {
970 		BCE_PRINTF("%s(%d): Illegal value (%d) specified for "
971 		    "hw.bce.tx_ticks!  Setting default of %d.\n",
972 		    __FILE__, __LINE__, bce_tx_ticks,
973 		    DEFAULT_TX_TICKS);
974 		sc->bce_tx_ticks =
975 		    DEFAULT_TX_TICKS;
976 	}
977 
978 	/*
979 	 * Validate the RX trip point (i.e. the number of
980 	 * RX frames received before a status block update is
981 	 * generated and an interrupt is asserted.
982 	 */
983 	if (bce_rx_quick_cons_trip_int <= 100) {
984 		sc->bce_rx_quick_cons_trip_int =
985 		    bce_rx_quick_cons_trip_int;
986 	} else {
987 		BCE_PRINTF("%s(%d): Illegal value (%d) specified for "
988 		    "hw.bce.rx_quick_cons_trip_int!  Setting default of %d.\n",
989 		    __FILE__, __LINE__, bce_rx_quick_cons_trip_int,
990 		    DEFAULT_RX_QUICK_CONS_TRIP_INT);
991 		sc->bce_rx_quick_cons_trip_int =
992 		    DEFAULT_RX_QUICK_CONS_TRIP_INT;
993 	}
994 
995 	if (bce_rx_quick_cons_trip <= 100) {
996 		sc->bce_rx_quick_cons_trip =
997 		    bce_rx_quick_cons_trip;
998 	} else {
999 		BCE_PRINTF("%s(%d): Illegal value (%d) specified for "
1000 		    "hw.bce.rx_quick_cons_trip!  Setting default of %d.\n",
1001 		    __FILE__, __LINE__, bce_rx_quick_cons_trip,
1002 		    DEFAULT_RX_QUICK_CONS_TRIP);
1003 		sc->bce_rx_quick_cons_trip =
1004 		    DEFAULT_RX_QUICK_CONS_TRIP;
1005 	}
1006 
1007 	/*
1008 	 * Validate the RX ticks count (i.e. the maximum amount
1009 	 * of time to wait after the last RX frame has been
1010 	 * received before a status block update is generated
1011 	 * and an interrupt is asserted.
1012 	 */
1013 	if (bce_rx_ticks_int <= 100) {
1014 		sc->bce_rx_ticks_int = bce_rx_ticks_int;
1015 	} else {
1016 		BCE_PRINTF("%s(%d): Illegal value (%d) specified for "
1017 		    "hw.bce.rx_ticks_int!  Setting default of %d.\n",
1018 		    __FILE__, __LINE__, bce_rx_ticks_int,
1019 		    DEFAULT_RX_TICKS_INT);
1020 		sc->bce_rx_ticks_int = DEFAULT_RX_TICKS_INT;
1021 	}
1022 
1023 	if (bce_rx_ticks <= 100) {
1024 		sc->bce_rx_ticks = bce_rx_ticks;
1025 	} else {
1026 		BCE_PRINTF("%s(%d): Illegal value (%d) specified for "
1027 		    "hw.bce.rx_ticks!  Setting default of %d.\n",
1028 		    __FILE__, __LINE__, bce_rx_ticks,
1029 		    DEFAULT_RX_TICKS);
1030 		sc->bce_rx_ticks = DEFAULT_RX_TICKS;
1031 	}
1032 
1033 	/* Disabling both RX ticks and RX trips will prevent interrupts. */
1034 	if ((bce_rx_quick_cons_trip == 0) && (bce_rx_ticks == 0)) {
1035 		BCE_PRINTF("%s(%d): Cannot set both hw.bce.rx_ticks and "
1036 		    "hw.bce.rx_quick_cons_trip to 0. Setting default values.\n",
1037 		   __FILE__, __LINE__);
1038 		sc->bce_rx_ticks = DEFAULT_RX_TICKS;
1039 		sc->bce_rx_quick_cons_trip = DEFAULT_RX_QUICK_CONS_TRIP;
1040 	}
1041 
1042 	/* Disabling both TX ticks and TX trips will prevent interrupts. */
1043 	if ((bce_tx_quick_cons_trip == 0) && (bce_tx_ticks == 0)) {
1044 		BCE_PRINTF("%s(%d): Cannot set both hw.bce.tx_ticks and "
1045 		    "hw.bce.tx_quick_cons_trip to 0. Setting default values.\n",
1046 		   __FILE__, __LINE__);
1047 		sc->bce_tx_ticks = DEFAULT_TX_TICKS;
1048 		sc->bce_tx_quick_cons_trip = DEFAULT_TX_QUICK_CONS_TRIP;
1049 	}
1050 }
1051 
1052 
1053 /****************************************************************************/
1054 /* Device attach function.                                                  */
1055 /*                                                                          */
1056 /* Allocates device resources, performs secondary chip identification,      */
1057 /* resets and initializes the hardware, and initializes driver instance     */
1058 /* variables.                                                               */
1059 /*                                                                          */
1060 /* Returns:                                                                 */
1061 /*   0 on success, positive value on failure.                               */
1062 /****************************************************************************/
1063 static int
1064 bce_attach(device_t dev)
1065 {
1066 	struct bce_softc *sc;
1067 	struct ifnet *ifp;
1068 	u32 val;
1069 	int count, error, rc = 0, rid;
1070 
1071 	sc = device_get_softc(dev);
1072 	sc->bce_dev = dev;
1073 
1074 	DBENTER(BCE_VERBOSE_LOAD | BCE_VERBOSE_RESET);
1075 
1076 	sc->bce_unit = device_get_unit(dev);
1077 
1078 	/* Set initial device and PHY flags */
1079 	sc->bce_flags = 0;
1080 	sc->bce_phy_flags = 0;
1081 
1082 	bce_set_tunables(sc);
1083 
1084 	pci_enable_busmaster(dev);
1085 
1086 	/* Allocate PCI memory resources. */
1087 	rid = PCIR_BAR(0);
1088 	sc->bce_res_mem = bus_alloc_resource_any(dev, SYS_RES_MEMORY,
1089 		&rid, RF_ACTIVE);
1090 
1091 	if (sc->bce_res_mem == NULL) {
1092 		BCE_PRINTF("%s(%d): PCI memory allocation failed\n",
1093 		    __FILE__, __LINE__);
1094 		rc = ENXIO;
1095 		goto bce_attach_fail;
1096 	}
1097 
1098 	/* Get various resource handles. */
1099 	sc->bce_btag    = rman_get_bustag(sc->bce_res_mem);
1100 	sc->bce_bhandle = rman_get_bushandle(sc->bce_res_mem);
1101 	sc->bce_vhandle = (vm_offset_t) rman_get_virtual(sc->bce_res_mem);
1102 
1103 	bce_probe_pci_caps(dev, sc);
1104 
1105 	rid = 1;
1106 	count = 0;
1107 #if 0
1108 	/* Try allocating MSI-X interrupts. */
1109 	if ((sc->bce_cap_flags & BCE_MSIX_CAPABLE_FLAG) &&
1110 		(bce_msi_enable >= 2) &&
1111 		((sc->bce_res_irq = bus_alloc_resource_any(dev, SYS_RES_MEMORY,
1112 		&rid, RF_ACTIVE)) != NULL)) {
1113 
1114 		msi_needed = count = 1;
1115 
1116 		if (((error = pci_alloc_msix(dev, &count)) != 0) ||
1117 			(count != msi_needed)) {
1118 			BCE_PRINTF("%s(%d): MSI-X allocation failed! Requested = %d,"
1119 				"Received = %d, error = %d\n", __FILE__, __LINE__,
1120 				msi_needed, count, error);
1121 			count = 0;
1122 			pci_release_msi(dev);
1123 			bus_release_resource(dev, SYS_RES_MEMORY, rid,
1124 				sc->bce_res_irq);
1125 			sc->bce_res_irq = NULL;
1126 		} else {
1127 			DBPRINT(sc, BCE_INFO_LOAD, "%s(): Using MSI-X interrupt.\n",
1128 				__FUNCTION__);
1129 			sc->bce_flags |= BCE_USING_MSIX_FLAG;
1130 		}
1131 	}
1132 #endif
1133 
1134 	/* Try allocating a MSI interrupt. */
1135 	if ((sc->bce_cap_flags & BCE_MSI_CAPABLE_FLAG) &&
1136 		(bce_msi_enable >= 1) && (count == 0)) {
1137 		count = 1;
1138 		if ((error = pci_alloc_msi(dev, &count)) != 0) {
1139 			BCE_PRINTF("%s(%d): MSI allocation failed! "
1140 			    "error = %d\n", __FILE__, __LINE__, error);
1141 			count = 0;
1142 			pci_release_msi(dev);
1143 		} else {
1144 			DBPRINT(sc, BCE_INFO_LOAD, "%s(): Using MSI "
1145 			    "interrupt.\n", __FUNCTION__);
1146 			sc->bce_flags |= BCE_USING_MSI_FLAG;
1147 			if (BCE_CHIP_NUM(sc) == BCE_CHIP_NUM_5709)
1148 				sc->bce_flags |= BCE_ONE_SHOT_MSI_FLAG;
1149 			rid = 1;
1150 		}
1151 	}
1152 
1153 	/* Try allocating a legacy interrupt. */
1154 	if (count == 0) {
1155 		DBPRINT(sc, BCE_INFO_LOAD, "%s(): Using INTx interrupt.\n",
1156 			__FUNCTION__);
1157 		rid = 0;
1158 	}
1159 
1160 	sc->bce_res_irq = bus_alloc_resource_any(dev, SYS_RES_IRQ,
1161 	    &rid, RF_ACTIVE | (count != 0 ? 0 : RF_SHAREABLE));
1162 
1163 	/* Report any IRQ allocation errors. */
1164 	if (sc->bce_res_irq == NULL) {
1165 		BCE_PRINTF("%s(%d): PCI map interrupt failed!\n",
1166 		    __FILE__, __LINE__);
1167 		rc = ENXIO;
1168 		goto bce_attach_fail;
1169 	}
1170 
1171 	/* Initialize mutex for the current device instance. */
1172 	BCE_LOCK_INIT(sc, device_get_nameunit(dev));
1173 
1174 	/*
1175 	 * Configure byte swap and enable indirect register access.
1176 	 * Rely on CPU to do target byte swapping on big endian systems.
1177 	 * Access to registers outside of PCI configurtion space are not
1178 	 * valid until this is done.
1179 	 */
1180 	pci_write_config(dev, BCE_PCICFG_MISC_CONFIG,
1181 	    BCE_PCICFG_MISC_CONFIG_REG_WINDOW_ENA |
1182 	    BCE_PCICFG_MISC_CONFIG_TARGET_MB_WORD_SWAP, 4);
1183 
1184 	/* Save ASIC revsion info. */
1185 	sc->bce_chipid =  REG_RD(sc, BCE_MISC_ID);
1186 
1187 	/* Weed out any non-production controller revisions. */
1188 	switch(BCE_CHIP_ID(sc)) {
1189 	case BCE_CHIP_ID_5706_A0:
1190 	case BCE_CHIP_ID_5706_A1:
1191 	case BCE_CHIP_ID_5708_A0:
1192 	case BCE_CHIP_ID_5708_B0:
1193 	case BCE_CHIP_ID_5709_A0:
1194 	case BCE_CHIP_ID_5709_B0:
1195 	case BCE_CHIP_ID_5709_B1:
1196 	case BCE_CHIP_ID_5709_B2:
1197 		BCE_PRINTF("%s(%d): Unsupported controller "
1198 		    "revision (%c%d)!\n", __FILE__, __LINE__,
1199 		    (((pci_read_config(dev, PCIR_REVID, 4) &
1200 		    0xf0) >> 4) + 'A'), (pci_read_config(dev,
1201 		    PCIR_REVID, 4) & 0xf));
1202 		rc = ENODEV;
1203 		goto bce_attach_fail;
1204 	}
1205 
1206 	/*
1207 	 * The embedded PCIe to PCI-X bridge (EPB)
1208 	 * in the 5708 cannot address memory above
1209 	 * 40 bits (E7_5708CB1_23043 & E6_5708SB1_23043).
1210 	 */
1211 	if (BCE_CHIP_NUM(sc) == BCE_CHIP_NUM_5708)
1212 		sc->max_bus_addr = BCE_BUS_SPACE_MAXADDR;
1213 	else
1214 		sc->max_bus_addr = BUS_SPACE_MAXADDR;
1215 
1216 	/*
1217 	 * Find the base address for shared memory access.
1218 	 * Newer versions of bootcode use a signature and offset
1219 	 * while older versions use a fixed address.
1220 	 */
1221 	val = REG_RD_IND(sc, BCE_SHM_HDR_SIGNATURE);
1222 	if ((val & BCE_SHM_HDR_SIGNATURE_SIG_MASK) == BCE_SHM_HDR_SIGNATURE_SIG)
1223 		/* Multi-port devices use different offsets in shared memory. */
1224 		sc->bce_shmem_base = REG_RD_IND(sc, BCE_SHM_HDR_ADDR_0 +
1225 		    (pci_get_function(sc->bce_dev) << 2));
1226 	else
1227 		sc->bce_shmem_base = HOST_VIEW_SHMEM_BASE;
1228 
1229 	DBPRINT(sc, BCE_VERBOSE_FIRMWARE, "%s(): bce_shmem_base = 0x%08X\n",
1230 	    __FUNCTION__, sc->bce_shmem_base);
1231 
1232 	/* Fetch the bootcode revision. */
1233 	val = bce_shmem_rd(sc, BCE_DEV_INFO_BC_REV);
1234 	for (int i = 0, j = 0; i < 3; i++) {
1235 		u8 num;
1236 
1237 		num = (u8) (val >> (24 - (i * 8)));
1238 		for (int k = 100, skip0 = 1; k >= 1; num %= k, k /= 10) {
1239 			if (num >= k || !skip0 || k == 1) {
1240 				sc->bce_bc_ver[j++] = (num / k) + '0';
1241 				skip0 = 0;
1242 			}
1243 		}
1244 
1245 		if (i != 2)
1246 			sc->bce_bc_ver[j++] = '.';
1247 	}
1248 
1249 	/* Check if any management firwmare is enabled. */
1250 	val = bce_shmem_rd(sc, BCE_PORT_FEATURE);
1251 	if (val & BCE_PORT_FEATURE_ASF_ENABLED) {
1252 		sc->bce_flags |= BCE_MFW_ENABLE_FLAG;
1253 
1254 		/* Allow time for firmware to enter the running state. */
1255 		for (int i = 0; i < 30; i++) {
1256 			val = bce_shmem_rd(sc, BCE_BC_STATE_CONDITION);
1257 			if (val & BCE_CONDITION_MFW_RUN_MASK)
1258 				break;
1259 			DELAY(10000);
1260 		}
1261 
1262 		/* Check if management firmware is running. */
1263 		val = bce_shmem_rd(sc, BCE_BC_STATE_CONDITION);
1264 		val &= BCE_CONDITION_MFW_RUN_MASK;
1265 		if ((val != BCE_CONDITION_MFW_RUN_UNKNOWN) &&
1266 		    (val != BCE_CONDITION_MFW_RUN_NONE)) {
1267 			u32 addr = bce_shmem_rd(sc, BCE_MFW_VER_PTR);
1268 			int i = 0;
1269 
1270 			/* Read the management firmware version string. */
1271 			for (int j = 0; j < 3; j++) {
1272 				val = bce_reg_rd_ind(sc, addr + j * 4);
1273 				val = bswap32(val);
1274 				memcpy(&sc->bce_mfw_ver[i], &val, 4);
1275 				i += 4;
1276 			}
1277 		} else {
1278 			/* May cause firmware synchronization timeouts. */
1279 			BCE_PRINTF("%s(%d): Management firmware enabled "
1280 			    "but not running!\n", __FILE__, __LINE__);
1281 			strcpy(sc->bce_mfw_ver, "NOT RUNNING!");
1282 
1283 			/* ToDo: Any action the driver should take? */
1284 		}
1285 	}
1286 
1287 	/* Get PCI bus information (speed and type). */
1288 	val = REG_RD(sc, BCE_PCICFG_MISC_STATUS);
1289 	if (val & BCE_PCICFG_MISC_STATUS_PCIX_DET) {
1290 		u32 clkreg;
1291 
1292 		sc->bce_flags |= BCE_PCIX_FLAG;
1293 
1294 		clkreg = REG_RD(sc, BCE_PCICFG_PCI_CLOCK_CONTROL_BITS);
1295 
1296 		clkreg &= BCE_PCICFG_PCI_CLOCK_CONTROL_BITS_PCI_CLK_SPD_DET;
1297 		switch (clkreg) {
1298 		case BCE_PCICFG_PCI_CLOCK_CONTROL_BITS_PCI_CLK_SPD_DET_133MHZ:
1299 			sc->bus_speed_mhz = 133;
1300 			break;
1301 
1302 		case BCE_PCICFG_PCI_CLOCK_CONTROL_BITS_PCI_CLK_SPD_DET_95MHZ:
1303 			sc->bus_speed_mhz = 100;
1304 			break;
1305 
1306 		case BCE_PCICFG_PCI_CLOCK_CONTROL_BITS_PCI_CLK_SPD_DET_66MHZ:
1307 		case BCE_PCICFG_PCI_CLOCK_CONTROL_BITS_PCI_CLK_SPD_DET_80MHZ:
1308 			sc->bus_speed_mhz = 66;
1309 			break;
1310 
1311 		case BCE_PCICFG_PCI_CLOCK_CONTROL_BITS_PCI_CLK_SPD_DET_48MHZ:
1312 		case BCE_PCICFG_PCI_CLOCK_CONTROL_BITS_PCI_CLK_SPD_DET_55MHZ:
1313 			sc->bus_speed_mhz = 50;
1314 			break;
1315 
1316 		case BCE_PCICFG_PCI_CLOCK_CONTROL_BITS_PCI_CLK_SPD_DET_LOW:
1317 		case BCE_PCICFG_PCI_CLOCK_CONTROL_BITS_PCI_CLK_SPD_DET_32MHZ:
1318 		case BCE_PCICFG_PCI_CLOCK_CONTROL_BITS_PCI_CLK_SPD_DET_38MHZ:
1319 			sc->bus_speed_mhz = 33;
1320 			break;
1321 		}
1322 	} else {
1323 		if (val & BCE_PCICFG_MISC_STATUS_M66EN)
1324 			sc->bus_speed_mhz = 66;
1325 		else
1326 			sc->bus_speed_mhz = 33;
1327 	}
1328 
1329 	if (val & BCE_PCICFG_MISC_STATUS_32BIT_DET)
1330 		sc->bce_flags |= BCE_PCI_32BIT_FLAG;
1331 
1332 	/* Find the media type for the adapter. */
1333 	bce_get_media(sc);
1334 
1335 	/* Reset controller and announce to bootcode that driver is present. */
1336 	if (bce_reset(sc, BCE_DRV_MSG_CODE_RESET)) {
1337 		BCE_PRINTF("%s(%d): Controller reset failed!\n",
1338 		    __FILE__, __LINE__);
1339 		rc = ENXIO;
1340 		goto bce_attach_fail;
1341 	}
1342 
1343 	/* Initialize the controller. */
1344 	if (bce_chipinit(sc)) {
1345 		BCE_PRINTF("%s(%d): Controller initialization failed!\n",
1346 		    __FILE__, __LINE__);
1347 		rc = ENXIO;
1348 		goto bce_attach_fail;
1349 	}
1350 
1351 	/* Perform NVRAM test. */
1352 	if (bce_nvram_test(sc)) {
1353 		BCE_PRINTF("%s(%d): NVRAM test failed!\n",
1354 		    __FILE__, __LINE__);
1355 		rc = ENXIO;
1356 		goto bce_attach_fail;
1357 	}
1358 
1359 	/* Fetch the permanent Ethernet MAC address. */
1360 	bce_get_mac_addr(sc);
1361 
1362 	/* Update statistics once every second. */
1363 	sc->bce_stats_ticks = 1000000 & 0xffff00;
1364 
1365 	/* Store data needed by PHY driver for backplane applications */
1366 	sc->bce_shared_hw_cfg = bce_shmem_rd(sc, BCE_SHARED_HW_CFG_CONFIG);
1367 	sc->bce_port_hw_cfg   = bce_shmem_rd(sc, BCE_PORT_HW_CFG_CONFIG);
1368 
1369 	/* Allocate DMA memory resources. */
1370 	if (bce_dma_alloc(dev)) {
1371 		BCE_PRINTF("%s(%d): DMA resource allocation failed!\n",
1372 		    __FILE__, __LINE__);
1373 		rc = ENXIO;
1374 		goto bce_attach_fail;
1375 	}
1376 
1377 	/* Allocate an ifnet structure. */
1378 	ifp = sc->bce_ifp = if_alloc(IFT_ETHER);
1379 	if (ifp == NULL) {
1380 		BCE_PRINTF("%s(%d): Interface allocation failed!\n",
1381 		    __FILE__, __LINE__);
1382 		rc = ENXIO;
1383 		goto bce_attach_fail;
1384 	}
1385 
1386 	/* Initialize the ifnet interface. */
1387 	ifp->if_softc	= sc;
1388 	if_initname(ifp, device_get_name(dev), device_get_unit(dev));
1389 	ifp->if_flags	= IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
1390 	ifp->if_ioctl	= bce_ioctl;
1391 	ifp->if_start	= bce_start;
1392 	ifp->if_init	= bce_init;
1393 	ifp->if_mtu	= ETHERMTU;
1394 
1395 	if (bce_tso_enable) {
1396 		ifp->if_hwassist = BCE_IF_HWASSIST | CSUM_TSO;
1397 		ifp->if_capabilities = BCE_IF_CAPABILITIES | IFCAP_TSO4 |
1398 		    IFCAP_VLAN_HWTSO;
1399 	} else {
1400 		ifp->if_hwassist = BCE_IF_HWASSIST;
1401 		ifp->if_capabilities = BCE_IF_CAPABILITIES;
1402 	}
1403 
1404 #if __FreeBSD_version >= 800505
1405 	/*
1406 	 * Introducing IFCAP_LINKSTATE didn't bump __FreeBSD_version
1407 	 * so it's approximate value.
1408 	 */
1409 	if ((sc->bce_phy_flags & BCE_PHY_REMOTE_CAP_FLAG) != 0)
1410 		ifp->if_capabilities |= IFCAP_LINKSTATE;
1411 #endif
1412 
1413 	ifp->if_capenable = ifp->if_capabilities;
1414 
1415 	/*
1416 	 * Assume standard mbuf sizes for buffer allocation.
1417 	 * This may change later if the MTU size is set to
1418 	 * something other than 1500.
1419 	 */
1420 	bce_get_rx_buffer_sizes(sc,
1421 	    (ETHER_MAX_LEN - ETHER_HDR_LEN - ETHER_CRC_LEN));
1422 
1423 	/* Recalculate our buffer allocation sizes. */
1424 	ifp->if_snd.ifq_drv_maxlen = USABLE_TX_BD_ALLOC;
1425 	IFQ_SET_MAXLEN(&ifp->if_snd, ifp->if_snd.ifq_drv_maxlen);
1426 	IFQ_SET_READY(&ifp->if_snd);
1427 
1428 	if (sc->bce_phy_flags & BCE_PHY_2_5G_CAPABLE_FLAG)
1429 		ifp->if_baudrate = IF_Mbps(2500ULL);
1430 	else
1431 		ifp->if_baudrate = IF_Mbps(1000);
1432 
1433 	/* Handle any special PHY initialization for SerDes PHYs. */
1434 	bce_init_media(sc);
1435 
1436 	if ((sc->bce_phy_flags & BCE_PHY_REMOTE_CAP_FLAG) != 0) {
1437 		ifmedia_init(&sc->bce_ifmedia, IFM_IMASK, bce_ifmedia_upd,
1438 		    bce_ifmedia_sts);
1439 		/*
1440 		 * We can't manually override remote PHY's link and assume
1441 		 * PHY port configuration(Fiber or TP) is not changed after
1442 		 * device attach.  This may not be correct though.
1443 		 */
1444 		if ((sc->bce_phy_flags & BCE_PHY_REMOTE_PORT_FIBER_FLAG) != 0) {
1445 			if (sc->bce_phy_flags & BCE_PHY_2_5G_CAPABLE_FLAG) {
1446 				ifmedia_add(&sc->bce_ifmedia,
1447 				    IFM_ETHER | IFM_2500_SX, 0, NULL);
1448 				ifmedia_add(&sc->bce_ifmedia,
1449 				    IFM_ETHER | IFM_2500_SX | IFM_FDX, 0, NULL);
1450 			}
1451 			ifmedia_add(&sc->bce_ifmedia,
1452 			    IFM_ETHER | IFM_1000_SX, 0, NULL);
1453 			ifmedia_add(&sc->bce_ifmedia,
1454 			    IFM_ETHER | IFM_1000_SX | IFM_FDX, 0, NULL);
1455 		} else {
1456 			ifmedia_add(&sc->bce_ifmedia,
1457 			    IFM_ETHER | IFM_10_T, 0, NULL);
1458 			ifmedia_add(&sc->bce_ifmedia,
1459 			    IFM_ETHER | IFM_10_T | IFM_FDX, 0, NULL);
1460 			ifmedia_add(&sc->bce_ifmedia,
1461 			    IFM_ETHER | IFM_100_TX, 0, NULL);
1462 			ifmedia_add(&sc->bce_ifmedia,
1463 			    IFM_ETHER | IFM_100_TX | IFM_FDX, 0, NULL);
1464 			ifmedia_add(&sc->bce_ifmedia,
1465 			    IFM_ETHER | IFM_1000_T, 0, NULL);
1466 			ifmedia_add(&sc->bce_ifmedia,
1467 			    IFM_ETHER | IFM_1000_T | IFM_FDX, 0, NULL);
1468 		}
1469 		ifmedia_add(&sc->bce_ifmedia, IFM_ETHER | IFM_AUTO, 0, NULL);
1470 		ifmedia_set(&sc->bce_ifmedia, IFM_ETHER | IFM_AUTO);
1471 		sc->bce_ifmedia.ifm_media = sc->bce_ifmedia.ifm_cur->ifm_media;
1472 	} else {
1473 		/* MII child bus by attaching the PHY. */
1474 		rc = mii_attach(dev, &sc->bce_miibus, ifp, bce_ifmedia_upd,
1475 		    bce_ifmedia_sts, BMSR_DEFCAPMASK, sc->bce_phy_addr,
1476 		    MII_OFFSET_ANY, MIIF_DOPAUSE);
1477 		if (rc != 0) {
1478 			BCE_PRINTF("%s(%d): attaching PHYs failed\n", __FILE__,
1479 			    __LINE__);
1480 			goto bce_attach_fail;
1481 		}
1482 	}
1483 
1484 	/* Attach to the Ethernet interface list. */
1485 	ether_ifattach(ifp, sc->eaddr);
1486 
1487 #if __FreeBSD_version < 500000
1488 	callout_init(&sc->bce_tick_callout);
1489 	callout_init(&sc->bce_pulse_callout);
1490 #else
1491 	callout_init_mtx(&sc->bce_tick_callout, &sc->bce_mtx, 0);
1492 	callout_init_mtx(&sc->bce_pulse_callout, &sc->bce_mtx, 0);
1493 #endif
1494 
1495 	/* Hookup IRQ last. */
1496 	rc = bus_setup_intr(dev, sc->bce_res_irq, INTR_TYPE_NET | INTR_MPSAFE,
1497 		NULL, bce_intr, sc, &sc->bce_intrhand);
1498 
1499 	if (rc) {
1500 		BCE_PRINTF("%s(%d): Failed to setup IRQ!\n",
1501 		    __FILE__, __LINE__);
1502 		bce_detach(dev);
1503 		goto bce_attach_exit;
1504 	}
1505 
1506 	/*
1507 	 * At this point we've acquired all the resources
1508 	 * we need to run so there's no turning back, we're
1509 	 * cleared for launch.
1510 	 */
1511 
1512 	/* Print some important debugging info. */
1513 	DBRUNMSG(BCE_INFO, bce_dump_driver_state(sc));
1514 
1515 	/* Add the supported sysctls to the kernel. */
1516 	bce_add_sysctls(sc);
1517 
1518 	BCE_LOCK(sc);
1519 
1520 	/*
1521 	 * The chip reset earlier notified the bootcode that
1522 	 * a driver is present.  We now need to start our pulse
1523 	 * routine so that the bootcode is reminded that we're
1524 	 * still running.
1525 	 */
1526 	bce_pulse(sc);
1527 
1528 	bce_mgmt_init_locked(sc);
1529 	BCE_UNLOCK(sc);
1530 
1531 	/* Finally, print some useful adapter info */
1532 	bce_print_adapter_info(sc);
1533 	DBPRINT(sc, BCE_FATAL, "%s(): sc = %p\n",
1534 		__FUNCTION__, sc);
1535 
1536 	goto bce_attach_exit;
1537 
1538 bce_attach_fail:
1539 	bce_release_resources(sc);
1540 
1541 bce_attach_exit:
1542 
1543 	DBEXIT(BCE_VERBOSE_LOAD | BCE_VERBOSE_RESET);
1544 
1545 	return(rc);
1546 }
1547 
1548 
1549 /****************************************************************************/
1550 /* Device detach function.                                                  */
1551 /*                                                                          */
1552 /* Stops the controller, resets the controller, and releases resources.     */
1553 /*                                                                          */
1554 /* Returns:                                                                 */
1555 /*   0 on success, positive value on failure.                               */
1556 /****************************************************************************/
1557 static int
1558 bce_detach(device_t dev)
1559 {
1560 	struct bce_softc *sc = device_get_softc(dev);
1561 	struct ifnet *ifp;
1562 	u32 msg;
1563 
1564 	DBENTER(BCE_VERBOSE_UNLOAD | BCE_VERBOSE_RESET);
1565 
1566 	ifp = sc->bce_ifp;
1567 
1568 	/* Stop and reset the controller. */
1569 	BCE_LOCK(sc);
1570 
1571 	/* Stop the pulse so the bootcode can go to driver absent state. */
1572 	callout_stop(&sc->bce_pulse_callout);
1573 
1574 	bce_stop(sc);
1575 	if (sc->bce_flags & BCE_NO_WOL_FLAG)
1576 		msg = BCE_DRV_MSG_CODE_UNLOAD_LNK_DN;
1577 	else
1578 		msg = BCE_DRV_MSG_CODE_UNLOAD;
1579 	bce_reset(sc, msg);
1580 
1581 	BCE_UNLOCK(sc);
1582 
1583 	ether_ifdetach(ifp);
1584 
1585 	/* If we have a child device on the MII bus remove it too. */
1586 	if ((sc->bce_phy_flags & BCE_PHY_REMOTE_CAP_FLAG) != 0)
1587 		ifmedia_removeall(&sc->bce_ifmedia);
1588 	else {
1589 		bus_generic_detach(dev);
1590 		device_delete_child(dev, sc->bce_miibus);
1591 	}
1592 
1593 	/* Release all remaining resources. */
1594 	bce_release_resources(sc);
1595 
1596 	DBEXIT(BCE_VERBOSE_UNLOAD | BCE_VERBOSE_RESET);
1597 
1598 	return(0);
1599 }
1600 
1601 
1602 /****************************************************************************/
1603 /* Device shutdown function.                                                */
1604 /*                                                                          */
1605 /* Stops and resets the controller.                                         */
1606 /*                                                                          */
1607 /* Returns:                                                                 */
1608 /*   0 on success, positive value on failure.                               */
1609 /****************************************************************************/
1610 static int
1611 bce_shutdown(device_t dev)
1612 {
1613 	struct bce_softc *sc = device_get_softc(dev);
1614 	u32 msg;
1615 
1616 	DBENTER(BCE_VERBOSE);
1617 
1618 	BCE_LOCK(sc);
1619 	bce_stop(sc);
1620 	if (sc->bce_flags & BCE_NO_WOL_FLAG)
1621 		msg = BCE_DRV_MSG_CODE_UNLOAD_LNK_DN;
1622 	else
1623 		msg = BCE_DRV_MSG_CODE_UNLOAD;
1624 	bce_reset(sc, msg);
1625 	BCE_UNLOCK(sc);
1626 
1627 	DBEXIT(BCE_VERBOSE);
1628 
1629 	return (0);
1630 }
1631 
1632 
1633 #ifdef BCE_DEBUG
1634 /****************************************************************************/
1635 /* Register read.                                                           */
1636 /*                                                                          */
1637 /* Returns:                                                                 */
1638 /*   The value of the register.                                             */
1639 /****************************************************************************/
1640 static u32
1641 bce_reg_rd(struct bce_softc *sc, u32 offset)
1642 {
1643 	u32 val = REG_RD(sc, offset);
1644 	DBPRINT(sc, BCE_INSANE_REG, "%s(); offset = 0x%08X, val = 0x%08X\n",
1645 		__FUNCTION__, offset, val);
1646 	return val;
1647 }
1648 
1649 
1650 /****************************************************************************/
1651 /* Register write (16 bit).                                                 */
1652 /*                                                                          */
1653 /* Returns:                                                                 */
1654 /*   Nothing.                                                               */
1655 /****************************************************************************/
1656 static void
1657 bce_reg_wr16(struct bce_softc *sc, u32 offset, u16 val)
1658 {
1659 	DBPRINT(sc, BCE_INSANE_REG, "%s(); offset = 0x%08X, val = 0x%04X\n",
1660 		__FUNCTION__, offset, val);
1661 	REG_WR16(sc, offset, val);
1662 }
1663 
1664 
1665 /****************************************************************************/
1666 /* Register write.                                                          */
1667 /*                                                                          */
1668 /* Returns:                                                                 */
1669 /*   Nothing.                                                               */
1670 /****************************************************************************/
1671 static void
1672 bce_reg_wr(struct bce_softc *sc, u32 offset, u32 val)
1673 {
1674 	DBPRINT(sc, BCE_INSANE_REG, "%s(); offset = 0x%08X, val = 0x%08X\n",
1675 		__FUNCTION__, offset, val);
1676 	REG_WR(sc, offset, val);
1677 }
1678 #endif
1679 
1680 /****************************************************************************/
1681 /* Indirect register read.                                                  */
1682 /*                                                                          */
1683 /* Reads NetXtreme II registers using an index/data register pair in PCI    */
1684 /* configuration space.  Using this mechanism avoids issues with posted     */
1685 /* reads but is much slower than memory-mapped I/O.                         */
1686 /*                                                                          */
1687 /* Returns:                                                                 */
1688 /*   The value of the register.                                             */
1689 /****************************************************************************/
1690 static u32
1691 bce_reg_rd_ind(struct bce_softc *sc, u32 offset)
1692 {
1693 	device_t dev;
1694 	dev = sc->bce_dev;
1695 
1696 	pci_write_config(dev, BCE_PCICFG_REG_WINDOW_ADDRESS, offset, 4);
1697 #ifdef BCE_DEBUG
1698 	{
1699 		u32 val;
1700 		val = pci_read_config(dev, BCE_PCICFG_REG_WINDOW, 4);
1701 		DBPRINT(sc, BCE_INSANE_REG, "%s(); offset = 0x%08X, val = 0x%08X\n",
1702 			__FUNCTION__, offset, val);
1703 		return val;
1704 	}
1705 #else
1706 	return pci_read_config(dev, BCE_PCICFG_REG_WINDOW, 4);
1707 #endif
1708 }
1709 
1710 
1711 /****************************************************************************/
1712 /* Indirect register write.                                                 */
1713 /*                                                                          */
1714 /* Writes NetXtreme II registers using an index/data register pair in PCI   */
1715 /* configuration space.  Using this mechanism avoids issues with posted     */
1716 /* writes but is muchh slower than memory-mapped I/O.                       */
1717 /*                                                                          */
1718 /* Returns:                                                                 */
1719 /*   Nothing.                                                               */
1720 /****************************************************************************/
1721 static void
1722 bce_reg_wr_ind(struct bce_softc *sc, u32 offset, u32 val)
1723 {
1724 	device_t dev;
1725 	dev = sc->bce_dev;
1726 
1727 	DBPRINT(sc, BCE_INSANE_REG, "%s(); offset = 0x%08X, val = 0x%08X\n",
1728 		__FUNCTION__, offset, val);
1729 
1730 	pci_write_config(dev, BCE_PCICFG_REG_WINDOW_ADDRESS, offset, 4);
1731 	pci_write_config(dev, BCE_PCICFG_REG_WINDOW, val, 4);
1732 }
1733 
1734 
1735 /****************************************************************************/
1736 /* Shared memory write.                                                     */
1737 /*                                                                          */
1738 /* Writes NetXtreme II shared memory region.                                */
1739 /*                                                                          */
1740 /* Returns:                                                                 */
1741 /*   Nothing.                                                               */
1742 /****************************************************************************/
1743 static void
1744 bce_shmem_wr(struct bce_softc *sc, u32 offset, u32 val)
1745 {
1746 	DBPRINT(sc, BCE_VERBOSE_FIRMWARE, "%s(): Writing 0x%08X  to  "
1747 	    "0x%08X\n",	__FUNCTION__, val, offset);
1748 
1749 	bce_reg_wr_ind(sc, sc->bce_shmem_base + offset, val);
1750 }
1751 
1752 
1753 /****************************************************************************/
1754 /* Shared memory read.                                                      */
1755 /*                                                                          */
1756 /* Reads NetXtreme II shared memory region.                                 */
1757 /*                                                                          */
1758 /* Returns:                                                                 */
1759 /*   The 32 bit value read.                                                 */
1760 /****************************************************************************/
1761 static u32
1762 bce_shmem_rd(struct bce_softc *sc, u32 offset)
1763 {
1764 	u32 val = bce_reg_rd_ind(sc, sc->bce_shmem_base + offset);
1765 
1766 	DBPRINT(sc, BCE_VERBOSE_FIRMWARE, "%s(): Reading 0x%08X from "
1767 	    "0x%08X\n",	__FUNCTION__, val, offset);
1768 
1769 	return val;
1770 }
1771 
1772 
1773 #ifdef BCE_DEBUG
1774 /****************************************************************************/
1775 /* Context memory read.                                                     */
1776 /*                                                                          */
1777 /* The NetXtreme II controller uses context memory to track connection      */
1778 /* information for L2 and higher network protocols.                         */
1779 /*                                                                          */
1780 /* Returns:                                                                 */
1781 /*   The requested 32 bit value of context memory.                          */
1782 /****************************************************************************/
1783 static u32
1784 bce_ctx_rd(struct bce_softc *sc, u32 cid_addr, u32 ctx_offset)
1785 {
1786 	u32 idx, offset, retry_cnt = 5, val;
1787 
1788 	DBRUNIF((cid_addr > MAX_CID_ADDR || ctx_offset & 0x3 ||
1789 	    cid_addr & CTX_MASK), BCE_PRINTF("%s(): Invalid CID "
1790 	    "address: 0x%08X.\n", __FUNCTION__, cid_addr));
1791 
1792 	offset = ctx_offset + cid_addr;
1793 
1794 	if (BCE_CHIP_NUM(sc) == BCE_CHIP_NUM_5709) {
1795 
1796 		REG_WR(sc, BCE_CTX_CTX_CTRL, (offset | BCE_CTX_CTX_CTRL_READ_REQ));
1797 
1798 		for (idx = 0; idx < retry_cnt; idx++) {
1799 			val = REG_RD(sc, BCE_CTX_CTX_CTRL);
1800 			if ((val & BCE_CTX_CTX_CTRL_READ_REQ) == 0)
1801 				break;
1802 			DELAY(5);
1803 		}
1804 
1805 		if (val & BCE_CTX_CTX_CTRL_READ_REQ)
1806 			BCE_PRINTF("%s(%d); Unable to read CTX memory: "
1807 			    "cid_addr = 0x%08X, offset = 0x%08X!\n",
1808 			    __FILE__, __LINE__, cid_addr, ctx_offset);
1809 
1810 		val = REG_RD(sc, BCE_CTX_CTX_DATA);
1811 	} else {
1812 		REG_WR(sc, BCE_CTX_DATA_ADR, offset);
1813 		val = REG_RD(sc, BCE_CTX_DATA);
1814 	}
1815 
1816 	DBPRINT(sc, BCE_EXTREME_CTX, "%s(); cid_addr = 0x%08X, offset = 0x%08X, "
1817 		"val = 0x%08X\n", __FUNCTION__, cid_addr, ctx_offset, val);
1818 
1819 	return(val);
1820 }
1821 #endif
1822 
1823 
1824 /****************************************************************************/
1825 /* Context memory write.                                                    */
1826 /*                                                                          */
1827 /* The NetXtreme II controller uses context memory to track connection      */
1828 /* information for L2 and higher network protocols.                         */
1829 /*                                                                          */
1830 /* Returns:                                                                 */
1831 /*   Nothing.                                                               */
1832 /****************************************************************************/
1833 static void
1834 bce_ctx_wr(struct bce_softc *sc, u32 cid_addr, u32 ctx_offset, u32 ctx_val)
1835 {
1836 	u32 idx, offset = ctx_offset + cid_addr;
1837 	u32 val, retry_cnt = 5;
1838 
1839 	DBPRINT(sc, BCE_EXTREME_CTX, "%s(); cid_addr = 0x%08X, offset = 0x%08X, "
1840 		"val = 0x%08X\n", __FUNCTION__, cid_addr, ctx_offset, ctx_val);
1841 
1842 	DBRUNIF((cid_addr > MAX_CID_ADDR || ctx_offset & 0x3 || cid_addr & CTX_MASK),
1843 		BCE_PRINTF("%s(): Invalid CID address: 0x%08X.\n",
1844 		    __FUNCTION__, cid_addr));
1845 
1846 	if (BCE_CHIP_NUM(sc) == BCE_CHIP_NUM_5709) {
1847 
1848 		REG_WR(sc, BCE_CTX_CTX_DATA, ctx_val);
1849 		REG_WR(sc, BCE_CTX_CTX_CTRL, (offset | BCE_CTX_CTX_CTRL_WRITE_REQ));
1850 
1851 		for (idx = 0; idx < retry_cnt; idx++) {
1852 			val = REG_RD(sc, BCE_CTX_CTX_CTRL);
1853 			if ((val & BCE_CTX_CTX_CTRL_WRITE_REQ) == 0)
1854 				break;
1855 			DELAY(5);
1856 		}
1857 
1858 		if (val & BCE_CTX_CTX_CTRL_WRITE_REQ)
1859 			BCE_PRINTF("%s(%d); Unable to write CTX memory: "
1860 			    "cid_addr = 0x%08X, offset = 0x%08X!\n",
1861 			    __FILE__, __LINE__, cid_addr, ctx_offset);
1862 
1863 	} else {
1864 		REG_WR(sc, BCE_CTX_DATA_ADR, offset);
1865 		REG_WR(sc, BCE_CTX_DATA, ctx_val);
1866 	}
1867 }
1868 
1869 
1870 /****************************************************************************/
1871 /* PHY register read.                                                       */
1872 /*                                                                          */
1873 /* Implements register reads on the MII bus.                                */
1874 /*                                                                          */
1875 /* Returns:                                                                 */
1876 /*   The value of the register.                                             */
1877 /****************************************************************************/
1878 static int
1879 bce_miibus_read_reg(device_t dev, int phy, int reg)
1880 {
1881 	struct bce_softc *sc;
1882 	u32 val;
1883 	int i;
1884 
1885 	sc = device_get_softc(dev);
1886 
1887     /*
1888      * The 5709S PHY is an IEEE Clause 45 PHY
1889      * with special mappings to work with IEEE
1890      * Clause 22 register accesses.
1891      */
1892 	if ((sc->bce_phy_flags & BCE_PHY_IEEE_CLAUSE_45_FLAG) != 0) {
1893 		if (reg >= MII_BMCR && reg <= MII_ANLPRNP)
1894 			reg += 0x10;
1895 	}
1896 
1897     if (sc->bce_phy_flags & BCE_PHY_INT_MODE_AUTO_POLLING_FLAG) {
1898 		val = REG_RD(sc, BCE_EMAC_MDIO_MODE);
1899 		val &= ~BCE_EMAC_MDIO_MODE_AUTO_POLL;
1900 
1901 		REG_WR(sc, BCE_EMAC_MDIO_MODE, val);
1902 		REG_RD(sc, BCE_EMAC_MDIO_MODE);
1903 
1904 		DELAY(40);
1905 	}
1906 
1907 
1908 	val = BCE_MIPHY(phy) | BCE_MIREG(reg) |
1909 	    BCE_EMAC_MDIO_COMM_COMMAND_READ | BCE_EMAC_MDIO_COMM_DISEXT |
1910 	    BCE_EMAC_MDIO_COMM_START_BUSY;
1911 	REG_WR(sc, BCE_EMAC_MDIO_COMM, val);
1912 
1913 	for (i = 0; i < BCE_PHY_TIMEOUT; i++) {
1914 		DELAY(10);
1915 
1916 		val = REG_RD(sc, BCE_EMAC_MDIO_COMM);
1917 		if (!(val & BCE_EMAC_MDIO_COMM_START_BUSY)) {
1918 			DELAY(5);
1919 
1920 			val = REG_RD(sc, BCE_EMAC_MDIO_COMM);
1921 			val &= BCE_EMAC_MDIO_COMM_DATA;
1922 
1923 			break;
1924 		}
1925 	}
1926 
1927 	if (val & BCE_EMAC_MDIO_COMM_START_BUSY) {
1928 		BCE_PRINTF("%s(%d): Error: PHY read timeout! phy = %d, "
1929 		    "reg = 0x%04X\n", __FILE__, __LINE__, phy, reg);
1930 		val = 0x0;
1931 	} else {
1932 		val = REG_RD(sc, BCE_EMAC_MDIO_COMM);
1933 	}
1934 
1935 
1936 	if (sc->bce_phy_flags & BCE_PHY_INT_MODE_AUTO_POLLING_FLAG) {
1937 		val = REG_RD(sc, BCE_EMAC_MDIO_MODE);
1938 		val |= BCE_EMAC_MDIO_MODE_AUTO_POLL;
1939 
1940 		REG_WR(sc, BCE_EMAC_MDIO_MODE, val);
1941 		REG_RD(sc, BCE_EMAC_MDIO_MODE);
1942 
1943 		DELAY(40);
1944 	}
1945 
1946 	DB_PRINT_PHY_REG(reg, val);
1947 	return (val & 0xffff);
1948 }
1949 
1950 
1951 /****************************************************************************/
1952 /* PHY register write.                                                      */
1953 /*                                                                          */
1954 /* Implements register writes on the MII bus.                               */
1955 /*                                                                          */
1956 /* Returns:                                                                 */
1957 /*   The value of the register.                                             */
1958 /****************************************************************************/
1959 static int
1960 bce_miibus_write_reg(device_t dev, int phy, int reg, int val)
1961 {
1962 	struct bce_softc *sc;
1963 	u32 val1;
1964 	int i;
1965 
1966 	sc = device_get_softc(dev);
1967 
1968 	DB_PRINT_PHY_REG(reg, val);
1969 
1970 	/*
1971 	 * The 5709S PHY is an IEEE Clause 45 PHY
1972 	 * with special mappings to work with IEEE
1973 	 * Clause 22 register accesses.
1974 	 */
1975 	if ((sc->bce_phy_flags & BCE_PHY_IEEE_CLAUSE_45_FLAG) != 0) {
1976 		if (reg >= MII_BMCR && reg <= MII_ANLPRNP)
1977 			reg += 0x10;
1978 	}
1979 
1980 	if (sc->bce_phy_flags & BCE_PHY_INT_MODE_AUTO_POLLING_FLAG) {
1981 		val1 = REG_RD(sc, BCE_EMAC_MDIO_MODE);
1982 		val1 &= ~BCE_EMAC_MDIO_MODE_AUTO_POLL;
1983 
1984 		REG_WR(sc, BCE_EMAC_MDIO_MODE, val1);
1985 		REG_RD(sc, BCE_EMAC_MDIO_MODE);
1986 
1987 		DELAY(40);
1988 	}
1989 
1990 	val1 = BCE_MIPHY(phy) | BCE_MIREG(reg) | val |
1991 	    BCE_EMAC_MDIO_COMM_COMMAND_WRITE |
1992 	    BCE_EMAC_MDIO_COMM_START_BUSY | BCE_EMAC_MDIO_COMM_DISEXT;
1993 	REG_WR(sc, BCE_EMAC_MDIO_COMM, val1);
1994 
1995 	for (i = 0; i < BCE_PHY_TIMEOUT; i++) {
1996 		DELAY(10);
1997 
1998 		val1 = REG_RD(sc, BCE_EMAC_MDIO_COMM);
1999 		if (!(val1 & BCE_EMAC_MDIO_COMM_START_BUSY)) {
2000 			DELAY(5);
2001 			break;
2002 		}
2003 	}
2004 
2005 	if (val1 & BCE_EMAC_MDIO_COMM_START_BUSY)
2006 		BCE_PRINTF("%s(%d): PHY write timeout!\n",
2007 		    __FILE__, __LINE__);
2008 
2009 	if (sc->bce_phy_flags & BCE_PHY_INT_MODE_AUTO_POLLING_FLAG) {
2010 		val1 = REG_RD(sc, BCE_EMAC_MDIO_MODE);
2011 		val1 |= BCE_EMAC_MDIO_MODE_AUTO_POLL;
2012 
2013 		REG_WR(sc, BCE_EMAC_MDIO_MODE, val1);
2014 		REG_RD(sc, BCE_EMAC_MDIO_MODE);
2015 
2016 		DELAY(40);
2017 	}
2018 
2019 	return 0;
2020 }
2021 
2022 
2023 /****************************************************************************/
2024 /* MII bus status change.                                                   */
2025 /*                                                                          */
2026 /* Called by the MII bus driver when the PHY establishes link to set the    */
2027 /* MAC interface registers.                                                 */
2028 /*                                                                          */
2029 /* Returns:                                                                 */
2030 /*   Nothing.                                                               */
2031 /****************************************************************************/
2032 static void
2033 bce_miibus_statchg(device_t dev)
2034 {
2035 	struct bce_softc *sc;
2036 	struct mii_data *mii;
2037 	struct ifmediareq ifmr;
2038 	int media_active, media_status, val;
2039 
2040 	sc = device_get_softc(dev);
2041 
2042 	DBENTER(BCE_VERBOSE_PHY);
2043 
2044 	if ((sc->bce_phy_flags & BCE_PHY_REMOTE_CAP_FLAG) != 0) {
2045 		bzero(&ifmr, sizeof(ifmr));
2046 		bce_ifmedia_sts_rphy(sc, &ifmr);
2047 		media_active = ifmr.ifm_active;
2048 		media_status = ifmr.ifm_status;
2049 	} else {
2050 		mii = device_get_softc(sc->bce_miibus);
2051 		media_active = mii->mii_media_active;
2052 		media_status = mii->mii_media_status;
2053 	}
2054 
2055 	/* Ignore invalid media status. */
2056 	if ((media_status & (IFM_ACTIVE | IFM_AVALID)) !=
2057 	    (IFM_ACTIVE | IFM_AVALID))
2058 		goto bce_miibus_statchg_exit;
2059 
2060 	val = REG_RD(sc, BCE_EMAC_MODE);
2061 	val &= ~(BCE_EMAC_MODE_PORT | BCE_EMAC_MODE_HALF_DUPLEX |
2062 	    BCE_EMAC_MODE_MAC_LOOP | BCE_EMAC_MODE_FORCE_LINK |
2063 	    BCE_EMAC_MODE_25G);
2064 
2065 	/* Set MII or GMII interface based on the PHY speed. */
2066 	switch (IFM_SUBTYPE(media_active)) {
2067 	case IFM_10_T:
2068 		if (BCE_CHIP_NUM(sc) != BCE_CHIP_NUM_5706) {
2069 			DBPRINT(sc, BCE_INFO_PHY,
2070 			    "Enabling 10Mb interface.\n");
2071 			val |= BCE_EMAC_MODE_PORT_MII_10;
2072 			break;
2073 		}
2074 		/* fall-through */
2075 	case IFM_100_TX:
2076 		DBPRINT(sc, BCE_INFO_PHY, "Enabling MII interface.\n");
2077 		val |= BCE_EMAC_MODE_PORT_MII;
2078 		break;
2079 	case IFM_2500_SX:
2080 		DBPRINT(sc, BCE_INFO_PHY, "Enabling 2.5G MAC mode.\n");
2081 		val |= BCE_EMAC_MODE_25G;
2082 		/* fall-through */
2083 	case IFM_1000_T:
2084 	case IFM_1000_SX:
2085 		DBPRINT(sc, BCE_INFO_PHY, "Enabling GMII interface.\n");
2086 		val |= BCE_EMAC_MODE_PORT_GMII;
2087 		break;
2088 	default:
2089 		DBPRINT(sc, BCE_INFO_PHY, "Unknown link speed, enabling "
2090 		    "default GMII interface.\n");
2091 		val |= BCE_EMAC_MODE_PORT_GMII;
2092 	}
2093 
2094 	/* Set half or full duplex based on PHY settings. */
2095 	if ((IFM_OPTIONS(media_active) & IFM_FDX) == 0) {
2096 		DBPRINT(sc, BCE_INFO_PHY,
2097 		    "Setting Half-Duplex interface.\n");
2098 		val |= BCE_EMAC_MODE_HALF_DUPLEX;
2099 	} else
2100 		DBPRINT(sc, BCE_INFO_PHY,
2101 		    "Setting Full-Duplex interface.\n");
2102 
2103 	REG_WR(sc, BCE_EMAC_MODE, val);
2104 
2105 	if ((IFM_OPTIONS(media_active) & IFM_ETH_RXPAUSE) != 0) {
2106 		DBPRINT(sc, BCE_INFO_PHY,
2107 		    "%s(): Enabling RX flow control.\n", __FUNCTION__);
2108 		BCE_SETBIT(sc, BCE_EMAC_RX_MODE, BCE_EMAC_RX_MODE_FLOW_EN);
2109 		sc->bce_flags |= BCE_USING_RX_FLOW_CONTROL;
2110 	} else {
2111 		DBPRINT(sc, BCE_INFO_PHY,
2112 		    "%s(): Disabling RX flow control.\n", __FUNCTION__);
2113 		BCE_CLRBIT(sc, BCE_EMAC_RX_MODE, BCE_EMAC_RX_MODE_FLOW_EN);
2114 		sc->bce_flags &= ~BCE_USING_RX_FLOW_CONTROL;
2115 	}
2116 
2117 	if ((IFM_OPTIONS(media_active) & IFM_ETH_TXPAUSE) != 0) {
2118 		DBPRINT(sc, BCE_INFO_PHY,
2119 		    "%s(): Enabling TX flow control.\n", __FUNCTION__);
2120 		BCE_SETBIT(sc, BCE_EMAC_TX_MODE, BCE_EMAC_TX_MODE_FLOW_EN);
2121 		sc->bce_flags |= BCE_USING_TX_FLOW_CONTROL;
2122 	} else {
2123 		DBPRINT(sc, BCE_INFO_PHY,
2124 		    "%s(): Disabling TX flow control.\n", __FUNCTION__);
2125 		BCE_CLRBIT(sc, BCE_EMAC_TX_MODE, BCE_EMAC_TX_MODE_FLOW_EN);
2126 		sc->bce_flags &= ~BCE_USING_TX_FLOW_CONTROL;
2127 	}
2128 
2129 	/* ToDo: Update watermarks in bce_init_rx_context(). */
2130 
2131 bce_miibus_statchg_exit:
2132 	DBEXIT(BCE_VERBOSE_PHY);
2133 }
2134 
2135 
2136 /****************************************************************************/
2137 /* Acquire NVRAM lock.                                                      */
2138 /*                                                                          */
2139 /* Before the NVRAM can be accessed the caller must acquire an NVRAM lock.  */
2140 /* Locks 0 and 2 are reserved, lock 1 is used by firmware and lock 2 is     */
2141 /* for use by the driver.                                                   */
2142 /*                                                                          */
2143 /* Returns:                                                                 */
2144 /*   0 on success, positive value on failure.                               */
2145 /****************************************************************************/
2146 static int
2147 bce_acquire_nvram_lock(struct bce_softc *sc)
2148 {
2149 	u32 val;
2150 	int j, rc = 0;
2151 
2152 	DBENTER(BCE_VERBOSE_NVRAM);
2153 
2154 	/* Request access to the flash interface. */
2155 	REG_WR(sc, BCE_NVM_SW_ARB, BCE_NVM_SW_ARB_ARB_REQ_SET2);
2156 	for (j = 0; j < NVRAM_TIMEOUT_COUNT; j++) {
2157 		val = REG_RD(sc, BCE_NVM_SW_ARB);
2158 		if (val & BCE_NVM_SW_ARB_ARB_ARB2)
2159 			break;
2160 
2161 		DELAY(5);
2162 	}
2163 
2164 	if (j >= NVRAM_TIMEOUT_COUNT) {
2165 		DBPRINT(sc, BCE_WARN, "Timeout acquiring NVRAM lock!\n");
2166 		rc = EBUSY;
2167 	}
2168 
2169 	DBEXIT(BCE_VERBOSE_NVRAM);
2170 	return (rc);
2171 }
2172 
2173 
2174 /****************************************************************************/
2175 /* Release NVRAM lock.                                                      */
2176 /*                                                                          */
2177 /* When the caller is finished accessing NVRAM the lock must be released.   */
2178 /* Locks 0 and 2 are reserved, lock 1 is used by firmware and lock 2 is     */
2179 /* for use by the driver.                                                   */
2180 /*                                                                          */
2181 /* Returns:                                                                 */
2182 /*   0 on success, positive value on failure.                               */
2183 /****************************************************************************/
2184 static int
2185 bce_release_nvram_lock(struct bce_softc *sc)
2186 {
2187 	u32 val;
2188 	int j, rc = 0;
2189 
2190 	DBENTER(BCE_VERBOSE_NVRAM);
2191 
2192 	/*
2193 	 * Relinquish nvram interface.
2194 	 */
2195 	REG_WR(sc, BCE_NVM_SW_ARB, BCE_NVM_SW_ARB_ARB_REQ_CLR2);
2196 
2197 	for (j = 0; j < NVRAM_TIMEOUT_COUNT; j++) {
2198 		val = REG_RD(sc, BCE_NVM_SW_ARB);
2199 		if (!(val & BCE_NVM_SW_ARB_ARB_ARB2))
2200 			break;
2201 
2202 		DELAY(5);
2203 	}
2204 
2205 	if (j >= NVRAM_TIMEOUT_COUNT) {
2206 		DBPRINT(sc, BCE_WARN, "Timeout releasing NVRAM lock!\n");
2207 		rc = EBUSY;
2208 	}
2209 
2210 	DBEXIT(BCE_VERBOSE_NVRAM);
2211 	return (rc);
2212 }
2213 
2214 
2215 #ifdef BCE_NVRAM_WRITE_SUPPORT
2216 /****************************************************************************/
2217 /* Enable NVRAM write access.                                               */
2218 /*                                                                          */
2219 /* Before writing to NVRAM the caller must enable NVRAM writes.             */
2220 /*                                                                          */
2221 /* Returns:                                                                 */
2222 /*   0 on success, positive value on failure.                               */
2223 /****************************************************************************/
2224 static int
2225 bce_enable_nvram_write(struct bce_softc *sc)
2226 {
2227 	u32 val;
2228 	int rc = 0;
2229 
2230 	DBENTER(BCE_VERBOSE_NVRAM);
2231 
2232 	val = REG_RD(sc, BCE_MISC_CFG);
2233 	REG_WR(sc, BCE_MISC_CFG, val | BCE_MISC_CFG_NVM_WR_EN_PCI);
2234 
2235 	if (!(sc->bce_flash_info->flags & BCE_NV_BUFFERED)) {
2236 		int j;
2237 
2238 		REG_WR(sc, BCE_NVM_COMMAND, BCE_NVM_COMMAND_DONE);
2239 		REG_WR(sc, BCE_NVM_COMMAND,	BCE_NVM_COMMAND_WREN | BCE_NVM_COMMAND_DOIT);
2240 
2241 		for (j = 0; j < NVRAM_TIMEOUT_COUNT; j++) {
2242 			DELAY(5);
2243 
2244 			val = REG_RD(sc, BCE_NVM_COMMAND);
2245 			if (val & BCE_NVM_COMMAND_DONE)
2246 				break;
2247 		}
2248 
2249 		if (j >= NVRAM_TIMEOUT_COUNT) {
2250 			DBPRINT(sc, BCE_WARN, "Timeout writing NVRAM!\n");
2251 			rc = EBUSY;
2252 		}
2253 	}
2254 
2255 	DBENTER(BCE_VERBOSE_NVRAM);
2256 	return (rc);
2257 }
2258 
2259 
2260 /****************************************************************************/
2261 /* Disable NVRAM write access.                                              */
2262 /*                                                                          */
2263 /* When the caller is finished writing to NVRAM write access must be        */
2264 /* disabled.                                                                */
2265 /*                                                                          */
2266 /* Returns:                                                                 */
2267 /*   Nothing.                                                               */
2268 /****************************************************************************/
2269 static void
2270 bce_disable_nvram_write(struct bce_softc *sc)
2271 {
2272 	u32 val;
2273 
2274 	DBENTER(BCE_VERBOSE_NVRAM);
2275 
2276 	val = REG_RD(sc, BCE_MISC_CFG);
2277 	REG_WR(sc, BCE_MISC_CFG, val & ~BCE_MISC_CFG_NVM_WR_EN);
2278 
2279 	DBEXIT(BCE_VERBOSE_NVRAM);
2280 
2281 }
2282 #endif
2283 
2284 
2285 /****************************************************************************/
2286 /* Enable NVRAM access.                                                     */
2287 /*                                                                          */
2288 /* Before accessing NVRAM for read or write operations the caller must      */
2289 /* enabled NVRAM access.                                                    */
2290 /*                                                                          */
2291 /* Returns:                                                                 */
2292 /*   Nothing.                                                               */
2293 /****************************************************************************/
2294 static void
2295 bce_enable_nvram_access(struct bce_softc *sc)
2296 {
2297 	u32 val;
2298 
2299 	DBENTER(BCE_VERBOSE_NVRAM);
2300 
2301 	val = REG_RD(sc, BCE_NVM_ACCESS_ENABLE);
2302 	/* Enable both bits, even on read. */
2303 	REG_WR(sc, BCE_NVM_ACCESS_ENABLE, val |
2304 	    BCE_NVM_ACCESS_ENABLE_EN | BCE_NVM_ACCESS_ENABLE_WR_EN);
2305 
2306 	DBEXIT(BCE_VERBOSE_NVRAM);
2307 }
2308 
2309 
2310 /****************************************************************************/
2311 /* Disable NVRAM access.                                                    */
2312 /*                                                                          */
2313 /* When the caller is finished accessing NVRAM access must be disabled.     */
2314 /*                                                                          */
2315 /* Returns:                                                                 */
2316 /*   Nothing.                                                               */
2317 /****************************************************************************/
2318 static void
2319 bce_disable_nvram_access(struct bce_softc *sc)
2320 {
2321 	u32 val;
2322 
2323 	DBENTER(BCE_VERBOSE_NVRAM);
2324 
2325 	val = REG_RD(sc, BCE_NVM_ACCESS_ENABLE);
2326 
2327 	/* Disable both bits, even after read. */
2328 	REG_WR(sc, BCE_NVM_ACCESS_ENABLE, val &
2329 	    ~(BCE_NVM_ACCESS_ENABLE_EN | BCE_NVM_ACCESS_ENABLE_WR_EN));
2330 
2331 	DBEXIT(BCE_VERBOSE_NVRAM);
2332 }
2333 
2334 
2335 #ifdef BCE_NVRAM_WRITE_SUPPORT
2336 /****************************************************************************/
2337 /* Erase NVRAM page before writing.                                         */
2338 /*                                                                          */
2339 /* Non-buffered flash parts require that a page be erased before it is      */
2340 /* written.                                                                 */
2341 /*                                                                          */
2342 /* Returns:                                                                 */
2343 /*   0 on success, positive value on failure.                               */
2344 /****************************************************************************/
2345 static int
2346 bce_nvram_erase_page(struct bce_softc *sc, u32 offset)
2347 {
2348 	u32 cmd;
2349 	int j, rc = 0;
2350 
2351 	DBENTER(BCE_VERBOSE_NVRAM);
2352 
2353 	/* Buffered flash doesn't require an erase. */
2354 	if (sc->bce_flash_info->flags & BCE_NV_BUFFERED)
2355 		goto bce_nvram_erase_page_exit;
2356 
2357 	/* Build an erase command. */
2358 	cmd = BCE_NVM_COMMAND_ERASE | BCE_NVM_COMMAND_WR |
2359 	    BCE_NVM_COMMAND_DOIT;
2360 
2361 	/*
2362 	 * Clear the DONE bit separately, set the NVRAM adress to erase,
2363 	 * and issue the erase command.
2364 	 */
2365 	REG_WR(sc, BCE_NVM_COMMAND, BCE_NVM_COMMAND_DONE);
2366 	REG_WR(sc, BCE_NVM_ADDR, offset & BCE_NVM_ADDR_NVM_ADDR_VALUE);
2367 	REG_WR(sc, BCE_NVM_COMMAND, cmd);
2368 
2369 	/* Wait for completion. */
2370 	for (j = 0; j < NVRAM_TIMEOUT_COUNT; j++) {
2371 		u32 val;
2372 
2373 		DELAY(5);
2374 
2375 		val = REG_RD(sc, BCE_NVM_COMMAND);
2376 		if (val & BCE_NVM_COMMAND_DONE)
2377 			break;
2378 	}
2379 
2380 	if (j >= NVRAM_TIMEOUT_COUNT) {
2381 		DBPRINT(sc, BCE_WARN, "Timeout erasing NVRAM.\n");
2382 		rc = EBUSY;
2383 	}
2384 
2385 bce_nvram_erase_page_exit:
2386 	DBEXIT(BCE_VERBOSE_NVRAM);
2387 	return (rc);
2388 }
2389 #endif /* BCE_NVRAM_WRITE_SUPPORT */
2390 
2391 
2392 /****************************************************************************/
2393 /* Read a dword (32 bits) from NVRAM.                                       */
2394 /*                                                                          */
2395 /* Read a 32 bit word from NVRAM.  The caller is assumed to have already    */
2396 /* obtained the NVRAM lock and enabled the controller for NVRAM access.     */
2397 /*                                                                          */
2398 /* Returns:                                                                 */
2399 /*   0 on success and the 32 bit value read, positive value on failure.     */
2400 /****************************************************************************/
2401 static int
2402 bce_nvram_read_dword(struct bce_softc *sc,
2403     u32 offset, u8 *ret_val, u32 cmd_flags)
2404 {
2405 	u32 cmd;
2406 	int i, rc = 0;
2407 
2408 	DBENTER(BCE_EXTREME_NVRAM);
2409 
2410 	/* Build the command word. */
2411 	cmd = BCE_NVM_COMMAND_DOIT | cmd_flags;
2412 
2413 	/* Calculate the offset for buffered flash if translation is used. */
2414 	if (sc->bce_flash_info->flags & BCE_NV_TRANSLATE) {
2415 		offset = ((offset / sc->bce_flash_info->page_size) <<
2416 		    sc->bce_flash_info->page_bits) +
2417 		    (offset % sc->bce_flash_info->page_size);
2418 	}
2419 
2420 	/*
2421 	 * Clear the DONE bit separately, set the address to read,
2422 	 * and issue the read.
2423 	 */
2424 	REG_WR(sc, BCE_NVM_COMMAND, BCE_NVM_COMMAND_DONE);
2425 	REG_WR(sc, BCE_NVM_ADDR, offset & BCE_NVM_ADDR_NVM_ADDR_VALUE);
2426 	REG_WR(sc, BCE_NVM_COMMAND, cmd);
2427 
2428 	/* Wait for completion. */
2429 	for (i = 0; i < NVRAM_TIMEOUT_COUNT; i++) {
2430 		u32 val;
2431 
2432 		DELAY(5);
2433 
2434 		val = REG_RD(sc, BCE_NVM_COMMAND);
2435 		if (val & BCE_NVM_COMMAND_DONE) {
2436 			val = REG_RD(sc, BCE_NVM_READ);
2437 
2438 			val = bce_be32toh(val);
2439 			memcpy(ret_val, &val, 4);
2440 			break;
2441 		}
2442 	}
2443 
2444 	/* Check for errors. */
2445 	if (i >= NVRAM_TIMEOUT_COUNT) {
2446 		BCE_PRINTF("%s(%d): Timeout error reading NVRAM at "
2447 		    "offset 0x%08X!\n",	__FILE__, __LINE__, offset);
2448 		rc = EBUSY;
2449 	}
2450 
2451 	DBEXIT(BCE_EXTREME_NVRAM);
2452 	return(rc);
2453 }
2454 
2455 
2456 #ifdef BCE_NVRAM_WRITE_SUPPORT
2457 /****************************************************************************/
2458 /* Write a dword (32 bits) to NVRAM.                                        */
2459 /*                                                                          */
2460 /* Write a 32 bit word to NVRAM.  The caller is assumed to have already     */
2461 /* obtained the NVRAM lock, enabled the controller for NVRAM access, and    */
2462 /* enabled NVRAM write access.                                              */
2463 /*                                                                          */
2464 /* Returns:                                                                 */
2465 /*   0 on success, positive value on failure.                               */
2466 /****************************************************************************/
2467 static int
2468 bce_nvram_write_dword(struct bce_softc *sc, u32 offset, u8 *val,
2469 	u32 cmd_flags)
2470 {
2471 	u32 cmd, val32;
2472 	int j, rc = 0;
2473 
2474 	DBENTER(BCE_VERBOSE_NVRAM);
2475 
2476 	/* Build the command word. */
2477 	cmd = BCE_NVM_COMMAND_DOIT | BCE_NVM_COMMAND_WR | cmd_flags;
2478 
2479 	/* Calculate the offset for buffered flash if translation is used. */
2480 	if (sc->bce_flash_info->flags & BCE_NV_TRANSLATE) {
2481 		offset = ((offset / sc->bce_flash_info->page_size) <<
2482 		    sc->bce_flash_info->page_bits) +
2483 		    (offset % sc->bce_flash_info->page_size);
2484 	}
2485 
2486 	/*
2487 	 * Clear the DONE bit separately, convert NVRAM data to big-endian,
2488 	 * set the NVRAM address to write, and issue the write command
2489 	 */
2490 	REG_WR(sc, BCE_NVM_COMMAND, BCE_NVM_COMMAND_DONE);
2491 	memcpy(&val32, val, 4);
2492 	val32 = htobe32(val32);
2493 	REG_WR(sc, BCE_NVM_WRITE, val32);
2494 	REG_WR(sc, BCE_NVM_ADDR, offset & BCE_NVM_ADDR_NVM_ADDR_VALUE);
2495 	REG_WR(sc, BCE_NVM_COMMAND, cmd);
2496 
2497 	/* Wait for completion. */
2498 	for (j = 0; j < NVRAM_TIMEOUT_COUNT; j++) {
2499 		DELAY(5);
2500 
2501 		if (REG_RD(sc, BCE_NVM_COMMAND) & BCE_NVM_COMMAND_DONE)
2502 			break;
2503 	}
2504 	if (j >= NVRAM_TIMEOUT_COUNT) {
2505 		BCE_PRINTF("%s(%d): Timeout error writing NVRAM at "
2506 		    "offset 0x%08X\n", __FILE__, __LINE__, offset);
2507 		rc = EBUSY;
2508 	}
2509 
2510 	DBEXIT(BCE_VERBOSE_NVRAM);
2511 	return (rc);
2512 }
2513 #endif /* BCE_NVRAM_WRITE_SUPPORT */
2514 
2515 
2516 /****************************************************************************/
2517 /* Initialize NVRAM access.                                                 */
2518 /*                                                                          */
2519 /* Identify the NVRAM device in use and prepare the NVRAM interface to      */
2520 /* access that device.                                                      */
2521 /*                                                                          */
2522 /* Returns:                                                                 */
2523 /*   0 on success, positive value on failure.                               */
2524 /****************************************************************************/
2525 static int
2526 bce_init_nvram(struct bce_softc *sc)
2527 {
2528 	u32 val;
2529 	int j, entry_count, rc = 0;
2530 	const struct flash_spec *flash;
2531 
2532 	DBENTER(BCE_VERBOSE_NVRAM);
2533 
2534 	if (BCE_CHIP_NUM(sc) == BCE_CHIP_NUM_5709) {
2535 		sc->bce_flash_info = &flash_5709;
2536 		goto bce_init_nvram_get_flash_size;
2537 	}
2538 
2539 	/* Determine the selected interface. */
2540 	val = REG_RD(sc, BCE_NVM_CFG1);
2541 
2542 	entry_count = sizeof(flash_table) / sizeof(struct flash_spec);
2543 
2544 	/*
2545 	 * Flash reconfiguration is required to support additional
2546 	 * NVRAM devices not directly supported in hardware.
2547 	 * Check if the flash interface was reconfigured
2548 	 * by the bootcode.
2549 	 */
2550 
2551 	if (val & 0x40000000) {
2552 		/* Flash interface reconfigured by bootcode. */
2553 
2554 		DBPRINT(sc,BCE_INFO_LOAD,
2555 			"bce_init_nvram(): Flash WAS reconfigured.\n");
2556 
2557 		for (j = 0, flash = &flash_table[0]; j < entry_count;
2558 		     j++, flash++) {
2559 			if ((val & FLASH_BACKUP_STRAP_MASK) ==
2560 			    (flash->config1 & FLASH_BACKUP_STRAP_MASK)) {
2561 				sc->bce_flash_info = flash;
2562 				break;
2563 			}
2564 		}
2565 	} else {
2566 		/* Flash interface not yet reconfigured. */
2567 		u32 mask;
2568 
2569 		DBPRINT(sc, BCE_INFO_LOAD, "%s(): Flash was NOT reconfigured.\n",
2570 			__FUNCTION__);
2571 
2572 		if (val & (1 << 23))
2573 			mask = FLASH_BACKUP_STRAP_MASK;
2574 		else
2575 			mask = FLASH_STRAP_MASK;
2576 
2577 		/* Look for the matching NVRAM device configuration data. */
2578 		for (j = 0, flash = &flash_table[0]; j < entry_count; j++, flash++) {
2579 
2580 			/* Check if the device matches any of the known devices. */
2581 			if ((val & mask) == (flash->strapping & mask)) {
2582 				/* Found a device match. */
2583 				sc->bce_flash_info = flash;
2584 
2585 				/* Request access to the flash interface. */
2586 				if ((rc = bce_acquire_nvram_lock(sc)) != 0)
2587 					return rc;
2588 
2589 				/* Reconfigure the flash interface. */
2590 				bce_enable_nvram_access(sc);
2591 				REG_WR(sc, BCE_NVM_CFG1, flash->config1);
2592 				REG_WR(sc, BCE_NVM_CFG2, flash->config2);
2593 				REG_WR(sc, BCE_NVM_CFG3, flash->config3);
2594 				REG_WR(sc, BCE_NVM_WRITE1, flash->write1);
2595 				bce_disable_nvram_access(sc);
2596 				bce_release_nvram_lock(sc);
2597 
2598 				break;
2599 			}
2600 		}
2601 	}
2602 
2603 	/* Check if a matching device was found. */
2604 	if (j == entry_count) {
2605 		sc->bce_flash_info = NULL;
2606 		BCE_PRINTF("%s(%d): Unknown Flash NVRAM found!\n",
2607 		    __FILE__, __LINE__);
2608 		DBEXIT(BCE_VERBOSE_NVRAM);
2609 		return (ENODEV);
2610 	}
2611 
2612 bce_init_nvram_get_flash_size:
2613 	/* Write the flash config data to the shared memory interface. */
2614 	val = bce_shmem_rd(sc, BCE_SHARED_HW_CFG_CONFIG2);
2615 	val &= BCE_SHARED_HW_CFG2_NVM_SIZE_MASK;
2616 	if (val)
2617 		sc->bce_flash_size = val;
2618 	else
2619 		sc->bce_flash_size = sc->bce_flash_info->total_size;
2620 
2621 	DBPRINT(sc, BCE_INFO_LOAD, "%s(): Found %s, size = 0x%08X\n",
2622 	    __FUNCTION__, sc->bce_flash_info->name,
2623 	    sc->bce_flash_info->total_size);
2624 
2625 	DBEXIT(BCE_VERBOSE_NVRAM);
2626 	return rc;
2627 }
2628 
2629 
2630 /****************************************************************************/
2631 /* Read an arbitrary range of data from NVRAM.                              */
2632 /*                                                                          */
2633 /* Prepares the NVRAM interface for access and reads the requested data     */
2634 /* into the supplied buffer.                                                */
2635 /*                                                                          */
2636 /* Returns:                                                                 */
2637 /*   0 on success and the data read, positive value on failure.             */
2638 /****************************************************************************/
2639 static int
2640 bce_nvram_read(struct bce_softc *sc, u32 offset, u8 *ret_buf,
2641 	int buf_size)
2642 {
2643 	int rc = 0;
2644 	u32 cmd_flags, offset32, len32, extra;
2645 
2646 	DBENTER(BCE_VERBOSE_NVRAM);
2647 
2648 	if (buf_size == 0)
2649 		goto bce_nvram_read_exit;
2650 
2651 	/* Request access to the flash interface. */
2652 	if ((rc = bce_acquire_nvram_lock(sc)) != 0)
2653 		goto bce_nvram_read_exit;
2654 
2655 	/* Enable access to flash interface */
2656 	bce_enable_nvram_access(sc);
2657 
2658 	len32 = buf_size;
2659 	offset32 = offset;
2660 	extra = 0;
2661 
2662 	cmd_flags = 0;
2663 
2664 	if (offset32 & 3) {
2665 		u8 buf[4];
2666 		u32 pre_len;
2667 
2668 		offset32 &= ~3;
2669 		pre_len = 4 - (offset & 3);
2670 
2671 		if (pre_len >= len32) {
2672 			pre_len = len32;
2673 			cmd_flags = BCE_NVM_COMMAND_FIRST | BCE_NVM_COMMAND_LAST;
2674 		}
2675 		else {
2676 			cmd_flags = BCE_NVM_COMMAND_FIRST;
2677 		}
2678 
2679 		rc = bce_nvram_read_dword(sc, offset32, buf, cmd_flags);
2680 
2681 		if (rc)
2682 			return rc;
2683 
2684 		memcpy(ret_buf, buf + (offset & 3), pre_len);
2685 
2686 		offset32 += 4;
2687 		ret_buf += pre_len;
2688 		len32 -= pre_len;
2689 	}
2690 
2691 	if (len32 & 3) {
2692 		extra = 4 - (len32 & 3);
2693 		len32 = (len32 + 4) & ~3;
2694 	}
2695 
2696 	if (len32 == 4) {
2697 		u8 buf[4];
2698 
2699 		if (cmd_flags)
2700 			cmd_flags = BCE_NVM_COMMAND_LAST;
2701 		else
2702 			cmd_flags = BCE_NVM_COMMAND_FIRST |
2703 				    BCE_NVM_COMMAND_LAST;
2704 
2705 		rc = bce_nvram_read_dword(sc, offset32, buf, cmd_flags);
2706 
2707 		memcpy(ret_buf, buf, 4 - extra);
2708 	}
2709 	else if (len32 > 0) {
2710 		u8 buf[4];
2711 
2712 		/* Read the first word. */
2713 		if (cmd_flags)
2714 			cmd_flags = 0;
2715 		else
2716 			cmd_flags = BCE_NVM_COMMAND_FIRST;
2717 
2718 		rc = bce_nvram_read_dword(sc, offset32, ret_buf, cmd_flags);
2719 
2720 		/* Advance to the next dword. */
2721 		offset32 += 4;
2722 		ret_buf += 4;
2723 		len32 -= 4;
2724 
2725 		while (len32 > 4 && rc == 0) {
2726 			rc = bce_nvram_read_dword(sc, offset32, ret_buf, 0);
2727 
2728 			/* Advance to the next dword. */
2729 			offset32 += 4;
2730 			ret_buf += 4;
2731 			len32 -= 4;
2732 		}
2733 
2734 		if (rc)
2735 			goto bce_nvram_read_locked_exit;
2736 
2737 		cmd_flags = BCE_NVM_COMMAND_LAST;
2738 		rc = bce_nvram_read_dword(sc, offset32, buf, cmd_flags);
2739 
2740 		memcpy(ret_buf, buf, 4 - extra);
2741 	}
2742 
2743 bce_nvram_read_locked_exit:
2744 	/* Disable access to flash interface and release the lock. */
2745 	bce_disable_nvram_access(sc);
2746 	bce_release_nvram_lock(sc);
2747 
2748 bce_nvram_read_exit:
2749 	DBEXIT(BCE_VERBOSE_NVRAM);
2750 	return rc;
2751 }
2752 
2753 
2754 #ifdef BCE_NVRAM_WRITE_SUPPORT
2755 /****************************************************************************/
2756 /* Write an arbitrary range of data from NVRAM.                             */
2757 /*                                                                          */
2758 /* Prepares the NVRAM interface for write access and writes the requested   */
2759 /* data from the supplied buffer.  The caller is responsible for            */
2760 /* calculating any appropriate CRCs.                                        */
2761 /*                                                                          */
2762 /* Returns:                                                                 */
2763 /*   0 on success, positive value on failure.                               */
2764 /****************************************************************************/
2765 static int
2766 bce_nvram_write(struct bce_softc *sc, u32 offset, u8 *data_buf,
2767 	int buf_size)
2768 {
2769 	u32 written, offset32, len32;
2770 	u8 *buf, start[4], end[4];
2771 	int rc = 0;
2772 	int align_start, align_end;
2773 
2774 	DBENTER(BCE_VERBOSE_NVRAM);
2775 
2776 	buf = data_buf;
2777 	offset32 = offset;
2778 	len32 = buf_size;
2779 	align_start = align_end = 0;
2780 
2781 	if ((align_start = (offset32 & 3))) {
2782 		offset32 &= ~3;
2783 		len32 += align_start;
2784 		if ((rc = bce_nvram_read(sc, offset32, start, 4)))
2785 			goto bce_nvram_write_exit;
2786 	}
2787 
2788 	if (len32 & 3) {
2789 	       	if ((len32 > 4) || !align_start) {
2790 			align_end = 4 - (len32 & 3);
2791 			len32 += align_end;
2792 			if ((rc = bce_nvram_read(sc, offset32 + len32 - 4,
2793 				end, 4))) {
2794 				goto bce_nvram_write_exit;
2795 			}
2796 		}
2797 	}
2798 
2799 	if (align_start || align_end) {
2800 		buf = malloc(len32, M_DEVBUF, M_NOWAIT);
2801 		if (buf == 0) {
2802 			rc = ENOMEM;
2803 			goto bce_nvram_write_exit;
2804 		}
2805 
2806 		if (align_start) {
2807 			memcpy(buf, start, 4);
2808 		}
2809 
2810 		if (align_end) {
2811 			memcpy(buf + len32 - 4, end, 4);
2812 		}
2813 		memcpy(buf + align_start, data_buf, buf_size);
2814 	}
2815 
2816 	written = 0;
2817 	while ((written < len32) && (rc == 0)) {
2818 		u32 page_start, page_end, data_start, data_end;
2819 		u32 addr, cmd_flags;
2820 		int i;
2821 		u8 flash_buffer[264];
2822 
2823 	    /* Find the page_start addr */
2824 		page_start = offset32 + written;
2825 		page_start -= (page_start % sc->bce_flash_info->page_size);
2826 		/* Find the page_end addr */
2827 		page_end = page_start + sc->bce_flash_info->page_size;
2828 		/* Find the data_start addr */
2829 		data_start = (written == 0) ? offset32 : page_start;
2830 		/* Find the data_end addr */
2831 		data_end = (page_end > offset32 + len32) ?
2832 			(offset32 + len32) : page_end;
2833 
2834 		/* Request access to the flash interface. */
2835 		if ((rc = bce_acquire_nvram_lock(sc)) != 0)
2836 			goto bce_nvram_write_exit;
2837 
2838 		/* Enable access to flash interface */
2839 		bce_enable_nvram_access(sc);
2840 
2841 		cmd_flags = BCE_NVM_COMMAND_FIRST;
2842 		if (!(sc->bce_flash_info->flags & BCE_NV_BUFFERED)) {
2843 			int j;
2844 
2845 			/* Read the whole page into the buffer
2846 			 * (non-buffer flash only) */
2847 			for (j = 0; j < sc->bce_flash_info->page_size; j += 4) {
2848 				if (j == (sc->bce_flash_info->page_size - 4)) {
2849 					cmd_flags |= BCE_NVM_COMMAND_LAST;
2850 				}
2851 				rc = bce_nvram_read_dword(sc,
2852 					page_start + j,
2853 					&flash_buffer[j],
2854 					cmd_flags);
2855 
2856 				if (rc)
2857 					goto bce_nvram_write_locked_exit;
2858 
2859 				cmd_flags = 0;
2860 			}
2861 		}
2862 
2863 		/* Enable writes to flash interface (unlock write-protect) */
2864 		if ((rc = bce_enable_nvram_write(sc)) != 0)
2865 			goto bce_nvram_write_locked_exit;
2866 
2867 		/* Erase the page */
2868 		if ((rc = bce_nvram_erase_page(sc, page_start)) != 0)
2869 			goto bce_nvram_write_locked_exit;
2870 
2871 		/* Re-enable the write again for the actual write */
2872 		bce_enable_nvram_write(sc);
2873 
2874 		/* Loop to write back the buffer data from page_start to
2875 		 * data_start */
2876 		i = 0;
2877 		if (!(sc->bce_flash_info->flags & BCE_NV_BUFFERED)) {
2878 			for (addr = page_start; addr < data_start;
2879 				addr += 4, i += 4) {
2880 
2881 				rc = bce_nvram_write_dword(sc, addr,
2882 					&flash_buffer[i], cmd_flags);
2883 
2884 				if (rc != 0)
2885 					goto bce_nvram_write_locked_exit;
2886 
2887 				cmd_flags = 0;
2888 			}
2889 		}
2890 
2891 		/* Loop to write the new data from data_start to data_end */
2892 		for (addr = data_start; addr < data_end; addr += 4, i++) {
2893 			if ((addr == page_end - 4) ||
2894 				((sc->bce_flash_info->flags & BCE_NV_BUFFERED) &&
2895 				(addr == data_end - 4))) {
2896 
2897 				cmd_flags |= BCE_NVM_COMMAND_LAST;
2898 			}
2899 			rc = bce_nvram_write_dword(sc, addr, buf,
2900 				cmd_flags);
2901 
2902 			if (rc != 0)
2903 				goto bce_nvram_write_locked_exit;
2904 
2905 			cmd_flags = 0;
2906 			buf += 4;
2907 		}
2908 
2909 		/* Loop to write back the buffer data from data_end
2910 		 * to page_end */
2911 		if (!(sc->bce_flash_info->flags & BCE_NV_BUFFERED)) {
2912 			for (addr = data_end; addr < page_end;
2913 				addr += 4, i += 4) {
2914 
2915 				if (addr == page_end-4) {
2916 					cmd_flags = BCE_NVM_COMMAND_LAST;
2917                 		}
2918 				rc = bce_nvram_write_dword(sc, addr,
2919 					&flash_buffer[i], cmd_flags);
2920 
2921 				if (rc != 0)
2922 					goto bce_nvram_write_locked_exit;
2923 
2924 				cmd_flags = 0;
2925 			}
2926 		}
2927 
2928 		/* Disable writes to flash interface (lock write-protect) */
2929 		bce_disable_nvram_write(sc);
2930 
2931 		/* Disable access to flash interface */
2932 		bce_disable_nvram_access(sc);
2933 		bce_release_nvram_lock(sc);
2934 
2935 		/* Increment written */
2936 		written += data_end - data_start;
2937 	}
2938 
2939 	goto bce_nvram_write_exit;
2940 
2941 bce_nvram_write_locked_exit:
2942 	bce_disable_nvram_write(sc);
2943 	bce_disable_nvram_access(sc);
2944 	bce_release_nvram_lock(sc);
2945 
2946 bce_nvram_write_exit:
2947 	if (align_start || align_end)
2948 		free(buf, M_DEVBUF);
2949 
2950 	DBEXIT(BCE_VERBOSE_NVRAM);
2951 	return (rc);
2952 }
2953 #endif /* BCE_NVRAM_WRITE_SUPPORT */
2954 
2955 
2956 /****************************************************************************/
2957 /* Verifies that NVRAM is accessible and contains valid data.               */
2958 /*                                                                          */
2959 /* Reads the configuration data from NVRAM and verifies that the CRC is     */
2960 /* correct.                                                                 */
2961 /*                                                                          */
2962 /* Returns:                                                                 */
2963 /*   0 on success, positive value on failure.                               */
2964 /****************************************************************************/
2965 static int
2966 bce_nvram_test(struct bce_softc *sc)
2967 {
2968 	u32 buf[BCE_NVRAM_SIZE / 4];
2969 	u8 *data = (u8 *) buf;
2970 	int rc = 0;
2971 	u32 magic, csum;
2972 
2973 	DBENTER(BCE_VERBOSE_NVRAM | BCE_VERBOSE_LOAD | BCE_VERBOSE_RESET);
2974 
2975 	/*
2976 	 * Check that the device NVRAM is valid by reading
2977 	 * the magic value at offset 0.
2978 	 */
2979 	if ((rc = bce_nvram_read(sc, 0, data, 4)) != 0) {
2980 		BCE_PRINTF("%s(%d): Unable to read NVRAM!\n",
2981 		    __FILE__, __LINE__);
2982 		goto bce_nvram_test_exit;
2983 	}
2984 
2985 	/*
2986 	 * Verify that offset 0 of the NVRAM contains
2987 	 * a valid magic number.
2988 	 */
2989 	magic = bce_be32toh(buf[0]);
2990 	if (magic != BCE_NVRAM_MAGIC) {
2991 		rc = ENODEV;
2992 		BCE_PRINTF("%s(%d): Invalid NVRAM magic value! "
2993 		    "Expected: 0x%08X, Found: 0x%08X\n",
2994 		    __FILE__, __LINE__, BCE_NVRAM_MAGIC, magic);
2995 		goto bce_nvram_test_exit;
2996 	}
2997 
2998 	/*
2999 	 * Verify that the device NVRAM includes valid
3000 	 * configuration data.
3001 	 */
3002 	if ((rc = bce_nvram_read(sc, 0x100, data, BCE_NVRAM_SIZE)) != 0) {
3003 		BCE_PRINTF("%s(%d): Unable to read manufacturing "
3004 		    "Information from  NVRAM!\n", __FILE__, __LINE__);
3005 		goto bce_nvram_test_exit;
3006 	}
3007 
3008 	csum = ether_crc32_le(data, 0x100);
3009 	if (csum != BCE_CRC32_RESIDUAL) {
3010 		rc = ENODEV;
3011 		BCE_PRINTF("%s(%d): Invalid manufacturing information "
3012 		    "NVRAM CRC!	Expected: 0x%08X, Found: 0x%08X\n",
3013 		    __FILE__, __LINE__, BCE_CRC32_RESIDUAL, csum);
3014 		goto bce_nvram_test_exit;
3015 	}
3016 
3017 	csum = ether_crc32_le(data + 0x100, 0x100);
3018 	if (csum != BCE_CRC32_RESIDUAL) {
3019 		rc = ENODEV;
3020 		BCE_PRINTF("%s(%d): Invalid feature configuration "
3021 		    "information NVRAM CRC! Expected: 0x%08X, "
3022 		    "Found: 08%08X\n", __FILE__, __LINE__,
3023 		    BCE_CRC32_RESIDUAL, csum);
3024 	}
3025 
3026 bce_nvram_test_exit:
3027 	DBEXIT(BCE_VERBOSE_NVRAM | BCE_VERBOSE_LOAD | BCE_VERBOSE_RESET);
3028 	return rc;
3029 }
3030 
3031 
3032 /****************************************************************************/
3033 /* Calculates the size of the buffers to allocate based on the MTU.         */
3034 /*                                                                          */
3035 /* Returns:                                                                 */
3036 /*   Nothing.                                                               */
3037 /****************************************************************************/
3038 static void
3039 bce_get_rx_buffer_sizes(struct bce_softc *sc, int mtu)
3040 {
3041 	DBENTER(BCE_VERBOSE_LOAD);
3042 
3043 	/* Use a single allocation type when header splitting enabled. */
3044 	if (bce_hdr_split == TRUE) {
3045 		sc->rx_bd_mbuf_alloc_size = MHLEN;
3046 		/* Make sure offset is 16 byte aligned for hardware. */
3047 		sc->rx_bd_mbuf_align_pad =
3048 			roundup2((MSIZE - MHLEN), 16) - (MSIZE - MHLEN);
3049 		sc->rx_bd_mbuf_data_len = sc->rx_bd_mbuf_alloc_size -
3050 			sc->rx_bd_mbuf_align_pad;
3051 	} else {
3052 		if ((mtu + ETHER_HDR_LEN + ETHER_VLAN_ENCAP_LEN +
3053 		    ETHER_CRC_LEN) > MCLBYTES) {
3054 			/* Setup for jumbo RX buffer allocations. */
3055 			sc->rx_bd_mbuf_alloc_size = MJUM9BYTES;
3056 			sc->rx_bd_mbuf_align_pad  =
3057 				roundup2(MJUM9BYTES, 16) - MJUM9BYTES;
3058 			sc->rx_bd_mbuf_data_len =
3059 			    sc->rx_bd_mbuf_alloc_size -
3060 			    sc->rx_bd_mbuf_align_pad;
3061 		} else {
3062 			/* Setup for standard RX buffer allocations. */
3063 			sc->rx_bd_mbuf_alloc_size = MCLBYTES;
3064 			sc->rx_bd_mbuf_align_pad  =
3065 			    roundup2(MCLBYTES, 16) - MCLBYTES;
3066 			sc->rx_bd_mbuf_data_len =
3067 			    sc->rx_bd_mbuf_alloc_size -
3068 			    sc->rx_bd_mbuf_align_pad;
3069 		}
3070 	}
3071 
3072 //	DBPRINT(sc, BCE_INFO_LOAD,
3073 	DBPRINT(sc, BCE_WARN,
3074 	   "%s(): rx_bd_mbuf_alloc_size = %d, rx_bd_mbuf_data_len = %d, "
3075 	   "rx_bd_mbuf_align_pad = %d\n", __FUNCTION__,
3076 	   sc->rx_bd_mbuf_alloc_size, sc->rx_bd_mbuf_data_len,
3077 	   sc->rx_bd_mbuf_align_pad);
3078 
3079 	DBEXIT(BCE_VERBOSE_LOAD);
3080 }
3081 
3082 /****************************************************************************/
3083 /* Identifies the current media type of the controller and sets the PHY     */
3084 /* address.                                                                 */
3085 /*                                                                          */
3086 /* Returns:                                                                 */
3087 /*   Nothing.                                                               */
3088 /****************************************************************************/
3089 static void
3090 bce_get_media(struct bce_softc *sc)
3091 {
3092 	u32 val;
3093 
3094 	DBENTER(BCE_VERBOSE_PHY);
3095 
3096 	/* Assume PHY address for copper controllers. */
3097 	sc->bce_phy_addr = 1;
3098 
3099 	if (BCE_CHIP_NUM(sc) == BCE_CHIP_NUM_5709) {
3100  		u32 val = REG_RD(sc, BCE_MISC_DUAL_MEDIA_CTRL);
3101 		u32 bond_id = val & BCE_MISC_DUAL_MEDIA_CTRL_BOND_ID;
3102 		u32 strap;
3103 
3104 		/*
3105 		 * The BCM5709S is software configurable
3106 		 * for Copper or SerDes operation.
3107 		 */
3108 		if (bond_id == BCE_MISC_DUAL_MEDIA_CTRL_BOND_ID_C) {
3109 			DBPRINT(sc, BCE_INFO_LOAD, "5709 bonded "
3110 			    "for copper.\n");
3111 			goto bce_get_media_exit;
3112 		} else if (bond_id == BCE_MISC_DUAL_MEDIA_CTRL_BOND_ID_S) {
3113 			DBPRINT(sc, BCE_INFO_LOAD, "5709 bonded "
3114 			    "for dual media.\n");
3115 			sc->bce_phy_flags |= BCE_PHY_SERDES_FLAG;
3116 			goto bce_get_media_exit;
3117 		}
3118 
3119 		if (val & BCE_MISC_DUAL_MEDIA_CTRL_STRAP_OVERRIDE)
3120 			strap = (val &
3121 			    BCE_MISC_DUAL_MEDIA_CTRL_PHY_CTRL) >> 21;
3122 		else
3123 			strap = (val &
3124 			    BCE_MISC_DUAL_MEDIA_CTRL_PHY_CTRL_STRAP) >> 8;
3125 
3126 		if (pci_get_function(sc->bce_dev) == 0) {
3127 			switch (strap) {
3128 			case 0x4:
3129 			case 0x5:
3130 			case 0x6:
3131 				DBPRINT(sc, BCE_INFO_LOAD,
3132 				    "BCM5709 s/w configured for SerDes.\n");
3133 				sc->bce_phy_flags |= BCE_PHY_SERDES_FLAG;
3134 				break;
3135 			default:
3136 				DBPRINT(sc, BCE_INFO_LOAD,
3137 				    "BCM5709 s/w configured for Copper.\n");
3138 				break;
3139 			}
3140 		} else {
3141 			switch (strap) {
3142 			case 0x1:
3143 			case 0x2:
3144 			case 0x4:
3145 				DBPRINT(sc, BCE_INFO_LOAD,
3146 				    "BCM5709 s/w configured for SerDes.\n");
3147 				sc->bce_phy_flags |= BCE_PHY_SERDES_FLAG;
3148 				break;
3149 			default:
3150 				DBPRINT(sc, BCE_INFO_LOAD,
3151 				    "BCM5709 s/w configured for Copper.\n");
3152 				break;
3153 			}
3154 		}
3155 
3156 	} else if (BCE_CHIP_BOND_ID(sc) & BCE_CHIP_BOND_ID_SERDES_BIT)
3157 		sc->bce_phy_flags |= BCE_PHY_SERDES_FLAG;
3158 
3159 	if (sc->bce_phy_flags & BCE_PHY_SERDES_FLAG) {
3160 
3161 		sc->bce_flags |= BCE_NO_WOL_FLAG;
3162 
3163 		if (BCE_CHIP_NUM(sc) == BCE_CHIP_NUM_5709)
3164 			sc->bce_phy_flags |= BCE_PHY_IEEE_CLAUSE_45_FLAG;
3165 
3166 		if (BCE_CHIP_NUM(sc) != BCE_CHIP_NUM_5706) {
3167 			/* 5708S/09S/16S use a separate PHY for SerDes. */
3168 			sc->bce_phy_addr = 2;
3169 
3170 			val = bce_shmem_rd(sc, BCE_SHARED_HW_CFG_CONFIG);
3171 			if (val & BCE_SHARED_HW_CFG_PHY_2_5G) {
3172 				sc->bce_phy_flags |=
3173 				    BCE_PHY_2_5G_CAPABLE_FLAG;
3174 				DBPRINT(sc, BCE_INFO_LOAD, "Found 2.5Gb "
3175 				    "capable adapter\n");
3176 			}
3177 		}
3178 	} else if ((BCE_CHIP_NUM(sc) == BCE_CHIP_NUM_5706) ||
3179 	    (BCE_CHIP_NUM(sc) == BCE_CHIP_NUM_5708))
3180 		sc->bce_phy_flags |= BCE_PHY_CRC_FIX_FLAG;
3181 
3182 bce_get_media_exit:
3183 	DBPRINT(sc, (BCE_INFO_LOAD | BCE_INFO_PHY),
3184 		"Using PHY address %d.\n", sc->bce_phy_addr);
3185 
3186 	DBEXIT(BCE_VERBOSE_PHY);
3187 }
3188 
3189 
3190 /****************************************************************************/
3191 /* Performs PHY initialization required before MII drivers access the       */
3192 /* device.                                                                  */
3193 /*                                                                          */
3194 /* Returns:                                                                 */
3195 /*   Nothing.                                                               */
3196 /****************************************************************************/
3197 static void
3198 bce_init_media(struct bce_softc *sc)
3199 {
3200 	if ((sc->bce_phy_flags & (BCE_PHY_IEEE_CLAUSE_45_FLAG |
3201 	    BCE_PHY_REMOTE_CAP_FLAG)) == BCE_PHY_IEEE_CLAUSE_45_FLAG) {
3202 		/*
3203 		 * Configure 5709S/5716S PHYs to use traditional IEEE
3204 		 * Clause 22 method. Otherwise we have no way to attach
3205 		 * the PHY in mii(4) layer. PHY specific configuration
3206 		 * is done in mii layer.
3207 		 */
3208 
3209 		/* Select auto-negotiation MMD of the PHY. */
3210 		bce_miibus_write_reg(sc->bce_dev, sc->bce_phy_addr,
3211 		    BRGPHY_BLOCK_ADDR, BRGPHY_BLOCK_ADDR_ADDR_EXT);
3212 		bce_miibus_write_reg(sc->bce_dev, sc->bce_phy_addr,
3213 		    BRGPHY_ADDR_EXT, BRGPHY_ADDR_EXT_AN_MMD);
3214 
3215 		/* Set IEEE0 block of AN MMD (assumed in brgphy(4) code). */
3216 		bce_miibus_write_reg(sc->bce_dev, sc->bce_phy_addr,
3217 		    BRGPHY_BLOCK_ADDR, BRGPHY_BLOCK_ADDR_COMBO_IEEE0);
3218 	}
3219 }
3220 
3221 
3222 /****************************************************************************/
3223 /* Free any DMA memory owned by the driver.                                 */
3224 /*                                                                          */
3225 /* Scans through each data structre that requires DMA memory and frees      */
3226 /* the memory if allocated.                                                 */
3227 /*                                                                          */
3228 /* Returns:                                                                 */
3229 /*   Nothing.                                                               */
3230 /****************************************************************************/
3231 static void
3232 bce_dma_free(struct bce_softc *sc)
3233 {
3234 	int i;
3235 
3236 	DBENTER(BCE_VERBOSE_RESET | BCE_VERBOSE_UNLOAD | BCE_VERBOSE_CTX);
3237 
3238 	/* Free, unmap, and destroy the status block. */
3239 	if (sc->status_block_paddr != 0) {
3240 		bus_dmamap_unload(
3241 		    sc->status_tag,
3242 		    sc->status_map);
3243 		sc->status_block_paddr = 0;
3244 	}
3245 
3246 	if (sc->status_block != NULL) {
3247 		bus_dmamem_free(
3248 		   sc->status_tag,
3249 		    sc->status_block,
3250 		    sc->status_map);
3251 		sc->status_block = NULL;
3252 	}
3253 
3254 	if (sc->status_tag != NULL) {
3255 		bus_dma_tag_destroy(sc->status_tag);
3256 		sc->status_tag = NULL;
3257 	}
3258 
3259 
3260 	/* Free, unmap, and destroy the statistics block. */
3261 	if (sc->stats_block_paddr != 0) {
3262 		bus_dmamap_unload(
3263 		    sc->stats_tag,
3264 		    sc->stats_map);
3265 		sc->stats_block_paddr = 0;
3266 	}
3267 
3268 	if (sc->stats_block != NULL) {
3269 		bus_dmamem_free(
3270 		    sc->stats_tag,
3271 		    sc->stats_block,
3272 		    sc->stats_map);
3273 		sc->stats_block = NULL;
3274 	}
3275 
3276 	if (sc->stats_tag != NULL) {
3277 		bus_dma_tag_destroy(sc->stats_tag);
3278 		sc->stats_tag = NULL;
3279 	}
3280 
3281 
3282 	/* Free, unmap and destroy all context memory pages. */
3283 	if (BCE_CHIP_NUM(sc) == BCE_CHIP_NUM_5709) {
3284 		for (i = 0; i < sc->ctx_pages; i++ ) {
3285 			if (sc->ctx_paddr[i] != 0) {
3286 				bus_dmamap_unload(
3287 				    sc->ctx_tag,
3288 				    sc->ctx_map[i]);
3289 				sc->ctx_paddr[i] = 0;
3290 			}
3291 
3292 			if (sc->ctx_block[i] != NULL) {
3293 				bus_dmamem_free(
3294 				    sc->ctx_tag,
3295 				    sc->ctx_block[i],
3296 				    sc->ctx_map[i]);
3297 				sc->ctx_block[i] = NULL;
3298 			}
3299 		}
3300 
3301 		/* Destroy the context memory tag. */
3302 		if (sc->ctx_tag != NULL) {
3303 			bus_dma_tag_destroy(sc->ctx_tag);
3304 			sc->ctx_tag = NULL;
3305 		}
3306 	}
3307 
3308 
3309 	/* Free, unmap and destroy all TX buffer descriptor chain pages. */
3310 	for (i = 0; i < sc->tx_pages; i++ ) {
3311 		if (sc->tx_bd_chain_paddr[i] != 0) {
3312 			bus_dmamap_unload(
3313 			    sc->tx_bd_chain_tag,
3314 			    sc->tx_bd_chain_map[i]);
3315 			sc->tx_bd_chain_paddr[i] = 0;
3316 		}
3317 
3318 		if (sc->tx_bd_chain[i] != NULL) {
3319 			bus_dmamem_free(
3320 			    sc->tx_bd_chain_tag,
3321 			    sc->tx_bd_chain[i],
3322 			    sc->tx_bd_chain_map[i]);
3323 			sc->tx_bd_chain[i] = NULL;
3324 		}
3325 	}
3326 
3327 	/* Destroy the TX buffer descriptor tag. */
3328 	if (sc->tx_bd_chain_tag != NULL) {
3329 		bus_dma_tag_destroy(sc->tx_bd_chain_tag);
3330 		sc->tx_bd_chain_tag = NULL;
3331 	}
3332 
3333 
3334 	/* Free, unmap and destroy all RX buffer descriptor chain pages. */
3335 	for (i = 0; i < sc->rx_pages; i++ ) {
3336 		if (sc->rx_bd_chain_paddr[i] != 0) {
3337 			bus_dmamap_unload(
3338 			    sc->rx_bd_chain_tag,
3339 			    sc->rx_bd_chain_map[i]);
3340 			sc->rx_bd_chain_paddr[i] = 0;
3341 		}
3342 
3343 		if (sc->rx_bd_chain[i] != NULL) {
3344 			bus_dmamem_free(
3345 			    sc->rx_bd_chain_tag,
3346 			    sc->rx_bd_chain[i],
3347 			    sc->rx_bd_chain_map[i]);
3348 			sc->rx_bd_chain[i] = NULL;
3349 		}
3350 	}
3351 
3352 	/* Destroy the RX buffer descriptor tag. */
3353 	if (sc->rx_bd_chain_tag != NULL) {
3354 		bus_dma_tag_destroy(sc->rx_bd_chain_tag);
3355 		sc->rx_bd_chain_tag = NULL;
3356 	}
3357 
3358 
3359 	/* Free, unmap and destroy all page buffer descriptor chain pages. */
3360 	if (bce_hdr_split == TRUE) {
3361 		for (i = 0; i < sc->pg_pages; i++ ) {
3362 			if (sc->pg_bd_chain_paddr[i] != 0) {
3363 				bus_dmamap_unload(
3364 				    sc->pg_bd_chain_tag,
3365 				    sc->pg_bd_chain_map[i]);
3366 				sc->pg_bd_chain_paddr[i] = 0;
3367 			}
3368 
3369 			if (sc->pg_bd_chain[i] != NULL) {
3370 				bus_dmamem_free(
3371 				    sc->pg_bd_chain_tag,
3372 				    sc->pg_bd_chain[i],
3373 				    sc->pg_bd_chain_map[i]);
3374 				sc->pg_bd_chain[i] = NULL;
3375 			}
3376 		}
3377 
3378 		/* Destroy the page buffer descriptor tag. */
3379 		if (sc->pg_bd_chain_tag != NULL) {
3380 			bus_dma_tag_destroy(sc->pg_bd_chain_tag);
3381 			sc->pg_bd_chain_tag = NULL;
3382 		}
3383 	}
3384 
3385 
3386 	/* Unload and destroy the TX mbuf maps. */
3387 	for (i = 0; i < MAX_TX_BD_AVAIL; i++) {
3388 		if (sc->tx_mbuf_map[i] != NULL) {
3389 			bus_dmamap_unload(sc->tx_mbuf_tag,
3390 			    sc->tx_mbuf_map[i]);
3391 			bus_dmamap_destroy(sc->tx_mbuf_tag,
3392 	 		    sc->tx_mbuf_map[i]);
3393 			sc->tx_mbuf_map[i] = NULL;
3394 		}
3395 	}
3396 
3397 	/* Destroy the TX mbuf tag. */
3398 	if (sc->tx_mbuf_tag != NULL) {
3399 		bus_dma_tag_destroy(sc->tx_mbuf_tag);
3400 		sc->tx_mbuf_tag = NULL;
3401 	}
3402 
3403 	/* Unload and destroy the RX mbuf maps. */
3404 	for (i = 0; i < MAX_RX_BD_AVAIL; i++) {
3405 		if (sc->rx_mbuf_map[i] != NULL) {
3406 			bus_dmamap_unload(sc->rx_mbuf_tag,
3407 			    sc->rx_mbuf_map[i]);
3408 			bus_dmamap_destroy(sc->rx_mbuf_tag,
3409 	 		    sc->rx_mbuf_map[i]);
3410 			sc->rx_mbuf_map[i] = NULL;
3411 		}
3412 	}
3413 
3414 	/* Destroy the RX mbuf tag. */
3415 	if (sc->rx_mbuf_tag != NULL) {
3416 		bus_dma_tag_destroy(sc->rx_mbuf_tag);
3417 		sc->rx_mbuf_tag = NULL;
3418 	}
3419 
3420 	/* Unload and destroy the page mbuf maps. */
3421 	if (bce_hdr_split == TRUE) {
3422 		for (i = 0; i < MAX_PG_BD_AVAIL; i++) {
3423 			if (sc->pg_mbuf_map[i] != NULL) {
3424 				bus_dmamap_unload(sc->pg_mbuf_tag,
3425 				    sc->pg_mbuf_map[i]);
3426 				bus_dmamap_destroy(sc->pg_mbuf_tag,
3427 				    sc->pg_mbuf_map[i]);
3428 				sc->pg_mbuf_map[i] = NULL;
3429 			}
3430 		}
3431 
3432 		/* Destroy the page mbuf tag. */
3433 		if (sc->pg_mbuf_tag != NULL) {
3434 			bus_dma_tag_destroy(sc->pg_mbuf_tag);
3435 			sc->pg_mbuf_tag = NULL;
3436 		}
3437 	}
3438 
3439 	/* Destroy the parent tag */
3440 	if (sc->parent_tag != NULL) {
3441 		bus_dma_tag_destroy(sc->parent_tag);
3442 		sc->parent_tag = NULL;
3443 	}
3444 
3445 	DBEXIT(BCE_VERBOSE_RESET | BCE_VERBOSE_UNLOAD | BCE_VERBOSE_CTX);
3446 }
3447 
3448 
3449 /****************************************************************************/
3450 /* Get DMA memory from the OS.                                              */
3451 /*                                                                          */
3452 /* Validates that the OS has provided DMA buffers in response to a          */
3453 /* bus_dmamap_load() call and saves the physical address of those buffers.  */
3454 /* When the callback is used the OS will return 0 for the mapping function  */
3455 /* (bus_dmamap_load()) so we use the value of map_arg->maxsegs to pass any  */
3456 /* failures back to the caller.                                             */
3457 /*                                                                          */
3458 /* Returns:                                                                 */
3459 /*   Nothing.                                                               */
3460 /****************************************************************************/
3461 static void
3462 bce_dma_map_addr(void *arg, bus_dma_segment_t *segs, int nseg, int error)
3463 {
3464 	bus_addr_t *busaddr = arg;
3465 
3466 	KASSERT(nseg == 1, ("%s(): Too many segments returned (%d)!",
3467 	    __FUNCTION__, nseg));
3468 	/* Simulate a mapping failure. */
3469 	DBRUNIF(DB_RANDOMTRUE(dma_map_addr_failed_sim_control),
3470 	    error = ENOMEM);
3471 
3472 	/* ToDo: How to increment debug sim_count variable here? */
3473 
3474 	/* Check for an error and signal the caller that an error occurred. */
3475 	if (error) {
3476 		*busaddr = 0;
3477 	} else {
3478 		*busaddr = segs->ds_addr;
3479 	}
3480 }
3481 
3482 
3483 /****************************************************************************/
3484 /* Allocate any DMA memory needed by the driver.                            */
3485 /*                                                                          */
3486 /* Allocates DMA memory needed for the various global structures needed by  */
3487 /* hardware.                                                                */
3488 /*                                                                          */
3489 /* Memory alignment requirements:                                           */
3490 /* +-----------------+----------+----------+----------+----------+          */
3491 /* |                 |   5706   |   5708   |   5709   |   5716   |          */
3492 /* +-----------------+----------+----------+----------+----------+          */
3493 /* |Status Block     | 8 bytes  | 8 bytes  | 16 bytes | 16 bytes |          */
3494 /* |Statistics Block | 8 bytes  | 8 bytes  | 16 bytes | 16 bytes |          */
3495 /* |RX Buffers       | 16 bytes | 16 bytes | 16 bytes | 16 bytes |          */
3496 /* |PG Buffers       |   none   |   none   |   none   |   none   |          */
3497 /* |TX Buffers       |   none   |   none   |   none   |   none   |          */
3498 /* |Chain Pages(1)   |   4KiB   |   4KiB   |   4KiB   |   4KiB   |          */
3499 /* |Context Memory   |          |          |          |          |          */
3500 /* +-----------------+----------+----------+----------+----------+          */
3501 /*                                                                          */
3502 /* (1) Must align with CPU page size (BCM_PAGE_SZIE).                       */
3503 /*                                                                          */
3504 /* Returns:                                                                 */
3505 /*   0 for success, positive value for failure.                             */
3506 /****************************************************************************/
3507 static int
3508 bce_dma_alloc(device_t dev)
3509 {
3510 	struct bce_softc *sc;
3511 	int i, error, rc = 0;
3512 	bus_size_t max_size, max_seg_size;
3513 	int max_segments;
3514 
3515 	sc = device_get_softc(dev);
3516 
3517 	DBENTER(BCE_VERBOSE_RESET | BCE_VERBOSE_CTX);
3518 
3519 	/*
3520 	 * Allocate the parent bus DMA tag appropriate for PCI.
3521 	 */
3522 	if (bus_dma_tag_create(bus_get_dma_tag(dev), 1, BCE_DMA_BOUNDARY,
3523 	    sc->max_bus_addr, BUS_SPACE_MAXADDR, NULL, NULL,
3524 	    BUS_SPACE_MAXSIZE_32BIT, 0, BUS_SPACE_MAXSIZE_32BIT, 0, NULL, NULL,
3525 	    &sc->parent_tag)) {
3526 		BCE_PRINTF("%s(%d): Could not allocate parent DMA tag!\n",
3527 		    __FILE__, __LINE__);
3528 		rc = ENOMEM;
3529 		goto bce_dma_alloc_exit;
3530 	}
3531 
3532 	/*
3533 	 * Create a DMA tag for the status block, allocate and clear the
3534 	 * memory, map the memory into DMA space, and fetch the physical
3535 	 * address of the block.
3536 	 */
3537 	if (bus_dma_tag_create(sc->parent_tag, BCE_DMA_ALIGN,
3538 	    BCE_DMA_BOUNDARY, sc->max_bus_addr,	BUS_SPACE_MAXADDR,
3539 	    NULL, NULL,	BCE_STATUS_BLK_SZ, 1, BCE_STATUS_BLK_SZ,
3540 	    0, NULL, NULL, &sc->status_tag)) {
3541 		BCE_PRINTF("%s(%d): Could not allocate status block "
3542 		    "DMA tag!\n", __FILE__, __LINE__);
3543 		rc = ENOMEM;
3544 		goto bce_dma_alloc_exit;
3545 	}
3546 
3547 	if(bus_dmamem_alloc(sc->status_tag, (void **)&sc->status_block,
3548 	    BUS_DMA_NOWAIT | BUS_DMA_ZERO | BUS_DMA_COHERENT,
3549 	    &sc->status_map)) {
3550 		BCE_PRINTF("%s(%d): Could not allocate status block "
3551 		    "DMA memory!\n", __FILE__, __LINE__);
3552 		rc = ENOMEM;
3553 		goto bce_dma_alloc_exit;
3554 	}
3555 
3556 	error = bus_dmamap_load(sc->status_tag,	sc->status_map,
3557 	    sc->status_block, BCE_STATUS_BLK_SZ, bce_dma_map_addr,
3558 	    &sc->status_block_paddr, BUS_DMA_NOWAIT);
3559 
3560 	if (error || sc->status_block_paddr == 0) {
3561 		BCE_PRINTF("%s(%d): Could not map status block "
3562 		    "DMA memory!\n", __FILE__, __LINE__);
3563 		rc = ENOMEM;
3564 		goto bce_dma_alloc_exit;
3565 	}
3566 
3567 	DBPRINT(sc, BCE_INFO_LOAD, "%s(): status_block_paddr = 0x%jX\n",
3568 	    __FUNCTION__, (uintmax_t) sc->status_block_paddr);
3569 
3570 	/*
3571 	 * Create a DMA tag for the statistics block, allocate and clear the
3572 	 * memory, map the memory into DMA space, and fetch the physical
3573 	 * address of the block.
3574 	 */
3575 	if (bus_dma_tag_create(sc->parent_tag, BCE_DMA_ALIGN,
3576 	    BCE_DMA_BOUNDARY, sc->max_bus_addr,	BUS_SPACE_MAXADDR,
3577 	    NULL, NULL,	BCE_STATS_BLK_SZ, 1, BCE_STATS_BLK_SZ,
3578 	    0, NULL, NULL, &sc->stats_tag)) {
3579 		BCE_PRINTF("%s(%d): Could not allocate statistics block "
3580 		    "DMA tag!\n", __FILE__, __LINE__);
3581 		rc = ENOMEM;
3582 		goto bce_dma_alloc_exit;
3583 	}
3584 
3585 	if (bus_dmamem_alloc(sc->stats_tag, (void **)&sc->stats_block,
3586 	    BUS_DMA_NOWAIT | BUS_DMA_ZERO | BUS_DMA_COHERENT, &sc->stats_map)) {
3587 		BCE_PRINTF("%s(%d): Could not allocate statistics block "
3588 		    "DMA memory!\n", __FILE__, __LINE__);
3589 		rc = ENOMEM;
3590 		goto bce_dma_alloc_exit;
3591 	}
3592 
3593 	error = bus_dmamap_load(sc->stats_tag, sc->stats_map,
3594 	    sc->stats_block, BCE_STATS_BLK_SZ, bce_dma_map_addr,
3595 	    &sc->stats_block_paddr, BUS_DMA_NOWAIT);
3596 
3597 	if (error || sc->stats_block_paddr == 0) {
3598 		BCE_PRINTF("%s(%d): Could not map statistics block "
3599 		    "DMA memory!\n", __FILE__, __LINE__);
3600 		rc = ENOMEM;
3601 		goto bce_dma_alloc_exit;
3602 	}
3603 
3604 	DBPRINT(sc, BCE_INFO_LOAD, "%s(): stats_block_paddr = 0x%jX\n",
3605 	    __FUNCTION__, (uintmax_t) sc->stats_block_paddr);
3606 
3607 	/* BCM5709 uses host memory as cache for context memory. */
3608 	if (BCE_CHIP_NUM(sc) == BCE_CHIP_NUM_5709) {
3609 		sc->ctx_pages = 0x2000 / BCM_PAGE_SIZE;
3610 		if (sc->ctx_pages == 0)
3611 			sc->ctx_pages = 1;
3612 
3613 		DBRUNIF((sc->ctx_pages > 512),
3614 		    BCE_PRINTF("%s(%d): Too many CTX pages! %d > 512\n",
3615 		    __FILE__, __LINE__, sc->ctx_pages));
3616 
3617 		/*
3618 		 * Create a DMA tag for the context pages,
3619 		 * allocate and clear the memory, map the
3620 		 * memory into DMA space, and fetch the
3621 		 * physical address of the block.
3622 		 */
3623 		if(bus_dma_tag_create(sc->parent_tag, BCM_PAGE_SIZE,
3624 		    BCE_DMA_BOUNDARY, sc->max_bus_addr,	BUS_SPACE_MAXADDR,
3625 		    NULL, NULL,	BCM_PAGE_SIZE, 1, BCM_PAGE_SIZE,
3626 		    0, NULL, NULL, &sc->ctx_tag)) {
3627 			BCE_PRINTF("%s(%d): Could not allocate CTX "
3628 			    "DMA tag!\n", __FILE__, __LINE__);
3629 			rc = ENOMEM;
3630 			goto bce_dma_alloc_exit;
3631 		}
3632 
3633 		for (i = 0; i < sc->ctx_pages; i++) {
3634 
3635 			if(bus_dmamem_alloc(sc->ctx_tag,
3636 			    (void **)&sc->ctx_block[i],
3637 			    BUS_DMA_NOWAIT | BUS_DMA_ZERO | BUS_DMA_COHERENT,
3638 			    &sc->ctx_map[i])) {
3639 				BCE_PRINTF("%s(%d): Could not allocate CTX "
3640 				    "DMA memory!\n", __FILE__, __LINE__);
3641 				rc = ENOMEM;
3642 				goto bce_dma_alloc_exit;
3643 			}
3644 
3645 			error = bus_dmamap_load(sc->ctx_tag, sc->ctx_map[i],
3646 			    sc->ctx_block[i], BCM_PAGE_SIZE, bce_dma_map_addr,
3647 			    &sc->ctx_paddr[i], BUS_DMA_NOWAIT);
3648 
3649 			if (error || sc->ctx_paddr[i] == 0) {
3650 				BCE_PRINTF("%s(%d): Could not map CTX "
3651 				    "DMA memory!\n", __FILE__, __LINE__);
3652 				rc = ENOMEM;
3653 				goto bce_dma_alloc_exit;
3654 			}
3655 
3656 			DBPRINT(sc, BCE_INFO_LOAD, "%s(): ctx_paddr[%d] "
3657 			    "= 0x%jX\n", __FUNCTION__, i,
3658 			    (uintmax_t) sc->ctx_paddr[i]);
3659 		}
3660 	}
3661 
3662 	/*
3663 	 * Create a DMA tag for the TX buffer descriptor chain,
3664 	 * allocate and clear the  memory, and fetch the
3665 	 * physical address of the block.
3666 	 */
3667 	if(bus_dma_tag_create(sc->parent_tag, BCM_PAGE_SIZE, BCE_DMA_BOUNDARY,
3668 	    sc->max_bus_addr, BUS_SPACE_MAXADDR, NULL, NULL,
3669 	    BCE_TX_CHAIN_PAGE_SZ, 1, BCE_TX_CHAIN_PAGE_SZ, 0,
3670 	    NULL, NULL,	&sc->tx_bd_chain_tag)) {
3671 		BCE_PRINTF("%s(%d): Could not allocate TX descriptor "
3672 		    "chain DMA tag!\n", __FILE__, __LINE__);
3673 		rc = ENOMEM;
3674 		goto bce_dma_alloc_exit;
3675 	}
3676 
3677 	for (i = 0; i < sc->tx_pages; i++) {
3678 
3679 		if(bus_dmamem_alloc(sc->tx_bd_chain_tag,
3680 		    (void **)&sc->tx_bd_chain[i],
3681 		    BUS_DMA_NOWAIT | BUS_DMA_ZERO | BUS_DMA_COHERENT,
3682 		    &sc->tx_bd_chain_map[i])) {
3683 			BCE_PRINTF("%s(%d): Could not allocate TX descriptor "
3684 			    "chain DMA memory!\n", __FILE__, __LINE__);
3685 			rc = ENOMEM;
3686 			goto bce_dma_alloc_exit;
3687 		}
3688 
3689 		error = bus_dmamap_load(sc->tx_bd_chain_tag,
3690 		    sc->tx_bd_chain_map[i], sc->tx_bd_chain[i],
3691 		    BCE_TX_CHAIN_PAGE_SZ, bce_dma_map_addr,
3692 		    &sc->tx_bd_chain_paddr[i], BUS_DMA_NOWAIT);
3693 
3694 		if (error || sc->tx_bd_chain_paddr[i] == 0) {
3695 			BCE_PRINTF("%s(%d): Could not map TX descriptor "
3696 			    "chain DMA memory!\n", __FILE__, __LINE__);
3697 			rc = ENOMEM;
3698 			goto bce_dma_alloc_exit;
3699 		}
3700 
3701 		DBPRINT(sc, BCE_INFO_LOAD, "%s(): tx_bd_chain_paddr[%d] = "
3702 		    "0x%jX\n", __FUNCTION__, i,
3703 		    (uintmax_t) sc->tx_bd_chain_paddr[i]);
3704 	}
3705 
3706 	/* Check the required size before mapping to conserve resources. */
3707 	if (bce_tso_enable) {
3708 		max_size     = BCE_TSO_MAX_SIZE;
3709 		max_segments = BCE_MAX_SEGMENTS;
3710 		max_seg_size = BCE_TSO_MAX_SEG_SIZE;
3711 	} else {
3712 		max_size     = MCLBYTES * BCE_MAX_SEGMENTS;
3713 		max_segments = BCE_MAX_SEGMENTS;
3714 		max_seg_size = MCLBYTES;
3715 	}
3716 
3717 	/* Create a DMA tag for TX mbufs. */
3718 	if (bus_dma_tag_create(sc->parent_tag, 1, BCE_DMA_BOUNDARY,
3719 	    sc->max_bus_addr, BUS_SPACE_MAXADDR, NULL, NULL, max_size,
3720 	    max_segments, max_seg_size,	0, NULL, NULL, &sc->tx_mbuf_tag)) {
3721 		BCE_PRINTF("%s(%d): Could not allocate TX mbuf DMA tag!\n",
3722 		    __FILE__, __LINE__);
3723 		rc = ENOMEM;
3724 		goto bce_dma_alloc_exit;
3725 	}
3726 
3727 	/* Create DMA maps for the TX mbufs clusters. */
3728 	for (i = 0; i < TOTAL_TX_BD_ALLOC; i++) {
3729 		if (bus_dmamap_create(sc->tx_mbuf_tag, BUS_DMA_NOWAIT,
3730 			&sc->tx_mbuf_map[i])) {
3731 			BCE_PRINTF("%s(%d): Unable to create TX mbuf DMA "
3732 			    "map!\n", __FILE__, __LINE__);
3733 			rc = ENOMEM;
3734 			goto bce_dma_alloc_exit;
3735 		}
3736 	}
3737 
3738 	/*
3739 	 * Create a DMA tag for the RX buffer descriptor chain,
3740 	 * allocate and clear the memory, and fetch the physical
3741 	 * address of the blocks.
3742 	 */
3743 	if (bus_dma_tag_create(sc->parent_tag, BCM_PAGE_SIZE,
3744 			BCE_DMA_BOUNDARY, BUS_SPACE_MAXADDR,
3745 			sc->max_bus_addr, NULL, NULL,
3746 			BCE_RX_CHAIN_PAGE_SZ, 1, BCE_RX_CHAIN_PAGE_SZ,
3747 			0, NULL, NULL, &sc->rx_bd_chain_tag)) {
3748 		BCE_PRINTF("%s(%d): Could not allocate RX descriptor chain "
3749 		    "DMA tag!\n", __FILE__, __LINE__);
3750 		rc = ENOMEM;
3751 		goto bce_dma_alloc_exit;
3752 	}
3753 
3754 	for (i = 0; i < sc->rx_pages; i++) {
3755 
3756 		if (bus_dmamem_alloc(sc->rx_bd_chain_tag,
3757 		    (void **)&sc->rx_bd_chain[i],
3758 		    BUS_DMA_NOWAIT | BUS_DMA_ZERO | BUS_DMA_COHERENT,
3759 		    &sc->rx_bd_chain_map[i])) {
3760 			BCE_PRINTF("%s(%d): Could not allocate RX descriptor "
3761 			    "chain DMA memory!\n", __FILE__, __LINE__);
3762 			rc = ENOMEM;
3763 			goto bce_dma_alloc_exit;
3764 		}
3765 
3766 		error = bus_dmamap_load(sc->rx_bd_chain_tag,
3767 		    sc->rx_bd_chain_map[i], sc->rx_bd_chain[i],
3768 		    BCE_RX_CHAIN_PAGE_SZ, bce_dma_map_addr,
3769 		    &sc->rx_bd_chain_paddr[i], BUS_DMA_NOWAIT);
3770 
3771 		if (error || sc->rx_bd_chain_paddr[i] == 0) {
3772 			BCE_PRINTF("%s(%d): Could not map RX descriptor "
3773 			    "chain DMA memory!\n", __FILE__, __LINE__);
3774 			rc = ENOMEM;
3775 			goto bce_dma_alloc_exit;
3776 		}
3777 
3778 		DBPRINT(sc, BCE_INFO_LOAD, "%s(): rx_bd_chain_paddr[%d] = "
3779 		    "0x%jX\n", __FUNCTION__, i,
3780 		    (uintmax_t) sc->rx_bd_chain_paddr[i]);
3781 	}
3782 
3783 	/*
3784 	 * Create a DMA tag for RX mbufs.
3785 	 */
3786 	if (bce_hdr_split == TRUE)
3787 		max_size = ((sc->rx_bd_mbuf_alloc_size < MCLBYTES) ?
3788 		    MCLBYTES : sc->rx_bd_mbuf_alloc_size);
3789 	else
3790 		max_size = MJUM9BYTES;
3791 
3792 	DBPRINT(sc, BCE_INFO_LOAD, "%s(): Creating rx_mbuf_tag "
3793 	    "(max size = 0x%jX)\n", __FUNCTION__, (uintmax_t)max_size);
3794 
3795 	if (bus_dma_tag_create(sc->parent_tag, BCE_RX_BUF_ALIGN,
3796 	    BCE_DMA_BOUNDARY, sc->max_bus_addr, BUS_SPACE_MAXADDR, NULL, NULL,
3797 	    max_size, 1, max_size, 0, NULL, NULL, &sc->rx_mbuf_tag)) {
3798 		BCE_PRINTF("%s(%d): Could not allocate RX mbuf DMA tag!\n",
3799 		    __FILE__, __LINE__);
3800 		rc = ENOMEM;
3801 		goto bce_dma_alloc_exit;
3802 	}
3803 
3804 	/* Create DMA maps for the RX mbuf clusters. */
3805 	for (i = 0; i < TOTAL_RX_BD_ALLOC; i++) {
3806 		if (bus_dmamap_create(sc->rx_mbuf_tag, BUS_DMA_NOWAIT,
3807 		    &sc->rx_mbuf_map[i])) {
3808 			BCE_PRINTF("%s(%d): Unable to create RX mbuf "
3809 			    "DMA map!\n", __FILE__, __LINE__);
3810 			rc = ENOMEM;
3811 			goto bce_dma_alloc_exit;
3812 		}
3813 	}
3814 
3815 	if (bce_hdr_split == TRUE) {
3816 		/*
3817 		 * Create a DMA tag for the page buffer descriptor chain,
3818 		 * allocate and clear the memory, and fetch the physical
3819 		 * address of the blocks.
3820 		 */
3821 		if (bus_dma_tag_create(sc->parent_tag, BCM_PAGE_SIZE,
3822 			    BCE_DMA_BOUNDARY, BUS_SPACE_MAXADDR, sc->max_bus_addr,
3823 			    NULL, NULL,	BCE_PG_CHAIN_PAGE_SZ, 1, BCE_PG_CHAIN_PAGE_SZ,
3824 			    0, NULL, NULL, &sc->pg_bd_chain_tag)) {
3825 			BCE_PRINTF("%s(%d): Could not allocate page descriptor "
3826 			    "chain DMA tag!\n",	__FILE__, __LINE__);
3827 			rc = ENOMEM;
3828 			goto bce_dma_alloc_exit;
3829 		}
3830 
3831 		for (i = 0; i < sc->pg_pages; i++) {
3832 			if (bus_dmamem_alloc(sc->pg_bd_chain_tag,
3833 			    (void **)&sc->pg_bd_chain[i],
3834 			    BUS_DMA_NOWAIT | BUS_DMA_ZERO | BUS_DMA_COHERENT,
3835 			    &sc->pg_bd_chain_map[i])) {
3836 				BCE_PRINTF("%s(%d): Could not allocate page "
3837 				    "descriptor chain DMA memory!\n",
3838 				    __FILE__, __LINE__);
3839 				rc = ENOMEM;
3840 				goto bce_dma_alloc_exit;
3841 			}
3842 
3843 			error = bus_dmamap_load(sc->pg_bd_chain_tag,
3844 			    sc->pg_bd_chain_map[i], sc->pg_bd_chain[i],
3845 			    BCE_PG_CHAIN_PAGE_SZ, bce_dma_map_addr,
3846 			    &sc->pg_bd_chain_paddr[i], BUS_DMA_NOWAIT);
3847 
3848 			if (error || sc->pg_bd_chain_paddr[i] == 0) {
3849 				BCE_PRINTF("%s(%d): Could not map page descriptor "
3850 					"chain DMA memory!\n", __FILE__, __LINE__);
3851 				rc = ENOMEM;
3852 				goto bce_dma_alloc_exit;
3853 			}
3854 
3855 			DBPRINT(sc, BCE_INFO_LOAD, "%s(): pg_bd_chain_paddr[%d] = "
3856 				"0x%jX\n", __FUNCTION__, i,
3857 				(uintmax_t) sc->pg_bd_chain_paddr[i]);
3858 		}
3859 
3860 		/*
3861 		 * Create a DMA tag for page mbufs.
3862 		 */
3863 		if (bus_dma_tag_create(sc->parent_tag, 1, BCE_DMA_BOUNDARY,
3864 		    sc->max_bus_addr, BUS_SPACE_MAXADDR, NULL, NULL, MCLBYTES,
3865 		    1, MCLBYTES, 0, NULL, NULL, &sc->pg_mbuf_tag)) {
3866 			BCE_PRINTF("%s(%d): Could not allocate page mbuf "
3867 				"DMA tag!\n", __FILE__, __LINE__);
3868 			rc = ENOMEM;
3869 			goto bce_dma_alloc_exit;
3870 		}
3871 
3872 		/* Create DMA maps for the page mbuf clusters. */
3873 		for (i = 0; i < TOTAL_PG_BD_ALLOC; i++) {
3874 			if (bus_dmamap_create(sc->pg_mbuf_tag, BUS_DMA_NOWAIT,
3875 				&sc->pg_mbuf_map[i])) {
3876 				BCE_PRINTF("%s(%d): Unable to create page mbuf "
3877 					"DMA map!\n", __FILE__, __LINE__);
3878 				rc = ENOMEM;
3879 				goto bce_dma_alloc_exit;
3880 			}
3881 		}
3882 	}
3883 
3884 bce_dma_alloc_exit:
3885 	DBEXIT(BCE_VERBOSE_RESET | BCE_VERBOSE_CTX);
3886 	return(rc);
3887 }
3888 
3889 
3890 /****************************************************************************/
3891 /* Release all resources used by the driver.                                */
3892 /*                                                                          */
3893 /* Releases all resources acquired by the driver including interrupts,      */
3894 /* interrupt handler, interfaces, mutexes, and DMA memory.                  */
3895 /*                                                                          */
3896 /* Returns:                                                                 */
3897 /*   Nothing.                                                               */
3898 /****************************************************************************/
3899 static void
3900 bce_release_resources(struct bce_softc *sc)
3901 {
3902 	device_t dev;
3903 
3904 	DBENTER(BCE_VERBOSE_RESET);
3905 
3906 	dev = sc->bce_dev;
3907 
3908 	bce_dma_free(sc);
3909 
3910 	if (sc->bce_intrhand != NULL) {
3911 		DBPRINT(sc, BCE_INFO_RESET, "Removing interrupt handler.\n");
3912 		bus_teardown_intr(dev, sc->bce_res_irq, sc->bce_intrhand);
3913 	}
3914 
3915 	if (sc->bce_res_irq != NULL) {
3916 		DBPRINT(sc, BCE_INFO_RESET, "Releasing IRQ.\n");
3917 		bus_release_resource(dev, SYS_RES_IRQ,
3918 		    rman_get_rid(sc->bce_res_irq), sc->bce_res_irq);
3919 	}
3920 
3921 	if (sc->bce_flags & (BCE_USING_MSI_FLAG | BCE_USING_MSIX_FLAG)) {
3922 		DBPRINT(sc, BCE_INFO_RESET, "Releasing MSI/MSI-X vector.\n");
3923 		pci_release_msi(dev);
3924 	}
3925 
3926 	if (sc->bce_res_mem != NULL) {
3927 		DBPRINT(sc, BCE_INFO_RESET, "Releasing PCI memory.\n");
3928 		    bus_release_resource(dev, SYS_RES_MEMORY, PCIR_BAR(0),
3929 		    sc->bce_res_mem);
3930 	}
3931 
3932 	if (sc->bce_ifp != NULL) {
3933 		DBPRINT(sc, BCE_INFO_RESET, "Releasing IF.\n");
3934 		if_free(sc->bce_ifp);
3935 	}
3936 
3937 	if (mtx_initialized(&sc->bce_mtx))
3938 		BCE_LOCK_DESTROY(sc);
3939 
3940 	DBEXIT(BCE_VERBOSE_RESET);
3941 }
3942 
3943 
3944 /****************************************************************************/
3945 /* Firmware synchronization.                                                */
3946 /*                                                                          */
3947 /* Before performing certain events such as a chip reset, synchronize with  */
3948 /* the firmware first.                                                      */
3949 /*                                                                          */
3950 /* Returns:                                                                 */
3951 /*   0 for success, positive value for failure.                             */
3952 /****************************************************************************/
3953 static int
3954 bce_fw_sync(struct bce_softc *sc, u32 msg_data)
3955 {
3956 	int i, rc = 0;
3957 	u32 val;
3958 
3959 	DBENTER(BCE_VERBOSE_RESET);
3960 
3961 	/* Don't waste any time if we've timed out before. */
3962 	if (sc->bce_fw_timed_out == TRUE) {
3963 		rc = EBUSY;
3964 		goto bce_fw_sync_exit;
3965 	}
3966 
3967 	/* Increment the message sequence number. */
3968 	sc->bce_fw_wr_seq++;
3969 	msg_data |= sc->bce_fw_wr_seq;
3970 
3971  	DBPRINT(sc, BCE_VERBOSE_FIRMWARE, "bce_fw_sync(): msg_data = "
3972 	    "0x%08X\n",	msg_data);
3973 
3974 	/* Send the message to the bootcode driver mailbox. */
3975 	bce_shmem_wr(sc, BCE_DRV_MB, msg_data);
3976 
3977 	/* Wait for the bootcode to acknowledge the message. */
3978 	for (i = 0; i < FW_ACK_TIME_OUT_MS; i++) {
3979 		/* Check for a response in the bootcode firmware mailbox. */
3980 		val = bce_shmem_rd(sc, BCE_FW_MB);
3981 		if ((val & BCE_FW_MSG_ACK) == (msg_data & BCE_DRV_MSG_SEQ))
3982 			break;
3983 		DELAY(1000);
3984 	}
3985 
3986 	/* If we've timed out, tell bootcode that we've stopped waiting. */
3987 	if (((val & BCE_FW_MSG_ACK) != (msg_data & BCE_DRV_MSG_SEQ)) &&
3988 	    ((msg_data & BCE_DRV_MSG_DATA) != BCE_DRV_MSG_DATA_WAIT0)) {
3989 
3990 		BCE_PRINTF("%s(%d): Firmware synchronization timeout! "
3991 		    "msg_data = 0x%08X\n", __FILE__, __LINE__, msg_data);
3992 
3993 		msg_data &= ~BCE_DRV_MSG_CODE;
3994 		msg_data |= BCE_DRV_MSG_CODE_FW_TIMEOUT;
3995 
3996 		bce_shmem_wr(sc, BCE_DRV_MB, msg_data);
3997 
3998 		sc->bce_fw_timed_out = TRUE;
3999 		rc = EBUSY;
4000 	}
4001 
4002 bce_fw_sync_exit:
4003 	DBEXIT(BCE_VERBOSE_RESET);
4004 	return (rc);
4005 }
4006 
4007 
4008 /****************************************************************************/
4009 /* Load Receive Virtual 2 Physical (RV2P) processor firmware.               */
4010 /*                                                                          */
4011 /* Returns:                                                                 */
4012 /*   Nothing.                                                               */
4013 /****************************************************************************/
4014 static void
4015 bce_load_rv2p_fw(struct bce_softc *sc, const u32 *rv2p_code,
4016 	u32 rv2p_code_len, u32 rv2p_proc)
4017 {
4018 	int i;
4019 	u32 val;
4020 
4021 	DBENTER(BCE_VERBOSE_RESET);
4022 
4023 	/* Set the page size used by RV2P. */
4024 	if (rv2p_proc == RV2P_PROC2) {
4025 		BCE_RV2P_PROC2_CHG_MAX_BD_PAGE(USABLE_RX_BD_PER_PAGE);
4026 	}
4027 
4028 	for (i = 0; i < rv2p_code_len; i += 8) {
4029 		REG_WR(sc, BCE_RV2P_INSTR_HIGH, *rv2p_code);
4030 		rv2p_code++;
4031 		REG_WR(sc, BCE_RV2P_INSTR_LOW, *rv2p_code);
4032 		rv2p_code++;
4033 
4034 		if (rv2p_proc == RV2P_PROC1) {
4035 			val = (i / 8) | BCE_RV2P_PROC1_ADDR_CMD_RDWR;
4036 			REG_WR(sc, BCE_RV2P_PROC1_ADDR_CMD, val);
4037 		}
4038 		else {
4039 			val = (i / 8) | BCE_RV2P_PROC2_ADDR_CMD_RDWR;
4040 			REG_WR(sc, BCE_RV2P_PROC2_ADDR_CMD, val);
4041 		}
4042 	}
4043 
4044 	/* Reset the processor, un-stall is done later. */
4045 	if (rv2p_proc == RV2P_PROC1) {
4046 		REG_WR(sc, BCE_RV2P_COMMAND, BCE_RV2P_COMMAND_PROC1_RESET);
4047 	}
4048 	else {
4049 		REG_WR(sc, BCE_RV2P_COMMAND, BCE_RV2P_COMMAND_PROC2_RESET);
4050 	}
4051 
4052 	DBEXIT(BCE_VERBOSE_RESET);
4053 }
4054 
4055 
4056 /****************************************************************************/
4057 /* Load RISC processor firmware.                                            */
4058 /*                                                                          */
4059 /* Loads firmware from the file if_bcefw.h into the scratchpad memory       */
4060 /* associated with a particular processor.                                  */
4061 /*                                                                          */
4062 /* Returns:                                                                 */
4063 /*   Nothing.                                                               */
4064 /****************************************************************************/
4065 static void
4066 bce_load_cpu_fw(struct bce_softc *sc, struct cpu_reg *cpu_reg,
4067 	struct fw_info *fw)
4068 {
4069 	u32 offset;
4070 
4071 	DBENTER(BCE_VERBOSE_RESET);
4072 
4073     bce_halt_cpu(sc, cpu_reg);
4074 
4075 	/* Load the Text area. */
4076 	offset = cpu_reg->spad_base + (fw->text_addr - cpu_reg->mips_view_base);
4077 	if (fw->text) {
4078 		int j;
4079 
4080 		for (j = 0; j < (fw->text_len / 4); j++, offset += 4) {
4081 			REG_WR_IND(sc, offset, fw->text[j]);
4082 	        }
4083 	}
4084 
4085 	/* Load the Data area. */
4086 	offset = cpu_reg->spad_base + (fw->data_addr - cpu_reg->mips_view_base);
4087 	if (fw->data) {
4088 		int j;
4089 
4090 		for (j = 0; j < (fw->data_len / 4); j++, offset += 4) {
4091 			REG_WR_IND(sc, offset, fw->data[j]);
4092 		}
4093 	}
4094 
4095 	/* Load the SBSS area. */
4096 	offset = cpu_reg->spad_base + (fw->sbss_addr - cpu_reg->mips_view_base);
4097 	if (fw->sbss) {
4098 		int j;
4099 
4100 		for (j = 0; j < (fw->sbss_len / 4); j++, offset += 4) {
4101 			REG_WR_IND(sc, offset, fw->sbss[j]);
4102 		}
4103 	}
4104 
4105 	/* Load the BSS area. */
4106 	offset = cpu_reg->spad_base + (fw->bss_addr - cpu_reg->mips_view_base);
4107 	if (fw->bss) {
4108 		int j;
4109 
4110 		for (j = 0; j < (fw->bss_len/4); j++, offset += 4) {
4111 			REG_WR_IND(sc, offset, fw->bss[j]);
4112 		}
4113 	}
4114 
4115 	/* Load the Read-Only area. */
4116 	offset = cpu_reg->spad_base +
4117 		(fw->rodata_addr - cpu_reg->mips_view_base);
4118 	if (fw->rodata) {
4119 		int j;
4120 
4121 		for (j = 0; j < (fw->rodata_len / 4); j++, offset += 4) {
4122 			REG_WR_IND(sc, offset, fw->rodata[j]);
4123 		}
4124 	}
4125 
4126 	/* Clear the pre-fetch instruction and set the FW start address. */
4127 	REG_WR_IND(sc, cpu_reg->inst, 0);
4128 	REG_WR_IND(sc, cpu_reg->pc, fw->start_addr);
4129 
4130 	DBEXIT(BCE_VERBOSE_RESET);
4131 }
4132 
4133 
4134 /****************************************************************************/
4135 /* Starts the RISC processor.                                               */
4136 /*                                                                          */
4137 /* Assumes the CPU starting address has already been set.                   */
4138 /*                                                                          */
4139 /* Returns:                                                                 */
4140 /*   Nothing.                                                               */
4141 /****************************************************************************/
4142 static void
4143 bce_start_cpu(struct bce_softc *sc, struct cpu_reg *cpu_reg)
4144 {
4145 	u32 val;
4146 
4147 	DBENTER(BCE_VERBOSE_RESET);
4148 
4149 	/* Start the CPU. */
4150 	val = REG_RD_IND(sc, cpu_reg->mode);
4151 	val &= ~cpu_reg->mode_value_halt;
4152 	REG_WR_IND(sc, cpu_reg->state, cpu_reg->state_value_clear);
4153 	REG_WR_IND(sc, cpu_reg->mode, val);
4154 
4155 	DBEXIT(BCE_VERBOSE_RESET);
4156 }
4157 
4158 
4159 /****************************************************************************/
4160 /* Halts the RISC processor.                                                */
4161 /*                                                                          */
4162 /* Returns:                                                                 */
4163 /*   Nothing.                                                               */
4164 /****************************************************************************/
4165 static void
4166 bce_halt_cpu(struct bce_softc *sc, struct cpu_reg *cpu_reg)
4167 {
4168 	u32 val;
4169 
4170 	DBENTER(BCE_VERBOSE_RESET);
4171 
4172 	/* Halt the CPU. */
4173 	val = REG_RD_IND(sc, cpu_reg->mode);
4174 	val |= cpu_reg->mode_value_halt;
4175 	REG_WR_IND(sc, cpu_reg->mode, val);
4176 	REG_WR_IND(sc, cpu_reg->state, cpu_reg->state_value_clear);
4177 
4178 	DBEXIT(BCE_VERBOSE_RESET);
4179 }
4180 
4181 
4182 /****************************************************************************/
4183 /* Initialize the RX CPU.                                                   */
4184 /*                                                                          */
4185 /* Returns:                                                                 */
4186 /*   Nothing.                                                               */
4187 /****************************************************************************/
4188 static void
4189 bce_start_rxp_cpu(struct bce_softc *sc)
4190 {
4191 	struct cpu_reg cpu_reg;
4192 
4193 	DBENTER(BCE_VERBOSE_RESET);
4194 
4195 	cpu_reg.mode = BCE_RXP_CPU_MODE;
4196 	cpu_reg.mode_value_halt = BCE_RXP_CPU_MODE_SOFT_HALT;
4197 	cpu_reg.mode_value_sstep = BCE_RXP_CPU_MODE_STEP_ENA;
4198 	cpu_reg.state = BCE_RXP_CPU_STATE;
4199 	cpu_reg.state_value_clear = 0xffffff;
4200 	cpu_reg.gpr0 = BCE_RXP_CPU_REG_FILE;
4201 	cpu_reg.evmask = BCE_RXP_CPU_EVENT_MASK;
4202 	cpu_reg.pc = BCE_RXP_CPU_PROGRAM_COUNTER;
4203 	cpu_reg.inst = BCE_RXP_CPU_INSTRUCTION;
4204 	cpu_reg.bp = BCE_RXP_CPU_HW_BREAKPOINT;
4205 	cpu_reg.spad_base = BCE_RXP_SCRATCH;
4206 	cpu_reg.mips_view_base = 0x8000000;
4207 
4208 	DBPRINT(sc, BCE_INFO_RESET, "Starting RX firmware.\n");
4209 	bce_start_cpu(sc, &cpu_reg);
4210 
4211 	DBEXIT(BCE_VERBOSE_RESET);
4212 }
4213 
4214 
4215 /****************************************************************************/
4216 /* Initialize the RX CPU.                                                   */
4217 /*                                                                          */
4218 /* Returns:                                                                 */
4219 /*   Nothing.                                                               */
4220 /****************************************************************************/
4221 static void
4222 bce_init_rxp_cpu(struct bce_softc *sc)
4223 {
4224 	struct cpu_reg cpu_reg;
4225 	struct fw_info fw;
4226 
4227 	DBENTER(BCE_VERBOSE_RESET);
4228 
4229 	cpu_reg.mode = BCE_RXP_CPU_MODE;
4230 	cpu_reg.mode_value_halt = BCE_RXP_CPU_MODE_SOFT_HALT;
4231 	cpu_reg.mode_value_sstep = BCE_RXP_CPU_MODE_STEP_ENA;
4232 	cpu_reg.state = BCE_RXP_CPU_STATE;
4233 	cpu_reg.state_value_clear = 0xffffff;
4234 	cpu_reg.gpr0 = BCE_RXP_CPU_REG_FILE;
4235 	cpu_reg.evmask = BCE_RXP_CPU_EVENT_MASK;
4236 	cpu_reg.pc = BCE_RXP_CPU_PROGRAM_COUNTER;
4237 	cpu_reg.inst = BCE_RXP_CPU_INSTRUCTION;
4238 	cpu_reg.bp = BCE_RXP_CPU_HW_BREAKPOINT;
4239 	cpu_reg.spad_base = BCE_RXP_SCRATCH;
4240 	cpu_reg.mips_view_base = 0x8000000;
4241 
4242 	if (BCE_CHIP_NUM(sc) == BCE_CHIP_NUM_5709) {
4243  		fw.ver_major = bce_RXP_b09FwReleaseMajor;
4244 		fw.ver_minor = bce_RXP_b09FwReleaseMinor;
4245 		fw.ver_fix = bce_RXP_b09FwReleaseFix;
4246 		fw.start_addr = bce_RXP_b09FwStartAddr;
4247 
4248 		fw.text_addr = bce_RXP_b09FwTextAddr;
4249 		fw.text_len = bce_RXP_b09FwTextLen;
4250 		fw.text_index = 0;
4251 		fw.text = bce_RXP_b09FwText;
4252 
4253 		fw.data_addr = bce_RXP_b09FwDataAddr;
4254 		fw.data_len = bce_RXP_b09FwDataLen;
4255 		fw.data_index = 0;
4256 		fw.data = bce_RXP_b09FwData;
4257 
4258 		fw.sbss_addr = bce_RXP_b09FwSbssAddr;
4259 		fw.sbss_len = bce_RXP_b09FwSbssLen;
4260 		fw.sbss_index = 0;
4261 		fw.sbss = bce_RXP_b09FwSbss;
4262 
4263 		fw.bss_addr = bce_RXP_b09FwBssAddr;
4264 		fw.bss_len = bce_RXP_b09FwBssLen;
4265 		fw.bss_index = 0;
4266 		fw.bss = bce_RXP_b09FwBss;
4267 
4268 		fw.rodata_addr = bce_RXP_b09FwRodataAddr;
4269 		fw.rodata_len = bce_RXP_b09FwRodataLen;
4270 		fw.rodata_index = 0;
4271 		fw.rodata = bce_RXP_b09FwRodata;
4272 	} else {
4273 		fw.ver_major = bce_RXP_b06FwReleaseMajor;
4274 		fw.ver_minor = bce_RXP_b06FwReleaseMinor;
4275 		fw.ver_fix = bce_RXP_b06FwReleaseFix;
4276 		fw.start_addr = bce_RXP_b06FwStartAddr;
4277 
4278 		fw.text_addr = bce_RXP_b06FwTextAddr;
4279 		fw.text_len = bce_RXP_b06FwTextLen;
4280 		fw.text_index = 0;
4281 		fw.text = bce_RXP_b06FwText;
4282 
4283 		fw.data_addr = bce_RXP_b06FwDataAddr;
4284 		fw.data_len = bce_RXP_b06FwDataLen;
4285 		fw.data_index = 0;
4286 		fw.data = bce_RXP_b06FwData;
4287 
4288 		fw.sbss_addr = bce_RXP_b06FwSbssAddr;
4289 		fw.sbss_len = bce_RXP_b06FwSbssLen;
4290 		fw.sbss_index = 0;
4291 		fw.sbss = bce_RXP_b06FwSbss;
4292 
4293 		fw.bss_addr = bce_RXP_b06FwBssAddr;
4294 		fw.bss_len = bce_RXP_b06FwBssLen;
4295 		fw.bss_index = 0;
4296 		fw.bss = bce_RXP_b06FwBss;
4297 
4298 		fw.rodata_addr = bce_RXP_b06FwRodataAddr;
4299 		fw.rodata_len = bce_RXP_b06FwRodataLen;
4300 		fw.rodata_index = 0;
4301 		fw.rodata = bce_RXP_b06FwRodata;
4302 	}
4303 
4304 	DBPRINT(sc, BCE_INFO_RESET, "Loading RX firmware.\n");
4305 	bce_load_cpu_fw(sc, &cpu_reg, &fw);
4306 
4307     /* Delay RXP start until initialization is complete. */
4308 
4309 	DBEXIT(BCE_VERBOSE_RESET);
4310 }
4311 
4312 
4313 /****************************************************************************/
4314 /* Initialize the TX CPU.                                                   */
4315 /*                                                                          */
4316 /* Returns:                                                                 */
4317 /*   Nothing.                                                               */
4318 /****************************************************************************/
4319 static void
4320 bce_init_txp_cpu(struct bce_softc *sc)
4321 {
4322 	struct cpu_reg cpu_reg;
4323 	struct fw_info fw;
4324 
4325 	DBENTER(BCE_VERBOSE_RESET);
4326 
4327 	cpu_reg.mode = BCE_TXP_CPU_MODE;
4328 	cpu_reg.mode_value_halt = BCE_TXP_CPU_MODE_SOFT_HALT;
4329 	cpu_reg.mode_value_sstep = BCE_TXP_CPU_MODE_STEP_ENA;
4330 	cpu_reg.state = BCE_TXP_CPU_STATE;
4331 	cpu_reg.state_value_clear = 0xffffff;
4332 	cpu_reg.gpr0 = BCE_TXP_CPU_REG_FILE;
4333 	cpu_reg.evmask = BCE_TXP_CPU_EVENT_MASK;
4334 	cpu_reg.pc = BCE_TXP_CPU_PROGRAM_COUNTER;
4335 	cpu_reg.inst = BCE_TXP_CPU_INSTRUCTION;
4336 	cpu_reg.bp = BCE_TXP_CPU_HW_BREAKPOINT;
4337 	cpu_reg.spad_base = BCE_TXP_SCRATCH;
4338 	cpu_reg.mips_view_base = 0x8000000;
4339 
4340 	if (BCE_CHIP_NUM(sc) == BCE_CHIP_NUM_5709) {
4341 		fw.ver_major = bce_TXP_b09FwReleaseMajor;
4342 		fw.ver_minor = bce_TXP_b09FwReleaseMinor;
4343 		fw.ver_fix = bce_TXP_b09FwReleaseFix;
4344 		fw.start_addr = bce_TXP_b09FwStartAddr;
4345 
4346 		fw.text_addr = bce_TXP_b09FwTextAddr;
4347 		fw.text_len = bce_TXP_b09FwTextLen;
4348 		fw.text_index = 0;
4349 		fw.text = bce_TXP_b09FwText;
4350 
4351 		fw.data_addr = bce_TXP_b09FwDataAddr;
4352 		fw.data_len = bce_TXP_b09FwDataLen;
4353 		fw.data_index = 0;
4354 		fw.data = bce_TXP_b09FwData;
4355 
4356 		fw.sbss_addr = bce_TXP_b09FwSbssAddr;
4357 		fw.sbss_len = bce_TXP_b09FwSbssLen;
4358 		fw.sbss_index = 0;
4359 		fw.sbss = bce_TXP_b09FwSbss;
4360 
4361 		fw.bss_addr = bce_TXP_b09FwBssAddr;
4362 		fw.bss_len = bce_TXP_b09FwBssLen;
4363 		fw.bss_index = 0;
4364 		fw.bss = bce_TXP_b09FwBss;
4365 
4366 		fw.rodata_addr = bce_TXP_b09FwRodataAddr;
4367 		fw.rodata_len = bce_TXP_b09FwRodataLen;
4368 		fw.rodata_index = 0;
4369 		fw.rodata = bce_TXP_b09FwRodata;
4370 	} else {
4371 		fw.ver_major = bce_TXP_b06FwReleaseMajor;
4372 		fw.ver_minor = bce_TXP_b06FwReleaseMinor;
4373 		fw.ver_fix = bce_TXP_b06FwReleaseFix;
4374 		fw.start_addr = bce_TXP_b06FwStartAddr;
4375 
4376 		fw.text_addr = bce_TXP_b06FwTextAddr;
4377 		fw.text_len = bce_TXP_b06FwTextLen;
4378 		fw.text_index = 0;
4379 		fw.text = bce_TXP_b06FwText;
4380 
4381 		fw.data_addr = bce_TXP_b06FwDataAddr;
4382 		fw.data_len = bce_TXP_b06FwDataLen;
4383 		fw.data_index = 0;
4384 		fw.data = bce_TXP_b06FwData;
4385 
4386 		fw.sbss_addr = bce_TXP_b06FwSbssAddr;
4387 		fw.sbss_len = bce_TXP_b06FwSbssLen;
4388 		fw.sbss_index = 0;
4389 		fw.sbss = bce_TXP_b06FwSbss;
4390 
4391 		fw.bss_addr = bce_TXP_b06FwBssAddr;
4392 		fw.bss_len = bce_TXP_b06FwBssLen;
4393 		fw.bss_index = 0;
4394 		fw.bss = bce_TXP_b06FwBss;
4395 
4396 		fw.rodata_addr = bce_TXP_b06FwRodataAddr;
4397 		fw.rodata_len = bce_TXP_b06FwRodataLen;
4398 		fw.rodata_index = 0;
4399 		fw.rodata = bce_TXP_b06FwRodata;
4400 	}
4401 
4402 	DBPRINT(sc, BCE_INFO_RESET, "Loading TX firmware.\n");
4403 	bce_load_cpu_fw(sc, &cpu_reg, &fw);
4404     bce_start_cpu(sc, &cpu_reg);
4405 
4406 	DBEXIT(BCE_VERBOSE_RESET);
4407 }
4408 
4409 
4410 /****************************************************************************/
4411 /* Initialize the TPAT CPU.                                                 */
4412 /*                                                                          */
4413 /* Returns:                                                                 */
4414 /*   Nothing.                                                               */
4415 /****************************************************************************/
4416 static void
4417 bce_init_tpat_cpu(struct bce_softc *sc)
4418 {
4419 	struct cpu_reg cpu_reg;
4420 	struct fw_info fw;
4421 
4422 	DBENTER(BCE_VERBOSE_RESET);
4423 
4424 	cpu_reg.mode = BCE_TPAT_CPU_MODE;
4425 	cpu_reg.mode_value_halt = BCE_TPAT_CPU_MODE_SOFT_HALT;
4426 	cpu_reg.mode_value_sstep = BCE_TPAT_CPU_MODE_STEP_ENA;
4427 	cpu_reg.state = BCE_TPAT_CPU_STATE;
4428 	cpu_reg.state_value_clear = 0xffffff;
4429 	cpu_reg.gpr0 = BCE_TPAT_CPU_REG_FILE;
4430 	cpu_reg.evmask = BCE_TPAT_CPU_EVENT_MASK;
4431 	cpu_reg.pc = BCE_TPAT_CPU_PROGRAM_COUNTER;
4432 	cpu_reg.inst = BCE_TPAT_CPU_INSTRUCTION;
4433 	cpu_reg.bp = BCE_TPAT_CPU_HW_BREAKPOINT;
4434 	cpu_reg.spad_base = BCE_TPAT_SCRATCH;
4435 	cpu_reg.mips_view_base = 0x8000000;
4436 
4437 	if (BCE_CHIP_NUM(sc) == BCE_CHIP_NUM_5709) {
4438 		fw.ver_major = bce_TPAT_b09FwReleaseMajor;
4439 		fw.ver_minor = bce_TPAT_b09FwReleaseMinor;
4440 		fw.ver_fix = bce_TPAT_b09FwReleaseFix;
4441 		fw.start_addr = bce_TPAT_b09FwStartAddr;
4442 
4443 		fw.text_addr = bce_TPAT_b09FwTextAddr;
4444 		fw.text_len = bce_TPAT_b09FwTextLen;
4445 		fw.text_index = 0;
4446 		fw.text = bce_TPAT_b09FwText;
4447 
4448 		fw.data_addr = bce_TPAT_b09FwDataAddr;
4449 		fw.data_len = bce_TPAT_b09FwDataLen;
4450 		fw.data_index = 0;
4451 		fw.data = bce_TPAT_b09FwData;
4452 
4453 		fw.sbss_addr = bce_TPAT_b09FwSbssAddr;
4454 		fw.sbss_len = bce_TPAT_b09FwSbssLen;
4455 		fw.sbss_index = 0;
4456 		fw.sbss = bce_TPAT_b09FwSbss;
4457 
4458 		fw.bss_addr = bce_TPAT_b09FwBssAddr;
4459 		fw.bss_len = bce_TPAT_b09FwBssLen;
4460 		fw.bss_index = 0;
4461 		fw.bss = bce_TPAT_b09FwBss;
4462 
4463 		fw.rodata_addr = bce_TPAT_b09FwRodataAddr;
4464 		fw.rodata_len = bce_TPAT_b09FwRodataLen;
4465 		fw.rodata_index = 0;
4466 		fw.rodata = bce_TPAT_b09FwRodata;
4467 	} else {
4468 		fw.ver_major = bce_TPAT_b06FwReleaseMajor;
4469 		fw.ver_minor = bce_TPAT_b06FwReleaseMinor;
4470 		fw.ver_fix = bce_TPAT_b06FwReleaseFix;
4471 		fw.start_addr = bce_TPAT_b06FwStartAddr;
4472 
4473 		fw.text_addr = bce_TPAT_b06FwTextAddr;
4474 		fw.text_len = bce_TPAT_b06FwTextLen;
4475 		fw.text_index = 0;
4476 		fw.text = bce_TPAT_b06FwText;
4477 
4478 		fw.data_addr = bce_TPAT_b06FwDataAddr;
4479 		fw.data_len = bce_TPAT_b06FwDataLen;
4480 		fw.data_index = 0;
4481 		fw.data = bce_TPAT_b06FwData;
4482 
4483 		fw.sbss_addr = bce_TPAT_b06FwSbssAddr;
4484 		fw.sbss_len = bce_TPAT_b06FwSbssLen;
4485 		fw.sbss_index = 0;
4486 		fw.sbss = bce_TPAT_b06FwSbss;
4487 
4488 		fw.bss_addr = bce_TPAT_b06FwBssAddr;
4489 		fw.bss_len = bce_TPAT_b06FwBssLen;
4490 		fw.bss_index = 0;
4491 		fw.bss = bce_TPAT_b06FwBss;
4492 
4493 		fw.rodata_addr = bce_TPAT_b06FwRodataAddr;
4494 		fw.rodata_len = bce_TPAT_b06FwRodataLen;
4495 		fw.rodata_index = 0;
4496 		fw.rodata = bce_TPAT_b06FwRodata;
4497 	}
4498 
4499 	DBPRINT(sc, BCE_INFO_RESET, "Loading TPAT firmware.\n");
4500 	bce_load_cpu_fw(sc, &cpu_reg, &fw);
4501 	bce_start_cpu(sc, &cpu_reg);
4502 
4503 	DBEXIT(BCE_VERBOSE_RESET);
4504 }
4505 
4506 
4507 /****************************************************************************/
4508 /* Initialize the CP CPU.                                                   */
4509 /*                                                                          */
4510 /* Returns:                                                                 */
4511 /*   Nothing.                                                               */
4512 /****************************************************************************/
4513 static void
4514 bce_init_cp_cpu(struct bce_softc *sc)
4515 {
4516 	struct cpu_reg cpu_reg;
4517 	struct fw_info fw;
4518 
4519 	DBENTER(BCE_VERBOSE_RESET);
4520 
4521 	cpu_reg.mode = BCE_CP_CPU_MODE;
4522 	cpu_reg.mode_value_halt = BCE_CP_CPU_MODE_SOFT_HALT;
4523 	cpu_reg.mode_value_sstep = BCE_CP_CPU_MODE_STEP_ENA;
4524 	cpu_reg.state = BCE_CP_CPU_STATE;
4525 	cpu_reg.state_value_clear = 0xffffff;
4526 	cpu_reg.gpr0 = BCE_CP_CPU_REG_FILE;
4527 	cpu_reg.evmask = BCE_CP_CPU_EVENT_MASK;
4528 	cpu_reg.pc = BCE_CP_CPU_PROGRAM_COUNTER;
4529 	cpu_reg.inst = BCE_CP_CPU_INSTRUCTION;
4530 	cpu_reg.bp = BCE_CP_CPU_HW_BREAKPOINT;
4531 	cpu_reg.spad_base = BCE_CP_SCRATCH;
4532 	cpu_reg.mips_view_base = 0x8000000;
4533 
4534 	if (BCE_CHIP_NUM(sc) == BCE_CHIP_NUM_5709) {
4535 		fw.ver_major = bce_CP_b09FwReleaseMajor;
4536 		fw.ver_minor = bce_CP_b09FwReleaseMinor;
4537 		fw.ver_fix = bce_CP_b09FwReleaseFix;
4538 		fw.start_addr = bce_CP_b09FwStartAddr;
4539 
4540 		fw.text_addr = bce_CP_b09FwTextAddr;
4541 		fw.text_len = bce_CP_b09FwTextLen;
4542 		fw.text_index = 0;
4543 		fw.text = bce_CP_b09FwText;
4544 
4545 		fw.data_addr = bce_CP_b09FwDataAddr;
4546 		fw.data_len = bce_CP_b09FwDataLen;
4547 		fw.data_index = 0;
4548 		fw.data = bce_CP_b09FwData;
4549 
4550 		fw.sbss_addr = bce_CP_b09FwSbssAddr;
4551 		fw.sbss_len = bce_CP_b09FwSbssLen;
4552 		fw.sbss_index = 0;
4553 		fw.sbss = bce_CP_b09FwSbss;
4554 
4555 		fw.bss_addr = bce_CP_b09FwBssAddr;
4556 		fw.bss_len = bce_CP_b09FwBssLen;
4557 		fw.bss_index = 0;
4558 		fw.bss = bce_CP_b09FwBss;
4559 
4560 		fw.rodata_addr = bce_CP_b09FwRodataAddr;
4561 		fw.rodata_len = bce_CP_b09FwRodataLen;
4562 		fw.rodata_index = 0;
4563 		fw.rodata = bce_CP_b09FwRodata;
4564 	} else {
4565 		fw.ver_major = bce_CP_b06FwReleaseMajor;
4566 		fw.ver_minor = bce_CP_b06FwReleaseMinor;
4567 		fw.ver_fix = bce_CP_b06FwReleaseFix;
4568 		fw.start_addr = bce_CP_b06FwStartAddr;
4569 
4570 		fw.text_addr = bce_CP_b06FwTextAddr;
4571 		fw.text_len = bce_CP_b06FwTextLen;
4572 		fw.text_index = 0;
4573 		fw.text = bce_CP_b06FwText;
4574 
4575 		fw.data_addr = bce_CP_b06FwDataAddr;
4576 		fw.data_len = bce_CP_b06FwDataLen;
4577 		fw.data_index = 0;
4578 		fw.data = bce_CP_b06FwData;
4579 
4580 		fw.sbss_addr = bce_CP_b06FwSbssAddr;
4581 		fw.sbss_len = bce_CP_b06FwSbssLen;
4582 		fw.sbss_index = 0;
4583 		fw.sbss = bce_CP_b06FwSbss;
4584 
4585 		fw.bss_addr = bce_CP_b06FwBssAddr;
4586 		fw.bss_len = bce_CP_b06FwBssLen;
4587 		fw.bss_index = 0;
4588 		fw.bss = bce_CP_b06FwBss;
4589 
4590 		fw.rodata_addr = bce_CP_b06FwRodataAddr;
4591 		fw.rodata_len = bce_CP_b06FwRodataLen;
4592 		fw.rodata_index = 0;
4593 		fw.rodata = bce_CP_b06FwRodata;
4594 	}
4595 
4596 	DBPRINT(sc, BCE_INFO_RESET, "Loading CP firmware.\n");
4597 	bce_load_cpu_fw(sc, &cpu_reg, &fw);
4598 	bce_start_cpu(sc, &cpu_reg);
4599 
4600 	DBEXIT(BCE_VERBOSE_RESET);
4601 }
4602 
4603 
4604 /****************************************************************************/
4605 /* Initialize the COM CPU.                                                 */
4606 /*                                                                          */
4607 /* Returns:                                                                 */
4608 /*   Nothing.                                                               */
4609 /****************************************************************************/
4610 static void
4611 bce_init_com_cpu(struct bce_softc *sc)
4612 {
4613 	struct cpu_reg cpu_reg;
4614 	struct fw_info fw;
4615 
4616 	DBENTER(BCE_VERBOSE_RESET);
4617 
4618 	cpu_reg.mode = BCE_COM_CPU_MODE;
4619 	cpu_reg.mode_value_halt = BCE_COM_CPU_MODE_SOFT_HALT;
4620 	cpu_reg.mode_value_sstep = BCE_COM_CPU_MODE_STEP_ENA;
4621 	cpu_reg.state = BCE_COM_CPU_STATE;
4622 	cpu_reg.state_value_clear = 0xffffff;
4623 	cpu_reg.gpr0 = BCE_COM_CPU_REG_FILE;
4624 	cpu_reg.evmask = BCE_COM_CPU_EVENT_MASK;
4625 	cpu_reg.pc = BCE_COM_CPU_PROGRAM_COUNTER;
4626 	cpu_reg.inst = BCE_COM_CPU_INSTRUCTION;
4627 	cpu_reg.bp = BCE_COM_CPU_HW_BREAKPOINT;
4628 	cpu_reg.spad_base = BCE_COM_SCRATCH;
4629 	cpu_reg.mips_view_base = 0x8000000;
4630 
4631 	if (BCE_CHIP_NUM(sc) == BCE_CHIP_NUM_5709) {
4632 		fw.ver_major = bce_COM_b09FwReleaseMajor;
4633 		fw.ver_minor = bce_COM_b09FwReleaseMinor;
4634 		fw.ver_fix = bce_COM_b09FwReleaseFix;
4635 		fw.start_addr = bce_COM_b09FwStartAddr;
4636 
4637 		fw.text_addr = bce_COM_b09FwTextAddr;
4638 		fw.text_len = bce_COM_b09FwTextLen;
4639 		fw.text_index = 0;
4640 		fw.text = bce_COM_b09FwText;
4641 
4642 		fw.data_addr = bce_COM_b09FwDataAddr;
4643 		fw.data_len = bce_COM_b09FwDataLen;
4644 		fw.data_index = 0;
4645 		fw.data = bce_COM_b09FwData;
4646 
4647 		fw.sbss_addr = bce_COM_b09FwSbssAddr;
4648 		fw.sbss_len = bce_COM_b09FwSbssLen;
4649 		fw.sbss_index = 0;
4650 		fw.sbss = bce_COM_b09FwSbss;
4651 
4652 		fw.bss_addr = bce_COM_b09FwBssAddr;
4653 		fw.bss_len = bce_COM_b09FwBssLen;
4654 		fw.bss_index = 0;
4655 		fw.bss = bce_COM_b09FwBss;
4656 
4657 		fw.rodata_addr = bce_COM_b09FwRodataAddr;
4658 		fw.rodata_len = bce_COM_b09FwRodataLen;
4659 		fw.rodata_index = 0;
4660 		fw.rodata = bce_COM_b09FwRodata;
4661 	} else {
4662 		fw.ver_major = bce_COM_b06FwReleaseMajor;
4663 		fw.ver_minor = bce_COM_b06FwReleaseMinor;
4664 		fw.ver_fix = bce_COM_b06FwReleaseFix;
4665 		fw.start_addr = bce_COM_b06FwStartAddr;
4666 
4667 		fw.text_addr = bce_COM_b06FwTextAddr;
4668 		fw.text_len = bce_COM_b06FwTextLen;
4669 		fw.text_index = 0;
4670 		fw.text = bce_COM_b06FwText;
4671 
4672 		fw.data_addr = bce_COM_b06FwDataAddr;
4673 		fw.data_len = bce_COM_b06FwDataLen;
4674 		fw.data_index = 0;
4675 		fw.data = bce_COM_b06FwData;
4676 
4677 		fw.sbss_addr = bce_COM_b06FwSbssAddr;
4678 		fw.sbss_len = bce_COM_b06FwSbssLen;
4679 		fw.sbss_index = 0;
4680 		fw.sbss = bce_COM_b06FwSbss;
4681 
4682 		fw.bss_addr = bce_COM_b06FwBssAddr;
4683 		fw.bss_len = bce_COM_b06FwBssLen;
4684 		fw.bss_index = 0;
4685 		fw.bss = bce_COM_b06FwBss;
4686 
4687 		fw.rodata_addr = bce_COM_b06FwRodataAddr;
4688 		fw.rodata_len = bce_COM_b06FwRodataLen;
4689 		fw.rodata_index = 0;
4690 		fw.rodata = bce_COM_b06FwRodata;
4691 	}
4692 
4693 	DBPRINT(sc, BCE_INFO_RESET, "Loading COM firmware.\n");
4694 	bce_load_cpu_fw(sc, &cpu_reg, &fw);
4695 	bce_start_cpu(sc, &cpu_reg);
4696 
4697 	DBEXIT(BCE_VERBOSE_RESET);
4698 }
4699 
4700 
4701 /****************************************************************************/
4702 /* Initialize the RV2P, RX, TX, TPAT, COM, and CP CPUs.                     */
4703 /*                                                                          */
4704 /* Loads the firmware for each CPU and starts the CPU.                      */
4705 /*                                                                          */
4706 /* Returns:                                                                 */
4707 /*   Nothing.                                                               */
4708 /****************************************************************************/
4709 static void
4710 bce_init_cpus(struct bce_softc *sc)
4711 {
4712 	DBENTER(BCE_VERBOSE_RESET);
4713 
4714 	if (BCE_CHIP_NUM(sc) == BCE_CHIP_NUM_5709) {
4715 
4716 		if ((BCE_CHIP_REV(sc) == BCE_CHIP_REV_Ax)) {
4717 			bce_load_rv2p_fw(sc, bce_xi90_rv2p_proc1,
4718 			    sizeof(bce_xi90_rv2p_proc1), RV2P_PROC1);
4719 			bce_load_rv2p_fw(sc, bce_xi90_rv2p_proc2,
4720 			    sizeof(bce_xi90_rv2p_proc2), RV2P_PROC2);
4721 		} else {
4722 			bce_load_rv2p_fw(sc, bce_xi_rv2p_proc1,
4723 			    sizeof(bce_xi_rv2p_proc1), RV2P_PROC1);
4724 			bce_load_rv2p_fw(sc, bce_xi_rv2p_proc2,
4725 			    sizeof(bce_xi_rv2p_proc2), RV2P_PROC2);
4726 		}
4727 
4728 	} else {
4729 		bce_load_rv2p_fw(sc, bce_rv2p_proc1,
4730 		    sizeof(bce_rv2p_proc1), RV2P_PROC1);
4731 		bce_load_rv2p_fw(sc, bce_rv2p_proc2,
4732 		    sizeof(bce_rv2p_proc2), RV2P_PROC2);
4733 	}
4734 
4735 	bce_init_rxp_cpu(sc);
4736 	bce_init_txp_cpu(sc);
4737 	bce_init_tpat_cpu(sc);
4738 	bce_init_com_cpu(sc);
4739 	bce_init_cp_cpu(sc);
4740 
4741 	DBEXIT(BCE_VERBOSE_RESET);
4742 }
4743 
4744 
4745 /****************************************************************************/
4746 /* Initialize context memory.                                               */
4747 /*                                                                          */
4748 /* Clears the memory associated with each Context ID (CID).                 */
4749 /*                                                                          */
4750 /* Returns:                                                                 */
4751 /*   Nothing.                                                               */
4752 /****************************************************************************/
4753 static int
4754 bce_init_ctx(struct bce_softc *sc)
4755 {
4756 	u32 offset, val, vcid_addr;
4757 	int i, j, rc, retry_cnt;
4758 
4759 	rc = 0;
4760 	DBENTER(BCE_VERBOSE_RESET | BCE_VERBOSE_CTX);
4761 
4762 	if (BCE_CHIP_NUM(sc) == BCE_CHIP_NUM_5709) {
4763 		retry_cnt = CTX_INIT_RETRY_COUNT;
4764 
4765 		DBPRINT(sc, BCE_INFO_CTX, "Initializing 5709 context.\n");
4766 
4767 		/*
4768 		 * BCM5709 context memory may be cached
4769 		 * in host memory so prepare the host memory
4770 		 * for access.
4771 		 */
4772 		val = BCE_CTX_COMMAND_ENABLED |
4773 		    BCE_CTX_COMMAND_MEM_INIT | (1 << 12);
4774 		val |= (BCM_PAGE_BITS - 8) << 16;
4775 		REG_WR(sc, BCE_CTX_COMMAND, val);
4776 
4777 		/* Wait for mem init command to complete. */
4778 		for (i = 0; i < retry_cnt; i++) {
4779 			val = REG_RD(sc, BCE_CTX_COMMAND);
4780 			if (!(val & BCE_CTX_COMMAND_MEM_INIT))
4781 				break;
4782 			DELAY(2);
4783 		}
4784 		if ((val & BCE_CTX_COMMAND_MEM_INIT) != 0) {
4785 			BCE_PRINTF("%s(): Context memory initialization failed!\n",
4786 			    __FUNCTION__);
4787 			rc = EBUSY;
4788 			goto init_ctx_fail;
4789 		}
4790 
4791 		for (i = 0; i < sc->ctx_pages; i++) {
4792 			/* Set the physical address of the context memory. */
4793 			REG_WR(sc, BCE_CTX_HOST_PAGE_TBL_DATA0,
4794 			    BCE_ADDR_LO(sc->ctx_paddr[i] & 0xfffffff0) |
4795 			    BCE_CTX_HOST_PAGE_TBL_DATA0_VALID);
4796 			REG_WR(sc, BCE_CTX_HOST_PAGE_TBL_DATA1,
4797 			    BCE_ADDR_HI(sc->ctx_paddr[i]));
4798 			REG_WR(sc, BCE_CTX_HOST_PAGE_TBL_CTRL, i |
4799 			    BCE_CTX_HOST_PAGE_TBL_CTRL_WRITE_REQ);
4800 
4801 			/* Verify the context memory write was successful. */
4802 			for (j = 0; j < retry_cnt; j++) {
4803 				val = REG_RD(sc, BCE_CTX_HOST_PAGE_TBL_CTRL);
4804 				if ((val &
4805 				    BCE_CTX_HOST_PAGE_TBL_CTRL_WRITE_REQ) == 0)
4806 					break;
4807 				DELAY(5);
4808 			}
4809 			if ((val & BCE_CTX_HOST_PAGE_TBL_CTRL_WRITE_REQ) != 0) {
4810 				BCE_PRINTF("%s(): Failed to initialize "
4811 				    "context page %d!\n", __FUNCTION__, i);
4812 				rc = EBUSY;
4813 				goto init_ctx_fail;
4814 			}
4815 		}
4816 	} else {
4817 
4818 		DBPRINT(sc, BCE_INFO, "Initializing 5706/5708 context.\n");
4819 
4820 		/*
4821 		 * For the 5706/5708, context memory is local to
4822 		 * the controller, so initialize the controller
4823 		 * context memory.
4824 		 */
4825 
4826 		vcid_addr = GET_CID_ADDR(96);
4827 		while (vcid_addr) {
4828 
4829 			vcid_addr -= PHY_CTX_SIZE;
4830 
4831 			REG_WR(sc, BCE_CTX_VIRT_ADDR, 0);
4832 			REG_WR(sc, BCE_CTX_PAGE_TBL, vcid_addr);
4833 
4834 			for(offset = 0; offset < PHY_CTX_SIZE; offset += 4) {
4835 				CTX_WR(sc, 0x00, offset, 0);
4836 			}
4837 
4838 			REG_WR(sc, BCE_CTX_VIRT_ADDR, vcid_addr);
4839 			REG_WR(sc, BCE_CTX_PAGE_TBL, vcid_addr);
4840 		}
4841 
4842 	}
4843 init_ctx_fail:
4844 	DBEXIT(BCE_VERBOSE_RESET | BCE_VERBOSE_CTX);
4845 	return (rc);
4846 }
4847 
4848 
4849 /****************************************************************************/
4850 /* Fetch the permanent MAC address of the controller.                       */
4851 /*                                                                          */
4852 /* Returns:                                                                 */
4853 /*   Nothing.                                                               */
4854 /****************************************************************************/
4855 static void
4856 bce_get_mac_addr(struct bce_softc *sc)
4857 {
4858 	u32 mac_lo = 0, mac_hi = 0;
4859 
4860 	DBENTER(BCE_VERBOSE_RESET);
4861 
4862 	/*
4863 	 * The NetXtreme II bootcode populates various NIC
4864 	 * power-on and runtime configuration items in a
4865 	 * shared memory area.  The factory configured MAC
4866 	 * address is available from both NVRAM and the
4867 	 * shared memory area so we'll read the value from
4868 	 * shared memory for speed.
4869 	 */
4870 
4871 	mac_hi = bce_shmem_rd(sc, BCE_PORT_HW_CFG_MAC_UPPER);
4872 	mac_lo = bce_shmem_rd(sc, BCE_PORT_HW_CFG_MAC_LOWER);
4873 
4874 	if ((mac_lo == 0) && (mac_hi == 0)) {
4875 		BCE_PRINTF("%s(%d): Invalid Ethernet address!\n",
4876 		    __FILE__, __LINE__);
4877 	} else {
4878 		sc->eaddr[0] = (u_char)(mac_hi >> 8);
4879 		sc->eaddr[1] = (u_char)(mac_hi >> 0);
4880 		sc->eaddr[2] = (u_char)(mac_lo >> 24);
4881 		sc->eaddr[3] = (u_char)(mac_lo >> 16);
4882 		sc->eaddr[4] = (u_char)(mac_lo >> 8);
4883 		sc->eaddr[5] = (u_char)(mac_lo >> 0);
4884 	}
4885 
4886 	DBPRINT(sc, BCE_INFO_MISC, "Permanent Ethernet "
4887 	    "address = %6D\n", sc->eaddr, ":");
4888 	DBEXIT(BCE_VERBOSE_RESET);
4889 }
4890 
4891 
4892 /****************************************************************************/
4893 /* Program the MAC address.                                                 */
4894 /*                                                                          */
4895 /* Returns:                                                                 */
4896 /*   Nothing.                                                               */
4897 /****************************************************************************/
4898 static void
4899 bce_set_mac_addr(struct bce_softc *sc)
4900 {
4901 	u32 val;
4902 	u8 *mac_addr = sc->eaddr;
4903 
4904 	/* ToDo: Add support for setting multiple MAC addresses. */
4905 
4906 	DBENTER(BCE_VERBOSE_RESET);
4907 	DBPRINT(sc, BCE_INFO_MISC, "Setting Ethernet address = "
4908 	    "%6D\n", sc->eaddr, ":");
4909 
4910 	val = (mac_addr[0] << 8) | mac_addr[1];
4911 
4912 	REG_WR(sc, BCE_EMAC_MAC_MATCH0, val);
4913 
4914 	val = (mac_addr[2] << 24) | (mac_addr[3] << 16) |
4915 	    (mac_addr[4] << 8) | mac_addr[5];
4916 
4917 	REG_WR(sc, BCE_EMAC_MAC_MATCH1, val);
4918 
4919 	DBEXIT(BCE_VERBOSE_RESET);
4920 }
4921 
4922 
4923 /****************************************************************************/
4924 /* Stop the controller.                                                     */
4925 /*                                                                          */
4926 /* Returns:                                                                 */
4927 /*   Nothing.                                                               */
4928 /****************************************************************************/
4929 static void
4930 bce_stop(struct bce_softc *sc)
4931 {
4932 	struct ifnet *ifp;
4933 
4934 	DBENTER(BCE_VERBOSE_RESET);
4935 
4936 	BCE_LOCK_ASSERT(sc);
4937 
4938 	ifp = sc->bce_ifp;
4939 
4940 	callout_stop(&sc->bce_tick_callout);
4941 
4942 	/* Disable the transmit/receive blocks. */
4943 	REG_WR(sc, BCE_MISC_ENABLE_CLR_BITS, BCE_MISC_ENABLE_CLR_DEFAULT);
4944 	REG_RD(sc, BCE_MISC_ENABLE_CLR_BITS);
4945 	DELAY(20);
4946 
4947 	bce_disable_intr(sc);
4948 
4949 	/* Free RX buffers. */
4950 	if (bce_hdr_split == TRUE) {
4951 		bce_free_pg_chain(sc);
4952 	}
4953 	bce_free_rx_chain(sc);
4954 
4955 	/* Free TX buffers. */
4956 	bce_free_tx_chain(sc);
4957 
4958 	sc->watchdog_timer = 0;
4959 
4960 	sc->bce_link_up = FALSE;
4961 
4962 	ifp->if_drv_flags &= ~(IFF_DRV_RUNNING | IFF_DRV_OACTIVE);
4963 
4964 	DBEXIT(BCE_VERBOSE_RESET);
4965 }
4966 
4967 
4968 static int
4969 bce_reset(struct bce_softc *sc, u32 reset_code)
4970 {
4971 	u32 emac_mode_save, val;
4972 	int i, rc = 0;
4973 	static const u32 emac_mode_mask = BCE_EMAC_MODE_PORT |
4974 	    BCE_EMAC_MODE_HALF_DUPLEX | BCE_EMAC_MODE_25G;
4975 
4976 	DBENTER(BCE_VERBOSE_RESET);
4977 
4978 	DBPRINT(sc, BCE_VERBOSE_RESET, "%s(): reset_code = 0x%08X\n",
4979 	    __FUNCTION__, reset_code);
4980 
4981 	/*
4982 	 * If ASF/IPMI is operational, then the EMAC Mode register already
4983 	 * contains appropriate values for the link settings that have
4984 	 * been auto-negotiated.  Resetting the chip will clobber those
4985 	 * values.  Save the important bits so we can restore them after
4986 	 * the reset.
4987 	 */
4988 	emac_mode_save = REG_RD(sc, BCE_EMAC_MODE) & emac_mode_mask;
4989 
4990 	/* Wait for pending PCI transactions to complete. */
4991 	REG_WR(sc, BCE_MISC_ENABLE_CLR_BITS,
4992 	    BCE_MISC_ENABLE_CLR_BITS_TX_DMA_ENABLE |
4993 	    BCE_MISC_ENABLE_CLR_BITS_DMA_ENGINE_ENABLE |
4994 	    BCE_MISC_ENABLE_CLR_BITS_RX_DMA_ENABLE |
4995 	    BCE_MISC_ENABLE_CLR_BITS_HOST_COALESCE_ENABLE);
4996 	val = REG_RD(sc, BCE_MISC_ENABLE_CLR_BITS);
4997 	DELAY(5);
4998 
4999 	/* Disable DMA */
5000 	if (BCE_CHIP_NUM(sc) == BCE_CHIP_NUM_5709) {
5001 		val = REG_RD(sc, BCE_MISC_NEW_CORE_CTL);
5002 		val &= ~BCE_MISC_NEW_CORE_CTL_DMA_ENABLE;
5003 		REG_WR(sc, BCE_MISC_NEW_CORE_CTL, val);
5004 	}
5005 
5006 	/* Assume bootcode is running. */
5007 	sc->bce_fw_timed_out = FALSE;
5008 	sc->bce_drv_cardiac_arrest = FALSE;
5009 
5010 	/* Give the firmware a chance to prepare for the reset. */
5011 	rc = bce_fw_sync(sc, BCE_DRV_MSG_DATA_WAIT0 | reset_code);
5012 	if (rc)
5013 		goto bce_reset_exit;
5014 
5015 	/* Set a firmware reminder that this is a soft reset. */
5016 	bce_shmem_wr(sc, BCE_DRV_RESET_SIGNATURE, BCE_DRV_RESET_SIGNATURE_MAGIC);
5017 
5018 	/* Dummy read to force the chip to complete all current transactions. */
5019 	val = REG_RD(sc, BCE_MISC_ID);
5020 
5021 	/* Chip reset. */
5022 	if (BCE_CHIP_NUM(sc) == BCE_CHIP_NUM_5709) {
5023 		REG_WR(sc, BCE_MISC_COMMAND, BCE_MISC_COMMAND_SW_RESET);
5024 		REG_RD(sc, BCE_MISC_COMMAND);
5025 		DELAY(5);
5026 
5027 		val = BCE_PCICFG_MISC_CONFIG_REG_WINDOW_ENA |
5028 		    BCE_PCICFG_MISC_CONFIG_TARGET_MB_WORD_SWAP;
5029 
5030 		pci_write_config(sc->bce_dev, BCE_PCICFG_MISC_CONFIG, val, 4);
5031 	} else {
5032 		val = BCE_PCICFG_MISC_CONFIG_CORE_RST_REQ |
5033 		    BCE_PCICFG_MISC_CONFIG_REG_WINDOW_ENA |
5034 		    BCE_PCICFG_MISC_CONFIG_TARGET_MB_WORD_SWAP;
5035 		REG_WR(sc, BCE_PCICFG_MISC_CONFIG, val);
5036 
5037 		/* Allow up to 30us for reset to complete. */
5038 		for (i = 0; i < 10; i++) {
5039 			val = REG_RD(sc, BCE_PCICFG_MISC_CONFIG);
5040 			if ((val & (BCE_PCICFG_MISC_CONFIG_CORE_RST_REQ |
5041 			    BCE_PCICFG_MISC_CONFIG_CORE_RST_BSY)) == 0) {
5042 				break;
5043 			}
5044 			DELAY(10);
5045 		}
5046 
5047 		/* Check that reset completed successfully. */
5048 		if (val & (BCE_PCICFG_MISC_CONFIG_CORE_RST_REQ |
5049 		    BCE_PCICFG_MISC_CONFIG_CORE_RST_BSY)) {
5050 			BCE_PRINTF("%s(%d): Reset failed!\n",
5051 			    __FILE__, __LINE__);
5052 			rc = EBUSY;
5053 			goto bce_reset_exit;
5054 		}
5055 	}
5056 
5057 	/* Make sure byte swapping is properly configured. */
5058 	val = REG_RD(sc, BCE_PCI_SWAP_DIAG0);
5059 	if (val != 0x01020304) {
5060 		BCE_PRINTF("%s(%d): Byte swap is incorrect!\n",
5061 		    __FILE__, __LINE__);
5062 		rc = ENODEV;
5063 		goto bce_reset_exit;
5064 	}
5065 
5066 	/* Just completed a reset, assume that firmware is running again. */
5067 	sc->bce_fw_timed_out = FALSE;
5068 	sc->bce_drv_cardiac_arrest = FALSE;
5069 
5070 	/* Wait for the firmware to finish its initialization. */
5071 	rc = bce_fw_sync(sc, BCE_DRV_MSG_DATA_WAIT1 | reset_code);
5072 	if (rc)
5073 		BCE_PRINTF("%s(%d): Firmware did not complete "
5074 		    "initialization!\n", __FILE__, __LINE__);
5075 	/* Get firmware capabilities. */
5076 	bce_fw_cap_init(sc);
5077 
5078 bce_reset_exit:
5079 	/* Restore EMAC Mode bits needed to keep ASF/IPMI running. */
5080 	if (reset_code == BCE_DRV_MSG_CODE_RESET) {
5081 		val = REG_RD(sc, BCE_EMAC_MODE);
5082 		val = (val & ~emac_mode_mask) | emac_mode_save;
5083 		REG_WR(sc, BCE_EMAC_MODE, val);
5084 	}
5085 
5086 	DBEXIT(BCE_VERBOSE_RESET);
5087 	return (rc);
5088 }
5089 
5090 
5091 static int
5092 bce_chipinit(struct bce_softc *sc)
5093 {
5094 	u32 val;
5095 	int rc = 0;
5096 
5097 	DBENTER(BCE_VERBOSE_RESET);
5098 
5099 	bce_disable_intr(sc);
5100 
5101 	/*
5102 	 * Initialize DMA byte/word swapping, configure the number of DMA
5103 	 * channels and PCI clock compensation delay.
5104 	 */
5105 	val = BCE_DMA_CONFIG_DATA_BYTE_SWAP |
5106 	    BCE_DMA_CONFIG_DATA_WORD_SWAP |
5107 #if BYTE_ORDER == BIG_ENDIAN
5108 	    BCE_DMA_CONFIG_CNTL_BYTE_SWAP |
5109 #endif
5110 	    BCE_DMA_CONFIG_CNTL_WORD_SWAP |
5111 	    DMA_READ_CHANS << 12 |
5112 	    DMA_WRITE_CHANS << 16;
5113 
5114 	val |= (0x2 << 20) | BCE_DMA_CONFIG_CNTL_PCI_COMP_DLY;
5115 
5116 	if ((sc->bce_flags & BCE_PCIX_FLAG) && (sc->bus_speed_mhz == 133))
5117 		val |= BCE_DMA_CONFIG_PCI_FAST_CLK_CMP;
5118 
5119 	/*
5120 	 * This setting resolves a problem observed on certain Intel PCI
5121 	 * chipsets that cannot handle multiple outstanding DMA operations.
5122 	 * See errata E9_5706A1_65.
5123 	 */
5124 	if ((BCE_CHIP_NUM(sc) == BCE_CHIP_NUM_5706) &&
5125 	    (BCE_CHIP_ID(sc) != BCE_CHIP_ID_5706_A0) &&
5126 	    !(sc->bce_flags & BCE_PCIX_FLAG))
5127 		val |= BCE_DMA_CONFIG_CNTL_PING_PONG_DMA;
5128 
5129 	REG_WR(sc, BCE_DMA_CONFIG, val);
5130 
5131 	/* Enable the RX_V2P and Context state machines before access. */
5132 	REG_WR(sc, BCE_MISC_ENABLE_SET_BITS,
5133 	    BCE_MISC_ENABLE_SET_BITS_HOST_COALESCE_ENABLE |
5134 	    BCE_MISC_ENABLE_STATUS_BITS_RX_V2P_ENABLE |
5135 	    BCE_MISC_ENABLE_STATUS_BITS_CONTEXT_ENABLE);
5136 
5137 	/* Initialize context mapping and zero out the quick contexts. */
5138 	if ((rc = bce_init_ctx(sc)) != 0)
5139 		goto bce_chipinit_exit;
5140 
5141 	/* Initialize the on-boards CPUs */
5142 	bce_init_cpus(sc);
5143 
5144 	/* Enable management frames (NC-SI) to flow to the MCP. */
5145 	if (sc->bce_flags & BCE_MFW_ENABLE_FLAG) {
5146 		val = REG_RD(sc, BCE_RPM_MGMT_PKT_CTRL) | BCE_RPM_MGMT_PKT_CTRL_MGMT_EN;
5147 		REG_WR(sc, BCE_RPM_MGMT_PKT_CTRL, val);
5148 	}
5149 
5150 	/* Prepare NVRAM for access. */
5151 	if ((rc = bce_init_nvram(sc)) != 0)
5152 		goto bce_chipinit_exit;
5153 
5154 	/* Set the kernel bypass block size */
5155 	val = REG_RD(sc, BCE_MQ_CONFIG);
5156 	val &= ~BCE_MQ_CONFIG_KNL_BYP_BLK_SIZE;
5157 	val |= BCE_MQ_CONFIG_KNL_BYP_BLK_SIZE_256;
5158 
5159 	/* Enable bins used on the 5709. */
5160 	if (BCE_CHIP_NUM(sc) == BCE_CHIP_NUM_5709) {
5161 		val |= BCE_MQ_CONFIG_BIN_MQ_MODE;
5162 		if (BCE_CHIP_ID(sc) == BCE_CHIP_ID_5709_A1)
5163 			val |= BCE_MQ_CONFIG_HALT_DIS;
5164 	}
5165 
5166 	REG_WR(sc, BCE_MQ_CONFIG, val);
5167 
5168 	val = 0x10000 + (MAX_CID_CNT * MB_KERNEL_CTX_SIZE);
5169 	REG_WR(sc, BCE_MQ_KNL_BYP_WIND_START, val);
5170 	REG_WR(sc, BCE_MQ_KNL_WIND_END, val);
5171 
5172 	/* Set the page size and clear the RV2P processor stall bits. */
5173 	val = (BCM_PAGE_BITS - 8) << 24;
5174 	REG_WR(sc, BCE_RV2P_CONFIG, val);
5175 
5176 	/* Configure page size. */
5177 	val = REG_RD(sc, BCE_TBDR_CONFIG);
5178 	val &= ~BCE_TBDR_CONFIG_PAGE_SIZE;
5179 	val |= (BCM_PAGE_BITS - 8) << 24 | 0x40;
5180 	REG_WR(sc, BCE_TBDR_CONFIG, val);
5181 
5182 	/* Set the perfect match control register to default. */
5183 	REG_WR_IND(sc, BCE_RXP_PM_CTRL, 0);
5184 
5185 bce_chipinit_exit:
5186 	DBEXIT(BCE_VERBOSE_RESET);
5187 
5188 	return(rc);
5189 }
5190 
5191 
5192 /****************************************************************************/
5193 /* Initialize the controller in preparation to send/receive traffic.        */
5194 /*                                                                          */
5195 /* Returns:                                                                 */
5196 /*   0 for success, positive value for failure.                             */
5197 /****************************************************************************/
5198 static int
5199 bce_blockinit(struct bce_softc *sc)
5200 {
5201 	u32 reg, val;
5202 	int rc = 0;
5203 
5204 	DBENTER(BCE_VERBOSE_RESET);
5205 
5206 	/* Load the hardware default MAC address. */
5207 	bce_set_mac_addr(sc);
5208 
5209 	/* Set the Ethernet backoff seed value */
5210 	val = sc->eaddr[0]         + (sc->eaddr[1] << 8) +
5211 	      (sc->eaddr[2] << 16) + (sc->eaddr[3]     ) +
5212 	      (sc->eaddr[4] << 8)  + (sc->eaddr[5] << 16);
5213 	REG_WR(sc, BCE_EMAC_BACKOFF_SEED, val);
5214 
5215 	sc->last_status_idx = 0;
5216 	sc->rx_mode = BCE_EMAC_RX_MODE_SORT_MODE;
5217 
5218 	/* Set up link change interrupt generation. */
5219 	REG_WR(sc, BCE_EMAC_ATTENTION_ENA, BCE_EMAC_ATTENTION_ENA_LINK);
5220 
5221 	/* Program the physical address of the status block. */
5222 	REG_WR(sc, BCE_HC_STATUS_ADDR_L,
5223 	    BCE_ADDR_LO(sc->status_block_paddr));
5224 	REG_WR(sc, BCE_HC_STATUS_ADDR_H,
5225 	    BCE_ADDR_HI(sc->status_block_paddr));
5226 
5227 	/* Program the physical address of the statistics block. */
5228 	REG_WR(sc, BCE_HC_STATISTICS_ADDR_L,
5229 	    BCE_ADDR_LO(sc->stats_block_paddr));
5230 	REG_WR(sc, BCE_HC_STATISTICS_ADDR_H,
5231 	    BCE_ADDR_HI(sc->stats_block_paddr));
5232 
5233 	/*
5234 	 * Program various host coalescing parameters.
5235 	 * Trip points control how many BDs should be ready before generating
5236 	 * an interrupt while ticks control how long a BD can sit in the chain
5237 	 * before generating an interrupt.
5238 	 */
5239 	REG_WR(sc, BCE_HC_TX_QUICK_CONS_TRIP,
5240 	    (sc->bce_tx_quick_cons_trip_int << 16) |
5241 	    sc->bce_tx_quick_cons_trip);
5242 	REG_WR(sc, BCE_HC_RX_QUICK_CONS_TRIP,
5243 	    (sc->bce_rx_quick_cons_trip_int << 16) |
5244 	    sc->bce_rx_quick_cons_trip);
5245 	REG_WR(sc, BCE_HC_TX_TICKS,
5246 	    (sc->bce_tx_ticks_int << 16) | sc->bce_tx_ticks);
5247 	REG_WR(sc, BCE_HC_RX_TICKS,
5248 	    (sc->bce_rx_ticks_int << 16) | sc->bce_rx_ticks);
5249 	REG_WR(sc, BCE_HC_STATS_TICKS, sc->bce_stats_ticks & 0xffff00);
5250 	REG_WR(sc, BCE_HC_STAT_COLLECT_TICKS, 0xbb8);  /* 3ms */
5251 	/* Not used for L2. */
5252 	REG_WR(sc, BCE_HC_COMP_PROD_TRIP, 0);
5253 	REG_WR(sc, BCE_HC_COM_TICKS, 0);
5254 	REG_WR(sc, BCE_HC_CMD_TICKS, 0);
5255 
5256 	/* Configure the Host Coalescing block. */
5257 	val = BCE_HC_CONFIG_RX_TMR_MODE | BCE_HC_CONFIG_TX_TMR_MODE |
5258 	    BCE_HC_CONFIG_COLLECT_STATS;
5259 
5260 #if 0
5261 	/* ToDo: Add MSI-X support. */
5262 	if (sc->bce_flags & BCE_USING_MSIX_FLAG) {
5263 		u32 base = ((BCE_TX_VEC - 1) * BCE_HC_SB_CONFIG_SIZE) +
5264 		    BCE_HC_SB_CONFIG_1;
5265 
5266 		REG_WR(sc, BCE_HC_MSIX_BIT_VECTOR, BCE_HC_MSIX_BIT_VECTOR_VAL);
5267 
5268 		REG_WR(sc, base, BCE_HC_SB_CONFIG_1_TX_TMR_MODE |
5269 		    BCE_HC_SB_CONFIG_1_ONE_SHOT);
5270 
5271 		REG_WR(sc, base + BCE_HC_TX_QUICK_CONS_TRIP_OFF,
5272 		    (sc->tx_quick_cons_trip_int << 16) |
5273 		     sc->tx_quick_cons_trip);
5274 
5275 		REG_WR(sc, base + BCE_HC_TX_TICKS_OFF,
5276 		    (sc->tx_ticks_int << 16) | sc->tx_ticks);
5277 
5278 		val |= BCE_HC_CONFIG_SB_ADDR_INC_128B;
5279 	}
5280 
5281 	/*
5282 	 * Tell the HC block to automatically set the
5283 	 * INT_MASK bit after an MSI/MSI-X interrupt
5284 	 * is generated so the driver doesn't have to.
5285 	 */
5286 	if (sc->bce_flags & BCE_ONE_SHOT_MSI_FLAG)
5287 		val |= BCE_HC_CONFIG_ONE_SHOT;
5288 
5289 	/* Set the MSI-X status blocks to 128 byte boundaries. */
5290 	if (sc->bce_flags & BCE_USING_MSIX_FLAG)
5291 		val |= BCE_HC_CONFIG_SB_ADDR_INC_128B;
5292 #endif
5293 
5294 	REG_WR(sc, BCE_HC_CONFIG, val);
5295 
5296 	/* Clear the internal statistics counters. */
5297 	REG_WR(sc, BCE_HC_COMMAND, BCE_HC_COMMAND_CLR_STAT_NOW);
5298 
5299 	/* Verify that bootcode is running. */
5300 	reg = bce_shmem_rd(sc, BCE_DEV_INFO_SIGNATURE);
5301 
5302 	DBRUNIF(DB_RANDOMTRUE(bootcode_running_failure_sim_control),
5303 	    BCE_PRINTF("%s(%d): Simulating bootcode failure.\n",
5304 	    __FILE__, __LINE__);
5305 	    reg = 0);
5306 
5307 	if ((reg & BCE_DEV_INFO_SIGNATURE_MAGIC_MASK) !=
5308 	    BCE_DEV_INFO_SIGNATURE_MAGIC) {
5309 		BCE_PRINTF("%s(%d): Bootcode not running! Found: 0x%08X, "
5310 		    "Expected: 08%08X\n", __FILE__, __LINE__,
5311 		    (reg & BCE_DEV_INFO_SIGNATURE_MAGIC_MASK),
5312 		    BCE_DEV_INFO_SIGNATURE_MAGIC);
5313 		rc = ENODEV;
5314 		goto bce_blockinit_exit;
5315 	}
5316 
5317 	/* Enable DMA */
5318 	if (BCE_CHIP_NUM(sc) == BCE_CHIP_NUM_5709) {
5319 		val = REG_RD(sc, BCE_MISC_NEW_CORE_CTL);
5320 		val |= BCE_MISC_NEW_CORE_CTL_DMA_ENABLE;
5321 		REG_WR(sc, BCE_MISC_NEW_CORE_CTL, val);
5322 	}
5323 
5324 	/* Allow bootcode to apply additional fixes before enabling MAC. */
5325 	rc = bce_fw_sync(sc, BCE_DRV_MSG_DATA_WAIT2 |
5326 	    BCE_DRV_MSG_CODE_RESET);
5327 
5328 	/* Enable link state change interrupt generation. */
5329 	REG_WR(sc, BCE_HC_ATTN_BITS_ENABLE, STATUS_ATTN_BITS_LINK_STATE);
5330 
5331 	/* Enable the RXP. */
5332 	bce_start_rxp_cpu(sc);
5333 
5334 	/* Disable management frames (NC-SI) from flowing to the MCP. */
5335 	if (sc->bce_flags & BCE_MFW_ENABLE_FLAG) {
5336 		val = REG_RD(sc, BCE_RPM_MGMT_PKT_CTRL) &
5337 		    ~BCE_RPM_MGMT_PKT_CTRL_MGMT_EN;
5338 		REG_WR(sc, BCE_RPM_MGMT_PKT_CTRL, val);
5339 	}
5340 
5341 	/* Enable all remaining blocks in the MAC. */
5342 	if (BCE_CHIP_NUM(sc) == BCE_CHIP_NUM_5709)
5343 		REG_WR(sc, BCE_MISC_ENABLE_SET_BITS,
5344 		    BCE_MISC_ENABLE_DEFAULT_XI);
5345 	else
5346 		REG_WR(sc, BCE_MISC_ENABLE_SET_BITS,
5347 		    BCE_MISC_ENABLE_DEFAULT);
5348 
5349 	REG_RD(sc, BCE_MISC_ENABLE_SET_BITS);
5350 	DELAY(20);
5351 
5352 	/* Save the current host coalescing block settings. */
5353 	sc->hc_command = REG_RD(sc, BCE_HC_COMMAND);
5354 
5355 bce_blockinit_exit:
5356 	DBEXIT(BCE_VERBOSE_RESET);
5357 
5358 	return (rc);
5359 }
5360 
5361 
5362 /****************************************************************************/
5363 /* Encapsulate an mbuf into the rx_bd chain.                                */
5364 /*                                                                          */
5365 /* Returns:                                                                 */
5366 /*   0 for success, positive value for failure.                             */
5367 /****************************************************************************/
5368 static int
5369 bce_get_rx_buf(struct bce_softc *sc, u16 prod, u16 chain_prod, u32 *prod_bseq)
5370 {
5371 	bus_dma_segment_t segs[1];
5372 	struct mbuf *m_new = NULL;
5373 	struct rx_bd *rxbd;
5374 	int nsegs, error, rc = 0;
5375 #ifdef BCE_DEBUG
5376 	u16 debug_chain_prod = chain_prod;
5377 #endif
5378 
5379 	DBENTER(BCE_EXTREME_RESET | BCE_EXTREME_RECV | BCE_EXTREME_LOAD);
5380 
5381 	/* Make sure the inputs are valid. */
5382 	DBRUNIF((chain_prod > MAX_RX_BD_ALLOC),
5383 	    BCE_PRINTF("%s(%d): RX producer out of range: "
5384 	    "0x%04X > 0x%04X\n", __FILE__, __LINE__,
5385 	    chain_prod, (u16)MAX_RX_BD_ALLOC));
5386 
5387 	DBPRINT(sc, BCE_EXTREME_RECV, "%s(enter): prod = 0x%04X, "
5388 	    "chain_prod = 0x%04X, prod_bseq = 0x%08X\n", __FUNCTION__,
5389 	    prod, chain_prod, *prod_bseq);
5390 
5391 	/* Update some debug statistic counters */
5392 	DBRUNIF((sc->free_rx_bd < sc->rx_low_watermark),
5393 	    sc->rx_low_watermark = sc->free_rx_bd);
5394 	DBRUNIF((sc->free_rx_bd == sc->max_rx_bd),
5395 	    sc->rx_empty_count++);
5396 
5397 	/* Simulate an mbuf allocation failure. */
5398 	DBRUNIF(DB_RANDOMTRUE(mbuf_alloc_failed_sim_control),
5399 	    sc->mbuf_alloc_failed_count++;
5400 	    sc->mbuf_alloc_failed_sim_count++;
5401 	    rc = ENOBUFS;
5402 	    goto bce_get_rx_buf_exit);
5403 
5404 	/* This is a new mbuf allocation. */
5405 	if (bce_hdr_split == TRUE)
5406 		MGETHDR(m_new, M_NOWAIT, MT_DATA);
5407 	else
5408 		m_new = m_getjcl(M_NOWAIT, MT_DATA, M_PKTHDR,
5409 		    sc->rx_bd_mbuf_alloc_size);
5410 
5411 	if (m_new == NULL) {
5412 		sc->mbuf_alloc_failed_count++;
5413 		rc = ENOBUFS;
5414 		goto bce_get_rx_buf_exit;
5415 	}
5416 
5417 	DBRUN(sc->debug_rx_mbuf_alloc++);
5418 
5419 	/* Make sure we have a valid packet header. */
5420 	M_ASSERTPKTHDR(m_new);
5421 
5422 	/* Initialize the mbuf size and pad if necessary for alignment. */
5423 	m_new->m_pkthdr.len = m_new->m_len = sc->rx_bd_mbuf_alloc_size;
5424 	m_adj(m_new, sc->rx_bd_mbuf_align_pad);
5425 
5426 	/* ToDo: Consider calling m_fragment() to test error handling. */
5427 
5428 	/* Map the mbuf cluster into device memory. */
5429 	error = bus_dmamap_load_mbuf_sg(sc->rx_mbuf_tag,
5430 	    sc->rx_mbuf_map[chain_prod], m_new, segs, &nsegs, BUS_DMA_NOWAIT);
5431 
5432 	/* Handle any mapping errors. */
5433 	if (error) {
5434 		BCE_PRINTF("%s(%d): Error mapping mbuf into RX "
5435 		    "chain (%d)!\n", __FILE__, __LINE__, error);
5436 
5437 		sc->dma_map_addr_rx_failed_count++;
5438 		m_freem(m_new);
5439 
5440 		DBRUN(sc->debug_rx_mbuf_alloc--);
5441 
5442 		rc = ENOBUFS;
5443 		goto bce_get_rx_buf_exit;
5444 	}
5445 
5446 	/* All mbufs must map to a single segment. */
5447 	KASSERT(nsegs == 1, ("%s(): Too many segments returned (%d)!",
5448 	    __FUNCTION__, nsegs));
5449 
5450 	/* Setup the rx_bd for the segment. */
5451 	rxbd = &sc->rx_bd_chain[RX_PAGE(chain_prod)][RX_IDX(chain_prod)];
5452 
5453 	rxbd->rx_bd_haddr_lo  = htole32(BCE_ADDR_LO(segs[0].ds_addr));
5454 	rxbd->rx_bd_haddr_hi  = htole32(BCE_ADDR_HI(segs[0].ds_addr));
5455 	rxbd->rx_bd_len       = htole32(segs[0].ds_len);
5456 	rxbd->rx_bd_flags     = htole32(RX_BD_FLAGS_START | RX_BD_FLAGS_END);
5457 	*prod_bseq += segs[0].ds_len;
5458 
5459 	/* Save the mbuf and update our counter. */
5460 	sc->rx_mbuf_ptr[chain_prod] = m_new;
5461 	sc->free_rx_bd -= nsegs;
5462 
5463 	DBRUNMSG(BCE_INSANE_RECV,
5464 	    bce_dump_rx_mbuf_chain(sc, debug_chain_prod, nsegs));
5465 
5466 	DBPRINT(sc, BCE_EXTREME_RECV, "%s(exit): prod = 0x%04X, "
5467 	    "chain_prod = 0x%04X, prod_bseq = 0x%08X\n", __FUNCTION__, prod,
5468 	    chain_prod, *prod_bseq);
5469 
5470 bce_get_rx_buf_exit:
5471 	DBEXIT(BCE_EXTREME_RESET | BCE_EXTREME_RECV | BCE_EXTREME_LOAD);
5472 
5473 	return(rc);
5474 }
5475 
5476 
5477 /****************************************************************************/
5478 /* Encapsulate an mbuf cluster into the page chain.                         */
5479 /*                                                                          */
5480 /* Returns:                                                                 */
5481 /*   0 for success, positive value for failure.                             */
5482 /****************************************************************************/
5483 static int
5484 bce_get_pg_buf(struct bce_softc *sc, u16 prod, u16 prod_idx)
5485 {
5486 	bus_dma_segment_t segs[1];
5487 	struct mbuf *m_new = NULL;
5488 	struct rx_bd *pgbd;
5489 	int error, nsegs, rc = 0;
5490 #ifdef BCE_DEBUG
5491 	u16 debug_prod_idx = prod_idx;
5492 #endif
5493 
5494 	DBENTER(BCE_EXTREME_RESET | BCE_EXTREME_RECV | BCE_EXTREME_LOAD);
5495 
5496 	/* Make sure the inputs are valid. */
5497 	DBRUNIF((prod_idx > MAX_PG_BD_ALLOC),
5498 	    BCE_PRINTF("%s(%d): page producer out of range: "
5499 	    "0x%04X > 0x%04X\n", __FILE__, __LINE__,
5500 	    prod_idx, (u16)MAX_PG_BD_ALLOC));
5501 
5502 	DBPRINT(sc, BCE_EXTREME_RECV, "%s(enter): prod = 0x%04X, "
5503 	    "chain_prod = 0x%04X\n", __FUNCTION__, prod, prod_idx);
5504 
5505 	/* Update counters if we've hit a new low or run out of pages. */
5506 	DBRUNIF((sc->free_pg_bd < sc->pg_low_watermark),
5507 	    sc->pg_low_watermark = sc->free_pg_bd);
5508 	DBRUNIF((sc->free_pg_bd == sc->max_pg_bd), sc->pg_empty_count++);
5509 
5510 	/* Simulate an mbuf allocation failure. */
5511 	DBRUNIF(DB_RANDOMTRUE(mbuf_alloc_failed_sim_control),
5512 	    sc->mbuf_alloc_failed_count++;
5513 	    sc->mbuf_alloc_failed_sim_count++;
5514 	    rc = ENOBUFS;
5515 	    goto bce_get_pg_buf_exit);
5516 
5517 	/* This is a new mbuf allocation. */
5518 	m_new = m_getcl(M_NOWAIT, MT_DATA, 0);
5519 	if (m_new == NULL) {
5520 		sc->mbuf_alloc_failed_count++;
5521 		rc = ENOBUFS;
5522 		goto bce_get_pg_buf_exit;
5523 	}
5524 
5525 	DBRUN(sc->debug_pg_mbuf_alloc++);
5526 
5527 	m_new->m_len = MCLBYTES;
5528 
5529 	/* ToDo: Consider calling m_fragment() to test error handling. */
5530 
5531 	/* Map the mbuf cluster into device memory. */
5532 	error = bus_dmamap_load_mbuf_sg(sc->pg_mbuf_tag,
5533 	    sc->pg_mbuf_map[prod_idx], m_new, segs, &nsegs, BUS_DMA_NOWAIT);
5534 
5535 	/* Handle any mapping errors. */
5536 	if (error) {
5537 		BCE_PRINTF("%s(%d): Error mapping mbuf into page chain!\n",
5538 		    __FILE__, __LINE__);
5539 
5540 		m_freem(m_new);
5541 		DBRUN(sc->debug_pg_mbuf_alloc--);
5542 
5543 		rc = ENOBUFS;
5544 		goto bce_get_pg_buf_exit;
5545 	}
5546 
5547 	/* All mbufs must map to a single segment. */
5548 	KASSERT(nsegs == 1, ("%s(): Too many segments returned (%d)!",
5549 	    __FUNCTION__, nsegs));
5550 
5551 	/* ToDo: Do we need bus_dmamap_sync(,,BUS_DMASYNC_PREREAD) here? */
5552 
5553 	/*
5554 	 * The page chain uses the same rx_bd data structure
5555 	 * as the receive chain but doesn't require a byte sequence (bseq).
5556 	 */
5557 	pgbd = &sc->pg_bd_chain[PG_PAGE(prod_idx)][PG_IDX(prod_idx)];
5558 
5559 	pgbd->rx_bd_haddr_lo  = htole32(BCE_ADDR_LO(segs[0].ds_addr));
5560 	pgbd->rx_bd_haddr_hi  = htole32(BCE_ADDR_HI(segs[0].ds_addr));
5561 	pgbd->rx_bd_len       = htole32(MCLBYTES);
5562 	pgbd->rx_bd_flags     = htole32(RX_BD_FLAGS_START | RX_BD_FLAGS_END);
5563 
5564 	/* Save the mbuf and update our counter. */
5565 	sc->pg_mbuf_ptr[prod_idx] = m_new;
5566 	sc->free_pg_bd--;
5567 
5568 	DBRUNMSG(BCE_INSANE_RECV,
5569 	    bce_dump_pg_mbuf_chain(sc, debug_prod_idx, 1));
5570 
5571 	DBPRINT(sc, BCE_EXTREME_RECV, "%s(exit): prod = 0x%04X, "
5572 	    "prod_idx = 0x%04X\n", __FUNCTION__, prod, prod_idx);
5573 
5574 bce_get_pg_buf_exit:
5575 	DBEXIT(BCE_EXTREME_RESET | BCE_EXTREME_RECV | BCE_EXTREME_LOAD);
5576 
5577 	return(rc);
5578 }
5579 
5580 
5581 /****************************************************************************/
5582 /* Initialize the TX context memory.                                        */
5583 /*                                                                          */
5584 /* Returns:                                                                 */
5585 /*   Nothing                                                                */
5586 /****************************************************************************/
5587 static void
5588 bce_init_tx_context(struct bce_softc *sc)
5589 {
5590 	u32 val;
5591 
5592 	DBENTER(BCE_VERBOSE_RESET | BCE_VERBOSE_SEND | BCE_VERBOSE_CTX);
5593 
5594 	/* Initialize the context ID for an L2 TX chain. */
5595 	if (BCE_CHIP_NUM(sc) == BCE_CHIP_NUM_5709) {
5596 		/* Set the CID type to support an L2 connection. */
5597 		val = BCE_L2CTX_TX_TYPE_TYPE_L2_XI |
5598 		    BCE_L2CTX_TX_TYPE_SIZE_L2_XI;
5599 		CTX_WR(sc, GET_CID_ADDR(TX_CID), BCE_L2CTX_TX_TYPE_XI, val);
5600 		val = BCE_L2CTX_TX_CMD_TYPE_TYPE_L2_XI | (8 << 16);
5601 		CTX_WR(sc, GET_CID_ADDR(TX_CID),
5602 		    BCE_L2CTX_TX_CMD_TYPE_XI, val);
5603 
5604 		/* Point the hardware to the first page in the chain. */
5605 		val = BCE_ADDR_HI(sc->tx_bd_chain_paddr[0]);
5606 		CTX_WR(sc, GET_CID_ADDR(TX_CID),
5607 		    BCE_L2CTX_TX_TBDR_BHADDR_HI_XI, val);
5608 		val = BCE_ADDR_LO(sc->tx_bd_chain_paddr[0]);
5609 		CTX_WR(sc, GET_CID_ADDR(TX_CID),
5610 		    BCE_L2CTX_TX_TBDR_BHADDR_LO_XI, val);
5611 	} else {
5612 		/* Set the CID type to support an L2 connection. */
5613 		val = BCE_L2CTX_TX_TYPE_TYPE_L2 | BCE_L2CTX_TX_TYPE_SIZE_L2;
5614 		CTX_WR(sc, GET_CID_ADDR(TX_CID), BCE_L2CTX_TX_TYPE, val);
5615 		val = BCE_L2CTX_TX_CMD_TYPE_TYPE_L2 | (8 << 16);
5616 		CTX_WR(sc, GET_CID_ADDR(TX_CID), BCE_L2CTX_TX_CMD_TYPE, val);
5617 
5618 		/* Point the hardware to the first page in the chain. */
5619 		val = BCE_ADDR_HI(sc->tx_bd_chain_paddr[0]);
5620 		CTX_WR(sc, GET_CID_ADDR(TX_CID),
5621 		    BCE_L2CTX_TX_TBDR_BHADDR_HI, val);
5622 		val = BCE_ADDR_LO(sc->tx_bd_chain_paddr[0]);
5623 		CTX_WR(sc, GET_CID_ADDR(TX_CID),
5624 		    BCE_L2CTX_TX_TBDR_BHADDR_LO, val);
5625 	}
5626 
5627 	DBEXIT(BCE_VERBOSE_RESET | BCE_VERBOSE_SEND | BCE_VERBOSE_CTX);
5628 }
5629 
5630 
5631 /****************************************************************************/
5632 /* Allocate memory and initialize the TX data structures.                   */
5633 /*                                                                          */
5634 /* Returns:                                                                 */
5635 /*   0 for success, positive value for failure.                             */
5636 /****************************************************************************/
5637 static int
5638 bce_init_tx_chain(struct bce_softc *sc)
5639 {
5640 	struct tx_bd *txbd;
5641 	int i, rc = 0;
5642 
5643 	DBENTER(BCE_VERBOSE_RESET | BCE_VERBOSE_SEND | BCE_VERBOSE_LOAD);
5644 
5645 	/* Set the initial TX producer/consumer indices. */
5646 	sc->tx_prod        = 0;
5647 	sc->tx_cons        = 0;
5648 	sc->tx_prod_bseq   = 0;
5649 	sc->used_tx_bd     = 0;
5650 	sc->max_tx_bd      = USABLE_TX_BD_ALLOC;
5651 	DBRUN(sc->tx_hi_watermark = 0);
5652 	DBRUN(sc->tx_full_count = 0);
5653 
5654 	/*
5655 	 * The NetXtreme II supports a linked-list structre called
5656 	 * a Buffer Descriptor Chain (or BD chain).  A BD chain
5657 	 * consists of a series of 1 or more chain pages, each of which
5658 	 * consists of a fixed number of BD entries.
5659 	 * The last BD entry on each page is a pointer to the next page
5660 	 * in the chain, and the last pointer in the BD chain
5661 	 * points back to the beginning of the chain.
5662 	 */
5663 
5664 	/* Set the TX next pointer chain entries. */
5665 	for (i = 0; i < sc->tx_pages; i++) {
5666 		int j;
5667 
5668 		txbd = &sc->tx_bd_chain[i][USABLE_TX_BD_PER_PAGE];
5669 
5670 		/* Check if we've reached the last page. */
5671 		if (i == (sc->tx_pages - 1))
5672 			j = 0;
5673 		else
5674 			j = i + 1;
5675 
5676 		txbd->tx_bd_haddr_hi =
5677 		    htole32(BCE_ADDR_HI(sc->tx_bd_chain_paddr[j]));
5678 		txbd->tx_bd_haddr_lo =
5679 		    htole32(BCE_ADDR_LO(sc->tx_bd_chain_paddr[j]));
5680 	}
5681 
5682 	bce_init_tx_context(sc);
5683 
5684 	DBRUNMSG(BCE_INSANE_SEND, bce_dump_tx_chain(sc, 0, TOTAL_TX_BD_ALLOC));
5685 	DBEXIT(BCE_VERBOSE_RESET | BCE_VERBOSE_SEND | BCE_VERBOSE_LOAD);
5686 
5687 	return(rc);
5688 }
5689 
5690 
5691 /****************************************************************************/
5692 /* Free memory and clear the TX data structures.                            */
5693 /*                                                                          */
5694 /* Returns:                                                                 */
5695 /*   Nothing.                                                               */
5696 /****************************************************************************/
5697 static void
5698 bce_free_tx_chain(struct bce_softc *sc)
5699 {
5700 	int i;
5701 
5702 	DBENTER(BCE_VERBOSE_RESET | BCE_VERBOSE_SEND | BCE_VERBOSE_UNLOAD);
5703 
5704 	/* Unmap, unload, and free any mbufs still in the TX mbuf chain. */
5705 	for (i = 0; i < MAX_TX_BD_AVAIL; i++) {
5706 		if (sc->tx_mbuf_ptr[i] != NULL) {
5707 			if (sc->tx_mbuf_map[i] != NULL)
5708 				bus_dmamap_sync(sc->tx_mbuf_tag,
5709 				    sc->tx_mbuf_map[i],
5710 				    BUS_DMASYNC_POSTWRITE);
5711 			m_freem(sc->tx_mbuf_ptr[i]);
5712 			sc->tx_mbuf_ptr[i] = NULL;
5713 			DBRUN(sc->debug_tx_mbuf_alloc--);
5714 		}
5715 	}
5716 
5717 	/* Clear each TX chain page. */
5718 	for (i = 0; i < sc->tx_pages; i++)
5719 		bzero((char *)sc->tx_bd_chain[i], BCE_TX_CHAIN_PAGE_SZ);
5720 
5721 	sc->used_tx_bd = 0;
5722 
5723 	/* Check if we lost any mbufs in the process. */
5724 	DBRUNIF((sc->debug_tx_mbuf_alloc),
5725 	    BCE_PRINTF("%s(%d): Memory leak! Lost %d mbufs "
5726 	    "from tx chain!\n",	__FILE__, __LINE__,
5727 	    sc->debug_tx_mbuf_alloc));
5728 
5729 	DBEXIT(BCE_VERBOSE_RESET | BCE_VERBOSE_SEND | BCE_VERBOSE_UNLOAD);
5730 }
5731 
5732 
5733 /****************************************************************************/
5734 /* Initialize the RX context memory.                                        */
5735 /*                                                                          */
5736 /* Returns:                                                                 */
5737 /*   Nothing                                                                */
5738 /****************************************************************************/
5739 static void
5740 bce_init_rx_context(struct bce_softc *sc)
5741 {
5742 	u32 val;
5743 
5744 	DBENTER(BCE_VERBOSE_RESET | BCE_VERBOSE_RECV | BCE_VERBOSE_CTX);
5745 
5746 	/* Init the type, size, and BD cache levels for the RX context. */
5747 	val = BCE_L2CTX_RX_CTX_TYPE_CTX_BD_CHN_TYPE_VALUE |
5748 	    BCE_L2CTX_RX_CTX_TYPE_SIZE_L2 |
5749 	    (0x02 << BCE_L2CTX_RX_BD_PRE_READ_SHIFT);
5750 
5751 	/*
5752 	 * Set the level for generating pause frames
5753 	 * when the number of available rx_bd's gets
5754 	 * too low (the low watermark) and the level
5755 	 * when pause frames can be stopped (the high
5756 	 * watermark).
5757 	 */
5758 	if (BCE_CHIP_NUM(sc) == BCE_CHIP_NUM_5709) {
5759 		u32 lo_water, hi_water;
5760 
5761 		if (sc->bce_flags & BCE_USING_TX_FLOW_CONTROL) {
5762 			lo_water = BCE_L2CTX_RX_LO_WATER_MARK_DEFAULT;
5763 		} else {
5764 			lo_water = 0;
5765 		}
5766 
5767 		if (lo_water >= USABLE_RX_BD_ALLOC) {
5768 			lo_water = 0;
5769 		}
5770 
5771 		hi_water = USABLE_RX_BD_ALLOC / 4;
5772 
5773 		if (hi_water <= lo_water) {
5774 			lo_water = 0;
5775 		}
5776 
5777 		lo_water /= BCE_L2CTX_RX_LO_WATER_MARK_SCALE;
5778 		hi_water /= BCE_L2CTX_RX_HI_WATER_MARK_SCALE;
5779 
5780 		if (hi_water > 0xf)
5781 			hi_water = 0xf;
5782 		else if (hi_water == 0)
5783 			lo_water = 0;
5784 
5785 		val |= (lo_water << BCE_L2CTX_RX_LO_WATER_MARK_SHIFT) |
5786 		    (hi_water << BCE_L2CTX_RX_HI_WATER_MARK_SHIFT);
5787 	}
5788 
5789 	CTX_WR(sc, GET_CID_ADDR(RX_CID), BCE_L2CTX_RX_CTX_TYPE, val);
5790 
5791 	/* Setup the MQ BIN mapping for l2_ctx_host_bseq. */
5792 	if (BCE_CHIP_NUM(sc) == BCE_CHIP_NUM_5709) {
5793 		val = REG_RD(sc, BCE_MQ_MAP_L2_5);
5794 		REG_WR(sc, BCE_MQ_MAP_L2_5, val | BCE_MQ_MAP_L2_5_ARM);
5795 	}
5796 
5797 	/* Point the hardware to the first page in the chain. */
5798 	val = BCE_ADDR_HI(sc->rx_bd_chain_paddr[0]);
5799 	CTX_WR(sc, GET_CID_ADDR(RX_CID), BCE_L2CTX_RX_NX_BDHADDR_HI, val);
5800 	val = BCE_ADDR_LO(sc->rx_bd_chain_paddr[0]);
5801 	CTX_WR(sc, GET_CID_ADDR(RX_CID), BCE_L2CTX_RX_NX_BDHADDR_LO, val);
5802 
5803 	DBEXIT(BCE_VERBOSE_RESET | BCE_VERBOSE_RECV | BCE_VERBOSE_CTX);
5804 }
5805 
5806 
5807 /****************************************************************************/
5808 /* Allocate memory and initialize the RX data structures.                   */
5809 /*                                                                          */
5810 /* Returns:                                                                 */
5811 /*   0 for success, positive value for failure.                             */
5812 /****************************************************************************/
5813 static int
5814 bce_init_rx_chain(struct bce_softc *sc)
5815 {
5816 	struct rx_bd *rxbd;
5817 	int i, rc = 0;
5818 
5819 	DBENTER(BCE_VERBOSE_RESET | BCE_VERBOSE_RECV | BCE_VERBOSE_LOAD |
5820 	    BCE_VERBOSE_CTX);
5821 
5822 	/* Initialize the RX producer and consumer indices. */
5823 	sc->rx_prod        = 0;
5824 	sc->rx_cons        = 0;
5825 	sc->rx_prod_bseq   = 0;
5826 	sc->free_rx_bd     = USABLE_RX_BD_ALLOC;
5827 	sc->max_rx_bd      = USABLE_RX_BD_ALLOC;
5828 
5829 	/* Initialize the RX next pointer chain entries. */
5830 	for (i = 0; i < sc->rx_pages; i++) {
5831 		int j;
5832 
5833 		rxbd = &sc->rx_bd_chain[i][USABLE_RX_BD_PER_PAGE];
5834 
5835 		/* Check if we've reached the last page. */
5836 		if (i == (sc->rx_pages - 1))
5837 			j = 0;
5838 		else
5839 			j = i + 1;
5840 
5841 		/* Setup the chain page pointers. */
5842 		rxbd->rx_bd_haddr_hi =
5843 		    htole32(BCE_ADDR_HI(sc->rx_bd_chain_paddr[j]));
5844 		rxbd->rx_bd_haddr_lo =
5845 		    htole32(BCE_ADDR_LO(sc->rx_bd_chain_paddr[j]));
5846 	}
5847 
5848 	/* Fill up the RX chain. */
5849 	bce_fill_rx_chain(sc);
5850 
5851 	DBRUN(sc->rx_low_watermark = USABLE_RX_BD_ALLOC);
5852 	DBRUN(sc->rx_empty_count = 0);
5853 	for (i = 0; i < sc->rx_pages; i++) {
5854 		bus_dmamap_sync(sc->rx_bd_chain_tag, sc->rx_bd_chain_map[i],
5855 		    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
5856 	}
5857 
5858 	bce_init_rx_context(sc);
5859 
5860 	DBRUNMSG(BCE_EXTREME_RECV,
5861 	    bce_dump_rx_bd_chain(sc, 0, TOTAL_RX_BD_ALLOC));
5862 	DBEXIT(BCE_VERBOSE_RESET | BCE_VERBOSE_RECV | BCE_VERBOSE_LOAD |
5863 	    BCE_VERBOSE_CTX);
5864 
5865 	/* ToDo: Are there possible failure modes here? */
5866 
5867 	return(rc);
5868 }
5869 
5870 
5871 /****************************************************************************/
5872 /* Add mbufs to the RX chain until its full or an mbuf allocation error     */
5873 /* occurs.                                                                  */
5874 /*                                                                          */
5875 /* Returns:                                                                 */
5876 /*   Nothing                                                                */
5877 /****************************************************************************/
5878 static void
5879 bce_fill_rx_chain(struct bce_softc *sc)
5880 {
5881 	u16 prod, prod_idx;
5882 	u32 prod_bseq;
5883 
5884 	DBENTER(BCE_VERBOSE_RESET | BCE_EXTREME_RECV | BCE_VERBOSE_LOAD |
5885 	    BCE_VERBOSE_CTX);
5886 
5887 	/* Get the RX chain producer indices. */
5888 	prod      = sc->rx_prod;
5889 	prod_bseq = sc->rx_prod_bseq;
5890 
5891 	/* Keep filling the RX chain until it's full. */
5892 	while (sc->free_rx_bd > 0) {
5893 		prod_idx = RX_CHAIN_IDX(prod);
5894 		if (bce_get_rx_buf(sc, prod, prod_idx, &prod_bseq)) {
5895 			/* Bail out if we can't add an mbuf to the chain. */
5896 			break;
5897 		}
5898 		prod = NEXT_RX_BD(prod);
5899 	}
5900 
5901 	/* Save the RX chain producer indices. */
5902 	sc->rx_prod      = prod;
5903 	sc->rx_prod_bseq = prod_bseq;
5904 
5905 	/* We should never end up pointing to a next page pointer. */
5906 	DBRUNIF(((prod & USABLE_RX_BD_PER_PAGE) == USABLE_RX_BD_PER_PAGE),
5907 	    BCE_PRINTF("%s(): Invalid rx_prod value: 0x%04X\n",
5908 	    __FUNCTION__, rx_prod));
5909 
5910 	/* Write the mailbox and tell the chip about the waiting rx_bd's. */
5911 	REG_WR16(sc, MB_GET_CID_ADDR(RX_CID) + BCE_L2MQ_RX_HOST_BDIDX, prod);
5912 	REG_WR(sc, MB_GET_CID_ADDR(RX_CID) + BCE_L2MQ_RX_HOST_BSEQ, prod_bseq);
5913 
5914 	DBEXIT(BCE_VERBOSE_RESET | BCE_EXTREME_RECV | BCE_VERBOSE_LOAD |
5915 	    BCE_VERBOSE_CTX);
5916 }
5917 
5918 
5919 /****************************************************************************/
5920 /* Free memory and clear the RX data structures.                            */
5921 /*                                                                          */
5922 /* Returns:                                                                 */
5923 /*   Nothing.                                                               */
5924 /****************************************************************************/
5925 static void
5926 bce_free_rx_chain(struct bce_softc *sc)
5927 {
5928 	int i;
5929 
5930 	DBENTER(BCE_VERBOSE_RESET | BCE_VERBOSE_RECV | BCE_VERBOSE_UNLOAD);
5931 
5932 	/* Free any mbufs still in the RX mbuf chain. */
5933 	for (i = 0; i < MAX_RX_BD_AVAIL; i++) {
5934 		if (sc->rx_mbuf_ptr[i] != NULL) {
5935 			if (sc->rx_mbuf_map[i] != NULL)
5936 				bus_dmamap_sync(sc->rx_mbuf_tag,
5937 				    sc->rx_mbuf_map[i],
5938 				    BUS_DMASYNC_POSTREAD);
5939 			m_freem(sc->rx_mbuf_ptr[i]);
5940 			sc->rx_mbuf_ptr[i] = NULL;
5941 			DBRUN(sc->debug_rx_mbuf_alloc--);
5942 		}
5943 	}
5944 
5945 	/* Clear each RX chain page. */
5946 	for (i = 0; i < sc->rx_pages; i++)
5947 		if (sc->rx_bd_chain[i] != NULL)
5948 			bzero((char *)sc->rx_bd_chain[i],
5949 			    BCE_RX_CHAIN_PAGE_SZ);
5950 
5951 	sc->free_rx_bd = sc->max_rx_bd;
5952 
5953 	/* Check if we lost any mbufs in the process. */
5954 	DBRUNIF((sc->debug_rx_mbuf_alloc),
5955 	    BCE_PRINTF("%s(): Memory leak! Lost %d mbufs from rx chain!\n",
5956 	    __FUNCTION__, sc->debug_rx_mbuf_alloc));
5957 
5958 	DBEXIT(BCE_VERBOSE_RESET | BCE_VERBOSE_RECV | BCE_VERBOSE_UNLOAD);
5959 }
5960 
5961 
5962 /****************************************************************************/
5963 /* Allocate memory and initialize the page data structures.                 */
5964 /* Assumes that bce_init_rx_chain() has not already been called.            */
5965 /*                                                                          */
5966 /* Returns:                                                                 */
5967 /*   0 for success, positive value for failure.                             */
5968 /****************************************************************************/
5969 static int
5970 bce_init_pg_chain(struct bce_softc *sc)
5971 {
5972 	struct rx_bd *pgbd;
5973 	int i, rc = 0;
5974 	u32 val;
5975 
5976 	DBENTER(BCE_VERBOSE_RESET | BCE_VERBOSE_RECV | BCE_VERBOSE_LOAD |
5977 		BCE_VERBOSE_CTX);
5978 
5979 	/* Initialize the page producer and consumer indices. */
5980 	sc->pg_prod        = 0;
5981 	sc->pg_cons        = 0;
5982 	sc->free_pg_bd     = USABLE_PG_BD_ALLOC;
5983 	sc->max_pg_bd      = USABLE_PG_BD_ALLOC;
5984 	DBRUN(sc->pg_low_watermark = sc->max_pg_bd);
5985 	DBRUN(sc->pg_empty_count = 0);
5986 
5987 	/* Initialize the page next pointer chain entries. */
5988 	for (i = 0; i < sc->pg_pages; i++) {
5989 		int j;
5990 
5991 		pgbd = &sc->pg_bd_chain[i][USABLE_PG_BD_PER_PAGE];
5992 
5993 		/* Check if we've reached the last page. */
5994 		if (i == (sc->pg_pages - 1))
5995 			j = 0;
5996 		else
5997 			j = i + 1;
5998 
5999 		/* Setup the chain page pointers. */
6000 		pgbd->rx_bd_haddr_hi =
6001 		    htole32(BCE_ADDR_HI(sc->pg_bd_chain_paddr[j]));
6002 		pgbd->rx_bd_haddr_lo =
6003 		    htole32(BCE_ADDR_LO(sc->pg_bd_chain_paddr[j]));
6004 	}
6005 
6006 	/* Setup the MQ BIN mapping for host_pg_bidx. */
6007 	if (BCE_CHIP_NUM(sc) == BCE_CHIP_NUM_5709)
6008 		REG_WR(sc, BCE_MQ_MAP_L2_3, BCE_MQ_MAP_L2_3_DEFAULT);
6009 
6010 	CTX_WR(sc, GET_CID_ADDR(RX_CID), BCE_L2CTX_RX_PG_BUF_SIZE, 0);
6011 
6012 	/* Configure the rx_bd and page chain mbuf cluster size. */
6013 	val = (sc->rx_bd_mbuf_data_len << 16) | MCLBYTES;
6014 	CTX_WR(sc, GET_CID_ADDR(RX_CID), BCE_L2CTX_RX_PG_BUF_SIZE, val);
6015 
6016 	/* Configure the context reserved for jumbo support. */
6017 	CTX_WR(sc, GET_CID_ADDR(RX_CID), BCE_L2CTX_RX_RBDC_KEY,
6018 		BCE_L2CTX_RX_RBDC_JUMBO_KEY);
6019 
6020 	/* Point the hardware to the first page in the page chain. */
6021 	val = BCE_ADDR_HI(sc->pg_bd_chain_paddr[0]);
6022 	CTX_WR(sc, GET_CID_ADDR(RX_CID), BCE_L2CTX_RX_NX_PG_BDHADDR_HI, val);
6023 	val = BCE_ADDR_LO(sc->pg_bd_chain_paddr[0]);
6024 	CTX_WR(sc, GET_CID_ADDR(RX_CID), BCE_L2CTX_RX_NX_PG_BDHADDR_LO, val);
6025 
6026 	/* Fill up the page chain. */
6027 	bce_fill_pg_chain(sc);
6028 
6029 	for (i = 0; i < sc->pg_pages; i++) {
6030 		bus_dmamap_sync(sc->pg_bd_chain_tag, sc->pg_bd_chain_map[i],
6031 		    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
6032 	}
6033 
6034 	DBRUNMSG(BCE_EXTREME_RECV,
6035 	    bce_dump_pg_chain(sc, 0, TOTAL_PG_BD_ALLOC));
6036 	DBEXIT(BCE_VERBOSE_RESET | BCE_VERBOSE_RECV | BCE_VERBOSE_LOAD |
6037 		BCE_VERBOSE_CTX);
6038 	return(rc);
6039 }
6040 
6041 
6042 /****************************************************************************/
6043 /* Add mbufs to the page chain until its full or an mbuf allocation error   */
6044 /* occurs.                                                                  */
6045 /*                                                                          */
6046 /* Returns:                                                                 */
6047 /*   Nothing                                                                */
6048 /****************************************************************************/
6049 static void
6050 bce_fill_pg_chain(struct bce_softc *sc)
6051 {
6052 	u16 prod, prod_idx;
6053 
6054 	DBENTER(BCE_VERBOSE_RESET | BCE_EXTREME_RECV | BCE_VERBOSE_LOAD |
6055 	    BCE_VERBOSE_CTX);
6056 
6057 	/* Get the page chain prodcuer index. */
6058 	prod = sc->pg_prod;
6059 
6060 	/* Keep filling the page chain until it's full. */
6061 	while (sc->free_pg_bd > 0) {
6062 		prod_idx = PG_CHAIN_IDX(prod);
6063 		if (bce_get_pg_buf(sc, prod, prod_idx)) {
6064 			/* Bail out if we can't add an mbuf to the chain. */
6065 			break;
6066 		}
6067 		prod = NEXT_PG_BD(prod);
6068 	}
6069 
6070 	/* Save the page chain producer index. */
6071 	sc->pg_prod = prod;
6072 
6073 	DBRUNIF(((prod & USABLE_RX_BD_PER_PAGE) == USABLE_RX_BD_PER_PAGE),
6074 	    BCE_PRINTF("%s(): Invalid pg_prod value: 0x%04X\n",
6075 	    __FUNCTION__, pg_prod));
6076 
6077 	/*
6078 	 * Write the mailbox and tell the chip about
6079 	 * the new rx_bd's in the page chain.
6080 	 */
6081 	REG_WR16(sc, MB_GET_CID_ADDR(RX_CID) + BCE_L2MQ_RX_HOST_PG_BDIDX,
6082 	    prod);
6083 
6084 	DBEXIT(BCE_VERBOSE_RESET | BCE_EXTREME_RECV | BCE_VERBOSE_LOAD |
6085 	    BCE_VERBOSE_CTX);
6086 }
6087 
6088 
6089 /****************************************************************************/
6090 /* Free memory and clear the RX data structures.                            */
6091 /*                                                                          */
6092 /* Returns:                                                                 */
6093 /*   Nothing.                                                               */
6094 /****************************************************************************/
6095 static void
6096 bce_free_pg_chain(struct bce_softc *sc)
6097 {
6098 	int i;
6099 
6100 	DBENTER(BCE_VERBOSE_RESET | BCE_VERBOSE_RECV | BCE_VERBOSE_UNLOAD);
6101 
6102 	/* Free any mbufs still in the mbuf page chain. */
6103 	for (i = 0; i < MAX_PG_BD_AVAIL; i++) {
6104 		if (sc->pg_mbuf_ptr[i] != NULL) {
6105 			if (sc->pg_mbuf_map[i] != NULL)
6106 				bus_dmamap_sync(sc->pg_mbuf_tag,
6107 				    sc->pg_mbuf_map[i],
6108 				    BUS_DMASYNC_POSTREAD);
6109 			m_freem(sc->pg_mbuf_ptr[i]);
6110 			sc->pg_mbuf_ptr[i] = NULL;
6111 			DBRUN(sc->debug_pg_mbuf_alloc--);
6112 		}
6113 	}
6114 
6115 	/* Clear each page chain pages. */
6116 	for (i = 0; i < sc->pg_pages; i++)
6117 		bzero((char *)sc->pg_bd_chain[i], BCE_PG_CHAIN_PAGE_SZ);
6118 
6119 	sc->free_pg_bd = sc->max_pg_bd;
6120 
6121 	/* Check if we lost any mbufs in the process. */
6122 	DBRUNIF((sc->debug_pg_mbuf_alloc),
6123 	    BCE_PRINTF("%s(): Memory leak! Lost %d mbufs from page chain!\n",
6124 	    __FUNCTION__, sc->debug_pg_mbuf_alloc));
6125 
6126 	DBEXIT(BCE_VERBOSE_RESET | BCE_VERBOSE_RECV | BCE_VERBOSE_UNLOAD);
6127 }
6128 
6129 
6130 static u32
6131 bce_get_rphy_link(struct bce_softc *sc)
6132 {
6133 	u32 advertise, link;
6134 	int fdpx;
6135 
6136 	advertise = 0;
6137 	fdpx = 0;
6138 	if ((sc->bce_phy_flags & BCE_PHY_REMOTE_PORT_FIBER_FLAG) != 0)
6139 		link = bce_shmem_rd(sc, BCE_RPHY_SERDES_LINK);
6140 	else
6141 		link = bce_shmem_rd(sc, BCE_RPHY_COPPER_LINK);
6142 	if (link & BCE_NETLINK_ANEG_ENB)
6143 		advertise |= BCE_NETLINK_ANEG_ENB;
6144 	if (link & BCE_NETLINK_SPEED_10HALF)
6145 		advertise |= BCE_NETLINK_SPEED_10HALF;
6146 	if (link & BCE_NETLINK_SPEED_10FULL) {
6147 		advertise |= BCE_NETLINK_SPEED_10FULL;
6148 		fdpx++;
6149 	}
6150 	if (link & BCE_NETLINK_SPEED_100HALF)
6151 		advertise |= BCE_NETLINK_SPEED_100HALF;
6152 	if (link & BCE_NETLINK_SPEED_100FULL) {
6153 		advertise |= BCE_NETLINK_SPEED_100FULL;
6154 		fdpx++;
6155 	}
6156 	if (link & BCE_NETLINK_SPEED_1000HALF)
6157 		advertise |= BCE_NETLINK_SPEED_1000HALF;
6158 	if (link & BCE_NETLINK_SPEED_1000FULL) {
6159 		advertise |= BCE_NETLINK_SPEED_1000FULL;
6160 		fdpx++;
6161 	}
6162 	if (link & BCE_NETLINK_SPEED_2500HALF)
6163 		advertise |= BCE_NETLINK_SPEED_2500HALF;
6164 	if (link & BCE_NETLINK_SPEED_2500FULL) {
6165 		advertise |= BCE_NETLINK_SPEED_2500FULL;
6166 		fdpx++;
6167 	}
6168 	if (fdpx)
6169 		advertise |= BCE_NETLINK_FC_PAUSE_SYM |
6170 		    BCE_NETLINK_FC_PAUSE_ASYM;
6171 	if ((sc->bce_phy_flags & BCE_PHY_REMOTE_PORT_FIBER_FLAG) == 0)
6172 		advertise |= BCE_NETLINK_PHY_APP_REMOTE |
6173 		    BCE_NETLINK_ETH_AT_WIRESPEED;
6174 
6175 	return (advertise);
6176 }
6177 
6178 
6179 /****************************************************************************/
6180 /* Set media options.                                                       */
6181 /*                                                                          */
6182 /* Returns:                                                                 */
6183 /*   0 for success, positive value for failure.                             */
6184 /****************************************************************************/
6185 static int
6186 bce_ifmedia_upd(struct ifnet *ifp)
6187 {
6188 	struct bce_softc *sc = ifp->if_softc;
6189 	int error;
6190 
6191 	DBENTER(BCE_VERBOSE);
6192 
6193 	BCE_LOCK(sc);
6194 	error = bce_ifmedia_upd_locked(ifp);
6195 	BCE_UNLOCK(sc);
6196 
6197 	DBEXIT(BCE_VERBOSE);
6198 	return (error);
6199 }
6200 
6201 
6202 /****************************************************************************/
6203 /* Set media options.                                                       */
6204 /*                                                                          */
6205 /* Returns:                                                                 */
6206 /*   Nothing.                                                               */
6207 /****************************************************************************/
6208 static int
6209 bce_ifmedia_upd_locked(struct ifnet *ifp)
6210 {
6211 	struct bce_softc *sc = ifp->if_softc;
6212 	struct mii_data *mii;
6213 	struct mii_softc *miisc;
6214 	struct ifmedia *ifm;
6215 	u32 link;
6216 	int error, fdx;
6217 
6218 	DBENTER(BCE_VERBOSE_PHY);
6219 
6220 	error = 0;
6221 	BCE_LOCK_ASSERT(sc);
6222 
6223 	sc->bce_link_up = FALSE;
6224 	if ((sc->bce_phy_flags & BCE_PHY_REMOTE_CAP_FLAG) != 0) {
6225 		ifm = &sc->bce_ifmedia;
6226 		if (IFM_TYPE(ifm->ifm_media) != IFM_ETHER)
6227 			return (EINVAL);
6228 		link = 0;
6229 		fdx = IFM_OPTIONS(ifm->ifm_media) & IFM_FDX;
6230 		switch(IFM_SUBTYPE(ifm->ifm_media)) {
6231 		case IFM_AUTO:
6232 			/*
6233 			 * Check advertised link of remote PHY by reading
6234 			 * BCE_RPHY_SERDES_LINK or BCE_RPHY_COPPER_LINK.
6235 			 * Always use the same link type of remote PHY.
6236 			 */
6237 			link = bce_get_rphy_link(sc);
6238 			break;
6239 		case IFM_2500_SX:
6240 			if ((sc->bce_phy_flags &
6241 			    (BCE_PHY_REMOTE_PORT_FIBER_FLAG |
6242 			    BCE_PHY_2_5G_CAPABLE_FLAG)) == 0)
6243 				return (EINVAL);
6244 			/*
6245 			 * XXX
6246 			 * Have to enable forced 2.5Gbps configuration.
6247 			 */
6248 			if (fdx != 0)
6249 				link |= BCE_NETLINK_SPEED_2500FULL;
6250 			else
6251 				link |= BCE_NETLINK_SPEED_2500HALF;
6252 			break;
6253 		case IFM_1000_SX:
6254 			if ((sc->bce_phy_flags &
6255 			    BCE_PHY_REMOTE_PORT_FIBER_FLAG) == 0)
6256 				return (EINVAL);
6257 			/*
6258 			 * XXX
6259 			 * Have to disable 2.5Gbps configuration.
6260 			 */
6261 			if (fdx != 0)
6262 				link = BCE_NETLINK_SPEED_1000FULL;
6263 			else
6264 				link = BCE_NETLINK_SPEED_1000HALF;
6265 			break;
6266 		case IFM_1000_T:
6267 			if (sc->bce_phy_flags & BCE_PHY_REMOTE_PORT_FIBER_FLAG)
6268 				return (EINVAL);
6269 			if (fdx != 0)
6270 				link = BCE_NETLINK_SPEED_1000FULL;
6271 			else
6272 				link = BCE_NETLINK_SPEED_1000HALF;
6273 			break;
6274 		case IFM_100_TX:
6275 			if (sc->bce_phy_flags & BCE_PHY_REMOTE_PORT_FIBER_FLAG)
6276 				return (EINVAL);
6277 			if (fdx != 0)
6278 				link = BCE_NETLINK_SPEED_100FULL;
6279 			else
6280 				link = BCE_NETLINK_SPEED_100HALF;
6281 			break;
6282 		case IFM_10_T:
6283 			if (sc->bce_phy_flags & BCE_PHY_REMOTE_PORT_FIBER_FLAG)
6284 				return (EINVAL);
6285 			if (fdx != 0)
6286 				link = BCE_NETLINK_SPEED_10FULL;
6287 			else
6288 				link = BCE_NETLINK_SPEED_10HALF;
6289 			break;
6290 		default:
6291 			return (EINVAL);
6292 		}
6293 		if (IFM_SUBTYPE(ifm->ifm_media) != IFM_AUTO) {
6294 			/*
6295 			 * XXX
6296 			 * Advertise pause capability for full-duplex media.
6297 			 */
6298 			if (fdx != 0)
6299 				link |= BCE_NETLINK_FC_PAUSE_SYM |
6300 				    BCE_NETLINK_FC_PAUSE_ASYM;
6301 			if ((sc->bce_phy_flags &
6302 			    BCE_PHY_REMOTE_PORT_FIBER_FLAG) == 0)
6303 				link |= BCE_NETLINK_PHY_APP_REMOTE |
6304 				    BCE_NETLINK_ETH_AT_WIRESPEED;
6305 		}
6306 
6307 		bce_shmem_wr(sc, BCE_MB_ARGS_0, link);
6308 		error = bce_fw_sync(sc, BCE_DRV_MSG_CODE_CMD_SET_LINK);
6309 	} else {
6310 		mii = device_get_softc(sc->bce_miibus);
6311 
6312 		/* Make sure the MII bus has been enumerated. */
6313 		if (mii) {
6314 			LIST_FOREACH(miisc, &mii->mii_phys, mii_list)
6315 				PHY_RESET(miisc);
6316 			error = mii_mediachg(mii);
6317 		}
6318 	}
6319 
6320 	DBEXIT(BCE_VERBOSE_PHY);
6321 	return (error);
6322 }
6323 
6324 
6325 static void
6326 bce_ifmedia_sts_rphy(struct bce_softc *sc, struct ifmediareq *ifmr)
6327 {
6328 	struct ifnet *ifp;
6329 	u32 link;
6330 
6331 	ifp = sc->bce_ifp;
6332 	BCE_LOCK_ASSERT(sc);
6333 
6334 	ifmr->ifm_status = IFM_AVALID;
6335 	ifmr->ifm_active = IFM_ETHER;
6336 	link = bce_shmem_rd(sc, BCE_LINK_STATUS);
6337 	/* XXX Handle heart beat status? */
6338 	if ((link & BCE_LINK_STATUS_LINK_UP) != 0)
6339 		ifmr->ifm_status |= IFM_ACTIVE;
6340 	else {
6341 		ifmr->ifm_active |= IFM_NONE;
6342 		ifp->if_baudrate = 0;
6343 		return;
6344 	}
6345 	switch (link & BCE_LINK_STATUS_SPEED_MASK) {
6346 	case BCE_LINK_STATUS_10HALF:
6347 		ifmr->ifm_active |= IFM_10_T | IFM_HDX;
6348 		ifp->if_baudrate = IF_Mbps(10UL);
6349 		break;
6350 	case BCE_LINK_STATUS_10FULL:
6351 		ifmr->ifm_active |= IFM_10_T | IFM_FDX;
6352 		ifp->if_baudrate = IF_Mbps(10UL);
6353 		break;
6354 	case BCE_LINK_STATUS_100HALF:
6355 		ifmr->ifm_active |= IFM_100_TX | IFM_HDX;
6356 		ifp->if_baudrate = IF_Mbps(100UL);
6357 		break;
6358 	case BCE_LINK_STATUS_100FULL:
6359 		ifmr->ifm_active |= IFM_100_TX | IFM_FDX;
6360 		ifp->if_baudrate = IF_Mbps(100UL);
6361 		break;
6362 	case BCE_LINK_STATUS_1000HALF:
6363 		if ((sc->bce_phy_flags & BCE_PHY_REMOTE_PORT_FIBER_FLAG) == 0)
6364 			ifmr->ifm_active |= IFM_1000_T | IFM_HDX;
6365 		else
6366 			ifmr->ifm_active |= IFM_1000_SX | IFM_HDX;
6367 		ifp->if_baudrate = IF_Mbps(1000UL);
6368 		break;
6369 	case BCE_LINK_STATUS_1000FULL:
6370 		if ((sc->bce_phy_flags & BCE_PHY_REMOTE_PORT_FIBER_FLAG) == 0)
6371 			ifmr->ifm_active |= IFM_1000_T | IFM_FDX;
6372 		else
6373 			ifmr->ifm_active |= IFM_1000_SX | IFM_FDX;
6374 		ifp->if_baudrate = IF_Mbps(1000UL);
6375 		break;
6376 	case BCE_LINK_STATUS_2500HALF:
6377 		if ((sc->bce_phy_flags & BCE_PHY_REMOTE_PORT_FIBER_FLAG) == 0) {
6378 			ifmr->ifm_active |= IFM_NONE;
6379 			return;
6380 		} else
6381 			ifmr->ifm_active |= IFM_2500_SX | IFM_HDX;
6382 		ifp->if_baudrate = IF_Mbps(2500UL);
6383 		break;
6384 	case BCE_LINK_STATUS_2500FULL:
6385 		if ((sc->bce_phy_flags & BCE_PHY_REMOTE_PORT_FIBER_FLAG) == 0) {
6386 			ifmr->ifm_active |= IFM_NONE;
6387 			return;
6388 		} else
6389 			ifmr->ifm_active |= IFM_2500_SX | IFM_FDX;
6390 		ifp->if_baudrate = IF_Mbps(2500UL);
6391 		break;
6392 	default:
6393 		ifmr->ifm_active |= IFM_NONE;
6394 		return;
6395 	}
6396 
6397 	if ((link & BCE_LINK_STATUS_RX_FC_ENABLED) != 0)
6398 		ifmr->ifm_active |= IFM_ETH_RXPAUSE;
6399 	if ((link & BCE_LINK_STATUS_TX_FC_ENABLED) != 0)
6400 		ifmr->ifm_active |= IFM_ETH_TXPAUSE;
6401 }
6402 
6403 
6404 /****************************************************************************/
6405 /* Reports current media status.                                            */
6406 /*                                                                          */
6407 /* Returns:                                                                 */
6408 /*   Nothing.                                                               */
6409 /****************************************************************************/
6410 static void
6411 bce_ifmedia_sts(struct ifnet *ifp, struct ifmediareq *ifmr)
6412 {
6413 	struct bce_softc *sc = ifp->if_softc;
6414 	struct mii_data *mii;
6415 
6416 	DBENTER(BCE_VERBOSE_PHY);
6417 
6418 	BCE_LOCK(sc);
6419 
6420 	if ((ifp->if_flags & IFF_UP) == 0) {
6421 		BCE_UNLOCK(sc);
6422 		return;
6423 	}
6424 
6425 	if ((sc->bce_phy_flags & BCE_PHY_REMOTE_CAP_FLAG) != 0)
6426 		bce_ifmedia_sts_rphy(sc, ifmr);
6427 	else {
6428 		mii = device_get_softc(sc->bce_miibus);
6429 		mii_pollstat(mii);
6430 		ifmr->ifm_active = mii->mii_media_active;
6431 		ifmr->ifm_status = mii->mii_media_status;
6432 	}
6433 
6434 	BCE_UNLOCK(sc);
6435 
6436 	DBEXIT(BCE_VERBOSE_PHY);
6437 }
6438 
6439 
6440 /****************************************************************************/
6441 /* Handles PHY generated interrupt events.                                  */
6442 /*                                                                          */
6443 /* Returns:                                                                 */
6444 /*   Nothing.                                                               */
6445 /****************************************************************************/
6446 static void
6447 bce_phy_intr(struct bce_softc *sc)
6448 {
6449 	u32 new_link_state, old_link_state;
6450 
6451 	DBENTER(BCE_VERBOSE_PHY | BCE_VERBOSE_INTR);
6452 
6453 	DBRUN(sc->phy_interrupts++);
6454 
6455 	new_link_state = sc->status_block->status_attn_bits &
6456 	    STATUS_ATTN_BITS_LINK_STATE;
6457 	old_link_state = sc->status_block->status_attn_bits_ack &
6458 	    STATUS_ATTN_BITS_LINK_STATE;
6459 
6460 	/* Handle any changes if the link state has changed. */
6461 	if (new_link_state != old_link_state) {
6462 
6463 		/* Update the status_attn_bits_ack field. */
6464 		if (new_link_state) {
6465 			REG_WR(sc, BCE_PCICFG_STATUS_BIT_SET_CMD,
6466 			    STATUS_ATTN_BITS_LINK_STATE);
6467 			DBPRINT(sc, BCE_INFO_PHY, "%s(): Link is now UP.\n",
6468 			    __FUNCTION__);
6469 		} else {
6470 			REG_WR(sc, BCE_PCICFG_STATUS_BIT_CLEAR_CMD,
6471 			    STATUS_ATTN_BITS_LINK_STATE);
6472 			DBPRINT(sc, BCE_INFO_PHY, "%s(): Link is now DOWN.\n",
6473 			    __FUNCTION__);
6474 		}
6475 
6476 		if ((sc->bce_phy_flags & BCE_PHY_REMOTE_CAP_FLAG) != 0) {
6477 			if (new_link_state) {
6478 				if (bootverbose)
6479 					if_printf(sc->bce_ifp, "link UP\n");
6480 				if_link_state_change(sc->bce_ifp,
6481 				    LINK_STATE_UP);
6482 			} else {
6483 				if (bootverbose)
6484 					if_printf(sc->bce_ifp, "link DOWN\n");
6485 				if_link_state_change(sc->bce_ifp,
6486 				    LINK_STATE_DOWN);
6487 			}
6488 		}
6489 		/*
6490 		 * Assume link is down and allow
6491 		 * tick routine to update the state
6492 		 * based on the actual media state.
6493 		 */
6494 		sc->bce_link_up = FALSE;
6495 		callout_stop(&sc->bce_tick_callout);
6496 		bce_tick(sc);
6497 	}
6498 
6499 	/* Acknowledge the link change interrupt. */
6500 	REG_WR(sc, BCE_EMAC_STATUS, BCE_EMAC_STATUS_LINK_CHANGE);
6501 
6502 	DBEXIT(BCE_VERBOSE_PHY | BCE_VERBOSE_INTR);
6503 }
6504 
6505 
6506 /****************************************************************************/
6507 /* Reads the receive consumer value from the status block (skipping over    */
6508 /* chain page pointer if necessary).                                        */
6509 /*                                                                          */
6510 /* Returns:                                                                 */
6511 /*   hw_cons                                                                */
6512 /****************************************************************************/
6513 static inline u16
6514 bce_get_hw_rx_cons(struct bce_softc *sc)
6515 {
6516 	u16 hw_cons;
6517 
6518 	rmb();
6519 	hw_cons = sc->status_block->status_rx_quick_consumer_index0;
6520 	if ((hw_cons & USABLE_RX_BD_PER_PAGE) == USABLE_RX_BD_PER_PAGE)
6521 		hw_cons++;
6522 
6523 	return hw_cons;
6524 }
6525 
6526 /****************************************************************************/
6527 /* Handles received frame interrupt events.                                 */
6528 /*                                                                          */
6529 /* Returns:                                                                 */
6530 /*   Nothing.                                                               */
6531 /****************************************************************************/
6532 static void
6533 bce_rx_intr(struct bce_softc *sc)
6534 {
6535 	struct ifnet *ifp = sc->bce_ifp;
6536 	struct l2_fhdr *l2fhdr;
6537 	struct ether_vlan_header *vh;
6538 	unsigned int pkt_len;
6539 	u16 sw_rx_cons, sw_rx_cons_idx, hw_rx_cons;
6540 	u32 status;
6541 	unsigned int rem_len;
6542 	u16 sw_pg_cons, sw_pg_cons_idx;
6543 
6544 	DBENTER(BCE_VERBOSE_RECV | BCE_VERBOSE_INTR);
6545 	DBRUN(sc->interrupts_rx++);
6546 	DBPRINT(sc, BCE_EXTREME_RECV, "%s(enter): rx_prod = 0x%04X, "
6547 	    "rx_cons = 0x%04X, rx_prod_bseq = 0x%08X\n",
6548 	    __FUNCTION__, sc->rx_prod, sc->rx_cons, sc->rx_prod_bseq);
6549 
6550 	/* Prepare the RX chain pages to be accessed by the host CPU. */
6551 	for (int i = 0; i < sc->rx_pages; i++)
6552 		bus_dmamap_sync(sc->rx_bd_chain_tag,
6553 		    sc->rx_bd_chain_map[i], BUS_DMASYNC_POSTREAD);
6554 
6555 	/* Prepare the page chain pages to be accessed by the host CPU. */
6556 	if (bce_hdr_split == TRUE) {
6557 		for (int i = 0; i < sc->pg_pages; i++)
6558 			bus_dmamap_sync(sc->pg_bd_chain_tag,
6559 			    sc->pg_bd_chain_map[i], BUS_DMASYNC_POSTREAD);
6560 	}
6561 
6562 	/* Get the hardware's view of the RX consumer index. */
6563 	hw_rx_cons = sc->hw_rx_cons = bce_get_hw_rx_cons(sc);
6564 
6565 	/* Get working copies of the driver's view of the consumer indices. */
6566 	sw_rx_cons = sc->rx_cons;
6567 	sw_pg_cons = sc->pg_cons;
6568 
6569 	/* Update some debug statistics counters */
6570 	DBRUNIF((sc->free_rx_bd < sc->rx_low_watermark),
6571 	    sc->rx_low_watermark = sc->free_rx_bd);
6572 	DBRUNIF((sc->free_rx_bd == sc->max_rx_bd),
6573 	    sc->rx_empty_count++);
6574 
6575 	/* Scan through the receive chain as long as there is work to do */
6576 	/* ToDo: Consider setting a limit on the number of packets processed. */
6577 	rmb();
6578 	while (sw_rx_cons != hw_rx_cons) {
6579 		struct mbuf *m0;
6580 
6581 		/* Convert the producer/consumer indices to an actual rx_bd index. */
6582 		sw_rx_cons_idx = RX_CHAIN_IDX(sw_rx_cons);
6583 
6584 		/* Unmap the mbuf from DMA space. */
6585 		bus_dmamap_sync(sc->rx_mbuf_tag,
6586 		    sc->rx_mbuf_map[sw_rx_cons_idx],
6587 		    BUS_DMASYNC_POSTREAD);
6588 		bus_dmamap_unload(sc->rx_mbuf_tag,
6589 		    sc->rx_mbuf_map[sw_rx_cons_idx]);
6590 
6591 		/* Remove the mbuf from the RX chain. */
6592 		m0 = sc->rx_mbuf_ptr[sw_rx_cons_idx];
6593 		sc->rx_mbuf_ptr[sw_rx_cons_idx] = NULL;
6594 		DBRUN(sc->debug_rx_mbuf_alloc--);
6595 		sc->free_rx_bd++;
6596 
6597 		/*
6598  		 * Frames received on the NetXteme II are prepended
6599  		 * with an l2_fhdr structure which provides status
6600  		 * information about the received frame (including
6601  		 * VLAN tags and checksum info).  The frames are
6602 		 * also automatically adjusted to word align the IP
6603  		 * header (i.e. two null bytes are inserted before
6604  		 * the Ethernet	header).  As a result the data
6605  		 * DMA'd by the controller into	the mbuf looks
6606 		 * like this:
6607 		 *
6608 		 * +---------+-----+---------------------+-----+
6609 		 * | l2_fhdr | pad | packet data         | FCS |
6610 		 * +---------+-----+---------------------+-----+
6611 		 *
6612  		 * The l2_fhdr needs to be checked and skipped and
6613  		 * the FCS needs to be stripped before sending the
6614 		 * packet up the stack.
6615 		 */
6616 		l2fhdr  = mtod(m0, struct l2_fhdr *);
6617 
6618 		/* Get the packet data + FCS length and the status. */
6619 		pkt_len = l2fhdr->l2_fhdr_pkt_len;
6620 		status  = l2fhdr->l2_fhdr_status;
6621 
6622 		/*
6623 		 * Skip over the l2_fhdr and pad, resulting in the
6624 		 * following data in the mbuf:
6625 		 * +---------------------+-----+
6626 		 * | packet data         | FCS |
6627 		 * +---------------------+-----+
6628 		 */
6629 		m_adj(m0, sizeof(struct l2_fhdr) + ETHER_ALIGN);
6630 
6631 		/*
6632  		 * When split header mode is used, an ethernet frame
6633  		 * may be split across the receive chain and the
6634  		 * page chain. If that occurs an mbuf cluster must be
6635  		 * reassembled from the individual mbuf pieces.
6636 		 */
6637 		if (bce_hdr_split == TRUE) {
6638 			/*
6639 			 * Check whether the received frame fits in a single
6640 			 * mbuf or not (i.e. packet data + FCS <=
6641 			 * sc->rx_bd_mbuf_data_len bytes).
6642 			 */
6643 			if (pkt_len > m0->m_len) {
6644 				/*
6645 				 * The received frame is larger than a single mbuf.
6646 				 * If the frame was a TCP frame then only the TCP
6647 				 * header is placed in the mbuf, the remaining
6648 				 * payload (including FCS) is placed in the page
6649 				 * chain, the SPLIT flag is set, and the header
6650 				 * length is placed in the IP checksum field.
6651 				 * If the frame is not a TCP frame then the mbuf
6652 				 * is filled and the remaining bytes are placed
6653 				 * in the page chain.
6654 				 */
6655 
6656 				DBPRINT(sc, BCE_INFO_RECV, "%s(): Found a large "
6657 					"packet.\n", __FUNCTION__);
6658 				DBRUN(sc->split_header_frames_rcvd++);
6659 
6660 				/*
6661 				 * When the page chain is enabled and the TCP
6662 				 * header has been split from the TCP payload,
6663 				 * the ip_xsum structure will reflect the length
6664 				 * of the TCP header, not the IP checksum.  Set
6665 				 * the packet length of the mbuf accordingly.
6666 				 */
6667 				if (status & L2_FHDR_STATUS_SPLIT) {
6668 					m0->m_len = l2fhdr->l2_fhdr_ip_xsum;
6669 					DBRUN(sc->split_header_tcp_frames_rcvd++);
6670 				}
6671 
6672 				rem_len = pkt_len - m0->m_len;
6673 
6674 				/* Pull mbufs off the page chain for any remaining data. */
6675 				while (rem_len > 0) {
6676 					struct mbuf *m_pg;
6677 
6678 					sw_pg_cons_idx = PG_CHAIN_IDX(sw_pg_cons);
6679 
6680 					/* Remove the mbuf from the page chain. */
6681 					m_pg = sc->pg_mbuf_ptr[sw_pg_cons_idx];
6682 					sc->pg_mbuf_ptr[sw_pg_cons_idx] = NULL;
6683 					DBRUN(sc->debug_pg_mbuf_alloc--);
6684 					sc->free_pg_bd++;
6685 
6686 					/* Unmap the page chain mbuf from DMA space. */
6687 					bus_dmamap_sync(sc->pg_mbuf_tag,
6688 						sc->pg_mbuf_map[sw_pg_cons_idx],
6689 						BUS_DMASYNC_POSTREAD);
6690 					bus_dmamap_unload(sc->pg_mbuf_tag,
6691 						sc->pg_mbuf_map[sw_pg_cons_idx]);
6692 
6693 					/* Adjust the mbuf length. */
6694 					if (rem_len < m_pg->m_len) {
6695 						/* The mbuf chain is complete. */
6696 						m_pg->m_len = rem_len;
6697 						rem_len = 0;
6698 					} else {
6699 						/* More packet data is waiting. */
6700 						rem_len -= m_pg->m_len;
6701 					}
6702 
6703 					/* Concatenate the mbuf cluster to the mbuf. */
6704 					m_cat(m0, m_pg);
6705 
6706 					sw_pg_cons = NEXT_PG_BD(sw_pg_cons);
6707 				}
6708 
6709 				/* Set the total packet length. */
6710 				m0->m_pkthdr.len = pkt_len;
6711 
6712 			} else {
6713 				/*
6714 				 * The received packet is small and fits in a
6715 				 * single mbuf (i.e. the l2_fhdr + pad + packet +
6716 				 * FCS <= MHLEN).  In other words, the packet is
6717 				 * 154 bytes or less in size.
6718 				 */
6719 
6720 				DBPRINT(sc, BCE_INFO_RECV, "%s(): Found a small "
6721 					"packet.\n", __FUNCTION__);
6722 
6723 				/* Set the total packet length. */
6724 				m0->m_pkthdr.len = m0->m_len = pkt_len;
6725 			}
6726 		} else
6727 			/* Set the total packet length. */
6728 			m0->m_pkthdr.len = m0->m_len = pkt_len;
6729 
6730 		/* Remove the trailing Ethernet FCS. */
6731 		m_adj(m0, -ETHER_CRC_LEN);
6732 
6733 		/* Check that the resulting mbuf chain is valid. */
6734 		DBRUN(m_sanity(m0, FALSE));
6735 		DBRUNIF(((m0->m_len < ETHER_HDR_LEN) |
6736 		    (m0->m_pkthdr.len > BCE_MAX_JUMBO_ETHER_MTU_VLAN)),
6737 		    BCE_PRINTF("Invalid Ethernet frame size!\n");
6738 		    m_print(m0, 128));
6739 
6740 		DBRUNIF(DB_RANDOMTRUE(l2fhdr_error_sim_control),
6741 		    sc->l2fhdr_error_sim_count++;
6742 		    status = status | L2_FHDR_ERRORS_PHY_DECODE);
6743 
6744 		/* Check the received frame for errors. */
6745 		if (status & (L2_FHDR_ERRORS_BAD_CRC |
6746 		    L2_FHDR_ERRORS_PHY_DECODE | L2_FHDR_ERRORS_ALIGNMENT |
6747 		    L2_FHDR_ERRORS_TOO_SHORT  | L2_FHDR_ERRORS_GIANT_FRAME)) {
6748 
6749 			/* Log the error and release the mbuf. */
6750 			ifp->if_ierrors++;
6751 			sc->l2fhdr_error_count++;
6752 
6753 			m_freem(m0);
6754 			m0 = NULL;
6755 			goto bce_rx_intr_next_rx;
6756 		}
6757 
6758 		/* Send the packet to the appropriate interface. */
6759 		m0->m_pkthdr.rcvif = ifp;
6760 
6761 		/* Assume no hardware checksum. */
6762 		m0->m_pkthdr.csum_flags = 0;
6763 
6764 		/* Validate the checksum if offload enabled. */
6765 		if (ifp->if_capenable & IFCAP_RXCSUM) {
6766 			/* Check for an IP datagram. */
6767 		 	if (!(status & L2_FHDR_STATUS_SPLIT) &&
6768 			    (status & L2_FHDR_STATUS_IP_DATAGRAM)) {
6769 				m0->m_pkthdr.csum_flags |= CSUM_IP_CHECKED;
6770 				DBRUN(sc->csum_offload_ip++);
6771 				/* Check if the IP checksum is valid. */
6772 				if ((l2fhdr->l2_fhdr_ip_xsum ^ 0xffff) == 0)
6773 					m0->m_pkthdr.csum_flags |=
6774 					    CSUM_IP_VALID;
6775 			}
6776 
6777 			/* Check for a valid TCP/UDP frame. */
6778 			if (status & (L2_FHDR_STATUS_TCP_SEGMENT |
6779 			    L2_FHDR_STATUS_UDP_DATAGRAM)) {
6780 
6781 				/* Check for a good TCP/UDP checksum. */
6782 				if ((status & (L2_FHDR_ERRORS_TCP_XSUM |
6783 				    L2_FHDR_ERRORS_UDP_XSUM)) == 0) {
6784 					DBRUN(sc->csum_offload_tcp_udp++);
6785 					m0->m_pkthdr.csum_data =
6786 					    l2fhdr->l2_fhdr_tcp_udp_xsum;
6787 					m0->m_pkthdr.csum_flags |=
6788 					    (CSUM_DATA_VALID
6789 					    | CSUM_PSEUDO_HDR);
6790 				}
6791 			}
6792 		}
6793 
6794 		/* Attach the VLAN tag.	*/
6795 		if ((status & L2_FHDR_STATUS_L2_VLAN_TAG) &&
6796 		    !(sc->rx_mode & BCE_EMAC_RX_MODE_KEEP_VLAN_TAG)) {
6797 			DBRUN(sc->vlan_tagged_frames_rcvd++);
6798 			if (ifp->if_capenable & IFCAP_VLAN_HWTAGGING) {
6799 				DBRUN(sc->vlan_tagged_frames_stripped++);
6800 #if __FreeBSD_version < 700000
6801 				VLAN_INPUT_TAG(ifp, m0,
6802 				    l2fhdr->l2_fhdr_vlan_tag, continue);
6803 #else
6804 				m0->m_pkthdr.ether_vtag =
6805 				    l2fhdr->l2_fhdr_vlan_tag;
6806 				m0->m_flags |= M_VLANTAG;
6807 #endif
6808 			} else {
6809 				/*
6810 				 * bce(4) controllers can't disable VLAN
6811 				 * tag stripping if management firmware
6812 				 * (ASF/IPMI/UMP) is running. So we always
6813 				 * strip VLAN tag and manually reconstruct
6814 				 * the VLAN frame by appending stripped
6815 				 * VLAN tag in driver if VLAN tag stripping
6816 				 * was disabled.
6817 				 *
6818 				 * TODO: LLC SNAP handling.
6819 				 */
6820 				bcopy(mtod(m0, uint8_t *),
6821 				    mtod(m0, uint8_t *) - ETHER_VLAN_ENCAP_LEN,
6822 				    ETHER_ADDR_LEN * 2);
6823 				m0->m_data -= ETHER_VLAN_ENCAP_LEN;
6824 				vh = mtod(m0, struct ether_vlan_header *);
6825 				vh->evl_encap_proto = htons(ETHERTYPE_VLAN);
6826 				vh->evl_tag = htons(l2fhdr->l2_fhdr_vlan_tag);
6827 				m0->m_pkthdr.len += ETHER_VLAN_ENCAP_LEN;
6828 				m0->m_len += ETHER_VLAN_ENCAP_LEN;
6829 			}
6830 		}
6831 
6832 		/* Increment received packet statistics. */
6833 		ifp->if_ipackets++;
6834 
6835 bce_rx_intr_next_rx:
6836 		sw_rx_cons = NEXT_RX_BD(sw_rx_cons);
6837 
6838 		/* If we have a packet, pass it up the stack */
6839 		if (m0) {
6840 			/* Make sure we don't lose our place when we release the lock. */
6841 			sc->rx_cons = sw_rx_cons;
6842 			sc->pg_cons = sw_pg_cons;
6843 
6844 			BCE_UNLOCK(sc);
6845 			(*ifp->if_input)(ifp, m0);
6846 			BCE_LOCK(sc);
6847 
6848 			/* Recover our place. */
6849 			sw_rx_cons = sc->rx_cons;
6850 			sw_pg_cons = sc->pg_cons;
6851 		}
6852 
6853 		/* Refresh hw_cons to see if there's new work */
6854 		if (sw_rx_cons == hw_rx_cons)
6855 			hw_rx_cons = sc->hw_rx_cons = bce_get_hw_rx_cons(sc);
6856 	}
6857 
6858 	/* No new packets.  Refill the page chain. */
6859 	if (bce_hdr_split == TRUE) {
6860 		sc->pg_cons = sw_pg_cons;
6861 		bce_fill_pg_chain(sc);
6862 	}
6863 
6864 	/* No new packets.  Refill the RX chain. */
6865 	sc->rx_cons = sw_rx_cons;
6866 	bce_fill_rx_chain(sc);
6867 
6868 	/* Prepare the page chain pages to be accessed by the NIC. */
6869 	for (int i = 0; i < sc->rx_pages; i++)
6870 		bus_dmamap_sync(sc->rx_bd_chain_tag,
6871 		    sc->rx_bd_chain_map[i], BUS_DMASYNC_PREWRITE);
6872 
6873 	if (bce_hdr_split == TRUE) {
6874 		for (int i = 0; i < sc->pg_pages; i++)
6875 			bus_dmamap_sync(sc->pg_bd_chain_tag,
6876 			    sc->pg_bd_chain_map[i], BUS_DMASYNC_PREWRITE);
6877 	}
6878 
6879 	DBPRINT(sc, BCE_EXTREME_RECV, "%s(exit): rx_prod = 0x%04X, "
6880 	    "rx_cons = 0x%04X, rx_prod_bseq = 0x%08X\n",
6881 	    __FUNCTION__, sc->rx_prod, sc->rx_cons, sc->rx_prod_bseq);
6882 	DBEXIT(BCE_VERBOSE_RECV | BCE_VERBOSE_INTR);
6883 }
6884 
6885 
6886 /****************************************************************************/
6887 /* Reads the transmit consumer value from the status block (skipping over   */
6888 /* chain page pointer if necessary).                                        */
6889 /*                                                                          */
6890 /* Returns:                                                                 */
6891 /*   hw_cons                                                                */
6892 /****************************************************************************/
6893 static inline u16
6894 bce_get_hw_tx_cons(struct bce_softc *sc)
6895 {
6896 	u16 hw_cons;
6897 
6898 	mb();
6899 	hw_cons = sc->status_block->status_tx_quick_consumer_index0;
6900 	if ((hw_cons & USABLE_TX_BD_PER_PAGE) == USABLE_TX_BD_PER_PAGE)
6901 		hw_cons++;
6902 
6903 	return hw_cons;
6904 }
6905 
6906 
6907 /****************************************************************************/
6908 /* Handles transmit completion interrupt events.                            */
6909 /*                                                                          */
6910 /* Returns:                                                                 */
6911 /*   Nothing.                                                               */
6912 /****************************************************************************/
6913 static void
6914 bce_tx_intr(struct bce_softc *sc)
6915 {
6916 	struct ifnet *ifp = sc->bce_ifp;
6917 	u16 hw_tx_cons, sw_tx_cons, sw_tx_chain_cons;
6918 
6919 	DBENTER(BCE_VERBOSE_SEND | BCE_VERBOSE_INTR);
6920 	DBRUN(sc->interrupts_tx++);
6921 	DBPRINT(sc, BCE_EXTREME_SEND, "%s(enter): tx_prod = 0x%04X, "
6922 	    "tx_cons = 0x%04X, tx_prod_bseq = 0x%08X\n",
6923 	    __FUNCTION__, sc->tx_prod, sc->tx_cons, sc->tx_prod_bseq);
6924 
6925 	BCE_LOCK_ASSERT(sc);
6926 
6927 	/* Get the hardware's view of the TX consumer index. */
6928 	hw_tx_cons = sc->hw_tx_cons = bce_get_hw_tx_cons(sc);
6929 	sw_tx_cons = sc->tx_cons;
6930 
6931 	/* Prevent speculative reads of the status block. */
6932 	bus_space_barrier(sc->bce_btag, sc->bce_bhandle, 0, 0,
6933 	    BUS_SPACE_BARRIER_READ);
6934 
6935 	/* Cycle through any completed TX chain page entries. */
6936 	while (sw_tx_cons != hw_tx_cons) {
6937 #ifdef BCE_DEBUG
6938 		struct tx_bd *txbd = NULL;
6939 #endif
6940 		sw_tx_chain_cons = TX_CHAIN_IDX(sw_tx_cons);
6941 
6942 		DBPRINT(sc, BCE_INFO_SEND,
6943 		    "%s(): hw_tx_cons = 0x%04X, sw_tx_cons = 0x%04X, "
6944 		    "sw_tx_chain_cons = 0x%04X\n",
6945 		    __FUNCTION__, hw_tx_cons, sw_tx_cons, sw_tx_chain_cons);
6946 
6947 		DBRUNIF((sw_tx_chain_cons > MAX_TX_BD_ALLOC),
6948 		    BCE_PRINTF("%s(%d): TX chain consumer out of range! "
6949 		    " 0x%04X > 0x%04X\n", __FILE__, __LINE__, sw_tx_chain_cons,
6950 		    (int) MAX_TX_BD_ALLOC);
6951 		    bce_breakpoint(sc));
6952 
6953 		DBRUN(txbd = &sc->tx_bd_chain[TX_PAGE(sw_tx_chain_cons)]
6954 		    [TX_IDX(sw_tx_chain_cons)]);
6955 
6956 		DBRUNIF((txbd == NULL),
6957 		    BCE_PRINTF("%s(%d): Unexpected NULL tx_bd[0x%04X]!\n",
6958 		    __FILE__, __LINE__, sw_tx_chain_cons);
6959 		    bce_breakpoint(sc));
6960 
6961 		DBRUNMSG(BCE_INFO_SEND, BCE_PRINTF("%s(): ", __FUNCTION__);
6962 		    bce_dump_txbd(sc, sw_tx_chain_cons, txbd));
6963 
6964 		/*
6965 		 * Free the associated mbuf. Remember
6966 		 * that only the last tx_bd of a packet
6967 		 * has an mbuf pointer and DMA map.
6968 		 */
6969 		if (sc->tx_mbuf_ptr[sw_tx_chain_cons] != NULL) {
6970 
6971 			/* Validate that this is the last tx_bd. */
6972 			DBRUNIF((!(txbd->tx_bd_flags & TX_BD_FLAGS_END)),
6973 			    BCE_PRINTF("%s(%d): tx_bd END flag not set but "
6974 			    "txmbuf == NULL!\n", __FILE__, __LINE__);
6975 			    bce_breakpoint(sc));
6976 
6977 			DBRUNMSG(BCE_INFO_SEND,
6978 			    BCE_PRINTF("%s(): Unloading map/freeing mbuf "
6979 			    "from tx_bd[0x%04X]\n", __FUNCTION__,
6980 			    sw_tx_chain_cons));
6981 
6982 			/* Unmap the mbuf. */
6983 			bus_dmamap_unload(sc->tx_mbuf_tag,
6984 			    sc->tx_mbuf_map[sw_tx_chain_cons]);
6985 
6986 			/* Free the mbuf. */
6987 			m_freem(sc->tx_mbuf_ptr[sw_tx_chain_cons]);
6988 			sc->tx_mbuf_ptr[sw_tx_chain_cons] = NULL;
6989 			DBRUN(sc->debug_tx_mbuf_alloc--);
6990 
6991 			ifp->if_opackets++;
6992 		}
6993 
6994 		sc->used_tx_bd--;
6995 		sw_tx_cons = NEXT_TX_BD(sw_tx_cons);
6996 
6997 		/* Refresh hw_cons to see if there's new work. */
6998 		hw_tx_cons = sc->hw_tx_cons = bce_get_hw_tx_cons(sc);
6999 
7000 		/* Prevent speculative reads of the status block. */
7001 		bus_space_barrier(sc->bce_btag, sc->bce_bhandle, 0, 0,
7002 		    BUS_SPACE_BARRIER_READ);
7003 	}
7004 
7005 	/* Clear the TX timeout timer. */
7006 	sc->watchdog_timer = 0;
7007 
7008 	/* Clear the tx hardware queue full flag. */
7009 	if (sc->used_tx_bd < sc->max_tx_bd) {
7010 		DBRUNIF((ifp->if_drv_flags & IFF_DRV_OACTIVE),
7011 		    DBPRINT(sc, BCE_INFO_SEND,
7012 		    "%s(): Open TX chain! %d/%d (used/total)\n",
7013 		    __FUNCTION__, sc->used_tx_bd, sc->max_tx_bd));
7014 		ifp->if_drv_flags &= ~IFF_DRV_OACTIVE;
7015 	}
7016 
7017 	sc->tx_cons = sw_tx_cons;
7018 
7019 	DBPRINT(sc, BCE_EXTREME_SEND, "%s(exit): tx_prod = 0x%04X, "
7020 	    "tx_cons = 0x%04X, tx_prod_bseq = 0x%08X\n",
7021 	    __FUNCTION__, sc->tx_prod, sc->tx_cons, sc->tx_prod_bseq);
7022 	DBEXIT(BCE_VERBOSE_SEND | BCE_VERBOSE_INTR);
7023 }
7024 
7025 
7026 /****************************************************************************/
7027 /* Disables interrupt generation.                                           */
7028 /*                                                                          */
7029 /* Returns:                                                                 */
7030 /*   Nothing.                                                               */
7031 /****************************************************************************/
7032 static void
7033 bce_disable_intr(struct bce_softc *sc)
7034 {
7035 	DBENTER(BCE_VERBOSE_INTR);
7036 
7037 	REG_WR(sc, BCE_PCICFG_INT_ACK_CMD, BCE_PCICFG_INT_ACK_CMD_MASK_INT);
7038 	REG_RD(sc, BCE_PCICFG_INT_ACK_CMD);
7039 
7040 	DBEXIT(BCE_VERBOSE_INTR);
7041 }
7042 
7043 
7044 /****************************************************************************/
7045 /* Enables interrupt generation.                                            */
7046 /*                                                                          */
7047 /* Returns:                                                                 */
7048 /*   Nothing.                                                               */
7049 /****************************************************************************/
7050 static void
7051 bce_enable_intr(struct bce_softc *sc, int coal_now)
7052 {
7053 	DBENTER(BCE_VERBOSE_INTR);
7054 
7055 	REG_WR(sc, BCE_PCICFG_INT_ACK_CMD,
7056 	    BCE_PCICFG_INT_ACK_CMD_INDEX_VALID |
7057 	    BCE_PCICFG_INT_ACK_CMD_MASK_INT | sc->last_status_idx);
7058 
7059 	REG_WR(sc, BCE_PCICFG_INT_ACK_CMD,
7060 	    BCE_PCICFG_INT_ACK_CMD_INDEX_VALID | sc->last_status_idx);
7061 
7062 	/* Force an immediate interrupt (whether there is new data or not). */
7063 	if (coal_now)
7064 		REG_WR(sc, BCE_HC_COMMAND, sc->hc_command | BCE_HC_COMMAND_COAL_NOW);
7065 
7066 	DBEXIT(BCE_VERBOSE_INTR);
7067 }
7068 
7069 
7070 /****************************************************************************/
7071 /* Handles controller initialization.                                       */
7072 /*                                                                          */
7073 /* Returns:                                                                 */
7074 /*   Nothing.                                                               */
7075 /****************************************************************************/
7076 static void
7077 bce_init_locked(struct bce_softc *sc)
7078 {
7079 	struct ifnet *ifp;
7080 	u32 ether_mtu = 0;
7081 
7082 	DBENTER(BCE_VERBOSE_RESET);
7083 
7084 	BCE_LOCK_ASSERT(sc);
7085 
7086 	ifp = sc->bce_ifp;
7087 
7088 	/* Check if the driver is still running and bail out if it is. */
7089 	if (ifp->if_drv_flags & IFF_DRV_RUNNING)
7090 		goto bce_init_locked_exit;
7091 
7092 	bce_stop(sc);
7093 
7094 	if (bce_reset(sc, BCE_DRV_MSG_CODE_RESET)) {
7095 		BCE_PRINTF("%s(%d): Controller reset failed!\n",
7096 		    __FILE__, __LINE__);
7097 		goto bce_init_locked_exit;
7098 	}
7099 
7100 	if (bce_chipinit(sc)) {
7101 		BCE_PRINTF("%s(%d): Controller initialization failed!\n",
7102 		    __FILE__, __LINE__);
7103 		goto bce_init_locked_exit;
7104 	}
7105 
7106 	if (bce_blockinit(sc)) {
7107 		BCE_PRINTF("%s(%d): Block initialization failed!\n",
7108 		    __FILE__, __LINE__);
7109 		goto bce_init_locked_exit;
7110 	}
7111 
7112 	/* Load our MAC address. */
7113 	bcopy(IF_LLADDR(sc->bce_ifp), sc->eaddr, ETHER_ADDR_LEN);
7114 	bce_set_mac_addr(sc);
7115 
7116 	if (bce_hdr_split == FALSE)
7117 		bce_get_rx_buffer_sizes(sc, ifp->if_mtu);
7118 	/*
7119 	 * Calculate and program the hardware Ethernet MTU
7120  	 * size. Be generous on the receive if we have room
7121  	 * and allowed by the user.
7122 	 */
7123 	if (bce_strict_rx_mtu == TRUE)
7124 		ether_mtu = ifp->if_mtu;
7125 	else {
7126 		if (bce_hdr_split == TRUE) {
7127 			if (ifp->if_mtu <= sc->rx_bd_mbuf_data_len + MCLBYTES)
7128 				ether_mtu = sc->rx_bd_mbuf_data_len +
7129 				    MCLBYTES;
7130 			else
7131 				ether_mtu = ifp->if_mtu;
7132 		} else {
7133 			if (ifp->if_mtu <= sc->rx_bd_mbuf_data_len)
7134 				ether_mtu = sc->rx_bd_mbuf_data_len;
7135 			else
7136 				ether_mtu = ifp->if_mtu;
7137 		}
7138 	}
7139 
7140 	ether_mtu += ETHER_HDR_LEN + ETHER_VLAN_ENCAP_LEN + ETHER_CRC_LEN;
7141 
7142 	DBPRINT(sc, BCE_INFO_MISC, "%s(): setting h/w mtu = %d\n",
7143 	    __FUNCTION__, ether_mtu);
7144 
7145 	/* Program the mtu, enabling jumbo frame support if necessary. */
7146 	if (ether_mtu > (ETHER_MAX_LEN + ETHER_VLAN_ENCAP_LEN))
7147 		REG_WR(sc, BCE_EMAC_RX_MTU_SIZE,
7148 		    min(ether_mtu, BCE_MAX_JUMBO_ETHER_MTU) |
7149 		    BCE_EMAC_RX_MTU_SIZE_JUMBO_ENA);
7150 	else
7151 		REG_WR(sc, BCE_EMAC_RX_MTU_SIZE, ether_mtu);
7152 
7153 	/* Program appropriate promiscuous/multicast filtering. */
7154 	bce_set_rx_mode(sc);
7155 
7156 	if (bce_hdr_split == TRUE) {
7157 		/* Init page buffer descriptor chain. */
7158 		bce_init_pg_chain(sc);
7159 	}
7160 
7161 	/* Init RX buffer descriptor chain. */
7162 	bce_init_rx_chain(sc);
7163 
7164 	/* Init TX buffer descriptor chain. */
7165 	bce_init_tx_chain(sc);
7166 
7167 	/* Enable host interrupts. */
7168 	bce_enable_intr(sc, 1);
7169 
7170 	bce_ifmedia_upd_locked(ifp);
7171 
7172 	/* Let the OS know the driver is up and running. */
7173 	ifp->if_drv_flags |= IFF_DRV_RUNNING;
7174 	ifp->if_drv_flags &= ~IFF_DRV_OACTIVE;
7175 
7176 	callout_reset(&sc->bce_tick_callout, hz, bce_tick, sc);
7177 
7178 bce_init_locked_exit:
7179 	DBEXIT(BCE_VERBOSE_RESET);
7180 }
7181 
7182 
7183 /****************************************************************************/
7184 /* Initialize the controller just enough so that any management firmware    */
7185 /* running on the device will continue to operate correctly.                */
7186 /*                                                                          */
7187 /* Returns:                                                                 */
7188 /*   Nothing.                                                               */
7189 /****************************************************************************/
7190 static void
7191 bce_mgmt_init_locked(struct bce_softc *sc)
7192 {
7193 	struct ifnet *ifp;
7194 
7195 	DBENTER(BCE_VERBOSE_RESET);
7196 
7197 	BCE_LOCK_ASSERT(sc);
7198 
7199 	/* Bail out if management firmware is not running. */
7200 	if (!(sc->bce_flags & BCE_MFW_ENABLE_FLAG)) {
7201 		DBPRINT(sc, BCE_VERBOSE_SPECIAL,
7202 		    "No management firmware running...\n");
7203 		goto bce_mgmt_init_locked_exit;
7204 	}
7205 
7206 	ifp = sc->bce_ifp;
7207 
7208 	/* Enable all critical blocks in the MAC. */
7209 	REG_WR(sc, BCE_MISC_ENABLE_SET_BITS, BCE_MISC_ENABLE_DEFAULT);
7210 	REG_RD(sc, BCE_MISC_ENABLE_SET_BITS);
7211 	DELAY(20);
7212 
7213 	bce_ifmedia_upd_locked(ifp);
7214 
7215 bce_mgmt_init_locked_exit:
7216 	DBEXIT(BCE_VERBOSE_RESET);
7217 }
7218 
7219 
7220 /****************************************************************************/
7221 /* Handles controller initialization when called from an unlocked routine.  */
7222 /*                                                                          */
7223 /* Returns:                                                                 */
7224 /*   Nothing.                                                               */
7225 /****************************************************************************/
7226 static void
7227 bce_init(void *xsc)
7228 {
7229 	struct bce_softc *sc = xsc;
7230 
7231 	DBENTER(BCE_VERBOSE_RESET);
7232 
7233 	BCE_LOCK(sc);
7234 	bce_init_locked(sc);
7235 	BCE_UNLOCK(sc);
7236 
7237 	DBEXIT(BCE_VERBOSE_RESET);
7238 }
7239 
7240 
7241 /****************************************************************************/
7242 /* Modifies an mbuf for TSO on the hardware.                                */
7243 /*                                                                          */
7244 /* Returns:                                                                 */
7245 /*   Pointer to a modified mbuf.                                            */
7246 /****************************************************************************/
7247 static struct mbuf *
7248 bce_tso_setup(struct bce_softc *sc, struct mbuf **m_head, u16 *flags)
7249 {
7250 	struct mbuf *m;
7251 	struct ether_header *eh;
7252 	struct ip *ip;
7253 	struct tcphdr *th;
7254 	u16 etype;
7255 	int hdr_len, ip_hlen = 0, tcp_hlen = 0, ip_len = 0;
7256 
7257 	DBRUN(sc->tso_frames_requested++);
7258 
7259 	/* Controller may modify mbuf chains. */
7260 	if (M_WRITABLE(*m_head) == 0) {
7261 		m = m_dup(*m_head, M_NOWAIT);
7262 		m_freem(*m_head);
7263 		if (m == NULL) {
7264 			sc->mbuf_alloc_failed_count++;
7265 			*m_head = NULL;
7266 			return (NULL);
7267 		}
7268 		*m_head = m;
7269 	}
7270 
7271 	/*
7272 	 * For TSO the controller needs two pieces of info,
7273 	 * the MSS and the IP+TCP options length.
7274 	 */
7275 	m = m_pullup(*m_head, sizeof(struct ether_header) + sizeof(struct ip));
7276 	if (m == NULL) {
7277 		*m_head = NULL;
7278 		return (NULL);
7279 	}
7280 	eh = mtod(m, struct ether_header *);
7281 	etype = ntohs(eh->ether_type);
7282 
7283 	/* Check for supported TSO Ethernet types (only IPv4 for now) */
7284 	switch (etype) {
7285 	case ETHERTYPE_IP:
7286 		ip = (struct ip *)(m->m_data + sizeof(struct ether_header));
7287 		/* TSO only supported for TCP protocol. */
7288 		if (ip->ip_p != IPPROTO_TCP) {
7289 			BCE_PRINTF("%s(%d): TSO enabled for non-TCP frame!.\n",
7290 			    __FILE__, __LINE__);
7291 			m_freem(*m_head);
7292 			*m_head = NULL;
7293 			return (NULL);
7294 		}
7295 
7296 		/* Get IP header length in bytes (min 20) */
7297 		ip_hlen = ip->ip_hl << 2;
7298 		m = m_pullup(*m_head, sizeof(struct ether_header) + ip_hlen +
7299 		    sizeof(struct tcphdr));
7300 		if (m == NULL) {
7301 			*m_head = NULL;
7302 			return (NULL);
7303 		}
7304 
7305 		/* Get the TCP header length in bytes (min 20) */
7306 		ip = (struct ip *)(m->m_data + sizeof(struct ether_header));
7307 		th = (struct tcphdr *)((caddr_t)ip + ip_hlen);
7308 		tcp_hlen = (th->th_off << 2);
7309 
7310 		/* Make sure all IP/TCP options live in the same buffer. */
7311 		m = m_pullup(*m_head,  sizeof(struct ether_header)+ ip_hlen +
7312 		    tcp_hlen);
7313 		if (m == NULL) {
7314 			*m_head = NULL;
7315 			return (NULL);
7316 		}
7317 
7318 		/* Clear IP header length and checksum, will be calc'd by h/w. */
7319 		ip = (struct ip *)(m->m_data + sizeof(struct ether_header));
7320 		ip_len = ip->ip_len;
7321 		ip->ip_len = 0;
7322 		ip->ip_sum = 0;
7323 		break;
7324 	case ETHERTYPE_IPV6:
7325 		BCE_PRINTF("%s(%d): TSO over IPv6 not supported!.\n",
7326 		    __FILE__, __LINE__);
7327 		m_freem(*m_head);
7328 		*m_head = NULL;
7329 		return (NULL);
7330 		/* NOT REACHED */
7331 	default:
7332 		BCE_PRINTF("%s(%d): TSO enabled for unsupported protocol!.\n",
7333 		    __FILE__, __LINE__);
7334 		m_freem(*m_head);
7335 		*m_head = NULL;
7336 		return (NULL);
7337 	}
7338 
7339 	hdr_len = sizeof(struct ether_header) + ip_hlen + tcp_hlen;
7340 
7341 	DBPRINT(sc, BCE_EXTREME_SEND, "%s(): hdr_len = %d, e_hlen = %d, "
7342 	    "ip_hlen = %d, tcp_hlen = %d, ip_len = %d\n",
7343 	    __FUNCTION__, hdr_len, (int) sizeof(struct ether_header), ip_hlen,
7344 	    tcp_hlen, ip_len);
7345 
7346 	/* Set the LSO flag in the TX BD */
7347 	*flags |= TX_BD_FLAGS_SW_LSO;
7348 
7349 	/* Set the length of IP + TCP options (in 32 bit words) */
7350 	*flags |= (((ip_hlen + tcp_hlen - sizeof(struct ip) -
7351 	    sizeof(struct tcphdr)) >> 2) << 8);
7352 
7353 	DBRUN(sc->tso_frames_completed++);
7354 	return (*m_head);
7355 }
7356 
7357 
7358 /****************************************************************************/
7359 /* Encapsultes an mbuf cluster into the tx_bd chain structure and makes the */
7360 /* memory visible to the controller.                                        */
7361 /*                                                                          */
7362 /* Returns:                                                                 */
7363 /*   0 for success, positive value for failure.                             */
7364 /* Modified:                                                                */
7365 /*   m_head: May be set to NULL if MBUF is excessively fragmented.          */
7366 /****************************************************************************/
7367 static int
7368 bce_tx_encap(struct bce_softc *sc, struct mbuf **m_head)
7369 {
7370 	bus_dma_segment_t segs[BCE_MAX_SEGMENTS];
7371 	bus_dmamap_t map;
7372 	struct tx_bd *txbd = NULL;
7373 	struct mbuf *m0;
7374 	u16 prod, chain_prod, mss = 0, vlan_tag = 0, flags = 0;
7375 	u32 prod_bseq;
7376 
7377 #ifdef BCE_DEBUG
7378 	u16 debug_prod;
7379 #endif
7380 
7381 	int i, error, nsegs, rc = 0;
7382 
7383 	DBENTER(BCE_VERBOSE_SEND);
7384 
7385 	/* Make sure we have room in the TX chain. */
7386 	if (sc->used_tx_bd >= sc->max_tx_bd)
7387 		goto bce_tx_encap_exit;
7388 
7389 	/* Transfer any checksum offload flags to the bd. */
7390 	m0 = *m_head;
7391 	if (m0->m_pkthdr.csum_flags) {
7392 		if (m0->m_pkthdr.csum_flags & CSUM_TSO) {
7393 			m0 = bce_tso_setup(sc, m_head, &flags);
7394 			if (m0 == NULL) {
7395 				DBRUN(sc->tso_frames_failed++);
7396 				goto bce_tx_encap_exit;
7397 			}
7398 			mss = htole16(m0->m_pkthdr.tso_segsz);
7399 		} else {
7400 			if (m0->m_pkthdr.csum_flags & CSUM_IP)
7401 				flags |= TX_BD_FLAGS_IP_CKSUM;
7402 			if (m0->m_pkthdr.csum_flags & (CSUM_TCP | CSUM_UDP))
7403 				flags |= TX_BD_FLAGS_TCP_UDP_CKSUM;
7404 		}
7405 	}
7406 
7407 	/* Transfer any VLAN tags to the bd. */
7408 	if (m0->m_flags & M_VLANTAG) {
7409 		flags |= TX_BD_FLAGS_VLAN_TAG;
7410 		vlan_tag = m0->m_pkthdr.ether_vtag;
7411 	}
7412 
7413 	/* Map the mbuf into DMAable memory. */
7414 	prod = sc->tx_prod;
7415 	chain_prod = TX_CHAIN_IDX(prod);
7416 	map = sc->tx_mbuf_map[chain_prod];
7417 
7418 	/* Map the mbuf into our DMA address space. */
7419 	error = bus_dmamap_load_mbuf_sg(sc->tx_mbuf_tag, map, m0,
7420 	    segs, &nsegs, BUS_DMA_NOWAIT);
7421 
7422 	/* Check if the DMA mapping was successful */
7423 	if (error == EFBIG) {
7424 		sc->mbuf_frag_count++;
7425 
7426 		/* Try to defrag the mbuf. */
7427 		m0 = m_collapse(*m_head, M_NOWAIT, BCE_MAX_SEGMENTS);
7428 		if (m0 == NULL) {
7429 			/* Defrag was unsuccessful */
7430 			m_freem(*m_head);
7431 			*m_head = NULL;
7432 			sc->mbuf_alloc_failed_count++;
7433 			rc = ENOBUFS;
7434 			goto bce_tx_encap_exit;
7435 		}
7436 
7437 		/* Defrag was successful, try mapping again */
7438 		*m_head = m0;
7439 		error = bus_dmamap_load_mbuf_sg(sc->tx_mbuf_tag,
7440 		    map, m0, segs, &nsegs, BUS_DMA_NOWAIT);
7441 
7442 		/* Still getting an error after a defrag. */
7443 		if (error == ENOMEM) {
7444 			/* Insufficient DMA buffers available. */
7445 			sc->dma_map_addr_tx_failed_count++;
7446 			rc = error;
7447 			goto bce_tx_encap_exit;
7448 		} else if (error != 0) {
7449 			/* Release it and return an error. */
7450 			BCE_PRINTF("%s(%d): Unknown error mapping mbuf into "
7451 			    "TX chain!\n", __FILE__, __LINE__);
7452 			m_freem(m0);
7453 			*m_head = NULL;
7454 			sc->dma_map_addr_tx_failed_count++;
7455 			rc = ENOBUFS;
7456 			goto bce_tx_encap_exit;
7457 		}
7458 	} else if (error == ENOMEM) {
7459 		/* Insufficient DMA buffers available. */
7460 		sc->dma_map_addr_tx_failed_count++;
7461 		rc = error;
7462 		goto bce_tx_encap_exit;
7463 	} else if (error != 0) {
7464 		m_freem(m0);
7465 		*m_head = NULL;
7466 		sc->dma_map_addr_tx_failed_count++;
7467 		rc = error;
7468 		goto bce_tx_encap_exit;
7469 	}
7470 
7471 	/* Make sure there's room in the chain */
7472 	if (nsegs > (sc->max_tx_bd - sc->used_tx_bd)) {
7473 		bus_dmamap_unload(sc->tx_mbuf_tag, map);
7474 		rc = ENOBUFS;
7475 		goto bce_tx_encap_exit;
7476 	}
7477 
7478 	/* prod points to an empty tx_bd at this point. */
7479 	prod_bseq  = sc->tx_prod_bseq;
7480 
7481 #ifdef BCE_DEBUG
7482 	debug_prod = chain_prod;
7483 #endif
7484 
7485 	DBPRINT(sc, BCE_INFO_SEND,
7486 	    "%s(start): prod = 0x%04X, chain_prod = 0x%04X, "
7487 	    "prod_bseq = 0x%08X\n",
7488 	    __FUNCTION__, prod, chain_prod, prod_bseq);
7489 
7490 	/*
7491 	 * Cycle through each mbuf segment that makes up
7492 	 * the outgoing frame, gathering the mapping info
7493 	 * for that segment and creating a tx_bd for
7494 	 * the mbuf.
7495 	 */
7496 	for (i = 0; i < nsegs ; i++) {
7497 
7498 		chain_prod = TX_CHAIN_IDX(prod);
7499 		txbd= &sc->tx_bd_chain[TX_PAGE(chain_prod)]
7500 		    [TX_IDX(chain_prod)];
7501 
7502 		txbd->tx_bd_haddr_lo =
7503 		    htole32(BCE_ADDR_LO(segs[i].ds_addr));
7504 		txbd->tx_bd_haddr_hi =
7505 		    htole32(BCE_ADDR_HI(segs[i].ds_addr));
7506 		txbd->tx_bd_mss_nbytes = htole32(mss << 16) |
7507 		    htole16(segs[i].ds_len);
7508 		txbd->tx_bd_vlan_tag = htole16(vlan_tag);
7509 		txbd->tx_bd_flags = htole16(flags);
7510 		prod_bseq += segs[i].ds_len;
7511 		if (i == 0)
7512 			txbd->tx_bd_flags |= htole16(TX_BD_FLAGS_START);
7513 		prod = NEXT_TX_BD(prod);
7514 	}
7515 
7516 	/* Set the END flag on the last TX buffer descriptor. */
7517 	txbd->tx_bd_flags |= htole16(TX_BD_FLAGS_END);
7518 
7519 	DBRUNMSG(BCE_EXTREME_SEND,
7520 	    bce_dump_tx_chain(sc, debug_prod, nsegs));
7521 
7522 	/*
7523 	 * Ensure that the mbuf pointer for this transmission
7524 	 * is placed at the array index of the last
7525 	 * descriptor in this chain.  This is done
7526 	 * because a single map is used for all
7527 	 * segments of the mbuf and we don't want to
7528 	 * unload the map before all of the segments
7529 	 * have been freed.
7530 	 */
7531 	sc->tx_mbuf_ptr[chain_prod] = m0;
7532 	sc->used_tx_bd += nsegs;
7533 
7534 	/* Update some debug statistic counters */
7535 	DBRUNIF((sc->used_tx_bd > sc->tx_hi_watermark),
7536 	    sc->tx_hi_watermark = sc->used_tx_bd);
7537 	DBRUNIF((sc->used_tx_bd == sc->max_tx_bd), sc->tx_full_count++);
7538 	DBRUNIF(sc->debug_tx_mbuf_alloc++);
7539 
7540 	DBRUNMSG(BCE_EXTREME_SEND, bce_dump_tx_mbuf_chain(sc, chain_prod, 1));
7541 
7542 	/* prod points to the next free tx_bd at this point. */
7543 	sc->tx_prod = prod;
7544 	sc->tx_prod_bseq = prod_bseq;
7545 
7546 	/* Tell the chip about the waiting TX frames. */
7547 	REG_WR16(sc, MB_GET_CID_ADDR(TX_CID) +
7548 	    BCE_L2MQ_TX_HOST_BIDX, sc->tx_prod);
7549 	REG_WR(sc, MB_GET_CID_ADDR(TX_CID) +
7550 	    BCE_L2MQ_TX_HOST_BSEQ, sc->tx_prod_bseq);
7551 
7552 bce_tx_encap_exit:
7553 	DBEXIT(BCE_VERBOSE_SEND);
7554 	return(rc);
7555 }
7556 
7557 
7558 /****************************************************************************/
7559 /* Main transmit routine when called from another routine with a lock.      */
7560 /*                                                                          */
7561 /* Returns:                                                                 */
7562 /*   Nothing.                                                               */
7563 /****************************************************************************/
7564 static void
7565 bce_start_locked(struct ifnet *ifp)
7566 {
7567 	struct bce_softc *sc = ifp->if_softc;
7568 	struct mbuf *m_head = NULL;
7569 	int count = 0;
7570 	u16 tx_prod, tx_chain_prod;
7571 
7572 	DBENTER(BCE_VERBOSE_SEND | BCE_VERBOSE_CTX);
7573 
7574 	BCE_LOCK_ASSERT(sc);
7575 
7576 	/* prod points to the next free tx_bd. */
7577 	tx_prod = sc->tx_prod;
7578 	tx_chain_prod = TX_CHAIN_IDX(tx_prod);
7579 
7580 	DBPRINT(sc, BCE_INFO_SEND,
7581 	    "%s(enter): tx_prod = 0x%04X, tx_chain_prod = 0x%04X, "
7582 	    "tx_prod_bseq = 0x%08X\n",
7583 	    __FUNCTION__, tx_prod, tx_chain_prod, sc->tx_prod_bseq);
7584 
7585 	/* If there's no link or the transmit queue is empty then just exit. */
7586 	if (sc->bce_link_up == FALSE) {
7587 		DBPRINT(sc, BCE_INFO_SEND, "%s(): No link.\n",
7588 		    __FUNCTION__);
7589 		goto bce_start_locked_exit;
7590 	}
7591 
7592 	if (IFQ_DRV_IS_EMPTY(&ifp->if_snd)) {
7593 		DBPRINT(sc, BCE_INFO_SEND, "%s(): Transmit queue empty.\n",
7594 		    __FUNCTION__);
7595 		goto bce_start_locked_exit;
7596 	}
7597 
7598 	/*
7599 	 * Keep adding entries while there is space in the ring.
7600 	 */
7601 	while (sc->used_tx_bd < sc->max_tx_bd) {
7602 
7603 		/* Check for any frames to send. */
7604 		IFQ_DRV_DEQUEUE(&ifp->if_snd, m_head);
7605 
7606 		/* Stop when the transmit queue is empty. */
7607 		if (m_head == NULL)
7608 			break;
7609 
7610 		/*
7611 		 * Pack the data into the transmit ring. If we
7612 		 * don't have room, place the mbuf back at the
7613 		 * head of the queue and set the OACTIVE flag
7614 		 * to wait for the NIC to drain the chain.
7615 		 */
7616 		if (bce_tx_encap(sc, &m_head)) {
7617 			if (m_head != NULL)
7618 				IFQ_DRV_PREPEND(&ifp->if_snd, m_head);
7619 			ifp->if_drv_flags |= IFF_DRV_OACTIVE;
7620 			DBPRINT(sc, BCE_INFO_SEND,
7621 			    "TX chain is closed for business! Total "
7622 			    "tx_bd used = %d\n", sc->used_tx_bd);
7623 			break;
7624 		}
7625 
7626 		count++;
7627 
7628 		/* Send a copy of the frame to any BPF listeners. */
7629 		ETHER_BPF_MTAP(ifp, m_head);
7630 	}
7631 
7632 	/* Exit if no packets were dequeued. */
7633 	if (count == 0) {
7634 		DBPRINT(sc, BCE_VERBOSE_SEND, "%s(): No packets were "
7635 		    "dequeued\n", __FUNCTION__);
7636 		goto bce_start_locked_exit;
7637 	}
7638 
7639 	DBPRINT(sc, BCE_VERBOSE_SEND, "%s(): Inserted %d frames into "
7640 	    "send queue.\n", __FUNCTION__, count);
7641 
7642 	/* Set the tx timeout. */
7643 	sc->watchdog_timer = BCE_TX_TIMEOUT;
7644 
7645 	DBRUNMSG(BCE_VERBOSE_SEND, bce_dump_ctx(sc, TX_CID));
7646 	DBRUNMSG(BCE_VERBOSE_SEND, bce_dump_mq_regs(sc));
7647 
7648 bce_start_locked_exit:
7649 	DBEXIT(BCE_VERBOSE_SEND | BCE_VERBOSE_CTX);
7650 }
7651 
7652 
7653 /****************************************************************************/
7654 /* Main transmit routine when called from another routine without a lock.   */
7655 /*                                                                          */
7656 /* Returns:                                                                 */
7657 /*   Nothing.                                                               */
7658 /****************************************************************************/
7659 static void
7660 bce_start(struct ifnet *ifp)
7661 {
7662 	struct bce_softc *sc = ifp->if_softc;
7663 
7664 	DBENTER(BCE_VERBOSE_SEND);
7665 
7666 	BCE_LOCK(sc);
7667 	bce_start_locked(ifp);
7668 	BCE_UNLOCK(sc);
7669 
7670 	DBEXIT(BCE_VERBOSE_SEND);
7671 }
7672 
7673 
7674 /****************************************************************************/
7675 /* Handles any IOCTL calls from the operating system.                       */
7676 /*                                                                          */
7677 /* Returns:                                                                 */
7678 /*   0 for success, positive value for failure.                             */
7679 /****************************************************************************/
7680 static int
7681 bce_ioctl(struct ifnet *ifp, u_long command, caddr_t data)
7682 {
7683 	struct bce_softc *sc = ifp->if_softc;
7684 	struct ifreq *ifr = (struct ifreq *) data;
7685 	struct mii_data *mii;
7686 	int mask, error = 0;
7687 
7688 	DBENTER(BCE_VERBOSE_MISC);
7689 
7690 	switch(command) {
7691 
7692 	/* Set the interface MTU. */
7693 	case SIOCSIFMTU:
7694 		/* Check that the MTU setting is supported. */
7695 		if ((ifr->ifr_mtu < BCE_MIN_MTU) ||
7696 			(ifr->ifr_mtu > BCE_MAX_JUMBO_MTU)) {
7697 			error = EINVAL;
7698 			break;
7699 		}
7700 
7701 		DBPRINT(sc, BCE_INFO_MISC,
7702 		    "SIOCSIFMTU: Changing MTU from %d to %d\n",
7703 		    (int) ifp->if_mtu, (int) ifr->ifr_mtu);
7704 
7705 		BCE_LOCK(sc);
7706 		ifp->if_mtu = ifr->ifr_mtu;
7707 		if (ifp->if_drv_flags & IFF_DRV_RUNNING) {
7708 			ifp->if_drv_flags &= ~IFF_DRV_RUNNING;
7709 			bce_init_locked(sc);
7710 		}
7711 		BCE_UNLOCK(sc);
7712 		break;
7713 
7714 	/* Set interface flags. */
7715 	case SIOCSIFFLAGS:
7716 		DBPRINT(sc, BCE_VERBOSE_SPECIAL, "Received SIOCSIFFLAGS\n");
7717 
7718 		BCE_LOCK(sc);
7719 
7720 		/* Check if the interface is up. */
7721 		if (ifp->if_flags & IFF_UP) {
7722 			if (ifp->if_drv_flags & IFF_DRV_RUNNING) {
7723 				/* Change promiscuous/multicast flags as necessary. */
7724 				bce_set_rx_mode(sc);
7725 			} else {
7726 				/* Start the HW */
7727 				bce_init_locked(sc);
7728 			}
7729 		} else {
7730 			/* The interface is down, check if driver is running. */
7731 			if (ifp->if_drv_flags & IFF_DRV_RUNNING) {
7732 				bce_stop(sc);
7733 
7734 				/* If MFW is running, restart the controller a bit. */
7735 				if (sc->bce_flags & BCE_MFW_ENABLE_FLAG) {
7736 					bce_reset(sc, BCE_DRV_MSG_CODE_RESET);
7737 					bce_chipinit(sc);
7738 					bce_mgmt_init_locked(sc);
7739 				}
7740 			}
7741 		}
7742 
7743 		BCE_UNLOCK(sc);
7744 		break;
7745 
7746 	/* Add/Delete multicast address */
7747 	case SIOCADDMULTI:
7748 	case SIOCDELMULTI:
7749 		DBPRINT(sc, BCE_VERBOSE_MISC,
7750 		    "Received SIOCADDMULTI/SIOCDELMULTI\n");
7751 
7752 		BCE_LOCK(sc);
7753 		if (ifp->if_drv_flags & IFF_DRV_RUNNING)
7754 			bce_set_rx_mode(sc);
7755 		BCE_UNLOCK(sc);
7756 
7757 		break;
7758 
7759 	/* Set/Get Interface media */
7760 	case SIOCSIFMEDIA:
7761 	case SIOCGIFMEDIA:
7762 		DBPRINT(sc, BCE_VERBOSE_MISC,
7763 		    "Received SIOCSIFMEDIA/SIOCGIFMEDIA\n");
7764 		if ((sc->bce_phy_flags & BCE_PHY_REMOTE_CAP_FLAG) != 0)
7765 			error = ifmedia_ioctl(ifp, ifr, &sc->bce_ifmedia,
7766 			    command);
7767 		else {
7768 			mii = device_get_softc(sc->bce_miibus);
7769 			error = ifmedia_ioctl(ifp, ifr, &mii->mii_media,
7770 			    command);
7771 		}
7772 		break;
7773 
7774 	/* Set interface capability */
7775 	case SIOCSIFCAP:
7776 		mask = ifr->ifr_reqcap ^ ifp->if_capenable;
7777 		DBPRINT(sc, BCE_INFO_MISC,
7778 		    "Received SIOCSIFCAP = 0x%08X\n", (u32) mask);
7779 
7780 		/* Toggle the TX checksum capabilities enable flag. */
7781 		if (mask & IFCAP_TXCSUM &&
7782 		    ifp->if_capabilities & IFCAP_TXCSUM) {
7783 			ifp->if_capenable ^= IFCAP_TXCSUM;
7784 			if (IFCAP_TXCSUM & ifp->if_capenable)
7785 				ifp->if_hwassist |= BCE_IF_HWASSIST;
7786 			else
7787 				ifp->if_hwassist &= ~BCE_IF_HWASSIST;
7788 		}
7789 
7790 		/* Toggle the RX checksum capabilities enable flag. */
7791 		if (mask & IFCAP_RXCSUM &&
7792 		    ifp->if_capabilities & IFCAP_RXCSUM)
7793 			ifp->if_capenable ^= IFCAP_RXCSUM;
7794 
7795 		/* Toggle the TSO capabilities enable flag. */
7796 		if (bce_tso_enable && (mask & IFCAP_TSO4) &&
7797 		    ifp->if_capabilities & IFCAP_TSO4) {
7798 			ifp->if_capenable ^= IFCAP_TSO4;
7799 			if (IFCAP_TSO4 & ifp->if_capenable)
7800 				ifp->if_hwassist |= CSUM_TSO;
7801 			else
7802 				ifp->if_hwassist &= ~CSUM_TSO;
7803 		}
7804 
7805 		if (mask & IFCAP_VLAN_HWCSUM &&
7806 		    ifp->if_capabilities & IFCAP_VLAN_HWCSUM)
7807 			ifp->if_capenable ^= IFCAP_VLAN_HWCSUM;
7808 
7809 		if ((mask & IFCAP_VLAN_HWTSO) != 0 &&
7810 		    (ifp->if_capabilities & IFCAP_VLAN_HWTSO) != 0)
7811 			ifp->if_capenable ^= IFCAP_VLAN_HWTSO;
7812 		/*
7813 		 * Don't actually disable VLAN tag stripping as
7814 		 * management firmware (ASF/IPMI/UMP) requires the
7815 		 * feature. If VLAN tag stripping is disabled driver
7816 		 * will manually reconstruct the VLAN frame by
7817 		 * appending stripped VLAN tag.
7818 		 */
7819 		if ((mask & IFCAP_VLAN_HWTAGGING) != 0 &&
7820 		    (ifp->if_capabilities & IFCAP_VLAN_HWTAGGING)) {
7821 			ifp->if_capenable ^= IFCAP_VLAN_HWTAGGING;
7822 			if ((ifp->if_capenable & IFCAP_VLAN_HWTAGGING)
7823 			    == 0)
7824 				ifp->if_capenable &= ~IFCAP_VLAN_HWTSO;
7825 		}
7826 		VLAN_CAPABILITIES(ifp);
7827 		break;
7828 	default:
7829 		/* We don't know how to handle the IOCTL, pass it on. */
7830 		error = ether_ioctl(ifp, command, data);
7831 		break;
7832 	}
7833 
7834 	DBEXIT(BCE_VERBOSE_MISC);
7835 	return(error);
7836 }
7837 
7838 
7839 /****************************************************************************/
7840 /* Transmit timeout handler.                                                */
7841 /*                                                                          */
7842 /* Returns:                                                                 */
7843 /*   Nothing.                                                               */
7844 /****************************************************************************/
7845 static void
7846 bce_watchdog(struct bce_softc *sc)
7847 {
7848 	uint32_t status;
7849 
7850 	DBENTER(BCE_EXTREME_SEND);
7851 
7852 	BCE_LOCK_ASSERT(sc);
7853 
7854 	status = 0;
7855 	/* If the watchdog timer hasn't expired then just exit. */
7856 	if (sc->watchdog_timer == 0 || --sc->watchdog_timer)
7857 		goto bce_watchdog_exit;
7858 
7859 	status = REG_RD(sc, BCE_EMAC_RX_STATUS);
7860 	/* If pause frames are active then don't reset the hardware. */
7861 	if ((sc->bce_flags & BCE_USING_RX_FLOW_CONTROL) != 0) {
7862 		if ((status & BCE_EMAC_RX_STATUS_FFED) != 0) {
7863 			/*
7864 			 * If link partner has us in XOFF state then wait for
7865 			 * the condition to clear.
7866 			 */
7867 			sc->watchdog_timer = BCE_TX_TIMEOUT;
7868 			goto bce_watchdog_exit;
7869 		} else if ((status & BCE_EMAC_RX_STATUS_FF_RECEIVED) != 0 &&
7870 			(status & BCE_EMAC_RX_STATUS_N_RECEIVED) != 0) {
7871 			/*
7872 			 * If we're not currently XOFF'ed but have recently
7873 			 * been XOFF'd/XON'd then assume that's delaying TX
7874 			 * this time around.
7875 			 */
7876 			sc->watchdog_timer = BCE_TX_TIMEOUT;
7877 			goto bce_watchdog_exit;
7878 		}
7879 		/*
7880 		 * Any other condition is unexpected and the controller
7881 		 * should be reset.
7882 		 */
7883 	}
7884 
7885 	BCE_PRINTF("%s(%d): Watchdog timeout occurred, resetting!\n",
7886 	    __FILE__, __LINE__);
7887 
7888 	DBRUNMSG(BCE_INFO,
7889 	    bce_dump_driver_state(sc);
7890 	    bce_dump_status_block(sc);
7891 	    bce_dump_stats_block(sc);
7892 	    bce_dump_ftqs(sc);
7893 	    bce_dump_txp_state(sc, 0);
7894 	    bce_dump_rxp_state(sc, 0);
7895 	    bce_dump_tpat_state(sc, 0);
7896 	    bce_dump_cp_state(sc, 0);
7897 	    bce_dump_com_state(sc, 0));
7898 
7899 	DBRUN(bce_breakpoint(sc));
7900 
7901 	sc->bce_ifp->if_drv_flags &= ~IFF_DRV_RUNNING;
7902 
7903 	bce_init_locked(sc);
7904 	sc->bce_ifp->if_oerrors++;
7905 
7906 bce_watchdog_exit:
7907 	REG_WR(sc, BCE_EMAC_RX_STATUS, status);
7908 	DBEXIT(BCE_EXTREME_SEND);
7909 }
7910 
7911 
7912 /*
7913  * Interrupt handler.
7914  */
7915 /****************************************************************************/
7916 /* Main interrupt entry point.  Verifies that the controller generated the  */
7917 /* interrupt and then calls a separate routine for handle the various       */
7918 /* interrupt causes (PHY, TX, RX).                                          */
7919 /*                                                                          */
7920 /* Returns:                                                                 */
7921 /*   Nothing.                                                               */
7922 /****************************************************************************/
7923 static void
7924 bce_intr(void *xsc)
7925 {
7926 	struct bce_softc *sc;
7927 	struct ifnet *ifp;
7928 	u32 status_attn_bits;
7929 	u16 hw_rx_cons, hw_tx_cons;
7930 
7931 	sc = xsc;
7932 	ifp = sc->bce_ifp;
7933 
7934 	DBENTER(BCE_VERBOSE_SEND | BCE_VERBOSE_RECV | BCE_VERBOSE_INTR);
7935 	DBRUNMSG(BCE_VERBOSE_INTR, bce_dump_status_block(sc));
7936 	DBRUNMSG(BCE_VERBOSE_INTR, bce_dump_stats_block(sc));
7937 
7938 	BCE_LOCK(sc);
7939 
7940 	DBRUN(sc->interrupts_generated++);
7941 
7942 	/* Synchnorize before we read from interface's status block */
7943 	bus_dmamap_sync(sc->status_tag, sc->status_map, BUS_DMASYNC_POSTREAD);
7944 
7945 	/*
7946 	 * If the hardware status block index matches the last value read
7947 	 * by the driver and we haven't asserted our interrupt then there's
7948 	 * nothing to do.  This may only happen in case of INTx due to the
7949 	 * interrupt arriving at the CPU before the status block is updated.
7950 	 */
7951 	if ((sc->bce_flags & (BCE_USING_MSI_FLAG | BCE_USING_MSIX_FLAG)) == 0 &&
7952 	    sc->status_block->status_idx == sc->last_status_idx &&
7953 	    (REG_RD(sc, BCE_PCICFG_MISC_STATUS) &
7954 	     BCE_PCICFG_MISC_STATUS_INTA_VALUE)) {
7955 		DBPRINT(sc, BCE_VERBOSE_INTR, "%s(): Spurious interrupt.\n",
7956 		    __FUNCTION__);
7957 		goto bce_intr_exit;
7958 	}
7959 
7960 	/* Ack the interrupt and stop others from occuring. */
7961 	REG_WR(sc, BCE_PCICFG_INT_ACK_CMD,
7962 	    BCE_PCICFG_INT_ACK_CMD_USE_INT_HC_PARAM |
7963 	    BCE_PCICFG_INT_ACK_CMD_MASK_INT);
7964 
7965 	/* Check if the hardware has finished any work. */
7966 	hw_rx_cons = bce_get_hw_rx_cons(sc);
7967 	hw_tx_cons = bce_get_hw_tx_cons(sc);
7968 
7969 	/* Keep processing data as long as there is work to do. */
7970 	for (;;) {
7971 
7972 		status_attn_bits = sc->status_block->status_attn_bits;
7973 
7974 		DBRUNIF(DB_RANDOMTRUE(unexpected_attention_sim_control),
7975 		    BCE_PRINTF("Simulating unexpected status attention "
7976 		    "bit set.");
7977 		    sc->unexpected_attention_sim_count++;
7978 		    status_attn_bits = status_attn_bits |
7979 		    STATUS_ATTN_BITS_PARITY_ERROR);
7980 
7981 		/* Was it a link change interrupt? */
7982 		if ((status_attn_bits & STATUS_ATTN_BITS_LINK_STATE) !=
7983 		    (sc->status_block->status_attn_bits_ack &
7984 		     STATUS_ATTN_BITS_LINK_STATE)) {
7985 			bce_phy_intr(sc);
7986 
7987 			/* Clear transient updates during link state change. */
7988 			REG_WR(sc, BCE_HC_COMMAND, sc->hc_command |
7989 			    BCE_HC_COMMAND_COAL_NOW_WO_INT);
7990 			REG_RD(sc, BCE_HC_COMMAND);
7991 		}
7992 
7993 		/* If any other attention is asserted, the chip is toast. */
7994 		if (((status_attn_bits & ~STATUS_ATTN_BITS_LINK_STATE) !=
7995 		    (sc->status_block->status_attn_bits_ack &
7996 		    ~STATUS_ATTN_BITS_LINK_STATE))) {
7997 
7998 			sc->unexpected_attention_count++;
7999 
8000 			BCE_PRINTF("%s(%d): Fatal attention detected: "
8001 			    "0x%08X\n",	__FILE__, __LINE__,
8002 			    sc->status_block->status_attn_bits);
8003 
8004 			DBRUNMSG(BCE_FATAL,
8005 			    if (unexpected_attention_sim_control == 0)
8006 				bce_breakpoint(sc));
8007 
8008 			bce_init_locked(sc);
8009 			goto bce_intr_exit;
8010 		}
8011 
8012 		/* Check for any completed RX frames. */
8013 		if (hw_rx_cons != sc->hw_rx_cons)
8014 			bce_rx_intr(sc);
8015 
8016 		/* Check for any completed TX frames. */
8017 		if (hw_tx_cons != sc->hw_tx_cons)
8018 			bce_tx_intr(sc);
8019 
8020 		/* Save status block index value for the next interrupt. */
8021 		sc->last_status_idx = sc->status_block->status_idx;
8022 
8023  		/*
8024  		 * Prevent speculative reads from getting
8025  		 * ahead of the status block.
8026 		 */
8027 		bus_space_barrier(sc->bce_btag, sc->bce_bhandle, 0, 0,
8028 		    BUS_SPACE_BARRIER_READ);
8029 
8030  		/*
8031  		 * If there's no work left then exit the
8032  		 * interrupt service routine.
8033 		 */
8034 		hw_rx_cons = bce_get_hw_rx_cons(sc);
8035 		hw_tx_cons = bce_get_hw_tx_cons(sc);
8036 
8037 		if ((hw_rx_cons == sc->hw_rx_cons) &&
8038 		    (hw_tx_cons == sc->hw_tx_cons))
8039 			break;
8040 	}
8041 
8042 	bus_dmamap_sync(sc->status_tag,	sc->status_map, BUS_DMASYNC_PREREAD);
8043 
8044 	/* Re-enable interrupts. */
8045 	bce_enable_intr(sc, 0);
8046 
8047 	/* Handle any frames that arrived while handling the interrupt. */
8048 	if (ifp->if_drv_flags & IFF_DRV_RUNNING &&
8049 	    !IFQ_DRV_IS_EMPTY(&ifp->if_snd))
8050 		bce_start_locked(ifp);
8051 
8052 bce_intr_exit:
8053 	BCE_UNLOCK(sc);
8054 
8055 	DBEXIT(BCE_VERBOSE_SEND | BCE_VERBOSE_RECV | BCE_VERBOSE_INTR);
8056 }
8057 
8058 
8059 /****************************************************************************/
8060 /* Programs the various packet receive modes (broadcast and multicast).     */
8061 /*                                                                          */
8062 /* Returns:                                                                 */
8063 /*   Nothing.                                                               */
8064 /****************************************************************************/
8065 static void
8066 bce_set_rx_mode(struct bce_softc *sc)
8067 {
8068 	struct ifnet *ifp;
8069 	struct ifmultiaddr *ifma;
8070 	u32 hashes[NUM_MC_HASH_REGISTERS] = { 0, 0, 0, 0, 0, 0, 0, 0 };
8071 	u32 rx_mode, sort_mode;
8072 	int h, i;
8073 
8074 	DBENTER(BCE_VERBOSE_MISC);
8075 
8076 	BCE_LOCK_ASSERT(sc);
8077 
8078 	ifp = sc->bce_ifp;
8079 
8080 	/* Initialize receive mode default settings. */
8081 	rx_mode   = sc->rx_mode & ~(BCE_EMAC_RX_MODE_PROMISCUOUS |
8082 	    BCE_EMAC_RX_MODE_KEEP_VLAN_TAG);
8083 	sort_mode = 1 | BCE_RPM_SORT_USER0_BC_EN;
8084 
8085 	/*
8086 	 * ASF/IPMI/UMP firmware requires that VLAN tag stripping
8087 	 * be enbled.
8088 	 */
8089 	if (!(BCE_IF_CAPABILITIES & IFCAP_VLAN_HWTAGGING) &&
8090 	    (!(sc->bce_flags & BCE_MFW_ENABLE_FLAG)))
8091 		rx_mode |= BCE_EMAC_RX_MODE_KEEP_VLAN_TAG;
8092 
8093 	/*
8094 	 * Check for promiscuous, all multicast, or selected
8095 	 * multicast address filtering.
8096 	 */
8097 	if (ifp->if_flags & IFF_PROMISC) {
8098 		DBPRINT(sc, BCE_INFO_MISC, "Enabling promiscuous mode.\n");
8099 
8100 		/* Enable promiscuous mode. */
8101 		rx_mode |= BCE_EMAC_RX_MODE_PROMISCUOUS;
8102 		sort_mode |= BCE_RPM_SORT_USER0_PROM_EN;
8103 	} else if (ifp->if_flags & IFF_ALLMULTI) {
8104 		DBPRINT(sc, BCE_INFO_MISC, "Enabling all multicast mode.\n");
8105 
8106 		/* Enable all multicast addresses. */
8107 		for (i = 0; i < NUM_MC_HASH_REGISTERS; i++) {
8108 			REG_WR(sc, BCE_EMAC_MULTICAST_HASH0 + (i * 4),
8109 			    0xffffffff);
8110 		}
8111 		sort_mode |= BCE_RPM_SORT_USER0_MC_EN;
8112 	} else {
8113 		/* Accept one or more multicast(s). */
8114 		DBPRINT(sc, BCE_INFO_MISC, "Enabling selective multicast mode.\n");
8115 
8116 		if_maddr_rlock(ifp);
8117 		TAILQ_FOREACH(ifma, &ifp->if_multiaddrs, ifma_link) {
8118 			if (ifma->ifma_addr->sa_family != AF_LINK)
8119 				continue;
8120 			h = ether_crc32_le(LLADDR((struct sockaddr_dl *)
8121 			    ifma->ifma_addr), ETHER_ADDR_LEN) & 0xFF;
8122 			    hashes[(h & 0xE0) >> 5] |= 1 << (h & 0x1F);
8123 		}
8124 		if_maddr_runlock(ifp);
8125 
8126 		for (i = 0; i < NUM_MC_HASH_REGISTERS; i++)
8127 			REG_WR(sc, BCE_EMAC_MULTICAST_HASH0 + (i * 4), hashes[i]);
8128 
8129 		sort_mode |= BCE_RPM_SORT_USER0_MC_HSH_EN;
8130 	}
8131 
8132 	/* Only make changes if the recive mode has actually changed. */
8133 	if (rx_mode != sc->rx_mode) {
8134 		DBPRINT(sc, BCE_VERBOSE_MISC, "Enabling new receive mode: "
8135 		    "0x%08X\n", rx_mode);
8136 
8137 		sc->rx_mode = rx_mode;
8138 		REG_WR(sc, BCE_EMAC_RX_MODE, rx_mode);
8139 	}
8140 
8141 	/* Disable and clear the exisitng sort before enabling a new sort. */
8142 	REG_WR(sc, BCE_RPM_SORT_USER0, 0x0);
8143 	REG_WR(sc, BCE_RPM_SORT_USER0, sort_mode);
8144 	REG_WR(sc, BCE_RPM_SORT_USER0, sort_mode | BCE_RPM_SORT_USER0_ENA);
8145 
8146 	DBEXIT(BCE_VERBOSE_MISC);
8147 }
8148 
8149 
8150 /****************************************************************************/
8151 /* Called periodically to updates statistics from the controllers           */
8152 /* statistics block.                                                        */
8153 /*                                                                          */
8154 /* Returns:                                                                 */
8155 /*   Nothing.                                                               */
8156 /****************************************************************************/
8157 static void
8158 bce_stats_update(struct bce_softc *sc)
8159 {
8160 	struct ifnet *ifp;
8161 	struct statistics_block *stats;
8162 
8163 	DBENTER(BCE_EXTREME_MISC);
8164 
8165 	ifp = sc->bce_ifp;
8166 
8167 	bus_dmamap_sync(sc->stats_tag, sc->stats_map, BUS_DMASYNC_POSTREAD);
8168 
8169 	stats = (struct statistics_block *) sc->stats_block;
8170 
8171 	/*
8172 	 * Certain controllers don't report
8173 	 * carrier sense errors correctly.
8174 	 * See errata E11_5708CA0_1165.
8175 	 */
8176 	if (!(BCE_CHIP_NUM(sc) == BCE_CHIP_NUM_5706) &&
8177 	    !(BCE_CHIP_ID(sc) == BCE_CHIP_ID_5708_A0))
8178 		ifp->if_oerrors +=
8179 		    (u_long) stats->stat_Dot3StatsCarrierSenseErrors;
8180 
8181 	/*
8182 	 * Update the sysctl statistics from the
8183 	 * hardware statistics.
8184 	 */
8185 	sc->stat_IfHCInOctets =
8186 	    ((u64) stats->stat_IfHCInOctets_hi << 32) +
8187 	     (u64) stats->stat_IfHCInOctets_lo;
8188 
8189 	sc->stat_IfHCInBadOctets =
8190 	    ((u64) stats->stat_IfHCInBadOctets_hi << 32) +
8191 	     (u64) stats->stat_IfHCInBadOctets_lo;
8192 
8193 	sc->stat_IfHCOutOctets =
8194 	    ((u64) stats->stat_IfHCOutOctets_hi << 32) +
8195 	     (u64) stats->stat_IfHCOutOctets_lo;
8196 
8197 	sc->stat_IfHCOutBadOctets =
8198 	    ((u64) stats->stat_IfHCOutBadOctets_hi << 32) +
8199 	     (u64) stats->stat_IfHCOutBadOctets_lo;
8200 
8201 	sc->stat_IfHCInUcastPkts =
8202 	    ((u64) stats->stat_IfHCInUcastPkts_hi << 32) +
8203 	     (u64) stats->stat_IfHCInUcastPkts_lo;
8204 
8205 	sc->stat_IfHCInMulticastPkts =
8206 	    ((u64) stats->stat_IfHCInMulticastPkts_hi << 32) +
8207 	     (u64) stats->stat_IfHCInMulticastPkts_lo;
8208 
8209 	sc->stat_IfHCInBroadcastPkts =
8210 	    ((u64) stats->stat_IfHCInBroadcastPkts_hi << 32) +
8211 	     (u64) stats->stat_IfHCInBroadcastPkts_lo;
8212 
8213 	sc->stat_IfHCOutUcastPkts =
8214 	    ((u64) stats->stat_IfHCOutUcastPkts_hi << 32) +
8215 	     (u64) stats->stat_IfHCOutUcastPkts_lo;
8216 
8217 	sc->stat_IfHCOutMulticastPkts =
8218 	    ((u64) stats->stat_IfHCOutMulticastPkts_hi << 32) +
8219 	     (u64) stats->stat_IfHCOutMulticastPkts_lo;
8220 
8221 	sc->stat_IfHCOutBroadcastPkts =
8222 	    ((u64) stats->stat_IfHCOutBroadcastPkts_hi << 32) +
8223 	     (u64) stats->stat_IfHCOutBroadcastPkts_lo;
8224 
8225 	/* ToDo: Preserve counters beyond 32 bits? */
8226 	/* ToDo: Read the statistics from auto-clear regs? */
8227 
8228 	sc->stat_emac_tx_stat_dot3statsinternalmactransmiterrors =
8229 	    stats->stat_emac_tx_stat_dot3statsinternalmactransmiterrors;
8230 
8231 	sc->stat_Dot3StatsCarrierSenseErrors =
8232 	    stats->stat_Dot3StatsCarrierSenseErrors;
8233 
8234 	sc->stat_Dot3StatsFCSErrors =
8235 	    stats->stat_Dot3StatsFCSErrors;
8236 
8237 	sc->stat_Dot3StatsAlignmentErrors =
8238 	    stats->stat_Dot3StatsAlignmentErrors;
8239 
8240 	sc->stat_Dot3StatsSingleCollisionFrames =
8241 	    stats->stat_Dot3StatsSingleCollisionFrames;
8242 
8243 	sc->stat_Dot3StatsMultipleCollisionFrames =
8244 	    stats->stat_Dot3StatsMultipleCollisionFrames;
8245 
8246 	sc->stat_Dot3StatsDeferredTransmissions =
8247 	    stats->stat_Dot3StatsDeferredTransmissions;
8248 
8249 	sc->stat_Dot3StatsExcessiveCollisions =
8250 	    stats->stat_Dot3StatsExcessiveCollisions;
8251 
8252 	sc->stat_Dot3StatsLateCollisions =
8253 	    stats->stat_Dot3StatsLateCollisions;
8254 
8255 	sc->stat_EtherStatsCollisions =
8256 	    stats->stat_EtherStatsCollisions;
8257 
8258 	sc->stat_EtherStatsFragments =
8259 	    stats->stat_EtherStatsFragments;
8260 
8261 	sc->stat_EtherStatsJabbers =
8262 	    stats->stat_EtherStatsJabbers;
8263 
8264 	sc->stat_EtherStatsUndersizePkts =
8265 	    stats->stat_EtherStatsUndersizePkts;
8266 
8267 	sc->stat_EtherStatsOversizePkts =
8268 	     stats->stat_EtherStatsOversizePkts;
8269 
8270 	sc->stat_EtherStatsPktsRx64Octets =
8271 	    stats->stat_EtherStatsPktsRx64Octets;
8272 
8273 	sc->stat_EtherStatsPktsRx65Octetsto127Octets =
8274 	    stats->stat_EtherStatsPktsRx65Octetsto127Octets;
8275 
8276 	sc->stat_EtherStatsPktsRx128Octetsto255Octets =
8277 	    stats->stat_EtherStatsPktsRx128Octetsto255Octets;
8278 
8279 	sc->stat_EtherStatsPktsRx256Octetsto511Octets =
8280 	    stats->stat_EtherStatsPktsRx256Octetsto511Octets;
8281 
8282 	sc->stat_EtherStatsPktsRx512Octetsto1023Octets =
8283 	    stats->stat_EtherStatsPktsRx512Octetsto1023Octets;
8284 
8285 	sc->stat_EtherStatsPktsRx1024Octetsto1522Octets =
8286 	    stats->stat_EtherStatsPktsRx1024Octetsto1522Octets;
8287 
8288 	sc->stat_EtherStatsPktsRx1523Octetsto9022Octets =
8289 	    stats->stat_EtherStatsPktsRx1523Octetsto9022Octets;
8290 
8291 	sc->stat_EtherStatsPktsTx64Octets =
8292 	    stats->stat_EtherStatsPktsTx64Octets;
8293 
8294 	sc->stat_EtherStatsPktsTx65Octetsto127Octets =
8295 	    stats->stat_EtherStatsPktsTx65Octetsto127Octets;
8296 
8297 	sc->stat_EtherStatsPktsTx128Octetsto255Octets =
8298 	    stats->stat_EtherStatsPktsTx128Octetsto255Octets;
8299 
8300 	sc->stat_EtherStatsPktsTx256Octetsto511Octets =
8301 	    stats->stat_EtherStatsPktsTx256Octetsto511Octets;
8302 
8303 	sc->stat_EtherStatsPktsTx512Octetsto1023Octets =
8304 	    stats->stat_EtherStatsPktsTx512Octetsto1023Octets;
8305 
8306 	sc->stat_EtherStatsPktsTx1024Octetsto1522Octets =
8307 	    stats->stat_EtherStatsPktsTx1024Octetsto1522Octets;
8308 
8309 	sc->stat_EtherStatsPktsTx1523Octetsto9022Octets =
8310 	    stats->stat_EtherStatsPktsTx1523Octetsto9022Octets;
8311 
8312 	sc->stat_XonPauseFramesReceived =
8313 	    stats->stat_XonPauseFramesReceived;
8314 
8315 	sc->stat_XoffPauseFramesReceived =
8316 	    stats->stat_XoffPauseFramesReceived;
8317 
8318 	sc->stat_OutXonSent =
8319 	    stats->stat_OutXonSent;
8320 
8321 	sc->stat_OutXoffSent =
8322 	    stats->stat_OutXoffSent;
8323 
8324 	sc->stat_FlowControlDone =
8325 	    stats->stat_FlowControlDone;
8326 
8327 	sc->stat_MacControlFramesReceived =
8328 	    stats->stat_MacControlFramesReceived;
8329 
8330 	sc->stat_XoffStateEntered =
8331 	    stats->stat_XoffStateEntered;
8332 
8333 	sc->stat_IfInFramesL2FilterDiscards =
8334 	    stats->stat_IfInFramesL2FilterDiscards;
8335 
8336 	sc->stat_IfInRuleCheckerDiscards =
8337 	    stats->stat_IfInRuleCheckerDiscards;
8338 
8339 	sc->stat_IfInFTQDiscards =
8340 	    stats->stat_IfInFTQDiscards;
8341 
8342 	sc->stat_IfInMBUFDiscards =
8343 	    stats->stat_IfInMBUFDiscards;
8344 
8345 	sc->stat_IfInRuleCheckerP4Hit =
8346 	    stats->stat_IfInRuleCheckerP4Hit;
8347 
8348 	sc->stat_CatchupInRuleCheckerDiscards =
8349 	    stats->stat_CatchupInRuleCheckerDiscards;
8350 
8351 	sc->stat_CatchupInFTQDiscards =
8352 	    stats->stat_CatchupInFTQDiscards;
8353 
8354 	sc->stat_CatchupInMBUFDiscards =
8355 	    stats->stat_CatchupInMBUFDiscards;
8356 
8357 	sc->stat_CatchupInRuleCheckerP4Hit =
8358 	    stats->stat_CatchupInRuleCheckerP4Hit;
8359 
8360 	sc->com_no_buffers = REG_RD_IND(sc, 0x120084);
8361 
8362 	/*
8363 	 * Update the interface statistics from the
8364 	 * hardware statistics.
8365 	 */
8366 	ifp->if_collisions =
8367 	    (u_long) sc->stat_EtherStatsCollisions;
8368 
8369 	/* ToDo: This method loses soft errors. */
8370 	ifp->if_ierrors =
8371 	    (u_long) sc->stat_EtherStatsUndersizePkts +
8372 	    (u_long) sc->stat_EtherStatsOversizePkts +
8373 	    (u_long) sc->stat_IfInMBUFDiscards +
8374 	    (u_long) sc->stat_Dot3StatsAlignmentErrors +
8375 	    (u_long) sc->stat_Dot3StatsFCSErrors +
8376 	    (u_long) sc->stat_IfInRuleCheckerDiscards +
8377 	    (u_long) sc->stat_IfInFTQDiscards +
8378 	    (u_long) sc->com_no_buffers;
8379 
8380 	/* ToDo: This method loses soft errors. */
8381 	ifp->if_oerrors =
8382 	    (u_long) sc->stat_emac_tx_stat_dot3statsinternalmactransmiterrors +
8383 	    (u_long) sc->stat_Dot3StatsExcessiveCollisions +
8384 	    (u_long) sc->stat_Dot3StatsLateCollisions;
8385 
8386 	/* ToDo: Add additional statistics? */
8387 
8388 	DBEXIT(BCE_EXTREME_MISC);
8389 }
8390 
8391 
8392 /****************************************************************************/
8393 /* Periodic function to notify the bootcode that the driver is still        */
8394 /* present.                                                                 */
8395 /*                                                                          */
8396 /* Returns:                                                                 */
8397 /*   Nothing.                                                               */
8398 /****************************************************************************/
8399 static void
8400 bce_pulse(void *xsc)
8401 {
8402 	struct bce_softc *sc = xsc;
8403 	u32 msg;
8404 
8405 	DBENTER(BCE_EXTREME_MISC);
8406 
8407 	BCE_LOCK_ASSERT(sc);
8408 
8409 	/* Tell the firmware that the driver is still running. */
8410 	msg = (u32) ++sc->bce_fw_drv_pulse_wr_seq;
8411 	bce_shmem_wr(sc, BCE_DRV_PULSE_MB, msg);
8412 
8413 	/* Update the bootcode condition. */
8414 	sc->bc_state = bce_shmem_rd(sc, BCE_BC_STATE_CONDITION);
8415 
8416 	/* Report whether the bootcode still knows the driver is running. */
8417 	if (bce_verbose || bootverbose) {
8418 		if (sc->bce_drv_cardiac_arrest == FALSE) {
8419 			if (!(sc->bc_state & BCE_CONDITION_DRV_PRESENT)) {
8420 				sc->bce_drv_cardiac_arrest = TRUE;
8421 				BCE_PRINTF("%s(): Warning: bootcode "
8422 				    "thinks driver is absent! "
8423 				    "(bc_state = 0x%08X)\n",
8424 				    __FUNCTION__, sc->bc_state);
8425 			}
8426 		} else {
8427 			/*
8428 			 * Not supported by all bootcode versions.
8429 			 * (v5.0.11+ and v5.2.1+)  Older bootcode
8430 			 * will require the driver to reset the
8431 			 * controller to clear this condition.
8432 			 */
8433 			if (sc->bc_state & BCE_CONDITION_DRV_PRESENT) {
8434 				sc->bce_drv_cardiac_arrest = FALSE;
8435 				BCE_PRINTF("%s(): Bootcode found the "
8436 				    "driver pulse! (bc_state = 0x%08X)\n",
8437 				    __FUNCTION__, sc->bc_state);
8438 			}
8439 		}
8440 	}
8441 
8442 
8443 	/* Schedule the next pulse. */
8444 	callout_reset(&sc->bce_pulse_callout, hz, bce_pulse, sc);
8445 
8446 	DBEXIT(BCE_EXTREME_MISC);
8447 }
8448 
8449 
8450 /****************************************************************************/
8451 /* Periodic function to perform maintenance tasks.                          */
8452 /*                                                                          */
8453 /* Returns:                                                                 */
8454 /*   Nothing.                                                               */
8455 /****************************************************************************/
8456 static void
8457 bce_tick(void *xsc)
8458 {
8459 	struct bce_softc *sc = xsc;
8460 	struct mii_data *mii;
8461 	struct ifnet *ifp;
8462 	struct ifmediareq ifmr;
8463 
8464 	ifp = sc->bce_ifp;
8465 
8466 	DBENTER(BCE_EXTREME_MISC);
8467 
8468 	BCE_LOCK_ASSERT(sc);
8469 
8470 	/* Schedule the next tick. */
8471 	callout_reset(&sc->bce_tick_callout, hz, bce_tick, sc);
8472 
8473 	/* Update the statistics from the hardware statistics block. */
8474 	bce_stats_update(sc);
8475 
8476  	/* Ensure page and RX chains get refilled in low-memory situations. */
8477 	if (bce_hdr_split == TRUE)
8478 		bce_fill_pg_chain(sc);
8479 	bce_fill_rx_chain(sc);
8480 
8481 	/* Check that chip hasn't hung. */
8482 	bce_watchdog(sc);
8483 
8484 	/* If link is up already up then we're done. */
8485 	if (sc->bce_link_up == TRUE)
8486 		goto bce_tick_exit;
8487 
8488 	/* Link is down.  Check what the PHY's doing. */
8489 	if ((sc->bce_phy_flags & BCE_PHY_REMOTE_CAP_FLAG) != 0) {
8490 		bzero(&ifmr, sizeof(ifmr));
8491 		bce_ifmedia_sts_rphy(sc, &ifmr);
8492 		if ((ifmr.ifm_status & (IFM_ACTIVE | IFM_AVALID)) ==
8493 		    (IFM_ACTIVE | IFM_AVALID)) {
8494 			sc->bce_link_up = TRUE;
8495 			bce_miibus_statchg(sc->bce_dev);
8496 		}
8497 	} else {
8498 		mii = device_get_softc(sc->bce_miibus);
8499 		mii_tick(mii);
8500 		/* Check if the link has come up. */
8501 		if ((mii->mii_media_status & IFM_ACTIVE) &&
8502 		    (IFM_SUBTYPE(mii->mii_media_active) != IFM_NONE)) {
8503 			DBPRINT(sc, BCE_VERBOSE_MISC, "%s(): Link up!\n",
8504 			    __FUNCTION__);
8505 			sc->bce_link_up = TRUE;
8506 			if ((IFM_SUBTYPE(mii->mii_media_active) == IFM_1000_T ||
8507 			    IFM_SUBTYPE(mii->mii_media_active) == IFM_1000_SX ||
8508 			    IFM_SUBTYPE(mii->mii_media_active) == IFM_2500_SX) &&
8509 			    (bce_verbose || bootverbose))
8510 				BCE_PRINTF("Gigabit link up!\n");
8511 		}
8512 
8513 	}
8514 	if (sc->bce_link_up == TRUE) {
8515 		/* Now that link is up, handle any outstanding TX traffic. */
8516 		if (!IFQ_DRV_IS_EMPTY(&ifp->if_snd)) {
8517 			DBPRINT(sc, BCE_VERBOSE_MISC, "%s(): Found "
8518 			    "pending TX traffic.\n", __FUNCTION__);
8519 			bce_start_locked(ifp);
8520 		}
8521 	}
8522 
8523 bce_tick_exit:
8524 	DBEXIT(BCE_EXTREME_MISC);
8525 }
8526 
8527 static void
8528 bce_fw_cap_init(struct bce_softc *sc)
8529 {
8530 	u32 ack, cap, link;
8531 
8532 	ack = 0;
8533 	cap = bce_shmem_rd(sc, BCE_FW_CAP_MB);
8534 	if ((cap & BCE_FW_CAP_SIGNATURE_MAGIC_MASK) !=
8535 	    BCE_FW_CAP_SIGNATURE_MAGIC)
8536 		return;
8537 	if ((cap & (BCE_FW_CAP_MFW_KEEP_VLAN | BCE_FW_CAP_BC_KEEP_VLAN)) ==
8538 	    (BCE_FW_CAP_MFW_KEEP_VLAN | BCE_FW_CAP_BC_KEEP_VLAN))
8539 		ack |= BCE_DRV_ACK_CAP_SIGNATURE_MAGIC |
8540 		    BCE_FW_CAP_MFW_KEEP_VLAN | BCE_FW_CAP_BC_KEEP_VLAN;
8541 	if ((sc->bce_phy_flags & BCE_PHY_SERDES_FLAG) != 0 &&
8542 	    (cap & BCE_FW_CAP_REMOTE_PHY_CAP) != 0) {
8543 		sc->bce_phy_flags &= ~BCE_PHY_REMOTE_PORT_FIBER_FLAG;
8544 		sc->bce_phy_flags |= BCE_PHY_REMOTE_CAP_FLAG;
8545 		link = bce_shmem_rd(sc, BCE_LINK_STATUS);
8546 		if ((link & BCE_LINK_STATUS_SERDES_LINK) != 0)
8547 			sc->bce_phy_flags |= BCE_PHY_REMOTE_PORT_FIBER_FLAG;
8548 		ack |= BCE_DRV_ACK_CAP_SIGNATURE_MAGIC |
8549 		    BCE_FW_CAP_REMOTE_PHY_CAP;
8550 	}
8551 
8552 	if (ack != 0)
8553 		bce_shmem_wr(sc, BCE_DRV_ACK_CAP_MB, ack);
8554 }
8555 
8556 
8557 #ifdef BCE_DEBUG
8558 /****************************************************************************/
8559 /* Allows the driver state to be dumped through the sysctl interface.       */
8560 /*                                                                          */
8561 /* Returns:                                                                 */
8562 /*   0 for success, positive value for failure.                             */
8563 /****************************************************************************/
8564 static int
8565 bce_sysctl_driver_state(SYSCTL_HANDLER_ARGS)
8566 {
8567 	int error;
8568 	int result;
8569 	struct bce_softc *sc;
8570 
8571 	result = -1;
8572 	error = sysctl_handle_int(oidp, &result, 0, req);
8573 
8574 	if (error || !req->newptr)
8575 		return (error);
8576 
8577 	if (result == 1) {
8578 		sc = (struct bce_softc *)arg1;
8579 		bce_dump_driver_state(sc);
8580 	}
8581 
8582 	return error;
8583 }
8584 
8585 
8586 /****************************************************************************/
8587 /* Allows the hardware state to be dumped through the sysctl interface.     */
8588 /*                                                                          */
8589 /* Returns:                                                                 */
8590 /*   0 for success, positive value for failure.                             */
8591 /****************************************************************************/
8592 static int
8593 bce_sysctl_hw_state(SYSCTL_HANDLER_ARGS)
8594 {
8595 	int error;
8596 	int result;
8597 	struct bce_softc *sc;
8598 
8599 	result = -1;
8600 	error = sysctl_handle_int(oidp, &result, 0, req);
8601 
8602 	if (error || !req->newptr)
8603 		return (error);
8604 
8605 	if (result == 1) {
8606 		sc = (struct bce_softc *)arg1;
8607 		bce_dump_hw_state(sc);
8608 	}
8609 
8610 	return error;
8611 }
8612 
8613 
8614 /****************************************************************************/
8615 /* Allows the status block to be dumped through the sysctl interface.       */
8616 /*                                                                          */
8617 /* Returns:                                                                 */
8618 /*   0 for success, positive value for failure.                             */
8619 /****************************************************************************/
8620 static int
8621 bce_sysctl_status_block(SYSCTL_HANDLER_ARGS)
8622 {
8623 	int error;
8624 	int result;
8625 	struct bce_softc *sc;
8626 
8627 	result = -1;
8628 	error = sysctl_handle_int(oidp, &result, 0, req);
8629 
8630 	if (error || !req->newptr)
8631 		return (error);
8632 
8633 	if (result == 1) {
8634 		sc = (struct bce_softc *)arg1;
8635 		bce_dump_status_block(sc);
8636 	}
8637 
8638 	return error;
8639 }
8640 
8641 
8642 /****************************************************************************/
8643 /* Allows the stats block to be dumped through the sysctl interface.        */
8644 /*                                                                          */
8645 /* Returns:                                                                 */
8646 /*   0 for success, positive value for failure.                             */
8647 /****************************************************************************/
8648 static int
8649 bce_sysctl_stats_block(SYSCTL_HANDLER_ARGS)
8650 {
8651 	int error;
8652 	int result;
8653 	struct bce_softc *sc;
8654 
8655 	result = -1;
8656 	error = sysctl_handle_int(oidp, &result, 0, req);
8657 
8658 	if (error || !req->newptr)
8659 		return (error);
8660 
8661 	if (result == 1) {
8662 		sc = (struct bce_softc *)arg1;
8663 		bce_dump_stats_block(sc);
8664 	}
8665 
8666 	return error;
8667 }
8668 
8669 
8670 /****************************************************************************/
8671 /* Allows the stat counters to be cleared without unloading/reloading the   */
8672 /* driver.                                                                  */
8673 /*                                                                          */
8674 /* Returns:                                                                 */
8675 /*   0 for success, positive value for failure.                             */
8676 /****************************************************************************/
8677 static int
8678 bce_sysctl_stats_clear(SYSCTL_HANDLER_ARGS)
8679 {
8680 	int error;
8681 	int result;
8682 	struct bce_softc *sc;
8683 
8684 	result = -1;
8685 	error = sysctl_handle_int(oidp, &result, 0, req);
8686 
8687 	if (error || !req->newptr)
8688 		return (error);
8689 
8690 	if (result == 1) {
8691 		sc = (struct bce_softc *)arg1;
8692 		struct statistics_block *stats;
8693 
8694 		stats = (struct statistics_block *) sc->stats_block;
8695 		bzero(stats, sizeof(struct statistics_block));
8696 		bus_dmamap_sync(sc->stats_tag, sc->stats_map,
8697 		    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
8698 
8699 		/* Clear the internal H/W statistics counters. */
8700 		REG_WR(sc, BCE_HC_COMMAND, BCE_HC_COMMAND_CLR_STAT_NOW);
8701 
8702 		/* Reset the driver maintained statistics. */
8703 		sc->interrupts_rx =
8704 		    sc->interrupts_tx = 0;
8705 		sc->tso_frames_requested =
8706 		    sc->tso_frames_completed =
8707 		    sc->tso_frames_failed = 0;
8708 		sc->rx_empty_count =
8709 		    sc->tx_full_count = 0;
8710 		sc->rx_low_watermark = USABLE_RX_BD_ALLOC;
8711 		sc->tx_hi_watermark = 0;
8712 		sc->l2fhdr_error_count =
8713 		    sc->l2fhdr_error_sim_count = 0;
8714 		sc->mbuf_alloc_failed_count =
8715 		    sc->mbuf_alloc_failed_sim_count = 0;
8716 		sc->dma_map_addr_rx_failed_count =
8717 		    sc->dma_map_addr_tx_failed_count = 0;
8718 		sc->mbuf_frag_count = 0;
8719 		sc->csum_offload_tcp_udp =
8720 		    sc->csum_offload_ip = 0;
8721 		sc->vlan_tagged_frames_rcvd =
8722 		    sc->vlan_tagged_frames_stripped = 0;
8723 		sc->split_header_frames_rcvd =
8724 		    sc->split_header_tcp_frames_rcvd = 0;
8725 
8726 		/* Clear firmware maintained statistics. */
8727 		REG_WR_IND(sc, 0x120084, 0);
8728 	}
8729 
8730 	return error;
8731 }
8732 
8733 
8734 /****************************************************************************/
8735 /* Allows the shared memory contents to be dumped through the sysctl  .     */
8736 /* interface.                                                               */
8737 /*                                                                          */
8738 /* Returns:                                                                 */
8739 /*   0 for success, positive value for failure.                             */
8740 /****************************************************************************/
8741 static int
8742 bce_sysctl_shmem_state(SYSCTL_HANDLER_ARGS)
8743 {
8744 	int error;
8745 	int result;
8746 	struct bce_softc *sc;
8747 
8748 	result = -1;
8749 	error = sysctl_handle_int(oidp, &result, 0, req);
8750 
8751 	if (error || !req->newptr)
8752 		return (error);
8753 
8754 	if (result == 1) {
8755 		sc = (struct bce_softc *)arg1;
8756 		bce_dump_shmem_state(sc);
8757 	}
8758 
8759 	return error;
8760 }
8761 
8762 
8763 /****************************************************************************/
8764 /* Allows the bootcode state to be dumped through the sysctl interface.     */
8765 /*                                                                          */
8766 /* Returns:                                                                 */
8767 /*   0 for success, positive value for failure.                             */
8768 /****************************************************************************/
8769 static int
8770 bce_sysctl_bc_state(SYSCTL_HANDLER_ARGS)
8771 {
8772 	int error;
8773 	int result;
8774 	struct bce_softc *sc;
8775 
8776 	result = -1;
8777 	error = sysctl_handle_int(oidp, &result, 0, req);
8778 
8779 	if (error || !req->newptr)
8780 		return (error);
8781 
8782 	if (result == 1) {
8783 		sc = (struct bce_softc *)arg1;
8784 		bce_dump_bc_state(sc);
8785 	}
8786 
8787 	return error;
8788 }
8789 
8790 
8791 /****************************************************************************/
8792 /* Provides a sysctl interface to allow dumping the RX BD chain.            */
8793 /*                                                                          */
8794 /* Returns:                                                                 */
8795 /*   0 for success, positive value for failure.                             */
8796 /****************************************************************************/
8797 static int
8798 bce_sysctl_dump_rx_bd_chain(SYSCTL_HANDLER_ARGS)
8799 {
8800 	int error;
8801 	int result;
8802 	struct bce_softc *sc;
8803 
8804 	result = -1;
8805 	error = sysctl_handle_int(oidp, &result, 0, req);
8806 
8807 	if (error || !req->newptr)
8808 		return (error);
8809 
8810 	if (result == 1) {
8811 		sc = (struct bce_softc *)arg1;
8812 		bce_dump_rx_bd_chain(sc, 0, TOTAL_RX_BD_ALLOC);
8813 	}
8814 
8815 	return error;
8816 }
8817 
8818 
8819 /****************************************************************************/
8820 /* Provides a sysctl interface to allow dumping the RX MBUF chain.          */
8821 /*                                                                          */
8822 /* Returns:                                                                 */
8823 /*   0 for success, positive value for failure.                             */
8824 /****************************************************************************/
8825 static int
8826 bce_sysctl_dump_rx_mbuf_chain(SYSCTL_HANDLER_ARGS)
8827 {
8828 	int error;
8829 	int result;
8830 	struct bce_softc *sc;
8831 
8832 	result = -1;
8833 	error = sysctl_handle_int(oidp, &result, 0, req);
8834 
8835 	if (error || !req->newptr)
8836 		return (error);
8837 
8838 	if (result == 1) {
8839 		sc = (struct bce_softc *)arg1;
8840 		bce_dump_rx_mbuf_chain(sc, 0, USABLE_RX_BD_ALLOC);
8841 	}
8842 
8843 	return error;
8844 }
8845 
8846 
8847 /****************************************************************************/
8848 /* Provides a sysctl interface to allow dumping the TX chain.               */
8849 /*                                                                          */
8850 /* Returns:                                                                 */
8851 /*   0 for success, positive value for failure.                             */
8852 /****************************************************************************/
8853 static int
8854 bce_sysctl_dump_tx_chain(SYSCTL_HANDLER_ARGS)
8855 {
8856 	int error;
8857 	int result;
8858 	struct bce_softc *sc;
8859 
8860 	result = -1;
8861 	error = sysctl_handle_int(oidp, &result, 0, req);
8862 
8863 	if (error || !req->newptr)
8864 		return (error);
8865 
8866 	if (result == 1) {
8867 		sc = (struct bce_softc *)arg1;
8868 		bce_dump_tx_chain(sc, 0, TOTAL_TX_BD_ALLOC);
8869 	}
8870 
8871 	return error;
8872 }
8873 
8874 
8875 /****************************************************************************/
8876 /* Provides a sysctl interface to allow dumping the page chain.             */
8877 /*                                                                          */
8878 /* Returns:                                                                 */
8879 /*   0 for success, positive value for failure.                             */
8880 /****************************************************************************/
8881 static int
8882 bce_sysctl_dump_pg_chain(SYSCTL_HANDLER_ARGS)
8883 {
8884 	int error;
8885 	int result;
8886 	struct bce_softc *sc;
8887 
8888 	result = -1;
8889 	error = sysctl_handle_int(oidp, &result, 0, req);
8890 
8891 	if (error || !req->newptr)
8892 		return (error);
8893 
8894 	if (result == 1) {
8895 		sc = (struct bce_softc *)arg1;
8896 		bce_dump_pg_chain(sc, 0, TOTAL_PG_BD_ALLOC);
8897 	}
8898 
8899 	return error;
8900 }
8901 
8902 /****************************************************************************/
8903 /* Provides a sysctl interface to allow reading arbitrary NVRAM offsets in  */
8904 /* the device.  DO NOT ENABLE ON PRODUCTION SYSTEMS!                        */
8905 /*                                                                          */
8906 /* Returns:                                                                 */
8907 /*   0 for success, positive value for failure.                             */
8908 /****************************************************************************/
8909 static int
8910 bce_sysctl_nvram_read(SYSCTL_HANDLER_ARGS)
8911 {
8912 	struct bce_softc *sc = (struct bce_softc *)arg1;
8913 	int error;
8914 	u32 result;
8915 	u32 val[1];
8916 	u8 *data = (u8 *) val;
8917 
8918 	result = -1;
8919 	error = sysctl_handle_int(oidp, &result, 0, req);
8920 	if (error || (req->newptr == NULL))
8921 		return (error);
8922 
8923 	error = bce_nvram_read(sc, result, data, 4);
8924 
8925 	BCE_PRINTF("offset 0x%08X = 0x%08X\n", result, bce_be32toh(val[0]));
8926 
8927 	return (error);
8928 }
8929 
8930 
8931 /****************************************************************************/
8932 /* Provides a sysctl interface to allow reading arbitrary registers in the  */
8933 /* device.  DO NOT ENABLE ON PRODUCTION SYSTEMS!                            */
8934 /*                                                                          */
8935 /* Returns:                                                                 */
8936 /*   0 for success, positive value for failure.                             */
8937 /****************************************************************************/
8938 static int
8939 bce_sysctl_reg_read(SYSCTL_HANDLER_ARGS)
8940 {
8941 	struct bce_softc *sc = (struct bce_softc *)arg1;
8942 	int error;
8943 	u32 val, result;
8944 
8945 	result = -1;
8946 	error = sysctl_handle_int(oidp, &result, 0, req);
8947 	if (error || (req->newptr == NULL))
8948 		return (error);
8949 
8950 	/* Make sure the register is accessible. */
8951 	if (result < 0x8000) {
8952 		val = REG_RD(sc, result);
8953 		BCE_PRINTF("reg 0x%08X = 0x%08X\n", result, val);
8954 	} else if (result < 0x0280000) {
8955 		val = REG_RD_IND(sc, result);
8956 		BCE_PRINTF("reg 0x%08X = 0x%08X\n", result, val);
8957 	}
8958 
8959 	return (error);
8960 }
8961 
8962 
8963 /****************************************************************************/
8964 /* Provides a sysctl interface to allow reading arbitrary PHY registers in  */
8965 /* the device.  DO NOT ENABLE ON PRODUCTION SYSTEMS!                        */
8966 /*                                                                          */
8967 /* Returns:                                                                 */
8968 /*   0 for success, positive value for failure.                             */
8969 /****************************************************************************/
8970 static int
8971 bce_sysctl_phy_read(SYSCTL_HANDLER_ARGS)
8972 {
8973 	struct bce_softc *sc;
8974 	device_t dev;
8975 	int error, result;
8976 	u16 val;
8977 
8978 	result = -1;
8979 	error = sysctl_handle_int(oidp, &result, 0, req);
8980 	if (error || (req->newptr == NULL))
8981 		return (error);
8982 
8983 	/* Make sure the register is accessible. */
8984 	if (result < 0x20) {
8985 		sc = (struct bce_softc *)arg1;
8986 		dev = sc->bce_dev;
8987 		val = bce_miibus_read_reg(dev, sc->bce_phy_addr, result);
8988 		BCE_PRINTF("phy 0x%02X = 0x%04X\n", result, val);
8989 	}
8990 	return (error);
8991 }
8992 
8993 
8994 /****************************************************************************/
8995 /* Provides a sysctl interface for dumping the nvram contents.              */
8996 /* DO NOT ENABLE ON PRODUCTION SYSTEMS!					    */
8997 /*									    */
8998 /* Returns:								    */
8999 /*   0 for success, positive errno for failure.				    */
9000 /****************************************************************************/
9001 static int
9002 bce_sysctl_nvram_dump(SYSCTL_HANDLER_ARGS)
9003 {
9004 	struct bce_softc *sc = (struct bce_softc *)arg1;
9005 	int error, i;
9006 
9007 	if (sc->nvram_buf == NULL)
9008 		sc->nvram_buf = malloc(sc->bce_flash_size,
9009 				    M_TEMP, M_ZERO | M_WAITOK);
9010 
9011 	error = 0;
9012 	if (req->oldlen == sc->bce_flash_size) {
9013 		for (i = 0; i < sc->bce_flash_size && error == 0; i++)
9014 			error = bce_nvram_read(sc, i, &sc->nvram_buf[i], 1);
9015 	}
9016 
9017 	if (error == 0)
9018 		error = SYSCTL_OUT(req, sc->nvram_buf, sc->bce_flash_size);
9019 
9020 	return error;
9021 }
9022 
9023 #ifdef BCE_NVRAM_WRITE_SUPPORT
9024 /****************************************************************************/
9025 /* Provides a sysctl interface for writing to nvram.                        */
9026 /* DO NOT ENABLE ON PRODUCTION SYSTEMS!					    */
9027 /*									    */
9028 /* Returns:								    */
9029 /*   0 for success, positive errno for failure.				    */
9030 /****************************************************************************/
9031 static int
9032 bce_sysctl_nvram_write(SYSCTL_HANDLER_ARGS)
9033 {
9034 	struct bce_softc *sc = (struct bce_softc *)arg1;
9035 	int error;
9036 
9037 	if (sc->nvram_buf == NULL)
9038 		sc->nvram_buf = malloc(sc->bce_flash_size,
9039 				    M_TEMP, M_ZERO | M_WAITOK);
9040 	else
9041 		bzero(sc->nvram_buf, sc->bce_flash_size);
9042 
9043 	error = SYSCTL_IN(req, sc->nvram_buf, sc->bce_flash_size);
9044 	if (error == 0)
9045 		return (error);
9046 
9047 	if (req->newlen == sc->bce_flash_size)
9048 		error = bce_nvram_write(sc, 0, sc->nvram_buf,
9049 			    sc->bce_flash_size);
9050 
9051 
9052 	return error;
9053 }
9054 #endif
9055 
9056 
9057 /****************************************************************************/
9058 /* Provides a sysctl interface to allow reading a CID.                      */
9059 /*                                                                          */
9060 /* Returns:                                                                 */
9061 /*   0 for success, positive value for failure.                             */
9062 /****************************************************************************/
9063 static int
9064 bce_sysctl_dump_ctx(SYSCTL_HANDLER_ARGS)
9065 {
9066 	struct bce_softc *sc;
9067 	int error, result;
9068 
9069 	result = -1;
9070 	error = sysctl_handle_int(oidp, &result, 0, req);
9071 	if (error || (req->newptr == NULL))
9072 		return (error);
9073 
9074 	/* Make sure the register is accessible. */
9075 	if (result <= TX_CID) {
9076 		sc = (struct bce_softc *)arg1;
9077 		bce_dump_ctx(sc, result);
9078 	}
9079 
9080 	return (error);
9081 }
9082 
9083 
9084 /****************************************************************************/
9085 /* Provides a sysctl interface to forcing the driver to dump state and      */
9086 /* enter the debugger.  DO NOT ENABLE ON PRODUCTION SYSTEMS!                */
9087 /*                                                                          */
9088 /* Returns:                                                                 */
9089 /*   0 for success, positive value for failure.                             */
9090 /****************************************************************************/
9091 static int
9092 bce_sysctl_breakpoint(SYSCTL_HANDLER_ARGS)
9093 {
9094 	int error;
9095 	int result;
9096 	struct bce_softc *sc;
9097 
9098 	result = -1;
9099 	error = sysctl_handle_int(oidp, &result, 0, req);
9100 
9101 	if (error || !req->newptr)
9102 		return (error);
9103 
9104 	if (result == 1) {
9105 		sc = (struct bce_softc *)arg1;
9106 		bce_breakpoint(sc);
9107 	}
9108 
9109 	return error;
9110 }
9111 #endif
9112 
9113 /****************************************************************************/
9114 /* Adds any sysctl parameters for tuning or debugging purposes.             */
9115 /*                                                                          */
9116 /* Returns:                                                                 */
9117 /*   0 for success, positive value for failure.                             */
9118 /****************************************************************************/
9119 static void
9120 bce_add_sysctls(struct bce_softc *sc)
9121 {
9122 	struct sysctl_ctx_list *ctx;
9123 	struct sysctl_oid_list *children;
9124 
9125 	DBENTER(BCE_VERBOSE_MISC);
9126 
9127 	ctx = device_get_sysctl_ctx(sc->bce_dev);
9128 	children = SYSCTL_CHILDREN(device_get_sysctl_tree(sc->bce_dev));
9129 
9130 #ifdef BCE_DEBUG
9131 	SYSCTL_ADD_INT(ctx, children, OID_AUTO,
9132 	    "l2fhdr_error_sim_control",
9133 	    CTLFLAG_RW, &l2fhdr_error_sim_control,
9134 	    0, "Debug control to force l2fhdr errors");
9135 
9136 	SYSCTL_ADD_INT(ctx, children, OID_AUTO,
9137 	    "l2fhdr_error_sim_count",
9138 	    CTLFLAG_RD, &sc->l2fhdr_error_sim_count,
9139 	    0, "Number of simulated l2_fhdr errors");
9140 #endif
9141 
9142 	SYSCTL_ADD_UINT(ctx, children, OID_AUTO,
9143 	    "l2fhdr_error_count",
9144 	    CTLFLAG_RD, &sc->l2fhdr_error_count,
9145 	    0, "Number of l2_fhdr errors");
9146 
9147 #ifdef BCE_DEBUG
9148 	SYSCTL_ADD_INT(ctx, children, OID_AUTO,
9149 	    "mbuf_alloc_failed_sim_control",
9150 	    CTLFLAG_RW, &mbuf_alloc_failed_sim_control,
9151 	    0, "Debug control to force mbuf allocation failures");
9152 
9153 	SYSCTL_ADD_UINT(ctx, children, OID_AUTO,
9154 	    "mbuf_alloc_failed_sim_count",
9155 	    CTLFLAG_RD, &sc->mbuf_alloc_failed_sim_count,
9156 	    0, "Number of simulated mbuf cluster allocation failures");
9157 #endif
9158 
9159 	SYSCTL_ADD_UINT(ctx, children, OID_AUTO,
9160 	    "mbuf_alloc_failed_count",
9161 	    CTLFLAG_RD, &sc->mbuf_alloc_failed_count,
9162 	    0, "Number of mbuf allocation failures");
9163 
9164 	SYSCTL_ADD_UINT(ctx, children, OID_AUTO,
9165 	    "mbuf_frag_count",
9166 	    CTLFLAG_RD, &sc->mbuf_frag_count,
9167 	    0, "Number of fragmented mbufs");
9168 
9169 #ifdef BCE_DEBUG
9170 	SYSCTL_ADD_INT(ctx, children, OID_AUTO,
9171 	    "dma_map_addr_failed_sim_control",
9172 	    CTLFLAG_RW, &dma_map_addr_failed_sim_control,
9173 	    0, "Debug control to force DMA mapping failures");
9174 
9175 	/* ToDo: Figure out how to update this value in bce_dma_map_addr(). */
9176 	SYSCTL_ADD_UINT(ctx, children, OID_AUTO,
9177 	    "dma_map_addr_failed_sim_count",
9178 	    CTLFLAG_RD, &sc->dma_map_addr_failed_sim_count,
9179 	    0, "Number of simulated DMA mapping failures");
9180 
9181 #endif
9182 
9183 	SYSCTL_ADD_UINT(ctx, children, OID_AUTO,
9184 	    "dma_map_addr_rx_failed_count",
9185 	    CTLFLAG_RD, &sc->dma_map_addr_rx_failed_count,
9186 	    0, "Number of RX DMA mapping failures");
9187 
9188 	SYSCTL_ADD_UINT(ctx, children, OID_AUTO,
9189 	    "dma_map_addr_tx_failed_count",
9190 	    CTLFLAG_RD, &sc->dma_map_addr_tx_failed_count,
9191 	    0, "Number of TX DMA mapping failures");
9192 
9193 #ifdef BCE_DEBUG
9194 	SYSCTL_ADD_INT(ctx, children, OID_AUTO,
9195 	    "unexpected_attention_sim_control",
9196 	    CTLFLAG_RW, &unexpected_attention_sim_control,
9197 	    0, "Debug control to simulate unexpected attentions");
9198 
9199 	SYSCTL_ADD_UINT(ctx, children, OID_AUTO,
9200 	    "unexpected_attention_sim_count",
9201 	    CTLFLAG_RW, &sc->unexpected_attention_sim_count,
9202 	    0, "Number of simulated unexpected attentions");
9203 #endif
9204 
9205 	SYSCTL_ADD_UINT(ctx, children, OID_AUTO,
9206 	    "unexpected_attention_count",
9207 	    CTLFLAG_RW, &sc->unexpected_attention_count,
9208 	    0, "Number of unexpected attentions");
9209 
9210 #ifdef BCE_DEBUG
9211 	SYSCTL_ADD_INT(ctx, children, OID_AUTO,
9212 	    "debug_bootcode_running_failure",
9213 	    CTLFLAG_RW, &bootcode_running_failure_sim_control,
9214 	    0, "Debug control to force bootcode running failures");
9215 
9216 	SYSCTL_ADD_INT(ctx, children, OID_AUTO,
9217 	    "rx_low_watermark",
9218 	    CTLFLAG_RD, &sc->rx_low_watermark,
9219 	    0, "Lowest level of free rx_bd's");
9220 
9221 	SYSCTL_ADD_QUAD(ctx, children, OID_AUTO,
9222 	    "rx_empty_count",
9223 	    CTLFLAG_RD, &sc->rx_empty_count,
9224 	    "Number of times the RX chain was empty");
9225 
9226 	SYSCTL_ADD_INT(ctx, children, OID_AUTO,
9227 	    "tx_hi_watermark",
9228 	    CTLFLAG_RD, &sc->tx_hi_watermark,
9229 	    0, "Highest level of used tx_bd's");
9230 
9231 	SYSCTL_ADD_QUAD(ctx, children, OID_AUTO,
9232 	    "tx_full_count",
9233 	    CTLFLAG_RD, &sc->tx_full_count,
9234 	    "Number of times the TX chain was full");
9235 
9236 	SYSCTL_ADD_QUAD(ctx, children, OID_AUTO,
9237 	    "tso_frames_requested",
9238 	    CTLFLAG_RD, &sc->tso_frames_requested,
9239 	    "Number of TSO frames requested");
9240 
9241 	SYSCTL_ADD_QUAD(ctx, children, OID_AUTO,
9242 	    "tso_frames_completed",
9243 	    CTLFLAG_RD, &sc->tso_frames_completed,
9244 	    "Number of TSO frames completed");
9245 
9246 	SYSCTL_ADD_QUAD(ctx, children, OID_AUTO,
9247 	    "tso_frames_failed",
9248 	    CTLFLAG_RD, &sc->tso_frames_failed,
9249 	    "Number of TSO frames failed");
9250 
9251 	SYSCTL_ADD_QUAD(ctx, children, OID_AUTO,
9252 	    "csum_offload_ip",
9253 	    CTLFLAG_RD, &sc->csum_offload_ip,
9254 	    "Number of IP checksum offload frames");
9255 
9256 	SYSCTL_ADD_QUAD(ctx, children, OID_AUTO,
9257 	    "csum_offload_tcp_udp",
9258 	    CTLFLAG_RD, &sc->csum_offload_tcp_udp,
9259 	    "Number of TCP/UDP checksum offload frames");
9260 
9261 	SYSCTL_ADD_QUAD(ctx, children, OID_AUTO,
9262 	    "vlan_tagged_frames_rcvd",
9263 	    CTLFLAG_RD, &sc->vlan_tagged_frames_rcvd,
9264 	    "Number of VLAN tagged frames received");
9265 
9266 	SYSCTL_ADD_QUAD(ctx, children, OID_AUTO,
9267 	    "vlan_tagged_frames_stripped",
9268 	    CTLFLAG_RD, &sc->vlan_tagged_frames_stripped,
9269 	    "Number of VLAN tagged frames stripped");
9270 
9271 	SYSCTL_ADD_QUAD(ctx, children, OID_AUTO,
9272 	    "interrupts_rx",
9273 	    CTLFLAG_RD, &sc->interrupts_rx,
9274 	    "Number of RX interrupts");
9275 
9276 	SYSCTL_ADD_QUAD(ctx, children, OID_AUTO,
9277 	    "interrupts_tx",
9278 	    CTLFLAG_RD, &sc->interrupts_tx,
9279 	    "Number of TX interrupts");
9280 
9281 	if (bce_hdr_split == TRUE) {
9282 		SYSCTL_ADD_QUAD(ctx, children, OID_AUTO,
9283 		    "split_header_frames_rcvd",
9284 		    CTLFLAG_RD, &sc->split_header_frames_rcvd,
9285 		    "Number of split header frames received");
9286 
9287 		SYSCTL_ADD_QUAD(ctx, children, OID_AUTO,
9288 		    "split_header_tcp_frames_rcvd",
9289 		    CTLFLAG_RD, &sc->split_header_tcp_frames_rcvd,
9290 		    "Number of split header TCP frames received");
9291 	}
9292 
9293 	SYSCTL_ADD_PROC(ctx, children, OID_AUTO,
9294 	    "nvram_dump", CTLTYPE_OPAQUE | CTLFLAG_RD,
9295 	    (void *)sc, 0,
9296 	    bce_sysctl_nvram_dump, "S", "");
9297 
9298 #ifdef BCE_NVRAM_WRITE_SUPPORT
9299 	SYSCTL_ADD_PROC(ctx, children, OID_AUTO,
9300 	    "nvram_write", CTLTYPE_OPAQUE | CTLFLAG_WR,
9301 	    (void *)sc, 0,
9302 	    bce_sysctl_nvram_write, "S", "");
9303 #endif
9304 #endif /* BCE_DEBUG */
9305 
9306 	SYSCTL_ADD_QUAD(ctx, children, OID_AUTO,
9307 	    "stat_IfHcInOctets",
9308 	    CTLFLAG_RD, &sc->stat_IfHCInOctets,
9309 	    "Bytes received");
9310 
9311 	SYSCTL_ADD_QUAD(ctx, children, OID_AUTO,
9312 	    "stat_IfHCInBadOctets",
9313 	    CTLFLAG_RD, &sc->stat_IfHCInBadOctets,
9314 	    "Bad bytes received");
9315 
9316 	SYSCTL_ADD_QUAD(ctx, children, OID_AUTO,
9317 	    "stat_IfHCOutOctets",
9318 	    CTLFLAG_RD, &sc->stat_IfHCOutOctets,
9319 	    "Bytes sent");
9320 
9321 	SYSCTL_ADD_QUAD(ctx, children, OID_AUTO,
9322 	    "stat_IfHCOutBadOctets",
9323 	    CTLFLAG_RD, &sc->stat_IfHCOutBadOctets,
9324 	    "Bad bytes sent");
9325 
9326 	SYSCTL_ADD_QUAD(ctx, children, OID_AUTO,
9327 	    "stat_IfHCInUcastPkts",
9328 	    CTLFLAG_RD, &sc->stat_IfHCInUcastPkts,
9329 	    "Unicast packets received");
9330 
9331 	SYSCTL_ADD_QUAD(ctx, children, OID_AUTO,
9332 	    "stat_IfHCInMulticastPkts",
9333 	    CTLFLAG_RD, &sc->stat_IfHCInMulticastPkts,
9334 	    "Multicast packets received");
9335 
9336 	SYSCTL_ADD_QUAD(ctx, children, OID_AUTO,
9337 	    "stat_IfHCInBroadcastPkts",
9338 	    CTLFLAG_RD, &sc->stat_IfHCInBroadcastPkts,
9339 	    "Broadcast packets received");
9340 
9341 	SYSCTL_ADD_QUAD(ctx, children, OID_AUTO,
9342 	    "stat_IfHCOutUcastPkts",
9343 	    CTLFLAG_RD, &sc->stat_IfHCOutUcastPkts,
9344 	    "Unicast packets sent");
9345 
9346 	SYSCTL_ADD_QUAD(ctx, children, OID_AUTO,
9347 	    "stat_IfHCOutMulticastPkts",
9348 	    CTLFLAG_RD, &sc->stat_IfHCOutMulticastPkts,
9349 	    "Multicast packets sent");
9350 
9351 	SYSCTL_ADD_QUAD(ctx, children, OID_AUTO,
9352 	    "stat_IfHCOutBroadcastPkts",
9353 	    CTLFLAG_RD, &sc->stat_IfHCOutBroadcastPkts,
9354 	    "Broadcast packets sent");
9355 
9356 	SYSCTL_ADD_UINT(ctx, children, OID_AUTO,
9357 	    "stat_emac_tx_stat_dot3statsinternalmactransmiterrors",
9358 	    CTLFLAG_RD, &sc->stat_emac_tx_stat_dot3statsinternalmactransmiterrors,
9359 	    0, "Internal MAC transmit errors");
9360 
9361 	SYSCTL_ADD_UINT(ctx, children, OID_AUTO,
9362 	    "stat_Dot3StatsCarrierSenseErrors",
9363 	    CTLFLAG_RD, &sc->stat_Dot3StatsCarrierSenseErrors,
9364 	    0, "Carrier sense errors");
9365 
9366 	SYSCTL_ADD_UINT(ctx, children, OID_AUTO,
9367 	    "stat_Dot3StatsFCSErrors",
9368 	    CTLFLAG_RD, &sc->stat_Dot3StatsFCSErrors,
9369 	    0, "Frame check sequence errors");
9370 
9371 	SYSCTL_ADD_UINT(ctx, children, OID_AUTO,
9372 	    "stat_Dot3StatsAlignmentErrors",
9373 	    CTLFLAG_RD, &sc->stat_Dot3StatsAlignmentErrors,
9374 	    0, "Alignment errors");
9375 
9376 	SYSCTL_ADD_UINT(ctx, children, OID_AUTO,
9377 	    "stat_Dot3StatsSingleCollisionFrames",
9378 	    CTLFLAG_RD, &sc->stat_Dot3StatsSingleCollisionFrames,
9379 	    0, "Single Collision Frames");
9380 
9381 	SYSCTL_ADD_UINT(ctx, children, OID_AUTO,
9382 	    "stat_Dot3StatsMultipleCollisionFrames",
9383 	    CTLFLAG_RD, &sc->stat_Dot3StatsMultipleCollisionFrames,
9384 	    0, "Multiple Collision Frames");
9385 
9386 	SYSCTL_ADD_UINT(ctx, children, OID_AUTO,
9387 	    "stat_Dot3StatsDeferredTransmissions",
9388 	    CTLFLAG_RD, &sc->stat_Dot3StatsDeferredTransmissions,
9389 	    0, "Deferred Transmissions");
9390 
9391 	SYSCTL_ADD_UINT(ctx, children, OID_AUTO,
9392 	    "stat_Dot3StatsExcessiveCollisions",
9393 	    CTLFLAG_RD, &sc->stat_Dot3StatsExcessiveCollisions,
9394 	    0, "Excessive Collisions");
9395 
9396 	SYSCTL_ADD_UINT(ctx, children, OID_AUTO,
9397 	    "stat_Dot3StatsLateCollisions",
9398 	    CTLFLAG_RD, &sc->stat_Dot3StatsLateCollisions,
9399 	    0, "Late Collisions");
9400 
9401 	SYSCTL_ADD_UINT(ctx, children, OID_AUTO,
9402 	    "stat_EtherStatsCollisions",
9403 	    CTLFLAG_RD, &sc->stat_EtherStatsCollisions,
9404 	    0, "Collisions");
9405 
9406 	SYSCTL_ADD_UINT(ctx, children, OID_AUTO,
9407 	    "stat_EtherStatsFragments",
9408 	    CTLFLAG_RD, &sc->stat_EtherStatsFragments,
9409 	    0, "Fragments");
9410 
9411 	SYSCTL_ADD_UINT(ctx, children, OID_AUTO,
9412 	    "stat_EtherStatsJabbers",
9413 	    CTLFLAG_RD, &sc->stat_EtherStatsJabbers,
9414 	    0, "Jabbers");
9415 
9416 	SYSCTL_ADD_UINT(ctx, children, OID_AUTO,
9417 	    "stat_EtherStatsUndersizePkts",
9418 	    CTLFLAG_RD, &sc->stat_EtherStatsUndersizePkts,
9419 	    0, "Undersize packets");
9420 
9421 	SYSCTL_ADD_UINT(ctx, children, OID_AUTO,
9422 	    "stat_EtherStatsOversizePkts",
9423 	    CTLFLAG_RD, &sc->stat_EtherStatsOversizePkts,
9424 	    0, "stat_EtherStatsOversizePkts");
9425 
9426 	SYSCTL_ADD_UINT(ctx, children, OID_AUTO,
9427 	    "stat_EtherStatsPktsRx64Octets",
9428 	    CTLFLAG_RD, &sc->stat_EtherStatsPktsRx64Octets,
9429 	    0, "Bytes received in 64 byte packets");
9430 
9431 	SYSCTL_ADD_UINT(ctx, children, OID_AUTO,
9432 	    "stat_EtherStatsPktsRx65Octetsto127Octets",
9433 	    CTLFLAG_RD, &sc->stat_EtherStatsPktsRx65Octetsto127Octets,
9434 	    0, "Bytes received in 65 to 127 byte packets");
9435 
9436 	SYSCTL_ADD_UINT(ctx, children, OID_AUTO,
9437 	    "stat_EtherStatsPktsRx128Octetsto255Octets",
9438 	    CTLFLAG_RD, &sc->stat_EtherStatsPktsRx128Octetsto255Octets,
9439 	    0, "Bytes received in 128 to 255 byte packets");
9440 
9441 	SYSCTL_ADD_UINT(ctx, children, OID_AUTO,
9442 	    "stat_EtherStatsPktsRx256Octetsto511Octets",
9443 	    CTLFLAG_RD, &sc->stat_EtherStatsPktsRx256Octetsto511Octets,
9444 	    0, "Bytes received in 256 to 511 byte packets");
9445 
9446 	SYSCTL_ADD_UINT(ctx, children, OID_AUTO,
9447 	    "stat_EtherStatsPktsRx512Octetsto1023Octets",
9448 	    CTLFLAG_RD, &sc->stat_EtherStatsPktsRx512Octetsto1023Octets,
9449 	    0, "Bytes received in 512 to 1023 byte packets");
9450 
9451 	SYSCTL_ADD_UINT(ctx, children, OID_AUTO,
9452 	    "stat_EtherStatsPktsRx1024Octetsto1522Octets",
9453 	    CTLFLAG_RD, &sc->stat_EtherStatsPktsRx1024Octetsto1522Octets,
9454 	    0, "Bytes received in 1024 t0 1522 byte packets");
9455 
9456 	SYSCTL_ADD_UINT(ctx, children, OID_AUTO,
9457 	    "stat_EtherStatsPktsRx1523Octetsto9022Octets",
9458 	    CTLFLAG_RD, &sc->stat_EtherStatsPktsRx1523Octetsto9022Octets,
9459 	    0, "Bytes received in 1523 to 9022 byte packets");
9460 
9461 	SYSCTL_ADD_UINT(ctx, children, OID_AUTO,
9462 	    "stat_EtherStatsPktsTx64Octets",
9463 	    CTLFLAG_RD, &sc->stat_EtherStatsPktsTx64Octets,
9464 	    0, "Bytes sent in 64 byte packets");
9465 
9466 	SYSCTL_ADD_UINT(ctx, children, OID_AUTO,
9467 	    "stat_EtherStatsPktsTx65Octetsto127Octets",
9468 	    CTLFLAG_RD, &sc->stat_EtherStatsPktsTx65Octetsto127Octets,
9469 	    0, "Bytes sent in 65 to 127 byte packets");
9470 
9471 	SYSCTL_ADD_UINT(ctx, children, OID_AUTO,
9472 	    "stat_EtherStatsPktsTx128Octetsto255Octets",
9473 	    CTLFLAG_RD, &sc->stat_EtherStatsPktsTx128Octetsto255Octets,
9474 	    0, "Bytes sent in 128 to 255 byte packets");
9475 
9476 	SYSCTL_ADD_UINT(ctx, children, OID_AUTO,
9477 	    "stat_EtherStatsPktsTx256Octetsto511Octets",
9478 	    CTLFLAG_RD, &sc->stat_EtherStatsPktsTx256Octetsto511Octets,
9479 	    0, "Bytes sent in 256 to 511 byte packets");
9480 
9481 	SYSCTL_ADD_UINT(ctx, children, OID_AUTO,
9482 	    "stat_EtherStatsPktsTx512Octetsto1023Octets",
9483 	    CTLFLAG_RD, &sc->stat_EtherStatsPktsTx512Octetsto1023Octets,
9484 	    0, "Bytes sent in 512 to 1023 byte packets");
9485 
9486 	SYSCTL_ADD_UINT(ctx, children, OID_AUTO,
9487 	    "stat_EtherStatsPktsTx1024Octetsto1522Octets",
9488 	    CTLFLAG_RD, &sc->stat_EtherStatsPktsTx1024Octetsto1522Octets,
9489 	    0, "Bytes sent in 1024 to 1522 byte packets");
9490 
9491 	SYSCTL_ADD_UINT(ctx, children, OID_AUTO,
9492 	    "stat_EtherStatsPktsTx1523Octetsto9022Octets",
9493 	    CTLFLAG_RD, &sc->stat_EtherStatsPktsTx1523Octetsto9022Octets,
9494 	    0, "Bytes sent in 1523 to 9022 byte packets");
9495 
9496 	SYSCTL_ADD_UINT(ctx, children, OID_AUTO,
9497 	    "stat_XonPauseFramesReceived",
9498 	    CTLFLAG_RD, &sc->stat_XonPauseFramesReceived,
9499 	    0, "XON pause frames receved");
9500 
9501 	SYSCTL_ADD_UINT(ctx, children, OID_AUTO,
9502 	    "stat_XoffPauseFramesReceived",
9503 	    CTLFLAG_RD, &sc->stat_XoffPauseFramesReceived,
9504 	    0, "XOFF pause frames received");
9505 
9506 	SYSCTL_ADD_UINT(ctx, children, OID_AUTO,
9507 	    "stat_OutXonSent",
9508 	    CTLFLAG_RD, &sc->stat_OutXonSent,
9509 	    0, "XON pause frames sent");
9510 
9511 	SYSCTL_ADD_UINT(ctx, children, OID_AUTO,
9512 	    "stat_OutXoffSent",
9513 	    CTLFLAG_RD, &sc->stat_OutXoffSent,
9514 	    0, "XOFF pause frames sent");
9515 
9516 	SYSCTL_ADD_UINT(ctx, children, OID_AUTO,
9517 	    "stat_FlowControlDone",
9518 	    CTLFLAG_RD, &sc->stat_FlowControlDone,
9519 	    0, "Flow control done");
9520 
9521 	SYSCTL_ADD_UINT(ctx, children, OID_AUTO,
9522 	    "stat_MacControlFramesReceived",
9523 	    CTLFLAG_RD, &sc->stat_MacControlFramesReceived,
9524 	    0, "MAC control frames received");
9525 
9526 	SYSCTL_ADD_UINT(ctx, children, OID_AUTO,
9527 	    "stat_XoffStateEntered",
9528 	    CTLFLAG_RD, &sc->stat_XoffStateEntered,
9529 	    0, "XOFF state entered");
9530 
9531 	SYSCTL_ADD_UINT(ctx, children, OID_AUTO,
9532 	    "stat_IfInFramesL2FilterDiscards",
9533 	    CTLFLAG_RD, &sc->stat_IfInFramesL2FilterDiscards,
9534 	    0, "Received L2 packets discarded");
9535 
9536 	SYSCTL_ADD_UINT(ctx, children, OID_AUTO,
9537 	    "stat_IfInRuleCheckerDiscards",
9538 	    CTLFLAG_RD, &sc->stat_IfInRuleCheckerDiscards,
9539 	    0, "Received packets discarded by rule");
9540 
9541 	SYSCTL_ADD_UINT(ctx, children, OID_AUTO,
9542 	    "stat_IfInFTQDiscards",
9543 	    CTLFLAG_RD, &sc->stat_IfInFTQDiscards,
9544 	    0, "Received packet FTQ discards");
9545 
9546 	SYSCTL_ADD_UINT(ctx, children, OID_AUTO,
9547 	    "stat_IfInMBUFDiscards",
9548 	    CTLFLAG_RD, &sc->stat_IfInMBUFDiscards,
9549 	    0, "Received packets discarded due to lack "
9550 	    "of controller buffer memory");
9551 
9552 	SYSCTL_ADD_UINT(ctx, children, OID_AUTO,
9553 	    "stat_IfInRuleCheckerP4Hit",
9554 	    CTLFLAG_RD, &sc->stat_IfInRuleCheckerP4Hit,
9555 	    0, "Received packets rule checker hits");
9556 
9557 	SYSCTL_ADD_UINT(ctx, children, OID_AUTO,
9558 	    "stat_CatchupInRuleCheckerDiscards",
9559 	    CTLFLAG_RD, &sc->stat_CatchupInRuleCheckerDiscards,
9560 	    0, "Received packets discarded in Catchup path");
9561 
9562 	SYSCTL_ADD_UINT(ctx, children, OID_AUTO,
9563 	    "stat_CatchupInFTQDiscards",
9564 	    CTLFLAG_RD, &sc->stat_CatchupInFTQDiscards,
9565 	    0, "Received packets discarded in FTQ in Catchup path");
9566 
9567 	SYSCTL_ADD_UINT(ctx, children, OID_AUTO,
9568 	    "stat_CatchupInMBUFDiscards",
9569 	    CTLFLAG_RD, &sc->stat_CatchupInMBUFDiscards,
9570 	    0, "Received packets discarded in controller "
9571 	    "buffer memory in Catchup path");
9572 
9573 	SYSCTL_ADD_UINT(ctx, children, OID_AUTO,
9574 	    "stat_CatchupInRuleCheckerP4Hit",
9575 	    CTLFLAG_RD, &sc->stat_CatchupInRuleCheckerP4Hit,
9576 	    0, "Received packets rule checker hits in Catchup path");
9577 
9578 	SYSCTL_ADD_UINT(ctx, children, OID_AUTO,
9579 	    "com_no_buffers",
9580 	    CTLFLAG_RD, &sc->com_no_buffers,
9581 	    0, "Valid packets received but no RX buffers available");
9582 
9583 #ifdef BCE_DEBUG
9584 	SYSCTL_ADD_PROC(ctx, children, OID_AUTO,
9585 	    "driver_state", CTLTYPE_INT | CTLFLAG_RW,
9586 	    (void *)sc, 0,
9587 	    bce_sysctl_driver_state, "I", "Drive state information");
9588 
9589 	SYSCTL_ADD_PROC(ctx, children, OID_AUTO,
9590 	    "hw_state", CTLTYPE_INT | CTLFLAG_RW,
9591 	    (void *)sc, 0,
9592 	    bce_sysctl_hw_state, "I", "Hardware state information");
9593 
9594 	SYSCTL_ADD_PROC(ctx, children, OID_AUTO,
9595 	    "status_block", CTLTYPE_INT | CTLFLAG_RW,
9596 	    (void *)sc, 0,
9597 	    bce_sysctl_status_block, "I", "Dump status block");
9598 
9599 	SYSCTL_ADD_PROC(ctx, children, OID_AUTO,
9600 	    "stats_block", CTLTYPE_INT | CTLFLAG_RW,
9601 	    (void *)sc, 0,
9602 	    bce_sysctl_stats_block, "I", "Dump statistics block");
9603 
9604 	SYSCTL_ADD_PROC(ctx, children, OID_AUTO,
9605 	    "stats_clear", CTLTYPE_INT | CTLFLAG_RW,
9606 	    (void *)sc, 0,
9607 	    bce_sysctl_stats_clear, "I", "Clear statistics block");
9608 
9609 	SYSCTL_ADD_PROC(ctx, children, OID_AUTO,
9610 	    "shmem_state", CTLTYPE_INT | CTLFLAG_RW,
9611 	    (void *)sc, 0,
9612 	    bce_sysctl_shmem_state, "I", "Shared memory state information");
9613 
9614 	SYSCTL_ADD_PROC(ctx, children, OID_AUTO,
9615 	    "bc_state", CTLTYPE_INT | CTLFLAG_RW,
9616 	    (void *)sc, 0,
9617 	    bce_sysctl_bc_state, "I", "Bootcode state information");
9618 
9619 	SYSCTL_ADD_PROC(ctx, children, OID_AUTO,
9620 	    "dump_rx_bd_chain", CTLTYPE_INT | CTLFLAG_RW,
9621 	    (void *)sc, 0,
9622 	    bce_sysctl_dump_rx_bd_chain, "I", "Dump RX BD chain");
9623 
9624 	SYSCTL_ADD_PROC(ctx, children, OID_AUTO,
9625 	    "dump_rx_mbuf_chain", CTLTYPE_INT | CTLFLAG_RW,
9626 	    (void *)sc, 0,
9627 	    bce_sysctl_dump_rx_mbuf_chain, "I", "Dump RX MBUF chain");
9628 
9629 	SYSCTL_ADD_PROC(ctx, children, OID_AUTO,
9630 	    "dump_tx_chain", CTLTYPE_INT | CTLFLAG_RW,
9631 	    (void *)sc, 0,
9632 	    bce_sysctl_dump_tx_chain, "I", "Dump tx_bd chain");
9633 
9634 	if (bce_hdr_split == TRUE) {
9635 		SYSCTL_ADD_PROC(ctx, children, OID_AUTO,
9636 		    "dump_pg_chain", CTLTYPE_INT | CTLFLAG_RW,
9637 		    (void *)sc, 0,
9638 		    bce_sysctl_dump_pg_chain, "I", "Dump page chain");
9639 	}
9640 
9641 	SYSCTL_ADD_PROC(ctx, children, OID_AUTO,
9642 	    "dump_ctx", CTLTYPE_INT | CTLFLAG_RW,
9643 	    (void *)sc, 0,
9644 	    bce_sysctl_dump_ctx, "I", "Dump context memory");
9645 
9646 	SYSCTL_ADD_PROC(ctx, children, OID_AUTO,
9647 	    "breakpoint", CTLTYPE_INT | CTLFLAG_RW,
9648 	    (void *)sc, 0,
9649 	    bce_sysctl_breakpoint, "I", "Driver breakpoint");
9650 
9651 	SYSCTL_ADD_PROC(ctx, children, OID_AUTO,
9652 	    "reg_read", CTLTYPE_INT | CTLFLAG_RW,
9653 	    (void *)sc, 0,
9654 	    bce_sysctl_reg_read, "I", "Register read");
9655 
9656 	SYSCTL_ADD_PROC(ctx, children, OID_AUTO,
9657 	    "nvram_read", CTLTYPE_INT | CTLFLAG_RW,
9658 	    (void *)sc, 0,
9659 	    bce_sysctl_nvram_read, "I", "NVRAM read");
9660 
9661 	SYSCTL_ADD_PROC(ctx, children, OID_AUTO,
9662 	    "phy_read", CTLTYPE_INT | CTLFLAG_RW,
9663 	    (void *)sc, 0,
9664 	    bce_sysctl_phy_read, "I", "PHY register read");
9665 
9666 #endif
9667 
9668 	DBEXIT(BCE_VERBOSE_MISC);
9669 }
9670 
9671 
9672 /****************************************************************************/
9673 /* BCE Debug Routines                                                       */
9674 /****************************************************************************/
9675 #ifdef BCE_DEBUG
9676 
9677 /****************************************************************************/
9678 /* Freezes the controller to allow for a cohesive state dump.               */
9679 /*                                                                          */
9680 /* Returns:                                                                 */
9681 /*   Nothing.                                                               */
9682 /****************************************************************************/
9683 static __attribute__ ((noinline)) void
9684 bce_freeze_controller(struct bce_softc *sc)
9685 {
9686 	u32 val;
9687 	val = REG_RD(sc, BCE_MISC_COMMAND);
9688 	val |= BCE_MISC_COMMAND_DISABLE_ALL;
9689 	REG_WR(sc, BCE_MISC_COMMAND, val);
9690 }
9691 
9692 
9693 /****************************************************************************/
9694 /* Unfreezes the controller after a freeze operation.  This may not always  */
9695 /* work and the controller will require a reset!                            */
9696 /*                                                                          */
9697 /* Returns:                                                                 */
9698 /*   Nothing.                                                               */
9699 /****************************************************************************/
9700 static __attribute__ ((noinline)) void
9701 bce_unfreeze_controller(struct bce_softc *sc)
9702 {
9703 	u32 val;
9704 	val = REG_RD(sc, BCE_MISC_COMMAND);
9705 	val |= BCE_MISC_COMMAND_ENABLE_ALL;
9706 	REG_WR(sc, BCE_MISC_COMMAND, val);
9707 }
9708 
9709 
9710 /****************************************************************************/
9711 /* Prints out Ethernet frame information from an mbuf.                      */
9712 /*                                                                          */
9713 /* Partially decode an Ethernet frame to look at some important headers.    */
9714 /*                                                                          */
9715 /* Returns:                                                                 */
9716 /*   Nothing.                                                               */
9717 /****************************************************************************/
9718 static __attribute__ ((noinline)) void
9719 bce_dump_enet(struct bce_softc *sc, struct mbuf *m)
9720 {
9721 	struct ether_vlan_header *eh;
9722 	u16 etype;
9723 	int ehlen;
9724 	struct ip *ip;
9725 	struct tcphdr *th;
9726 	struct udphdr *uh;
9727 	struct arphdr *ah;
9728 
9729 	BCE_PRINTF(
9730 	    "-----------------------------"
9731 	    " Frame Decode "
9732 	    "-----------------------------\n");
9733 
9734 	eh = mtod(m, struct ether_vlan_header *);
9735 
9736 	/* Handle VLAN encapsulation if present. */
9737 	if (eh->evl_encap_proto == htons(ETHERTYPE_VLAN)) {
9738 		etype = ntohs(eh->evl_proto);
9739 		ehlen = ETHER_HDR_LEN + ETHER_VLAN_ENCAP_LEN;
9740 	} else {
9741 		etype = ntohs(eh->evl_encap_proto);
9742 		ehlen = ETHER_HDR_LEN;
9743 	}
9744 
9745 	/* ToDo: Add VLAN output. */
9746 	BCE_PRINTF("enet: dest = %6D, src = %6D, type = 0x%04X, hlen = %d\n",
9747 	    eh->evl_dhost, ":", eh->evl_shost, ":", etype, ehlen);
9748 
9749 	switch (etype) {
9750 	case ETHERTYPE_IP:
9751 		ip = (struct ip *)(m->m_data + ehlen);
9752 		BCE_PRINTF("--ip: dest = 0x%08X , src = 0x%08X, "
9753 		    "len = %d bytes, protocol = 0x%02X, xsum = 0x%04X\n",
9754 		    ntohl(ip->ip_dst.s_addr), ntohl(ip->ip_src.s_addr),
9755 		    ntohs(ip->ip_len), ip->ip_p, ntohs(ip->ip_sum));
9756 
9757 		switch (ip->ip_p) {
9758 		case IPPROTO_TCP:
9759 			th = (struct tcphdr *)((caddr_t)ip + (ip->ip_hl << 2));
9760 			BCE_PRINTF("-tcp: dest = %d, src = %d, hlen = "
9761 			    "%d bytes, flags = 0x%b, csum = 0x%04X\n",
9762 			    ntohs(th->th_dport), ntohs(th->th_sport),
9763 			    (th->th_off << 2), th->th_flags,
9764 			    "\20\10CWR\07ECE\06URG\05ACK\04PSH\03RST"
9765 			    "\02SYN\01FIN", ntohs(th->th_sum));
9766 			break;
9767 		case IPPROTO_UDP:
9768 			uh = (struct udphdr *)((caddr_t)ip + (ip->ip_hl << 2));
9769 			BCE_PRINTF("-udp: dest = %d, src = %d, len = %d "
9770 			    "bytes, csum = 0x%04X\n", ntohs(uh->uh_dport),
9771 			    ntohs(uh->uh_sport), ntohs(uh->uh_ulen),
9772 			    ntohs(uh->uh_sum));
9773 			break;
9774 		case IPPROTO_ICMP:
9775 			BCE_PRINTF("icmp:\n");
9776 			break;
9777 		default:
9778 			BCE_PRINTF("----: Other IP protocol.\n");
9779 			}
9780 		break;
9781 	case ETHERTYPE_IPV6:
9782 		BCE_PRINTF("ipv6: No decode supported.\n");
9783 		break;
9784 	case ETHERTYPE_ARP:
9785 		BCE_PRINTF("-arp: ");
9786 		ah = (struct arphdr *) (m->m_data + ehlen);
9787 		switch (ntohs(ah->ar_op)) {
9788 		case ARPOP_REVREQUEST:
9789 			printf("reverse ARP request\n");
9790 			break;
9791 		case ARPOP_REVREPLY:
9792 			printf("reverse ARP reply\n");
9793 			break;
9794 		case ARPOP_REQUEST:
9795 			printf("ARP request\n");
9796 			break;
9797 		case ARPOP_REPLY:
9798 			printf("ARP reply\n");
9799 			break;
9800 		default:
9801 			printf("other ARP operation\n");
9802 		}
9803 		break;
9804 	default:
9805 		BCE_PRINTF("----: Other protocol.\n");
9806 	}
9807 
9808 	BCE_PRINTF(
9809 		"-----------------------------"
9810 		"--------------"
9811 		"-----------------------------\n");
9812 }
9813 
9814 
9815 /****************************************************************************/
9816 /* Prints out information about an mbuf.                                    */
9817 /*                                                                          */
9818 /* Returns:                                                                 */
9819 /*   Nothing.                                                               */
9820 /****************************************************************************/
9821 static __attribute__ ((noinline)) void
9822 bce_dump_mbuf(struct bce_softc *sc, struct mbuf *m)
9823 {
9824 	struct mbuf *mp = m;
9825 
9826 	if (m == NULL) {
9827 		BCE_PRINTF("mbuf: null pointer\n");
9828 		return;
9829 	}
9830 
9831 	while (mp) {
9832 		BCE_PRINTF("mbuf: %p, m_len = %d, m_flags = 0x%b, "
9833 		    "m_data = %p\n", mp, mp->m_len, mp->m_flags,
9834 		    "\20\1M_EXT\2M_PKTHDR\3M_EOR\4M_RDONLY", mp->m_data);
9835 
9836 		if (mp->m_flags & M_PKTHDR) {
9837 			BCE_PRINTF("- m_pkthdr: len = %d, flags = 0x%b, "
9838 			    "csum_flags = %b\n", mp->m_pkthdr.len,
9839 			    mp->m_flags, M_FLAG_PRINTF,
9840 			    mp->m_pkthdr.csum_flags,
9841 			    "\20\1CSUM_IP\2CSUM_TCP\3CSUM_UDP"
9842 			    "\5CSUM_FRAGMENT\6CSUM_TSO\11CSUM_IP_CHECKED"
9843 			    "\12CSUM_IP_VALID\13CSUM_DATA_VALID"
9844 			    "\14CSUM_PSEUDO_HDR");
9845 		}
9846 
9847 		if (mp->m_flags & M_EXT) {
9848 			BCE_PRINTF("- m_ext: %p, ext_size = %d, type = ",
9849 			    mp->m_ext.ext_buf, mp->m_ext.ext_size);
9850 			switch (mp->m_ext.ext_type) {
9851 			case EXT_CLUSTER:
9852 				printf("EXT_CLUSTER\n"); break;
9853 			case EXT_SFBUF:
9854 				printf("EXT_SFBUF\n"); break;
9855 			case EXT_JUMBO9:
9856 				printf("EXT_JUMBO9\n"); break;
9857 			case EXT_JUMBO16:
9858 				printf("EXT_JUMBO16\n"); break;
9859 			case EXT_PACKET:
9860 				printf("EXT_PACKET\n"); break;
9861 			case EXT_MBUF:
9862 				printf("EXT_MBUF\n"); break;
9863 			case EXT_NET_DRV:
9864 				printf("EXT_NET_DRV\n"); break;
9865 			case EXT_MOD_TYPE:
9866 				printf("EXT_MDD_TYPE\n"); break;
9867 			case EXT_DISPOSABLE:
9868 				printf("EXT_DISPOSABLE\n"); break;
9869 			case EXT_EXTREF:
9870 				printf("EXT_EXTREF\n"); break;
9871 			default:
9872 				printf("UNKNOWN\n");
9873 			}
9874 		}
9875 
9876 		mp = mp->m_next;
9877 	}
9878 }
9879 
9880 
9881 /****************************************************************************/
9882 /* Prints out the mbufs in the TX mbuf chain.                               */
9883 /*                                                                          */
9884 /* Returns:                                                                 */
9885 /*   Nothing.                                                               */
9886 /****************************************************************************/
9887 static __attribute__ ((noinline)) void
9888 bce_dump_tx_mbuf_chain(struct bce_softc *sc, u16 chain_prod, int count)
9889 {
9890 	struct mbuf *m;
9891 
9892 	BCE_PRINTF(
9893 		"----------------------------"
9894 		"  tx mbuf data  "
9895 		"----------------------------\n");
9896 
9897 	for (int i = 0; i < count; i++) {
9898 	 	m = sc->tx_mbuf_ptr[chain_prod];
9899 		BCE_PRINTF("txmbuf[0x%04X]\n", chain_prod);
9900 		bce_dump_mbuf(sc, m);
9901 		chain_prod = TX_CHAIN_IDX(NEXT_TX_BD(chain_prod));
9902 	}
9903 
9904 	BCE_PRINTF(
9905 		"----------------------------"
9906 		"----------------"
9907 		"----------------------------\n");
9908 }
9909 
9910 
9911 /****************************************************************************/
9912 /* Prints out the mbufs in the RX mbuf chain.                               */
9913 /*                                                                          */
9914 /* Returns:                                                                 */
9915 /*   Nothing.                                                               */
9916 /****************************************************************************/
9917 static __attribute__ ((noinline)) void
9918 bce_dump_rx_mbuf_chain(struct bce_softc *sc, u16 chain_prod, int count)
9919 {
9920 	struct mbuf *m;
9921 
9922 	BCE_PRINTF(
9923 		"----------------------------"
9924 		"  rx mbuf data  "
9925 		"----------------------------\n");
9926 
9927 	for (int i = 0; i < count; i++) {
9928 	 	m = sc->rx_mbuf_ptr[chain_prod];
9929 		BCE_PRINTF("rxmbuf[0x%04X]\n", chain_prod);
9930 		bce_dump_mbuf(sc, m);
9931 		chain_prod = RX_CHAIN_IDX(NEXT_RX_BD(chain_prod));
9932 	}
9933 
9934 
9935 	BCE_PRINTF(
9936 		"----------------------------"
9937 		"----------------"
9938 		"----------------------------\n");
9939 }
9940 
9941 
9942 /****************************************************************************/
9943 /* Prints out the mbufs in the mbuf page chain.                             */
9944 /*                                                                          */
9945 /* Returns:                                                                 */
9946 /*   Nothing.                                                               */
9947 /****************************************************************************/
9948 static __attribute__ ((noinline)) void
9949 bce_dump_pg_mbuf_chain(struct bce_softc *sc, u16 chain_prod, int count)
9950 {
9951 	struct mbuf *m;
9952 
9953 	BCE_PRINTF(
9954 		"----------------------------"
9955 		"  pg mbuf data  "
9956 		"----------------------------\n");
9957 
9958 	for (int i = 0; i < count; i++) {
9959 	 	m = sc->pg_mbuf_ptr[chain_prod];
9960 		BCE_PRINTF("pgmbuf[0x%04X]\n", chain_prod);
9961 		bce_dump_mbuf(sc, m);
9962 		chain_prod = PG_CHAIN_IDX(NEXT_PG_BD(chain_prod));
9963 	}
9964 
9965 
9966 	BCE_PRINTF(
9967 		"----------------------------"
9968 		"----------------"
9969 		"----------------------------\n");
9970 }
9971 
9972 
9973 /****************************************************************************/
9974 /* Prints out a tx_bd structure.                                            */
9975 /*                                                                          */
9976 /* Returns:                                                                 */
9977 /*   Nothing.                                                               */
9978 /****************************************************************************/
9979 static __attribute__ ((noinline)) void
9980 bce_dump_txbd(struct bce_softc *sc, int idx, struct tx_bd *txbd)
9981 {
9982 	int i = 0;
9983 
9984 	if (idx > MAX_TX_BD_ALLOC)
9985 		/* Index out of range. */
9986 		BCE_PRINTF("tx_bd[0x%04X]: Invalid tx_bd index!\n", idx);
9987 	else if ((idx & USABLE_TX_BD_PER_PAGE) == USABLE_TX_BD_PER_PAGE)
9988 		/* TX Chain page pointer. */
9989 		BCE_PRINTF("tx_bd[0x%04X]: haddr = 0x%08X:%08X, chain page "
9990 		    "pointer\n", idx, txbd->tx_bd_haddr_hi,
9991 		    txbd->tx_bd_haddr_lo);
9992 	else {
9993 		/* Normal tx_bd entry. */
9994 		BCE_PRINTF("tx_bd[0x%04X]: haddr = 0x%08X:%08X, "
9995 		    "mss_nbytes = 0x%08X, vlan tag = 0x%04X, flags = "
9996 		    "0x%04X (", idx, txbd->tx_bd_haddr_hi,
9997 		    txbd->tx_bd_haddr_lo, txbd->tx_bd_mss_nbytes,
9998 		    txbd->tx_bd_vlan_tag, txbd->tx_bd_flags);
9999 
10000 		if (txbd->tx_bd_flags & TX_BD_FLAGS_CONN_FAULT) {
10001 			if (i>0)
10002 				printf("|");
10003 			printf("CONN_FAULT");
10004 			i++;
10005 		}
10006 
10007 		if (txbd->tx_bd_flags & TX_BD_FLAGS_TCP_UDP_CKSUM) {
10008 			if (i>0)
10009 				printf("|");
10010 			printf("TCP_UDP_CKSUM");
10011 			i++;
10012 		}
10013 
10014 		if (txbd->tx_bd_flags & TX_BD_FLAGS_IP_CKSUM) {
10015 			if (i>0)
10016 				printf("|");
10017 			printf("IP_CKSUM");
10018 			i++;
10019 		}
10020 
10021 		if (txbd->tx_bd_flags & TX_BD_FLAGS_VLAN_TAG) {
10022 			if (i>0)
10023 				printf("|");
10024 			printf("VLAN");
10025 			i++;
10026 		}
10027 
10028 		if (txbd->tx_bd_flags & TX_BD_FLAGS_COAL_NOW) {
10029 			if (i>0)
10030 				printf("|");
10031 			printf("COAL_NOW");
10032 			i++;
10033 		}
10034 
10035 		if (txbd->tx_bd_flags & TX_BD_FLAGS_DONT_GEN_CRC) {
10036 			if (i>0)
10037 				printf("|");
10038 			printf("DONT_GEN_CRC");
10039 			i++;
10040 		}
10041 
10042 		if (txbd->tx_bd_flags & TX_BD_FLAGS_START) {
10043 			if (i>0)
10044 				printf("|");
10045 			printf("START");
10046 			i++;
10047 		}
10048 
10049 		if (txbd->tx_bd_flags & TX_BD_FLAGS_END) {
10050 			if (i>0)
10051 				printf("|");
10052 			printf("END");
10053 			i++;
10054 		}
10055 
10056 		if (txbd->tx_bd_flags & TX_BD_FLAGS_SW_LSO) {
10057 			if (i>0)
10058 				printf("|");
10059 			printf("LSO");
10060 			i++;
10061 		}
10062 
10063 		if (txbd->tx_bd_flags & TX_BD_FLAGS_SW_OPTION_WORD) {
10064 			if (i>0)
10065 				printf("|");
10066 			printf("SW_OPTION=%d", ((txbd->tx_bd_flags &
10067 			    TX_BD_FLAGS_SW_OPTION_WORD) >> 8)); i++;
10068 		}
10069 
10070 		if (txbd->tx_bd_flags & TX_BD_FLAGS_SW_FLAGS) {
10071 			if (i>0)
10072 				printf("|");
10073 			printf("SW_FLAGS");
10074 			i++;
10075 		}
10076 
10077 		if (txbd->tx_bd_flags & TX_BD_FLAGS_SW_SNAP) {
10078 			if (i>0)
10079 				printf("|");
10080 			printf("SNAP)");
10081 		} else {
10082 			printf(")\n");
10083 		}
10084 	}
10085 }
10086 
10087 
10088 /****************************************************************************/
10089 /* Prints out a rx_bd structure.                                            */
10090 /*                                                                          */
10091 /* Returns:                                                                 */
10092 /*   Nothing.                                                               */
10093 /****************************************************************************/
10094 static __attribute__ ((noinline)) void
10095 bce_dump_rxbd(struct bce_softc *sc, int idx, struct rx_bd *rxbd)
10096 {
10097 	if (idx > MAX_RX_BD_ALLOC)
10098 		/* Index out of range. */
10099 		BCE_PRINTF("rx_bd[0x%04X]: Invalid rx_bd index!\n", idx);
10100 	else if ((idx & USABLE_RX_BD_PER_PAGE) == USABLE_RX_BD_PER_PAGE)
10101 		/* RX Chain page pointer. */
10102 		BCE_PRINTF("rx_bd[0x%04X]: haddr = 0x%08X:%08X, chain page "
10103 		    "pointer\n", idx, rxbd->rx_bd_haddr_hi,
10104 		    rxbd->rx_bd_haddr_lo);
10105 	else
10106 		/* Normal rx_bd entry. */
10107 		BCE_PRINTF("rx_bd[0x%04X]: haddr = 0x%08X:%08X, nbytes = "
10108 		    "0x%08X, flags = 0x%08X\n", idx, rxbd->rx_bd_haddr_hi,
10109 		    rxbd->rx_bd_haddr_lo, rxbd->rx_bd_len,
10110 		    rxbd->rx_bd_flags);
10111 }
10112 
10113 
10114 /****************************************************************************/
10115 /* Prints out a rx_bd structure in the page chain.                          */
10116 /*                                                                          */
10117 /* Returns:                                                                 */
10118 /*   Nothing.                                                               */
10119 /****************************************************************************/
10120 static __attribute__ ((noinline)) void
10121 bce_dump_pgbd(struct bce_softc *sc, int idx, struct rx_bd *pgbd)
10122 {
10123 	if (idx > MAX_PG_BD_ALLOC)
10124 		/* Index out of range. */
10125 		BCE_PRINTF("pg_bd[0x%04X]: Invalid pg_bd index!\n", idx);
10126 	else if ((idx & USABLE_PG_BD_PER_PAGE) == USABLE_PG_BD_PER_PAGE)
10127 		/* Page Chain page pointer. */
10128 		BCE_PRINTF("px_bd[0x%04X]: haddr = 0x%08X:%08X, chain page pointer\n",
10129 			idx, pgbd->rx_bd_haddr_hi, pgbd->rx_bd_haddr_lo);
10130 	else
10131 		/* Normal rx_bd entry. */
10132 		BCE_PRINTF("pg_bd[0x%04X]: haddr = 0x%08X:%08X, nbytes = 0x%08X, "
10133 			"flags = 0x%08X\n", idx,
10134 			pgbd->rx_bd_haddr_hi, pgbd->rx_bd_haddr_lo,
10135 			pgbd->rx_bd_len, pgbd->rx_bd_flags);
10136 }
10137 
10138 
10139 /****************************************************************************/
10140 /* Prints out a l2_fhdr structure.                                          */
10141 /*                                                                          */
10142 /* Returns:                                                                 */
10143 /*   Nothing.                                                               */
10144 /****************************************************************************/
10145 static __attribute__ ((noinline)) void
10146 bce_dump_l2fhdr(struct bce_softc *sc, int idx, struct l2_fhdr *l2fhdr)
10147 {
10148 	BCE_PRINTF("l2_fhdr[0x%04X]: status = 0x%b, "
10149 		"pkt_len = %d, vlan = 0x%04x, ip_xsum/hdr_len = 0x%04X, "
10150 		"tcp_udp_xsum = 0x%04X\n", idx,
10151 		l2fhdr->l2_fhdr_status, BCE_L2FHDR_PRINTFB,
10152 		l2fhdr->l2_fhdr_pkt_len, l2fhdr->l2_fhdr_vlan_tag,
10153 		l2fhdr->l2_fhdr_ip_xsum, l2fhdr->l2_fhdr_tcp_udp_xsum);
10154 }
10155 
10156 
10157 /****************************************************************************/
10158 /* Prints out context memory info.  (Only useful for CID 0 to 16.)          */
10159 /*                                                                          */
10160 /* Returns:                                                                 */
10161 /*   Nothing.                                                               */
10162 /****************************************************************************/
10163 static __attribute__ ((noinline)) void
10164 bce_dump_ctx(struct bce_softc *sc, u16 cid)
10165 {
10166 	if (cid > TX_CID) {
10167 		BCE_PRINTF(" Unknown CID\n");
10168 		return;
10169 	}
10170 
10171 	BCE_PRINTF(
10172 	    "----------------------------"
10173 	    "    CTX Data    "
10174 	    "----------------------------\n");
10175 
10176 	BCE_PRINTF("     0x%04X - (CID) Context ID\n", cid);
10177 
10178 	if (cid == RX_CID) {
10179 		BCE_PRINTF(" 0x%08X - (L2CTX_RX_HOST_BDIDX) host rx "
10180 		   "producer index\n",
10181 		    CTX_RD(sc, GET_CID_ADDR(cid), BCE_L2CTX_RX_HOST_BDIDX));
10182 		BCE_PRINTF(" 0x%08X - (L2CTX_RX_HOST_BSEQ) host "
10183 		    "byte sequence\n", CTX_RD(sc, GET_CID_ADDR(cid),
10184 		    BCE_L2CTX_RX_HOST_BSEQ));
10185 		BCE_PRINTF(" 0x%08X - (L2CTX_RX_NX_BSEQ) h/w byte sequence\n",
10186 		    CTX_RD(sc, GET_CID_ADDR(cid), BCE_L2CTX_RX_NX_BSEQ));
10187 		BCE_PRINTF(" 0x%08X - (L2CTX_RX_NX_BDHADDR_HI) h/w buffer "
10188 		    "descriptor address\n",
10189  		    CTX_RD(sc, GET_CID_ADDR(cid), BCE_L2CTX_RX_NX_BDHADDR_HI));
10190 		BCE_PRINTF(" 0x%08X - (L2CTX_RX_NX_BDHADDR_LO) h/w buffer "
10191 		    "descriptor address\n",
10192 		    CTX_RD(sc, GET_CID_ADDR(cid), BCE_L2CTX_RX_NX_BDHADDR_LO));
10193 		BCE_PRINTF(" 0x%08X - (L2CTX_RX_NX_BDIDX) h/w rx consumer "
10194 		    "index\n", CTX_RD(sc, GET_CID_ADDR(cid),
10195 		    BCE_L2CTX_RX_NX_BDIDX));
10196 		BCE_PRINTF(" 0x%08X - (L2CTX_RX_HOST_PG_BDIDX) host page "
10197 		    "producer index\n", CTX_RD(sc, GET_CID_ADDR(cid),
10198 		    BCE_L2CTX_RX_HOST_PG_BDIDX));
10199 		BCE_PRINTF(" 0x%08X - (L2CTX_RX_PG_BUF_SIZE) host rx_bd/page "
10200 		    "buffer size\n", CTX_RD(sc, GET_CID_ADDR(cid),
10201 		    BCE_L2CTX_RX_PG_BUF_SIZE));
10202 		BCE_PRINTF(" 0x%08X - (L2CTX_RX_NX_PG_BDHADDR_HI) h/w page "
10203 		    "chain address\n", CTX_RD(sc, GET_CID_ADDR(cid),
10204 		    BCE_L2CTX_RX_NX_PG_BDHADDR_HI));
10205 		BCE_PRINTF(" 0x%08X - (L2CTX_RX_NX_PG_BDHADDR_LO) h/w page "
10206 		    "chain address\n", CTX_RD(sc, GET_CID_ADDR(cid),
10207 		    BCE_L2CTX_RX_NX_PG_BDHADDR_LO));
10208 		BCE_PRINTF(" 0x%08X - (L2CTX_RX_NX_PG_BDIDX) h/w page "
10209 		    "consumer index\n",	CTX_RD(sc, GET_CID_ADDR(cid),
10210 		    BCE_L2CTX_RX_NX_PG_BDIDX));
10211 	} else if (cid == TX_CID) {
10212 		if (BCE_CHIP_NUM(sc) == BCE_CHIP_NUM_5709) {
10213 			BCE_PRINTF(" 0x%08X - (L2CTX_TX_TYPE_XI) ctx type\n",
10214 			    CTX_RD(sc, GET_CID_ADDR(cid),
10215 			    BCE_L2CTX_TX_TYPE_XI));
10216 			BCE_PRINTF(" 0x%08X - (L2CTX_CMD_TX_TYPE_XI) ctx "
10217 			    "cmd\n", CTX_RD(sc, GET_CID_ADDR(cid),
10218 			    BCE_L2CTX_TX_CMD_TYPE_XI));
10219 			BCE_PRINTF(" 0x%08X - (L2CTX_TX_TBDR_BDHADDR_HI_XI) "
10220 			    "h/w buffer descriptor address\n",
10221 			    CTX_RD(sc, GET_CID_ADDR(cid),
10222 			    BCE_L2CTX_TX_TBDR_BHADDR_HI_XI));
10223 			BCE_PRINTF(" 0x%08X - (L2CTX_TX_TBDR_BHADDR_LO_XI) "
10224 			    "h/w buffer	descriptor address\n",
10225 			    CTX_RD(sc, GET_CID_ADDR(cid),
10226 			    BCE_L2CTX_TX_TBDR_BHADDR_LO_XI));
10227 			BCE_PRINTF(" 0x%08X - (L2CTX_TX_HOST_BIDX_XI) "
10228 			    "host producer index\n",
10229 			    CTX_RD(sc, GET_CID_ADDR(cid),
10230 			    BCE_L2CTX_TX_HOST_BIDX_XI));
10231 			BCE_PRINTF(" 0x%08X - (L2CTX_TX_HOST_BSEQ_XI) "
10232 			    "host byte sequence\n",
10233 			    CTX_RD(sc, GET_CID_ADDR(cid),
10234 			    BCE_L2CTX_TX_HOST_BSEQ_XI));
10235 		} else {
10236 			BCE_PRINTF(" 0x%08X - (L2CTX_TX_TYPE) ctx type\n",
10237 			    CTX_RD(sc, GET_CID_ADDR(cid), BCE_L2CTX_TX_TYPE));
10238 			BCE_PRINTF(" 0x%08X - (L2CTX_TX_CMD_TYPE) ctx cmd\n",
10239 			    CTX_RD(sc, GET_CID_ADDR(cid),
10240 			    BCE_L2CTX_TX_CMD_TYPE));
10241 			BCE_PRINTF(" 0x%08X - (L2CTX_TX_TBDR_BDHADDR_HI) "
10242 			    "h/w buffer	descriptor address\n",
10243 			    CTX_RD(sc, GET_CID_ADDR(cid),
10244 			    BCE_L2CTX_TX_TBDR_BHADDR_HI));
10245 			BCE_PRINTF(" 0x%08X - (L2CTX_TX_TBDR_BHADDR_LO) "
10246 			    "h/w buffer	descriptor address\n",
10247 			    CTX_RD(sc, GET_CID_ADDR(cid),
10248 			    BCE_L2CTX_TX_TBDR_BHADDR_LO));
10249 			BCE_PRINTF(" 0x%08X - (L2CTX_TX_HOST_BIDX) host "
10250 			    "producer index\n", CTX_RD(sc, GET_CID_ADDR(cid),
10251 			    BCE_L2CTX_TX_HOST_BIDX));
10252 			BCE_PRINTF(" 0x%08X - (L2CTX_TX_HOST_BSEQ) host byte "
10253 			    "sequence\n", CTX_RD(sc, GET_CID_ADDR(cid),
10254 			    BCE_L2CTX_TX_HOST_BSEQ));
10255 		}
10256 	}
10257 
10258 	BCE_PRINTF(
10259 	   "----------------------------"
10260 	   "    Raw CTX     "
10261 	   "----------------------------\n");
10262 
10263 	for (int i = 0x0; i < 0x300; i += 0x10) {
10264 		BCE_PRINTF("0x%04X: 0x%08X 0x%08X 0x%08X 0x%08X\n", i,
10265 		   CTX_RD(sc, GET_CID_ADDR(cid), i),
10266 		   CTX_RD(sc, GET_CID_ADDR(cid), i + 0x4),
10267 		   CTX_RD(sc, GET_CID_ADDR(cid), i + 0x8),
10268 		   CTX_RD(sc, GET_CID_ADDR(cid), i + 0xc));
10269 	}
10270 
10271 
10272 	BCE_PRINTF(
10273 	   "----------------------------"
10274 	   "----------------"
10275 	   "----------------------------\n");
10276 }
10277 
10278 
10279 /****************************************************************************/
10280 /* Prints out the FTQ data.                                                 */
10281 /*                                                                          */
10282 /* Returns:                                                                */
10283 /*   Nothing.                                                               */
10284 /****************************************************************************/
10285 static __attribute__ ((noinline)) void
10286 bce_dump_ftqs(struct bce_softc *sc)
10287 {
10288 	u32 cmd, ctl, cur_depth, max_depth, valid_cnt, val;
10289 
10290 	BCE_PRINTF(
10291 	    "----------------------------"
10292 	    "    FTQ Data    "
10293 	    "----------------------------\n");
10294 
10295 	BCE_PRINTF("   FTQ    Command    Control   Depth_Now  "
10296 	    "Max_Depth  Valid_Cnt \n");
10297 	BCE_PRINTF(" ------- ---------- ---------- ---------- "
10298 	    "---------- ----------\n");
10299 
10300 	/* Setup the generic statistic counters for the FTQ valid count. */
10301 	val = (BCE_HC_STAT_GEN_SEL_0_GEN_SEL_0_RV2PPQ_VALID_CNT << 24) |
10302 	    (BCE_HC_STAT_GEN_SEL_0_GEN_SEL_0_RXPCQ_VALID_CNT  << 16) |
10303 	    (BCE_HC_STAT_GEN_SEL_0_GEN_SEL_0_RXPQ_VALID_CNT   <<  8) |
10304 	    (BCE_HC_STAT_GEN_SEL_0_GEN_SEL_0_RLUPQ_VALID_CNT);
10305 	REG_WR(sc, BCE_HC_STAT_GEN_SEL_0, val);
10306 
10307 	val = (BCE_HC_STAT_GEN_SEL_0_GEN_SEL_0_TSCHQ_VALID_CNT  << 24) |
10308 	    (BCE_HC_STAT_GEN_SEL_0_GEN_SEL_0_RDMAQ_VALID_CNT  << 16) |
10309 	    (BCE_HC_STAT_GEN_SEL_0_GEN_SEL_0_RV2PTQ_VALID_CNT <<  8) |
10310 	    (BCE_HC_STAT_GEN_SEL_0_GEN_SEL_0_RV2PMQ_VALID_CNT);
10311 	REG_WR(sc, BCE_HC_STAT_GEN_SEL_1, val);
10312 
10313 	val = (BCE_HC_STAT_GEN_SEL_0_GEN_SEL_0_TPATQ_VALID_CNT  << 24) |
10314 	    (BCE_HC_STAT_GEN_SEL_0_GEN_SEL_0_TDMAQ_VALID_CNT  << 16) |
10315 	    (BCE_HC_STAT_GEN_SEL_0_GEN_SEL_0_TXPQ_VALID_CNT   <<  8) |
10316 	    (BCE_HC_STAT_GEN_SEL_0_GEN_SEL_0_TBDRQ_VALID_CNT);
10317 	REG_WR(sc, BCE_HC_STAT_GEN_SEL_2, val);
10318 
10319 	val = (BCE_HC_STAT_GEN_SEL_0_GEN_SEL_0_COMQ_VALID_CNT   << 24) |
10320 	    (BCE_HC_STAT_GEN_SEL_0_GEN_SEL_0_COMTQ_VALID_CNT  << 16) |
10321 	    (BCE_HC_STAT_GEN_SEL_0_GEN_SEL_0_COMXQ_VALID_CNT  <<  8) |
10322 	    (BCE_HC_STAT_GEN_SEL_0_GEN_SEL_0_TASQ_VALID_CNT);
10323 	REG_WR(sc, BCE_HC_STAT_GEN_SEL_3, val);
10324 
10325 	/* Input queue to the Receive Lookup state machine */
10326 	cmd = REG_RD(sc, BCE_RLUP_FTQ_CMD);
10327 	ctl = REG_RD(sc, BCE_RLUP_FTQ_CTL);
10328 	cur_depth = (ctl & BCE_RLUP_FTQ_CTL_CUR_DEPTH) >> 22;
10329 	max_depth = (ctl & BCE_RLUP_FTQ_CTL_MAX_DEPTH) >> 12;
10330 	valid_cnt = REG_RD(sc, BCE_HC_STAT_GEN_STAT0);
10331 	BCE_PRINTF(" RLUP    0x%08X 0x%08X 0x%08X 0x%08X 0x%08X\n",
10332 	    cmd, ctl, cur_depth, max_depth, valid_cnt);
10333 
10334 	/* Input queue to the Receive Processor */
10335 	cmd = REG_RD_IND(sc, BCE_RXP_FTQ_CMD);
10336 	ctl = REG_RD_IND(sc, BCE_RXP_FTQ_CTL);
10337 	cur_depth = (ctl & BCE_RXP_FTQ_CTL_CUR_DEPTH) >> 22;
10338 	max_depth = (ctl & BCE_RXP_FTQ_CTL_MAX_DEPTH) >> 12;
10339 	valid_cnt = REG_RD(sc, BCE_HC_STAT_GEN_STAT1);
10340 	BCE_PRINTF(" RXP     0x%08X 0x%08X 0x%08X 0x%08X 0x%08X\n",
10341 	    cmd, ctl, cur_depth, max_depth, valid_cnt);
10342 
10343 	/* Input queue to the Recevie Processor */
10344 	cmd = REG_RD_IND(sc, BCE_RXP_CFTQ_CMD);
10345 	ctl = REG_RD_IND(sc, BCE_RXP_CFTQ_CTL);
10346 	cur_depth = (ctl & BCE_RXP_CFTQ_CTL_CUR_DEPTH) >> 22;
10347 	max_depth = (ctl & BCE_RXP_CFTQ_CTL_MAX_DEPTH) >> 12;
10348 	valid_cnt = REG_RD(sc, BCE_HC_STAT_GEN_STAT2);
10349 	BCE_PRINTF(" RXPC    0x%08X 0x%08X 0x%08X 0x%08X 0x%08X\n",
10350 	    cmd, ctl, cur_depth, max_depth, valid_cnt);
10351 
10352 	/* Input queue to the Receive Virtual to Physical state machine */
10353 	cmd = REG_RD(sc, BCE_RV2P_PFTQ_CMD);
10354 	ctl = REG_RD(sc, BCE_RV2P_PFTQ_CTL);
10355 	cur_depth = (ctl & BCE_RV2P_PFTQ_CTL_CUR_DEPTH) >> 22;
10356 	max_depth = (ctl & BCE_RV2P_PFTQ_CTL_MAX_DEPTH) >> 12;
10357 	valid_cnt = REG_RD(sc, BCE_HC_STAT_GEN_STAT3);
10358 	BCE_PRINTF(" RV2PP   0x%08X 0x%08X 0x%08X 0x%08X 0x%08X\n",
10359 	    cmd, ctl, cur_depth, max_depth, valid_cnt);
10360 
10361 	/* Input queue to the Recevie Virtual to Physical state machine */
10362 	cmd = REG_RD(sc, BCE_RV2P_MFTQ_CMD);
10363 	ctl = REG_RD(sc, BCE_RV2P_MFTQ_CTL);
10364 	cur_depth = (ctl & BCE_RV2P_MFTQ_CTL_CUR_DEPTH) >> 22;
10365 	max_depth = (ctl & BCE_RV2P_MFTQ_CTL_MAX_DEPTH) >> 12;
10366 	valid_cnt = REG_RD(sc, BCE_HC_STAT_GEN_STAT4);
10367 	BCE_PRINTF(" RV2PM   0x%08X 0x%08X 0x%08X 0x%08X 0x%08X\n",
10368 	    cmd, ctl, cur_depth, max_depth, valid_cnt);
10369 
10370 	/* Input queue to the Receive Virtual to Physical state machine */
10371 	cmd = REG_RD(sc, BCE_RV2P_TFTQ_CMD);
10372 	ctl = REG_RD(sc, BCE_RV2P_TFTQ_CTL);
10373 	cur_depth = (ctl & BCE_RV2P_TFTQ_CTL_CUR_DEPTH) >> 22;
10374 	max_depth = (ctl & BCE_RV2P_TFTQ_CTL_MAX_DEPTH) >> 12;
10375 	valid_cnt = REG_RD(sc, BCE_HC_STAT_GEN_STAT5);
10376 	BCE_PRINTF(" RV2PT   0x%08X 0x%08X 0x%08X 0x%08X 0x%08X\n",
10377 	    cmd, ctl, cur_depth, max_depth, valid_cnt);
10378 
10379 	/* Input queue to the Receive DMA state machine */
10380 	cmd = REG_RD(sc, BCE_RDMA_FTQ_CMD);
10381 	ctl = REG_RD(sc, BCE_RDMA_FTQ_CTL);
10382 	cur_depth = (ctl & BCE_RDMA_FTQ_CTL_CUR_DEPTH) >> 22;
10383 	max_depth = (ctl & BCE_RDMA_FTQ_CTL_MAX_DEPTH) >> 12;
10384 	valid_cnt = REG_RD(sc, BCE_HC_STAT_GEN_STAT6);
10385 	BCE_PRINTF(" RDMA    0x%08X 0x%08X 0x%08X 0x%08X 0x%08X\n",
10386 	    cmd, ctl, cur_depth, max_depth, valid_cnt);
10387 
10388 	/* Input queue to the Transmit Scheduler state machine */
10389 	cmd = REG_RD(sc, BCE_TSCH_FTQ_CMD);
10390 	ctl = REG_RD(sc, BCE_TSCH_FTQ_CTL);
10391 	cur_depth = (ctl & BCE_TSCH_FTQ_CTL_CUR_DEPTH) >> 22;
10392 	max_depth = (ctl & BCE_TSCH_FTQ_CTL_MAX_DEPTH) >> 12;
10393 	valid_cnt = REG_RD(sc, BCE_HC_STAT_GEN_STAT7);
10394 	BCE_PRINTF(" TSCH    0x%08X 0x%08X 0x%08X 0x%08X 0x%08X\n",
10395 	    cmd, ctl, cur_depth, max_depth, valid_cnt);
10396 
10397 	/* Input queue to the Transmit Buffer Descriptor state machine */
10398 	cmd = REG_RD(sc, BCE_TBDR_FTQ_CMD);
10399 	ctl = REG_RD(sc, BCE_TBDR_FTQ_CTL);
10400 	cur_depth = (ctl & BCE_TBDR_FTQ_CTL_CUR_DEPTH) >> 22;
10401 	max_depth = (ctl & BCE_TBDR_FTQ_CTL_MAX_DEPTH) >> 12;
10402 	valid_cnt = REG_RD(sc, BCE_HC_STAT_GEN_STAT8);
10403 	BCE_PRINTF(" TBDR    0x%08X 0x%08X 0x%08X 0x%08X 0x%08X\n",
10404 	    cmd, ctl, cur_depth, max_depth, valid_cnt);
10405 
10406 	/* Input queue to the Transmit Processor */
10407 	cmd = REG_RD_IND(sc, BCE_TXP_FTQ_CMD);
10408 	ctl = REG_RD_IND(sc, BCE_TXP_FTQ_CTL);
10409 	cur_depth = (ctl & BCE_TXP_FTQ_CTL_CUR_DEPTH) >> 22;
10410 	max_depth = (ctl & BCE_TXP_FTQ_CTL_MAX_DEPTH) >> 12;
10411 	valid_cnt = REG_RD(sc, BCE_HC_STAT_GEN_STAT9);
10412 	BCE_PRINTF(" TXP     0x%08X 0x%08X 0x%08X 0x%08X 0x%08X\n",
10413 	    cmd, ctl, cur_depth, max_depth, valid_cnt);
10414 
10415 	/* Input queue to the Transmit DMA state machine */
10416 	cmd = REG_RD(sc, BCE_TDMA_FTQ_CMD);
10417 	ctl = REG_RD(sc, BCE_TDMA_FTQ_CTL);
10418 	cur_depth = (ctl & BCE_TDMA_FTQ_CTL_CUR_DEPTH) >> 22;
10419 	max_depth = (ctl & BCE_TDMA_FTQ_CTL_MAX_DEPTH) >> 12;
10420 	valid_cnt = REG_RD(sc, BCE_HC_STAT_GEN_STAT10);
10421 	BCE_PRINTF(" TDMA    0x%08X 0x%08X 0x%08X 0x%08X 0x%08X\n",
10422 	    cmd, ctl, cur_depth, max_depth, valid_cnt);
10423 
10424 	/* Input queue to the Transmit Patch-Up Processor */
10425 	cmd = REG_RD_IND(sc, BCE_TPAT_FTQ_CMD);
10426 	ctl = REG_RD_IND(sc, BCE_TPAT_FTQ_CTL);
10427 	cur_depth = (ctl & BCE_TPAT_FTQ_CTL_CUR_DEPTH) >> 22;
10428 	max_depth = (ctl & BCE_TPAT_FTQ_CTL_MAX_DEPTH) >> 12;
10429 	valid_cnt = REG_RD(sc, BCE_HC_STAT_GEN_STAT11);
10430 	BCE_PRINTF(" TPAT    0x%08X 0x%08X 0x%08X 0x%08X 0x%08X\n",
10431 	    cmd, ctl, cur_depth, max_depth, valid_cnt);
10432 
10433 	/* Input queue to the Transmit Assembler state machine */
10434 	cmd = REG_RD_IND(sc, BCE_TAS_FTQ_CMD);
10435 	ctl = REG_RD_IND(sc, BCE_TAS_FTQ_CTL);
10436 	cur_depth = (ctl & BCE_TAS_FTQ_CTL_CUR_DEPTH) >> 22;
10437 	max_depth = (ctl & BCE_TAS_FTQ_CTL_MAX_DEPTH) >> 12;
10438 	valid_cnt = REG_RD(sc, BCE_HC_STAT_GEN_STAT12);
10439 	BCE_PRINTF(" TAS     0x%08X 0x%08X 0x%08X 0x%08X 0x%08X\n",
10440 	    cmd, ctl, cur_depth, max_depth, valid_cnt);
10441 
10442 	/* Input queue to the Completion Processor */
10443 	cmd = REG_RD_IND(sc, BCE_COM_COMXQ_FTQ_CMD);
10444 	ctl = REG_RD_IND(sc, BCE_COM_COMXQ_FTQ_CTL);
10445 	cur_depth = (ctl & BCE_COM_COMXQ_FTQ_CTL_CUR_DEPTH) >> 22;
10446 	max_depth = (ctl & BCE_COM_COMXQ_FTQ_CTL_MAX_DEPTH) >> 12;
10447 	valid_cnt = REG_RD(sc, BCE_HC_STAT_GEN_STAT13);
10448 	BCE_PRINTF(" COMX    0x%08X 0x%08X 0x%08X 0x%08X 0x%08X\n",
10449 	    cmd, ctl, cur_depth, max_depth, valid_cnt);
10450 
10451 	/* Input queue to the Completion Processor */
10452 	cmd = REG_RD_IND(sc, BCE_COM_COMTQ_FTQ_CMD);
10453 	ctl = REG_RD_IND(sc, BCE_COM_COMTQ_FTQ_CTL);
10454 	cur_depth = (ctl & BCE_COM_COMTQ_FTQ_CTL_CUR_DEPTH) >> 22;
10455 	max_depth = (ctl & BCE_COM_COMTQ_FTQ_CTL_MAX_DEPTH) >> 12;
10456 	valid_cnt = REG_RD(sc, BCE_HC_STAT_GEN_STAT14);
10457 	BCE_PRINTF(" COMT    0x%08X 0x%08X 0x%08X 0x%08X 0x%08X\n",
10458 	    cmd, ctl, cur_depth, max_depth, valid_cnt);
10459 
10460 	/* Input queue to the Completion Processor */
10461 	cmd = REG_RD_IND(sc, BCE_COM_COMQ_FTQ_CMD);
10462 	ctl = REG_RD_IND(sc, BCE_COM_COMQ_FTQ_CTL);
10463 	cur_depth = (ctl & BCE_COM_COMQ_FTQ_CTL_CUR_DEPTH) >> 22;
10464 	max_depth = (ctl & BCE_COM_COMQ_FTQ_CTL_MAX_DEPTH) >> 12;
10465 	valid_cnt = REG_RD(sc, BCE_HC_STAT_GEN_STAT15);
10466 	BCE_PRINTF(" COMX    0x%08X 0x%08X 0x%08X 0x%08X 0x%08X\n",
10467 	    cmd, ctl, cur_depth, max_depth, valid_cnt);
10468 
10469 	/* Setup the generic statistic counters for the FTQ valid count. */
10470 	val = (BCE_HC_STAT_GEN_SEL_0_GEN_SEL_0_CSQ_VALID_CNT  << 16) |
10471 	    (BCE_HC_STAT_GEN_SEL_0_GEN_SEL_0_CPQ_VALID_CNT  <<  8) |
10472 	    (BCE_HC_STAT_GEN_SEL_0_GEN_SEL_0_MGMQ_VALID_CNT);
10473 
10474 	if (BCE_CHIP_NUM(sc) == BCE_CHIP_NUM_5709)
10475 		val = val |
10476 		    (BCE_HC_STAT_GEN_SEL_0_GEN_SEL_0_RV2PCSQ_VALID_CNT_XI <<
10477 		     24);
10478 	REG_WR(sc, BCE_HC_STAT_GEN_SEL_0, val);
10479 
10480 	/* Input queue to the Management Control Processor */
10481 	cmd = REG_RD_IND(sc, BCE_MCP_MCPQ_FTQ_CMD);
10482 	ctl = REG_RD_IND(sc, BCE_MCP_MCPQ_FTQ_CTL);
10483 	cur_depth = (ctl & BCE_MCP_MCPQ_FTQ_CTL_CUR_DEPTH) >> 22;
10484 	max_depth = (ctl & BCE_MCP_MCPQ_FTQ_CTL_MAX_DEPTH) >> 12;
10485 	valid_cnt = REG_RD(sc, BCE_HC_STAT_GEN_STAT0);
10486 	BCE_PRINTF(" MCP     0x%08X 0x%08X 0x%08X 0x%08X 0x%08X\n",
10487 	    cmd, ctl, cur_depth, max_depth, valid_cnt);
10488 
10489 	/* Input queue to the Command Processor */
10490 	cmd = REG_RD_IND(sc, BCE_CP_CPQ_FTQ_CMD);
10491 	ctl = REG_RD_IND(sc, BCE_CP_CPQ_FTQ_CTL);
10492 	cur_depth = (ctl & BCE_CP_CPQ_FTQ_CTL_CUR_DEPTH) >> 22;
10493 	max_depth = (ctl & BCE_CP_CPQ_FTQ_CTL_MAX_DEPTH) >> 12;
10494 	valid_cnt = REG_RD(sc, BCE_HC_STAT_GEN_STAT1);
10495 	BCE_PRINTF(" CP      0x%08X 0x%08X 0x%08X 0x%08X 0x%08X\n",
10496 	    cmd, ctl, cur_depth, max_depth, valid_cnt);
10497 
10498 	/* Input queue to the Completion Scheduler state machine */
10499 	cmd = REG_RD(sc, BCE_CSCH_CH_FTQ_CMD);
10500 	ctl = REG_RD(sc, BCE_CSCH_CH_FTQ_CTL);
10501 	cur_depth = (ctl & BCE_CSCH_CH_FTQ_CTL_CUR_DEPTH) >> 22;
10502 	max_depth = (ctl & BCE_CSCH_CH_FTQ_CTL_MAX_DEPTH) >> 12;
10503 	valid_cnt = REG_RD(sc, BCE_HC_STAT_GEN_STAT2);
10504 	BCE_PRINTF(" CS      0x%08X 0x%08X 0x%08X 0x%08X 0x%08X\n",
10505 	    cmd, ctl, cur_depth, max_depth, valid_cnt);
10506 
10507 	if (BCE_CHIP_NUM(sc) == BCE_CHIP_NUM_5709) {
10508 		/* Input queue to the RV2P Command Scheduler */
10509 		cmd = REG_RD(sc, BCE_RV2PCSR_FTQ_CMD);
10510 		ctl = REG_RD(sc, BCE_RV2PCSR_FTQ_CTL);
10511 		cur_depth = (ctl & 0xFFC00000) >> 22;
10512 		max_depth = (ctl & 0x003FF000) >> 12;
10513 		valid_cnt = REG_RD(sc, BCE_HC_STAT_GEN_STAT3);
10514 		BCE_PRINTF(" RV2PCSR 0x%08X 0x%08X 0x%08X 0x%08X 0x%08X\n",
10515 		    cmd, ctl, cur_depth, max_depth, valid_cnt);
10516 	}
10517 
10518 	BCE_PRINTF(
10519 	    "----------------------------"
10520 	    "----------------"
10521 	    "----------------------------\n");
10522 }
10523 
10524 
10525 /****************************************************************************/
10526 /* Prints out the TX chain.                                                 */
10527 /*                                                                          */
10528 /* Returns:                                                                 */
10529 /*   Nothing.                                                               */
10530 /****************************************************************************/
10531 static __attribute__ ((noinline)) void
10532 bce_dump_tx_chain(struct bce_softc *sc, u16 tx_prod, int count)
10533 {
10534 	struct tx_bd *txbd;
10535 
10536 	/* First some info about the tx_bd chain structure. */
10537 	BCE_PRINTF(
10538 	    "----------------------------"
10539 	    "  tx_bd  chain  "
10540 	    "----------------------------\n");
10541 
10542 	BCE_PRINTF("page size      = 0x%08X, tx chain pages        = 0x%08X\n",
10543 	    (u32) BCM_PAGE_SIZE, (u32) sc->tx_pages);
10544 	BCE_PRINTF("tx_bd per page = 0x%08X, usable tx_bd per page = 0x%08X\n",
10545 	    (u32) TOTAL_TX_BD_PER_PAGE, (u32) USABLE_TX_BD_PER_PAGE);
10546 	BCE_PRINTF("total tx_bd    = 0x%08X\n", (u32) TOTAL_TX_BD_ALLOC);
10547 
10548 	BCE_PRINTF(
10549 	    "----------------------------"
10550 	    "   tx_bd data   "
10551 	    "----------------------------\n");
10552 
10553 	/* Now print out a decoded list of TX buffer descriptors. */
10554 	for (int i = 0; i < count; i++) {
10555 	 	txbd = &sc->tx_bd_chain[TX_PAGE(tx_prod)][TX_IDX(tx_prod)];
10556 		bce_dump_txbd(sc, tx_prod, txbd);
10557 		tx_prod++;
10558 	}
10559 
10560 	BCE_PRINTF(
10561 	    "----------------------------"
10562 	    "----------------"
10563 	    "----------------------------\n");
10564 }
10565 
10566 
10567 /****************************************************************************/
10568 /* Prints out the RX chain.                                                 */
10569 /*                                                                          */
10570 /* Returns:                                                                 */
10571 /*   Nothing.                                                               */
10572 /****************************************************************************/
10573 static __attribute__ ((noinline)) void
10574 bce_dump_rx_bd_chain(struct bce_softc *sc, u16 rx_prod, int count)
10575 {
10576 	struct rx_bd *rxbd;
10577 
10578 	/* First some info about the rx_bd chain structure. */
10579 	BCE_PRINTF(
10580 	    "----------------------------"
10581 	    "  rx_bd  chain  "
10582 	    "----------------------------\n");
10583 
10584 	BCE_PRINTF("page size      = 0x%08X, rx chain pages        = 0x%08X\n",
10585 	    (u32) BCM_PAGE_SIZE, (u32) sc->rx_pages);
10586 
10587 	BCE_PRINTF("rx_bd per page = 0x%08X, usable rx_bd per page = 0x%08X\n",
10588 	    (u32) TOTAL_RX_BD_PER_PAGE, (u32) USABLE_RX_BD_PER_PAGE);
10589 
10590 	BCE_PRINTF("total rx_bd    = 0x%08X\n", (u32) TOTAL_RX_BD_ALLOC);
10591 
10592 	BCE_PRINTF(
10593 	    "----------------------------"
10594 	    "   rx_bd data   "
10595 	    "----------------------------\n");
10596 
10597 	/* Now print out the rx_bd's themselves. */
10598 	for (int i = 0; i < count; i++) {
10599 		rxbd = &sc->rx_bd_chain[RX_PAGE(rx_prod)][RX_IDX(rx_prod)];
10600 		bce_dump_rxbd(sc, rx_prod, rxbd);
10601 		rx_prod = RX_CHAIN_IDX(rx_prod + 1);
10602 	}
10603 
10604 	BCE_PRINTF(
10605 	    "----------------------------"
10606 	    "----------------"
10607 	    "----------------------------\n");
10608 }
10609 
10610 
10611 /****************************************************************************/
10612 /* Prints out the page chain.                                               */
10613 /*                                                                          */
10614 /* Returns:                                                                 */
10615 /*   Nothing.                                                               */
10616 /****************************************************************************/
10617 static __attribute__ ((noinline)) void
10618 bce_dump_pg_chain(struct bce_softc *sc, u16 pg_prod, int count)
10619 {
10620 	struct rx_bd *pgbd;
10621 
10622 	/* First some info about the page chain structure. */
10623 	BCE_PRINTF(
10624 	    "----------------------------"
10625 	    "   page chain   "
10626 	    "----------------------------\n");
10627 
10628 	BCE_PRINTF("page size      = 0x%08X, pg chain pages        = 0x%08X\n",
10629 	    (u32) BCM_PAGE_SIZE, (u32) sc->pg_pages);
10630 
10631 	BCE_PRINTF("rx_bd per page = 0x%08X, usable rx_bd per page = 0x%08X\n",
10632 	    (u32) TOTAL_PG_BD_PER_PAGE, (u32) USABLE_PG_BD_PER_PAGE);
10633 
10634 	BCE_PRINTF("total pg_bd             = 0x%08X\n", (u32) TOTAL_PG_BD_ALLOC);
10635 
10636 	BCE_PRINTF(
10637 	    "----------------------------"
10638 	    "   page data    "
10639 	    "----------------------------\n");
10640 
10641 	/* Now print out the rx_bd's themselves. */
10642 	for (int i = 0; i < count; i++) {
10643 		pgbd = &sc->pg_bd_chain[PG_PAGE(pg_prod)][PG_IDX(pg_prod)];
10644 		bce_dump_pgbd(sc, pg_prod, pgbd);
10645 		pg_prod = PG_CHAIN_IDX(pg_prod + 1);
10646 	}
10647 
10648 	BCE_PRINTF(
10649 	    "----------------------------"
10650 	    "----------------"
10651 	    "----------------------------\n");
10652 }
10653 
10654 
10655 #define BCE_PRINT_RX_CONS(arg)						\
10656 if (sblk->status_rx_quick_consumer_index##arg)				\
10657 	BCE_PRINTF("0x%04X(0x%04X) - rx_quick_consumer_index%d\n",	\
10658 	    sblk->status_rx_quick_consumer_index##arg, (u16)		\
10659 	    RX_CHAIN_IDX(sblk->status_rx_quick_consumer_index##arg),	\
10660 	    arg);
10661 
10662 
10663 #define BCE_PRINT_TX_CONS(arg)						\
10664 if (sblk->status_tx_quick_consumer_index##arg)				\
10665 	BCE_PRINTF("0x%04X(0x%04X) - tx_quick_consumer_index%d\n",	\
10666 	    sblk->status_tx_quick_consumer_index##arg, (u16)		\
10667 	    TX_CHAIN_IDX(sblk->status_tx_quick_consumer_index##arg),	\
10668 	    arg);
10669 
10670 /****************************************************************************/
10671 /* Prints out the status block from host memory.                            */
10672 /*                                                                          */
10673 /* Returns:                                                                 */
10674 /*   Nothing.                                                               */
10675 /****************************************************************************/
10676 static __attribute__ ((noinline)) void
10677 bce_dump_status_block(struct bce_softc *sc)
10678 {
10679 	struct status_block *sblk;
10680 
10681 	bus_dmamap_sync(sc->status_tag, sc->status_map, BUS_DMASYNC_POSTREAD);
10682 
10683 	sblk = sc->status_block;
10684 
10685 	BCE_PRINTF(
10686 	    "----------------------------"
10687 	    "  Status Block  "
10688 	    "----------------------------\n");
10689 
10690 	/* Theses indices are used for normal L2 drivers. */
10691 	BCE_PRINTF("    0x%08X - attn_bits\n",
10692 	    sblk->status_attn_bits);
10693 
10694 	BCE_PRINTF("    0x%08X - attn_bits_ack\n",
10695 	    sblk->status_attn_bits_ack);
10696 
10697 	BCE_PRINT_RX_CONS(0);
10698 	BCE_PRINT_TX_CONS(0)
10699 
10700 	BCE_PRINTF("        0x%04X - status_idx\n", sblk->status_idx);
10701 
10702 	/* Theses indices are not used for normal L2 drivers. */
10703 	BCE_PRINT_RX_CONS(1);   BCE_PRINT_RX_CONS(2);   BCE_PRINT_RX_CONS(3);
10704 	BCE_PRINT_RX_CONS(4);   BCE_PRINT_RX_CONS(5);   BCE_PRINT_RX_CONS(6);
10705 	BCE_PRINT_RX_CONS(7);   BCE_PRINT_RX_CONS(8);   BCE_PRINT_RX_CONS(9);
10706 	BCE_PRINT_RX_CONS(10);  BCE_PRINT_RX_CONS(11);  BCE_PRINT_RX_CONS(12);
10707 	BCE_PRINT_RX_CONS(13);  BCE_PRINT_RX_CONS(14);  BCE_PRINT_RX_CONS(15);
10708 
10709 	BCE_PRINT_TX_CONS(1);   BCE_PRINT_TX_CONS(2);   BCE_PRINT_TX_CONS(3);
10710 
10711 	if (sblk->status_completion_producer_index ||
10712 	    sblk->status_cmd_consumer_index)
10713 		BCE_PRINTF("com_prod  = 0x%08X, cmd_cons      = 0x%08X\n",
10714 		    sblk->status_completion_producer_index,
10715 		    sblk->status_cmd_consumer_index);
10716 
10717 	BCE_PRINTF(
10718 	    "----------------------------"
10719 	    "----------------"
10720 	    "----------------------------\n");
10721 }
10722 
10723 
10724 #define BCE_PRINT_64BIT_STAT(arg) 				\
10725 if (sblk->arg##_lo || sblk->arg##_hi)				\
10726 	BCE_PRINTF("0x%08X:%08X : %s\n", sblk->arg##_hi,	\
10727 	    sblk->arg##_lo, #arg);
10728 
10729 #define BCE_PRINT_32BIT_STAT(arg)				\
10730 if (sblk->arg)							\
10731 	BCE_PRINTF("         0x%08X : %s\n", 			\
10732 	    sblk->arg, #arg);
10733 
10734 /****************************************************************************/
10735 /* Prints out the statistics block from host memory.                        */
10736 /*                                                                          */
10737 /* Returns:                                                                 */
10738 /*   Nothing.                                                               */
10739 /****************************************************************************/
10740 static __attribute__ ((noinline)) void
10741 bce_dump_stats_block(struct bce_softc *sc)
10742 {
10743 	struct statistics_block *sblk;
10744 
10745 	bus_dmamap_sync(sc->stats_tag, sc->stats_map, BUS_DMASYNC_POSTREAD);
10746 
10747 	sblk = sc->stats_block;
10748 
10749 	BCE_PRINTF(
10750 	    "---------------"
10751 	    " Stats Block  (All Stats Not Shown Are 0) "
10752 	    "---------------\n");
10753 
10754 	BCE_PRINT_64BIT_STAT(stat_IfHCInOctets);
10755 	BCE_PRINT_64BIT_STAT(stat_IfHCInBadOctets);
10756 	BCE_PRINT_64BIT_STAT(stat_IfHCOutOctets);
10757 	BCE_PRINT_64BIT_STAT(stat_IfHCOutBadOctets);
10758 	BCE_PRINT_64BIT_STAT(stat_IfHCInUcastPkts);
10759 	BCE_PRINT_64BIT_STAT(stat_IfHCInBroadcastPkts);
10760 	BCE_PRINT_64BIT_STAT(stat_IfHCInMulticastPkts);
10761 	BCE_PRINT_64BIT_STAT(stat_IfHCOutUcastPkts);
10762 	BCE_PRINT_64BIT_STAT(stat_IfHCOutBroadcastPkts);
10763 	BCE_PRINT_64BIT_STAT(stat_IfHCOutMulticastPkts);
10764 	BCE_PRINT_32BIT_STAT(
10765 	    stat_emac_tx_stat_dot3statsinternalmactransmiterrors);
10766 	BCE_PRINT_32BIT_STAT(stat_Dot3StatsCarrierSenseErrors);
10767 	BCE_PRINT_32BIT_STAT(stat_Dot3StatsFCSErrors);
10768 	BCE_PRINT_32BIT_STAT(stat_Dot3StatsAlignmentErrors);
10769 	BCE_PRINT_32BIT_STAT(stat_Dot3StatsSingleCollisionFrames);
10770 	BCE_PRINT_32BIT_STAT(stat_Dot3StatsMultipleCollisionFrames);
10771 	BCE_PRINT_32BIT_STAT(stat_Dot3StatsDeferredTransmissions);
10772 	BCE_PRINT_32BIT_STAT(stat_Dot3StatsExcessiveCollisions);
10773 	BCE_PRINT_32BIT_STAT(stat_Dot3StatsLateCollisions);
10774 	BCE_PRINT_32BIT_STAT(stat_EtherStatsCollisions);
10775 	BCE_PRINT_32BIT_STAT(stat_EtherStatsFragments);
10776 	BCE_PRINT_32BIT_STAT(stat_EtherStatsJabbers);
10777 	BCE_PRINT_32BIT_STAT(stat_EtherStatsUndersizePkts);
10778 	BCE_PRINT_32BIT_STAT(stat_EtherStatsOversizePkts);
10779 	BCE_PRINT_32BIT_STAT(stat_EtherStatsPktsRx64Octets);
10780 	BCE_PRINT_32BIT_STAT(stat_EtherStatsPktsRx65Octetsto127Octets);
10781 	BCE_PRINT_32BIT_STAT(stat_EtherStatsPktsRx128Octetsto255Octets);
10782 	BCE_PRINT_32BIT_STAT(stat_EtherStatsPktsRx256Octetsto511Octets);
10783 	BCE_PRINT_32BIT_STAT(stat_EtherStatsPktsRx512Octetsto1023Octets);
10784 	BCE_PRINT_32BIT_STAT(stat_EtherStatsPktsRx1024Octetsto1522Octets);
10785 	BCE_PRINT_32BIT_STAT(stat_EtherStatsPktsRx1523Octetsto9022Octets);
10786 	BCE_PRINT_32BIT_STAT(stat_EtherStatsPktsTx64Octets);
10787 	BCE_PRINT_32BIT_STAT(stat_EtherStatsPktsTx65Octetsto127Octets);
10788 	BCE_PRINT_32BIT_STAT(stat_EtherStatsPktsTx128Octetsto255Octets);
10789 	BCE_PRINT_32BIT_STAT(stat_EtherStatsPktsTx256Octetsto511Octets);
10790 	BCE_PRINT_32BIT_STAT(stat_EtherStatsPktsTx512Octetsto1023Octets);
10791 	BCE_PRINT_32BIT_STAT(stat_EtherStatsPktsTx1024Octetsto1522Octets);
10792 	BCE_PRINT_32BIT_STAT(stat_EtherStatsPktsTx1523Octetsto9022Octets);
10793 	BCE_PRINT_32BIT_STAT(stat_XonPauseFramesReceived);
10794 	BCE_PRINT_32BIT_STAT(stat_XoffPauseFramesReceived);
10795 	BCE_PRINT_32BIT_STAT(stat_OutXonSent);
10796 	BCE_PRINT_32BIT_STAT(stat_OutXoffSent);
10797 	BCE_PRINT_32BIT_STAT(stat_FlowControlDone);
10798 	BCE_PRINT_32BIT_STAT(stat_MacControlFramesReceived);
10799 	BCE_PRINT_32BIT_STAT(stat_XoffStateEntered);
10800 	BCE_PRINT_32BIT_STAT(stat_IfInFramesL2FilterDiscards);
10801 	BCE_PRINT_32BIT_STAT(stat_IfInRuleCheckerDiscards);
10802 	BCE_PRINT_32BIT_STAT(stat_IfInFTQDiscards);
10803 	BCE_PRINT_32BIT_STAT(stat_IfInMBUFDiscards);
10804 	BCE_PRINT_32BIT_STAT(stat_IfInRuleCheckerP4Hit);
10805 	BCE_PRINT_32BIT_STAT(stat_CatchupInRuleCheckerDiscards);
10806 	BCE_PRINT_32BIT_STAT(stat_CatchupInFTQDiscards);
10807 	BCE_PRINT_32BIT_STAT(stat_CatchupInMBUFDiscards);
10808 	BCE_PRINT_32BIT_STAT(stat_CatchupInRuleCheckerP4Hit);
10809 
10810 	BCE_PRINTF(
10811 	    "----------------------------"
10812 	    "----------------"
10813 	    "----------------------------\n");
10814 }
10815 
10816 
10817 /****************************************************************************/
10818 /* Prints out a summary of the driver state.                                */
10819 /*                                                                          */
10820 /* Returns:                                                                 */
10821 /*   Nothing.                                                               */
10822 /****************************************************************************/
10823 static __attribute__ ((noinline)) void
10824 bce_dump_driver_state(struct bce_softc *sc)
10825 {
10826 	u32 val_hi, val_lo;
10827 
10828 	BCE_PRINTF(
10829 	    "-----------------------------"
10830 	    " Driver State "
10831 	    "-----------------------------\n");
10832 
10833 	val_hi = BCE_ADDR_HI(sc);
10834 	val_lo = BCE_ADDR_LO(sc);
10835 	BCE_PRINTF("0x%08X:%08X - (sc) driver softc structure virtual "
10836 	    "address\n", val_hi, val_lo);
10837 
10838 	val_hi = BCE_ADDR_HI(sc->bce_vhandle);
10839 	val_lo = BCE_ADDR_LO(sc->bce_vhandle);
10840 	BCE_PRINTF("0x%08X:%08X - (sc->bce_vhandle) PCI BAR virtual "
10841 	    "address\n", val_hi, val_lo);
10842 
10843 	val_hi = BCE_ADDR_HI(sc->status_block);
10844 	val_lo = BCE_ADDR_LO(sc->status_block);
10845 	BCE_PRINTF("0x%08X:%08X - (sc->status_block) status block "
10846 	    "virtual address\n",	val_hi, val_lo);
10847 
10848 	val_hi = BCE_ADDR_HI(sc->stats_block);
10849 	val_lo = BCE_ADDR_LO(sc->stats_block);
10850 	BCE_PRINTF("0x%08X:%08X - (sc->stats_block) statistics block "
10851 	    "virtual address\n", val_hi, val_lo);
10852 
10853 	val_hi = BCE_ADDR_HI(sc->tx_bd_chain);
10854 	val_lo = BCE_ADDR_LO(sc->tx_bd_chain);
10855 	BCE_PRINTF("0x%08X:%08X - (sc->tx_bd_chain) tx_bd chain "
10856 	    "virtual adddress\n", val_hi, val_lo);
10857 
10858 	val_hi = BCE_ADDR_HI(sc->rx_bd_chain);
10859 	val_lo = BCE_ADDR_LO(sc->rx_bd_chain);
10860 	BCE_PRINTF("0x%08X:%08X - (sc->rx_bd_chain) rx_bd chain "
10861 	    "virtual address\n", val_hi, val_lo);
10862 
10863 	if (bce_hdr_split == TRUE) {
10864 		val_hi = BCE_ADDR_HI(sc->pg_bd_chain);
10865 		val_lo = BCE_ADDR_LO(sc->pg_bd_chain);
10866 		BCE_PRINTF("0x%08X:%08X - (sc->pg_bd_chain) page chain "
10867 		    "virtual address\n", val_hi, val_lo);
10868 	}
10869 
10870 	val_hi = BCE_ADDR_HI(sc->tx_mbuf_ptr);
10871 	val_lo = BCE_ADDR_LO(sc->tx_mbuf_ptr);
10872 	BCE_PRINTF("0x%08X:%08X - (sc->tx_mbuf_ptr) tx mbuf chain "
10873 	    "virtual address\n",	val_hi, val_lo);
10874 
10875 	val_hi = BCE_ADDR_HI(sc->rx_mbuf_ptr);
10876 	val_lo = BCE_ADDR_LO(sc->rx_mbuf_ptr);
10877 	BCE_PRINTF("0x%08X:%08X - (sc->rx_mbuf_ptr) rx mbuf chain "
10878 	    "virtual address\n", val_hi, val_lo);
10879 
10880 	if (bce_hdr_split == TRUE) {
10881 		val_hi = BCE_ADDR_HI(sc->pg_mbuf_ptr);
10882 		val_lo = BCE_ADDR_LO(sc->pg_mbuf_ptr);
10883 		BCE_PRINTF("0x%08X:%08X - (sc->pg_mbuf_ptr) page mbuf chain "
10884 		    "virtual address\n", val_hi, val_lo);
10885 	}
10886 
10887 	BCE_PRINTF(" 0x%016llX - (sc->interrupts_generated) "
10888 	    "h/w intrs\n",
10889 	    (long long unsigned int) sc->interrupts_generated);
10890 
10891 	BCE_PRINTF(" 0x%016llX - (sc->interrupts_rx) "
10892 	    "rx interrupts handled\n",
10893 	    (long long unsigned int) sc->interrupts_rx);
10894 
10895 	BCE_PRINTF(" 0x%016llX - (sc->interrupts_tx) "
10896 	    "tx interrupts handled\n",
10897 	    (long long unsigned int) sc->interrupts_tx);
10898 
10899 	BCE_PRINTF(" 0x%016llX - (sc->phy_interrupts) "
10900 	    "phy interrupts handled\n",
10901 	    (long long unsigned int) sc->phy_interrupts);
10902 
10903 	BCE_PRINTF("         0x%08X - (sc->last_status_idx) "
10904 	    "status block index\n", sc->last_status_idx);
10905 
10906 	BCE_PRINTF("     0x%04X(0x%04X) - (sc->tx_prod) tx producer "
10907 	    "index\n", sc->tx_prod, (u16) TX_CHAIN_IDX(sc->tx_prod));
10908 
10909 	BCE_PRINTF("     0x%04X(0x%04X) - (sc->tx_cons) tx consumer "
10910 	    "index\n", sc->tx_cons, (u16) TX_CHAIN_IDX(sc->tx_cons));
10911 
10912 	BCE_PRINTF("         0x%08X - (sc->tx_prod_bseq) tx producer "
10913 	    "byte seq index\n",	sc->tx_prod_bseq);
10914 
10915 	BCE_PRINTF("         0x%08X - (sc->debug_tx_mbuf_alloc) tx "
10916 	    "mbufs allocated\n", sc->debug_tx_mbuf_alloc);
10917 
10918 	BCE_PRINTF("         0x%08X - (sc->used_tx_bd) used "
10919 	    "tx_bd's\n", sc->used_tx_bd);
10920 
10921 	BCE_PRINTF("      0x%04X/0x%04X - (sc->tx_hi_watermark)/"
10922 	    "(sc->max_tx_bd)\n", sc->tx_hi_watermark, sc->max_tx_bd);
10923 
10924 	BCE_PRINTF("     0x%04X(0x%04X) - (sc->rx_prod) rx producer "
10925 	    "index\n", sc->rx_prod, (u16) RX_CHAIN_IDX(sc->rx_prod));
10926 
10927 	BCE_PRINTF("     0x%04X(0x%04X) - (sc->rx_cons) rx consumer "
10928 	    "index\n", sc->rx_cons, (u16) RX_CHAIN_IDX(sc->rx_cons));
10929 
10930 	BCE_PRINTF("         0x%08X - (sc->rx_prod_bseq) rx producer "
10931 	    "byte seq index\n",	sc->rx_prod_bseq);
10932 
10933 	BCE_PRINTF("      0x%04X/0x%04X - (sc->rx_low_watermark)/"
10934 		   "(sc->max_rx_bd)\n", sc->rx_low_watermark, sc->max_rx_bd);
10935 
10936 	BCE_PRINTF("         0x%08X - (sc->debug_rx_mbuf_alloc) rx "
10937 	    "mbufs allocated\n", sc->debug_rx_mbuf_alloc);
10938 
10939 	BCE_PRINTF("         0x%08X - (sc->free_rx_bd) free "
10940 	    "rx_bd's\n", sc->free_rx_bd);
10941 
10942 	if (bce_hdr_split == TRUE) {
10943 		BCE_PRINTF("     0x%04X(0x%04X) - (sc->pg_prod) page producer "
10944 		    "index\n", sc->pg_prod, (u16) PG_CHAIN_IDX(sc->pg_prod));
10945 
10946 		BCE_PRINTF("     0x%04X(0x%04X) - (sc->pg_cons) page consumer "
10947 		    "index\n", sc->pg_cons, (u16) PG_CHAIN_IDX(sc->pg_cons));
10948 
10949 		BCE_PRINTF("         0x%08X - (sc->debug_pg_mbuf_alloc) page "
10950 		    "mbufs allocated\n", sc->debug_pg_mbuf_alloc);
10951 	}
10952 
10953 	BCE_PRINTF("         0x%08X - (sc->free_pg_bd) free page "
10954 	    "rx_bd's\n", sc->free_pg_bd);
10955 
10956 	BCE_PRINTF("      0x%04X/0x%04X - (sc->pg_low_watermark)/"
10957 	    "(sc->max_pg_bd)\n", sc->pg_low_watermark, sc->max_pg_bd);
10958 
10959 	BCE_PRINTF("         0x%08X - (sc->mbuf_alloc_failed_count) "
10960 	    "mbuf alloc failures\n", sc->mbuf_alloc_failed_count);
10961 
10962 	BCE_PRINTF("         0x%08X - (sc->bce_flags) "
10963 	    "bce mac flags\n", sc->bce_flags);
10964 
10965 	BCE_PRINTF("         0x%08X - (sc->bce_phy_flags) "
10966 	    "bce phy flags\n", sc->bce_phy_flags);
10967 
10968 	BCE_PRINTF(
10969 	    "----------------------------"
10970 	    "----------------"
10971 	    "----------------------------\n");
10972 }
10973 
10974 
10975 /****************************************************************************/
10976 /* Prints out the hardware state through a summary of important register,   */
10977 /* followed by a complete register dump.                                    */
10978 /*                                                                          */
10979 /* Returns:                                                                 */
10980 /*   Nothing.                                                               */
10981 /****************************************************************************/
10982 static __attribute__ ((noinline)) void
10983 bce_dump_hw_state(struct bce_softc *sc)
10984 {
10985 	u32 val;
10986 
10987 	BCE_PRINTF(
10988 	    "----------------------------"
10989 	    " Hardware State "
10990 	    "----------------------------\n");
10991 
10992 	BCE_PRINTF("%s - bootcode version\n", sc->bce_bc_ver);
10993 
10994 	val = REG_RD(sc, BCE_MISC_ENABLE_STATUS_BITS);
10995 	BCE_PRINTF("0x%08X - (0x%06X) misc_enable_status_bits\n",
10996 	    val, BCE_MISC_ENABLE_STATUS_BITS);
10997 
10998 	val = REG_RD(sc, BCE_DMA_STATUS);
10999 	BCE_PRINTF("0x%08X - (0x%06X) dma_status\n",
11000 	    val, BCE_DMA_STATUS);
11001 
11002 	val = REG_RD(sc, BCE_CTX_STATUS);
11003 	BCE_PRINTF("0x%08X - (0x%06X) ctx_status\n",
11004 	    val, BCE_CTX_STATUS);
11005 
11006 	val = REG_RD(sc, BCE_EMAC_STATUS);
11007 	BCE_PRINTF("0x%08X - (0x%06X) emac_status\n",
11008 	    val, BCE_EMAC_STATUS);
11009 
11010 	val = REG_RD(sc, BCE_RPM_STATUS);
11011 	BCE_PRINTF("0x%08X - (0x%06X) rpm_status\n",
11012 	    val, BCE_RPM_STATUS);
11013 
11014 	/* ToDo: Create a #define for this constant. */
11015 	val = REG_RD(sc, 0x2004);
11016 	BCE_PRINTF("0x%08X - (0x%06X) rlup_status\n",
11017 	    val, 0x2004);
11018 
11019 	val = REG_RD(sc, BCE_RV2P_STATUS);
11020 	BCE_PRINTF("0x%08X - (0x%06X) rv2p_status\n",
11021 	    val, BCE_RV2P_STATUS);
11022 
11023 	/* ToDo: Create a #define for this constant. */
11024 	val = REG_RD(sc, 0x2c04);
11025 	BCE_PRINTF("0x%08X - (0x%06X) rdma_status\n",
11026 	    val, 0x2c04);
11027 
11028 	val = REG_RD(sc, BCE_TBDR_STATUS);
11029 	BCE_PRINTF("0x%08X - (0x%06X) tbdr_status\n",
11030 	    val, BCE_TBDR_STATUS);
11031 
11032 	val = REG_RD(sc, BCE_TDMA_STATUS);
11033 	BCE_PRINTF("0x%08X - (0x%06X) tdma_status\n",
11034 	    val, BCE_TDMA_STATUS);
11035 
11036 	val = REG_RD(sc, BCE_HC_STATUS);
11037 	BCE_PRINTF("0x%08X - (0x%06X) hc_status\n",
11038 	    val, BCE_HC_STATUS);
11039 
11040 	val = REG_RD_IND(sc, BCE_TXP_CPU_STATE);
11041 	BCE_PRINTF("0x%08X - (0x%06X) txp_cpu_state\n",
11042 	    val, BCE_TXP_CPU_STATE);
11043 
11044 	val = REG_RD_IND(sc, BCE_TPAT_CPU_STATE);
11045 	BCE_PRINTF("0x%08X - (0x%06X) tpat_cpu_state\n",
11046 	    val, BCE_TPAT_CPU_STATE);
11047 
11048 	val = REG_RD_IND(sc, BCE_RXP_CPU_STATE);
11049 	BCE_PRINTF("0x%08X - (0x%06X) rxp_cpu_state\n",
11050 	    val, BCE_RXP_CPU_STATE);
11051 
11052 	val = REG_RD_IND(sc, BCE_COM_CPU_STATE);
11053 	BCE_PRINTF("0x%08X - (0x%06X) com_cpu_state\n",
11054 	    val, BCE_COM_CPU_STATE);
11055 
11056 	val = REG_RD_IND(sc, BCE_MCP_CPU_STATE);
11057 	BCE_PRINTF("0x%08X - (0x%06X) mcp_cpu_state\n",
11058 	    val, BCE_MCP_CPU_STATE);
11059 
11060 	val = REG_RD_IND(sc, BCE_CP_CPU_STATE);
11061 	BCE_PRINTF("0x%08X - (0x%06X) cp_cpu_state\n",
11062 	    val, BCE_CP_CPU_STATE);
11063 
11064 	BCE_PRINTF(
11065 	    "----------------------------"
11066 	    "----------------"
11067 	    "----------------------------\n");
11068 
11069 	BCE_PRINTF(
11070 	    "----------------------------"
11071 	    " Register  Dump "
11072 	    "----------------------------\n");
11073 
11074 	for (int i = 0x400; i < 0x8000; i += 0x10) {
11075 		BCE_PRINTF("0x%04X: 0x%08X 0x%08X 0x%08X 0x%08X\n",
11076 		    i, REG_RD(sc, i), REG_RD(sc, i + 0x4),
11077 		    REG_RD(sc, i + 0x8), REG_RD(sc, i + 0xC));
11078 	}
11079 
11080 	BCE_PRINTF(
11081 	    "----------------------------"
11082 	    "----------------"
11083 	    "----------------------------\n");
11084 }
11085 
11086 
11087 /****************************************************************************/
11088 /* Prints out the contentst of shared memory which is used for host driver  */
11089 /* to bootcode firmware communication.                                      */
11090 /*                                                                          */
11091 /* Returns:                                                                 */
11092 /*   Nothing.                                                               */
11093 /****************************************************************************/
11094 static __attribute__ ((noinline)) void
11095 bce_dump_shmem_state(struct bce_softc *sc)
11096 {
11097 	BCE_PRINTF(
11098 	    "----------------------------"
11099 	    " Hardware State "
11100 	    "----------------------------\n");
11101 
11102 	BCE_PRINTF("0x%08X - Shared memory base address\n",
11103 	    sc->bce_shmem_base);
11104 	BCE_PRINTF("%s - bootcode version\n",
11105 	    sc->bce_bc_ver);
11106 
11107 	BCE_PRINTF(
11108 	    "----------------------------"
11109 	    "   Shared Mem   "
11110 	    "----------------------------\n");
11111 
11112 	for (int i = 0x0; i < 0x200; i += 0x10) {
11113 		BCE_PRINTF("0x%04X: 0x%08X 0x%08X 0x%08X 0x%08X\n",
11114 		    i, bce_shmem_rd(sc, i), bce_shmem_rd(sc, i + 0x4),
11115 		    bce_shmem_rd(sc, i + 0x8), bce_shmem_rd(sc, i + 0xC));
11116 	}
11117 
11118 	BCE_PRINTF(
11119 	    "----------------------------"
11120 	    "----------------"
11121 	    "----------------------------\n");
11122 }
11123 
11124 
11125 /****************************************************************************/
11126 /* Prints out the mailbox queue registers.                                  */
11127 /*                                                                          */
11128 /* Returns:                                                                 */
11129 /*   Nothing.                                                               */
11130 /****************************************************************************/
11131 static __attribute__ ((noinline)) void
11132 bce_dump_mq_regs(struct bce_softc *sc)
11133 {
11134 	BCE_PRINTF(
11135 	    "----------------------------"
11136 	    "    MQ Regs     "
11137 	    "----------------------------\n");
11138 
11139 	BCE_PRINTF(
11140 	    "----------------------------"
11141 	    "----------------"
11142 	    "----------------------------\n");
11143 
11144 	for (int i = 0x3c00; i < 0x4000; i += 0x10) {
11145 		BCE_PRINTF("0x%04X: 0x%08X 0x%08X 0x%08X 0x%08X\n",
11146 		    i, REG_RD(sc, i), REG_RD(sc, i + 0x4),
11147 		    REG_RD(sc, i + 0x8), REG_RD(sc, i + 0xC));
11148 	}
11149 
11150 	BCE_PRINTF(
11151 	    "----------------------------"
11152 	    "----------------"
11153 	    "----------------------------\n");
11154 }
11155 
11156 
11157 /****************************************************************************/
11158 /* Prints out the bootcode state.                                           */
11159 /*                                                                          */
11160 /* Returns:                                                                 */
11161 /*   Nothing.                                                               */
11162 /****************************************************************************/
11163 static __attribute__ ((noinline)) void
11164 bce_dump_bc_state(struct bce_softc *sc)
11165 {
11166 	u32 val;
11167 
11168 	BCE_PRINTF(
11169 	    "----------------------------"
11170 	    " Bootcode State "
11171 	    "----------------------------\n");
11172 
11173 	BCE_PRINTF("%s - bootcode version\n", sc->bce_bc_ver);
11174 
11175 	val = bce_shmem_rd(sc, BCE_BC_RESET_TYPE);
11176 	BCE_PRINTF("0x%08X - (0x%06X) reset_type\n",
11177 	    val, BCE_BC_RESET_TYPE);
11178 
11179 	val = bce_shmem_rd(sc, BCE_BC_STATE);
11180 	BCE_PRINTF("0x%08X - (0x%06X) state\n",
11181 	    val, BCE_BC_STATE);
11182 
11183 	val = bce_shmem_rd(sc, BCE_BC_STATE_CONDITION);
11184 	BCE_PRINTF("0x%08X - (0x%06X) condition\n",
11185 	    val, BCE_BC_STATE_CONDITION);
11186 
11187 	val = bce_shmem_rd(sc, BCE_BC_STATE_DEBUG_CMD);
11188 	BCE_PRINTF("0x%08X - (0x%06X) debug_cmd\n",
11189 	    val, BCE_BC_STATE_DEBUG_CMD);
11190 
11191 	BCE_PRINTF(
11192 	    "----------------------------"
11193 	    "----------------"
11194 	    "----------------------------\n");
11195 }
11196 
11197 
11198 /****************************************************************************/
11199 /* Prints out the TXP processor state.                                      */
11200 /*                                                                          */
11201 /* Returns:                                                                 */
11202 /*   Nothing.                                                               */
11203 /****************************************************************************/
11204 static __attribute__ ((noinline)) void
11205 bce_dump_txp_state(struct bce_softc *sc, int regs)
11206 {
11207 	u32 val;
11208 	u32 fw_version[3];
11209 
11210 	BCE_PRINTF(
11211 	    "----------------------------"
11212 	    "   TXP  State   "
11213 	    "----------------------------\n");
11214 
11215 	for (int i = 0; i < 3; i++)
11216 		fw_version[i] = htonl(REG_RD_IND(sc,
11217 		    (BCE_TXP_SCRATCH + 0x10 + i * 4)));
11218 	BCE_PRINTF("Firmware version - %s\n", (char *) fw_version);
11219 
11220 	val = REG_RD_IND(sc, BCE_TXP_CPU_MODE);
11221 	BCE_PRINTF("0x%08X - (0x%06X) txp_cpu_mode\n",
11222 	    val, BCE_TXP_CPU_MODE);
11223 
11224 	val = REG_RD_IND(sc, BCE_TXP_CPU_STATE);
11225 	BCE_PRINTF("0x%08X - (0x%06X) txp_cpu_state\n",
11226 	    val, BCE_TXP_CPU_STATE);
11227 
11228 	val = REG_RD_IND(sc, BCE_TXP_CPU_EVENT_MASK);
11229 	BCE_PRINTF("0x%08X - (0x%06X) txp_cpu_event_mask\n",
11230 	    val, BCE_TXP_CPU_EVENT_MASK);
11231 
11232 	if (regs) {
11233 		BCE_PRINTF(
11234 		    "----------------------------"
11235 		    " Register  Dump "
11236 		    "----------------------------\n");
11237 
11238 		for (int i = BCE_TXP_CPU_MODE; i < 0x68000; i += 0x10) {
11239 			/* Skip the big blank spaces */
11240 			if (i < 0x454000 && i > 0x5ffff)
11241 				BCE_PRINTF("0x%04X: 0x%08X 0x%08X "
11242 				    "0x%08X 0x%08X\n", i,
11243 				    REG_RD_IND(sc, i),
11244 				    REG_RD_IND(sc, i + 0x4),
11245 				    REG_RD_IND(sc, i + 0x8),
11246 				    REG_RD_IND(sc, i + 0xC));
11247 		}
11248 	}
11249 
11250 	BCE_PRINTF(
11251 	    "----------------------------"
11252 	    "----------------"
11253 	    "----------------------------\n");
11254 }
11255 
11256 
11257 /****************************************************************************/
11258 /* Prints out the RXP processor state.                                      */
11259 /*                                                                          */
11260 /* Returns:                                                                 */
11261 /*   Nothing.                                                               */
11262 /****************************************************************************/
11263 static __attribute__ ((noinline)) void
11264 bce_dump_rxp_state(struct bce_softc *sc, int regs)
11265 {
11266 	u32 val;
11267 	u32 fw_version[3];
11268 
11269 	BCE_PRINTF(
11270 	    "----------------------------"
11271 	    "   RXP  State   "
11272 	    "----------------------------\n");
11273 
11274 	for (int i = 0; i < 3; i++)
11275 		fw_version[i] = htonl(REG_RD_IND(sc,
11276 		    (BCE_RXP_SCRATCH + 0x10 + i * 4)));
11277 
11278 	BCE_PRINTF("Firmware version - %s\n", (char *) fw_version);
11279 
11280 	val = REG_RD_IND(sc, BCE_RXP_CPU_MODE);
11281 	BCE_PRINTF("0x%08X - (0x%06X) rxp_cpu_mode\n",
11282 	    val, BCE_RXP_CPU_MODE);
11283 
11284 	val = REG_RD_IND(sc, BCE_RXP_CPU_STATE);
11285 	BCE_PRINTF("0x%08X - (0x%06X) rxp_cpu_state\n",
11286 	    val, BCE_RXP_CPU_STATE);
11287 
11288 	val = REG_RD_IND(sc, BCE_RXP_CPU_EVENT_MASK);
11289 	BCE_PRINTF("0x%08X - (0x%06X) rxp_cpu_event_mask\n",
11290 	    val, BCE_RXP_CPU_EVENT_MASK);
11291 
11292 	if (regs) {
11293 		BCE_PRINTF(
11294 		    "----------------------------"
11295 		    " Register  Dump "
11296 		    "----------------------------\n");
11297 
11298 		for (int i = BCE_RXP_CPU_MODE; i < 0xe8fff; i += 0x10) {
11299 			/* Skip the big blank sapces */
11300 			if (i < 0xc5400 && i > 0xdffff)
11301 				BCE_PRINTF("0x%04X: 0x%08X 0x%08X "
11302 				    "0x%08X 0x%08X\n", i,
11303 				    REG_RD_IND(sc, i),
11304 				    REG_RD_IND(sc, i + 0x4),
11305 				    REG_RD_IND(sc, i + 0x8),
11306 				    REG_RD_IND(sc, i + 0xC));
11307 		}
11308 	}
11309 
11310 	BCE_PRINTF(
11311 	    "----------------------------"
11312 	    "----------------"
11313 	    "----------------------------\n");
11314 }
11315 
11316 
11317 /****************************************************************************/
11318 /* Prints out the TPAT processor state.                                     */
11319 /*                                                                          */
11320 /* Returns:                                                                 */
11321 /*   Nothing.                                                               */
11322 /****************************************************************************/
11323 static __attribute__ ((noinline)) void
11324 bce_dump_tpat_state(struct bce_softc *sc, int regs)
11325 {
11326 	u32 val;
11327 	u32 fw_version[3];
11328 
11329 	BCE_PRINTF(
11330 	    "----------------------------"
11331 	    "   TPAT State   "
11332 	    "----------------------------\n");
11333 
11334 	for (int i = 0; i < 3; i++)
11335 		fw_version[i] = htonl(REG_RD_IND(sc,
11336 		    (BCE_TPAT_SCRATCH + 0x410 + i * 4)));
11337 
11338 	BCE_PRINTF("Firmware version - %s\n", (char *) fw_version);
11339 
11340 	val = REG_RD_IND(sc, BCE_TPAT_CPU_MODE);
11341 	BCE_PRINTF("0x%08X - (0x%06X) tpat_cpu_mode\n",
11342 	    val, BCE_TPAT_CPU_MODE);
11343 
11344 	val = REG_RD_IND(sc, BCE_TPAT_CPU_STATE);
11345 	BCE_PRINTF("0x%08X - (0x%06X) tpat_cpu_state\n",
11346 	    val, BCE_TPAT_CPU_STATE);
11347 
11348 	val = REG_RD_IND(sc, BCE_TPAT_CPU_EVENT_MASK);
11349 	BCE_PRINTF("0x%08X - (0x%06X) tpat_cpu_event_mask\n",
11350 	    val, BCE_TPAT_CPU_EVENT_MASK);
11351 
11352 	if (regs) {
11353 		BCE_PRINTF(
11354 		    "----------------------------"
11355 		    " Register  Dump "
11356 		    "----------------------------\n");
11357 
11358 		for (int i = BCE_TPAT_CPU_MODE; i < 0xa3fff; i += 0x10) {
11359 			/* Skip the big blank spaces */
11360 			if (i < 0x854000 && i > 0x9ffff)
11361 				BCE_PRINTF("0x%04X: 0x%08X 0x%08X "
11362 				    "0x%08X 0x%08X\n", i,
11363 				    REG_RD_IND(sc, i),
11364 				    REG_RD_IND(sc, i + 0x4),
11365 				    REG_RD_IND(sc, i + 0x8),
11366 				    REG_RD_IND(sc, i + 0xC));
11367 		}
11368 	}
11369 
11370 	BCE_PRINTF(
11371 		"----------------------------"
11372 		"----------------"
11373 		"----------------------------\n");
11374 }
11375 
11376 
11377 /****************************************************************************/
11378 /* Prints out the Command Procesor (CP) state.                              */
11379 /*                                                                          */
11380 /* Returns:                                                                 */
11381 /*   Nothing.                                                               */
11382 /****************************************************************************/
11383 static __attribute__ ((noinline)) void
11384 bce_dump_cp_state(struct bce_softc *sc, int regs)
11385 {
11386 	u32 val;
11387 	u32 fw_version[3];
11388 
11389 	BCE_PRINTF(
11390 	    "----------------------------"
11391 	    "    CP State    "
11392 	    "----------------------------\n");
11393 
11394 	for (int i = 0; i < 3; i++)
11395 		fw_version[i] = htonl(REG_RD_IND(sc,
11396 		    (BCE_CP_SCRATCH + 0x10 + i * 4)));
11397 
11398 	BCE_PRINTF("Firmware version - %s\n", (char *) fw_version);
11399 
11400 	val = REG_RD_IND(sc, BCE_CP_CPU_MODE);
11401 	BCE_PRINTF("0x%08X - (0x%06X) cp_cpu_mode\n",
11402 	    val, BCE_CP_CPU_MODE);
11403 
11404 	val = REG_RD_IND(sc, BCE_CP_CPU_STATE);
11405 	BCE_PRINTF("0x%08X - (0x%06X) cp_cpu_state\n",
11406 	    val, BCE_CP_CPU_STATE);
11407 
11408 	val = REG_RD_IND(sc, BCE_CP_CPU_EVENT_MASK);
11409 	BCE_PRINTF("0x%08X - (0x%06X) cp_cpu_event_mask\n", val,
11410 	    BCE_CP_CPU_EVENT_MASK);
11411 
11412 	if (regs) {
11413 		BCE_PRINTF(
11414 		    "----------------------------"
11415 		    " Register  Dump "
11416 		    "----------------------------\n");
11417 
11418 		for (int i = BCE_CP_CPU_MODE; i < 0x1aa000; i += 0x10) {
11419 			/* Skip the big blank spaces */
11420 			if (i < 0x185400 && i > 0x19ffff)
11421 				BCE_PRINTF("0x%04X: 0x%08X 0x%08X "
11422 				    "0x%08X 0x%08X\n", i,
11423 				    REG_RD_IND(sc, i),
11424 				    REG_RD_IND(sc, i + 0x4),
11425 				    REG_RD_IND(sc, i + 0x8),
11426 				    REG_RD_IND(sc, i + 0xC));
11427 		}
11428 	}
11429 
11430 	BCE_PRINTF(
11431 	    "----------------------------"
11432 	    "----------------"
11433 	    "----------------------------\n");
11434 }
11435 
11436 
11437 /****************************************************************************/
11438 /* Prints out the Completion Procesor (COM) state.                          */
11439 /*                                                                          */
11440 /* Returns:                                                                 */
11441 /*   Nothing.                                                               */
11442 /****************************************************************************/
11443 static __attribute__ ((noinline)) void
11444 bce_dump_com_state(struct bce_softc *sc, int regs)
11445 {
11446 	u32 val;
11447 	u32 fw_version[4];
11448 
11449 	BCE_PRINTF(
11450 	    "----------------------------"
11451 	    "   COM State    "
11452 	    "----------------------------\n");
11453 
11454 	for (int i = 0; i < 3; i++)
11455 		fw_version[i] = htonl(REG_RD_IND(sc,
11456 		    (BCE_COM_SCRATCH + 0x10 + i * 4)));
11457 
11458 	BCE_PRINTF("Firmware version - %s\n", (char *) fw_version);
11459 
11460 	val = REG_RD_IND(sc, BCE_COM_CPU_MODE);
11461 	BCE_PRINTF("0x%08X - (0x%06X) com_cpu_mode\n",
11462 	    val, BCE_COM_CPU_MODE);
11463 
11464 	val = REG_RD_IND(sc, BCE_COM_CPU_STATE);
11465 	BCE_PRINTF("0x%08X - (0x%06X) com_cpu_state\n",
11466 	    val, BCE_COM_CPU_STATE);
11467 
11468 	val = REG_RD_IND(sc, BCE_COM_CPU_EVENT_MASK);
11469 	BCE_PRINTF("0x%08X - (0x%06X) com_cpu_event_mask\n", val,
11470 	    BCE_COM_CPU_EVENT_MASK);
11471 
11472 	if (regs) {
11473 		BCE_PRINTF(
11474 		    "----------------------------"
11475 		    " Register  Dump "
11476 		    "----------------------------\n");
11477 
11478 		for (int i = BCE_COM_CPU_MODE; i < 0x1053e8; i += 0x10) {
11479 			BCE_PRINTF("0x%04X: 0x%08X 0x%08X "
11480 			    "0x%08X 0x%08X\n", i,
11481 			    REG_RD_IND(sc, i),
11482 			    REG_RD_IND(sc, i + 0x4),
11483 			    REG_RD_IND(sc, i + 0x8),
11484 			    REG_RD_IND(sc, i + 0xC));
11485 		}
11486 	}
11487 
11488 	BCE_PRINTF(
11489 		"----------------------------"
11490 		"----------------"
11491 		"----------------------------\n");
11492 }
11493 
11494 
11495 /****************************************************************************/
11496 /* Prints out the Receive Virtual 2 Physical (RV2P) state.                  */
11497 /*                                                                          */
11498 /* Returns:                                                                 */
11499 /*   Nothing.                                                               */
11500 /****************************************************************************/
11501 static __attribute__ ((noinline)) void
11502 bce_dump_rv2p_state(struct bce_softc *sc)
11503 {
11504 	u32 val, pc1, pc2, fw_ver_high, fw_ver_low;
11505 
11506 	BCE_PRINTF(
11507 	    "----------------------------"
11508 	    "   RV2P State   "
11509 	    "----------------------------\n");
11510 
11511 	/* Stall the RV2P processors. */
11512 	val = REG_RD_IND(sc, BCE_RV2P_CONFIG);
11513 	val |= BCE_RV2P_CONFIG_STALL_PROC1 | BCE_RV2P_CONFIG_STALL_PROC2;
11514 	REG_WR_IND(sc, BCE_RV2P_CONFIG, val);
11515 
11516 	/* Read the firmware version. */
11517 	val = 0x00000001;
11518 	REG_WR_IND(sc, BCE_RV2P_PROC1_ADDR_CMD, val);
11519 	fw_ver_low = REG_RD_IND(sc, BCE_RV2P_INSTR_LOW);
11520 	fw_ver_high = REG_RD_IND(sc, BCE_RV2P_INSTR_HIGH) &
11521 	    BCE_RV2P_INSTR_HIGH_HIGH;
11522 	BCE_PRINTF("RV2P1 Firmware version - 0x%08X:0x%08X\n",
11523 	    fw_ver_high, fw_ver_low);
11524 
11525 	val = 0x00000001;
11526 	REG_WR_IND(sc, BCE_RV2P_PROC2_ADDR_CMD, val);
11527 	fw_ver_low = REG_RD_IND(sc, BCE_RV2P_INSTR_LOW);
11528 	fw_ver_high = REG_RD_IND(sc, BCE_RV2P_INSTR_HIGH) &
11529 	    BCE_RV2P_INSTR_HIGH_HIGH;
11530 	BCE_PRINTF("RV2P2 Firmware version - 0x%08X:0x%08X\n",
11531 	    fw_ver_high, fw_ver_low);
11532 
11533 	/* Resume the RV2P processors. */
11534 	val = REG_RD_IND(sc, BCE_RV2P_CONFIG);
11535 	val &= ~(BCE_RV2P_CONFIG_STALL_PROC1 | BCE_RV2P_CONFIG_STALL_PROC2);
11536 	REG_WR_IND(sc, BCE_RV2P_CONFIG, val);
11537 
11538 	/* Fetch the program counter value. */
11539 	val = 0x68007800;
11540 	REG_WR_IND(sc, BCE_RV2P_DEBUG_VECT_PEEK, val);
11541 	val = REG_RD_IND(sc, BCE_RV2P_DEBUG_VECT_PEEK);
11542 	pc1 = (val & BCE_RV2P_DEBUG_VECT_PEEK_1_VALUE);
11543 	pc2 = (val & BCE_RV2P_DEBUG_VECT_PEEK_2_VALUE) >> 16;
11544 	BCE_PRINTF("0x%08X - RV2P1 program counter (1st read)\n", pc1);
11545 	BCE_PRINTF("0x%08X - RV2P2 program counter (1st read)\n", pc2);
11546 
11547 	/* Fetch the program counter value again to see if it is advancing. */
11548 	val = 0x68007800;
11549 	REG_WR_IND(sc, BCE_RV2P_DEBUG_VECT_PEEK, val);
11550 	val = REG_RD_IND(sc, BCE_RV2P_DEBUG_VECT_PEEK);
11551 	pc1 = (val & BCE_RV2P_DEBUG_VECT_PEEK_1_VALUE);
11552 	pc2 = (val & BCE_RV2P_DEBUG_VECT_PEEK_2_VALUE) >> 16;
11553 	BCE_PRINTF("0x%08X - RV2P1 program counter (2nd read)\n", pc1);
11554 	BCE_PRINTF("0x%08X - RV2P2 program counter (2nd read)\n", pc2);
11555 
11556 	BCE_PRINTF(
11557 	    "----------------------------"
11558 	    "----------------"
11559 	    "----------------------------\n");
11560 }
11561 
11562 
11563 /****************************************************************************/
11564 /* Prints out the driver state and then enters the debugger.                */
11565 /*                                                                          */
11566 /* Returns:                                                                 */
11567 /*   Nothing.                                                               */
11568 /****************************************************************************/
11569 static __attribute__ ((noinline)) void
11570 bce_breakpoint(struct bce_softc *sc)
11571 {
11572 
11573 	/*
11574 	 * Unreachable code to silence compiler warnings
11575 	 * about unused functions.
11576 	 */
11577 	if (0) {
11578 		bce_freeze_controller(sc);
11579 		bce_unfreeze_controller(sc);
11580 		bce_dump_enet(sc, NULL);
11581 		bce_dump_txbd(sc, 0, NULL);
11582 		bce_dump_rxbd(sc, 0, NULL);
11583 		bce_dump_tx_mbuf_chain(sc, 0, USABLE_TX_BD_ALLOC);
11584 		bce_dump_rx_mbuf_chain(sc, 0, USABLE_RX_BD_ALLOC);
11585 		bce_dump_pg_mbuf_chain(sc, 0, USABLE_PG_BD_ALLOC);
11586 		bce_dump_l2fhdr(sc, 0, NULL);
11587 		bce_dump_ctx(sc, RX_CID);
11588 		bce_dump_ftqs(sc);
11589 		bce_dump_tx_chain(sc, 0, USABLE_TX_BD_ALLOC);
11590 		bce_dump_rx_bd_chain(sc, 0, USABLE_RX_BD_ALLOC);
11591 		bce_dump_pg_chain(sc, 0, USABLE_PG_BD_ALLOC);
11592 		bce_dump_status_block(sc);
11593 		bce_dump_stats_block(sc);
11594 		bce_dump_driver_state(sc);
11595 		bce_dump_hw_state(sc);
11596 		bce_dump_bc_state(sc);
11597 		bce_dump_txp_state(sc, 0);
11598 		bce_dump_rxp_state(sc, 0);
11599 		bce_dump_tpat_state(sc, 0);
11600 		bce_dump_cp_state(sc, 0);
11601 		bce_dump_com_state(sc, 0);
11602 		bce_dump_rv2p_state(sc);
11603 		bce_dump_pgbd(sc, 0, NULL);
11604 	}
11605 
11606 	bce_dump_status_block(sc);
11607 	bce_dump_driver_state(sc);
11608 
11609 	/* Call the debugger. */
11610 	breakpoint();
11611 }
11612 #endif
11613