xref: /freebsd/sys/dev/bce/if_bce.c (revision 884a2a699669ec61e2366e3e358342dbc94be24a)
1 /*-
2  * Copyright (c) 2006-2010 Broadcom Corporation
3  *	David Christensen <davidch@broadcom.com>.  All rights reserved.
4  *
5  * Redistribution and use in source and binary forms, with or without
6  * modification, are permitted provided that the following conditions
7  * are met:
8  *
9  * 1. Redistributions of source code must retain the above copyright
10  *    notice, this list of conditions and the following disclaimer.
11  * 2. Redistributions in binary form must reproduce the above copyright
12  *    notice, this list of conditions and the following disclaimer in the
13  *    documentation and/or other materials provided with the distribution.
14  * 3. Neither the name of Broadcom Corporation nor the name of its contributors
15  *    may be used to endorse or promote products derived from this software
16  *    without specific prior written consent.
17  *
18  * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS'
19  * AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
20  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
21  * ARE DISCLAIMED.  IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS
22  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
23  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
24  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
25  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
26  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
27  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF
28  * THE POSSIBILITY OF SUCH DAMAGE.
29  */
30 
31 #include <sys/cdefs.h>
32 __FBSDID("$FreeBSD$");
33 
34 /*
35  * The following controllers are supported by this driver:
36  *   BCM5706C A2, A3
37  *   BCM5706S A2, A3
38  *   BCM5708C B1, B2
39  *   BCM5708S B1, B2
40  *   BCM5709C A1, C0
41  *   BCM5709S A1, C0
42  *   BCM5716C C0
43  *   BCM5716S C0
44  *
45  * The following controllers are not supported by this driver:
46  *   BCM5706C A0, A1 (pre-production)
47  *   BCM5706S A0, A1 (pre-production)
48  *   BCM5708C A0, B0 (pre-production)
49  *   BCM5708S A0, B0 (pre-production)
50  *   BCM5709C A0  B0, B1, B2 (pre-production)
51  *   BCM5709S A0, B0, B1, B2 (pre-production)
52  */
53 
54 #include "opt_bce.h"
55 
56 #include <dev/bce/if_bcereg.h>
57 #include <dev/bce/if_bcefw.h>
58 
59 /****************************************************************************/
60 /* BCE Debug Options                                                        */
61 /****************************************************************************/
62 #ifdef BCE_DEBUG
63 	u32 bce_debug = BCE_WARN;
64 
65 	/*          0 = Never              */
66 	/*          1 = 1 in 2,147,483,648 */
67 	/*        256 = 1 in     8,388,608 */
68 	/*       2048 = 1 in     1,048,576 */
69 	/*      65536 = 1 in        32,768 */
70 	/*    1048576 = 1 in         2,048 */
71 	/*  268435456 =	1 in             8 */
72 	/*  536870912 = 1 in             4 */
73 	/* 1073741824 = 1 in             2 */
74 
75 	/* Controls how often the l2_fhdr frame error check will fail. */
76 	int l2fhdr_error_sim_control = 0;
77 
78 	/* Controls how often the unexpected attention check will fail. */
79 	int unexpected_attention_sim_control = 0;
80 
81 	/* Controls how often to simulate an mbuf allocation failure. */
82 	int mbuf_alloc_failed_sim_control = 0;
83 
84 	/* Controls how often to simulate a DMA mapping failure. */
85 	int dma_map_addr_failed_sim_control = 0;
86 
87 	/* Controls how often to simulate a bootcode failure. */
88 	int bootcode_running_failure_sim_control = 0;
89 #endif
90 
91 /****************************************************************************/
92 /* PCI Device ID Table                                                      */
93 /*                                                                          */
94 /* Used by bce_probe() to identify the devices supported by this driver.    */
95 /****************************************************************************/
96 #define BCE_DEVDESC_MAX		64
97 
98 static struct bce_type bce_devs[] = {
99 	/* BCM5706C Controllers and OEM boards. */
100 	{ BRCM_VENDORID, BRCM_DEVICEID_BCM5706,  HP_VENDORID, 0x3101,
101 		"HP NC370T Multifunction Gigabit Server Adapter" },
102 	{ BRCM_VENDORID, BRCM_DEVICEID_BCM5706,  HP_VENDORID, 0x3106,
103 		"HP NC370i Multifunction Gigabit Server Adapter" },
104 	{ BRCM_VENDORID, BRCM_DEVICEID_BCM5706,  HP_VENDORID, 0x3070,
105 		"HP NC380T PCIe DP Multifunc Gig Server Adapter" },
106 	{ BRCM_VENDORID, BRCM_DEVICEID_BCM5706,  HP_VENDORID, 0x1709,
107 		"HP NC371i Multifunction Gigabit Server Adapter" },
108 	{ BRCM_VENDORID, BRCM_DEVICEID_BCM5706,  PCI_ANY_ID,  PCI_ANY_ID,
109 		"Broadcom NetXtreme II BCM5706 1000Base-T" },
110 
111 	/* BCM5706S controllers and OEM boards. */
112 	{ BRCM_VENDORID, BRCM_DEVICEID_BCM5706S, HP_VENDORID, 0x3102,
113 		"HP NC370F Multifunction Gigabit Server Adapter" },
114 	{ BRCM_VENDORID, BRCM_DEVICEID_BCM5706S, PCI_ANY_ID,  PCI_ANY_ID,
115 		"Broadcom NetXtreme II BCM5706 1000Base-SX" },
116 
117 	/* BCM5708C controllers and OEM boards. */
118 	{ BRCM_VENDORID, BRCM_DEVICEID_BCM5708,  HP_VENDORID, 0x7037,
119 		"HP NC373T PCIe Multifunction Gig Server Adapter" },
120 	{ BRCM_VENDORID, BRCM_DEVICEID_BCM5708,  HP_VENDORID, 0x7038,
121 		"HP NC373i Multifunction Gigabit Server Adapter" },
122 	{ BRCM_VENDORID, BRCM_DEVICEID_BCM5708,  HP_VENDORID, 0x7045,
123 		"HP NC374m PCIe Multifunction Adapter" },
124 	{ BRCM_VENDORID, BRCM_DEVICEID_BCM5708,  PCI_ANY_ID,  PCI_ANY_ID,
125 		"Broadcom NetXtreme II BCM5708 1000Base-T" },
126 
127 	/* BCM5708S controllers and OEM boards. */
128 	{ BRCM_VENDORID, BRCM_DEVICEID_BCM5708S,  HP_VENDORID, 0x1706,
129 		"HP NC373m Multifunction Gigabit Server Adapter" },
130 	{ BRCM_VENDORID, BRCM_DEVICEID_BCM5708S,  HP_VENDORID, 0x703b,
131 		"HP NC373i Multifunction Gigabit Server Adapter" },
132 	{ BRCM_VENDORID, BRCM_DEVICEID_BCM5708S,  HP_VENDORID, 0x703d,
133 		"HP NC373F PCIe Multifunc Giga Server Adapter" },
134 	{ BRCM_VENDORID, BRCM_DEVICEID_BCM5708S,  PCI_ANY_ID,  PCI_ANY_ID,
135 		"Broadcom NetXtreme II BCM5708 1000Base-SX" },
136 
137 	/* BCM5709C controllers and OEM boards. */
138 	{ BRCM_VENDORID, BRCM_DEVICEID_BCM5709,  HP_VENDORID, 0x7055,
139 		"HP NC382i DP Multifunction Gigabit Server Adapter" },
140 	{ BRCM_VENDORID, BRCM_DEVICEID_BCM5709,  HP_VENDORID, 0x7059,
141 		"HP NC382T PCIe DP Multifunction Gigabit Server Adapter" },
142 	{ BRCM_VENDORID, BRCM_DEVICEID_BCM5709,  PCI_ANY_ID,  PCI_ANY_ID,
143 		"Broadcom NetXtreme II BCM5709 1000Base-T" },
144 
145 	/* BCM5709S controllers and OEM boards. */
146 	{ BRCM_VENDORID, BRCM_DEVICEID_BCM5709S,  HP_VENDORID, 0x171d,
147 		"HP NC382m DP 1GbE Multifunction BL-c Adapter" },
148 	{ BRCM_VENDORID, BRCM_DEVICEID_BCM5709S,  HP_VENDORID, 0x7056,
149 		"HP NC382i DP Multifunction Gigabit Server Adapter" },
150 	{ BRCM_VENDORID, BRCM_DEVICEID_BCM5709S,  PCI_ANY_ID,  PCI_ANY_ID,
151 		"Broadcom NetXtreme II BCM5709 1000Base-SX" },
152 
153 	/* BCM5716 controllers and OEM boards. */
154 	{ BRCM_VENDORID, BRCM_DEVICEID_BCM5716,  PCI_ANY_ID,  PCI_ANY_ID,
155 		"Broadcom NetXtreme II BCM5716 1000Base-T" },
156 
157 	{ 0, 0, 0, 0, NULL }
158 };
159 
160 
161 /****************************************************************************/
162 /* Supported Flash NVRAM device data.                                       */
163 /****************************************************************************/
164 static struct flash_spec flash_table[] =
165 {
166 #define BUFFERED_FLAGS		(BCE_NV_BUFFERED | BCE_NV_TRANSLATE)
167 #define NONBUFFERED_FLAGS	(BCE_NV_WREN)
168 
169 	/* Slow EEPROM */
170 	{0x00000000, 0x40830380, 0x009f0081, 0xa184a053, 0xaf000400,
171 	 BUFFERED_FLAGS, SEEPROM_PAGE_BITS, SEEPROM_PAGE_SIZE,
172 	 SEEPROM_BYTE_ADDR_MASK, SEEPROM_TOTAL_SIZE,
173 	 "EEPROM - slow"},
174 	/* Expansion entry 0001 */
175 	{0x08000002, 0x4b808201, 0x00050081, 0x03840253, 0xaf020406,
176 	 NONBUFFERED_FLAGS, SAIFUN_FLASH_PAGE_BITS, SAIFUN_FLASH_PAGE_SIZE,
177 	 SAIFUN_FLASH_BYTE_ADDR_MASK, 0,
178 	 "Entry 0001"},
179 	/* Saifun SA25F010 (non-buffered flash) */
180 	/* strap, cfg1, & write1 need updates */
181 	{0x04000001, 0x47808201, 0x00050081, 0x03840253, 0xaf020406,
182 	 NONBUFFERED_FLAGS, SAIFUN_FLASH_PAGE_BITS, SAIFUN_FLASH_PAGE_SIZE,
183 	 SAIFUN_FLASH_BYTE_ADDR_MASK, SAIFUN_FLASH_BASE_TOTAL_SIZE*2,
184 	 "Non-buffered flash (128kB)"},
185 	/* Saifun SA25F020 (non-buffered flash) */
186 	/* strap, cfg1, & write1 need updates */
187 	{0x0c000003, 0x4f808201, 0x00050081, 0x03840253, 0xaf020406,
188 	 NONBUFFERED_FLAGS, SAIFUN_FLASH_PAGE_BITS, SAIFUN_FLASH_PAGE_SIZE,
189 	 SAIFUN_FLASH_BYTE_ADDR_MASK, SAIFUN_FLASH_BASE_TOTAL_SIZE*4,
190 	 "Non-buffered flash (256kB)"},
191 	/* Expansion entry 0100 */
192 	{0x11000000, 0x53808201, 0x00050081, 0x03840253, 0xaf020406,
193 	 NONBUFFERED_FLAGS, SAIFUN_FLASH_PAGE_BITS, SAIFUN_FLASH_PAGE_SIZE,
194 	 SAIFUN_FLASH_BYTE_ADDR_MASK, 0,
195 	 "Entry 0100"},
196 	/* Entry 0101: ST M45PE10 (non-buffered flash, TetonII B0) */
197 	{0x19000002, 0x5b808201, 0x000500db, 0x03840253, 0xaf020406,
198 	 NONBUFFERED_FLAGS, ST_MICRO_FLASH_PAGE_BITS, ST_MICRO_FLASH_PAGE_SIZE,
199 	 ST_MICRO_FLASH_BYTE_ADDR_MASK, ST_MICRO_FLASH_BASE_TOTAL_SIZE*2,
200 	 "Entry 0101: ST M45PE10 (128kB non-bufferred)"},
201 	/* Entry 0110: ST M45PE20 (non-buffered flash)*/
202 	{0x15000001, 0x57808201, 0x000500db, 0x03840253, 0xaf020406,
203 	 NONBUFFERED_FLAGS, ST_MICRO_FLASH_PAGE_BITS, ST_MICRO_FLASH_PAGE_SIZE,
204 	 ST_MICRO_FLASH_BYTE_ADDR_MASK, ST_MICRO_FLASH_BASE_TOTAL_SIZE*4,
205 	 "Entry 0110: ST M45PE20 (256kB non-bufferred)"},
206 	/* Saifun SA25F005 (non-buffered flash) */
207 	/* strap, cfg1, & write1 need updates */
208 	{0x1d000003, 0x5f808201, 0x00050081, 0x03840253, 0xaf020406,
209 	 NONBUFFERED_FLAGS, SAIFUN_FLASH_PAGE_BITS, SAIFUN_FLASH_PAGE_SIZE,
210 	 SAIFUN_FLASH_BYTE_ADDR_MASK, SAIFUN_FLASH_BASE_TOTAL_SIZE,
211 	 "Non-buffered flash (64kB)"},
212 	/* Fast EEPROM */
213 	{0x22000000, 0x62808380, 0x009f0081, 0xa184a053, 0xaf000400,
214 	 BUFFERED_FLAGS, SEEPROM_PAGE_BITS, SEEPROM_PAGE_SIZE,
215 	 SEEPROM_BYTE_ADDR_MASK, SEEPROM_TOTAL_SIZE,
216 	 "EEPROM - fast"},
217 	/* Expansion entry 1001 */
218 	{0x2a000002, 0x6b808201, 0x00050081, 0x03840253, 0xaf020406,
219 	 NONBUFFERED_FLAGS, SAIFUN_FLASH_PAGE_BITS, SAIFUN_FLASH_PAGE_SIZE,
220 	 SAIFUN_FLASH_BYTE_ADDR_MASK, 0,
221 	 "Entry 1001"},
222 	/* Expansion entry 1010 */
223 	{0x26000001, 0x67808201, 0x00050081, 0x03840253, 0xaf020406,
224 	 NONBUFFERED_FLAGS, SAIFUN_FLASH_PAGE_BITS, SAIFUN_FLASH_PAGE_SIZE,
225 	 SAIFUN_FLASH_BYTE_ADDR_MASK, 0,
226 	 "Entry 1010"},
227 	/* ATMEL AT45DB011B (buffered flash) */
228 	{0x2e000003, 0x6e808273, 0x00570081, 0x68848353, 0xaf000400,
229 	 BUFFERED_FLAGS, BUFFERED_FLASH_PAGE_BITS, BUFFERED_FLASH_PAGE_SIZE,
230 	 BUFFERED_FLASH_BYTE_ADDR_MASK, BUFFERED_FLASH_TOTAL_SIZE,
231 	 "Buffered flash (128kB)"},
232 	/* Expansion entry 1100 */
233 	{0x33000000, 0x73808201, 0x00050081, 0x03840253, 0xaf020406,
234 	 NONBUFFERED_FLAGS, SAIFUN_FLASH_PAGE_BITS, SAIFUN_FLASH_PAGE_SIZE,
235 	 SAIFUN_FLASH_BYTE_ADDR_MASK, 0,
236 	 "Entry 1100"},
237 	/* Expansion entry 1101 */
238 	{0x3b000002, 0x7b808201, 0x00050081, 0x03840253, 0xaf020406,
239 	 NONBUFFERED_FLAGS, SAIFUN_FLASH_PAGE_BITS, SAIFUN_FLASH_PAGE_SIZE,
240 	 SAIFUN_FLASH_BYTE_ADDR_MASK, 0,
241 	 "Entry 1101"},
242 	/* Ateml Expansion entry 1110 */
243 	{0x37000001, 0x76808273, 0x00570081, 0x68848353, 0xaf000400,
244 	 BUFFERED_FLAGS, BUFFERED_FLASH_PAGE_BITS, BUFFERED_FLASH_PAGE_SIZE,
245 	 BUFFERED_FLASH_BYTE_ADDR_MASK, 0,
246 	 "Entry 1110 (Atmel)"},
247 	/* ATMEL AT45DB021B (buffered flash) */
248 	{0x3f000003, 0x7e808273, 0x00570081, 0x68848353, 0xaf000400,
249 	 BUFFERED_FLAGS, BUFFERED_FLASH_PAGE_BITS, BUFFERED_FLASH_PAGE_SIZE,
250 	 BUFFERED_FLASH_BYTE_ADDR_MASK, BUFFERED_FLASH_TOTAL_SIZE*2,
251 	 "Buffered flash (256kB)"},
252 };
253 
254 /*
255  * The BCM5709 controllers transparently handle the
256  * differences between Atmel 264 byte pages and all
257  * flash devices which use 256 byte pages, so no
258  * logical-to-physical mapping is required in the
259  * driver.
260  */
261 static struct flash_spec flash_5709 = {
262 	.flags		= BCE_NV_BUFFERED,
263 	.page_bits	= BCM5709_FLASH_PAGE_BITS,
264 	.page_size	= BCM5709_FLASH_PAGE_SIZE,
265 	.addr_mask	= BCM5709_FLASH_BYTE_ADDR_MASK,
266 	.total_size	= BUFFERED_FLASH_TOTAL_SIZE * 2,
267 	.name		= "5709/5716 buffered flash (256kB)",
268 };
269 
270 
271 /****************************************************************************/
272 /* FreeBSD device entry points.                                             */
273 /****************************************************************************/
274 static int  bce_probe			(device_t);
275 static int  bce_attach			(device_t);
276 static int  bce_detach			(device_t);
277 static int  bce_shutdown		(device_t);
278 
279 
280 /****************************************************************************/
281 /* BCE Debug Data Structure Dump Routines                                   */
282 /****************************************************************************/
283 #ifdef BCE_DEBUG
284 static u32  bce_reg_rd				(struct bce_softc *, u32);
285 static void bce_reg_wr				(struct bce_softc *, u32, u32);
286 static void bce_reg_wr16			(struct bce_softc *, u32, u16);
287 static u32  bce_ctx_rd				(struct bce_softc *, u32, u32);
288 static void bce_dump_enet			(struct bce_softc *, struct mbuf *);
289 static void bce_dump_mbuf			(struct bce_softc *, struct mbuf *);
290 static void bce_dump_tx_mbuf_chain	(struct bce_softc *, u16, int);
291 static void bce_dump_rx_mbuf_chain	(struct bce_softc *, u16, int);
292 static void bce_dump_pg_mbuf_chain	(struct bce_softc *, u16, int);
293 static void bce_dump_txbd			(struct bce_softc *,
294     int, struct tx_bd *);
295 static void bce_dump_rxbd			(struct bce_softc *,
296     int, struct rx_bd *);
297 static void bce_dump_pgbd			(struct bce_softc *,
298     int, struct rx_bd *);
299 static void bce_dump_l2fhdr		(struct bce_softc *,
300     int, struct l2_fhdr *);
301 static void bce_dump_ctx			(struct bce_softc *, u16);
302 static void bce_dump_ftqs			(struct bce_softc *);
303 static void bce_dump_tx_chain		(struct bce_softc *, u16, int);
304 static void bce_dump_rx_bd_chain	(struct bce_softc *, u16, int);
305 static void bce_dump_pg_chain		(struct bce_softc *, u16, int);
306 static void bce_dump_status_block	(struct bce_softc *);
307 static void bce_dump_stats_block	(struct bce_softc *);
308 static void bce_dump_driver_state	(struct bce_softc *);
309 static void bce_dump_hw_state		(struct bce_softc *);
310 static void bce_dump_shmem_state	(struct bce_softc *);
311 static void bce_dump_mq_regs		(struct bce_softc *);
312 static void bce_dump_bc_state		(struct bce_softc *);
313 static void bce_dump_txp_state		(struct bce_softc *, int);
314 static void bce_dump_rxp_state		(struct bce_softc *, int);
315 static void bce_dump_tpat_state	(struct bce_softc *, int);
316 static void bce_dump_cp_state		(struct bce_softc *, int);
317 static void bce_dump_com_state		(struct bce_softc *, int);
318 static void bce_dump_rv2p_state	(struct bce_softc *);
319 static void bce_breakpoint			(struct bce_softc *);
320 #endif /*BCE_DEBUG */
321 
322 
323 /****************************************************************************/
324 /* BCE Register/Memory Access Routines                                      */
325 /****************************************************************************/
326 static u32  bce_reg_rd_ind		(struct bce_softc *, u32);
327 static void bce_reg_wr_ind		(struct bce_softc *, u32, u32);
328 static void bce_shmem_wr		(struct bce_softc *, u32, u32);
329 static u32  bce_shmem_rd		(struct bce_softc *, u32);
330 static void bce_ctx_wr			(struct bce_softc *, u32, u32, u32);
331 static int  bce_miibus_read_reg		(device_t, int, int);
332 static int  bce_miibus_write_reg	(device_t, int, int, int);
333 static void bce_miibus_statchg		(device_t);
334 
335 #ifdef BCE_DEBUG
336 static int bce_sysctl_nvram_dump(SYSCTL_HANDLER_ARGS);
337 #ifdef BCE_NVRAM_WRITE_SUPPORT
338 static int bce_sysctl_nvram_write(SYSCTL_HANDLER_ARGS);
339 #endif
340 #endif
341 
342 /****************************************************************************/
343 /* BCE NVRAM Access Routines                                                */
344 /****************************************************************************/
345 static int  bce_acquire_nvram_lock	(struct bce_softc *);
346 static int  bce_release_nvram_lock	(struct bce_softc *);
347 static void bce_enable_nvram_access(struct bce_softc *);
348 static void bce_disable_nvram_access(struct bce_softc *);
349 static int  bce_nvram_read_dword	(struct bce_softc *, u32, u8 *, u32);
350 static int  bce_init_nvram			(struct bce_softc *);
351 static int  bce_nvram_read			(struct bce_softc *, u32, u8 *, int);
352 static int  bce_nvram_test			(struct bce_softc *);
353 #ifdef BCE_NVRAM_WRITE_SUPPORT
354 static int  bce_enable_nvram_write	(struct bce_softc *);
355 static void bce_disable_nvram_write(struct bce_softc *);
356 static int  bce_nvram_erase_page	(struct bce_softc *, u32);
357 static int  bce_nvram_write_dword	(struct bce_softc *, u32, u8 *, u32);
358 static int  bce_nvram_write		(struct bce_softc *, u32, u8 *, int);
359 #endif
360 
361 /****************************************************************************/
362 /*                                                                          */
363 /****************************************************************************/
364 static void bce_get_rx_buffer_sizes(struct bce_softc *, int);
365 static void bce_get_media			(struct bce_softc *);
366 static void bce_init_media			(struct bce_softc *);
367 static void bce_dma_map_addr		(void *, bus_dma_segment_t *, int, int);
368 static int  bce_dma_alloc			(device_t);
369 static void bce_dma_free			(struct bce_softc *);
370 static void bce_release_resources	(struct bce_softc *);
371 
372 /****************************************************************************/
373 /* BCE Firmware Synchronization and Load                                    */
374 /****************************************************************************/
375 static int  bce_fw_sync			(struct bce_softc *, u32);
376 static void bce_load_rv2p_fw		(struct bce_softc *, u32 *, u32, u32);
377 static void bce_load_cpu_fw		(struct bce_softc *,
378     struct cpu_reg *, struct fw_info *);
379 static void bce_start_cpu			(struct bce_softc *, struct cpu_reg *);
380 static void bce_halt_cpu			(struct bce_softc *, struct cpu_reg *);
381 static void bce_start_rxp_cpu		(struct bce_softc *);
382 static void bce_init_rxp_cpu		(struct bce_softc *);
383 static void bce_init_txp_cpu 		(struct bce_softc *);
384 static void bce_init_tpat_cpu		(struct bce_softc *);
385 static void bce_init_cp_cpu	  	(struct bce_softc *);
386 static void bce_init_com_cpu	  	(struct bce_softc *);
387 static void bce_init_cpus			(struct bce_softc *);
388 
389 static void bce_print_adapter_info	(struct bce_softc *);
390 static void bce_probe_pci_caps		(device_t, struct bce_softc *);
391 static void bce_stop				(struct bce_softc *);
392 static int  bce_reset				(struct bce_softc *, u32);
393 static int  bce_chipinit 			(struct bce_softc *);
394 static int  bce_blockinit 			(struct bce_softc *);
395 
396 static int  bce_init_tx_chain		(struct bce_softc *);
397 static void bce_free_tx_chain		(struct bce_softc *);
398 
399 static int  bce_get_rx_buf			(struct bce_softc *,
400     struct mbuf *, u16 *, u16 *, u32 *);
401 static int  bce_init_rx_chain		(struct bce_softc *);
402 static void bce_fill_rx_chain		(struct bce_softc *);
403 static void bce_free_rx_chain		(struct bce_softc *);
404 
405 static int  bce_get_pg_buf			(struct bce_softc *,
406     struct mbuf *, u16 *, u16 *);
407 static int  bce_init_pg_chain		(struct bce_softc *);
408 static void bce_fill_pg_chain		(struct bce_softc *);
409 static void bce_free_pg_chain		(struct bce_softc *);
410 
411 static struct mbuf *bce_tso_setup	(struct bce_softc *,
412     struct mbuf **, u16 *);
413 static int  bce_tx_encap			(struct bce_softc *, struct mbuf **);
414 static void bce_start_locked		(struct ifnet *);
415 static void bce_start				(struct ifnet *);
416 static int  bce_ioctl				(struct ifnet *, u_long, caddr_t);
417 static void bce_watchdog			(struct bce_softc *);
418 static int  bce_ifmedia_upd		(struct ifnet *);
419 static int  bce_ifmedia_upd_locked	(struct ifnet *);
420 static void bce_ifmedia_sts		(struct ifnet *, struct ifmediareq *);
421 static void bce_init_locked		(struct bce_softc *);
422 static void bce_init				(void *);
423 static void bce_mgmt_init_locked	(struct bce_softc *sc);
424 
425 static int  bce_init_ctx			(struct bce_softc *);
426 static void bce_get_mac_addr		(struct bce_softc *);
427 static void bce_set_mac_addr		(struct bce_softc *);
428 static void bce_phy_intr			(struct bce_softc *);
429 static inline u16 bce_get_hw_rx_cons	(struct bce_softc *);
430 static void bce_rx_intr			(struct bce_softc *);
431 static void bce_tx_intr			(struct bce_softc *);
432 static void bce_disable_intr		(struct bce_softc *);
433 static void bce_enable_intr		(struct bce_softc *, int);
434 
435 static void bce_intr				(void *);
436 static void bce_set_rx_mode		(struct bce_softc *);
437 static void bce_stats_update		(struct bce_softc *);
438 static void bce_tick				(void *);
439 static void bce_pulse				(void *);
440 static void bce_add_sysctls		(struct bce_softc *);
441 
442 
443 /****************************************************************************/
444 /* FreeBSD device dispatch table.                                           */
445 /****************************************************************************/
446 static device_method_t bce_methods[] = {
447 	/* Device interface (device_if.h) */
448 	DEVMETHOD(device_probe,		bce_probe),
449 	DEVMETHOD(device_attach,	bce_attach),
450 	DEVMETHOD(device_detach,	bce_detach),
451 	DEVMETHOD(device_shutdown,	bce_shutdown),
452 /* Supported by device interface but not used here. */
453 /*	DEVMETHOD(device_identify,	bce_identify),      */
454 /*	DEVMETHOD(device_suspend,	bce_suspend),       */
455 /*	DEVMETHOD(device_resume,	bce_resume),        */
456 /*	DEVMETHOD(device_quiesce,	bce_quiesce),       */
457 
458 	/* Bus interface (bus_if.h) */
459 	DEVMETHOD(bus_print_child,	bus_generic_print_child),
460 	DEVMETHOD(bus_driver_added,	bus_generic_driver_added),
461 
462 	/* MII interface (miibus_if.h) */
463 	DEVMETHOD(miibus_readreg,	bce_miibus_read_reg),
464 	DEVMETHOD(miibus_writereg,	bce_miibus_write_reg),
465 	DEVMETHOD(miibus_statchg,	bce_miibus_statchg),
466 /* Supported by MII interface but not used here.       */
467 /*	DEVMETHOD(miibus_linkchg,	bce_miibus_linkchg),   */
468 /*	DEVMETHOD(miibus_mediainit,	bce_miibus_mediainit), */
469 
470 	{ 0, 0 }
471 };
472 
473 static driver_t bce_driver = {
474 	"bce",
475 	bce_methods,
476 	sizeof(struct bce_softc)
477 };
478 
479 static devclass_t bce_devclass;
480 
481 MODULE_DEPEND(bce, pci, 1, 1, 1);
482 MODULE_DEPEND(bce, ether, 1, 1, 1);
483 MODULE_DEPEND(bce, miibus, 1, 1, 1);
484 
485 DRIVER_MODULE(bce, pci, bce_driver, bce_devclass, 0, 0);
486 DRIVER_MODULE(miibus, bce, miibus_driver, miibus_devclass, 0, 0);
487 
488 
489 /****************************************************************************/
490 /* Tunable device values                                                    */
491 /****************************************************************************/
492 SYSCTL_NODE(_hw, OID_AUTO, bce, CTLFLAG_RD, 0, "bce driver parameters");
493 
494 /* Allowable values are TRUE or FALSE */
495 static int bce_verbose = TRUE;
496 TUNABLE_INT("hw.bce.verbose", &bce_verbose);
497 SYSCTL_INT(_hw_bce, OID_AUTO, verbose, CTLFLAG_RDTUN, &bce_verbose, 0,
498     "Verbose output enable/disable");
499 
500 /* Allowable values are TRUE or FALSE */
501 static int bce_tso_enable = TRUE;
502 TUNABLE_INT("hw.bce.tso_enable", &bce_tso_enable);
503 SYSCTL_INT(_hw_bce, OID_AUTO, tso_enable, CTLFLAG_RDTUN, &bce_tso_enable, 0,
504     "TSO Enable/Disable");
505 
506 /* Allowable values are 0 (IRQ), 1 (MSI/IRQ), and 2 (MSI-X/MSI/IRQ) */
507 /* ToDo: Add MSI-X support. */
508 static int bce_msi_enable = 1;
509 TUNABLE_INT("hw.bce.msi_enable", &bce_msi_enable);
510 SYSCTL_INT(_hw_bce, OID_AUTO, msi_enable, CTLFLAG_RDTUN, &bce_msi_enable, 0,
511     "MSI-X|MSI|INTx selector");
512 
513 /* Allowable values are 1, 2, 4, 8. */
514 static int bce_rx_pages = DEFAULT_RX_PAGES;
515 TUNABLE_INT("hw.bce.rx_pages", &bce_rx_pages);
516 SYSCTL_UINT(_hw_bce, OID_AUTO, rx_pages, CTLFLAG_RDTUN, &bce_rx_pages, 0,
517     "Receive buffer descriptor pages (1 page = 255 buffer descriptors)");
518 
519 /* Allowable values are 1, 2, 4, 8. */
520 static int bce_tx_pages = DEFAULT_TX_PAGES;
521 TUNABLE_INT("hw.bce.tx_pages", &bce_tx_pages);
522 SYSCTL_UINT(_hw_bce, OID_AUTO, tx_pages, CTLFLAG_RDTUN, &bce_tx_pages, 0,
523     "Transmit buffer descriptor pages (1 page = 255 buffer descriptors)");
524 
525 /* Allowable values are TRUE or FALSE. */
526 static int bce_hdr_split = TRUE;
527 TUNABLE_INT("hw.bce.hdr_split", &bce_hdr_split);
528 SYSCTL_UINT(_hw_bce, OID_AUTO, hdr_split, CTLFLAG_RDTUN, &bce_hdr_split, 0,
529     "Frame header/payload splitting Enable/Disable");
530 
531 /* Allowable values are TRUE or FALSE. */
532 static int bce_strict_rx_mtu = FALSE;
533 TUNABLE_INT("hw.bce.strict_rx_mtu", &bce_strict_rx_mtu);
534 SYSCTL_UINT(_hw_bce, OID_AUTO, loose_rx_mtu, CTLFLAG_RDTUN,
535     &bce_strict_rx_mtu, 0,
536     "Enable/Disable strict RX frame size checking");
537 
538 /* Allowable values are 0 ... 100 */
539 #ifdef BCE_DEBUG
540 /* Generate 1 interrupt for every transmit completion. */
541 static int bce_tx_quick_cons_trip_int = 1;
542 #else
543 /* Generate 1 interrupt for every 20 transmit completions. */
544 static int bce_tx_quick_cons_trip_int = DEFAULT_TX_QUICK_CONS_TRIP_INT;
545 #endif
546 TUNABLE_INT("hw.bce.tx_quick_cons_trip_int", &bce_tx_quick_cons_trip_int);
547 SYSCTL_UINT(_hw_bce, OID_AUTO, tx_quick_cons_trip_int, CTLFLAG_RDTUN,
548     &bce_tx_quick_cons_trip_int, 0,
549     "Transmit BD trip point during interrupts");
550 
551 /* Allowable values are 0 ... 100 */
552 /* Generate 1 interrupt for every transmit completion. */
553 #ifdef BCE_DEBUG
554 static int bce_tx_quick_cons_trip = 1;
555 #else
556 /* Generate 1 interrupt for every 20 transmit completions. */
557 static int bce_tx_quick_cons_trip = DEFAULT_TX_QUICK_CONS_TRIP;
558 #endif
559 TUNABLE_INT("hw.bce.tx_quick_cons_trip", &bce_tx_quick_cons_trip);
560 SYSCTL_UINT(_hw_bce, OID_AUTO, tx_quick_cons_trip, CTLFLAG_RDTUN,
561     &bce_tx_quick_cons_trip, 0,
562     "Transmit BD trip point");
563 
564 /* Allowable values are 0 ... 100 */
565 #ifdef BCE_DEBUG
566 /* Generate an interrupt if 0us have elapsed since the last TX completion. */
567 static int bce_tx_ticks_int = 0;
568 #else
569 /* Generate an interrupt if 80us have elapsed since the last TX completion. */
570 static int bce_tx_ticks_int = DEFAULT_TX_TICKS_INT;
571 #endif
572 TUNABLE_INT("hw.bce.tx_ticks_int", &bce_tx_ticks_int);
573 SYSCTL_UINT(_hw_bce, OID_AUTO, tx_ticks_int, CTLFLAG_RDTUN,
574     &bce_tx_ticks_int, 0, "Transmit ticks count during interrupt");
575 
576 /* Allowable values are 0 ... 100 */
577 #ifdef BCE_DEBUG
578 /* Generate an interrupt if 0us have elapsed since the last TX completion. */
579 static int bce_tx_ticks = 0;
580 #else
581 /* Generate an interrupt if 80us have elapsed since the last TX completion. */
582 static int bce_tx_ticks = DEFAULT_TX_TICKS;
583 #endif
584 TUNABLE_INT("hw.bce.tx_ticks", &bce_tx_ticks);
585 SYSCTL_UINT(_hw_bce, OID_AUTO, tx_ticks, CTLFLAG_RDTUN,
586     &bce_tx_ticks, 0, "Transmit ticks count");
587 
588 /* Allowable values are 1 ... 100 */
589 #ifdef BCE_DEBUG
590 /* Generate 1 interrupt for every received frame. */
591 static int bce_rx_quick_cons_trip_int = 1;
592 #else
593 /* Generate 1 interrupt for every 6 received frames. */
594 static int bce_rx_quick_cons_trip_int = DEFAULT_RX_QUICK_CONS_TRIP_INT;
595 #endif
596 TUNABLE_INT("hw.bce.rx_quick_cons_trip_int", &bce_rx_quick_cons_trip_int);
597 SYSCTL_UINT(_hw_bce, OID_AUTO, rx_quick_cons_trip_int, CTLFLAG_RDTUN,
598     &bce_rx_quick_cons_trip_int, 0,
599     "Receive BD trip point duirng interrupts");
600 
601 /* Allowable values are 1 ... 100 */
602 #ifdef BCE_DEBUG
603 /* Generate 1 interrupt for every received frame. */
604 static int bce_rx_quick_cons_trip = 1;
605 #else
606 /* Generate 1 interrupt for every 6 received frames. */
607 static int bce_rx_quick_cons_trip = DEFAULT_RX_QUICK_CONS_TRIP;
608 #endif
609 TUNABLE_INT("hw.bce.rx_quick_cons_trip", &bce_rx_quick_cons_trip);
610 SYSCTL_UINT(_hw_bce, OID_AUTO, rx_quick_cons_trip, CTLFLAG_RDTUN,
611     &bce_rx_quick_cons_trip, 0,
612     "Receive BD trip point");
613 
614 /* Allowable values are 0 ... 100 */
615 #ifdef BCE_DEBUG
616 /* Generate an int. if 0us have elapsed since the last received frame. */
617 static int bce_rx_ticks_int = 0;
618 #else
619 /* Generate an int. if 18us have elapsed since the last received frame. */
620 static int bce_rx_ticks_int = DEFAULT_RX_TICKS_INT;
621 #endif
622 TUNABLE_INT("hw.bce.rx_ticks_int", &bce_rx_ticks_int);
623 SYSCTL_UINT(_hw_bce, OID_AUTO, rx_ticks_int, CTLFLAG_RDTUN,
624     &bce_rx_ticks_int, 0, "Receive ticks count during interrupt");
625 
626 /* Allowable values are 0 ... 100 */
627 #ifdef BCE_DEBUG
628 /* Generate an int. if 0us have elapsed since the last received frame. */
629 static int bce_rx_ticks = 0;
630 #else
631 /* Generate an int. if 18us have elapsed since the last received frame. */
632 static int bce_rx_ticks = DEFAULT_RX_TICKS;
633 #endif
634 TUNABLE_INT("hw.bce.rx_ticks", &bce_rx_ticks);
635 SYSCTL_UINT(_hw_bce, OID_AUTO, rx_ticks, CTLFLAG_RDTUN,
636     &bce_rx_ticks, 0, "Receive ticks count");
637 
638 
639 /****************************************************************************/
640 /* Device probe function.                                                   */
641 /*                                                                          */
642 /* Compares the device to the driver's list of supported devices and        */
643 /* reports back to the OS whether this is the right driver for the device.  */
644 /*                                                                          */
645 /* Returns:                                                                 */
646 /*   BUS_PROBE_DEFAULT on success, positive value on failure.               */
647 /****************************************************************************/
648 static int
649 bce_probe(device_t dev)
650 {
651 	struct bce_type *t;
652 	struct bce_softc *sc;
653 	char *descbuf;
654 	u16 vid = 0, did = 0, svid = 0, sdid = 0;
655 
656 	t = bce_devs;
657 
658 	sc = device_get_softc(dev);
659 	bzero(sc, sizeof(struct bce_softc));
660 	sc->bce_unit = device_get_unit(dev);
661 	sc->bce_dev = dev;
662 
663 	/* Get the data for the device to be probed. */
664 	vid  = pci_get_vendor(dev);
665 	did  = pci_get_device(dev);
666 	svid = pci_get_subvendor(dev);
667 	sdid = pci_get_subdevice(dev);
668 
669 	DBPRINT(sc, BCE_EXTREME_LOAD,
670 	    "%s(); VID = 0x%04X, DID = 0x%04X, SVID = 0x%04X, "
671 	    "SDID = 0x%04X\n", __FUNCTION__, vid, did, svid, sdid);
672 
673 	/* Look through the list of known devices for a match. */
674 	while(t->bce_name != NULL) {
675 
676 		if ((vid == t->bce_vid) && (did == t->bce_did) &&
677 		    ((svid == t->bce_svid) || (t->bce_svid == PCI_ANY_ID)) &&
678 		    ((sdid == t->bce_sdid) || (t->bce_sdid == PCI_ANY_ID))) {
679 
680 			descbuf = malloc(BCE_DEVDESC_MAX, M_TEMP, M_NOWAIT);
681 
682 			if (descbuf == NULL)
683 				return(ENOMEM);
684 
685 			/* Print out the device identity. */
686 			snprintf(descbuf, BCE_DEVDESC_MAX, "%s (%c%d)",
687 			    t->bce_name, (((pci_read_config(dev,
688 			    PCIR_REVID, 4) & 0xf0) >> 4) + 'A'),
689 			    (pci_read_config(dev, PCIR_REVID, 4) & 0xf));
690 
691 			device_set_desc_copy(dev, descbuf);
692 			free(descbuf, M_TEMP);
693 			return(BUS_PROBE_DEFAULT);
694 		}
695 		t++;
696 	}
697 
698 	return(ENXIO);
699 }
700 
701 
702 /****************************************************************************/
703 /* PCI Capabilities Probe Function.                                         */
704 /*                                                                          */
705 /* Walks the PCI capabiites list for the device to find what features are   */
706 /* supported.                                                               */
707 /*                                                                          */
708 /* Returns:                                                                 */
709 /*   None.                                                                  */
710 /****************************************************************************/
711 static void
712 bce_print_adapter_info(struct bce_softc *sc)
713 {
714 	int i = 0;
715 
716 	DBENTER(BCE_VERBOSE_LOAD);
717 
718 	if (bce_verbose || bootverbose) {
719 		BCE_PRINTF("ASIC (0x%08X); ", sc->bce_chipid);
720 		printf("Rev (%c%d); ", ((BCE_CHIP_ID(sc) & 0xf000) >>
721 		    12) + 'A', ((BCE_CHIP_ID(sc) & 0x0ff0) >> 4));
722 
723 
724 		/* Bus info. */
725 		if (sc->bce_flags & BCE_PCIE_FLAG) {
726 			printf("Bus (PCIe x%d, ", sc->link_width);
727 			switch (sc->link_speed) {
728 			case 1: printf("2.5Gbps); "); break;
729 			case 2:	printf("5Gbps); "); break;
730 			default: printf("Unknown link speed); ");
731 			}
732 		} else {
733 			printf("Bus (PCI%s, %s, %dMHz); ",
734 			    ((sc->bce_flags & BCE_PCIX_FLAG) ? "-X" : ""),
735 			    ((sc->bce_flags & BCE_PCI_32BIT_FLAG) ?
736 			    "32-bit" : "64-bit"), sc->bus_speed_mhz);
737 		}
738 
739 		/* Firmware version and device features. */
740 		printf("B/C (%s); Bufs (RX:%d;TX:%d;PG:%d); Flags (",
741 		    sc->bce_bc_ver,	sc->rx_pages, sc->tx_pages,
742 		    (bce_hdr_split == TRUE ? sc->pg_pages: 0));
743 
744 		if (bce_hdr_split == TRUE) {
745 			printf("SPLT");
746 			i++;
747 		}
748 
749 		if (sc->bce_flags & BCE_USING_MSI_FLAG) {
750 			if (i > 0) printf("|");
751 			printf("MSI"); i++;
752 		}
753 
754 		if (sc->bce_flags & BCE_USING_MSIX_FLAG) {
755 			if (i > 0) printf("|");
756 			printf("MSI-X"); i++;
757 		}
758 
759 		if (sc->bce_phy_flags & BCE_PHY_2_5G_CAPABLE_FLAG) {
760 			if (i > 0) printf("|");
761 			printf("2.5G"); i++;
762 		}
763 
764 		if (sc->bce_flags & BCE_MFW_ENABLE_FLAG) {
765 			if (i > 0) printf("|");
766 			printf("MFW); MFW (%s)\n", sc->bce_mfw_ver);
767 		} else {
768 			printf(")\n");
769 		}
770 
771 		printf("Coal (RX:%d,%d,%d,%d; TX:%d,%d,%d,%d)\n",
772 		    sc->bce_rx_quick_cons_trip_int,
773 		    sc->bce_rx_quick_cons_trip,
774 		    sc->bce_rx_ticks_int,
775 		    sc->bce_rx_ticks,
776 		    sc->bce_tx_quick_cons_trip_int,
777 		    sc->bce_tx_quick_cons_trip,
778 		    sc->bce_tx_ticks_int,
779 		    sc->bce_tx_ticks);
780 
781 	}
782 
783 	DBEXIT(BCE_VERBOSE_LOAD);
784 }
785 
786 
787 /****************************************************************************/
788 /* PCI Capabilities Probe Function.                                         */
789 /*                                                                          */
790 /* Walks the PCI capabiites list for the device to find what features are   */
791 /* supported.                                                               */
792 /*                                                                          */
793 /* Returns:                                                                 */
794 /*   None.                                                                  */
795 /****************************************************************************/
796 static void
797 bce_probe_pci_caps(device_t dev, struct bce_softc *sc)
798 {
799 	u32 reg;
800 
801 	DBENTER(BCE_VERBOSE_LOAD);
802 
803 	/* Check if PCI-X capability is enabled. */
804 	if (pci_find_cap(dev, PCIY_PCIX, &reg) == 0) {
805 		if (reg != 0)
806 			sc->bce_cap_flags |= BCE_PCIX_CAPABLE_FLAG;
807 	}
808 
809 	/* Check if PCIe capability is enabled. */
810 	if (pci_find_cap(dev, PCIY_EXPRESS, &reg) == 0) {
811 		if (reg != 0) {
812 			u16 link_status = pci_read_config(dev, reg + 0x12, 2);
813 			DBPRINT(sc, BCE_INFO_LOAD, "PCIe link_status = "
814 			    "0x%08X\n",	link_status);
815 			sc->link_speed = link_status & 0xf;
816 			sc->link_width = (link_status >> 4) & 0x3f;
817 			sc->bce_cap_flags |= BCE_PCIE_CAPABLE_FLAG;
818 			sc->bce_flags |= BCE_PCIE_FLAG;
819 		}
820 	}
821 
822 	/* Check if MSI capability is enabled. */
823 	if (pci_find_cap(dev, PCIY_MSI, &reg) == 0) {
824 		if (reg != 0)
825 			sc->bce_cap_flags |= BCE_MSI_CAPABLE_FLAG;
826 	}
827 
828 	/* Check if MSI-X capability is enabled. */
829 	if (pci_find_cap(dev, PCIY_MSIX, &reg) == 0) {
830 		if (reg != 0)
831 			sc->bce_cap_flags |= BCE_MSIX_CAPABLE_FLAG;
832 	}
833 
834 	DBEXIT(BCE_VERBOSE_LOAD);
835 }
836 
837 
838 /****************************************************************************/
839 /* Load and validate user tunable settings.                                 */
840 /*                                                                          */
841 /* Returns:                                                                 */
842 /*   Nothing.                                                               */
843 /****************************************************************************/
844 static void
845 bce_set_tunables(struct bce_softc *sc)
846 {
847 	/* Set sysctl values for RX page count. */
848 	switch (bce_rx_pages) {
849 	case 1:
850 		/* fall-through */
851 	case 2:
852 		/* fall-through */
853 	case 4:
854 		/* fall-through */
855 	case 8:
856 		sc->rx_pages = bce_rx_pages;
857 		break;
858 	default:
859 		sc->rx_pages = DEFAULT_RX_PAGES;
860 		BCE_PRINTF("%s(%d): Illegal value (%d) specified for "
861 		    "hw.bce.rx_pages!  Setting default of %d.\n",
862 		    __FILE__, __LINE__, bce_rx_pages, DEFAULT_RX_PAGES);
863 	}
864 
865 	/* ToDo: Consider allowing user setting for pg_pages. */
866 	sc->pg_pages = min((sc->rx_pages * 4), MAX_PG_PAGES);
867 
868 	/* Set sysctl values for TX page count. */
869 	switch (bce_tx_pages) {
870 	case 1:
871 		/* fall-through */
872 	case 2:
873 		/* fall-through */
874 	case 4:
875 		/* fall-through */
876 	case 8:
877 		sc->tx_pages = bce_tx_pages;
878 		break;
879 	default:
880 		sc->tx_pages = DEFAULT_TX_PAGES;
881 		BCE_PRINTF("%s(%d): Illegal value (%d) specified for "
882 		    "hw.bce.tx_pages!  Setting default of %d.\n",
883 		    __FILE__, __LINE__, bce_tx_pages, DEFAULT_TX_PAGES);
884 	}
885 
886 	/*
887 	 * Validate the TX trip point (i.e. the number of
888 	 * TX completions before a status block update is
889 	 * generated and an interrupt is asserted.
890 	 */
891 	if (bce_tx_quick_cons_trip_int <= 100) {
892 		sc->bce_tx_quick_cons_trip_int =
893 		    bce_tx_quick_cons_trip_int;
894 	} else {
895 		BCE_PRINTF("%s(%d): Illegal value (%d) specified for "
896 		    "hw.bce.tx_quick_cons_trip_int!  Setting default of %d.\n",
897 		    __FILE__, __LINE__, bce_tx_quick_cons_trip_int,
898 		    DEFAULT_TX_QUICK_CONS_TRIP_INT);
899 		sc->bce_tx_quick_cons_trip_int =
900 		    DEFAULT_TX_QUICK_CONS_TRIP_INT;
901 	}
902 
903 	if (bce_tx_quick_cons_trip <= 100) {
904 		sc->bce_tx_quick_cons_trip =
905 		    bce_tx_quick_cons_trip;
906 	} else {
907 		BCE_PRINTF("%s(%d): Illegal value (%d) specified for "
908 		    "hw.bce.tx_quick_cons_trip!  Setting default of %d.\n",
909 		    __FILE__, __LINE__, bce_tx_quick_cons_trip,
910 		    DEFAULT_TX_QUICK_CONS_TRIP);
911 		sc->bce_tx_quick_cons_trip =
912 		    DEFAULT_TX_QUICK_CONS_TRIP;
913 	}
914 
915 	/*
916 	 * Validate the TX ticks count (i.e. the maximum amount
917 	 * of time to wait after the last TX completion has
918 	 * occurred before a status block update is generated
919 	 * and an interrupt is asserted.
920 	 */
921 	if (bce_tx_ticks_int <= 100) {
922 		sc->bce_tx_ticks_int =
923 		    bce_tx_ticks_int;
924 	} else {
925 		BCE_PRINTF("%s(%d): Illegal value (%d) specified for "
926 		    "hw.bce.tx_ticks_int!  Setting default of %d.\n",
927 		    __FILE__, __LINE__, bce_tx_ticks_int,
928 		    DEFAULT_TX_TICKS_INT);
929 		sc->bce_tx_ticks_int =
930 		    DEFAULT_TX_TICKS_INT;
931 	   }
932 
933 	if (bce_tx_ticks <= 100) {
934 		sc->bce_tx_ticks =
935 		    bce_tx_ticks;
936 	} else {
937 		BCE_PRINTF("%s(%d): Illegal value (%d) specified for "
938 		    "hw.bce.tx_ticks!  Setting default of %d.\n",
939 		    __FILE__, __LINE__, bce_tx_ticks,
940 		    DEFAULT_TX_TICKS);
941 		sc->bce_tx_ticks =
942 		    DEFAULT_TX_TICKS;
943 	}
944 
945 	/*
946 	 * Validate the RX trip point (i.e. the number of
947 	 * RX frames received before a status block update is
948 	 * generated and an interrupt is asserted.
949 	 */
950 	if (bce_rx_quick_cons_trip_int <= 100) {
951 		sc->bce_rx_quick_cons_trip_int =
952 		    bce_rx_quick_cons_trip_int;
953 	} else {
954 		BCE_PRINTF("%s(%d): Illegal value (%d) specified for "
955 		    "hw.bce.rx_quick_cons_trip_int!  Setting default of %d.\n",
956 		    __FILE__, __LINE__, bce_rx_quick_cons_trip_int,
957 		    DEFAULT_RX_QUICK_CONS_TRIP_INT);
958 		sc->bce_rx_quick_cons_trip_int =
959 		    DEFAULT_RX_QUICK_CONS_TRIP_INT;
960 	}
961 
962 	if (bce_rx_quick_cons_trip <= 100) {
963 		sc->bce_rx_quick_cons_trip =
964 		    bce_rx_quick_cons_trip;
965 	} else {
966 		BCE_PRINTF("%s(%d): Illegal value (%d) specified for "
967 		    "hw.bce.rx_quick_cons_trip!  Setting default of %d.\n",
968 		    __FILE__, __LINE__, bce_rx_quick_cons_trip,
969 		    DEFAULT_RX_QUICK_CONS_TRIP);
970 		sc->bce_rx_quick_cons_trip =
971 		    DEFAULT_RX_QUICK_CONS_TRIP;
972 	}
973 
974 	/*
975 	 * Validate the RX ticks count (i.e. the maximum amount
976 	 * of time to wait after the last RX frame has been
977 	 * received before a status block update is generated
978 	 * and an interrupt is asserted.
979 	 */
980 	if (bce_rx_ticks_int <= 100) {
981 		sc->bce_rx_ticks_int = bce_rx_ticks_int;
982 	} else {
983 		BCE_PRINTF("%s(%d): Illegal value (%d) specified for "
984 		    "hw.bce.rx_ticks_int!  Setting default of %d.\n",
985 		    __FILE__, __LINE__, bce_rx_ticks_int,
986 		    DEFAULT_RX_TICKS_INT);
987 		sc->bce_rx_ticks_int = DEFAULT_RX_TICKS_INT;
988 	}
989 
990 	if (bce_rx_ticks <= 100) {
991 		sc->bce_rx_ticks = bce_rx_ticks;
992 	} else {
993 		BCE_PRINTF("%s(%d): Illegal value (%d) specified for "
994 		    "hw.bce.rx_ticks!  Setting default of %d.\n",
995 		    __FILE__, __LINE__, bce_rx_ticks,
996 		    DEFAULT_RX_TICKS);
997 		sc->bce_rx_ticks = DEFAULT_RX_TICKS;
998 	}
999 
1000 	/* Disabling both RX ticks and RX trips will prevent interrupts. */
1001 	if ((bce_rx_quick_cons_trip == 0) && (bce_rx_ticks == 0)) {
1002 		BCE_PRINTF("%s(%d): Cannot set both hw.bce.rx_ticks and "
1003 		    "hw.bce.rx_quick_cons_trip to 0. Setting default values.\n",
1004 		   __FILE__, __LINE__);
1005 		sc->bce_rx_ticks = DEFAULT_RX_TICKS;
1006 		sc->bce_rx_quick_cons_trip = DEFAULT_RX_QUICK_CONS_TRIP;
1007 	}
1008 
1009 	/* Disabling both TX ticks and TX trips will prevent interrupts. */
1010 	if ((bce_tx_quick_cons_trip == 0) && (bce_tx_ticks == 0)) {
1011 		BCE_PRINTF("%s(%d): Cannot set both hw.bce.tx_ticks and "
1012 		    "hw.bce.tx_quick_cons_trip to 0. Setting default values.\n",
1013 		   __FILE__, __LINE__);
1014 		sc->bce_tx_ticks = DEFAULT_TX_TICKS;
1015 		sc->bce_tx_quick_cons_trip = DEFAULT_TX_QUICK_CONS_TRIP;
1016 	}
1017 
1018 }
1019 
1020 
1021 /****************************************************************************/
1022 /* Device attach function.                                                  */
1023 /*                                                                          */
1024 /* Allocates device resources, performs secondary chip identification,      */
1025 /* resets and initializes the hardware, and initializes driver instance     */
1026 /* variables.                                                               */
1027 /*                                                                          */
1028 /* Returns:                                                                 */
1029 /*   0 on success, positive value on failure.                               */
1030 /****************************************************************************/
1031 static int
1032 bce_attach(device_t dev)
1033 {
1034 	struct bce_softc *sc;
1035 	struct ifnet *ifp;
1036 	u32 val;
1037 	int error, rid, rc = 0;
1038 
1039 	sc = device_get_softc(dev);
1040 	sc->bce_dev = dev;
1041 
1042 	DBENTER(BCE_VERBOSE_LOAD | BCE_VERBOSE_RESET);
1043 
1044 	sc->bce_unit = device_get_unit(dev);
1045 
1046 	/* Set initial device and PHY flags */
1047 	sc->bce_flags = 0;
1048 	sc->bce_phy_flags = 0;
1049 
1050 	bce_set_tunables(sc);
1051 
1052 	pci_enable_busmaster(dev);
1053 
1054 	/* Allocate PCI memory resources. */
1055 	rid = PCIR_BAR(0);
1056 	sc->bce_res_mem = bus_alloc_resource_any(dev, SYS_RES_MEMORY,
1057 		&rid, RF_ACTIVE);
1058 
1059 	if (sc->bce_res_mem == NULL) {
1060 		BCE_PRINTF("%s(%d): PCI memory allocation failed\n",
1061 		    __FILE__, __LINE__);
1062 		rc = ENXIO;
1063 		goto bce_attach_fail;
1064 	}
1065 
1066 	/* Get various resource handles. */
1067 	sc->bce_btag    = rman_get_bustag(sc->bce_res_mem);
1068 	sc->bce_bhandle = rman_get_bushandle(sc->bce_res_mem);
1069 	sc->bce_vhandle = (vm_offset_t) rman_get_virtual(sc->bce_res_mem);
1070 
1071 	bce_probe_pci_caps(dev, sc);
1072 
1073 	rid = 1;
1074 #if 0
1075 	/* Try allocating MSI-X interrupts. */
1076 	if ((sc->bce_cap_flags & BCE_MSIX_CAPABLE_FLAG) &&
1077 		(bce_msi_enable >= 2) &&
1078 		((sc->bce_res_irq = bus_alloc_resource_any(dev, SYS_RES_MEMORY,
1079 		&rid, RF_ACTIVE)) != NULL)) {
1080 
1081 		msi_needed = sc->bce_msi_count = 1;
1082 
1083 		if (((error = pci_alloc_msix(dev, &sc->bce_msi_count)) != 0) ||
1084 			(sc->bce_msi_count != msi_needed)) {
1085 			BCE_PRINTF("%s(%d): MSI-X allocation failed! Requested = %d,"
1086 				"Received = %d, error = %d\n", __FILE__, __LINE__,
1087 				msi_needed, sc->bce_msi_count, error);
1088 			sc->bce_msi_count = 0;
1089 			pci_release_msi(dev);
1090 			bus_release_resource(dev, SYS_RES_MEMORY, rid,
1091 				sc->bce_res_irq);
1092 			sc->bce_res_irq = NULL;
1093 		} else {
1094 			DBPRINT(sc, BCE_INFO_LOAD, "%s(): Using MSI-X interrupt.\n",
1095 				__FUNCTION__);
1096 			sc->bce_flags |= BCE_USING_MSIX_FLAG;
1097 			sc->bce_intr = bce_intr;
1098 		}
1099 	}
1100 #endif
1101 
1102 	/* Try allocating a MSI interrupt. */
1103 	if ((sc->bce_cap_flags & BCE_MSI_CAPABLE_FLAG) &&
1104 		(bce_msi_enable >= 1) && (sc->bce_msi_count == 0)) {
1105 		sc->bce_msi_count = 1;
1106 		if ((error = pci_alloc_msi(dev, &sc->bce_msi_count)) != 0) {
1107 			BCE_PRINTF("%s(%d): MSI allocation failed! "
1108 			    "error = %d\n", __FILE__, __LINE__, error);
1109 			sc->bce_msi_count = 0;
1110 			pci_release_msi(dev);
1111 		} else {
1112 			DBPRINT(sc, BCE_INFO_LOAD, "%s(): Using MSI "
1113 			    "interrupt.\n", __FUNCTION__);
1114 			sc->bce_flags |= BCE_USING_MSI_FLAG;
1115 			if ((BCE_CHIP_NUM(sc) == BCE_CHIP_NUM_5709) ||
1116 				(BCE_CHIP_NUM(sc) == BCE_CHIP_NUM_5716))
1117 				sc->bce_flags |= BCE_ONE_SHOT_MSI_FLAG;
1118 			sc->bce_irq_rid = 1;
1119 			sc->bce_intr = bce_intr;
1120 		}
1121 	}
1122 
1123 	/* Try allocating a legacy interrupt. */
1124 	if (sc->bce_msi_count == 0) {
1125 		DBPRINT(sc, BCE_INFO_LOAD, "%s(): Using INTx interrupt.\n",
1126 			__FUNCTION__);
1127 		rid = 0;
1128 		sc->bce_intr = bce_intr;
1129 	}
1130 
1131 	sc->bce_res_irq = bus_alloc_resource_any(dev, SYS_RES_IRQ,
1132 	    &rid, RF_SHAREABLE | RF_ACTIVE);
1133 
1134 	sc->bce_irq_rid = rid;
1135 
1136 	/* Report any IRQ allocation errors. */
1137 	if (sc->bce_res_irq == NULL) {
1138 		BCE_PRINTF("%s(%d): PCI map interrupt failed!\n",
1139 		    __FILE__, __LINE__);
1140 		rc = ENXIO;
1141 		goto bce_attach_fail;
1142 	}
1143 
1144 	/* Initialize mutex for the current device instance. */
1145 	BCE_LOCK_INIT(sc, device_get_nameunit(dev));
1146 
1147 	/*
1148 	 * Configure byte swap and enable indirect register access.
1149 	 * Rely on CPU to do target byte swapping on big endian systems.
1150 	 * Access to registers outside of PCI configurtion space are not
1151 	 * valid until this is done.
1152 	 */
1153 	pci_write_config(dev, BCE_PCICFG_MISC_CONFIG,
1154 	    BCE_PCICFG_MISC_CONFIG_REG_WINDOW_ENA |
1155 	    BCE_PCICFG_MISC_CONFIG_TARGET_MB_WORD_SWAP, 4);
1156 
1157 	/* Save ASIC revsion info. */
1158 	sc->bce_chipid =  REG_RD(sc, BCE_MISC_ID);
1159 
1160 	/* Weed out any non-production controller revisions. */
1161 	switch(BCE_CHIP_ID(sc)) {
1162 	case BCE_CHIP_ID_5706_A0:
1163 	case BCE_CHIP_ID_5706_A1:
1164 	case BCE_CHIP_ID_5708_A0:
1165 	case BCE_CHIP_ID_5708_B0:
1166 	case BCE_CHIP_ID_5709_A0:
1167 	case BCE_CHIP_ID_5709_B0:
1168 	case BCE_CHIP_ID_5709_B1:
1169 	case BCE_CHIP_ID_5709_B2:
1170 		BCE_PRINTF("%s(%d): Unsupported controller "
1171 		    "revision (%c%d)!\n", __FILE__, __LINE__,
1172 		    (((pci_read_config(dev, PCIR_REVID, 4) &
1173 		    0xf0) >> 4) + 'A'), (pci_read_config(dev,
1174 		    PCIR_REVID, 4) & 0xf));
1175 		rc = ENODEV;
1176 		goto bce_attach_fail;
1177 	}
1178 
1179 	/*
1180 	 * The embedded PCIe to PCI-X bridge (EPB)
1181 	 * in the 5708 cannot address memory above
1182 	 * 40 bits (E7_5708CB1_23043 & E6_5708SB1_23043).
1183 	 */
1184 	if (BCE_CHIP_NUM(sc) == BCE_CHIP_NUM_5708)
1185 		sc->max_bus_addr = BCE_BUS_SPACE_MAXADDR;
1186 	else
1187 		sc->max_bus_addr = BUS_SPACE_MAXADDR;
1188 
1189 	/*
1190 	 * Find the base address for shared memory access.
1191 	 * Newer versions of bootcode use a signature and offset
1192 	 * while older versions use a fixed address.
1193 	 */
1194 	val = REG_RD_IND(sc, BCE_SHM_HDR_SIGNATURE);
1195 	if ((val & BCE_SHM_HDR_SIGNATURE_SIG_MASK) == BCE_SHM_HDR_SIGNATURE_SIG)
1196 		/* Multi-port devices use different offsets in shared memory. */
1197 		sc->bce_shmem_base = REG_RD_IND(sc, BCE_SHM_HDR_ADDR_0 +
1198 		    (pci_get_function(sc->bce_dev) << 2));
1199 	else
1200 		sc->bce_shmem_base = HOST_VIEW_SHMEM_BASE;
1201 
1202 	DBPRINT(sc, BCE_VERBOSE_FIRMWARE, "%s(): bce_shmem_base = 0x%08X\n",
1203 	    __FUNCTION__, sc->bce_shmem_base);
1204 
1205 	/* Fetch the bootcode revision. */
1206 	val = bce_shmem_rd(sc, BCE_DEV_INFO_BC_REV);
1207 	for (int i = 0, j = 0; i < 3; i++) {
1208 		u8 num;
1209 
1210 		num = (u8) (val >> (24 - (i * 8)));
1211 		for (int k = 100, skip0 = 1; k >= 1; num %= k, k /= 10) {
1212 			if (num >= k || !skip0 || k == 1) {
1213 				sc->bce_bc_ver[j++] = (num / k) + '0';
1214 				skip0 = 0;
1215 			}
1216 		}
1217 
1218 		if (i != 2)
1219 			sc->bce_bc_ver[j++] = '.';
1220 	}
1221 
1222 	/* Check if any management firwmare is enabled. */
1223 	val = bce_shmem_rd(sc, BCE_PORT_FEATURE);
1224 	if (val & BCE_PORT_FEATURE_ASF_ENABLED) {
1225 		sc->bce_flags |= BCE_MFW_ENABLE_FLAG;
1226 
1227 		/* Allow time for firmware to enter the running state. */
1228 		for (int i = 0; i < 30; i++) {
1229 			val = bce_shmem_rd(sc, BCE_BC_STATE_CONDITION);
1230 			if (val & BCE_CONDITION_MFW_RUN_MASK)
1231 				break;
1232 			DELAY(10000);
1233 		}
1234 
1235 		/* Check if management firmware is running. */
1236 		val = bce_shmem_rd(sc, BCE_BC_STATE_CONDITION);
1237 		val &= BCE_CONDITION_MFW_RUN_MASK;
1238 		if ((val != BCE_CONDITION_MFW_RUN_UNKNOWN) &&
1239 		    (val != BCE_CONDITION_MFW_RUN_NONE)) {
1240 			u32 addr = bce_shmem_rd(sc, BCE_MFW_VER_PTR);
1241 			int i = 0;
1242 
1243 			/* Read the management firmware version string. */
1244 			for (int j = 0; j < 3; j++) {
1245 				val = bce_reg_rd_ind(sc, addr + j * 4);
1246 				val = bswap32(val);
1247 				memcpy(&sc->bce_mfw_ver[i], &val, 4);
1248 				i += 4;
1249 			}
1250 		} else {
1251 			/* May cause firmware synchronization timeouts. */
1252 			BCE_PRINTF("%s(%d): Management firmware enabled "
1253 			    "but not running!\n", __FILE__, __LINE__);
1254 			strcpy(sc->bce_mfw_ver, "NOT RUNNING!");
1255 
1256 			/* ToDo: Any action the driver should take? */
1257 		}
1258 	}
1259 
1260 	/* Get PCI bus information (speed and type). */
1261 	val = REG_RD(sc, BCE_PCICFG_MISC_STATUS);
1262 	if (val & BCE_PCICFG_MISC_STATUS_PCIX_DET) {
1263 		u32 clkreg;
1264 
1265 		sc->bce_flags |= BCE_PCIX_FLAG;
1266 
1267 		clkreg = REG_RD(sc, BCE_PCICFG_PCI_CLOCK_CONTROL_BITS);
1268 
1269 		clkreg &= BCE_PCICFG_PCI_CLOCK_CONTROL_BITS_PCI_CLK_SPD_DET;
1270 		switch (clkreg) {
1271 		case BCE_PCICFG_PCI_CLOCK_CONTROL_BITS_PCI_CLK_SPD_DET_133MHZ:
1272 			sc->bus_speed_mhz = 133;
1273 			break;
1274 
1275 		case BCE_PCICFG_PCI_CLOCK_CONTROL_BITS_PCI_CLK_SPD_DET_95MHZ:
1276 			sc->bus_speed_mhz = 100;
1277 			break;
1278 
1279 		case BCE_PCICFG_PCI_CLOCK_CONTROL_BITS_PCI_CLK_SPD_DET_66MHZ:
1280 		case BCE_PCICFG_PCI_CLOCK_CONTROL_BITS_PCI_CLK_SPD_DET_80MHZ:
1281 			sc->bus_speed_mhz = 66;
1282 			break;
1283 
1284 		case BCE_PCICFG_PCI_CLOCK_CONTROL_BITS_PCI_CLK_SPD_DET_48MHZ:
1285 		case BCE_PCICFG_PCI_CLOCK_CONTROL_BITS_PCI_CLK_SPD_DET_55MHZ:
1286 			sc->bus_speed_mhz = 50;
1287 			break;
1288 
1289 		case BCE_PCICFG_PCI_CLOCK_CONTROL_BITS_PCI_CLK_SPD_DET_LOW:
1290 		case BCE_PCICFG_PCI_CLOCK_CONTROL_BITS_PCI_CLK_SPD_DET_32MHZ:
1291 		case BCE_PCICFG_PCI_CLOCK_CONTROL_BITS_PCI_CLK_SPD_DET_38MHZ:
1292 			sc->bus_speed_mhz = 33;
1293 			break;
1294 		}
1295 	} else {
1296 		if (val & BCE_PCICFG_MISC_STATUS_M66EN)
1297 			sc->bus_speed_mhz = 66;
1298 		else
1299 			sc->bus_speed_mhz = 33;
1300 	}
1301 
1302 	if (val & BCE_PCICFG_MISC_STATUS_32BIT_DET)
1303 		sc->bce_flags |= BCE_PCI_32BIT_FLAG;
1304 
1305 	/* Reset controller and announce to bootcode that driver is present. */
1306 	if (bce_reset(sc, BCE_DRV_MSG_CODE_RESET)) {
1307 		BCE_PRINTF("%s(%d): Controller reset failed!\n",
1308 		    __FILE__, __LINE__);
1309 		rc = ENXIO;
1310 		goto bce_attach_fail;
1311 	}
1312 
1313 	/* Initialize the controller. */
1314 	if (bce_chipinit(sc)) {
1315 		BCE_PRINTF("%s(%d): Controller initialization failed!\n",
1316 		    __FILE__, __LINE__);
1317 		rc = ENXIO;
1318 		goto bce_attach_fail;
1319 	}
1320 
1321 	/* Perform NVRAM test. */
1322 	if (bce_nvram_test(sc)) {
1323 		BCE_PRINTF("%s(%d): NVRAM test failed!\n",
1324 		    __FILE__, __LINE__);
1325 		rc = ENXIO;
1326 		goto bce_attach_fail;
1327 	}
1328 
1329 	/* Fetch the permanent Ethernet MAC address. */
1330 	bce_get_mac_addr(sc);
1331 
1332 	/*
1333 	 * Trip points control how many BDs
1334 	 * should be ready before generating an
1335 	 * interrupt while ticks control how long
1336 	 * a BD can sit in the chain before
1337 	 * generating an interrupt.  Set the default
1338 	 * values for the RX and TX chains.
1339 	 */
1340 
1341 	/* Not used for L2. */
1342 	sc->bce_comp_prod_trip_int     = 0;
1343 	sc->bce_comp_prod_trip         = 0;
1344 	sc->bce_com_ticks_int          = 0;
1345 	sc->bce_com_ticks              = 0;
1346 	sc->bce_cmd_ticks_int          = 0;
1347 	sc->bce_cmd_ticks              = 0;
1348 
1349 	/* Update statistics once every second. */
1350 	sc->bce_stats_ticks = 1000000 & 0xffff00;
1351 
1352 	/* Find the media type for the adapter. */
1353 	bce_get_media(sc);
1354 
1355 	/* Store data needed by PHY driver for backplane applications */
1356 	sc->bce_shared_hw_cfg = bce_shmem_rd(sc, BCE_SHARED_HW_CFG_CONFIG);
1357 	sc->bce_port_hw_cfg   = bce_shmem_rd(sc, BCE_PORT_HW_CFG_CONFIG);
1358 
1359 	/* Allocate DMA memory resources. */
1360 	if (bce_dma_alloc(dev)) {
1361 		BCE_PRINTF("%s(%d): DMA resource allocation failed!\n",
1362 		    __FILE__, __LINE__);
1363 		rc = ENXIO;
1364 		goto bce_attach_fail;
1365 	}
1366 
1367 	/* Allocate an ifnet structure. */
1368 	ifp = sc->bce_ifp = if_alloc(IFT_ETHER);
1369 	if (ifp == NULL) {
1370 		BCE_PRINTF("%s(%d): Interface allocation failed!\n",
1371 		    __FILE__, __LINE__);
1372 		rc = ENXIO;
1373 		goto bce_attach_fail;
1374 	}
1375 
1376 	/* Initialize the ifnet interface. */
1377 	ifp->if_softc	= sc;
1378 	if_initname(ifp, device_get_name(dev), device_get_unit(dev));
1379 	ifp->if_flags	= IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
1380 	ifp->if_ioctl	= bce_ioctl;
1381 	ifp->if_start	= bce_start;
1382 	ifp->if_init	= bce_init;
1383 	ifp->if_mtu	= ETHERMTU;
1384 
1385 	if (bce_tso_enable) {
1386 		ifp->if_hwassist = BCE_IF_HWASSIST | CSUM_TSO;
1387 		ifp->if_capabilities = BCE_IF_CAPABILITIES | IFCAP_TSO4 |
1388 		    IFCAP_VLAN_HWTSO;
1389 	} else {
1390 		ifp->if_hwassist = BCE_IF_HWASSIST;
1391 		ifp->if_capabilities = BCE_IF_CAPABILITIES;
1392 	}
1393 
1394 	ifp->if_capenable = ifp->if_capabilities;
1395 
1396 	/*
1397 	 * Assume standard mbuf sizes for buffer allocation.
1398 	 * This may change later if the MTU size is set to
1399 	 * something other than 1500.
1400 	 */
1401 	bce_get_rx_buffer_sizes(sc,
1402 	    (ETHER_MAX_LEN - ETHER_HDR_LEN - ETHER_CRC_LEN));
1403 
1404 	/* Recalculate our buffer allocation sizes. */
1405 	ifp->if_snd.ifq_drv_maxlen = USABLE_TX_BD_ALLOC;
1406 	IFQ_SET_MAXLEN(&ifp->if_snd, ifp->if_snd.ifq_drv_maxlen);
1407 	IFQ_SET_READY(&ifp->if_snd);
1408 
1409 	if (sc->bce_phy_flags & BCE_PHY_2_5G_CAPABLE_FLAG)
1410 		ifp->if_baudrate = IF_Mbps(2500ULL);
1411 	else
1412 		ifp->if_baudrate = IF_Mbps(1000);
1413 
1414 	/* Handle any special PHY initialization for SerDes PHYs. */
1415 	bce_init_media(sc);
1416 
1417 	/* MII child bus by attaching the PHY. */
1418 	rc = mii_attach(dev, &sc->bce_miibus, ifp, bce_ifmedia_upd,
1419 	    bce_ifmedia_sts, BMSR_DEFCAPMASK, sc->bce_phy_addr,
1420 	    MII_OFFSET_ANY, MIIF_DOPAUSE);
1421 	if (rc != 0) {
1422 		BCE_PRINTF("%s(%d): attaching PHYs failed\n", __FILE__,
1423 		    __LINE__);
1424 		goto bce_attach_fail;
1425 	}
1426 
1427 	/* Attach to the Ethernet interface list. */
1428 	ether_ifattach(ifp, sc->eaddr);
1429 
1430 #if __FreeBSD_version < 500000
1431 	callout_init(&sc->bce_tick_callout);
1432 	callout_init(&sc->bce_pulse_callout);
1433 #else
1434 	callout_init_mtx(&sc->bce_tick_callout, &sc->bce_mtx, 0);
1435 	callout_init_mtx(&sc->bce_pulse_callout, &sc->bce_mtx, 0);
1436 #endif
1437 
1438 	/* Hookup IRQ last. */
1439 	rc = bus_setup_intr(dev, sc->bce_res_irq, INTR_TYPE_NET | INTR_MPSAFE,
1440 		NULL, bce_intr, sc, &sc->bce_intrhand);
1441 
1442 	if (rc) {
1443 		BCE_PRINTF("%s(%d): Failed to setup IRQ!\n",
1444 		    __FILE__, __LINE__);
1445 		bce_detach(dev);
1446 		goto bce_attach_exit;
1447 	}
1448 
1449 	/*
1450 	 * At this point we've acquired all the resources
1451 	 * we need to run so there's no turning back, we're
1452 	 * cleared for launch.
1453 	 */
1454 
1455 	/* Print some important debugging info. */
1456 	DBRUNMSG(BCE_INFO, bce_dump_driver_state(sc));
1457 
1458 	/* Add the supported sysctls to the kernel. */
1459 	bce_add_sysctls(sc);
1460 
1461 	BCE_LOCK(sc);
1462 
1463 	/*
1464 	 * The chip reset earlier notified the bootcode that
1465 	 * a driver is present.  We now need to start our pulse
1466 	 * routine so that the bootcode is reminded that we're
1467 	 * still running.
1468 	 */
1469 	bce_pulse(sc);
1470 
1471 	bce_mgmt_init_locked(sc);
1472 	BCE_UNLOCK(sc);
1473 
1474 	/* Finally, print some useful adapter info */
1475 	bce_print_adapter_info(sc);
1476 	DBPRINT(sc, BCE_FATAL, "%s(): sc = %p\n",
1477 		__FUNCTION__, sc);
1478 
1479 	goto bce_attach_exit;
1480 
1481 bce_attach_fail:
1482 	bce_release_resources(sc);
1483 
1484 bce_attach_exit:
1485 
1486 	DBEXIT(BCE_VERBOSE_LOAD | BCE_VERBOSE_RESET);
1487 
1488 	return(rc);
1489 }
1490 
1491 
1492 /****************************************************************************/
1493 /* Device detach function.                                                  */
1494 /*                                                                          */
1495 /* Stops the controller, resets the controller, and releases resources.     */
1496 /*                                                                          */
1497 /* Returns:                                                                 */
1498 /*   0 on success, positive value on failure.                               */
1499 /****************************************************************************/
1500 static int
1501 bce_detach(device_t dev)
1502 {
1503 	struct bce_softc *sc = device_get_softc(dev);
1504 	struct ifnet *ifp;
1505 	u32 msg;
1506 
1507 	DBENTER(BCE_VERBOSE_UNLOAD | BCE_VERBOSE_RESET);
1508 
1509 	ifp = sc->bce_ifp;
1510 
1511 	/* Stop and reset the controller. */
1512 	BCE_LOCK(sc);
1513 
1514 	/* Stop the pulse so the bootcode can go to driver absent state. */
1515 	callout_stop(&sc->bce_pulse_callout);
1516 
1517 	bce_stop(sc);
1518 	if (sc->bce_flags & BCE_NO_WOL_FLAG)
1519 		msg = BCE_DRV_MSG_CODE_UNLOAD_LNK_DN;
1520 	else
1521 		msg = BCE_DRV_MSG_CODE_UNLOAD;
1522 	bce_reset(sc, msg);
1523 
1524 	BCE_UNLOCK(sc);
1525 
1526 	ether_ifdetach(ifp);
1527 
1528 	/* If we have a child device on the MII bus remove it too. */
1529 	bus_generic_detach(dev);
1530 	device_delete_child(dev, sc->bce_miibus);
1531 
1532 	/* Release all remaining resources. */
1533 	bce_release_resources(sc);
1534 
1535 	DBEXIT(BCE_VERBOSE_UNLOAD | BCE_VERBOSE_RESET);
1536 
1537 	return(0);
1538 }
1539 
1540 
1541 /****************************************************************************/
1542 /* Device shutdown function.                                                */
1543 /*                                                                          */
1544 /* Stops and resets the controller.                                         */
1545 /*                                                                          */
1546 /* Returns:                                                                 */
1547 /*   0 on success, positive value on failure.                               */
1548 /****************************************************************************/
1549 static int
1550 bce_shutdown(device_t dev)
1551 {
1552 	struct bce_softc *sc = device_get_softc(dev);
1553 	u32 msg;
1554 
1555 	DBENTER(BCE_VERBOSE);
1556 
1557 	BCE_LOCK(sc);
1558 	bce_stop(sc);
1559 	if (sc->bce_flags & BCE_NO_WOL_FLAG)
1560 		msg = BCE_DRV_MSG_CODE_UNLOAD_LNK_DN;
1561 	else
1562 		msg = BCE_DRV_MSG_CODE_UNLOAD;
1563 	bce_reset(sc, msg);
1564 	BCE_UNLOCK(sc);
1565 
1566 	DBEXIT(BCE_VERBOSE);
1567 
1568 	return (0);
1569 }
1570 
1571 
1572 #ifdef BCE_DEBUG
1573 /****************************************************************************/
1574 /* Register read.                                                           */
1575 /*                                                                          */
1576 /* Returns:                                                                 */
1577 /*   The value of the register.                                             */
1578 /****************************************************************************/
1579 static u32
1580 bce_reg_rd(struct bce_softc *sc, u32 offset)
1581 {
1582 	u32 val = bus_space_read_4(sc->bce_btag, sc->bce_bhandle, offset);
1583 	DBPRINT(sc, BCE_INSANE_REG, "%s(); offset = 0x%08X, val = 0x%08X\n",
1584 		__FUNCTION__, offset, val);
1585 	return val;
1586 }
1587 
1588 
1589 /****************************************************************************/
1590 /* Register write (16 bit).                                                 */
1591 /*                                                                          */
1592 /* Returns:                                                                 */
1593 /*   Nothing.                                                               */
1594 /****************************************************************************/
1595 static void
1596 bce_reg_wr16(struct bce_softc *sc, u32 offset, u16 val)
1597 {
1598 	DBPRINT(sc, BCE_INSANE_REG, "%s(); offset = 0x%08X, val = 0x%04X\n",
1599 		__FUNCTION__, offset, val);
1600 	bus_space_write_2(sc->bce_btag, sc->bce_bhandle, offset, val);
1601 }
1602 
1603 
1604 /****************************************************************************/
1605 /* Register write.                                                          */
1606 /*                                                                          */
1607 /* Returns:                                                                 */
1608 /*   Nothing.                                                               */
1609 /****************************************************************************/
1610 static void
1611 bce_reg_wr(struct bce_softc *sc, u32 offset, u32 val)
1612 {
1613 	DBPRINT(sc, BCE_INSANE_REG, "%s(); offset = 0x%08X, val = 0x%08X\n",
1614 		__FUNCTION__, offset, val);
1615 	bus_space_write_4(sc->bce_btag, sc->bce_bhandle, offset, val);
1616 }
1617 #endif
1618 
1619 /****************************************************************************/
1620 /* Indirect register read.                                                  */
1621 /*                                                                          */
1622 /* Reads NetXtreme II registers using an index/data register pair in PCI    */
1623 /* configuration space.  Using this mechanism avoids issues with posted     */
1624 /* reads but is much slower than memory-mapped I/O.                         */
1625 /*                                                                          */
1626 /* Returns:                                                                 */
1627 /*   The value of the register.                                             */
1628 /****************************************************************************/
1629 static u32
1630 bce_reg_rd_ind(struct bce_softc *sc, u32 offset)
1631 {
1632 	device_t dev;
1633 	dev = sc->bce_dev;
1634 
1635 	pci_write_config(dev, BCE_PCICFG_REG_WINDOW_ADDRESS, offset, 4);
1636 #ifdef BCE_DEBUG
1637 	{
1638 		u32 val;
1639 		val = pci_read_config(dev, BCE_PCICFG_REG_WINDOW, 4);
1640 		DBPRINT(sc, BCE_INSANE_REG, "%s(); offset = 0x%08X, val = 0x%08X\n",
1641 			__FUNCTION__, offset, val);
1642 		return val;
1643 	}
1644 #else
1645 	return pci_read_config(dev, BCE_PCICFG_REG_WINDOW, 4);
1646 #endif
1647 }
1648 
1649 
1650 /****************************************************************************/
1651 /* Indirect register write.                                                 */
1652 /*                                                                          */
1653 /* Writes NetXtreme II registers using an index/data register pair in PCI   */
1654 /* configuration space.  Using this mechanism avoids issues with posted     */
1655 /* writes but is muchh slower than memory-mapped I/O.                       */
1656 /*                                                                          */
1657 /* Returns:                                                                 */
1658 /*   Nothing.                                                               */
1659 /****************************************************************************/
1660 static void
1661 bce_reg_wr_ind(struct bce_softc *sc, u32 offset, u32 val)
1662 {
1663 	device_t dev;
1664 	dev = sc->bce_dev;
1665 
1666 	DBPRINT(sc, BCE_INSANE_REG, "%s(); offset = 0x%08X, val = 0x%08X\n",
1667 		__FUNCTION__, offset, val);
1668 
1669 	pci_write_config(dev, BCE_PCICFG_REG_WINDOW_ADDRESS, offset, 4);
1670 	pci_write_config(dev, BCE_PCICFG_REG_WINDOW, val, 4);
1671 }
1672 
1673 
1674 /****************************************************************************/
1675 /* Shared memory write.                                                     */
1676 /*                                                                          */
1677 /* Writes NetXtreme II shared memory region.                                */
1678 /*                                                                          */
1679 /* Returns:                                                                 */
1680 /*   Nothing.                                                               */
1681 /****************************************************************************/
1682 static void
1683 bce_shmem_wr(struct bce_softc *sc, u32 offset, u32 val)
1684 {
1685 	DBPRINT(sc, BCE_VERBOSE_FIRMWARE, "%s(): Writing 0x%08X  to  "
1686 	    "0x%08X\n",	__FUNCTION__, val, offset);
1687 
1688 	bce_reg_wr_ind(sc, sc->bce_shmem_base + offset, val);
1689 }
1690 
1691 
1692 /****************************************************************************/
1693 /* Shared memory read.                                                      */
1694 /*                                                                          */
1695 /* Reads NetXtreme II shared memory region.                                 */
1696 /*                                                                          */
1697 /* Returns:                                                                 */
1698 /*   The 32 bit value read.                                                 */
1699 /****************************************************************************/
1700 static u32
1701 bce_shmem_rd(struct bce_softc *sc, u32 offset)
1702 {
1703 	u32 val = bce_reg_rd_ind(sc, sc->bce_shmem_base + offset);
1704 
1705 	DBPRINT(sc, BCE_VERBOSE_FIRMWARE, "%s(): Reading 0x%08X from "
1706 	    "0x%08X\n",	__FUNCTION__, val, offset);
1707 
1708 	return val;
1709 }
1710 
1711 
1712 #ifdef BCE_DEBUG
1713 /****************************************************************************/
1714 /* Context memory read.                                                     */
1715 /*                                                                          */
1716 /* The NetXtreme II controller uses context memory to track connection      */
1717 /* information for L2 and higher network protocols.                         */
1718 /*                                                                          */
1719 /* Returns:                                                                 */
1720 /*   The requested 32 bit value of context memory.                          */
1721 /****************************************************************************/
1722 static u32
1723 bce_ctx_rd(struct bce_softc *sc, u32 cid_addr, u32 ctx_offset)
1724 {
1725 	u32 idx, offset, retry_cnt = 5, val;
1726 
1727 	DBRUNIF((cid_addr > MAX_CID_ADDR || ctx_offset & 0x3 ||
1728 	    cid_addr & CTX_MASK), BCE_PRINTF("%s(): Invalid CID "
1729 	    "address: 0x%08X.\n", __FUNCTION__, cid_addr));
1730 
1731 	offset = ctx_offset + cid_addr;
1732 
1733 	if ((BCE_CHIP_NUM(sc) == BCE_CHIP_NUM_5709) ||
1734 		(BCE_CHIP_NUM(sc) == BCE_CHIP_NUM_5716)) {
1735 
1736 		REG_WR(sc, BCE_CTX_CTX_CTRL, (offset | BCE_CTX_CTX_CTRL_READ_REQ));
1737 
1738 		for (idx = 0; idx < retry_cnt; idx++) {
1739 			val = REG_RD(sc, BCE_CTX_CTX_CTRL);
1740 			if ((val & BCE_CTX_CTX_CTRL_READ_REQ) == 0)
1741 				break;
1742 			DELAY(5);
1743 		}
1744 
1745 		if (val & BCE_CTX_CTX_CTRL_READ_REQ)
1746 			BCE_PRINTF("%s(%d); Unable to read CTX memory: "
1747 			    "cid_addr = 0x%08X, offset = 0x%08X!\n",
1748 			    __FILE__, __LINE__, cid_addr, ctx_offset);
1749 
1750 		val = REG_RD(sc, BCE_CTX_CTX_DATA);
1751 	} else {
1752 		REG_WR(sc, BCE_CTX_DATA_ADR, offset);
1753 		val = REG_RD(sc, BCE_CTX_DATA);
1754 	}
1755 
1756 	DBPRINT(sc, BCE_EXTREME_CTX, "%s(); cid_addr = 0x%08X, offset = 0x%08X, "
1757 		"val = 0x%08X\n", __FUNCTION__, cid_addr, ctx_offset, val);
1758 
1759 	return(val);
1760 }
1761 #endif
1762 
1763 
1764 /****************************************************************************/
1765 /* Context memory write.                                                    */
1766 /*                                                                          */
1767 /* The NetXtreme II controller uses context memory to track connection      */
1768 /* information for L2 and higher network protocols.                         */
1769 /*                                                                          */
1770 /* Returns:                                                                 */
1771 /*   Nothing.                                                               */
1772 /****************************************************************************/
1773 static void
1774 bce_ctx_wr(struct bce_softc *sc, u32 cid_addr, u32 ctx_offset, u32 ctx_val)
1775 {
1776 	u32 idx, offset = ctx_offset + cid_addr;
1777 	u32 val, retry_cnt = 5;
1778 
1779 	DBPRINT(sc, BCE_EXTREME_CTX, "%s(); cid_addr = 0x%08X, offset = 0x%08X, "
1780 		"val = 0x%08X\n", __FUNCTION__, cid_addr, ctx_offset, ctx_val);
1781 
1782 	DBRUNIF((cid_addr > MAX_CID_ADDR || ctx_offset & 0x3 || cid_addr & CTX_MASK),
1783 		BCE_PRINTF("%s(): Invalid CID address: 0x%08X.\n",
1784 		    __FUNCTION__, cid_addr));
1785 
1786 	if ((BCE_CHIP_NUM(sc) == BCE_CHIP_NUM_5709) ||
1787 		(BCE_CHIP_NUM(sc) == BCE_CHIP_NUM_5716)) {
1788 
1789 		REG_WR(sc, BCE_CTX_CTX_DATA, ctx_val);
1790 		REG_WR(sc, BCE_CTX_CTX_CTRL, (offset | BCE_CTX_CTX_CTRL_WRITE_REQ));
1791 
1792 		for (idx = 0; idx < retry_cnt; idx++) {
1793 			val = REG_RD(sc, BCE_CTX_CTX_CTRL);
1794 			if ((val & BCE_CTX_CTX_CTRL_WRITE_REQ) == 0)
1795 				break;
1796 			DELAY(5);
1797 		}
1798 
1799 		if (val & BCE_CTX_CTX_CTRL_WRITE_REQ)
1800 			BCE_PRINTF("%s(%d); Unable to write CTX memory: "
1801 			    "cid_addr = 0x%08X, offset = 0x%08X!\n",
1802 			    __FILE__, __LINE__, cid_addr, ctx_offset);
1803 
1804 	} else {
1805 		REG_WR(sc, BCE_CTX_DATA_ADR, offset);
1806 		REG_WR(sc, BCE_CTX_DATA, ctx_val);
1807 	}
1808 }
1809 
1810 
1811 /****************************************************************************/
1812 /* PHY register read.                                                       */
1813 /*                                                                          */
1814 /* Implements register reads on the MII bus.                                */
1815 /*                                                                          */
1816 /* Returns:                                                                 */
1817 /*   The value of the register.                                             */
1818 /****************************************************************************/
1819 static int
1820 bce_miibus_read_reg(device_t dev, int phy, int reg)
1821 {
1822 	struct bce_softc *sc;
1823 	u32 val;
1824 	int i;
1825 
1826 	sc = device_get_softc(dev);
1827 
1828 	/* Make sure we are accessing the correct PHY address. */
1829 	if (phy != sc->bce_phy_addr) {
1830 		DBPRINT(sc, BCE_INSANE_PHY, "Invalid PHY address %d "
1831 		    "for PHY read!\n", phy);
1832 		return(0);
1833 	}
1834 
1835     /*
1836      * The 5709S PHY is an IEEE Clause 45 PHY
1837      * with special mappings to work with IEEE
1838      * Clause 22 register accesses.
1839      */
1840 	if ((sc->bce_phy_flags & BCE_PHY_IEEE_CLAUSE_45_FLAG) != 0) {
1841 		if (reg >= MII_BMCR && reg <= MII_ANLPRNP)
1842 			reg += 0x10;
1843 	}
1844 
1845     if (sc->bce_phy_flags & BCE_PHY_INT_MODE_AUTO_POLLING_FLAG) {
1846 		val = REG_RD(sc, BCE_EMAC_MDIO_MODE);
1847 		val &= ~BCE_EMAC_MDIO_MODE_AUTO_POLL;
1848 
1849 		REG_WR(sc, BCE_EMAC_MDIO_MODE, val);
1850 		REG_RD(sc, BCE_EMAC_MDIO_MODE);
1851 
1852 		DELAY(40);
1853 	}
1854 
1855 
1856 	val = BCE_MIPHY(phy) | BCE_MIREG(reg) |
1857 	    BCE_EMAC_MDIO_COMM_COMMAND_READ | BCE_EMAC_MDIO_COMM_DISEXT |
1858 	    BCE_EMAC_MDIO_COMM_START_BUSY;
1859 	REG_WR(sc, BCE_EMAC_MDIO_COMM, val);
1860 
1861 	for (i = 0; i < BCE_PHY_TIMEOUT; i++) {
1862 		DELAY(10);
1863 
1864 		val = REG_RD(sc, BCE_EMAC_MDIO_COMM);
1865 		if (!(val & BCE_EMAC_MDIO_COMM_START_BUSY)) {
1866 			DELAY(5);
1867 
1868 			val = REG_RD(sc, BCE_EMAC_MDIO_COMM);
1869 			val &= BCE_EMAC_MDIO_COMM_DATA;
1870 
1871 			break;
1872 		}
1873 	}
1874 
1875 	if (val & BCE_EMAC_MDIO_COMM_START_BUSY) {
1876 		BCE_PRINTF("%s(%d): Error: PHY read timeout! phy = %d, "
1877 		    "reg = 0x%04X\n", __FILE__, __LINE__, phy, reg);
1878 		val = 0x0;
1879 	} else {
1880 		val = REG_RD(sc, BCE_EMAC_MDIO_COMM);
1881 	}
1882 
1883 
1884 	if (sc->bce_phy_flags & BCE_PHY_INT_MODE_AUTO_POLLING_FLAG) {
1885 		val = REG_RD(sc, BCE_EMAC_MDIO_MODE);
1886 		val |= BCE_EMAC_MDIO_MODE_AUTO_POLL;
1887 
1888 		REG_WR(sc, BCE_EMAC_MDIO_MODE, val);
1889 		REG_RD(sc, BCE_EMAC_MDIO_MODE);
1890 
1891 		DELAY(40);
1892 	}
1893 
1894 	DB_PRINT_PHY_REG(reg, val);
1895 	return (val & 0xffff);
1896 
1897 }
1898 
1899 
1900 /****************************************************************************/
1901 /* PHY register write.                                                      */
1902 /*                                                                          */
1903 /* Implements register writes on the MII bus.                               */
1904 /*                                                                          */
1905 /* Returns:                                                                 */
1906 /*   The value of the register.                                             */
1907 /****************************************************************************/
1908 static int
1909 bce_miibus_write_reg(device_t dev, int phy, int reg, int val)
1910 {
1911 	struct bce_softc *sc;
1912 	u32 val1;
1913 	int i;
1914 
1915 	sc = device_get_softc(dev);
1916 
1917 	/* Make sure we are accessing the correct PHY address. */
1918 	if (phy != sc->bce_phy_addr) {
1919 		DBPRINT(sc, BCE_INSANE_PHY, "Invalid PHY address %d "
1920 		    "for PHY write!\n", phy);
1921 		return(0);
1922 	}
1923 
1924 	DB_PRINT_PHY_REG(reg, val);
1925 
1926 	/*
1927 	 * The 5709S PHY is an IEEE Clause 45 PHY
1928 	 * with special mappings to work with IEEE
1929 	 * Clause 22 register accesses.
1930 	 */
1931 	if ((sc->bce_phy_flags & BCE_PHY_IEEE_CLAUSE_45_FLAG) != 0) {
1932 		if (reg >= MII_BMCR && reg <= MII_ANLPRNP)
1933 			reg += 0x10;
1934 	}
1935 
1936 	if (sc->bce_phy_flags & BCE_PHY_INT_MODE_AUTO_POLLING_FLAG) {
1937 		val1 = REG_RD(sc, BCE_EMAC_MDIO_MODE);
1938 		val1 &= ~BCE_EMAC_MDIO_MODE_AUTO_POLL;
1939 
1940 		REG_WR(sc, BCE_EMAC_MDIO_MODE, val1);
1941 		REG_RD(sc, BCE_EMAC_MDIO_MODE);
1942 
1943 		DELAY(40);
1944 	}
1945 
1946 	val1 = BCE_MIPHY(phy) | BCE_MIREG(reg) | val |
1947 	    BCE_EMAC_MDIO_COMM_COMMAND_WRITE |
1948 	    BCE_EMAC_MDIO_COMM_START_BUSY | BCE_EMAC_MDIO_COMM_DISEXT;
1949 	REG_WR(sc, BCE_EMAC_MDIO_COMM, val1);
1950 
1951 	for (i = 0; i < BCE_PHY_TIMEOUT; i++) {
1952 		DELAY(10);
1953 
1954 		val1 = REG_RD(sc, BCE_EMAC_MDIO_COMM);
1955 		if (!(val1 & BCE_EMAC_MDIO_COMM_START_BUSY)) {
1956 			DELAY(5);
1957 			break;
1958 		}
1959 	}
1960 
1961 	if (val1 & BCE_EMAC_MDIO_COMM_START_BUSY)
1962 		BCE_PRINTF("%s(%d): PHY write timeout!\n",
1963 		    __FILE__, __LINE__);
1964 
1965 	if (sc->bce_phy_flags & BCE_PHY_INT_MODE_AUTO_POLLING_FLAG) {
1966 		val1 = REG_RD(sc, BCE_EMAC_MDIO_MODE);
1967 		val1 |= BCE_EMAC_MDIO_MODE_AUTO_POLL;
1968 
1969 		REG_WR(sc, BCE_EMAC_MDIO_MODE, val1);
1970 		REG_RD(sc, BCE_EMAC_MDIO_MODE);
1971 
1972 		DELAY(40);
1973 	}
1974 
1975 	return 0;
1976 }
1977 
1978 
1979 /****************************************************************************/
1980 /* MII bus status change.                                                   */
1981 /*                                                                          */
1982 /* Called by the MII bus driver when the PHY establishes link to set the    */
1983 /* MAC interface registers.                                                 */
1984 /*                                                                          */
1985 /* Returns:                                                                 */
1986 /*   Nothing.                                                               */
1987 /****************************************************************************/
1988 static void
1989 bce_miibus_statchg(device_t dev)
1990 {
1991 	struct bce_softc *sc;
1992 	struct mii_data *mii;
1993 	int val;
1994 
1995 	sc = device_get_softc(dev);
1996 
1997 	DBENTER(BCE_VERBOSE_PHY);
1998 
1999 	mii = device_get_softc(sc->bce_miibus);
2000 
2001 	val = REG_RD(sc, BCE_EMAC_MODE);
2002 	val &= ~(BCE_EMAC_MODE_PORT | BCE_EMAC_MODE_HALF_DUPLEX |
2003 	    BCE_EMAC_MODE_MAC_LOOP | BCE_EMAC_MODE_FORCE_LINK |
2004 	    BCE_EMAC_MODE_25G);
2005 
2006 	/* Set MII or GMII interface based on the PHY speed. */
2007 	switch (IFM_SUBTYPE(mii->mii_media_active)) {
2008 	case IFM_10_T:
2009 		if (BCE_CHIP_NUM(sc) != BCE_CHIP_NUM_5706) {
2010 			DBPRINT(sc, BCE_INFO_PHY,
2011 			    "Enabling 10Mb interface.\n");
2012 			val |= BCE_EMAC_MODE_PORT_MII_10;
2013 			break;
2014 		}
2015 		/* fall-through */
2016 	case IFM_100_TX:
2017 		DBPRINT(sc, BCE_INFO_PHY, "Enabling MII interface.\n");
2018 		val |= BCE_EMAC_MODE_PORT_MII;
2019 		break;
2020 	case IFM_2500_SX:
2021 		DBPRINT(sc, BCE_INFO_PHY, "Enabling 2.5G MAC mode.\n");
2022 		val |= BCE_EMAC_MODE_25G;
2023 		/* fall-through */
2024 	case IFM_1000_T:
2025 	case IFM_1000_SX:
2026 		DBPRINT(sc, BCE_INFO_PHY, "Enabling GMII interface.\n");
2027 		val |= BCE_EMAC_MODE_PORT_GMII;
2028 		break;
2029 	default:
2030 		DBPRINT(sc, BCE_INFO_PHY, "Unknown link speed, enabling "
2031 		    "default GMII interface.\n");
2032 		val |= BCE_EMAC_MODE_PORT_GMII;
2033 	}
2034 
2035 	/* Set half or full duplex based on PHY settings. */
2036 	if ((mii->mii_media_active & IFM_GMASK) == IFM_HDX) {
2037 		DBPRINT(sc, BCE_INFO_PHY,
2038 		    "Setting Half-Duplex interface.\n");
2039 		val |= BCE_EMAC_MODE_HALF_DUPLEX;
2040 	} else
2041 		DBPRINT(sc, BCE_INFO_PHY,
2042 		    "Setting Full-Duplex interface.\n");
2043 
2044 	REG_WR(sc, BCE_EMAC_MODE, val);
2045 
2046  	if ((mii->mii_media_active & IFM_ETH_RXPAUSE) != 0) {
2047 		DBPRINT(sc, BCE_INFO_PHY,
2048 		    "%s(): Enabling RX flow control.\n", __FUNCTION__);
2049 		BCE_SETBIT(sc, BCE_EMAC_RX_MODE, BCE_EMAC_RX_MODE_FLOW_EN);
2050 	} else {
2051 		DBPRINT(sc, BCE_INFO_PHY,
2052 		    "%s(): Disabling RX flow control.\n", __FUNCTION__);
2053 		BCE_CLRBIT(sc, BCE_EMAC_RX_MODE, BCE_EMAC_RX_MODE_FLOW_EN);
2054 	}
2055 
2056  	if ((mii->mii_media_active & IFM_ETH_TXPAUSE) != 0) {
2057 		DBPRINT(sc, BCE_INFO_PHY,
2058 		    "%s(): Enabling TX flow control.\n", __FUNCTION__);
2059 		BCE_SETBIT(sc, BCE_EMAC_TX_MODE, BCE_EMAC_TX_MODE_FLOW_EN);
2060 		sc->bce_flags |= BCE_USING_TX_FLOW_CONTROL;
2061 	} else {
2062 		DBPRINT(sc, BCE_INFO_PHY,
2063 		    "%s(): Disabling TX flow control.\n", __FUNCTION__);
2064 		BCE_CLRBIT(sc, BCE_EMAC_TX_MODE, BCE_EMAC_TX_MODE_FLOW_EN);
2065 		sc->bce_flags &= ~BCE_USING_TX_FLOW_CONTROL;
2066 	}
2067 
2068 	/* ToDo: Update watermarks in bce_init_rx_context(). */
2069 
2070 	DBEXIT(BCE_VERBOSE_PHY);
2071 }
2072 
2073 
2074 /****************************************************************************/
2075 /* Acquire NVRAM lock.                                                      */
2076 /*                                                                          */
2077 /* Before the NVRAM can be accessed the caller must acquire an NVRAM lock.  */
2078 /* Locks 0 and 2 are reserved, lock 1 is used by firmware and lock 2 is     */
2079 /* for use by the driver.                                                   */
2080 /*                                                                          */
2081 /* Returns:                                                                 */
2082 /*   0 on success, positive value on failure.                               */
2083 /****************************************************************************/
2084 static int
2085 bce_acquire_nvram_lock(struct bce_softc *sc)
2086 {
2087 	u32 val;
2088 	int j, rc = 0;
2089 
2090 	DBENTER(BCE_VERBOSE_NVRAM);
2091 
2092 	/* Request access to the flash interface. */
2093 	REG_WR(sc, BCE_NVM_SW_ARB, BCE_NVM_SW_ARB_ARB_REQ_SET2);
2094 	for (j = 0; j < NVRAM_TIMEOUT_COUNT; j++) {
2095 		val = REG_RD(sc, BCE_NVM_SW_ARB);
2096 		if (val & BCE_NVM_SW_ARB_ARB_ARB2)
2097 			break;
2098 
2099 		DELAY(5);
2100 	}
2101 
2102 	if (j >= NVRAM_TIMEOUT_COUNT) {
2103 		DBPRINT(sc, BCE_WARN, "Timeout acquiring NVRAM lock!\n");
2104 		rc = EBUSY;
2105 	}
2106 
2107 	DBEXIT(BCE_VERBOSE_NVRAM);
2108 	return (rc);
2109 }
2110 
2111 
2112 /****************************************************************************/
2113 /* Release NVRAM lock.                                                      */
2114 /*                                                                          */
2115 /* When the caller is finished accessing NVRAM the lock must be released.   */
2116 /* Locks 0 and 2 are reserved, lock 1 is used by firmware and lock 2 is     */
2117 /* for use by the driver.                                                   */
2118 /*                                                                          */
2119 /* Returns:                                                                 */
2120 /*   0 on success, positive value on failure.                               */
2121 /****************************************************************************/
2122 static int
2123 bce_release_nvram_lock(struct bce_softc *sc)
2124 {
2125 	u32 val;
2126 	int j, rc = 0;
2127 
2128 	DBENTER(BCE_VERBOSE_NVRAM);
2129 
2130 	/*
2131 	 * Relinquish nvram interface.
2132 	 */
2133 	REG_WR(sc, BCE_NVM_SW_ARB, BCE_NVM_SW_ARB_ARB_REQ_CLR2);
2134 
2135 	for (j = 0; j < NVRAM_TIMEOUT_COUNT; j++) {
2136 		val = REG_RD(sc, BCE_NVM_SW_ARB);
2137 		if (!(val & BCE_NVM_SW_ARB_ARB_ARB2))
2138 			break;
2139 
2140 		DELAY(5);
2141 	}
2142 
2143 	if (j >= NVRAM_TIMEOUT_COUNT) {
2144 		DBPRINT(sc, BCE_WARN, "Timeout releasing NVRAM lock!\n");
2145 		rc = EBUSY;
2146 	}
2147 
2148 	DBEXIT(BCE_VERBOSE_NVRAM);
2149 	return (rc);
2150 }
2151 
2152 
2153 #ifdef BCE_NVRAM_WRITE_SUPPORT
2154 /****************************************************************************/
2155 /* Enable NVRAM write access.                                               */
2156 /*                                                                          */
2157 /* Before writing to NVRAM the caller must enable NVRAM writes.             */
2158 /*                                                                          */
2159 /* Returns:                                                                 */
2160 /*   0 on success, positive value on failure.                               */
2161 /****************************************************************************/
2162 static int
2163 bce_enable_nvram_write(struct bce_softc *sc)
2164 {
2165 	u32 val;
2166 	int rc = 0;
2167 
2168 	DBENTER(BCE_VERBOSE_NVRAM);
2169 
2170 	val = REG_RD(sc, BCE_MISC_CFG);
2171 	REG_WR(sc, BCE_MISC_CFG, val | BCE_MISC_CFG_NVM_WR_EN_PCI);
2172 
2173 	if (!(sc->bce_flash_info->flags & BCE_NV_BUFFERED)) {
2174 		int j;
2175 
2176 		REG_WR(sc, BCE_NVM_COMMAND, BCE_NVM_COMMAND_DONE);
2177 		REG_WR(sc, BCE_NVM_COMMAND,	BCE_NVM_COMMAND_WREN | BCE_NVM_COMMAND_DOIT);
2178 
2179 		for (j = 0; j < NVRAM_TIMEOUT_COUNT; j++) {
2180 			DELAY(5);
2181 
2182 			val = REG_RD(sc, BCE_NVM_COMMAND);
2183 			if (val & BCE_NVM_COMMAND_DONE)
2184 				break;
2185 		}
2186 
2187 		if (j >= NVRAM_TIMEOUT_COUNT) {
2188 			DBPRINT(sc, BCE_WARN, "Timeout writing NVRAM!\n");
2189 			rc = EBUSY;
2190 		}
2191 	}
2192 
2193 	DBENTER(BCE_VERBOSE_NVRAM);
2194 	return (rc);
2195 }
2196 
2197 
2198 /****************************************************************************/
2199 /* Disable NVRAM write access.                                              */
2200 /*                                                                          */
2201 /* When the caller is finished writing to NVRAM write access must be        */
2202 /* disabled.                                                                */
2203 /*                                                                          */
2204 /* Returns:                                                                 */
2205 /*   Nothing.                                                               */
2206 /****************************************************************************/
2207 static void
2208 bce_disable_nvram_write(struct bce_softc *sc)
2209 {
2210 	u32 val;
2211 
2212 	DBENTER(BCE_VERBOSE_NVRAM);
2213 
2214 	val = REG_RD(sc, BCE_MISC_CFG);
2215 	REG_WR(sc, BCE_MISC_CFG, val & ~BCE_MISC_CFG_NVM_WR_EN);
2216 
2217 	DBEXIT(BCE_VERBOSE_NVRAM);
2218 
2219 }
2220 #endif
2221 
2222 
2223 /****************************************************************************/
2224 /* Enable NVRAM access.                                                     */
2225 /*                                                                          */
2226 /* Before accessing NVRAM for read or write operations the caller must      */
2227 /* enabled NVRAM access.                                                    */
2228 /*                                                                          */
2229 /* Returns:                                                                 */
2230 /*   Nothing.                                                               */
2231 /****************************************************************************/
2232 static void
2233 bce_enable_nvram_access(struct bce_softc *sc)
2234 {
2235 	u32 val;
2236 
2237 	DBENTER(BCE_VERBOSE_NVRAM);
2238 
2239 	val = REG_RD(sc, BCE_NVM_ACCESS_ENABLE);
2240 	/* Enable both bits, even on read. */
2241 	REG_WR(sc, BCE_NVM_ACCESS_ENABLE, val |
2242 	    BCE_NVM_ACCESS_ENABLE_EN | BCE_NVM_ACCESS_ENABLE_WR_EN);
2243 
2244 	DBEXIT(BCE_VERBOSE_NVRAM);
2245 }
2246 
2247 
2248 /****************************************************************************/
2249 /* Disable NVRAM access.                                                    */
2250 /*                                                                          */
2251 /* When the caller is finished accessing NVRAM access must be disabled.     */
2252 /*                                                                          */
2253 /* Returns:                                                                 */
2254 /*   Nothing.                                                               */
2255 /****************************************************************************/
2256 static void
2257 bce_disable_nvram_access(struct bce_softc *sc)
2258 {
2259 	u32 val;
2260 
2261 	DBENTER(BCE_VERBOSE_NVRAM);
2262 
2263 	val = REG_RD(sc, BCE_NVM_ACCESS_ENABLE);
2264 
2265 	/* Disable both bits, even after read. */
2266 	REG_WR(sc, BCE_NVM_ACCESS_ENABLE, val &
2267 	    ~(BCE_NVM_ACCESS_ENABLE_EN | BCE_NVM_ACCESS_ENABLE_WR_EN));
2268 
2269 	DBEXIT(BCE_VERBOSE_NVRAM);
2270 }
2271 
2272 
2273 #ifdef BCE_NVRAM_WRITE_SUPPORT
2274 /****************************************************************************/
2275 /* Erase NVRAM page before writing.                                         */
2276 /*                                                                          */
2277 /* Non-buffered flash parts require that a page be erased before it is      */
2278 /* written.                                                                 */
2279 /*                                                                          */
2280 /* Returns:                                                                 */
2281 /*   0 on success, positive value on failure.                               */
2282 /****************************************************************************/
2283 static int
2284 bce_nvram_erase_page(struct bce_softc *sc, u32 offset)
2285 {
2286 	u32 cmd;
2287 	int j, rc = 0;
2288 
2289 	DBENTER(BCE_VERBOSE_NVRAM);
2290 
2291 	/* Buffered flash doesn't require an erase. */
2292 	if (sc->bce_flash_info->flags & BCE_NV_BUFFERED)
2293 		goto bce_nvram_erase_page_exit;
2294 
2295 	/* Build an erase command. */
2296 	cmd = BCE_NVM_COMMAND_ERASE | BCE_NVM_COMMAND_WR |
2297 	    BCE_NVM_COMMAND_DOIT;
2298 
2299 	/*
2300 	 * Clear the DONE bit separately, set the NVRAM adress to erase,
2301 	 * and issue the erase command.
2302 	 */
2303 	REG_WR(sc, BCE_NVM_COMMAND, BCE_NVM_COMMAND_DONE);
2304 	REG_WR(sc, BCE_NVM_ADDR, offset & BCE_NVM_ADDR_NVM_ADDR_VALUE);
2305 	REG_WR(sc, BCE_NVM_COMMAND, cmd);
2306 
2307 	/* Wait for completion. */
2308 	for (j = 0; j < NVRAM_TIMEOUT_COUNT; j++) {
2309 		u32 val;
2310 
2311 		DELAY(5);
2312 
2313 		val = REG_RD(sc, BCE_NVM_COMMAND);
2314 		if (val & BCE_NVM_COMMAND_DONE)
2315 			break;
2316 	}
2317 
2318 	if (j >= NVRAM_TIMEOUT_COUNT) {
2319 		DBPRINT(sc, BCE_WARN, "Timeout erasing NVRAM.\n");
2320 		rc = EBUSY;
2321 	}
2322 
2323 bce_nvram_erase_page_exit:
2324 	DBEXIT(BCE_VERBOSE_NVRAM);
2325 	return (rc);
2326 }
2327 #endif /* BCE_NVRAM_WRITE_SUPPORT */
2328 
2329 
2330 /****************************************************************************/
2331 /* Read a dword (32 bits) from NVRAM.                                       */
2332 /*                                                                          */
2333 /* Read a 32 bit word from NVRAM.  The caller is assumed to have already    */
2334 /* obtained the NVRAM lock and enabled the controller for NVRAM access.     */
2335 /*                                                                          */
2336 /* Returns:                                                                 */
2337 /*   0 on success and the 32 bit value read, positive value on failure.     */
2338 /****************************************************************************/
2339 static int
2340 bce_nvram_read_dword(struct bce_softc *sc,
2341     u32 offset, u8 *ret_val, u32 cmd_flags)
2342 {
2343 	u32 cmd;
2344 	int i, rc = 0;
2345 
2346 	DBENTER(BCE_EXTREME_NVRAM);
2347 
2348 	/* Build the command word. */
2349 	cmd = BCE_NVM_COMMAND_DOIT | cmd_flags;
2350 
2351 	/* Calculate the offset for buffered flash if translation is used. */
2352 	if (sc->bce_flash_info->flags & BCE_NV_TRANSLATE) {
2353 		offset = ((offset / sc->bce_flash_info->page_size) <<
2354 		    sc->bce_flash_info->page_bits) +
2355 		    (offset % sc->bce_flash_info->page_size);
2356 	}
2357 
2358 	/*
2359 	 * Clear the DONE bit separately, set the address to read,
2360 	 * and issue the read.
2361 	 */
2362 	REG_WR(sc, BCE_NVM_COMMAND, BCE_NVM_COMMAND_DONE);
2363 	REG_WR(sc, BCE_NVM_ADDR, offset & BCE_NVM_ADDR_NVM_ADDR_VALUE);
2364 	REG_WR(sc, BCE_NVM_COMMAND, cmd);
2365 
2366 	/* Wait for completion. */
2367 	for (i = 0; i < NVRAM_TIMEOUT_COUNT; i++) {
2368 		u32 val;
2369 
2370 		DELAY(5);
2371 
2372 		val = REG_RD(sc, BCE_NVM_COMMAND);
2373 		if (val & BCE_NVM_COMMAND_DONE) {
2374 			val = REG_RD(sc, BCE_NVM_READ);
2375 
2376 			val = bce_be32toh(val);
2377 			memcpy(ret_val, &val, 4);
2378 			break;
2379 		}
2380 	}
2381 
2382 	/* Check for errors. */
2383 	if (i >= NVRAM_TIMEOUT_COUNT) {
2384 		BCE_PRINTF("%s(%d): Timeout error reading NVRAM at "
2385 		    "offset 0x%08X!\n",	__FILE__, __LINE__, offset);
2386 		rc = EBUSY;
2387 	}
2388 
2389 	DBEXIT(BCE_EXTREME_NVRAM);
2390 	return(rc);
2391 }
2392 
2393 
2394 #ifdef BCE_NVRAM_WRITE_SUPPORT
2395 /****************************************************************************/
2396 /* Write a dword (32 bits) to NVRAM.                                        */
2397 /*                                                                          */
2398 /* Write a 32 bit word to NVRAM.  The caller is assumed to have already     */
2399 /* obtained the NVRAM lock, enabled the controller for NVRAM access, and    */
2400 /* enabled NVRAM write access.                                              */
2401 /*                                                                          */
2402 /* Returns:                                                                 */
2403 /*   0 on success, positive value on failure.                               */
2404 /****************************************************************************/
2405 static int
2406 bce_nvram_write_dword(struct bce_softc *sc, u32 offset, u8 *val,
2407 	u32 cmd_flags)
2408 {
2409 	u32 cmd, val32;
2410 	int j, rc = 0;
2411 
2412 	DBENTER(BCE_VERBOSE_NVRAM);
2413 
2414 	/* Build the command word. */
2415 	cmd = BCE_NVM_COMMAND_DOIT | BCE_NVM_COMMAND_WR | cmd_flags;
2416 
2417 	/* Calculate the offset for buffered flash if translation is used. */
2418 	if (sc->bce_flash_info->flags & BCE_NV_TRANSLATE) {
2419 		offset = ((offset / sc->bce_flash_info->page_size) <<
2420 		    sc->bce_flash_info->page_bits) +
2421 		    (offset % sc->bce_flash_info->page_size);
2422 	}
2423 
2424 	/*
2425 	 * Clear the DONE bit separately, convert NVRAM data to big-endian,
2426 	 * set the NVRAM address to write, and issue the write command
2427 	 */
2428 	REG_WR(sc, BCE_NVM_COMMAND, BCE_NVM_COMMAND_DONE);
2429 	memcpy(&val32, val, 4);
2430 	val32 = htobe32(val32);
2431 	REG_WR(sc, BCE_NVM_WRITE, val32);
2432 	REG_WR(sc, BCE_NVM_ADDR, offset & BCE_NVM_ADDR_NVM_ADDR_VALUE);
2433 	REG_WR(sc, BCE_NVM_COMMAND, cmd);
2434 
2435 	/* Wait for completion. */
2436 	for (j = 0; j < NVRAM_TIMEOUT_COUNT; j++) {
2437 		DELAY(5);
2438 
2439 		if (REG_RD(sc, BCE_NVM_COMMAND) & BCE_NVM_COMMAND_DONE)
2440 			break;
2441 	}
2442 	if (j >= NVRAM_TIMEOUT_COUNT) {
2443 		BCE_PRINTF("%s(%d): Timeout error writing NVRAM at "
2444 		    "offset 0x%08X\n", __FILE__, __LINE__, offset);
2445 		rc = EBUSY;
2446 	}
2447 
2448 	DBEXIT(BCE_VERBOSE_NVRAM);
2449 	return (rc);
2450 }
2451 #endif /* BCE_NVRAM_WRITE_SUPPORT */
2452 
2453 
2454 /****************************************************************************/
2455 /* Initialize NVRAM access.                                                 */
2456 /*                                                                          */
2457 /* Identify the NVRAM device in use and prepare the NVRAM interface to      */
2458 /* access that device.                                                      */
2459 /*                                                                          */
2460 /* Returns:                                                                 */
2461 /*   0 on success, positive value on failure.                               */
2462 /****************************************************************************/
2463 static int
2464 bce_init_nvram(struct bce_softc *sc)
2465 {
2466 	u32 val;
2467 	int j, entry_count, rc = 0;
2468 	struct flash_spec *flash;
2469 
2470 	DBENTER(BCE_VERBOSE_NVRAM);
2471 
2472 	if ((BCE_CHIP_NUM(sc) == BCE_CHIP_NUM_5709) ||
2473 		(BCE_CHIP_NUM(sc) == BCE_CHIP_NUM_5716)) {
2474 		sc->bce_flash_info = &flash_5709;
2475 		goto bce_init_nvram_get_flash_size;
2476 	}
2477 
2478 	/* Determine the selected interface. */
2479 	val = REG_RD(sc, BCE_NVM_CFG1);
2480 
2481 	entry_count = sizeof(flash_table) / sizeof(struct flash_spec);
2482 
2483 	/*
2484 	 * Flash reconfiguration is required to support additional
2485 	 * NVRAM devices not directly supported in hardware.
2486 	 * Check if the flash interface was reconfigured
2487 	 * by the bootcode.
2488 	 */
2489 
2490 	if (val & 0x40000000) {
2491 		/* Flash interface reconfigured by bootcode. */
2492 
2493 		DBPRINT(sc,BCE_INFO_LOAD,
2494 			"bce_init_nvram(): Flash WAS reconfigured.\n");
2495 
2496 		for (j = 0, flash = &flash_table[0]; j < entry_count;
2497 		     j++, flash++) {
2498 			if ((val & FLASH_BACKUP_STRAP_MASK) ==
2499 			    (flash->config1 & FLASH_BACKUP_STRAP_MASK)) {
2500 				sc->bce_flash_info = flash;
2501 				break;
2502 			}
2503 		}
2504 	} else {
2505 		/* Flash interface not yet reconfigured. */
2506 		u32 mask;
2507 
2508 		DBPRINT(sc, BCE_INFO_LOAD, "%s(): Flash was NOT reconfigured.\n",
2509 			__FUNCTION__);
2510 
2511 		if (val & (1 << 23))
2512 			mask = FLASH_BACKUP_STRAP_MASK;
2513 		else
2514 			mask = FLASH_STRAP_MASK;
2515 
2516 		/* Look for the matching NVRAM device configuration data. */
2517 		for (j = 0, flash = &flash_table[0]; j < entry_count; j++, flash++) {
2518 
2519 			/* Check if the device matches any of the known devices. */
2520 			if ((val & mask) == (flash->strapping & mask)) {
2521 				/* Found a device match. */
2522 				sc->bce_flash_info = flash;
2523 
2524 				/* Request access to the flash interface. */
2525 				if ((rc = bce_acquire_nvram_lock(sc)) != 0)
2526 					return rc;
2527 
2528 				/* Reconfigure the flash interface. */
2529 				bce_enable_nvram_access(sc);
2530 				REG_WR(sc, BCE_NVM_CFG1, flash->config1);
2531 				REG_WR(sc, BCE_NVM_CFG2, flash->config2);
2532 				REG_WR(sc, BCE_NVM_CFG3, flash->config3);
2533 				REG_WR(sc, BCE_NVM_WRITE1, flash->write1);
2534 				bce_disable_nvram_access(sc);
2535 				bce_release_nvram_lock(sc);
2536 
2537 				break;
2538 			}
2539 		}
2540 	}
2541 
2542 	/* Check if a matching device was found. */
2543 	if (j == entry_count) {
2544 		sc->bce_flash_info = NULL;
2545 		BCE_PRINTF("%s(%d): Unknown Flash NVRAM found!\n",
2546 		    __FILE__, __LINE__);
2547 		DBEXIT(BCE_VERBOSE_NVRAM);
2548 		return (ENODEV);
2549 	}
2550 
2551 bce_init_nvram_get_flash_size:
2552 	/* Write the flash config data to the shared memory interface. */
2553 	val = bce_shmem_rd(sc, BCE_SHARED_HW_CFG_CONFIG2);
2554 	val &= BCE_SHARED_HW_CFG2_NVM_SIZE_MASK;
2555 	if (val)
2556 		sc->bce_flash_size = val;
2557 	else
2558 		sc->bce_flash_size = sc->bce_flash_info->total_size;
2559 
2560 	DBPRINT(sc, BCE_INFO_LOAD, "%s(): Found %s, size = 0x%08X\n",
2561 	    __FUNCTION__, sc->bce_flash_info->name,
2562 	    sc->bce_flash_info->total_size);
2563 
2564 	DBEXIT(BCE_VERBOSE_NVRAM);
2565 	return rc;
2566 }
2567 
2568 
2569 /****************************************************************************/
2570 /* Read an arbitrary range of data from NVRAM.                              */
2571 /*                                                                          */
2572 /* Prepares the NVRAM interface for access and reads the requested data     */
2573 /* into the supplied buffer.                                                */
2574 /*                                                                          */
2575 /* Returns:                                                                 */
2576 /*   0 on success and the data read, positive value on failure.             */
2577 /****************************************************************************/
2578 static int
2579 bce_nvram_read(struct bce_softc *sc, u32 offset, u8 *ret_buf,
2580 	int buf_size)
2581 {
2582 	int rc = 0;
2583 	u32 cmd_flags, offset32, len32, extra;
2584 
2585 	DBENTER(BCE_VERBOSE_NVRAM);
2586 
2587 	if (buf_size == 0)
2588 		goto bce_nvram_read_exit;
2589 
2590 	/* Request access to the flash interface. */
2591 	if ((rc = bce_acquire_nvram_lock(sc)) != 0)
2592 		goto bce_nvram_read_exit;
2593 
2594 	/* Enable access to flash interface */
2595 	bce_enable_nvram_access(sc);
2596 
2597 	len32 = buf_size;
2598 	offset32 = offset;
2599 	extra = 0;
2600 
2601 	cmd_flags = 0;
2602 
2603 	if (offset32 & 3) {
2604 		u8 buf[4];
2605 		u32 pre_len;
2606 
2607 		offset32 &= ~3;
2608 		pre_len = 4 - (offset & 3);
2609 
2610 		if (pre_len >= len32) {
2611 			pre_len = len32;
2612 			cmd_flags = BCE_NVM_COMMAND_FIRST | BCE_NVM_COMMAND_LAST;
2613 		}
2614 		else {
2615 			cmd_flags = BCE_NVM_COMMAND_FIRST;
2616 		}
2617 
2618 		rc = bce_nvram_read_dword(sc, offset32, buf, cmd_flags);
2619 
2620 		if (rc)
2621 			return rc;
2622 
2623 		memcpy(ret_buf, buf + (offset & 3), pre_len);
2624 
2625 		offset32 += 4;
2626 		ret_buf += pre_len;
2627 		len32 -= pre_len;
2628 	}
2629 
2630 	if (len32 & 3) {
2631 		extra = 4 - (len32 & 3);
2632 		len32 = (len32 + 4) & ~3;
2633 	}
2634 
2635 	if (len32 == 4) {
2636 		u8 buf[4];
2637 
2638 		if (cmd_flags)
2639 			cmd_flags = BCE_NVM_COMMAND_LAST;
2640 		else
2641 			cmd_flags = BCE_NVM_COMMAND_FIRST |
2642 				    BCE_NVM_COMMAND_LAST;
2643 
2644 		rc = bce_nvram_read_dword(sc, offset32, buf, cmd_flags);
2645 
2646 		memcpy(ret_buf, buf, 4 - extra);
2647 	}
2648 	else if (len32 > 0) {
2649 		u8 buf[4];
2650 
2651 		/* Read the first word. */
2652 		if (cmd_flags)
2653 			cmd_flags = 0;
2654 		else
2655 			cmd_flags = BCE_NVM_COMMAND_FIRST;
2656 
2657 		rc = bce_nvram_read_dword(sc, offset32, ret_buf, cmd_flags);
2658 
2659 		/* Advance to the next dword. */
2660 		offset32 += 4;
2661 		ret_buf += 4;
2662 		len32 -= 4;
2663 
2664 		while (len32 > 4 && rc == 0) {
2665 			rc = bce_nvram_read_dword(sc, offset32, ret_buf, 0);
2666 
2667 			/* Advance to the next dword. */
2668 			offset32 += 4;
2669 			ret_buf += 4;
2670 			len32 -= 4;
2671 		}
2672 
2673 		if (rc)
2674 			goto bce_nvram_read_locked_exit;
2675 
2676 		cmd_flags = BCE_NVM_COMMAND_LAST;
2677 		rc = bce_nvram_read_dword(sc, offset32, buf, cmd_flags);
2678 
2679 		memcpy(ret_buf, buf, 4 - extra);
2680 	}
2681 
2682 bce_nvram_read_locked_exit:
2683 	/* Disable access to flash interface and release the lock. */
2684 	bce_disable_nvram_access(sc);
2685 	bce_release_nvram_lock(sc);
2686 
2687 bce_nvram_read_exit:
2688 	DBEXIT(BCE_VERBOSE_NVRAM);
2689 	return rc;
2690 }
2691 
2692 
2693 #ifdef BCE_NVRAM_WRITE_SUPPORT
2694 /****************************************************************************/
2695 /* Write an arbitrary range of data from NVRAM.                             */
2696 /*                                                                          */
2697 /* Prepares the NVRAM interface for write access and writes the requested   */
2698 /* data from the supplied buffer.  The caller is responsible for            */
2699 /* calculating any appropriate CRCs.                                        */
2700 /*                                                                          */
2701 /* Returns:                                                                 */
2702 /*   0 on success, positive value on failure.                               */
2703 /****************************************************************************/
2704 static int
2705 bce_nvram_write(struct bce_softc *sc, u32 offset, u8 *data_buf,
2706 	int buf_size)
2707 {
2708 	u32 written, offset32, len32;
2709 	u8 *buf, start[4], end[4];
2710 	int rc = 0;
2711 	int align_start, align_end;
2712 
2713 	DBENTER(BCE_VERBOSE_NVRAM);
2714 
2715 	buf = data_buf;
2716 	offset32 = offset;
2717 	len32 = buf_size;
2718 	align_start = align_end = 0;
2719 
2720 	if ((align_start = (offset32 & 3))) {
2721 		offset32 &= ~3;
2722 		len32 += align_start;
2723 		if ((rc = bce_nvram_read(sc, offset32, start, 4)))
2724 			goto bce_nvram_write_exit;
2725 	}
2726 
2727 	if (len32 & 3) {
2728 	       	if ((len32 > 4) || !align_start) {
2729 			align_end = 4 - (len32 & 3);
2730 			len32 += align_end;
2731 			if ((rc = bce_nvram_read(sc, offset32 + len32 - 4,
2732 				end, 4))) {
2733 				goto bce_nvram_write_exit;
2734 			}
2735 		}
2736 	}
2737 
2738 	if (align_start || align_end) {
2739 		buf = malloc(len32, M_DEVBUF, M_NOWAIT);
2740 		if (buf == 0) {
2741 			rc = ENOMEM;
2742 			goto bce_nvram_write_exit;
2743 		}
2744 
2745 		if (align_start) {
2746 			memcpy(buf, start, 4);
2747 		}
2748 
2749 		if (align_end) {
2750 			memcpy(buf + len32 - 4, end, 4);
2751 		}
2752 		memcpy(buf + align_start, data_buf, buf_size);
2753 	}
2754 
2755 	written = 0;
2756 	while ((written < len32) && (rc == 0)) {
2757 		u32 page_start, page_end, data_start, data_end;
2758 		u32 addr, cmd_flags;
2759 		int i;
2760 		u8 flash_buffer[264];
2761 
2762 	    /* Find the page_start addr */
2763 		page_start = offset32 + written;
2764 		page_start -= (page_start % sc->bce_flash_info->page_size);
2765 		/* Find the page_end addr */
2766 		page_end = page_start + sc->bce_flash_info->page_size;
2767 		/* Find the data_start addr */
2768 		data_start = (written == 0) ? offset32 : page_start;
2769 		/* Find the data_end addr */
2770 		data_end = (page_end > offset32 + len32) ?
2771 			(offset32 + len32) : page_end;
2772 
2773 		/* Request access to the flash interface. */
2774 		if ((rc = bce_acquire_nvram_lock(sc)) != 0)
2775 			goto bce_nvram_write_exit;
2776 
2777 		/* Enable access to flash interface */
2778 		bce_enable_nvram_access(sc);
2779 
2780 		cmd_flags = BCE_NVM_COMMAND_FIRST;
2781 		if (!(sc->bce_flash_info->flags & BCE_NV_BUFFERED)) {
2782 			int j;
2783 
2784 			/* Read the whole page into the buffer
2785 			 * (non-buffer flash only) */
2786 			for (j = 0; j < sc->bce_flash_info->page_size; j += 4) {
2787 				if (j == (sc->bce_flash_info->page_size - 4)) {
2788 					cmd_flags |= BCE_NVM_COMMAND_LAST;
2789 				}
2790 				rc = bce_nvram_read_dword(sc,
2791 					page_start + j,
2792 					&flash_buffer[j],
2793 					cmd_flags);
2794 
2795 				if (rc)
2796 					goto bce_nvram_write_locked_exit;
2797 
2798 				cmd_flags = 0;
2799 			}
2800 		}
2801 
2802 		/* Enable writes to flash interface (unlock write-protect) */
2803 		if ((rc = bce_enable_nvram_write(sc)) != 0)
2804 			goto bce_nvram_write_locked_exit;
2805 
2806 		/* Erase the page */
2807 		if ((rc = bce_nvram_erase_page(sc, page_start)) != 0)
2808 			goto bce_nvram_write_locked_exit;
2809 
2810 		/* Re-enable the write again for the actual write */
2811 		bce_enable_nvram_write(sc);
2812 
2813 		/* Loop to write back the buffer data from page_start to
2814 		 * data_start */
2815 		i = 0;
2816 		if (!(sc->bce_flash_info->flags & BCE_NV_BUFFERED)) {
2817 			for (addr = page_start; addr < data_start;
2818 				addr += 4, i += 4) {
2819 
2820 				rc = bce_nvram_write_dword(sc, addr,
2821 					&flash_buffer[i], cmd_flags);
2822 
2823 				if (rc != 0)
2824 					goto bce_nvram_write_locked_exit;
2825 
2826 				cmd_flags = 0;
2827 			}
2828 		}
2829 
2830 		/* Loop to write the new data from data_start to data_end */
2831 		for (addr = data_start; addr < data_end; addr += 4, i++) {
2832 			if ((addr == page_end - 4) ||
2833 				((sc->bce_flash_info->flags & BCE_NV_BUFFERED) &&
2834 				(addr == data_end - 4))) {
2835 
2836 				cmd_flags |= BCE_NVM_COMMAND_LAST;
2837 			}
2838 			rc = bce_nvram_write_dword(sc, addr, buf,
2839 				cmd_flags);
2840 
2841 			if (rc != 0)
2842 				goto bce_nvram_write_locked_exit;
2843 
2844 			cmd_flags = 0;
2845 			buf += 4;
2846 		}
2847 
2848 		/* Loop to write back the buffer data from data_end
2849 		 * to page_end */
2850 		if (!(sc->bce_flash_info->flags & BCE_NV_BUFFERED)) {
2851 			for (addr = data_end; addr < page_end;
2852 				addr += 4, i += 4) {
2853 
2854 				if (addr == page_end-4) {
2855 					cmd_flags = BCE_NVM_COMMAND_LAST;
2856                 		}
2857 				rc = bce_nvram_write_dword(sc, addr,
2858 					&flash_buffer[i], cmd_flags);
2859 
2860 				if (rc != 0)
2861 					goto bce_nvram_write_locked_exit;
2862 
2863 				cmd_flags = 0;
2864 			}
2865 		}
2866 
2867 		/* Disable writes to flash interface (lock write-protect) */
2868 		bce_disable_nvram_write(sc);
2869 
2870 		/* Disable access to flash interface */
2871 		bce_disable_nvram_access(sc);
2872 		bce_release_nvram_lock(sc);
2873 
2874 		/* Increment written */
2875 		written += data_end - data_start;
2876 	}
2877 
2878 	goto bce_nvram_write_exit;
2879 
2880 bce_nvram_write_locked_exit:
2881 	bce_disable_nvram_write(sc);
2882 	bce_disable_nvram_access(sc);
2883 	bce_release_nvram_lock(sc);
2884 
2885 bce_nvram_write_exit:
2886 	if (align_start || align_end)
2887 		free(buf, M_DEVBUF);
2888 
2889 	DBEXIT(BCE_VERBOSE_NVRAM);
2890 	return (rc);
2891 }
2892 #endif /* BCE_NVRAM_WRITE_SUPPORT */
2893 
2894 
2895 /****************************************************************************/
2896 /* Verifies that NVRAM is accessible and contains valid data.               */
2897 /*                                                                          */
2898 /* Reads the configuration data from NVRAM and verifies that the CRC is     */
2899 /* correct.                                                                 */
2900 /*                                                                          */
2901 /* Returns:                                                                 */
2902 /*   0 on success, positive value on failure.                               */
2903 /****************************************************************************/
2904 static int
2905 bce_nvram_test(struct bce_softc *sc)
2906 {
2907 	u32 buf[BCE_NVRAM_SIZE / 4];
2908 	u8 *data = (u8 *) buf;
2909 	int rc = 0;
2910 	u32 magic, csum;
2911 
2912 	DBENTER(BCE_VERBOSE_NVRAM | BCE_VERBOSE_LOAD | BCE_VERBOSE_RESET);
2913 
2914 	/*
2915 	 * Check that the device NVRAM is valid by reading
2916 	 * the magic value at offset 0.
2917 	 */
2918 	if ((rc = bce_nvram_read(sc, 0, data, 4)) != 0) {
2919 		BCE_PRINTF("%s(%d): Unable to read NVRAM!\n",
2920 		    __FILE__, __LINE__);
2921 		goto bce_nvram_test_exit;
2922 	}
2923 
2924 	/*
2925 	 * Verify that offset 0 of the NVRAM contains
2926 	 * a valid magic number.
2927 	 */
2928 	magic = bce_be32toh(buf[0]);
2929 	if (magic != BCE_NVRAM_MAGIC) {
2930 		rc = ENODEV;
2931 		BCE_PRINTF("%s(%d): Invalid NVRAM magic value! "
2932 		    "Expected: 0x%08X, Found: 0x%08X\n",
2933 		    __FILE__, __LINE__, BCE_NVRAM_MAGIC, magic);
2934 		goto bce_nvram_test_exit;
2935 	}
2936 
2937 	/*
2938 	 * Verify that the device NVRAM includes valid
2939 	 * configuration data.
2940 	 */
2941 	if ((rc = bce_nvram_read(sc, 0x100, data, BCE_NVRAM_SIZE)) != 0) {
2942 		BCE_PRINTF("%s(%d): Unable to read manufacturing "
2943 		    "Information from  NVRAM!\n", __FILE__, __LINE__);
2944 		goto bce_nvram_test_exit;
2945 	}
2946 
2947 	csum = ether_crc32_le(data, 0x100);
2948 	if (csum != BCE_CRC32_RESIDUAL) {
2949 		rc = ENODEV;
2950 		BCE_PRINTF("%s(%d): Invalid manufacturing information "
2951 		    "NVRAM CRC!	Expected: 0x%08X, Found: 0x%08X\n",
2952 		    __FILE__, __LINE__, BCE_CRC32_RESIDUAL, csum);
2953 		goto bce_nvram_test_exit;
2954 	}
2955 
2956 	csum = ether_crc32_le(data + 0x100, 0x100);
2957 	if (csum != BCE_CRC32_RESIDUAL) {
2958 		rc = ENODEV;
2959 		BCE_PRINTF("%s(%d): Invalid feature configuration "
2960 		    "information NVRAM CRC! Expected: 0x%08X, "
2961 		    "Found: 08%08X\n", __FILE__, __LINE__,
2962 		    BCE_CRC32_RESIDUAL, csum);
2963 	}
2964 
2965 bce_nvram_test_exit:
2966 	DBEXIT(BCE_VERBOSE_NVRAM | BCE_VERBOSE_LOAD | BCE_VERBOSE_RESET);
2967 	return rc;
2968 }
2969 
2970 
2971 /****************************************************************************/
2972 /* Calculates the size of the buffers to allocate based on the MTU.         */
2973 /*                                                                          */
2974 /* Returns:                                                                 */
2975 /*   Nothing.                                                               */
2976 /****************************************************************************/
2977 static void
2978 bce_get_rx_buffer_sizes(struct bce_softc *sc, int mtu)
2979 {
2980 	DBENTER(BCE_VERBOSE_LOAD);
2981 
2982 	/* Use a single allocation type when header splitting enabled. */
2983 	if (bce_hdr_split == TRUE) {
2984 		sc->rx_bd_mbuf_alloc_size = MHLEN;
2985 		/* Make sure offset is 16 byte aligned for hardware. */
2986 		sc->rx_bd_mbuf_align_pad =
2987 			roundup2((MSIZE - MHLEN), 16) - (MSIZE - MHLEN);
2988 		sc->rx_bd_mbuf_data_len = sc->rx_bd_mbuf_alloc_size -
2989 			sc->rx_bd_mbuf_align_pad;
2990 		sc->pg_bd_mbuf_alloc_size = MCLBYTES;
2991 	} else {
2992 		if ((mtu + ETHER_HDR_LEN + ETHER_VLAN_ENCAP_LEN +
2993 		    ETHER_CRC_LEN) > MCLBYTES) {
2994 			/* Setup for jumbo RX buffer allocations. */
2995 			sc->rx_bd_mbuf_alloc_size = MJUM9BYTES;
2996 			sc->rx_bd_mbuf_align_pad  =
2997 				roundup2(MJUM9BYTES, 16) - MJUM9BYTES;
2998 			sc->rx_bd_mbuf_data_len =
2999 			    sc->rx_bd_mbuf_alloc_size -
3000 			    sc->rx_bd_mbuf_align_pad;
3001 		} else {
3002 			/* Setup for standard RX buffer allocations. */
3003 			sc->rx_bd_mbuf_alloc_size = MCLBYTES;
3004 			sc->rx_bd_mbuf_align_pad  =
3005 			    roundup2(MCLBYTES, 16) - MCLBYTES;
3006 			sc->rx_bd_mbuf_data_len =
3007 			    sc->rx_bd_mbuf_alloc_size -
3008 			    sc->rx_bd_mbuf_align_pad;
3009 		}
3010 	}
3011 
3012 //	DBPRINT(sc, BCE_INFO_LOAD,
3013 	DBPRINT(sc, BCE_WARN,
3014 	   "%s(): rx_bd_mbuf_alloc_size = %d, rx_bd_mbuf_data_len = %d, "
3015 	   "rx_bd_mbuf_align_pad = %d\n", __FUNCTION__,
3016 	   sc->rx_bd_mbuf_alloc_size, sc->rx_bd_mbuf_data_len,
3017 	   sc->rx_bd_mbuf_align_pad);
3018 
3019 	DBEXIT(BCE_VERBOSE_LOAD);
3020 
3021 }
3022 
3023 /****************************************************************************/
3024 /* Identifies the current media type of the controller and sets the PHY     */
3025 /* address.                                                                 */
3026 /*                                                                          */
3027 /* Returns:                                                                 */
3028 /*   Nothing.                                                               */
3029 /****************************************************************************/
3030 static void
3031 bce_get_media(struct bce_softc *sc)
3032 {
3033 	u32 val;
3034 
3035 	DBENTER(BCE_VERBOSE_PHY);
3036 
3037 	/* Assume PHY address for copper controllers. */
3038 	sc->bce_phy_addr = 1;
3039 
3040 	if (BCE_CHIP_NUM(sc) == BCE_CHIP_NUM_5709) {
3041  		u32 val = REG_RD(sc, BCE_MISC_DUAL_MEDIA_CTRL);
3042 		u32 bond_id = val & BCE_MISC_DUAL_MEDIA_CTRL_BOND_ID;
3043 		u32 strap;
3044 
3045 		/*
3046 		 * The BCM5709S is software configurable
3047 		 * for Copper or SerDes operation.
3048 		 */
3049 		if (bond_id == BCE_MISC_DUAL_MEDIA_CTRL_BOND_ID_C) {
3050 			DBPRINT(sc, BCE_INFO_LOAD, "5709 bonded "
3051 			    "for copper.\n");
3052 			goto bce_get_media_exit;
3053 		} else if (bond_id == BCE_MISC_DUAL_MEDIA_CTRL_BOND_ID_S) {
3054 			DBPRINT(sc, BCE_INFO_LOAD, "5709 bonded "
3055 			    "for dual media.\n");
3056 			sc->bce_phy_flags |= BCE_PHY_SERDES_FLAG;
3057 			goto bce_get_media_exit;
3058 		}
3059 
3060 		if (val & BCE_MISC_DUAL_MEDIA_CTRL_STRAP_OVERRIDE)
3061 			strap = (val &
3062 			    BCE_MISC_DUAL_MEDIA_CTRL_PHY_CTRL) >> 21;
3063 		else
3064 			strap = (val &
3065 			    BCE_MISC_DUAL_MEDIA_CTRL_PHY_CTRL_STRAP) >> 8;
3066 
3067 		if (pci_get_function(sc->bce_dev) == 0) {
3068 			switch (strap) {
3069 			case 0x4:
3070 			case 0x5:
3071 			case 0x6:
3072 				DBPRINT(sc, BCE_INFO_LOAD,
3073 				    "BCM5709 s/w configured for SerDes.\n");
3074 				sc->bce_phy_flags |= BCE_PHY_SERDES_FLAG;
3075 				break;
3076 			default:
3077 				DBPRINT(sc, BCE_INFO_LOAD,
3078 				    "BCM5709 s/w configured for Copper.\n");
3079 				break;
3080 			}
3081 		} else {
3082 			switch (strap) {
3083 			case 0x1:
3084 			case 0x2:
3085 			case 0x4:
3086 				DBPRINT(sc, BCE_INFO_LOAD,
3087 				    "BCM5709 s/w configured for SerDes.\n");
3088 				sc->bce_phy_flags |= BCE_PHY_SERDES_FLAG;
3089 				break;
3090 			default:
3091 				DBPRINT(sc, BCE_INFO_LOAD,
3092 				    "BCM5709 s/w configured for Copper.\n");
3093 				break;
3094 			}
3095 		}
3096 
3097 	} else if (BCE_CHIP_BOND_ID(sc) & BCE_CHIP_BOND_ID_SERDES_BIT)
3098 		sc->bce_phy_flags |= BCE_PHY_SERDES_FLAG;
3099 
3100 	if (sc->bce_phy_flags & BCE_PHY_SERDES_FLAG) {
3101 
3102 		sc->bce_flags |= BCE_NO_WOL_FLAG;
3103 
3104 		if (BCE_CHIP_NUM(sc) == BCE_CHIP_NUM_5709)
3105 			sc->bce_phy_flags |= BCE_PHY_IEEE_CLAUSE_45_FLAG;
3106 
3107 		if (BCE_CHIP_NUM(sc) != BCE_CHIP_NUM_5706) {
3108 			/* 5708S/09S/16S use a separate PHY for SerDes. */
3109 			sc->bce_phy_addr = 2;
3110 
3111 			val = bce_shmem_rd(sc, BCE_SHARED_HW_CFG_CONFIG);
3112 			if (val & BCE_SHARED_HW_CFG_PHY_2_5G) {
3113 				sc->bce_phy_flags |=
3114 				    BCE_PHY_2_5G_CAPABLE_FLAG;
3115 				DBPRINT(sc, BCE_INFO_LOAD, "Found 2.5Gb "
3116 				    "capable adapter\n");
3117 			}
3118 		}
3119 	} else if ((BCE_CHIP_NUM(sc) == BCE_CHIP_NUM_5706) ||
3120 	    (BCE_CHIP_NUM(sc) == BCE_CHIP_NUM_5708))
3121 		sc->bce_phy_flags |= BCE_PHY_CRC_FIX_FLAG;
3122 
3123 bce_get_media_exit:
3124 	DBPRINT(sc, (BCE_INFO_LOAD | BCE_INFO_PHY),
3125 		"Using PHY address %d.\n", sc->bce_phy_addr);
3126 
3127 	DBEXIT(BCE_VERBOSE_PHY);
3128 }
3129 
3130 
3131 /****************************************************************************/
3132 /* Performs PHY initialization required before MII drivers access the       */
3133 /* device.                                                                  */
3134 /*                                                                          */
3135 /* Returns:                                                                 */
3136 /*   Nothing.                                                               */
3137 /****************************************************************************/
3138 static void
3139 bce_init_media(struct bce_softc *sc)
3140 {
3141 	if ((sc->bce_phy_flags & BCE_PHY_IEEE_CLAUSE_45_FLAG) != 0) {
3142 		/*
3143 		 * Configure 5709S/5716S PHYs to use traditional IEEE
3144 		 * Clause 22 method. Otherwise we have no way to attach
3145 		 * the PHY in mii(4) layer. PHY specific configuration
3146 		 * is done in mii layer.
3147 		 */
3148 
3149 		/* Select auto-negotiation MMD of the PHY. */
3150 		bce_miibus_write_reg(sc->bce_dev, sc->bce_phy_addr,
3151 		    BRGPHY_BLOCK_ADDR, BRGPHY_BLOCK_ADDR_ADDR_EXT);
3152 		bce_miibus_write_reg(sc->bce_dev, sc->bce_phy_addr,
3153 		    BRGPHY_ADDR_EXT, BRGPHY_ADDR_EXT_AN_MMD);
3154 
3155 		/* Set IEEE0 block of AN MMD (assumed in brgphy(4) code). */
3156 		bce_miibus_write_reg(sc->bce_dev, sc->bce_phy_addr,
3157 		    BRGPHY_BLOCK_ADDR, BRGPHY_BLOCK_ADDR_COMBO_IEEE0);
3158 	}
3159 }
3160 
3161 
3162 /****************************************************************************/
3163 /* Free any DMA memory owned by the driver.                                 */
3164 /*                                                                          */
3165 /* Scans through each data structre that requires DMA memory and frees      */
3166 /* the memory if allocated.                                                 */
3167 /*                                                                          */
3168 /* Returns:                                                                 */
3169 /*   Nothing.                                                               */
3170 /****************************************************************************/
3171 static void
3172 bce_dma_free(struct bce_softc *sc)
3173 {
3174 	int i;
3175 
3176 	DBENTER(BCE_VERBOSE_RESET | BCE_VERBOSE_UNLOAD | BCE_VERBOSE_CTX);
3177 
3178 	/* Free, unmap, and destroy the status block. */
3179 	if (sc->status_block != NULL) {
3180 		bus_dmamem_free(
3181 		   sc->status_tag,
3182 		    sc->status_block,
3183 		    sc->status_map);
3184 		sc->status_block = NULL;
3185 	}
3186 
3187 	if (sc->status_map != NULL) {
3188 		bus_dmamap_unload(
3189 		    sc->status_tag,
3190 		    sc->status_map);
3191 		bus_dmamap_destroy(sc->status_tag,
3192 		    sc->status_map);
3193 		sc->status_map = NULL;
3194 	}
3195 
3196 	if (sc->status_tag != NULL) {
3197 		bus_dma_tag_destroy(sc->status_tag);
3198 		sc->status_tag = NULL;
3199 	}
3200 
3201 
3202 	/* Free, unmap, and destroy the statistics block. */
3203 	if (sc->stats_block != NULL) {
3204 		bus_dmamem_free(
3205 		    sc->stats_tag,
3206 		    sc->stats_block,
3207 		    sc->stats_map);
3208 		sc->stats_block = NULL;
3209 	}
3210 
3211 	if (sc->stats_map != NULL) {
3212 		bus_dmamap_unload(
3213 		    sc->stats_tag,
3214 		    sc->stats_map);
3215 		bus_dmamap_destroy(sc->stats_tag,
3216 		    sc->stats_map);
3217 		sc->stats_map = NULL;
3218 	}
3219 
3220 	if (sc->stats_tag != NULL) {
3221 		bus_dma_tag_destroy(sc->stats_tag);
3222 		sc->stats_tag = NULL;
3223 	}
3224 
3225 
3226 	/* Free, unmap and destroy all context memory pages. */
3227 	if ((BCE_CHIP_NUM(sc) == BCE_CHIP_NUM_5709) ||
3228 		(BCE_CHIP_NUM(sc) == BCE_CHIP_NUM_5716)) {
3229 		for (i = 0; i < sc->ctx_pages; i++ ) {
3230 			if (sc->ctx_block[i] != NULL) {
3231 				bus_dmamem_free(
3232 				    sc->ctx_tag,
3233 				    sc->ctx_block[i],
3234 				    sc->ctx_map[i]);
3235 				sc->ctx_block[i] = NULL;
3236 			}
3237 
3238 			if (sc->ctx_map[i] != NULL) {
3239 				bus_dmamap_unload(
3240 				    sc->ctx_tag,
3241 				    sc->ctx_map[i]);
3242 				bus_dmamap_destroy(
3243 				    sc->ctx_tag,
3244 				    sc->ctx_map[i]);
3245 				sc->ctx_map[i] = NULL;
3246 			}
3247 		}
3248 
3249 		/* Destroy the context memory tag. */
3250 		if (sc->ctx_tag != NULL) {
3251 			bus_dma_tag_destroy(sc->ctx_tag);
3252 			sc->ctx_tag = NULL;
3253 		}
3254 	}
3255 
3256 
3257 	/* Free, unmap and destroy all TX buffer descriptor chain pages. */
3258 	for (i = 0; i < sc->tx_pages; i++ ) {
3259 		if (sc->tx_bd_chain[i] != NULL) {
3260 			bus_dmamem_free(
3261 			    sc->tx_bd_chain_tag,
3262 			    sc->tx_bd_chain[i],
3263 			    sc->tx_bd_chain_map[i]);
3264 			sc->tx_bd_chain[i] = NULL;
3265 		}
3266 
3267 		if (sc->tx_bd_chain_map[i] != NULL) {
3268 			bus_dmamap_unload(
3269 			    sc->tx_bd_chain_tag,
3270 			    sc->tx_bd_chain_map[i]);
3271 			bus_dmamap_destroy(
3272 			    sc->tx_bd_chain_tag,
3273 			    sc->tx_bd_chain_map[i]);
3274 			sc->tx_bd_chain_map[i] = NULL;
3275 		}
3276 	}
3277 
3278 	/* Destroy the TX buffer descriptor tag. */
3279 	if (sc->tx_bd_chain_tag != NULL) {
3280 		bus_dma_tag_destroy(sc->tx_bd_chain_tag);
3281 		sc->tx_bd_chain_tag = NULL;
3282 	}
3283 
3284 
3285 	/* Free, unmap and destroy all RX buffer descriptor chain pages. */
3286 	for (i = 0; i < sc->rx_pages; i++ ) {
3287 		if (sc->rx_bd_chain[i] != NULL) {
3288 			bus_dmamem_free(
3289 			    sc->rx_bd_chain_tag,
3290 			    sc->rx_bd_chain[i],
3291 			    sc->rx_bd_chain_map[i]);
3292 			sc->rx_bd_chain[i] = NULL;
3293 		}
3294 
3295 		if (sc->rx_bd_chain_map[i] != NULL) {
3296 			bus_dmamap_unload(
3297 			    sc->rx_bd_chain_tag,
3298 			    sc->rx_bd_chain_map[i]);
3299 			bus_dmamap_destroy(
3300 			    sc->rx_bd_chain_tag,
3301 			    sc->rx_bd_chain_map[i]);
3302 			sc->rx_bd_chain_map[i] = NULL;
3303 		}
3304 	}
3305 
3306 	/* Destroy the RX buffer descriptor tag. */
3307 	if (sc->rx_bd_chain_tag != NULL) {
3308 		bus_dma_tag_destroy(sc->rx_bd_chain_tag);
3309 		sc->rx_bd_chain_tag = NULL;
3310 	}
3311 
3312 
3313 	/* Free, unmap and destroy all page buffer descriptor chain pages. */
3314 	if (bce_hdr_split == TRUE) {
3315 		for (i = 0; i < sc->pg_pages; i++ ) {
3316 			if (sc->pg_bd_chain[i] != NULL) {
3317 				bus_dmamem_free(
3318 				    sc->pg_bd_chain_tag,
3319 				    sc->pg_bd_chain[i],
3320 				    sc->pg_bd_chain_map[i]);
3321 				sc->pg_bd_chain[i] = NULL;
3322 			}
3323 
3324 			if (sc->pg_bd_chain_map[i] != NULL) {
3325 				bus_dmamap_unload(
3326 				    sc->pg_bd_chain_tag,
3327 				    sc->pg_bd_chain_map[i]);
3328 				bus_dmamap_destroy(
3329 				    sc->pg_bd_chain_tag,
3330 				    sc->pg_bd_chain_map[i]);
3331 				sc->pg_bd_chain_map[i] = NULL;
3332 			}
3333 		}
3334 
3335 		/* Destroy the page buffer descriptor tag. */
3336 		if (sc->pg_bd_chain_tag != NULL) {
3337 			bus_dma_tag_destroy(sc->pg_bd_chain_tag);
3338 			sc->pg_bd_chain_tag = NULL;
3339 		}
3340 	}
3341 
3342 
3343 	/* Unload and destroy the TX mbuf maps. */
3344 	for (i = 0; i < MAX_TX_BD_AVAIL; i++) {
3345 		if (sc->tx_mbuf_map[i] != NULL) {
3346 			bus_dmamap_unload(sc->tx_mbuf_tag,
3347 			    sc->tx_mbuf_map[i]);
3348 			bus_dmamap_destroy(sc->tx_mbuf_tag,
3349 	 		    sc->tx_mbuf_map[i]);
3350 			sc->tx_mbuf_map[i] = NULL;
3351 		}
3352 	}
3353 
3354 	/* Destroy the TX mbuf tag. */
3355 	if (sc->tx_mbuf_tag != NULL) {
3356 		bus_dma_tag_destroy(sc->tx_mbuf_tag);
3357 		sc->tx_mbuf_tag = NULL;
3358 	}
3359 
3360 	/* Unload and destroy the RX mbuf maps. */
3361 	for (i = 0; i < MAX_RX_BD_AVAIL; i++) {
3362 		if (sc->rx_mbuf_map[i] != NULL) {
3363 			bus_dmamap_unload(sc->rx_mbuf_tag,
3364 			    sc->rx_mbuf_map[i]);
3365 			bus_dmamap_destroy(sc->rx_mbuf_tag,
3366 	 		    sc->rx_mbuf_map[i]);
3367 			sc->rx_mbuf_map[i] = NULL;
3368 		}
3369 	}
3370 
3371 	/* Destroy the RX mbuf tag. */
3372 	if (sc->rx_mbuf_tag != NULL) {
3373 		bus_dma_tag_destroy(sc->rx_mbuf_tag);
3374 		sc->rx_mbuf_tag = NULL;
3375 	}
3376 
3377 	/* Unload and destroy the page mbuf maps. */
3378 	if (bce_hdr_split == TRUE) {
3379 		for (i = 0; i < MAX_PG_BD_AVAIL; i++) {
3380 			if (sc->pg_mbuf_map[i] != NULL) {
3381 				bus_dmamap_unload(sc->pg_mbuf_tag,
3382 				    sc->pg_mbuf_map[i]);
3383 				bus_dmamap_destroy(sc->pg_mbuf_tag,
3384 				    sc->pg_mbuf_map[i]);
3385 				sc->pg_mbuf_map[i] = NULL;
3386 			}
3387 		}
3388 
3389 		/* Destroy the page mbuf tag. */
3390 		if (sc->pg_mbuf_tag != NULL) {
3391 			bus_dma_tag_destroy(sc->pg_mbuf_tag);
3392 			sc->pg_mbuf_tag = NULL;
3393 		}
3394 	}
3395 
3396 	/* Destroy the parent tag */
3397 	if (sc->parent_tag != NULL) {
3398 		bus_dma_tag_destroy(sc->parent_tag);
3399 		sc->parent_tag = NULL;
3400 	}
3401 
3402 	DBEXIT(BCE_VERBOSE_RESET | BCE_VERBOSE_UNLOAD | BCE_VERBOSE_CTX);
3403 }
3404 
3405 
3406 /****************************************************************************/
3407 /* Get DMA memory from the OS.                                              */
3408 /*                                                                          */
3409 /* Validates that the OS has provided DMA buffers in response to a          */
3410 /* bus_dmamap_load() call and saves the physical address of those buffers.  */
3411 /* When the callback is used the OS will return 0 for the mapping function  */
3412 /* (bus_dmamap_load()) so we use the value of map_arg->maxsegs to pass any  */
3413 /* failures back to the caller.                                             */
3414 /*                                                                          */
3415 /* Returns:                                                                 */
3416 /*   Nothing.                                                               */
3417 /****************************************************************************/
3418 static void
3419 bce_dma_map_addr(void *arg, bus_dma_segment_t *segs, int nseg, int error)
3420 {
3421 	bus_addr_t *busaddr = arg;
3422 
3423 	KASSERT(nseg == 1, ("%s(): Too many segments returned (%d)!",
3424 	    __FUNCTION__, nseg));
3425 	/* Simulate a mapping failure. */
3426 	DBRUNIF(DB_RANDOMTRUE(dma_map_addr_failed_sim_control),
3427 	    error = ENOMEM);
3428 
3429 	/* ToDo: How to increment debug sim_count variable here? */
3430 
3431 	/* Check for an error and signal the caller that an error occurred. */
3432 	if (error) {
3433 		*busaddr = 0;
3434 	} else {
3435 		*busaddr = segs->ds_addr;
3436 	}
3437 
3438 	return;
3439 }
3440 
3441 
3442 /****************************************************************************/
3443 /* Allocate any DMA memory needed by the driver.                            */
3444 /*                                                                          */
3445 /* Allocates DMA memory needed for the various global structures needed by  */
3446 /* hardware.                                                                */
3447 /*                                                                          */
3448 /* Memory alignment requirements:                                           */
3449 /* +-----------------+----------+----------+----------+----------+          */
3450 /* |                 |   5706   |   5708   |   5709   |   5716   |          */
3451 /* +-----------------+----------+----------+----------+----------+          */
3452 /* |Status Block     | 8 bytes  | 8 bytes  | 16 bytes | 16 bytes |          */
3453 /* |Statistics Block | 8 bytes  | 8 bytes  | 16 bytes | 16 bytes |          */
3454 /* |RX Buffers       | 16 bytes | 16 bytes | 16 bytes | 16 bytes |          */
3455 /* |PG Buffers       |   none   |   none   |   none   |   none   |          */
3456 /* |TX Buffers       |   none   |   none   |   none   |   none   |          */
3457 /* |Chain Pages(1)   |   4KiB   |   4KiB   |   4KiB   |   4KiB   |          */
3458 /* |Context Memory   |          |          |          |          |          */
3459 /* +-----------------+----------+----------+----------+----------+          */
3460 /*                                                                          */
3461 /* (1) Must align with CPU page size (BCM_PAGE_SZIE).                       */
3462 /*                                                                          */
3463 /* Returns:                                                                 */
3464 /*   0 for success, positive value for failure.                             */
3465 /****************************************************************************/
3466 static int
3467 bce_dma_alloc(device_t dev)
3468 {
3469 	struct bce_softc *sc;
3470 	int i, error, rc = 0;
3471 	bus_size_t max_size, max_seg_size;
3472 	int max_segments;
3473 
3474 	sc = device_get_softc(dev);
3475 
3476 	DBENTER(BCE_VERBOSE_RESET | BCE_VERBOSE_CTX);
3477 
3478 	/*
3479 	 * Allocate the parent bus DMA tag appropriate for PCI.
3480 	 */
3481 	if (bus_dma_tag_create(bus_get_dma_tag(dev), 1, BCE_DMA_BOUNDARY,
3482 	    sc->max_bus_addr, BUS_SPACE_MAXADDR, NULL, NULL,
3483 	    BUS_SPACE_MAXSIZE_32BIT, 0, BUS_SPACE_MAXSIZE_32BIT, 0, NULL, NULL,
3484 	    &sc->parent_tag)) {
3485 		BCE_PRINTF("%s(%d): Could not allocate parent DMA tag!\n",
3486 		    __FILE__, __LINE__);
3487 		rc = ENOMEM;
3488 		goto bce_dma_alloc_exit;
3489 	}
3490 
3491 	/*
3492 	 * Create a DMA tag for the status block, allocate and clear the
3493 	 * memory, map the memory into DMA space, and fetch the physical
3494 	 * address of the block.
3495 	 */
3496 	if (bus_dma_tag_create(sc->parent_tag, BCE_DMA_ALIGN,
3497 	    BCE_DMA_BOUNDARY, sc->max_bus_addr,	BUS_SPACE_MAXADDR,
3498 	    NULL, NULL,	BCE_STATUS_BLK_SZ, 1, BCE_STATUS_BLK_SZ,
3499 	    0, NULL, NULL, &sc->status_tag)) {
3500 		BCE_PRINTF("%s(%d): Could not allocate status block "
3501 		    "DMA tag!\n", __FILE__, __LINE__);
3502 		rc = ENOMEM;
3503 		goto bce_dma_alloc_exit;
3504 	}
3505 
3506 	if(bus_dmamem_alloc(sc->status_tag, (void **)&sc->status_block,
3507 	    BUS_DMA_NOWAIT | BUS_DMA_ZERO | BUS_DMA_COHERENT,
3508 	    &sc->status_map)) {
3509 		BCE_PRINTF("%s(%d): Could not allocate status block "
3510 		    "DMA memory!\n", __FILE__, __LINE__);
3511 		rc = ENOMEM;
3512 		goto bce_dma_alloc_exit;
3513 	}
3514 
3515 	error = bus_dmamap_load(sc->status_tag,	sc->status_map,
3516 	    sc->status_block, BCE_STATUS_BLK_SZ, bce_dma_map_addr,
3517 	    &sc->status_block_paddr, BUS_DMA_NOWAIT);
3518 
3519 	if (error) {
3520 		BCE_PRINTF("%s(%d): Could not map status block "
3521 		    "DMA memory!\n", __FILE__, __LINE__);
3522 		rc = ENOMEM;
3523 		goto bce_dma_alloc_exit;
3524 	}
3525 
3526 	DBPRINT(sc, BCE_INFO_LOAD, "%s(): status_block_paddr = 0x%jX\n",
3527 	    __FUNCTION__, (uintmax_t) sc->status_block_paddr);
3528 
3529 	/*
3530 	 * Create a DMA tag for the statistics block, allocate and clear the
3531 	 * memory, map the memory into DMA space, and fetch the physical
3532 	 * address of the block.
3533 	 */
3534 	if (bus_dma_tag_create(sc->parent_tag, BCE_DMA_ALIGN,
3535 	    BCE_DMA_BOUNDARY, sc->max_bus_addr,	BUS_SPACE_MAXADDR,
3536 	    NULL, NULL,	BCE_STATS_BLK_SZ, 1, BCE_STATS_BLK_SZ,
3537 	    0, NULL, NULL, &sc->stats_tag)) {
3538 		BCE_PRINTF("%s(%d): Could not allocate statistics block "
3539 		    "DMA tag!\n", __FILE__, __LINE__);
3540 		rc = ENOMEM;
3541 		goto bce_dma_alloc_exit;
3542 	}
3543 
3544 	if (bus_dmamem_alloc(sc->stats_tag, (void **)&sc->stats_block,
3545 	    BUS_DMA_NOWAIT | BUS_DMA_ZERO | BUS_DMA_COHERENT, &sc->stats_map)) {
3546 		BCE_PRINTF("%s(%d): Could not allocate statistics block "
3547 		    "DMA memory!\n", __FILE__, __LINE__);
3548 		rc = ENOMEM;
3549 		goto bce_dma_alloc_exit;
3550 	}
3551 
3552 	error = bus_dmamap_load(sc->stats_tag, sc->stats_map,
3553 	    sc->stats_block, BCE_STATS_BLK_SZ, bce_dma_map_addr,
3554 	    &sc->stats_block_paddr, BUS_DMA_NOWAIT);
3555 
3556 	if(error) {
3557 		BCE_PRINTF("%s(%d): Could not map statistics block "
3558 		    "DMA memory!\n", __FILE__, __LINE__);
3559 		rc = ENOMEM;
3560 		goto bce_dma_alloc_exit;
3561 	}
3562 
3563 	DBPRINT(sc, BCE_INFO_LOAD, "%s(): stats_block_paddr = 0x%jX\n",
3564 	    __FUNCTION__, (uintmax_t) sc->stats_block_paddr);
3565 
3566 	/* BCM5709 uses host memory as cache for context memory. */
3567 	if ((BCE_CHIP_NUM(sc) == BCE_CHIP_NUM_5709) ||
3568 	    (BCE_CHIP_NUM(sc) == BCE_CHIP_NUM_5716)) {
3569 		sc->ctx_pages = 0x2000 / BCM_PAGE_SIZE;
3570 		if (sc->ctx_pages == 0)
3571 			sc->ctx_pages = 1;
3572 
3573 		DBRUNIF((sc->ctx_pages > 512),
3574 		    BCE_PRINTF("%s(%d): Too many CTX pages! %d > 512\n",
3575 		    __FILE__, __LINE__, sc->ctx_pages));
3576 
3577 		/*
3578 		 * Create a DMA tag for the context pages,
3579 		 * allocate and clear the memory, map the
3580 		 * memory into DMA space, and fetch the
3581 		 * physical address of the block.
3582 		 */
3583 		if(bus_dma_tag_create(sc->parent_tag, BCM_PAGE_SIZE,
3584 		    BCE_DMA_BOUNDARY, sc->max_bus_addr,	BUS_SPACE_MAXADDR,
3585 		    NULL, NULL,	BCM_PAGE_SIZE, 1, BCM_PAGE_SIZE,
3586 		    0, NULL, NULL, &sc->ctx_tag)) {
3587 			BCE_PRINTF("%s(%d): Could not allocate CTX "
3588 			    "DMA tag!\n", __FILE__, __LINE__);
3589 			rc = ENOMEM;
3590 			goto bce_dma_alloc_exit;
3591 		}
3592 
3593 		for (i = 0; i < sc->ctx_pages; i++) {
3594 
3595 			if(bus_dmamem_alloc(sc->ctx_tag,
3596 			    (void **)&sc->ctx_block[i],
3597 			    BUS_DMA_NOWAIT | BUS_DMA_ZERO | BUS_DMA_COHERENT,
3598 			    &sc->ctx_map[i])) {
3599 				BCE_PRINTF("%s(%d): Could not allocate CTX "
3600 				    "DMA memory!\n", __FILE__, __LINE__);
3601 				rc = ENOMEM;
3602 				goto bce_dma_alloc_exit;
3603 			}
3604 
3605 			error = bus_dmamap_load(sc->ctx_tag, sc->ctx_map[i],
3606 			    sc->ctx_block[i], BCM_PAGE_SIZE, bce_dma_map_addr,
3607 			    &sc->ctx_paddr[i], BUS_DMA_NOWAIT);
3608 
3609 			if (error) {
3610 				BCE_PRINTF("%s(%d): Could not map CTX "
3611 				    "DMA memory!\n", __FILE__, __LINE__);
3612 				rc = ENOMEM;
3613 				goto bce_dma_alloc_exit;
3614 			}
3615 
3616 			DBPRINT(sc, BCE_INFO_LOAD, "%s(): ctx_paddr[%d] "
3617 			    "= 0x%jX\n", __FUNCTION__, i,
3618 			    (uintmax_t) sc->ctx_paddr[i]);
3619 		}
3620 	}
3621 
3622 	/*
3623 	 * Create a DMA tag for the TX buffer descriptor chain,
3624 	 * allocate and clear the  memory, and fetch the
3625 	 * physical address of the block.
3626 	 */
3627 	if(bus_dma_tag_create(sc->parent_tag, BCM_PAGE_SIZE, BCE_DMA_BOUNDARY,
3628 	    sc->max_bus_addr, BUS_SPACE_MAXADDR, NULL, NULL,
3629 	    BCE_TX_CHAIN_PAGE_SZ, 1, BCE_TX_CHAIN_PAGE_SZ, 0,
3630 	    NULL, NULL,	&sc->tx_bd_chain_tag)) {
3631 		BCE_PRINTF("%s(%d): Could not allocate TX descriptor "
3632 		    "chain DMA tag!\n", __FILE__, __LINE__);
3633 		rc = ENOMEM;
3634 		goto bce_dma_alloc_exit;
3635 	}
3636 
3637 	for (i = 0; i < sc->tx_pages; i++) {
3638 
3639 		if(bus_dmamem_alloc(sc->tx_bd_chain_tag,
3640 		    (void **)&sc->tx_bd_chain[i],
3641 		    BUS_DMA_NOWAIT | BUS_DMA_ZERO | BUS_DMA_COHERENT,
3642 		    &sc->tx_bd_chain_map[i])) {
3643 			BCE_PRINTF("%s(%d): Could not allocate TX descriptor "
3644 			    "chain DMA memory!\n", __FILE__, __LINE__);
3645 			rc = ENOMEM;
3646 			goto bce_dma_alloc_exit;
3647 		}
3648 
3649 		error = bus_dmamap_load(sc->tx_bd_chain_tag,
3650 		    sc->tx_bd_chain_map[i], sc->tx_bd_chain[i],
3651 		    BCE_TX_CHAIN_PAGE_SZ, bce_dma_map_addr,
3652 		    &sc->tx_bd_chain_paddr[i], BUS_DMA_NOWAIT);
3653 
3654 		if (error) {
3655 			BCE_PRINTF("%s(%d): Could not map TX descriptor "
3656 			    "chain DMA memory!\n", __FILE__, __LINE__);
3657 			rc = ENOMEM;
3658 			goto bce_dma_alloc_exit;
3659 		}
3660 
3661 		DBPRINT(sc, BCE_INFO_LOAD, "%s(): tx_bd_chain_paddr[%d] = "
3662 		    "0x%jX\n", __FUNCTION__, i,
3663 		    (uintmax_t) sc->tx_bd_chain_paddr[i]);
3664 	}
3665 
3666 	/* Check the required size before mapping to conserve resources. */
3667 	if (bce_tso_enable) {
3668 		max_size     = BCE_TSO_MAX_SIZE;
3669 		max_segments = BCE_MAX_SEGMENTS;
3670 		max_seg_size = BCE_TSO_MAX_SEG_SIZE;
3671 	} else {
3672 		max_size     = MCLBYTES * BCE_MAX_SEGMENTS;
3673 		max_segments = BCE_MAX_SEGMENTS;
3674 		max_seg_size = MCLBYTES;
3675 	}
3676 
3677 	/* Create a DMA tag for TX mbufs. */
3678 	if (bus_dma_tag_create(sc->parent_tag, 1, BCE_DMA_BOUNDARY,
3679 	    sc->max_bus_addr, BUS_SPACE_MAXADDR, NULL, NULL, max_size,
3680 	    max_segments, max_seg_size,	0, NULL, NULL, &sc->tx_mbuf_tag)) {
3681 		BCE_PRINTF("%s(%d): Could not allocate TX mbuf DMA tag!\n",
3682 		    __FILE__, __LINE__);
3683 		rc = ENOMEM;
3684 		goto bce_dma_alloc_exit;
3685 	}
3686 
3687 	/* Create DMA maps for the TX mbufs clusters. */
3688 	for (i = 0; i < TOTAL_TX_BD_ALLOC; i++) {
3689 		if (bus_dmamap_create(sc->tx_mbuf_tag, BUS_DMA_NOWAIT,
3690 			&sc->tx_mbuf_map[i])) {
3691 			BCE_PRINTF("%s(%d): Unable to create TX mbuf DMA "
3692 			    "map!\n", __FILE__, __LINE__);
3693 			rc = ENOMEM;
3694 			goto bce_dma_alloc_exit;
3695 		}
3696 	}
3697 
3698 	/*
3699 	 * Create a DMA tag for the RX buffer descriptor chain,
3700 	 * allocate and clear the memory, and fetch the physical
3701 	 * address of the blocks.
3702 	 */
3703 	if (bus_dma_tag_create(sc->parent_tag, BCM_PAGE_SIZE,
3704 			BCE_DMA_BOUNDARY, BUS_SPACE_MAXADDR,
3705 			sc->max_bus_addr, NULL, NULL,
3706 			BCE_RX_CHAIN_PAGE_SZ, 1, BCE_RX_CHAIN_PAGE_SZ,
3707 			0, NULL, NULL, &sc->rx_bd_chain_tag)) {
3708 		BCE_PRINTF("%s(%d): Could not allocate RX descriptor chain "
3709 		    "DMA tag!\n", __FILE__, __LINE__);
3710 		rc = ENOMEM;
3711 		goto bce_dma_alloc_exit;
3712 	}
3713 
3714 	for (i = 0; i < sc->rx_pages; i++) {
3715 
3716 		if (bus_dmamem_alloc(sc->rx_bd_chain_tag,
3717 		    (void **)&sc->rx_bd_chain[i],
3718 		    BUS_DMA_NOWAIT | BUS_DMA_ZERO | BUS_DMA_COHERENT,
3719 		    &sc->rx_bd_chain_map[i])) {
3720 			BCE_PRINTF("%s(%d): Could not allocate RX descriptor "
3721 			    "chain DMA memory!\n", __FILE__, __LINE__);
3722 			rc = ENOMEM;
3723 			goto bce_dma_alloc_exit;
3724 		}
3725 
3726 		error = bus_dmamap_load(sc->rx_bd_chain_tag,
3727 		    sc->rx_bd_chain_map[i], sc->rx_bd_chain[i],
3728 		    BCE_RX_CHAIN_PAGE_SZ, bce_dma_map_addr,
3729 		    &sc->rx_bd_chain_paddr[i], BUS_DMA_NOWAIT);
3730 
3731 		if (error) {
3732 			BCE_PRINTF("%s(%d): Could not map RX descriptor "
3733 			    "chain DMA memory!\n", __FILE__, __LINE__);
3734 			rc = ENOMEM;
3735 			goto bce_dma_alloc_exit;
3736 		}
3737 
3738 		DBPRINT(sc, BCE_INFO_LOAD, "%s(): rx_bd_chain_paddr[%d] = "
3739 		    "0x%jX\n", __FUNCTION__, i,
3740 		    (uintmax_t) sc->rx_bd_chain_paddr[i]);
3741 	}
3742 
3743 	/*
3744 	 * Create a DMA tag for RX mbufs.
3745 	 */
3746 	if (bce_hdr_split == TRUE)
3747 		max_size = max_seg_size = ((sc->rx_bd_mbuf_alloc_size < MCLBYTES) ?
3748 		    MCLBYTES : sc->rx_bd_mbuf_alloc_size);
3749 	else
3750 		max_size = max_seg_size = MJUM9BYTES;
3751 	max_segments = 1;
3752 
3753 	DBPRINT(sc, BCE_INFO_LOAD, "%s(): Creating rx_mbuf_tag "
3754 	    "(max size = 0x%jX max segments = %d, max segment "
3755 	    "size = 0x%jX)\n", __FUNCTION__, (uintmax_t) max_size,
3756 	     max_segments, (uintmax_t) max_seg_size);
3757 
3758 	if (bus_dma_tag_create(sc->parent_tag, BCE_RX_BUF_ALIGN,
3759 	    BCE_DMA_BOUNDARY, sc->max_bus_addr, BUS_SPACE_MAXADDR, NULL, NULL,
3760 	    max_size, max_segments, max_seg_size, 0, NULL, NULL,
3761 	    &sc->rx_mbuf_tag)) {
3762 		BCE_PRINTF("%s(%d): Could not allocate RX mbuf DMA tag!\n",
3763 		    __FILE__, __LINE__);
3764 		rc = ENOMEM;
3765 		goto bce_dma_alloc_exit;
3766 	}
3767 
3768 	/* Create DMA maps for the RX mbuf clusters. */
3769 	for (i = 0; i < TOTAL_RX_BD_ALLOC; i++) {
3770 		if (bus_dmamap_create(sc->rx_mbuf_tag, BUS_DMA_NOWAIT,
3771 		    &sc->rx_mbuf_map[i])) {
3772 			BCE_PRINTF("%s(%d): Unable to create RX mbuf "
3773 			    "DMA map!\n", __FILE__, __LINE__);
3774 			rc = ENOMEM;
3775 			goto bce_dma_alloc_exit;
3776 		}
3777 	}
3778 
3779 	if (bce_hdr_split == TRUE) {
3780 		/*
3781 		 * Create a DMA tag for the page buffer descriptor chain,
3782 		 * allocate and clear the memory, and fetch the physical
3783 		 * address of the blocks.
3784 		 */
3785 		if (bus_dma_tag_create(sc->parent_tag, BCM_PAGE_SIZE,
3786 			    BCE_DMA_BOUNDARY, BUS_SPACE_MAXADDR, sc->max_bus_addr,
3787 			    NULL, NULL,	BCE_PG_CHAIN_PAGE_SZ, 1, BCE_PG_CHAIN_PAGE_SZ,
3788 			    0, NULL, NULL, &sc->pg_bd_chain_tag)) {
3789 			BCE_PRINTF("%s(%d): Could not allocate page descriptor "
3790 			    "chain DMA tag!\n",	__FILE__, __LINE__);
3791 			rc = ENOMEM;
3792 			goto bce_dma_alloc_exit;
3793 		}
3794 
3795 		for (i = 0; i < sc->pg_pages; i++) {
3796 			if (bus_dmamem_alloc(sc->pg_bd_chain_tag,
3797 			    (void **)&sc->pg_bd_chain[i],
3798 			    BUS_DMA_NOWAIT | BUS_DMA_ZERO | BUS_DMA_COHERENT,
3799 			    &sc->pg_bd_chain_map[i])) {
3800 				BCE_PRINTF("%s(%d): Could not allocate page "
3801 				    "descriptor chain DMA memory!\n",
3802 				    __FILE__, __LINE__);
3803 				rc = ENOMEM;
3804 				goto bce_dma_alloc_exit;
3805 			}
3806 
3807 			error = bus_dmamap_load(sc->pg_bd_chain_tag,
3808 			    sc->pg_bd_chain_map[i], sc->pg_bd_chain[i],
3809 			    BCE_PG_CHAIN_PAGE_SZ, bce_dma_map_addr,
3810 			    &sc->pg_bd_chain_paddr[i], BUS_DMA_NOWAIT);
3811 
3812 			if (error) {
3813 				BCE_PRINTF("%s(%d): Could not map page descriptor "
3814 					"chain DMA memory!\n", __FILE__, __LINE__);
3815 				rc = ENOMEM;
3816 				goto bce_dma_alloc_exit;
3817 			}
3818 
3819 			DBPRINT(sc, BCE_INFO_LOAD, "%s(): pg_bd_chain_paddr[%d] = "
3820 				"0x%jX\n", __FUNCTION__, i,
3821 				(uintmax_t) sc->pg_bd_chain_paddr[i]);
3822 		}
3823 
3824 		/*
3825 		 * Create a DMA tag for page mbufs.
3826 		 */
3827 		max_size = max_seg_size = ((sc->pg_bd_mbuf_alloc_size < MCLBYTES) ?
3828 			MCLBYTES : sc->pg_bd_mbuf_alloc_size);
3829 
3830 		if (bus_dma_tag_create(sc->parent_tag, 1, BCE_DMA_BOUNDARY,
3831 			sc->max_bus_addr, BUS_SPACE_MAXADDR, NULL, NULL,
3832 			max_size, 1, max_seg_size, 0, NULL, NULL, &sc->pg_mbuf_tag)) {
3833 			BCE_PRINTF("%s(%d): Could not allocate page mbuf "
3834 				"DMA tag!\n", __FILE__, __LINE__);
3835 			rc = ENOMEM;
3836 			goto bce_dma_alloc_exit;
3837 		}
3838 
3839 		/* Create DMA maps for the page mbuf clusters. */
3840 		for (i = 0; i < TOTAL_PG_BD_ALLOC; i++) {
3841 			if (bus_dmamap_create(sc->pg_mbuf_tag, BUS_DMA_NOWAIT,
3842 				&sc->pg_mbuf_map[i])) {
3843 				BCE_PRINTF("%s(%d): Unable to create page mbuf "
3844 					"DMA map!\n", __FILE__, __LINE__);
3845 				rc = ENOMEM;
3846 				goto bce_dma_alloc_exit;
3847 			}
3848 		}
3849 	}
3850 
3851 bce_dma_alloc_exit:
3852 	DBEXIT(BCE_VERBOSE_RESET | BCE_VERBOSE_CTX);
3853 	return(rc);
3854 }
3855 
3856 
3857 /****************************************************************************/
3858 /* Release all resources used by the driver.                                */
3859 /*                                                                          */
3860 /* Releases all resources acquired by the driver including interrupts,      */
3861 /* interrupt handler, interfaces, mutexes, and DMA memory.                  */
3862 /*                                                                          */
3863 /* Returns:                                                                 */
3864 /*   Nothing.                                                               */
3865 /****************************************************************************/
3866 static void
3867 bce_release_resources(struct bce_softc *sc)
3868 {
3869 	device_t dev;
3870 
3871 	DBENTER(BCE_VERBOSE_RESET);
3872 
3873 	dev = sc->bce_dev;
3874 
3875 	bce_dma_free(sc);
3876 
3877 	if (sc->bce_intrhand != NULL) {
3878 		DBPRINT(sc, BCE_INFO_RESET, "Removing interrupt handler.\n");
3879 		bus_teardown_intr(dev, sc->bce_res_irq, sc->bce_intrhand);
3880 	}
3881 
3882 	if (sc->bce_res_irq != NULL) {
3883 		DBPRINT(sc, BCE_INFO_RESET, "Releasing IRQ.\n");
3884 		bus_release_resource(dev, SYS_RES_IRQ, sc->bce_irq_rid,
3885 		    sc->bce_res_irq);
3886 	}
3887 
3888 	if (sc->bce_flags & (BCE_USING_MSI_FLAG | BCE_USING_MSIX_FLAG)) {
3889 		DBPRINT(sc, BCE_INFO_RESET, "Releasing MSI/MSI-X vector.\n");
3890 		pci_release_msi(dev);
3891 	}
3892 
3893 	if (sc->bce_res_mem != NULL) {
3894 		DBPRINT(sc, BCE_INFO_RESET, "Releasing PCI memory.\n");
3895 		    bus_release_resource(dev, SYS_RES_MEMORY, PCIR_BAR(0),
3896 		    sc->bce_res_mem);
3897 	}
3898 
3899 	if (sc->bce_ifp != NULL) {
3900 		DBPRINT(sc, BCE_INFO_RESET, "Releasing IF.\n");
3901 		if_free(sc->bce_ifp);
3902 	}
3903 
3904 	if (mtx_initialized(&sc->bce_mtx))
3905 		BCE_LOCK_DESTROY(sc);
3906 
3907 	DBEXIT(BCE_VERBOSE_RESET);
3908 }
3909 
3910 
3911 /****************************************************************************/
3912 /* Firmware synchronization.                                                */
3913 /*                                                                          */
3914 /* Before performing certain events such as a chip reset, synchronize with  */
3915 /* the firmware first.                                                      */
3916 /*                                                                          */
3917 /* Returns:                                                                 */
3918 /*   0 for success, positive value for failure.                             */
3919 /****************************************************************************/
3920 static int
3921 bce_fw_sync(struct bce_softc *sc, u32 msg_data)
3922 {
3923 	int i, rc = 0;
3924 	u32 val;
3925 
3926 	DBENTER(BCE_VERBOSE_RESET);
3927 
3928 	/* Don't waste any time if we've timed out before. */
3929 	if (sc->bce_fw_timed_out == TRUE) {
3930 		rc = EBUSY;
3931 		goto bce_fw_sync_exit;
3932 	}
3933 
3934 	/* Increment the message sequence number. */
3935 	sc->bce_fw_wr_seq++;
3936 	msg_data |= sc->bce_fw_wr_seq;
3937 
3938  	DBPRINT(sc, BCE_VERBOSE_FIRMWARE, "bce_fw_sync(): msg_data = "
3939 	    "0x%08X\n",	msg_data);
3940 
3941 	/* Send the message to the bootcode driver mailbox. */
3942 	bce_shmem_wr(sc, BCE_DRV_MB, msg_data);
3943 
3944 	/* Wait for the bootcode to acknowledge the message. */
3945 	for (i = 0; i < FW_ACK_TIME_OUT_MS; i++) {
3946 		/* Check for a response in the bootcode firmware mailbox. */
3947 		val = bce_shmem_rd(sc, BCE_FW_MB);
3948 		if ((val & BCE_FW_MSG_ACK) == (msg_data & BCE_DRV_MSG_SEQ))
3949 			break;
3950 		DELAY(1000);
3951 	}
3952 
3953 	/* If we've timed out, tell bootcode that we've stopped waiting. */
3954 	if (((val & BCE_FW_MSG_ACK) != (msg_data & BCE_DRV_MSG_SEQ)) &&
3955 	    ((msg_data & BCE_DRV_MSG_DATA) != BCE_DRV_MSG_DATA_WAIT0)) {
3956 
3957 		BCE_PRINTF("%s(%d): Firmware synchronization timeout! "
3958 		    "msg_data = 0x%08X\n", __FILE__, __LINE__, msg_data);
3959 
3960 		msg_data &= ~BCE_DRV_MSG_CODE;
3961 		msg_data |= BCE_DRV_MSG_CODE_FW_TIMEOUT;
3962 
3963 		bce_shmem_wr(sc, BCE_DRV_MB, msg_data);
3964 
3965 		sc->bce_fw_timed_out = TRUE;
3966 		rc = EBUSY;
3967 	}
3968 
3969 bce_fw_sync_exit:
3970 	DBEXIT(BCE_VERBOSE_RESET);
3971 	return (rc);
3972 }
3973 
3974 
3975 /****************************************************************************/
3976 /* Load Receive Virtual 2 Physical (RV2P) processor firmware.               */
3977 /*                                                                          */
3978 /* Returns:                                                                 */
3979 /*   Nothing.                                                               */
3980 /****************************************************************************/
3981 static void
3982 bce_load_rv2p_fw(struct bce_softc *sc, u32 *rv2p_code,
3983 	u32 rv2p_code_len, u32 rv2p_proc)
3984 {
3985 	int i;
3986 	u32 val;
3987 
3988 	DBENTER(BCE_VERBOSE_RESET);
3989 
3990 	/* Set the page size used by RV2P. */
3991 	if (rv2p_proc == RV2P_PROC2) {
3992 		BCE_RV2P_PROC2_CHG_MAX_BD_PAGE(USABLE_RX_BD_PER_PAGE);
3993 	}
3994 
3995 	for (i = 0; i < rv2p_code_len; i += 8) {
3996 		REG_WR(sc, BCE_RV2P_INSTR_HIGH, *rv2p_code);
3997 		rv2p_code++;
3998 		REG_WR(sc, BCE_RV2P_INSTR_LOW, *rv2p_code);
3999 		rv2p_code++;
4000 
4001 		if (rv2p_proc == RV2P_PROC1) {
4002 			val = (i / 8) | BCE_RV2P_PROC1_ADDR_CMD_RDWR;
4003 			REG_WR(sc, BCE_RV2P_PROC1_ADDR_CMD, val);
4004 		}
4005 		else {
4006 			val = (i / 8) | BCE_RV2P_PROC2_ADDR_CMD_RDWR;
4007 			REG_WR(sc, BCE_RV2P_PROC2_ADDR_CMD, val);
4008 		}
4009 	}
4010 
4011 	/* Reset the processor, un-stall is done later. */
4012 	if (rv2p_proc == RV2P_PROC1) {
4013 		REG_WR(sc, BCE_RV2P_COMMAND, BCE_RV2P_COMMAND_PROC1_RESET);
4014 	}
4015 	else {
4016 		REG_WR(sc, BCE_RV2P_COMMAND, BCE_RV2P_COMMAND_PROC2_RESET);
4017 	}
4018 
4019 	DBEXIT(BCE_VERBOSE_RESET);
4020 }
4021 
4022 
4023 /****************************************************************************/
4024 /* Load RISC processor firmware.                                            */
4025 /*                                                                          */
4026 /* Loads firmware from the file if_bcefw.h into the scratchpad memory       */
4027 /* associated with a particular processor.                                  */
4028 /*                                                                          */
4029 /* Returns:                                                                 */
4030 /*   Nothing.                                                               */
4031 /****************************************************************************/
4032 static void
4033 bce_load_cpu_fw(struct bce_softc *sc, struct cpu_reg *cpu_reg,
4034 	struct fw_info *fw)
4035 {
4036 	u32 offset;
4037 
4038 	DBENTER(BCE_VERBOSE_RESET);
4039 
4040     bce_halt_cpu(sc, cpu_reg);
4041 
4042 	/* Load the Text area. */
4043 	offset = cpu_reg->spad_base + (fw->text_addr - cpu_reg->mips_view_base);
4044 	if (fw->text) {
4045 		int j;
4046 
4047 		for (j = 0; j < (fw->text_len / 4); j++, offset += 4) {
4048 			REG_WR_IND(sc, offset, fw->text[j]);
4049 	        }
4050 	}
4051 
4052 	/* Load the Data area. */
4053 	offset = cpu_reg->spad_base + (fw->data_addr - cpu_reg->mips_view_base);
4054 	if (fw->data) {
4055 		int j;
4056 
4057 		for (j = 0; j < (fw->data_len / 4); j++, offset += 4) {
4058 			REG_WR_IND(sc, offset, fw->data[j]);
4059 		}
4060 	}
4061 
4062 	/* Load the SBSS area. */
4063 	offset = cpu_reg->spad_base + (fw->sbss_addr - cpu_reg->mips_view_base);
4064 	if (fw->sbss) {
4065 		int j;
4066 
4067 		for (j = 0; j < (fw->sbss_len / 4); j++, offset += 4) {
4068 			REG_WR_IND(sc, offset, fw->sbss[j]);
4069 		}
4070 	}
4071 
4072 	/* Load the BSS area. */
4073 	offset = cpu_reg->spad_base + (fw->bss_addr - cpu_reg->mips_view_base);
4074 	if (fw->bss) {
4075 		int j;
4076 
4077 		for (j = 0; j < (fw->bss_len/4); j++, offset += 4) {
4078 			REG_WR_IND(sc, offset, fw->bss[j]);
4079 		}
4080 	}
4081 
4082 	/* Load the Read-Only area. */
4083 	offset = cpu_reg->spad_base +
4084 		(fw->rodata_addr - cpu_reg->mips_view_base);
4085 	if (fw->rodata) {
4086 		int j;
4087 
4088 		for (j = 0; j < (fw->rodata_len / 4); j++, offset += 4) {
4089 			REG_WR_IND(sc, offset, fw->rodata[j]);
4090 		}
4091 	}
4092 
4093 	/* Clear the pre-fetch instruction and set the FW start address. */
4094 	REG_WR_IND(sc, cpu_reg->inst, 0);
4095 	REG_WR_IND(sc, cpu_reg->pc, fw->start_addr);
4096 
4097 	DBEXIT(BCE_VERBOSE_RESET);
4098 }
4099 
4100 
4101 /****************************************************************************/
4102 /* Starts the RISC processor.                                               */
4103 /*                                                                          */
4104 /* Assumes the CPU starting address has already been set.                   */
4105 /*                                                                          */
4106 /* Returns:                                                                 */
4107 /*   Nothing.                                                               */
4108 /****************************************************************************/
4109 static void
4110 bce_start_cpu(struct bce_softc *sc, struct cpu_reg *cpu_reg)
4111 {
4112 	u32 val;
4113 
4114 	DBENTER(BCE_VERBOSE_RESET);
4115 
4116 	/* Start the CPU. */
4117 	val = REG_RD_IND(sc, cpu_reg->mode);
4118 	val &= ~cpu_reg->mode_value_halt;
4119 	REG_WR_IND(sc, cpu_reg->state, cpu_reg->state_value_clear);
4120 	REG_WR_IND(sc, cpu_reg->mode, val);
4121 
4122 	DBEXIT(BCE_VERBOSE_RESET);
4123 }
4124 
4125 
4126 /****************************************************************************/
4127 /* Halts the RISC processor.                                                */
4128 /*                                                                          */
4129 /* Returns:                                                                 */
4130 /*   Nothing.                                                               */
4131 /****************************************************************************/
4132 static void
4133 bce_halt_cpu(struct bce_softc *sc, struct cpu_reg *cpu_reg)
4134 {
4135 	u32 val;
4136 
4137 	DBENTER(BCE_VERBOSE_RESET);
4138 
4139 	/* Halt the CPU. */
4140 	val = REG_RD_IND(sc, cpu_reg->mode);
4141 	val |= cpu_reg->mode_value_halt;
4142 	REG_WR_IND(sc, cpu_reg->mode, val);
4143 	REG_WR_IND(sc, cpu_reg->state, cpu_reg->state_value_clear);
4144 
4145 	DBEXIT(BCE_VERBOSE_RESET);
4146 }
4147 
4148 
4149 /****************************************************************************/
4150 /* Initialize the RX CPU.                                                   */
4151 /*                                                                          */
4152 /* Returns:                                                                 */
4153 /*   Nothing.                                                               */
4154 /****************************************************************************/
4155 static void
4156 bce_start_rxp_cpu(struct bce_softc *sc)
4157 {
4158 	struct cpu_reg cpu_reg;
4159 
4160 	DBENTER(BCE_VERBOSE_RESET);
4161 
4162 	cpu_reg.mode = BCE_RXP_CPU_MODE;
4163 	cpu_reg.mode_value_halt = BCE_RXP_CPU_MODE_SOFT_HALT;
4164 	cpu_reg.mode_value_sstep = BCE_RXP_CPU_MODE_STEP_ENA;
4165 	cpu_reg.state = BCE_RXP_CPU_STATE;
4166 	cpu_reg.state_value_clear = 0xffffff;
4167 	cpu_reg.gpr0 = BCE_RXP_CPU_REG_FILE;
4168 	cpu_reg.evmask = BCE_RXP_CPU_EVENT_MASK;
4169 	cpu_reg.pc = BCE_RXP_CPU_PROGRAM_COUNTER;
4170 	cpu_reg.inst = BCE_RXP_CPU_INSTRUCTION;
4171 	cpu_reg.bp = BCE_RXP_CPU_HW_BREAKPOINT;
4172 	cpu_reg.spad_base = BCE_RXP_SCRATCH;
4173 	cpu_reg.mips_view_base = 0x8000000;
4174 
4175 	DBPRINT(sc, BCE_INFO_RESET, "Starting RX firmware.\n");
4176 	bce_start_cpu(sc, &cpu_reg);
4177 
4178 	DBEXIT(BCE_VERBOSE_RESET);
4179 }
4180 
4181 
4182 /****************************************************************************/
4183 /* Initialize the RX CPU.                                                   */
4184 /*                                                                          */
4185 /* Returns:                                                                 */
4186 /*   Nothing.                                                               */
4187 /****************************************************************************/
4188 static void
4189 bce_init_rxp_cpu(struct bce_softc *sc)
4190 {
4191 	struct cpu_reg cpu_reg;
4192 	struct fw_info fw;
4193 
4194 	DBENTER(BCE_VERBOSE_RESET);
4195 
4196 	cpu_reg.mode = BCE_RXP_CPU_MODE;
4197 	cpu_reg.mode_value_halt = BCE_RXP_CPU_MODE_SOFT_HALT;
4198 	cpu_reg.mode_value_sstep = BCE_RXP_CPU_MODE_STEP_ENA;
4199 	cpu_reg.state = BCE_RXP_CPU_STATE;
4200 	cpu_reg.state_value_clear = 0xffffff;
4201 	cpu_reg.gpr0 = BCE_RXP_CPU_REG_FILE;
4202 	cpu_reg.evmask = BCE_RXP_CPU_EVENT_MASK;
4203 	cpu_reg.pc = BCE_RXP_CPU_PROGRAM_COUNTER;
4204 	cpu_reg.inst = BCE_RXP_CPU_INSTRUCTION;
4205 	cpu_reg.bp = BCE_RXP_CPU_HW_BREAKPOINT;
4206 	cpu_reg.spad_base = BCE_RXP_SCRATCH;
4207 	cpu_reg.mips_view_base = 0x8000000;
4208 
4209 	if ((BCE_CHIP_NUM(sc) == BCE_CHIP_NUM_5709) ||
4210 		(BCE_CHIP_NUM(sc) == BCE_CHIP_NUM_5716)) {
4211  		fw.ver_major = bce_RXP_b09FwReleaseMajor;
4212 		fw.ver_minor = bce_RXP_b09FwReleaseMinor;
4213 		fw.ver_fix = bce_RXP_b09FwReleaseFix;
4214 		fw.start_addr = bce_RXP_b09FwStartAddr;
4215 
4216 		fw.text_addr = bce_RXP_b09FwTextAddr;
4217 		fw.text_len = bce_RXP_b09FwTextLen;
4218 		fw.text_index = 0;
4219 		fw.text = bce_RXP_b09FwText;
4220 
4221 		fw.data_addr = bce_RXP_b09FwDataAddr;
4222 		fw.data_len = bce_RXP_b09FwDataLen;
4223 		fw.data_index = 0;
4224 		fw.data = bce_RXP_b09FwData;
4225 
4226 		fw.sbss_addr = bce_RXP_b09FwSbssAddr;
4227 		fw.sbss_len = bce_RXP_b09FwSbssLen;
4228 		fw.sbss_index = 0;
4229 		fw.sbss = bce_RXP_b09FwSbss;
4230 
4231 		fw.bss_addr = bce_RXP_b09FwBssAddr;
4232 		fw.bss_len = bce_RXP_b09FwBssLen;
4233 		fw.bss_index = 0;
4234 		fw.bss = bce_RXP_b09FwBss;
4235 
4236 		fw.rodata_addr = bce_RXP_b09FwRodataAddr;
4237 		fw.rodata_len = bce_RXP_b09FwRodataLen;
4238 		fw.rodata_index = 0;
4239 		fw.rodata = bce_RXP_b09FwRodata;
4240 	} else {
4241 		fw.ver_major = bce_RXP_b06FwReleaseMajor;
4242 		fw.ver_minor = bce_RXP_b06FwReleaseMinor;
4243 		fw.ver_fix = bce_RXP_b06FwReleaseFix;
4244 		fw.start_addr = bce_RXP_b06FwStartAddr;
4245 
4246 		fw.text_addr = bce_RXP_b06FwTextAddr;
4247 		fw.text_len = bce_RXP_b06FwTextLen;
4248 		fw.text_index = 0;
4249 		fw.text = bce_RXP_b06FwText;
4250 
4251 		fw.data_addr = bce_RXP_b06FwDataAddr;
4252 		fw.data_len = bce_RXP_b06FwDataLen;
4253 		fw.data_index = 0;
4254 		fw.data = bce_RXP_b06FwData;
4255 
4256 		fw.sbss_addr = bce_RXP_b06FwSbssAddr;
4257 		fw.sbss_len = bce_RXP_b06FwSbssLen;
4258 		fw.sbss_index = 0;
4259 		fw.sbss = bce_RXP_b06FwSbss;
4260 
4261 		fw.bss_addr = bce_RXP_b06FwBssAddr;
4262 		fw.bss_len = bce_RXP_b06FwBssLen;
4263 		fw.bss_index = 0;
4264 		fw.bss = bce_RXP_b06FwBss;
4265 
4266 		fw.rodata_addr = bce_RXP_b06FwRodataAddr;
4267 		fw.rodata_len = bce_RXP_b06FwRodataLen;
4268 		fw.rodata_index = 0;
4269 		fw.rodata = bce_RXP_b06FwRodata;
4270 	}
4271 
4272 	DBPRINT(sc, BCE_INFO_RESET, "Loading RX firmware.\n");
4273 	bce_load_cpu_fw(sc, &cpu_reg, &fw);
4274 
4275     /* Delay RXP start until initialization is complete. */
4276 
4277 	DBEXIT(BCE_VERBOSE_RESET);
4278 }
4279 
4280 
4281 /****************************************************************************/
4282 /* Initialize the TX CPU.                                                   */
4283 /*                                                                          */
4284 /* Returns:                                                                 */
4285 /*   Nothing.                                                               */
4286 /****************************************************************************/
4287 static void
4288 bce_init_txp_cpu(struct bce_softc *sc)
4289 {
4290 	struct cpu_reg cpu_reg;
4291 	struct fw_info fw;
4292 
4293 	DBENTER(BCE_VERBOSE_RESET);
4294 
4295 	cpu_reg.mode = BCE_TXP_CPU_MODE;
4296 	cpu_reg.mode_value_halt = BCE_TXP_CPU_MODE_SOFT_HALT;
4297 	cpu_reg.mode_value_sstep = BCE_TXP_CPU_MODE_STEP_ENA;
4298 	cpu_reg.state = BCE_TXP_CPU_STATE;
4299 	cpu_reg.state_value_clear = 0xffffff;
4300 	cpu_reg.gpr0 = BCE_TXP_CPU_REG_FILE;
4301 	cpu_reg.evmask = BCE_TXP_CPU_EVENT_MASK;
4302 	cpu_reg.pc = BCE_TXP_CPU_PROGRAM_COUNTER;
4303 	cpu_reg.inst = BCE_TXP_CPU_INSTRUCTION;
4304 	cpu_reg.bp = BCE_TXP_CPU_HW_BREAKPOINT;
4305 	cpu_reg.spad_base = BCE_TXP_SCRATCH;
4306 	cpu_reg.mips_view_base = 0x8000000;
4307 
4308 	if ((BCE_CHIP_NUM(sc) == BCE_CHIP_NUM_5709) ||
4309 		(BCE_CHIP_NUM(sc) == BCE_CHIP_NUM_5716)) {
4310 		fw.ver_major = bce_TXP_b09FwReleaseMajor;
4311 		fw.ver_minor = bce_TXP_b09FwReleaseMinor;
4312 		fw.ver_fix = bce_TXP_b09FwReleaseFix;
4313 		fw.start_addr = bce_TXP_b09FwStartAddr;
4314 
4315 		fw.text_addr = bce_TXP_b09FwTextAddr;
4316 		fw.text_len = bce_TXP_b09FwTextLen;
4317 		fw.text_index = 0;
4318 		fw.text = bce_TXP_b09FwText;
4319 
4320 		fw.data_addr = bce_TXP_b09FwDataAddr;
4321 		fw.data_len = bce_TXP_b09FwDataLen;
4322 		fw.data_index = 0;
4323 		fw.data = bce_TXP_b09FwData;
4324 
4325 		fw.sbss_addr = bce_TXP_b09FwSbssAddr;
4326 		fw.sbss_len = bce_TXP_b09FwSbssLen;
4327 		fw.sbss_index = 0;
4328 		fw.sbss = bce_TXP_b09FwSbss;
4329 
4330 		fw.bss_addr = bce_TXP_b09FwBssAddr;
4331 		fw.bss_len = bce_TXP_b09FwBssLen;
4332 		fw.bss_index = 0;
4333 		fw.bss = bce_TXP_b09FwBss;
4334 
4335 		fw.rodata_addr = bce_TXP_b09FwRodataAddr;
4336 		fw.rodata_len = bce_TXP_b09FwRodataLen;
4337 		fw.rodata_index = 0;
4338 		fw.rodata = bce_TXP_b09FwRodata;
4339 	} else {
4340 		fw.ver_major = bce_TXP_b06FwReleaseMajor;
4341 		fw.ver_minor = bce_TXP_b06FwReleaseMinor;
4342 		fw.ver_fix = bce_TXP_b06FwReleaseFix;
4343 		fw.start_addr = bce_TXP_b06FwStartAddr;
4344 
4345 		fw.text_addr = bce_TXP_b06FwTextAddr;
4346 		fw.text_len = bce_TXP_b06FwTextLen;
4347 		fw.text_index = 0;
4348 		fw.text = bce_TXP_b06FwText;
4349 
4350 		fw.data_addr = bce_TXP_b06FwDataAddr;
4351 		fw.data_len = bce_TXP_b06FwDataLen;
4352 		fw.data_index = 0;
4353 		fw.data = bce_TXP_b06FwData;
4354 
4355 		fw.sbss_addr = bce_TXP_b06FwSbssAddr;
4356 		fw.sbss_len = bce_TXP_b06FwSbssLen;
4357 		fw.sbss_index = 0;
4358 		fw.sbss = bce_TXP_b06FwSbss;
4359 
4360 		fw.bss_addr = bce_TXP_b06FwBssAddr;
4361 		fw.bss_len = bce_TXP_b06FwBssLen;
4362 		fw.bss_index = 0;
4363 		fw.bss = bce_TXP_b06FwBss;
4364 
4365 		fw.rodata_addr = bce_TXP_b06FwRodataAddr;
4366 		fw.rodata_len = bce_TXP_b06FwRodataLen;
4367 		fw.rodata_index = 0;
4368 		fw.rodata = bce_TXP_b06FwRodata;
4369 	}
4370 
4371 	DBPRINT(sc, BCE_INFO_RESET, "Loading TX firmware.\n");
4372 	bce_load_cpu_fw(sc, &cpu_reg, &fw);
4373     bce_start_cpu(sc, &cpu_reg);
4374 
4375 	DBEXIT(BCE_VERBOSE_RESET);
4376 }
4377 
4378 
4379 /****************************************************************************/
4380 /* Initialize the TPAT CPU.                                                 */
4381 /*                                                                          */
4382 /* Returns:                                                                 */
4383 /*   Nothing.                                                               */
4384 /****************************************************************************/
4385 static void
4386 bce_init_tpat_cpu(struct bce_softc *sc)
4387 {
4388 	struct cpu_reg cpu_reg;
4389 	struct fw_info fw;
4390 
4391 	DBENTER(BCE_VERBOSE_RESET);
4392 
4393 	cpu_reg.mode = BCE_TPAT_CPU_MODE;
4394 	cpu_reg.mode_value_halt = BCE_TPAT_CPU_MODE_SOFT_HALT;
4395 	cpu_reg.mode_value_sstep = BCE_TPAT_CPU_MODE_STEP_ENA;
4396 	cpu_reg.state = BCE_TPAT_CPU_STATE;
4397 	cpu_reg.state_value_clear = 0xffffff;
4398 	cpu_reg.gpr0 = BCE_TPAT_CPU_REG_FILE;
4399 	cpu_reg.evmask = BCE_TPAT_CPU_EVENT_MASK;
4400 	cpu_reg.pc = BCE_TPAT_CPU_PROGRAM_COUNTER;
4401 	cpu_reg.inst = BCE_TPAT_CPU_INSTRUCTION;
4402 	cpu_reg.bp = BCE_TPAT_CPU_HW_BREAKPOINT;
4403 	cpu_reg.spad_base = BCE_TPAT_SCRATCH;
4404 	cpu_reg.mips_view_base = 0x8000000;
4405 
4406 	if ((BCE_CHIP_NUM(sc) == BCE_CHIP_NUM_5709) ||
4407 		(BCE_CHIP_NUM(sc) == BCE_CHIP_NUM_5716)) {
4408 		fw.ver_major = bce_TPAT_b09FwReleaseMajor;
4409 		fw.ver_minor = bce_TPAT_b09FwReleaseMinor;
4410 		fw.ver_fix = bce_TPAT_b09FwReleaseFix;
4411 		fw.start_addr = bce_TPAT_b09FwStartAddr;
4412 
4413 		fw.text_addr = bce_TPAT_b09FwTextAddr;
4414 		fw.text_len = bce_TPAT_b09FwTextLen;
4415 		fw.text_index = 0;
4416 		fw.text = bce_TPAT_b09FwText;
4417 
4418 		fw.data_addr = bce_TPAT_b09FwDataAddr;
4419 		fw.data_len = bce_TPAT_b09FwDataLen;
4420 		fw.data_index = 0;
4421 		fw.data = bce_TPAT_b09FwData;
4422 
4423 		fw.sbss_addr = bce_TPAT_b09FwSbssAddr;
4424 		fw.sbss_len = bce_TPAT_b09FwSbssLen;
4425 		fw.sbss_index = 0;
4426 		fw.sbss = bce_TPAT_b09FwSbss;
4427 
4428 		fw.bss_addr = bce_TPAT_b09FwBssAddr;
4429 		fw.bss_len = bce_TPAT_b09FwBssLen;
4430 		fw.bss_index = 0;
4431 		fw.bss = bce_TPAT_b09FwBss;
4432 
4433 		fw.rodata_addr = bce_TPAT_b09FwRodataAddr;
4434 		fw.rodata_len = bce_TPAT_b09FwRodataLen;
4435 		fw.rodata_index = 0;
4436 		fw.rodata = bce_TPAT_b09FwRodata;
4437 	} else {
4438 		fw.ver_major = bce_TPAT_b06FwReleaseMajor;
4439 		fw.ver_minor = bce_TPAT_b06FwReleaseMinor;
4440 		fw.ver_fix = bce_TPAT_b06FwReleaseFix;
4441 		fw.start_addr = bce_TPAT_b06FwStartAddr;
4442 
4443 		fw.text_addr = bce_TPAT_b06FwTextAddr;
4444 		fw.text_len = bce_TPAT_b06FwTextLen;
4445 		fw.text_index = 0;
4446 		fw.text = bce_TPAT_b06FwText;
4447 
4448 		fw.data_addr = bce_TPAT_b06FwDataAddr;
4449 		fw.data_len = bce_TPAT_b06FwDataLen;
4450 		fw.data_index = 0;
4451 		fw.data = bce_TPAT_b06FwData;
4452 
4453 		fw.sbss_addr = bce_TPAT_b06FwSbssAddr;
4454 		fw.sbss_len = bce_TPAT_b06FwSbssLen;
4455 		fw.sbss_index = 0;
4456 		fw.sbss = bce_TPAT_b06FwSbss;
4457 
4458 		fw.bss_addr = bce_TPAT_b06FwBssAddr;
4459 		fw.bss_len = bce_TPAT_b06FwBssLen;
4460 		fw.bss_index = 0;
4461 		fw.bss = bce_TPAT_b06FwBss;
4462 
4463 		fw.rodata_addr = bce_TPAT_b06FwRodataAddr;
4464 		fw.rodata_len = bce_TPAT_b06FwRodataLen;
4465 		fw.rodata_index = 0;
4466 		fw.rodata = bce_TPAT_b06FwRodata;
4467 	}
4468 
4469 	DBPRINT(sc, BCE_INFO_RESET, "Loading TPAT firmware.\n");
4470 	bce_load_cpu_fw(sc, &cpu_reg, &fw);
4471 	bce_start_cpu(sc, &cpu_reg);
4472 
4473 	DBEXIT(BCE_VERBOSE_RESET);
4474 }
4475 
4476 
4477 /****************************************************************************/
4478 /* Initialize the CP CPU.                                                   */
4479 /*                                                                          */
4480 /* Returns:                                                                 */
4481 /*   Nothing.                                                               */
4482 /****************************************************************************/
4483 static void
4484 bce_init_cp_cpu(struct bce_softc *sc)
4485 {
4486 	struct cpu_reg cpu_reg;
4487 	struct fw_info fw;
4488 
4489 	DBENTER(BCE_VERBOSE_RESET);
4490 
4491 	cpu_reg.mode = BCE_CP_CPU_MODE;
4492 	cpu_reg.mode_value_halt = BCE_CP_CPU_MODE_SOFT_HALT;
4493 	cpu_reg.mode_value_sstep = BCE_CP_CPU_MODE_STEP_ENA;
4494 	cpu_reg.state = BCE_CP_CPU_STATE;
4495 	cpu_reg.state_value_clear = 0xffffff;
4496 	cpu_reg.gpr0 = BCE_CP_CPU_REG_FILE;
4497 	cpu_reg.evmask = BCE_CP_CPU_EVENT_MASK;
4498 	cpu_reg.pc = BCE_CP_CPU_PROGRAM_COUNTER;
4499 	cpu_reg.inst = BCE_CP_CPU_INSTRUCTION;
4500 	cpu_reg.bp = BCE_CP_CPU_HW_BREAKPOINT;
4501 	cpu_reg.spad_base = BCE_CP_SCRATCH;
4502 	cpu_reg.mips_view_base = 0x8000000;
4503 
4504 	if ((BCE_CHIP_NUM(sc) == BCE_CHIP_NUM_5709) ||
4505 		(BCE_CHIP_NUM(sc) == BCE_CHIP_NUM_5716)) {
4506 		fw.ver_major = bce_CP_b09FwReleaseMajor;
4507 		fw.ver_minor = bce_CP_b09FwReleaseMinor;
4508 		fw.ver_fix = bce_CP_b09FwReleaseFix;
4509 		fw.start_addr = bce_CP_b09FwStartAddr;
4510 
4511 		fw.text_addr = bce_CP_b09FwTextAddr;
4512 		fw.text_len = bce_CP_b09FwTextLen;
4513 		fw.text_index = 0;
4514 		fw.text = bce_CP_b09FwText;
4515 
4516 		fw.data_addr = bce_CP_b09FwDataAddr;
4517 		fw.data_len = bce_CP_b09FwDataLen;
4518 		fw.data_index = 0;
4519 		fw.data = bce_CP_b09FwData;
4520 
4521 		fw.sbss_addr = bce_CP_b09FwSbssAddr;
4522 		fw.sbss_len = bce_CP_b09FwSbssLen;
4523 		fw.sbss_index = 0;
4524 		fw.sbss = bce_CP_b09FwSbss;
4525 
4526 		fw.bss_addr = bce_CP_b09FwBssAddr;
4527 		fw.bss_len = bce_CP_b09FwBssLen;
4528 		fw.bss_index = 0;
4529 		fw.bss = bce_CP_b09FwBss;
4530 
4531 		fw.rodata_addr = bce_CP_b09FwRodataAddr;
4532 		fw.rodata_len = bce_CP_b09FwRodataLen;
4533 		fw.rodata_index = 0;
4534 		fw.rodata = bce_CP_b09FwRodata;
4535 	} else {
4536 		fw.ver_major = bce_CP_b06FwReleaseMajor;
4537 		fw.ver_minor = bce_CP_b06FwReleaseMinor;
4538 		fw.ver_fix = bce_CP_b06FwReleaseFix;
4539 		fw.start_addr = bce_CP_b06FwStartAddr;
4540 
4541 		fw.text_addr = bce_CP_b06FwTextAddr;
4542 		fw.text_len = bce_CP_b06FwTextLen;
4543 		fw.text_index = 0;
4544 		fw.text = bce_CP_b06FwText;
4545 
4546 		fw.data_addr = bce_CP_b06FwDataAddr;
4547 		fw.data_len = bce_CP_b06FwDataLen;
4548 		fw.data_index = 0;
4549 		fw.data = bce_CP_b06FwData;
4550 
4551 		fw.sbss_addr = bce_CP_b06FwSbssAddr;
4552 		fw.sbss_len = bce_CP_b06FwSbssLen;
4553 		fw.sbss_index = 0;
4554 		fw.sbss = bce_CP_b06FwSbss;
4555 
4556 		fw.bss_addr = bce_CP_b06FwBssAddr;
4557 		fw.bss_len = bce_CP_b06FwBssLen;
4558 		fw.bss_index = 0;
4559 		fw.bss = bce_CP_b06FwBss;
4560 
4561 		fw.rodata_addr = bce_CP_b06FwRodataAddr;
4562 		fw.rodata_len = bce_CP_b06FwRodataLen;
4563 		fw.rodata_index = 0;
4564 		fw.rodata = bce_CP_b06FwRodata;
4565 	}
4566 
4567 	DBPRINT(sc, BCE_INFO_RESET, "Loading CP firmware.\n");
4568 	bce_load_cpu_fw(sc, &cpu_reg, &fw);
4569 	bce_start_cpu(sc, &cpu_reg);
4570 
4571 	DBEXIT(BCE_VERBOSE_RESET);
4572 }
4573 
4574 
4575 /****************************************************************************/
4576 /* Initialize the COM CPU.                                                 */
4577 /*                                                                          */
4578 /* Returns:                                                                 */
4579 /*   Nothing.                                                               */
4580 /****************************************************************************/
4581 static void
4582 bce_init_com_cpu(struct bce_softc *sc)
4583 {
4584 	struct cpu_reg cpu_reg;
4585 	struct fw_info fw;
4586 
4587 	DBENTER(BCE_VERBOSE_RESET);
4588 
4589 	cpu_reg.mode = BCE_COM_CPU_MODE;
4590 	cpu_reg.mode_value_halt = BCE_COM_CPU_MODE_SOFT_HALT;
4591 	cpu_reg.mode_value_sstep = BCE_COM_CPU_MODE_STEP_ENA;
4592 	cpu_reg.state = BCE_COM_CPU_STATE;
4593 	cpu_reg.state_value_clear = 0xffffff;
4594 	cpu_reg.gpr0 = BCE_COM_CPU_REG_FILE;
4595 	cpu_reg.evmask = BCE_COM_CPU_EVENT_MASK;
4596 	cpu_reg.pc = BCE_COM_CPU_PROGRAM_COUNTER;
4597 	cpu_reg.inst = BCE_COM_CPU_INSTRUCTION;
4598 	cpu_reg.bp = BCE_COM_CPU_HW_BREAKPOINT;
4599 	cpu_reg.spad_base = BCE_COM_SCRATCH;
4600 	cpu_reg.mips_view_base = 0x8000000;
4601 
4602 	if ((BCE_CHIP_NUM(sc) == BCE_CHIP_NUM_5709) ||
4603 		(BCE_CHIP_NUM(sc) == BCE_CHIP_NUM_5716)) {
4604 		fw.ver_major = bce_COM_b09FwReleaseMajor;
4605 		fw.ver_minor = bce_COM_b09FwReleaseMinor;
4606 		fw.ver_fix = bce_COM_b09FwReleaseFix;
4607 		fw.start_addr = bce_COM_b09FwStartAddr;
4608 
4609 		fw.text_addr = bce_COM_b09FwTextAddr;
4610 		fw.text_len = bce_COM_b09FwTextLen;
4611 		fw.text_index = 0;
4612 		fw.text = bce_COM_b09FwText;
4613 
4614 		fw.data_addr = bce_COM_b09FwDataAddr;
4615 		fw.data_len = bce_COM_b09FwDataLen;
4616 		fw.data_index = 0;
4617 		fw.data = bce_COM_b09FwData;
4618 
4619 		fw.sbss_addr = bce_COM_b09FwSbssAddr;
4620 		fw.sbss_len = bce_COM_b09FwSbssLen;
4621 		fw.sbss_index = 0;
4622 		fw.sbss = bce_COM_b09FwSbss;
4623 
4624 		fw.bss_addr = bce_COM_b09FwBssAddr;
4625 		fw.bss_len = bce_COM_b09FwBssLen;
4626 		fw.bss_index = 0;
4627 		fw.bss = bce_COM_b09FwBss;
4628 
4629 		fw.rodata_addr = bce_COM_b09FwRodataAddr;
4630 		fw.rodata_len = bce_COM_b09FwRodataLen;
4631 		fw.rodata_index = 0;
4632 		fw.rodata = bce_COM_b09FwRodata;
4633 	} else {
4634 		fw.ver_major = bce_COM_b06FwReleaseMajor;
4635 		fw.ver_minor = bce_COM_b06FwReleaseMinor;
4636 		fw.ver_fix = bce_COM_b06FwReleaseFix;
4637 		fw.start_addr = bce_COM_b06FwStartAddr;
4638 
4639 		fw.text_addr = bce_COM_b06FwTextAddr;
4640 		fw.text_len = bce_COM_b06FwTextLen;
4641 		fw.text_index = 0;
4642 		fw.text = bce_COM_b06FwText;
4643 
4644 		fw.data_addr = bce_COM_b06FwDataAddr;
4645 		fw.data_len = bce_COM_b06FwDataLen;
4646 		fw.data_index = 0;
4647 		fw.data = bce_COM_b06FwData;
4648 
4649 		fw.sbss_addr = bce_COM_b06FwSbssAddr;
4650 		fw.sbss_len = bce_COM_b06FwSbssLen;
4651 		fw.sbss_index = 0;
4652 		fw.sbss = bce_COM_b06FwSbss;
4653 
4654 		fw.bss_addr = bce_COM_b06FwBssAddr;
4655 		fw.bss_len = bce_COM_b06FwBssLen;
4656 		fw.bss_index = 0;
4657 		fw.bss = bce_COM_b06FwBss;
4658 
4659 		fw.rodata_addr = bce_COM_b06FwRodataAddr;
4660 		fw.rodata_len = bce_COM_b06FwRodataLen;
4661 		fw.rodata_index = 0;
4662 		fw.rodata = bce_COM_b06FwRodata;
4663 	}
4664 
4665 	DBPRINT(sc, BCE_INFO_RESET, "Loading COM firmware.\n");
4666 	bce_load_cpu_fw(sc, &cpu_reg, &fw);
4667 	bce_start_cpu(sc, &cpu_reg);
4668 
4669 	DBEXIT(BCE_VERBOSE_RESET);
4670 }
4671 
4672 
4673 /****************************************************************************/
4674 /* Initialize the RV2P, RX, TX, TPAT, COM, and CP CPUs.                     */
4675 /*                                                                          */
4676 /* Loads the firmware for each CPU and starts the CPU.                      */
4677 /*                                                                          */
4678 /* Returns:                                                                 */
4679 /*   Nothing.                                                               */
4680 /****************************************************************************/
4681 static void
4682 bce_init_cpus(struct bce_softc *sc)
4683 {
4684 	DBENTER(BCE_VERBOSE_RESET);
4685 
4686 	if ((BCE_CHIP_NUM(sc) == BCE_CHIP_NUM_5709) ||
4687 		(BCE_CHIP_NUM(sc) == BCE_CHIP_NUM_5716)) {
4688 
4689 		if ((BCE_CHIP_REV(sc) == BCE_CHIP_REV_Ax)) {
4690 			bce_load_rv2p_fw(sc, bce_xi90_rv2p_proc1,
4691 			    sizeof(bce_xi90_rv2p_proc1), RV2P_PROC1);
4692 			bce_load_rv2p_fw(sc, bce_xi90_rv2p_proc2,
4693 			    sizeof(bce_xi90_rv2p_proc2), RV2P_PROC2);
4694 		} else {
4695 			bce_load_rv2p_fw(sc, bce_xi_rv2p_proc1,
4696 			    sizeof(bce_xi_rv2p_proc1), RV2P_PROC1);
4697 			bce_load_rv2p_fw(sc, bce_xi_rv2p_proc2,
4698 			    sizeof(bce_xi_rv2p_proc2), RV2P_PROC2);
4699 		}
4700 
4701 	} else {
4702 		bce_load_rv2p_fw(sc, bce_rv2p_proc1,
4703 		    sizeof(bce_rv2p_proc1), RV2P_PROC1);
4704 		bce_load_rv2p_fw(sc, bce_rv2p_proc2,
4705 		    sizeof(bce_rv2p_proc2), RV2P_PROC2);
4706 	}
4707 
4708 	bce_init_rxp_cpu(sc);
4709 	bce_init_txp_cpu(sc);
4710 	bce_init_tpat_cpu(sc);
4711 	bce_init_com_cpu(sc);
4712 	bce_init_cp_cpu(sc);
4713 
4714 	DBEXIT(BCE_VERBOSE_RESET);
4715 }
4716 
4717 
4718 /****************************************************************************/
4719 /* Initialize context memory.                                               */
4720 /*                                                                          */
4721 /* Clears the memory associated with each Context ID (CID).                 */
4722 /*                                                                          */
4723 /* Returns:                                                                 */
4724 /*   Nothing.                                                               */
4725 /****************************************************************************/
4726 static int
4727 bce_init_ctx(struct bce_softc *sc)
4728 {
4729 	u32 offset, val, vcid_addr;
4730 	int i, j, rc, retry_cnt;
4731 
4732 	rc = 0;
4733 	DBENTER(BCE_VERBOSE_RESET | BCE_VERBOSE_CTX);
4734 
4735 	if ((BCE_CHIP_NUM(sc) == BCE_CHIP_NUM_5709) ||
4736 	    (BCE_CHIP_NUM(sc) == BCE_CHIP_NUM_5716)) {
4737 		retry_cnt = CTX_INIT_RETRY_COUNT;
4738 
4739 		DBPRINT(sc, BCE_INFO_CTX, "Initializing 5709 context.\n");
4740 
4741 		/*
4742 		 * BCM5709 context memory may be cached
4743 		 * in host memory so prepare the host memory
4744 		 * for access.
4745 		 */
4746 		val = BCE_CTX_COMMAND_ENABLED |
4747 		    BCE_CTX_COMMAND_MEM_INIT | (1 << 12);
4748 		val |= (BCM_PAGE_BITS - 8) << 16;
4749 		REG_WR(sc, BCE_CTX_COMMAND, val);
4750 
4751 		/* Wait for mem init command to complete. */
4752 		for (i = 0; i < retry_cnt; i++) {
4753 			val = REG_RD(sc, BCE_CTX_COMMAND);
4754 			if (!(val & BCE_CTX_COMMAND_MEM_INIT))
4755 				break;
4756 			DELAY(2);
4757 		}
4758 		if ((val & BCE_CTX_COMMAND_MEM_INIT) != 0) {
4759 			BCE_PRINTF("%s(): Context memory initialization failed!\n",
4760 			    __FUNCTION__);
4761 			rc = EBUSY;
4762 			goto init_ctx_fail;
4763 		}
4764 
4765 		for (i = 0; i < sc->ctx_pages; i++) {
4766 			/* Set the physical address of the context memory. */
4767 			REG_WR(sc, BCE_CTX_HOST_PAGE_TBL_DATA0,
4768 			    BCE_ADDR_LO(sc->ctx_paddr[i] & 0xfffffff0) |
4769 			    BCE_CTX_HOST_PAGE_TBL_DATA0_VALID);
4770 			REG_WR(sc, BCE_CTX_HOST_PAGE_TBL_DATA1,
4771 			    BCE_ADDR_HI(sc->ctx_paddr[i]));
4772 			REG_WR(sc, BCE_CTX_HOST_PAGE_TBL_CTRL, i |
4773 			    BCE_CTX_HOST_PAGE_TBL_CTRL_WRITE_REQ);
4774 
4775 			/* Verify the context memory write was successful. */
4776 			for (j = 0; j < retry_cnt; j++) {
4777 				val = REG_RD(sc, BCE_CTX_HOST_PAGE_TBL_CTRL);
4778 				if ((val &
4779 				    BCE_CTX_HOST_PAGE_TBL_CTRL_WRITE_REQ) == 0)
4780 					break;
4781 				DELAY(5);
4782 			}
4783 			if ((val & BCE_CTX_HOST_PAGE_TBL_CTRL_WRITE_REQ) != 0) {
4784 				BCE_PRINTF("%s(): Failed to initialize "
4785 				    "context page %d!\n", __FUNCTION__, i);
4786 				rc = EBUSY;
4787 				goto init_ctx_fail;
4788 			}
4789 		}
4790 	} else {
4791 
4792 		DBPRINT(sc, BCE_INFO, "Initializing 5706/5708 context.\n");
4793 
4794 		/*
4795 		 * For the 5706/5708, context memory is local to
4796 		 * the controller, so initialize the controller
4797 		 * context memory.
4798 		 */
4799 
4800 		vcid_addr = GET_CID_ADDR(96);
4801 		while (vcid_addr) {
4802 
4803 			vcid_addr -= PHY_CTX_SIZE;
4804 
4805 			REG_WR(sc, BCE_CTX_VIRT_ADDR, 0);
4806 			REG_WR(sc, BCE_CTX_PAGE_TBL, vcid_addr);
4807 
4808 			for(offset = 0; offset < PHY_CTX_SIZE; offset += 4) {
4809 				CTX_WR(sc, 0x00, offset, 0);
4810 			}
4811 
4812 			REG_WR(sc, BCE_CTX_VIRT_ADDR, vcid_addr);
4813 			REG_WR(sc, BCE_CTX_PAGE_TBL, vcid_addr);
4814 		}
4815 
4816 	}
4817 init_ctx_fail:
4818 	DBEXIT(BCE_VERBOSE_RESET | BCE_VERBOSE_CTX);
4819 	return (rc);
4820 }
4821 
4822 
4823 /****************************************************************************/
4824 /* Fetch the permanent MAC address of the controller.                       */
4825 /*                                                                          */
4826 /* Returns:                                                                 */
4827 /*   Nothing.                                                               */
4828 /****************************************************************************/
4829 static void
4830 bce_get_mac_addr(struct bce_softc *sc)
4831 {
4832 	u32 mac_lo = 0, mac_hi = 0;
4833 
4834 	DBENTER(BCE_VERBOSE_RESET);
4835 
4836 	/*
4837 	 * The NetXtreme II bootcode populates various NIC
4838 	 * power-on and runtime configuration items in a
4839 	 * shared memory area.  The factory configured MAC
4840 	 * address is available from both NVRAM and the
4841 	 * shared memory area so we'll read the value from
4842 	 * shared memory for speed.
4843 	 */
4844 
4845 	mac_hi = bce_shmem_rd(sc, BCE_PORT_HW_CFG_MAC_UPPER);
4846 	mac_lo = bce_shmem_rd(sc, BCE_PORT_HW_CFG_MAC_LOWER);
4847 
4848 	if ((mac_lo == 0) && (mac_hi == 0)) {
4849 		BCE_PRINTF("%s(%d): Invalid Ethernet address!\n",
4850 		    __FILE__, __LINE__);
4851 	} else {
4852 		sc->eaddr[0] = (u_char)(mac_hi >> 8);
4853 		sc->eaddr[1] = (u_char)(mac_hi >> 0);
4854 		sc->eaddr[2] = (u_char)(mac_lo >> 24);
4855 		sc->eaddr[3] = (u_char)(mac_lo >> 16);
4856 		sc->eaddr[4] = (u_char)(mac_lo >> 8);
4857 		sc->eaddr[5] = (u_char)(mac_lo >> 0);
4858 	}
4859 
4860 	DBPRINT(sc, BCE_INFO_MISC, "Permanent Ethernet "
4861 	    "address = %6D\n", sc->eaddr, ":");
4862 	DBEXIT(BCE_VERBOSE_RESET);
4863 }
4864 
4865 
4866 /****************************************************************************/
4867 /* Program the MAC address.                                                 */
4868 /*                                                                          */
4869 /* Returns:                                                                 */
4870 /*   Nothing.                                                               */
4871 /****************************************************************************/
4872 static void
4873 bce_set_mac_addr(struct bce_softc *sc)
4874 {
4875 	u32 val;
4876 	u8 *mac_addr = sc->eaddr;
4877 
4878 	/* ToDo: Add support for setting multiple MAC addresses. */
4879 
4880 	DBENTER(BCE_VERBOSE_RESET);
4881 	DBPRINT(sc, BCE_INFO_MISC, "Setting Ethernet address = "
4882 	    "%6D\n", sc->eaddr, ":");
4883 
4884 	val = (mac_addr[0] << 8) | mac_addr[1];
4885 
4886 	REG_WR(sc, BCE_EMAC_MAC_MATCH0, val);
4887 
4888 	val = (mac_addr[2] << 24) | (mac_addr[3] << 16) |
4889 	    (mac_addr[4] << 8) | mac_addr[5];
4890 
4891 	REG_WR(sc, BCE_EMAC_MAC_MATCH1, val);
4892 
4893 	DBEXIT(BCE_VERBOSE_RESET);
4894 }
4895 
4896 
4897 /****************************************************************************/
4898 /* Stop the controller.                                                     */
4899 /*                                                                          */
4900 /* Returns:                                                                 */
4901 /*   Nothing.                                                               */
4902 /****************************************************************************/
4903 static void
4904 bce_stop(struct bce_softc *sc)
4905 {
4906 	struct ifnet *ifp;
4907 
4908 	DBENTER(BCE_VERBOSE_RESET);
4909 
4910 	BCE_LOCK_ASSERT(sc);
4911 
4912 	ifp = sc->bce_ifp;
4913 
4914 	callout_stop(&sc->bce_tick_callout);
4915 
4916 	/* Disable the transmit/receive blocks. */
4917 	REG_WR(sc, BCE_MISC_ENABLE_CLR_BITS, BCE_MISC_ENABLE_CLR_DEFAULT);
4918 	REG_RD(sc, BCE_MISC_ENABLE_CLR_BITS);
4919 	DELAY(20);
4920 
4921 	bce_disable_intr(sc);
4922 
4923 	/* Free RX buffers. */
4924 	if (bce_hdr_split == TRUE) {
4925 		bce_free_pg_chain(sc);
4926 	}
4927 	bce_free_rx_chain(sc);
4928 
4929 	/* Free TX buffers. */
4930 	bce_free_tx_chain(sc);
4931 
4932 	sc->watchdog_timer = 0;
4933 
4934 	sc->bce_link_up = FALSE;
4935 
4936 	ifp->if_drv_flags &= ~(IFF_DRV_RUNNING | IFF_DRV_OACTIVE);
4937 
4938 	DBEXIT(BCE_VERBOSE_RESET);
4939 }
4940 
4941 
4942 static int
4943 bce_reset(struct bce_softc *sc, u32 reset_code)
4944 {
4945 	u32 val;
4946 	int i, rc = 0;
4947 
4948 	DBENTER(BCE_VERBOSE_RESET);
4949 
4950 	DBPRINT(sc, BCE_VERBOSE_RESET, "%s(): reset_code = 0x%08X\n",
4951 	    __FUNCTION__, reset_code);
4952 
4953 	/* Wait for pending PCI transactions to complete. */
4954 	REG_WR(sc, BCE_MISC_ENABLE_CLR_BITS,
4955 	    BCE_MISC_ENABLE_CLR_BITS_TX_DMA_ENABLE |
4956 	    BCE_MISC_ENABLE_CLR_BITS_DMA_ENGINE_ENABLE |
4957 	    BCE_MISC_ENABLE_CLR_BITS_RX_DMA_ENABLE |
4958 	    BCE_MISC_ENABLE_CLR_BITS_HOST_COALESCE_ENABLE);
4959 	val = REG_RD(sc, BCE_MISC_ENABLE_CLR_BITS);
4960 	DELAY(5);
4961 
4962 	/* Disable DMA */
4963 	if ((BCE_CHIP_NUM(sc) == BCE_CHIP_NUM_5709) ||
4964 	    (BCE_CHIP_NUM(sc) == BCE_CHIP_NUM_5716)) {
4965 		val = REG_RD(sc, BCE_MISC_NEW_CORE_CTL);
4966 		val &= ~BCE_MISC_NEW_CORE_CTL_DMA_ENABLE;
4967 		REG_WR(sc, BCE_MISC_NEW_CORE_CTL, val);
4968 	}
4969 
4970 	/* Assume bootcode is running. */
4971 	sc->bce_fw_timed_out = FALSE;
4972 	sc->bce_drv_cardiac_arrest = FALSE;
4973 
4974 	/* Give the firmware a chance to prepare for the reset. */
4975 	rc = bce_fw_sync(sc, BCE_DRV_MSG_DATA_WAIT0 | reset_code);
4976 	if (rc)
4977 		goto bce_reset_exit;
4978 
4979 	/* Set a firmware reminder that this is a soft reset. */
4980 	bce_shmem_wr(sc, BCE_DRV_RESET_SIGNATURE, BCE_DRV_RESET_SIGNATURE_MAGIC);
4981 
4982 	/* Dummy read to force the chip to complete all current transactions. */
4983 	val = REG_RD(sc, BCE_MISC_ID);
4984 
4985 	/* Chip reset. */
4986 	if ((BCE_CHIP_NUM(sc) == BCE_CHIP_NUM_5709) ||
4987 	    (BCE_CHIP_NUM(sc) == BCE_CHIP_NUM_5716)) {
4988 		REG_WR(sc, BCE_MISC_COMMAND, BCE_MISC_COMMAND_SW_RESET);
4989 		REG_RD(sc, BCE_MISC_COMMAND);
4990 		DELAY(5);
4991 
4992 		val = BCE_PCICFG_MISC_CONFIG_REG_WINDOW_ENA |
4993 		    BCE_PCICFG_MISC_CONFIG_TARGET_MB_WORD_SWAP;
4994 
4995 		pci_write_config(sc->bce_dev, BCE_PCICFG_MISC_CONFIG, val, 4);
4996 	} else {
4997 		val = BCE_PCICFG_MISC_CONFIG_CORE_RST_REQ |
4998 		    BCE_PCICFG_MISC_CONFIG_REG_WINDOW_ENA |
4999 		    BCE_PCICFG_MISC_CONFIG_TARGET_MB_WORD_SWAP;
5000 		REG_WR(sc, BCE_PCICFG_MISC_CONFIG, val);
5001 
5002 		/* Allow up to 30us for reset to complete. */
5003 		for (i = 0; i < 10; i++) {
5004 			val = REG_RD(sc, BCE_PCICFG_MISC_CONFIG);
5005 			if ((val & (BCE_PCICFG_MISC_CONFIG_CORE_RST_REQ |
5006 			    BCE_PCICFG_MISC_CONFIG_CORE_RST_BSY)) == 0) {
5007 				break;
5008 			}
5009 			DELAY(10);
5010 		}
5011 
5012 		/* Check that reset completed successfully. */
5013 		if (val & (BCE_PCICFG_MISC_CONFIG_CORE_RST_REQ |
5014 		    BCE_PCICFG_MISC_CONFIG_CORE_RST_BSY)) {
5015 			BCE_PRINTF("%s(%d): Reset failed!\n",
5016 			    __FILE__, __LINE__);
5017 			rc = EBUSY;
5018 			goto bce_reset_exit;
5019 		}
5020 	}
5021 
5022 	/* Make sure byte swapping is properly configured. */
5023 	val = REG_RD(sc, BCE_PCI_SWAP_DIAG0);
5024 	if (val != 0x01020304) {
5025 		BCE_PRINTF("%s(%d): Byte swap is incorrect!\n",
5026 		    __FILE__, __LINE__);
5027 		rc = ENODEV;
5028 		goto bce_reset_exit;
5029 	}
5030 
5031 	/* Just completed a reset, assume that firmware is running again. */
5032 	sc->bce_fw_timed_out = FALSE;
5033 	sc->bce_drv_cardiac_arrest = FALSE;
5034 
5035 	/* Wait for the firmware to finish its initialization. */
5036 	rc = bce_fw_sync(sc, BCE_DRV_MSG_DATA_WAIT1 | reset_code);
5037 	if (rc)
5038 		BCE_PRINTF("%s(%d): Firmware did not complete "
5039 		    "initialization!\n", __FILE__, __LINE__);
5040 
5041 bce_reset_exit:
5042 	DBEXIT(BCE_VERBOSE_RESET);
5043 	return (rc);
5044 }
5045 
5046 
5047 static int
5048 bce_chipinit(struct bce_softc *sc)
5049 {
5050 	u32 val;
5051 	int rc = 0;
5052 
5053 	DBENTER(BCE_VERBOSE_RESET);
5054 
5055 	bce_disable_intr(sc);
5056 
5057 	/*
5058 	 * Initialize DMA byte/word swapping, configure the number of DMA
5059 	 * channels and PCI clock compensation delay.
5060 	 */
5061 	val = BCE_DMA_CONFIG_DATA_BYTE_SWAP |
5062 	    BCE_DMA_CONFIG_DATA_WORD_SWAP |
5063 #if BYTE_ORDER == BIG_ENDIAN
5064 	    BCE_DMA_CONFIG_CNTL_BYTE_SWAP |
5065 #endif
5066 	    BCE_DMA_CONFIG_CNTL_WORD_SWAP |
5067 	    DMA_READ_CHANS << 12 |
5068 	    DMA_WRITE_CHANS << 16;
5069 
5070 	val |= (0x2 << 20) | BCE_DMA_CONFIG_CNTL_PCI_COMP_DLY;
5071 
5072 	if ((sc->bce_flags & BCE_PCIX_FLAG) && (sc->bus_speed_mhz == 133))
5073 		val |= BCE_DMA_CONFIG_PCI_FAST_CLK_CMP;
5074 
5075 	/*
5076 	 * This setting resolves a problem observed on certain Intel PCI
5077 	 * chipsets that cannot handle multiple outstanding DMA operations.
5078 	 * See errata E9_5706A1_65.
5079 	 */
5080 	if ((BCE_CHIP_NUM(sc) == BCE_CHIP_NUM_5706) &&
5081 	    (BCE_CHIP_ID(sc) != BCE_CHIP_ID_5706_A0) &&
5082 	    !(sc->bce_flags & BCE_PCIX_FLAG))
5083 		val |= BCE_DMA_CONFIG_CNTL_PING_PONG_DMA;
5084 
5085 	REG_WR(sc, BCE_DMA_CONFIG, val);
5086 
5087 	/* Enable the RX_V2P and Context state machines before access. */
5088 	REG_WR(sc, BCE_MISC_ENABLE_SET_BITS,
5089 	    BCE_MISC_ENABLE_SET_BITS_HOST_COALESCE_ENABLE |
5090 	    BCE_MISC_ENABLE_STATUS_BITS_RX_V2P_ENABLE |
5091 	    BCE_MISC_ENABLE_STATUS_BITS_CONTEXT_ENABLE);
5092 
5093 	/* Initialize context mapping and zero out the quick contexts. */
5094 	if ((rc = bce_init_ctx(sc)) != 0)
5095 		goto bce_chipinit_exit;
5096 
5097 	/* Initialize the on-boards CPUs */
5098 	bce_init_cpus(sc);
5099 
5100 	/* Enable management frames (NC-SI) to flow to the MCP. */
5101 	if (sc->bce_flags & BCE_MFW_ENABLE_FLAG) {
5102 		val = REG_RD(sc, BCE_RPM_MGMT_PKT_CTRL) | BCE_RPM_MGMT_PKT_CTRL_MGMT_EN;
5103 		REG_WR(sc, BCE_RPM_MGMT_PKT_CTRL, val);
5104 	}
5105 
5106 	/* Prepare NVRAM for access. */
5107 	if ((rc = bce_init_nvram(sc)) != 0)
5108 		goto bce_chipinit_exit;
5109 
5110 	/* Set the kernel bypass block size */
5111 	val = REG_RD(sc, BCE_MQ_CONFIG);
5112 	val &= ~BCE_MQ_CONFIG_KNL_BYP_BLK_SIZE;
5113 	val |= BCE_MQ_CONFIG_KNL_BYP_BLK_SIZE_256;
5114 
5115 	/* Enable bins used on the 5709. */
5116 	if ((BCE_CHIP_NUM(sc) == BCE_CHIP_NUM_5709) ||
5117 	    (BCE_CHIP_NUM(sc) == BCE_CHIP_NUM_5716)) {
5118 		val |= BCE_MQ_CONFIG_BIN_MQ_MODE;
5119 		if (BCE_CHIP_ID(sc) == BCE_CHIP_ID_5709_A1)
5120 			val |= BCE_MQ_CONFIG_HALT_DIS;
5121 	}
5122 
5123 	REG_WR(sc, BCE_MQ_CONFIG, val);
5124 
5125 	val = 0x10000 + (MAX_CID_CNT * MB_KERNEL_CTX_SIZE);
5126 	REG_WR(sc, BCE_MQ_KNL_BYP_WIND_START, val);
5127 	REG_WR(sc, BCE_MQ_KNL_WIND_END, val);
5128 
5129 	/* Set the page size and clear the RV2P processor stall bits. */
5130 	val = (BCM_PAGE_BITS - 8) << 24;
5131 	REG_WR(sc, BCE_RV2P_CONFIG, val);
5132 
5133 	/* Configure page size. */
5134 	val = REG_RD(sc, BCE_TBDR_CONFIG);
5135 	val &= ~BCE_TBDR_CONFIG_PAGE_SIZE;
5136 	val |= (BCM_PAGE_BITS - 8) << 24 | 0x40;
5137 	REG_WR(sc, BCE_TBDR_CONFIG, val);
5138 
5139 	/* Set the perfect match control register to default. */
5140 	REG_WR_IND(sc, BCE_RXP_PM_CTRL, 0);
5141 
5142 bce_chipinit_exit:
5143 	DBEXIT(BCE_VERBOSE_RESET);
5144 
5145 	return(rc);
5146 }
5147 
5148 
5149 /****************************************************************************/
5150 /* Initialize the controller in preparation to send/receive traffic.        */
5151 /*                                                                          */
5152 /* Returns:                                                                 */
5153 /*   0 for success, positive value for failure.                             */
5154 /****************************************************************************/
5155 static int
5156 bce_blockinit(struct bce_softc *sc)
5157 {
5158 	u32 reg, val;
5159 	int rc = 0;
5160 
5161 	DBENTER(BCE_VERBOSE_RESET);
5162 
5163 	/* Load the hardware default MAC address. */
5164 	bce_set_mac_addr(sc);
5165 
5166 	/* Set the Ethernet backoff seed value */
5167 	val = sc->eaddr[0]         + (sc->eaddr[1] << 8) +
5168 	      (sc->eaddr[2] << 16) + (sc->eaddr[3]     ) +
5169 	      (sc->eaddr[4] << 8)  + (sc->eaddr[5] << 16);
5170 	REG_WR(sc, BCE_EMAC_BACKOFF_SEED, val);
5171 
5172 	sc->last_status_idx = 0;
5173 	sc->rx_mode = BCE_EMAC_RX_MODE_SORT_MODE;
5174 
5175 	/* Set up link change interrupt generation. */
5176 	REG_WR(sc, BCE_EMAC_ATTENTION_ENA, BCE_EMAC_ATTENTION_ENA_LINK);
5177 
5178 	/* Program the physical address of the status block. */
5179 	REG_WR(sc, BCE_HC_STATUS_ADDR_L,
5180 	    BCE_ADDR_LO(sc->status_block_paddr));
5181 	REG_WR(sc, BCE_HC_STATUS_ADDR_H,
5182 	    BCE_ADDR_HI(sc->status_block_paddr));
5183 
5184 	/* Program the physical address of the statistics block. */
5185 	REG_WR(sc, BCE_HC_STATISTICS_ADDR_L,
5186 	    BCE_ADDR_LO(sc->stats_block_paddr));
5187 	REG_WR(sc, BCE_HC_STATISTICS_ADDR_H,
5188 	    BCE_ADDR_HI(sc->stats_block_paddr));
5189 
5190 	/* Program various host coalescing parameters. */
5191 	REG_WR(sc, BCE_HC_TX_QUICK_CONS_TRIP,
5192 	    (sc->bce_tx_quick_cons_trip_int << 16) | sc->bce_tx_quick_cons_trip);
5193 	REG_WR(sc, BCE_HC_RX_QUICK_CONS_TRIP,
5194 	    (sc->bce_rx_quick_cons_trip_int << 16) | sc->bce_rx_quick_cons_trip);
5195 	REG_WR(sc, BCE_HC_COMP_PROD_TRIP,
5196 	    (sc->bce_comp_prod_trip_int << 16) | sc->bce_comp_prod_trip);
5197 	REG_WR(sc, BCE_HC_TX_TICKS,
5198 	    (sc->bce_tx_ticks_int << 16) | sc->bce_tx_ticks);
5199 	REG_WR(sc, BCE_HC_RX_TICKS,
5200 	    (sc->bce_rx_ticks_int << 16) | sc->bce_rx_ticks);
5201 	REG_WR(sc, BCE_HC_COM_TICKS,
5202 	    (sc->bce_com_ticks_int << 16) | sc->bce_com_ticks);
5203 	REG_WR(sc, BCE_HC_CMD_TICKS,
5204 	    (sc->bce_cmd_ticks_int << 16) | sc->bce_cmd_ticks);
5205 	REG_WR(sc, BCE_HC_STATS_TICKS,
5206 	    (sc->bce_stats_ticks & 0xffff00));
5207 	REG_WR(sc, BCE_HC_STAT_COLLECT_TICKS, 0xbb8);  /* 3ms */
5208 
5209 	/* Configure the Host Coalescing block. */
5210 	val = BCE_HC_CONFIG_RX_TMR_MODE | BCE_HC_CONFIG_TX_TMR_MODE |
5211 	    BCE_HC_CONFIG_COLLECT_STATS;
5212 
5213 #if 0
5214 	/* ToDo: Add MSI-X support. */
5215 	if (sc->bce_flags & BCE_USING_MSIX_FLAG) {
5216 		u32 base = ((BCE_TX_VEC - 1) * BCE_HC_SB_CONFIG_SIZE) +
5217 		    BCE_HC_SB_CONFIG_1;
5218 
5219 		REG_WR(sc, BCE_HC_MSIX_BIT_VECTOR, BCE_HC_MSIX_BIT_VECTOR_VAL);
5220 
5221 		REG_WR(sc, base, BCE_HC_SB_CONFIG_1_TX_TMR_MODE |
5222 		    BCE_HC_SB_CONFIG_1_ONE_SHOT);
5223 
5224 		REG_WR(sc, base + BCE_HC_TX_QUICK_CONS_TRIP_OFF,
5225 		    (sc->tx_quick_cons_trip_int << 16) |
5226 		     sc->tx_quick_cons_trip);
5227 
5228 		REG_WR(sc, base + BCE_HC_TX_TICKS_OFF,
5229 		    (sc->tx_ticks_int << 16) | sc->tx_ticks);
5230 
5231 		val |= BCE_HC_CONFIG_SB_ADDR_INC_128B;
5232 	}
5233 
5234 	/*
5235 	 * Tell the HC block to automatically set the
5236 	 * INT_MASK bit after an MSI/MSI-X interrupt
5237 	 * is generated so the driver doesn't have to.
5238 	 */
5239 	if (sc->bce_flags & BCE_ONE_SHOT_MSI_FLAG)
5240 		val |= BCE_HC_CONFIG_ONE_SHOT;
5241 
5242 	/* Set the MSI-X status blocks to 128 byte boundaries. */
5243 	if (sc->bce_flags & BCE_USING_MSIX_FLAG)
5244 		val |= BCE_HC_CONFIG_SB_ADDR_INC_128B;
5245 #endif
5246 
5247 	REG_WR(sc, BCE_HC_CONFIG, val);
5248 
5249 	/* Clear the internal statistics counters. */
5250 	REG_WR(sc, BCE_HC_COMMAND, BCE_HC_COMMAND_CLR_STAT_NOW);
5251 
5252 	/* Verify that bootcode is running. */
5253 	reg = bce_shmem_rd(sc, BCE_DEV_INFO_SIGNATURE);
5254 
5255 	DBRUNIF(DB_RANDOMTRUE(bootcode_running_failure_sim_control),
5256 	    BCE_PRINTF("%s(%d): Simulating bootcode failure.\n",
5257 	    __FILE__, __LINE__);
5258 	    reg = 0);
5259 
5260 	if ((reg & BCE_DEV_INFO_SIGNATURE_MAGIC_MASK) !=
5261 	    BCE_DEV_INFO_SIGNATURE_MAGIC) {
5262 		BCE_PRINTF("%s(%d): Bootcode not running! Found: 0x%08X, "
5263 		    "Expected: 08%08X\n", __FILE__, __LINE__,
5264 		    (reg & BCE_DEV_INFO_SIGNATURE_MAGIC_MASK),
5265 		    BCE_DEV_INFO_SIGNATURE_MAGIC);
5266 		rc = ENODEV;
5267 		goto bce_blockinit_exit;
5268 	}
5269 
5270 	/* Enable DMA */
5271 	if ((BCE_CHIP_NUM(sc) == BCE_CHIP_NUM_5709) ||
5272 	    (BCE_CHIP_NUM(sc) == BCE_CHIP_NUM_5716)) {
5273 		val = REG_RD(sc, BCE_MISC_NEW_CORE_CTL);
5274 		val |= BCE_MISC_NEW_CORE_CTL_DMA_ENABLE;
5275 		REG_WR(sc, BCE_MISC_NEW_CORE_CTL, val);
5276 	}
5277 
5278 	/* Allow bootcode to apply additional fixes before enabling MAC. */
5279 	rc = bce_fw_sync(sc, BCE_DRV_MSG_DATA_WAIT2 |
5280 	    BCE_DRV_MSG_CODE_RESET);
5281 
5282 	/* Enable link state change interrupt generation. */
5283 	REG_WR(sc, BCE_HC_ATTN_BITS_ENABLE, STATUS_ATTN_BITS_LINK_STATE);
5284 
5285 	/* Enable the RXP. */
5286 	bce_start_rxp_cpu(sc);
5287 
5288 	/* Disable management frames (NC-SI) from flowing to the MCP. */
5289 	if (sc->bce_flags & BCE_MFW_ENABLE_FLAG) {
5290 		val = REG_RD(sc, BCE_RPM_MGMT_PKT_CTRL) &
5291 		    ~BCE_RPM_MGMT_PKT_CTRL_MGMT_EN;
5292 		REG_WR(sc, BCE_RPM_MGMT_PKT_CTRL, val);
5293 	}
5294 
5295 	/* Enable all remaining blocks in the MAC. */
5296 	if ((BCE_CHIP_NUM(sc) == BCE_CHIP_NUM_5709) ||
5297 	    (BCE_CHIP_NUM(sc) == BCE_CHIP_NUM_5716))
5298 		REG_WR(sc, BCE_MISC_ENABLE_SET_BITS,
5299 		    BCE_MISC_ENABLE_DEFAULT_XI);
5300 	else
5301 		REG_WR(sc, BCE_MISC_ENABLE_SET_BITS,
5302 		    BCE_MISC_ENABLE_DEFAULT);
5303 
5304 	REG_RD(sc, BCE_MISC_ENABLE_SET_BITS);
5305 	DELAY(20);
5306 
5307 	/* Save the current host coalescing block settings. */
5308 	sc->hc_command = REG_RD(sc, BCE_HC_COMMAND);
5309 
5310 bce_blockinit_exit:
5311 	DBEXIT(BCE_VERBOSE_RESET);
5312 
5313 	return (rc);
5314 }
5315 
5316 
5317 /****************************************************************************/
5318 /* Encapsulate an mbuf into the rx_bd chain.                                */
5319 /*                                                                          */
5320 /* Returns:                                                                 */
5321 /*   0 for success, positive value for failure.                             */
5322 /****************************************************************************/
5323 static int
5324 bce_get_rx_buf(struct bce_softc *sc, struct mbuf *m, u16 *prod,
5325     u16 *chain_prod, u32 *prod_bseq)
5326 {
5327 	bus_dmamap_t map;
5328 	bus_dma_segment_t segs[BCE_MAX_SEGMENTS];
5329 	struct mbuf *m_new = NULL;
5330 	struct rx_bd *rxbd;
5331 	int nsegs, error, rc = 0;
5332 #ifdef BCE_DEBUG
5333 	u16 debug_chain_prod = *chain_prod;
5334 #endif
5335 
5336 	DBENTER(BCE_EXTREME_RESET | BCE_EXTREME_RECV | BCE_EXTREME_LOAD);
5337 
5338 	/* Make sure the inputs are valid. */
5339 	DBRUNIF((*chain_prod > MAX_RX_BD_ALLOC),
5340 	    BCE_PRINTF("%s(%d): RX producer out of range: "
5341 	    "0x%04X > 0x%04X\n", __FILE__, __LINE__,
5342 	    *chain_prod, (u16) MAX_RX_BD_ALLOC));
5343 
5344 	DBPRINT(sc, BCE_EXTREME_RECV, "%s(enter): prod = 0x%04X, "
5345 	    "chain_prod = 0x%04X, prod_bseq = 0x%08X\n", __FUNCTION__,
5346 	    *prod, *chain_prod, *prod_bseq);
5347 
5348 	/* Update some debug statistic counters */
5349 	DBRUNIF((sc->free_rx_bd < sc->rx_low_watermark),
5350 	    sc->rx_low_watermark = sc->free_rx_bd);
5351 	DBRUNIF((sc->free_rx_bd == sc->max_rx_bd),
5352 	    sc->rx_empty_count++);
5353 
5354 	/* Check whether this is a new mbuf allocation. */
5355 	if (m == NULL) {
5356 
5357 		/* Simulate an mbuf allocation failure. */
5358 		DBRUNIF(DB_RANDOMTRUE(mbuf_alloc_failed_sim_control),
5359 		    sc->mbuf_alloc_failed_count++;
5360 		    sc->mbuf_alloc_failed_sim_count++;
5361 		    rc = ENOBUFS;
5362 		    goto bce_get_rx_buf_exit);
5363 
5364 		/* This is a new mbuf allocation. */
5365 		if (bce_hdr_split == TRUE)
5366 			MGETHDR(m_new, M_DONTWAIT, MT_DATA);
5367 		else
5368 			m_new = m_getjcl(M_DONTWAIT, MT_DATA, M_PKTHDR,
5369 			    sc->rx_bd_mbuf_alloc_size);
5370 
5371 		if (m_new == NULL) {
5372 			sc->mbuf_alloc_failed_count++;
5373 			rc = ENOBUFS;
5374 			goto bce_get_rx_buf_exit;
5375 		}
5376 
5377 		DBRUN(sc->debug_rx_mbuf_alloc++);
5378 	} else {
5379 		/* Reuse an existing mbuf. */
5380 		m_new = m;
5381 	}
5382 
5383 	/* Make sure we have a valid packet header. */
5384 	M_ASSERTPKTHDR(m_new);
5385 
5386 	/* Initialize the mbuf size and pad if necessary for alignment. */
5387 	m_new->m_pkthdr.len = m_new->m_len = sc->rx_bd_mbuf_alloc_size;
5388 	m_adj(m_new, sc->rx_bd_mbuf_align_pad);
5389 
5390 	/* ToDo: Consider calling m_fragment() to test error handling. */
5391 
5392 	/* Map the mbuf cluster into device memory. */
5393 	map = sc->rx_mbuf_map[*chain_prod];
5394 	error = bus_dmamap_load_mbuf_sg(sc->rx_mbuf_tag, map, m_new,
5395 	    segs, &nsegs, BUS_DMA_NOWAIT);
5396 
5397 	/* Handle any mapping errors. */
5398 	if (error) {
5399 		BCE_PRINTF("%s(%d): Error mapping mbuf into RX "
5400 		    "chain (%d)!\n", __FILE__, __LINE__, error);
5401 
5402 		sc->dma_map_addr_rx_failed_count++;
5403 		m_freem(m_new);
5404 
5405 		DBRUN(sc->debug_rx_mbuf_alloc--);
5406 
5407 		rc = ENOBUFS;
5408 		goto bce_get_rx_buf_exit;
5409 	}
5410 
5411 	/* All mbufs must map to a single segment. */
5412 	KASSERT(nsegs == 1, ("%s(): Too many segments returned (%d)!",
5413 	    __FUNCTION__, nsegs));
5414 
5415 	/* Setup the rx_bd for the segment. */
5416 	rxbd = &sc->rx_bd_chain[RX_PAGE(*chain_prod)][RX_IDX(*chain_prod)];
5417 
5418 	rxbd->rx_bd_haddr_lo  = htole32(BCE_ADDR_LO(segs[0].ds_addr));
5419 	rxbd->rx_bd_haddr_hi  = htole32(BCE_ADDR_HI(segs[0].ds_addr));
5420 	rxbd->rx_bd_len       = htole32(segs[0].ds_len);
5421 	rxbd->rx_bd_flags     = htole32(RX_BD_FLAGS_START | RX_BD_FLAGS_END);
5422 	*prod_bseq += segs[0].ds_len;
5423 
5424 	/* Save the mbuf and update our counter. */
5425 	sc->rx_mbuf_ptr[*chain_prod] = m_new;
5426 	sc->free_rx_bd -= nsegs;
5427 
5428 	DBRUNMSG(BCE_INSANE_RECV,
5429 	    bce_dump_rx_mbuf_chain(sc, debug_chain_prod, nsegs));
5430 
5431 	DBPRINT(sc, BCE_EXTREME_RECV, "%s(exit): prod = 0x%04X, "
5432 	    "chain_prod = 0x%04X, prod_bseq = 0x%08X\n",
5433 	    __FUNCTION__, *prod, *chain_prod, *prod_bseq);
5434 
5435 bce_get_rx_buf_exit:
5436 	DBEXIT(BCE_EXTREME_RESET | BCE_EXTREME_RECV | BCE_EXTREME_LOAD);
5437 
5438 	return(rc);
5439 }
5440 
5441 
5442 /****************************************************************************/
5443 /* Encapsulate an mbuf cluster into the page chain.                         */
5444 /*                                                                          */
5445 /* Returns:                                                                 */
5446 /*   0 for success, positive value for failure.                             */
5447 /****************************************************************************/
5448 static int
5449 bce_get_pg_buf(struct bce_softc *sc, struct mbuf *m, u16 *prod,
5450 	u16 *prod_idx)
5451 {
5452 	bus_dmamap_t map;
5453 	bus_addr_t busaddr;
5454 	struct mbuf *m_new = NULL;
5455 	struct rx_bd *pgbd;
5456 	int error, rc = 0;
5457 #ifdef BCE_DEBUG
5458 	u16 debug_prod_idx = *prod_idx;
5459 #endif
5460 
5461 	DBENTER(BCE_EXTREME_RESET | BCE_EXTREME_RECV | BCE_EXTREME_LOAD);
5462 
5463 	/* Make sure the inputs are valid. */
5464 	DBRUNIF((*prod_idx > MAX_PG_BD_ALLOC),
5465 	    BCE_PRINTF("%s(%d): page producer out of range: "
5466 	    "0x%04X > 0x%04X\n", __FILE__, __LINE__,
5467 	    *prod_idx, (u16) MAX_PG_BD_ALLOC));
5468 
5469 	DBPRINT(sc, BCE_EXTREME_RECV, "%s(enter): prod = 0x%04X, "
5470 	    "chain_prod = 0x%04X\n", __FUNCTION__, *prod, *prod_idx);
5471 
5472 	/* Update counters if we've hit a new low or run out of pages. */
5473 	DBRUNIF((sc->free_pg_bd < sc->pg_low_watermark),
5474 	    sc->pg_low_watermark = sc->free_pg_bd);
5475 	DBRUNIF((sc->free_pg_bd == sc->max_pg_bd), sc->pg_empty_count++);
5476 
5477 	/* Check whether this is a new mbuf allocation. */
5478 	if (m == NULL) {
5479 
5480 		/* Simulate an mbuf allocation failure. */
5481 		DBRUNIF(DB_RANDOMTRUE(mbuf_alloc_failed_sim_control),
5482 		    sc->mbuf_alloc_failed_count++;
5483 		    sc->mbuf_alloc_failed_sim_count++;
5484 		    rc = ENOBUFS;
5485 		    goto bce_get_pg_buf_exit);
5486 
5487 		/* This is a new mbuf allocation. */
5488 		m_new = m_getcl(M_DONTWAIT, MT_DATA, 0);
5489 		if (m_new == NULL) {
5490 			sc->mbuf_alloc_failed_count++;
5491 			rc = ENOBUFS;
5492 			goto bce_get_pg_buf_exit;
5493 		}
5494 
5495 		DBRUN(sc->debug_pg_mbuf_alloc++);
5496 	} else {
5497 		/* Reuse an existing mbuf. */
5498 		m_new = m;
5499 		m_new->m_data = m_new->m_ext.ext_buf;
5500 	}
5501 
5502 	m_new->m_len = sc->pg_bd_mbuf_alloc_size;
5503 
5504 	/* ToDo: Consider calling m_fragment() to test error handling. */
5505 
5506 	/* Map the mbuf cluster into device memory. */
5507 	map = sc->pg_mbuf_map[*prod_idx];
5508 	error = bus_dmamap_load(sc->pg_mbuf_tag, map, mtod(m_new, void *),
5509 	    sc->pg_bd_mbuf_alloc_size, bce_dma_map_addr,
5510 	    &busaddr, BUS_DMA_NOWAIT);
5511 
5512 	/* Handle any mapping errors. */
5513 	if (error) {
5514 		BCE_PRINTF("%s(%d): Error mapping mbuf into page chain!\n",
5515 		    __FILE__, __LINE__);
5516 
5517 		m_freem(m_new);
5518 		DBRUN(sc->debug_pg_mbuf_alloc--);
5519 
5520 		rc = ENOBUFS;
5521 		goto bce_get_pg_buf_exit;
5522 	}
5523 
5524 	/* ToDo: Do we need bus_dmamap_sync(,,BUS_DMASYNC_PREREAD) here? */
5525 
5526 	/*
5527 	 * The page chain uses the same rx_bd data structure
5528 	 * as the receive chain but doesn't require a byte sequence (bseq).
5529 	 */
5530 	pgbd = &sc->pg_bd_chain[PG_PAGE(*prod_idx)][PG_IDX(*prod_idx)];
5531 
5532 	pgbd->rx_bd_haddr_lo  = htole32(BCE_ADDR_LO(busaddr));
5533 	pgbd->rx_bd_haddr_hi  = htole32(BCE_ADDR_HI(busaddr));
5534 	pgbd->rx_bd_len       = htole32(sc->pg_bd_mbuf_alloc_size);
5535 	pgbd->rx_bd_flags     = htole32(RX_BD_FLAGS_START | RX_BD_FLAGS_END);
5536 
5537 	/* Save the mbuf and update our counter. */
5538 	sc->pg_mbuf_ptr[*prod_idx] = m_new;
5539 	sc->free_pg_bd--;
5540 
5541 	DBRUNMSG(BCE_INSANE_RECV,
5542 	    bce_dump_pg_mbuf_chain(sc, debug_prod_idx, 1));
5543 
5544 	DBPRINT(sc, BCE_EXTREME_RECV, "%s(exit): prod = 0x%04X, "
5545 	    "prod_idx = 0x%04X\n", __FUNCTION__, *prod, *prod_idx);
5546 
5547 bce_get_pg_buf_exit:
5548 	DBEXIT(BCE_EXTREME_RESET | BCE_EXTREME_RECV | BCE_EXTREME_LOAD);
5549 
5550 	return(rc);
5551 }
5552 
5553 
5554 /****************************************************************************/
5555 /* Initialize the TX context memory.                                        */
5556 /*                                                                          */
5557 /* Returns:                                                                 */
5558 /*   Nothing                                                                */
5559 /****************************************************************************/
5560 static void
5561 bce_init_tx_context(struct bce_softc *sc)
5562 {
5563 	u32 val;
5564 
5565 	DBENTER(BCE_VERBOSE_RESET | BCE_VERBOSE_SEND | BCE_VERBOSE_CTX);
5566 
5567 	/* Initialize the context ID for an L2 TX chain. */
5568 	if ((BCE_CHIP_NUM(sc) == BCE_CHIP_NUM_5709) ||
5569 		(BCE_CHIP_NUM(sc) == BCE_CHIP_NUM_5716)) {
5570 		/* Set the CID type to support an L2 connection. */
5571 		val = BCE_L2CTX_TX_TYPE_TYPE_L2_XI |
5572 		    BCE_L2CTX_TX_TYPE_SIZE_L2_XI;
5573 		CTX_WR(sc, GET_CID_ADDR(TX_CID), BCE_L2CTX_TX_TYPE_XI, val);
5574 		val = BCE_L2CTX_TX_CMD_TYPE_TYPE_L2_XI | (8 << 16);
5575 		CTX_WR(sc, GET_CID_ADDR(TX_CID),
5576 		    BCE_L2CTX_TX_CMD_TYPE_XI, val);
5577 
5578 		/* Point the hardware to the first page in the chain. */
5579 		val = BCE_ADDR_HI(sc->tx_bd_chain_paddr[0]);
5580 		CTX_WR(sc, GET_CID_ADDR(TX_CID),
5581 		    BCE_L2CTX_TX_TBDR_BHADDR_HI_XI, val);
5582 		val = BCE_ADDR_LO(sc->tx_bd_chain_paddr[0]);
5583 		CTX_WR(sc, GET_CID_ADDR(TX_CID),
5584 		    BCE_L2CTX_TX_TBDR_BHADDR_LO_XI, val);
5585 	} else {
5586 		/* Set the CID type to support an L2 connection. */
5587 		val = BCE_L2CTX_TX_TYPE_TYPE_L2 | BCE_L2CTX_TX_TYPE_SIZE_L2;
5588 		CTX_WR(sc, GET_CID_ADDR(TX_CID), BCE_L2CTX_TX_TYPE, val);
5589 		val = BCE_L2CTX_TX_CMD_TYPE_TYPE_L2 | (8 << 16);
5590 		CTX_WR(sc, GET_CID_ADDR(TX_CID), BCE_L2CTX_TX_CMD_TYPE, val);
5591 
5592 		/* Point the hardware to the first page in the chain. */
5593 		val = BCE_ADDR_HI(sc->tx_bd_chain_paddr[0]);
5594 		CTX_WR(sc, GET_CID_ADDR(TX_CID),
5595 		    BCE_L2CTX_TX_TBDR_BHADDR_HI, val);
5596 		val = BCE_ADDR_LO(sc->tx_bd_chain_paddr[0]);
5597 		CTX_WR(sc, GET_CID_ADDR(TX_CID),
5598 		    BCE_L2CTX_TX_TBDR_BHADDR_LO, val);
5599 	}
5600 
5601 	DBEXIT(BCE_VERBOSE_RESET | BCE_VERBOSE_SEND | BCE_VERBOSE_CTX);
5602 }
5603 
5604 
5605 /****************************************************************************/
5606 /* Allocate memory and initialize the TX data structures.                   */
5607 /*                                                                          */
5608 /* Returns:                                                                 */
5609 /*   0 for success, positive value for failure.                             */
5610 /****************************************************************************/
5611 static int
5612 bce_init_tx_chain(struct bce_softc *sc)
5613 {
5614 	struct tx_bd *txbd;
5615 	int i, rc = 0;
5616 
5617 	DBENTER(BCE_VERBOSE_RESET | BCE_VERBOSE_SEND | BCE_VERBOSE_LOAD);
5618 
5619 	/* Set the initial TX producer/consumer indices. */
5620 	sc->tx_prod        = 0;
5621 	sc->tx_cons        = 0;
5622 	sc->tx_prod_bseq   = 0;
5623 	sc->used_tx_bd     = 0;
5624 	sc->max_tx_bd      = USABLE_TX_BD_ALLOC;
5625 	DBRUN(sc->tx_hi_watermark = 0);
5626 	DBRUN(sc->tx_full_count = 0);
5627 
5628 	/*
5629 	 * The NetXtreme II supports a linked-list structre called
5630 	 * a Buffer Descriptor Chain (or BD chain).  A BD chain
5631 	 * consists of a series of 1 or more chain pages, each of which
5632 	 * consists of a fixed number of BD entries.
5633 	 * The last BD entry on each page is a pointer to the next page
5634 	 * in the chain, and the last pointer in the BD chain
5635 	 * points back to the beginning of the chain.
5636 	 */
5637 
5638 	/* Set the TX next pointer chain entries. */
5639 	for (i = 0; i < sc->tx_pages; i++) {
5640 		int j;
5641 
5642 		txbd = &sc->tx_bd_chain[i][USABLE_TX_BD_PER_PAGE];
5643 
5644 		/* Check if we've reached the last page. */
5645 		if (i == (sc->tx_pages - 1))
5646 			j = 0;
5647 		else
5648 			j = i + 1;
5649 
5650 		txbd->tx_bd_haddr_hi =
5651 		    htole32(BCE_ADDR_HI(sc->tx_bd_chain_paddr[j]));
5652 		txbd->tx_bd_haddr_lo =
5653 		    htole32(BCE_ADDR_LO(sc->tx_bd_chain_paddr[j]));
5654 	}
5655 
5656 	bce_init_tx_context(sc);
5657 
5658 	DBRUNMSG(BCE_INSANE_SEND, bce_dump_tx_chain(sc, 0, TOTAL_TX_BD_ALLOC));
5659 	DBEXIT(BCE_VERBOSE_RESET | BCE_VERBOSE_SEND | BCE_VERBOSE_LOAD);
5660 
5661 	return(rc);
5662 }
5663 
5664 
5665 /****************************************************************************/
5666 /* Free memory and clear the TX data structures.                            */
5667 /*                                                                          */
5668 /* Returns:                                                                 */
5669 /*   Nothing.                                                               */
5670 /****************************************************************************/
5671 static void
5672 bce_free_tx_chain(struct bce_softc *sc)
5673 {
5674 	int i;
5675 
5676 	DBENTER(BCE_VERBOSE_RESET | BCE_VERBOSE_SEND | BCE_VERBOSE_UNLOAD);
5677 
5678 	/* Unmap, unload, and free any mbufs still in the TX mbuf chain. */
5679 	for (i = 0; i < MAX_TX_BD_AVAIL; i++) {
5680 		if (sc->tx_mbuf_ptr[i] != NULL) {
5681 			if (sc->tx_mbuf_map[i] != NULL)
5682 				bus_dmamap_sync(sc->tx_mbuf_tag,
5683 				    sc->tx_mbuf_map[i],
5684 				    BUS_DMASYNC_POSTWRITE);
5685 			m_freem(sc->tx_mbuf_ptr[i]);
5686 			sc->tx_mbuf_ptr[i] = NULL;
5687 			DBRUN(sc->debug_tx_mbuf_alloc--);
5688 		}
5689 	}
5690 
5691 	/* Clear each TX chain page. */
5692 	for (i = 0; i < sc->tx_pages; i++)
5693 		bzero((char *)sc->tx_bd_chain[i], BCE_TX_CHAIN_PAGE_SZ);
5694 
5695 	sc->used_tx_bd = 0;
5696 
5697 	/* Check if we lost any mbufs in the process. */
5698 	DBRUNIF((sc->debug_tx_mbuf_alloc),
5699 	    BCE_PRINTF("%s(%d): Memory leak! Lost %d mbufs "
5700 	    "from tx chain!\n",	__FILE__, __LINE__,
5701 	    sc->debug_tx_mbuf_alloc));
5702 
5703 	DBEXIT(BCE_VERBOSE_RESET | BCE_VERBOSE_SEND | BCE_VERBOSE_UNLOAD);
5704 }
5705 
5706 
5707 /****************************************************************************/
5708 /* Initialize the RX context memory.                                        */
5709 /*                                                                          */
5710 /* Returns:                                                                 */
5711 /*   Nothing                                                                */
5712 /****************************************************************************/
5713 static void
5714 bce_init_rx_context(struct bce_softc *sc)
5715 {
5716 	u32 val;
5717 
5718 	DBENTER(BCE_VERBOSE_RESET | BCE_VERBOSE_RECV | BCE_VERBOSE_CTX);
5719 
5720 	/* Init the type, size, and BD cache levels for the RX context. */
5721 	val = BCE_L2CTX_RX_CTX_TYPE_CTX_BD_CHN_TYPE_VALUE |
5722 	    BCE_L2CTX_RX_CTX_TYPE_SIZE_L2 |
5723 	    (0x02 << BCE_L2CTX_RX_BD_PRE_READ_SHIFT);
5724 
5725 	/*
5726 	 * Set the level for generating pause frames
5727 	 * when the number of available rx_bd's gets
5728 	 * too low (the low watermark) and the level
5729 	 * when pause frames can be stopped (the high
5730 	 * watermark).
5731 	 */
5732 	if ((BCE_CHIP_NUM(sc) == BCE_CHIP_NUM_5709) ||
5733 	    (BCE_CHIP_NUM(sc) == BCE_CHIP_NUM_5716)) {
5734 		u32 lo_water, hi_water;
5735 
5736 		if (sc->bce_flags & BCE_USING_TX_FLOW_CONTROL) {
5737 			lo_water = BCE_L2CTX_RX_LO_WATER_MARK_DEFAULT;
5738 		} else {
5739 			lo_water = 0;
5740 		}
5741 
5742 		if (lo_water >= USABLE_RX_BD_ALLOC) {
5743 			lo_water = 0;
5744 		}
5745 
5746 		hi_water = USABLE_RX_BD_ALLOC / 4;
5747 
5748 		if (hi_water <= lo_water) {
5749 			lo_water = 0;
5750 		}
5751 
5752 		lo_water /= BCE_L2CTX_RX_LO_WATER_MARK_SCALE;
5753 		hi_water /= BCE_L2CTX_RX_HI_WATER_MARK_SCALE;
5754 
5755 		if (hi_water > 0xf)
5756 			hi_water = 0xf;
5757 		else if (hi_water == 0)
5758 			lo_water = 0;
5759 
5760 		val |= (lo_water << BCE_L2CTX_RX_LO_WATER_MARK_SHIFT) |
5761 		    (hi_water << BCE_L2CTX_RX_HI_WATER_MARK_SHIFT);
5762 	}
5763 
5764 	CTX_WR(sc, GET_CID_ADDR(RX_CID), BCE_L2CTX_RX_CTX_TYPE, val);
5765 
5766 	/* Setup the MQ BIN mapping for l2_ctx_host_bseq. */
5767 	if ((BCE_CHIP_NUM(sc) == BCE_CHIP_NUM_5709) ||
5768 	    (BCE_CHIP_NUM(sc) == BCE_CHIP_NUM_5716)) {
5769 		val = REG_RD(sc, BCE_MQ_MAP_L2_5);
5770 		REG_WR(sc, BCE_MQ_MAP_L2_5, val | BCE_MQ_MAP_L2_5_ARM);
5771 	}
5772 
5773 	/* Point the hardware to the first page in the chain. */
5774 	val = BCE_ADDR_HI(sc->rx_bd_chain_paddr[0]);
5775 	CTX_WR(sc, GET_CID_ADDR(RX_CID), BCE_L2CTX_RX_NX_BDHADDR_HI, val);
5776 	val = BCE_ADDR_LO(sc->rx_bd_chain_paddr[0]);
5777 	CTX_WR(sc, GET_CID_ADDR(RX_CID), BCE_L2CTX_RX_NX_BDHADDR_LO, val);
5778 
5779 	DBEXIT(BCE_VERBOSE_RESET | BCE_VERBOSE_RECV | BCE_VERBOSE_CTX);
5780 }
5781 
5782 
5783 /****************************************************************************/
5784 /* Allocate memory and initialize the RX data structures.                   */
5785 /*                                                                          */
5786 /* Returns:                                                                 */
5787 /*   0 for success, positive value for failure.                             */
5788 /****************************************************************************/
5789 static int
5790 bce_init_rx_chain(struct bce_softc *sc)
5791 {
5792 	struct rx_bd *rxbd;
5793 	int i, rc = 0;
5794 
5795 	DBENTER(BCE_VERBOSE_RESET | BCE_VERBOSE_RECV | BCE_VERBOSE_LOAD |
5796 	    BCE_VERBOSE_CTX);
5797 
5798 	/* Initialize the RX producer and consumer indices. */
5799 	sc->rx_prod        = 0;
5800 	sc->rx_cons        = 0;
5801 	sc->rx_prod_bseq   = 0;
5802 	sc->free_rx_bd     = USABLE_RX_BD_ALLOC;
5803 	sc->max_rx_bd      = USABLE_RX_BD_ALLOC;
5804 
5805 	/* Initialize the RX next pointer chain entries. */
5806 	for (i = 0; i < sc->rx_pages; i++) {
5807 		int j;
5808 
5809 		rxbd = &sc->rx_bd_chain[i][USABLE_RX_BD_PER_PAGE];
5810 
5811 		/* Check if we've reached the last page. */
5812 		if (i == (sc->rx_pages - 1))
5813 			j = 0;
5814 		else
5815 			j = i + 1;
5816 
5817 		/* Setup the chain page pointers. */
5818 		rxbd->rx_bd_haddr_hi =
5819 		    htole32(BCE_ADDR_HI(sc->rx_bd_chain_paddr[j]));
5820 		rxbd->rx_bd_haddr_lo =
5821 		    htole32(BCE_ADDR_LO(sc->rx_bd_chain_paddr[j]));
5822 	}
5823 
5824 	/* Fill up the RX chain. */
5825 	bce_fill_rx_chain(sc);
5826 
5827 	DBRUN(sc->rx_low_watermark = USABLE_RX_BD_ALLOC);
5828 	DBRUN(sc->rx_empty_count = 0);
5829 	for (i = 0; i < sc->rx_pages; i++) {
5830 		bus_dmamap_sync(sc->rx_bd_chain_tag, sc->rx_bd_chain_map[i],
5831 		    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
5832 	}
5833 
5834 	bce_init_rx_context(sc);
5835 
5836 	DBRUNMSG(BCE_EXTREME_RECV,
5837 	    bce_dump_rx_bd_chain(sc, 0, TOTAL_RX_BD_ALLOC));
5838 	DBEXIT(BCE_VERBOSE_RESET | BCE_VERBOSE_RECV | BCE_VERBOSE_LOAD |
5839 	    BCE_VERBOSE_CTX);
5840 
5841 	/* ToDo: Are there possible failure modes here? */
5842 
5843 	return(rc);
5844 }
5845 
5846 
5847 /****************************************************************************/
5848 /* Add mbufs to the RX chain until its full or an mbuf allocation error     */
5849 /* occurs.                                                                  */
5850 /*                                                                          */
5851 /* Returns:                                                                 */
5852 /*   Nothing                                                                */
5853 /****************************************************************************/
5854 static void
5855 bce_fill_rx_chain(struct bce_softc *sc)
5856 {
5857 	u16 prod, prod_idx;
5858 	u32 prod_bseq;
5859 
5860 	DBENTER(BCE_VERBOSE_RESET | BCE_EXTREME_RECV | BCE_VERBOSE_LOAD |
5861 	    BCE_VERBOSE_CTX);
5862 
5863 	/* Get the RX chain producer indices. */
5864 	prod      = sc->rx_prod;
5865 	prod_bseq = sc->rx_prod_bseq;
5866 
5867 	/* Keep filling the RX chain until it's full. */
5868 	while (sc->free_rx_bd > 0) {
5869 		prod_idx = RX_CHAIN_IDX(prod);
5870 		if (bce_get_rx_buf(sc, NULL, &prod, &prod_idx, &prod_bseq)) {
5871 			/* Bail out if we can't add an mbuf to the chain. */
5872 			break;
5873 		}
5874 		prod = NEXT_RX_BD(prod);
5875 	}
5876 
5877 	/* Save the RX chain producer indices. */
5878 	sc->rx_prod      = prod;
5879 	sc->rx_prod_bseq = prod_bseq;
5880 
5881 	/* We should never end up pointing to a next page pointer. */
5882 	DBRUNIF(((prod & USABLE_RX_BD_PER_PAGE) == USABLE_RX_BD_PER_PAGE),
5883 	    BCE_PRINTF("%s(): Invalid rx_prod value: 0x%04X\n",
5884 	    __FUNCTION__, sc->rx_prod));
5885 
5886 	/* Write the mailbox and tell the chip about the waiting rx_bd's. */
5887 	REG_WR16(sc, MB_GET_CID_ADDR(RX_CID) +
5888 	    BCE_L2MQ_RX_HOST_BDIDX, sc->rx_prod);
5889 	REG_WR(sc, MB_GET_CID_ADDR(RX_CID) +
5890 	    BCE_L2MQ_RX_HOST_BSEQ, sc->rx_prod_bseq);
5891 
5892 	DBEXIT(BCE_VERBOSE_RESET | BCE_EXTREME_RECV | BCE_VERBOSE_LOAD |
5893 	    BCE_VERBOSE_CTX);
5894 }
5895 
5896 
5897 /****************************************************************************/
5898 /* Free memory and clear the RX data structures.                            */
5899 /*                                                                          */
5900 /* Returns:                                                                 */
5901 /*   Nothing.                                                               */
5902 /****************************************************************************/
5903 static void
5904 bce_free_rx_chain(struct bce_softc *sc)
5905 {
5906 	int i;
5907 
5908 	DBENTER(BCE_VERBOSE_RESET | BCE_VERBOSE_RECV | BCE_VERBOSE_UNLOAD);
5909 
5910 	/* Free any mbufs still in the RX mbuf chain. */
5911 	for (i = 0; i < MAX_RX_BD_AVAIL; i++) {
5912 		if (sc->rx_mbuf_ptr[i] != NULL) {
5913 			if (sc->rx_mbuf_map[i] != NULL)
5914 				bus_dmamap_sync(sc->rx_mbuf_tag,
5915 				    sc->rx_mbuf_map[i],
5916 				    BUS_DMASYNC_POSTREAD);
5917 			m_freem(sc->rx_mbuf_ptr[i]);
5918 			sc->rx_mbuf_ptr[i] = NULL;
5919 			DBRUN(sc->debug_rx_mbuf_alloc--);
5920 		}
5921 	}
5922 
5923 	/* Clear each RX chain page. */
5924 	for (i = 0; i < sc->rx_pages; i++)
5925 		if (sc->rx_bd_chain[i] != NULL) {
5926 			bzero((char *)sc->rx_bd_chain[i],
5927 			    BCE_RX_CHAIN_PAGE_SZ);
5928 		}
5929 
5930 	sc->free_rx_bd = sc->max_rx_bd;
5931 
5932 	/* Check if we lost any mbufs in the process. */
5933 	DBRUNIF((sc->debug_rx_mbuf_alloc),
5934 	    BCE_PRINTF("%s(): Memory leak! Lost %d mbufs from rx chain!\n",
5935 	    __FUNCTION__, sc->debug_rx_mbuf_alloc));
5936 
5937 	DBEXIT(BCE_VERBOSE_RESET | BCE_VERBOSE_RECV | BCE_VERBOSE_UNLOAD);
5938 }
5939 
5940 
5941 /****************************************************************************/
5942 /* Allocate memory and initialize the page data structures.                 */
5943 /* Assumes that bce_init_rx_chain() has not already been called.            */
5944 /*                                                                          */
5945 /* Returns:                                                                 */
5946 /*   0 for success, positive value for failure.                             */
5947 /****************************************************************************/
5948 static int
5949 bce_init_pg_chain(struct bce_softc *sc)
5950 {
5951 	struct rx_bd *pgbd;
5952 	int i, rc = 0;
5953 	u32 val;
5954 
5955 	DBENTER(BCE_VERBOSE_RESET | BCE_VERBOSE_RECV | BCE_VERBOSE_LOAD |
5956 		BCE_VERBOSE_CTX);
5957 
5958 	/* Initialize the page producer and consumer indices. */
5959 	sc->pg_prod        = 0;
5960 	sc->pg_cons        = 0;
5961 	sc->free_pg_bd     = USABLE_PG_BD_ALLOC;
5962 	sc->max_pg_bd      = USABLE_PG_BD_ALLOC;
5963 	DBRUN(sc->pg_low_watermark = sc->max_pg_bd);
5964 	DBRUN(sc->pg_empty_count = 0);
5965 
5966 	/* Initialize the page next pointer chain entries. */
5967 	for (i = 0; i < sc->pg_pages; i++) {
5968 		int j;
5969 
5970 		pgbd = &sc->pg_bd_chain[i][USABLE_PG_BD_PER_PAGE];
5971 
5972 		/* Check if we've reached the last page. */
5973 		if (i == (sc->pg_pages - 1))
5974 			j = 0;
5975 		else
5976 			j = i + 1;
5977 
5978 		/* Setup the chain page pointers. */
5979 		pgbd->rx_bd_haddr_hi =
5980 		    htole32(BCE_ADDR_HI(sc->pg_bd_chain_paddr[j]));
5981 		pgbd->rx_bd_haddr_lo =
5982 		    htole32(BCE_ADDR_LO(sc->pg_bd_chain_paddr[j]));
5983 	}
5984 
5985 	/* Setup the MQ BIN mapping for host_pg_bidx. */
5986 	if ((BCE_CHIP_NUM(sc) == BCE_CHIP_NUM_5709)	||
5987 		(BCE_CHIP_NUM(sc) == BCE_CHIP_NUM_5716))
5988 		REG_WR(sc, BCE_MQ_MAP_L2_3, BCE_MQ_MAP_L2_3_DEFAULT);
5989 
5990 	CTX_WR(sc, GET_CID_ADDR(RX_CID), BCE_L2CTX_RX_PG_BUF_SIZE, 0);
5991 
5992 	/* Configure the rx_bd and page chain mbuf cluster size. */
5993 	val = (sc->rx_bd_mbuf_data_len << 16) | sc->pg_bd_mbuf_alloc_size;
5994 	CTX_WR(sc, GET_CID_ADDR(RX_CID), BCE_L2CTX_RX_PG_BUF_SIZE, val);
5995 
5996 	/* Configure the context reserved for jumbo support. */
5997 	CTX_WR(sc, GET_CID_ADDR(RX_CID), BCE_L2CTX_RX_RBDC_KEY,
5998 		BCE_L2CTX_RX_RBDC_JUMBO_KEY);
5999 
6000 	/* Point the hardware to the first page in the page chain. */
6001 	val = BCE_ADDR_HI(sc->pg_bd_chain_paddr[0]);
6002 	CTX_WR(sc, GET_CID_ADDR(RX_CID), BCE_L2CTX_RX_NX_PG_BDHADDR_HI, val);
6003 	val = BCE_ADDR_LO(sc->pg_bd_chain_paddr[0]);
6004 	CTX_WR(sc, GET_CID_ADDR(RX_CID), BCE_L2CTX_RX_NX_PG_BDHADDR_LO, val);
6005 
6006 	/* Fill up the page chain. */
6007 	bce_fill_pg_chain(sc);
6008 
6009 	for (i = 0; i < sc->pg_pages; i++) {
6010 		bus_dmamap_sync(sc->pg_bd_chain_tag, sc->pg_bd_chain_map[i],
6011 		    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
6012 	}
6013 
6014 	DBRUNMSG(BCE_EXTREME_RECV,
6015 	    bce_dump_pg_chain(sc, 0, TOTAL_PG_BD_ALLOC));
6016 	DBEXIT(BCE_VERBOSE_RESET | BCE_VERBOSE_RECV | BCE_VERBOSE_LOAD |
6017 		BCE_VERBOSE_CTX);
6018 	return(rc);
6019 }
6020 
6021 
6022 /****************************************************************************/
6023 /* Add mbufs to the page chain until its full or an mbuf allocation error   */
6024 /* occurs.                                                                  */
6025 /*                                                                          */
6026 /* Returns:                                                                 */
6027 /*   Nothing                                                                */
6028 /****************************************************************************/
6029 static void
6030 bce_fill_pg_chain(struct bce_softc *sc)
6031 {
6032 	u16 prod, prod_idx;
6033 
6034 	DBENTER(BCE_VERBOSE_RESET | BCE_EXTREME_RECV | BCE_VERBOSE_LOAD |
6035 	    BCE_VERBOSE_CTX);
6036 
6037 	/* Get the page chain prodcuer index. */
6038 	prod = sc->pg_prod;
6039 
6040 	/* Keep filling the page chain until it's full. */
6041 	while (sc->free_pg_bd > 0) {
6042 		prod_idx = PG_CHAIN_IDX(prod);
6043 		if (bce_get_pg_buf(sc, NULL, &prod, &prod_idx)) {
6044 			/* Bail out if we can't add an mbuf to the chain. */
6045 			break;
6046 		}
6047 		prod = NEXT_PG_BD(prod);
6048 	}
6049 
6050 	/* Save the page chain producer index. */
6051 	sc->pg_prod = prod;
6052 
6053 	DBRUNIF(((prod & USABLE_RX_BD_PER_PAGE) == USABLE_RX_BD_PER_PAGE),
6054 	    BCE_PRINTF("%s(): Invalid pg_prod value: 0x%04X\n",
6055 	    __FUNCTION__, sc->pg_prod));
6056 
6057 	/*
6058 	 * Write the mailbox and tell the chip about
6059 	 * the new rx_bd's in the page chain.
6060 	 */
6061 	REG_WR16(sc, MB_GET_CID_ADDR(RX_CID) +
6062 	    BCE_L2MQ_RX_HOST_PG_BDIDX, sc->pg_prod);
6063 
6064 	DBEXIT(BCE_VERBOSE_RESET | BCE_EXTREME_RECV | BCE_VERBOSE_LOAD |
6065 	    BCE_VERBOSE_CTX);
6066 }
6067 
6068 
6069 /****************************************************************************/
6070 /* Free memory and clear the RX data structures.                            */
6071 /*                                                                          */
6072 /* Returns:                                                                 */
6073 /*   Nothing.                                                               */
6074 /****************************************************************************/
6075 static void
6076 bce_free_pg_chain(struct bce_softc *sc)
6077 {
6078 	int i;
6079 
6080 	DBENTER(BCE_VERBOSE_RESET | BCE_VERBOSE_RECV | BCE_VERBOSE_UNLOAD);
6081 
6082 	/* Free any mbufs still in the mbuf page chain. */
6083 	for (i = 0; i < MAX_PG_BD_AVAIL; i++) {
6084 		if (sc->pg_mbuf_ptr[i] != NULL) {
6085 			if (sc->pg_mbuf_map[i] != NULL)
6086 				bus_dmamap_sync(sc->pg_mbuf_tag,
6087 				    sc->pg_mbuf_map[i],
6088 				    BUS_DMASYNC_POSTREAD);
6089 			m_freem(sc->pg_mbuf_ptr[i]);
6090 			sc->pg_mbuf_ptr[i] = NULL;
6091 			DBRUN(sc->debug_pg_mbuf_alloc--);
6092 		}
6093 	}
6094 
6095 	/* Clear each page chain pages. */
6096 	for (i = 0; i < sc->pg_pages; i++)
6097 		bzero((char *)sc->pg_bd_chain[i], BCE_PG_CHAIN_PAGE_SZ);
6098 
6099 	sc->free_pg_bd = sc->max_pg_bd;
6100 
6101 	/* Check if we lost any mbufs in the process. */
6102 	DBRUNIF((sc->debug_pg_mbuf_alloc),
6103 	    BCE_PRINTF("%s(): Memory leak! Lost %d mbufs from page chain!\n",
6104 	    __FUNCTION__, sc->debug_pg_mbuf_alloc));
6105 
6106 	DBEXIT(BCE_VERBOSE_RESET | BCE_VERBOSE_RECV | BCE_VERBOSE_UNLOAD);
6107 }
6108 
6109 
6110 /****************************************************************************/
6111 /* Set media options.                                                       */
6112 /*                                                                          */
6113 /* Returns:                                                                 */
6114 /*   0 for success, positive value for failure.                             */
6115 /****************************************************************************/
6116 static int
6117 bce_ifmedia_upd(struct ifnet *ifp)
6118 {
6119 	struct bce_softc *sc = ifp->if_softc;
6120 	int error;
6121 
6122 	DBENTER(BCE_VERBOSE);
6123 
6124 	BCE_LOCK(sc);
6125 	error = bce_ifmedia_upd_locked(ifp);
6126 	BCE_UNLOCK(sc);
6127 
6128 	DBEXIT(BCE_VERBOSE);
6129 	return (error);
6130 }
6131 
6132 
6133 /****************************************************************************/
6134 /* Set media options.                                                       */
6135 /*                                                                          */
6136 /* Returns:                                                                 */
6137 /*   Nothing.                                                               */
6138 /****************************************************************************/
6139 static int
6140 bce_ifmedia_upd_locked(struct ifnet *ifp)
6141 {
6142 	struct bce_softc *sc = ifp->if_softc;
6143 	struct mii_data *mii;
6144 	struct mii_softc *miisc;
6145 	int error;
6146 
6147 	DBENTER(BCE_VERBOSE_PHY);
6148 
6149 	error = 0;
6150 	BCE_LOCK_ASSERT(sc);
6151 
6152 	mii = device_get_softc(sc->bce_miibus);
6153 
6154 	/* Make sure the MII bus has been enumerated. */
6155 	if (mii) {
6156 		sc->bce_link_up = FALSE;
6157 		LIST_FOREACH(miisc, &mii->mii_phys, mii_list)
6158 		    PHY_RESET(miisc);
6159 		error = mii_mediachg(mii);
6160 	}
6161 
6162 	DBEXIT(BCE_VERBOSE_PHY);
6163 	return (error);
6164 }
6165 
6166 
6167 /****************************************************************************/
6168 /* Reports current media status.                                            */
6169 /*                                                                          */
6170 /* Returns:                                                                 */
6171 /*   Nothing.                                                               */
6172 /****************************************************************************/
6173 static void
6174 bce_ifmedia_sts(struct ifnet *ifp, struct ifmediareq *ifmr)
6175 {
6176 	struct bce_softc *sc = ifp->if_softc;
6177 	struct mii_data *mii;
6178 
6179 	DBENTER(BCE_VERBOSE_PHY);
6180 
6181 	BCE_LOCK(sc);
6182 
6183 	if ((ifp->if_flags & IFF_UP) == 0) {
6184 		BCE_UNLOCK(sc);
6185 		return;
6186 	}
6187 	mii = device_get_softc(sc->bce_miibus);
6188 
6189 	mii_pollstat(mii);
6190 	ifmr->ifm_active = mii->mii_media_active;
6191 	ifmr->ifm_status = mii->mii_media_status;
6192 
6193 	BCE_UNLOCK(sc);
6194 
6195 	DBEXIT(BCE_VERBOSE_PHY);
6196 }
6197 
6198 
6199 /****************************************************************************/
6200 /* Handles PHY generated interrupt events.                                  */
6201 /*                                                                          */
6202 /* Returns:                                                                 */
6203 /*   Nothing.                                                               */
6204 /****************************************************************************/
6205 static void
6206 bce_phy_intr(struct bce_softc *sc)
6207 {
6208 	u32 new_link_state, old_link_state;
6209 
6210 	DBENTER(BCE_VERBOSE_PHY | BCE_VERBOSE_INTR);
6211 
6212 	DBRUN(sc->phy_interrupts++);
6213 
6214 	new_link_state = sc->status_block->status_attn_bits &
6215 	    STATUS_ATTN_BITS_LINK_STATE;
6216 	old_link_state = sc->status_block->status_attn_bits_ack &
6217 	    STATUS_ATTN_BITS_LINK_STATE;
6218 
6219 	/* Handle any changes if the link state has changed. */
6220 	if (new_link_state != old_link_state) {
6221 
6222 		/* Update the status_attn_bits_ack field. */
6223 		if (new_link_state) {
6224 			REG_WR(sc, BCE_PCICFG_STATUS_BIT_SET_CMD,
6225 			    STATUS_ATTN_BITS_LINK_STATE);
6226 			DBPRINT(sc, BCE_INFO_PHY, "%s(): Link is now UP.\n",
6227 			    __FUNCTION__);
6228 		}
6229 		else {
6230 			REG_WR(sc, BCE_PCICFG_STATUS_BIT_CLEAR_CMD,
6231 			    STATUS_ATTN_BITS_LINK_STATE);
6232 			DBPRINT(sc, BCE_INFO_PHY, "%s(): Link is now DOWN.\n",
6233 			    __FUNCTION__);
6234 		}
6235 
6236 		/*
6237 		 * Assume link is down and allow
6238 		 * tick routine to update the state
6239 		 * based on the actual media state.
6240 		 */
6241 		sc->bce_link_up = FALSE;
6242 		callout_stop(&sc->bce_tick_callout);
6243 		bce_tick(sc);
6244 	}
6245 
6246 	/* Acknowledge the link change interrupt. */
6247 	REG_WR(sc, BCE_EMAC_STATUS, BCE_EMAC_STATUS_LINK_CHANGE);
6248 
6249 	DBEXIT(BCE_VERBOSE_PHY | BCE_VERBOSE_INTR);
6250 }
6251 
6252 
6253 /****************************************************************************/
6254 /* Reads the receive consumer value from the status block (skipping over    */
6255 /* chain page pointer if necessary).                                        */
6256 /*                                                                          */
6257 /* Returns:                                                                 */
6258 /*   hw_cons                                                                */
6259 /****************************************************************************/
6260 static inline u16
6261 bce_get_hw_rx_cons(struct bce_softc *sc)
6262 {
6263 	u16 hw_cons;
6264 
6265 	rmb();
6266 	hw_cons = sc->status_block->status_rx_quick_consumer_index0;
6267 	if ((hw_cons & USABLE_RX_BD_PER_PAGE) == USABLE_RX_BD_PER_PAGE)
6268 		hw_cons++;
6269 
6270 	return hw_cons;
6271 }
6272 
6273 /****************************************************************************/
6274 /* Handles received frame interrupt events.                                 */
6275 /*                                                                          */
6276 /* Returns:                                                                 */
6277 /*   Nothing.                                                               */
6278 /****************************************************************************/
6279 static void
6280 bce_rx_intr(struct bce_softc *sc)
6281 {
6282 	struct ifnet *ifp = sc->bce_ifp;
6283 	struct l2_fhdr *l2fhdr;
6284 	struct ether_vlan_header *vh;
6285 	unsigned int pkt_len;
6286 	u16 sw_rx_cons, sw_rx_cons_idx, hw_rx_cons;
6287 	u32 status;
6288 	unsigned int rem_len;
6289 	u16 sw_pg_cons, sw_pg_cons_idx;
6290 
6291 	DBENTER(BCE_VERBOSE_RECV | BCE_VERBOSE_INTR);
6292 	DBRUN(sc->interrupts_rx++);
6293 	DBPRINT(sc, BCE_EXTREME_RECV, "%s(enter): rx_prod = 0x%04X, "
6294 	    "rx_cons = 0x%04X, rx_prod_bseq = 0x%08X\n",
6295 	    __FUNCTION__, sc->rx_prod, sc->rx_cons, sc->rx_prod_bseq);
6296 
6297 	/* Prepare the RX chain pages to be accessed by the host CPU. */
6298 	for (int i = 0; i < sc->rx_pages; i++)
6299 		bus_dmamap_sync(sc->rx_bd_chain_tag,
6300 		    sc->rx_bd_chain_map[i], BUS_DMASYNC_POSTREAD);
6301 
6302 	/* Prepare the page chain pages to be accessed by the host CPU. */
6303 	if (bce_hdr_split == TRUE) {
6304 		for (int i = 0; i < sc->pg_pages; i++)
6305 			bus_dmamap_sync(sc->pg_bd_chain_tag,
6306 			    sc->pg_bd_chain_map[i], BUS_DMASYNC_POSTREAD);
6307 	}
6308 
6309 	/* Get the hardware's view of the RX consumer index. */
6310 	hw_rx_cons = sc->hw_rx_cons = bce_get_hw_rx_cons(sc);
6311 
6312 	/* Get working copies of the driver's view of the consumer indices. */
6313 	sw_rx_cons = sc->rx_cons;
6314 	sw_pg_cons = sc->pg_cons;
6315 
6316 	/* Update some debug statistics counters */
6317 	DBRUNIF((sc->free_rx_bd < sc->rx_low_watermark),
6318 	    sc->rx_low_watermark = sc->free_rx_bd);
6319 	DBRUNIF((sc->free_rx_bd == sc->max_rx_bd),
6320 	    sc->rx_empty_count++);
6321 
6322 	/* Scan through the receive chain as long as there is work to do */
6323 	/* ToDo: Consider setting a limit on the number of packets processed. */
6324 	rmb();
6325 	while (sw_rx_cons != hw_rx_cons) {
6326 		struct mbuf *m0;
6327 
6328 		/* Convert the producer/consumer indices to an actual rx_bd index. */
6329 		sw_rx_cons_idx = RX_CHAIN_IDX(sw_rx_cons);
6330 
6331 		/* Unmap the mbuf from DMA space. */
6332 		bus_dmamap_sync(sc->rx_mbuf_tag,
6333 		    sc->rx_mbuf_map[sw_rx_cons_idx],
6334 		    BUS_DMASYNC_POSTREAD);
6335 		bus_dmamap_unload(sc->rx_mbuf_tag,
6336 		    sc->rx_mbuf_map[sw_rx_cons_idx]);
6337 
6338 		/* Remove the mbuf from the RX chain. */
6339 		m0 = sc->rx_mbuf_ptr[sw_rx_cons_idx];
6340 		sc->rx_mbuf_ptr[sw_rx_cons_idx] = NULL;
6341 		DBRUN(sc->debug_rx_mbuf_alloc--);
6342 		sc->free_rx_bd++;
6343 
6344 		if(m0 == NULL) {
6345 			DBPRINT(sc, BCE_EXTREME_RECV,
6346 			    "%s(): Oops! Empty mbuf pointer "
6347 			    "found in sc->rx_mbuf_ptr[0x%04X]!\n",
6348 			    __FUNCTION__, sw_rx_cons_idx);
6349 			goto bce_rx_int_next_rx;
6350 		}
6351 
6352 		/*
6353  		 * Frames received on the NetXteme II are prepended
6354  		 * with an l2_fhdr structure which provides status
6355  		 * information about the received frame (including
6356  		 * VLAN tags and checksum info).  The frames are
6357 		 * also automatically adjusted to word align the IP
6358  		 * header (i.e. two null bytes are inserted before
6359  		 * the Ethernet	header).  As a result the data
6360  		 * DMA'd by the controller into	the mbuf looks
6361 		 * like this:
6362 		 *
6363 		 * +---------+-----+---------------------+-----+
6364 		 * | l2_fhdr | pad | packet data         | FCS |
6365 		 * +---------+-----+---------------------+-----+
6366 		 *
6367  		 * The l2_fhdr needs to be checked and skipped and
6368  		 * the FCS needs to be stripped before sending the
6369 		 * packet up the stack.
6370 		 */
6371 		l2fhdr  = mtod(m0, struct l2_fhdr *);
6372 
6373 		/* Get the packet data + FCS length and the status. */
6374 		pkt_len = l2fhdr->l2_fhdr_pkt_len;
6375 		status  = l2fhdr->l2_fhdr_status;
6376 
6377 		/*
6378 		 * Skip over the l2_fhdr and pad, resulting in the
6379 		 * following data in the mbuf:
6380 		 * +---------------------+-----+
6381 		 * | packet data         | FCS |
6382 		 * +---------------------+-----+
6383 		 */
6384 		m_adj(m0, sizeof(struct l2_fhdr) + ETHER_ALIGN);
6385 
6386 		/*
6387  		 * When split header mode is used, an ethernet frame
6388  		 * may be split across the receive chain and the
6389  		 * page chain. If that occurs an mbuf cluster must be
6390  		 * reassembled from the individual mbuf pieces.
6391 		 */
6392 		if (bce_hdr_split == TRUE) {
6393 			/*
6394 			 * Check whether the received frame fits in a single
6395 			 * mbuf or not (i.e. packet data + FCS <=
6396 			 * sc->rx_bd_mbuf_data_len bytes).
6397 			 */
6398 			if (pkt_len > m0->m_len) {
6399 				/*
6400 				 * The received frame is larger than a single mbuf.
6401 				 * If the frame was a TCP frame then only the TCP
6402 				 * header is placed in the mbuf, the remaining
6403 				 * payload (including FCS) is placed in the page
6404 				 * chain, the SPLIT flag is set, and the header
6405 				 * length is placed in the IP checksum field.
6406 				 * If the frame is not a TCP frame then the mbuf
6407 				 * is filled and the remaining bytes are placed
6408 				 * in the page chain.
6409 				 */
6410 
6411 				DBPRINT(sc, BCE_INFO_RECV, "%s(): Found a large "
6412 					"packet.\n", __FUNCTION__);
6413 				DBRUN(sc->split_header_frames_rcvd++);
6414 
6415 				/*
6416 				 * When the page chain is enabled and the TCP
6417 				 * header has been split from the TCP payload,
6418 				 * the ip_xsum structure will reflect the length
6419 				 * of the TCP header, not the IP checksum.  Set
6420 				 * the packet length of the mbuf accordingly.
6421 				 */
6422 				if (status & L2_FHDR_STATUS_SPLIT) {
6423 					m0->m_len = l2fhdr->l2_fhdr_ip_xsum;
6424 					DBRUN(sc->split_header_tcp_frames_rcvd++);
6425 				}
6426 
6427 				rem_len = pkt_len - m0->m_len;
6428 
6429 				/* Pull mbufs off the page chain for any remaining data. */
6430 				while (rem_len > 0) {
6431 					struct mbuf *m_pg;
6432 
6433 					sw_pg_cons_idx = PG_CHAIN_IDX(sw_pg_cons);
6434 
6435 					/* Remove the mbuf from the page chain. */
6436 					m_pg = sc->pg_mbuf_ptr[sw_pg_cons_idx];
6437 					sc->pg_mbuf_ptr[sw_pg_cons_idx] = NULL;
6438 					DBRUN(sc->debug_pg_mbuf_alloc--);
6439 					sc->free_pg_bd++;
6440 
6441 					/* Unmap the page chain mbuf from DMA space. */
6442 					bus_dmamap_sync(sc->pg_mbuf_tag,
6443 						sc->pg_mbuf_map[sw_pg_cons_idx],
6444 						BUS_DMASYNC_POSTREAD);
6445 					bus_dmamap_unload(sc->pg_mbuf_tag,
6446 						sc->pg_mbuf_map[sw_pg_cons_idx]);
6447 
6448 					/* Adjust the mbuf length. */
6449 					if (rem_len < m_pg->m_len) {
6450 						/* The mbuf chain is complete. */
6451 						m_pg->m_len = rem_len;
6452 						rem_len = 0;
6453 					} else {
6454 						/* More packet data is waiting. */
6455 						rem_len -= m_pg->m_len;
6456 					}
6457 
6458 					/* Concatenate the mbuf cluster to the mbuf. */
6459 					m_cat(m0, m_pg);
6460 
6461 					sw_pg_cons = NEXT_PG_BD(sw_pg_cons);
6462 				}
6463 
6464 				/* Set the total packet length. */
6465 				m0->m_pkthdr.len = pkt_len;
6466 
6467 			} else {
6468 				/*
6469 				 * The received packet is small and fits in a
6470 				 * single mbuf (i.e. the l2_fhdr + pad + packet +
6471 				 * FCS <= MHLEN).  In other words, the packet is
6472 				 * 154 bytes or less in size.
6473 				 */
6474 
6475 				DBPRINT(sc, BCE_INFO_RECV, "%s(): Found a small "
6476 					"packet.\n", __FUNCTION__);
6477 
6478 				/* Set the total packet length. */
6479 				m0->m_pkthdr.len = m0->m_len = pkt_len;
6480 			}
6481 		} else
6482 			/* Set the total packet length. */
6483 			m0->m_pkthdr.len = m0->m_len = pkt_len;
6484 
6485 		/* Remove the trailing Ethernet FCS. */
6486 		m_adj(m0, -ETHER_CRC_LEN);
6487 
6488 		/* Check that the resulting mbuf chain is valid. */
6489 		DBRUN(m_sanity(m0, FALSE));
6490 		DBRUNIF(((m0->m_len < ETHER_HDR_LEN) |
6491 		    (m0->m_pkthdr.len > BCE_MAX_JUMBO_ETHER_MTU_VLAN)),
6492 		    BCE_PRINTF("Invalid Ethernet frame size!\n");
6493 		    m_print(m0, 128));
6494 
6495 		DBRUNIF(DB_RANDOMTRUE(l2fhdr_error_sim_control),
6496 		    sc->l2fhdr_error_sim_count++;
6497 		    status = status | L2_FHDR_ERRORS_PHY_DECODE);
6498 
6499 		/* Check the received frame for errors. */
6500 		if (status & (L2_FHDR_ERRORS_BAD_CRC |
6501 		    L2_FHDR_ERRORS_PHY_DECODE | L2_FHDR_ERRORS_ALIGNMENT |
6502 		    L2_FHDR_ERRORS_TOO_SHORT  | L2_FHDR_ERRORS_GIANT_FRAME)) {
6503 
6504 			/* Log the error and release the mbuf. */
6505 			ifp->if_ierrors++;
6506 			sc->l2fhdr_error_count++;
6507 
6508 			m_freem(m0);
6509 			m0 = NULL;
6510 			goto bce_rx_int_next_rx;
6511 		}
6512 
6513 		/* Send the packet to the appropriate interface. */
6514 		m0->m_pkthdr.rcvif = ifp;
6515 
6516 		/* Assume no hardware checksum. */
6517 		m0->m_pkthdr.csum_flags = 0;
6518 
6519 		/* Validate the checksum if offload enabled. */
6520 		if (ifp->if_capenable & IFCAP_RXCSUM) {
6521 
6522 			/* Check for an IP datagram. */
6523 		 	if (!(status & L2_FHDR_STATUS_SPLIT) &&
6524 			    (status & L2_FHDR_STATUS_IP_DATAGRAM)) {
6525 				m0->m_pkthdr.csum_flags |= CSUM_IP_CHECKED;
6526 				DBRUN(sc->csum_offload_ip++);
6527 				/* Check if the IP checksum is valid. */
6528 				if ((l2fhdr->l2_fhdr_ip_xsum ^ 0xffff) == 0)
6529 					m0->m_pkthdr.csum_flags |=
6530 					    CSUM_IP_VALID;
6531 			}
6532 
6533 			/* Check for a valid TCP/UDP frame. */
6534 			if (status & (L2_FHDR_STATUS_TCP_SEGMENT |
6535 			    L2_FHDR_STATUS_UDP_DATAGRAM)) {
6536 
6537 				/* Check for a good TCP/UDP checksum. */
6538 				if ((status & (L2_FHDR_ERRORS_TCP_XSUM |
6539 				    L2_FHDR_ERRORS_UDP_XSUM)) == 0) {
6540 					DBRUN(sc->csum_offload_tcp_udp++);
6541 					m0->m_pkthdr.csum_data =
6542 					    l2fhdr->l2_fhdr_tcp_udp_xsum;
6543 					m0->m_pkthdr.csum_flags |=
6544 					    (CSUM_DATA_VALID
6545 					    | CSUM_PSEUDO_HDR);
6546 				}
6547 			}
6548 		}
6549 
6550 		/* Attach the VLAN tag.	*/
6551 		if (status & L2_FHDR_STATUS_L2_VLAN_TAG) {
6552 			DBRUN(sc->vlan_tagged_frames_rcvd++);
6553 			if (ifp->if_capenable & IFCAP_VLAN_HWTAGGING) {
6554 				DBRUN(sc->vlan_tagged_frames_stripped++);
6555 #if __FreeBSD_version < 700000
6556 				VLAN_INPUT_TAG(ifp, m0,
6557 				    l2fhdr->l2_fhdr_vlan_tag, continue);
6558 #else
6559 				m0->m_pkthdr.ether_vtag =
6560 				    l2fhdr->l2_fhdr_vlan_tag;
6561 				m0->m_flags |= M_VLANTAG;
6562 #endif
6563 			} else {
6564 				/*
6565 				 * bce(4) controllers can't disable VLAN
6566 				 * tag stripping if management firmware
6567 				 * (ASF/IPMI/UMP) is running. So we always
6568 				 * strip VLAN tag and manually reconstruct
6569 				 * the VLAN frame by appending stripped
6570 				 * VLAN tag in driver if VLAN tag stripping
6571 				 * was disabled.
6572 				 *
6573 				 * TODO: LLC SNAP handling.
6574 				 */
6575 				bcopy(mtod(m0, uint8_t *),
6576 				    mtod(m0, uint8_t *) - ETHER_VLAN_ENCAP_LEN,
6577 				    ETHER_ADDR_LEN * 2);
6578 				m0->m_data -= ETHER_VLAN_ENCAP_LEN;
6579 				vh = mtod(m0, struct ether_vlan_header *);
6580 				vh->evl_encap_proto = htons(ETHERTYPE_VLAN);
6581 				vh->evl_tag = htons(l2fhdr->l2_fhdr_vlan_tag);
6582 				m0->m_pkthdr.len += ETHER_VLAN_ENCAP_LEN;
6583 				m0->m_len += ETHER_VLAN_ENCAP_LEN;
6584 			}
6585 		}
6586 
6587 		/* Increment received packet statistics. */
6588 		ifp->if_ipackets++;
6589 
6590 bce_rx_int_next_rx:
6591 		sw_rx_cons = NEXT_RX_BD(sw_rx_cons);
6592 
6593 		/* If we have a packet, pass it up the stack */
6594 		if (m0) {
6595 			/* Make sure we don't lose our place when we release the lock. */
6596 			sc->rx_cons = sw_rx_cons;
6597 			sc->pg_cons = sw_pg_cons;
6598 
6599 			BCE_UNLOCK(sc);
6600 			(*ifp->if_input)(ifp, m0);
6601 			BCE_LOCK(sc);
6602 
6603 			/* Recover our place. */
6604 			sw_rx_cons = sc->rx_cons;
6605 			sw_pg_cons = sc->pg_cons;
6606 		}
6607 
6608 		/* Refresh hw_cons to see if there's new work */
6609 		if (sw_rx_cons == hw_rx_cons)
6610 			hw_rx_cons = sc->hw_rx_cons = bce_get_hw_rx_cons(sc);
6611 	}
6612 
6613 	/* No new packets.  Refill the page chain. */
6614 	if (bce_hdr_split == TRUE) {
6615 		sc->pg_cons = sw_pg_cons;
6616 		bce_fill_pg_chain(sc);
6617 	}
6618 
6619 	/* No new packets.  Refill the RX chain. */
6620 	sc->rx_cons = sw_rx_cons;
6621 	bce_fill_rx_chain(sc);
6622 
6623 	/* Prepare the page chain pages to be accessed by the NIC. */
6624 	for (int i = 0; i < sc->rx_pages; i++)
6625 		bus_dmamap_sync(sc->rx_bd_chain_tag,
6626 		    sc->rx_bd_chain_map[i], BUS_DMASYNC_PREWRITE);
6627 
6628 	if (bce_hdr_split == TRUE) {
6629 		for (int i = 0; i < sc->pg_pages; i++)
6630 			bus_dmamap_sync(sc->pg_bd_chain_tag,
6631 			    sc->pg_bd_chain_map[i], BUS_DMASYNC_PREWRITE);
6632 	}
6633 
6634 	DBPRINT(sc, BCE_EXTREME_RECV, "%s(exit): rx_prod = 0x%04X, "
6635 	    "rx_cons = 0x%04X, rx_prod_bseq = 0x%08X\n",
6636 	    __FUNCTION__, sc->rx_prod, sc->rx_cons, sc->rx_prod_bseq);
6637 	DBEXIT(BCE_VERBOSE_RECV | BCE_VERBOSE_INTR);
6638 }
6639 
6640 
6641 /****************************************************************************/
6642 /* Reads the transmit consumer value from the status block (skipping over   */
6643 /* chain page pointer if necessary).                                        */
6644 /*                                                                          */
6645 /* Returns:                                                                 */
6646 /*   hw_cons                                                                */
6647 /****************************************************************************/
6648 static inline u16
6649 bce_get_hw_tx_cons(struct bce_softc *sc)
6650 {
6651 	u16 hw_cons;
6652 
6653 	mb();
6654 	hw_cons = sc->status_block->status_tx_quick_consumer_index0;
6655 	if ((hw_cons & USABLE_TX_BD_PER_PAGE) == USABLE_TX_BD_PER_PAGE)
6656 		hw_cons++;
6657 
6658 	return hw_cons;
6659 }
6660 
6661 
6662 /****************************************************************************/
6663 /* Handles transmit completion interrupt events.                            */
6664 /*                                                                          */
6665 /* Returns:                                                                 */
6666 /*   Nothing.                                                               */
6667 /****************************************************************************/
6668 static void
6669 bce_tx_intr(struct bce_softc *sc)
6670 {
6671 	struct ifnet *ifp = sc->bce_ifp;
6672 	u16 hw_tx_cons, sw_tx_cons, sw_tx_chain_cons;
6673 
6674 	DBENTER(BCE_VERBOSE_SEND | BCE_VERBOSE_INTR);
6675 	DBRUN(sc->interrupts_tx++);
6676 	DBPRINT(sc, BCE_EXTREME_SEND, "%s(enter): tx_prod = 0x%04X, "
6677 	    "tx_cons = 0x%04X, tx_prod_bseq = 0x%08X\n",
6678 	    __FUNCTION__, sc->tx_prod, sc->tx_cons, sc->tx_prod_bseq);
6679 
6680 	BCE_LOCK_ASSERT(sc);
6681 
6682 	/* Get the hardware's view of the TX consumer index. */
6683 	hw_tx_cons = sc->hw_tx_cons = bce_get_hw_tx_cons(sc);
6684 	sw_tx_cons = sc->tx_cons;
6685 
6686 	/* Prevent speculative reads of the status block. */
6687 	bus_space_barrier(sc->bce_btag, sc->bce_bhandle, 0, 0,
6688 	    BUS_SPACE_BARRIER_READ);
6689 
6690 	/* Cycle through any completed TX chain page entries. */
6691 	while (sw_tx_cons != hw_tx_cons) {
6692 #ifdef BCE_DEBUG
6693 		struct tx_bd *txbd = NULL;
6694 #endif
6695 		sw_tx_chain_cons = TX_CHAIN_IDX(sw_tx_cons);
6696 
6697 		DBPRINT(sc, BCE_INFO_SEND,
6698 		    "%s(): hw_tx_cons = 0x%04X, sw_tx_cons = 0x%04X, "
6699 		    "sw_tx_chain_cons = 0x%04X\n",
6700 		    __FUNCTION__, hw_tx_cons, sw_tx_cons, sw_tx_chain_cons);
6701 
6702 		DBRUNIF((sw_tx_chain_cons > MAX_TX_BD_ALLOC),
6703 		    BCE_PRINTF("%s(%d): TX chain consumer out of range! "
6704 		    " 0x%04X > 0x%04X\n", __FILE__, __LINE__, sw_tx_chain_cons,
6705 		    (int) MAX_TX_BD_ALLOC);
6706 		    bce_breakpoint(sc));
6707 
6708 		DBRUN(txbd = &sc->tx_bd_chain[TX_PAGE(sw_tx_chain_cons)]
6709 		    [TX_IDX(sw_tx_chain_cons)]);
6710 
6711 		DBRUNIF((txbd == NULL),
6712 		    BCE_PRINTF("%s(%d): Unexpected NULL tx_bd[0x%04X]!\n",
6713 		    __FILE__, __LINE__, sw_tx_chain_cons);
6714 		    bce_breakpoint(sc));
6715 
6716 		DBRUNMSG(BCE_INFO_SEND, BCE_PRINTF("%s(): ", __FUNCTION__);
6717 		    bce_dump_txbd(sc, sw_tx_chain_cons, txbd));
6718 
6719 		/*
6720 		 * Free the associated mbuf. Remember
6721 		 * that only the last tx_bd of a packet
6722 		 * has an mbuf pointer and DMA map.
6723 		 */
6724 		if (sc->tx_mbuf_ptr[sw_tx_chain_cons] != NULL) {
6725 
6726 			/* Validate that this is the last tx_bd. */
6727 			DBRUNIF((!(txbd->tx_bd_flags & TX_BD_FLAGS_END)),
6728 			    BCE_PRINTF("%s(%d): tx_bd END flag not set but "
6729 			    "txmbuf == NULL!\n", __FILE__, __LINE__);
6730 			    bce_breakpoint(sc));
6731 
6732 			DBRUNMSG(BCE_INFO_SEND,
6733 			    BCE_PRINTF("%s(): Unloading map/freeing mbuf "
6734 			    "from tx_bd[0x%04X]\n", __FUNCTION__,
6735 			    sw_tx_chain_cons));
6736 
6737 			/* Unmap the mbuf. */
6738 			bus_dmamap_unload(sc->tx_mbuf_tag,
6739 			    sc->tx_mbuf_map[sw_tx_chain_cons]);
6740 
6741 			/* Free the mbuf. */
6742 			m_freem(sc->tx_mbuf_ptr[sw_tx_chain_cons]);
6743 			sc->tx_mbuf_ptr[sw_tx_chain_cons] = NULL;
6744 			DBRUN(sc->debug_tx_mbuf_alloc--);
6745 
6746 			ifp->if_opackets++;
6747 		}
6748 
6749 		sc->used_tx_bd--;
6750 		sw_tx_cons = NEXT_TX_BD(sw_tx_cons);
6751 
6752 		/* Refresh hw_cons to see if there's new work. */
6753 		hw_tx_cons = sc->hw_tx_cons = bce_get_hw_tx_cons(sc);
6754 
6755 		/* Prevent speculative reads of the status block. */
6756 		bus_space_barrier(sc->bce_btag, sc->bce_bhandle, 0, 0,
6757 		    BUS_SPACE_BARRIER_READ);
6758 	}
6759 
6760 	/* Clear the TX timeout timer. */
6761 	sc->watchdog_timer = 0;
6762 
6763 	/* Clear the tx hardware queue full flag. */
6764 	if (sc->used_tx_bd < sc->max_tx_bd) {
6765 		DBRUNIF((ifp->if_drv_flags & IFF_DRV_OACTIVE),
6766 		    DBPRINT(sc, BCE_INFO_SEND,
6767 		    "%s(): Open TX chain! %d/%d (used/total)\n",
6768 		    __FUNCTION__, sc->used_tx_bd, sc->max_tx_bd));
6769 		ifp->if_drv_flags &= ~IFF_DRV_OACTIVE;
6770 	}
6771 
6772 	sc->tx_cons = sw_tx_cons;
6773 
6774 	DBPRINT(sc, BCE_EXTREME_SEND, "%s(exit): tx_prod = 0x%04X, "
6775 	    "tx_cons = 0x%04X, tx_prod_bseq = 0x%08X\n",
6776 	    __FUNCTION__, sc->tx_prod, sc->tx_cons, sc->tx_prod_bseq);
6777 	DBEXIT(BCE_VERBOSE_SEND | BCE_VERBOSE_INTR);
6778 }
6779 
6780 
6781 /****************************************************************************/
6782 /* Disables interrupt generation.                                           */
6783 /*                                                                          */
6784 /* Returns:                                                                 */
6785 /*   Nothing.                                                               */
6786 /****************************************************************************/
6787 static void
6788 bce_disable_intr(struct bce_softc *sc)
6789 {
6790 	DBENTER(BCE_VERBOSE_INTR);
6791 
6792 	REG_WR(sc, BCE_PCICFG_INT_ACK_CMD, BCE_PCICFG_INT_ACK_CMD_MASK_INT);
6793 	REG_RD(sc, BCE_PCICFG_INT_ACK_CMD);
6794 
6795 	DBEXIT(BCE_VERBOSE_INTR);
6796 }
6797 
6798 
6799 /****************************************************************************/
6800 /* Enables interrupt generation.                                            */
6801 /*                                                                          */
6802 /* Returns:                                                                 */
6803 /*   Nothing.                                                               */
6804 /****************************************************************************/
6805 static void
6806 bce_enable_intr(struct bce_softc *sc, int coal_now)
6807 {
6808 	DBENTER(BCE_VERBOSE_INTR);
6809 
6810 	REG_WR(sc, BCE_PCICFG_INT_ACK_CMD,
6811 	    BCE_PCICFG_INT_ACK_CMD_INDEX_VALID |
6812 	    BCE_PCICFG_INT_ACK_CMD_MASK_INT | sc->last_status_idx);
6813 
6814 	REG_WR(sc, BCE_PCICFG_INT_ACK_CMD,
6815 	    BCE_PCICFG_INT_ACK_CMD_INDEX_VALID | sc->last_status_idx);
6816 
6817 	/* Force an immediate interrupt (whether there is new data or not). */
6818 	if (coal_now)
6819 		REG_WR(sc, BCE_HC_COMMAND, sc->hc_command | BCE_HC_COMMAND_COAL_NOW);
6820 
6821 	DBEXIT(BCE_VERBOSE_INTR);
6822 }
6823 
6824 
6825 /****************************************************************************/
6826 /* Handles controller initialization.                                       */
6827 /*                                                                          */
6828 /* Returns:                                                                 */
6829 /*   Nothing.                                                               */
6830 /****************************************************************************/
6831 static void
6832 bce_init_locked(struct bce_softc *sc)
6833 {
6834 	struct ifnet *ifp;
6835 	u32 ether_mtu = 0;
6836 
6837 	DBENTER(BCE_VERBOSE_RESET);
6838 
6839 	BCE_LOCK_ASSERT(sc);
6840 
6841 	ifp = sc->bce_ifp;
6842 
6843 	/* Check if the driver is still running and bail out if it is. */
6844 	if (ifp->if_drv_flags & IFF_DRV_RUNNING)
6845 		goto bce_init_locked_exit;
6846 
6847 	bce_stop(sc);
6848 
6849 	if (bce_reset(sc, BCE_DRV_MSG_CODE_RESET)) {
6850 		BCE_PRINTF("%s(%d): Controller reset failed!\n",
6851 		    __FILE__, __LINE__);
6852 		goto bce_init_locked_exit;
6853 	}
6854 
6855 	if (bce_chipinit(sc)) {
6856 		BCE_PRINTF("%s(%d): Controller initialization failed!\n",
6857 		    __FILE__, __LINE__);
6858 		goto bce_init_locked_exit;
6859 	}
6860 
6861 	if (bce_blockinit(sc)) {
6862 		BCE_PRINTF("%s(%d): Block initialization failed!\n",
6863 		    __FILE__, __LINE__);
6864 		goto bce_init_locked_exit;
6865 	}
6866 
6867 	/* Load our MAC address. */
6868 	bcopy(IF_LLADDR(sc->bce_ifp), sc->eaddr, ETHER_ADDR_LEN);
6869 	bce_set_mac_addr(sc);
6870 
6871 	/*
6872 	 * Calculate and program the hardware Ethernet MTU
6873  	 * size. Be generous on the receive if we have room
6874  	 * and allowed by the user.
6875 	 */
6876 	if (bce_strict_rx_mtu == TRUE)
6877 		ether_mtu = ifp->if_mtu;
6878 	else {
6879 		if (bce_hdr_split == TRUE) {
6880 			if (ifp->if_mtu <= (sc->rx_bd_mbuf_data_len +
6881 				   sc->pg_bd_mbuf_alloc_size))
6882 					ether_mtu = sc->rx_bd_mbuf_data_len +
6883 					   sc->pg_bd_mbuf_alloc_size;
6884 			else
6885 				ether_mtu = ifp->if_mtu;
6886 		} else {
6887 			if (ifp->if_mtu <= sc->rx_bd_mbuf_data_len)
6888 				ether_mtu = sc->rx_bd_mbuf_data_len;
6889 			else
6890 				ether_mtu = ifp->if_mtu;
6891 		}
6892 	}
6893 
6894 	ether_mtu += ETHER_HDR_LEN + ETHER_VLAN_ENCAP_LEN + ETHER_CRC_LEN;
6895 
6896 	DBPRINT(sc, BCE_INFO_MISC, "%s(): setting h/w mtu = %d\n",
6897 	    __FUNCTION__, ether_mtu);
6898 
6899 	/* Program the mtu, enabling jumbo frame support if necessary. */
6900 	if (ether_mtu > (ETHER_MAX_LEN + ETHER_VLAN_ENCAP_LEN))
6901 		REG_WR(sc, BCE_EMAC_RX_MTU_SIZE,
6902 		    min(ether_mtu, BCE_MAX_JUMBO_ETHER_MTU) |
6903 		    BCE_EMAC_RX_MTU_SIZE_JUMBO_ENA);
6904 	else
6905 		REG_WR(sc, BCE_EMAC_RX_MTU_SIZE, ether_mtu);
6906 
6907 	/* Program appropriate promiscuous/multicast filtering. */
6908 	bce_set_rx_mode(sc);
6909 
6910 	if (bce_hdr_split == TRUE) {
6911 		DBPRINT(sc, BCE_INFO_LOAD, "%s(): pg_bd_mbuf_alloc_size = %d\n",
6912 			__FUNCTION__, sc->pg_bd_mbuf_alloc_size);
6913 
6914 		/* Init page buffer descriptor chain. */
6915 		bce_init_pg_chain(sc);
6916 	}
6917 
6918 	/* Init RX buffer descriptor chain. */
6919 	bce_init_rx_chain(sc);
6920 
6921 	/* Init TX buffer descriptor chain. */
6922 	bce_init_tx_chain(sc);
6923 
6924 	/* Enable host interrupts. */
6925 	bce_enable_intr(sc, 1);
6926 
6927 	bce_ifmedia_upd_locked(ifp);
6928 
6929 	/* Let the OS know the driver is up and running. */
6930 	ifp->if_drv_flags |= IFF_DRV_RUNNING;
6931 	ifp->if_drv_flags &= ~IFF_DRV_OACTIVE;
6932 
6933 	callout_reset(&sc->bce_tick_callout, hz, bce_tick, sc);
6934 
6935 bce_init_locked_exit:
6936 	DBEXIT(BCE_VERBOSE_RESET);
6937 }
6938 
6939 
6940 /****************************************************************************/
6941 /* Initialize the controller just enough so that any management firmware    */
6942 /* running on the device will continue to operate correctly.                */
6943 /*                                                                          */
6944 /* Returns:                                                                 */
6945 /*   Nothing.                                                               */
6946 /****************************************************************************/
6947 static void
6948 bce_mgmt_init_locked(struct bce_softc *sc)
6949 {
6950 	struct ifnet *ifp;
6951 
6952 	DBENTER(BCE_VERBOSE_RESET);
6953 
6954 	BCE_LOCK_ASSERT(sc);
6955 
6956 	/* Bail out if management firmware is not running. */
6957 	if (!(sc->bce_flags & BCE_MFW_ENABLE_FLAG)) {
6958 		DBPRINT(sc, BCE_VERBOSE_SPECIAL,
6959 		    "No management firmware running...\n");
6960 		goto bce_mgmt_init_locked_exit;
6961 	}
6962 
6963 	ifp = sc->bce_ifp;
6964 
6965 	/* Enable all critical blocks in the MAC. */
6966 	REG_WR(sc, BCE_MISC_ENABLE_SET_BITS, BCE_MISC_ENABLE_DEFAULT);
6967 	REG_RD(sc, BCE_MISC_ENABLE_SET_BITS);
6968 	DELAY(20);
6969 
6970 	bce_ifmedia_upd_locked(ifp);
6971 
6972 bce_mgmt_init_locked_exit:
6973 	DBEXIT(BCE_VERBOSE_RESET);
6974 }
6975 
6976 
6977 /****************************************************************************/
6978 /* Handles controller initialization when called from an unlocked routine.  */
6979 /*                                                                          */
6980 /* Returns:                                                                 */
6981 /*   Nothing.                                                               */
6982 /****************************************************************************/
6983 static void
6984 bce_init(void *xsc)
6985 {
6986 	struct bce_softc *sc = xsc;
6987 
6988 	DBENTER(BCE_VERBOSE_RESET);
6989 
6990 	BCE_LOCK(sc);
6991 	bce_init_locked(sc);
6992 	BCE_UNLOCK(sc);
6993 
6994 	DBEXIT(BCE_VERBOSE_RESET);
6995 }
6996 
6997 
6998 /****************************************************************************/
6999 /* Modifies an mbuf for TSO on the hardware.                                */
7000 /*                                                                          */
7001 /* Returns:                                                                 */
7002 /*   Pointer to a modified mbuf.                                            */
7003 /****************************************************************************/
7004 static struct mbuf *
7005 bce_tso_setup(struct bce_softc *sc, struct mbuf **m_head, u16 *flags)
7006 {
7007 	struct mbuf *m;
7008 	struct ether_header *eh;
7009 	struct ip *ip;
7010 	struct tcphdr *th;
7011 	u16 etype;
7012 	int hdr_len, ip_hlen = 0, tcp_hlen = 0, ip_len = 0;
7013 
7014 	DBRUN(sc->tso_frames_requested++);
7015 
7016 	/* Controller may modify mbuf chains. */
7017 	if (M_WRITABLE(*m_head) == 0) {
7018 		m = m_dup(*m_head, M_DONTWAIT);
7019 		m_freem(*m_head);
7020 		if (m == NULL) {
7021 			sc->mbuf_alloc_failed_count++;
7022 			*m_head = NULL;
7023 			return (NULL);
7024 		}
7025 		*m_head = m;
7026 	}
7027 
7028 	/*
7029 	 * For TSO the controller needs two pieces of info,
7030 	 * the MSS and the IP+TCP options length.
7031 	 */
7032 	m = m_pullup(*m_head, sizeof(struct ether_header) + sizeof(struct ip));
7033 	if (m == NULL) {
7034 		*m_head = NULL;
7035 		return (NULL);
7036 	}
7037 	eh = mtod(m, struct ether_header *);
7038 	etype = ntohs(eh->ether_type);
7039 
7040 	/* Check for supported TSO Ethernet types (only IPv4 for now) */
7041 	switch (etype) {
7042 	case ETHERTYPE_IP:
7043 		ip = (struct ip *)(m->m_data + sizeof(struct ether_header));
7044 		/* TSO only supported for TCP protocol. */
7045 		if (ip->ip_p != IPPROTO_TCP) {
7046 			BCE_PRINTF("%s(%d): TSO enabled for non-TCP frame!.\n",
7047 			    __FILE__, __LINE__);
7048 			m_freem(*m_head);
7049 			*m_head = NULL;
7050 			return (NULL);
7051 		}
7052 
7053 		/* Get IP header length in bytes (min 20) */
7054 		ip_hlen = ip->ip_hl << 2;
7055 		m = m_pullup(*m_head, sizeof(struct ether_header) + ip_hlen +
7056 		    sizeof(struct tcphdr));
7057 		if (m == NULL) {
7058 			*m_head = NULL;
7059 			return (NULL);
7060 		}
7061 
7062 		/* Get the TCP header length in bytes (min 20) */
7063 		ip = (struct ip *)(m->m_data + sizeof(struct ether_header));
7064 		th = (struct tcphdr *)((caddr_t)ip + ip_hlen);
7065 		tcp_hlen = (th->th_off << 2);
7066 
7067 		/* Make sure all IP/TCP options live in the same buffer. */
7068 		m = m_pullup(*m_head,  sizeof(struct ether_header)+ ip_hlen +
7069 		    tcp_hlen);
7070 		if (m == NULL) {
7071 			*m_head = NULL;
7072 			return (NULL);
7073 		}
7074 
7075 		/* Clear IP header length and checksum, will be calc'd by h/w. */
7076 		ip = (struct ip *)(m->m_data + sizeof(struct ether_header));
7077 		ip_len = ip->ip_len;
7078 		ip->ip_len = 0;
7079 		ip->ip_sum = 0;
7080 		break;
7081 	case ETHERTYPE_IPV6:
7082 		BCE_PRINTF("%s(%d): TSO over IPv6 not supported!.\n",
7083 		    __FILE__, __LINE__);
7084 		m_freem(*m_head);
7085 		*m_head = NULL;
7086 		return (NULL);
7087 		/* NOT REACHED */
7088 	default:
7089 		BCE_PRINTF("%s(%d): TSO enabled for unsupported protocol!.\n",
7090 		    __FILE__, __LINE__);
7091 		m_freem(*m_head);
7092 		*m_head = NULL;
7093 		return (NULL);
7094 	}
7095 
7096 	hdr_len = sizeof(struct ether_header) + ip_hlen + tcp_hlen;
7097 
7098 	DBPRINT(sc, BCE_EXTREME_SEND, "%s(): hdr_len = %d, e_hlen = %d, "
7099 	    "ip_hlen = %d, tcp_hlen = %d, ip_len = %d\n",
7100 	    __FUNCTION__, hdr_len, (int) sizeof(struct ether_header), ip_hlen,
7101 	    tcp_hlen, ip_len);
7102 
7103 	/* Set the LSO flag in the TX BD */
7104 	*flags |= TX_BD_FLAGS_SW_LSO;
7105 
7106 	/* Set the length of IP + TCP options (in 32 bit words) */
7107 	*flags |= (((ip_hlen + tcp_hlen - sizeof(struct ip) -
7108 	    sizeof(struct tcphdr)) >> 2) << 8);
7109 
7110 	DBRUN(sc->tso_frames_completed++);
7111 	return (*m_head);
7112 }
7113 
7114 
7115 /****************************************************************************/
7116 /* Encapsultes an mbuf cluster into the tx_bd chain structure and makes the */
7117 /* memory visible to the controller.                                        */
7118 /*                                                                          */
7119 /* Returns:                                                                 */
7120 /*   0 for success, positive value for failure.                             */
7121 /* Modified:                                                                */
7122 /*   m_head: May be set to NULL if MBUF is excessively fragmented.          */
7123 /****************************************************************************/
7124 static int
7125 bce_tx_encap(struct bce_softc *sc, struct mbuf **m_head)
7126 {
7127 	bus_dma_segment_t segs[BCE_MAX_SEGMENTS];
7128 	bus_dmamap_t map;
7129 	struct tx_bd *txbd = NULL;
7130 	struct mbuf *m0;
7131 	u16 prod, chain_prod, mss = 0, vlan_tag = 0, flags = 0;
7132 	u32 prod_bseq;
7133 
7134 #ifdef BCE_DEBUG
7135 	u16 debug_prod;
7136 #endif
7137 
7138 	int i, error, nsegs, rc = 0;
7139 
7140 	DBENTER(BCE_VERBOSE_SEND);
7141 
7142 	/* Make sure we have room in the TX chain. */
7143 	if (sc->used_tx_bd >= sc->max_tx_bd)
7144 		goto bce_tx_encap_exit;
7145 
7146 	/* Transfer any checksum offload flags to the bd. */
7147 	m0 = *m_head;
7148 	if (m0->m_pkthdr.csum_flags) {
7149 		if (m0->m_pkthdr.csum_flags & CSUM_TSO) {
7150 			m0 = bce_tso_setup(sc, m_head, &flags);
7151 			if (m0 == NULL) {
7152 				DBRUN(sc->tso_frames_failed++);
7153 				goto bce_tx_encap_exit;
7154 			}
7155 			mss = htole16(m0->m_pkthdr.tso_segsz);
7156 		} else {
7157 			if (m0->m_pkthdr.csum_flags & CSUM_IP)
7158 				flags |= TX_BD_FLAGS_IP_CKSUM;
7159 			if (m0->m_pkthdr.csum_flags & (CSUM_TCP | CSUM_UDP))
7160 				flags |= TX_BD_FLAGS_TCP_UDP_CKSUM;
7161 		}
7162 	}
7163 
7164 	/* Transfer any VLAN tags to the bd. */
7165 	if (m0->m_flags & M_VLANTAG) {
7166 		flags |= TX_BD_FLAGS_VLAN_TAG;
7167 		vlan_tag = m0->m_pkthdr.ether_vtag;
7168 	}
7169 
7170 	/* Map the mbuf into DMAable memory. */
7171 	prod = sc->tx_prod;
7172 	chain_prod = TX_CHAIN_IDX(prod);
7173 	map = sc->tx_mbuf_map[chain_prod];
7174 
7175 	/* Map the mbuf into our DMA address space. */
7176 	error = bus_dmamap_load_mbuf_sg(sc->tx_mbuf_tag, map, m0,
7177 	    segs, &nsegs, BUS_DMA_NOWAIT);
7178 
7179 	/* Check if the DMA mapping was successful */
7180 	if (error == EFBIG) {
7181 		sc->mbuf_frag_count++;
7182 
7183 		/* Try to defrag the mbuf. */
7184 		m0 = m_collapse(*m_head, M_DONTWAIT, BCE_MAX_SEGMENTS);
7185 		if (m0 == NULL) {
7186 			/* Defrag was unsuccessful */
7187 			m_freem(*m_head);
7188 			*m_head = NULL;
7189 			sc->mbuf_alloc_failed_count++;
7190 			rc = ENOBUFS;
7191 			goto bce_tx_encap_exit;
7192 		}
7193 
7194 		/* Defrag was successful, try mapping again */
7195 		*m_head = m0;
7196 		error = bus_dmamap_load_mbuf_sg(sc->tx_mbuf_tag,
7197 		    map, m0, segs, &nsegs, BUS_DMA_NOWAIT);
7198 
7199 		/* Still getting an error after a defrag. */
7200 		if (error == ENOMEM) {
7201 			/* Insufficient DMA buffers available. */
7202 			sc->dma_map_addr_tx_failed_count++;
7203 			rc = error;
7204 			goto bce_tx_encap_exit;
7205 		} else if (error != 0) {
7206 			/* Release it and return an error. */
7207 			BCE_PRINTF("%s(%d): Unknown error mapping mbuf into "
7208 			    "TX chain!\n", __FILE__, __LINE__);
7209 			m_freem(m0);
7210 			*m_head = NULL;
7211 			sc->dma_map_addr_tx_failed_count++;
7212 			rc = ENOBUFS;
7213 			goto bce_tx_encap_exit;
7214 		}
7215 	} else if (error == ENOMEM) {
7216 		/* Insufficient DMA buffers available. */
7217 		sc->dma_map_addr_tx_failed_count++;
7218 		rc = error;
7219 		goto bce_tx_encap_exit;
7220 	} else if (error != 0) {
7221 		m_freem(m0);
7222 		*m_head = NULL;
7223 		sc->dma_map_addr_tx_failed_count++;
7224 		rc = error;
7225 		goto bce_tx_encap_exit;
7226 	}
7227 
7228 	/* Make sure there's room in the chain */
7229 	if (nsegs > (sc->max_tx_bd - sc->used_tx_bd)) {
7230 		bus_dmamap_unload(sc->tx_mbuf_tag, map);
7231 		rc = ENOBUFS;
7232 		goto bce_tx_encap_exit;
7233 	}
7234 
7235 	/* prod points to an empty tx_bd at this point. */
7236 	prod_bseq  = sc->tx_prod_bseq;
7237 
7238 #ifdef BCE_DEBUG
7239 	debug_prod = chain_prod;
7240 #endif
7241 
7242 	DBPRINT(sc, BCE_INFO_SEND,
7243 	    "%s(start): prod = 0x%04X, chain_prod = 0x%04X, "
7244 	    "prod_bseq = 0x%08X\n",
7245 	    __FUNCTION__, prod, chain_prod, prod_bseq);
7246 
7247 	/*
7248 	 * Cycle through each mbuf segment that makes up
7249 	 * the outgoing frame, gathering the mapping info
7250 	 * for that segment and creating a tx_bd for
7251 	 * the mbuf.
7252 	 */
7253 	for (i = 0; i < nsegs ; i++) {
7254 
7255 		chain_prod = TX_CHAIN_IDX(prod);
7256 		txbd= &sc->tx_bd_chain[TX_PAGE(chain_prod)]
7257 		    [TX_IDX(chain_prod)];
7258 
7259 		txbd->tx_bd_haddr_lo =
7260 		    htole32(BCE_ADDR_LO(segs[i].ds_addr));
7261 		txbd->tx_bd_haddr_hi =
7262 		    htole32(BCE_ADDR_HI(segs[i].ds_addr));
7263 		txbd->tx_bd_mss_nbytes = htole32(mss << 16) |
7264 		    htole16(segs[i].ds_len);
7265 		txbd->tx_bd_vlan_tag = htole16(vlan_tag);
7266 		txbd->tx_bd_flags = htole16(flags);
7267 		prod_bseq += segs[i].ds_len;
7268 		if (i == 0)
7269 			txbd->tx_bd_flags |= htole16(TX_BD_FLAGS_START);
7270 		prod = NEXT_TX_BD(prod);
7271 	}
7272 
7273 	/* Set the END flag on the last TX buffer descriptor. */
7274 	txbd->tx_bd_flags |= htole16(TX_BD_FLAGS_END);
7275 
7276 	DBRUNMSG(BCE_EXTREME_SEND,
7277 	    bce_dump_tx_chain(sc, debug_prod, nsegs));
7278 
7279 	/*
7280 	 * Ensure that the mbuf pointer for this transmission
7281 	 * is placed at the array index of the last
7282 	 * descriptor in this chain.  This is done
7283 	 * because a single map is used for all
7284 	 * segments of the mbuf and we don't want to
7285 	 * unload the map before all of the segments
7286 	 * have been freed.
7287 	 */
7288 	sc->tx_mbuf_ptr[chain_prod] = m0;
7289 	sc->used_tx_bd += nsegs;
7290 
7291 	/* Update some debug statistic counters */
7292 	DBRUNIF((sc->used_tx_bd > sc->tx_hi_watermark),
7293 	    sc->tx_hi_watermark = sc->used_tx_bd);
7294 	DBRUNIF((sc->used_tx_bd == sc->max_tx_bd), sc->tx_full_count++);
7295 	DBRUNIF(sc->debug_tx_mbuf_alloc++);
7296 
7297 	DBRUNMSG(BCE_EXTREME_SEND, bce_dump_tx_mbuf_chain(sc, chain_prod, 1));
7298 
7299 	/* prod points to the next free tx_bd at this point. */
7300 	sc->tx_prod = prod;
7301 	sc->tx_prod_bseq = prod_bseq;
7302 
7303 	/* Tell the chip about the waiting TX frames. */
7304 	REG_WR16(sc, MB_GET_CID_ADDR(TX_CID) +
7305 	    BCE_L2MQ_TX_HOST_BIDX, sc->tx_prod);
7306 	REG_WR(sc, MB_GET_CID_ADDR(TX_CID) +
7307 	    BCE_L2MQ_TX_HOST_BSEQ, sc->tx_prod_bseq);
7308 
7309 bce_tx_encap_exit:
7310 	DBEXIT(BCE_VERBOSE_SEND);
7311 	return(rc);
7312 }
7313 
7314 
7315 /****************************************************************************/
7316 /* Main transmit routine when called from another routine with a lock.      */
7317 /*                                                                          */
7318 /* Returns:                                                                 */
7319 /*   Nothing.                                                               */
7320 /****************************************************************************/
7321 static void
7322 bce_start_locked(struct ifnet *ifp)
7323 {
7324 	struct bce_softc *sc = ifp->if_softc;
7325 	struct mbuf *m_head = NULL;
7326 	int count = 0;
7327 	u16 tx_prod, tx_chain_prod;
7328 
7329 	DBENTER(BCE_VERBOSE_SEND | BCE_VERBOSE_CTX);
7330 
7331 	BCE_LOCK_ASSERT(sc);
7332 
7333 	/* prod points to the next free tx_bd. */
7334 	tx_prod = sc->tx_prod;
7335 	tx_chain_prod = TX_CHAIN_IDX(tx_prod);
7336 
7337 	DBPRINT(sc, BCE_INFO_SEND,
7338 	    "%s(enter): tx_prod = 0x%04X, tx_chain_prod = 0x%04X, "
7339 	    "tx_prod_bseq = 0x%08X\n",
7340 	    __FUNCTION__, tx_prod, tx_chain_prod, sc->tx_prod_bseq);
7341 
7342 	/* If there's no link or the transmit queue is empty then just exit. */
7343 	if (sc->bce_link_up == FALSE) {
7344 		DBPRINT(sc, BCE_INFO_SEND, "%s(): No link.\n",
7345 		    __FUNCTION__);
7346 		goto bce_start_locked_exit;
7347 	}
7348 
7349 	if (IFQ_DRV_IS_EMPTY(&ifp->if_snd)) {
7350 		DBPRINT(sc, BCE_INFO_SEND, "%s(): Transmit queue empty.\n",
7351 		    __FUNCTION__);
7352 		goto bce_start_locked_exit;
7353 	}
7354 
7355 	/*
7356 	 * Keep adding entries while there is space in the ring.
7357 	 */
7358 	while (sc->used_tx_bd < sc->max_tx_bd) {
7359 
7360 		/* Check for any frames to send. */
7361 		IFQ_DRV_DEQUEUE(&ifp->if_snd, m_head);
7362 
7363 		/* Stop when the transmit queue is empty. */
7364 		if (m_head == NULL)
7365 			break;
7366 
7367 		/*
7368 		 * Pack the data into the transmit ring. If we
7369 		 * don't have room, place the mbuf back at the
7370 		 * head of the queue and set the OACTIVE flag
7371 		 * to wait for the NIC to drain the chain.
7372 		 */
7373 		if (bce_tx_encap(sc, &m_head)) {
7374 			if (m_head != NULL)
7375 				IFQ_DRV_PREPEND(&ifp->if_snd, m_head);
7376 			ifp->if_drv_flags |= IFF_DRV_OACTIVE;
7377 			DBPRINT(sc, BCE_INFO_SEND,
7378 			    "TX chain is closed for business! Total "
7379 			    "tx_bd used = %d\n", sc->used_tx_bd);
7380 			break;
7381 		}
7382 
7383 		count++;
7384 
7385 		/* Send a copy of the frame to any BPF listeners. */
7386 		ETHER_BPF_MTAP(ifp, m_head);
7387 	}
7388 
7389 	/* Exit if no packets were dequeued. */
7390 	if (count == 0) {
7391 		DBPRINT(sc, BCE_VERBOSE_SEND, "%s(): No packets were "
7392 		    "dequeued\n", __FUNCTION__);
7393 		goto bce_start_locked_exit;
7394 	}
7395 
7396 	DBPRINT(sc, BCE_VERBOSE_SEND, "%s(): Inserted %d frames into "
7397 	    "send queue.\n", __FUNCTION__, count);
7398 
7399 	/* Set the tx timeout. */
7400 	sc->watchdog_timer = BCE_TX_TIMEOUT;
7401 
7402 	DBRUNMSG(BCE_VERBOSE_SEND, bce_dump_ctx(sc, TX_CID));
7403 	DBRUNMSG(BCE_VERBOSE_SEND, bce_dump_mq_regs(sc));
7404 
7405 bce_start_locked_exit:
7406 	DBEXIT(BCE_VERBOSE_SEND | BCE_VERBOSE_CTX);
7407 	return;
7408 }
7409 
7410 
7411 /****************************************************************************/
7412 /* Main transmit routine when called from another routine without a lock.   */
7413 /*                                                                          */
7414 /* Returns:                                                                 */
7415 /*   Nothing.                                                               */
7416 /****************************************************************************/
7417 static void
7418 bce_start(struct ifnet *ifp)
7419 {
7420 	struct bce_softc *sc = ifp->if_softc;
7421 
7422 	DBENTER(BCE_VERBOSE_SEND);
7423 
7424 	BCE_LOCK(sc);
7425 	bce_start_locked(ifp);
7426 	BCE_UNLOCK(sc);
7427 
7428 	DBEXIT(BCE_VERBOSE_SEND);
7429 }
7430 
7431 
7432 /****************************************************************************/
7433 /* Handles any IOCTL calls from the operating system.                       */
7434 /*                                                                          */
7435 /* Returns:                                                                 */
7436 /*   0 for success, positive value for failure.                             */
7437 /****************************************************************************/
7438 static int
7439 bce_ioctl(struct ifnet *ifp, u_long command, caddr_t data)
7440 {
7441 	struct bce_softc *sc = ifp->if_softc;
7442 	struct ifreq *ifr = (struct ifreq *) data;
7443 	struct mii_data *mii;
7444 	int mask, error = 0;
7445 
7446 	DBENTER(BCE_VERBOSE_MISC);
7447 
7448 	switch(command) {
7449 
7450 	/* Set the interface MTU. */
7451 	case SIOCSIFMTU:
7452 		/* Check that the MTU setting is supported. */
7453 		if ((ifr->ifr_mtu < BCE_MIN_MTU) ||
7454 			(ifr->ifr_mtu > BCE_MAX_JUMBO_MTU)) {
7455 			error = EINVAL;
7456 			break;
7457 		}
7458 
7459 		DBPRINT(sc, BCE_INFO_MISC,
7460 		    "SIOCSIFMTU: Changing MTU from %d to %d\n",
7461 		    (int) ifp->if_mtu, (int) ifr->ifr_mtu);
7462 
7463 		BCE_LOCK(sc);
7464 		ifp->if_mtu = ifr->ifr_mtu;
7465 
7466 		if (bce_hdr_split == FALSE) {
7467 			if (ifp->if_drv_flags & IFF_DRV_RUNNING) {
7468 				/*
7469 				 * Because allocation size is used in RX
7470 				 * buffer allocation, stop controller if
7471 				 * it is already running.
7472 				 */
7473 				bce_stop(sc);
7474 			}
7475 
7476 			bce_get_rx_buffer_sizes(sc, ifp->if_mtu);
7477 
7478 			bce_init_locked(sc);
7479 		}
7480 
7481 		BCE_UNLOCK(sc);
7482 		break;
7483 
7484 	/* Set interface flags. */
7485 	case SIOCSIFFLAGS:
7486 		DBPRINT(sc, BCE_VERBOSE_SPECIAL, "Received SIOCSIFFLAGS\n");
7487 
7488 		BCE_LOCK(sc);
7489 
7490 		/* Check if the interface is up. */
7491 		if (ifp->if_flags & IFF_UP) {
7492 			if (ifp->if_drv_flags & IFF_DRV_RUNNING) {
7493 				/* Change promiscuous/multicast flags as necessary. */
7494 				bce_set_rx_mode(sc);
7495 			} else {
7496 				/* Start the HW */
7497 				bce_init_locked(sc);
7498 			}
7499 		} else {
7500 			/* The interface is down, check if driver is running. */
7501 			if (ifp->if_drv_flags & IFF_DRV_RUNNING) {
7502 				bce_stop(sc);
7503 
7504 				/* If MFW is running, restart the controller a bit. */
7505 				if (sc->bce_flags & BCE_MFW_ENABLE_FLAG) {
7506 					bce_reset(sc, BCE_DRV_MSG_CODE_RESET);
7507 					bce_chipinit(sc);
7508 					bce_mgmt_init_locked(sc);
7509 				}
7510 			}
7511 		}
7512 
7513 		BCE_UNLOCK(sc);
7514 		break;
7515 
7516 	/* Add/Delete multicast address */
7517 	case SIOCADDMULTI:
7518 	case SIOCDELMULTI:
7519 		DBPRINT(sc, BCE_VERBOSE_MISC,
7520 		    "Received SIOCADDMULTI/SIOCDELMULTI\n");
7521 
7522 		BCE_LOCK(sc);
7523 		if (ifp->if_drv_flags & IFF_DRV_RUNNING)
7524 			bce_set_rx_mode(sc);
7525 		BCE_UNLOCK(sc);
7526 
7527 		break;
7528 
7529 	/* Set/Get Interface media */
7530 	case SIOCSIFMEDIA:
7531 	case SIOCGIFMEDIA:
7532 		DBPRINT(sc, BCE_VERBOSE_MISC,
7533 		    "Received SIOCSIFMEDIA/SIOCGIFMEDIA\n");
7534 
7535 		mii = device_get_softc(sc->bce_miibus);
7536 		error = ifmedia_ioctl(ifp, ifr,
7537 		    &mii->mii_media, command);
7538 		break;
7539 
7540 	/* Set interface capability */
7541 	case SIOCSIFCAP:
7542 		mask = ifr->ifr_reqcap ^ ifp->if_capenable;
7543 		DBPRINT(sc, BCE_INFO_MISC,
7544 		    "Received SIOCSIFCAP = 0x%08X\n", (u32) mask);
7545 
7546 		/* Toggle the TX checksum capabilities enable flag. */
7547 		if (mask & IFCAP_TXCSUM &&
7548 		    ifp->if_capabilities & IFCAP_TXCSUM) {
7549 			ifp->if_capenable ^= IFCAP_TXCSUM;
7550 			if (IFCAP_TXCSUM & ifp->if_capenable)
7551 				ifp->if_hwassist |= BCE_IF_HWASSIST;
7552 			else
7553 				ifp->if_hwassist &= ~BCE_IF_HWASSIST;
7554 		}
7555 
7556 		/* Toggle the RX checksum capabilities enable flag. */
7557 		if (mask & IFCAP_RXCSUM &&
7558 		    ifp->if_capabilities & IFCAP_RXCSUM)
7559 			ifp->if_capenable ^= IFCAP_RXCSUM;
7560 
7561 		/* Toggle the TSO capabilities enable flag. */
7562 		if (bce_tso_enable && (mask & IFCAP_TSO4) &&
7563 		    ifp->if_capabilities & IFCAP_TSO4) {
7564 			ifp->if_capenable ^= IFCAP_TSO4;
7565 			if (IFCAP_TSO4 & ifp->if_capenable)
7566 				ifp->if_hwassist |= CSUM_TSO;
7567 			else
7568 				ifp->if_hwassist &= ~CSUM_TSO;
7569 		}
7570 
7571 		if (mask & IFCAP_VLAN_HWCSUM &&
7572 		    ifp->if_capabilities & IFCAP_VLAN_HWCSUM)
7573 			ifp->if_capenable ^= IFCAP_VLAN_HWCSUM;
7574 
7575 		if ((mask & IFCAP_VLAN_HWTSO) != 0 &&
7576 		    (ifp->if_capabilities & IFCAP_VLAN_HWTSO) != 0)
7577 			ifp->if_capenable ^= IFCAP_VLAN_HWTSO;
7578 		/*
7579 		 * Don't actually disable VLAN tag stripping as
7580 		 * management firmware (ASF/IPMI/UMP) requires the
7581 		 * feature. If VLAN tag stripping is disabled driver
7582 		 * will manually reconstruct the VLAN frame by
7583 		 * appending stripped VLAN tag.
7584 		 */
7585 		if ((mask & IFCAP_VLAN_HWTAGGING) != 0 &&
7586 		    (ifp->if_capabilities & IFCAP_VLAN_HWTAGGING)) {
7587 			ifp->if_capenable ^= IFCAP_VLAN_HWTAGGING;
7588 			if ((ifp->if_capenable & IFCAP_VLAN_HWTAGGING)
7589 			    == 0)
7590 				ifp->if_capenable &= ~IFCAP_VLAN_HWTSO;
7591 		}
7592 		VLAN_CAPABILITIES(ifp);
7593 		break;
7594 	default:
7595 		/* We don't know how to handle the IOCTL, pass it on. */
7596 		error = ether_ioctl(ifp, command, data);
7597 		break;
7598 	}
7599 
7600 	DBEXIT(BCE_VERBOSE_MISC);
7601 	return(error);
7602 }
7603 
7604 
7605 /****************************************************************************/
7606 /* Transmit timeout handler.                                                */
7607 /*                                                                          */
7608 /* Returns:                                                                 */
7609 /*   Nothing.                                                               */
7610 /****************************************************************************/
7611 static void
7612 bce_watchdog(struct bce_softc *sc)
7613 {
7614 	DBENTER(BCE_EXTREME_SEND);
7615 
7616 	BCE_LOCK_ASSERT(sc);
7617 
7618 	/* If the watchdog timer hasn't expired then just exit. */
7619 	if (sc->watchdog_timer == 0 || --sc->watchdog_timer)
7620 		goto bce_watchdog_exit;
7621 
7622 	/* If pause frames are active then don't reset the hardware. */
7623 	/* ToDo: Should we reset the timer here? */
7624 	if (REG_RD(sc, BCE_EMAC_TX_STATUS) & BCE_EMAC_TX_STATUS_XOFFED)
7625 		goto bce_watchdog_exit;
7626 
7627 	BCE_PRINTF("%s(%d): Watchdog timeout occurred, resetting!\n",
7628 	    __FILE__, __LINE__);
7629 
7630 	DBRUNMSG(BCE_INFO,
7631 	    bce_dump_driver_state(sc);
7632 	    bce_dump_status_block(sc);
7633 	    bce_dump_stats_block(sc);
7634 	    bce_dump_ftqs(sc);
7635 	    bce_dump_txp_state(sc, 0);
7636 	    bce_dump_rxp_state(sc, 0);
7637 	    bce_dump_tpat_state(sc, 0);
7638 	    bce_dump_cp_state(sc, 0);
7639 	    bce_dump_com_state(sc, 0));
7640 
7641 	DBRUN(bce_breakpoint(sc));
7642 
7643 	sc->bce_ifp->if_drv_flags &= ~IFF_DRV_RUNNING;
7644 
7645 	bce_init_locked(sc);
7646 	sc->bce_ifp->if_oerrors++;
7647 
7648 bce_watchdog_exit:
7649 	DBEXIT(BCE_EXTREME_SEND);
7650 }
7651 
7652 
7653 /*
7654  * Interrupt handler.
7655  */
7656 /****************************************************************************/
7657 /* Main interrupt entry point.  Verifies that the controller generated the  */
7658 /* interrupt and then calls a separate routine for handle the various       */
7659 /* interrupt causes (PHY, TX, RX).                                          */
7660 /*                                                                          */
7661 /* Returns:                                                                 */
7662 /*   0 for success, positive value for failure.                             */
7663 /****************************************************************************/
7664 static void
7665 bce_intr(void *xsc)
7666 {
7667 	struct bce_softc *sc;
7668 	struct ifnet *ifp;
7669 	u32 status_attn_bits;
7670 	u16 hw_rx_cons, hw_tx_cons;
7671 
7672 	sc = xsc;
7673 	ifp = sc->bce_ifp;
7674 
7675 	DBENTER(BCE_VERBOSE_SEND | BCE_VERBOSE_RECV | BCE_VERBOSE_INTR);
7676 	DBRUNMSG(BCE_VERBOSE_INTR, bce_dump_status_block(sc));
7677 	DBRUNMSG(BCE_VERBOSE_INTR, bce_dump_stats_block(sc));
7678 
7679 	BCE_LOCK(sc);
7680 
7681 	DBRUN(sc->interrupts_generated++);
7682 
7683 	/* Synchnorize before we read from interface's status block */
7684 	bus_dmamap_sync(sc->status_tag, sc->status_map,
7685 	    BUS_DMASYNC_POSTREAD);
7686 
7687 	/*
7688 	 * If the hardware status block index
7689 	 * matches the last value read by the
7690 	 * driver and we haven't asserted our
7691 	 * interrupt then there's nothing to do.
7692 	 */
7693 	if ((sc->status_block->status_idx == sc->last_status_idx) &&
7694 	    (REG_RD(sc, BCE_PCICFG_MISC_STATUS) &
7695 	     BCE_PCICFG_MISC_STATUS_INTA_VALUE)) {
7696 		DBPRINT(sc, BCE_VERBOSE_INTR, "%s(): Spurious interrupt.\n",
7697 		    __FUNCTION__);
7698 		goto bce_intr_exit;
7699 	}
7700 
7701 	/* Ack the interrupt and stop others from occuring. */
7702 	REG_WR(sc, BCE_PCICFG_INT_ACK_CMD,
7703 	    BCE_PCICFG_INT_ACK_CMD_USE_INT_HC_PARAM |
7704 	    BCE_PCICFG_INT_ACK_CMD_MASK_INT);
7705 
7706 	/* Check if the hardware has finished any work. */
7707 	hw_rx_cons = bce_get_hw_rx_cons(sc);
7708 	hw_tx_cons = bce_get_hw_tx_cons(sc);
7709 
7710 	/* Keep processing data as long as there is work to do. */
7711 	for (;;) {
7712 
7713 		status_attn_bits = sc->status_block->status_attn_bits;
7714 
7715 		DBRUNIF(DB_RANDOMTRUE(unexpected_attention_sim_control),
7716 		    BCE_PRINTF("Simulating unexpected status attention "
7717 		    "bit set.");
7718 		    sc->unexpected_attention_sim_count++;
7719 		    status_attn_bits = status_attn_bits |
7720 		    STATUS_ATTN_BITS_PARITY_ERROR);
7721 
7722 		/* Was it a link change interrupt? */
7723 		if ((status_attn_bits & STATUS_ATTN_BITS_LINK_STATE) !=
7724 		    (sc->status_block->status_attn_bits_ack &
7725 		     STATUS_ATTN_BITS_LINK_STATE)) {
7726 			bce_phy_intr(sc);
7727 
7728 			/* Clear transient updates during link state change. */
7729 			REG_WR(sc, BCE_HC_COMMAND, sc->hc_command |
7730 			    BCE_HC_COMMAND_COAL_NOW_WO_INT);
7731 			REG_RD(sc, BCE_HC_COMMAND);
7732 		}
7733 
7734 		/* If any other attention is asserted, the chip is toast. */
7735 		if (((status_attn_bits & ~STATUS_ATTN_BITS_LINK_STATE) !=
7736 		    (sc->status_block->status_attn_bits_ack &
7737 		    ~STATUS_ATTN_BITS_LINK_STATE))) {
7738 
7739 			sc->unexpected_attention_count++;
7740 
7741 			BCE_PRINTF("%s(%d): Fatal attention detected: "
7742 			    "0x%08X\n",	__FILE__, __LINE__,
7743 			    sc->status_block->status_attn_bits);
7744 
7745 			DBRUNMSG(BCE_FATAL,
7746 			    if (unexpected_attention_sim_control == 0)
7747 				bce_breakpoint(sc));
7748 
7749 			bce_init_locked(sc);
7750 			goto bce_intr_exit;
7751 		}
7752 
7753 		/* Check for any completed RX frames. */
7754 		if (hw_rx_cons != sc->hw_rx_cons)
7755 			bce_rx_intr(sc);
7756 
7757 		/* Check for any completed TX frames. */
7758 		if (hw_tx_cons != sc->hw_tx_cons)
7759 			bce_tx_intr(sc);
7760 
7761 		/* Save status block index value for the next interrupt. */
7762 		sc->last_status_idx = sc->status_block->status_idx;
7763 
7764  		/*
7765  		 * Prevent speculative reads from getting
7766  		 * ahead of the status block.
7767 		 */
7768 		bus_space_barrier(sc->bce_btag, sc->bce_bhandle, 0, 0,
7769 		    BUS_SPACE_BARRIER_READ);
7770 
7771  		/*
7772  		 * If there's no work left then exit the
7773  		 * interrupt service routine.
7774 		 */
7775 		hw_rx_cons = bce_get_hw_rx_cons(sc);
7776 		hw_tx_cons = bce_get_hw_tx_cons(sc);
7777 
7778 		if ((hw_rx_cons == sc->hw_rx_cons) &&
7779 		    (hw_tx_cons == sc->hw_tx_cons))
7780 			break;
7781 
7782 	}
7783 
7784 	bus_dmamap_sync(sc->status_tag,	sc->status_map,
7785 	    BUS_DMASYNC_PREREAD);
7786 
7787 	/* Re-enable interrupts. */
7788 	bce_enable_intr(sc, 0);
7789 
7790 	/* Handle any frames that arrived while handling the interrupt. */
7791 	if (ifp->if_drv_flags & IFF_DRV_RUNNING &&
7792 	    !IFQ_DRV_IS_EMPTY(&ifp->if_snd))
7793 		bce_start_locked(ifp);
7794 
7795 bce_intr_exit:
7796 	BCE_UNLOCK(sc);
7797 
7798 	DBEXIT(BCE_VERBOSE_SEND | BCE_VERBOSE_RECV | BCE_VERBOSE_INTR);
7799 }
7800 
7801 
7802 /****************************************************************************/
7803 /* Programs the various packet receive modes (broadcast and multicast).     */
7804 /*                                                                          */
7805 /* Returns:                                                                 */
7806 /*   Nothing.                                                               */
7807 /****************************************************************************/
7808 static void
7809 bce_set_rx_mode(struct bce_softc *sc)
7810 {
7811 	struct ifnet *ifp;
7812 	struct ifmultiaddr *ifma;
7813 	u32 hashes[NUM_MC_HASH_REGISTERS] = { 0, 0, 0, 0, 0, 0, 0, 0 };
7814 	u32 rx_mode, sort_mode;
7815 	int h, i;
7816 
7817 	DBENTER(BCE_VERBOSE_MISC);
7818 
7819 	BCE_LOCK_ASSERT(sc);
7820 
7821 	ifp = sc->bce_ifp;
7822 
7823 	/* Initialize receive mode default settings. */
7824 	rx_mode   = sc->rx_mode & ~(BCE_EMAC_RX_MODE_PROMISCUOUS |
7825 	    BCE_EMAC_RX_MODE_KEEP_VLAN_TAG);
7826 	sort_mode = 1 | BCE_RPM_SORT_USER0_BC_EN;
7827 
7828 	/*
7829 	 * ASF/IPMI/UMP firmware requires that VLAN tag stripping
7830 	 * be enbled.
7831 	 */
7832 	if (!(BCE_IF_CAPABILITIES & IFCAP_VLAN_HWTAGGING) &&
7833 	    (!(sc->bce_flags & BCE_MFW_ENABLE_FLAG)))
7834 		rx_mode |= BCE_EMAC_RX_MODE_KEEP_VLAN_TAG;
7835 
7836 	/*
7837 	 * Check for promiscuous, all multicast, or selected
7838 	 * multicast address filtering.
7839 	 */
7840 	if (ifp->if_flags & IFF_PROMISC) {
7841 		DBPRINT(sc, BCE_INFO_MISC, "Enabling promiscuous mode.\n");
7842 
7843 		/* Enable promiscuous mode. */
7844 		rx_mode |= BCE_EMAC_RX_MODE_PROMISCUOUS;
7845 		sort_mode |= BCE_RPM_SORT_USER0_PROM_EN;
7846 	} else if (ifp->if_flags & IFF_ALLMULTI) {
7847 		DBPRINT(sc, BCE_INFO_MISC, "Enabling all multicast mode.\n");
7848 
7849 		/* Enable all multicast addresses. */
7850 		for (i = 0; i < NUM_MC_HASH_REGISTERS; i++) {
7851 			REG_WR(sc, BCE_EMAC_MULTICAST_HASH0 + (i * 4), 0xffffffff);
7852        	}
7853 		sort_mode |= BCE_RPM_SORT_USER0_MC_EN;
7854 	} else {
7855 		/* Accept one or more multicast(s). */
7856 		DBPRINT(sc, BCE_INFO_MISC, "Enabling selective multicast mode.\n");
7857 
7858 		if_maddr_rlock(ifp);
7859 		TAILQ_FOREACH(ifma, &ifp->if_multiaddrs, ifma_link) {
7860 			if (ifma->ifma_addr->sa_family != AF_LINK)
7861 				continue;
7862 			h = ether_crc32_le(LLADDR((struct sockaddr_dl *)
7863 			    ifma->ifma_addr), ETHER_ADDR_LEN) & 0xFF;
7864 			    hashes[(h & 0xE0) >> 5] |= 1 << (h & 0x1F);
7865 		}
7866 		if_maddr_runlock(ifp);
7867 
7868 		for (i = 0; i < NUM_MC_HASH_REGISTERS; i++)
7869 			REG_WR(sc, BCE_EMAC_MULTICAST_HASH0 + (i * 4), hashes[i]);
7870 
7871 		sort_mode |= BCE_RPM_SORT_USER0_MC_HSH_EN;
7872 	}
7873 
7874 	/* Only make changes if the recive mode has actually changed. */
7875 	if (rx_mode != sc->rx_mode) {
7876 		DBPRINT(sc, BCE_VERBOSE_MISC, "Enabling new receive mode: "
7877 		    "0x%08X\n", rx_mode);
7878 
7879 		sc->rx_mode = rx_mode;
7880 		REG_WR(sc, BCE_EMAC_RX_MODE, rx_mode);
7881 	}
7882 
7883 	/* Disable and clear the exisitng sort before enabling a new sort. */
7884 	REG_WR(sc, BCE_RPM_SORT_USER0, 0x0);
7885 	REG_WR(sc, BCE_RPM_SORT_USER0, sort_mode);
7886 	REG_WR(sc, BCE_RPM_SORT_USER0, sort_mode | BCE_RPM_SORT_USER0_ENA);
7887 
7888 	DBEXIT(BCE_VERBOSE_MISC);
7889 }
7890 
7891 
7892 /****************************************************************************/
7893 /* Called periodically to updates statistics from the controllers           */
7894 /* statistics block.                                                        */
7895 /*                                                                          */
7896 /* Returns:                                                                 */
7897 /*   Nothing.                                                               */
7898 /****************************************************************************/
7899 static void
7900 bce_stats_update(struct bce_softc *sc)
7901 {
7902 	struct ifnet *ifp;
7903 	struct statistics_block *stats;
7904 
7905 	DBENTER(BCE_EXTREME_MISC);
7906 
7907 	ifp = sc->bce_ifp;
7908 
7909 	stats = (struct statistics_block *) sc->stats_block;
7910 
7911 	/*
7912 	 * Certain controllers don't report
7913 	 * carrier sense errors correctly.
7914 	 * See errata E11_5708CA0_1165.
7915 	 */
7916 	if (!(BCE_CHIP_NUM(sc) == BCE_CHIP_NUM_5706) &&
7917 	    !(BCE_CHIP_ID(sc) == BCE_CHIP_ID_5708_A0))
7918 		ifp->if_oerrors +=
7919 		    (u_long) stats->stat_Dot3StatsCarrierSenseErrors;
7920 
7921 	/*
7922 	 * Update the sysctl statistics from the
7923 	 * hardware statistics.
7924 	 */
7925 	sc->stat_IfHCInOctets =
7926 	    ((u64) stats->stat_IfHCInOctets_hi << 32) +
7927 	     (u64) stats->stat_IfHCInOctets_lo;
7928 
7929 	sc->stat_IfHCInBadOctets =
7930 	    ((u64) stats->stat_IfHCInBadOctets_hi << 32) +
7931 	     (u64) stats->stat_IfHCInBadOctets_lo;
7932 
7933 	sc->stat_IfHCOutOctets =
7934 	    ((u64) stats->stat_IfHCOutOctets_hi << 32) +
7935 	     (u64) stats->stat_IfHCOutOctets_lo;
7936 
7937 	sc->stat_IfHCOutBadOctets =
7938 	    ((u64) stats->stat_IfHCOutBadOctets_hi << 32) +
7939 	     (u64) stats->stat_IfHCOutBadOctets_lo;
7940 
7941 	sc->stat_IfHCInUcastPkts =
7942 	    ((u64) stats->stat_IfHCInUcastPkts_hi << 32) +
7943 	     (u64) stats->stat_IfHCInUcastPkts_lo;
7944 
7945 	sc->stat_IfHCInMulticastPkts =
7946 	    ((u64) stats->stat_IfHCInMulticastPkts_hi << 32) +
7947 	     (u64) stats->stat_IfHCInMulticastPkts_lo;
7948 
7949 	sc->stat_IfHCInBroadcastPkts =
7950 	    ((u64) stats->stat_IfHCInBroadcastPkts_hi << 32) +
7951 	     (u64) stats->stat_IfHCInBroadcastPkts_lo;
7952 
7953 	sc->stat_IfHCOutUcastPkts =
7954 	    ((u64) stats->stat_IfHCOutUcastPkts_hi << 32) +
7955 	     (u64) stats->stat_IfHCOutUcastPkts_lo;
7956 
7957 	sc->stat_IfHCOutMulticastPkts =
7958 	    ((u64) stats->stat_IfHCOutMulticastPkts_hi << 32) +
7959 	     (u64) stats->stat_IfHCOutMulticastPkts_lo;
7960 
7961 	sc->stat_IfHCOutBroadcastPkts =
7962 	    ((u64) stats->stat_IfHCOutBroadcastPkts_hi << 32) +
7963 	     (u64) stats->stat_IfHCOutBroadcastPkts_lo;
7964 
7965 	/* ToDo: Preserve counters beyond 32 bits? */
7966 	/* ToDo: Read the statistics from auto-clear regs? */
7967 
7968 	sc->stat_emac_tx_stat_dot3statsinternalmactransmiterrors =
7969 	    stats->stat_emac_tx_stat_dot3statsinternalmactransmiterrors;
7970 
7971 	sc->stat_Dot3StatsCarrierSenseErrors =
7972 	    stats->stat_Dot3StatsCarrierSenseErrors;
7973 
7974 	sc->stat_Dot3StatsFCSErrors =
7975 	    stats->stat_Dot3StatsFCSErrors;
7976 
7977 	sc->stat_Dot3StatsAlignmentErrors =
7978 	    stats->stat_Dot3StatsAlignmentErrors;
7979 
7980 	sc->stat_Dot3StatsSingleCollisionFrames =
7981 	    stats->stat_Dot3StatsSingleCollisionFrames;
7982 
7983 	sc->stat_Dot3StatsMultipleCollisionFrames =
7984 	    stats->stat_Dot3StatsMultipleCollisionFrames;
7985 
7986 	sc->stat_Dot3StatsDeferredTransmissions =
7987 	    stats->stat_Dot3StatsDeferredTransmissions;
7988 
7989 	sc->stat_Dot3StatsExcessiveCollisions =
7990 	    stats->stat_Dot3StatsExcessiveCollisions;
7991 
7992 	sc->stat_Dot3StatsLateCollisions =
7993 	    stats->stat_Dot3StatsLateCollisions;
7994 
7995 	sc->stat_EtherStatsCollisions =
7996 	    stats->stat_EtherStatsCollisions;
7997 
7998 	sc->stat_EtherStatsFragments =
7999 	    stats->stat_EtherStatsFragments;
8000 
8001 	sc->stat_EtherStatsJabbers =
8002 	    stats->stat_EtherStatsJabbers;
8003 
8004 	sc->stat_EtherStatsUndersizePkts =
8005 	    stats->stat_EtherStatsUndersizePkts;
8006 
8007 	sc->stat_EtherStatsOversizePkts =
8008 	     stats->stat_EtherStatsOversizePkts;
8009 
8010 	sc->stat_EtherStatsPktsRx64Octets =
8011 	    stats->stat_EtherStatsPktsRx64Octets;
8012 
8013 	sc->stat_EtherStatsPktsRx65Octetsto127Octets =
8014 	    stats->stat_EtherStatsPktsRx65Octetsto127Octets;
8015 
8016 	sc->stat_EtherStatsPktsRx128Octetsto255Octets =
8017 	    stats->stat_EtherStatsPktsRx128Octetsto255Octets;
8018 
8019 	sc->stat_EtherStatsPktsRx256Octetsto511Octets =
8020 	    stats->stat_EtherStatsPktsRx256Octetsto511Octets;
8021 
8022 	sc->stat_EtherStatsPktsRx512Octetsto1023Octets =
8023 	    stats->stat_EtherStatsPktsRx512Octetsto1023Octets;
8024 
8025 	sc->stat_EtherStatsPktsRx1024Octetsto1522Octets =
8026 	    stats->stat_EtherStatsPktsRx1024Octetsto1522Octets;
8027 
8028 	sc->stat_EtherStatsPktsRx1523Octetsto9022Octets =
8029 	    stats->stat_EtherStatsPktsRx1523Octetsto9022Octets;
8030 
8031 	sc->stat_EtherStatsPktsTx64Octets =
8032 	    stats->stat_EtherStatsPktsTx64Octets;
8033 
8034 	sc->stat_EtherStatsPktsTx65Octetsto127Octets =
8035 	    stats->stat_EtherStatsPktsTx65Octetsto127Octets;
8036 
8037 	sc->stat_EtherStatsPktsTx128Octetsto255Octets =
8038 	    stats->stat_EtherStatsPktsTx128Octetsto255Octets;
8039 
8040 	sc->stat_EtherStatsPktsTx256Octetsto511Octets =
8041 	    stats->stat_EtherStatsPktsTx256Octetsto511Octets;
8042 
8043 	sc->stat_EtherStatsPktsTx512Octetsto1023Octets =
8044 	    stats->stat_EtherStatsPktsTx512Octetsto1023Octets;
8045 
8046 	sc->stat_EtherStatsPktsTx1024Octetsto1522Octets =
8047 	    stats->stat_EtherStatsPktsTx1024Octetsto1522Octets;
8048 
8049 	sc->stat_EtherStatsPktsTx1523Octetsto9022Octets =
8050 	    stats->stat_EtherStatsPktsTx1523Octetsto9022Octets;
8051 
8052 	sc->stat_XonPauseFramesReceived =
8053 	    stats->stat_XonPauseFramesReceived;
8054 
8055 	sc->stat_XoffPauseFramesReceived =
8056 	    stats->stat_XoffPauseFramesReceived;
8057 
8058 	sc->stat_OutXonSent =
8059 	    stats->stat_OutXonSent;
8060 
8061 	sc->stat_OutXoffSent =
8062 	    stats->stat_OutXoffSent;
8063 
8064 	sc->stat_FlowControlDone =
8065 	    stats->stat_FlowControlDone;
8066 
8067 	sc->stat_MacControlFramesReceived =
8068 	    stats->stat_MacControlFramesReceived;
8069 
8070 	sc->stat_XoffStateEntered =
8071 	    stats->stat_XoffStateEntered;
8072 
8073 	sc->stat_IfInFramesL2FilterDiscards =
8074 	    stats->stat_IfInFramesL2FilterDiscards;
8075 
8076 	sc->stat_IfInRuleCheckerDiscards =
8077 	    stats->stat_IfInRuleCheckerDiscards;
8078 
8079 	sc->stat_IfInFTQDiscards =
8080 	    stats->stat_IfInFTQDiscards;
8081 
8082 	sc->stat_IfInMBUFDiscards =
8083 	    stats->stat_IfInMBUFDiscards;
8084 
8085 	sc->stat_IfInRuleCheckerP4Hit =
8086 	    stats->stat_IfInRuleCheckerP4Hit;
8087 
8088 	sc->stat_CatchupInRuleCheckerDiscards =
8089 	    stats->stat_CatchupInRuleCheckerDiscards;
8090 
8091 	sc->stat_CatchupInFTQDiscards =
8092 	    stats->stat_CatchupInFTQDiscards;
8093 
8094 	sc->stat_CatchupInMBUFDiscards =
8095 	    stats->stat_CatchupInMBUFDiscards;
8096 
8097 	sc->stat_CatchupInRuleCheckerP4Hit =
8098 	    stats->stat_CatchupInRuleCheckerP4Hit;
8099 
8100 	sc->com_no_buffers = REG_RD_IND(sc, 0x120084);
8101 
8102 	/*
8103 	 * Update the interface statistics from the
8104 	 * hardware statistics.
8105 	 */
8106 	ifp->if_collisions =
8107 	    (u_long) sc->stat_EtherStatsCollisions;
8108 
8109 	/* ToDo: This method loses soft errors. */
8110 	ifp->if_ierrors =
8111 	    (u_long) sc->stat_EtherStatsUndersizePkts +
8112 	    (u_long) sc->stat_EtherStatsOversizePkts +
8113 	    (u_long) sc->stat_IfInMBUFDiscards +
8114 	    (u_long) sc->stat_Dot3StatsAlignmentErrors +
8115 	    (u_long) sc->stat_Dot3StatsFCSErrors +
8116 	    (u_long) sc->stat_IfInRuleCheckerDiscards +
8117 	    (u_long) sc->stat_IfInFTQDiscards +
8118 	    (u_long) sc->com_no_buffers;
8119 
8120 	/* ToDo: This method loses soft errors. */
8121 	ifp->if_oerrors =
8122 	    (u_long) sc->stat_emac_tx_stat_dot3statsinternalmactransmiterrors +
8123 	    (u_long) sc->stat_Dot3StatsExcessiveCollisions +
8124 	    (u_long) sc->stat_Dot3StatsLateCollisions;
8125 
8126 	/* ToDo: Add additional statistics? */
8127 
8128 	DBEXIT(BCE_EXTREME_MISC);
8129 }
8130 
8131 
8132 /****************************************************************************/
8133 /* Periodic function to notify the bootcode that the driver is still        */
8134 /* present.                                                                 */
8135 /*                                                                          */
8136 /* Returns:                                                                 */
8137 /*   Nothing.                                                               */
8138 /****************************************************************************/
8139 static void
8140 bce_pulse(void *xsc)
8141 {
8142 	struct bce_softc *sc = xsc;
8143 	u32 msg;
8144 
8145 	DBENTER(BCE_EXTREME_MISC);
8146 
8147 	BCE_LOCK_ASSERT(sc);
8148 
8149 	/* Tell the firmware that the driver is still running. */
8150 	msg = (u32) ++sc->bce_fw_drv_pulse_wr_seq;
8151 	bce_shmem_wr(sc, BCE_DRV_PULSE_MB, msg);
8152 
8153 	/* Update the bootcode condition. */
8154 	sc->bc_state = bce_shmem_rd(sc, BCE_BC_STATE_CONDITION);
8155 
8156 	/* Report whether the bootcode still knows the driver is running. */
8157 	if (bce_verbose || bootverbose) {
8158 		if (sc->bce_drv_cardiac_arrest == FALSE) {
8159 			if (!(sc->bc_state & BCE_CONDITION_DRV_PRESENT)) {
8160 				sc->bce_drv_cardiac_arrest = TRUE;
8161 				BCE_PRINTF("%s(): Warning: bootcode "
8162 				    "thinks driver is absent! "
8163 				    "(bc_state = 0x%08X)\n",
8164 				    __FUNCTION__, sc->bc_state);
8165 			}
8166 		} else {
8167 			/*
8168 			 * Not supported by all bootcode versions.
8169 			 * (v5.0.11+ and v5.2.1+)  Older bootcode
8170 			 * will require the driver to reset the
8171 			 * controller to clear this condition.
8172 			 */
8173 			if (sc->bc_state & BCE_CONDITION_DRV_PRESENT) {
8174 				sc->bce_drv_cardiac_arrest = FALSE;
8175 				BCE_PRINTF("%s(): Bootcode found the "
8176 				    "driver pulse! (bc_state = 0x%08X)\n",
8177 				    __FUNCTION__, sc->bc_state);
8178 			}
8179 		}
8180 	}
8181 
8182 
8183 	/* Schedule the next pulse. */
8184 	callout_reset(&sc->bce_pulse_callout, hz, bce_pulse, sc);
8185 
8186 	DBEXIT(BCE_EXTREME_MISC);
8187 }
8188 
8189 
8190 /****************************************************************************/
8191 /* Periodic function to perform maintenance tasks.                          */
8192 /*                                                                          */
8193 /* Returns:                                                                 */
8194 /*   Nothing.                                                               */
8195 /****************************************************************************/
8196 static void
8197 bce_tick(void *xsc)
8198 {
8199 	struct bce_softc *sc = xsc;
8200 	struct mii_data *mii;
8201 	struct ifnet *ifp;
8202 
8203 	ifp = sc->bce_ifp;
8204 
8205 	DBENTER(BCE_EXTREME_MISC);
8206 
8207 	BCE_LOCK_ASSERT(sc);
8208 
8209 	/* Schedule the next tick. */
8210 	callout_reset(&sc->bce_tick_callout, hz, bce_tick, sc);
8211 
8212 	/* Update the statistics from the hardware statistics block. */
8213 	bce_stats_update(sc);
8214 
8215  	/*
8216  	 * ToDo: This is a safety measure.  Need to re-evaluate
8217  	 * high	level processing logic and eliminate this code.
8218  	 */
8219 	/* Top off the receive and page chains. */
8220 	if (bce_hdr_split == TRUE)
8221 		bce_fill_pg_chain(sc);
8222 	bce_fill_rx_chain(sc);
8223 
8224 	/* Check that chip hasn't hung. */
8225 	bce_watchdog(sc);
8226 
8227 	/* If link is up already up then we're done. */
8228 	if (sc->bce_link_up == TRUE)
8229 		goto bce_tick_exit;
8230 
8231 	/* Link is down.  Check what the PHY's doing. */
8232 	mii = device_get_softc(sc->bce_miibus);
8233 	mii_tick(mii);
8234 
8235 	/* Check if the link has come up. */
8236 	if ((mii->mii_media_status & IFM_ACTIVE) &&
8237 	    (IFM_SUBTYPE(mii->mii_media_active) != IFM_NONE)) {
8238 		DBPRINT(sc, BCE_VERBOSE_MISC,
8239 		    "%s(): Link up!\n", __FUNCTION__);
8240 		sc->bce_link_up = TRUE;
8241 		if ((IFM_SUBTYPE(mii->mii_media_active) == IFM_1000_T ||
8242 		    IFM_SUBTYPE(mii->mii_media_active) == IFM_1000_SX ||
8243 		    IFM_SUBTYPE(mii->mii_media_active) == IFM_2500_SX) &&
8244 		    (bce_verbose || bootverbose))
8245 			BCE_PRINTF("Gigabit link up!\n");
8246 
8247 		/* Now that link is up, handle any outstanding TX traffic. */
8248 		if (!IFQ_DRV_IS_EMPTY(&ifp->if_snd)) {
8249 			DBPRINT(sc, BCE_VERBOSE_MISC, "%s(): Found "
8250 			    "pending TX traffic.\n", __FUNCTION__);
8251 			bce_start_locked(ifp);
8252 		}
8253 	}
8254 
8255 bce_tick_exit:
8256 	DBEXIT(BCE_EXTREME_MISC);
8257 	return;
8258 }
8259 
8260 #ifdef BCE_DEBUG
8261 /****************************************************************************/
8262 /* Allows the driver state to be dumped through the sysctl interface.       */
8263 /*                                                                          */
8264 /* Returns:                                                                 */
8265 /*   0 for success, positive value for failure.                             */
8266 /****************************************************************************/
8267 static int
8268 bce_sysctl_driver_state(SYSCTL_HANDLER_ARGS)
8269 {
8270 	int error;
8271 	int result;
8272 	struct bce_softc *sc;
8273 
8274 	result = -1;
8275 	error = sysctl_handle_int(oidp, &result, 0, req);
8276 
8277 	if (error || !req->newptr)
8278 		return (error);
8279 
8280 	if (result == 1) {
8281 		sc = (struct bce_softc *)arg1;
8282 		bce_dump_driver_state(sc);
8283 	}
8284 
8285 	return error;
8286 }
8287 
8288 
8289 /****************************************************************************/
8290 /* Allows the hardware state to be dumped through the sysctl interface.     */
8291 /*                                                                          */
8292 /* Returns:                                                                 */
8293 /*   0 for success, positive value for failure.                             */
8294 /****************************************************************************/
8295 static int
8296 bce_sysctl_hw_state(SYSCTL_HANDLER_ARGS)
8297 {
8298 	int error;
8299 	int result;
8300 	struct bce_softc *sc;
8301 
8302 	result = -1;
8303 	error = sysctl_handle_int(oidp, &result, 0, req);
8304 
8305 	if (error || !req->newptr)
8306 		return (error);
8307 
8308 	if (result == 1) {
8309 		sc = (struct bce_softc *)arg1;
8310 		bce_dump_hw_state(sc);
8311 	}
8312 
8313 	return error;
8314 }
8315 
8316 
8317 /****************************************************************************/
8318 /* Allows the status block to be dumped through the sysctl interface.       */
8319 /*                                                                          */
8320 /* Returns:                                                                 */
8321 /*   0 for success, positive value for failure.                             */
8322 /****************************************************************************/
8323 static int
8324 bce_sysctl_status_block(SYSCTL_HANDLER_ARGS)
8325 {
8326 	int error;
8327 	int result;
8328 	struct bce_softc *sc;
8329 
8330 	result = -1;
8331 	error = sysctl_handle_int(oidp, &result, 0, req);
8332 
8333 	if (error || !req->newptr)
8334 		return (error);
8335 
8336 	if (result == 1) {
8337 		sc = (struct bce_softc *)arg1;
8338 		bce_dump_status_block(sc);
8339 	}
8340 
8341 	return error;
8342 }
8343 
8344 
8345 /****************************************************************************/
8346 /* Allows the stats block to be dumped through the sysctl interface.        */
8347 /*                                                                          */
8348 /* Returns:                                                                 */
8349 /*   0 for success, positive value for failure.                             */
8350 /****************************************************************************/
8351 static int
8352 bce_sysctl_stats_block(SYSCTL_HANDLER_ARGS)
8353 {
8354 	int error;
8355 	int result;
8356 	struct bce_softc *sc;
8357 
8358 	result = -1;
8359 	error = sysctl_handle_int(oidp, &result, 0, req);
8360 
8361 	if (error || !req->newptr)
8362 		return (error);
8363 
8364 	if (result == 1) {
8365 		sc = (struct bce_softc *)arg1;
8366 		bce_dump_stats_block(sc);
8367 	}
8368 
8369 	return error;
8370 }
8371 
8372 
8373 /****************************************************************************/
8374 /* Allows the stat counters to be cleared without unloading/reloading the   */
8375 /* driver.                                                                  */
8376 /*                                                                          */
8377 /* Returns:                                                                 */
8378 /*   0 for success, positive value for failure.                             */
8379 /****************************************************************************/
8380 static int
8381 bce_sysctl_stats_clear(SYSCTL_HANDLER_ARGS)
8382 {
8383 	int error;
8384 	int result;
8385 	struct bce_softc *sc;
8386 
8387 	result = -1;
8388 	error = sysctl_handle_int(oidp, &result, 0, req);
8389 
8390 	if (error || !req->newptr)
8391 		return (error);
8392 
8393 	if (result == 1) {
8394 		sc = (struct bce_softc *)arg1;
8395 		struct statistics_block *stats;
8396 
8397 		stats = (struct statistics_block *) sc->stats_block;
8398 		bzero(stats, sizeof(struct statistics_block));
8399 
8400 		/* Clear the internal H/W statistics counters. */
8401 		REG_WR(sc, BCE_HC_COMMAND, BCE_HC_COMMAND_CLR_STAT_NOW);
8402 
8403 		/* Reset the driver maintained statistics. */
8404 		sc->interrupts_rx =
8405 		    sc->interrupts_tx = 0;
8406 		sc->tso_frames_requested =
8407 		    sc->tso_frames_completed =
8408 		    sc->tso_frames_failed = 0;
8409 		sc->rx_empty_count =
8410 		    sc->tx_full_count = 0;
8411 		sc->rx_low_watermark = USABLE_RX_BD_ALLOC;
8412 		sc->tx_hi_watermark = 0;
8413 		sc->l2fhdr_error_count =
8414 		    sc->l2fhdr_error_sim_count = 0;
8415 		sc->mbuf_alloc_failed_count =
8416 		    sc->mbuf_alloc_failed_sim_count = 0;
8417 		sc->dma_map_addr_rx_failed_count =
8418 		    sc->dma_map_addr_tx_failed_count = 0;
8419 		sc->mbuf_frag_count = 0;
8420 		sc->csum_offload_tcp_udp =
8421 		    sc->csum_offload_ip = 0;
8422 		sc->vlan_tagged_frames_rcvd =
8423 		    sc->vlan_tagged_frames_stripped = 0;
8424 		sc->split_header_frames_rcvd =
8425 		    sc->split_header_tcp_frames_rcvd = 0;
8426 
8427 		/* Clear firmware maintained statistics. */
8428 		REG_WR_IND(sc, 0x120084, 0);
8429 	}
8430 
8431 	return error;
8432 }
8433 
8434 
8435 /****************************************************************************/
8436 /* Allows the shared memory contents to be dumped through the sysctl  .     */
8437 /* interface.                                                               */
8438 /*                                                                          */
8439 /* Returns:                                                                 */
8440 /*   0 for success, positive value for failure.                             */
8441 /****************************************************************************/
8442 static int
8443 bce_sysctl_shmem_state(SYSCTL_HANDLER_ARGS)
8444 {
8445 	int error;
8446 	int result;
8447 	struct bce_softc *sc;
8448 
8449 	result = -1;
8450 	error = sysctl_handle_int(oidp, &result, 0, req);
8451 
8452 	if (error || !req->newptr)
8453 		return (error);
8454 
8455 	if (result == 1) {
8456 		sc = (struct bce_softc *)arg1;
8457 		bce_dump_shmem_state(sc);
8458 	}
8459 
8460 	return error;
8461 }
8462 
8463 
8464 /****************************************************************************/
8465 /* Allows the bootcode state to be dumped through the sysctl interface.     */
8466 /*                                                                          */
8467 /* Returns:                                                                 */
8468 /*   0 for success, positive value for failure.                             */
8469 /****************************************************************************/
8470 static int
8471 bce_sysctl_bc_state(SYSCTL_HANDLER_ARGS)
8472 {
8473 	int error;
8474 	int result;
8475 	struct bce_softc *sc;
8476 
8477 	result = -1;
8478 	error = sysctl_handle_int(oidp, &result, 0, req);
8479 
8480 	if (error || !req->newptr)
8481 		return (error);
8482 
8483 	if (result == 1) {
8484 		sc = (struct bce_softc *)arg1;
8485 		bce_dump_bc_state(sc);
8486 	}
8487 
8488 	return error;
8489 }
8490 
8491 
8492 /****************************************************************************/
8493 /* Provides a sysctl interface to allow dumping the RX BD chain.            */
8494 /*                                                                          */
8495 /* Returns:                                                                 */
8496 /*   0 for success, positive value for failure.                             */
8497 /****************************************************************************/
8498 static int
8499 bce_sysctl_dump_rx_bd_chain(SYSCTL_HANDLER_ARGS)
8500 {
8501 	int error;
8502 	int result;
8503 	struct bce_softc *sc;
8504 
8505 	result = -1;
8506 	error = sysctl_handle_int(oidp, &result, 0, req);
8507 
8508 	if (error || !req->newptr)
8509 		return (error);
8510 
8511 	if (result == 1) {
8512 		sc = (struct bce_softc *)arg1;
8513 		bce_dump_rx_bd_chain(sc, 0, TOTAL_RX_BD_ALLOC);
8514 	}
8515 
8516 	return error;
8517 }
8518 
8519 
8520 /****************************************************************************/
8521 /* Provides a sysctl interface to allow dumping the RX MBUF chain.          */
8522 /*                                                                          */
8523 /* Returns:                                                                 */
8524 /*   0 for success, positive value for failure.                             */
8525 /****************************************************************************/
8526 static int
8527 bce_sysctl_dump_rx_mbuf_chain(SYSCTL_HANDLER_ARGS)
8528 {
8529 	int error;
8530 	int result;
8531 	struct bce_softc *sc;
8532 
8533 	result = -1;
8534 	error = sysctl_handle_int(oidp, &result, 0, req);
8535 
8536 	if (error || !req->newptr)
8537 		return (error);
8538 
8539 	if (result == 1) {
8540 		sc = (struct bce_softc *)arg1;
8541 		bce_dump_rx_mbuf_chain(sc, 0, USABLE_RX_BD_ALLOC);
8542 	}
8543 
8544 	return error;
8545 }
8546 
8547 
8548 /****************************************************************************/
8549 /* Provides a sysctl interface to allow dumping the TX chain.               */
8550 /*                                                                          */
8551 /* Returns:                                                                 */
8552 /*   0 for success, positive value for failure.                             */
8553 /****************************************************************************/
8554 static int
8555 bce_sysctl_dump_tx_chain(SYSCTL_HANDLER_ARGS)
8556 {
8557 	int error;
8558 	int result;
8559 	struct bce_softc *sc;
8560 
8561 	result = -1;
8562 	error = sysctl_handle_int(oidp, &result, 0, req);
8563 
8564 	if (error || !req->newptr)
8565 		return (error);
8566 
8567 	if (result == 1) {
8568 		sc = (struct bce_softc *)arg1;
8569 		bce_dump_tx_chain(sc, 0, TOTAL_TX_BD_ALLOC);
8570 	}
8571 
8572 	return error;
8573 }
8574 
8575 
8576 /****************************************************************************/
8577 /* Provides a sysctl interface to allow dumping the page chain.             */
8578 /*                                                                          */
8579 /* Returns:                                                                 */
8580 /*   0 for success, positive value for failure.                             */
8581 /****************************************************************************/
8582 static int
8583 bce_sysctl_dump_pg_chain(SYSCTL_HANDLER_ARGS)
8584 {
8585 	int error;
8586 	int result;
8587 	struct bce_softc *sc;
8588 
8589 	result = -1;
8590 	error = sysctl_handle_int(oidp, &result, 0, req);
8591 
8592 	if (error || !req->newptr)
8593 		return (error);
8594 
8595 	if (result == 1) {
8596 		sc = (struct bce_softc *)arg1;
8597 		bce_dump_pg_chain(sc, 0, TOTAL_PG_BD_ALLOC);
8598 	}
8599 
8600 	return error;
8601 }
8602 
8603 /****************************************************************************/
8604 /* Provides a sysctl interface to allow reading arbitrary NVRAM offsets in  */
8605 /* the device.  DO NOT ENABLE ON PRODUCTION SYSTEMS!                        */
8606 /*                                                                          */
8607 /* Returns:                                                                 */
8608 /*   0 for success, positive value for failure.                             */
8609 /****************************************************************************/
8610 static int
8611 bce_sysctl_nvram_read(SYSCTL_HANDLER_ARGS)
8612 {
8613 	struct bce_softc *sc = (struct bce_softc *)arg1;
8614 	int error;
8615 	u32 result;
8616 	u32 val[1];
8617 	u8 *data = (u8 *) val;
8618 
8619 	result = -1;
8620 	error = sysctl_handle_int(oidp, &result, 0, req);
8621 	if (error || (req->newptr == NULL))
8622 		return (error);
8623 
8624 	error = bce_nvram_read(sc, result, data, 4);
8625 
8626 	BCE_PRINTF("offset 0x%08X = 0x%08X\n", result, bce_be32toh(val[0]));
8627 
8628 	return (error);
8629 }
8630 
8631 
8632 /****************************************************************************/
8633 /* Provides a sysctl interface to allow reading arbitrary registers in the  */
8634 /* device.  DO NOT ENABLE ON PRODUCTION SYSTEMS!                            */
8635 /*                                                                          */
8636 /* Returns:                                                                 */
8637 /*   0 for success, positive value for failure.                             */
8638 /****************************************************************************/
8639 static int
8640 bce_sysctl_reg_read(SYSCTL_HANDLER_ARGS)
8641 {
8642 	struct bce_softc *sc = (struct bce_softc *)arg1;
8643 	int error;
8644 	u32 val, result;
8645 
8646 	result = -1;
8647 	error = sysctl_handle_int(oidp, &result, 0, req);
8648 	if (error || (req->newptr == NULL))
8649 		return (error);
8650 
8651 	/* Make sure the register is accessible. */
8652 	if (result < 0x8000) {
8653 		val = REG_RD(sc, result);
8654 		BCE_PRINTF("reg 0x%08X = 0x%08X\n", result, val);
8655 	} else if (result < 0x0280000) {
8656 		val = REG_RD_IND(sc, result);
8657 		BCE_PRINTF("reg 0x%08X = 0x%08X\n", result, val);
8658 	}
8659 
8660 	return (error);
8661 }
8662 
8663 
8664 /****************************************************************************/
8665 /* Provides a sysctl interface to allow reading arbitrary PHY registers in  */
8666 /* the device.  DO NOT ENABLE ON PRODUCTION SYSTEMS!                        */
8667 /*                                                                          */
8668 /* Returns:                                                                 */
8669 /*   0 for success, positive value for failure.                             */
8670 /****************************************************************************/
8671 static int
8672 bce_sysctl_phy_read(SYSCTL_HANDLER_ARGS)
8673 {
8674 	struct bce_softc *sc;
8675 	device_t dev;
8676 	int error, result;
8677 	u16 val;
8678 
8679 	result = -1;
8680 	error = sysctl_handle_int(oidp, &result, 0, req);
8681 	if (error || (req->newptr == NULL))
8682 		return (error);
8683 
8684 	/* Make sure the register is accessible. */
8685 	if (result < 0x20) {
8686 		sc = (struct bce_softc *)arg1;
8687 		dev = sc->bce_dev;
8688 		val = bce_miibus_read_reg(dev, sc->bce_phy_addr, result);
8689 		BCE_PRINTF("phy 0x%02X = 0x%04X\n", result, val);
8690 	}
8691 	return (error);
8692 }
8693 
8694 
8695 /****************************************************************************/
8696 /* Provides a sysctl interface for dumping the nvram contents.              */
8697 /* DO NOT ENABLE ON PRODUCTION SYSTEMS!					    */
8698 /*									    */
8699 /* Returns:								    */
8700 /*   0 for success, positive errno for failure.				    */
8701 /****************************************************************************/
8702 static int
8703 bce_sysctl_nvram_dump(SYSCTL_HANDLER_ARGS)
8704 {
8705 	struct bce_softc *sc = (struct bce_softc *)arg1;
8706 	int error, i;
8707 
8708 	if (sc->nvram_buf == NULL)
8709 		sc->nvram_buf = malloc(sc->bce_flash_size,
8710 				    M_TEMP, M_ZERO | M_WAITOK);
8711 
8712 	error = 0;
8713 	if (req->oldlen == sc->bce_flash_size) {
8714 		for (i = 0; i < sc->bce_flash_size && error == 0; i++)
8715 			error = bce_nvram_read(sc, i, &sc->nvram_buf[i], 1);
8716 	}
8717 
8718 	if (error == 0)
8719 		error = SYSCTL_OUT(req, sc->nvram_buf, sc->bce_flash_size);
8720 
8721 	return error;
8722 }
8723 
8724 #ifdef BCE_NVRAM_WRITE_SUPPORT
8725 /****************************************************************************/
8726 /* Provides a sysctl interface for writing to nvram.                        */
8727 /* DO NOT ENABLE ON PRODUCTION SYSTEMS!					    */
8728 /*									    */
8729 /* Returns:								    */
8730 /*   0 for success, positive errno for failure.				    */
8731 /****************************************************************************/
8732 static int
8733 bce_sysctl_nvram_write(SYSCTL_HANDLER_ARGS)
8734 {
8735 	struct bce_softc *sc = (struct bce_softc *)arg1;
8736 	int error;
8737 
8738 	if (sc->nvram_buf == NULL)
8739 		sc->nvram_buf = malloc(sc->bce_flash_size,
8740 				    M_TEMP, M_ZERO | M_WAITOK);
8741 	else
8742 		bzero(sc->nvram_buf, sc->bce_flash_size);
8743 
8744 	error = SYSCTL_IN(req, sc->nvram_buf, sc->bce_flash_size);
8745 	if (error == 0)
8746 		return (error);
8747 
8748 	if (req->newlen == sc->bce_flash_size)
8749 		error = bce_nvram_write(sc, 0, sc->nvram_buf,
8750 			    sc->bce_flash_size);
8751 
8752 
8753 	return error;
8754 }
8755 #endif
8756 
8757 
8758 /****************************************************************************/
8759 /* Provides a sysctl interface to allow reading a CID.                      */
8760 /*                                                                          */
8761 /* Returns:                                                                 */
8762 /*   0 for success, positive value for failure.                             */
8763 /****************************************************************************/
8764 static int
8765 bce_sysctl_dump_ctx(SYSCTL_HANDLER_ARGS)
8766 {
8767 	struct bce_softc *sc;
8768 	int error, result;
8769 
8770 	result = -1;
8771 	error = sysctl_handle_int(oidp, &result, 0, req);
8772 	if (error || (req->newptr == NULL))
8773 		return (error);
8774 
8775 	/* Make sure the register is accessible. */
8776 	if (result <= TX_CID) {
8777 		sc = (struct bce_softc *)arg1;
8778 		bce_dump_ctx(sc, result);
8779 	}
8780 
8781 	return (error);
8782 }
8783 
8784 
8785 /****************************************************************************/
8786 /* Provides a sysctl interface to forcing the driver to dump state and      */
8787 /* enter the debugger.  DO NOT ENABLE ON PRODUCTION SYSTEMS!                */
8788 /*                                                                          */
8789 /* Returns:                                                                 */
8790 /*   0 for success, positive value for failure.                             */
8791 /****************************************************************************/
8792 static int
8793 bce_sysctl_breakpoint(SYSCTL_HANDLER_ARGS)
8794 {
8795 	int error;
8796 	int result;
8797 	struct bce_softc *sc;
8798 
8799 	result = -1;
8800 	error = sysctl_handle_int(oidp, &result, 0, req);
8801 
8802 	if (error || !req->newptr)
8803 		return (error);
8804 
8805 	if (result == 1) {
8806 		sc = (struct bce_softc *)arg1;
8807 		bce_breakpoint(sc);
8808 	}
8809 
8810 	return error;
8811 }
8812 #endif
8813 
8814 /****************************************************************************/
8815 /* Adds any sysctl parameters for tuning or debugging purposes.             */
8816 /*                                                                          */
8817 /* Returns:                                                                 */
8818 /*   0 for success, positive value for failure.                             */
8819 /****************************************************************************/
8820 static void
8821 bce_add_sysctls(struct bce_softc *sc)
8822 {
8823 	struct sysctl_ctx_list *ctx;
8824 	struct sysctl_oid_list *children;
8825 
8826 	DBENTER(BCE_VERBOSE_MISC);
8827 
8828 	ctx = device_get_sysctl_ctx(sc->bce_dev);
8829 	children = SYSCTL_CHILDREN(device_get_sysctl_tree(sc->bce_dev));
8830 
8831 #ifdef BCE_DEBUG
8832 	SYSCTL_ADD_INT(ctx, children, OID_AUTO,
8833 	    "l2fhdr_error_sim_control",
8834 	    CTLFLAG_RW, &l2fhdr_error_sim_control,
8835 	    0, "Debug control to force l2fhdr errors");
8836 
8837 	SYSCTL_ADD_INT(ctx, children, OID_AUTO,
8838 	    "l2fhdr_error_sim_count",
8839 	    CTLFLAG_RD, &sc->l2fhdr_error_sim_count,
8840 	    0, "Number of simulated l2_fhdr errors");
8841 #endif
8842 
8843 	SYSCTL_ADD_UINT(ctx, children, OID_AUTO,
8844 	    "l2fhdr_error_count",
8845 	    CTLFLAG_RD, &sc->l2fhdr_error_count,
8846 	    0, "Number of l2_fhdr errors");
8847 
8848 #ifdef BCE_DEBUG
8849 	SYSCTL_ADD_INT(ctx, children, OID_AUTO,
8850 	    "mbuf_alloc_failed_sim_control",
8851 	    CTLFLAG_RW, &mbuf_alloc_failed_sim_control,
8852 	    0, "Debug control to force mbuf allocation failures");
8853 
8854 	SYSCTL_ADD_UINT(ctx, children, OID_AUTO,
8855 	    "mbuf_alloc_failed_sim_count",
8856 	    CTLFLAG_RD, &sc->mbuf_alloc_failed_sim_count,
8857 	    0, "Number of simulated mbuf cluster allocation failures");
8858 #endif
8859 
8860 	SYSCTL_ADD_UINT(ctx, children, OID_AUTO,
8861 	    "mbuf_alloc_failed_count",
8862 	    CTLFLAG_RD, &sc->mbuf_alloc_failed_count,
8863 	    0, "Number of mbuf allocation failures");
8864 
8865 	SYSCTL_ADD_UINT(ctx, children, OID_AUTO,
8866 	    "mbuf_frag_count",
8867 	    CTLFLAG_RD, &sc->mbuf_frag_count,
8868 	    0, "Number of fragmented mbufs");
8869 
8870 #ifdef BCE_DEBUG
8871 	SYSCTL_ADD_INT(ctx, children, OID_AUTO,
8872 	    "dma_map_addr_failed_sim_control",
8873 	    CTLFLAG_RW, &dma_map_addr_failed_sim_control,
8874 	    0, "Debug control to force DMA mapping failures");
8875 
8876 	/* ToDo: Figure out how to update this value in bce_dma_map_addr(). */
8877 	SYSCTL_ADD_UINT(ctx, children, OID_AUTO,
8878 	    "dma_map_addr_failed_sim_count",
8879 	    CTLFLAG_RD, &sc->dma_map_addr_failed_sim_count,
8880 	    0, "Number of simulated DMA mapping failures");
8881 
8882 #endif
8883 
8884 	SYSCTL_ADD_UINT(ctx, children, OID_AUTO,
8885 	    "dma_map_addr_rx_failed_count",
8886 	    CTLFLAG_RD, &sc->dma_map_addr_rx_failed_count,
8887 	    0, "Number of RX DMA mapping failures");
8888 
8889 	SYSCTL_ADD_UINT(ctx, children, OID_AUTO,
8890 	    "dma_map_addr_tx_failed_count",
8891 	    CTLFLAG_RD, &sc->dma_map_addr_tx_failed_count,
8892 	    0, "Number of TX DMA mapping failures");
8893 
8894 #ifdef BCE_DEBUG
8895 	SYSCTL_ADD_INT(ctx, children, OID_AUTO,
8896 	    "unexpected_attention_sim_control",
8897 	    CTLFLAG_RW, &unexpected_attention_sim_control,
8898 	    0, "Debug control to simulate unexpected attentions");
8899 
8900 	SYSCTL_ADD_UINT(ctx, children, OID_AUTO,
8901 	    "unexpected_attention_sim_count",
8902 	    CTLFLAG_RW, &sc->unexpected_attention_sim_count,
8903 	    0, "Number of simulated unexpected attentions");
8904 #endif
8905 
8906 	SYSCTL_ADD_UINT(ctx, children, OID_AUTO,
8907 	    "unexpected_attention_count",
8908 	    CTLFLAG_RW, &sc->unexpected_attention_count,
8909 	    0, "Number of unexpected attentions");
8910 
8911 #ifdef BCE_DEBUG
8912 	SYSCTL_ADD_INT(ctx, children, OID_AUTO,
8913 	    "debug_bootcode_running_failure",
8914 	    CTLFLAG_RW, &bootcode_running_failure_sim_control,
8915 	    0, "Debug control to force bootcode running failures");
8916 
8917 	SYSCTL_ADD_INT(ctx, children, OID_AUTO,
8918 	    "rx_low_watermark",
8919 	    CTLFLAG_RD, &sc->rx_low_watermark,
8920 	    0, "Lowest level of free rx_bd's");
8921 
8922 	SYSCTL_ADD_QUAD(ctx, children, OID_AUTO,
8923 	    "rx_empty_count",
8924 	    CTLFLAG_RD, &sc->rx_empty_count,
8925 	    "Number of times the RX chain was empty");
8926 
8927 	SYSCTL_ADD_INT(ctx, children, OID_AUTO,
8928 	    "tx_hi_watermark",
8929 	    CTLFLAG_RD, &sc->tx_hi_watermark,
8930 	    0, "Highest level of used tx_bd's");
8931 
8932 	SYSCTL_ADD_QUAD(ctx, children, OID_AUTO,
8933 	    "tx_full_count",
8934 	    CTLFLAG_RD, &sc->tx_full_count,
8935 	    "Number of times the TX chain was full");
8936 
8937 	SYSCTL_ADD_QUAD(ctx, children, OID_AUTO,
8938 	    "tso_frames_requested",
8939 	    CTLFLAG_RD, &sc->tso_frames_requested,
8940 	    "Number of TSO frames requested");
8941 
8942 	SYSCTL_ADD_QUAD(ctx, children, OID_AUTO,
8943 	    "tso_frames_completed",
8944 	    CTLFLAG_RD, &sc->tso_frames_completed,
8945 	    "Number of TSO frames completed");
8946 
8947 	SYSCTL_ADD_QUAD(ctx, children, OID_AUTO,
8948 	    "tso_frames_failed",
8949 	    CTLFLAG_RD, &sc->tso_frames_failed,
8950 	    "Number of TSO frames failed");
8951 
8952 	SYSCTL_ADD_QUAD(ctx, children, OID_AUTO,
8953 	    "csum_offload_ip",
8954 	    CTLFLAG_RD, &sc->csum_offload_ip,
8955 	    "Number of IP checksum offload frames");
8956 
8957 	SYSCTL_ADD_QUAD(ctx, children, OID_AUTO,
8958 	    "csum_offload_tcp_udp",
8959 	    CTLFLAG_RD, &sc->csum_offload_tcp_udp,
8960 	    "Number of TCP/UDP checksum offload frames");
8961 
8962 	SYSCTL_ADD_QUAD(ctx, children, OID_AUTO,
8963 	    "vlan_tagged_frames_rcvd",
8964 	    CTLFLAG_RD, &sc->vlan_tagged_frames_rcvd,
8965 	    "Number of VLAN tagged frames received");
8966 
8967 	SYSCTL_ADD_QUAD(ctx, children, OID_AUTO,
8968 	    "vlan_tagged_frames_stripped",
8969 	    CTLFLAG_RD, &sc->vlan_tagged_frames_stripped,
8970 	    "Number of VLAN tagged frames stripped");
8971 
8972 	SYSCTL_ADD_QUAD(ctx, children, OID_AUTO,
8973 	    "interrupts_rx",
8974 	    CTLFLAG_RD, &sc->interrupts_rx,
8975 	    "Number of RX interrupts");
8976 
8977 	SYSCTL_ADD_QUAD(ctx, children, OID_AUTO,
8978 	    "interrupts_tx",
8979 	    CTLFLAG_RD, &sc->interrupts_tx,
8980 	    "Number of TX interrupts");
8981 
8982 	if (bce_hdr_split == TRUE) {
8983 		SYSCTL_ADD_QUAD(ctx, children, OID_AUTO,
8984 		    "split_header_frames_rcvd",
8985 		    CTLFLAG_RD, &sc->split_header_frames_rcvd,
8986 		    "Number of split header frames received");
8987 
8988 		SYSCTL_ADD_QUAD(ctx, children, OID_AUTO,
8989 		    "split_header_tcp_frames_rcvd",
8990 		    CTLFLAG_RD, &sc->split_header_tcp_frames_rcvd,
8991 		    "Number of split header TCP frames received");
8992 	}
8993 
8994 	SYSCTL_ADD_PROC(ctx, children, OID_AUTO,
8995 	    "nvram_dump", CTLTYPE_OPAQUE | CTLFLAG_RD,
8996 	    (void *)sc, 0,
8997 	    bce_sysctl_nvram_dump, "S", "");
8998 
8999 #ifdef BCE_NVRAM_WRITE_SUPPORT
9000 	SYSCTL_ADD_PROC(ctx, children, OID_AUTO,
9001 	    "nvram_write", CTLTYPE_OPAQUE | CTLFLAG_WR,
9002 	    (void *)sc, 0,
9003 	    bce_sysctl_nvram_write, "S", "");
9004 #endif
9005 #endif /* BCE_DEBUG */
9006 
9007 	SYSCTL_ADD_QUAD(ctx, children, OID_AUTO,
9008 	    "stat_IfHcInOctets",
9009 	    CTLFLAG_RD, &sc->stat_IfHCInOctets,
9010 	    "Bytes received");
9011 
9012 	SYSCTL_ADD_QUAD(ctx, children, OID_AUTO,
9013 	    "stat_IfHCInBadOctets",
9014 	    CTLFLAG_RD, &sc->stat_IfHCInBadOctets,
9015 	    "Bad bytes received");
9016 
9017 	SYSCTL_ADD_QUAD(ctx, children, OID_AUTO,
9018 	    "stat_IfHCOutOctets",
9019 	    CTLFLAG_RD, &sc->stat_IfHCOutOctets,
9020 	    "Bytes sent");
9021 
9022 	SYSCTL_ADD_QUAD(ctx, children, OID_AUTO,
9023 	    "stat_IfHCOutBadOctets",
9024 	    CTLFLAG_RD, &sc->stat_IfHCOutBadOctets,
9025 	    "Bad bytes sent");
9026 
9027 	SYSCTL_ADD_QUAD(ctx, children, OID_AUTO,
9028 	    "stat_IfHCInUcastPkts",
9029 	    CTLFLAG_RD, &sc->stat_IfHCInUcastPkts,
9030 	    "Unicast packets received");
9031 
9032 	SYSCTL_ADD_QUAD(ctx, children, OID_AUTO,
9033 	    "stat_IfHCInMulticastPkts",
9034 	    CTLFLAG_RD, &sc->stat_IfHCInMulticastPkts,
9035 	    "Multicast packets received");
9036 
9037 	SYSCTL_ADD_QUAD(ctx, children, OID_AUTO,
9038 	    "stat_IfHCInBroadcastPkts",
9039 	    CTLFLAG_RD, &sc->stat_IfHCInBroadcastPkts,
9040 	    "Broadcast packets received");
9041 
9042 	SYSCTL_ADD_QUAD(ctx, children, OID_AUTO,
9043 	    "stat_IfHCOutUcastPkts",
9044 	    CTLFLAG_RD, &sc->stat_IfHCOutUcastPkts,
9045 	    "Unicast packets sent");
9046 
9047 	SYSCTL_ADD_QUAD(ctx, children, OID_AUTO,
9048 	    "stat_IfHCOutMulticastPkts",
9049 	    CTLFLAG_RD, &sc->stat_IfHCOutMulticastPkts,
9050 	    "Multicast packets sent");
9051 
9052 	SYSCTL_ADD_QUAD(ctx, children, OID_AUTO,
9053 	    "stat_IfHCOutBroadcastPkts",
9054 	    CTLFLAG_RD, &sc->stat_IfHCOutBroadcastPkts,
9055 	    "Broadcast packets sent");
9056 
9057 	SYSCTL_ADD_UINT(ctx, children, OID_AUTO,
9058 	    "stat_emac_tx_stat_dot3statsinternalmactransmiterrors",
9059 	    CTLFLAG_RD, &sc->stat_emac_tx_stat_dot3statsinternalmactransmiterrors,
9060 	    0, "Internal MAC transmit errors");
9061 
9062 	SYSCTL_ADD_UINT(ctx, children, OID_AUTO,
9063 	    "stat_Dot3StatsCarrierSenseErrors",
9064 	    CTLFLAG_RD, &sc->stat_Dot3StatsCarrierSenseErrors,
9065 	    0, "Carrier sense errors");
9066 
9067 	SYSCTL_ADD_UINT(ctx, children, OID_AUTO,
9068 	    "stat_Dot3StatsFCSErrors",
9069 	    CTLFLAG_RD, &sc->stat_Dot3StatsFCSErrors,
9070 	    0, "Frame check sequence errors");
9071 
9072 	SYSCTL_ADD_UINT(ctx, children, OID_AUTO,
9073 	    "stat_Dot3StatsAlignmentErrors",
9074 	    CTLFLAG_RD, &sc->stat_Dot3StatsAlignmentErrors,
9075 	    0, "Alignment errors");
9076 
9077 	SYSCTL_ADD_UINT(ctx, children, OID_AUTO,
9078 	    "stat_Dot3StatsSingleCollisionFrames",
9079 	    CTLFLAG_RD, &sc->stat_Dot3StatsSingleCollisionFrames,
9080 	    0, "Single Collision Frames");
9081 
9082 	SYSCTL_ADD_UINT(ctx, children, OID_AUTO,
9083 	    "stat_Dot3StatsMultipleCollisionFrames",
9084 	    CTLFLAG_RD, &sc->stat_Dot3StatsMultipleCollisionFrames,
9085 	    0, "Multiple Collision Frames");
9086 
9087 	SYSCTL_ADD_UINT(ctx, children, OID_AUTO,
9088 	    "stat_Dot3StatsDeferredTransmissions",
9089 	    CTLFLAG_RD, &sc->stat_Dot3StatsDeferredTransmissions,
9090 	    0, "Deferred Transmissions");
9091 
9092 	SYSCTL_ADD_UINT(ctx, children, OID_AUTO,
9093 	    "stat_Dot3StatsExcessiveCollisions",
9094 	    CTLFLAG_RD, &sc->stat_Dot3StatsExcessiveCollisions,
9095 	    0, "Excessive Collisions");
9096 
9097 	SYSCTL_ADD_UINT(ctx, children, OID_AUTO,
9098 	    "stat_Dot3StatsLateCollisions",
9099 	    CTLFLAG_RD, &sc->stat_Dot3StatsLateCollisions,
9100 	    0, "Late Collisions");
9101 
9102 	SYSCTL_ADD_UINT(ctx, children, OID_AUTO,
9103 	    "stat_EtherStatsCollisions",
9104 	    CTLFLAG_RD, &sc->stat_EtherStatsCollisions,
9105 	    0, "Collisions");
9106 
9107 	SYSCTL_ADD_UINT(ctx, children, OID_AUTO,
9108 	    "stat_EtherStatsFragments",
9109 	    CTLFLAG_RD, &sc->stat_EtherStatsFragments,
9110 	    0, "Fragments");
9111 
9112 	SYSCTL_ADD_UINT(ctx, children, OID_AUTO,
9113 	    "stat_EtherStatsJabbers",
9114 	    CTLFLAG_RD, &sc->stat_EtherStatsJabbers,
9115 	    0, "Jabbers");
9116 
9117 	SYSCTL_ADD_UINT(ctx, children, OID_AUTO,
9118 	    "stat_EtherStatsUndersizePkts",
9119 	    CTLFLAG_RD, &sc->stat_EtherStatsUndersizePkts,
9120 	    0, "Undersize packets");
9121 
9122 	SYSCTL_ADD_UINT(ctx, children, OID_AUTO,
9123 	    "stat_EtherStatsOversizePkts",
9124 	    CTLFLAG_RD, &sc->stat_EtherStatsOversizePkts,
9125 	    0, "stat_EtherStatsOversizePkts");
9126 
9127 	SYSCTL_ADD_UINT(ctx, children, OID_AUTO,
9128 	    "stat_EtherStatsPktsRx64Octets",
9129 	    CTLFLAG_RD, &sc->stat_EtherStatsPktsRx64Octets,
9130 	    0, "Bytes received in 64 byte packets");
9131 
9132 	SYSCTL_ADD_UINT(ctx, children, OID_AUTO,
9133 	    "stat_EtherStatsPktsRx65Octetsto127Octets",
9134 	    CTLFLAG_RD, &sc->stat_EtherStatsPktsRx65Octetsto127Octets,
9135 	    0, "Bytes received in 65 to 127 byte packets");
9136 
9137 	SYSCTL_ADD_UINT(ctx, children, OID_AUTO,
9138 	    "stat_EtherStatsPktsRx128Octetsto255Octets",
9139 	    CTLFLAG_RD, &sc->stat_EtherStatsPktsRx128Octetsto255Octets,
9140 	    0, "Bytes received in 128 to 255 byte packets");
9141 
9142 	SYSCTL_ADD_UINT(ctx, children, OID_AUTO,
9143 	    "stat_EtherStatsPktsRx256Octetsto511Octets",
9144 	    CTLFLAG_RD, &sc->stat_EtherStatsPktsRx256Octetsto511Octets,
9145 	    0, "Bytes received in 256 to 511 byte packets");
9146 
9147 	SYSCTL_ADD_UINT(ctx, children, OID_AUTO,
9148 	    "stat_EtherStatsPktsRx512Octetsto1023Octets",
9149 	    CTLFLAG_RD, &sc->stat_EtherStatsPktsRx512Octetsto1023Octets,
9150 	    0, "Bytes received in 512 to 1023 byte packets");
9151 
9152 	SYSCTL_ADD_UINT(ctx, children, OID_AUTO,
9153 	    "stat_EtherStatsPktsRx1024Octetsto1522Octets",
9154 	    CTLFLAG_RD, &sc->stat_EtherStatsPktsRx1024Octetsto1522Octets,
9155 	    0, "Bytes received in 1024 t0 1522 byte packets");
9156 
9157 	SYSCTL_ADD_UINT(ctx, children, OID_AUTO,
9158 	    "stat_EtherStatsPktsRx1523Octetsto9022Octets",
9159 	    CTLFLAG_RD, &sc->stat_EtherStatsPktsRx1523Octetsto9022Octets,
9160 	    0, "Bytes received in 1523 to 9022 byte packets");
9161 
9162 	SYSCTL_ADD_UINT(ctx, children, OID_AUTO,
9163 	    "stat_EtherStatsPktsTx64Octets",
9164 	    CTLFLAG_RD, &sc->stat_EtherStatsPktsTx64Octets,
9165 	    0, "Bytes sent in 64 byte packets");
9166 
9167 	SYSCTL_ADD_UINT(ctx, children, OID_AUTO,
9168 	    "stat_EtherStatsPktsTx65Octetsto127Octets",
9169 	    CTLFLAG_RD, &sc->stat_EtherStatsPktsTx65Octetsto127Octets,
9170 	    0, "Bytes sent in 65 to 127 byte packets");
9171 
9172 	SYSCTL_ADD_UINT(ctx, children, OID_AUTO,
9173 	    "stat_EtherStatsPktsTx128Octetsto255Octets",
9174 	    CTLFLAG_RD, &sc->stat_EtherStatsPktsTx128Octetsto255Octets,
9175 	    0, "Bytes sent in 128 to 255 byte packets");
9176 
9177 	SYSCTL_ADD_UINT(ctx, children, OID_AUTO,
9178 	    "stat_EtherStatsPktsTx256Octetsto511Octets",
9179 	    CTLFLAG_RD, &sc->stat_EtherStatsPktsTx256Octetsto511Octets,
9180 	    0, "Bytes sent in 256 to 511 byte packets");
9181 
9182 	SYSCTL_ADD_UINT(ctx, children, OID_AUTO,
9183 	    "stat_EtherStatsPktsTx512Octetsto1023Octets",
9184 	    CTLFLAG_RD, &sc->stat_EtherStatsPktsTx512Octetsto1023Octets,
9185 	    0, "Bytes sent in 512 to 1023 byte packets");
9186 
9187 	SYSCTL_ADD_UINT(ctx, children, OID_AUTO,
9188 	    "stat_EtherStatsPktsTx1024Octetsto1522Octets",
9189 	    CTLFLAG_RD, &sc->stat_EtherStatsPktsTx1024Octetsto1522Octets,
9190 	    0, "Bytes sent in 1024 to 1522 byte packets");
9191 
9192 	SYSCTL_ADD_UINT(ctx, children, OID_AUTO,
9193 	    "stat_EtherStatsPktsTx1523Octetsto9022Octets",
9194 	    CTLFLAG_RD, &sc->stat_EtherStatsPktsTx1523Octetsto9022Octets,
9195 	    0, "Bytes sent in 1523 to 9022 byte packets");
9196 
9197 	SYSCTL_ADD_UINT(ctx, children, OID_AUTO,
9198 	    "stat_XonPauseFramesReceived",
9199 	    CTLFLAG_RD, &sc->stat_XonPauseFramesReceived,
9200 	    0, "XON pause frames receved");
9201 
9202 	SYSCTL_ADD_UINT(ctx, children, OID_AUTO,
9203 	    "stat_XoffPauseFramesReceived",
9204 	    CTLFLAG_RD, &sc->stat_XoffPauseFramesReceived,
9205 	    0, "XOFF pause frames received");
9206 
9207 	SYSCTL_ADD_UINT(ctx, children, OID_AUTO,
9208 	    "stat_OutXonSent",
9209 	    CTLFLAG_RD, &sc->stat_OutXonSent,
9210 	    0, "XON pause frames sent");
9211 
9212 	SYSCTL_ADD_UINT(ctx, children, OID_AUTO,
9213 	    "stat_OutXoffSent",
9214 	    CTLFLAG_RD, &sc->stat_OutXoffSent,
9215 	    0, "XOFF pause frames sent");
9216 
9217 	SYSCTL_ADD_UINT(ctx, children, OID_AUTO,
9218 	    "stat_FlowControlDone",
9219 	    CTLFLAG_RD, &sc->stat_FlowControlDone,
9220 	    0, "Flow control done");
9221 
9222 	SYSCTL_ADD_UINT(ctx, children, OID_AUTO,
9223 	    "stat_MacControlFramesReceived",
9224 	    CTLFLAG_RD, &sc->stat_MacControlFramesReceived,
9225 	    0, "MAC control frames received");
9226 
9227 	SYSCTL_ADD_UINT(ctx, children, OID_AUTO,
9228 	    "stat_XoffStateEntered",
9229 	    CTLFLAG_RD, &sc->stat_XoffStateEntered,
9230 	    0, "XOFF state entered");
9231 
9232 	SYSCTL_ADD_UINT(ctx, children, OID_AUTO,
9233 	    "stat_IfInFramesL2FilterDiscards",
9234 	    CTLFLAG_RD, &sc->stat_IfInFramesL2FilterDiscards,
9235 	    0, "Received L2 packets discarded");
9236 
9237 	SYSCTL_ADD_UINT(ctx, children, OID_AUTO,
9238 	    "stat_IfInRuleCheckerDiscards",
9239 	    CTLFLAG_RD, &sc->stat_IfInRuleCheckerDiscards,
9240 	    0, "Received packets discarded by rule");
9241 
9242 	SYSCTL_ADD_UINT(ctx, children, OID_AUTO,
9243 	    "stat_IfInFTQDiscards",
9244 	    CTLFLAG_RD, &sc->stat_IfInFTQDiscards,
9245 	    0, "Received packet FTQ discards");
9246 
9247 	SYSCTL_ADD_UINT(ctx, children, OID_AUTO,
9248 	    "stat_IfInMBUFDiscards",
9249 	    CTLFLAG_RD, &sc->stat_IfInMBUFDiscards,
9250 	    0, "Received packets discarded due to lack "
9251 	    "of controller buffer memory");
9252 
9253 	SYSCTL_ADD_UINT(ctx, children, OID_AUTO,
9254 	    "stat_IfInRuleCheckerP4Hit",
9255 	    CTLFLAG_RD, &sc->stat_IfInRuleCheckerP4Hit,
9256 	    0, "Received packets rule checker hits");
9257 
9258 	SYSCTL_ADD_UINT(ctx, children, OID_AUTO,
9259 	    "stat_CatchupInRuleCheckerDiscards",
9260 	    CTLFLAG_RD, &sc->stat_CatchupInRuleCheckerDiscards,
9261 	    0, "Received packets discarded in Catchup path");
9262 
9263 	SYSCTL_ADD_UINT(ctx, children, OID_AUTO,
9264 	    "stat_CatchupInFTQDiscards",
9265 	    CTLFLAG_RD, &sc->stat_CatchupInFTQDiscards,
9266 	    0, "Received packets discarded in FTQ in Catchup path");
9267 
9268 	SYSCTL_ADD_UINT(ctx, children, OID_AUTO,
9269 	    "stat_CatchupInMBUFDiscards",
9270 	    CTLFLAG_RD, &sc->stat_CatchupInMBUFDiscards,
9271 	    0, "Received packets discarded in controller "
9272 	    "buffer memory in Catchup path");
9273 
9274 	SYSCTL_ADD_UINT(ctx, children, OID_AUTO,
9275 	    "stat_CatchupInRuleCheckerP4Hit",
9276 	    CTLFLAG_RD, &sc->stat_CatchupInRuleCheckerP4Hit,
9277 	    0, "Received packets rule checker hits in Catchup path");
9278 
9279 	SYSCTL_ADD_UINT(ctx, children, OID_AUTO,
9280 	    "com_no_buffers",
9281 	    CTLFLAG_RD, &sc->com_no_buffers,
9282 	    0, "Valid packets received but no RX buffers available");
9283 
9284 #ifdef BCE_DEBUG
9285 	SYSCTL_ADD_PROC(ctx, children, OID_AUTO,
9286 	    "driver_state", CTLTYPE_INT | CTLFLAG_RW,
9287 	    (void *)sc, 0,
9288 	    bce_sysctl_driver_state, "I", "Drive state information");
9289 
9290 	SYSCTL_ADD_PROC(ctx, children, OID_AUTO,
9291 	    "hw_state", CTLTYPE_INT | CTLFLAG_RW,
9292 	    (void *)sc, 0,
9293 	    bce_sysctl_hw_state, "I", "Hardware state information");
9294 
9295 	SYSCTL_ADD_PROC(ctx, children, OID_AUTO,
9296 	    "status_block", CTLTYPE_INT | CTLFLAG_RW,
9297 	    (void *)sc, 0,
9298 	    bce_sysctl_status_block, "I", "Dump status block");
9299 
9300 	SYSCTL_ADD_PROC(ctx, children, OID_AUTO,
9301 	    "stats_block", CTLTYPE_INT | CTLFLAG_RW,
9302 	    (void *)sc, 0,
9303 	    bce_sysctl_stats_block, "I", "Dump statistics block");
9304 
9305 	SYSCTL_ADD_PROC(ctx, children, OID_AUTO,
9306 	    "stats_clear", CTLTYPE_INT | CTLFLAG_RW,
9307 	    (void *)sc, 0,
9308 	    bce_sysctl_stats_clear, "I", "Clear statistics block");
9309 
9310 	SYSCTL_ADD_PROC(ctx, children, OID_AUTO,
9311 	    "shmem_state", CTLTYPE_INT | CTLFLAG_RW,
9312 	    (void *)sc, 0,
9313 	    bce_sysctl_shmem_state, "I", "Shared memory state information");
9314 
9315 	SYSCTL_ADD_PROC(ctx, children, OID_AUTO,
9316 	    "bc_state", CTLTYPE_INT | CTLFLAG_RW,
9317 	    (void *)sc, 0,
9318 	    bce_sysctl_bc_state, "I", "Bootcode state information");
9319 
9320 	SYSCTL_ADD_PROC(ctx, children, OID_AUTO,
9321 	    "dump_rx_bd_chain", CTLTYPE_INT | CTLFLAG_RW,
9322 	    (void *)sc, 0,
9323 	    bce_sysctl_dump_rx_bd_chain, "I", "Dump RX BD chain");
9324 
9325 	SYSCTL_ADD_PROC(ctx, children, OID_AUTO,
9326 	    "dump_rx_mbuf_chain", CTLTYPE_INT | CTLFLAG_RW,
9327 	    (void *)sc, 0,
9328 	    bce_sysctl_dump_rx_mbuf_chain, "I", "Dump RX MBUF chain");
9329 
9330 	SYSCTL_ADD_PROC(ctx, children, OID_AUTO,
9331 	    "dump_tx_chain", CTLTYPE_INT | CTLFLAG_RW,
9332 	    (void *)sc, 0,
9333 	    bce_sysctl_dump_tx_chain, "I", "Dump tx_bd chain");
9334 
9335 	if (bce_hdr_split == TRUE) {
9336 		SYSCTL_ADD_PROC(ctx, children, OID_AUTO,
9337 		    "dump_pg_chain", CTLTYPE_INT | CTLFLAG_RW,
9338 		    (void *)sc, 0,
9339 		    bce_sysctl_dump_pg_chain, "I", "Dump page chain");
9340 	}
9341 
9342 	SYSCTL_ADD_PROC(ctx, children, OID_AUTO,
9343 	    "dump_ctx", CTLTYPE_INT | CTLFLAG_RW,
9344 	    (void *)sc, 0,
9345 	    bce_sysctl_dump_ctx, "I", "Dump context memory");
9346 
9347 	SYSCTL_ADD_PROC(ctx, children, OID_AUTO,
9348 	    "breakpoint", CTLTYPE_INT | CTLFLAG_RW,
9349 	    (void *)sc, 0,
9350 	    bce_sysctl_breakpoint, "I", "Driver breakpoint");
9351 
9352 	SYSCTL_ADD_PROC(ctx, children, OID_AUTO,
9353 	    "reg_read", CTLTYPE_INT | CTLFLAG_RW,
9354 	    (void *)sc, 0,
9355 	    bce_sysctl_reg_read, "I", "Register read");
9356 
9357 	SYSCTL_ADD_PROC(ctx, children, OID_AUTO,
9358 	    "nvram_read", CTLTYPE_INT | CTLFLAG_RW,
9359 	    (void *)sc, 0,
9360 	    bce_sysctl_nvram_read, "I", "NVRAM read");
9361 
9362 	SYSCTL_ADD_PROC(ctx, children, OID_AUTO,
9363 	    "phy_read", CTLTYPE_INT | CTLFLAG_RW,
9364 	    (void *)sc, 0,
9365 	    bce_sysctl_phy_read, "I", "PHY register read");
9366 
9367 #endif
9368 
9369 	DBEXIT(BCE_VERBOSE_MISC);
9370 }
9371 
9372 
9373 /****************************************************************************/
9374 /* BCE Debug Routines                                                       */
9375 /****************************************************************************/
9376 #ifdef BCE_DEBUG
9377 
9378 /****************************************************************************/
9379 /* Freezes the controller to allow for a cohesive state dump.               */
9380 /*                                                                          */
9381 /* Returns:                                                                 */
9382 /*   Nothing.                                                               */
9383 /****************************************************************************/
9384 static __attribute__ ((noinline)) void
9385 bce_freeze_controller(struct bce_softc *sc)
9386 {
9387 	u32 val;
9388 	val = REG_RD(sc, BCE_MISC_COMMAND);
9389 	val |= BCE_MISC_COMMAND_DISABLE_ALL;
9390 	REG_WR(sc, BCE_MISC_COMMAND, val);
9391 }
9392 
9393 
9394 /****************************************************************************/
9395 /* Unfreezes the controller after a freeze operation.  This may not always  */
9396 /* work and the controller will require a reset!                            */
9397 /*                                                                          */
9398 /* Returns:                                                                 */
9399 /*   Nothing.                                                               */
9400 /****************************************************************************/
9401 static __attribute__ ((noinline)) void
9402 bce_unfreeze_controller(struct bce_softc *sc)
9403 {
9404 	u32 val;
9405 	val = REG_RD(sc, BCE_MISC_COMMAND);
9406 	val |= BCE_MISC_COMMAND_ENABLE_ALL;
9407 	REG_WR(sc, BCE_MISC_COMMAND, val);
9408 }
9409 
9410 
9411 /****************************************************************************/
9412 /* Prints out Ethernet frame information from an mbuf.                      */
9413 /*                                                                          */
9414 /* Partially decode an Ethernet frame to look at some important headers.    */
9415 /*                                                                          */
9416 /* Returns:                                                                 */
9417 /*   Nothing.                                                               */
9418 /****************************************************************************/
9419 static __attribute__ ((noinline)) void
9420 bce_dump_enet(struct bce_softc *sc, struct mbuf *m)
9421 {
9422 	struct ether_vlan_header *eh;
9423 	u16 etype;
9424 	int ehlen;
9425 	struct ip *ip;
9426 	struct tcphdr *th;
9427 	struct udphdr *uh;
9428 	struct arphdr *ah;
9429 
9430 	BCE_PRINTF(
9431 	    "-----------------------------"
9432 	    " Frame Decode "
9433 	    "-----------------------------\n");
9434 
9435 	eh = mtod(m, struct ether_vlan_header *);
9436 
9437 	/* Handle VLAN encapsulation if present. */
9438 	if (eh->evl_encap_proto == htons(ETHERTYPE_VLAN)) {
9439 		etype = ntohs(eh->evl_proto);
9440 		ehlen = ETHER_HDR_LEN + ETHER_VLAN_ENCAP_LEN;
9441 	} else {
9442 		etype = ntohs(eh->evl_encap_proto);
9443 		ehlen = ETHER_HDR_LEN;
9444 	}
9445 
9446 	/* ToDo: Add VLAN output. */
9447 	BCE_PRINTF("enet: dest = %6D, src = %6D, type = 0x%04X, hlen = %d\n",
9448 	    eh->evl_dhost, ":", eh->evl_shost, ":", etype, ehlen);
9449 
9450 	switch (etype) {
9451 	case ETHERTYPE_IP:
9452 		ip = (struct ip *)(m->m_data + ehlen);
9453 		BCE_PRINTF("--ip: dest = 0x%08X , src = 0x%08X, "
9454 		    "len = %d bytes, protocol = 0x%02X, xsum = 0x%04X\n",
9455 		    ntohl(ip->ip_dst.s_addr), ntohl(ip->ip_src.s_addr),
9456 		    ntohs(ip->ip_len), ip->ip_p, ntohs(ip->ip_sum));
9457 
9458 		switch (ip->ip_p) {
9459 		case IPPROTO_TCP:
9460 			th = (struct tcphdr *)((caddr_t)ip + (ip->ip_hl << 2));
9461 			BCE_PRINTF("-tcp: dest = %d, src = %d, hlen = "
9462 			    "%d bytes, flags = 0x%b, csum = 0x%04X\n",
9463 			    ntohs(th->th_dport), ntohs(th->th_sport),
9464 			    (th->th_off << 2), th->th_flags,
9465 			    "\20\10CWR\07ECE\06URG\05ACK\04PSH\03RST"
9466 			    "\02SYN\01FIN", ntohs(th->th_sum));
9467 			break;
9468 		case IPPROTO_UDP:
9469 			uh = (struct udphdr *)((caddr_t)ip + (ip->ip_hl << 2));
9470 			BCE_PRINTF("-udp: dest = %d, src = %d, len = %d "
9471 			    "bytes, csum = 0x%04X\n", ntohs(uh->uh_dport),
9472 			    ntohs(uh->uh_sport), ntohs(uh->uh_ulen),
9473 			    ntohs(uh->uh_sum));
9474 			break;
9475 		case IPPROTO_ICMP:
9476 			BCE_PRINTF("icmp:\n");
9477 			break;
9478 		default:
9479 			BCE_PRINTF("----: Other IP protocol.\n");
9480 			}
9481 		break;
9482 	case ETHERTYPE_IPV6:
9483 		BCE_PRINTF("ipv6: No decode supported.\n");
9484 		break;
9485 	case ETHERTYPE_ARP:
9486 		BCE_PRINTF("-arp: ");
9487 		ah = (struct arphdr *) (m->m_data + ehlen);
9488 		switch (ntohs(ah->ar_op)) {
9489 		case ARPOP_REVREQUEST:
9490 			printf("reverse ARP request\n");
9491 			break;
9492 		case ARPOP_REVREPLY:
9493 			printf("reverse ARP reply\n");
9494 			break;
9495 		case ARPOP_REQUEST:
9496 			printf("ARP request\n");
9497 			break;
9498 		case ARPOP_REPLY:
9499 			printf("ARP reply\n");
9500 			break;
9501 		default:
9502 			printf("other ARP operation\n");
9503 		}
9504 		break;
9505 	default:
9506 		BCE_PRINTF("----: Other protocol.\n");
9507 	}
9508 
9509 	BCE_PRINTF(
9510 		"-----------------------------"
9511 		"--------------"
9512 		"-----------------------------\n");
9513 }
9514 
9515 
9516 /****************************************************************************/
9517 /* Prints out information about an mbuf.                                    */
9518 /*                                                                          */
9519 /* Returns:                                                                 */
9520 /*   Nothing.                                                               */
9521 /****************************************************************************/
9522 static __attribute__ ((noinline)) void
9523 bce_dump_mbuf(struct bce_softc *sc, struct mbuf *m)
9524 {
9525 	struct mbuf *mp = m;
9526 
9527 	if (m == NULL) {
9528 		BCE_PRINTF("mbuf: null pointer\n");
9529 		return;
9530 	}
9531 
9532 	while (mp) {
9533 		BCE_PRINTF("mbuf: %p, m_len = %d, m_flags = 0x%b, "
9534 		    "m_data = %p\n", mp, mp->m_len, mp->m_flags,
9535 		    "\20\1M_EXT\2M_PKTHDR\3M_EOR\4M_RDONLY", mp->m_data);
9536 
9537 		if (mp->m_flags & M_PKTHDR) {
9538 			BCE_PRINTF("- m_pkthdr: len = %d, flags = 0x%b, "
9539 			    "csum_flags = %b\n", mp->m_pkthdr.len,
9540 			    mp->m_flags, "\20\12M_BCAST\13M_MCAST\14M_FRAG"
9541 			    "\15M_FIRSTFRAG\16M_LASTFRAG\21M_VLANTAG"
9542 			    "\22M_PROMISC\23M_NOFREE",
9543 			    mp->m_pkthdr.csum_flags,
9544 			    "\20\1CSUM_IP\2CSUM_TCP\3CSUM_UDP\4CSUM_IP_FRAGS"
9545 			    "\5CSUM_FRAGMENT\6CSUM_TSO\11CSUM_IP_CHECKED"
9546 			    "\12CSUM_IP_VALID\13CSUM_DATA_VALID"
9547 			    "\14CSUM_PSEUDO_HDR");
9548 		}
9549 
9550 		if (mp->m_flags & M_EXT) {
9551 			BCE_PRINTF("- m_ext: %p, ext_size = %d, type = ",
9552 			    mp->m_ext.ext_buf, mp->m_ext.ext_size);
9553 			switch (mp->m_ext.ext_type) {
9554 			case EXT_CLUSTER:
9555 				printf("EXT_CLUSTER\n"); break;
9556 			case EXT_SFBUF:
9557 				printf("EXT_SFBUF\n"); break;
9558 			case EXT_JUMBO9:
9559 				printf("EXT_JUMBO9\n"); break;
9560 			case EXT_JUMBO16:
9561 				printf("EXT_JUMBO16\n"); break;
9562 			case EXT_PACKET:
9563 				printf("EXT_PACKET\n"); break;
9564 			case EXT_MBUF:
9565 				printf("EXT_MBUF\n"); break;
9566 			case EXT_NET_DRV:
9567 				printf("EXT_NET_DRV\n"); break;
9568 			case EXT_MOD_TYPE:
9569 				printf("EXT_MDD_TYPE\n"); break;
9570 			case EXT_DISPOSABLE:
9571 				printf("EXT_DISPOSABLE\n"); break;
9572 			case EXT_EXTREF:
9573 				printf("EXT_EXTREF\n"); break;
9574 			default:
9575 				printf("UNKNOWN\n");
9576 			}
9577 		}
9578 
9579 		mp = mp->m_next;
9580 	}
9581 }
9582 
9583 
9584 /****************************************************************************/
9585 /* Prints out the mbufs in the TX mbuf chain.                               */
9586 /*                                                                          */
9587 /* Returns:                                                                 */
9588 /*   Nothing.                                                               */
9589 /****************************************************************************/
9590 static __attribute__ ((noinline)) void
9591 bce_dump_tx_mbuf_chain(struct bce_softc *sc, u16 chain_prod, int count)
9592 {
9593 	struct mbuf *m;
9594 
9595 	BCE_PRINTF(
9596 		"----------------------------"
9597 		"  tx mbuf data  "
9598 		"----------------------------\n");
9599 
9600 	for (int i = 0; i < count; i++) {
9601 	 	m = sc->tx_mbuf_ptr[chain_prod];
9602 		BCE_PRINTF("txmbuf[0x%04X]\n", chain_prod);
9603 		bce_dump_mbuf(sc, m);
9604 		chain_prod = TX_CHAIN_IDX(NEXT_TX_BD(chain_prod));
9605 	}
9606 
9607 	BCE_PRINTF(
9608 		"----------------------------"
9609 		"----------------"
9610 		"----------------------------\n");
9611 }
9612 
9613 
9614 /****************************************************************************/
9615 /* Prints out the mbufs in the RX mbuf chain.                               */
9616 /*                                                                          */
9617 /* Returns:                                                                 */
9618 /*   Nothing.                                                               */
9619 /****************************************************************************/
9620 static __attribute__ ((noinline)) void
9621 bce_dump_rx_mbuf_chain(struct bce_softc *sc, u16 chain_prod, int count)
9622 {
9623 	struct mbuf *m;
9624 
9625 	BCE_PRINTF(
9626 		"----------------------------"
9627 		"  rx mbuf data  "
9628 		"----------------------------\n");
9629 
9630 	for (int i = 0; i < count; i++) {
9631 	 	m = sc->rx_mbuf_ptr[chain_prod];
9632 		BCE_PRINTF("rxmbuf[0x%04X]\n", chain_prod);
9633 		bce_dump_mbuf(sc, m);
9634 		chain_prod = RX_CHAIN_IDX(NEXT_RX_BD(chain_prod));
9635 	}
9636 
9637 
9638 	BCE_PRINTF(
9639 		"----------------------------"
9640 		"----------------"
9641 		"----------------------------\n");
9642 }
9643 
9644 
9645 /****************************************************************************/
9646 /* Prints out the mbufs in the mbuf page chain.                             */
9647 /*                                                                          */
9648 /* Returns:                                                                 */
9649 /*   Nothing.                                                               */
9650 /****************************************************************************/
9651 static __attribute__ ((noinline)) void
9652 bce_dump_pg_mbuf_chain(struct bce_softc *sc, u16 chain_prod, int count)
9653 {
9654 	struct mbuf *m;
9655 
9656 	BCE_PRINTF(
9657 		"----------------------------"
9658 		"  pg mbuf data  "
9659 		"----------------------------\n");
9660 
9661 	for (int i = 0; i < count; i++) {
9662 	 	m = sc->pg_mbuf_ptr[chain_prod];
9663 		BCE_PRINTF("pgmbuf[0x%04X]\n", chain_prod);
9664 		bce_dump_mbuf(sc, m);
9665 		chain_prod = PG_CHAIN_IDX(NEXT_PG_BD(chain_prod));
9666 	}
9667 
9668 
9669 	BCE_PRINTF(
9670 		"----------------------------"
9671 		"----------------"
9672 		"----------------------------\n");
9673 }
9674 
9675 
9676 /****************************************************************************/
9677 /* Prints out a tx_bd structure.                                            */
9678 /*                                                                          */
9679 /* Returns:                                                                 */
9680 /*   Nothing.                                                               */
9681 /****************************************************************************/
9682 static __attribute__ ((noinline)) void
9683 bce_dump_txbd(struct bce_softc *sc, int idx, struct tx_bd *txbd)
9684 {
9685 	int i = 0;
9686 
9687 	if (idx > MAX_TX_BD_ALLOC)
9688 		/* Index out of range. */
9689 		BCE_PRINTF("tx_bd[0x%04X]: Invalid tx_bd index!\n", idx);
9690 	else if ((idx & USABLE_TX_BD_PER_PAGE) == USABLE_TX_BD_PER_PAGE)
9691 		/* TX Chain page pointer. */
9692 		BCE_PRINTF("tx_bd[0x%04X]: haddr = 0x%08X:%08X, chain page "
9693 		    "pointer\n", idx, txbd->tx_bd_haddr_hi,
9694 		    txbd->tx_bd_haddr_lo);
9695 	else {
9696 		/* Normal tx_bd entry. */
9697 		BCE_PRINTF("tx_bd[0x%04X]: haddr = 0x%08X:%08X, "
9698 		    "mss_nbytes = 0x%08X, vlan tag = 0x%04X, flags = "
9699 		    "0x%04X (", idx, txbd->tx_bd_haddr_hi,
9700 		    txbd->tx_bd_haddr_lo, txbd->tx_bd_mss_nbytes,
9701 		    txbd->tx_bd_vlan_tag, txbd->tx_bd_flags);
9702 
9703 		if (txbd->tx_bd_flags & TX_BD_FLAGS_CONN_FAULT) {
9704 			if (i>0)
9705 				printf("|");
9706 			printf("CONN_FAULT");
9707 			i++;
9708 		}
9709 
9710 		if (txbd->tx_bd_flags & TX_BD_FLAGS_TCP_UDP_CKSUM) {
9711 			if (i>0)
9712 				printf("|");
9713 			printf("TCP_UDP_CKSUM");
9714 			i++;
9715 		}
9716 
9717 		if (txbd->tx_bd_flags & TX_BD_FLAGS_IP_CKSUM) {
9718 			if (i>0)
9719 				printf("|");
9720 			printf("IP_CKSUM");
9721 			i++;
9722 		}
9723 
9724 		if (txbd->tx_bd_flags & TX_BD_FLAGS_VLAN_TAG) {
9725 			if (i>0)
9726 				printf("|");
9727 			printf("VLAN");
9728 			i++;
9729 		}
9730 
9731 		if (txbd->tx_bd_flags & TX_BD_FLAGS_COAL_NOW) {
9732 			if (i>0)
9733 				printf("|");
9734 			printf("COAL_NOW");
9735 			i++;
9736 		}
9737 
9738 		if (txbd->tx_bd_flags & TX_BD_FLAGS_DONT_GEN_CRC) {
9739 			if (i>0)
9740 				printf("|");
9741 			printf("DONT_GEN_CRC");
9742 			i++;
9743 		}
9744 
9745 		if (txbd->tx_bd_flags & TX_BD_FLAGS_START) {
9746 			if (i>0)
9747 				printf("|");
9748 			printf("START");
9749 			i++;
9750 		}
9751 
9752 		if (txbd->tx_bd_flags & TX_BD_FLAGS_END) {
9753 			if (i>0)
9754 				printf("|");
9755 			printf("END");
9756 			i++;
9757 		}
9758 
9759 		if (txbd->tx_bd_flags & TX_BD_FLAGS_SW_LSO) {
9760 			if (i>0)
9761 				printf("|");
9762 			printf("LSO");
9763 			i++;
9764 		}
9765 
9766 		if (txbd->tx_bd_flags & TX_BD_FLAGS_SW_OPTION_WORD) {
9767 			if (i>0)
9768 				printf("|");
9769 			printf("SW_OPTION=%d", ((txbd->tx_bd_flags &
9770 			    TX_BD_FLAGS_SW_OPTION_WORD) >> 8)); i++;
9771 		}
9772 
9773 		if (txbd->tx_bd_flags & TX_BD_FLAGS_SW_FLAGS) {
9774 			if (i>0)
9775 				printf("|");
9776 			printf("SW_FLAGS");
9777 			i++;
9778 		}
9779 
9780 		if (txbd->tx_bd_flags & TX_BD_FLAGS_SW_SNAP) {
9781 			if (i>0)
9782 				printf("|");
9783 			printf("SNAP)");
9784 		} else {
9785 			printf(")\n");
9786 		}
9787 	}
9788 }
9789 
9790 
9791 /****************************************************************************/
9792 /* Prints out a rx_bd structure.                                            */
9793 /*                                                                          */
9794 /* Returns:                                                                 */
9795 /*   Nothing.                                                               */
9796 /****************************************************************************/
9797 static __attribute__ ((noinline)) void
9798 bce_dump_rxbd(struct bce_softc *sc, int idx, struct rx_bd *rxbd)
9799 {
9800 	if (idx > MAX_RX_BD_ALLOC)
9801 		/* Index out of range. */
9802 		BCE_PRINTF("rx_bd[0x%04X]: Invalid rx_bd index!\n", idx);
9803 	else if ((idx & USABLE_RX_BD_PER_PAGE) == USABLE_RX_BD_PER_PAGE)
9804 		/* RX Chain page pointer. */
9805 		BCE_PRINTF("rx_bd[0x%04X]: haddr = 0x%08X:%08X, chain page "
9806 		    "pointer\n", idx, rxbd->rx_bd_haddr_hi,
9807 		    rxbd->rx_bd_haddr_lo);
9808 	else
9809 		/* Normal rx_bd entry. */
9810 		BCE_PRINTF("rx_bd[0x%04X]: haddr = 0x%08X:%08X, nbytes = "
9811 		    "0x%08X, flags = 0x%08X\n", idx, rxbd->rx_bd_haddr_hi,
9812 		    rxbd->rx_bd_haddr_lo, rxbd->rx_bd_len,
9813 		    rxbd->rx_bd_flags);
9814 }
9815 
9816 
9817 /****************************************************************************/
9818 /* Prints out a rx_bd structure in the page chain.                          */
9819 /*                                                                          */
9820 /* Returns:                                                                 */
9821 /*   Nothing.                                                               */
9822 /****************************************************************************/
9823 static __attribute__ ((noinline)) void
9824 bce_dump_pgbd(struct bce_softc *sc, int idx, struct rx_bd *pgbd)
9825 {
9826 	if (idx > MAX_PG_BD_ALLOC)
9827 		/* Index out of range. */
9828 		BCE_PRINTF("pg_bd[0x%04X]: Invalid pg_bd index!\n", idx);
9829 	else if ((idx & USABLE_PG_BD_PER_PAGE) == USABLE_PG_BD_PER_PAGE)
9830 		/* Page Chain page pointer. */
9831 		BCE_PRINTF("px_bd[0x%04X]: haddr = 0x%08X:%08X, chain page pointer\n",
9832 			idx, pgbd->rx_bd_haddr_hi, pgbd->rx_bd_haddr_lo);
9833 	else
9834 		/* Normal rx_bd entry. */
9835 		BCE_PRINTF("pg_bd[0x%04X]: haddr = 0x%08X:%08X, nbytes = 0x%08X, "
9836 			"flags = 0x%08X\n", idx,
9837 			pgbd->rx_bd_haddr_hi, pgbd->rx_bd_haddr_lo,
9838 			pgbd->rx_bd_len, pgbd->rx_bd_flags);
9839 }
9840 
9841 
9842 /****************************************************************************/
9843 /* Prints out a l2_fhdr structure.                                          */
9844 /*                                                                          */
9845 /* Returns:                                                                 */
9846 /*   Nothing.                                                               */
9847 /****************************************************************************/
9848 static __attribute__ ((noinline)) void
9849 bce_dump_l2fhdr(struct bce_softc *sc, int idx, struct l2_fhdr *l2fhdr)
9850 {
9851 	BCE_PRINTF("l2_fhdr[0x%04X]: status = 0x%b, "
9852 		"pkt_len = %d, vlan = 0x%04x, ip_xsum/hdr_len = 0x%04X, "
9853 		"tcp_udp_xsum = 0x%04X\n", idx,
9854 		l2fhdr->l2_fhdr_status, BCE_L2FHDR_PRINTFB,
9855 		l2fhdr->l2_fhdr_pkt_len, l2fhdr->l2_fhdr_vlan_tag,
9856 		l2fhdr->l2_fhdr_ip_xsum, l2fhdr->l2_fhdr_tcp_udp_xsum);
9857 }
9858 
9859 
9860 /****************************************************************************/
9861 /* Prints out context memory info.  (Only useful for CID 0 to 16.)          */
9862 /*                                                                          */
9863 /* Returns:                                                                 */
9864 /*   Nothing.                                                               */
9865 /****************************************************************************/
9866 static __attribute__ ((noinline)) void
9867 bce_dump_ctx(struct bce_softc *sc, u16 cid)
9868 {
9869 	if (cid > TX_CID) {
9870 		BCE_PRINTF(" Unknown CID\n");
9871 		return;
9872 	}
9873 
9874 	BCE_PRINTF(
9875 	    "----------------------------"
9876 	    "    CTX Data    "
9877 	    "----------------------------\n");
9878 
9879 	BCE_PRINTF("     0x%04X - (CID) Context ID\n", cid);
9880 
9881 	if (cid == RX_CID) {
9882 		BCE_PRINTF(" 0x%08X - (L2CTX_RX_HOST_BDIDX) host rx "
9883 		   "producer index\n",
9884 		    CTX_RD(sc, GET_CID_ADDR(cid), BCE_L2CTX_RX_HOST_BDIDX));
9885 		BCE_PRINTF(" 0x%08X - (L2CTX_RX_HOST_BSEQ) host "
9886 		    "byte sequence\n", CTX_RD(sc, GET_CID_ADDR(cid),
9887 		    BCE_L2CTX_RX_HOST_BSEQ));
9888 		BCE_PRINTF(" 0x%08X - (L2CTX_RX_NX_BSEQ) h/w byte sequence\n",
9889 		    CTX_RD(sc, GET_CID_ADDR(cid), BCE_L2CTX_RX_NX_BSEQ));
9890 		BCE_PRINTF(" 0x%08X - (L2CTX_RX_NX_BDHADDR_HI) h/w buffer "
9891 		    "descriptor address\n",
9892  		    CTX_RD(sc, GET_CID_ADDR(cid), BCE_L2CTX_RX_NX_BDHADDR_HI));
9893 		BCE_PRINTF(" 0x%08X - (L2CTX_RX_NX_BDHADDR_LO) h/w buffer "
9894 		    "descriptor address\n",
9895 		    CTX_RD(sc, GET_CID_ADDR(cid), BCE_L2CTX_RX_NX_BDHADDR_LO));
9896 		BCE_PRINTF(" 0x%08X - (L2CTX_RX_NX_BDIDX) h/w rx consumer "
9897 		    "index\n", CTX_RD(sc, GET_CID_ADDR(cid),
9898 		    BCE_L2CTX_RX_NX_BDIDX));
9899 		BCE_PRINTF(" 0x%08X - (L2CTX_RX_HOST_PG_BDIDX) host page "
9900 		    "producer index\n", CTX_RD(sc, GET_CID_ADDR(cid),
9901 		    BCE_L2CTX_RX_HOST_PG_BDIDX));
9902 		BCE_PRINTF(" 0x%08X - (L2CTX_RX_PG_BUF_SIZE) host rx_bd/page "
9903 		    "buffer size\n", CTX_RD(sc, GET_CID_ADDR(cid),
9904 		    BCE_L2CTX_RX_PG_BUF_SIZE));
9905 		BCE_PRINTF(" 0x%08X - (L2CTX_RX_NX_PG_BDHADDR_HI) h/w page "
9906 		    "chain address\n", CTX_RD(sc, GET_CID_ADDR(cid),
9907 		    BCE_L2CTX_RX_NX_PG_BDHADDR_HI));
9908 		BCE_PRINTF(" 0x%08X - (L2CTX_RX_NX_PG_BDHADDR_LO) h/w page "
9909 		    "chain address\n", CTX_RD(sc, GET_CID_ADDR(cid),
9910 		    BCE_L2CTX_RX_NX_PG_BDHADDR_LO));
9911 		BCE_PRINTF(" 0x%08X - (L2CTX_RX_NX_PG_BDIDX) h/w page "
9912 		    "consumer index\n",	CTX_RD(sc, GET_CID_ADDR(cid),
9913 		    BCE_L2CTX_RX_NX_PG_BDIDX));
9914 	} else if (cid == TX_CID) {
9915 		if ((BCE_CHIP_NUM(sc) == BCE_CHIP_NUM_5709) ||
9916 		    (BCE_CHIP_NUM(sc) == BCE_CHIP_NUM_5716)) {
9917 			BCE_PRINTF(" 0x%08X - (L2CTX_TX_TYPE_XI) ctx type\n",
9918 			    CTX_RD(sc, GET_CID_ADDR(cid),
9919 			    BCE_L2CTX_TX_TYPE_XI));
9920 			BCE_PRINTF(" 0x%08X - (L2CTX_CMD_TX_TYPE_XI) ctx "
9921 			    "cmd\n", CTX_RD(sc, GET_CID_ADDR(cid),
9922 			    BCE_L2CTX_TX_CMD_TYPE_XI));
9923 			BCE_PRINTF(" 0x%08X - (L2CTX_TX_TBDR_BDHADDR_HI_XI) "
9924 			    "h/w buffer descriptor address\n",
9925 			    CTX_RD(sc, GET_CID_ADDR(cid),
9926 			    BCE_L2CTX_TX_TBDR_BHADDR_HI_XI));
9927 			BCE_PRINTF(" 0x%08X - (L2CTX_TX_TBDR_BHADDR_LO_XI) "
9928 			    "h/w buffer	descriptor address\n",
9929 			    CTX_RD(sc, GET_CID_ADDR(cid),
9930 			    BCE_L2CTX_TX_TBDR_BHADDR_LO_XI));
9931 			BCE_PRINTF(" 0x%08X - (L2CTX_TX_HOST_BIDX_XI) "
9932 			    "host producer index\n",
9933 			    CTX_RD(sc, GET_CID_ADDR(cid),
9934 			    BCE_L2CTX_TX_HOST_BIDX_XI));
9935 			BCE_PRINTF(" 0x%08X - (L2CTX_TX_HOST_BSEQ_XI) "
9936 			    "host byte sequence\n",
9937 			    CTX_RD(sc, GET_CID_ADDR(cid),
9938 			    BCE_L2CTX_TX_HOST_BSEQ_XI));
9939 		} else {
9940 			BCE_PRINTF(" 0x%08X - (L2CTX_TX_TYPE) ctx type\n",
9941 			    CTX_RD(sc, GET_CID_ADDR(cid), BCE_L2CTX_TX_TYPE));
9942 			BCE_PRINTF(" 0x%08X - (L2CTX_TX_CMD_TYPE) ctx cmd\n",
9943 			    CTX_RD(sc, GET_CID_ADDR(cid),
9944 			    BCE_L2CTX_TX_CMD_TYPE));
9945 			BCE_PRINTF(" 0x%08X - (L2CTX_TX_TBDR_BDHADDR_HI) "
9946 			    "h/w buffer	descriptor address\n",
9947 			    CTX_RD(sc, GET_CID_ADDR(cid),
9948 			    BCE_L2CTX_TX_TBDR_BHADDR_HI));
9949 			BCE_PRINTF(" 0x%08X - (L2CTX_TX_TBDR_BHADDR_LO) "
9950 			    "h/w buffer	descriptor address\n",
9951 			    CTX_RD(sc, GET_CID_ADDR(cid),
9952 			    BCE_L2CTX_TX_TBDR_BHADDR_LO));
9953 			BCE_PRINTF(" 0x%08X - (L2CTX_TX_HOST_BIDX) host "
9954 			    "producer index\n", CTX_RD(sc, GET_CID_ADDR(cid),
9955 			    BCE_L2CTX_TX_HOST_BIDX));
9956 			BCE_PRINTF(" 0x%08X - (L2CTX_TX_HOST_BSEQ) host byte "
9957 			    "sequence\n", CTX_RD(sc, GET_CID_ADDR(cid),
9958 			    BCE_L2CTX_TX_HOST_BSEQ));
9959 		}
9960 	}
9961 
9962 	BCE_PRINTF(
9963 	   "----------------------------"
9964 	   "    Raw CTX     "
9965 	   "----------------------------\n");
9966 
9967 	for (int i = 0x0; i < 0x300; i += 0x10) {
9968 		BCE_PRINTF("0x%04X: 0x%08X 0x%08X 0x%08X 0x%08X\n", i,
9969 		   CTX_RD(sc, GET_CID_ADDR(cid), i),
9970 		   CTX_RD(sc, GET_CID_ADDR(cid), i + 0x4),
9971 		   CTX_RD(sc, GET_CID_ADDR(cid), i + 0x8),
9972 		   CTX_RD(sc, GET_CID_ADDR(cid), i + 0xc));
9973 	}
9974 
9975 
9976 	BCE_PRINTF(
9977 	   "----------------------------"
9978 	   "----------------"
9979 	   "----------------------------\n");
9980 }
9981 
9982 
9983 /****************************************************************************/
9984 /* Prints out the FTQ data.                                                 */
9985 /*                                                                          */
9986 /* Returns:                                                                */
9987 /*   Nothing.                                                               */
9988 /****************************************************************************/
9989 static __attribute__ ((noinline)) void
9990 bce_dump_ftqs(struct bce_softc *sc)
9991 {
9992 	u32 cmd, ctl, cur_depth, max_depth, valid_cnt, val;
9993 
9994 	BCE_PRINTF(
9995 	    "----------------------------"
9996 	    "    FTQ Data    "
9997 	    "----------------------------\n");
9998 
9999 	BCE_PRINTF("   FTQ    Command    Control   Depth_Now  "
10000 	    "Max_Depth  Valid_Cnt \n");
10001 	BCE_PRINTF(" ------- ---------- ---------- ---------- "
10002 	    "---------- ----------\n");
10003 
10004 	/* Setup the generic statistic counters for the FTQ valid count. */
10005 	val = (BCE_HC_STAT_GEN_SEL_0_GEN_SEL_0_RV2PPQ_VALID_CNT << 24) |
10006 	    (BCE_HC_STAT_GEN_SEL_0_GEN_SEL_0_RXPCQ_VALID_CNT  << 16) |
10007 	    (BCE_HC_STAT_GEN_SEL_0_GEN_SEL_0_RXPQ_VALID_CNT   <<  8) |
10008 	    (BCE_HC_STAT_GEN_SEL_0_GEN_SEL_0_RLUPQ_VALID_CNT);
10009 	REG_WR(sc, BCE_HC_STAT_GEN_SEL_0, val);
10010 
10011 	val = (BCE_HC_STAT_GEN_SEL_0_GEN_SEL_0_TSCHQ_VALID_CNT  << 24) |
10012 	    (BCE_HC_STAT_GEN_SEL_0_GEN_SEL_0_RDMAQ_VALID_CNT  << 16) |
10013 	    (BCE_HC_STAT_GEN_SEL_0_GEN_SEL_0_RV2PTQ_VALID_CNT <<  8) |
10014 	    (BCE_HC_STAT_GEN_SEL_0_GEN_SEL_0_RV2PMQ_VALID_CNT);
10015 	REG_WR(sc, BCE_HC_STAT_GEN_SEL_1, val);
10016 
10017 	val = (BCE_HC_STAT_GEN_SEL_0_GEN_SEL_0_TPATQ_VALID_CNT  << 24) |
10018 	    (BCE_HC_STAT_GEN_SEL_0_GEN_SEL_0_TDMAQ_VALID_CNT  << 16) |
10019 	    (BCE_HC_STAT_GEN_SEL_0_GEN_SEL_0_TXPQ_VALID_CNT   <<  8) |
10020 	    (BCE_HC_STAT_GEN_SEL_0_GEN_SEL_0_TBDRQ_VALID_CNT);
10021 	REG_WR(sc, BCE_HC_STAT_GEN_SEL_2, val);
10022 
10023 	val = (BCE_HC_STAT_GEN_SEL_0_GEN_SEL_0_COMQ_VALID_CNT   << 24) |
10024 	    (BCE_HC_STAT_GEN_SEL_0_GEN_SEL_0_COMTQ_VALID_CNT  << 16) |
10025 	    (BCE_HC_STAT_GEN_SEL_0_GEN_SEL_0_COMXQ_VALID_CNT  <<  8) |
10026 	    (BCE_HC_STAT_GEN_SEL_0_GEN_SEL_0_TASQ_VALID_CNT);
10027 	REG_WR(sc, BCE_HC_STAT_GEN_SEL_3, val);
10028 
10029 	/* Input queue to the Receive Lookup state machine */
10030 	cmd = REG_RD(sc, BCE_RLUP_FTQ_CMD);
10031 	ctl = REG_RD(sc, BCE_RLUP_FTQ_CTL);
10032 	cur_depth = (ctl & BCE_RLUP_FTQ_CTL_CUR_DEPTH) >> 22;
10033 	max_depth = (ctl & BCE_RLUP_FTQ_CTL_MAX_DEPTH) >> 12;
10034 	valid_cnt = REG_RD(sc, BCE_HC_STAT_GEN_STAT0);
10035 	BCE_PRINTF(" RLUP    0x%08X 0x%08X 0x%08X 0x%08X 0x%08X\n",
10036 	    cmd, ctl, cur_depth, max_depth, valid_cnt);
10037 
10038 	/* Input queue to the Receive Processor */
10039 	cmd = REG_RD_IND(sc, BCE_RXP_FTQ_CMD);
10040 	ctl = REG_RD_IND(sc, BCE_RXP_FTQ_CTL);
10041 	cur_depth = (ctl & BCE_RXP_FTQ_CTL_CUR_DEPTH) >> 22;
10042 	max_depth = (ctl & BCE_RXP_FTQ_CTL_MAX_DEPTH) >> 12;
10043 	valid_cnt = REG_RD(sc, BCE_HC_STAT_GEN_STAT1);
10044 	BCE_PRINTF(" RXP     0x%08X 0x%08X 0x%08X 0x%08X 0x%08X\n",
10045 	    cmd, ctl, cur_depth, max_depth, valid_cnt);
10046 
10047 	/* Input queue to the Recevie Processor */
10048 	cmd = REG_RD_IND(sc, BCE_RXP_CFTQ_CMD);
10049 	ctl = REG_RD_IND(sc, BCE_RXP_CFTQ_CTL);
10050 	cur_depth = (ctl & BCE_RXP_CFTQ_CTL_CUR_DEPTH) >> 22;
10051 	max_depth = (ctl & BCE_RXP_CFTQ_CTL_MAX_DEPTH) >> 12;
10052 	valid_cnt = REG_RD(sc, BCE_HC_STAT_GEN_STAT2);
10053 	BCE_PRINTF(" RXPC    0x%08X 0x%08X 0x%08X 0x%08X 0x%08X\n",
10054 	    cmd, ctl, cur_depth, max_depth, valid_cnt);
10055 
10056 	/* Input queue to the Receive Virtual to Physical state machine */
10057 	cmd = REG_RD(sc, BCE_RV2P_PFTQ_CMD);
10058 	ctl = REG_RD(sc, BCE_RV2P_PFTQ_CTL);
10059 	cur_depth = (ctl & BCE_RV2P_PFTQ_CTL_CUR_DEPTH) >> 22;
10060 	max_depth = (ctl & BCE_RV2P_PFTQ_CTL_MAX_DEPTH) >> 12;
10061 	valid_cnt = REG_RD(sc, BCE_HC_STAT_GEN_STAT3);
10062 	BCE_PRINTF(" RV2PP   0x%08X 0x%08X 0x%08X 0x%08X 0x%08X\n",
10063 	    cmd, ctl, cur_depth, max_depth, valid_cnt);
10064 
10065 	/* Input queue to the Recevie Virtual to Physical state machine */
10066 	cmd = REG_RD(sc, BCE_RV2P_MFTQ_CMD);
10067 	ctl = REG_RD(sc, BCE_RV2P_MFTQ_CTL);
10068 	cur_depth = (ctl & BCE_RV2P_MFTQ_CTL_CUR_DEPTH) >> 22;
10069 	max_depth = (ctl & BCE_RV2P_MFTQ_CTL_MAX_DEPTH) >> 12;
10070 	valid_cnt = REG_RD(sc, BCE_HC_STAT_GEN_STAT4);
10071 	BCE_PRINTF(" RV2PM   0x%08X 0x%08X 0x%08X 0x%08X 0x%08X\n",
10072 	    cmd, ctl, cur_depth, max_depth, valid_cnt);
10073 
10074 	/* Input queue to the Receive Virtual to Physical state machine */
10075 	cmd = REG_RD(sc, BCE_RV2P_TFTQ_CMD);
10076 	ctl = REG_RD(sc, BCE_RV2P_TFTQ_CTL);
10077 	cur_depth = (ctl & BCE_RV2P_TFTQ_CTL_CUR_DEPTH) >> 22;
10078 	max_depth = (ctl & BCE_RV2P_TFTQ_CTL_MAX_DEPTH) >> 12;
10079 	valid_cnt = REG_RD(sc, BCE_HC_STAT_GEN_STAT5);
10080 	BCE_PRINTF(" RV2PT   0x%08X 0x%08X 0x%08X 0x%08X 0x%08X\n",
10081 	    cmd, ctl, cur_depth, max_depth, valid_cnt);
10082 
10083 	/* Input queue to the Receive DMA state machine */
10084 	cmd = REG_RD(sc, BCE_RDMA_FTQ_CMD);
10085 	ctl = REG_RD(sc, BCE_RDMA_FTQ_CTL);
10086 	cur_depth = (ctl & BCE_RDMA_FTQ_CTL_CUR_DEPTH) >> 22;
10087 	max_depth = (ctl & BCE_RDMA_FTQ_CTL_MAX_DEPTH) >> 12;
10088 	valid_cnt = REG_RD(sc, BCE_HC_STAT_GEN_STAT6);
10089 	BCE_PRINTF(" RDMA    0x%08X 0x%08X 0x%08X 0x%08X 0x%08X\n",
10090 	    cmd, ctl, cur_depth, max_depth, valid_cnt);
10091 
10092 	/* Input queue to the Transmit Scheduler state machine */
10093 	cmd = REG_RD(sc, BCE_TSCH_FTQ_CMD);
10094 	ctl = REG_RD(sc, BCE_TSCH_FTQ_CTL);
10095 	cur_depth = (ctl & BCE_TSCH_FTQ_CTL_CUR_DEPTH) >> 22;
10096 	max_depth = (ctl & BCE_TSCH_FTQ_CTL_MAX_DEPTH) >> 12;
10097 	valid_cnt = REG_RD(sc, BCE_HC_STAT_GEN_STAT7);
10098 	BCE_PRINTF(" TSCH    0x%08X 0x%08X 0x%08X 0x%08X 0x%08X\n",
10099 	    cmd, ctl, cur_depth, max_depth, valid_cnt);
10100 
10101 	/* Input queue to the Transmit Buffer Descriptor state machine */
10102 	cmd = REG_RD(sc, BCE_TBDR_FTQ_CMD);
10103 	ctl = REG_RD(sc, BCE_TBDR_FTQ_CTL);
10104 	cur_depth = (ctl & BCE_TBDR_FTQ_CTL_CUR_DEPTH) >> 22;
10105 	max_depth = (ctl & BCE_TBDR_FTQ_CTL_MAX_DEPTH) >> 12;
10106 	valid_cnt = REG_RD(sc, BCE_HC_STAT_GEN_STAT8);
10107 	BCE_PRINTF(" TBDR    0x%08X 0x%08X 0x%08X 0x%08X 0x%08X\n",
10108 	    cmd, ctl, cur_depth, max_depth, valid_cnt);
10109 
10110 	/* Input queue to the Transmit Processor */
10111 	cmd = REG_RD_IND(sc, BCE_TXP_FTQ_CMD);
10112 	ctl = REG_RD_IND(sc, BCE_TXP_FTQ_CTL);
10113 	cur_depth = (ctl & BCE_TXP_FTQ_CTL_CUR_DEPTH) >> 22;
10114 	max_depth = (ctl & BCE_TXP_FTQ_CTL_MAX_DEPTH) >> 12;
10115 	valid_cnt = REG_RD(sc, BCE_HC_STAT_GEN_STAT9);
10116 	BCE_PRINTF(" TXP     0x%08X 0x%08X 0x%08X 0x%08X 0x%08X\n",
10117 	    cmd, ctl, cur_depth, max_depth, valid_cnt);
10118 
10119 	/* Input queue to the Transmit DMA state machine */
10120 	cmd = REG_RD(sc, BCE_TDMA_FTQ_CMD);
10121 	ctl = REG_RD(sc, BCE_TDMA_FTQ_CTL);
10122 	cur_depth = (ctl & BCE_TDMA_FTQ_CTL_CUR_DEPTH) >> 22;
10123 	max_depth = (ctl & BCE_TDMA_FTQ_CTL_MAX_DEPTH) >> 12;
10124 	valid_cnt = REG_RD(sc, BCE_HC_STAT_GEN_STAT10);
10125 	BCE_PRINTF(" TDMA    0x%08X 0x%08X 0x%08X 0x%08X 0x%08X\n",
10126 	    cmd, ctl, cur_depth, max_depth, valid_cnt);
10127 
10128 	/* Input queue to the Transmit Patch-Up Processor */
10129 	cmd = REG_RD_IND(sc, BCE_TPAT_FTQ_CMD);
10130 	ctl = REG_RD_IND(sc, BCE_TPAT_FTQ_CTL);
10131 	cur_depth = (ctl & BCE_TPAT_FTQ_CTL_CUR_DEPTH) >> 22;
10132 	max_depth = (ctl & BCE_TPAT_FTQ_CTL_MAX_DEPTH) >> 12;
10133 	valid_cnt = REG_RD(sc, BCE_HC_STAT_GEN_STAT11);
10134 	BCE_PRINTF(" TPAT    0x%08X 0x%08X 0x%08X 0x%08X 0x%08X\n",
10135 	    cmd, ctl, cur_depth, max_depth, valid_cnt);
10136 
10137 	/* Input queue to the Transmit Assembler state machine */
10138 	cmd = REG_RD_IND(sc, BCE_TAS_FTQ_CMD);
10139 	ctl = REG_RD_IND(sc, BCE_TAS_FTQ_CTL);
10140 	cur_depth = (ctl & BCE_TAS_FTQ_CTL_CUR_DEPTH) >> 22;
10141 	max_depth = (ctl & BCE_TAS_FTQ_CTL_MAX_DEPTH) >> 12;
10142 	valid_cnt = REG_RD(sc, BCE_HC_STAT_GEN_STAT12);
10143 	BCE_PRINTF(" TAS     0x%08X 0x%08X 0x%08X 0x%08X 0x%08X\n",
10144 	    cmd, ctl, cur_depth, max_depth, valid_cnt);
10145 
10146 	/* Input queue to the Completion Processor */
10147 	cmd = REG_RD_IND(sc, BCE_COM_COMXQ_FTQ_CMD);
10148 	ctl = REG_RD_IND(sc, BCE_COM_COMXQ_FTQ_CTL);
10149 	cur_depth = (ctl & BCE_COM_COMXQ_FTQ_CTL_CUR_DEPTH) >> 22;
10150 	max_depth = (ctl & BCE_COM_COMXQ_FTQ_CTL_MAX_DEPTH) >> 12;
10151 	valid_cnt = REG_RD(sc, BCE_HC_STAT_GEN_STAT13);
10152 	BCE_PRINTF(" COMX    0x%08X 0x%08X 0x%08X 0x%08X 0x%08X\n",
10153 	    cmd, ctl, cur_depth, max_depth, valid_cnt);
10154 
10155 	/* Input queue to the Completion Processor */
10156 	cmd = REG_RD_IND(sc, BCE_COM_COMTQ_FTQ_CMD);
10157 	ctl = REG_RD_IND(sc, BCE_COM_COMTQ_FTQ_CTL);
10158 	cur_depth = (ctl & BCE_COM_COMTQ_FTQ_CTL_CUR_DEPTH) >> 22;
10159 	max_depth = (ctl & BCE_COM_COMTQ_FTQ_CTL_MAX_DEPTH) >> 12;
10160 	valid_cnt = REG_RD(sc, BCE_HC_STAT_GEN_STAT14);
10161 	BCE_PRINTF(" COMT    0x%08X 0x%08X 0x%08X 0x%08X 0x%08X\n",
10162 	    cmd, ctl, cur_depth, max_depth, valid_cnt);
10163 
10164 	/* Input queue to the Completion Processor */
10165 	cmd = REG_RD_IND(sc, BCE_COM_COMQ_FTQ_CMD);
10166 	ctl = REG_RD_IND(sc, BCE_COM_COMQ_FTQ_CTL);
10167 	cur_depth = (ctl & BCE_COM_COMQ_FTQ_CTL_CUR_DEPTH) >> 22;
10168 	max_depth = (ctl & BCE_COM_COMQ_FTQ_CTL_MAX_DEPTH) >> 12;
10169 	valid_cnt = REG_RD(sc, BCE_HC_STAT_GEN_STAT15);
10170 	BCE_PRINTF(" COMX    0x%08X 0x%08X 0x%08X 0x%08X 0x%08X\n",
10171 	    cmd, ctl, cur_depth, max_depth, valid_cnt);
10172 
10173 	/* Setup the generic statistic counters for the FTQ valid count. */
10174 	val = (BCE_HC_STAT_GEN_SEL_0_GEN_SEL_0_CSQ_VALID_CNT  << 16) |
10175 	    (BCE_HC_STAT_GEN_SEL_0_GEN_SEL_0_CPQ_VALID_CNT  <<  8) |
10176 	    (BCE_HC_STAT_GEN_SEL_0_GEN_SEL_0_MGMQ_VALID_CNT);
10177 
10178 	if ((BCE_CHIP_NUM(sc) == BCE_CHIP_NUM_5709) ||
10179 	    (BCE_CHIP_NUM(sc) == BCE_CHIP_NUM_5716))
10180 		val = val |
10181 		    (BCE_HC_STAT_GEN_SEL_0_GEN_SEL_0_RV2PCSQ_VALID_CNT_XI <<
10182 		     24);
10183 	REG_WR(sc, BCE_HC_STAT_GEN_SEL_0, val);
10184 
10185 	/* Input queue to the Management Control Processor */
10186 	cmd = REG_RD_IND(sc, BCE_MCP_MCPQ_FTQ_CMD);
10187 	ctl = REG_RD_IND(sc, BCE_MCP_MCPQ_FTQ_CTL);
10188 	cur_depth = (ctl & BCE_MCP_MCPQ_FTQ_CTL_CUR_DEPTH) >> 22;
10189 	max_depth = (ctl & BCE_MCP_MCPQ_FTQ_CTL_MAX_DEPTH) >> 12;
10190 	valid_cnt = REG_RD(sc, BCE_HC_STAT_GEN_STAT0);
10191 	BCE_PRINTF(" MCP     0x%08X 0x%08X 0x%08X 0x%08X 0x%08X\n",
10192 	    cmd, ctl, cur_depth, max_depth, valid_cnt);
10193 
10194 	/* Input queue to the Command Processor */
10195 	cmd = REG_RD_IND(sc, BCE_CP_CPQ_FTQ_CMD);
10196 	ctl = REG_RD_IND(sc, BCE_CP_CPQ_FTQ_CTL);
10197 	cur_depth = (ctl & BCE_CP_CPQ_FTQ_CTL_CUR_DEPTH) >> 22;
10198 	max_depth = (ctl & BCE_CP_CPQ_FTQ_CTL_MAX_DEPTH) >> 12;
10199 	valid_cnt = REG_RD(sc, BCE_HC_STAT_GEN_STAT1);
10200 	BCE_PRINTF(" CP      0x%08X 0x%08X 0x%08X 0x%08X 0x%08X\n",
10201 	    cmd, ctl, cur_depth, max_depth, valid_cnt);
10202 
10203 	/* Input queue to the Completion Scheduler state machine */
10204 	cmd = REG_RD(sc, BCE_CSCH_CH_FTQ_CMD);
10205 	ctl = REG_RD(sc, BCE_CSCH_CH_FTQ_CTL);
10206 	cur_depth = (ctl & BCE_CSCH_CH_FTQ_CTL_CUR_DEPTH) >> 22;
10207 	max_depth = (ctl & BCE_CSCH_CH_FTQ_CTL_MAX_DEPTH) >> 12;
10208 	valid_cnt = REG_RD(sc, BCE_HC_STAT_GEN_STAT2);
10209 	BCE_PRINTF(" CS      0x%08X 0x%08X 0x%08X 0x%08X 0x%08X\n",
10210 	    cmd, ctl, cur_depth, max_depth, valid_cnt);
10211 
10212 	if ((BCE_CHIP_NUM(sc) == BCE_CHIP_NUM_5709) ||
10213 	    (BCE_CHIP_NUM(sc) == BCE_CHIP_NUM_5716)) {
10214 		/* Input queue to the RV2P Command Scheduler */
10215 		cmd = REG_RD(sc, BCE_RV2PCSR_FTQ_CMD);
10216 		ctl = REG_RD(sc, BCE_RV2PCSR_FTQ_CTL);
10217 		cur_depth = (ctl & 0xFFC00000) >> 22;
10218 		max_depth = (ctl & 0x003FF000) >> 12;
10219 		valid_cnt = REG_RD(sc, BCE_HC_STAT_GEN_STAT3);
10220 		BCE_PRINTF(" RV2PCSR 0x%08X 0x%08X 0x%08X 0x%08X 0x%08X\n",
10221 		    cmd, ctl, cur_depth, max_depth, valid_cnt);
10222 	}
10223 
10224 	BCE_PRINTF(
10225 	    "----------------------------"
10226 	    "----------------"
10227 	    "----------------------------\n");
10228 }
10229 
10230 
10231 /****************************************************************************/
10232 /* Prints out the TX chain.                                                 */
10233 /*                                                                          */
10234 /* Returns:                                                                 */
10235 /*   Nothing.                                                               */
10236 /****************************************************************************/
10237 static __attribute__ ((noinline)) void
10238 bce_dump_tx_chain(struct bce_softc *sc, u16 tx_prod, int count)
10239 {
10240 	struct tx_bd *txbd;
10241 
10242 	/* First some info about the tx_bd chain structure. */
10243 	BCE_PRINTF(
10244 	    "----------------------------"
10245 	    "  tx_bd  chain  "
10246 	    "----------------------------\n");
10247 
10248 	BCE_PRINTF("page size      = 0x%08X, tx chain pages        = 0x%08X\n",
10249 	    (u32) BCM_PAGE_SIZE, (u32) sc->tx_pages);
10250 	BCE_PRINTF("tx_bd per page = 0x%08X, usable tx_bd per page = 0x%08X\n",
10251 	    (u32) TOTAL_TX_BD_PER_PAGE, (u32) USABLE_TX_BD_PER_PAGE);
10252 	BCE_PRINTF("total tx_bd    = 0x%08X\n", (u32) TOTAL_TX_BD_ALLOC);
10253 
10254 	BCE_PRINTF(
10255 	    "----------------------------"
10256 	    "   tx_bd data   "
10257 	    "----------------------------\n");
10258 
10259 	/* Now print out a decoded list of TX buffer descriptors. */
10260 	for (int i = 0; i < count; i++) {
10261 	 	txbd = &sc->tx_bd_chain[TX_PAGE(tx_prod)][TX_IDX(tx_prod)];
10262 		bce_dump_txbd(sc, tx_prod, txbd);
10263 		tx_prod++;
10264 	}
10265 
10266 	BCE_PRINTF(
10267 	    "----------------------------"
10268 	    "----------------"
10269 	    "----------------------------\n");
10270 }
10271 
10272 
10273 /****************************************************************************/
10274 /* Prints out the RX chain.                                                 */
10275 /*                                                                          */
10276 /* Returns:                                                                 */
10277 /*   Nothing.                                                               */
10278 /****************************************************************************/
10279 static __attribute__ ((noinline)) void
10280 bce_dump_rx_bd_chain(struct bce_softc *sc, u16 rx_prod, int count)
10281 {
10282 	struct rx_bd *rxbd;
10283 
10284 	/* First some info about the rx_bd chain structure. */
10285 	BCE_PRINTF(
10286 	    "----------------------------"
10287 	    "  rx_bd  chain  "
10288 	    "----------------------------\n");
10289 
10290 	BCE_PRINTF("page size      = 0x%08X, rx chain pages        = 0x%08X\n",
10291 	    (u32) BCM_PAGE_SIZE, (u32) sc->rx_pages);
10292 
10293 	BCE_PRINTF("rx_bd per page = 0x%08X, usable rx_bd per page = 0x%08X\n",
10294 	    (u32) TOTAL_RX_BD_PER_PAGE, (u32) USABLE_RX_BD_PER_PAGE);
10295 
10296 	BCE_PRINTF("total rx_bd    = 0x%08X\n", (u32) TOTAL_RX_BD_ALLOC);
10297 
10298 	BCE_PRINTF(
10299 	    "----------------------------"
10300 	    "   rx_bd data   "
10301 	    "----------------------------\n");
10302 
10303 	/* Now print out the rx_bd's themselves. */
10304 	for (int i = 0; i < count; i++) {
10305 		rxbd = &sc->rx_bd_chain[RX_PAGE(rx_prod)][RX_IDX(rx_prod)];
10306 		bce_dump_rxbd(sc, rx_prod, rxbd);
10307 		rx_prod = RX_CHAIN_IDX(rx_prod + 1);
10308 	}
10309 
10310 	BCE_PRINTF(
10311 	    "----------------------------"
10312 	    "----------------"
10313 	    "----------------------------\n");
10314 }
10315 
10316 
10317 /****************************************************************************/
10318 /* Prints out the page chain.                                               */
10319 /*                                                                          */
10320 /* Returns:                                                                 */
10321 /*   Nothing.                                                               */
10322 /****************************************************************************/
10323 static __attribute__ ((noinline)) void
10324 bce_dump_pg_chain(struct bce_softc *sc, u16 pg_prod, int count)
10325 {
10326 	struct rx_bd *pgbd;
10327 
10328 	/* First some info about the page chain structure. */
10329 	BCE_PRINTF(
10330 	    "----------------------------"
10331 	    "   page chain   "
10332 	    "----------------------------\n");
10333 
10334 	BCE_PRINTF("page size      = 0x%08X, pg chain pages        = 0x%08X\n",
10335 	    (u32) BCM_PAGE_SIZE, (u32) sc->pg_pages);
10336 
10337 	BCE_PRINTF("rx_bd per page = 0x%08X, usable rx_bd per page = 0x%08X\n",
10338 	    (u32) TOTAL_PG_BD_PER_PAGE, (u32) USABLE_PG_BD_PER_PAGE);
10339 
10340 	BCE_PRINTF("total pg_bd             = 0x%08X\n", (u32) TOTAL_PG_BD_ALLOC);
10341 
10342 	BCE_PRINTF(
10343 	    "----------------------------"
10344 	    "   page data    "
10345 	    "----------------------------\n");
10346 
10347 	/* Now print out the rx_bd's themselves. */
10348 	for (int i = 0; i < count; i++) {
10349 		pgbd = &sc->pg_bd_chain[PG_PAGE(pg_prod)][PG_IDX(pg_prod)];
10350 		bce_dump_pgbd(sc, pg_prod, pgbd);
10351 		pg_prod = PG_CHAIN_IDX(pg_prod + 1);
10352 	}
10353 
10354 	BCE_PRINTF(
10355 	    "----------------------------"
10356 	    "----------------"
10357 	    "----------------------------\n");
10358 }
10359 
10360 
10361 #define BCE_PRINT_RX_CONS(arg)						\
10362 if (sblk->status_rx_quick_consumer_index##arg)				\
10363 	BCE_PRINTF("0x%04X(0x%04X) - rx_quick_consumer_index%d\n",	\
10364 	    sblk->status_rx_quick_consumer_index##arg, (u16)		\
10365 	    RX_CHAIN_IDX(sblk->status_rx_quick_consumer_index##arg),	\
10366 	    arg);
10367 
10368 
10369 #define BCE_PRINT_TX_CONS(arg)						\
10370 if (sblk->status_tx_quick_consumer_index##arg)				\
10371 	BCE_PRINTF("0x%04X(0x%04X) - tx_quick_consumer_index%d\n",	\
10372 	    sblk->status_tx_quick_consumer_index##arg, (u16)		\
10373 	    TX_CHAIN_IDX(sblk->status_tx_quick_consumer_index##arg),	\
10374 	    arg);
10375 
10376 /****************************************************************************/
10377 /* Prints out the status block from host memory.                            */
10378 /*                                                                          */
10379 /* Returns:                                                                 */
10380 /*   Nothing.                                                               */
10381 /****************************************************************************/
10382 static __attribute__ ((noinline)) void
10383 bce_dump_status_block(struct bce_softc *sc)
10384 {
10385 	struct status_block *sblk;
10386 
10387 	sblk = sc->status_block;
10388 
10389 	BCE_PRINTF(
10390 	    "----------------------------"
10391 	    "  Status Block  "
10392 	    "----------------------------\n");
10393 
10394 	/* Theses indices are used for normal L2 drivers. */
10395 	BCE_PRINTF("    0x%08X - attn_bits\n",
10396 	    sblk->status_attn_bits);
10397 
10398 	BCE_PRINTF("    0x%08X - attn_bits_ack\n",
10399 	    sblk->status_attn_bits_ack);
10400 
10401 	BCE_PRINT_RX_CONS(0);
10402 	BCE_PRINT_TX_CONS(0)
10403 
10404 	BCE_PRINTF("        0x%04X - status_idx\n", sblk->status_idx);
10405 
10406 	/* Theses indices are not used for normal L2 drivers. */
10407 	BCE_PRINT_RX_CONS(1);   BCE_PRINT_RX_CONS(2);   BCE_PRINT_RX_CONS(3);
10408 	BCE_PRINT_RX_CONS(4);   BCE_PRINT_RX_CONS(5);   BCE_PRINT_RX_CONS(6);
10409 	BCE_PRINT_RX_CONS(7);   BCE_PRINT_RX_CONS(8);   BCE_PRINT_RX_CONS(9);
10410 	BCE_PRINT_RX_CONS(10);  BCE_PRINT_RX_CONS(11);  BCE_PRINT_RX_CONS(12);
10411 	BCE_PRINT_RX_CONS(13);  BCE_PRINT_RX_CONS(14);  BCE_PRINT_RX_CONS(15);
10412 
10413 	BCE_PRINT_TX_CONS(1);   BCE_PRINT_TX_CONS(2);   BCE_PRINT_TX_CONS(3);
10414 
10415 	if (sblk->status_completion_producer_index ||
10416 	    sblk->status_cmd_consumer_index)
10417 		BCE_PRINTF("com_prod  = 0x%08X, cmd_cons      = 0x%08X\n",
10418 		    sblk->status_completion_producer_index,
10419 		    sblk->status_cmd_consumer_index);
10420 
10421 	BCE_PRINTF(
10422 	    "----------------------------"
10423 	    "----------------"
10424 	    "----------------------------\n");
10425 }
10426 
10427 
10428 #define BCE_PRINT_64BIT_STAT(arg) 				\
10429 if (sblk->arg##_lo || sblk->arg##_hi)				\
10430 	BCE_PRINTF("0x%08X:%08X : %s\n", sblk->arg##_hi,	\
10431 	    sblk->arg##_lo, #arg);
10432 
10433 #define BCE_PRINT_32BIT_STAT(arg)				\
10434 if (sblk->arg)							\
10435 	BCE_PRINTF("         0x%08X : %s\n", 			\
10436 	    sblk->arg, #arg);
10437 
10438 /****************************************************************************/
10439 /* Prints out the statistics block from host memory.                        */
10440 /*                                                                          */
10441 /* Returns:                                                                 */
10442 /*   Nothing.                                                               */
10443 /****************************************************************************/
10444 static __attribute__ ((noinline)) void
10445 bce_dump_stats_block(struct bce_softc *sc)
10446 {
10447 	struct statistics_block *sblk;
10448 
10449 	sblk = sc->stats_block;
10450 
10451 	BCE_PRINTF(
10452 	    "---------------"
10453 	    " Stats Block  (All Stats Not Shown Are 0) "
10454 	    "---------------\n");
10455 
10456 	BCE_PRINT_64BIT_STAT(stat_IfHCInOctets);
10457 	BCE_PRINT_64BIT_STAT(stat_IfHCInBadOctets);
10458 	BCE_PRINT_64BIT_STAT(stat_IfHCOutOctets);
10459 	BCE_PRINT_64BIT_STAT(stat_IfHCOutBadOctets);
10460 	BCE_PRINT_64BIT_STAT(stat_IfHCInUcastPkts);
10461 	BCE_PRINT_64BIT_STAT(stat_IfHCInBroadcastPkts);
10462 	BCE_PRINT_64BIT_STAT(stat_IfHCInMulticastPkts);
10463 	BCE_PRINT_64BIT_STAT(stat_IfHCOutUcastPkts);
10464 	BCE_PRINT_64BIT_STAT(stat_IfHCOutBroadcastPkts);
10465 	BCE_PRINT_64BIT_STAT(stat_IfHCOutMulticastPkts);
10466 	BCE_PRINT_32BIT_STAT(
10467 	    stat_emac_tx_stat_dot3statsinternalmactransmiterrors);
10468 	BCE_PRINT_32BIT_STAT(stat_Dot3StatsCarrierSenseErrors);
10469 	BCE_PRINT_32BIT_STAT(stat_Dot3StatsFCSErrors);
10470 	BCE_PRINT_32BIT_STAT(stat_Dot3StatsAlignmentErrors);
10471 	BCE_PRINT_32BIT_STAT(stat_Dot3StatsSingleCollisionFrames);
10472 	BCE_PRINT_32BIT_STAT(stat_Dot3StatsMultipleCollisionFrames);
10473 	BCE_PRINT_32BIT_STAT(stat_Dot3StatsDeferredTransmissions);
10474 	BCE_PRINT_32BIT_STAT(stat_Dot3StatsExcessiveCollisions);
10475 	BCE_PRINT_32BIT_STAT(stat_Dot3StatsLateCollisions);
10476 	BCE_PRINT_32BIT_STAT(stat_EtherStatsCollisions);
10477 	BCE_PRINT_32BIT_STAT(stat_EtherStatsFragments);
10478 	BCE_PRINT_32BIT_STAT(stat_EtherStatsJabbers);
10479 	BCE_PRINT_32BIT_STAT(stat_EtherStatsUndersizePkts);
10480 	BCE_PRINT_32BIT_STAT(stat_EtherStatsOversizePkts);
10481 	BCE_PRINT_32BIT_STAT(stat_EtherStatsPktsRx64Octets);
10482 	BCE_PRINT_32BIT_STAT(stat_EtherStatsPktsRx65Octetsto127Octets);
10483 	BCE_PRINT_32BIT_STAT(stat_EtherStatsPktsRx128Octetsto255Octets);
10484 	BCE_PRINT_32BIT_STAT(stat_EtherStatsPktsRx256Octetsto511Octets);
10485 	BCE_PRINT_32BIT_STAT(stat_EtherStatsPktsRx512Octetsto1023Octets);
10486 	BCE_PRINT_32BIT_STAT(stat_EtherStatsPktsRx1024Octetsto1522Octets);
10487 	BCE_PRINT_32BIT_STAT(stat_EtherStatsPktsRx1523Octetsto9022Octets);
10488 	BCE_PRINT_32BIT_STAT(stat_EtherStatsPktsTx64Octets);
10489 	BCE_PRINT_32BIT_STAT(stat_EtherStatsPktsTx65Octetsto127Octets);
10490 	BCE_PRINT_32BIT_STAT(stat_EtherStatsPktsTx128Octetsto255Octets);
10491 	BCE_PRINT_32BIT_STAT(stat_EtherStatsPktsTx256Octetsto511Octets);
10492 	BCE_PRINT_32BIT_STAT(stat_EtherStatsPktsTx512Octetsto1023Octets);
10493 	BCE_PRINT_32BIT_STAT(stat_EtherStatsPktsTx1024Octetsto1522Octets);
10494 	BCE_PRINT_32BIT_STAT(stat_EtherStatsPktsTx1523Octetsto9022Octets);
10495 	BCE_PRINT_32BIT_STAT(stat_XonPauseFramesReceived);
10496 	BCE_PRINT_32BIT_STAT(stat_XoffPauseFramesReceived);
10497 	BCE_PRINT_32BIT_STAT(stat_OutXonSent);
10498 	BCE_PRINT_32BIT_STAT(stat_OutXoffSent);
10499 	BCE_PRINT_32BIT_STAT(stat_FlowControlDone);
10500 	BCE_PRINT_32BIT_STAT(stat_MacControlFramesReceived);
10501 	BCE_PRINT_32BIT_STAT(stat_XoffStateEntered);
10502 	BCE_PRINT_32BIT_STAT(stat_IfInFramesL2FilterDiscards);
10503 	BCE_PRINT_32BIT_STAT(stat_IfInRuleCheckerDiscards);
10504 	BCE_PRINT_32BIT_STAT(stat_IfInFTQDiscards);
10505 	BCE_PRINT_32BIT_STAT(stat_IfInMBUFDiscards);
10506 	BCE_PRINT_32BIT_STAT(stat_IfInRuleCheckerP4Hit);
10507 	BCE_PRINT_32BIT_STAT(stat_CatchupInRuleCheckerDiscards);
10508 	BCE_PRINT_32BIT_STAT(stat_CatchupInFTQDiscards);
10509 	BCE_PRINT_32BIT_STAT(stat_CatchupInMBUFDiscards);
10510 	BCE_PRINT_32BIT_STAT(stat_CatchupInRuleCheckerP4Hit);
10511 
10512 	BCE_PRINTF(
10513 	    "----------------------------"
10514 	    "----------------"
10515 	    "----------------------------\n");
10516 }
10517 
10518 
10519 /****************************************************************************/
10520 /* Prints out a summary of the driver state.                                */
10521 /*                                                                          */
10522 /* Returns:                                                                 */
10523 /*   Nothing.                                                               */
10524 /****************************************************************************/
10525 static __attribute__ ((noinline)) void
10526 bce_dump_driver_state(struct bce_softc *sc)
10527 {
10528 	u32 val_hi, val_lo;
10529 
10530 	BCE_PRINTF(
10531 	    "-----------------------------"
10532 	    " Driver State "
10533 	    "-----------------------------\n");
10534 
10535 	val_hi = BCE_ADDR_HI(sc);
10536 	val_lo = BCE_ADDR_LO(sc);
10537 	BCE_PRINTF("0x%08X:%08X - (sc) driver softc structure virtual "
10538 	    "address\n", val_hi, val_lo);
10539 
10540 	val_hi = BCE_ADDR_HI(sc->bce_vhandle);
10541 	val_lo = BCE_ADDR_LO(sc->bce_vhandle);
10542 	BCE_PRINTF("0x%08X:%08X - (sc->bce_vhandle) PCI BAR virtual "
10543 	    "address\n", val_hi, val_lo);
10544 
10545 	val_hi = BCE_ADDR_HI(sc->status_block);
10546 	val_lo = BCE_ADDR_LO(sc->status_block);
10547 	BCE_PRINTF("0x%08X:%08X - (sc->status_block) status block "
10548 	    "virtual address\n",	val_hi, val_lo);
10549 
10550 	val_hi = BCE_ADDR_HI(sc->stats_block);
10551 	val_lo = BCE_ADDR_LO(sc->stats_block);
10552 	BCE_PRINTF("0x%08X:%08X - (sc->stats_block) statistics block "
10553 	    "virtual address\n", val_hi, val_lo);
10554 
10555 	val_hi = BCE_ADDR_HI(sc->tx_bd_chain);
10556 	val_lo = BCE_ADDR_LO(sc->tx_bd_chain);
10557 	BCE_PRINTF("0x%08X:%08X - (sc->tx_bd_chain) tx_bd chain "
10558 	    "virtual adddress\n", val_hi, val_lo);
10559 
10560 	val_hi = BCE_ADDR_HI(sc->rx_bd_chain);
10561 	val_lo = BCE_ADDR_LO(sc->rx_bd_chain);
10562 	BCE_PRINTF("0x%08X:%08X - (sc->rx_bd_chain) rx_bd chain "
10563 	    "virtual address\n", val_hi, val_lo);
10564 
10565 	if (bce_hdr_split == TRUE) {
10566 		val_hi = BCE_ADDR_HI(sc->pg_bd_chain);
10567 		val_lo = BCE_ADDR_LO(sc->pg_bd_chain);
10568 		BCE_PRINTF("0x%08X:%08X - (sc->pg_bd_chain) page chain "
10569 		    "virtual address\n", val_hi, val_lo);
10570 	}
10571 
10572 	val_hi = BCE_ADDR_HI(sc->tx_mbuf_ptr);
10573 	val_lo = BCE_ADDR_LO(sc->tx_mbuf_ptr);
10574 	BCE_PRINTF("0x%08X:%08X - (sc->tx_mbuf_ptr) tx mbuf chain "
10575 	    "virtual address\n",	val_hi, val_lo);
10576 
10577 	val_hi = BCE_ADDR_HI(sc->rx_mbuf_ptr);
10578 	val_lo = BCE_ADDR_LO(sc->rx_mbuf_ptr);
10579 	BCE_PRINTF("0x%08X:%08X - (sc->rx_mbuf_ptr) rx mbuf chain "
10580 	    "virtual address\n", val_hi, val_lo);
10581 
10582 	if (bce_hdr_split == TRUE) {
10583 		val_hi = BCE_ADDR_HI(sc->pg_mbuf_ptr);
10584 		val_lo = BCE_ADDR_LO(sc->pg_mbuf_ptr);
10585 		BCE_PRINTF("0x%08X:%08X - (sc->pg_mbuf_ptr) page mbuf chain "
10586 		    "virtual address\n", val_hi, val_lo);
10587 	}
10588 
10589 	BCE_PRINTF(" 0x%016llX - (sc->interrupts_generated) "
10590 	    "h/w intrs\n",
10591 	    (long long unsigned int) sc->interrupts_generated);
10592 
10593 	BCE_PRINTF(" 0x%016llX - (sc->interrupts_rx) "
10594 	    "rx interrupts handled\n",
10595 	    (long long unsigned int) sc->interrupts_rx);
10596 
10597 	BCE_PRINTF(" 0x%016llX - (sc->interrupts_tx) "
10598 	    "tx interrupts handled\n",
10599 	    (long long unsigned int) sc->interrupts_tx);
10600 
10601 	BCE_PRINTF(" 0x%016llX - (sc->phy_interrupts) "
10602 	    "phy interrupts handled\n",
10603 	    (long long unsigned int) sc->phy_interrupts);
10604 
10605 	BCE_PRINTF("         0x%08X - (sc->last_status_idx) "
10606 	    "status block index\n", sc->last_status_idx);
10607 
10608 	BCE_PRINTF("     0x%04X(0x%04X) - (sc->tx_prod) tx producer "
10609 	    "index\n", sc->tx_prod, (u16) TX_CHAIN_IDX(sc->tx_prod));
10610 
10611 	BCE_PRINTF("     0x%04X(0x%04X) - (sc->tx_cons) tx consumer "
10612 	    "index\n", sc->tx_cons, (u16) TX_CHAIN_IDX(sc->tx_cons));
10613 
10614 	BCE_PRINTF("         0x%08X - (sc->tx_prod_bseq) tx producer "
10615 	    "byte seq index\n",	sc->tx_prod_bseq);
10616 
10617 	BCE_PRINTF("         0x%08X - (sc->debug_tx_mbuf_alloc) tx "
10618 	    "mbufs allocated\n", sc->debug_tx_mbuf_alloc);
10619 
10620 	BCE_PRINTF("         0x%08X - (sc->used_tx_bd) used "
10621 	    "tx_bd's\n", sc->used_tx_bd);
10622 
10623 	BCE_PRINTF("      0x%04X/0x%04X - (sc->tx_hi_watermark)/"
10624 	    "(sc->max_tx_bd)\n", sc->tx_hi_watermark, sc->max_tx_bd);
10625 
10626 	BCE_PRINTF("     0x%04X(0x%04X) - (sc->rx_prod) rx producer "
10627 	    "index\n", sc->rx_prod, (u16) RX_CHAIN_IDX(sc->rx_prod));
10628 
10629 	BCE_PRINTF("     0x%04X(0x%04X) - (sc->rx_cons) rx consumer "
10630 	    "index\n", sc->rx_cons, (u16) RX_CHAIN_IDX(sc->rx_cons));
10631 
10632 	BCE_PRINTF("         0x%08X - (sc->rx_prod_bseq) rx producer "
10633 	    "byte seq index\n",	sc->rx_prod_bseq);
10634 
10635 	BCE_PRINTF("      0x%04X/0x%04X - (sc->rx_low_watermark)/"
10636 		   "(sc->max_rx_bd)\n", sc->rx_low_watermark, sc->max_rx_bd);
10637 
10638 	BCE_PRINTF("         0x%08X - (sc->debug_rx_mbuf_alloc) rx "
10639 	    "mbufs allocated\n", sc->debug_rx_mbuf_alloc);
10640 
10641 	BCE_PRINTF("         0x%08X - (sc->free_rx_bd) free "
10642 	    "rx_bd's\n", sc->free_rx_bd);
10643 
10644 	if (bce_hdr_split == TRUE) {
10645 		BCE_PRINTF("     0x%04X(0x%04X) - (sc->pg_prod) page producer "
10646 		    "index\n", sc->pg_prod, (u16) PG_CHAIN_IDX(sc->pg_prod));
10647 
10648 		BCE_PRINTF("     0x%04X(0x%04X) - (sc->pg_cons) page consumer "
10649 		    "index\n", sc->pg_cons, (u16) PG_CHAIN_IDX(sc->pg_cons));
10650 
10651 		BCE_PRINTF("         0x%08X - (sc->debug_pg_mbuf_alloc) page "
10652 		    "mbufs allocated\n", sc->debug_pg_mbuf_alloc);
10653 	}
10654 
10655 	BCE_PRINTF("         0x%08X - (sc->free_pg_bd) free page "
10656 	    "rx_bd's\n", sc->free_pg_bd);
10657 
10658 	BCE_PRINTF("      0x%04X/0x%04X - (sc->pg_low_watermark)/"
10659 	    "(sc->max_pg_bd)\n", sc->pg_low_watermark, sc->max_pg_bd);
10660 
10661 	BCE_PRINTF("         0x%08X - (sc->mbuf_alloc_failed_count) "
10662 	    "mbuf alloc failures\n", sc->mbuf_alloc_failed_count);
10663 
10664 	BCE_PRINTF("         0x%08X - (sc->bce_flags) "
10665 	    "bce mac flags\n", sc->bce_flags);
10666 
10667 	BCE_PRINTF("         0x%08X - (sc->bce_phy_flags) "
10668 	    "bce phy flags\n", sc->bce_phy_flags);
10669 
10670 	BCE_PRINTF(
10671 	    "----------------------------"
10672 	    "----------------"
10673 	    "----------------------------\n");
10674 }
10675 
10676 
10677 /****************************************************************************/
10678 /* Prints out the hardware state through a summary of important register,   */
10679 /* followed by a complete register dump.                                    */
10680 /*                                                                          */
10681 /* Returns:                                                                 */
10682 /*   Nothing.                                                               */
10683 /****************************************************************************/
10684 static __attribute__ ((noinline)) void
10685 bce_dump_hw_state(struct bce_softc *sc)
10686 {
10687 	u32 val;
10688 
10689 	BCE_PRINTF(
10690 	    "----------------------------"
10691 	    " Hardware State "
10692 	    "----------------------------\n");
10693 
10694 	BCE_PRINTF("%s - bootcode version\n", sc->bce_bc_ver);
10695 
10696 	val = REG_RD(sc, BCE_MISC_ENABLE_STATUS_BITS);
10697 	BCE_PRINTF("0x%08X - (0x%06X) misc_enable_status_bits\n",
10698 	    val, BCE_MISC_ENABLE_STATUS_BITS);
10699 
10700 	val = REG_RD(sc, BCE_DMA_STATUS);
10701 	BCE_PRINTF("0x%08X - (0x%06X) dma_status\n",
10702 	    val, BCE_DMA_STATUS);
10703 
10704 	val = REG_RD(sc, BCE_CTX_STATUS);
10705 	BCE_PRINTF("0x%08X - (0x%06X) ctx_status\n",
10706 	    val, BCE_CTX_STATUS);
10707 
10708 	val = REG_RD(sc, BCE_EMAC_STATUS);
10709 	BCE_PRINTF("0x%08X - (0x%06X) emac_status\n",
10710 	    val, BCE_EMAC_STATUS);
10711 
10712 	val = REG_RD(sc, BCE_RPM_STATUS);
10713 	BCE_PRINTF("0x%08X - (0x%06X) rpm_status\n",
10714 	    val, BCE_RPM_STATUS);
10715 
10716 	/* ToDo: Create a #define for this constant. */
10717 	val = REG_RD(sc, 0x2004);
10718 	BCE_PRINTF("0x%08X - (0x%06X) rlup_status\n",
10719 	    val, 0x2004);
10720 
10721 	val = REG_RD(sc, BCE_RV2P_STATUS);
10722 	BCE_PRINTF("0x%08X - (0x%06X) rv2p_status\n",
10723 	    val, BCE_RV2P_STATUS);
10724 
10725 	/* ToDo: Create a #define for this constant. */
10726 	val = REG_RD(sc, 0x2c04);
10727 	BCE_PRINTF("0x%08X - (0x%06X) rdma_status\n",
10728 	    val, 0x2c04);
10729 
10730 	val = REG_RD(sc, BCE_TBDR_STATUS);
10731 	BCE_PRINTF("0x%08X - (0x%06X) tbdr_status\n",
10732 	    val, BCE_TBDR_STATUS);
10733 
10734 	val = REG_RD(sc, BCE_TDMA_STATUS);
10735 	BCE_PRINTF("0x%08X - (0x%06X) tdma_status\n",
10736 	    val, BCE_TDMA_STATUS);
10737 
10738 	val = REG_RD(sc, BCE_HC_STATUS);
10739 	BCE_PRINTF("0x%08X - (0x%06X) hc_status\n",
10740 	    val, BCE_HC_STATUS);
10741 
10742 	val = REG_RD_IND(sc, BCE_TXP_CPU_STATE);
10743 	BCE_PRINTF("0x%08X - (0x%06X) txp_cpu_state\n",
10744 	    val, BCE_TXP_CPU_STATE);
10745 
10746 	val = REG_RD_IND(sc, BCE_TPAT_CPU_STATE);
10747 	BCE_PRINTF("0x%08X - (0x%06X) tpat_cpu_state\n",
10748 	    val, BCE_TPAT_CPU_STATE);
10749 
10750 	val = REG_RD_IND(sc, BCE_RXP_CPU_STATE);
10751 	BCE_PRINTF("0x%08X - (0x%06X) rxp_cpu_state\n",
10752 	    val, BCE_RXP_CPU_STATE);
10753 
10754 	val = REG_RD_IND(sc, BCE_COM_CPU_STATE);
10755 	BCE_PRINTF("0x%08X - (0x%06X) com_cpu_state\n",
10756 	    val, BCE_COM_CPU_STATE);
10757 
10758 	val = REG_RD_IND(sc, BCE_MCP_CPU_STATE);
10759 	BCE_PRINTF("0x%08X - (0x%06X) mcp_cpu_state\n",
10760 	    val, BCE_MCP_CPU_STATE);
10761 
10762 	val = REG_RD_IND(sc, BCE_CP_CPU_STATE);
10763 	BCE_PRINTF("0x%08X - (0x%06X) cp_cpu_state\n",
10764 	    val, BCE_CP_CPU_STATE);
10765 
10766 	BCE_PRINTF(
10767 	    "----------------------------"
10768 	    "----------------"
10769 	    "----------------------------\n");
10770 
10771 	BCE_PRINTF(
10772 	    "----------------------------"
10773 	    " Register  Dump "
10774 	    "----------------------------\n");
10775 
10776 	for (int i = 0x400; i < 0x8000; i += 0x10) {
10777 		BCE_PRINTF("0x%04X: 0x%08X 0x%08X 0x%08X 0x%08X\n",
10778 		    i, REG_RD(sc, i), REG_RD(sc, i + 0x4),
10779 		    REG_RD(sc, i + 0x8), REG_RD(sc, i + 0xC));
10780 	}
10781 
10782 	BCE_PRINTF(
10783 	    "----------------------------"
10784 	    "----------------"
10785 	    "----------------------------\n");
10786 }
10787 
10788 
10789 /****************************************************************************/
10790 /* Prints out the contentst of shared memory which is used for host driver  */
10791 /* to bootcode firmware communication.                                      */
10792 /*                                                                          */
10793 /* Returns:                                                                 */
10794 /*   Nothing.                                                               */
10795 /****************************************************************************/
10796 static __attribute__ ((noinline)) void
10797 bce_dump_shmem_state(struct bce_softc *sc)
10798 {
10799 	BCE_PRINTF(
10800 	    "----------------------------"
10801 	    " Hardware State "
10802 	    "----------------------------\n");
10803 
10804 	BCE_PRINTF("0x%08X - Shared memory base address\n",
10805 	    sc->bce_shmem_base);
10806 	BCE_PRINTF("%s - bootcode version\n",
10807 	    sc->bce_bc_ver);
10808 
10809 	BCE_PRINTF(
10810 	    "----------------------------"
10811 	    "   Shared Mem   "
10812 	    "----------------------------\n");
10813 
10814 	for (int i = 0x0; i < 0x200; i += 0x10) {
10815 		BCE_PRINTF("0x%04X: 0x%08X 0x%08X 0x%08X 0x%08X\n",
10816 		    i, bce_shmem_rd(sc, i), bce_shmem_rd(sc, i + 0x4),
10817 		    bce_shmem_rd(sc, i + 0x8), bce_shmem_rd(sc, i + 0xC));
10818 	}
10819 
10820 	BCE_PRINTF(
10821 	    "----------------------------"
10822 	    "----------------"
10823 	    "----------------------------\n");
10824 }
10825 
10826 
10827 /****************************************************************************/
10828 /* Prints out the mailbox queue registers.                                  */
10829 /*                                                                          */
10830 /* Returns:                                                                 */
10831 /*   Nothing.                                                               */
10832 /****************************************************************************/
10833 static __attribute__ ((noinline)) void
10834 bce_dump_mq_regs(struct bce_softc *sc)
10835 {
10836 	BCE_PRINTF(
10837 	    "----------------------------"
10838 	    "    MQ Regs     "
10839 	    "----------------------------\n");
10840 
10841 	BCE_PRINTF(
10842 	    "----------------------------"
10843 	    "----------------"
10844 	    "----------------------------\n");
10845 
10846 	for (int i = 0x3c00; i < 0x4000; i += 0x10) {
10847 		BCE_PRINTF("0x%04X: 0x%08X 0x%08X 0x%08X 0x%08X\n",
10848 		    i, REG_RD(sc, i), REG_RD(sc, i + 0x4),
10849 		    REG_RD(sc, i + 0x8), REG_RD(sc, i + 0xC));
10850 	}
10851 
10852 	BCE_PRINTF(
10853 	    "----------------------------"
10854 	    "----------------"
10855 	    "----------------------------\n");
10856 }
10857 
10858 
10859 /****************************************************************************/
10860 /* Prints out the bootcode state.                                           */
10861 /*                                                                          */
10862 /* Returns:                                                                 */
10863 /*   Nothing.                                                               */
10864 /****************************************************************************/
10865 static __attribute__ ((noinline)) void
10866 bce_dump_bc_state(struct bce_softc *sc)
10867 {
10868 	u32 val;
10869 
10870 	BCE_PRINTF(
10871 	    "----------------------------"
10872 	    " Bootcode State "
10873 	    "----------------------------\n");
10874 
10875 	BCE_PRINTF("%s - bootcode version\n", sc->bce_bc_ver);
10876 
10877 	val = bce_shmem_rd(sc, BCE_BC_RESET_TYPE);
10878 	BCE_PRINTF("0x%08X - (0x%06X) reset_type\n",
10879 	    val, BCE_BC_RESET_TYPE);
10880 
10881 	val = bce_shmem_rd(sc, BCE_BC_STATE);
10882 	BCE_PRINTF("0x%08X - (0x%06X) state\n",
10883 	    val, BCE_BC_STATE);
10884 
10885 	val = bce_shmem_rd(sc, BCE_BC_STATE_CONDITION);
10886 	BCE_PRINTF("0x%08X - (0x%06X) condition\n",
10887 	    val, BCE_BC_STATE_CONDITION);
10888 
10889 	val = bce_shmem_rd(sc, BCE_BC_STATE_DEBUG_CMD);
10890 	BCE_PRINTF("0x%08X - (0x%06X) debug_cmd\n",
10891 	    val, BCE_BC_STATE_DEBUG_CMD);
10892 
10893 	BCE_PRINTF(
10894 	    "----------------------------"
10895 	    "----------------"
10896 	    "----------------------------\n");
10897 }
10898 
10899 
10900 /****************************************************************************/
10901 /* Prints out the TXP processor state.                                      */
10902 /*                                                                          */
10903 /* Returns:                                                                 */
10904 /*   Nothing.                                                               */
10905 /****************************************************************************/
10906 static __attribute__ ((noinline)) void
10907 bce_dump_txp_state(struct bce_softc *sc, int regs)
10908 {
10909 	u32 val;
10910 	u32 fw_version[3];
10911 
10912 	BCE_PRINTF(
10913 	    "----------------------------"
10914 	    "   TXP  State   "
10915 	    "----------------------------\n");
10916 
10917 	for (int i = 0; i < 3; i++)
10918 		fw_version[i] = htonl(REG_RD_IND(sc,
10919 		    (BCE_TXP_SCRATCH + 0x10 + i * 4)));
10920 	BCE_PRINTF("Firmware version - %s\n", (char *) fw_version);
10921 
10922 	val = REG_RD_IND(sc, BCE_TXP_CPU_MODE);
10923 	BCE_PRINTF("0x%08X - (0x%06X) txp_cpu_mode\n",
10924 	    val, BCE_TXP_CPU_MODE);
10925 
10926 	val = REG_RD_IND(sc, BCE_TXP_CPU_STATE);
10927 	BCE_PRINTF("0x%08X - (0x%06X) txp_cpu_state\n",
10928 	    val, BCE_TXP_CPU_STATE);
10929 
10930 	val = REG_RD_IND(sc, BCE_TXP_CPU_EVENT_MASK);
10931 	BCE_PRINTF("0x%08X - (0x%06X) txp_cpu_event_mask\n",
10932 	    val, BCE_TXP_CPU_EVENT_MASK);
10933 
10934 	if (regs) {
10935 		BCE_PRINTF(
10936 		    "----------------------------"
10937 		    " Register  Dump "
10938 		    "----------------------------\n");
10939 
10940 		for (int i = BCE_TXP_CPU_MODE; i < 0x68000; i += 0x10) {
10941 			/* Skip the big blank spaces */
10942 			if (i < 0x454000 && i > 0x5ffff)
10943 				BCE_PRINTF("0x%04X: 0x%08X 0x%08X "
10944 				    "0x%08X 0x%08X\n", i,
10945 				    REG_RD_IND(sc, i),
10946 				    REG_RD_IND(sc, i + 0x4),
10947 				    REG_RD_IND(sc, i + 0x8),
10948 				    REG_RD_IND(sc, i + 0xC));
10949 		}
10950 	}
10951 
10952 	BCE_PRINTF(
10953 	    "----------------------------"
10954 	    "----------------"
10955 	    "----------------------------\n");
10956 }
10957 
10958 
10959 /****************************************************************************/
10960 /* Prints out the RXP processor state.                                      */
10961 /*                                                                          */
10962 /* Returns:                                                                 */
10963 /*   Nothing.                                                               */
10964 /****************************************************************************/
10965 static __attribute__ ((noinline)) void
10966 bce_dump_rxp_state(struct bce_softc *sc, int regs)
10967 {
10968 	u32 val;
10969 	u32 fw_version[3];
10970 
10971 	BCE_PRINTF(
10972 	    "----------------------------"
10973 	    "   RXP  State   "
10974 	    "----------------------------\n");
10975 
10976 	for (int i = 0; i < 3; i++)
10977 		fw_version[i] = htonl(REG_RD_IND(sc,
10978 		    (BCE_RXP_SCRATCH + 0x10 + i * 4)));
10979 
10980 	BCE_PRINTF("Firmware version - %s\n", (char *) fw_version);
10981 
10982 	val = REG_RD_IND(sc, BCE_RXP_CPU_MODE);
10983 	BCE_PRINTF("0x%08X - (0x%06X) rxp_cpu_mode\n",
10984 	    val, BCE_RXP_CPU_MODE);
10985 
10986 	val = REG_RD_IND(sc, BCE_RXP_CPU_STATE);
10987 	BCE_PRINTF("0x%08X - (0x%06X) rxp_cpu_state\n",
10988 	    val, BCE_RXP_CPU_STATE);
10989 
10990 	val = REG_RD_IND(sc, BCE_RXP_CPU_EVENT_MASK);
10991 	BCE_PRINTF("0x%08X - (0x%06X) rxp_cpu_event_mask\n",
10992 	    val, BCE_RXP_CPU_EVENT_MASK);
10993 
10994 	if (regs) {
10995 		BCE_PRINTF(
10996 		    "----------------------------"
10997 		    " Register  Dump "
10998 		    "----------------------------\n");
10999 
11000 		for (int i = BCE_RXP_CPU_MODE; i < 0xe8fff; i += 0x10) {
11001 			/* Skip the big blank sapces */
11002 			if (i < 0xc5400 && i > 0xdffff)
11003 				BCE_PRINTF("0x%04X: 0x%08X 0x%08X "
11004 				    "0x%08X 0x%08X\n", i,
11005 				    REG_RD_IND(sc, i),
11006 				    REG_RD_IND(sc, i + 0x4),
11007 				    REG_RD_IND(sc, i + 0x8),
11008 				    REG_RD_IND(sc, i + 0xC));
11009 		}
11010 	}
11011 
11012 	BCE_PRINTF(
11013 	    "----------------------------"
11014 	    "----------------"
11015 	    "----------------------------\n");
11016 }
11017 
11018 
11019 /****************************************************************************/
11020 /* Prints out the TPAT processor state.                                     */
11021 /*                                                                          */
11022 /* Returns:                                                                 */
11023 /*   Nothing.                                                               */
11024 /****************************************************************************/
11025 static __attribute__ ((noinline)) void
11026 bce_dump_tpat_state(struct bce_softc *sc, int regs)
11027 {
11028 	u32 val;
11029 	u32 fw_version[3];
11030 
11031 	BCE_PRINTF(
11032 	    "----------------------------"
11033 	    "   TPAT State   "
11034 	    "----------------------------\n");
11035 
11036 	for (int i = 0; i < 3; i++)
11037 		fw_version[i] = htonl(REG_RD_IND(sc,
11038 		    (BCE_TPAT_SCRATCH + 0x410 + i * 4)));
11039 
11040 	BCE_PRINTF("Firmware version - %s\n", (char *) fw_version);
11041 
11042 	val = REG_RD_IND(sc, BCE_TPAT_CPU_MODE);
11043 	BCE_PRINTF("0x%08X - (0x%06X) tpat_cpu_mode\n",
11044 	    val, BCE_TPAT_CPU_MODE);
11045 
11046 	val = REG_RD_IND(sc, BCE_TPAT_CPU_STATE);
11047 	BCE_PRINTF("0x%08X - (0x%06X) tpat_cpu_state\n",
11048 	    val, BCE_TPAT_CPU_STATE);
11049 
11050 	val = REG_RD_IND(sc, BCE_TPAT_CPU_EVENT_MASK);
11051 	BCE_PRINTF("0x%08X - (0x%06X) tpat_cpu_event_mask\n",
11052 	    val, BCE_TPAT_CPU_EVENT_MASK);
11053 
11054 	if (regs) {
11055 		BCE_PRINTF(
11056 		    "----------------------------"
11057 		    " Register  Dump "
11058 		    "----------------------------\n");
11059 
11060 		for (int i = BCE_TPAT_CPU_MODE; i < 0xa3fff; i += 0x10) {
11061 			/* Skip the big blank spaces */
11062 			if (i < 0x854000 && i > 0x9ffff)
11063 				BCE_PRINTF("0x%04X: 0x%08X 0x%08X "
11064 				    "0x%08X 0x%08X\n", i,
11065 				    REG_RD_IND(sc, i),
11066 				    REG_RD_IND(sc, i + 0x4),
11067 				    REG_RD_IND(sc, i + 0x8),
11068 				    REG_RD_IND(sc, i + 0xC));
11069 		}
11070 	}
11071 
11072 	BCE_PRINTF(
11073 		"----------------------------"
11074 		"----------------"
11075 		"----------------------------\n");
11076 }
11077 
11078 
11079 /****************************************************************************/
11080 /* Prints out the Command Procesor (CP) state.                              */
11081 /*                                                                          */
11082 /* Returns:                                                                 */
11083 /*   Nothing.                                                               */
11084 /****************************************************************************/
11085 static __attribute__ ((noinline)) void
11086 bce_dump_cp_state(struct bce_softc *sc, int regs)
11087 {
11088 	u32 val;
11089 	u32 fw_version[3];
11090 
11091 	BCE_PRINTF(
11092 	    "----------------------------"
11093 	    "    CP State    "
11094 	    "----------------------------\n");
11095 
11096 	for (int i = 0; i < 3; i++)
11097 		fw_version[i] = htonl(REG_RD_IND(sc,
11098 		    (BCE_CP_SCRATCH + 0x10 + i * 4)));
11099 
11100 	BCE_PRINTF("Firmware version - %s\n", (char *) fw_version);
11101 
11102 	val = REG_RD_IND(sc, BCE_CP_CPU_MODE);
11103 	BCE_PRINTF("0x%08X - (0x%06X) cp_cpu_mode\n",
11104 	    val, BCE_CP_CPU_MODE);
11105 
11106 	val = REG_RD_IND(sc, BCE_CP_CPU_STATE);
11107 	BCE_PRINTF("0x%08X - (0x%06X) cp_cpu_state\n",
11108 	    val, BCE_CP_CPU_STATE);
11109 
11110 	val = REG_RD_IND(sc, BCE_CP_CPU_EVENT_MASK);
11111 	BCE_PRINTF("0x%08X - (0x%06X) cp_cpu_event_mask\n", val,
11112 	    BCE_CP_CPU_EVENT_MASK);
11113 
11114 	if (regs) {
11115 		BCE_PRINTF(
11116 		    "----------------------------"
11117 		    " Register  Dump "
11118 		    "----------------------------\n");
11119 
11120 		for (int i = BCE_CP_CPU_MODE; i < 0x1aa000; i += 0x10) {
11121 			/* Skip the big blank spaces */
11122 			if (i < 0x185400 && i > 0x19ffff)
11123 				BCE_PRINTF("0x%04X: 0x%08X 0x%08X "
11124 				    "0x%08X 0x%08X\n", i,
11125 				    REG_RD_IND(sc, i),
11126 				    REG_RD_IND(sc, i + 0x4),
11127 				    REG_RD_IND(sc, i + 0x8),
11128 				    REG_RD_IND(sc, i + 0xC));
11129 		}
11130 	}
11131 
11132 	BCE_PRINTF(
11133 	    "----------------------------"
11134 	    "----------------"
11135 	    "----------------------------\n");
11136 }
11137 
11138 
11139 /****************************************************************************/
11140 /* Prints out the Completion Procesor (COM) state.                          */
11141 /*                                                                          */
11142 /* Returns:                                                                 */
11143 /*   Nothing.                                                               */
11144 /****************************************************************************/
11145 static __attribute__ ((noinline)) void
11146 bce_dump_com_state(struct bce_softc *sc, int regs)
11147 {
11148 	u32 val;
11149 	u32 fw_version[4];
11150 
11151 	BCE_PRINTF(
11152 	    "----------------------------"
11153 	    "   COM State    "
11154 	    "----------------------------\n");
11155 
11156 	for (int i = 0; i < 3; i++)
11157 		fw_version[i] = htonl(REG_RD_IND(sc,
11158 		    (BCE_COM_SCRATCH + 0x10 + i * 4)));
11159 
11160 	BCE_PRINTF("Firmware version - %s\n", (char *) fw_version);
11161 
11162 	val = REG_RD_IND(sc, BCE_COM_CPU_MODE);
11163 	BCE_PRINTF("0x%08X - (0x%06X) com_cpu_mode\n",
11164 	    val, BCE_COM_CPU_MODE);
11165 
11166 	val = REG_RD_IND(sc, BCE_COM_CPU_STATE);
11167 	BCE_PRINTF("0x%08X - (0x%06X) com_cpu_state\n",
11168 	    val, BCE_COM_CPU_STATE);
11169 
11170 	val = REG_RD_IND(sc, BCE_COM_CPU_EVENT_MASK);
11171 	BCE_PRINTF("0x%08X - (0x%06X) com_cpu_event_mask\n", val,
11172 	    BCE_COM_CPU_EVENT_MASK);
11173 
11174 	if (regs) {
11175 		BCE_PRINTF(
11176 		    "----------------------------"
11177 		    " Register  Dump "
11178 		    "----------------------------\n");
11179 
11180 		for (int i = BCE_COM_CPU_MODE; i < 0x1053e8; i += 0x10) {
11181 			BCE_PRINTF("0x%04X: 0x%08X 0x%08X "
11182 			    "0x%08X 0x%08X\n", i,
11183 			    REG_RD_IND(sc, i),
11184 			    REG_RD_IND(sc, i + 0x4),
11185 			    REG_RD_IND(sc, i + 0x8),
11186 			    REG_RD_IND(sc, i + 0xC));
11187 		}
11188 	}
11189 
11190 	BCE_PRINTF(
11191 		"----------------------------"
11192 		"----------------"
11193 		"----------------------------\n");
11194 }
11195 
11196 
11197 /****************************************************************************/
11198 /* Prints out the Receive Virtual 2 Physical (RV2P) state.                  */
11199 /*                                                                          */
11200 /* Returns:                                                                 */
11201 /*   Nothing.                                                               */
11202 /****************************************************************************/
11203 static __attribute__ ((noinline)) void
11204 bce_dump_rv2p_state(struct bce_softc *sc)
11205 {
11206 	u32 val, pc1, pc2, fw_ver_high, fw_ver_low;
11207 
11208 	BCE_PRINTF(
11209 	    "----------------------------"
11210 	    "   RV2P State   "
11211 	    "----------------------------\n");
11212 
11213 	/* Stall the RV2P processors. */
11214 	val = REG_RD_IND(sc, BCE_RV2P_CONFIG);
11215 	val |= BCE_RV2P_CONFIG_STALL_PROC1 | BCE_RV2P_CONFIG_STALL_PROC2;
11216 	REG_WR_IND(sc, BCE_RV2P_CONFIG, val);
11217 
11218 	/* Read the firmware version. */
11219 	val = 0x00000001;
11220 	REG_WR_IND(sc, BCE_RV2P_PROC1_ADDR_CMD, val);
11221 	fw_ver_low = REG_RD_IND(sc, BCE_RV2P_INSTR_LOW);
11222 	fw_ver_high = REG_RD_IND(sc, BCE_RV2P_INSTR_HIGH) &
11223 	    BCE_RV2P_INSTR_HIGH_HIGH;
11224 	BCE_PRINTF("RV2P1 Firmware version - 0x%08X:0x%08X\n",
11225 	    fw_ver_high, fw_ver_low);
11226 
11227 	val = 0x00000001;
11228 	REG_WR_IND(sc, BCE_RV2P_PROC2_ADDR_CMD, val);
11229 	fw_ver_low = REG_RD_IND(sc, BCE_RV2P_INSTR_LOW);
11230 	fw_ver_high = REG_RD_IND(sc, BCE_RV2P_INSTR_HIGH) &
11231 	    BCE_RV2P_INSTR_HIGH_HIGH;
11232 	BCE_PRINTF("RV2P2 Firmware version - 0x%08X:0x%08X\n",
11233 	    fw_ver_high, fw_ver_low);
11234 
11235 	/* Resume the RV2P processors. */
11236 	val = REG_RD_IND(sc, BCE_RV2P_CONFIG);
11237 	val &= ~(BCE_RV2P_CONFIG_STALL_PROC1 | BCE_RV2P_CONFIG_STALL_PROC2);
11238 	REG_WR_IND(sc, BCE_RV2P_CONFIG, val);
11239 
11240 	/* Fetch the program counter value. */
11241 	val = 0x68007800;
11242 	REG_WR_IND(sc, BCE_RV2P_DEBUG_VECT_PEEK, val);
11243 	val = REG_RD_IND(sc, BCE_RV2P_DEBUG_VECT_PEEK);
11244 	pc1 = (val & BCE_RV2P_DEBUG_VECT_PEEK_1_VALUE);
11245 	pc2 = (val & BCE_RV2P_DEBUG_VECT_PEEK_2_VALUE) >> 16;
11246 	BCE_PRINTF("0x%08X - RV2P1 program counter (1st read)\n", pc1);
11247 	BCE_PRINTF("0x%08X - RV2P2 program counter (1st read)\n", pc2);
11248 
11249 	/* Fetch the program counter value again to see if it is advancing. */
11250 	val = 0x68007800;
11251 	REG_WR_IND(sc, BCE_RV2P_DEBUG_VECT_PEEK, val);
11252 	val = REG_RD_IND(sc, BCE_RV2P_DEBUG_VECT_PEEK);
11253 	pc1 = (val & BCE_RV2P_DEBUG_VECT_PEEK_1_VALUE);
11254 	pc2 = (val & BCE_RV2P_DEBUG_VECT_PEEK_2_VALUE) >> 16;
11255 	BCE_PRINTF("0x%08X - RV2P1 program counter (2nd read)\n", pc1);
11256 	BCE_PRINTF("0x%08X - RV2P2 program counter (2nd read)\n", pc2);
11257 
11258 	BCE_PRINTF(
11259 	    "----------------------------"
11260 	    "----------------"
11261 	    "----------------------------\n");
11262 }
11263 
11264 
11265 /****************************************************************************/
11266 /* Prints out the driver state and then enters the debugger.                */
11267 /*                                                                          */
11268 /* Returns:                                                                 */
11269 /*   Nothing.                                                               */
11270 /****************************************************************************/
11271 static __attribute__ ((noinline)) void
11272 bce_breakpoint(struct bce_softc *sc)
11273 {
11274 
11275 	/*
11276 	 * Unreachable code to silence compiler warnings
11277 	 * about unused functions.
11278 	 */
11279 	if (0) {
11280 		bce_freeze_controller(sc);
11281 		bce_unfreeze_controller(sc);
11282 		bce_dump_enet(sc, NULL);
11283 		bce_dump_txbd(sc, 0, NULL);
11284 		bce_dump_rxbd(sc, 0, NULL);
11285 		bce_dump_tx_mbuf_chain(sc, 0, USABLE_TX_BD_ALLOC);
11286 		bce_dump_rx_mbuf_chain(sc, 0, USABLE_RX_BD_ALLOC);
11287 		bce_dump_pg_mbuf_chain(sc, 0, USABLE_PG_BD_ALLOC);
11288 		bce_dump_l2fhdr(sc, 0, NULL);
11289 		bce_dump_ctx(sc, RX_CID);
11290 		bce_dump_ftqs(sc);
11291 		bce_dump_tx_chain(sc, 0, USABLE_TX_BD_ALLOC);
11292 		bce_dump_rx_bd_chain(sc, 0, USABLE_RX_BD_ALLOC);
11293 		bce_dump_pg_chain(sc, 0, USABLE_PG_BD_ALLOC);
11294 		bce_dump_status_block(sc);
11295 		bce_dump_stats_block(sc);
11296 		bce_dump_driver_state(sc);
11297 		bce_dump_hw_state(sc);
11298 		bce_dump_bc_state(sc);
11299 		bce_dump_txp_state(sc, 0);
11300 		bce_dump_rxp_state(sc, 0);
11301 		bce_dump_tpat_state(sc, 0);
11302 		bce_dump_cp_state(sc, 0);
11303 		bce_dump_com_state(sc, 0);
11304 		bce_dump_rv2p_state(sc);
11305 		bce_dump_pgbd(sc, 0, NULL);
11306 	}
11307 
11308 	bce_dump_status_block(sc);
11309 	bce_dump_driver_state(sc);
11310 
11311 	/* Call the debugger. */
11312 	breakpoint();
11313 
11314 	return;
11315 }
11316 #endif
11317 
11318