xref: /freebsd/sys/dev/bce/if_bce.c (revision 7aa65846327fe5bc7e5961c2f7fd0c61f2ec0b01)
1 /*-
2  * Copyright (c) 2006-2010 Broadcom Corporation
3  *	David Christensen <davidch@broadcom.com>.  All rights reserved.
4  *
5  * Redistribution and use in source and binary forms, with or without
6  * modification, are permitted provided that the following conditions
7  * are met:
8  *
9  * 1. Redistributions of source code must retain the above copyright
10  *    notice, this list of conditions and the following disclaimer.
11  * 2. Redistributions in binary form must reproduce the above copyright
12  *    notice, this list of conditions and the following disclaimer in the
13  *    documentation and/or other materials provided with the distribution.
14  * 3. Neither the name of Broadcom Corporation nor the name of its contributors
15  *    may be used to endorse or promote products derived from this software
16  *    without specific prior written consent.
17  *
18  * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS'
19  * AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
20  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
21  * ARE DISCLAIMED.  IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS
22  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
23  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
24  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
25  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
26  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
27  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF
28  * THE POSSIBILITY OF SUCH DAMAGE.
29  */
30 
31 #include <sys/cdefs.h>
32 __FBSDID("$FreeBSD$");
33 
34 /*
35  * The following controllers are supported by this driver:
36  *   BCM5706C A2, A3
37  *   BCM5706S A2, A3
38  *   BCM5708C B1, B2
39  *   BCM5708S B1, B2
40  *   BCM5709C A1, C0
41  *   BCM5709S A1, C0
42  *   BCM5716C C0
43  *   BCM5716S C0
44  *
45  * The following controllers are not supported by this driver:
46  *   BCM5706C A0, A1 (pre-production)
47  *   BCM5706S A0, A1 (pre-production)
48  *   BCM5708C A0, B0 (pre-production)
49  *   BCM5708S A0, B0 (pre-production)
50  *   BCM5709C A0  B0, B1, B2 (pre-production)
51  *   BCM5709S A0, B0, B1, B2 (pre-production)
52  */
53 
54 #include "opt_bce.h"
55 
56 #include <dev/bce/if_bcereg.h>
57 #include <dev/bce/if_bcefw.h>
58 
59 /****************************************************************************/
60 /* BCE Debug Options                                                        */
61 /****************************************************************************/
62 #ifdef BCE_DEBUG
63 	u32 bce_debug = BCE_WARN;
64 
65 	/*          0 = Never              */
66 	/*          1 = 1 in 2,147,483,648 */
67 	/*        256 = 1 in     8,388,608 */
68 	/*       2048 = 1 in     1,048,576 */
69 	/*      65536 = 1 in        32,768 */
70 	/*    1048576 = 1 in         2,048 */
71 	/*  268435456 =	1 in             8 */
72 	/*  536870912 = 1 in             4 */
73 	/* 1073741824 = 1 in             2 */
74 
75 	/* Controls how often the l2_fhdr frame error check will fail. */
76 	int l2fhdr_error_sim_control = 0;
77 
78 	/* Controls how often the unexpected attention check will fail. */
79 	int unexpected_attention_sim_control = 0;
80 
81 	/* Controls how often to simulate an mbuf allocation failure. */
82 	int mbuf_alloc_failed_sim_control = 0;
83 
84 	/* Controls how often to simulate a DMA mapping failure. */
85 	int dma_map_addr_failed_sim_control = 0;
86 
87 	/* Controls how often to simulate a bootcode failure. */
88 	int bootcode_running_failure_sim_control = 0;
89 #endif
90 
91 /****************************************************************************/
92 /* PCI Device ID Table                                                      */
93 /*                                                                          */
94 /* Used by bce_probe() to identify the devices supported by this driver.    */
95 /****************************************************************************/
96 #define BCE_DEVDESC_MAX		64
97 
98 static struct bce_type bce_devs[] = {
99 	/* BCM5706C Controllers and OEM boards. */
100 	{ BRCM_VENDORID, BRCM_DEVICEID_BCM5706,  HP_VENDORID, 0x3101,
101 		"HP NC370T Multifunction Gigabit Server Adapter" },
102 	{ BRCM_VENDORID, BRCM_DEVICEID_BCM5706,  HP_VENDORID, 0x3106,
103 		"HP NC370i Multifunction Gigabit Server Adapter" },
104 	{ BRCM_VENDORID, BRCM_DEVICEID_BCM5706,  HP_VENDORID, 0x3070,
105 		"HP NC380T PCIe DP Multifunc Gig Server Adapter" },
106 	{ BRCM_VENDORID, BRCM_DEVICEID_BCM5706,  HP_VENDORID, 0x1709,
107 		"HP NC371i Multifunction Gigabit Server Adapter" },
108 	{ BRCM_VENDORID, BRCM_DEVICEID_BCM5706,  PCI_ANY_ID,  PCI_ANY_ID,
109 		"Broadcom NetXtreme II BCM5706 1000Base-T" },
110 
111 	/* BCM5706S controllers and OEM boards. */
112 	{ BRCM_VENDORID, BRCM_DEVICEID_BCM5706S, HP_VENDORID, 0x3102,
113 		"HP NC370F Multifunction Gigabit Server Adapter" },
114 	{ BRCM_VENDORID, BRCM_DEVICEID_BCM5706S, PCI_ANY_ID,  PCI_ANY_ID,
115 		"Broadcom NetXtreme II BCM5706 1000Base-SX" },
116 
117 	/* BCM5708C controllers and OEM boards. */
118 	{ BRCM_VENDORID, BRCM_DEVICEID_BCM5708,  HP_VENDORID, 0x7037,
119 		"HP NC373T PCIe Multifunction Gig Server Adapter" },
120 	{ BRCM_VENDORID, BRCM_DEVICEID_BCM5708,  HP_VENDORID, 0x7038,
121 		"HP NC373i Multifunction Gigabit Server Adapter" },
122 	{ BRCM_VENDORID, BRCM_DEVICEID_BCM5708,  HP_VENDORID, 0x7045,
123 		"HP NC374m PCIe Multifunction Adapter" },
124 	{ BRCM_VENDORID, BRCM_DEVICEID_BCM5708,  PCI_ANY_ID,  PCI_ANY_ID,
125 		"Broadcom NetXtreme II BCM5708 1000Base-T" },
126 
127 	/* BCM5708S controllers and OEM boards. */
128 	{ BRCM_VENDORID, BRCM_DEVICEID_BCM5708S,  HP_VENDORID, 0x1706,
129 		"HP NC373m Multifunction Gigabit Server Adapter" },
130 	{ BRCM_VENDORID, BRCM_DEVICEID_BCM5708S,  HP_VENDORID, 0x703b,
131 		"HP NC373i Multifunction Gigabit Server Adapter" },
132 	{ BRCM_VENDORID, BRCM_DEVICEID_BCM5708S,  HP_VENDORID, 0x703d,
133 		"HP NC373F PCIe Multifunc Giga Server Adapter" },
134 	{ BRCM_VENDORID, BRCM_DEVICEID_BCM5708S,  PCI_ANY_ID,  PCI_ANY_ID,
135 		"Broadcom NetXtreme II BCM5708 1000Base-SX" },
136 
137 	/* BCM5709C controllers and OEM boards. */
138 	{ BRCM_VENDORID, BRCM_DEVICEID_BCM5709,  HP_VENDORID, 0x7055,
139 		"HP NC382i DP Multifunction Gigabit Server Adapter" },
140 	{ BRCM_VENDORID, BRCM_DEVICEID_BCM5709,  HP_VENDORID, 0x7059,
141 		"HP NC382T PCIe DP Multifunction Gigabit Server Adapter" },
142 	{ BRCM_VENDORID, BRCM_DEVICEID_BCM5709,  PCI_ANY_ID,  PCI_ANY_ID,
143 		"Broadcom NetXtreme II BCM5709 1000Base-T" },
144 
145 	/* BCM5709S controllers and OEM boards. */
146 	{ BRCM_VENDORID, BRCM_DEVICEID_BCM5709S,  HP_VENDORID, 0x171d,
147 		"HP NC382m DP 1GbE Multifunction BL-c Adapter" },
148 	{ BRCM_VENDORID, BRCM_DEVICEID_BCM5709S,  HP_VENDORID, 0x7056,
149 		"HP NC382i DP Multifunction Gigabit Server Adapter" },
150 	{ BRCM_VENDORID, BRCM_DEVICEID_BCM5709S,  PCI_ANY_ID,  PCI_ANY_ID,
151 		"Broadcom NetXtreme II BCM5709 1000Base-SX" },
152 
153 	/* BCM5716 controllers and OEM boards. */
154 	{ BRCM_VENDORID, BRCM_DEVICEID_BCM5716,  PCI_ANY_ID,  PCI_ANY_ID,
155 		"Broadcom NetXtreme II BCM5716 1000Base-T" },
156 
157 	{ 0, 0, 0, 0, NULL }
158 };
159 
160 
161 /****************************************************************************/
162 /* Supported Flash NVRAM device data.                                       */
163 /****************************************************************************/
164 static struct flash_spec flash_table[] =
165 {
166 #define BUFFERED_FLAGS		(BCE_NV_BUFFERED | BCE_NV_TRANSLATE)
167 #define NONBUFFERED_FLAGS	(BCE_NV_WREN)
168 
169 	/* Slow EEPROM */
170 	{0x00000000, 0x40830380, 0x009f0081, 0xa184a053, 0xaf000400,
171 	 BUFFERED_FLAGS, SEEPROM_PAGE_BITS, SEEPROM_PAGE_SIZE,
172 	 SEEPROM_BYTE_ADDR_MASK, SEEPROM_TOTAL_SIZE,
173 	 "EEPROM - slow"},
174 	/* Expansion entry 0001 */
175 	{0x08000002, 0x4b808201, 0x00050081, 0x03840253, 0xaf020406,
176 	 NONBUFFERED_FLAGS, SAIFUN_FLASH_PAGE_BITS, SAIFUN_FLASH_PAGE_SIZE,
177 	 SAIFUN_FLASH_BYTE_ADDR_MASK, 0,
178 	 "Entry 0001"},
179 	/* Saifun SA25F010 (non-buffered flash) */
180 	/* strap, cfg1, & write1 need updates */
181 	{0x04000001, 0x47808201, 0x00050081, 0x03840253, 0xaf020406,
182 	 NONBUFFERED_FLAGS, SAIFUN_FLASH_PAGE_BITS, SAIFUN_FLASH_PAGE_SIZE,
183 	 SAIFUN_FLASH_BYTE_ADDR_MASK, SAIFUN_FLASH_BASE_TOTAL_SIZE*2,
184 	 "Non-buffered flash (128kB)"},
185 	/* Saifun SA25F020 (non-buffered flash) */
186 	/* strap, cfg1, & write1 need updates */
187 	{0x0c000003, 0x4f808201, 0x00050081, 0x03840253, 0xaf020406,
188 	 NONBUFFERED_FLAGS, SAIFUN_FLASH_PAGE_BITS, SAIFUN_FLASH_PAGE_SIZE,
189 	 SAIFUN_FLASH_BYTE_ADDR_MASK, SAIFUN_FLASH_BASE_TOTAL_SIZE*4,
190 	 "Non-buffered flash (256kB)"},
191 	/* Expansion entry 0100 */
192 	{0x11000000, 0x53808201, 0x00050081, 0x03840253, 0xaf020406,
193 	 NONBUFFERED_FLAGS, SAIFUN_FLASH_PAGE_BITS, SAIFUN_FLASH_PAGE_SIZE,
194 	 SAIFUN_FLASH_BYTE_ADDR_MASK, 0,
195 	 "Entry 0100"},
196 	/* Entry 0101: ST M45PE10 (non-buffered flash, TetonII B0) */
197 	{0x19000002, 0x5b808201, 0x000500db, 0x03840253, 0xaf020406,
198 	 NONBUFFERED_FLAGS, ST_MICRO_FLASH_PAGE_BITS, ST_MICRO_FLASH_PAGE_SIZE,
199 	 ST_MICRO_FLASH_BYTE_ADDR_MASK, ST_MICRO_FLASH_BASE_TOTAL_SIZE*2,
200 	 "Entry 0101: ST M45PE10 (128kB non-bufferred)"},
201 	/* Entry 0110: ST M45PE20 (non-buffered flash)*/
202 	{0x15000001, 0x57808201, 0x000500db, 0x03840253, 0xaf020406,
203 	 NONBUFFERED_FLAGS, ST_MICRO_FLASH_PAGE_BITS, ST_MICRO_FLASH_PAGE_SIZE,
204 	 ST_MICRO_FLASH_BYTE_ADDR_MASK, ST_MICRO_FLASH_BASE_TOTAL_SIZE*4,
205 	 "Entry 0110: ST M45PE20 (256kB non-bufferred)"},
206 	/* Saifun SA25F005 (non-buffered flash) */
207 	/* strap, cfg1, & write1 need updates */
208 	{0x1d000003, 0x5f808201, 0x00050081, 0x03840253, 0xaf020406,
209 	 NONBUFFERED_FLAGS, SAIFUN_FLASH_PAGE_BITS, SAIFUN_FLASH_PAGE_SIZE,
210 	 SAIFUN_FLASH_BYTE_ADDR_MASK, SAIFUN_FLASH_BASE_TOTAL_SIZE,
211 	 "Non-buffered flash (64kB)"},
212 	/* Fast EEPROM */
213 	{0x22000000, 0x62808380, 0x009f0081, 0xa184a053, 0xaf000400,
214 	 BUFFERED_FLAGS, SEEPROM_PAGE_BITS, SEEPROM_PAGE_SIZE,
215 	 SEEPROM_BYTE_ADDR_MASK, SEEPROM_TOTAL_SIZE,
216 	 "EEPROM - fast"},
217 	/* Expansion entry 1001 */
218 	{0x2a000002, 0x6b808201, 0x00050081, 0x03840253, 0xaf020406,
219 	 NONBUFFERED_FLAGS, SAIFUN_FLASH_PAGE_BITS, SAIFUN_FLASH_PAGE_SIZE,
220 	 SAIFUN_FLASH_BYTE_ADDR_MASK, 0,
221 	 "Entry 1001"},
222 	/* Expansion entry 1010 */
223 	{0x26000001, 0x67808201, 0x00050081, 0x03840253, 0xaf020406,
224 	 NONBUFFERED_FLAGS, SAIFUN_FLASH_PAGE_BITS, SAIFUN_FLASH_PAGE_SIZE,
225 	 SAIFUN_FLASH_BYTE_ADDR_MASK, 0,
226 	 "Entry 1010"},
227 	/* ATMEL AT45DB011B (buffered flash) */
228 	{0x2e000003, 0x6e808273, 0x00570081, 0x68848353, 0xaf000400,
229 	 BUFFERED_FLAGS, BUFFERED_FLASH_PAGE_BITS, BUFFERED_FLASH_PAGE_SIZE,
230 	 BUFFERED_FLASH_BYTE_ADDR_MASK, BUFFERED_FLASH_TOTAL_SIZE,
231 	 "Buffered flash (128kB)"},
232 	/* Expansion entry 1100 */
233 	{0x33000000, 0x73808201, 0x00050081, 0x03840253, 0xaf020406,
234 	 NONBUFFERED_FLAGS, SAIFUN_FLASH_PAGE_BITS, SAIFUN_FLASH_PAGE_SIZE,
235 	 SAIFUN_FLASH_BYTE_ADDR_MASK, 0,
236 	 "Entry 1100"},
237 	/* Expansion entry 1101 */
238 	{0x3b000002, 0x7b808201, 0x00050081, 0x03840253, 0xaf020406,
239 	 NONBUFFERED_FLAGS, SAIFUN_FLASH_PAGE_BITS, SAIFUN_FLASH_PAGE_SIZE,
240 	 SAIFUN_FLASH_BYTE_ADDR_MASK, 0,
241 	 "Entry 1101"},
242 	/* Ateml Expansion entry 1110 */
243 	{0x37000001, 0x76808273, 0x00570081, 0x68848353, 0xaf000400,
244 	 BUFFERED_FLAGS, BUFFERED_FLASH_PAGE_BITS, BUFFERED_FLASH_PAGE_SIZE,
245 	 BUFFERED_FLASH_BYTE_ADDR_MASK, 0,
246 	 "Entry 1110 (Atmel)"},
247 	/* ATMEL AT45DB021B (buffered flash) */
248 	{0x3f000003, 0x7e808273, 0x00570081, 0x68848353, 0xaf000400,
249 	 BUFFERED_FLAGS, BUFFERED_FLASH_PAGE_BITS, BUFFERED_FLASH_PAGE_SIZE,
250 	 BUFFERED_FLASH_BYTE_ADDR_MASK, BUFFERED_FLASH_TOTAL_SIZE*2,
251 	 "Buffered flash (256kB)"},
252 };
253 
254 /*
255  * The BCM5709 controllers transparently handle the
256  * differences between Atmel 264 byte pages and all
257  * flash devices which use 256 byte pages, so no
258  * logical-to-physical mapping is required in the
259  * driver.
260  */
261 static struct flash_spec flash_5709 = {
262 	.flags		= BCE_NV_BUFFERED,
263 	.page_bits	= BCM5709_FLASH_PAGE_BITS,
264 	.page_size	= BCM5709_FLASH_PAGE_SIZE,
265 	.addr_mask	= BCM5709_FLASH_BYTE_ADDR_MASK,
266 	.total_size	= BUFFERED_FLASH_TOTAL_SIZE * 2,
267 	.name		= "5709/5716 buffered flash (256kB)",
268 };
269 
270 
271 /****************************************************************************/
272 /* FreeBSD device entry points.                                             */
273 /****************************************************************************/
274 static int  bce_probe			(device_t);
275 static int  bce_attach			(device_t);
276 static int  bce_detach			(device_t);
277 static int  bce_shutdown		(device_t);
278 
279 
280 /****************************************************************************/
281 /* BCE Debug Data Structure Dump Routines                                   */
282 /****************************************************************************/
283 #ifdef BCE_DEBUG
284 static u32  bce_reg_rd				(struct bce_softc *, u32);
285 static void bce_reg_wr				(struct bce_softc *, u32, u32);
286 static void bce_reg_wr16			(struct bce_softc *, u32, u16);
287 static u32  bce_ctx_rd				(struct bce_softc *, u32, u32);
288 static void bce_dump_enet			(struct bce_softc *, struct mbuf *);
289 static void bce_dump_mbuf			(struct bce_softc *, struct mbuf *);
290 static void bce_dump_tx_mbuf_chain	(struct bce_softc *, u16, int);
291 static void bce_dump_rx_mbuf_chain	(struct bce_softc *, u16, int);
292 static void bce_dump_pg_mbuf_chain	(struct bce_softc *, u16, int);
293 static void bce_dump_txbd			(struct bce_softc *,
294     int, struct tx_bd *);
295 static void bce_dump_rxbd			(struct bce_softc *,
296     int, struct rx_bd *);
297 static void bce_dump_pgbd			(struct bce_softc *,
298     int, struct rx_bd *);
299 static void bce_dump_l2fhdr		(struct bce_softc *,
300     int, struct l2_fhdr *);
301 static void bce_dump_ctx			(struct bce_softc *, u16);
302 static void bce_dump_ftqs			(struct bce_softc *);
303 static void bce_dump_tx_chain		(struct bce_softc *, u16, int);
304 static void bce_dump_rx_bd_chain	(struct bce_softc *, u16, int);
305 static void bce_dump_pg_chain		(struct bce_softc *, u16, int);
306 static void bce_dump_status_block	(struct bce_softc *);
307 static void bce_dump_stats_block	(struct bce_softc *);
308 static void bce_dump_driver_state	(struct bce_softc *);
309 static void bce_dump_hw_state		(struct bce_softc *);
310 static void bce_dump_shmem_state	(struct bce_softc *);
311 static void bce_dump_mq_regs		(struct bce_softc *);
312 static void bce_dump_bc_state		(struct bce_softc *);
313 static void bce_dump_txp_state		(struct bce_softc *, int);
314 static void bce_dump_rxp_state		(struct bce_softc *, int);
315 static void bce_dump_tpat_state	(struct bce_softc *, int);
316 static void bce_dump_cp_state		(struct bce_softc *, int);
317 static void bce_dump_com_state		(struct bce_softc *, int);
318 static void bce_dump_rv2p_state	(struct bce_softc *);
319 static void bce_breakpoint			(struct bce_softc *);
320 #endif /*BCE_DEBUG */
321 
322 
323 /****************************************************************************/
324 /* BCE Register/Memory Access Routines                                      */
325 /****************************************************************************/
326 static u32  bce_reg_rd_ind		(struct bce_softc *, u32);
327 static void bce_reg_wr_ind		(struct bce_softc *, u32, u32);
328 static void bce_shmem_wr		(struct bce_softc *, u32, u32);
329 static u32  bce_shmem_rd		(struct bce_softc *, u32);
330 static void bce_ctx_wr			(struct bce_softc *, u32, u32, u32);
331 static int  bce_miibus_read_reg		(device_t, int, int);
332 static int  bce_miibus_write_reg	(device_t, int, int, int);
333 static void bce_miibus_statchg		(device_t);
334 
335 #ifdef BCE_DEBUG
336 static int bce_sysctl_nvram_dump(SYSCTL_HANDLER_ARGS);
337 #ifdef BCE_NVRAM_WRITE_SUPPORT
338 static int bce_sysctl_nvram_write(SYSCTL_HANDLER_ARGS);
339 #endif
340 #endif
341 
342 /****************************************************************************/
343 /* BCE NVRAM Access Routines                                                */
344 /****************************************************************************/
345 static int  bce_acquire_nvram_lock	(struct bce_softc *);
346 static int  bce_release_nvram_lock	(struct bce_softc *);
347 static void bce_enable_nvram_access(struct bce_softc *);
348 static void bce_disable_nvram_access(struct bce_softc *);
349 static int  bce_nvram_read_dword	(struct bce_softc *, u32, u8 *, u32);
350 static int  bce_init_nvram			(struct bce_softc *);
351 static int  bce_nvram_read			(struct bce_softc *, u32, u8 *, int);
352 static int  bce_nvram_test			(struct bce_softc *);
353 #ifdef BCE_NVRAM_WRITE_SUPPORT
354 static int  bce_enable_nvram_write	(struct bce_softc *);
355 static void bce_disable_nvram_write(struct bce_softc *);
356 static int  bce_nvram_erase_page	(struct bce_softc *, u32);
357 static int  bce_nvram_write_dword	(struct bce_softc *, u32, u8 *, u32);
358 static int  bce_nvram_write		(struct bce_softc *, u32, u8 *, int);
359 #endif
360 
361 /****************************************************************************/
362 /*                                                                          */
363 /****************************************************************************/
364 static void bce_get_rx_buffer_sizes(struct bce_softc *, int);
365 static void bce_get_media			(struct bce_softc *);
366 static void bce_init_media			(struct bce_softc *);
367 static void bce_dma_map_addr		(void *, bus_dma_segment_t *, int, int);
368 static int  bce_dma_alloc			(device_t);
369 static void bce_dma_free			(struct bce_softc *);
370 static void bce_release_resources	(struct bce_softc *);
371 
372 /****************************************************************************/
373 /* BCE Firmware Synchronization and Load                                    */
374 /****************************************************************************/
375 static int  bce_fw_sync			(struct bce_softc *, u32);
376 static void bce_load_rv2p_fw		(struct bce_softc *, u32 *, u32, u32);
377 static void bce_load_cpu_fw		(struct bce_softc *,
378     struct cpu_reg *, struct fw_info *);
379 static void bce_start_cpu			(struct bce_softc *, struct cpu_reg *);
380 static void bce_halt_cpu			(struct bce_softc *, struct cpu_reg *);
381 static void bce_start_rxp_cpu		(struct bce_softc *);
382 static void bce_init_rxp_cpu		(struct bce_softc *);
383 static void bce_init_txp_cpu 		(struct bce_softc *);
384 static void bce_init_tpat_cpu		(struct bce_softc *);
385 static void bce_init_cp_cpu	  	(struct bce_softc *);
386 static void bce_init_com_cpu	  	(struct bce_softc *);
387 static void bce_init_cpus			(struct bce_softc *);
388 
389 static void bce_print_adapter_info	(struct bce_softc *);
390 static void bce_probe_pci_caps		(device_t, struct bce_softc *);
391 static void bce_stop				(struct bce_softc *);
392 static int  bce_reset				(struct bce_softc *, u32);
393 static int  bce_chipinit 			(struct bce_softc *);
394 static int  bce_blockinit 			(struct bce_softc *);
395 
396 static int  bce_init_tx_chain		(struct bce_softc *);
397 static void bce_free_tx_chain		(struct bce_softc *);
398 
399 static int  bce_get_rx_buf			(struct bce_softc *,
400     struct mbuf *, u16 *, u16 *, u32 *);
401 static int  bce_init_rx_chain		(struct bce_softc *);
402 static void bce_fill_rx_chain		(struct bce_softc *);
403 static void bce_free_rx_chain		(struct bce_softc *);
404 
405 static int  bce_get_pg_buf			(struct bce_softc *,
406     struct mbuf *, u16 *, u16 *);
407 static int  bce_init_pg_chain		(struct bce_softc *);
408 static void bce_fill_pg_chain		(struct bce_softc *);
409 static void bce_free_pg_chain		(struct bce_softc *);
410 
411 static struct mbuf *bce_tso_setup	(struct bce_softc *,
412     struct mbuf **, u16 *);
413 static int  bce_tx_encap			(struct bce_softc *, struct mbuf **);
414 static void bce_start_locked		(struct ifnet *);
415 static void bce_start				(struct ifnet *);
416 static int  bce_ioctl				(struct ifnet *, u_long, caddr_t);
417 static void bce_watchdog			(struct bce_softc *);
418 static int  bce_ifmedia_upd		(struct ifnet *);
419 static int  bce_ifmedia_upd_locked	(struct ifnet *);
420 static void bce_ifmedia_sts		(struct ifnet *, struct ifmediareq *);
421 static void bce_init_locked		(struct bce_softc *);
422 static void bce_init				(void *);
423 static void bce_mgmt_init_locked	(struct bce_softc *sc);
424 
425 static int  bce_init_ctx			(struct bce_softc *);
426 static void bce_get_mac_addr		(struct bce_softc *);
427 static void bce_set_mac_addr		(struct bce_softc *);
428 static void bce_phy_intr			(struct bce_softc *);
429 static inline u16 bce_get_hw_rx_cons	(struct bce_softc *);
430 static void bce_rx_intr			(struct bce_softc *);
431 static void bce_tx_intr			(struct bce_softc *);
432 static void bce_disable_intr		(struct bce_softc *);
433 static void bce_enable_intr		(struct bce_softc *, int);
434 
435 static void bce_intr				(void *);
436 static void bce_set_rx_mode		(struct bce_softc *);
437 static void bce_stats_update		(struct bce_softc *);
438 static void bce_tick				(void *);
439 static void bce_pulse				(void *);
440 static void bce_add_sysctls		(struct bce_softc *);
441 
442 
443 /****************************************************************************/
444 /* FreeBSD device dispatch table.                                           */
445 /****************************************************************************/
446 static device_method_t bce_methods[] = {
447 	/* Device interface (device_if.h) */
448 	DEVMETHOD(device_probe,		bce_probe),
449 	DEVMETHOD(device_attach,	bce_attach),
450 	DEVMETHOD(device_detach,	bce_detach),
451 	DEVMETHOD(device_shutdown,	bce_shutdown),
452 /* Supported by device interface but not used here. */
453 /*	DEVMETHOD(device_identify,	bce_identify),      */
454 /*	DEVMETHOD(device_suspend,	bce_suspend),       */
455 /*	DEVMETHOD(device_resume,	bce_resume),        */
456 /*	DEVMETHOD(device_quiesce,	bce_quiesce),       */
457 
458 	/* MII interface (miibus_if.h) */
459 	DEVMETHOD(miibus_readreg,	bce_miibus_read_reg),
460 	DEVMETHOD(miibus_writereg,	bce_miibus_write_reg),
461 	DEVMETHOD(miibus_statchg,	bce_miibus_statchg),
462 /* Supported by MII interface but not used here.       */
463 /*	DEVMETHOD(miibus_linkchg,	bce_miibus_linkchg),   */
464 /*	DEVMETHOD(miibus_mediainit,	bce_miibus_mediainit), */
465 
466 	DEVMETHOD_END
467 };
468 
469 static driver_t bce_driver = {
470 	"bce",
471 	bce_methods,
472 	sizeof(struct bce_softc)
473 };
474 
475 static devclass_t bce_devclass;
476 
477 MODULE_DEPEND(bce, pci, 1, 1, 1);
478 MODULE_DEPEND(bce, ether, 1, 1, 1);
479 MODULE_DEPEND(bce, miibus, 1, 1, 1);
480 
481 DRIVER_MODULE(bce, pci, bce_driver, bce_devclass, 0, 0);
482 DRIVER_MODULE(miibus, bce, miibus_driver, miibus_devclass, 0, 0);
483 
484 
485 /****************************************************************************/
486 /* Tunable device values                                                    */
487 /****************************************************************************/
488 static SYSCTL_NODE(_hw, OID_AUTO, bce, CTLFLAG_RD, 0, "bce driver parameters");
489 
490 /* Allowable values are TRUE or FALSE */
491 static int bce_verbose = TRUE;
492 TUNABLE_INT("hw.bce.verbose", &bce_verbose);
493 SYSCTL_INT(_hw_bce, OID_AUTO, verbose, CTLFLAG_RDTUN, &bce_verbose, 0,
494     "Verbose output enable/disable");
495 
496 /* Allowable values are TRUE or FALSE */
497 static int bce_tso_enable = TRUE;
498 TUNABLE_INT("hw.bce.tso_enable", &bce_tso_enable);
499 SYSCTL_INT(_hw_bce, OID_AUTO, tso_enable, CTLFLAG_RDTUN, &bce_tso_enable, 0,
500     "TSO Enable/Disable");
501 
502 /* Allowable values are 0 (IRQ), 1 (MSI/IRQ), and 2 (MSI-X/MSI/IRQ) */
503 /* ToDo: Add MSI-X support. */
504 static int bce_msi_enable = 1;
505 TUNABLE_INT("hw.bce.msi_enable", &bce_msi_enable);
506 SYSCTL_INT(_hw_bce, OID_AUTO, msi_enable, CTLFLAG_RDTUN, &bce_msi_enable, 0,
507     "MSI-X|MSI|INTx selector");
508 
509 /* Allowable values are 1, 2, 4, 8. */
510 static int bce_rx_pages = DEFAULT_RX_PAGES;
511 TUNABLE_INT("hw.bce.rx_pages", &bce_rx_pages);
512 SYSCTL_UINT(_hw_bce, OID_AUTO, rx_pages, CTLFLAG_RDTUN, &bce_rx_pages, 0,
513     "Receive buffer descriptor pages (1 page = 255 buffer descriptors)");
514 
515 /* Allowable values are 1, 2, 4, 8. */
516 static int bce_tx_pages = DEFAULT_TX_PAGES;
517 TUNABLE_INT("hw.bce.tx_pages", &bce_tx_pages);
518 SYSCTL_UINT(_hw_bce, OID_AUTO, tx_pages, CTLFLAG_RDTUN, &bce_tx_pages, 0,
519     "Transmit buffer descriptor pages (1 page = 255 buffer descriptors)");
520 
521 /* Allowable values are TRUE or FALSE. */
522 static int bce_hdr_split = TRUE;
523 TUNABLE_INT("hw.bce.hdr_split", &bce_hdr_split);
524 SYSCTL_UINT(_hw_bce, OID_AUTO, hdr_split, CTLFLAG_RDTUN, &bce_hdr_split, 0,
525     "Frame header/payload splitting Enable/Disable");
526 
527 /* Allowable values are TRUE or FALSE. */
528 static int bce_strict_rx_mtu = FALSE;
529 TUNABLE_INT("hw.bce.strict_rx_mtu", &bce_strict_rx_mtu);
530 SYSCTL_UINT(_hw_bce, OID_AUTO, loose_rx_mtu, CTLFLAG_RDTUN,
531     &bce_strict_rx_mtu, 0,
532     "Enable/Disable strict RX frame size checking");
533 
534 /* Allowable values are 0 ... 100 */
535 #ifdef BCE_DEBUG
536 /* Generate 1 interrupt for every transmit completion. */
537 static int bce_tx_quick_cons_trip_int = 1;
538 #else
539 /* Generate 1 interrupt for every 20 transmit completions. */
540 static int bce_tx_quick_cons_trip_int = DEFAULT_TX_QUICK_CONS_TRIP_INT;
541 #endif
542 TUNABLE_INT("hw.bce.tx_quick_cons_trip_int", &bce_tx_quick_cons_trip_int);
543 SYSCTL_UINT(_hw_bce, OID_AUTO, tx_quick_cons_trip_int, CTLFLAG_RDTUN,
544     &bce_tx_quick_cons_trip_int, 0,
545     "Transmit BD trip point during interrupts");
546 
547 /* Allowable values are 0 ... 100 */
548 /* Generate 1 interrupt for every transmit completion. */
549 #ifdef BCE_DEBUG
550 static int bce_tx_quick_cons_trip = 1;
551 #else
552 /* Generate 1 interrupt for every 20 transmit completions. */
553 static int bce_tx_quick_cons_trip = DEFAULT_TX_QUICK_CONS_TRIP;
554 #endif
555 TUNABLE_INT("hw.bce.tx_quick_cons_trip", &bce_tx_quick_cons_trip);
556 SYSCTL_UINT(_hw_bce, OID_AUTO, tx_quick_cons_trip, CTLFLAG_RDTUN,
557     &bce_tx_quick_cons_trip, 0,
558     "Transmit BD trip point");
559 
560 /* Allowable values are 0 ... 100 */
561 #ifdef BCE_DEBUG
562 /* Generate an interrupt if 0us have elapsed since the last TX completion. */
563 static int bce_tx_ticks_int = 0;
564 #else
565 /* Generate an interrupt if 80us have elapsed since the last TX completion. */
566 static int bce_tx_ticks_int = DEFAULT_TX_TICKS_INT;
567 #endif
568 TUNABLE_INT("hw.bce.tx_ticks_int", &bce_tx_ticks_int);
569 SYSCTL_UINT(_hw_bce, OID_AUTO, tx_ticks_int, CTLFLAG_RDTUN,
570     &bce_tx_ticks_int, 0, "Transmit ticks count during interrupt");
571 
572 /* Allowable values are 0 ... 100 */
573 #ifdef BCE_DEBUG
574 /* Generate an interrupt if 0us have elapsed since the last TX completion. */
575 static int bce_tx_ticks = 0;
576 #else
577 /* Generate an interrupt if 80us have elapsed since the last TX completion. */
578 static int bce_tx_ticks = DEFAULT_TX_TICKS;
579 #endif
580 TUNABLE_INT("hw.bce.tx_ticks", &bce_tx_ticks);
581 SYSCTL_UINT(_hw_bce, OID_AUTO, tx_ticks, CTLFLAG_RDTUN,
582     &bce_tx_ticks, 0, "Transmit ticks count");
583 
584 /* Allowable values are 1 ... 100 */
585 #ifdef BCE_DEBUG
586 /* Generate 1 interrupt for every received frame. */
587 static int bce_rx_quick_cons_trip_int = 1;
588 #else
589 /* Generate 1 interrupt for every 6 received frames. */
590 static int bce_rx_quick_cons_trip_int = DEFAULT_RX_QUICK_CONS_TRIP_INT;
591 #endif
592 TUNABLE_INT("hw.bce.rx_quick_cons_trip_int", &bce_rx_quick_cons_trip_int);
593 SYSCTL_UINT(_hw_bce, OID_AUTO, rx_quick_cons_trip_int, CTLFLAG_RDTUN,
594     &bce_rx_quick_cons_trip_int, 0,
595     "Receive BD trip point duirng interrupts");
596 
597 /* Allowable values are 1 ... 100 */
598 #ifdef BCE_DEBUG
599 /* Generate 1 interrupt for every received frame. */
600 static int bce_rx_quick_cons_trip = 1;
601 #else
602 /* Generate 1 interrupt for every 6 received frames. */
603 static int bce_rx_quick_cons_trip = DEFAULT_RX_QUICK_CONS_TRIP;
604 #endif
605 TUNABLE_INT("hw.bce.rx_quick_cons_trip", &bce_rx_quick_cons_trip);
606 SYSCTL_UINT(_hw_bce, OID_AUTO, rx_quick_cons_trip, CTLFLAG_RDTUN,
607     &bce_rx_quick_cons_trip, 0,
608     "Receive BD trip point");
609 
610 /* Allowable values are 0 ... 100 */
611 #ifdef BCE_DEBUG
612 /* Generate an int. if 0us have elapsed since the last received frame. */
613 static int bce_rx_ticks_int = 0;
614 #else
615 /* Generate an int. if 18us have elapsed since the last received frame. */
616 static int bce_rx_ticks_int = DEFAULT_RX_TICKS_INT;
617 #endif
618 TUNABLE_INT("hw.bce.rx_ticks_int", &bce_rx_ticks_int);
619 SYSCTL_UINT(_hw_bce, OID_AUTO, rx_ticks_int, CTLFLAG_RDTUN,
620     &bce_rx_ticks_int, 0, "Receive ticks count during interrupt");
621 
622 /* Allowable values are 0 ... 100 */
623 #ifdef BCE_DEBUG
624 /* Generate an int. if 0us have elapsed since the last received frame. */
625 static int bce_rx_ticks = 0;
626 #else
627 /* Generate an int. if 18us have elapsed since the last received frame. */
628 static int bce_rx_ticks = DEFAULT_RX_TICKS;
629 #endif
630 TUNABLE_INT("hw.bce.rx_ticks", &bce_rx_ticks);
631 SYSCTL_UINT(_hw_bce, OID_AUTO, rx_ticks, CTLFLAG_RDTUN,
632     &bce_rx_ticks, 0, "Receive ticks count");
633 
634 
635 /****************************************************************************/
636 /* Device probe function.                                                   */
637 /*                                                                          */
638 /* Compares the device to the driver's list of supported devices and        */
639 /* reports back to the OS whether this is the right driver for the device.  */
640 /*                                                                          */
641 /* Returns:                                                                 */
642 /*   BUS_PROBE_DEFAULT on success, positive value on failure.               */
643 /****************************************************************************/
644 static int
645 bce_probe(device_t dev)
646 {
647 	struct bce_type *t;
648 	struct bce_softc *sc;
649 	char *descbuf;
650 	u16 vid = 0, did = 0, svid = 0, sdid = 0;
651 
652 	t = bce_devs;
653 
654 	sc = device_get_softc(dev);
655 	bzero(sc, sizeof(struct bce_softc));
656 	sc->bce_unit = device_get_unit(dev);
657 	sc->bce_dev = dev;
658 
659 	/* Get the data for the device to be probed. */
660 	vid  = pci_get_vendor(dev);
661 	did  = pci_get_device(dev);
662 	svid = pci_get_subvendor(dev);
663 	sdid = pci_get_subdevice(dev);
664 
665 	DBPRINT(sc, BCE_EXTREME_LOAD,
666 	    "%s(); VID = 0x%04X, DID = 0x%04X, SVID = 0x%04X, "
667 	    "SDID = 0x%04X\n", __FUNCTION__, vid, did, svid, sdid);
668 
669 	/* Look through the list of known devices for a match. */
670 	while(t->bce_name != NULL) {
671 
672 		if ((vid == t->bce_vid) && (did == t->bce_did) &&
673 		    ((svid == t->bce_svid) || (t->bce_svid == PCI_ANY_ID)) &&
674 		    ((sdid == t->bce_sdid) || (t->bce_sdid == PCI_ANY_ID))) {
675 
676 			descbuf = malloc(BCE_DEVDESC_MAX, M_TEMP, M_NOWAIT);
677 
678 			if (descbuf == NULL)
679 				return(ENOMEM);
680 
681 			/* Print out the device identity. */
682 			snprintf(descbuf, BCE_DEVDESC_MAX, "%s (%c%d)",
683 			    t->bce_name, (((pci_read_config(dev,
684 			    PCIR_REVID, 4) & 0xf0) >> 4) + 'A'),
685 			    (pci_read_config(dev, PCIR_REVID, 4) & 0xf));
686 
687 			device_set_desc_copy(dev, descbuf);
688 			free(descbuf, M_TEMP);
689 			return(BUS_PROBE_DEFAULT);
690 		}
691 		t++;
692 	}
693 
694 	return(ENXIO);
695 }
696 
697 
698 /****************************************************************************/
699 /* PCI Capabilities Probe Function.                                         */
700 /*                                                                          */
701 /* Walks the PCI capabiites list for the device to find what features are   */
702 /* supported.                                                               */
703 /*                                                                          */
704 /* Returns:                                                                 */
705 /*   None.                                                                  */
706 /****************************************************************************/
707 static void
708 bce_print_adapter_info(struct bce_softc *sc)
709 {
710 	int i = 0;
711 
712 	DBENTER(BCE_VERBOSE_LOAD);
713 
714 	if (bce_verbose || bootverbose) {
715 		BCE_PRINTF("ASIC (0x%08X); ", sc->bce_chipid);
716 		printf("Rev (%c%d); ", ((BCE_CHIP_ID(sc) & 0xf000) >>
717 		    12) + 'A', ((BCE_CHIP_ID(sc) & 0x0ff0) >> 4));
718 
719 
720 		/* Bus info. */
721 		if (sc->bce_flags & BCE_PCIE_FLAG) {
722 			printf("Bus (PCIe x%d, ", sc->link_width);
723 			switch (sc->link_speed) {
724 			case 1: printf("2.5Gbps); "); break;
725 			case 2:	printf("5Gbps); "); break;
726 			default: printf("Unknown link speed); ");
727 			}
728 		} else {
729 			printf("Bus (PCI%s, %s, %dMHz); ",
730 			    ((sc->bce_flags & BCE_PCIX_FLAG) ? "-X" : ""),
731 			    ((sc->bce_flags & BCE_PCI_32BIT_FLAG) ?
732 			    "32-bit" : "64-bit"), sc->bus_speed_mhz);
733 		}
734 
735 		/* Firmware version and device features. */
736 		printf("B/C (%s); Bufs (RX:%d;TX:%d;PG:%d); Flags (",
737 		    sc->bce_bc_ver,	sc->rx_pages, sc->tx_pages,
738 		    (bce_hdr_split == TRUE ? sc->pg_pages: 0));
739 
740 		if (bce_hdr_split == TRUE) {
741 			printf("SPLT");
742 			i++;
743 		}
744 
745 		if (sc->bce_flags & BCE_USING_MSI_FLAG) {
746 			if (i > 0) printf("|");
747 			printf("MSI"); i++;
748 		}
749 
750 		if (sc->bce_flags & BCE_USING_MSIX_FLAG) {
751 			if (i > 0) printf("|");
752 			printf("MSI-X"); i++;
753 		}
754 
755 		if (sc->bce_phy_flags & BCE_PHY_2_5G_CAPABLE_FLAG) {
756 			if (i > 0) printf("|");
757 			printf("2.5G"); i++;
758 		}
759 
760 		if (sc->bce_flags & BCE_MFW_ENABLE_FLAG) {
761 			if (i > 0) printf("|");
762 			printf("MFW); MFW (%s)\n", sc->bce_mfw_ver);
763 		} else {
764 			printf(")\n");
765 		}
766 
767 		printf("Coal (RX:%d,%d,%d,%d; TX:%d,%d,%d,%d)\n",
768 		    sc->bce_rx_quick_cons_trip_int,
769 		    sc->bce_rx_quick_cons_trip,
770 		    sc->bce_rx_ticks_int,
771 		    sc->bce_rx_ticks,
772 		    sc->bce_tx_quick_cons_trip_int,
773 		    sc->bce_tx_quick_cons_trip,
774 		    sc->bce_tx_ticks_int,
775 		    sc->bce_tx_ticks);
776 
777 	}
778 
779 	DBEXIT(BCE_VERBOSE_LOAD);
780 }
781 
782 
783 /****************************************************************************/
784 /* PCI Capabilities Probe Function.                                         */
785 /*                                                                          */
786 /* Walks the PCI capabiites list for the device to find what features are   */
787 /* supported.                                                               */
788 /*                                                                          */
789 /* Returns:                                                                 */
790 /*   None.                                                                  */
791 /****************************************************************************/
792 static void
793 bce_probe_pci_caps(device_t dev, struct bce_softc *sc)
794 {
795 	u32 reg;
796 
797 	DBENTER(BCE_VERBOSE_LOAD);
798 
799 	/* Check if PCI-X capability is enabled. */
800 	if (pci_find_cap(dev, PCIY_PCIX, &reg) == 0) {
801 		if (reg != 0)
802 			sc->bce_cap_flags |= BCE_PCIX_CAPABLE_FLAG;
803 	}
804 
805 	/* Check if PCIe capability is enabled. */
806 	if (pci_find_cap(dev, PCIY_EXPRESS, &reg) == 0) {
807 		if (reg != 0) {
808 			u16 link_status = pci_read_config(dev, reg + 0x12, 2);
809 			DBPRINT(sc, BCE_INFO_LOAD, "PCIe link_status = "
810 			    "0x%08X\n",	link_status);
811 			sc->link_speed = link_status & 0xf;
812 			sc->link_width = (link_status >> 4) & 0x3f;
813 			sc->bce_cap_flags |= BCE_PCIE_CAPABLE_FLAG;
814 			sc->bce_flags |= BCE_PCIE_FLAG;
815 		}
816 	}
817 
818 	/* Check if MSI capability is enabled. */
819 	if (pci_find_cap(dev, PCIY_MSI, &reg) == 0) {
820 		if (reg != 0)
821 			sc->bce_cap_flags |= BCE_MSI_CAPABLE_FLAG;
822 	}
823 
824 	/* Check if MSI-X capability is enabled. */
825 	if (pci_find_cap(dev, PCIY_MSIX, &reg) == 0) {
826 		if (reg != 0)
827 			sc->bce_cap_flags |= BCE_MSIX_CAPABLE_FLAG;
828 	}
829 
830 	DBEXIT(BCE_VERBOSE_LOAD);
831 }
832 
833 
834 /****************************************************************************/
835 /* Load and validate user tunable settings.                                 */
836 /*                                                                          */
837 /* Returns:                                                                 */
838 /*   Nothing.                                                               */
839 /****************************************************************************/
840 static void
841 bce_set_tunables(struct bce_softc *sc)
842 {
843 	/* Set sysctl values for RX page count. */
844 	switch (bce_rx_pages) {
845 	case 1:
846 		/* fall-through */
847 	case 2:
848 		/* fall-through */
849 	case 4:
850 		/* fall-through */
851 	case 8:
852 		sc->rx_pages = bce_rx_pages;
853 		break;
854 	default:
855 		sc->rx_pages = DEFAULT_RX_PAGES;
856 		BCE_PRINTF("%s(%d): Illegal value (%d) specified for "
857 		    "hw.bce.rx_pages!  Setting default of %d.\n",
858 		    __FILE__, __LINE__, bce_rx_pages, DEFAULT_RX_PAGES);
859 	}
860 
861 	/* ToDo: Consider allowing user setting for pg_pages. */
862 	sc->pg_pages = min((sc->rx_pages * 4), MAX_PG_PAGES);
863 
864 	/* Set sysctl values for TX page count. */
865 	switch (bce_tx_pages) {
866 	case 1:
867 		/* fall-through */
868 	case 2:
869 		/* fall-through */
870 	case 4:
871 		/* fall-through */
872 	case 8:
873 		sc->tx_pages = bce_tx_pages;
874 		break;
875 	default:
876 		sc->tx_pages = DEFAULT_TX_PAGES;
877 		BCE_PRINTF("%s(%d): Illegal value (%d) specified for "
878 		    "hw.bce.tx_pages!  Setting default of %d.\n",
879 		    __FILE__, __LINE__, bce_tx_pages, DEFAULT_TX_PAGES);
880 	}
881 
882 	/*
883 	 * Validate the TX trip point (i.e. the number of
884 	 * TX completions before a status block update is
885 	 * generated and an interrupt is asserted.
886 	 */
887 	if (bce_tx_quick_cons_trip_int <= 100) {
888 		sc->bce_tx_quick_cons_trip_int =
889 		    bce_tx_quick_cons_trip_int;
890 	} else {
891 		BCE_PRINTF("%s(%d): Illegal value (%d) specified for "
892 		    "hw.bce.tx_quick_cons_trip_int!  Setting default of %d.\n",
893 		    __FILE__, __LINE__, bce_tx_quick_cons_trip_int,
894 		    DEFAULT_TX_QUICK_CONS_TRIP_INT);
895 		sc->bce_tx_quick_cons_trip_int =
896 		    DEFAULT_TX_QUICK_CONS_TRIP_INT;
897 	}
898 
899 	if (bce_tx_quick_cons_trip <= 100) {
900 		sc->bce_tx_quick_cons_trip =
901 		    bce_tx_quick_cons_trip;
902 	} else {
903 		BCE_PRINTF("%s(%d): Illegal value (%d) specified for "
904 		    "hw.bce.tx_quick_cons_trip!  Setting default of %d.\n",
905 		    __FILE__, __LINE__, bce_tx_quick_cons_trip,
906 		    DEFAULT_TX_QUICK_CONS_TRIP);
907 		sc->bce_tx_quick_cons_trip =
908 		    DEFAULT_TX_QUICK_CONS_TRIP;
909 	}
910 
911 	/*
912 	 * Validate the TX ticks count (i.e. the maximum amount
913 	 * of time to wait after the last TX completion has
914 	 * occurred before a status block update is generated
915 	 * and an interrupt is asserted.
916 	 */
917 	if (bce_tx_ticks_int <= 100) {
918 		sc->bce_tx_ticks_int =
919 		    bce_tx_ticks_int;
920 	} else {
921 		BCE_PRINTF("%s(%d): Illegal value (%d) specified for "
922 		    "hw.bce.tx_ticks_int!  Setting default of %d.\n",
923 		    __FILE__, __LINE__, bce_tx_ticks_int,
924 		    DEFAULT_TX_TICKS_INT);
925 		sc->bce_tx_ticks_int =
926 		    DEFAULT_TX_TICKS_INT;
927 	   }
928 
929 	if (bce_tx_ticks <= 100) {
930 		sc->bce_tx_ticks =
931 		    bce_tx_ticks;
932 	} else {
933 		BCE_PRINTF("%s(%d): Illegal value (%d) specified for "
934 		    "hw.bce.tx_ticks!  Setting default of %d.\n",
935 		    __FILE__, __LINE__, bce_tx_ticks,
936 		    DEFAULT_TX_TICKS);
937 		sc->bce_tx_ticks =
938 		    DEFAULT_TX_TICKS;
939 	}
940 
941 	/*
942 	 * Validate the RX trip point (i.e. the number of
943 	 * RX frames received before a status block update is
944 	 * generated and an interrupt is asserted.
945 	 */
946 	if (bce_rx_quick_cons_trip_int <= 100) {
947 		sc->bce_rx_quick_cons_trip_int =
948 		    bce_rx_quick_cons_trip_int;
949 	} else {
950 		BCE_PRINTF("%s(%d): Illegal value (%d) specified for "
951 		    "hw.bce.rx_quick_cons_trip_int!  Setting default of %d.\n",
952 		    __FILE__, __LINE__, bce_rx_quick_cons_trip_int,
953 		    DEFAULT_RX_QUICK_CONS_TRIP_INT);
954 		sc->bce_rx_quick_cons_trip_int =
955 		    DEFAULT_RX_QUICK_CONS_TRIP_INT;
956 	}
957 
958 	if (bce_rx_quick_cons_trip <= 100) {
959 		sc->bce_rx_quick_cons_trip =
960 		    bce_rx_quick_cons_trip;
961 	} else {
962 		BCE_PRINTF("%s(%d): Illegal value (%d) specified for "
963 		    "hw.bce.rx_quick_cons_trip!  Setting default of %d.\n",
964 		    __FILE__, __LINE__, bce_rx_quick_cons_trip,
965 		    DEFAULT_RX_QUICK_CONS_TRIP);
966 		sc->bce_rx_quick_cons_trip =
967 		    DEFAULT_RX_QUICK_CONS_TRIP;
968 	}
969 
970 	/*
971 	 * Validate the RX ticks count (i.e. the maximum amount
972 	 * of time to wait after the last RX frame has been
973 	 * received before a status block update is generated
974 	 * and an interrupt is asserted.
975 	 */
976 	if (bce_rx_ticks_int <= 100) {
977 		sc->bce_rx_ticks_int = bce_rx_ticks_int;
978 	} else {
979 		BCE_PRINTF("%s(%d): Illegal value (%d) specified for "
980 		    "hw.bce.rx_ticks_int!  Setting default of %d.\n",
981 		    __FILE__, __LINE__, bce_rx_ticks_int,
982 		    DEFAULT_RX_TICKS_INT);
983 		sc->bce_rx_ticks_int = DEFAULT_RX_TICKS_INT;
984 	}
985 
986 	if (bce_rx_ticks <= 100) {
987 		sc->bce_rx_ticks = bce_rx_ticks;
988 	} else {
989 		BCE_PRINTF("%s(%d): Illegal value (%d) specified for "
990 		    "hw.bce.rx_ticks!  Setting default of %d.\n",
991 		    __FILE__, __LINE__, bce_rx_ticks,
992 		    DEFAULT_RX_TICKS);
993 		sc->bce_rx_ticks = DEFAULT_RX_TICKS;
994 	}
995 
996 	/* Disabling both RX ticks and RX trips will prevent interrupts. */
997 	if ((bce_rx_quick_cons_trip == 0) && (bce_rx_ticks == 0)) {
998 		BCE_PRINTF("%s(%d): Cannot set both hw.bce.rx_ticks and "
999 		    "hw.bce.rx_quick_cons_trip to 0. Setting default values.\n",
1000 		   __FILE__, __LINE__);
1001 		sc->bce_rx_ticks = DEFAULT_RX_TICKS;
1002 		sc->bce_rx_quick_cons_trip = DEFAULT_RX_QUICK_CONS_TRIP;
1003 	}
1004 
1005 	/* Disabling both TX ticks and TX trips will prevent interrupts. */
1006 	if ((bce_tx_quick_cons_trip == 0) && (bce_tx_ticks == 0)) {
1007 		BCE_PRINTF("%s(%d): Cannot set both hw.bce.tx_ticks and "
1008 		    "hw.bce.tx_quick_cons_trip to 0. Setting default values.\n",
1009 		   __FILE__, __LINE__);
1010 		sc->bce_tx_ticks = DEFAULT_TX_TICKS;
1011 		sc->bce_tx_quick_cons_trip = DEFAULT_TX_QUICK_CONS_TRIP;
1012 	}
1013 
1014 }
1015 
1016 
1017 /****************************************************************************/
1018 /* Device attach function.                                                  */
1019 /*                                                                          */
1020 /* Allocates device resources, performs secondary chip identification,      */
1021 /* resets and initializes the hardware, and initializes driver instance     */
1022 /* variables.                                                               */
1023 /*                                                                          */
1024 /* Returns:                                                                 */
1025 /*   0 on success, positive value on failure.                               */
1026 /****************************************************************************/
1027 static int
1028 bce_attach(device_t dev)
1029 {
1030 	struct bce_softc *sc;
1031 	struct ifnet *ifp;
1032 	u32 val;
1033 	int error, rid, rc = 0;
1034 
1035 	sc = device_get_softc(dev);
1036 	sc->bce_dev = dev;
1037 
1038 	DBENTER(BCE_VERBOSE_LOAD | BCE_VERBOSE_RESET);
1039 
1040 	sc->bce_unit = device_get_unit(dev);
1041 
1042 	/* Set initial device and PHY flags */
1043 	sc->bce_flags = 0;
1044 	sc->bce_phy_flags = 0;
1045 
1046 	bce_set_tunables(sc);
1047 
1048 	pci_enable_busmaster(dev);
1049 
1050 	/* Allocate PCI memory resources. */
1051 	rid = PCIR_BAR(0);
1052 	sc->bce_res_mem = bus_alloc_resource_any(dev, SYS_RES_MEMORY,
1053 		&rid, RF_ACTIVE);
1054 
1055 	if (sc->bce_res_mem == NULL) {
1056 		BCE_PRINTF("%s(%d): PCI memory allocation failed\n",
1057 		    __FILE__, __LINE__);
1058 		rc = ENXIO;
1059 		goto bce_attach_fail;
1060 	}
1061 
1062 	/* Get various resource handles. */
1063 	sc->bce_btag    = rman_get_bustag(sc->bce_res_mem);
1064 	sc->bce_bhandle = rman_get_bushandle(sc->bce_res_mem);
1065 	sc->bce_vhandle = (vm_offset_t) rman_get_virtual(sc->bce_res_mem);
1066 
1067 	bce_probe_pci_caps(dev, sc);
1068 
1069 	rid = 1;
1070 #if 0
1071 	/* Try allocating MSI-X interrupts. */
1072 	if ((sc->bce_cap_flags & BCE_MSIX_CAPABLE_FLAG) &&
1073 		(bce_msi_enable >= 2) &&
1074 		((sc->bce_res_irq = bus_alloc_resource_any(dev, SYS_RES_MEMORY,
1075 		&rid, RF_ACTIVE)) != NULL)) {
1076 
1077 		msi_needed = sc->bce_msi_count = 1;
1078 
1079 		if (((error = pci_alloc_msix(dev, &sc->bce_msi_count)) != 0) ||
1080 			(sc->bce_msi_count != msi_needed)) {
1081 			BCE_PRINTF("%s(%d): MSI-X allocation failed! Requested = %d,"
1082 				"Received = %d, error = %d\n", __FILE__, __LINE__,
1083 				msi_needed, sc->bce_msi_count, error);
1084 			sc->bce_msi_count = 0;
1085 			pci_release_msi(dev);
1086 			bus_release_resource(dev, SYS_RES_MEMORY, rid,
1087 				sc->bce_res_irq);
1088 			sc->bce_res_irq = NULL;
1089 		} else {
1090 			DBPRINT(sc, BCE_INFO_LOAD, "%s(): Using MSI-X interrupt.\n",
1091 				__FUNCTION__);
1092 			sc->bce_flags |= BCE_USING_MSIX_FLAG;
1093 			sc->bce_intr = bce_intr;
1094 		}
1095 	}
1096 #endif
1097 
1098 	/* Try allocating a MSI interrupt. */
1099 	if ((sc->bce_cap_flags & BCE_MSI_CAPABLE_FLAG) &&
1100 		(bce_msi_enable >= 1) && (sc->bce_msi_count == 0)) {
1101 		sc->bce_msi_count = 1;
1102 		if ((error = pci_alloc_msi(dev, &sc->bce_msi_count)) != 0) {
1103 			BCE_PRINTF("%s(%d): MSI allocation failed! "
1104 			    "error = %d\n", __FILE__, __LINE__, error);
1105 			sc->bce_msi_count = 0;
1106 			pci_release_msi(dev);
1107 		} else {
1108 			DBPRINT(sc, BCE_INFO_LOAD, "%s(): Using MSI "
1109 			    "interrupt.\n", __FUNCTION__);
1110 			sc->bce_flags |= BCE_USING_MSI_FLAG;
1111 			if (BCE_CHIP_NUM(sc) == BCE_CHIP_NUM_5709)
1112 				sc->bce_flags |= BCE_ONE_SHOT_MSI_FLAG;
1113 			sc->bce_irq_rid = 1;
1114 			sc->bce_intr = bce_intr;
1115 		}
1116 	}
1117 
1118 	/* Try allocating a legacy interrupt. */
1119 	if (sc->bce_msi_count == 0) {
1120 		DBPRINT(sc, BCE_INFO_LOAD, "%s(): Using INTx interrupt.\n",
1121 			__FUNCTION__);
1122 		rid = 0;
1123 		sc->bce_intr = bce_intr;
1124 	}
1125 
1126 	sc->bce_res_irq = bus_alloc_resource_any(dev, SYS_RES_IRQ,
1127 	    &rid, RF_SHAREABLE | RF_ACTIVE);
1128 
1129 	sc->bce_irq_rid = rid;
1130 
1131 	/* Report any IRQ allocation errors. */
1132 	if (sc->bce_res_irq == NULL) {
1133 		BCE_PRINTF("%s(%d): PCI map interrupt failed!\n",
1134 		    __FILE__, __LINE__);
1135 		rc = ENXIO;
1136 		goto bce_attach_fail;
1137 	}
1138 
1139 	/* Initialize mutex for the current device instance. */
1140 	BCE_LOCK_INIT(sc, device_get_nameunit(dev));
1141 
1142 	/*
1143 	 * Configure byte swap and enable indirect register access.
1144 	 * Rely on CPU to do target byte swapping on big endian systems.
1145 	 * Access to registers outside of PCI configurtion space are not
1146 	 * valid until this is done.
1147 	 */
1148 	pci_write_config(dev, BCE_PCICFG_MISC_CONFIG,
1149 	    BCE_PCICFG_MISC_CONFIG_REG_WINDOW_ENA |
1150 	    BCE_PCICFG_MISC_CONFIG_TARGET_MB_WORD_SWAP, 4);
1151 
1152 	/* Save ASIC revsion info. */
1153 	sc->bce_chipid =  REG_RD(sc, BCE_MISC_ID);
1154 
1155 	/* Weed out any non-production controller revisions. */
1156 	switch(BCE_CHIP_ID(sc)) {
1157 	case BCE_CHIP_ID_5706_A0:
1158 	case BCE_CHIP_ID_5706_A1:
1159 	case BCE_CHIP_ID_5708_A0:
1160 	case BCE_CHIP_ID_5708_B0:
1161 	case BCE_CHIP_ID_5709_A0:
1162 	case BCE_CHIP_ID_5709_B0:
1163 	case BCE_CHIP_ID_5709_B1:
1164 	case BCE_CHIP_ID_5709_B2:
1165 		BCE_PRINTF("%s(%d): Unsupported controller "
1166 		    "revision (%c%d)!\n", __FILE__, __LINE__,
1167 		    (((pci_read_config(dev, PCIR_REVID, 4) &
1168 		    0xf0) >> 4) + 'A'), (pci_read_config(dev,
1169 		    PCIR_REVID, 4) & 0xf));
1170 		rc = ENODEV;
1171 		goto bce_attach_fail;
1172 	}
1173 
1174 	/*
1175 	 * The embedded PCIe to PCI-X bridge (EPB)
1176 	 * in the 5708 cannot address memory above
1177 	 * 40 bits (E7_5708CB1_23043 & E6_5708SB1_23043).
1178 	 */
1179 	if (BCE_CHIP_NUM(sc) == BCE_CHIP_NUM_5708)
1180 		sc->max_bus_addr = BCE_BUS_SPACE_MAXADDR;
1181 	else
1182 		sc->max_bus_addr = BUS_SPACE_MAXADDR;
1183 
1184 	/*
1185 	 * Find the base address for shared memory access.
1186 	 * Newer versions of bootcode use a signature and offset
1187 	 * while older versions use a fixed address.
1188 	 */
1189 	val = REG_RD_IND(sc, BCE_SHM_HDR_SIGNATURE);
1190 	if ((val & BCE_SHM_HDR_SIGNATURE_SIG_MASK) == BCE_SHM_HDR_SIGNATURE_SIG)
1191 		/* Multi-port devices use different offsets in shared memory. */
1192 		sc->bce_shmem_base = REG_RD_IND(sc, BCE_SHM_HDR_ADDR_0 +
1193 		    (pci_get_function(sc->bce_dev) << 2));
1194 	else
1195 		sc->bce_shmem_base = HOST_VIEW_SHMEM_BASE;
1196 
1197 	DBPRINT(sc, BCE_VERBOSE_FIRMWARE, "%s(): bce_shmem_base = 0x%08X\n",
1198 	    __FUNCTION__, sc->bce_shmem_base);
1199 
1200 	/* Fetch the bootcode revision. */
1201 	val = bce_shmem_rd(sc, BCE_DEV_INFO_BC_REV);
1202 	for (int i = 0, j = 0; i < 3; i++) {
1203 		u8 num;
1204 
1205 		num = (u8) (val >> (24 - (i * 8)));
1206 		for (int k = 100, skip0 = 1; k >= 1; num %= k, k /= 10) {
1207 			if (num >= k || !skip0 || k == 1) {
1208 				sc->bce_bc_ver[j++] = (num / k) + '0';
1209 				skip0 = 0;
1210 			}
1211 		}
1212 
1213 		if (i != 2)
1214 			sc->bce_bc_ver[j++] = '.';
1215 	}
1216 
1217 	/* Check if any management firwmare is enabled. */
1218 	val = bce_shmem_rd(sc, BCE_PORT_FEATURE);
1219 	if (val & BCE_PORT_FEATURE_ASF_ENABLED) {
1220 		sc->bce_flags |= BCE_MFW_ENABLE_FLAG;
1221 
1222 		/* Allow time for firmware to enter the running state. */
1223 		for (int i = 0; i < 30; i++) {
1224 			val = bce_shmem_rd(sc, BCE_BC_STATE_CONDITION);
1225 			if (val & BCE_CONDITION_MFW_RUN_MASK)
1226 				break;
1227 			DELAY(10000);
1228 		}
1229 
1230 		/* Check if management firmware is running. */
1231 		val = bce_shmem_rd(sc, BCE_BC_STATE_CONDITION);
1232 		val &= BCE_CONDITION_MFW_RUN_MASK;
1233 		if ((val != BCE_CONDITION_MFW_RUN_UNKNOWN) &&
1234 		    (val != BCE_CONDITION_MFW_RUN_NONE)) {
1235 			u32 addr = bce_shmem_rd(sc, BCE_MFW_VER_PTR);
1236 			int i = 0;
1237 
1238 			/* Read the management firmware version string. */
1239 			for (int j = 0; j < 3; j++) {
1240 				val = bce_reg_rd_ind(sc, addr + j * 4);
1241 				val = bswap32(val);
1242 				memcpy(&sc->bce_mfw_ver[i], &val, 4);
1243 				i += 4;
1244 			}
1245 		} else {
1246 			/* May cause firmware synchronization timeouts. */
1247 			BCE_PRINTF("%s(%d): Management firmware enabled "
1248 			    "but not running!\n", __FILE__, __LINE__);
1249 			strcpy(sc->bce_mfw_ver, "NOT RUNNING!");
1250 
1251 			/* ToDo: Any action the driver should take? */
1252 		}
1253 	}
1254 
1255 	/* Get PCI bus information (speed and type). */
1256 	val = REG_RD(sc, BCE_PCICFG_MISC_STATUS);
1257 	if (val & BCE_PCICFG_MISC_STATUS_PCIX_DET) {
1258 		u32 clkreg;
1259 
1260 		sc->bce_flags |= BCE_PCIX_FLAG;
1261 
1262 		clkreg = REG_RD(sc, BCE_PCICFG_PCI_CLOCK_CONTROL_BITS);
1263 
1264 		clkreg &= BCE_PCICFG_PCI_CLOCK_CONTROL_BITS_PCI_CLK_SPD_DET;
1265 		switch (clkreg) {
1266 		case BCE_PCICFG_PCI_CLOCK_CONTROL_BITS_PCI_CLK_SPD_DET_133MHZ:
1267 			sc->bus_speed_mhz = 133;
1268 			break;
1269 
1270 		case BCE_PCICFG_PCI_CLOCK_CONTROL_BITS_PCI_CLK_SPD_DET_95MHZ:
1271 			sc->bus_speed_mhz = 100;
1272 			break;
1273 
1274 		case BCE_PCICFG_PCI_CLOCK_CONTROL_BITS_PCI_CLK_SPD_DET_66MHZ:
1275 		case BCE_PCICFG_PCI_CLOCK_CONTROL_BITS_PCI_CLK_SPD_DET_80MHZ:
1276 			sc->bus_speed_mhz = 66;
1277 			break;
1278 
1279 		case BCE_PCICFG_PCI_CLOCK_CONTROL_BITS_PCI_CLK_SPD_DET_48MHZ:
1280 		case BCE_PCICFG_PCI_CLOCK_CONTROL_BITS_PCI_CLK_SPD_DET_55MHZ:
1281 			sc->bus_speed_mhz = 50;
1282 			break;
1283 
1284 		case BCE_PCICFG_PCI_CLOCK_CONTROL_BITS_PCI_CLK_SPD_DET_LOW:
1285 		case BCE_PCICFG_PCI_CLOCK_CONTROL_BITS_PCI_CLK_SPD_DET_32MHZ:
1286 		case BCE_PCICFG_PCI_CLOCK_CONTROL_BITS_PCI_CLK_SPD_DET_38MHZ:
1287 			sc->bus_speed_mhz = 33;
1288 			break;
1289 		}
1290 	} else {
1291 		if (val & BCE_PCICFG_MISC_STATUS_M66EN)
1292 			sc->bus_speed_mhz = 66;
1293 		else
1294 			sc->bus_speed_mhz = 33;
1295 	}
1296 
1297 	if (val & BCE_PCICFG_MISC_STATUS_32BIT_DET)
1298 		sc->bce_flags |= BCE_PCI_32BIT_FLAG;
1299 
1300 	/* Reset controller and announce to bootcode that driver is present. */
1301 	if (bce_reset(sc, BCE_DRV_MSG_CODE_RESET)) {
1302 		BCE_PRINTF("%s(%d): Controller reset failed!\n",
1303 		    __FILE__, __LINE__);
1304 		rc = ENXIO;
1305 		goto bce_attach_fail;
1306 	}
1307 
1308 	/* Initialize the controller. */
1309 	if (bce_chipinit(sc)) {
1310 		BCE_PRINTF("%s(%d): Controller initialization failed!\n",
1311 		    __FILE__, __LINE__);
1312 		rc = ENXIO;
1313 		goto bce_attach_fail;
1314 	}
1315 
1316 	/* Perform NVRAM test. */
1317 	if (bce_nvram_test(sc)) {
1318 		BCE_PRINTF("%s(%d): NVRAM test failed!\n",
1319 		    __FILE__, __LINE__);
1320 		rc = ENXIO;
1321 		goto bce_attach_fail;
1322 	}
1323 
1324 	/* Fetch the permanent Ethernet MAC address. */
1325 	bce_get_mac_addr(sc);
1326 
1327 	/*
1328 	 * Trip points control how many BDs
1329 	 * should be ready before generating an
1330 	 * interrupt while ticks control how long
1331 	 * a BD can sit in the chain before
1332 	 * generating an interrupt.  Set the default
1333 	 * values for the RX and TX chains.
1334 	 */
1335 
1336 	/* Not used for L2. */
1337 	sc->bce_comp_prod_trip_int     = 0;
1338 	sc->bce_comp_prod_trip         = 0;
1339 	sc->bce_com_ticks_int          = 0;
1340 	sc->bce_com_ticks              = 0;
1341 	sc->bce_cmd_ticks_int          = 0;
1342 	sc->bce_cmd_ticks              = 0;
1343 
1344 	/* Update statistics once every second. */
1345 	sc->bce_stats_ticks = 1000000 & 0xffff00;
1346 
1347 	/* Find the media type for the adapter. */
1348 	bce_get_media(sc);
1349 
1350 	/* Store data needed by PHY driver for backplane applications */
1351 	sc->bce_shared_hw_cfg = bce_shmem_rd(sc, BCE_SHARED_HW_CFG_CONFIG);
1352 	sc->bce_port_hw_cfg   = bce_shmem_rd(sc, BCE_PORT_HW_CFG_CONFIG);
1353 
1354 	/* Allocate DMA memory resources. */
1355 	if (bce_dma_alloc(dev)) {
1356 		BCE_PRINTF("%s(%d): DMA resource allocation failed!\n",
1357 		    __FILE__, __LINE__);
1358 		rc = ENXIO;
1359 		goto bce_attach_fail;
1360 	}
1361 
1362 	/* Allocate an ifnet structure. */
1363 	ifp = sc->bce_ifp = if_alloc(IFT_ETHER);
1364 	if (ifp == NULL) {
1365 		BCE_PRINTF("%s(%d): Interface allocation failed!\n",
1366 		    __FILE__, __LINE__);
1367 		rc = ENXIO;
1368 		goto bce_attach_fail;
1369 	}
1370 
1371 	/* Initialize the ifnet interface. */
1372 	ifp->if_softc	= sc;
1373 	if_initname(ifp, device_get_name(dev), device_get_unit(dev));
1374 	ifp->if_flags	= IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
1375 	ifp->if_ioctl	= bce_ioctl;
1376 	ifp->if_start	= bce_start;
1377 	ifp->if_init	= bce_init;
1378 	ifp->if_mtu	= ETHERMTU;
1379 
1380 	if (bce_tso_enable) {
1381 		ifp->if_hwassist = BCE_IF_HWASSIST | CSUM_TSO;
1382 		ifp->if_capabilities = BCE_IF_CAPABILITIES | IFCAP_TSO4 |
1383 		    IFCAP_VLAN_HWTSO;
1384 	} else {
1385 		ifp->if_hwassist = BCE_IF_HWASSIST;
1386 		ifp->if_capabilities = BCE_IF_CAPABILITIES;
1387 	}
1388 
1389 	ifp->if_capenable = ifp->if_capabilities;
1390 
1391 	/*
1392 	 * Assume standard mbuf sizes for buffer allocation.
1393 	 * This may change later if the MTU size is set to
1394 	 * something other than 1500.
1395 	 */
1396 	bce_get_rx_buffer_sizes(sc,
1397 	    (ETHER_MAX_LEN - ETHER_HDR_LEN - ETHER_CRC_LEN));
1398 
1399 	/* Recalculate our buffer allocation sizes. */
1400 	ifp->if_snd.ifq_drv_maxlen = USABLE_TX_BD_ALLOC;
1401 	IFQ_SET_MAXLEN(&ifp->if_snd, ifp->if_snd.ifq_drv_maxlen);
1402 	IFQ_SET_READY(&ifp->if_snd);
1403 
1404 	if (sc->bce_phy_flags & BCE_PHY_2_5G_CAPABLE_FLAG)
1405 		ifp->if_baudrate = IF_Mbps(2500ULL);
1406 	else
1407 		ifp->if_baudrate = IF_Mbps(1000);
1408 
1409 	/* Handle any special PHY initialization for SerDes PHYs. */
1410 	bce_init_media(sc);
1411 
1412 	/* MII child bus by attaching the PHY. */
1413 	rc = mii_attach(dev, &sc->bce_miibus, ifp, bce_ifmedia_upd,
1414 	    bce_ifmedia_sts, BMSR_DEFCAPMASK, sc->bce_phy_addr,
1415 	    MII_OFFSET_ANY, MIIF_DOPAUSE);
1416 	if (rc != 0) {
1417 		BCE_PRINTF("%s(%d): attaching PHYs failed\n", __FILE__,
1418 		    __LINE__);
1419 		goto bce_attach_fail;
1420 	}
1421 
1422 	/* Attach to the Ethernet interface list. */
1423 	ether_ifattach(ifp, sc->eaddr);
1424 
1425 #if __FreeBSD_version < 500000
1426 	callout_init(&sc->bce_tick_callout);
1427 	callout_init(&sc->bce_pulse_callout);
1428 #else
1429 	callout_init_mtx(&sc->bce_tick_callout, &sc->bce_mtx, 0);
1430 	callout_init_mtx(&sc->bce_pulse_callout, &sc->bce_mtx, 0);
1431 #endif
1432 
1433 	/* Hookup IRQ last. */
1434 	rc = bus_setup_intr(dev, sc->bce_res_irq, INTR_TYPE_NET | INTR_MPSAFE,
1435 		NULL, bce_intr, sc, &sc->bce_intrhand);
1436 
1437 	if (rc) {
1438 		BCE_PRINTF("%s(%d): Failed to setup IRQ!\n",
1439 		    __FILE__, __LINE__);
1440 		bce_detach(dev);
1441 		goto bce_attach_exit;
1442 	}
1443 
1444 	/*
1445 	 * At this point we've acquired all the resources
1446 	 * we need to run so there's no turning back, we're
1447 	 * cleared for launch.
1448 	 */
1449 
1450 	/* Print some important debugging info. */
1451 	DBRUNMSG(BCE_INFO, bce_dump_driver_state(sc));
1452 
1453 	/* Add the supported sysctls to the kernel. */
1454 	bce_add_sysctls(sc);
1455 
1456 	BCE_LOCK(sc);
1457 
1458 	/*
1459 	 * The chip reset earlier notified the bootcode that
1460 	 * a driver is present.  We now need to start our pulse
1461 	 * routine so that the bootcode is reminded that we're
1462 	 * still running.
1463 	 */
1464 	bce_pulse(sc);
1465 
1466 	bce_mgmt_init_locked(sc);
1467 	BCE_UNLOCK(sc);
1468 
1469 	/* Finally, print some useful adapter info */
1470 	bce_print_adapter_info(sc);
1471 	DBPRINT(sc, BCE_FATAL, "%s(): sc = %p\n",
1472 		__FUNCTION__, sc);
1473 
1474 	goto bce_attach_exit;
1475 
1476 bce_attach_fail:
1477 	bce_release_resources(sc);
1478 
1479 bce_attach_exit:
1480 
1481 	DBEXIT(BCE_VERBOSE_LOAD | BCE_VERBOSE_RESET);
1482 
1483 	return(rc);
1484 }
1485 
1486 
1487 /****************************************************************************/
1488 /* Device detach function.                                                  */
1489 /*                                                                          */
1490 /* Stops the controller, resets the controller, and releases resources.     */
1491 /*                                                                          */
1492 /* Returns:                                                                 */
1493 /*   0 on success, positive value on failure.                               */
1494 /****************************************************************************/
1495 static int
1496 bce_detach(device_t dev)
1497 {
1498 	struct bce_softc *sc = device_get_softc(dev);
1499 	struct ifnet *ifp;
1500 	u32 msg;
1501 
1502 	DBENTER(BCE_VERBOSE_UNLOAD | BCE_VERBOSE_RESET);
1503 
1504 	ifp = sc->bce_ifp;
1505 
1506 	/* Stop and reset the controller. */
1507 	BCE_LOCK(sc);
1508 
1509 	/* Stop the pulse so the bootcode can go to driver absent state. */
1510 	callout_stop(&sc->bce_pulse_callout);
1511 
1512 	bce_stop(sc);
1513 	if (sc->bce_flags & BCE_NO_WOL_FLAG)
1514 		msg = BCE_DRV_MSG_CODE_UNLOAD_LNK_DN;
1515 	else
1516 		msg = BCE_DRV_MSG_CODE_UNLOAD;
1517 	bce_reset(sc, msg);
1518 
1519 	BCE_UNLOCK(sc);
1520 
1521 	ether_ifdetach(ifp);
1522 
1523 	/* If we have a child device on the MII bus remove it too. */
1524 	bus_generic_detach(dev);
1525 	device_delete_child(dev, sc->bce_miibus);
1526 
1527 	/* Release all remaining resources. */
1528 	bce_release_resources(sc);
1529 
1530 	DBEXIT(BCE_VERBOSE_UNLOAD | BCE_VERBOSE_RESET);
1531 
1532 	return(0);
1533 }
1534 
1535 
1536 /****************************************************************************/
1537 /* Device shutdown function.                                                */
1538 /*                                                                          */
1539 /* Stops and resets the controller.                                         */
1540 /*                                                                          */
1541 /* Returns:                                                                 */
1542 /*   0 on success, positive value on failure.                               */
1543 /****************************************************************************/
1544 static int
1545 bce_shutdown(device_t dev)
1546 {
1547 	struct bce_softc *sc = device_get_softc(dev);
1548 	u32 msg;
1549 
1550 	DBENTER(BCE_VERBOSE);
1551 
1552 	BCE_LOCK(sc);
1553 	bce_stop(sc);
1554 	if (sc->bce_flags & BCE_NO_WOL_FLAG)
1555 		msg = BCE_DRV_MSG_CODE_UNLOAD_LNK_DN;
1556 	else
1557 		msg = BCE_DRV_MSG_CODE_UNLOAD;
1558 	bce_reset(sc, msg);
1559 	BCE_UNLOCK(sc);
1560 
1561 	DBEXIT(BCE_VERBOSE);
1562 
1563 	return (0);
1564 }
1565 
1566 
1567 #ifdef BCE_DEBUG
1568 /****************************************************************************/
1569 /* Register read.                                                           */
1570 /*                                                                          */
1571 /* Returns:                                                                 */
1572 /*   The value of the register.                                             */
1573 /****************************************************************************/
1574 static u32
1575 bce_reg_rd(struct bce_softc *sc, u32 offset)
1576 {
1577 	u32 val = bus_space_read_4(sc->bce_btag, sc->bce_bhandle, offset);
1578 	DBPRINT(sc, BCE_INSANE_REG, "%s(); offset = 0x%08X, val = 0x%08X\n",
1579 		__FUNCTION__, offset, val);
1580 	return val;
1581 }
1582 
1583 
1584 /****************************************************************************/
1585 /* Register write (16 bit).                                                 */
1586 /*                                                                          */
1587 /* Returns:                                                                 */
1588 /*   Nothing.                                                               */
1589 /****************************************************************************/
1590 static void
1591 bce_reg_wr16(struct bce_softc *sc, u32 offset, u16 val)
1592 {
1593 	DBPRINT(sc, BCE_INSANE_REG, "%s(); offset = 0x%08X, val = 0x%04X\n",
1594 		__FUNCTION__, offset, val);
1595 	bus_space_write_2(sc->bce_btag, sc->bce_bhandle, offset, val);
1596 }
1597 
1598 
1599 /****************************************************************************/
1600 /* Register write.                                                          */
1601 /*                                                                          */
1602 /* Returns:                                                                 */
1603 /*   Nothing.                                                               */
1604 /****************************************************************************/
1605 static void
1606 bce_reg_wr(struct bce_softc *sc, u32 offset, u32 val)
1607 {
1608 	DBPRINT(sc, BCE_INSANE_REG, "%s(); offset = 0x%08X, val = 0x%08X\n",
1609 		__FUNCTION__, offset, val);
1610 	bus_space_write_4(sc->bce_btag, sc->bce_bhandle, offset, val);
1611 }
1612 #endif
1613 
1614 /****************************************************************************/
1615 /* Indirect register read.                                                  */
1616 /*                                                                          */
1617 /* Reads NetXtreme II registers using an index/data register pair in PCI    */
1618 /* configuration space.  Using this mechanism avoids issues with posted     */
1619 /* reads but is much slower than memory-mapped I/O.                         */
1620 /*                                                                          */
1621 /* Returns:                                                                 */
1622 /*   The value of the register.                                             */
1623 /****************************************************************************/
1624 static u32
1625 bce_reg_rd_ind(struct bce_softc *sc, u32 offset)
1626 {
1627 	device_t dev;
1628 	dev = sc->bce_dev;
1629 
1630 	pci_write_config(dev, BCE_PCICFG_REG_WINDOW_ADDRESS, offset, 4);
1631 #ifdef BCE_DEBUG
1632 	{
1633 		u32 val;
1634 		val = pci_read_config(dev, BCE_PCICFG_REG_WINDOW, 4);
1635 		DBPRINT(sc, BCE_INSANE_REG, "%s(); offset = 0x%08X, val = 0x%08X\n",
1636 			__FUNCTION__, offset, val);
1637 		return val;
1638 	}
1639 #else
1640 	return pci_read_config(dev, BCE_PCICFG_REG_WINDOW, 4);
1641 #endif
1642 }
1643 
1644 
1645 /****************************************************************************/
1646 /* Indirect register write.                                                 */
1647 /*                                                                          */
1648 /* Writes NetXtreme II registers using an index/data register pair in PCI   */
1649 /* configuration space.  Using this mechanism avoids issues with posted     */
1650 /* writes but is muchh slower than memory-mapped I/O.                       */
1651 /*                                                                          */
1652 /* Returns:                                                                 */
1653 /*   Nothing.                                                               */
1654 /****************************************************************************/
1655 static void
1656 bce_reg_wr_ind(struct bce_softc *sc, u32 offset, u32 val)
1657 {
1658 	device_t dev;
1659 	dev = sc->bce_dev;
1660 
1661 	DBPRINT(sc, BCE_INSANE_REG, "%s(); offset = 0x%08X, val = 0x%08X\n",
1662 		__FUNCTION__, offset, val);
1663 
1664 	pci_write_config(dev, BCE_PCICFG_REG_WINDOW_ADDRESS, offset, 4);
1665 	pci_write_config(dev, BCE_PCICFG_REG_WINDOW, val, 4);
1666 }
1667 
1668 
1669 /****************************************************************************/
1670 /* Shared memory write.                                                     */
1671 /*                                                                          */
1672 /* Writes NetXtreme II shared memory region.                                */
1673 /*                                                                          */
1674 /* Returns:                                                                 */
1675 /*   Nothing.                                                               */
1676 /****************************************************************************/
1677 static void
1678 bce_shmem_wr(struct bce_softc *sc, u32 offset, u32 val)
1679 {
1680 	DBPRINT(sc, BCE_VERBOSE_FIRMWARE, "%s(): Writing 0x%08X  to  "
1681 	    "0x%08X\n",	__FUNCTION__, val, offset);
1682 
1683 	bce_reg_wr_ind(sc, sc->bce_shmem_base + offset, val);
1684 }
1685 
1686 
1687 /****************************************************************************/
1688 /* Shared memory read.                                                      */
1689 /*                                                                          */
1690 /* Reads NetXtreme II shared memory region.                                 */
1691 /*                                                                          */
1692 /* Returns:                                                                 */
1693 /*   The 32 bit value read.                                                 */
1694 /****************************************************************************/
1695 static u32
1696 bce_shmem_rd(struct bce_softc *sc, u32 offset)
1697 {
1698 	u32 val = bce_reg_rd_ind(sc, sc->bce_shmem_base + offset);
1699 
1700 	DBPRINT(sc, BCE_VERBOSE_FIRMWARE, "%s(): Reading 0x%08X from "
1701 	    "0x%08X\n",	__FUNCTION__, val, offset);
1702 
1703 	return val;
1704 }
1705 
1706 
1707 #ifdef BCE_DEBUG
1708 /****************************************************************************/
1709 /* Context memory read.                                                     */
1710 /*                                                                          */
1711 /* The NetXtreme II controller uses context memory to track connection      */
1712 /* information for L2 and higher network protocols.                         */
1713 /*                                                                          */
1714 /* Returns:                                                                 */
1715 /*   The requested 32 bit value of context memory.                          */
1716 /****************************************************************************/
1717 static u32
1718 bce_ctx_rd(struct bce_softc *sc, u32 cid_addr, u32 ctx_offset)
1719 {
1720 	u32 idx, offset, retry_cnt = 5, val;
1721 
1722 	DBRUNIF((cid_addr > MAX_CID_ADDR || ctx_offset & 0x3 ||
1723 	    cid_addr & CTX_MASK), BCE_PRINTF("%s(): Invalid CID "
1724 	    "address: 0x%08X.\n", __FUNCTION__, cid_addr));
1725 
1726 	offset = ctx_offset + cid_addr;
1727 
1728 	if (BCE_CHIP_NUM(sc) == BCE_CHIP_NUM_5709) {
1729 
1730 		REG_WR(sc, BCE_CTX_CTX_CTRL, (offset | BCE_CTX_CTX_CTRL_READ_REQ));
1731 
1732 		for (idx = 0; idx < retry_cnt; idx++) {
1733 			val = REG_RD(sc, BCE_CTX_CTX_CTRL);
1734 			if ((val & BCE_CTX_CTX_CTRL_READ_REQ) == 0)
1735 				break;
1736 			DELAY(5);
1737 		}
1738 
1739 		if (val & BCE_CTX_CTX_CTRL_READ_REQ)
1740 			BCE_PRINTF("%s(%d); Unable to read CTX memory: "
1741 			    "cid_addr = 0x%08X, offset = 0x%08X!\n",
1742 			    __FILE__, __LINE__, cid_addr, ctx_offset);
1743 
1744 		val = REG_RD(sc, BCE_CTX_CTX_DATA);
1745 	} else {
1746 		REG_WR(sc, BCE_CTX_DATA_ADR, offset);
1747 		val = REG_RD(sc, BCE_CTX_DATA);
1748 	}
1749 
1750 	DBPRINT(sc, BCE_EXTREME_CTX, "%s(); cid_addr = 0x%08X, offset = 0x%08X, "
1751 		"val = 0x%08X\n", __FUNCTION__, cid_addr, ctx_offset, val);
1752 
1753 	return(val);
1754 }
1755 #endif
1756 
1757 
1758 /****************************************************************************/
1759 /* Context memory write.                                                    */
1760 /*                                                                          */
1761 /* The NetXtreme II controller uses context memory to track connection      */
1762 /* information for L2 and higher network protocols.                         */
1763 /*                                                                          */
1764 /* Returns:                                                                 */
1765 /*   Nothing.                                                               */
1766 /****************************************************************************/
1767 static void
1768 bce_ctx_wr(struct bce_softc *sc, u32 cid_addr, u32 ctx_offset, u32 ctx_val)
1769 {
1770 	u32 idx, offset = ctx_offset + cid_addr;
1771 	u32 val, retry_cnt = 5;
1772 
1773 	DBPRINT(sc, BCE_EXTREME_CTX, "%s(); cid_addr = 0x%08X, offset = 0x%08X, "
1774 		"val = 0x%08X\n", __FUNCTION__, cid_addr, ctx_offset, ctx_val);
1775 
1776 	DBRUNIF((cid_addr > MAX_CID_ADDR || ctx_offset & 0x3 || cid_addr & CTX_MASK),
1777 		BCE_PRINTF("%s(): Invalid CID address: 0x%08X.\n",
1778 		    __FUNCTION__, cid_addr));
1779 
1780 	if (BCE_CHIP_NUM(sc) == BCE_CHIP_NUM_5709) {
1781 
1782 		REG_WR(sc, BCE_CTX_CTX_DATA, ctx_val);
1783 		REG_WR(sc, BCE_CTX_CTX_CTRL, (offset | BCE_CTX_CTX_CTRL_WRITE_REQ));
1784 
1785 		for (idx = 0; idx < retry_cnt; idx++) {
1786 			val = REG_RD(sc, BCE_CTX_CTX_CTRL);
1787 			if ((val & BCE_CTX_CTX_CTRL_WRITE_REQ) == 0)
1788 				break;
1789 			DELAY(5);
1790 		}
1791 
1792 		if (val & BCE_CTX_CTX_CTRL_WRITE_REQ)
1793 			BCE_PRINTF("%s(%d); Unable to write CTX memory: "
1794 			    "cid_addr = 0x%08X, offset = 0x%08X!\n",
1795 			    __FILE__, __LINE__, cid_addr, ctx_offset);
1796 
1797 	} else {
1798 		REG_WR(sc, BCE_CTX_DATA_ADR, offset);
1799 		REG_WR(sc, BCE_CTX_DATA, ctx_val);
1800 	}
1801 }
1802 
1803 
1804 /****************************************************************************/
1805 /* PHY register read.                                                       */
1806 /*                                                                          */
1807 /* Implements register reads on the MII bus.                                */
1808 /*                                                                          */
1809 /* Returns:                                                                 */
1810 /*   The value of the register.                                             */
1811 /****************************************************************************/
1812 static int
1813 bce_miibus_read_reg(device_t dev, int phy, int reg)
1814 {
1815 	struct bce_softc *sc;
1816 	u32 val;
1817 	int i;
1818 
1819 	sc = device_get_softc(dev);
1820 
1821 	/* Make sure we are accessing the correct PHY address. */
1822 	if (phy != sc->bce_phy_addr) {
1823 		DBPRINT(sc, BCE_INSANE_PHY, "Invalid PHY address %d "
1824 		    "for PHY read!\n", phy);
1825 		return(0);
1826 	}
1827 
1828     /*
1829      * The 5709S PHY is an IEEE Clause 45 PHY
1830      * with special mappings to work with IEEE
1831      * Clause 22 register accesses.
1832      */
1833 	if ((sc->bce_phy_flags & BCE_PHY_IEEE_CLAUSE_45_FLAG) != 0) {
1834 		if (reg >= MII_BMCR && reg <= MII_ANLPRNP)
1835 			reg += 0x10;
1836 	}
1837 
1838     if (sc->bce_phy_flags & BCE_PHY_INT_MODE_AUTO_POLLING_FLAG) {
1839 		val = REG_RD(sc, BCE_EMAC_MDIO_MODE);
1840 		val &= ~BCE_EMAC_MDIO_MODE_AUTO_POLL;
1841 
1842 		REG_WR(sc, BCE_EMAC_MDIO_MODE, val);
1843 		REG_RD(sc, BCE_EMAC_MDIO_MODE);
1844 
1845 		DELAY(40);
1846 	}
1847 
1848 
1849 	val = BCE_MIPHY(phy) | BCE_MIREG(reg) |
1850 	    BCE_EMAC_MDIO_COMM_COMMAND_READ | BCE_EMAC_MDIO_COMM_DISEXT |
1851 	    BCE_EMAC_MDIO_COMM_START_BUSY;
1852 	REG_WR(sc, BCE_EMAC_MDIO_COMM, val);
1853 
1854 	for (i = 0; i < BCE_PHY_TIMEOUT; i++) {
1855 		DELAY(10);
1856 
1857 		val = REG_RD(sc, BCE_EMAC_MDIO_COMM);
1858 		if (!(val & BCE_EMAC_MDIO_COMM_START_BUSY)) {
1859 			DELAY(5);
1860 
1861 			val = REG_RD(sc, BCE_EMAC_MDIO_COMM);
1862 			val &= BCE_EMAC_MDIO_COMM_DATA;
1863 
1864 			break;
1865 		}
1866 	}
1867 
1868 	if (val & BCE_EMAC_MDIO_COMM_START_BUSY) {
1869 		BCE_PRINTF("%s(%d): Error: PHY read timeout! phy = %d, "
1870 		    "reg = 0x%04X\n", __FILE__, __LINE__, phy, reg);
1871 		val = 0x0;
1872 	} else {
1873 		val = REG_RD(sc, BCE_EMAC_MDIO_COMM);
1874 	}
1875 
1876 
1877 	if (sc->bce_phy_flags & BCE_PHY_INT_MODE_AUTO_POLLING_FLAG) {
1878 		val = REG_RD(sc, BCE_EMAC_MDIO_MODE);
1879 		val |= BCE_EMAC_MDIO_MODE_AUTO_POLL;
1880 
1881 		REG_WR(sc, BCE_EMAC_MDIO_MODE, val);
1882 		REG_RD(sc, BCE_EMAC_MDIO_MODE);
1883 
1884 		DELAY(40);
1885 	}
1886 
1887 	DB_PRINT_PHY_REG(reg, val);
1888 	return (val & 0xffff);
1889 
1890 }
1891 
1892 
1893 /****************************************************************************/
1894 /* PHY register write.                                                      */
1895 /*                                                                          */
1896 /* Implements register writes on the MII bus.                               */
1897 /*                                                                          */
1898 /* Returns:                                                                 */
1899 /*   The value of the register.                                             */
1900 /****************************************************************************/
1901 static int
1902 bce_miibus_write_reg(device_t dev, int phy, int reg, int val)
1903 {
1904 	struct bce_softc *sc;
1905 	u32 val1;
1906 	int i;
1907 
1908 	sc = device_get_softc(dev);
1909 
1910 	/* Make sure we are accessing the correct PHY address. */
1911 	if (phy != sc->bce_phy_addr) {
1912 		DBPRINT(sc, BCE_INSANE_PHY, "Invalid PHY address %d "
1913 		    "for PHY write!\n", phy);
1914 		return(0);
1915 	}
1916 
1917 	DB_PRINT_PHY_REG(reg, val);
1918 
1919 	/*
1920 	 * The 5709S PHY is an IEEE Clause 45 PHY
1921 	 * with special mappings to work with IEEE
1922 	 * Clause 22 register accesses.
1923 	 */
1924 	if ((sc->bce_phy_flags & BCE_PHY_IEEE_CLAUSE_45_FLAG) != 0) {
1925 		if (reg >= MII_BMCR && reg <= MII_ANLPRNP)
1926 			reg += 0x10;
1927 	}
1928 
1929 	if (sc->bce_phy_flags & BCE_PHY_INT_MODE_AUTO_POLLING_FLAG) {
1930 		val1 = REG_RD(sc, BCE_EMAC_MDIO_MODE);
1931 		val1 &= ~BCE_EMAC_MDIO_MODE_AUTO_POLL;
1932 
1933 		REG_WR(sc, BCE_EMAC_MDIO_MODE, val1);
1934 		REG_RD(sc, BCE_EMAC_MDIO_MODE);
1935 
1936 		DELAY(40);
1937 	}
1938 
1939 	val1 = BCE_MIPHY(phy) | BCE_MIREG(reg) | val |
1940 	    BCE_EMAC_MDIO_COMM_COMMAND_WRITE |
1941 	    BCE_EMAC_MDIO_COMM_START_BUSY | BCE_EMAC_MDIO_COMM_DISEXT;
1942 	REG_WR(sc, BCE_EMAC_MDIO_COMM, val1);
1943 
1944 	for (i = 0; i < BCE_PHY_TIMEOUT; i++) {
1945 		DELAY(10);
1946 
1947 		val1 = REG_RD(sc, BCE_EMAC_MDIO_COMM);
1948 		if (!(val1 & BCE_EMAC_MDIO_COMM_START_BUSY)) {
1949 			DELAY(5);
1950 			break;
1951 		}
1952 	}
1953 
1954 	if (val1 & BCE_EMAC_MDIO_COMM_START_BUSY)
1955 		BCE_PRINTF("%s(%d): PHY write timeout!\n",
1956 		    __FILE__, __LINE__);
1957 
1958 	if (sc->bce_phy_flags & BCE_PHY_INT_MODE_AUTO_POLLING_FLAG) {
1959 		val1 = REG_RD(sc, BCE_EMAC_MDIO_MODE);
1960 		val1 |= BCE_EMAC_MDIO_MODE_AUTO_POLL;
1961 
1962 		REG_WR(sc, BCE_EMAC_MDIO_MODE, val1);
1963 		REG_RD(sc, BCE_EMAC_MDIO_MODE);
1964 
1965 		DELAY(40);
1966 	}
1967 
1968 	return 0;
1969 }
1970 
1971 
1972 /****************************************************************************/
1973 /* MII bus status change.                                                   */
1974 /*                                                                          */
1975 /* Called by the MII bus driver when the PHY establishes link to set the    */
1976 /* MAC interface registers.                                                 */
1977 /*                                                                          */
1978 /* Returns:                                                                 */
1979 /*   Nothing.                                                               */
1980 /****************************************************************************/
1981 static void
1982 bce_miibus_statchg(device_t dev)
1983 {
1984 	struct bce_softc *sc;
1985 	struct mii_data *mii;
1986 	int val;
1987 
1988 	sc = device_get_softc(dev);
1989 
1990 	DBENTER(BCE_VERBOSE_PHY);
1991 
1992 	mii = device_get_softc(sc->bce_miibus);
1993 
1994 	val = REG_RD(sc, BCE_EMAC_MODE);
1995 	val &= ~(BCE_EMAC_MODE_PORT | BCE_EMAC_MODE_HALF_DUPLEX |
1996 	    BCE_EMAC_MODE_MAC_LOOP | BCE_EMAC_MODE_FORCE_LINK |
1997 	    BCE_EMAC_MODE_25G);
1998 
1999 	/* Set MII or GMII interface based on the PHY speed. */
2000 	switch (IFM_SUBTYPE(mii->mii_media_active)) {
2001 	case IFM_10_T:
2002 		if (BCE_CHIP_NUM(sc) != BCE_CHIP_NUM_5706) {
2003 			DBPRINT(sc, BCE_INFO_PHY,
2004 			    "Enabling 10Mb interface.\n");
2005 			val |= BCE_EMAC_MODE_PORT_MII_10;
2006 			break;
2007 		}
2008 		/* fall-through */
2009 	case IFM_100_TX:
2010 		DBPRINT(sc, BCE_INFO_PHY, "Enabling MII interface.\n");
2011 		val |= BCE_EMAC_MODE_PORT_MII;
2012 		break;
2013 	case IFM_2500_SX:
2014 		DBPRINT(sc, BCE_INFO_PHY, "Enabling 2.5G MAC mode.\n");
2015 		val |= BCE_EMAC_MODE_25G;
2016 		/* fall-through */
2017 	case IFM_1000_T:
2018 	case IFM_1000_SX:
2019 		DBPRINT(sc, BCE_INFO_PHY, "Enabling GMII interface.\n");
2020 		val |= BCE_EMAC_MODE_PORT_GMII;
2021 		break;
2022 	default:
2023 		DBPRINT(sc, BCE_INFO_PHY, "Unknown link speed, enabling "
2024 		    "default GMII interface.\n");
2025 		val |= BCE_EMAC_MODE_PORT_GMII;
2026 	}
2027 
2028 	/* Set half or full duplex based on PHY settings. */
2029 	if ((mii->mii_media_active & IFM_GMASK) == IFM_HDX) {
2030 		DBPRINT(sc, BCE_INFO_PHY,
2031 		    "Setting Half-Duplex interface.\n");
2032 		val |= BCE_EMAC_MODE_HALF_DUPLEX;
2033 	} else
2034 		DBPRINT(sc, BCE_INFO_PHY,
2035 		    "Setting Full-Duplex interface.\n");
2036 
2037 	REG_WR(sc, BCE_EMAC_MODE, val);
2038 
2039  	if ((mii->mii_media_active & IFM_ETH_RXPAUSE) != 0) {
2040 		DBPRINT(sc, BCE_INFO_PHY,
2041 		    "%s(): Enabling RX flow control.\n", __FUNCTION__);
2042 		BCE_SETBIT(sc, BCE_EMAC_RX_MODE, BCE_EMAC_RX_MODE_FLOW_EN);
2043 	} else {
2044 		DBPRINT(sc, BCE_INFO_PHY,
2045 		    "%s(): Disabling RX flow control.\n", __FUNCTION__);
2046 		BCE_CLRBIT(sc, BCE_EMAC_RX_MODE, BCE_EMAC_RX_MODE_FLOW_EN);
2047 	}
2048 
2049  	if ((mii->mii_media_active & IFM_ETH_TXPAUSE) != 0) {
2050 		DBPRINT(sc, BCE_INFO_PHY,
2051 		    "%s(): Enabling TX flow control.\n", __FUNCTION__);
2052 		BCE_SETBIT(sc, BCE_EMAC_TX_MODE, BCE_EMAC_TX_MODE_FLOW_EN);
2053 		sc->bce_flags |= BCE_USING_TX_FLOW_CONTROL;
2054 	} else {
2055 		DBPRINT(sc, BCE_INFO_PHY,
2056 		    "%s(): Disabling TX flow control.\n", __FUNCTION__);
2057 		BCE_CLRBIT(sc, BCE_EMAC_TX_MODE, BCE_EMAC_TX_MODE_FLOW_EN);
2058 		sc->bce_flags &= ~BCE_USING_TX_FLOW_CONTROL;
2059 	}
2060 
2061 	/* ToDo: Update watermarks in bce_init_rx_context(). */
2062 
2063 	DBEXIT(BCE_VERBOSE_PHY);
2064 }
2065 
2066 
2067 /****************************************************************************/
2068 /* Acquire NVRAM lock.                                                      */
2069 /*                                                                          */
2070 /* Before the NVRAM can be accessed the caller must acquire an NVRAM lock.  */
2071 /* Locks 0 and 2 are reserved, lock 1 is used by firmware and lock 2 is     */
2072 /* for use by the driver.                                                   */
2073 /*                                                                          */
2074 /* Returns:                                                                 */
2075 /*   0 on success, positive value on failure.                               */
2076 /****************************************************************************/
2077 static int
2078 bce_acquire_nvram_lock(struct bce_softc *sc)
2079 {
2080 	u32 val;
2081 	int j, rc = 0;
2082 
2083 	DBENTER(BCE_VERBOSE_NVRAM);
2084 
2085 	/* Request access to the flash interface. */
2086 	REG_WR(sc, BCE_NVM_SW_ARB, BCE_NVM_SW_ARB_ARB_REQ_SET2);
2087 	for (j = 0; j < NVRAM_TIMEOUT_COUNT; j++) {
2088 		val = REG_RD(sc, BCE_NVM_SW_ARB);
2089 		if (val & BCE_NVM_SW_ARB_ARB_ARB2)
2090 			break;
2091 
2092 		DELAY(5);
2093 	}
2094 
2095 	if (j >= NVRAM_TIMEOUT_COUNT) {
2096 		DBPRINT(sc, BCE_WARN, "Timeout acquiring NVRAM lock!\n");
2097 		rc = EBUSY;
2098 	}
2099 
2100 	DBEXIT(BCE_VERBOSE_NVRAM);
2101 	return (rc);
2102 }
2103 
2104 
2105 /****************************************************************************/
2106 /* Release NVRAM lock.                                                      */
2107 /*                                                                          */
2108 /* When the caller is finished accessing NVRAM the lock must be released.   */
2109 /* Locks 0 and 2 are reserved, lock 1 is used by firmware and lock 2 is     */
2110 /* for use by the driver.                                                   */
2111 /*                                                                          */
2112 /* Returns:                                                                 */
2113 /*   0 on success, positive value on failure.                               */
2114 /****************************************************************************/
2115 static int
2116 bce_release_nvram_lock(struct bce_softc *sc)
2117 {
2118 	u32 val;
2119 	int j, rc = 0;
2120 
2121 	DBENTER(BCE_VERBOSE_NVRAM);
2122 
2123 	/*
2124 	 * Relinquish nvram interface.
2125 	 */
2126 	REG_WR(sc, BCE_NVM_SW_ARB, BCE_NVM_SW_ARB_ARB_REQ_CLR2);
2127 
2128 	for (j = 0; j < NVRAM_TIMEOUT_COUNT; j++) {
2129 		val = REG_RD(sc, BCE_NVM_SW_ARB);
2130 		if (!(val & BCE_NVM_SW_ARB_ARB_ARB2))
2131 			break;
2132 
2133 		DELAY(5);
2134 	}
2135 
2136 	if (j >= NVRAM_TIMEOUT_COUNT) {
2137 		DBPRINT(sc, BCE_WARN, "Timeout releasing NVRAM lock!\n");
2138 		rc = EBUSY;
2139 	}
2140 
2141 	DBEXIT(BCE_VERBOSE_NVRAM);
2142 	return (rc);
2143 }
2144 
2145 
2146 #ifdef BCE_NVRAM_WRITE_SUPPORT
2147 /****************************************************************************/
2148 /* Enable NVRAM write access.                                               */
2149 /*                                                                          */
2150 /* Before writing to NVRAM the caller must enable NVRAM writes.             */
2151 /*                                                                          */
2152 /* Returns:                                                                 */
2153 /*   0 on success, positive value on failure.                               */
2154 /****************************************************************************/
2155 static int
2156 bce_enable_nvram_write(struct bce_softc *sc)
2157 {
2158 	u32 val;
2159 	int rc = 0;
2160 
2161 	DBENTER(BCE_VERBOSE_NVRAM);
2162 
2163 	val = REG_RD(sc, BCE_MISC_CFG);
2164 	REG_WR(sc, BCE_MISC_CFG, val | BCE_MISC_CFG_NVM_WR_EN_PCI);
2165 
2166 	if (!(sc->bce_flash_info->flags & BCE_NV_BUFFERED)) {
2167 		int j;
2168 
2169 		REG_WR(sc, BCE_NVM_COMMAND, BCE_NVM_COMMAND_DONE);
2170 		REG_WR(sc, BCE_NVM_COMMAND,	BCE_NVM_COMMAND_WREN | BCE_NVM_COMMAND_DOIT);
2171 
2172 		for (j = 0; j < NVRAM_TIMEOUT_COUNT; j++) {
2173 			DELAY(5);
2174 
2175 			val = REG_RD(sc, BCE_NVM_COMMAND);
2176 			if (val & BCE_NVM_COMMAND_DONE)
2177 				break;
2178 		}
2179 
2180 		if (j >= NVRAM_TIMEOUT_COUNT) {
2181 			DBPRINT(sc, BCE_WARN, "Timeout writing NVRAM!\n");
2182 			rc = EBUSY;
2183 		}
2184 	}
2185 
2186 	DBENTER(BCE_VERBOSE_NVRAM);
2187 	return (rc);
2188 }
2189 
2190 
2191 /****************************************************************************/
2192 /* Disable NVRAM write access.                                              */
2193 /*                                                                          */
2194 /* When the caller is finished writing to NVRAM write access must be        */
2195 /* disabled.                                                                */
2196 /*                                                                          */
2197 /* Returns:                                                                 */
2198 /*   Nothing.                                                               */
2199 /****************************************************************************/
2200 static void
2201 bce_disable_nvram_write(struct bce_softc *sc)
2202 {
2203 	u32 val;
2204 
2205 	DBENTER(BCE_VERBOSE_NVRAM);
2206 
2207 	val = REG_RD(sc, BCE_MISC_CFG);
2208 	REG_WR(sc, BCE_MISC_CFG, val & ~BCE_MISC_CFG_NVM_WR_EN);
2209 
2210 	DBEXIT(BCE_VERBOSE_NVRAM);
2211 
2212 }
2213 #endif
2214 
2215 
2216 /****************************************************************************/
2217 /* Enable NVRAM access.                                                     */
2218 /*                                                                          */
2219 /* Before accessing NVRAM for read or write operations the caller must      */
2220 /* enabled NVRAM access.                                                    */
2221 /*                                                                          */
2222 /* Returns:                                                                 */
2223 /*   Nothing.                                                               */
2224 /****************************************************************************/
2225 static void
2226 bce_enable_nvram_access(struct bce_softc *sc)
2227 {
2228 	u32 val;
2229 
2230 	DBENTER(BCE_VERBOSE_NVRAM);
2231 
2232 	val = REG_RD(sc, BCE_NVM_ACCESS_ENABLE);
2233 	/* Enable both bits, even on read. */
2234 	REG_WR(sc, BCE_NVM_ACCESS_ENABLE, val |
2235 	    BCE_NVM_ACCESS_ENABLE_EN | BCE_NVM_ACCESS_ENABLE_WR_EN);
2236 
2237 	DBEXIT(BCE_VERBOSE_NVRAM);
2238 }
2239 
2240 
2241 /****************************************************************************/
2242 /* Disable NVRAM access.                                                    */
2243 /*                                                                          */
2244 /* When the caller is finished accessing NVRAM access must be disabled.     */
2245 /*                                                                          */
2246 /* Returns:                                                                 */
2247 /*   Nothing.                                                               */
2248 /****************************************************************************/
2249 static void
2250 bce_disable_nvram_access(struct bce_softc *sc)
2251 {
2252 	u32 val;
2253 
2254 	DBENTER(BCE_VERBOSE_NVRAM);
2255 
2256 	val = REG_RD(sc, BCE_NVM_ACCESS_ENABLE);
2257 
2258 	/* Disable both bits, even after read. */
2259 	REG_WR(sc, BCE_NVM_ACCESS_ENABLE, val &
2260 	    ~(BCE_NVM_ACCESS_ENABLE_EN | BCE_NVM_ACCESS_ENABLE_WR_EN));
2261 
2262 	DBEXIT(BCE_VERBOSE_NVRAM);
2263 }
2264 
2265 
2266 #ifdef BCE_NVRAM_WRITE_SUPPORT
2267 /****************************************************************************/
2268 /* Erase NVRAM page before writing.                                         */
2269 /*                                                                          */
2270 /* Non-buffered flash parts require that a page be erased before it is      */
2271 /* written.                                                                 */
2272 /*                                                                          */
2273 /* Returns:                                                                 */
2274 /*   0 on success, positive value on failure.                               */
2275 /****************************************************************************/
2276 static int
2277 bce_nvram_erase_page(struct bce_softc *sc, u32 offset)
2278 {
2279 	u32 cmd;
2280 	int j, rc = 0;
2281 
2282 	DBENTER(BCE_VERBOSE_NVRAM);
2283 
2284 	/* Buffered flash doesn't require an erase. */
2285 	if (sc->bce_flash_info->flags & BCE_NV_BUFFERED)
2286 		goto bce_nvram_erase_page_exit;
2287 
2288 	/* Build an erase command. */
2289 	cmd = BCE_NVM_COMMAND_ERASE | BCE_NVM_COMMAND_WR |
2290 	    BCE_NVM_COMMAND_DOIT;
2291 
2292 	/*
2293 	 * Clear the DONE bit separately, set the NVRAM adress to erase,
2294 	 * and issue the erase command.
2295 	 */
2296 	REG_WR(sc, BCE_NVM_COMMAND, BCE_NVM_COMMAND_DONE);
2297 	REG_WR(sc, BCE_NVM_ADDR, offset & BCE_NVM_ADDR_NVM_ADDR_VALUE);
2298 	REG_WR(sc, BCE_NVM_COMMAND, cmd);
2299 
2300 	/* Wait for completion. */
2301 	for (j = 0; j < NVRAM_TIMEOUT_COUNT; j++) {
2302 		u32 val;
2303 
2304 		DELAY(5);
2305 
2306 		val = REG_RD(sc, BCE_NVM_COMMAND);
2307 		if (val & BCE_NVM_COMMAND_DONE)
2308 			break;
2309 	}
2310 
2311 	if (j >= NVRAM_TIMEOUT_COUNT) {
2312 		DBPRINT(sc, BCE_WARN, "Timeout erasing NVRAM.\n");
2313 		rc = EBUSY;
2314 	}
2315 
2316 bce_nvram_erase_page_exit:
2317 	DBEXIT(BCE_VERBOSE_NVRAM);
2318 	return (rc);
2319 }
2320 #endif /* BCE_NVRAM_WRITE_SUPPORT */
2321 
2322 
2323 /****************************************************************************/
2324 /* Read a dword (32 bits) from NVRAM.                                       */
2325 /*                                                                          */
2326 /* Read a 32 bit word from NVRAM.  The caller is assumed to have already    */
2327 /* obtained the NVRAM lock and enabled the controller for NVRAM access.     */
2328 /*                                                                          */
2329 /* Returns:                                                                 */
2330 /*   0 on success and the 32 bit value read, positive value on failure.     */
2331 /****************************************************************************/
2332 static int
2333 bce_nvram_read_dword(struct bce_softc *sc,
2334     u32 offset, u8 *ret_val, u32 cmd_flags)
2335 {
2336 	u32 cmd;
2337 	int i, rc = 0;
2338 
2339 	DBENTER(BCE_EXTREME_NVRAM);
2340 
2341 	/* Build the command word. */
2342 	cmd = BCE_NVM_COMMAND_DOIT | cmd_flags;
2343 
2344 	/* Calculate the offset for buffered flash if translation is used. */
2345 	if (sc->bce_flash_info->flags & BCE_NV_TRANSLATE) {
2346 		offset = ((offset / sc->bce_flash_info->page_size) <<
2347 		    sc->bce_flash_info->page_bits) +
2348 		    (offset % sc->bce_flash_info->page_size);
2349 	}
2350 
2351 	/*
2352 	 * Clear the DONE bit separately, set the address to read,
2353 	 * and issue the read.
2354 	 */
2355 	REG_WR(sc, BCE_NVM_COMMAND, BCE_NVM_COMMAND_DONE);
2356 	REG_WR(sc, BCE_NVM_ADDR, offset & BCE_NVM_ADDR_NVM_ADDR_VALUE);
2357 	REG_WR(sc, BCE_NVM_COMMAND, cmd);
2358 
2359 	/* Wait for completion. */
2360 	for (i = 0; i < NVRAM_TIMEOUT_COUNT; i++) {
2361 		u32 val;
2362 
2363 		DELAY(5);
2364 
2365 		val = REG_RD(sc, BCE_NVM_COMMAND);
2366 		if (val & BCE_NVM_COMMAND_DONE) {
2367 			val = REG_RD(sc, BCE_NVM_READ);
2368 
2369 			val = bce_be32toh(val);
2370 			memcpy(ret_val, &val, 4);
2371 			break;
2372 		}
2373 	}
2374 
2375 	/* Check for errors. */
2376 	if (i >= NVRAM_TIMEOUT_COUNT) {
2377 		BCE_PRINTF("%s(%d): Timeout error reading NVRAM at "
2378 		    "offset 0x%08X!\n",	__FILE__, __LINE__, offset);
2379 		rc = EBUSY;
2380 	}
2381 
2382 	DBEXIT(BCE_EXTREME_NVRAM);
2383 	return(rc);
2384 }
2385 
2386 
2387 #ifdef BCE_NVRAM_WRITE_SUPPORT
2388 /****************************************************************************/
2389 /* Write a dword (32 bits) to NVRAM.                                        */
2390 /*                                                                          */
2391 /* Write a 32 bit word to NVRAM.  The caller is assumed to have already     */
2392 /* obtained the NVRAM lock, enabled the controller for NVRAM access, and    */
2393 /* enabled NVRAM write access.                                              */
2394 /*                                                                          */
2395 /* Returns:                                                                 */
2396 /*   0 on success, positive value on failure.                               */
2397 /****************************************************************************/
2398 static int
2399 bce_nvram_write_dword(struct bce_softc *sc, u32 offset, u8 *val,
2400 	u32 cmd_flags)
2401 {
2402 	u32 cmd, val32;
2403 	int j, rc = 0;
2404 
2405 	DBENTER(BCE_VERBOSE_NVRAM);
2406 
2407 	/* Build the command word. */
2408 	cmd = BCE_NVM_COMMAND_DOIT | BCE_NVM_COMMAND_WR | cmd_flags;
2409 
2410 	/* Calculate the offset for buffered flash if translation is used. */
2411 	if (sc->bce_flash_info->flags & BCE_NV_TRANSLATE) {
2412 		offset = ((offset / sc->bce_flash_info->page_size) <<
2413 		    sc->bce_flash_info->page_bits) +
2414 		    (offset % sc->bce_flash_info->page_size);
2415 	}
2416 
2417 	/*
2418 	 * Clear the DONE bit separately, convert NVRAM data to big-endian,
2419 	 * set the NVRAM address to write, and issue the write command
2420 	 */
2421 	REG_WR(sc, BCE_NVM_COMMAND, BCE_NVM_COMMAND_DONE);
2422 	memcpy(&val32, val, 4);
2423 	val32 = htobe32(val32);
2424 	REG_WR(sc, BCE_NVM_WRITE, val32);
2425 	REG_WR(sc, BCE_NVM_ADDR, offset & BCE_NVM_ADDR_NVM_ADDR_VALUE);
2426 	REG_WR(sc, BCE_NVM_COMMAND, cmd);
2427 
2428 	/* Wait for completion. */
2429 	for (j = 0; j < NVRAM_TIMEOUT_COUNT; j++) {
2430 		DELAY(5);
2431 
2432 		if (REG_RD(sc, BCE_NVM_COMMAND) & BCE_NVM_COMMAND_DONE)
2433 			break;
2434 	}
2435 	if (j >= NVRAM_TIMEOUT_COUNT) {
2436 		BCE_PRINTF("%s(%d): Timeout error writing NVRAM at "
2437 		    "offset 0x%08X\n", __FILE__, __LINE__, offset);
2438 		rc = EBUSY;
2439 	}
2440 
2441 	DBEXIT(BCE_VERBOSE_NVRAM);
2442 	return (rc);
2443 }
2444 #endif /* BCE_NVRAM_WRITE_SUPPORT */
2445 
2446 
2447 /****************************************************************************/
2448 /* Initialize NVRAM access.                                                 */
2449 /*                                                                          */
2450 /* Identify the NVRAM device in use and prepare the NVRAM interface to      */
2451 /* access that device.                                                      */
2452 /*                                                                          */
2453 /* Returns:                                                                 */
2454 /*   0 on success, positive value on failure.                               */
2455 /****************************************************************************/
2456 static int
2457 bce_init_nvram(struct bce_softc *sc)
2458 {
2459 	u32 val;
2460 	int j, entry_count, rc = 0;
2461 	struct flash_spec *flash;
2462 
2463 	DBENTER(BCE_VERBOSE_NVRAM);
2464 
2465 	if (BCE_CHIP_NUM(sc) == BCE_CHIP_NUM_5709) {
2466 		sc->bce_flash_info = &flash_5709;
2467 		goto bce_init_nvram_get_flash_size;
2468 	}
2469 
2470 	/* Determine the selected interface. */
2471 	val = REG_RD(sc, BCE_NVM_CFG1);
2472 
2473 	entry_count = sizeof(flash_table) / sizeof(struct flash_spec);
2474 
2475 	/*
2476 	 * Flash reconfiguration is required to support additional
2477 	 * NVRAM devices not directly supported in hardware.
2478 	 * Check if the flash interface was reconfigured
2479 	 * by the bootcode.
2480 	 */
2481 
2482 	if (val & 0x40000000) {
2483 		/* Flash interface reconfigured by bootcode. */
2484 
2485 		DBPRINT(sc,BCE_INFO_LOAD,
2486 			"bce_init_nvram(): Flash WAS reconfigured.\n");
2487 
2488 		for (j = 0, flash = &flash_table[0]; j < entry_count;
2489 		     j++, flash++) {
2490 			if ((val & FLASH_BACKUP_STRAP_MASK) ==
2491 			    (flash->config1 & FLASH_BACKUP_STRAP_MASK)) {
2492 				sc->bce_flash_info = flash;
2493 				break;
2494 			}
2495 		}
2496 	} else {
2497 		/* Flash interface not yet reconfigured. */
2498 		u32 mask;
2499 
2500 		DBPRINT(sc, BCE_INFO_LOAD, "%s(): Flash was NOT reconfigured.\n",
2501 			__FUNCTION__);
2502 
2503 		if (val & (1 << 23))
2504 			mask = FLASH_BACKUP_STRAP_MASK;
2505 		else
2506 			mask = FLASH_STRAP_MASK;
2507 
2508 		/* Look for the matching NVRAM device configuration data. */
2509 		for (j = 0, flash = &flash_table[0]; j < entry_count; j++, flash++) {
2510 
2511 			/* Check if the device matches any of the known devices. */
2512 			if ((val & mask) == (flash->strapping & mask)) {
2513 				/* Found a device match. */
2514 				sc->bce_flash_info = flash;
2515 
2516 				/* Request access to the flash interface. */
2517 				if ((rc = bce_acquire_nvram_lock(sc)) != 0)
2518 					return rc;
2519 
2520 				/* Reconfigure the flash interface. */
2521 				bce_enable_nvram_access(sc);
2522 				REG_WR(sc, BCE_NVM_CFG1, flash->config1);
2523 				REG_WR(sc, BCE_NVM_CFG2, flash->config2);
2524 				REG_WR(sc, BCE_NVM_CFG3, flash->config3);
2525 				REG_WR(sc, BCE_NVM_WRITE1, flash->write1);
2526 				bce_disable_nvram_access(sc);
2527 				bce_release_nvram_lock(sc);
2528 
2529 				break;
2530 			}
2531 		}
2532 	}
2533 
2534 	/* Check if a matching device was found. */
2535 	if (j == entry_count) {
2536 		sc->bce_flash_info = NULL;
2537 		BCE_PRINTF("%s(%d): Unknown Flash NVRAM found!\n",
2538 		    __FILE__, __LINE__);
2539 		DBEXIT(BCE_VERBOSE_NVRAM);
2540 		return (ENODEV);
2541 	}
2542 
2543 bce_init_nvram_get_flash_size:
2544 	/* Write the flash config data to the shared memory interface. */
2545 	val = bce_shmem_rd(sc, BCE_SHARED_HW_CFG_CONFIG2);
2546 	val &= BCE_SHARED_HW_CFG2_NVM_SIZE_MASK;
2547 	if (val)
2548 		sc->bce_flash_size = val;
2549 	else
2550 		sc->bce_flash_size = sc->bce_flash_info->total_size;
2551 
2552 	DBPRINT(sc, BCE_INFO_LOAD, "%s(): Found %s, size = 0x%08X\n",
2553 	    __FUNCTION__, sc->bce_flash_info->name,
2554 	    sc->bce_flash_info->total_size);
2555 
2556 	DBEXIT(BCE_VERBOSE_NVRAM);
2557 	return rc;
2558 }
2559 
2560 
2561 /****************************************************************************/
2562 /* Read an arbitrary range of data from NVRAM.                              */
2563 /*                                                                          */
2564 /* Prepares the NVRAM interface for access and reads the requested data     */
2565 /* into the supplied buffer.                                                */
2566 /*                                                                          */
2567 /* Returns:                                                                 */
2568 /*   0 on success and the data read, positive value on failure.             */
2569 /****************************************************************************/
2570 static int
2571 bce_nvram_read(struct bce_softc *sc, u32 offset, u8 *ret_buf,
2572 	int buf_size)
2573 {
2574 	int rc = 0;
2575 	u32 cmd_flags, offset32, len32, extra;
2576 
2577 	DBENTER(BCE_VERBOSE_NVRAM);
2578 
2579 	if (buf_size == 0)
2580 		goto bce_nvram_read_exit;
2581 
2582 	/* Request access to the flash interface. */
2583 	if ((rc = bce_acquire_nvram_lock(sc)) != 0)
2584 		goto bce_nvram_read_exit;
2585 
2586 	/* Enable access to flash interface */
2587 	bce_enable_nvram_access(sc);
2588 
2589 	len32 = buf_size;
2590 	offset32 = offset;
2591 	extra = 0;
2592 
2593 	cmd_flags = 0;
2594 
2595 	if (offset32 & 3) {
2596 		u8 buf[4];
2597 		u32 pre_len;
2598 
2599 		offset32 &= ~3;
2600 		pre_len = 4 - (offset & 3);
2601 
2602 		if (pre_len >= len32) {
2603 			pre_len = len32;
2604 			cmd_flags = BCE_NVM_COMMAND_FIRST | BCE_NVM_COMMAND_LAST;
2605 		}
2606 		else {
2607 			cmd_flags = BCE_NVM_COMMAND_FIRST;
2608 		}
2609 
2610 		rc = bce_nvram_read_dword(sc, offset32, buf, cmd_flags);
2611 
2612 		if (rc)
2613 			return rc;
2614 
2615 		memcpy(ret_buf, buf + (offset & 3), pre_len);
2616 
2617 		offset32 += 4;
2618 		ret_buf += pre_len;
2619 		len32 -= pre_len;
2620 	}
2621 
2622 	if (len32 & 3) {
2623 		extra = 4 - (len32 & 3);
2624 		len32 = (len32 + 4) & ~3;
2625 	}
2626 
2627 	if (len32 == 4) {
2628 		u8 buf[4];
2629 
2630 		if (cmd_flags)
2631 			cmd_flags = BCE_NVM_COMMAND_LAST;
2632 		else
2633 			cmd_flags = BCE_NVM_COMMAND_FIRST |
2634 				    BCE_NVM_COMMAND_LAST;
2635 
2636 		rc = bce_nvram_read_dword(sc, offset32, buf, cmd_flags);
2637 
2638 		memcpy(ret_buf, buf, 4 - extra);
2639 	}
2640 	else if (len32 > 0) {
2641 		u8 buf[4];
2642 
2643 		/* Read the first word. */
2644 		if (cmd_flags)
2645 			cmd_flags = 0;
2646 		else
2647 			cmd_flags = BCE_NVM_COMMAND_FIRST;
2648 
2649 		rc = bce_nvram_read_dword(sc, offset32, ret_buf, cmd_flags);
2650 
2651 		/* Advance to the next dword. */
2652 		offset32 += 4;
2653 		ret_buf += 4;
2654 		len32 -= 4;
2655 
2656 		while (len32 > 4 && rc == 0) {
2657 			rc = bce_nvram_read_dword(sc, offset32, ret_buf, 0);
2658 
2659 			/* Advance to the next dword. */
2660 			offset32 += 4;
2661 			ret_buf += 4;
2662 			len32 -= 4;
2663 		}
2664 
2665 		if (rc)
2666 			goto bce_nvram_read_locked_exit;
2667 
2668 		cmd_flags = BCE_NVM_COMMAND_LAST;
2669 		rc = bce_nvram_read_dword(sc, offset32, buf, cmd_flags);
2670 
2671 		memcpy(ret_buf, buf, 4 - extra);
2672 	}
2673 
2674 bce_nvram_read_locked_exit:
2675 	/* Disable access to flash interface and release the lock. */
2676 	bce_disable_nvram_access(sc);
2677 	bce_release_nvram_lock(sc);
2678 
2679 bce_nvram_read_exit:
2680 	DBEXIT(BCE_VERBOSE_NVRAM);
2681 	return rc;
2682 }
2683 
2684 
2685 #ifdef BCE_NVRAM_WRITE_SUPPORT
2686 /****************************************************************************/
2687 /* Write an arbitrary range of data from NVRAM.                             */
2688 /*                                                                          */
2689 /* Prepares the NVRAM interface for write access and writes the requested   */
2690 /* data from the supplied buffer.  The caller is responsible for            */
2691 /* calculating any appropriate CRCs.                                        */
2692 /*                                                                          */
2693 /* Returns:                                                                 */
2694 /*   0 on success, positive value on failure.                               */
2695 /****************************************************************************/
2696 static int
2697 bce_nvram_write(struct bce_softc *sc, u32 offset, u8 *data_buf,
2698 	int buf_size)
2699 {
2700 	u32 written, offset32, len32;
2701 	u8 *buf, start[4], end[4];
2702 	int rc = 0;
2703 	int align_start, align_end;
2704 
2705 	DBENTER(BCE_VERBOSE_NVRAM);
2706 
2707 	buf = data_buf;
2708 	offset32 = offset;
2709 	len32 = buf_size;
2710 	align_start = align_end = 0;
2711 
2712 	if ((align_start = (offset32 & 3))) {
2713 		offset32 &= ~3;
2714 		len32 += align_start;
2715 		if ((rc = bce_nvram_read(sc, offset32, start, 4)))
2716 			goto bce_nvram_write_exit;
2717 	}
2718 
2719 	if (len32 & 3) {
2720 	       	if ((len32 > 4) || !align_start) {
2721 			align_end = 4 - (len32 & 3);
2722 			len32 += align_end;
2723 			if ((rc = bce_nvram_read(sc, offset32 + len32 - 4,
2724 				end, 4))) {
2725 				goto bce_nvram_write_exit;
2726 			}
2727 		}
2728 	}
2729 
2730 	if (align_start || align_end) {
2731 		buf = malloc(len32, M_DEVBUF, M_NOWAIT);
2732 		if (buf == 0) {
2733 			rc = ENOMEM;
2734 			goto bce_nvram_write_exit;
2735 		}
2736 
2737 		if (align_start) {
2738 			memcpy(buf, start, 4);
2739 		}
2740 
2741 		if (align_end) {
2742 			memcpy(buf + len32 - 4, end, 4);
2743 		}
2744 		memcpy(buf + align_start, data_buf, buf_size);
2745 	}
2746 
2747 	written = 0;
2748 	while ((written < len32) && (rc == 0)) {
2749 		u32 page_start, page_end, data_start, data_end;
2750 		u32 addr, cmd_flags;
2751 		int i;
2752 		u8 flash_buffer[264];
2753 
2754 	    /* Find the page_start addr */
2755 		page_start = offset32 + written;
2756 		page_start -= (page_start % sc->bce_flash_info->page_size);
2757 		/* Find the page_end addr */
2758 		page_end = page_start + sc->bce_flash_info->page_size;
2759 		/* Find the data_start addr */
2760 		data_start = (written == 0) ? offset32 : page_start;
2761 		/* Find the data_end addr */
2762 		data_end = (page_end > offset32 + len32) ?
2763 			(offset32 + len32) : page_end;
2764 
2765 		/* Request access to the flash interface. */
2766 		if ((rc = bce_acquire_nvram_lock(sc)) != 0)
2767 			goto bce_nvram_write_exit;
2768 
2769 		/* Enable access to flash interface */
2770 		bce_enable_nvram_access(sc);
2771 
2772 		cmd_flags = BCE_NVM_COMMAND_FIRST;
2773 		if (!(sc->bce_flash_info->flags & BCE_NV_BUFFERED)) {
2774 			int j;
2775 
2776 			/* Read the whole page into the buffer
2777 			 * (non-buffer flash only) */
2778 			for (j = 0; j < sc->bce_flash_info->page_size; j += 4) {
2779 				if (j == (sc->bce_flash_info->page_size - 4)) {
2780 					cmd_flags |= BCE_NVM_COMMAND_LAST;
2781 				}
2782 				rc = bce_nvram_read_dword(sc,
2783 					page_start + j,
2784 					&flash_buffer[j],
2785 					cmd_flags);
2786 
2787 				if (rc)
2788 					goto bce_nvram_write_locked_exit;
2789 
2790 				cmd_flags = 0;
2791 			}
2792 		}
2793 
2794 		/* Enable writes to flash interface (unlock write-protect) */
2795 		if ((rc = bce_enable_nvram_write(sc)) != 0)
2796 			goto bce_nvram_write_locked_exit;
2797 
2798 		/* Erase the page */
2799 		if ((rc = bce_nvram_erase_page(sc, page_start)) != 0)
2800 			goto bce_nvram_write_locked_exit;
2801 
2802 		/* Re-enable the write again for the actual write */
2803 		bce_enable_nvram_write(sc);
2804 
2805 		/* Loop to write back the buffer data from page_start to
2806 		 * data_start */
2807 		i = 0;
2808 		if (!(sc->bce_flash_info->flags & BCE_NV_BUFFERED)) {
2809 			for (addr = page_start; addr < data_start;
2810 				addr += 4, i += 4) {
2811 
2812 				rc = bce_nvram_write_dword(sc, addr,
2813 					&flash_buffer[i], cmd_flags);
2814 
2815 				if (rc != 0)
2816 					goto bce_nvram_write_locked_exit;
2817 
2818 				cmd_flags = 0;
2819 			}
2820 		}
2821 
2822 		/* Loop to write the new data from data_start to data_end */
2823 		for (addr = data_start; addr < data_end; addr += 4, i++) {
2824 			if ((addr == page_end - 4) ||
2825 				((sc->bce_flash_info->flags & BCE_NV_BUFFERED) &&
2826 				(addr == data_end - 4))) {
2827 
2828 				cmd_flags |= BCE_NVM_COMMAND_LAST;
2829 			}
2830 			rc = bce_nvram_write_dword(sc, addr, buf,
2831 				cmd_flags);
2832 
2833 			if (rc != 0)
2834 				goto bce_nvram_write_locked_exit;
2835 
2836 			cmd_flags = 0;
2837 			buf += 4;
2838 		}
2839 
2840 		/* Loop to write back the buffer data from data_end
2841 		 * to page_end */
2842 		if (!(sc->bce_flash_info->flags & BCE_NV_BUFFERED)) {
2843 			for (addr = data_end; addr < page_end;
2844 				addr += 4, i += 4) {
2845 
2846 				if (addr == page_end-4) {
2847 					cmd_flags = BCE_NVM_COMMAND_LAST;
2848                 		}
2849 				rc = bce_nvram_write_dword(sc, addr,
2850 					&flash_buffer[i], cmd_flags);
2851 
2852 				if (rc != 0)
2853 					goto bce_nvram_write_locked_exit;
2854 
2855 				cmd_flags = 0;
2856 			}
2857 		}
2858 
2859 		/* Disable writes to flash interface (lock write-protect) */
2860 		bce_disable_nvram_write(sc);
2861 
2862 		/* Disable access to flash interface */
2863 		bce_disable_nvram_access(sc);
2864 		bce_release_nvram_lock(sc);
2865 
2866 		/* Increment written */
2867 		written += data_end - data_start;
2868 	}
2869 
2870 	goto bce_nvram_write_exit;
2871 
2872 bce_nvram_write_locked_exit:
2873 	bce_disable_nvram_write(sc);
2874 	bce_disable_nvram_access(sc);
2875 	bce_release_nvram_lock(sc);
2876 
2877 bce_nvram_write_exit:
2878 	if (align_start || align_end)
2879 		free(buf, M_DEVBUF);
2880 
2881 	DBEXIT(BCE_VERBOSE_NVRAM);
2882 	return (rc);
2883 }
2884 #endif /* BCE_NVRAM_WRITE_SUPPORT */
2885 
2886 
2887 /****************************************************************************/
2888 /* Verifies that NVRAM is accessible and contains valid data.               */
2889 /*                                                                          */
2890 /* Reads the configuration data from NVRAM and verifies that the CRC is     */
2891 /* correct.                                                                 */
2892 /*                                                                          */
2893 /* Returns:                                                                 */
2894 /*   0 on success, positive value on failure.                               */
2895 /****************************************************************************/
2896 static int
2897 bce_nvram_test(struct bce_softc *sc)
2898 {
2899 	u32 buf[BCE_NVRAM_SIZE / 4];
2900 	u8 *data = (u8 *) buf;
2901 	int rc = 0;
2902 	u32 magic, csum;
2903 
2904 	DBENTER(BCE_VERBOSE_NVRAM | BCE_VERBOSE_LOAD | BCE_VERBOSE_RESET);
2905 
2906 	/*
2907 	 * Check that the device NVRAM is valid by reading
2908 	 * the magic value at offset 0.
2909 	 */
2910 	if ((rc = bce_nvram_read(sc, 0, data, 4)) != 0) {
2911 		BCE_PRINTF("%s(%d): Unable to read NVRAM!\n",
2912 		    __FILE__, __LINE__);
2913 		goto bce_nvram_test_exit;
2914 	}
2915 
2916 	/*
2917 	 * Verify that offset 0 of the NVRAM contains
2918 	 * a valid magic number.
2919 	 */
2920 	magic = bce_be32toh(buf[0]);
2921 	if (magic != BCE_NVRAM_MAGIC) {
2922 		rc = ENODEV;
2923 		BCE_PRINTF("%s(%d): Invalid NVRAM magic value! "
2924 		    "Expected: 0x%08X, Found: 0x%08X\n",
2925 		    __FILE__, __LINE__, BCE_NVRAM_MAGIC, magic);
2926 		goto bce_nvram_test_exit;
2927 	}
2928 
2929 	/*
2930 	 * Verify that the device NVRAM includes valid
2931 	 * configuration data.
2932 	 */
2933 	if ((rc = bce_nvram_read(sc, 0x100, data, BCE_NVRAM_SIZE)) != 0) {
2934 		BCE_PRINTF("%s(%d): Unable to read manufacturing "
2935 		    "Information from  NVRAM!\n", __FILE__, __LINE__);
2936 		goto bce_nvram_test_exit;
2937 	}
2938 
2939 	csum = ether_crc32_le(data, 0x100);
2940 	if (csum != BCE_CRC32_RESIDUAL) {
2941 		rc = ENODEV;
2942 		BCE_PRINTF("%s(%d): Invalid manufacturing information "
2943 		    "NVRAM CRC!	Expected: 0x%08X, Found: 0x%08X\n",
2944 		    __FILE__, __LINE__, BCE_CRC32_RESIDUAL, csum);
2945 		goto bce_nvram_test_exit;
2946 	}
2947 
2948 	csum = ether_crc32_le(data + 0x100, 0x100);
2949 	if (csum != BCE_CRC32_RESIDUAL) {
2950 		rc = ENODEV;
2951 		BCE_PRINTF("%s(%d): Invalid feature configuration "
2952 		    "information NVRAM CRC! Expected: 0x%08X, "
2953 		    "Found: 08%08X\n", __FILE__, __LINE__,
2954 		    BCE_CRC32_RESIDUAL, csum);
2955 	}
2956 
2957 bce_nvram_test_exit:
2958 	DBEXIT(BCE_VERBOSE_NVRAM | BCE_VERBOSE_LOAD | BCE_VERBOSE_RESET);
2959 	return rc;
2960 }
2961 
2962 
2963 /****************************************************************************/
2964 /* Calculates the size of the buffers to allocate based on the MTU.         */
2965 /*                                                                          */
2966 /* Returns:                                                                 */
2967 /*   Nothing.                                                               */
2968 /****************************************************************************/
2969 static void
2970 bce_get_rx_buffer_sizes(struct bce_softc *sc, int mtu)
2971 {
2972 	DBENTER(BCE_VERBOSE_LOAD);
2973 
2974 	/* Use a single allocation type when header splitting enabled. */
2975 	if (bce_hdr_split == TRUE) {
2976 		sc->rx_bd_mbuf_alloc_size = MHLEN;
2977 		/* Make sure offset is 16 byte aligned for hardware. */
2978 		sc->rx_bd_mbuf_align_pad =
2979 			roundup2((MSIZE - MHLEN), 16) - (MSIZE - MHLEN);
2980 		sc->rx_bd_mbuf_data_len = sc->rx_bd_mbuf_alloc_size -
2981 			sc->rx_bd_mbuf_align_pad;
2982 		sc->pg_bd_mbuf_alloc_size = MCLBYTES;
2983 	} else {
2984 		if ((mtu + ETHER_HDR_LEN + ETHER_VLAN_ENCAP_LEN +
2985 		    ETHER_CRC_LEN) > MCLBYTES) {
2986 			/* Setup for jumbo RX buffer allocations. */
2987 			sc->rx_bd_mbuf_alloc_size = MJUM9BYTES;
2988 			sc->rx_bd_mbuf_align_pad  =
2989 				roundup2(MJUM9BYTES, 16) - MJUM9BYTES;
2990 			sc->rx_bd_mbuf_data_len =
2991 			    sc->rx_bd_mbuf_alloc_size -
2992 			    sc->rx_bd_mbuf_align_pad;
2993 		} else {
2994 			/* Setup for standard RX buffer allocations. */
2995 			sc->rx_bd_mbuf_alloc_size = MCLBYTES;
2996 			sc->rx_bd_mbuf_align_pad  =
2997 			    roundup2(MCLBYTES, 16) - MCLBYTES;
2998 			sc->rx_bd_mbuf_data_len =
2999 			    sc->rx_bd_mbuf_alloc_size -
3000 			    sc->rx_bd_mbuf_align_pad;
3001 		}
3002 	}
3003 
3004 //	DBPRINT(sc, BCE_INFO_LOAD,
3005 	DBPRINT(sc, BCE_WARN,
3006 	   "%s(): rx_bd_mbuf_alloc_size = %d, rx_bd_mbuf_data_len = %d, "
3007 	   "rx_bd_mbuf_align_pad = %d\n", __FUNCTION__,
3008 	   sc->rx_bd_mbuf_alloc_size, sc->rx_bd_mbuf_data_len,
3009 	   sc->rx_bd_mbuf_align_pad);
3010 
3011 	DBEXIT(BCE_VERBOSE_LOAD);
3012 
3013 }
3014 
3015 /****************************************************************************/
3016 /* Identifies the current media type of the controller and sets the PHY     */
3017 /* address.                                                                 */
3018 /*                                                                          */
3019 /* Returns:                                                                 */
3020 /*   Nothing.                                                               */
3021 /****************************************************************************/
3022 static void
3023 bce_get_media(struct bce_softc *sc)
3024 {
3025 	u32 val;
3026 
3027 	DBENTER(BCE_VERBOSE_PHY);
3028 
3029 	/* Assume PHY address for copper controllers. */
3030 	sc->bce_phy_addr = 1;
3031 
3032 	if (BCE_CHIP_NUM(sc) == BCE_CHIP_NUM_5709) {
3033  		u32 val = REG_RD(sc, BCE_MISC_DUAL_MEDIA_CTRL);
3034 		u32 bond_id = val & BCE_MISC_DUAL_MEDIA_CTRL_BOND_ID;
3035 		u32 strap;
3036 
3037 		/*
3038 		 * The BCM5709S is software configurable
3039 		 * for Copper or SerDes operation.
3040 		 */
3041 		if (bond_id == BCE_MISC_DUAL_MEDIA_CTRL_BOND_ID_C) {
3042 			DBPRINT(sc, BCE_INFO_LOAD, "5709 bonded "
3043 			    "for copper.\n");
3044 			goto bce_get_media_exit;
3045 		} else if (bond_id == BCE_MISC_DUAL_MEDIA_CTRL_BOND_ID_S) {
3046 			DBPRINT(sc, BCE_INFO_LOAD, "5709 bonded "
3047 			    "for dual media.\n");
3048 			sc->bce_phy_flags |= BCE_PHY_SERDES_FLAG;
3049 			goto bce_get_media_exit;
3050 		}
3051 
3052 		if (val & BCE_MISC_DUAL_MEDIA_CTRL_STRAP_OVERRIDE)
3053 			strap = (val &
3054 			    BCE_MISC_DUAL_MEDIA_CTRL_PHY_CTRL) >> 21;
3055 		else
3056 			strap = (val &
3057 			    BCE_MISC_DUAL_MEDIA_CTRL_PHY_CTRL_STRAP) >> 8;
3058 
3059 		if (pci_get_function(sc->bce_dev) == 0) {
3060 			switch (strap) {
3061 			case 0x4:
3062 			case 0x5:
3063 			case 0x6:
3064 				DBPRINT(sc, BCE_INFO_LOAD,
3065 				    "BCM5709 s/w configured for SerDes.\n");
3066 				sc->bce_phy_flags |= BCE_PHY_SERDES_FLAG;
3067 				break;
3068 			default:
3069 				DBPRINT(sc, BCE_INFO_LOAD,
3070 				    "BCM5709 s/w configured for Copper.\n");
3071 				break;
3072 			}
3073 		} else {
3074 			switch (strap) {
3075 			case 0x1:
3076 			case 0x2:
3077 			case 0x4:
3078 				DBPRINT(sc, BCE_INFO_LOAD,
3079 				    "BCM5709 s/w configured for SerDes.\n");
3080 				sc->bce_phy_flags |= BCE_PHY_SERDES_FLAG;
3081 				break;
3082 			default:
3083 				DBPRINT(sc, BCE_INFO_LOAD,
3084 				    "BCM5709 s/w configured for Copper.\n");
3085 				break;
3086 			}
3087 		}
3088 
3089 	} else if (BCE_CHIP_BOND_ID(sc) & BCE_CHIP_BOND_ID_SERDES_BIT)
3090 		sc->bce_phy_flags |= BCE_PHY_SERDES_FLAG;
3091 
3092 	if (sc->bce_phy_flags & BCE_PHY_SERDES_FLAG) {
3093 
3094 		sc->bce_flags |= BCE_NO_WOL_FLAG;
3095 
3096 		if (BCE_CHIP_NUM(sc) == BCE_CHIP_NUM_5709)
3097 			sc->bce_phy_flags |= BCE_PHY_IEEE_CLAUSE_45_FLAG;
3098 
3099 		if (BCE_CHIP_NUM(sc) != BCE_CHIP_NUM_5706) {
3100 			/* 5708S/09S/16S use a separate PHY for SerDes. */
3101 			sc->bce_phy_addr = 2;
3102 
3103 			val = bce_shmem_rd(sc, BCE_SHARED_HW_CFG_CONFIG);
3104 			if (val & BCE_SHARED_HW_CFG_PHY_2_5G) {
3105 				sc->bce_phy_flags |=
3106 				    BCE_PHY_2_5G_CAPABLE_FLAG;
3107 				DBPRINT(sc, BCE_INFO_LOAD, "Found 2.5Gb "
3108 				    "capable adapter\n");
3109 			}
3110 		}
3111 	} else if ((BCE_CHIP_NUM(sc) == BCE_CHIP_NUM_5706) ||
3112 	    (BCE_CHIP_NUM(sc) == BCE_CHIP_NUM_5708))
3113 		sc->bce_phy_flags |= BCE_PHY_CRC_FIX_FLAG;
3114 
3115 bce_get_media_exit:
3116 	DBPRINT(sc, (BCE_INFO_LOAD | BCE_INFO_PHY),
3117 		"Using PHY address %d.\n", sc->bce_phy_addr);
3118 
3119 	DBEXIT(BCE_VERBOSE_PHY);
3120 }
3121 
3122 
3123 /****************************************************************************/
3124 /* Performs PHY initialization required before MII drivers access the       */
3125 /* device.                                                                  */
3126 /*                                                                          */
3127 /* Returns:                                                                 */
3128 /*   Nothing.                                                               */
3129 /****************************************************************************/
3130 static void
3131 bce_init_media(struct bce_softc *sc)
3132 {
3133 	if ((sc->bce_phy_flags & BCE_PHY_IEEE_CLAUSE_45_FLAG) != 0) {
3134 		/*
3135 		 * Configure 5709S/5716S PHYs to use traditional IEEE
3136 		 * Clause 22 method. Otherwise we have no way to attach
3137 		 * the PHY in mii(4) layer. PHY specific configuration
3138 		 * is done in mii layer.
3139 		 */
3140 
3141 		/* Select auto-negotiation MMD of the PHY. */
3142 		bce_miibus_write_reg(sc->bce_dev, sc->bce_phy_addr,
3143 		    BRGPHY_BLOCK_ADDR, BRGPHY_BLOCK_ADDR_ADDR_EXT);
3144 		bce_miibus_write_reg(sc->bce_dev, sc->bce_phy_addr,
3145 		    BRGPHY_ADDR_EXT, BRGPHY_ADDR_EXT_AN_MMD);
3146 
3147 		/* Set IEEE0 block of AN MMD (assumed in brgphy(4) code). */
3148 		bce_miibus_write_reg(sc->bce_dev, sc->bce_phy_addr,
3149 		    BRGPHY_BLOCK_ADDR, BRGPHY_BLOCK_ADDR_COMBO_IEEE0);
3150 	}
3151 }
3152 
3153 
3154 /****************************************************************************/
3155 /* Free any DMA memory owned by the driver.                                 */
3156 /*                                                                          */
3157 /* Scans through each data structre that requires DMA memory and frees      */
3158 /* the memory if allocated.                                                 */
3159 /*                                                                          */
3160 /* Returns:                                                                 */
3161 /*   Nothing.                                                               */
3162 /****************************************************************************/
3163 static void
3164 bce_dma_free(struct bce_softc *sc)
3165 {
3166 	int i;
3167 
3168 	DBENTER(BCE_VERBOSE_RESET | BCE_VERBOSE_UNLOAD | BCE_VERBOSE_CTX);
3169 
3170 	/* Free, unmap, and destroy the status block. */
3171 	if (sc->status_block != NULL) {
3172 		bus_dmamem_free(
3173 		   sc->status_tag,
3174 		    sc->status_block,
3175 		    sc->status_map);
3176 		sc->status_block = NULL;
3177 	}
3178 
3179 	if (sc->status_map != NULL) {
3180 		bus_dmamap_unload(
3181 		    sc->status_tag,
3182 		    sc->status_map);
3183 		bus_dmamap_destroy(sc->status_tag,
3184 		    sc->status_map);
3185 		sc->status_map = NULL;
3186 	}
3187 
3188 	if (sc->status_tag != NULL) {
3189 		bus_dma_tag_destroy(sc->status_tag);
3190 		sc->status_tag = NULL;
3191 	}
3192 
3193 
3194 	/* Free, unmap, and destroy the statistics block. */
3195 	if (sc->stats_block != NULL) {
3196 		bus_dmamem_free(
3197 		    sc->stats_tag,
3198 		    sc->stats_block,
3199 		    sc->stats_map);
3200 		sc->stats_block = NULL;
3201 	}
3202 
3203 	if (sc->stats_map != NULL) {
3204 		bus_dmamap_unload(
3205 		    sc->stats_tag,
3206 		    sc->stats_map);
3207 		bus_dmamap_destroy(sc->stats_tag,
3208 		    sc->stats_map);
3209 		sc->stats_map = NULL;
3210 	}
3211 
3212 	if (sc->stats_tag != NULL) {
3213 		bus_dma_tag_destroy(sc->stats_tag);
3214 		sc->stats_tag = NULL;
3215 	}
3216 
3217 
3218 	/* Free, unmap and destroy all context memory pages. */
3219 	if (BCE_CHIP_NUM(sc) == BCE_CHIP_NUM_5709) {
3220 		for (i = 0; i < sc->ctx_pages; i++ ) {
3221 			if (sc->ctx_block[i] != NULL) {
3222 				bus_dmamem_free(
3223 				    sc->ctx_tag,
3224 				    sc->ctx_block[i],
3225 				    sc->ctx_map[i]);
3226 				sc->ctx_block[i] = NULL;
3227 			}
3228 
3229 			if (sc->ctx_map[i] != NULL) {
3230 				bus_dmamap_unload(
3231 				    sc->ctx_tag,
3232 				    sc->ctx_map[i]);
3233 				bus_dmamap_destroy(
3234 				    sc->ctx_tag,
3235 				    sc->ctx_map[i]);
3236 				sc->ctx_map[i] = NULL;
3237 			}
3238 		}
3239 
3240 		/* Destroy the context memory tag. */
3241 		if (sc->ctx_tag != NULL) {
3242 			bus_dma_tag_destroy(sc->ctx_tag);
3243 			sc->ctx_tag = NULL;
3244 		}
3245 	}
3246 
3247 
3248 	/* Free, unmap and destroy all TX buffer descriptor chain pages. */
3249 	for (i = 0; i < sc->tx_pages; i++ ) {
3250 		if (sc->tx_bd_chain[i] != NULL) {
3251 			bus_dmamem_free(
3252 			    sc->tx_bd_chain_tag,
3253 			    sc->tx_bd_chain[i],
3254 			    sc->tx_bd_chain_map[i]);
3255 			sc->tx_bd_chain[i] = NULL;
3256 		}
3257 
3258 		if (sc->tx_bd_chain_map[i] != NULL) {
3259 			bus_dmamap_unload(
3260 			    sc->tx_bd_chain_tag,
3261 			    sc->tx_bd_chain_map[i]);
3262 			bus_dmamap_destroy(
3263 			    sc->tx_bd_chain_tag,
3264 			    sc->tx_bd_chain_map[i]);
3265 			sc->tx_bd_chain_map[i] = NULL;
3266 		}
3267 	}
3268 
3269 	/* Destroy the TX buffer descriptor tag. */
3270 	if (sc->tx_bd_chain_tag != NULL) {
3271 		bus_dma_tag_destroy(sc->tx_bd_chain_tag);
3272 		sc->tx_bd_chain_tag = NULL;
3273 	}
3274 
3275 
3276 	/* Free, unmap and destroy all RX buffer descriptor chain pages. */
3277 	for (i = 0; i < sc->rx_pages; i++ ) {
3278 		if (sc->rx_bd_chain[i] != NULL) {
3279 			bus_dmamem_free(
3280 			    sc->rx_bd_chain_tag,
3281 			    sc->rx_bd_chain[i],
3282 			    sc->rx_bd_chain_map[i]);
3283 			sc->rx_bd_chain[i] = NULL;
3284 		}
3285 
3286 		if (sc->rx_bd_chain_map[i] != NULL) {
3287 			bus_dmamap_unload(
3288 			    sc->rx_bd_chain_tag,
3289 			    sc->rx_bd_chain_map[i]);
3290 			bus_dmamap_destroy(
3291 			    sc->rx_bd_chain_tag,
3292 			    sc->rx_bd_chain_map[i]);
3293 			sc->rx_bd_chain_map[i] = NULL;
3294 		}
3295 	}
3296 
3297 	/* Destroy the RX buffer descriptor tag. */
3298 	if (sc->rx_bd_chain_tag != NULL) {
3299 		bus_dma_tag_destroy(sc->rx_bd_chain_tag);
3300 		sc->rx_bd_chain_tag = NULL;
3301 	}
3302 
3303 
3304 	/* Free, unmap and destroy all page buffer descriptor chain pages. */
3305 	if (bce_hdr_split == TRUE) {
3306 		for (i = 0; i < sc->pg_pages; i++ ) {
3307 			if (sc->pg_bd_chain[i] != NULL) {
3308 				bus_dmamem_free(
3309 				    sc->pg_bd_chain_tag,
3310 				    sc->pg_bd_chain[i],
3311 				    sc->pg_bd_chain_map[i]);
3312 				sc->pg_bd_chain[i] = NULL;
3313 			}
3314 
3315 			if (sc->pg_bd_chain_map[i] != NULL) {
3316 				bus_dmamap_unload(
3317 				    sc->pg_bd_chain_tag,
3318 				    sc->pg_bd_chain_map[i]);
3319 				bus_dmamap_destroy(
3320 				    sc->pg_bd_chain_tag,
3321 				    sc->pg_bd_chain_map[i]);
3322 				sc->pg_bd_chain_map[i] = NULL;
3323 			}
3324 		}
3325 
3326 		/* Destroy the page buffer descriptor tag. */
3327 		if (sc->pg_bd_chain_tag != NULL) {
3328 			bus_dma_tag_destroy(sc->pg_bd_chain_tag);
3329 			sc->pg_bd_chain_tag = NULL;
3330 		}
3331 	}
3332 
3333 
3334 	/* Unload and destroy the TX mbuf maps. */
3335 	for (i = 0; i < MAX_TX_BD_AVAIL; i++) {
3336 		if (sc->tx_mbuf_map[i] != NULL) {
3337 			bus_dmamap_unload(sc->tx_mbuf_tag,
3338 			    sc->tx_mbuf_map[i]);
3339 			bus_dmamap_destroy(sc->tx_mbuf_tag,
3340 	 		    sc->tx_mbuf_map[i]);
3341 			sc->tx_mbuf_map[i] = NULL;
3342 		}
3343 	}
3344 
3345 	/* Destroy the TX mbuf tag. */
3346 	if (sc->tx_mbuf_tag != NULL) {
3347 		bus_dma_tag_destroy(sc->tx_mbuf_tag);
3348 		sc->tx_mbuf_tag = NULL;
3349 	}
3350 
3351 	/* Unload and destroy the RX mbuf maps. */
3352 	for (i = 0; i < MAX_RX_BD_AVAIL; i++) {
3353 		if (sc->rx_mbuf_map[i] != NULL) {
3354 			bus_dmamap_unload(sc->rx_mbuf_tag,
3355 			    sc->rx_mbuf_map[i]);
3356 			bus_dmamap_destroy(sc->rx_mbuf_tag,
3357 	 		    sc->rx_mbuf_map[i]);
3358 			sc->rx_mbuf_map[i] = NULL;
3359 		}
3360 	}
3361 
3362 	/* Destroy the RX mbuf tag. */
3363 	if (sc->rx_mbuf_tag != NULL) {
3364 		bus_dma_tag_destroy(sc->rx_mbuf_tag);
3365 		sc->rx_mbuf_tag = NULL;
3366 	}
3367 
3368 	/* Unload and destroy the page mbuf maps. */
3369 	if (bce_hdr_split == TRUE) {
3370 		for (i = 0; i < MAX_PG_BD_AVAIL; i++) {
3371 			if (sc->pg_mbuf_map[i] != NULL) {
3372 				bus_dmamap_unload(sc->pg_mbuf_tag,
3373 				    sc->pg_mbuf_map[i]);
3374 				bus_dmamap_destroy(sc->pg_mbuf_tag,
3375 				    sc->pg_mbuf_map[i]);
3376 				sc->pg_mbuf_map[i] = NULL;
3377 			}
3378 		}
3379 
3380 		/* Destroy the page mbuf tag. */
3381 		if (sc->pg_mbuf_tag != NULL) {
3382 			bus_dma_tag_destroy(sc->pg_mbuf_tag);
3383 			sc->pg_mbuf_tag = NULL;
3384 		}
3385 	}
3386 
3387 	/* Destroy the parent tag */
3388 	if (sc->parent_tag != NULL) {
3389 		bus_dma_tag_destroy(sc->parent_tag);
3390 		sc->parent_tag = NULL;
3391 	}
3392 
3393 	DBEXIT(BCE_VERBOSE_RESET | BCE_VERBOSE_UNLOAD | BCE_VERBOSE_CTX);
3394 }
3395 
3396 
3397 /****************************************************************************/
3398 /* Get DMA memory from the OS.                                              */
3399 /*                                                                          */
3400 /* Validates that the OS has provided DMA buffers in response to a          */
3401 /* bus_dmamap_load() call and saves the physical address of those buffers.  */
3402 /* When the callback is used the OS will return 0 for the mapping function  */
3403 /* (bus_dmamap_load()) so we use the value of map_arg->maxsegs to pass any  */
3404 /* failures back to the caller.                                             */
3405 /*                                                                          */
3406 /* Returns:                                                                 */
3407 /*   Nothing.                                                               */
3408 /****************************************************************************/
3409 static void
3410 bce_dma_map_addr(void *arg, bus_dma_segment_t *segs, int nseg, int error)
3411 {
3412 	bus_addr_t *busaddr = arg;
3413 
3414 	KASSERT(nseg == 1, ("%s(): Too many segments returned (%d)!",
3415 	    __FUNCTION__, nseg));
3416 	/* Simulate a mapping failure. */
3417 	DBRUNIF(DB_RANDOMTRUE(dma_map_addr_failed_sim_control),
3418 	    error = ENOMEM);
3419 
3420 	/* ToDo: How to increment debug sim_count variable here? */
3421 
3422 	/* Check for an error and signal the caller that an error occurred. */
3423 	if (error) {
3424 		*busaddr = 0;
3425 	} else {
3426 		*busaddr = segs->ds_addr;
3427 	}
3428 
3429 	return;
3430 }
3431 
3432 
3433 /****************************************************************************/
3434 /* Allocate any DMA memory needed by the driver.                            */
3435 /*                                                                          */
3436 /* Allocates DMA memory needed for the various global structures needed by  */
3437 /* hardware.                                                                */
3438 /*                                                                          */
3439 /* Memory alignment requirements:                                           */
3440 /* +-----------------+----------+----------+----------+----------+          */
3441 /* |                 |   5706   |   5708   |   5709   |   5716   |          */
3442 /* +-----------------+----------+----------+----------+----------+          */
3443 /* |Status Block     | 8 bytes  | 8 bytes  | 16 bytes | 16 bytes |          */
3444 /* |Statistics Block | 8 bytes  | 8 bytes  | 16 bytes | 16 bytes |          */
3445 /* |RX Buffers       | 16 bytes | 16 bytes | 16 bytes | 16 bytes |          */
3446 /* |PG Buffers       |   none   |   none   |   none   |   none   |          */
3447 /* |TX Buffers       |   none   |   none   |   none   |   none   |          */
3448 /* |Chain Pages(1)   |   4KiB   |   4KiB   |   4KiB   |   4KiB   |          */
3449 /* |Context Memory   |          |          |          |          |          */
3450 /* +-----------------+----------+----------+----------+----------+          */
3451 /*                                                                          */
3452 /* (1) Must align with CPU page size (BCM_PAGE_SZIE).                       */
3453 /*                                                                          */
3454 /* Returns:                                                                 */
3455 /*   0 for success, positive value for failure.                             */
3456 /****************************************************************************/
3457 static int
3458 bce_dma_alloc(device_t dev)
3459 {
3460 	struct bce_softc *sc;
3461 	int i, error, rc = 0;
3462 	bus_size_t max_size, max_seg_size;
3463 	int max_segments;
3464 
3465 	sc = device_get_softc(dev);
3466 
3467 	DBENTER(BCE_VERBOSE_RESET | BCE_VERBOSE_CTX);
3468 
3469 	/*
3470 	 * Allocate the parent bus DMA tag appropriate for PCI.
3471 	 */
3472 	if (bus_dma_tag_create(bus_get_dma_tag(dev), 1, BCE_DMA_BOUNDARY,
3473 	    sc->max_bus_addr, BUS_SPACE_MAXADDR, NULL, NULL,
3474 	    BUS_SPACE_MAXSIZE_32BIT, 0, BUS_SPACE_MAXSIZE_32BIT, 0, NULL, NULL,
3475 	    &sc->parent_tag)) {
3476 		BCE_PRINTF("%s(%d): Could not allocate parent DMA tag!\n",
3477 		    __FILE__, __LINE__);
3478 		rc = ENOMEM;
3479 		goto bce_dma_alloc_exit;
3480 	}
3481 
3482 	/*
3483 	 * Create a DMA tag for the status block, allocate and clear the
3484 	 * memory, map the memory into DMA space, and fetch the physical
3485 	 * address of the block.
3486 	 */
3487 	if (bus_dma_tag_create(sc->parent_tag, BCE_DMA_ALIGN,
3488 	    BCE_DMA_BOUNDARY, sc->max_bus_addr,	BUS_SPACE_MAXADDR,
3489 	    NULL, NULL,	BCE_STATUS_BLK_SZ, 1, BCE_STATUS_BLK_SZ,
3490 	    0, NULL, NULL, &sc->status_tag)) {
3491 		BCE_PRINTF("%s(%d): Could not allocate status block "
3492 		    "DMA tag!\n", __FILE__, __LINE__);
3493 		rc = ENOMEM;
3494 		goto bce_dma_alloc_exit;
3495 	}
3496 
3497 	if(bus_dmamem_alloc(sc->status_tag, (void **)&sc->status_block,
3498 	    BUS_DMA_NOWAIT | BUS_DMA_ZERO | BUS_DMA_COHERENT,
3499 	    &sc->status_map)) {
3500 		BCE_PRINTF("%s(%d): Could not allocate status block "
3501 		    "DMA memory!\n", __FILE__, __LINE__);
3502 		rc = ENOMEM;
3503 		goto bce_dma_alloc_exit;
3504 	}
3505 
3506 	error = bus_dmamap_load(sc->status_tag,	sc->status_map,
3507 	    sc->status_block, BCE_STATUS_BLK_SZ, bce_dma_map_addr,
3508 	    &sc->status_block_paddr, BUS_DMA_NOWAIT);
3509 
3510 	if (error) {
3511 		BCE_PRINTF("%s(%d): Could not map status block "
3512 		    "DMA memory!\n", __FILE__, __LINE__);
3513 		rc = ENOMEM;
3514 		goto bce_dma_alloc_exit;
3515 	}
3516 
3517 	DBPRINT(sc, BCE_INFO_LOAD, "%s(): status_block_paddr = 0x%jX\n",
3518 	    __FUNCTION__, (uintmax_t) sc->status_block_paddr);
3519 
3520 	/*
3521 	 * Create a DMA tag for the statistics block, allocate and clear the
3522 	 * memory, map the memory into DMA space, and fetch the physical
3523 	 * address of the block.
3524 	 */
3525 	if (bus_dma_tag_create(sc->parent_tag, BCE_DMA_ALIGN,
3526 	    BCE_DMA_BOUNDARY, sc->max_bus_addr,	BUS_SPACE_MAXADDR,
3527 	    NULL, NULL,	BCE_STATS_BLK_SZ, 1, BCE_STATS_BLK_SZ,
3528 	    0, NULL, NULL, &sc->stats_tag)) {
3529 		BCE_PRINTF("%s(%d): Could not allocate statistics block "
3530 		    "DMA tag!\n", __FILE__, __LINE__);
3531 		rc = ENOMEM;
3532 		goto bce_dma_alloc_exit;
3533 	}
3534 
3535 	if (bus_dmamem_alloc(sc->stats_tag, (void **)&sc->stats_block,
3536 	    BUS_DMA_NOWAIT | BUS_DMA_ZERO | BUS_DMA_COHERENT, &sc->stats_map)) {
3537 		BCE_PRINTF("%s(%d): Could not allocate statistics block "
3538 		    "DMA memory!\n", __FILE__, __LINE__);
3539 		rc = ENOMEM;
3540 		goto bce_dma_alloc_exit;
3541 	}
3542 
3543 	error = bus_dmamap_load(sc->stats_tag, sc->stats_map,
3544 	    sc->stats_block, BCE_STATS_BLK_SZ, bce_dma_map_addr,
3545 	    &sc->stats_block_paddr, BUS_DMA_NOWAIT);
3546 
3547 	if(error) {
3548 		BCE_PRINTF("%s(%d): Could not map statistics block "
3549 		    "DMA memory!\n", __FILE__, __LINE__);
3550 		rc = ENOMEM;
3551 		goto bce_dma_alloc_exit;
3552 	}
3553 
3554 	DBPRINT(sc, BCE_INFO_LOAD, "%s(): stats_block_paddr = 0x%jX\n",
3555 	    __FUNCTION__, (uintmax_t) sc->stats_block_paddr);
3556 
3557 	/* BCM5709 uses host memory as cache for context memory. */
3558 	if (BCE_CHIP_NUM(sc) == BCE_CHIP_NUM_5709) {
3559 		sc->ctx_pages = 0x2000 / BCM_PAGE_SIZE;
3560 		if (sc->ctx_pages == 0)
3561 			sc->ctx_pages = 1;
3562 
3563 		DBRUNIF((sc->ctx_pages > 512),
3564 		    BCE_PRINTF("%s(%d): Too many CTX pages! %d > 512\n",
3565 		    __FILE__, __LINE__, sc->ctx_pages));
3566 
3567 		/*
3568 		 * Create a DMA tag for the context pages,
3569 		 * allocate and clear the memory, map the
3570 		 * memory into DMA space, and fetch the
3571 		 * physical address of the block.
3572 		 */
3573 		if(bus_dma_tag_create(sc->parent_tag, BCM_PAGE_SIZE,
3574 		    BCE_DMA_BOUNDARY, sc->max_bus_addr,	BUS_SPACE_MAXADDR,
3575 		    NULL, NULL,	BCM_PAGE_SIZE, 1, BCM_PAGE_SIZE,
3576 		    0, NULL, NULL, &sc->ctx_tag)) {
3577 			BCE_PRINTF("%s(%d): Could not allocate CTX "
3578 			    "DMA tag!\n", __FILE__, __LINE__);
3579 			rc = ENOMEM;
3580 			goto bce_dma_alloc_exit;
3581 		}
3582 
3583 		for (i = 0; i < sc->ctx_pages; i++) {
3584 
3585 			if(bus_dmamem_alloc(sc->ctx_tag,
3586 			    (void **)&sc->ctx_block[i],
3587 			    BUS_DMA_NOWAIT | BUS_DMA_ZERO | BUS_DMA_COHERENT,
3588 			    &sc->ctx_map[i])) {
3589 				BCE_PRINTF("%s(%d): Could not allocate CTX "
3590 				    "DMA memory!\n", __FILE__, __LINE__);
3591 				rc = ENOMEM;
3592 				goto bce_dma_alloc_exit;
3593 			}
3594 
3595 			error = bus_dmamap_load(sc->ctx_tag, sc->ctx_map[i],
3596 			    sc->ctx_block[i], BCM_PAGE_SIZE, bce_dma_map_addr,
3597 			    &sc->ctx_paddr[i], BUS_DMA_NOWAIT);
3598 
3599 			if (error) {
3600 				BCE_PRINTF("%s(%d): Could not map CTX "
3601 				    "DMA memory!\n", __FILE__, __LINE__);
3602 				rc = ENOMEM;
3603 				goto bce_dma_alloc_exit;
3604 			}
3605 
3606 			DBPRINT(sc, BCE_INFO_LOAD, "%s(): ctx_paddr[%d] "
3607 			    "= 0x%jX\n", __FUNCTION__, i,
3608 			    (uintmax_t) sc->ctx_paddr[i]);
3609 		}
3610 	}
3611 
3612 	/*
3613 	 * Create a DMA tag for the TX buffer descriptor chain,
3614 	 * allocate and clear the  memory, and fetch the
3615 	 * physical address of the block.
3616 	 */
3617 	if(bus_dma_tag_create(sc->parent_tag, BCM_PAGE_SIZE, BCE_DMA_BOUNDARY,
3618 	    sc->max_bus_addr, BUS_SPACE_MAXADDR, NULL, NULL,
3619 	    BCE_TX_CHAIN_PAGE_SZ, 1, BCE_TX_CHAIN_PAGE_SZ, 0,
3620 	    NULL, NULL,	&sc->tx_bd_chain_tag)) {
3621 		BCE_PRINTF("%s(%d): Could not allocate TX descriptor "
3622 		    "chain DMA tag!\n", __FILE__, __LINE__);
3623 		rc = ENOMEM;
3624 		goto bce_dma_alloc_exit;
3625 	}
3626 
3627 	for (i = 0; i < sc->tx_pages; i++) {
3628 
3629 		if(bus_dmamem_alloc(sc->tx_bd_chain_tag,
3630 		    (void **)&sc->tx_bd_chain[i],
3631 		    BUS_DMA_NOWAIT | BUS_DMA_ZERO | BUS_DMA_COHERENT,
3632 		    &sc->tx_bd_chain_map[i])) {
3633 			BCE_PRINTF("%s(%d): Could not allocate TX descriptor "
3634 			    "chain DMA memory!\n", __FILE__, __LINE__);
3635 			rc = ENOMEM;
3636 			goto bce_dma_alloc_exit;
3637 		}
3638 
3639 		error = bus_dmamap_load(sc->tx_bd_chain_tag,
3640 		    sc->tx_bd_chain_map[i], sc->tx_bd_chain[i],
3641 		    BCE_TX_CHAIN_PAGE_SZ, bce_dma_map_addr,
3642 		    &sc->tx_bd_chain_paddr[i], BUS_DMA_NOWAIT);
3643 
3644 		if (error) {
3645 			BCE_PRINTF("%s(%d): Could not map TX descriptor "
3646 			    "chain DMA memory!\n", __FILE__, __LINE__);
3647 			rc = ENOMEM;
3648 			goto bce_dma_alloc_exit;
3649 		}
3650 
3651 		DBPRINT(sc, BCE_INFO_LOAD, "%s(): tx_bd_chain_paddr[%d] = "
3652 		    "0x%jX\n", __FUNCTION__, i,
3653 		    (uintmax_t) sc->tx_bd_chain_paddr[i]);
3654 	}
3655 
3656 	/* Check the required size before mapping to conserve resources. */
3657 	if (bce_tso_enable) {
3658 		max_size     = BCE_TSO_MAX_SIZE;
3659 		max_segments = BCE_MAX_SEGMENTS;
3660 		max_seg_size = BCE_TSO_MAX_SEG_SIZE;
3661 	} else {
3662 		max_size     = MCLBYTES * BCE_MAX_SEGMENTS;
3663 		max_segments = BCE_MAX_SEGMENTS;
3664 		max_seg_size = MCLBYTES;
3665 	}
3666 
3667 	/* Create a DMA tag for TX mbufs. */
3668 	if (bus_dma_tag_create(sc->parent_tag, 1, BCE_DMA_BOUNDARY,
3669 	    sc->max_bus_addr, BUS_SPACE_MAXADDR, NULL, NULL, max_size,
3670 	    max_segments, max_seg_size,	0, NULL, NULL, &sc->tx_mbuf_tag)) {
3671 		BCE_PRINTF("%s(%d): Could not allocate TX mbuf DMA tag!\n",
3672 		    __FILE__, __LINE__);
3673 		rc = ENOMEM;
3674 		goto bce_dma_alloc_exit;
3675 	}
3676 
3677 	/* Create DMA maps for the TX mbufs clusters. */
3678 	for (i = 0; i < TOTAL_TX_BD_ALLOC; i++) {
3679 		if (bus_dmamap_create(sc->tx_mbuf_tag, BUS_DMA_NOWAIT,
3680 			&sc->tx_mbuf_map[i])) {
3681 			BCE_PRINTF("%s(%d): Unable to create TX mbuf DMA "
3682 			    "map!\n", __FILE__, __LINE__);
3683 			rc = ENOMEM;
3684 			goto bce_dma_alloc_exit;
3685 		}
3686 	}
3687 
3688 	/*
3689 	 * Create a DMA tag for the RX buffer descriptor chain,
3690 	 * allocate and clear the memory, and fetch the physical
3691 	 * address of the blocks.
3692 	 */
3693 	if (bus_dma_tag_create(sc->parent_tag, BCM_PAGE_SIZE,
3694 			BCE_DMA_BOUNDARY, BUS_SPACE_MAXADDR,
3695 			sc->max_bus_addr, NULL, NULL,
3696 			BCE_RX_CHAIN_PAGE_SZ, 1, BCE_RX_CHAIN_PAGE_SZ,
3697 			0, NULL, NULL, &sc->rx_bd_chain_tag)) {
3698 		BCE_PRINTF("%s(%d): Could not allocate RX descriptor chain "
3699 		    "DMA tag!\n", __FILE__, __LINE__);
3700 		rc = ENOMEM;
3701 		goto bce_dma_alloc_exit;
3702 	}
3703 
3704 	for (i = 0; i < sc->rx_pages; i++) {
3705 
3706 		if (bus_dmamem_alloc(sc->rx_bd_chain_tag,
3707 		    (void **)&sc->rx_bd_chain[i],
3708 		    BUS_DMA_NOWAIT | BUS_DMA_ZERO | BUS_DMA_COHERENT,
3709 		    &sc->rx_bd_chain_map[i])) {
3710 			BCE_PRINTF("%s(%d): Could not allocate RX descriptor "
3711 			    "chain DMA memory!\n", __FILE__, __LINE__);
3712 			rc = ENOMEM;
3713 			goto bce_dma_alloc_exit;
3714 		}
3715 
3716 		error = bus_dmamap_load(sc->rx_bd_chain_tag,
3717 		    sc->rx_bd_chain_map[i], sc->rx_bd_chain[i],
3718 		    BCE_RX_CHAIN_PAGE_SZ, bce_dma_map_addr,
3719 		    &sc->rx_bd_chain_paddr[i], BUS_DMA_NOWAIT);
3720 
3721 		if (error) {
3722 			BCE_PRINTF("%s(%d): Could not map RX descriptor "
3723 			    "chain DMA memory!\n", __FILE__, __LINE__);
3724 			rc = ENOMEM;
3725 			goto bce_dma_alloc_exit;
3726 		}
3727 
3728 		DBPRINT(sc, BCE_INFO_LOAD, "%s(): rx_bd_chain_paddr[%d] = "
3729 		    "0x%jX\n", __FUNCTION__, i,
3730 		    (uintmax_t) sc->rx_bd_chain_paddr[i]);
3731 	}
3732 
3733 	/*
3734 	 * Create a DMA tag for RX mbufs.
3735 	 */
3736 	if (bce_hdr_split == TRUE)
3737 		max_size = max_seg_size = ((sc->rx_bd_mbuf_alloc_size < MCLBYTES) ?
3738 		    MCLBYTES : sc->rx_bd_mbuf_alloc_size);
3739 	else
3740 		max_size = max_seg_size = MJUM9BYTES;
3741 	max_segments = 1;
3742 
3743 	DBPRINT(sc, BCE_INFO_LOAD, "%s(): Creating rx_mbuf_tag "
3744 	    "(max size = 0x%jX max segments = %d, max segment "
3745 	    "size = 0x%jX)\n", __FUNCTION__, (uintmax_t) max_size,
3746 	     max_segments, (uintmax_t) max_seg_size);
3747 
3748 	if (bus_dma_tag_create(sc->parent_tag, BCE_RX_BUF_ALIGN,
3749 	    BCE_DMA_BOUNDARY, sc->max_bus_addr, BUS_SPACE_MAXADDR, NULL, NULL,
3750 	    max_size, max_segments, max_seg_size, 0, NULL, NULL,
3751 	    &sc->rx_mbuf_tag)) {
3752 		BCE_PRINTF("%s(%d): Could not allocate RX mbuf DMA tag!\n",
3753 		    __FILE__, __LINE__);
3754 		rc = ENOMEM;
3755 		goto bce_dma_alloc_exit;
3756 	}
3757 
3758 	/* Create DMA maps for the RX mbuf clusters. */
3759 	for (i = 0; i < TOTAL_RX_BD_ALLOC; i++) {
3760 		if (bus_dmamap_create(sc->rx_mbuf_tag, BUS_DMA_NOWAIT,
3761 		    &sc->rx_mbuf_map[i])) {
3762 			BCE_PRINTF("%s(%d): Unable to create RX mbuf "
3763 			    "DMA map!\n", __FILE__, __LINE__);
3764 			rc = ENOMEM;
3765 			goto bce_dma_alloc_exit;
3766 		}
3767 	}
3768 
3769 	if (bce_hdr_split == TRUE) {
3770 		/*
3771 		 * Create a DMA tag for the page buffer descriptor chain,
3772 		 * allocate and clear the memory, and fetch the physical
3773 		 * address of the blocks.
3774 		 */
3775 		if (bus_dma_tag_create(sc->parent_tag, BCM_PAGE_SIZE,
3776 			    BCE_DMA_BOUNDARY, BUS_SPACE_MAXADDR, sc->max_bus_addr,
3777 			    NULL, NULL,	BCE_PG_CHAIN_PAGE_SZ, 1, BCE_PG_CHAIN_PAGE_SZ,
3778 			    0, NULL, NULL, &sc->pg_bd_chain_tag)) {
3779 			BCE_PRINTF("%s(%d): Could not allocate page descriptor "
3780 			    "chain DMA tag!\n",	__FILE__, __LINE__);
3781 			rc = ENOMEM;
3782 			goto bce_dma_alloc_exit;
3783 		}
3784 
3785 		for (i = 0; i < sc->pg_pages; i++) {
3786 			if (bus_dmamem_alloc(sc->pg_bd_chain_tag,
3787 			    (void **)&sc->pg_bd_chain[i],
3788 			    BUS_DMA_NOWAIT | BUS_DMA_ZERO | BUS_DMA_COHERENT,
3789 			    &sc->pg_bd_chain_map[i])) {
3790 				BCE_PRINTF("%s(%d): Could not allocate page "
3791 				    "descriptor chain DMA memory!\n",
3792 				    __FILE__, __LINE__);
3793 				rc = ENOMEM;
3794 				goto bce_dma_alloc_exit;
3795 			}
3796 
3797 			error = bus_dmamap_load(sc->pg_bd_chain_tag,
3798 			    sc->pg_bd_chain_map[i], sc->pg_bd_chain[i],
3799 			    BCE_PG_CHAIN_PAGE_SZ, bce_dma_map_addr,
3800 			    &sc->pg_bd_chain_paddr[i], BUS_DMA_NOWAIT);
3801 
3802 			if (error) {
3803 				BCE_PRINTF("%s(%d): Could not map page descriptor "
3804 					"chain DMA memory!\n", __FILE__, __LINE__);
3805 				rc = ENOMEM;
3806 				goto bce_dma_alloc_exit;
3807 			}
3808 
3809 			DBPRINT(sc, BCE_INFO_LOAD, "%s(): pg_bd_chain_paddr[%d] = "
3810 				"0x%jX\n", __FUNCTION__, i,
3811 				(uintmax_t) sc->pg_bd_chain_paddr[i]);
3812 		}
3813 
3814 		/*
3815 		 * Create a DMA tag for page mbufs.
3816 		 */
3817 		max_size = max_seg_size = ((sc->pg_bd_mbuf_alloc_size < MCLBYTES) ?
3818 			MCLBYTES : sc->pg_bd_mbuf_alloc_size);
3819 
3820 		if (bus_dma_tag_create(sc->parent_tag, 1, BCE_DMA_BOUNDARY,
3821 			sc->max_bus_addr, BUS_SPACE_MAXADDR, NULL, NULL,
3822 			max_size, 1, max_seg_size, 0, NULL, NULL, &sc->pg_mbuf_tag)) {
3823 			BCE_PRINTF("%s(%d): Could not allocate page mbuf "
3824 				"DMA tag!\n", __FILE__, __LINE__);
3825 			rc = ENOMEM;
3826 			goto bce_dma_alloc_exit;
3827 		}
3828 
3829 		/* Create DMA maps for the page mbuf clusters. */
3830 		for (i = 0; i < TOTAL_PG_BD_ALLOC; i++) {
3831 			if (bus_dmamap_create(sc->pg_mbuf_tag, BUS_DMA_NOWAIT,
3832 				&sc->pg_mbuf_map[i])) {
3833 				BCE_PRINTF("%s(%d): Unable to create page mbuf "
3834 					"DMA map!\n", __FILE__, __LINE__);
3835 				rc = ENOMEM;
3836 				goto bce_dma_alloc_exit;
3837 			}
3838 		}
3839 	}
3840 
3841 bce_dma_alloc_exit:
3842 	DBEXIT(BCE_VERBOSE_RESET | BCE_VERBOSE_CTX);
3843 	return(rc);
3844 }
3845 
3846 
3847 /****************************************************************************/
3848 /* Release all resources used by the driver.                                */
3849 /*                                                                          */
3850 /* Releases all resources acquired by the driver including interrupts,      */
3851 /* interrupt handler, interfaces, mutexes, and DMA memory.                  */
3852 /*                                                                          */
3853 /* Returns:                                                                 */
3854 /*   Nothing.                                                               */
3855 /****************************************************************************/
3856 static void
3857 bce_release_resources(struct bce_softc *sc)
3858 {
3859 	device_t dev;
3860 
3861 	DBENTER(BCE_VERBOSE_RESET);
3862 
3863 	dev = sc->bce_dev;
3864 
3865 	bce_dma_free(sc);
3866 
3867 	if (sc->bce_intrhand != NULL) {
3868 		DBPRINT(sc, BCE_INFO_RESET, "Removing interrupt handler.\n");
3869 		bus_teardown_intr(dev, sc->bce_res_irq, sc->bce_intrhand);
3870 	}
3871 
3872 	if (sc->bce_res_irq != NULL) {
3873 		DBPRINT(sc, BCE_INFO_RESET, "Releasing IRQ.\n");
3874 		bus_release_resource(dev, SYS_RES_IRQ, sc->bce_irq_rid,
3875 		    sc->bce_res_irq);
3876 	}
3877 
3878 	if (sc->bce_flags & (BCE_USING_MSI_FLAG | BCE_USING_MSIX_FLAG)) {
3879 		DBPRINT(sc, BCE_INFO_RESET, "Releasing MSI/MSI-X vector.\n");
3880 		pci_release_msi(dev);
3881 	}
3882 
3883 	if (sc->bce_res_mem != NULL) {
3884 		DBPRINT(sc, BCE_INFO_RESET, "Releasing PCI memory.\n");
3885 		    bus_release_resource(dev, SYS_RES_MEMORY, PCIR_BAR(0),
3886 		    sc->bce_res_mem);
3887 	}
3888 
3889 	if (sc->bce_ifp != NULL) {
3890 		DBPRINT(sc, BCE_INFO_RESET, "Releasing IF.\n");
3891 		if_free(sc->bce_ifp);
3892 	}
3893 
3894 	if (mtx_initialized(&sc->bce_mtx))
3895 		BCE_LOCK_DESTROY(sc);
3896 
3897 	DBEXIT(BCE_VERBOSE_RESET);
3898 }
3899 
3900 
3901 /****************************************************************************/
3902 /* Firmware synchronization.                                                */
3903 /*                                                                          */
3904 /* Before performing certain events such as a chip reset, synchronize with  */
3905 /* the firmware first.                                                      */
3906 /*                                                                          */
3907 /* Returns:                                                                 */
3908 /*   0 for success, positive value for failure.                             */
3909 /****************************************************************************/
3910 static int
3911 bce_fw_sync(struct bce_softc *sc, u32 msg_data)
3912 {
3913 	int i, rc = 0;
3914 	u32 val;
3915 
3916 	DBENTER(BCE_VERBOSE_RESET);
3917 
3918 	/* Don't waste any time if we've timed out before. */
3919 	if (sc->bce_fw_timed_out == TRUE) {
3920 		rc = EBUSY;
3921 		goto bce_fw_sync_exit;
3922 	}
3923 
3924 	/* Increment the message sequence number. */
3925 	sc->bce_fw_wr_seq++;
3926 	msg_data |= sc->bce_fw_wr_seq;
3927 
3928  	DBPRINT(sc, BCE_VERBOSE_FIRMWARE, "bce_fw_sync(): msg_data = "
3929 	    "0x%08X\n",	msg_data);
3930 
3931 	/* Send the message to the bootcode driver mailbox. */
3932 	bce_shmem_wr(sc, BCE_DRV_MB, msg_data);
3933 
3934 	/* Wait for the bootcode to acknowledge the message. */
3935 	for (i = 0; i < FW_ACK_TIME_OUT_MS; i++) {
3936 		/* Check for a response in the bootcode firmware mailbox. */
3937 		val = bce_shmem_rd(sc, BCE_FW_MB);
3938 		if ((val & BCE_FW_MSG_ACK) == (msg_data & BCE_DRV_MSG_SEQ))
3939 			break;
3940 		DELAY(1000);
3941 	}
3942 
3943 	/* If we've timed out, tell bootcode that we've stopped waiting. */
3944 	if (((val & BCE_FW_MSG_ACK) != (msg_data & BCE_DRV_MSG_SEQ)) &&
3945 	    ((msg_data & BCE_DRV_MSG_DATA) != BCE_DRV_MSG_DATA_WAIT0)) {
3946 
3947 		BCE_PRINTF("%s(%d): Firmware synchronization timeout! "
3948 		    "msg_data = 0x%08X\n", __FILE__, __LINE__, msg_data);
3949 
3950 		msg_data &= ~BCE_DRV_MSG_CODE;
3951 		msg_data |= BCE_DRV_MSG_CODE_FW_TIMEOUT;
3952 
3953 		bce_shmem_wr(sc, BCE_DRV_MB, msg_data);
3954 
3955 		sc->bce_fw_timed_out = TRUE;
3956 		rc = EBUSY;
3957 	}
3958 
3959 bce_fw_sync_exit:
3960 	DBEXIT(BCE_VERBOSE_RESET);
3961 	return (rc);
3962 }
3963 
3964 
3965 /****************************************************************************/
3966 /* Load Receive Virtual 2 Physical (RV2P) processor firmware.               */
3967 /*                                                                          */
3968 /* Returns:                                                                 */
3969 /*   Nothing.                                                               */
3970 /****************************************************************************/
3971 static void
3972 bce_load_rv2p_fw(struct bce_softc *sc, u32 *rv2p_code,
3973 	u32 rv2p_code_len, u32 rv2p_proc)
3974 {
3975 	int i;
3976 	u32 val;
3977 
3978 	DBENTER(BCE_VERBOSE_RESET);
3979 
3980 	/* Set the page size used by RV2P. */
3981 	if (rv2p_proc == RV2P_PROC2) {
3982 		BCE_RV2P_PROC2_CHG_MAX_BD_PAGE(USABLE_RX_BD_PER_PAGE);
3983 	}
3984 
3985 	for (i = 0; i < rv2p_code_len; i += 8) {
3986 		REG_WR(sc, BCE_RV2P_INSTR_HIGH, *rv2p_code);
3987 		rv2p_code++;
3988 		REG_WR(sc, BCE_RV2P_INSTR_LOW, *rv2p_code);
3989 		rv2p_code++;
3990 
3991 		if (rv2p_proc == RV2P_PROC1) {
3992 			val = (i / 8) | BCE_RV2P_PROC1_ADDR_CMD_RDWR;
3993 			REG_WR(sc, BCE_RV2P_PROC1_ADDR_CMD, val);
3994 		}
3995 		else {
3996 			val = (i / 8) | BCE_RV2P_PROC2_ADDR_CMD_RDWR;
3997 			REG_WR(sc, BCE_RV2P_PROC2_ADDR_CMD, val);
3998 		}
3999 	}
4000 
4001 	/* Reset the processor, un-stall is done later. */
4002 	if (rv2p_proc == RV2P_PROC1) {
4003 		REG_WR(sc, BCE_RV2P_COMMAND, BCE_RV2P_COMMAND_PROC1_RESET);
4004 	}
4005 	else {
4006 		REG_WR(sc, BCE_RV2P_COMMAND, BCE_RV2P_COMMAND_PROC2_RESET);
4007 	}
4008 
4009 	DBEXIT(BCE_VERBOSE_RESET);
4010 }
4011 
4012 
4013 /****************************************************************************/
4014 /* Load RISC processor firmware.                                            */
4015 /*                                                                          */
4016 /* Loads firmware from the file if_bcefw.h into the scratchpad memory       */
4017 /* associated with a particular processor.                                  */
4018 /*                                                                          */
4019 /* Returns:                                                                 */
4020 /*   Nothing.                                                               */
4021 /****************************************************************************/
4022 static void
4023 bce_load_cpu_fw(struct bce_softc *sc, struct cpu_reg *cpu_reg,
4024 	struct fw_info *fw)
4025 {
4026 	u32 offset;
4027 
4028 	DBENTER(BCE_VERBOSE_RESET);
4029 
4030     bce_halt_cpu(sc, cpu_reg);
4031 
4032 	/* Load the Text area. */
4033 	offset = cpu_reg->spad_base + (fw->text_addr - cpu_reg->mips_view_base);
4034 	if (fw->text) {
4035 		int j;
4036 
4037 		for (j = 0; j < (fw->text_len / 4); j++, offset += 4) {
4038 			REG_WR_IND(sc, offset, fw->text[j]);
4039 	        }
4040 	}
4041 
4042 	/* Load the Data area. */
4043 	offset = cpu_reg->spad_base + (fw->data_addr - cpu_reg->mips_view_base);
4044 	if (fw->data) {
4045 		int j;
4046 
4047 		for (j = 0; j < (fw->data_len / 4); j++, offset += 4) {
4048 			REG_WR_IND(sc, offset, fw->data[j]);
4049 		}
4050 	}
4051 
4052 	/* Load the SBSS area. */
4053 	offset = cpu_reg->spad_base + (fw->sbss_addr - cpu_reg->mips_view_base);
4054 	if (fw->sbss) {
4055 		int j;
4056 
4057 		for (j = 0; j < (fw->sbss_len / 4); j++, offset += 4) {
4058 			REG_WR_IND(sc, offset, fw->sbss[j]);
4059 		}
4060 	}
4061 
4062 	/* Load the BSS area. */
4063 	offset = cpu_reg->spad_base + (fw->bss_addr - cpu_reg->mips_view_base);
4064 	if (fw->bss) {
4065 		int j;
4066 
4067 		for (j = 0; j < (fw->bss_len/4); j++, offset += 4) {
4068 			REG_WR_IND(sc, offset, fw->bss[j]);
4069 		}
4070 	}
4071 
4072 	/* Load the Read-Only area. */
4073 	offset = cpu_reg->spad_base +
4074 		(fw->rodata_addr - cpu_reg->mips_view_base);
4075 	if (fw->rodata) {
4076 		int j;
4077 
4078 		for (j = 0; j < (fw->rodata_len / 4); j++, offset += 4) {
4079 			REG_WR_IND(sc, offset, fw->rodata[j]);
4080 		}
4081 	}
4082 
4083 	/* Clear the pre-fetch instruction and set the FW start address. */
4084 	REG_WR_IND(sc, cpu_reg->inst, 0);
4085 	REG_WR_IND(sc, cpu_reg->pc, fw->start_addr);
4086 
4087 	DBEXIT(BCE_VERBOSE_RESET);
4088 }
4089 
4090 
4091 /****************************************************************************/
4092 /* Starts the RISC processor.                                               */
4093 /*                                                                          */
4094 /* Assumes the CPU starting address has already been set.                   */
4095 /*                                                                          */
4096 /* Returns:                                                                 */
4097 /*   Nothing.                                                               */
4098 /****************************************************************************/
4099 static void
4100 bce_start_cpu(struct bce_softc *sc, struct cpu_reg *cpu_reg)
4101 {
4102 	u32 val;
4103 
4104 	DBENTER(BCE_VERBOSE_RESET);
4105 
4106 	/* Start the CPU. */
4107 	val = REG_RD_IND(sc, cpu_reg->mode);
4108 	val &= ~cpu_reg->mode_value_halt;
4109 	REG_WR_IND(sc, cpu_reg->state, cpu_reg->state_value_clear);
4110 	REG_WR_IND(sc, cpu_reg->mode, val);
4111 
4112 	DBEXIT(BCE_VERBOSE_RESET);
4113 }
4114 
4115 
4116 /****************************************************************************/
4117 /* Halts the RISC processor.                                                */
4118 /*                                                                          */
4119 /* Returns:                                                                 */
4120 /*   Nothing.                                                               */
4121 /****************************************************************************/
4122 static void
4123 bce_halt_cpu(struct bce_softc *sc, struct cpu_reg *cpu_reg)
4124 {
4125 	u32 val;
4126 
4127 	DBENTER(BCE_VERBOSE_RESET);
4128 
4129 	/* Halt the CPU. */
4130 	val = REG_RD_IND(sc, cpu_reg->mode);
4131 	val |= cpu_reg->mode_value_halt;
4132 	REG_WR_IND(sc, cpu_reg->mode, val);
4133 	REG_WR_IND(sc, cpu_reg->state, cpu_reg->state_value_clear);
4134 
4135 	DBEXIT(BCE_VERBOSE_RESET);
4136 }
4137 
4138 
4139 /****************************************************************************/
4140 /* Initialize the RX CPU.                                                   */
4141 /*                                                                          */
4142 /* Returns:                                                                 */
4143 /*   Nothing.                                                               */
4144 /****************************************************************************/
4145 static void
4146 bce_start_rxp_cpu(struct bce_softc *sc)
4147 {
4148 	struct cpu_reg cpu_reg;
4149 
4150 	DBENTER(BCE_VERBOSE_RESET);
4151 
4152 	cpu_reg.mode = BCE_RXP_CPU_MODE;
4153 	cpu_reg.mode_value_halt = BCE_RXP_CPU_MODE_SOFT_HALT;
4154 	cpu_reg.mode_value_sstep = BCE_RXP_CPU_MODE_STEP_ENA;
4155 	cpu_reg.state = BCE_RXP_CPU_STATE;
4156 	cpu_reg.state_value_clear = 0xffffff;
4157 	cpu_reg.gpr0 = BCE_RXP_CPU_REG_FILE;
4158 	cpu_reg.evmask = BCE_RXP_CPU_EVENT_MASK;
4159 	cpu_reg.pc = BCE_RXP_CPU_PROGRAM_COUNTER;
4160 	cpu_reg.inst = BCE_RXP_CPU_INSTRUCTION;
4161 	cpu_reg.bp = BCE_RXP_CPU_HW_BREAKPOINT;
4162 	cpu_reg.spad_base = BCE_RXP_SCRATCH;
4163 	cpu_reg.mips_view_base = 0x8000000;
4164 
4165 	DBPRINT(sc, BCE_INFO_RESET, "Starting RX firmware.\n");
4166 	bce_start_cpu(sc, &cpu_reg);
4167 
4168 	DBEXIT(BCE_VERBOSE_RESET);
4169 }
4170 
4171 
4172 /****************************************************************************/
4173 /* Initialize the RX CPU.                                                   */
4174 /*                                                                          */
4175 /* Returns:                                                                 */
4176 /*   Nothing.                                                               */
4177 /****************************************************************************/
4178 static void
4179 bce_init_rxp_cpu(struct bce_softc *sc)
4180 {
4181 	struct cpu_reg cpu_reg;
4182 	struct fw_info fw;
4183 
4184 	DBENTER(BCE_VERBOSE_RESET);
4185 
4186 	cpu_reg.mode = BCE_RXP_CPU_MODE;
4187 	cpu_reg.mode_value_halt = BCE_RXP_CPU_MODE_SOFT_HALT;
4188 	cpu_reg.mode_value_sstep = BCE_RXP_CPU_MODE_STEP_ENA;
4189 	cpu_reg.state = BCE_RXP_CPU_STATE;
4190 	cpu_reg.state_value_clear = 0xffffff;
4191 	cpu_reg.gpr0 = BCE_RXP_CPU_REG_FILE;
4192 	cpu_reg.evmask = BCE_RXP_CPU_EVENT_MASK;
4193 	cpu_reg.pc = BCE_RXP_CPU_PROGRAM_COUNTER;
4194 	cpu_reg.inst = BCE_RXP_CPU_INSTRUCTION;
4195 	cpu_reg.bp = BCE_RXP_CPU_HW_BREAKPOINT;
4196 	cpu_reg.spad_base = BCE_RXP_SCRATCH;
4197 	cpu_reg.mips_view_base = 0x8000000;
4198 
4199 	if (BCE_CHIP_NUM(sc) == BCE_CHIP_NUM_5709) {
4200  		fw.ver_major = bce_RXP_b09FwReleaseMajor;
4201 		fw.ver_minor = bce_RXP_b09FwReleaseMinor;
4202 		fw.ver_fix = bce_RXP_b09FwReleaseFix;
4203 		fw.start_addr = bce_RXP_b09FwStartAddr;
4204 
4205 		fw.text_addr = bce_RXP_b09FwTextAddr;
4206 		fw.text_len = bce_RXP_b09FwTextLen;
4207 		fw.text_index = 0;
4208 		fw.text = bce_RXP_b09FwText;
4209 
4210 		fw.data_addr = bce_RXP_b09FwDataAddr;
4211 		fw.data_len = bce_RXP_b09FwDataLen;
4212 		fw.data_index = 0;
4213 		fw.data = bce_RXP_b09FwData;
4214 
4215 		fw.sbss_addr = bce_RXP_b09FwSbssAddr;
4216 		fw.sbss_len = bce_RXP_b09FwSbssLen;
4217 		fw.sbss_index = 0;
4218 		fw.sbss = bce_RXP_b09FwSbss;
4219 
4220 		fw.bss_addr = bce_RXP_b09FwBssAddr;
4221 		fw.bss_len = bce_RXP_b09FwBssLen;
4222 		fw.bss_index = 0;
4223 		fw.bss = bce_RXP_b09FwBss;
4224 
4225 		fw.rodata_addr = bce_RXP_b09FwRodataAddr;
4226 		fw.rodata_len = bce_RXP_b09FwRodataLen;
4227 		fw.rodata_index = 0;
4228 		fw.rodata = bce_RXP_b09FwRodata;
4229 	} else {
4230 		fw.ver_major = bce_RXP_b06FwReleaseMajor;
4231 		fw.ver_minor = bce_RXP_b06FwReleaseMinor;
4232 		fw.ver_fix = bce_RXP_b06FwReleaseFix;
4233 		fw.start_addr = bce_RXP_b06FwStartAddr;
4234 
4235 		fw.text_addr = bce_RXP_b06FwTextAddr;
4236 		fw.text_len = bce_RXP_b06FwTextLen;
4237 		fw.text_index = 0;
4238 		fw.text = bce_RXP_b06FwText;
4239 
4240 		fw.data_addr = bce_RXP_b06FwDataAddr;
4241 		fw.data_len = bce_RXP_b06FwDataLen;
4242 		fw.data_index = 0;
4243 		fw.data = bce_RXP_b06FwData;
4244 
4245 		fw.sbss_addr = bce_RXP_b06FwSbssAddr;
4246 		fw.sbss_len = bce_RXP_b06FwSbssLen;
4247 		fw.sbss_index = 0;
4248 		fw.sbss = bce_RXP_b06FwSbss;
4249 
4250 		fw.bss_addr = bce_RXP_b06FwBssAddr;
4251 		fw.bss_len = bce_RXP_b06FwBssLen;
4252 		fw.bss_index = 0;
4253 		fw.bss = bce_RXP_b06FwBss;
4254 
4255 		fw.rodata_addr = bce_RXP_b06FwRodataAddr;
4256 		fw.rodata_len = bce_RXP_b06FwRodataLen;
4257 		fw.rodata_index = 0;
4258 		fw.rodata = bce_RXP_b06FwRodata;
4259 	}
4260 
4261 	DBPRINT(sc, BCE_INFO_RESET, "Loading RX firmware.\n");
4262 	bce_load_cpu_fw(sc, &cpu_reg, &fw);
4263 
4264     /* Delay RXP start until initialization is complete. */
4265 
4266 	DBEXIT(BCE_VERBOSE_RESET);
4267 }
4268 
4269 
4270 /****************************************************************************/
4271 /* Initialize the TX CPU.                                                   */
4272 /*                                                                          */
4273 /* Returns:                                                                 */
4274 /*   Nothing.                                                               */
4275 /****************************************************************************/
4276 static void
4277 bce_init_txp_cpu(struct bce_softc *sc)
4278 {
4279 	struct cpu_reg cpu_reg;
4280 	struct fw_info fw;
4281 
4282 	DBENTER(BCE_VERBOSE_RESET);
4283 
4284 	cpu_reg.mode = BCE_TXP_CPU_MODE;
4285 	cpu_reg.mode_value_halt = BCE_TXP_CPU_MODE_SOFT_HALT;
4286 	cpu_reg.mode_value_sstep = BCE_TXP_CPU_MODE_STEP_ENA;
4287 	cpu_reg.state = BCE_TXP_CPU_STATE;
4288 	cpu_reg.state_value_clear = 0xffffff;
4289 	cpu_reg.gpr0 = BCE_TXP_CPU_REG_FILE;
4290 	cpu_reg.evmask = BCE_TXP_CPU_EVENT_MASK;
4291 	cpu_reg.pc = BCE_TXP_CPU_PROGRAM_COUNTER;
4292 	cpu_reg.inst = BCE_TXP_CPU_INSTRUCTION;
4293 	cpu_reg.bp = BCE_TXP_CPU_HW_BREAKPOINT;
4294 	cpu_reg.spad_base = BCE_TXP_SCRATCH;
4295 	cpu_reg.mips_view_base = 0x8000000;
4296 
4297 	if (BCE_CHIP_NUM(sc) == BCE_CHIP_NUM_5709) {
4298 		fw.ver_major = bce_TXP_b09FwReleaseMajor;
4299 		fw.ver_minor = bce_TXP_b09FwReleaseMinor;
4300 		fw.ver_fix = bce_TXP_b09FwReleaseFix;
4301 		fw.start_addr = bce_TXP_b09FwStartAddr;
4302 
4303 		fw.text_addr = bce_TXP_b09FwTextAddr;
4304 		fw.text_len = bce_TXP_b09FwTextLen;
4305 		fw.text_index = 0;
4306 		fw.text = bce_TXP_b09FwText;
4307 
4308 		fw.data_addr = bce_TXP_b09FwDataAddr;
4309 		fw.data_len = bce_TXP_b09FwDataLen;
4310 		fw.data_index = 0;
4311 		fw.data = bce_TXP_b09FwData;
4312 
4313 		fw.sbss_addr = bce_TXP_b09FwSbssAddr;
4314 		fw.sbss_len = bce_TXP_b09FwSbssLen;
4315 		fw.sbss_index = 0;
4316 		fw.sbss = bce_TXP_b09FwSbss;
4317 
4318 		fw.bss_addr = bce_TXP_b09FwBssAddr;
4319 		fw.bss_len = bce_TXP_b09FwBssLen;
4320 		fw.bss_index = 0;
4321 		fw.bss = bce_TXP_b09FwBss;
4322 
4323 		fw.rodata_addr = bce_TXP_b09FwRodataAddr;
4324 		fw.rodata_len = bce_TXP_b09FwRodataLen;
4325 		fw.rodata_index = 0;
4326 		fw.rodata = bce_TXP_b09FwRodata;
4327 	} else {
4328 		fw.ver_major = bce_TXP_b06FwReleaseMajor;
4329 		fw.ver_minor = bce_TXP_b06FwReleaseMinor;
4330 		fw.ver_fix = bce_TXP_b06FwReleaseFix;
4331 		fw.start_addr = bce_TXP_b06FwStartAddr;
4332 
4333 		fw.text_addr = bce_TXP_b06FwTextAddr;
4334 		fw.text_len = bce_TXP_b06FwTextLen;
4335 		fw.text_index = 0;
4336 		fw.text = bce_TXP_b06FwText;
4337 
4338 		fw.data_addr = bce_TXP_b06FwDataAddr;
4339 		fw.data_len = bce_TXP_b06FwDataLen;
4340 		fw.data_index = 0;
4341 		fw.data = bce_TXP_b06FwData;
4342 
4343 		fw.sbss_addr = bce_TXP_b06FwSbssAddr;
4344 		fw.sbss_len = bce_TXP_b06FwSbssLen;
4345 		fw.sbss_index = 0;
4346 		fw.sbss = bce_TXP_b06FwSbss;
4347 
4348 		fw.bss_addr = bce_TXP_b06FwBssAddr;
4349 		fw.bss_len = bce_TXP_b06FwBssLen;
4350 		fw.bss_index = 0;
4351 		fw.bss = bce_TXP_b06FwBss;
4352 
4353 		fw.rodata_addr = bce_TXP_b06FwRodataAddr;
4354 		fw.rodata_len = bce_TXP_b06FwRodataLen;
4355 		fw.rodata_index = 0;
4356 		fw.rodata = bce_TXP_b06FwRodata;
4357 	}
4358 
4359 	DBPRINT(sc, BCE_INFO_RESET, "Loading TX firmware.\n");
4360 	bce_load_cpu_fw(sc, &cpu_reg, &fw);
4361     bce_start_cpu(sc, &cpu_reg);
4362 
4363 	DBEXIT(BCE_VERBOSE_RESET);
4364 }
4365 
4366 
4367 /****************************************************************************/
4368 /* Initialize the TPAT CPU.                                                 */
4369 /*                                                                          */
4370 /* Returns:                                                                 */
4371 /*   Nothing.                                                               */
4372 /****************************************************************************/
4373 static void
4374 bce_init_tpat_cpu(struct bce_softc *sc)
4375 {
4376 	struct cpu_reg cpu_reg;
4377 	struct fw_info fw;
4378 
4379 	DBENTER(BCE_VERBOSE_RESET);
4380 
4381 	cpu_reg.mode = BCE_TPAT_CPU_MODE;
4382 	cpu_reg.mode_value_halt = BCE_TPAT_CPU_MODE_SOFT_HALT;
4383 	cpu_reg.mode_value_sstep = BCE_TPAT_CPU_MODE_STEP_ENA;
4384 	cpu_reg.state = BCE_TPAT_CPU_STATE;
4385 	cpu_reg.state_value_clear = 0xffffff;
4386 	cpu_reg.gpr0 = BCE_TPAT_CPU_REG_FILE;
4387 	cpu_reg.evmask = BCE_TPAT_CPU_EVENT_MASK;
4388 	cpu_reg.pc = BCE_TPAT_CPU_PROGRAM_COUNTER;
4389 	cpu_reg.inst = BCE_TPAT_CPU_INSTRUCTION;
4390 	cpu_reg.bp = BCE_TPAT_CPU_HW_BREAKPOINT;
4391 	cpu_reg.spad_base = BCE_TPAT_SCRATCH;
4392 	cpu_reg.mips_view_base = 0x8000000;
4393 
4394 	if (BCE_CHIP_NUM(sc) == BCE_CHIP_NUM_5709) {
4395 		fw.ver_major = bce_TPAT_b09FwReleaseMajor;
4396 		fw.ver_minor = bce_TPAT_b09FwReleaseMinor;
4397 		fw.ver_fix = bce_TPAT_b09FwReleaseFix;
4398 		fw.start_addr = bce_TPAT_b09FwStartAddr;
4399 
4400 		fw.text_addr = bce_TPAT_b09FwTextAddr;
4401 		fw.text_len = bce_TPAT_b09FwTextLen;
4402 		fw.text_index = 0;
4403 		fw.text = bce_TPAT_b09FwText;
4404 
4405 		fw.data_addr = bce_TPAT_b09FwDataAddr;
4406 		fw.data_len = bce_TPAT_b09FwDataLen;
4407 		fw.data_index = 0;
4408 		fw.data = bce_TPAT_b09FwData;
4409 
4410 		fw.sbss_addr = bce_TPAT_b09FwSbssAddr;
4411 		fw.sbss_len = bce_TPAT_b09FwSbssLen;
4412 		fw.sbss_index = 0;
4413 		fw.sbss = bce_TPAT_b09FwSbss;
4414 
4415 		fw.bss_addr = bce_TPAT_b09FwBssAddr;
4416 		fw.bss_len = bce_TPAT_b09FwBssLen;
4417 		fw.bss_index = 0;
4418 		fw.bss = bce_TPAT_b09FwBss;
4419 
4420 		fw.rodata_addr = bce_TPAT_b09FwRodataAddr;
4421 		fw.rodata_len = bce_TPAT_b09FwRodataLen;
4422 		fw.rodata_index = 0;
4423 		fw.rodata = bce_TPAT_b09FwRodata;
4424 	} else {
4425 		fw.ver_major = bce_TPAT_b06FwReleaseMajor;
4426 		fw.ver_minor = bce_TPAT_b06FwReleaseMinor;
4427 		fw.ver_fix = bce_TPAT_b06FwReleaseFix;
4428 		fw.start_addr = bce_TPAT_b06FwStartAddr;
4429 
4430 		fw.text_addr = bce_TPAT_b06FwTextAddr;
4431 		fw.text_len = bce_TPAT_b06FwTextLen;
4432 		fw.text_index = 0;
4433 		fw.text = bce_TPAT_b06FwText;
4434 
4435 		fw.data_addr = bce_TPAT_b06FwDataAddr;
4436 		fw.data_len = bce_TPAT_b06FwDataLen;
4437 		fw.data_index = 0;
4438 		fw.data = bce_TPAT_b06FwData;
4439 
4440 		fw.sbss_addr = bce_TPAT_b06FwSbssAddr;
4441 		fw.sbss_len = bce_TPAT_b06FwSbssLen;
4442 		fw.sbss_index = 0;
4443 		fw.sbss = bce_TPAT_b06FwSbss;
4444 
4445 		fw.bss_addr = bce_TPAT_b06FwBssAddr;
4446 		fw.bss_len = bce_TPAT_b06FwBssLen;
4447 		fw.bss_index = 0;
4448 		fw.bss = bce_TPAT_b06FwBss;
4449 
4450 		fw.rodata_addr = bce_TPAT_b06FwRodataAddr;
4451 		fw.rodata_len = bce_TPAT_b06FwRodataLen;
4452 		fw.rodata_index = 0;
4453 		fw.rodata = bce_TPAT_b06FwRodata;
4454 	}
4455 
4456 	DBPRINT(sc, BCE_INFO_RESET, "Loading TPAT firmware.\n");
4457 	bce_load_cpu_fw(sc, &cpu_reg, &fw);
4458 	bce_start_cpu(sc, &cpu_reg);
4459 
4460 	DBEXIT(BCE_VERBOSE_RESET);
4461 }
4462 
4463 
4464 /****************************************************************************/
4465 /* Initialize the CP CPU.                                                   */
4466 /*                                                                          */
4467 /* Returns:                                                                 */
4468 /*   Nothing.                                                               */
4469 /****************************************************************************/
4470 static void
4471 bce_init_cp_cpu(struct bce_softc *sc)
4472 {
4473 	struct cpu_reg cpu_reg;
4474 	struct fw_info fw;
4475 
4476 	DBENTER(BCE_VERBOSE_RESET);
4477 
4478 	cpu_reg.mode = BCE_CP_CPU_MODE;
4479 	cpu_reg.mode_value_halt = BCE_CP_CPU_MODE_SOFT_HALT;
4480 	cpu_reg.mode_value_sstep = BCE_CP_CPU_MODE_STEP_ENA;
4481 	cpu_reg.state = BCE_CP_CPU_STATE;
4482 	cpu_reg.state_value_clear = 0xffffff;
4483 	cpu_reg.gpr0 = BCE_CP_CPU_REG_FILE;
4484 	cpu_reg.evmask = BCE_CP_CPU_EVENT_MASK;
4485 	cpu_reg.pc = BCE_CP_CPU_PROGRAM_COUNTER;
4486 	cpu_reg.inst = BCE_CP_CPU_INSTRUCTION;
4487 	cpu_reg.bp = BCE_CP_CPU_HW_BREAKPOINT;
4488 	cpu_reg.spad_base = BCE_CP_SCRATCH;
4489 	cpu_reg.mips_view_base = 0x8000000;
4490 
4491 	if (BCE_CHIP_NUM(sc) == BCE_CHIP_NUM_5709) {
4492 		fw.ver_major = bce_CP_b09FwReleaseMajor;
4493 		fw.ver_minor = bce_CP_b09FwReleaseMinor;
4494 		fw.ver_fix = bce_CP_b09FwReleaseFix;
4495 		fw.start_addr = bce_CP_b09FwStartAddr;
4496 
4497 		fw.text_addr = bce_CP_b09FwTextAddr;
4498 		fw.text_len = bce_CP_b09FwTextLen;
4499 		fw.text_index = 0;
4500 		fw.text = bce_CP_b09FwText;
4501 
4502 		fw.data_addr = bce_CP_b09FwDataAddr;
4503 		fw.data_len = bce_CP_b09FwDataLen;
4504 		fw.data_index = 0;
4505 		fw.data = bce_CP_b09FwData;
4506 
4507 		fw.sbss_addr = bce_CP_b09FwSbssAddr;
4508 		fw.sbss_len = bce_CP_b09FwSbssLen;
4509 		fw.sbss_index = 0;
4510 		fw.sbss = bce_CP_b09FwSbss;
4511 
4512 		fw.bss_addr = bce_CP_b09FwBssAddr;
4513 		fw.bss_len = bce_CP_b09FwBssLen;
4514 		fw.bss_index = 0;
4515 		fw.bss = bce_CP_b09FwBss;
4516 
4517 		fw.rodata_addr = bce_CP_b09FwRodataAddr;
4518 		fw.rodata_len = bce_CP_b09FwRodataLen;
4519 		fw.rodata_index = 0;
4520 		fw.rodata = bce_CP_b09FwRodata;
4521 	} else {
4522 		fw.ver_major = bce_CP_b06FwReleaseMajor;
4523 		fw.ver_minor = bce_CP_b06FwReleaseMinor;
4524 		fw.ver_fix = bce_CP_b06FwReleaseFix;
4525 		fw.start_addr = bce_CP_b06FwStartAddr;
4526 
4527 		fw.text_addr = bce_CP_b06FwTextAddr;
4528 		fw.text_len = bce_CP_b06FwTextLen;
4529 		fw.text_index = 0;
4530 		fw.text = bce_CP_b06FwText;
4531 
4532 		fw.data_addr = bce_CP_b06FwDataAddr;
4533 		fw.data_len = bce_CP_b06FwDataLen;
4534 		fw.data_index = 0;
4535 		fw.data = bce_CP_b06FwData;
4536 
4537 		fw.sbss_addr = bce_CP_b06FwSbssAddr;
4538 		fw.sbss_len = bce_CP_b06FwSbssLen;
4539 		fw.sbss_index = 0;
4540 		fw.sbss = bce_CP_b06FwSbss;
4541 
4542 		fw.bss_addr = bce_CP_b06FwBssAddr;
4543 		fw.bss_len = bce_CP_b06FwBssLen;
4544 		fw.bss_index = 0;
4545 		fw.bss = bce_CP_b06FwBss;
4546 
4547 		fw.rodata_addr = bce_CP_b06FwRodataAddr;
4548 		fw.rodata_len = bce_CP_b06FwRodataLen;
4549 		fw.rodata_index = 0;
4550 		fw.rodata = bce_CP_b06FwRodata;
4551 	}
4552 
4553 	DBPRINT(sc, BCE_INFO_RESET, "Loading CP firmware.\n");
4554 	bce_load_cpu_fw(sc, &cpu_reg, &fw);
4555 	bce_start_cpu(sc, &cpu_reg);
4556 
4557 	DBEXIT(BCE_VERBOSE_RESET);
4558 }
4559 
4560 
4561 /****************************************************************************/
4562 /* Initialize the COM CPU.                                                 */
4563 /*                                                                          */
4564 /* Returns:                                                                 */
4565 /*   Nothing.                                                               */
4566 /****************************************************************************/
4567 static void
4568 bce_init_com_cpu(struct bce_softc *sc)
4569 {
4570 	struct cpu_reg cpu_reg;
4571 	struct fw_info fw;
4572 
4573 	DBENTER(BCE_VERBOSE_RESET);
4574 
4575 	cpu_reg.mode = BCE_COM_CPU_MODE;
4576 	cpu_reg.mode_value_halt = BCE_COM_CPU_MODE_SOFT_HALT;
4577 	cpu_reg.mode_value_sstep = BCE_COM_CPU_MODE_STEP_ENA;
4578 	cpu_reg.state = BCE_COM_CPU_STATE;
4579 	cpu_reg.state_value_clear = 0xffffff;
4580 	cpu_reg.gpr0 = BCE_COM_CPU_REG_FILE;
4581 	cpu_reg.evmask = BCE_COM_CPU_EVENT_MASK;
4582 	cpu_reg.pc = BCE_COM_CPU_PROGRAM_COUNTER;
4583 	cpu_reg.inst = BCE_COM_CPU_INSTRUCTION;
4584 	cpu_reg.bp = BCE_COM_CPU_HW_BREAKPOINT;
4585 	cpu_reg.spad_base = BCE_COM_SCRATCH;
4586 	cpu_reg.mips_view_base = 0x8000000;
4587 
4588 	if (BCE_CHIP_NUM(sc) == BCE_CHIP_NUM_5709) {
4589 		fw.ver_major = bce_COM_b09FwReleaseMajor;
4590 		fw.ver_minor = bce_COM_b09FwReleaseMinor;
4591 		fw.ver_fix = bce_COM_b09FwReleaseFix;
4592 		fw.start_addr = bce_COM_b09FwStartAddr;
4593 
4594 		fw.text_addr = bce_COM_b09FwTextAddr;
4595 		fw.text_len = bce_COM_b09FwTextLen;
4596 		fw.text_index = 0;
4597 		fw.text = bce_COM_b09FwText;
4598 
4599 		fw.data_addr = bce_COM_b09FwDataAddr;
4600 		fw.data_len = bce_COM_b09FwDataLen;
4601 		fw.data_index = 0;
4602 		fw.data = bce_COM_b09FwData;
4603 
4604 		fw.sbss_addr = bce_COM_b09FwSbssAddr;
4605 		fw.sbss_len = bce_COM_b09FwSbssLen;
4606 		fw.sbss_index = 0;
4607 		fw.sbss = bce_COM_b09FwSbss;
4608 
4609 		fw.bss_addr = bce_COM_b09FwBssAddr;
4610 		fw.bss_len = bce_COM_b09FwBssLen;
4611 		fw.bss_index = 0;
4612 		fw.bss = bce_COM_b09FwBss;
4613 
4614 		fw.rodata_addr = bce_COM_b09FwRodataAddr;
4615 		fw.rodata_len = bce_COM_b09FwRodataLen;
4616 		fw.rodata_index = 0;
4617 		fw.rodata = bce_COM_b09FwRodata;
4618 	} else {
4619 		fw.ver_major = bce_COM_b06FwReleaseMajor;
4620 		fw.ver_minor = bce_COM_b06FwReleaseMinor;
4621 		fw.ver_fix = bce_COM_b06FwReleaseFix;
4622 		fw.start_addr = bce_COM_b06FwStartAddr;
4623 
4624 		fw.text_addr = bce_COM_b06FwTextAddr;
4625 		fw.text_len = bce_COM_b06FwTextLen;
4626 		fw.text_index = 0;
4627 		fw.text = bce_COM_b06FwText;
4628 
4629 		fw.data_addr = bce_COM_b06FwDataAddr;
4630 		fw.data_len = bce_COM_b06FwDataLen;
4631 		fw.data_index = 0;
4632 		fw.data = bce_COM_b06FwData;
4633 
4634 		fw.sbss_addr = bce_COM_b06FwSbssAddr;
4635 		fw.sbss_len = bce_COM_b06FwSbssLen;
4636 		fw.sbss_index = 0;
4637 		fw.sbss = bce_COM_b06FwSbss;
4638 
4639 		fw.bss_addr = bce_COM_b06FwBssAddr;
4640 		fw.bss_len = bce_COM_b06FwBssLen;
4641 		fw.bss_index = 0;
4642 		fw.bss = bce_COM_b06FwBss;
4643 
4644 		fw.rodata_addr = bce_COM_b06FwRodataAddr;
4645 		fw.rodata_len = bce_COM_b06FwRodataLen;
4646 		fw.rodata_index = 0;
4647 		fw.rodata = bce_COM_b06FwRodata;
4648 	}
4649 
4650 	DBPRINT(sc, BCE_INFO_RESET, "Loading COM firmware.\n");
4651 	bce_load_cpu_fw(sc, &cpu_reg, &fw);
4652 	bce_start_cpu(sc, &cpu_reg);
4653 
4654 	DBEXIT(BCE_VERBOSE_RESET);
4655 }
4656 
4657 
4658 /****************************************************************************/
4659 /* Initialize the RV2P, RX, TX, TPAT, COM, and CP CPUs.                     */
4660 /*                                                                          */
4661 /* Loads the firmware for each CPU and starts the CPU.                      */
4662 /*                                                                          */
4663 /* Returns:                                                                 */
4664 /*   Nothing.                                                               */
4665 /****************************************************************************/
4666 static void
4667 bce_init_cpus(struct bce_softc *sc)
4668 {
4669 	DBENTER(BCE_VERBOSE_RESET);
4670 
4671 	if (BCE_CHIP_NUM(sc) == BCE_CHIP_NUM_5709) {
4672 
4673 		if ((BCE_CHIP_REV(sc) == BCE_CHIP_REV_Ax)) {
4674 			bce_load_rv2p_fw(sc, bce_xi90_rv2p_proc1,
4675 			    sizeof(bce_xi90_rv2p_proc1), RV2P_PROC1);
4676 			bce_load_rv2p_fw(sc, bce_xi90_rv2p_proc2,
4677 			    sizeof(bce_xi90_rv2p_proc2), RV2P_PROC2);
4678 		} else {
4679 			bce_load_rv2p_fw(sc, bce_xi_rv2p_proc1,
4680 			    sizeof(bce_xi_rv2p_proc1), RV2P_PROC1);
4681 			bce_load_rv2p_fw(sc, bce_xi_rv2p_proc2,
4682 			    sizeof(bce_xi_rv2p_proc2), RV2P_PROC2);
4683 		}
4684 
4685 	} else {
4686 		bce_load_rv2p_fw(sc, bce_rv2p_proc1,
4687 		    sizeof(bce_rv2p_proc1), RV2P_PROC1);
4688 		bce_load_rv2p_fw(sc, bce_rv2p_proc2,
4689 		    sizeof(bce_rv2p_proc2), RV2P_PROC2);
4690 	}
4691 
4692 	bce_init_rxp_cpu(sc);
4693 	bce_init_txp_cpu(sc);
4694 	bce_init_tpat_cpu(sc);
4695 	bce_init_com_cpu(sc);
4696 	bce_init_cp_cpu(sc);
4697 
4698 	DBEXIT(BCE_VERBOSE_RESET);
4699 }
4700 
4701 
4702 /****************************************************************************/
4703 /* Initialize context memory.                                               */
4704 /*                                                                          */
4705 /* Clears the memory associated with each Context ID (CID).                 */
4706 /*                                                                          */
4707 /* Returns:                                                                 */
4708 /*   Nothing.                                                               */
4709 /****************************************************************************/
4710 static int
4711 bce_init_ctx(struct bce_softc *sc)
4712 {
4713 	u32 offset, val, vcid_addr;
4714 	int i, j, rc, retry_cnt;
4715 
4716 	rc = 0;
4717 	DBENTER(BCE_VERBOSE_RESET | BCE_VERBOSE_CTX);
4718 
4719 	if (BCE_CHIP_NUM(sc) == BCE_CHIP_NUM_5709) {
4720 		retry_cnt = CTX_INIT_RETRY_COUNT;
4721 
4722 		DBPRINT(sc, BCE_INFO_CTX, "Initializing 5709 context.\n");
4723 
4724 		/*
4725 		 * BCM5709 context memory may be cached
4726 		 * in host memory so prepare the host memory
4727 		 * for access.
4728 		 */
4729 		val = BCE_CTX_COMMAND_ENABLED |
4730 		    BCE_CTX_COMMAND_MEM_INIT | (1 << 12);
4731 		val |= (BCM_PAGE_BITS - 8) << 16;
4732 		REG_WR(sc, BCE_CTX_COMMAND, val);
4733 
4734 		/* Wait for mem init command to complete. */
4735 		for (i = 0; i < retry_cnt; i++) {
4736 			val = REG_RD(sc, BCE_CTX_COMMAND);
4737 			if (!(val & BCE_CTX_COMMAND_MEM_INIT))
4738 				break;
4739 			DELAY(2);
4740 		}
4741 		if ((val & BCE_CTX_COMMAND_MEM_INIT) != 0) {
4742 			BCE_PRINTF("%s(): Context memory initialization failed!\n",
4743 			    __FUNCTION__);
4744 			rc = EBUSY;
4745 			goto init_ctx_fail;
4746 		}
4747 
4748 		for (i = 0; i < sc->ctx_pages; i++) {
4749 			/* Set the physical address of the context memory. */
4750 			REG_WR(sc, BCE_CTX_HOST_PAGE_TBL_DATA0,
4751 			    BCE_ADDR_LO(sc->ctx_paddr[i] & 0xfffffff0) |
4752 			    BCE_CTX_HOST_PAGE_TBL_DATA0_VALID);
4753 			REG_WR(sc, BCE_CTX_HOST_PAGE_TBL_DATA1,
4754 			    BCE_ADDR_HI(sc->ctx_paddr[i]));
4755 			REG_WR(sc, BCE_CTX_HOST_PAGE_TBL_CTRL, i |
4756 			    BCE_CTX_HOST_PAGE_TBL_CTRL_WRITE_REQ);
4757 
4758 			/* Verify the context memory write was successful. */
4759 			for (j = 0; j < retry_cnt; j++) {
4760 				val = REG_RD(sc, BCE_CTX_HOST_PAGE_TBL_CTRL);
4761 				if ((val &
4762 				    BCE_CTX_HOST_PAGE_TBL_CTRL_WRITE_REQ) == 0)
4763 					break;
4764 				DELAY(5);
4765 			}
4766 			if ((val & BCE_CTX_HOST_PAGE_TBL_CTRL_WRITE_REQ) != 0) {
4767 				BCE_PRINTF("%s(): Failed to initialize "
4768 				    "context page %d!\n", __FUNCTION__, i);
4769 				rc = EBUSY;
4770 				goto init_ctx_fail;
4771 			}
4772 		}
4773 	} else {
4774 
4775 		DBPRINT(sc, BCE_INFO, "Initializing 5706/5708 context.\n");
4776 
4777 		/*
4778 		 * For the 5706/5708, context memory is local to
4779 		 * the controller, so initialize the controller
4780 		 * context memory.
4781 		 */
4782 
4783 		vcid_addr = GET_CID_ADDR(96);
4784 		while (vcid_addr) {
4785 
4786 			vcid_addr -= PHY_CTX_SIZE;
4787 
4788 			REG_WR(sc, BCE_CTX_VIRT_ADDR, 0);
4789 			REG_WR(sc, BCE_CTX_PAGE_TBL, vcid_addr);
4790 
4791 			for(offset = 0; offset < PHY_CTX_SIZE; offset += 4) {
4792 				CTX_WR(sc, 0x00, offset, 0);
4793 			}
4794 
4795 			REG_WR(sc, BCE_CTX_VIRT_ADDR, vcid_addr);
4796 			REG_WR(sc, BCE_CTX_PAGE_TBL, vcid_addr);
4797 		}
4798 
4799 	}
4800 init_ctx_fail:
4801 	DBEXIT(BCE_VERBOSE_RESET | BCE_VERBOSE_CTX);
4802 	return (rc);
4803 }
4804 
4805 
4806 /****************************************************************************/
4807 /* Fetch the permanent MAC address of the controller.                       */
4808 /*                                                                          */
4809 /* Returns:                                                                 */
4810 /*   Nothing.                                                               */
4811 /****************************************************************************/
4812 static void
4813 bce_get_mac_addr(struct bce_softc *sc)
4814 {
4815 	u32 mac_lo = 0, mac_hi = 0;
4816 
4817 	DBENTER(BCE_VERBOSE_RESET);
4818 
4819 	/*
4820 	 * The NetXtreme II bootcode populates various NIC
4821 	 * power-on and runtime configuration items in a
4822 	 * shared memory area.  The factory configured MAC
4823 	 * address is available from both NVRAM and the
4824 	 * shared memory area so we'll read the value from
4825 	 * shared memory for speed.
4826 	 */
4827 
4828 	mac_hi = bce_shmem_rd(sc, BCE_PORT_HW_CFG_MAC_UPPER);
4829 	mac_lo = bce_shmem_rd(sc, BCE_PORT_HW_CFG_MAC_LOWER);
4830 
4831 	if ((mac_lo == 0) && (mac_hi == 0)) {
4832 		BCE_PRINTF("%s(%d): Invalid Ethernet address!\n",
4833 		    __FILE__, __LINE__);
4834 	} else {
4835 		sc->eaddr[0] = (u_char)(mac_hi >> 8);
4836 		sc->eaddr[1] = (u_char)(mac_hi >> 0);
4837 		sc->eaddr[2] = (u_char)(mac_lo >> 24);
4838 		sc->eaddr[3] = (u_char)(mac_lo >> 16);
4839 		sc->eaddr[4] = (u_char)(mac_lo >> 8);
4840 		sc->eaddr[5] = (u_char)(mac_lo >> 0);
4841 	}
4842 
4843 	DBPRINT(sc, BCE_INFO_MISC, "Permanent Ethernet "
4844 	    "address = %6D\n", sc->eaddr, ":");
4845 	DBEXIT(BCE_VERBOSE_RESET);
4846 }
4847 
4848 
4849 /****************************************************************************/
4850 /* Program the MAC address.                                                 */
4851 /*                                                                          */
4852 /* Returns:                                                                 */
4853 /*   Nothing.                                                               */
4854 /****************************************************************************/
4855 static void
4856 bce_set_mac_addr(struct bce_softc *sc)
4857 {
4858 	u32 val;
4859 	u8 *mac_addr = sc->eaddr;
4860 
4861 	/* ToDo: Add support for setting multiple MAC addresses. */
4862 
4863 	DBENTER(BCE_VERBOSE_RESET);
4864 	DBPRINT(sc, BCE_INFO_MISC, "Setting Ethernet address = "
4865 	    "%6D\n", sc->eaddr, ":");
4866 
4867 	val = (mac_addr[0] << 8) | mac_addr[1];
4868 
4869 	REG_WR(sc, BCE_EMAC_MAC_MATCH0, val);
4870 
4871 	val = (mac_addr[2] << 24) | (mac_addr[3] << 16) |
4872 	    (mac_addr[4] << 8) | mac_addr[5];
4873 
4874 	REG_WR(sc, BCE_EMAC_MAC_MATCH1, val);
4875 
4876 	DBEXIT(BCE_VERBOSE_RESET);
4877 }
4878 
4879 
4880 /****************************************************************************/
4881 /* Stop the controller.                                                     */
4882 /*                                                                          */
4883 /* Returns:                                                                 */
4884 /*   Nothing.                                                               */
4885 /****************************************************************************/
4886 static void
4887 bce_stop(struct bce_softc *sc)
4888 {
4889 	struct ifnet *ifp;
4890 
4891 	DBENTER(BCE_VERBOSE_RESET);
4892 
4893 	BCE_LOCK_ASSERT(sc);
4894 
4895 	ifp = sc->bce_ifp;
4896 
4897 	callout_stop(&sc->bce_tick_callout);
4898 
4899 	/* Disable the transmit/receive blocks. */
4900 	REG_WR(sc, BCE_MISC_ENABLE_CLR_BITS, BCE_MISC_ENABLE_CLR_DEFAULT);
4901 	REG_RD(sc, BCE_MISC_ENABLE_CLR_BITS);
4902 	DELAY(20);
4903 
4904 	bce_disable_intr(sc);
4905 
4906 	/* Free RX buffers. */
4907 	if (bce_hdr_split == TRUE) {
4908 		bce_free_pg_chain(sc);
4909 	}
4910 	bce_free_rx_chain(sc);
4911 
4912 	/* Free TX buffers. */
4913 	bce_free_tx_chain(sc);
4914 
4915 	sc->watchdog_timer = 0;
4916 
4917 	sc->bce_link_up = FALSE;
4918 
4919 	ifp->if_drv_flags &= ~(IFF_DRV_RUNNING | IFF_DRV_OACTIVE);
4920 
4921 	DBEXIT(BCE_VERBOSE_RESET);
4922 }
4923 
4924 
4925 static int
4926 bce_reset(struct bce_softc *sc, u32 reset_code)
4927 {
4928 	u32 val;
4929 	int i, rc = 0;
4930 
4931 	DBENTER(BCE_VERBOSE_RESET);
4932 
4933 	DBPRINT(sc, BCE_VERBOSE_RESET, "%s(): reset_code = 0x%08X\n",
4934 	    __FUNCTION__, reset_code);
4935 
4936 	/* Wait for pending PCI transactions to complete. */
4937 	REG_WR(sc, BCE_MISC_ENABLE_CLR_BITS,
4938 	    BCE_MISC_ENABLE_CLR_BITS_TX_DMA_ENABLE |
4939 	    BCE_MISC_ENABLE_CLR_BITS_DMA_ENGINE_ENABLE |
4940 	    BCE_MISC_ENABLE_CLR_BITS_RX_DMA_ENABLE |
4941 	    BCE_MISC_ENABLE_CLR_BITS_HOST_COALESCE_ENABLE);
4942 	val = REG_RD(sc, BCE_MISC_ENABLE_CLR_BITS);
4943 	DELAY(5);
4944 
4945 	/* Disable DMA */
4946 	if (BCE_CHIP_NUM(sc) == BCE_CHIP_NUM_5709) {
4947 		val = REG_RD(sc, BCE_MISC_NEW_CORE_CTL);
4948 		val &= ~BCE_MISC_NEW_CORE_CTL_DMA_ENABLE;
4949 		REG_WR(sc, BCE_MISC_NEW_CORE_CTL, val);
4950 	}
4951 
4952 	/* Assume bootcode is running. */
4953 	sc->bce_fw_timed_out = FALSE;
4954 	sc->bce_drv_cardiac_arrest = FALSE;
4955 
4956 	/* Give the firmware a chance to prepare for the reset. */
4957 	rc = bce_fw_sync(sc, BCE_DRV_MSG_DATA_WAIT0 | reset_code);
4958 	if (rc)
4959 		goto bce_reset_exit;
4960 
4961 	/* Set a firmware reminder that this is a soft reset. */
4962 	bce_shmem_wr(sc, BCE_DRV_RESET_SIGNATURE, BCE_DRV_RESET_SIGNATURE_MAGIC);
4963 
4964 	/* Dummy read to force the chip to complete all current transactions. */
4965 	val = REG_RD(sc, BCE_MISC_ID);
4966 
4967 	/* Chip reset. */
4968 	if (BCE_CHIP_NUM(sc) == BCE_CHIP_NUM_5709) {
4969 		REG_WR(sc, BCE_MISC_COMMAND, BCE_MISC_COMMAND_SW_RESET);
4970 		REG_RD(sc, BCE_MISC_COMMAND);
4971 		DELAY(5);
4972 
4973 		val = BCE_PCICFG_MISC_CONFIG_REG_WINDOW_ENA |
4974 		    BCE_PCICFG_MISC_CONFIG_TARGET_MB_WORD_SWAP;
4975 
4976 		pci_write_config(sc->bce_dev, BCE_PCICFG_MISC_CONFIG, val, 4);
4977 	} else {
4978 		val = BCE_PCICFG_MISC_CONFIG_CORE_RST_REQ |
4979 		    BCE_PCICFG_MISC_CONFIG_REG_WINDOW_ENA |
4980 		    BCE_PCICFG_MISC_CONFIG_TARGET_MB_WORD_SWAP;
4981 		REG_WR(sc, BCE_PCICFG_MISC_CONFIG, val);
4982 
4983 		/* Allow up to 30us for reset to complete. */
4984 		for (i = 0; i < 10; i++) {
4985 			val = REG_RD(sc, BCE_PCICFG_MISC_CONFIG);
4986 			if ((val & (BCE_PCICFG_MISC_CONFIG_CORE_RST_REQ |
4987 			    BCE_PCICFG_MISC_CONFIG_CORE_RST_BSY)) == 0) {
4988 				break;
4989 			}
4990 			DELAY(10);
4991 		}
4992 
4993 		/* Check that reset completed successfully. */
4994 		if (val & (BCE_PCICFG_MISC_CONFIG_CORE_RST_REQ |
4995 		    BCE_PCICFG_MISC_CONFIG_CORE_RST_BSY)) {
4996 			BCE_PRINTF("%s(%d): Reset failed!\n",
4997 			    __FILE__, __LINE__);
4998 			rc = EBUSY;
4999 			goto bce_reset_exit;
5000 		}
5001 	}
5002 
5003 	/* Make sure byte swapping is properly configured. */
5004 	val = REG_RD(sc, BCE_PCI_SWAP_DIAG0);
5005 	if (val != 0x01020304) {
5006 		BCE_PRINTF("%s(%d): Byte swap is incorrect!\n",
5007 		    __FILE__, __LINE__);
5008 		rc = ENODEV;
5009 		goto bce_reset_exit;
5010 	}
5011 
5012 	/* Just completed a reset, assume that firmware is running again. */
5013 	sc->bce_fw_timed_out = FALSE;
5014 	sc->bce_drv_cardiac_arrest = FALSE;
5015 
5016 	/* Wait for the firmware to finish its initialization. */
5017 	rc = bce_fw_sync(sc, BCE_DRV_MSG_DATA_WAIT1 | reset_code);
5018 	if (rc)
5019 		BCE_PRINTF("%s(%d): Firmware did not complete "
5020 		    "initialization!\n", __FILE__, __LINE__);
5021 
5022 bce_reset_exit:
5023 	DBEXIT(BCE_VERBOSE_RESET);
5024 	return (rc);
5025 }
5026 
5027 
5028 static int
5029 bce_chipinit(struct bce_softc *sc)
5030 {
5031 	u32 val;
5032 	int rc = 0;
5033 
5034 	DBENTER(BCE_VERBOSE_RESET);
5035 
5036 	bce_disable_intr(sc);
5037 
5038 	/*
5039 	 * Initialize DMA byte/word swapping, configure the number of DMA
5040 	 * channels and PCI clock compensation delay.
5041 	 */
5042 	val = BCE_DMA_CONFIG_DATA_BYTE_SWAP |
5043 	    BCE_DMA_CONFIG_DATA_WORD_SWAP |
5044 #if BYTE_ORDER == BIG_ENDIAN
5045 	    BCE_DMA_CONFIG_CNTL_BYTE_SWAP |
5046 #endif
5047 	    BCE_DMA_CONFIG_CNTL_WORD_SWAP |
5048 	    DMA_READ_CHANS << 12 |
5049 	    DMA_WRITE_CHANS << 16;
5050 
5051 	val |= (0x2 << 20) | BCE_DMA_CONFIG_CNTL_PCI_COMP_DLY;
5052 
5053 	if ((sc->bce_flags & BCE_PCIX_FLAG) && (sc->bus_speed_mhz == 133))
5054 		val |= BCE_DMA_CONFIG_PCI_FAST_CLK_CMP;
5055 
5056 	/*
5057 	 * This setting resolves a problem observed on certain Intel PCI
5058 	 * chipsets that cannot handle multiple outstanding DMA operations.
5059 	 * See errata E9_5706A1_65.
5060 	 */
5061 	if ((BCE_CHIP_NUM(sc) == BCE_CHIP_NUM_5706) &&
5062 	    (BCE_CHIP_ID(sc) != BCE_CHIP_ID_5706_A0) &&
5063 	    !(sc->bce_flags & BCE_PCIX_FLAG))
5064 		val |= BCE_DMA_CONFIG_CNTL_PING_PONG_DMA;
5065 
5066 	REG_WR(sc, BCE_DMA_CONFIG, val);
5067 
5068 	/* Enable the RX_V2P and Context state machines before access. */
5069 	REG_WR(sc, BCE_MISC_ENABLE_SET_BITS,
5070 	    BCE_MISC_ENABLE_SET_BITS_HOST_COALESCE_ENABLE |
5071 	    BCE_MISC_ENABLE_STATUS_BITS_RX_V2P_ENABLE |
5072 	    BCE_MISC_ENABLE_STATUS_BITS_CONTEXT_ENABLE);
5073 
5074 	/* Initialize context mapping and zero out the quick contexts. */
5075 	if ((rc = bce_init_ctx(sc)) != 0)
5076 		goto bce_chipinit_exit;
5077 
5078 	/* Initialize the on-boards CPUs */
5079 	bce_init_cpus(sc);
5080 
5081 	/* Enable management frames (NC-SI) to flow to the MCP. */
5082 	if (sc->bce_flags & BCE_MFW_ENABLE_FLAG) {
5083 		val = REG_RD(sc, BCE_RPM_MGMT_PKT_CTRL) | BCE_RPM_MGMT_PKT_CTRL_MGMT_EN;
5084 		REG_WR(sc, BCE_RPM_MGMT_PKT_CTRL, val);
5085 	}
5086 
5087 	/* Prepare NVRAM for access. */
5088 	if ((rc = bce_init_nvram(sc)) != 0)
5089 		goto bce_chipinit_exit;
5090 
5091 	/* Set the kernel bypass block size */
5092 	val = REG_RD(sc, BCE_MQ_CONFIG);
5093 	val &= ~BCE_MQ_CONFIG_KNL_BYP_BLK_SIZE;
5094 	val |= BCE_MQ_CONFIG_KNL_BYP_BLK_SIZE_256;
5095 
5096 	/* Enable bins used on the 5709. */
5097 	if (BCE_CHIP_NUM(sc) == BCE_CHIP_NUM_5709) {
5098 		val |= BCE_MQ_CONFIG_BIN_MQ_MODE;
5099 		if (BCE_CHIP_ID(sc) == BCE_CHIP_ID_5709_A1)
5100 			val |= BCE_MQ_CONFIG_HALT_DIS;
5101 	}
5102 
5103 	REG_WR(sc, BCE_MQ_CONFIG, val);
5104 
5105 	val = 0x10000 + (MAX_CID_CNT * MB_KERNEL_CTX_SIZE);
5106 	REG_WR(sc, BCE_MQ_KNL_BYP_WIND_START, val);
5107 	REG_WR(sc, BCE_MQ_KNL_WIND_END, val);
5108 
5109 	/* Set the page size and clear the RV2P processor stall bits. */
5110 	val = (BCM_PAGE_BITS - 8) << 24;
5111 	REG_WR(sc, BCE_RV2P_CONFIG, val);
5112 
5113 	/* Configure page size. */
5114 	val = REG_RD(sc, BCE_TBDR_CONFIG);
5115 	val &= ~BCE_TBDR_CONFIG_PAGE_SIZE;
5116 	val |= (BCM_PAGE_BITS - 8) << 24 | 0x40;
5117 	REG_WR(sc, BCE_TBDR_CONFIG, val);
5118 
5119 	/* Set the perfect match control register to default. */
5120 	REG_WR_IND(sc, BCE_RXP_PM_CTRL, 0);
5121 
5122 bce_chipinit_exit:
5123 	DBEXIT(BCE_VERBOSE_RESET);
5124 
5125 	return(rc);
5126 }
5127 
5128 
5129 /****************************************************************************/
5130 /* Initialize the controller in preparation to send/receive traffic.        */
5131 /*                                                                          */
5132 /* Returns:                                                                 */
5133 /*   0 for success, positive value for failure.                             */
5134 /****************************************************************************/
5135 static int
5136 bce_blockinit(struct bce_softc *sc)
5137 {
5138 	u32 reg, val;
5139 	int rc = 0;
5140 
5141 	DBENTER(BCE_VERBOSE_RESET);
5142 
5143 	/* Load the hardware default MAC address. */
5144 	bce_set_mac_addr(sc);
5145 
5146 	/* Set the Ethernet backoff seed value */
5147 	val = sc->eaddr[0]         + (sc->eaddr[1] << 8) +
5148 	      (sc->eaddr[2] << 16) + (sc->eaddr[3]     ) +
5149 	      (sc->eaddr[4] << 8)  + (sc->eaddr[5] << 16);
5150 	REG_WR(sc, BCE_EMAC_BACKOFF_SEED, val);
5151 
5152 	sc->last_status_idx = 0;
5153 	sc->rx_mode = BCE_EMAC_RX_MODE_SORT_MODE;
5154 
5155 	/* Set up link change interrupt generation. */
5156 	REG_WR(sc, BCE_EMAC_ATTENTION_ENA, BCE_EMAC_ATTENTION_ENA_LINK);
5157 
5158 	/* Program the physical address of the status block. */
5159 	REG_WR(sc, BCE_HC_STATUS_ADDR_L,
5160 	    BCE_ADDR_LO(sc->status_block_paddr));
5161 	REG_WR(sc, BCE_HC_STATUS_ADDR_H,
5162 	    BCE_ADDR_HI(sc->status_block_paddr));
5163 
5164 	/* Program the physical address of the statistics block. */
5165 	REG_WR(sc, BCE_HC_STATISTICS_ADDR_L,
5166 	    BCE_ADDR_LO(sc->stats_block_paddr));
5167 	REG_WR(sc, BCE_HC_STATISTICS_ADDR_H,
5168 	    BCE_ADDR_HI(sc->stats_block_paddr));
5169 
5170 	/* Program various host coalescing parameters. */
5171 	REG_WR(sc, BCE_HC_TX_QUICK_CONS_TRIP,
5172 	    (sc->bce_tx_quick_cons_trip_int << 16) | sc->bce_tx_quick_cons_trip);
5173 	REG_WR(sc, BCE_HC_RX_QUICK_CONS_TRIP,
5174 	    (sc->bce_rx_quick_cons_trip_int << 16) | sc->bce_rx_quick_cons_trip);
5175 	REG_WR(sc, BCE_HC_COMP_PROD_TRIP,
5176 	    (sc->bce_comp_prod_trip_int << 16) | sc->bce_comp_prod_trip);
5177 	REG_WR(sc, BCE_HC_TX_TICKS,
5178 	    (sc->bce_tx_ticks_int << 16) | sc->bce_tx_ticks);
5179 	REG_WR(sc, BCE_HC_RX_TICKS,
5180 	    (sc->bce_rx_ticks_int << 16) | sc->bce_rx_ticks);
5181 	REG_WR(sc, BCE_HC_COM_TICKS,
5182 	    (sc->bce_com_ticks_int << 16) | sc->bce_com_ticks);
5183 	REG_WR(sc, BCE_HC_CMD_TICKS,
5184 	    (sc->bce_cmd_ticks_int << 16) | sc->bce_cmd_ticks);
5185 	REG_WR(sc, BCE_HC_STATS_TICKS,
5186 	    (sc->bce_stats_ticks & 0xffff00));
5187 	REG_WR(sc, BCE_HC_STAT_COLLECT_TICKS, 0xbb8);  /* 3ms */
5188 
5189 	/* Configure the Host Coalescing block. */
5190 	val = BCE_HC_CONFIG_RX_TMR_MODE | BCE_HC_CONFIG_TX_TMR_MODE |
5191 	    BCE_HC_CONFIG_COLLECT_STATS;
5192 
5193 #if 0
5194 	/* ToDo: Add MSI-X support. */
5195 	if (sc->bce_flags & BCE_USING_MSIX_FLAG) {
5196 		u32 base = ((BCE_TX_VEC - 1) * BCE_HC_SB_CONFIG_SIZE) +
5197 		    BCE_HC_SB_CONFIG_1;
5198 
5199 		REG_WR(sc, BCE_HC_MSIX_BIT_VECTOR, BCE_HC_MSIX_BIT_VECTOR_VAL);
5200 
5201 		REG_WR(sc, base, BCE_HC_SB_CONFIG_1_TX_TMR_MODE |
5202 		    BCE_HC_SB_CONFIG_1_ONE_SHOT);
5203 
5204 		REG_WR(sc, base + BCE_HC_TX_QUICK_CONS_TRIP_OFF,
5205 		    (sc->tx_quick_cons_trip_int << 16) |
5206 		     sc->tx_quick_cons_trip);
5207 
5208 		REG_WR(sc, base + BCE_HC_TX_TICKS_OFF,
5209 		    (sc->tx_ticks_int << 16) | sc->tx_ticks);
5210 
5211 		val |= BCE_HC_CONFIG_SB_ADDR_INC_128B;
5212 	}
5213 
5214 	/*
5215 	 * Tell the HC block to automatically set the
5216 	 * INT_MASK bit after an MSI/MSI-X interrupt
5217 	 * is generated so the driver doesn't have to.
5218 	 */
5219 	if (sc->bce_flags & BCE_ONE_SHOT_MSI_FLAG)
5220 		val |= BCE_HC_CONFIG_ONE_SHOT;
5221 
5222 	/* Set the MSI-X status blocks to 128 byte boundaries. */
5223 	if (sc->bce_flags & BCE_USING_MSIX_FLAG)
5224 		val |= BCE_HC_CONFIG_SB_ADDR_INC_128B;
5225 #endif
5226 
5227 	REG_WR(sc, BCE_HC_CONFIG, val);
5228 
5229 	/* Clear the internal statistics counters. */
5230 	REG_WR(sc, BCE_HC_COMMAND, BCE_HC_COMMAND_CLR_STAT_NOW);
5231 
5232 	/* Verify that bootcode is running. */
5233 	reg = bce_shmem_rd(sc, BCE_DEV_INFO_SIGNATURE);
5234 
5235 	DBRUNIF(DB_RANDOMTRUE(bootcode_running_failure_sim_control),
5236 	    BCE_PRINTF("%s(%d): Simulating bootcode failure.\n",
5237 	    __FILE__, __LINE__);
5238 	    reg = 0);
5239 
5240 	if ((reg & BCE_DEV_INFO_SIGNATURE_MAGIC_MASK) !=
5241 	    BCE_DEV_INFO_SIGNATURE_MAGIC) {
5242 		BCE_PRINTF("%s(%d): Bootcode not running! Found: 0x%08X, "
5243 		    "Expected: 08%08X\n", __FILE__, __LINE__,
5244 		    (reg & BCE_DEV_INFO_SIGNATURE_MAGIC_MASK),
5245 		    BCE_DEV_INFO_SIGNATURE_MAGIC);
5246 		rc = ENODEV;
5247 		goto bce_blockinit_exit;
5248 	}
5249 
5250 	/* Enable DMA */
5251 	if (BCE_CHIP_NUM(sc) == BCE_CHIP_NUM_5709) {
5252 		val = REG_RD(sc, BCE_MISC_NEW_CORE_CTL);
5253 		val |= BCE_MISC_NEW_CORE_CTL_DMA_ENABLE;
5254 		REG_WR(sc, BCE_MISC_NEW_CORE_CTL, val);
5255 	}
5256 
5257 	/* Allow bootcode to apply additional fixes before enabling MAC. */
5258 	rc = bce_fw_sync(sc, BCE_DRV_MSG_DATA_WAIT2 |
5259 	    BCE_DRV_MSG_CODE_RESET);
5260 
5261 	/* Enable link state change interrupt generation. */
5262 	REG_WR(sc, BCE_HC_ATTN_BITS_ENABLE, STATUS_ATTN_BITS_LINK_STATE);
5263 
5264 	/* Enable the RXP. */
5265 	bce_start_rxp_cpu(sc);
5266 
5267 	/* Disable management frames (NC-SI) from flowing to the MCP. */
5268 	if (sc->bce_flags & BCE_MFW_ENABLE_FLAG) {
5269 		val = REG_RD(sc, BCE_RPM_MGMT_PKT_CTRL) &
5270 		    ~BCE_RPM_MGMT_PKT_CTRL_MGMT_EN;
5271 		REG_WR(sc, BCE_RPM_MGMT_PKT_CTRL, val);
5272 	}
5273 
5274 	/* Enable all remaining blocks in the MAC. */
5275 	if (BCE_CHIP_NUM(sc) == BCE_CHIP_NUM_5709)
5276 		REG_WR(sc, BCE_MISC_ENABLE_SET_BITS,
5277 		    BCE_MISC_ENABLE_DEFAULT_XI);
5278 	else
5279 		REG_WR(sc, BCE_MISC_ENABLE_SET_BITS,
5280 		    BCE_MISC_ENABLE_DEFAULT);
5281 
5282 	REG_RD(sc, BCE_MISC_ENABLE_SET_BITS);
5283 	DELAY(20);
5284 
5285 	/* Save the current host coalescing block settings. */
5286 	sc->hc_command = REG_RD(sc, BCE_HC_COMMAND);
5287 
5288 bce_blockinit_exit:
5289 	DBEXIT(BCE_VERBOSE_RESET);
5290 
5291 	return (rc);
5292 }
5293 
5294 
5295 /****************************************************************************/
5296 /* Encapsulate an mbuf into the rx_bd chain.                                */
5297 /*                                                                          */
5298 /* Returns:                                                                 */
5299 /*   0 for success, positive value for failure.                             */
5300 /****************************************************************************/
5301 static int
5302 bce_get_rx_buf(struct bce_softc *sc, struct mbuf *m, u16 *prod,
5303     u16 *chain_prod, u32 *prod_bseq)
5304 {
5305 	bus_dmamap_t map;
5306 	bus_dma_segment_t segs[BCE_MAX_SEGMENTS];
5307 	struct mbuf *m_new = NULL;
5308 	struct rx_bd *rxbd;
5309 	int nsegs, error, rc = 0;
5310 #ifdef BCE_DEBUG
5311 	u16 debug_chain_prod = *chain_prod;
5312 #endif
5313 
5314 	DBENTER(BCE_EXTREME_RESET | BCE_EXTREME_RECV | BCE_EXTREME_LOAD);
5315 
5316 	/* Make sure the inputs are valid. */
5317 	DBRUNIF((*chain_prod > MAX_RX_BD_ALLOC),
5318 	    BCE_PRINTF("%s(%d): RX producer out of range: "
5319 	    "0x%04X > 0x%04X\n", __FILE__, __LINE__,
5320 	    *chain_prod, (u16) MAX_RX_BD_ALLOC));
5321 
5322 	DBPRINT(sc, BCE_EXTREME_RECV, "%s(enter): prod = 0x%04X, "
5323 	    "chain_prod = 0x%04X, prod_bseq = 0x%08X\n", __FUNCTION__,
5324 	    *prod, *chain_prod, *prod_bseq);
5325 
5326 	/* Update some debug statistic counters */
5327 	DBRUNIF((sc->free_rx_bd < sc->rx_low_watermark),
5328 	    sc->rx_low_watermark = sc->free_rx_bd);
5329 	DBRUNIF((sc->free_rx_bd == sc->max_rx_bd),
5330 	    sc->rx_empty_count++);
5331 
5332 	/* Check whether this is a new mbuf allocation. */
5333 	if (m == NULL) {
5334 
5335 		/* Simulate an mbuf allocation failure. */
5336 		DBRUNIF(DB_RANDOMTRUE(mbuf_alloc_failed_sim_control),
5337 		    sc->mbuf_alloc_failed_count++;
5338 		    sc->mbuf_alloc_failed_sim_count++;
5339 		    rc = ENOBUFS;
5340 		    goto bce_get_rx_buf_exit);
5341 
5342 		/* This is a new mbuf allocation. */
5343 		if (bce_hdr_split == TRUE)
5344 			MGETHDR(m_new, M_DONTWAIT, MT_DATA);
5345 		else
5346 			m_new = m_getjcl(M_DONTWAIT, MT_DATA, M_PKTHDR,
5347 			    sc->rx_bd_mbuf_alloc_size);
5348 
5349 		if (m_new == NULL) {
5350 			sc->mbuf_alloc_failed_count++;
5351 			rc = ENOBUFS;
5352 			goto bce_get_rx_buf_exit;
5353 		}
5354 
5355 		DBRUN(sc->debug_rx_mbuf_alloc++);
5356 	} else {
5357 		/* Reuse an existing mbuf. */
5358 		m_new = m;
5359 	}
5360 
5361 	/* Make sure we have a valid packet header. */
5362 	M_ASSERTPKTHDR(m_new);
5363 
5364 	/* Initialize the mbuf size and pad if necessary for alignment. */
5365 	m_new->m_pkthdr.len = m_new->m_len = sc->rx_bd_mbuf_alloc_size;
5366 	m_adj(m_new, sc->rx_bd_mbuf_align_pad);
5367 
5368 	/* ToDo: Consider calling m_fragment() to test error handling. */
5369 
5370 	/* Map the mbuf cluster into device memory. */
5371 	map = sc->rx_mbuf_map[*chain_prod];
5372 	error = bus_dmamap_load_mbuf_sg(sc->rx_mbuf_tag, map, m_new,
5373 	    segs, &nsegs, BUS_DMA_NOWAIT);
5374 
5375 	/* Handle any mapping errors. */
5376 	if (error) {
5377 		BCE_PRINTF("%s(%d): Error mapping mbuf into RX "
5378 		    "chain (%d)!\n", __FILE__, __LINE__, error);
5379 
5380 		sc->dma_map_addr_rx_failed_count++;
5381 		m_freem(m_new);
5382 
5383 		DBRUN(sc->debug_rx_mbuf_alloc--);
5384 
5385 		rc = ENOBUFS;
5386 		goto bce_get_rx_buf_exit;
5387 	}
5388 
5389 	/* All mbufs must map to a single segment. */
5390 	KASSERT(nsegs == 1, ("%s(): Too many segments returned (%d)!",
5391 	    __FUNCTION__, nsegs));
5392 
5393 	/* Setup the rx_bd for the segment. */
5394 	rxbd = &sc->rx_bd_chain[RX_PAGE(*chain_prod)][RX_IDX(*chain_prod)];
5395 
5396 	rxbd->rx_bd_haddr_lo  = htole32(BCE_ADDR_LO(segs[0].ds_addr));
5397 	rxbd->rx_bd_haddr_hi  = htole32(BCE_ADDR_HI(segs[0].ds_addr));
5398 	rxbd->rx_bd_len       = htole32(segs[0].ds_len);
5399 	rxbd->rx_bd_flags     = htole32(RX_BD_FLAGS_START | RX_BD_FLAGS_END);
5400 	*prod_bseq += segs[0].ds_len;
5401 
5402 	/* Save the mbuf and update our counter. */
5403 	sc->rx_mbuf_ptr[*chain_prod] = m_new;
5404 	sc->free_rx_bd -= nsegs;
5405 
5406 	DBRUNMSG(BCE_INSANE_RECV,
5407 	    bce_dump_rx_mbuf_chain(sc, debug_chain_prod, nsegs));
5408 
5409 	DBPRINT(sc, BCE_EXTREME_RECV, "%s(exit): prod = 0x%04X, "
5410 	    "chain_prod = 0x%04X, prod_bseq = 0x%08X\n",
5411 	    __FUNCTION__, *prod, *chain_prod, *prod_bseq);
5412 
5413 bce_get_rx_buf_exit:
5414 	DBEXIT(BCE_EXTREME_RESET | BCE_EXTREME_RECV | BCE_EXTREME_LOAD);
5415 
5416 	return(rc);
5417 }
5418 
5419 
5420 /****************************************************************************/
5421 /* Encapsulate an mbuf cluster into the page chain.                         */
5422 /*                                                                          */
5423 /* Returns:                                                                 */
5424 /*   0 for success, positive value for failure.                             */
5425 /****************************************************************************/
5426 static int
5427 bce_get_pg_buf(struct bce_softc *sc, struct mbuf *m, u16 *prod,
5428 	u16 *prod_idx)
5429 {
5430 	bus_dmamap_t map;
5431 	bus_addr_t busaddr;
5432 	struct mbuf *m_new = NULL;
5433 	struct rx_bd *pgbd;
5434 	int error, rc = 0;
5435 #ifdef BCE_DEBUG
5436 	u16 debug_prod_idx = *prod_idx;
5437 #endif
5438 
5439 	DBENTER(BCE_EXTREME_RESET | BCE_EXTREME_RECV | BCE_EXTREME_LOAD);
5440 
5441 	/* Make sure the inputs are valid. */
5442 	DBRUNIF((*prod_idx > MAX_PG_BD_ALLOC),
5443 	    BCE_PRINTF("%s(%d): page producer out of range: "
5444 	    "0x%04X > 0x%04X\n", __FILE__, __LINE__,
5445 	    *prod_idx, (u16) MAX_PG_BD_ALLOC));
5446 
5447 	DBPRINT(sc, BCE_EXTREME_RECV, "%s(enter): prod = 0x%04X, "
5448 	    "chain_prod = 0x%04X\n", __FUNCTION__, *prod, *prod_idx);
5449 
5450 	/* Update counters if we've hit a new low or run out of pages. */
5451 	DBRUNIF((sc->free_pg_bd < sc->pg_low_watermark),
5452 	    sc->pg_low_watermark = sc->free_pg_bd);
5453 	DBRUNIF((sc->free_pg_bd == sc->max_pg_bd), sc->pg_empty_count++);
5454 
5455 	/* Check whether this is a new mbuf allocation. */
5456 	if (m == NULL) {
5457 
5458 		/* Simulate an mbuf allocation failure. */
5459 		DBRUNIF(DB_RANDOMTRUE(mbuf_alloc_failed_sim_control),
5460 		    sc->mbuf_alloc_failed_count++;
5461 		    sc->mbuf_alloc_failed_sim_count++;
5462 		    rc = ENOBUFS;
5463 		    goto bce_get_pg_buf_exit);
5464 
5465 		/* This is a new mbuf allocation. */
5466 		m_new = m_getcl(M_DONTWAIT, MT_DATA, 0);
5467 		if (m_new == NULL) {
5468 			sc->mbuf_alloc_failed_count++;
5469 			rc = ENOBUFS;
5470 			goto bce_get_pg_buf_exit;
5471 		}
5472 
5473 		DBRUN(sc->debug_pg_mbuf_alloc++);
5474 	} else {
5475 		/* Reuse an existing mbuf. */
5476 		m_new = m;
5477 		m_new->m_data = m_new->m_ext.ext_buf;
5478 	}
5479 
5480 	m_new->m_len = sc->pg_bd_mbuf_alloc_size;
5481 
5482 	/* ToDo: Consider calling m_fragment() to test error handling. */
5483 
5484 	/* Map the mbuf cluster into device memory. */
5485 	map = sc->pg_mbuf_map[*prod_idx];
5486 	error = bus_dmamap_load(sc->pg_mbuf_tag, map, mtod(m_new, void *),
5487 	    sc->pg_bd_mbuf_alloc_size, bce_dma_map_addr,
5488 	    &busaddr, BUS_DMA_NOWAIT);
5489 
5490 	/* Handle any mapping errors. */
5491 	if (error) {
5492 		BCE_PRINTF("%s(%d): Error mapping mbuf into page chain!\n",
5493 		    __FILE__, __LINE__);
5494 
5495 		m_freem(m_new);
5496 		DBRUN(sc->debug_pg_mbuf_alloc--);
5497 
5498 		rc = ENOBUFS;
5499 		goto bce_get_pg_buf_exit;
5500 	}
5501 
5502 	/* ToDo: Do we need bus_dmamap_sync(,,BUS_DMASYNC_PREREAD) here? */
5503 
5504 	/*
5505 	 * The page chain uses the same rx_bd data structure
5506 	 * as the receive chain but doesn't require a byte sequence (bseq).
5507 	 */
5508 	pgbd = &sc->pg_bd_chain[PG_PAGE(*prod_idx)][PG_IDX(*prod_idx)];
5509 
5510 	pgbd->rx_bd_haddr_lo  = htole32(BCE_ADDR_LO(busaddr));
5511 	pgbd->rx_bd_haddr_hi  = htole32(BCE_ADDR_HI(busaddr));
5512 	pgbd->rx_bd_len       = htole32(sc->pg_bd_mbuf_alloc_size);
5513 	pgbd->rx_bd_flags     = htole32(RX_BD_FLAGS_START | RX_BD_FLAGS_END);
5514 
5515 	/* Save the mbuf and update our counter. */
5516 	sc->pg_mbuf_ptr[*prod_idx] = m_new;
5517 	sc->free_pg_bd--;
5518 
5519 	DBRUNMSG(BCE_INSANE_RECV,
5520 	    bce_dump_pg_mbuf_chain(sc, debug_prod_idx, 1));
5521 
5522 	DBPRINT(sc, BCE_EXTREME_RECV, "%s(exit): prod = 0x%04X, "
5523 	    "prod_idx = 0x%04X\n", __FUNCTION__, *prod, *prod_idx);
5524 
5525 bce_get_pg_buf_exit:
5526 	DBEXIT(BCE_EXTREME_RESET | BCE_EXTREME_RECV | BCE_EXTREME_LOAD);
5527 
5528 	return(rc);
5529 }
5530 
5531 
5532 /****************************************************************************/
5533 /* Initialize the TX context memory.                                        */
5534 /*                                                                          */
5535 /* Returns:                                                                 */
5536 /*   Nothing                                                                */
5537 /****************************************************************************/
5538 static void
5539 bce_init_tx_context(struct bce_softc *sc)
5540 {
5541 	u32 val;
5542 
5543 	DBENTER(BCE_VERBOSE_RESET | BCE_VERBOSE_SEND | BCE_VERBOSE_CTX);
5544 
5545 	/* Initialize the context ID for an L2 TX chain. */
5546 	if (BCE_CHIP_NUM(sc) == BCE_CHIP_NUM_5709) {
5547 		/* Set the CID type to support an L2 connection. */
5548 		val = BCE_L2CTX_TX_TYPE_TYPE_L2_XI |
5549 		    BCE_L2CTX_TX_TYPE_SIZE_L2_XI;
5550 		CTX_WR(sc, GET_CID_ADDR(TX_CID), BCE_L2CTX_TX_TYPE_XI, val);
5551 		val = BCE_L2CTX_TX_CMD_TYPE_TYPE_L2_XI | (8 << 16);
5552 		CTX_WR(sc, GET_CID_ADDR(TX_CID),
5553 		    BCE_L2CTX_TX_CMD_TYPE_XI, val);
5554 
5555 		/* Point the hardware to the first page in the chain. */
5556 		val = BCE_ADDR_HI(sc->tx_bd_chain_paddr[0]);
5557 		CTX_WR(sc, GET_CID_ADDR(TX_CID),
5558 		    BCE_L2CTX_TX_TBDR_BHADDR_HI_XI, val);
5559 		val = BCE_ADDR_LO(sc->tx_bd_chain_paddr[0]);
5560 		CTX_WR(sc, GET_CID_ADDR(TX_CID),
5561 		    BCE_L2CTX_TX_TBDR_BHADDR_LO_XI, val);
5562 	} else {
5563 		/* Set the CID type to support an L2 connection. */
5564 		val = BCE_L2CTX_TX_TYPE_TYPE_L2 | BCE_L2CTX_TX_TYPE_SIZE_L2;
5565 		CTX_WR(sc, GET_CID_ADDR(TX_CID), BCE_L2CTX_TX_TYPE, val);
5566 		val = BCE_L2CTX_TX_CMD_TYPE_TYPE_L2 | (8 << 16);
5567 		CTX_WR(sc, GET_CID_ADDR(TX_CID), BCE_L2CTX_TX_CMD_TYPE, val);
5568 
5569 		/* Point the hardware to the first page in the chain. */
5570 		val = BCE_ADDR_HI(sc->tx_bd_chain_paddr[0]);
5571 		CTX_WR(sc, GET_CID_ADDR(TX_CID),
5572 		    BCE_L2CTX_TX_TBDR_BHADDR_HI, val);
5573 		val = BCE_ADDR_LO(sc->tx_bd_chain_paddr[0]);
5574 		CTX_WR(sc, GET_CID_ADDR(TX_CID),
5575 		    BCE_L2CTX_TX_TBDR_BHADDR_LO, val);
5576 	}
5577 
5578 	DBEXIT(BCE_VERBOSE_RESET | BCE_VERBOSE_SEND | BCE_VERBOSE_CTX);
5579 }
5580 
5581 
5582 /****************************************************************************/
5583 /* Allocate memory and initialize the TX data structures.                   */
5584 /*                                                                          */
5585 /* Returns:                                                                 */
5586 /*   0 for success, positive value for failure.                             */
5587 /****************************************************************************/
5588 static int
5589 bce_init_tx_chain(struct bce_softc *sc)
5590 {
5591 	struct tx_bd *txbd;
5592 	int i, rc = 0;
5593 
5594 	DBENTER(BCE_VERBOSE_RESET | BCE_VERBOSE_SEND | BCE_VERBOSE_LOAD);
5595 
5596 	/* Set the initial TX producer/consumer indices. */
5597 	sc->tx_prod        = 0;
5598 	sc->tx_cons        = 0;
5599 	sc->tx_prod_bseq   = 0;
5600 	sc->used_tx_bd     = 0;
5601 	sc->max_tx_bd      = USABLE_TX_BD_ALLOC;
5602 	DBRUN(sc->tx_hi_watermark = 0);
5603 	DBRUN(sc->tx_full_count = 0);
5604 
5605 	/*
5606 	 * The NetXtreme II supports a linked-list structre called
5607 	 * a Buffer Descriptor Chain (or BD chain).  A BD chain
5608 	 * consists of a series of 1 or more chain pages, each of which
5609 	 * consists of a fixed number of BD entries.
5610 	 * The last BD entry on each page is a pointer to the next page
5611 	 * in the chain, and the last pointer in the BD chain
5612 	 * points back to the beginning of the chain.
5613 	 */
5614 
5615 	/* Set the TX next pointer chain entries. */
5616 	for (i = 0; i < sc->tx_pages; i++) {
5617 		int j;
5618 
5619 		txbd = &sc->tx_bd_chain[i][USABLE_TX_BD_PER_PAGE];
5620 
5621 		/* Check if we've reached the last page. */
5622 		if (i == (sc->tx_pages - 1))
5623 			j = 0;
5624 		else
5625 			j = i + 1;
5626 
5627 		txbd->tx_bd_haddr_hi =
5628 		    htole32(BCE_ADDR_HI(sc->tx_bd_chain_paddr[j]));
5629 		txbd->tx_bd_haddr_lo =
5630 		    htole32(BCE_ADDR_LO(sc->tx_bd_chain_paddr[j]));
5631 	}
5632 
5633 	bce_init_tx_context(sc);
5634 
5635 	DBRUNMSG(BCE_INSANE_SEND, bce_dump_tx_chain(sc, 0, TOTAL_TX_BD_ALLOC));
5636 	DBEXIT(BCE_VERBOSE_RESET | BCE_VERBOSE_SEND | BCE_VERBOSE_LOAD);
5637 
5638 	return(rc);
5639 }
5640 
5641 
5642 /****************************************************************************/
5643 /* Free memory and clear the TX data structures.                            */
5644 /*                                                                          */
5645 /* Returns:                                                                 */
5646 /*   Nothing.                                                               */
5647 /****************************************************************************/
5648 static void
5649 bce_free_tx_chain(struct bce_softc *sc)
5650 {
5651 	int i;
5652 
5653 	DBENTER(BCE_VERBOSE_RESET | BCE_VERBOSE_SEND | BCE_VERBOSE_UNLOAD);
5654 
5655 	/* Unmap, unload, and free any mbufs still in the TX mbuf chain. */
5656 	for (i = 0; i < MAX_TX_BD_AVAIL; i++) {
5657 		if (sc->tx_mbuf_ptr[i] != NULL) {
5658 			if (sc->tx_mbuf_map[i] != NULL)
5659 				bus_dmamap_sync(sc->tx_mbuf_tag,
5660 				    sc->tx_mbuf_map[i],
5661 				    BUS_DMASYNC_POSTWRITE);
5662 			m_freem(sc->tx_mbuf_ptr[i]);
5663 			sc->tx_mbuf_ptr[i] = NULL;
5664 			DBRUN(sc->debug_tx_mbuf_alloc--);
5665 		}
5666 	}
5667 
5668 	/* Clear each TX chain page. */
5669 	for (i = 0; i < sc->tx_pages; i++)
5670 		bzero((char *)sc->tx_bd_chain[i], BCE_TX_CHAIN_PAGE_SZ);
5671 
5672 	sc->used_tx_bd = 0;
5673 
5674 	/* Check if we lost any mbufs in the process. */
5675 	DBRUNIF((sc->debug_tx_mbuf_alloc),
5676 	    BCE_PRINTF("%s(%d): Memory leak! Lost %d mbufs "
5677 	    "from tx chain!\n",	__FILE__, __LINE__,
5678 	    sc->debug_tx_mbuf_alloc));
5679 
5680 	DBEXIT(BCE_VERBOSE_RESET | BCE_VERBOSE_SEND | BCE_VERBOSE_UNLOAD);
5681 }
5682 
5683 
5684 /****************************************************************************/
5685 /* Initialize the RX context memory.                                        */
5686 /*                                                                          */
5687 /* Returns:                                                                 */
5688 /*   Nothing                                                                */
5689 /****************************************************************************/
5690 static void
5691 bce_init_rx_context(struct bce_softc *sc)
5692 {
5693 	u32 val;
5694 
5695 	DBENTER(BCE_VERBOSE_RESET | BCE_VERBOSE_RECV | BCE_VERBOSE_CTX);
5696 
5697 	/* Init the type, size, and BD cache levels for the RX context. */
5698 	val = BCE_L2CTX_RX_CTX_TYPE_CTX_BD_CHN_TYPE_VALUE |
5699 	    BCE_L2CTX_RX_CTX_TYPE_SIZE_L2 |
5700 	    (0x02 << BCE_L2CTX_RX_BD_PRE_READ_SHIFT);
5701 
5702 	/*
5703 	 * Set the level for generating pause frames
5704 	 * when the number of available rx_bd's gets
5705 	 * too low (the low watermark) and the level
5706 	 * when pause frames can be stopped (the high
5707 	 * watermark).
5708 	 */
5709 	if (BCE_CHIP_NUM(sc) == BCE_CHIP_NUM_5709) {
5710 		u32 lo_water, hi_water;
5711 
5712 		if (sc->bce_flags & BCE_USING_TX_FLOW_CONTROL) {
5713 			lo_water = BCE_L2CTX_RX_LO_WATER_MARK_DEFAULT;
5714 		} else {
5715 			lo_water = 0;
5716 		}
5717 
5718 		if (lo_water >= USABLE_RX_BD_ALLOC) {
5719 			lo_water = 0;
5720 		}
5721 
5722 		hi_water = USABLE_RX_BD_ALLOC / 4;
5723 
5724 		if (hi_water <= lo_water) {
5725 			lo_water = 0;
5726 		}
5727 
5728 		lo_water /= BCE_L2CTX_RX_LO_WATER_MARK_SCALE;
5729 		hi_water /= BCE_L2CTX_RX_HI_WATER_MARK_SCALE;
5730 
5731 		if (hi_water > 0xf)
5732 			hi_water = 0xf;
5733 		else if (hi_water == 0)
5734 			lo_water = 0;
5735 
5736 		val |= (lo_water << BCE_L2CTX_RX_LO_WATER_MARK_SHIFT) |
5737 		    (hi_water << BCE_L2CTX_RX_HI_WATER_MARK_SHIFT);
5738 	}
5739 
5740 	CTX_WR(sc, GET_CID_ADDR(RX_CID), BCE_L2CTX_RX_CTX_TYPE, val);
5741 
5742 	/* Setup the MQ BIN mapping for l2_ctx_host_bseq. */
5743 	if (BCE_CHIP_NUM(sc) == BCE_CHIP_NUM_5709) {
5744 		val = REG_RD(sc, BCE_MQ_MAP_L2_5);
5745 		REG_WR(sc, BCE_MQ_MAP_L2_5, val | BCE_MQ_MAP_L2_5_ARM);
5746 	}
5747 
5748 	/* Point the hardware to the first page in the chain. */
5749 	val = BCE_ADDR_HI(sc->rx_bd_chain_paddr[0]);
5750 	CTX_WR(sc, GET_CID_ADDR(RX_CID), BCE_L2CTX_RX_NX_BDHADDR_HI, val);
5751 	val = BCE_ADDR_LO(sc->rx_bd_chain_paddr[0]);
5752 	CTX_WR(sc, GET_CID_ADDR(RX_CID), BCE_L2CTX_RX_NX_BDHADDR_LO, val);
5753 
5754 	DBEXIT(BCE_VERBOSE_RESET | BCE_VERBOSE_RECV | BCE_VERBOSE_CTX);
5755 }
5756 
5757 
5758 /****************************************************************************/
5759 /* Allocate memory and initialize the RX data structures.                   */
5760 /*                                                                          */
5761 /* Returns:                                                                 */
5762 /*   0 for success, positive value for failure.                             */
5763 /****************************************************************************/
5764 static int
5765 bce_init_rx_chain(struct bce_softc *sc)
5766 {
5767 	struct rx_bd *rxbd;
5768 	int i, rc = 0;
5769 
5770 	DBENTER(BCE_VERBOSE_RESET | BCE_VERBOSE_RECV | BCE_VERBOSE_LOAD |
5771 	    BCE_VERBOSE_CTX);
5772 
5773 	/* Initialize the RX producer and consumer indices. */
5774 	sc->rx_prod        = 0;
5775 	sc->rx_cons        = 0;
5776 	sc->rx_prod_bseq   = 0;
5777 	sc->free_rx_bd     = USABLE_RX_BD_ALLOC;
5778 	sc->max_rx_bd      = USABLE_RX_BD_ALLOC;
5779 
5780 	/* Initialize the RX next pointer chain entries. */
5781 	for (i = 0; i < sc->rx_pages; i++) {
5782 		int j;
5783 
5784 		rxbd = &sc->rx_bd_chain[i][USABLE_RX_BD_PER_PAGE];
5785 
5786 		/* Check if we've reached the last page. */
5787 		if (i == (sc->rx_pages - 1))
5788 			j = 0;
5789 		else
5790 			j = i + 1;
5791 
5792 		/* Setup the chain page pointers. */
5793 		rxbd->rx_bd_haddr_hi =
5794 		    htole32(BCE_ADDR_HI(sc->rx_bd_chain_paddr[j]));
5795 		rxbd->rx_bd_haddr_lo =
5796 		    htole32(BCE_ADDR_LO(sc->rx_bd_chain_paddr[j]));
5797 	}
5798 
5799 	/* Fill up the RX chain. */
5800 	bce_fill_rx_chain(sc);
5801 
5802 	DBRUN(sc->rx_low_watermark = USABLE_RX_BD_ALLOC);
5803 	DBRUN(sc->rx_empty_count = 0);
5804 	for (i = 0; i < sc->rx_pages; i++) {
5805 		bus_dmamap_sync(sc->rx_bd_chain_tag, sc->rx_bd_chain_map[i],
5806 		    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
5807 	}
5808 
5809 	bce_init_rx_context(sc);
5810 
5811 	DBRUNMSG(BCE_EXTREME_RECV,
5812 	    bce_dump_rx_bd_chain(sc, 0, TOTAL_RX_BD_ALLOC));
5813 	DBEXIT(BCE_VERBOSE_RESET | BCE_VERBOSE_RECV | BCE_VERBOSE_LOAD |
5814 	    BCE_VERBOSE_CTX);
5815 
5816 	/* ToDo: Are there possible failure modes here? */
5817 
5818 	return(rc);
5819 }
5820 
5821 
5822 /****************************************************************************/
5823 /* Add mbufs to the RX chain until its full or an mbuf allocation error     */
5824 /* occurs.                                                                  */
5825 /*                                                                          */
5826 /* Returns:                                                                 */
5827 /*   Nothing                                                                */
5828 /****************************************************************************/
5829 static void
5830 bce_fill_rx_chain(struct bce_softc *sc)
5831 {
5832 	u16 prod, prod_idx;
5833 	u32 prod_bseq;
5834 
5835 	DBENTER(BCE_VERBOSE_RESET | BCE_EXTREME_RECV | BCE_VERBOSE_LOAD |
5836 	    BCE_VERBOSE_CTX);
5837 
5838 	/* Get the RX chain producer indices. */
5839 	prod      = sc->rx_prod;
5840 	prod_bseq = sc->rx_prod_bseq;
5841 
5842 	/* Keep filling the RX chain until it's full. */
5843 	while (sc->free_rx_bd > 0) {
5844 		prod_idx = RX_CHAIN_IDX(prod);
5845 		if (bce_get_rx_buf(sc, NULL, &prod, &prod_idx, &prod_bseq)) {
5846 			/* Bail out if we can't add an mbuf to the chain. */
5847 			break;
5848 		}
5849 		prod = NEXT_RX_BD(prod);
5850 	}
5851 
5852 	/* Save the RX chain producer indices. */
5853 	sc->rx_prod      = prod;
5854 	sc->rx_prod_bseq = prod_bseq;
5855 
5856 	/* We should never end up pointing to a next page pointer. */
5857 	DBRUNIF(((prod & USABLE_RX_BD_PER_PAGE) == USABLE_RX_BD_PER_PAGE),
5858 	    BCE_PRINTF("%s(): Invalid rx_prod value: 0x%04X\n",
5859 	    __FUNCTION__, sc->rx_prod));
5860 
5861 	/* Write the mailbox and tell the chip about the waiting rx_bd's. */
5862 	REG_WR16(sc, MB_GET_CID_ADDR(RX_CID) +
5863 	    BCE_L2MQ_RX_HOST_BDIDX, sc->rx_prod);
5864 	REG_WR(sc, MB_GET_CID_ADDR(RX_CID) +
5865 	    BCE_L2MQ_RX_HOST_BSEQ, sc->rx_prod_bseq);
5866 
5867 	DBEXIT(BCE_VERBOSE_RESET | BCE_EXTREME_RECV | BCE_VERBOSE_LOAD |
5868 	    BCE_VERBOSE_CTX);
5869 }
5870 
5871 
5872 /****************************************************************************/
5873 /* Free memory and clear the RX data structures.                            */
5874 /*                                                                          */
5875 /* Returns:                                                                 */
5876 /*   Nothing.                                                               */
5877 /****************************************************************************/
5878 static void
5879 bce_free_rx_chain(struct bce_softc *sc)
5880 {
5881 	int i;
5882 
5883 	DBENTER(BCE_VERBOSE_RESET | BCE_VERBOSE_RECV | BCE_VERBOSE_UNLOAD);
5884 
5885 	/* Free any mbufs still in the RX mbuf chain. */
5886 	for (i = 0; i < MAX_RX_BD_AVAIL; i++) {
5887 		if (sc->rx_mbuf_ptr[i] != NULL) {
5888 			if (sc->rx_mbuf_map[i] != NULL)
5889 				bus_dmamap_sync(sc->rx_mbuf_tag,
5890 				    sc->rx_mbuf_map[i],
5891 				    BUS_DMASYNC_POSTREAD);
5892 			m_freem(sc->rx_mbuf_ptr[i]);
5893 			sc->rx_mbuf_ptr[i] = NULL;
5894 			DBRUN(sc->debug_rx_mbuf_alloc--);
5895 		}
5896 	}
5897 
5898 	/* Clear each RX chain page. */
5899 	for (i = 0; i < sc->rx_pages; i++)
5900 		if (sc->rx_bd_chain[i] != NULL) {
5901 			bzero((char *)sc->rx_bd_chain[i],
5902 			    BCE_RX_CHAIN_PAGE_SZ);
5903 		}
5904 
5905 	sc->free_rx_bd = sc->max_rx_bd;
5906 
5907 	/* Check if we lost any mbufs in the process. */
5908 	DBRUNIF((sc->debug_rx_mbuf_alloc),
5909 	    BCE_PRINTF("%s(): Memory leak! Lost %d mbufs from rx chain!\n",
5910 	    __FUNCTION__, sc->debug_rx_mbuf_alloc));
5911 
5912 	DBEXIT(BCE_VERBOSE_RESET | BCE_VERBOSE_RECV | BCE_VERBOSE_UNLOAD);
5913 }
5914 
5915 
5916 /****************************************************************************/
5917 /* Allocate memory and initialize the page data structures.                 */
5918 /* Assumes that bce_init_rx_chain() has not already been called.            */
5919 /*                                                                          */
5920 /* Returns:                                                                 */
5921 /*   0 for success, positive value for failure.                             */
5922 /****************************************************************************/
5923 static int
5924 bce_init_pg_chain(struct bce_softc *sc)
5925 {
5926 	struct rx_bd *pgbd;
5927 	int i, rc = 0;
5928 	u32 val;
5929 
5930 	DBENTER(BCE_VERBOSE_RESET | BCE_VERBOSE_RECV | BCE_VERBOSE_LOAD |
5931 		BCE_VERBOSE_CTX);
5932 
5933 	/* Initialize the page producer and consumer indices. */
5934 	sc->pg_prod        = 0;
5935 	sc->pg_cons        = 0;
5936 	sc->free_pg_bd     = USABLE_PG_BD_ALLOC;
5937 	sc->max_pg_bd      = USABLE_PG_BD_ALLOC;
5938 	DBRUN(sc->pg_low_watermark = sc->max_pg_bd);
5939 	DBRUN(sc->pg_empty_count = 0);
5940 
5941 	/* Initialize the page next pointer chain entries. */
5942 	for (i = 0; i < sc->pg_pages; i++) {
5943 		int j;
5944 
5945 		pgbd = &sc->pg_bd_chain[i][USABLE_PG_BD_PER_PAGE];
5946 
5947 		/* Check if we've reached the last page. */
5948 		if (i == (sc->pg_pages - 1))
5949 			j = 0;
5950 		else
5951 			j = i + 1;
5952 
5953 		/* Setup the chain page pointers. */
5954 		pgbd->rx_bd_haddr_hi =
5955 		    htole32(BCE_ADDR_HI(sc->pg_bd_chain_paddr[j]));
5956 		pgbd->rx_bd_haddr_lo =
5957 		    htole32(BCE_ADDR_LO(sc->pg_bd_chain_paddr[j]));
5958 	}
5959 
5960 	/* Setup the MQ BIN mapping for host_pg_bidx. */
5961 	if (BCE_CHIP_NUM(sc) == BCE_CHIP_NUM_5709)
5962 		REG_WR(sc, BCE_MQ_MAP_L2_3, BCE_MQ_MAP_L2_3_DEFAULT);
5963 
5964 	CTX_WR(sc, GET_CID_ADDR(RX_CID), BCE_L2CTX_RX_PG_BUF_SIZE, 0);
5965 
5966 	/* Configure the rx_bd and page chain mbuf cluster size. */
5967 	val = (sc->rx_bd_mbuf_data_len << 16) | sc->pg_bd_mbuf_alloc_size;
5968 	CTX_WR(sc, GET_CID_ADDR(RX_CID), BCE_L2CTX_RX_PG_BUF_SIZE, val);
5969 
5970 	/* Configure the context reserved for jumbo support. */
5971 	CTX_WR(sc, GET_CID_ADDR(RX_CID), BCE_L2CTX_RX_RBDC_KEY,
5972 		BCE_L2CTX_RX_RBDC_JUMBO_KEY);
5973 
5974 	/* Point the hardware to the first page in the page chain. */
5975 	val = BCE_ADDR_HI(sc->pg_bd_chain_paddr[0]);
5976 	CTX_WR(sc, GET_CID_ADDR(RX_CID), BCE_L2CTX_RX_NX_PG_BDHADDR_HI, val);
5977 	val = BCE_ADDR_LO(sc->pg_bd_chain_paddr[0]);
5978 	CTX_WR(sc, GET_CID_ADDR(RX_CID), BCE_L2CTX_RX_NX_PG_BDHADDR_LO, val);
5979 
5980 	/* Fill up the page chain. */
5981 	bce_fill_pg_chain(sc);
5982 
5983 	for (i = 0; i < sc->pg_pages; i++) {
5984 		bus_dmamap_sync(sc->pg_bd_chain_tag, sc->pg_bd_chain_map[i],
5985 		    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
5986 	}
5987 
5988 	DBRUNMSG(BCE_EXTREME_RECV,
5989 	    bce_dump_pg_chain(sc, 0, TOTAL_PG_BD_ALLOC));
5990 	DBEXIT(BCE_VERBOSE_RESET | BCE_VERBOSE_RECV | BCE_VERBOSE_LOAD |
5991 		BCE_VERBOSE_CTX);
5992 	return(rc);
5993 }
5994 
5995 
5996 /****************************************************************************/
5997 /* Add mbufs to the page chain until its full or an mbuf allocation error   */
5998 /* occurs.                                                                  */
5999 /*                                                                          */
6000 /* Returns:                                                                 */
6001 /*   Nothing                                                                */
6002 /****************************************************************************/
6003 static void
6004 bce_fill_pg_chain(struct bce_softc *sc)
6005 {
6006 	u16 prod, prod_idx;
6007 
6008 	DBENTER(BCE_VERBOSE_RESET | BCE_EXTREME_RECV | BCE_VERBOSE_LOAD |
6009 	    BCE_VERBOSE_CTX);
6010 
6011 	/* Get the page chain prodcuer index. */
6012 	prod = sc->pg_prod;
6013 
6014 	/* Keep filling the page chain until it's full. */
6015 	while (sc->free_pg_bd > 0) {
6016 		prod_idx = PG_CHAIN_IDX(prod);
6017 		if (bce_get_pg_buf(sc, NULL, &prod, &prod_idx)) {
6018 			/* Bail out if we can't add an mbuf to the chain. */
6019 			break;
6020 		}
6021 		prod = NEXT_PG_BD(prod);
6022 	}
6023 
6024 	/* Save the page chain producer index. */
6025 	sc->pg_prod = prod;
6026 
6027 	DBRUNIF(((prod & USABLE_RX_BD_PER_PAGE) == USABLE_RX_BD_PER_PAGE),
6028 	    BCE_PRINTF("%s(): Invalid pg_prod value: 0x%04X\n",
6029 	    __FUNCTION__, sc->pg_prod));
6030 
6031 	/*
6032 	 * Write the mailbox and tell the chip about
6033 	 * the new rx_bd's in the page chain.
6034 	 */
6035 	REG_WR16(sc, MB_GET_CID_ADDR(RX_CID) +
6036 	    BCE_L2MQ_RX_HOST_PG_BDIDX, sc->pg_prod);
6037 
6038 	DBEXIT(BCE_VERBOSE_RESET | BCE_EXTREME_RECV | BCE_VERBOSE_LOAD |
6039 	    BCE_VERBOSE_CTX);
6040 }
6041 
6042 
6043 /****************************************************************************/
6044 /* Free memory and clear the RX data structures.                            */
6045 /*                                                                          */
6046 /* Returns:                                                                 */
6047 /*   Nothing.                                                               */
6048 /****************************************************************************/
6049 static void
6050 bce_free_pg_chain(struct bce_softc *sc)
6051 {
6052 	int i;
6053 
6054 	DBENTER(BCE_VERBOSE_RESET | BCE_VERBOSE_RECV | BCE_VERBOSE_UNLOAD);
6055 
6056 	/* Free any mbufs still in the mbuf page chain. */
6057 	for (i = 0; i < MAX_PG_BD_AVAIL; i++) {
6058 		if (sc->pg_mbuf_ptr[i] != NULL) {
6059 			if (sc->pg_mbuf_map[i] != NULL)
6060 				bus_dmamap_sync(sc->pg_mbuf_tag,
6061 				    sc->pg_mbuf_map[i],
6062 				    BUS_DMASYNC_POSTREAD);
6063 			m_freem(sc->pg_mbuf_ptr[i]);
6064 			sc->pg_mbuf_ptr[i] = NULL;
6065 			DBRUN(sc->debug_pg_mbuf_alloc--);
6066 		}
6067 	}
6068 
6069 	/* Clear each page chain pages. */
6070 	for (i = 0; i < sc->pg_pages; i++)
6071 		bzero((char *)sc->pg_bd_chain[i], BCE_PG_CHAIN_PAGE_SZ);
6072 
6073 	sc->free_pg_bd = sc->max_pg_bd;
6074 
6075 	/* Check if we lost any mbufs in the process. */
6076 	DBRUNIF((sc->debug_pg_mbuf_alloc),
6077 	    BCE_PRINTF("%s(): Memory leak! Lost %d mbufs from page chain!\n",
6078 	    __FUNCTION__, sc->debug_pg_mbuf_alloc));
6079 
6080 	DBEXIT(BCE_VERBOSE_RESET | BCE_VERBOSE_RECV | BCE_VERBOSE_UNLOAD);
6081 }
6082 
6083 
6084 /****************************************************************************/
6085 /* Set media options.                                                       */
6086 /*                                                                          */
6087 /* Returns:                                                                 */
6088 /*   0 for success, positive value for failure.                             */
6089 /****************************************************************************/
6090 static int
6091 bce_ifmedia_upd(struct ifnet *ifp)
6092 {
6093 	struct bce_softc *sc = ifp->if_softc;
6094 	int error;
6095 
6096 	DBENTER(BCE_VERBOSE);
6097 
6098 	BCE_LOCK(sc);
6099 	error = bce_ifmedia_upd_locked(ifp);
6100 	BCE_UNLOCK(sc);
6101 
6102 	DBEXIT(BCE_VERBOSE);
6103 	return (error);
6104 }
6105 
6106 
6107 /****************************************************************************/
6108 /* Set media options.                                                       */
6109 /*                                                                          */
6110 /* Returns:                                                                 */
6111 /*   Nothing.                                                               */
6112 /****************************************************************************/
6113 static int
6114 bce_ifmedia_upd_locked(struct ifnet *ifp)
6115 {
6116 	struct bce_softc *sc = ifp->if_softc;
6117 	struct mii_data *mii;
6118 	struct mii_softc *miisc;
6119 	int error;
6120 
6121 	DBENTER(BCE_VERBOSE_PHY);
6122 
6123 	error = 0;
6124 	BCE_LOCK_ASSERT(sc);
6125 
6126 	mii = device_get_softc(sc->bce_miibus);
6127 
6128 	/* Make sure the MII bus has been enumerated. */
6129 	if (mii) {
6130 		sc->bce_link_up = FALSE;
6131 		LIST_FOREACH(miisc, &mii->mii_phys, mii_list)
6132 		    PHY_RESET(miisc);
6133 		error = mii_mediachg(mii);
6134 	}
6135 
6136 	DBEXIT(BCE_VERBOSE_PHY);
6137 	return (error);
6138 }
6139 
6140 
6141 /****************************************************************************/
6142 /* Reports current media status.                                            */
6143 /*                                                                          */
6144 /* Returns:                                                                 */
6145 /*   Nothing.                                                               */
6146 /****************************************************************************/
6147 static void
6148 bce_ifmedia_sts(struct ifnet *ifp, struct ifmediareq *ifmr)
6149 {
6150 	struct bce_softc *sc = ifp->if_softc;
6151 	struct mii_data *mii;
6152 
6153 	DBENTER(BCE_VERBOSE_PHY);
6154 
6155 	BCE_LOCK(sc);
6156 
6157 	if ((ifp->if_flags & IFF_UP) == 0) {
6158 		BCE_UNLOCK(sc);
6159 		return;
6160 	}
6161 	mii = device_get_softc(sc->bce_miibus);
6162 
6163 	mii_pollstat(mii);
6164 	ifmr->ifm_active = mii->mii_media_active;
6165 	ifmr->ifm_status = mii->mii_media_status;
6166 
6167 	BCE_UNLOCK(sc);
6168 
6169 	DBEXIT(BCE_VERBOSE_PHY);
6170 }
6171 
6172 
6173 /****************************************************************************/
6174 /* Handles PHY generated interrupt events.                                  */
6175 /*                                                                          */
6176 /* Returns:                                                                 */
6177 /*   Nothing.                                                               */
6178 /****************************************************************************/
6179 static void
6180 bce_phy_intr(struct bce_softc *sc)
6181 {
6182 	u32 new_link_state, old_link_state;
6183 
6184 	DBENTER(BCE_VERBOSE_PHY | BCE_VERBOSE_INTR);
6185 
6186 	DBRUN(sc->phy_interrupts++);
6187 
6188 	new_link_state = sc->status_block->status_attn_bits &
6189 	    STATUS_ATTN_BITS_LINK_STATE;
6190 	old_link_state = sc->status_block->status_attn_bits_ack &
6191 	    STATUS_ATTN_BITS_LINK_STATE;
6192 
6193 	/* Handle any changes if the link state has changed. */
6194 	if (new_link_state != old_link_state) {
6195 
6196 		/* Update the status_attn_bits_ack field. */
6197 		if (new_link_state) {
6198 			REG_WR(sc, BCE_PCICFG_STATUS_BIT_SET_CMD,
6199 			    STATUS_ATTN_BITS_LINK_STATE);
6200 			DBPRINT(sc, BCE_INFO_PHY, "%s(): Link is now UP.\n",
6201 			    __FUNCTION__);
6202 		}
6203 		else {
6204 			REG_WR(sc, BCE_PCICFG_STATUS_BIT_CLEAR_CMD,
6205 			    STATUS_ATTN_BITS_LINK_STATE);
6206 			DBPRINT(sc, BCE_INFO_PHY, "%s(): Link is now DOWN.\n",
6207 			    __FUNCTION__);
6208 		}
6209 
6210 		/*
6211 		 * Assume link is down and allow
6212 		 * tick routine to update the state
6213 		 * based on the actual media state.
6214 		 */
6215 		sc->bce_link_up = FALSE;
6216 		callout_stop(&sc->bce_tick_callout);
6217 		bce_tick(sc);
6218 	}
6219 
6220 	/* Acknowledge the link change interrupt. */
6221 	REG_WR(sc, BCE_EMAC_STATUS, BCE_EMAC_STATUS_LINK_CHANGE);
6222 
6223 	DBEXIT(BCE_VERBOSE_PHY | BCE_VERBOSE_INTR);
6224 }
6225 
6226 
6227 /****************************************************************************/
6228 /* Reads the receive consumer value from the status block (skipping over    */
6229 /* chain page pointer if necessary).                                        */
6230 /*                                                                          */
6231 /* Returns:                                                                 */
6232 /*   hw_cons                                                                */
6233 /****************************************************************************/
6234 static inline u16
6235 bce_get_hw_rx_cons(struct bce_softc *sc)
6236 {
6237 	u16 hw_cons;
6238 
6239 	rmb();
6240 	hw_cons = sc->status_block->status_rx_quick_consumer_index0;
6241 	if ((hw_cons & USABLE_RX_BD_PER_PAGE) == USABLE_RX_BD_PER_PAGE)
6242 		hw_cons++;
6243 
6244 	return hw_cons;
6245 }
6246 
6247 /****************************************************************************/
6248 /* Handles received frame interrupt events.                                 */
6249 /*                                                                          */
6250 /* Returns:                                                                 */
6251 /*   Nothing.                                                               */
6252 /****************************************************************************/
6253 static void
6254 bce_rx_intr(struct bce_softc *sc)
6255 {
6256 	struct ifnet *ifp = sc->bce_ifp;
6257 	struct l2_fhdr *l2fhdr;
6258 	struct ether_vlan_header *vh;
6259 	unsigned int pkt_len;
6260 	u16 sw_rx_cons, sw_rx_cons_idx, hw_rx_cons;
6261 	u32 status;
6262 	unsigned int rem_len;
6263 	u16 sw_pg_cons, sw_pg_cons_idx;
6264 
6265 	DBENTER(BCE_VERBOSE_RECV | BCE_VERBOSE_INTR);
6266 	DBRUN(sc->interrupts_rx++);
6267 	DBPRINT(sc, BCE_EXTREME_RECV, "%s(enter): rx_prod = 0x%04X, "
6268 	    "rx_cons = 0x%04X, rx_prod_bseq = 0x%08X\n",
6269 	    __FUNCTION__, sc->rx_prod, sc->rx_cons, sc->rx_prod_bseq);
6270 
6271 	/* Prepare the RX chain pages to be accessed by the host CPU. */
6272 	for (int i = 0; i < sc->rx_pages; i++)
6273 		bus_dmamap_sync(sc->rx_bd_chain_tag,
6274 		    sc->rx_bd_chain_map[i], BUS_DMASYNC_POSTREAD);
6275 
6276 	/* Prepare the page chain pages to be accessed by the host CPU. */
6277 	if (bce_hdr_split == TRUE) {
6278 		for (int i = 0; i < sc->pg_pages; i++)
6279 			bus_dmamap_sync(sc->pg_bd_chain_tag,
6280 			    sc->pg_bd_chain_map[i], BUS_DMASYNC_POSTREAD);
6281 	}
6282 
6283 	/* Get the hardware's view of the RX consumer index. */
6284 	hw_rx_cons = sc->hw_rx_cons = bce_get_hw_rx_cons(sc);
6285 
6286 	/* Get working copies of the driver's view of the consumer indices. */
6287 	sw_rx_cons = sc->rx_cons;
6288 	sw_pg_cons = sc->pg_cons;
6289 
6290 	/* Update some debug statistics counters */
6291 	DBRUNIF((sc->free_rx_bd < sc->rx_low_watermark),
6292 	    sc->rx_low_watermark = sc->free_rx_bd);
6293 	DBRUNIF((sc->free_rx_bd == sc->max_rx_bd),
6294 	    sc->rx_empty_count++);
6295 
6296 	/* Scan through the receive chain as long as there is work to do */
6297 	/* ToDo: Consider setting a limit on the number of packets processed. */
6298 	rmb();
6299 	while (sw_rx_cons != hw_rx_cons) {
6300 		struct mbuf *m0;
6301 
6302 		/* Convert the producer/consumer indices to an actual rx_bd index. */
6303 		sw_rx_cons_idx = RX_CHAIN_IDX(sw_rx_cons);
6304 
6305 		/* Unmap the mbuf from DMA space. */
6306 		bus_dmamap_sync(sc->rx_mbuf_tag,
6307 		    sc->rx_mbuf_map[sw_rx_cons_idx],
6308 		    BUS_DMASYNC_POSTREAD);
6309 		bus_dmamap_unload(sc->rx_mbuf_tag,
6310 		    sc->rx_mbuf_map[sw_rx_cons_idx]);
6311 
6312 		/* Remove the mbuf from the RX chain. */
6313 		m0 = sc->rx_mbuf_ptr[sw_rx_cons_idx];
6314 		sc->rx_mbuf_ptr[sw_rx_cons_idx] = NULL;
6315 		DBRUN(sc->debug_rx_mbuf_alloc--);
6316 		sc->free_rx_bd++;
6317 
6318 		if(m0 == NULL) {
6319 			DBPRINT(sc, BCE_EXTREME_RECV,
6320 			    "%s(): Oops! Empty mbuf pointer "
6321 			    "found in sc->rx_mbuf_ptr[0x%04X]!\n",
6322 			    __FUNCTION__, sw_rx_cons_idx);
6323 			goto bce_rx_int_next_rx;
6324 		}
6325 
6326 		/*
6327  		 * Frames received on the NetXteme II are prepended
6328  		 * with an l2_fhdr structure which provides status
6329  		 * information about the received frame (including
6330  		 * VLAN tags and checksum info).  The frames are
6331 		 * also automatically adjusted to word align the IP
6332  		 * header (i.e. two null bytes are inserted before
6333  		 * the Ethernet	header).  As a result the data
6334  		 * DMA'd by the controller into	the mbuf looks
6335 		 * like this:
6336 		 *
6337 		 * +---------+-----+---------------------+-----+
6338 		 * | l2_fhdr | pad | packet data         | FCS |
6339 		 * +---------+-----+---------------------+-----+
6340 		 *
6341  		 * The l2_fhdr needs to be checked and skipped and
6342  		 * the FCS needs to be stripped before sending the
6343 		 * packet up the stack.
6344 		 */
6345 		l2fhdr  = mtod(m0, struct l2_fhdr *);
6346 
6347 		/* Get the packet data + FCS length and the status. */
6348 		pkt_len = l2fhdr->l2_fhdr_pkt_len;
6349 		status  = l2fhdr->l2_fhdr_status;
6350 
6351 		/*
6352 		 * Skip over the l2_fhdr and pad, resulting in the
6353 		 * following data in the mbuf:
6354 		 * +---------------------+-----+
6355 		 * | packet data         | FCS |
6356 		 * +---------------------+-----+
6357 		 */
6358 		m_adj(m0, sizeof(struct l2_fhdr) + ETHER_ALIGN);
6359 
6360 		/*
6361  		 * When split header mode is used, an ethernet frame
6362  		 * may be split across the receive chain and the
6363  		 * page chain. If that occurs an mbuf cluster must be
6364  		 * reassembled from the individual mbuf pieces.
6365 		 */
6366 		if (bce_hdr_split == TRUE) {
6367 			/*
6368 			 * Check whether the received frame fits in a single
6369 			 * mbuf or not (i.e. packet data + FCS <=
6370 			 * sc->rx_bd_mbuf_data_len bytes).
6371 			 */
6372 			if (pkt_len > m0->m_len) {
6373 				/*
6374 				 * The received frame is larger than a single mbuf.
6375 				 * If the frame was a TCP frame then only the TCP
6376 				 * header is placed in the mbuf, the remaining
6377 				 * payload (including FCS) is placed in the page
6378 				 * chain, the SPLIT flag is set, and the header
6379 				 * length is placed in the IP checksum field.
6380 				 * If the frame is not a TCP frame then the mbuf
6381 				 * is filled and the remaining bytes are placed
6382 				 * in the page chain.
6383 				 */
6384 
6385 				DBPRINT(sc, BCE_INFO_RECV, "%s(): Found a large "
6386 					"packet.\n", __FUNCTION__);
6387 				DBRUN(sc->split_header_frames_rcvd++);
6388 
6389 				/*
6390 				 * When the page chain is enabled and the TCP
6391 				 * header has been split from the TCP payload,
6392 				 * the ip_xsum structure will reflect the length
6393 				 * of the TCP header, not the IP checksum.  Set
6394 				 * the packet length of the mbuf accordingly.
6395 				 */
6396 				if (status & L2_FHDR_STATUS_SPLIT) {
6397 					m0->m_len = l2fhdr->l2_fhdr_ip_xsum;
6398 					DBRUN(sc->split_header_tcp_frames_rcvd++);
6399 				}
6400 
6401 				rem_len = pkt_len - m0->m_len;
6402 
6403 				/* Pull mbufs off the page chain for any remaining data. */
6404 				while (rem_len > 0) {
6405 					struct mbuf *m_pg;
6406 
6407 					sw_pg_cons_idx = PG_CHAIN_IDX(sw_pg_cons);
6408 
6409 					/* Remove the mbuf from the page chain. */
6410 					m_pg = sc->pg_mbuf_ptr[sw_pg_cons_idx];
6411 					sc->pg_mbuf_ptr[sw_pg_cons_idx] = NULL;
6412 					DBRUN(sc->debug_pg_mbuf_alloc--);
6413 					sc->free_pg_bd++;
6414 
6415 					/* Unmap the page chain mbuf from DMA space. */
6416 					bus_dmamap_sync(sc->pg_mbuf_tag,
6417 						sc->pg_mbuf_map[sw_pg_cons_idx],
6418 						BUS_DMASYNC_POSTREAD);
6419 					bus_dmamap_unload(sc->pg_mbuf_tag,
6420 						sc->pg_mbuf_map[sw_pg_cons_idx]);
6421 
6422 					/* Adjust the mbuf length. */
6423 					if (rem_len < m_pg->m_len) {
6424 						/* The mbuf chain is complete. */
6425 						m_pg->m_len = rem_len;
6426 						rem_len = 0;
6427 					} else {
6428 						/* More packet data is waiting. */
6429 						rem_len -= m_pg->m_len;
6430 					}
6431 
6432 					/* Concatenate the mbuf cluster to the mbuf. */
6433 					m_cat(m0, m_pg);
6434 
6435 					sw_pg_cons = NEXT_PG_BD(sw_pg_cons);
6436 				}
6437 
6438 				/* Set the total packet length. */
6439 				m0->m_pkthdr.len = pkt_len;
6440 
6441 			} else {
6442 				/*
6443 				 * The received packet is small and fits in a
6444 				 * single mbuf (i.e. the l2_fhdr + pad + packet +
6445 				 * FCS <= MHLEN).  In other words, the packet is
6446 				 * 154 bytes or less in size.
6447 				 */
6448 
6449 				DBPRINT(sc, BCE_INFO_RECV, "%s(): Found a small "
6450 					"packet.\n", __FUNCTION__);
6451 
6452 				/* Set the total packet length. */
6453 				m0->m_pkthdr.len = m0->m_len = pkt_len;
6454 			}
6455 		} else
6456 			/* Set the total packet length. */
6457 			m0->m_pkthdr.len = m0->m_len = pkt_len;
6458 
6459 		/* Remove the trailing Ethernet FCS. */
6460 		m_adj(m0, -ETHER_CRC_LEN);
6461 
6462 		/* Check that the resulting mbuf chain is valid. */
6463 		DBRUN(m_sanity(m0, FALSE));
6464 		DBRUNIF(((m0->m_len < ETHER_HDR_LEN) |
6465 		    (m0->m_pkthdr.len > BCE_MAX_JUMBO_ETHER_MTU_VLAN)),
6466 		    BCE_PRINTF("Invalid Ethernet frame size!\n");
6467 		    m_print(m0, 128));
6468 
6469 		DBRUNIF(DB_RANDOMTRUE(l2fhdr_error_sim_control),
6470 		    sc->l2fhdr_error_sim_count++;
6471 		    status = status | L2_FHDR_ERRORS_PHY_DECODE);
6472 
6473 		/* Check the received frame for errors. */
6474 		if (status & (L2_FHDR_ERRORS_BAD_CRC |
6475 		    L2_FHDR_ERRORS_PHY_DECODE | L2_FHDR_ERRORS_ALIGNMENT |
6476 		    L2_FHDR_ERRORS_TOO_SHORT  | L2_FHDR_ERRORS_GIANT_FRAME)) {
6477 
6478 			/* Log the error and release the mbuf. */
6479 			ifp->if_ierrors++;
6480 			sc->l2fhdr_error_count++;
6481 
6482 			m_freem(m0);
6483 			m0 = NULL;
6484 			goto bce_rx_int_next_rx;
6485 		}
6486 
6487 		/* Send the packet to the appropriate interface. */
6488 		m0->m_pkthdr.rcvif = ifp;
6489 
6490 		/* Assume no hardware checksum. */
6491 		m0->m_pkthdr.csum_flags = 0;
6492 
6493 		/* Validate the checksum if offload enabled. */
6494 		if (ifp->if_capenable & IFCAP_RXCSUM) {
6495 
6496 			/* Check for an IP datagram. */
6497 		 	if (!(status & L2_FHDR_STATUS_SPLIT) &&
6498 			    (status & L2_FHDR_STATUS_IP_DATAGRAM)) {
6499 				m0->m_pkthdr.csum_flags |= CSUM_IP_CHECKED;
6500 				DBRUN(sc->csum_offload_ip++);
6501 				/* Check if the IP checksum is valid. */
6502 				if ((l2fhdr->l2_fhdr_ip_xsum ^ 0xffff) == 0)
6503 					m0->m_pkthdr.csum_flags |=
6504 					    CSUM_IP_VALID;
6505 			}
6506 
6507 			/* Check for a valid TCP/UDP frame. */
6508 			if (status & (L2_FHDR_STATUS_TCP_SEGMENT |
6509 			    L2_FHDR_STATUS_UDP_DATAGRAM)) {
6510 
6511 				/* Check for a good TCP/UDP checksum. */
6512 				if ((status & (L2_FHDR_ERRORS_TCP_XSUM |
6513 				    L2_FHDR_ERRORS_UDP_XSUM)) == 0) {
6514 					DBRUN(sc->csum_offload_tcp_udp++);
6515 					m0->m_pkthdr.csum_data =
6516 					    l2fhdr->l2_fhdr_tcp_udp_xsum;
6517 					m0->m_pkthdr.csum_flags |=
6518 					    (CSUM_DATA_VALID
6519 					    | CSUM_PSEUDO_HDR);
6520 				}
6521 			}
6522 		}
6523 
6524 		/* Attach the VLAN tag.	*/
6525 		if (status & L2_FHDR_STATUS_L2_VLAN_TAG) {
6526 			DBRUN(sc->vlan_tagged_frames_rcvd++);
6527 			if (ifp->if_capenable & IFCAP_VLAN_HWTAGGING) {
6528 				DBRUN(sc->vlan_tagged_frames_stripped++);
6529 #if __FreeBSD_version < 700000
6530 				VLAN_INPUT_TAG(ifp, m0,
6531 				    l2fhdr->l2_fhdr_vlan_tag, continue);
6532 #else
6533 				m0->m_pkthdr.ether_vtag =
6534 				    l2fhdr->l2_fhdr_vlan_tag;
6535 				m0->m_flags |= M_VLANTAG;
6536 #endif
6537 			} else {
6538 				/*
6539 				 * bce(4) controllers can't disable VLAN
6540 				 * tag stripping if management firmware
6541 				 * (ASF/IPMI/UMP) is running. So we always
6542 				 * strip VLAN tag and manually reconstruct
6543 				 * the VLAN frame by appending stripped
6544 				 * VLAN tag in driver if VLAN tag stripping
6545 				 * was disabled.
6546 				 *
6547 				 * TODO: LLC SNAP handling.
6548 				 */
6549 				bcopy(mtod(m0, uint8_t *),
6550 				    mtod(m0, uint8_t *) - ETHER_VLAN_ENCAP_LEN,
6551 				    ETHER_ADDR_LEN * 2);
6552 				m0->m_data -= ETHER_VLAN_ENCAP_LEN;
6553 				vh = mtod(m0, struct ether_vlan_header *);
6554 				vh->evl_encap_proto = htons(ETHERTYPE_VLAN);
6555 				vh->evl_tag = htons(l2fhdr->l2_fhdr_vlan_tag);
6556 				m0->m_pkthdr.len += ETHER_VLAN_ENCAP_LEN;
6557 				m0->m_len += ETHER_VLAN_ENCAP_LEN;
6558 			}
6559 		}
6560 
6561 		/* Increment received packet statistics. */
6562 		ifp->if_ipackets++;
6563 
6564 bce_rx_int_next_rx:
6565 		sw_rx_cons = NEXT_RX_BD(sw_rx_cons);
6566 
6567 		/* If we have a packet, pass it up the stack */
6568 		if (m0) {
6569 			/* Make sure we don't lose our place when we release the lock. */
6570 			sc->rx_cons = sw_rx_cons;
6571 			sc->pg_cons = sw_pg_cons;
6572 
6573 			BCE_UNLOCK(sc);
6574 			(*ifp->if_input)(ifp, m0);
6575 			BCE_LOCK(sc);
6576 
6577 			/* Recover our place. */
6578 			sw_rx_cons = sc->rx_cons;
6579 			sw_pg_cons = sc->pg_cons;
6580 		}
6581 
6582 		/* Refresh hw_cons to see if there's new work */
6583 		if (sw_rx_cons == hw_rx_cons)
6584 			hw_rx_cons = sc->hw_rx_cons = bce_get_hw_rx_cons(sc);
6585 	}
6586 
6587 	/* No new packets.  Refill the page chain. */
6588 	if (bce_hdr_split == TRUE) {
6589 		sc->pg_cons = sw_pg_cons;
6590 		bce_fill_pg_chain(sc);
6591 	}
6592 
6593 	/* No new packets.  Refill the RX chain. */
6594 	sc->rx_cons = sw_rx_cons;
6595 	bce_fill_rx_chain(sc);
6596 
6597 	/* Prepare the page chain pages to be accessed by the NIC. */
6598 	for (int i = 0; i < sc->rx_pages; i++)
6599 		bus_dmamap_sync(sc->rx_bd_chain_tag,
6600 		    sc->rx_bd_chain_map[i], BUS_DMASYNC_PREWRITE);
6601 
6602 	if (bce_hdr_split == TRUE) {
6603 		for (int i = 0; i < sc->pg_pages; i++)
6604 			bus_dmamap_sync(sc->pg_bd_chain_tag,
6605 			    sc->pg_bd_chain_map[i], BUS_DMASYNC_PREWRITE);
6606 	}
6607 
6608 	DBPRINT(sc, BCE_EXTREME_RECV, "%s(exit): rx_prod = 0x%04X, "
6609 	    "rx_cons = 0x%04X, rx_prod_bseq = 0x%08X\n",
6610 	    __FUNCTION__, sc->rx_prod, sc->rx_cons, sc->rx_prod_bseq);
6611 	DBEXIT(BCE_VERBOSE_RECV | BCE_VERBOSE_INTR);
6612 }
6613 
6614 
6615 /****************************************************************************/
6616 /* Reads the transmit consumer value from the status block (skipping over   */
6617 /* chain page pointer if necessary).                                        */
6618 /*                                                                          */
6619 /* Returns:                                                                 */
6620 /*   hw_cons                                                                */
6621 /****************************************************************************/
6622 static inline u16
6623 bce_get_hw_tx_cons(struct bce_softc *sc)
6624 {
6625 	u16 hw_cons;
6626 
6627 	mb();
6628 	hw_cons = sc->status_block->status_tx_quick_consumer_index0;
6629 	if ((hw_cons & USABLE_TX_BD_PER_PAGE) == USABLE_TX_BD_PER_PAGE)
6630 		hw_cons++;
6631 
6632 	return hw_cons;
6633 }
6634 
6635 
6636 /****************************************************************************/
6637 /* Handles transmit completion interrupt events.                            */
6638 /*                                                                          */
6639 /* Returns:                                                                 */
6640 /*   Nothing.                                                               */
6641 /****************************************************************************/
6642 static void
6643 bce_tx_intr(struct bce_softc *sc)
6644 {
6645 	struct ifnet *ifp = sc->bce_ifp;
6646 	u16 hw_tx_cons, sw_tx_cons, sw_tx_chain_cons;
6647 
6648 	DBENTER(BCE_VERBOSE_SEND | BCE_VERBOSE_INTR);
6649 	DBRUN(sc->interrupts_tx++);
6650 	DBPRINT(sc, BCE_EXTREME_SEND, "%s(enter): tx_prod = 0x%04X, "
6651 	    "tx_cons = 0x%04X, tx_prod_bseq = 0x%08X\n",
6652 	    __FUNCTION__, sc->tx_prod, sc->tx_cons, sc->tx_prod_bseq);
6653 
6654 	BCE_LOCK_ASSERT(sc);
6655 
6656 	/* Get the hardware's view of the TX consumer index. */
6657 	hw_tx_cons = sc->hw_tx_cons = bce_get_hw_tx_cons(sc);
6658 	sw_tx_cons = sc->tx_cons;
6659 
6660 	/* Prevent speculative reads of the status block. */
6661 	bus_space_barrier(sc->bce_btag, sc->bce_bhandle, 0, 0,
6662 	    BUS_SPACE_BARRIER_READ);
6663 
6664 	/* Cycle through any completed TX chain page entries. */
6665 	while (sw_tx_cons != hw_tx_cons) {
6666 #ifdef BCE_DEBUG
6667 		struct tx_bd *txbd = NULL;
6668 #endif
6669 		sw_tx_chain_cons = TX_CHAIN_IDX(sw_tx_cons);
6670 
6671 		DBPRINT(sc, BCE_INFO_SEND,
6672 		    "%s(): hw_tx_cons = 0x%04X, sw_tx_cons = 0x%04X, "
6673 		    "sw_tx_chain_cons = 0x%04X\n",
6674 		    __FUNCTION__, hw_tx_cons, sw_tx_cons, sw_tx_chain_cons);
6675 
6676 		DBRUNIF((sw_tx_chain_cons > MAX_TX_BD_ALLOC),
6677 		    BCE_PRINTF("%s(%d): TX chain consumer out of range! "
6678 		    " 0x%04X > 0x%04X\n", __FILE__, __LINE__, sw_tx_chain_cons,
6679 		    (int) MAX_TX_BD_ALLOC);
6680 		    bce_breakpoint(sc));
6681 
6682 		DBRUN(txbd = &sc->tx_bd_chain[TX_PAGE(sw_tx_chain_cons)]
6683 		    [TX_IDX(sw_tx_chain_cons)]);
6684 
6685 		DBRUNIF((txbd == NULL),
6686 		    BCE_PRINTF("%s(%d): Unexpected NULL tx_bd[0x%04X]!\n",
6687 		    __FILE__, __LINE__, sw_tx_chain_cons);
6688 		    bce_breakpoint(sc));
6689 
6690 		DBRUNMSG(BCE_INFO_SEND, BCE_PRINTF("%s(): ", __FUNCTION__);
6691 		    bce_dump_txbd(sc, sw_tx_chain_cons, txbd));
6692 
6693 		/*
6694 		 * Free the associated mbuf. Remember
6695 		 * that only the last tx_bd of a packet
6696 		 * has an mbuf pointer and DMA map.
6697 		 */
6698 		if (sc->tx_mbuf_ptr[sw_tx_chain_cons] != NULL) {
6699 
6700 			/* Validate that this is the last tx_bd. */
6701 			DBRUNIF((!(txbd->tx_bd_flags & TX_BD_FLAGS_END)),
6702 			    BCE_PRINTF("%s(%d): tx_bd END flag not set but "
6703 			    "txmbuf == NULL!\n", __FILE__, __LINE__);
6704 			    bce_breakpoint(sc));
6705 
6706 			DBRUNMSG(BCE_INFO_SEND,
6707 			    BCE_PRINTF("%s(): Unloading map/freeing mbuf "
6708 			    "from tx_bd[0x%04X]\n", __FUNCTION__,
6709 			    sw_tx_chain_cons));
6710 
6711 			/* Unmap the mbuf. */
6712 			bus_dmamap_unload(sc->tx_mbuf_tag,
6713 			    sc->tx_mbuf_map[sw_tx_chain_cons]);
6714 
6715 			/* Free the mbuf. */
6716 			m_freem(sc->tx_mbuf_ptr[sw_tx_chain_cons]);
6717 			sc->tx_mbuf_ptr[sw_tx_chain_cons] = NULL;
6718 			DBRUN(sc->debug_tx_mbuf_alloc--);
6719 
6720 			ifp->if_opackets++;
6721 		}
6722 
6723 		sc->used_tx_bd--;
6724 		sw_tx_cons = NEXT_TX_BD(sw_tx_cons);
6725 
6726 		/* Refresh hw_cons to see if there's new work. */
6727 		hw_tx_cons = sc->hw_tx_cons = bce_get_hw_tx_cons(sc);
6728 
6729 		/* Prevent speculative reads of the status block. */
6730 		bus_space_barrier(sc->bce_btag, sc->bce_bhandle, 0, 0,
6731 		    BUS_SPACE_BARRIER_READ);
6732 	}
6733 
6734 	/* Clear the TX timeout timer. */
6735 	sc->watchdog_timer = 0;
6736 
6737 	/* Clear the tx hardware queue full flag. */
6738 	if (sc->used_tx_bd < sc->max_tx_bd) {
6739 		DBRUNIF((ifp->if_drv_flags & IFF_DRV_OACTIVE),
6740 		    DBPRINT(sc, BCE_INFO_SEND,
6741 		    "%s(): Open TX chain! %d/%d (used/total)\n",
6742 		    __FUNCTION__, sc->used_tx_bd, sc->max_tx_bd));
6743 		ifp->if_drv_flags &= ~IFF_DRV_OACTIVE;
6744 	}
6745 
6746 	sc->tx_cons = sw_tx_cons;
6747 
6748 	DBPRINT(sc, BCE_EXTREME_SEND, "%s(exit): tx_prod = 0x%04X, "
6749 	    "tx_cons = 0x%04X, tx_prod_bseq = 0x%08X\n",
6750 	    __FUNCTION__, sc->tx_prod, sc->tx_cons, sc->tx_prod_bseq);
6751 	DBEXIT(BCE_VERBOSE_SEND | BCE_VERBOSE_INTR);
6752 }
6753 
6754 
6755 /****************************************************************************/
6756 /* Disables interrupt generation.                                           */
6757 /*                                                                          */
6758 /* Returns:                                                                 */
6759 /*   Nothing.                                                               */
6760 /****************************************************************************/
6761 static void
6762 bce_disable_intr(struct bce_softc *sc)
6763 {
6764 	DBENTER(BCE_VERBOSE_INTR);
6765 
6766 	REG_WR(sc, BCE_PCICFG_INT_ACK_CMD, BCE_PCICFG_INT_ACK_CMD_MASK_INT);
6767 	REG_RD(sc, BCE_PCICFG_INT_ACK_CMD);
6768 
6769 	DBEXIT(BCE_VERBOSE_INTR);
6770 }
6771 
6772 
6773 /****************************************************************************/
6774 /* Enables interrupt generation.                                            */
6775 /*                                                                          */
6776 /* Returns:                                                                 */
6777 /*   Nothing.                                                               */
6778 /****************************************************************************/
6779 static void
6780 bce_enable_intr(struct bce_softc *sc, int coal_now)
6781 {
6782 	DBENTER(BCE_VERBOSE_INTR);
6783 
6784 	REG_WR(sc, BCE_PCICFG_INT_ACK_CMD,
6785 	    BCE_PCICFG_INT_ACK_CMD_INDEX_VALID |
6786 	    BCE_PCICFG_INT_ACK_CMD_MASK_INT | sc->last_status_idx);
6787 
6788 	REG_WR(sc, BCE_PCICFG_INT_ACK_CMD,
6789 	    BCE_PCICFG_INT_ACK_CMD_INDEX_VALID | sc->last_status_idx);
6790 
6791 	/* Force an immediate interrupt (whether there is new data or not). */
6792 	if (coal_now)
6793 		REG_WR(sc, BCE_HC_COMMAND, sc->hc_command | BCE_HC_COMMAND_COAL_NOW);
6794 
6795 	DBEXIT(BCE_VERBOSE_INTR);
6796 }
6797 
6798 
6799 /****************************************************************************/
6800 /* Handles controller initialization.                                       */
6801 /*                                                                          */
6802 /* Returns:                                                                 */
6803 /*   Nothing.                                                               */
6804 /****************************************************************************/
6805 static void
6806 bce_init_locked(struct bce_softc *sc)
6807 {
6808 	struct ifnet *ifp;
6809 	u32 ether_mtu = 0;
6810 
6811 	DBENTER(BCE_VERBOSE_RESET);
6812 
6813 	BCE_LOCK_ASSERT(sc);
6814 
6815 	ifp = sc->bce_ifp;
6816 
6817 	/* Check if the driver is still running and bail out if it is. */
6818 	if (ifp->if_drv_flags & IFF_DRV_RUNNING)
6819 		goto bce_init_locked_exit;
6820 
6821 	bce_stop(sc);
6822 
6823 	if (bce_reset(sc, BCE_DRV_MSG_CODE_RESET)) {
6824 		BCE_PRINTF("%s(%d): Controller reset failed!\n",
6825 		    __FILE__, __LINE__);
6826 		goto bce_init_locked_exit;
6827 	}
6828 
6829 	if (bce_chipinit(sc)) {
6830 		BCE_PRINTF("%s(%d): Controller initialization failed!\n",
6831 		    __FILE__, __LINE__);
6832 		goto bce_init_locked_exit;
6833 	}
6834 
6835 	if (bce_blockinit(sc)) {
6836 		BCE_PRINTF("%s(%d): Block initialization failed!\n",
6837 		    __FILE__, __LINE__);
6838 		goto bce_init_locked_exit;
6839 	}
6840 
6841 	/* Load our MAC address. */
6842 	bcopy(IF_LLADDR(sc->bce_ifp), sc->eaddr, ETHER_ADDR_LEN);
6843 	bce_set_mac_addr(sc);
6844 
6845 	/*
6846 	 * Calculate and program the hardware Ethernet MTU
6847  	 * size. Be generous on the receive if we have room
6848  	 * and allowed by the user.
6849 	 */
6850 	if (bce_strict_rx_mtu == TRUE)
6851 		ether_mtu = ifp->if_mtu;
6852 	else {
6853 		if (bce_hdr_split == TRUE) {
6854 			if (ifp->if_mtu <= (sc->rx_bd_mbuf_data_len +
6855 				   sc->pg_bd_mbuf_alloc_size))
6856 					ether_mtu = sc->rx_bd_mbuf_data_len +
6857 					   sc->pg_bd_mbuf_alloc_size;
6858 			else
6859 				ether_mtu = ifp->if_mtu;
6860 		} else {
6861 			if (ifp->if_mtu <= sc->rx_bd_mbuf_data_len)
6862 				ether_mtu = sc->rx_bd_mbuf_data_len;
6863 			else
6864 				ether_mtu = ifp->if_mtu;
6865 		}
6866 	}
6867 
6868 	ether_mtu += ETHER_HDR_LEN + ETHER_VLAN_ENCAP_LEN + ETHER_CRC_LEN;
6869 
6870 	DBPRINT(sc, BCE_INFO_MISC, "%s(): setting h/w mtu = %d\n",
6871 	    __FUNCTION__, ether_mtu);
6872 
6873 	/* Program the mtu, enabling jumbo frame support if necessary. */
6874 	if (ether_mtu > (ETHER_MAX_LEN + ETHER_VLAN_ENCAP_LEN))
6875 		REG_WR(sc, BCE_EMAC_RX_MTU_SIZE,
6876 		    min(ether_mtu, BCE_MAX_JUMBO_ETHER_MTU) |
6877 		    BCE_EMAC_RX_MTU_SIZE_JUMBO_ENA);
6878 	else
6879 		REG_WR(sc, BCE_EMAC_RX_MTU_SIZE, ether_mtu);
6880 
6881 	/* Program appropriate promiscuous/multicast filtering. */
6882 	bce_set_rx_mode(sc);
6883 
6884 	if (bce_hdr_split == TRUE) {
6885 		DBPRINT(sc, BCE_INFO_LOAD, "%s(): pg_bd_mbuf_alloc_size = %d\n",
6886 			__FUNCTION__, sc->pg_bd_mbuf_alloc_size);
6887 
6888 		/* Init page buffer descriptor chain. */
6889 		bce_init_pg_chain(sc);
6890 	}
6891 
6892 	/* Init RX buffer descriptor chain. */
6893 	bce_init_rx_chain(sc);
6894 
6895 	/* Init TX buffer descriptor chain. */
6896 	bce_init_tx_chain(sc);
6897 
6898 	/* Enable host interrupts. */
6899 	bce_enable_intr(sc, 1);
6900 
6901 	bce_ifmedia_upd_locked(ifp);
6902 
6903 	/* Let the OS know the driver is up and running. */
6904 	ifp->if_drv_flags |= IFF_DRV_RUNNING;
6905 	ifp->if_drv_flags &= ~IFF_DRV_OACTIVE;
6906 
6907 	callout_reset(&sc->bce_tick_callout, hz, bce_tick, sc);
6908 
6909 bce_init_locked_exit:
6910 	DBEXIT(BCE_VERBOSE_RESET);
6911 }
6912 
6913 
6914 /****************************************************************************/
6915 /* Initialize the controller just enough so that any management firmware    */
6916 /* running on the device will continue to operate correctly.                */
6917 /*                                                                          */
6918 /* Returns:                                                                 */
6919 /*   Nothing.                                                               */
6920 /****************************************************************************/
6921 static void
6922 bce_mgmt_init_locked(struct bce_softc *sc)
6923 {
6924 	struct ifnet *ifp;
6925 
6926 	DBENTER(BCE_VERBOSE_RESET);
6927 
6928 	BCE_LOCK_ASSERT(sc);
6929 
6930 	/* Bail out if management firmware is not running. */
6931 	if (!(sc->bce_flags & BCE_MFW_ENABLE_FLAG)) {
6932 		DBPRINT(sc, BCE_VERBOSE_SPECIAL,
6933 		    "No management firmware running...\n");
6934 		goto bce_mgmt_init_locked_exit;
6935 	}
6936 
6937 	ifp = sc->bce_ifp;
6938 
6939 	/* Enable all critical blocks in the MAC. */
6940 	REG_WR(sc, BCE_MISC_ENABLE_SET_BITS, BCE_MISC_ENABLE_DEFAULT);
6941 	REG_RD(sc, BCE_MISC_ENABLE_SET_BITS);
6942 	DELAY(20);
6943 
6944 	bce_ifmedia_upd_locked(ifp);
6945 
6946 bce_mgmt_init_locked_exit:
6947 	DBEXIT(BCE_VERBOSE_RESET);
6948 }
6949 
6950 
6951 /****************************************************************************/
6952 /* Handles controller initialization when called from an unlocked routine.  */
6953 /*                                                                          */
6954 /* Returns:                                                                 */
6955 /*   Nothing.                                                               */
6956 /****************************************************************************/
6957 static void
6958 bce_init(void *xsc)
6959 {
6960 	struct bce_softc *sc = xsc;
6961 
6962 	DBENTER(BCE_VERBOSE_RESET);
6963 
6964 	BCE_LOCK(sc);
6965 	bce_init_locked(sc);
6966 	BCE_UNLOCK(sc);
6967 
6968 	DBEXIT(BCE_VERBOSE_RESET);
6969 }
6970 
6971 
6972 /****************************************************************************/
6973 /* Modifies an mbuf for TSO on the hardware.                                */
6974 /*                                                                          */
6975 /* Returns:                                                                 */
6976 /*   Pointer to a modified mbuf.                                            */
6977 /****************************************************************************/
6978 static struct mbuf *
6979 bce_tso_setup(struct bce_softc *sc, struct mbuf **m_head, u16 *flags)
6980 {
6981 	struct mbuf *m;
6982 	struct ether_header *eh;
6983 	struct ip *ip;
6984 	struct tcphdr *th;
6985 	u16 etype;
6986 	int hdr_len, ip_hlen = 0, tcp_hlen = 0, ip_len = 0;
6987 
6988 	DBRUN(sc->tso_frames_requested++);
6989 
6990 	/* Controller may modify mbuf chains. */
6991 	if (M_WRITABLE(*m_head) == 0) {
6992 		m = m_dup(*m_head, M_DONTWAIT);
6993 		m_freem(*m_head);
6994 		if (m == NULL) {
6995 			sc->mbuf_alloc_failed_count++;
6996 			*m_head = NULL;
6997 			return (NULL);
6998 		}
6999 		*m_head = m;
7000 	}
7001 
7002 	/*
7003 	 * For TSO the controller needs two pieces of info,
7004 	 * the MSS and the IP+TCP options length.
7005 	 */
7006 	m = m_pullup(*m_head, sizeof(struct ether_header) + sizeof(struct ip));
7007 	if (m == NULL) {
7008 		*m_head = NULL;
7009 		return (NULL);
7010 	}
7011 	eh = mtod(m, struct ether_header *);
7012 	etype = ntohs(eh->ether_type);
7013 
7014 	/* Check for supported TSO Ethernet types (only IPv4 for now) */
7015 	switch (etype) {
7016 	case ETHERTYPE_IP:
7017 		ip = (struct ip *)(m->m_data + sizeof(struct ether_header));
7018 		/* TSO only supported for TCP protocol. */
7019 		if (ip->ip_p != IPPROTO_TCP) {
7020 			BCE_PRINTF("%s(%d): TSO enabled for non-TCP frame!.\n",
7021 			    __FILE__, __LINE__);
7022 			m_freem(*m_head);
7023 			*m_head = NULL;
7024 			return (NULL);
7025 		}
7026 
7027 		/* Get IP header length in bytes (min 20) */
7028 		ip_hlen = ip->ip_hl << 2;
7029 		m = m_pullup(*m_head, sizeof(struct ether_header) + ip_hlen +
7030 		    sizeof(struct tcphdr));
7031 		if (m == NULL) {
7032 			*m_head = NULL;
7033 			return (NULL);
7034 		}
7035 
7036 		/* Get the TCP header length in bytes (min 20) */
7037 		ip = (struct ip *)(m->m_data + sizeof(struct ether_header));
7038 		th = (struct tcphdr *)((caddr_t)ip + ip_hlen);
7039 		tcp_hlen = (th->th_off << 2);
7040 
7041 		/* Make sure all IP/TCP options live in the same buffer. */
7042 		m = m_pullup(*m_head,  sizeof(struct ether_header)+ ip_hlen +
7043 		    tcp_hlen);
7044 		if (m == NULL) {
7045 			*m_head = NULL;
7046 			return (NULL);
7047 		}
7048 
7049 		/* Clear IP header length and checksum, will be calc'd by h/w. */
7050 		ip = (struct ip *)(m->m_data + sizeof(struct ether_header));
7051 		ip_len = ip->ip_len;
7052 		ip->ip_len = 0;
7053 		ip->ip_sum = 0;
7054 		break;
7055 	case ETHERTYPE_IPV6:
7056 		BCE_PRINTF("%s(%d): TSO over IPv6 not supported!.\n",
7057 		    __FILE__, __LINE__);
7058 		m_freem(*m_head);
7059 		*m_head = NULL;
7060 		return (NULL);
7061 		/* NOT REACHED */
7062 	default:
7063 		BCE_PRINTF("%s(%d): TSO enabled for unsupported protocol!.\n",
7064 		    __FILE__, __LINE__);
7065 		m_freem(*m_head);
7066 		*m_head = NULL;
7067 		return (NULL);
7068 	}
7069 
7070 	hdr_len = sizeof(struct ether_header) + ip_hlen + tcp_hlen;
7071 
7072 	DBPRINT(sc, BCE_EXTREME_SEND, "%s(): hdr_len = %d, e_hlen = %d, "
7073 	    "ip_hlen = %d, tcp_hlen = %d, ip_len = %d\n",
7074 	    __FUNCTION__, hdr_len, (int) sizeof(struct ether_header), ip_hlen,
7075 	    tcp_hlen, ip_len);
7076 
7077 	/* Set the LSO flag in the TX BD */
7078 	*flags |= TX_BD_FLAGS_SW_LSO;
7079 
7080 	/* Set the length of IP + TCP options (in 32 bit words) */
7081 	*flags |= (((ip_hlen + tcp_hlen - sizeof(struct ip) -
7082 	    sizeof(struct tcphdr)) >> 2) << 8);
7083 
7084 	DBRUN(sc->tso_frames_completed++);
7085 	return (*m_head);
7086 }
7087 
7088 
7089 /****************************************************************************/
7090 /* Encapsultes an mbuf cluster into the tx_bd chain structure and makes the */
7091 /* memory visible to the controller.                                        */
7092 /*                                                                          */
7093 /* Returns:                                                                 */
7094 /*   0 for success, positive value for failure.                             */
7095 /* Modified:                                                                */
7096 /*   m_head: May be set to NULL if MBUF is excessively fragmented.          */
7097 /****************************************************************************/
7098 static int
7099 bce_tx_encap(struct bce_softc *sc, struct mbuf **m_head)
7100 {
7101 	bus_dma_segment_t segs[BCE_MAX_SEGMENTS];
7102 	bus_dmamap_t map;
7103 	struct tx_bd *txbd = NULL;
7104 	struct mbuf *m0;
7105 	u16 prod, chain_prod, mss = 0, vlan_tag = 0, flags = 0;
7106 	u32 prod_bseq;
7107 
7108 #ifdef BCE_DEBUG
7109 	u16 debug_prod;
7110 #endif
7111 
7112 	int i, error, nsegs, rc = 0;
7113 
7114 	DBENTER(BCE_VERBOSE_SEND);
7115 
7116 	/* Make sure we have room in the TX chain. */
7117 	if (sc->used_tx_bd >= sc->max_tx_bd)
7118 		goto bce_tx_encap_exit;
7119 
7120 	/* Transfer any checksum offload flags to the bd. */
7121 	m0 = *m_head;
7122 	if (m0->m_pkthdr.csum_flags) {
7123 		if (m0->m_pkthdr.csum_flags & CSUM_TSO) {
7124 			m0 = bce_tso_setup(sc, m_head, &flags);
7125 			if (m0 == NULL) {
7126 				DBRUN(sc->tso_frames_failed++);
7127 				goto bce_tx_encap_exit;
7128 			}
7129 			mss = htole16(m0->m_pkthdr.tso_segsz);
7130 		} else {
7131 			if (m0->m_pkthdr.csum_flags & CSUM_IP)
7132 				flags |= TX_BD_FLAGS_IP_CKSUM;
7133 			if (m0->m_pkthdr.csum_flags & (CSUM_TCP | CSUM_UDP))
7134 				flags |= TX_BD_FLAGS_TCP_UDP_CKSUM;
7135 		}
7136 	}
7137 
7138 	/* Transfer any VLAN tags to the bd. */
7139 	if (m0->m_flags & M_VLANTAG) {
7140 		flags |= TX_BD_FLAGS_VLAN_TAG;
7141 		vlan_tag = m0->m_pkthdr.ether_vtag;
7142 	}
7143 
7144 	/* Map the mbuf into DMAable memory. */
7145 	prod = sc->tx_prod;
7146 	chain_prod = TX_CHAIN_IDX(prod);
7147 	map = sc->tx_mbuf_map[chain_prod];
7148 
7149 	/* Map the mbuf into our DMA address space. */
7150 	error = bus_dmamap_load_mbuf_sg(sc->tx_mbuf_tag, map, m0,
7151 	    segs, &nsegs, BUS_DMA_NOWAIT);
7152 
7153 	/* Check if the DMA mapping was successful */
7154 	if (error == EFBIG) {
7155 		sc->mbuf_frag_count++;
7156 
7157 		/* Try to defrag the mbuf. */
7158 		m0 = m_collapse(*m_head, M_DONTWAIT, BCE_MAX_SEGMENTS);
7159 		if (m0 == NULL) {
7160 			/* Defrag was unsuccessful */
7161 			m_freem(*m_head);
7162 			*m_head = NULL;
7163 			sc->mbuf_alloc_failed_count++;
7164 			rc = ENOBUFS;
7165 			goto bce_tx_encap_exit;
7166 		}
7167 
7168 		/* Defrag was successful, try mapping again */
7169 		*m_head = m0;
7170 		error = bus_dmamap_load_mbuf_sg(sc->tx_mbuf_tag,
7171 		    map, m0, segs, &nsegs, BUS_DMA_NOWAIT);
7172 
7173 		/* Still getting an error after a defrag. */
7174 		if (error == ENOMEM) {
7175 			/* Insufficient DMA buffers available. */
7176 			sc->dma_map_addr_tx_failed_count++;
7177 			rc = error;
7178 			goto bce_tx_encap_exit;
7179 		} else if (error != 0) {
7180 			/* Release it and return an error. */
7181 			BCE_PRINTF("%s(%d): Unknown error mapping mbuf into "
7182 			    "TX chain!\n", __FILE__, __LINE__);
7183 			m_freem(m0);
7184 			*m_head = NULL;
7185 			sc->dma_map_addr_tx_failed_count++;
7186 			rc = ENOBUFS;
7187 			goto bce_tx_encap_exit;
7188 		}
7189 	} else if (error == ENOMEM) {
7190 		/* Insufficient DMA buffers available. */
7191 		sc->dma_map_addr_tx_failed_count++;
7192 		rc = error;
7193 		goto bce_tx_encap_exit;
7194 	} else if (error != 0) {
7195 		m_freem(m0);
7196 		*m_head = NULL;
7197 		sc->dma_map_addr_tx_failed_count++;
7198 		rc = error;
7199 		goto bce_tx_encap_exit;
7200 	}
7201 
7202 	/* Make sure there's room in the chain */
7203 	if (nsegs > (sc->max_tx_bd - sc->used_tx_bd)) {
7204 		bus_dmamap_unload(sc->tx_mbuf_tag, map);
7205 		rc = ENOBUFS;
7206 		goto bce_tx_encap_exit;
7207 	}
7208 
7209 	/* prod points to an empty tx_bd at this point. */
7210 	prod_bseq  = sc->tx_prod_bseq;
7211 
7212 #ifdef BCE_DEBUG
7213 	debug_prod = chain_prod;
7214 #endif
7215 
7216 	DBPRINT(sc, BCE_INFO_SEND,
7217 	    "%s(start): prod = 0x%04X, chain_prod = 0x%04X, "
7218 	    "prod_bseq = 0x%08X\n",
7219 	    __FUNCTION__, prod, chain_prod, prod_bseq);
7220 
7221 	/*
7222 	 * Cycle through each mbuf segment that makes up
7223 	 * the outgoing frame, gathering the mapping info
7224 	 * for that segment and creating a tx_bd for
7225 	 * the mbuf.
7226 	 */
7227 	for (i = 0; i < nsegs ; i++) {
7228 
7229 		chain_prod = TX_CHAIN_IDX(prod);
7230 		txbd= &sc->tx_bd_chain[TX_PAGE(chain_prod)]
7231 		    [TX_IDX(chain_prod)];
7232 
7233 		txbd->tx_bd_haddr_lo =
7234 		    htole32(BCE_ADDR_LO(segs[i].ds_addr));
7235 		txbd->tx_bd_haddr_hi =
7236 		    htole32(BCE_ADDR_HI(segs[i].ds_addr));
7237 		txbd->tx_bd_mss_nbytes = htole32(mss << 16) |
7238 		    htole16(segs[i].ds_len);
7239 		txbd->tx_bd_vlan_tag = htole16(vlan_tag);
7240 		txbd->tx_bd_flags = htole16(flags);
7241 		prod_bseq += segs[i].ds_len;
7242 		if (i == 0)
7243 			txbd->tx_bd_flags |= htole16(TX_BD_FLAGS_START);
7244 		prod = NEXT_TX_BD(prod);
7245 	}
7246 
7247 	/* Set the END flag on the last TX buffer descriptor. */
7248 	txbd->tx_bd_flags |= htole16(TX_BD_FLAGS_END);
7249 
7250 	DBRUNMSG(BCE_EXTREME_SEND,
7251 	    bce_dump_tx_chain(sc, debug_prod, nsegs));
7252 
7253 	/*
7254 	 * Ensure that the mbuf pointer for this transmission
7255 	 * is placed at the array index of the last
7256 	 * descriptor in this chain.  This is done
7257 	 * because a single map is used for all
7258 	 * segments of the mbuf and we don't want to
7259 	 * unload the map before all of the segments
7260 	 * have been freed.
7261 	 */
7262 	sc->tx_mbuf_ptr[chain_prod] = m0;
7263 	sc->used_tx_bd += nsegs;
7264 
7265 	/* Update some debug statistic counters */
7266 	DBRUNIF((sc->used_tx_bd > sc->tx_hi_watermark),
7267 	    sc->tx_hi_watermark = sc->used_tx_bd);
7268 	DBRUNIF((sc->used_tx_bd == sc->max_tx_bd), sc->tx_full_count++);
7269 	DBRUNIF(sc->debug_tx_mbuf_alloc++);
7270 
7271 	DBRUNMSG(BCE_EXTREME_SEND, bce_dump_tx_mbuf_chain(sc, chain_prod, 1));
7272 
7273 	/* prod points to the next free tx_bd at this point. */
7274 	sc->tx_prod = prod;
7275 	sc->tx_prod_bseq = prod_bseq;
7276 
7277 	/* Tell the chip about the waiting TX frames. */
7278 	REG_WR16(sc, MB_GET_CID_ADDR(TX_CID) +
7279 	    BCE_L2MQ_TX_HOST_BIDX, sc->tx_prod);
7280 	REG_WR(sc, MB_GET_CID_ADDR(TX_CID) +
7281 	    BCE_L2MQ_TX_HOST_BSEQ, sc->tx_prod_bseq);
7282 
7283 bce_tx_encap_exit:
7284 	DBEXIT(BCE_VERBOSE_SEND);
7285 	return(rc);
7286 }
7287 
7288 
7289 /****************************************************************************/
7290 /* Main transmit routine when called from another routine with a lock.      */
7291 /*                                                                          */
7292 /* Returns:                                                                 */
7293 /*   Nothing.                                                               */
7294 /****************************************************************************/
7295 static void
7296 bce_start_locked(struct ifnet *ifp)
7297 {
7298 	struct bce_softc *sc = ifp->if_softc;
7299 	struct mbuf *m_head = NULL;
7300 	int count = 0;
7301 	u16 tx_prod, tx_chain_prod;
7302 
7303 	DBENTER(BCE_VERBOSE_SEND | BCE_VERBOSE_CTX);
7304 
7305 	BCE_LOCK_ASSERT(sc);
7306 
7307 	/* prod points to the next free tx_bd. */
7308 	tx_prod = sc->tx_prod;
7309 	tx_chain_prod = TX_CHAIN_IDX(tx_prod);
7310 
7311 	DBPRINT(sc, BCE_INFO_SEND,
7312 	    "%s(enter): tx_prod = 0x%04X, tx_chain_prod = 0x%04X, "
7313 	    "tx_prod_bseq = 0x%08X\n",
7314 	    __FUNCTION__, tx_prod, tx_chain_prod, sc->tx_prod_bseq);
7315 
7316 	/* If there's no link or the transmit queue is empty then just exit. */
7317 	if (sc->bce_link_up == FALSE) {
7318 		DBPRINT(sc, BCE_INFO_SEND, "%s(): No link.\n",
7319 		    __FUNCTION__);
7320 		goto bce_start_locked_exit;
7321 	}
7322 
7323 	if (IFQ_DRV_IS_EMPTY(&ifp->if_snd)) {
7324 		DBPRINT(sc, BCE_INFO_SEND, "%s(): Transmit queue empty.\n",
7325 		    __FUNCTION__);
7326 		goto bce_start_locked_exit;
7327 	}
7328 
7329 	/*
7330 	 * Keep adding entries while there is space in the ring.
7331 	 */
7332 	while (sc->used_tx_bd < sc->max_tx_bd) {
7333 
7334 		/* Check for any frames to send. */
7335 		IFQ_DRV_DEQUEUE(&ifp->if_snd, m_head);
7336 
7337 		/* Stop when the transmit queue is empty. */
7338 		if (m_head == NULL)
7339 			break;
7340 
7341 		/*
7342 		 * Pack the data into the transmit ring. If we
7343 		 * don't have room, place the mbuf back at the
7344 		 * head of the queue and set the OACTIVE flag
7345 		 * to wait for the NIC to drain the chain.
7346 		 */
7347 		if (bce_tx_encap(sc, &m_head)) {
7348 			if (m_head != NULL)
7349 				IFQ_DRV_PREPEND(&ifp->if_snd, m_head);
7350 			ifp->if_drv_flags |= IFF_DRV_OACTIVE;
7351 			DBPRINT(sc, BCE_INFO_SEND,
7352 			    "TX chain is closed for business! Total "
7353 			    "tx_bd used = %d\n", sc->used_tx_bd);
7354 			break;
7355 		}
7356 
7357 		count++;
7358 
7359 		/* Send a copy of the frame to any BPF listeners. */
7360 		ETHER_BPF_MTAP(ifp, m_head);
7361 	}
7362 
7363 	/* Exit if no packets were dequeued. */
7364 	if (count == 0) {
7365 		DBPRINT(sc, BCE_VERBOSE_SEND, "%s(): No packets were "
7366 		    "dequeued\n", __FUNCTION__);
7367 		goto bce_start_locked_exit;
7368 	}
7369 
7370 	DBPRINT(sc, BCE_VERBOSE_SEND, "%s(): Inserted %d frames into "
7371 	    "send queue.\n", __FUNCTION__, count);
7372 
7373 	/* Set the tx timeout. */
7374 	sc->watchdog_timer = BCE_TX_TIMEOUT;
7375 
7376 	DBRUNMSG(BCE_VERBOSE_SEND, bce_dump_ctx(sc, TX_CID));
7377 	DBRUNMSG(BCE_VERBOSE_SEND, bce_dump_mq_regs(sc));
7378 
7379 bce_start_locked_exit:
7380 	DBEXIT(BCE_VERBOSE_SEND | BCE_VERBOSE_CTX);
7381 	return;
7382 }
7383 
7384 
7385 /****************************************************************************/
7386 /* Main transmit routine when called from another routine without a lock.   */
7387 /*                                                                          */
7388 /* Returns:                                                                 */
7389 /*   Nothing.                                                               */
7390 /****************************************************************************/
7391 static void
7392 bce_start(struct ifnet *ifp)
7393 {
7394 	struct bce_softc *sc = ifp->if_softc;
7395 
7396 	DBENTER(BCE_VERBOSE_SEND);
7397 
7398 	BCE_LOCK(sc);
7399 	bce_start_locked(ifp);
7400 	BCE_UNLOCK(sc);
7401 
7402 	DBEXIT(BCE_VERBOSE_SEND);
7403 }
7404 
7405 
7406 /****************************************************************************/
7407 /* Handles any IOCTL calls from the operating system.                       */
7408 /*                                                                          */
7409 /* Returns:                                                                 */
7410 /*   0 for success, positive value for failure.                             */
7411 /****************************************************************************/
7412 static int
7413 bce_ioctl(struct ifnet *ifp, u_long command, caddr_t data)
7414 {
7415 	struct bce_softc *sc = ifp->if_softc;
7416 	struct ifreq *ifr = (struct ifreq *) data;
7417 	struct mii_data *mii;
7418 	int mask, error = 0;
7419 
7420 	DBENTER(BCE_VERBOSE_MISC);
7421 
7422 	switch(command) {
7423 
7424 	/* Set the interface MTU. */
7425 	case SIOCSIFMTU:
7426 		/* Check that the MTU setting is supported. */
7427 		if ((ifr->ifr_mtu < BCE_MIN_MTU) ||
7428 			(ifr->ifr_mtu > BCE_MAX_JUMBO_MTU)) {
7429 			error = EINVAL;
7430 			break;
7431 		}
7432 
7433 		DBPRINT(sc, BCE_INFO_MISC,
7434 		    "SIOCSIFMTU: Changing MTU from %d to %d\n",
7435 		    (int) ifp->if_mtu, (int) ifr->ifr_mtu);
7436 
7437 		BCE_LOCK(sc);
7438 		ifp->if_mtu = ifr->ifr_mtu;
7439 
7440 		if (bce_hdr_split == FALSE) {
7441 			if (ifp->if_drv_flags & IFF_DRV_RUNNING) {
7442 				/*
7443 				 * Because allocation size is used in RX
7444 				 * buffer allocation, stop controller if
7445 				 * it is already running.
7446 				 */
7447 				bce_stop(sc);
7448 			}
7449 
7450 			bce_get_rx_buffer_sizes(sc, ifp->if_mtu);
7451 
7452 			bce_init_locked(sc);
7453 		}
7454 
7455 		BCE_UNLOCK(sc);
7456 		break;
7457 
7458 	/* Set interface flags. */
7459 	case SIOCSIFFLAGS:
7460 		DBPRINT(sc, BCE_VERBOSE_SPECIAL, "Received SIOCSIFFLAGS\n");
7461 
7462 		BCE_LOCK(sc);
7463 
7464 		/* Check if the interface is up. */
7465 		if (ifp->if_flags & IFF_UP) {
7466 			if (ifp->if_drv_flags & IFF_DRV_RUNNING) {
7467 				/* Change promiscuous/multicast flags as necessary. */
7468 				bce_set_rx_mode(sc);
7469 			} else {
7470 				/* Start the HW */
7471 				bce_init_locked(sc);
7472 			}
7473 		} else {
7474 			/* The interface is down, check if driver is running. */
7475 			if (ifp->if_drv_flags & IFF_DRV_RUNNING) {
7476 				bce_stop(sc);
7477 
7478 				/* If MFW is running, restart the controller a bit. */
7479 				if (sc->bce_flags & BCE_MFW_ENABLE_FLAG) {
7480 					bce_reset(sc, BCE_DRV_MSG_CODE_RESET);
7481 					bce_chipinit(sc);
7482 					bce_mgmt_init_locked(sc);
7483 				}
7484 			}
7485 		}
7486 
7487 		BCE_UNLOCK(sc);
7488 		break;
7489 
7490 	/* Add/Delete multicast address */
7491 	case SIOCADDMULTI:
7492 	case SIOCDELMULTI:
7493 		DBPRINT(sc, BCE_VERBOSE_MISC,
7494 		    "Received SIOCADDMULTI/SIOCDELMULTI\n");
7495 
7496 		BCE_LOCK(sc);
7497 		if (ifp->if_drv_flags & IFF_DRV_RUNNING)
7498 			bce_set_rx_mode(sc);
7499 		BCE_UNLOCK(sc);
7500 
7501 		break;
7502 
7503 	/* Set/Get Interface media */
7504 	case SIOCSIFMEDIA:
7505 	case SIOCGIFMEDIA:
7506 		DBPRINT(sc, BCE_VERBOSE_MISC,
7507 		    "Received SIOCSIFMEDIA/SIOCGIFMEDIA\n");
7508 
7509 		mii = device_get_softc(sc->bce_miibus);
7510 		error = ifmedia_ioctl(ifp, ifr,
7511 		    &mii->mii_media, command);
7512 		break;
7513 
7514 	/* Set interface capability */
7515 	case SIOCSIFCAP:
7516 		mask = ifr->ifr_reqcap ^ ifp->if_capenable;
7517 		DBPRINT(sc, BCE_INFO_MISC,
7518 		    "Received SIOCSIFCAP = 0x%08X\n", (u32) mask);
7519 
7520 		/* Toggle the TX checksum capabilities enable flag. */
7521 		if (mask & IFCAP_TXCSUM &&
7522 		    ifp->if_capabilities & IFCAP_TXCSUM) {
7523 			ifp->if_capenable ^= IFCAP_TXCSUM;
7524 			if (IFCAP_TXCSUM & ifp->if_capenable)
7525 				ifp->if_hwassist |= BCE_IF_HWASSIST;
7526 			else
7527 				ifp->if_hwassist &= ~BCE_IF_HWASSIST;
7528 		}
7529 
7530 		/* Toggle the RX checksum capabilities enable flag. */
7531 		if (mask & IFCAP_RXCSUM &&
7532 		    ifp->if_capabilities & IFCAP_RXCSUM)
7533 			ifp->if_capenable ^= IFCAP_RXCSUM;
7534 
7535 		/* Toggle the TSO capabilities enable flag. */
7536 		if (bce_tso_enable && (mask & IFCAP_TSO4) &&
7537 		    ifp->if_capabilities & IFCAP_TSO4) {
7538 			ifp->if_capenable ^= IFCAP_TSO4;
7539 			if (IFCAP_TSO4 & ifp->if_capenable)
7540 				ifp->if_hwassist |= CSUM_TSO;
7541 			else
7542 				ifp->if_hwassist &= ~CSUM_TSO;
7543 		}
7544 
7545 		if (mask & IFCAP_VLAN_HWCSUM &&
7546 		    ifp->if_capabilities & IFCAP_VLAN_HWCSUM)
7547 			ifp->if_capenable ^= IFCAP_VLAN_HWCSUM;
7548 
7549 		if ((mask & IFCAP_VLAN_HWTSO) != 0 &&
7550 		    (ifp->if_capabilities & IFCAP_VLAN_HWTSO) != 0)
7551 			ifp->if_capenable ^= IFCAP_VLAN_HWTSO;
7552 		/*
7553 		 * Don't actually disable VLAN tag stripping as
7554 		 * management firmware (ASF/IPMI/UMP) requires the
7555 		 * feature. If VLAN tag stripping is disabled driver
7556 		 * will manually reconstruct the VLAN frame by
7557 		 * appending stripped VLAN tag.
7558 		 */
7559 		if ((mask & IFCAP_VLAN_HWTAGGING) != 0 &&
7560 		    (ifp->if_capabilities & IFCAP_VLAN_HWTAGGING)) {
7561 			ifp->if_capenable ^= IFCAP_VLAN_HWTAGGING;
7562 			if ((ifp->if_capenable & IFCAP_VLAN_HWTAGGING)
7563 			    == 0)
7564 				ifp->if_capenable &= ~IFCAP_VLAN_HWTSO;
7565 		}
7566 		VLAN_CAPABILITIES(ifp);
7567 		break;
7568 	default:
7569 		/* We don't know how to handle the IOCTL, pass it on. */
7570 		error = ether_ioctl(ifp, command, data);
7571 		break;
7572 	}
7573 
7574 	DBEXIT(BCE_VERBOSE_MISC);
7575 	return(error);
7576 }
7577 
7578 
7579 /****************************************************************************/
7580 /* Transmit timeout handler.                                                */
7581 /*                                                                          */
7582 /* Returns:                                                                 */
7583 /*   Nothing.                                                               */
7584 /****************************************************************************/
7585 static void
7586 bce_watchdog(struct bce_softc *sc)
7587 {
7588 	DBENTER(BCE_EXTREME_SEND);
7589 
7590 	BCE_LOCK_ASSERT(sc);
7591 
7592 	/* If the watchdog timer hasn't expired then just exit. */
7593 	if (sc->watchdog_timer == 0 || --sc->watchdog_timer)
7594 		goto bce_watchdog_exit;
7595 
7596 	/* If pause frames are active then don't reset the hardware. */
7597 	/* ToDo: Should we reset the timer here? */
7598 	if (REG_RD(sc, BCE_EMAC_TX_STATUS) & BCE_EMAC_TX_STATUS_XOFFED)
7599 		goto bce_watchdog_exit;
7600 
7601 	BCE_PRINTF("%s(%d): Watchdog timeout occurred, resetting!\n",
7602 	    __FILE__, __LINE__);
7603 
7604 	DBRUNMSG(BCE_INFO,
7605 	    bce_dump_driver_state(sc);
7606 	    bce_dump_status_block(sc);
7607 	    bce_dump_stats_block(sc);
7608 	    bce_dump_ftqs(sc);
7609 	    bce_dump_txp_state(sc, 0);
7610 	    bce_dump_rxp_state(sc, 0);
7611 	    bce_dump_tpat_state(sc, 0);
7612 	    bce_dump_cp_state(sc, 0);
7613 	    bce_dump_com_state(sc, 0));
7614 
7615 	DBRUN(bce_breakpoint(sc));
7616 
7617 	sc->bce_ifp->if_drv_flags &= ~IFF_DRV_RUNNING;
7618 
7619 	bce_init_locked(sc);
7620 	sc->bce_ifp->if_oerrors++;
7621 
7622 bce_watchdog_exit:
7623 	DBEXIT(BCE_EXTREME_SEND);
7624 }
7625 
7626 
7627 /*
7628  * Interrupt handler.
7629  */
7630 /****************************************************************************/
7631 /* Main interrupt entry point.  Verifies that the controller generated the  */
7632 /* interrupt and then calls a separate routine for handle the various       */
7633 /* interrupt causes (PHY, TX, RX).                                          */
7634 /*                                                                          */
7635 /* Returns:                                                                 */
7636 /*   0 for success, positive value for failure.                             */
7637 /****************************************************************************/
7638 static void
7639 bce_intr(void *xsc)
7640 {
7641 	struct bce_softc *sc;
7642 	struct ifnet *ifp;
7643 	u32 status_attn_bits;
7644 	u16 hw_rx_cons, hw_tx_cons;
7645 
7646 	sc = xsc;
7647 	ifp = sc->bce_ifp;
7648 
7649 	DBENTER(BCE_VERBOSE_SEND | BCE_VERBOSE_RECV | BCE_VERBOSE_INTR);
7650 	DBRUNMSG(BCE_VERBOSE_INTR, bce_dump_status_block(sc));
7651 	DBRUNMSG(BCE_VERBOSE_INTR, bce_dump_stats_block(sc));
7652 
7653 	BCE_LOCK(sc);
7654 
7655 	DBRUN(sc->interrupts_generated++);
7656 
7657 	/* Synchnorize before we read from interface's status block */
7658 	bus_dmamap_sync(sc->status_tag, sc->status_map,
7659 	    BUS_DMASYNC_POSTREAD);
7660 
7661 	/*
7662 	 * If the hardware status block index
7663 	 * matches the last value read by the
7664 	 * driver and we haven't asserted our
7665 	 * interrupt then there's nothing to do.
7666 	 */
7667 	if ((sc->status_block->status_idx == sc->last_status_idx) &&
7668 	    (REG_RD(sc, BCE_PCICFG_MISC_STATUS) &
7669 	     BCE_PCICFG_MISC_STATUS_INTA_VALUE)) {
7670 		DBPRINT(sc, BCE_VERBOSE_INTR, "%s(): Spurious interrupt.\n",
7671 		    __FUNCTION__);
7672 		goto bce_intr_exit;
7673 	}
7674 
7675 	/* Ack the interrupt and stop others from occuring. */
7676 	REG_WR(sc, BCE_PCICFG_INT_ACK_CMD,
7677 	    BCE_PCICFG_INT_ACK_CMD_USE_INT_HC_PARAM |
7678 	    BCE_PCICFG_INT_ACK_CMD_MASK_INT);
7679 
7680 	/* Check if the hardware has finished any work. */
7681 	hw_rx_cons = bce_get_hw_rx_cons(sc);
7682 	hw_tx_cons = bce_get_hw_tx_cons(sc);
7683 
7684 	/* Keep processing data as long as there is work to do. */
7685 	for (;;) {
7686 
7687 		status_attn_bits = sc->status_block->status_attn_bits;
7688 
7689 		DBRUNIF(DB_RANDOMTRUE(unexpected_attention_sim_control),
7690 		    BCE_PRINTF("Simulating unexpected status attention "
7691 		    "bit set.");
7692 		    sc->unexpected_attention_sim_count++;
7693 		    status_attn_bits = status_attn_bits |
7694 		    STATUS_ATTN_BITS_PARITY_ERROR);
7695 
7696 		/* Was it a link change interrupt? */
7697 		if ((status_attn_bits & STATUS_ATTN_BITS_LINK_STATE) !=
7698 		    (sc->status_block->status_attn_bits_ack &
7699 		     STATUS_ATTN_BITS_LINK_STATE)) {
7700 			bce_phy_intr(sc);
7701 
7702 			/* Clear transient updates during link state change. */
7703 			REG_WR(sc, BCE_HC_COMMAND, sc->hc_command |
7704 			    BCE_HC_COMMAND_COAL_NOW_WO_INT);
7705 			REG_RD(sc, BCE_HC_COMMAND);
7706 		}
7707 
7708 		/* If any other attention is asserted, the chip is toast. */
7709 		if (((status_attn_bits & ~STATUS_ATTN_BITS_LINK_STATE) !=
7710 		    (sc->status_block->status_attn_bits_ack &
7711 		    ~STATUS_ATTN_BITS_LINK_STATE))) {
7712 
7713 			sc->unexpected_attention_count++;
7714 
7715 			BCE_PRINTF("%s(%d): Fatal attention detected: "
7716 			    "0x%08X\n",	__FILE__, __LINE__,
7717 			    sc->status_block->status_attn_bits);
7718 
7719 			DBRUNMSG(BCE_FATAL,
7720 			    if (unexpected_attention_sim_control == 0)
7721 				bce_breakpoint(sc));
7722 
7723 			bce_init_locked(sc);
7724 			goto bce_intr_exit;
7725 		}
7726 
7727 		/* Check for any completed RX frames. */
7728 		if (hw_rx_cons != sc->hw_rx_cons)
7729 			bce_rx_intr(sc);
7730 
7731 		/* Check for any completed TX frames. */
7732 		if (hw_tx_cons != sc->hw_tx_cons)
7733 			bce_tx_intr(sc);
7734 
7735 		/* Save status block index value for the next interrupt. */
7736 		sc->last_status_idx = sc->status_block->status_idx;
7737 
7738  		/*
7739  		 * Prevent speculative reads from getting
7740  		 * ahead of the status block.
7741 		 */
7742 		bus_space_barrier(sc->bce_btag, sc->bce_bhandle, 0, 0,
7743 		    BUS_SPACE_BARRIER_READ);
7744 
7745  		/*
7746  		 * If there's no work left then exit the
7747  		 * interrupt service routine.
7748 		 */
7749 		hw_rx_cons = bce_get_hw_rx_cons(sc);
7750 		hw_tx_cons = bce_get_hw_tx_cons(sc);
7751 
7752 		if ((hw_rx_cons == sc->hw_rx_cons) &&
7753 		    (hw_tx_cons == sc->hw_tx_cons))
7754 			break;
7755 
7756 	}
7757 
7758 	bus_dmamap_sync(sc->status_tag,	sc->status_map,
7759 	    BUS_DMASYNC_PREREAD);
7760 
7761 	/* Re-enable interrupts. */
7762 	bce_enable_intr(sc, 0);
7763 
7764 	/* Handle any frames that arrived while handling the interrupt. */
7765 	if (ifp->if_drv_flags & IFF_DRV_RUNNING &&
7766 	    !IFQ_DRV_IS_EMPTY(&ifp->if_snd))
7767 		bce_start_locked(ifp);
7768 
7769 bce_intr_exit:
7770 	BCE_UNLOCK(sc);
7771 
7772 	DBEXIT(BCE_VERBOSE_SEND | BCE_VERBOSE_RECV | BCE_VERBOSE_INTR);
7773 }
7774 
7775 
7776 /****************************************************************************/
7777 /* Programs the various packet receive modes (broadcast and multicast).     */
7778 /*                                                                          */
7779 /* Returns:                                                                 */
7780 /*   Nothing.                                                               */
7781 /****************************************************************************/
7782 static void
7783 bce_set_rx_mode(struct bce_softc *sc)
7784 {
7785 	struct ifnet *ifp;
7786 	struct ifmultiaddr *ifma;
7787 	u32 hashes[NUM_MC_HASH_REGISTERS] = { 0, 0, 0, 0, 0, 0, 0, 0 };
7788 	u32 rx_mode, sort_mode;
7789 	int h, i;
7790 
7791 	DBENTER(BCE_VERBOSE_MISC);
7792 
7793 	BCE_LOCK_ASSERT(sc);
7794 
7795 	ifp = sc->bce_ifp;
7796 
7797 	/* Initialize receive mode default settings. */
7798 	rx_mode   = sc->rx_mode & ~(BCE_EMAC_RX_MODE_PROMISCUOUS |
7799 	    BCE_EMAC_RX_MODE_KEEP_VLAN_TAG);
7800 	sort_mode = 1 | BCE_RPM_SORT_USER0_BC_EN;
7801 
7802 	/*
7803 	 * ASF/IPMI/UMP firmware requires that VLAN tag stripping
7804 	 * be enbled.
7805 	 */
7806 	if (!(BCE_IF_CAPABILITIES & IFCAP_VLAN_HWTAGGING) &&
7807 	    (!(sc->bce_flags & BCE_MFW_ENABLE_FLAG)))
7808 		rx_mode |= BCE_EMAC_RX_MODE_KEEP_VLAN_TAG;
7809 
7810 	/*
7811 	 * Check for promiscuous, all multicast, or selected
7812 	 * multicast address filtering.
7813 	 */
7814 	if (ifp->if_flags & IFF_PROMISC) {
7815 		DBPRINT(sc, BCE_INFO_MISC, "Enabling promiscuous mode.\n");
7816 
7817 		/* Enable promiscuous mode. */
7818 		rx_mode |= BCE_EMAC_RX_MODE_PROMISCUOUS;
7819 		sort_mode |= BCE_RPM_SORT_USER0_PROM_EN;
7820 	} else if (ifp->if_flags & IFF_ALLMULTI) {
7821 		DBPRINT(sc, BCE_INFO_MISC, "Enabling all multicast mode.\n");
7822 
7823 		/* Enable all multicast addresses. */
7824 		for (i = 0; i < NUM_MC_HASH_REGISTERS; i++) {
7825 			REG_WR(sc, BCE_EMAC_MULTICAST_HASH0 + (i * 4), 0xffffffff);
7826        	}
7827 		sort_mode |= BCE_RPM_SORT_USER0_MC_EN;
7828 	} else {
7829 		/* Accept one or more multicast(s). */
7830 		DBPRINT(sc, BCE_INFO_MISC, "Enabling selective multicast mode.\n");
7831 
7832 		if_maddr_rlock(ifp);
7833 		TAILQ_FOREACH(ifma, &ifp->if_multiaddrs, ifma_link) {
7834 			if (ifma->ifma_addr->sa_family != AF_LINK)
7835 				continue;
7836 			h = ether_crc32_le(LLADDR((struct sockaddr_dl *)
7837 			    ifma->ifma_addr), ETHER_ADDR_LEN) & 0xFF;
7838 			    hashes[(h & 0xE0) >> 5] |= 1 << (h & 0x1F);
7839 		}
7840 		if_maddr_runlock(ifp);
7841 
7842 		for (i = 0; i < NUM_MC_HASH_REGISTERS; i++)
7843 			REG_WR(sc, BCE_EMAC_MULTICAST_HASH0 + (i * 4), hashes[i]);
7844 
7845 		sort_mode |= BCE_RPM_SORT_USER0_MC_HSH_EN;
7846 	}
7847 
7848 	/* Only make changes if the recive mode has actually changed. */
7849 	if (rx_mode != sc->rx_mode) {
7850 		DBPRINT(sc, BCE_VERBOSE_MISC, "Enabling new receive mode: "
7851 		    "0x%08X\n", rx_mode);
7852 
7853 		sc->rx_mode = rx_mode;
7854 		REG_WR(sc, BCE_EMAC_RX_MODE, rx_mode);
7855 	}
7856 
7857 	/* Disable and clear the exisitng sort before enabling a new sort. */
7858 	REG_WR(sc, BCE_RPM_SORT_USER0, 0x0);
7859 	REG_WR(sc, BCE_RPM_SORT_USER0, sort_mode);
7860 	REG_WR(sc, BCE_RPM_SORT_USER0, sort_mode | BCE_RPM_SORT_USER0_ENA);
7861 
7862 	DBEXIT(BCE_VERBOSE_MISC);
7863 }
7864 
7865 
7866 /****************************************************************************/
7867 /* Called periodically to updates statistics from the controllers           */
7868 /* statistics block.                                                        */
7869 /*                                                                          */
7870 /* Returns:                                                                 */
7871 /*   Nothing.                                                               */
7872 /****************************************************************************/
7873 static void
7874 bce_stats_update(struct bce_softc *sc)
7875 {
7876 	struct ifnet *ifp;
7877 	struct statistics_block *stats;
7878 
7879 	DBENTER(BCE_EXTREME_MISC);
7880 
7881 	ifp = sc->bce_ifp;
7882 
7883 	stats = (struct statistics_block *) sc->stats_block;
7884 
7885 	/*
7886 	 * Certain controllers don't report
7887 	 * carrier sense errors correctly.
7888 	 * See errata E11_5708CA0_1165.
7889 	 */
7890 	if (!(BCE_CHIP_NUM(sc) == BCE_CHIP_NUM_5706) &&
7891 	    !(BCE_CHIP_ID(sc) == BCE_CHIP_ID_5708_A0))
7892 		ifp->if_oerrors +=
7893 		    (u_long) stats->stat_Dot3StatsCarrierSenseErrors;
7894 
7895 	/*
7896 	 * Update the sysctl statistics from the
7897 	 * hardware statistics.
7898 	 */
7899 	sc->stat_IfHCInOctets =
7900 	    ((u64) stats->stat_IfHCInOctets_hi << 32) +
7901 	     (u64) stats->stat_IfHCInOctets_lo;
7902 
7903 	sc->stat_IfHCInBadOctets =
7904 	    ((u64) stats->stat_IfHCInBadOctets_hi << 32) +
7905 	     (u64) stats->stat_IfHCInBadOctets_lo;
7906 
7907 	sc->stat_IfHCOutOctets =
7908 	    ((u64) stats->stat_IfHCOutOctets_hi << 32) +
7909 	     (u64) stats->stat_IfHCOutOctets_lo;
7910 
7911 	sc->stat_IfHCOutBadOctets =
7912 	    ((u64) stats->stat_IfHCOutBadOctets_hi << 32) +
7913 	     (u64) stats->stat_IfHCOutBadOctets_lo;
7914 
7915 	sc->stat_IfHCInUcastPkts =
7916 	    ((u64) stats->stat_IfHCInUcastPkts_hi << 32) +
7917 	     (u64) stats->stat_IfHCInUcastPkts_lo;
7918 
7919 	sc->stat_IfHCInMulticastPkts =
7920 	    ((u64) stats->stat_IfHCInMulticastPkts_hi << 32) +
7921 	     (u64) stats->stat_IfHCInMulticastPkts_lo;
7922 
7923 	sc->stat_IfHCInBroadcastPkts =
7924 	    ((u64) stats->stat_IfHCInBroadcastPkts_hi << 32) +
7925 	     (u64) stats->stat_IfHCInBroadcastPkts_lo;
7926 
7927 	sc->stat_IfHCOutUcastPkts =
7928 	    ((u64) stats->stat_IfHCOutUcastPkts_hi << 32) +
7929 	     (u64) stats->stat_IfHCOutUcastPkts_lo;
7930 
7931 	sc->stat_IfHCOutMulticastPkts =
7932 	    ((u64) stats->stat_IfHCOutMulticastPkts_hi << 32) +
7933 	     (u64) stats->stat_IfHCOutMulticastPkts_lo;
7934 
7935 	sc->stat_IfHCOutBroadcastPkts =
7936 	    ((u64) stats->stat_IfHCOutBroadcastPkts_hi << 32) +
7937 	     (u64) stats->stat_IfHCOutBroadcastPkts_lo;
7938 
7939 	/* ToDo: Preserve counters beyond 32 bits? */
7940 	/* ToDo: Read the statistics from auto-clear regs? */
7941 
7942 	sc->stat_emac_tx_stat_dot3statsinternalmactransmiterrors =
7943 	    stats->stat_emac_tx_stat_dot3statsinternalmactransmiterrors;
7944 
7945 	sc->stat_Dot3StatsCarrierSenseErrors =
7946 	    stats->stat_Dot3StatsCarrierSenseErrors;
7947 
7948 	sc->stat_Dot3StatsFCSErrors =
7949 	    stats->stat_Dot3StatsFCSErrors;
7950 
7951 	sc->stat_Dot3StatsAlignmentErrors =
7952 	    stats->stat_Dot3StatsAlignmentErrors;
7953 
7954 	sc->stat_Dot3StatsSingleCollisionFrames =
7955 	    stats->stat_Dot3StatsSingleCollisionFrames;
7956 
7957 	sc->stat_Dot3StatsMultipleCollisionFrames =
7958 	    stats->stat_Dot3StatsMultipleCollisionFrames;
7959 
7960 	sc->stat_Dot3StatsDeferredTransmissions =
7961 	    stats->stat_Dot3StatsDeferredTransmissions;
7962 
7963 	sc->stat_Dot3StatsExcessiveCollisions =
7964 	    stats->stat_Dot3StatsExcessiveCollisions;
7965 
7966 	sc->stat_Dot3StatsLateCollisions =
7967 	    stats->stat_Dot3StatsLateCollisions;
7968 
7969 	sc->stat_EtherStatsCollisions =
7970 	    stats->stat_EtherStatsCollisions;
7971 
7972 	sc->stat_EtherStatsFragments =
7973 	    stats->stat_EtherStatsFragments;
7974 
7975 	sc->stat_EtherStatsJabbers =
7976 	    stats->stat_EtherStatsJabbers;
7977 
7978 	sc->stat_EtherStatsUndersizePkts =
7979 	    stats->stat_EtherStatsUndersizePkts;
7980 
7981 	sc->stat_EtherStatsOversizePkts =
7982 	     stats->stat_EtherStatsOversizePkts;
7983 
7984 	sc->stat_EtherStatsPktsRx64Octets =
7985 	    stats->stat_EtherStatsPktsRx64Octets;
7986 
7987 	sc->stat_EtherStatsPktsRx65Octetsto127Octets =
7988 	    stats->stat_EtherStatsPktsRx65Octetsto127Octets;
7989 
7990 	sc->stat_EtherStatsPktsRx128Octetsto255Octets =
7991 	    stats->stat_EtherStatsPktsRx128Octetsto255Octets;
7992 
7993 	sc->stat_EtherStatsPktsRx256Octetsto511Octets =
7994 	    stats->stat_EtherStatsPktsRx256Octetsto511Octets;
7995 
7996 	sc->stat_EtherStatsPktsRx512Octetsto1023Octets =
7997 	    stats->stat_EtherStatsPktsRx512Octetsto1023Octets;
7998 
7999 	sc->stat_EtherStatsPktsRx1024Octetsto1522Octets =
8000 	    stats->stat_EtherStatsPktsRx1024Octetsto1522Octets;
8001 
8002 	sc->stat_EtherStatsPktsRx1523Octetsto9022Octets =
8003 	    stats->stat_EtherStatsPktsRx1523Octetsto9022Octets;
8004 
8005 	sc->stat_EtherStatsPktsTx64Octets =
8006 	    stats->stat_EtherStatsPktsTx64Octets;
8007 
8008 	sc->stat_EtherStatsPktsTx65Octetsto127Octets =
8009 	    stats->stat_EtherStatsPktsTx65Octetsto127Octets;
8010 
8011 	sc->stat_EtherStatsPktsTx128Octetsto255Octets =
8012 	    stats->stat_EtherStatsPktsTx128Octetsto255Octets;
8013 
8014 	sc->stat_EtherStatsPktsTx256Octetsto511Octets =
8015 	    stats->stat_EtherStatsPktsTx256Octetsto511Octets;
8016 
8017 	sc->stat_EtherStatsPktsTx512Octetsto1023Octets =
8018 	    stats->stat_EtherStatsPktsTx512Octetsto1023Octets;
8019 
8020 	sc->stat_EtherStatsPktsTx1024Octetsto1522Octets =
8021 	    stats->stat_EtherStatsPktsTx1024Octetsto1522Octets;
8022 
8023 	sc->stat_EtherStatsPktsTx1523Octetsto9022Octets =
8024 	    stats->stat_EtherStatsPktsTx1523Octetsto9022Octets;
8025 
8026 	sc->stat_XonPauseFramesReceived =
8027 	    stats->stat_XonPauseFramesReceived;
8028 
8029 	sc->stat_XoffPauseFramesReceived =
8030 	    stats->stat_XoffPauseFramesReceived;
8031 
8032 	sc->stat_OutXonSent =
8033 	    stats->stat_OutXonSent;
8034 
8035 	sc->stat_OutXoffSent =
8036 	    stats->stat_OutXoffSent;
8037 
8038 	sc->stat_FlowControlDone =
8039 	    stats->stat_FlowControlDone;
8040 
8041 	sc->stat_MacControlFramesReceived =
8042 	    stats->stat_MacControlFramesReceived;
8043 
8044 	sc->stat_XoffStateEntered =
8045 	    stats->stat_XoffStateEntered;
8046 
8047 	sc->stat_IfInFramesL2FilterDiscards =
8048 	    stats->stat_IfInFramesL2FilterDiscards;
8049 
8050 	sc->stat_IfInRuleCheckerDiscards =
8051 	    stats->stat_IfInRuleCheckerDiscards;
8052 
8053 	sc->stat_IfInFTQDiscards =
8054 	    stats->stat_IfInFTQDiscards;
8055 
8056 	sc->stat_IfInMBUFDiscards =
8057 	    stats->stat_IfInMBUFDiscards;
8058 
8059 	sc->stat_IfInRuleCheckerP4Hit =
8060 	    stats->stat_IfInRuleCheckerP4Hit;
8061 
8062 	sc->stat_CatchupInRuleCheckerDiscards =
8063 	    stats->stat_CatchupInRuleCheckerDiscards;
8064 
8065 	sc->stat_CatchupInFTQDiscards =
8066 	    stats->stat_CatchupInFTQDiscards;
8067 
8068 	sc->stat_CatchupInMBUFDiscards =
8069 	    stats->stat_CatchupInMBUFDiscards;
8070 
8071 	sc->stat_CatchupInRuleCheckerP4Hit =
8072 	    stats->stat_CatchupInRuleCheckerP4Hit;
8073 
8074 	sc->com_no_buffers = REG_RD_IND(sc, 0x120084);
8075 
8076 	/*
8077 	 * Update the interface statistics from the
8078 	 * hardware statistics.
8079 	 */
8080 	ifp->if_collisions =
8081 	    (u_long) sc->stat_EtherStatsCollisions;
8082 
8083 	/* ToDo: This method loses soft errors. */
8084 	ifp->if_ierrors =
8085 	    (u_long) sc->stat_EtherStatsUndersizePkts +
8086 	    (u_long) sc->stat_EtherStatsOversizePkts +
8087 	    (u_long) sc->stat_IfInMBUFDiscards +
8088 	    (u_long) sc->stat_Dot3StatsAlignmentErrors +
8089 	    (u_long) sc->stat_Dot3StatsFCSErrors +
8090 	    (u_long) sc->stat_IfInRuleCheckerDiscards +
8091 	    (u_long) sc->stat_IfInFTQDiscards +
8092 	    (u_long) sc->com_no_buffers;
8093 
8094 	/* ToDo: This method loses soft errors. */
8095 	ifp->if_oerrors =
8096 	    (u_long) sc->stat_emac_tx_stat_dot3statsinternalmactransmiterrors +
8097 	    (u_long) sc->stat_Dot3StatsExcessiveCollisions +
8098 	    (u_long) sc->stat_Dot3StatsLateCollisions;
8099 
8100 	/* ToDo: Add additional statistics? */
8101 
8102 	DBEXIT(BCE_EXTREME_MISC);
8103 }
8104 
8105 
8106 /****************************************************************************/
8107 /* Periodic function to notify the bootcode that the driver is still        */
8108 /* present.                                                                 */
8109 /*                                                                          */
8110 /* Returns:                                                                 */
8111 /*   Nothing.                                                               */
8112 /****************************************************************************/
8113 static void
8114 bce_pulse(void *xsc)
8115 {
8116 	struct bce_softc *sc = xsc;
8117 	u32 msg;
8118 
8119 	DBENTER(BCE_EXTREME_MISC);
8120 
8121 	BCE_LOCK_ASSERT(sc);
8122 
8123 	/* Tell the firmware that the driver is still running. */
8124 	msg = (u32) ++sc->bce_fw_drv_pulse_wr_seq;
8125 	bce_shmem_wr(sc, BCE_DRV_PULSE_MB, msg);
8126 
8127 	/* Update the bootcode condition. */
8128 	sc->bc_state = bce_shmem_rd(sc, BCE_BC_STATE_CONDITION);
8129 
8130 	/* Report whether the bootcode still knows the driver is running. */
8131 	if (bce_verbose || bootverbose) {
8132 		if (sc->bce_drv_cardiac_arrest == FALSE) {
8133 			if (!(sc->bc_state & BCE_CONDITION_DRV_PRESENT)) {
8134 				sc->bce_drv_cardiac_arrest = TRUE;
8135 				BCE_PRINTF("%s(): Warning: bootcode "
8136 				    "thinks driver is absent! "
8137 				    "(bc_state = 0x%08X)\n",
8138 				    __FUNCTION__, sc->bc_state);
8139 			}
8140 		} else {
8141 			/*
8142 			 * Not supported by all bootcode versions.
8143 			 * (v5.0.11+ and v5.2.1+)  Older bootcode
8144 			 * will require the driver to reset the
8145 			 * controller to clear this condition.
8146 			 */
8147 			if (sc->bc_state & BCE_CONDITION_DRV_PRESENT) {
8148 				sc->bce_drv_cardiac_arrest = FALSE;
8149 				BCE_PRINTF("%s(): Bootcode found the "
8150 				    "driver pulse! (bc_state = 0x%08X)\n",
8151 				    __FUNCTION__, sc->bc_state);
8152 			}
8153 		}
8154 	}
8155 
8156 
8157 	/* Schedule the next pulse. */
8158 	callout_reset(&sc->bce_pulse_callout, hz, bce_pulse, sc);
8159 
8160 	DBEXIT(BCE_EXTREME_MISC);
8161 }
8162 
8163 
8164 /****************************************************************************/
8165 /* Periodic function to perform maintenance tasks.                          */
8166 /*                                                                          */
8167 /* Returns:                                                                 */
8168 /*   Nothing.                                                               */
8169 /****************************************************************************/
8170 static void
8171 bce_tick(void *xsc)
8172 {
8173 	struct bce_softc *sc = xsc;
8174 	struct mii_data *mii;
8175 	struct ifnet *ifp;
8176 
8177 	ifp = sc->bce_ifp;
8178 
8179 	DBENTER(BCE_EXTREME_MISC);
8180 
8181 	BCE_LOCK_ASSERT(sc);
8182 
8183 	/* Schedule the next tick. */
8184 	callout_reset(&sc->bce_tick_callout, hz, bce_tick, sc);
8185 
8186 	/* Update the statistics from the hardware statistics block. */
8187 	bce_stats_update(sc);
8188 
8189  	/*
8190  	 * ToDo: This is a safety measure.  Need to re-evaluate
8191  	 * high	level processing logic and eliminate this code.
8192  	 */
8193 	/* Top off the receive and page chains. */
8194 	if (bce_hdr_split == TRUE)
8195 		bce_fill_pg_chain(sc);
8196 	bce_fill_rx_chain(sc);
8197 
8198 	/* Check that chip hasn't hung. */
8199 	bce_watchdog(sc);
8200 
8201 	/* If link is up already up then we're done. */
8202 	if (sc->bce_link_up == TRUE)
8203 		goto bce_tick_exit;
8204 
8205 	/* Link is down.  Check what the PHY's doing. */
8206 	mii = device_get_softc(sc->bce_miibus);
8207 	mii_tick(mii);
8208 
8209 	/* Check if the link has come up. */
8210 	if ((mii->mii_media_status & IFM_ACTIVE) &&
8211 	    (IFM_SUBTYPE(mii->mii_media_active) != IFM_NONE)) {
8212 		DBPRINT(sc, BCE_VERBOSE_MISC,
8213 		    "%s(): Link up!\n", __FUNCTION__);
8214 		sc->bce_link_up = TRUE;
8215 		if ((IFM_SUBTYPE(mii->mii_media_active) == IFM_1000_T ||
8216 		    IFM_SUBTYPE(mii->mii_media_active) == IFM_1000_SX ||
8217 		    IFM_SUBTYPE(mii->mii_media_active) == IFM_2500_SX) &&
8218 		    (bce_verbose || bootverbose))
8219 			BCE_PRINTF("Gigabit link up!\n");
8220 
8221 		/* Now that link is up, handle any outstanding TX traffic. */
8222 		if (!IFQ_DRV_IS_EMPTY(&ifp->if_snd)) {
8223 			DBPRINT(sc, BCE_VERBOSE_MISC, "%s(): Found "
8224 			    "pending TX traffic.\n", __FUNCTION__);
8225 			bce_start_locked(ifp);
8226 		}
8227 	}
8228 
8229 bce_tick_exit:
8230 	DBEXIT(BCE_EXTREME_MISC);
8231 	return;
8232 }
8233 
8234 #ifdef BCE_DEBUG
8235 /****************************************************************************/
8236 /* Allows the driver state to be dumped through the sysctl interface.       */
8237 /*                                                                          */
8238 /* Returns:                                                                 */
8239 /*   0 for success, positive value for failure.                             */
8240 /****************************************************************************/
8241 static int
8242 bce_sysctl_driver_state(SYSCTL_HANDLER_ARGS)
8243 {
8244 	int error;
8245 	int result;
8246 	struct bce_softc *sc;
8247 
8248 	result = -1;
8249 	error = sysctl_handle_int(oidp, &result, 0, req);
8250 
8251 	if (error || !req->newptr)
8252 		return (error);
8253 
8254 	if (result == 1) {
8255 		sc = (struct bce_softc *)arg1;
8256 		bce_dump_driver_state(sc);
8257 	}
8258 
8259 	return error;
8260 }
8261 
8262 
8263 /****************************************************************************/
8264 /* Allows the hardware state to be dumped through the sysctl interface.     */
8265 /*                                                                          */
8266 /* Returns:                                                                 */
8267 /*   0 for success, positive value for failure.                             */
8268 /****************************************************************************/
8269 static int
8270 bce_sysctl_hw_state(SYSCTL_HANDLER_ARGS)
8271 {
8272 	int error;
8273 	int result;
8274 	struct bce_softc *sc;
8275 
8276 	result = -1;
8277 	error = sysctl_handle_int(oidp, &result, 0, req);
8278 
8279 	if (error || !req->newptr)
8280 		return (error);
8281 
8282 	if (result == 1) {
8283 		sc = (struct bce_softc *)arg1;
8284 		bce_dump_hw_state(sc);
8285 	}
8286 
8287 	return error;
8288 }
8289 
8290 
8291 /****************************************************************************/
8292 /* Allows the status block to be dumped through the sysctl interface.       */
8293 /*                                                                          */
8294 /* Returns:                                                                 */
8295 /*   0 for success, positive value for failure.                             */
8296 /****************************************************************************/
8297 static int
8298 bce_sysctl_status_block(SYSCTL_HANDLER_ARGS)
8299 {
8300 	int error;
8301 	int result;
8302 	struct bce_softc *sc;
8303 
8304 	result = -1;
8305 	error = sysctl_handle_int(oidp, &result, 0, req);
8306 
8307 	if (error || !req->newptr)
8308 		return (error);
8309 
8310 	if (result == 1) {
8311 		sc = (struct bce_softc *)arg1;
8312 		bce_dump_status_block(sc);
8313 	}
8314 
8315 	return error;
8316 }
8317 
8318 
8319 /****************************************************************************/
8320 /* Allows the stats block to be dumped through the sysctl interface.        */
8321 /*                                                                          */
8322 /* Returns:                                                                 */
8323 /*   0 for success, positive value for failure.                             */
8324 /****************************************************************************/
8325 static int
8326 bce_sysctl_stats_block(SYSCTL_HANDLER_ARGS)
8327 {
8328 	int error;
8329 	int result;
8330 	struct bce_softc *sc;
8331 
8332 	result = -1;
8333 	error = sysctl_handle_int(oidp, &result, 0, req);
8334 
8335 	if (error || !req->newptr)
8336 		return (error);
8337 
8338 	if (result == 1) {
8339 		sc = (struct bce_softc *)arg1;
8340 		bce_dump_stats_block(sc);
8341 	}
8342 
8343 	return error;
8344 }
8345 
8346 
8347 /****************************************************************************/
8348 /* Allows the stat counters to be cleared without unloading/reloading the   */
8349 /* driver.                                                                  */
8350 /*                                                                          */
8351 /* Returns:                                                                 */
8352 /*   0 for success, positive value for failure.                             */
8353 /****************************************************************************/
8354 static int
8355 bce_sysctl_stats_clear(SYSCTL_HANDLER_ARGS)
8356 {
8357 	int error;
8358 	int result;
8359 	struct bce_softc *sc;
8360 
8361 	result = -1;
8362 	error = sysctl_handle_int(oidp, &result, 0, req);
8363 
8364 	if (error || !req->newptr)
8365 		return (error);
8366 
8367 	if (result == 1) {
8368 		sc = (struct bce_softc *)arg1;
8369 		struct statistics_block *stats;
8370 
8371 		stats = (struct statistics_block *) sc->stats_block;
8372 		bzero(stats, sizeof(struct statistics_block));
8373 
8374 		/* Clear the internal H/W statistics counters. */
8375 		REG_WR(sc, BCE_HC_COMMAND, BCE_HC_COMMAND_CLR_STAT_NOW);
8376 
8377 		/* Reset the driver maintained statistics. */
8378 		sc->interrupts_rx =
8379 		    sc->interrupts_tx = 0;
8380 		sc->tso_frames_requested =
8381 		    sc->tso_frames_completed =
8382 		    sc->tso_frames_failed = 0;
8383 		sc->rx_empty_count =
8384 		    sc->tx_full_count = 0;
8385 		sc->rx_low_watermark = USABLE_RX_BD_ALLOC;
8386 		sc->tx_hi_watermark = 0;
8387 		sc->l2fhdr_error_count =
8388 		    sc->l2fhdr_error_sim_count = 0;
8389 		sc->mbuf_alloc_failed_count =
8390 		    sc->mbuf_alloc_failed_sim_count = 0;
8391 		sc->dma_map_addr_rx_failed_count =
8392 		    sc->dma_map_addr_tx_failed_count = 0;
8393 		sc->mbuf_frag_count = 0;
8394 		sc->csum_offload_tcp_udp =
8395 		    sc->csum_offload_ip = 0;
8396 		sc->vlan_tagged_frames_rcvd =
8397 		    sc->vlan_tagged_frames_stripped = 0;
8398 		sc->split_header_frames_rcvd =
8399 		    sc->split_header_tcp_frames_rcvd = 0;
8400 
8401 		/* Clear firmware maintained statistics. */
8402 		REG_WR_IND(sc, 0x120084, 0);
8403 	}
8404 
8405 	return error;
8406 }
8407 
8408 
8409 /****************************************************************************/
8410 /* Allows the shared memory contents to be dumped through the sysctl  .     */
8411 /* interface.                                                               */
8412 /*                                                                          */
8413 /* Returns:                                                                 */
8414 /*   0 for success, positive value for failure.                             */
8415 /****************************************************************************/
8416 static int
8417 bce_sysctl_shmem_state(SYSCTL_HANDLER_ARGS)
8418 {
8419 	int error;
8420 	int result;
8421 	struct bce_softc *sc;
8422 
8423 	result = -1;
8424 	error = sysctl_handle_int(oidp, &result, 0, req);
8425 
8426 	if (error || !req->newptr)
8427 		return (error);
8428 
8429 	if (result == 1) {
8430 		sc = (struct bce_softc *)arg1;
8431 		bce_dump_shmem_state(sc);
8432 	}
8433 
8434 	return error;
8435 }
8436 
8437 
8438 /****************************************************************************/
8439 /* Allows the bootcode state to be dumped through the sysctl interface.     */
8440 /*                                                                          */
8441 /* Returns:                                                                 */
8442 /*   0 for success, positive value for failure.                             */
8443 /****************************************************************************/
8444 static int
8445 bce_sysctl_bc_state(SYSCTL_HANDLER_ARGS)
8446 {
8447 	int error;
8448 	int result;
8449 	struct bce_softc *sc;
8450 
8451 	result = -1;
8452 	error = sysctl_handle_int(oidp, &result, 0, req);
8453 
8454 	if (error || !req->newptr)
8455 		return (error);
8456 
8457 	if (result == 1) {
8458 		sc = (struct bce_softc *)arg1;
8459 		bce_dump_bc_state(sc);
8460 	}
8461 
8462 	return error;
8463 }
8464 
8465 
8466 /****************************************************************************/
8467 /* Provides a sysctl interface to allow dumping the RX BD chain.            */
8468 /*                                                                          */
8469 /* Returns:                                                                 */
8470 /*   0 for success, positive value for failure.                             */
8471 /****************************************************************************/
8472 static int
8473 bce_sysctl_dump_rx_bd_chain(SYSCTL_HANDLER_ARGS)
8474 {
8475 	int error;
8476 	int result;
8477 	struct bce_softc *sc;
8478 
8479 	result = -1;
8480 	error = sysctl_handle_int(oidp, &result, 0, req);
8481 
8482 	if (error || !req->newptr)
8483 		return (error);
8484 
8485 	if (result == 1) {
8486 		sc = (struct bce_softc *)arg1;
8487 		bce_dump_rx_bd_chain(sc, 0, TOTAL_RX_BD_ALLOC);
8488 	}
8489 
8490 	return error;
8491 }
8492 
8493 
8494 /****************************************************************************/
8495 /* Provides a sysctl interface to allow dumping the RX MBUF chain.          */
8496 /*                                                                          */
8497 /* Returns:                                                                 */
8498 /*   0 for success, positive value for failure.                             */
8499 /****************************************************************************/
8500 static int
8501 bce_sysctl_dump_rx_mbuf_chain(SYSCTL_HANDLER_ARGS)
8502 {
8503 	int error;
8504 	int result;
8505 	struct bce_softc *sc;
8506 
8507 	result = -1;
8508 	error = sysctl_handle_int(oidp, &result, 0, req);
8509 
8510 	if (error || !req->newptr)
8511 		return (error);
8512 
8513 	if (result == 1) {
8514 		sc = (struct bce_softc *)arg1;
8515 		bce_dump_rx_mbuf_chain(sc, 0, USABLE_RX_BD_ALLOC);
8516 	}
8517 
8518 	return error;
8519 }
8520 
8521 
8522 /****************************************************************************/
8523 /* Provides a sysctl interface to allow dumping the TX chain.               */
8524 /*                                                                          */
8525 /* Returns:                                                                 */
8526 /*   0 for success, positive value for failure.                             */
8527 /****************************************************************************/
8528 static int
8529 bce_sysctl_dump_tx_chain(SYSCTL_HANDLER_ARGS)
8530 {
8531 	int error;
8532 	int result;
8533 	struct bce_softc *sc;
8534 
8535 	result = -1;
8536 	error = sysctl_handle_int(oidp, &result, 0, req);
8537 
8538 	if (error || !req->newptr)
8539 		return (error);
8540 
8541 	if (result == 1) {
8542 		sc = (struct bce_softc *)arg1;
8543 		bce_dump_tx_chain(sc, 0, TOTAL_TX_BD_ALLOC);
8544 	}
8545 
8546 	return error;
8547 }
8548 
8549 
8550 /****************************************************************************/
8551 /* Provides a sysctl interface to allow dumping the page chain.             */
8552 /*                                                                          */
8553 /* Returns:                                                                 */
8554 /*   0 for success, positive value for failure.                             */
8555 /****************************************************************************/
8556 static int
8557 bce_sysctl_dump_pg_chain(SYSCTL_HANDLER_ARGS)
8558 {
8559 	int error;
8560 	int result;
8561 	struct bce_softc *sc;
8562 
8563 	result = -1;
8564 	error = sysctl_handle_int(oidp, &result, 0, req);
8565 
8566 	if (error || !req->newptr)
8567 		return (error);
8568 
8569 	if (result == 1) {
8570 		sc = (struct bce_softc *)arg1;
8571 		bce_dump_pg_chain(sc, 0, TOTAL_PG_BD_ALLOC);
8572 	}
8573 
8574 	return error;
8575 }
8576 
8577 /****************************************************************************/
8578 /* Provides a sysctl interface to allow reading arbitrary NVRAM offsets in  */
8579 /* the device.  DO NOT ENABLE ON PRODUCTION SYSTEMS!                        */
8580 /*                                                                          */
8581 /* Returns:                                                                 */
8582 /*   0 for success, positive value for failure.                             */
8583 /****************************************************************************/
8584 static int
8585 bce_sysctl_nvram_read(SYSCTL_HANDLER_ARGS)
8586 {
8587 	struct bce_softc *sc = (struct bce_softc *)arg1;
8588 	int error;
8589 	u32 result;
8590 	u32 val[1];
8591 	u8 *data = (u8 *) val;
8592 
8593 	result = -1;
8594 	error = sysctl_handle_int(oidp, &result, 0, req);
8595 	if (error || (req->newptr == NULL))
8596 		return (error);
8597 
8598 	error = bce_nvram_read(sc, result, data, 4);
8599 
8600 	BCE_PRINTF("offset 0x%08X = 0x%08X\n", result, bce_be32toh(val[0]));
8601 
8602 	return (error);
8603 }
8604 
8605 
8606 /****************************************************************************/
8607 /* Provides a sysctl interface to allow reading arbitrary registers in the  */
8608 /* device.  DO NOT ENABLE ON PRODUCTION SYSTEMS!                            */
8609 /*                                                                          */
8610 /* Returns:                                                                 */
8611 /*   0 for success, positive value for failure.                             */
8612 /****************************************************************************/
8613 static int
8614 bce_sysctl_reg_read(SYSCTL_HANDLER_ARGS)
8615 {
8616 	struct bce_softc *sc = (struct bce_softc *)arg1;
8617 	int error;
8618 	u32 val, result;
8619 
8620 	result = -1;
8621 	error = sysctl_handle_int(oidp, &result, 0, req);
8622 	if (error || (req->newptr == NULL))
8623 		return (error);
8624 
8625 	/* Make sure the register is accessible. */
8626 	if (result < 0x8000) {
8627 		val = REG_RD(sc, result);
8628 		BCE_PRINTF("reg 0x%08X = 0x%08X\n", result, val);
8629 	} else if (result < 0x0280000) {
8630 		val = REG_RD_IND(sc, result);
8631 		BCE_PRINTF("reg 0x%08X = 0x%08X\n", result, val);
8632 	}
8633 
8634 	return (error);
8635 }
8636 
8637 
8638 /****************************************************************************/
8639 /* Provides a sysctl interface to allow reading arbitrary PHY registers in  */
8640 /* the device.  DO NOT ENABLE ON PRODUCTION SYSTEMS!                        */
8641 /*                                                                          */
8642 /* Returns:                                                                 */
8643 /*   0 for success, positive value for failure.                             */
8644 /****************************************************************************/
8645 static int
8646 bce_sysctl_phy_read(SYSCTL_HANDLER_ARGS)
8647 {
8648 	struct bce_softc *sc;
8649 	device_t dev;
8650 	int error, result;
8651 	u16 val;
8652 
8653 	result = -1;
8654 	error = sysctl_handle_int(oidp, &result, 0, req);
8655 	if (error || (req->newptr == NULL))
8656 		return (error);
8657 
8658 	/* Make sure the register is accessible. */
8659 	if (result < 0x20) {
8660 		sc = (struct bce_softc *)arg1;
8661 		dev = sc->bce_dev;
8662 		val = bce_miibus_read_reg(dev, sc->bce_phy_addr, result);
8663 		BCE_PRINTF("phy 0x%02X = 0x%04X\n", result, val);
8664 	}
8665 	return (error);
8666 }
8667 
8668 
8669 /****************************************************************************/
8670 /* Provides a sysctl interface for dumping the nvram contents.              */
8671 /* DO NOT ENABLE ON PRODUCTION SYSTEMS!					    */
8672 /*									    */
8673 /* Returns:								    */
8674 /*   0 for success, positive errno for failure.				    */
8675 /****************************************************************************/
8676 static int
8677 bce_sysctl_nvram_dump(SYSCTL_HANDLER_ARGS)
8678 {
8679 	struct bce_softc *sc = (struct bce_softc *)arg1;
8680 	int error, i;
8681 
8682 	if (sc->nvram_buf == NULL)
8683 		sc->nvram_buf = malloc(sc->bce_flash_size,
8684 				    M_TEMP, M_ZERO | M_WAITOK);
8685 
8686 	error = 0;
8687 	if (req->oldlen == sc->bce_flash_size) {
8688 		for (i = 0; i < sc->bce_flash_size && error == 0; i++)
8689 			error = bce_nvram_read(sc, i, &sc->nvram_buf[i], 1);
8690 	}
8691 
8692 	if (error == 0)
8693 		error = SYSCTL_OUT(req, sc->nvram_buf, sc->bce_flash_size);
8694 
8695 	return error;
8696 }
8697 
8698 #ifdef BCE_NVRAM_WRITE_SUPPORT
8699 /****************************************************************************/
8700 /* Provides a sysctl interface for writing to nvram.                        */
8701 /* DO NOT ENABLE ON PRODUCTION SYSTEMS!					    */
8702 /*									    */
8703 /* Returns:								    */
8704 /*   0 for success, positive errno for failure.				    */
8705 /****************************************************************************/
8706 static int
8707 bce_sysctl_nvram_write(SYSCTL_HANDLER_ARGS)
8708 {
8709 	struct bce_softc *sc = (struct bce_softc *)arg1;
8710 	int error;
8711 
8712 	if (sc->nvram_buf == NULL)
8713 		sc->nvram_buf = malloc(sc->bce_flash_size,
8714 				    M_TEMP, M_ZERO | M_WAITOK);
8715 	else
8716 		bzero(sc->nvram_buf, sc->bce_flash_size);
8717 
8718 	error = SYSCTL_IN(req, sc->nvram_buf, sc->bce_flash_size);
8719 	if (error == 0)
8720 		return (error);
8721 
8722 	if (req->newlen == sc->bce_flash_size)
8723 		error = bce_nvram_write(sc, 0, sc->nvram_buf,
8724 			    sc->bce_flash_size);
8725 
8726 
8727 	return error;
8728 }
8729 #endif
8730 
8731 
8732 /****************************************************************************/
8733 /* Provides a sysctl interface to allow reading a CID.                      */
8734 /*                                                                          */
8735 /* Returns:                                                                 */
8736 /*   0 for success, positive value for failure.                             */
8737 /****************************************************************************/
8738 static int
8739 bce_sysctl_dump_ctx(SYSCTL_HANDLER_ARGS)
8740 {
8741 	struct bce_softc *sc;
8742 	int error, result;
8743 
8744 	result = -1;
8745 	error = sysctl_handle_int(oidp, &result, 0, req);
8746 	if (error || (req->newptr == NULL))
8747 		return (error);
8748 
8749 	/* Make sure the register is accessible. */
8750 	if (result <= TX_CID) {
8751 		sc = (struct bce_softc *)arg1;
8752 		bce_dump_ctx(sc, result);
8753 	}
8754 
8755 	return (error);
8756 }
8757 
8758 
8759 /****************************************************************************/
8760 /* Provides a sysctl interface to forcing the driver to dump state and      */
8761 /* enter the debugger.  DO NOT ENABLE ON PRODUCTION SYSTEMS!                */
8762 /*                                                                          */
8763 /* Returns:                                                                 */
8764 /*   0 for success, positive value for failure.                             */
8765 /****************************************************************************/
8766 static int
8767 bce_sysctl_breakpoint(SYSCTL_HANDLER_ARGS)
8768 {
8769 	int error;
8770 	int result;
8771 	struct bce_softc *sc;
8772 
8773 	result = -1;
8774 	error = sysctl_handle_int(oidp, &result, 0, req);
8775 
8776 	if (error || !req->newptr)
8777 		return (error);
8778 
8779 	if (result == 1) {
8780 		sc = (struct bce_softc *)arg1;
8781 		bce_breakpoint(sc);
8782 	}
8783 
8784 	return error;
8785 }
8786 #endif
8787 
8788 /****************************************************************************/
8789 /* Adds any sysctl parameters for tuning or debugging purposes.             */
8790 /*                                                                          */
8791 /* Returns:                                                                 */
8792 /*   0 for success, positive value for failure.                             */
8793 /****************************************************************************/
8794 static void
8795 bce_add_sysctls(struct bce_softc *sc)
8796 {
8797 	struct sysctl_ctx_list *ctx;
8798 	struct sysctl_oid_list *children;
8799 
8800 	DBENTER(BCE_VERBOSE_MISC);
8801 
8802 	ctx = device_get_sysctl_ctx(sc->bce_dev);
8803 	children = SYSCTL_CHILDREN(device_get_sysctl_tree(sc->bce_dev));
8804 
8805 #ifdef BCE_DEBUG
8806 	SYSCTL_ADD_INT(ctx, children, OID_AUTO,
8807 	    "l2fhdr_error_sim_control",
8808 	    CTLFLAG_RW, &l2fhdr_error_sim_control,
8809 	    0, "Debug control to force l2fhdr errors");
8810 
8811 	SYSCTL_ADD_INT(ctx, children, OID_AUTO,
8812 	    "l2fhdr_error_sim_count",
8813 	    CTLFLAG_RD, &sc->l2fhdr_error_sim_count,
8814 	    0, "Number of simulated l2_fhdr errors");
8815 #endif
8816 
8817 	SYSCTL_ADD_UINT(ctx, children, OID_AUTO,
8818 	    "l2fhdr_error_count",
8819 	    CTLFLAG_RD, &sc->l2fhdr_error_count,
8820 	    0, "Number of l2_fhdr errors");
8821 
8822 #ifdef BCE_DEBUG
8823 	SYSCTL_ADD_INT(ctx, children, OID_AUTO,
8824 	    "mbuf_alloc_failed_sim_control",
8825 	    CTLFLAG_RW, &mbuf_alloc_failed_sim_control,
8826 	    0, "Debug control to force mbuf allocation failures");
8827 
8828 	SYSCTL_ADD_UINT(ctx, children, OID_AUTO,
8829 	    "mbuf_alloc_failed_sim_count",
8830 	    CTLFLAG_RD, &sc->mbuf_alloc_failed_sim_count,
8831 	    0, "Number of simulated mbuf cluster allocation failures");
8832 #endif
8833 
8834 	SYSCTL_ADD_UINT(ctx, children, OID_AUTO,
8835 	    "mbuf_alloc_failed_count",
8836 	    CTLFLAG_RD, &sc->mbuf_alloc_failed_count,
8837 	    0, "Number of mbuf allocation failures");
8838 
8839 	SYSCTL_ADD_UINT(ctx, children, OID_AUTO,
8840 	    "mbuf_frag_count",
8841 	    CTLFLAG_RD, &sc->mbuf_frag_count,
8842 	    0, "Number of fragmented mbufs");
8843 
8844 #ifdef BCE_DEBUG
8845 	SYSCTL_ADD_INT(ctx, children, OID_AUTO,
8846 	    "dma_map_addr_failed_sim_control",
8847 	    CTLFLAG_RW, &dma_map_addr_failed_sim_control,
8848 	    0, "Debug control to force DMA mapping failures");
8849 
8850 	/* ToDo: Figure out how to update this value in bce_dma_map_addr(). */
8851 	SYSCTL_ADD_UINT(ctx, children, OID_AUTO,
8852 	    "dma_map_addr_failed_sim_count",
8853 	    CTLFLAG_RD, &sc->dma_map_addr_failed_sim_count,
8854 	    0, "Number of simulated DMA mapping failures");
8855 
8856 #endif
8857 
8858 	SYSCTL_ADD_UINT(ctx, children, OID_AUTO,
8859 	    "dma_map_addr_rx_failed_count",
8860 	    CTLFLAG_RD, &sc->dma_map_addr_rx_failed_count,
8861 	    0, "Number of RX DMA mapping failures");
8862 
8863 	SYSCTL_ADD_UINT(ctx, children, OID_AUTO,
8864 	    "dma_map_addr_tx_failed_count",
8865 	    CTLFLAG_RD, &sc->dma_map_addr_tx_failed_count,
8866 	    0, "Number of TX DMA mapping failures");
8867 
8868 #ifdef BCE_DEBUG
8869 	SYSCTL_ADD_INT(ctx, children, OID_AUTO,
8870 	    "unexpected_attention_sim_control",
8871 	    CTLFLAG_RW, &unexpected_attention_sim_control,
8872 	    0, "Debug control to simulate unexpected attentions");
8873 
8874 	SYSCTL_ADD_UINT(ctx, children, OID_AUTO,
8875 	    "unexpected_attention_sim_count",
8876 	    CTLFLAG_RW, &sc->unexpected_attention_sim_count,
8877 	    0, "Number of simulated unexpected attentions");
8878 #endif
8879 
8880 	SYSCTL_ADD_UINT(ctx, children, OID_AUTO,
8881 	    "unexpected_attention_count",
8882 	    CTLFLAG_RW, &sc->unexpected_attention_count,
8883 	    0, "Number of unexpected attentions");
8884 
8885 #ifdef BCE_DEBUG
8886 	SYSCTL_ADD_INT(ctx, children, OID_AUTO,
8887 	    "debug_bootcode_running_failure",
8888 	    CTLFLAG_RW, &bootcode_running_failure_sim_control,
8889 	    0, "Debug control to force bootcode running failures");
8890 
8891 	SYSCTL_ADD_INT(ctx, children, OID_AUTO,
8892 	    "rx_low_watermark",
8893 	    CTLFLAG_RD, &sc->rx_low_watermark,
8894 	    0, "Lowest level of free rx_bd's");
8895 
8896 	SYSCTL_ADD_QUAD(ctx, children, OID_AUTO,
8897 	    "rx_empty_count",
8898 	    CTLFLAG_RD, &sc->rx_empty_count,
8899 	    "Number of times the RX chain was empty");
8900 
8901 	SYSCTL_ADD_INT(ctx, children, OID_AUTO,
8902 	    "tx_hi_watermark",
8903 	    CTLFLAG_RD, &sc->tx_hi_watermark,
8904 	    0, "Highest level of used tx_bd's");
8905 
8906 	SYSCTL_ADD_QUAD(ctx, children, OID_AUTO,
8907 	    "tx_full_count",
8908 	    CTLFLAG_RD, &sc->tx_full_count,
8909 	    "Number of times the TX chain was full");
8910 
8911 	SYSCTL_ADD_QUAD(ctx, children, OID_AUTO,
8912 	    "tso_frames_requested",
8913 	    CTLFLAG_RD, &sc->tso_frames_requested,
8914 	    "Number of TSO frames requested");
8915 
8916 	SYSCTL_ADD_QUAD(ctx, children, OID_AUTO,
8917 	    "tso_frames_completed",
8918 	    CTLFLAG_RD, &sc->tso_frames_completed,
8919 	    "Number of TSO frames completed");
8920 
8921 	SYSCTL_ADD_QUAD(ctx, children, OID_AUTO,
8922 	    "tso_frames_failed",
8923 	    CTLFLAG_RD, &sc->tso_frames_failed,
8924 	    "Number of TSO frames failed");
8925 
8926 	SYSCTL_ADD_QUAD(ctx, children, OID_AUTO,
8927 	    "csum_offload_ip",
8928 	    CTLFLAG_RD, &sc->csum_offload_ip,
8929 	    "Number of IP checksum offload frames");
8930 
8931 	SYSCTL_ADD_QUAD(ctx, children, OID_AUTO,
8932 	    "csum_offload_tcp_udp",
8933 	    CTLFLAG_RD, &sc->csum_offload_tcp_udp,
8934 	    "Number of TCP/UDP checksum offload frames");
8935 
8936 	SYSCTL_ADD_QUAD(ctx, children, OID_AUTO,
8937 	    "vlan_tagged_frames_rcvd",
8938 	    CTLFLAG_RD, &sc->vlan_tagged_frames_rcvd,
8939 	    "Number of VLAN tagged frames received");
8940 
8941 	SYSCTL_ADD_QUAD(ctx, children, OID_AUTO,
8942 	    "vlan_tagged_frames_stripped",
8943 	    CTLFLAG_RD, &sc->vlan_tagged_frames_stripped,
8944 	    "Number of VLAN tagged frames stripped");
8945 
8946 	SYSCTL_ADD_QUAD(ctx, children, OID_AUTO,
8947 	    "interrupts_rx",
8948 	    CTLFLAG_RD, &sc->interrupts_rx,
8949 	    "Number of RX interrupts");
8950 
8951 	SYSCTL_ADD_QUAD(ctx, children, OID_AUTO,
8952 	    "interrupts_tx",
8953 	    CTLFLAG_RD, &sc->interrupts_tx,
8954 	    "Number of TX interrupts");
8955 
8956 	if (bce_hdr_split == TRUE) {
8957 		SYSCTL_ADD_QUAD(ctx, children, OID_AUTO,
8958 		    "split_header_frames_rcvd",
8959 		    CTLFLAG_RD, &sc->split_header_frames_rcvd,
8960 		    "Number of split header frames received");
8961 
8962 		SYSCTL_ADD_QUAD(ctx, children, OID_AUTO,
8963 		    "split_header_tcp_frames_rcvd",
8964 		    CTLFLAG_RD, &sc->split_header_tcp_frames_rcvd,
8965 		    "Number of split header TCP frames received");
8966 	}
8967 
8968 	SYSCTL_ADD_PROC(ctx, children, OID_AUTO,
8969 	    "nvram_dump", CTLTYPE_OPAQUE | CTLFLAG_RD,
8970 	    (void *)sc, 0,
8971 	    bce_sysctl_nvram_dump, "S", "");
8972 
8973 #ifdef BCE_NVRAM_WRITE_SUPPORT
8974 	SYSCTL_ADD_PROC(ctx, children, OID_AUTO,
8975 	    "nvram_write", CTLTYPE_OPAQUE | CTLFLAG_WR,
8976 	    (void *)sc, 0,
8977 	    bce_sysctl_nvram_write, "S", "");
8978 #endif
8979 #endif /* BCE_DEBUG */
8980 
8981 	SYSCTL_ADD_QUAD(ctx, children, OID_AUTO,
8982 	    "stat_IfHcInOctets",
8983 	    CTLFLAG_RD, &sc->stat_IfHCInOctets,
8984 	    "Bytes received");
8985 
8986 	SYSCTL_ADD_QUAD(ctx, children, OID_AUTO,
8987 	    "stat_IfHCInBadOctets",
8988 	    CTLFLAG_RD, &sc->stat_IfHCInBadOctets,
8989 	    "Bad bytes received");
8990 
8991 	SYSCTL_ADD_QUAD(ctx, children, OID_AUTO,
8992 	    "stat_IfHCOutOctets",
8993 	    CTLFLAG_RD, &sc->stat_IfHCOutOctets,
8994 	    "Bytes sent");
8995 
8996 	SYSCTL_ADD_QUAD(ctx, children, OID_AUTO,
8997 	    "stat_IfHCOutBadOctets",
8998 	    CTLFLAG_RD, &sc->stat_IfHCOutBadOctets,
8999 	    "Bad bytes sent");
9000 
9001 	SYSCTL_ADD_QUAD(ctx, children, OID_AUTO,
9002 	    "stat_IfHCInUcastPkts",
9003 	    CTLFLAG_RD, &sc->stat_IfHCInUcastPkts,
9004 	    "Unicast packets received");
9005 
9006 	SYSCTL_ADD_QUAD(ctx, children, OID_AUTO,
9007 	    "stat_IfHCInMulticastPkts",
9008 	    CTLFLAG_RD, &sc->stat_IfHCInMulticastPkts,
9009 	    "Multicast packets received");
9010 
9011 	SYSCTL_ADD_QUAD(ctx, children, OID_AUTO,
9012 	    "stat_IfHCInBroadcastPkts",
9013 	    CTLFLAG_RD, &sc->stat_IfHCInBroadcastPkts,
9014 	    "Broadcast packets received");
9015 
9016 	SYSCTL_ADD_QUAD(ctx, children, OID_AUTO,
9017 	    "stat_IfHCOutUcastPkts",
9018 	    CTLFLAG_RD, &sc->stat_IfHCOutUcastPkts,
9019 	    "Unicast packets sent");
9020 
9021 	SYSCTL_ADD_QUAD(ctx, children, OID_AUTO,
9022 	    "stat_IfHCOutMulticastPkts",
9023 	    CTLFLAG_RD, &sc->stat_IfHCOutMulticastPkts,
9024 	    "Multicast packets sent");
9025 
9026 	SYSCTL_ADD_QUAD(ctx, children, OID_AUTO,
9027 	    "stat_IfHCOutBroadcastPkts",
9028 	    CTLFLAG_RD, &sc->stat_IfHCOutBroadcastPkts,
9029 	    "Broadcast packets sent");
9030 
9031 	SYSCTL_ADD_UINT(ctx, children, OID_AUTO,
9032 	    "stat_emac_tx_stat_dot3statsinternalmactransmiterrors",
9033 	    CTLFLAG_RD, &sc->stat_emac_tx_stat_dot3statsinternalmactransmiterrors,
9034 	    0, "Internal MAC transmit errors");
9035 
9036 	SYSCTL_ADD_UINT(ctx, children, OID_AUTO,
9037 	    "stat_Dot3StatsCarrierSenseErrors",
9038 	    CTLFLAG_RD, &sc->stat_Dot3StatsCarrierSenseErrors,
9039 	    0, "Carrier sense errors");
9040 
9041 	SYSCTL_ADD_UINT(ctx, children, OID_AUTO,
9042 	    "stat_Dot3StatsFCSErrors",
9043 	    CTLFLAG_RD, &sc->stat_Dot3StatsFCSErrors,
9044 	    0, "Frame check sequence errors");
9045 
9046 	SYSCTL_ADD_UINT(ctx, children, OID_AUTO,
9047 	    "stat_Dot3StatsAlignmentErrors",
9048 	    CTLFLAG_RD, &sc->stat_Dot3StatsAlignmentErrors,
9049 	    0, "Alignment errors");
9050 
9051 	SYSCTL_ADD_UINT(ctx, children, OID_AUTO,
9052 	    "stat_Dot3StatsSingleCollisionFrames",
9053 	    CTLFLAG_RD, &sc->stat_Dot3StatsSingleCollisionFrames,
9054 	    0, "Single Collision Frames");
9055 
9056 	SYSCTL_ADD_UINT(ctx, children, OID_AUTO,
9057 	    "stat_Dot3StatsMultipleCollisionFrames",
9058 	    CTLFLAG_RD, &sc->stat_Dot3StatsMultipleCollisionFrames,
9059 	    0, "Multiple Collision Frames");
9060 
9061 	SYSCTL_ADD_UINT(ctx, children, OID_AUTO,
9062 	    "stat_Dot3StatsDeferredTransmissions",
9063 	    CTLFLAG_RD, &sc->stat_Dot3StatsDeferredTransmissions,
9064 	    0, "Deferred Transmissions");
9065 
9066 	SYSCTL_ADD_UINT(ctx, children, OID_AUTO,
9067 	    "stat_Dot3StatsExcessiveCollisions",
9068 	    CTLFLAG_RD, &sc->stat_Dot3StatsExcessiveCollisions,
9069 	    0, "Excessive Collisions");
9070 
9071 	SYSCTL_ADD_UINT(ctx, children, OID_AUTO,
9072 	    "stat_Dot3StatsLateCollisions",
9073 	    CTLFLAG_RD, &sc->stat_Dot3StatsLateCollisions,
9074 	    0, "Late Collisions");
9075 
9076 	SYSCTL_ADD_UINT(ctx, children, OID_AUTO,
9077 	    "stat_EtherStatsCollisions",
9078 	    CTLFLAG_RD, &sc->stat_EtherStatsCollisions,
9079 	    0, "Collisions");
9080 
9081 	SYSCTL_ADD_UINT(ctx, children, OID_AUTO,
9082 	    "stat_EtherStatsFragments",
9083 	    CTLFLAG_RD, &sc->stat_EtherStatsFragments,
9084 	    0, "Fragments");
9085 
9086 	SYSCTL_ADD_UINT(ctx, children, OID_AUTO,
9087 	    "stat_EtherStatsJabbers",
9088 	    CTLFLAG_RD, &sc->stat_EtherStatsJabbers,
9089 	    0, "Jabbers");
9090 
9091 	SYSCTL_ADD_UINT(ctx, children, OID_AUTO,
9092 	    "stat_EtherStatsUndersizePkts",
9093 	    CTLFLAG_RD, &sc->stat_EtherStatsUndersizePkts,
9094 	    0, "Undersize packets");
9095 
9096 	SYSCTL_ADD_UINT(ctx, children, OID_AUTO,
9097 	    "stat_EtherStatsOversizePkts",
9098 	    CTLFLAG_RD, &sc->stat_EtherStatsOversizePkts,
9099 	    0, "stat_EtherStatsOversizePkts");
9100 
9101 	SYSCTL_ADD_UINT(ctx, children, OID_AUTO,
9102 	    "stat_EtherStatsPktsRx64Octets",
9103 	    CTLFLAG_RD, &sc->stat_EtherStatsPktsRx64Octets,
9104 	    0, "Bytes received in 64 byte packets");
9105 
9106 	SYSCTL_ADD_UINT(ctx, children, OID_AUTO,
9107 	    "stat_EtherStatsPktsRx65Octetsto127Octets",
9108 	    CTLFLAG_RD, &sc->stat_EtherStatsPktsRx65Octetsto127Octets,
9109 	    0, "Bytes received in 65 to 127 byte packets");
9110 
9111 	SYSCTL_ADD_UINT(ctx, children, OID_AUTO,
9112 	    "stat_EtherStatsPktsRx128Octetsto255Octets",
9113 	    CTLFLAG_RD, &sc->stat_EtherStatsPktsRx128Octetsto255Octets,
9114 	    0, "Bytes received in 128 to 255 byte packets");
9115 
9116 	SYSCTL_ADD_UINT(ctx, children, OID_AUTO,
9117 	    "stat_EtherStatsPktsRx256Octetsto511Octets",
9118 	    CTLFLAG_RD, &sc->stat_EtherStatsPktsRx256Octetsto511Octets,
9119 	    0, "Bytes received in 256 to 511 byte packets");
9120 
9121 	SYSCTL_ADD_UINT(ctx, children, OID_AUTO,
9122 	    "stat_EtherStatsPktsRx512Octetsto1023Octets",
9123 	    CTLFLAG_RD, &sc->stat_EtherStatsPktsRx512Octetsto1023Octets,
9124 	    0, "Bytes received in 512 to 1023 byte packets");
9125 
9126 	SYSCTL_ADD_UINT(ctx, children, OID_AUTO,
9127 	    "stat_EtherStatsPktsRx1024Octetsto1522Octets",
9128 	    CTLFLAG_RD, &sc->stat_EtherStatsPktsRx1024Octetsto1522Octets,
9129 	    0, "Bytes received in 1024 t0 1522 byte packets");
9130 
9131 	SYSCTL_ADD_UINT(ctx, children, OID_AUTO,
9132 	    "stat_EtherStatsPktsRx1523Octetsto9022Octets",
9133 	    CTLFLAG_RD, &sc->stat_EtherStatsPktsRx1523Octetsto9022Octets,
9134 	    0, "Bytes received in 1523 to 9022 byte packets");
9135 
9136 	SYSCTL_ADD_UINT(ctx, children, OID_AUTO,
9137 	    "stat_EtherStatsPktsTx64Octets",
9138 	    CTLFLAG_RD, &sc->stat_EtherStatsPktsTx64Octets,
9139 	    0, "Bytes sent in 64 byte packets");
9140 
9141 	SYSCTL_ADD_UINT(ctx, children, OID_AUTO,
9142 	    "stat_EtherStatsPktsTx65Octetsto127Octets",
9143 	    CTLFLAG_RD, &sc->stat_EtherStatsPktsTx65Octetsto127Octets,
9144 	    0, "Bytes sent in 65 to 127 byte packets");
9145 
9146 	SYSCTL_ADD_UINT(ctx, children, OID_AUTO,
9147 	    "stat_EtherStatsPktsTx128Octetsto255Octets",
9148 	    CTLFLAG_RD, &sc->stat_EtherStatsPktsTx128Octetsto255Octets,
9149 	    0, "Bytes sent in 128 to 255 byte packets");
9150 
9151 	SYSCTL_ADD_UINT(ctx, children, OID_AUTO,
9152 	    "stat_EtherStatsPktsTx256Octetsto511Octets",
9153 	    CTLFLAG_RD, &sc->stat_EtherStatsPktsTx256Octetsto511Octets,
9154 	    0, "Bytes sent in 256 to 511 byte packets");
9155 
9156 	SYSCTL_ADD_UINT(ctx, children, OID_AUTO,
9157 	    "stat_EtherStatsPktsTx512Octetsto1023Octets",
9158 	    CTLFLAG_RD, &sc->stat_EtherStatsPktsTx512Octetsto1023Octets,
9159 	    0, "Bytes sent in 512 to 1023 byte packets");
9160 
9161 	SYSCTL_ADD_UINT(ctx, children, OID_AUTO,
9162 	    "stat_EtherStatsPktsTx1024Octetsto1522Octets",
9163 	    CTLFLAG_RD, &sc->stat_EtherStatsPktsTx1024Octetsto1522Octets,
9164 	    0, "Bytes sent in 1024 to 1522 byte packets");
9165 
9166 	SYSCTL_ADD_UINT(ctx, children, OID_AUTO,
9167 	    "stat_EtherStatsPktsTx1523Octetsto9022Octets",
9168 	    CTLFLAG_RD, &sc->stat_EtherStatsPktsTx1523Octetsto9022Octets,
9169 	    0, "Bytes sent in 1523 to 9022 byte packets");
9170 
9171 	SYSCTL_ADD_UINT(ctx, children, OID_AUTO,
9172 	    "stat_XonPauseFramesReceived",
9173 	    CTLFLAG_RD, &sc->stat_XonPauseFramesReceived,
9174 	    0, "XON pause frames receved");
9175 
9176 	SYSCTL_ADD_UINT(ctx, children, OID_AUTO,
9177 	    "stat_XoffPauseFramesReceived",
9178 	    CTLFLAG_RD, &sc->stat_XoffPauseFramesReceived,
9179 	    0, "XOFF pause frames received");
9180 
9181 	SYSCTL_ADD_UINT(ctx, children, OID_AUTO,
9182 	    "stat_OutXonSent",
9183 	    CTLFLAG_RD, &sc->stat_OutXonSent,
9184 	    0, "XON pause frames sent");
9185 
9186 	SYSCTL_ADD_UINT(ctx, children, OID_AUTO,
9187 	    "stat_OutXoffSent",
9188 	    CTLFLAG_RD, &sc->stat_OutXoffSent,
9189 	    0, "XOFF pause frames sent");
9190 
9191 	SYSCTL_ADD_UINT(ctx, children, OID_AUTO,
9192 	    "stat_FlowControlDone",
9193 	    CTLFLAG_RD, &sc->stat_FlowControlDone,
9194 	    0, "Flow control done");
9195 
9196 	SYSCTL_ADD_UINT(ctx, children, OID_AUTO,
9197 	    "stat_MacControlFramesReceived",
9198 	    CTLFLAG_RD, &sc->stat_MacControlFramesReceived,
9199 	    0, "MAC control frames received");
9200 
9201 	SYSCTL_ADD_UINT(ctx, children, OID_AUTO,
9202 	    "stat_XoffStateEntered",
9203 	    CTLFLAG_RD, &sc->stat_XoffStateEntered,
9204 	    0, "XOFF state entered");
9205 
9206 	SYSCTL_ADD_UINT(ctx, children, OID_AUTO,
9207 	    "stat_IfInFramesL2FilterDiscards",
9208 	    CTLFLAG_RD, &sc->stat_IfInFramesL2FilterDiscards,
9209 	    0, "Received L2 packets discarded");
9210 
9211 	SYSCTL_ADD_UINT(ctx, children, OID_AUTO,
9212 	    "stat_IfInRuleCheckerDiscards",
9213 	    CTLFLAG_RD, &sc->stat_IfInRuleCheckerDiscards,
9214 	    0, "Received packets discarded by rule");
9215 
9216 	SYSCTL_ADD_UINT(ctx, children, OID_AUTO,
9217 	    "stat_IfInFTQDiscards",
9218 	    CTLFLAG_RD, &sc->stat_IfInFTQDiscards,
9219 	    0, "Received packet FTQ discards");
9220 
9221 	SYSCTL_ADD_UINT(ctx, children, OID_AUTO,
9222 	    "stat_IfInMBUFDiscards",
9223 	    CTLFLAG_RD, &sc->stat_IfInMBUFDiscards,
9224 	    0, "Received packets discarded due to lack "
9225 	    "of controller buffer memory");
9226 
9227 	SYSCTL_ADD_UINT(ctx, children, OID_AUTO,
9228 	    "stat_IfInRuleCheckerP4Hit",
9229 	    CTLFLAG_RD, &sc->stat_IfInRuleCheckerP4Hit,
9230 	    0, "Received packets rule checker hits");
9231 
9232 	SYSCTL_ADD_UINT(ctx, children, OID_AUTO,
9233 	    "stat_CatchupInRuleCheckerDiscards",
9234 	    CTLFLAG_RD, &sc->stat_CatchupInRuleCheckerDiscards,
9235 	    0, "Received packets discarded in Catchup path");
9236 
9237 	SYSCTL_ADD_UINT(ctx, children, OID_AUTO,
9238 	    "stat_CatchupInFTQDiscards",
9239 	    CTLFLAG_RD, &sc->stat_CatchupInFTQDiscards,
9240 	    0, "Received packets discarded in FTQ in Catchup path");
9241 
9242 	SYSCTL_ADD_UINT(ctx, children, OID_AUTO,
9243 	    "stat_CatchupInMBUFDiscards",
9244 	    CTLFLAG_RD, &sc->stat_CatchupInMBUFDiscards,
9245 	    0, "Received packets discarded in controller "
9246 	    "buffer memory in Catchup path");
9247 
9248 	SYSCTL_ADD_UINT(ctx, children, OID_AUTO,
9249 	    "stat_CatchupInRuleCheckerP4Hit",
9250 	    CTLFLAG_RD, &sc->stat_CatchupInRuleCheckerP4Hit,
9251 	    0, "Received packets rule checker hits in Catchup path");
9252 
9253 	SYSCTL_ADD_UINT(ctx, children, OID_AUTO,
9254 	    "com_no_buffers",
9255 	    CTLFLAG_RD, &sc->com_no_buffers,
9256 	    0, "Valid packets received but no RX buffers available");
9257 
9258 #ifdef BCE_DEBUG
9259 	SYSCTL_ADD_PROC(ctx, children, OID_AUTO,
9260 	    "driver_state", CTLTYPE_INT | CTLFLAG_RW,
9261 	    (void *)sc, 0,
9262 	    bce_sysctl_driver_state, "I", "Drive state information");
9263 
9264 	SYSCTL_ADD_PROC(ctx, children, OID_AUTO,
9265 	    "hw_state", CTLTYPE_INT | CTLFLAG_RW,
9266 	    (void *)sc, 0,
9267 	    bce_sysctl_hw_state, "I", "Hardware state information");
9268 
9269 	SYSCTL_ADD_PROC(ctx, children, OID_AUTO,
9270 	    "status_block", CTLTYPE_INT | CTLFLAG_RW,
9271 	    (void *)sc, 0,
9272 	    bce_sysctl_status_block, "I", "Dump status block");
9273 
9274 	SYSCTL_ADD_PROC(ctx, children, OID_AUTO,
9275 	    "stats_block", CTLTYPE_INT | CTLFLAG_RW,
9276 	    (void *)sc, 0,
9277 	    bce_sysctl_stats_block, "I", "Dump statistics block");
9278 
9279 	SYSCTL_ADD_PROC(ctx, children, OID_AUTO,
9280 	    "stats_clear", CTLTYPE_INT | CTLFLAG_RW,
9281 	    (void *)sc, 0,
9282 	    bce_sysctl_stats_clear, "I", "Clear statistics block");
9283 
9284 	SYSCTL_ADD_PROC(ctx, children, OID_AUTO,
9285 	    "shmem_state", CTLTYPE_INT | CTLFLAG_RW,
9286 	    (void *)sc, 0,
9287 	    bce_sysctl_shmem_state, "I", "Shared memory state information");
9288 
9289 	SYSCTL_ADD_PROC(ctx, children, OID_AUTO,
9290 	    "bc_state", CTLTYPE_INT | CTLFLAG_RW,
9291 	    (void *)sc, 0,
9292 	    bce_sysctl_bc_state, "I", "Bootcode state information");
9293 
9294 	SYSCTL_ADD_PROC(ctx, children, OID_AUTO,
9295 	    "dump_rx_bd_chain", CTLTYPE_INT | CTLFLAG_RW,
9296 	    (void *)sc, 0,
9297 	    bce_sysctl_dump_rx_bd_chain, "I", "Dump RX BD chain");
9298 
9299 	SYSCTL_ADD_PROC(ctx, children, OID_AUTO,
9300 	    "dump_rx_mbuf_chain", CTLTYPE_INT | CTLFLAG_RW,
9301 	    (void *)sc, 0,
9302 	    bce_sysctl_dump_rx_mbuf_chain, "I", "Dump RX MBUF chain");
9303 
9304 	SYSCTL_ADD_PROC(ctx, children, OID_AUTO,
9305 	    "dump_tx_chain", CTLTYPE_INT | CTLFLAG_RW,
9306 	    (void *)sc, 0,
9307 	    bce_sysctl_dump_tx_chain, "I", "Dump tx_bd chain");
9308 
9309 	if (bce_hdr_split == TRUE) {
9310 		SYSCTL_ADD_PROC(ctx, children, OID_AUTO,
9311 		    "dump_pg_chain", CTLTYPE_INT | CTLFLAG_RW,
9312 		    (void *)sc, 0,
9313 		    bce_sysctl_dump_pg_chain, "I", "Dump page chain");
9314 	}
9315 
9316 	SYSCTL_ADD_PROC(ctx, children, OID_AUTO,
9317 	    "dump_ctx", CTLTYPE_INT | CTLFLAG_RW,
9318 	    (void *)sc, 0,
9319 	    bce_sysctl_dump_ctx, "I", "Dump context memory");
9320 
9321 	SYSCTL_ADD_PROC(ctx, children, OID_AUTO,
9322 	    "breakpoint", CTLTYPE_INT | CTLFLAG_RW,
9323 	    (void *)sc, 0,
9324 	    bce_sysctl_breakpoint, "I", "Driver breakpoint");
9325 
9326 	SYSCTL_ADD_PROC(ctx, children, OID_AUTO,
9327 	    "reg_read", CTLTYPE_INT | CTLFLAG_RW,
9328 	    (void *)sc, 0,
9329 	    bce_sysctl_reg_read, "I", "Register read");
9330 
9331 	SYSCTL_ADD_PROC(ctx, children, OID_AUTO,
9332 	    "nvram_read", CTLTYPE_INT | CTLFLAG_RW,
9333 	    (void *)sc, 0,
9334 	    bce_sysctl_nvram_read, "I", "NVRAM read");
9335 
9336 	SYSCTL_ADD_PROC(ctx, children, OID_AUTO,
9337 	    "phy_read", CTLTYPE_INT | CTLFLAG_RW,
9338 	    (void *)sc, 0,
9339 	    bce_sysctl_phy_read, "I", "PHY register read");
9340 
9341 #endif
9342 
9343 	DBEXIT(BCE_VERBOSE_MISC);
9344 }
9345 
9346 
9347 /****************************************************************************/
9348 /* BCE Debug Routines                                                       */
9349 /****************************************************************************/
9350 #ifdef BCE_DEBUG
9351 
9352 /****************************************************************************/
9353 /* Freezes the controller to allow for a cohesive state dump.               */
9354 /*                                                                          */
9355 /* Returns:                                                                 */
9356 /*   Nothing.                                                               */
9357 /****************************************************************************/
9358 static __attribute__ ((noinline)) void
9359 bce_freeze_controller(struct bce_softc *sc)
9360 {
9361 	u32 val;
9362 	val = REG_RD(sc, BCE_MISC_COMMAND);
9363 	val |= BCE_MISC_COMMAND_DISABLE_ALL;
9364 	REG_WR(sc, BCE_MISC_COMMAND, val);
9365 }
9366 
9367 
9368 /****************************************************************************/
9369 /* Unfreezes the controller after a freeze operation.  This may not always  */
9370 /* work and the controller will require a reset!                            */
9371 /*                                                                          */
9372 /* Returns:                                                                 */
9373 /*   Nothing.                                                               */
9374 /****************************************************************************/
9375 static __attribute__ ((noinline)) void
9376 bce_unfreeze_controller(struct bce_softc *sc)
9377 {
9378 	u32 val;
9379 	val = REG_RD(sc, BCE_MISC_COMMAND);
9380 	val |= BCE_MISC_COMMAND_ENABLE_ALL;
9381 	REG_WR(sc, BCE_MISC_COMMAND, val);
9382 }
9383 
9384 
9385 /****************************************************************************/
9386 /* Prints out Ethernet frame information from an mbuf.                      */
9387 /*                                                                          */
9388 /* Partially decode an Ethernet frame to look at some important headers.    */
9389 /*                                                                          */
9390 /* Returns:                                                                 */
9391 /*   Nothing.                                                               */
9392 /****************************************************************************/
9393 static __attribute__ ((noinline)) void
9394 bce_dump_enet(struct bce_softc *sc, struct mbuf *m)
9395 {
9396 	struct ether_vlan_header *eh;
9397 	u16 etype;
9398 	int ehlen;
9399 	struct ip *ip;
9400 	struct tcphdr *th;
9401 	struct udphdr *uh;
9402 	struct arphdr *ah;
9403 
9404 	BCE_PRINTF(
9405 	    "-----------------------------"
9406 	    " Frame Decode "
9407 	    "-----------------------------\n");
9408 
9409 	eh = mtod(m, struct ether_vlan_header *);
9410 
9411 	/* Handle VLAN encapsulation if present. */
9412 	if (eh->evl_encap_proto == htons(ETHERTYPE_VLAN)) {
9413 		etype = ntohs(eh->evl_proto);
9414 		ehlen = ETHER_HDR_LEN + ETHER_VLAN_ENCAP_LEN;
9415 	} else {
9416 		etype = ntohs(eh->evl_encap_proto);
9417 		ehlen = ETHER_HDR_LEN;
9418 	}
9419 
9420 	/* ToDo: Add VLAN output. */
9421 	BCE_PRINTF("enet: dest = %6D, src = %6D, type = 0x%04X, hlen = %d\n",
9422 	    eh->evl_dhost, ":", eh->evl_shost, ":", etype, ehlen);
9423 
9424 	switch (etype) {
9425 	case ETHERTYPE_IP:
9426 		ip = (struct ip *)(m->m_data + ehlen);
9427 		BCE_PRINTF("--ip: dest = 0x%08X , src = 0x%08X, "
9428 		    "len = %d bytes, protocol = 0x%02X, xsum = 0x%04X\n",
9429 		    ntohl(ip->ip_dst.s_addr), ntohl(ip->ip_src.s_addr),
9430 		    ntohs(ip->ip_len), ip->ip_p, ntohs(ip->ip_sum));
9431 
9432 		switch (ip->ip_p) {
9433 		case IPPROTO_TCP:
9434 			th = (struct tcphdr *)((caddr_t)ip + (ip->ip_hl << 2));
9435 			BCE_PRINTF("-tcp: dest = %d, src = %d, hlen = "
9436 			    "%d bytes, flags = 0x%b, csum = 0x%04X\n",
9437 			    ntohs(th->th_dport), ntohs(th->th_sport),
9438 			    (th->th_off << 2), th->th_flags,
9439 			    "\20\10CWR\07ECE\06URG\05ACK\04PSH\03RST"
9440 			    "\02SYN\01FIN", ntohs(th->th_sum));
9441 			break;
9442 		case IPPROTO_UDP:
9443 			uh = (struct udphdr *)((caddr_t)ip + (ip->ip_hl << 2));
9444 			BCE_PRINTF("-udp: dest = %d, src = %d, len = %d "
9445 			    "bytes, csum = 0x%04X\n", ntohs(uh->uh_dport),
9446 			    ntohs(uh->uh_sport), ntohs(uh->uh_ulen),
9447 			    ntohs(uh->uh_sum));
9448 			break;
9449 		case IPPROTO_ICMP:
9450 			BCE_PRINTF("icmp:\n");
9451 			break;
9452 		default:
9453 			BCE_PRINTF("----: Other IP protocol.\n");
9454 			}
9455 		break;
9456 	case ETHERTYPE_IPV6:
9457 		BCE_PRINTF("ipv6: No decode supported.\n");
9458 		break;
9459 	case ETHERTYPE_ARP:
9460 		BCE_PRINTF("-arp: ");
9461 		ah = (struct arphdr *) (m->m_data + ehlen);
9462 		switch (ntohs(ah->ar_op)) {
9463 		case ARPOP_REVREQUEST:
9464 			printf("reverse ARP request\n");
9465 			break;
9466 		case ARPOP_REVREPLY:
9467 			printf("reverse ARP reply\n");
9468 			break;
9469 		case ARPOP_REQUEST:
9470 			printf("ARP request\n");
9471 			break;
9472 		case ARPOP_REPLY:
9473 			printf("ARP reply\n");
9474 			break;
9475 		default:
9476 			printf("other ARP operation\n");
9477 		}
9478 		break;
9479 	default:
9480 		BCE_PRINTF("----: Other protocol.\n");
9481 	}
9482 
9483 	BCE_PRINTF(
9484 		"-----------------------------"
9485 		"--------------"
9486 		"-----------------------------\n");
9487 }
9488 
9489 
9490 /****************************************************************************/
9491 /* Prints out information about an mbuf.                                    */
9492 /*                                                                          */
9493 /* Returns:                                                                 */
9494 /*   Nothing.                                                               */
9495 /****************************************************************************/
9496 static __attribute__ ((noinline)) void
9497 bce_dump_mbuf(struct bce_softc *sc, struct mbuf *m)
9498 {
9499 	struct mbuf *mp = m;
9500 
9501 	if (m == NULL) {
9502 		BCE_PRINTF("mbuf: null pointer\n");
9503 		return;
9504 	}
9505 
9506 	while (mp) {
9507 		BCE_PRINTF("mbuf: %p, m_len = %d, m_flags = 0x%b, "
9508 		    "m_data = %p\n", mp, mp->m_len, mp->m_flags,
9509 		    "\20\1M_EXT\2M_PKTHDR\3M_EOR\4M_RDONLY", mp->m_data);
9510 
9511 		if (mp->m_flags & M_PKTHDR) {
9512 			BCE_PRINTF("- m_pkthdr: len = %d, flags = 0x%b, "
9513 			    "csum_flags = %b\n", mp->m_pkthdr.len,
9514 			    mp->m_flags, "\20\12M_BCAST\13M_MCAST\14M_FRAG"
9515 			    "\15M_FIRSTFRAG\16M_LASTFRAG\21M_VLANTAG"
9516 			    "\22M_PROMISC\23M_NOFREE",
9517 			    mp->m_pkthdr.csum_flags,
9518 			    "\20\1CSUM_IP\2CSUM_TCP\3CSUM_UDP\4CSUM_IP_FRAGS"
9519 			    "\5CSUM_FRAGMENT\6CSUM_TSO\11CSUM_IP_CHECKED"
9520 			    "\12CSUM_IP_VALID\13CSUM_DATA_VALID"
9521 			    "\14CSUM_PSEUDO_HDR");
9522 		}
9523 
9524 		if (mp->m_flags & M_EXT) {
9525 			BCE_PRINTF("- m_ext: %p, ext_size = %d, type = ",
9526 			    mp->m_ext.ext_buf, mp->m_ext.ext_size);
9527 			switch (mp->m_ext.ext_type) {
9528 			case EXT_CLUSTER:
9529 				printf("EXT_CLUSTER\n"); break;
9530 			case EXT_SFBUF:
9531 				printf("EXT_SFBUF\n"); break;
9532 			case EXT_JUMBO9:
9533 				printf("EXT_JUMBO9\n"); break;
9534 			case EXT_JUMBO16:
9535 				printf("EXT_JUMBO16\n"); break;
9536 			case EXT_PACKET:
9537 				printf("EXT_PACKET\n"); break;
9538 			case EXT_MBUF:
9539 				printf("EXT_MBUF\n"); break;
9540 			case EXT_NET_DRV:
9541 				printf("EXT_NET_DRV\n"); break;
9542 			case EXT_MOD_TYPE:
9543 				printf("EXT_MDD_TYPE\n"); break;
9544 			case EXT_DISPOSABLE:
9545 				printf("EXT_DISPOSABLE\n"); break;
9546 			case EXT_EXTREF:
9547 				printf("EXT_EXTREF\n"); break;
9548 			default:
9549 				printf("UNKNOWN\n");
9550 			}
9551 		}
9552 
9553 		mp = mp->m_next;
9554 	}
9555 }
9556 
9557 
9558 /****************************************************************************/
9559 /* Prints out the mbufs in the TX mbuf chain.                               */
9560 /*                                                                          */
9561 /* Returns:                                                                 */
9562 /*   Nothing.                                                               */
9563 /****************************************************************************/
9564 static __attribute__ ((noinline)) void
9565 bce_dump_tx_mbuf_chain(struct bce_softc *sc, u16 chain_prod, int count)
9566 {
9567 	struct mbuf *m;
9568 
9569 	BCE_PRINTF(
9570 		"----------------------------"
9571 		"  tx mbuf data  "
9572 		"----------------------------\n");
9573 
9574 	for (int i = 0; i < count; i++) {
9575 	 	m = sc->tx_mbuf_ptr[chain_prod];
9576 		BCE_PRINTF("txmbuf[0x%04X]\n", chain_prod);
9577 		bce_dump_mbuf(sc, m);
9578 		chain_prod = TX_CHAIN_IDX(NEXT_TX_BD(chain_prod));
9579 	}
9580 
9581 	BCE_PRINTF(
9582 		"----------------------------"
9583 		"----------------"
9584 		"----------------------------\n");
9585 }
9586 
9587 
9588 /****************************************************************************/
9589 /* Prints out the mbufs in the RX mbuf chain.                               */
9590 /*                                                                          */
9591 /* Returns:                                                                 */
9592 /*   Nothing.                                                               */
9593 /****************************************************************************/
9594 static __attribute__ ((noinline)) void
9595 bce_dump_rx_mbuf_chain(struct bce_softc *sc, u16 chain_prod, int count)
9596 {
9597 	struct mbuf *m;
9598 
9599 	BCE_PRINTF(
9600 		"----------------------------"
9601 		"  rx mbuf data  "
9602 		"----------------------------\n");
9603 
9604 	for (int i = 0; i < count; i++) {
9605 	 	m = sc->rx_mbuf_ptr[chain_prod];
9606 		BCE_PRINTF("rxmbuf[0x%04X]\n", chain_prod);
9607 		bce_dump_mbuf(sc, m);
9608 		chain_prod = RX_CHAIN_IDX(NEXT_RX_BD(chain_prod));
9609 	}
9610 
9611 
9612 	BCE_PRINTF(
9613 		"----------------------------"
9614 		"----------------"
9615 		"----------------------------\n");
9616 }
9617 
9618 
9619 /****************************************************************************/
9620 /* Prints out the mbufs in the mbuf page chain.                             */
9621 /*                                                                          */
9622 /* Returns:                                                                 */
9623 /*   Nothing.                                                               */
9624 /****************************************************************************/
9625 static __attribute__ ((noinline)) void
9626 bce_dump_pg_mbuf_chain(struct bce_softc *sc, u16 chain_prod, int count)
9627 {
9628 	struct mbuf *m;
9629 
9630 	BCE_PRINTF(
9631 		"----------------------------"
9632 		"  pg mbuf data  "
9633 		"----------------------------\n");
9634 
9635 	for (int i = 0; i < count; i++) {
9636 	 	m = sc->pg_mbuf_ptr[chain_prod];
9637 		BCE_PRINTF("pgmbuf[0x%04X]\n", chain_prod);
9638 		bce_dump_mbuf(sc, m);
9639 		chain_prod = PG_CHAIN_IDX(NEXT_PG_BD(chain_prod));
9640 	}
9641 
9642 
9643 	BCE_PRINTF(
9644 		"----------------------------"
9645 		"----------------"
9646 		"----------------------------\n");
9647 }
9648 
9649 
9650 /****************************************************************************/
9651 /* Prints out a tx_bd structure.                                            */
9652 /*                                                                          */
9653 /* Returns:                                                                 */
9654 /*   Nothing.                                                               */
9655 /****************************************************************************/
9656 static __attribute__ ((noinline)) void
9657 bce_dump_txbd(struct bce_softc *sc, int idx, struct tx_bd *txbd)
9658 {
9659 	int i = 0;
9660 
9661 	if (idx > MAX_TX_BD_ALLOC)
9662 		/* Index out of range. */
9663 		BCE_PRINTF("tx_bd[0x%04X]: Invalid tx_bd index!\n", idx);
9664 	else if ((idx & USABLE_TX_BD_PER_PAGE) == USABLE_TX_BD_PER_PAGE)
9665 		/* TX Chain page pointer. */
9666 		BCE_PRINTF("tx_bd[0x%04X]: haddr = 0x%08X:%08X, chain page "
9667 		    "pointer\n", idx, txbd->tx_bd_haddr_hi,
9668 		    txbd->tx_bd_haddr_lo);
9669 	else {
9670 		/* Normal tx_bd entry. */
9671 		BCE_PRINTF("tx_bd[0x%04X]: haddr = 0x%08X:%08X, "
9672 		    "mss_nbytes = 0x%08X, vlan tag = 0x%04X, flags = "
9673 		    "0x%04X (", idx, txbd->tx_bd_haddr_hi,
9674 		    txbd->tx_bd_haddr_lo, txbd->tx_bd_mss_nbytes,
9675 		    txbd->tx_bd_vlan_tag, txbd->tx_bd_flags);
9676 
9677 		if (txbd->tx_bd_flags & TX_BD_FLAGS_CONN_FAULT) {
9678 			if (i>0)
9679 				printf("|");
9680 			printf("CONN_FAULT");
9681 			i++;
9682 		}
9683 
9684 		if (txbd->tx_bd_flags & TX_BD_FLAGS_TCP_UDP_CKSUM) {
9685 			if (i>0)
9686 				printf("|");
9687 			printf("TCP_UDP_CKSUM");
9688 			i++;
9689 		}
9690 
9691 		if (txbd->tx_bd_flags & TX_BD_FLAGS_IP_CKSUM) {
9692 			if (i>0)
9693 				printf("|");
9694 			printf("IP_CKSUM");
9695 			i++;
9696 		}
9697 
9698 		if (txbd->tx_bd_flags & TX_BD_FLAGS_VLAN_TAG) {
9699 			if (i>0)
9700 				printf("|");
9701 			printf("VLAN");
9702 			i++;
9703 		}
9704 
9705 		if (txbd->tx_bd_flags & TX_BD_FLAGS_COAL_NOW) {
9706 			if (i>0)
9707 				printf("|");
9708 			printf("COAL_NOW");
9709 			i++;
9710 		}
9711 
9712 		if (txbd->tx_bd_flags & TX_BD_FLAGS_DONT_GEN_CRC) {
9713 			if (i>0)
9714 				printf("|");
9715 			printf("DONT_GEN_CRC");
9716 			i++;
9717 		}
9718 
9719 		if (txbd->tx_bd_flags & TX_BD_FLAGS_START) {
9720 			if (i>0)
9721 				printf("|");
9722 			printf("START");
9723 			i++;
9724 		}
9725 
9726 		if (txbd->tx_bd_flags & TX_BD_FLAGS_END) {
9727 			if (i>0)
9728 				printf("|");
9729 			printf("END");
9730 			i++;
9731 		}
9732 
9733 		if (txbd->tx_bd_flags & TX_BD_FLAGS_SW_LSO) {
9734 			if (i>0)
9735 				printf("|");
9736 			printf("LSO");
9737 			i++;
9738 		}
9739 
9740 		if (txbd->tx_bd_flags & TX_BD_FLAGS_SW_OPTION_WORD) {
9741 			if (i>0)
9742 				printf("|");
9743 			printf("SW_OPTION=%d", ((txbd->tx_bd_flags &
9744 			    TX_BD_FLAGS_SW_OPTION_WORD) >> 8)); i++;
9745 		}
9746 
9747 		if (txbd->tx_bd_flags & TX_BD_FLAGS_SW_FLAGS) {
9748 			if (i>0)
9749 				printf("|");
9750 			printf("SW_FLAGS");
9751 			i++;
9752 		}
9753 
9754 		if (txbd->tx_bd_flags & TX_BD_FLAGS_SW_SNAP) {
9755 			if (i>0)
9756 				printf("|");
9757 			printf("SNAP)");
9758 		} else {
9759 			printf(")\n");
9760 		}
9761 	}
9762 }
9763 
9764 
9765 /****************************************************************************/
9766 /* Prints out a rx_bd structure.                                            */
9767 /*                                                                          */
9768 /* Returns:                                                                 */
9769 /*   Nothing.                                                               */
9770 /****************************************************************************/
9771 static __attribute__ ((noinline)) void
9772 bce_dump_rxbd(struct bce_softc *sc, int idx, struct rx_bd *rxbd)
9773 {
9774 	if (idx > MAX_RX_BD_ALLOC)
9775 		/* Index out of range. */
9776 		BCE_PRINTF("rx_bd[0x%04X]: Invalid rx_bd index!\n", idx);
9777 	else if ((idx & USABLE_RX_BD_PER_PAGE) == USABLE_RX_BD_PER_PAGE)
9778 		/* RX Chain page pointer. */
9779 		BCE_PRINTF("rx_bd[0x%04X]: haddr = 0x%08X:%08X, chain page "
9780 		    "pointer\n", idx, rxbd->rx_bd_haddr_hi,
9781 		    rxbd->rx_bd_haddr_lo);
9782 	else
9783 		/* Normal rx_bd entry. */
9784 		BCE_PRINTF("rx_bd[0x%04X]: haddr = 0x%08X:%08X, nbytes = "
9785 		    "0x%08X, flags = 0x%08X\n", idx, rxbd->rx_bd_haddr_hi,
9786 		    rxbd->rx_bd_haddr_lo, rxbd->rx_bd_len,
9787 		    rxbd->rx_bd_flags);
9788 }
9789 
9790 
9791 /****************************************************************************/
9792 /* Prints out a rx_bd structure in the page chain.                          */
9793 /*                                                                          */
9794 /* Returns:                                                                 */
9795 /*   Nothing.                                                               */
9796 /****************************************************************************/
9797 static __attribute__ ((noinline)) void
9798 bce_dump_pgbd(struct bce_softc *sc, int idx, struct rx_bd *pgbd)
9799 {
9800 	if (idx > MAX_PG_BD_ALLOC)
9801 		/* Index out of range. */
9802 		BCE_PRINTF("pg_bd[0x%04X]: Invalid pg_bd index!\n", idx);
9803 	else if ((idx & USABLE_PG_BD_PER_PAGE) == USABLE_PG_BD_PER_PAGE)
9804 		/* Page Chain page pointer. */
9805 		BCE_PRINTF("px_bd[0x%04X]: haddr = 0x%08X:%08X, chain page pointer\n",
9806 			idx, pgbd->rx_bd_haddr_hi, pgbd->rx_bd_haddr_lo);
9807 	else
9808 		/* Normal rx_bd entry. */
9809 		BCE_PRINTF("pg_bd[0x%04X]: haddr = 0x%08X:%08X, nbytes = 0x%08X, "
9810 			"flags = 0x%08X\n", idx,
9811 			pgbd->rx_bd_haddr_hi, pgbd->rx_bd_haddr_lo,
9812 			pgbd->rx_bd_len, pgbd->rx_bd_flags);
9813 }
9814 
9815 
9816 /****************************************************************************/
9817 /* Prints out a l2_fhdr structure.                                          */
9818 /*                                                                          */
9819 /* Returns:                                                                 */
9820 /*   Nothing.                                                               */
9821 /****************************************************************************/
9822 static __attribute__ ((noinline)) void
9823 bce_dump_l2fhdr(struct bce_softc *sc, int idx, struct l2_fhdr *l2fhdr)
9824 {
9825 	BCE_PRINTF("l2_fhdr[0x%04X]: status = 0x%b, "
9826 		"pkt_len = %d, vlan = 0x%04x, ip_xsum/hdr_len = 0x%04X, "
9827 		"tcp_udp_xsum = 0x%04X\n", idx,
9828 		l2fhdr->l2_fhdr_status, BCE_L2FHDR_PRINTFB,
9829 		l2fhdr->l2_fhdr_pkt_len, l2fhdr->l2_fhdr_vlan_tag,
9830 		l2fhdr->l2_fhdr_ip_xsum, l2fhdr->l2_fhdr_tcp_udp_xsum);
9831 }
9832 
9833 
9834 /****************************************************************************/
9835 /* Prints out context memory info.  (Only useful for CID 0 to 16.)          */
9836 /*                                                                          */
9837 /* Returns:                                                                 */
9838 /*   Nothing.                                                               */
9839 /****************************************************************************/
9840 static __attribute__ ((noinline)) void
9841 bce_dump_ctx(struct bce_softc *sc, u16 cid)
9842 {
9843 	if (cid > TX_CID) {
9844 		BCE_PRINTF(" Unknown CID\n");
9845 		return;
9846 	}
9847 
9848 	BCE_PRINTF(
9849 	    "----------------------------"
9850 	    "    CTX Data    "
9851 	    "----------------------------\n");
9852 
9853 	BCE_PRINTF("     0x%04X - (CID) Context ID\n", cid);
9854 
9855 	if (cid == RX_CID) {
9856 		BCE_PRINTF(" 0x%08X - (L2CTX_RX_HOST_BDIDX) host rx "
9857 		   "producer index\n",
9858 		    CTX_RD(sc, GET_CID_ADDR(cid), BCE_L2CTX_RX_HOST_BDIDX));
9859 		BCE_PRINTF(" 0x%08X - (L2CTX_RX_HOST_BSEQ) host "
9860 		    "byte sequence\n", CTX_RD(sc, GET_CID_ADDR(cid),
9861 		    BCE_L2CTX_RX_HOST_BSEQ));
9862 		BCE_PRINTF(" 0x%08X - (L2CTX_RX_NX_BSEQ) h/w byte sequence\n",
9863 		    CTX_RD(sc, GET_CID_ADDR(cid), BCE_L2CTX_RX_NX_BSEQ));
9864 		BCE_PRINTF(" 0x%08X - (L2CTX_RX_NX_BDHADDR_HI) h/w buffer "
9865 		    "descriptor address\n",
9866  		    CTX_RD(sc, GET_CID_ADDR(cid), BCE_L2CTX_RX_NX_BDHADDR_HI));
9867 		BCE_PRINTF(" 0x%08X - (L2CTX_RX_NX_BDHADDR_LO) h/w buffer "
9868 		    "descriptor address\n",
9869 		    CTX_RD(sc, GET_CID_ADDR(cid), BCE_L2CTX_RX_NX_BDHADDR_LO));
9870 		BCE_PRINTF(" 0x%08X - (L2CTX_RX_NX_BDIDX) h/w rx consumer "
9871 		    "index\n", CTX_RD(sc, GET_CID_ADDR(cid),
9872 		    BCE_L2CTX_RX_NX_BDIDX));
9873 		BCE_PRINTF(" 0x%08X - (L2CTX_RX_HOST_PG_BDIDX) host page "
9874 		    "producer index\n", CTX_RD(sc, GET_CID_ADDR(cid),
9875 		    BCE_L2CTX_RX_HOST_PG_BDIDX));
9876 		BCE_PRINTF(" 0x%08X - (L2CTX_RX_PG_BUF_SIZE) host rx_bd/page "
9877 		    "buffer size\n", CTX_RD(sc, GET_CID_ADDR(cid),
9878 		    BCE_L2CTX_RX_PG_BUF_SIZE));
9879 		BCE_PRINTF(" 0x%08X - (L2CTX_RX_NX_PG_BDHADDR_HI) h/w page "
9880 		    "chain address\n", CTX_RD(sc, GET_CID_ADDR(cid),
9881 		    BCE_L2CTX_RX_NX_PG_BDHADDR_HI));
9882 		BCE_PRINTF(" 0x%08X - (L2CTX_RX_NX_PG_BDHADDR_LO) h/w page "
9883 		    "chain address\n", CTX_RD(sc, GET_CID_ADDR(cid),
9884 		    BCE_L2CTX_RX_NX_PG_BDHADDR_LO));
9885 		BCE_PRINTF(" 0x%08X - (L2CTX_RX_NX_PG_BDIDX) h/w page "
9886 		    "consumer index\n",	CTX_RD(sc, GET_CID_ADDR(cid),
9887 		    BCE_L2CTX_RX_NX_PG_BDIDX));
9888 	} else if (cid == TX_CID) {
9889 		if (BCE_CHIP_NUM(sc) == BCE_CHIP_NUM_5709) {
9890 			BCE_PRINTF(" 0x%08X - (L2CTX_TX_TYPE_XI) ctx type\n",
9891 			    CTX_RD(sc, GET_CID_ADDR(cid),
9892 			    BCE_L2CTX_TX_TYPE_XI));
9893 			BCE_PRINTF(" 0x%08X - (L2CTX_CMD_TX_TYPE_XI) ctx "
9894 			    "cmd\n", CTX_RD(sc, GET_CID_ADDR(cid),
9895 			    BCE_L2CTX_TX_CMD_TYPE_XI));
9896 			BCE_PRINTF(" 0x%08X - (L2CTX_TX_TBDR_BDHADDR_HI_XI) "
9897 			    "h/w buffer descriptor address\n",
9898 			    CTX_RD(sc, GET_CID_ADDR(cid),
9899 			    BCE_L2CTX_TX_TBDR_BHADDR_HI_XI));
9900 			BCE_PRINTF(" 0x%08X - (L2CTX_TX_TBDR_BHADDR_LO_XI) "
9901 			    "h/w buffer	descriptor address\n",
9902 			    CTX_RD(sc, GET_CID_ADDR(cid),
9903 			    BCE_L2CTX_TX_TBDR_BHADDR_LO_XI));
9904 			BCE_PRINTF(" 0x%08X - (L2CTX_TX_HOST_BIDX_XI) "
9905 			    "host producer index\n",
9906 			    CTX_RD(sc, GET_CID_ADDR(cid),
9907 			    BCE_L2CTX_TX_HOST_BIDX_XI));
9908 			BCE_PRINTF(" 0x%08X - (L2CTX_TX_HOST_BSEQ_XI) "
9909 			    "host byte sequence\n",
9910 			    CTX_RD(sc, GET_CID_ADDR(cid),
9911 			    BCE_L2CTX_TX_HOST_BSEQ_XI));
9912 		} else {
9913 			BCE_PRINTF(" 0x%08X - (L2CTX_TX_TYPE) ctx type\n",
9914 			    CTX_RD(sc, GET_CID_ADDR(cid), BCE_L2CTX_TX_TYPE));
9915 			BCE_PRINTF(" 0x%08X - (L2CTX_TX_CMD_TYPE) ctx cmd\n",
9916 			    CTX_RD(sc, GET_CID_ADDR(cid),
9917 			    BCE_L2CTX_TX_CMD_TYPE));
9918 			BCE_PRINTF(" 0x%08X - (L2CTX_TX_TBDR_BDHADDR_HI) "
9919 			    "h/w buffer	descriptor address\n",
9920 			    CTX_RD(sc, GET_CID_ADDR(cid),
9921 			    BCE_L2CTX_TX_TBDR_BHADDR_HI));
9922 			BCE_PRINTF(" 0x%08X - (L2CTX_TX_TBDR_BHADDR_LO) "
9923 			    "h/w buffer	descriptor address\n",
9924 			    CTX_RD(sc, GET_CID_ADDR(cid),
9925 			    BCE_L2CTX_TX_TBDR_BHADDR_LO));
9926 			BCE_PRINTF(" 0x%08X - (L2CTX_TX_HOST_BIDX) host "
9927 			    "producer index\n", CTX_RD(sc, GET_CID_ADDR(cid),
9928 			    BCE_L2CTX_TX_HOST_BIDX));
9929 			BCE_PRINTF(" 0x%08X - (L2CTX_TX_HOST_BSEQ) host byte "
9930 			    "sequence\n", CTX_RD(sc, GET_CID_ADDR(cid),
9931 			    BCE_L2CTX_TX_HOST_BSEQ));
9932 		}
9933 	}
9934 
9935 	BCE_PRINTF(
9936 	   "----------------------------"
9937 	   "    Raw CTX     "
9938 	   "----------------------------\n");
9939 
9940 	for (int i = 0x0; i < 0x300; i += 0x10) {
9941 		BCE_PRINTF("0x%04X: 0x%08X 0x%08X 0x%08X 0x%08X\n", i,
9942 		   CTX_RD(sc, GET_CID_ADDR(cid), i),
9943 		   CTX_RD(sc, GET_CID_ADDR(cid), i + 0x4),
9944 		   CTX_RD(sc, GET_CID_ADDR(cid), i + 0x8),
9945 		   CTX_RD(sc, GET_CID_ADDR(cid), i + 0xc));
9946 	}
9947 
9948 
9949 	BCE_PRINTF(
9950 	   "----------------------------"
9951 	   "----------------"
9952 	   "----------------------------\n");
9953 }
9954 
9955 
9956 /****************************************************************************/
9957 /* Prints out the FTQ data.                                                 */
9958 /*                                                                          */
9959 /* Returns:                                                                */
9960 /*   Nothing.                                                               */
9961 /****************************************************************************/
9962 static __attribute__ ((noinline)) void
9963 bce_dump_ftqs(struct bce_softc *sc)
9964 {
9965 	u32 cmd, ctl, cur_depth, max_depth, valid_cnt, val;
9966 
9967 	BCE_PRINTF(
9968 	    "----------------------------"
9969 	    "    FTQ Data    "
9970 	    "----------------------------\n");
9971 
9972 	BCE_PRINTF("   FTQ    Command    Control   Depth_Now  "
9973 	    "Max_Depth  Valid_Cnt \n");
9974 	BCE_PRINTF(" ------- ---------- ---------- ---------- "
9975 	    "---------- ----------\n");
9976 
9977 	/* Setup the generic statistic counters for the FTQ valid count. */
9978 	val = (BCE_HC_STAT_GEN_SEL_0_GEN_SEL_0_RV2PPQ_VALID_CNT << 24) |
9979 	    (BCE_HC_STAT_GEN_SEL_0_GEN_SEL_0_RXPCQ_VALID_CNT  << 16) |
9980 	    (BCE_HC_STAT_GEN_SEL_0_GEN_SEL_0_RXPQ_VALID_CNT   <<  8) |
9981 	    (BCE_HC_STAT_GEN_SEL_0_GEN_SEL_0_RLUPQ_VALID_CNT);
9982 	REG_WR(sc, BCE_HC_STAT_GEN_SEL_0, val);
9983 
9984 	val = (BCE_HC_STAT_GEN_SEL_0_GEN_SEL_0_TSCHQ_VALID_CNT  << 24) |
9985 	    (BCE_HC_STAT_GEN_SEL_0_GEN_SEL_0_RDMAQ_VALID_CNT  << 16) |
9986 	    (BCE_HC_STAT_GEN_SEL_0_GEN_SEL_0_RV2PTQ_VALID_CNT <<  8) |
9987 	    (BCE_HC_STAT_GEN_SEL_0_GEN_SEL_0_RV2PMQ_VALID_CNT);
9988 	REG_WR(sc, BCE_HC_STAT_GEN_SEL_1, val);
9989 
9990 	val = (BCE_HC_STAT_GEN_SEL_0_GEN_SEL_0_TPATQ_VALID_CNT  << 24) |
9991 	    (BCE_HC_STAT_GEN_SEL_0_GEN_SEL_0_TDMAQ_VALID_CNT  << 16) |
9992 	    (BCE_HC_STAT_GEN_SEL_0_GEN_SEL_0_TXPQ_VALID_CNT   <<  8) |
9993 	    (BCE_HC_STAT_GEN_SEL_0_GEN_SEL_0_TBDRQ_VALID_CNT);
9994 	REG_WR(sc, BCE_HC_STAT_GEN_SEL_2, val);
9995 
9996 	val = (BCE_HC_STAT_GEN_SEL_0_GEN_SEL_0_COMQ_VALID_CNT   << 24) |
9997 	    (BCE_HC_STAT_GEN_SEL_0_GEN_SEL_0_COMTQ_VALID_CNT  << 16) |
9998 	    (BCE_HC_STAT_GEN_SEL_0_GEN_SEL_0_COMXQ_VALID_CNT  <<  8) |
9999 	    (BCE_HC_STAT_GEN_SEL_0_GEN_SEL_0_TASQ_VALID_CNT);
10000 	REG_WR(sc, BCE_HC_STAT_GEN_SEL_3, val);
10001 
10002 	/* Input queue to the Receive Lookup state machine */
10003 	cmd = REG_RD(sc, BCE_RLUP_FTQ_CMD);
10004 	ctl = REG_RD(sc, BCE_RLUP_FTQ_CTL);
10005 	cur_depth = (ctl & BCE_RLUP_FTQ_CTL_CUR_DEPTH) >> 22;
10006 	max_depth = (ctl & BCE_RLUP_FTQ_CTL_MAX_DEPTH) >> 12;
10007 	valid_cnt = REG_RD(sc, BCE_HC_STAT_GEN_STAT0);
10008 	BCE_PRINTF(" RLUP    0x%08X 0x%08X 0x%08X 0x%08X 0x%08X\n",
10009 	    cmd, ctl, cur_depth, max_depth, valid_cnt);
10010 
10011 	/* Input queue to the Receive Processor */
10012 	cmd = REG_RD_IND(sc, BCE_RXP_FTQ_CMD);
10013 	ctl = REG_RD_IND(sc, BCE_RXP_FTQ_CTL);
10014 	cur_depth = (ctl & BCE_RXP_FTQ_CTL_CUR_DEPTH) >> 22;
10015 	max_depth = (ctl & BCE_RXP_FTQ_CTL_MAX_DEPTH) >> 12;
10016 	valid_cnt = REG_RD(sc, BCE_HC_STAT_GEN_STAT1);
10017 	BCE_PRINTF(" RXP     0x%08X 0x%08X 0x%08X 0x%08X 0x%08X\n",
10018 	    cmd, ctl, cur_depth, max_depth, valid_cnt);
10019 
10020 	/* Input queue to the Recevie Processor */
10021 	cmd = REG_RD_IND(sc, BCE_RXP_CFTQ_CMD);
10022 	ctl = REG_RD_IND(sc, BCE_RXP_CFTQ_CTL);
10023 	cur_depth = (ctl & BCE_RXP_CFTQ_CTL_CUR_DEPTH) >> 22;
10024 	max_depth = (ctl & BCE_RXP_CFTQ_CTL_MAX_DEPTH) >> 12;
10025 	valid_cnt = REG_RD(sc, BCE_HC_STAT_GEN_STAT2);
10026 	BCE_PRINTF(" RXPC    0x%08X 0x%08X 0x%08X 0x%08X 0x%08X\n",
10027 	    cmd, ctl, cur_depth, max_depth, valid_cnt);
10028 
10029 	/* Input queue to the Receive Virtual to Physical state machine */
10030 	cmd = REG_RD(sc, BCE_RV2P_PFTQ_CMD);
10031 	ctl = REG_RD(sc, BCE_RV2P_PFTQ_CTL);
10032 	cur_depth = (ctl & BCE_RV2P_PFTQ_CTL_CUR_DEPTH) >> 22;
10033 	max_depth = (ctl & BCE_RV2P_PFTQ_CTL_MAX_DEPTH) >> 12;
10034 	valid_cnt = REG_RD(sc, BCE_HC_STAT_GEN_STAT3);
10035 	BCE_PRINTF(" RV2PP   0x%08X 0x%08X 0x%08X 0x%08X 0x%08X\n",
10036 	    cmd, ctl, cur_depth, max_depth, valid_cnt);
10037 
10038 	/* Input queue to the Recevie Virtual to Physical state machine */
10039 	cmd = REG_RD(sc, BCE_RV2P_MFTQ_CMD);
10040 	ctl = REG_RD(sc, BCE_RV2P_MFTQ_CTL);
10041 	cur_depth = (ctl & BCE_RV2P_MFTQ_CTL_CUR_DEPTH) >> 22;
10042 	max_depth = (ctl & BCE_RV2P_MFTQ_CTL_MAX_DEPTH) >> 12;
10043 	valid_cnt = REG_RD(sc, BCE_HC_STAT_GEN_STAT4);
10044 	BCE_PRINTF(" RV2PM   0x%08X 0x%08X 0x%08X 0x%08X 0x%08X\n",
10045 	    cmd, ctl, cur_depth, max_depth, valid_cnt);
10046 
10047 	/* Input queue to the Receive Virtual to Physical state machine */
10048 	cmd = REG_RD(sc, BCE_RV2P_TFTQ_CMD);
10049 	ctl = REG_RD(sc, BCE_RV2P_TFTQ_CTL);
10050 	cur_depth = (ctl & BCE_RV2P_TFTQ_CTL_CUR_DEPTH) >> 22;
10051 	max_depth = (ctl & BCE_RV2P_TFTQ_CTL_MAX_DEPTH) >> 12;
10052 	valid_cnt = REG_RD(sc, BCE_HC_STAT_GEN_STAT5);
10053 	BCE_PRINTF(" RV2PT   0x%08X 0x%08X 0x%08X 0x%08X 0x%08X\n",
10054 	    cmd, ctl, cur_depth, max_depth, valid_cnt);
10055 
10056 	/* Input queue to the Receive DMA state machine */
10057 	cmd = REG_RD(sc, BCE_RDMA_FTQ_CMD);
10058 	ctl = REG_RD(sc, BCE_RDMA_FTQ_CTL);
10059 	cur_depth = (ctl & BCE_RDMA_FTQ_CTL_CUR_DEPTH) >> 22;
10060 	max_depth = (ctl & BCE_RDMA_FTQ_CTL_MAX_DEPTH) >> 12;
10061 	valid_cnt = REG_RD(sc, BCE_HC_STAT_GEN_STAT6);
10062 	BCE_PRINTF(" RDMA    0x%08X 0x%08X 0x%08X 0x%08X 0x%08X\n",
10063 	    cmd, ctl, cur_depth, max_depth, valid_cnt);
10064 
10065 	/* Input queue to the Transmit Scheduler state machine */
10066 	cmd = REG_RD(sc, BCE_TSCH_FTQ_CMD);
10067 	ctl = REG_RD(sc, BCE_TSCH_FTQ_CTL);
10068 	cur_depth = (ctl & BCE_TSCH_FTQ_CTL_CUR_DEPTH) >> 22;
10069 	max_depth = (ctl & BCE_TSCH_FTQ_CTL_MAX_DEPTH) >> 12;
10070 	valid_cnt = REG_RD(sc, BCE_HC_STAT_GEN_STAT7);
10071 	BCE_PRINTF(" TSCH    0x%08X 0x%08X 0x%08X 0x%08X 0x%08X\n",
10072 	    cmd, ctl, cur_depth, max_depth, valid_cnt);
10073 
10074 	/* Input queue to the Transmit Buffer Descriptor state machine */
10075 	cmd = REG_RD(sc, BCE_TBDR_FTQ_CMD);
10076 	ctl = REG_RD(sc, BCE_TBDR_FTQ_CTL);
10077 	cur_depth = (ctl & BCE_TBDR_FTQ_CTL_CUR_DEPTH) >> 22;
10078 	max_depth = (ctl & BCE_TBDR_FTQ_CTL_MAX_DEPTH) >> 12;
10079 	valid_cnt = REG_RD(sc, BCE_HC_STAT_GEN_STAT8);
10080 	BCE_PRINTF(" TBDR    0x%08X 0x%08X 0x%08X 0x%08X 0x%08X\n",
10081 	    cmd, ctl, cur_depth, max_depth, valid_cnt);
10082 
10083 	/* Input queue to the Transmit Processor */
10084 	cmd = REG_RD_IND(sc, BCE_TXP_FTQ_CMD);
10085 	ctl = REG_RD_IND(sc, BCE_TXP_FTQ_CTL);
10086 	cur_depth = (ctl & BCE_TXP_FTQ_CTL_CUR_DEPTH) >> 22;
10087 	max_depth = (ctl & BCE_TXP_FTQ_CTL_MAX_DEPTH) >> 12;
10088 	valid_cnt = REG_RD(sc, BCE_HC_STAT_GEN_STAT9);
10089 	BCE_PRINTF(" TXP     0x%08X 0x%08X 0x%08X 0x%08X 0x%08X\n",
10090 	    cmd, ctl, cur_depth, max_depth, valid_cnt);
10091 
10092 	/* Input queue to the Transmit DMA state machine */
10093 	cmd = REG_RD(sc, BCE_TDMA_FTQ_CMD);
10094 	ctl = REG_RD(sc, BCE_TDMA_FTQ_CTL);
10095 	cur_depth = (ctl & BCE_TDMA_FTQ_CTL_CUR_DEPTH) >> 22;
10096 	max_depth = (ctl & BCE_TDMA_FTQ_CTL_MAX_DEPTH) >> 12;
10097 	valid_cnt = REG_RD(sc, BCE_HC_STAT_GEN_STAT10);
10098 	BCE_PRINTF(" TDMA    0x%08X 0x%08X 0x%08X 0x%08X 0x%08X\n",
10099 	    cmd, ctl, cur_depth, max_depth, valid_cnt);
10100 
10101 	/* Input queue to the Transmit Patch-Up Processor */
10102 	cmd = REG_RD_IND(sc, BCE_TPAT_FTQ_CMD);
10103 	ctl = REG_RD_IND(sc, BCE_TPAT_FTQ_CTL);
10104 	cur_depth = (ctl & BCE_TPAT_FTQ_CTL_CUR_DEPTH) >> 22;
10105 	max_depth = (ctl & BCE_TPAT_FTQ_CTL_MAX_DEPTH) >> 12;
10106 	valid_cnt = REG_RD(sc, BCE_HC_STAT_GEN_STAT11);
10107 	BCE_PRINTF(" TPAT    0x%08X 0x%08X 0x%08X 0x%08X 0x%08X\n",
10108 	    cmd, ctl, cur_depth, max_depth, valid_cnt);
10109 
10110 	/* Input queue to the Transmit Assembler state machine */
10111 	cmd = REG_RD_IND(sc, BCE_TAS_FTQ_CMD);
10112 	ctl = REG_RD_IND(sc, BCE_TAS_FTQ_CTL);
10113 	cur_depth = (ctl & BCE_TAS_FTQ_CTL_CUR_DEPTH) >> 22;
10114 	max_depth = (ctl & BCE_TAS_FTQ_CTL_MAX_DEPTH) >> 12;
10115 	valid_cnt = REG_RD(sc, BCE_HC_STAT_GEN_STAT12);
10116 	BCE_PRINTF(" TAS     0x%08X 0x%08X 0x%08X 0x%08X 0x%08X\n",
10117 	    cmd, ctl, cur_depth, max_depth, valid_cnt);
10118 
10119 	/* Input queue to the Completion Processor */
10120 	cmd = REG_RD_IND(sc, BCE_COM_COMXQ_FTQ_CMD);
10121 	ctl = REG_RD_IND(sc, BCE_COM_COMXQ_FTQ_CTL);
10122 	cur_depth = (ctl & BCE_COM_COMXQ_FTQ_CTL_CUR_DEPTH) >> 22;
10123 	max_depth = (ctl & BCE_COM_COMXQ_FTQ_CTL_MAX_DEPTH) >> 12;
10124 	valid_cnt = REG_RD(sc, BCE_HC_STAT_GEN_STAT13);
10125 	BCE_PRINTF(" COMX    0x%08X 0x%08X 0x%08X 0x%08X 0x%08X\n",
10126 	    cmd, ctl, cur_depth, max_depth, valid_cnt);
10127 
10128 	/* Input queue to the Completion Processor */
10129 	cmd = REG_RD_IND(sc, BCE_COM_COMTQ_FTQ_CMD);
10130 	ctl = REG_RD_IND(sc, BCE_COM_COMTQ_FTQ_CTL);
10131 	cur_depth = (ctl & BCE_COM_COMTQ_FTQ_CTL_CUR_DEPTH) >> 22;
10132 	max_depth = (ctl & BCE_COM_COMTQ_FTQ_CTL_MAX_DEPTH) >> 12;
10133 	valid_cnt = REG_RD(sc, BCE_HC_STAT_GEN_STAT14);
10134 	BCE_PRINTF(" COMT    0x%08X 0x%08X 0x%08X 0x%08X 0x%08X\n",
10135 	    cmd, ctl, cur_depth, max_depth, valid_cnt);
10136 
10137 	/* Input queue to the Completion Processor */
10138 	cmd = REG_RD_IND(sc, BCE_COM_COMQ_FTQ_CMD);
10139 	ctl = REG_RD_IND(sc, BCE_COM_COMQ_FTQ_CTL);
10140 	cur_depth = (ctl & BCE_COM_COMQ_FTQ_CTL_CUR_DEPTH) >> 22;
10141 	max_depth = (ctl & BCE_COM_COMQ_FTQ_CTL_MAX_DEPTH) >> 12;
10142 	valid_cnt = REG_RD(sc, BCE_HC_STAT_GEN_STAT15);
10143 	BCE_PRINTF(" COMX    0x%08X 0x%08X 0x%08X 0x%08X 0x%08X\n",
10144 	    cmd, ctl, cur_depth, max_depth, valid_cnt);
10145 
10146 	/* Setup the generic statistic counters for the FTQ valid count. */
10147 	val = (BCE_HC_STAT_GEN_SEL_0_GEN_SEL_0_CSQ_VALID_CNT  << 16) |
10148 	    (BCE_HC_STAT_GEN_SEL_0_GEN_SEL_0_CPQ_VALID_CNT  <<  8) |
10149 	    (BCE_HC_STAT_GEN_SEL_0_GEN_SEL_0_MGMQ_VALID_CNT);
10150 
10151 	if ((BCE_CHIP_NUM(sc) == BCE_CHIP_NUM_5709)
10152 		val = val |
10153 		    (BCE_HC_STAT_GEN_SEL_0_GEN_SEL_0_RV2PCSQ_VALID_CNT_XI <<
10154 		     24);
10155 	REG_WR(sc, BCE_HC_STAT_GEN_SEL_0, val);
10156 
10157 	/* Input queue to the Management Control Processor */
10158 	cmd = REG_RD_IND(sc, BCE_MCP_MCPQ_FTQ_CMD);
10159 	ctl = REG_RD_IND(sc, BCE_MCP_MCPQ_FTQ_CTL);
10160 	cur_depth = (ctl & BCE_MCP_MCPQ_FTQ_CTL_CUR_DEPTH) >> 22;
10161 	max_depth = (ctl & BCE_MCP_MCPQ_FTQ_CTL_MAX_DEPTH) >> 12;
10162 	valid_cnt = REG_RD(sc, BCE_HC_STAT_GEN_STAT0);
10163 	BCE_PRINTF(" MCP     0x%08X 0x%08X 0x%08X 0x%08X 0x%08X\n",
10164 	    cmd, ctl, cur_depth, max_depth, valid_cnt);
10165 
10166 	/* Input queue to the Command Processor */
10167 	cmd = REG_RD_IND(sc, BCE_CP_CPQ_FTQ_CMD);
10168 	ctl = REG_RD_IND(sc, BCE_CP_CPQ_FTQ_CTL);
10169 	cur_depth = (ctl & BCE_CP_CPQ_FTQ_CTL_CUR_DEPTH) >> 22;
10170 	max_depth = (ctl & BCE_CP_CPQ_FTQ_CTL_MAX_DEPTH) >> 12;
10171 	valid_cnt = REG_RD(sc, BCE_HC_STAT_GEN_STAT1);
10172 	BCE_PRINTF(" CP      0x%08X 0x%08X 0x%08X 0x%08X 0x%08X\n",
10173 	    cmd, ctl, cur_depth, max_depth, valid_cnt);
10174 
10175 	/* Input queue to the Completion Scheduler state machine */
10176 	cmd = REG_RD(sc, BCE_CSCH_CH_FTQ_CMD);
10177 	ctl = REG_RD(sc, BCE_CSCH_CH_FTQ_CTL);
10178 	cur_depth = (ctl & BCE_CSCH_CH_FTQ_CTL_CUR_DEPTH) >> 22;
10179 	max_depth = (ctl & BCE_CSCH_CH_FTQ_CTL_MAX_DEPTH) >> 12;
10180 	valid_cnt = REG_RD(sc, BCE_HC_STAT_GEN_STAT2);
10181 	BCE_PRINTF(" CS      0x%08X 0x%08X 0x%08X 0x%08X 0x%08X\n",
10182 	    cmd, ctl, cur_depth, max_depth, valid_cnt);
10183 
10184 	if (BCE_CHIP_NUM(sc) == BCE_CHIP_NUM_5709) {
10185 		/* Input queue to the RV2P Command Scheduler */
10186 		cmd = REG_RD(sc, BCE_RV2PCSR_FTQ_CMD);
10187 		ctl = REG_RD(sc, BCE_RV2PCSR_FTQ_CTL);
10188 		cur_depth = (ctl & 0xFFC00000) >> 22;
10189 		max_depth = (ctl & 0x003FF000) >> 12;
10190 		valid_cnt = REG_RD(sc, BCE_HC_STAT_GEN_STAT3);
10191 		BCE_PRINTF(" RV2PCSR 0x%08X 0x%08X 0x%08X 0x%08X 0x%08X\n",
10192 		    cmd, ctl, cur_depth, max_depth, valid_cnt);
10193 	}
10194 
10195 	BCE_PRINTF(
10196 	    "----------------------------"
10197 	    "----------------"
10198 	    "----------------------------\n");
10199 }
10200 
10201 
10202 /****************************************************************************/
10203 /* Prints out the TX chain.                                                 */
10204 /*                                                                          */
10205 /* Returns:                                                                 */
10206 /*   Nothing.                                                               */
10207 /****************************************************************************/
10208 static __attribute__ ((noinline)) void
10209 bce_dump_tx_chain(struct bce_softc *sc, u16 tx_prod, int count)
10210 {
10211 	struct tx_bd *txbd;
10212 
10213 	/* First some info about the tx_bd chain structure. */
10214 	BCE_PRINTF(
10215 	    "----------------------------"
10216 	    "  tx_bd  chain  "
10217 	    "----------------------------\n");
10218 
10219 	BCE_PRINTF("page size      = 0x%08X, tx chain pages        = 0x%08X\n",
10220 	    (u32) BCM_PAGE_SIZE, (u32) sc->tx_pages);
10221 	BCE_PRINTF("tx_bd per page = 0x%08X, usable tx_bd per page = 0x%08X\n",
10222 	    (u32) TOTAL_TX_BD_PER_PAGE, (u32) USABLE_TX_BD_PER_PAGE);
10223 	BCE_PRINTF("total tx_bd    = 0x%08X\n", (u32) TOTAL_TX_BD_ALLOC);
10224 
10225 	BCE_PRINTF(
10226 	    "----------------------------"
10227 	    "   tx_bd data   "
10228 	    "----------------------------\n");
10229 
10230 	/* Now print out a decoded list of TX buffer descriptors. */
10231 	for (int i = 0; i < count; i++) {
10232 	 	txbd = &sc->tx_bd_chain[TX_PAGE(tx_prod)][TX_IDX(tx_prod)];
10233 		bce_dump_txbd(sc, tx_prod, txbd);
10234 		tx_prod++;
10235 	}
10236 
10237 	BCE_PRINTF(
10238 	    "----------------------------"
10239 	    "----------------"
10240 	    "----------------------------\n");
10241 }
10242 
10243 
10244 /****************************************************************************/
10245 /* Prints out the RX chain.                                                 */
10246 /*                                                                          */
10247 /* Returns:                                                                 */
10248 /*   Nothing.                                                               */
10249 /****************************************************************************/
10250 static __attribute__ ((noinline)) void
10251 bce_dump_rx_bd_chain(struct bce_softc *sc, u16 rx_prod, int count)
10252 {
10253 	struct rx_bd *rxbd;
10254 
10255 	/* First some info about the rx_bd chain structure. */
10256 	BCE_PRINTF(
10257 	    "----------------------------"
10258 	    "  rx_bd  chain  "
10259 	    "----------------------------\n");
10260 
10261 	BCE_PRINTF("page size      = 0x%08X, rx chain pages        = 0x%08X\n",
10262 	    (u32) BCM_PAGE_SIZE, (u32) sc->rx_pages);
10263 
10264 	BCE_PRINTF("rx_bd per page = 0x%08X, usable rx_bd per page = 0x%08X\n",
10265 	    (u32) TOTAL_RX_BD_PER_PAGE, (u32) USABLE_RX_BD_PER_PAGE);
10266 
10267 	BCE_PRINTF("total rx_bd    = 0x%08X\n", (u32) TOTAL_RX_BD_ALLOC);
10268 
10269 	BCE_PRINTF(
10270 	    "----------------------------"
10271 	    "   rx_bd data   "
10272 	    "----------------------------\n");
10273 
10274 	/* Now print out the rx_bd's themselves. */
10275 	for (int i = 0; i < count; i++) {
10276 		rxbd = &sc->rx_bd_chain[RX_PAGE(rx_prod)][RX_IDX(rx_prod)];
10277 		bce_dump_rxbd(sc, rx_prod, rxbd);
10278 		rx_prod = RX_CHAIN_IDX(rx_prod + 1);
10279 	}
10280 
10281 	BCE_PRINTF(
10282 	    "----------------------------"
10283 	    "----------------"
10284 	    "----------------------------\n");
10285 }
10286 
10287 
10288 /****************************************************************************/
10289 /* Prints out the page chain.                                               */
10290 /*                                                                          */
10291 /* Returns:                                                                 */
10292 /*   Nothing.                                                               */
10293 /****************************************************************************/
10294 static __attribute__ ((noinline)) void
10295 bce_dump_pg_chain(struct bce_softc *sc, u16 pg_prod, int count)
10296 {
10297 	struct rx_bd *pgbd;
10298 
10299 	/* First some info about the page chain structure. */
10300 	BCE_PRINTF(
10301 	    "----------------------------"
10302 	    "   page chain   "
10303 	    "----------------------------\n");
10304 
10305 	BCE_PRINTF("page size      = 0x%08X, pg chain pages        = 0x%08X\n",
10306 	    (u32) BCM_PAGE_SIZE, (u32) sc->pg_pages);
10307 
10308 	BCE_PRINTF("rx_bd per page = 0x%08X, usable rx_bd per page = 0x%08X\n",
10309 	    (u32) TOTAL_PG_BD_PER_PAGE, (u32) USABLE_PG_BD_PER_PAGE);
10310 
10311 	BCE_PRINTF("total pg_bd             = 0x%08X\n", (u32) TOTAL_PG_BD_ALLOC);
10312 
10313 	BCE_PRINTF(
10314 	    "----------------------------"
10315 	    "   page data    "
10316 	    "----------------------------\n");
10317 
10318 	/* Now print out the rx_bd's themselves. */
10319 	for (int i = 0; i < count; i++) {
10320 		pgbd = &sc->pg_bd_chain[PG_PAGE(pg_prod)][PG_IDX(pg_prod)];
10321 		bce_dump_pgbd(sc, pg_prod, pgbd);
10322 		pg_prod = PG_CHAIN_IDX(pg_prod + 1);
10323 	}
10324 
10325 	BCE_PRINTF(
10326 	    "----------------------------"
10327 	    "----------------"
10328 	    "----------------------------\n");
10329 }
10330 
10331 
10332 #define BCE_PRINT_RX_CONS(arg)						\
10333 if (sblk->status_rx_quick_consumer_index##arg)				\
10334 	BCE_PRINTF("0x%04X(0x%04X) - rx_quick_consumer_index%d\n",	\
10335 	    sblk->status_rx_quick_consumer_index##arg, (u16)		\
10336 	    RX_CHAIN_IDX(sblk->status_rx_quick_consumer_index##arg),	\
10337 	    arg);
10338 
10339 
10340 #define BCE_PRINT_TX_CONS(arg)						\
10341 if (sblk->status_tx_quick_consumer_index##arg)				\
10342 	BCE_PRINTF("0x%04X(0x%04X) - tx_quick_consumer_index%d\n",	\
10343 	    sblk->status_tx_quick_consumer_index##arg, (u16)		\
10344 	    TX_CHAIN_IDX(sblk->status_tx_quick_consumer_index##arg),	\
10345 	    arg);
10346 
10347 /****************************************************************************/
10348 /* Prints out the status block from host memory.                            */
10349 /*                                                                          */
10350 /* Returns:                                                                 */
10351 /*   Nothing.                                                               */
10352 /****************************************************************************/
10353 static __attribute__ ((noinline)) void
10354 bce_dump_status_block(struct bce_softc *sc)
10355 {
10356 	struct status_block *sblk;
10357 
10358 	sblk = sc->status_block;
10359 
10360 	BCE_PRINTF(
10361 	    "----------------------------"
10362 	    "  Status Block  "
10363 	    "----------------------------\n");
10364 
10365 	/* Theses indices are used for normal L2 drivers. */
10366 	BCE_PRINTF("    0x%08X - attn_bits\n",
10367 	    sblk->status_attn_bits);
10368 
10369 	BCE_PRINTF("    0x%08X - attn_bits_ack\n",
10370 	    sblk->status_attn_bits_ack);
10371 
10372 	BCE_PRINT_RX_CONS(0);
10373 	BCE_PRINT_TX_CONS(0)
10374 
10375 	BCE_PRINTF("        0x%04X - status_idx\n", sblk->status_idx);
10376 
10377 	/* Theses indices are not used for normal L2 drivers. */
10378 	BCE_PRINT_RX_CONS(1);   BCE_PRINT_RX_CONS(2);   BCE_PRINT_RX_CONS(3);
10379 	BCE_PRINT_RX_CONS(4);   BCE_PRINT_RX_CONS(5);   BCE_PRINT_RX_CONS(6);
10380 	BCE_PRINT_RX_CONS(7);   BCE_PRINT_RX_CONS(8);   BCE_PRINT_RX_CONS(9);
10381 	BCE_PRINT_RX_CONS(10);  BCE_PRINT_RX_CONS(11);  BCE_PRINT_RX_CONS(12);
10382 	BCE_PRINT_RX_CONS(13);  BCE_PRINT_RX_CONS(14);  BCE_PRINT_RX_CONS(15);
10383 
10384 	BCE_PRINT_TX_CONS(1);   BCE_PRINT_TX_CONS(2);   BCE_PRINT_TX_CONS(3);
10385 
10386 	if (sblk->status_completion_producer_index ||
10387 	    sblk->status_cmd_consumer_index)
10388 		BCE_PRINTF("com_prod  = 0x%08X, cmd_cons      = 0x%08X\n",
10389 		    sblk->status_completion_producer_index,
10390 		    sblk->status_cmd_consumer_index);
10391 
10392 	BCE_PRINTF(
10393 	    "----------------------------"
10394 	    "----------------"
10395 	    "----------------------------\n");
10396 }
10397 
10398 
10399 #define BCE_PRINT_64BIT_STAT(arg) 				\
10400 if (sblk->arg##_lo || sblk->arg##_hi)				\
10401 	BCE_PRINTF("0x%08X:%08X : %s\n", sblk->arg##_hi,	\
10402 	    sblk->arg##_lo, #arg);
10403 
10404 #define BCE_PRINT_32BIT_STAT(arg)				\
10405 if (sblk->arg)							\
10406 	BCE_PRINTF("         0x%08X : %s\n", 			\
10407 	    sblk->arg, #arg);
10408 
10409 /****************************************************************************/
10410 /* Prints out the statistics block from host memory.                        */
10411 /*                                                                          */
10412 /* Returns:                                                                 */
10413 /*   Nothing.                                                               */
10414 /****************************************************************************/
10415 static __attribute__ ((noinline)) void
10416 bce_dump_stats_block(struct bce_softc *sc)
10417 {
10418 	struct statistics_block *sblk;
10419 
10420 	sblk = sc->stats_block;
10421 
10422 	BCE_PRINTF(
10423 	    "---------------"
10424 	    " Stats Block  (All Stats Not Shown Are 0) "
10425 	    "---------------\n");
10426 
10427 	BCE_PRINT_64BIT_STAT(stat_IfHCInOctets);
10428 	BCE_PRINT_64BIT_STAT(stat_IfHCInBadOctets);
10429 	BCE_PRINT_64BIT_STAT(stat_IfHCOutOctets);
10430 	BCE_PRINT_64BIT_STAT(stat_IfHCOutBadOctets);
10431 	BCE_PRINT_64BIT_STAT(stat_IfHCInUcastPkts);
10432 	BCE_PRINT_64BIT_STAT(stat_IfHCInBroadcastPkts);
10433 	BCE_PRINT_64BIT_STAT(stat_IfHCInMulticastPkts);
10434 	BCE_PRINT_64BIT_STAT(stat_IfHCOutUcastPkts);
10435 	BCE_PRINT_64BIT_STAT(stat_IfHCOutBroadcastPkts);
10436 	BCE_PRINT_64BIT_STAT(stat_IfHCOutMulticastPkts);
10437 	BCE_PRINT_32BIT_STAT(
10438 	    stat_emac_tx_stat_dot3statsinternalmactransmiterrors);
10439 	BCE_PRINT_32BIT_STAT(stat_Dot3StatsCarrierSenseErrors);
10440 	BCE_PRINT_32BIT_STAT(stat_Dot3StatsFCSErrors);
10441 	BCE_PRINT_32BIT_STAT(stat_Dot3StatsAlignmentErrors);
10442 	BCE_PRINT_32BIT_STAT(stat_Dot3StatsSingleCollisionFrames);
10443 	BCE_PRINT_32BIT_STAT(stat_Dot3StatsMultipleCollisionFrames);
10444 	BCE_PRINT_32BIT_STAT(stat_Dot3StatsDeferredTransmissions);
10445 	BCE_PRINT_32BIT_STAT(stat_Dot3StatsExcessiveCollisions);
10446 	BCE_PRINT_32BIT_STAT(stat_Dot3StatsLateCollisions);
10447 	BCE_PRINT_32BIT_STAT(stat_EtherStatsCollisions);
10448 	BCE_PRINT_32BIT_STAT(stat_EtherStatsFragments);
10449 	BCE_PRINT_32BIT_STAT(stat_EtherStatsJabbers);
10450 	BCE_PRINT_32BIT_STAT(stat_EtherStatsUndersizePkts);
10451 	BCE_PRINT_32BIT_STAT(stat_EtherStatsOversizePkts);
10452 	BCE_PRINT_32BIT_STAT(stat_EtherStatsPktsRx64Octets);
10453 	BCE_PRINT_32BIT_STAT(stat_EtherStatsPktsRx65Octetsto127Octets);
10454 	BCE_PRINT_32BIT_STAT(stat_EtherStatsPktsRx128Octetsto255Octets);
10455 	BCE_PRINT_32BIT_STAT(stat_EtherStatsPktsRx256Octetsto511Octets);
10456 	BCE_PRINT_32BIT_STAT(stat_EtherStatsPktsRx512Octetsto1023Octets);
10457 	BCE_PRINT_32BIT_STAT(stat_EtherStatsPktsRx1024Octetsto1522Octets);
10458 	BCE_PRINT_32BIT_STAT(stat_EtherStatsPktsRx1523Octetsto9022Octets);
10459 	BCE_PRINT_32BIT_STAT(stat_EtherStatsPktsTx64Octets);
10460 	BCE_PRINT_32BIT_STAT(stat_EtherStatsPktsTx65Octetsto127Octets);
10461 	BCE_PRINT_32BIT_STAT(stat_EtherStatsPktsTx128Octetsto255Octets);
10462 	BCE_PRINT_32BIT_STAT(stat_EtherStatsPktsTx256Octetsto511Octets);
10463 	BCE_PRINT_32BIT_STAT(stat_EtherStatsPktsTx512Octetsto1023Octets);
10464 	BCE_PRINT_32BIT_STAT(stat_EtherStatsPktsTx1024Octetsto1522Octets);
10465 	BCE_PRINT_32BIT_STAT(stat_EtherStatsPktsTx1523Octetsto9022Octets);
10466 	BCE_PRINT_32BIT_STAT(stat_XonPauseFramesReceived);
10467 	BCE_PRINT_32BIT_STAT(stat_XoffPauseFramesReceived);
10468 	BCE_PRINT_32BIT_STAT(stat_OutXonSent);
10469 	BCE_PRINT_32BIT_STAT(stat_OutXoffSent);
10470 	BCE_PRINT_32BIT_STAT(stat_FlowControlDone);
10471 	BCE_PRINT_32BIT_STAT(stat_MacControlFramesReceived);
10472 	BCE_PRINT_32BIT_STAT(stat_XoffStateEntered);
10473 	BCE_PRINT_32BIT_STAT(stat_IfInFramesL2FilterDiscards);
10474 	BCE_PRINT_32BIT_STAT(stat_IfInRuleCheckerDiscards);
10475 	BCE_PRINT_32BIT_STAT(stat_IfInFTQDiscards);
10476 	BCE_PRINT_32BIT_STAT(stat_IfInMBUFDiscards);
10477 	BCE_PRINT_32BIT_STAT(stat_IfInRuleCheckerP4Hit);
10478 	BCE_PRINT_32BIT_STAT(stat_CatchupInRuleCheckerDiscards);
10479 	BCE_PRINT_32BIT_STAT(stat_CatchupInFTQDiscards);
10480 	BCE_PRINT_32BIT_STAT(stat_CatchupInMBUFDiscards);
10481 	BCE_PRINT_32BIT_STAT(stat_CatchupInRuleCheckerP4Hit);
10482 
10483 	BCE_PRINTF(
10484 	    "----------------------------"
10485 	    "----------------"
10486 	    "----------------------------\n");
10487 }
10488 
10489 
10490 /****************************************************************************/
10491 /* Prints out a summary of the driver state.                                */
10492 /*                                                                          */
10493 /* Returns:                                                                 */
10494 /*   Nothing.                                                               */
10495 /****************************************************************************/
10496 static __attribute__ ((noinline)) void
10497 bce_dump_driver_state(struct bce_softc *sc)
10498 {
10499 	u32 val_hi, val_lo;
10500 
10501 	BCE_PRINTF(
10502 	    "-----------------------------"
10503 	    " Driver State "
10504 	    "-----------------------------\n");
10505 
10506 	val_hi = BCE_ADDR_HI(sc);
10507 	val_lo = BCE_ADDR_LO(sc);
10508 	BCE_PRINTF("0x%08X:%08X - (sc) driver softc structure virtual "
10509 	    "address\n", val_hi, val_lo);
10510 
10511 	val_hi = BCE_ADDR_HI(sc->bce_vhandle);
10512 	val_lo = BCE_ADDR_LO(sc->bce_vhandle);
10513 	BCE_PRINTF("0x%08X:%08X - (sc->bce_vhandle) PCI BAR virtual "
10514 	    "address\n", val_hi, val_lo);
10515 
10516 	val_hi = BCE_ADDR_HI(sc->status_block);
10517 	val_lo = BCE_ADDR_LO(sc->status_block);
10518 	BCE_PRINTF("0x%08X:%08X - (sc->status_block) status block "
10519 	    "virtual address\n",	val_hi, val_lo);
10520 
10521 	val_hi = BCE_ADDR_HI(sc->stats_block);
10522 	val_lo = BCE_ADDR_LO(sc->stats_block);
10523 	BCE_PRINTF("0x%08X:%08X - (sc->stats_block) statistics block "
10524 	    "virtual address\n", val_hi, val_lo);
10525 
10526 	val_hi = BCE_ADDR_HI(sc->tx_bd_chain);
10527 	val_lo = BCE_ADDR_LO(sc->tx_bd_chain);
10528 	BCE_PRINTF("0x%08X:%08X - (sc->tx_bd_chain) tx_bd chain "
10529 	    "virtual adddress\n", val_hi, val_lo);
10530 
10531 	val_hi = BCE_ADDR_HI(sc->rx_bd_chain);
10532 	val_lo = BCE_ADDR_LO(sc->rx_bd_chain);
10533 	BCE_PRINTF("0x%08X:%08X - (sc->rx_bd_chain) rx_bd chain "
10534 	    "virtual address\n", val_hi, val_lo);
10535 
10536 	if (bce_hdr_split == TRUE) {
10537 		val_hi = BCE_ADDR_HI(sc->pg_bd_chain);
10538 		val_lo = BCE_ADDR_LO(sc->pg_bd_chain);
10539 		BCE_PRINTF("0x%08X:%08X - (sc->pg_bd_chain) page chain "
10540 		    "virtual address\n", val_hi, val_lo);
10541 	}
10542 
10543 	val_hi = BCE_ADDR_HI(sc->tx_mbuf_ptr);
10544 	val_lo = BCE_ADDR_LO(sc->tx_mbuf_ptr);
10545 	BCE_PRINTF("0x%08X:%08X - (sc->tx_mbuf_ptr) tx mbuf chain "
10546 	    "virtual address\n",	val_hi, val_lo);
10547 
10548 	val_hi = BCE_ADDR_HI(sc->rx_mbuf_ptr);
10549 	val_lo = BCE_ADDR_LO(sc->rx_mbuf_ptr);
10550 	BCE_PRINTF("0x%08X:%08X - (sc->rx_mbuf_ptr) rx mbuf chain "
10551 	    "virtual address\n", val_hi, val_lo);
10552 
10553 	if (bce_hdr_split == TRUE) {
10554 		val_hi = BCE_ADDR_HI(sc->pg_mbuf_ptr);
10555 		val_lo = BCE_ADDR_LO(sc->pg_mbuf_ptr);
10556 		BCE_PRINTF("0x%08X:%08X - (sc->pg_mbuf_ptr) page mbuf chain "
10557 		    "virtual address\n", val_hi, val_lo);
10558 	}
10559 
10560 	BCE_PRINTF(" 0x%016llX - (sc->interrupts_generated) "
10561 	    "h/w intrs\n",
10562 	    (long long unsigned int) sc->interrupts_generated);
10563 
10564 	BCE_PRINTF(" 0x%016llX - (sc->interrupts_rx) "
10565 	    "rx interrupts handled\n",
10566 	    (long long unsigned int) sc->interrupts_rx);
10567 
10568 	BCE_PRINTF(" 0x%016llX - (sc->interrupts_tx) "
10569 	    "tx interrupts handled\n",
10570 	    (long long unsigned int) sc->interrupts_tx);
10571 
10572 	BCE_PRINTF(" 0x%016llX - (sc->phy_interrupts) "
10573 	    "phy interrupts handled\n",
10574 	    (long long unsigned int) sc->phy_interrupts);
10575 
10576 	BCE_PRINTF("         0x%08X - (sc->last_status_idx) "
10577 	    "status block index\n", sc->last_status_idx);
10578 
10579 	BCE_PRINTF("     0x%04X(0x%04X) - (sc->tx_prod) tx producer "
10580 	    "index\n", sc->tx_prod, (u16) TX_CHAIN_IDX(sc->tx_prod));
10581 
10582 	BCE_PRINTF("     0x%04X(0x%04X) - (sc->tx_cons) tx consumer "
10583 	    "index\n", sc->tx_cons, (u16) TX_CHAIN_IDX(sc->tx_cons));
10584 
10585 	BCE_PRINTF("         0x%08X - (sc->tx_prod_bseq) tx producer "
10586 	    "byte seq index\n",	sc->tx_prod_bseq);
10587 
10588 	BCE_PRINTF("         0x%08X - (sc->debug_tx_mbuf_alloc) tx "
10589 	    "mbufs allocated\n", sc->debug_tx_mbuf_alloc);
10590 
10591 	BCE_PRINTF("         0x%08X - (sc->used_tx_bd) used "
10592 	    "tx_bd's\n", sc->used_tx_bd);
10593 
10594 	BCE_PRINTF("      0x%04X/0x%04X - (sc->tx_hi_watermark)/"
10595 	    "(sc->max_tx_bd)\n", sc->tx_hi_watermark, sc->max_tx_bd);
10596 
10597 	BCE_PRINTF("     0x%04X(0x%04X) - (sc->rx_prod) rx producer "
10598 	    "index\n", sc->rx_prod, (u16) RX_CHAIN_IDX(sc->rx_prod));
10599 
10600 	BCE_PRINTF("     0x%04X(0x%04X) - (sc->rx_cons) rx consumer "
10601 	    "index\n", sc->rx_cons, (u16) RX_CHAIN_IDX(sc->rx_cons));
10602 
10603 	BCE_PRINTF("         0x%08X - (sc->rx_prod_bseq) rx producer "
10604 	    "byte seq index\n",	sc->rx_prod_bseq);
10605 
10606 	BCE_PRINTF("      0x%04X/0x%04X - (sc->rx_low_watermark)/"
10607 		   "(sc->max_rx_bd)\n", sc->rx_low_watermark, sc->max_rx_bd);
10608 
10609 	BCE_PRINTF("         0x%08X - (sc->debug_rx_mbuf_alloc) rx "
10610 	    "mbufs allocated\n", sc->debug_rx_mbuf_alloc);
10611 
10612 	BCE_PRINTF("         0x%08X - (sc->free_rx_bd) free "
10613 	    "rx_bd's\n", sc->free_rx_bd);
10614 
10615 	if (bce_hdr_split == TRUE) {
10616 		BCE_PRINTF("     0x%04X(0x%04X) - (sc->pg_prod) page producer "
10617 		    "index\n", sc->pg_prod, (u16) PG_CHAIN_IDX(sc->pg_prod));
10618 
10619 		BCE_PRINTF("     0x%04X(0x%04X) - (sc->pg_cons) page consumer "
10620 		    "index\n", sc->pg_cons, (u16) PG_CHAIN_IDX(sc->pg_cons));
10621 
10622 		BCE_PRINTF("         0x%08X - (sc->debug_pg_mbuf_alloc) page "
10623 		    "mbufs allocated\n", sc->debug_pg_mbuf_alloc);
10624 	}
10625 
10626 	BCE_PRINTF("         0x%08X - (sc->free_pg_bd) free page "
10627 	    "rx_bd's\n", sc->free_pg_bd);
10628 
10629 	BCE_PRINTF("      0x%04X/0x%04X - (sc->pg_low_watermark)/"
10630 	    "(sc->max_pg_bd)\n", sc->pg_low_watermark, sc->max_pg_bd);
10631 
10632 	BCE_PRINTF("         0x%08X - (sc->mbuf_alloc_failed_count) "
10633 	    "mbuf alloc failures\n", sc->mbuf_alloc_failed_count);
10634 
10635 	BCE_PRINTF("         0x%08X - (sc->bce_flags) "
10636 	    "bce mac flags\n", sc->bce_flags);
10637 
10638 	BCE_PRINTF("         0x%08X - (sc->bce_phy_flags) "
10639 	    "bce phy flags\n", sc->bce_phy_flags);
10640 
10641 	BCE_PRINTF(
10642 	    "----------------------------"
10643 	    "----------------"
10644 	    "----------------------------\n");
10645 }
10646 
10647 
10648 /****************************************************************************/
10649 /* Prints out the hardware state through a summary of important register,   */
10650 /* followed by a complete register dump.                                    */
10651 /*                                                                          */
10652 /* Returns:                                                                 */
10653 /*   Nothing.                                                               */
10654 /****************************************************************************/
10655 static __attribute__ ((noinline)) void
10656 bce_dump_hw_state(struct bce_softc *sc)
10657 {
10658 	u32 val;
10659 
10660 	BCE_PRINTF(
10661 	    "----------------------------"
10662 	    " Hardware State "
10663 	    "----------------------------\n");
10664 
10665 	BCE_PRINTF("%s - bootcode version\n", sc->bce_bc_ver);
10666 
10667 	val = REG_RD(sc, BCE_MISC_ENABLE_STATUS_BITS);
10668 	BCE_PRINTF("0x%08X - (0x%06X) misc_enable_status_bits\n",
10669 	    val, BCE_MISC_ENABLE_STATUS_BITS);
10670 
10671 	val = REG_RD(sc, BCE_DMA_STATUS);
10672 	BCE_PRINTF("0x%08X - (0x%06X) dma_status\n",
10673 	    val, BCE_DMA_STATUS);
10674 
10675 	val = REG_RD(sc, BCE_CTX_STATUS);
10676 	BCE_PRINTF("0x%08X - (0x%06X) ctx_status\n",
10677 	    val, BCE_CTX_STATUS);
10678 
10679 	val = REG_RD(sc, BCE_EMAC_STATUS);
10680 	BCE_PRINTF("0x%08X - (0x%06X) emac_status\n",
10681 	    val, BCE_EMAC_STATUS);
10682 
10683 	val = REG_RD(sc, BCE_RPM_STATUS);
10684 	BCE_PRINTF("0x%08X - (0x%06X) rpm_status\n",
10685 	    val, BCE_RPM_STATUS);
10686 
10687 	/* ToDo: Create a #define for this constant. */
10688 	val = REG_RD(sc, 0x2004);
10689 	BCE_PRINTF("0x%08X - (0x%06X) rlup_status\n",
10690 	    val, 0x2004);
10691 
10692 	val = REG_RD(sc, BCE_RV2P_STATUS);
10693 	BCE_PRINTF("0x%08X - (0x%06X) rv2p_status\n",
10694 	    val, BCE_RV2P_STATUS);
10695 
10696 	/* ToDo: Create a #define for this constant. */
10697 	val = REG_RD(sc, 0x2c04);
10698 	BCE_PRINTF("0x%08X - (0x%06X) rdma_status\n",
10699 	    val, 0x2c04);
10700 
10701 	val = REG_RD(sc, BCE_TBDR_STATUS);
10702 	BCE_PRINTF("0x%08X - (0x%06X) tbdr_status\n",
10703 	    val, BCE_TBDR_STATUS);
10704 
10705 	val = REG_RD(sc, BCE_TDMA_STATUS);
10706 	BCE_PRINTF("0x%08X - (0x%06X) tdma_status\n",
10707 	    val, BCE_TDMA_STATUS);
10708 
10709 	val = REG_RD(sc, BCE_HC_STATUS);
10710 	BCE_PRINTF("0x%08X - (0x%06X) hc_status\n",
10711 	    val, BCE_HC_STATUS);
10712 
10713 	val = REG_RD_IND(sc, BCE_TXP_CPU_STATE);
10714 	BCE_PRINTF("0x%08X - (0x%06X) txp_cpu_state\n",
10715 	    val, BCE_TXP_CPU_STATE);
10716 
10717 	val = REG_RD_IND(sc, BCE_TPAT_CPU_STATE);
10718 	BCE_PRINTF("0x%08X - (0x%06X) tpat_cpu_state\n",
10719 	    val, BCE_TPAT_CPU_STATE);
10720 
10721 	val = REG_RD_IND(sc, BCE_RXP_CPU_STATE);
10722 	BCE_PRINTF("0x%08X - (0x%06X) rxp_cpu_state\n",
10723 	    val, BCE_RXP_CPU_STATE);
10724 
10725 	val = REG_RD_IND(sc, BCE_COM_CPU_STATE);
10726 	BCE_PRINTF("0x%08X - (0x%06X) com_cpu_state\n",
10727 	    val, BCE_COM_CPU_STATE);
10728 
10729 	val = REG_RD_IND(sc, BCE_MCP_CPU_STATE);
10730 	BCE_PRINTF("0x%08X - (0x%06X) mcp_cpu_state\n",
10731 	    val, BCE_MCP_CPU_STATE);
10732 
10733 	val = REG_RD_IND(sc, BCE_CP_CPU_STATE);
10734 	BCE_PRINTF("0x%08X - (0x%06X) cp_cpu_state\n",
10735 	    val, BCE_CP_CPU_STATE);
10736 
10737 	BCE_PRINTF(
10738 	    "----------------------------"
10739 	    "----------------"
10740 	    "----------------------------\n");
10741 
10742 	BCE_PRINTF(
10743 	    "----------------------------"
10744 	    " Register  Dump "
10745 	    "----------------------------\n");
10746 
10747 	for (int i = 0x400; i < 0x8000; i += 0x10) {
10748 		BCE_PRINTF("0x%04X: 0x%08X 0x%08X 0x%08X 0x%08X\n",
10749 		    i, REG_RD(sc, i), REG_RD(sc, i + 0x4),
10750 		    REG_RD(sc, i + 0x8), REG_RD(sc, i + 0xC));
10751 	}
10752 
10753 	BCE_PRINTF(
10754 	    "----------------------------"
10755 	    "----------------"
10756 	    "----------------------------\n");
10757 }
10758 
10759 
10760 /****************************************************************************/
10761 /* Prints out the contentst of shared memory which is used for host driver  */
10762 /* to bootcode firmware communication.                                      */
10763 /*                                                                          */
10764 /* Returns:                                                                 */
10765 /*   Nothing.                                                               */
10766 /****************************************************************************/
10767 static __attribute__ ((noinline)) void
10768 bce_dump_shmem_state(struct bce_softc *sc)
10769 {
10770 	BCE_PRINTF(
10771 	    "----------------------------"
10772 	    " Hardware State "
10773 	    "----------------------------\n");
10774 
10775 	BCE_PRINTF("0x%08X - Shared memory base address\n",
10776 	    sc->bce_shmem_base);
10777 	BCE_PRINTF("%s - bootcode version\n",
10778 	    sc->bce_bc_ver);
10779 
10780 	BCE_PRINTF(
10781 	    "----------------------------"
10782 	    "   Shared Mem   "
10783 	    "----------------------------\n");
10784 
10785 	for (int i = 0x0; i < 0x200; i += 0x10) {
10786 		BCE_PRINTF("0x%04X: 0x%08X 0x%08X 0x%08X 0x%08X\n",
10787 		    i, bce_shmem_rd(sc, i), bce_shmem_rd(sc, i + 0x4),
10788 		    bce_shmem_rd(sc, i + 0x8), bce_shmem_rd(sc, i + 0xC));
10789 	}
10790 
10791 	BCE_PRINTF(
10792 	    "----------------------------"
10793 	    "----------------"
10794 	    "----------------------------\n");
10795 }
10796 
10797 
10798 /****************************************************************************/
10799 /* Prints out the mailbox queue registers.                                  */
10800 /*                                                                          */
10801 /* Returns:                                                                 */
10802 /*   Nothing.                                                               */
10803 /****************************************************************************/
10804 static __attribute__ ((noinline)) void
10805 bce_dump_mq_regs(struct bce_softc *sc)
10806 {
10807 	BCE_PRINTF(
10808 	    "----------------------------"
10809 	    "    MQ Regs     "
10810 	    "----------------------------\n");
10811 
10812 	BCE_PRINTF(
10813 	    "----------------------------"
10814 	    "----------------"
10815 	    "----------------------------\n");
10816 
10817 	for (int i = 0x3c00; i < 0x4000; i += 0x10) {
10818 		BCE_PRINTF("0x%04X: 0x%08X 0x%08X 0x%08X 0x%08X\n",
10819 		    i, REG_RD(sc, i), REG_RD(sc, i + 0x4),
10820 		    REG_RD(sc, i + 0x8), REG_RD(sc, i + 0xC));
10821 	}
10822 
10823 	BCE_PRINTF(
10824 	    "----------------------------"
10825 	    "----------------"
10826 	    "----------------------------\n");
10827 }
10828 
10829 
10830 /****************************************************************************/
10831 /* Prints out the bootcode state.                                           */
10832 /*                                                                          */
10833 /* Returns:                                                                 */
10834 /*   Nothing.                                                               */
10835 /****************************************************************************/
10836 static __attribute__ ((noinline)) void
10837 bce_dump_bc_state(struct bce_softc *sc)
10838 {
10839 	u32 val;
10840 
10841 	BCE_PRINTF(
10842 	    "----------------------------"
10843 	    " Bootcode State "
10844 	    "----------------------------\n");
10845 
10846 	BCE_PRINTF("%s - bootcode version\n", sc->bce_bc_ver);
10847 
10848 	val = bce_shmem_rd(sc, BCE_BC_RESET_TYPE);
10849 	BCE_PRINTF("0x%08X - (0x%06X) reset_type\n",
10850 	    val, BCE_BC_RESET_TYPE);
10851 
10852 	val = bce_shmem_rd(sc, BCE_BC_STATE);
10853 	BCE_PRINTF("0x%08X - (0x%06X) state\n",
10854 	    val, BCE_BC_STATE);
10855 
10856 	val = bce_shmem_rd(sc, BCE_BC_STATE_CONDITION);
10857 	BCE_PRINTF("0x%08X - (0x%06X) condition\n",
10858 	    val, BCE_BC_STATE_CONDITION);
10859 
10860 	val = bce_shmem_rd(sc, BCE_BC_STATE_DEBUG_CMD);
10861 	BCE_PRINTF("0x%08X - (0x%06X) debug_cmd\n",
10862 	    val, BCE_BC_STATE_DEBUG_CMD);
10863 
10864 	BCE_PRINTF(
10865 	    "----------------------------"
10866 	    "----------------"
10867 	    "----------------------------\n");
10868 }
10869 
10870 
10871 /****************************************************************************/
10872 /* Prints out the TXP processor state.                                      */
10873 /*                                                                          */
10874 /* Returns:                                                                 */
10875 /*   Nothing.                                                               */
10876 /****************************************************************************/
10877 static __attribute__ ((noinline)) void
10878 bce_dump_txp_state(struct bce_softc *sc, int regs)
10879 {
10880 	u32 val;
10881 	u32 fw_version[3];
10882 
10883 	BCE_PRINTF(
10884 	    "----------------------------"
10885 	    "   TXP  State   "
10886 	    "----------------------------\n");
10887 
10888 	for (int i = 0; i < 3; i++)
10889 		fw_version[i] = htonl(REG_RD_IND(sc,
10890 		    (BCE_TXP_SCRATCH + 0x10 + i * 4)));
10891 	BCE_PRINTF("Firmware version - %s\n", (char *) fw_version);
10892 
10893 	val = REG_RD_IND(sc, BCE_TXP_CPU_MODE);
10894 	BCE_PRINTF("0x%08X - (0x%06X) txp_cpu_mode\n",
10895 	    val, BCE_TXP_CPU_MODE);
10896 
10897 	val = REG_RD_IND(sc, BCE_TXP_CPU_STATE);
10898 	BCE_PRINTF("0x%08X - (0x%06X) txp_cpu_state\n",
10899 	    val, BCE_TXP_CPU_STATE);
10900 
10901 	val = REG_RD_IND(sc, BCE_TXP_CPU_EVENT_MASK);
10902 	BCE_PRINTF("0x%08X - (0x%06X) txp_cpu_event_mask\n",
10903 	    val, BCE_TXP_CPU_EVENT_MASK);
10904 
10905 	if (regs) {
10906 		BCE_PRINTF(
10907 		    "----------------------------"
10908 		    " Register  Dump "
10909 		    "----------------------------\n");
10910 
10911 		for (int i = BCE_TXP_CPU_MODE; i < 0x68000; i += 0x10) {
10912 			/* Skip the big blank spaces */
10913 			if (i < 0x454000 && i > 0x5ffff)
10914 				BCE_PRINTF("0x%04X: 0x%08X 0x%08X "
10915 				    "0x%08X 0x%08X\n", i,
10916 				    REG_RD_IND(sc, i),
10917 				    REG_RD_IND(sc, i + 0x4),
10918 				    REG_RD_IND(sc, i + 0x8),
10919 				    REG_RD_IND(sc, i + 0xC));
10920 		}
10921 	}
10922 
10923 	BCE_PRINTF(
10924 	    "----------------------------"
10925 	    "----------------"
10926 	    "----------------------------\n");
10927 }
10928 
10929 
10930 /****************************************************************************/
10931 /* Prints out the RXP processor state.                                      */
10932 /*                                                                          */
10933 /* Returns:                                                                 */
10934 /*   Nothing.                                                               */
10935 /****************************************************************************/
10936 static __attribute__ ((noinline)) void
10937 bce_dump_rxp_state(struct bce_softc *sc, int regs)
10938 {
10939 	u32 val;
10940 	u32 fw_version[3];
10941 
10942 	BCE_PRINTF(
10943 	    "----------------------------"
10944 	    "   RXP  State   "
10945 	    "----------------------------\n");
10946 
10947 	for (int i = 0; i < 3; i++)
10948 		fw_version[i] = htonl(REG_RD_IND(sc,
10949 		    (BCE_RXP_SCRATCH + 0x10 + i * 4)));
10950 
10951 	BCE_PRINTF("Firmware version - %s\n", (char *) fw_version);
10952 
10953 	val = REG_RD_IND(sc, BCE_RXP_CPU_MODE);
10954 	BCE_PRINTF("0x%08X - (0x%06X) rxp_cpu_mode\n",
10955 	    val, BCE_RXP_CPU_MODE);
10956 
10957 	val = REG_RD_IND(sc, BCE_RXP_CPU_STATE);
10958 	BCE_PRINTF("0x%08X - (0x%06X) rxp_cpu_state\n",
10959 	    val, BCE_RXP_CPU_STATE);
10960 
10961 	val = REG_RD_IND(sc, BCE_RXP_CPU_EVENT_MASK);
10962 	BCE_PRINTF("0x%08X - (0x%06X) rxp_cpu_event_mask\n",
10963 	    val, BCE_RXP_CPU_EVENT_MASK);
10964 
10965 	if (regs) {
10966 		BCE_PRINTF(
10967 		    "----------------------------"
10968 		    " Register  Dump "
10969 		    "----------------------------\n");
10970 
10971 		for (int i = BCE_RXP_CPU_MODE; i < 0xe8fff; i += 0x10) {
10972 			/* Skip the big blank sapces */
10973 			if (i < 0xc5400 && i > 0xdffff)
10974 				BCE_PRINTF("0x%04X: 0x%08X 0x%08X "
10975 				    "0x%08X 0x%08X\n", i,
10976 				    REG_RD_IND(sc, i),
10977 				    REG_RD_IND(sc, i + 0x4),
10978 				    REG_RD_IND(sc, i + 0x8),
10979 				    REG_RD_IND(sc, i + 0xC));
10980 		}
10981 	}
10982 
10983 	BCE_PRINTF(
10984 	    "----------------------------"
10985 	    "----------------"
10986 	    "----------------------------\n");
10987 }
10988 
10989 
10990 /****************************************************************************/
10991 /* Prints out the TPAT processor state.                                     */
10992 /*                                                                          */
10993 /* Returns:                                                                 */
10994 /*   Nothing.                                                               */
10995 /****************************************************************************/
10996 static __attribute__ ((noinline)) void
10997 bce_dump_tpat_state(struct bce_softc *sc, int regs)
10998 {
10999 	u32 val;
11000 	u32 fw_version[3];
11001 
11002 	BCE_PRINTF(
11003 	    "----------------------------"
11004 	    "   TPAT State   "
11005 	    "----------------------------\n");
11006 
11007 	for (int i = 0; i < 3; i++)
11008 		fw_version[i] = htonl(REG_RD_IND(sc,
11009 		    (BCE_TPAT_SCRATCH + 0x410 + i * 4)));
11010 
11011 	BCE_PRINTF("Firmware version - %s\n", (char *) fw_version);
11012 
11013 	val = REG_RD_IND(sc, BCE_TPAT_CPU_MODE);
11014 	BCE_PRINTF("0x%08X - (0x%06X) tpat_cpu_mode\n",
11015 	    val, BCE_TPAT_CPU_MODE);
11016 
11017 	val = REG_RD_IND(sc, BCE_TPAT_CPU_STATE);
11018 	BCE_PRINTF("0x%08X - (0x%06X) tpat_cpu_state\n",
11019 	    val, BCE_TPAT_CPU_STATE);
11020 
11021 	val = REG_RD_IND(sc, BCE_TPAT_CPU_EVENT_MASK);
11022 	BCE_PRINTF("0x%08X - (0x%06X) tpat_cpu_event_mask\n",
11023 	    val, BCE_TPAT_CPU_EVENT_MASK);
11024 
11025 	if (regs) {
11026 		BCE_PRINTF(
11027 		    "----------------------------"
11028 		    " Register  Dump "
11029 		    "----------------------------\n");
11030 
11031 		for (int i = BCE_TPAT_CPU_MODE; i < 0xa3fff; i += 0x10) {
11032 			/* Skip the big blank spaces */
11033 			if (i < 0x854000 && i > 0x9ffff)
11034 				BCE_PRINTF("0x%04X: 0x%08X 0x%08X "
11035 				    "0x%08X 0x%08X\n", i,
11036 				    REG_RD_IND(sc, i),
11037 				    REG_RD_IND(sc, i + 0x4),
11038 				    REG_RD_IND(sc, i + 0x8),
11039 				    REG_RD_IND(sc, i + 0xC));
11040 		}
11041 	}
11042 
11043 	BCE_PRINTF(
11044 		"----------------------------"
11045 		"----------------"
11046 		"----------------------------\n");
11047 }
11048 
11049 
11050 /****************************************************************************/
11051 /* Prints out the Command Procesor (CP) state.                              */
11052 /*                                                                          */
11053 /* Returns:                                                                 */
11054 /*   Nothing.                                                               */
11055 /****************************************************************************/
11056 static __attribute__ ((noinline)) void
11057 bce_dump_cp_state(struct bce_softc *sc, int regs)
11058 {
11059 	u32 val;
11060 	u32 fw_version[3];
11061 
11062 	BCE_PRINTF(
11063 	    "----------------------------"
11064 	    "    CP State    "
11065 	    "----------------------------\n");
11066 
11067 	for (int i = 0; i < 3; i++)
11068 		fw_version[i] = htonl(REG_RD_IND(sc,
11069 		    (BCE_CP_SCRATCH + 0x10 + i * 4)));
11070 
11071 	BCE_PRINTF("Firmware version - %s\n", (char *) fw_version);
11072 
11073 	val = REG_RD_IND(sc, BCE_CP_CPU_MODE);
11074 	BCE_PRINTF("0x%08X - (0x%06X) cp_cpu_mode\n",
11075 	    val, BCE_CP_CPU_MODE);
11076 
11077 	val = REG_RD_IND(sc, BCE_CP_CPU_STATE);
11078 	BCE_PRINTF("0x%08X - (0x%06X) cp_cpu_state\n",
11079 	    val, BCE_CP_CPU_STATE);
11080 
11081 	val = REG_RD_IND(sc, BCE_CP_CPU_EVENT_MASK);
11082 	BCE_PRINTF("0x%08X - (0x%06X) cp_cpu_event_mask\n", val,
11083 	    BCE_CP_CPU_EVENT_MASK);
11084 
11085 	if (regs) {
11086 		BCE_PRINTF(
11087 		    "----------------------------"
11088 		    " Register  Dump "
11089 		    "----------------------------\n");
11090 
11091 		for (int i = BCE_CP_CPU_MODE; i < 0x1aa000; i += 0x10) {
11092 			/* Skip the big blank spaces */
11093 			if (i < 0x185400 && i > 0x19ffff)
11094 				BCE_PRINTF("0x%04X: 0x%08X 0x%08X "
11095 				    "0x%08X 0x%08X\n", i,
11096 				    REG_RD_IND(sc, i),
11097 				    REG_RD_IND(sc, i + 0x4),
11098 				    REG_RD_IND(sc, i + 0x8),
11099 				    REG_RD_IND(sc, i + 0xC));
11100 		}
11101 	}
11102 
11103 	BCE_PRINTF(
11104 	    "----------------------------"
11105 	    "----------------"
11106 	    "----------------------------\n");
11107 }
11108 
11109 
11110 /****************************************************************************/
11111 /* Prints out the Completion Procesor (COM) state.                          */
11112 /*                                                                          */
11113 /* Returns:                                                                 */
11114 /*   Nothing.                                                               */
11115 /****************************************************************************/
11116 static __attribute__ ((noinline)) void
11117 bce_dump_com_state(struct bce_softc *sc, int regs)
11118 {
11119 	u32 val;
11120 	u32 fw_version[4];
11121 
11122 	BCE_PRINTF(
11123 	    "----------------------------"
11124 	    "   COM State    "
11125 	    "----------------------------\n");
11126 
11127 	for (int i = 0; i < 3; i++)
11128 		fw_version[i] = htonl(REG_RD_IND(sc,
11129 		    (BCE_COM_SCRATCH + 0x10 + i * 4)));
11130 
11131 	BCE_PRINTF("Firmware version - %s\n", (char *) fw_version);
11132 
11133 	val = REG_RD_IND(sc, BCE_COM_CPU_MODE);
11134 	BCE_PRINTF("0x%08X - (0x%06X) com_cpu_mode\n",
11135 	    val, BCE_COM_CPU_MODE);
11136 
11137 	val = REG_RD_IND(sc, BCE_COM_CPU_STATE);
11138 	BCE_PRINTF("0x%08X - (0x%06X) com_cpu_state\n",
11139 	    val, BCE_COM_CPU_STATE);
11140 
11141 	val = REG_RD_IND(sc, BCE_COM_CPU_EVENT_MASK);
11142 	BCE_PRINTF("0x%08X - (0x%06X) com_cpu_event_mask\n", val,
11143 	    BCE_COM_CPU_EVENT_MASK);
11144 
11145 	if (regs) {
11146 		BCE_PRINTF(
11147 		    "----------------------------"
11148 		    " Register  Dump "
11149 		    "----------------------------\n");
11150 
11151 		for (int i = BCE_COM_CPU_MODE; i < 0x1053e8; i += 0x10) {
11152 			BCE_PRINTF("0x%04X: 0x%08X 0x%08X "
11153 			    "0x%08X 0x%08X\n", i,
11154 			    REG_RD_IND(sc, i),
11155 			    REG_RD_IND(sc, i + 0x4),
11156 			    REG_RD_IND(sc, i + 0x8),
11157 			    REG_RD_IND(sc, i + 0xC));
11158 		}
11159 	}
11160 
11161 	BCE_PRINTF(
11162 		"----------------------------"
11163 		"----------------"
11164 		"----------------------------\n");
11165 }
11166 
11167 
11168 /****************************************************************************/
11169 /* Prints out the Receive Virtual 2 Physical (RV2P) state.                  */
11170 /*                                                                          */
11171 /* Returns:                                                                 */
11172 /*   Nothing.                                                               */
11173 /****************************************************************************/
11174 static __attribute__ ((noinline)) void
11175 bce_dump_rv2p_state(struct bce_softc *sc)
11176 {
11177 	u32 val, pc1, pc2, fw_ver_high, fw_ver_low;
11178 
11179 	BCE_PRINTF(
11180 	    "----------------------------"
11181 	    "   RV2P State   "
11182 	    "----------------------------\n");
11183 
11184 	/* Stall the RV2P processors. */
11185 	val = REG_RD_IND(sc, BCE_RV2P_CONFIG);
11186 	val |= BCE_RV2P_CONFIG_STALL_PROC1 | BCE_RV2P_CONFIG_STALL_PROC2;
11187 	REG_WR_IND(sc, BCE_RV2P_CONFIG, val);
11188 
11189 	/* Read the firmware version. */
11190 	val = 0x00000001;
11191 	REG_WR_IND(sc, BCE_RV2P_PROC1_ADDR_CMD, val);
11192 	fw_ver_low = REG_RD_IND(sc, BCE_RV2P_INSTR_LOW);
11193 	fw_ver_high = REG_RD_IND(sc, BCE_RV2P_INSTR_HIGH) &
11194 	    BCE_RV2P_INSTR_HIGH_HIGH;
11195 	BCE_PRINTF("RV2P1 Firmware version - 0x%08X:0x%08X\n",
11196 	    fw_ver_high, fw_ver_low);
11197 
11198 	val = 0x00000001;
11199 	REG_WR_IND(sc, BCE_RV2P_PROC2_ADDR_CMD, val);
11200 	fw_ver_low = REG_RD_IND(sc, BCE_RV2P_INSTR_LOW);
11201 	fw_ver_high = REG_RD_IND(sc, BCE_RV2P_INSTR_HIGH) &
11202 	    BCE_RV2P_INSTR_HIGH_HIGH;
11203 	BCE_PRINTF("RV2P2 Firmware version - 0x%08X:0x%08X\n",
11204 	    fw_ver_high, fw_ver_low);
11205 
11206 	/* Resume the RV2P processors. */
11207 	val = REG_RD_IND(sc, BCE_RV2P_CONFIG);
11208 	val &= ~(BCE_RV2P_CONFIG_STALL_PROC1 | BCE_RV2P_CONFIG_STALL_PROC2);
11209 	REG_WR_IND(sc, BCE_RV2P_CONFIG, val);
11210 
11211 	/* Fetch the program counter value. */
11212 	val = 0x68007800;
11213 	REG_WR_IND(sc, BCE_RV2P_DEBUG_VECT_PEEK, val);
11214 	val = REG_RD_IND(sc, BCE_RV2P_DEBUG_VECT_PEEK);
11215 	pc1 = (val & BCE_RV2P_DEBUG_VECT_PEEK_1_VALUE);
11216 	pc2 = (val & BCE_RV2P_DEBUG_VECT_PEEK_2_VALUE) >> 16;
11217 	BCE_PRINTF("0x%08X - RV2P1 program counter (1st read)\n", pc1);
11218 	BCE_PRINTF("0x%08X - RV2P2 program counter (1st read)\n", pc2);
11219 
11220 	/* Fetch the program counter value again to see if it is advancing. */
11221 	val = 0x68007800;
11222 	REG_WR_IND(sc, BCE_RV2P_DEBUG_VECT_PEEK, val);
11223 	val = REG_RD_IND(sc, BCE_RV2P_DEBUG_VECT_PEEK);
11224 	pc1 = (val & BCE_RV2P_DEBUG_VECT_PEEK_1_VALUE);
11225 	pc2 = (val & BCE_RV2P_DEBUG_VECT_PEEK_2_VALUE) >> 16;
11226 	BCE_PRINTF("0x%08X - RV2P1 program counter (2nd read)\n", pc1);
11227 	BCE_PRINTF("0x%08X - RV2P2 program counter (2nd read)\n", pc2);
11228 
11229 	BCE_PRINTF(
11230 	    "----------------------------"
11231 	    "----------------"
11232 	    "----------------------------\n");
11233 }
11234 
11235 
11236 /****************************************************************************/
11237 /* Prints out the driver state and then enters the debugger.                */
11238 /*                                                                          */
11239 /* Returns:                                                                 */
11240 /*   Nothing.                                                               */
11241 /****************************************************************************/
11242 static __attribute__ ((noinline)) void
11243 bce_breakpoint(struct bce_softc *sc)
11244 {
11245 
11246 	/*
11247 	 * Unreachable code to silence compiler warnings
11248 	 * about unused functions.
11249 	 */
11250 	if (0) {
11251 		bce_freeze_controller(sc);
11252 		bce_unfreeze_controller(sc);
11253 		bce_dump_enet(sc, NULL);
11254 		bce_dump_txbd(sc, 0, NULL);
11255 		bce_dump_rxbd(sc, 0, NULL);
11256 		bce_dump_tx_mbuf_chain(sc, 0, USABLE_TX_BD_ALLOC);
11257 		bce_dump_rx_mbuf_chain(sc, 0, USABLE_RX_BD_ALLOC);
11258 		bce_dump_pg_mbuf_chain(sc, 0, USABLE_PG_BD_ALLOC);
11259 		bce_dump_l2fhdr(sc, 0, NULL);
11260 		bce_dump_ctx(sc, RX_CID);
11261 		bce_dump_ftqs(sc);
11262 		bce_dump_tx_chain(sc, 0, USABLE_TX_BD_ALLOC);
11263 		bce_dump_rx_bd_chain(sc, 0, USABLE_RX_BD_ALLOC);
11264 		bce_dump_pg_chain(sc, 0, USABLE_PG_BD_ALLOC);
11265 		bce_dump_status_block(sc);
11266 		bce_dump_stats_block(sc);
11267 		bce_dump_driver_state(sc);
11268 		bce_dump_hw_state(sc);
11269 		bce_dump_bc_state(sc);
11270 		bce_dump_txp_state(sc, 0);
11271 		bce_dump_rxp_state(sc, 0);
11272 		bce_dump_tpat_state(sc, 0);
11273 		bce_dump_cp_state(sc, 0);
11274 		bce_dump_com_state(sc, 0);
11275 		bce_dump_rv2p_state(sc);
11276 		bce_dump_pgbd(sc, 0, NULL);
11277 	}
11278 
11279 	bce_dump_status_block(sc);
11280 	bce_dump_driver_state(sc);
11281 
11282 	/* Call the debugger. */
11283 	breakpoint();
11284 
11285 	return;
11286 }
11287 #endif
11288 
11289