xref: /freebsd/sys/dev/bce/if_bce.c (revision 70e0bbedef95258a4dadc996d641a9bebd3f107d)
1 /*-
2  * Copyright (c) 2006-2010 Broadcom Corporation
3  *	David Christensen <davidch@broadcom.com>.  All rights reserved.
4  *
5  * Redistribution and use in source and binary forms, with or without
6  * modification, are permitted provided that the following conditions
7  * are met:
8  *
9  * 1. Redistributions of source code must retain the above copyright
10  *    notice, this list of conditions and the following disclaimer.
11  * 2. Redistributions in binary form must reproduce the above copyright
12  *    notice, this list of conditions and the following disclaimer in the
13  *    documentation and/or other materials provided with the distribution.
14  * 3. Neither the name of Broadcom Corporation nor the name of its contributors
15  *    may be used to endorse or promote products derived from this software
16  *    without specific prior written consent.
17  *
18  * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS'
19  * AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
20  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
21  * ARE DISCLAIMED.  IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS
22  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
23  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
24  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
25  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
26  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
27  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF
28  * THE POSSIBILITY OF SUCH DAMAGE.
29  */
30 
31 #include <sys/cdefs.h>
32 __FBSDID("$FreeBSD$");
33 
34 /*
35  * The following controllers are supported by this driver:
36  *   BCM5706C A2, A3
37  *   BCM5706S A2, A3
38  *   BCM5708C B1, B2
39  *   BCM5708S B1, B2
40  *   BCM5709C A1, C0
41  *   BCM5709S A1, C0
42  *   BCM5716C C0
43  *   BCM5716S C0
44  *
45  * The following controllers are not supported by this driver:
46  *   BCM5706C A0, A1 (pre-production)
47  *   BCM5706S A0, A1 (pre-production)
48  *   BCM5708C A0, B0 (pre-production)
49  *   BCM5708S A0, B0 (pre-production)
50  *   BCM5709C A0  B0, B1, B2 (pre-production)
51  *   BCM5709S A0, B0, B1, B2 (pre-production)
52  */
53 
54 #include "opt_bce.h"
55 
56 #include <dev/bce/if_bcereg.h>
57 #include <dev/bce/if_bcefw.h>
58 
59 /****************************************************************************/
60 /* BCE Debug Options                                                        */
61 /****************************************************************************/
62 #ifdef BCE_DEBUG
63 	u32 bce_debug = BCE_WARN;
64 
65 	/*          0 = Never              */
66 	/*          1 = 1 in 2,147,483,648 */
67 	/*        256 = 1 in     8,388,608 */
68 	/*       2048 = 1 in     1,048,576 */
69 	/*      65536 = 1 in        32,768 */
70 	/*    1048576 = 1 in         2,048 */
71 	/*  268435456 =	1 in             8 */
72 	/*  536870912 = 1 in             4 */
73 	/* 1073741824 = 1 in             2 */
74 
75 	/* Controls how often the l2_fhdr frame error check will fail. */
76 	int l2fhdr_error_sim_control = 0;
77 
78 	/* Controls how often the unexpected attention check will fail. */
79 	int unexpected_attention_sim_control = 0;
80 
81 	/* Controls how often to simulate an mbuf allocation failure. */
82 	int mbuf_alloc_failed_sim_control = 0;
83 
84 	/* Controls how often to simulate a DMA mapping failure. */
85 	int dma_map_addr_failed_sim_control = 0;
86 
87 	/* Controls how often to simulate a bootcode failure. */
88 	int bootcode_running_failure_sim_control = 0;
89 #endif
90 
91 /****************************************************************************/
92 /* PCI Device ID Table                                                      */
93 /*                                                                          */
94 /* Used by bce_probe() to identify the devices supported by this driver.    */
95 /****************************************************************************/
96 #define BCE_DEVDESC_MAX		64
97 
98 static struct bce_type bce_devs[] = {
99 	/* BCM5706C Controllers and OEM boards. */
100 	{ BRCM_VENDORID, BRCM_DEVICEID_BCM5706,  HP_VENDORID, 0x3101,
101 		"HP NC370T Multifunction Gigabit Server Adapter" },
102 	{ BRCM_VENDORID, BRCM_DEVICEID_BCM5706,  HP_VENDORID, 0x3106,
103 		"HP NC370i Multifunction Gigabit Server Adapter" },
104 	{ BRCM_VENDORID, BRCM_DEVICEID_BCM5706,  HP_VENDORID, 0x3070,
105 		"HP NC380T PCIe DP Multifunc Gig Server Adapter" },
106 	{ BRCM_VENDORID, BRCM_DEVICEID_BCM5706,  HP_VENDORID, 0x1709,
107 		"HP NC371i Multifunction Gigabit Server Adapter" },
108 	{ BRCM_VENDORID, BRCM_DEVICEID_BCM5706,  PCI_ANY_ID,  PCI_ANY_ID,
109 		"Broadcom NetXtreme II BCM5706 1000Base-T" },
110 
111 	/* BCM5706S controllers and OEM boards. */
112 	{ BRCM_VENDORID, BRCM_DEVICEID_BCM5706S, HP_VENDORID, 0x3102,
113 		"HP NC370F Multifunction Gigabit Server Adapter" },
114 	{ BRCM_VENDORID, BRCM_DEVICEID_BCM5706S, PCI_ANY_ID,  PCI_ANY_ID,
115 		"Broadcom NetXtreme II BCM5706 1000Base-SX" },
116 
117 	/* BCM5708C controllers and OEM boards. */
118 	{ BRCM_VENDORID, BRCM_DEVICEID_BCM5708,  HP_VENDORID, 0x7037,
119 		"HP NC373T PCIe Multifunction Gig Server Adapter" },
120 	{ BRCM_VENDORID, BRCM_DEVICEID_BCM5708,  HP_VENDORID, 0x7038,
121 		"HP NC373i Multifunction Gigabit Server Adapter" },
122 	{ BRCM_VENDORID, BRCM_DEVICEID_BCM5708,  HP_VENDORID, 0x7045,
123 		"HP NC374m PCIe Multifunction Adapter" },
124 	{ BRCM_VENDORID, BRCM_DEVICEID_BCM5708,  PCI_ANY_ID,  PCI_ANY_ID,
125 		"Broadcom NetXtreme II BCM5708 1000Base-T" },
126 
127 	/* BCM5708S controllers and OEM boards. */
128 	{ BRCM_VENDORID, BRCM_DEVICEID_BCM5708S,  HP_VENDORID, 0x1706,
129 		"HP NC373m Multifunction Gigabit Server Adapter" },
130 	{ BRCM_VENDORID, BRCM_DEVICEID_BCM5708S,  HP_VENDORID, 0x703b,
131 		"HP NC373i Multifunction Gigabit Server Adapter" },
132 	{ BRCM_VENDORID, BRCM_DEVICEID_BCM5708S,  HP_VENDORID, 0x703d,
133 		"HP NC373F PCIe Multifunc Giga Server Adapter" },
134 	{ BRCM_VENDORID, BRCM_DEVICEID_BCM5708S,  PCI_ANY_ID,  PCI_ANY_ID,
135 		"Broadcom NetXtreme II BCM5708 1000Base-SX" },
136 
137 	/* BCM5709C controllers and OEM boards. */
138 	{ BRCM_VENDORID, BRCM_DEVICEID_BCM5709,  HP_VENDORID, 0x7055,
139 		"HP NC382i DP Multifunction Gigabit Server Adapter" },
140 	{ BRCM_VENDORID, BRCM_DEVICEID_BCM5709,  HP_VENDORID, 0x7059,
141 		"HP NC382T PCIe DP Multifunction Gigabit Server Adapter" },
142 	{ BRCM_VENDORID, BRCM_DEVICEID_BCM5709,  PCI_ANY_ID,  PCI_ANY_ID,
143 		"Broadcom NetXtreme II BCM5709 1000Base-T" },
144 
145 	/* BCM5709S controllers and OEM boards. */
146 	{ BRCM_VENDORID, BRCM_DEVICEID_BCM5709S,  HP_VENDORID, 0x171d,
147 		"HP NC382m DP 1GbE Multifunction BL-c Adapter" },
148 	{ BRCM_VENDORID, BRCM_DEVICEID_BCM5709S,  HP_VENDORID, 0x7056,
149 		"HP NC382i DP Multifunction Gigabit Server Adapter" },
150 	{ BRCM_VENDORID, BRCM_DEVICEID_BCM5709S,  PCI_ANY_ID,  PCI_ANY_ID,
151 		"Broadcom NetXtreme II BCM5709 1000Base-SX" },
152 
153 	/* BCM5716 controllers and OEM boards. */
154 	{ BRCM_VENDORID, BRCM_DEVICEID_BCM5716,  PCI_ANY_ID,  PCI_ANY_ID,
155 		"Broadcom NetXtreme II BCM5716 1000Base-T" },
156 
157 	{ 0, 0, 0, 0, NULL }
158 };
159 
160 
161 /****************************************************************************/
162 /* Supported Flash NVRAM device data.                                       */
163 /****************************************************************************/
164 static struct flash_spec flash_table[] =
165 {
166 #define BUFFERED_FLAGS		(BCE_NV_BUFFERED | BCE_NV_TRANSLATE)
167 #define NONBUFFERED_FLAGS	(BCE_NV_WREN)
168 
169 	/* Slow EEPROM */
170 	{0x00000000, 0x40830380, 0x009f0081, 0xa184a053, 0xaf000400,
171 	 BUFFERED_FLAGS, SEEPROM_PAGE_BITS, SEEPROM_PAGE_SIZE,
172 	 SEEPROM_BYTE_ADDR_MASK, SEEPROM_TOTAL_SIZE,
173 	 "EEPROM - slow"},
174 	/* Expansion entry 0001 */
175 	{0x08000002, 0x4b808201, 0x00050081, 0x03840253, 0xaf020406,
176 	 NONBUFFERED_FLAGS, SAIFUN_FLASH_PAGE_BITS, SAIFUN_FLASH_PAGE_SIZE,
177 	 SAIFUN_FLASH_BYTE_ADDR_MASK, 0,
178 	 "Entry 0001"},
179 	/* Saifun SA25F010 (non-buffered flash) */
180 	/* strap, cfg1, & write1 need updates */
181 	{0x04000001, 0x47808201, 0x00050081, 0x03840253, 0xaf020406,
182 	 NONBUFFERED_FLAGS, SAIFUN_FLASH_PAGE_BITS, SAIFUN_FLASH_PAGE_SIZE,
183 	 SAIFUN_FLASH_BYTE_ADDR_MASK, SAIFUN_FLASH_BASE_TOTAL_SIZE*2,
184 	 "Non-buffered flash (128kB)"},
185 	/* Saifun SA25F020 (non-buffered flash) */
186 	/* strap, cfg1, & write1 need updates */
187 	{0x0c000003, 0x4f808201, 0x00050081, 0x03840253, 0xaf020406,
188 	 NONBUFFERED_FLAGS, SAIFUN_FLASH_PAGE_BITS, SAIFUN_FLASH_PAGE_SIZE,
189 	 SAIFUN_FLASH_BYTE_ADDR_MASK, SAIFUN_FLASH_BASE_TOTAL_SIZE*4,
190 	 "Non-buffered flash (256kB)"},
191 	/* Expansion entry 0100 */
192 	{0x11000000, 0x53808201, 0x00050081, 0x03840253, 0xaf020406,
193 	 NONBUFFERED_FLAGS, SAIFUN_FLASH_PAGE_BITS, SAIFUN_FLASH_PAGE_SIZE,
194 	 SAIFUN_FLASH_BYTE_ADDR_MASK, 0,
195 	 "Entry 0100"},
196 	/* Entry 0101: ST M45PE10 (non-buffered flash, TetonII B0) */
197 	{0x19000002, 0x5b808201, 0x000500db, 0x03840253, 0xaf020406,
198 	 NONBUFFERED_FLAGS, ST_MICRO_FLASH_PAGE_BITS, ST_MICRO_FLASH_PAGE_SIZE,
199 	 ST_MICRO_FLASH_BYTE_ADDR_MASK, ST_MICRO_FLASH_BASE_TOTAL_SIZE*2,
200 	 "Entry 0101: ST M45PE10 (128kB non-bufferred)"},
201 	/* Entry 0110: ST M45PE20 (non-buffered flash)*/
202 	{0x15000001, 0x57808201, 0x000500db, 0x03840253, 0xaf020406,
203 	 NONBUFFERED_FLAGS, ST_MICRO_FLASH_PAGE_BITS, ST_MICRO_FLASH_PAGE_SIZE,
204 	 ST_MICRO_FLASH_BYTE_ADDR_MASK, ST_MICRO_FLASH_BASE_TOTAL_SIZE*4,
205 	 "Entry 0110: ST M45PE20 (256kB non-bufferred)"},
206 	/* Saifun SA25F005 (non-buffered flash) */
207 	/* strap, cfg1, & write1 need updates */
208 	{0x1d000003, 0x5f808201, 0x00050081, 0x03840253, 0xaf020406,
209 	 NONBUFFERED_FLAGS, SAIFUN_FLASH_PAGE_BITS, SAIFUN_FLASH_PAGE_SIZE,
210 	 SAIFUN_FLASH_BYTE_ADDR_MASK, SAIFUN_FLASH_BASE_TOTAL_SIZE,
211 	 "Non-buffered flash (64kB)"},
212 	/* Fast EEPROM */
213 	{0x22000000, 0x62808380, 0x009f0081, 0xa184a053, 0xaf000400,
214 	 BUFFERED_FLAGS, SEEPROM_PAGE_BITS, SEEPROM_PAGE_SIZE,
215 	 SEEPROM_BYTE_ADDR_MASK, SEEPROM_TOTAL_SIZE,
216 	 "EEPROM - fast"},
217 	/* Expansion entry 1001 */
218 	{0x2a000002, 0x6b808201, 0x00050081, 0x03840253, 0xaf020406,
219 	 NONBUFFERED_FLAGS, SAIFUN_FLASH_PAGE_BITS, SAIFUN_FLASH_PAGE_SIZE,
220 	 SAIFUN_FLASH_BYTE_ADDR_MASK, 0,
221 	 "Entry 1001"},
222 	/* Expansion entry 1010 */
223 	{0x26000001, 0x67808201, 0x00050081, 0x03840253, 0xaf020406,
224 	 NONBUFFERED_FLAGS, SAIFUN_FLASH_PAGE_BITS, SAIFUN_FLASH_PAGE_SIZE,
225 	 SAIFUN_FLASH_BYTE_ADDR_MASK, 0,
226 	 "Entry 1010"},
227 	/* ATMEL AT45DB011B (buffered flash) */
228 	{0x2e000003, 0x6e808273, 0x00570081, 0x68848353, 0xaf000400,
229 	 BUFFERED_FLAGS, BUFFERED_FLASH_PAGE_BITS, BUFFERED_FLASH_PAGE_SIZE,
230 	 BUFFERED_FLASH_BYTE_ADDR_MASK, BUFFERED_FLASH_TOTAL_SIZE,
231 	 "Buffered flash (128kB)"},
232 	/* Expansion entry 1100 */
233 	{0x33000000, 0x73808201, 0x00050081, 0x03840253, 0xaf020406,
234 	 NONBUFFERED_FLAGS, SAIFUN_FLASH_PAGE_BITS, SAIFUN_FLASH_PAGE_SIZE,
235 	 SAIFUN_FLASH_BYTE_ADDR_MASK, 0,
236 	 "Entry 1100"},
237 	/* Expansion entry 1101 */
238 	{0x3b000002, 0x7b808201, 0x00050081, 0x03840253, 0xaf020406,
239 	 NONBUFFERED_FLAGS, SAIFUN_FLASH_PAGE_BITS, SAIFUN_FLASH_PAGE_SIZE,
240 	 SAIFUN_FLASH_BYTE_ADDR_MASK, 0,
241 	 "Entry 1101"},
242 	/* Ateml Expansion entry 1110 */
243 	{0x37000001, 0x76808273, 0x00570081, 0x68848353, 0xaf000400,
244 	 BUFFERED_FLAGS, BUFFERED_FLASH_PAGE_BITS, BUFFERED_FLASH_PAGE_SIZE,
245 	 BUFFERED_FLASH_BYTE_ADDR_MASK, 0,
246 	 "Entry 1110 (Atmel)"},
247 	/* ATMEL AT45DB021B (buffered flash) */
248 	{0x3f000003, 0x7e808273, 0x00570081, 0x68848353, 0xaf000400,
249 	 BUFFERED_FLAGS, BUFFERED_FLASH_PAGE_BITS, BUFFERED_FLASH_PAGE_SIZE,
250 	 BUFFERED_FLASH_BYTE_ADDR_MASK, BUFFERED_FLASH_TOTAL_SIZE*2,
251 	 "Buffered flash (256kB)"},
252 };
253 
254 /*
255  * The BCM5709 controllers transparently handle the
256  * differences between Atmel 264 byte pages and all
257  * flash devices which use 256 byte pages, so no
258  * logical-to-physical mapping is required in the
259  * driver.
260  */
261 static struct flash_spec flash_5709 = {
262 	.flags		= BCE_NV_BUFFERED,
263 	.page_bits	= BCM5709_FLASH_PAGE_BITS,
264 	.page_size	= BCM5709_FLASH_PAGE_SIZE,
265 	.addr_mask	= BCM5709_FLASH_BYTE_ADDR_MASK,
266 	.total_size	= BUFFERED_FLASH_TOTAL_SIZE * 2,
267 	.name		= "5709/5716 buffered flash (256kB)",
268 };
269 
270 
271 /****************************************************************************/
272 /* FreeBSD device entry points.                                             */
273 /****************************************************************************/
274 static int  bce_probe			(device_t);
275 static int  bce_attach			(device_t);
276 static int  bce_detach			(device_t);
277 static int  bce_shutdown		(device_t);
278 
279 
280 /****************************************************************************/
281 /* BCE Debug Data Structure Dump Routines                                   */
282 /****************************************************************************/
283 #ifdef BCE_DEBUG
284 static u32  bce_reg_rd				(struct bce_softc *, u32);
285 static void bce_reg_wr				(struct bce_softc *, u32, u32);
286 static void bce_reg_wr16			(struct bce_softc *, u32, u16);
287 static u32  bce_ctx_rd				(struct bce_softc *, u32, u32);
288 static void bce_dump_enet			(struct bce_softc *, struct mbuf *);
289 static void bce_dump_mbuf			(struct bce_softc *, struct mbuf *);
290 static void bce_dump_tx_mbuf_chain	(struct bce_softc *, u16, int);
291 static void bce_dump_rx_mbuf_chain	(struct bce_softc *, u16, int);
292 static void bce_dump_pg_mbuf_chain	(struct bce_softc *, u16, int);
293 static void bce_dump_txbd			(struct bce_softc *,
294     int, struct tx_bd *);
295 static void bce_dump_rxbd			(struct bce_softc *,
296     int, struct rx_bd *);
297 static void bce_dump_pgbd			(struct bce_softc *,
298     int, struct rx_bd *);
299 static void bce_dump_l2fhdr		(struct bce_softc *,
300     int, struct l2_fhdr *);
301 static void bce_dump_ctx			(struct bce_softc *, u16);
302 static void bce_dump_ftqs			(struct bce_softc *);
303 static void bce_dump_tx_chain		(struct bce_softc *, u16, int);
304 static void bce_dump_rx_bd_chain	(struct bce_softc *, u16, int);
305 static void bce_dump_pg_chain		(struct bce_softc *, u16, int);
306 static void bce_dump_status_block	(struct bce_softc *);
307 static void bce_dump_stats_block	(struct bce_softc *);
308 static void bce_dump_driver_state	(struct bce_softc *);
309 static void bce_dump_hw_state		(struct bce_softc *);
310 static void bce_dump_shmem_state	(struct bce_softc *);
311 static void bce_dump_mq_regs		(struct bce_softc *);
312 static void bce_dump_bc_state		(struct bce_softc *);
313 static void bce_dump_txp_state		(struct bce_softc *, int);
314 static void bce_dump_rxp_state		(struct bce_softc *, int);
315 static void bce_dump_tpat_state	(struct bce_softc *, int);
316 static void bce_dump_cp_state		(struct bce_softc *, int);
317 static void bce_dump_com_state		(struct bce_softc *, int);
318 static void bce_dump_rv2p_state	(struct bce_softc *);
319 static void bce_breakpoint			(struct bce_softc *);
320 #endif /*BCE_DEBUG */
321 
322 
323 /****************************************************************************/
324 /* BCE Register/Memory Access Routines                                      */
325 /****************************************************************************/
326 static u32  bce_reg_rd_ind		(struct bce_softc *, u32);
327 static void bce_reg_wr_ind		(struct bce_softc *, u32, u32);
328 static void bce_shmem_wr		(struct bce_softc *, u32, u32);
329 static u32  bce_shmem_rd		(struct bce_softc *, u32);
330 static void bce_ctx_wr			(struct bce_softc *, u32, u32, u32);
331 static int  bce_miibus_read_reg		(device_t, int, int);
332 static int  bce_miibus_write_reg	(device_t, int, int, int);
333 static void bce_miibus_statchg		(device_t);
334 
335 #ifdef BCE_DEBUG
336 static int bce_sysctl_nvram_dump(SYSCTL_HANDLER_ARGS);
337 #ifdef BCE_NVRAM_WRITE_SUPPORT
338 static int bce_sysctl_nvram_write(SYSCTL_HANDLER_ARGS);
339 #endif
340 #endif
341 
342 /****************************************************************************/
343 /* BCE NVRAM Access Routines                                                */
344 /****************************************************************************/
345 static int  bce_acquire_nvram_lock	(struct bce_softc *);
346 static int  bce_release_nvram_lock	(struct bce_softc *);
347 static void bce_enable_nvram_access(struct bce_softc *);
348 static void bce_disable_nvram_access(struct bce_softc *);
349 static int  bce_nvram_read_dword	(struct bce_softc *, u32, u8 *, u32);
350 static int  bce_init_nvram			(struct bce_softc *);
351 static int  bce_nvram_read			(struct bce_softc *, u32, u8 *, int);
352 static int  bce_nvram_test			(struct bce_softc *);
353 #ifdef BCE_NVRAM_WRITE_SUPPORT
354 static int  bce_enable_nvram_write	(struct bce_softc *);
355 static void bce_disable_nvram_write(struct bce_softc *);
356 static int  bce_nvram_erase_page	(struct bce_softc *, u32);
357 static int  bce_nvram_write_dword	(struct bce_softc *, u32, u8 *, u32);
358 static int  bce_nvram_write		(struct bce_softc *, u32, u8 *, int);
359 #endif
360 
361 /****************************************************************************/
362 /*                                                                          */
363 /****************************************************************************/
364 static void bce_get_rx_buffer_sizes(struct bce_softc *, int);
365 static void bce_get_media			(struct bce_softc *);
366 static void bce_init_media			(struct bce_softc *);
367 static void bce_dma_map_addr		(void *, bus_dma_segment_t *, int, int);
368 static int  bce_dma_alloc			(device_t);
369 static void bce_dma_free			(struct bce_softc *);
370 static void bce_release_resources	(struct bce_softc *);
371 
372 /****************************************************************************/
373 /* BCE Firmware Synchronization and Load                                    */
374 /****************************************************************************/
375 static int  bce_fw_sync			(struct bce_softc *, u32);
376 static void bce_load_rv2p_fw		(struct bce_softc *, u32 *, u32, u32);
377 static void bce_load_cpu_fw		(struct bce_softc *,
378     struct cpu_reg *, struct fw_info *);
379 static void bce_start_cpu			(struct bce_softc *, struct cpu_reg *);
380 static void bce_halt_cpu			(struct bce_softc *, struct cpu_reg *);
381 static void bce_start_rxp_cpu		(struct bce_softc *);
382 static void bce_init_rxp_cpu		(struct bce_softc *);
383 static void bce_init_txp_cpu 		(struct bce_softc *);
384 static void bce_init_tpat_cpu		(struct bce_softc *);
385 static void bce_init_cp_cpu	  	(struct bce_softc *);
386 static void bce_init_com_cpu	  	(struct bce_softc *);
387 static void bce_init_cpus			(struct bce_softc *);
388 
389 static void bce_print_adapter_info	(struct bce_softc *);
390 static void bce_probe_pci_caps		(device_t, struct bce_softc *);
391 static void bce_stop				(struct bce_softc *);
392 static int  bce_reset				(struct bce_softc *, u32);
393 static int  bce_chipinit 			(struct bce_softc *);
394 static int  bce_blockinit 			(struct bce_softc *);
395 
396 static int  bce_init_tx_chain		(struct bce_softc *);
397 static void bce_free_tx_chain		(struct bce_softc *);
398 
399 static int  bce_get_rx_buf			(struct bce_softc *,
400     struct mbuf *, u16 *, u16 *, u32 *);
401 static int  bce_init_rx_chain		(struct bce_softc *);
402 static void bce_fill_rx_chain		(struct bce_softc *);
403 static void bce_free_rx_chain		(struct bce_softc *);
404 
405 static int  bce_get_pg_buf			(struct bce_softc *,
406     struct mbuf *, u16 *, u16 *);
407 static int  bce_init_pg_chain		(struct bce_softc *);
408 static void bce_fill_pg_chain		(struct bce_softc *);
409 static void bce_free_pg_chain		(struct bce_softc *);
410 
411 static struct mbuf *bce_tso_setup	(struct bce_softc *,
412     struct mbuf **, u16 *);
413 static int  bce_tx_encap			(struct bce_softc *, struct mbuf **);
414 static void bce_start_locked		(struct ifnet *);
415 static void bce_start				(struct ifnet *);
416 static int  bce_ioctl				(struct ifnet *, u_long, caddr_t);
417 static void bce_watchdog			(struct bce_softc *);
418 static int  bce_ifmedia_upd		(struct ifnet *);
419 static int  bce_ifmedia_upd_locked	(struct ifnet *);
420 static void bce_ifmedia_sts		(struct ifnet *, struct ifmediareq *);
421 static void bce_init_locked		(struct bce_softc *);
422 static void bce_init				(void *);
423 static void bce_mgmt_init_locked	(struct bce_softc *sc);
424 
425 static int  bce_init_ctx			(struct bce_softc *);
426 static void bce_get_mac_addr		(struct bce_softc *);
427 static void bce_set_mac_addr		(struct bce_softc *);
428 static void bce_phy_intr			(struct bce_softc *);
429 static inline u16 bce_get_hw_rx_cons	(struct bce_softc *);
430 static void bce_rx_intr			(struct bce_softc *);
431 static void bce_tx_intr			(struct bce_softc *);
432 static void bce_disable_intr		(struct bce_softc *);
433 static void bce_enable_intr		(struct bce_softc *, int);
434 
435 static void bce_intr				(void *);
436 static void bce_set_rx_mode		(struct bce_softc *);
437 static void bce_stats_update		(struct bce_softc *);
438 static void bce_tick				(void *);
439 static void bce_pulse				(void *);
440 static void bce_add_sysctls		(struct bce_softc *);
441 
442 
443 /****************************************************************************/
444 /* FreeBSD device dispatch table.                                           */
445 /****************************************************************************/
446 static device_method_t bce_methods[] = {
447 	/* Device interface (device_if.h) */
448 	DEVMETHOD(device_probe,		bce_probe),
449 	DEVMETHOD(device_attach,	bce_attach),
450 	DEVMETHOD(device_detach,	bce_detach),
451 	DEVMETHOD(device_shutdown,	bce_shutdown),
452 /* Supported by device interface but not used here. */
453 /*	DEVMETHOD(device_identify,	bce_identify),      */
454 /*	DEVMETHOD(device_suspend,	bce_suspend),       */
455 /*	DEVMETHOD(device_resume,	bce_resume),        */
456 /*	DEVMETHOD(device_quiesce,	bce_quiesce),       */
457 
458 	/* MII interface (miibus_if.h) */
459 	DEVMETHOD(miibus_readreg,	bce_miibus_read_reg),
460 	DEVMETHOD(miibus_writereg,	bce_miibus_write_reg),
461 	DEVMETHOD(miibus_statchg,	bce_miibus_statchg),
462 /* Supported by MII interface but not used here.       */
463 /*	DEVMETHOD(miibus_linkchg,	bce_miibus_linkchg),   */
464 /*	DEVMETHOD(miibus_mediainit,	bce_miibus_mediainit), */
465 
466 	DEVMETHOD_END
467 };
468 
469 static driver_t bce_driver = {
470 	"bce",
471 	bce_methods,
472 	sizeof(struct bce_softc)
473 };
474 
475 static devclass_t bce_devclass;
476 
477 MODULE_DEPEND(bce, pci, 1, 1, 1);
478 MODULE_DEPEND(bce, ether, 1, 1, 1);
479 MODULE_DEPEND(bce, miibus, 1, 1, 1);
480 
481 DRIVER_MODULE(bce, pci, bce_driver, bce_devclass, 0, 0);
482 DRIVER_MODULE(miibus, bce, miibus_driver, miibus_devclass, 0, 0);
483 
484 
485 /****************************************************************************/
486 /* Tunable device values                                                    */
487 /****************************************************************************/
488 static SYSCTL_NODE(_hw, OID_AUTO, bce, CTLFLAG_RD, 0, "bce driver parameters");
489 
490 /* Allowable values are TRUE or FALSE */
491 static int bce_verbose = TRUE;
492 TUNABLE_INT("hw.bce.verbose", &bce_verbose);
493 SYSCTL_INT(_hw_bce, OID_AUTO, verbose, CTLFLAG_RDTUN, &bce_verbose, 0,
494     "Verbose output enable/disable");
495 
496 /* Allowable values are TRUE or FALSE */
497 static int bce_tso_enable = TRUE;
498 TUNABLE_INT("hw.bce.tso_enable", &bce_tso_enable);
499 SYSCTL_INT(_hw_bce, OID_AUTO, tso_enable, CTLFLAG_RDTUN, &bce_tso_enable, 0,
500     "TSO Enable/Disable");
501 
502 /* Allowable values are 0 (IRQ), 1 (MSI/IRQ), and 2 (MSI-X/MSI/IRQ) */
503 /* ToDo: Add MSI-X support. */
504 static int bce_msi_enable = 1;
505 TUNABLE_INT("hw.bce.msi_enable", &bce_msi_enable);
506 SYSCTL_INT(_hw_bce, OID_AUTO, msi_enable, CTLFLAG_RDTUN, &bce_msi_enable, 0,
507     "MSI-X|MSI|INTx selector");
508 
509 /* Allowable values are 1, 2, 4, 8. */
510 static int bce_rx_pages = DEFAULT_RX_PAGES;
511 TUNABLE_INT("hw.bce.rx_pages", &bce_rx_pages);
512 SYSCTL_UINT(_hw_bce, OID_AUTO, rx_pages, CTLFLAG_RDTUN, &bce_rx_pages, 0,
513     "Receive buffer descriptor pages (1 page = 255 buffer descriptors)");
514 
515 /* Allowable values are 1, 2, 4, 8. */
516 static int bce_tx_pages = DEFAULT_TX_PAGES;
517 TUNABLE_INT("hw.bce.tx_pages", &bce_tx_pages);
518 SYSCTL_UINT(_hw_bce, OID_AUTO, tx_pages, CTLFLAG_RDTUN, &bce_tx_pages, 0,
519     "Transmit buffer descriptor pages (1 page = 255 buffer descriptors)");
520 
521 /* Allowable values are TRUE or FALSE. */
522 static int bce_hdr_split = TRUE;
523 TUNABLE_INT("hw.bce.hdr_split", &bce_hdr_split);
524 SYSCTL_UINT(_hw_bce, OID_AUTO, hdr_split, CTLFLAG_RDTUN, &bce_hdr_split, 0,
525     "Frame header/payload splitting Enable/Disable");
526 
527 /* Allowable values are TRUE or FALSE. */
528 static int bce_strict_rx_mtu = FALSE;
529 TUNABLE_INT("hw.bce.strict_rx_mtu", &bce_strict_rx_mtu);
530 SYSCTL_UINT(_hw_bce, OID_AUTO, loose_rx_mtu, CTLFLAG_RDTUN,
531     &bce_strict_rx_mtu, 0,
532     "Enable/Disable strict RX frame size checking");
533 
534 /* Allowable values are 0 ... 100 */
535 #ifdef BCE_DEBUG
536 /* Generate 1 interrupt for every transmit completion. */
537 static int bce_tx_quick_cons_trip_int = 1;
538 #else
539 /* Generate 1 interrupt for every 20 transmit completions. */
540 static int bce_tx_quick_cons_trip_int = DEFAULT_TX_QUICK_CONS_TRIP_INT;
541 #endif
542 TUNABLE_INT("hw.bce.tx_quick_cons_trip_int", &bce_tx_quick_cons_trip_int);
543 SYSCTL_UINT(_hw_bce, OID_AUTO, tx_quick_cons_trip_int, CTLFLAG_RDTUN,
544     &bce_tx_quick_cons_trip_int, 0,
545     "Transmit BD trip point during interrupts");
546 
547 /* Allowable values are 0 ... 100 */
548 /* Generate 1 interrupt for every transmit completion. */
549 #ifdef BCE_DEBUG
550 static int bce_tx_quick_cons_trip = 1;
551 #else
552 /* Generate 1 interrupt for every 20 transmit completions. */
553 static int bce_tx_quick_cons_trip = DEFAULT_TX_QUICK_CONS_TRIP;
554 #endif
555 TUNABLE_INT("hw.bce.tx_quick_cons_trip", &bce_tx_quick_cons_trip);
556 SYSCTL_UINT(_hw_bce, OID_AUTO, tx_quick_cons_trip, CTLFLAG_RDTUN,
557     &bce_tx_quick_cons_trip, 0,
558     "Transmit BD trip point");
559 
560 /* Allowable values are 0 ... 100 */
561 #ifdef BCE_DEBUG
562 /* Generate an interrupt if 0us have elapsed since the last TX completion. */
563 static int bce_tx_ticks_int = 0;
564 #else
565 /* Generate an interrupt if 80us have elapsed since the last TX completion. */
566 static int bce_tx_ticks_int = DEFAULT_TX_TICKS_INT;
567 #endif
568 TUNABLE_INT("hw.bce.tx_ticks_int", &bce_tx_ticks_int);
569 SYSCTL_UINT(_hw_bce, OID_AUTO, tx_ticks_int, CTLFLAG_RDTUN,
570     &bce_tx_ticks_int, 0, "Transmit ticks count during interrupt");
571 
572 /* Allowable values are 0 ... 100 */
573 #ifdef BCE_DEBUG
574 /* Generate an interrupt if 0us have elapsed since the last TX completion. */
575 static int bce_tx_ticks = 0;
576 #else
577 /* Generate an interrupt if 80us have elapsed since the last TX completion. */
578 static int bce_tx_ticks = DEFAULT_TX_TICKS;
579 #endif
580 TUNABLE_INT("hw.bce.tx_ticks", &bce_tx_ticks);
581 SYSCTL_UINT(_hw_bce, OID_AUTO, tx_ticks, CTLFLAG_RDTUN,
582     &bce_tx_ticks, 0, "Transmit ticks count");
583 
584 /* Allowable values are 1 ... 100 */
585 #ifdef BCE_DEBUG
586 /* Generate 1 interrupt for every received frame. */
587 static int bce_rx_quick_cons_trip_int = 1;
588 #else
589 /* Generate 1 interrupt for every 6 received frames. */
590 static int bce_rx_quick_cons_trip_int = DEFAULT_RX_QUICK_CONS_TRIP_INT;
591 #endif
592 TUNABLE_INT("hw.bce.rx_quick_cons_trip_int", &bce_rx_quick_cons_trip_int);
593 SYSCTL_UINT(_hw_bce, OID_AUTO, rx_quick_cons_trip_int, CTLFLAG_RDTUN,
594     &bce_rx_quick_cons_trip_int, 0,
595     "Receive BD trip point duirng interrupts");
596 
597 /* Allowable values are 1 ... 100 */
598 #ifdef BCE_DEBUG
599 /* Generate 1 interrupt for every received frame. */
600 static int bce_rx_quick_cons_trip = 1;
601 #else
602 /* Generate 1 interrupt for every 6 received frames. */
603 static int bce_rx_quick_cons_trip = DEFAULT_RX_QUICK_CONS_TRIP;
604 #endif
605 TUNABLE_INT("hw.bce.rx_quick_cons_trip", &bce_rx_quick_cons_trip);
606 SYSCTL_UINT(_hw_bce, OID_AUTO, rx_quick_cons_trip, CTLFLAG_RDTUN,
607     &bce_rx_quick_cons_trip, 0,
608     "Receive BD trip point");
609 
610 /* Allowable values are 0 ... 100 */
611 #ifdef BCE_DEBUG
612 /* Generate an int. if 0us have elapsed since the last received frame. */
613 static int bce_rx_ticks_int = 0;
614 #else
615 /* Generate an int. if 18us have elapsed since the last received frame. */
616 static int bce_rx_ticks_int = DEFAULT_RX_TICKS_INT;
617 #endif
618 TUNABLE_INT("hw.bce.rx_ticks_int", &bce_rx_ticks_int);
619 SYSCTL_UINT(_hw_bce, OID_AUTO, rx_ticks_int, CTLFLAG_RDTUN,
620     &bce_rx_ticks_int, 0, "Receive ticks count during interrupt");
621 
622 /* Allowable values are 0 ... 100 */
623 #ifdef BCE_DEBUG
624 /* Generate an int. if 0us have elapsed since the last received frame. */
625 static int bce_rx_ticks = 0;
626 #else
627 /* Generate an int. if 18us have elapsed since the last received frame. */
628 static int bce_rx_ticks = DEFAULT_RX_TICKS;
629 #endif
630 TUNABLE_INT("hw.bce.rx_ticks", &bce_rx_ticks);
631 SYSCTL_UINT(_hw_bce, OID_AUTO, rx_ticks, CTLFLAG_RDTUN,
632     &bce_rx_ticks, 0, "Receive ticks count");
633 
634 
635 /****************************************************************************/
636 /* Device probe function.                                                   */
637 /*                                                                          */
638 /* Compares the device to the driver's list of supported devices and        */
639 /* reports back to the OS whether this is the right driver for the device.  */
640 /*                                                                          */
641 /* Returns:                                                                 */
642 /*   BUS_PROBE_DEFAULT on success, positive value on failure.               */
643 /****************************************************************************/
644 static int
645 bce_probe(device_t dev)
646 {
647 	struct bce_type *t;
648 	struct bce_softc *sc;
649 	char *descbuf;
650 	u16 vid = 0, did = 0, svid = 0, sdid = 0;
651 
652 	t = bce_devs;
653 
654 	sc = device_get_softc(dev);
655 	bzero(sc, sizeof(struct bce_softc));
656 	sc->bce_unit = device_get_unit(dev);
657 	sc->bce_dev = dev;
658 
659 	/* Get the data for the device to be probed. */
660 	vid  = pci_get_vendor(dev);
661 	did  = pci_get_device(dev);
662 	svid = pci_get_subvendor(dev);
663 	sdid = pci_get_subdevice(dev);
664 
665 	DBPRINT(sc, BCE_EXTREME_LOAD,
666 	    "%s(); VID = 0x%04X, DID = 0x%04X, SVID = 0x%04X, "
667 	    "SDID = 0x%04X\n", __FUNCTION__, vid, did, svid, sdid);
668 
669 	/* Look through the list of known devices for a match. */
670 	while(t->bce_name != NULL) {
671 
672 		if ((vid == t->bce_vid) && (did == t->bce_did) &&
673 		    ((svid == t->bce_svid) || (t->bce_svid == PCI_ANY_ID)) &&
674 		    ((sdid == t->bce_sdid) || (t->bce_sdid == PCI_ANY_ID))) {
675 
676 			descbuf = malloc(BCE_DEVDESC_MAX, M_TEMP, M_NOWAIT);
677 
678 			if (descbuf == NULL)
679 				return(ENOMEM);
680 
681 			/* Print out the device identity. */
682 			snprintf(descbuf, BCE_DEVDESC_MAX, "%s (%c%d)",
683 			    t->bce_name, (((pci_read_config(dev,
684 			    PCIR_REVID, 4) & 0xf0) >> 4) + 'A'),
685 			    (pci_read_config(dev, PCIR_REVID, 4) & 0xf));
686 
687 			device_set_desc_copy(dev, descbuf);
688 			free(descbuf, M_TEMP);
689 			return(BUS_PROBE_DEFAULT);
690 		}
691 		t++;
692 	}
693 
694 	return(ENXIO);
695 }
696 
697 
698 /****************************************************************************/
699 /* PCI Capabilities Probe Function.                                         */
700 /*                                                                          */
701 /* Walks the PCI capabiites list for the device to find what features are   */
702 /* supported.                                                               */
703 /*                                                                          */
704 /* Returns:                                                                 */
705 /*   None.                                                                  */
706 /****************************************************************************/
707 static void
708 bce_print_adapter_info(struct bce_softc *sc)
709 {
710 	int i = 0;
711 
712 	DBENTER(BCE_VERBOSE_LOAD);
713 
714 	if (bce_verbose || bootverbose) {
715 		BCE_PRINTF("ASIC (0x%08X); ", sc->bce_chipid);
716 		printf("Rev (%c%d); ", ((BCE_CHIP_ID(sc) & 0xf000) >>
717 		    12) + 'A', ((BCE_CHIP_ID(sc) & 0x0ff0) >> 4));
718 
719 
720 		/* Bus info. */
721 		if (sc->bce_flags & BCE_PCIE_FLAG) {
722 			printf("Bus (PCIe x%d, ", sc->link_width);
723 			switch (sc->link_speed) {
724 			case 1: printf("2.5Gbps); "); break;
725 			case 2:	printf("5Gbps); "); break;
726 			default: printf("Unknown link speed); ");
727 			}
728 		} else {
729 			printf("Bus (PCI%s, %s, %dMHz); ",
730 			    ((sc->bce_flags & BCE_PCIX_FLAG) ? "-X" : ""),
731 			    ((sc->bce_flags & BCE_PCI_32BIT_FLAG) ?
732 			    "32-bit" : "64-bit"), sc->bus_speed_mhz);
733 		}
734 
735 		/* Firmware version and device features. */
736 		printf("B/C (%s); Bufs (RX:%d;TX:%d;PG:%d); Flags (",
737 		    sc->bce_bc_ver,	sc->rx_pages, sc->tx_pages,
738 		    (bce_hdr_split == TRUE ? sc->pg_pages: 0));
739 
740 		if (bce_hdr_split == TRUE) {
741 			printf("SPLT");
742 			i++;
743 		}
744 
745 		if (sc->bce_flags & BCE_USING_MSI_FLAG) {
746 			if (i > 0) printf("|");
747 			printf("MSI"); i++;
748 		}
749 
750 		if (sc->bce_flags & BCE_USING_MSIX_FLAG) {
751 			if (i > 0) printf("|");
752 			printf("MSI-X"); i++;
753 		}
754 
755 		if (sc->bce_phy_flags & BCE_PHY_2_5G_CAPABLE_FLAG) {
756 			if (i > 0) printf("|");
757 			printf("2.5G"); i++;
758 		}
759 
760 		if (sc->bce_flags & BCE_MFW_ENABLE_FLAG) {
761 			if (i > 0) printf("|");
762 			printf("MFW); MFW (%s)\n", sc->bce_mfw_ver);
763 		} else {
764 			printf(")\n");
765 		}
766 
767 		printf("Coal (RX:%d,%d,%d,%d; TX:%d,%d,%d,%d)\n",
768 		    sc->bce_rx_quick_cons_trip_int,
769 		    sc->bce_rx_quick_cons_trip,
770 		    sc->bce_rx_ticks_int,
771 		    sc->bce_rx_ticks,
772 		    sc->bce_tx_quick_cons_trip_int,
773 		    sc->bce_tx_quick_cons_trip,
774 		    sc->bce_tx_ticks_int,
775 		    sc->bce_tx_ticks);
776 
777 	}
778 
779 	DBEXIT(BCE_VERBOSE_LOAD);
780 }
781 
782 
783 /****************************************************************************/
784 /* PCI Capabilities Probe Function.                                         */
785 /*                                                                          */
786 /* Walks the PCI capabiites list for the device to find what features are   */
787 /* supported.                                                               */
788 /*                                                                          */
789 /* Returns:                                                                 */
790 /*   None.                                                                  */
791 /****************************************************************************/
792 static void
793 bce_probe_pci_caps(device_t dev, struct bce_softc *sc)
794 {
795 	u32 reg;
796 
797 	DBENTER(BCE_VERBOSE_LOAD);
798 
799 	/* Check if PCI-X capability is enabled. */
800 	if (pci_find_cap(dev, PCIY_PCIX, &reg) == 0) {
801 		if (reg != 0)
802 			sc->bce_cap_flags |= BCE_PCIX_CAPABLE_FLAG;
803 	}
804 
805 	/* Check if PCIe capability is enabled. */
806 	if (pci_find_cap(dev, PCIY_EXPRESS, &reg) == 0) {
807 		if (reg != 0) {
808 			u16 link_status = pci_read_config(dev, reg + 0x12, 2);
809 			DBPRINT(sc, BCE_INFO_LOAD, "PCIe link_status = "
810 			    "0x%08X\n",	link_status);
811 			sc->link_speed = link_status & 0xf;
812 			sc->link_width = (link_status >> 4) & 0x3f;
813 			sc->bce_cap_flags |= BCE_PCIE_CAPABLE_FLAG;
814 			sc->bce_flags |= BCE_PCIE_FLAG;
815 		}
816 	}
817 
818 	/* Check if MSI capability is enabled. */
819 	if (pci_find_cap(dev, PCIY_MSI, &reg) == 0) {
820 		if (reg != 0)
821 			sc->bce_cap_flags |= BCE_MSI_CAPABLE_FLAG;
822 	}
823 
824 	/* Check if MSI-X capability is enabled. */
825 	if (pci_find_cap(dev, PCIY_MSIX, &reg) == 0) {
826 		if (reg != 0)
827 			sc->bce_cap_flags |= BCE_MSIX_CAPABLE_FLAG;
828 	}
829 
830 	DBEXIT(BCE_VERBOSE_LOAD);
831 }
832 
833 
834 /****************************************************************************/
835 /* Load and validate user tunable settings.                                 */
836 /*                                                                          */
837 /* Returns:                                                                 */
838 /*   Nothing.                                                               */
839 /****************************************************************************/
840 static void
841 bce_set_tunables(struct bce_softc *sc)
842 {
843 	/* Set sysctl values for RX page count. */
844 	switch (bce_rx_pages) {
845 	case 1:
846 		/* fall-through */
847 	case 2:
848 		/* fall-through */
849 	case 4:
850 		/* fall-through */
851 	case 8:
852 		sc->rx_pages = bce_rx_pages;
853 		break;
854 	default:
855 		sc->rx_pages = DEFAULT_RX_PAGES;
856 		BCE_PRINTF("%s(%d): Illegal value (%d) specified for "
857 		    "hw.bce.rx_pages!  Setting default of %d.\n",
858 		    __FILE__, __LINE__, bce_rx_pages, DEFAULT_RX_PAGES);
859 	}
860 
861 	/* ToDo: Consider allowing user setting for pg_pages. */
862 	sc->pg_pages = min((sc->rx_pages * 4), MAX_PG_PAGES);
863 
864 	/* Set sysctl values for TX page count. */
865 	switch (bce_tx_pages) {
866 	case 1:
867 		/* fall-through */
868 	case 2:
869 		/* fall-through */
870 	case 4:
871 		/* fall-through */
872 	case 8:
873 		sc->tx_pages = bce_tx_pages;
874 		break;
875 	default:
876 		sc->tx_pages = DEFAULT_TX_PAGES;
877 		BCE_PRINTF("%s(%d): Illegal value (%d) specified for "
878 		    "hw.bce.tx_pages!  Setting default of %d.\n",
879 		    __FILE__, __LINE__, bce_tx_pages, DEFAULT_TX_PAGES);
880 	}
881 
882 	/*
883 	 * Validate the TX trip point (i.e. the number of
884 	 * TX completions before a status block update is
885 	 * generated and an interrupt is asserted.
886 	 */
887 	if (bce_tx_quick_cons_trip_int <= 100) {
888 		sc->bce_tx_quick_cons_trip_int =
889 		    bce_tx_quick_cons_trip_int;
890 	} else {
891 		BCE_PRINTF("%s(%d): Illegal value (%d) specified for "
892 		    "hw.bce.tx_quick_cons_trip_int!  Setting default of %d.\n",
893 		    __FILE__, __LINE__, bce_tx_quick_cons_trip_int,
894 		    DEFAULT_TX_QUICK_CONS_TRIP_INT);
895 		sc->bce_tx_quick_cons_trip_int =
896 		    DEFAULT_TX_QUICK_CONS_TRIP_INT;
897 	}
898 
899 	if (bce_tx_quick_cons_trip <= 100) {
900 		sc->bce_tx_quick_cons_trip =
901 		    bce_tx_quick_cons_trip;
902 	} else {
903 		BCE_PRINTF("%s(%d): Illegal value (%d) specified for "
904 		    "hw.bce.tx_quick_cons_trip!  Setting default of %d.\n",
905 		    __FILE__, __LINE__, bce_tx_quick_cons_trip,
906 		    DEFAULT_TX_QUICK_CONS_TRIP);
907 		sc->bce_tx_quick_cons_trip =
908 		    DEFAULT_TX_QUICK_CONS_TRIP;
909 	}
910 
911 	/*
912 	 * Validate the TX ticks count (i.e. the maximum amount
913 	 * of time to wait after the last TX completion has
914 	 * occurred before a status block update is generated
915 	 * and an interrupt is asserted.
916 	 */
917 	if (bce_tx_ticks_int <= 100) {
918 		sc->bce_tx_ticks_int =
919 		    bce_tx_ticks_int;
920 	} else {
921 		BCE_PRINTF("%s(%d): Illegal value (%d) specified for "
922 		    "hw.bce.tx_ticks_int!  Setting default of %d.\n",
923 		    __FILE__, __LINE__, bce_tx_ticks_int,
924 		    DEFAULT_TX_TICKS_INT);
925 		sc->bce_tx_ticks_int =
926 		    DEFAULT_TX_TICKS_INT;
927 	   }
928 
929 	if (bce_tx_ticks <= 100) {
930 		sc->bce_tx_ticks =
931 		    bce_tx_ticks;
932 	} else {
933 		BCE_PRINTF("%s(%d): Illegal value (%d) specified for "
934 		    "hw.bce.tx_ticks!  Setting default of %d.\n",
935 		    __FILE__, __LINE__, bce_tx_ticks,
936 		    DEFAULT_TX_TICKS);
937 		sc->bce_tx_ticks =
938 		    DEFAULT_TX_TICKS;
939 	}
940 
941 	/*
942 	 * Validate the RX trip point (i.e. the number of
943 	 * RX frames received before a status block update is
944 	 * generated and an interrupt is asserted.
945 	 */
946 	if (bce_rx_quick_cons_trip_int <= 100) {
947 		sc->bce_rx_quick_cons_trip_int =
948 		    bce_rx_quick_cons_trip_int;
949 	} else {
950 		BCE_PRINTF("%s(%d): Illegal value (%d) specified for "
951 		    "hw.bce.rx_quick_cons_trip_int!  Setting default of %d.\n",
952 		    __FILE__, __LINE__, bce_rx_quick_cons_trip_int,
953 		    DEFAULT_RX_QUICK_CONS_TRIP_INT);
954 		sc->bce_rx_quick_cons_trip_int =
955 		    DEFAULT_RX_QUICK_CONS_TRIP_INT;
956 	}
957 
958 	if (bce_rx_quick_cons_trip <= 100) {
959 		sc->bce_rx_quick_cons_trip =
960 		    bce_rx_quick_cons_trip;
961 	} else {
962 		BCE_PRINTF("%s(%d): Illegal value (%d) specified for "
963 		    "hw.bce.rx_quick_cons_trip!  Setting default of %d.\n",
964 		    __FILE__, __LINE__, bce_rx_quick_cons_trip,
965 		    DEFAULT_RX_QUICK_CONS_TRIP);
966 		sc->bce_rx_quick_cons_trip =
967 		    DEFAULT_RX_QUICK_CONS_TRIP;
968 	}
969 
970 	/*
971 	 * Validate the RX ticks count (i.e. the maximum amount
972 	 * of time to wait after the last RX frame has been
973 	 * received before a status block update is generated
974 	 * and an interrupt is asserted.
975 	 */
976 	if (bce_rx_ticks_int <= 100) {
977 		sc->bce_rx_ticks_int = bce_rx_ticks_int;
978 	} else {
979 		BCE_PRINTF("%s(%d): Illegal value (%d) specified for "
980 		    "hw.bce.rx_ticks_int!  Setting default of %d.\n",
981 		    __FILE__, __LINE__, bce_rx_ticks_int,
982 		    DEFAULT_RX_TICKS_INT);
983 		sc->bce_rx_ticks_int = DEFAULT_RX_TICKS_INT;
984 	}
985 
986 	if (bce_rx_ticks <= 100) {
987 		sc->bce_rx_ticks = bce_rx_ticks;
988 	} else {
989 		BCE_PRINTF("%s(%d): Illegal value (%d) specified for "
990 		    "hw.bce.rx_ticks!  Setting default of %d.\n",
991 		    __FILE__, __LINE__, bce_rx_ticks,
992 		    DEFAULT_RX_TICKS);
993 		sc->bce_rx_ticks = DEFAULT_RX_TICKS;
994 	}
995 
996 	/* Disabling both RX ticks and RX trips will prevent interrupts. */
997 	if ((bce_rx_quick_cons_trip == 0) && (bce_rx_ticks == 0)) {
998 		BCE_PRINTF("%s(%d): Cannot set both hw.bce.rx_ticks and "
999 		    "hw.bce.rx_quick_cons_trip to 0. Setting default values.\n",
1000 		   __FILE__, __LINE__);
1001 		sc->bce_rx_ticks = DEFAULT_RX_TICKS;
1002 		sc->bce_rx_quick_cons_trip = DEFAULT_RX_QUICK_CONS_TRIP;
1003 	}
1004 
1005 	/* Disabling both TX ticks and TX trips will prevent interrupts. */
1006 	if ((bce_tx_quick_cons_trip == 0) && (bce_tx_ticks == 0)) {
1007 		BCE_PRINTF("%s(%d): Cannot set both hw.bce.tx_ticks and "
1008 		    "hw.bce.tx_quick_cons_trip to 0. Setting default values.\n",
1009 		   __FILE__, __LINE__);
1010 		sc->bce_tx_ticks = DEFAULT_TX_TICKS;
1011 		sc->bce_tx_quick_cons_trip = DEFAULT_TX_QUICK_CONS_TRIP;
1012 	}
1013 
1014 }
1015 
1016 
1017 /****************************************************************************/
1018 /* Device attach function.                                                  */
1019 /*                                                                          */
1020 /* Allocates device resources, performs secondary chip identification,      */
1021 /* resets and initializes the hardware, and initializes driver instance     */
1022 /* variables.                                                               */
1023 /*                                                                          */
1024 /* Returns:                                                                 */
1025 /*   0 on success, positive value on failure.                               */
1026 /****************************************************************************/
1027 static int
1028 bce_attach(device_t dev)
1029 {
1030 	struct bce_softc *sc;
1031 	struct ifnet *ifp;
1032 	u32 val;
1033 	int error, rid, rc = 0;
1034 
1035 	sc = device_get_softc(dev);
1036 	sc->bce_dev = dev;
1037 
1038 	DBENTER(BCE_VERBOSE_LOAD | BCE_VERBOSE_RESET);
1039 
1040 	sc->bce_unit = device_get_unit(dev);
1041 
1042 	/* Set initial device and PHY flags */
1043 	sc->bce_flags = 0;
1044 	sc->bce_phy_flags = 0;
1045 
1046 	bce_set_tunables(sc);
1047 
1048 	pci_enable_busmaster(dev);
1049 
1050 	/* Allocate PCI memory resources. */
1051 	rid = PCIR_BAR(0);
1052 	sc->bce_res_mem = bus_alloc_resource_any(dev, SYS_RES_MEMORY,
1053 		&rid, RF_ACTIVE);
1054 
1055 	if (sc->bce_res_mem == NULL) {
1056 		BCE_PRINTF("%s(%d): PCI memory allocation failed\n",
1057 		    __FILE__, __LINE__);
1058 		rc = ENXIO;
1059 		goto bce_attach_fail;
1060 	}
1061 
1062 	/* Get various resource handles. */
1063 	sc->bce_btag    = rman_get_bustag(sc->bce_res_mem);
1064 	sc->bce_bhandle = rman_get_bushandle(sc->bce_res_mem);
1065 	sc->bce_vhandle = (vm_offset_t) rman_get_virtual(sc->bce_res_mem);
1066 
1067 	bce_probe_pci_caps(dev, sc);
1068 
1069 	rid = 1;
1070 #if 0
1071 	/* Try allocating MSI-X interrupts. */
1072 	if ((sc->bce_cap_flags & BCE_MSIX_CAPABLE_FLAG) &&
1073 		(bce_msi_enable >= 2) &&
1074 		((sc->bce_res_irq = bus_alloc_resource_any(dev, SYS_RES_MEMORY,
1075 		&rid, RF_ACTIVE)) != NULL)) {
1076 
1077 		msi_needed = sc->bce_msi_count = 1;
1078 
1079 		if (((error = pci_alloc_msix(dev, &sc->bce_msi_count)) != 0) ||
1080 			(sc->bce_msi_count != msi_needed)) {
1081 			BCE_PRINTF("%s(%d): MSI-X allocation failed! Requested = %d,"
1082 				"Received = %d, error = %d\n", __FILE__, __LINE__,
1083 				msi_needed, sc->bce_msi_count, error);
1084 			sc->bce_msi_count = 0;
1085 			pci_release_msi(dev);
1086 			bus_release_resource(dev, SYS_RES_MEMORY, rid,
1087 				sc->bce_res_irq);
1088 			sc->bce_res_irq = NULL;
1089 		} else {
1090 			DBPRINT(sc, BCE_INFO_LOAD, "%s(): Using MSI-X interrupt.\n",
1091 				__FUNCTION__);
1092 			sc->bce_flags |= BCE_USING_MSIX_FLAG;
1093 			sc->bce_intr = bce_intr;
1094 		}
1095 	}
1096 #endif
1097 
1098 	/* Try allocating a MSI interrupt. */
1099 	if ((sc->bce_cap_flags & BCE_MSI_CAPABLE_FLAG) &&
1100 		(bce_msi_enable >= 1) && (sc->bce_msi_count == 0)) {
1101 		sc->bce_msi_count = 1;
1102 		if ((error = pci_alloc_msi(dev, &sc->bce_msi_count)) != 0) {
1103 			BCE_PRINTF("%s(%d): MSI allocation failed! "
1104 			    "error = %d\n", __FILE__, __LINE__, error);
1105 			sc->bce_msi_count = 0;
1106 			pci_release_msi(dev);
1107 		} else {
1108 			DBPRINT(sc, BCE_INFO_LOAD, "%s(): Using MSI "
1109 			    "interrupt.\n", __FUNCTION__);
1110 			sc->bce_flags |= BCE_USING_MSI_FLAG;
1111 			if (BCE_CHIP_NUM(sc) == BCE_CHIP_NUM_5709)
1112 				sc->bce_flags |= BCE_ONE_SHOT_MSI_FLAG;
1113 			sc->bce_irq_rid = 1;
1114 			sc->bce_intr = bce_intr;
1115 		}
1116 	}
1117 
1118 	/* Try allocating a legacy interrupt. */
1119 	if (sc->bce_msi_count == 0) {
1120 		DBPRINT(sc, BCE_INFO_LOAD, "%s(): Using INTx interrupt.\n",
1121 			__FUNCTION__);
1122 		rid = 0;
1123 		sc->bce_intr = bce_intr;
1124 	}
1125 
1126 	sc->bce_res_irq = bus_alloc_resource_any(dev, SYS_RES_IRQ,
1127 	    &rid, RF_SHAREABLE | RF_ACTIVE);
1128 
1129 	sc->bce_irq_rid = rid;
1130 
1131 	/* Report any IRQ allocation errors. */
1132 	if (sc->bce_res_irq == NULL) {
1133 		BCE_PRINTF("%s(%d): PCI map interrupt failed!\n",
1134 		    __FILE__, __LINE__);
1135 		rc = ENXIO;
1136 		goto bce_attach_fail;
1137 	}
1138 
1139 	/* Initialize mutex for the current device instance. */
1140 	BCE_LOCK_INIT(sc, device_get_nameunit(dev));
1141 
1142 	/*
1143 	 * Configure byte swap and enable indirect register access.
1144 	 * Rely on CPU to do target byte swapping on big endian systems.
1145 	 * Access to registers outside of PCI configurtion space are not
1146 	 * valid until this is done.
1147 	 */
1148 	pci_write_config(dev, BCE_PCICFG_MISC_CONFIG,
1149 	    BCE_PCICFG_MISC_CONFIG_REG_WINDOW_ENA |
1150 	    BCE_PCICFG_MISC_CONFIG_TARGET_MB_WORD_SWAP, 4);
1151 
1152 	/* Save ASIC revsion info. */
1153 	sc->bce_chipid =  REG_RD(sc, BCE_MISC_ID);
1154 
1155 	/* Weed out any non-production controller revisions. */
1156 	switch(BCE_CHIP_ID(sc)) {
1157 	case BCE_CHIP_ID_5706_A0:
1158 	case BCE_CHIP_ID_5706_A1:
1159 	case BCE_CHIP_ID_5708_A0:
1160 	case BCE_CHIP_ID_5708_B0:
1161 	case BCE_CHIP_ID_5709_A0:
1162 	case BCE_CHIP_ID_5709_B0:
1163 	case BCE_CHIP_ID_5709_B1:
1164 	case BCE_CHIP_ID_5709_B2:
1165 		BCE_PRINTF("%s(%d): Unsupported controller "
1166 		    "revision (%c%d)!\n", __FILE__, __LINE__,
1167 		    (((pci_read_config(dev, PCIR_REVID, 4) &
1168 		    0xf0) >> 4) + 'A'), (pci_read_config(dev,
1169 		    PCIR_REVID, 4) & 0xf));
1170 		rc = ENODEV;
1171 		goto bce_attach_fail;
1172 	}
1173 
1174 	/*
1175 	 * The embedded PCIe to PCI-X bridge (EPB)
1176 	 * in the 5708 cannot address memory above
1177 	 * 40 bits (E7_5708CB1_23043 & E6_5708SB1_23043).
1178 	 */
1179 	if (BCE_CHIP_NUM(sc) == BCE_CHIP_NUM_5708)
1180 		sc->max_bus_addr = BCE_BUS_SPACE_MAXADDR;
1181 	else
1182 		sc->max_bus_addr = BUS_SPACE_MAXADDR;
1183 
1184 	/*
1185 	 * Find the base address for shared memory access.
1186 	 * Newer versions of bootcode use a signature and offset
1187 	 * while older versions use a fixed address.
1188 	 */
1189 	val = REG_RD_IND(sc, BCE_SHM_HDR_SIGNATURE);
1190 	if ((val & BCE_SHM_HDR_SIGNATURE_SIG_MASK) == BCE_SHM_HDR_SIGNATURE_SIG)
1191 		/* Multi-port devices use different offsets in shared memory. */
1192 		sc->bce_shmem_base = REG_RD_IND(sc, BCE_SHM_HDR_ADDR_0 +
1193 		    (pci_get_function(sc->bce_dev) << 2));
1194 	else
1195 		sc->bce_shmem_base = HOST_VIEW_SHMEM_BASE;
1196 
1197 	DBPRINT(sc, BCE_VERBOSE_FIRMWARE, "%s(): bce_shmem_base = 0x%08X\n",
1198 	    __FUNCTION__, sc->bce_shmem_base);
1199 
1200 	/* Fetch the bootcode revision. */
1201 	val = bce_shmem_rd(sc, BCE_DEV_INFO_BC_REV);
1202 	for (int i = 0, j = 0; i < 3; i++) {
1203 		u8 num;
1204 
1205 		num = (u8) (val >> (24 - (i * 8)));
1206 		for (int k = 100, skip0 = 1; k >= 1; num %= k, k /= 10) {
1207 			if (num >= k || !skip0 || k == 1) {
1208 				sc->bce_bc_ver[j++] = (num / k) + '0';
1209 				skip0 = 0;
1210 			}
1211 		}
1212 
1213 		if (i != 2)
1214 			sc->bce_bc_ver[j++] = '.';
1215 	}
1216 
1217 	/* Check if any management firwmare is enabled. */
1218 	val = bce_shmem_rd(sc, BCE_PORT_FEATURE);
1219 	if (val & BCE_PORT_FEATURE_ASF_ENABLED) {
1220 		sc->bce_flags |= BCE_MFW_ENABLE_FLAG;
1221 
1222 		/* Allow time for firmware to enter the running state. */
1223 		for (int i = 0; i < 30; i++) {
1224 			val = bce_shmem_rd(sc, BCE_BC_STATE_CONDITION);
1225 			if (val & BCE_CONDITION_MFW_RUN_MASK)
1226 				break;
1227 			DELAY(10000);
1228 		}
1229 
1230 		/* Check if management firmware is running. */
1231 		val = bce_shmem_rd(sc, BCE_BC_STATE_CONDITION);
1232 		val &= BCE_CONDITION_MFW_RUN_MASK;
1233 		if ((val != BCE_CONDITION_MFW_RUN_UNKNOWN) &&
1234 		    (val != BCE_CONDITION_MFW_RUN_NONE)) {
1235 			u32 addr = bce_shmem_rd(sc, BCE_MFW_VER_PTR);
1236 			int i = 0;
1237 
1238 			/* Read the management firmware version string. */
1239 			for (int j = 0; j < 3; j++) {
1240 				val = bce_reg_rd_ind(sc, addr + j * 4);
1241 				val = bswap32(val);
1242 				memcpy(&sc->bce_mfw_ver[i], &val, 4);
1243 				i += 4;
1244 			}
1245 		} else {
1246 			/* May cause firmware synchronization timeouts. */
1247 			BCE_PRINTF("%s(%d): Management firmware enabled "
1248 			    "but not running!\n", __FILE__, __LINE__);
1249 			strcpy(sc->bce_mfw_ver, "NOT RUNNING!");
1250 
1251 			/* ToDo: Any action the driver should take? */
1252 		}
1253 	}
1254 
1255 	/* Get PCI bus information (speed and type). */
1256 	val = REG_RD(sc, BCE_PCICFG_MISC_STATUS);
1257 	if (val & BCE_PCICFG_MISC_STATUS_PCIX_DET) {
1258 		u32 clkreg;
1259 
1260 		sc->bce_flags |= BCE_PCIX_FLAG;
1261 
1262 		clkreg = REG_RD(sc, BCE_PCICFG_PCI_CLOCK_CONTROL_BITS);
1263 
1264 		clkreg &= BCE_PCICFG_PCI_CLOCK_CONTROL_BITS_PCI_CLK_SPD_DET;
1265 		switch (clkreg) {
1266 		case BCE_PCICFG_PCI_CLOCK_CONTROL_BITS_PCI_CLK_SPD_DET_133MHZ:
1267 			sc->bus_speed_mhz = 133;
1268 			break;
1269 
1270 		case BCE_PCICFG_PCI_CLOCK_CONTROL_BITS_PCI_CLK_SPD_DET_95MHZ:
1271 			sc->bus_speed_mhz = 100;
1272 			break;
1273 
1274 		case BCE_PCICFG_PCI_CLOCK_CONTROL_BITS_PCI_CLK_SPD_DET_66MHZ:
1275 		case BCE_PCICFG_PCI_CLOCK_CONTROL_BITS_PCI_CLK_SPD_DET_80MHZ:
1276 			sc->bus_speed_mhz = 66;
1277 			break;
1278 
1279 		case BCE_PCICFG_PCI_CLOCK_CONTROL_BITS_PCI_CLK_SPD_DET_48MHZ:
1280 		case BCE_PCICFG_PCI_CLOCK_CONTROL_BITS_PCI_CLK_SPD_DET_55MHZ:
1281 			sc->bus_speed_mhz = 50;
1282 			break;
1283 
1284 		case BCE_PCICFG_PCI_CLOCK_CONTROL_BITS_PCI_CLK_SPD_DET_LOW:
1285 		case BCE_PCICFG_PCI_CLOCK_CONTROL_BITS_PCI_CLK_SPD_DET_32MHZ:
1286 		case BCE_PCICFG_PCI_CLOCK_CONTROL_BITS_PCI_CLK_SPD_DET_38MHZ:
1287 			sc->bus_speed_mhz = 33;
1288 			break;
1289 		}
1290 	} else {
1291 		if (val & BCE_PCICFG_MISC_STATUS_M66EN)
1292 			sc->bus_speed_mhz = 66;
1293 		else
1294 			sc->bus_speed_mhz = 33;
1295 	}
1296 
1297 	if (val & BCE_PCICFG_MISC_STATUS_32BIT_DET)
1298 		sc->bce_flags |= BCE_PCI_32BIT_FLAG;
1299 
1300 	/* Reset controller and announce to bootcode that driver is present. */
1301 	if (bce_reset(sc, BCE_DRV_MSG_CODE_RESET)) {
1302 		BCE_PRINTF("%s(%d): Controller reset failed!\n",
1303 		    __FILE__, __LINE__);
1304 		rc = ENXIO;
1305 		goto bce_attach_fail;
1306 	}
1307 
1308 	/* Initialize the controller. */
1309 	if (bce_chipinit(sc)) {
1310 		BCE_PRINTF("%s(%d): Controller initialization failed!\n",
1311 		    __FILE__, __LINE__);
1312 		rc = ENXIO;
1313 		goto bce_attach_fail;
1314 	}
1315 
1316 	/* Perform NVRAM test. */
1317 	if (bce_nvram_test(sc)) {
1318 		BCE_PRINTF("%s(%d): NVRAM test failed!\n",
1319 		    __FILE__, __LINE__);
1320 		rc = ENXIO;
1321 		goto bce_attach_fail;
1322 	}
1323 
1324 	/* Fetch the permanent Ethernet MAC address. */
1325 	bce_get_mac_addr(sc);
1326 
1327 	/*
1328 	 * Trip points control how many BDs
1329 	 * should be ready before generating an
1330 	 * interrupt while ticks control how long
1331 	 * a BD can sit in the chain before
1332 	 * generating an interrupt.  Set the default
1333 	 * values for the RX and TX chains.
1334 	 */
1335 
1336 	/* Not used for L2. */
1337 	sc->bce_comp_prod_trip_int     = 0;
1338 	sc->bce_comp_prod_trip         = 0;
1339 	sc->bce_com_ticks_int          = 0;
1340 	sc->bce_com_ticks              = 0;
1341 	sc->bce_cmd_ticks_int          = 0;
1342 	sc->bce_cmd_ticks              = 0;
1343 
1344 	/* Update statistics once every second. */
1345 	sc->bce_stats_ticks = 1000000 & 0xffff00;
1346 
1347 	/* Find the media type for the adapter. */
1348 	bce_get_media(sc);
1349 
1350 	/* Store data needed by PHY driver for backplane applications */
1351 	sc->bce_shared_hw_cfg = bce_shmem_rd(sc, BCE_SHARED_HW_CFG_CONFIG);
1352 	sc->bce_port_hw_cfg   = bce_shmem_rd(sc, BCE_PORT_HW_CFG_CONFIG);
1353 
1354 	/* Allocate DMA memory resources. */
1355 	if (bce_dma_alloc(dev)) {
1356 		BCE_PRINTF("%s(%d): DMA resource allocation failed!\n",
1357 		    __FILE__, __LINE__);
1358 		rc = ENXIO;
1359 		goto bce_attach_fail;
1360 	}
1361 
1362 	/* Allocate an ifnet structure. */
1363 	ifp = sc->bce_ifp = if_alloc(IFT_ETHER);
1364 	if (ifp == NULL) {
1365 		BCE_PRINTF("%s(%d): Interface allocation failed!\n",
1366 		    __FILE__, __LINE__);
1367 		rc = ENXIO;
1368 		goto bce_attach_fail;
1369 	}
1370 
1371 	/* Initialize the ifnet interface. */
1372 	ifp->if_softc	= sc;
1373 	if_initname(ifp, device_get_name(dev), device_get_unit(dev));
1374 	ifp->if_flags	= IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
1375 	ifp->if_ioctl	= bce_ioctl;
1376 	ifp->if_start	= bce_start;
1377 	ifp->if_init	= bce_init;
1378 	ifp->if_mtu	= ETHERMTU;
1379 
1380 	if (bce_tso_enable) {
1381 		ifp->if_hwassist = BCE_IF_HWASSIST | CSUM_TSO;
1382 		ifp->if_capabilities = BCE_IF_CAPABILITIES | IFCAP_TSO4 |
1383 		    IFCAP_VLAN_HWTSO;
1384 	} else {
1385 		ifp->if_hwassist = BCE_IF_HWASSIST;
1386 		ifp->if_capabilities = BCE_IF_CAPABILITIES;
1387 	}
1388 
1389 	ifp->if_capenable = ifp->if_capabilities;
1390 
1391 	/*
1392 	 * Assume standard mbuf sizes for buffer allocation.
1393 	 * This may change later if the MTU size is set to
1394 	 * something other than 1500.
1395 	 */
1396 	bce_get_rx_buffer_sizes(sc,
1397 	    (ETHER_MAX_LEN - ETHER_HDR_LEN - ETHER_CRC_LEN));
1398 
1399 	/* Recalculate our buffer allocation sizes. */
1400 	ifp->if_snd.ifq_drv_maxlen = USABLE_TX_BD_ALLOC;
1401 	IFQ_SET_MAXLEN(&ifp->if_snd, ifp->if_snd.ifq_drv_maxlen);
1402 	IFQ_SET_READY(&ifp->if_snd);
1403 
1404 	if (sc->bce_phy_flags & BCE_PHY_2_5G_CAPABLE_FLAG)
1405 		ifp->if_baudrate = IF_Mbps(2500ULL);
1406 	else
1407 		ifp->if_baudrate = IF_Mbps(1000);
1408 
1409 	/* Handle any special PHY initialization for SerDes PHYs. */
1410 	bce_init_media(sc);
1411 
1412 	/* MII child bus by attaching the PHY. */
1413 	rc = mii_attach(dev, &sc->bce_miibus, ifp, bce_ifmedia_upd,
1414 	    bce_ifmedia_sts, BMSR_DEFCAPMASK, sc->bce_phy_addr,
1415 	    MII_OFFSET_ANY, MIIF_DOPAUSE);
1416 	if (rc != 0) {
1417 		BCE_PRINTF("%s(%d): attaching PHYs failed\n", __FILE__,
1418 		    __LINE__);
1419 		goto bce_attach_fail;
1420 	}
1421 
1422 	/* Attach to the Ethernet interface list. */
1423 	ether_ifattach(ifp, sc->eaddr);
1424 
1425 #if __FreeBSD_version < 500000
1426 	callout_init(&sc->bce_tick_callout);
1427 	callout_init(&sc->bce_pulse_callout);
1428 #else
1429 	callout_init_mtx(&sc->bce_tick_callout, &sc->bce_mtx, 0);
1430 	callout_init_mtx(&sc->bce_pulse_callout, &sc->bce_mtx, 0);
1431 #endif
1432 
1433 	/* Hookup IRQ last. */
1434 	rc = bus_setup_intr(dev, sc->bce_res_irq, INTR_TYPE_NET | INTR_MPSAFE,
1435 		NULL, bce_intr, sc, &sc->bce_intrhand);
1436 
1437 	if (rc) {
1438 		BCE_PRINTF("%s(%d): Failed to setup IRQ!\n",
1439 		    __FILE__, __LINE__);
1440 		bce_detach(dev);
1441 		goto bce_attach_exit;
1442 	}
1443 
1444 	/*
1445 	 * At this point we've acquired all the resources
1446 	 * we need to run so there's no turning back, we're
1447 	 * cleared for launch.
1448 	 */
1449 
1450 	/* Print some important debugging info. */
1451 	DBRUNMSG(BCE_INFO, bce_dump_driver_state(sc));
1452 
1453 	/* Add the supported sysctls to the kernel. */
1454 	bce_add_sysctls(sc);
1455 
1456 	BCE_LOCK(sc);
1457 
1458 	/*
1459 	 * The chip reset earlier notified the bootcode that
1460 	 * a driver is present.  We now need to start our pulse
1461 	 * routine so that the bootcode is reminded that we're
1462 	 * still running.
1463 	 */
1464 	bce_pulse(sc);
1465 
1466 	bce_mgmt_init_locked(sc);
1467 	BCE_UNLOCK(sc);
1468 
1469 	/* Finally, print some useful adapter info */
1470 	bce_print_adapter_info(sc);
1471 	DBPRINT(sc, BCE_FATAL, "%s(): sc = %p\n",
1472 		__FUNCTION__, sc);
1473 
1474 	goto bce_attach_exit;
1475 
1476 bce_attach_fail:
1477 	bce_release_resources(sc);
1478 
1479 bce_attach_exit:
1480 
1481 	DBEXIT(BCE_VERBOSE_LOAD | BCE_VERBOSE_RESET);
1482 
1483 	return(rc);
1484 }
1485 
1486 
1487 /****************************************************************************/
1488 /* Device detach function.                                                  */
1489 /*                                                                          */
1490 /* Stops the controller, resets the controller, and releases resources.     */
1491 /*                                                                          */
1492 /* Returns:                                                                 */
1493 /*   0 on success, positive value on failure.                               */
1494 /****************************************************************************/
1495 static int
1496 bce_detach(device_t dev)
1497 {
1498 	struct bce_softc *sc = device_get_softc(dev);
1499 	struct ifnet *ifp;
1500 	u32 msg;
1501 
1502 	DBENTER(BCE_VERBOSE_UNLOAD | BCE_VERBOSE_RESET);
1503 
1504 	ifp = sc->bce_ifp;
1505 
1506 	/* Stop and reset the controller. */
1507 	BCE_LOCK(sc);
1508 
1509 	/* Stop the pulse so the bootcode can go to driver absent state. */
1510 	callout_stop(&sc->bce_pulse_callout);
1511 
1512 	bce_stop(sc);
1513 	if (sc->bce_flags & BCE_NO_WOL_FLAG)
1514 		msg = BCE_DRV_MSG_CODE_UNLOAD_LNK_DN;
1515 	else
1516 		msg = BCE_DRV_MSG_CODE_UNLOAD;
1517 	bce_reset(sc, msg);
1518 
1519 	BCE_UNLOCK(sc);
1520 
1521 	ether_ifdetach(ifp);
1522 
1523 	/* If we have a child device on the MII bus remove it too. */
1524 	bus_generic_detach(dev);
1525 	device_delete_child(dev, sc->bce_miibus);
1526 
1527 	/* Release all remaining resources. */
1528 	bce_release_resources(sc);
1529 
1530 	DBEXIT(BCE_VERBOSE_UNLOAD | BCE_VERBOSE_RESET);
1531 
1532 	return(0);
1533 }
1534 
1535 
1536 /****************************************************************************/
1537 /* Device shutdown function.                                                */
1538 /*                                                                          */
1539 /* Stops and resets the controller.                                         */
1540 /*                                                                          */
1541 /* Returns:                                                                 */
1542 /*   0 on success, positive value on failure.                               */
1543 /****************************************************************************/
1544 static int
1545 bce_shutdown(device_t dev)
1546 {
1547 	struct bce_softc *sc = device_get_softc(dev);
1548 	u32 msg;
1549 
1550 	DBENTER(BCE_VERBOSE);
1551 
1552 	BCE_LOCK(sc);
1553 	bce_stop(sc);
1554 	if (sc->bce_flags & BCE_NO_WOL_FLAG)
1555 		msg = BCE_DRV_MSG_CODE_UNLOAD_LNK_DN;
1556 	else
1557 		msg = BCE_DRV_MSG_CODE_UNLOAD;
1558 	bce_reset(sc, msg);
1559 	BCE_UNLOCK(sc);
1560 
1561 	DBEXIT(BCE_VERBOSE);
1562 
1563 	return (0);
1564 }
1565 
1566 
1567 #ifdef BCE_DEBUG
1568 /****************************************************************************/
1569 /* Register read.                                                           */
1570 /*                                                                          */
1571 /* Returns:                                                                 */
1572 /*   The value of the register.                                             */
1573 /****************************************************************************/
1574 static u32
1575 bce_reg_rd(struct bce_softc *sc, u32 offset)
1576 {
1577 	u32 val = bus_space_read_4(sc->bce_btag, sc->bce_bhandle, offset);
1578 	DBPRINT(sc, BCE_INSANE_REG, "%s(); offset = 0x%08X, val = 0x%08X\n",
1579 		__FUNCTION__, offset, val);
1580 	return val;
1581 }
1582 
1583 
1584 /****************************************************************************/
1585 /* Register write (16 bit).                                                 */
1586 /*                                                                          */
1587 /* Returns:                                                                 */
1588 /*   Nothing.                                                               */
1589 /****************************************************************************/
1590 static void
1591 bce_reg_wr16(struct bce_softc *sc, u32 offset, u16 val)
1592 {
1593 	DBPRINT(sc, BCE_INSANE_REG, "%s(); offset = 0x%08X, val = 0x%04X\n",
1594 		__FUNCTION__, offset, val);
1595 	bus_space_write_2(sc->bce_btag, sc->bce_bhandle, offset, val);
1596 }
1597 
1598 
1599 /****************************************************************************/
1600 /* Register write.                                                          */
1601 /*                                                                          */
1602 /* Returns:                                                                 */
1603 /*   Nothing.                                                               */
1604 /****************************************************************************/
1605 static void
1606 bce_reg_wr(struct bce_softc *sc, u32 offset, u32 val)
1607 {
1608 	DBPRINT(sc, BCE_INSANE_REG, "%s(); offset = 0x%08X, val = 0x%08X\n",
1609 		__FUNCTION__, offset, val);
1610 	bus_space_write_4(sc->bce_btag, sc->bce_bhandle, offset, val);
1611 }
1612 #endif
1613 
1614 /****************************************************************************/
1615 /* Indirect register read.                                                  */
1616 /*                                                                          */
1617 /* Reads NetXtreme II registers using an index/data register pair in PCI    */
1618 /* configuration space.  Using this mechanism avoids issues with posted     */
1619 /* reads but is much slower than memory-mapped I/O.                         */
1620 /*                                                                          */
1621 /* Returns:                                                                 */
1622 /*   The value of the register.                                             */
1623 /****************************************************************************/
1624 static u32
1625 bce_reg_rd_ind(struct bce_softc *sc, u32 offset)
1626 {
1627 	device_t dev;
1628 	dev = sc->bce_dev;
1629 
1630 	pci_write_config(dev, BCE_PCICFG_REG_WINDOW_ADDRESS, offset, 4);
1631 #ifdef BCE_DEBUG
1632 	{
1633 		u32 val;
1634 		val = pci_read_config(dev, BCE_PCICFG_REG_WINDOW, 4);
1635 		DBPRINT(sc, BCE_INSANE_REG, "%s(); offset = 0x%08X, val = 0x%08X\n",
1636 			__FUNCTION__, offset, val);
1637 		return val;
1638 	}
1639 #else
1640 	return pci_read_config(dev, BCE_PCICFG_REG_WINDOW, 4);
1641 #endif
1642 }
1643 
1644 
1645 /****************************************************************************/
1646 /* Indirect register write.                                                 */
1647 /*                                                                          */
1648 /* Writes NetXtreme II registers using an index/data register pair in PCI   */
1649 /* configuration space.  Using this mechanism avoids issues with posted     */
1650 /* writes but is muchh slower than memory-mapped I/O.                       */
1651 /*                                                                          */
1652 /* Returns:                                                                 */
1653 /*   Nothing.                                                               */
1654 /****************************************************************************/
1655 static void
1656 bce_reg_wr_ind(struct bce_softc *sc, u32 offset, u32 val)
1657 {
1658 	device_t dev;
1659 	dev = sc->bce_dev;
1660 
1661 	DBPRINT(sc, BCE_INSANE_REG, "%s(); offset = 0x%08X, val = 0x%08X\n",
1662 		__FUNCTION__, offset, val);
1663 
1664 	pci_write_config(dev, BCE_PCICFG_REG_WINDOW_ADDRESS, offset, 4);
1665 	pci_write_config(dev, BCE_PCICFG_REG_WINDOW, val, 4);
1666 }
1667 
1668 
1669 /****************************************************************************/
1670 /* Shared memory write.                                                     */
1671 /*                                                                          */
1672 /* Writes NetXtreme II shared memory region.                                */
1673 /*                                                                          */
1674 /* Returns:                                                                 */
1675 /*   Nothing.                                                               */
1676 /****************************************************************************/
1677 static void
1678 bce_shmem_wr(struct bce_softc *sc, u32 offset, u32 val)
1679 {
1680 	DBPRINT(sc, BCE_VERBOSE_FIRMWARE, "%s(): Writing 0x%08X  to  "
1681 	    "0x%08X\n",	__FUNCTION__, val, offset);
1682 
1683 	bce_reg_wr_ind(sc, sc->bce_shmem_base + offset, val);
1684 }
1685 
1686 
1687 /****************************************************************************/
1688 /* Shared memory read.                                                      */
1689 /*                                                                          */
1690 /* Reads NetXtreme II shared memory region.                                 */
1691 /*                                                                          */
1692 /* Returns:                                                                 */
1693 /*   The 32 bit value read.                                                 */
1694 /****************************************************************************/
1695 static u32
1696 bce_shmem_rd(struct bce_softc *sc, u32 offset)
1697 {
1698 	u32 val = bce_reg_rd_ind(sc, sc->bce_shmem_base + offset);
1699 
1700 	DBPRINT(sc, BCE_VERBOSE_FIRMWARE, "%s(): Reading 0x%08X from "
1701 	    "0x%08X\n",	__FUNCTION__, val, offset);
1702 
1703 	return val;
1704 }
1705 
1706 
1707 #ifdef BCE_DEBUG
1708 /****************************************************************************/
1709 /* Context memory read.                                                     */
1710 /*                                                                          */
1711 /* The NetXtreme II controller uses context memory to track connection      */
1712 /* information for L2 and higher network protocols.                         */
1713 /*                                                                          */
1714 /* Returns:                                                                 */
1715 /*   The requested 32 bit value of context memory.                          */
1716 /****************************************************************************/
1717 static u32
1718 bce_ctx_rd(struct bce_softc *sc, u32 cid_addr, u32 ctx_offset)
1719 {
1720 	u32 idx, offset, retry_cnt = 5, val;
1721 
1722 	DBRUNIF((cid_addr > MAX_CID_ADDR || ctx_offset & 0x3 ||
1723 	    cid_addr & CTX_MASK), BCE_PRINTF("%s(): Invalid CID "
1724 	    "address: 0x%08X.\n", __FUNCTION__, cid_addr));
1725 
1726 	offset = ctx_offset + cid_addr;
1727 
1728 	if (BCE_CHIP_NUM(sc) == BCE_CHIP_NUM_5709) {
1729 
1730 		REG_WR(sc, BCE_CTX_CTX_CTRL, (offset | BCE_CTX_CTX_CTRL_READ_REQ));
1731 
1732 		for (idx = 0; idx < retry_cnt; idx++) {
1733 			val = REG_RD(sc, BCE_CTX_CTX_CTRL);
1734 			if ((val & BCE_CTX_CTX_CTRL_READ_REQ) == 0)
1735 				break;
1736 			DELAY(5);
1737 		}
1738 
1739 		if (val & BCE_CTX_CTX_CTRL_READ_REQ)
1740 			BCE_PRINTF("%s(%d); Unable to read CTX memory: "
1741 			    "cid_addr = 0x%08X, offset = 0x%08X!\n",
1742 			    __FILE__, __LINE__, cid_addr, ctx_offset);
1743 
1744 		val = REG_RD(sc, BCE_CTX_CTX_DATA);
1745 	} else {
1746 		REG_WR(sc, BCE_CTX_DATA_ADR, offset);
1747 		val = REG_RD(sc, BCE_CTX_DATA);
1748 	}
1749 
1750 	DBPRINT(sc, BCE_EXTREME_CTX, "%s(); cid_addr = 0x%08X, offset = 0x%08X, "
1751 		"val = 0x%08X\n", __FUNCTION__, cid_addr, ctx_offset, val);
1752 
1753 	return(val);
1754 }
1755 #endif
1756 
1757 
1758 /****************************************************************************/
1759 /* Context memory write.                                                    */
1760 /*                                                                          */
1761 /* The NetXtreme II controller uses context memory to track connection      */
1762 /* information for L2 and higher network protocols.                         */
1763 /*                                                                          */
1764 /* Returns:                                                                 */
1765 /*   Nothing.                                                               */
1766 /****************************************************************************/
1767 static void
1768 bce_ctx_wr(struct bce_softc *sc, u32 cid_addr, u32 ctx_offset, u32 ctx_val)
1769 {
1770 	u32 idx, offset = ctx_offset + cid_addr;
1771 	u32 val, retry_cnt = 5;
1772 
1773 	DBPRINT(sc, BCE_EXTREME_CTX, "%s(); cid_addr = 0x%08X, offset = 0x%08X, "
1774 		"val = 0x%08X\n", __FUNCTION__, cid_addr, ctx_offset, ctx_val);
1775 
1776 	DBRUNIF((cid_addr > MAX_CID_ADDR || ctx_offset & 0x3 || cid_addr & CTX_MASK),
1777 		BCE_PRINTF("%s(): Invalid CID address: 0x%08X.\n",
1778 		    __FUNCTION__, cid_addr));
1779 
1780 	if (BCE_CHIP_NUM(sc) == BCE_CHIP_NUM_5709) {
1781 
1782 		REG_WR(sc, BCE_CTX_CTX_DATA, ctx_val);
1783 		REG_WR(sc, BCE_CTX_CTX_CTRL, (offset | BCE_CTX_CTX_CTRL_WRITE_REQ));
1784 
1785 		for (idx = 0; idx < retry_cnt; idx++) {
1786 			val = REG_RD(sc, BCE_CTX_CTX_CTRL);
1787 			if ((val & BCE_CTX_CTX_CTRL_WRITE_REQ) == 0)
1788 				break;
1789 			DELAY(5);
1790 		}
1791 
1792 		if (val & BCE_CTX_CTX_CTRL_WRITE_REQ)
1793 			BCE_PRINTF("%s(%d); Unable to write CTX memory: "
1794 			    "cid_addr = 0x%08X, offset = 0x%08X!\n",
1795 			    __FILE__, __LINE__, cid_addr, ctx_offset);
1796 
1797 	} else {
1798 		REG_WR(sc, BCE_CTX_DATA_ADR, offset);
1799 		REG_WR(sc, BCE_CTX_DATA, ctx_val);
1800 	}
1801 }
1802 
1803 
1804 /****************************************************************************/
1805 /* PHY register read.                                                       */
1806 /*                                                                          */
1807 /* Implements register reads on the MII bus.                                */
1808 /*                                                                          */
1809 /* Returns:                                                                 */
1810 /*   The value of the register.                                             */
1811 /****************************************************************************/
1812 static int
1813 bce_miibus_read_reg(device_t dev, int phy, int reg)
1814 {
1815 	struct bce_softc *sc;
1816 	u32 val;
1817 	int i;
1818 
1819 	sc = device_get_softc(dev);
1820 
1821 	/* Make sure we are accessing the correct PHY address. */
1822 	if (phy != sc->bce_phy_addr) {
1823 		DBPRINT(sc, BCE_INSANE_PHY, "Invalid PHY address %d "
1824 		    "for PHY read!\n", phy);
1825 		return(0);
1826 	}
1827 
1828     /*
1829      * The 5709S PHY is an IEEE Clause 45 PHY
1830      * with special mappings to work with IEEE
1831      * Clause 22 register accesses.
1832      */
1833 	if ((sc->bce_phy_flags & BCE_PHY_IEEE_CLAUSE_45_FLAG) != 0) {
1834 		if (reg >= MII_BMCR && reg <= MII_ANLPRNP)
1835 			reg += 0x10;
1836 	}
1837 
1838     if (sc->bce_phy_flags & BCE_PHY_INT_MODE_AUTO_POLLING_FLAG) {
1839 		val = REG_RD(sc, BCE_EMAC_MDIO_MODE);
1840 		val &= ~BCE_EMAC_MDIO_MODE_AUTO_POLL;
1841 
1842 		REG_WR(sc, BCE_EMAC_MDIO_MODE, val);
1843 		REG_RD(sc, BCE_EMAC_MDIO_MODE);
1844 
1845 		DELAY(40);
1846 	}
1847 
1848 
1849 	val = BCE_MIPHY(phy) | BCE_MIREG(reg) |
1850 	    BCE_EMAC_MDIO_COMM_COMMAND_READ | BCE_EMAC_MDIO_COMM_DISEXT |
1851 	    BCE_EMAC_MDIO_COMM_START_BUSY;
1852 	REG_WR(sc, BCE_EMAC_MDIO_COMM, val);
1853 
1854 	for (i = 0; i < BCE_PHY_TIMEOUT; i++) {
1855 		DELAY(10);
1856 
1857 		val = REG_RD(sc, BCE_EMAC_MDIO_COMM);
1858 		if (!(val & BCE_EMAC_MDIO_COMM_START_BUSY)) {
1859 			DELAY(5);
1860 
1861 			val = REG_RD(sc, BCE_EMAC_MDIO_COMM);
1862 			val &= BCE_EMAC_MDIO_COMM_DATA;
1863 
1864 			break;
1865 		}
1866 	}
1867 
1868 	if (val & BCE_EMAC_MDIO_COMM_START_BUSY) {
1869 		BCE_PRINTF("%s(%d): Error: PHY read timeout! phy = %d, "
1870 		    "reg = 0x%04X\n", __FILE__, __LINE__, phy, reg);
1871 		val = 0x0;
1872 	} else {
1873 		val = REG_RD(sc, BCE_EMAC_MDIO_COMM);
1874 	}
1875 
1876 
1877 	if (sc->bce_phy_flags & BCE_PHY_INT_MODE_AUTO_POLLING_FLAG) {
1878 		val = REG_RD(sc, BCE_EMAC_MDIO_MODE);
1879 		val |= BCE_EMAC_MDIO_MODE_AUTO_POLL;
1880 
1881 		REG_WR(sc, BCE_EMAC_MDIO_MODE, val);
1882 		REG_RD(sc, BCE_EMAC_MDIO_MODE);
1883 
1884 		DELAY(40);
1885 	}
1886 
1887 	DB_PRINT_PHY_REG(reg, val);
1888 	return (val & 0xffff);
1889 
1890 }
1891 
1892 
1893 /****************************************************************************/
1894 /* PHY register write.                                                      */
1895 /*                                                                          */
1896 /* Implements register writes on the MII bus.                               */
1897 /*                                                                          */
1898 /* Returns:                                                                 */
1899 /*   The value of the register.                                             */
1900 /****************************************************************************/
1901 static int
1902 bce_miibus_write_reg(device_t dev, int phy, int reg, int val)
1903 {
1904 	struct bce_softc *sc;
1905 	u32 val1;
1906 	int i;
1907 
1908 	sc = device_get_softc(dev);
1909 
1910 	/* Make sure we are accessing the correct PHY address. */
1911 	if (phy != sc->bce_phy_addr) {
1912 		DBPRINT(sc, BCE_INSANE_PHY, "Invalid PHY address %d "
1913 		    "for PHY write!\n", phy);
1914 		return(0);
1915 	}
1916 
1917 	DB_PRINT_PHY_REG(reg, val);
1918 
1919 	/*
1920 	 * The 5709S PHY is an IEEE Clause 45 PHY
1921 	 * with special mappings to work with IEEE
1922 	 * Clause 22 register accesses.
1923 	 */
1924 	if ((sc->bce_phy_flags & BCE_PHY_IEEE_CLAUSE_45_FLAG) != 0) {
1925 		if (reg >= MII_BMCR && reg <= MII_ANLPRNP)
1926 			reg += 0x10;
1927 	}
1928 
1929 	if (sc->bce_phy_flags & BCE_PHY_INT_MODE_AUTO_POLLING_FLAG) {
1930 		val1 = REG_RD(sc, BCE_EMAC_MDIO_MODE);
1931 		val1 &= ~BCE_EMAC_MDIO_MODE_AUTO_POLL;
1932 
1933 		REG_WR(sc, BCE_EMAC_MDIO_MODE, val1);
1934 		REG_RD(sc, BCE_EMAC_MDIO_MODE);
1935 
1936 		DELAY(40);
1937 	}
1938 
1939 	val1 = BCE_MIPHY(phy) | BCE_MIREG(reg) | val |
1940 	    BCE_EMAC_MDIO_COMM_COMMAND_WRITE |
1941 	    BCE_EMAC_MDIO_COMM_START_BUSY | BCE_EMAC_MDIO_COMM_DISEXT;
1942 	REG_WR(sc, BCE_EMAC_MDIO_COMM, val1);
1943 
1944 	for (i = 0; i < BCE_PHY_TIMEOUT; i++) {
1945 		DELAY(10);
1946 
1947 		val1 = REG_RD(sc, BCE_EMAC_MDIO_COMM);
1948 		if (!(val1 & BCE_EMAC_MDIO_COMM_START_BUSY)) {
1949 			DELAY(5);
1950 			break;
1951 		}
1952 	}
1953 
1954 	if (val1 & BCE_EMAC_MDIO_COMM_START_BUSY)
1955 		BCE_PRINTF("%s(%d): PHY write timeout!\n",
1956 		    __FILE__, __LINE__);
1957 
1958 	if (sc->bce_phy_flags & BCE_PHY_INT_MODE_AUTO_POLLING_FLAG) {
1959 		val1 = REG_RD(sc, BCE_EMAC_MDIO_MODE);
1960 		val1 |= BCE_EMAC_MDIO_MODE_AUTO_POLL;
1961 
1962 		REG_WR(sc, BCE_EMAC_MDIO_MODE, val1);
1963 		REG_RD(sc, BCE_EMAC_MDIO_MODE);
1964 
1965 		DELAY(40);
1966 	}
1967 
1968 	return 0;
1969 }
1970 
1971 
1972 /****************************************************************************/
1973 /* MII bus status change.                                                   */
1974 /*                                                                          */
1975 /* Called by the MII bus driver when the PHY establishes link to set the    */
1976 /* MAC interface registers.                                                 */
1977 /*                                                                          */
1978 /* Returns:                                                                 */
1979 /*   Nothing.                                                               */
1980 /****************************************************************************/
1981 static void
1982 bce_miibus_statchg(device_t dev)
1983 {
1984 	struct bce_softc *sc;
1985 	struct ifnet *ifp;
1986 	struct mii_data *mii;
1987 	int val;
1988 
1989 	sc = device_get_softc(dev);
1990 
1991 	DBENTER(BCE_VERBOSE_PHY);
1992 
1993 	ifp = sc->bce_ifp;
1994 	mii = device_get_softc(sc->bce_miibus);
1995 	if (mii == NULL || ifp == NULL ||
1996 	    (ifp->if_drv_flags & IFF_DRV_RUNNING) == 0)
1997 		return;
1998 
1999 	sc->bce_link_up = FALSE;
2000 	val = REG_RD(sc, BCE_EMAC_MODE);
2001 	val &= ~(BCE_EMAC_MODE_PORT | BCE_EMAC_MODE_HALF_DUPLEX |
2002 	    BCE_EMAC_MODE_MAC_LOOP | BCE_EMAC_MODE_FORCE_LINK |
2003 	    BCE_EMAC_MODE_25G);
2004 
2005 	/* Set MII or GMII interface based on the PHY speed. */
2006 	if ((mii->mii_media_status & (IFM_ACTIVE | IFM_AVALID)) ==
2007 	    (IFM_ACTIVE | IFM_AVALID)) {
2008 		switch (IFM_SUBTYPE(mii->mii_media_active)) {
2009 		case IFM_10_T:
2010 			if (BCE_CHIP_NUM(sc) != BCE_CHIP_NUM_5706) {
2011 				DBPRINT(sc, BCE_INFO_PHY,
2012 				    "Enabling 10Mb interface.\n");
2013 				val |= BCE_EMAC_MODE_PORT_MII_10;
2014 				sc->bce_link_up = TRUE;
2015 				break;
2016 			}
2017 			/* FALLTHROUGH */
2018 		case IFM_100_TX:
2019 			DBPRINT(sc, BCE_INFO_PHY, "Enabling MII interface.\n");
2020 			val |= BCE_EMAC_MODE_PORT_MII;
2021 			sc->bce_link_up = TRUE;
2022 			break;
2023 		case IFM_2500_SX:
2024 			DBPRINT(sc, BCE_INFO_PHY, "Enabling 2.5G MAC mode.\n");
2025 			val |= BCE_EMAC_MODE_25G;
2026 			/* FALLTHROUGH */
2027 		case IFM_1000_T:
2028 		case IFM_1000_SX:
2029 			DBPRINT(sc, BCE_INFO_PHY, "Enabling GMII interface.\n");
2030 			val |= BCE_EMAC_MODE_PORT_GMII;
2031 			sc->bce_link_up = TRUE;
2032 			if (bce_verbose || bootverbose)
2033 				BCE_PRINTF("Gigabit link up!\n");
2034 			break;
2035 		default:
2036 			DBPRINT(sc, BCE_INFO_PHY, "Unknown link speed.\n");
2037 			break;
2038 		}
2039 	}
2040 
2041 	if (sc->bce_link_up == FALSE)
2042 		return;
2043 
2044 	/* Set half or full duplex based on PHY settings. */
2045 	if ((mii->mii_media_active & IFM_GMASK) == IFM_HDX) {
2046 		DBPRINT(sc, BCE_INFO_PHY,
2047 		    "Setting Half-Duplex interface.\n");
2048 		val |= BCE_EMAC_MODE_HALF_DUPLEX;
2049 	} else
2050 		DBPRINT(sc, BCE_INFO_PHY,
2051 		    "Setting Full-Duplex interface.\n");
2052 
2053 	REG_WR(sc, BCE_EMAC_MODE, val);
2054 
2055 	if ((mii->mii_media_active & IFM_ETH_RXPAUSE) != 0) {
2056 		DBPRINT(sc, BCE_INFO_PHY,
2057 		    "%s(): Enabling RX flow control.\n", __FUNCTION__);
2058 		BCE_SETBIT(sc, BCE_EMAC_RX_MODE, BCE_EMAC_RX_MODE_FLOW_EN);
2059 	} else {
2060 		DBPRINT(sc, BCE_INFO_PHY,
2061 		    "%s(): Disabling RX flow control.\n", __FUNCTION__);
2062 		BCE_CLRBIT(sc, BCE_EMAC_RX_MODE, BCE_EMAC_RX_MODE_FLOW_EN);
2063 	}
2064 
2065 	if ((mii->mii_media_active & IFM_ETH_TXPAUSE) != 0) {
2066 		DBPRINT(sc, BCE_INFO_PHY,
2067 		    "%s(): Enabling TX flow control.\n", __FUNCTION__);
2068 		BCE_SETBIT(sc, BCE_EMAC_TX_MODE, BCE_EMAC_TX_MODE_FLOW_EN);
2069 		sc->bce_flags |= BCE_USING_TX_FLOW_CONTROL;
2070 	} else {
2071 		DBPRINT(sc, BCE_INFO_PHY,
2072 		    "%s(): Disabling TX flow control.\n", __FUNCTION__);
2073 		BCE_CLRBIT(sc, BCE_EMAC_TX_MODE, BCE_EMAC_TX_MODE_FLOW_EN);
2074 		sc->bce_flags &= ~BCE_USING_TX_FLOW_CONTROL;
2075 	}
2076 
2077 	/* ToDo: Update watermarks in bce_init_rx_context(). */
2078 
2079 	DBEXIT(BCE_VERBOSE_PHY);
2080 }
2081 
2082 
2083 /****************************************************************************/
2084 /* Acquire NVRAM lock.                                                      */
2085 /*                                                                          */
2086 /* Before the NVRAM can be accessed the caller must acquire an NVRAM lock.  */
2087 /* Locks 0 and 2 are reserved, lock 1 is used by firmware and lock 2 is     */
2088 /* for use by the driver.                                                   */
2089 /*                                                                          */
2090 /* Returns:                                                                 */
2091 /*   0 on success, positive value on failure.                               */
2092 /****************************************************************************/
2093 static int
2094 bce_acquire_nvram_lock(struct bce_softc *sc)
2095 {
2096 	u32 val;
2097 	int j, rc = 0;
2098 
2099 	DBENTER(BCE_VERBOSE_NVRAM);
2100 
2101 	/* Request access to the flash interface. */
2102 	REG_WR(sc, BCE_NVM_SW_ARB, BCE_NVM_SW_ARB_ARB_REQ_SET2);
2103 	for (j = 0; j < NVRAM_TIMEOUT_COUNT; j++) {
2104 		val = REG_RD(sc, BCE_NVM_SW_ARB);
2105 		if (val & BCE_NVM_SW_ARB_ARB_ARB2)
2106 			break;
2107 
2108 		DELAY(5);
2109 	}
2110 
2111 	if (j >= NVRAM_TIMEOUT_COUNT) {
2112 		DBPRINT(sc, BCE_WARN, "Timeout acquiring NVRAM lock!\n");
2113 		rc = EBUSY;
2114 	}
2115 
2116 	DBEXIT(BCE_VERBOSE_NVRAM);
2117 	return (rc);
2118 }
2119 
2120 
2121 /****************************************************************************/
2122 /* Release NVRAM lock.                                                      */
2123 /*                                                                          */
2124 /* When the caller is finished accessing NVRAM the lock must be released.   */
2125 /* Locks 0 and 2 are reserved, lock 1 is used by firmware and lock 2 is     */
2126 /* for use by the driver.                                                   */
2127 /*                                                                          */
2128 /* Returns:                                                                 */
2129 /*   0 on success, positive value on failure.                               */
2130 /****************************************************************************/
2131 static int
2132 bce_release_nvram_lock(struct bce_softc *sc)
2133 {
2134 	u32 val;
2135 	int j, rc = 0;
2136 
2137 	DBENTER(BCE_VERBOSE_NVRAM);
2138 
2139 	/*
2140 	 * Relinquish nvram interface.
2141 	 */
2142 	REG_WR(sc, BCE_NVM_SW_ARB, BCE_NVM_SW_ARB_ARB_REQ_CLR2);
2143 
2144 	for (j = 0; j < NVRAM_TIMEOUT_COUNT; j++) {
2145 		val = REG_RD(sc, BCE_NVM_SW_ARB);
2146 		if (!(val & BCE_NVM_SW_ARB_ARB_ARB2))
2147 			break;
2148 
2149 		DELAY(5);
2150 	}
2151 
2152 	if (j >= NVRAM_TIMEOUT_COUNT) {
2153 		DBPRINT(sc, BCE_WARN, "Timeout releasing NVRAM lock!\n");
2154 		rc = EBUSY;
2155 	}
2156 
2157 	DBEXIT(BCE_VERBOSE_NVRAM);
2158 	return (rc);
2159 }
2160 
2161 
2162 #ifdef BCE_NVRAM_WRITE_SUPPORT
2163 /****************************************************************************/
2164 /* Enable NVRAM write access.                                               */
2165 /*                                                                          */
2166 /* Before writing to NVRAM the caller must enable NVRAM writes.             */
2167 /*                                                                          */
2168 /* Returns:                                                                 */
2169 /*   0 on success, positive value on failure.                               */
2170 /****************************************************************************/
2171 static int
2172 bce_enable_nvram_write(struct bce_softc *sc)
2173 {
2174 	u32 val;
2175 	int rc = 0;
2176 
2177 	DBENTER(BCE_VERBOSE_NVRAM);
2178 
2179 	val = REG_RD(sc, BCE_MISC_CFG);
2180 	REG_WR(sc, BCE_MISC_CFG, val | BCE_MISC_CFG_NVM_WR_EN_PCI);
2181 
2182 	if (!(sc->bce_flash_info->flags & BCE_NV_BUFFERED)) {
2183 		int j;
2184 
2185 		REG_WR(sc, BCE_NVM_COMMAND, BCE_NVM_COMMAND_DONE);
2186 		REG_WR(sc, BCE_NVM_COMMAND,	BCE_NVM_COMMAND_WREN | BCE_NVM_COMMAND_DOIT);
2187 
2188 		for (j = 0; j < NVRAM_TIMEOUT_COUNT; j++) {
2189 			DELAY(5);
2190 
2191 			val = REG_RD(sc, BCE_NVM_COMMAND);
2192 			if (val & BCE_NVM_COMMAND_DONE)
2193 				break;
2194 		}
2195 
2196 		if (j >= NVRAM_TIMEOUT_COUNT) {
2197 			DBPRINT(sc, BCE_WARN, "Timeout writing NVRAM!\n");
2198 			rc = EBUSY;
2199 		}
2200 	}
2201 
2202 	DBENTER(BCE_VERBOSE_NVRAM);
2203 	return (rc);
2204 }
2205 
2206 
2207 /****************************************************************************/
2208 /* Disable NVRAM write access.                                              */
2209 /*                                                                          */
2210 /* When the caller is finished writing to NVRAM write access must be        */
2211 /* disabled.                                                                */
2212 /*                                                                          */
2213 /* Returns:                                                                 */
2214 /*   Nothing.                                                               */
2215 /****************************************************************************/
2216 static void
2217 bce_disable_nvram_write(struct bce_softc *sc)
2218 {
2219 	u32 val;
2220 
2221 	DBENTER(BCE_VERBOSE_NVRAM);
2222 
2223 	val = REG_RD(sc, BCE_MISC_CFG);
2224 	REG_WR(sc, BCE_MISC_CFG, val & ~BCE_MISC_CFG_NVM_WR_EN);
2225 
2226 	DBEXIT(BCE_VERBOSE_NVRAM);
2227 
2228 }
2229 #endif
2230 
2231 
2232 /****************************************************************************/
2233 /* Enable NVRAM access.                                                     */
2234 /*                                                                          */
2235 /* Before accessing NVRAM for read or write operations the caller must      */
2236 /* enabled NVRAM access.                                                    */
2237 /*                                                                          */
2238 /* Returns:                                                                 */
2239 /*   Nothing.                                                               */
2240 /****************************************************************************/
2241 static void
2242 bce_enable_nvram_access(struct bce_softc *sc)
2243 {
2244 	u32 val;
2245 
2246 	DBENTER(BCE_VERBOSE_NVRAM);
2247 
2248 	val = REG_RD(sc, BCE_NVM_ACCESS_ENABLE);
2249 	/* Enable both bits, even on read. */
2250 	REG_WR(sc, BCE_NVM_ACCESS_ENABLE, val |
2251 	    BCE_NVM_ACCESS_ENABLE_EN | BCE_NVM_ACCESS_ENABLE_WR_EN);
2252 
2253 	DBEXIT(BCE_VERBOSE_NVRAM);
2254 }
2255 
2256 
2257 /****************************************************************************/
2258 /* Disable NVRAM access.                                                    */
2259 /*                                                                          */
2260 /* When the caller is finished accessing NVRAM access must be disabled.     */
2261 /*                                                                          */
2262 /* Returns:                                                                 */
2263 /*   Nothing.                                                               */
2264 /****************************************************************************/
2265 static void
2266 bce_disable_nvram_access(struct bce_softc *sc)
2267 {
2268 	u32 val;
2269 
2270 	DBENTER(BCE_VERBOSE_NVRAM);
2271 
2272 	val = REG_RD(sc, BCE_NVM_ACCESS_ENABLE);
2273 
2274 	/* Disable both bits, even after read. */
2275 	REG_WR(sc, BCE_NVM_ACCESS_ENABLE, val &
2276 	    ~(BCE_NVM_ACCESS_ENABLE_EN | BCE_NVM_ACCESS_ENABLE_WR_EN));
2277 
2278 	DBEXIT(BCE_VERBOSE_NVRAM);
2279 }
2280 
2281 
2282 #ifdef BCE_NVRAM_WRITE_SUPPORT
2283 /****************************************************************************/
2284 /* Erase NVRAM page before writing.                                         */
2285 /*                                                                          */
2286 /* Non-buffered flash parts require that a page be erased before it is      */
2287 /* written.                                                                 */
2288 /*                                                                          */
2289 /* Returns:                                                                 */
2290 /*   0 on success, positive value on failure.                               */
2291 /****************************************************************************/
2292 static int
2293 bce_nvram_erase_page(struct bce_softc *sc, u32 offset)
2294 {
2295 	u32 cmd;
2296 	int j, rc = 0;
2297 
2298 	DBENTER(BCE_VERBOSE_NVRAM);
2299 
2300 	/* Buffered flash doesn't require an erase. */
2301 	if (sc->bce_flash_info->flags & BCE_NV_BUFFERED)
2302 		goto bce_nvram_erase_page_exit;
2303 
2304 	/* Build an erase command. */
2305 	cmd = BCE_NVM_COMMAND_ERASE | BCE_NVM_COMMAND_WR |
2306 	    BCE_NVM_COMMAND_DOIT;
2307 
2308 	/*
2309 	 * Clear the DONE bit separately, set the NVRAM adress to erase,
2310 	 * and issue the erase command.
2311 	 */
2312 	REG_WR(sc, BCE_NVM_COMMAND, BCE_NVM_COMMAND_DONE);
2313 	REG_WR(sc, BCE_NVM_ADDR, offset & BCE_NVM_ADDR_NVM_ADDR_VALUE);
2314 	REG_WR(sc, BCE_NVM_COMMAND, cmd);
2315 
2316 	/* Wait for completion. */
2317 	for (j = 0; j < NVRAM_TIMEOUT_COUNT; j++) {
2318 		u32 val;
2319 
2320 		DELAY(5);
2321 
2322 		val = REG_RD(sc, BCE_NVM_COMMAND);
2323 		if (val & BCE_NVM_COMMAND_DONE)
2324 			break;
2325 	}
2326 
2327 	if (j >= NVRAM_TIMEOUT_COUNT) {
2328 		DBPRINT(sc, BCE_WARN, "Timeout erasing NVRAM.\n");
2329 		rc = EBUSY;
2330 	}
2331 
2332 bce_nvram_erase_page_exit:
2333 	DBEXIT(BCE_VERBOSE_NVRAM);
2334 	return (rc);
2335 }
2336 #endif /* BCE_NVRAM_WRITE_SUPPORT */
2337 
2338 
2339 /****************************************************************************/
2340 /* Read a dword (32 bits) from NVRAM.                                       */
2341 /*                                                                          */
2342 /* Read a 32 bit word from NVRAM.  The caller is assumed to have already    */
2343 /* obtained the NVRAM lock and enabled the controller for NVRAM access.     */
2344 /*                                                                          */
2345 /* Returns:                                                                 */
2346 /*   0 on success and the 32 bit value read, positive value on failure.     */
2347 /****************************************************************************/
2348 static int
2349 bce_nvram_read_dword(struct bce_softc *sc,
2350     u32 offset, u8 *ret_val, u32 cmd_flags)
2351 {
2352 	u32 cmd;
2353 	int i, rc = 0;
2354 
2355 	DBENTER(BCE_EXTREME_NVRAM);
2356 
2357 	/* Build the command word. */
2358 	cmd = BCE_NVM_COMMAND_DOIT | cmd_flags;
2359 
2360 	/* Calculate the offset for buffered flash if translation is used. */
2361 	if (sc->bce_flash_info->flags & BCE_NV_TRANSLATE) {
2362 		offset = ((offset / sc->bce_flash_info->page_size) <<
2363 		    sc->bce_flash_info->page_bits) +
2364 		    (offset % sc->bce_flash_info->page_size);
2365 	}
2366 
2367 	/*
2368 	 * Clear the DONE bit separately, set the address to read,
2369 	 * and issue the read.
2370 	 */
2371 	REG_WR(sc, BCE_NVM_COMMAND, BCE_NVM_COMMAND_DONE);
2372 	REG_WR(sc, BCE_NVM_ADDR, offset & BCE_NVM_ADDR_NVM_ADDR_VALUE);
2373 	REG_WR(sc, BCE_NVM_COMMAND, cmd);
2374 
2375 	/* Wait for completion. */
2376 	for (i = 0; i < NVRAM_TIMEOUT_COUNT; i++) {
2377 		u32 val;
2378 
2379 		DELAY(5);
2380 
2381 		val = REG_RD(sc, BCE_NVM_COMMAND);
2382 		if (val & BCE_NVM_COMMAND_DONE) {
2383 			val = REG_RD(sc, BCE_NVM_READ);
2384 
2385 			val = bce_be32toh(val);
2386 			memcpy(ret_val, &val, 4);
2387 			break;
2388 		}
2389 	}
2390 
2391 	/* Check for errors. */
2392 	if (i >= NVRAM_TIMEOUT_COUNT) {
2393 		BCE_PRINTF("%s(%d): Timeout error reading NVRAM at "
2394 		    "offset 0x%08X!\n",	__FILE__, __LINE__, offset);
2395 		rc = EBUSY;
2396 	}
2397 
2398 	DBEXIT(BCE_EXTREME_NVRAM);
2399 	return(rc);
2400 }
2401 
2402 
2403 #ifdef BCE_NVRAM_WRITE_SUPPORT
2404 /****************************************************************************/
2405 /* Write a dword (32 bits) to NVRAM.                                        */
2406 /*                                                                          */
2407 /* Write a 32 bit word to NVRAM.  The caller is assumed to have already     */
2408 /* obtained the NVRAM lock, enabled the controller for NVRAM access, and    */
2409 /* enabled NVRAM write access.                                              */
2410 /*                                                                          */
2411 /* Returns:                                                                 */
2412 /*   0 on success, positive value on failure.                               */
2413 /****************************************************************************/
2414 static int
2415 bce_nvram_write_dword(struct bce_softc *sc, u32 offset, u8 *val,
2416 	u32 cmd_flags)
2417 {
2418 	u32 cmd, val32;
2419 	int j, rc = 0;
2420 
2421 	DBENTER(BCE_VERBOSE_NVRAM);
2422 
2423 	/* Build the command word. */
2424 	cmd = BCE_NVM_COMMAND_DOIT | BCE_NVM_COMMAND_WR | cmd_flags;
2425 
2426 	/* Calculate the offset for buffered flash if translation is used. */
2427 	if (sc->bce_flash_info->flags & BCE_NV_TRANSLATE) {
2428 		offset = ((offset / sc->bce_flash_info->page_size) <<
2429 		    sc->bce_flash_info->page_bits) +
2430 		    (offset % sc->bce_flash_info->page_size);
2431 	}
2432 
2433 	/*
2434 	 * Clear the DONE bit separately, convert NVRAM data to big-endian,
2435 	 * set the NVRAM address to write, and issue the write command
2436 	 */
2437 	REG_WR(sc, BCE_NVM_COMMAND, BCE_NVM_COMMAND_DONE);
2438 	memcpy(&val32, val, 4);
2439 	val32 = htobe32(val32);
2440 	REG_WR(sc, BCE_NVM_WRITE, val32);
2441 	REG_WR(sc, BCE_NVM_ADDR, offset & BCE_NVM_ADDR_NVM_ADDR_VALUE);
2442 	REG_WR(sc, BCE_NVM_COMMAND, cmd);
2443 
2444 	/* Wait for completion. */
2445 	for (j = 0; j < NVRAM_TIMEOUT_COUNT; j++) {
2446 		DELAY(5);
2447 
2448 		if (REG_RD(sc, BCE_NVM_COMMAND) & BCE_NVM_COMMAND_DONE)
2449 			break;
2450 	}
2451 	if (j >= NVRAM_TIMEOUT_COUNT) {
2452 		BCE_PRINTF("%s(%d): Timeout error writing NVRAM at "
2453 		    "offset 0x%08X\n", __FILE__, __LINE__, offset);
2454 		rc = EBUSY;
2455 	}
2456 
2457 	DBEXIT(BCE_VERBOSE_NVRAM);
2458 	return (rc);
2459 }
2460 #endif /* BCE_NVRAM_WRITE_SUPPORT */
2461 
2462 
2463 /****************************************************************************/
2464 /* Initialize NVRAM access.                                                 */
2465 /*                                                                          */
2466 /* Identify the NVRAM device in use and prepare the NVRAM interface to      */
2467 /* access that device.                                                      */
2468 /*                                                                          */
2469 /* Returns:                                                                 */
2470 /*   0 on success, positive value on failure.                               */
2471 /****************************************************************************/
2472 static int
2473 bce_init_nvram(struct bce_softc *sc)
2474 {
2475 	u32 val;
2476 	int j, entry_count, rc = 0;
2477 	struct flash_spec *flash;
2478 
2479 	DBENTER(BCE_VERBOSE_NVRAM);
2480 
2481 	if (BCE_CHIP_NUM(sc) == BCE_CHIP_NUM_5709) {
2482 		sc->bce_flash_info = &flash_5709;
2483 		goto bce_init_nvram_get_flash_size;
2484 	}
2485 
2486 	/* Determine the selected interface. */
2487 	val = REG_RD(sc, BCE_NVM_CFG1);
2488 
2489 	entry_count = sizeof(flash_table) / sizeof(struct flash_spec);
2490 
2491 	/*
2492 	 * Flash reconfiguration is required to support additional
2493 	 * NVRAM devices not directly supported in hardware.
2494 	 * Check if the flash interface was reconfigured
2495 	 * by the bootcode.
2496 	 */
2497 
2498 	if (val & 0x40000000) {
2499 		/* Flash interface reconfigured by bootcode. */
2500 
2501 		DBPRINT(sc,BCE_INFO_LOAD,
2502 			"bce_init_nvram(): Flash WAS reconfigured.\n");
2503 
2504 		for (j = 0, flash = &flash_table[0]; j < entry_count;
2505 		     j++, flash++) {
2506 			if ((val & FLASH_BACKUP_STRAP_MASK) ==
2507 			    (flash->config1 & FLASH_BACKUP_STRAP_MASK)) {
2508 				sc->bce_flash_info = flash;
2509 				break;
2510 			}
2511 		}
2512 	} else {
2513 		/* Flash interface not yet reconfigured. */
2514 		u32 mask;
2515 
2516 		DBPRINT(sc, BCE_INFO_LOAD, "%s(): Flash was NOT reconfigured.\n",
2517 			__FUNCTION__);
2518 
2519 		if (val & (1 << 23))
2520 			mask = FLASH_BACKUP_STRAP_MASK;
2521 		else
2522 			mask = FLASH_STRAP_MASK;
2523 
2524 		/* Look for the matching NVRAM device configuration data. */
2525 		for (j = 0, flash = &flash_table[0]; j < entry_count; j++, flash++) {
2526 
2527 			/* Check if the device matches any of the known devices. */
2528 			if ((val & mask) == (flash->strapping & mask)) {
2529 				/* Found a device match. */
2530 				sc->bce_flash_info = flash;
2531 
2532 				/* Request access to the flash interface. */
2533 				if ((rc = bce_acquire_nvram_lock(sc)) != 0)
2534 					return rc;
2535 
2536 				/* Reconfigure the flash interface. */
2537 				bce_enable_nvram_access(sc);
2538 				REG_WR(sc, BCE_NVM_CFG1, flash->config1);
2539 				REG_WR(sc, BCE_NVM_CFG2, flash->config2);
2540 				REG_WR(sc, BCE_NVM_CFG3, flash->config3);
2541 				REG_WR(sc, BCE_NVM_WRITE1, flash->write1);
2542 				bce_disable_nvram_access(sc);
2543 				bce_release_nvram_lock(sc);
2544 
2545 				break;
2546 			}
2547 		}
2548 	}
2549 
2550 	/* Check if a matching device was found. */
2551 	if (j == entry_count) {
2552 		sc->bce_flash_info = NULL;
2553 		BCE_PRINTF("%s(%d): Unknown Flash NVRAM found!\n",
2554 		    __FILE__, __LINE__);
2555 		DBEXIT(BCE_VERBOSE_NVRAM);
2556 		return (ENODEV);
2557 	}
2558 
2559 bce_init_nvram_get_flash_size:
2560 	/* Write the flash config data to the shared memory interface. */
2561 	val = bce_shmem_rd(sc, BCE_SHARED_HW_CFG_CONFIG2);
2562 	val &= BCE_SHARED_HW_CFG2_NVM_SIZE_MASK;
2563 	if (val)
2564 		sc->bce_flash_size = val;
2565 	else
2566 		sc->bce_flash_size = sc->bce_flash_info->total_size;
2567 
2568 	DBPRINT(sc, BCE_INFO_LOAD, "%s(): Found %s, size = 0x%08X\n",
2569 	    __FUNCTION__, sc->bce_flash_info->name,
2570 	    sc->bce_flash_info->total_size);
2571 
2572 	DBEXIT(BCE_VERBOSE_NVRAM);
2573 	return rc;
2574 }
2575 
2576 
2577 /****************************************************************************/
2578 /* Read an arbitrary range of data from NVRAM.                              */
2579 /*                                                                          */
2580 /* Prepares the NVRAM interface for access and reads the requested data     */
2581 /* into the supplied buffer.                                                */
2582 /*                                                                          */
2583 /* Returns:                                                                 */
2584 /*   0 on success and the data read, positive value on failure.             */
2585 /****************************************************************************/
2586 static int
2587 bce_nvram_read(struct bce_softc *sc, u32 offset, u8 *ret_buf,
2588 	int buf_size)
2589 {
2590 	int rc = 0;
2591 	u32 cmd_flags, offset32, len32, extra;
2592 
2593 	DBENTER(BCE_VERBOSE_NVRAM);
2594 
2595 	if (buf_size == 0)
2596 		goto bce_nvram_read_exit;
2597 
2598 	/* Request access to the flash interface. */
2599 	if ((rc = bce_acquire_nvram_lock(sc)) != 0)
2600 		goto bce_nvram_read_exit;
2601 
2602 	/* Enable access to flash interface */
2603 	bce_enable_nvram_access(sc);
2604 
2605 	len32 = buf_size;
2606 	offset32 = offset;
2607 	extra = 0;
2608 
2609 	cmd_flags = 0;
2610 
2611 	if (offset32 & 3) {
2612 		u8 buf[4];
2613 		u32 pre_len;
2614 
2615 		offset32 &= ~3;
2616 		pre_len = 4 - (offset & 3);
2617 
2618 		if (pre_len >= len32) {
2619 			pre_len = len32;
2620 			cmd_flags = BCE_NVM_COMMAND_FIRST | BCE_NVM_COMMAND_LAST;
2621 		}
2622 		else {
2623 			cmd_flags = BCE_NVM_COMMAND_FIRST;
2624 		}
2625 
2626 		rc = bce_nvram_read_dword(sc, offset32, buf, cmd_flags);
2627 
2628 		if (rc)
2629 			return rc;
2630 
2631 		memcpy(ret_buf, buf + (offset & 3), pre_len);
2632 
2633 		offset32 += 4;
2634 		ret_buf += pre_len;
2635 		len32 -= pre_len;
2636 	}
2637 
2638 	if (len32 & 3) {
2639 		extra = 4 - (len32 & 3);
2640 		len32 = (len32 + 4) & ~3;
2641 	}
2642 
2643 	if (len32 == 4) {
2644 		u8 buf[4];
2645 
2646 		if (cmd_flags)
2647 			cmd_flags = BCE_NVM_COMMAND_LAST;
2648 		else
2649 			cmd_flags = BCE_NVM_COMMAND_FIRST |
2650 				    BCE_NVM_COMMAND_LAST;
2651 
2652 		rc = bce_nvram_read_dword(sc, offset32, buf, cmd_flags);
2653 
2654 		memcpy(ret_buf, buf, 4 - extra);
2655 	}
2656 	else if (len32 > 0) {
2657 		u8 buf[4];
2658 
2659 		/* Read the first word. */
2660 		if (cmd_flags)
2661 			cmd_flags = 0;
2662 		else
2663 			cmd_flags = BCE_NVM_COMMAND_FIRST;
2664 
2665 		rc = bce_nvram_read_dword(sc, offset32, ret_buf, cmd_flags);
2666 
2667 		/* Advance to the next dword. */
2668 		offset32 += 4;
2669 		ret_buf += 4;
2670 		len32 -= 4;
2671 
2672 		while (len32 > 4 && rc == 0) {
2673 			rc = bce_nvram_read_dword(sc, offset32, ret_buf, 0);
2674 
2675 			/* Advance to the next dword. */
2676 			offset32 += 4;
2677 			ret_buf += 4;
2678 			len32 -= 4;
2679 		}
2680 
2681 		if (rc)
2682 			goto bce_nvram_read_locked_exit;
2683 
2684 		cmd_flags = BCE_NVM_COMMAND_LAST;
2685 		rc = bce_nvram_read_dword(sc, offset32, buf, cmd_flags);
2686 
2687 		memcpy(ret_buf, buf, 4 - extra);
2688 	}
2689 
2690 bce_nvram_read_locked_exit:
2691 	/* Disable access to flash interface and release the lock. */
2692 	bce_disable_nvram_access(sc);
2693 	bce_release_nvram_lock(sc);
2694 
2695 bce_nvram_read_exit:
2696 	DBEXIT(BCE_VERBOSE_NVRAM);
2697 	return rc;
2698 }
2699 
2700 
2701 #ifdef BCE_NVRAM_WRITE_SUPPORT
2702 /****************************************************************************/
2703 /* Write an arbitrary range of data from NVRAM.                             */
2704 /*                                                                          */
2705 /* Prepares the NVRAM interface for write access and writes the requested   */
2706 /* data from the supplied buffer.  The caller is responsible for            */
2707 /* calculating any appropriate CRCs.                                        */
2708 /*                                                                          */
2709 /* Returns:                                                                 */
2710 /*   0 on success, positive value on failure.                               */
2711 /****************************************************************************/
2712 static int
2713 bce_nvram_write(struct bce_softc *sc, u32 offset, u8 *data_buf,
2714 	int buf_size)
2715 {
2716 	u32 written, offset32, len32;
2717 	u8 *buf, start[4], end[4];
2718 	int rc = 0;
2719 	int align_start, align_end;
2720 
2721 	DBENTER(BCE_VERBOSE_NVRAM);
2722 
2723 	buf = data_buf;
2724 	offset32 = offset;
2725 	len32 = buf_size;
2726 	align_start = align_end = 0;
2727 
2728 	if ((align_start = (offset32 & 3))) {
2729 		offset32 &= ~3;
2730 		len32 += align_start;
2731 		if ((rc = bce_nvram_read(sc, offset32, start, 4)))
2732 			goto bce_nvram_write_exit;
2733 	}
2734 
2735 	if (len32 & 3) {
2736 	       	if ((len32 > 4) || !align_start) {
2737 			align_end = 4 - (len32 & 3);
2738 			len32 += align_end;
2739 			if ((rc = bce_nvram_read(sc, offset32 + len32 - 4,
2740 				end, 4))) {
2741 				goto bce_nvram_write_exit;
2742 			}
2743 		}
2744 	}
2745 
2746 	if (align_start || align_end) {
2747 		buf = malloc(len32, M_DEVBUF, M_NOWAIT);
2748 		if (buf == 0) {
2749 			rc = ENOMEM;
2750 			goto bce_nvram_write_exit;
2751 		}
2752 
2753 		if (align_start) {
2754 			memcpy(buf, start, 4);
2755 		}
2756 
2757 		if (align_end) {
2758 			memcpy(buf + len32 - 4, end, 4);
2759 		}
2760 		memcpy(buf + align_start, data_buf, buf_size);
2761 	}
2762 
2763 	written = 0;
2764 	while ((written < len32) && (rc == 0)) {
2765 		u32 page_start, page_end, data_start, data_end;
2766 		u32 addr, cmd_flags;
2767 		int i;
2768 		u8 flash_buffer[264];
2769 
2770 	    /* Find the page_start addr */
2771 		page_start = offset32 + written;
2772 		page_start -= (page_start % sc->bce_flash_info->page_size);
2773 		/* Find the page_end addr */
2774 		page_end = page_start + sc->bce_flash_info->page_size;
2775 		/* Find the data_start addr */
2776 		data_start = (written == 0) ? offset32 : page_start;
2777 		/* Find the data_end addr */
2778 		data_end = (page_end > offset32 + len32) ?
2779 			(offset32 + len32) : page_end;
2780 
2781 		/* Request access to the flash interface. */
2782 		if ((rc = bce_acquire_nvram_lock(sc)) != 0)
2783 			goto bce_nvram_write_exit;
2784 
2785 		/* Enable access to flash interface */
2786 		bce_enable_nvram_access(sc);
2787 
2788 		cmd_flags = BCE_NVM_COMMAND_FIRST;
2789 		if (!(sc->bce_flash_info->flags & BCE_NV_BUFFERED)) {
2790 			int j;
2791 
2792 			/* Read the whole page into the buffer
2793 			 * (non-buffer flash only) */
2794 			for (j = 0; j < sc->bce_flash_info->page_size; j += 4) {
2795 				if (j == (sc->bce_flash_info->page_size - 4)) {
2796 					cmd_flags |= BCE_NVM_COMMAND_LAST;
2797 				}
2798 				rc = bce_nvram_read_dword(sc,
2799 					page_start + j,
2800 					&flash_buffer[j],
2801 					cmd_flags);
2802 
2803 				if (rc)
2804 					goto bce_nvram_write_locked_exit;
2805 
2806 				cmd_flags = 0;
2807 			}
2808 		}
2809 
2810 		/* Enable writes to flash interface (unlock write-protect) */
2811 		if ((rc = bce_enable_nvram_write(sc)) != 0)
2812 			goto bce_nvram_write_locked_exit;
2813 
2814 		/* Erase the page */
2815 		if ((rc = bce_nvram_erase_page(sc, page_start)) != 0)
2816 			goto bce_nvram_write_locked_exit;
2817 
2818 		/* Re-enable the write again for the actual write */
2819 		bce_enable_nvram_write(sc);
2820 
2821 		/* Loop to write back the buffer data from page_start to
2822 		 * data_start */
2823 		i = 0;
2824 		if (!(sc->bce_flash_info->flags & BCE_NV_BUFFERED)) {
2825 			for (addr = page_start; addr < data_start;
2826 				addr += 4, i += 4) {
2827 
2828 				rc = bce_nvram_write_dword(sc, addr,
2829 					&flash_buffer[i], cmd_flags);
2830 
2831 				if (rc != 0)
2832 					goto bce_nvram_write_locked_exit;
2833 
2834 				cmd_flags = 0;
2835 			}
2836 		}
2837 
2838 		/* Loop to write the new data from data_start to data_end */
2839 		for (addr = data_start; addr < data_end; addr += 4, i++) {
2840 			if ((addr == page_end - 4) ||
2841 				((sc->bce_flash_info->flags & BCE_NV_BUFFERED) &&
2842 				(addr == data_end - 4))) {
2843 
2844 				cmd_flags |= BCE_NVM_COMMAND_LAST;
2845 			}
2846 			rc = bce_nvram_write_dword(sc, addr, buf,
2847 				cmd_flags);
2848 
2849 			if (rc != 0)
2850 				goto bce_nvram_write_locked_exit;
2851 
2852 			cmd_flags = 0;
2853 			buf += 4;
2854 		}
2855 
2856 		/* Loop to write back the buffer data from data_end
2857 		 * to page_end */
2858 		if (!(sc->bce_flash_info->flags & BCE_NV_BUFFERED)) {
2859 			for (addr = data_end; addr < page_end;
2860 				addr += 4, i += 4) {
2861 
2862 				if (addr == page_end-4) {
2863 					cmd_flags = BCE_NVM_COMMAND_LAST;
2864                 		}
2865 				rc = bce_nvram_write_dword(sc, addr,
2866 					&flash_buffer[i], cmd_flags);
2867 
2868 				if (rc != 0)
2869 					goto bce_nvram_write_locked_exit;
2870 
2871 				cmd_flags = 0;
2872 			}
2873 		}
2874 
2875 		/* Disable writes to flash interface (lock write-protect) */
2876 		bce_disable_nvram_write(sc);
2877 
2878 		/* Disable access to flash interface */
2879 		bce_disable_nvram_access(sc);
2880 		bce_release_nvram_lock(sc);
2881 
2882 		/* Increment written */
2883 		written += data_end - data_start;
2884 	}
2885 
2886 	goto bce_nvram_write_exit;
2887 
2888 bce_nvram_write_locked_exit:
2889 	bce_disable_nvram_write(sc);
2890 	bce_disable_nvram_access(sc);
2891 	bce_release_nvram_lock(sc);
2892 
2893 bce_nvram_write_exit:
2894 	if (align_start || align_end)
2895 		free(buf, M_DEVBUF);
2896 
2897 	DBEXIT(BCE_VERBOSE_NVRAM);
2898 	return (rc);
2899 }
2900 #endif /* BCE_NVRAM_WRITE_SUPPORT */
2901 
2902 
2903 /****************************************************************************/
2904 /* Verifies that NVRAM is accessible and contains valid data.               */
2905 /*                                                                          */
2906 /* Reads the configuration data from NVRAM and verifies that the CRC is     */
2907 /* correct.                                                                 */
2908 /*                                                                          */
2909 /* Returns:                                                                 */
2910 /*   0 on success, positive value on failure.                               */
2911 /****************************************************************************/
2912 static int
2913 bce_nvram_test(struct bce_softc *sc)
2914 {
2915 	u32 buf[BCE_NVRAM_SIZE / 4];
2916 	u8 *data = (u8 *) buf;
2917 	int rc = 0;
2918 	u32 magic, csum;
2919 
2920 	DBENTER(BCE_VERBOSE_NVRAM | BCE_VERBOSE_LOAD | BCE_VERBOSE_RESET);
2921 
2922 	/*
2923 	 * Check that the device NVRAM is valid by reading
2924 	 * the magic value at offset 0.
2925 	 */
2926 	if ((rc = bce_nvram_read(sc, 0, data, 4)) != 0) {
2927 		BCE_PRINTF("%s(%d): Unable to read NVRAM!\n",
2928 		    __FILE__, __LINE__);
2929 		goto bce_nvram_test_exit;
2930 	}
2931 
2932 	/*
2933 	 * Verify that offset 0 of the NVRAM contains
2934 	 * a valid magic number.
2935 	 */
2936 	magic = bce_be32toh(buf[0]);
2937 	if (magic != BCE_NVRAM_MAGIC) {
2938 		rc = ENODEV;
2939 		BCE_PRINTF("%s(%d): Invalid NVRAM magic value! "
2940 		    "Expected: 0x%08X, Found: 0x%08X\n",
2941 		    __FILE__, __LINE__, BCE_NVRAM_MAGIC, magic);
2942 		goto bce_nvram_test_exit;
2943 	}
2944 
2945 	/*
2946 	 * Verify that the device NVRAM includes valid
2947 	 * configuration data.
2948 	 */
2949 	if ((rc = bce_nvram_read(sc, 0x100, data, BCE_NVRAM_SIZE)) != 0) {
2950 		BCE_PRINTF("%s(%d): Unable to read manufacturing "
2951 		    "Information from  NVRAM!\n", __FILE__, __LINE__);
2952 		goto bce_nvram_test_exit;
2953 	}
2954 
2955 	csum = ether_crc32_le(data, 0x100);
2956 	if (csum != BCE_CRC32_RESIDUAL) {
2957 		rc = ENODEV;
2958 		BCE_PRINTF("%s(%d): Invalid manufacturing information "
2959 		    "NVRAM CRC!	Expected: 0x%08X, Found: 0x%08X\n",
2960 		    __FILE__, __LINE__, BCE_CRC32_RESIDUAL, csum);
2961 		goto bce_nvram_test_exit;
2962 	}
2963 
2964 	csum = ether_crc32_le(data + 0x100, 0x100);
2965 	if (csum != BCE_CRC32_RESIDUAL) {
2966 		rc = ENODEV;
2967 		BCE_PRINTF("%s(%d): Invalid feature configuration "
2968 		    "information NVRAM CRC! Expected: 0x%08X, "
2969 		    "Found: 08%08X\n", __FILE__, __LINE__,
2970 		    BCE_CRC32_RESIDUAL, csum);
2971 	}
2972 
2973 bce_nvram_test_exit:
2974 	DBEXIT(BCE_VERBOSE_NVRAM | BCE_VERBOSE_LOAD | BCE_VERBOSE_RESET);
2975 	return rc;
2976 }
2977 
2978 
2979 /****************************************************************************/
2980 /* Calculates the size of the buffers to allocate based on the MTU.         */
2981 /*                                                                          */
2982 /* Returns:                                                                 */
2983 /*   Nothing.                                                               */
2984 /****************************************************************************/
2985 static void
2986 bce_get_rx_buffer_sizes(struct bce_softc *sc, int mtu)
2987 {
2988 	DBENTER(BCE_VERBOSE_LOAD);
2989 
2990 	/* Use a single allocation type when header splitting enabled. */
2991 	if (bce_hdr_split == TRUE) {
2992 		sc->rx_bd_mbuf_alloc_size = MHLEN;
2993 		/* Make sure offset is 16 byte aligned for hardware. */
2994 		sc->rx_bd_mbuf_align_pad =
2995 			roundup2((MSIZE - MHLEN), 16) - (MSIZE - MHLEN);
2996 		sc->rx_bd_mbuf_data_len = sc->rx_bd_mbuf_alloc_size -
2997 			sc->rx_bd_mbuf_align_pad;
2998 		sc->pg_bd_mbuf_alloc_size = MCLBYTES;
2999 	} else {
3000 		if ((mtu + ETHER_HDR_LEN + ETHER_VLAN_ENCAP_LEN +
3001 		    ETHER_CRC_LEN) > MCLBYTES) {
3002 			/* Setup for jumbo RX buffer allocations. */
3003 			sc->rx_bd_mbuf_alloc_size = MJUM9BYTES;
3004 			sc->rx_bd_mbuf_align_pad  =
3005 				roundup2(MJUM9BYTES, 16) - MJUM9BYTES;
3006 			sc->rx_bd_mbuf_data_len =
3007 			    sc->rx_bd_mbuf_alloc_size -
3008 			    sc->rx_bd_mbuf_align_pad;
3009 		} else {
3010 			/* Setup for standard RX buffer allocations. */
3011 			sc->rx_bd_mbuf_alloc_size = MCLBYTES;
3012 			sc->rx_bd_mbuf_align_pad  =
3013 			    roundup2(MCLBYTES, 16) - MCLBYTES;
3014 			sc->rx_bd_mbuf_data_len =
3015 			    sc->rx_bd_mbuf_alloc_size -
3016 			    sc->rx_bd_mbuf_align_pad;
3017 		}
3018 	}
3019 
3020 //	DBPRINT(sc, BCE_INFO_LOAD,
3021 	DBPRINT(sc, BCE_WARN,
3022 	   "%s(): rx_bd_mbuf_alloc_size = %d, rx_bd_mbuf_data_len = %d, "
3023 	   "rx_bd_mbuf_align_pad = %d\n", __FUNCTION__,
3024 	   sc->rx_bd_mbuf_alloc_size, sc->rx_bd_mbuf_data_len,
3025 	   sc->rx_bd_mbuf_align_pad);
3026 
3027 	DBEXIT(BCE_VERBOSE_LOAD);
3028 
3029 }
3030 
3031 /****************************************************************************/
3032 /* Identifies the current media type of the controller and sets the PHY     */
3033 /* address.                                                                 */
3034 /*                                                                          */
3035 /* Returns:                                                                 */
3036 /*   Nothing.                                                               */
3037 /****************************************************************************/
3038 static void
3039 bce_get_media(struct bce_softc *sc)
3040 {
3041 	u32 val;
3042 
3043 	DBENTER(BCE_VERBOSE_PHY);
3044 
3045 	/* Assume PHY address for copper controllers. */
3046 	sc->bce_phy_addr = 1;
3047 
3048 	if (BCE_CHIP_NUM(sc) == BCE_CHIP_NUM_5709) {
3049  		u32 val = REG_RD(sc, BCE_MISC_DUAL_MEDIA_CTRL);
3050 		u32 bond_id = val & BCE_MISC_DUAL_MEDIA_CTRL_BOND_ID;
3051 		u32 strap;
3052 
3053 		/*
3054 		 * The BCM5709S is software configurable
3055 		 * for Copper or SerDes operation.
3056 		 */
3057 		if (bond_id == BCE_MISC_DUAL_MEDIA_CTRL_BOND_ID_C) {
3058 			DBPRINT(sc, BCE_INFO_LOAD, "5709 bonded "
3059 			    "for copper.\n");
3060 			goto bce_get_media_exit;
3061 		} else if (bond_id == BCE_MISC_DUAL_MEDIA_CTRL_BOND_ID_S) {
3062 			DBPRINT(sc, BCE_INFO_LOAD, "5709 bonded "
3063 			    "for dual media.\n");
3064 			sc->bce_phy_flags |= BCE_PHY_SERDES_FLAG;
3065 			goto bce_get_media_exit;
3066 		}
3067 
3068 		if (val & BCE_MISC_DUAL_MEDIA_CTRL_STRAP_OVERRIDE)
3069 			strap = (val &
3070 			    BCE_MISC_DUAL_MEDIA_CTRL_PHY_CTRL) >> 21;
3071 		else
3072 			strap = (val &
3073 			    BCE_MISC_DUAL_MEDIA_CTRL_PHY_CTRL_STRAP) >> 8;
3074 
3075 		if (pci_get_function(sc->bce_dev) == 0) {
3076 			switch (strap) {
3077 			case 0x4:
3078 			case 0x5:
3079 			case 0x6:
3080 				DBPRINT(sc, BCE_INFO_LOAD,
3081 				    "BCM5709 s/w configured for SerDes.\n");
3082 				sc->bce_phy_flags |= BCE_PHY_SERDES_FLAG;
3083 				break;
3084 			default:
3085 				DBPRINT(sc, BCE_INFO_LOAD,
3086 				    "BCM5709 s/w configured for Copper.\n");
3087 				break;
3088 			}
3089 		} else {
3090 			switch (strap) {
3091 			case 0x1:
3092 			case 0x2:
3093 			case 0x4:
3094 				DBPRINT(sc, BCE_INFO_LOAD,
3095 				    "BCM5709 s/w configured for SerDes.\n");
3096 				sc->bce_phy_flags |= BCE_PHY_SERDES_FLAG;
3097 				break;
3098 			default:
3099 				DBPRINT(sc, BCE_INFO_LOAD,
3100 				    "BCM5709 s/w configured for Copper.\n");
3101 				break;
3102 			}
3103 		}
3104 
3105 	} else if (BCE_CHIP_BOND_ID(sc) & BCE_CHIP_BOND_ID_SERDES_BIT)
3106 		sc->bce_phy_flags |= BCE_PHY_SERDES_FLAG;
3107 
3108 	if (sc->bce_phy_flags & BCE_PHY_SERDES_FLAG) {
3109 
3110 		sc->bce_flags |= BCE_NO_WOL_FLAG;
3111 
3112 		if (BCE_CHIP_NUM(sc) == BCE_CHIP_NUM_5709)
3113 			sc->bce_phy_flags |= BCE_PHY_IEEE_CLAUSE_45_FLAG;
3114 
3115 		if (BCE_CHIP_NUM(sc) != BCE_CHIP_NUM_5706) {
3116 			/* 5708S/09S/16S use a separate PHY for SerDes. */
3117 			sc->bce_phy_addr = 2;
3118 
3119 			val = bce_shmem_rd(sc, BCE_SHARED_HW_CFG_CONFIG);
3120 			if (val & BCE_SHARED_HW_CFG_PHY_2_5G) {
3121 				sc->bce_phy_flags |=
3122 				    BCE_PHY_2_5G_CAPABLE_FLAG;
3123 				DBPRINT(sc, BCE_INFO_LOAD, "Found 2.5Gb "
3124 				    "capable adapter\n");
3125 			}
3126 		}
3127 	} else if ((BCE_CHIP_NUM(sc) == BCE_CHIP_NUM_5706) ||
3128 	    (BCE_CHIP_NUM(sc) == BCE_CHIP_NUM_5708))
3129 		sc->bce_phy_flags |= BCE_PHY_CRC_FIX_FLAG;
3130 
3131 bce_get_media_exit:
3132 	DBPRINT(sc, (BCE_INFO_LOAD | BCE_INFO_PHY),
3133 		"Using PHY address %d.\n", sc->bce_phy_addr);
3134 
3135 	DBEXIT(BCE_VERBOSE_PHY);
3136 }
3137 
3138 
3139 /****************************************************************************/
3140 /* Performs PHY initialization required before MII drivers access the       */
3141 /* device.                                                                  */
3142 /*                                                                          */
3143 /* Returns:                                                                 */
3144 /*   Nothing.                                                               */
3145 /****************************************************************************/
3146 static void
3147 bce_init_media(struct bce_softc *sc)
3148 {
3149 	if ((sc->bce_phy_flags & BCE_PHY_IEEE_CLAUSE_45_FLAG) != 0) {
3150 		/*
3151 		 * Configure 5709S/5716S PHYs to use traditional IEEE
3152 		 * Clause 22 method. Otherwise we have no way to attach
3153 		 * the PHY in mii(4) layer. PHY specific configuration
3154 		 * is done in mii layer.
3155 		 */
3156 
3157 		/* Select auto-negotiation MMD of the PHY. */
3158 		bce_miibus_write_reg(sc->bce_dev, sc->bce_phy_addr,
3159 		    BRGPHY_BLOCK_ADDR, BRGPHY_BLOCK_ADDR_ADDR_EXT);
3160 		bce_miibus_write_reg(sc->bce_dev, sc->bce_phy_addr,
3161 		    BRGPHY_ADDR_EXT, BRGPHY_ADDR_EXT_AN_MMD);
3162 
3163 		/* Set IEEE0 block of AN MMD (assumed in brgphy(4) code). */
3164 		bce_miibus_write_reg(sc->bce_dev, sc->bce_phy_addr,
3165 		    BRGPHY_BLOCK_ADDR, BRGPHY_BLOCK_ADDR_COMBO_IEEE0);
3166 	}
3167 }
3168 
3169 
3170 /****************************************************************************/
3171 /* Free any DMA memory owned by the driver.                                 */
3172 /*                                                                          */
3173 /* Scans through each data structre that requires DMA memory and frees      */
3174 /* the memory if allocated.                                                 */
3175 /*                                                                          */
3176 /* Returns:                                                                 */
3177 /*   Nothing.                                                               */
3178 /****************************************************************************/
3179 static void
3180 bce_dma_free(struct bce_softc *sc)
3181 {
3182 	int i;
3183 
3184 	DBENTER(BCE_VERBOSE_RESET | BCE_VERBOSE_UNLOAD | BCE_VERBOSE_CTX);
3185 
3186 	/* Free, unmap, and destroy the status block. */
3187 	if (sc->status_block != NULL) {
3188 		bus_dmamem_free(
3189 		   sc->status_tag,
3190 		    sc->status_block,
3191 		    sc->status_map);
3192 		sc->status_block = NULL;
3193 	}
3194 
3195 	if (sc->status_map != NULL) {
3196 		bus_dmamap_unload(
3197 		    sc->status_tag,
3198 		    sc->status_map);
3199 		bus_dmamap_destroy(sc->status_tag,
3200 		    sc->status_map);
3201 		sc->status_map = NULL;
3202 	}
3203 
3204 	if (sc->status_tag != NULL) {
3205 		bus_dma_tag_destroy(sc->status_tag);
3206 		sc->status_tag = NULL;
3207 	}
3208 
3209 
3210 	/* Free, unmap, and destroy the statistics block. */
3211 	if (sc->stats_block != NULL) {
3212 		bus_dmamem_free(
3213 		    sc->stats_tag,
3214 		    sc->stats_block,
3215 		    sc->stats_map);
3216 		sc->stats_block = NULL;
3217 	}
3218 
3219 	if (sc->stats_map != NULL) {
3220 		bus_dmamap_unload(
3221 		    sc->stats_tag,
3222 		    sc->stats_map);
3223 		bus_dmamap_destroy(sc->stats_tag,
3224 		    sc->stats_map);
3225 		sc->stats_map = NULL;
3226 	}
3227 
3228 	if (sc->stats_tag != NULL) {
3229 		bus_dma_tag_destroy(sc->stats_tag);
3230 		sc->stats_tag = NULL;
3231 	}
3232 
3233 
3234 	/* Free, unmap and destroy all context memory pages. */
3235 	if (BCE_CHIP_NUM(sc) == BCE_CHIP_NUM_5709) {
3236 		for (i = 0; i < sc->ctx_pages; i++ ) {
3237 			if (sc->ctx_block[i] != NULL) {
3238 				bus_dmamem_free(
3239 				    sc->ctx_tag,
3240 				    sc->ctx_block[i],
3241 				    sc->ctx_map[i]);
3242 				sc->ctx_block[i] = NULL;
3243 			}
3244 
3245 			if (sc->ctx_map[i] != NULL) {
3246 				bus_dmamap_unload(
3247 				    sc->ctx_tag,
3248 				    sc->ctx_map[i]);
3249 				bus_dmamap_destroy(
3250 				    sc->ctx_tag,
3251 				    sc->ctx_map[i]);
3252 				sc->ctx_map[i] = NULL;
3253 			}
3254 		}
3255 
3256 		/* Destroy the context memory tag. */
3257 		if (sc->ctx_tag != NULL) {
3258 			bus_dma_tag_destroy(sc->ctx_tag);
3259 			sc->ctx_tag = NULL;
3260 		}
3261 	}
3262 
3263 
3264 	/* Free, unmap and destroy all TX buffer descriptor chain pages. */
3265 	for (i = 0; i < sc->tx_pages; i++ ) {
3266 		if (sc->tx_bd_chain[i] != NULL) {
3267 			bus_dmamem_free(
3268 			    sc->tx_bd_chain_tag,
3269 			    sc->tx_bd_chain[i],
3270 			    sc->tx_bd_chain_map[i]);
3271 			sc->tx_bd_chain[i] = NULL;
3272 		}
3273 
3274 		if (sc->tx_bd_chain_map[i] != NULL) {
3275 			bus_dmamap_unload(
3276 			    sc->tx_bd_chain_tag,
3277 			    sc->tx_bd_chain_map[i]);
3278 			bus_dmamap_destroy(
3279 			    sc->tx_bd_chain_tag,
3280 			    sc->tx_bd_chain_map[i]);
3281 			sc->tx_bd_chain_map[i] = NULL;
3282 		}
3283 	}
3284 
3285 	/* Destroy the TX buffer descriptor tag. */
3286 	if (sc->tx_bd_chain_tag != NULL) {
3287 		bus_dma_tag_destroy(sc->tx_bd_chain_tag);
3288 		sc->tx_bd_chain_tag = NULL;
3289 	}
3290 
3291 
3292 	/* Free, unmap and destroy all RX buffer descriptor chain pages. */
3293 	for (i = 0; i < sc->rx_pages; i++ ) {
3294 		if (sc->rx_bd_chain[i] != NULL) {
3295 			bus_dmamem_free(
3296 			    sc->rx_bd_chain_tag,
3297 			    sc->rx_bd_chain[i],
3298 			    sc->rx_bd_chain_map[i]);
3299 			sc->rx_bd_chain[i] = NULL;
3300 		}
3301 
3302 		if (sc->rx_bd_chain_map[i] != NULL) {
3303 			bus_dmamap_unload(
3304 			    sc->rx_bd_chain_tag,
3305 			    sc->rx_bd_chain_map[i]);
3306 			bus_dmamap_destroy(
3307 			    sc->rx_bd_chain_tag,
3308 			    sc->rx_bd_chain_map[i]);
3309 			sc->rx_bd_chain_map[i] = NULL;
3310 		}
3311 	}
3312 
3313 	/* Destroy the RX buffer descriptor tag. */
3314 	if (sc->rx_bd_chain_tag != NULL) {
3315 		bus_dma_tag_destroy(sc->rx_bd_chain_tag);
3316 		sc->rx_bd_chain_tag = NULL;
3317 	}
3318 
3319 
3320 	/* Free, unmap and destroy all page buffer descriptor chain pages. */
3321 	if (bce_hdr_split == TRUE) {
3322 		for (i = 0; i < sc->pg_pages; i++ ) {
3323 			if (sc->pg_bd_chain[i] != NULL) {
3324 				bus_dmamem_free(
3325 				    sc->pg_bd_chain_tag,
3326 				    sc->pg_bd_chain[i],
3327 				    sc->pg_bd_chain_map[i]);
3328 				sc->pg_bd_chain[i] = NULL;
3329 			}
3330 
3331 			if (sc->pg_bd_chain_map[i] != NULL) {
3332 				bus_dmamap_unload(
3333 				    sc->pg_bd_chain_tag,
3334 				    sc->pg_bd_chain_map[i]);
3335 				bus_dmamap_destroy(
3336 				    sc->pg_bd_chain_tag,
3337 				    sc->pg_bd_chain_map[i]);
3338 				sc->pg_bd_chain_map[i] = NULL;
3339 			}
3340 		}
3341 
3342 		/* Destroy the page buffer descriptor tag. */
3343 		if (sc->pg_bd_chain_tag != NULL) {
3344 			bus_dma_tag_destroy(sc->pg_bd_chain_tag);
3345 			sc->pg_bd_chain_tag = NULL;
3346 		}
3347 	}
3348 
3349 
3350 	/* Unload and destroy the TX mbuf maps. */
3351 	for (i = 0; i < MAX_TX_BD_AVAIL; i++) {
3352 		if (sc->tx_mbuf_map[i] != NULL) {
3353 			bus_dmamap_unload(sc->tx_mbuf_tag,
3354 			    sc->tx_mbuf_map[i]);
3355 			bus_dmamap_destroy(sc->tx_mbuf_tag,
3356 	 		    sc->tx_mbuf_map[i]);
3357 			sc->tx_mbuf_map[i] = NULL;
3358 		}
3359 	}
3360 
3361 	/* Destroy the TX mbuf tag. */
3362 	if (sc->tx_mbuf_tag != NULL) {
3363 		bus_dma_tag_destroy(sc->tx_mbuf_tag);
3364 		sc->tx_mbuf_tag = NULL;
3365 	}
3366 
3367 	/* Unload and destroy the RX mbuf maps. */
3368 	for (i = 0; i < MAX_RX_BD_AVAIL; i++) {
3369 		if (sc->rx_mbuf_map[i] != NULL) {
3370 			bus_dmamap_unload(sc->rx_mbuf_tag,
3371 			    sc->rx_mbuf_map[i]);
3372 			bus_dmamap_destroy(sc->rx_mbuf_tag,
3373 	 		    sc->rx_mbuf_map[i]);
3374 			sc->rx_mbuf_map[i] = NULL;
3375 		}
3376 	}
3377 
3378 	/* Destroy the RX mbuf tag. */
3379 	if (sc->rx_mbuf_tag != NULL) {
3380 		bus_dma_tag_destroy(sc->rx_mbuf_tag);
3381 		sc->rx_mbuf_tag = NULL;
3382 	}
3383 
3384 	/* Unload and destroy the page mbuf maps. */
3385 	if (bce_hdr_split == TRUE) {
3386 		for (i = 0; i < MAX_PG_BD_AVAIL; i++) {
3387 			if (sc->pg_mbuf_map[i] != NULL) {
3388 				bus_dmamap_unload(sc->pg_mbuf_tag,
3389 				    sc->pg_mbuf_map[i]);
3390 				bus_dmamap_destroy(sc->pg_mbuf_tag,
3391 				    sc->pg_mbuf_map[i]);
3392 				sc->pg_mbuf_map[i] = NULL;
3393 			}
3394 		}
3395 
3396 		/* Destroy the page mbuf tag. */
3397 		if (sc->pg_mbuf_tag != NULL) {
3398 			bus_dma_tag_destroy(sc->pg_mbuf_tag);
3399 			sc->pg_mbuf_tag = NULL;
3400 		}
3401 	}
3402 
3403 	/* Destroy the parent tag */
3404 	if (sc->parent_tag != NULL) {
3405 		bus_dma_tag_destroy(sc->parent_tag);
3406 		sc->parent_tag = NULL;
3407 	}
3408 
3409 	DBEXIT(BCE_VERBOSE_RESET | BCE_VERBOSE_UNLOAD | BCE_VERBOSE_CTX);
3410 }
3411 
3412 
3413 /****************************************************************************/
3414 /* Get DMA memory from the OS.                                              */
3415 /*                                                                          */
3416 /* Validates that the OS has provided DMA buffers in response to a          */
3417 /* bus_dmamap_load() call and saves the physical address of those buffers.  */
3418 /* When the callback is used the OS will return 0 for the mapping function  */
3419 /* (bus_dmamap_load()) so we use the value of map_arg->maxsegs to pass any  */
3420 /* failures back to the caller.                                             */
3421 /*                                                                          */
3422 /* Returns:                                                                 */
3423 /*   Nothing.                                                               */
3424 /****************************************************************************/
3425 static void
3426 bce_dma_map_addr(void *arg, bus_dma_segment_t *segs, int nseg, int error)
3427 {
3428 	bus_addr_t *busaddr = arg;
3429 
3430 	KASSERT(nseg == 1, ("%s(): Too many segments returned (%d)!",
3431 	    __FUNCTION__, nseg));
3432 	/* Simulate a mapping failure. */
3433 	DBRUNIF(DB_RANDOMTRUE(dma_map_addr_failed_sim_control),
3434 	    error = ENOMEM);
3435 
3436 	/* ToDo: How to increment debug sim_count variable here? */
3437 
3438 	/* Check for an error and signal the caller that an error occurred. */
3439 	if (error) {
3440 		*busaddr = 0;
3441 	} else {
3442 		*busaddr = segs->ds_addr;
3443 	}
3444 
3445 	return;
3446 }
3447 
3448 
3449 /****************************************************************************/
3450 /* Allocate any DMA memory needed by the driver.                            */
3451 /*                                                                          */
3452 /* Allocates DMA memory needed for the various global structures needed by  */
3453 /* hardware.                                                                */
3454 /*                                                                          */
3455 /* Memory alignment requirements:                                           */
3456 /* +-----------------+----------+----------+----------+----------+          */
3457 /* |                 |   5706   |   5708   |   5709   |   5716   |          */
3458 /* +-----------------+----------+----------+----------+----------+          */
3459 /* |Status Block     | 8 bytes  | 8 bytes  | 16 bytes | 16 bytes |          */
3460 /* |Statistics Block | 8 bytes  | 8 bytes  | 16 bytes | 16 bytes |          */
3461 /* |RX Buffers       | 16 bytes | 16 bytes | 16 bytes | 16 bytes |          */
3462 /* |PG Buffers       |   none   |   none   |   none   |   none   |          */
3463 /* |TX Buffers       |   none   |   none   |   none   |   none   |          */
3464 /* |Chain Pages(1)   |   4KiB   |   4KiB   |   4KiB   |   4KiB   |          */
3465 /* |Context Memory   |          |          |          |          |          */
3466 /* +-----------------+----------+----------+----------+----------+          */
3467 /*                                                                          */
3468 /* (1) Must align with CPU page size (BCM_PAGE_SZIE).                       */
3469 /*                                                                          */
3470 /* Returns:                                                                 */
3471 /*   0 for success, positive value for failure.                             */
3472 /****************************************************************************/
3473 static int
3474 bce_dma_alloc(device_t dev)
3475 {
3476 	struct bce_softc *sc;
3477 	int i, error, rc = 0;
3478 	bus_size_t max_size, max_seg_size;
3479 	int max_segments;
3480 
3481 	sc = device_get_softc(dev);
3482 
3483 	DBENTER(BCE_VERBOSE_RESET | BCE_VERBOSE_CTX);
3484 
3485 	/*
3486 	 * Allocate the parent bus DMA tag appropriate for PCI.
3487 	 */
3488 	if (bus_dma_tag_create(bus_get_dma_tag(dev), 1, BCE_DMA_BOUNDARY,
3489 	    sc->max_bus_addr, BUS_SPACE_MAXADDR, NULL, NULL,
3490 	    BUS_SPACE_MAXSIZE_32BIT, 0, BUS_SPACE_MAXSIZE_32BIT, 0, NULL, NULL,
3491 	    &sc->parent_tag)) {
3492 		BCE_PRINTF("%s(%d): Could not allocate parent DMA tag!\n",
3493 		    __FILE__, __LINE__);
3494 		rc = ENOMEM;
3495 		goto bce_dma_alloc_exit;
3496 	}
3497 
3498 	/*
3499 	 * Create a DMA tag for the status block, allocate and clear the
3500 	 * memory, map the memory into DMA space, and fetch the physical
3501 	 * address of the block.
3502 	 */
3503 	if (bus_dma_tag_create(sc->parent_tag, BCE_DMA_ALIGN,
3504 	    BCE_DMA_BOUNDARY, sc->max_bus_addr,	BUS_SPACE_MAXADDR,
3505 	    NULL, NULL,	BCE_STATUS_BLK_SZ, 1, BCE_STATUS_BLK_SZ,
3506 	    0, NULL, NULL, &sc->status_tag)) {
3507 		BCE_PRINTF("%s(%d): Could not allocate status block "
3508 		    "DMA tag!\n", __FILE__, __LINE__);
3509 		rc = ENOMEM;
3510 		goto bce_dma_alloc_exit;
3511 	}
3512 
3513 	if(bus_dmamem_alloc(sc->status_tag, (void **)&sc->status_block,
3514 	    BUS_DMA_NOWAIT | BUS_DMA_ZERO | BUS_DMA_COHERENT,
3515 	    &sc->status_map)) {
3516 		BCE_PRINTF("%s(%d): Could not allocate status block "
3517 		    "DMA memory!\n", __FILE__, __LINE__);
3518 		rc = ENOMEM;
3519 		goto bce_dma_alloc_exit;
3520 	}
3521 
3522 	error = bus_dmamap_load(sc->status_tag,	sc->status_map,
3523 	    sc->status_block, BCE_STATUS_BLK_SZ, bce_dma_map_addr,
3524 	    &sc->status_block_paddr, BUS_DMA_NOWAIT);
3525 
3526 	if (error) {
3527 		BCE_PRINTF("%s(%d): Could not map status block "
3528 		    "DMA memory!\n", __FILE__, __LINE__);
3529 		rc = ENOMEM;
3530 		goto bce_dma_alloc_exit;
3531 	}
3532 
3533 	DBPRINT(sc, BCE_INFO_LOAD, "%s(): status_block_paddr = 0x%jX\n",
3534 	    __FUNCTION__, (uintmax_t) sc->status_block_paddr);
3535 
3536 	/*
3537 	 * Create a DMA tag for the statistics block, allocate and clear the
3538 	 * memory, map the memory into DMA space, and fetch the physical
3539 	 * address of the block.
3540 	 */
3541 	if (bus_dma_tag_create(sc->parent_tag, BCE_DMA_ALIGN,
3542 	    BCE_DMA_BOUNDARY, sc->max_bus_addr,	BUS_SPACE_MAXADDR,
3543 	    NULL, NULL,	BCE_STATS_BLK_SZ, 1, BCE_STATS_BLK_SZ,
3544 	    0, NULL, NULL, &sc->stats_tag)) {
3545 		BCE_PRINTF("%s(%d): Could not allocate statistics block "
3546 		    "DMA tag!\n", __FILE__, __LINE__);
3547 		rc = ENOMEM;
3548 		goto bce_dma_alloc_exit;
3549 	}
3550 
3551 	if (bus_dmamem_alloc(sc->stats_tag, (void **)&sc->stats_block,
3552 	    BUS_DMA_NOWAIT | BUS_DMA_ZERO | BUS_DMA_COHERENT, &sc->stats_map)) {
3553 		BCE_PRINTF("%s(%d): Could not allocate statistics block "
3554 		    "DMA memory!\n", __FILE__, __LINE__);
3555 		rc = ENOMEM;
3556 		goto bce_dma_alloc_exit;
3557 	}
3558 
3559 	error = bus_dmamap_load(sc->stats_tag, sc->stats_map,
3560 	    sc->stats_block, BCE_STATS_BLK_SZ, bce_dma_map_addr,
3561 	    &sc->stats_block_paddr, BUS_DMA_NOWAIT);
3562 
3563 	if(error) {
3564 		BCE_PRINTF("%s(%d): Could not map statistics block "
3565 		    "DMA memory!\n", __FILE__, __LINE__);
3566 		rc = ENOMEM;
3567 		goto bce_dma_alloc_exit;
3568 	}
3569 
3570 	DBPRINT(sc, BCE_INFO_LOAD, "%s(): stats_block_paddr = 0x%jX\n",
3571 	    __FUNCTION__, (uintmax_t) sc->stats_block_paddr);
3572 
3573 	/* BCM5709 uses host memory as cache for context memory. */
3574 	if (BCE_CHIP_NUM(sc) == BCE_CHIP_NUM_5709) {
3575 		sc->ctx_pages = 0x2000 / BCM_PAGE_SIZE;
3576 		if (sc->ctx_pages == 0)
3577 			sc->ctx_pages = 1;
3578 
3579 		DBRUNIF((sc->ctx_pages > 512),
3580 		    BCE_PRINTF("%s(%d): Too many CTX pages! %d > 512\n",
3581 		    __FILE__, __LINE__, sc->ctx_pages));
3582 
3583 		/*
3584 		 * Create a DMA tag for the context pages,
3585 		 * allocate and clear the memory, map the
3586 		 * memory into DMA space, and fetch the
3587 		 * physical address of the block.
3588 		 */
3589 		if(bus_dma_tag_create(sc->parent_tag, BCM_PAGE_SIZE,
3590 		    BCE_DMA_BOUNDARY, sc->max_bus_addr,	BUS_SPACE_MAXADDR,
3591 		    NULL, NULL,	BCM_PAGE_SIZE, 1, BCM_PAGE_SIZE,
3592 		    0, NULL, NULL, &sc->ctx_tag)) {
3593 			BCE_PRINTF("%s(%d): Could not allocate CTX "
3594 			    "DMA tag!\n", __FILE__, __LINE__);
3595 			rc = ENOMEM;
3596 			goto bce_dma_alloc_exit;
3597 		}
3598 
3599 		for (i = 0; i < sc->ctx_pages; i++) {
3600 
3601 			if(bus_dmamem_alloc(sc->ctx_tag,
3602 			    (void **)&sc->ctx_block[i],
3603 			    BUS_DMA_NOWAIT | BUS_DMA_ZERO | BUS_DMA_COHERENT,
3604 			    &sc->ctx_map[i])) {
3605 				BCE_PRINTF("%s(%d): Could not allocate CTX "
3606 				    "DMA memory!\n", __FILE__, __LINE__);
3607 				rc = ENOMEM;
3608 				goto bce_dma_alloc_exit;
3609 			}
3610 
3611 			error = bus_dmamap_load(sc->ctx_tag, sc->ctx_map[i],
3612 			    sc->ctx_block[i], BCM_PAGE_SIZE, bce_dma_map_addr,
3613 			    &sc->ctx_paddr[i], BUS_DMA_NOWAIT);
3614 
3615 			if (error) {
3616 				BCE_PRINTF("%s(%d): Could not map CTX "
3617 				    "DMA memory!\n", __FILE__, __LINE__);
3618 				rc = ENOMEM;
3619 				goto bce_dma_alloc_exit;
3620 			}
3621 
3622 			DBPRINT(sc, BCE_INFO_LOAD, "%s(): ctx_paddr[%d] "
3623 			    "= 0x%jX\n", __FUNCTION__, i,
3624 			    (uintmax_t) sc->ctx_paddr[i]);
3625 		}
3626 	}
3627 
3628 	/*
3629 	 * Create a DMA tag for the TX buffer descriptor chain,
3630 	 * allocate and clear the  memory, and fetch the
3631 	 * physical address of the block.
3632 	 */
3633 	if(bus_dma_tag_create(sc->parent_tag, BCM_PAGE_SIZE, BCE_DMA_BOUNDARY,
3634 	    sc->max_bus_addr, BUS_SPACE_MAXADDR, NULL, NULL,
3635 	    BCE_TX_CHAIN_PAGE_SZ, 1, BCE_TX_CHAIN_PAGE_SZ, 0,
3636 	    NULL, NULL,	&sc->tx_bd_chain_tag)) {
3637 		BCE_PRINTF("%s(%d): Could not allocate TX descriptor "
3638 		    "chain DMA tag!\n", __FILE__, __LINE__);
3639 		rc = ENOMEM;
3640 		goto bce_dma_alloc_exit;
3641 	}
3642 
3643 	for (i = 0; i < sc->tx_pages; i++) {
3644 
3645 		if(bus_dmamem_alloc(sc->tx_bd_chain_tag,
3646 		    (void **)&sc->tx_bd_chain[i],
3647 		    BUS_DMA_NOWAIT | BUS_DMA_ZERO | BUS_DMA_COHERENT,
3648 		    &sc->tx_bd_chain_map[i])) {
3649 			BCE_PRINTF("%s(%d): Could not allocate TX descriptor "
3650 			    "chain DMA memory!\n", __FILE__, __LINE__);
3651 			rc = ENOMEM;
3652 			goto bce_dma_alloc_exit;
3653 		}
3654 
3655 		error = bus_dmamap_load(sc->tx_bd_chain_tag,
3656 		    sc->tx_bd_chain_map[i], sc->tx_bd_chain[i],
3657 		    BCE_TX_CHAIN_PAGE_SZ, bce_dma_map_addr,
3658 		    &sc->tx_bd_chain_paddr[i], BUS_DMA_NOWAIT);
3659 
3660 		if (error) {
3661 			BCE_PRINTF("%s(%d): Could not map TX descriptor "
3662 			    "chain DMA memory!\n", __FILE__, __LINE__);
3663 			rc = ENOMEM;
3664 			goto bce_dma_alloc_exit;
3665 		}
3666 
3667 		DBPRINT(sc, BCE_INFO_LOAD, "%s(): tx_bd_chain_paddr[%d] = "
3668 		    "0x%jX\n", __FUNCTION__, i,
3669 		    (uintmax_t) sc->tx_bd_chain_paddr[i]);
3670 	}
3671 
3672 	/* Check the required size before mapping to conserve resources. */
3673 	if (bce_tso_enable) {
3674 		max_size     = BCE_TSO_MAX_SIZE;
3675 		max_segments = BCE_MAX_SEGMENTS;
3676 		max_seg_size = BCE_TSO_MAX_SEG_SIZE;
3677 	} else {
3678 		max_size     = MCLBYTES * BCE_MAX_SEGMENTS;
3679 		max_segments = BCE_MAX_SEGMENTS;
3680 		max_seg_size = MCLBYTES;
3681 	}
3682 
3683 	/* Create a DMA tag for TX mbufs. */
3684 	if (bus_dma_tag_create(sc->parent_tag, 1, BCE_DMA_BOUNDARY,
3685 	    sc->max_bus_addr, BUS_SPACE_MAXADDR, NULL, NULL, max_size,
3686 	    max_segments, max_seg_size,	0, NULL, NULL, &sc->tx_mbuf_tag)) {
3687 		BCE_PRINTF("%s(%d): Could not allocate TX mbuf DMA tag!\n",
3688 		    __FILE__, __LINE__);
3689 		rc = ENOMEM;
3690 		goto bce_dma_alloc_exit;
3691 	}
3692 
3693 	/* Create DMA maps for the TX mbufs clusters. */
3694 	for (i = 0; i < TOTAL_TX_BD_ALLOC; i++) {
3695 		if (bus_dmamap_create(sc->tx_mbuf_tag, BUS_DMA_NOWAIT,
3696 			&sc->tx_mbuf_map[i])) {
3697 			BCE_PRINTF("%s(%d): Unable to create TX mbuf DMA "
3698 			    "map!\n", __FILE__, __LINE__);
3699 			rc = ENOMEM;
3700 			goto bce_dma_alloc_exit;
3701 		}
3702 	}
3703 
3704 	/*
3705 	 * Create a DMA tag for the RX buffer descriptor chain,
3706 	 * allocate and clear the memory, and fetch the physical
3707 	 * address of the blocks.
3708 	 */
3709 	if (bus_dma_tag_create(sc->parent_tag, BCM_PAGE_SIZE,
3710 			BCE_DMA_BOUNDARY, BUS_SPACE_MAXADDR,
3711 			sc->max_bus_addr, NULL, NULL,
3712 			BCE_RX_CHAIN_PAGE_SZ, 1, BCE_RX_CHAIN_PAGE_SZ,
3713 			0, NULL, NULL, &sc->rx_bd_chain_tag)) {
3714 		BCE_PRINTF("%s(%d): Could not allocate RX descriptor chain "
3715 		    "DMA tag!\n", __FILE__, __LINE__);
3716 		rc = ENOMEM;
3717 		goto bce_dma_alloc_exit;
3718 	}
3719 
3720 	for (i = 0; i < sc->rx_pages; i++) {
3721 
3722 		if (bus_dmamem_alloc(sc->rx_bd_chain_tag,
3723 		    (void **)&sc->rx_bd_chain[i],
3724 		    BUS_DMA_NOWAIT | BUS_DMA_ZERO | BUS_DMA_COHERENT,
3725 		    &sc->rx_bd_chain_map[i])) {
3726 			BCE_PRINTF("%s(%d): Could not allocate RX descriptor "
3727 			    "chain DMA memory!\n", __FILE__, __LINE__);
3728 			rc = ENOMEM;
3729 			goto bce_dma_alloc_exit;
3730 		}
3731 
3732 		error = bus_dmamap_load(sc->rx_bd_chain_tag,
3733 		    sc->rx_bd_chain_map[i], sc->rx_bd_chain[i],
3734 		    BCE_RX_CHAIN_PAGE_SZ, bce_dma_map_addr,
3735 		    &sc->rx_bd_chain_paddr[i], BUS_DMA_NOWAIT);
3736 
3737 		if (error) {
3738 			BCE_PRINTF("%s(%d): Could not map RX descriptor "
3739 			    "chain DMA memory!\n", __FILE__, __LINE__);
3740 			rc = ENOMEM;
3741 			goto bce_dma_alloc_exit;
3742 		}
3743 
3744 		DBPRINT(sc, BCE_INFO_LOAD, "%s(): rx_bd_chain_paddr[%d] = "
3745 		    "0x%jX\n", __FUNCTION__, i,
3746 		    (uintmax_t) sc->rx_bd_chain_paddr[i]);
3747 	}
3748 
3749 	/*
3750 	 * Create a DMA tag for RX mbufs.
3751 	 */
3752 	if (bce_hdr_split == TRUE)
3753 		max_size = max_seg_size = ((sc->rx_bd_mbuf_alloc_size < MCLBYTES) ?
3754 		    MCLBYTES : sc->rx_bd_mbuf_alloc_size);
3755 	else
3756 		max_size = max_seg_size = MJUM9BYTES;
3757 	max_segments = 1;
3758 
3759 	DBPRINT(sc, BCE_INFO_LOAD, "%s(): Creating rx_mbuf_tag "
3760 	    "(max size = 0x%jX max segments = %d, max segment "
3761 	    "size = 0x%jX)\n", __FUNCTION__, (uintmax_t) max_size,
3762 	     max_segments, (uintmax_t) max_seg_size);
3763 
3764 	if (bus_dma_tag_create(sc->parent_tag, BCE_RX_BUF_ALIGN,
3765 	    BCE_DMA_BOUNDARY, sc->max_bus_addr, BUS_SPACE_MAXADDR, NULL, NULL,
3766 	    max_size, max_segments, max_seg_size, 0, NULL, NULL,
3767 	    &sc->rx_mbuf_tag)) {
3768 		BCE_PRINTF("%s(%d): Could not allocate RX mbuf DMA tag!\n",
3769 		    __FILE__, __LINE__);
3770 		rc = ENOMEM;
3771 		goto bce_dma_alloc_exit;
3772 	}
3773 
3774 	/* Create DMA maps for the RX mbuf clusters. */
3775 	for (i = 0; i < TOTAL_RX_BD_ALLOC; i++) {
3776 		if (bus_dmamap_create(sc->rx_mbuf_tag, BUS_DMA_NOWAIT,
3777 		    &sc->rx_mbuf_map[i])) {
3778 			BCE_PRINTF("%s(%d): Unable to create RX mbuf "
3779 			    "DMA map!\n", __FILE__, __LINE__);
3780 			rc = ENOMEM;
3781 			goto bce_dma_alloc_exit;
3782 		}
3783 	}
3784 
3785 	if (bce_hdr_split == TRUE) {
3786 		/*
3787 		 * Create a DMA tag for the page buffer descriptor chain,
3788 		 * allocate and clear the memory, and fetch the physical
3789 		 * address of the blocks.
3790 		 */
3791 		if (bus_dma_tag_create(sc->parent_tag, BCM_PAGE_SIZE,
3792 			    BCE_DMA_BOUNDARY, BUS_SPACE_MAXADDR, sc->max_bus_addr,
3793 			    NULL, NULL,	BCE_PG_CHAIN_PAGE_SZ, 1, BCE_PG_CHAIN_PAGE_SZ,
3794 			    0, NULL, NULL, &sc->pg_bd_chain_tag)) {
3795 			BCE_PRINTF("%s(%d): Could not allocate page descriptor "
3796 			    "chain DMA tag!\n",	__FILE__, __LINE__);
3797 			rc = ENOMEM;
3798 			goto bce_dma_alloc_exit;
3799 		}
3800 
3801 		for (i = 0; i < sc->pg_pages; i++) {
3802 			if (bus_dmamem_alloc(sc->pg_bd_chain_tag,
3803 			    (void **)&sc->pg_bd_chain[i],
3804 			    BUS_DMA_NOWAIT | BUS_DMA_ZERO | BUS_DMA_COHERENT,
3805 			    &sc->pg_bd_chain_map[i])) {
3806 				BCE_PRINTF("%s(%d): Could not allocate page "
3807 				    "descriptor chain DMA memory!\n",
3808 				    __FILE__, __LINE__);
3809 				rc = ENOMEM;
3810 				goto bce_dma_alloc_exit;
3811 			}
3812 
3813 			error = bus_dmamap_load(sc->pg_bd_chain_tag,
3814 			    sc->pg_bd_chain_map[i], sc->pg_bd_chain[i],
3815 			    BCE_PG_CHAIN_PAGE_SZ, bce_dma_map_addr,
3816 			    &sc->pg_bd_chain_paddr[i], BUS_DMA_NOWAIT);
3817 
3818 			if (error) {
3819 				BCE_PRINTF("%s(%d): Could not map page descriptor "
3820 					"chain DMA memory!\n", __FILE__, __LINE__);
3821 				rc = ENOMEM;
3822 				goto bce_dma_alloc_exit;
3823 			}
3824 
3825 			DBPRINT(sc, BCE_INFO_LOAD, "%s(): pg_bd_chain_paddr[%d] = "
3826 				"0x%jX\n", __FUNCTION__, i,
3827 				(uintmax_t) sc->pg_bd_chain_paddr[i]);
3828 		}
3829 
3830 		/*
3831 		 * Create a DMA tag for page mbufs.
3832 		 */
3833 		max_size = max_seg_size = ((sc->pg_bd_mbuf_alloc_size < MCLBYTES) ?
3834 			MCLBYTES : sc->pg_bd_mbuf_alloc_size);
3835 
3836 		if (bus_dma_tag_create(sc->parent_tag, 1, BCE_DMA_BOUNDARY,
3837 			sc->max_bus_addr, BUS_SPACE_MAXADDR, NULL, NULL,
3838 			max_size, 1, max_seg_size, 0, NULL, NULL, &sc->pg_mbuf_tag)) {
3839 			BCE_PRINTF("%s(%d): Could not allocate page mbuf "
3840 				"DMA tag!\n", __FILE__, __LINE__);
3841 			rc = ENOMEM;
3842 			goto bce_dma_alloc_exit;
3843 		}
3844 
3845 		/* Create DMA maps for the page mbuf clusters. */
3846 		for (i = 0; i < TOTAL_PG_BD_ALLOC; i++) {
3847 			if (bus_dmamap_create(sc->pg_mbuf_tag, BUS_DMA_NOWAIT,
3848 				&sc->pg_mbuf_map[i])) {
3849 				BCE_PRINTF("%s(%d): Unable to create page mbuf "
3850 					"DMA map!\n", __FILE__, __LINE__);
3851 				rc = ENOMEM;
3852 				goto bce_dma_alloc_exit;
3853 			}
3854 		}
3855 	}
3856 
3857 bce_dma_alloc_exit:
3858 	DBEXIT(BCE_VERBOSE_RESET | BCE_VERBOSE_CTX);
3859 	return(rc);
3860 }
3861 
3862 
3863 /****************************************************************************/
3864 /* Release all resources used by the driver.                                */
3865 /*                                                                          */
3866 /* Releases all resources acquired by the driver including interrupts,      */
3867 /* interrupt handler, interfaces, mutexes, and DMA memory.                  */
3868 /*                                                                          */
3869 /* Returns:                                                                 */
3870 /*   Nothing.                                                               */
3871 /****************************************************************************/
3872 static void
3873 bce_release_resources(struct bce_softc *sc)
3874 {
3875 	device_t dev;
3876 
3877 	DBENTER(BCE_VERBOSE_RESET);
3878 
3879 	dev = sc->bce_dev;
3880 
3881 	bce_dma_free(sc);
3882 
3883 	if (sc->bce_intrhand != NULL) {
3884 		DBPRINT(sc, BCE_INFO_RESET, "Removing interrupt handler.\n");
3885 		bus_teardown_intr(dev, sc->bce_res_irq, sc->bce_intrhand);
3886 	}
3887 
3888 	if (sc->bce_res_irq != NULL) {
3889 		DBPRINT(sc, BCE_INFO_RESET, "Releasing IRQ.\n");
3890 		bus_release_resource(dev, SYS_RES_IRQ, sc->bce_irq_rid,
3891 		    sc->bce_res_irq);
3892 	}
3893 
3894 	if (sc->bce_flags & (BCE_USING_MSI_FLAG | BCE_USING_MSIX_FLAG)) {
3895 		DBPRINT(sc, BCE_INFO_RESET, "Releasing MSI/MSI-X vector.\n");
3896 		pci_release_msi(dev);
3897 	}
3898 
3899 	if (sc->bce_res_mem != NULL) {
3900 		DBPRINT(sc, BCE_INFO_RESET, "Releasing PCI memory.\n");
3901 		    bus_release_resource(dev, SYS_RES_MEMORY, PCIR_BAR(0),
3902 		    sc->bce_res_mem);
3903 	}
3904 
3905 	if (sc->bce_ifp != NULL) {
3906 		DBPRINT(sc, BCE_INFO_RESET, "Releasing IF.\n");
3907 		if_free(sc->bce_ifp);
3908 	}
3909 
3910 	if (mtx_initialized(&sc->bce_mtx))
3911 		BCE_LOCK_DESTROY(sc);
3912 
3913 	DBEXIT(BCE_VERBOSE_RESET);
3914 }
3915 
3916 
3917 /****************************************************************************/
3918 /* Firmware synchronization.                                                */
3919 /*                                                                          */
3920 /* Before performing certain events such as a chip reset, synchronize with  */
3921 /* the firmware first.                                                      */
3922 /*                                                                          */
3923 /* Returns:                                                                 */
3924 /*   0 for success, positive value for failure.                             */
3925 /****************************************************************************/
3926 static int
3927 bce_fw_sync(struct bce_softc *sc, u32 msg_data)
3928 {
3929 	int i, rc = 0;
3930 	u32 val;
3931 
3932 	DBENTER(BCE_VERBOSE_RESET);
3933 
3934 	/* Don't waste any time if we've timed out before. */
3935 	if (sc->bce_fw_timed_out == TRUE) {
3936 		rc = EBUSY;
3937 		goto bce_fw_sync_exit;
3938 	}
3939 
3940 	/* Increment the message sequence number. */
3941 	sc->bce_fw_wr_seq++;
3942 	msg_data |= sc->bce_fw_wr_seq;
3943 
3944  	DBPRINT(sc, BCE_VERBOSE_FIRMWARE, "bce_fw_sync(): msg_data = "
3945 	    "0x%08X\n",	msg_data);
3946 
3947 	/* Send the message to the bootcode driver mailbox. */
3948 	bce_shmem_wr(sc, BCE_DRV_MB, msg_data);
3949 
3950 	/* Wait for the bootcode to acknowledge the message. */
3951 	for (i = 0; i < FW_ACK_TIME_OUT_MS; i++) {
3952 		/* Check for a response in the bootcode firmware mailbox. */
3953 		val = bce_shmem_rd(sc, BCE_FW_MB);
3954 		if ((val & BCE_FW_MSG_ACK) == (msg_data & BCE_DRV_MSG_SEQ))
3955 			break;
3956 		DELAY(1000);
3957 	}
3958 
3959 	/* If we've timed out, tell bootcode that we've stopped waiting. */
3960 	if (((val & BCE_FW_MSG_ACK) != (msg_data & BCE_DRV_MSG_SEQ)) &&
3961 	    ((msg_data & BCE_DRV_MSG_DATA) != BCE_DRV_MSG_DATA_WAIT0)) {
3962 
3963 		BCE_PRINTF("%s(%d): Firmware synchronization timeout! "
3964 		    "msg_data = 0x%08X\n", __FILE__, __LINE__, msg_data);
3965 
3966 		msg_data &= ~BCE_DRV_MSG_CODE;
3967 		msg_data |= BCE_DRV_MSG_CODE_FW_TIMEOUT;
3968 
3969 		bce_shmem_wr(sc, BCE_DRV_MB, msg_data);
3970 
3971 		sc->bce_fw_timed_out = TRUE;
3972 		rc = EBUSY;
3973 	}
3974 
3975 bce_fw_sync_exit:
3976 	DBEXIT(BCE_VERBOSE_RESET);
3977 	return (rc);
3978 }
3979 
3980 
3981 /****************************************************************************/
3982 /* Load Receive Virtual 2 Physical (RV2P) processor firmware.               */
3983 /*                                                                          */
3984 /* Returns:                                                                 */
3985 /*   Nothing.                                                               */
3986 /****************************************************************************/
3987 static void
3988 bce_load_rv2p_fw(struct bce_softc *sc, u32 *rv2p_code,
3989 	u32 rv2p_code_len, u32 rv2p_proc)
3990 {
3991 	int i;
3992 	u32 val;
3993 
3994 	DBENTER(BCE_VERBOSE_RESET);
3995 
3996 	/* Set the page size used by RV2P. */
3997 	if (rv2p_proc == RV2P_PROC2) {
3998 		BCE_RV2P_PROC2_CHG_MAX_BD_PAGE(USABLE_RX_BD_PER_PAGE);
3999 	}
4000 
4001 	for (i = 0; i < rv2p_code_len; i += 8) {
4002 		REG_WR(sc, BCE_RV2P_INSTR_HIGH, *rv2p_code);
4003 		rv2p_code++;
4004 		REG_WR(sc, BCE_RV2P_INSTR_LOW, *rv2p_code);
4005 		rv2p_code++;
4006 
4007 		if (rv2p_proc == RV2P_PROC1) {
4008 			val = (i / 8) | BCE_RV2P_PROC1_ADDR_CMD_RDWR;
4009 			REG_WR(sc, BCE_RV2P_PROC1_ADDR_CMD, val);
4010 		}
4011 		else {
4012 			val = (i / 8) | BCE_RV2P_PROC2_ADDR_CMD_RDWR;
4013 			REG_WR(sc, BCE_RV2P_PROC2_ADDR_CMD, val);
4014 		}
4015 	}
4016 
4017 	/* Reset the processor, un-stall is done later. */
4018 	if (rv2p_proc == RV2P_PROC1) {
4019 		REG_WR(sc, BCE_RV2P_COMMAND, BCE_RV2P_COMMAND_PROC1_RESET);
4020 	}
4021 	else {
4022 		REG_WR(sc, BCE_RV2P_COMMAND, BCE_RV2P_COMMAND_PROC2_RESET);
4023 	}
4024 
4025 	DBEXIT(BCE_VERBOSE_RESET);
4026 }
4027 
4028 
4029 /****************************************************************************/
4030 /* Load RISC processor firmware.                                            */
4031 /*                                                                          */
4032 /* Loads firmware from the file if_bcefw.h into the scratchpad memory       */
4033 /* associated with a particular processor.                                  */
4034 /*                                                                          */
4035 /* Returns:                                                                 */
4036 /*   Nothing.                                                               */
4037 /****************************************************************************/
4038 static void
4039 bce_load_cpu_fw(struct bce_softc *sc, struct cpu_reg *cpu_reg,
4040 	struct fw_info *fw)
4041 {
4042 	u32 offset;
4043 
4044 	DBENTER(BCE_VERBOSE_RESET);
4045 
4046     bce_halt_cpu(sc, cpu_reg);
4047 
4048 	/* Load the Text area. */
4049 	offset = cpu_reg->spad_base + (fw->text_addr - cpu_reg->mips_view_base);
4050 	if (fw->text) {
4051 		int j;
4052 
4053 		for (j = 0; j < (fw->text_len / 4); j++, offset += 4) {
4054 			REG_WR_IND(sc, offset, fw->text[j]);
4055 	        }
4056 	}
4057 
4058 	/* Load the Data area. */
4059 	offset = cpu_reg->spad_base + (fw->data_addr - cpu_reg->mips_view_base);
4060 	if (fw->data) {
4061 		int j;
4062 
4063 		for (j = 0; j < (fw->data_len / 4); j++, offset += 4) {
4064 			REG_WR_IND(sc, offset, fw->data[j]);
4065 		}
4066 	}
4067 
4068 	/* Load the SBSS area. */
4069 	offset = cpu_reg->spad_base + (fw->sbss_addr - cpu_reg->mips_view_base);
4070 	if (fw->sbss) {
4071 		int j;
4072 
4073 		for (j = 0; j < (fw->sbss_len / 4); j++, offset += 4) {
4074 			REG_WR_IND(sc, offset, fw->sbss[j]);
4075 		}
4076 	}
4077 
4078 	/* Load the BSS area. */
4079 	offset = cpu_reg->spad_base + (fw->bss_addr - cpu_reg->mips_view_base);
4080 	if (fw->bss) {
4081 		int j;
4082 
4083 		for (j = 0; j < (fw->bss_len/4); j++, offset += 4) {
4084 			REG_WR_IND(sc, offset, fw->bss[j]);
4085 		}
4086 	}
4087 
4088 	/* Load the Read-Only area. */
4089 	offset = cpu_reg->spad_base +
4090 		(fw->rodata_addr - cpu_reg->mips_view_base);
4091 	if (fw->rodata) {
4092 		int j;
4093 
4094 		for (j = 0; j < (fw->rodata_len / 4); j++, offset += 4) {
4095 			REG_WR_IND(sc, offset, fw->rodata[j]);
4096 		}
4097 	}
4098 
4099 	/* Clear the pre-fetch instruction and set the FW start address. */
4100 	REG_WR_IND(sc, cpu_reg->inst, 0);
4101 	REG_WR_IND(sc, cpu_reg->pc, fw->start_addr);
4102 
4103 	DBEXIT(BCE_VERBOSE_RESET);
4104 }
4105 
4106 
4107 /****************************************************************************/
4108 /* Starts the RISC processor.                                               */
4109 /*                                                                          */
4110 /* Assumes the CPU starting address has already been set.                   */
4111 /*                                                                          */
4112 /* Returns:                                                                 */
4113 /*   Nothing.                                                               */
4114 /****************************************************************************/
4115 static void
4116 bce_start_cpu(struct bce_softc *sc, struct cpu_reg *cpu_reg)
4117 {
4118 	u32 val;
4119 
4120 	DBENTER(BCE_VERBOSE_RESET);
4121 
4122 	/* Start the CPU. */
4123 	val = REG_RD_IND(sc, cpu_reg->mode);
4124 	val &= ~cpu_reg->mode_value_halt;
4125 	REG_WR_IND(sc, cpu_reg->state, cpu_reg->state_value_clear);
4126 	REG_WR_IND(sc, cpu_reg->mode, val);
4127 
4128 	DBEXIT(BCE_VERBOSE_RESET);
4129 }
4130 
4131 
4132 /****************************************************************************/
4133 /* Halts the RISC processor.                                                */
4134 /*                                                                          */
4135 /* Returns:                                                                 */
4136 /*   Nothing.                                                               */
4137 /****************************************************************************/
4138 static void
4139 bce_halt_cpu(struct bce_softc *sc, struct cpu_reg *cpu_reg)
4140 {
4141 	u32 val;
4142 
4143 	DBENTER(BCE_VERBOSE_RESET);
4144 
4145 	/* Halt the CPU. */
4146 	val = REG_RD_IND(sc, cpu_reg->mode);
4147 	val |= cpu_reg->mode_value_halt;
4148 	REG_WR_IND(sc, cpu_reg->mode, val);
4149 	REG_WR_IND(sc, cpu_reg->state, cpu_reg->state_value_clear);
4150 
4151 	DBEXIT(BCE_VERBOSE_RESET);
4152 }
4153 
4154 
4155 /****************************************************************************/
4156 /* Initialize the RX CPU.                                                   */
4157 /*                                                                          */
4158 /* Returns:                                                                 */
4159 /*   Nothing.                                                               */
4160 /****************************************************************************/
4161 static void
4162 bce_start_rxp_cpu(struct bce_softc *sc)
4163 {
4164 	struct cpu_reg cpu_reg;
4165 
4166 	DBENTER(BCE_VERBOSE_RESET);
4167 
4168 	cpu_reg.mode = BCE_RXP_CPU_MODE;
4169 	cpu_reg.mode_value_halt = BCE_RXP_CPU_MODE_SOFT_HALT;
4170 	cpu_reg.mode_value_sstep = BCE_RXP_CPU_MODE_STEP_ENA;
4171 	cpu_reg.state = BCE_RXP_CPU_STATE;
4172 	cpu_reg.state_value_clear = 0xffffff;
4173 	cpu_reg.gpr0 = BCE_RXP_CPU_REG_FILE;
4174 	cpu_reg.evmask = BCE_RXP_CPU_EVENT_MASK;
4175 	cpu_reg.pc = BCE_RXP_CPU_PROGRAM_COUNTER;
4176 	cpu_reg.inst = BCE_RXP_CPU_INSTRUCTION;
4177 	cpu_reg.bp = BCE_RXP_CPU_HW_BREAKPOINT;
4178 	cpu_reg.spad_base = BCE_RXP_SCRATCH;
4179 	cpu_reg.mips_view_base = 0x8000000;
4180 
4181 	DBPRINT(sc, BCE_INFO_RESET, "Starting RX firmware.\n");
4182 	bce_start_cpu(sc, &cpu_reg);
4183 
4184 	DBEXIT(BCE_VERBOSE_RESET);
4185 }
4186 
4187 
4188 /****************************************************************************/
4189 /* Initialize the RX CPU.                                                   */
4190 /*                                                                          */
4191 /* Returns:                                                                 */
4192 /*   Nothing.                                                               */
4193 /****************************************************************************/
4194 static void
4195 bce_init_rxp_cpu(struct bce_softc *sc)
4196 {
4197 	struct cpu_reg cpu_reg;
4198 	struct fw_info fw;
4199 
4200 	DBENTER(BCE_VERBOSE_RESET);
4201 
4202 	cpu_reg.mode = BCE_RXP_CPU_MODE;
4203 	cpu_reg.mode_value_halt = BCE_RXP_CPU_MODE_SOFT_HALT;
4204 	cpu_reg.mode_value_sstep = BCE_RXP_CPU_MODE_STEP_ENA;
4205 	cpu_reg.state = BCE_RXP_CPU_STATE;
4206 	cpu_reg.state_value_clear = 0xffffff;
4207 	cpu_reg.gpr0 = BCE_RXP_CPU_REG_FILE;
4208 	cpu_reg.evmask = BCE_RXP_CPU_EVENT_MASK;
4209 	cpu_reg.pc = BCE_RXP_CPU_PROGRAM_COUNTER;
4210 	cpu_reg.inst = BCE_RXP_CPU_INSTRUCTION;
4211 	cpu_reg.bp = BCE_RXP_CPU_HW_BREAKPOINT;
4212 	cpu_reg.spad_base = BCE_RXP_SCRATCH;
4213 	cpu_reg.mips_view_base = 0x8000000;
4214 
4215 	if (BCE_CHIP_NUM(sc) == BCE_CHIP_NUM_5709) {
4216  		fw.ver_major = bce_RXP_b09FwReleaseMajor;
4217 		fw.ver_minor = bce_RXP_b09FwReleaseMinor;
4218 		fw.ver_fix = bce_RXP_b09FwReleaseFix;
4219 		fw.start_addr = bce_RXP_b09FwStartAddr;
4220 
4221 		fw.text_addr = bce_RXP_b09FwTextAddr;
4222 		fw.text_len = bce_RXP_b09FwTextLen;
4223 		fw.text_index = 0;
4224 		fw.text = bce_RXP_b09FwText;
4225 
4226 		fw.data_addr = bce_RXP_b09FwDataAddr;
4227 		fw.data_len = bce_RXP_b09FwDataLen;
4228 		fw.data_index = 0;
4229 		fw.data = bce_RXP_b09FwData;
4230 
4231 		fw.sbss_addr = bce_RXP_b09FwSbssAddr;
4232 		fw.sbss_len = bce_RXP_b09FwSbssLen;
4233 		fw.sbss_index = 0;
4234 		fw.sbss = bce_RXP_b09FwSbss;
4235 
4236 		fw.bss_addr = bce_RXP_b09FwBssAddr;
4237 		fw.bss_len = bce_RXP_b09FwBssLen;
4238 		fw.bss_index = 0;
4239 		fw.bss = bce_RXP_b09FwBss;
4240 
4241 		fw.rodata_addr = bce_RXP_b09FwRodataAddr;
4242 		fw.rodata_len = bce_RXP_b09FwRodataLen;
4243 		fw.rodata_index = 0;
4244 		fw.rodata = bce_RXP_b09FwRodata;
4245 	} else {
4246 		fw.ver_major = bce_RXP_b06FwReleaseMajor;
4247 		fw.ver_minor = bce_RXP_b06FwReleaseMinor;
4248 		fw.ver_fix = bce_RXP_b06FwReleaseFix;
4249 		fw.start_addr = bce_RXP_b06FwStartAddr;
4250 
4251 		fw.text_addr = bce_RXP_b06FwTextAddr;
4252 		fw.text_len = bce_RXP_b06FwTextLen;
4253 		fw.text_index = 0;
4254 		fw.text = bce_RXP_b06FwText;
4255 
4256 		fw.data_addr = bce_RXP_b06FwDataAddr;
4257 		fw.data_len = bce_RXP_b06FwDataLen;
4258 		fw.data_index = 0;
4259 		fw.data = bce_RXP_b06FwData;
4260 
4261 		fw.sbss_addr = bce_RXP_b06FwSbssAddr;
4262 		fw.sbss_len = bce_RXP_b06FwSbssLen;
4263 		fw.sbss_index = 0;
4264 		fw.sbss = bce_RXP_b06FwSbss;
4265 
4266 		fw.bss_addr = bce_RXP_b06FwBssAddr;
4267 		fw.bss_len = bce_RXP_b06FwBssLen;
4268 		fw.bss_index = 0;
4269 		fw.bss = bce_RXP_b06FwBss;
4270 
4271 		fw.rodata_addr = bce_RXP_b06FwRodataAddr;
4272 		fw.rodata_len = bce_RXP_b06FwRodataLen;
4273 		fw.rodata_index = 0;
4274 		fw.rodata = bce_RXP_b06FwRodata;
4275 	}
4276 
4277 	DBPRINT(sc, BCE_INFO_RESET, "Loading RX firmware.\n");
4278 	bce_load_cpu_fw(sc, &cpu_reg, &fw);
4279 
4280     /* Delay RXP start until initialization is complete. */
4281 
4282 	DBEXIT(BCE_VERBOSE_RESET);
4283 }
4284 
4285 
4286 /****************************************************************************/
4287 /* Initialize the TX CPU.                                                   */
4288 /*                                                                          */
4289 /* Returns:                                                                 */
4290 /*   Nothing.                                                               */
4291 /****************************************************************************/
4292 static void
4293 bce_init_txp_cpu(struct bce_softc *sc)
4294 {
4295 	struct cpu_reg cpu_reg;
4296 	struct fw_info fw;
4297 
4298 	DBENTER(BCE_VERBOSE_RESET);
4299 
4300 	cpu_reg.mode = BCE_TXP_CPU_MODE;
4301 	cpu_reg.mode_value_halt = BCE_TXP_CPU_MODE_SOFT_HALT;
4302 	cpu_reg.mode_value_sstep = BCE_TXP_CPU_MODE_STEP_ENA;
4303 	cpu_reg.state = BCE_TXP_CPU_STATE;
4304 	cpu_reg.state_value_clear = 0xffffff;
4305 	cpu_reg.gpr0 = BCE_TXP_CPU_REG_FILE;
4306 	cpu_reg.evmask = BCE_TXP_CPU_EVENT_MASK;
4307 	cpu_reg.pc = BCE_TXP_CPU_PROGRAM_COUNTER;
4308 	cpu_reg.inst = BCE_TXP_CPU_INSTRUCTION;
4309 	cpu_reg.bp = BCE_TXP_CPU_HW_BREAKPOINT;
4310 	cpu_reg.spad_base = BCE_TXP_SCRATCH;
4311 	cpu_reg.mips_view_base = 0x8000000;
4312 
4313 	if (BCE_CHIP_NUM(sc) == BCE_CHIP_NUM_5709) {
4314 		fw.ver_major = bce_TXP_b09FwReleaseMajor;
4315 		fw.ver_minor = bce_TXP_b09FwReleaseMinor;
4316 		fw.ver_fix = bce_TXP_b09FwReleaseFix;
4317 		fw.start_addr = bce_TXP_b09FwStartAddr;
4318 
4319 		fw.text_addr = bce_TXP_b09FwTextAddr;
4320 		fw.text_len = bce_TXP_b09FwTextLen;
4321 		fw.text_index = 0;
4322 		fw.text = bce_TXP_b09FwText;
4323 
4324 		fw.data_addr = bce_TXP_b09FwDataAddr;
4325 		fw.data_len = bce_TXP_b09FwDataLen;
4326 		fw.data_index = 0;
4327 		fw.data = bce_TXP_b09FwData;
4328 
4329 		fw.sbss_addr = bce_TXP_b09FwSbssAddr;
4330 		fw.sbss_len = bce_TXP_b09FwSbssLen;
4331 		fw.sbss_index = 0;
4332 		fw.sbss = bce_TXP_b09FwSbss;
4333 
4334 		fw.bss_addr = bce_TXP_b09FwBssAddr;
4335 		fw.bss_len = bce_TXP_b09FwBssLen;
4336 		fw.bss_index = 0;
4337 		fw.bss = bce_TXP_b09FwBss;
4338 
4339 		fw.rodata_addr = bce_TXP_b09FwRodataAddr;
4340 		fw.rodata_len = bce_TXP_b09FwRodataLen;
4341 		fw.rodata_index = 0;
4342 		fw.rodata = bce_TXP_b09FwRodata;
4343 	} else {
4344 		fw.ver_major = bce_TXP_b06FwReleaseMajor;
4345 		fw.ver_minor = bce_TXP_b06FwReleaseMinor;
4346 		fw.ver_fix = bce_TXP_b06FwReleaseFix;
4347 		fw.start_addr = bce_TXP_b06FwStartAddr;
4348 
4349 		fw.text_addr = bce_TXP_b06FwTextAddr;
4350 		fw.text_len = bce_TXP_b06FwTextLen;
4351 		fw.text_index = 0;
4352 		fw.text = bce_TXP_b06FwText;
4353 
4354 		fw.data_addr = bce_TXP_b06FwDataAddr;
4355 		fw.data_len = bce_TXP_b06FwDataLen;
4356 		fw.data_index = 0;
4357 		fw.data = bce_TXP_b06FwData;
4358 
4359 		fw.sbss_addr = bce_TXP_b06FwSbssAddr;
4360 		fw.sbss_len = bce_TXP_b06FwSbssLen;
4361 		fw.sbss_index = 0;
4362 		fw.sbss = bce_TXP_b06FwSbss;
4363 
4364 		fw.bss_addr = bce_TXP_b06FwBssAddr;
4365 		fw.bss_len = bce_TXP_b06FwBssLen;
4366 		fw.bss_index = 0;
4367 		fw.bss = bce_TXP_b06FwBss;
4368 
4369 		fw.rodata_addr = bce_TXP_b06FwRodataAddr;
4370 		fw.rodata_len = bce_TXP_b06FwRodataLen;
4371 		fw.rodata_index = 0;
4372 		fw.rodata = bce_TXP_b06FwRodata;
4373 	}
4374 
4375 	DBPRINT(sc, BCE_INFO_RESET, "Loading TX firmware.\n");
4376 	bce_load_cpu_fw(sc, &cpu_reg, &fw);
4377     bce_start_cpu(sc, &cpu_reg);
4378 
4379 	DBEXIT(BCE_VERBOSE_RESET);
4380 }
4381 
4382 
4383 /****************************************************************************/
4384 /* Initialize the TPAT CPU.                                                 */
4385 /*                                                                          */
4386 /* Returns:                                                                 */
4387 /*   Nothing.                                                               */
4388 /****************************************************************************/
4389 static void
4390 bce_init_tpat_cpu(struct bce_softc *sc)
4391 {
4392 	struct cpu_reg cpu_reg;
4393 	struct fw_info fw;
4394 
4395 	DBENTER(BCE_VERBOSE_RESET);
4396 
4397 	cpu_reg.mode = BCE_TPAT_CPU_MODE;
4398 	cpu_reg.mode_value_halt = BCE_TPAT_CPU_MODE_SOFT_HALT;
4399 	cpu_reg.mode_value_sstep = BCE_TPAT_CPU_MODE_STEP_ENA;
4400 	cpu_reg.state = BCE_TPAT_CPU_STATE;
4401 	cpu_reg.state_value_clear = 0xffffff;
4402 	cpu_reg.gpr0 = BCE_TPAT_CPU_REG_FILE;
4403 	cpu_reg.evmask = BCE_TPAT_CPU_EVENT_MASK;
4404 	cpu_reg.pc = BCE_TPAT_CPU_PROGRAM_COUNTER;
4405 	cpu_reg.inst = BCE_TPAT_CPU_INSTRUCTION;
4406 	cpu_reg.bp = BCE_TPAT_CPU_HW_BREAKPOINT;
4407 	cpu_reg.spad_base = BCE_TPAT_SCRATCH;
4408 	cpu_reg.mips_view_base = 0x8000000;
4409 
4410 	if (BCE_CHIP_NUM(sc) == BCE_CHIP_NUM_5709) {
4411 		fw.ver_major = bce_TPAT_b09FwReleaseMajor;
4412 		fw.ver_minor = bce_TPAT_b09FwReleaseMinor;
4413 		fw.ver_fix = bce_TPAT_b09FwReleaseFix;
4414 		fw.start_addr = bce_TPAT_b09FwStartAddr;
4415 
4416 		fw.text_addr = bce_TPAT_b09FwTextAddr;
4417 		fw.text_len = bce_TPAT_b09FwTextLen;
4418 		fw.text_index = 0;
4419 		fw.text = bce_TPAT_b09FwText;
4420 
4421 		fw.data_addr = bce_TPAT_b09FwDataAddr;
4422 		fw.data_len = bce_TPAT_b09FwDataLen;
4423 		fw.data_index = 0;
4424 		fw.data = bce_TPAT_b09FwData;
4425 
4426 		fw.sbss_addr = bce_TPAT_b09FwSbssAddr;
4427 		fw.sbss_len = bce_TPAT_b09FwSbssLen;
4428 		fw.sbss_index = 0;
4429 		fw.sbss = bce_TPAT_b09FwSbss;
4430 
4431 		fw.bss_addr = bce_TPAT_b09FwBssAddr;
4432 		fw.bss_len = bce_TPAT_b09FwBssLen;
4433 		fw.bss_index = 0;
4434 		fw.bss = bce_TPAT_b09FwBss;
4435 
4436 		fw.rodata_addr = bce_TPAT_b09FwRodataAddr;
4437 		fw.rodata_len = bce_TPAT_b09FwRodataLen;
4438 		fw.rodata_index = 0;
4439 		fw.rodata = bce_TPAT_b09FwRodata;
4440 	} else {
4441 		fw.ver_major = bce_TPAT_b06FwReleaseMajor;
4442 		fw.ver_minor = bce_TPAT_b06FwReleaseMinor;
4443 		fw.ver_fix = bce_TPAT_b06FwReleaseFix;
4444 		fw.start_addr = bce_TPAT_b06FwStartAddr;
4445 
4446 		fw.text_addr = bce_TPAT_b06FwTextAddr;
4447 		fw.text_len = bce_TPAT_b06FwTextLen;
4448 		fw.text_index = 0;
4449 		fw.text = bce_TPAT_b06FwText;
4450 
4451 		fw.data_addr = bce_TPAT_b06FwDataAddr;
4452 		fw.data_len = bce_TPAT_b06FwDataLen;
4453 		fw.data_index = 0;
4454 		fw.data = bce_TPAT_b06FwData;
4455 
4456 		fw.sbss_addr = bce_TPAT_b06FwSbssAddr;
4457 		fw.sbss_len = bce_TPAT_b06FwSbssLen;
4458 		fw.sbss_index = 0;
4459 		fw.sbss = bce_TPAT_b06FwSbss;
4460 
4461 		fw.bss_addr = bce_TPAT_b06FwBssAddr;
4462 		fw.bss_len = bce_TPAT_b06FwBssLen;
4463 		fw.bss_index = 0;
4464 		fw.bss = bce_TPAT_b06FwBss;
4465 
4466 		fw.rodata_addr = bce_TPAT_b06FwRodataAddr;
4467 		fw.rodata_len = bce_TPAT_b06FwRodataLen;
4468 		fw.rodata_index = 0;
4469 		fw.rodata = bce_TPAT_b06FwRodata;
4470 	}
4471 
4472 	DBPRINT(sc, BCE_INFO_RESET, "Loading TPAT firmware.\n");
4473 	bce_load_cpu_fw(sc, &cpu_reg, &fw);
4474 	bce_start_cpu(sc, &cpu_reg);
4475 
4476 	DBEXIT(BCE_VERBOSE_RESET);
4477 }
4478 
4479 
4480 /****************************************************************************/
4481 /* Initialize the CP CPU.                                                   */
4482 /*                                                                          */
4483 /* Returns:                                                                 */
4484 /*   Nothing.                                                               */
4485 /****************************************************************************/
4486 static void
4487 bce_init_cp_cpu(struct bce_softc *sc)
4488 {
4489 	struct cpu_reg cpu_reg;
4490 	struct fw_info fw;
4491 
4492 	DBENTER(BCE_VERBOSE_RESET);
4493 
4494 	cpu_reg.mode = BCE_CP_CPU_MODE;
4495 	cpu_reg.mode_value_halt = BCE_CP_CPU_MODE_SOFT_HALT;
4496 	cpu_reg.mode_value_sstep = BCE_CP_CPU_MODE_STEP_ENA;
4497 	cpu_reg.state = BCE_CP_CPU_STATE;
4498 	cpu_reg.state_value_clear = 0xffffff;
4499 	cpu_reg.gpr0 = BCE_CP_CPU_REG_FILE;
4500 	cpu_reg.evmask = BCE_CP_CPU_EVENT_MASK;
4501 	cpu_reg.pc = BCE_CP_CPU_PROGRAM_COUNTER;
4502 	cpu_reg.inst = BCE_CP_CPU_INSTRUCTION;
4503 	cpu_reg.bp = BCE_CP_CPU_HW_BREAKPOINT;
4504 	cpu_reg.spad_base = BCE_CP_SCRATCH;
4505 	cpu_reg.mips_view_base = 0x8000000;
4506 
4507 	if (BCE_CHIP_NUM(sc) == BCE_CHIP_NUM_5709) {
4508 		fw.ver_major = bce_CP_b09FwReleaseMajor;
4509 		fw.ver_minor = bce_CP_b09FwReleaseMinor;
4510 		fw.ver_fix = bce_CP_b09FwReleaseFix;
4511 		fw.start_addr = bce_CP_b09FwStartAddr;
4512 
4513 		fw.text_addr = bce_CP_b09FwTextAddr;
4514 		fw.text_len = bce_CP_b09FwTextLen;
4515 		fw.text_index = 0;
4516 		fw.text = bce_CP_b09FwText;
4517 
4518 		fw.data_addr = bce_CP_b09FwDataAddr;
4519 		fw.data_len = bce_CP_b09FwDataLen;
4520 		fw.data_index = 0;
4521 		fw.data = bce_CP_b09FwData;
4522 
4523 		fw.sbss_addr = bce_CP_b09FwSbssAddr;
4524 		fw.sbss_len = bce_CP_b09FwSbssLen;
4525 		fw.sbss_index = 0;
4526 		fw.sbss = bce_CP_b09FwSbss;
4527 
4528 		fw.bss_addr = bce_CP_b09FwBssAddr;
4529 		fw.bss_len = bce_CP_b09FwBssLen;
4530 		fw.bss_index = 0;
4531 		fw.bss = bce_CP_b09FwBss;
4532 
4533 		fw.rodata_addr = bce_CP_b09FwRodataAddr;
4534 		fw.rodata_len = bce_CP_b09FwRodataLen;
4535 		fw.rodata_index = 0;
4536 		fw.rodata = bce_CP_b09FwRodata;
4537 	} else {
4538 		fw.ver_major = bce_CP_b06FwReleaseMajor;
4539 		fw.ver_minor = bce_CP_b06FwReleaseMinor;
4540 		fw.ver_fix = bce_CP_b06FwReleaseFix;
4541 		fw.start_addr = bce_CP_b06FwStartAddr;
4542 
4543 		fw.text_addr = bce_CP_b06FwTextAddr;
4544 		fw.text_len = bce_CP_b06FwTextLen;
4545 		fw.text_index = 0;
4546 		fw.text = bce_CP_b06FwText;
4547 
4548 		fw.data_addr = bce_CP_b06FwDataAddr;
4549 		fw.data_len = bce_CP_b06FwDataLen;
4550 		fw.data_index = 0;
4551 		fw.data = bce_CP_b06FwData;
4552 
4553 		fw.sbss_addr = bce_CP_b06FwSbssAddr;
4554 		fw.sbss_len = bce_CP_b06FwSbssLen;
4555 		fw.sbss_index = 0;
4556 		fw.sbss = bce_CP_b06FwSbss;
4557 
4558 		fw.bss_addr = bce_CP_b06FwBssAddr;
4559 		fw.bss_len = bce_CP_b06FwBssLen;
4560 		fw.bss_index = 0;
4561 		fw.bss = bce_CP_b06FwBss;
4562 
4563 		fw.rodata_addr = bce_CP_b06FwRodataAddr;
4564 		fw.rodata_len = bce_CP_b06FwRodataLen;
4565 		fw.rodata_index = 0;
4566 		fw.rodata = bce_CP_b06FwRodata;
4567 	}
4568 
4569 	DBPRINT(sc, BCE_INFO_RESET, "Loading CP firmware.\n");
4570 	bce_load_cpu_fw(sc, &cpu_reg, &fw);
4571 	bce_start_cpu(sc, &cpu_reg);
4572 
4573 	DBEXIT(BCE_VERBOSE_RESET);
4574 }
4575 
4576 
4577 /****************************************************************************/
4578 /* Initialize the COM CPU.                                                 */
4579 /*                                                                          */
4580 /* Returns:                                                                 */
4581 /*   Nothing.                                                               */
4582 /****************************************************************************/
4583 static void
4584 bce_init_com_cpu(struct bce_softc *sc)
4585 {
4586 	struct cpu_reg cpu_reg;
4587 	struct fw_info fw;
4588 
4589 	DBENTER(BCE_VERBOSE_RESET);
4590 
4591 	cpu_reg.mode = BCE_COM_CPU_MODE;
4592 	cpu_reg.mode_value_halt = BCE_COM_CPU_MODE_SOFT_HALT;
4593 	cpu_reg.mode_value_sstep = BCE_COM_CPU_MODE_STEP_ENA;
4594 	cpu_reg.state = BCE_COM_CPU_STATE;
4595 	cpu_reg.state_value_clear = 0xffffff;
4596 	cpu_reg.gpr0 = BCE_COM_CPU_REG_FILE;
4597 	cpu_reg.evmask = BCE_COM_CPU_EVENT_MASK;
4598 	cpu_reg.pc = BCE_COM_CPU_PROGRAM_COUNTER;
4599 	cpu_reg.inst = BCE_COM_CPU_INSTRUCTION;
4600 	cpu_reg.bp = BCE_COM_CPU_HW_BREAKPOINT;
4601 	cpu_reg.spad_base = BCE_COM_SCRATCH;
4602 	cpu_reg.mips_view_base = 0x8000000;
4603 
4604 	if (BCE_CHIP_NUM(sc) == BCE_CHIP_NUM_5709) {
4605 		fw.ver_major = bce_COM_b09FwReleaseMajor;
4606 		fw.ver_minor = bce_COM_b09FwReleaseMinor;
4607 		fw.ver_fix = bce_COM_b09FwReleaseFix;
4608 		fw.start_addr = bce_COM_b09FwStartAddr;
4609 
4610 		fw.text_addr = bce_COM_b09FwTextAddr;
4611 		fw.text_len = bce_COM_b09FwTextLen;
4612 		fw.text_index = 0;
4613 		fw.text = bce_COM_b09FwText;
4614 
4615 		fw.data_addr = bce_COM_b09FwDataAddr;
4616 		fw.data_len = bce_COM_b09FwDataLen;
4617 		fw.data_index = 0;
4618 		fw.data = bce_COM_b09FwData;
4619 
4620 		fw.sbss_addr = bce_COM_b09FwSbssAddr;
4621 		fw.sbss_len = bce_COM_b09FwSbssLen;
4622 		fw.sbss_index = 0;
4623 		fw.sbss = bce_COM_b09FwSbss;
4624 
4625 		fw.bss_addr = bce_COM_b09FwBssAddr;
4626 		fw.bss_len = bce_COM_b09FwBssLen;
4627 		fw.bss_index = 0;
4628 		fw.bss = bce_COM_b09FwBss;
4629 
4630 		fw.rodata_addr = bce_COM_b09FwRodataAddr;
4631 		fw.rodata_len = bce_COM_b09FwRodataLen;
4632 		fw.rodata_index = 0;
4633 		fw.rodata = bce_COM_b09FwRodata;
4634 	} else {
4635 		fw.ver_major = bce_COM_b06FwReleaseMajor;
4636 		fw.ver_minor = bce_COM_b06FwReleaseMinor;
4637 		fw.ver_fix = bce_COM_b06FwReleaseFix;
4638 		fw.start_addr = bce_COM_b06FwStartAddr;
4639 
4640 		fw.text_addr = bce_COM_b06FwTextAddr;
4641 		fw.text_len = bce_COM_b06FwTextLen;
4642 		fw.text_index = 0;
4643 		fw.text = bce_COM_b06FwText;
4644 
4645 		fw.data_addr = bce_COM_b06FwDataAddr;
4646 		fw.data_len = bce_COM_b06FwDataLen;
4647 		fw.data_index = 0;
4648 		fw.data = bce_COM_b06FwData;
4649 
4650 		fw.sbss_addr = bce_COM_b06FwSbssAddr;
4651 		fw.sbss_len = bce_COM_b06FwSbssLen;
4652 		fw.sbss_index = 0;
4653 		fw.sbss = bce_COM_b06FwSbss;
4654 
4655 		fw.bss_addr = bce_COM_b06FwBssAddr;
4656 		fw.bss_len = bce_COM_b06FwBssLen;
4657 		fw.bss_index = 0;
4658 		fw.bss = bce_COM_b06FwBss;
4659 
4660 		fw.rodata_addr = bce_COM_b06FwRodataAddr;
4661 		fw.rodata_len = bce_COM_b06FwRodataLen;
4662 		fw.rodata_index = 0;
4663 		fw.rodata = bce_COM_b06FwRodata;
4664 	}
4665 
4666 	DBPRINT(sc, BCE_INFO_RESET, "Loading COM firmware.\n");
4667 	bce_load_cpu_fw(sc, &cpu_reg, &fw);
4668 	bce_start_cpu(sc, &cpu_reg);
4669 
4670 	DBEXIT(BCE_VERBOSE_RESET);
4671 }
4672 
4673 
4674 /****************************************************************************/
4675 /* Initialize the RV2P, RX, TX, TPAT, COM, and CP CPUs.                     */
4676 /*                                                                          */
4677 /* Loads the firmware for each CPU and starts the CPU.                      */
4678 /*                                                                          */
4679 /* Returns:                                                                 */
4680 /*   Nothing.                                                               */
4681 /****************************************************************************/
4682 static void
4683 bce_init_cpus(struct bce_softc *sc)
4684 {
4685 	DBENTER(BCE_VERBOSE_RESET);
4686 
4687 	if (BCE_CHIP_NUM(sc) == BCE_CHIP_NUM_5709) {
4688 
4689 		if ((BCE_CHIP_REV(sc) == BCE_CHIP_REV_Ax)) {
4690 			bce_load_rv2p_fw(sc, bce_xi90_rv2p_proc1,
4691 			    sizeof(bce_xi90_rv2p_proc1), RV2P_PROC1);
4692 			bce_load_rv2p_fw(sc, bce_xi90_rv2p_proc2,
4693 			    sizeof(bce_xi90_rv2p_proc2), RV2P_PROC2);
4694 		} else {
4695 			bce_load_rv2p_fw(sc, bce_xi_rv2p_proc1,
4696 			    sizeof(bce_xi_rv2p_proc1), RV2P_PROC1);
4697 			bce_load_rv2p_fw(sc, bce_xi_rv2p_proc2,
4698 			    sizeof(bce_xi_rv2p_proc2), RV2P_PROC2);
4699 		}
4700 
4701 	} else {
4702 		bce_load_rv2p_fw(sc, bce_rv2p_proc1,
4703 		    sizeof(bce_rv2p_proc1), RV2P_PROC1);
4704 		bce_load_rv2p_fw(sc, bce_rv2p_proc2,
4705 		    sizeof(bce_rv2p_proc2), RV2P_PROC2);
4706 	}
4707 
4708 	bce_init_rxp_cpu(sc);
4709 	bce_init_txp_cpu(sc);
4710 	bce_init_tpat_cpu(sc);
4711 	bce_init_com_cpu(sc);
4712 	bce_init_cp_cpu(sc);
4713 
4714 	DBEXIT(BCE_VERBOSE_RESET);
4715 }
4716 
4717 
4718 /****************************************************************************/
4719 /* Initialize context memory.                                               */
4720 /*                                                                          */
4721 /* Clears the memory associated with each Context ID (CID).                 */
4722 /*                                                                          */
4723 /* Returns:                                                                 */
4724 /*   Nothing.                                                               */
4725 /****************************************************************************/
4726 static int
4727 bce_init_ctx(struct bce_softc *sc)
4728 {
4729 	u32 offset, val, vcid_addr;
4730 	int i, j, rc, retry_cnt;
4731 
4732 	rc = 0;
4733 	DBENTER(BCE_VERBOSE_RESET | BCE_VERBOSE_CTX);
4734 
4735 	if (BCE_CHIP_NUM(sc) == BCE_CHIP_NUM_5709) {
4736 		retry_cnt = CTX_INIT_RETRY_COUNT;
4737 
4738 		DBPRINT(sc, BCE_INFO_CTX, "Initializing 5709 context.\n");
4739 
4740 		/*
4741 		 * BCM5709 context memory may be cached
4742 		 * in host memory so prepare the host memory
4743 		 * for access.
4744 		 */
4745 		val = BCE_CTX_COMMAND_ENABLED |
4746 		    BCE_CTX_COMMAND_MEM_INIT | (1 << 12);
4747 		val |= (BCM_PAGE_BITS - 8) << 16;
4748 		REG_WR(sc, BCE_CTX_COMMAND, val);
4749 
4750 		/* Wait for mem init command to complete. */
4751 		for (i = 0; i < retry_cnt; i++) {
4752 			val = REG_RD(sc, BCE_CTX_COMMAND);
4753 			if (!(val & BCE_CTX_COMMAND_MEM_INIT))
4754 				break;
4755 			DELAY(2);
4756 		}
4757 		if ((val & BCE_CTX_COMMAND_MEM_INIT) != 0) {
4758 			BCE_PRINTF("%s(): Context memory initialization failed!\n",
4759 			    __FUNCTION__);
4760 			rc = EBUSY;
4761 			goto init_ctx_fail;
4762 		}
4763 
4764 		for (i = 0; i < sc->ctx_pages; i++) {
4765 			/* Set the physical address of the context memory. */
4766 			REG_WR(sc, BCE_CTX_HOST_PAGE_TBL_DATA0,
4767 			    BCE_ADDR_LO(sc->ctx_paddr[i] & 0xfffffff0) |
4768 			    BCE_CTX_HOST_PAGE_TBL_DATA0_VALID);
4769 			REG_WR(sc, BCE_CTX_HOST_PAGE_TBL_DATA1,
4770 			    BCE_ADDR_HI(sc->ctx_paddr[i]));
4771 			REG_WR(sc, BCE_CTX_HOST_PAGE_TBL_CTRL, i |
4772 			    BCE_CTX_HOST_PAGE_TBL_CTRL_WRITE_REQ);
4773 
4774 			/* Verify the context memory write was successful. */
4775 			for (j = 0; j < retry_cnt; j++) {
4776 				val = REG_RD(sc, BCE_CTX_HOST_PAGE_TBL_CTRL);
4777 				if ((val &
4778 				    BCE_CTX_HOST_PAGE_TBL_CTRL_WRITE_REQ) == 0)
4779 					break;
4780 				DELAY(5);
4781 			}
4782 			if ((val & BCE_CTX_HOST_PAGE_TBL_CTRL_WRITE_REQ) != 0) {
4783 				BCE_PRINTF("%s(): Failed to initialize "
4784 				    "context page %d!\n", __FUNCTION__, i);
4785 				rc = EBUSY;
4786 				goto init_ctx_fail;
4787 			}
4788 		}
4789 	} else {
4790 
4791 		DBPRINT(sc, BCE_INFO, "Initializing 5706/5708 context.\n");
4792 
4793 		/*
4794 		 * For the 5706/5708, context memory is local to
4795 		 * the controller, so initialize the controller
4796 		 * context memory.
4797 		 */
4798 
4799 		vcid_addr = GET_CID_ADDR(96);
4800 		while (vcid_addr) {
4801 
4802 			vcid_addr -= PHY_CTX_SIZE;
4803 
4804 			REG_WR(sc, BCE_CTX_VIRT_ADDR, 0);
4805 			REG_WR(sc, BCE_CTX_PAGE_TBL, vcid_addr);
4806 
4807 			for(offset = 0; offset < PHY_CTX_SIZE; offset += 4) {
4808 				CTX_WR(sc, 0x00, offset, 0);
4809 			}
4810 
4811 			REG_WR(sc, BCE_CTX_VIRT_ADDR, vcid_addr);
4812 			REG_WR(sc, BCE_CTX_PAGE_TBL, vcid_addr);
4813 		}
4814 
4815 	}
4816 init_ctx_fail:
4817 	DBEXIT(BCE_VERBOSE_RESET | BCE_VERBOSE_CTX);
4818 	return (rc);
4819 }
4820 
4821 
4822 /****************************************************************************/
4823 /* Fetch the permanent MAC address of the controller.                       */
4824 /*                                                                          */
4825 /* Returns:                                                                 */
4826 /*   Nothing.                                                               */
4827 /****************************************************************************/
4828 static void
4829 bce_get_mac_addr(struct bce_softc *sc)
4830 {
4831 	u32 mac_lo = 0, mac_hi = 0;
4832 
4833 	DBENTER(BCE_VERBOSE_RESET);
4834 
4835 	/*
4836 	 * The NetXtreme II bootcode populates various NIC
4837 	 * power-on and runtime configuration items in a
4838 	 * shared memory area.  The factory configured MAC
4839 	 * address is available from both NVRAM and the
4840 	 * shared memory area so we'll read the value from
4841 	 * shared memory for speed.
4842 	 */
4843 
4844 	mac_hi = bce_shmem_rd(sc, BCE_PORT_HW_CFG_MAC_UPPER);
4845 	mac_lo = bce_shmem_rd(sc, BCE_PORT_HW_CFG_MAC_LOWER);
4846 
4847 	if ((mac_lo == 0) && (mac_hi == 0)) {
4848 		BCE_PRINTF("%s(%d): Invalid Ethernet address!\n",
4849 		    __FILE__, __LINE__);
4850 	} else {
4851 		sc->eaddr[0] = (u_char)(mac_hi >> 8);
4852 		sc->eaddr[1] = (u_char)(mac_hi >> 0);
4853 		sc->eaddr[2] = (u_char)(mac_lo >> 24);
4854 		sc->eaddr[3] = (u_char)(mac_lo >> 16);
4855 		sc->eaddr[4] = (u_char)(mac_lo >> 8);
4856 		sc->eaddr[5] = (u_char)(mac_lo >> 0);
4857 	}
4858 
4859 	DBPRINT(sc, BCE_INFO_MISC, "Permanent Ethernet "
4860 	    "address = %6D\n", sc->eaddr, ":");
4861 	DBEXIT(BCE_VERBOSE_RESET);
4862 }
4863 
4864 
4865 /****************************************************************************/
4866 /* Program the MAC address.                                                 */
4867 /*                                                                          */
4868 /* Returns:                                                                 */
4869 /*   Nothing.                                                               */
4870 /****************************************************************************/
4871 static void
4872 bce_set_mac_addr(struct bce_softc *sc)
4873 {
4874 	u32 val;
4875 	u8 *mac_addr = sc->eaddr;
4876 
4877 	/* ToDo: Add support for setting multiple MAC addresses. */
4878 
4879 	DBENTER(BCE_VERBOSE_RESET);
4880 	DBPRINT(sc, BCE_INFO_MISC, "Setting Ethernet address = "
4881 	    "%6D\n", sc->eaddr, ":");
4882 
4883 	val = (mac_addr[0] << 8) | mac_addr[1];
4884 
4885 	REG_WR(sc, BCE_EMAC_MAC_MATCH0, val);
4886 
4887 	val = (mac_addr[2] << 24) | (mac_addr[3] << 16) |
4888 	    (mac_addr[4] << 8) | mac_addr[5];
4889 
4890 	REG_WR(sc, BCE_EMAC_MAC_MATCH1, val);
4891 
4892 	DBEXIT(BCE_VERBOSE_RESET);
4893 }
4894 
4895 
4896 /****************************************************************************/
4897 /* Stop the controller.                                                     */
4898 /*                                                                          */
4899 /* Returns:                                                                 */
4900 /*   Nothing.                                                               */
4901 /****************************************************************************/
4902 static void
4903 bce_stop(struct bce_softc *sc)
4904 {
4905 	struct ifnet *ifp;
4906 
4907 	DBENTER(BCE_VERBOSE_RESET);
4908 
4909 	BCE_LOCK_ASSERT(sc);
4910 
4911 	ifp = sc->bce_ifp;
4912 
4913 	callout_stop(&sc->bce_tick_callout);
4914 
4915 	/* Disable the transmit/receive blocks. */
4916 	REG_WR(sc, BCE_MISC_ENABLE_CLR_BITS, BCE_MISC_ENABLE_CLR_DEFAULT);
4917 	REG_RD(sc, BCE_MISC_ENABLE_CLR_BITS);
4918 	DELAY(20);
4919 
4920 	bce_disable_intr(sc);
4921 
4922 	/* Free RX buffers. */
4923 	if (bce_hdr_split == TRUE) {
4924 		bce_free_pg_chain(sc);
4925 	}
4926 	bce_free_rx_chain(sc);
4927 
4928 	/* Free TX buffers. */
4929 	bce_free_tx_chain(sc);
4930 
4931 	sc->watchdog_timer = 0;
4932 
4933 	sc->bce_link_up = FALSE;
4934 
4935 	ifp->if_drv_flags &= ~(IFF_DRV_RUNNING | IFF_DRV_OACTIVE);
4936 
4937 	DBEXIT(BCE_VERBOSE_RESET);
4938 }
4939 
4940 
4941 static int
4942 bce_reset(struct bce_softc *sc, u32 reset_code)
4943 {
4944 	u32 val;
4945 	int i, rc = 0;
4946 
4947 	DBENTER(BCE_VERBOSE_RESET);
4948 
4949 	DBPRINT(sc, BCE_VERBOSE_RESET, "%s(): reset_code = 0x%08X\n",
4950 	    __FUNCTION__, reset_code);
4951 
4952 	/* Wait for pending PCI transactions to complete. */
4953 	REG_WR(sc, BCE_MISC_ENABLE_CLR_BITS,
4954 	    BCE_MISC_ENABLE_CLR_BITS_TX_DMA_ENABLE |
4955 	    BCE_MISC_ENABLE_CLR_BITS_DMA_ENGINE_ENABLE |
4956 	    BCE_MISC_ENABLE_CLR_BITS_RX_DMA_ENABLE |
4957 	    BCE_MISC_ENABLE_CLR_BITS_HOST_COALESCE_ENABLE);
4958 	val = REG_RD(sc, BCE_MISC_ENABLE_CLR_BITS);
4959 	DELAY(5);
4960 
4961 	/* Disable DMA */
4962 	if (BCE_CHIP_NUM(sc) == BCE_CHIP_NUM_5709) {
4963 		val = REG_RD(sc, BCE_MISC_NEW_CORE_CTL);
4964 		val &= ~BCE_MISC_NEW_CORE_CTL_DMA_ENABLE;
4965 		REG_WR(sc, BCE_MISC_NEW_CORE_CTL, val);
4966 	}
4967 
4968 	/* Assume bootcode is running. */
4969 	sc->bce_fw_timed_out = FALSE;
4970 	sc->bce_drv_cardiac_arrest = FALSE;
4971 
4972 	/* Give the firmware a chance to prepare for the reset. */
4973 	rc = bce_fw_sync(sc, BCE_DRV_MSG_DATA_WAIT0 | reset_code);
4974 	if (rc)
4975 		goto bce_reset_exit;
4976 
4977 	/* Set a firmware reminder that this is a soft reset. */
4978 	bce_shmem_wr(sc, BCE_DRV_RESET_SIGNATURE, BCE_DRV_RESET_SIGNATURE_MAGIC);
4979 
4980 	/* Dummy read to force the chip to complete all current transactions. */
4981 	val = REG_RD(sc, BCE_MISC_ID);
4982 
4983 	/* Chip reset. */
4984 	if (BCE_CHIP_NUM(sc) == BCE_CHIP_NUM_5709) {
4985 		REG_WR(sc, BCE_MISC_COMMAND, BCE_MISC_COMMAND_SW_RESET);
4986 		REG_RD(sc, BCE_MISC_COMMAND);
4987 		DELAY(5);
4988 
4989 		val = BCE_PCICFG_MISC_CONFIG_REG_WINDOW_ENA |
4990 		    BCE_PCICFG_MISC_CONFIG_TARGET_MB_WORD_SWAP;
4991 
4992 		pci_write_config(sc->bce_dev, BCE_PCICFG_MISC_CONFIG, val, 4);
4993 	} else {
4994 		val = BCE_PCICFG_MISC_CONFIG_CORE_RST_REQ |
4995 		    BCE_PCICFG_MISC_CONFIG_REG_WINDOW_ENA |
4996 		    BCE_PCICFG_MISC_CONFIG_TARGET_MB_WORD_SWAP;
4997 		REG_WR(sc, BCE_PCICFG_MISC_CONFIG, val);
4998 
4999 		/* Allow up to 30us for reset to complete. */
5000 		for (i = 0; i < 10; i++) {
5001 			val = REG_RD(sc, BCE_PCICFG_MISC_CONFIG);
5002 			if ((val & (BCE_PCICFG_MISC_CONFIG_CORE_RST_REQ |
5003 			    BCE_PCICFG_MISC_CONFIG_CORE_RST_BSY)) == 0) {
5004 				break;
5005 			}
5006 			DELAY(10);
5007 		}
5008 
5009 		/* Check that reset completed successfully. */
5010 		if (val & (BCE_PCICFG_MISC_CONFIG_CORE_RST_REQ |
5011 		    BCE_PCICFG_MISC_CONFIG_CORE_RST_BSY)) {
5012 			BCE_PRINTF("%s(%d): Reset failed!\n",
5013 			    __FILE__, __LINE__);
5014 			rc = EBUSY;
5015 			goto bce_reset_exit;
5016 		}
5017 	}
5018 
5019 	/* Make sure byte swapping is properly configured. */
5020 	val = REG_RD(sc, BCE_PCI_SWAP_DIAG0);
5021 	if (val != 0x01020304) {
5022 		BCE_PRINTF("%s(%d): Byte swap is incorrect!\n",
5023 		    __FILE__, __LINE__);
5024 		rc = ENODEV;
5025 		goto bce_reset_exit;
5026 	}
5027 
5028 	/* Just completed a reset, assume that firmware is running again. */
5029 	sc->bce_fw_timed_out = FALSE;
5030 	sc->bce_drv_cardiac_arrest = FALSE;
5031 
5032 	/* Wait for the firmware to finish its initialization. */
5033 	rc = bce_fw_sync(sc, BCE_DRV_MSG_DATA_WAIT1 | reset_code);
5034 	if (rc)
5035 		BCE_PRINTF("%s(%d): Firmware did not complete "
5036 		    "initialization!\n", __FILE__, __LINE__);
5037 
5038 bce_reset_exit:
5039 	DBEXIT(BCE_VERBOSE_RESET);
5040 	return (rc);
5041 }
5042 
5043 
5044 static int
5045 bce_chipinit(struct bce_softc *sc)
5046 {
5047 	u32 val;
5048 	int rc = 0;
5049 
5050 	DBENTER(BCE_VERBOSE_RESET);
5051 
5052 	bce_disable_intr(sc);
5053 
5054 	/*
5055 	 * Initialize DMA byte/word swapping, configure the number of DMA
5056 	 * channels and PCI clock compensation delay.
5057 	 */
5058 	val = BCE_DMA_CONFIG_DATA_BYTE_SWAP |
5059 	    BCE_DMA_CONFIG_DATA_WORD_SWAP |
5060 #if BYTE_ORDER == BIG_ENDIAN
5061 	    BCE_DMA_CONFIG_CNTL_BYTE_SWAP |
5062 #endif
5063 	    BCE_DMA_CONFIG_CNTL_WORD_SWAP |
5064 	    DMA_READ_CHANS << 12 |
5065 	    DMA_WRITE_CHANS << 16;
5066 
5067 	val |= (0x2 << 20) | BCE_DMA_CONFIG_CNTL_PCI_COMP_DLY;
5068 
5069 	if ((sc->bce_flags & BCE_PCIX_FLAG) && (sc->bus_speed_mhz == 133))
5070 		val |= BCE_DMA_CONFIG_PCI_FAST_CLK_CMP;
5071 
5072 	/*
5073 	 * This setting resolves a problem observed on certain Intel PCI
5074 	 * chipsets that cannot handle multiple outstanding DMA operations.
5075 	 * See errata E9_5706A1_65.
5076 	 */
5077 	if ((BCE_CHIP_NUM(sc) == BCE_CHIP_NUM_5706) &&
5078 	    (BCE_CHIP_ID(sc) != BCE_CHIP_ID_5706_A0) &&
5079 	    !(sc->bce_flags & BCE_PCIX_FLAG))
5080 		val |= BCE_DMA_CONFIG_CNTL_PING_PONG_DMA;
5081 
5082 	REG_WR(sc, BCE_DMA_CONFIG, val);
5083 
5084 	/* Enable the RX_V2P and Context state machines before access. */
5085 	REG_WR(sc, BCE_MISC_ENABLE_SET_BITS,
5086 	    BCE_MISC_ENABLE_SET_BITS_HOST_COALESCE_ENABLE |
5087 	    BCE_MISC_ENABLE_STATUS_BITS_RX_V2P_ENABLE |
5088 	    BCE_MISC_ENABLE_STATUS_BITS_CONTEXT_ENABLE);
5089 
5090 	/* Initialize context mapping and zero out the quick contexts. */
5091 	if ((rc = bce_init_ctx(sc)) != 0)
5092 		goto bce_chipinit_exit;
5093 
5094 	/* Initialize the on-boards CPUs */
5095 	bce_init_cpus(sc);
5096 
5097 	/* Enable management frames (NC-SI) to flow to the MCP. */
5098 	if (sc->bce_flags & BCE_MFW_ENABLE_FLAG) {
5099 		val = REG_RD(sc, BCE_RPM_MGMT_PKT_CTRL) | BCE_RPM_MGMT_PKT_CTRL_MGMT_EN;
5100 		REG_WR(sc, BCE_RPM_MGMT_PKT_CTRL, val);
5101 	}
5102 
5103 	/* Prepare NVRAM for access. */
5104 	if ((rc = bce_init_nvram(sc)) != 0)
5105 		goto bce_chipinit_exit;
5106 
5107 	/* Set the kernel bypass block size */
5108 	val = REG_RD(sc, BCE_MQ_CONFIG);
5109 	val &= ~BCE_MQ_CONFIG_KNL_BYP_BLK_SIZE;
5110 	val |= BCE_MQ_CONFIG_KNL_BYP_BLK_SIZE_256;
5111 
5112 	/* Enable bins used on the 5709. */
5113 	if (BCE_CHIP_NUM(sc) == BCE_CHIP_NUM_5709) {
5114 		val |= BCE_MQ_CONFIG_BIN_MQ_MODE;
5115 		if (BCE_CHIP_ID(sc) == BCE_CHIP_ID_5709_A1)
5116 			val |= BCE_MQ_CONFIG_HALT_DIS;
5117 	}
5118 
5119 	REG_WR(sc, BCE_MQ_CONFIG, val);
5120 
5121 	val = 0x10000 + (MAX_CID_CNT * MB_KERNEL_CTX_SIZE);
5122 	REG_WR(sc, BCE_MQ_KNL_BYP_WIND_START, val);
5123 	REG_WR(sc, BCE_MQ_KNL_WIND_END, val);
5124 
5125 	/* Set the page size and clear the RV2P processor stall bits. */
5126 	val = (BCM_PAGE_BITS - 8) << 24;
5127 	REG_WR(sc, BCE_RV2P_CONFIG, val);
5128 
5129 	/* Configure page size. */
5130 	val = REG_RD(sc, BCE_TBDR_CONFIG);
5131 	val &= ~BCE_TBDR_CONFIG_PAGE_SIZE;
5132 	val |= (BCM_PAGE_BITS - 8) << 24 | 0x40;
5133 	REG_WR(sc, BCE_TBDR_CONFIG, val);
5134 
5135 	/* Set the perfect match control register to default. */
5136 	REG_WR_IND(sc, BCE_RXP_PM_CTRL, 0);
5137 
5138 bce_chipinit_exit:
5139 	DBEXIT(BCE_VERBOSE_RESET);
5140 
5141 	return(rc);
5142 }
5143 
5144 
5145 /****************************************************************************/
5146 /* Initialize the controller in preparation to send/receive traffic.        */
5147 /*                                                                          */
5148 /* Returns:                                                                 */
5149 /*   0 for success, positive value for failure.                             */
5150 /****************************************************************************/
5151 static int
5152 bce_blockinit(struct bce_softc *sc)
5153 {
5154 	u32 reg, val;
5155 	int rc = 0;
5156 
5157 	DBENTER(BCE_VERBOSE_RESET);
5158 
5159 	/* Load the hardware default MAC address. */
5160 	bce_set_mac_addr(sc);
5161 
5162 	/* Set the Ethernet backoff seed value */
5163 	val = sc->eaddr[0]         + (sc->eaddr[1] << 8) +
5164 	      (sc->eaddr[2] << 16) + (sc->eaddr[3]     ) +
5165 	      (sc->eaddr[4] << 8)  + (sc->eaddr[5] << 16);
5166 	REG_WR(sc, BCE_EMAC_BACKOFF_SEED, val);
5167 
5168 	sc->last_status_idx = 0;
5169 	sc->rx_mode = BCE_EMAC_RX_MODE_SORT_MODE;
5170 
5171 	/* Set up link change interrupt generation. */
5172 	REG_WR(sc, BCE_EMAC_ATTENTION_ENA, BCE_EMAC_ATTENTION_ENA_LINK);
5173 
5174 	/* Program the physical address of the status block. */
5175 	REG_WR(sc, BCE_HC_STATUS_ADDR_L,
5176 	    BCE_ADDR_LO(sc->status_block_paddr));
5177 	REG_WR(sc, BCE_HC_STATUS_ADDR_H,
5178 	    BCE_ADDR_HI(sc->status_block_paddr));
5179 
5180 	/* Program the physical address of the statistics block. */
5181 	REG_WR(sc, BCE_HC_STATISTICS_ADDR_L,
5182 	    BCE_ADDR_LO(sc->stats_block_paddr));
5183 	REG_WR(sc, BCE_HC_STATISTICS_ADDR_H,
5184 	    BCE_ADDR_HI(sc->stats_block_paddr));
5185 
5186 	/* Program various host coalescing parameters. */
5187 	REG_WR(sc, BCE_HC_TX_QUICK_CONS_TRIP,
5188 	    (sc->bce_tx_quick_cons_trip_int << 16) | sc->bce_tx_quick_cons_trip);
5189 	REG_WR(sc, BCE_HC_RX_QUICK_CONS_TRIP,
5190 	    (sc->bce_rx_quick_cons_trip_int << 16) | sc->bce_rx_quick_cons_trip);
5191 	REG_WR(sc, BCE_HC_COMP_PROD_TRIP,
5192 	    (sc->bce_comp_prod_trip_int << 16) | sc->bce_comp_prod_trip);
5193 	REG_WR(sc, BCE_HC_TX_TICKS,
5194 	    (sc->bce_tx_ticks_int << 16) | sc->bce_tx_ticks);
5195 	REG_WR(sc, BCE_HC_RX_TICKS,
5196 	    (sc->bce_rx_ticks_int << 16) | sc->bce_rx_ticks);
5197 	REG_WR(sc, BCE_HC_COM_TICKS,
5198 	    (sc->bce_com_ticks_int << 16) | sc->bce_com_ticks);
5199 	REG_WR(sc, BCE_HC_CMD_TICKS,
5200 	    (sc->bce_cmd_ticks_int << 16) | sc->bce_cmd_ticks);
5201 	REG_WR(sc, BCE_HC_STATS_TICKS,
5202 	    (sc->bce_stats_ticks & 0xffff00));
5203 	REG_WR(sc, BCE_HC_STAT_COLLECT_TICKS, 0xbb8);  /* 3ms */
5204 
5205 	/* Configure the Host Coalescing block. */
5206 	val = BCE_HC_CONFIG_RX_TMR_MODE | BCE_HC_CONFIG_TX_TMR_MODE |
5207 	    BCE_HC_CONFIG_COLLECT_STATS;
5208 
5209 #if 0
5210 	/* ToDo: Add MSI-X support. */
5211 	if (sc->bce_flags & BCE_USING_MSIX_FLAG) {
5212 		u32 base = ((BCE_TX_VEC - 1) * BCE_HC_SB_CONFIG_SIZE) +
5213 		    BCE_HC_SB_CONFIG_1;
5214 
5215 		REG_WR(sc, BCE_HC_MSIX_BIT_VECTOR, BCE_HC_MSIX_BIT_VECTOR_VAL);
5216 
5217 		REG_WR(sc, base, BCE_HC_SB_CONFIG_1_TX_TMR_MODE |
5218 		    BCE_HC_SB_CONFIG_1_ONE_SHOT);
5219 
5220 		REG_WR(sc, base + BCE_HC_TX_QUICK_CONS_TRIP_OFF,
5221 		    (sc->tx_quick_cons_trip_int << 16) |
5222 		     sc->tx_quick_cons_trip);
5223 
5224 		REG_WR(sc, base + BCE_HC_TX_TICKS_OFF,
5225 		    (sc->tx_ticks_int << 16) | sc->tx_ticks);
5226 
5227 		val |= BCE_HC_CONFIG_SB_ADDR_INC_128B;
5228 	}
5229 
5230 	/*
5231 	 * Tell the HC block to automatically set the
5232 	 * INT_MASK bit after an MSI/MSI-X interrupt
5233 	 * is generated so the driver doesn't have to.
5234 	 */
5235 	if (sc->bce_flags & BCE_ONE_SHOT_MSI_FLAG)
5236 		val |= BCE_HC_CONFIG_ONE_SHOT;
5237 
5238 	/* Set the MSI-X status blocks to 128 byte boundaries. */
5239 	if (sc->bce_flags & BCE_USING_MSIX_FLAG)
5240 		val |= BCE_HC_CONFIG_SB_ADDR_INC_128B;
5241 #endif
5242 
5243 	REG_WR(sc, BCE_HC_CONFIG, val);
5244 
5245 	/* Clear the internal statistics counters. */
5246 	REG_WR(sc, BCE_HC_COMMAND, BCE_HC_COMMAND_CLR_STAT_NOW);
5247 
5248 	/* Verify that bootcode is running. */
5249 	reg = bce_shmem_rd(sc, BCE_DEV_INFO_SIGNATURE);
5250 
5251 	DBRUNIF(DB_RANDOMTRUE(bootcode_running_failure_sim_control),
5252 	    BCE_PRINTF("%s(%d): Simulating bootcode failure.\n",
5253 	    __FILE__, __LINE__);
5254 	    reg = 0);
5255 
5256 	if ((reg & BCE_DEV_INFO_SIGNATURE_MAGIC_MASK) !=
5257 	    BCE_DEV_INFO_SIGNATURE_MAGIC) {
5258 		BCE_PRINTF("%s(%d): Bootcode not running! Found: 0x%08X, "
5259 		    "Expected: 08%08X\n", __FILE__, __LINE__,
5260 		    (reg & BCE_DEV_INFO_SIGNATURE_MAGIC_MASK),
5261 		    BCE_DEV_INFO_SIGNATURE_MAGIC);
5262 		rc = ENODEV;
5263 		goto bce_blockinit_exit;
5264 	}
5265 
5266 	/* Enable DMA */
5267 	if (BCE_CHIP_NUM(sc) == BCE_CHIP_NUM_5709) {
5268 		val = REG_RD(sc, BCE_MISC_NEW_CORE_CTL);
5269 		val |= BCE_MISC_NEW_CORE_CTL_DMA_ENABLE;
5270 		REG_WR(sc, BCE_MISC_NEW_CORE_CTL, val);
5271 	}
5272 
5273 	/* Allow bootcode to apply additional fixes before enabling MAC. */
5274 	rc = bce_fw_sync(sc, BCE_DRV_MSG_DATA_WAIT2 |
5275 	    BCE_DRV_MSG_CODE_RESET);
5276 
5277 	/* Enable link state change interrupt generation. */
5278 	REG_WR(sc, BCE_HC_ATTN_BITS_ENABLE, STATUS_ATTN_BITS_LINK_STATE);
5279 
5280 	/* Enable the RXP. */
5281 	bce_start_rxp_cpu(sc);
5282 
5283 	/* Disable management frames (NC-SI) from flowing to the MCP. */
5284 	if (sc->bce_flags & BCE_MFW_ENABLE_FLAG) {
5285 		val = REG_RD(sc, BCE_RPM_MGMT_PKT_CTRL) &
5286 		    ~BCE_RPM_MGMT_PKT_CTRL_MGMT_EN;
5287 		REG_WR(sc, BCE_RPM_MGMT_PKT_CTRL, val);
5288 	}
5289 
5290 	/* Enable all remaining blocks in the MAC. */
5291 	if (BCE_CHIP_NUM(sc) == BCE_CHIP_NUM_5709)
5292 		REG_WR(sc, BCE_MISC_ENABLE_SET_BITS,
5293 		    BCE_MISC_ENABLE_DEFAULT_XI);
5294 	else
5295 		REG_WR(sc, BCE_MISC_ENABLE_SET_BITS,
5296 		    BCE_MISC_ENABLE_DEFAULT);
5297 
5298 	REG_RD(sc, BCE_MISC_ENABLE_SET_BITS);
5299 	DELAY(20);
5300 
5301 	/* Save the current host coalescing block settings. */
5302 	sc->hc_command = REG_RD(sc, BCE_HC_COMMAND);
5303 
5304 bce_blockinit_exit:
5305 	DBEXIT(BCE_VERBOSE_RESET);
5306 
5307 	return (rc);
5308 }
5309 
5310 
5311 /****************************************************************************/
5312 /* Encapsulate an mbuf into the rx_bd chain.                                */
5313 /*                                                                          */
5314 /* Returns:                                                                 */
5315 /*   0 for success, positive value for failure.                             */
5316 /****************************************************************************/
5317 static int
5318 bce_get_rx_buf(struct bce_softc *sc, struct mbuf *m, u16 *prod,
5319     u16 *chain_prod, u32 *prod_bseq)
5320 {
5321 	bus_dmamap_t map;
5322 	bus_dma_segment_t segs[BCE_MAX_SEGMENTS];
5323 	struct mbuf *m_new = NULL;
5324 	struct rx_bd *rxbd;
5325 	int nsegs, error, rc = 0;
5326 #ifdef BCE_DEBUG
5327 	u16 debug_chain_prod = *chain_prod;
5328 #endif
5329 
5330 	DBENTER(BCE_EXTREME_RESET | BCE_EXTREME_RECV | BCE_EXTREME_LOAD);
5331 
5332 	/* Make sure the inputs are valid. */
5333 	DBRUNIF((*chain_prod > MAX_RX_BD_ALLOC),
5334 	    BCE_PRINTF("%s(%d): RX producer out of range: "
5335 	    "0x%04X > 0x%04X\n", __FILE__, __LINE__,
5336 	    *chain_prod, (u16) MAX_RX_BD_ALLOC));
5337 
5338 	DBPRINT(sc, BCE_EXTREME_RECV, "%s(enter): prod = 0x%04X, "
5339 	    "chain_prod = 0x%04X, prod_bseq = 0x%08X\n", __FUNCTION__,
5340 	    *prod, *chain_prod, *prod_bseq);
5341 
5342 	/* Update some debug statistic counters */
5343 	DBRUNIF((sc->free_rx_bd < sc->rx_low_watermark),
5344 	    sc->rx_low_watermark = sc->free_rx_bd);
5345 	DBRUNIF((sc->free_rx_bd == sc->max_rx_bd),
5346 	    sc->rx_empty_count++);
5347 
5348 	/* Check whether this is a new mbuf allocation. */
5349 	if (m == NULL) {
5350 
5351 		/* Simulate an mbuf allocation failure. */
5352 		DBRUNIF(DB_RANDOMTRUE(mbuf_alloc_failed_sim_control),
5353 		    sc->mbuf_alloc_failed_count++;
5354 		    sc->mbuf_alloc_failed_sim_count++;
5355 		    rc = ENOBUFS;
5356 		    goto bce_get_rx_buf_exit);
5357 
5358 		/* This is a new mbuf allocation. */
5359 		if (bce_hdr_split == TRUE)
5360 			MGETHDR(m_new, M_DONTWAIT, MT_DATA);
5361 		else
5362 			m_new = m_getjcl(M_DONTWAIT, MT_DATA, M_PKTHDR,
5363 			    sc->rx_bd_mbuf_alloc_size);
5364 
5365 		if (m_new == NULL) {
5366 			sc->mbuf_alloc_failed_count++;
5367 			rc = ENOBUFS;
5368 			goto bce_get_rx_buf_exit;
5369 		}
5370 
5371 		DBRUN(sc->debug_rx_mbuf_alloc++);
5372 	} else {
5373 		/* Reuse an existing mbuf. */
5374 		m_new = m;
5375 	}
5376 
5377 	/* Make sure we have a valid packet header. */
5378 	M_ASSERTPKTHDR(m_new);
5379 
5380 	/* Initialize the mbuf size and pad if necessary for alignment. */
5381 	m_new->m_pkthdr.len = m_new->m_len = sc->rx_bd_mbuf_alloc_size;
5382 	m_adj(m_new, sc->rx_bd_mbuf_align_pad);
5383 
5384 	/* ToDo: Consider calling m_fragment() to test error handling. */
5385 
5386 	/* Map the mbuf cluster into device memory. */
5387 	map = sc->rx_mbuf_map[*chain_prod];
5388 	error = bus_dmamap_load_mbuf_sg(sc->rx_mbuf_tag, map, m_new,
5389 	    segs, &nsegs, BUS_DMA_NOWAIT);
5390 
5391 	/* Handle any mapping errors. */
5392 	if (error) {
5393 		BCE_PRINTF("%s(%d): Error mapping mbuf into RX "
5394 		    "chain (%d)!\n", __FILE__, __LINE__, error);
5395 
5396 		sc->dma_map_addr_rx_failed_count++;
5397 		m_freem(m_new);
5398 
5399 		DBRUN(sc->debug_rx_mbuf_alloc--);
5400 
5401 		rc = ENOBUFS;
5402 		goto bce_get_rx_buf_exit;
5403 	}
5404 
5405 	/* All mbufs must map to a single segment. */
5406 	KASSERT(nsegs == 1, ("%s(): Too many segments returned (%d)!",
5407 	    __FUNCTION__, nsegs));
5408 
5409 	/* Setup the rx_bd for the segment. */
5410 	rxbd = &sc->rx_bd_chain[RX_PAGE(*chain_prod)][RX_IDX(*chain_prod)];
5411 
5412 	rxbd->rx_bd_haddr_lo  = htole32(BCE_ADDR_LO(segs[0].ds_addr));
5413 	rxbd->rx_bd_haddr_hi  = htole32(BCE_ADDR_HI(segs[0].ds_addr));
5414 	rxbd->rx_bd_len       = htole32(segs[0].ds_len);
5415 	rxbd->rx_bd_flags     = htole32(RX_BD_FLAGS_START | RX_BD_FLAGS_END);
5416 	*prod_bseq += segs[0].ds_len;
5417 
5418 	/* Save the mbuf and update our counter. */
5419 	sc->rx_mbuf_ptr[*chain_prod] = m_new;
5420 	sc->free_rx_bd -= nsegs;
5421 
5422 	DBRUNMSG(BCE_INSANE_RECV,
5423 	    bce_dump_rx_mbuf_chain(sc, debug_chain_prod, nsegs));
5424 
5425 	DBPRINT(sc, BCE_EXTREME_RECV, "%s(exit): prod = 0x%04X, "
5426 	    "chain_prod = 0x%04X, prod_bseq = 0x%08X\n",
5427 	    __FUNCTION__, *prod, *chain_prod, *prod_bseq);
5428 
5429 bce_get_rx_buf_exit:
5430 	DBEXIT(BCE_EXTREME_RESET | BCE_EXTREME_RECV | BCE_EXTREME_LOAD);
5431 
5432 	return(rc);
5433 }
5434 
5435 
5436 /****************************************************************************/
5437 /* Encapsulate an mbuf cluster into the page chain.                         */
5438 /*                                                                          */
5439 /* Returns:                                                                 */
5440 /*   0 for success, positive value for failure.                             */
5441 /****************************************************************************/
5442 static int
5443 bce_get_pg_buf(struct bce_softc *sc, struct mbuf *m, u16 *prod,
5444 	u16 *prod_idx)
5445 {
5446 	bus_dmamap_t map;
5447 	bus_addr_t busaddr;
5448 	struct mbuf *m_new = NULL;
5449 	struct rx_bd *pgbd;
5450 	int error, rc = 0;
5451 #ifdef BCE_DEBUG
5452 	u16 debug_prod_idx = *prod_idx;
5453 #endif
5454 
5455 	DBENTER(BCE_EXTREME_RESET | BCE_EXTREME_RECV | BCE_EXTREME_LOAD);
5456 
5457 	/* Make sure the inputs are valid. */
5458 	DBRUNIF((*prod_idx > MAX_PG_BD_ALLOC),
5459 	    BCE_PRINTF("%s(%d): page producer out of range: "
5460 	    "0x%04X > 0x%04X\n", __FILE__, __LINE__,
5461 	    *prod_idx, (u16) MAX_PG_BD_ALLOC));
5462 
5463 	DBPRINT(sc, BCE_EXTREME_RECV, "%s(enter): prod = 0x%04X, "
5464 	    "chain_prod = 0x%04X\n", __FUNCTION__, *prod, *prod_idx);
5465 
5466 	/* Update counters if we've hit a new low or run out of pages. */
5467 	DBRUNIF((sc->free_pg_bd < sc->pg_low_watermark),
5468 	    sc->pg_low_watermark = sc->free_pg_bd);
5469 	DBRUNIF((sc->free_pg_bd == sc->max_pg_bd), sc->pg_empty_count++);
5470 
5471 	/* Check whether this is a new mbuf allocation. */
5472 	if (m == NULL) {
5473 
5474 		/* Simulate an mbuf allocation failure. */
5475 		DBRUNIF(DB_RANDOMTRUE(mbuf_alloc_failed_sim_control),
5476 		    sc->mbuf_alloc_failed_count++;
5477 		    sc->mbuf_alloc_failed_sim_count++;
5478 		    rc = ENOBUFS;
5479 		    goto bce_get_pg_buf_exit);
5480 
5481 		/* This is a new mbuf allocation. */
5482 		m_new = m_getcl(M_DONTWAIT, MT_DATA, 0);
5483 		if (m_new == NULL) {
5484 			sc->mbuf_alloc_failed_count++;
5485 			rc = ENOBUFS;
5486 			goto bce_get_pg_buf_exit;
5487 		}
5488 
5489 		DBRUN(sc->debug_pg_mbuf_alloc++);
5490 	} else {
5491 		/* Reuse an existing mbuf. */
5492 		m_new = m;
5493 		m_new->m_data = m_new->m_ext.ext_buf;
5494 	}
5495 
5496 	m_new->m_len = sc->pg_bd_mbuf_alloc_size;
5497 
5498 	/* ToDo: Consider calling m_fragment() to test error handling. */
5499 
5500 	/* Map the mbuf cluster into device memory. */
5501 	map = sc->pg_mbuf_map[*prod_idx];
5502 	error = bus_dmamap_load(sc->pg_mbuf_tag, map, mtod(m_new, void *),
5503 	    sc->pg_bd_mbuf_alloc_size, bce_dma_map_addr,
5504 	    &busaddr, BUS_DMA_NOWAIT);
5505 
5506 	/* Handle any mapping errors. */
5507 	if (error) {
5508 		BCE_PRINTF("%s(%d): Error mapping mbuf into page chain!\n",
5509 		    __FILE__, __LINE__);
5510 
5511 		m_freem(m_new);
5512 		DBRUN(sc->debug_pg_mbuf_alloc--);
5513 
5514 		rc = ENOBUFS;
5515 		goto bce_get_pg_buf_exit;
5516 	}
5517 
5518 	/* ToDo: Do we need bus_dmamap_sync(,,BUS_DMASYNC_PREREAD) here? */
5519 
5520 	/*
5521 	 * The page chain uses the same rx_bd data structure
5522 	 * as the receive chain but doesn't require a byte sequence (bseq).
5523 	 */
5524 	pgbd = &sc->pg_bd_chain[PG_PAGE(*prod_idx)][PG_IDX(*prod_idx)];
5525 
5526 	pgbd->rx_bd_haddr_lo  = htole32(BCE_ADDR_LO(busaddr));
5527 	pgbd->rx_bd_haddr_hi  = htole32(BCE_ADDR_HI(busaddr));
5528 	pgbd->rx_bd_len       = htole32(sc->pg_bd_mbuf_alloc_size);
5529 	pgbd->rx_bd_flags     = htole32(RX_BD_FLAGS_START | RX_BD_FLAGS_END);
5530 
5531 	/* Save the mbuf and update our counter. */
5532 	sc->pg_mbuf_ptr[*prod_idx] = m_new;
5533 	sc->free_pg_bd--;
5534 
5535 	DBRUNMSG(BCE_INSANE_RECV,
5536 	    bce_dump_pg_mbuf_chain(sc, debug_prod_idx, 1));
5537 
5538 	DBPRINT(sc, BCE_EXTREME_RECV, "%s(exit): prod = 0x%04X, "
5539 	    "prod_idx = 0x%04X\n", __FUNCTION__, *prod, *prod_idx);
5540 
5541 bce_get_pg_buf_exit:
5542 	DBEXIT(BCE_EXTREME_RESET | BCE_EXTREME_RECV | BCE_EXTREME_LOAD);
5543 
5544 	return(rc);
5545 }
5546 
5547 
5548 /****************************************************************************/
5549 /* Initialize the TX context memory.                                        */
5550 /*                                                                          */
5551 /* Returns:                                                                 */
5552 /*   Nothing                                                                */
5553 /****************************************************************************/
5554 static void
5555 bce_init_tx_context(struct bce_softc *sc)
5556 {
5557 	u32 val;
5558 
5559 	DBENTER(BCE_VERBOSE_RESET | BCE_VERBOSE_SEND | BCE_VERBOSE_CTX);
5560 
5561 	/* Initialize the context ID for an L2 TX chain. */
5562 	if (BCE_CHIP_NUM(sc) == BCE_CHIP_NUM_5709) {
5563 		/* Set the CID type to support an L2 connection. */
5564 		val = BCE_L2CTX_TX_TYPE_TYPE_L2_XI |
5565 		    BCE_L2CTX_TX_TYPE_SIZE_L2_XI;
5566 		CTX_WR(sc, GET_CID_ADDR(TX_CID), BCE_L2CTX_TX_TYPE_XI, val);
5567 		val = BCE_L2CTX_TX_CMD_TYPE_TYPE_L2_XI | (8 << 16);
5568 		CTX_WR(sc, GET_CID_ADDR(TX_CID),
5569 		    BCE_L2CTX_TX_CMD_TYPE_XI, val);
5570 
5571 		/* Point the hardware to the first page in the chain. */
5572 		val = BCE_ADDR_HI(sc->tx_bd_chain_paddr[0]);
5573 		CTX_WR(sc, GET_CID_ADDR(TX_CID),
5574 		    BCE_L2CTX_TX_TBDR_BHADDR_HI_XI, val);
5575 		val = BCE_ADDR_LO(sc->tx_bd_chain_paddr[0]);
5576 		CTX_WR(sc, GET_CID_ADDR(TX_CID),
5577 		    BCE_L2CTX_TX_TBDR_BHADDR_LO_XI, val);
5578 	} else {
5579 		/* Set the CID type to support an L2 connection. */
5580 		val = BCE_L2CTX_TX_TYPE_TYPE_L2 | BCE_L2CTX_TX_TYPE_SIZE_L2;
5581 		CTX_WR(sc, GET_CID_ADDR(TX_CID), BCE_L2CTX_TX_TYPE, val);
5582 		val = BCE_L2CTX_TX_CMD_TYPE_TYPE_L2 | (8 << 16);
5583 		CTX_WR(sc, GET_CID_ADDR(TX_CID), BCE_L2CTX_TX_CMD_TYPE, val);
5584 
5585 		/* Point the hardware to the first page in the chain. */
5586 		val = BCE_ADDR_HI(sc->tx_bd_chain_paddr[0]);
5587 		CTX_WR(sc, GET_CID_ADDR(TX_CID),
5588 		    BCE_L2CTX_TX_TBDR_BHADDR_HI, val);
5589 		val = BCE_ADDR_LO(sc->tx_bd_chain_paddr[0]);
5590 		CTX_WR(sc, GET_CID_ADDR(TX_CID),
5591 		    BCE_L2CTX_TX_TBDR_BHADDR_LO, val);
5592 	}
5593 
5594 	DBEXIT(BCE_VERBOSE_RESET | BCE_VERBOSE_SEND | BCE_VERBOSE_CTX);
5595 }
5596 
5597 
5598 /****************************************************************************/
5599 /* Allocate memory and initialize the TX data structures.                   */
5600 /*                                                                          */
5601 /* Returns:                                                                 */
5602 /*   0 for success, positive value for failure.                             */
5603 /****************************************************************************/
5604 static int
5605 bce_init_tx_chain(struct bce_softc *sc)
5606 {
5607 	struct tx_bd *txbd;
5608 	int i, rc = 0;
5609 
5610 	DBENTER(BCE_VERBOSE_RESET | BCE_VERBOSE_SEND | BCE_VERBOSE_LOAD);
5611 
5612 	/* Set the initial TX producer/consumer indices. */
5613 	sc->tx_prod        = 0;
5614 	sc->tx_cons        = 0;
5615 	sc->tx_prod_bseq   = 0;
5616 	sc->used_tx_bd     = 0;
5617 	sc->max_tx_bd      = USABLE_TX_BD_ALLOC;
5618 	DBRUN(sc->tx_hi_watermark = 0);
5619 	DBRUN(sc->tx_full_count = 0);
5620 
5621 	/*
5622 	 * The NetXtreme II supports a linked-list structre called
5623 	 * a Buffer Descriptor Chain (or BD chain).  A BD chain
5624 	 * consists of a series of 1 or more chain pages, each of which
5625 	 * consists of a fixed number of BD entries.
5626 	 * The last BD entry on each page is a pointer to the next page
5627 	 * in the chain, and the last pointer in the BD chain
5628 	 * points back to the beginning of the chain.
5629 	 */
5630 
5631 	/* Set the TX next pointer chain entries. */
5632 	for (i = 0; i < sc->tx_pages; i++) {
5633 		int j;
5634 
5635 		txbd = &sc->tx_bd_chain[i][USABLE_TX_BD_PER_PAGE];
5636 
5637 		/* Check if we've reached the last page. */
5638 		if (i == (sc->tx_pages - 1))
5639 			j = 0;
5640 		else
5641 			j = i + 1;
5642 
5643 		txbd->tx_bd_haddr_hi =
5644 		    htole32(BCE_ADDR_HI(sc->tx_bd_chain_paddr[j]));
5645 		txbd->tx_bd_haddr_lo =
5646 		    htole32(BCE_ADDR_LO(sc->tx_bd_chain_paddr[j]));
5647 	}
5648 
5649 	bce_init_tx_context(sc);
5650 
5651 	DBRUNMSG(BCE_INSANE_SEND, bce_dump_tx_chain(sc, 0, TOTAL_TX_BD_ALLOC));
5652 	DBEXIT(BCE_VERBOSE_RESET | BCE_VERBOSE_SEND | BCE_VERBOSE_LOAD);
5653 
5654 	return(rc);
5655 }
5656 
5657 
5658 /****************************************************************************/
5659 /* Free memory and clear the TX data structures.                            */
5660 /*                                                                          */
5661 /* Returns:                                                                 */
5662 /*   Nothing.                                                               */
5663 /****************************************************************************/
5664 static void
5665 bce_free_tx_chain(struct bce_softc *sc)
5666 {
5667 	int i;
5668 
5669 	DBENTER(BCE_VERBOSE_RESET | BCE_VERBOSE_SEND | BCE_VERBOSE_UNLOAD);
5670 
5671 	/* Unmap, unload, and free any mbufs still in the TX mbuf chain. */
5672 	for (i = 0; i < MAX_TX_BD_AVAIL; i++) {
5673 		if (sc->tx_mbuf_ptr[i] != NULL) {
5674 			if (sc->tx_mbuf_map[i] != NULL)
5675 				bus_dmamap_sync(sc->tx_mbuf_tag,
5676 				    sc->tx_mbuf_map[i],
5677 				    BUS_DMASYNC_POSTWRITE);
5678 			m_freem(sc->tx_mbuf_ptr[i]);
5679 			sc->tx_mbuf_ptr[i] = NULL;
5680 			DBRUN(sc->debug_tx_mbuf_alloc--);
5681 		}
5682 	}
5683 
5684 	/* Clear each TX chain page. */
5685 	for (i = 0; i < sc->tx_pages; i++)
5686 		bzero((char *)sc->tx_bd_chain[i], BCE_TX_CHAIN_PAGE_SZ);
5687 
5688 	sc->used_tx_bd = 0;
5689 
5690 	/* Check if we lost any mbufs in the process. */
5691 	DBRUNIF((sc->debug_tx_mbuf_alloc),
5692 	    BCE_PRINTF("%s(%d): Memory leak! Lost %d mbufs "
5693 	    "from tx chain!\n",	__FILE__, __LINE__,
5694 	    sc->debug_tx_mbuf_alloc));
5695 
5696 	DBEXIT(BCE_VERBOSE_RESET | BCE_VERBOSE_SEND | BCE_VERBOSE_UNLOAD);
5697 }
5698 
5699 
5700 /****************************************************************************/
5701 /* Initialize the RX context memory.                                        */
5702 /*                                                                          */
5703 /* Returns:                                                                 */
5704 /*   Nothing                                                                */
5705 /****************************************************************************/
5706 static void
5707 bce_init_rx_context(struct bce_softc *sc)
5708 {
5709 	u32 val;
5710 
5711 	DBENTER(BCE_VERBOSE_RESET | BCE_VERBOSE_RECV | BCE_VERBOSE_CTX);
5712 
5713 	/* Init the type, size, and BD cache levels for the RX context. */
5714 	val = BCE_L2CTX_RX_CTX_TYPE_CTX_BD_CHN_TYPE_VALUE |
5715 	    BCE_L2CTX_RX_CTX_TYPE_SIZE_L2 |
5716 	    (0x02 << BCE_L2CTX_RX_BD_PRE_READ_SHIFT);
5717 
5718 	/*
5719 	 * Set the level for generating pause frames
5720 	 * when the number of available rx_bd's gets
5721 	 * too low (the low watermark) and the level
5722 	 * when pause frames can be stopped (the high
5723 	 * watermark).
5724 	 */
5725 	if (BCE_CHIP_NUM(sc) == BCE_CHIP_NUM_5709) {
5726 		u32 lo_water, hi_water;
5727 
5728 		if (sc->bce_flags & BCE_USING_TX_FLOW_CONTROL) {
5729 			lo_water = BCE_L2CTX_RX_LO_WATER_MARK_DEFAULT;
5730 		} else {
5731 			lo_water = 0;
5732 		}
5733 
5734 		if (lo_water >= USABLE_RX_BD_ALLOC) {
5735 			lo_water = 0;
5736 		}
5737 
5738 		hi_water = USABLE_RX_BD_ALLOC / 4;
5739 
5740 		if (hi_water <= lo_water) {
5741 			lo_water = 0;
5742 		}
5743 
5744 		lo_water /= BCE_L2CTX_RX_LO_WATER_MARK_SCALE;
5745 		hi_water /= BCE_L2CTX_RX_HI_WATER_MARK_SCALE;
5746 
5747 		if (hi_water > 0xf)
5748 			hi_water = 0xf;
5749 		else if (hi_water == 0)
5750 			lo_water = 0;
5751 
5752 		val |= (lo_water << BCE_L2CTX_RX_LO_WATER_MARK_SHIFT) |
5753 		    (hi_water << BCE_L2CTX_RX_HI_WATER_MARK_SHIFT);
5754 	}
5755 
5756 	CTX_WR(sc, GET_CID_ADDR(RX_CID), BCE_L2CTX_RX_CTX_TYPE, val);
5757 
5758 	/* Setup the MQ BIN mapping for l2_ctx_host_bseq. */
5759 	if (BCE_CHIP_NUM(sc) == BCE_CHIP_NUM_5709) {
5760 		val = REG_RD(sc, BCE_MQ_MAP_L2_5);
5761 		REG_WR(sc, BCE_MQ_MAP_L2_5, val | BCE_MQ_MAP_L2_5_ARM);
5762 	}
5763 
5764 	/* Point the hardware to the first page in the chain. */
5765 	val = BCE_ADDR_HI(sc->rx_bd_chain_paddr[0]);
5766 	CTX_WR(sc, GET_CID_ADDR(RX_CID), BCE_L2CTX_RX_NX_BDHADDR_HI, val);
5767 	val = BCE_ADDR_LO(sc->rx_bd_chain_paddr[0]);
5768 	CTX_WR(sc, GET_CID_ADDR(RX_CID), BCE_L2CTX_RX_NX_BDHADDR_LO, val);
5769 
5770 	DBEXIT(BCE_VERBOSE_RESET | BCE_VERBOSE_RECV | BCE_VERBOSE_CTX);
5771 }
5772 
5773 
5774 /****************************************************************************/
5775 /* Allocate memory and initialize the RX data structures.                   */
5776 /*                                                                          */
5777 /* Returns:                                                                 */
5778 /*   0 for success, positive value for failure.                             */
5779 /****************************************************************************/
5780 static int
5781 bce_init_rx_chain(struct bce_softc *sc)
5782 {
5783 	struct rx_bd *rxbd;
5784 	int i, rc = 0;
5785 
5786 	DBENTER(BCE_VERBOSE_RESET | BCE_VERBOSE_RECV | BCE_VERBOSE_LOAD |
5787 	    BCE_VERBOSE_CTX);
5788 
5789 	/* Initialize the RX producer and consumer indices. */
5790 	sc->rx_prod        = 0;
5791 	sc->rx_cons        = 0;
5792 	sc->rx_prod_bseq   = 0;
5793 	sc->free_rx_bd     = USABLE_RX_BD_ALLOC;
5794 	sc->max_rx_bd      = USABLE_RX_BD_ALLOC;
5795 
5796 	/* Initialize the RX next pointer chain entries. */
5797 	for (i = 0; i < sc->rx_pages; i++) {
5798 		int j;
5799 
5800 		rxbd = &sc->rx_bd_chain[i][USABLE_RX_BD_PER_PAGE];
5801 
5802 		/* Check if we've reached the last page. */
5803 		if (i == (sc->rx_pages - 1))
5804 			j = 0;
5805 		else
5806 			j = i + 1;
5807 
5808 		/* Setup the chain page pointers. */
5809 		rxbd->rx_bd_haddr_hi =
5810 		    htole32(BCE_ADDR_HI(sc->rx_bd_chain_paddr[j]));
5811 		rxbd->rx_bd_haddr_lo =
5812 		    htole32(BCE_ADDR_LO(sc->rx_bd_chain_paddr[j]));
5813 	}
5814 
5815 	/* Fill up the RX chain. */
5816 	bce_fill_rx_chain(sc);
5817 
5818 	DBRUN(sc->rx_low_watermark = USABLE_RX_BD_ALLOC);
5819 	DBRUN(sc->rx_empty_count = 0);
5820 	for (i = 0; i < sc->rx_pages; i++) {
5821 		bus_dmamap_sync(sc->rx_bd_chain_tag, sc->rx_bd_chain_map[i],
5822 		    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
5823 	}
5824 
5825 	bce_init_rx_context(sc);
5826 
5827 	DBRUNMSG(BCE_EXTREME_RECV,
5828 	    bce_dump_rx_bd_chain(sc, 0, TOTAL_RX_BD_ALLOC));
5829 	DBEXIT(BCE_VERBOSE_RESET | BCE_VERBOSE_RECV | BCE_VERBOSE_LOAD |
5830 	    BCE_VERBOSE_CTX);
5831 
5832 	/* ToDo: Are there possible failure modes here? */
5833 
5834 	return(rc);
5835 }
5836 
5837 
5838 /****************************************************************************/
5839 /* Add mbufs to the RX chain until its full or an mbuf allocation error     */
5840 /* occurs.                                                                  */
5841 /*                                                                          */
5842 /* Returns:                                                                 */
5843 /*   Nothing                                                                */
5844 /****************************************************************************/
5845 static void
5846 bce_fill_rx_chain(struct bce_softc *sc)
5847 {
5848 	u16 prod, prod_idx;
5849 	u32 prod_bseq;
5850 
5851 	DBENTER(BCE_VERBOSE_RESET | BCE_EXTREME_RECV | BCE_VERBOSE_LOAD |
5852 	    BCE_VERBOSE_CTX);
5853 
5854 	/* Get the RX chain producer indices. */
5855 	prod      = sc->rx_prod;
5856 	prod_bseq = sc->rx_prod_bseq;
5857 
5858 	/* Keep filling the RX chain until it's full. */
5859 	while (sc->free_rx_bd > 0) {
5860 		prod_idx = RX_CHAIN_IDX(prod);
5861 		if (bce_get_rx_buf(sc, NULL, &prod, &prod_idx, &prod_bseq)) {
5862 			/* Bail out if we can't add an mbuf to the chain. */
5863 			break;
5864 		}
5865 		prod = NEXT_RX_BD(prod);
5866 	}
5867 
5868 	/* Save the RX chain producer indices. */
5869 	sc->rx_prod      = prod;
5870 	sc->rx_prod_bseq = prod_bseq;
5871 
5872 	/* We should never end up pointing to a next page pointer. */
5873 	DBRUNIF(((prod & USABLE_RX_BD_PER_PAGE) == USABLE_RX_BD_PER_PAGE),
5874 	    BCE_PRINTF("%s(): Invalid rx_prod value: 0x%04X\n",
5875 	    __FUNCTION__, sc->rx_prod));
5876 
5877 	/* Write the mailbox and tell the chip about the waiting rx_bd's. */
5878 	REG_WR16(sc, MB_GET_CID_ADDR(RX_CID) +
5879 	    BCE_L2MQ_RX_HOST_BDIDX, sc->rx_prod);
5880 	REG_WR(sc, MB_GET_CID_ADDR(RX_CID) +
5881 	    BCE_L2MQ_RX_HOST_BSEQ, sc->rx_prod_bseq);
5882 
5883 	DBEXIT(BCE_VERBOSE_RESET | BCE_EXTREME_RECV | BCE_VERBOSE_LOAD |
5884 	    BCE_VERBOSE_CTX);
5885 }
5886 
5887 
5888 /****************************************************************************/
5889 /* Free memory and clear the RX data structures.                            */
5890 /*                                                                          */
5891 /* Returns:                                                                 */
5892 /*   Nothing.                                                               */
5893 /****************************************************************************/
5894 static void
5895 bce_free_rx_chain(struct bce_softc *sc)
5896 {
5897 	int i;
5898 
5899 	DBENTER(BCE_VERBOSE_RESET | BCE_VERBOSE_RECV | BCE_VERBOSE_UNLOAD);
5900 
5901 	/* Free any mbufs still in the RX mbuf chain. */
5902 	for (i = 0; i < MAX_RX_BD_AVAIL; i++) {
5903 		if (sc->rx_mbuf_ptr[i] != NULL) {
5904 			if (sc->rx_mbuf_map[i] != NULL)
5905 				bus_dmamap_sync(sc->rx_mbuf_tag,
5906 				    sc->rx_mbuf_map[i],
5907 				    BUS_DMASYNC_POSTREAD);
5908 			m_freem(sc->rx_mbuf_ptr[i]);
5909 			sc->rx_mbuf_ptr[i] = NULL;
5910 			DBRUN(sc->debug_rx_mbuf_alloc--);
5911 		}
5912 	}
5913 
5914 	/* Clear each RX chain page. */
5915 	for (i = 0; i < sc->rx_pages; i++)
5916 		if (sc->rx_bd_chain[i] != NULL) {
5917 			bzero((char *)sc->rx_bd_chain[i],
5918 			    BCE_RX_CHAIN_PAGE_SZ);
5919 		}
5920 
5921 	sc->free_rx_bd = sc->max_rx_bd;
5922 
5923 	/* Check if we lost any mbufs in the process. */
5924 	DBRUNIF((sc->debug_rx_mbuf_alloc),
5925 	    BCE_PRINTF("%s(): Memory leak! Lost %d mbufs from rx chain!\n",
5926 	    __FUNCTION__, sc->debug_rx_mbuf_alloc));
5927 
5928 	DBEXIT(BCE_VERBOSE_RESET | BCE_VERBOSE_RECV | BCE_VERBOSE_UNLOAD);
5929 }
5930 
5931 
5932 /****************************************************************************/
5933 /* Allocate memory and initialize the page data structures.                 */
5934 /* Assumes that bce_init_rx_chain() has not already been called.            */
5935 /*                                                                          */
5936 /* Returns:                                                                 */
5937 /*   0 for success, positive value for failure.                             */
5938 /****************************************************************************/
5939 static int
5940 bce_init_pg_chain(struct bce_softc *sc)
5941 {
5942 	struct rx_bd *pgbd;
5943 	int i, rc = 0;
5944 	u32 val;
5945 
5946 	DBENTER(BCE_VERBOSE_RESET | BCE_VERBOSE_RECV | BCE_VERBOSE_LOAD |
5947 		BCE_VERBOSE_CTX);
5948 
5949 	/* Initialize the page producer and consumer indices. */
5950 	sc->pg_prod        = 0;
5951 	sc->pg_cons        = 0;
5952 	sc->free_pg_bd     = USABLE_PG_BD_ALLOC;
5953 	sc->max_pg_bd      = USABLE_PG_BD_ALLOC;
5954 	DBRUN(sc->pg_low_watermark = sc->max_pg_bd);
5955 	DBRUN(sc->pg_empty_count = 0);
5956 
5957 	/* Initialize the page next pointer chain entries. */
5958 	for (i = 0; i < sc->pg_pages; i++) {
5959 		int j;
5960 
5961 		pgbd = &sc->pg_bd_chain[i][USABLE_PG_BD_PER_PAGE];
5962 
5963 		/* Check if we've reached the last page. */
5964 		if (i == (sc->pg_pages - 1))
5965 			j = 0;
5966 		else
5967 			j = i + 1;
5968 
5969 		/* Setup the chain page pointers. */
5970 		pgbd->rx_bd_haddr_hi =
5971 		    htole32(BCE_ADDR_HI(sc->pg_bd_chain_paddr[j]));
5972 		pgbd->rx_bd_haddr_lo =
5973 		    htole32(BCE_ADDR_LO(sc->pg_bd_chain_paddr[j]));
5974 	}
5975 
5976 	/* Setup the MQ BIN mapping for host_pg_bidx. */
5977 	if (BCE_CHIP_NUM(sc) == BCE_CHIP_NUM_5709)
5978 		REG_WR(sc, BCE_MQ_MAP_L2_3, BCE_MQ_MAP_L2_3_DEFAULT);
5979 
5980 	CTX_WR(sc, GET_CID_ADDR(RX_CID), BCE_L2CTX_RX_PG_BUF_SIZE, 0);
5981 
5982 	/* Configure the rx_bd and page chain mbuf cluster size. */
5983 	val = (sc->rx_bd_mbuf_data_len << 16) | sc->pg_bd_mbuf_alloc_size;
5984 	CTX_WR(sc, GET_CID_ADDR(RX_CID), BCE_L2CTX_RX_PG_BUF_SIZE, val);
5985 
5986 	/* Configure the context reserved for jumbo support. */
5987 	CTX_WR(sc, GET_CID_ADDR(RX_CID), BCE_L2CTX_RX_RBDC_KEY,
5988 		BCE_L2CTX_RX_RBDC_JUMBO_KEY);
5989 
5990 	/* Point the hardware to the first page in the page chain. */
5991 	val = BCE_ADDR_HI(sc->pg_bd_chain_paddr[0]);
5992 	CTX_WR(sc, GET_CID_ADDR(RX_CID), BCE_L2CTX_RX_NX_PG_BDHADDR_HI, val);
5993 	val = BCE_ADDR_LO(sc->pg_bd_chain_paddr[0]);
5994 	CTX_WR(sc, GET_CID_ADDR(RX_CID), BCE_L2CTX_RX_NX_PG_BDHADDR_LO, val);
5995 
5996 	/* Fill up the page chain. */
5997 	bce_fill_pg_chain(sc);
5998 
5999 	for (i = 0; i < sc->pg_pages; i++) {
6000 		bus_dmamap_sync(sc->pg_bd_chain_tag, sc->pg_bd_chain_map[i],
6001 		    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
6002 	}
6003 
6004 	DBRUNMSG(BCE_EXTREME_RECV,
6005 	    bce_dump_pg_chain(sc, 0, TOTAL_PG_BD_ALLOC));
6006 	DBEXIT(BCE_VERBOSE_RESET | BCE_VERBOSE_RECV | BCE_VERBOSE_LOAD |
6007 		BCE_VERBOSE_CTX);
6008 	return(rc);
6009 }
6010 
6011 
6012 /****************************************************************************/
6013 /* Add mbufs to the page chain until its full or an mbuf allocation error   */
6014 /* occurs.                                                                  */
6015 /*                                                                          */
6016 /* Returns:                                                                 */
6017 /*   Nothing                                                                */
6018 /****************************************************************************/
6019 static void
6020 bce_fill_pg_chain(struct bce_softc *sc)
6021 {
6022 	u16 prod, prod_idx;
6023 
6024 	DBENTER(BCE_VERBOSE_RESET | BCE_EXTREME_RECV | BCE_VERBOSE_LOAD |
6025 	    BCE_VERBOSE_CTX);
6026 
6027 	/* Get the page chain prodcuer index. */
6028 	prod = sc->pg_prod;
6029 
6030 	/* Keep filling the page chain until it's full. */
6031 	while (sc->free_pg_bd > 0) {
6032 		prod_idx = PG_CHAIN_IDX(prod);
6033 		if (bce_get_pg_buf(sc, NULL, &prod, &prod_idx)) {
6034 			/* Bail out if we can't add an mbuf to the chain. */
6035 			break;
6036 		}
6037 		prod = NEXT_PG_BD(prod);
6038 	}
6039 
6040 	/* Save the page chain producer index. */
6041 	sc->pg_prod = prod;
6042 
6043 	DBRUNIF(((prod & USABLE_RX_BD_PER_PAGE) == USABLE_RX_BD_PER_PAGE),
6044 	    BCE_PRINTF("%s(): Invalid pg_prod value: 0x%04X\n",
6045 	    __FUNCTION__, sc->pg_prod));
6046 
6047 	/*
6048 	 * Write the mailbox and tell the chip about
6049 	 * the new rx_bd's in the page chain.
6050 	 */
6051 	REG_WR16(sc, MB_GET_CID_ADDR(RX_CID) +
6052 	    BCE_L2MQ_RX_HOST_PG_BDIDX, sc->pg_prod);
6053 
6054 	DBEXIT(BCE_VERBOSE_RESET | BCE_EXTREME_RECV | BCE_VERBOSE_LOAD |
6055 	    BCE_VERBOSE_CTX);
6056 }
6057 
6058 
6059 /****************************************************************************/
6060 /* Free memory and clear the RX data structures.                            */
6061 /*                                                                          */
6062 /* Returns:                                                                 */
6063 /*   Nothing.                                                               */
6064 /****************************************************************************/
6065 static void
6066 bce_free_pg_chain(struct bce_softc *sc)
6067 {
6068 	int i;
6069 
6070 	DBENTER(BCE_VERBOSE_RESET | BCE_VERBOSE_RECV | BCE_VERBOSE_UNLOAD);
6071 
6072 	/* Free any mbufs still in the mbuf page chain. */
6073 	for (i = 0; i < MAX_PG_BD_AVAIL; i++) {
6074 		if (sc->pg_mbuf_ptr[i] != NULL) {
6075 			if (sc->pg_mbuf_map[i] != NULL)
6076 				bus_dmamap_sync(sc->pg_mbuf_tag,
6077 				    sc->pg_mbuf_map[i],
6078 				    BUS_DMASYNC_POSTREAD);
6079 			m_freem(sc->pg_mbuf_ptr[i]);
6080 			sc->pg_mbuf_ptr[i] = NULL;
6081 			DBRUN(sc->debug_pg_mbuf_alloc--);
6082 		}
6083 	}
6084 
6085 	/* Clear each page chain pages. */
6086 	for (i = 0; i < sc->pg_pages; i++)
6087 		bzero((char *)sc->pg_bd_chain[i], BCE_PG_CHAIN_PAGE_SZ);
6088 
6089 	sc->free_pg_bd = sc->max_pg_bd;
6090 
6091 	/* Check if we lost any mbufs in the process. */
6092 	DBRUNIF((sc->debug_pg_mbuf_alloc),
6093 	    BCE_PRINTF("%s(): Memory leak! Lost %d mbufs from page chain!\n",
6094 	    __FUNCTION__, sc->debug_pg_mbuf_alloc));
6095 
6096 	DBEXIT(BCE_VERBOSE_RESET | BCE_VERBOSE_RECV | BCE_VERBOSE_UNLOAD);
6097 }
6098 
6099 
6100 /****************************************************************************/
6101 /* Set media options.                                                       */
6102 /*                                                                          */
6103 /* Returns:                                                                 */
6104 /*   0 for success, positive value for failure.                             */
6105 /****************************************************************************/
6106 static int
6107 bce_ifmedia_upd(struct ifnet *ifp)
6108 {
6109 	struct bce_softc *sc = ifp->if_softc;
6110 	int error;
6111 
6112 	DBENTER(BCE_VERBOSE);
6113 
6114 	BCE_LOCK(sc);
6115 	error = bce_ifmedia_upd_locked(ifp);
6116 	BCE_UNLOCK(sc);
6117 
6118 	DBEXIT(BCE_VERBOSE);
6119 	return (error);
6120 }
6121 
6122 
6123 /****************************************************************************/
6124 /* Set media options.                                                       */
6125 /*                                                                          */
6126 /* Returns:                                                                 */
6127 /*   Nothing.                                                               */
6128 /****************************************************************************/
6129 static int
6130 bce_ifmedia_upd_locked(struct ifnet *ifp)
6131 {
6132 	struct bce_softc *sc = ifp->if_softc;
6133 	struct mii_data *mii;
6134 	struct mii_softc *miisc;
6135 	int error;
6136 
6137 	DBENTER(BCE_VERBOSE_PHY);
6138 
6139 	error = 0;
6140 	BCE_LOCK_ASSERT(sc);
6141 
6142 	mii = device_get_softc(sc->bce_miibus);
6143 
6144 	/* Make sure the MII bus has been enumerated. */
6145 	if (mii) {
6146 		sc->bce_link_up = FALSE;
6147 		LIST_FOREACH(miisc, &mii->mii_phys, mii_list)
6148 		    PHY_RESET(miisc);
6149 		error = mii_mediachg(mii);
6150 	}
6151 
6152 	DBEXIT(BCE_VERBOSE_PHY);
6153 	return (error);
6154 }
6155 
6156 
6157 /****************************************************************************/
6158 /* Reports current media status.                                            */
6159 /*                                                                          */
6160 /* Returns:                                                                 */
6161 /*   Nothing.                                                               */
6162 /****************************************************************************/
6163 static void
6164 bce_ifmedia_sts(struct ifnet *ifp, struct ifmediareq *ifmr)
6165 {
6166 	struct bce_softc *sc = ifp->if_softc;
6167 	struct mii_data *mii;
6168 
6169 	DBENTER(BCE_VERBOSE_PHY);
6170 
6171 	BCE_LOCK(sc);
6172 
6173 	if ((ifp->if_flags & IFF_UP) == 0) {
6174 		BCE_UNLOCK(sc);
6175 		return;
6176 	}
6177 	mii = device_get_softc(sc->bce_miibus);
6178 
6179 	mii_pollstat(mii);
6180 	ifmr->ifm_active = mii->mii_media_active;
6181 	ifmr->ifm_status = mii->mii_media_status;
6182 
6183 	BCE_UNLOCK(sc);
6184 
6185 	DBEXIT(BCE_VERBOSE_PHY);
6186 }
6187 
6188 
6189 /****************************************************************************/
6190 /* Handles PHY generated interrupt events.                                  */
6191 /*                                                                          */
6192 /* Returns:                                                                 */
6193 /*   Nothing.                                                               */
6194 /****************************************************************************/
6195 static void
6196 bce_phy_intr(struct bce_softc *sc)
6197 {
6198 	u32 new_link_state, old_link_state;
6199 
6200 	DBENTER(BCE_VERBOSE_PHY | BCE_VERBOSE_INTR);
6201 
6202 	DBRUN(sc->phy_interrupts++);
6203 
6204 	new_link_state = sc->status_block->status_attn_bits &
6205 	    STATUS_ATTN_BITS_LINK_STATE;
6206 	old_link_state = sc->status_block->status_attn_bits_ack &
6207 	    STATUS_ATTN_BITS_LINK_STATE;
6208 
6209 	/* Handle any changes if the link state has changed. */
6210 	if (new_link_state != old_link_state) {
6211 
6212 		/* Update the status_attn_bits_ack field. */
6213 		if (new_link_state) {
6214 			REG_WR(sc, BCE_PCICFG_STATUS_BIT_SET_CMD,
6215 			    STATUS_ATTN_BITS_LINK_STATE);
6216 			DBPRINT(sc, BCE_INFO_PHY, "%s(): Link is now UP.\n",
6217 			    __FUNCTION__);
6218 		}
6219 		else {
6220 			REG_WR(sc, BCE_PCICFG_STATUS_BIT_CLEAR_CMD,
6221 			    STATUS_ATTN_BITS_LINK_STATE);
6222 			DBPRINT(sc, BCE_INFO_PHY, "%s(): Link is now DOWN.\n",
6223 			    __FUNCTION__);
6224 		}
6225 		/*
6226 		 * Link state changed, allow tick routine to update
6227 		 * the state baased on actual media state.
6228 		 */
6229 		sc->bce_link_tick = TRUE;
6230 	}
6231 
6232 	/* Acknowledge the link change interrupt. */
6233 	REG_WR(sc, BCE_EMAC_STATUS, BCE_EMAC_STATUS_LINK_CHANGE);
6234 
6235 	DBEXIT(BCE_VERBOSE_PHY | BCE_VERBOSE_INTR);
6236 }
6237 
6238 
6239 /****************************************************************************/
6240 /* Reads the receive consumer value from the status block (skipping over    */
6241 /* chain page pointer if necessary).                                        */
6242 /*                                                                          */
6243 /* Returns:                                                                 */
6244 /*   hw_cons                                                                */
6245 /****************************************************************************/
6246 static inline u16
6247 bce_get_hw_rx_cons(struct bce_softc *sc)
6248 {
6249 	u16 hw_cons;
6250 
6251 	rmb();
6252 	hw_cons = sc->status_block->status_rx_quick_consumer_index0;
6253 	if ((hw_cons & USABLE_RX_BD_PER_PAGE) == USABLE_RX_BD_PER_PAGE)
6254 		hw_cons++;
6255 
6256 	return hw_cons;
6257 }
6258 
6259 /****************************************************************************/
6260 /* Handles received frame interrupt events.                                 */
6261 /*                                                                          */
6262 /* Returns:                                                                 */
6263 /*   Nothing.                                                               */
6264 /****************************************************************************/
6265 static void
6266 bce_rx_intr(struct bce_softc *sc)
6267 {
6268 	struct ifnet *ifp = sc->bce_ifp;
6269 	struct l2_fhdr *l2fhdr;
6270 	struct ether_vlan_header *vh;
6271 	unsigned int pkt_len;
6272 	u16 sw_rx_cons, sw_rx_cons_idx, hw_rx_cons;
6273 	u32 status;
6274 	unsigned int rem_len;
6275 	u16 sw_pg_cons, sw_pg_cons_idx;
6276 
6277 	DBENTER(BCE_VERBOSE_RECV | BCE_VERBOSE_INTR);
6278 	DBRUN(sc->interrupts_rx++);
6279 	DBPRINT(sc, BCE_EXTREME_RECV, "%s(enter): rx_prod = 0x%04X, "
6280 	    "rx_cons = 0x%04X, rx_prod_bseq = 0x%08X\n",
6281 	    __FUNCTION__, sc->rx_prod, sc->rx_cons, sc->rx_prod_bseq);
6282 
6283 	/* Prepare the RX chain pages to be accessed by the host CPU. */
6284 	for (int i = 0; i < sc->rx_pages; i++)
6285 		bus_dmamap_sync(sc->rx_bd_chain_tag,
6286 		    sc->rx_bd_chain_map[i], BUS_DMASYNC_POSTREAD);
6287 
6288 	/* Prepare the page chain pages to be accessed by the host CPU. */
6289 	if (bce_hdr_split == TRUE) {
6290 		for (int i = 0; i < sc->pg_pages; i++)
6291 			bus_dmamap_sync(sc->pg_bd_chain_tag,
6292 			    sc->pg_bd_chain_map[i], BUS_DMASYNC_POSTREAD);
6293 	}
6294 
6295 	/* Get the hardware's view of the RX consumer index. */
6296 	hw_rx_cons = sc->hw_rx_cons = bce_get_hw_rx_cons(sc);
6297 
6298 	/* Get working copies of the driver's view of the consumer indices. */
6299 	sw_rx_cons = sc->rx_cons;
6300 	sw_pg_cons = sc->pg_cons;
6301 
6302 	/* Update some debug statistics counters */
6303 	DBRUNIF((sc->free_rx_bd < sc->rx_low_watermark),
6304 	    sc->rx_low_watermark = sc->free_rx_bd);
6305 	DBRUNIF((sc->free_rx_bd == sc->max_rx_bd),
6306 	    sc->rx_empty_count++);
6307 
6308 	/* Scan through the receive chain as long as there is work to do */
6309 	/* ToDo: Consider setting a limit on the number of packets processed. */
6310 	rmb();
6311 	while (sw_rx_cons != hw_rx_cons) {
6312 		struct mbuf *m0;
6313 
6314 		/* Convert the producer/consumer indices to an actual rx_bd index. */
6315 		sw_rx_cons_idx = RX_CHAIN_IDX(sw_rx_cons);
6316 
6317 		/* Unmap the mbuf from DMA space. */
6318 		bus_dmamap_sync(sc->rx_mbuf_tag,
6319 		    sc->rx_mbuf_map[sw_rx_cons_idx],
6320 		    BUS_DMASYNC_POSTREAD);
6321 		bus_dmamap_unload(sc->rx_mbuf_tag,
6322 		    sc->rx_mbuf_map[sw_rx_cons_idx]);
6323 
6324 		/* Remove the mbuf from the RX chain. */
6325 		m0 = sc->rx_mbuf_ptr[sw_rx_cons_idx];
6326 		sc->rx_mbuf_ptr[sw_rx_cons_idx] = NULL;
6327 		DBRUN(sc->debug_rx_mbuf_alloc--);
6328 		sc->free_rx_bd++;
6329 
6330 		if(m0 == NULL) {
6331 			DBPRINT(sc, BCE_EXTREME_RECV,
6332 			    "%s(): Oops! Empty mbuf pointer "
6333 			    "found in sc->rx_mbuf_ptr[0x%04X]!\n",
6334 			    __FUNCTION__, sw_rx_cons_idx);
6335 			goto bce_rx_int_next_rx;
6336 		}
6337 
6338 		/*
6339  		 * Frames received on the NetXteme II are prepended
6340  		 * with an l2_fhdr structure which provides status
6341  		 * information about the received frame (including
6342  		 * VLAN tags and checksum info).  The frames are
6343 		 * also automatically adjusted to word align the IP
6344  		 * header (i.e. two null bytes are inserted before
6345  		 * the Ethernet	header).  As a result the data
6346  		 * DMA'd by the controller into	the mbuf looks
6347 		 * like this:
6348 		 *
6349 		 * +---------+-----+---------------------+-----+
6350 		 * | l2_fhdr | pad | packet data         | FCS |
6351 		 * +---------+-----+---------------------+-----+
6352 		 *
6353  		 * The l2_fhdr needs to be checked and skipped and
6354  		 * the FCS needs to be stripped before sending the
6355 		 * packet up the stack.
6356 		 */
6357 		l2fhdr  = mtod(m0, struct l2_fhdr *);
6358 
6359 		/* Get the packet data + FCS length and the status. */
6360 		pkt_len = l2fhdr->l2_fhdr_pkt_len;
6361 		status  = l2fhdr->l2_fhdr_status;
6362 
6363 		/*
6364 		 * Skip over the l2_fhdr and pad, resulting in the
6365 		 * following data in the mbuf:
6366 		 * +---------------------+-----+
6367 		 * | packet data         | FCS |
6368 		 * +---------------------+-----+
6369 		 */
6370 		m_adj(m0, sizeof(struct l2_fhdr) + ETHER_ALIGN);
6371 
6372 		/*
6373  		 * When split header mode is used, an ethernet frame
6374  		 * may be split across the receive chain and the
6375  		 * page chain. If that occurs an mbuf cluster must be
6376  		 * reassembled from the individual mbuf pieces.
6377 		 */
6378 		if (bce_hdr_split == TRUE) {
6379 			/*
6380 			 * Check whether the received frame fits in a single
6381 			 * mbuf or not (i.e. packet data + FCS <=
6382 			 * sc->rx_bd_mbuf_data_len bytes).
6383 			 */
6384 			if (pkt_len > m0->m_len) {
6385 				/*
6386 				 * The received frame is larger than a single mbuf.
6387 				 * If the frame was a TCP frame then only the TCP
6388 				 * header is placed in the mbuf, the remaining
6389 				 * payload (including FCS) is placed in the page
6390 				 * chain, the SPLIT flag is set, and the header
6391 				 * length is placed in the IP checksum field.
6392 				 * If the frame is not a TCP frame then the mbuf
6393 				 * is filled and the remaining bytes are placed
6394 				 * in the page chain.
6395 				 */
6396 
6397 				DBPRINT(sc, BCE_INFO_RECV, "%s(): Found a large "
6398 					"packet.\n", __FUNCTION__);
6399 				DBRUN(sc->split_header_frames_rcvd++);
6400 
6401 				/*
6402 				 * When the page chain is enabled and the TCP
6403 				 * header has been split from the TCP payload,
6404 				 * the ip_xsum structure will reflect the length
6405 				 * of the TCP header, not the IP checksum.  Set
6406 				 * the packet length of the mbuf accordingly.
6407 				 */
6408 				if (status & L2_FHDR_STATUS_SPLIT) {
6409 					m0->m_len = l2fhdr->l2_fhdr_ip_xsum;
6410 					DBRUN(sc->split_header_tcp_frames_rcvd++);
6411 				}
6412 
6413 				rem_len = pkt_len - m0->m_len;
6414 
6415 				/* Pull mbufs off the page chain for any remaining data. */
6416 				while (rem_len > 0) {
6417 					struct mbuf *m_pg;
6418 
6419 					sw_pg_cons_idx = PG_CHAIN_IDX(sw_pg_cons);
6420 
6421 					/* Remove the mbuf from the page chain. */
6422 					m_pg = sc->pg_mbuf_ptr[sw_pg_cons_idx];
6423 					sc->pg_mbuf_ptr[sw_pg_cons_idx] = NULL;
6424 					DBRUN(sc->debug_pg_mbuf_alloc--);
6425 					sc->free_pg_bd++;
6426 
6427 					/* Unmap the page chain mbuf from DMA space. */
6428 					bus_dmamap_sync(sc->pg_mbuf_tag,
6429 						sc->pg_mbuf_map[sw_pg_cons_idx],
6430 						BUS_DMASYNC_POSTREAD);
6431 					bus_dmamap_unload(sc->pg_mbuf_tag,
6432 						sc->pg_mbuf_map[sw_pg_cons_idx]);
6433 
6434 					/* Adjust the mbuf length. */
6435 					if (rem_len < m_pg->m_len) {
6436 						/* The mbuf chain is complete. */
6437 						m_pg->m_len = rem_len;
6438 						rem_len = 0;
6439 					} else {
6440 						/* More packet data is waiting. */
6441 						rem_len -= m_pg->m_len;
6442 					}
6443 
6444 					/* Concatenate the mbuf cluster to the mbuf. */
6445 					m_cat(m0, m_pg);
6446 
6447 					sw_pg_cons = NEXT_PG_BD(sw_pg_cons);
6448 				}
6449 
6450 				/* Set the total packet length. */
6451 				m0->m_pkthdr.len = pkt_len;
6452 
6453 			} else {
6454 				/*
6455 				 * The received packet is small and fits in a
6456 				 * single mbuf (i.e. the l2_fhdr + pad + packet +
6457 				 * FCS <= MHLEN).  In other words, the packet is
6458 				 * 154 bytes or less in size.
6459 				 */
6460 
6461 				DBPRINT(sc, BCE_INFO_RECV, "%s(): Found a small "
6462 					"packet.\n", __FUNCTION__);
6463 
6464 				/* Set the total packet length. */
6465 				m0->m_pkthdr.len = m0->m_len = pkt_len;
6466 			}
6467 		} else
6468 			/* Set the total packet length. */
6469 			m0->m_pkthdr.len = m0->m_len = pkt_len;
6470 
6471 		/* Remove the trailing Ethernet FCS. */
6472 		m_adj(m0, -ETHER_CRC_LEN);
6473 
6474 		/* Check that the resulting mbuf chain is valid. */
6475 		DBRUN(m_sanity(m0, FALSE));
6476 		DBRUNIF(((m0->m_len < ETHER_HDR_LEN) |
6477 		    (m0->m_pkthdr.len > BCE_MAX_JUMBO_ETHER_MTU_VLAN)),
6478 		    BCE_PRINTF("Invalid Ethernet frame size!\n");
6479 		    m_print(m0, 128));
6480 
6481 		DBRUNIF(DB_RANDOMTRUE(l2fhdr_error_sim_control),
6482 		    sc->l2fhdr_error_sim_count++;
6483 		    status = status | L2_FHDR_ERRORS_PHY_DECODE);
6484 
6485 		/* Check the received frame for errors. */
6486 		if (status & (L2_FHDR_ERRORS_BAD_CRC |
6487 		    L2_FHDR_ERRORS_PHY_DECODE | L2_FHDR_ERRORS_ALIGNMENT |
6488 		    L2_FHDR_ERRORS_TOO_SHORT  | L2_FHDR_ERRORS_GIANT_FRAME)) {
6489 
6490 			/* Log the error and release the mbuf. */
6491 			ifp->if_ierrors++;
6492 			sc->l2fhdr_error_count++;
6493 
6494 			m_freem(m0);
6495 			m0 = NULL;
6496 			goto bce_rx_int_next_rx;
6497 		}
6498 
6499 		/* Send the packet to the appropriate interface. */
6500 		m0->m_pkthdr.rcvif = ifp;
6501 
6502 		/* Assume no hardware checksum. */
6503 		m0->m_pkthdr.csum_flags = 0;
6504 
6505 		/* Validate the checksum if offload enabled. */
6506 		if (ifp->if_capenable & IFCAP_RXCSUM) {
6507 
6508 			/* Check for an IP datagram. */
6509 		 	if (!(status & L2_FHDR_STATUS_SPLIT) &&
6510 			    (status & L2_FHDR_STATUS_IP_DATAGRAM)) {
6511 				m0->m_pkthdr.csum_flags |= CSUM_IP_CHECKED;
6512 				DBRUN(sc->csum_offload_ip++);
6513 				/* Check if the IP checksum is valid. */
6514 				if ((l2fhdr->l2_fhdr_ip_xsum ^ 0xffff) == 0)
6515 					m0->m_pkthdr.csum_flags |=
6516 					    CSUM_IP_VALID;
6517 			}
6518 
6519 			/* Check for a valid TCP/UDP frame. */
6520 			if (status & (L2_FHDR_STATUS_TCP_SEGMENT |
6521 			    L2_FHDR_STATUS_UDP_DATAGRAM)) {
6522 
6523 				/* Check for a good TCP/UDP checksum. */
6524 				if ((status & (L2_FHDR_ERRORS_TCP_XSUM |
6525 				    L2_FHDR_ERRORS_UDP_XSUM)) == 0) {
6526 					DBRUN(sc->csum_offload_tcp_udp++);
6527 					m0->m_pkthdr.csum_data =
6528 					    l2fhdr->l2_fhdr_tcp_udp_xsum;
6529 					m0->m_pkthdr.csum_flags |=
6530 					    (CSUM_DATA_VALID
6531 					    | CSUM_PSEUDO_HDR);
6532 				}
6533 			}
6534 		}
6535 
6536 		/* Attach the VLAN tag.	*/
6537 		if (status & L2_FHDR_STATUS_L2_VLAN_TAG) {
6538 			DBRUN(sc->vlan_tagged_frames_rcvd++);
6539 			if (ifp->if_capenable & IFCAP_VLAN_HWTAGGING) {
6540 				DBRUN(sc->vlan_tagged_frames_stripped++);
6541 #if __FreeBSD_version < 700000
6542 				VLAN_INPUT_TAG(ifp, m0,
6543 				    l2fhdr->l2_fhdr_vlan_tag, continue);
6544 #else
6545 				m0->m_pkthdr.ether_vtag =
6546 				    l2fhdr->l2_fhdr_vlan_tag;
6547 				m0->m_flags |= M_VLANTAG;
6548 #endif
6549 			} else {
6550 				/*
6551 				 * bce(4) controllers can't disable VLAN
6552 				 * tag stripping if management firmware
6553 				 * (ASF/IPMI/UMP) is running. So we always
6554 				 * strip VLAN tag and manually reconstruct
6555 				 * the VLAN frame by appending stripped
6556 				 * VLAN tag in driver if VLAN tag stripping
6557 				 * was disabled.
6558 				 *
6559 				 * TODO: LLC SNAP handling.
6560 				 */
6561 				bcopy(mtod(m0, uint8_t *),
6562 				    mtod(m0, uint8_t *) - ETHER_VLAN_ENCAP_LEN,
6563 				    ETHER_ADDR_LEN * 2);
6564 				m0->m_data -= ETHER_VLAN_ENCAP_LEN;
6565 				vh = mtod(m0, struct ether_vlan_header *);
6566 				vh->evl_encap_proto = htons(ETHERTYPE_VLAN);
6567 				vh->evl_tag = htons(l2fhdr->l2_fhdr_vlan_tag);
6568 				m0->m_pkthdr.len += ETHER_VLAN_ENCAP_LEN;
6569 				m0->m_len += ETHER_VLAN_ENCAP_LEN;
6570 			}
6571 		}
6572 
6573 		/* Increment received packet statistics. */
6574 		ifp->if_ipackets++;
6575 
6576 bce_rx_int_next_rx:
6577 		sw_rx_cons = NEXT_RX_BD(sw_rx_cons);
6578 
6579 		/* If we have a packet, pass it up the stack */
6580 		if (m0) {
6581 			/* Make sure we don't lose our place when we release the lock. */
6582 			sc->rx_cons = sw_rx_cons;
6583 			sc->pg_cons = sw_pg_cons;
6584 
6585 			BCE_UNLOCK(sc);
6586 			(*ifp->if_input)(ifp, m0);
6587 			BCE_LOCK(sc);
6588 
6589 			/* Recover our place. */
6590 			sw_rx_cons = sc->rx_cons;
6591 			sw_pg_cons = sc->pg_cons;
6592 		}
6593 
6594 		/* Refresh hw_cons to see if there's new work */
6595 		if (sw_rx_cons == hw_rx_cons)
6596 			hw_rx_cons = sc->hw_rx_cons = bce_get_hw_rx_cons(sc);
6597 	}
6598 
6599 	/* No new packets.  Refill the page chain. */
6600 	if (bce_hdr_split == TRUE) {
6601 		sc->pg_cons = sw_pg_cons;
6602 		bce_fill_pg_chain(sc);
6603 	}
6604 
6605 	/* No new packets.  Refill the RX chain. */
6606 	sc->rx_cons = sw_rx_cons;
6607 	bce_fill_rx_chain(sc);
6608 
6609 	/* Prepare the page chain pages to be accessed by the NIC. */
6610 	for (int i = 0; i < sc->rx_pages; i++)
6611 		bus_dmamap_sync(sc->rx_bd_chain_tag,
6612 		    sc->rx_bd_chain_map[i], BUS_DMASYNC_PREWRITE);
6613 
6614 	if (bce_hdr_split == TRUE) {
6615 		for (int i = 0; i < sc->pg_pages; i++)
6616 			bus_dmamap_sync(sc->pg_bd_chain_tag,
6617 			    sc->pg_bd_chain_map[i], BUS_DMASYNC_PREWRITE);
6618 	}
6619 
6620 	DBPRINT(sc, BCE_EXTREME_RECV, "%s(exit): rx_prod = 0x%04X, "
6621 	    "rx_cons = 0x%04X, rx_prod_bseq = 0x%08X\n",
6622 	    __FUNCTION__, sc->rx_prod, sc->rx_cons, sc->rx_prod_bseq);
6623 	DBEXIT(BCE_VERBOSE_RECV | BCE_VERBOSE_INTR);
6624 }
6625 
6626 
6627 /****************************************************************************/
6628 /* Reads the transmit consumer value from the status block (skipping over   */
6629 /* chain page pointer if necessary).                                        */
6630 /*                                                                          */
6631 /* Returns:                                                                 */
6632 /*   hw_cons                                                                */
6633 /****************************************************************************/
6634 static inline u16
6635 bce_get_hw_tx_cons(struct bce_softc *sc)
6636 {
6637 	u16 hw_cons;
6638 
6639 	mb();
6640 	hw_cons = sc->status_block->status_tx_quick_consumer_index0;
6641 	if ((hw_cons & USABLE_TX_BD_PER_PAGE) == USABLE_TX_BD_PER_PAGE)
6642 		hw_cons++;
6643 
6644 	return hw_cons;
6645 }
6646 
6647 
6648 /****************************************************************************/
6649 /* Handles transmit completion interrupt events.                            */
6650 /*                                                                          */
6651 /* Returns:                                                                 */
6652 /*   Nothing.                                                               */
6653 /****************************************************************************/
6654 static void
6655 bce_tx_intr(struct bce_softc *sc)
6656 {
6657 	struct ifnet *ifp = sc->bce_ifp;
6658 	u16 hw_tx_cons, sw_tx_cons, sw_tx_chain_cons;
6659 
6660 	DBENTER(BCE_VERBOSE_SEND | BCE_VERBOSE_INTR);
6661 	DBRUN(sc->interrupts_tx++);
6662 	DBPRINT(sc, BCE_EXTREME_SEND, "%s(enter): tx_prod = 0x%04X, "
6663 	    "tx_cons = 0x%04X, tx_prod_bseq = 0x%08X\n",
6664 	    __FUNCTION__, sc->tx_prod, sc->tx_cons, sc->tx_prod_bseq);
6665 
6666 	BCE_LOCK_ASSERT(sc);
6667 
6668 	/* Get the hardware's view of the TX consumer index. */
6669 	hw_tx_cons = sc->hw_tx_cons = bce_get_hw_tx_cons(sc);
6670 	sw_tx_cons = sc->tx_cons;
6671 
6672 	/* Prevent speculative reads of the status block. */
6673 	bus_space_barrier(sc->bce_btag, sc->bce_bhandle, 0, 0,
6674 	    BUS_SPACE_BARRIER_READ);
6675 
6676 	/* Cycle through any completed TX chain page entries. */
6677 	while (sw_tx_cons != hw_tx_cons) {
6678 #ifdef BCE_DEBUG
6679 		struct tx_bd *txbd = NULL;
6680 #endif
6681 		sw_tx_chain_cons = TX_CHAIN_IDX(sw_tx_cons);
6682 
6683 		DBPRINT(sc, BCE_INFO_SEND,
6684 		    "%s(): hw_tx_cons = 0x%04X, sw_tx_cons = 0x%04X, "
6685 		    "sw_tx_chain_cons = 0x%04X\n",
6686 		    __FUNCTION__, hw_tx_cons, sw_tx_cons, sw_tx_chain_cons);
6687 
6688 		DBRUNIF((sw_tx_chain_cons > MAX_TX_BD_ALLOC),
6689 		    BCE_PRINTF("%s(%d): TX chain consumer out of range! "
6690 		    " 0x%04X > 0x%04X\n", __FILE__, __LINE__, sw_tx_chain_cons,
6691 		    (int) MAX_TX_BD_ALLOC);
6692 		    bce_breakpoint(sc));
6693 
6694 		DBRUN(txbd = &sc->tx_bd_chain[TX_PAGE(sw_tx_chain_cons)]
6695 		    [TX_IDX(sw_tx_chain_cons)]);
6696 
6697 		DBRUNIF((txbd == NULL),
6698 		    BCE_PRINTF("%s(%d): Unexpected NULL tx_bd[0x%04X]!\n",
6699 		    __FILE__, __LINE__, sw_tx_chain_cons);
6700 		    bce_breakpoint(sc));
6701 
6702 		DBRUNMSG(BCE_INFO_SEND, BCE_PRINTF("%s(): ", __FUNCTION__);
6703 		    bce_dump_txbd(sc, sw_tx_chain_cons, txbd));
6704 
6705 		/*
6706 		 * Free the associated mbuf. Remember
6707 		 * that only the last tx_bd of a packet
6708 		 * has an mbuf pointer and DMA map.
6709 		 */
6710 		if (sc->tx_mbuf_ptr[sw_tx_chain_cons] != NULL) {
6711 
6712 			/* Validate that this is the last tx_bd. */
6713 			DBRUNIF((!(txbd->tx_bd_flags & TX_BD_FLAGS_END)),
6714 			    BCE_PRINTF("%s(%d): tx_bd END flag not set but "
6715 			    "txmbuf == NULL!\n", __FILE__, __LINE__);
6716 			    bce_breakpoint(sc));
6717 
6718 			DBRUNMSG(BCE_INFO_SEND,
6719 			    BCE_PRINTF("%s(): Unloading map/freeing mbuf "
6720 			    "from tx_bd[0x%04X]\n", __FUNCTION__,
6721 			    sw_tx_chain_cons));
6722 
6723 			/* Unmap the mbuf. */
6724 			bus_dmamap_unload(sc->tx_mbuf_tag,
6725 			    sc->tx_mbuf_map[sw_tx_chain_cons]);
6726 
6727 			/* Free the mbuf. */
6728 			m_freem(sc->tx_mbuf_ptr[sw_tx_chain_cons]);
6729 			sc->tx_mbuf_ptr[sw_tx_chain_cons] = NULL;
6730 			DBRUN(sc->debug_tx_mbuf_alloc--);
6731 
6732 			ifp->if_opackets++;
6733 		}
6734 
6735 		sc->used_tx_bd--;
6736 		sw_tx_cons = NEXT_TX_BD(sw_tx_cons);
6737 
6738 		/* Refresh hw_cons to see if there's new work. */
6739 		hw_tx_cons = sc->hw_tx_cons = bce_get_hw_tx_cons(sc);
6740 
6741 		/* Prevent speculative reads of the status block. */
6742 		bus_space_barrier(sc->bce_btag, sc->bce_bhandle, 0, 0,
6743 		    BUS_SPACE_BARRIER_READ);
6744 	}
6745 
6746 	/* Clear the TX timeout timer. */
6747 	sc->watchdog_timer = 0;
6748 
6749 	/* Clear the tx hardware queue full flag. */
6750 	if (sc->used_tx_bd < sc->max_tx_bd) {
6751 		DBRUNIF((ifp->if_drv_flags & IFF_DRV_OACTIVE),
6752 		    DBPRINT(sc, BCE_INFO_SEND,
6753 		    "%s(): Open TX chain! %d/%d (used/total)\n",
6754 		    __FUNCTION__, sc->used_tx_bd, sc->max_tx_bd));
6755 		ifp->if_drv_flags &= ~IFF_DRV_OACTIVE;
6756 	}
6757 
6758 	sc->tx_cons = sw_tx_cons;
6759 
6760 	DBPRINT(sc, BCE_EXTREME_SEND, "%s(exit): tx_prod = 0x%04X, "
6761 	    "tx_cons = 0x%04X, tx_prod_bseq = 0x%08X\n",
6762 	    __FUNCTION__, sc->tx_prod, sc->tx_cons, sc->tx_prod_bseq);
6763 	DBEXIT(BCE_VERBOSE_SEND | BCE_VERBOSE_INTR);
6764 }
6765 
6766 
6767 /****************************************************************************/
6768 /* Disables interrupt generation.                                           */
6769 /*                                                                          */
6770 /* Returns:                                                                 */
6771 /*   Nothing.                                                               */
6772 /****************************************************************************/
6773 static void
6774 bce_disable_intr(struct bce_softc *sc)
6775 {
6776 	DBENTER(BCE_VERBOSE_INTR);
6777 
6778 	REG_WR(sc, BCE_PCICFG_INT_ACK_CMD, BCE_PCICFG_INT_ACK_CMD_MASK_INT);
6779 	REG_RD(sc, BCE_PCICFG_INT_ACK_CMD);
6780 
6781 	DBEXIT(BCE_VERBOSE_INTR);
6782 }
6783 
6784 
6785 /****************************************************************************/
6786 /* Enables interrupt generation.                                            */
6787 /*                                                                          */
6788 /* Returns:                                                                 */
6789 /*   Nothing.                                                               */
6790 /****************************************************************************/
6791 static void
6792 bce_enable_intr(struct bce_softc *sc, int coal_now)
6793 {
6794 	DBENTER(BCE_VERBOSE_INTR);
6795 
6796 	REG_WR(sc, BCE_PCICFG_INT_ACK_CMD,
6797 	    BCE_PCICFG_INT_ACK_CMD_INDEX_VALID |
6798 	    BCE_PCICFG_INT_ACK_CMD_MASK_INT | sc->last_status_idx);
6799 
6800 	REG_WR(sc, BCE_PCICFG_INT_ACK_CMD,
6801 	    BCE_PCICFG_INT_ACK_CMD_INDEX_VALID | sc->last_status_idx);
6802 
6803 	/* Force an immediate interrupt (whether there is new data or not). */
6804 	if (coal_now)
6805 		REG_WR(sc, BCE_HC_COMMAND, sc->hc_command | BCE_HC_COMMAND_COAL_NOW);
6806 
6807 	DBEXIT(BCE_VERBOSE_INTR);
6808 }
6809 
6810 
6811 /****************************************************************************/
6812 /* Handles controller initialization.                                       */
6813 /*                                                                          */
6814 /* Returns:                                                                 */
6815 /*   Nothing.                                                               */
6816 /****************************************************************************/
6817 static void
6818 bce_init_locked(struct bce_softc *sc)
6819 {
6820 	struct ifnet *ifp;
6821 	u32 ether_mtu = 0;
6822 
6823 	DBENTER(BCE_VERBOSE_RESET);
6824 
6825 	BCE_LOCK_ASSERT(sc);
6826 
6827 	ifp = sc->bce_ifp;
6828 
6829 	/* Check if the driver is still running and bail out if it is. */
6830 	if (ifp->if_drv_flags & IFF_DRV_RUNNING)
6831 		goto bce_init_locked_exit;
6832 
6833 	bce_stop(sc);
6834 
6835 	if (bce_reset(sc, BCE_DRV_MSG_CODE_RESET)) {
6836 		BCE_PRINTF("%s(%d): Controller reset failed!\n",
6837 		    __FILE__, __LINE__);
6838 		goto bce_init_locked_exit;
6839 	}
6840 
6841 	if (bce_chipinit(sc)) {
6842 		BCE_PRINTF("%s(%d): Controller initialization failed!\n",
6843 		    __FILE__, __LINE__);
6844 		goto bce_init_locked_exit;
6845 	}
6846 
6847 	if (bce_blockinit(sc)) {
6848 		BCE_PRINTF("%s(%d): Block initialization failed!\n",
6849 		    __FILE__, __LINE__);
6850 		goto bce_init_locked_exit;
6851 	}
6852 
6853 	/* Load our MAC address. */
6854 	bcopy(IF_LLADDR(sc->bce_ifp), sc->eaddr, ETHER_ADDR_LEN);
6855 	bce_set_mac_addr(sc);
6856 
6857 	/*
6858 	 * Calculate and program the hardware Ethernet MTU
6859  	 * size. Be generous on the receive if we have room
6860  	 * and allowed by the user.
6861 	 */
6862 	if (bce_strict_rx_mtu == TRUE)
6863 		ether_mtu = ifp->if_mtu;
6864 	else {
6865 		if (bce_hdr_split == TRUE) {
6866 			if (ifp->if_mtu <= (sc->rx_bd_mbuf_data_len +
6867 				   sc->pg_bd_mbuf_alloc_size))
6868 					ether_mtu = sc->rx_bd_mbuf_data_len +
6869 					   sc->pg_bd_mbuf_alloc_size;
6870 			else
6871 				ether_mtu = ifp->if_mtu;
6872 		} else {
6873 			if (ifp->if_mtu <= sc->rx_bd_mbuf_data_len)
6874 				ether_mtu = sc->rx_bd_mbuf_data_len;
6875 			else
6876 				ether_mtu = ifp->if_mtu;
6877 		}
6878 	}
6879 
6880 	ether_mtu += ETHER_HDR_LEN + ETHER_VLAN_ENCAP_LEN + ETHER_CRC_LEN;
6881 
6882 	DBPRINT(sc, BCE_INFO_MISC, "%s(): setting h/w mtu = %d\n",
6883 	    __FUNCTION__, ether_mtu);
6884 
6885 	/* Program the mtu, enabling jumbo frame support if necessary. */
6886 	if (ether_mtu > (ETHER_MAX_LEN + ETHER_VLAN_ENCAP_LEN))
6887 		REG_WR(sc, BCE_EMAC_RX_MTU_SIZE,
6888 		    min(ether_mtu, BCE_MAX_JUMBO_ETHER_MTU) |
6889 		    BCE_EMAC_RX_MTU_SIZE_JUMBO_ENA);
6890 	else
6891 		REG_WR(sc, BCE_EMAC_RX_MTU_SIZE, ether_mtu);
6892 
6893 	/* Program appropriate promiscuous/multicast filtering. */
6894 	bce_set_rx_mode(sc);
6895 
6896 	if (bce_hdr_split == TRUE) {
6897 		DBPRINT(sc, BCE_INFO_LOAD, "%s(): pg_bd_mbuf_alloc_size = %d\n",
6898 			__FUNCTION__, sc->pg_bd_mbuf_alloc_size);
6899 
6900 		/* Init page buffer descriptor chain. */
6901 		bce_init_pg_chain(sc);
6902 	}
6903 
6904 	/* Init RX buffer descriptor chain. */
6905 	bce_init_rx_chain(sc);
6906 
6907 	/* Init TX buffer descriptor chain. */
6908 	bce_init_tx_chain(sc);
6909 
6910 	/* Enable host interrupts. */
6911 	bce_enable_intr(sc, 1);
6912 
6913 	/* Let the OS know the driver is up and running. */
6914 	ifp->if_drv_flags |= IFF_DRV_RUNNING;
6915 	ifp->if_drv_flags &= ~IFF_DRV_OACTIVE;
6916 
6917 	sc->bce_link_tick = TRUE;
6918 	bce_ifmedia_upd_locked(ifp);
6919 
6920 	callout_reset(&sc->bce_tick_callout, hz, bce_tick, sc);
6921 
6922 bce_init_locked_exit:
6923 	DBEXIT(BCE_VERBOSE_RESET);
6924 }
6925 
6926 
6927 /****************************************************************************/
6928 /* Initialize the controller just enough so that any management firmware    */
6929 /* running on the device will continue to operate correctly.                */
6930 /*                                                                          */
6931 /* Returns:                                                                 */
6932 /*   Nothing.                                                               */
6933 /****************************************************************************/
6934 static void
6935 bce_mgmt_init_locked(struct bce_softc *sc)
6936 {
6937 	struct ifnet *ifp;
6938 
6939 	DBENTER(BCE_VERBOSE_RESET);
6940 
6941 	BCE_LOCK_ASSERT(sc);
6942 
6943 	/* Bail out if management firmware is not running. */
6944 	if (!(sc->bce_flags & BCE_MFW_ENABLE_FLAG)) {
6945 		DBPRINT(sc, BCE_VERBOSE_SPECIAL,
6946 		    "No management firmware running...\n");
6947 		goto bce_mgmt_init_locked_exit;
6948 	}
6949 
6950 	ifp = sc->bce_ifp;
6951 
6952 	/* Enable all critical blocks in the MAC. */
6953 	REG_WR(sc, BCE_MISC_ENABLE_SET_BITS, BCE_MISC_ENABLE_DEFAULT);
6954 	REG_RD(sc, BCE_MISC_ENABLE_SET_BITS);
6955 	DELAY(20);
6956 
6957 	bce_ifmedia_upd_locked(ifp);
6958 
6959 bce_mgmt_init_locked_exit:
6960 	DBEXIT(BCE_VERBOSE_RESET);
6961 }
6962 
6963 
6964 /****************************************************************************/
6965 /* Handles controller initialization when called from an unlocked routine.  */
6966 /*                                                                          */
6967 /* Returns:                                                                 */
6968 /*   Nothing.                                                               */
6969 /****************************************************************************/
6970 static void
6971 bce_init(void *xsc)
6972 {
6973 	struct bce_softc *sc = xsc;
6974 
6975 	DBENTER(BCE_VERBOSE_RESET);
6976 
6977 	BCE_LOCK(sc);
6978 	bce_init_locked(sc);
6979 	BCE_UNLOCK(sc);
6980 
6981 	DBEXIT(BCE_VERBOSE_RESET);
6982 }
6983 
6984 
6985 /****************************************************************************/
6986 /* Modifies an mbuf for TSO on the hardware.                                */
6987 /*                                                                          */
6988 /* Returns:                                                                 */
6989 /*   Pointer to a modified mbuf.                                            */
6990 /****************************************************************************/
6991 static struct mbuf *
6992 bce_tso_setup(struct bce_softc *sc, struct mbuf **m_head, u16 *flags)
6993 {
6994 	struct mbuf *m;
6995 	struct ether_header *eh;
6996 	struct ip *ip;
6997 	struct tcphdr *th;
6998 	u16 etype;
6999 	int hdr_len, ip_hlen = 0, tcp_hlen = 0, ip_len = 0;
7000 
7001 	DBRUN(sc->tso_frames_requested++);
7002 
7003 	/* Controller may modify mbuf chains. */
7004 	if (M_WRITABLE(*m_head) == 0) {
7005 		m = m_dup(*m_head, M_DONTWAIT);
7006 		m_freem(*m_head);
7007 		if (m == NULL) {
7008 			sc->mbuf_alloc_failed_count++;
7009 			*m_head = NULL;
7010 			return (NULL);
7011 		}
7012 		*m_head = m;
7013 	}
7014 
7015 	/*
7016 	 * For TSO the controller needs two pieces of info,
7017 	 * the MSS and the IP+TCP options length.
7018 	 */
7019 	m = m_pullup(*m_head, sizeof(struct ether_header) + sizeof(struct ip));
7020 	if (m == NULL) {
7021 		*m_head = NULL;
7022 		return (NULL);
7023 	}
7024 	eh = mtod(m, struct ether_header *);
7025 	etype = ntohs(eh->ether_type);
7026 
7027 	/* Check for supported TSO Ethernet types (only IPv4 for now) */
7028 	switch (etype) {
7029 	case ETHERTYPE_IP:
7030 		ip = (struct ip *)(m->m_data + sizeof(struct ether_header));
7031 		/* TSO only supported for TCP protocol. */
7032 		if (ip->ip_p != IPPROTO_TCP) {
7033 			BCE_PRINTF("%s(%d): TSO enabled for non-TCP frame!.\n",
7034 			    __FILE__, __LINE__);
7035 			m_freem(*m_head);
7036 			*m_head = NULL;
7037 			return (NULL);
7038 		}
7039 
7040 		/* Get IP header length in bytes (min 20) */
7041 		ip_hlen = ip->ip_hl << 2;
7042 		m = m_pullup(*m_head, sizeof(struct ether_header) + ip_hlen +
7043 		    sizeof(struct tcphdr));
7044 		if (m == NULL) {
7045 			*m_head = NULL;
7046 			return (NULL);
7047 		}
7048 
7049 		/* Get the TCP header length in bytes (min 20) */
7050 		ip = (struct ip *)(m->m_data + sizeof(struct ether_header));
7051 		th = (struct tcphdr *)((caddr_t)ip + ip_hlen);
7052 		tcp_hlen = (th->th_off << 2);
7053 
7054 		/* Make sure all IP/TCP options live in the same buffer. */
7055 		m = m_pullup(*m_head,  sizeof(struct ether_header)+ ip_hlen +
7056 		    tcp_hlen);
7057 		if (m == NULL) {
7058 			*m_head = NULL;
7059 			return (NULL);
7060 		}
7061 
7062 		/* Clear IP header length and checksum, will be calc'd by h/w. */
7063 		ip = (struct ip *)(m->m_data + sizeof(struct ether_header));
7064 		ip_len = ip->ip_len;
7065 		ip->ip_len = 0;
7066 		ip->ip_sum = 0;
7067 		break;
7068 	case ETHERTYPE_IPV6:
7069 		BCE_PRINTF("%s(%d): TSO over IPv6 not supported!.\n",
7070 		    __FILE__, __LINE__);
7071 		m_freem(*m_head);
7072 		*m_head = NULL;
7073 		return (NULL);
7074 		/* NOT REACHED */
7075 	default:
7076 		BCE_PRINTF("%s(%d): TSO enabled for unsupported protocol!.\n",
7077 		    __FILE__, __LINE__);
7078 		m_freem(*m_head);
7079 		*m_head = NULL;
7080 		return (NULL);
7081 	}
7082 
7083 	hdr_len = sizeof(struct ether_header) + ip_hlen + tcp_hlen;
7084 
7085 	DBPRINT(sc, BCE_EXTREME_SEND, "%s(): hdr_len = %d, e_hlen = %d, "
7086 	    "ip_hlen = %d, tcp_hlen = %d, ip_len = %d\n",
7087 	    __FUNCTION__, hdr_len, (int) sizeof(struct ether_header), ip_hlen,
7088 	    tcp_hlen, ip_len);
7089 
7090 	/* Set the LSO flag in the TX BD */
7091 	*flags |= TX_BD_FLAGS_SW_LSO;
7092 
7093 	/* Set the length of IP + TCP options (in 32 bit words) */
7094 	*flags |= (((ip_hlen + tcp_hlen - sizeof(struct ip) -
7095 	    sizeof(struct tcphdr)) >> 2) << 8);
7096 
7097 	DBRUN(sc->tso_frames_completed++);
7098 	return (*m_head);
7099 }
7100 
7101 
7102 /****************************************************************************/
7103 /* Encapsultes an mbuf cluster into the tx_bd chain structure and makes the */
7104 /* memory visible to the controller.                                        */
7105 /*                                                                          */
7106 /* Returns:                                                                 */
7107 /*   0 for success, positive value for failure.                             */
7108 /* Modified:                                                                */
7109 /*   m_head: May be set to NULL if MBUF is excessively fragmented.          */
7110 /****************************************************************************/
7111 static int
7112 bce_tx_encap(struct bce_softc *sc, struct mbuf **m_head)
7113 {
7114 	bus_dma_segment_t segs[BCE_MAX_SEGMENTS];
7115 	bus_dmamap_t map;
7116 	struct tx_bd *txbd = NULL;
7117 	struct mbuf *m0;
7118 	u16 prod, chain_prod, mss = 0, vlan_tag = 0, flags = 0;
7119 	u32 prod_bseq;
7120 
7121 #ifdef BCE_DEBUG
7122 	u16 debug_prod;
7123 #endif
7124 
7125 	int i, error, nsegs, rc = 0;
7126 
7127 	DBENTER(BCE_VERBOSE_SEND);
7128 
7129 	/* Make sure we have room in the TX chain. */
7130 	if (sc->used_tx_bd >= sc->max_tx_bd)
7131 		goto bce_tx_encap_exit;
7132 
7133 	/* Transfer any checksum offload flags to the bd. */
7134 	m0 = *m_head;
7135 	if (m0->m_pkthdr.csum_flags) {
7136 		if (m0->m_pkthdr.csum_flags & CSUM_TSO) {
7137 			m0 = bce_tso_setup(sc, m_head, &flags);
7138 			if (m0 == NULL) {
7139 				DBRUN(sc->tso_frames_failed++);
7140 				goto bce_tx_encap_exit;
7141 			}
7142 			mss = htole16(m0->m_pkthdr.tso_segsz);
7143 		} else {
7144 			if (m0->m_pkthdr.csum_flags & CSUM_IP)
7145 				flags |= TX_BD_FLAGS_IP_CKSUM;
7146 			if (m0->m_pkthdr.csum_flags & (CSUM_TCP | CSUM_UDP))
7147 				flags |= TX_BD_FLAGS_TCP_UDP_CKSUM;
7148 		}
7149 	}
7150 
7151 	/* Transfer any VLAN tags to the bd. */
7152 	if (m0->m_flags & M_VLANTAG) {
7153 		flags |= TX_BD_FLAGS_VLAN_TAG;
7154 		vlan_tag = m0->m_pkthdr.ether_vtag;
7155 	}
7156 
7157 	/* Map the mbuf into DMAable memory. */
7158 	prod = sc->tx_prod;
7159 	chain_prod = TX_CHAIN_IDX(prod);
7160 	map = sc->tx_mbuf_map[chain_prod];
7161 
7162 	/* Map the mbuf into our DMA address space. */
7163 	error = bus_dmamap_load_mbuf_sg(sc->tx_mbuf_tag, map, m0,
7164 	    segs, &nsegs, BUS_DMA_NOWAIT);
7165 
7166 	/* Check if the DMA mapping was successful */
7167 	if (error == EFBIG) {
7168 		sc->mbuf_frag_count++;
7169 
7170 		/* Try to defrag the mbuf. */
7171 		m0 = m_collapse(*m_head, M_DONTWAIT, BCE_MAX_SEGMENTS);
7172 		if (m0 == NULL) {
7173 			/* Defrag was unsuccessful */
7174 			m_freem(*m_head);
7175 			*m_head = NULL;
7176 			sc->mbuf_alloc_failed_count++;
7177 			rc = ENOBUFS;
7178 			goto bce_tx_encap_exit;
7179 		}
7180 
7181 		/* Defrag was successful, try mapping again */
7182 		*m_head = m0;
7183 		error = bus_dmamap_load_mbuf_sg(sc->tx_mbuf_tag,
7184 		    map, m0, segs, &nsegs, BUS_DMA_NOWAIT);
7185 
7186 		/* Still getting an error after a defrag. */
7187 		if (error == ENOMEM) {
7188 			/* Insufficient DMA buffers available. */
7189 			sc->dma_map_addr_tx_failed_count++;
7190 			rc = error;
7191 			goto bce_tx_encap_exit;
7192 		} else if (error != 0) {
7193 			/* Release it and return an error. */
7194 			BCE_PRINTF("%s(%d): Unknown error mapping mbuf into "
7195 			    "TX chain!\n", __FILE__, __LINE__);
7196 			m_freem(m0);
7197 			*m_head = NULL;
7198 			sc->dma_map_addr_tx_failed_count++;
7199 			rc = ENOBUFS;
7200 			goto bce_tx_encap_exit;
7201 		}
7202 	} else if (error == ENOMEM) {
7203 		/* Insufficient DMA buffers available. */
7204 		sc->dma_map_addr_tx_failed_count++;
7205 		rc = error;
7206 		goto bce_tx_encap_exit;
7207 	} else if (error != 0) {
7208 		m_freem(m0);
7209 		*m_head = NULL;
7210 		sc->dma_map_addr_tx_failed_count++;
7211 		rc = error;
7212 		goto bce_tx_encap_exit;
7213 	}
7214 
7215 	/* Make sure there's room in the chain */
7216 	if (nsegs > (sc->max_tx_bd - sc->used_tx_bd)) {
7217 		bus_dmamap_unload(sc->tx_mbuf_tag, map);
7218 		rc = ENOBUFS;
7219 		goto bce_tx_encap_exit;
7220 	}
7221 
7222 	/* prod points to an empty tx_bd at this point. */
7223 	prod_bseq  = sc->tx_prod_bseq;
7224 
7225 #ifdef BCE_DEBUG
7226 	debug_prod = chain_prod;
7227 #endif
7228 
7229 	DBPRINT(sc, BCE_INFO_SEND,
7230 	    "%s(start): prod = 0x%04X, chain_prod = 0x%04X, "
7231 	    "prod_bseq = 0x%08X\n",
7232 	    __FUNCTION__, prod, chain_prod, prod_bseq);
7233 
7234 	/*
7235 	 * Cycle through each mbuf segment that makes up
7236 	 * the outgoing frame, gathering the mapping info
7237 	 * for that segment and creating a tx_bd for
7238 	 * the mbuf.
7239 	 */
7240 	for (i = 0; i < nsegs ; i++) {
7241 
7242 		chain_prod = TX_CHAIN_IDX(prod);
7243 		txbd= &sc->tx_bd_chain[TX_PAGE(chain_prod)]
7244 		    [TX_IDX(chain_prod)];
7245 
7246 		txbd->tx_bd_haddr_lo =
7247 		    htole32(BCE_ADDR_LO(segs[i].ds_addr));
7248 		txbd->tx_bd_haddr_hi =
7249 		    htole32(BCE_ADDR_HI(segs[i].ds_addr));
7250 		txbd->tx_bd_mss_nbytes = htole32(mss << 16) |
7251 		    htole16(segs[i].ds_len);
7252 		txbd->tx_bd_vlan_tag = htole16(vlan_tag);
7253 		txbd->tx_bd_flags = htole16(flags);
7254 		prod_bseq += segs[i].ds_len;
7255 		if (i == 0)
7256 			txbd->tx_bd_flags |= htole16(TX_BD_FLAGS_START);
7257 		prod = NEXT_TX_BD(prod);
7258 	}
7259 
7260 	/* Set the END flag on the last TX buffer descriptor. */
7261 	txbd->tx_bd_flags |= htole16(TX_BD_FLAGS_END);
7262 
7263 	DBRUNMSG(BCE_EXTREME_SEND,
7264 	    bce_dump_tx_chain(sc, debug_prod, nsegs));
7265 
7266 	/*
7267 	 * Ensure that the mbuf pointer for this transmission
7268 	 * is placed at the array index of the last
7269 	 * descriptor in this chain.  This is done
7270 	 * because a single map is used for all
7271 	 * segments of the mbuf and we don't want to
7272 	 * unload the map before all of the segments
7273 	 * have been freed.
7274 	 */
7275 	sc->tx_mbuf_ptr[chain_prod] = m0;
7276 	sc->used_tx_bd += nsegs;
7277 
7278 	/* Update some debug statistic counters */
7279 	DBRUNIF((sc->used_tx_bd > sc->tx_hi_watermark),
7280 	    sc->tx_hi_watermark = sc->used_tx_bd);
7281 	DBRUNIF((sc->used_tx_bd == sc->max_tx_bd), sc->tx_full_count++);
7282 	DBRUNIF(sc->debug_tx_mbuf_alloc++);
7283 
7284 	DBRUNMSG(BCE_EXTREME_SEND, bce_dump_tx_mbuf_chain(sc, chain_prod, 1));
7285 
7286 	/* prod points to the next free tx_bd at this point. */
7287 	sc->tx_prod = prod;
7288 	sc->tx_prod_bseq = prod_bseq;
7289 
7290 	/* Tell the chip about the waiting TX frames. */
7291 	REG_WR16(sc, MB_GET_CID_ADDR(TX_CID) +
7292 	    BCE_L2MQ_TX_HOST_BIDX, sc->tx_prod);
7293 	REG_WR(sc, MB_GET_CID_ADDR(TX_CID) +
7294 	    BCE_L2MQ_TX_HOST_BSEQ, sc->tx_prod_bseq);
7295 
7296 bce_tx_encap_exit:
7297 	DBEXIT(BCE_VERBOSE_SEND);
7298 	return(rc);
7299 }
7300 
7301 
7302 /****************************************************************************/
7303 /* Main transmit routine when called from another routine with a lock.      */
7304 /*                                                                          */
7305 /* Returns:                                                                 */
7306 /*   Nothing.                                                               */
7307 /****************************************************************************/
7308 static void
7309 bce_start_locked(struct ifnet *ifp)
7310 {
7311 	struct bce_softc *sc = ifp->if_softc;
7312 	struct mbuf *m_head = NULL;
7313 	int count = 0;
7314 	u16 tx_prod, tx_chain_prod;
7315 
7316 	DBENTER(BCE_VERBOSE_SEND | BCE_VERBOSE_CTX);
7317 
7318 	BCE_LOCK_ASSERT(sc);
7319 
7320 	/* prod points to the next free tx_bd. */
7321 	tx_prod = sc->tx_prod;
7322 	tx_chain_prod = TX_CHAIN_IDX(tx_prod);
7323 
7324 	DBPRINT(sc, BCE_INFO_SEND,
7325 	    "%s(enter): tx_prod = 0x%04X, tx_chain_prod = 0x%04X, "
7326 	    "tx_prod_bseq = 0x%08X\n",
7327 	    __FUNCTION__, tx_prod, tx_chain_prod, sc->tx_prod_bseq);
7328 
7329 	/* If there's no link or the transmit queue is empty then just exit. */
7330 	if (sc->bce_link_up == FALSE) {
7331 		DBPRINT(sc, BCE_INFO_SEND, "%s(): No link.\n",
7332 		    __FUNCTION__);
7333 		goto bce_start_locked_exit;
7334 	}
7335 
7336 	if (IFQ_DRV_IS_EMPTY(&ifp->if_snd)) {
7337 		DBPRINT(sc, BCE_INFO_SEND, "%s(): Transmit queue empty.\n",
7338 		    __FUNCTION__);
7339 		goto bce_start_locked_exit;
7340 	}
7341 
7342 	/*
7343 	 * Keep adding entries while there is space in the ring.
7344 	 */
7345 	while (sc->used_tx_bd < sc->max_tx_bd) {
7346 
7347 		/* Check for any frames to send. */
7348 		IFQ_DRV_DEQUEUE(&ifp->if_snd, m_head);
7349 
7350 		/* Stop when the transmit queue is empty. */
7351 		if (m_head == NULL)
7352 			break;
7353 
7354 		/*
7355 		 * Pack the data into the transmit ring. If we
7356 		 * don't have room, place the mbuf back at the
7357 		 * head of the queue and set the OACTIVE flag
7358 		 * to wait for the NIC to drain the chain.
7359 		 */
7360 		if (bce_tx_encap(sc, &m_head)) {
7361 			if (m_head != NULL)
7362 				IFQ_DRV_PREPEND(&ifp->if_snd, m_head);
7363 			ifp->if_drv_flags |= IFF_DRV_OACTIVE;
7364 			DBPRINT(sc, BCE_INFO_SEND,
7365 			    "TX chain is closed for business! Total "
7366 			    "tx_bd used = %d\n", sc->used_tx_bd);
7367 			break;
7368 		}
7369 
7370 		count++;
7371 
7372 		/* Send a copy of the frame to any BPF listeners. */
7373 		ETHER_BPF_MTAP(ifp, m_head);
7374 	}
7375 
7376 	/* Exit if no packets were dequeued. */
7377 	if (count == 0) {
7378 		DBPRINT(sc, BCE_VERBOSE_SEND, "%s(): No packets were "
7379 		    "dequeued\n", __FUNCTION__);
7380 		goto bce_start_locked_exit;
7381 	}
7382 
7383 	DBPRINT(sc, BCE_VERBOSE_SEND, "%s(): Inserted %d frames into "
7384 	    "send queue.\n", __FUNCTION__, count);
7385 
7386 	/* Set the tx timeout. */
7387 	sc->watchdog_timer = BCE_TX_TIMEOUT;
7388 
7389 	DBRUNMSG(BCE_VERBOSE_SEND, bce_dump_ctx(sc, TX_CID));
7390 	DBRUNMSG(BCE_VERBOSE_SEND, bce_dump_mq_regs(sc));
7391 
7392 bce_start_locked_exit:
7393 	DBEXIT(BCE_VERBOSE_SEND | BCE_VERBOSE_CTX);
7394 	return;
7395 }
7396 
7397 
7398 /****************************************************************************/
7399 /* Main transmit routine when called from another routine without a lock.   */
7400 /*                                                                          */
7401 /* Returns:                                                                 */
7402 /*   Nothing.                                                               */
7403 /****************************************************************************/
7404 static void
7405 bce_start(struct ifnet *ifp)
7406 {
7407 	struct bce_softc *sc = ifp->if_softc;
7408 
7409 	DBENTER(BCE_VERBOSE_SEND);
7410 
7411 	BCE_LOCK(sc);
7412 	bce_start_locked(ifp);
7413 	BCE_UNLOCK(sc);
7414 
7415 	DBEXIT(BCE_VERBOSE_SEND);
7416 }
7417 
7418 
7419 /****************************************************************************/
7420 /* Handles any IOCTL calls from the operating system.                       */
7421 /*                                                                          */
7422 /* Returns:                                                                 */
7423 /*   0 for success, positive value for failure.                             */
7424 /****************************************************************************/
7425 static int
7426 bce_ioctl(struct ifnet *ifp, u_long command, caddr_t data)
7427 {
7428 	struct bce_softc *sc = ifp->if_softc;
7429 	struct ifreq *ifr = (struct ifreq *) data;
7430 	struct mii_data *mii;
7431 	int mask, error = 0;
7432 
7433 	DBENTER(BCE_VERBOSE_MISC);
7434 
7435 	switch(command) {
7436 
7437 	/* Set the interface MTU. */
7438 	case SIOCSIFMTU:
7439 		/* Check that the MTU setting is supported. */
7440 		if ((ifr->ifr_mtu < BCE_MIN_MTU) ||
7441 			(ifr->ifr_mtu > BCE_MAX_JUMBO_MTU)) {
7442 			error = EINVAL;
7443 			break;
7444 		}
7445 
7446 		DBPRINT(sc, BCE_INFO_MISC,
7447 		    "SIOCSIFMTU: Changing MTU from %d to %d\n",
7448 		    (int) ifp->if_mtu, (int) ifr->ifr_mtu);
7449 
7450 		BCE_LOCK(sc);
7451 		ifp->if_mtu = ifr->ifr_mtu;
7452 
7453 		if (bce_hdr_split == FALSE) {
7454 			if (ifp->if_drv_flags & IFF_DRV_RUNNING) {
7455 				/*
7456 				 * Because allocation size is used in RX
7457 				 * buffer allocation, stop controller if
7458 				 * it is already running.
7459 				 */
7460 				bce_stop(sc);
7461 			}
7462 
7463 			bce_get_rx_buffer_sizes(sc, ifp->if_mtu);
7464 
7465 			bce_init_locked(sc);
7466 		}
7467 
7468 		BCE_UNLOCK(sc);
7469 		break;
7470 
7471 	/* Set interface flags. */
7472 	case SIOCSIFFLAGS:
7473 		DBPRINT(sc, BCE_VERBOSE_SPECIAL, "Received SIOCSIFFLAGS\n");
7474 
7475 		BCE_LOCK(sc);
7476 
7477 		/* Check if the interface is up. */
7478 		if (ifp->if_flags & IFF_UP) {
7479 			if (ifp->if_drv_flags & IFF_DRV_RUNNING) {
7480 				/* Change promiscuous/multicast flags as necessary. */
7481 				bce_set_rx_mode(sc);
7482 			} else {
7483 				/* Start the HW */
7484 				bce_init_locked(sc);
7485 			}
7486 		} else {
7487 			/* The interface is down, check if driver is running. */
7488 			if (ifp->if_drv_flags & IFF_DRV_RUNNING) {
7489 				bce_stop(sc);
7490 
7491 				/* If MFW is running, restart the controller a bit. */
7492 				if (sc->bce_flags & BCE_MFW_ENABLE_FLAG) {
7493 					bce_reset(sc, BCE_DRV_MSG_CODE_RESET);
7494 					bce_chipinit(sc);
7495 					bce_mgmt_init_locked(sc);
7496 				}
7497 			}
7498 		}
7499 
7500 		BCE_UNLOCK(sc);
7501 		break;
7502 
7503 	/* Add/Delete multicast address */
7504 	case SIOCADDMULTI:
7505 	case SIOCDELMULTI:
7506 		DBPRINT(sc, BCE_VERBOSE_MISC,
7507 		    "Received SIOCADDMULTI/SIOCDELMULTI\n");
7508 
7509 		BCE_LOCK(sc);
7510 		if (ifp->if_drv_flags & IFF_DRV_RUNNING)
7511 			bce_set_rx_mode(sc);
7512 		BCE_UNLOCK(sc);
7513 
7514 		break;
7515 
7516 	/* Set/Get Interface media */
7517 	case SIOCSIFMEDIA:
7518 	case SIOCGIFMEDIA:
7519 		DBPRINT(sc, BCE_VERBOSE_MISC,
7520 		    "Received SIOCSIFMEDIA/SIOCGIFMEDIA\n");
7521 
7522 		mii = device_get_softc(sc->bce_miibus);
7523 		error = ifmedia_ioctl(ifp, ifr,
7524 		    &mii->mii_media, command);
7525 		break;
7526 
7527 	/* Set interface capability */
7528 	case SIOCSIFCAP:
7529 		mask = ifr->ifr_reqcap ^ ifp->if_capenable;
7530 		DBPRINT(sc, BCE_INFO_MISC,
7531 		    "Received SIOCSIFCAP = 0x%08X\n", (u32) mask);
7532 
7533 		/* Toggle the TX checksum capabilities enable flag. */
7534 		if (mask & IFCAP_TXCSUM &&
7535 		    ifp->if_capabilities & IFCAP_TXCSUM) {
7536 			ifp->if_capenable ^= IFCAP_TXCSUM;
7537 			if (IFCAP_TXCSUM & ifp->if_capenable)
7538 				ifp->if_hwassist |= BCE_IF_HWASSIST;
7539 			else
7540 				ifp->if_hwassist &= ~BCE_IF_HWASSIST;
7541 		}
7542 
7543 		/* Toggle the RX checksum capabilities enable flag. */
7544 		if (mask & IFCAP_RXCSUM &&
7545 		    ifp->if_capabilities & IFCAP_RXCSUM)
7546 			ifp->if_capenable ^= IFCAP_RXCSUM;
7547 
7548 		/* Toggle the TSO capabilities enable flag. */
7549 		if (bce_tso_enable && (mask & IFCAP_TSO4) &&
7550 		    ifp->if_capabilities & IFCAP_TSO4) {
7551 			ifp->if_capenable ^= IFCAP_TSO4;
7552 			if (IFCAP_TSO4 & ifp->if_capenable)
7553 				ifp->if_hwassist |= CSUM_TSO;
7554 			else
7555 				ifp->if_hwassist &= ~CSUM_TSO;
7556 		}
7557 
7558 		if (mask & IFCAP_VLAN_HWCSUM &&
7559 		    ifp->if_capabilities & IFCAP_VLAN_HWCSUM)
7560 			ifp->if_capenable ^= IFCAP_VLAN_HWCSUM;
7561 
7562 		if ((mask & IFCAP_VLAN_HWTSO) != 0 &&
7563 		    (ifp->if_capabilities & IFCAP_VLAN_HWTSO) != 0)
7564 			ifp->if_capenable ^= IFCAP_VLAN_HWTSO;
7565 		/*
7566 		 * Don't actually disable VLAN tag stripping as
7567 		 * management firmware (ASF/IPMI/UMP) requires the
7568 		 * feature. If VLAN tag stripping is disabled driver
7569 		 * will manually reconstruct the VLAN frame by
7570 		 * appending stripped VLAN tag.
7571 		 */
7572 		if ((mask & IFCAP_VLAN_HWTAGGING) != 0 &&
7573 		    (ifp->if_capabilities & IFCAP_VLAN_HWTAGGING)) {
7574 			ifp->if_capenable ^= IFCAP_VLAN_HWTAGGING;
7575 			if ((ifp->if_capenable & IFCAP_VLAN_HWTAGGING)
7576 			    == 0)
7577 				ifp->if_capenable &= ~IFCAP_VLAN_HWTSO;
7578 		}
7579 		VLAN_CAPABILITIES(ifp);
7580 		break;
7581 	default:
7582 		/* We don't know how to handle the IOCTL, pass it on. */
7583 		error = ether_ioctl(ifp, command, data);
7584 		break;
7585 	}
7586 
7587 	DBEXIT(BCE_VERBOSE_MISC);
7588 	return(error);
7589 }
7590 
7591 
7592 /****************************************************************************/
7593 /* Transmit timeout handler.                                                */
7594 /*                                                                          */
7595 /* Returns:                                                                 */
7596 /*   Nothing.                                                               */
7597 /****************************************************************************/
7598 static void
7599 bce_watchdog(struct bce_softc *sc)
7600 {
7601 	DBENTER(BCE_EXTREME_SEND);
7602 
7603 	BCE_LOCK_ASSERT(sc);
7604 
7605 	/* If the watchdog timer hasn't expired then just exit. */
7606 	if (sc->watchdog_timer == 0 || --sc->watchdog_timer)
7607 		goto bce_watchdog_exit;
7608 
7609 	/* If pause frames are active then don't reset the hardware. */
7610 	/* ToDo: Should we reset the timer here? */
7611 	if (REG_RD(sc, BCE_EMAC_TX_STATUS) & BCE_EMAC_TX_STATUS_XOFFED)
7612 		goto bce_watchdog_exit;
7613 
7614 	BCE_PRINTF("%s(%d): Watchdog timeout occurred, resetting!\n",
7615 	    __FILE__, __LINE__);
7616 
7617 	DBRUNMSG(BCE_INFO,
7618 	    bce_dump_driver_state(sc);
7619 	    bce_dump_status_block(sc);
7620 	    bce_dump_stats_block(sc);
7621 	    bce_dump_ftqs(sc);
7622 	    bce_dump_txp_state(sc, 0);
7623 	    bce_dump_rxp_state(sc, 0);
7624 	    bce_dump_tpat_state(sc, 0);
7625 	    bce_dump_cp_state(sc, 0);
7626 	    bce_dump_com_state(sc, 0));
7627 
7628 	DBRUN(bce_breakpoint(sc));
7629 
7630 	sc->bce_ifp->if_drv_flags &= ~IFF_DRV_RUNNING;
7631 
7632 	bce_init_locked(sc);
7633 	sc->bce_ifp->if_oerrors++;
7634 
7635 bce_watchdog_exit:
7636 	DBEXIT(BCE_EXTREME_SEND);
7637 }
7638 
7639 
7640 /*
7641  * Interrupt handler.
7642  */
7643 /****************************************************************************/
7644 /* Main interrupt entry point.  Verifies that the controller generated the  */
7645 /* interrupt and then calls a separate routine for handle the various       */
7646 /* interrupt causes (PHY, TX, RX).                                          */
7647 /*                                                                          */
7648 /* Returns:                                                                 */
7649 /*   0 for success, positive value for failure.                             */
7650 /****************************************************************************/
7651 static void
7652 bce_intr(void *xsc)
7653 {
7654 	struct bce_softc *sc;
7655 	struct ifnet *ifp;
7656 	u32 status_attn_bits;
7657 	u16 hw_rx_cons, hw_tx_cons;
7658 
7659 	sc = xsc;
7660 	ifp = sc->bce_ifp;
7661 
7662 	DBENTER(BCE_VERBOSE_SEND | BCE_VERBOSE_RECV | BCE_VERBOSE_INTR);
7663 	DBRUNMSG(BCE_VERBOSE_INTR, bce_dump_status_block(sc));
7664 	DBRUNMSG(BCE_VERBOSE_INTR, bce_dump_stats_block(sc));
7665 
7666 	BCE_LOCK(sc);
7667 
7668 	DBRUN(sc->interrupts_generated++);
7669 
7670 	/* Synchnorize before we read from interface's status block */
7671 	bus_dmamap_sync(sc->status_tag, sc->status_map,
7672 	    BUS_DMASYNC_POSTREAD);
7673 
7674 	/*
7675 	 * If the hardware status block index
7676 	 * matches the last value read by the
7677 	 * driver and we haven't asserted our
7678 	 * interrupt then there's nothing to do.
7679 	 */
7680 	if ((sc->status_block->status_idx == sc->last_status_idx) &&
7681 	    (REG_RD(sc, BCE_PCICFG_MISC_STATUS) &
7682 	     BCE_PCICFG_MISC_STATUS_INTA_VALUE)) {
7683 		DBPRINT(sc, BCE_VERBOSE_INTR, "%s(): Spurious interrupt.\n",
7684 		    __FUNCTION__);
7685 		goto bce_intr_exit;
7686 	}
7687 
7688 	/* Ack the interrupt and stop others from occuring. */
7689 	REG_WR(sc, BCE_PCICFG_INT_ACK_CMD,
7690 	    BCE_PCICFG_INT_ACK_CMD_USE_INT_HC_PARAM |
7691 	    BCE_PCICFG_INT_ACK_CMD_MASK_INT);
7692 
7693 	/* Check if the hardware has finished any work. */
7694 	hw_rx_cons = bce_get_hw_rx_cons(sc);
7695 	hw_tx_cons = bce_get_hw_tx_cons(sc);
7696 
7697 	/* Keep processing data as long as there is work to do. */
7698 	for (;;) {
7699 
7700 		status_attn_bits = sc->status_block->status_attn_bits;
7701 
7702 		DBRUNIF(DB_RANDOMTRUE(unexpected_attention_sim_control),
7703 		    BCE_PRINTF("Simulating unexpected status attention "
7704 		    "bit set.");
7705 		    sc->unexpected_attention_sim_count++;
7706 		    status_attn_bits = status_attn_bits |
7707 		    STATUS_ATTN_BITS_PARITY_ERROR);
7708 
7709 		/* Was it a link change interrupt? */
7710 		if ((status_attn_bits & STATUS_ATTN_BITS_LINK_STATE) !=
7711 		    (sc->status_block->status_attn_bits_ack &
7712 		     STATUS_ATTN_BITS_LINK_STATE)) {
7713 			bce_phy_intr(sc);
7714 
7715 			/* Clear transient updates during link state change. */
7716 			REG_WR(sc, BCE_HC_COMMAND, sc->hc_command |
7717 			    BCE_HC_COMMAND_COAL_NOW_WO_INT);
7718 			REG_RD(sc, BCE_HC_COMMAND);
7719 		}
7720 
7721 		/* If any other attention is asserted, the chip is toast. */
7722 		if (((status_attn_bits & ~STATUS_ATTN_BITS_LINK_STATE) !=
7723 		    (sc->status_block->status_attn_bits_ack &
7724 		    ~STATUS_ATTN_BITS_LINK_STATE))) {
7725 
7726 			sc->unexpected_attention_count++;
7727 
7728 			BCE_PRINTF("%s(%d): Fatal attention detected: "
7729 			    "0x%08X\n",	__FILE__, __LINE__,
7730 			    sc->status_block->status_attn_bits);
7731 
7732 			DBRUNMSG(BCE_FATAL,
7733 			    if (unexpected_attention_sim_control == 0)
7734 				bce_breakpoint(sc));
7735 
7736 			bce_init_locked(sc);
7737 			goto bce_intr_exit;
7738 		}
7739 
7740 		/* Check for any completed RX frames. */
7741 		if (hw_rx_cons != sc->hw_rx_cons)
7742 			bce_rx_intr(sc);
7743 
7744 		/* Check for any completed TX frames. */
7745 		if (hw_tx_cons != sc->hw_tx_cons)
7746 			bce_tx_intr(sc);
7747 
7748 		/* Save status block index value for the next interrupt. */
7749 		sc->last_status_idx = sc->status_block->status_idx;
7750 
7751  		/*
7752  		 * Prevent speculative reads from getting
7753  		 * ahead of the status block.
7754 		 */
7755 		bus_space_barrier(sc->bce_btag, sc->bce_bhandle, 0, 0,
7756 		    BUS_SPACE_BARRIER_READ);
7757 
7758  		/*
7759  		 * If there's no work left then exit the
7760  		 * interrupt service routine.
7761 		 */
7762 		hw_rx_cons = bce_get_hw_rx_cons(sc);
7763 		hw_tx_cons = bce_get_hw_tx_cons(sc);
7764 
7765 		if ((hw_rx_cons == sc->hw_rx_cons) &&
7766 		    (hw_tx_cons == sc->hw_tx_cons))
7767 			break;
7768 
7769 	}
7770 
7771 	bus_dmamap_sync(sc->status_tag,	sc->status_map,
7772 	    BUS_DMASYNC_PREREAD);
7773 
7774 	/* Re-enable interrupts. */
7775 	bce_enable_intr(sc, 0);
7776 
7777 	/* Handle any frames that arrived while handling the interrupt. */
7778 	if (ifp->if_drv_flags & IFF_DRV_RUNNING &&
7779 	    !IFQ_DRV_IS_EMPTY(&ifp->if_snd))
7780 		bce_start_locked(ifp);
7781 
7782 bce_intr_exit:
7783 	BCE_UNLOCK(sc);
7784 
7785 	DBEXIT(BCE_VERBOSE_SEND | BCE_VERBOSE_RECV | BCE_VERBOSE_INTR);
7786 }
7787 
7788 
7789 /****************************************************************************/
7790 /* Programs the various packet receive modes (broadcast and multicast).     */
7791 /*                                                                          */
7792 /* Returns:                                                                 */
7793 /*   Nothing.                                                               */
7794 /****************************************************************************/
7795 static void
7796 bce_set_rx_mode(struct bce_softc *sc)
7797 {
7798 	struct ifnet *ifp;
7799 	struct ifmultiaddr *ifma;
7800 	u32 hashes[NUM_MC_HASH_REGISTERS] = { 0, 0, 0, 0, 0, 0, 0, 0 };
7801 	u32 rx_mode, sort_mode;
7802 	int h, i;
7803 
7804 	DBENTER(BCE_VERBOSE_MISC);
7805 
7806 	BCE_LOCK_ASSERT(sc);
7807 
7808 	ifp = sc->bce_ifp;
7809 
7810 	/* Initialize receive mode default settings. */
7811 	rx_mode   = sc->rx_mode & ~(BCE_EMAC_RX_MODE_PROMISCUOUS |
7812 	    BCE_EMAC_RX_MODE_KEEP_VLAN_TAG);
7813 	sort_mode = 1 | BCE_RPM_SORT_USER0_BC_EN;
7814 
7815 	/*
7816 	 * ASF/IPMI/UMP firmware requires that VLAN tag stripping
7817 	 * be enbled.
7818 	 */
7819 	if (!(BCE_IF_CAPABILITIES & IFCAP_VLAN_HWTAGGING) &&
7820 	    (!(sc->bce_flags & BCE_MFW_ENABLE_FLAG)))
7821 		rx_mode |= BCE_EMAC_RX_MODE_KEEP_VLAN_TAG;
7822 
7823 	/*
7824 	 * Check for promiscuous, all multicast, or selected
7825 	 * multicast address filtering.
7826 	 */
7827 	if (ifp->if_flags & IFF_PROMISC) {
7828 		DBPRINT(sc, BCE_INFO_MISC, "Enabling promiscuous mode.\n");
7829 
7830 		/* Enable promiscuous mode. */
7831 		rx_mode |= BCE_EMAC_RX_MODE_PROMISCUOUS;
7832 		sort_mode |= BCE_RPM_SORT_USER0_PROM_EN;
7833 	} else if (ifp->if_flags & IFF_ALLMULTI) {
7834 		DBPRINT(sc, BCE_INFO_MISC, "Enabling all multicast mode.\n");
7835 
7836 		/* Enable all multicast addresses. */
7837 		for (i = 0; i < NUM_MC_HASH_REGISTERS; i++) {
7838 			REG_WR(sc, BCE_EMAC_MULTICAST_HASH0 + (i * 4), 0xffffffff);
7839        	}
7840 		sort_mode |= BCE_RPM_SORT_USER0_MC_EN;
7841 	} else {
7842 		/* Accept one or more multicast(s). */
7843 		DBPRINT(sc, BCE_INFO_MISC, "Enabling selective multicast mode.\n");
7844 
7845 		if_maddr_rlock(ifp);
7846 		TAILQ_FOREACH(ifma, &ifp->if_multiaddrs, ifma_link) {
7847 			if (ifma->ifma_addr->sa_family != AF_LINK)
7848 				continue;
7849 			h = ether_crc32_le(LLADDR((struct sockaddr_dl *)
7850 			    ifma->ifma_addr), ETHER_ADDR_LEN) & 0xFF;
7851 			    hashes[(h & 0xE0) >> 5] |= 1 << (h & 0x1F);
7852 		}
7853 		if_maddr_runlock(ifp);
7854 
7855 		for (i = 0; i < NUM_MC_HASH_REGISTERS; i++)
7856 			REG_WR(sc, BCE_EMAC_MULTICAST_HASH0 + (i * 4), hashes[i]);
7857 
7858 		sort_mode |= BCE_RPM_SORT_USER0_MC_HSH_EN;
7859 	}
7860 
7861 	/* Only make changes if the recive mode has actually changed. */
7862 	if (rx_mode != sc->rx_mode) {
7863 		DBPRINT(sc, BCE_VERBOSE_MISC, "Enabling new receive mode: "
7864 		    "0x%08X\n", rx_mode);
7865 
7866 		sc->rx_mode = rx_mode;
7867 		REG_WR(sc, BCE_EMAC_RX_MODE, rx_mode);
7868 	}
7869 
7870 	/* Disable and clear the exisitng sort before enabling a new sort. */
7871 	REG_WR(sc, BCE_RPM_SORT_USER0, 0x0);
7872 	REG_WR(sc, BCE_RPM_SORT_USER0, sort_mode);
7873 	REG_WR(sc, BCE_RPM_SORT_USER0, sort_mode | BCE_RPM_SORT_USER0_ENA);
7874 
7875 	DBEXIT(BCE_VERBOSE_MISC);
7876 }
7877 
7878 
7879 /****************************************************************************/
7880 /* Called periodically to updates statistics from the controllers           */
7881 /* statistics block.                                                        */
7882 /*                                                                          */
7883 /* Returns:                                                                 */
7884 /*   Nothing.                                                               */
7885 /****************************************************************************/
7886 static void
7887 bce_stats_update(struct bce_softc *sc)
7888 {
7889 	struct ifnet *ifp;
7890 	struct statistics_block *stats;
7891 
7892 	DBENTER(BCE_EXTREME_MISC);
7893 
7894 	ifp = sc->bce_ifp;
7895 
7896 	stats = (struct statistics_block *) sc->stats_block;
7897 
7898 	/*
7899 	 * Certain controllers don't report
7900 	 * carrier sense errors correctly.
7901 	 * See errata E11_5708CA0_1165.
7902 	 */
7903 	if (!(BCE_CHIP_NUM(sc) == BCE_CHIP_NUM_5706) &&
7904 	    !(BCE_CHIP_ID(sc) == BCE_CHIP_ID_5708_A0))
7905 		ifp->if_oerrors +=
7906 		    (u_long) stats->stat_Dot3StatsCarrierSenseErrors;
7907 
7908 	/*
7909 	 * Update the sysctl statistics from the
7910 	 * hardware statistics.
7911 	 */
7912 	sc->stat_IfHCInOctets =
7913 	    ((u64) stats->stat_IfHCInOctets_hi << 32) +
7914 	     (u64) stats->stat_IfHCInOctets_lo;
7915 
7916 	sc->stat_IfHCInBadOctets =
7917 	    ((u64) stats->stat_IfHCInBadOctets_hi << 32) +
7918 	     (u64) stats->stat_IfHCInBadOctets_lo;
7919 
7920 	sc->stat_IfHCOutOctets =
7921 	    ((u64) stats->stat_IfHCOutOctets_hi << 32) +
7922 	     (u64) stats->stat_IfHCOutOctets_lo;
7923 
7924 	sc->stat_IfHCOutBadOctets =
7925 	    ((u64) stats->stat_IfHCOutBadOctets_hi << 32) +
7926 	     (u64) stats->stat_IfHCOutBadOctets_lo;
7927 
7928 	sc->stat_IfHCInUcastPkts =
7929 	    ((u64) stats->stat_IfHCInUcastPkts_hi << 32) +
7930 	     (u64) stats->stat_IfHCInUcastPkts_lo;
7931 
7932 	sc->stat_IfHCInMulticastPkts =
7933 	    ((u64) stats->stat_IfHCInMulticastPkts_hi << 32) +
7934 	     (u64) stats->stat_IfHCInMulticastPkts_lo;
7935 
7936 	sc->stat_IfHCInBroadcastPkts =
7937 	    ((u64) stats->stat_IfHCInBroadcastPkts_hi << 32) +
7938 	     (u64) stats->stat_IfHCInBroadcastPkts_lo;
7939 
7940 	sc->stat_IfHCOutUcastPkts =
7941 	    ((u64) stats->stat_IfHCOutUcastPkts_hi << 32) +
7942 	     (u64) stats->stat_IfHCOutUcastPkts_lo;
7943 
7944 	sc->stat_IfHCOutMulticastPkts =
7945 	    ((u64) stats->stat_IfHCOutMulticastPkts_hi << 32) +
7946 	     (u64) stats->stat_IfHCOutMulticastPkts_lo;
7947 
7948 	sc->stat_IfHCOutBroadcastPkts =
7949 	    ((u64) stats->stat_IfHCOutBroadcastPkts_hi << 32) +
7950 	     (u64) stats->stat_IfHCOutBroadcastPkts_lo;
7951 
7952 	/* ToDo: Preserve counters beyond 32 bits? */
7953 	/* ToDo: Read the statistics from auto-clear regs? */
7954 
7955 	sc->stat_emac_tx_stat_dot3statsinternalmactransmiterrors =
7956 	    stats->stat_emac_tx_stat_dot3statsinternalmactransmiterrors;
7957 
7958 	sc->stat_Dot3StatsCarrierSenseErrors =
7959 	    stats->stat_Dot3StatsCarrierSenseErrors;
7960 
7961 	sc->stat_Dot3StatsFCSErrors =
7962 	    stats->stat_Dot3StatsFCSErrors;
7963 
7964 	sc->stat_Dot3StatsAlignmentErrors =
7965 	    stats->stat_Dot3StatsAlignmentErrors;
7966 
7967 	sc->stat_Dot3StatsSingleCollisionFrames =
7968 	    stats->stat_Dot3StatsSingleCollisionFrames;
7969 
7970 	sc->stat_Dot3StatsMultipleCollisionFrames =
7971 	    stats->stat_Dot3StatsMultipleCollisionFrames;
7972 
7973 	sc->stat_Dot3StatsDeferredTransmissions =
7974 	    stats->stat_Dot3StatsDeferredTransmissions;
7975 
7976 	sc->stat_Dot3StatsExcessiveCollisions =
7977 	    stats->stat_Dot3StatsExcessiveCollisions;
7978 
7979 	sc->stat_Dot3StatsLateCollisions =
7980 	    stats->stat_Dot3StatsLateCollisions;
7981 
7982 	sc->stat_EtherStatsCollisions =
7983 	    stats->stat_EtherStatsCollisions;
7984 
7985 	sc->stat_EtherStatsFragments =
7986 	    stats->stat_EtherStatsFragments;
7987 
7988 	sc->stat_EtherStatsJabbers =
7989 	    stats->stat_EtherStatsJabbers;
7990 
7991 	sc->stat_EtherStatsUndersizePkts =
7992 	    stats->stat_EtherStatsUndersizePkts;
7993 
7994 	sc->stat_EtherStatsOversizePkts =
7995 	     stats->stat_EtherStatsOversizePkts;
7996 
7997 	sc->stat_EtherStatsPktsRx64Octets =
7998 	    stats->stat_EtherStatsPktsRx64Octets;
7999 
8000 	sc->stat_EtherStatsPktsRx65Octetsto127Octets =
8001 	    stats->stat_EtherStatsPktsRx65Octetsto127Octets;
8002 
8003 	sc->stat_EtherStatsPktsRx128Octetsto255Octets =
8004 	    stats->stat_EtherStatsPktsRx128Octetsto255Octets;
8005 
8006 	sc->stat_EtherStatsPktsRx256Octetsto511Octets =
8007 	    stats->stat_EtherStatsPktsRx256Octetsto511Octets;
8008 
8009 	sc->stat_EtherStatsPktsRx512Octetsto1023Octets =
8010 	    stats->stat_EtherStatsPktsRx512Octetsto1023Octets;
8011 
8012 	sc->stat_EtherStatsPktsRx1024Octetsto1522Octets =
8013 	    stats->stat_EtherStatsPktsRx1024Octetsto1522Octets;
8014 
8015 	sc->stat_EtherStatsPktsRx1523Octetsto9022Octets =
8016 	    stats->stat_EtherStatsPktsRx1523Octetsto9022Octets;
8017 
8018 	sc->stat_EtherStatsPktsTx64Octets =
8019 	    stats->stat_EtherStatsPktsTx64Octets;
8020 
8021 	sc->stat_EtherStatsPktsTx65Octetsto127Octets =
8022 	    stats->stat_EtherStatsPktsTx65Octetsto127Octets;
8023 
8024 	sc->stat_EtherStatsPktsTx128Octetsto255Octets =
8025 	    stats->stat_EtherStatsPktsTx128Octetsto255Octets;
8026 
8027 	sc->stat_EtherStatsPktsTx256Octetsto511Octets =
8028 	    stats->stat_EtherStatsPktsTx256Octetsto511Octets;
8029 
8030 	sc->stat_EtherStatsPktsTx512Octetsto1023Octets =
8031 	    stats->stat_EtherStatsPktsTx512Octetsto1023Octets;
8032 
8033 	sc->stat_EtherStatsPktsTx1024Octetsto1522Octets =
8034 	    stats->stat_EtherStatsPktsTx1024Octetsto1522Octets;
8035 
8036 	sc->stat_EtherStatsPktsTx1523Octetsto9022Octets =
8037 	    stats->stat_EtherStatsPktsTx1523Octetsto9022Octets;
8038 
8039 	sc->stat_XonPauseFramesReceived =
8040 	    stats->stat_XonPauseFramesReceived;
8041 
8042 	sc->stat_XoffPauseFramesReceived =
8043 	    stats->stat_XoffPauseFramesReceived;
8044 
8045 	sc->stat_OutXonSent =
8046 	    stats->stat_OutXonSent;
8047 
8048 	sc->stat_OutXoffSent =
8049 	    stats->stat_OutXoffSent;
8050 
8051 	sc->stat_FlowControlDone =
8052 	    stats->stat_FlowControlDone;
8053 
8054 	sc->stat_MacControlFramesReceived =
8055 	    stats->stat_MacControlFramesReceived;
8056 
8057 	sc->stat_XoffStateEntered =
8058 	    stats->stat_XoffStateEntered;
8059 
8060 	sc->stat_IfInFramesL2FilterDiscards =
8061 	    stats->stat_IfInFramesL2FilterDiscards;
8062 
8063 	sc->stat_IfInRuleCheckerDiscards =
8064 	    stats->stat_IfInRuleCheckerDiscards;
8065 
8066 	sc->stat_IfInFTQDiscards =
8067 	    stats->stat_IfInFTQDiscards;
8068 
8069 	sc->stat_IfInMBUFDiscards =
8070 	    stats->stat_IfInMBUFDiscards;
8071 
8072 	sc->stat_IfInRuleCheckerP4Hit =
8073 	    stats->stat_IfInRuleCheckerP4Hit;
8074 
8075 	sc->stat_CatchupInRuleCheckerDiscards =
8076 	    stats->stat_CatchupInRuleCheckerDiscards;
8077 
8078 	sc->stat_CatchupInFTQDiscards =
8079 	    stats->stat_CatchupInFTQDiscards;
8080 
8081 	sc->stat_CatchupInMBUFDiscards =
8082 	    stats->stat_CatchupInMBUFDiscards;
8083 
8084 	sc->stat_CatchupInRuleCheckerP4Hit =
8085 	    stats->stat_CatchupInRuleCheckerP4Hit;
8086 
8087 	sc->com_no_buffers = REG_RD_IND(sc, 0x120084);
8088 
8089 	/*
8090 	 * Update the interface statistics from the
8091 	 * hardware statistics.
8092 	 */
8093 	ifp->if_collisions =
8094 	    (u_long) sc->stat_EtherStatsCollisions;
8095 
8096 	/* ToDo: This method loses soft errors. */
8097 	ifp->if_ierrors =
8098 	    (u_long) sc->stat_EtherStatsUndersizePkts +
8099 	    (u_long) sc->stat_EtherStatsOversizePkts +
8100 	    (u_long) sc->stat_IfInMBUFDiscards +
8101 	    (u_long) sc->stat_Dot3StatsAlignmentErrors +
8102 	    (u_long) sc->stat_Dot3StatsFCSErrors +
8103 	    (u_long) sc->stat_IfInRuleCheckerDiscards +
8104 	    (u_long) sc->stat_IfInFTQDiscards +
8105 	    (u_long) sc->com_no_buffers;
8106 
8107 	/* ToDo: This method loses soft errors. */
8108 	ifp->if_oerrors =
8109 	    (u_long) sc->stat_emac_tx_stat_dot3statsinternalmactransmiterrors +
8110 	    (u_long) sc->stat_Dot3StatsExcessiveCollisions +
8111 	    (u_long) sc->stat_Dot3StatsLateCollisions;
8112 
8113 	/* ToDo: Add additional statistics? */
8114 
8115 	DBEXIT(BCE_EXTREME_MISC);
8116 }
8117 
8118 
8119 /****************************************************************************/
8120 /* Periodic function to notify the bootcode that the driver is still        */
8121 /* present.                                                                 */
8122 /*                                                                          */
8123 /* Returns:                                                                 */
8124 /*   Nothing.                                                               */
8125 /****************************************************************************/
8126 static void
8127 bce_pulse(void *xsc)
8128 {
8129 	struct bce_softc *sc = xsc;
8130 	u32 msg;
8131 
8132 	DBENTER(BCE_EXTREME_MISC);
8133 
8134 	BCE_LOCK_ASSERT(sc);
8135 
8136 	/* Tell the firmware that the driver is still running. */
8137 	msg = (u32) ++sc->bce_fw_drv_pulse_wr_seq;
8138 	bce_shmem_wr(sc, BCE_DRV_PULSE_MB, msg);
8139 
8140 	/* Update the bootcode condition. */
8141 	sc->bc_state = bce_shmem_rd(sc, BCE_BC_STATE_CONDITION);
8142 
8143 	/* Report whether the bootcode still knows the driver is running. */
8144 	if (bce_verbose || bootverbose) {
8145 		if (sc->bce_drv_cardiac_arrest == FALSE) {
8146 			if (!(sc->bc_state & BCE_CONDITION_DRV_PRESENT)) {
8147 				sc->bce_drv_cardiac_arrest = TRUE;
8148 				BCE_PRINTF("%s(): Warning: bootcode "
8149 				    "thinks driver is absent! "
8150 				    "(bc_state = 0x%08X)\n",
8151 				    __FUNCTION__, sc->bc_state);
8152 			}
8153 		} else {
8154 			/*
8155 			 * Not supported by all bootcode versions.
8156 			 * (v5.0.11+ and v5.2.1+)  Older bootcode
8157 			 * will require the driver to reset the
8158 			 * controller to clear this condition.
8159 			 */
8160 			if (sc->bc_state & BCE_CONDITION_DRV_PRESENT) {
8161 				sc->bce_drv_cardiac_arrest = FALSE;
8162 				BCE_PRINTF("%s(): Bootcode found the "
8163 				    "driver pulse! (bc_state = 0x%08X)\n",
8164 				    __FUNCTION__, sc->bc_state);
8165 			}
8166 		}
8167 	}
8168 
8169 
8170 	/* Schedule the next pulse. */
8171 	callout_reset(&sc->bce_pulse_callout, hz, bce_pulse, sc);
8172 
8173 	DBEXIT(BCE_EXTREME_MISC);
8174 }
8175 
8176 
8177 /****************************************************************************/
8178 /* Periodic function to perform maintenance tasks.                          */
8179 /*                                                                          */
8180 /* Returns:                                                                 */
8181 /*   Nothing.                                                               */
8182 /****************************************************************************/
8183 static void
8184 bce_tick(void *xsc)
8185 {
8186 	struct bce_softc *sc = xsc;
8187 	struct mii_data *mii;
8188 	struct ifnet *ifp;
8189 
8190 	ifp = sc->bce_ifp;
8191 
8192 	DBENTER(BCE_EXTREME_MISC);
8193 
8194 	BCE_LOCK_ASSERT(sc);
8195 
8196 	/* Schedule the next tick. */
8197 	callout_reset(&sc->bce_tick_callout, hz, bce_tick, sc);
8198 
8199 	/* Update the statistics from the hardware statistics block. */
8200 	bce_stats_update(sc);
8201 
8202  	/*
8203  	 * ToDo: This is a safety measure.  Need to re-evaluate
8204  	 * high	level processing logic and eliminate this code.
8205  	 */
8206 	/* Top off the receive and page chains. */
8207 	if (bce_hdr_split == TRUE)
8208 		bce_fill_pg_chain(sc);
8209 	bce_fill_rx_chain(sc);
8210 
8211 	/* Check that chip hasn't hung. */
8212 	bce_watchdog(sc);
8213 
8214 	/* If link is up already up then we're done. */
8215 	if (sc->bce_link_tick == FALSE && sc->bce_link_up == TRUE)
8216 		goto bce_tick_exit;
8217 
8218 	/* Link is down.  Check what the PHY's doing. */
8219 	mii = device_get_softc(sc->bce_miibus);
8220 	mii_tick(mii);
8221 
8222 	sc->bce_link_tick = FALSE;
8223 	/* Now that link is up, handle any outstanding TX traffic. */
8224 	if (sc->bce_link_up == TRUE && !IFQ_DRV_IS_EMPTY(&ifp->if_snd)) {
8225 		DBPRINT(sc, BCE_VERBOSE_MISC,
8226 		    "%s(): Found pending TX traffic.\n", __FUNCTION__);
8227 		bce_start_locked(ifp);
8228 	}
8229 
8230 bce_tick_exit:
8231 	DBEXIT(BCE_EXTREME_MISC);
8232 	return;
8233 }
8234 
8235 #ifdef BCE_DEBUG
8236 /****************************************************************************/
8237 /* Allows the driver state to be dumped through the sysctl interface.       */
8238 /*                                                                          */
8239 /* Returns:                                                                 */
8240 /*   0 for success, positive value for failure.                             */
8241 /****************************************************************************/
8242 static int
8243 bce_sysctl_driver_state(SYSCTL_HANDLER_ARGS)
8244 {
8245 	int error;
8246 	int result;
8247 	struct bce_softc *sc;
8248 
8249 	result = -1;
8250 	error = sysctl_handle_int(oidp, &result, 0, req);
8251 
8252 	if (error || !req->newptr)
8253 		return (error);
8254 
8255 	if (result == 1) {
8256 		sc = (struct bce_softc *)arg1;
8257 		bce_dump_driver_state(sc);
8258 	}
8259 
8260 	return error;
8261 }
8262 
8263 
8264 /****************************************************************************/
8265 /* Allows the hardware state to be dumped through the sysctl interface.     */
8266 /*                                                                          */
8267 /* Returns:                                                                 */
8268 /*   0 for success, positive value for failure.                             */
8269 /****************************************************************************/
8270 static int
8271 bce_sysctl_hw_state(SYSCTL_HANDLER_ARGS)
8272 {
8273 	int error;
8274 	int result;
8275 	struct bce_softc *sc;
8276 
8277 	result = -1;
8278 	error = sysctl_handle_int(oidp, &result, 0, req);
8279 
8280 	if (error || !req->newptr)
8281 		return (error);
8282 
8283 	if (result == 1) {
8284 		sc = (struct bce_softc *)arg1;
8285 		bce_dump_hw_state(sc);
8286 	}
8287 
8288 	return error;
8289 }
8290 
8291 
8292 /****************************************************************************/
8293 /* Allows the status block to be dumped through the sysctl interface.       */
8294 /*                                                                          */
8295 /* Returns:                                                                 */
8296 /*   0 for success, positive value for failure.                             */
8297 /****************************************************************************/
8298 static int
8299 bce_sysctl_status_block(SYSCTL_HANDLER_ARGS)
8300 {
8301 	int error;
8302 	int result;
8303 	struct bce_softc *sc;
8304 
8305 	result = -1;
8306 	error = sysctl_handle_int(oidp, &result, 0, req);
8307 
8308 	if (error || !req->newptr)
8309 		return (error);
8310 
8311 	if (result == 1) {
8312 		sc = (struct bce_softc *)arg1;
8313 		bce_dump_status_block(sc);
8314 	}
8315 
8316 	return error;
8317 }
8318 
8319 
8320 /****************************************************************************/
8321 /* Allows the stats block to be dumped through the sysctl interface.        */
8322 /*                                                                          */
8323 /* Returns:                                                                 */
8324 /*   0 for success, positive value for failure.                             */
8325 /****************************************************************************/
8326 static int
8327 bce_sysctl_stats_block(SYSCTL_HANDLER_ARGS)
8328 {
8329 	int error;
8330 	int result;
8331 	struct bce_softc *sc;
8332 
8333 	result = -1;
8334 	error = sysctl_handle_int(oidp, &result, 0, req);
8335 
8336 	if (error || !req->newptr)
8337 		return (error);
8338 
8339 	if (result == 1) {
8340 		sc = (struct bce_softc *)arg1;
8341 		bce_dump_stats_block(sc);
8342 	}
8343 
8344 	return error;
8345 }
8346 
8347 
8348 /****************************************************************************/
8349 /* Allows the stat counters to be cleared without unloading/reloading the   */
8350 /* driver.                                                                  */
8351 /*                                                                          */
8352 /* Returns:                                                                 */
8353 /*   0 for success, positive value for failure.                             */
8354 /****************************************************************************/
8355 static int
8356 bce_sysctl_stats_clear(SYSCTL_HANDLER_ARGS)
8357 {
8358 	int error;
8359 	int result;
8360 	struct bce_softc *sc;
8361 
8362 	result = -1;
8363 	error = sysctl_handle_int(oidp, &result, 0, req);
8364 
8365 	if (error || !req->newptr)
8366 		return (error);
8367 
8368 	if (result == 1) {
8369 		sc = (struct bce_softc *)arg1;
8370 		struct statistics_block *stats;
8371 
8372 		stats = (struct statistics_block *) sc->stats_block;
8373 		bzero(stats, sizeof(struct statistics_block));
8374 
8375 		/* Clear the internal H/W statistics counters. */
8376 		REG_WR(sc, BCE_HC_COMMAND, BCE_HC_COMMAND_CLR_STAT_NOW);
8377 
8378 		/* Reset the driver maintained statistics. */
8379 		sc->interrupts_rx =
8380 		    sc->interrupts_tx = 0;
8381 		sc->tso_frames_requested =
8382 		    sc->tso_frames_completed =
8383 		    sc->tso_frames_failed = 0;
8384 		sc->rx_empty_count =
8385 		    sc->tx_full_count = 0;
8386 		sc->rx_low_watermark = USABLE_RX_BD_ALLOC;
8387 		sc->tx_hi_watermark = 0;
8388 		sc->l2fhdr_error_count =
8389 		    sc->l2fhdr_error_sim_count = 0;
8390 		sc->mbuf_alloc_failed_count =
8391 		    sc->mbuf_alloc_failed_sim_count = 0;
8392 		sc->dma_map_addr_rx_failed_count =
8393 		    sc->dma_map_addr_tx_failed_count = 0;
8394 		sc->mbuf_frag_count = 0;
8395 		sc->csum_offload_tcp_udp =
8396 		    sc->csum_offload_ip = 0;
8397 		sc->vlan_tagged_frames_rcvd =
8398 		    sc->vlan_tagged_frames_stripped = 0;
8399 		sc->split_header_frames_rcvd =
8400 		    sc->split_header_tcp_frames_rcvd = 0;
8401 
8402 		/* Clear firmware maintained statistics. */
8403 		REG_WR_IND(sc, 0x120084, 0);
8404 	}
8405 
8406 	return error;
8407 }
8408 
8409 
8410 /****************************************************************************/
8411 /* Allows the shared memory contents to be dumped through the sysctl  .     */
8412 /* interface.                                                               */
8413 /*                                                                          */
8414 /* Returns:                                                                 */
8415 /*   0 for success, positive value for failure.                             */
8416 /****************************************************************************/
8417 static int
8418 bce_sysctl_shmem_state(SYSCTL_HANDLER_ARGS)
8419 {
8420 	int error;
8421 	int result;
8422 	struct bce_softc *sc;
8423 
8424 	result = -1;
8425 	error = sysctl_handle_int(oidp, &result, 0, req);
8426 
8427 	if (error || !req->newptr)
8428 		return (error);
8429 
8430 	if (result == 1) {
8431 		sc = (struct bce_softc *)arg1;
8432 		bce_dump_shmem_state(sc);
8433 	}
8434 
8435 	return error;
8436 }
8437 
8438 
8439 /****************************************************************************/
8440 /* Allows the bootcode state to be dumped through the sysctl interface.     */
8441 /*                                                                          */
8442 /* Returns:                                                                 */
8443 /*   0 for success, positive value for failure.                             */
8444 /****************************************************************************/
8445 static int
8446 bce_sysctl_bc_state(SYSCTL_HANDLER_ARGS)
8447 {
8448 	int error;
8449 	int result;
8450 	struct bce_softc *sc;
8451 
8452 	result = -1;
8453 	error = sysctl_handle_int(oidp, &result, 0, req);
8454 
8455 	if (error || !req->newptr)
8456 		return (error);
8457 
8458 	if (result == 1) {
8459 		sc = (struct bce_softc *)arg1;
8460 		bce_dump_bc_state(sc);
8461 	}
8462 
8463 	return error;
8464 }
8465 
8466 
8467 /****************************************************************************/
8468 /* Provides a sysctl interface to allow dumping the RX BD chain.            */
8469 /*                                                                          */
8470 /* Returns:                                                                 */
8471 /*   0 for success, positive value for failure.                             */
8472 /****************************************************************************/
8473 static int
8474 bce_sysctl_dump_rx_bd_chain(SYSCTL_HANDLER_ARGS)
8475 {
8476 	int error;
8477 	int result;
8478 	struct bce_softc *sc;
8479 
8480 	result = -1;
8481 	error = sysctl_handle_int(oidp, &result, 0, req);
8482 
8483 	if (error || !req->newptr)
8484 		return (error);
8485 
8486 	if (result == 1) {
8487 		sc = (struct bce_softc *)arg1;
8488 		bce_dump_rx_bd_chain(sc, 0, TOTAL_RX_BD_ALLOC);
8489 	}
8490 
8491 	return error;
8492 }
8493 
8494 
8495 /****************************************************************************/
8496 /* Provides a sysctl interface to allow dumping the RX MBUF chain.          */
8497 /*                                                                          */
8498 /* Returns:                                                                 */
8499 /*   0 for success, positive value for failure.                             */
8500 /****************************************************************************/
8501 static int
8502 bce_sysctl_dump_rx_mbuf_chain(SYSCTL_HANDLER_ARGS)
8503 {
8504 	int error;
8505 	int result;
8506 	struct bce_softc *sc;
8507 
8508 	result = -1;
8509 	error = sysctl_handle_int(oidp, &result, 0, req);
8510 
8511 	if (error || !req->newptr)
8512 		return (error);
8513 
8514 	if (result == 1) {
8515 		sc = (struct bce_softc *)arg1;
8516 		bce_dump_rx_mbuf_chain(sc, 0, USABLE_RX_BD_ALLOC);
8517 	}
8518 
8519 	return error;
8520 }
8521 
8522 
8523 /****************************************************************************/
8524 /* Provides a sysctl interface to allow dumping the TX chain.               */
8525 /*                                                                          */
8526 /* Returns:                                                                 */
8527 /*   0 for success, positive value for failure.                             */
8528 /****************************************************************************/
8529 static int
8530 bce_sysctl_dump_tx_chain(SYSCTL_HANDLER_ARGS)
8531 {
8532 	int error;
8533 	int result;
8534 	struct bce_softc *sc;
8535 
8536 	result = -1;
8537 	error = sysctl_handle_int(oidp, &result, 0, req);
8538 
8539 	if (error || !req->newptr)
8540 		return (error);
8541 
8542 	if (result == 1) {
8543 		sc = (struct bce_softc *)arg1;
8544 		bce_dump_tx_chain(sc, 0, TOTAL_TX_BD_ALLOC);
8545 	}
8546 
8547 	return error;
8548 }
8549 
8550 
8551 /****************************************************************************/
8552 /* Provides a sysctl interface to allow dumping the page chain.             */
8553 /*                                                                          */
8554 /* Returns:                                                                 */
8555 /*   0 for success, positive value for failure.                             */
8556 /****************************************************************************/
8557 static int
8558 bce_sysctl_dump_pg_chain(SYSCTL_HANDLER_ARGS)
8559 {
8560 	int error;
8561 	int result;
8562 	struct bce_softc *sc;
8563 
8564 	result = -1;
8565 	error = sysctl_handle_int(oidp, &result, 0, req);
8566 
8567 	if (error || !req->newptr)
8568 		return (error);
8569 
8570 	if (result == 1) {
8571 		sc = (struct bce_softc *)arg1;
8572 		bce_dump_pg_chain(sc, 0, TOTAL_PG_BD_ALLOC);
8573 	}
8574 
8575 	return error;
8576 }
8577 
8578 /****************************************************************************/
8579 /* Provides a sysctl interface to allow reading arbitrary NVRAM offsets in  */
8580 /* the device.  DO NOT ENABLE ON PRODUCTION SYSTEMS!                        */
8581 /*                                                                          */
8582 /* Returns:                                                                 */
8583 /*   0 for success, positive value for failure.                             */
8584 /****************************************************************************/
8585 static int
8586 bce_sysctl_nvram_read(SYSCTL_HANDLER_ARGS)
8587 {
8588 	struct bce_softc *sc = (struct bce_softc *)arg1;
8589 	int error;
8590 	u32 result;
8591 	u32 val[1];
8592 	u8 *data = (u8 *) val;
8593 
8594 	result = -1;
8595 	error = sysctl_handle_int(oidp, &result, 0, req);
8596 	if (error || (req->newptr == NULL))
8597 		return (error);
8598 
8599 	error = bce_nvram_read(sc, result, data, 4);
8600 
8601 	BCE_PRINTF("offset 0x%08X = 0x%08X\n", result, bce_be32toh(val[0]));
8602 
8603 	return (error);
8604 }
8605 
8606 
8607 /****************************************************************************/
8608 /* Provides a sysctl interface to allow reading arbitrary registers in the  */
8609 /* device.  DO NOT ENABLE ON PRODUCTION SYSTEMS!                            */
8610 /*                                                                          */
8611 /* Returns:                                                                 */
8612 /*   0 for success, positive value for failure.                             */
8613 /****************************************************************************/
8614 static int
8615 bce_sysctl_reg_read(SYSCTL_HANDLER_ARGS)
8616 {
8617 	struct bce_softc *sc = (struct bce_softc *)arg1;
8618 	int error;
8619 	u32 val, result;
8620 
8621 	result = -1;
8622 	error = sysctl_handle_int(oidp, &result, 0, req);
8623 	if (error || (req->newptr == NULL))
8624 		return (error);
8625 
8626 	/* Make sure the register is accessible. */
8627 	if (result < 0x8000) {
8628 		val = REG_RD(sc, result);
8629 		BCE_PRINTF("reg 0x%08X = 0x%08X\n", result, val);
8630 	} else if (result < 0x0280000) {
8631 		val = REG_RD_IND(sc, result);
8632 		BCE_PRINTF("reg 0x%08X = 0x%08X\n", result, val);
8633 	}
8634 
8635 	return (error);
8636 }
8637 
8638 
8639 /****************************************************************************/
8640 /* Provides a sysctl interface to allow reading arbitrary PHY registers in  */
8641 /* the device.  DO NOT ENABLE ON PRODUCTION SYSTEMS!                        */
8642 /*                                                                          */
8643 /* Returns:                                                                 */
8644 /*   0 for success, positive value for failure.                             */
8645 /****************************************************************************/
8646 static int
8647 bce_sysctl_phy_read(SYSCTL_HANDLER_ARGS)
8648 {
8649 	struct bce_softc *sc;
8650 	device_t dev;
8651 	int error, result;
8652 	u16 val;
8653 
8654 	result = -1;
8655 	error = sysctl_handle_int(oidp, &result, 0, req);
8656 	if (error || (req->newptr == NULL))
8657 		return (error);
8658 
8659 	/* Make sure the register is accessible. */
8660 	if (result < 0x20) {
8661 		sc = (struct bce_softc *)arg1;
8662 		dev = sc->bce_dev;
8663 		val = bce_miibus_read_reg(dev, sc->bce_phy_addr, result);
8664 		BCE_PRINTF("phy 0x%02X = 0x%04X\n", result, val);
8665 	}
8666 	return (error);
8667 }
8668 
8669 
8670 /****************************************************************************/
8671 /* Provides a sysctl interface for dumping the nvram contents.              */
8672 /* DO NOT ENABLE ON PRODUCTION SYSTEMS!					    */
8673 /*									    */
8674 /* Returns:								    */
8675 /*   0 for success, positive errno for failure.				    */
8676 /****************************************************************************/
8677 static int
8678 bce_sysctl_nvram_dump(SYSCTL_HANDLER_ARGS)
8679 {
8680 	struct bce_softc *sc = (struct bce_softc *)arg1;
8681 	int error, i;
8682 
8683 	if (sc->nvram_buf == NULL)
8684 		sc->nvram_buf = malloc(sc->bce_flash_size,
8685 				    M_TEMP, M_ZERO | M_WAITOK);
8686 
8687 	error = 0;
8688 	if (req->oldlen == sc->bce_flash_size) {
8689 		for (i = 0; i < sc->bce_flash_size && error == 0; i++)
8690 			error = bce_nvram_read(sc, i, &sc->nvram_buf[i], 1);
8691 	}
8692 
8693 	if (error == 0)
8694 		error = SYSCTL_OUT(req, sc->nvram_buf, sc->bce_flash_size);
8695 
8696 	return error;
8697 }
8698 
8699 #ifdef BCE_NVRAM_WRITE_SUPPORT
8700 /****************************************************************************/
8701 /* Provides a sysctl interface for writing to nvram.                        */
8702 /* DO NOT ENABLE ON PRODUCTION SYSTEMS!					    */
8703 /*									    */
8704 /* Returns:								    */
8705 /*   0 for success, positive errno for failure.				    */
8706 /****************************************************************************/
8707 static int
8708 bce_sysctl_nvram_write(SYSCTL_HANDLER_ARGS)
8709 {
8710 	struct bce_softc *sc = (struct bce_softc *)arg1;
8711 	int error;
8712 
8713 	if (sc->nvram_buf == NULL)
8714 		sc->nvram_buf = malloc(sc->bce_flash_size,
8715 				    M_TEMP, M_ZERO | M_WAITOK);
8716 	else
8717 		bzero(sc->nvram_buf, sc->bce_flash_size);
8718 
8719 	error = SYSCTL_IN(req, sc->nvram_buf, sc->bce_flash_size);
8720 	if (error == 0)
8721 		return (error);
8722 
8723 	if (req->newlen == sc->bce_flash_size)
8724 		error = bce_nvram_write(sc, 0, sc->nvram_buf,
8725 			    sc->bce_flash_size);
8726 
8727 
8728 	return error;
8729 }
8730 #endif
8731 
8732 
8733 /****************************************************************************/
8734 /* Provides a sysctl interface to allow reading a CID.                      */
8735 /*                                                                          */
8736 /* Returns:                                                                 */
8737 /*   0 for success, positive value for failure.                             */
8738 /****************************************************************************/
8739 static int
8740 bce_sysctl_dump_ctx(SYSCTL_HANDLER_ARGS)
8741 {
8742 	struct bce_softc *sc;
8743 	int error, result;
8744 
8745 	result = -1;
8746 	error = sysctl_handle_int(oidp, &result, 0, req);
8747 	if (error || (req->newptr == NULL))
8748 		return (error);
8749 
8750 	/* Make sure the register is accessible. */
8751 	if (result <= TX_CID) {
8752 		sc = (struct bce_softc *)arg1;
8753 		bce_dump_ctx(sc, result);
8754 	}
8755 
8756 	return (error);
8757 }
8758 
8759 
8760 /****************************************************************************/
8761 /* Provides a sysctl interface to forcing the driver to dump state and      */
8762 /* enter the debugger.  DO NOT ENABLE ON PRODUCTION SYSTEMS!                */
8763 /*                                                                          */
8764 /* Returns:                                                                 */
8765 /*   0 for success, positive value for failure.                             */
8766 /****************************************************************************/
8767 static int
8768 bce_sysctl_breakpoint(SYSCTL_HANDLER_ARGS)
8769 {
8770 	int error;
8771 	int result;
8772 	struct bce_softc *sc;
8773 
8774 	result = -1;
8775 	error = sysctl_handle_int(oidp, &result, 0, req);
8776 
8777 	if (error || !req->newptr)
8778 		return (error);
8779 
8780 	if (result == 1) {
8781 		sc = (struct bce_softc *)arg1;
8782 		bce_breakpoint(sc);
8783 	}
8784 
8785 	return error;
8786 }
8787 #endif
8788 
8789 /****************************************************************************/
8790 /* Adds any sysctl parameters for tuning or debugging purposes.             */
8791 /*                                                                          */
8792 /* Returns:                                                                 */
8793 /*   0 for success, positive value for failure.                             */
8794 /****************************************************************************/
8795 static void
8796 bce_add_sysctls(struct bce_softc *sc)
8797 {
8798 	struct sysctl_ctx_list *ctx;
8799 	struct sysctl_oid_list *children;
8800 
8801 	DBENTER(BCE_VERBOSE_MISC);
8802 
8803 	ctx = device_get_sysctl_ctx(sc->bce_dev);
8804 	children = SYSCTL_CHILDREN(device_get_sysctl_tree(sc->bce_dev));
8805 
8806 #ifdef BCE_DEBUG
8807 	SYSCTL_ADD_INT(ctx, children, OID_AUTO,
8808 	    "l2fhdr_error_sim_control",
8809 	    CTLFLAG_RW, &l2fhdr_error_sim_control,
8810 	    0, "Debug control to force l2fhdr errors");
8811 
8812 	SYSCTL_ADD_INT(ctx, children, OID_AUTO,
8813 	    "l2fhdr_error_sim_count",
8814 	    CTLFLAG_RD, &sc->l2fhdr_error_sim_count,
8815 	    0, "Number of simulated l2_fhdr errors");
8816 #endif
8817 
8818 	SYSCTL_ADD_UINT(ctx, children, OID_AUTO,
8819 	    "l2fhdr_error_count",
8820 	    CTLFLAG_RD, &sc->l2fhdr_error_count,
8821 	    0, "Number of l2_fhdr errors");
8822 
8823 #ifdef BCE_DEBUG
8824 	SYSCTL_ADD_INT(ctx, children, OID_AUTO,
8825 	    "mbuf_alloc_failed_sim_control",
8826 	    CTLFLAG_RW, &mbuf_alloc_failed_sim_control,
8827 	    0, "Debug control to force mbuf allocation failures");
8828 
8829 	SYSCTL_ADD_UINT(ctx, children, OID_AUTO,
8830 	    "mbuf_alloc_failed_sim_count",
8831 	    CTLFLAG_RD, &sc->mbuf_alloc_failed_sim_count,
8832 	    0, "Number of simulated mbuf cluster allocation failures");
8833 #endif
8834 
8835 	SYSCTL_ADD_UINT(ctx, children, OID_AUTO,
8836 	    "mbuf_alloc_failed_count",
8837 	    CTLFLAG_RD, &sc->mbuf_alloc_failed_count,
8838 	    0, "Number of mbuf allocation failures");
8839 
8840 	SYSCTL_ADD_UINT(ctx, children, OID_AUTO,
8841 	    "mbuf_frag_count",
8842 	    CTLFLAG_RD, &sc->mbuf_frag_count,
8843 	    0, "Number of fragmented mbufs");
8844 
8845 #ifdef BCE_DEBUG
8846 	SYSCTL_ADD_INT(ctx, children, OID_AUTO,
8847 	    "dma_map_addr_failed_sim_control",
8848 	    CTLFLAG_RW, &dma_map_addr_failed_sim_control,
8849 	    0, "Debug control to force DMA mapping failures");
8850 
8851 	/* ToDo: Figure out how to update this value in bce_dma_map_addr(). */
8852 	SYSCTL_ADD_UINT(ctx, children, OID_AUTO,
8853 	    "dma_map_addr_failed_sim_count",
8854 	    CTLFLAG_RD, &sc->dma_map_addr_failed_sim_count,
8855 	    0, "Number of simulated DMA mapping failures");
8856 
8857 #endif
8858 
8859 	SYSCTL_ADD_UINT(ctx, children, OID_AUTO,
8860 	    "dma_map_addr_rx_failed_count",
8861 	    CTLFLAG_RD, &sc->dma_map_addr_rx_failed_count,
8862 	    0, "Number of RX DMA mapping failures");
8863 
8864 	SYSCTL_ADD_UINT(ctx, children, OID_AUTO,
8865 	    "dma_map_addr_tx_failed_count",
8866 	    CTLFLAG_RD, &sc->dma_map_addr_tx_failed_count,
8867 	    0, "Number of TX DMA mapping failures");
8868 
8869 #ifdef BCE_DEBUG
8870 	SYSCTL_ADD_INT(ctx, children, OID_AUTO,
8871 	    "unexpected_attention_sim_control",
8872 	    CTLFLAG_RW, &unexpected_attention_sim_control,
8873 	    0, "Debug control to simulate unexpected attentions");
8874 
8875 	SYSCTL_ADD_UINT(ctx, children, OID_AUTO,
8876 	    "unexpected_attention_sim_count",
8877 	    CTLFLAG_RW, &sc->unexpected_attention_sim_count,
8878 	    0, "Number of simulated unexpected attentions");
8879 #endif
8880 
8881 	SYSCTL_ADD_UINT(ctx, children, OID_AUTO,
8882 	    "unexpected_attention_count",
8883 	    CTLFLAG_RW, &sc->unexpected_attention_count,
8884 	    0, "Number of unexpected attentions");
8885 
8886 #ifdef BCE_DEBUG
8887 	SYSCTL_ADD_INT(ctx, children, OID_AUTO,
8888 	    "debug_bootcode_running_failure",
8889 	    CTLFLAG_RW, &bootcode_running_failure_sim_control,
8890 	    0, "Debug control to force bootcode running failures");
8891 
8892 	SYSCTL_ADD_INT(ctx, children, OID_AUTO,
8893 	    "rx_low_watermark",
8894 	    CTLFLAG_RD, &sc->rx_low_watermark,
8895 	    0, "Lowest level of free rx_bd's");
8896 
8897 	SYSCTL_ADD_QUAD(ctx, children, OID_AUTO,
8898 	    "rx_empty_count",
8899 	    CTLFLAG_RD, &sc->rx_empty_count,
8900 	    "Number of times the RX chain was empty");
8901 
8902 	SYSCTL_ADD_INT(ctx, children, OID_AUTO,
8903 	    "tx_hi_watermark",
8904 	    CTLFLAG_RD, &sc->tx_hi_watermark,
8905 	    0, "Highest level of used tx_bd's");
8906 
8907 	SYSCTL_ADD_QUAD(ctx, children, OID_AUTO,
8908 	    "tx_full_count",
8909 	    CTLFLAG_RD, &sc->tx_full_count,
8910 	    "Number of times the TX chain was full");
8911 
8912 	SYSCTL_ADD_QUAD(ctx, children, OID_AUTO,
8913 	    "tso_frames_requested",
8914 	    CTLFLAG_RD, &sc->tso_frames_requested,
8915 	    "Number of TSO frames requested");
8916 
8917 	SYSCTL_ADD_QUAD(ctx, children, OID_AUTO,
8918 	    "tso_frames_completed",
8919 	    CTLFLAG_RD, &sc->tso_frames_completed,
8920 	    "Number of TSO frames completed");
8921 
8922 	SYSCTL_ADD_QUAD(ctx, children, OID_AUTO,
8923 	    "tso_frames_failed",
8924 	    CTLFLAG_RD, &sc->tso_frames_failed,
8925 	    "Number of TSO frames failed");
8926 
8927 	SYSCTL_ADD_QUAD(ctx, children, OID_AUTO,
8928 	    "csum_offload_ip",
8929 	    CTLFLAG_RD, &sc->csum_offload_ip,
8930 	    "Number of IP checksum offload frames");
8931 
8932 	SYSCTL_ADD_QUAD(ctx, children, OID_AUTO,
8933 	    "csum_offload_tcp_udp",
8934 	    CTLFLAG_RD, &sc->csum_offload_tcp_udp,
8935 	    "Number of TCP/UDP checksum offload frames");
8936 
8937 	SYSCTL_ADD_QUAD(ctx, children, OID_AUTO,
8938 	    "vlan_tagged_frames_rcvd",
8939 	    CTLFLAG_RD, &sc->vlan_tagged_frames_rcvd,
8940 	    "Number of VLAN tagged frames received");
8941 
8942 	SYSCTL_ADD_QUAD(ctx, children, OID_AUTO,
8943 	    "vlan_tagged_frames_stripped",
8944 	    CTLFLAG_RD, &sc->vlan_tagged_frames_stripped,
8945 	    "Number of VLAN tagged frames stripped");
8946 
8947 	SYSCTL_ADD_QUAD(ctx, children, OID_AUTO,
8948 	    "interrupts_rx",
8949 	    CTLFLAG_RD, &sc->interrupts_rx,
8950 	    "Number of RX interrupts");
8951 
8952 	SYSCTL_ADD_QUAD(ctx, children, OID_AUTO,
8953 	    "interrupts_tx",
8954 	    CTLFLAG_RD, &sc->interrupts_tx,
8955 	    "Number of TX interrupts");
8956 
8957 	if (bce_hdr_split == TRUE) {
8958 		SYSCTL_ADD_QUAD(ctx, children, OID_AUTO,
8959 		    "split_header_frames_rcvd",
8960 		    CTLFLAG_RD, &sc->split_header_frames_rcvd,
8961 		    "Number of split header frames received");
8962 
8963 		SYSCTL_ADD_QUAD(ctx, children, OID_AUTO,
8964 		    "split_header_tcp_frames_rcvd",
8965 		    CTLFLAG_RD, &sc->split_header_tcp_frames_rcvd,
8966 		    "Number of split header TCP frames received");
8967 	}
8968 
8969 	SYSCTL_ADD_PROC(ctx, children, OID_AUTO,
8970 	    "nvram_dump", CTLTYPE_OPAQUE | CTLFLAG_RD,
8971 	    (void *)sc, 0,
8972 	    bce_sysctl_nvram_dump, "S", "");
8973 
8974 #ifdef BCE_NVRAM_WRITE_SUPPORT
8975 	SYSCTL_ADD_PROC(ctx, children, OID_AUTO,
8976 	    "nvram_write", CTLTYPE_OPAQUE | CTLFLAG_WR,
8977 	    (void *)sc, 0,
8978 	    bce_sysctl_nvram_write, "S", "");
8979 #endif
8980 #endif /* BCE_DEBUG */
8981 
8982 	SYSCTL_ADD_QUAD(ctx, children, OID_AUTO,
8983 	    "stat_IfHcInOctets",
8984 	    CTLFLAG_RD, &sc->stat_IfHCInOctets,
8985 	    "Bytes received");
8986 
8987 	SYSCTL_ADD_QUAD(ctx, children, OID_AUTO,
8988 	    "stat_IfHCInBadOctets",
8989 	    CTLFLAG_RD, &sc->stat_IfHCInBadOctets,
8990 	    "Bad bytes received");
8991 
8992 	SYSCTL_ADD_QUAD(ctx, children, OID_AUTO,
8993 	    "stat_IfHCOutOctets",
8994 	    CTLFLAG_RD, &sc->stat_IfHCOutOctets,
8995 	    "Bytes sent");
8996 
8997 	SYSCTL_ADD_QUAD(ctx, children, OID_AUTO,
8998 	    "stat_IfHCOutBadOctets",
8999 	    CTLFLAG_RD, &sc->stat_IfHCOutBadOctets,
9000 	    "Bad bytes sent");
9001 
9002 	SYSCTL_ADD_QUAD(ctx, children, OID_AUTO,
9003 	    "stat_IfHCInUcastPkts",
9004 	    CTLFLAG_RD, &sc->stat_IfHCInUcastPkts,
9005 	    "Unicast packets received");
9006 
9007 	SYSCTL_ADD_QUAD(ctx, children, OID_AUTO,
9008 	    "stat_IfHCInMulticastPkts",
9009 	    CTLFLAG_RD, &sc->stat_IfHCInMulticastPkts,
9010 	    "Multicast packets received");
9011 
9012 	SYSCTL_ADD_QUAD(ctx, children, OID_AUTO,
9013 	    "stat_IfHCInBroadcastPkts",
9014 	    CTLFLAG_RD, &sc->stat_IfHCInBroadcastPkts,
9015 	    "Broadcast packets received");
9016 
9017 	SYSCTL_ADD_QUAD(ctx, children, OID_AUTO,
9018 	    "stat_IfHCOutUcastPkts",
9019 	    CTLFLAG_RD, &sc->stat_IfHCOutUcastPkts,
9020 	    "Unicast packets sent");
9021 
9022 	SYSCTL_ADD_QUAD(ctx, children, OID_AUTO,
9023 	    "stat_IfHCOutMulticastPkts",
9024 	    CTLFLAG_RD, &sc->stat_IfHCOutMulticastPkts,
9025 	    "Multicast packets sent");
9026 
9027 	SYSCTL_ADD_QUAD(ctx, children, OID_AUTO,
9028 	    "stat_IfHCOutBroadcastPkts",
9029 	    CTLFLAG_RD, &sc->stat_IfHCOutBroadcastPkts,
9030 	    "Broadcast packets sent");
9031 
9032 	SYSCTL_ADD_UINT(ctx, children, OID_AUTO,
9033 	    "stat_emac_tx_stat_dot3statsinternalmactransmiterrors",
9034 	    CTLFLAG_RD, &sc->stat_emac_tx_stat_dot3statsinternalmactransmiterrors,
9035 	    0, "Internal MAC transmit errors");
9036 
9037 	SYSCTL_ADD_UINT(ctx, children, OID_AUTO,
9038 	    "stat_Dot3StatsCarrierSenseErrors",
9039 	    CTLFLAG_RD, &sc->stat_Dot3StatsCarrierSenseErrors,
9040 	    0, "Carrier sense errors");
9041 
9042 	SYSCTL_ADD_UINT(ctx, children, OID_AUTO,
9043 	    "stat_Dot3StatsFCSErrors",
9044 	    CTLFLAG_RD, &sc->stat_Dot3StatsFCSErrors,
9045 	    0, "Frame check sequence errors");
9046 
9047 	SYSCTL_ADD_UINT(ctx, children, OID_AUTO,
9048 	    "stat_Dot3StatsAlignmentErrors",
9049 	    CTLFLAG_RD, &sc->stat_Dot3StatsAlignmentErrors,
9050 	    0, "Alignment errors");
9051 
9052 	SYSCTL_ADD_UINT(ctx, children, OID_AUTO,
9053 	    "stat_Dot3StatsSingleCollisionFrames",
9054 	    CTLFLAG_RD, &sc->stat_Dot3StatsSingleCollisionFrames,
9055 	    0, "Single Collision Frames");
9056 
9057 	SYSCTL_ADD_UINT(ctx, children, OID_AUTO,
9058 	    "stat_Dot3StatsMultipleCollisionFrames",
9059 	    CTLFLAG_RD, &sc->stat_Dot3StatsMultipleCollisionFrames,
9060 	    0, "Multiple Collision Frames");
9061 
9062 	SYSCTL_ADD_UINT(ctx, children, OID_AUTO,
9063 	    "stat_Dot3StatsDeferredTransmissions",
9064 	    CTLFLAG_RD, &sc->stat_Dot3StatsDeferredTransmissions,
9065 	    0, "Deferred Transmissions");
9066 
9067 	SYSCTL_ADD_UINT(ctx, children, OID_AUTO,
9068 	    "stat_Dot3StatsExcessiveCollisions",
9069 	    CTLFLAG_RD, &sc->stat_Dot3StatsExcessiveCollisions,
9070 	    0, "Excessive Collisions");
9071 
9072 	SYSCTL_ADD_UINT(ctx, children, OID_AUTO,
9073 	    "stat_Dot3StatsLateCollisions",
9074 	    CTLFLAG_RD, &sc->stat_Dot3StatsLateCollisions,
9075 	    0, "Late Collisions");
9076 
9077 	SYSCTL_ADD_UINT(ctx, children, OID_AUTO,
9078 	    "stat_EtherStatsCollisions",
9079 	    CTLFLAG_RD, &sc->stat_EtherStatsCollisions,
9080 	    0, "Collisions");
9081 
9082 	SYSCTL_ADD_UINT(ctx, children, OID_AUTO,
9083 	    "stat_EtherStatsFragments",
9084 	    CTLFLAG_RD, &sc->stat_EtherStatsFragments,
9085 	    0, "Fragments");
9086 
9087 	SYSCTL_ADD_UINT(ctx, children, OID_AUTO,
9088 	    "stat_EtherStatsJabbers",
9089 	    CTLFLAG_RD, &sc->stat_EtherStatsJabbers,
9090 	    0, "Jabbers");
9091 
9092 	SYSCTL_ADD_UINT(ctx, children, OID_AUTO,
9093 	    "stat_EtherStatsUndersizePkts",
9094 	    CTLFLAG_RD, &sc->stat_EtherStatsUndersizePkts,
9095 	    0, "Undersize packets");
9096 
9097 	SYSCTL_ADD_UINT(ctx, children, OID_AUTO,
9098 	    "stat_EtherStatsOversizePkts",
9099 	    CTLFLAG_RD, &sc->stat_EtherStatsOversizePkts,
9100 	    0, "stat_EtherStatsOversizePkts");
9101 
9102 	SYSCTL_ADD_UINT(ctx, children, OID_AUTO,
9103 	    "stat_EtherStatsPktsRx64Octets",
9104 	    CTLFLAG_RD, &sc->stat_EtherStatsPktsRx64Octets,
9105 	    0, "Bytes received in 64 byte packets");
9106 
9107 	SYSCTL_ADD_UINT(ctx, children, OID_AUTO,
9108 	    "stat_EtherStatsPktsRx65Octetsto127Octets",
9109 	    CTLFLAG_RD, &sc->stat_EtherStatsPktsRx65Octetsto127Octets,
9110 	    0, "Bytes received in 65 to 127 byte packets");
9111 
9112 	SYSCTL_ADD_UINT(ctx, children, OID_AUTO,
9113 	    "stat_EtherStatsPktsRx128Octetsto255Octets",
9114 	    CTLFLAG_RD, &sc->stat_EtherStatsPktsRx128Octetsto255Octets,
9115 	    0, "Bytes received in 128 to 255 byte packets");
9116 
9117 	SYSCTL_ADD_UINT(ctx, children, OID_AUTO,
9118 	    "stat_EtherStatsPktsRx256Octetsto511Octets",
9119 	    CTLFLAG_RD, &sc->stat_EtherStatsPktsRx256Octetsto511Octets,
9120 	    0, "Bytes received in 256 to 511 byte packets");
9121 
9122 	SYSCTL_ADD_UINT(ctx, children, OID_AUTO,
9123 	    "stat_EtherStatsPktsRx512Octetsto1023Octets",
9124 	    CTLFLAG_RD, &sc->stat_EtherStatsPktsRx512Octetsto1023Octets,
9125 	    0, "Bytes received in 512 to 1023 byte packets");
9126 
9127 	SYSCTL_ADD_UINT(ctx, children, OID_AUTO,
9128 	    "stat_EtherStatsPktsRx1024Octetsto1522Octets",
9129 	    CTLFLAG_RD, &sc->stat_EtherStatsPktsRx1024Octetsto1522Octets,
9130 	    0, "Bytes received in 1024 t0 1522 byte packets");
9131 
9132 	SYSCTL_ADD_UINT(ctx, children, OID_AUTO,
9133 	    "stat_EtherStatsPktsRx1523Octetsto9022Octets",
9134 	    CTLFLAG_RD, &sc->stat_EtherStatsPktsRx1523Octetsto9022Octets,
9135 	    0, "Bytes received in 1523 to 9022 byte packets");
9136 
9137 	SYSCTL_ADD_UINT(ctx, children, OID_AUTO,
9138 	    "stat_EtherStatsPktsTx64Octets",
9139 	    CTLFLAG_RD, &sc->stat_EtherStatsPktsTx64Octets,
9140 	    0, "Bytes sent in 64 byte packets");
9141 
9142 	SYSCTL_ADD_UINT(ctx, children, OID_AUTO,
9143 	    "stat_EtherStatsPktsTx65Octetsto127Octets",
9144 	    CTLFLAG_RD, &sc->stat_EtherStatsPktsTx65Octetsto127Octets,
9145 	    0, "Bytes sent in 65 to 127 byte packets");
9146 
9147 	SYSCTL_ADD_UINT(ctx, children, OID_AUTO,
9148 	    "stat_EtherStatsPktsTx128Octetsto255Octets",
9149 	    CTLFLAG_RD, &sc->stat_EtherStatsPktsTx128Octetsto255Octets,
9150 	    0, "Bytes sent in 128 to 255 byte packets");
9151 
9152 	SYSCTL_ADD_UINT(ctx, children, OID_AUTO,
9153 	    "stat_EtherStatsPktsTx256Octetsto511Octets",
9154 	    CTLFLAG_RD, &sc->stat_EtherStatsPktsTx256Octetsto511Octets,
9155 	    0, "Bytes sent in 256 to 511 byte packets");
9156 
9157 	SYSCTL_ADD_UINT(ctx, children, OID_AUTO,
9158 	    "stat_EtherStatsPktsTx512Octetsto1023Octets",
9159 	    CTLFLAG_RD, &sc->stat_EtherStatsPktsTx512Octetsto1023Octets,
9160 	    0, "Bytes sent in 512 to 1023 byte packets");
9161 
9162 	SYSCTL_ADD_UINT(ctx, children, OID_AUTO,
9163 	    "stat_EtherStatsPktsTx1024Octetsto1522Octets",
9164 	    CTLFLAG_RD, &sc->stat_EtherStatsPktsTx1024Octetsto1522Octets,
9165 	    0, "Bytes sent in 1024 to 1522 byte packets");
9166 
9167 	SYSCTL_ADD_UINT(ctx, children, OID_AUTO,
9168 	    "stat_EtherStatsPktsTx1523Octetsto9022Octets",
9169 	    CTLFLAG_RD, &sc->stat_EtherStatsPktsTx1523Octetsto9022Octets,
9170 	    0, "Bytes sent in 1523 to 9022 byte packets");
9171 
9172 	SYSCTL_ADD_UINT(ctx, children, OID_AUTO,
9173 	    "stat_XonPauseFramesReceived",
9174 	    CTLFLAG_RD, &sc->stat_XonPauseFramesReceived,
9175 	    0, "XON pause frames receved");
9176 
9177 	SYSCTL_ADD_UINT(ctx, children, OID_AUTO,
9178 	    "stat_XoffPauseFramesReceived",
9179 	    CTLFLAG_RD, &sc->stat_XoffPauseFramesReceived,
9180 	    0, "XOFF pause frames received");
9181 
9182 	SYSCTL_ADD_UINT(ctx, children, OID_AUTO,
9183 	    "stat_OutXonSent",
9184 	    CTLFLAG_RD, &sc->stat_OutXonSent,
9185 	    0, "XON pause frames sent");
9186 
9187 	SYSCTL_ADD_UINT(ctx, children, OID_AUTO,
9188 	    "stat_OutXoffSent",
9189 	    CTLFLAG_RD, &sc->stat_OutXoffSent,
9190 	    0, "XOFF pause frames sent");
9191 
9192 	SYSCTL_ADD_UINT(ctx, children, OID_AUTO,
9193 	    "stat_FlowControlDone",
9194 	    CTLFLAG_RD, &sc->stat_FlowControlDone,
9195 	    0, "Flow control done");
9196 
9197 	SYSCTL_ADD_UINT(ctx, children, OID_AUTO,
9198 	    "stat_MacControlFramesReceived",
9199 	    CTLFLAG_RD, &sc->stat_MacControlFramesReceived,
9200 	    0, "MAC control frames received");
9201 
9202 	SYSCTL_ADD_UINT(ctx, children, OID_AUTO,
9203 	    "stat_XoffStateEntered",
9204 	    CTLFLAG_RD, &sc->stat_XoffStateEntered,
9205 	    0, "XOFF state entered");
9206 
9207 	SYSCTL_ADD_UINT(ctx, children, OID_AUTO,
9208 	    "stat_IfInFramesL2FilterDiscards",
9209 	    CTLFLAG_RD, &sc->stat_IfInFramesL2FilterDiscards,
9210 	    0, "Received L2 packets discarded");
9211 
9212 	SYSCTL_ADD_UINT(ctx, children, OID_AUTO,
9213 	    "stat_IfInRuleCheckerDiscards",
9214 	    CTLFLAG_RD, &sc->stat_IfInRuleCheckerDiscards,
9215 	    0, "Received packets discarded by rule");
9216 
9217 	SYSCTL_ADD_UINT(ctx, children, OID_AUTO,
9218 	    "stat_IfInFTQDiscards",
9219 	    CTLFLAG_RD, &sc->stat_IfInFTQDiscards,
9220 	    0, "Received packet FTQ discards");
9221 
9222 	SYSCTL_ADD_UINT(ctx, children, OID_AUTO,
9223 	    "stat_IfInMBUFDiscards",
9224 	    CTLFLAG_RD, &sc->stat_IfInMBUFDiscards,
9225 	    0, "Received packets discarded due to lack "
9226 	    "of controller buffer memory");
9227 
9228 	SYSCTL_ADD_UINT(ctx, children, OID_AUTO,
9229 	    "stat_IfInRuleCheckerP4Hit",
9230 	    CTLFLAG_RD, &sc->stat_IfInRuleCheckerP4Hit,
9231 	    0, "Received packets rule checker hits");
9232 
9233 	SYSCTL_ADD_UINT(ctx, children, OID_AUTO,
9234 	    "stat_CatchupInRuleCheckerDiscards",
9235 	    CTLFLAG_RD, &sc->stat_CatchupInRuleCheckerDiscards,
9236 	    0, "Received packets discarded in Catchup path");
9237 
9238 	SYSCTL_ADD_UINT(ctx, children, OID_AUTO,
9239 	    "stat_CatchupInFTQDiscards",
9240 	    CTLFLAG_RD, &sc->stat_CatchupInFTQDiscards,
9241 	    0, "Received packets discarded in FTQ in Catchup path");
9242 
9243 	SYSCTL_ADD_UINT(ctx, children, OID_AUTO,
9244 	    "stat_CatchupInMBUFDiscards",
9245 	    CTLFLAG_RD, &sc->stat_CatchupInMBUFDiscards,
9246 	    0, "Received packets discarded in controller "
9247 	    "buffer memory in Catchup path");
9248 
9249 	SYSCTL_ADD_UINT(ctx, children, OID_AUTO,
9250 	    "stat_CatchupInRuleCheckerP4Hit",
9251 	    CTLFLAG_RD, &sc->stat_CatchupInRuleCheckerP4Hit,
9252 	    0, "Received packets rule checker hits in Catchup path");
9253 
9254 	SYSCTL_ADD_UINT(ctx, children, OID_AUTO,
9255 	    "com_no_buffers",
9256 	    CTLFLAG_RD, &sc->com_no_buffers,
9257 	    0, "Valid packets received but no RX buffers available");
9258 
9259 #ifdef BCE_DEBUG
9260 	SYSCTL_ADD_PROC(ctx, children, OID_AUTO,
9261 	    "driver_state", CTLTYPE_INT | CTLFLAG_RW,
9262 	    (void *)sc, 0,
9263 	    bce_sysctl_driver_state, "I", "Drive state information");
9264 
9265 	SYSCTL_ADD_PROC(ctx, children, OID_AUTO,
9266 	    "hw_state", CTLTYPE_INT | CTLFLAG_RW,
9267 	    (void *)sc, 0,
9268 	    bce_sysctl_hw_state, "I", "Hardware state information");
9269 
9270 	SYSCTL_ADD_PROC(ctx, children, OID_AUTO,
9271 	    "status_block", CTLTYPE_INT | CTLFLAG_RW,
9272 	    (void *)sc, 0,
9273 	    bce_sysctl_status_block, "I", "Dump status block");
9274 
9275 	SYSCTL_ADD_PROC(ctx, children, OID_AUTO,
9276 	    "stats_block", CTLTYPE_INT | CTLFLAG_RW,
9277 	    (void *)sc, 0,
9278 	    bce_sysctl_stats_block, "I", "Dump statistics block");
9279 
9280 	SYSCTL_ADD_PROC(ctx, children, OID_AUTO,
9281 	    "stats_clear", CTLTYPE_INT | CTLFLAG_RW,
9282 	    (void *)sc, 0,
9283 	    bce_sysctl_stats_clear, "I", "Clear statistics block");
9284 
9285 	SYSCTL_ADD_PROC(ctx, children, OID_AUTO,
9286 	    "shmem_state", CTLTYPE_INT | CTLFLAG_RW,
9287 	    (void *)sc, 0,
9288 	    bce_sysctl_shmem_state, "I", "Shared memory state information");
9289 
9290 	SYSCTL_ADD_PROC(ctx, children, OID_AUTO,
9291 	    "bc_state", CTLTYPE_INT | CTLFLAG_RW,
9292 	    (void *)sc, 0,
9293 	    bce_sysctl_bc_state, "I", "Bootcode state information");
9294 
9295 	SYSCTL_ADD_PROC(ctx, children, OID_AUTO,
9296 	    "dump_rx_bd_chain", CTLTYPE_INT | CTLFLAG_RW,
9297 	    (void *)sc, 0,
9298 	    bce_sysctl_dump_rx_bd_chain, "I", "Dump RX BD chain");
9299 
9300 	SYSCTL_ADD_PROC(ctx, children, OID_AUTO,
9301 	    "dump_rx_mbuf_chain", CTLTYPE_INT | CTLFLAG_RW,
9302 	    (void *)sc, 0,
9303 	    bce_sysctl_dump_rx_mbuf_chain, "I", "Dump RX MBUF chain");
9304 
9305 	SYSCTL_ADD_PROC(ctx, children, OID_AUTO,
9306 	    "dump_tx_chain", CTLTYPE_INT | CTLFLAG_RW,
9307 	    (void *)sc, 0,
9308 	    bce_sysctl_dump_tx_chain, "I", "Dump tx_bd chain");
9309 
9310 	if (bce_hdr_split == TRUE) {
9311 		SYSCTL_ADD_PROC(ctx, children, OID_AUTO,
9312 		    "dump_pg_chain", CTLTYPE_INT | CTLFLAG_RW,
9313 		    (void *)sc, 0,
9314 		    bce_sysctl_dump_pg_chain, "I", "Dump page chain");
9315 	}
9316 
9317 	SYSCTL_ADD_PROC(ctx, children, OID_AUTO,
9318 	    "dump_ctx", CTLTYPE_INT | CTLFLAG_RW,
9319 	    (void *)sc, 0,
9320 	    bce_sysctl_dump_ctx, "I", "Dump context memory");
9321 
9322 	SYSCTL_ADD_PROC(ctx, children, OID_AUTO,
9323 	    "breakpoint", CTLTYPE_INT | CTLFLAG_RW,
9324 	    (void *)sc, 0,
9325 	    bce_sysctl_breakpoint, "I", "Driver breakpoint");
9326 
9327 	SYSCTL_ADD_PROC(ctx, children, OID_AUTO,
9328 	    "reg_read", CTLTYPE_INT | CTLFLAG_RW,
9329 	    (void *)sc, 0,
9330 	    bce_sysctl_reg_read, "I", "Register read");
9331 
9332 	SYSCTL_ADD_PROC(ctx, children, OID_AUTO,
9333 	    "nvram_read", CTLTYPE_INT | CTLFLAG_RW,
9334 	    (void *)sc, 0,
9335 	    bce_sysctl_nvram_read, "I", "NVRAM read");
9336 
9337 	SYSCTL_ADD_PROC(ctx, children, OID_AUTO,
9338 	    "phy_read", CTLTYPE_INT | CTLFLAG_RW,
9339 	    (void *)sc, 0,
9340 	    bce_sysctl_phy_read, "I", "PHY register read");
9341 
9342 #endif
9343 
9344 	DBEXIT(BCE_VERBOSE_MISC);
9345 }
9346 
9347 
9348 /****************************************************************************/
9349 /* BCE Debug Routines                                                       */
9350 /****************************************************************************/
9351 #ifdef BCE_DEBUG
9352 
9353 /****************************************************************************/
9354 /* Freezes the controller to allow for a cohesive state dump.               */
9355 /*                                                                          */
9356 /* Returns:                                                                 */
9357 /*   Nothing.                                                               */
9358 /****************************************************************************/
9359 static __attribute__ ((noinline)) void
9360 bce_freeze_controller(struct bce_softc *sc)
9361 {
9362 	u32 val;
9363 	val = REG_RD(sc, BCE_MISC_COMMAND);
9364 	val |= BCE_MISC_COMMAND_DISABLE_ALL;
9365 	REG_WR(sc, BCE_MISC_COMMAND, val);
9366 }
9367 
9368 
9369 /****************************************************************************/
9370 /* Unfreezes the controller after a freeze operation.  This may not always  */
9371 /* work and the controller will require a reset!                            */
9372 /*                                                                          */
9373 /* Returns:                                                                 */
9374 /*   Nothing.                                                               */
9375 /****************************************************************************/
9376 static __attribute__ ((noinline)) void
9377 bce_unfreeze_controller(struct bce_softc *sc)
9378 {
9379 	u32 val;
9380 	val = REG_RD(sc, BCE_MISC_COMMAND);
9381 	val |= BCE_MISC_COMMAND_ENABLE_ALL;
9382 	REG_WR(sc, BCE_MISC_COMMAND, val);
9383 }
9384 
9385 
9386 /****************************************************************************/
9387 /* Prints out Ethernet frame information from an mbuf.                      */
9388 /*                                                                          */
9389 /* Partially decode an Ethernet frame to look at some important headers.    */
9390 /*                                                                          */
9391 /* Returns:                                                                 */
9392 /*   Nothing.                                                               */
9393 /****************************************************************************/
9394 static __attribute__ ((noinline)) void
9395 bce_dump_enet(struct bce_softc *sc, struct mbuf *m)
9396 {
9397 	struct ether_vlan_header *eh;
9398 	u16 etype;
9399 	int ehlen;
9400 	struct ip *ip;
9401 	struct tcphdr *th;
9402 	struct udphdr *uh;
9403 	struct arphdr *ah;
9404 
9405 	BCE_PRINTF(
9406 	    "-----------------------------"
9407 	    " Frame Decode "
9408 	    "-----------------------------\n");
9409 
9410 	eh = mtod(m, struct ether_vlan_header *);
9411 
9412 	/* Handle VLAN encapsulation if present. */
9413 	if (eh->evl_encap_proto == htons(ETHERTYPE_VLAN)) {
9414 		etype = ntohs(eh->evl_proto);
9415 		ehlen = ETHER_HDR_LEN + ETHER_VLAN_ENCAP_LEN;
9416 	} else {
9417 		etype = ntohs(eh->evl_encap_proto);
9418 		ehlen = ETHER_HDR_LEN;
9419 	}
9420 
9421 	/* ToDo: Add VLAN output. */
9422 	BCE_PRINTF("enet: dest = %6D, src = %6D, type = 0x%04X, hlen = %d\n",
9423 	    eh->evl_dhost, ":", eh->evl_shost, ":", etype, ehlen);
9424 
9425 	switch (etype) {
9426 	case ETHERTYPE_IP:
9427 		ip = (struct ip *)(m->m_data + ehlen);
9428 		BCE_PRINTF("--ip: dest = 0x%08X , src = 0x%08X, "
9429 		    "len = %d bytes, protocol = 0x%02X, xsum = 0x%04X\n",
9430 		    ntohl(ip->ip_dst.s_addr), ntohl(ip->ip_src.s_addr),
9431 		    ntohs(ip->ip_len), ip->ip_p, ntohs(ip->ip_sum));
9432 
9433 		switch (ip->ip_p) {
9434 		case IPPROTO_TCP:
9435 			th = (struct tcphdr *)((caddr_t)ip + (ip->ip_hl << 2));
9436 			BCE_PRINTF("-tcp: dest = %d, src = %d, hlen = "
9437 			    "%d bytes, flags = 0x%b, csum = 0x%04X\n",
9438 			    ntohs(th->th_dport), ntohs(th->th_sport),
9439 			    (th->th_off << 2), th->th_flags,
9440 			    "\20\10CWR\07ECE\06URG\05ACK\04PSH\03RST"
9441 			    "\02SYN\01FIN", ntohs(th->th_sum));
9442 			break;
9443 		case IPPROTO_UDP:
9444 			uh = (struct udphdr *)((caddr_t)ip + (ip->ip_hl << 2));
9445 			BCE_PRINTF("-udp: dest = %d, src = %d, len = %d "
9446 			    "bytes, csum = 0x%04X\n", ntohs(uh->uh_dport),
9447 			    ntohs(uh->uh_sport), ntohs(uh->uh_ulen),
9448 			    ntohs(uh->uh_sum));
9449 			break;
9450 		case IPPROTO_ICMP:
9451 			BCE_PRINTF("icmp:\n");
9452 			break;
9453 		default:
9454 			BCE_PRINTF("----: Other IP protocol.\n");
9455 			}
9456 		break;
9457 	case ETHERTYPE_IPV6:
9458 		BCE_PRINTF("ipv6: No decode supported.\n");
9459 		break;
9460 	case ETHERTYPE_ARP:
9461 		BCE_PRINTF("-arp: ");
9462 		ah = (struct arphdr *) (m->m_data + ehlen);
9463 		switch (ntohs(ah->ar_op)) {
9464 		case ARPOP_REVREQUEST:
9465 			printf("reverse ARP request\n");
9466 			break;
9467 		case ARPOP_REVREPLY:
9468 			printf("reverse ARP reply\n");
9469 			break;
9470 		case ARPOP_REQUEST:
9471 			printf("ARP request\n");
9472 			break;
9473 		case ARPOP_REPLY:
9474 			printf("ARP reply\n");
9475 			break;
9476 		default:
9477 			printf("other ARP operation\n");
9478 		}
9479 		break;
9480 	default:
9481 		BCE_PRINTF("----: Other protocol.\n");
9482 	}
9483 
9484 	BCE_PRINTF(
9485 		"-----------------------------"
9486 		"--------------"
9487 		"-----------------------------\n");
9488 }
9489 
9490 
9491 /****************************************************************************/
9492 /* Prints out information about an mbuf.                                    */
9493 /*                                                                          */
9494 /* Returns:                                                                 */
9495 /*   Nothing.                                                               */
9496 /****************************************************************************/
9497 static __attribute__ ((noinline)) void
9498 bce_dump_mbuf(struct bce_softc *sc, struct mbuf *m)
9499 {
9500 	struct mbuf *mp = m;
9501 
9502 	if (m == NULL) {
9503 		BCE_PRINTF("mbuf: null pointer\n");
9504 		return;
9505 	}
9506 
9507 	while (mp) {
9508 		BCE_PRINTF("mbuf: %p, m_len = %d, m_flags = 0x%b, "
9509 		    "m_data = %p\n", mp, mp->m_len, mp->m_flags,
9510 		    "\20\1M_EXT\2M_PKTHDR\3M_EOR\4M_RDONLY", mp->m_data);
9511 
9512 		if (mp->m_flags & M_PKTHDR) {
9513 			BCE_PRINTF("- m_pkthdr: len = %d, flags = 0x%b, "
9514 			    "csum_flags = %b\n", mp->m_pkthdr.len,
9515 			    mp->m_flags, "\20\12M_BCAST\13M_MCAST\14M_FRAG"
9516 			    "\15M_FIRSTFRAG\16M_LASTFRAG\21M_VLANTAG"
9517 			    "\22M_PROMISC\23M_NOFREE",
9518 			    mp->m_pkthdr.csum_flags,
9519 			    "\20\1CSUM_IP\2CSUM_TCP\3CSUM_UDP\4CSUM_IP_FRAGS"
9520 			    "\5CSUM_FRAGMENT\6CSUM_TSO\11CSUM_IP_CHECKED"
9521 			    "\12CSUM_IP_VALID\13CSUM_DATA_VALID"
9522 			    "\14CSUM_PSEUDO_HDR");
9523 		}
9524 
9525 		if (mp->m_flags & M_EXT) {
9526 			BCE_PRINTF("- m_ext: %p, ext_size = %d, type = ",
9527 			    mp->m_ext.ext_buf, mp->m_ext.ext_size);
9528 			switch (mp->m_ext.ext_type) {
9529 			case EXT_CLUSTER:
9530 				printf("EXT_CLUSTER\n"); break;
9531 			case EXT_SFBUF:
9532 				printf("EXT_SFBUF\n"); break;
9533 			case EXT_JUMBO9:
9534 				printf("EXT_JUMBO9\n"); break;
9535 			case EXT_JUMBO16:
9536 				printf("EXT_JUMBO16\n"); break;
9537 			case EXT_PACKET:
9538 				printf("EXT_PACKET\n"); break;
9539 			case EXT_MBUF:
9540 				printf("EXT_MBUF\n"); break;
9541 			case EXT_NET_DRV:
9542 				printf("EXT_NET_DRV\n"); break;
9543 			case EXT_MOD_TYPE:
9544 				printf("EXT_MDD_TYPE\n"); break;
9545 			case EXT_DISPOSABLE:
9546 				printf("EXT_DISPOSABLE\n"); break;
9547 			case EXT_EXTREF:
9548 				printf("EXT_EXTREF\n"); break;
9549 			default:
9550 				printf("UNKNOWN\n");
9551 			}
9552 		}
9553 
9554 		mp = mp->m_next;
9555 	}
9556 }
9557 
9558 
9559 /****************************************************************************/
9560 /* Prints out the mbufs in the TX mbuf chain.                               */
9561 /*                                                                          */
9562 /* Returns:                                                                 */
9563 /*   Nothing.                                                               */
9564 /****************************************************************************/
9565 static __attribute__ ((noinline)) void
9566 bce_dump_tx_mbuf_chain(struct bce_softc *sc, u16 chain_prod, int count)
9567 {
9568 	struct mbuf *m;
9569 
9570 	BCE_PRINTF(
9571 		"----------------------------"
9572 		"  tx mbuf data  "
9573 		"----------------------------\n");
9574 
9575 	for (int i = 0; i < count; i++) {
9576 	 	m = sc->tx_mbuf_ptr[chain_prod];
9577 		BCE_PRINTF("txmbuf[0x%04X]\n", chain_prod);
9578 		bce_dump_mbuf(sc, m);
9579 		chain_prod = TX_CHAIN_IDX(NEXT_TX_BD(chain_prod));
9580 	}
9581 
9582 	BCE_PRINTF(
9583 		"----------------------------"
9584 		"----------------"
9585 		"----------------------------\n");
9586 }
9587 
9588 
9589 /****************************************************************************/
9590 /* Prints out the mbufs in the RX mbuf chain.                               */
9591 /*                                                                          */
9592 /* Returns:                                                                 */
9593 /*   Nothing.                                                               */
9594 /****************************************************************************/
9595 static __attribute__ ((noinline)) void
9596 bce_dump_rx_mbuf_chain(struct bce_softc *sc, u16 chain_prod, int count)
9597 {
9598 	struct mbuf *m;
9599 
9600 	BCE_PRINTF(
9601 		"----------------------------"
9602 		"  rx mbuf data  "
9603 		"----------------------------\n");
9604 
9605 	for (int i = 0; i < count; i++) {
9606 	 	m = sc->rx_mbuf_ptr[chain_prod];
9607 		BCE_PRINTF("rxmbuf[0x%04X]\n", chain_prod);
9608 		bce_dump_mbuf(sc, m);
9609 		chain_prod = RX_CHAIN_IDX(NEXT_RX_BD(chain_prod));
9610 	}
9611 
9612 
9613 	BCE_PRINTF(
9614 		"----------------------------"
9615 		"----------------"
9616 		"----------------------------\n");
9617 }
9618 
9619 
9620 /****************************************************************************/
9621 /* Prints out the mbufs in the mbuf page chain.                             */
9622 /*                                                                          */
9623 /* Returns:                                                                 */
9624 /*   Nothing.                                                               */
9625 /****************************************************************************/
9626 static __attribute__ ((noinline)) void
9627 bce_dump_pg_mbuf_chain(struct bce_softc *sc, u16 chain_prod, int count)
9628 {
9629 	struct mbuf *m;
9630 
9631 	BCE_PRINTF(
9632 		"----------------------------"
9633 		"  pg mbuf data  "
9634 		"----------------------------\n");
9635 
9636 	for (int i = 0; i < count; i++) {
9637 	 	m = sc->pg_mbuf_ptr[chain_prod];
9638 		BCE_PRINTF("pgmbuf[0x%04X]\n", chain_prod);
9639 		bce_dump_mbuf(sc, m);
9640 		chain_prod = PG_CHAIN_IDX(NEXT_PG_BD(chain_prod));
9641 	}
9642 
9643 
9644 	BCE_PRINTF(
9645 		"----------------------------"
9646 		"----------------"
9647 		"----------------------------\n");
9648 }
9649 
9650 
9651 /****************************************************************************/
9652 /* Prints out a tx_bd structure.                                            */
9653 /*                                                                          */
9654 /* Returns:                                                                 */
9655 /*   Nothing.                                                               */
9656 /****************************************************************************/
9657 static __attribute__ ((noinline)) void
9658 bce_dump_txbd(struct bce_softc *sc, int idx, struct tx_bd *txbd)
9659 {
9660 	int i = 0;
9661 
9662 	if (idx > MAX_TX_BD_ALLOC)
9663 		/* Index out of range. */
9664 		BCE_PRINTF("tx_bd[0x%04X]: Invalid tx_bd index!\n", idx);
9665 	else if ((idx & USABLE_TX_BD_PER_PAGE) == USABLE_TX_BD_PER_PAGE)
9666 		/* TX Chain page pointer. */
9667 		BCE_PRINTF("tx_bd[0x%04X]: haddr = 0x%08X:%08X, chain page "
9668 		    "pointer\n", idx, txbd->tx_bd_haddr_hi,
9669 		    txbd->tx_bd_haddr_lo);
9670 	else {
9671 		/* Normal tx_bd entry. */
9672 		BCE_PRINTF("tx_bd[0x%04X]: haddr = 0x%08X:%08X, "
9673 		    "mss_nbytes = 0x%08X, vlan tag = 0x%04X, flags = "
9674 		    "0x%04X (", idx, txbd->tx_bd_haddr_hi,
9675 		    txbd->tx_bd_haddr_lo, txbd->tx_bd_mss_nbytes,
9676 		    txbd->tx_bd_vlan_tag, txbd->tx_bd_flags);
9677 
9678 		if (txbd->tx_bd_flags & TX_BD_FLAGS_CONN_FAULT) {
9679 			if (i>0)
9680 				printf("|");
9681 			printf("CONN_FAULT");
9682 			i++;
9683 		}
9684 
9685 		if (txbd->tx_bd_flags & TX_BD_FLAGS_TCP_UDP_CKSUM) {
9686 			if (i>0)
9687 				printf("|");
9688 			printf("TCP_UDP_CKSUM");
9689 			i++;
9690 		}
9691 
9692 		if (txbd->tx_bd_flags & TX_BD_FLAGS_IP_CKSUM) {
9693 			if (i>0)
9694 				printf("|");
9695 			printf("IP_CKSUM");
9696 			i++;
9697 		}
9698 
9699 		if (txbd->tx_bd_flags & TX_BD_FLAGS_VLAN_TAG) {
9700 			if (i>0)
9701 				printf("|");
9702 			printf("VLAN");
9703 			i++;
9704 		}
9705 
9706 		if (txbd->tx_bd_flags & TX_BD_FLAGS_COAL_NOW) {
9707 			if (i>0)
9708 				printf("|");
9709 			printf("COAL_NOW");
9710 			i++;
9711 		}
9712 
9713 		if (txbd->tx_bd_flags & TX_BD_FLAGS_DONT_GEN_CRC) {
9714 			if (i>0)
9715 				printf("|");
9716 			printf("DONT_GEN_CRC");
9717 			i++;
9718 		}
9719 
9720 		if (txbd->tx_bd_flags & TX_BD_FLAGS_START) {
9721 			if (i>0)
9722 				printf("|");
9723 			printf("START");
9724 			i++;
9725 		}
9726 
9727 		if (txbd->tx_bd_flags & TX_BD_FLAGS_END) {
9728 			if (i>0)
9729 				printf("|");
9730 			printf("END");
9731 			i++;
9732 		}
9733 
9734 		if (txbd->tx_bd_flags & TX_BD_FLAGS_SW_LSO) {
9735 			if (i>0)
9736 				printf("|");
9737 			printf("LSO");
9738 			i++;
9739 		}
9740 
9741 		if (txbd->tx_bd_flags & TX_BD_FLAGS_SW_OPTION_WORD) {
9742 			if (i>0)
9743 				printf("|");
9744 			printf("SW_OPTION=%d", ((txbd->tx_bd_flags &
9745 			    TX_BD_FLAGS_SW_OPTION_WORD) >> 8)); i++;
9746 		}
9747 
9748 		if (txbd->tx_bd_flags & TX_BD_FLAGS_SW_FLAGS) {
9749 			if (i>0)
9750 				printf("|");
9751 			printf("SW_FLAGS");
9752 			i++;
9753 		}
9754 
9755 		if (txbd->tx_bd_flags & TX_BD_FLAGS_SW_SNAP) {
9756 			if (i>0)
9757 				printf("|");
9758 			printf("SNAP)");
9759 		} else {
9760 			printf(")\n");
9761 		}
9762 	}
9763 }
9764 
9765 
9766 /****************************************************************************/
9767 /* Prints out a rx_bd structure.                                            */
9768 /*                                                                          */
9769 /* Returns:                                                                 */
9770 /*   Nothing.                                                               */
9771 /****************************************************************************/
9772 static __attribute__ ((noinline)) void
9773 bce_dump_rxbd(struct bce_softc *sc, int idx, struct rx_bd *rxbd)
9774 {
9775 	if (idx > MAX_RX_BD_ALLOC)
9776 		/* Index out of range. */
9777 		BCE_PRINTF("rx_bd[0x%04X]: Invalid rx_bd index!\n", idx);
9778 	else if ((idx & USABLE_RX_BD_PER_PAGE) == USABLE_RX_BD_PER_PAGE)
9779 		/* RX Chain page pointer. */
9780 		BCE_PRINTF("rx_bd[0x%04X]: haddr = 0x%08X:%08X, chain page "
9781 		    "pointer\n", idx, rxbd->rx_bd_haddr_hi,
9782 		    rxbd->rx_bd_haddr_lo);
9783 	else
9784 		/* Normal rx_bd entry. */
9785 		BCE_PRINTF("rx_bd[0x%04X]: haddr = 0x%08X:%08X, nbytes = "
9786 		    "0x%08X, flags = 0x%08X\n", idx, rxbd->rx_bd_haddr_hi,
9787 		    rxbd->rx_bd_haddr_lo, rxbd->rx_bd_len,
9788 		    rxbd->rx_bd_flags);
9789 }
9790 
9791 
9792 /****************************************************************************/
9793 /* Prints out a rx_bd structure in the page chain.                          */
9794 /*                                                                          */
9795 /* Returns:                                                                 */
9796 /*   Nothing.                                                               */
9797 /****************************************************************************/
9798 static __attribute__ ((noinline)) void
9799 bce_dump_pgbd(struct bce_softc *sc, int idx, struct rx_bd *pgbd)
9800 {
9801 	if (idx > MAX_PG_BD_ALLOC)
9802 		/* Index out of range. */
9803 		BCE_PRINTF("pg_bd[0x%04X]: Invalid pg_bd index!\n", idx);
9804 	else if ((idx & USABLE_PG_BD_PER_PAGE) == USABLE_PG_BD_PER_PAGE)
9805 		/* Page Chain page pointer. */
9806 		BCE_PRINTF("px_bd[0x%04X]: haddr = 0x%08X:%08X, chain page pointer\n",
9807 			idx, pgbd->rx_bd_haddr_hi, pgbd->rx_bd_haddr_lo);
9808 	else
9809 		/* Normal rx_bd entry. */
9810 		BCE_PRINTF("pg_bd[0x%04X]: haddr = 0x%08X:%08X, nbytes = 0x%08X, "
9811 			"flags = 0x%08X\n", idx,
9812 			pgbd->rx_bd_haddr_hi, pgbd->rx_bd_haddr_lo,
9813 			pgbd->rx_bd_len, pgbd->rx_bd_flags);
9814 }
9815 
9816 
9817 /****************************************************************************/
9818 /* Prints out a l2_fhdr structure.                                          */
9819 /*                                                                          */
9820 /* Returns:                                                                 */
9821 /*   Nothing.                                                               */
9822 /****************************************************************************/
9823 static __attribute__ ((noinline)) void
9824 bce_dump_l2fhdr(struct bce_softc *sc, int idx, struct l2_fhdr *l2fhdr)
9825 {
9826 	BCE_PRINTF("l2_fhdr[0x%04X]: status = 0x%b, "
9827 		"pkt_len = %d, vlan = 0x%04x, ip_xsum/hdr_len = 0x%04X, "
9828 		"tcp_udp_xsum = 0x%04X\n", idx,
9829 		l2fhdr->l2_fhdr_status, BCE_L2FHDR_PRINTFB,
9830 		l2fhdr->l2_fhdr_pkt_len, l2fhdr->l2_fhdr_vlan_tag,
9831 		l2fhdr->l2_fhdr_ip_xsum, l2fhdr->l2_fhdr_tcp_udp_xsum);
9832 }
9833 
9834 
9835 /****************************************************************************/
9836 /* Prints out context memory info.  (Only useful for CID 0 to 16.)          */
9837 /*                                                                          */
9838 /* Returns:                                                                 */
9839 /*   Nothing.                                                               */
9840 /****************************************************************************/
9841 static __attribute__ ((noinline)) void
9842 bce_dump_ctx(struct bce_softc *sc, u16 cid)
9843 {
9844 	if (cid > TX_CID) {
9845 		BCE_PRINTF(" Unknown CID\n");
9846 		return;
9847 	}
9848 
9849 	BCE_PRINTF(
9850 	    "----------------------------"
9851 	    "    CTX Data    "
9852 	    "----------------------------\n");
9853 
9854 	BCE_PRINTF("     0x%04X - (CID) Context ID\n", cid);
9855 
9856 	if (cid == RX_CID) {
9857 		BCE_PRINTF(" 0x%08X - (L2CTX_RX_HOST_BDIDX) host rx "
9858 		   "producer index\n",
9859 		    CTX_RD(sc, GET_CID_ADDR(cid), BCE_L2CTX_RX_HOST_BDIDX));
9860 		BCE_PRINTF(" 0x%08X - (L2CTX_RX_HOST_BSEQ) host "
9861 		    "byte sequence\n", CTX_RD(sc, GET_CID_ADDR(cid),
9862 		    BCE_L2CTX_RX_HOST_BSEQ));
9863 		BCE_PRINTF(" 0x%08X - (L2CTX_RX_NX_BSEQ) h/w byte sequence\n",
9864 		    CTX_RD(sc, GET_CID_ADDR(cid), BCE_L2CTX_RX_NX_BSEQ));
9865 		BCE_PRINTF(" 0x%08X - (L2CTX_RX_NX_BDHADDR_HI) h/w buffer "
9866 		    "descriptor address\n",
9867  		    CTX_RD(sc, GET_CID_ADDR(cid), BCE_L2CTX_RX_NX_BDHADDR_HI));
9868 		BCE_PRINTF(" 0x%08X - (L2CTX_RX_NX_BDHADDR_LO) h/w buffer "
9869 		    "descriptor address\n",
9870 		    CTX_RD(sc, GET_CID_ADDR(cid), BCE_L2CTX_RX_NX_BDHADDR_LO));
9871 		BCE_PRINTF(" 0x%08X - (L2CTX_RX_NX_BDIDX) h/w rx consumer "
9872 		    "index\n", CTX_RD(sc, GET_CID_ADDR(cid),
9873 		    BCE_L2CTX_RX_NX_BDIDX));
9874 		BCE_PRINTF(" 0x%08X - (L2CTX_RX_HOST_PG_BDIDX) host page "
9875 		    "producer index\n", CTX_RD(sc, GET_CID_ADDR(cid),
9876 		    BCE_L2CTX_RX_HOST_PG_BDIDX));
9877 		BCE_PRINTF(" 0x%08X - (L2CTX_RX_PG_BUF_SIZE) host rx_bd/page "
9878 		    "buffer size\n", CTX_RD(sc, GET_CID_ADDR(cid),
9879 		    BCE_L2CTX_RX_PG_BUF_SIZE));
9880 		BCE_PRINTF(" 0x%08X - (L2CTX_RX_NX_PG_BDHADDR_HI) h/w page "
9881 		    "chain address\n", CTX_RD(sc, GET_CID_ADDR(cid),
9882 		    BCE_L2CTX_RX_NX_PG_BDHADDR_HI));
9883 		BCE_PRINTF(" 0x%08X - (L2CTX_RX_NX_PG_BDHADDR_LO) h/w page "
9884 		    "chain address\n", CTX_RD(sc, GET_CID_ADDR(cid),
9885 		    BCE_L2CTX_RX_NX_PG_BDHADDR_LO));
9886 		BCE_PRINTF(" 0x%08X - (L2CTX_RX_NX_PG_BDIDX) h/w page "
9887 		    "consumer index\n",	CTX_RD(sc, GET_CID_ADDR(cid),
9888 		    BCE_L2CTX_RX_NX_PG_BDIDX));
9889 	} else if (cid == TX_CID) {
9890 		if (BCE_CHIP_NUM(sc) == BCE_CHIP_NUM_5709) {
9891 			BCE_PRINTF(" 0x%08X - (L2CTX_TX_TYPE_XI) ctx type\n",
9892 			    CTX_RD(sc, GET_CID_ADDR(cid),
9893 			    BCE_L2CTX_TX_TYPE_XI));
9894 			BCE_PRINTF(" 0x%08X - (L2CTX_CMD_TX_TYPE_XI) ctx "
9895 			    "cmd\n", CTX_RD(sc, GET_CID_ADDR(cid),
9896 			    BCE_L2CTX_TX_CMD_TYPE_XI));
9897 			BCE_PRINTF(" 0x%08X - (L2CTX_TX_TBDR_BDHADDR_HI_XI) "
9898 			    "h/w buffer descriptor address\n",
9899 			    CTX_RD(sc, GET_CID_ADDR(cid),
9900 			    BCE_L2CTX_TX_TBDR_BHADDR_HI_XI));
9901 			BCE_PRINTF(" 0x%08X - (L2CTX_TX_TBDR_BHADDR_LO_XI) "
9902 			    "h/w buffer	descriptor address\n",
9903 			    CTX_RD(sc, GET_CID_ADDR(cid),
9904 			    BCE_L2CTX_TX_TBDR_BHADDR_LO_XI));
9905 			BCE_PRINTF(" 0x%08X - (L2CTX_TX_HOST_BIDX_XI) "
9906 			    "host producer index\n",
9907 			    CTX_RD(sc, GET_CID_ADDR(cid),
9908 			    BCE_L2CTX_TX_HOST_BIDX_XI));
9909 			BCE_PRINTF(" 0x%08X - (L2CTX_TX_HOST_BSEQ_XI) "
9910 			    "host byte sequence\n",
9911 			    CTX_RD(sc, GET_CID_ADDR(cid),
9912 			    BCE_L2CTX_TX_HOST_BSEQ_XI));
9913 		} else {
9914 			BCE_PRINTF(" 0x%08X - (L2CTX_TX_TYPE) ctx type\n",
9915 			    CTX_RD(sc, GET_CID_ADDR(cid), BCE_L2CTX_TX_TYPE));
9916 			BCE_PRINTF(" 0x%08X - (L2CTX_TX_CMD_TYPE) ctx cmd\n",
9917 			    CTX_RD(sc, GET_CID_ADDR(cid),
9918 			    BCE_L2CTX_TX_CMD_TYPE));
9919 			BCE_PRINTF(" 0x%08X - (L2CTX_TX_TBDR_BDHADDR_HI) "
9920 			    "h/w buffer	descriptor address\n",
9921 			    CTX_RD(sc, GET_CID_ADDR(cid),
9922 			    BCE_L2CTX_TX_TBDR_BHADDR_HI));
9923 			BCE_PRINTF(" 0x%08X - (L2CTX_TX_TBDR_BHADDR_LO) "
9924 			    "h/w buffer	descriptor address\n",
9925 			    CTX_RD(sc, GET_CID_ADDR(cid),
9926 			    BCE_L2CTX_TX_TBDR_BHADDR_LO));
9927 			BCE_PRINTF(" 0x%08X - (L2CTX_TX_HOST_BIDX) host "
9928 			    "producer index\n", CTX_RD(sc, GET_CID_ADDR(cid),
9929 			    BCE_L2CTX_TX_HOST_BIDX));
9930 			BCE_PRINTF(" 0x%08X - (L2CTX_TX_HOST_BSEQ) host byte "
9931 			    "sequence\n", CTX_RD(sc, GET_CID_ADDR(cid),
9932 			    BCE_L2CTX_TX_HOST_BSEQ));
9933 		}
9934 	}
9935 
9936 	BCE_PRINTF(
9937 	   "----------------------------"
9938 	   "    Raw CTX     "
9939 	   "----------------------------\n");
9940 
9941 	for (int i = 0x0; i < 0x300; i += 0x10) {
9942 		BCE_PRINTF("0x%04X: 0x%08X 0x%08X 0x%08X 0x%08X\n", i,
9943 		   CTX_RD(sc, GET_CID_ADDR(cid), i),
9944 		   CTX_RD(sc, GET_CID_ADDR(cid), i + 0x4),
9945 		   CTX_RD(sc, GET_CID_ADDR(cid), i + 0x8),
9946 		   CTX_RD(sc, GET_CID_ADDR(cid), i + 0xc));
9947 	}
9948 
9949 
9950 	BCE_PRINTF(
9951 	   "----------------------------"
9952 	   "----------------"
9953 	   "----------------------------\n");
9954 }
9955 
9956 
9957 /****************************************************************************/
9958 /* Prints out the FTQ data.                                                 */
9959 /*                                                                          */
9960 /* Returns:                                                                */
9961 /*   Nothing.                                                               */
9962 /****************************************************************************/
9963 static __attribute__ ((noinline)) void
9964 bce_dump_ftqs(struct bce_softc *sc)
9965 {
9966 	u32 cmd, ctl, cur_depth, max_depth, valid_cnt, val;
9967 
9968 	BCE_PRINTF(
9969 	    "----------------------------"
9970 	    "    FTQ Data    "
9971 	    "----------------------------\n");
9972 
9973 	BCE_PRINTF("   FTQ    Command    Control   Depth_Now  "
9974 	    "Max_Depth  Valid_Cnt \n");
9975 	BCE_PRINTF(" ------- ---------- ---------- ---------- "
9976 	    "---------- ----------\n");
9977 
9978 	/* Setup the generic statistic counters for the FTQ valid count. */
9979 	val = (BCE_HC_STAT_GEN_SEL_0_GEN_SEL_0_RV2PPQ_VALID_CNT << 24) |
9980 	    (BCE_HC_STAT_GEN_SEL_0_GEN_SEL_0_RXPCQ_VALID_CNT  << 16) |
9981 	    (BCE_HC_STAT_GEN_SEL_0_GEN_SEL_0_RXPQ_VALID_CNT   <<  8) |
9982 	    (BCE_HC_STAT_GEN_SEL_0_GEN_SEL_0_RLUPQ_VALID_CNT);
9983 	REG_WR(sc, BCE_HC_STAT_GEN_SEL_0, val);
9984 
9985 	val = (BCE_HC_STAT_GEN_SEL_0_GEN_SEL_0_TSCHQ_VALID_CNT  << 24) |
9986 	    (BCE_HC_STAT_GEN_SEL_0_GEN_SEL_0_RDMAQ_VALID_CNT  << 16) |
9987 	    (BCE_HC_STAT_GEN_SEL_0_GEN_SEL_0_RV2PTQ_VALID_CNT <<  8) |
9988 	    (BCE_HC_STAT_GEN_SEL_0_GEN_SEL_0_RV2PMQ_VALID_CNT);
9989 	REG_WR(sc, BCE_HC_STAT_GEN_SEL_1, val);
9990 
9991 	val = (BCE_HC_STAT_GEN_SEL_0_GEN_SEL_0_TPATQ_VALID_CNT  << 24) |
9992 	    (BCE_HC_STAT_GEN_SEL_0_GEN_SEL_0_TDMAQ_VALID_CNT  << 16) |
9993 	    (BCE_HC_STAT_GEN_SEL_0_GEN_SEL_0_TXPQ_VALID_CNT   <<  8) |
9994 	    (BCE_HC_STAT_GEN_SEL_0_GEN_SEL_0_TBDRQ_VALID_CNT);
9995 	REG_WR(sc, BCE_HC_STAT_GEN_SEL_2, val);
9996 
9997 	val = (BCE_HC_STAT_GEN_SEL_0_GEN_SEL_0_COMQ_VALID_CNT   << 24) |
9998 	    (BCE_HC_STAT_GEN_SEL_0_GEN_SEL_0_COMTQ_VALID_CNT  << 16) |
9999 	    (BCE_HC_STAT_GEN_SEL_0_GEN_SEL_0_COMXQ_VALID_CNT  <<  8) |
10000 	    (BCE_HC_STAT_GEN_SEL_0_GEN_SEL_0_TASQ_VALID_CNT);
10001 	REG_WR(sc, BCE_HC_STAT_GEN_SEL_3, val);
10002 
10003 	/* Input queue to the Receive Lookup state machine */
10004 	cmd = REG_RD(sc, BCE_RLUP_FTQ_CMD);
10005 	ctl = REG_RD(sc, BCE_RLUP_FTQ_CTL);
10006 	cur_depth = (ctl & BCE_RLUP_FTQ_CTL_CUR_DEPTH) >> 22;
10007 	max_depth = (ctl & BCE_RLUP_FTQ_CTL_MAX_DEPTH) >> 12;
10008 	valid_cnt = REG_RD(sc, BCE_HC_STAT_GEN_STAT0);
10009 	BCE_PRINTF(" RLUP    0x%08X 0x%08X 0x%08X 0x%08X 0x%08X\n",
10010 	    cmd, ctl, cur_depth, max_depth, valid_cnt);
10011 
10012 	/* Input queue to the Receive Processor */
10013 	cmd = REG_RD_IND(sc, BCE_RXP_FTQ_CMD);
10014 	ctl = REG_RD_IND(sc, BCE_RXP_FTQ_CTL);
10015 	cur_depth = (ctl & BCE_RXP_FTQ_CTL_CUR_DEPTH) >> 22;
10016 	max_depth = (ctl & BCE_RXP_FTQ_CTL_MAX_DEPTH) >> 12;
10017 	valid_cnt = REG_RD(sc, BCE_HC_STAT_GEN_STAT1);
10018 	BCE_PRINTF(" RXP     0x%08X 0x%08X 0x%08X 0x%08X 0x%08X\n",
10019 	    cmd, ctl, cur_depth, max_depth, valid_cnt);
10020 
10021 	/* Input queue to the Recevie Processor */
10022 	cmd = REG_RD_IND(sc, BCE_RXP_CFTQ_CMD);
10023 	ctl = REG_RD_IND(sc, BCE_RXP_CFTQ_CTL);
10024 	cur_depth = (ctl & BCE_RXP_CFTQ_CTL_CUR_DEPTH) >> 22;
10025 	max_depth = (ctl & BCE_RXP_CFTQ_CTL_MAX_DEPTH) >> 12;
10026 	valid_cnt = REG_RD(sc, BCE_HC_STAT_GEN_STAT2);
10027 	BCE_PRINTF(" RXPC    0x%08X 0x%08X 0x%08X 0x%08X 0x%08X\n",
10028 	    cmd, ctl, cur_depth, max_depth, valid_cnt);
10029 
10030 	/* Input queue to the Receive Virtual to Physical state machine */
10031 	cmd = REG_RD(sc, BCE_RV2P_PFTQ_CMD);
10032 	ctl = REG_RD(sc, BCE_RV2P_PFTQ_CTL);
10033 	cur_depth = (ctl & BCE_RV2P_PFTQ_CTL_CUR_DEPTH) >> 22;
10034 	max_depth = (ctl & BCE_RV2P_PFTQ_CTL_MAX_DEPTH) >> 12;
10035 	valid_cnt = REG_RD(sc, BCE_HC_STAT_GEN_STAT3);
10036 	BCE_PRINTF(" RV2PP   0x%08X 0x%08X 0x%08X 0x%08X 0x%08X\n",
10037 	    cmd, ctl, cur_depth, max_depth, valid_cnt);
10038 
10039 	/* Input queue to the Recevie Virtual to Physical state machine */
10040 	cmd = REG_RD(sc, BCE_RV2P_MFTQ_CMD);
10041 	ctl = REG_RD(sc, BCE_RV2P_MFTQ_CTL);
10042 	cur_depth = (ctl & BCE_RV2P_MFTQ_CTL_CUR_DEPTH) >> 22;
10043 	max_depth = (ctl & BCE_RV2P_MFTQ_CTL_MAX_DEPTH) >> 12;
10044 	valid_cnt = REG_RD(sc, BCE_HC_STAT_GEN_STAT4);
10045 	BCE_PRINTF(" RV2PM   0x%08X 0x%08X 0x%08X 0x%08X 0x%08X\n",
10046 	    cmd, ctl, cur_depth, max_depth, valid_cnt);
10047 
10048 	/* Input queue to the Receive Virtual to Physical state machine */
10049 	cmd = REG_RD(sc, BCE_RV2P_TFTQ_CMD);
10050 	ctl = REG_RD(sc, BCE_RV2P_TFTQ_CTL);
10051 	cur_depth = (ctl & BCE_RV2P_TFTQ_CTL_CUR_DEPTH) >> 22;
10052 	max_depth = (ctl & BCE_RV2P_TFTQ_CTL_MAX_DEPTH) >> 12;
10053 	valid_cnt = REG_RD(sc, BCE_HC_STAT_GEN_STAT5);
10054 	BCE_PRINTF(" RV2PT   0x%08X 0x%08X 0x%08X 0x%08X 0x%08X\n",
10055 	    cmd, ctl, cur_depth, max_depth, valid_cnt);
10056 
10057 	/* Input queue to the Receive DMA state machine */
10058 	cmd = REG_RD(sc, BCE_RDMA_FTQ_CMD);
10059 	ctl = REG_RD(sc, BCE_RDMA_FTQ_CTL);
10060 	cur_depth = (ctl & BCE_RDMA_FTQ_CTL_CUR_DEPTH) >> 22;
10061 	max_depth = (ctl & BCE_RDMA_FTQ_CTL_MAX_DEPTH) >> 12;
10062 	valid_cnt = REG_RD(sc, BCE_HC_STAT_GEN_STAT6);
10063 	BCE_PRINTF(" RDMA    0x%08X 0x%08X 0x%08X 0x%08X 0x%08X\n",
10064 	    cmd, ctl, cur_depth, max_depth, valid_cnt);
10065 
10066 	/* Input queue to the Transmit Scheduler state machine */
10067 	cmd = REG_RD(sc, BCE_TSCH_FTQ_CMD);
10068 	ctl = REG_RD(sc, BCE_TSCH_FTQ_CTL);
10069 	cur_depth = (ctl & BCE_TSCH_FTQ_CTL_CUR_DEPTH) >> 22;
10070 	max_depth = (ctl & BCE_TSCH_FTQ_CTL_MAX_DEPTH) >> 12;
10071 	valid_cnt = REG_RD(sc, BCE_HC_STAT_GEN_STAT7);
10072 	BCE_PRINTF(" TSCH    0x%08X 0x%08X 0x%08X 0x%08X 0x%08X\n",
10073 	    cmd, ctl, cur_depth, max_depth, valid_cnt);
10074 
10075 	/* Input queue to the Transmit Buffer Descriptor state machine */
10076 	cmd = REG_RD(sc, BCE_TBDR_FTQ_CMD);
10077 	ctl = REG_RD(sc, BCE_TBDR_FTQ_CTL);
10078 	cur_depth = (ctl & BCE_TBDR_FTQ_CTL_CUR_DEPTH) >> 22;
10079 	max_depth = (ctl & BCE_TBDR_FTQ_CTL_MAX_DEPTH) >> 12;
10080 	valid_cnt = REG_RD(sc, BCE_HC_STAT_GEN_STAT8);
10081 	BCE_PRINTF(" TBDR    0x%08X 0x%08X 0x%08X 0x%08X 0x%08X\n",
10082 	    cmd, ctl, cur_depth, max_depth, valid_cnt);
10083 
10084 	/* Input queue to the Transmit Processor */
10085 	cmd = REG_RD_IND(sc, BCE_TXP_FTQ_CMD);
10086 	ctl = REG_RD_IND(sc, BCE_TXP_FTQ_CTL);
10087 	cur_depth = (ctl & BCE_TXP_FTQ_CTL_CUR_DEPTH) >> 22;
10088 	max_depth = (ctl & BCE_TXP_FTQ_CTL_MAX_DEPTH) >> 12;
10089 	valid_cnt = REG_RD(sc, BCE_HC_STAT_GEN_STAT9);
10090 	BCE_PRINTF(" TXP     0x%08X 0x%08X 0x%08X 0x%08X 0x%08X\n",
10091 	    cmd, ctl, cur_depth, max_depth, valid_cnt);
10092 
10093 	/* Input queue to the Transmit DMA state machine */
10094 	cmd = REG_RD(sc, BCE_TDMA_FTQ_CMD);
10095 	ctl = REG_RD(sc, BCE_TDMA_FTQ_CTL);
10096 	cur_depth = (ctl & BCE_TDMA_FTQ_CTL_CUR_DEPTH) >> 22;
10097 	max_depth = (ctl & BCE_TDMA_FTQ_CTL_MAX_DEPTH) >> 12;
10098 	valid_cnt = REG_RD(sc, BCE_HC_STAT_GEN_STAT10);
10099 	BCE_PRINTF(" TDMA    0x%08X 0x%08X 0x%08X 0x%08X 0x%08X\n",
10100 	    cmd, ctl, cur_depth, max_depth, valid_cnt);
10101 
10102 	/* Input queue to the Transmit Patch-Up Processor */
10103 	cmd = REG_RD_IND(sc, BCE_TPAT_FTQ_CMD);
10104 	ctl = REG_RD_IND(sc, BCE_TPAT_FTQ_CTL);
10105 	cur_depth = (ctl & BCE_TPAT_FTQ_CTL_CUR_DEPTH) >> 22;
10106 	max_depth = (ctl & BCE_TPAT_FTQ_CTL_MAX_DEPTH) >> 12;
10107 	valid_cnt = REG_RD(sc, BCE_HC_STAT_GEN_STAT11);
10108 	BCE_PRINTF(" TPAT    0x%08X 0x%08X 0x%08X 0x%08X 0x%08X\n",
10109 	    cmd, ctl, cur_depth, max_depth, valid_cnt);
10110 
10111 	/* Input queue to the Transmit Assembler state machine */
10112 	cmd = REG_RD_IND(sc, BCE_TAS_FTQ_CMD);
10113 	ctl = REG_RD_IND(sc, BCE_TAS_FTQ_CTL);
10114 	cur_depth = (ctl & BCE_TAS_FTQ_CTL_CUR_DEPTH) >> 22;
10115 	max_depth = (ctl & BCE_TAS_FTQ_CTL_MAX_DEPTH) >> 12;
10116 	valid_cnt = REG_RD(sc, BCE_HC_STAT_GEN_STAT12);
10117 	BCE_PRINTF(" TAS     0x%08X 0x%08X 0x%08X 0x%08X 0x%08X\n",
10118 	    cmd, ctl, cur_depth, max_depth, valid_cnt);
10119 
10120 	/* Input queue to the Completion Processor */
10121 	cmd = REG_RD_IND(sc, BCE_COM_COMXQ_FTQ_CMD);
10122 	ctl = REG_RD_IND(sc, BCE_COM_COMXQ_FTQ_CTL);
10123 	cur_depth = (ctl & BCE_COM_COMXQ_FTQ_CTL_CUR_DEPTH) >> 22;
10124 	max_depth = (ctl & BCE_COM_COMXQ_FTQ_CTL_MAX_DEPTH) >> 12;
10125 	valid_cnt = REG_RD(sc, BCE_HC_STAT_GEN_STAT13);
10126 	BCE_PRINTF(" COMX    0x%08X 0x%08X 0x%08X 0x%08X 0x%08X\n",
10127 	    cmd, ctl, cur_depth, max_depth, valid_cnt);
10128 
10129 	/* Input queue to the Completion Processor */
10130 	cmd = REG_RD_IND(sc, BCE_COM_COMTQ_FTQ_CMD);
10131 	ctl = REG_RD_IND(sc, BCE_COM_COMTQ_FTQ_CTL);
10132 	cur_depth = (ctl & BCE_COM_COMTQ_FTQ_CTL_CUR_DEPTH) >> 22;
10133 	max_depth = (ctl & BCE_COM_COMTQ_FTQ_CTL_MAX_DEPTH) >> 12;
10134 	valid_cnt = REG_RD(sc, BCE_HC_STAT_GEN_STAT14);
10135 	BCE_PRINTF(" COMT    0x%08X 0x%08X 0x%08X 0x%08X 0x%08X\n",
10136 	    cmd, ctl, cur_depth, max_depth, valid_cnt);
10137 
10138 	/* Input queue to the Completion Processor */
10139 	cmd = REG_RD_IND(sc, BCE_COM_COMQ_FTQ_CMD);
10140 	ctl = REG_RD_IND(sc, BCE_COM_COMQ_FTQ_CTL);
10141 	cur_depth = (ctl & BCE_COM_COMQ_FTQ_CTL_CUR_DEPTH) >> 22;
10142 	max_depth = (ctl & BCE_COM_COMQ_FTQ_CTL_MAX_DEPTH) >> 12;
10143 	valid_cnt = REG_RD(sc, BCE_HC_STAT_GEN_STAT15);
10144 	BCE_PRINTF(" COMX    0x%08X 0x%08X 0x%08X 0x%08X 0x%08X\n",
10145 	    cmd, ctl, cur_depth, max_depth, valid_cnt);
10146 
10147 	/* Setup the generic statistic counters for the FTQ valid count. */
10148 	val = (BCE_HC_STAT_GEN_SEL_0_GEN_SEL_0_CSQ_VALID_CNT  << 16) |
10149 	    (BCE_HC_STAT_GEN_SEL_0_GEN_SEL_0_CPQ_VALID_CNT  <<  8) |
10150 	    (BCE_HC_STAT_GEN_SEL_0_GEN_SEL_0_MGMQ_VALID_CNT);
10151 
10152 	if ((BCE_CHIP_NUM(sc) == BCE_CHIP_NUM_5709)
10153 		val = val |
10154 		    (BCE_HC_STAT_GEN_SEL_0_GEN_SEL_0_RV2PCSQ_VALID_CNT_XI <<
10155 		     24);
10156 	REG_WR(sc, BCE_HC_STAT_GEN_SEL_0, val);
10157 
10158 	/* Input queue to the Management Control Processor */
10159 	cmd = REG_RD_IND(sc, BCE_MCP_MCPQ_FTQ_CMD);
10160 	ctl = REG_RD_IND(sc, BCE_MCP_MCPQ_FTQ_CTL);
10161 	cur_depth = (ctl & BCE_MCP_MCPQ_FTQ_CTL_CUR_DEPTH) >> 22;
10162 	max_depth = (ctl & BCE_MCP_MCPQ_FTQ_CTL_MAX_DEPTH) >> 12;
10163 	valid_cnt = REG_RD(sc, BCE_HC_STAT_GEN_STAT0);
10164 	BCE_PRINTF(" MCP     0x%08X 0x%08X 0x%08X 0x%08X 0x%08X\n",
10165 	    cmd, ctl, cur_depth, max_depth, valid_cnt);
10166 
10167 	/* Input queue to the Command Processor */
10168 	cmd = REG_RD_IND(sc, BCE_CP_CPQ_FTQ_CMD);
10169 	ctl = REG_RD_IND(sc, BCE_CP_CPQ_FTQ_CTL);
10170 	cur_depth = (ctl & BCE_CP_CPQ_FTQ_CTL_CUR_DEPTH) >> 22;
10171 	max_depth = (ctl & BCE_CP_CPQ_FTQ_CTL_MAX_DEPTH) >> 12;
10172 	valid_cnt = REG_RD(sc, BCE_HC_STAT_GEN_STAT1);
10173 	BCE_PRINTF(" CP      0x%08X 0x%08X 0x%08X 0x%08X 0x%08X\n",
10174 	    cmd, ctl, cur_depth, max_depth, valid_cnt);
10175 
10176 	/* Input queue to the Completion Scheduler state machine */
10177 	cmd = REG_RD(sc, BCE_CSCH_CH_FTQ_CMD);
10178 	ctl = REG_RD(sc, BCE_CSCH_CH_FTQ_CTL);
10179 	cur_depth = (ctl & BCE_CSCH_CH_FTQ_CTL_CUR_DEPTH) >> 22;
10180 	max_depth = (ctl & BCE_CSCH_CH_FTQ_CTL_MAX_DEPTH) >> 12;
10181 	valid_cnt = REG_RD(sc, BCE_HC_STAT_GEN_STAT2);
10182 	BCE_PRINTF(" CS      0x%08X 0x%08X 0x%08X 0x%08X 0x%08X\n",
10183 	    cmd, ctl, cur_depth, max_depth, valid_cnt);
10184 
10185 	if (BCE_CHIP_NUM(sc) == BCE_CHIP_NUM_5709) {
10186 		/* Input queue to the RV2P Command Scheduler */
10187 		cmd = REG_RD(sc, BCE_RV2PCSR_FTQ_CMD);
10188 		ctl = REG_RD(sc, BCE_RV2PCSR_FTQ_CTL);
10189 		cur_depth = (ctl & 0xFFC00000) >> 22;
10190 		max_depth = (ctl & 0x003FF000) >> 12;
10191 		valid_cnt = REG_RD(sc, BCE_HC_STAT_GEN_STAT3);
10192 		BCE_PRINTF(" RV2PCSR 0x%08X 0x%08X 0x%08X 0x%08X 0x%08X\n",
10193 		    cmd, ctl, cur_depth, max_depth, valid_cnt);
10194 	}
10195 
10196 	BCE_PRINTF(
10197 	    "----------------------------"
10198 	    "----------------"
10199 	    "----------------------------\n");
10200 }
10201 
10202 
10203 /****************************************************************************/
10204 /* Prints out the TX chain.                                                 */
10205 /*                                                                          */
10206 /* Returns:                                                                 */
10207 /*   Nothing.                                                               */
10208 /****************************************************************************/
10209 static __attribute__ ((noinline)) void
10210 bce_dump_tx_chain(struct bce_softc *sc, u16 tx_prod, int count)
10211 {
10212 	struct tx_bd *txbd;
10213 
10214 	/* First some info about the tx_bd chain structure. */
10215 	BCE_PRINTF(
10216 	    "----------------------------"
10217 	    "  tx_bd  chain  "
10218 	    "----------------------------\n");
10219 
10220 	BCE_PRINTF("page size      = 0x%08X, tx chain pages        = 0x%08X\n",
10221 	    (u32) BCM_PAGE_SIZE, (u32) sc->tx_pages);
10222 	BCE_PRINTF("tx_bd per page = 0x%08X, usable tx_bd per page = 0x%08X\n",
10223 	    (u32) TOTAL_TX_BD_PER_PAGE, (u32) USABLE_TX_BD_PER_PAGE);
10224 	BCE_PRINTF("total tx_bd    = 0x%08X\n", (u32) TOTAL_TX_BD_ALLOC);
10225 
10226 	BCE_PRINTF(
10227 	    "----------------------------"
10228 	    "   tx_bd data   "
10229 	    "----------------------------\n");
10230 
10231 	/* Now print out a decoded list of TX buffer descriptors. */
10232 	for (int i = 0; i < count; i++) {
10233 	 	txbd = &sc->tx_bd_chain[TX_PAGE(tx_prod)][TX_IDX(tx_prod)];
10234 		bce_dump_txbd(sc, tx_prod, txbd);
10235 		tx_prod++;
10236 	}
10237 
10238 	BCE_PRINTF(
10239 	    "----------------------------"
10240 	    "----------------"
10241 	    "----------------------------\n");
10242 }
10243 
10244 
10245 /****************************************************************************/
10246 /* Prints out the RX chain.                                                 */
10247 /*                                                                          */
10248 /* Returns:                                                                 */
10249 /*   Nothing.                                                               */
10250 /****************************************************************************/
10251 static __attribute__ ((noinline)) void
10252 bce_dump_rx_bd_chain(struct bce_softc *sc, u16 rx_prod, int count)
10253 {
10254 	struct rx_bd *rxbd;
10255 
10256 	/* First some info about the rx_bd chain structure. */
10257 	BCE_PRINTF(
10258 	    "----------------------------"
10259 	    "  rx_bd  chain  "
10260 	    "----------------------------\n");
10261 
10262 	BCE_PRINTF("page size      = 0x%08X, rx chain pages        = 0x%08X\n",
10263 	    (u32) BCM_PAGE_SIZE, (u32) sc->rx_pages);
10264 
10265 	BCE_PRINTF("rx_bd per page = 0x%08X, usable rx_bd per page = 0x%08X\n",
10266 	    (u32) TOTAL_RX_BD_PER_PAGE, (u32) USABLE_RX_BD_PER_PAGE);
10267 
10268 	BCE_PRINTF("total rx_bd    = 0x%08X\n", (u32) TOTAL_RX_BD_ALLOC);
10269 
10270 	BCE_PRINTF(
10271 	    "----------------------------"
10272 	    "   rx_bd data   "
10273 	    "----------------------------\n");
10274 
10275 	/* Now print out the rx_bd's themselves. */
10276 	for (int i = 0; i < count; i++) {
10277 		rxbd = &sc->rx_bd_chain[RX_PAGE(rx_prod)][RX_IDX(rx_prod)];
10278 		bce_dump_rxbd(sc, rx_prod, rxbd);
10279 		rx_prod = RX_CHAIN_IDX(rx_prod + 1);
10280 	}
10281 
10282 	BCE_PRINTF(
10283 	    "----------------------------"
10284 	    "----------------"
10285 	    "----------------------------\n");
10286 }
10287 
10288 
10289 /****************************************************************************/
10290 /* Prints out the page chain.                                               */
10291 /*                                                                          */
10292 /* Returns:                                                                 */
10293 /*   Nothing.                                                               */
10294 /****************************************************************************/
10295 static __attribute__ ((noinline)) void
10296 bce_dump_pg_chain(struct bce_softc *sc, u16 pg_prod, int count)
10297 {
10298 	struct rx_bd *pgbd;
10299 
10300 	/* First some info about the page chain structure. */
10301 	BCE_PRINTF(
10302 	    "----------------------------"
10303 	    "   page chain   "
10304 	    "----------------------------\n");
10305 
10306 	BCE_PRINTF("page size      = 0x%08X, pg chain pages        = 0x%08X\n",
10307 	    (u32) BCM_PAGE_SIZE, (u32) sc->pg_pages);
10308 
10309 	BCE_PRINTF("rx_bd per page = 0x%08X, usable rx_bd per page = 0x%08X\n",
10310 	    (u32) TOTAL_PG_BD_PER_PAGE, (u32) USABLE_PG_BD_PER_PAGE);
10311 
10312 	BCE_PRINTF("total pg_bd             = 0x%08X\n", (u32) TOTAL_PG_BD_ALLOC);
10313 
10314 	BCE_PRINTF(
10315 	    "----------------------------"
10316 	    "   page data    "
10317 	    "----------------------------\n");
10318 
10319 	/* Now print out the rx_bd's themselves. */
10320 	for (int i = 0; i < count; i++) {
10321 		pgbd = &sc->pg_bd_chain[PG_PAGE(pg_prod)][PG_IDX(pg_prod)];
10322 		bce_dump_pgbd(sc, pg_prod, pgbd);
10323 		pg_prod = PG_CHAIN_IDX(pg_prod + 1);
10324 	}
10325 
10326 	BCE_PRINTF(
10327 	    "----------------------------"
10328 	    "----------------"
10329 	    "----------------------------\n");
10330 }
10331 
10332 
10333 #define BCE_PRINT_RX_CONS(arg)						\
10334 if (sblk->status_rx_quick_consumer_index##arg)				\
10335 	BCE_PRINTF("0x%04X(0x%04X) - rx_quick_consumer_index%d\n",	\
10336 	    sblk->status_rx_quick_consumer_index##arg, (u16)		\
10337 	    RX_CHAIN_IDX(sblk->status_rx_quick_consumer_index##arg),	\
10338 	    arg);
10339 
10340 
10341 #define BCE_PRINT_TX_CONS(arg)						\
10342 if (sblk->status_tx_quick_consumer_index##arg)				\
10343 	BCE_PRINTF("0x%04X(0x%04X) - tx_quick_consumer_index%d\n",	\
10344 	    sblk->status_tx_quick_consumer_index##arg, (u16)		\
10345 	    TX_CHAIN_IDX(sblk->status_tx_quick_consumer_index##arg),	\
10346 	    arg);
10347 
10348 /****************************************************************************/
10349 /* Prints out the status block from host memory.                            */
10350 /*                                                                          */
10351 /* Returns:                                                                 */
10352 /*   Nothing.                                                               */
10353 /****************************************************************************/
10354 static __attribute__ ((noinline)) void
10355 bce_dump_status_block(struct bce_softc *sc)
10356 {
10357 	struct status_block *sblk;
10358 
10359 	sblk = sc->status_block;
10360 
10361 	BCE_PRINTF(
10362 	    "----------------------------"
10363 	    "  Status Block  "
10364 	    "----------------------------\n");
10365 
10366 	/* Theses indices are used for normal L2 drivers. */
10367 	BCE_PRINTF("    0x%08X - attn_bits\n",
10368 	    sblk->status_attn_bits);
10369 
10370 	BCE_PRINTF("    0x%08X - attn_bits_ack\n",
10371 	    sblk->status_attn_bits_ack);
10372 
10373 	BCE_PRINT_RX_CONS(0);
10374 	BCE_PRINT_TX_CONS(0)
10375 
10376 	BCE_PRINTF("        0x%04X - status_idx\n", sblk->status_idx);
10377 
10378 	/* Theses indices are not used for normal L2 drivers. */
10379 	BCE_PRINT_RX_CONS(1);   BCE_PRINT_RX_CONS(2);   BCE_PRINT_RX_CONS(3);
10380 	BCE_PRINT_RX_CONS(4);   BCE_PRINT_RX_CONS(5);   BCE_PRINT_RX_CONS(6);
10381 	BCE_PRINT_RX_CONS(7);   BCE_PRINT_RX_CONS(8);   BCE_PRINT_RX_CONS(9);
10382 	BCE_PRINT_RX_CONS(10);  BCE_PRINT_RX_CONS(11);  BCE_PRINT_RX_CONS(12);
10383 	BCE_PRINT_RX_CONS(13);  BCE_PRINT_RX_CONS(14);  BCE_PRINT_RX_CONS(15);
10384 
10385 	BCE_PRINT_TX_CONS(1);   BCE_PRINT_TX_CONS(2);   BCE_PRINT_TX_CONS(3);
10386 
10387 	if (sblk->status_completion_producer_index ||
10388 	    sblk->status_cmd_consumer_index)
10389 		BCE_PRINTF("com_prod  = 0x%08X, cmd_cons      = 0x%08X\n",
10390 		    sblk->status_completion_producer_index,
10391 		    sblk->status_cmd_consumer_index);
10392 
10393 	BCE_PRINTF(
10394 	    "----------------------------"
10395 	    "----------------"
10396 	    "----------------------------\n");
10397 }
10398 
10399 
10400 #define BCE_PRINT_64BIT_STAT(arg) 				\
10401 if (sblk->arg##_lo || sblk->arg##_hi)				\
10402 	BCE_PRINTF("0x%08X:%08X : %s\n", sblk->arg##_hi,	\
10403 	    sblk->arg##_lo, #arg);
10404 
10405 #define BCE_PRINT_32BIT_STAT(arg)				\
10406 if (sblk->arg)							\
10407 	BCE_PRINTF("         0x%08X : %s\n", 			\
10408 	    sblk->arg, #arg);
10409 
10410 /****************************************************************************/
10411 /* Prints out the statistics block from host memory.                        */
10412 /*                                                                          */
10413 /* Returns:                                                                 */
10414 /*   Nothing.                                                               */
10415 /****************************************************************************/
10416 static __attribute__ ((noinline)) void
10417 bce_dump_stats_block(struct bce_softc *sc)
10418 {
10419 	struct statistics_block *sblk;
10420 
10421 	sblk = sc->stats_block;
10422 
10423 	BCE_PRINTF(
10424 	    "---------------"
10425 	    " Stats Block  (All Stats Not Shown Are 0) "
10426 	    "---------------\n");
10427 
10428 	BCE_PRINT_64BIT_STAT(stat_IfHCInOctets);
10429 	BCE_PRINT_64BIT_STAT(stat_IfHCInBadOctets);
10430 	BCE_PRINT_64BIT_STAT(stat_IfHCOutOctets);
10431 	BCE_PRINT_64BIT_STAT(stat_IfHCOutBadOctets);
10432 	BCE_PRINT_64BIT_STAT(stat_IfHCInUcastPkts);
10433 	BCE_PRINT_64BIT_STAT(stat_IfHCInBroadcastPkts);
10434 	BCE_PRINT_64BIT_STAT(stat_IfHCInMulticastPkts);
10435 	BCE_PRINT_64BIT_STAT(stat_IfHCOutUcastPkts);
10436 	BCE_PRINT_64BIT_STAT(stat_IfHCOutBroadcastPkts);
10437 	BCE_PRINT_64BIT_STAT(stat_IfHCOutMulticastPkts);
10438 	BCE_PRINT_32BIT_STAT(
10439 	    stat_emac_tx_stat_dot3statsinternalmactransmiterrors);
10440 	BCE_PRINT_32BIT_STAT(stat_Dot3StatsCarrierSenseErrors);
10441 	BCE_PRINT_32BIT_STAT(stat_Dot3StatsFCSErrors);
10442 	BCE_PRINT_32BIT_STAT(stat_Dot3StatsAlignmentErrors);
10443 	BCE_PRINT_32BIT_STAT(stat_Dot3StatsSingleCollisionFrames);
10444 	BCE_PRINT_32BIT_STAT(stat_Dot3StatsMultipleCollisionFrames);
10445 	BCE_PRINT_32BIT_STAT(stat_Dot3StatsDeferredTransmissions);
10446 	BCE_PRINT_32BIT_STAT(stat_Dot3StatsExcessiveCollisions);
10447 	BCE_PRINT_32BIT_STAT(stat_Dot3StatsLateCollisions);
10448 	BCE_PRINT_32BIT_STAT(stat_EtherStatsCollisions);
10449 	BCE_PRINT_32BIT_STAT(stat_EtherStatsFragments);
10450 	BCE_PRINT_32BIT_STAT(stat_EtherStatsJabbers);
10451 	BCE_PRINT_32BIT_STAT(stat_EtherStatsUndersizePkts);
10452 	BCE_PRINT_32BIT_STAT(stat_EtherStatsOversizePkts);
10453 	BCE_PRINT_32BIT_STAT(stat_EtherStatsPktsRx64Octets);
10454 	BCE_PRINT_32BIT_STAT(stat_EtherStatsPktsRx65Octetsto127Octets);
10455 	BCE_PRINT_32BIT_STAT(stat_EtherStatsPktsRx128Octetsto255Octets);
10456 	BCE_PRINT_32BIT_STAT(stat_EtherStatsPktsRx256Octetsto511Octets);
10457 	BCE_PRINT_32BIT_STAT(stat_EtherStatsPktsRx512Octetsto1023Octets);
10458 	BCE_PRINT_32BIT_STAT(stat_EtherStatsPktsRx1024Octetsto1522Octets);
10459 	BCE_PRINT_32BIT_STAT(stat_EtherStatsPktsRx1523Octetsto9022Octets);
10460 	BCE_PRINT_32BIT_STAT(stat_EtherStatsPktsTx64Octets);
10461 	BCE_PRINT_32BIT_STAT(stat_EtherStatsPktsTx65Octetsto127Octets);
10462 	BCE_PRINT_32BIT_STAT(stat_EtherStatsPktsTx128Octetsto255Octets);
10463 	BCE_PRINT_32BIT_STAT(stat_EtherStatsPktsTx256Octetsto511Octets);
10464 	BCE_PRINT_32BIT_STAT(stat_EtherStatsPktsTx512Octetsto1023Octets);
10465 	BCE_PRINT_32BIT_STAT(stat_EtherStatsPktsTx1024Octetsto1522Octets);
10466 	BCE_PRINT_32BIT_STAT(stat_EtherStatsPktsTx1523Octetsto9022Octets);
10467 	BCE_PRINT_32BIT_STAT(stat_XonPauseFramesReceived);
10468 	BCE_PRINT_32BIT_STAT(stat_XoffPauseFramesReceived);
10469 	BCE_PRINT_32BIT_STAT(stat_OutXonSent);
10470 	BCE_PRINT_32BIT_STAT(stat_OutXoffSent);
10471 	BCE_PRINT_32BIT_STAT(stat_FlowControlDone);
10472 	BCE_PRINT_32BIT_STAT(stat_MacControlFramesReceived);
10473 	BCE_PRINT_32BIT_STAT(stat_XoffStateEntered);
10474 	BCE_PRINT_32BIT_STAT(stat_IfInFramesL2FilterDiscards);
10475 	BCE_PRINT_32BIT_STAT(stat_IfInRuleCheckerDiscards);
10476 	BCE_PRINT_32BIT_STAT(stat_IfInFTQDiscards);
10477 	BCE_PRINT_32BIT_STAT(stat_IfInMBUFDiscards);
10478 	BCE_PRINT_32BIT_STAT(stat_IfInRuleCheckerP4Hit);
10479 	BCE_PRINT_32BIT_STAT(stat_CatchupInRuleCheckerDiscards);
10480 	BCE_PRINT_32BIT_STAT(stat_CatchupInFTQDiscards);
10481 	BCE_PRINT_32BIT_STAT(stat_CatchupInMBUFDiscards);
10482 	BCE_PRINT_32BIT_STAT(stat_CatchupInRuleCheckerP4Hit);
10483 
10484 	BCE_PRINTF(
10485 	    "----------------------------"
10486 	    "----------------"
10487 	    "----------------------------\n");
10488 }
10489 
10490 
10491 /****************************************************************************/
10492 /* Prints out a summary of the driver state.                                */
10493 /*                                                                          */
10494 /* Returns:                                                                 */
10495 /*   Nothing.                                                               */
10496 /****************************************************************************/
10497 static __attribute__ ((noinline)) void
10498 bce_dump_driver_state(struct bce_softc *sc)
10499 {
10500 	u32 val_hi, val_lo;
10501 
10502 	BCE_PRINTF(
10503 	    "-----------------------------"
10504 	    " Driver State "
10505 	    "-----------------------------\n");
10506 
10507 	val_hi = BCE_ADDR_HI(sc);
10508 	val_lo = BCE_ADDR_LO(sc);
10509 	BCE_PRINTF("0x%08X:%08X - (sc) driver softc structure virtual "
10510 	    "address\n", val_hi, val_lo);
10511 
10512 	val_hi = BCE_ADDR_HI(sc->bce_vhandle);
10513 	val_lo = BCE_ADDR_LO(sc->bce_vhandle);
10514 	BCE_PRINTF("0x%08X:%08X - (sc->bce_vhandle) PCI BAR virtual "
10515 	    "address\n", val_hi, val_lo);
10516 
10517 	val_hi = BCE_ADDR_HI(sc->status_block);
10518 	val_lo = BCE_ADDR_LO(sc->status_block);
10519 	BCE_PRINTF("0x%08X:%08X - (sc->status_block) status block "
10520 	    "virtual address\n",	val_hi, val_lo);
10521 
10522 	val_hi = BCE_ADDR_HI(sc->stats_block);
10523 	val_lo = BCE_ADDR_LO(sc->stats_block);
10524 	BCE_PRINTF("0x%08X:%08X - (sc->stats_block) statistics block "
10525 	    "virtual address\n", val_hi, val_lo);
10526 
10527 	val_hi = BCE_ADDR_HI(sc->tx_bd_chain);
10528 	val_lo = BCE_ADDR_LO(sc->tx_bd_chain);
10529 	BCE_PRINTF("0x%08X:%08X - (sc->tx_bd_chain) tx_bd chain "
10530 	    "virtual adddress\n", val_hi, val_lo);
10531 
10532 	val_hi = BCE_ADDR_HI(sc->rx_bd_chain);
10533 	val_lo = BCE_ADDR_LO(sc->rx_bd_chain);
10534 	BCE_PRINTF("0x%08X:%08X - (sc->rx_bd_chain) rx_bd chain "
10535 	    "virtual address\n", val_hi, val_lo);
10536 
10537 	if (bce_hdr_split == TRUE) {
10538 		val_hi = BCE_ADDR_HI(sc->pg_bd_chain);
10539 		val_lo = BCE_ADDR_LO(sc->pg_bd_chain);
10540 		BCE_PRINTF("0x%08X:%08X - (sc->pg_bd_chain) page chain "
10541 		    "virtual address\n", val_hi, val_lo);
10542 	}
10543 
10544 	val_hi = BCE_ADDR_HI(sc->tx_mbuf_ptr);
10545 	val_lo = BCE_ADDR_LO(sc->tx_mbuf_ptr);
10546 	BCE_PRINTF("0x%08X:%08X - (sc->tx_mbuf_ptr) tx mbuf chain "
10547 	    "virtual address\n",	val_hi, val_lo);
10548 
10549 	val_hi = BCE_ADDR_HI(sc->rx_mbuf_ptr);
10550 	val_lo = BCE_ADDR_LO(sc->rx_mbuf_ptr);
10551 	BCE_PRINTF("0x%08X:%08X - (sc->rx_mbuf_ptr) rx mbuf chain "
10552 	    "virtual address\n", val_hi, val_lo);
10553 
10554 	if (bce_hdr_split == TRUE) {
10555 		val_hi = BCE_ADDR_HI(sc->pg_mbuf_ptr);
10556 		val_lo = BCE_ADDR_LO(sc->pg_mbuf_ptr);
10557 		BCE_PRINTF("0x%08X:%08X - (sc->pg_mbuf_ptr) page mbuf chain "
10558 		    "virtual address\n", val_hi, val_lo);
10559 	}
10560 
10561 	BCE_PRINTF(" 0x%016llX - (sc->interrupts_generated) "
10562 	    "h/w intrs\n",
10563 	    (long long unsigned int) sc->interrupts_generated);
10564 
10565 	BCE_PRINTF(" 0x%016llX - (sc->interrupts_rx) "
10566 	    "rx interrupts handled\n",
10567 	    (long long unsigned int) sc->interrupts_rx);
10568 
10569 	BCE_PRINTF(" 0x%016llX - (sc->interrupts_tx) "
10570 	    "tx interrupts handled\n",
10571 	    (long long unsigned int) sc->interrupts_tx);
10572 
10573 	BCE_PRINTF(" 0x%016llX - (sc->phy_interrupts) "
10574 	    "phy interrupts handled\n",
10575 	    (long long unsigned int) sc->phy_interrupts);
10576 
10577 	BCE_PRINTF("         0x%08X - (sc->last_status_idx) "
10578 	    "status block index\n", sc->last_status_idx);
10579 
10580 	BCE_PRINTF("     0x%04X(0x%04X) - (sc->tx_prod) tx producer "
10581 	    "index\n", sc->tx_prod, (u16) TX_CHAIN_IDX(sc->tx_prod));
10582 
10583 	BCE_PRINTF("     0x%04X(0x%04X) - (sc->tx_cons) tx consumer "
10584 	    "index\n", sc->tx_cons, (u16) TX_CHAIN_IDX(sc->tx_cons));
10585 
10586 	BCE_PRINTF("         0x%08X - (sc->tx_prod_bseq) tx producer "
10587 	    "byte seq index\n",	sc->tx_prod_bseq);
10588 
10589 	BCE_PRINTF("         0x%08X - (sc->debug_tx_mbuf_alloc) tx "
10590 	    "mbufs allocated\n", sc->debug_tx_mbuf_alloc);
10591 
10592 	BCE_PRINTF("         0x%08X - (sc->used_tx_bd) used "
10593 	    "tx_bd's\n", sc->used_tx_bd);
10594 
10595 	BCE_PRINTF("      0x%04X/0x%04X - (sc->tx_hi_watermark)/"
10596 	    "(sc->max_tx_bd)\n", sc->tx_hi_watermark, sc->max_tx_bd);
10597 
10598 	BCE_PRINTF("     0x%04X(0x%04X) - (sc->rx_prod) rx producer "
10599 	    "index\n", sc->rx_prod, (u16) RX_CHAIN_IDX(sc->rx_prod));
10600 
10601 	BCE_PRINTF("     0x%04X(0x%04X) - (sc->rx_cons) rx consumer "
10602 	    "index\n", sc->rx_cons, (u16) RX_CHAIN_IDX(sc->rx_cons));
10603 
10604 	BCE_PRINTF("         0x%08X - (sc->rx_prod_bseq) rx producer "
10605 	    "byte seq index\n",	sc->rx_prod_bseq);
10606 
10607 	BCE_PRINTF("      0x%04X/0x%04X - (sc->rx_low_watermark)/"
10608 		   "(sc->max_rx_bd)\n", sc->rx_low_watermark, sc->max_rx_bd);
10609 
10610 	BCE_PRINTF("         0x%08X - (sc->debug_rx_mbuf_alloc) rx "
10611 	    "mbufs allocated\n", sc->debug_rx_mbuf_alloc);
10612 
10613 	BCE_PRINTF("         0x%08X - (sc->free_rx_bd) free "
10614 	    "rx_bd's\n", sc->free_rx_bd);
10615 
10616 	if (bce_hdr_split == TRUE) {
10617 		BCE_PRINTF("     0x%04X(0x%04X) - (sc->pg_prod) page producer "
10618 		    "index\n", sc->pg_prod, (u16) PG_CHAIN_IDX(sc->pg_prod));
10619 
10620 		BCE_PRINTF("     0x%04X(0x%04X) - (sc->pg_cons) page consumer "
10621 		    "index\n", sc->pg_cons, (u16) PG_CHAIN_IDX(sc->pg_cons));
10622 
10623 		BCE_PRINTF("         0x%08X - (sc->debug_pg_mbuf_alloc) page "
10624 		    "mbufs allocated\n", sc->debug_pg_mbuf_alloc);
10625 	}
10626 
10627 	BCE_PRINTF("         0x%08X - (sc->free_pg_bd) free page "
10628 	    "rx_bd's\n", sc->free_pg_bd);
10629 
10630 	BCE_PRINTF("      0x%04X/0x%04X - (sc->pg_low_watermark)/"
10631 	    "(sc->max_pg_bd)\n", sc->pg_low_watermark, sc->max_pg_bd);
10632 
10633 	BCE_PRINTF("         0x%08X - (sc->mbuf_alloc_failed_count) "
10634 	    "mbuf alloc failures\n", sc->mbuf_alloc_failed_count);
10635 
10636 	BCE_PRINTF("         0x%08X - (sc->bce_flags) "
10637 	    "bce mac flags\n", sc->bce_flags);
10638 
10639 	BCE_PRINTF("         0x%08X - (sc->bce_phy_flags) "
10640 	    "bce phy flags\n", sc->bce_phy_flags);
10641 
10642 	BCE_PRINTF(
10643 	    "----------------------------"
10644 	    "----------------"
10645 	    "----------------------------\n");
10646 }
10647 
10648 
10649 /****************************************************************************/
10650 /* Prints out the hardware state through a summary of important register,   */
10651 /* followed by a complete register dump.                                    */
10652 /*                                                                          */
10653 /* Returns:                                                                 */
10654 /*   Nothing.                                                               */
10655 /****************************************************************************/
10656 static __attribute__ ((noinline)) void
10657 bce_dump_hw_state(struct bce_softc *sc)
10658 {
10659 	u32 val;
10660 
10661 	BCE_PRINTF(
10662 	    "----------------------------"
10663 	    " Hardware State "
10664 	    "----------------------------\n");
10665 
10666 	BCE_PRINTF("%s - bootcode version\n", sc->bce_bc_ver);
10667 
10668 	val = REG_RD(sc, BCE_MISC_ENABLE_STATUS_BITS);
10669 	BCE_PRINTF("0x%08X - (0x%06X) misc_enable_status_bits\n",
10670 	    val, BCE_MISC_ENABLE_STATUS_BITS);
10671 
10672 	val = REG_RD(sc, BCE_DMA_STATUS);
10673 	BCE_PRINTF("0x%08X - (0x%06X) dma_status\n",
10674 	    val, BCE_DMA_STATUS);
10675 
10676 	val = REG_RD(sc, BCE_CTX_STATUS);
10677 	BCE_PRINTF("0x%08X - (0x%06X) ctx_status\n",
10678 	    val, BCE_CTX_STATUS);
10679 
10680 	val = REG_RD(sc, BCE_EMAC_STATUS);
10681 	BCE_PRINTF("0x%08X - (0x%06X) emac_status\n",
10682 	    val, BCE_EMAC_STATUS);
10683 
10684 	val = REG_RD(sc, BCE_RPM_STATUS);
10685 	BCE_PRINTF("0x%08X - (0x%06X) rpm_status\n",
10686 	    val, BCE_RPM_STATUS);
10687 
10688 	/* ToDo: Create a #define for this constant. */
10689 	val = REG_RD(sc, 0x2004);
10690 	BCE_PRINTF("0x%08X - (0x%06X) rlup_status\n",
10691 	    val, 0x2004);
10692 
10693 	val = REG_RD(sc, BCE_RV2P_STATUS);
10694 	BCE_PRINTF("0x%08X - (0x%06X) rv2p_status\n",
10695 	    val, BCE_RV2P_STATUS);
10696 
10697 	/* ToDo: Create a #define for this constant. */
10698 	val = REG_RD(sc, 0x2c04);
10699 	BCE_PRINTF("0x%08X - (0x%06X) rdma_status\n",
10700 	    val, 0x2c04);
10701 
10702 	val = REG_RD(sc, BCE_TBDR_STATUS);
10703 	BCE_PRINTF("0x%08X - (0x%06X) tbdr_status\n",
10704 	    val, BCE_TBDR_STATUS);
10705 
10706 	val = REG_RD(sc, BCE_TDMA_STATUS);
10707 	BCE_PRINTF("0x%08X - (0x%06X) tdma_status\n",
10708 	    val, BCE_TDMA_STATUS);
10709 
10710 	val = REG_RD(sc, BCE_HC_STATUS);
10711 	BCE_PRINTF("0x%08X - (0x%06X) hc_status\n",
10712 	    val, BCE_HC_STATUS);
10713 
10714 	val = REG_RD_IND(sc, BCE_TXP_CPU_STATE);
10715 	BCE_PRINTF("0x%08X - (0x%06X) txp_cpu_state\n",
10716 	    val, BCE_TXP_CPU_STATE);
10717 
10718 	val = REG_RD_IND(sc, BCE_TPAT_CPU_STATE);
10719 	BCE_PRINTF("0x%08X - (0x%06X) tpat_cpu_state\n",
10720 	    val, BCE_TPAT_CPU_STATE);
10721 
10722 	val = REG_RD_IND(sc, BCE_RXP_CPU_STATE);
10723 	BCE_PRINTF("0x%08X - (0x%06X) rxp_cpu_state\n",
10724 	    val, BCE_RXP_CPU_STATE);
10725 
10726 	val = REG_RD_IND(sc, BCE_COM_CPU_STATE);
10727 	BCE_PRINTF("0x%08X - (0x%06X) com_cpu_state\n",
10728 	    val, BCE_COM_CPU_STATE);
10729 
10730 	val = REG_RD_IND(sc, BCE_MCP_CPU_STATE);
10731 	BCE_PRINTF("0x%08X - (0x%06X) mcp_cpu_state\n",
10732 	    val, BCE_MCP_CPU_STATE);
10733 
10734 	val = REG_RD_IND(sc, BCE_CP_CPU_STATE);
10735 	BCE_PRINTF("0x%08X - (0x%06X) cp_cpu_state\n",
10736 	    val, BCE_CP_CPU_STATE);
10737 
10738 	BCE_PRINTF(
10739 	    "----------------------------"
10740 	    "----------------"
10741 	    "----------------------------\n");
10742 
10743 	BCE_PRINTF(
10744 	    "----------------------------"
10745 	    " Register  Dump "
10746 	    "----------------------------\n");
10747 
10748 	for (int i = 0x400; i < 0x8000; i += 0x10) {
10749 		BCE_PRINTF("0x%04X: 0x%08X 0x%08X 0x%08X 0x%08X\n",
10750 		    i, REG_RD(sc, i), REG_RD(sc, i + 0x4),
10751 		    REG_RD(sc, i + 0x8), REG_RD(sc, i + 0xC));
10752 	}
10753 
10754 	BCE_PRINTF(
10755 	    "----------------------------"
10756 	    "----------------"
10757 	    "----------------------------\n");
10758 }
10759 
10760 
10761 /****************************************************************************/
10762 /* Prints out the contentst of shared memory which is used for host driver  */
10763 /* to bootcode firmware communication.                                      */
10764 /*                                                                          */
10765 /* Returns:                                                                 */
10766 /*   Nothing.                                                               */
10767 /****************************************************************************/
10768 static __attribute__ ((noinline)) void
10769 bce_dump_shmem_state(struct bce_softc *sc)
10770 {
10771 	BCE_PRINTF(
10772 	    "----------------------------"
10773 	    " Hardware State "
10774 	    "----------------------------\n");
10775 
10776 	BCE_PRINTF("0x%08X - Shared memory base address\n",
10777 	    sc->bce_shmem_base);
10778 	BCE_PRINTF("%s - bootcode version\n",
10779 	    sc->bce_bc_ver);
10780 
10781 	BCE_PRINTF(
10782 	    "----------------------------"
10783 	    "   Shared Mem   "
10784 	    "----------------------------\n");
10785 
10786 	for (int i = 0x0; i < 0x200; i += 0x10) {
10787 		BCE_PRINTF("0x%04X: 0x%08X 0x%08X 0x%08X 0x%08X\n",
10788 		    i, bce_shmem_rd(sc, i), bce_shmem_rd(sc, i + 0x4),
10789 		    bce_shmem_rd(sc, i + 0x8), bce_shmem_rd(sc, i + 0xC));
10790 	}
10791 
10792 	BCE_PRINTF(
10793 	    "----------------------------"
10794 	    "----------------"
10795 	    "----------------------------\n");
10796 }
10797 
10798 
10799 /****************************************************************************/
10800 /* Prints out the mailbox queue registers.                                  */
10801 /*                                                                          */
10802 /* Returns:                                                                 */
10803 /*   Nothing.                                                               */
10804 /****************************************************************************/
10805 static __attribute__ ((noinline)) void
10806 bce_dump_mq_regs(struct bce_softc *sc)
10807 {
10808 	BCE_PRINTF(
10809 	    "----------------------------"
10810 	    "    MQ Regs     "
10811 	    "----------------------------\n");
10812 
10813 	BCE_PRINTF(
10814 	    "----------------------------"
10815 	    "----------------"
10816 	    "----------------------------\n");
10817 
10818 	for (int i = 0x3c00; i < 0x4000; i += 0x10) {
10819 		BCE_PRINTF("0x%04X: 0x%08X 0x%08X 0x%08X 0x%08X\n",
10820 		    i, REG_RD(sc, i), REG_RD(sc, i + 0x4),
10821 		    REG_RD(sc, i + 0x8), REG_RD(sc, i + 0xC));
10822 	}
10823 
10824 	BCE_PRINTF(
10825 	    "----------------------------"
10826 	    "----------------"
10827 	    "----------------------------\n");
10828 }
10829 
10830 
10831 /****************************************************************************/
10832 /* Prints out the bootcode state.                                           */
10833 /*                                                                          */
10834 /* Returns:                                                                 */
10835 /*   Nothing.                                                               */
10836 /****************************************************************************/
10837 static __attribute__ ((noinline)) void
10838 bce_dump_bc_state(struct bce_softc *sc)
10839 {
10840 	u32 val;
10841 
10842 	BCE_PRINTF(
10843 	    "----------------------------"
10844 	    " Bootcode State "
10845 	    "----------------------------\n");
10846 
10847 	BCE_PRINTF("%s - bootcode version\n", sc->bce_bc_ver);
10848 
10849 	val = bce_shmem_rd(sc, BCE_BC_RESET_TYPE);
10850 	BCE_PRINTF("0x%08X - (0x%06X) reset_type\n",
10851 	    val, BCE_BC_RESET_TYPE);
10852 
10853 	val = bce_shmem_rd(sc, BCE_BC_STATE);
10854 	BCE_PRINTF("0x%08X - (0x%06X) state\n",
10855 	    val, BCE_BC_STATE);
10856 
10857 	val = bce_shmem_rd(sc, BCE_BC_STATE_CONDITION);
10858 	BCE_PRINTF("0x%08X - (0x%06X) condition\n",
10859 	    val, BCE_BC_STATE_CONDITION);
10860 
10861 	val = bce_shmem_rd(sc, BCE_BC_STATE_DEBUG_CMD);
10862 	BCE_PRINTF("0x%08X - (0x%06X) debug_cmd\n",
10863 	    val, BCE_BC_STATE_DEBUG_CMD);
10864 
10865 	BCE_PRINTF(
10866 	    "----------------------------"
10867 	    "----------------"
10868 	    "----------------------------\n");
10869 }
10870 
10871 
10872 /****************************************************************************/
10873 /* Prints out the TXP processor state.                                      */
10874 /*                                                                          */
10875 /* Returns:                                                                 */
10876 /*   Nothing.                                                               */
10877 /****************************************************************************/
10878 static __attribute__ ((noinline)) void
10879 bce_dump_txp_state(struct bce_softc *sc, int regs)
10880 {
10881 	u32 val;
10882 	u32 fw_version[3];
10883 
10884 	BCE_PRINTF(
10885 	    "----------------------------"
10886 	    "   TXP  State   "
10887 	    "----------------------------\n");
10888 
10889 	for (int i = 0; i < 3; i++)
10890 		fw_version[i] = htonl(REG_RD_IND(sc,
10891 		    (BCE_TXP_SCRATCH + 0x10 + i * 4)));
10892 	BCE_PRINTF("Firmware version - %s\n", (char *) fw_version);
10893 
10894 	val = REG_RD_IND(sc, BCE_TXP_CPU_MODE);
10895 	BCE_PRINTF("0x%08X - (0x%06X) txp_cpu_mode\n",
10896 	    val, BCE_TXP_CPU_MODE);
10897 
10898 	val = REG_RD_IND(sc, BCE_TXP_CPU_STATE);
10899 	BCE_PRINTF("0x%08X - (0x%06X) txp_cpu_state\n",
10900 	    val, BCE_TXP_CPU_STATE);
10901 
10902 	val = REG_RD_IND(sc, BCE_TXP_CPU_EVENT_MASK);
10903 	BCE_PRINTF("0x%08X - (0x%06X) txp_cpu_event_mask\n",
10904 	    val, BCE_TXP_CPU_EVENT_MASK);
10905 
10906 	if (regs) {
10907 		BCE_PRINTF(
10908 		    "----------------------------"
10909 		    " Register  Dump "
10910 		    "----------------------------\n");
10911 
10912 		for (int i = BCE_TXP_CPU_MODE; i < 0x68000; i += 0x10) {
10913 			/* Skip the big blank spaces */
10914 			if (i < 0x454000 && i > 0x5ffff)
10915 				BCE_PRINTF("0x%04X: 0x%08X 0x%08X "
10916 				    "0x%08X 0x%08X\n", i,
10917 				    REG_RD_IND(sc, i),
10918 				    REG_RD_IND(sc, i + 0x4),
10919 				    REG_RD_IND(sc, i + 0x8),
10920 				    REG_RD_IND(sc, i + 0xC));
10921 		}
10922 	}
10923 
10924 	BCE_PRINTF(
10925 	    "----------------------------"
10926 	    "----------------"
10927 	    "----------------------------\n");
10928 }
10929 
10930 
10931 /****************************************************************************/
10932 /* Prints out the RXP processor state.                                      */
10933 /*                                                                          */
10934 /* Returns:                                                                 */
10935 /*   Nothing.                                                               */
10936 /****************************************************************************/
10937 static __attribute__ ((noinline)) void
10938 bce_dump_rxp_state(struct bce_softc *sc, int regs)
10939 {
10940 	u32 val;
10941 	u32 fw_version[3];
10942 
10943 	BCE_PRINTF(
10944 	    "----------------------------"
10945 	    "   RXP  State   "
10946 	    "----------------------------\n");
10947 
10948 	for (int i = 0; i < 3; i++)
10949 		fw_version[i] = htonl(REG_RD_IND(sc,
10950 		    (BCE_RXP_SCRATCH + 0x10 + i * 4)));
10951 
10952 	BCE_PRINTF("Firmware version - %s\n", (char *) fw_version);
10953 
10954 	val = REG_RD_IND(sc, BCE_RXP_CPU_MODE);
10955 	BCE_PRINTF("0x%08X - (0x%06X) rxp_cpu_mode\n",
10956 	    val, BCE_RXP_CPU_MODE);
10957 
10958 	val = REG_RD_IND(sc, BCE_RXP_CPU_STATE);
10959 	BCE_PRINTF("0x%08X - (0x%06X) rxp_cpu_state\n",
10960 	    val, BCE_RXP_CPU_STATE);
10961 
10962 	val = REG_RD_IND(sc, BCE_RXP_CPU_EVENT_MASK);
10963 	BCE_PRINTF("0x%08X - (0x%06X) rxp_cpu_event_mask\n",
10964 	    val, BCE_RXP_CPU_EVENT_MASK);
10965 
10966 	if (regs) {
10967 		BCE_PRINTF(
10968 		    "----------------------------"
10969 		    " Register  Dump "
10970 		    "----------------------------\n");
10971 
10972 		for (int i = BCE_RXP_CPU_MODE; i < 0xe8fff; i += 0x10) {
10973 			/* Skip the big blank sapces */
10974 			if (i < 0xc5400 && i > 0xdffff)
10975 				BCE_PRINTF("0x%04X: 0x%08X 0x%08X "
10976 				    "0x%08X 0x%08X\n", i,
10977 				    REG_RD_IND(sc, i),
10978 				    REG_RD_IND(sc, i + 0x4),
10979 				    REG_RD_IND(sc, i + 0x8),
10980 				    REG_RD_IND(sc, i + 0xC));
10981 		}
10982 	}
10983 
10984 	BCE_PRINTF(
10985 	    "----------------------------"
10986 	    "----------------"
10987 	    "----------------------------\n");
10988 }
10989 
10990 
10991 /****************************************************************************/
10992 /* Prints out the TPAT processor state.                                     */
10993 /*                                                                          */
10994 /* Returns:                                                                 */
10995 /*   Nothing.                                                               */
10996 /****************************************************************************/
10997 static __attribute__ ((noinline)) void
10998 bce_dump_tpat_state(struct bce_softc *sc, int regs)
10999 {
11000 	u32 val;
11001 	u32 fw_version[3];
11002 
11003 	BCE_PRINTF(
11004 	    "----------------------------"
11005 	    "   TPAT State   "
11006 	    "----------------------------\n");
11007 
11008 	for (int i = 0; i < 3; i++)
11009 		fw_version[i] = htonl(REG_RD_IND(sc,
11010 		    (BCE_TPAT_SCRATCH + 0x410 + i * 4)));
11011 
11012 	BCE_PRINTF("Firmware version - %s\n", (char *) fw_version);
11013 
11014 	val = REG_RD_IND(sc, BCE_TPAT_CPU_MODE);
11015 	BCE_PRINTF("0x%08X - (0x%06X) tpat_cpu_mode\n",
11016 	    val, BCE_TPAT_CPU_MODE);
11017 
11018 	val = REG_RD_IND(sc, BCE_TPAT_CPU_STATE);
11019 	BCE_PRINTF("0x%08X - (0x%06X) tpat_cpu_state\n",
11020 	    val, BCE_TPAT_CPU_STATE);
11021 
11022 	val = REG_RD_IND(sc, BCE_TPAT_CPU_EVENT_MASK);
11023 	BCE_PRINTF("0x%08X - (0x%06X) tpat_cpu_event_mask\n",
11024 	    val, BCE_TPAT_CPU_EVENT_MASK);
11025 
11026 	if (regs) {
11027 		BCE_PRINTF(
11028 		    "----------------------------"
11029 		    " Register  Dump "
11030 		    "----------------------------\n");
11031 
11032 		for (int i = BCE_TPAT_CPU_MODE; i < 0xa3fff; i += 0x10) {
11033 			/* Skip the big blank spaces */
11034 			if (i < 0x854000 && i > 0x9ffff)
11035 				BCE_PRINTF("0x%04X: 0x%08X 0x%08X "
11036 				    "0x%08X 0x%08X\n", i,
11037 				    REG_RD_IND(sc, i),
11038 				    REG_RD_IND(sc, i + 0x4),
11039 				    REG_RD_IND(sc, i + 0x8),
11040 				    REG_RD_IND(sc, i + 0xC));
11041 		}
11042 	}
11043 
11044 	BCE_PRINTF(
11045 		"----------------------------"
11046 		"----------------"
11047 		"----------------------------\n");
11048 }
11049 
11050 
11051 /****************************************************************************/
11052 /* Prints out the Command Procesor (CP) state.                              */
11053 /*                                                                          */
11054 /* Returns:                                                                 */
11055 /*   Nothing.                                                               */
11056 /****************************************************************************/
11057 static __attribute__ ((noinline)) void
11058 bce_dump_cp_state(struct bce_softc *sc, int regs)
11059 {
11060 	u32 val;
11061 	u32 fw_version[3];
11062 
11063 	BCE_PRINTF(
11064 	    "----------------------------"
11065 	    "    CP State    "
11066 	    "----------------------------\n");
11067 
11068 	for (int i = 0; i < 3; i++)
11069 		fw_version[i] = htonl(REG_RD_IND(sc,
11070 		    (BCE_CP_SCRATCH + 0x10 + i * 4)));
11071 
11072 	BCE_PRINTF("Firmware version - %s\n", (char *) fw_version);
11073 
11074 	val = REG_RD_IND(sc, BCE_CP_CPU_MODE);
11075 	BCE_PRINTF("0x%08X - (0x%06X) cp_cpu_mode\n",
11076 	    val, BCE_CP_CPU_MODE);
11077 
11078 	val = REG_RD_IND(sc, BCE_CP_CPU_STATE);
11079 	BCE_PRINTF("0x%08X - (0x%06X) cp_cpu_state\n",
11080 	    val, BCE_CP_CPU_STATE);
11081 
11082 	val = REG_RD_IND(sc, BCE_CP_CPU_EVENT_MASK);
11083 	BCE_PRINTF("0x%08X - (0x%06X) cp_cpu_event_mask\n", val,
11084 	    BCE_CP_CPU_EVENT_MASK);
11085 
11086 	if (regs) {
11087 		BCE_PRINTF(
11088 		    "----------------------------"
11089 		    " Register  Dump "
11090 		    "----------------------------\n");
11091 
11092 		for (int i = BCE_CP_CPU_MODE; i < 0x1aa000; i += 0x10) {
11093 			/* Skip the big blank spaces */
11094 			if (i < 0x185400 && i > 0x19ffff)
11095 				BCE_PRINTF("0x%04X: 0x%08X 0x%08X "
11096 				    "0x%08X 0x%08X\n", i,
11097 				    REG_RD_IND(sc, i),
11098 				    REG_RD_IND(sc, i + 0x4),
11099 				    REG_RD_IND(sc, i + 0x8),
11100 				    REG_RD_IND(sc, i + 0xC));
11101 		}
11102 	}
11103 
11104 	BCE_PRINTF(
11105 	    "----------------------------"
11106 	    "----------------"
11107 	    "----------------------------\n");
11108 }
11109 
11110 
11111 /****************************************************************************/
11112 /* Prints out the Completion Procesor (COM) state.                          */
11113 /*                                                                          */
11114 /* Returns:                                                                 */
11115 /*   Nothing.                                                               */
11116 /****************************************************************************/
11117 static __attribute__ ((noinline)) void
11118 bce_dump_com_state(struct bce_softc *sc, int regs)
11119 {
11120 	u32 val;
11121 	u32 fw_version[4];
11122 
11123 	BCE_PRINTF(
11124 	    "----------------------------"
11125 	    "   COM State    "
11126 	    "----------------------------\n");
11127 
11128 	for (int i = 0; i < 3; i++)
11129 		fw_version[i] = htonl(REG_RD_IND(sc,
11130 		    (BCE_COM_SCRATCH + 0x10 + i * 4)));
11131 
11132 	BCE_PRINTF("Firmware version - %s\n", (char *) fw_version);
11133 
11134 	val = REG_RD_IND(sc, BCE_COM_CPU_MODE);
11135 	BCE_PRINTF("0x%08X - (0x%06X) com_cpu_mode\n",
11136 	    val, BCE_COM_CPU_MODE);
11137 
11138 	val = REG_RD_IND(sc, BCE_COM_CPU_STATE);
11139 	BCE_PRINTF("0x%08X - (0x%06X) com_cpu_state\n",
11140 	    val, BCE_COM_CPU_STATE);
11141 
11142 	val = REG_RD_IND(sc, BCE_COM_CPU_EVENT_MASK);
11143 	BCE_PRINTF("0x%08X - (0x%06X) com_cpu_event_mask\n", val,
11144 	    BCE_COM_CPU_EVENT_MASK);
11145 
11146 	if (regs) {
11147 		BCE_PRINTF(
11148 		    "----------------------------"
11149 		    " Register  Dump "
11150 		    "----------------------------\n");
11151 
11152 		for (int i = BCE_COM_CPU_MODE; i < 0x1053e8; i += 0x10) {
11153 			BCE_PRINTF("0x%04X: 0x%08X 0x%08X "
11154 			    "0x%08X 0x%08X\n", i,
11155 			    REG_RD_IND(sc, i),
11156 			    REG_RD_IND(sc, i + 0x4),
11157 			    REG_RD_IND(sc, i + 0x8),
11158 			    REG_RD_IND(sc, i + 0xC));
11159 		}
11160 	}
11161 
11162 	BCE_PRINTF(
11163 		"----------------------------"
11164 		"----------------"
11165 		"----------------------------\n");
11166 }
11167 
11168 
11169 /****************************************************************************/
11170 /* Prints out the Receive Virtual 2 Physical (RV2P) state.                  */
11171 /*                                                                          */
11172 /* Returns:                                                                 */
11173 /*   Nothing.                                                               */
11174 /****************************************************************************/
11175 static __attribute__ ((noinline)) void
11176 bce_dump_rv2p_state(struct bce_softc *sc)
11177 {
11178 	u32 val, pc1, pc2, fw_ver_high, fw_ver_low;
11179 
11180 	BCE_PRINTF(
11181 	    "----------------------------"
11182 	    "   RV2P State   "
11183 	    "----------------------------\n");
11184 
11185 	/* Stall the RV2P processors. */
11186 	val = REG_RD_IND(sc, BCE_RV2P_CONFIG);
11187 	val |= BCE_RV2P_CONFIG_STALL_PROC1 | BCE_RV2P_CONFIG_STALL_PROC2;
11188 	REG_WR_IND(sc, BCE_RV2P_CONFIG, val);
11189 
11190 	/* Read the firmware version. */
11191 	val = 0x00000001;
11192 	REG_WR_IND(sc, BCE_RV2P_PROC1_ADDR_CMD, val);
11193 	fw_ver_low = REG_RD_IND(sc, BCE_RV2P_INSTR_LOW);
11194 	fw_ver_high = REG_RD_IND(sc, BCE_RV2P_INSTR_HIGH) &
11195 	    BCE_RV2P_INSTR_HIGH_HIGH;
11196 	BCE_PRINTF("RV2P1 Firmware version - 0x%08X:0x%08X\n",
11197 	    fw_ver_high, fw_ver_low);
11198 
11199 	val = 0x00000001;
11200 	REG_WR_IND(sc, BCE_RV2P_PROC2_ADDR_CMD, val);
11201 	fw_ver_low = REG_RD_IND(sc, BCE_RV2P_INSTR_LOW);
11202 	fw_ver_high = REG_RD_IND(sc, BCE_RV2P_INSTR_HIGH) &
11203 	    BCE_RV2P_INSTR_HIGH_HIGH;
11204 	BCE_PRINTF("RV2P2 Firmware version - 0x%08X:0x%08X\n",
11205 	    fw_ver_high, fw_ver_low);
11206 
11207 	/* Resume the RV2P processors. */
11208 	val = REG_RD_IND(sc, BCE_RV2P_CONFIG);
11209 	val &= ~(BCE_RV2P_CONFIG_STALL_PROC1 | BCE_RV2P_CONFIG_STALL_PROC2);
11210 	REG_WR_IND(sc, BCE_RV2P_CONFIG, val);
11211 
11212 	/* Fetch the program counter value. */
11213 	val = 0x68007800;
11214 	REG_WR_IND(sc, BCE_RV2P_DEBUG_VECT_PEEK, val);
11215 	val = REG_RD_IND(sc, BCE_RV2P_DEBUG_VECT_PEEK);
11216 	pc1 = (val & BCE_RV2P_DEBUG_VECT_PEEK_1_VALUE);
11217 	pc2 = (val & BCE_RV2P_DEBUG_VECT_PEEK_2_VALUE) >> 16;
11218 	BCE_PRINTF("0x%08X - RV2P1 program counter (1st read)\n", pc1);
11219 	BCE_PRINTF("0x%08X - RV2P2 program counter (1st read)\n", pc2);
11220 
11221 	/* Fetch the program counter value again to see if it is advancing. */
11222 	val = 0x68007800;
11223 	REG_WR_IND(sc, BCE_RV2P_DEBUG_VECT_PEEK, val);
11224 	val = REG_RD_IND(sc, BCE_RV2P_DEBUG_VECT_PEEK);
11225 	pc1 = (val & BCE_RV2P_DEBUG_VECT_PEEK_1_VALUE);
11226 	pc2 = (val & BCE_RV2P_DEBUG_VECT_PEEK_2_VALUE) >> 16;
11227 	BCE_PRINTF("0x%08X - RV2P1 program counter (2nd read)\n", pc1);
11228 	BCE_PRINTF("0x%08X - RV2P2 program counter (2nd read)\n", pc2);
11229 
11230 	BCE_PRINTF(
11231 	    "----------------------------"
11232 	    "----------------"
11233 	    "----------------------------\n");
11234 }
11235 
11236 
11237 /****************************************************************************/
11238 /* Prints out the driver state and then enters the debugger.                */
11239 /*                                                                          */
11240 /* Returns:                                                                 */
11241 /*   Nothing.                                                               */
11242 /****************************************************************************/
11243 static __attribute__ ((noinline)) void
11244 bce_breakpoint(struct bce_softc *sc)
11245 {
11246 
11247 	/*
11248 	 * Unreachable code to silence compiler warnings
11249 	 * about unused functions.
11250 	 */
11251 	if (0) {
11252 		bce_freeze_controller(sc);
11253 		bce_unfreeze_controller(sc);
11254 		bce_dump_enet(sc, NULL);
11255 		bce_dump_txbd(sc, 0, NULL);
11256 		bce_dump_rxbd(sc, 0, NULL);
11257 		bce_dump_tx_mbuf_chain(sc, 0, USABLE_TX_BD_ALLOC);
11258 		bce_dump_rx_mbuf_chain(sc, 0, USABLE_RX_BD_ALLOC);
11259 		bce_dump_pg_mbuf_chain(sc, 0, USABLE_PG_BD_ALLOC);
11260 		bce_dump_l2fhdr(sc, 0, NULL);
11261 		bce_dump_ctx(sc, RX_CID);
11262 		bce_dump_ftqs(sc);
11263 		bce_dump_tx_chain(sc, 0, USABLE_TX_BD_ALLOC);
11264 		bce_dump_rx_bd_chain(sc, 0, USABLE_RX_BD_ALLOC);
11265 		bce_dump_pg_chain(sc, 0, USABLE_PG_BD_ALLOC);
11266 		bce_dump_status_block(sc);
11267 		bce_dump_stats_block(sc);
11268 		bce_dump_driver_state(sc);
11269 		bce_dump_hw_state(sc);
11270 		bce_dump_bc_state(sc);
11271 		bce_dump_txp_state(sc, 0);
11272 		bce_dump_rxp_state(sc, 0);
11273 		bce_dump_tpat_state(sc, 0);
11274 		bce_dump_cp_state(sc, 0);
11275 		bce_dump_com_state(sc, 0);
11276 		bce_dump_rv2p_state(sc);
11277 		bce_dump_pgbd(sc, 0, NULL);
11278 	}
11279 
11280 	bce_dump_status_block(sc);
11281 	bce_dump_driver_state(sc);
11282 
11283 	/* Call the debugger. */
11284 	breakpoint();
11285 
11286 	return;
11287 }
11288 #endif
11289 
11290